
  

Doklady Physics, Vol. 47, No. 7, 2002, pp. 485–487. Translated from Doklady Akademii Nauk, Vol. 385, No. 1, 2002, pp. 41–43.
Original Russian Text Copyright © 2002 by Golovin, Dmitrievski

 

œ

 

, Nikolaev, Pushnin.

                                                                                               

PHYSICS

        
Reversible Loss of Strength of C60 Single-Crystal Fullerite 
under the Action of Ultra-Weak Ionizing Radiation

Yu. I. Golovin*, A. A. Dmitrievskiœ*, R. K. Nikolaev**, and I. A. Pushnin*
Presented by Academician Yu.A. Osip’yan January 30, 2002

Received January 30, 2002
When examining the action of ionizing radiation on
various objects of an animal or lifeless nature, radiation
effects corresponding to moderate absorption doses D
(conditionally from ~1 to ~108 Gy) have been compre-
hensively studied. However, the response of the objects
to doses D ! 1 Gy and D @ 108 Gy have not been thor-
oughly investigated. In addition, this response cannot
be reliably predicted in the general case by directly
extrapolating data obtained for moderate values of D.
For example, in materials science, there exists a com-
plicated nonmonotonic dependence of the variation of
initial properties on the absorbed dose or on fluence [1].
For low doses D, instead of the usual (for moderate doses)
strengthening, the loss of strength by crystals [2, 3],
rapid relaxation of nonequilibrium defect structures in
them [4], the growth of internal-friction peaks in poly-
meric materials [5], and changes in phase-transition
conditions of ferroelectrics [6], etc. can occur. In radio-
biological studies, the so-called sensitivity-window
effect often manifests itself. This effect consists of
anomalously strong biochemical and physiological
responses that correspond to certain ranges of low
exposure intensities and irradiation doses [7]. At the
same time, information concerning the variation in
physical properties of fullerites under the action of ion-
izing radiation [8–10] remains limited.

In the present paper, we discuss the discovery of an
effect whereby a decrease in the microhardness H of
C60 fullerite is observed as a result of its exposure to β+

and γ radiation with doses D < 0.1 cGy. At room tem-
perature, the microhardness was restored to its initial
value approximately 30 h after the exposure had fin-
ished. Afterwards, the microhardness could be revers-
ibly lowered again by subsequent irradiation.
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The  radionuclide with an activity A = 4.2 MBq
was taken as a radiation source. Together with γ-rays
having the maximal energy  = 0.66 MeV and a
quantum yield of 0.85 per decay, this radionuclide
emits β−-particles within two spectral ranges having
the maximal energies  = 0.564 and 1.176 MeV
with quantum yields 0.947 and 0.053 per decay,
respectively [11]. In the zone where the sample is
placed, the calculated absorbed-dose rate of the γ-ray
component reached Iγ = 88 µGy h–1, while the β−-parti-
cle flux density was Iβ = 9.3 × 103 cm–2 s–1.

Due to the small penetration depth (tens of microns)
in a crystal of β−-particles with energies of <1 MeV, we
used the method of dynamic nanoindentation [12] for
investigating their possible effect on the mechanical
properties of thin near-surface layers. In all experi-
ments, the maximal load was 200 mN, while the maxi-
mal print depth attained was about 7 µm. To avoid the
rapid oxidation of the sample surface, all the manipula-
tions (irradiation, measurements of the microhardness,
holding after an exposure) were performed in the dark
or in weak red illumination.

As is seen from the figure (in which every point was
obtained by averaging 15–20 individual measure-
ments), the increase in the dose of the combined β+ and
γ-irradiation resulted in a decrease in the sample micro-
hardness. In this case, saturation was observed in a time
tsat ~ 6 h. After the exposure had finished, complete res-
toration of the initial microhardness was observed
(after a ~30-hour holding at room temperature).
Repeated irradiation after holding resulted in a loss of
strength corresponding to the same amplitude as had
been observed for the first irradiation.

We have studied the effect of sample screening by
an aluminum plate 2 mm thick, which completely
absorbed the β− component. The intensity of the γ com-
ponent was virtually unaffected by the screening,
which led to the disappearance of the strength-loss
effect. In other words, the doses of γ radiation used did
not cause a measurable variation of H. The problem of
the role of γ irradiation for the combined action of β−
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and γ components requires special consideration. How-
ever, it is clear that, for approximately equal fluxes of
particles and energies carried by the β− and γ compo-
nents, the role of the former in changing the properties
of near-surface layers must be more pronounced than
that of the latter. Indeed, for the weighted-average
energy 〈Eβ〉  = 179.8 keV of β-particles in the flux emit-

ted by the  radioactive nuclide [11], the thickness
of the absorbing layer for these particles is smaller by a
factor of approximately ~103 than for γ-rays with Eγ =
0.66 MeV. In addition, the bulk density of excited states
in the near-surface layer is, correspondingly, higher by
approximately the same factor.

We now estimate the number n of atomic defects
produced by the flux of β−-particles for the maximum
fluence F = Iβtsat ≈ 2 × 108 cm–2, which was used by us.
Usually, it is assumed that the energy spent for the pro-
duction of an atomic radiative defect is E0 = 20–30 eV.
Then, in the near-surface layer with the thickness h1/2 ≈
13 µm, which absorbs half of the flux with an energy
〈Eβ〉 = 0.18 MeV [11], n = F〈Eβ〉/(h1/2E0) ≈ 1015 cm–3 of
radiative defects are formed. For such a low concentra-
tion of structural defects, elucidation of the mechanism
of their effect on plasticity characteristics requires a
separate analysis. We can assume that there exist at
least three possible reasons for the efficient action of
low radiation doses on fullerite:

(1) The plasticity of fcc crystals is limited by the
existence of local locks for slipping dislocations. In
the C60 single crystals under investigation, these
locks might be carbon molecules of different molecu-
lar mass (preferentially, C70, dimers, oxidized mole-
cules, admixtures of other chemical elements, etc.).
Their total concentration in the near-surface layers
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amounts to ~10–3–10–4. The modification of even a
small number of the strongest locks under the action of
irradiation can increase the mobility of dislocations and
lower the microhardness H.

(2) Excitations induced by the flux of β−-particles
form point defects which are not dispersed stochasti-
cally over the bulk of a sample (as in the case of the
γ-radiation), but produce quasi-one-dimensional tracks
with a macroscopic length h1/2 ~ 10 µm, which can
cause a more pronounced loss of strength.

(3) The saturation and closeness of covalent bonds
inside a C60 molecule result in the fact that the plastic
deformation of fullerite is realized preferentially by
breaking weaker intermolecular bonds. Knocking out
one or two carbon atoms from a symmetric C60 mole-
cule can lead to the loss of its stability under loading
and to macroscopic deformation. These processes can
occur not only due to the slipping of certain ball-shaped
molecules with respect to other ones, but also due to the
disintegration of the molecules themselves. Such a
multiplication of the action of a vacancy in the C60
molecular structure can result in a “house of cards”
effect and may considerably increase the irradiation
efficiency.

Of course, we offer only working hypotheses that
require additional study. However, the very fact of the
loss of fullerite strength under the action of such small
doses of irradiation stimulates the search for similar
effects in other cyclic carbon-containing substances
(e.g., single crystals of the aromatic series, polymers,
etc.) and obliges us to be more careful in dealing with
the possible consequences of irradiation—even in the
case of ultra-weak doses.
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1 1. In tokamaks, plasma particles (ions and electrons)
are excursive with respect to a corresponding magnetic-
field line as a result of the so-called magnetic drift, i.e.,
the drift due to both the curvature and the transverse
inhomogeneity of the magnetic field (see [1] and refer-
ences therein). Such drift is sign-variable, so that a par-
ticle deviates from the magnetic-field line only by a cer-
tain finite distance Λ called the orbit size of the drift
motion. Therefore, when a perturbation of an electro-
magnetic field with a characteristic transverse wave
number k⊥  arises, the plasma response to this perturba-
tion depends on the parameter k⊥ Λ. The theory of linear
instabilities of tokamak plasma for finite k⊥ Λ was
developed in [1] and in a series of other original papers.
Furthermore, the results of these papers were compre-
hensively systematized in the monographs [2, 3] and
the review [4].

Presently, extensive theoretical and experimental
investigations on the magnetic islands in tokamaks are
performed (see the review [5] and references therein).
The appearance of nonlinear regular structures of such
a type leads to the reconnection of the magnetic field
lines and, as a result, to enhanced transverse heat trans-
port and limitations imposed on the parameter β, i.e.,
the ratio of plasma pressure to magnetic-field pressure.
This is unacceptable for fusion reactors of the ITER
(International Thermonuclear Experimental Reactor)
type; for details see [6]. Up to now, much attention has
been devoted to studying magnetic islands with a half-
width w considerably larger than the ion drift-orbit size,
i.e., w > Λ. In addition, a series of papers, e.g., [7], was

1 The article was submitted by the authors in English.
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devoted to studying islands with a half-width smaller
than the ion Larmor radius ρi , w < ρi. In this context, the
question arises as to whether magnetic islands satisfy-
ing the conditions

(1)

exist.
Since the value of Λ depends on the pitch angle (the

circularity degree) of a particle, i.e., on the ratio of its
characteristic transverse and longitudinal velocities,
and since, for strongly circulating particles, Λ . ρi , it is
evident that we can consider islands satisfying condi-
tions (1) only in the case of weakly circulating ions.
Actually, according to [1–4], for these ions, we have

(2)

Here, e is the ratio of minor and major tokamak radii,
i.e., the so-called inverse aspect ratio. An orbit size on
the order of (2) also is typical for trapped ions. With
allowance for the above, the problem of the evolution of
islands with half-width satisfying the condition

(3)

is important. Studying such islands is the main goal of
the present paper.

Inequalities (1)–(3) imply single-temperature
plasma; i.e., they exclude the possibility of the exist-
ence of a group of high-energy ions. Meanwhile, the
presence of high-energy ions is typical for recent exper-
imental facilities (for instance, for JET [8]). This is
caused by the injection of a beam of high-energy neu-
tral atoms or the acceleration of a group of ions in con-
ditions of ion cyclotron resonance. The size of drift
orbits for high-energy ions substantially exceeds esti-
mate (2). Therefore, in addition to the islands satisfying
condition (3), we also analyze islands obeying inequal-
ity (1) and assume that Λ is the characteristic orbit size
for the high-energy ions.

2. Elucidating the role of the effect of interest is
reduced to analyzing the contribution of finite-orbit
particles to the evolution equation for the magnetic-

ρi w Λ< <

Λ  . 
ρi

e
1/2

-------  @ ρi.

ρi w
ρi

e
1/2

-------< <
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island width, which is usually called the generalized
Rutherford equation. Following [6, 7, 9–11], we repre-
sent this equation in the form

. (4)

Here, the sign ~ implies equality with an accuracy to a
certain positive coefficient, so that effects with a posi-
tive or negative contribution to the right-hand side of
Eq. (4) lead to growth or decay of the islands, respec-
tively. The quantity ∆' is usually called the tearing-
mode stability parameter. The sign of the term with ∆'
in Eq. (4) depends on the character of the radial distri-
bution of the longitudinal plasma current. In the case of
a well organized discharge, we have ∆' < 0; i.e., the
effect caused by the term with ∆' is stabilizing. The
terms corresponding to the trend of the parametric
instability characterize effects of the bootstrap current
∆bs , polarization current ∆p , and magnetic well ∆mw

(see [5] for details). These effects were comprehen-
sively studied in preceding publications in the approxi-

mation of sufficiently large-scale islands, w < . We

can expect that the corresponding terms, usually
denoted as ∆bs, ∆p, and ∆mw [5], should be modified in

the case of interest, i.e., when w < . The study of

such a modification could be the subject of further pub-
lications. Within the scope of the present work, we ana-
lyze only the effect characterized by the term ∆Λ. Here,
superscript Λ emphasizes that we deal with the contri-
bution of particles with large drift orbits Λ.

For calculating ∆Λ, we introduce standard variables
ψ and ξ characterizing the island configuration of the

magnetic field [5, 10, 11], where ψ = cosξ – 

and ξ = mθ – nζ – ωt. Here,  is the perturbation
amplitude; x is the distance from the rational (singular)
magnetic surface around which the islands are local-
ized; B0 is the equilibrium magnetic field at this surface;

Ls =  is the so-called shear length; q is the safety fac-

tor; R is the major radius of the torus; s =  is the

shear; r is the radial coordinate; θ and ζ are the poloidal
and toroidal angles, respectively; ω is the island-rota-
tion frequency; and m and n are poloidal and toroidal

mode numbers interrelated by the equality  = q,

where q is taken at the rational magnetic surface r = rs.
The island half-width w introduced above is related to

dw
dt
------- ∆'

4
---- ∆Λ …+ +∼

ρi

e
1/2

-------

ρi

e
1/2

-------

ψ̃
x2B0

2Ls

-----------

ψ̃

qR
s

-------

d qln
d rln
------------

m
n
----
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 by the relationship w = 2 . It is assumed that

the values of Ls and s are taken at r = rs.

Along with the variable ψ, which characterizes the
magnetic flux of the island configuration, we introduce

the dimensionless magnetic-flux function Ω = . In

addition, we introduce the function  = (Ω, ξ),
which characterizes the longitudinal current density in
the island configuration due to the presence of large-
orbit particles. Then, according to [5, 11], the quantity
∆Λ is defined by the expression

(5)

Here, c is the speed of light and σx = = ±1. Phys-
ically, the integration region in Eq. (5) corresponds to
the space lying outside the magnetic-island separatrix.
The contour integration over ξ in (5) implies integration
from 0 to 2π.

3. We calculate  by taking account of the follow-
ing considerations. We know the total density nΛ of the
ion Λ group and consider it as a sum of the equilibrium
n0Λ and perturbed  densities; i.e., nΛ = n0Λ + .
Allowing for the fact that the electric charge einΛ of this
ion group is compensated by the charge of the corre-

sponding part of the electron-plasma component ee ,

i.e., in the simplest case, ei = –ee = e, we have  = nΛ.
It is the longitudinal motion of these compensating

electrons that causes the longitudinal current .
Assuming the electrons to be cold and allowing for
their transverse motion in the crossed electric and mag-

netic fields, we conclude that  can be found on the
basis of the electron continuity equation. Using the
relations above, this equation can be written in the form

(6)

Here, ∇ || is the longitudinal gradient operator (along the

total island magnetic field),  =  + (VE · —), VE =

 is the electron velocity in the cross fields,

φ is the electrostatic potential related to transverse elec-
tric field E⊥  by E⊥ = –—⊥ φ, and —⊥  is the transverse gra-
dient.

In order to calculate , we turn to the drift kinetic
equation (see, e.g., Eq. (16.70) in [3]). In general, we
can use this equation to find the expression at  for

ψ̃
Lsψ̃
B0

--------- 
 

1/2

ψ
ψ̃
----–

j||
Λ j||

Λ

∆Λ 23/2Rq
cswB0
---------------- Ω

j||
Λ ξ ξdcos

Ω ξcos+( )1/2
--------------------------------.∫°d

1

∞

∫
σx

∑–=

xsgn

j||
Λ

ñΛ ñΛ

ne
Λ

ne
Λ

j||
Λ

j||
Λ

–e
d0

dt
----- n0Λ ñΛ+( ) ∇ || j||

Λ+ 0.=

d0

dt
----- ∂

∂t
-----

c B0 —φ×[ ]
B0

2
---------------------------

ñΛ

ñΛ
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arbitrary k⊥ Λ (cf. [1]). However, in accordance with (1),
we are interested only in the limiting case of large drift
orbits, k⊥ Λ @ 1. In this limiting case, assuming the par-
ticle-velocity distribution to be Maxwellian with the
temperature TΛ, we find

(7)

Physically, relation (7) implies that, in the case of
small-scale perturbations, the spatial distribution of the
ion group under consideration obeys the Boltzmann
law. Expression (7) can also be found from the corre-
sponding formulas of [1] with the assumption that
k⊥ Λ @ 1 (in terms of [1], k⊥ Λ is equal to ξ||).

4. For cold electrons, the electrostatic potential φ has
the form [5, 10, 11]

where ky =  and h(Ω) is the so-called electrostatic-

potential profile function. In terms of the variables (Ω,

ξ), the operator , if we ignore both the island width

and rotation frequency, is defined by the relationship

 = , where h' ≡  and Ωx = . We

also take into account the fact that n0Λ(r) = n0Λ(rs) +

x . In addition, we have

where k|| = . Then, (6) reduces to the form

(8)

Here,

(9)

ω*Λ =  is the diamagnetic drift fre-

quency of the ion group under consideration, and the
function g(Ω) is defined (see [11]) by the relationship

g(Ω) = h'(Ω). Integrating (8) over ξ, we obtain

(10)

ñΛ
eφ
TΛ
------n0Λ.–=

φ
B0ω
cky

---------- x h Ω( )–[ ] ,=

m
rs

----

d0

dt
-----

d0

dt
----- ωΩxh'

∂
∂ξ
------–

dh
dΩ
------- ∂Ω

∂x
------- 

 
ξ

∂n0Λ

∂r
----------- 

 
r  = rs

x σx

2Lsψ̃
B0

------------- 
 

1/2

Ω ξcos+( )1/2, ∇ || k ||
∂
∂ξ
------,= =

kyx
Ls

--------–

∂ j||
Λ

∂ξ
-------- cΛg Ω( ) ξsin

Ω ξcos+( )1/2
--------------------------------.=

cΛ
π

4 2
----------ω2

ky
2

------
e2n0ΛB0Ls

cTΛ
------------------------- 1

ω
*Λ

ω
----------– 

  ,=

kycTΛ

eB0
--------------

∂ n0Λln
∂r

---------------- 
 

r rs=

8σx

πw
--------- 

 

j||
Λ = 2cΛg Ω( ) Ω ξcos+( )1/2 Ω ξcos+( )1/2〈 〉–[ ] ,–
where 〈…〉  implies averaging over ξ with the weight
(Ω + cosξ)–1/2.

Substituting relationship (10) into Eq. (5), we find

(11)

where

(12)

According to [11], g(Ω) = , where κ is

related to Ω by κ = . The function λ3(κ) is

defined as

(13)

where K(κ) and E(κ) are the complete elliptical inte-
grals of the first and second kinds, respectively. Then,
the integral I reduces to the form

(14)

A numerical calculation yields I = 1.50.

5. According to equality (11), the quantity ∆Λ

depends on the shear and magnetic island half-width as
(s2w)–1; the dependence is the same as that of the quan-
tity ∆mw characterizing the magnetic-well effect (see [5]
for details). Consequently, the large-orbit effect,
referred to below as the Λ-effect, can be treated as a
variant of the magnetic-well effect.

To estimate the order of magnitude of the quantity
∆Λ, we consider the case when the ions of the Λ-group
are trapped and weakly circulating ions of the core
plasma, i.e., when n0Λ . e1/2n0 and TΛ = Ti , where n0 and
Ti are the core plasma density and ion temperature,
respectively. In addition, we assume the island-rotation
frequency ω to be on the order of the diamagnetic drift

frequency ωwΛ, so that  . , where  is the

ion thermal velocity and Ln is the characteristic length
of the plasma-density inhomogeneity, which, for sim-
plicity, is assumed to be on the order of rs. Then, we find
from integral (11) the estimate

(15)

∆Λ 4πe2n0Λ

TΛc2
--------------------ω2

ky
2

------q2R
2

s2w
----------- 1

ω
*Λ

ω
----------– 

  I ,=

I  = 
1
2
--- Ωg Ω( ) Ω ξcos+( )1/2〈 〉 ξ ξdcos

Ω ξcos+( )1/2
--------------------------------.∫°d

1

∞
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κd
λ3 κ( )
-------------

0

κ

∫
2

Ω 1+
-------------

1/2

λ3 κ( ) 1
3
--- 2 2 κ2–( )E κ( ) 1 κ2–( )K κ( )–[ ] ,=

I 4π κg κ( )
κ5

----------- 2 1 E κ( )
K κ( )
------------– κ2–

 
 
 

.d
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1.
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ω
ky
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v Ti

ρi

Ln

------------ v Ti
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 . 

e
1/2βp

s2w
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DOKLADY PHYSICS      Vol. 47      No. 7      2002



THE ROLE OF THE FINITE-ORBIT EFFECT IN THEORY OF MAGNETIC ISLANDS 491
where βp =  (the so-called poloidal beta) and Bθ

is the poloidal magnetic field (see, for details, [5]). We

also have, according to [5], ∆mw . . Consequently,

 . e–3/2; i.e., the Λ effect is substantially stronger

than the standard magnetic-well effect. We also note
that for s . 1, the estimate (15) for ∆Λ is the same as that
for ∆bs, i.e., for the bootstrap current contribution to
Eq. (4) of island-width evolution. It follows that, in
studying the islands of sufficiently small width, i.e., for
the condition (3), and allowing for the bootstrap current
effect, we must also take into account the Λ effect.

According to relationships (11) and (14), for  > 1,

i.e., in the case of superdrift magnetic islands rotating
in the direction of the ion diamagnetic drift, ∆Λ > 0. In
other words, the Λ effect is destabilizing. On the other
hand, for the subdrift magnetic islands rotating in the

ion diamagnetic-drift direction for which 0 <  < 1,

we have ∆Λ < 0; i.e., in this case, the Λ effect turns out
to be stabilizing. These results are consistent with the
predictions of [7] concerning the islands with w < ρi. In
addition, according to relationships (11) and (14), the Λ
effect is destabilizing (∆Λ > 0) in the case of islands
rotating in the direction of the electron diamagnetic

drift, i.e., when  < 0.

8πn0Ti

Bθ
2

-----------------

e
2βp

s2w
----------

∆Λ

∆mw

---------

ω
ω

*Λ
----------

ω
ω

*Λ
----------

ω
ω

*Λ
----------
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The construction of exact solutions to a set of non-
linear equations of magnetic hydrodynamics is of
doubtless interest. The self-similar approach [1] turns
out to be an efficient method of solving this problem.
The method allows us to pass from solving a set of par-
tial differential equations to integrating a set of ordinary
differential equations, which is a much simpler prob-
lem. Such solutions to equations of magnetic hydrody-
namics were previously obtained for unsteady plasma
motions belonging to the class of continuum motions
for which their velocities are proportional to the dis-
tance to the center of symmetry (see, e.g., [1, 2] and lit-
erature cited therein).

These studies dealt with the one-dimensional
plasma motion when the ratio of a spatial coordinate
and a certain function of time served as a self-similar
variable. An analogous approach can be used for con-
structing solutions to steady equations of magnetic
hydrodynamics in the case of axisymmetric flows pro-
vided that the transverse coordinate divided by a certain
function of the longitudinal coordinate is chosen as a
self-similar variable [3]. Using this method, we here
construct an exact solution to equations of magnetic
hydrodynamics in the case of two-dimensional axisym-
metric plasma flows.

The condition rot[VB] = 0 of the magnetic field-line
freezing-in is evidently satisfied for steady plasma
flows provided that B = wV, where w is a certain func-
tion. It is easy to see that the condition divB = 0 is sat-
isfied if we set w = Aρ, where A is a certain constant,
because in this case, the condition is equivalent to the
continuity equation divρV = 0.

Therefore, for an axisymmetric flow, we set 

(1)

In this case, from steady equations of magnetic hydro-
dynamics, we arrive at the following equations:

(2)

V Vr r z,( ) 0 Vz r z,( ), ,( ), B AρV.= =

1
r
---

∂ρrVr

∂r
---------------

∂ρVz

∂z
------------+ 0,=
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(3)

(4)

It is worth noting that Eq. (1) corresponds to the fol-
lowing azimuth component of the current density:

Hence, the constant A determines the electric current
flowing in plasma.

A similar analytical solution to the set of Eqs. (2)–
(4) can be obtained for the class of motions indicated
above if the ratio of the radial coordinate and the flow
radius a = a(z) is chosen as a self-similar variable:

(5)

Here, u = u(z) is the longitudinal flow velocity and the
primes stand for the derivatives with respect to z. For
such a coordinate dependence of the velocity compo-
nents, it is easy to verify that the function

(6)

satisfies continuity equation (2), where R, ρ0, and u0 are
constant values of the flow radius, density, and longitu-
dinal velocity, respectively, at z = 0.

Substituting expressions (5) and (6) into Eq. (4), we
arrive at the following differential equation:

ρ
r∂

∂
Vr

2 ρVz z∂
∂ ρ

2π
------A2 2– 

  Vr=

–
r∂

∂ ρ2

4π
------A2Vz

2 2 p+ 
  ,

ρ
z∂

∂
Vz

2 ρVr r∂
∂ ρ

2π
------A2 2– 

  Vz=

–
z∂

∂ ρ2

4π
------A2Vr

2 2 p+ 
  .

jϕ
cA
4π
------

∂ρVr

∂z
------------

∂ρVz

∂r
------------– 

  .=

Vr ua'
r
a
---, Vz u.= =

ρ ρ0

u0R2

ua2
-----------=

Q
u'

a2
----- 1

8π
------A2Q2r2

zd
d a'2

a6
------+

∂p
∂z
------.–=
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This equation allows us to find the plasma pressure in
the general form:

(7)

Here, for brevity, we introduce the notation Q = ρ0u0R2.
Substituting expressions (5)–(7) into Eq. (3), we

obtain the ordinary differential equation

i.e., the longitudinal velocity is a function of the flow
radius and its derivative:

(8)

As follows from Eqs. (8) for A2 = , the longitudi-

nal flow velocity is inversely proportional to the flow
radius. According to Eq. (6), this corresponds to the
case of incompressible plasma with ρ = ρ0. A similar
situation takes place for nonzero values of the initial
divergence angle α, i.e., if  =  = 0. In what fol-
lows, the electric current is characterized by a constant

β defined by the equality A2 = ; in the case of

incompressible plasma, β = 1.
The results obtained above allow us to specify gen-

eral expression (7) for the plasma pressure:

(9)

where we introduced the notation  = 4πβρ0 .

In order to derive the equation for the flow radius as
a function of the longitudinal coordinate, we take into
account the boundary condition for plasma pressure:
p(a, z) = 0. As a result, from Eq. (9) we find the follow-
ing first-order differential equation for the radius of the
incompressible-plasma flow:

(10)

where b = R . In the case of compressible plasma,

p r z,( ) p0
1

8π
------A2Q2r2a'2

a6
------– Q

u'

a2
----- z.d

0

z
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d
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1

4π
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a2
-----;=

u
1

4π
------ρ0u0A2 R2

a2
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a'
----,+=

C u0a0' 1
1

4π
------ρ0A2– 

  .=

4π
ρ0
------

a0' αtan

4πβ
ρ0

----------

p
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2

8π
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2

--------------
R4

a4
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 –=

+ ρ0u0
2 B0

2

4π
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  1 R2 α 1

a'a2
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a3
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0
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∫+
 
 
 

tan– ,
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a'2 a4
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we arrive at the second-order differential equation

(11)

where γ = .

It is easy to solve Eq. (10) exactly. This allows us to
find the radius of the incompressible-plasma flow as an
explicit function of the longitudinal coordinate. For α <
0, the flow radius initially decreases to the minimal
value amin = b corresponding to the longitudinal coordi-

nate zmin = s = kbF( , k):

Here, cn(x, k) is the Jacobian elliptic function, F(x, k) is
the incomplete elliptical integral of the first kind, and

k = . Furthermore, for z > s, the flow starts to

expand:

(12)

Expression (12) is valid provided that the values of the
longitudinal coordinate are smaller than the critical
value zk = s + kbK(k), where K(k) is the complete ellip-
tical integral of the first kind. As z  zk, the flow
radius increases without bound.

If α ≥ 0, a monotonic increase in the flow radius
occurs:

This expression holds for 0 ≤ z < kbK(k) – s.

aa'' a'3 γ a2
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  2a'3 1 a'2+( ),=

1 1
β
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a
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---------- k, 
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1

2
-------

b
a
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z s–
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  .=

b
a
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z s+
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---------- k, 
  .=
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Flow radius as a function of the longitudinal coordinate.
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It should also be noted that expression (9) for the
pressure of incompressible plasma can be written, with
allowance for Eq. (10), in the form

Using Eqs. (1), (5), and (10), we can prove that this
result corresponds to the general form of the Euler
equation for the steady flow of incompressible plasma

at B = 2 V:

Equation (11) can be solved by numerical methods.
The calculation results for the flow radius are shown in
the figure for various values of the parameters intro-
duced above: (1) α = –0.7, β = 1.01; (2) α = –0.5, β = 1;
and (3) α = 0.1, β = 1.1.

As is seen from these results, in contrast to the case
of incompressible plasma (curve 2), the flow radius of
compressible plasma (curves 1 and 3) varies monoton-
ically. This is due to the fact that expression (8) can
only be used in the case of the nonvanishing derivative
a'. Therefore, the behavior of the incompressible-
plasma flow is determined by initial conditions. If
α < 0, the flow radius decreases, but the longitudinal
flow velocity increases. On the other hand, if α > 0, the
flow radius increases, but the longitudinal flow velocity
decreases.

p
1
2
---ρ0u0

2R4 1 r2

a2
-----– 

  1

b4
----- 1

a4
-----– 

  .=

πρ

grad p
ρ
--- V2

2
------+ 

  0.=
From Eqs. (8) with regard to Eq. (11), we obtain the
following expression for the derivative of the longitudi-
nal flow velocity:

This expression allows us to find the range of possible
values of the parameter β for which the incompressible-
plasma flows under consideration occur. Since

the signs of the initial values for the derivatives of the
flow radius and of the longitudinal flow velocity are
opposite for β > cos2α.
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1. Capillary forces in geothermal reservoirs mainly
affect heat-and-mass transfer processes in low-perme-
ability domains with large gradients in the water con-
tent. In this respect, the problem on propagating a
phase-transition front is representative, because capil-
lary forces are maximal in this case. Such processes are
of great importance for the operation of fractured col-
lectors consisting of large-volume low-permeability
blocks separated by cracks. The extraction of a heat-
transfer agent from such a system causes a sharp pres-
sure drop in the cracks, whose total void volume is
small. As a result, the subsequent operation of the geo-
thermal system is determined by the ability of the low-
permeability blocks to vent the superheated vapor.

Numerical calculations of transport processes in
geothermal systems containing equilibrium water–
vapor mixtures were carried out in [1] with allowance
for capillary forces. In the present paper, we formulate
a new mathematical model of phase transitions which
implies the existence of a sharp water–vapor interface
at which capillary forces are present. Based on the
derived analytical solution, we show that the capillary
forces in a wetting medium stabilize the motion of the
vaporization front. They prevent its destabilization and
the origination of a mixed water–vapor domain. More-
over, they result in an increase in the yield of extracted
vapor.

The approach based on the concept of a vaporization
front was considered in studies [2–5], which were
devoted to problems on phase transitions in geothermal
systems.

2. We assume a geothermal reservoir to be an
incompressible porous medium saturated with either
water or vapor. In this case, the system of basic equa-
tions is determined by the laws of conservation of mass
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and energy, Darcy’s law, the equation of state for vapor,
and the thermodynamic relationships. Thus, in the
water domain,

Furthermore, in the vapor domain,

Here, T is temperature; P is pressure; h is the enthalpy
density; e is the energy density; v  is the filtration rate;
m is the porosity; k is the permeability coefficient; ë is
the specific heat; R is the gas constant; µ is the viscos-
ity; ρ is the density; λ is the heat conductivity; α is the
water compressibility coefficient; and β is the coeffi-
cient of thermal expansion for water. The subscripts w,

m
t∂

∂ ρw divρwvw+ 0, vw
k

µw
------gradP,–= =

t∂
∂ ρe( )1 div ρwhwvw( )+ div λ1gradT( ),=

ρw ρw0 1 α P P0–( ) β T T0–( )–+( ),=

dhw CwdT
dP
ρw
-------, deS+ CSdT , ew hw

P
ρw
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t∂
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P
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dhv CPdT , deS CSdT ,= =

λ2 mλv 1 m–( )λS,+=

ρe( )2 mρv ev 1 m–( )ρSeS.+=
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v, and S stand for water, vapor, and the skeleton of the
porous medium, respectively.

The conditions of the local thermal equilibrium
between phases imply that the relationships

(1)

must be satisfied at the vaporization front, where the
capillary pressure Pc is determined by the Laplace for-
mula

(2)

Here, σ is the surface tension, θ is the wetting angle,
and r is the capillary radius. For a porous medium, rep-
resentative values of the last quantity are given by the

formula r = . In the case of a low-permeability

porous medium, the liquid pressure was estimated to
differ significantly from the vapor pressure even when
the wetting angle is small. In addition, the capillary
pressure drops as the permeability coefficient increases.

T+ T– T*, Pw+ Pv – Pc+= = =

Pc
2σ θcos

r
-------------------.–=

k
m
----

0.16
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P0
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P

Fig. 1. Dimensionless pressure in the water and vapor
domains with a pressure jump at the vaporization front in
(a) a nonwettable medium with θ = 91°, T* = 446.22 K,
Pv– = 8.84 × 105 Pa, and Pw+ = 1.31 × 106 Pa and in
(b) a wettable medium with θ = 89°, T* = 445.87 K, Pv– =

8.73 × 105 Pa, and Pw+ = 4.49 × 105 Pa.
A decrease in the saturation vapor pressure at a
curved surface (meniscus) is an extra effect determin-
ing the phase-transition conditions. This decrease is
given by the Kelvin formula

Here, R0 is the universal gas constant, Vw is the molar
water volume, and P* is the flat-surface pressure. The

Clapeyron equilibrium curve for a water–vapor mixture
with allowance for the Kelvin correction can be pre-
sented in the form

A = 12.512, B = 4611.73.

This equation, together with Eqs. (1) and (2) and the
laws of conservation of mass and energy, composes a
complete system of boundary conditions at the phase-
transition front with allowance for capillary forces. The
laws of conservation of mass and energy take the form

Here, V is the front velocity and q is the specific heat of
vaporization. The index n stands for the normal compo-
nent. The subscripts plus, minus, and asterisk imply
that the quantities are to be taken, respectively, on the
right and left sides of the front and directly at the front.

3. For simplicity, we now consider a one-dimen-
sional problem of the vapor extraction from a water-sat-
urated hydrothermal permeable reservoir occupying the
half-space x > 0 and contacting impermeable rocks at
the fixed boundary x = 0. At the initial state, the stratum
pressure is P0 and the temperature is T0. We assume
that, at the boundary x = 0, which represents a fracture,
the pressure P0 decreases to a value lower than the pres-
sure of the phase transition at the initial temperature. In
this case, a vaporization front between the water and
vapor domains propagates to the right.

We now restrict our analysis to the case of suffi-
ciently small values of the permeability coefficient and

Pv – P*
2σVw

rR0T
--------------– 

  .exp=

Pv – Pa A
B

T*
------

2σVw

rR0T*
---------------–+ 

  ,exp=

m 1
Pv –

ρwRT*
-----------------– 

  Vn

=  
kPv –

µv ρwRT*
----------------------- gradP( )n–

k
µw
------ gradP( )n+,–

mqρwVn λgradT( )n+=

– λgradT( )n– qρw
k

µw
------ gradP( )n+.–
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ignore small quantities. Thus, we arrive at the following
system of basic equations: in the water domain,

and in the vapor domain,

Let the initial and boundary values of both the tem-
perature and pressure be constant. In this case, the prob-
lem has the self-similar solution

.

In both the domains, the solutions can be expressed
in terms of probability integrals. Substituting the solu-
tions into the system of boundary conditions at the
vaporization front, we arrive at a system of transcen-
dental equations for determining the front velocity, the
phase-transition temperature, and the pressure on both
sides of the interface.

4. We numerically solved the system of transcen-
dental equations at the moving boundary for representa-
tive values of the basic physical parameters with T0 =
450 K, P0 = 4 × 106 Pa, P0 = 2 × 105 Pa, k = 0.5 ×
10−17 m2, and m = 0.1. Examples of the calculation
results for the pressure in the water and vapor domains
are shown in Fig. 1 for (a) nonwettable and (b) wetta-
ble media. As is seen, a pressure jump occurs at the
front. In the first case, the liquid pressure exceeds the
vapor pressure; in the second case, the situation is the
reverse.

There exist two different regimes of vapor extrac-
tion. In the case of a wettable medium, which is illus-
trated in Fig. 2, temperature curve (1) is at a conven-
tional position with respect to phase-transition tem-
perature curve (2); i.e., the temperature curve in the
water domain is situated lower than the vaporization-
temperature curve. At larger values of the permeabil-
ity coefficient and of the wetting angle, the curves
change their positions. The temperature in the water
domain becomes higher than the vaporization temper-
ature. From the physical standpoint, this corresponds
to the superheating of the liquid phase. This fact can
be treated as an instability in the phase-transition front
(which is usually referred to as a morphological insta-
bility) resulting in the formation of a two-phase
water–vapor domain between the water and vapor
domains. For example, this effect manifests itself in
the case of the parameters taken in Fig. 2 but for val-
ues of the wetting angle corresponding to either neu-
tral or nonwettable media (θ ≥ 90°). Therefore, the
capillary pressure stabilizes and destabilizes the

∂P
∂t
------

β
α
---∂T

∂t
------–

k
mαµw
---------------∂2P

∂x2
---------,

∂T
∂t
------ a1

∂2T

∂x2
---------= =

∂P
∂x
------ 

 
2

– P
∂2P

∂x2
---------,

∂T
∂t
------ a1

∂2T

∂x2
---------.= =

T  = T ζ( ), P = P ζ( ), ξ  = 
x

2 a1t
--------------, X t( ) = 2γ a1t
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phase-transition front in wettable and nonwettable
media, respectively.

The mass of extracted vapor, which is an important
characteristic of the process, can be presented as

This quantity is composed of the two terms describing
the contributions due to both the motion of the phase-
transition front and the expansion of liquid caused by

M m ρw0 ζd

0

∞

∫ m ρw ζ( ) ζd

γ

∞

∫–=

=  mρw0 γ 1
ρw

ρw0
--------– 

  ζd

γ

∞

∫+ .

0.996

0.990
–1 0

4

3

2 4 6

5

6

7

2
0

k × 1018, m2

1

2
3

M

1.002

1.008

1γ ζ

1

2

1

T0

T

Fig. 2. (1) Dimensionless temperature and (2) phase-transi-
tion temperature for a wettable porous medium with P0 =

1.5 × 105 Pa, k = 0.7 × 10–17 m2, and P0 = 3 × 105 Pa.

Fig. 3. Mass of extracted vapor as a function of the perme-
ability coefficient at various wetting angles for (1) neutral
(θ = 90°), (2) nonwettable (θ = 91°), and (3) wettable (θ =
89°) media.
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the pressure drop. The front velocity decreases with
increasing initial pressure and permeability coefficient.
Curves for the mass of the extracted heat-transfer agent
are presented in Fig. 3 for (1) neutral, (2) nonwettable,
and (3) wettable media. As is seen, a decrease in the
wetting angle results in an increase in the vapor yield.
This fact can be explained by a pressure drop at the
front in the water domain. The drop results in an
increase in the pressure gradient and, consequently, the
mass flux towards the front. In contrast, in the case of a
nonwettable medium, the water pressure at the vapor-
ization front increases, which is accompanied by a
reduction of the amount of the extracted heat-transfer
agent.
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A wealth of physical, mechanical, and chemical
processes associated with phase and chemical transi-
tions are conventionally described on the basis of the
Stefan classical frontal model. The evaporation of liq-
uids, the growth of a new phase in a metastable
medium, frontal burning or frontal chemical reactions,
the filtration displacement of viscous fluids in porous
substances, etc., are among them. In many cases, a
locally flat shape of the front separating two phases is
violated, and a transient domain containing elements of
both phases is formed. In this two-phase domain, the
interface often represents a strongly branched structure
having the properties of the scale–time self-similarity.
Its known manifestations are growing dendrites,
clouds, fractal clusters, hydrodynamic viscous “fin-
gers” in porous media, and chemical reactions in turbu-
lent flows [1–4]. The listed objects are natural examples
of so-called fractal formations [1] whose self-similarity
and scale–time invariance are described by a scaling
power dependence with a fractional exponent called the
fractal dimensionality.

Among many phenomena of phase transitions, the
processes of directed crystallization of multicomponent
melts and solutions used for producing pure crystals or
alloys with desired properties play an important applied
role. In a solidifying melt, an impurity often precipi-
tates intensely from the crystal bulk. If this process is
characterized by a strong dependence of the phase-tran-
sition temperature of the crystallizing liquid on the
available impurity concentration, a metastable domain,
the so-called zone of concentrational (constitutional)
supercooling, arises ahead of the solidification front [5].
The temperature of the multicomponent melt in this
zone is lower than its solidification temperature, a con-
dition which leads to the appearance in this domain of
the elements of a new phase in the form of dendrites,
crystallites, etc. As a result, the solid and liquid phases
are separated by the two-phase zone.

Ural State University,
pr. Lenina 51, Yekaterinburg, 620083 Russia
1028-3358/02/4707- $22.00 © 20499
It is natural that the presence of the two-phase zone
principally changes the pattern of the process. For this
reason, this phenomenon is actively investigated (see,
e.g., [6–13]). However, the hypothesis regarding the
possible self-similar fractal structure of the two-phase
zone has been poorly studied until now. Among the
sparse investigations in this field, we find study [11], in
which the effect of fractal dimensionality on the param-
eters of the self-similar solidification mode was investi-
gated by using the heuristically introduced fractal-like
spatial density distribution in the two-phase zone. Until
now, only asymptotic approximate solutions to equa-
tions of heat and mass transfer in the two-phase zone
were known [7, 8].

This study is based on the exact analytical solutions
recently obtained [12, 13] to the model proposed for the
quasi-equilibrium two-phase zone in [14], where it was
shown that supercooling in the developed two-phase
zone is almost completely eliminated due to intense
heat release by growing elements of the solid phase.
Here, we show that the distributions of an impurity and
a volume solid-phase fraction in the quasi-equilibrium
two-phase zone are described by scaling-power spatial
dependences with a fractional exponent. This scaling
dimensionality depends on the thermal properties of a
melt and is invariant with respect to the operational
parameters governing solidification. In other words,
this exponent is a universal characteristic for each melt.
The presented experimental data [15] corroborate the
conclusion that the scaling exponent holds in the time
evolution of the two-phase zone. This result makes it
possible to formulate the concept of the fractal structure
of the two-phase zone.

We consider the process of the directed solidifica-
tion of a binary melt along the ξ axis, with the two-
phase zone in thermodynamic equilibrium. We assume
that the process proceeds with a constant rate us, and the
distributions σm(ξ), θm(ξ), and ϕ(ξ) of an impurity, tem-
perature, and the volume fraction of the solid phase,
respectively, attain steady-state values in the two-phase
zone usτ < ξ < usτ + δ (here, τ is the time and δ is the
length of the two-phase zone). The heat and mass trans-
002 MAIK “Nauka/Interperiodica”
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fer in the two-phase zone are described by the heat
equation and impurity diffusion equation

(1)

(2)

where k is the equilibrium coefficient of impurity distri-
bution and LV is the latent solidification heat. The effec-
tive transport coefficients Dm, ρm, Cm, and λm in the
two-phase zone depend on the volume fraction of the
solid component ϕ:

(3)

Here, Dl is the diffusivity of an impurity in the liquid
phase (diffusion in the solid phase is conventionally
neglected); and ρl and ρs, Cl and Cs, and λl and λs are
the densities, heat capacities, and thermal conductivi-
ties of the liquid and solid phases, respectively. The
temperature in the two-phase domain is determined
through an impurity concentration from the liquidus
equation. In the case of a low impurity content, this
dependence is linear:

(4)

where θ0 is the phase-transition temperature for a pure
melt and m is the liquidus slope determined from the
binary-system phase diagram. At the solid-phase–two-
phase-zone interface ξ = Σ(τ) and two-phase-zone–melt
interface ξ = Σ(τ) + δ(τ), the following conditions of
heat and mass balance are satisfied:

(5)

 (6)

(7)

where ϕ. is the volume fraction of the solid phase at the
crystal–two-phase-zone interface. The melt solidifica-
tion with a constant rate us can be realized only when
the phase interfaces are far from the walls of an ingot
mold. In this case, it is possible to consider the temper-
ature gradients gl and gs as constant at the two-phase-
zone interfaces.

∂
∂τ
----- ρmCmθm[ ] ∂

∂ξ
------ λm

∂θm

∂ξ
--------- 

  LV
∂ϕ
∂τ
------,+=

∂
∂τ
----- 1 ϕ–( )σm[ ] ∂

∂ξ
------ Dm

∂σm

∂ξ
--------- 

   – kσm
∂ϕ
∂τ
------,=

Dm ϕ( ) = Dl 1 ϕ–( ),

ρm ϕ( )Cm ϕ( ) ρlCl 1 ϕ–( ) ρsCsϕ+ ,=

λm ϕ( ) λ l 1 ϕ–( ) λ sϕ .+=

θm x( ) θ0 mσm x( ),–=

ϕ ϕ w, λ s

∂θs

∂ξ
-------- λm

∂θm

∂ξ
---------– LV 1 ϕw–( )dΣ

dτ
------,= =

ξ Σ τ( );=

1 k–( ) 1 ϕw–( )σm
dΣ
dτ
------ Dm

∂σm

∂ξ
---------+ 0, ξ Σ τ( );= =

ϕ 0, σ σl, Dm

∂σm

∂ξ
--------- Dl

∂σl

∂ξ
--------,= = =

∂θm

∂ξ
--------- gl , ξ Σ τ( ) δ τ( ),+= =
In [12], the exact analytical solution to model (1)–
(7) for the quasi-steady solidification process (steady in

the reference frame x =  connected with the

moving zone) is constructed for crystallization in a field
of fixed temperature gradients gs and gl in the solid and
liquid phases, respectively. In this case, the classical
diffusion equation was used for the melt, and the impu-
rity concentration σl∞ far from the zone was considered
as known. The method developed in [12, 13] is based on
the elimination of the temperature field by using Eq. (4)
and on the integration with respect to a new variable—
the volume fraction of the solid phase. Here, we present
only the final result. The impurity concentration
depends explicitly only on the volume fraction of the
solid phase and has the form

(8)

The volume fraction of the solid phase ϕ and the
dimensionless thickness of the two-phase zone ε are
determined from the relationships

(9)

(10)

Here, the dimensionless variables and parameters have
the form

ξ usτ–( )us

Dl

--------------------------

σm ϕ( ) = σl∞ 1 Gl J ϕ( )–+( )
N1Λ1 1–

1 ϕ– M2 ϕ( )–[ ] N1Λ1
----------------------------------------------------

× exp k
zd

1 z– M2 z( )–
--------------------------------

0

ϕ
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N1Λ1 1–
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yd
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0

α

∫
M1d
αd
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0

ϕ
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x ϕ( ) ε N1

Λ0 z( )
cmd
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h z( ) p0( cm z( ) ) N2z B+––
------------------------------------------------------------------ z,d

0

ϕ

∫+=

ε N1

Λ0 z( )
cmd
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M1 ϕ( )
D0 ϕ( ) h ϕ( )p0 N2ϕ B+–[ ]

N1Λ0 ϕ( )
----------------------------------------------------------------,=

M2 ϕ( )
D0 ϕ( )h ϕ( )
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-------,=
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and the solidification rate us and the volume fraction of
the solid phase ϕ. are determined from the following
set of equations:

B 1 Gl p0– N1Λ1Gl, Λ1–+
λ l

λ s

-----,= =
us

λ sgs λ lgl–
ρlL ρlClmσl∞ p0 cm x ε=

–( )h 0( ) p0 cm x 0=
–( )h ϕw( )–[ ]+

--------------------------------------------------------------------------------------------------------------------------------------------,=

1 k–( ) 1 ϕw–( )cm ϕw( )
D0 ϕw( ) h ϕw( ) p0 cm ϕw( )–( ) N2ϕw– B+[ ]

N1Λ0 ϕw( )
-------------------------------------------------------------------------------------------------------+ 0.=
Analytical solutions (8)–(10) were experimentally
well corroborated in [10], where it was shown that the
impurity concentration and, therefore, the temperature
are functions of only one variable ϕ (see also Fig. 1
in [10]). In addition, it was shown in [12] that the exten-
sion of the two-phase zone as well as the volume frac-
tion of the solid phase or the impurity concentration in
the two-phase zone changes self-similarly when the
operational parameters of the process, i.e., the temper-
ature gradients controlling solidification, are varied.
This behavior of unknown functions implies that the
zone of concentrational supercooling has a fractal
structure. It is well known that many natural fractal-like
objects can be described by scale-invariant fractals
(see, e.g., [2]). In view of this circumstance, we try to
study the two-phase zone by introducing certain power
dependences. We describe the distribution of the vol-
ume fraction of the solid phase and the impurity con-
centration in the two-phase zone by homogeneous self-
similar functions

(11)

(12)

satisfying the scaling relationships

Here, σ. is the impurity concentration at the interface
between the solid phase and two-phase zone, σε is the
impurity concentration at the interface between the
two-phase zone and the melt, and ε is the length of the
two-phase zone. The scaling parameter D, which is the
exponent in spatial distributions (11) and (12), plays the
role of the dimensionality of fractal objects [2]. If frac-
tal-like scaling spatial dependences (11) and (12) accu-
rately approximate exact analytical solutions (8)–(10),
this fact testifies to the fractal structure of the two-phase
zone. As is easily seen, σε in Eq. (12) is the nonfractal
section of the function σm(x). In other words, the impu-
rity distribution σm(x) near the two-phase-zone–melt
interface is not fractal, because virtually no displace-
ment of impurities into the melt at this interface takes
place.

ϕ y( ) ϕwyD, y 1
x
ε
--,–= =

σm y( ) σε σw σε–( )yD,+=

ϕ λ y( ) = λDϕ y( ), σm λy( ) σε–  = λD σm y( ) σε–( ).
In Fig. 1, it is possible to compare the exact solution
to model (1)–(7) with Eqs. (8)–(10) and power depen-
dences (11) and (12) for an iron–nickel alloy with the
following thermal and physical characteristics: λl =
0.1 cal/(cm s °C), λs = 0.177 cal/(cm s °C), ρl = 7 g/cm3,
ρs = 7.8 g/cm3, DL = 1.0 × 10–5 cm2/s, Cs =
0.057 cal/(g °C), Cl = 0.102 cal/g °C, m = 2.65°C, LV =
3786.6 cal/cm3, and θ0 = 1529.5°C.

The good agreement between the scaling depen-
dences and the analytical solution corroborates the
hypothesis about the fractal-like structure of the whole
two-phase zone. We emphasize that, according to
Eqs. (11) and (12), the volume fraction and the impu-
rity concentration inside the zone are determined only
by their values at its interfaces and are independent of
the scaling parameter, which is D = 1.37 ± 0.05 for all
the curves in Fig. 1. Small variations in the impurity-
distribution coefficient strongly influence the scaling
parameter D. Figure 2 shows the coefficient D as a
function of the initial impurity concentration σl∞ in the
melt for various values of the equilibrium distribution
coefficient k. As this concentration increases, the
dependence becomes almost linear, whereas, with
decreasing σl∞, nonlinearity appears, because D  1
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0.05 0.35

0.40

0.30

0.
56

1

0.
78

ϕ(x) σm(x)

x

Fig. 1. Volume fraction of the solid phase ϕ(x) and impurity
concentration σm(x) for a Fe–Ni alloy at temperature gradi-
ents gl = 20°C/cm and gs = 120°C/cm (ϕ. = 0.123) and gs =
100°C/cm (ϕ. = 0.097) according to the exact analytical
solutions from data [12]. Solid and dashed curves are the
dependences corresponding to fractal-like distributions (11)
and (12). The vertical straight lines are the boundaries of the
dimensionless length ε of the two-phase zone for k = 0.68.
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for small σl∞. The last property can be shown by means
of the asymptotic expansions of integral relationships
for small ϕ. values (0 ≤ ϕ < ϕ. ! 1). We substitute the
following approximations for ϕ. → 0 into Eqs. (8)–(10):

We obtain

(13)

D0 ϕ( ) 1, h ϕ( ) 1, Λ0 ϕ( ) Λ1,∼∼∼
1 ϕ  @ M2 ϕ( ), M1 ϕ( ) Gl ϕ 1–( ),∼–

B – p0 N1Λ1Gl .–∼

σm ϕ( ) . σl∞

× 1 Gl

Gl

1 k–
----------- 1 ϕ–( )1 k– 1–( )+ + 1 ϕ–( )k 1– ,

1.2
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2
3

Fig. 2. Scaling exponent D vs. the impurity concentration
σl ∞ in melt far from the two-phase zone for k = (1) 0.63,
(2) 0.68, and (3) 0.73.
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Fig. 3. Volume fraction of the solid phase ϕ. vs. the impu-
rity concentration σl ∞ in melt far from the two-phase zone
for k = 0.68.
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Fig. 4. Fractal-like law (12) and experimental data [15] for
the two-phase zone developing in time.
(14)

(15)

Expanding Eq. (13) into a series in ϕ, we have

(16)

Further, combining Eqs. (14)–(16), we obtain

which indicates that

(17)

Now, approximate expression (16) can be represented as

(18)

Taking into account that

we obtain from Eq. (18)

(19)

Further, the comparison of Eqs. (11), (12) and (17),
(19) indicates that the similarity coefficient D → 1 for
the limiting case ϕ. ! 1. In Fig. 3, where the solid-
phase volume fraction is shown as a function of the
impurity concentration at infinity for an iron–nickel
alloy, it is seen that the inequality ϕ ! 1 is valid for
small σl∞. Therefore, the tendency of the scaling coeffi-
cient to unity for small initial impurity concentrations
can be considered as justified by the model.

Analyzing Figs. 1–3, we generally conclude that
universal scaling dependences (11) and (12) coincide
with exact analytical solutions (8)–(10) when the expo-
nent D takes fractional values different from the space
dimensionality. Thus, this result makes it possible to
interpret the quasi-equilibrium two-phase zone as a
fractal-like object in the context of the solidification
mode being considered [model (1)–(7)].

The natural question arises of whether or not this
property holds during the evolution of the two-phase

1
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zone. Figure 4 shows the impurity concentration ahead
of the interface between the solid phase and two-phase
zone (x = 0; here, x and ε play the role of dimensional
variables) for a KCl water solution crystallizing in
unsteady conditions according to data [15]. At times
τ > 60 s after the onset of solidification, concentrational
supercooling ahead of the plane front leads to the
appearance of a metastable region; i.e., the two-phase
zone is formed. As is seen in Fig. 4, the concentration
profile tends to a certain steady value as the crystalliza-
tion time increases (in other words, spacing between
the impurity-concentration distributions decreases with
time). Nevertheless, even at stages of crystallization
with unestablished characteristics of the two-phase
zone, Eq. (12) accurately describes the experimental
curves. The scaling parameter for this system is D ≈ 2.7
for all the curves in Fig. 4 obtained by the authors
of [15] for various moments of time. In fact, these
experimental data corroborate the proposed hypothesis
about the fractal structure of the two-phase zone in the
process of its development with the constant scaling
exponent D.

The above results make it possible to conclude that
the structure of the two-phase zone follows universal
fractal–scaling regularities.
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Owing to an increasing interest in the investigations
of electrodynamics of transient and pulse processes in
irregular transmission lines, including the propagation
of ultra-wideband electromagnetic pulses (UWB
EMPs) [1] in these lines, new problems arise in
waveguide electrodynamics. Models developed for the
numerical investigation of monochromatic (~e–iωt) pro-
cesses are virtually inapplicable to UWB EMPs,
because the numerical inversion of Fourier integrals of
the monochromatic components of a UWB EMP field
which are also numerically obtained in irregular
waveguides cannot provide satisfactory accuracy, and
the accuracy cannot be checked due to the very wide
frequency spectra. This fact forces us to abandon the
frequency representations and to develop new, more
general calculation methods providing a high accuracy
and the possibility of error checking.

In this paper, we present the results of investigating
the capabilities of the variational method for solving
time-dependent waveguide equations with the example
of a planar waveguide in the form of an irregular layer.
We use the Cartesian coordinate system, where the
y-axis is directed across the waveguide layer under con-
sideration and the z-axis coincides with the direction of
wave propagation inside the layer. This layer is sand-
wiched between perfectly conducting bodies whose
boundaries are y = –a1(z) and y = a2(z), where a1(z) and
a2(z) are continuous functions such that a1(z) ≥ 0 and
a2(z) ≥ 0 and they do not simultaneously vanish. There-
fore, the layer width is nonzero for arbitrary z: ∆(z) =
a1(z) + a2(z) > 0. It is also assumed that a1(z) = a10 =
const and a2(z) = a20 = const for z < 0, so that its width
in the half-layer z < 0 is ∆(z) = a10 + a20 = ∆0 = const.
The shape and parameters of the layer, as well as the
wave field components, are assumed to be independent
of the x coordinate.

We introduce dimensionless quantities by dividing
all the length-dimension quantities (coordinates a1(z),
a2(z), etc.) by a certain convenient linear scale L and

State Institute of Strategic Stability Ministry
of Atomic Energy, Moscow, Russia
1028-3358/02/4707- $22.00 © 20504
time by  (Ò is the speed of light in vacuum). The des-

ignations for the dimensionless variables are the same.
Let a pulse of the transverse electromagnetic (TEM)

structure propagate from the regular half-layer (z < 0)
towards its irregular section. As the pulse attains the
irregular section of the layer, it is not only partially
reflected, but also transformed into transverse-mag-
netic (TM) modes.

Applying a variational method similar to [2], we
decompose the only magnetic-field component
(directed along the x-axis) in the modes of the compar-
ison waveguides

H(y, z, t) = (y, z)fj(z, t), (1)

where fj(z, t), j = 1, 2, … are unknown amplitudes and

ej(y, z) =  are the basis functions

for planar waveguides. In this case, the amplitude
f1(z, t) corresponds to the magnetic field of the TEM
mode, whereas the remaining amplitudes fj(z, t), j ≥ 2
correspond to the TM-mode magnetic fields (E0 j – 1
waves). The set of time-dependent waveguide equa-
tions in the matrix designations coincides in form with
Eq. (7) from [2]:

(2)

where f(z, t) is the unknown column vector whose com-
ponents are the amplitudes fj(z, t) and the matrix coeffi-
cients G(z), Q(z), P(z), and T(z) are determined by their
elements

L
c
---

e j∑

π j 1–( )
a1 z( ) y+

∆ z( )
--------------------cos

z∂
∂

G z( )
∂f
∂z
----- Q z( )f+

– Qτ z( )
∂f
∂z
----- P z( )f T z( )

∂2f

∂t2
-------–– 0,=

Gij ε 1– e jei y, Tijd

a1 z( )–

a2 z( )

∫ µe jei y,d

a1 z( )–

a2 z( )

∫= =

Qij ε 1– e j( )zei y,d

a1 z( )–

a2 z( )

∫=
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Here, the subscripts z and y designate differentiation
with respect to these variables, and ε and µ are the per-
mittivity and permeability of the medium.

We consider set (2) together with the initial condi-
tions

(3)

where the function ϕ(z) corresponding to the initial
shape of the pulse is considered to be finite and concen-
trated inside the interval α < z < β in the regular section
of the layer (α < β < 0). Since only a certain finite
region Λ of dimensionless variables z and t (Λ = {z1 ≤
z ≤ z2, 0 ≤ t ≤ T}) is usually of interest and z1 < α, z2 >
0, T ≤ min{|z1 + α|, |z2 – β|}, we supplement Eqs. (3)
by the auxiliary boundary conditions

f(z1, t) = f(z2, t) = 0, 0 ≤ t ≤ T. (4)

The problem involving Eq. (2) with conditions (3) and
(4) is closed and makes it possible to find f(z, t) numer-
ically on a discrete mesh in the rectangle Λ.

We also present the total energy density W(t) of the
pulse per unit layer width along the x-axis,

(5)

which must be independent of t. This property will be
used to estimate the accuracy of calculations.

Figure 1 shows the line profile chosen as an example
(a1(z) = 0.5; a2(z) = [0.05 + 0.45cos(πz)] for 0 < z < 2
and a2(z) = 0.5 for z ≤ 0 and z ≥ 2) such that ∆0 = 1, and
the gap width in the narrowest section (for z = 1) is

equal to  = 0.1. Figure 1 also shows the plots of f1(z, t)

as a function of z for the fixed t = (1) 0, (2) 1, (3) 2,
(4) 3, and (5) 4. These plots describe the dynamics of
change in the shape of the TEM component of the
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pulse. The calculations were carried out retaining six
terms in sum (1) and with ε = µ = 1. Derivatives for the
mesh steps hz = 0.01 and ht = 0.004 were calculated
with an increased accuracy by the differentiation for-
mulas based on five and seven points for the first and
second derivatives with respect to z, respectively, and
on three points for derivatives with respect to t.
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Figure 2 shows the plots of f2(z, t), which corre-
sponds to the E01 mode as a function of z for the same
fixed values of t as in Fig. 1. Curves indicated by iden-
tical numbers in Figs. 2 and 1 correspond to identical
values of t. The dynamics of formation of the E01 mode,
which is absent at t = 0 {f2(z, 0) = 0, curve 1) due to the
partial transformation of the TEM mode into the E01
mode in the irregular section of the line, are shown.

Table

N = 9 N = 12 N = 15

8.7598 × 10–1 8.7522 × 10–1 8.7488 × 10–1

1.1081 × 10–1 1.1135 × 10–1 1.1178 × 10–1

1.4333 × 10–2 1.4090 × 10–2 1.3960 × 10–2

9.9306 × 10–3 1.0120 × 10–2 1.0108 × 10–2

1.6001 × 10–3 1.5997 × 10–3 1.6345 × 10–3

1.8852 × 10–3 1.9335 × 10–3 1.9527 × 10–3

5.7760 × 10–4 6.2584 × 10–4 6.3244 × 10–4

5.2230 × 10–4 5.6044 × 10–4 5.6511 × 10–4

1.3797 × 10–4 1.8290 × 10–4 1.8832 × 10–4

2.9261 × 10–4 2.9361 × 10–4 2.9337 × 10–4

W j
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-------
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-------
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W0
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W8

W0
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W9

W0
-------

1 W
W0
-------–
The accuracy of calculations is illustrated in Fig. 3

by the quantity  as a function of t {W0 =

W(0)}. The same approximation, which is still far from
the capability limit of current personal computers, pro-
vides a highly accurate determination of W(t) with a rel-
ative error of ~0.03%. The table presents the relative

energies  calculated for the TEM (j = 1), E01 ( j = 2),

and E08 (j = 9) modes at t = 4 for N = 9, 12, and 15 with

errors , which are equal to ~3 × 10–4 and

depend only weakly on N. The table indicates that the
choice of N = 6 in the example under consideration is
justified.

As is seen, the accuracy of the method considerably
exceeds the current experimental accuracy (~5%).
Therefore, there are new possibilities for investigating
UWB EMPs, including new approaches in developing
standard devices for the calibration of UWB-EMP sen-
sors.

Figure 3 also shows the relative values of that frac-

tion of the energy density  per unit length which

penetrates through the narrow section z = 1 and the

reflected fraction  as functions of t. The functions

W+(t) and W–(t) were calculated by Eq. (5) after replac-
ing z1 by 1 and z2 by 1. In this case, W+(t) + W–(t) = W(t).
For t = 5, energy penetration is virtually completed at a
penetration level of 36.7%.
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1. Ferroelectric magnets are the crystals simulta-
neously combining properties of ferroelectrics or anti-
ferroelectrics and ferromagnets or antiferromagnets. In
other words, ferroelectric magnets are modifications of
ferroelectrics, on the one hand, and magnets, on the
other hand. They can fulfill many functions of ferro-
electrics and ferrites and, therefore, can serve as a basis
for the development of multifunctional elements of
radio circuits.

Up to now, coupled ferroelectric–magnetoelastic
waves were considered only for ferroelectric antiferro-
magnets and ferroelectric ferromagnets [1–3]. Studies
of coupled waves for antiferroelectric ferromagnets and
antiferroelectric antiferromagnets were not carried out.

We will consider an antiferroelectric ferromagnet
consisting of three subsystems interacting with each
other, namely, magnetic, elastic, and ferroelectric sub-
systems, and write out its energy in the form

(1)

Here, HM, HU, and HF are the energies of magnetic,
elastic, and ferroelectric subsystems, respectively; the
rest of the terms represent the energies of correspond-
ing interactions. The energies of uniform and nonuni-
form exchange and of relativistic interactions are taken
into account in the Hamiltonian of the magnetic sub-
system in an external field. The elastic subsystem is
considered in a harmonic approximation, and the recip-
rocal dielectric susceptibility and correlation properties
are taken into account in the Hamiltonian of the ferro-
electric subsystem. Magnetoelectric energy, naturally,
is relativistic.

2. We write out Hamiltonian (1) in the approxima-
tion of secondary quantization. To this end, the mag-
netic momenta M are expressed in terms of the Hol-
stein–Primakoff operators a+, a; the vector of elastic
displacements u is expressed in terms of operators of

creation and annihilation of phonons , bks (see,

H HM HU HF HMU HMF HFU.+ + + + +=

bks
+
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e.g., [4]); and the deviation of the polarization vector
from the equilibrium value P is expressed in terms of
the creation and annihilation operators of segnetons

, dkδα [2].

Furthermore, for diagonalization of the Hamiltonian
of the magnetic and ferroelectric subsystems, we use
the Bogolyubov canonical transformation

Then, Hamiltonian (1) can be written in the form

where ,  (s = 1, t1, t2), Ekδα (δ = 1, 2; α = 1, 2) are
the energies of corresponding branches of spin, elastic,
and ferroelectric waves. The parameters of magne-
toelastic and magnetoelectric interactions are defined
by the expressions

Here, the first and second term correspond to the pi-
ezomagnetic effect and magnetostriction, respective-

ly;  is the unit polarization vector of photons; i, j, m,
n = x, y, z,

dkδα
+

ak ukck v k*c k–
+ , a+ V 1/2– ake

ikr,
k

∑= =
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+ .+=

H εk
Mck
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and

(2)

where the first and second terms describe the linear
magnetoelectric effect and magnetic anisotropy in-
duced by vector P, respectively. The electroelastic cou-
pling parameter has the simple form

where wijm is the piezoelectric-constant tensor and v ijmn

is the tensor related the polarization irregularities and
strain.

The eigenfrequencies of magnetoelastic waves are
found from the equations of motion for secondary
quantized operators. Up to the terms quadratic in the
coupling constants, the dispersion relation has the form

3. Interaction between spin waves and ferroelectric
waves (2) depends on the direction of the vector k with
respect to the magnetizations and polarizations of sub-
lattices, external magnetic and electric fields, and mag-
nitude of the field itself for various magnetic and ferro-
electric waves. We consider particular cases (coupling
constants that are equal to zero in our approximation
are omitted).
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(a) The case k || Z:

(b) The case k || Y;

(c) The case k || X;

where

We can see that with an increasing magnetic field,
switching of the coupling between the spin and ferro-
electric modes occurs.

The general pattern of coupled ferroelectric–magne-
toelastic waves in the absence of the external field for
the case k || X has the form presented in the figure.

It is clearly seen in the figure that a coupled ferro-
electric–magnetoelastic wave is consistent with the
proper oscillations of various subsystems in different
regions. Therefore, moving along it, we can pass from

Ψk11
MF γ1 axy uk v k+( ) iaxz θ uk v k–( )sin+[=

+ 2M0 axxy θ uk v k+( )sin{

+ iaxxz θ uk v k–( )sin
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spin waves to acoustic waves, then to ferroelectric
waves, etc.

4. As is well known, in antiferromagnets, a reduc-
tion of the gap in the spin-wave spectrum occurs within
the region of a phase transition. Along these lines, an
increase in the coupling of magnetic oscillations with
oscillations of the elastic medium was observed in [5].
Within the region of the magnetoelastic resonance, in

which  ≈  (the region of intersection of the spin

branch and acoustic branch), we can write ξMU = 

for the interaction parameter. It is seen from this
expression that reduction of the gap in the spin-wave
spectrum results in an increase in the coupling coeffi-
cient of the subsystems. The effect of a magnetoelastic
gap or hardened lattice can serve as an example [5].
Under usual conditions, as a rule, ξMU ! 1. However,
within the region of the phase transition, when the mag-
non gap in the spin-wave spectrum loses its positive
definiteness and only the magnetoelastic gap remains,
the coupling coefficient approaches unity, ξMU ≈ 1.

A similar phenomenon can be observed in antiferro-
electric ferromagnets. The calculations show that in the
region of the antiferroelectric–ferroelectric phase tran-
sition, a sufficient reduction of the gap in the spectrum
of the first and second ferroelectric branches is
observed. As was mentioned above, the parameter of
the magnetoelectric coupling within the region of the

magnetoelectric resonance has the form ξMF = .

Due to the fact that, away from the phase-transition
region ξMF ≈ 10–4, the gaps in the spectrum of spin and

ferroelectric branches are  ≈ 1010 s–1 and E0δ1 ≈ 1012 s–1,
respectively, in the phase-transition region (under con-

dition  < E0δ1), the parameter of the magnetoelectric
coupling becomes larger by three orders of magnitude
and attains ξMF ≈ 10–1. This high value of the coupling
coefficient is of a considerable importance from the

εk
M εks

U

Ψks
MU

εk
M
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Ψkδ1
MF

Ekδ1
-----------

ε0
M

ε0
M
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standpoint of signal transformation, since it makes it
possible to transform a magnetic signal into an electric
one and vice versa with a minimal loss.

It should be kept in mind that this effect can exist
only in ferroelectric magnets with a ferroelectric Néel
point lower than the magnetic Curie point.
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It is known that aging under load in Ti–51 at. % Ni
polycrystals results in the change of microstructure in
contrast to aging in a free state. In the grains oriented in
the 〈111〉  direction, under tensile load, one crystallo-
graphic variant of dispersed Ti3Ni4 particles grows
under applied tensile stress in the elastic range; without
load, four variants of particles grow [1]. Consequently,
using Ti–51 at. % Ni single crystals for experimental
investigation of aging under load allows us to control
the microstructure of crystals, to exclude the effect of
boundary grains, and to study the dependence of the
shape memory effect and superelasticity on the number
of crystallographic variants of the particles. Earlier, we
showed that aging without load in Ti–51 at. % Ni single
crystals is accompanied by a precipitation of four vari-
ants of Ti–51 at. % Ni dispersed particles Ti3Ni4, which
do not undergo martensitic transformations [2]. The
aging of Ti–51 at. % Ni single crystals under tensile
load in the 〈111〉  and 〈122〉  directions was supposed to
result in the growth of one variant of particles, as was
predicted theoretically [1]. In this study, the effect of
the number of variants of dispersed particles on the
shape memory effect and superelasticity in the
B2−R−B19' martensitic transformation was determined
in Ti–51 at. % Ni single crystals.

Single crystals of Ti–51 at. % Ni were grown by the
Bridgman method. The preparation technique for sam-
ples was presented in [2]. Aging under a load of 150 MPa
was carried out in vacuum. The sizes, volume fraction
of dispersed particles, and interparticle distances deter-
mined by electron-microscopy observations for sam-
ples aged without load and under load are presented in
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the table. It is seen that the particle sizes vary from 40
to 430 nm when the aging temperature takes on values
from 673 to 823 K. The volume fraction of particles
f = 9% and the nickel concentration CNi = 50.5 at. %
after aging are approximately equal in all the aging
regimes and are independent of the number of variants.
The average distance between particles L in the case of
one variant is less than the value for the case of four
variants.

Figure 1 shows the heat-release curves obtained by
the method of differential scanning calorimetry (DSC)
and temperature dependence of the electrical resistance
ρ(í) for crystals aged without load and under load. Fig-
ure 2 shows the temperature dependence of the yield
load, and superelasticity loops for the same crystals are
shown in Figs. 3 and 4. The table also contains the val-
ues of the shape memory effect and superelasticity for
crystals. The analysis of data presented in the table and
in Figs. 1–4 shows that the value of shape memory
effect and superelasticity, martensitic-transformation
temperatures Ms, Mf, As, and Af, and the strength prop-
erties depend on the number of variants and on the sizes
of dispersed particles. First, the comparison of the DSC
and ρ(T) curves (Fig. 1) for crystals ÄI and ÇI aged
under load with one variant with the corresponding
curves for AIV and BIV aged without load with four vari-
ants shows that the points Ms1 and Ms2 for crystals with
one variant of particles are 10 K higher than the corre-
sponding temperatures for crystals with four variants.
Earlier, it was shown [2] that Ms1 is associated with the
R–B19' martensitic transformation in the field of local
loads of Ti3Ni4 particles; Ms2, with the transformations
in regions free of particles. Second, it is seen in Fig. 2
that the σ0.1(T) minimum, which corresponds to the
temperature of the martensitic-transformation onset in
the material bulk, lies at a higher temperature for AI
crystals than for AIV crystals, and σ0.1(Ms) for crystals
ÄI is about half the value for AIV. Qualitatively similar
dependences are obtained for crystals ÇI and BIV.
Third, the temperature range of the stress-induced mar-
tensitic transformation ∆T and the temperature range of
002 MAIK “Nauka/Interperiodica”
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superelasticity ∆TSE for crystals C are sufficiently wider
than the respective ranges for crystals A and B (see
Figs. 2–4 and table). For the same size of particles in ëI

crystals, ∆TSE = 135 K is 15 K higher than the value for
CIV crystals (Figs. 3 and 4). Fourth, the values of the
shape memory effect and superelasticity for AI, BI, and
CI crystals are less than the respective values for AIV,
BIV, and CIV crystals (see table). The dependence of the
shape memory effect and superelasticity on the micro-
structure parameters is physically associated with the
features of the martensitic-transformation development
in structurally inhomogeneous crystals containing
Ti3Ni4 particles, which do not undergo the B2–R–B19'
transformation. In titanium–nickel crystals without dis-
persed particles, the main twinning type for B19' mar-
tensite is the II-type twinning 〈011〉 , whereas the twin-
ning type changes in the case of precipitating Ti3Ni4

particles, and B19'-martensite crystals contain a high
density of compound twins 〈001〉 (100) [4, 5]. The
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Fig. 1. DSC curves and temperature dependence of electri-
cal resistance ρ(T) for Ti–51 at. % Ni single crystals after
various thermal treatments: (1) ρ(T) and (3) DSC at 823 K
for 1.5 h without load (AIV), (2) ρ(T) and (4) DSC at 823 K
for 1.5 h under a load of 150 MPa (AI), (5) DSC at 773 K
for 1 h without load (BIV), and (6) DSC at 773 K for 1 h
under a load of 150 MPa (BI).
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density of compound twins increases with decreasing
distance between particles [5] and, consequently,
depends on the number of variants of particles, since
the distance between particles for crystals AI, ÇI, and ëI

with one variant of particles is less than the value for
AIV, ÇIV, and ëIV with four variants. Therefore, the den-
sity of compound twins in AI, BI, and CI crystals is
higher than the density in AIV, BIV, and CIV crystals.
Since dispersed particles suppress the detwinning of
martensite crystals [5, 6], first, for the same crystal ori-
entation, e.g., 〈111〉 , shape memory effect in single-
phase crystals is significantly larger than the effect in
crystals with particles (see table). Second, in the het-
erophase 〈111〉  crystals, shape memory effect depends
on the particle size, interparticle distance, and the
number of particle variants [2]. The rise in the volume
fraction of dispersed particles in 〈111〉  crystals of
Ti−51.3 at. % Ni, Ti–51.5 at. % Ni after aging at
823 K for 1.5 h, significantly reduces shape memory
effect from 4.8% in AIV Ti–51 at. % Ni crystals to
3.5%. This decrease is caused by decreasing of inter-
particle distance with the increase in the volume frac-
tion of dispersed particles. The same effect is respon-
sible for decreasing shape memory effect and super-
elasticity when transitioning from four variants to one
variant of particles (see table).
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〈122〉

Fig. 2. Temperature dependence of yield load for
Ti−51 at. % Ni single crystals under tension after various
thermal treatments: (1) and (2), at 823 K for 1.5 h without
load (AIV) and under a load of 150 MPa (AI), respectively;
(3) and (4), at 673 K for 1 h without load (CIV) and under a
load of 150 MPa (CI), respectively.
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Fig. 3. Temperature dependence of the superelasticity loop for Ti–51 at. % Ni single crystals aged at 823 K for 1.5 h: (1) without
load (AIV) and (2) under a tension load of 150 MPa (AI).

Fig. 4. The same as in Fig. 3, but at 673 K for 1 h: (1) CIV crystals and (2) CI crystals.
Thus, a self-accommodated system of type-II
twinned martensite crystals is formed in Ti–51 at. % Ni
single crystals without particles at T < Ms. This system
gains strain ε0 under load and transforms into a B19'
martensite single crystal without structural defects
associated with the motion of twins and intervariant
interfaces. Heating of the sample to T > Af results in the
transformation of a B19' single crystal into a B2 single
crystal; strain ε0 restores its original shape [4]. In crys-
tals with one and four variants of particles at T < Ms,
B19' martensite has a high density of compound twins,
which cannot completely detwin the martensite crystal
under deformation because dispersed particles offer
resistance to the motion of twins. Therefore, the shape
memory effect ε0 in heterophase alloys is less than the
value for single-phase crystals and is caused not only
by the lattice deformation in the B2–R–B19' martensi-
tic transformation, as in single-phase crystals, but also
by the lattice deformation in the B2–B19' martensitic
transformation with the subsequent combined twinning
of B19' crystals [2, 3, 6].

Dependence of Ms and σ0.1(Ms) in A and B crystals
on the number of particle variants is associated with the
features of the heterogeneous nucleation of B19' mar-
tensite near dispersed particles and with the appearance
of long-range load fields in crystals with one variant of
particles. Precipitation of four variants of particles each
producing internal load fields due to a difference in the
lattice parameters of the particle and matrix does not
result in the appearance of long-range uniform load
fields in the crystal due to their mutual compensation.
On the contrary, when one variant of dispersed particles
is formed, uniform long-range load fields are created in
the crystal [1, 4] due to superposed load fields from all
particles and result in the 10-K increase in the tempe-
ratures Ms1 and Ms2 (Fig. 1), as well as in σ0.1(Ms)
DOKLADY PHYSICS      Vol. 47      No. 7      2002
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(Fig. 2). Using the local form of the Clapeyron–Clau-
sius relation [3] gives us

(1)

where  is the phase equilibrium tempera-

ture determined by the nickel concentration in crystals
after aging; ∆Sa–m and ∆Ha–m are the variations of
entropy and enthalpy in the B2–B19' transformation,
respectively; ∆Ed = –σijεij is the elastic energy of
defects in the crystal; σij is the internal load field around
defects; and εij is the shape deformation (see table)
associated with the B2–B19' martensitic transformation
(MT) in heterophase crystals. It follows from Eq. (1)
that, first, splitting into two R–B19'-MT peaks in A
crystals aged without load is caused by the appearance
of internal loads σij = 140 MPa near particles. Second,
the 10-K increase in the martensitic transformation
temperatures in AI and ÇI crystals with one variant of
particles with respect to the values for AIV and ÇIV crys-
tals corresponds to the appearance of long-range load
fields σij = 70 MPa.

Since shape memory effect in AI and ÇI crystals is
less than the effect for AIV and ÇIV crystals (see table),
the Clapeyron–Clausius relation [4]

indicates that  for one variant of particles

must be larger than the value for four variants. Such a

Ms T0
∆Ed

∆Sa–m
-------------,+=

T0
∆Ha–m

∆Sa–m
---------------=

dσ0.1

dT
------------ ∆Ha–m

ε0T0
---------------–=

α
dσ0.1

dT
------------=
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dependence of α on the number of variants is, in fact,
observed experimentally (Fig. 2, curves 1 and 2).

In C crystals containing one and four variants of
Ti3Ni4 particles with sizes of 40 nm, strength properties
of B2 phase are significantly higher than in A and B
crystals (Fig. 2). As a result, the range of stress-induced
martensitic transformation and the range of superelas-
ticity is almost 5 times as large as the respective ranges
for A and B crystals (see curves 3 and 4 in Fig. 2).
Loads σ0.1(Ms) in C crystals are considerably higher
than the values in A and B crystals, and the tempera-
tures of martensitic transformation are lower. This
behavior testifies to the stabilization of the B2 phase at
the expense of fine particles (Fig. 2). Finally, in ëI crys-
tals, Ms determined by the temperature of the minimum
in σ0.1(T) is lower than the value in ëIV crystals,
whereas in A and B crystals, the inverse dependence is
observed (Fig. 2). This behavior indicates that the
mechanisms of nucleation of B19' martensite crystals
under cooling and load in A and B crystals can signifi-
cantly differ from those in C crystals. Indeed, in A and
B crystals, martensite crystals nucleate predominantly
in large particles, as indicated by the appearance of two
peaks associated with the R–B19' martensitic transfor-
mation. The critical nucleus size in A and B crystals
with one and four variants of particles is less than the
interparticle distance. In contrast, the critical nucleus
size in C crystals exceeds the interparticle distance and,
therefore, the elastic energy of martensite crystals
increases due to the inclusion of Ti3Ni4 dispersed par-
ticles, which do not undergo the martensitic transfor-
mation.

Thus, for the first time, it has been shown that the
magnitude of shape memory effect and superelasticity,
the temperature range of superelasticity, and the tem-
peratures of martensitic transformation in aging
Microstructure parameters and functional properties of Ti–51 at. % Ni single crystals after aging under load and without load

Thermal treatment Size of
particles, nm

Distance
between

particles, nm

Temperature 
range of 

superelasticity, K

Shape
memory, % Superelasticity

Aging, 823 K, 1.5 h AIV without load 430 360 30 5.45 4.8

AI under load 430 250 30 3.8 3.2

Aging, 773 K, 1 h BIV without load 100 140 40 5.5 4.5

BI under load 100 90 30 4.0 3.5

Aging, 673 K, 1.5 h CIV without load 40 40–50 120 5.5 4.2

CI under load 40 – 135 5.0 4.0
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Ti−51 at. % Ni single crystals depend on the number of
variants of Ti3Ni4 dispersed particles.
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Austenitic stainless steels with nitrogen content
ëN ≥ 0.5–0.9 wt % and Hadfield steel Fe–13Mn–1.3C
(wt %) are extensively used in industry due to their
unique mechanical properties—large strain-hardening
coefficient, high plasticity, and increased wear resis-
tance [1–6]. The necessary set of properties in these
steels is achieved by the combination of a high concen-
tration of interstitial atoms and low stacking-fault
energy γSF = 0.020–0.030 J/m2. The main mechanisms
of the Hadfield steel hardening include twinning,
dynamic strain aging, and development of γ–ε marten-
sitic transformations [1–15]. It is impossible to experi-
mentally separate these contributions for Hadfield steel
polycrystals, since slip and twinning occur simulta-
neously. Experiments on Hadfield steel single crystals
enable us to overcome these difficulties and to separate
the contributions of twinning and slip to hardening by a
special choice of crystal orientations and temperature
[1, 6–10, 13–15].

In order to reveal the nature of strain hardening in
austenitic steels with a high content of carbon, we stud-
ied the orientational dependence of the deformation
mechanisms of Fe–13Mn–1.3C (I) and Fe–13Mn–
2.7Al–1.3C (II) (wt %) steels. The choice of alloys for
studies was based on the following reasoning. First,
mechanical twins are not observed in steel-II polycrys-
tals, and deformation occurs through slip [3]. In con-
trast, Hadfield steel-I polycrystals are characterized by
high densities of twins, stacking faults, and perfect dis-
locations split into partial Shockley dislocations [1, 2].
Consequently, one can suppose that aluminum alloying
increases γSF, and that mechanical twinning is therefore
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2 Baœkov Institute of Metallurgy and Materials Science, 
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1206 West Green Street, Urbana, IL 61801, USA

4 Texas A&M University, 
College Station, TX 77843-3123, USA
1028-3358/02/4707- $22.00 © 20515
suppressed. However, data on direct measurements of
γSF by electron microscopy on steel II are not available.

Second, aluminum alloying results in a positive rate
sensitivity of the flow stress, whereas the sensitivity of
the flow stress in Hadfield steel is negative [3, 4]. For
this reason, one can suppose that aluminum atoms
change the diffusion mobility of carbon, and dynamical
strain hardening in steel II at room temperature should
not be expected. Such a difference in the diffusion
mobility of carbon can result in the change of the dislo-
cation structure type for slip strain [1, 3, 5]. Thus, new
features of plastic deformation can be expected in steel-
II single crystals compared to steel-I crystals, because
the increase in the stacking fault energy of the matrix
γSF and the decrease in the diffusion mobility of carbon
atoms upon aluminum alloying can change the ratio
between the mechanical twinning and slip. For this rea-
son, the dislocation structure type—planar or cellu-
lar—for slip and, consequently, the regularities of strain
hardening can be determined.

Crystals of steels I and II were grown by the Bridg-
man technique in an inert gas. The technique of sample
preparation for studies was presented in [10, 13–15].

Figures 1 and 2 show the stress–strain curves for
single crystals of steels I and II together with the varia-
tion of the orientation (precession) of the tension axis
upon deformation. The dislocation structure of [001]

and [ ] steel-II crystals deformed at room tempera-
ture up to ε = 6–10% is shown in Figs. 3 and 4.

Comparison of the mechanical properties of crys-
tals I and II shows that the critical shear stresses τcr at
T = 300 K are close to each other and, consequently,
addition of aluminum does not result in additional
solid-solution hardening. Studies of the rate sensitivity

of stress β =  in steel-II single crystals at room

temperature indicate that β is positive for all orienta-
tions studied. In steel-I crystals deformed through slip,

i.e., in orientations [012], [ ], and [001], β is nega-

tive, whereas in crystals with twinning, i.e., in [ ]
and [011] orientations, β is positive [7, 10]. These
results for the rate sensitivity of the flow stress during
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slip deformation in single crystals of steels I and II
agree with the data obtained earlier for polycrystals of
these alloys [3, 4]. The stacking fault energy estimate
obtained via the technique of determining the width of
triple dislocation nodes showed that the addition of alu-
minum increases the stacking fault energy from
0.020 ± 0.003 J/m2 in crystals I to 0.050 ± 0.005 J/m2 in
crystals II. An increase in γSF and change of β from a
negative value for steel I to a positive value for steel II
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Fig. 1. Stress–strain curves and precession of the crystal
axis for the tensile deformation of single crystals of Fe–
13Mn–1.3C (I), Fe–13Mn–2.7Al–1.3C (II) (wt %) steels at
room temperature: (1, 5) [011] orientation of steel I,

(2, 6) [011] orientation of steel II, (3, 7) [ ] orientation

of steel I, and (4, 8) [ ] orientation of steel II.

111

111

Fig. 2. The same as in Fig. 1, but for (1, 5) [ ] orientation

of steel I, (2, 6) [ ] orientation of steel II, (3, 7) [001] ori-
entation of steel I, and (4, 8) [001] orientation of steel II.

123

123
result in the change of the deformation mechanism
from twinning in steel I to slip in steel II.

Deformation in [011] crystals of steel I and in steel II
occurs as twinning and slip, respectively. With the
development of deformation in steel I through twinning

in the primary system [ ](111), low values of the

strain-hardening coefficient θ =  for ε ≤ 10% are

connected by the Luders band. The further increase in
θ is caused by twinning development in both systems
with predominant twinning shear in the primary system
of twinning (Fig. 1, curves 1 and 5). In crystals II,
deformation occurs as slip (Fig. 1, curves 2 and 6), the
large values of θ are observed from the very onset of plas-
tic strain, and the plastic flow develops at the single linear
stage with θ = 1000 MPa = G/80 (G = 80000 MPa is the
shear modulus of the Hadfield steel [6]). The disloca-
tion structure in steel II turns out to be planar: plane
aggregates of dislocations and multipoles are observed
(Fig. 3). Slip lines are identified metallographically. In

contrast, for the slip in steel I in crystals [ ], [012],
slip lines are not observed, and plane aggregates of dis-
locations are absent in the dislocation structure [7].

Thus, aluminum alloying suppresses deformation
through twinning in crystals [011] of steel II and
changes the type of the dislocation structure from the
uniform distribution in steel I to the planar dislocation
structure in steel II. For slip deformation, θ/G is equal
to θII/G for slip in other fcc crystals. Consequently,
the  planar dislocation structure in austenitic steels
with a high concentration of carbon atoms provides
virtually the same rate of strain hardening θ as multi-
ple twinning.

For deformation through twinning in several sys-

tems in [ ] crystals of steel I, θ is less than the value
in steel II (Fig. 1, curves 3 and 4), where planar slip
occurs up to ε < 10%, after which microtwins are
observed. The development of mechanical twinning in
several systems is responsible for the high θ values and
the linear character of σ(ε) curves in steel I for the pre-
dominant development of a single primary system

[ ](111) (Fig. 1, curve 7) [1, 3, 11–15].

In crystals II, deformation with high θ is caused by
the development of multiple planar slip and microtwin-
ning (Fig. 4). The precession of the crystal axis is
absent, and microtwinning and slip develop in several
systems.

In [ ] crystals, deformation up to ε ≤ 10% occurs
as slip in steels I and II (Fig. 2, curves 1, 2, 5, and 6).
However, the stages of stress–strain curves, the type of
the dislocation structure, the value of θ, and the rate
sensitivity of the flow stress β are different. In steel I, β
has negative sign, which is attributed to the develop-
ment of the dynamical strain aging at T = 300 K [4, 5].
High values of θ = G/80 are caused by the intense accu-
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mulation of dislocations in crystals because of the high
mobility of carbon atoms upon deformation. In steel II,
β is positive, the processes of dynamical strain aging
are suppressed at T = 300 K, and high values of θ =
G/80 result from the development of the planar disloca-
tion structure and from interaction between plane
aggregates and multipoles.

Finally, in [011] crystals of steel II, twinning is not
observed, whereas a high density of interstitial stacking
faults and microtwinning is found in steel I [7, 10].
Therefore, higher values of θ in steel I are caused by the
simultaneous action of slip and twinning and by the
appearance of the additional substructural hardening
due to interaction between twinning and slip (Fig. 2,
curves 3 and 4). In steel II, the planar dislocation struc-
ture and the development of multiple slip provide val-
ues of θ close to those found for steel I.

300 nm

g = 040
_ _

g = 222
_ _

900 nm

_

Fig. 3. Electron micrograph of the slip pattern under tension
of [001] single crystals of Fe–13Mn–2.7Al–1.3C (wt %)
steel for ε = 6% and T = 300 K.

Fig. 4. Electron micrograph of the slip and twinning pattern

under tension of [ ] single crystals of Fe–13Mn–
2.7Al−1.3C (wt %) steel for ε = 10% and T = 300 K.

111
DOKLADY PHYSICS      Vol. 47      No. 7      2002
Thus, aluminum alloying of Hadfield steel increases
the stacking fault energy of the matrix, reduces the con-
tribution of mechanical twinning to strain, and gives
rise to the development of the planar dislocation struc-
ture and to the high values of the strain hardening θ
coefficient upon slip deformation.
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Semiempirical models of turbulence, which include
differential transport equations for the moments of
hydrodynamic quantities [1], are among the basic
methods of describing turbulence. In these models, the
closure procedures for infinite systems of coupled
equations for the moments often implicitly assume that
these systems of differential equations allow the exist-
ence of invariant sets (manifolds). As is pointed out
in [2], closure relations are, as a rule, derived using
empirical hypotheses and certain assumptions, which
are often poorly justified.

The correctness of replacing a differential equation
by the corresponding closure relation is verified by
investigating the consistency of the system used in the
model of the Nth order of closure with the differential
constraint (i.e., with the algebraic relation). The method
of differential constraints [3] provides the general
approach to investigating overdetermined systems.
This approach can be used to justify algebraic models
applied to the calculation of the moments.

The invariant manifold introduced in [4] for an arbi-
trary system of evolution equations is a natural general-
ization of an invariant set of a system of ordinary differ-
ential equations and enables one to find certain classes
of differential constraints. The invariant manifolds
were used in [5, 6] for investigating the problem of the
development of a shear-free mixing layer in the third-
order closure model. Due to the differential constraints
derived, it was established that the equation of the
invariant manifold (differential constraint of the model)
coincides with the classical tensor-invariant Hanjalic–
Launder model [7] for an unstratified flow and with the
Zeman–Lumley model [8] for a stratified flow. Reduc-
tion of the model on the invariant manifold made it pos-
sible to find self-similar solutions to the problem and to
separate a class of particular solutions [9].
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Local-equilibrium approximations of second-order
moments are used while modeling turbulent flows (see,
e.g., [10]). In this paper, we analyze these approxima-
tions by using the method of differential constraints.
The dynamics of a far planar turbulent wake are inves-
tigated as an example. It is established that the applica-
tion of the local-equilibrium approximation is associ-
ated with a vanishing of the Poisson bracket for the
deviation of the averaged longitudinal velocity compo-
nent U1 and of the turbulence energy e. Numerical
experiments carried out in the far wake verify this
result.

1. EQUATIONS OF THE MODELS

Two mathematical models are used to describe a
flow in a far plane turbulent wake. Model 1 is based on
the classical (e, e) model of turbulence [11]:

(1)

(2)

(3)

Here, U0 is the remote velocity; U1 = U0 – U is the devi-
ation of the averaged longitudinal velocity component;
the angle brackets 〈 〉  indicate averaging; the coeffi-
cients of turbulent viscosity  and  have the form

(4)

e is the turbulence energy; e is the rate of dissipation of
turbulence energy into heat; and
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describes the generation of turbulence energy due to
gradients of the averaged velocity, where

(5)

with  = . In model 2, the tangential Reynolds stress

〈u 'v '〉  is determined from the differential equation [12]

(6)

where  = Cs . Thus, mathematical model 2

includes Eqs. (1)–(3) and (6). Relation (5) follows from
Eq. (6) in the approximation of local equilibrium. The
quantities σe, , , Cµ, , , and Cs are empir-

ical constants (  = Cµ). Dimensionless variables

u'v '〈 〉 Cµ
e2

e
----

∂U1

∂y
--------- Cµeτ̂

∂U1

∂y
---------≡=

τ̂ e
e
--

U0
∂ u'v '〈 〉

∂x
------------------

y∂
∂ ν t3

∂ u'v '〈 〉
∂y

------------------=

– Cφ1
u'v '〈 〉 e

e
-- Cφ2

e
∂U1

∂y
---------,+

ν t3
Cµ

1– ν t1

Ce1
Ce2

Cφ1
Cφ2

Cφ2
Cφ1
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are introduced by using the body diameter D and the
velocity U0 as scales of length and velocity, respec-
tively.

The above mathematical models are the simplest
ones. For better agreement with experimental data, one
should use much more complicated mathematical mod-
els, which have not yet been analyzed.

2. INVARIANT MANIFOLD OF MODEL 2

The algebraic model of local-equilibrium approxi-
mation (5) is derived from the closed equations of
model 2 by assuming that terms describing convective
and diffusive transfer in (6) are negligible. The correct
choice of an operator dominating in an equation at a
certain stage of flow development requires the estima-
tion of the joint contribution from all terms of the equa-
tion and must be justified (or refuted) by a certain for-
mal procedure based only on the equations of the
model.

We consider the set $
(7)$ e τ̂ U u'v '〈 〉, , , : &1
e τ̂ U u'v '〈 〉, , ,( ) u'v '〈 〉 Cµτ̂e

∂U1

∂y
--------- 0=–≡

 
 
 

.=
Derivation of Eq. (5) can be related to the invariance
of the set $ with respect to the flux generated by sys-
tem (1)–(3), (6).

Below, we review certain definitions from [4]. Let

be the system of evolution equations E. The system is
complemented by differential constraints H of the form

where p ≥ m. The expression G|M = 0 means that a cer-
tain equality G = 0 is satisfied on the set M. The differ-
ential constraints H define the invariant manifold of the
system E if the equalities

(8)

are satisfied. Here, the square brackets denote both the
system of equations and its differential corollaries with
respect to x.

Solutions to the equation for 

ut
i Fi t x u1 … um ux

1 ux
2 …, , , , , , ,( ), i 1 2 … m, , ,= =

h j t x u1 … um ux
1 ux

2 …, , , , , , ,( ) 0, j 1 2 … p,, , ,= =

Dt h j( ) E[ ] H[ ]∪ 0, j 1 2 … p, , ,= =

τ̂

∂τ̂
∂x
------

1
e
---∂e

∂x
------ e

e
2

----∂e
∂x
------– U0

1– 1
e
---

y∂
∂ ν t1

∂e
∂y
----- P

e
--- 1–+





= =

–
e

e
2

----
y∂

∂ ν t2

∂e
∂y
----- 1

e
--- Ce1

P Ce2
e–( )+





are important for proving the invariance of the set $. At
σe = 1 (this value is recommended in [11]) and  = 1
(the recommended value is equal to 1.4), the equation
has the solution

The theorem below provides the criterion of the
invariance of $.

Theorem 2.1. Let (U1, e, e, 〈u 'v '〉) be a sufficiently
smooth solution to system (1)–(3), and (6), and let
σe =  = 1. Let us suppose that  – Cµ =

Cµ(  – 1). Then, the set $ is the invariant manifold

of system (1)–(3) and (6) at  =  if and only if the
Poisson bracket is {e, U1} = 0.

Remark 2.1. Using the constants , Cµ, and 
recommended in [12], one finds that the right-hand side
of the relation  – Cµ = Cµ(  – 1) is equal to

0.081. Therefore,  differs only slightly from Cµ =

=  U0
1– 1

e
---

y∂
∂

Cµτ̂2e
∂e
∂y
----- 1

e
---

y∂
∂

Cµτ̂ee
∂τ̂
∂y
-----+





+ P
e
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1
e
--- τ̂
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∂ Cµ

σe
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∂e
∂y
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e
---Ce1

P– Ce2
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



Ce1

τ̂ x y,( ) τ̂h x( )≡ U0
1– Ce2

1–( ) x x0+( ).=

Ce1
Cφ1

Cφ2

Ce2

τ̂ τ̂h

Cφ1
Ce2

Cφ2
Cφ1

Ce2

Cφ2
Cφ2
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0.252 and is close to its value  = Cµ recom-
mended in [11, 12].

The simple examples of flows where the Poisson
bracket is {e, U1} = 0 are as follows: (i) a shear-free
flow with zero deviation of the averaged longitudinal
velocity component (U1 = 0), (ii) a flow with the degen-
erate components ex = U1x = 0, and (iii) a flow with
equal rates of the generation and dissipation of turbu-
lence energy, i.e., P = e.

3. RESULTS OF NUMERICAL EXPERIMENTS

To illustrate the above statement, we have carried
out a series of numerical experiments by using mod-

els 1 and 2. Initial conditions specified at  = 625 are

in agreement with experimental data on the degenera-
tion of a planar turbulent wake behind a round cylin-
der [13]. The initial distribution of the tangential stress
〈u 'v '〉  is specified by Eq. (5). A finite-difference algo-

Cφ2
Cφ1

x0

D
-----

Table 1.  Variation of  as a function of the distance from
the body

I II III IV

725 0.19 × 10–6 0.19 × 10–6 0.19 × 10–6

925 0.11 × 10–6 0.11 × 10–6 0.11 × 10–6

1125 0.66 × 10–7 0.65 × 10–7 0.65 × 10–7

1425 0.35 × 10–7 0.32 × 10–7 0.32 × 10–7

δñ

Table 2.  Axial values of ( ) turbulence energy, ( )

dissipation rate, and ( ) the deviation of the longitudinal
velocity component according to model 1

725 0.145 × 10–3 0.253 × 10–6 0.357 × 10–1

925 0.112 × 10–3 0.148 × 10–6 0.335 × 10–1

1125 0.929 × 10–4 0.992 × 10–7 0.316 × 10–1

1425 0.749 × 10–4 0.626 × 10–7 0.294 × 10–1

e0
1( ) ε0

1( )

Ud0
1( )

x
D
---- e0

1( ) ε0
1( )

Ud0
1( )

Table 3.  The same as in Table 2, but according to model 2

725 0.145 × 10–3 0.253 × 10–6 0.358 × 10–1

925 0.113 × 10–3 0.148 × 10–6 0.335 × 10–1

1125 0.930 × 10–4 0.996 × 10–7 0.316 × 10–1

1425 0.747 × 10–4 0.631 × 10–7 0.294 × 10–1

x
D
---- e0

2( ) ε0
2( )

Ud0
2( )
rithm, its test and realization, and the results of its
application to the problems of freestream turbulence
were detailed in [14, 15]. The calculations are performed
to double accuracy. Table 1 presents the quantity

which is considered as a function of the distance from

the body and, at x = , characterizes the mesh analog

of the Poisson bracket. Here, , , ,

, (∇ he)j , and (∇ hU1)j are the finite-difference
approximations of the first derivatives and gradients at
the node y = yj (j = 1, 2, …, Ny – 1). Column I shows the

distance from the body , and columns II, III, and IV

present  in the uniform meshes 1–3 with the param-
eters hx = 0.5, hy = 0.1; hx = 0.25, hy = 0.05; and hx =
0.125, hy = 0.025, respectively.

The calculations are based on model 2 and indicate
that the mesh analog of the Poisson bracket is close to
zero for all mesh parameters.

Tables 2 and 3 present the axial values calculated in
models 1 and 2, respectively, for the turbulence energy
e0 = e0(x) = e(x, 0), the rate of energy dissipation ε0 =
ε0(x) = ε(x, 0), and of deviation of the longitudinal
velocity component Ud0 = U1(x, 0). According to these
data, which were obtained with the mesh parameters
hx = 0.25 and hy = 0.05, wake parameters calculated in
models 1 and 2 are close to each other. The difference
between the corresponding arrays of U1, e, and ε is no
more than the difference between the respective axial
values.

Thus, the above theorem and the calculations show
that the approximation of local equilibrium is applica-
ble for determining the tangential Reynolds stress
〈u 'v '〉  in the dynamic problem of the far turbulent wake
behind a round cylinder.
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ñ
U1y

h ex
h( ) j

ñ
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by Through-Tunnel Cavities
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The bending of an isotropic layer (half-layer) weak-
ened by a noncircular through hole was analyzed in [1].
A similar problem for an isotropic layer with a round
hole was solved in [2] by other methods. In many stud-
ies of a stressed state in a piecewise uniform layer, the
solutions to boundary value problems are determined
by the Vorovich semi-inverse method [3]. In this paper,
we propose a new analytical procedure for investigating
the coupled electroelastic fields in a layer weakened by
cavities of quite arbitrary cross sections.

We consider a piezoelectric ceramic layer

weakened by through cavities tunneling along the Ox3
axis, which are holes whose cross sections are quite
smooth, closed contours Lj , j = 1, 2, …, k, ∩Lj = . We
assume that the layer ends are covered with a dia-
phragm, which is rigid in its plane and flexible in the
perpendicular direction. Let a stress vector (N, T, Z) act
on the lateral sides of the cavities and a uniform field of

tension and shear , , and  exist at infinity.

The complete set of equations determining a solu-
tion to the above problem (in the absence of bulk
stresses and charges in the body) involves the following
equations:

(i) the equations of equilibrium

(1)

where summation over repeated subscripts is implied;
(ii) the equations of electrostatics

(2)

(iii) the Cauchy relations

(3)

h– x3 h, ∞– x1 x2 ∞<,<≤ ≤

σ11
∞ σ22

∞ σ12
∞

∂ jσij 0, ∂i
∂

∂xi

-------, i j, 1 2 3,, ,= = =

∂mDm 0, Em ∂mϕ ;–= =

εij
1
2
--- ∂iu j ∂ jui+( );=
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(iv) the equations of state for a piezoelectric ceramic
material preliminarily polarized along the Ox3 axis [4]

(4)

(v) the boundary conditions on the layer bases x3 = ±h

(5)

(vi) and the boundary conditions on the cavity sur-
face

(6)

In what follows, it is appropriate to use the set of
equations of equilibrium in terms of displacements.
This set follows from Eqs. (1)–(4) as

(7)

σx c11εx c12εy c13εz e31Ez,–+ +=

τ yz 2c44εyz e15Ey,–=

σy c12εx c11εy c13εz e31Ez,–+ +=

τ xz 2c44εxz e15Ex,–=

σz c13 εx εy+( ) c33εz e33Ez,–+=

τ xy c11 c12–( )εxy,=

Dx ε11Ex 2e15εxz, Dy ε11Ey 2e15εyz,+=+=

Dz ε33Ez e31 εx εy+( ) e33εz;+ +=

u1 0, u2 0, σ33 0, D3 0;= = = =

σkjn j Pk, k j, 1 2 3,, ,= =

Dn 0, P1 N ψcos T ψ,sin–= =

P2 N ψsin T ψ, P3cos+ Z .= =

V ∇ 2u c44∂3
2u ∂1θ+ + 0,=

V ∇ 2v c44∂3
2v ∂2θ+ + 0, ∇ 2 ∂1

2 ∂2
2,+= =

c44∇
2w c33∂3

2w+

+ ∂3 c ∂1u ∂2v+( ) e15∇
2ϕ e33∂3

2ϕ+ +{ } 0,=

ε11∇
2ϕ ε33∂3

2ϕ e15∇
2w–+

– e33∂3
2w ∂3 e ∂1u ∂2v+( ){ }– 0,=

U
1
2
--- c11 c12+( ), V–

1
2
--- c11 c12–( ),–= =

c c13 c44, e+ e15 e31,+= =
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We seek a solution to set (7) that is symmetric about
the median plane x3 = 0 of the layer. We set

(8)

In view of these relations, Eqs. (7) yield

(9)

The integration of this set gives

θ U ∂1u ∂2v+( ) c∂3w e∂3ϕ ,+ +=

u1 u, u2 v , u3 w.= = =

u v,{ } uk v k,{ } γ kx3, γkcos
k 0=

∞

∑ 2k 1+
2h

---------------π,= =

w ϕ,{ } wk ϕk,{ } γ kx3.sin
k 0=

∞

∑=

Vκ kuk ∂1θk+ 0, Vκ kv k ∂2θk+ 0,= =

L13wk L14ϕk
c
U
----γkθk+ + 0,=

L23wk L24ϕk
e
U
----γkθk+ + 0,=

κ k = ∇ 2 γk
2µ0

2, L13–  = c44∇
2 γk

2δ1, µ0
2–  = 

c44

V
------,

L14 L23 e15∇
2 γk

2δ2, L24– γk
2δ3 ε11∇

2,–= = =

θk U ∂1uk ∂2v k+( ) γkcwk γkeϕk,+ +=

δ1 c33
c2

U
----, δ2– e33

ce
U
-----, δ3– ε33

e2

U
----.+= = =
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(10)

where the function  is an arbitrary solution to the

Helmholtz equation (∇ 2 –  = 0; Ωk is an arbi-

trary solution to the equation (∇ 2 – Ωk = 0; µm, m =
1, 2, 3, are the roots of the bicubic equation [5]; and dk

are known constants depending on the physical and
mechanical characteristics of the piezoelectric ceramic
material.

The functions  and Ωk determine the potential
and vortex components of the solution, respectively. As
follows from Eq. (10), the above homogeneous solu-
tions are free of the biharmonic part.

The desired metaharmonic functions appearing in
Eq. (10) are sought in the following form of simple-

uk iv k– 2γk
U
V
----

p4* µm( )
µm

2 µ0
2–

------------------ ∂
∂z
-----Ωk

m( ) 2i
∂
∂z
-----Ωk,+

m 1=

3

∑=

wk γk
2 d2µm

2 δ5–( )Ωk
m( ), k

m 1=

3

∑ 0 1 …,, ,= =

ϕk γk
2 δ4 d1µm

2–( )Ωk
m( ),

m 1=

3

∑=

δ4
δ1

c
-----

δ2

e
-----, δ5–

δ2

c
-----

δ3

e
-----,+= =
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m( )
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2 )Ωk
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Fig. 1. Distribution of the relative circular stress  in the thickness coordinate for (a) R1 = R2 = 1 and (b) R1 = 2R2 = 1. Lines 1,

2, and 3 are for  = 1, 2, and 4, respectively.
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layer potentials [6]:

(11)

where Kn(z) is an nth-order modified Bessel function of

the second kind and pk(ζ) and  are the desired

densities such that  = .

We assume that the components of the stress vector
and the normal component of the electric displacement
vector, which act on the cavity surface, can be decom-
posed as

(12)

It is appropriate to represent the boundary condi-
tions on the cavity surface in the form

(13)

where ψ is the angle between the positive normal to the
contour L and Ox1 axis, N and T are the normal and tan-
gential components of the stress vector (N, T, Z) acting
on the body surface from the outer normal, and σkj are
the stress-tensor components.

Representation (11) and decompositions (8) and
(12) enable us to reduce boundary value problem (13)
to a set of four (for each k) singular integro-differential
equations, which is solved numerically by the method
of mechanical quadratures [7].

Ωk pk ζ( )K0 γkµ0r( ) s, rd

L

∫ ζ z– ,= =

z x1 ix2,+=

Ωk
m( ) pk

m( ) ζ( )K0 γkµmr( ) s,d

L

∫=

ζ ξ 1 iξ2+ L∈ ∪ L j, m 1 2 3,, ,= = =

pk
m( ) ζ( )

pk
3( ) pk

2( )

N Nk γkx3, Tcos
k 0=

∞

∑ Tk γkx3,cos
k 0=

∞

∑= =

Z Zk γkx3, Dnsin
k 0=

∞

∑ Dn
k( ) γkx3.sin

k 0=

∞

∑= =

σ11* σ22* e2iψ σ22* σ11*– 2iσ12*+( )–+ 2 N iT–( ),=

Re eiψ σ13 iσ23–( ){ } Z , σkj* σkj σkj
∞ ,+= =

Dn 0,=
As an example, we consider a layer weakened by an
elliptic-section through-tunnel cavity free of stresses
(ξ1 = R1cosϕ, ξ2 = R2sinϕ, 0 ≤ ϕ ≤ 2π) when a tensile

load  = P = const acts at infinity.

Figures 1a and 1b show the distribution of the rela-

tive circular stress  in the thickness coordinate at

the point ϕ = , where the stress is maximal, for R1 =

R2 = 1 and R1 = 2R2 = 1, respectively. Lines 1, 2, and 3

are for  = 1, 2, and 4, respectively. The numerical

results were obtained for the piezoelectric ceramic mate-
rial PZT-4, whose characteristics were taken from [4, 8].

REFERENCES
1. É. I. Grigolyuk, Yu. D. Kovalev, and L. A. Fil’shtinskiœ,

Dokl. Akad. Nauk 345 (1), 54 (1995) [Phys. Dokl. 40,
592 (1995)].

2. A. F. Ulitko, The Method of Vector Eigenfunctions in 3D
Problems of Elasticity Theory (Naukova Dumka, Kiev,
1979).

3. I. I. Vorovich and O. S. Malkina, Prikl. Mat. Mekh. 31
(2), 230 (1967).

4. V. T. Grinchenko, A. F. Ulitko, and N. A. Shul’ga, The
Mechanics of Connected Fields in the Elements of Con-
structions. Electroelasticity (Naukova Dumka, Kiev,
1989), Vol. 5.

5. L. A. Fil’shtinskiœ, Teor. Prikl. Mekh. (Kiev), No. 21, 13
(1990).

6. V. S. Vladimirov, Equations of Mathematical Physics
(Nauka, Moscow, 1981; Marcel Dekker, New York,
1971).

7. S. M. Belotserkovskiœ and I. K. Lifanov, Numerical
Methods in Singular Integral Equations (Nauka, Mos-
cow, 1985).

8. D. Berlincourt, D. R. Curran, and H. Jaffe, Piezoelectric
and Piezomagnetic Materials and Their Function in
Transducers, in Physical Acoustics: Principles and
Methods, Vol. 1, Part A: Methods and Devices, Ed. by
W. P. Mason (Academic, New York, 1964; Mir, Moscow,
1966).

Translated by R. Tyapaev

σ11
∞

σθθ

P
--------

π
2
---

h
R1
-----
DOKLADY PHYSICS      Vol. 47      No. 7      2002



  

Doklady Physics, Vol. 47, No. 7, 2002, pp. 525–527. Translated from Doklady Akademii Nauk, Vol. 385, No. 1, 2002, pp. 64–66.
Original Russian Text Copyright © 2002 by Morozov, Petrov, Smirnov.

                                                                                        

MECHANICS
Transition between Brittle and Ductile Erosional Fracture
Academician N. F. Morozov*, Yu. V. Petrov**, and V. I. Smirnov***

Received March 6, 2000
Generally, analysis of surface erosion by solid-par-
ticle impact should be conducted by invoking the appa-
ratus of fracture mechanics. However, conventional
quasi-static modeling cannot provide explanations of
many observed effects, because static criteria are incon-
sistent with the essential dynamics of erosion.

Erosion processes are characterized by the action of
very short dynamic stress pulses on surfaces. The pos-
sibility of fracture can be assessed only by means of cri-
teria taking into account the transient nature of the frac-
ture of solids. An efficient criterion for analyzing rapid
fracture processes is based on the concept of latent
time [1, 2]. For a defect-free material subject to ero-
sion, the criterion is formulated as

(1)

where τ is the latent time of fracture, σs is the static ten-
sile strength of the material, and σ(t) is the maximal
tensile stress.

Fractographic studies show that a key factor in ero-
sional fracture is the development of circular brittle
cracks induced by impacting solid particles whose radii
vary from tens to hundreds of microns [3]. Their impact
on the surface gives rise to extremely short fracturing
pulses. Knowing their characteristics and the threshold
velocity for impact fracture, we can determine an ele-
mentary “quantum” of action resulting in fracture [1]
and the corresponding latent time. Moreover, if the
parameters used in the fracture criterion are known, we
can calculate some basic characteristics of the erosion
process. This approach can be developed in the sim-
plest approximation by invoking the Hertz impact the-
ory [4].

σ s( ) sd

t τ–

t

∫ σsτ ,≤
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Suppose that a single solid particle of radius R mov-
ing at a velocity v  hits the surface of an elastic material
occupying a half-space. The time-dependent maximal
(radial) fracturing stress at a point adjacent to the con-
tact area is calculated (in a cylindrical coordinate sys-
tem) by the formula [4, 5]

(2)

where the function h(t) is expressed as [6]

(3)

Here, h0 =  is the particle penetration depth

and t0 ≈ 2.9432  is the contact duration; k = ,

where E is the elastic modulus; and ν is the Poisson
ratio.

Suppose that v  equals the threshold particle velocity
corresponding to the onset of fracture. Introducing the
function

(4)

and using the latent-time criterion, we determine the
latent time as the positive root of the equation

(5)

for given values of v  and R.

We can now calculate the latent time by using exper-
imental values of the threshold velocity for erosional
fracture of surfaces and the formulas written out above.

We consider the erosional fracture of B95 aluminum
alloy with the following mechanical properties: E =
73 GPa, ν = 0.3, σs = 456 MPa, the static fracture tough-

ness KIc = 37 MPa , and the acoustic velocity c =
6500 m/s. The radius of an erosive particle is R =

150 µm, and its density is ρ = 2400 kg/m3 its mass is

σr v R t, ,( ) 1 2ν–
2

---------------k h t( )
πR

-----------------,=

h t( ) 0.995h0
πt
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----- 

  .sin≈

5mv 2

4k
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 
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v
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3
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1 ν2–
--------------

f v R τ, ,( ) σr v R s, ,( ) sd
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t

∫t
max σsτ–=

f v R τ, ,( ) 0=
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


002 MAIK “Nauka/Interperiodica”



 

526

        

MOROZOV 

 

et al

 

.

                      
calculated as m = . For the aluminum alloy

with the mechanical properties defined above, the
threshold impact velocity for erosional fracture has
been determined experimentally: v  = 33 m/s [7]. Using
the above formulas to evaluate the impact characteris-
tics for a particle interacting with a surface, we obtain
t0 = 0.29 µs and h0 = 3.46 µm. Our analysis shows that
the function f(v , R, τ) has a unique positive root. The
latent time calculated for the material properties specified
above is τ ≈ 0.71 µs. Note that a similar value of the latent

time can be obtained from the formula  ≈ 0.65 µs,

where d = .

The reverse situation is also valid. Knowing the
latent time for a material (e.g., from spall tests), we can
calculate the key characteristics of the erosion process.
Curve 1 in Fig. 1 represents the threshold velocity for
erosional fracture calculated for the B95 alloy as a
function of the erosive-particle radius for τ = 0.71 µs.
The curve consists of a quasi-static branch and a
dynamic branch. The former branch is characterized by
a weak dependence of the threshold velocity on the ero-
sive-particle size, whereas the latter branch demon-

4πρR3

3
----------------



d
c
---

2KIc
2

πσc
2

-----------
strates a relatively steep (power-law) increase in the
threshold velocity with decreasing particle size. Note
the sharp transition between the quasi-static and
dynamic regimes at a certain particle size (on the order
of hundreds of microns in the present case). The theo-
retical curve shown here is qualitatively consistent with
available experimental data [8]. It should also be noted
that the dependence calculated by using the conven-
tional critical-stress criterion in the scheme outlined
above (curve 2 in Fig. 1) fails to explain the observed
behavior of the threshold velocity for erosional frac-
ture.

From a practical standpoint, it is also important to
examine the possibility of ductile fracture in the region
of contact between an erosive particle and the surface of
a material occupying a half-space. Fracture of this type
is observed experimentally in the form of plastic prints.
To analyze it, we invoke the dynamic yield criterion
given in [9]:

(6)

Here, Ts(t) is the tangential stress intensity defined as

3T s s( )
σY

-------------------- 
 

α

sd

t τY–

t

∫ τY .≤
T s
2 t( ) 1

6
--- σr t( ) σθ t( )–[ ] 2 σθ t( ) σz t( )–[ ] 2 σz t( ) σr t( )–[ ] 2+ +{ } ,=
in terms of the stress-tensor components σz, σr, and σθ
in a cylindrical coordinate system; α is an empirical
constant parameter characterizing the material used; σY

is the yield stress determined under uniaxial quasi-
static loading; and τY is the corresponding latent (struc-
tural) time. Criterion (6) is valid in the cases of both
uniaxial loading and pure shear. The static yield crite-
rion (the von Mises criterion), which corresponds to the
case of slowly varying load, is obtained by taking the

4

2

1.5 2.0 2.5 3.0 3.5

6

8

1.0
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logv

log(2R × 106)

1

2

Fig. 1. Threshold velocity v  (m/s) as a function of the par-
ticle radius R (m).
limit as   0, where t0 is the characteristic loading

time.
The tangential stress intensity on the surface reaches

its maximum at the origin of the coordinate system,
where σr = σθ and

(7)

with h(t) given by (3).
To predict ductile fracture for the B95 alloy, we set

α = 2 (see [10]) and τY = 5 µs. By analogy with (4), we
define the function

(8)

and use it to numerically evaluate the threshold velocity
for ductile fracture as a function of the erosive-particle
radius. Figure 2 compares the threshold velocities for
brittle and ductile fracture (curves 2 and 1, respec-
tively). As is seen, for small radii (R ≤ 140 µm), an
increase in the impact velocity causes the material to
yield, and a further increase in velocity leads to the
development of cracks. As the particle size increases,

τY

t0
-----

T s v R t, ,( ) 3 1 2ν–( )
4 3

-----------------------k h t( )
πR

-----------------=

F v R τY, ,( )
3T s v R s, ,( )

σY

----------------------------------
α

sd

t τY–

t

∫t
max τY–=
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the mechanism of fracture changes. With further
increase in radius, the fracture curves tend to converge,
suggesting that transition between fracture mechanisms
(from ductile to brittle fracture and vice versa) is possi-
ble. The point of crossover between curves 1 and 2 cor-
responds to the threshold velocity for fracture at which
the fracture mechanism changes. For the mechanical
parameters specified above, the point has the coordi-
nates R ≈ 140 µm and v ∗  ≈ 56 m/s. An increase in the
impact velocity facilitates transition from ductile to
brittle fracture.

The theoretical curves presented here demonstrate
the substantial effect of the size of erosive particles on
the threshold velocity for erosional fracture and, there-
fore, on the erosional-wear intensity [3].

The results of this study show that the application of
a criterion consistent with the transient nature of the
process makes it possible to predict (even in the sim-

120
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140 160 180 200 220 240 260 280
0
80
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v , m/s
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2

Fig. 2. Threshold velocities for erosional fracture of the B95
alloy: (1) ductile fracture; (2) brittle fracture.
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plest classical approximation) certain experimentally
observed effects which are intractable within the frame-
work of models relying on the conventional strength
and yield criteria. The new characteristic quantity—
namely, latent time—introduced into the model pro-
vides a basis for a unified treatment of such outwardly
different processes as spall fracture and erosional frac-
ture. Most importantly, this unification makes it possi-
ble to develop experimental methods based on ero-
sional fracture for determining the time-dependent
strength and yield, i.e., for examining dynamic strength
characteristics of solids.
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The problem of the disintegration of small celestial
bodies on entry into the planetary atmosphere is far
from its solution. On the one hand, disintegration of
meteoroids is directly observed [1] and is confirmed by
the discovery of meteoric fields on the Earth’s surface
[2, 3]. On the other hand, the first attempts to discover
the occurrence of fragmentation by analyzing the retar-
dation rate on a luminous segment of the meteoroid’s
trajectory showed that either the fragmentation is
entirely absent or affects the variation in the meteoroid
velocity extremely weakly [4]. In many cases, in order
to establish the fact of disintegration according to the
bolide-luminescence intensity, more adequate lumines-
cence models than those present at the moment in the
literature are required.

Recently, several models describing the fragmenta-
tion of meteoroids under the action of an aerodynamic
load were proposed. These models are based both on
general physical concepts of fracturing inhomogeneous
bodies under the action of forces applied to them and on
certain assumptions simplifying the description of the
disintegration process. We list only some of these mod-
els. The model proposed in [5] is based on the sugges-
tion that the number of fragments produced is propor-
tional to the dynamic component of the momentum flux
ρaV2 for the incoming gas. Physical properties of the
model of instantaneous disintegration were formulated
for the first time in [6]. Later, this model was employed
in numerical calculations carried out in [7]. Finally, the
model developed in [8] takes into account the depen-
dence of the fragmentation process on the primary-
body size. This model assumes that with a load increas-
ing to its maximal value, each fragment is split in two.

In the cited papers, the models proposed were used
for numerically calculating trajectories of meteor-
swarm fragments. Furthermore, analytical solutions for
trajectories, which allow for a decrease in the total mass
of the fragments due to ablation [9–11], were obtained
after slight simplifications. In the present study, we

Institute of Mechanics, Moscow State University, 
Michurinskiœ pr. 101, Moscow, 117463 Russia
1028-3358/02/4707- $22.00 © 20528
offer ultimate forms of solutions corresponding to large
values of the mass-ablation parameter.

The important role of mass loss by a meteoroid pen-
etrating the atmosphere is confirmed by both theoreti-
cal results and direct observations. The theoretical data
are rather numerous; therefore, we here restrict our
analysis to only monograph [12]. As far as direct obser-
vations are concerned, we first briefly describe the
world experience in bolide-network operation. Meteor-
ite patrols and then bolide networks were organized in
Europe, the United States, and Canada in the second
half of the last century. The goal was to take pictures of
luminous segments of bolide trajectories. Afterwards,
the meteorites were sought in locations on the Earth’s
surface extrapolated from their trajectories. Thousands
of observations and photographic records of luminous
trajectories had been performed. However, these efforts
resulted in the discovery of only four fragments of
meteoritic bodies. Even taking into account all the dif-
ficulties of this search, we must acknowledge the large
role of total mass dispersion of solid fragments on their
trajectories in the atmosphere.

Below, we propose simple formulas useful both for
qualitative estimates and for comparison with observa-
tional data.

The study of the sequence of physical processes
along the trajectory of a meteoritic body shows that in
the case of sufficiently large objects, as a rule, the dis-
integration of a meteoroid occurs first, and only then
does the ablation and retardation of formed fragments
take place. Therefore, in all the models, it is assumed
that at the disintegration point, the values of the veloc-
ity and mass of a meteoroid are equal to their values at
the moment of their entry into the atmosphere. Thus, as
for the case of the motion of a unified body [12], the
ballistic factor α and the mass-ablation parameter β are
basic dimensionless defining parameters. The addi-
tional parameter is the dimensionless altitude of disin-
tegration y0. In all cases, this altitude is defined as the
altitude when the aerodynamic load for a body reaches
its maximum.

The main difficulty in using the above analytical
solutions in various decomposition models is the fact
that elliptic integrals depending on the parameter β are
002 MAIK “Nauka/Interperiodica”
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present in the solutions. Therefore, we can expect sub-
stantial simplifications in the limit β @ 1.

In the case of the instantaneous-disintegration
model [6], the solution for a change in the body’s veloc-
ity takes the form [10]

(1)

(2)

The defining parameters are

(3)

where σ* and ρm are the strength and the density of the

body’s material, respectively. Here, the angle γ of the
trajectory, the coefficients cd and ch of damping and
heat exchange, respectively, and the evaporation
enthalpy H* are constant quantities. The values of the
velocity V, of the body’s mass M, and of the midsection
area A at the entry of the body into the atmosphere are
taken as the corresponding scales and are denoted by
the subscript e. The altitude of the homogeneous atmo-
sphere h0 is taken as the altitude scale h, and the density
ρ0 corresponding to the altitude h = h0 is chosen as the

density scale for ρa. Thus, ν = , m = , a = , y =

, ρ = .

Using the well known representation for the integral

exponential function (x) at large values of the argu-
ment x [13], we arrive at the following ultimate form of
solution (1), (2) as β @ 1:

(4)

Here, it is sufficient to allow for only the first term in the

representation of (x) at x @ 1. Note that in the ulti-
mate solution, the mass m depends on the product of the
defining parameters α and β.

For the model of the subsequent slow fragmenta-
tion [5], the solution for the change in the body’s veloc-
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ity along the trajectory has the form [9] [the body’s
mass changes in accordance with formula (1)]:

(5)

The parameters α, β, and y0 have the previous meaning

(see [3]). Here, in the representation of the integral 
for β @ 1, we must use the asymptotic expression of the
incomplete gamma function [14] with allowance for the
first expansion term. After some straightforward calcu-
lation, we obtain the following ultimate form of solu-
tion (1), (5) for β @1:

(6)

Here, the product αβ also serves as a defining parame-
ter for the variation in the body’s mass.

Finally, for the model of rapid sequential fragmen-
tation [8], the dependence of the body’s velocity on the
altitude along the trajectory has the form that corre-
sponds to [11] [as before, the mass of the body changes
in accordance with solution (1)]:

(7)

The quantity ∆ is written out in the same form as in (2).
For the asymptotic representation of the right-hand side

of formula (7), we again take the expression (x) for
β @ 1 [13]. The correct result is obtained when the first
three expansion terms are taken into account Finally,
we find the following ultimate form of solution (1), (7)
for β @ 1:

(8)

Comparing formulas (6) and (8), we see that the desig-
nations of slow and rapid fragmentation introduced
above are easy to justify.

It is worth noting that all three ultimate solutions (4),
(6), and (8) describe the ablation of the meteoroid body
in the absence of retardation. The same solutions are
obtained under the assumption V = Ve in the original
differential equations.

Without doubt, similar expressions can be found if
we ignore the constraint concerning the consideration
of sufficiently large meteoroids for which ν = 1, m = 1
at y = y0, i.e., at the point of the onset of disintegration.
In the case, the corrected solutions of type (4), (6) and
(8) are simply extensions to the domain y < y0 of the
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corresponding solutions for a unified body, which exist
for y > y0 [12].

ACKNOWLEDGMENTS
The work was supported by the Russian Foundation

for Basic Research, project no. 99-01-00385.

REFERENCES
1. P. Spurny,´ Planet. Space Sci. 42 (2), 157 (1994).
2. Sikhoté-Alinskiœ Iron Meteoritic Rain, V. G. Fesenkov

and E. L. Krinov, Eds. (Akad. Nauk SSSR, Moscow,
1959), Vol. 1.

3. A. K. Terent’eva and S. I. Barabanov, in Circumterres-
trial Astronomy of XXI Century (GEOS, Moscow, 2001),
pp. 307–311.

4. V. P. Stulov, Astron. Vestn. 34, 545 (2000).
5. B. Baldwin and Y. Sheaffer, J. Geophys. Res. 76, 4653

(1971).
6. S. S. Grigoryan, Kosm. Issled. 17, 875 (1979).
7. J. G. Hills and P. Goda, Astron. J. 105, 1114 (1993).
8. A. G. Ivanov and V. A. Ryzhanskiœ, Dokl. Akad. Nauk

353, 334 (1997) [Phys.–Dokl. 42, 139 (1997)].
9. V. P. Stulov, Astron. Vestn. 32, 455 (1998).

10. V. P. Stulov and P. V. Stulov, Astron. Vestn. 33, 45
(1999).

11. V. P. Stulov and L. Yu. Titova, Dokl. Akad. Nauk 376, 53
(2001) [Dokl. Phys. 46, 50 (2001)].

12. V. P. Stulov, V. N. Mirskiœ, and A. I. Vislyœ, Aerodynamics
of Bolides (Nauka, Moscow, 1995).

13. E. Yahnke, F. Emde, and F. Losch, Tables of Higher
Functions (McGrow-Hill, New York, 1960; Nauka,
Moscow, 1964).

14. Handbook of Mathematical Functions, Ed. by M. Abra-
mowitz and I. A. Stegun (Dover, New York, 1965;
Nauka, Moscow, 1979).

Translated by G. Merzon
DOKLADY PHYSICS      Vol. 47      No. 7      2002



  

Doklady Physics, Vol. 47, No. 7, 2002, pp. 531–534. Translated from Doklady Akademii Nauk, Vol. 385, No. 2, 2002, pp. 189–192.
Original Russian Text Copyright © 2002 by Markov, Sinitsyn.

                                            

MECHANICS
A Stochastic Model of the Motion 
of the Deformable-Earth Pole

Yu. G. Markov* and I. N. Sinitsyn**
Presented by Academician V.V. Kozlov March 13, 2002

Received March 1, 2002
1. The basis of many astrometric investigations is
the dynamic theory of the rotation of the Earth relative
to its center of mass. The investigation of rotation
around the center of mass is hampered by the difficulty
of constructing a dynamic model of the deformable
Earth. At present, the development of mathematical
models that describe the motion of the of observations
and measurements of the International Earth Rotation
Service (IERS) are not only of scientific value but also
of practical interest [1–4].

According to the IERS data for the last 15–20 years,
the Chandler vibration (free nutation), which has an
amplitude of 0.20''–0.25'' and a period of 433 ± 2 side-
real days, is separated in the complex motion [3]. The
characteristics of the Chandler component are related
to the inertia tensor of the deformable Earth [4]. Along
with the Chandler component in the pole motion, it is
possible to separate the annual vibration, which has an
amplitude of ~0.07''–0.08'' and a period of one year
(365 sidereal days). According to [4, 5], the annual
vibrations of Earth’s axis are induced by solar gravita-
tional torque, the orbital motion of the rotating Earth,
and diurnal mantle tides. Estimates of the gravitational
torque speak to the reality of such a mechanism for the
excitation of vibrations. The causes and mechanism of
the excitation of annual vibrations are unknown. It is
conventional to attribute them to seasonal geophysical
phenomena (to processes in Earth’s atmosphere and to
oceanic tides) [1, 2]. A refined model developed for the
Chandler vibration of the pole on the basis of a vis-
coelastic model of the deformable Earth at the time
interval of ~10 years was described in [5].

The trend of axis the of Earth’s figure (~0.5'' in the
direction of 90° westwards from Greenwich), which, in
our opinion, is associated with the centrifugal moments
of inertia of the deformable Earth, is of fundamental
importance for constructing a mathematical model of
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Russian Academy of Sciences, 
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the pole motion at large time intervals (~50 years and
longer). Changes in the trend can be induced by geotec-
tonic processes with time constants on the order of
103 years and by the influence of a dynamic asymmetry
leading to the modulation of Chandler vibrations with a
period of ~220 years.

Let us develop a combined celestial-mechanical sto-
chastic model on the basis of the IERS data [3] and of
analytical considerations. The determinate component
of the model represents the principal regular dynamic
effects; the stochastic component, irregular effects fol-
lowing statistical regularities [6, 7].

2. Generalizing the results from [5], we proceed
from the following three-dimensional nonlinear differ-
ential set with random parameters:

(1)

(2)

(3)

where

(4)

Here, p, q, and r are the components of terrestrial angu-
lar velocity; V1, V2, and V3 are the random parameters
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derived by time-averaging over the diurnal interval

T* = :

(5)

which characterize the effective solar diurnal tidal
humps; V4, V5, and V6 are the random parameters

(6)

which determine the effective tidal protrusions. Here,

A* + (t), B* + (t), C* + (t) and  + (t),  +

(t), and  + (t) are the axial and centrifugal
moments of inertia of the Earth, respectively, where the
constant components are marked by an asterisk, and the
variable components induced by the solar diurnal tides,
by the tilde. We introduce the following notation for the
random initial conditions:

The remaining quantities in Eqs. (1)–(4) are

(7)

Here, ω* is the constant determined by the gravitational
and focal parameters and b is the known coefficient [5].

The set of equations (1)–(3) was derived under the
following assumptions. Lunar gravitational torques are
ignored, because their effect on the vibrations is rela-
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tively small. The lunar influence leads to a monthly
vibration whose amplitude is lower than that of the
annual vibration by a factor of 15–20. In addition, we
took into account the fact that the terms involving r, r2,

ω*, and  substantially exceed the corresponding

terms with squared and combined quantities p, q, ,

, , etc. The quantities ∆P, ∆Q, and ∆R are the

terms of higher orders.

3. Using Eqs. (1)–(3), where the parameters Vi are
real normal (Gaussian) random values with the mathe-

matical expectations , variances , and covari-

ances , i, j = 1, 2, …, 9, and the method of stochastic
expansion in random parameters [7], we obtain the fol-
lowing expansions of the expectations, variances, cova-
riances, and covariance functions of the variables pt =
p(t), qt = q(t), rt = r(t) for the moments of time t, t' > t:

(8)

(9)

(10)

(11)

Here,  with i = 1, 2, …, 9 are the influence func-
tions of parameters Vi obtained by solving Eqs. (1)–(3)

for P = Q = R = 0 and by replacing p, q, and r by ,

respectively. The functions ∆ , ∆ , ,

∆ , ∆ , and ∆  are the components of the
expectations, variances, and covariances that take into
account the nonlinear functions P, Q, and R.
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4. For zero initial conditions when nonlinear (in Vi)
functions (4) can be neglected and r can be replaced by
r0 in the functions V4, 5r2, the substitutions

(12)

must be made in Eqs. (8)–(11). In this case, the average
statistical trends in pt and qt , the variances, and the
covariances are constant at t = t ' and equal to

(13)

(14)

where 〈 ·〉  indicates averaging over time 2π .

In the nonlinear approximation, the mean statistical
trend in the variables pt and qt, which is averaged over
the years 2π , is determined by the following for-
mulas:

(15)

(16)

From Eqs. (15) and (16), the following conclusions
can be made. The mean trend in the angular-velocity
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component pt (qt) is determined by the parameters V3
and V5 (V3 and V4) (i.e., the tidal hump in the second
harmonic, the tidal protuberance, and their correlation).

Allowance for the quadratic (in Vi) terms makes it
possible to derive refined analytical expressions for the
influence functions, trends, variances, covariances, and
covariance functions in model (8)–(11).

5. Stochastic model (8)–(11) is given in terms of sta-
tistical moments of the first and second orders and,
therefore, is called the correlational stochastic model.
The method of stochastic expansions also makes it pos-
sible to find the higher order statistical moments [7].
Therefore, it is possible to develop stochastic models
including the moments of various orders. When a sto-
chastic model is described in terms of one-dimensional
and multidimensional distributions, more refined meth-
ods of the theory of nonlinear stochastic systems [6, 7]
are used similar to [8].

6. The stochastic models of the deformable Earth
make it possible to solve certain practical problems by
using the methods of mathematical statistics [9],
namely:

(i) To calculate the statistical characteristics of
angular-velocity components pt , qt , and rt at various
moments of time (in particular, for the statistical pre-
diction and detection of anomalous phenomena) from
the known statistical characteristics of random parame-
ters V = [V1 … V9]T;

(ii) To estimate the mathematical expectations, vari-
ances, and covariances of parameters in Eqs. (1)–(3)
and to determine the confidence intervals for them from
known observation data [3];

(iii) To solve mixed problems where only certain
variables and parameters are observable with an accept-
able accuracy.

At the Institute of Problems of Information Science
(RAS), a specialized software package was developed
for solving the above problems on the basis of the sto-
chastic differential model (1)–(3) and the methods of
the normal and ellipsoidal approximation of distribu-
tions [6, 7].

The further increase in requirements regarding the
accuracy and time of predictions requires, on the one
hand, more elaborate inclusion of the errors in the mea-
surements of the IERS angular velocity parameters, and,
on the other hand, the inclusion of the nonlinear stochastic
perturbations ∆P, ∆Q, and ∆R in Eqs. (1)–(3).
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The classical Mindlin paper [1] published in 1936
consists of first and second sections concerning con-
centrated forces perpendicular and parallel to the
boundary of the elastic half-space, respectively. In
paper [2], the fundamental solutions obtained by Lord
Kelvin and Mindlin (the first section of [1]) are gener-
alized for the case of a three-dimensional elastic wedge
where a concentrated force is perpendicular to its edge
under different types of boundary conditions at its
sides. Below, we present expressions for three Papkov-
ich–Neuber harmonic functions for a wedge that has
unstressed sides and where a concentrated force paral-
lel to its edge acts in its middle half-plane. When the
opening angle of the wedge corresponds to a half-
space, the expressions for elastic displacements and
stresses coincide with formulas from the second section
of [1]. Displacements at the wedge edge are calculated
as well. The solutions obtained by Boussinesq and
Cherutti for an elastic wedge with one side subjected to
normal and tangential loads and the other side free of
stress are generalized in [3]. The problems of a three-
dimensional wedge are solved by presenting a har-
monic function as the complex Fourier–Kontorovich–
Lebedev integral and by reducing the three-dimensional
problem of elasticity theory to the Hilbert boundary
value problem generalized in the sense of Vekua [4–6].

Using the cylindrical coordinates r, ϕ, z, we con-
sider the three-dimensional elastic wedge (0 ≤ r < ∞,
|ϕ| ≤ α, |z | < ∞) with the opening angle 2α, the shear
modulus G, and the Poisson’s ratio ν. The z-axis of the
right-handed coordinate system is directed along the
wedge edge (Fig. 1). Let the wedge sides ϕ = ±α be free
of stress, and the concentrated force T parallel to the
edge be applied at an arbitrary point r = x, z = y and act
in the bisecting half-plane ϕ = 0. Since the problem is
symmetric in ϕ, we consider the wedge region –α ≤ ϕ ≤
0 with the boundary conditions

(1)ϕ α : σϕ– τ rϕ τϕ z 0;= = = =

Institute of Mechanics and Applied Mathematics, 
Rostov State University, pr. Stachki 200/1,
Rostov-on-Don, 344090 Russia
1028-3358/02/4707- $22.00 © 20535
(2)

In addition, stresses are assumed to decrease at infinity.

In the cylindrical coordinates, the general solution
to the Navier equilibrium equations can be expressed in
terms of three Papkovich–Neuber harmonic functions
Φn = Φn(r, ϕ, z), n = 0, 1, 2 by Eqs. (5)–(7) from [2].
Stresses are determined from these formulas by
Hooke’s law. Harmonic functions Φn are sought as
complex Fourier integrals with respect to z and the
complex Kontorovich–Lebedev integrals with respect
to r. The familiar method [4–6] provides a solution to
boundary value problem (1), (2) in the form of Eqs. (5)–
(7) from [2], where, after passing to the real Fourier and
Kontorovich–Lebedev integrals (n = 0, 1, 2),

(3)

(4)

ϕ  = 0: uϕ  = τ rϕ  = 0, τϕ z
1
2
---Tδ r x–( )δ z y–( ).=

Φn r ϕ z, ,( )
T

π3G
---------- πτ( ) An τ t,( ) ϕτ( )cosh[sinh

0

∞

∫
0

∞

∫=

+ Bn τ t,( ) ϕτ( )sinh ]_iτ tr( ) t z y–[ ]( )t 1– dτ dt,sin

B0 τ t,( ) _iτ tx( )
x

4 1 ν–( )
--------------------_iτ' tx( ),+=

z = y

x

z

T

ϕ = –α ϕ  = 0 ϕ = α

Fig. 1. Concentrated force inside a three-dimensional
wedge.
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(5)

Here, functions (4) and (5) are found from conditions (2)
and are independent of α, _iτ(x) is the modified Bessel
function, and the other integrands entering into (3) have
the form

(6)

(7)

(8)

(9)

(10)

(11)

(12)

A1 τ t,( )
τ
x
--_iτ tx( ),=
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x∂

∂
_iτ tx( ).=

A0 τ t,( ) ατ( ) _iτ tx( )
x

4 1 ν–( )
--------------------_iτ' tx( )+coth=

–
1 2ν–

2t ατ( )sinh
--------------------------- Ψ s t,( ) πs( )sinh

πs( )cosh πτ( )cosh+
---------------------------------------------------- s,d

0

∞

∫

B1 τ t,( ) τ x 1– 2ατ( )_iτ tx( )sinh 2α( )_iτ' tx( )sin+[=
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A2 τ t,( ) τ x 1– 2α( )_iτ tx( )sin 2ατ( )_iτ' tx( )sinh+[=

– 4 1 ν–( ) ατ( ) αΨ τ t,( )sincosh ]g–
1– τ α,( ),

Ψ τ t,( )
1

g+ τ α,( )
------------------

g– τ α,( )
πτ/2( )cosh

----------------------------Φ τ t,( )
Ψ* τ t,( )
2 1 ν–( )
--------------------+ ,=
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----------------------------------------------------,
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At fixed 

 

t

 

, the function 

 

Φ

 

(

 

τ

 

, 

 

t

 

)

 

 satisfies the Fredholm
integral equation of the second kind (

 

0 

 

≤

 

 

 

τ 

 

< 

 

∞)

(13)

(14)

The functions L(τ, u) and g(u, α) are determined by
Eqs. (17) and (18) from [2].

Integrals (3) for functions (4)–(14) are convergent at
all ϕ ∈  [–α, 0]. At n = 0, the order of integration is
important in Eq. (3): integration with respect to t must
be taken at the end.

At α = , the solution to boundary value problem (1),

(2) in the form of Eqs. (5)–(7) from [2] with Eqs. (3)–(14)
coincides with the solution to the Mindlin problem for
a half-space when a concentrated force is parallel to its
boundary. Then, Φ(τ, t) = 0 and, using the integral

one obtains

Calculation of the integrals (see [7]) leads to the follow-
ing expressions for the displacements ur(r, 0, z) and
uz(r, 0, z):

Φ τ t,( ) 1 2ν–( ) L τ u,( )

0

∞
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π
2
---
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∞
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∞
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∞
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(15)

(16)

Formulas (15) and (16) agree exactly with Eqs. (18)3 and
(18)1 derived in [1], respectively. Unfortunately, similar
formulas (9.29) presented in [8] contain misprints.

The inverse-operator theorem for a combination of
the two special Neumann series [2, 6, 9] explains the
occurrence of both Fredholm integral equation (13) and
the similar equation (16) from [2]. At any angle α and,
for ν > 0.053, a solution to Fredholm equation (13) can
be represented as the Neumann power series in (1 – 2ν),
which is uniformly convergent in the Banach space
CM(0, ∞) of functions that are continuous and bounded
in the semiaxis [5, 6]. It is convenient to solve Eq. (13)
by the collocation method.

The above formulas, together with the results of [2],
can be used to solve the problems concerning a thin
rigid inclusion into a three-dimensional wedge. The
similar problem for space was considered in [10].

Mindlin (see Fig. 6 in [1]) calculated the displacement
ur(0, 0, z) normal to the half-space boundary by Eq. (15) at
y = 0 and ν = 0.3 and found that maximum |ur(0, 0, z)| is
reached at z ≈ 0.63x. As an example, we investigate the
absolute extrema of the displacements ur(0, 0, z) and uz(0,
0, z) for the wedge edge at y = 0 and ν = 0.5. Figure 2 shows
the dimensionless transverse displacement

for the wedge covering the three quarters, one half, and
one quarter of space. One can see that the maximum point

 shifts to the right with decreasing wedge angle.

With the use of the relation _iu(0) = πδ(u), where δ(u)
is the Dirac function, and of Eq. (6.671.14) from [7], we
obtain the longitudinal displacement at the edge:

ur r 0 z, ,( )
T z y–( )

16π 1 ν–( )G
------------------------------- r x–
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3

-----------
κ r x–( )

R+
3

------------------+
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5

------------------------- 4 1 ν–( ) 1 2ν–( )
R+ R+ r x+ +( )

----------------------------------------+ 
 ,

uz r 0 z, ,( )
T
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R–
--------------------
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--------------------+


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=

–
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R–
3

------------------ κ r x+( )2

R+
3

----------------------–
2rx

R+
3

--------+

–
6rx z y–( )2

R+
5

--------------------------- 4 1 ν–( ) 1 2ν–( ) r x+( )
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---------------------------------------------------------+




,

R± r x±( )2 z y–( )2+[ ] 1/2
.=

ur* 0 0 z∗, ,( ) ur 0 0 z, ,( )4πGxT 1– ,–=

z∗ zx 1–=

ur*

uz 0 0 z, ,( )
T

8Gα
----------- 1

R
--- z2

R3
-----+ 

  , R x2 z2+( )1/2
.= =
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According to this expression, the absolute maximum at
any angle α is
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1 We consider an elastic half-space with a system of
flat rigid inclusions oriented parallel to each other. Such
a system of inclusions was defined in [2, 3] as one of the
varieties of the so-called vibration-strength “virus.”
Being a major cause of the onset of brittle fracture,
these viruses most often develop in tectonic-plate frac-
ture zones as well as in irregularly strengthened struc-
tural elements. For this reason, recently begun studies
of the conditions for the localization of wave processes
in elastic solids by this type of defect irregularities are
topical.

General systems of relevant integral equations were
investigated in [2, 3] in order to clarify the conditions
for wave-process localization by a virus. In [4], the fun-
damental concepts of previous studies were confirmed
for the case of an unbounded elastic medium, and the
basic approach to solving the problem was formulated.
In the present paper, the previously started studies are
extended to the half-space case.

1. We consider an elastic half-space in the rectangu-
lar coordinate system (x1, x2, x3) with L horizontal irreg-
ularities which reside in cross sections x3 = hl, l = 1,
2, …, L and occupy the corresponding domains Ωl. Dis-
placements ul exp{–iωt} act on the boundaries of the
inclusions. Stresses tL + 1exp{–iωt} act on the day sur-
face x3 = hL + 1 in the domain Ω . We denote the stresses

at the inclusion boundaries by . According to the def-
inition taken from [2], the structure under discussion is
a mixed virus of the (1, 2) class and of the (L + 1)th
level. It is written out in the form V(1/hl; Ωl /…/hL; ΩL //
2/hL + 1; ∞).

The following integral relations were obtained in [3]
for the layer –∞ ≤ x1, x2 ≤ +∞, hl – 1 ≤ x3 ≤ hl:

(1)

1 Collaborator from the United States.

tl
±

Dl 1–
+ Tl 1–

+ Dl
+Tl

–– Ll 1–
+ Ul 1–

+ Ll
+Ul

–,–=

Dl 1–
– Tl 1–

+ Dl
–Tl

–– Ll 1–
– Ul 1–

+ Ll
–Ul

–,–=

Kuban State University, 
ul. Karla Libknekhta 9, Krasnodar, 350640 Russia
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Here,  are displacements at the layer boundaries.

In order to obtain integral equations, we eliminate

all terms containing  and  from relation (1)

α31 = , α32 = , ε = ; cl and ct are the

velocities of the longitudinal and transverse waves in

the medium, respectively, and α2 =  + . We set

l = 1, 2, …, L;

As a result, we arrive at the following system of integral
relations:

(2)

Here, UL + 1 are displacements at the surface of the half-
space x3 = hL + 1.

Solving set (2) by the elimination method results in
the system of integral equations

MLG = F, (3)

G = {U1, U2, …, UL, TL + 1}T, 

Ul
± α1 α2 x3, ,( ) ul

± x1 x2 x3, ,( )e
i α1x1 α2x2+( )

x1d x2d ,∫
∞–

∞

∫=

Tl
± α1 α2 x3, ,( ) tl

± x1 x2 x3, ,( )e
i α1x1 α2x2+( )

x1d x2d .∫
∞–

∞

∫=

ul
±

e
±iα3 jh0 e

iα3 jh1


 ε2 α2– 1 α2–

ct

cl

---

α1
2 α2

2




Ul Ul
– Ul

+,= =

TL 1+ TL 1+
– TL 1+

+ .= =

D1
–T1

– L1
–U1,=

D1
+T1

+ D2
+T2

–– L1
+U1 L2

+U2,–=

D1
–T1

+ D2
–T2

–– L1
–U1 L2

–U2,–=

…

DL
+TL

+ DL 1+
+ TL 1+

–– LL
+UL LL 1+

+ UL 1+ ,–=

DL
– TL

+ DL 1+
– TL 1+– LL

– UL LL 1+
– UL 1+ .–=
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F = {T1, T2, …, TL, UL + 1}T,

ML = PLKL, (4)

Here, Tl =  –  is the stress jump at the boundary

of the lth inclusion, I is the unit matrix,  = PklL–,

and R– = L–. The representations for the matrix ,
S1, Pkl, D±, and L± are given in [4].

2. The technique for solving both system (3) and the
corresponding system for the space of [4] is based on
the knowledge of real-valued singularities for elements
of the system-symbol matrix-valued function and zeros
of its determinant.

From (4), we have

detML = detPL detKL. (5)

It is also shown in [4] that determinants of matrices
similar to PL have no real zeros, and their singularities
are branch points of radicals α31 and α32.

According to the block-matrix theory, the determi-
nant of the first matrix in the expansion of KL coincides
with the determinant of the matrix obtained by deleting
the last row and the last column. The matrix in question
belongs to the system of integral equations for the spa-
tial case of [4]. The determinant of the second matrix
can be obtained by consecutive expansion from the first
to the (L – 1)th row and accounts for the contribution of
the day surface x3 = hL + 1 in expression (5).

Thus, the results of the investigations for the root
subsets of the system-symbol matrix determinant pre-
sented in [4] have found their extension to the half-
space case. In particular, the presence of the exponen-

PL diag S1
–1 S1

–1 …, S1
–1, ,{ } ,=

KL

I J12
+ J13

+ … J1L
+ J1 L 1+,

+

J12
– I J23

+ … J2L
+ J2 L 1+,

+

J13
– J23

– I … J2L
+ J3 L 1+,

+

… … … … … …

J1 L,
– J2 L,

– J3 L,
– … I JL L 1+,

+

0 0 0 … 0 –I

=

×

I 0 0 … 0 0

0 I 0 … 0 0

0 0 I … 0 0

… … … … … …

0 0 0 … I AL L 1+,
+

J– 1 L 1+,
– J2 L 1+,

–– J3 L 1+,
–– … JL L 1+,

–– R––

.

Tl
+ Tl

–

Akl
+ D+

–1

D–
–1 Jkl

±

DOKLADY PHYSICS      Vol. 47      No. 7      2002
tial functions exp{iα3k(hp + 1 – hp)} can cause a high-fre-
quency oscillation of the determinant function in the
segment [0, 1] with an increase in the remoteness of
neighboring inclusions. This effect may be responsible
for the appearance of regular real zeros. The appear-
ance of a single zero u0 in the interval (1, +∞) is
explained by the absence of the oscillation. An increase
in the remoteness of the inclusion nearest to the day sur-
face leads to the problem for a homogeneous half-space,
which explains the tendency of u0 toward a root of the
Rayleigh characteristic equation for hL + 1 – hL  ∞ (see
figure).
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Problems concerning the design of minimum-
weight axisymmetric shells made of quasi-brittle mate-
rials are considered. The optimization problem under
investigation is to find the optimal thickness distribu-
tions for shells with allowance for the possibility of the
origination and growth of cracks caused by cyclic
actions on a shell. This problem is characterized by
incomplete information on the initial dimensions, posi-
tions, and orientations of cracks. Here, formulation of
the optimal design problem and its analytical solution
are based on the guaranteed (minimax) approach. Ear-
lier, this approach was used to optimize quasi-brittle
bodies subjected to constant loads [1, 2].

An equilibrium stressed state of a membrane shell of
revolution that is subjected to axisymmetric loads qn
and qφ is described by the relations [3]

(1)

(2)

(3)

Here, qn and qφ are the intensities of external actions
that are normal to the median surface and tangential to
the meridian, respectively (Fig. 1). Position of the
meridian is determined by the angle θ measured from a
certain fixed meridian plane, and the position of the
parallel circle is given by the angle φ between the nor-
mal to the median surface and the axis of revolution.
The meridional plane and the plane normal to the
meridian are the planes of the principal curvatures at
the point under consideration. The corresponding radii
of curvature are denoted by r1 and r2 , and the radius of
the parallel circle is designated as r0 . In addition, Nφ
and Nθ are the normal forces of the membrane (per unit
length), σφ and σθ are the corresponding stresses, and h

Nφ

r1
------

Nθ

r2
------+ qn,–=

2πr0Nφ φ R+sin 0,=

σφ
Nφ φ( )
h φ( )

--------------, σθ
Nθ φ( )
h φ( )

--------------.= =
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is the shell thickness. The quantity R is the resultant
external action on the shell part situated above the par-
allel circle determined by the angle φ. At given h(φ),
qn(φ), qφ(φ), R(φ), r1(φ), r2(φ), and r0(φ) (r0 = r2 sinφ),
the forces Nφ and Nθ are found from Eqs. (2) and (1),
respectively, and the stresses are calculated by Eq. (3).

Hereafter, the thickness h is assumed to be small
compared to the radii of curvature of the shell [3, 4]:

(4)

(5)

where the exterior minimum in (5) denotes the mini-
mum of the two quantities written in braces.

It is assumed that the shell is made of quasi-brittle
material and contains an initial through crack of length
l = l0. The crack is considered to be rectilinear and is
assumed to be much longer than the shell thickness but

hm h φ( ) ! rm,
φ

max=

rm min r1 φ( ) r2 φ( )
φ

min,
φ

min{ } ,=

θ

Nθ r0

r2Nθ

dθ

r1

ϕ

qϕ
qn

dϕNϕ + dNϕ 

Nϕ

Fig. 1. 
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much shorter than the characteristic dimension
rm (hm ! l ! rm). The position of the initial crack is not
fixed on the shell beforehand. The cyclic loads applied
to the shell,

(6)

(7)

cause both the quasistatic variation of the stressed state
of the shell and a monotonic increase in crack length.

Here,  and  are the given amplitude functions of
the independent coordinate φ, p is the load parameter,
and pmin and pmax are given constants. For cyclic loads,
the fatigue growth of the crack is described by the equa-
tion [5, 6]

(8)

Here, n is the number of cycles; C and m (2 < m ≤ 4) are
the given material constants; K1 is the stress-intensity
factor for an opening-mode crack determined by the
formula

(9)

where σn is the normal stress in the uncracked shell at
the point where the crack is expected in the damaged
shell, and the increment ∆K1 in Eq. (8) is defined as

(10)

where (K1)max and (K1)min are the maximum and mini-

mum of the stress-intensity factor in the cycle and 
and σ are calculated as

(11)

With allowance for Eq. (10), differential equation (8)
determines the crack length l as a function of the num-
ber of cycles n when crack growth is quasistatic. It is
valid until the moment when crack propagation
becomes unstable (the shell fails) at n = ncr; i.e., l = lcr .
The following fracture criterion is used to find lcr:

(12)

Here, K1e = K1c – e, where e > 0 is a sufficiently small
number and K1c is the brittle strength constant of the
material. Relations (9), (11), and (12) yield

(13)

Initial crack length l0 is assumed to be less than the crit-
ical value lcr, i.e., l0 ≤ lcr . The service life of the con-

qφ qφ
0 p, qn qn

0 p,= =

0 pmin p pmax,≤ ≤ ≤

qφ
0 qn

0

dl
dn
------ C ∆K1( )m,=

l0 l lcr, 0 n ncr.≤ ≤ ≤ ≤

K1 σn
πl
2
-----,=

∆K1 K1( )max K1( )min– πl
2
-----σn

0 pmax pmin–( ),= =

σn
0

σn
0 σn( )p 1= , σ pmaxσn

0.= =

K1 lcr σ,( ) K1e.=

lcr
2
π
---

K1e

σ
-------- 

 
2 2

π
---

K1e

pmaxσn
0

---------------- 
  2

.= =
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struction is determined by the number of load cycles ncr
after which the crack length attains the critical value lcr .
Therefore, the design of a shell with demand on the ser-
vice life requires the inclusion of the condition

(14)

where n* is the given minimum number of cycles to

failure.

Below, we consider the problem of optimal shell
design. It takes into account that both the stress-inten-
sity factor K1 and the number of cycles to failure ncr
depend implicitly (through the quantity σ) on shell
thickness and parameters determining crack position.
The desired optimal distribution of shell thickness h =
h(φ) must satisfy the geometric restriction h ≥ h0 (h0 > 0
is given) and inequality (14) for all permissible posi-
tions and lengths of cracks and must minimize the func-
tional J(h) (volume of shell material)

(15)

where φ0 and φf (φ0 < φf) are the given parameters deter-
mining the range of the angle φ. As was noted above,
the initial crack position, orientation, and length are
unknown beforehand. For this reason, the calculation of
ncr is complicated, because various admissible posi-
tions and orientations of initial cracks must be ana-
lyzed. In this case, the rigorous formulation of the prob-
lem requires certain additional assumptions about per-
mitted positions and lengths of the crack. The initial
crack is characterized by the vector ω = {φc, l0, α},
where φc is the coordinate of the crack middle, l0 is the
crack length, and the angle α assigns crack orientation
with respect to the shell meridian. The second coordi-
nate of the crack middle θc is insignificant, because the
problem under consideration is axisymmetric and the
guaranteed approach used allows any crack position in
parallels (0 ≤ θc ≤ 2π). If α = 0, the crack is oriented in

the meridional direction (axial crack); if α = , the

crack is oriented in the direction of parallels (peripheral
crack). It is assumed that the initial crack lengths l0 are
less than the given limiting value lm, where l0 ≤ lm ! rm.
The above assumptions and available additional data on
the shell regions where the appearance of cracks is most
probable make it possible to consider the set of permit-
ted cracks Λ(ω ∈ Λ ) as being given.

Thus, the problem of optimal design is to find the
thickness distribution h(φ) that minimizes functional (15)
with allowance for the geometric restriction

(16)
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and the following restriction on the number of cycles to
failure:

(17)

where the minimum with respect to ω is found over the
set Λ:

(18)

The quantity ncr in Eq. (17) depends on σ. To find its
explicit form, we integrate Eq. (8) between the limits
0 ≤ n ≤ ncr, l0 ≤ l ≤ lcr and use Eq. (13) for lcr . As a result,
we find

(19)

According to Eq. (19), the critical number of cycles ncr
is a monotonically decreasing function of the quantities
σ and l0 . Consequently, it attains a minimum when l0 =
lm and σ takes one of the two extreme values 

(20)

which correspond to the axial (α = 0) and peripheral

 cracks.

Let σ* > 0 be a root of the algebraic equation

(21)

Then, service life restriction (17) turns into the follow-
ing system of two inequalities:

(22)

where the intensities of external loads and the force R
determined by them are taken at p = pmax.

The system of inequalities (22) is satisfied if and
only if

(23)

for φ ∈  [φ0, φf]. In this case, the solution of problem (15)–
(18), which is reduced to the minimization of integral (15)

ncr
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max σ*, σθ =  
Nθ

h
------ 

  σ*,≤
φc

max≤

Nφ
R
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with restrictions (16), (23), has the form

(24)

At any fixed φ ∈ [φ0, φf], max in (24) means the maxi-
mum of the three quantities in braces. At m = 4, which
is typical of metals [7], we have

(25)

and the condition ncr(σ) ≥ n* takes the following form
of the explicit restriction on σ:

(26)

At sufficiently large values of ncr, i.e., in the case of
high-cycle fatigue, the quantity σ* has the asymptotic

representation

(27)

The example below represents the problem of optimal
design for a torus shell obtained by revolving a circle of
radius a around a vertical axis at distance b from the cir-
cle center. Half the vertical shell section is shown in
Fig. 2. The shell is subjected to uniform internal pres-
sure qn = pq0 (q0 = const), which cycles proportionally
to the parameter p. The arising forces Nφ and Nθ are
found by considering the equilibrium of a ring-shaped
shell segment and are written as [3]

(28)

where r0 = b + asinφ. Taking the inequality Nφ > Nθ into
account and using Eq. (24), we arrive at the optimal
thickness distribution in the shell:

(29)
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If m = 4 and ncr values are so large that asymptotic rep-
resentation (27) is valid, the optimal thickness distribu-
tion is written as the following explicit function of the
determining parameters:

(30)

h max h0

aq0

2
-------- 1 b

r0
----+ 

 ,




=

× π
2
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pmax
----------– 

 




.

Fig. 2. 
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r2
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The optimal thickness distribution in the toroidal shell
is shown in Fig. 2. Figure 2 and Eqs. (29) and (30) indi-
cate that the shell thickness h decreases with increasing
distance from the axis of revolution r0 = b + asinφ.
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1. EQUATIONS OF MOTION 
FOR A BALL ON A SURFACE

We consider equations of rolling without slip for a
completely dynamically symmetric ball (with its cen-
tral moment of inertia being I = µE) on an arbitrary sur-
face. These equations can be derived from various gen-
eral forms of the equations of nonholonomic mechan-
ics. Here, we use conventional equations for the
momentum and angular momentum.

In contrast to the conventional approach in the
dynamics of rigid bodies, in which a coordinate system
attached to a body is used, a fixed coordinate system is
more convenient when considering equations of motion
for a uniform ball. In this coordinate system, the equa-
tions for the momentum and angular momentum with
respect to the ball’s center of mass with allowance for
the reaction and external forces take the form

(1)

with the non-slip condition (i.e., the velocity of the
point of contact is zero) given by the equality

v + w · a = 0. (2)

Here, m is the ball’s mass; v is the velocity of the center
of mass; w is the angular velocity; I = µE is the central
inertia tensor; a is the radius vector directed from the
point of contact to the center of mass; R is the ball
radius; N is the reaction force at the point of contact;
and F and MF are the external force and the moment of
forces with respect to this point (see Fig.1).

Excluding the reaction force N from these equations
and imposing the kinematic condition that the velocity
of the point of contact on the surface should be the same
as that on the sphere, we arrive at a system of six equa-
tions for the angular momentum M and the vector g =
–R–1a normal to the surface:

(3)

mv̇ N F, Iẇ( )+ a N MF+×= =

Ṁ Dġ w g×( ) MF+× , ṙ Rġ+ w Rg,×= =
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where D = mR2. Here, the vectors w and r (radius vec-
tor of the point of contact) should be found from the
equations

(4)

where F(r) = 0 is the equation specifying the fixed sur-
face on which the ball rolls (the latter equation in (4) is
a Gauss map). Hereinafter, following E. Routh, we will
explicitly specify the surface on which the center of
mass of the sphere moves, with points on the surface
given by the radius vector r' = r + Rg. Thus, it is the
center of mass (rather than the point of contact) that
moves on an ellipsoid. This surface is equidistant with
respect to the surface on which the point of contact
moves.

In the case of potential forces, the moment of forces
MF is expressed in terms of the potential U(r') = U(r +
Rg), which depends on the center-of-mass position

according to the formula MF = Rg × .

Remark 1. In Routh’s monograph [6], the equations
of motion for a sphere were derived with respect to
semimovable axes and were explicitly solved in certain

M µw Dg w g×( )× , g+
∇ F r( )
∇ F r( )
-------------------,= =

∂U
∂r'
-------

O

a = –Rg G

Q

R

N

F(r) = 0

r

Fig. 1. Rolling of a sphere on a surface (G is the center of
mass and Q is the point of contact of the ball with the sur-
face).
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cases. Later, most authors of handbooks [1, 5] only
repeated Routh’s results and actually appended nothing
to them. It is worth noting that E. Routh paid special
attention to the stability of particular solutions (e.g., a
sphere rotating at the top of a surface of revolution).
Here, we do not present the Routh equations in their
original form, because Eqs. (3) are similar to the equa-
tions in [3], which describe an arbitrary body moving
on either a plane or a sphere. This allows us to consider
various problems (for example, the integrability of
equations) from a unified standpoint.

Integrals of motion. Equations (3) with a potential
field U(r + Rg) have the energy integral and the geomet-
ric integral

(5)

In the case of an arbitrary surface F(r) = 0, besides
these two integrals, system (3) has neither the measure
nor the two additional integrals that are necessary for
the system to be integrable in accordance with the
Euler–Jacobi theory. Generally speaking, the behavior of
the system is chaotic. As will be argued below, in some
cases, there may exist a measure and only one additional
integral, with the chaotic behavior being less pronounced.
As was pointed out by E. Routh, for the case of a surface
of revolution, the system has two additional integrals and
becomes integrable, while its behavior is regular. In this
case, the system is reduced to a Hamiltonian system by an
appropriate change of the time variable.

Rolling of a sphere on a quadric surface. We now
derive the particular case of Eqs. (3) when the ball’s
center of mass moves on a quadric surface given by the
equations

(r + Rg, B–1(r + Rg)) = 1, B = diag(b1, b2, b3). (6)

In the case of an ellipsoid, the quantities bi are positive
and determine the principal semiaxes squared. Using
Eqs. (6), we express the radius vector r in terms of the
normal g to the surface:

(7)

As a result, we arrive at the equations of motion in the
variables M and g:

(8)

2. MOTION OF A BALL ON AN ELLIPSOID
OF REVOLUTION

First, we consider the rolling of a ball on an axisym-
metric ellipsoid. The equation for a surface of revolu-

H
1
2
--- M w,( ) U r Rg+( ), F1+ g2 1.= = =

r Rg+
Bg
g Bg,( )

----------------------.=

Ṁ
D

µ D+
-------------- M ġ,( )g,–=

ġ R g Bg,( )
µ D+

--------------------------g g B 1–× g M×( )( )× .=
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tion in the absolute coordinate system can be given in
the form

(9)

where f(γ3) is a certain function determining the para-
metric form of the surface. Parameterization (9) is cho-
sen such that the system presented below takes the sim-
plest form.

In the case under consideration,

(10)

where b1 and b3 are the ellipsoid principal semiaxes
squared. Equations of motion (3) admit an invariant
measure with the density

(11)

In what follows, we consider a reduced form of the
system and introduce the new variables

(12)

These variables satisfy the equations

(13)

where

Using Eq. (10), we arrive at two linear equations in
the independent variable γ3:

(14)

It is easy to prove that Eqs. (14) have the quadratic inte-
gral of motion with constant coefficients

(15)

This integral can be generalized to the case of a triaxial
ellipsoid.

r1 f γ3( ) R–( )γ1 , r2 f γ3( ) R–( )γ2 ,= =

r3 f γ3( )
1 γ3

2–
γ3

------------- f ' γ3( )– 
  γ3 Rγ3,–d∫=

f γ3( )
b1

b1 1 γ3
2–( ) b3γ3

2+
---------------------------------------------,=

ρ b1 1 γ3
2–( ) b3γ3

2+( )–3
.=

N1 M g,( ), N2
µ

µ D+
-------------- f γ3( ) γ3 M g,( ) M3–( ),= =

K3

M1γ2 M2γ1–

1 γ3–
-------------------------------.=

Ṅ1 = kK3
f '

γ3 f 2
----------N2 , Ṅ2–  = kK3ν

2 f N1 , γ̇3 = kK3 ,

K̇3 = k
g

ν4γ3 1 γ3
2–( )2

f 3
-------------------------------------N2 ν2 f 1 γ3

2–( )N1 γ3N2+( ),–

k
R 1 γ3

2–
µ D+( )g

----------------------, g f
1 γ3

2–
γ3

------------- f ', ν2–
µ

µ D+
--------------.= = =

dN1

dγ3
----------

b1 b3–

b1 b1 1 γ3
2–( ) b3γ3

2+
--------------------------------------------------N2 ,–=

dN2

dγ3
----------

ν2b1

b1 1 γ3
2–( ) b3γ3

2+
---------------------------------------------N1.=

F2 b1
2ν2N1

2 b1 b3–( )N2
2 .+=
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Fig. 2. (a) Three-dimensional map and (b) the surface F2 corresponding to the level of the integral for E = 1, B = diag(1, 4, 9), and
F2 = 1.7.

(a) (b)
System (14) is solvable in terms of elementary func-
tions. Its solution, being dependent on the sign of the
difference b1 – b3, takes the form

(i) b1 > b3, a2 =  > 1,

(16)

(ii) b1 < b3, a2 =  > 0,

(17)

Here, c1 and c2 are constants defining linear integrals of
motion.

Remark 2. It is interesting that neither Routh nor
his followers succeeded in finding the simplest reduced
equations [similar to Eqs. (14)] and in solving the prob-
lem of a ball rolling on an ellipsoid of revolution in
terms of elementary functions. The success of the
explicit integration presented above is due to the
appropriate choice of reduced variables (12).

3. ROLLING OF A BALL 
ON AN ARBITRARY ELLIPSOID

We now consider in more detail the dynamics of a
sphere whose center of mass moves on the quadric sur-
face

(r + Rg, B–1(r + Rg)) = 1, B = diag(b1, b2, b3). (18)

b1

b1 b3–
----------------

N1 c1 ϕ γ3( )sin c2 ϕ γ3( ),cos+=

N2 aν b1 –c1 ϕ γ3( )cos c2 ϕ γ3( )sin+( ),=

ϕ γ3( ) ν
γ3

a2 γ3
2–

--------------------;arctan=

b1

b3 b1–
----------------

N1 c1τ
ν– c2τ

ν, N2+ aν b1 c1τ
ν– c2τ

ν+–( ),= =

τ γ3( ) γ3 a2 γ3
2+ .+=
In this case, equations of motion take the form of
Eqs. (8), and we arrive at the Jacobi nonholonomic
problem. This name stems from the fact that, as the
moments of inertia of the ball tend to zero (µ  0;
i.e., the entire ball’s mass is localized at the center of
mass), the problem under consideration is reduced to an
ordinary holonomic problem of geodetic lines on an
ellipsoid. The problem was solved by Jacobi in terms of
the elliptic functions. In the case of an arbitrary surface,
such a limiting transformation also leads to the problem
of geodetic lines on the surface on which the center of
mass moves. In the cases of other limiting transforma-
tions, it is impossible to exclude an additional degree of
freedom, which arises due to rotation of the ball about
a normal to the surface.

Equations (8) with an arbitrary (nondegenerate)
matrix B have an invariant measure and a quadratic
integral of motion:

(19)

Generalized forms of this integral with degenerate
matrices B (i.e., the cases of a ball rolling on a parabo-
loid, cone, or cylinder) can be found in [4]. Integral of
motion (19) can be represented as a generalization of
the Ioahimstale quadratic integral for the Jacobi prob-
lem. This integral was initially found by the authors
numerically with the use of the Poincaré three-dimen-
sional map in the Andoyer–Depry variables (L, G, H, l,
g, h) described in detail, e.g., in [2]. The computer sim-
ulation of this map, in which the system under consid-
eration was numerically integrated for a fixed energy,
allowed us to find the integrals and to give the graphical
interpretation in various cases of their existence. The
three-dimensional cross sections of the phase flow are

shown in Fig. 2 in terms of the variables l, , , and

g for a fixed energy E = const. The cutting plane is

ρ g Bg,( ) 2– , F2
g M× B 1– g M×( ),( )

g Bg,( )
---------------------------------------------------.= =

L
G
---- H

G
----
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g = . As can be seen, the three-dimensional phase

portrait is separated into two-dimensional surfaces F2 =
const which nevertheless contain chaotic motions. This
fact (i.e., the presence of chaotic motions on the two-
dimensional surfaces F2 = const) indicates that, in the
case under consideration, there exists no additional
independent integral ensuring the complete integrabil-
ity and separation of the three-dimensional space into
invariant curves.

The spatial dependence of integral (19) is very com-
plicated, even though the integral is quadratic in veloc-
ities (M or w). This could be the reason that this inte-
gral was not found in classical studies. (For example, it
was noted by neither E. Routh nor F. Noether, who ana-
lyzed particular solutions.)

π
2
---
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Fundamentals of the theory of strain and fracture of
rigid–plastic bodies were considered in [1–3]. This
study is devoted to determining fracture constants
under axisymmetric strain. As the main fracture con-
stant we take the specific energy dissipation in the pro-
cess of particle deformation or (an equivalent formula-
tion) the largest principal value of the Almansi finite-
strain tensor. The fracture constants are determined
from the reduction of area at fracture by solving the
problem of the uniaxial extension of a rigid–plastic cyl-
inder.

Fracture criteria. We assume that the fracture of a
material at a crack tip occurs if the specific energy dis-
sipation W achieves a limiting value W*:

W ≥ W*. (1)

Here, the equality determines the crack propagation
velocity.

It was noted in [1] that the specific energy dissipa-
tion is bijectively related to the invariants of the
Almansi finite-strain tensor

and, in particular, to the first principal value E1. There-
fore, criterion (1) can be replaced by a local strain cri-
terion: the fracture of a material occurs if the first prin-
cipal value E1 (largest in modulus) of the Almansi ten-
sor achieves the limiting value E*:

E1 ≥ E*. (2)

For axisymmetric deformation, the direction of
crack development coincides with the symmetry axis
(r-axis).

Let us consider the uniaxial tension of a round cyl-
inder made of an ideal rigid–plastic material (Fig. 1).
Tension occurs under the kinematical boundary condi-

Eij
1
2
--- δij

xk
0∂

xi∂
-------

xk
0∂

x j∂
-------– 

  , i, j 1 2 3, ,= =
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tions where the upper and lower ends of the cylinder
move with the velocity V = 1 upward and downward
along the z axis, respectively.

We assume that the plastic region is concentrated
within the triangle Çéë and that the region situated
above the straight line OB and below the straight line
OC moves as a rigid body; the free surface BC, whose
generatrix BC was a segment of a straight line at the ini-
tial time, bends and takes the shape of a neck. In this
case, the rigid–plastic boundaries OB and OC are the
surfaces of velocity discontinuity.

The evolution of the free surface BC and the plastic
region OBC can be described by conventional numeri-
cal methods outlined in [4–6].

The total strain of particles of a material occurs in
two stages. In the first stage, particles are deformed at
the internal points of the plastic region, where the
velocity field is continuous and the specific power of
energy dissipation and the components of the strain-
velocity tensor have finite values. In the second stage, a
particle is deformed when crossing the surface of the
velocity discontinuity OB or OC, and the specific
energy dissipation and the components of the strain ten-
sor change by finite values. The strain of the particle at
the second stage considerably exceeds its strain at inter-
nal points of the plastic region. This property makes it
possible to formulate a local criterion of the fracture of
a material in terms of the strain of particles at a surface
of velocity discontinuity.

It was shown in [1, 2] that the strain at the surfaces
of velocity discontinuity is determined by the specific
energy dissipation:

(3)

where [Vτ] is the discontinuity of the transverse compo-
nent of the velocity, Vn is the normal component of the
velocity at the surface of discontinuity, G is the normal
velocity of the discontinuity surface, and k is the yield
point. If the strains of a particle are small below the dis-
continuity curve and if the material is not deformed up
to the curve of discontinuity, the quantity  is related

W
k V τ[ ]
Vn G+
----------------,    W W

k
-----= = ,

W
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to the first principal value of the Almansi tensor (Eij =
δij) by the equation

. (4)

The quantities G and Vn can be determined by solv-
ing the problem of the tension of the cylinder with allow-
ance for the variation of the shape of the free surface CB,
for example, by the numerical methods in [4–6].

The quantity [Vτ] is determined from the following
equations for the components of the velocities:

(5)

where Vα and Vβ are the velocity components along the
α and β slip lines, respectively; u is the component of
the velocity along the r axis; ϕ is the slope angle of the
α slip line to the r axis; and dSα and dSβ are the ele-
ments of arcs of the α and β slip lines, respectively.

The boundary conditions for the velocities are

(6)

E1
W

2

4
------- 1 4

W
2

-------+ 1– 
 =

dVα Vβdϕ– u
dSα

2r
---------+ 0  on α  slip line,=

dVβ Vαdϕ– u
dSβ

2r
--------+ 0  on β slip line,=

Vα Vcosϕ   on α  slip line OB,=

Vβ –Vsinϕ   on β slip line OC.=

V

α
B

r
0

V R

C

β

Fig. 1. Strain of a cylindrical sample subjected to a uniaxial
extension.
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We further consider the case where the deformation
of a cylinder results in fracture, assuming that a crack
begins developing from the cylinder axis (Fig. 2). In
this case, the integration of Eqs. (5) with boundary con-
ditions (6), for example, along the curve OB, leads to
the relation

(7)

where ρ is the coordinate of the crack tip on the r axis.

It follows from Eqs. (3), (4), and (7) that the energy
dissipation as well as E1 is larger in particles crossing
the line of the discontinuity of velocities closer to the
axis of the cylinder, and reaches a maximal value at the
crack tip. In particular, we have

(8)

for the line OB and

(9)

at the crack tip, where r = ρ and . The velocity

of the crack tip is related to the quantities G and 

V τ[ ] Vα[ ] V
2ρ
r

------,= =

Vn Vsinϕ ,  W 2ρ
r

------
V

G Vsinϕ+
-------------------------= =

Vn
V

2
-------,  W 2V

2G V+
----------------------= =

ϕ π
4
---=

W
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B

α

0

β
ρ

r
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V

Fig. 2. Spreading of a crack within a cylindrical sample.
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by the equations

(10)

respectively. If the crack does not extend, we have

(11)

Quantities (11) are independent of ρ. For ρ  0,
they correspond to a continuous cylinder; i.e., strain
(and specific energy dissipation ) is largest on the

dρ
dt
------

G

2
-------,  

dρ
dt
------ V

2
------- 2

W
----- 1– 

  ,= =

G 0,  W 2,  E1 2 1 0.414≈ .–= = =

W
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Fig. 3. Fracture constants versus the radius of the sample
neck formed at the final instant.

Fracture constants for various materials

Material ψ, % E*

N12K12M10TYu steel 4 0.02 0.01

ML3 magnesium alloy 11 0.04 0.025

BrOTsS4-4-2.5 bronze (cast) 13 0.048 0.028

SCh10 cast iron 20 0.07 0.038

BrOTsS4-4-4 bronze (soft) 34 0.1 0.048

OT4-0 titanium alloy 35 0.105 0.05

D18 aluminum alloy 50 0.16 0.078

AD0 aluminum 60 0.19 0.09

Kh5N12M3T steel 61 0.2 0.092

AMg2 aluminum alloy 65 0.212 0.096

BrBNT1.7 bronze 75 0.28 0.12

L96 brass (soft) 82 0.337 0.148

W*
cylinder axis. Therefore, the assumption that particles
in the vicinity of the cylinder axis will suffer fracture is
well justified.

It follows from relations (9)–(11) and criteria (1)
and (2) that, if the material does not undergo fracture at

 = 2 or , the cylinder is divided into two
parts through viscous fracture. The final area of the
cross section of the cylinder will be ∅ (F = ∅ ). In addi-
tion, the fracture constants satisfy the relations

(12)

Determination of the fracture constants. The
reduction of area

(13)

where F0 = πR2 and F =  are the cross-sectional
areas of the sample prior to the formation of a neck and
immediately before fracture, respectively, is one of the
experimentally determined characteristics of uniaxial
tension.

The condition ψ < 100% or F > 0 implies that a
crack develops within a cylinder under tension. It fol-
lows from Eq. (10) that

(14)

where t* is the instant of the fracture of the sample.
Since the tension process is assumed to be quasistatic,
the quantity t* can be related to the final displacement
from the ends of the cylinder as

h* = Vt*. (15)

It follows from Eqs. (13)–(15) that

(16)

The quantity h* can be determined by solving the prob-
lem of cylinder tension resulting in fracture.

The table presents the fracture constants for various
materials. The values of h* were determined by numer-
ically solving the problem of cylinder tension with
allowance for a variation in the neck shape and fracture.
The coefficient ψ was found from [7].

W E1 2 1–=

W* 2,  E* 2 1.–<<

ψ
F0 F–

F0
--------------- 100× ,=

πρ*
2

ρ*
V

2
------- 2

W*
-------- 1–

 
 
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t*,=

W*
1
2
---h*   2 R 

2 1 ψ
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---------–  
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


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Figure 3 shows the fracture constants versus the
neck radius ρ* at the instant of fracture (at R = 1). The
x-ray photograph of the sample neck immediately

Fig. 4. X-ray photograph of the sample neck immediately
before fracture [8] and the neck shape obtained from theo-
retical calculations (solid white curve in the right-hand part
of the photograph).
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before fracture [8] is presented in Fig. 4, along with the
calculations of the shapes of the neck and crack in the
model of the fracture of a perfect rigid–plastic body.
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Many current problems of ecological mechanics
must be solved with incomplete information about the
motion of large aggregates of liquid and solid particles
in liquid and gas flows [1–5]. These problems require
the averaging of physical fields [6], calculation of the
moments of random variables [7], and experimental
determination of the bulk characteristics of particles [1,
2, 5, 8] and their use in mechanical calculations. One of
these characteristics is the bulk harmonic (or mean har-
monic) fall velocity of particles. As will be shown
below, this quantity can be directly determined from the
curve of sediment-mass accumulation for small con-
centrations of particles in a stationary liquid.

The comparison of two expressions for the bulk time
of the sedimentation of particles indicates that

(1)

where Tmax is the time of the compete sedimentation of
particles in a sedimentometer; Gmax = G(Tmax); Fv(V) is
the integral bulk distribution function of the fall veloc-
ity of particles; Fh(x) is the distribution function of the
initial distance of particles from the bottom–liquid
phase boundary; H is the depth of the sedimentometer;
V is the fall velocity (the velocity of the sedimentation
of particles in a stationary liquid in the presence of
gravitation); Vmin and Vmax are the minimum and maxi-
mum fall velocities, respectively; x and τ are the space
and time integration variables, respectively; and G(τ) is
the sediment mass at time τ.

For a uniform initial depth distribution of particles
in the sedimentometer and constant sedimentation
velocities of particles, the integration by parts of the
left-hand side of Eq. (1) yields

(2)

1
Gmax
----------- τ G τ( )d

0

Tmax

∫ x
V
--- Fh x( ) Fv V( )d ,d

0
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∫
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Vmax
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V 1– 2
HGmax
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∫=
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where  =  is the quantity inverse to the

bulk harmonic fall velocity. When Stokes’ law is valid

in the sedimentometer, the quantity  is proportional
to the previously introduced mean radius of particles.
However, this quantity can also be determined when
Stokes’ law is violated, in particular, in non-Newtonian
liquids.

Another important characteristic of the mechanical
behavior of particles is the bulk fall velocity  =

. It can be easily determined in the initial

section of the curve of mass accumulation in the sedi-
mentometer. Indeed, for the uniform initial depth distri-
bution of particles in the sedimentometer, we have

(3)

It follows from Eq. (3) that

(4)

i.e., the bulk fall velocity is the product of the slope of
the initial linear section of the curve of mass accumula-
tion in the sedimentometer and the ratio of the depth to
the maximum sediment mass.

As is known, the minimum and maximum fall
velocities Vmin and Vmax are the ratios of the sedimen-
tometer depth to the time of sedimentation completion
and to the time of the termination of the linear section
of sediment mass accumulation, respectively. These
characteristics are certainly determined much less
accurately than mean characteristics. The error in the
determination of the distribution function of the fall
velocity increases when poorly justified assumptions

V 1– 1
V
--- Fv V( )d

Vmin

Vmax

∫

V 1–

V

V Fv V( )d

Vmin

Vmax

∫

G t( )
Gmax
----------- Fv V( )d

H
t
----

Vmax

∫ t
H
---- V Fv V( ).d

Vmin

H
t
----

∫+=

V V Fv V( )d
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Vmax

∫ H
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dt
-------------

t
H

Vmax
-----------<

;= =
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about its specific form are made or when the methods
of numerical and graphical differentiation are applied.

Below, we will demonstrate how hydromechani-
cally determined characteristics can be used to estimate
the carrier properties of liquid flows when information
is incomplete. The advantages of this approach will
also be discussed.

The relative entrainment, i.e., the expected value of
the mass fraction of particles carried away by liquid
flows, can be expressed as

(5)

where P(V) is the probability that liquid flows carry
away the mass associated with a particle whose initial
fall velocity is V. The degree of separation has the form

(6)

In what follows, Fv(V) is treated as an unknown (unde-
finable) function.

Let us study the possibilities of estimating the
results of transporting large aggregates of particles
when data on the mean harmonic and bulk fall veloci-
ties are incomplete. The solution to this problem
requires upper and lower estimates of the integral

. For upper estimates, we write the ine-

quality

(7)

where ω are elementary events and Ω is the space of
elementary events. Then,

(8)

The similar inequality for lower estimates has the form

(9)

Therefore, further calculations require upper and
lower estimates of the integral bulk distribution func-
tion in the fall velocity. To obtain these estimates, we
write the relations

(10)

(11)

(12)

(13)

ε P V( ) Fv V( ),d

Vmin

Vmax

∫=

κ 1 P V( ) Fv V( ).d

Vmin

Vmax

∫–=

P V( ) Fv V( )d

Vmin

Vmax

∫

ε Fv Vα( ) P V( )
ω Ω∈
sup 1 Fv Vα( )–[ ] P V( )

ω: V Vα≥
sup ,+≤

ε P V( )
ω: V Vα≥

sup P V( )
ω Ω∈
sup P V( )

ω: V Vα≥
sup–[ ] Fv Vα( ).+≤

ε P V( )
ω Ω∈
inf P V( )

ω: V Vα<
inf P V( )

ω Ω∈
inf–[ ] Fv Vα( ).+≥

Fv V( )V 1– Vmax
1– 1 Fv V( )–[ ]+ V 1– ,≤

Fv V( )V Vmax 1 Fv V( )–[ ]+ V ,≥

Fv V( )Vmin V 1 Fv V( )–[ ]+ V ,≤

Fv V( )Vmin
1– V 1– 1 Fv V( )–[ ]+ V 1– ,≥
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which yield the inequalities

(14)

(15)

(16)

(17)

Combining Eqs. (8), (14), and (15), we obtain the fol-
lowing upper estimates of the relative entrainment:

(18)

(19)

where the fall quasi-velocity of separation Vα charac-
terizes the action of various physical fields and liquid
flow on particles and is defined as the minimum fall
velocity of probe particles such that the probability of
the entrainment of particles whose fall velocities are no
less than this value is no more than α, i.e., α =

.

Combining Eqs. (9), (16), and (17), we obtain the fol-
lowing lower estimates of the fall velocity of particles:

(20)

(21)

Thus, even when data on the distribution function of
the fall velocity are absent and information about the
probability of transporting particles with different fall
characteristics by flows is incomplete, the carrier action
of flows can be estimated by using data on the mean
harmonic or bulk fall velocity.

Fv V( )
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1––

------------------------,≤
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--------------------,≤
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------------------------.≥
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+ P V( )
ω Ω∈
sup P V( )
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+ P V( )
ω Ω∈
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ω: V Vα≥
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Vmax V–
Vmax Vα–
-----------------------,

P V( )
ω: V Vα≥

sup

ε P V( )
ω Ω∈
inf≥

+ P V( )
ω: V Vα<

inf P V( )
ω Ω∈
inf–[ ]

Vα V–
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----------------------,
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ω Ω∈
inf≥

+ P V( )
ω: V Vα<

inf P V( )
ω Ω∈
inf–[ ]

V 1– Vα
1––

Vmin
1– Vα

1––
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Table 1.  Point estimates, auxiliary expressions, and data of liquid-mechanical experiments

Vα, m/s

ε, % κ, %
Absolute

error
magnitude

experi-
mental 
value

point
estimate

point
estimate

experi-
mental 
value

3.93 × 10–5 0.325 0.606 2 15 85 98 13

5.88 × 10–5 0.5 0.613 7.4 25 75 92.6 17.6

1.18 × 10–4 0.63 0.156 20.4 31.5 68.5 79.6 11.1

2.36 × 10–4 0.684 0.176 31.5 34.2 65.8 68.5 2.7

3.5 × 10–4 0.741 0.233 36 37 63 64 1

7 × 10–4 0.99 0.274 44 49.5 50.5 44.4 6.1

*8.84 × 10–4 0.193 0.28 **59 *57 *43 **41 2

Note: The absence of values implies that the calculation of auxiliary expressions is inappropriate.
* With the use of the fall entrainment velocity at .

** Corresponding experimental value; in these cases, α = 0.5; otherwise, α = 0.

V
–1

Vmax
–1

–

Vα
–1

Vmax
–1

–
---------------------------

Vmax V–

Vmax Vα–
------------------------

Vα V–

Vα Vmin–
------------------------

V
–1

Vα
–1

–

Vmin
–1

Vα
–1

–
--------------------------

P V( )
ω : V Vα<

inf 0.5=
However, upper estimates (18) and (19) are applica-
ble only for fall separation quasi-velocities lower than
the mean harmonic and bulk fall velocities of particles.
In contrast, the lower estimates are applicable in the
opposite case. This circumstance excludes the possibil-
ity of simultaneously using all four Eqs. (18)–(21).

It is reasonable to take the middle of the estimate
interval for a point estimate:

(22)

(23)

where εu is the smallest among upper estimates (18)
and (19), whereas εl is the largest among lower esti-
mates (20) and (21).

To illustrate the capabilities of the above estimates,
experiments on the sedimentation of solid particles in a
liquid were carried out. The procedure proposed above
yields the following mean and bound fall characteris-
tics.

Mean characteristics: the mean harmonic fall veloc-
ity (bulk harmonic fall velocity) and bulk fall velocity
are equal to 1.138 × 10–4 and 7.2 × 10–4 m/s, respec-

tively, and  = 8784.1 s/m. Bound characteristics:

Vmin = 3.533 × 10–5 m/s, Vmax = 1.767 × 10–3 m/s,  =

28304.6 s/m, and  = 565.9 s/m.

Table 1 presents the values calculated for auxiliary
expressions: point estimates for the relative entrain-
ment calculated by Eqs. (22) and (23) and point esti-
mates of the degree of separation, as well as experimen-

εt1

εu

2
----,=

εt2
εl

1 εl–
2

------------,+=

V 1–

Vmin
1–

Vmax
1–
tal data on the sedimentation of an aggregate of parti-
cles. To estimate the relative entrainment, no more than
two of Eqs. (18)–(21) can be used simultaneously. In
this run of experiments, the average error of point esti-
mates was 7.8%.

Relations (14) and (15) also enable us to refine the
Markov inequality (one of the simple Chebyshev-type
inequalities) and to obtain its addition by taking into
account the possible singularity of function Fv(V), rela-
tion between probabilities and distribution functions
with singularities, and the formal change of velocity to
any inverse nonnegative random variable. With this
generalization, we obtain

(24)

(25)

where P{X ≥ a0} is the probability that X ≥ a0, EX is the
expected value of an arbitrary random nonnegative
variable X, and a0 > EX (for these a0 values all estimates

P X a0≥{ }
E X[ ] X

ω Ω∈
inf[ ]–

[ X]
ω: X a0≥

inf X
ω Ω∈
inf[ ]–

-------------------------------------------------≤

≤
E X[ ] X

ω Ω∈
inf[ ]–

a0 X
ω Ω∈
inf[ ]–

------------------------------------- E X[ ]
a0

------------,≤

P X a0≥{ }
X

ω Ω∈
inf[ ] 1– E X 1–[ ]–

X
ω Ω∈
inf[ ] 1– [ X

ω: X a0≥
inf ] 1––

---------------------------------------------------------≤

≤
X

ω Ω∈
inf[ ] 1– E X 1–[ ]–

X
ω Ω∈
inf[ ] 1– 1/a0–

----------------------------------------------,
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of probability are lower). The comparison of Eqs. (24)
and (25) with the Markov inequality

(26)

indicates that the above approach makes it possible to
refine this inequality and obtain its addition.

Let us analyze another information level, namely,
the case where the probability of carrying particles
away by liquid flows is known as a function of the par-
ticle fall velocity. We introduce an auxiliary function
P*(V) = , where U is an auxiliary vari-

able. In what follows, we suppose that P*(V) is contin-
uous at the discontinuity points of the function Fv(V)
and the distribution function Fv(V) is continuous at the
points where the function P*(V) is singular. In this case,
we have

(27)

If the function P*(V) is singular at the points V =

Vmin, Vmax, , or , the values P*(Vmin), P*(Vmax),

P* , P*( ), or P*(Vmin – 0), P*(Vmax + 0),

P* , P*(  + 0) must be assigned to its values

at the corresponding points in the expressions below.

Integration by parts of the right-hand side of
Eq. (27) yields

(28)

An upper estimate for the distribution function of
the initial fall velocity of particles can be obtained by
Eqs. (14) and (15). Replacing the function by its upper
estimate (14) and taking its applicability area into
account, we obtain

(29)

P X a0≥{ } EX
a0
-------≤

P U( )
Vmax U V≥ ≥

sup

ε P∗ V( ) Fv V( ).d

Vmin

Vmax

∫≤

1

V 1–
-------- V

1

V 1–
-------- 

  V

1

V 1–
-------- 0+ 

  V

P∗ V( ) Fv V( )d

Vmin

Vmax

∫ P∗ Vmax( ) Fv V( ) P∗ V( ).d

Vmin

Vmax

∫–=

ε  –
V 1– Vmax

1––

V 1– Vmax
1––

------------------------ P∗ V( )  + P ∗ 
1

 
V

 
1–

 --------  
  . d  

V

 

min

 

1

 

V

 

1–

 

--------

 ∫  ≤                    
DOKLADY PHYSICS      Vol. 47      No. 7      2002
One more integration by parts yields

(30)

Taking into account that a proper fraction increases
when its numerator and denominator increase simulta-
neously by the same amount, one can reduce Eq. (30)
to the simpler but less accurate estimate

(31)

where the first term can sometimes be negligible com-
pared to the second term.

Using estimate (15) instead of Eq. (14), we obtain
the similar estimate

(32)

One more integration by parts yields

(33)

When probabilities P(V) are determined experimen-
tally and numerically, it is preferable to estimate the rel-
ative entrainment by Eqs. (30), (31), and (33), because
they are free of numerical differentiation leading to
larger errors. When the problems of the stochastic
mechanical motion of particles are solved analytically
and the functions P(V) are found in an explicit form,
inequalities (29) and (32) give less unwieldy intermedi-
ate expressions than do inequalities (30), (31), and (33)
(the final results are certainly the same).

Let us analyze simple specific cases.

Solving the equations of motion for particles that
have a uniform initial height distribution and settle out
in a liquid which is stationary or executes slow plunger

ε V 1– Vmax
1––( )≤

×
P∗ Vmin( )

Vmin
1– Vmax

1––
--------------------------

V 2– P∗ V( )

V 1– Vmax
1––( )2

------------------------------- Vd

Vmin

1

V
1–

--------

∫+ .

ε V 1– VminP∗ Vmin( ) P∗ V( ) Vd

Vmin

1

V
1–

--------

∫+ ,≤

ε – Vmax V–( ) P∗ V( )d
Vmax V–
--------------------

Vmin

V

∫ P∗ V( ).+≤

ε Vmax V–( )≤

×
P∗ Vmin( )

Vmax Vmin–
-------------------------- P∗ V( ) Vmax V–( )ln Vd

Vmin

V

∫– .
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Table 2.  Estimates of the carrier action of a flow with the known fall-velocity dependence of the probability of carrying
particles away

V0, m/s

Relative entrainment

Absolute error 
magnitude, %experimental 

value
estimates with estimates with

 by Eq. (37)
relative

entrainment ε
by Eq. (35) by Eq. (36)

3.93 × 10–5 2 ≤3.5 ≤3.3 ≤6.3 1.7 0.3

5.88 × 10–5 7.4 ≤16.5 ≤15.9 ≤24 7.9 0.5

1.18 × 10–4 20.4 ≤47.2 ≤46.3 ≤43.4 21.7 1.3

2.36 × 10–4 31.5 ≤73.6 ≤73.1 ≤54.6 27.3 4.2

3.5 × 10–4 36 ≤82.2 ≤81.9 ≤60 30 6

7 × 10–4 44 ≤91.1 ≤91.0 ≤72 36 8

8.84 × 10–4 48 ≤92.9 ≤92.8 ≤78.2 39.1 8.9

V
–1

V

motion in the laminar mode, we determine the proba-
bility as

(34)

where the fall separation velocity V0 is the minimum
fall velocity of particles completely trapped under these
conditions. In this case, P*(V) = P(V). Substituting
Eq. (34) into Eq. (31) and performing integration, we
obtain the estimate

P V( )
1

V
V0
------ , for V V0<–

0, for V V0,≥





=

(35)

which can be found even when the maximum fall veloc-
ity of particles is unknown.

Substituting probability (34) into Eq. (29) and using
the integral tables from [9], one can obtain the follow-
ing more accurate estimate of the relative entrainment,
which is based on the mean harmonic fall velocity:

ε

1
2
---V0V 1– 1

Vmin

V0
---------- 

 
2

– , for Vmin V0
1

V 1–
--------<≤

1
1
2
--- 1

V 1–
-------- V 1– Vmin

2+ V0
1– , for V0

1

V 1–
--------,≥–









≤

(36)ε

V 1– Vmax
1––

V0
------------------------Vmax

2 Vmax Vmin–
Vmax V0–

--------------------------ln
V0 Vmin–

Vmax
----------------------– , for Vmin V0

1

V 1–
--------<≤

1 1

V 1– V0

--------------
V 1– Vmax

1––
V0

------------------------Vmax
2 Vmax Vmin–

Vmax 1/V 1––
------------------------------ln

1/V 1– Vmin–
Vmax

-----------------------------– , for V0
1

V 1–
--------.≥+–











≤

     
Finally, calculating integrals in Eqs. (32) or (33)
with the known bulk fall velocity, we obtain (after some
manipulations)

(37)ε

Vmax V–
V0

--------------------
Vmax Vmin–
Vmax V0–

--------------------------, for Vmin V0
1
V
---<≤ln

1 V
V0
------–

Vmax V–
V0

--------------------
Vmax Vmin–

Vmax V–
--------------------------, for V0

1
V
---.≥ln+









≤

Table 2 presents the point estimates obtained for the
relative entrainment from Eqs. (35)–(37) and corre-
sponding experimental data. For a point estimate, we
use half the interval from zero to the least lower bound
[least of Eqs. (35)–(37)].

Calculations indicate that in the cases under consid-
eration, logarithmic estimate (36) is noticeably better
than the simpler Eq. (35) only for fall separation veloc-
ities close to the minimum value. Compared to
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Eqs. (35) and (36), the error of estimate (37) varies
from a maximum to a minimum with increasing V0 .

As might be expected, the magnitude of the average
absolute error of point estimates at this information
level was found to be about 4%, which is less than the
value for the case where the initial fall-velocity depen-
dence of the probability of carrying particles away is
unknown.

Thus, the bulk harmonic fall velocity of particles is
efficiently applied to obtain the point estimates of the
relative entrainment of an aggregate of disperse parti-
cles by liquid flows at two levels of input data. A cor-
rection to the Markov inequality was also found when
deriving expressions for calculations. All experimental
data entirely corroborate the applicability of resulting
expressions. In this case, the bulk fall velocity was
determined by a specially developed liquid-mechanical
procedure.
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