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When examining the action of ionizing radiation on
various objects of an animal or lifeless nature, radiation
effects corresponding to moderate absorption doses D
(conditionally from ~1 to ~10® Gy) have been compre-
hensively studied. However, the response of the objects
todosesD < 1 Gy and D > 108 Gy have not been thor-
oughly investigated. In addition, this response cannot
be reliably predicted in the general case by directly
extrapolating data obtained for moderate values of D.
For example, in materials science, there exists a com-
plicated nonmonotonic dependence of the variation of
initial properties on the absorbed dose or on fluence[1].
For low doses D, instead of the usua (for moderate doses)
strengthening, the loss of strength by crystals [2, 3],
rapid relaxation of nonequilibrium defect structuresin
them [4], the growth of internal-friction peaksin poly-
meric materials [5], and changes in phase-transition
conditions of ferroelectrics[6], etc. can occur. In radio-
biological studies, the so-called sensitivity-window
effect often manifests itself. This effect consists of
anomalously strong biochemical and physiological
responses that correspond to certain ranges of low
exposure intensities and irradiation doses [7]. At the
same time, information concerning the variation in
physical properties of fullerites under the action of ion-
izing radiation [8-10] remains limited.

In the present paper, we discuss the discovery of an
effect whereby a decrease in the microhardness H of
Ceo fulleriteis observed as aresult of its exposureto 3
and y radiation with doses D < 0.1 cGy. At room tem-
perature, the microhardness was restored to its initial
value approximately 30 h after the exposure had fin-
ished. Afterwards, the microhardness could be revers-
ibly lowered again by subsequent irradiation.
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The 12;05 radionuclide with an activity A = 4.2 MBq

was taken as a radiation source. Together with y-rays
having the maximal energy E,, = 0.66 MeV and a

guantum yield of 0.85 per decay, this radionuclide
emits B~-particles within two spectral ranges having

the maximal energies E,, = 0.564 and 1.176 MeV

with quantum vyields 0.947 and 0.053 per decay,
respectively [11]. In the zone where the sample is
placed, the calculated absorbed-dose rate of the y-ray
component reached |, = 88 pGy h, while the B~-parti-
cleflux density was Iy =9.3 x 10° cm2 s,

Dueto the small penetration depth (tens of microns)
inacrystal of B~-particleswith energies of <1 MeV, we
used the method of dynamic nanoindentation [12] for
investigating their possible effect on the mechanical
properties of thin near-surface layers. In al experi-
ments, the maximal load was 200 mN, while the maxi-
mal print depth attained was about 7 um. To avoid the
rapid oxidation of the sample surface, al the manipula-
tions (irradiation, measurements of the microhardness,
holding after an exposure) were performed in the dark
or in weak red illumination.

Asis seen from the figure (in which every point was
obtained by averaging 15-20 individual measure-
ments), the increase in the dose of the combined 3+ and
y-irradiation resulted in adecrease in the sample micro-
hardness. In this case, saturation was observed in atime
t ~ 6 h. After the exposure had finished, completeres-
toration of the initial microhardness was observed
(after a ~30-hour holding at room temperature).
Repesated irradiation after holding resulted in aloss of
strength corresponding to the same amplitude as had
been observed for thefirst irradiation.

We have studied the effect of sample screening by
an auminum plate 2 mm thick, which completely
absorbed the 3~ component. The intensity of they com-
ponent was virtualy unaffected by the screening,
which led to the disappearance of the strength-loss
effect. In other words, the doses of y radiation used did
not cause a measurable variation of H. The problem of
the role of y irradiation for the combined action of 3~
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(1) after irradiation by a combined flux of B*-particles and
y-rays, (2) after irradiation by y-rays, (3) after polishing the
oxidized surface layer (in the absence of irradiation).

and y components requires specia consideration. How-
ever, it is clear that, for approximately equal fluxes of
particles and energies carried by the 3~ and y compo-
nents, the role of the former in changing the properties
of near-surface layers must be more pronounced than
that of the latter. Indeed, for the weighted-average
energy [EglF 179.8 keV of B-particlesin the flux emit-

ted by the 1§;Cs radioactive nuclide [11], the thickness
of the absorbing layer for these particlesis smaller by a
factor of approximately ~10° than for y-rays with E, =
0.66 MeV. In addition, the bulk density of excited states
in the near-surface layer is, correspondingly, higher by
approximately the same factor.

We now estimate the number n of atomic defects
produced by the flux of B~-particles for the maximum
fluence F = I gty =2 x 10* cm2, which was used by us.
Usually, it is assumed that the energy spent for the pro-
duction of an atomic radiative defect is E, = 20-30 eV.
Then, in the near-surface layer with the thickness h,, =
13 pm, which absorbs half of the flux with an energy
[EsC= 0.18 MeV [11], n= FIEG[Ah, ,Ey) = 10" cm™ of
radiative defects are formed. For such alow concentra-
tion of structural defects, elucidation of the mechanism
of their effect on plasticity characteristics requires a
separate analysis. We can assume that there exist at
least three possible reasons for the efficient action of
low radiation doses on fullerite:

(1) The plasticity of fcc crystals is limited by the
existence of local locks for slipping dislocations. In
the Cg, single crystals under investigation, these
locks might be carbon molecules of different molecu-
lar mass (preferentially, C,,, dimers, oxidized mole-
cules, admixtures of other chemical elements, etc.).
Their total concentration in the near-surface layers

GOLOVIN et al.

amounts to ~10°-10"*. The modification of even a
small number of the strongest locks under the action of
irradiation can increase the mobility of dislocationsand
lower the microhardness H.

(2) Excitations induced by the flux of B=-particles
form point defects which are not dispersed stochasti-
cally over the bulk of a sample (as in the case of the
y-radiation), but produce quasi-one-dimensional tracks
with a macroscopic length h;, ~ 10 um, which can
cause amore pronounced loss of strength.

(3) The saturation and closeness of covalent bonds
inside a Cg, molecule result in the fact that the plastic
deformation of fullerite is realized preferentially by
breaking weaker intermolecular bonds. Knocking out
one or two carbon atoms from a symmetric Cg, mole-
cule can lead to the loss of its stability under loading
and to macroscopic deformation. These processes can
occur not only dueto the slipping of certain ball-shaped
mol ecules with respect to other ones, but also dueto the
disintegration of the molecules themselves. Such a
multiplication of the action of a vacancy in the Cg,
molecular structure can result in a “house of cards’
effect and may considerably increase the irradiation
efficiency.

Of course, we offer only working hypotheses that
require additional study. However, the very fact of the
loss of fullerite strength under the action of such small
doses of irradiation stimulates the search for similar
effects in other cyclic carbon-containing substances
(e.g., single crystals of the aromatic series, polymers,
etc.) and obliges us to be more careful in dealing with
the possible consequences of irradiation—even in the
case of ultraweak doses.
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1. Intokamaks, plasmaparticles (ionsand electrons)
are excursive with respect to a corresponding magnetic-
field line as aresult of the so-called magnetic drift, i.e.,
the drift due to both the curvature and the transverse
inhomogeneity of the magnetic field (see [1] and refer-
encestherein). Such drift issign-variable, so that a par-
ticledeviatesfrom the magnetic-field line only by acer-
tain finite distance A called the orbit size of the drift
motion. Therefore, when a perturbation of an electro-
magnetic field with a characteristic transverse wave
number k; arises, the plasma response to this perturba-
tion depends on the parameter k. Thetheory of linear
instabilities of tokamak plasma for finite koA was
developed in [1] and in aseriesof other original papers.
Furthermore, the results of these papers were compre-
hensively systematized in the monographs [2, 3] and
thereview [4].

Presently, extensive theoretical and experimental
investigations on the magnetic islands in tokamaks are
performed (see the review [5] and references therein).
The appearance of nonlinear regular structures of such
a type leads to the reconnection of the magnetic field
lines and, as aresult, to enhanced transverse heat trans-
port and limitations imposed on the parameter (3, i.e.,
theratio of plasma pressure to magnetic-field pressure.
This is unacceptable for fusion reactors of the ITER
(International Thermonuclear Experimental Reactor)
type; for details see [6]. Up to now, much attention has
been devoted to studying magnetic islands with a half-
width w considerably larger than theion drift-orbit size,
i.e., w> A. In addition, a series of papers, e.qg., [7], was

1 The article was submitted by the authorsin English.
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devoted to studying islands with a half-width smaller
than theion Larmor radius p;, w < p;. Inthiscontext, the
guestion arises as to whether magnetic islands satisfy-
ing the conditions

p;<W<A

(1
exist.

Since the value of A depends on the pitch angle (the
circularity degree) of a particle, i.e., on the ratio of its
characteristic transverse and longitudinal velocities,
and since, for strongly circulating particles, A = p;, itis
evident that we can consider islands satisfying condi-
tions (1) only in the case of weakly circulating ions.
Actually, according to [1-4], for these ions, we have

Pi

A=-L>p. )
€

Here, € is the ratio of minor and major tokamak radii,
i.e., the so-called inverse aspect ratio. An orbit size on
the order of (2) also is typica for trapped ions. With
allowancefor the above, the problem of the evolution of
islands with half-width satisfying the condition

Pi

pi<W<€_1/2

(3)
isimportant. Studying such islands is the main goal of
the present paper.

Inequalities (1)«3) imply single-temperature
plasma; i.e., they exclude the possibility of the exist-
ence of a group of high-energy ions. Meanwhile, the
presence of high-energy ionsistypical for recent exper-
imental facilities (for instance, for JET [8]). This is
caused by the injection of a beam of high-energy neu-
tral atoms or the acceleration of agroup of ionsin con-
ditions of ion cyclotron resonance. The size of drift
orbits for high-energy ions substantially exceeds esti-
mate (2). Therefore, in addition to the islands satisfying
condition (3), we also analyze islands obeying inequal -
ity (1) and assume that A is the characteristic orhit size
for the high-energy ions.

2. Elucidating the role of the effect of interest is
reduced to analyzing the contribution of finite-orbit
particles to the evolution equation for the magnetic-
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island width, which is usually called the generalized
Rutherford equation. Following [6, 7, 9-11], we repre-
sent this equation in the form

dw _A'
EDZ+A +. 4)

Here, the sign ~ implies equality with an accuracy to a
certain positive coefficient, so that effects with a posi-
tive or negative contribution to the right-hand side of
Eq. (4) lead to growth or decay of the islands, respec-
tively. The quantity A' is usually called the tearing-
mode stability parameter. The sign of the term with A'
in Eg. (4) depends on the character of the radial distri-
bution of the longitudinal plasma current. In the case of
a well organized discharge, we have A' < 0; i.e., the
effect caused by the term with A' is stabilizing. The
terms corresponding to the trend of the parametric
instability characterize effects of the bootstrap current
Ay, polarization current A,, and magnetic well A,
(see[5] for details). These effects were comprehen-
sively studied in preceding publicationsin the approxi-

mation of sufficiently large-scale islands, w < & . We

can expect that the corresponding terms, usually
denoted as Ay, A, and A, [5], should be modified in

the case of interest, i.e., when w < P

i The study of

such amodification could be the subject of further pub-
lications. Within the scope of the present work, we ana
lyze only the effect characterized by the term A"\, Here,
superscript A emphasizes that we deal with the contri-
bution of particles with large drift orbits A.

For calculating A", we introduce standard variables
Y and & characterizing the island configuration of the
2

magnetic field [5, 10, 11], where ¢ = ( cos& — ’;LBO
and &€ = md — n{ — wt. Here, () is the perturbation
amplitude; x isthe distance from the rational (singular)
magnetic surface around which the islands are local-
ized; B, isthe equilibrium magnetic field at this surface;

L= q isthe so-called shear length; qisthe safety fac-

tor; Risthe major radius of the torus; s= Z#q
shear; r istheradia coordinate; 8 and { are the poloidal
and toroidal angles, respectively; w is the isand-rota-

tion frequency; and m and n are poloidal and toroidal

isthe

mode numbers interrelated by the equality %1 = q,

where q istaken at the rational magnetic surfacer =r..
The island haf-width w introduced above is related to
DOKLADY PHYSICS Vol. 47
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1/2
{ by therelationshipw =2 E"I;LLE . Itisassumed that
0
thevaluesof Lgand saretakenatr =r..

Along with the variable ), which characterizes the
magnetic flux of the island configuration, we introduce

P

the dimensionless magnetic-flux function Q = _G .In

addition, we introduce the function j; = j; (Q, &),

which characterizes the longitudinal current density in
the island configuration due to the presence of large-
orbit particles. Then, according to [5, 11], the quantity
AN is defined by the expr on

AN = 27Rg jjj coSE &
CSWBozI f(Q + cosé) " ©)
Here, cisthe speed of light and o, = sgnx= 1. Phys-
ically, the integration region in Eq. (5) corresponds to
the space lying outside the magnetic-island separatrix.
The contour integration over & in (5) impliesintegration
from O to 21T
3. We calculate j|’|\ by taking account of the follow-
ing considerations. We know the total density n, of the
ion /A group and consider it as a sum of the equilibrium
nox and perturbed n, densities; i.e., Ny = Ny + N,.
Allowing for the fact that the electric charge g n,, of this
ion group is compensated by the charge of the corre-

sponding part of the electron-plasma component eenQ ,

i.e, inthesimplest case, ¢ = —e,= e, we have nQ =Np.
It is the longitudinal motion of these compensating
electrons that causes the longitudinal current j|’|\.
Assuming the electrons to be cold and allowing for
their transverse motion in the crossed el ectric and mag-
netic fields, we conclude that j|’|\ can be found on the

basis of the electron continuity equation. Using the
relations above, this equation can bewrittenin theform

d ~ :
—ed—i(nm\ +Ny) + D||J|/|\ = 0. (6)
Here, [, isthe longitudinal gradi ent operator (adlong the

total island magnetic field), dt + (Vg V), Ve=

at
c[Box Vgl

2
0

@isthe electrostatic potential related to transverse elec-
tricfieldE; by Eq=-V 0, and Visthetransverse gra-
dient.

In order to calculate n, , we turn to the drift kinetic
equation (see, e.g., Eq. (16.70) in [3]). In general, we
can use this equation to find the expression at n, for

is the electron velocity in the cross fields,
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arbitrary koA (cf. [1]). However, in accordance with (1),
we areinterested only in the limiting case of large drift
orbits, koA > 1. Inthislimiting case, assuming the par-
ticle-velocity distribution to be Maxwellian with the
temperature T,, we find
iy = -$—‘an (7)

Physically, relation (7) implies that, in the case of
small-scal e perturbations, the spatial distribution of the
ion group under consideration obeys the Boltzmann
law. Expression (7) can also be found from the corre-
sponding formulas of [1] with the assumption that
koA > 1 (intermsof [1], koA isequal to §).

4. For cold electrons, the el ectrostatic potential @ has
theform [5, 10, 11]

- B°‘*’[ x—h(Q)],

where k, = — and h(Q) is the so-called e ectrostatic-

potential profllefunctlon In terms of the variables (Q,

&), the operator g

and rotation frequency, is defined by the relationship

do _ . dh _ P
rrinin QhaE ,Whereh 30 and Q, = DaXDE.We

also take into account the fact that nya(r) = Nya(rs) +
MLALYS
Da Dr re

if we ignore both the island width

. In addition, we have

L T, _1/2 a
X = GXEZBZQE (Q + cos&)™? 0, = k”a_z’

_k_LYl( . Then, (6) reduces to the form

S

where k=

aJ|| _

sing
% cAg(Q)

——— 8
(Q+ cosE)”2 ®)

Here,

c - TT Q_)ZeznOABoLs

"ape cTy
@ _kycT,\[@Inno,\D
A eBO D al’ Dr:rs

guency of the ion group under consideration, and the
function g(Q) is defined (see [11]) by the relationship

3-8 o

isthe diamagnetic drift fre-

gQ) = %ﬁ h'(Q). Integrating (8) over &, we obtain

jii = —2c,g(@Q)[(Q + cosE)*? — [{Q + cosE) ], (10)

KONOVALOV et al.

where L..Oimplies averaging over & with the weight
(Q + cos&) 172,

Substituting relationship (10) into Eq. (5), wefind

4me? Noa o’ q2 R2 %l

Denyy
2 2 2
Thc™ Kk s'w

A
AN = =,

(11)

where

= g COSECE
| = Ing(Q)E{Q + cosg) ET(Q ost) (12)

According to [11], 9(Q) = J’ X where K is

3()

12

related to Q by K = [ . The function A;(K) is

defined as

&+

1
As(K) = 3[2(2-KD)E(K) ~(1-KIK(K)],  (13)
where K(k) and E(k) are the complete elliptical inte-
gras of the first and second kinds, respectively. Then,
theintegral | reduces to the form

| = 4T[J’ng(K)EQ[1— (14)

SO
K™ O O

K(k)

A numerical calculation yields | = 1.50.

5. According to equality (11), the quantity A?
depends on the shear and magnetic island half-width as
($w)~!; the dependence is the same as that of the quan-
tity A, Characterizing the magnetic-well effect (see[5]
for details). Consequently, the large-orbit effect,
referred to below as the A-effect, can be treated as a
variant of the magnetic-well effect.

To estimate the order of magnitude of the quantity
A, we consider the case when the ions of the A-group
are trapped and weakly circulating ions of the core
plasma, i.e., when ny, = €'”’n,and T, = T;, where n, and
T, are the core plasma density and ion temperature,
respectively. In addition, we assume the island-rotation
frequency w to be on the order of the diamagnetic drift

frequency w,, SO that = ~ il

K, L,
ion thermal velocity and L, is the characteristic length
of the plasma-density inhomogeneity, which, for sim-
plicity, isassumed to be on the order of r. Then, wefind
fromintegral (11) the estimate

12
e By
Sw

, Where 2 is the

A" ~

(15)
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8, T;
2
]

is the poloidal magnetic field (see, for details, [5]). We

2
also have, accordingto [5], A, = ezj’ . Consequently,
s'w

where 3, = (the so-called poloidal beta) and By

N
ZA— = €7 i.e, the A\ effect is substantially stronger
mw
than the standard magnetic-well effect. We aso note
that for s= 1, theestimate (15) for A" isthe same asthat
for A, i.e., for the bootstrap current contribution to
Eq. (4) of idand-width evolution. It follows that, in
studying theislands of sufficiently small width, i.e., for
the condition (3), and allowing for the bootstrap current
effect, we must also take into account the A effect.

(&)
(*)*/\

i.e., in the case of superdrift magnetic islands rotating
in the direction of the ion diamagnetic drift, A" > 0. In
other words, the A effect is destabilizing. On the other
hand, for the subdrift magnetic islands rotating in the

<],

According to relationships (11) and (14), for >1,

ion diamagnetic-drift direction for which 0 <
* N\
we have A" < 0Q; i.e, in this case, the A effect turns out
to be stabilizing. These results are consistent with the
predictions of [7] concerning theislandswithw < p;. In
addition, according to relationships (11) and (14), the A
effect is destabilizing (A" > 0) in the case of islands
rotating in the direction of the electron diamagnetic

drift, i.e. when -2~ <0.

Wy A

DOKLADY PHYSICS Vol. 47 No.7 2002

491

ACKNOWLEDGMENTS

The authors are grateful to R.M.O. Galvao and
I.C. Nascimento for discussions stimulating this work.

The work was supported by the Program for the
Support of Leading Scientific Schools, Russian Foun-
dation for Basic Research project no. 00-15-96526; by
the Research Support Foundation (FAPESP) of the
State of Sao Paulo, and by the Excellence Research
Programs (PRONEX) RMOG 50/70 Grant from the
Ministry of Science and Technology, Brazil.

REFERENCES
1. A. B. Mikhailovskii and A. M. Fridman, Nucl. Fusion
16, 837 (1976).

2. A.B. Mikhailovskii, Instabilities of Plasma in Magnetic
Traps (Atomizdat, Moscow, 1978).

3. A. B. Mikhailovskii, Instabilities in a Confined Plasma
(Institute of Physics, Bristol, 1998).

4. A. B. Mikhailovskii, Review of Plasma Physics (Con-
sultant Bureau, New York, 1986), Vol. 9, pp. 103-264.

5. A. B. Mikhailovskii, Plasma Physics Contr. Fusion,
2002 (in press).

6. ITER Physics Expert Group on Disruptions, Plasma
Control and MHD, ITER Physics Basis Editors, in Nucl.
Fusion, 1999, Vol. 39, pp. 2251-2389.

7. A.l. Smolyakov, Sov. J. Plasma Phys. 15, 667 (1989).

H. L. Berk, D. N. Borba, B. N. Breizman, €t al., Phys.
Rev. Lett. 87, 185002 (2001).

9. P. H. Rutherford, Phys. Fluids 16, 1903 (1973).

10. A. B. Mikhailovskii, V. D. Pustovitov, V. S. Tsypin, and
A. 1. Smolyakov, Phys. Plasmas 7, 1204 (2000).

11. S. V. Konovalov, A. B. Mikhailovskii, and V. S. Tsypin,
Plasma Physics Contr. Fusion 44, 579 (2002).

©



Doklady Physics, Vol. 47, No. 7, 2002, pp. 492-494. Translated from Doklady Akademii Nauk, Vol. 385, No. 1, 2002, pp. 48-50.

Original Russian Text Copyright © 2002 by Naumov.

PHYSICS

Exact Solution of Equations of Magnetic Hydr odynamics
for an Axisymmetric Plasma Flow

N. D. Naumov
Presented by Academician A.F. Andreev March 11, 2002

Received February 22, 2002

The construction of exact solutions to a set of non-
linear equations of magnetic hydrodynamics is of
doubtless interest. The self-similar approach [1] turns
out to be an efficient method of solving this problem.
The method allows usto pass from solving a set of par-
tial differential equationsto integrating aset of ordinary
differential equations, which is a much simpler prob-
lem. Such solutions to equations of magnetic hydrody-
namics were previously obtained for unsteady plasma
motions belonging to the class of continuum motions
for which their velocities are proportional to the dis-
tance to the center of symmetry (see, e.g., [1, 2] and lit-
erature cited therein).

These studies dealt with the one-dimensional
plasma motion when the ratio of a spatial coordinate
and a certain function of time served as a self-similar
variable. An analogous approach can be used for con-
structing solutions to steady equations of magnetic
hydrodynamics in the case of axisymmetric flows pro-
vided that the transverse coordinate divided by acertain
function of the longitudinal coordinate is chosen as a
self-similar variable [3]. Using this method, we here
construct an exact solution to equations of magnetic
hydrodynamicsin the case of two-dimensional axisym-
metric plasmaflows.

The condition rot[VB] = 0 of the magnetic field-line
freezing-in is evidently satisfied for steady plasma
flows provided that B = wV, where w is a certain func-
tion. It is easy to see that the condition divB = 0 is sat-
isfied if we set w = Ap, where A is a certain constant,
because in this case, the condition is equivalent to the
continuity equation divpV =0.

Therefore, for an axisymmetric flow, we set

V = (V,(r,2,0,V(r,2), B=ApV. (1)

In this case, from steady equations of magnetic hydro-
dynamics, we arrive at the following equations:

10prV, N opv,

r or 0z =0 2)

9v2 = pv iDﬂAz—%Vr

Par 20zPm

graf) A2 +2p% 3)
p(;)z - P ’c;) o - %V

gza? AVE + 2, )

Itisworth noting that Eq. (1) correspondsto thefol-
lowing azimuth component of the current density:

_ cAg}pV 6pvﬂ
o = 0oz ~or O

Hence, the constant A determines the electric current
flowing in plasma.

A similar analytical solution to the set of Egs. (2)—
(4) can be obtained for the class of motions indicated
above if the ratio of the radial coordinate and the flow
radius a = a(2) is chosen as a self-similar variable;

— nab -

V, = ud = V, = u. &)

Here, u = u(2) isthe longitudinal flow velocity and the
primes stand for the derivatives with respect to z. For

such a coordinate dependence of the velocity compo-
nents, it is easy to verify that the function

u R2
P = Pp—s (©)
ua

satisfies continuity equation (2), whereR, p,, and u, are
constant values of the flow radius, density, and longitu-
dinal velocity, respectively, at z= 0.

Substituting expressions (5) and (6) into Eg. (4), we
arrive at the following differential equation:

u 22da _0p
Qa AQ dzﬁ_ 0z’
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This equation allows us to find the plasma pressure in
the genera form:

228.

p(r,2) = po——AQ r ——Qj—dz (7)

Here, for brevity, weintroduce the notation Q = p,u,R>.

Substituting expressions (5)—7) into Eqg. (3), we
obtain the ordinary differential equation
d

1
d—zua = 4nQA

2da
dzg?’

i.e., the longitudinal velocity is a function of the flow

radius and its derivative:

u= L poU0A2R2 + C”
a a
)]

1 1
C= ano%L - 4_.’.[pOAE

Asfollowsfrom Egs. (8) for A> = %[[ the longitudi-
0

nal flow velocity is inversely proportiona to the flow
radius. According to Eg. (6), this corresponds to the
case of incompressible plasma with p = p,. A similar
situation takes place for nonzero values of the initial
divergenceangleaq, i.e, if ag = tana = 0. In what fol-
lows, the electric current is characterized by a constant

B defined by the equality A2 = 2B in the case of

0
incompressible plasma, 3 = 1.
The results obtained above allow us to specify gen-
eral expression (7) for the plasma pressure;

.2rD
- 8k Tl
COSCX a%]'
BZ
+E)0u§—4— {1 RtanaB—+2I—§}

where we introduced the notation B} = 4Tt u>.

In order to derive the equation for the flow radius as
afunction of the longitudina coordinate, we take into
account the boundary condition for plasma pressure:
p(a, z) = 0. Asaresult, from Eqg. (9) wefind thefollow-
ing first-order differential equation for the radius of the
incompressi bl e-plasma flow:

N

a’=%_1, (10)

O;ISD

whereb = R./cosa . Inthe case of compressible plasma,
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Flow radius as a function of the longitudinal coordinate.
we arrive at the second-order differential equation
2
n 13 a D
aa +ty=4 =
G evan

wherey = %—%tana .

2a°(1+a?), (11)

Itiseasy to solve Eqg. (10) exactly. Thisalows usto
find the radius of the incompressible-plasmaflow as an
explicit function of thelongitudinal coordinate. For a <
0, the flow radius initialy decreases to the minimal
value a,;, = b corresponding to the longitudinal coordi-

nate z.,,, = s = kbF(arccos./cosa , K):

b_ 8-z
a = CnD—Rb—’ l%

Here, cn(x, k) isthe Jacobian elliptic function, F(x, k) is
the incomplete dliptical integral of the first kind, and

k= %2 Furthermore, for z > s, the flow starts to

expand:

b_ [Z=S
o = o l% (12)
Expression (12) isvalid provided that the values of the
longitudinal coordinate are smaller than the critical
value z, = s+ kbK(k), where K(k) is the complete ellip-
tical integral of the first kind. As z — z, the flow
radius increases without bound.

If a = 0, a monotonic increase in the flow radius
occurs.

b ~ onZ*S
Okb

This expression holds for 0 < z < kbK(k) —s.
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It should also be noted that expression (9) for the
pressure of incompressible plasma can be written, with
allowance for Eq. (10), in the form

_1 o ol 10

p= éPoUoR %l-—;ﬂ['bq—;g-
Using Egs. (1), (5), and (10), we can prove that this
result corresponds to the general form of the Euler
equation for the steady flow of incompressible plasma

aB=2./mpV:

P, VO
gradqD 50 0.

Equation (11) can be solved by numerical methods.
The calculation results for the flow radius are shown in
the figure for various values of the parameters intro-
duced above: (1) a =-0.7,3=1.01; (2 a =-0.5,B=1;
and (3)a=0.1,3=1.1.

Asis seen from these results, in contrast to the case
of incompressible plasma (curve 2), the flow radius of
compressible plasma (curves 1 and 3) varies monoton-
icaly. This is due to the fact that expression (8) can
only be used in the case of the nonvanishing derivative
a. Therefore, the behavior of the incompressible-
plasma flow is determined by initial conditions. If
o <0, the flow radius decreases, but the longitudinal
flow velocity increases. On the other hand, if a > 0, the
flow radiusincreases, but the longitudinal flow velocity
decreases.

NAUMOV

From Egs. (8) with regard to Eq. (11), we obtain the
following expression for the derivative of the longitudi-

nal flow velocity:
u = ZBuoRZ—a's(yaz_a'Rz).
a_3(ya2 + a.SRZ)

This expression allows us to find the range of possible
values of the parameter 3 for which theincompressible-
plasma flows under consideration occur. Since

U = ZBuotanasinZO(
R(cosza—B) ’

the signs of the initial values for the derivatives of the
flow radius and of the longitudinal flow velocity are
opposite for > cos’a.
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1. Capillary forces in geothermal reservoirs mainly
affect heat-and-mass transfer processes in low-perme-
ability domains with large gradients in the water con-
tent. In this respect, the problem on propagating a
phase-transition front is representative, because capil-
lary forces are maximal in this case. Such processes are
of great importance for the operation of fractured col-
lectors consisting of large-volume low-permeability
blocks separated by cracks. The extraction of a heat-
transfer agent from such a system causes a sharp pres-
sure drop in the cracks, whose total void volume is
small. As aresult, the subsequent operation of the geo-
thermal system is determined by the ability of the low-
permeability blocks to vent the superheated vapor.

Numerical calculations of transport processes in
geothermal systems containing equilibrium water—
vapor mixtures were carried out in [1] with allowance
for capillary forces. In the present paper, we formulate
a new mathematical model of phase transitions which
implies the existence of a sharp water—vapor interface
at which capillary forces are present. Based on the
derived analytical solution, we show that the capillary
forces in a wetting medium stabilize the motion of the
vaporization front. They prevent its destabilization and
the origination of a mixed water—vapor domain. More-
over, they result in an increase in the yield of extracted

vapor.

The approach based on the concept of avaporization
front was considered in studies [2-5], which were
devoted to problems on phase transitions in geothermal
systems.

2. We assume a geothermal reservoir to be an
incompressible porous medium saturated with either
water or vapor. In this case, the system of basic equa-
tionsis determined by the laws of conservation of mass

* Ingtitute of Problemsin Mechanics,
Russian Academy of Sciences,
pr. Vernadskogo 101, Moscow, 117526 Russia
** |stituto di Geoscienze e Georisorse,
Area della Ricerca CNR,
Via G. Moruzz, 1, 56124 Pisa, Italy

and energy, Darcy’slaw, the equation of state for vapor,
and the thermodynamic relationships. Thus, in the
water domain,

0 . _ _ _L
mapw+d|vavW =0, v, = llWgradP,

2 (pe)s+ div(puhv,) = div(hgradT),

Pw = Puwo(l+a(P—Py)—B(T-Ty)),

dh,, = chT+‘;—P, des = CdT, e, = hw—pE,

AL = mA, + (1-—m)Ag,
(p€); = mp,e, + (1—-m)pses.

Furthermore, in the vapor domain,

0 . _ _ _L
map,,+d|vpvv,, =0, v, = uVgradP,

div(A,gradT),

2 (&), +div(p,h,v,)

P=p,RT, e

h, ——,

dh, = CodT, des = CdT,
)\2 = m)\v + (1—m))\s,

(pe), = mp,e, +(1-m)pses.

Here, T istemperature; P is pressure; h is the enthal py
density; eisthe energy density; v is the filtration rate;
mis the porosity; k is the permeability coefficient; C is
the specific heat; R is the gas constant; [ is the viscos-
ity; p isthe density; A isthe heat conductivity; a isthe
water compressibility coefficient; and 3 is the coeffi-
cient of thermal expansion for water. The subscripts w,

1028-3358/02/4707-0495%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Fig. 1. Dimensionless pressure in the water and vapor
domains with a pressure jump at the vaporization front in
(a) a nonwettable medium with 8 = 91°, T* = 446.22 K,

P, = 8.84 x 10° Pa, and P,,, = 1.31 x 10° Paand in
(b) awettable medium with 6 = 89°, T* = 44587 K, P,_ =
8.73 x 10° Pa, and P, = 4.49 x 10° Pa.

v, and S stand for water, vapor, and the skeleton of the
porous medium, respectively.

The conditions of the local thermal equilibrium
between phases imply that the relationships

T, =T =Ts Py =P _+P ey

must be satisfied at the vaporization front, where the
capillary pressure P, is determined by the Laplace for-
mula

20 coso

P, = -

)

Here, o is the surface tension, 0 is the wetting angle,
and r isthe capillary radius. For a porous medium, rep-
resentative values of the last quantity are given by the

formular = J% In the case of a low-permeability

porous medium, the liquid pressure was estimated to
differ significantly from the vapor pressure even when
the wetting angle is small. In addition, the capillary
pressure drops asthe permeability coefficient increases.

TSYPKIN, CALORE

A decrease in the saturation vapor pressure at a
curved surface (meniscus) is an extra effect determin-
ing the phase-transition conditions. This decrease is
given by the Kelvin formula

20V
P,_ = P, exp%—rRo_l‘fH.

Here, R, is the universal gas constant, V,, is the molar
water volume, and P; is the flat-surface pressure. The
Clapeyron equilibrium curve for awater—vapor mixture

with alowance for the Kelvin correction can be pre-
sented in the form

20V
Pv— = Panp%A+TE— o wl]

A=12.512, B=4611.73.

This equation, together with Egs. (1) and (2) and the
laws of conservation of mass and energy, composes a
complete system of boundary conditions at the phase-
transition front with allowance for capillary forces. The
laws of conservation of mass and energy take the form

P 0
e g, R

kP,_ k
= v (gradP), — X (gradP),.,
P R 9P =, (oredP)

map,,V, = (AgradT),.

K
- (AgradT)n_—quu—(gradP)m-

Here, Visthefront velocity and q isthe specific heat of
vaporization. Theindex n stands for the normal compo-
nent. The subscripts plus, minus, and asterisk imply
that the quantities are to be taken, respectively, on the
right and left sides of the front and directly at the front.

3. For simplicity, we now consider a one-dimen-
sional problem of the vapor extraction from awater-sat-
urated hydrothermal permeable reservoir occupying the
half-space x > 0 and contacting impermeable rocks at
thefixed boundary x = 0. At theinitial state, the stratum
pressure is P, and the temperature is T,. We assume
that, at the boundary x = 0, which represents a fracture,
the pressure P? decreasesto avalue lower than the pres-
sure of the phase transition at theinitial temperature. In
this case, a vaporization front between the water and
vapor domains propagates to the right.

We now restrict our analysis to the case of suffi-
ciently small values of the permeability coefficient and
DOKLADY PHYSICS Vol. 47
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ignore small quantities. Thus, we arrive at thefollowing
system of basic equations:. in the water domain,

OP_BoT _ _k 9P T _ 0T
ot aodt  map, gyt Ot oy
and in the vapor domain,
[@H] P oT _ _9°T

X0 T Tl ot e

Let theinitial and boundary values of both the tem-
perature and pressure be constant. In this case, the prob-
lem has the self-similar solution

T=T(Q), P=PQ, &= X(t) = 2y Jat.

X
2./apt

In both the domains, the solutions can be expressed
in terms of probability integrals. Substituting the solu-
tions into the system of boundary conditions at the
vaporization front, we arrive at a system of transcen-
dental equations for determining the front velocity, the
phase-transition temperature, and the pressure on both
sides of the interface.

4. We numerically solved the system of transcen-
dental equations at the moving boundary for representa-
tive values of the basic physical parameters with T, =
450K, Py = 4 x 10°% Pa, P, = 2 x 105 Pa, k = 0.5 x
10 m?, and m = 0.1. Examples of the calculation
results for the pressure in the water and vapor domains
are shown in Fig. 1 for (a) nonwettable and (b) wetta-
ble media. As is seen, a pressure jump occurs at the
front. In the first case, the liquid pressure exceeds the
vapor pressure; in the second case, the situation is the
reverse.

There exist two different regimes of vapor extrac-
tion. In the case of awettable medium, which isillus-
trated in Fig. 2, temperature curve (1) is at a conven-
tional position with respect to phase-transition tem-
perature curve (2); i.e., the temperature curve in the
water domain is situated lower than the vaporization-
temperature curve. At larger values of the permeabil-
ity coefficient and of the wetting angle, the curves
change their positions. The temperature in the water
domain becomes higher than the vaporization temper-
ature. From the physical standpoint, this corresponds
to the superheating of the liquid phase. This fact can
betreated as an instability in the phase-transition front
(whichisusually referred to as a morphological insta-
bility) resulting in the formation of a two-phase
water—vapor domain between the water and vapor
domains. For example, this effect manifests itself in
the case of the parameters taken in Fig. 2 but for val-
ues of the wetting angle corresponding to either neu-
tral or nonwettable media (6 = 90°). Therefore, the
capillary pressure stabilizes and destabilizes the
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Fig. 2. (1) Dimensionless temperature and (2) phase-transi-
tion temperature for a wettable porous medium with Py =

1.5x 10° Pa, k= 0.7 x 101" m?, and Py = 3 x 10° Pa.
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Fig. 3. Mass of extracted vapor as a function of the perme-
ability coefficient at various wetting angles for (1) neutral
(6 =90°), (2) nonwettable (B = 91°), and (3) wettable (6 =
89°) media.

phase-transition front in wettable and nonwettable
media, respectively.

The mass of extracted vapor, which is an important
characteristic of the process, can be presented as

M= mJ-pwodZ - mIpw(Z)dZ
Pur }
Pud”

This quantity is composed of the two terms describing
the contributions due to both the motion of the phase-
transition front and the expansion of liquid caused by

= mpwo[v + _[ %l
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the pressure drop. The front velocity decreases with
increasing initial pressure and permeability coefficient.
Curvesfor the mass of the extracted heat-transfer agent
are presented in Fig. 3 for (1) neutral, (2) nonwettable,
and (3) wettable media. As is seen, a decrease in the
wetting angle results in an increase in the vapor yield.
This fact can be explained by a pressure drop at the
front in the water domain. The drop results in an
increase in the pressure gradient and, consequently, the
mass flux towards the front. In contrast, in the case of a
nonwettable medium, the water pressure at the vapor-
ization front increases, which is accompanied by a
reduction of the amount of the extracted heat-transfer

agent.
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A weadlth of physical, mechanical, and chemical
processes associated with phase and chemical transi-
tions are conventionally described on the basis of the
Stefan classical frontal model. The evaporation of lig-
uids, the growth of a new phase in a metastable
medium, frontal burning or frontal chemical reactions,
the filtration displacement of viscous fluids in porous
substances, etc., are among them. In many cases, a
locally flat shape of the front separating two phasesis
violated, and atransient domain containing elements of
both phases is formed. In this two-phase domain, the
interface often represents a strongly branched structure
having the properties of the scale-time self-similarity.
Its known manifestations are growing dendrites,
clouds, fractal clusters, hydrodynamic viscous “fin-
gers’ in porous media, and chemical reactionsin turbu-
lent flows[1-4]. Thelisted objectsare natural examples
of so-called fractal formations[1] whose self-similarity
and scale-time invariance are described by a scaling
power dependence with afractional exponent called the
fractal dimensionality.

Among many phenomena of phase transitions, the
processes of directed crystallization of multicomponent
melts and solutions used for producing pure crystals or
alloyswith desired properties play animportant applied
role. In a solidifying melt, an impurity often precipi-
tates intensely from the crystal bulk. If this processis
characterized by a strong dependence of the phase-tran-
sition temperature of the crystallizing liquid on the
available impurity concentration, a metastable domain,
the so-called zone of concentrational (congtitutional)
supercooling, arises ahead of the solidification front [5].
The temperature of the multicomponent melt in this
zoneis lower than its solidification temperature, a con-
dition which leads to the appearance in this domain of
the elements of a new phase in the form of dendrites,
crystallites, etc. As aresult, the solid and liquid phases
are separated by the two-phase zone.

Ural Sate University,
pr. Lenina 51, Yekaterinburg, 620083 Russia

It is natural that the presence of the two-phase zone
principally changes the pattern of the process. For this
reason, this phenomenon is actively investigated (see,
e.g., [6-13]). However, the hypothesis regarding the
possible self-similar fractal structure of the two-phase
zone has been poorly studied until now. Among the
sparse investigationsin thisfield, we find study [11], in
which the effect of fractal dimensionality on the param-
eters of the self-similar solidification mode wasinvesti-
gated by using the heuristically introduced fractal-like
spatial density distribution in the two-phase zone. Until
now, only asymptotic approximate solutions to equa-
tions of heat and mass transfer in the two-phase zone
were known [7, 8].

This study is based on the exact analytical solutions
recently obtained [12, 13] to the model proposed for the
quasi-equilibrium two-phase zonein [14], where it was
shown that supercooling in the developed two-phase
zone is amost completely eliminated due to intense
heat release by growing elements of the solid phase.
Here, we show that the distributions of an impurity and
a volume solid-phase fraction in the quasi-equilibrium
two-phase zone are described by scaling-power spatial
dependences with a fractional exponent. This scaling
dimensionality depends on the thermal properties of a
melt and is invariant with respect to the operational
parameters governing solidification. In other words,
this exponent isauniversal characteristic for each melt.
The presented experimental data [15] corroborate the
conclusion that the scaling exponent holds in the time
evolution of the two-phase zone. This result makes it
possibleto formul ate the concept of the fractal structure
of the two-phase zone.

We consider the process of the directed solidifica-
tion of a binary melt along the & axis, with the two-
phase zone in thermodynamic equilibrium. We assume
that the process proceeds with aconstant rate u,, and the
distributions6,,(&), 6,(&), and $(&) of animpurity, tem-
perature, and the volume fraction of the solid phase,
respectively, attain steady-state values in the two-phase
zone Ut < & < U + o (here, T isthetime and d is the
length of the two-phase zone). The heat and masstrans-
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fer in the two-phase zone are described by the heat
equation and impurity diffusion equation

a.[[ mC m] aa%\m aem Va.[v (1)

21a-0)0,] = Zipuge-kondt. @

wherek isthe equilibrium coefficient of impurity distri-
bution and L, isthe latent solidification heat. The effec-
tive transport coefficients D, pm» Cr @d A, in the
two-phase zone depend on the volume fraction of the
solid component ¢:

Din(¢) = Di(1-9),
pm(q))cm(q)) = p|C|(1—¢) +psCs¢! (3)
An(9) = M(1-0) +A0.

Here, D, is the diffusivity of an impurity in the liquid
phase (diffusion in the solid phase is conventionally
neglected); and p, and p,, C, and C,, and A, and A, are
the densities, heat capacities, and thermal conductivi-
ties of the liquid and solid phases, respectively. The
temperature in the two-phase domain is determined
through an impurity concentration from the liquidus
equation. In the case of a low impurity content, this
dependenceislinear:

On(x) = 8-

where 6, is the phase-transition temperature for a pure
melt and m is the liquidus slope determined from the
binary-system phase diagram. At the solid-phase-two-
phase-zoneinterface & = 2(1) and two-phase-zone-melt
interface & = (1) + &(1), the following conditions of
heat and mass balance are satisfied:

MG (), “

_ 98, . 96, _ ds
¢ - ¢*1 )\SE_)\mf - LV(l_q)*)a’ (5)
& = Z(1);
d

(1-K)(L-0,)0nGE + D = 0, & = Z(1):(6)

_ _ 00, 00,

¢ =0, o=ag, DmaE DIaE
20 (7

-&m =0, &=2x(1)+9(1),

where ¢, isthe volumefraction of the solid phase at the
crystal-two-phase-zone interface. The melt solidifica-
tion with a constant rate u, can be realized only when
the phase interfaces are far from the walls of an ingot
mold. Inthis case, it is possible to consider the temper-
ature gradients g, and g, as constant at the two-phase-
zone interfaces.

ALEXANDROV, IVANOV

In [12], the exact analytical solution to model (1)—
(7) for the quasi-steady solidification process (steady in
(§ —usT)ug

- D
moving zone) is constructed for crystallizationin afield
of fixed temperature gradients g, and g, in the solid and
liquid phases, respectively. In this case, the classical
diffusion equation was used for the melt, and the impu-
rity concentration g, far from the zone was considered
asknown. The method developedin[12, 13] isbased on
the elimination of the temperaturefield by using Eq. (4)
and on the integration with respect to a new variable—
the volume fraction of the solid phase. Here, we present
only the final result. The impurity concentration
depends explicitly only on the volume fraction of the
solid phase and has the form

thereference frame x = connected with the

Om(9) = 01.(1+ G _‘](q)))[l—clﬂll\//l\:(;;] N1/
o
dz
x exp[—kj’m} (®)
dm
(@) = 1/\1— Iexp[ .Il y— Mz(y)} dalda

The volume fraction of the solid phase ¢ and the
dimensionless thickness of the two-phase zone € are
determined from the relationships

dc,
0 /\O(Z)E

=N R @) Nz B

x(¢) dz, 9

¢* O( ) d
f h(Z) (Po—cn(2)) -

dz,

Here, the dimensionless variables and parameters have
the form

_ Pm(9)Crn(9) _ m(¢)
h(9) = oG No(d) =
_ 6o
Po = Mo,
m(¢) _ A _ L
Do(0) = D, No = Dip,C/’ - Cmoy.,’

D,g,

""" mo,.ug’
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Do($)[h(9) Po—N2¢ + BJ
N1Ao($) ’

Do(@)N(®) . _ O
NiAo(9) © ™ O’

My(9) =

M(9) =
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A

B=1+G-p,—NAG, Ay = A
S

and the solidification rate ug and the volume fraction of
the solid phase ¢, are determined from the following
set of equations:

)\sgs_)\lgl

% = BIL* PICMOLL(Po—Cnl,_ IN(0) —(Po—Cu| _IN(®LT’

(1-K)(1-0,)Cn(d4) +

Analytical solutions (8)—(10) were experimentally
well corroborated in [10], where it was shown that the
impurity concentration and, therefore, the temperature
are functions of only one variable ¢ (see aso Fig. 1
in [10]). In addition, it was shown in [12] that the exten-
sion of the two-phase zone as well as the volume frac-
tion of the solid phase or the impurity concentration in
the two-phase zone changes self-similarly when the
operationa parameters of the process, i.e., the temper-
ature gradients controlling solidification, are varied.
This behavior of unknown functions implies that the
zone of concentrational supercooling has a fractal
structure. Itiswell known that many natural fractal-like
objects can be described by scale-invariant fractals
(see, eq., [2]). In view of this circumstance, we try to
study the two-phase zone by introducing certain power
dependences. We describe the distribution of the vol-
ume fraction of the solid phase and the impurity con-
centration in the two-phase zone by homogeneous self-
similar functions

() = d0y°, y=1-7, an

On(Y) = 0.+ (0, =0y, (12)

satisfying the scaling relationships

dAY) =A°d(y), On(AY) -0, =A"(a,(y) - 0,).

Here, 0, isthe impurity concentration at the interface
between the solid phase and two-phase zone, o, is the
impurity concentration at the interface between the
two-phase zone and the melt, and € is the length of the
two-phase zone. The scaling parameter D, which isthe
exponent in spatial distributions (11) and (12), playsthe
role of the dimensionality of fractal objects[2]. If frac-
tal-like scaling spatial dependences (11) and (12) accu-
rately approximate exact analytical solutions (8)—(10),
thisfact testifiesto thefractal structure of the two-phase
zone. Asis easily seen, o, in Eq. (12) is the nonfractal
section of the function o,,(x). In other words, the impu-
rity distribution o,(X) near the two-phase-zone-melt
interface is not fractal, because virtually no displace-
ment of impurities into the melt at this interface takes
place.
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InFig. 1, it is possible to compare the exact solution
to model (1)—(7) with Egs. (8)—(10) and power depen-
dences (11) and (12) for an iron—nickel aloy with the
following therma and physical characteristics: A, =

0.1 ca/(cms°C),A,=0.177 ca/(cms°C), p,= 7 g/cm?,
p, = 7.8 glcm?®, D, = 1.0 x 10° cm?/s, C,
0.057 cal/(g °C), C,= 0.102 cal/g °C, m= 2.65°C, L,
3786.6 cal/cm?, and 6, = 1529.5°C.

The good agreement between the scaling depen-
dences and the analytical solution corroborates the
hypothesis about the fractal-like structure of the whole
two-phase zone. We emphasize that, according to
Egs. (11) and (12), the volume fraction and the impu-
rity concentration inside the zone are determined only
by their values at its interfaces and are independent of
the scaling parameter, which is D = 1.37 + 0.05 for all
the curves in Fig. 1. Small variations in the impurity-
distribution coefficient strongly influence the scaling
parameter D. Figure 2 shows the coefficient D as a
function of theinitial impurity concentration g,., in the
melt for various values of the equilibrium distribution
coefficient k. As this concentration increases, the
dependence becomes amost linear, whereas, with
decreasing 0,.,, nonlinearity appears, because D — 1

g,,(x)

0.40

0.05 0.35

0.30

| | S~ |

0 0.2 0.4 0.6 X
Fig. 1. Volumefraction of the solid phase ¢(x) and impurity
concentration o,(X) for a Fe-Ni alloy at temperature gradi-
ents g, = 20°C/cm and gg= 120°C/cm (¢, = 0.123) and gs=
100°C/em (¢4 = 0.097) according to the exact analytical
solutions from data [12]. Solid and dashed curves are the
dependences corresponding to fractal-like distributions (11)
and (12). The vertical straight lines are the boundaries of the
dimensionless length € of the two-phase zone for k = 0.68.
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D
1.8

1.6

1.4
1.2

1.0 | | |
0 0.1 0.2 0.3 0.4 O

Fig. 2. Scaling exponent D vs. the impurity concentration

0], in melt far from the two-phase zone for k = (1) 0.63,
(2) 0.68, and (3) 0.73.

O
0.4
0.3
0.2
0.1

0 1 1 1 1
0.1 0.2 0.3 0.4 0.5 Ol

Fig. 3. Volume fraction of the solid phase ¢, vs. the impu-
rity concentration o ., in melt far from the two-phase zone

for k=0.68.

Fig. 4. Fractal-like law (12) and experimental data [15] for
the two-phase zone developing in time.

for small g,,,. Thelast property can be shown by means
of the asymptotic expansions of integral relationships
for small ¢, values (0 < ¢ < ¢4 < 1). We substitute the
following approximationsfor ¢, — 0into Egs. (8)—10):

Do(9) 01, h(9) 01, Ao($) UA,,

1-0> My(9), My(¢)OG(d-1),
B O-po— N,A,G, .

We obtain

Om($) = 01

x [1 +G + 1GT'k((1—¢)1‘k— 1)}(1—4))“, (13)

ALEXANDROV, IVANOV

X 1
~: =Glclm£(0m(¢)—0m(o)), (14)
1
€= m[cm(d)*)—cm(o)]- (15)

Expanding Eg. (13) into aseriesin ¢, we have

0n(®) = 01+ G+ fr+ G- D1 -8 |. 16)

Further, combining Egs. (14)—(16), we obtain

1 SO v 1 X
ol wrs Sl L
1 Gigq oL
€G|%‘+Gl_l—|@(l k)*q)*’

which indicates that
O =0sl-35 u-0.

Now, approximate expression (16) can be represented as

(17)

On($) = o,m[1+G, +8G|£}. (18)
O
Taking into account that
o0n(0)=0,=0,(1+G),
On(Px) =0, =01,[1+ G +eG],
we abtain from Eq. (18)

¢

o-m(cl)) =0+ (0* _Gs)q)*

= 0.+ (0, ~0) -1

Further, the comparison of Egs. (11), (12) and (17),
(19) indicates that the similarity coefficient D - 1 for
the limiting case ¢, < 1. In Fig. 3, where the solid-
phase volume fraction is shown as a function of the
impurity concentration at infinity for an iron-nickel
aloy, it is seen that the inequality ¢ < 1 is valid for
small o,,. Therefore, the tendency of the scaling coeffi-
cient to unity for small initial impurity concentrations
can be considered asjustified by the model.

Analyzing Figs. 1-3, we generaly conclude that
universal scaling dependences (11) and (12) coincide
with exact analytical solutions (8)—10) when the expo-
nent D takes fractional values different from the space
dimensionality. Thus, this result makes it possible to
interpret the quasi-equilibrium two-phase zone as a
fractal-like object in the context of the solidification
mode being considered [model (1)—(7)].

The natural question arises of whether or not this
property holds during the evolution of the two-phase

(19)
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zone. Figure 4 shows the impurity concentration ahead
of the interface between the solid phase and two-phase
zone (x = 0; here, x and € play the role of dimensional
variables) for a KCl water solution crystallizing in
unsteady conditions according to data [15]. At times
T > 60 s after the onset of solidification, concentrational
supercooling ahead of the plane front leads to the
appearance of a metastable region; i.e., the two-phase
zoneis formed. Asis seen in Fig. 4, the concentration
profile tendsto a certain steady value asthe crystalliza-
tion time increases (in other words, spacing between
the impurity-concentration distributions decreases with
time). Nevertheless, even at stages of crystallization
with unestablished characteristics of the two-phase
zone, Eq. (12) accurately describes the experimental
curves. The scaling parameter for thissystemisD = 2.7
for al the curves in Fig. 4 obtained by the authors
of [15] for various moments of time. In fact, these
experimental data corroborate the proposed hypothesis
about the fractal structure of the two-phase zone in the
process of its development with the constant scaling
exponent D.

The above results make it possible to conclude that
the structure of the two-phase zone follows universal
fractal—scaling regularities.
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Owing to anincreasing interest in the investigations
of electrodynamics of transient and pulse processes in
irregular transmission lines, including the propagation
of ultra-wideband electromagnetic pulses (UWB
EMPs) [1] in these lines, new problems arise in
waveguide electrodynamics. Models developed for the
numerical investigation of monochromatic (~e'*) pro-
cesses are virtualy inapplicable to UWB EMPs,
because the numerical inversion of Fourier integrals of
the monochromatic components of a UWB EMP field
which are also numerically obtained in irregular
waveguides cannot provide satisfactory accuracy, and
the accuracy cannot be checked due to the very wide
frequency spectra. This fact forces us to abandon the
frequency representations and to develop new, more
general calculation methods providing a high accuracy
and the possibility of error checking.

In this paper, we present the results of investigating
the capabilities of the variational method for solving
time-dependent waveguide equations with the example
of aplanar waveguide in the form of an irregular layer.
We use the Cartesian coordinate system, where the
y-axisisdirected across the waveguide layer under con-
sideration and the z-axis coincides with the direction of
wave propagation inside the layer. This layer is sand-
wiched between perfectly conducting bodies whose
boundariesarey = —a,(2 and y = a,(2), where a,(2) and
a,(2) are continuous functions such that a,(z) = 0 and
a,(2) = 0 and they do not simultaneously vanish. There-
fore, the layer width is nonzero for arbitrary z. A(2) =
a,(2 + a2 > 0. It is also assumed that a,(2) = a,, =
const and a,(2) = a,, = const for z< 0, so that itswidth
in the half-layer z< 0isA(2) = a;y + &, = 4y = const.
The shape and parameters of the layer, as well as the
wave field components, are assumed to be independent
of the x coordinate.

We introduce dimensionless quantities by dividing
al the length-dimension quantities (coordinates a,(2),
a,(2), etc.) by a certain convenient linear scale L and

Sate Institute of Strategic Sability Ministry
of Atomic Energy, Moscow, Russia

time by % (c isthe speed of light in vacuum). The des-

ignations for the dimensionless variables are the same.

Let apulse of thetransverse electromagnetic (TEM)
structure propagate from the regular half-layer (z < 0)
towards its irregular section. As the pulse attains the
irregular section of the layer, it is not only partially
reflected, but also transformed into transverse-mag-
netic (TM) modes.

Applying a variational method similar to [2], we
decompose the only magnetic-field component
(directed along the x-axis) in the modes of the compar-
ison waveguides

wherefi(z 1), j = 1, 2, ... are unknown amplitudes and
g(y,2) = cos[r[(j -1) al(AZz—Z;y} arethe basisfunctions

for planar waveguides. In this case, the amplitude
f,(z t) corresponds to the magnetic field of the TEM
mode, whereas the remaining amplitudes fi(z t), j = 2
correspond to the TM-mode magnetic fields (E,;_,
waves). The set of time-dependent waveguide equa-
tions in the matrix designations coincides in form with
Eq. (7) from [2]:

a7 of
a_z[e(z) o Q(z)f}

) )
ﬁ - 0
or

wheref(z t) isthe unknown column vector whose com-
ponents are the amplitudesf.(z t) and the matrix coeffi-
cients G(2), Q(2), P(2), and ‘f‘(z) are determined by their
elements

~QRL-PQf-T@)

ay(2) ay?)
— -1 —
G = I e eedy, T;= I ue;edy,
-a,(2) —2(2
a2

Qj = I 8_l(ej')z('3*|d)/v

-,(2)
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a2

Pi= [ e7{(g),(8),+(),(e);} dy.
-a,(29

Here, the subscripts z and y designate differentiation
with respect to these variables, and € and 1 are the per-
mittivity and permeability of the medium.

We consider set (2) together with the initial condi-
tions

fZ0)]p = 0@, 220, = ~(e0) '@,
f(z)]<o = 0, fzt),_, =0, 3)
s=2234,..,

where the function ¢(2) corresponding to the initial
shape of the pulseis considered to befinite and concen-
trated inside theinterval a < z< 3 in the regular section
of the layer (a < B < 0). Since only a certain finite
region A\ of dimensionless variableszand t (A = {z <
2<7,0<t<T})isusudly of interest and z; < a, z, >
0, T<min{|z, + al, |z, - B|}, we supplement Egs. (3)
by the auxiliary boundary conditions

f(z,t)=f(z,)=0, 0<t<T. @)

The problem involving Eq. (2) with conditions (3) and
(4) isclosed and makesit possible to find f(z, t) numer-
icaly on a discrete mesh in the rectangle A.

We also present the total energy density W(t) of the
pulse per unit layer width along the x-axis,

7, a2

W(t) = J’dz J’ dy

2z -2
0 , O il
Eu(zesfs) +e [B()’(Zesfsdn)%}
- V2e, -t o) d g 5
+e {(eu) e.0(2 JO’(Ze ), n}g

which must be independent of t. This property will be
used to estimate the accuracy of calculations.

Figure 1 showsthe line profile chosen as an example
(a,(2 = 0.5; a,(2) =[0.05 + 0.45co8(T)] for0<z< 2
and a,(2) =0.5for z< 0 and z= 2) such that A, = 1, and
the gap width in the narrowest section (for z = 1) is
Ag
10
as a function of z for the fixed t = (1) O, (2) 1, (3) 2,
(4) 3, and (5) 4. These plots describe the dynamics of
change in the shape of the TEM component of the

equa to — =0.1. Figure 1 also showsthe plots of f,(z t)
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Fig. 3.

pulse. The calculations were carried out retaining Six
termsin sum (1) and with € = p = 1. Derivativesfor the
mesh steps hz = 0.01 and ht = 0.004 were calculated
with an increased accuracy by the differentiation for-
mulas based on five and seven points for the first and
second derivatives with respect to z, respectively, and
on three points for derivatives with respect to't.
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Table
VWT; N=9 N=12 N=15
VWV; 8.7598 x 1071 | 8.7522 x 107! | 8.7488 x 1071
lez 1.1081 x 107! | 1.1135x 10! | 1.1178 x 102
0
vW73 1.4333 x 102 | 1.4090 x 102 | 1.3960 x 1072
0
vWTz 9.9306 x 102 | 1.0120 x 10 | 1.0108 x 1072
VWlS 1.6001 x 1073 | 1.5997 x 103 | 1.6345 x 1073
0
vW76 1.8852 x 107 | 1.9335x 1073 | 1.9527 x 1073
0
VW_V_; 57760 x 107 | 6.2584 x 10~* | 6.3244 x 107*
VWTS 5.2230 x 104 | 5.6044 x 104 | 5.6511 x 10~
0
vWTz 1.3797 x 10# | 1.8290 x 1074 | 1.8832x 1074
1 —\%0 2.9261x10* | 2.9361 x 10 | 2.9337 x 107*

Figure 2 shows the plots of f,(z t), which corre-
sponds to the E,; mode as a function of z for the same
fixed values of t asin Fig. 1. Curvesindicated by iden-
tical numbers in Figs. 2 and 1 correspond to identical
values of t. The dynamics of formation of the E;; mode,
whichisabsent att = 0{f,(z 0) = 0, curve 1) due to the
partial transformation of the TEM mode into the E,
mode in the irregular section of the line, are shown.

The accuracy of calculationsisillustrated in Fig. 3

by the quantity [1—%} as a function of t {W, =
0

W(0)}. The same approximation, which is still far from

the capability limit of current personal computers, pro-

videsahighly accurate determination of W(t) witharel-

ative error of ~0.03%. The table presents the relative

W.
energi%vvj calculated for the TEM (j = 1), Ey, (j =2),
0
and Egg (j =9) modesatt=4for N=9, 12, and 15 with
errors %L—V%E which are equal to ~3 x 10* and

depend only weakly on N. The table indicates that the
choice of N = 6 in the example under consideration is
justified.

Asis seen, the accuracy of the method considerably
exceeds the current experimental accuracy (~5%).
Therefore, there are new possibilities for investigating
UWB EMPs, including new approaches in developing
standard devices for the calibration of UWB-EMP sen-
Sors.

Figure 3 also shows the relative values of that frac-

W, (t . ,
tion of the energy density W) per unit length which
0
penetrates through the narrow section z = 1 and the
W_(t)

reflected fraction asfunctions of t. Thefunctions

Wo
W, (t) and W_(t) were calculated by Eq. (5) after replac-
ing z, by 1and z, by 1. Inthis case, W, (t) + W.(t) = W().
For t = 5, energy penetration isvirtually completed at a
penetration level of 36.7%.
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1. Ferroelectric magnets are the crystals simulta-
neously combining properties of ferroelectrics or anti-
ferroelectrics and ferromagnets or antiferromagnets. In
other words, ferroel ectric magnets are modifications of
ferroelectrics, on the one hand, and magnets, on the
other hand. They can fulfill many functions of ferro-
electrics and ferrites and, therefore, can serve asabasis
for the development of multifunctional elements of
radio circuits.

Up to now, coupled ferroelectric—magnetoelastic
waves were considered only for ferroelectric antiferro-
magnets and ferroelectric ferromagnets [1-3]. Studies
of coupled wavesfor antiferroel ectric ferromagnets and
antiferroelectric antiferromagnets were not carried out.

We will consider an antiferroelectric ferromagnet
consisting of three subsystems interacting with each
other, namely, magnetic, elastic, and ferroelectric sub-
systems, and write out its energy in the form

H=Hy+Hy+He+Hyy +Hyp t Heye (D)

Here, Hy,, Hy, and Hi are the energies of magnetic,
elastic, and ferroelectric subsystems, respectively; the
rest of the terms represent the energies of correspond-
ing interactions. The energies of uniform and nonuni-
form exchange and of relativistic interactions are taken
into account in the Hamiltonian of the magnetic sub-
system in an externa field. The elastic subsystem is
considered in aharmonic approximation, and the recip-
rocal dielectric susceptibility and correlation properties
are taken into account in the Hamiltonian of the ferro-
electric subsystem. Magnetoelectric energy, naturally,
isrelativistic.

2. We write out Hamiltonian (1) in the approxima-
tion of secondary quantization. To this end, the mag-
netic momenta M are expressed in terms of the Hol-
stein—Primakoff operators a*, a; the vector of eastic
displacements u is expressed in terms of operators of

creation and annihilation of phonons by, by (see,

Bashkortostan Sate University,
Ufa, ul. Frunze 32, 450074 Russia

e.g., [4]); and the deviation of the polarization vector
from the equilibrium value P is expressed in terms of
the creation and annihilation operators of segnetons

dzéu ’ dkéu [2]

Furthermore, for diagonalization of the Hamiltonian
of the magnetic and ferroelectric subsystems, we use
the Bogolyubov canonical transformation

-1/2 ik
a, = uc +vic,, a=V Zake' "
k

_ xRNt
Aisa = UksayDisy + VisayD—ksy-

Then, Hamiltonian (1) can be written in the form

_ M _+ U, .+ +
H = z € GG T Z ExsDislks + z EvsaDksaPrsa
k ks kda

U + +
+ Ez Lpl'l/lsuck[b—ks_ byd + Z ‘Pﬂ”aick[ D_xsa — Disal
ks kda

+ ]
+ z LPEéuasDkéa[b—ks_ bks] +h.c. 0
kdas O

where g}, & (s=1,t, 1), Ee 3=1,2; a=1,2) are
the energies of corresponding branches of spin, elastic,
and ferroelectric waves. The parameters of magne-
toelastic and magnetoelectric interactions are defined
by the expressions

Y
wsu =1 _S(bimn"'2M0bijmne3j)QikeEmkn'
2p8ks

Here, the first and second term correspond to the pi-
ezomagnetic effect and magnetostriction, respective-
ly; eﬁ is the unit polarization vector of photons; i, j, m,
n=XxYy,z

—_ *x
Qik = el +efvy,
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M 1 :
ei:‘_—, ei=——ei+lei,
3 M, 0 ﬁ( 1 5i)
e s (Mg, Hp), & = [ese];
and
AUM
Wit = — _fo(aim+2Moaijme3j)
8T[8k5a (2)

x eEi Qmk(Usya— Visya)

where the first and second terms describe the linear
magnetoelectric effect and magnetic anisotropy in-
duced by vector P, respectively. The electroelastic cou-
pling parameter has the simple form

. / A
LPESUGS =1 ﬁ(wijmesieijkm
8T[pa(6cx8ks

+iv ij mneEi eimkj kn ) ( U kdya — Vkéyu) '

where w;;r, is the piezoel ectric-constant tensor and Vi,
is the tensor related the polarization irregularities and
strain.

The eigenfrequencies of magnetoelastic waves are
found from the equations of motion for secondary
quantized operators. Up to the terms quadratic in the
coupling constants, the dispersion relation has the form

[ (& - e (6 —£) (& - El)

sda

2 2 2
45 WP ed el [ @ - Efso) (0" —e) (@£
S

S#s

43 Wl el B [ @ -80)@'-Eisa)
da

(8, a')# (3, a)

-4 Z |LIJESUGS| ZSEsEkéa

das

2 U4, 2 2 _
X |_| (W —&) (W —Eisq) = 0.
s#s, (d,a')# (5 a)

3. Interaction between spin waves and ferroelectric
waves (2) depends on the direction of the vector k with
respect to the magnetizations and polarizations of sub-
lattices, external magnetic and electric fields, and mag-
nitude of thefield itself for various magnetic and ferro-
electric waves. We consider particular cases (coupling
constants that are equal to zero in our approximation
are omitted).

KYZYRGULOV, KHARRASOV

(8) Thecasek||Z
WL = Valag(uc+ vy) +ia,sn8(u—v,)
+2Mof{ 8y, SINB(Uy + V)
+i8,,50°0(U = Vi) } [Uieass — Vil
W = Yoli(a,,sin8 —a,,cost) (U, —v,)
+2Mo{ @y, SINO(U, + V)
+i8,,SN°0(U = Vi) } [V — View ;
(b) The casek ||,
WL = —yalay(Uc+ vy) —iaysind(u —v,)
+ 2MO{ azxySine(uk + Vk)
+i8,,8N°0(U = Vi) H [Upaas = Viewd
Wi = Valay(Uc+ vy) +ia,sne(u—v,)
+2Mof{ 8y, SINB(Uy + V)
+ 18, SN B(U = Vi) } [Uiass — Vieous]
(c) Thecasek|| X;
Wi = vali(a,,Sin8 —a,,cose) (U, —v,)
+2M{ ayxysine(uk +Vv,)
+i8,,8n°0(U— Vi) } [Uias = Viaa] »
Wi = —Yalay(Uc+ V) — ia,0088(u,—v,)
+2Mof @, SINB(U, + V)

+i8,,8N°0(U = Vi) H [Uszas = Vil

where
AuM H
Vs = __Ll__f_o cosf = —:
ATl Hp

H2
snb = __01 H|3 = MO(BZZ_BXX)'
N Hg
We can see that with an increasing magnetic field,

switching of the coupling between the spin and ferro-
electric modes occurs.

The general pattern of coupled ferroel ectric—magne-
toelastic waves in the absence of the externa field for
the case k || X has the form presented in the figure.

It is clearly seen in the figure that a coupled ferro-
electric-magnetoelastic wave is consistent with the
proper oscillations of various subsystems in different
regions. Therefore, moving along it, we can pass from
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spin waves to acoustic waves, then to ferroelectric
waves, €etc.

4. Asis well known, in antiferromagnets, a reduc-
tion of the gap in the spin-wave spectrum occurs within
the region of a phase transition. Along these lines, an
increase in the coupling of magnetic oscillations with
oscillations of the elastic medium was observed in [5].
Within the region of the magnetoelastic resonance, in

which s{l" = et’s (the region of intersection of the spin

IIl/ISU

&
for the interaction parameter. It is seen from this
expression that reduction of the gap in the spin-wave
spectrum results in an increase in the coupling coeffi-
cient of the subsystems. The effect of a magnetoelastic
gap or hardened lattice can serve as an example [5].
Under usual conditions, as arule, EMY < 1. However,
within the region of the phase transition, when the mag-
non gap in the spin-wave spectrum loses its positive
definiteness and only the magnetoelastic gap remains,
the coupling coefficient approaches unity, EMY = 1.

A similar phenomenon can be observed in antiferro-
electric ferromagnets. The cal culations show that in the
region of the antiferroel ectric—ferroel ectric phase tran-
sition, a sufficient reduction of the gap in the spectrum
of the first and second ferroelectric branches is
observed. As was mentioned above, the parameter of
the magnetoel ectric coupling within the region of the
Wis1
E1
Due to the fact that, away from the phase-transition
region EMF = 104, the gaps in the spectrum of spin and
ferroelectric branchesare € = 1010 s™! and Egs; = 10257,
respectively, in the phase-transition region (under con-
dition s(“," < Eys1), the parameter of the magnetoel ectric

coupling becomes larger by three orders of magnitude
and attains EMF = 10-'. This high value of the coupling
coefficient is of a considerable importance from the

branch and acoustic branch), we can write EMY =

magnetoel ectric resonance has the form EMF =
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Coupled ferrod ectric-magnetoel astic waves for k || X.

standpoint of signal transformation, since it makes it
possible to transform a magnetic signal into an electric
one and vice versawith aminimal |oss.

It should be kept in mind that this effect can exist
only in ferroelectric magnets with a ferroelectric Néel
point lower than the magnetic Curie point.
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It is known that aging under load in Ti-51 at. % Ni
polycrystals results in the change of microstructure in
contrast to aging in afree state. Inthe grainsoriented in
the (110direction, under tensile load, one crystallo-
graphic variant of dispersed TisNi, particles grows
under applied tensile stress in the el astic range; without
load, four variants of particles grow [1]. Consequently,
using Ti-51 at. % Ni single crystals for experimental
investigation of aging under load allows us to control
the microstructure of crystals, to exclude the effect of
boundary grains, and to study the dependence of the
shape memory effect and superelasticity on the number
of crystallographic variants of the particles. Earlier, we
showed that aging without load in Ti-51 at. % Ni single
crystalsis accompanied by a precipitation of four vari-
antsof Ti—b1 at. % Ni dispersed particles TigNi,, which
do not undergo martensitic transformations [2]. The
aging of Ti-b1 at. % Ni single crystals under tensile
load in the (1110and [122[directions was supposed to
result in the growth of one variant of particles, as was
predicted theoreticaly [1]. In this study, the effect of
the number of variants of dispersed particles on the
shape memory effect and superelasticity in the
B2-R-B19" martensitic transformation was determined
in Ti-b1 at. % Ni single crystals.

Single crystals of Ti-51 at. % Ni were grown by the
Bridgman method. The preparation technique for sam-
pleswas presented in [2]. Aging under aload of 150 MPa
was carried out in vacuum. The sizes, volume fraction
of dispersed particles, and interparticle distances deter-
mined by electron-microscopy observations for sam-
ples aged without load and under load are presented in
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University, Tomsk, Novosobornaya pl. 1, 634050 Russia
**Baikov I nstitute of Metallurgy and Materials Science,
Russian Academy of Sciences, Leninskii pr. 49, Moscow,
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the table. It is seen that the particle sizes vary from 40
to 430 nm when the aging temperature takes on values
from 673 to 823 K. The volume fraction of particles
f=9% and the nickel concentration Cy; = 50.5 at. %
after aging are approximately equal in al the aging
regimes and are independent of the number of variants.
The average distance between particles L in the case of
one variant is less than the value for the case of four
variants.

Figure 1 shows the heat-release curves obtained by
the method of differential scanning calorimetry (DSC)
and temperature dependence of the electrical resistance
p(T) for crystals aged without load and under load. Fig-
ure 2 shows the temperature dependence of the yield
load, and superelasticity loops for the same crystals are
shownin Figs. 3 and 4. The table also contains the val-
ues of the shape memory effect and superelasticity for
crystals. The analysis of data presented in the table and
in Figs. 1-4 shows that the value of shape memory
effect and superelasticity, martensitic-transformation
temperatures Mg, M;, A, and A;, and the strength prop-
erties depend on the number of variantsand on the sizes
of dispersed particles. First, the comparison of the DSC
and p(T) curves (Fig. 1) for crystals A; and B, aged
under load with one variant with the corresponding
curvesfor A, and By, aged without load with four vari-
ants shows that the points M, and My, for crystals with
one variant of particles are 10 K higher than the corre-
sponding temperatures for crystals with four variants.
Earlier, it was shown [2] that M, is associated with the
R-B19" martensitic transformation in the field of local
loads of Ti;Ni, particles; My, with the transformations
in regions free of particles. Second, it is seen in Fig. 2
that the g, ,(T) minimum, which corresponds to the
temperature of the martensitic-transformation onset in
the material bulk, lies at a higher temperature for A,
crystals than for A,y crystals, and o, ;(My) for crystals
A;isabout half the value for Ay,. Qualitatively similar
dependences are obtained for crystals B; and Byy.
Third, the temperature range of the stress-induced mar-
tensitic transformation AT and the temperature range of
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superelasticity AT for crystals C are sufficiently wider
than the respective ranges for crystals A and B (see
Figs. 24 and table). For the same size of particlesin C,
crystals, ATy = 135 K is 15 K higher than the value for
C,y crystals (Figs. 3 and 4). Fourth, the values of the
shape memory effect and superelasticity for A, B;, and
C, crystals are less than the respective values for A,
By, and C,y crystals (see table). The dependence of the
shape memory effect and superelasticity on the micro-
structure parameters is physically associated with the
features of the martensitic-transformation devel opment
in structurally inhomogeneous crystals containing
Ti;Ni, particles, which do not undergo the B2-R-B19'
transformation. In titanium—nickel crystalswithout dis-
persed particles, the main twinning type for B19' mar-
tensiteisthe I1-type twinning [0110] whereas the twin-
ning type changes in the case of precipitating TizNi,
particles, and B19'-martensite crystals contain a high
density of compound twins [00100(100) [4, 5]. The

g
B
I
e
"g /__/——‘_””T A
%. vl Mg, lMS[ As '
o
: ¢ I
4
AS
1 1 1 1 1 1 1 1

193 213 233 253 273 293 313 T,K

Fig. 1. DSC curves and temperature dependence of electri-
cal resistance p(T) for Ti-51 at. % Ni single crystals after
various thermal treatments: (1) p(T) and (3) DSC at 823 K
for 1.5 h without load (Ay), (2) p(T) and (4) DSC at 823K
for 1.5 h under aload of 150 MPa (A)), (5) DSC at 773 K
for 1 h without load (B)y/), and (6) DSC at 773 K for 1 h

under aload of 150 MPa (B,).
2002
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density of compound twins increases with decreasing
distance between particles [5] and, consequently,
depends on the number of variants of particles, since
the distance between particlesfor crystals A, B,, and C;
with one variant of particlesis less than the value for
A, By, and C, with four variants. Therefore, the den-
sity of compound twins in A, B,, and C, crystals is
higher than the density in Ay, B,y, and C,, crystals.
Since dispersed particles suppress the detwinning of
martensite crystals[5, 6], first, for the same crystal ori-
entation, e.g., [1110] shape memory effect in single-
phase crystalsis significantly larger than the effect in
crystals with particles (see table). Second, in the het-
erophase [111[krystals, shape memory effect depends
on the particle size, interparticle distance, and the
number of particle variants[2]. Therise in the volume
fraction of dispersed particles in [1110crystals of
Ti-51.3 at. % Ni, Ti-51.5 at. % Ni after aging at
823 K for 1.5 h, significantly reduces shape memory
effect from 4.8% in A, Ti-51 at. % Ni crystals to
3.5%. This decrease is caused by decreasing of inter-
particle distance with the increase in the volume frac-
tion of dispersed particles. The same effect is respon-
sible for decreasing shape memory effect and super-
elasticity when transitioning from four variants to one
variant of particles (seetable).

0-0,13 MPa

1000

800

600

400

200

0

77 173 273 373 473 T,K
Fig. 2. Temperature dependence of yield load for
Ti-51 at. % Ni single crystals under tension after various
thermal treatments: (1) and (2), at 823 K for 1.5 h without
load (Ay) and under aload of 150 MPa (A,), respectively;
(3) and (4), at 673 K for 1 h without load (C;/) and under a

load of 150 MPa (C;), respectively.
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Fig. 3. Temperature dependence of the superelasticity loop for Ti-51 at. % Ni single crystals aged at 823 K for 1.5 h: (1) without

load (A\/) and (2) under atension load of 150 MPa (A)).
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Fig. 4. Thesameasin Fig. 3, but at 673 K for 1 h: (1) C;y crystalsand (2) C, crystals.

Thus, a self-accommodated system of type-ll
twinned martensite crystalsisformed in Ti-51 at. % Ni
single crystals without particlesat T < M. This system
gains strain €, under load and transforms into a B19'
martensite single crystal without structural defects
associated with the motion of twins and intervariant
interfaces. Heating of the sampleto T > A; resultsin the
transformation of a B19' single crystal into aB2 single
crystal; strain g, restoresits origina shape [4]. In crys-
tals with one and four variants of particlesat T < M,,
B19' martensite has a high density of compound twins,
which cannot completely detwin the martensite crystal
under deformation because dispersed particles offer
resistance to the motion of twins. Therefore, the shape
memory effect €, in heterophase alloys is less than the
value for single-phase crystals and is caused not only
by the lattice deformation in the B2—-R—B19' martensi-
tic transformation, as in single-phase crystals, but also

by the lattice deformation in the B2—B19' martensitic
transformation with the subsequent combined twinning
of B19' crystals [2, 3, 6].

Dependence of M, and g, ;(My) in A and B crystals
on the number of particle variantsis associated with the
features of the heterogeneous nucleation of B19' mar-
tensite near dispersed particles and with the appearance
of long-range load fields in crystals with one variant of
particles. Precipitation of four variants of particles each
producing internal 1oad fields due to a differencein the
lattice parameters of the particle and matrix does not
result in the appearance of long-range uniform load
fields in the crystal due to their mutual compensation.
On the contrary, when one variant of dispersed particles
isformed, uniform long-range load fields are created in
the crystal [1, 4] due to superposed load fields from all
particles and result in the 10-K increase in the tempe-
ratures M, and My, (Fig. 1), as well as in g,,(M,)
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(Fig. 2). Using the local form of the Clapeyron—Clau-
siusrelation [3] gives us

AE°
AS™

Mg = To+ ey

am

where T, =

is the phase equilibrium tempera-

ture determined by the nickel concentration in crystals
after aging; AS™™ and AH*™ are the variations of
entropy and enthalpy in the B2-B19' transformation,
respectively; AEY = —gy¢; is the elastic energy of
defectsinthecrystal; o istheinternal load field around
defects, and ¢;; is the shape deformation (see table)
associated with the B2-B19' martensitic transformation
(MT) in heterophase crystals. It follows from Eqg. (1)
that, first, splitting into two R-B19'-MT peaks in A
crystals aged without load is caused by the appearance
of internal loads o;; = 140 MPa near particles. Second,
the 10-K increase in the martensitic transformation
temperatures in A; and B, crystals with one variant of
particleswith respect to the valuesfor A,y and By crys-
tals corresponds to the appearance of long-range load

Since shape memory effect in A; and B, crystals is
less than the effect for A, and By, crystals (see table),
the Clapeyron—Clausius relation [4]

AHZ"
€0

dog; _

dT

. _ dog,
indicates that o = T

must be larger than the value for four variants. Such a

for one variant of particles

513

dependence of a on the number of variantsis, in fact,
observed experimentally (Fig. 2, curves / and 2).

In C crystals containing one and four variants of
Ti;Ni, particleswith sizes of 40 nm, strength properties
of B2 phase are significantly higher than in A and B
crystals (Fig. 2). Asaresult, the range of stress-induced
martensitic transformation and the range of superelas-
ticity isalmost 5 times as large as the respective ranges
for A and B crystals (see curves 3 and 4 in Fig. 2).
Loads 0,,(My) in C crystals are considerably higher
than the values in A and B crystals, and the tempera-
tures of martensitic transformation are lower. This
behavior testifies to the stabilization of the B2 phase at
the expense of fine particles (Fig. 2). Finally, in C; crys-
tals, M determined by the temperature of the minimum
in g,,(T) is lower than the value in C, crystals,
whereasin A and B crystals, the inverse dependence is
observed (Fig. 2). This behavior indicates that the
mechanisms of nucleation of B19' martensite crystals
under cooling and load in A and B crystals can signifi-
cantly differ from those in C crystals. Indeed, in A and
B crystals, martensite crystals nucleate predominantly
inlarge particles, asindicated by the appearance of two
peaks associated with the R—B19' martensitic transfor-
mation. The critical nucleus size in A and B crystals
with one and four variants of particlesis less than the
interparticle distance. In contrast, the critical nucleus
sizein C crystals exceeds the interparticle distance and,
therefore, the elastic energy of martensite crystals
increases due to the inclusion of Ti;Ni, dispersed par-
ticles, which do not undergo the martensitic transfor-
mation.

Thus, for the first time, it has been shown that the
magnitude of shape memory effect and superelasticity,
the temperature range of superelasticity, and the tem-
peratures of martensitic transformation in aging

Microstructure parameters and functional properties of Ti—51 at. % Ni single crystals after aging under load and without load

; Distance Temperature
Size of Shape -
Thermal treatment ; between range of Superelasticity
particles, nm particles, nm |superdadticity, K memory, %
Aging, 823K, 1.5h |A, without load 430 360 30 5.45 4.8
A, under load 430 250 30 3.8 32
Aging, 773K, 1h B,y without load 100 140 40 55 4.5
B, under load 100 90 30 4.0 35
Aging, 673K, 1.5h |C,, without load 40 40-50 120 55 4.2
C, under load 40 - 135 5.0 4.0
DOKLADY PHYSICS Vol. 47 No.7 2002
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Ti—51 at. % Ni single crystals depend on the number of
variants of Ti;Ni, dispersed particles.
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Austenitic stainless steels with nitrogen content
Cy = 0.5-0.9 wt % and Hadfield steel Fe-13Mn-1.3C
(wt %) are extensively used in industry due to their
unique mechanical properties—Ilarge strain-hardening
coefficient, high plasticity, and increased wear resis-
tance [1-6]. The necessary set of properties in these
steelsis achieved by the combination of a high concen-
tration of interstitial atoms and low stacking-fault
energy Ysg = 0.020-0.030 Jm?. The main mechanisms
of the Hadfield steel hardening include twinning,
dynamic strain aging, and development of y—€ marten-
sitic transformations [1-15]. It is impossible to experi-
mentally separate these contributions for Hadfield steel
polycrystals, since slip and twinning occur simulta-
neously. Experiments on Hadfield steel single crystals
enabl e us to overcome these difficulties and to separate
the contributions of twinning and dip to hardening by a
special choice of crystal orientations and temperature
[1, 610, 13-15].

In order to reveal the nature of strain hardening in
austenitic steelswith a high content of carbon, we stud-
ied the orientational dependence of the deformation
mechanisms of Fe-13Mn-1.3C () and Fe-13Mn—
2.7A1-1.3C (II) (wt %) steels. The choice of alloys for
studies was based on the following reasoning. First,
mechanical twins are not observed in stedl-11 polycrys-
tals, and deformation occurs through dip [3]. In con-
trast, Hadfield steel-1 polycrystals are characterized by
high densities of twins, stacking faults, and perfect dis-
locations split into partial Shockley dislocations[1, 2].
Consequently, one can suppose that aluminum alloying
increases Ysp, and that mechanical twinning istherefore
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suppressed. However, data on direct measurements of
Ysr by electron microscopy on steel 11 are not available.

Second, aluminum alloying resultsin a positive rate
sensitivity of the flow stress, whereas the sensitivity of
the flow stress in Hadfield steel is negative [3, 4]. For
this reason, one can suppose that aluminum atoms
change the diffusion mobility of carbon, and dynamical
strain hardening in steel 11 a room temperature should
not be expected. Such a difference in the diffusion
mobility of carbon can result in the change of the dislo-
cation structure type for dip strain [1, 3, 5]. Thus, new
features of plastic deformation can be expected in steel-
Il single crystals compared to steel-1 crystals, because
the increase in the stacking fault energy of the matrix
Ysr and the decrease in the diffusion mobility of carbon
atoms upon aluminum aloying can change the ratio
between the mechanical twinning and slip. For thisrea-
son, the dislocation structure type—planar or cellu-
lar—for slip and, consequently, theregularities of strain
hardening can be determined.

Crystals of steels| and |1 were grown by the Bridg-
man technique in an inert gas. The technique of sample
preparation for studies was presented in [10, 13-15].

Figures 1 and 2 show the stress—strain curves for
single crystals of steels| and 11 together with the varia-
tion of the orientation (precession) of the tension axis
upon deformation. The dislocation structure of [001]

and [111] stedl-Il crystals deformed at room tempera-
tureup to € = 6-10% isshown in Figs. 3 and 4.
Comparison of the mechanical properties of crys-
tals | and Il shows that the critical shear stressest,, at
T =300 K are close to each other and, consequently,
addition of auminum does not result in additional
solid-solution hardening. Studies of the rate sensitivity
of stress 3 = AAl—gé in steel-1l single crystals at room

temperature indicate that (3 is positive for al orienta-
tions studied. In steel-1 crystals deformed through dlip,

i.e., in orientations [012], [123], and [001], B is nega-

tive, whereas in crystals with twinning, i.e., in [111]
and [011] orientations, 3 is positive [7, 10]. These
results for the rate sensitivity of the flow stress during

1028-3358/02/4707-0515%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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Fig. 1. Stress-strain curves and precession of the crystal
axis for the tensile deformation of single crystals of Fe—
13Mn-1.3C (1), Fe-13Mn-2.7AI-1.3C (I1) (wt %) steels at
room temperature: (1, 5) [011] orientation of sted I,

(2, 6) [011] orientation of sted |1, (3, 7) [111] orientation
of steel I, and (4, 8) [111] orientation of steel I1.
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Fig. 2. ThesameasinFig. 1, but for (1, 5) [ 123] orientation

of steel I, (2, 6) [ 123] orientation of steel 11, (3, 7) [001] ori-
entation of steel |, and (4, 8) [001] orientation of steel II.

dlip deformation in single crystals of steels | and |1
agree with the data obtained earlier for polycrystals of
these alloys [3, 4]. The stacking fault energy estimate
obtained via the technique of determining the width of
triple dislocation nodes showed that the addition of alu-
minum increases the stacking fault energy from
0.020 + 0.003 Jm? in crystals| t00.050 £ 0.005 Ym? in
crystals Il. An increase in yg: and change of (3 from a
negative value for steel | to a positive value for sted |1

ZAKHAROVA et al.

result in the change of the deformation mechanism
from twinning in steel | to dipin steel 11.

Deformation in [011] crystals of stedl | and in steel 11
occurs as twinning and dlip, respectively. With the
development of deformation in steel | through twinning

in the primary system [211](111), low values of the

strain-hardening coefficient 8 = %f for € < 10% are

connected by the Luders band. The further increase in
0 is caused by twinning development in both systems
with predominant twinning shear in the primary system
of twinning (Fig. 1, curves I and 5). In crystals Il,
deformation occurs as dip (Fig. 1, curves 2 and 6), the
large values of 8 are observed from the very onset of plas-
tic strain, and the plagtic flow develops at the single linear
stage with 8 = 1000 MPa= G/80 (G = 80000 MPais the
shear modulus of the Hadfield steel [6]). The disloca-
tion structure in stedl 1l turns out to be planar: plane
aggregates of dislocations and multipoles are observed
(Fig. 3). Slip lines are identified metallographically. In
contrast, for the slipin steel | in crystals[123], [012],

dlip lines are not observed, and plane aggregates of dis-
locations are absent in the dislocation structure [7].

Thus, aluminum aloying suppresses deformation
through twinning in crystals [011] of sted |l and
changes the type of the dislocation structure from the
uniform distribution in steel | to the planar dislocation
structure in steel 11. For dlip deformation, 6/G is equal
to 6,/G for dlip in other fcc crystals. Consequently,
the planar dislocation structure in austenitic steels
with a high concentration of carbon atoms provides
virtually the same rate of strain hardening 6 as multi-
ple twinning.

For deformation through twinning in several sys-

temsin[111] crystalsof steel |, B isless than the value
in stedl 1l (Fig. 1, curves 3 and 4), where planar dlip
occurs up to € < 10%, after which microtwins are
observed. The development of mechanical twinning in
severa systemsis responsible for the high 8 values and
the linear character of a(g) curvesin stedl | for the pre-
dominant development of a single primary system

[211](112) (Fig. 1, curve 7) [1, 3, 11-15].

In crystals 11, deformation with high 8 is caused by
the development of multiple planar dlip and microtwin-
ning (Fig. 4). The precession of the crystal axis is
absent, and microtwinning and dlip develop in severa
systems.

In[123] crystals, deformation up to € < 10% occurs
asdipinsteels| and Il (Fig. 2, curves 1, 2, 5, and 6).
However, the stages of stress-strain curves, the type of
the dislocation structure, the value of 8, and the rate
sensitivity of the flow stress 3 are different. Instedl I, 3
has negative sign, which is attributed to the develop-
ment of the dynamical strain aging at 7= 300K [4, 5].
High values of 8 = G/80 are caused by the intense accu-
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Fig. 3. Electron micrograph of the slip pattern under tension
of [001] single crystals of Fe-13Mn-2.7AI-1.3C (wt %)
steel for e =6% and T = 300 K.

Fig. 4. Electron micrograph of the dlip and twinning pattern

under tension of [111] single crystals of Fe-13Mn-
2.7A1-1.3C (wt %) steel for e=10% and T = 300 K.

mulation of dislocationsin crystals because of the high
mobility of carbon atoms upon deformation. In steel 11,
[ is positive, the processes of dynamical strain aging
are suppressed at T = 300 K, and high values of 6 =
G/80 result from the devel opment of the planar disloca-
tion structure and from interaction between plane
aggregates and multipoles.

Finally, in [011] crystals of stedl 1, twinning is not
observed, whereas a high density of interstitial stacking
faults and microtwinning is found in steel | [7, 10].
Therefore, higher values of 8in steel | are caused by the
simultaneous action of dip and twinning and by the
appearance of the additional substructural hardening
due to interaction between twinning and dlip (Fig. 2,
curves 3 and 4). In steel 11, the planar dislocation struc-
ture and the development of multiple slip provide val-
ues of 0 close to those found for stedl I.
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Thus, aluminum alloying of Hadfield steel increases
the stacking fault energy of the matrix, reducesthe con-
tribution of mechanical twinning to strain, and gives
rise to the development of the planar dislocation struc-
ture and to the high values of the strain hardening 6
coefficient upon slip deformation.

ACKNOWLEDGMENTS

The work of Prof. Sehitoglu was supported by the
National Science Foundation, grant no. CMS 99-
00090, Mechanics and Materials Program, Arlington,
Virginia. The part of the study carried out at Texas
A&M University was supported by the National Sci-
ence Foundation, grant no. CMS 01-34554, Solid
M echanics and Materials Engineering Program, Direc-
torate of Engineering, Arlington, Virginia.

REFERENCES

1. K. S. Raghavan, A. S. Sastri, and M. J. Marcinkowski,
Trans. TMS-AIME 245, 1569 (1969).

2. P H.Adler, G. B. Olson, and W. S. Owen, Metall. Trans.
A 17, 1725 (1986).

3. B. K. Zuidema, D. K. Subramanyam, and W. C. Ledlig,
Metall. Trans. A 18, 1629 (1987).

4. Y. N. Dastur and W. C. Ledlie, Metall. Trans. A 12, 749
(1981).

5. W. S. Owen and M. Grujicic, Acta Mater. 47 (1), 111
(1998).

6. M. A. Shtremel’ and |. A. Kovalenko, Fiz. Met. Metdll-
oved. 63 (1), 172 (1987).

7. Yu. I. Chumlyakov, I. V. Kireeva, E. |. Litvinova, et al.,
Phys. Met. Metallogr. 90 (Suppl. 1), 1 (2000).

8. Yu. |. Chumlyakov, H. Sehitoglu, I. V. Kireeva, et al.,
Dokl. Akad. Nauk 361, 192 (1998) [Dokl. Phys. 43, 415
(1998)].

9. Yu. I. Chumlyakov, I. V. Kireeva, E. I. Litvinova, et al.,
Dokl. Akad. Nauk 371, 45 (2000) [Dokl. Phys. 45, 101
(2000)].

10. E. G. Zakharova, 1. V. Kireeva, Yu. |. Chumlyakov, et al.,
Fiz. Mezomekh. 4 (2), 77 (2001).
11. L. Remy, Metall. Trans. A 12 (3), 387 (1981).

12. P. Mullner, S. Solenthaler, and M. O. Spiedel, in Twin-
ning in Advanced Materials, Ed. by M. N. Yoo and
M. Wutting (The Minerals, Metals and Materias Soc.,
Detroit, 1994), pp. 483-490.

13. I. Karaman, H. Sehitoglu, and Y. I. Chumlyakov, Scr.
Mater. 38, 1009 (1998).

14. |. Karaman, H. Sehitoglu, H. J. Maier, and Y. I. Chum-
lyakov, Acta Mater. 49, 3919 (2001).

15. I. Karaman, H. Sehitoglu, K. Gall, et al., ActaMater. 48,
1345 (2000).

Trandated by T. Galkina



Doklady Physics, \ol. 47, No. 7, 2002, pp. 518-521. Translated from Doklady Akademii Nauk, Vol. 385, No. 1, 2002, pp. 57-60.

Original Russian Text Copyright © 2002 by Grebenev, Demenkov, Chernykh.

MECHANICS

Analysisof the L ocal-Equilibrium Approximation
in the Problem of a Far Planar Turbulent Wake

V. N. Grebenev*, A. G. Demenkov**, and G. G. Chernykh*
Presented by Academician Yu.l. Shokin February 13, 2002

Received February 26, 2002

Semiempirical models of turbulence, which include
differential transport equations for the moments of
hydrodynamic quantities [1], are among the basic
methods of describing turbulence. In these models, the
closure procedures for infinite systems of coupled
equations for the moments often implicitly assume that
these systems of differential equations allow the exist-
ence of invariant sets (manifolds). As is pointed out
in[2], closure relations are, as a rule, derived using
empirical hypotheses and certain assumptions, which
are often poorly justified.

The correctness of replacing a differential equation
by the corresponding closure relation is verified by
investigating the consistency of the system used in the
model of the Nth order of closure with the differential
constraint (i.e., with the algebraic relation). The method
of differential constraints [3] provides the genera
approach to investigating overdetermined systems.
This approach can be used to justify algebraic models
applied to the calculation of the moments.

Theinvariant manifold introduced in [4] for an arbi-
trary system of evolution equationsisanatural general-
ization of an invariant set of asystem of ordinary differ-
ential equations and enables one to find certain classes
of differential constraints. The invariant manifolds
were used in [5, 6] for investigating the problem of the
development of a shear-free mixing layer in the third-
order closure model. Due to the differential constraints
derived, it was established that the equation of the
invariant manifold (differential constraint of the model)
coincides with the classical tensor-invariant Hanjalic—
Launder model [7] for an unstratified flow and with the
Zeman-Lumley model [8] for a stratified flow. Reduc-
tion of themodel on theinvariant manifold madeit pos-
sibleto find self-similar solutionsto the problem and to
separate a class of particular solutions[9].

*|nstitute of Computer Technologies,
Shberian Division, Russian Academy of Sciences,
pr. Akademika Lavrent’ eva 6, Novosibirsk, 630090 Russia
** Kutateladze Institute of Thermal Physics,
Shberian Division, Russian Academy of Sciences,
pr. Akademika Lavrent’ eva 1, Novosibirsk, 630090 Russia

L ocal-equilibrium approximations of second-order
moments are used while modeling turbulent flows (see,
e.g., [10]). In this paper, we analyze these approxima-
tions by using the method of differential constraints.
The dynamics of afar planar turbulent wake are inves-
tigated as an example. It is established that the applica-
tion of the local-equilibrium approximation is associ-
ated with a vanishing of the Poisson bracket for the
deviation of the averaged longitudinal velocity compo-
nent U, and of the turbulence energy e. Numerical
experiments carried out in the far wake verify this
result.

1. EQUATIONS OF THE MODELS

Two mathematical models are used to describe a
flow in afar plane turbulent wake. Model 1 isbased on
the classical (e, €) model of turbulence [11]:

ou, o _, ,
UOW = WDU vy (1)
de _ 0  Oe 3
3% thlay-i- P—e, (2)
Oe 0 Oe €

P-C.e). 3)

Here, U, istheremotevelocity; U, = U,— U isthedevi-
ation of the averaged longitudinal velocity component;
the angle brackets [ indicate averaging; the coeffi-
cients of turbulent viscosity v, and v, havethe form

2

€
v, = C

\Y}
TGS v = )

2
€

eistheturbulence energy; e isthe rate of dissipation of
turbulence energy into heat; and

p = vl
ay
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describes the generation of turbulence energy due to
gradients of the averaged velocity, where

v = (:e—ail C.e !

ay ay )

with T = g. In modédl 2, the tangential Reynolds stress
['v '[is determined from the differential equation [12]

pQvO_ 9 9ivD
o 9x ay Tay
! 1 aUl
~C, mvEE+c(pzeay (6)

where v, = CSC; V;,. Thus, mathematical model 2
includes Egs. (1)—(3) and (6). Relation (5) followsfrom
Eq. (6) in the approximation of local equilibrium. The
guantities o, C.,»C.,.Cu Cy, Cy, s and C, are empir-

ical constants (C,, = C,, C,). Dimensionless variables

O
9 = et U, Wva % (et U DvDs=

O

Derivation of Eqg. (5) can be related to the invariance
of the set & with respect to the flux generated by sys-

tem (1)~3), (6).

Below, we review certain definitions from [4]. Let

u = F'¢t,x,ut, ... u™ulus,), i =1,2,...,m

be the system of evolution equations E. The system is
complemented by differential constraints H of theform

hi(t, x, u', )=0, j=12..,p

where p = m. The expression G|, = 0 means that a cer-
tain equality G = O is satisfied on the set M. The differ-
ential constraints H define the invariant manifold of the
system E if the equalities

D) g opy =0 § =12 ...,p 8)

are satisfied. Here, the square brackets denote both the
system of equations and its differential corollaries with
respect to x.

Solutions to the equation for T

1 2
U U U

0T _ 10e eode _

o1 de P
X €0X 20X

_lmli\) — 4 ——
0 %e_ay gy €

eo 66

0
_;_za/ t26y (C P—Céze)g
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are introduced by using the body diameter D and the
velocity U, as scales of length and velocity, respec-
tively.

The above mathematical models are the simplest
ones. For better agreement with experimental data, one
should use much more complicated mathematical mod-
els, which have not yet been analyzed.

2. INVARIANT MANIFOLD OF MODEL 2

The algebraic model of local-equilibrium approxi-
mation (5) is derived from the closed equations of
model 2 by assuming that terms describing convective
and diffusive transfer in (6) are negligible. The correct
choice of an operator dominating in an eguation at a
certain stage of flow development requires the estima-
tion of thejoint contribution from all terms of the equa-
tion and must be justified (or refuted) by a certain for-
mal procedure based only on the eguations of the
model.

We consider the set &

[
'vO-C,t aiZQj @)
% 0
0 - . 01
= Uil c, %62 + 19 ¢ tee

Deay dy edy * oy

C..
+P_1 150 Mg ‘E—lcp +C.0
€ € ay . ay N
areimportant for proving theinvariance of the set %. At
0. =1 (thisvalueisrecommended in[11]) and C, =1
(the recommended value is equal to 1.4), the equation
has the solution

(X y) =Th(X) = U (C.,—1)(X + Xo).

The theorem below provides the criterion of the
invariance of 9.

Theorem 2.1. Let (U, €, €, ['v 'D) be a sufficiently
smooth solution to system (1)—3), and (6), and let
o.=C, = 1. Let us suppose that C, - C,C, =
Cu(C, — 1). Then, the set & is the invariant manifold
of system (1)—<(3) and (6) at T = 1, if and only if the
Poisson bracket is {e, U,} = 0.

Remark 2.1. Using the constants C,, , C,,, and C,
recommended in [12], onefindsthat the right-hand side
of the relation C, — C, C, =C(C,, — 1) is equal to
0.081. Therefore, C,, differsonly dlightlyfromC,, C, =
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Table 1. Variation of Bﬁ as a function of the distance from

GREBENEYV et al.

the body
| [l 1" v
725 019x%x10° | 019%x10° | 0.19x10°
925 011x10° | 011x10° | 0.11x10°
1125 066x107 | 0.65x107 | 0.65x 107
1425 035x107 | 0.32x107 | 0.32x10

Table2. Axial values of (eél)) turbulence energy, (g,
dissipation rate, and (U ) the deviation of the longitudinal

velocity component according to model 1

(1)

X (1) (1) (1)

D € €o Udo

725 0.145x 103 | 0.253x 10°° | 0.357 x 101

925 0.112 x 103 | 0.148 x 10°° | 0.335x 101
1125 0.929 x 1074 | 0.992 x 10~7 | 0.316 x 107!
1425 0.749x 104 | 0.626x 1077 | 0.294x 101

Table 3. Thesameasin Table 2, but according to model 2

X (2) (2) (2)

D € €o Udo

725 0.145x 103 | 0.253x 10°° | 0.358 x 101

925 0.113x 103 | 0.148 x 10°° | 0.335x 101
1125 0.930 x 1074 | 0.996 x 10~7 | 0.316 x 107!
1425 0.747 x 104 | 0.631x 107 | 0.294 x 1071

0.252 and is close to its value C, = C, C,, recom-
mended in [11, 12].

The simple examples of flows where the Poisson
bracket is {e, U;} = 0 are as follows: (i) a shear-free
flow with zero deviation of the averaged longitudinal
velocity component (U, = 0), (ii) aflow with the degen-
erate components ¢, = U,, = 0, and (iii) a flow with
equal rates of the generation and dissipation of turbu-
lence energy, i.e., P=e.

3. RESULTS OF NUMERICAL EXPERIMENTS

To illustrate the above statement, we have carried
out a series of numerical experiments by using mod-

els1and 2. Initial conditions specified at X—D—O =625 are

in agreement with experimental data on the degenera-
tion of a planar turbulent wake behind a round cylin-
der [13]. Theinitia distribution of the tangential stress
('v 'Ois specified by Eq. (5). A finite-difference algo-

rithm, its test and realization, and the results of its
application to the problems of freestream turbulence
weredetailed in[14, 15]. The calculations are performed
to double accuracy. Table 1 presents the quantity

L max|(Ul,e)] - (U,el)]
m?x(|D“ej|, 0"y

which is considered as a function of the distance from
the body and, at x = X", characterizes the mesh analog
of the Poisson bracket. Here, (U1,);, (U%,);, (€});,

();, (O, and (O"U,), are the finite-difference
approximations of the first derivatives and gradients at
thenodey=y; (j=1,2,...,N,—1). Column| showsthe

distance from the body % , and columns I, I, and IV

present 8" in the uniform meshes 1-3 with the param-
eters h, = 0.5, h, = 0.1; h, = 0.25, h, = 0.05; and h, =
0.125, h, = 0.025, respectively.

The calculations are based on model 2 and indicate
that the mesh analog of the Poisson bracket is close to
zero for al mesh parameters.

Tables 2 and 3 present the axial values calculated in
models 1 and 2, respectively, for the turbulence energy
€, = §(X) = &(X, 0), the rate of energy dissipation g, =
€(X) = &%, 0), and of deviation of the longitudinal
velocity component Uy, = U, (X, 0). According to these
data, which were obtained with the mesh parameters
h, = 0.25 and h, = 0.05, wake parameters calculated in
models 1 and 2 are close to each other. The difference
between the corresponding arrays of U, e, and € isno
more than the difference between the respective axial
values.

Thus, the above theorem and the cal cul ations show
that the approximation of local equilibrium is applica-
ble for determining the tangential Reynolds stress
['v 'On the dynamic problem of the far turbulent wake
behind around cylinder.
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The bending of an isotropic layer (half-layer) weak-
ened by anoncircular through hole was analyzed in [1].
A similar problem for an isotropic layer with a round
hole was solved in [2] by other methods. In many stud-
ies of a stressed state in a piecewise uniform layer, the
solutions to boundary value problems are determined
by the Vorovich semi-inverse method [3]. In this paper,
we propose anew analytical procedurefor investigating
the coupled electroelastic fields in alayer weakened by
cavities of quite arbitrary cross sections.

We consider a piezoelectric ceramic layer

—h<x3<h, —oo<xy, X,<00

weakened by through cavities tunneling along the Ox,
axis, which are holes whose cross sections are quite
smooth, closed contoursLy, j=1,2, ...,k nLj=@. We
assume that the layer ends are covered with a dia-
phragm, which is rigid in its plane and flexible in the
perpendicular direction. Let astressvector (N, T, Z) act
onthelatera sides of the cavitiesand auniform field of

tension and shear 07, 05, and 07, exist at infinity.
The complete set of equations determining a solu-
tion to the above problem (in the absence of bulk

stresses and chargesin the body) involvesthe following
equations:

(i) the equations of equilibrium
_ 0
ai - aXI )
where summation over repeated subscriptsisimplied;
(if) the equations of electrostatics
amDm = O! Em = _amq)v (2)

(iii) the Cauchy relations

d.o0,. =0,

i~ij

ihj =123, (1)

1
&j = é(aiuj +0;u;); 3)
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Bol'shaya Semenovskaya ul. 38, Moscow, 105839 Russia

** Qumy Sate University,
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(iv) the equations of state for apiezoelectric ceramic
materia preliminarily polarized aong the Ox; axis [4]

Ox = Cp& +Cp€y +C3€,— €5 F,,
Ty, = 2CuEy,—€sEy,
Oy = Cp&, +Cyy€y +Cy3€,— €5 F,,
Ty, = 2C44£xz_e15Exv

“)

0, = C13(8X + ey) + C33€,— e33Ez1

Txy = (Cll - C12)8xy’

Dy = € B+ 2€558,,, Dy, =gy E +2€e5€,,
D, = e5E, +€5(&,+€)) + e3¢,

(v) the boundary conditions on the layer basesx, = £h

O35 = 0, D3 =0; (%)

(vi) and the boundary conditions on the cavity sur-
face

u =0, u, =0,

ijnj = Pk1 k1 J = 11 21 31
D, =0, P; = Ncosy-Tsny, ©6)
P, = Nsing + Tcosy, P; = Z.

In what follows, it is appropriate to use the set of
equations of equilibrium in terms of displacements.
This set follows from Egs. (1)—<4) as

VO?u+cyudiu+0,6 = 0,
VOV +Cyd5v +0,0 = 0, O° = 85+05,
Cau0°W + Cou05W
+05{ C(0,u+ 0,v) + €509 + e53050} = O,
511524) + 533024) —915D2W

@)
—ey05w—05{e(d,;u+0,v)} =0,

1 1
U= _5(011"'012): V= _5(011_012)’

C=C;3*tCy, €= E5tey,

1028-3358/02/4707-0522%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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0 = U(0,u+0,v)+cozw+ed;h,
u, = u,

We seek asolution to set (7) that is symmetric about
the median plane X3 = 0 of the layer. We set

U, = vV, U = W.

2k+1
{u v} = Z{UkaVk}COSIkxsl Yk = h TT,

k=

{w ¢} = Z{Wk1¢k} SITY (X3
k=0

®)

In view of these relations, Egs. (7) yield
VKU, +09,6, = 0, VKVv,+0,8, =0,

C
LigWi + Lisdy + Uykek 0,

e
LogWy + Loy + Uykek 0,

Ke= 0" =YiHo, L= cull*=Vidy, Mo=7 )

Lig = Ly = 91552—\/562, Loy = V§53—511D2,
Ok = U(01Uc+ 0,V ) + YW, + Yiedy,
2 2

C ce
U’ 0, = €= 03 = €t

The integration of this set gives

0; = Cyun—

X3
h
(@)
0.5
0 1.5 Too
P

Fig. 1. Distribution of the relative circular streﬂs P

2,and 3 arefor h
1

=1, 2, and 4, respectively.
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p4(p~m) a Q(m) + 2| a

W2 —p20z 9z 922k

U—ivy = ZVKVZ

3

W, = vkz (dHn=8) ", k=01, ...,
; (10)
Oc = Vi Y (3= Q”,
m=1
5,=2-% 5 -%.%
4 c e! 5 c el

where the function Q(m) is an arbitrary solution to the
Helmholtz equation (1% - ykum)Q(m’ =0; Q isanarbi-

trary solution to the equation ([ — yop3) Q, = 0; ty, M=
1, 2, 3, are the roots of the bicubic equation [5]; and d
are known constants depending on the physical and
mechanical characteristics of the piezoelectric ceramic
material.

The functions Q{™ and Q, determine the potential
and vortex components of the solution, respectively. As
follows from Eg. (10), the above homogeneous solu-
tions are free of the biharmonic part.

The desired metaharmonic functions appearing in
Eqg. (10) are sought in the following form of simple-

5
h
(b)
0.5
, 1| 2|3],
0 1.0 Tog
P

R, =1and (b) R; = 2R, = 1. Lines1,
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layer potentials [6]:

Q, = ka(Z)Ko(VkHor)dS: r=1\¢-1,

Z = X +iX,,

m m (11)
Q" = jpﬁ )(Q)Ko(YiHnr )G,
L

(=&+i&0L=01L;, m=123,
where K, (2) isan nth-order modified Bessal function of

the second kind and p(2) and p{™ () are the desired
densities such that p{¥ = p{*.

We assume that the components of the stress vector
and the normal component of the electric displacement
vector, which act on the cavity surface, can be decom-
posed as

N = Z N.cosy,X;, T = Zchosykx3,
k=0 k=0 (12)

00

. K) .
Z = Z Z,sinyXs, D, = Z DY siny, Xs.
k=0 k=0

It is appropriate to represent the boundary condi-
tions on the cavity surface in the form

o+ 05— (0%, — ot + 2i0h,) = 2(N=iT),
Re{€¥(03—i0x)} = Z, o

] (13)
D, = 0,

= Oy + 0y,

where | isthe angle between the positive normal to the
contour L and Ox, axis, N and T arethe normal and tan-
gential components of the stress vector (N, T, Z) acting
on the body surface from the outer normal, and o; are
the stress-tensor components.

Representation (11) and decompositions (8) and
(12) enable us to reduce boundary value problem (13)
to aset of four (for each k) singular integro-differential
equations, which is solved numerically by the method
of mechanical quadratures[7].

GRIGOLYUK et al.

As an example, we consider alayer weakened by an
elliptic-section through-tunnel cavity free of stresses
(&, = Ricosd, & = R,sind, 0 < ¢ < 21m) when atensile
load 07, = P = const acts at infinity.

Figures 1la and 1b show the distribution of the rela-

. - 099
tive circular stress —

S in the thickness coordinate at

the point ¢ = g where the stress is maximal, for R, =
R, =1land R, = 2R, = 1, respectively. Lines 1, 2, and 3

are for h

Ry
results were obtained for the piezoel ectric ceramic mate-
rial PZT-4, whose characteristics were taken from [4, §].

=1, 2, and 4, respectively. The numerical
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Generally, analysis of surface erosion by solid-par-
ticleimpact should be conducted by invoking the appa-
ratus of fracture mechanics. However, conventional
guasi-static modeling cannot provide explanations of
many observed effects, because static criteriaareincon-
sistent with the essential dynamics of erosion.

Erosion processes are characterized by the action of
very short dynamic stress pulses on surfaces. The pos-
sibility of fracture can be assessed only by means of cri-
teriataking into account the transient nature of the frac-
ture of solids. An efficient criterion for analyzing rapid
fracture processes is based on the concept of latent
time[1, 2]. For a defect-free material subject to ero-
sion, the criterion is formulated as

t
J’G(s)dss oI, (1)
t—1

where T isthelatent time of fracture, o, isthe static ten-
sile strength of the material, and a(t) is the maximal
tensile stress.

Fractographic studies show that a key factor in ero-
siona fracture is the development of circular brittle
cracksinduced by impacting solid particles whose radii
vary from tensto hundreds of microns[3]. Their impact
on the surface gives rise to extremely short fracturing
pulses. Knowing their characteristics and the threshold
velocity for impact fracture, we can determine an ele-
mentary “quantum” of action resulting in fracture [1]
and the corresponding latent time. Moreover, if the
parameters used in the fracture criterion are known, we
can calculate some basic characteristics of the erosion
process. This approach can be developed in the sim-
plest approximation by invoking the Hertz impact the-

ory [4].
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Suppose that asingle solid particle of radius R mov-
ing at avelocity v hitsthe surface of an elastic material
occupying a half-space. The time-dependent maximal
(radia) fracturing stress at a point adjacent to the con-
tact areais calculated (in a cylindrical coordinate sys-
tem) by the formula[4, 5]

_ 1-2vk./h(t)

o (v,Rt) = ===~ @)

where the function h(t) is expressed as [6]

- in 0
h(t) = 0'995h°S'nDtOD' 3)
2 52
Here, h, = 552]—&/% is the particle penetration depth
h
andt, = 2.943270 is the contact duration; k = gl“/_—REZ ,
-V

where E is the elastic modulus; and v is the Poisson
ratio.

Supposethat v equalsthe threshold particle velocity
corresponding to the onset of fracture. Introducing the
function

t
f(v,R1) = maxI o,(v,R,s)ds-o. 4
t
t-t1

and using the latent-time criterion, we determine the
latent time as the positive root of the equation

f(v,R1) =0 &)

for given values of v and R.

We can now calculate the latent time by using exper-
imental values of the threshold velocity for erosional
fracture of surfaces and the formulas written out above.

We consider the erosional fracture of B95 aluminum
alloy with the following mechanical properties. E =
73 GPa, v = 0.3, 0, = 456 MPa, the static fracture tough-

ness K,. = 37 MPa ./m, and the acoustic velocity ¢ =
6500 m/s. The radius of an erosive particle is R =

150 um, and its density is p = 2400 kg/m?® %ts massis

1028-3358/02/4707-0525%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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3

caculated as m = L—EI:;?B—E
with the mechanical properties defined above, the
threshold impact velocity for erosional fracture has
been determined experimentally: v = 33 m/s[7]. Using
the above formulas to evaluate the impact characteris-
tics for a particle interacting with a surface, we obtain

=0.29 psand h, = 3.46 pm. Our analysis shows that
the function f(v, R, 1) has a unique positive root. The
latent time cal cul ated for the material properties specified
aboveist=0.71 ps. Notethat asimilar value of thelatent

For the aluminum alloy

time can be obtained from the formula g = 0.65 ps,

2
Ic

no

The reverse situation is also valid. Knowing the
latent time for amaterial (e.g., from spall tests), we can
calculate the key characteristics of the erosion process.
Curve I in Fig. 1 represents the threshold velocity for
erosiona fracture calculated for the B95 alloy as a
function of the erosive-particle radius for T = 0.71 us.
The curve consists of a quasi-static branch and a
dynamic branch. The former branch is characterized by
aweak dependence of the threshold vel ocity on the ero-
sive-particle size, whereas the latter branch demon-

whered =

MOROZOV et al.

strates a relatively steep (power-law) increase in the
threshold velocity with decreasing particle size. Note
the sharp transition between the quasi-static and
dynamic regimes at a certain particle size (on the order
of hundreds of microns in the present case). The theo-
retical curve shown hereisqualitatively consistent with
available experimental data[8]. It should also be noted
that the dependence calculated by using the conven-
tional critical-stress criterion in the scheme outlined
above (curve 2 in Fig. 1) fails to explain the observed
behavior of the threshold velocity for erosional frac-
ture.

From a practical standpoint, it is aso important to
examine the possibility of ductile fracture in the region
of contact between an erosive particle and the surface of
amaterial occupying a half-space. Fracture of thistype
is observed experimentally in the form of plastic prints.
To analyze it, we invoke the dynamic yield criterion
givenin[9]:

3T,
I S/_OY(S)D ds<Ty. (©)

t—-1y

Here, T(t) isthe tangential stressintensity defined as

TA(1) = 210,(t) ~ 0o(1]+ [0a(t) ~0.()]* + [0(1) 0, (1]}

in terms of the stress-tensor components g,, 0,, and Gy
in a cylindrical coordinate system; a is an empirical
constant parameter characterizing the material used; oy
is the yield stress determined under uniaxial quasi-
static loading; and Ty is the corresponding latent (struc-
tural) time. Criterion (6) is valid in the cases of both
uniaxial loading and pure shear. The static yield crite-
rion (the von Mises criterion), which correspondsto the
case of dowly varying load, is obtained by taking the

logv

0 1 ]
1.0 15 2.0 2.5 3.0 35
log(2R x 10°)

Fig. 1. Threshold velocity v (m/s) as a function of the par-
ticleradius R (m).

N | : - ,
limit as t_Y — 0, wheret, isthe characteristic loading
0
time.
Thetangential stressintensity on the surface reaches
its maximum at the origin of the coordinate system,
where g, = 04 and

_ 3(1-2v)k./h(t)
4,/3 R

Ty(v,R 1) )

with h(t) given by (3).

To predict ductile fracture for the B95 alloy, we set
o = 2 (see[10]) and 1y = 5 us. By analogy with (4), we
define the function

J3T(v, R 97"

F(VRTY)-maxI[ S

t-1,

and useit to numerically evaluate the threshold vel ocity
for ductile fracture as a function of the erosive-particle
radius. Figure 2 compares the threshold velocities for
brittle and ductile fracture (curves 2 and 1, respec-
tively). As is seen, for small radii (R < 140 um), an
increase in the impact velocity causes the materia to
yield, and a further increase in velocity leads to the
development of cracks. As the particle size increases,

} s—1, (8)
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vV, m/s
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Fig. 2. Threshold velocitiesfor erosional fracture of the B95
aloy: (1) ductile fracture; (2) brittle fracture.

the mechanism of fracture changes. With further
increase in radius, the fracture curvestend to converge,
suggesting that transition between fracture mechanisms
(from ductileto brittle fracture and vice versa) is possi-
ble. The point of crossover between curves 1 and 2 cor-
responds to the threshold vel ocity for fracture at which
the fracture mechanism changes. For the mechanical
parameters specified above, the point has the coordi-
nates R= 140 um and vy= 56 m/s. Anincrease in the
impact velocity facilitates transition from ductile to
brittle fracture.

The theoretical curves presented here demonstrate
the substantial effect of the size of erosive particles on
the threshold velocity for erosional fracture and, there-
fore, on the erosional-wear intensity [3].

Theresults of this study show that the application of
a criterion consistent with the transient nature of the
process makes it possible to predict (even in the sim-

DOKLADY PHYSICS Vol. 47 No.7 2002
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plest classical approximation) certain experimentally
observed effects which areintractable within the frame-
work of models relying on the conventional strength
and yield criteria. The new characteristic quantity—
namely, latent time—introduced into the model pro-
vides a basis for a unified treatment of such outwardly
different processes as spall fracture and erosional frac-
ture. Most importantly, this unification makes it possi-
ble to develop experimental methods based on ero-
siona fracture for determining the time-dependent
strength and yield, i.e., for examining dynamic strength
characteristics of solids.
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The problem of the disintegration of small celestial
bodies on entry into the planetary atmosphere is far
from its solution. On the one hand, disintegration of
meteoroidsis directly observed [1] and is confirmed by
the discovery of meteoric fields on the Earth’'s surface
[2, 3]. On the other hand, the first attempts to discover
the occurrence of fragmentation by analyzing the retar-
dation rate on a luminous segment of the meteoroid’s
trajectory showed that either the fragmentation is
entirely absent or affects the variation in the meteoroid
velocity extremely weakly [4]. In many cases, in order
to establish the fact of disintegration according to the
bolide-luminescence intensity, more adequate lumines-
cence models than those present at the moment in the
literature are required.

Recently, several models describing the fragmenta-
tion of meteoroids under the action of an aerodynamic
load were proposed. These models are based both on
general physical concepts of fracturing inhomogeneous
bodies under the action of forces applied to them and on
certain assumptions simplifying the description of the
disintegration process. We list only some of these mod-
els. The model proposed in [5] is based on the sugges-
tion that the number of fragments produced is propor-
tiona to the dynamic component of the momentum flux
p.V? for the incoming gas. Physical properties of the
model of instantaneous disintegration were formulated
for thefirst timein [6]. Later, this model was employed
in numerical calculations carried out in[7]. Finally, the
model developed in [8] takes into account the depen-
dence of the fragmentation process on the primary-
body size. Thismodel assumesthat with aload increas-
ing to its maximal value, each fragment is split in two.

In the cited papers, the models proposed were used
for numerically calculating trajectories of meteor-
swarm fragments. Furthermore, analytical solutionsfor
trajectories, which allow for adecreasein the total mass
of the fragments due to ablation [9-11], were obtained
after dight simplifications. In the present study, we

Institute of Mechanics, Moscow State University,
Michurinskii pr. 101, Moscow, 117463 Russia

offer ultimate forms of solutions corresponding to large
values of the mass-ablation parameter.

The important role of mass|oss by ameteoroid pen-
etrating the atmosphere is confirmed by both theoreti-
cal results and direct observations. The theoretical data
are rather numerous; therefore, we here restrict our
analysisto only monograph [12]. Asfar asdirect obser-
vations are concerned, we first briefly describe the
world experience in bolide-network operation. Meteor-
ite patrols and then bolide networks were organized in
Europe, the United States, and Canada in the second
half of the last century. The goal wasto take pictures of
luminous segments of bolide trgjectories. Afterwards,
the meteorites were sought in locations on the Earth’s
surface extrapolated from their trajectories. Thousands
of observations and photographic records of luminous
trajectories had been performed. However, these efforts
resulted in the discovery of only four fragments of
meteoritic bodies. Even taking into account all the dif-
ficulties of this search, we must acknowledge the large
role of total mass dispersion of solid fragments on their
trajectories in the atmosphere.

Below, we propose simple formulas useful both for
qualitative estimates and for comparison with observa-
tional data.

The study of the sequence of physical processes
along the trajectory of a meteoritic body shows that in
the case of sufficiently large objects, as arule, the dis-
integration of a meteoroid occurs first, and only then
does the ablation and retardation of formed fragments
take place. Therefore, in al the models, it is assumed
that at the disintegration point, the values of the veloc-
ity and mass of a meteoroid are equal to their values at
the moment of their entry into the atmosphere. Thus, as
for the case of the motion of a unified body [12], the
ballistic factor a and the mass-ablation parameter (3 are
basic dimensionless defining parameters. The addi-
tional parameter is the dimensionless atitude of disin-
tegration y,. In all cases, this atitude is defined as the
altitude when the aerodynamic load for a body reaches
its maximum.

The main difficulty in using the above analytical
solutions in various decomposition models is the fact
that elliptic integrals depending on the parameter 3 are

1028-3358/02/4707-0528%22.00 © 2002 MAIK “Nauka/ Interperiodica’
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present in the solutions. Therefore, we can expect sub-
stantia simplificationsin the limit 3 > 1.

In the case of the instantaneous-disintegration
model [6], the solution for achangein the body’sveloc-
ity takes the form [10]

m = exp[—B(l—vz)], (1)
2art—to a2 o _ a2
rm[ 72 TR D(a 1)}
= 0%, Y0, @, 1) = 36 °AB, ), 2)
Xt
A = B -E(@v), B9 = [T,
a=[l+r,(t—t)]% t= exp%—%%.
The defining parameters are
q = Lo PooAe B = }Chvi
2%M.sny .Sny’ 2c,HU
o o (3)
Yo = |nPoVe (= 2P0 Do
0 o, " snylpd Ry

where 0, and p,, are the strength and the density of the

body’s material, respectively. Here, the angle y of the
trajectory, the coefficients ¢y and ¢, of damping and
heat exchange, respectively, and the evaporation
enthalpy H* are constant quantities. The values of the
velocity V, of the body’s mass M, and of the midsection
area A at the entry of the body into the atmosphere are
taken as the corresponding scales and are denoted by
the subscript e. The altitude of the homogeneous atmo-
sphere h, istaken asthe atitude scale h, and the density

p, corresponding to the altitude h = h, is chosen as the
\% M A
—, m= a= — s y =

density scalefor p,. Thus, v = v M AT A

h _Pa
hy’ P Po’

Using the well known representation for the integral
exponential function Ei (x) at large values of the argu-
ment x [13], we arrive at the following ultimate form of
solution (1), (2) asB > 1:

m = 1-2Bd(Y, Yo, a,Tp). “4)
Here, itissufficient to allow for only thefirst termin the

representation of Ei (x) at x > 1. Note that in the ulti-
mate sol ution, the mass m depends on the product of the
defining parameters o and 3.

For the model of the subsequent slow fragmenta-
tion [5], the solution for the change in the body’s vel oc-

v =1,
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ity along the trgjectory has the form [9] [the body’s
mass changes in accordance with formula (1)]:

Yo 4 4
a3 3 1=13 i~
5 e 0= v yo0) = 367674,
&)

et

B
5 f —dt
The parametersa, 3, and y, have the previous meaning

(see [3]). Here, in the representation of the integral A
for B> 1, wemust use the asymptotic expression of the
incomplete gammafunction [14] with allowancefor the
first expansion term. After some straightforward calcu-
lation, we obtain the following ultimate form of solu-
tion (1), (5) for B >1:

p=b

3
v =1, m”

= 1-BuY(y, Yo, 0). (6)

Here, the product aff also serves as a defining parame-
ter for the variation in the body’s mass.

Finally, for the model of rapid sequential fragmen-
tation [8], the dependence of the body’s velocity on the
atitude along the trajectory has the form that corre-
spondsto [11] [as before, the mass of the body changes
in accordance with solution (1)]:

71300 2ys, -3
2ze (e -

3 e ™) = XY, Yo, @)

- (1) exp[—B(41—v2)] (BV2+ 1) + B26™A. (7)
\Y

The quantity A iswritten out in the sameform asin (2).
For the asymptotic representation of the right-hand side

of formula (7), we again take the expression Ei (x) for
B> 1[13]. Thecorrect result is obtained when the first
three expansion terms are taken into account Finally,
we find the following ultimate form of solution (1), (7)
for B> 1:
v=1 m= 1—9x(y, Yo, ). ®)
Comparing formulas (6) and (8), we see that the desig-
nations of slow and rapid fragmentation introduced
above are easy to justify.
It isworth noting that al three ultimate solutions (4),
(6), and (8) describe the ablation of the meteoroid body
in the absence of retardation. The same solutions are

obtained under the assumption V = V, in the original
differential equations.

Without doubt, similar expressions can be found if
we ignore the constraint concerning the consideration
of sufficiently large meteoroids for whichv =1, m=1
ay=Yy,, i.e, at the point of the onset of disintegration.
In the case, the corrected solutions of type (4), (6) and
(8) are simply extensions to the domain y <y, of the
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corresponding solutions for a unified body, which exist
fory>y,[12].
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1. The basis of many astrometric investigations is
the dynamic theory of the rotation of the Earth relative
to its center of mass. The investigation of rotation
around the center of massis hampered by the difficulty
of constructing a dynamic model of the deformable
Earth. At present, the development of mathematical
models that describe the motion of the of observations
and measurements of the International Earth Rotation
Service (IERS) are not only of scientific value but also
of practical interest [1-4].

According to the IERS datafor the last 15-20 years,
the Chandler vibration (free nutation), which has an
amplitude of 0.20"-0.25" and a period of 433 + 2 side-
real days, is separated in the complex motion [3]. The
characteristics of the Chandler component are related
to the inertiatensor of the deformable Earth [4]. Along
with the Chandler component in the pole motion, it is
possible to separate the annual vibration, which has an
amplitude of ~0.07"-0.08" and a period of one year
(365 sidereal days). According to [4, 5], the annual
vibrations of Earth’s axis are induced by solar gravita-
tiona torque, the orbital motion of the rotating Earth,
and diurnal mantle tides. Estimates of the gravitational
torque speak to the reality of such a mechanism for the
excitation of vibrations. The causes and mechanism of
the excitation of annual vibrations are unknown. It is
conventional to attribute them to seasonal geophysical
phenomena (to processes in Earth’s atmosphere and to
oceanic tides) [1, 2]. A refined model developed for the
Chandler vibration of the pole on the basis of a vis-
coelastic model of the deformable Earth at the time
interval of ~10 yearswas described in [5].

The trend of axis the of Earth’s figure (~0.5" in the
direction of 90° westwards from Greenwich), which, in
our opinion, isassociated with the centrifugal moments
of inertia of the deformable Earth, is of fundamental
importance for constructing a mathematical model of

* Moscow Institute of Aviation,
\ol okolamskoe sh. 4, Moscow, 125080 Russia
** | nstitute of Information Science Problems,
Russian Academy of Sciences,
ul. Vavilova 30/6, Moscow, 117900 Russia

the pole motion at large time intervals (~50 years and
longer). Changesin the trend can be induced by geotec-
tonic processes with time constants on the order of
10? years and by the influence of adynamic asymmetry
leading to the modulation of Chandler vibrationswith a
period of ~220 years.

L et us develop acombined cel estial-mechanical sto-
chastic model on the basis of the IERS data [3] and of
analytical considerations. The determinate component
of the model represents the principal regular dynamic
effects; the stochastic component, irregular effects fol-
lowing statistical regularities [6, 7].

2. Generdizing the results from [5], we proceed
from the following three-dimensional nonlinear differ-
ential set with random parameters:

P+ N,q = 3V,bw; cosw,t—V,r>+P(t, p,q,r,V),
(D
P(to) = Po,
- N, p =—3V,bws cosw, t + Ver? + Q(t, p, q,1,V),
_ ()
d(to) = o,
F = —3V,0; (b +b"cos2w, t) + R(t, p,q,1,V),
r(to) = ro,
where
P = P(t,p,q,r,V) = =3V,Ved;bw; cosw, t
—3V3Ved, W% (b + b"cos2w, t) + AP,

Q = Q(t, p,q,r,V) = —3V,V,d,bws cosw, t
4)

—3V,V,d,0; (b + b"cos2w, t) + AQ,
R =R({ p q,r,V) = —3V,V,d;bw; cosw,t
+3V,Vsdsbw? cosw, t + AR.

Here, p, g, and r are the components of terrestrial angu-
lar velocity; V,, V,, and V; are the random parameters
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derived by time-averaging over the diurna interval

T*= 2—T[:
My
1" e -
- -+ ¢ YUY=-B0)
V, = Vy(t) = T J’ 0 cosr, tdr,
t
V, = V,(t) = J’ %snr*rdr, 5)

t

B(T) A(r)

V3 = V4(t) = T I ————=29n2r,1dt,

which characterize the effective solar diurnal tida
humps; V,, Vs, and V, are the random parameters

14T, ~

V, = V(1) = D Tl* J' qu(T)d
t+T*~

Vs = Vg(t) = BD = j 2lg @
t+T*~

Ve = V() = Cpé"‘.rl Fgg)d

which determine the effective tidal protrusuons Here,
A*+ A(t) B* + B(t) C*+ C(t) and Jp, + Jpq(t) o +

qu (1), and J7, + er(t) are the aX|a| and centrifugal
moments of inertia of the Earth, respectively, where the
constant components are marked by an asterisk, and the
variable components induced by the solar diurnal tides,
by thetilde. We introduce the following notation for the
random initial conditions:

7= Po, Vg = Qo
The remaining quantitiesin Egs. (1)—<4) are

Vg = ro.

N, = (CO-BDAT 'w,, r, = 3650,
(7)
C b1 "
2b' = %L 35 2b b2,
q =BECD q =AEbD q :ADBD
1 Al 72 BO ' 3 co”

Here, w: isthe constant determined by the gravitational
and focal parametersand b isthe known coefficient [5].

The set of equations (1)—3) was derived under the
following assumptions. Lunar gravitational torques are
ignored, because their effect on the vibrations is rela

MARKQV, SINITSYN

tively small. The lunar influence leads to a monthly
vibration whose amplitude is lower than that of the
annual vibration by a factor of 15-20. In addition, we
took into account the fact that the termsinvolvingr, r?,

Wy, and w; substantially exceed the corresponding
terms with squared and combined quantities p, g, CED
Ju g
AL BLY
terms of higher orders.

etc. The quantities AP, AQ, and AR are the

3. Using Egs. (1)—(3), where the parameters V; are
real normal (Gaussian) random values with the mathe-

matical expectations m\’ , variances D, and covari-
ances K, i,j=1,2, ...,9, and the method of stochastic
expansion in random parameters[7], we obtain the fol-

lowing expansions of the expectations, variances, cova-
riances, and covariance functions of the variables p; =

p), g, = qt), r, = r(t) for the moments of timet, t' > t:
Zl-lqurm +A pqr (8)
i=1

9 9
qur zz pqr pqHKi\J(_'_ADtprvr, (9)
Ktr,)’t'qr wpqr qu+AKqul (10)
|lezl
9 9
KPy = z zwir,)tl-pj tK +AKY,
i=1j=1
9 9
Kl = 55 Wi oK + K, (11)
i=1j=1
K= 3 Wil oKy +AKE.
i=1j=1
Here, P*" withi= 1,2, ..., 9 are the influence func-

tions of parameters V; obtained by solving Egs. (1)<(3)
for P=Q=R=0and by replacingp, g, andr by p>*",
LADPY K

AKPE, AK{, and AK{ are the components of the

expectations, variances, and covariances that take into
account the nonlinear functions P, Q, and R.

respectively. The functions Am{ '
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4. For zero initia conditions when nonlinear (in V)
functions (4) can be neglected and r can be replaced by
ro inthefunctions V, sr?, the substitutions

ij=12..5 t=t,

2 .
wit = bow*snw*t = —lng,t,

W1, = —boN, coswyt = Y3,

r _ V2 3 " ) (12)
P31 = — 3D t-7b"w, sin2a,t,

q _ P _ 2n1-1
War = Ws ¢ = —ToNy,

by = 3bwf (wh —N3) ™

must be madein Egs. (8)—(11). In this case, the average
dtatistical trends in p, and q,, the variances, and the
covariances are constant at t = t' and equal to

O = —r2N;'my, OO = —rsNimy,

12, 2.v 2 RV 20 -1N2 RV (13)
mtplj = ébo(w* D1 + N Dz) + (rON* ) D51
D= 2b3(NZDY + s DY) + (3N},
2 (14)
KD = K§O= K{O= 0,

where LLindicates averaging over time 2Ty .

In the nonlinear approximation, the mean statistical
trend in the varigbles p, and ¢, which is averaged over
the years 21w, , is determined by the following for-
mulas:

||2

0 = ——[m5r0+9m*55 88

x (m;/m\slz + m5 D3 + 2m3 K35)

—6b'w; rot(mymy + Ki)

-3, b (MY + K |, as)

||2

O = ——[m4r0+9m*gj t? +——

x (mymy° + my Dy + 2m;K3,)

—Bb'w; rot(mymy + KY,)

—3d,b'e’ (mYmy + KM)}. (16)
From Egs. (15) and (16), the following conclusions
can be made. The mean trend in the angular-velocity
DOKLADY PHYSICS Vol. 47
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component p; (q) is determined by the parameters V,
and V; (V; and V,) (i.e., the tidal hump in the second
harmonic, thetidal protuberance and their correlation).

Allowance for the quadratic (in V;) terms makes it
possible to derive refined analytical expressions for the
influence functions, trends, variances, covariances, and
covariance functions in model (8)—11).

5. Stochastic model (8)—(11) isgivenintermsof sta-
tistical moments of the first and second orders and,
therefore, is called the correlational stochastic model.
The method of stochastic expansions also makesit pos-
sible to find the higher order statistical moments [7].
Therefore, it is possible to develop stochastic models
including the moments of various orders. When a sto-
chastic model is described in terms of one-dimensional
and multidimensional distributions, more refined meth-
ods of the theory of nonlinear stochastic systems [6, 7]
are used similar to [8].

6. The stochastic models of the deformable Earth
make it possible to solve certain practical problems by
using the methods of mathematical statistics [9],
namely:

(i) To calculate the statistical characteristics of
angular-velocity components p;, ¢;, and r; at various
moments of time (in particular, for the statistical pre-
diction and detection of anomalous phenomena) from
the known statistical characteristics of random parame-
tersV =[V,... VT

(ii) To estimate the mathematical expectations, vari-
ances, and covariances of parameters in Egs. (1)—(3)
and to determine the confidence intervals for them from
known observation data [3];

(iii) To solve mixed problems where only certain
variables and parameters are observabl e with an accept-
able accuracy.

At the Institute of Problems of Information Science
(RAS), a specialized software package was devel oped
for solving the above problems on the basis of the sto-
chastic differential model (1)—«3) and the methods of
the normal and ellipsoidal approximation of distribu-
tions[6, 7].

The further increase in requirements regarding the
accuracy and time of predictions requires, on the one
hand, more daborate inclusion of the errors in the mea-
surements of the IERS angular velocity parameters, and,
on the other hand, theinclusion of the nonlinear stochastic
perturbations AP, AQ, and AR in Egs. (1)—(3).
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The classical Mindlin paper [1] published in 1936
consists of first and second sections concerning con-
centrated forces perpendicular and paralel to the
boundary of the elastic half-space, respectively. In
paper [2], the fundamental solutions obtained by Lord
Kelvin and Mindlin (the first section of [1]) are gener-
alized for the case of athree-dimensional elastic wedge
where a concentrated force is perpendicular to its edge
under different types of boundary conditions at its
sides. Below, we present expressions for three Papkov-
ich—-Neuber harmonic functions for a wedge that has
unstressed sides and where a concentrated force paral-
lel to its edge acts in its middle half-plane. When the
opening angle of the wedge corresponds to a half-
space, the expressions for elastic displacements and
stresses coincide with formulas from the second section
of [1]. Displacements at the wedge edge are calcul ated
as well. The solutions obtained by Boussinesg and
Cherutti for an elastic wedge with one side subjected to
normal and tangential loads and the other side free of
stress are generalized in [3]. The problems of a three-
dimensional wedge are solved by presenting a har-
monic function as the complex Fourier—Kontorovich—
Lebedev integral and by reducing the three-dimensional
problem of eagticity theory to the Hilbert boundary
value problem generalized in the sense of Vekua[4-6].

Using the cylindrical coordinates r, ¢, z, we con-
sider the three-dimensional elastic wedge (0 < r < oo,
[0] < a, |z|] < ) with the opening angle 2a, the shear
modulus G, and the Poisson’s ratio v. The z-axis of the
right-handed coordinate system is directed along the
wedge edge (Fig. 1). Let thewedge sides$ = +a befree
of stress, and the concentrated force T paralld to the
edge be applied at an arbitrary point r = x, z=y and act
in the bisecting half-plane ¢ = 0. Since the problem is
symmetricin ¢, we consider the wedgeregion—-a < ¢ <
0 with the boundary conditions

O =01 0y = Ty = Ty, = O (D

Institute of Mechanics and Applied Mathematics,
Rostov Sate University, pr. Sachki 200/1,
Rostov-on-Don, 344090 Russia

1
Ty

¢ =0:u, =71, =0, 2= 5

To(r —x)o(z—-y). (2)

In addition, stresses are assumed to decrease at infinity.

In the cylindrical coordinates, the general solution
to the Navier equilibrium equations can be expressed in
terms of three Papkovich—Neuber harmonic functions
D, =D(r, d,2,n=0, 1, 2 by Egs. (5)«7) from [2].
Stresses are determined from these formulas by
Hooke's law. Harmonic functions ®,, are sought as
complex Fourier integrals with respect to z and the
complex Kontorovich—-Lebedev integrals with respect
to r. The familiar method [4-6] provides a solution to
boundary value problem (1), (2) intheform of Egs. (5)—
(7) from[2], where, after passing to thereal Fourier and
Kontorovich—Lebedev integrals (n =0, 1, 2),

00 00

O (1, $,2) = éj’J’sinh(nr)[An(T,t)cosh(q)T)
00

+By(T, )snh(§1) | K o(tr)sin(t[z—y] )t dr dt, 3)

X
4(1-v)

Bo(T, 1) = Jlix(t) + Hir(9), @)

¢=-a

$=0

d=qa

Fig. 1. Concentrated force inside a three-dimensiona
wedge.
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At D) = ST,
5 (%)
B,(1,t) = i (tx) := a_x%“(tx)'

Here, functions (4) and (5) are found from conditions (2)
and are independent of a, H,;(x) isthe modified Bessel
function, and the other integrands entering into (3) have
the form

AT, ) = coth(at)[f]fiT(tx)+ i )%T(tx)}
1-2v . W(s t)sinh(Ts)
2tsmh(0(r)_[cosh(ns) + cosh(mt) ©)

By(T, t) = [TX 'sinh(20T)XK-(tx) + sin(20) H(tx)
—4(1—v)sinh(0(r)cosaLIJ(r,t)]g:l(r,a), 7

ANT, 1) = [TX 7 sin(20) K ir(txX) + sinh(20T) I (tX)

—4(1-v)cosh(at)sna¥(t,t)]g ' (t,a), (8)

W, (T, 1)
2(1—v)}’(9)

1 g(t,a)
0.(t, a)[cosh(m/Z)

Y(1,t) = d(T, 1) +

W, (T,t) = I, (tX)cosa{TX "[Tcosh(aT)sin(2a)
+2sinh(at)(2(1 - V) —K cos’a) ]

+ 2t’xcosh(at)tanasin’a }
+Hi(tx)sina[tsinh(at)sin(2a)
—2cosh(at)(2(1-v) —ksin‘a)]

+9.(T, O()J’{ ¥, (txX) sina[2ux " cosh(au)
X (1—2V—KCOSZC()
—(t*x=u*x")sinh(au)sin(2a)]
+ %!, (tX) cosa[2sinh(au) (1 — 2v —K sin“a)

g_'(u, a)sinh(Tw)du

—ucosh(au)sin(2a)]} cosh(Tu) — cosh(111)’

(10)

g.(1,a) = sinh(2at) +1sin(2a), (1D

g_(t,a) = cosh(2at) —cos(2a), K = 3-4v.(12)

POZHARSKII

At fixed t, the function d(1, t) satisfies the Fredholm
integral equation of the second kind (0 < T < )

[

d(t,t) = (1—2v)J’L(T, u)

9 cosh(tw/2) W, (u, t)

[q’(“’ V" ) 2(1—v)}d

txcosh(m/Z) sinh(1) cosh(au)g(u, a)G(u, t)Glu
2(1-v) _[ cosh(1w) + cosh(1T) (13)
G(Ut) = 4(1L-V)K, )X +H (%),  (14)

The functions L(t, u) and g(u, o) are determined by
Egs. (17) and (18) from [2].

Integrals (3) for functions (4)—(14) are convergent at
al ¢ O [-a, 0]. At n = 0, the order of integration is
important in Eg. (3): integration with respect to t must
be taken at the end.

Ata = g the solution to boundary value problem (1),

(2) intheform of Egs. (5)—(7) from [2] with Egs. (3)—(14)
coincides with the solution to the Mindlin problem for
a half-space when a concentrated force is parallel to its
boundary. Then, ®(t, t) = 0 and, using the integral

® cosh (Tw/2) ¥, ,(tX)

| cosh(Tw) + cosh () mp{”(tx)dx
0
one obtains
2 2 00 00
AT 1) = s B2 [

2(1—v)sinh(Tt)

(1-2v)%
~ 301 —v)snh(rg) I

+coth%r[37{ir(tx) 4(1 )37{|T(tx)]

BL(1, 1) = )I(tanh%T?{iT(tx),
2(1—2v)t%,
Ay (T, t) = “Snh() Iﬂf,r(tx)dx
2t°x

~ STh(rT )57{|T(tx) + tanh 2 f]f,r(tx)
Calculation of theintegrals(see[7]) Ieadsto thefollow-
ing expressions for the displacements u,(r, 0, 2) and
uLr, 0, 2):
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T(z=y) mo—x_ K(r—Xx)
16m(1-v)GU g3 R
_6rx(r +x) +4(1—v)(1—2v)D

R R(R.+r+x) [

ul(r,0,2 =

(15)

T 34(1-\;) L4(1-v)

ulr.0.9 = [FraneE ] ~

_(r=x)®_k(r+x)?*, 2rx
R R® R

_6rx(z—y)* . 4(1-v)(1—2v)(r+x)0d
R R(RArexn o U9

R, = [(r£x)°+(z-y)]".

Formulas (15) and (16) agree exactly with Egs. (18); and
(18), derived in [1], respectively. Unfortunately, similar
formulas (9.29) presented in [8] contain misprints.

The inverse-operator theorem for a combination of
the two special Neumann series [2, 6, 9] explains the
occurrence of both Fredholm integral equation (13) and
the similar equation (16) from [2]. At any angle a and,
for v > 0.053, a solution to Fredholm equation (13) can
be represented asthe Neumann power seriesin (1—2v),
which is uniformly convergent in the Banach space
Cu(0, o) of functions that are continuous and bounded
in the semiaxis[5, 6]. It is convenient to solve Eq. (13)
by the collocation method.

The above formul as, together with the results of [2],
can be used to solve the problems concerning a thin
rigid inclusion into a three-dimensional wedge. The
similar problem for space was considered in [10].

Mindlin (see Fig. 6 in[1]) calculated the displacement
u,(0, 0, 2) normd to the half-space boundary by Eq. (15) at
y=0and v = 0.3 and found that maximum [u,(0, 0, 2)| is
reached a z = 0.63x. As an example, we invetigate the
absolute extrema of the displacements u,(0, 0, 2) and u,0,
0, 2) for thewedgeedgeat y=0and v = 0.5. Figure 2 shows
the dimensionless transverse displacement

u*(0,0,z0 = —u,(0, 0, 2)4TGXT ",

Z0= zx™
for the wedge covering the three quarters, one half, and
one quarter of space. One can see that the maximum point
u* shiftsto the right with decreasing wedge angle.
With the use of the relation J{; (0) = T&u), where &(u)

is the Dirac function, and of Eq. (6.671.14) from [7], we
obtain the longitudina displacement at the edge:

T M ZZD 2, 212
= — 4 = + .
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*
u,

0.5

0.3

0.1

Fig. 2. Transverse displacement at the wedge edge for a =

(@) %[ 2 g and (3) E Curve 2 has the maximum at

b
Z°‘—2.

According to this expression, the absolute maximum at
any anglea is

maxu,0, 0,2 = 15/31(1 at z = %2)(.
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We consider an elastic half-space with a system of
flat rigid inclusions oriented parallel to each other. Such
asystem of inclusionswas defined in[2, 3] asone of the
varieties of the so-called vibration-strength “virus.”
Being a major cause of the onset of brittle fracture,
these viruses most often develop in tectonic-plate frac-
ture zones as well asin irregularly strengthened struc-
tural elements. For this reason, recently begun studies
of the conditions for the localization of wave processes
in elastic solids by this type of defect irregularities are
topical.

Genera systems of relevant integral equations were
investigated in [2, 3] in order to clarify the conditions
for wave-process localization by avirus. In [4], the fun-
damental concepts of previous studies were confirmed
for the case of an unbounded elastic medium, and the
basic approach to solving the problem was formul ated.
In the present paper, the previously started studies are
extended to the half-space case.

1. We consider an el astic half-space in the rectangu-
lar coordinate system (X;, X,, X;) with L horizontal irreg-
ularities which reside in cross sections x; = h, | = 1,
2, ..., L and occupy the corresponding domains Q,. Dis-
placements u,exp{-iwt} act on the boundaries of the
inclusions. Stresses t, , ;exp{-iwt} act on the day sur-
face x; = h_, ; inthedomain Q. We denote the stresses

at theinclusion boundariesby t; . According to the def-
inition taken from [2], the structure under discussion is
a mixed virus of the (1, 2) class and of the (L + 1)th
level. Itiswrittenout intheform V(1/h; Q,/.../h; Q. //
2/hL +15 °°)-

Thefollowing integral relationswere obtainedin [3]
for the layer —co < X;, X, < +o0, h,_; < x3<h:

I:)|+-1T|+-1_ D|+T|_ = I—|+-1U|+-1_ I—|+U|_,

. o o, o (1)
Di_.T\..—-D/T, = LU —-LU,

1 Collaborator from the United States.

Kuban Sate University,
ul. Karla Libknekhta 9, Krasnodar, 350640 Russia

+ _ + i(01Xy +0,%,)
Uj (g, 0z X5) = IIU| (Xy, Xo, Xg)€ dx, dx;,

Tli(al- Oy X3) = J’J.T;I(Xl, Xo, X5)€

—00

i(01X) +A5X,)

dx,dx,.

Here, u; are displacements at the layer boundaries.
In order to obtain integral equations, we eliminate

all terms containing e"“"™ and €™ from relation (D

c

Ebgﬁ Je8—a® | ag,=A1-0’,e= Et : ¢ and ¢, arethe
|

velocities of the longitudinal and transverse waves in

the medium, respectively, and a2 = o + o3 E We set

U=U =U/, I=12,..,L;
- - — +
TL+1 - TL+1 - TL+1'

Asaresult, we arrive at the following system of integral
relations:

DiTy = LiUy,
DT} -D;T; = LiUy-L3U,,
DiTi=D;T; = LiU; - LU, o

DETE_DE+1T[+1 = LEUL_LI+1UL+1,

D[TE_D[+1TL+1 = LU —-LsUpsy
Here, U, ., aredisplacements at the surface of the half-
spacex; =h . ;.

Solving set (2) by the elimination method resultsin
the system of integral equations

M,G =F, 3)
G = {Ul’ U2, eey UL’ TL+1}T,

1028-3358/02/4707-0538%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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F={T, Ty ..., T, UL},
ML = PLKL, (4)

P, = diag{ SIl, SIl, e SII} )

I35 Jig o I i
Jo 1 J o Ja s
Ko = |Jiz Js | - Ja J;,L+1
NP FSTTRN PR BN N
0 0 0 .. 0 4 |
o 0 0 0 0 |
0 I 0 0 0
0 0 I 0 0
X
0 0 o ... 1 A
__‘JI,L+1 —Jpr+1JgLer - e R i

Here, T, = T, — T, isthe stress jump at the boundary
of the Ith inclusion, | is the unit matrix, Ay, = D} PyL_,

and R_= D_"L_. Therepresentations for the matrix Jj; ,
S, Py, D, and L, aregivenin [4].

2. Thetechnique for solving both system (3) and the
corresponding system for the space of [4] is based on
the knowledge of real-valued singularities for elements
of the system-symbol matrix-valued function and zeros
of its determinant.

From (4), we have
detML = det PL det KL' (5)

It is aso shown in [4] that determinants of matrices
similar to P, have no real zeros, and their singularities
are branch points of radicals a5, and a,.

According to the block-matrix theory, the determi-
nant of the first matrix in the expansion of K, coincides
with the determinant of the matrix obtained by deleting
thelast row and the last column. The matrix in question
belongs to the system of integral equations for the spa-
tial case of [4]. The determinant of the second matrix
can be obtained by consecutive expansion from thefirst
to the (L — 1)th row and accounts for the contribution of
the day surface x; = h, ., in expression (5).

Thus, the results of the investigations for the root
subsets of the system-symbol matrix determinant pre-
sented in [4] have found their extension to the half-
space case. In particular, the presence of the exponen-
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0.121

0.10

0.08

0.06

0.041f

0.02[f

1.10
u

Modulus M of thefunctiondet K. h, , ; —h =6(1), 7 (2),
8(3),9(4),10(5).

tial functionsexp{ia(h, . ; —hp)} can causeahigh-fre-
guency oscillation of the determinant function in the
segment [0, 1] with an increase in the remoteness of
neighboring inclusions. This effect may be responsible
for the appearance of regular rea zeros. The appear-
ance of a single zero u, in the interval (1, +) is
explained by the absence of the oscillation. An increase
in the remoteness of the inclusion nearest to the day sur-
face leads to the problem for a homogeneous haf-space,
which explains the tendency of u, toward a root of the
Rayleigh characteristic equationfor h , , —h, — o (see
figure).
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Problems concerning the design of minimum-
weight axisymmetric shells made of quasi-brittle mate-
rials are considered. The optimization problem under
investigation is to find the optimal thickness distribu-
tionsfor shellswith allowance for the possibility of the
origination and growth of cracks caused by cyclic
actions on a shell. This problem is characterized by
incomplete information on the initial dimensions, posi-
tions, and orientations of cracks. Here, formulation of
the optimal design problem and its analytical solution
are based on the guaranteed (minimax) approach. Ear-
lier, this approach was used to optimize quasi-brittle
bodies subjected to constant loads [1, 2].

An equilibrium stressed state of amembrane shell of
revolution that is subjected to axisymmetric loads g,
and q, is described by the relations [3]

N, N

048 - _
= g, M
21roN,ysing+ R = 0, 2)
CNG® _ Ne(@)
%7 R %7 R ®

Here, g, and g, are the intensities of external actions
that are normal to the median surface and tangential to
the meridian, respectively (Fig. 1). Position of the
meridian is determined by the angle 8 measured from a
certain fixed meridian plane, and the position of the
paralel circleis given by the angle @ between the nor-
mal to the median surface and the axis of revolution.
The meridiona plane and the plane normal to the
meridian are the planes of the principal curvatures at
the point under consideration. The corresponding radii
of curvature are denoted by r, and r,, and the radius of
the parallel circle is designated as r,. In addition, N,
and N are the normal forces of the membrane (per unit
length), o, and o, are the corresponding stresses, and h

Institute for Problems of Mechanics,
Russian Academy of Sciences,
pr. Vernadskogo 101, Moscow, 117526 Russia

is the shell thickness. The quantity R is the resultant
external action on the shell part situated above the par-
alel circle determined by the angle @. At given h(@),
(@), @), R@), 1(@), r5(@), and ro(@) (r = I, Sing),
the forces N, and Ny are found from Egs. (2) and (1),
respectively, and the stresses are calculated by Eq. (3).
Hereafter, the thickness h is assumed to be small
compared to the radii of curvature of the shell [3, 4]:

h,, = maxh(@) < r,, 4)
]

Fm = min{minr, (@), minr,(@)} ©)
¢ ¢

where the exterior minimum in (5) denotes the mini-
mum of the two quantities written in braces.

It is assumed that the shell is made of quasi-brittle
material and contains an initial through crack of length
| =1,. The crack is considered to be rectilinear and is
assumed to be much longer than the shell thickness but

Fig. 1.

1028-3358/02/4707-0540$22.00 © 2002 MAIK “Nauka/ Interperiodica’



OPTIMIZATION OF SHELLS MADE OF QUASI-BRITTLE MATERIALS

much shorter than the characteristic dimension
rm (hn <1 <<rp). The position of theinitial crack isnot
fixed on the shell beforehand. The cyclic loads applied
to the shell,

do = GoPs G = OGP, (6)

O < pmin < p < pmax1 (7)

cause both the quasistatic variation of the stressed state
of the shell and a monotonic increase in crack length.

Here, g, and q; are the given amplitude functions of
the independent coordinate ¢, p is the load parameter,
and p,,;, and p,,,, are given constants. For cyclic loads,
thefatigue growth of the crack is described by the equa-
tion [5, 6]

dl m

4 = C(aK)", "

losl<l,, 0<n<ng.

Here, nisthe number of cycles; Candm(2 <m<4) are
the given material constants; K, is the stress-intensity
factor for an opening-mode crack determined by the
formula

i
2 )
where g, is the normal stress in the uncracked shell at

the point where the crack is expected in the damaged
shell, and the increment AK, in Eq. (8) is defined as

Ki = 0o, ®)

AKl = (Kl)max_(Kl)min = /\/%O-g(pmax_pmin)s (10)

where (K)).x and (K)),;, are the maximum and mini-

mum of the stress-intensity factor in the cycle and o°
and o are calculated as

0 0
On = (on)p:11 0 = PmaxOn- (11)

With alowance for Eq. (10), differential equation (8)
determines the crack length | as afunction of the num-
ber of cycles n when crack growth is quasistatic. It is
valid until the moment when crack propagation
becomes unstable (the shell fails) atn=ng;i.e, 1 =1.
The following fracture criterion isused to find | ,.:

Kl(lcr’ 0) = Kle- (12)

Here, K, = K. — €, where e > 0 is a sufficiently small
number and K, is the brittle strength constant of the
material. Relations (9), (11), and (12) yield

=2 20 Kee 7
Tonbel iy ol

Initial crack length |, is assumed to be lessthan the crit-
ical vauelg, i.e, |, <. The service life of the con-

(13)
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struction is determined by the number of load cyclesn,
after which the crack length attainsthe critical valuel, .
Therefore, the design of ashell with demand on the ser-
vice life requires the inclusion of the condition

Ne 2 Ny, (14)

where n,. is the given minimum number of cycles to
failure.

Below, we consider the problem of optimal shell
design. It takes into account that both the stress-inten-
sity factor K, and the number of cycles to failure n,
depend implicitly (through the quantity o) on shell
thickness and parameters determining crack position.
The desired optimal distribution of shell thickness h =
h(¢g) must satisfy the geometric restriction h=h, (h, >0
is given) and inequality (14) for all permissible posi-
tionsand lengths of cracks and must minimize the func-
tiona J(h) (volume of shell material)

J = J(h) — min,
h

2mP¢ ¢

J(h) = .!Johrlrzsin(pd(pde = ZHJOhrlrzsin(pd(p,

(15)

where @, and @ (¢, < @) arethe given parameters deter-
mining the range of the angle @. As was noted above,
the initial crack position, orientation, and length are
unknown beforehand. For thisreason, the cal cul ation of
n, is complicated, because various admissible posi-
tions and orientations of initial cracks must be ana-
lyzed. Inthiscase, the rigorous formulation of the prob-
lem requires certain additional assumptions about per-
mitted positions and lengths of the crack. The initial
crack is characterized by the vector w = {q,, |, a},
where @, is the coordinate of the crack middle, |, isthe
crack length, and the angle a assigns crack orientation
with respect to the shell meridian. The second coordi-
nate of the crack middle 6. is insignificant, because the
problem under consideration is axisymmetric and the
guaranteed approach used allows any crack positionin
paralels (0 <8.<2m). If a =0, the crack isoriented in

the meridional direction (axial crack); if a = T the

2 )
crack isoriented in the direction of parallels (periphera
crack). It is assumed that the initial crack lengths|, are
lessthan the given limiting valuel,, wherel, <1, <r ..
The above assumptions and available additional dataon
the shell regionswhere the appearance of cracksismost
probable make it possible to consider the set of permit-
ted cracks A(w U\ ) as being given.

Thus, the problem of optimal design is to find the
thickness distribution h(¢g) that minimizesfunctiona (15)
with allowance for the geometric restriction

h(g) 2 h, (16)
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and the following restriction on the number of cyclesto
failure:

minng = n,, (17)
w

where the minimum with respect to wisfound over the
set A

w0 A, (18)

The quantity n, in Eq. (17) depends on o. To find its
explicit form, we integrate Eq. (8) between the limits
0<n<ng,ly<l<l,anduseEq. (13) forl,.Asaresult,
we find

_ Yy(o) dOT[DO DZDZ
ncr - wz(o.)i l*lJl(o-) 1 |:|2 [:K DD ’
" (19)
Wo(0) = ——1D|0 o G - B

According to Eq. (19), the critical number of cycles Ng
isamonotonically decreasing function of the quantities
o and |,. Consequently, it attains aminimum when |, =
I, and o takes one of the two extreme values

0 = (0)a=0=0p O =(0) _x=0p (20)

2
which correspond to the axial (a = 0) and peripheral
-0
=3 cracks.

Let o, > 0 bearoot of the algebraic equation

ncr(o) = n*
Then, service life restriction (17) turnsinto the follow-
ing system of two inequalities:

Ne
maxgj(p: < 04, max%:e: < Oy,
(pC (pC

"hO
° = T2mr,sng,

1)

22
R 0 R (22)

- IszQTIrorlsincpc ~Ao
where the intensities of external loads and the force R
determined by them aretaken at p = p,,.x-

The system of inequalities (22) is satisfied if and
only if

R(¢)
h(e) 2 2T, ro(@) SN’
r(9) R(¢) 29
h(g) = =24 9 ____q,
275 o, (@yang O
for @ O[@,, @&]. Inthiscase, the solution of problem (15)—

(18), whichisreduced to the minimization of integra (15)

BANICHUK

with restrictions (16), (23), has the form

Ny N
RREERERS

h = max
(24)

= max%o, q,%.

At any fixed @ O[@,, @], max in (24) means the maxi-
mum of the three quantitiesin braces. At m= 4, which
istypical of metals[7], we have

20 R
2Tr0*r sng o, LPmryr,sing

1 Mnpo?
2 [KleD
2
C% |0
and the condition n,(0) = nx takes the following form
of the explicit restriction on o:

O-ZSO-i = bl(_1+ A[1+ bz),

bl: 1 )

-4
Cn%l - @E K3 n*

N = ; (25)
cr _ m[ﬁ
[

max

(26)

4
b, = 4n*CK1€I %L pm'“D.

At sufficiently large values of ng, i.e., in the case of
high-cycle fatigue, the quantity o, has the asymptotic

representation

o, = [Bcln) A -

The example below represents the problem of optimal
design for atorus shell obtained by revolving acircle of
radiusa around avertical axisat distanceb fromthecir-
cle center. Half the vertical shell section is shown in
Fig. 2. The shell is subjected to uniform internal pres-
sure g, = pa° (q° = const), which cycles proportionally
to the parameter p. The arising forces N, and Ny are
found by considering the equilibrium of a ring-shaped
shell segment and are written as[3]

o
Smmg} . @7)

_a b _a
Ng = S+ 7o No = 50, 28)

wherer, = b+ asin@. Taking theinequality N, > Ng into

account and using Eq. (24), we arrive at the optimal
thickness distribution in the shell:
E*L D% (29)

h—max% “H—max%
2002
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i SRV,

Fig. 2.

If m=4and n, values are so large that asymptotic rep-
resentation (27) isvalid, the optimal thickness distribu-
tion is written as the following explicit function of the
determining parameters:

_ ag b
h = maxthy, — AL+ —
R

(30)

T 4 Prin(] Y
x |= (Cl,n —-——=0
/\/; ( m *) %‘ pmaxDD
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The optimal thickness distribution in the toroidal shell
isshownin Fig. 2. Figure 2 and Egs. (29) and (30) indi-
cate that the shell thickness h decreases with increasing
distance from the axis of revolution r, = b + asin@.
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1. EQUATIONS OF MOTION
FOR A BALL ON A SURFACE

We consider equations of rolling without slip for a
completely dynamically symmetric ball (with its cen-
tral moment of inertiabeing | = LE) on an arbitrary sur-
face. These equations can be derived from various gen-
eral forms of the equations of honholonomic mechan-
ics. Here, we use conventional equations for the
momentum and angular momentum.

In contrast to the conventional approach in the
dynamics of rigid bodies, in which a coordinate system
attached to abody is used, afixed coordinate system is
more convenient when considering equations of motion
for auniform ball. In this coordinate system, the equa-
tions for the momentum and angular momentum with
respect to the ball’s center of mass with allowance for
the reaction and external forces take the form

mv = N+F, (o) =axN+M; (1)

with the non-dlip condition (i.e., the velocity of the
point of contact is zero) given by the equality

v+o-a=0. 2)

Here, misthe ball’s mass; v isthe velocity of the center
of mass; w isthe angular velocity; | = PE isthe central
inertia tensor; a is the radius vector directed from the
point of contact to the center of mass; R is the ball
radius; N is the reaction force at the point of contact;
and F and M are the external force and the moment of
forces with respect to this point (see Fig.1).

Excluding the reaction force N from these equations
and imposing the kinematic condition that the velocity
of the point of contact on the surface should bethe same
asthat on the sphere, we arrive at a system of six equa-
tions for the angular momentum M and the vector y =
—R-'anormal to the surface:

M = Dyx(@xy)+Me, F+Ry = @xRy, (3)

Institute of Computer Research,
Universitetskaya ul. 1, 1zhevsk, 426034 Russia

where D = mR2. Here, the vectors @ and r (radius vec-
tor of the point of contact) should be found from the
equations

_ _ OF(r)

M = po+Dy x (0 Xx7y), = ,

Ho+Dyx(0xy), ¥ = FEm)
where F(r) = 0 is the equation specifying the fixed sur-
face on which the ball rolls (the latter equationin (4) is
a Gauss map). Hereinafter, following E. Routh, we will
explicitly specify the surface on which the center of
mass of the sphere moves, with points on the surface
given by the radius vector r' =r + Ry. Thus, it is the
center of mass (rather than the point of contact) that
moves on an ellipsoid. This surface is equidistant with
respect to the surface on which the point of contact
moves.

In the case of potential forces, the moment of forces

M isexpressed in terms of the potential U(r") = U(r +

Ry), which depends on the center-of-mass position
ou

X —
or'”’

Remark 1. In Routh’'s monograph [6], the equations

of motion for a sphere were derived with respect to

semimovable axes and were explicitly solved in certain

)

according to the formulaM =

Fig. 1. Rolling of a sphere on a surface (G is the center of
mass and Q is the point of contact of the ball with the sur-
face).

1028-3358/02/4707-0544%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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cases. Later, most authors of handbooks [1, 5] only
repeated Routh’sresults and actually appended nothing
to them. It is worth noting that E. Routh paid special
attention to the stability of particular solutions (e.g., a
sphere rotating at the top of a surface of revolution).
Here, we do not present the Routh eguations in their
original form, because Egs. (3) are similar to the equa-
tions in [3], which describe an arbitrary body moving
on either a planeor a sphere. Thisallows usto consider
various problems (for example, the integrability of
equations) from a unified standpoint.

Integrals of motion. Equations (3) with a potential
field U(r + Ry) havethe energy integral and the geomet-
ric integral

H::—ZL(M,(o)+U(r+Ry), FL=y’=1 (5

In the case of an arbitrary surface F(r) = 0, besides
these two integrals, system (3) has neither the measure
nor the two additional integrals that are necessary for
the system to be integrable in accordance with the
Euler—Jacobi theory. Generaly spesking, the behavior of
the system is chaotic. As will be argued below, in some
cases, there may exist a measure and only one additional
integral, with the chaotic behavior being less pronounced.
Aswas pointed out by E. Routh, for the case of a surface
of revolution, the system has two additional integrals and
becomes integrable, while its behavior is regular. In this
case, the system isreduced to a Hamiltonian system by an
appropriate change of the time variable.

Rolling of a sphere on a quadric surface. We now
derive the particular case of Egs. (3) when the bal’s
center of mass moves on a quadric surface given by the
equations

(r +Ry,Bi(r + Ry))=1, B=diag(b,, b,, b;). (6)

In the case of an ellipsoid, the quantities b; are positive
and determine the principal semiaxes sguared. Using
Egs. (6), we express the radius vector r in terms of the
normal vy to the surface:

By .
J(v, BY)

As aresult, we arrive at the equations of motion in the
variablesM and v:

r+Ry = )

D

M= MY

| ®)
Y = —nu+D 7 x (y x B (y x M)).

2. MOTION OF A BALL ON AN ELLIPSOID
OF REVOLUTION

First, we consider therolling of aball on an axisym-
metric ellipsoid. The equation for a surface of revolu-
DOKLADY PHYSICS Vol. 47
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tion in the absolute coordinate system can be given in
the form

ry = (f(ys) =R)y1,

1v2
s = J'%f(ys) - y3y3f'(y3)%dy3— Rys,

where f(y;) is a certain function determining the para-
metric form of the surface. Parameterization (9) is cho-
sen such that the system presented below takes the sim-
plest form.

In the case under consideration,

b
f(va) = S
Joi(1-Y3) +bay5
where b, and b, are the ellipsoid principal semiaxes

squared. Equations of motion (3) admit an invariant
measure with the density

p = (by(1-y3) +byyd) ™. (11)

In what follows, we consider a reduced form of the
system and introduce the new variables

r, = (f(ys) =R)Yz,
&)

(10)

Ny = (M7), N = B R (va(M, 1)~ M),
K. = Myy, — My, (12)
3 - .
N1-Vs

These variabl es satisfy the equations

Nj_ = —kK3f_2 N2 y

Ys

NZ = kK3V2f Nl’ y3 = ng,

(13)
Ka = k2= N, (v F (1= Y5N, +V5N),

Vis(1-y3) f

where
CRJI-YE o Love, o o
(L+D)g’ Yz H+D’

Using Eg. (10), we arrive at two linear equationsin
the independent variable y;:

dN, _ b, —b, N,
Vs b fby(1-y2) +bay?
dN, _ v’b,

s fo,(1-y2) + bay?

Itiseasy to provethat Egs. (14) have the quadratic inte-
gra of motion with constant coefficients

F, = bivNi+ (b —bs)N3. (15)

Thisintegral can be generalized to the case of atriaxial
ellipsoid.

(14)

N,.
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Fig. 2. (a) Three-dimensional map and (b) the surface F, corresponding to the level of theintegral for E = 1, B = diag(1, 4, 9), and

Fy=17.

System (14) is solvablein terms of elementary func-
tions. Its solution, being dependent on the sign of the
difference b, — b,, takesthe form

by
b, — b,

(l) b1>b3,a2= >1,

N, = c;sind(ys) + c,cosd(ys),
N, = aV«/El(_Clcosq)(Va) +C,8ind(Y3)),

d(va) = varotan—2—;

a —ys

(16)

by
bs - b,

N, = av,/b;(-c; 1" +¢c,1),

(17)
T(Vs) = Ya+ @ +y;.

Here, ¢, and ¢, are constants defining linear integral s of
motion.

Remark 2. It is interesting that neither Routh nor
his follower s succeeded in finding the simplest reduced
equations[similar to Egs. (14)] and in solving the prob-
lem of a ball rolling on an €llipsoid of revolution in
terms of elementary functions. The success of the
explicit integration presented above is due to the
appropriate choice of reduced variables (12).

(i) b, < by, @ =

>0,

_ -V \Y
N, = ¢,T " +c,T,

3. ROLLING OF A BALL
ON AN ARBITRARY ELLIPSOID

We now consider in more detail the dynamics of a
sphere whose center of mass moves on the quadric sur-
face

(r +Ry,Bi(r +Ry)) =1, B=diag(b,, by, by). (18)

In this case, egquations of motion take the form of
Egs. (8), and we arrive at the Jacobi nonholonomic
problem. This name stems from the fact that, as the
moments of inertia of the ball tend to zero (U — 0;
i.e., the entire ball’s mass is localized at the center of
mass), the problem under consideration isreduced to an
ordinary holonomic problem of geodetic lines on an
ellipsoid. The problem was solved by Jacobi in terms of
thedliptic functions. Inthe case of an arbitrary surface,
such alimiting transformation also |eadsto the problem
of geodetic lines on the surface on which the center of
mass moves. In the cases of other limiting transforma-
tions, itisimpossible to exclude an additional degree of
freedom, which arises due to rotation of the ball about
anormal to the surface.

Equations (8) with an arbitrary (nondegenerate)
matrix B have an invariant measure and a quadratic
integral of motion:

F = (YXM, B (yxM))
? (v, BY) '

Generalized forms of this integral with degenerate
matrices B (i.e., the cases of aball rolling on a parabo-
loid, cone, or cylinder) can be found in [4]. Integra of
motion (19) can be represented as a generalization of
the loahimstale quadratic integral for the Jacobi prob-
lem. This integral was initially found by the authors
numerically with the use of the Poincaré three-dimen-
sional map in the Andoyer—-Depry variables (L, G, H, I,
g, h) described in detail, e.g., in[2]. The computer sm-
ulation of this map, in which the system under consid-
eration was numerically integrated for a fixed energy,
allowed usto find the integrals and to give the graphical
interpretation in various cases of their existence. The
three-dimensional cross sections of the phase flow are

shown in Fig. 2 in terms of the variables|, é g
g for a fixed energy E = const. The cutting plane is

p=(y,BY)% (19)

and
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g= g As can be seen, the three-dimensional phase

portrait is separated into two-dimensional surfacesF, =
const which nevertheless contain chaotic motions. This
fact (i.e., the presence of chaotic motions on the two-
dimensional surfaces F, = const) indicates that, in the
case under consideration, there exists no additional
independent integral ensuring the complete integrabil-
ity and separation of the three-dimensiona space into
invariant curves.

The spatia dependence of integral (19) isvery com-
plicated, even though the integral is quadratic in veloc-
ities (M or w). This could be the reason that this inte-
gral was not found in classical studies. (For example, it
was noted by neither E. Routh nor F. Noether, who ana-
lyzed particular solutions.)
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Fundamentals of the theory of strain and fracture of
rigidplastic bodies were considered in [1-3]. This
study is devoted to determining fracture constants
under axisymmetric strain. As the main fracture con-
stant we take the specific energy dissipation in the pro-
cess of particle deformation or (an equivalent formula-
tion) the largest principal value of the Almans finite-
strain tensor. The fracture constants are determined
from the reduction of area at fracture by solving the
problem of the uniaxial extension of arigid—plastic cyl-
inder.

Fracture criteria. We assume that the fracture of a
material at acrack tip occursif the specific energy dis-
sipation W achieves alimiting value W.:

W= W, €]

Here, the equality determines the crack propagation
velocity.

It was noted in [1] that the specific energy dissipa-
tion is bijectively related to the invariants of the
Almans finite-strain tensor

1 0GOX .
E|J 2%!] aXi anD’ i J 11 2! 3
and, in particular, to thefirst principal value E,. There-
fore, criterion (1) can be replaced by alocal strain cri-
terion: the fracture of amaterial occursif thefirst prin-
cipal value E; (largest in modulus) of the Almansi ten-
sor achieves the limiting value E.:

E; 2 Ex. 2

For axisymmetric deformation, the direction of
crack development coincides with the symmetry axis
(r-axis).

Let us consider the uniaxial tension of around cyl-
inder made of an ideal rigid—plastic materia (Fig. 1).
Tension occurs under the kinematical boundary condi-

Institute of Mechanical Engineering and Metallurgy,
Far-East Division, Russian Academy of Sciences,

ul. Metallurgov 1, Komsomolsk-on-Amur,
Khabarovsk krar, 681005 Russia

tions where the upper and lower ends of the cylinder
move with the velocity V = 1 upward and downward
along the z axis, respectively.

We assume that the plastic region is concentrated
within the triangle BOC and that the region situated
above the straight line OB and below the straight line
OC moves as arigid body; the free surface BC, whose
generatrix BC was asegment of astraight line at theini-
tial time, bends and takes the shape of a neck. In this
case, the rigid—plastic boundaries OB and OC are the
surfaces of velacity discontinuity.

The evolution of the free surface BC and the plastic
region OBC can be described by conventional numeri-
cal methods outlined in [4—6].

The total strain of particles of a material occurs in
two stages. In the first stage, particles are deformed at
the internal points of the plastic region, where the
velocity field is continuous and the specific power of
energy dissipation and the components of the strain-
velocity tensor have finite values. In the second stage, a
particle is deformed when crossing the surface of the
velocity discontinuity OB or OC, and the specific
energy dissipation and the components of the strain ten-
sor change by finite values. The strain of the particle at
the second stage considerably exceedsits strain at inter-
nal points of the plastic region. This property makes it
possible to formulate alocal criterion of the fracture of
amaterial in terms of the strain of particles at a surface
of velocity discontinuity.

It was shown in [1, 2] that the strain at the surfaces
of velocity discontinuity is determined by the specific
energy dissipation:

_ kvl o
W‘w+G W=

W
K’ 3)

where[V,] isthe discontinuity of the transverse compo-
nent of the velacity, V, isthe norma component of the
velocity at the surface of discontinuity, G isthe normal
velacity of the discontinuity surface, and k is the yield
point. If the strains of aparticle are small below thedis-
continuity curve and if the material is not deformed up

to the curve of discontinuity, the quantity W is related
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N\

T2/

7

Fig. 1. Strain of acylindrical sample subjected to auniaxial
extension.

to the first principal value of the Almansi tensor (E;; =
g;) by the equation

2
E1=V%DQ/1+\%2—1H (4)

The quantities G and V,, can be determined by solv-
ing the problem of thetension of the cylinder with allow-
ancefor the variation of the shape of the free surface CB,
for example, by the numerical methods in [4—6].

The quantity [V,] is determined from the following
equations for the components of the velocities:

dV,—Vedd + udz—sr“ = 0 ona dipline,
)

dVB—Vad¢+u(—12§r—3 = 0 on B dipline,

where V, and V;; are the velocity components along the
o and B dlip lines, respectively; u is the component of
the velocity along ther axis; ¢ isthe slope angle of the
a dip line to the r axis; and dS, and dSB are the ele-
ments of arcs of the a and B dip lines, respectively.

The boundary conditions for the velocities are

V, = Vcosd on a dipline OB,
Vg = =Vsing on B dipline OC.
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Fig. 2. Spreading of a crack within acylindrical sample.

We further consider the case where the deformation
of a cylinder results in fracture, assuming that a crack
begins developing from the cylinder axis (Fig. 2). In
this case, theintegration of Egs. (5) with boundary con-
ditions (6), for example, along the curve OB, leads to

therelation
Vi = vl = v 22, )

where p is the coordinate of the crack tip on ther axis.

It follows from Egs. (3), (4), and (7) that the energy
dissipation as well as E, is larger in particles crossing
the line of the discontinuity of velocities closer to the
axis of the cylinder, and reaches a maximal value at the
crack tip. In particular, we have

o o — [2p V
V”_Vsn¢’W_A/T—G+Vsin¢ ®)

for theline OB and

Vo2V

V, = —
"R J2G+V

€))

at the crack tip, wherer =pand ¢ = 1—-1[ The velocity

of the crack tip is related to the quantities G and W
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Fig. 3. Fracture constants versus the radius of the sample
neck formed at the final instant.

by the equations

dp _ G dp_ V2 _0
dt 2 dt Ly o

respectively. If the crack does not extend, we have

(10)

G=0 W=2 E =.2-1=0414. (11

Quantities (11) are independent of p. For p — 0,
they correspond to a continuous cylinder; i.e., strain

(and specific energy dissipation W) is largest on the

Fracture constants for various materials

Material Wo%| W, E.
N12K12M10TY u steel 4 0.02 0.01
ML 3 magnesium alloy 11 0.04 0.025
BrOTs$4-4-2.5 bronze (cast) 13 0.048 0.028
SCh10 cast iron 20 0.07 0.038
BrOTs$4-4-4 bronze (soft) 34 0.1 0.048
OT4-0 titanium alloy 35 0.105 0.05
D18 auminum alloy 50 0.16 0.078
ADO aluminum 60 0.19 0.09
Kh5N12M3T steel 61 0.2 0.092
AMg2 aluminum alloy 65 0.212 0.096
BrBNTL1.7 bronze 75 0.28 0.12
L96 brass (soft) 82 | 0.337 0.148

KOZLOVA, KHROMOV

cylinder axis. Therefore, the assumption that particles
in the vicinity of the cylinder axiswill suffer fractureis
well justified.

It follows from relations (9)—(11) and criteria (1)
and (2) that, if the material does not undergo fracture at
W =2o0r E; = /2-1,thecylinder isdividedinto two
parts through viscous fracture. The final area of the

cross section of the cylinder will be 0 (F = 0). In addi-
tion, the fracture constants satisfy the relations

Wi <2, E, <.J2-1. (12)

Determination of the fracture constants. The
reduction of area

_ Fp—F
llJ - Fo

x 100, (13)

where F, = TR and F = Ttg; are the cross-sectional

areas of the sample prior to the formation of aneck and
immediately before fracture, respectively, is one of the
experimentally determined characteristics of uniaxia
tension.

The condition Y < 100% or F > 0 implies that a
crack develops within a cylinder under tension. It fol-
lows from Eq. (10) that

= V%_A 11%'[ (14)
p* /\/éD/V* D*!

where t,. is the instant of the fracture of the sample.
Since the tension process is assumed to be quasistatic,
the quantity t can be related to the final displacement
from the ends of the cylinder as

hy = Vix. (15)

It follows from Egs. (13)—(15) that

v -1/ 0[op? ln 0
W*—Zh*/szR%L—-l-o—d]+h*D

The quantity h.. can be determined by solving the prob-
lem of cylinder tension resulting in fracture.

The table presents the fracture constants for various
materials. The values of h,. were determined by numer-
icaly solving the problem of cylinder tension with
allowancefor avariation in the neck shape and fracture.
The coefficient Y was found from [7].

(16)
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before fracture [8] is presented in Fig. 4, along with the
calculations of the shapes of the neck and crack in the
model of the fracture of a perfect rigid—plastic body.
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Many current problems of ecological mechanics
must be solved with incomplete information about the
motion of large aggregates of liquid and solid particles
in liquid and gas flows [1-5]. These prablems require
the averaging of physical fields [6], calculation of the
moments of random variables [7], and experimental
determination of the bulk characteristics of particles[1,
2,5, 8] and their usein mechanical calculations. One of
these characteristicsis the bulk harmonic (or mean har-
monic) fall velocity of particles. As will be shown
below, this quantity can be directly determined from the
curve of sediment-mass accumulation for small con-
centrations of particlesin a stationary liquid.

The comparison of two expressionsfor thebulk time
of the sedimentation of particles indicates that

Tmax Vmax H

Gi [racm = | J'\Z/th(x)dF,,(V), )

Viin O

where T, IS the time of the compete sedimentation of
particlesin a sedimentometer; G, . = G(Tra0); FL (V) is
the integral bulk distribution function of the fall veloc-
ity of particles; F,(x) is the distribution function of the
initial distance of particles from the bottom-iquid
phase boundary; H is the depth of the sedimentometer;
V isthe fal velocity (the velocity of the sedimentation
of particles in a stationary liquid in the presence of
gravitation); Vi, and V5 are the minimum and maxi-
mum fall velocities, respectively; x and 1 are the space
and timeintegration variables, respectively; and G(1) is
the sediment mass at time T.

For a uniform initial depth distribution of particles
in the sedimentometer and constant sedimentation
velocities of particles, the integration by parts of the
left-hand side of Eq. (1) yields

T

max

2 [ (oG], P
0

Vi -
HG,

Water Problems Institute, Russian Academy of Sciences,
Novaya Basmannaya ul. 10, Moscow, 107078 Russia

\%

max

Where\/__1 = I \l/dFV(V) isthe quantity inverseto the

lel‘l
bulk harmonic fall velocity. When Stokes' law is valid

in the sedimentometer, the quantity V7is proportional
to the previously introduced mean radius of particles.
However, this quantity can also be determined when
Stokes' law isviolated, in particular, in non-Newtonian
liquids.

Another important characteristic of the mechanical

behavior of particles is the bulk fall velocity V =
V

max

I VdF,(V). It can be easily determined in the initial

Vm\n

section of the curve of mass accumulation in the sedi-
mentometer. Indeed, for the uniforminitial depth distri-
bution of particlesin the sedimentometer, we have

H
t

\%

min

Vmax

G - t

G - [ dFuV) + 5 [ VAFL(V). 3)
H
T

It follows from Eqg. (3) that

Vm@(
. H_dG(t
V= [VaF) = S0 @
max \V]
len max

i.e., the bulk fall velocity is the product of the slope of
theinitial linear section of the curve of mass accumula-
tion in the sedimentometer and the ratio of the depth to
the maximum sediment mass.

As is known, the minimum and maximum fall
velocities Vi, and V,,,, are the ratios of the sedimen-
tometer depth to the time of sedimentation completion
and to the time of the termination of the linear section
of sediment mass accumulation, respectively. These
characteristics are certainly determined much less
accurately than mean characteristics. The error in the
determination of the distribution function of the fall
velocity increases when poorly justified assumptions
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about its specific form are made or when the methods
of numerical and graphical differentiation are applied.

Below, we will demonstrate how hydromechani-
cally determined characteristics can be used to estimate
the carrier properties of liquid flows when information
is incomplete. The advantages of this approach will
also be discussed.

The relative entrainment, i.e., the expected value of
the mass fraction of particles carried away by liquid
flows, can be expressed as

V,

e= [ PVdF,V), (5)

\Y

where P(V) is the probability that liquid flows carry

away the mass associated with a particle whose initial
fall velocity is V. The degree of separation has the form

\%

K = 1= [ P(V)F,(V). ©)

\Y

In what follows, F (V) istreated as an unknown (unde-
finable) function.

Let us study the possibilities of estimating the
results of transporting large aggregates of particles
when data on the mean harmonic and bulk fall veloci-
ties are incomplete. The solution to this problem

requires upper and lower estimates of the integral
\Y

max

I P(V)dF (V) . For upper estimates, we write the ine-

me

quality
e<F (Vo) sup P(V) +[1-F,(Vo)] sup P(V), (7)
wdQ W V2V,
where w are elementary events and Q is the space of
elementary events. Then,

€< sup P(V)+[supP(V)— sup P(V)]F,(V,).(8)
W V2V, wlQ W V2V,
The similar inequality for lower estimates has the form
ex inf P(V)+[ inf P(V) - inf PV)]F,(V,). 9)
wdQ w: V<V, wdQ
Therefore, further calculations require upper and
lower estimates of the integral bulk distribution func-

tion in the fall velocity. To obtain these estimates, we
write the relations

F,OMV+VE[1-F, V)] <V, (10)
(11)

(12)

F/(MV +Viu[1-F,(V)] 2V,
FV(V)Vmin + V[l - FV(V)] < \_/!

F,(V)Vid, + VI 1-F,(V)] 2V, (13)
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which yield the inequalities

vioyt
F (V)< —/——F,
V=V

(14)

Vi —V
Viex =V’

F. (V)< (15)

V-V
V_Vmin'

F, (V)2 (16)

vyt
Voin—V
Combining Egs. (8), (14), and (15), we obtain the fol-
lowing upper estimates of the relative entrainment:

F.(V)2 (17)

€< sup P(V)
w: V2V,
viovt
+[supP(V) - sup P(V)] ———=, 18
[prQ ) m:Vzpvu ( )]V;l_vr_nlax (18)
€< sup P(V)
w: V2V,
Vo~V
+[spP(V)~ sp PV ™=, (19)
wdQ w V=2V, max — Va

where the fall quasi-velocity of separation V, charac-
terizes the action of various physical fields and liquid
flow on particles and is defined as the minimum fall
velocity of probe particles such that the probability of
the entrainment of particleswhosefall velocities are no
less than this value is no more than a, i.e, a =
sup P(V).

w: V2V,

Combining Egs. (9), (16), and (17), we abtain thefol-
lowing lower estimates of the fall velocity of particles:

g2 inf P(V)
wdQ
: . Vy—V
+[ inf P(V) = inf P(V)] ———, (20)
W: V<V, wdQ Va_Vmin
€= inf P(V)
wdQ
viovy
+[ inf P(V) - inf P(V)]_l—“_l. (21)
w: V<V, wdQ min— Va

Thus, even when data on the distribution function of
the fall velocity are absent and information about the
probability of transporting particles with different fall
characteristics by flowsisincomplete, the carrier action
of flows can be estimated by using data on the mean
harmonic or bulk fall velocity.
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Table 1. Point estimates, auxiliary expressions, and data of liquid-mechanical experiments

_ _ €, % K, %
-1 \1 Ry _ -1\l Absolute
V,, mis v - mex \\//ma" \\// VVG VV v - Va - experi- point point experi- error
\VARR Vi max ~ Va | Vo~ Vmin |V 5. —V_~| menta . . mental | magnitude
a max min a value estimate | estimate value
3.93x10° 0.325 0.606 2 15 85 98 13
5.88 x 107 0.5 0.613 7.4 25 75 92.6 17.6
118 x 10 0.63 0.156 20.4 315 68.5 79.6 11.1
2.36 x 1074 0.684 0.176 315 34.2 65.8 68.5 2.7
35x 10 0.741 0.233 36 37 63 64 1
7 %1074 0.99 0.274 44 49,5 50.5 444 6.1
*8.84 x 1074 0.193 0.28 **59 *57 *43 **41 2

Note: The absence of valuesimplies that the calculation of auxiliary expressionsisinappropriate.

* With the use of the fall entrainment velocity at  inf
w:V< V(X

P(V) = 05.

** Corresponding experimental value; in these cases, a = 0.5; otherwise, a = 0.

However, upper estimates (18) and (19) are applica-
ble only for fall separation quasi-velocities lower than
the mean harmonic and bulk fall velocities of particles.
In contrast, the lower estimates are applicable in the
opposite case. This circumstance excludes the possibil-
ity of simultaneously using al four Egs. (18)—21).

It is reasonable to take the middle of the estimate
interval for a point estimate:

(22)

(23)

where ¢, is the smallest among upper estimates (18)
and (19), whereas ¢, is the largest among lower esti-
mates (20) and (21).

To illustrate the capabilities of the above estimates,
experiments on the sedimentation of solid particlesina
liquid were carried out. The procedure proposed above
yields the following mean and bound fall characteris-
tics.

Mean characteristics: the mean harmonic fall veloc-
ity (bulk harmonic fall velocity) and bulk fall velocity
are equal to 1.138 x 10 and 7.2 x 10™* m/s, respec-

tively, and V™ = 8784.1 ¥/m. Bound characteristics:
Viin = 3533 % 105 Vs, Vi = 1.767 x 103 /s, Vi, =
28304.6 §m, and Vs, = 565.9 /m.

Table 1 presents the values calculated for auxiliary
expressions: point estimates for the relative entrain-
ment calculated by Egs. (22) and (23) and point esti-
mates of the degree of separation, aswell asexperimen-

tal data on the sedimentation of an aggregate of parti-
cles. To estimate the rel ative entrainment, no more than
two of Egs. (18)—(21) can be used simultaneously. In
this run of experiments, the average error of point esti-
mates was 7.8%.

Relations (14) and (15) also enable us to refine the
Markov inequality (one of the simple Chebyshev-type
inequalities) and to obtain its addition by taking into
account the possible singularity of function F (V), rela-
tion between probabilities and distribution functions
with singularities, and the formal change of velocity to
any inverse nonnegative random variable. With this
generalization, we obtain

E[X] ~L inf X]
P{X2ad </ XT~[inf X]

X2 (24)
XL _Efxg
ao—[ inf X] A
[inf X] T_E[XY
PiXzad S[ian‘l—[ inf X]™
wdQ W X2 a, (25)

. -1 -1

<[Ql)ngX] —E[X™]

< 4= — ,
[ QI) rD1fQX] -1/a,

where P{X > a,} isthe probability that X > a,, EX isthe
expected value of an arbitrary random nonnegative
variable X, and a, > EX (for these a, values all estimates
2002
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of probability are lower). The comparison of Egs. (24)
and (25) with the Markov inequality

EX

P{X = 26
{Xzad <2 (26)

indicates that the above approach makes it possible to
refine this inequality and obtain its addition.

Let us analyze another information level, namely,
the case where the probability of carrying particles
away by liquid flows is known as afunction of the par-
ticle fall velocity. We introduce an auxiliary function
P*(V) = sup P(U), where U is an auxiliary vari-

Vi 2U 2V
able. In what follows, we suppose that P*(V) is contin-
uous at the discontinuity points of the function F (V)
and the distribution function F (V) is continuous at the
pointswhere the function P*(V) issingular. Inthiscase,
we have

\Y

max

e< [ POV)AF,(Y).

\%

27)
If the function P*(V) is singular at the points V =

Viine Vinaxs él or V, the values P*(Vyin), P*(Vina),
v
p«010

il

p* Dil + (H P*(V + 0) must be assigned to its values

P*(V), or P¥(V,, — 0), P¥(Vo + 0),

at the corresponding points in the expressions below.

Integration by parts of the right-hand side of
Eq. (27) yields

\%

max \ max

\%

min lel’\

An upper estimate for the distribution function of
the initial fall velocity of particles can be obtained by
Egs. (14) and (15). Replacing the function by its upper
estimate (14) and taking its applicability area into
account, we obtain

I~

~1

ss—J’

min

<

V_—l -1
Y~V gpiyy) + PEE&%.
viovil
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One more integration by parts yields
€< (V_l_vmax)
1
POV i) v V2 POV
)y VP gy o)
len Vmax (V _Vmax)

Taking into account that a proper fraction increases
when its numerator and denominator increase simulta-
neously by the same amount, one can reduce Eq. (30)
to the simpler but less accurate estimate

1
- v
e<V | Vi POV,y,) + I POV)AV |,

V,

(1)

min

where the first term can sometimes be negligible com-
pared to the second term.

Using estimate (15) instead of Eg. (14), we obtain
the similar estimate

dPE(V)

£<—(Vix— V) J’ my + PL{V). (32)

min

One more integration by partsyields
S (Vmax - \_/)
y { PE(vm.n)

Vmax mln

v
I PE(V)ln(VmaX—V)dV} (33)

min

When probabilities P(V) are determined experimen-
tally and numerically, itispreferableto estimate therel-
ative entrainment by Egs. (30), (31), and (33), because
they are free of numerical differentiation leading to
larger errors. When the problems of the stochastic
mechanical motion of particles are solved analytically
and the functions P(V) are found in an explicit form,
inequalities (29) and (32) giveless unwieldy intermedi-
ate expressions than do inequalities (30), (31), and (33)
(the final results are certainly the same).

Let us analyze simple specific cases.

Solving the equations of motion for particles that
have a uniform initial height distribution and settle out
inaliguid which is stationary or executes slow plunger
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Table 2. Estimates of the carrier action of a flow with the known fall-velocity dependence of the probability of carrying

particles away
Relative entrainment
Vo, m/s i estimates with V2 estimates with i Absolte error
experimental Imates wi Imates wi relative magnitude, %
value V by Eq. (37) | entrainment &
by Eq. (35) by Eg. (36)
3.93x10° 2 <35 <33 <6.3 17 0.3
5.88 x 10 74 <16.5 <15.9 <24 7.9 0.5
1.18x 10 204 <47.2 <46.3 <434 217 13
2.36 x 1074 315 <73.6 <73.1 <54.6 27.3 4.2
35%x10 36 <82.2 <81.9 <60 30 6
7x10 44 <911 <91.0 <72 36 8
8.84 x 1074 438 <92.9 <92.8 <78.2 39.1 8.9
motion in the laminar mode, we determine the proba- m 1
bility as %_ZVOV 1[1 EVW} for Vi < Vo< =
0 \Ya
El , for V<V e=D 1 >
or
P(V) = O ° (34) %1——[— +V° Vm,n}vO  for Vo2 =,
Eb, for V2V, v

where the fall separation velocity V, is the minimum
fall velocity of particles completely trapped under these
conditions. In this case, P*(V) = P(V). Substituting
Eqg. (34) into Eq. (31) and performing integration, we
obtain the estimate

which can befound even when the maximum fall veloc-
ity of particlesis unknown.

Substituting probability (34) into Eq. (29) and using
the integral tables from [9], one can obtain the follow-
ing more accurate estimate of the relative entrainment,
which is based on the mean harmonic fall velocity:

%Fl leaxv | Vmax len VO - Vmin £ vV <V.< i
DV— max| 11 V. —V v » 10I Vigin S Vo —
D 0 max 0 max V

e< 36
0 1 Vviovd Vi —Viein LV =V,, 1 o
0 -—=—+ — maxvzmx{ln T m'”} for Vo2 =.
AL 0 Voo — 1V max v

Finally, calculating integrals in Egs. (32) or (33)
with the known bulk fall velocity, we obtain (after some
mani pul ations)

Dvmax _\_/ Vmax _Vmin 1
< —
% Vs In V.V, for Viyin<Vo v
esg V. RVERVANRY ](-37)
EIIl—y—+ In—SE—10 - for V2=,
0 Vo Vo Viax — V

Table 2 presents the point estimates abtained for the
relative entrainment from Egs. (35)—(37) and corre-
sponding experimental data. For a point estimate, we
use half the interval from zero to the least lower bound
[least of Egs. (35)—37)].

Calculations indicate that in the cases under consid-
eration, logarithmic estimate (36) is noticeably better
than the simpler Eq. (35) only for fall separation veloc-
ities close to the minimum vaue. Compared to

DOKLADY PHYSICS Vol. 47
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Egs. (35) and (36), the error of estimate (37) varies
from a maximum to a minimum with increasing V.

Asmight be expected, the magnitude of the average
absolute error of point estimates at this information
level was found to be about 4%, which is less than the
value for the case where the initial fall-velocity depen-
dence of the probability of carrying particles away is
unknown.

Thus, the bulk harmonic fall velocity of particlesis
efficiently applied to obtain the point estimates of the
relative entrainment of an aggregate of disperse parti-
cles by liquid flows at two levels of input data. A cor-
rection to the Markov inequality was also found when
deriving expressions for calculations. All experimental
data entirely corroborate the applicability of resulting
expressions. In this case, the bulk fall velocity was
determined by a specially developed liquid-mechanical
procedure.
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