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The concept of spectra of relaxation times is com-
monly used to characterize the viscoel astic behavior of
polymers. For a given spectrum with the parameters
related to structural features of the polymer system, itis
usually thought that the relaxation characteristics can
be predicted under virtually any experimental condi-
tions[1, 2]. At the same time, it iswell known that the
relaxation spectra of, for example, the Rouse chain are
different for the strain and stress relaxation modes [2]:
the time correlation function for the chain length varies
intime as

— t
5 vrepii
p

p=13, ..

whereas stress relaxation is determined by the sum

00
Z eXp o

p=12,...

Hence, the spectra of relaxation times (pre-exponential
factors) for the same chain are different for these two
cases, athough they have the same set of relaxation
timesT,.

In this paper, we analyze the effect of the deforma-
tion mode on the relaxation spectrum of the modified
Rouse chain [3, 4].

The chain is modeled by n frictional elements con-
nected in series by n — 1 elastic elements characterized
by elastic modulus E. At the initial moment of time,
force F(0) is applied to the chain end via the similar
elastic spring. Relaxation in the system causes a stress
drop at this spring; that is, stress relaxation occurs. If
the force applied at the initia instant is absent further
on, thereisarelaxation of the chain length (strain). The
chain structure is characterized by the values of friction
coefficients for each link of the chain: for the ith link,
Ni

the relaxation time is specified as T, = E
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The dynamics of the model are described by the set
of differential equations[1-4] involving thevariationin
coordinates s of thelinksand force F applied to thefirst
link. Initial conditions, namely, s(0) and F(0) = F,, are
arbitrary. A solution to the set can be found both as
function F(t) and intheform L(t) = 5, - 5,, i.e, asthe
change in the chain length. The solution is represented
asthe series of exponentials

F= Foz fiexp{-pit}, (D
i=1

L = Loz hexp{—p;t} ()
i=1

and is determined by the roots z = T;p, of the corre-
sponding polynomia D, [3, 4] related to the Rouse
determinant (3)

z2-2 1 0 0..0 0 0O
1 -2 1 0.0 0 0O
B 0 1 z-21..0 0 0
0O 0 0 0..1z_,-2 1
O 0 0 0..0 1 z-1

= (z—2)B,_;—B,_,, 3)

as D, = 2B, for the case of stress relaxation, and D, =
(z;-1B,_,-B,_,=B,+B,_; =0for the case of strain.

Aswas shown in [3, 4], B, can be easily calculated
using the recurrence relation

B, = z,-1,
B, = (z,-1.—-2)B, -1,
Bs = (z,..—2)B,- By,
“)
B = (z-2)B_1—-Bi_,

ceey

Bn = (21_2) Bn—l_ Bn—2-
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Table 1. Initia values of kth time derivatives of stressand strain r; = Til; q= 1—E—h; = n_ol
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Itisclear that factors p; of the exponentialsare uniquely
related to T;, i.e., to the structure and length n of the
chain.

Thus, the set of relaxation times for the chain A; =
pi_1 is independent of the deformation mode.

To determine pre-exponential factors f, and h;, it is
necessary to take into account the initial state of the
chain. Indeed, to find n coefficients, we must solve the
set of nequationsfor theinitial values F®(0) and L®(0)
of the kth time derivatives of F and L

FOZfi,

i=1

Foz pjfj1
i=1

F(0) =

F(0)

FA0) = Fo S pit),

i=1
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L(Z)(O) = LOZ pjzhj,
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ceey

L®(0) = LOZ p:-(h,-,

=1

L™(0) = LOZ p’h;.
j=1

Table 1 presents the values of these derivatives for the
first fiveterms of these series. We can see that these val-
ues depend not only on the corresponding relaxation
times but, in the case of the relaxation mode (first col-

umn), onthechain stranh=|x—-x_,|= IF]__(__O_i and the
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RELAXATION SPECTRA OF POLYMERS AND THEIR RELATION
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Fig. 1. Stress relaxation curves for different initial strains:
(1) 0, (2) 0.05, (3) 0.1, (4) 0.2, (5) 0.3, (6) 0.5, and (7) 0.8.

l—:E— ratio as well. This means that the coefficients f;
0

determined from the solution of system (5) for F should
depend on these parameters. Therefore, the spectrum of
relaxation times characterizes not only the chain struc-
ture, asistypical for aset of relaxation modes, but also
strain intheinitial state. For the strain relaxation mode,
the characteristic features of the spectrum are indepen-
dent of theinitial state but are uniquely determined by
the chain length and by the relaxation parameters of
chain links. Thisisalso clear from Table 1 (second col-
umn). Thus, for the deformation mode (relaxation of
the chain length), the relaxation spectrum uniquely
characterizes the system structure through the set of
relaxation times and pre-exponential factors. For the
stress relaxation mode, the structure is characterized
only by the set of relaxation times. In this case, the pre-
exponential factors are not the statistical weight of the
corresponding mode of motion.

It is clear that the data on stress relaxation for the
two-stage deformation of polymers can be considered
first of al from thisviewpoint (see, e.g., [5, 6]). Theory
based on the reptation model [2] ignores those circum-
stances.
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Fig. 2. Relative elastic modulus versus initial strain for dif-
ferent time points (in arbitrary units): (1) 0.01, (2) 0.0562,
(3) 0.3162, (4) 0.5625, (5) 10, and (6) 56234.

As an example, let us determine the relaxation
behavior for the model five-link Rouse chain. Table 2
presents the parameters A; and f; characterizing the
spectrum of relaxation timesfor thefive-link chain with
different strains (all T; are equal to unity). We see that
the characteristics of the spectrum change considerably
with increasing strains, and negative coefficients arise.
It is evidently unreasonable to consider this set of num-
bers as certain structural characteristics. The curvesfor
the strain relaxation for different initial strains are
shown in Fig. 1. The characteristic feature of these
curves isasignificant increase in the length of the high-
eladticity plateau with increasing initial strains. Figure 2
demonstrates that the dependence of the relative value

: . _ F(t,¢)
of the relaxation elastic modulus H(t, €) = s—F(t, 0) on

strain € varies with time. Although the form of these
curves differs from that observed in experiment [6], the
existence of time dependence does not agree with the
theoretical predictions[2].

Therefore, analyzing different loading regimes for
polymers, we should not neglect the dependence of the

Table 2. Parameters of the relaxation spectrum of the five-link Rouse chain corresponding to the stress relaxation mode.

Theinitial strainisindicated in brackets

Mode no. A £.(0) f.(0.05) £.(0.) £.(0.2) £.(0.3) f.(0.5) £.(0.8)

1 12.346 0.356 0.401 0.446 0.535 0.625 0.804 1.073

2 1.449 0.301 0.268 0.234 0.168 0.102 ~0.031 ~0.229

3 0.583 0.208 0.205 0.203 0.198 0.193 0.183 0.168

4 0.353 0.106 0.098 0.089 0.072 0.055 0.022 ~0.029

5 0.271 0.029 0.028 0.027 0.026 0.025 0.022 0.018
DOKLADY PHYSICS Vol. 47 No.8 2002
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The electron—positron plasma has recently attracted
considerable interest, because it is a source of high-
intensity electromagnetic radiation inherent in many
cosmic objects such as the magnetospheres of pulsars,
active galactic nuclei, including the center of the Gal-
axy, the early Universe, etc. The origin of observed
radiation is assumed to be substantially determined by
the oscillation and wave properties of the electron—
positron plasma. In this study, we analyze the charac-
teristics of nonlinear longitudinal plasma waves propa-
gating in acold collisionless el ectron—positron plasma.

Theoretical investigations of stationary wavesin a
plasma were summarized in detail in fundamental
work [1], where the authors considered plane wavesin
an unbounded plasma consisting of cold electrons and
infinitely heavy ions at rest.

The basic feature of the €lectron—positron plasmais
that the mass and absolute value of the charge of an
electron are equal to the respective values for an ion.
Therefore, the ion and electron components must be
considered simultaneously. Moreover, a definite sym-
metry can be expected. Thus, the problem of the prop-
agation of plasma waves is examined similarly to [1]
but with allowance for the motion of ions in a wave.
Waves whose electric field and displacements of parti-
cles are paralld to the wavevector are called longitudi-
nal waves. We consider the propagation of steady-state
plane waves along the x axis in the absence of an exter-
nal magnetic field.

It is convenient to consider a steady-state wave in
the wave reference frame, where the problem is station-
ary and all desired quantities depend only on the coor-
dinate x. To solve the problem, it is necessary to apply
Maxwell’'s equations, the relativistic equation of
motion, and continuity equationsfor electronsand ions.

We seek a solution to these equationsin the form of
aperiodic alternating potential wave. The electric field
has extrema at points that lie between neighboring
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maxima and minima of the potential and are spaced by
thewavelength A. It followsfrom the Maxwell equation
for the electric field,

BELI — amef (n(x) —ne(] (M)
X
that the ion density n,(x) at these points is equal to the
electron density ny(x). Let x = 0 be an extremal point.
Then, n(0) = n(0) = n and E(0) = E,, where E, isthe
extremal electric field. Without loss of generality, the
wave potential ¢p(x) at extrema is taken to be equal to
zero;i.e., $(0) =0.

It follows from the continuity equations for elec-
d(neve) = 0 and ions d(nivi)
dx dx
nXVv,(x) = C, and n(X)v4Xx) = C,, where vx) and
v;(X) arethevelocity of electronsand ions, respectively,
and constants C, = nv;(0) and C, = nv40) are found at
x = 0, where n;(0) = ny(0) = n. Let v 0) = v;(0). Then,
thetotal current at al points of the wave profileis equal

to zero:

trons = 0 that

e[M(X)Vi(X) — N(X)ve(x)] = 0.

In this case, as in [1], the perturbed magnetic field is
absent for longitudinal waves.

For acold plasmain the absence of amagnetic field,
the motion of electrons and ions in the electric field of
the wave can be described in the one-particle approxi-
mation by the relativistic equations of motion, which
have the following form in the wave reference frame:

ve(x)d————%)((x) = mczd—————yg)((x) = —eE(x),
@)
vi(x)d%i)((x) = mczd—\gix) = eE(x),

where p, and p; are the momenta of electrons and ions,
respectively; mand e are the mass and absol ute val ue of
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the charges of particles, respectively;

VelX) = ———, V() = ——,
L-B209 NERE
B.00 = L2 ana g = L0,

Substituting the relation E(x) = —% into Eq. (2),

we abtain the laws of energy conservation for ions and
electronsin the form

mc’ye(X) —ed(x) = Cy, (3)

where constants C; and C, can befound by determining
the energy and potentia at x = 0, where ¢(0) = 0 and
v«(0) = v;(0) =u. Asar&ult C,=C,=mc’, wherey=

1
J1-p
obviously has physical meaning only for velocities u
less than the speed of light.

mc?yi(x) + ep(x) = C,

with3 = E . The problem under consideration

and ion

L et us substitute the electron ny(x) = ( )
e

—Vf“j() densities into Eq. (1), then multiply this

equation by E(x), and express

ni(X) =

eE(x) eE(x)
v M oM

Egs. (2) in terms of the momenta of electrons and ions.
Asaresult, we arrive at the relation

S {E7-8mulp.(0) + p(¥]) = O,
from which we find one more conservation law:
[E(x)]°-8mu[pe(x) + pi(X)] = Cs,  (4)

where constant C, = Eg — 16Tmymu? is found at x = 0.
The set of Egs. (1)—(4) solves the problem in question.
We introduce the dimensionless coordinate ¢ =

—xcop[ where w, = /Sne n isthe plasmafrequency

of linear waves in electron—positron plasma, and

¢(x) -
—— . By expressing
mc

dimensionless potential (&) =
the momenta of electrons and ions in terms of the

potential from Egs. (3), Eq. (4) isrepresented in dimen-
sionless variables as

= 2By — BV —W(2y — U) — B + W(2y + ),

&)

KICHIGIN

gy
20dg0,
of theelectric field at & = 0 where P = 0 and the electric
field is maximal.

The potential and electric field as functions of the
coordinate can be determined from Eq. (5). To appreci-
ate the general propertiesof adesired solution, itiscon-
venient to apply the formalism that was developed in
classical mechanics for analyzing the motion of parti-
clesin apotential well [2]. In the case under consider-
ation, the function V(»), which is the dimensionless
energy density of the electric field, obviously satisfies

d’ dy _ dv
dgz  dy’
energy of the system for the problem of the motion of a

unit-mass particle, whereas ) and & are the coordinate
and time, respectively.

The function V() is defined in the interval Q* <
Y < i, where * =1-yand Y5 =y—1. Theappear-
ance of the limiting values y* and Y3 can be under-

stood by analyzing the motion of particlesin the poten-
tial wave. If the oscillation amplitude exceeds the lim-
iting values, the wave turns over, which gives rise to
multiflow motion. Therefore, the laminar motion of
particles, which is necessary for the existence of the
steady-state wave under consideration, is violated.

Thus, for potential amplitudes exceeding Y* or

Y3 , thefunction V() isindefinite, asfollows from the
analysis of its existence area, and the propagation of
nonlinear laminar plasma waves is impossible as is
indicated by an analysis of the motions of particlesin
the potential wave.

The plot of the function V({) is a well symmetric
about the point Y = 0. The maximum well depth isobvi-
ously determined by the values Y* and Y} . Denoting
V() =g, for g = Y* or P = Y%, we can obtain from
Eqg. (5) the limiting value of the parameter € and, there-

fore, the limiting value of the electric field amplitudein
the wave:

where e= is the dimensionless energy density

the equation , Where V(U) is the potential

m = 2y =1y +1-y). (6)
From Eq. (6), €, is determined for nonrelativistic

B _B

the dimensional formula

waves(B<1,y=1+ 5 ) e~ corr&pondmg to

E5 _ ngmu®
8m~ 2
For relativisticwaves (B = 1, y> 1), we have

:y;l 7
Sm/y- (N
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The parameter € isthetotal energy of aparticle mov-
ing in the potential well under consideration. It is
known that particle motion can be qualitatively deter-
mined from the plot of the potentia energy of the sys-
tem; i.e., the desired function = (&) can be found
from the form of V(). The analysis of the function
V() indicates that, with increasing parameter vy, the
potential-well profile changes so that it becomes virtu-
aly squarefor y> 5. Inasguare well, the particle moves
with constant velocity. Therefore, for y > 5, when the
well shape is close to square, the potential has a saw-
tooth shape, and the electric field in the wave has the
form of alternating positive- and negative-polarity
squares of the same amplitude and shape.

In order to determine the amplitude of the potential-
wave oscillations, we note that the total swing of the
potential is determined from Eq. (5) at V() = €. For

2
low wave velocities (B < 1,y =1 + % €= g), the

oscillation amplitude is small. Let us find the shape of
the potential well for small oscillations. Expanding the
right-hand side of Eq. (5) near =0 ( < B < 1) for
given € and 3, we obtain

v =L ®)

Therefore, small oscillations occur in a parabolic
potential well. The amplitude of small harmonic oscil-
lations is determined from the relation € = V(U): Y, =

BZ
= 72 ,
For relativistic waves (y> 1), when the amplitude of
oscillationsis close to the maximum (€ = €,,), the peri-

odic wave becomes strongly nonlinear. In this case,
from the equation

N

B —w(2y -]
+[BY + w2y + W] P —2By+e = 0

a given parameters y and €, the absolute value of the
amplitude of the potential oscillationsis determined as

m_ (2By—¢g) | 4Bye—€
2 4+ ABye— &

Therefore, the amplitudes are Y, = Y™ and Y_ =
-y, Substituting € = €, from Eq. (6) into the formula
for g™, we obtain g™ = y— 1. Thus, the form and ampli-
tude of the oscillations of the potential and the electric
field of the wave have been found. The spatial period of

DOKLADY PHYSICS Vol. 47 No.8 2002

565

the oscillations of the potential and electric field in the
wave is found in the wave reference frame as

i JBwIJs V(w

where V(1)) is determined from Eq. (5).

One more reference frame in the problem moves
with the velocity u with respect to the wave reference
frame. We refer to this frame as the laboratory coordi-
nate system, where the wave moves with the velocity u
in the negative direction of the x axis and has the wave-
length AL, and the period of oscillations of the potential

and electric field inthewaveis T = )_\ut .

The wave number k = 2711 and frequency are trans-

formed ask- = ykand 0 = y(w + uk'), where k- and w=
Z?H are, respectively, the wave number and frequency
of the wave in the laboratory coordinate system. The
frequency in the wave reference frame is reasonably

taken to be equal to zero. Therefore, u= —C—‘E isthephase
k

velocity of the wave in the laboratory coordinate system.

The plasmais quasi-neutral at x = 0 in the wave ref-
erence frame and, therefore, in all inertial reference
framesincluding the laboratory coordinate system. Itis
remarkable that ions and electrons at this point are at
rest in the laboratory coordinate system. Therefore,
when a wave and corresponding field disturbances are
absent, all electronsand ions of the plasmaare at rest in
the laboratory coordinate system, plasma is quasi-neu-

tral, and particle density isn, = 3

Thus, in the laboratory coordinate system, n, is the
density of the plasma undisturbed by the wave, the
wave has the frequency w, wave number k- and phase

velocity u= —[((*—E . It follows from Eq. (7) that the limit-

ing electric field in the wave with y > 1 in the labora-

tory coordinate system is (Ey), = mu)poﬁ where

81mn,e”

tory coordinate system. This (E),, value coincides with
the limiting electric field found in [1], where the prob-
lem of the propagation of longitudinal waves in a
plasmawas solved in the laboratory coordinate system.
The wave frequency in the laboratory coordinate sys-

is the plasma frequency in the labora-
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tem is found from the formula w = 211%/ . We obtain
therelation

3/2
© = Wy ¢—+”( By ©)

=

The frequency w can be approximately estimated in
two limiting cases, wherey =1 and y > 1. All calcula-
tions and estimations will be made for plasma waves
with the maximum amplitude, i.e., for € = g,. For small

B g
5 == 7

the function V() is determined by Eq. (8), the integral
entering into Eq. (9) can be calculated, and we find that
the oscillation frequency is equal to the Langmuir fre-

quency, i.e., 0= Wy

For relativistic plasmawaves (B =1,y> 1), theinte-
gral in EQ. (9) can be estimated by taking into account
the fact that the potential well is of an almost square
shape for y > 5. Therefore, for the limiting amplitudes
of the electric field, theradicand in Eq. (9) €, — V() =
1 for amost all Y values, and Eq. (9) yieldsthe estimate

oscillations(y =1, B < 1), wheng,, =

3/2

_ 0T BY)
TR

KICHIGIN

which gives w = %H%W; i.e., the wave frequency

increases as y'? with y and the wavelength decreases.
Thus, as the phase velocity of a longitudina plasma
wave tends to the speed of light, the wave frequency
increases infinitely. This dependence of the frequency
ony isopposite to the behavior y ~ y-! obtained in [ 1],
where the motion of ionsin the wave was ignored.

In summary, analyzing the properties of high-ampli-
tude plasmawavesin the electron—positron plasma, we
determined the wave profile by qualitative consider-
ation and found the frequency and wavelength as well
as the amplitudes of the potential and electric field of
the wave. The dependence of the wave frequency on the
wave velocity is most surprising: for y > 1, the fre-
guency of high-amplitude longitudinal plasmawavesis
always higher than the plasma frequency typical for the
harmonic linear plasma oscillations. The results are
important as an insight into the processes of the propa
gation of high-amplitude plasmawavesin the electron—
positron plasma.
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Calculations on the basis of ordinary equations
describing cavitation-bubble dynamics show that,
under certain conditions, the maximum temperature
Tmax 1N the bubble at the instant of the largest contrac-
tion can be as high as a few thousand degrees [1, 2].
However, at least 19 groups of experimental data on
multibubble cavitation reveal that high T, values are
not achieved in bubbles and that the mechanism of
sonoluminescence (SL) and sonochemical reactionsis
electric rather than thermal [3]. At the same time, high
T...x Values can be obtained under specific conditions,
e.g., when a bubble contracts in a single-bubble cham-
ber [4, 5] or when a spherically symmetric laser bubble
contracts [6]. In this case, luminescence occurs only if
the bubbles in question are at rest. If asingle bubbleis
entrained by a liquid flow or if a laser bubble moves
toward a solid wall, this luminescence disappears,
although ordinary eguations of cavitation dynamics
suggest no changes in this case. We assumed that in
order to adequately describe the dynamics of a bubble,
it was necessary to take into account its trandational
motion, and we obtai ned the corresponding set of equa:
tionsin theform

rD 3.2 u ra, ru
TR -3 B 3c31 7782
_1 _LD LD_ T dpb(t)
s L A R O
10 2

= —E)— —I(D PV + 4Trpu)dt + u(O)V(O)D )

20 4
po(t) = (py+p)+22-A_HU )

wheretistime; r and V are the radius and volume of the
bubble, respectively; ¥ and u aretheradial and transa

Andreyev Acoustics I nstitute,
ul. Shvernika 4, Moscow, 117036 Russia

tional velocities, respectively; p,, and p, are the pres-
sure in aliquid and in the bubble, respectively; p,, W,
and o are the density, viscosity, and surface tension of
the liquid, respectively; and ¢, is the speed of sound in
the liquid without bubbles. According to [ 7], the sum of
the gas and vapor pressuresis

pg tp = g0 + I'_D * Ps (4)

Here, r,istheinitia radius; y isthe heat-capacity ratio;
Pgo and ps are, respectively, the gas pressure at t = 0 and
the saturated-vapor pressure at constant temperature T,
3nb

an’

der Waals constant and the number of moles of gas
respectively. However, when Eq. (4) is used, T,
independent of the temperature of the liquid, T, WhICh
contradicts experimental data. Formula(4) isvalid only
in the case of bubble expansion. In contrast, when the
bubble rapidly contracts, evaporation and condensation
have no time to occur, and the vapor behaves as a gas.
Therefore, we have [8]

of the liquid; and b5 = , Where b and n are the van

Y
_ 20‘D|:|I’0|:| 0 R O
o+ . = | B+ TR * p}nm—%_bl G

In this case, the dependence of T,,,, on T, isin agree-
ment with experimental data, and the temperature T,,,,,

+ py(Ry)
g(Rm) '

When a cavitation bubble moves at an antinode of a
standing wave, the bubble is at rest; i.e., u = 0. In this
case, the set of Egs. (1)—(3) reducesto one Keller—Mik-
Sis eguation or, in the limit of incompressible liquid
(¢, —= =), to the Rayleigh—Plesset equation [1]. Fur-
ther, when the bubble radius is constant and 1 = 0,
u(t) = 2u,(t) and the set of Egs. (1)—(3) reduces to the
ordinary equation of motion for amasslessrigid ball [9].
In investigating high-energy cavitation effects, one

decreases by afactor of about
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Fig. 1. Numerical results for oscillations of a vapor—gas
bubble of initial radiusr, = 4.5 uminwater (c= 1500 ms™,
pL=10%kgm=3,0=73mNm 2, p=10 kgstmY)aa
temperature of 293 K (pg = 0.025 atm) in a traveling har-
monic plane wave (p,, = 1 atm, p,, = 1.325 atm, w = 21 x
26.5 kHz): (1, 2) time dependence of the cavitation-bubble
radius, respectively, without and with alowance for the
trandational motion; (3, 4) time dependence of the tranda-
tiona velocity, respectively, with and without allowance for
the radial motion; and (5) time dependence of the tranda-
tional displacement. In the lower right part of the figure, we
changed the ordinate scale and shifted the zero value of u
along the vertical.

considersthe fast contraction of a bubble by afactor of
10 to 20 in radius (T,,,, can be high only under such
conditions). In this case, its trandational momentum
remains constant and velocity u, as well as the energy
of the trandlational motion, increasesin inverse propor-
tion to ~V-! by afactor of 10° to 10% and part of the
energy of itsradial motion is effectively converted into
the energy of its trandlational motion. Therefore, tem-
perature T,,,, iS expected to decrease.

In order to describe the trandational motion of an
oscillating bubble under the action of an external pres-
sure gradient, the oscillation-period-averaged (Bjerk-
ness) force acting on the bubbleisusually defined as[10]

FB = —Dme(X, t)V(t)q (6)

Dividing Fg by the period-averaged added mass
p. VO (Fg0)

2 hid”
However, this approach is not applicable to the actual

pulsations of the bubble if its radius and, hence, the
added mass change, because the average of aratio is

, one obtains the bubble acceleration

I. M. MARGULIS, M. A. MARGULIS

generally not equal to theratio of averages; that is,

o= -2 ld(mp V)dQ
PL VB(: ”

2 p. (6 YV,
PL o/ '

where [iLis the trandlational velocity averaged over a
period. It is more correct to determine directly the time
dependence of the bubble displacement or, at a constant
sound frequency, to determine u(t) according to Eq. (2)
and the left-hand side of Eq. (7).

Let a bubble move in the field of a traveling har-
monic plane wave. In this case,

# @)

Po = Ph— Pm(Sinwt —kx),

_ - )
U, = —U,Sin(wt —kx),
where p, is the hydrostatic pressure; p,, and u,, = bE-”lC
L

are the amplitudes of the sound pressure and velocity,
respectively; w is the angular frequency; and c is the
speed of sound in aliquid with bubbles. This speed is
one to two orders of magnitude less than ¢, (eg., ¢, =
1500 m s? in a liquid without bubbles, whereas ¢
reaches 10-100 and 40-100 m s theoretically [11] and
experimentally [12], respectively). In the case of acous-
tic oscillations of the bubble, trandational and radid
oscillations are amost independent, and we have

(U Uy —, ©)
e -1

wherer, = is the resonance radius [13].
wlp, U
The bubble moves away from an emitter if r <r ., and
to the emitter in the opposite case. We note that,
although Fg = 0 and u(0) = 0, [MICis nonzero. Thisresult
can be obtained only if we average EqQ. (2) over time,
whereas the calculation with Fg from Eq. (6) would
give aresult such that the bubble is at rest. In general,
the velocity satisfies the condition < uy, but iCu,,

forr —r.

Figure 1 shows the numerical results obtained for
nonlinear oscillations of avapor—gas bubbleinthe pres-
surefield (8) when the interplay of the translational and
radial motions is and is not taken into account. When
the bubble expands, the trand ational and radial motions
are virtually independent (curves 1 and 2 coincide with
each other). At the same time, the radial motion consid-
erably affects the trandational motion, and the depen-
dence u(t) with allowance for the radial motion differs

DOKLADY PHYSICS Vol. 47
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considerably from the function u(t) = —2u,sinwt
obtained when the radial motion is ignored (curves 3,
4). In particular, in the expansion phase at r > 33 um,
the bubble would move toward the emitter (curve 4) if
radial motion were not taken into account; however, the
bubble moves in fact away from the emitter (curve 3).

When the bubble rapidly contracts, the translational
momentum remains approximately constant through-
out the contraction time, whereas the trandational

3
velocity increases sharply, u = u(R,) % .According

to our calculations, uincreasesfrom0.1mstar=R,
to 135 m st at the instant of maximal contraction.
When the translational motion is taken into account,
T...x decreases from 4200 to 2800 K, i.e., by afactor of
1.5. If, instead of the more correct Eq. (5), EQ. (4) is
applied to describe bubble contraction, as is usually
done, T,,,, decreases from 21000 to 3900 K, i.e., by a
factor of 5.5, when the trand ational motionistakeninto
account. Despite aconsiderable change in pg + py, Ty
changes only dlightly when the translational motion is
taken into account. The point isthat the minimal bubble
radiusr,, and T, are determined not only by the gas
and vapor pressure but also by the velacity of the trans-
lational mation. Thisconclusion is corroborated by cal-
culating the additional extension pressure p;,,.,» Which
is associated with the trandational motion and, under
conditions being considered, achieves 80 atm, i.e., is of
the same order of magnitude as the maximal pressure of
avapor—gas mixture (180 atm). The calculationsfor var-
ious r, and p,, demonstrate that the effect of p,,,q IS SO

R :
strong that Fﬂ‘ < 14 even for empty-bubble contraction.

m

For the same conditions as in Fig. 1, Fig. 2 shows
T,..x @nd themaximum radial velocity r . , which were

calculated asfunctions of the sound pressure p,,, in trav-
eling wave (8) when tranglational motion was and was
not taken into account. The inclusion of the transla-
tional motion leads to a decrease in T,,,, from 7700 to

2800K (i.e., by nearly afactor of 3),and r,,, decreases

from 560 to 140 m s (i.e., by nearly afactor of 4). In
a liquid containing bubbles, the effect of the speed of
sound ¢ on the maximum parameters in the bubble is
significant, because, with decreasing c at p,,, = const, the
velocity u, and, proportionally, the trandlational
momentum of the bubble increase [see Eq. (8)]. Thecal-
culations show that a collapse accompanied by the gen-
eration of high T,,, does not occur for c< 500 ms™. The
calculationsignored both heat transfer in bubble contrac-
tion (it reduces T, approximately by afactor of 2 [14])
and the deviations from the spherical bubble shape
upon bubble contraction (this effect also reduces T,,,,)-
Thus, even if the decreasein the speed of soundinalig-
uid containing bubbles is disregarded, the maximum
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Fig. 2. (1, 2) Maximal temperature, (5) the maximum trans-
lational velocity, and (3, 4) theradial velocity vs. the ampli-
tude of the sound-wave pressure (the remaining parameters
arethesameasin Fig. 1). Curves 1 and 3 were obtained by
ignoring the trandational motion, while curves 2, 4, and 5
were cal cul ated with allowance for the transl ational motion.

temperature in actual cavitation bubbles is bounded as
T.ax < 1000 K in the field of atraveling wave.

max —

The caculations demonstrate that, for nonlinear
bubble oscillations (Fig. 1, curve 5), the trandational
motion is jumplike, in contrast to the case of small
oscillations, where the translational motion of the bub-
ble with respect to the liquid proceeds smoothly. While
expanding, the bubble behaves as if it stopped; in the
case of quick contraction, it moves fast with continu-
ously increasing velocity—thisis ajump, which isfol-
lowed by a decrease in u nearly down to zero. The
apparent smooth translational motion of bubblesisin
fact a sequence of jumps occurring one or afew times
per period of acoustic oscillation (for each quick con-
traction); throughout the remaining time, bubbles are
virtually at rest. According to generally accepted con-
cepts, the Bjerknessforce Fg = 0 for bubblesin thetrav-
eling-wave field; that is, the total displacement of the
bubble over a period is Ax = 0. However, the calcula
tions have revealed that Ax ~ 65 um (Fig. 1, curve 5),
which is much greater than the amplitude of the inci-

dent wave, Pm_ _ o5 um. The computed value of
L
W= AX—Z(—*)]—T = 1.7 m s correspondsto the experimental

valuesof 1to 2ms?*[15].

Thus, we have derived a new set of equations that
describes cavitation-bubble dynamics and takes into
account the radial and trandational motions of a bub-
ble. We have shown that, in the case of quick bubble
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contraction, the energy of the radial motion of the bub-
bleis effectively converted into the energy of its trans-
lational motion. The apparent smooth translational
motion of the nonlinearly oscillating bubble is actually
a sequence of jumps that occur once or afew times per
period for each quick contraction of bubbles, and bub-
blesare virtually at rest throughout the remaining time.
Upon bubble contraction, the maximum translational
velocity can be as high asafew hundred meters per sec-
ond. The computed period-averaged translational
velocity agrees with experimental data.

In the case of nonlinear oscillations of a bubble, its
tranglational motion strongly affects the radial pulsa-
tions of the bubble, namely, considerably damps the
adiabatic contraction of the bubble and reduces both the
maximum temperature T, in the bubble by approxi-
mately a factor of 3 (to 2800 K) and the maximum
radial velocity by a factor of 4 (to 140 m s™). With
allowance for heat transfer, deviations from the spheri-
cal shape upon bubble contraction, and interactions
with other bubbles and liquid flows, the maximum tem-
perature T, of the bubble in the case of multibubble
cavitation in the field of a traveling wave cannot be
higher than 1000 K. Under such conditions, lumines-
cence with amaximum at 5000 K isimpossible.

A description of thetrand ational motion of an oscil-
lating bubble with the aid of the period-averaged Bjerk-
ness force can lead to incorrect results even in the case
of linear oscillations. It is more appropriate to deter-
mine the time dependence of the average displacement
or the average velocity of the bubble directly from the
proposed set of equations.
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When the surface of nonvolatile thermally unstable
substances is intensely heated, temperatures in the
chemical-reaction zone can be sufficiently high and
reach the temperature boundary of the phase state
(BPS), i.e., spinodal, up to which a condensed system
conserves thermodynamic stability [1]. In the vicinity
of the BPS, the rates of therma decomposition reac-
tions increase abruptly by several orders of magnitude.
This behavior allows the parameters of the BPS to be
determined experimentally from the temperature of
accessible overheating T, [2—6], which differs only
dlightly from the temperature in the spinodal [2]. The
familiar solutionsto the problem of the thermal decom-
position of materials [7, 8] were obtained disregarding
the parameters of the BPS and lead to considerable
errors in the high-temperature range. In this study, we
develop a simple mathematical model describing the
surface thermal decomposition of materials with inclu-
sion of the BPS parameters.

The quasi-stationary process of surface thermal
decomposition is described by the equation

2
AL kM -pcudl = o,
dx dX
| (1)
a _
U& + k(T)G = 0.

Here, C, isthe constant-pressure heat capacity, a isthe
depth of decomposition, u isthe velocity of the thermal
decomposition front, and F(T) = Qk(T) is the heat-
release function, where Q isthe heat rel ease of the reac-
tion [8, 9] and k(T) is the reaction-rate constant whose
temperature dependence with allowance for the BPSis

Mendeleev University of Chemical Technology,
Miusskaya pl. 9, Moscow, 125190 Russia

represented by the modified Arrhenius equation [4]

En

k(T) = BKexp E_RTD' 2)

n

with K = expg% or [1—(T/T)™ ™", where B, E,
|

and nare parameters1 For athermal process occurring

in a half-space, Eq. (1) must be complemented by two

boundary conditions: ar 0 for X —= o0 and heat

dx
AT . -
flux q, = X where A is the therma conductivity

coefficient, for x = 0 (on the free surface of the half-
space). Since function (2) is of acomplex form, the set
of equations (1) cannot be solved analytically. For this
reason, we derive the approximate solution of the prob-
lem on the basis of the familiar solutions from [8, 9].
Following [9], we separate two regions. the heating
zone of the original chemically stable material (x > &)
and the narrow reaction zone of heat release (x < ) (see
Fig. 1). For the heating zone of the origina chemically
stablematerial, F = 0, and the solution of Eq. (1) hasthe
form of the Mikhel’son exponential [7—9]

T = To+ (T-Toepufk-28 &)

wherea = CLp , T, isthe surface temperature, and T is
p

theinitial temperature. Equation (3) is corroborated by

numerous experimental data [8].

In the absence of flux g, (heating in vacuum), the
temperature gradient near the surfaceisalso absent, and
temperature throughout the surface layer & can be

lTemperature T, for polymers was called limiting temperature
in [8].
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Fig. 1. Distributions of the temperature and concentration of
the reactant upon the thermal decomposition of a polymer
near the free surface: (1) the actual profile of temperaturein
the material; (2) the step-model approximation of the tem-
perature distribution; (3) and (4) the distribution of the con-
centration C of the reactant for Tg< T, and Tg= T, respec-
tively; and (5) temperature distribution with allowance for
the supply of aheat flux to the surface.

approximately considered as being equal to the temper-
ature of the surface (T = T,). Then,

u = [kdx = k9, 4)

Oy o

because k(T) = const in this layer. In this case, thetime

of front passageist = g

For temperatures close to the BPS, homogeneous
nuclei areintensely formed and uniformly occupy sub-
stance bulk [2, 3]. The number of nuclei with time
reaches the limiting value for a certain porosity I (rel-
ative volume of inclusions), when the walls of nuclel
touch each other, and uncoupled particles of theincom-
pletely decomposed substance are formed in bulk (i.e.,
the dispersion effect) [8, 9]. For a chaotic random dis-
tribution of nuclei over volume, I = 0.64 [10]. As a
result of the removal of particles, the reaction involves
not all of the substance but only itsfraction f < 1. If the
velocities of gasflows are low, we have f = f, = . With
allowance for the incompl eteness of thermal decompo-
sition, the concentration of a substance reacted in time
tisC,—C=1-f=1-kt, where C, istheinitia con-

SHLENSKII, ZELENEV

centration. Therefore, f=kt = % , and Eq. (4) takesthe

form
u=—. 5)

Quantities d and T are found from the equation of
bal ance between the heat release and heat spent in heat-
ing the substance from the initia to final temperature:

Qktpd = p I C, (T(x) — Ty)dx. Substituting the function

0
T(x) from Eqg. (3) into the integrand, we obtain

Qkat = Cp(TS—TO)‘a‘. (6)

Substituting time t = S into the left-hand side of

Eq. (6), wefind
/C (T—Tya
PT. 7

In order to determine the surface temperature, we
write the equation of the heat flux at the boundary x =
between two temperature zones:

o=

u
Qepk =M = ATe=To = UCT:=Top: &)

X=29

dT _

dx

obtained by differentiating Eq. (3) with respect to coor-
Qok

Cp(Ts - TO) .

Here, the temperature gradient (T, - To)g1 was

dinate x. Therefore, u =

fu
k
relation and further manipulationsyield

The substitution of d= — from Eq. (5) into the last

f
T, = C—? +To. )

In the absence of nucleation, f = 1, and the surface
temperature correspondsto the so-called adiabatic tem-

Q + T,. The

perature in reacting gas mixtures T,y = o
p

substitution of Eq. (9) into Eq. (7) yields

_ [fa

Then, substituting Eq. (10) into Eqg. (5), we find the

(10)
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desired velocity

(11)

We now consider examples of cal culations and com-
pare the results with experimental data. The table pre-
sents temperatures T, determined for some substances
by the contact thermal analysis with an accuracy of
1.5%. According to [8], the parameters for nitrocellu-
lose at temperature T, = 300°C area = 1.2 x 103 cm?/s,
E = 44600 ca/mol, B = 10* s, and T, = 320°C. With
these values and for f = N = 0.6, Egs. (2) and (11) give
the value u = 7.7 x 102 cm/s, which is close to the
experimental velocity of surface motion for low pres-
sureu=8 x 102 cm/s[8]. The velocity similarly calcu-
lated disregarding the BPS was found to be u = 3.4 x
102 cm/s, which is equal to half the experimental
value.

Let us estimate the thickness of the surface layer &
for the process under consideration. The substitution of
a and k values into Eq. (10) yields 6 = 0.224 mm. We
now determine the heated-layer thickness x for which
temperature differs from the initia value by 0.01 (1%).
According to Eq. (3), In(0.01) = —u(x — ). Therefore,
x =1.22 mm for velocity u = 6.05 x 1073 cm/s. Thus,
thethickness of thereaction layer isegual to 18% of the
heated-layer thickness, which corresponds to Fig. 1.
The calculation results for other materials and compos-
ites based on nitrocellulose are similar.

Asthe next example, we calcul ate the vel ocity of the
thermal-decomposition front for mercury fulminate in
vacuum. According to [9], the characteristics of mer-
cury fulminatearep = 3.8 g/cm3, a=1.46 x 1073 cm?/s,
E = 25000 kcal/mol, and B = 10°° s™. For temperature
T, =633 K, the calculation gives u = 0.41 cm/s, which
amost coincides with the experimental value u =
0.40 cm/s [9]. At the same time, the velocity similarly
calculated disregarding the BPS parametersis equal to
u=0.1cm/s[9], which isaquarter of the experimental
value.

As the surface temperature rises, e.g., as aresult of
the supply of heat flux q,,, and approaches the BPS, the
velocity of produced gases increases, and the force of
their action on particles of unreacted substance, which
is proportional to the square of the gas flow velocity V,
increases aswell. The rise in the carry-over of particles
by the flow reduces the coefficient f. According to the
equation of gas-medium continuity, velocity V is
related to velocity uasV = L;—p , Where p, isthe gas den-

g
sity. Therefore, the amount of a substance carried over
by the flow isalso proportional to the square of velocity
u, i.e., is equal to cu? [11], where c is a coefficient.
DOKLADY PHYSICS Vol. 47
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Fig. 2. Plots of the (1-4) right-hand and (5-10) left-hand
sides of Eq. (13) with the use of (1-3) Arrhenius eguation
and (4) Eq. (2) forca= (1) 1, (2) 0.1, and (3) 0.01 and for
Tag = (5) 900, (6) 1000, (7) 1100, (8) 1200, (9) 1300, and

(10) 1400 K.

Then, f = (1 — cu?), where f, is the f value for u=0.
Substituting this value into Eqg. (9), we obtain T, =

2
Qf l_CCU + T,. Taking into account that u = ka

f
p
according to Eq. (11), we arrive at the equation

(12)

Equation (12) is transcendent with respect to the
desired temperature T, entering into the temperature
dependence k(T) and can be solved either by iteration

Temperature T, at atmospheric pressure for some energy-in-
tensive compounds [4]

Substance T,,°C Substance T,,°C
Ammonium nitrate | 340 ||Nitrocellulose 320-330
(film)
Ammonium 495 ||Pyroxyline 280
perchlorate
Ammonium 295 ||Load azide 395
bichromate
Load stifnat 355 ||Potassium azide 550
Celluloid 320 ||Cadmium azide 340
Mercury fulminate | 385 ||Silver azide 415
Mercury azide 425 ||Phenol formalde- 496
hyde with ammo-
nium perchlorate
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on a computer or graphically. Figure 2 illustrates the
graphical solution to Eq. (12). This equation was pre-
liminarily transformed to the dimensionless form

6= I=To

= = %_gmf
Ta—To o

0 (13)

The function k(T) shown in Fig. 2 was determined
by Eq. (2) for the parameters E = 35000 cal/moal, B =
10* s, n=50, and T, = 320°C and for anumber of ca
values for nitrocellulose-based materials. Asisseenin
Fig. 2, the temperature T, which is the abscissa of the
point of line intersection near the BPS, depends only
dlightly on the coefficient ¢, and the inaccuracy of
choosing this coefficient weakly affects the results cal-
culated for T,. The plot 6(T) falls sharply near the BPS
and closely approaches T,. Therefore, the temperature
T, in approximate calculations can be taken to be equal
to T,, which gives an underestimation of only 2 to 7 K.
Figure 2 also shows T, cal culated from the conventional
Arrhenius equation, which is free of information about
the BPSand followsfrom Eq. (2) for K = 1. Inthiscase,
T, exceeds T, by almost 40 K. Therefore, the calculation
disregarding the BPS parameters is physically mean-
ingless. Numerous experimental data corroborate the
fact that the surface temperature is below T,. In partic-
ular, for ammonium perchlorate, celluloid, and nitro-
cellulose, T, = 490, 310, and 300°C, whereas T, = 495,
320, and 320°C, respectively [4, 8, 9, 12].

Equation (11) explains why velocity u depends on
the initial temperature of a material. Since the coeffi-
cient a for many materials increases with heating,
velocity u increases with the initial temperature of a
material. This behavior is corroborated by numerous
experimental data[8]. Upon removal from the surface,
particles of the material are decomposed in the sur-
rounding medium, whose temperature can reach T,
which gives rise to the heat flux g, on the surface. In
this case, the plot of temperature in the surface layer
deviates from the horizontal position as is shown in
Fig. 2. Weintroduce the mean value of the vel ocity con-

4]

stant as X = % J’ k dx and, correspondingly, supplement

0
Eq. (6) by aterm presenting the additional heat supply
g,t to the reaction layer:

a
Qxtpd+q,t = pCp(Ts—To)l—J-

Replacing t by (—3 , We obtain a square eguation hav-

ing two roots (6, and &,) among which only one is of

SHLENSKII, ZELENEV

physical meaning:

— Gy + G +4QXP’Cy(T~To)a

0 = 2Qxp

(14)

Thus, with allowance for heat transfer on the sur-
face, the velocity of the thermal-decomposition front is

_ X8

u, —f_ (15)

In the particular case where q,, (q,, < 4fQxpCy(T, -
Ty), theradicand in Eq. (14) issimplified, and we have
Qw X9 O
0,=0- —/—— anduy; =% - ———
Uo2fQxe T 282Qp
is obtained by substituting the value g, into the left-

hand side of Eq. (8): fQpdX + G, = (T, — Ty) g which

corroborates the correctness of the calculation. There-
fore, the supply of a heat flux to the surface decreases
the thickness of the reaction layer. Nevertheless, veloc-
ity u increases, because the surface temperature rises.
With alowance for the additional heat flux g,t/pd=
Ow/PU, this temperature is T, = (f2Q + q,/puy)/C, + T,
which corresponds to T, calculated in[9] by another
method. Since velocity u entersinto the denominator of
the second term, temperature T, for high velocities u
observed near the BPS is virtually independent of g,
and of the increase caused in the coefficient of heat
release by the increasein medium pressure. At the same
time, since the temperature T, rises with pressure, the
surface temperature increases according to this mathe-
matical model. This behavior corresponds to numerous
experimental data [8]. As follows from the above rela-
tions, the change in the parameters of the surface
decomposition of a material is induced by nucleation
processes and by variation in the rate of the reactions of
thermal decomposition and dispersion, which increases
when approaching the BPS.

.A similar result

CONCLUSIONS

(i) Formulas for the characteristics of the surface
thermal decomposition of energy-intensive materials
were derived with theinclusion of the parameters of the
phase-state boundary.

(i) By the examples of the thermal decomposition
of nitrocellulose and mercury fulminate for low pres-
sures, the calculations were shown to agree qualita-
tively and quantitatively with experimental datafor the
velocity of the front of surface thermal decomposition,
dispersion degree, and surface temperature.
No. 8
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1. To date, severe plastic deformation iswidely used
to obtain aloys with a nanocrystalline structure [1]. In
these alloys, anomalous diffusion transformations are
found such as, e.g., the formation of solid solutionsfrom
components that are usually immiscible and modulated
structures typical of spinodal decomposition [1, 3]. The
physical interpretation of these phase transformations
is currently still lacking.

From the analysis of the experiments performed
in[1-3], it follows that, when the maximum fragmen-
tation of an alloy, which correspondsto its nanocrystal-
line state, is attained, the grain boundaries are the main
sources and sinks for vacancies. As was shown in [4],
the diffusion of vacancies toward the sinks (for differ-
ent mobilities of components) can cause the layering of
an aloy and lead to consecutive phase transformations.
The development of an adequate theory implies the
generalization of the classical Lifshitz theory for diffu-
sion creep [5] to the case of multicomponent nanophase
materials.

In this study, we propose a theoretical approach to
describe the process of diffusion in nanocrystalline sys-
temsunder severe plastic deformation. The specific fea-
tures of such systems are small grain sizes and a high
degree of nonequilibrium of their boundaries. In this
case, the supersaturation of the boundaries by vacan-
cies can reach values close to the material melting
point. The approach represents the extension of the
hole-gas theory [6, 7] to the case of the formation of
heterogeneous and, in particular, modulated structures
[8, 9]. When solving the diffusion problem, we used
mathematical methods for the solution of singular
problems [10]. The development of the Cahn—Hilliard
theory of spinodal decomposition, which allows for

* Ural Sate Vocational-Pedagogical University,
ul. Mashinostroiteler 11, Yekaterinburg,
620083 Russia

** |ngtitute of Metal Physics, Ural Division,
Russian Academy of Sciences,
ul. S. Kovalevskor 18, Yekaterinburg, 620219 Russia

flows of nonequilibrium vacancies, is of interest in its
own right.

2. For simplicity, the problem is analyzed in the
framework of a one-dimensional diffusion model (0 <
x < L, where L isthe grain size). When finding the dif-
fusion flow of the ith component (i = A, B) in abinary
A-B dloy, the expression for the probability of the
atom—vacancy exchange

Ei(x)

-1
T () Oexp— =

ey

is used. Here, the potential energies E; are determined
within the quasi-chemical approximation [6]

E(X) =2 z Ci(0)®;;, ()

i=AB

where Z isthe coordination number and ®;; arethe pair-
wise interaction energies of nearest atoms. We can
show that, in approximation (2), the equilibrium state
of an aloy is only homogeneous.

For heterogeneous structures, we need to alow for
the nonlocal dependence of the energy on the concen-
tration. Inthe general case, we can represent this depen-
dencein the form

+o00

E = E(G(Y), 0% = jcxx')S(x'—x)dx'. 3)

Here, the functional kernel & (x) has the shape of the
delta function with the decay radius R ~ a (a is the lat-
tice parameter). As R — 0, we have the conventional
version of the hole-gas method [6].

We now consider thefinal stage of the process, when
the displacement velocity U of a grain in its arbitrary
cross sectionisidentical and equal to that of the reverse
flow —J, of vacancies. Then, in a coordinate system

1028-3358/02/4708-0576%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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moving with avelocity U, we find for the flow of the A
component:

aCV_D&

Ja = (w:A_w'B)CACBW ax

CACsU

a dEd?’C,
kT Ei]

Z widCiD 0%

=AB

- )\ZCV (4)

Here, x — (x—UHL-; A= RL™!, w =an,T;" arethe

component mobilities; n, is the density of the lattice
sites; and D = C(waCg + wgC,) is the interdiffusion
coefficient [7], where

_ f Ci aE|D
w = w,%l‘kk—_ra—clm

Note that the first two terms in Eq. (4) provide the
expression for the flow in the hole-gas method [6] and
the last term coincides with the corresponding expres-
sion in the Cahn—Hilliard theory [9].

3. We now consider two-phase steady states arising
under the action of astationary vacancy flow J,, through

the interphase boundary. Let Cj, and Cyg be equi-

librium concentrations of the component A in the a-
and [3-phases, respectively. Excluding the vacancy con-
centration gradient from Eq. (4), we arrive at the rela-
tion

" Azd‘*’cA_ (1-WC,Cg)dC,

dx’ CaCs dx
V-1 -1y J
—((we) "= (wa) )z = O, )
V
D+ D . . .
where W = % AB—% is the dimension-

less mixing energy of the alloy. Equation (5) belongsto
the class of singularly perturbed equations. They can be
solved by joining asymptotic expansions [10]. Accord-
ing to this method, Eqg. (5) within the singularity region
near the interphase boundary (phase interface) isrepre-
sented in a“stretched” coordinate system X = ;—\( .Inits
initial form, Eqg. (5) is valid outside the singularity
region. Applying the method of [10], we obtain, in the
zeroth approximation in the parameter A, the external
C% and internal C solutions (outside and inside the
singularity region, respectively) for the concentration
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! (a)

Fig. 1. (@) Equilibrium phase diagram of a regular solid
solution with a limited solubility of components; (b) curve
f(Cp) for the energy density of the solid solution; and
(c) concentration curve of the component of A intheregion
of singular inhomogeneity.

of the A component. After double integration of the
internal equation, we arrive at

1 Cin ’ in in
W - () -uci-E. ®)

f(CR) = 3WCR(1-C)
+(1-CR)In(1-Cy) + CRInCy, @)

where KTf(C,) is the energy density of the regular solid
solution and p corresponds to the chemical potential [9].

Figure 1 schematically showsthe T-C diagram for a
solid solution at W > 4. Plots for the functions f(C,) and
V(Cn) =E + uC, are aso given. The equilibrium state is
determined by the position of the straight line y(C,) =
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X

Fig. 2. Curve shapes for concentration distributions of a
component for different values of the parameter S (@) out-

sidetheinterval (0, 1) and (b) inside the spinodal at Cf,a <
S
S< Cyp-

Ee+ PeC,, Which is tangent to f(C,) at the points Cj,

and CiB . Inthe presence of avacancy flow, the quanti-

ties E and p, as well as the straight line itself, deviate
from the equilibrium position. As aresult, for the devi-

ations A, g =Y(Cpq.p) — E% we have
Ny p = B

B = g\ﬁvﬁ (Wa— ) Ca(1—Cn)° )
Cvl 2(w)p)*(1-WCA(1-C)*

It is evident that the straight liney = E + uC, shifts
upward, and the cuspidal point C,, , lies within the

concentration range (Cjg , Ciag )-

4. Inthe qualitative consideration of the problem, we
restrict our analysis to small vacancy flows (4, g < 1).
We also assume the concentrations at the phase inter-

face to be in equilibrium, CLU,B = Cia,B, and the dif-
fusivities and mobility coefficients of the components
in each of the phases are constant. In addition, if we
take the coordinate dependence of the vacancy concen-
tration to be a linear function, then it is possible to
obtain the analytical expression for the alloy compo-
nent concentrations. Analysis of these expressionsindi-

GAPONTSEV, KONDRAT’ EV

cates that the character of concentration distributionsin
the phases is associated with the position of the point S

which is a root of the equation (w,—wg) = 0. If the

point Slies outside the interval (0, 1), the difference in
the values of mobilities does not change its sign within
the entire range of the concentrations. This situation,
shown in Fig. 2a, corresponds to an extension of the
solubility region of the solid solution and was discussed
in [3] for the Al/Fe system. At a certain critical differ-
ence in the vacancy concentration within the sink
region, the component concentration can reach the
spinodal boundary. As a result, the stationary regime
becomes unstable, and a new phase interface must
appear from which an increase of the a-phase beginsin
theregion of asink and its decrease in the region of the
vacancy source. The final stage in the development of
this process must be a state in which the a- and
[B-phases interchange.

The alternative case occurs when S lies within the
spinodal defined by the equation WCL(1 — Cp) = 1

(Caq <S< Cap). Inthiscase, thesign of the difference

in the mobilities of the system phases is different
(Fig. 2b). Asis seen, in the vacancy-sink and vacancy-
source regions, the concentration curve moves away
and towards the spinodal, respectively. For the opposite
initial disposition of the phases, this feature is pre-
served. The formation of a new interphase boundary is
unlikely in this case.

For large difference in the vacancy concentrations,
the displacements A,  far from the vacancy source can
also be large, which results in the mutual approaching
of points C,, and Cp, and a decrease in the structure
period | (theexpressionfor | isgivenin[9]). Asaresult,
a | <L, we can expect the formation of modulated
structures. Analysis shows that the maximum changein
the structure period | occurs even for small deviations
of the straight liney = E + pC, from the equilibrium
state. Furthermore, the period | attains a value on the
order of ~R and remains virtually unchanged.

Note that, in the case under consideration (unlike
classical spinodal decomposition), the vacancy-
induced decomposition of the equilibrium or metasta-
ble two-phase state of the alloy occurs. This transforma-
tion was apparently observed in the Cu/Co system [2] in
which a modulated structure with a nanometer-length
scal e appeared under plastic deformation.

In conclusion, we draw attention to the following
facts. If diffusion processes are initiated by a pulse
vacancy flow, then the stationary states considered in
thisstudy are“ ultimate,” sincetheintermediate statesat
room temperature are proved to be “frozen” after the
deformation has ceased to act [4]. The model of aregu-
lar solid solution, which was used in this study, does not
affect the main results obtained here. In the genera

DOKLADY PHYSICS Vol. 47
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case, it is sufficient to apply the functional dependence
in the form (3) for the component mobilities.
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INTRODUCTION

Diffusion processesin media possessing memory, in
particular, in fractal media (i.e., when the diffusion is
described by differential equations with fractional
derivatives), have recently attracted considerable atten-
tion [1-7]. This is associated with the fact that equa-
tions with fractional derivatives make it possible to
describe the temporal behavior of both the mean-square
deviation of diffusing particles and a number of other
physical quantitiesin gels, aerosols, solutions of high-
molecular compounds, etc. All these quantities were
observed to decrease with time more slowly thanis pre-
dicted by the ordinary diffusion equation. This suggests
that Levi-type, rather than Gaussian, distributions
should be used for describing diffusion processes in
such media. These processes usualy obey either the
Langevin equation with regard to white or color noise
or kinetic equations. In so doing, either the diffusionin
momentum space or that in coordinate spaceis consid-
ered. A kinetic equation describing processes in
plasma, fluids, rarefied gases, etc., was proposed in a
series of papers [8-11] by Klimontovich. The equation
alows for diffusion in both momentum and coordinate
spaces and thereby more adequately takes into account
actual features of physical processes in the above
media. In the absence of external forces, Klimontov-
ich’s equation in the diffusion approximation takes the
form

0 _ 0 [r 0
3110 P) = 5 Dl Mg 1 0
i p i 1
* oo Dl g P | (1)

Here, x and p are the coordinates and momenta of par-
ticles; f(x, p, t) isthe distribution function; r = (X, y, 2)
(the summation over the subscripts a and B {a, B =
(x,y, 2} isimplied); and D" and DP are the diffusion

Ural Sate University,
pr. Lenina 51, Yekaterinburg, 620083 Russia

coefficients in coordinate and momentum spaces,
respectively. The substantiation of this equation for a
wide classof physical problemswasaso givenin[8-11].

The goal of the present paper is to analyze the one-
dimensional Klimontovich equation with fractional
derivatives with respect to time, coordinates x, and
momentap. The equation is suitable for describing pro-
cessesin disordered media, in the vicinity of rough sur-
faces (described in terms of fractal geometry), in gels
and aerosols, etc. Thus, we deal with processes in
media for which the relaxation and diffusion are not
Debye processes. In this case, the mean-square particle
displacement is proportional to a fractional power of
time. In what follows, such mediawill bereferred to as
fracta media. The one-dimensional Klimontovich
equation for such media takes the form (with the diffu-
sion coefficients independent of x, p, and t)

aV
ot’

f(x p.Y)
o @)

=P x>

28
F(x, p.1) + DpaZ—zzf(r, 0, 1),

wherey, v, and & are fractional numbers satisfying the
conditionsy<1,0<v <1, and € < 1. When alowing
for relaxation processes, the corresponding term should
be introduced into Eq. (2):

0" x 0%
—f(x,p,t) =D f(x, p,t
at“(p) aXzy(p)

p_ 0% 4
+D Py f(r,p,t)—1 f(x, p,1),

3)

where T is the relaxation time. As was noted by Klim-
ontovich, formaly introducing a relaxation term [see
Eqg. (3)] into Eq. (2) isaccompanied by adifficulty con-
cerning the normalization of the distribution function:
the normalization factor proves to be dependent on
time. On the one hand, this resultsin awidening of the
range of problems described by this equation (includ-
ing problems with a nonconserved number of particles,
e.g., certain problems of chemica kinetics). On the

1028-3358/02/4708-0580$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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other hand, problems based on Eq. (3) and requiring
that the number of particlesin the system be conserved
(i.e., the normalization factor be constant) have a phys-
ical sense only inthelimit T = c0. Since Eq. (3) is more
general than Eq. (2), solutions to Eg. (2) can be
obtained from those of Eq. (3) as a particular case cor-
responding to T = co. It isworth noting that the Klimon-
tovich equation in fractal media completely allows for
the diffusion in both coordinate and momentum spaces.
The relaxation time T can be written out in the form

T'=1, +T, , wheret, and 1, are the relaxation times
in momentum and coordinate spaces, respectively. This

makes it possible to take into account either both of the
relaxation types or any one of them.

INITIAL CONDITIONS
AND AN EXACT SOLUTION
TO THE KLIMONTOVICH EQUATION

To solve Eq. (3), we impose the initial conditions
f(x, p, )i =0 = fo(X, p) and rewrite Eq. (3) in the form

0" « 0%
—[f(x, p,t) = fo(X, =D
at“[( p, 1) — fo(X, P ™

p 622 -1
+D apgg f(l’, p, t)—T f(X, p, t)_ 4)

5 1% P, 1)

We perform the Laplace transformation of Eq. (4) with
respect to t and the integral Fourier transformation with
respect to p and x. We also take into account the defini-
tion of fractional derivatives[12]

1 n
F(-v+ n)EthDf (t—

—-1<v<n

9t
t)\) n+1’ (5)

v il
D9 = _?

and the rule for the fractional differentiation of a con-
stant f, with respect to time

t—V

v —
ODI fO - fOr(l_v)1

(6)
where ,D;,D;" =1 and(x) isthe gammafunction. As
aresult, we find from Eq. (4)

0

1 ikx +ipp \
f(x, p,t) = folk,
X p 1) 2 ok, P)

cC+ioo

x I dwe™ f(k, p', w), @)
m—l
fk, pl o) = ———, ®)
1+(T w)
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where

T = [ttt = DXk = DP(i p)*]. )

Following [2-3, 13], we express Eq. (8) in terms of
the Fox functions[14, 15] and then perform theinverse
Laplace transformation of the function f(k, p', w) also
presented in the Fox functions. As aresult, we arrive at
the expression

00 [

f(x, p,t) = AIko’dpe‘kxl”Ppl

Z r((1 i)vn)[tva‘(‘k)zy—(ip)zzlnfo(k, p), (10)

where
1 1
A = (D) (D) %,
. . (11)

XV_Z— V_Z—E
x, = x(Dt") ¥, p, = p(D"t")

ASYMPTOTIC ESTIMATE
OF THE SOLUTION AT LONG TIMES

Inthe case of v < 1, wefailed to integrate over k and
p the Fourier integral transformation expressed in terms
of the Fox functionsin Eq. (10). Therefore, only rather
crude estimations will be given below for the behavior
of exact solution to Eq. (10) at long times. It is worth
noting that inthe case of y=1, £=1, v = 1, and
fo(k, p") = 1, the well known asymptotic expression
1 XXt
TP 2°Dt T
(Dt)? (Dt)

follows from Eq. (10).

We now estimate the rate of adecreasein exact solu-
tion to Eq. (10) at long times t. This estimate can be
obtained from Eq. (10) by substituting the function
(1 + vn) for (1 + n). Such a substitution leads to an
increase in each term of the sum entering into Eq. (10)
and, hence, alows usto find an asymptotic estimate of
the solution to Eqg. (10) for small x, and p, asv — 1,
i.e., the maximum rate of adecreasein thefunctionf. In
this approximation, the summation in Eq. (10) yields
theintegral

PO

fO Dt

(12)

[

f(x, p,t) = AJ’dk

00

X J' dpexp[—(tr_l (i k)zy\,-l iy p)zzv_l)v

+ikix+ip.p] fo(k, P). (13)
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In order to estimate expression (13) for small x, and
p, (i.e, for long timest) and for arbitrary 0 < v < 1, we
compute the fractional power v of the trinomial in the
exponential function of (12), expand this function
(except for thefirst terms) in powers of v, and write out
the remaining integrals as seriesin powers of x;, and p;.
For larget, thefirst term of thisexpansionislargest and
takes the form

fo
(D*t")"?(D"t")
¥t p*
22D’ ¥ 2%pPet
Fory<1,v<1,&<1,andlongtimes, the exact solution

f(x, p, t) decreases not more rapidly than the function
determined by expression (14).

fO

128

(14)

XeXp%

CONCLUSIONS

Kinetic processes depending on time more sowly
than ordinary diffusion processes must be described
with the help of Levi-type, rather than Gaussian, distri-
butions. To do this, we write out the Klimontovich
kinetic equation in afractal space. The equation is suit-
ablefor describing kinetic processesin mediasimilar to
gels, aerosols, electron-ion plasma, etc,, i.e, in the
cases when Levi-type distributions are necessary for a
more complete description of the behavior of the
medium. We have found an exact solution to this equa-
tion in the form of seriesin the Fox functions and have
analyzed the asymptotic behavior of the solution at
long times, as well as a passage to the case of a non-
fractal space. The results obtained can be used for
describing physical processes (among them, processes
in disordered or partially ordered media, etc.) whose
kinetic description requiresintroducing fractional deri-
vatives.
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The nondipole component of the interaction of pho-
tons with atoms considerably affects the angular distri-
bution of photoelectrons [1-3]. The angular distribu-
tion of electrons from the phaotoionization of solidswas
studied for unpolarized [4] and polarized [5] radiation
with the inclusion of elastic scattering and the first-
order nondipole component of the interaction of elec-
tromagnetic radiation with a substance. The first-order
nondipole effects were found to substantially change
the angular distribution of photoelectrons. Therefore,
these effects must be taken into account when the ele-
ment composition of a substance is analyzed by elec-
tron spectroscopy. Analyzing the angular dependence
of the photoelectron spectra of Ne atoms, Derevianko
et al. [6] concluded that higher orders of the interaction
of electromagnetic radiation with a substance contri-
bute considerably to the photoelectron angular distri-
bution.

In this paper, we study the effect of higher order
nondipole corrections on the angular distribution of the
photoel ectron spectra of solids.

TRANSPORT THEORY

Theangular distribution of photoelectronsfromion-
ization by linearly polarized el ectromagnetic radiation
isexpressed as

do _ oF
0 - A (1)
where

F=1+ B+ AB)P,(cosB) + (0 + ycos?B)sinBcos @

+ NP,(cosB)cos2@ + Pcos2@ + &(1 + cos2@)P,(cos )
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includes the dipole component of interaction, first-
order nondipole component, and higher order nondi-
pole components given by the formula[6]

f = ABP,(cosB) + nP,(cosb)cos2¢
+ cos2¢ + &(1 + cos2¢)P,(cosh). (2

Figure 1 shows the definition of the angles.

In the typical geometry of experiments, a photon
flux is perpendicular to the surface of a sample. In this
case, angles are related as [5]

cosO = sin0 cos @, 3)
cosa = —sinBcos @ 4)
It follows from these relations that

2cos’a

COSZ(D = — 5
1-sin“acos @,

-1. 4)

Applying transport theory [5, 7] and Egs. (3)—(5), we

Fig. 1. Definition of the angles.
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Fig. 2. Quantity f; as a function of the angle (a) a for
@ =0°, (b) @, for a = 10°, and (c) ¢, for a = 50° as calcu-
lated for (1) afreeatom; (2) an atom in asolid transport the-
ory; and (3) an atom in a solid Monte Carlo result.

obtain the following angular distribution of final photo-
electrons, whose initial distribution was given by

Eq. (2):

f, = a{&[a"*H(cosa, w)

—1+(1+ cos2¢)P,(cosB)] +ABP,(cosb)

+ nP,(cosB)cos2¢p+ ucos2¢} + A, (6)

NEFEDOV et al.

wherea=1-w, H(cosa, w) isthe Chandrasekhar func-
tion, and
A = 0.25H(cosa, w)wa
1

3
x H4.5n + 1508 + 10¢) Il‘—ﬂ(—’ﬁ—‘i’—)gl‘
0
0

cosa + X

1

—(1.5n +0.5AB) Iw
0

cosa + X

)

s
B 8-75EIX H (X, w)dx E
) cosa+X g
Quantities A and f, — A were calculated for the follow-
ing parameters: al combinations of values 0°, 15°,
30°, ..., 90° of angles a and @,; w = 0.15 and 0.3; AR,
4, N, and & values [8] corresponding to 1s, 2s, and 2p
levels of Neand 4s, 4p, and 4d levels of Xe; and a pho-
toelectron kinetic energy of 1 keV. It was found that A
isusualy lessthan 10% of f, — A and can beignored in
the first approximation. If f; changes sign with varying
@, A can be commensurate with f, . In this case, A must
be taken into account. We emphasize that the term
including the integral
1
XH (X, w)dx
{ cosa + X

isaways small and can be ignored.

For the above-listed parameters, f, is usually equal
to about 0.01, which isseveral percent of thetotal inten-
sity and about 10% of the first-order dipole transitions.
The second-order correction is an oscillating function
of angle @,.

®)

MONTE CARLO CALCULATIONS

Following [4, 5, 9], Monte Carlo calculations were
carried out for the 3d Ag line and for the above experi-
mental case. The ranges of angles a and @, are divided
into 90 and 80 sections, respectively. In each section,
1000 paths each for 16 different sample depths are
taken. Therefore, there are 1.152 x 10® independent
paths. The photoelectron kinetic energy is equal to
1.5keV. The single scattering albedo w is equa to
0.22[10]. The elastic and inelastic mean free paths are
equal t0 9.33 and 19.2 A, respectively.

In this study, the parameters AB, n, W, and & charac-
terizing the quadrupole and octupole interactions
E1E3, E1E2, and E1M2 of order O(k*a?) were calcu-
lated for the 3d Ag line and akinetic energy of 1.5 keV
in the relativistic approximation (asin [3]). The Dirac—
Fock—Slater atomic potential with coefficient C =1 for
the exchange term was used. The bound-state wave
functions were calculated by the method of the self-
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consistent field for a neutral atom. The continuous-
spectrum wave functionswere cal culated in the approx-
imation of quenched orbital angular momentum with
the Dirac—Fock—Slater potential of an ion with a
vacancy arising after photoionization. The parameters
were calculated as 0.0047, -0.00112, 0.00594, and
—0.00482, respectively.

Figure 2 shows the Monte Carlo and transport-the-
ory results. Theresultsfor the 3d line of afree Ag atom
are also shown. In agreement with expectations, the
intensity for a solid Ag sample is lower than the inten-
sity for free Ag atoms for most angles, because photo-
electrons undergo elastic scattering in a solid. The
Monte Carlo and transport-theory results agree well
with each other. The corrections in question depend
strongly on the azimuth angle @, and must be taken into
account when the diffraction of photoelectrons at cer-
tain a anglesis analyzed.
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The efficient absorption by a reactive medium of
laser-radiation energy can result in the initiation of pre-
ignition reactions and in the inflammation of acombus-
tible mixture. As is well known, the formation in a
reacting medium of nonequilibrium oscillatory excited
molecular states is possible under the action of both
pulsed and permanent sources of laser radiation. The
use of such sources with a sufficiently high output
power stimulated the development of infrared photo-
chemistry [1]. The resonance absorption of laser radia-
tion by hydrocarbons (e.g., by methane and propane)
was studied in[2, 3]. In[4], an increase in the combus-
tion rate for a laminar flame of a propane—air mixture
was observed under the action of the intense radiation
emitted by a continuous CO, laser. The authors of [4]
relate the mechanism of this action with the photodis-
sociation of propane molecules and formation in a
reacting mixture of active atoms and radicals (the so-
called kinetic mechanism). These authors admit a pos-
sibility of heating the mixture as aresult of the absorp-
tion of laser radiation (the therma mechanism). A sim-
ilar conclusion is made in [5], where the detonation in
atubefilled with a propane—air mixturewasinitiated by
focused CO,-laser radiation. In [6], results of theoreti-
cal and experimental studies of thermal ignition for
homogeneous mixtures of ethylene with an oxidizer,
which is induced by a pulse CO, laser, are analyzed.
Good agreement is obtai ned between cal culated predic-
tions based on the absorption model and the experimen-
tal data on the temperature variation. In[7], mecha
nisms resulting in the self-ignition of mixturesH, + O,
(air) are analyzed with the assumption that, under exter-
nal actions (e.g., electric discharge or laser radiation),
the preliminary excitation of vibrational degrees of
freedom occurs for reacting molecules.

* |nstitute of Theoretical and Applied Mechanics,
Sberian Division, Russian Academy of Sciences,
Institutskaya ul. 4/1, Novosibirsk, 630090 Russia

** |ngtitute of Laser Physics, Sberian Division,
Russian Academy of Sciences,
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In the experiments of [8], optical pulse discharge
(OPD) was applied to stahilize the turbulent combus-
tion of hydrogen—air mixtures. These experiments
extended the limits of stable combustion with respect to
both the gas-flow rate and the mixture composition
compared to the flame stabilization by the recirculation
zoneformed on the jet axis. The experiments were con-
tinued with the propane—air mixture. The phenomenon
of the stable ignition and combustion stabilization in a
turbulent flow of propane—air mixtures under the action
of focused pulsed CO,-laser radiation in the absence of
the laser-induced breakdown of the medium was dis-
covered.

The layout of the experiment is presented in Fig. 1.
The mixing of propane with air occurred prior to their
injection into the combustion chamber (7). The flow
was straightened with the help of meshes (2) installed
in the chamber, and the efflux proceeded into the envi-
ronment through a narrowing nozzle (3). In order to
ensure reliablelaser-induced breakdown and a decrease
in the threshol d-radiation power, argon was introduced
into the beam-focusing zone on the jet axis through a

Ar C3H8 + a'r

Laser —
radiation ) '''''

Fig. 1. Layout of the experiment. (1) Combustion chamber;
(2) mesh; (3) nozzle 20 mm in diameter; (4) nozzle3mmin
diameter; (5) KCI lens; (6) light filter; (7) camera lens;
(8) technical-vision camera; (9) video tape recorder;
(10) monitor.

1028-3358/02/4708-0586%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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small-diameter (3 mm) nozzle (4). The argon rate was
constant and equal to U,, = 17 m/s. In the experiments
without the laser-induced breakdown, argon was not
injected. The radiation generated by a LOK-3MS|
pulse-periodic CO, laser was focused by alens (5) at a
distance of 7-8 mm from the jet output cross section.
The combustion process was investigated using spec-
tral-zonal registration of the CH-radical radiation inthe
green—blue spectral region. The flame radiation within
the visible wavel ength range of 400-500 nm was sepa-
rated by an optical filter (6) and fixed by a technical-
vision camera (7). The exposure was chosen in accor-
dance with the luminosity of the object and varied
within the limits of 10°-10° s. A series of pictures
related to the same regime was averaged and treated by
standard graphical means of the Windows software
package. In the process of performing the experiments,
we varied parameters of the mixture flow (the rate U,
and the coefficient a of the air excess). Radiation char-
acteristics such as the energy-pulse frequency f, the
average radiation power N,,, thetotal pulseduration T,
and that of the pulse-peak T,.,, as well asthe intensity
in the focus (1) also changed. The flow parameters and
radiation characteristics are listed in Tables 1 and 2.

Figure 2 illustrates features of the flame for the two
methods of combustion initiation in the case of an
approximately permanent mixture flow rate. It is neces-
sary to note the difference in the onset domain of flame
development depending on the ignition method. While
initiating the OPD (in the picture, the region of the
bright plasma glow is closed by a screen in order to
reduce the effect of this region on the flame-radiation
registration), ignition develops near the rear discharge
boundary (Fig. 2a). When initiating by the radiation
without forming the laser-induced breakdown (in the
absence of the argon inflow), the onset domain of the
flame formation has a characteristic segment extended
in the direction opposite to the jet efflux (Fig. 2b). This
is caused by a small rarefaction at the jet axis, which
arises behind the small-diameter part of the nozzle (see
Fig. 1, position 4). There is yet another characteristic
distinction associated with a horizontal jet inflow into
the flooded space and the effect of lifting forces. Thisis
especially pronounced in the absence of the OPD. The
flame is asymmetric with respect to the axis (Fig. 2b).
In the experiments with the OPD, the effect is weak-
ened by the existence of the argon jet and the lower
combustion intensity (the combustion zone is more
extended). The comparison of certain flame pictures
taken with ashort exposure (10 s) shows that the com-
bustion isof an unsteady nature. Thistestifiesto thefact
of the realization of the turbulent flame-propagation
mechanism. The interval of the Reynolds numbers (see
Table 1) exceeds the upper boundary of the laminar
flow. In order to realize the quasi-steady flame maode, it
is necessary for the characteristic combustion time to
be longer than the time gap between the energy pulses.
Thetime of the gasresidence in the laminar-flame front
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(a)

~

(b)

Fig. 2. Flame photographic image. Uy = 2.5 m/s. OPD:
(8 a =1.07; radiation: (b) a = 1.28.

is considered as a characteristic combustion time 1, =

U% [9], where a is the mixture thermal diffusivity and
n

U, isthe normal velocity of the flame propagation. For

the propane—air mixture (being maintained at room

temperature),T; = 1.5 x 103 s. In the experiments, the

maximal time between the pulses was lower than this

Table 1. Gas-flow parameters

Up, m/s 1.9-38
a 0.76-2.8
Re x 10° 2.7-55
Note: The Reynolds number was determined by the nozzle dia-
meter.
Table 2. Laser-radiation parameters
f, KHZ | Nay, KW |Npga, KW| Tpe US| Tp, HS |1, kW/em?
17 13 180 0.3 16 560
30 18 100 0.3 4.0 310
45 18 85 0.3 20 270
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0 1 1 1 1 |
0.8 0.9 1.0 1.1 1.2 a

Fig. 3. Effect of the combustion initiation on the turbulent
velocity of the flame propagation (Ug = 2.5-2.86 m/s).
(1) OPD; (2) pulse-periodic radiation; f = (3) 17; (4) 30;
(5) 45 kHz.

value by more than an order of magnitude (namely, by
a factor of 25). We may consider that in the experi-
ments, the quasi-steady regime of flame stabilizationis
attained. The turbulent combustion rate was determined
according to the tilt angle of the flame-front leading
edge with respect to the flow direction: U = U,sing/2,
where ¢ isthetotal angle of aconeformed by the front.
The existence of lifting forcesintroduces a certain error
into this method. However, for the qualitative compari-
son of the combustion efficiency, this argument is not
decisive. The effect of the method of combustion initi-
ation is shown in Fig. 3. The general character of the
variation of U as a function of a is consistent with
physical concepts (U decreases with a). As follows
from Fig. 3, the turbulent-combustion rate for initiation
of the ignition process by focused pulse-periodic radia-
tion in the absence of laser-induced breakdown is
higher than in the case of OPD ignition by approxi-
mately 25%.

Thus, the pulse-periodic radiation of a CO, laser
with a high repetition frequency in the absence of the
laser-induced breakdown of a medium makes it possi-

TRETYAKOV et al.

ble to initiate and to maintain the stable combustion of
the propane—air mixture. In this case, the combustion-
propagation rate increases compared to the case of the
combustion stabilization by the OPD. Thisindicatesthe
occurrence of preignition reactions in the radiation-
focusing domain.
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When solving the problem of ball lightning, we
need to answer a number of questions. The basic ques-
tion relates to the form of the energy consumed for
maintaining electric and other phenomena that accom-
pany ball lightning. Furthermore, it is necessary to
explain the autonomous character of the movement of
ball lightning and to clarify the reason that it jumps off
when colliding with dielectric media, i.e., possesses
elastic properties, and why it is attracted to conductors.
We also need to explain why ball lightning explodes on
the mechanical disintegration of its structure. According
to data collected and systematized by Stakhanov [1], the
average lifetimet of ball lightning, its averageradiusr,
and energy U are approximately 10's, 15 cm, and 10* J,
respectively.

The ball-lightning model under consideration is
based on the effect of the self-purifying of plasmafrom
heavy particles. This effect was first observed by P.
Kapitza[2], who obtained a plasma pinch in a mixture
of light and heavy gases at atmospheric pressure. It
turned out that heavy-atom ionswerevirtually absent in
the plasma pinch. Theoretical analysis of the Kapitza
effect was performed by the author in [3]. At the
plasma—gas interface, atransition layer arisesin which
the ambipolar electric field isvery intense. In thislayer,
mol ecul es penetrating plasmafrom the ambient gas are
ionized. Thus, only those ions which can overcome a
potential barrier arrive at the volume occupied with
plasma. Thisisaccessible only for light hydrogen ions.
At the sametime, the penetration of heavy particlesinto
the plasma volume is practically impossible. The ball
lightning nucleates in the linear-lightning channel in
which high-temperature plasmais formed. This plasma
exists in the atmaosphere for only about one thousandth
of a second. However, it is capable of accumulating
hydrogen ions in its volume during this time. Beyond
the hot plasma, a layer of cold recombining plasma
arises. Here, in the case of a sufficient amount of
organic substances, favorable conditions for molecular
polymerization appear.

Russian Research Centre Kurchatov Institute,
pl. Kurchatova 1, Moscow, 123182 Russia

Thus, the ball lightning is an object that contains
hydrogen molecules and has an excess positive charge
in its interior domain. Hydrogen gradually escapes
through the porous shell and burns, whereas the pres-
ence of an electric field promotes the appearance of
spark discharges. If the hydrogen flow from the interior
domains is anisotropic, then a reactive force arises,
which causes a displacement of the ball lightning. The
object can be elastic, but arupture of its shell resultsin
an explosion since, in the conditions under consider-
ation, the hydrogen oxidation has an explosive nature.

The presence in a ball lightning of a substancein a
condensed state is confirmed by the following theoreti-
cal and experimental studies. After analyzing various
elementary processes in gas media, Smirnov [4] con-
cluded that the energy accumulated in a ball lightning
isof achemical nature. He constructed a corresponding
fractal model. Bychkov [5] assumed the ball lightning
to be similar to an electrically charged polymer net.
Furthermore, this author emphasized that in a number
of experiments [6-9], luminous balls were obtained in
the case of ahigh-frequency discharge only in the pres-
ence of organic molecules in the atmosphere. For
example, in [9], Slyusarev obtained a luminous red-
white ball when studying the effect of an electric field
on wood. In [10, 11], an assumption was made that a
ball lightning is a supercooled dense plasma or a struc-
tural cluster consisting of excited atoms.

We now consider the process of accumulating
hydrogen ion plasma formed in a linear-lightning dis-
charge. Asiswell known [4], the linear-lightning chan-
nel has the following parameters. the plasma tempera-
tureis T = 3 x 10* K, the lifetimeist = 1073 s, and the
channel radiusis approximately p = 10 cm. In this case,
plasmais completely ionized, and the energy of the dis-
charge is mainly spent for heating and ionizing particles
penetrating the plasma from ambient air layers. A mole-
culearriving at the plasmadissociatesinto atomsthat are
then ionized by the el ectron impact. In this case, neutra
particles before they have been ionized manage to fly a
certain distance into plasma. Thus, at the plasma bound-
ary, a trangition zone arises in which both neutral and
ionized particles are present. In this zone, the plasmais
inhomogeneous, and an ambipolar electric field appears
due to the charge separation. Electrons having maximal
energy are emitted from the plasmainto the environment

1028-3358/02/4708-0589%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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and, being cooled, form negative ionsthat are trapped by
molecules. Charged particles are turned out to be sepa-
rated in space, and an excess positive charge can be pre-
served in the volume after the plasma has recombined.
The depth of thetransition zoneis determined by the dis-
tance passed by neutra particles in the plasma, which
penetrate it from the ambient gas. The path length of a
neutral atom before it is ionized by the electron impact
can be found from the formula

, ey

where v and v, are the thermal velocities of a neutral
atom and of an electron, respectively, n is the plasma
concentration, | is the atomic ionization potential, and
o; = Te?/I? isthe Thomson ionization cross section. It fol-
lows from formula (1) that a particle whose vel ocity and
ionization potential are higher penetrates deeper into
plasma. In the absence of light inert atoms, hydrogen
atoms have the maximum flight length. Newly formed
atoms either penetrate the plasma volume overcoming
the potential barrier produced by the ambipolar electric
field or are thrown by this field from the plasma. Evi-
dently, it is simpler to overcome the potential barrier for
particles that penetrated deeply into the plasma, i.e., for
hydrogen atoms. That is why hydrogen being contained
in the ambient gasis collected in the plasma volume.

It is worth noting that we assumed the motion of a
neutral particle (its flight regime) to be collisionless
until the moment when the ionization occurs. However,
the allowance for friction between neutral particlesand
the counterrunning ion flow insignificantly affects the
efficiency of the plasma self-purification.®

Weindicatethat during the dischargetime (102 s) in
a lightning channel which is in dynamic equilibrium
with the ambient air, tens of ion generations change
each other. In this case, hydrogen can fill in the plasma
volume provided that there is a sufficient amount of
molecules containing hydrogen atoms. They may be
water molecules, organic molecules, or macromole-
cules carried by the air flux into the domain in which
the lightning discharge occurs.

After the discharge maintaining the existence of
plasma has ceased, the plasma is cooled and recom-
bines in a time of 10“-10"° s. Hydrogen molecules
begin to diffuse into the ambient gas. If spreading of a
hydrogen cluster occurs freely, then the diffusion time
is Tp = p*/D (where D is the diffusivity of hydrogen
molecules in air) and lasts on the order of several sec-
onds. Itis probable that the nature of abead lightning is
associated with the diffusion spreading and hydrogen
burning in the atmosphere.

1 The structure of the transition zone in a homogeneous gas under
conditions inherent in the flight regime and diffusion regime was
thoroughly analyzed in [12, 13].

ALANAKYAN

A long-lived abject (ball lightning) arises when a
medium hampering the hydrogen diffusion is formed
about the hydrogen cluster. This may be, e.g., a porous
polymeric medium. It is worth noting that under labora
tory conditions, in the case of a sufficient concentration of
organic molecules, the polymerization can occur in frac-
tions of a second. In this case, the polymerization rate
may considerably increase in the presence of ozone and
negative oxygen ionsin the atmosphere (see, eg., [14]).

Finally, we estimate the energy capacity of a hydro-
gen ball. There is not more than 0.25 mole of hydrogen
in the volume of an average ball lightning. In the process
of producing water, whilefusing with an equal amount of
oxygen, about 7 x 10° J of thermal energy is released.
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The attention and efforts of researchers of a wide
range of specialties have been attracted by the ball-
lightning phenomenon for decades. Many hypotheses
have been put forward for its explanation and possible
laboratory reproduction; however, the problem remains
unsolved. A leap forward was made by the late Prof.
I.P. Stakhanov. In the journal Nauka i Zhizn', he called
for everyone who had really observed ball-lightning to
send him descriptions of the observations. He received
afew thousand formal responses and carried out phys-
ical analysis and statistical processing of the collected
materials. This alowed him to state a number of con-
cepts characterizing the basic properties and parame-
ters of ball-lightning, along with prerequisites for its
formation, motion, and interaction with its “habitat,”
physical bodies, constructions, etc. These materias
constituted the content of his remarkable book On the
Physical Nature of Ball-Lightning [1]. Stakhanov also
stated a theoretical concept on the nature of ball-light-
ning, which isknown asthe cluster hypothesis. Accord-
ing to this hypothesis, ball-lightning is conceived as a
localized bunch of ions which are surrounded by shells
composed of polar molecules (of water and other com-
pounds produced in air); i.e., they are ion clusters that
can exist without recombination over a long period of
time (many seconds, tens of seconds, and several
minutes).

According to eyewitness observations, ball-light-
ning is produced predominantly on streak lightning
strokes near the ground and high in the atmosphere (air-
craft-borne observations), aswell as during “jump out”
of radio and electric devices when there is no thunder-
storm in the immediate vicinity.

Stakhanov's cluster hypothesis agrees well with the
extensive observations presented in [1], i.e., with the
existence of an effective surface tension for ball-light-
ning material; its ability to pass nondestructively
through narrow holes and slots and to gather in “daugh-
ter” ball-lightnings on forced mechanical breakdown;
and with estimates of its temperature, nonequilibrium
glow, substance density, etc. However, the author failed
to construct a real physical mechanism for the forma-

Institute of Mechanics, Moscow State University,
Michurinskii pr. 1, Moscow, 117192 Russia

tion of a bunch of cluster ions. The reason is that the
part of the energy released on a streak lightning dis-
charge and the mass that are available for the produc-
tion of an ion cluster cloud were incorrectly estimated
on the basis of empirical data on ball-lightning param-
eters. In his book (p. 208), Stakhanov wrote that
“amost all the discharge energy [of a streak lightning,
S.G.], which, as we have seen, measures in the hun-
dreds of kilojoules per meter of length, leaves the chan-
nel mainly in the form of radiation, its major part being
stuck inthe corona.” Of course, this statement iswrong.
It is common knowledge [2] that, on a streak lightning
stroke, the duration of the air breakdown process pro-
ducing aconductive channel, through which the electric
discharge proceeds, and the duration of this discharge
itself are much shorter than the duration of the radiation
of the shock and acoustic waves from the channel. The
breakdown and discharge continue for a few to a few
tens of microseconds; i.e., an acoustic wave travelsin
air from afew fractions of a millimeter to a few centi-
meters in these times. Thus, the energy release in the
breakdown channel is far too short and induces an
intense shock wave (whichis perceived asaloud sound,
i.e, as thunder) propagating in environmental air.
Shock-wave passage through air containing water
vapor and a multitude of water drops (fog, rain, thun-
derstorm clouds themselves) results in the complete
fragmentation of drops of water, their evaporation, dis-
sociation, and ionization (together with air molecules)
near the discharge channel axis. The intensity of these
processes decreases sharply away from the channel.
With some separation, even drop fragmentation ceases.
(Of course, al distances corresponding to the succes
sivetermination of the cited processes can be calculated
by solving the corresponding mixed gas-dynamic and
gas-kinetic problem.) When the shock-wave front
recedes, the gas pressure, density, and temperature will
decrease, and the reverse processes, i.e., recombina-
tion, restoration of molecules, etc., will proceed in the
medium produced by the shock wave. It is clear that
there exists a range of distances from the channel axis
at which the values of the initial parameters of the
humid air generated by the shock wave and their subse-
guent decrease with time are such that there will be
many ions on which cooled water-vapor molecules
adhere, producing the ion hydrate clusters needed for
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Stakhanov’s scheme. |on recombination is thus sharply
retarded.

Upon completion of the fast stage of the hydrody-
namic process, when the shock wave has gone to large
distances, along (cylindrical) heated-gas region whose
outer part contains cluster plasma remains near the
channel. Thisregion asawhole beginsto float up under
the action of buoyancy. However, the emerging motion
is nonuniform: since the discharge channel is not
straight and heated gas floating in the channel and
around it is convectively unstable, the floating-up con-
figuration is strongly deformed and decays into sepa-
rate fragments. The presence of cluster plasmain these
fragments, which possesses, as was shown by Stakha-
nov [1], an effective surface tension, may result in the
formation of compact plasma bunches, i.e., ball-light-
ning. In order for the formation of these bunches to be
possible (before the classical plasma loses its capacity
for compaction due to convective mixing in the float-
ing-up process), the presence of a sharp initial honuni-
formity in the heated region including initia local
regions with high concentration of cluster plasma is
essential.  Such nonuniformities may arise at the
branching sites of the streak lightning channel, in sites
of enhanced initial moisture content of the air broken
down by the lightning, and in sites where the lightning
strikes electric conductors. Here, the sizable “point”
absorption of the discharge electric current produces a
local increasein the energy of “explosion,” which isnot
cylindrical, asit is around the main channel of alight-
ning discharge, but concentrated. As aresult, theinitial
cluster plasma mass and, consequently, the probability
of the formation of a bunch from it (i.e., ball-lightning
formation) increase sharply. Indeed, as was described
in [1], bal-lightning often arose precisely in places
where streak lightning struck conductors: metal bear-
ings of transmission lines, metal spires on buildings,
wet soil (plowed field), lake water, etc. The examples of
such events described in [1] are asfollows: (event no. 1
according to[1]) astreak lightning stroke to the spire of
Bol’shoi Kremlin Palace produced two ball-lightnings;
(no. 7) a ball-lightning arose in a streak lightning
branching site; (nos. 20, 58) a streak lightning stroke to
asteel bearing of atransmission line and to atower pro-
duced aball-lightning; (no. 28) astreak lightning stroke
to abank of ariver produced a ball-lightning; (nos. 59,
64, 65, 70) a streak lightning stroke to a tree produced
a ball-lightning; (nos. 63, 64, 69) a streak lightning
stroke to the ground produced a ball-lightning; (no. 68)
streak lightning struck lake water, and a ball-lightning
“jumped out” of the water; (no. 66) a streak lightning
stroke to wires near a pole produced a ball-lightning;
(no. 62) a streak lightning stroke to a transformer sub-
station produced a ball-lightning, etc.

Now, we perform some quantitative estimates for
checking the plausibility of the proposed mechanism
for producing both cluster plasma and bunches of it,
i.e., producing ball-lightning. Since energy is released

GRIGORYAN

in the streak lightning channel in a short time, the sub-
sequent gas-dynamic processes can be described with
reasonable accuracy by using the exact solution found
by academician L.I. Sedov to the problem of a strong
explosion in gaswith cylindrical symmetry [3]. By this
solution, the distribution of gas-dynamic parameters
around the symmetry axis of the problem in the cylin-
drical coordinatesis of the form

v = 5. p = e,
P = 2Pl TP, (1)
I B
TTRe CTRO

Here, v, p, p, and T are the (radial) velocity, density,
and absolute temperature of gas, respectively; r is the
radial coordinate (the solution is independent of the
axial z and azimuth 6 coordinates; i.e., it is one-dimen-
sional); tisthetime; p, istheinitial gas density, yisthe
adiabatic index for the gas; R, is the gas constant; the
dot above r; denotes differentiation with respect to t;
V(&), R(&), and P(§) (V(1) =R(1) =P(1) = 1) are known
explicit functions of & found by Sedov; andr =r; (t) is
the following law of motion for a shock-wave front:

E
re(t) = 4/0( (y;potz' 2)

Here, E, isthe energy instantaneously released per unit
length of the cylindrical explosion axis and a(y) is a
dimensionless number of the order of unity [3].

According to the estimates based on the observa-
tional dataanalysis, on astreak lightning discharge, the
average energy released per one meter is 500 kJ; i.e.,
the values E, = 500 kJ/m = 5 x 10'° g cm/s? and p, =

5%0 g/cm? can be substituted into the solution given by

Egs. (1) and (2). For dry air, y = 1.4; for air containing
water vapor, y hasavaue from 1.2 to 1.3. However, for
such values of y, dependence a(y) can be neglected in
Eqg. (2). Thus, Eqg. (2) takesthe form

r(t) = 2.5x 10%4. Q3)

Here, r; is expressed in centimeters, and t, in seconds.
At the shock-wave front (r = r;, & = 1), we have (for
y = 1.4; the employment of y ~ 1.2-1.4 does not change
the order of magnitude):
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wherep, and T, aretheinitial pressure and temperature,

respectively. For 5 x 10° s<t < 102 s, we obtain the
results presented in the table.

For distances from the axisthat are lessthan the dis-
tance corresponding to t = 5 ps, the solution is not
described by Egs. (1) and (2); in this region, it is sub-
stantial that energy isreleased in the discharge channel
gradually. Thelast two rowsin the table are al so unsuit-
able for the process description: the effect of the initia
atmospheric pressure p, is essential at this stage. The

main error is introduced by the relationship % =
0

%, which, in particular, distorts T;. Nevertheless,
the calculation gives correct estimates up to the dis-
tancesr; ~ 0.3 m, and in thisrange, the temperature con-
ditions make possible the above-mentioned processes,
which result in the production of the required cluster
plasma volume. This statement is also justified by the
fact that, according to the self-similar solution given by
Egs. (1) and (2), the temperature downstream from the
shock-wave front sharply increases as the symmetry
axis (“explosion” axis) is approached and tends to
infinity on this axis. The temperature also increases
with time for fixed r, until the effect of the initial pres-
sure p, changes the solution completely and terminates
this increase in temperature. The figure qualitatively
shows the shock-wave front and isotherms for the self-
similar solution (at the bottom) and for the exact solu-
tion (above). Thereal solution differsfrom Egs. (1) and
(2) dsointhevicinity of theaxisr = 0, where, accord-
ing to Egs. (1) and (2), temperature gradients are very
large, and, hence, heat conduction is essential, and al
gas-kinetic processes, including those responsible for
the formation of the cluster plasma, are different.

Nevertheless, the above estimates and reasoning
show that there are favorable conditions for cluster
plasma production in the example under consideration
inacylinder with radius 0.3 m. Stakhanov [1] estimated
the air volume required to produce such plasma with
mass corresponding to a medium ball-lightning 20 cm
in diameter. For aninitial mass of saturated water vapor
equal to 1542 g per 1 m?, this volume is equal to
0.5 m?. According to the above estimates, this volume
is obtained for maxr; (t) = 0.25 m for a section of streak

DOKLADY PHYSICS Vol. 47

No. 8 2002

593

S~ r=r¢()

Figure.

lightning of length | = 2.5 m (I = 2 m for maxr; (t) =
0.3 m). Thisisin good agreement with the above mech-
anism of the formation of cluster plasmabunches, when
a heated air region, which is left after the shock wave
has moved away, floats up and disintegrates into sepa-
rate fragments. Since thereal water concentrationin the
initial air volume may be much higher (from oneto two
orders of magnitude in the presence of a dense fog of
drops and at a lightning stroke to water-bearing obsta-
cles: soil whileit rains, awater reservoir, atree; seethe
above examples), a strong shock wave induced by a
streak lightning discharge can undoubtedly create the
conditions for the production of the required cluster-
plasma mass and the formation of ball-lightning from it.

A bal-lightning production mechanism indepen-
dent of streak-lightning discharge (from radio and elec-
trotechnical devices) isbriefly outlined in[1]. Thisisa
powerful corona discharge through an air gap, whichis
induced by energy accumulated in lines and devices
with sizable electric capacitance when they become
charged in the electrostatic field of a nearby thunder-

Table

t, us rocm | vi, kmis |py, kglem?| T, K
5 5.6 4.2 320 16200
10 8.0 3.0 160 8100
50 17.7 13 32 1620
100 25.3 0.95 16 810
500 56 0.42 3.2 162
1000 80 0.3 16 8l
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storm. In these cases, the cluster plasmais produced by
the“hydration” of ions which are created by the corona
discharge, not necessarily by water molecules, but also
by molecules of other compounds produced by a strong
corona discharge as well.

From the above discussion, it followsthat ball-light-
ning can in principle be produced artificially. This can
be arranged by producing a moisture-laden atmosphere
with avariable concentration of vapor and water drops
within a volume insulated by firm walls (it is desirable
to have transparent sectionsin them). In thismedium, a
powerful linear explosion with controlled energy
should be fired, for example, by passing pulse electric
current through athin linear conductor (the well-known
scheme of an exploding wire). If Stakhanov's cluster

GRIGORYAN

hypothesis is correct, bal-lightning will be generated
under appropriate parameters in this experiment.
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The operating efficiency of ultrashort-pulse antenna
arrays can be estimated by analyzing the space-time
intensity structure of emitted signals. In addition, it is
necessary to take into account the interaction between
the radiation of each of the antennas turned on sequen-
tially intime.

To date, the methods of such an analysis have been
developed as applied to a certain fixed shape of awork-
ing signal arriving at the input of each antenna and, as
a consequence, a signal emitted by the antenna. These
signalshaveidentical time diagramswith acertaintime
delay.

In this study, we consider a method for analysis of
the resulting radiation from a linear array for arbitrary
signals applied to the inputs of antennas turned on
sequentially, and, in general, being different from each
other. Such a generality is appropriate from the stand-
point of the expanded possibilities associated with a
purposeful action on both the focusing of a resulting
signal and the improvement of the operating efficiency
of the arrays. At the same time, this generality enables
us to use ultrashort-pulse generators with different
characterigtics.

1. The space-time emission characteristic of a sin-
gle antenna (in the plane approximation) can be written
out in theform

y(t, 9) = f(9)z(1), )]

wherey(t, ¢) isthe intensity of the emitted signal at the
time moment t along the direction with the angular
coordinate ¢; f(¢) isthe directivity pattern of the emit-
ted signal, which is assumed to be a continuous and
continuously differentiable function symmetric about

* Moscow Research Institute of Instrument Building,
Kutuzovskii pr. 34, Moscow, 121170 Russia
** Blagonravov Institute of Engineering Science,
Russian Academy of Sciences,
ul. Bardina 4, Moscow, 117334 Russia

the value ¢ = g; and z(t) is the time diagram of the
emitted signal:

t

z(t) = Ih(t—T)X(T)dT, t0(0; T,],

. 2)
z(t) = J’h(t—r)x(r)dr, tO(T,; o).

0

Here, h(t — 1) is the pulse transient function of the
antenna considered as alinear steady system; x(t) isthe
time diagram of a signal produced by an ultrashort-
pulse generator and applied to the antenna s input; and
X()=0(att>T,), where T, isthe duration of the input
signal.

In view of relationship (2), expression (1) for the
intensity of an emitted signal takes the form

Y(t,9) = F(®)fh(t-T)x(v)dr, t0(0; T,

. 3)
Y(t.§) = £(9) [h(t-T)x(r)dr, t0(0; ).

0

2. A linear array represents n antennas arranged
along a straight line and spaced equidistantly at a dis-
tance | from each other (Fig. 1). The antennas are
sequentially activated with atimedelay T (T > T,) from
left to right.

In the general case, at the moment when the ith
antenna (1 <i < n) isturned on, the effect of the radia-
tion of al preceding antennasis present.

Figure 2 shows the cal culation scheme that makesiit
possible to determine the cumulative effect of the
antenna's emissions. At a point with the abscissa p and
the ordinate s, the effect of the total emission is deter-
mined by the summation of the radiation intensitiesfrom
i antennas (i.e., from both i — 1 preceding antennas and
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Fig. 1. Linear antenna array.

the ith antenna emitting within a given time interval).
Therefore, in accordance with expression (3), the overall
emission effect of a single antenna can be written as

jT+T,

f(9;+1) I h(t—1)X;. 1(T)dr
i

i—2

ys(t, p,s) = Z

i=0

+f(9;) I h(t —1)x;(1)dt,

(i-1)T
tO(i-1T; (i-1)T+T,],

jT+T,

“)
i—-1

ys(t, p,s) = z f(j.1) I h(t-1)x;,(T)dr,
i=0 iT

tO((i-1D)T+Ty;iT],
i =23, ..,n,

where x(t) is the input signal for the jth antenna; the
angles ¢; for the jth antenna are the functions of the
coordinates p and s at the point under consideration:

S
T

When the input signals with the same time diagram
X(t) are applied to the input of each of the antennas|i.e.,
X(t) is a periodic function with a period T], it is appro-
priate to transform the integration limits to the interval

(0, T,) of the function definition interval. As a result,
expression (4) takes the form

¢; = arctan

Tij_2

ys(t, p,s) = _[z f(d;.)h(t=1—jT)x(T)dr
0j=0

t—(i-1)T
+ J’ f(d)h(t—t+T—=iT)x(1)dr,
0

td((i—-1T; (i-1)T+T,],

y:(t, p,s) = J’Z f(¢;.)h(t—1—jT)x(1)dr,
0j=0

&)

tO((i-1)T+Ty;iT],
i =23, ...,n.

For repetitive input signals, expression (5) has an
advantage over the general expression (4), since makes
it possible to expressthe intensity ys directly within the
definition range of x(t).

The maximum intensity of the emitted signal at a
distance s from the antenna array at atimet is deter-
mined by the maximization of the expression ys(t, p, S)
[either (4) or (5)] over the abscissa p:

ys(t,s) = mgxyz(t, P, s). (6)

The function Y5 (t, S) exhaustively describes the

space-time radiation structure of the antenna array for
ultrashort pulses. This function determines the array
emission intensity at an arbitrary timet and at an arbi-
trary distance s. The maximizing value of p = p* in
Eqg. (6) determines the value of the abscissa at the cor-
responding point, where the emission-intensity maxi-
mum exists.

3. As was assumed above, at the moment when the
ith antenna is turned on, it is necessary to take into
account the residual radiation of all preceding i — 1
antennas. However, by using methods of correcting sig-
nals emitted by the ultrashort-pul se antennas (in partic-
ular, the methods developed in [1-3]), it is possible, in
principle, to provide conditions of the complete
absence of asignal for arelatively short period of time.
In this case, the signal

X(t) = Xo(t) +u(t)
issequentially applied to each antennainput. Here, x,(t)

IO | |
L2 l [ !

L))
i
I

Fig. 2. Scheme for calculating the intensity of the resulting
signal.
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is the signal produced by the generator and u(t) is the
correcting (controlling) signal calculated in such away
that, at a given moment T,, the signal emitted by the
antennacompletely decays; i.e., y(T,) = 0. Furthermore,
we assume that T, = KT, where k is a positive integer
(k< n). In this case, at t O (0; KT), expressions (4) and
(5) for ys(t, p, S) remain the same, whereas at t > KT, they
transform to the following forms. Expression (4) trans-
formsto

i_2 jT+T1
y:(t, p,s) = Z f(dj.1) _[ h(t—1)x;.(T)dt
j=i-1-k T

+1(¢1) _[ h(t—1)x(T)dr,
(i-1)T
tO[(-DT; (i-1)T+T,], 7)
) jT+T,
ys(t, p,s) = z f(d;.1) I h(t—1)X;.1(T)dT,
j=t-1-k iT
tO[(i—-1)T+Ty;iT],
i =k+1,..,n;
and expression (5) transforms to

LET

y:(t, p,s) = I z f(¢j.)h(t—1-]T)x(T)dr
0j=i-1-k

t—(i-1)T

+f(¢;) J’ h(t—t—iT+ T)x(t)dt,
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tO[(-DT; (i-DT+T,], (8)
ys(t, p,s) = J' Z f(¢j)h(t—1—jT)x(T)dr,
0j=i-1-k

tO((—1)T+TyiT],
i = k+1,k+2 ...,n.

In this case, the basic characteristic (6) of the emission
intensity ys (t, s) must be calculated on the basis of
either the expression ys(t, p, s) (7) or (for identical input
signals) expression (8).

The advantage of these operating regimes of
sequentially activated antennas is the possibility of
more accurate focusing and control of the resulting
emission, since, in the general case, the emission is
spread due to the residua radiation of all preceding
antennas.
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In studies[1,2], it was shown that the concentration
of crystal-structure defects such as vacancies and dislo-
cations can substantially affect the surface tension coef-
ficient y,, at theinterface between two crystalline mate-
rials. Inturn, this coefficient appreciably determinesthe
resistance of the joint to the growth of cracks at the
interface. In this study, we consider the important
applied problem of the effect of impurity content in the
materials forming the interface on the coefficient vy, , .

Let each of the adjoining materials 1 and 2 contain
its own impurity. These impurities are also designated
by the numbers 1 and 2, respectively. Asin [1, 2], we
apply the thermodynamic method based on the Gibbs
equation [3] relating a change dy,, in the surface ten-
sion y;, to changes in the chemica potentias of the
components of materials 1 and 2 (in this case, these are
the impurities and matrices of the corresponding mate-
rial). For constant temperature and pressure in the sys-
tem under consideration, this equation has the form

dy, = -T (10)dl1(10) =T dy; - r(zo)du(zo) =T ody,, (1)

where dp(®

tials

and dy; are the changesin chemical poten-

and ; of the matrix and impurity of the ith

materia i = 1, 2, respectively; I'i(o) and I; are the num-

ber of matrix and impurity atoms, respectively, for the
ith material in the interface (per unit area).

Since intergtitial-impurity atoms are arranged in
interstitial sites of the matrix, we can assume that the
concentration of matrix atoms (i.e., their chemical
potential) is constant when the concentration of impu-
rity atoms (i.e., their chemical potential) varies. In this

case, dp'? = dul® = ofor theinterstitial impurity and
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Eq. (1) takesthe form
dy, = —Tdy, —TLdp,. ()

At the sametime, the concentration C; of the substitu-
tiona -impurity atoms varies due to the varying matrix—

atom concentration C* .

Using the Gibbs-Duhem equation for volumes of
each of the adjoining materials (also for constant pres-
sure and temperature) [3]

C%dw” + Cidy; = 0
and neglecting the low vacancy concentration for the

substitutional impurity, i.e., taking C'* + C, = 1, we
reduce Eg. (1) to the form

C
dy,, = _%1—r§°)—1_1CEdu1

C
(0) 2_[]
—E_z—rz 1_C4]duz, (3)

which takes the form of Eq. (2) for low concentrations
C; < 1 of the substitutional impurity, when the effect of
both types of impurities can be considered using only
Eqg. (2). However, since the case of high concentrations
C; is also of great interest, we further analyze both
Egs. (2) and (3). In order to solve them, it is necessary

to find the dependences of quantities u, ,, I\, and

I, onimpurity concentrations C, and C, in the bulk of
materials 1 and 2.

Following [4], wefind W;, i = 1, 2, on the basis of the
ith-material free energy F; involving the configuration
entropy of impurity atoms. We assumethat the impurity
atoms do not interact with each other and that two arbi-
trary atoms cannot occupy the same atomic site (or
interstitial site) simultaneously:

N;! A
Ny @
where F,, is the free energy of the ith material without
impurity; E; is the reversible work necessary for the

F, = Fio+nE;—KTIn

1028-3358/02/4708-0598%22.00 © 2002 MAIK “Nauka/ Interperiodica’
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implantation of the ith-impurity atom into the ith mate-
rial; and N; and n; are the number of atomic sites (for the
substitutional impurity) or interstitial sites (for the
interstitial impurity) and the number of impurity atoms
intheith material, respectively. Then, using the Stirling
formula and differentiating Eq. (4) with respect to n;,
oF; .

— intheform

we obtain the chemical potential ; = I

K = E +KTIn = E +KTIn

n; i
N-n 1-¢’

(&)

n . . . L
whereC, = N isthe impurity concentration in the bulk
i

of the ith material.

It should be noted that Eq. (5) is applicable both for
interstitial and substitutional impurities, because the
configuration entropy in (4) is written identically in
both cases [4]; a distinction is determined only by the
value of E;. In addition, it was shown in [4] that the
approximation of noninteracting impurity atoms used
in Eq. (4) is also reasonably good for extremely high
concentrations C, < 1, becausethere are no obstaclesfor
a random local distribution of impurity atoms in this
case aswell. Thereisonly short-range repulsion, due to
which two atoms cannot occupy the same atomic site
(interstitial site). Thus, we further use Eq. (3) for arbi-
trary C, < 1. Finally, we here neglect external and inter-
nal pressure in the system for the sake of simplicity.
Otherwise, the Gibbs thermodynamic potential ®; =
F, + pv; (p, isthe pressure in the ith material, and v; is
itsvolume) should be used instead of free energy F; [4].

For finding the quantities ", and I, in Egs. (2) and
(3), we consider an interface as a surface absorbing
structural defects (in the case under consideration,
these are impurities) [3, 4]. In addition, it is assumed
that the adsorption and desorption of impurities by the
interface proceed independently for each of them, and
ith-impurity atoms can be desorbed only backwards
into the same material. The latter property can be
ensured by, e.g., ahigh energy barrier for their desorp-
tion into another material (see aso [1], whereasimilar
model was used for vacancies).

Thus, I'; can be written according to Eg. (1) as fol-
lows:

_Mipoob o
M= V”b = C,,Qi, i =12, (6)

n; _ .
where n,; and C;; = NLI are the number of ith-impurity
|
atoms and their concentration at the interface, respec-
tively; N, is the number of sites (in the case of the sub-
stitutional impurity) or interstitial sites (for the intersti-
tial impurity) in the interface; b is the interface thick-
ness; and Q; is the volume per site (intertitial site) in
the ith material. According to the accepted model of the
DOKLADY PHYSICS Vol. 47
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interface, the kinetics of the concentration C;; are
described by the following equations:
dc; _
dt
where k; and ky; are the adsorption and desorption con-

stants, respectively, for the process of exchange by
impurity atoms between the interface and ith material.

kal(l CIl)C kd|CI|(1 C) (7)

In the steady-state reglme gj L (% Eq. (7) gives

hiCi
Ci = T+ (h-1C/ ®)
Ky
where h; = km
By their definition [see (1)], the quantities I* in

Eqg. (3) for the substitutional impurity are related to the

concentrations Cf?) of matrix atoms similar to Eq. (6).
If, asfor the bulk concentrations, vacancies areignored,

then C'? + C, =1, and I'? are given by the expres-
sions

r? = cfg = a-cog- ©)

Now, substituting Egs. (5), (6), (8), and (9) into
Egs. (2) and (3), we obtain equations enabling usto find
Vi2 =Y12(C,, C,). However, itisuseful tofirst analyzey,,
for the particular case of an inner interface in one mate-
rial (i.e, C, = C, = C). For example, this can be the
grain boundary (GB) in a polycrystalline material.

1. The surface tension of the grain boundary [y,, =
Voe(C)] is described by the following one-component
equation instead of two-component Gibbs equations (2)
and (3) (seedso [3)):

dyes = —Tdy, (10a)

_ ©_C 0
dyes = —H —T g (10b)
where the quantities introduced in Eq. (1) now corre-
spond to one material and one type of impurity. Thus,
Egs. (4)—(8) above are dl valid, but it is necessary to
omit the subscript i in them.

Then, substituting Egs. (5), (6), (8), and (9) without
the subscript i into Egs. (10a), (10b), we obtain the fol-
lowing equation for ygg:

dycs _ bKT 1  1-2C
dc A(h)1+(h—1)1—C’ (i
where A(h) = h for the interstitial impurity and A(h) =

h —1 for the substitutional impurity. Equating the right-
hand side of Eq. (11) to zero, we find that y;5(C) for the



600

both

for h> 1 (grain boundary isagood absorber of impurity
atoms) and for h < 1 (grain boundary is a poor
absorber). At the same time, the surface tension y; for

interstitial impurity hasaminimumat C=C,,= %

the substitutional impurity at C = % has a minimum for

h> 1 and amaximum for h < 1.
The integration of Eq. (11) gives

bkT
Yes(©) = Yo~ 9(h)

th+1

x F——=In[1+ (h-1)C] +In(1—C)E, (12)
oh-1 0

(0)

whereg(h) = (h) and Yoz = Ygp(0) isthe surface ten-

sion of the graln boundary without an impurity; i.e., it
is assumed in Eq. (12) that the impurity concentration
inamaterial isdetermined by external sources and that,
therefore, its minimum value is zero.

In the cases where function (12) has a minimum at

C= %,itris&for C> % and can be substantially higher

than v if C — 1. Inthiscase, substituting C= C,,, =

% into Eqg. (12), we find that the surface tension of the

grain boundary yg‘;) = Yp(C,y) is given by the expres-
sion

bkT Lh+1 h+1
Vés = Ve~ 9 G —7In ——Inaj (13)
h 1 2
i.e., y2 decreases with increasing h and can become

negative if the following condition is satisfied:

(0)
YeeQ

bkT -

f(h) = (h)E,hLll h%l—l aj>

(14)

Inthis case, ygz < 0for C; <C< C5,where C} < %

and C5 > % are the roots of the equation that is
obtained when the right-hand side of (12) is equa to
zero. For aquite deep minimum in Eq. (13), CT < %;
i.e., Ygp Can become negative even at low impurity con-
centrations. The analysis of the function f(h) in Eq. (14)
showsthat it steadily growsfrom zeroat h=0and 1 for

the interstitial impurity (g(h) = 1) and substitutional

GOL’DSHTEIN, SARYCHEV

impurity with h > 1 Ep(h) = — r&pectlvely, to

f~ Ing — oo & h > 1 for both these types of impu-

rity. Since the right-hand side of (14) is positive, con-
dition (11) can aways be satisfied for sufficiently high
h values. In other words, for arbitrary parameters b, T,
and Q and any yGB , condition (14) can be satisfied, i.e.,

yg‘;) < 0, if the grain boundary is a sufficiently good

absorber of impurity (i.e, h is sufficiently high).
Whether or not real polycrystalline materials have such
properties is another matter.

We estimate the rel ation between the adsorption and
desorption characteristics of the grain boundary for
which condition (14) is satisfied in real cases. Let

yg),; =~ 0.3 Jm? (atypical value for the grain boundary

of many metals [5]), Q ~ 102 m3, b~ 5 A, and KT [
0.025 eV (room temperature). In this case, wefind from
Eqg. (14) that h > 10%. Therefore, in view of the Arrhe-
nius form of the temperature dependence of the adsorp-

tion and desorption constants k, ~ expD kTD 2 and kg ~

Edl:l
@(pD kTD %e h~ exp kT o the activation ener-

gies E, and E, of the corresponding processes satisfy
the relationship Ey — E, 2 0.2 eV, which does not seem
completely unrealizable. For example, in the frame-

work of this estimate, we have y = 0.2 Im? for
h=103%
For the substitutional impurity withh <1, function (12)

1
21

for yg(C) has a maximum ylz% >0aC=C,=

h 1

which is determined by Eq. (13) with g(h) = — <0;

i.e., the quantity y,,(C) is negative for 1 > C> C* > % ,

where C* isaroot of the equation
(1-C)" '[1+(h-1)C]""* = 1.

2. We now return to the case of an interface formed
by two various materials involving different impurities
of the same type.

In this case, the two-component Gibbs equation (1)
for y,,(C,, C,) with alowance for Egs. (5), (6), and (8)
can be integrated independently with respect to C, and
2002
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C, [thisispossiblebecausel™; =T ((C)), 4; =
r2 = rz(Cz), W, = IJ-Q(CZ)], and we obtain

K, (Cy) and

bkT

V2(Ci, C) - = —5-a(hy)
1

xE,h_|n[1+(h ~1)C] +In(1- cl)g (15)
a

ka (hz) |n[1+(h2—1)C2] + In(l Cz)Dv

h -1 . .
whereg(h,) =1andg(h) = 'T for theinterstitial and
substitutional impurities, respectively. Thus, y;,(C,, C,)
can be represented as the sum of two terms each of
which have form (12). Therefore, y,,(C,, C,) has min-

imaat C, = % asafunctionof C,and at C, = % asa

function of C, for the interstitial impurities with arbi-
trary h; and for the substitution impurities with h, > 1.
At the sametime, it is of interest to determine whether
or not y;,(C,, C,) has aminimum as a function of two
variables. Analysis of y;,(C,, C,) and its second deriva-

2 2 2

tives 2 ylzz, 0 yf, and =2 Y2 shows that the func-
0C; 0G; 0C,0C,

tion F =-y;, hasamaximumat C,=C, = % . Therefore,

Vi2(C,, Cy) actually has a maximum at these values of
C, and C,. According to Eg. (15), for substitutional
impurities with by < 1 y;,(C,, C,) it has a maximum at

NI~

C1=C2=

Similarly to Eq. (13), y'2 = ylz% 12% is given by

the expression
m bkT h +l 1+ h
Vi = v g o) g in=— ~In2|
1=
h +1 1 h
ka (hz)[ . S |n2}. (16)

Asin the case of Eq. (13), analyzing dependence (16)
on h, and h,, one can find the domains of h, and h,

within which ylz) < 0. Thisinequality is certainly sat-
isfied for sufficiently large h, and h,.

In particular, for h,, h, > 1 (in this case, thereis no
distinction between the actions of the intergtitial and
DOKLADY PHYSICS Vol. 47
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substitutional impurities; i.e., g(h,) = 1) and under the
assumptionthat Q, ~ Q, =Q, wefind from Eq. (15) that

m _ ©_bkT, Mh,
Y12 2~ 16

Therefore, the condition that y(m) < Otakestheform

0
V2 0
h,h, > 16eXprkTD' (17)
Considering the meta—meta interface (typical y(lg) ~
1 Jm? [1]) and using the same values as above (Q =
102 m3,b=5A, andKT = 0.025 eV) for theremaining
values, we obtain the estimate h;h, > 10° from Eq. (17).

For example, V3’ = —0.4 Jm? for h;h, = 10* in this
case.

The possibility of satisfying the inequality y;, < 0
meansthat the introduction of impurities makesthefor-
mation of a joint between given materials certainly
more energetically advantageous than the existence of
their free surfaces. Correspondingly, the spontaneous
formation of microcavities along the joint interface
becomes less advantageous, because free surfaces of
materials appear in this case. The latter process corre-
sponds to the fact that the interface becomes more sta-
ble against the spontaneous peeling of materials.

Thus, the effect of impurities on the surface tension
of interfaces of materials is nonmonotonic and so sub-
stantial that surface tension can change sign at reason-
ably high concentrations. In this case, the character of
the effect depends on the type of impurity (interstitial or
substitutional) and on the adsorption properties of the
interface. These results can be used for optimizing the
adhesion characteristics of interfaces, which are deter-
mined by the requirements of particular practical appli-
cations.
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Presently, needs of industry and technology for
polymeric materials with various physical and mechan-
ica characteristics are satisfied to a greater extent not
by the synthesis of new polymers but by the combina-
tion and modification of already known chemical com-
pounds. New catalysts and nonstandard polymerization
approaches are widely used for producing materials
based on block copolymers, graft copolymers, and
polymerization composites [1]. These modification
methods are most efficient compared to approaches
based on the conventional mechanical mixing of vari-
ous polymers. The materials obtained by such methods
are macroscopically homogeneous, although at the
molecular level, they are also inhomaogeneous (micro-
heterogeneous). The relations often used in practice
associate mechanical properties of microheterogeneous
materials with structural parameters. These relations
are taken from the mechanics of filled composites
where the volume fractions and mechanical character-
istics of components as individual macroscopic forma-
tions are the basic parameters [1]. These methods do
not allow for features of the microstructure of various
microheterogeneous polymeric materials and the spe-
cific character of interactions of microstructure ele-
ments. This results in the same dependences of physi-
comechanical properties of such materials on the above
parameters. At the same time, actual microheteroge-
neous materials significantly differ in both parameters
of the microstructure and the characteristics of interac-
tions of its elements. Accounting for this fact allows us
not only to obtain the dependence of physicomechani-
cal properties on the molecular and microstructural
parameters but to experimentally discover new effects
and regularities [2].

In this paper, we apply an approach based on the
scaling concept within a model representation on the
microstructure to describe high-elastic properties of
networks based on block copolymers. Previously, this
approach was used in [2, 3] while considering high-

Institute of Chemical Physicsin Chernogolovka,
Russian Academy of Sciences,
Chernogolovka, Moscow oblast, 142432 Russia

elastic and relaxation properties of acomplex of colloid
particles and macromolecul es.

Themodel of anetwork based on ablock copolymer
with a polymeric chain consisting of two blocks
between the neighboring nodes is shown in the figure.
Oneblock is characterized by the magnitude of the seg-
ment a,, by the number of segments N, , and by the pro-
jection of the distance between the ends of the segment
AB onto the r;-axis in the laboratory coordinate system.
Similarly, another block is characterized by the param-
eters a,, N,, and |; (see figure). For simplicity, we
assume that al macromolecules consist of similar
blocks, but vectorsr and | of various macromolecules
are oriented chaotically in the network, the network
being macroscopically isotropic. In the case of homo-
geneous deformation of the network, the distance
between the ends of each macromolecule of the block
copolymer (distance AC in the figure) varies similarly
to the entire sampl e (affine deformation), but the strains
of various macromol ecul e blocks differ from each other
and from the macroscopic strain of the entire sample.

We consider astructural element of themodel that is
a macromolecule of the block copolymer linking two
neighboring network nodes A and C (see figure). We
denote the projections of the segment AC onto the plane
of the laboratory coordinate system as d,. All the pro-
jections for the initially undeformed state are denoted

with asuperscript zero (r?, 17, d°). From the geometric
relations, the following equality holds:

d=r%+17. (1)

Similarly, in the strained state, we have the relation
di = I‘i + Ii' (2)
Let a constant strain gradient be defined along the
—X(i) , where x; and x arethe

Xk

coordinates of an arbitrary point of the sample prior to
and after the deformation, respectively. Similarly, we

denote the strain gradients of a model element at the
segments AB and BC as €,  and n); ., respectively.

0
network sample as X =

1028-3358/02/4708-0602%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Model of the network based on the block copolymer.

From relationships (1) and (2) it follows immedi-
ately that

Xi,kd(k) = Ei,kr(lz+ r]i,klck)v 3)
where hereinafter summing over indices repeated twice
isimplied.

Squares of the distances AB and BC between the
points can be written out in the form [4]

r? = roz + (EI,iEI,k_6ik)riOr(lz’ “4)

1° +(nl,inl,k_6ik)|?lg1 )
where &, isthe Kronecker delta. The free energies of the

segments of polymeric chains (see figure) held by their
ends at the points A, B and B, C are, respectively [5],

0
=

3Tr?

Fl = 2! (6)
2N;a;
3TI?

F, = —, (7
2N,a;

where T is an absolute temperature in energy units.

We write the free energy of the block-copolymer
macromol ecul e as the sum of expressions (6) and (7):

3Tr? N 3TI?
2N,a> 2N,a;

Substituting relationships (4) and (5) into (8) and
eliminating the gradient &;, with the help of (3), we
arrive at the expression

F=F+F,=

®)

3T
2N,a;

X [Xl,kxl,id(k)dio_zrll,kl(lle,sdg + m,km,ilﬁlio]

3T
N az(nl,inl,k_éik)l?lga €))
29

F=F+

+

DOKLADY PHYSICS Vol. 47 No.8 2002

2 2
where the notation F9 = —1— ¢ 4 3T 2IO

5 isintro-
2N;a) 2N,a;

duced.
The minimum of free energy (9) is determined by

the relation = 0 for a constant gradient X, set

Ny,
along the sample, whenceit followsthe equation for the
determination of n, ,:

N,a’
_Xi,sdg+ni,p|ﬁ+%ni,v|8 = 0.
N,a,

Solving this equation yields
NyaZd

0 _ OIZ|
r]n,ili - Xn,sdsﬂ-" .
O N,a

Substituting relation (10) into (9), we obtain after cer-
tain transformations

10)

3T

F=Fy—F—F
2(N;a; + N,a;)

X1 X, 07 dy. (11)

Furthermore, we write out the free-energy density of
the sample. In accordance with our assumption, macro-
molecules differ only by orientation of the vectorsr and
I. Therefore, we substitute equality (1) into (11) and
average over the equiprobable and independent orienta-
tions of the vectorsr and | using the relations [6]

1= 28, (MD=318, (7Y =0. (12)
Asaresult, we arrive at

[0 = %(r°2+ Y5, (13)
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and, finally, using (13), we obtain

T(r" +1%)
2(Nyay + No)

wherel, =X, (X (isthefirst straininvariant [7]. Tofind
the free-energy density @ of a strained sample for net-
work block-copolymer macromolecules, we should
multiply relationship (14) by the number of macromol-
eculesin aunit volume M of the network:

FO= F°+ 4, (14)

MT(r® +1%)
2 2 Il-
2(N,a; + N,a;)

From relation (15), we can find by the conventional
manner the shear modulus G* of the indicated network:

® = Py+ (15)

oo MT(" +1%)

G .
2 2
Nja; + Noa;

(16)

We now offer several modifications of expression (16)
that are useful for practice. The moduli of the networks
consisting of homogeneous macromolecules similar to
the first and second blocks of a block-copolymer mac-
romolecule are often known. If network macromole-
cules consist of only segments of the first block, the
shear modulus of such a network can be expressed by
theformula[in expression (16), we should put N, =10 =
0, and, in this case, M should be replaced by M,]:

2
M, Tr°
2N,a%

By analogy, we obtain the expression for the shear
modulus of the network consisting of homogeneous
macromol ecul es of the second block.

G, = (17)

2
M, TI°
2N,a5

Combining expressions (16), (17), and (18), we
arrive at the relation

G, = (18)

M_ N oM N,a;
TV T T
M1N1a§+ Nzag M2N13§+ Nzag

Here, M, and M, are the numbers of macromoleculesin
aunit volume of the sample consisting of homogeneous

Gl=G . (19)

ZGAEVSKII

macromolecules of the first and second types, respec-
tively.
Directly from (16), we obtain the following relation:

oRTd"
2kM_Na?’

where p is the density of a network based on a block
copolymer; Risthe universal gasconstant; kisthe Bolt-
zmann constant (notethat T istemperature expressedin
energy units); d° is the distance between the neighbor-
ing nodes; M. is the molecular weight of the chain
between neighboring nodes of the network; N is the
total number of segments of the first and second types
of a block-copolymer macromolecule; and a is the
effective size of the segment of the block copolymer,
which can be calculated according to the formula

1

0 Ni o Np a2
N, + N, T N+ N, 540

We should pay attention to the features of the rela-
tions obtained, into which the volume fractions of the
individual macromolecule blocks do not enter explicitly.

Gl = (20)

a =
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On the basis of ideas and results obtained in [1-6],
we developed and justified a new class of fractal func-
tions with alowance for the specific properties of
atomic functions (AFs) y,(x) and 1,(X) [2-5]. The new
synthesized atomic—fractal functions (AFFs) are con-
structed in combinations with classic nondifferentiable
functions of Weierstrass (1872), Bezikovich (1922),
and van der Waerden (1930) for application to the prob-
lem of fractal-antenna synthesis.

BASIC PROPERTIES
OF ATOMIC FUNCTIONS y,(X) AND T,(X)

In order to determine the properties of the function
y,(X), we consider the stages of its construction.
According to [2, 5], we fix the sequence of m positive
integers mg: m;, m,, m,, ... and define the functions

W(x) as
Yo K
s>r,
r=123,..
1
<-1+—=—
éb’ X 2m,
%, xD[—l+2l2(_1,—1+2k+1}
N m, 2m,
T HK=12m-1
u 1
[, XD[——,O}
d 2m,
1l
(W(—x), x>0.

Let X be the independent random variables. The
probability densities ¢4(x) of random variables X

Institute of Radio Engineering and Electronics,
Russian Academy of Sciences,
ul. Mokhovaya 11, Moscow, 103907 Russia

(s=r) are specified by the relationships

0.00 = W o (M)

and, therefore, have the properties (i) suppd(X) =
2m,—-1 .
; (”) q)s(_x) = q)s(x);

[_aS’ aS]’ Where aS = m B
(iii) 0 > 0 Ox O (-a, as) and (iv) ¢ (x) steadily
increasesin [—a, 0].

According to the definition of convolution, the con-
volution of two densities is the density of the random
variable X; + X; with the same properties (ii)—(iv) and
with the carrier equal to the sum of the carriers of the
components suppd; - §; = [—(g + &), (3 + &)]. Let y(X)
be the infinite-to-one convolution of densities ¢py(x).
Since the Fourier transform of the infinite-to-one con-
volution of densities d4(x) isan infinite product of char-
acteristic functions d((t), the Fourier transform of the
function y, has the form

. omt
[ n_k

rnr, k

RO = 1040 = [

k=r ~_ gn—
me e My

: )

which is summable at the real axis and decreases faster
than |t|"for arbitrary n>0inthelimit [t| —» . There-
fore, y, 0 C*[-1, 1]. Using theinversion theorem for the
Fourier integral [5], we obtain the following integral
representation of the functions:

—\ im —ixt _
yr(x,m)—zT[J’e F.@dt, r=1,2,3,..., (3

whereF,(t) isgiven by Eq. (2). Inthiscase, thefunction
y,(X) has the following properties. (i) suppy,(X) =
[=1,1]; (i) y:(=%) = y,(; (i) y,(x) O C°[-1, 1];

1028-3358/02/4708-0605%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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[

(iv) J’y,(x)dx = 1; (v) they satisfy the infinite set of

funcﬁoonal differential equations

2m, k-1
Vi =2 (1) " Yealke). r=1.23.. @)
k=1

wherex, , =2mx+2m —-2k+ 1, xORL k=1,2, ...,
2my; (Vi) y,(x) steadily increasesin [-1, O] and steadily

decreases in [0, 1]; (vii) Ny(y,) = N;,, n=0, 1,2, ...,
where
m U U
Nopr = IXO[-1,1]: X=X, ¢, = 25 0,
O mr,r+n—1]:|

O 1 1 O
B —émmm_l, ém,“n_ﬂ, n=1,
O O

N??r = {XD[—]., 1]: Xo = Xo sr = il} ,

{s:-1,0,+1}, n=0;

(viii) AF y\"(x) =0 Ox 0 Dy, n=0, where Dy, is
the set of points of the interval [-1, 1]; (ix) y,(0) = 1;
0 V" My = Bar N 2 0, where By, =

nn+l) r+n-1

2 2 |—| mir+n—l—|;

i=r

tions vy, (xX) give the decomposition of

S ix+k)

nc_)nanalytic at any point of the carrier.

(xi) the integer shifts of func-
unity

= 1; and (xii) the functions y,(x) are

ATOMIC FUNCTIONS T11,,(X)

Let us consider the functiona differential equation
T(X) = a

x [m(xl(m» + 5 (D) h(m) - nm(xm(m»}, ©)

k=2
m= 3,4,5, ...,
where x(m) =2mx + 2m-2k+ 1, x ORL k=1, 2, ...,

2m. We apply the Fourier transform to both sides of
Eq. (5):

KRAVCHENKO

J’ X' (X)dx = a[ J’ ™', (X, (m)) dx
2m-1 o

> ED Ie'Xt%(Xk(m))dX

k=2

- Iei“nm(xm(m))dx}.

Using its fundamental properties, we obtain

o © . u+1-2m
it Ie‘“nm(x)dx = %‘[ J’e 2 q(u)du
2m-1 o u+2k 1-2m

+z(1)je S

o ity 1+2m
2m
—Ie nm(u)du}.

1T, (u)du

<)

i xt

Denoting the integral I e T,(X)dx by F.(t), we rep-

resent the last equallty as

a
—itF () = >m

2m 1 2m-1 it2k—1—2m i,[2m—1 t
x{e o +5 (De M e Zm}F L=

mLp

k=2
According to the Euler formula,

Fuld) = &
2m-1 6)
x[sm t+ Z( ~1)s 2m 2k+1}Fm%H.

Passing to integrals in Eq. (5) for t — 0 and taking
into account that the integral of the function 1(X) is

om’

3m-2°

equal to 1, we obtain a = Substituting this

valueinto Eq. (6), we derive

- 1 . (2m-=1)t
Frl) (3m—2)t{Sln (2m)®
(2m)*
C o ken(@m=2k+Dt]|_ gt [
+kZZ( 1)"sin 2m)2 }Fm[@m)ﬂ

Acting as above, we obtain

DOKLADY PHYSICS Vol. 47 No.8 2002



NEW CLASS OF ATOMIC-FRACTAL FUNCTIONS FOR ANTENNA SYNTHESIS

m

(2m)"

gnZm=Dt S (-1)'sin

607

(2m—-2v + D)t
(2m)"

Ful) = [

k=1

ESm—Z)t
(2m)*

)

The function 1t,(x) is an infinitely differentiable function with the carrier [-1, 1], because it is the infinite-to-one

convolution of the functions

O _
D——nl——, XD[—1+2k l, —1+M} if kisodd
Bm-2 2m

L9 =1 2 2k -1 2k+1
LU, XD[—1+ —2 1+ } i kiseven,
%m—z m 2m

k=1212..2m, ¢4(X) = 2nd,_,(2mx),

Applying the theorem of the Fourier-integral inver-
sion[3, 5] to the characteristic function F(t), we obtain
the integral representation of the function F(t)

M) = 55 [ € Flddt ®)

where F(t) isgiven by Eq. (7). The function 1t,(x) has
the following properties: (i) suppmi,(X) = [-1, 1];
(i) T2 = 00 (i) 1m0 0O C7-1, 1]

(iv) Im(x)dx =1

m : .
EBD—m—Z’ if misodd
v) 1m0 =0 )

m

Bm_2’ if miseven;
(vi) N, (T5,) = N,,v =0, wheretheset N hastheform

2s O
(2mD’

0
Ny = (XO[-11]: X=X, ¢=
0

& ome o remt, ne1
o 2 20 9)

Ng = {XO[-1,1]: X=Xy s=S= =1},
{s:-1,0,, n=0;

(vii) A%Ténv)(x) =00x0 DT, v =0, where D isthe

set of points of the interval [-1, 1]; (viii) Aﬁin,(;’)(x) =

00xO Ty, v=0; (ix) ||nf;’)(x)||c[_1, g =Kim V=0

DOKLADY PHYSICS Vol. 47 No.8 2002

s=223,4,...

and (x) the functions 1t,(x) are nonanalytic at any point
of the carrier.

FRACTAL PROPERTIES
OF THE ATOMIC FUNCTIONS y,(x) AND T11,(X)

Let us construct a new class of fractal functions
using certain AF properties presented in the table. Fol-
lowing [2, 7], we apply the fundamental mathematical
operations of the multiplication of the generalized
function y,(x), T,(X) by another function (e.g., the frac-
tal functions of Welerstrass, Cantor, Bezikovich, and
van der Waerden). On the basis of statements 1 and 2
from[2], we construct the new class of functions based
on the products of the AFFsy,(X), T,(X) by the classical
fractal functions.

SYNTHESIS OF THE ATOMIC-FRACTAL
DIRECTIONAL PATTERNS

In contrast to conventional methods [3] when the
smooth antenna directional patterns (DPs) are synthe-
sized, fractal-synthesis theory [6] is based on the idea
of realizing the radiation characteristics with repeating
structure at arbitrary scales. Such an approach makes it
possible to create new modes of operation in the fractal
antenna synthesis problems. The family of fractal func-
tions known as the generalized Weierstrass functions
[2, 4, 6] plays the determining role in the synthesis of
the fractal characteristics of radiation. These functions
are continuous, nowhere differentiable, and fractal
functions at all scales. This class of functions can be
represented in the form

f09 = 5 n®?"g(n"), (10)
n=1

where 1 <D < 2, gisabounded periodic function, and
n > 1. Asfollows from [2, 6], the factor for a nonuni-
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Family of the new class of the Kravchenko atomic—fractal functions

Kravchenko fractal function|

Analytical expression

f1(% y) = (X, y)

(0 = o= [ em(jux)
—o0 k

m(y) = 5 [ exp(juy)
—o0 k

m

sinD[lzm_lk)LE+ g (—1)VsinD[12m_2V :- Du;
(2m) v=2 (2m)
(3m-2)u
(2m)"

du,

=1

. (2m-1 o v. f(2m—2v+1
S oy 17 2SI

N (3m-2)u/(2m)*

m

du,

fi(% y) = T (TR(Y), m=1,2, ...,

206 ) = ¥i(%, ) 1°
Yi(X) = > [ exp(jux)

Vi(y) = o [ e(juy)

00

1 she(r 27" +iu DZ_”)du

i=1 shc%

ﬁ she(r @7 +iu@™) i
i=1 ao
i Shc[ﬂ]

L6 Y) =y (YY), r=12 ...,

36 Y) = V(X Y) - T(Y) | f3(% Y) = Ve (X) - YY) - Tn(X) - TolY),

r=12,...,0, m=12, ...,

10510
f3(X, ¥) = ya(X, y) O(X, y)
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form, symmetrically distributed array of 2N radiating
elements has the form

N

f(0) = Zz | ,cos(kd,,cos6 + a,,). (11)
n=1

21
Here k= x

the feed current, respectively; and d, is the spacing
between the neighboring radiating elements. The array
factor with an infinite number of radiating elementsis
assumed to be expressed in terms of the generalized
Weierstrass function (10) with the cosine function g
and random phase a;:

; |, and a, are the amplitude and phase of

f(u) = 22 n®® 2"cos(an"u + a,), (12)
n=1

where a is a constant. Comparing Egs. (11) and (12),
we find that the current amplitude and arrangement of
the elements satisfy the conditions

I, = @72, (13)
where u = cosB. The fractal DP defined by Eq. (12) is
self-similar in the infinite range of scales. In practice,
the physically realized arraysinvolve afinite number of
elements:

kd, = an",

N
fo(u) = 2 Z n®® 2" cos(an"u+ a,).
n=1
In this case, partial sum (14) is the range-bounded

Welerstrass function, while the resulting DP becomes a
fractal in the finite range of scales with the lower

(14)

boundary Z—TL The scale range is controlled by the
an

number N of radiating array elements. The DP becomes

more fine with increasing N. The maximum value of

function (14) for the observation angle 6, is equal to

N
fu) =235 07" (15)
n=1

and is determined by the choice of the feed-current
phase a, = —an"y, for u, = cosB,. Series (15) is a geo-
metric progression; therefore,

p-21— n(D’Z)N

fn(ug) = 2n W’ (16)

and the normalized factor of the Weierstrass array can

be obtained by dividing Eg. (14) by Eq. (16) and is
equal to

1_nD—2 N

u = ———— Y i,cos(an"u+a,), (17)
gN( ) 1—I’](D_2)anl ( n )
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where the normalized feed-current amplitudeis

(D-2)(n-1)

Ih =N (18)
Comparing Egs. (13) and (18), wefind that the DP frac-
tal dimension can be controlled by the current distribu-
tion over the array. The spacing between its arbitrary
two neighboring radiating elements can be estimated
by the relationship

dysr—d, = M)\ , n=

e 1,2,...,N=1.(19)
Following [2, 6], we consider a long linear radiating
system L with a continuous variation of the current 1(2).
For alinear infinite source, the radiation characteristic
F(u) and current-distribution characteristic 1(z) are
related by a pair of Fourier transforms

00

F(u)I [(s)exp(i (RTus)ds,
= (20)

00

I(s) = I F(u)exp(—i [(2mtSu)du,

Zz
A
recursive algorithms with the suitable generating func-
tion. We assume that the DP of alinear infinite source
can be represented in terms of the range-bounded gen-
eralized Weierstrass function in the form

wheres= = . Any fractal function is constructed using

N-1

FW = 5 n®"g(n"u) 1)
n=0

with the generating function g(u). We take g(u) to be
periodic and even: g(u + 2) = g(u), g(-u) = g(u).
Derived for thefirst time, the family of generating func-
tions has the following form: (i) g,(u) = T, (u) and
0,(u) =y, (u) are the Kravchenko AFFs; (ii) gs(u) =
ys(WW(u) isthe Kravchenko-Weierstrass function [the
product of the AF ys(u) by the Weierstrass function
W()]; (iii) gy(u) = TR, (u) - C(u) isthe Kravchenko—Can-
tor function [the product of the AF ys(u) by the Cantor
function C]; (iv) gs(u) = T1,(U) - B(u) is the
Kravchenko—Bezikovich function [the product of the
AF y5(u) by the Bezikovich function B]; and (v) ge(u) =
ys(U) - V(u) is the Kravchenko-van der Waerden func-
tion [the product of the AF y;(u) by the van der Waerden
function V]. Any synthesized functions (i)—(v) can be
expanded into a series of the form

g(u) = %°+ Z a,cos(mrmu), (22)

m=1
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where the Fourier coefficients are
1

a, = 2 I g(u) cos(mru)du.

For example, the coefficients a,,, of the AFFs 11,(x) and
y,(X) can be obtained directly from Egs. (2) and (7). In
this case, substituting Eq. (22) into Eq. (21), we obtain
the DPin the form

(D-2)N
Fu) = 2on____—1
2 n®-2_q
oo N-1 (23)
(D-2)n n
+ an cos(mrtn u).
lenZO
Substituting u + 1 for uin (23), we obtain
(D-2)N
F(u) = %Orl(D__z)—l
T 4
- E{\l_l (D-2)n n U
+ Y andy no cos(mm(u+ 1)),
m=1 Lh=o 0
1
(25)

a, =2 I g(u—1) cos(mru)du,
0

wheren >1and 1 <D < 2. Expression (24) is the Fou-
rier expansion of thefractal DP F(u) inthe AFF basisin
combinations with the range-bounded cosine Weier-
strass function. The feed-current distribution for alin-
ear source required for obtaining the given DP can be
obtained from (21) and written in the form

I(s) = I F(u) exp(—i [(2su)du,

where F(u) for the AFF can be found from Eq. (24). In
this case, the desired current distribution for the infinite
linear source is expressed as

(26)

(D-2)N

Y St
I(s) = ao—n—(—D—_—z—)———l—snc(Zns)

o N-1
+3 Y ann® " exp(immn’) @7
m=1n=0
x sinc(2mns—mnn")
+ exp(—immnn")sinc(2ms+ mmn’) }
for afinite source
9 =19, sy 19=0, l§>5. @8)
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The corresponding expression for the DPs synthesized
with AFFsfor alinear radiating system L is determined
by Egs. (20), (28), and [2, 4, 6]:

EH(D_Z)N _q

Farr(u) = N

X Eﬁ[n;—:(l + u)} + Si[nli(l—u)}g
s @

+ %T z z a,n® 2" cos[mmn"(u + 1)] S,,(U)

m=1n=0

+sn[mmn’(u+ 1)] Cr(U)} -

NUMERICAL EXPERIMENT

In order to illustrate the procedure of synthesizing
alinear source of radiation, we consider a number of
examples with the generalized generating function.
Using the properties of the AFF of generating func-
tions (i)—(v), we present in Fig. 1 the examples of nor-
malized directional patterns F(u) for linear sources
with the given values of D, ), p, and N. The directivity
of the atomic—fractal array involving the Kravchenko—
Weierstrass  functions g,(u), Kravchenko—van der
Waerden functions g¢(u), and Kravchenko-Bezikovich
functions gs(u) are defined by Egs. (20) and (21):

22 (Up)
Garr(Uo) = T“N—O‘—,

f2(u)du
I

(30)

where fy opr(U) IS determined from Eq. (24), where a,,
are the coefficients of the expansions of AFFsin terms
of the Weierstrass range-bounded cosine functions
(Fig. 1). Itisseenthat as D increases, the DP main lobe
is narrowed, and the corresponding value of G,pp(Uy)
increases. Figure 1b shows the directivity for the
Kravchenko-van der Waerden generating function for
various values of the self-similarity coefficient p (van
der Waerden function) [2]. The coefficient p specifies
the maximum range of its scaling. For example, we
have atriangular function for p = 0, whereas the maxi-
mum scale of the van der Waerden function is equal to
43 =64 for p=3. Inthiscase, thefunction is broadened,
which reduces the directivity. It is of interest that the
directivity index increases with the fractality degree N
to 21 dB (Kravchenko—Weierstrass function).

Figure 1ctestifiesto the interesting physical proper-
ties of the new Kravchenko-Bezikovich function:
energy is uniformly redistributed from the DP main
lobe over sidelobes as D increases; correspondingly, the
directivity index varies from 10 to —21 dB.

DOKLADY PHYSICS Vol. 47
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D

Fig. 1. Directional pattern, current distribution, and directivity index (DI) as a function of fractal dimension D for n > 1 and self-similarity coefficientsp =0, 1, 2, ... for the

(8) Kravchenko-Weierstrass, (b) Kravchenko—van der Waerden, and (c) Kravchenko—Bezikovich generating functions.
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The investigation showed the efficiency of the new
procedure for synthesizing self-similar fractal radiating
elements. For the same physical parameters, they corre-
spond to the known data [6] and, in certain cases, even
exceed them. Thus, the same as for the cases with con-
ventional fractal radiating elements, the proposed and
justified method of constructing self-similar AFFs can
yield arelatively high level of sidelobes. However, this
method is robust to errors in the arrangement of ele-
ments and to their failures. This fact makes it possible
practically to unify advantages of equi-amplitude and
random antenna arrays.

The results of this study were reported at the URSI
International Symposium on Electromagnetic Theory
(Victoria, Canada, May 13-17, 2001) [8] and Fourth
International Kharkov Symposium on Physics and
Engineering of Millimeter and Submillimeter Waves
(Kharkov, Ukraine, June 4-9, 2001) [9, 10].
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Asisknown [1], high-frequency acoustic vibrations
can arise in heated ducts with a supercritical liquid.
These vibrations cause pulsations of the flow rate of
the liquid, cyclic stresses in the device structure, and
even the destruction of the latter. For example, experi-
ments [2] showed that pressure oscillations with afre-
quency up to 10000 s and amplitude up to 27 atm
arisein supercritical liquid hydrocarbonsin a turbulent
flow regime as they are heated in a duct (with aliquid-
propellant-engine cooling system) at a steady-state
pressure of ~35 atm. These oscillations were responsi-
ble for the formation of cracks and flaws in the experi-
mental duct. Therefore, the excitation of acoustic vibra-
tions by heating a supercritical liquid flowing in a duct
isaproblem of current interest.

There is extensive experimental information con-
cerning the origination of thermal acoustic vibrations
of a supercritical heat-transfer liquid [3-6]. The phe-
nomenon was explainedin[1, 7] asfollows. When heat
issupplied from walls, thefield of the turbulent flow of
a supercritical liquid can be divided into the turbulent
core and viscous sublayer near the walls. The viscous
sublayer is characterized by asteep temperature profile,
whilethe profile in the turbulent core is much smoother
because of turbulent mixing. In addition, the viscous
liquid sublayer is more compressi ble than the flow core.
Therefore, the viscous sublayer providesthe phaserela
tions between variations of pressure and heat flux
(feedback) that are necessary for the excitation of
acoustic vibrations. This mechanism was used in [7] to
numerically investigate the excitation of acoustic vibra-
tionsin a heated supercritical liquid.

In this paper, the excitation of longitudinal acoustic
vibrations by heating a supercritical liquid flowingin a
duct of length | and radius r, is investigated theoreti-
cally. It is assumed that heat supply to the flowing lig-
uid is distributed along the duct length, whereas the

Institute for High Energy Densities,

Joint Ingtitute for High Temperatures,
Russian Academy of Sciences,

ul. I1zhorskaya 13/19, Moscow, 127412 Russia

heat-flux density q for the steady-state process is con-
stant. Similar to[1, 7], quasi-static relations are used to
describe heat exchange between the liquid vibrating
with acoustic frequency and the duct walls. In addition,
asisaccepted in acoustics[8], the supercritical liquidis
considered asinviscid.

Under these assumptions, equations of continuity,
motion, and energy take the form

apa

3t (pu) =0, (1
du, Ou _ _1ldp
ot Yax T pox’ &
@i QD _10
Pyt rar( ar) + )

wherei is the specific enthapy of the liquid. The other
notation is conventional. Theliquid density istreated as
afunction of thermodynamic parameters; i.e.,

p = p(p,s). “)

The linearization of Egs. (1)—(3) yidds the follow-
ing approximate equations:

op' . ou' ap

ot TPax T T O )
ou _ _1op
ot pox’ ©)
Qi 6|D
P * rar(q )+ ™

Hereafter, perturbation is marked by a prime.

Approximate equations (5)—(7) can be used for
investigating the excitation of acoustic vibrations in a

flowing supercritical liquid at Sh > 1, where Sh = %l
is the Strouhal number for acoustic vibrations and wis
the cyclic frequency. To linearize Eqg. (4), one should
have the density of asupercritical liquid p asafunction
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of the enthalpy i at constant pressure. Here, we use the
empirical dependence

p =[Py +b(i=io)] ", b=cons,
proposed in [9] for helium, where p, and i, are the den-

sity and enthalpy of the supercritical liquid at the duct
entrance.

With insignificant error, this dependence can be
used as well for other supercritical liquids. For exam-
ple, for supercritical water vapor, it is accurate to not
worse than ~20%. In view of the last expression, the
linearization of (4) yields

B - P ppi )
P ok
where ¢, is the adiabatic speed of sound.

Substituting Eg. (8) into Eq. (5) and taking into
account both Eq. (7) and the equality

01 ,00p _ bd

mye 30 = rardnN -5y )
we obtain the equation
oi _ _1op
bpax T pox’

Differentiating Egs. (6) and (9) with respect to x and t,
respectively, and eliminating u', we derive the equation

Ol 0*" _ 10°p, b3 poqn
T T o rard g (10)
e Ha2  Poax rar ot

To be solved, this equation requires an expression
for g, which, in general, depends on heat transfer in
both the liquid and the duct wall. Asis known [7], the
quantity ' is primarily determined by the variation of
viscous-sublayer thickness under acoustic vibrations.
Therefore, using the condition of mass conservation in
the viscous sublayer, one can derive the relation

qg_p _-1p.
a p yp
wherey is the specific-heat ratio.

The last formula is derived with allowance for the
fact that, at high-frequency vibrations in aduct, a state
of the liquid can be described in the quasi-adiabatic
approximation [8]. For a steady-state flow of the super-
critical liquid, enthalpy is distributed linearly along the
duct [10]:

(11)

purg

where g, isthe heat-flux density on the duct surface. Aver-

i =i,

PESOCHIN

aged along the duct length, the last expression yields

Q!
PoUolo
For aturbulent flow, liquid velocity at each point of a
duct cross-section is closeto its average value over this

section [10]. Then, the heat flux is a linear function of
the radius, so that

0= ig+

(12)

q_1r
aq o

Inthis case, with allowance for Egs. (11)—(13), Eq. (10)
can be written as

(13)

o _ 298 PO, 559 [P0
ae0p0 ~ @ 500 266_Dp (19
2,
S b ¢
wherea? = and & = 4
1-ybp —Yybpr,

Equation (14) should be complemented by bound-
ary conditions corresponding to the properties of the
device in whose duct the excitation of acoustic vibra-
tions is investigated. In this paper, we consider a duct
with acoustically open ends. Then, the boundary condi-
tions have the form

p=0atx=0,
p=0ax=l.

Solving Eq. (14) with these boundary conditions by the
method of separation of variables, we obtain the
expression

% = e‘“z Bksnn—lo(cos(A/wﬁ—f)ZH(IJk),
wherek=1,2,3....

The quantities B, and ¢, are determined from the
initial conditions, while the natural frequency

(15)

isfound from the boundary conditions. Expression (15)
shows that, at & > 0, the externa heating of the super-
critical liquid flowing in the duct excites acoustic vibra-
tions with the increment

21d

2
w,—0

u:

=
According to Eqg. (14), the excitation of acoustic vibra-

tions ceases at the pressure p = y_lb
much higher (by about five or six times) than thecritical
pressure. Therefore, in asupercritical liquid, the excita:

which is usualy
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tion of acoustic vibrations is possible in the pressure
range

1,
pc < p<%!

where p, isthe critical pressure.

The termination of acoustic vibrations at p = y_lb is

verified experimentally [2]. According to Eq. (15), the
excitation of acoustic vibrations reduces the vibration
frequency of the supercritical liquid as compared to the
natural frequency. However, this decrease is insignifi-
cant. For example, d =4 s for w, = 1.6 x 10° s when
water of theinitial temperature T, = 630 K is heated in
a duct, which has the dimensions | = 1 m and ry =
1072 m, under the pressure 235 atm at b = 6 x 10° md/J,
g =2 x 10°W/m?, and u, = 1 m/s.

It is of interest to compare these results with the
Rayleigh criterion [8], which is known in thermal
acoustics as a condition of the excitation of acoustic
vibrations and is generally used for investigating the
acoustic stability of a system. It provides the sufficient
stability conditions and reveals sources of vibrational
energy if they are not obvious, for example, during
phase transitionsin avapor—gas mixture[11]. Asin [8],
we multiply Egs. (6) and (9) by u' and p', respectively,
and integrate the sum of the resulting expressions over
volume. This procedure yields

oE'

ot No* Ns

where

W)’ ()’
E _I[p; +2p—yp(1—ybp)}dv,

b, 2
Ns = —fp'udS, Ng =2—=[(p)°dV.

Here, the surface integral is equal to zero [8]. There-
fore, the single source of vibrational energy is the pos-
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itiveness of the quantity
N = [0 av>0, p=222%
© B{ Hpld b=

This inequality mathematically expresses the Ray-
leigh criterion. It shows that the heating of a supercriti-
cal liquid flowing in a duct can excite acoustic vibra-
tions. However, in contrast to the results of this paper,
the increment and frequency of these vibrations cannot
be determined from the Rayleigh criterion.

Thus, the model proposed here describes the excita-
tion of acoustic vibrations by external heating of a
supercritical liquid flowing in aduct. In this model, the
increment and frequency of the vibrations are simply
expressed interms of theinitial parameters of theliquid
and power of the heater.
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The rigid-plastic analysis of the cutting problem
stems from the model based on the assumption of the
existence of a single shear plane (isolated slip line). In
this formulation of the problem, two basic kinemati-
caly admissible solutions are known [1, 2]. In this
paper, the compl eteness of the solutions found in [1, 2]
is studied from the standpoint of constructing a stati-
cally admissible continuation of the stressfield to rigid
zones (i.e., to the blank body and cuttings). It is shown
that known solutions have significant limitations. A
new solution supposing the existence of a statically
admissible continuation to rigid zones and minimizing
the volume density of energy dissipation and strain in
the shear plane is suggested. The problem of cutting
accompanied by fracture is analyzed.

1. We consider the problem of cutting (Fig. 1). An
absolutely hard cutter is assumed to be immobile:
ablank moves from left to right with a constant velo-
city V. ST is the shear plane (isolated dip line). The
material moves towards the cutter as a rigid whole,
deformsin the shear plane ST, and, furthermore, moves
as asolid body along the front surface NT of the cutter.

The solutions obtained in [1, 2] yield the following
dependences for the determination of the shear-plane
angle ¢:

I O, i
=55 +0a )\Dlssolutlon of [1],

¢ = g + o — A issolution of [2],
where a isthe front angle of the cutter and A isthefric-
tion angle at the cutter front surface.

The completeness of the solutions of [1, 2] isstudied
from the standpoint of constructing a statically admis-
sible continuation of the stress field to rigid zones. For
the stress-field construction, an idea described in [3] is
used: the continuation of the stress field beyond the
plastic-rigid boundary is constructed on the assumption
that the material, by convention, isin aplastic state and
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Far-East Division, Russian Academy of Sciences,
Komsomol sk-na-Amure, ul. Metallurgov 1, 681005 Russia

that the stressfield is determined by the system of equa-
tions

1 2 2 _,2 00, 01, _
2O Ty =K G =0
90y , 0Ty _

dy  0X

Furthermore, the statically admissible continuation is
constructed such that it islimited by a certain surface
which is free of stresses and lies completely inside the
rigid zone. In [4], within the framework of this
approach, local criteria of the existence of the stress
field continuation in the vicinity of the rigid-plastic
boundary at the point of its exit to the free surface are
suggested. These criteria form grounds for studies of
the compl eteness of the solutions.

The conditions of the existence of the continuation
suggested in [4] are transformed here to the following
forms.

(a) Continuation to the MST region (Fig. 1):

cotd = tan(¢d + A — a) (necessary condition), (1)
tan(p +A-a) <1+ g —2¢ (sufficient condition). (2)

(b) Continuation to the RST region:

d=a-— }—2‘ (necessary condition), 3)
R N
a F
S Ve W
k Fy Fs
Yoo
Fo T

Fig. 1. Diagram of the cutting process without fracture.

1028-3358/02/4708-0616%$22.00 © 2002 MAIK “Nauka/Interperiodica’



CUTTING AND FRACTURE OF IDEAL RIGID-PLASTIC SOLIDS

tan(¢p +A —a) < 1—2005%%—0( +¢E

(sufficient condition).

“)

(c) Continuation to the NTSregion:

Tt
< - -A
¢<4+o( 5)

(necessary and sufficient conditions).

Thus, for the completeness of the solution, it is nec-
essary for the angle ¢ to simultaneously satisfy all ine-
gualities (1)—5).

Studies of the completeness of the solutions
obtained in [1, 2] have shown that the solution of [1]
has no stress-field continuation to rigid zones, while the
solution of [2] has a continuation in the case of a < A.
Thus, the known solutionsof [1, 2] have significant lim-
itations from the standpoint of their completeness.

We suggest a new solution supposing the existence
of a statically admissible continuation to rigid regions.
The possibility of finding this solution is provided by
the kinematic uncertainty of the cutting problem: the
boundary conditions for velocities can be met at an
arbitrary angle ¢. Thus, there is an infinite set of kine-
matically possible solutions that can be complete at
definite angles ¢, a, and A. To choose a preferential
solution, we use the condition of the minimum of the
volume density for the dissipation energy W. This
energy is acquired by a particle of the material when
intersecting the shear plane in the case of the continua
tion of the stressfield to therigid zones. In this case, the
solution iscomplete. It isshown in [4, 6] that the quan-
tity Wrelates to the angle ¢ by the dependence

w
5.5

617

[V

W=G

k, [Vi

— K sing tan(a —¢ ) — coso,

V, =

Here, [V,], V, are the discontinuity of the tangent com-
ponent and the normal component of the particle veloc-
ity while intersecting the shear plane, respectively; Gis
the norma velocity of the shear-plane propagation
(when cutting without fracture; G = 0); and k is the
yield stress of the material.

The dependences W = W (¢) for various angles o

sind.

k
ficient). The lines I-1, 2-2, 3-3, 44, and 5-5 bound
the regions of the validity of inequaities (1)—5),
respectively. The blackened region represents the range
of values of ¢ in which all the inequalities (1)—(5)
simultaneoudly hold (i.e., thisisthe region of existence
of the complete solution).

In order to choose the preferential solution, we
assume that the quantity W in the region of the exist-
ence of the complete solution has a minimum value.

The minimum value of W in this region is attained
when the boundary of the constructed continuation to
the MST region coincides with the free boundary of the
material. Then, the angle ¢ is determined from the
equation

areshown in Fig. 2 (W = — and p isthe friction coef-

tan($p +A —a) = 1+g-2¢. (6)
The line 2-2 corresponds to Eq. (6) (Fig. 2).

The strains in the shear plane can be found on the
basis of the theory of Hadamard-Thomas discontinuity
functions [5]. In particular, according to [6], the first

5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5

0 10 20 30 40

50 60

Fig. 2. The region of the existence of the complete solution to the problem of cutting without fracture (u = 0.7).
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Fig. 4. Cutting force F as a function of the crack-opening
angley for various angles a (upper and lower curves corre-

spond to a = 1° and 10°, respectively; W = 8, u = 0.35).

principal value of the Almansi tensor beyond the shear
plane is determined in terms of W by the dependence

2

_ W
4(J1+4IW* - 1)

The value of E,, as that of W, attains a minimum pro-
vided that condition (6) istrue.

The cutting force is determined in terms of ¢ as
kt,cos(A —a)
¢ sindcos(¢p +A —a)’

wheret, isthe thickness of the layer being cut off. The
values of the cutting force according to the new solu-
tion and the solution of [1] virtually coincide.

Thus, the new solution to the problem of cutting
without fracturing is complete and minimizes the vol-
ume density of the energy dissipation and strain in the
shear plane.

2. We now consider the solution to the problem of
cutting with fracture. A general approach to the study of
the problems of crack propagation in rigid-plastic sol-

Es

)

EGOROVA et al.

ids, aswell asfracture criteriafor the strain and energy,
are given in [6]. We assume that the fracture of a mate-
rial begins if the strains E, [or, according to (7), the
magnitude of the volume density of the energy dissipa-
tion in the shear ling] attain the limiting value

Wz=W,,

where Wis the limiting value of W, at which the frac-

ture begins. The direction m of the crack devel opment
is, generally speaking, not defined.

In the process of the nucleation and devel opment of
acrack, the shear plane comes off the cutting edge and
begins its motion with a normal velocity G. We con-
sider theinitial moment of the crack development when
crack boundaries are still rectangular (Fig. 3).

Thecrack developsinthedirectionm. Itsvertex T is
the point of intersection of the current position of the
shear line and the direction of the crack development.
The position of the upper boundary of the crack is
defined by the point A, which moves with the velocity
of cutting.

The appearance of the crack resultsin the formation
of anew free surface in the blank material. This surface
forms the lower crack boundary, which intersects the
cutter at the point L and results in the formation of the
secondary cuttings, whose effect is not analyzed here.
The angle y corresponds to the crack opening angle.

Possible directions of the crack development are
also studied. To this end, the dependence of the plastic-
strain work (unambiguously associated with the cutting
force F.) on the crack opening angleyis analyzed. The

F
derivative OlTyc is defined by the expression

2 2
dF an Z7]
—c kcos(A —0) =L+ ==L + =

0T g et ®
y dy cos(¢p +A —a)sing Of
dz
_ sing [tcosa _
cos(¢ —a)
_ Gt , sing [Isina
b = zcotg TSné " cos(6-a) '
_ Gt
c = zcot¢+sin¢+t,

(c® +Z°) (b +acotd) — (b° + a°) (c — zcotd)
b?c® '

Study of the sign in expression (8) has shown that,

F
within the entire region of definition, d‘TyC >0;i.e, the

cutting force increases with the crack opening angle
(Fig. 4).
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The largest angle of crack opening is attained at the
smallest angle between the direction m and the hori-
zontal line. In this case, the cutting force F, reaches the
largest value.
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In view of the evolution of nanotechnology, it is of
current interest to develop analyticak models for
describing the mechanical deformation of nanodimen-
sional objects. The mgjority of available theoretical
models are based on elasticity-theory equations. In this
case, values of the modulus of elasticity obtained in
macroscopic experiments are commonly used. At the
same time, many investigators pointed to a discrepancy
between values of the modulus of elasticity obtained in
microscopic and macroscopic experiments (see, e.g.,
[1-3]). In[4], the Young's modulus and Poisson’s ratio
were theoretically investigated as functions of the num-
ber of atomic layers by the example of a two-dimen-
siona single-crystal strip. It was shown that, with a
decreasing number of atomic layers, the Poisson’sratio
decreases and the Young's modulus increases and, for
two-layer crystallinefilms, can differ from their macro-
scopic values by afactor of 1/2 and 2, respectively. The
results[4] indicate that scale effects must be taken into
account when notions of continuum mechanics are
applied to nano-objects. In this study, we theoretically
investigated the effect of the scale factor on the bending
dtiffness of a single-crystal strip. This problem is of
high priority because, in particular, it is necessary to
investigate the stress—strain state of nanotubes, which
are extensively used in current engineering applications
[5-9].

We consider a two-dimensional single crystal with
N =2 layersalong they axisand J > N layersalong the
X axis. Each atom is assumed to interact only with the
nearest neighbors (see figure). Forces Q, are applied to
the atoms on the lateral faces of the crystal. The sub-
script n meansthe layer number (n=1, 2, ..., N). From
one layer to another, forces vary linearly, so that the

* K. Petersburg State Technical University,
ul. Politekhnicheskaya 29, S. Petersburg,
195251 Russia

** Faculty of Mathematics and Mechanics,
S. Petersburg Sate University,
Bibliotechnaya pl. 2, Petrodvorets,
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summary load acting on the lateral crystal face provides
only the moment of force

N N
Y Q=0 TRQ =M (M
n=1 n=1

The strained state of the single crystal is completely
specified by spacings a;, between the neighboring
atoms in each layer and by spacings by, between the
nearest atomsin the neighboring layers. The subscripts
j and n correspond to the numbers of layers along the x
and y axes, respectively (see figure). It is evident that
spacings hy,, between layers can be determined from the
2
geometric relationship hZ, = bZ, — azm . In the
unstrained state, the crystal lattice consists of equilat-
eral triangleswith sidesa=b = a,. Thislatticeis char-
acterized by the relations

o= o3

b = 76‘01 R, = (n=1)hg.

It is easy to show that the formulafor Q, satisfying

Bending of a nanocrystal strip.
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conditions (1) has the form

_ 4/3M(2n—N-1)
Qn = ag(N—1)N(N + 1)

Let F(r) be the force of interaction between two atoms
separated by distance r. Assuming the smallness of
strains (displacements are magnified in the figure for
clearness) induced by the forces of interaction between
atomsin the crystal, we use the linear approximation

)

F(a]n) = CAaJn, F(bjn) = CAan, (3)
C ¥ F'(ay) >0,
WhereC|sthe|nteranm|c-bond rigidity, Aa]n a,n 3,

and Aby, — a,. Such asimplified approach isjus
tified by the fact that the modulus of elasticity in con-
tinuum mechanicsisgenerally determined in linear the-
ory. It should be noted that the approach proposed here
can be realized even without the assumption that elastic
bonds are linear; the difficulties arising in this case are
of a purely technical nature. Writing the equations of
equilibrium for atoms of the crystal lattice, we obtain
the set of recurrence equations for the quantities Aa,
Aby, and Qy:

1
Ag; , + E(Abj’“ +Ab; )

1
= Aaj—l,n+E(Abj—l,n*‘Abj—l,n—l),
Ab; ,+Ab;_;, = Ab; ,_; +Ab;_; 4, (4)
1 _Qn
AaI,n+é(Abl,n_Abl—l,n+Ab|,n 1 AbI 1,n— 1)
1
AaJ—I,n+E(AbJ—I,n_AbJ—Hl,n+AbJ—I,n—1
Q
—Aby_iqn-1) = Cn =12
The solution to these equations has the form
_ _Q
Abj, = 0, Mgy, = & ®)

We conceptually cut the crystal by a vertical straight
line AB (see figure). According to Egs. (2) and (5), the
total normal force acting from one part of the crystal to
the other is equal to zero. The total bending moment M
is calculated by Eqg. (1). As can be seen from Egs. (2)
and (5), achange in interatomic spacings Aay, linearly
depends on the layer number n along the y axis and is
independent of the layer number j along the x axis. This
means that the atomic layers along the y axis remain
rectilinear when the crystal is deformed, and the angles
between any neighboring atomic layers in the strained
state are identical. In this case, the angle a between the
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neighboring atomic layers and the corresponding cur-
vature (3 are determined as follows:

def AaJN/Z—Aalllz L
" ho(N-=-1) ay/2’

Accordingto Egs. (2), (5), and (6), the bending stiffness
of the single-crystal strip hasthe form

B (©)

det M _ Cag
D 3 5 (N-DN(N+1). (7
Attempts to express bending stiffness in terms of mac-
roscopic parameters encounter difficulties associated
with the possibility of different definitions of the thick-
ness H of the nanocrystal. On the one hand, the single-
crystal thickness can be defined asthe spacing H = (N —
1)h, between atomic layers at opposite ends; on the
other hand, the nanocrystal thickness can be defined as
the product of the number of layers and the thickness of
oneatomic layer: H = Nh,. Becauseitisdifficult to give
preference to one of the formulated definitions, we
define nanocrystal thickness as [4]

def

H % Ny,h,, N—1<N, <N, 8)

where N[is a dimensionless parameter reflecting the

ambiguity in the determination of H. Asisshownin[4],
the Young's modulus E; corresponding to extension
along the x axis of a single-crystal strip, which is infi-
nitein thisdirection, is calculated by the formula

N _2C
N_*Eoov Eoo - . (9)

3

Here, E,, isthe Young's modulus of the infinite crystal
[9, 10]. It should be noted that we consider astrip finite
along the x axis. However, the number of atomic layers
along this direction is assumed to be so large that
Eq. (9) can be used. Using Egs. (8) and (9), we express
bending stiffness (7) of the single-crystal strip in terms
of its macroscopic parameters:

E, =

E,H3(N°-1)

D =
12N2

(10)

Experimental data indicate that the bending stiffness of
a single-layer strip is 25 times lower than the value
obtained by the formula of elasticity theory [11].
Indeed, a single-layer chain of atoms must have no
bending stiffness from the classical viewpoint. There-
fore, it should be considered that the most acceptable
values of N[in bending problems are those for which
the bending stiffness D vanishesat N = 1 (alow exper-
imentally observed bending stiffness is associated with
the effects ignored in the model under consideration).
We consider two Npyvalues satisfying the above con-

dition.
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First, we assume that Nj= N. In this case, E, = E,
and bending stiffness is defined by the formula

10 5 - E.H°
N ° T 12

H = Nhy. (11)

Here, D, is the bending stiffness of the strip known
from macroscopic elasticity theory. According to
Eq. (11), the bending stiffness of the nanocrystal varies
within theinterval 0 < D < D,,. For small N, this stiff-
ness substantially depends on the number of atomic
layers. It increaseswith N and tendsto its el asticity-the-
ory valuefor N —» oo,

On the other hand, we assume that

1 1/3
N*=N%—W%.

The parameter Npjintroduced in such a way satisfies
inequality (8): N— 1 <N< N. In this case, the bending

stiffness and the thickness of the nanocrystal are
expressed as

E_H®
= - EDool
12

_ 1 Dl/S
H—Nm%—ﬁﬂ.

Itiseasy to seethat the expression for bending stiffness
exactly coincides with the elasticity-theory expression.
The strip-thickness expression coincides, for large N,
with Nh, corresponding to the previous case. For small
N, Eq. (12) gives thickness values lower than Nh,; for
N =1, it vanishes as it must according to the concept
that a single-atom layer has zero bending stiffness.

An aternative way of determining bending stiffness
is to solve the problem of the deformation of a single-
crystal strip upon its bending into aring. This problem
can be considered aslinear in strains; however, itisgeo-
metrically nonlinear in displacements. An advantage of
this formulation is the fact that it requires no assump-
tions about the nature of the external load. The expres-
sions for bending stiffness D obtained as a result of
solving the similar problem coincide exactly with
Egs. (10)<12).

D (12)

IVANOVA et al.

The problem of determining the bending stiffness of
nanotubes was considered in the quasi-continuum for-
mulation in [5], where, for several particular N-values,
a strip bending stiffness which coincided with the
results calculated by Eq. (11) was determined. Strip
thickness was defined in [5] as H = hyN, which is
responsible for the discrepancy between bending stiff-
ness and its elasticity-theory value. However, as was
shown above, the application of the aternative defini-
tion of plate thickness makesit possible to use the mac-
roscopic formula for bending stiffness without any
maodifications.
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The problem of helical-spring loading by alongitu-
dinal force and atorquethat are applied at apoint of the
spring axis and directed along thisaxisis considered on
the basis of the exact three-dimensional equations of
nonlinear elagticity theory. This three-dimensional
problem of nonlinear elastostatics is reduced to a two-
dimensional boundary value prablem for the plane
region of the spring-coil cross section. A solution to the
two-dimensional problem allows the equilibrium equa-
tionsin the bulk of the body and boundary conditions at
the lateral spring surface to be satisfied. The nonlinear
theory of the torsion and tension of prismatic elastic
bodieswas developed earlier in[1, 2]. Within the scope
of linear three-dimensional elasticity theory, the prob-
lem of a spring was investigated in [3].

1. We consider an elastic body that initially has the
shape of a helical spring of an arbitrary cross section.
The body isformed by the helical motion of aplanefig-
ure o along the x; axis, where the figure is situated in a
plane involving the x; axis. An eguation of the contour
00 bounding theregion o is presented in the parametric
form p =p(t), & = §(t), where p and & are distances mea-
sured from and along the x; axis, respectively. The heli-
cal surface formed by the helical motion of the curvedo
along the x; axisis called the lateral spring surface. We
describe the deformation of an elastic medium in the
nonorthogonal curvilinear Lagrangian coordinates p,
¢, and & related to the Cartesian coordinates of the ini-
tial configuration x;, X,, and x; by

X; = pcoso, X3 = &+pp. (D
Here, pisarea number characterizing the inclination
of spring cails to the plane x,%,. At u = 0, this coordi-
nate system turnsinto the system of circular cylindrical
coordinates p, ¢, and x;. Considering the parameterst
and ¢ as the Gaussian coordinates of the surface, we

X, = psing,

Rostov Sate University,
ul. Zorge 5, Rostov-on-Don, 344104 Russia

write the equation of the lateral spring surface in the
form

rt, ¢) = p(t)(i,cos +i sing) +E()is+ udis. (2)

Here, r = X,i, istheradius vector of asurface point and
im(m=1, 2, 3) arethe constant basis vectors of the Car-
tesian coordinates. Equation (2) allows the unit vector
normal to the lateral surfaceto befound as (s=1, 2, 3)

—P&'0i —HP'Y2 + PP'Ys

n = = ny1)gs, (3)
J(PE) + (up')? + (pp)’
g, = i,cos¢ +i,sing,
R B @)
92 - _Ilan) +|2COS¢1 gS - |31

where a prime in Eqg. (3) denotes a derivative with
respect to the variable t. In the problem considered
below, the stress—strain state is identical for all spring
coils. Therefore, it is possibleto take 0 < ¢ < 21T

2. In the absence of mass forces, a static state of a
nonlinear elastic medium is described by the equilib-
rium equation for stresses [4]

divD = 0, &)
the equations of state
_ _ ,dw
D =P, P=25%, (6)

and the geometric relations

G =cCrc,
R = Xy,

C = gradR,
X = X+ Uy

(7
Here, div and grad are the divergence and gradient in
the Lagrangian coordinates; C isthe strain gradient; X,
(k=1, 2, 3) arethe Cartesian coordinates of particles of
a deformed body (Eulerian coordinates); u, are the
components of the displacement field; G isthe Cauchy

1028-3358/02/4708-0623%22.00 © 2002 MAIK “Nauka/Interperiodica’
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strain measure; D isthe asymmetric Piola stress tensor;
P isthe symmetric Kirchhoff stresstensor; and W(G) is
the specific potential strain energy.

For an elastic body with the shape described above,
we consider the following two-parameter family of
finite strains:

X, = a(p, &)coskd —B(p,&)sinke,
X; = a(p, &)sink¢ +B(p, &) coskp, ®)
X3 = y(p, & +V0,

where Kk and v are real constants. For the strain of
form (8), the lateral surface of the considered helical
spring remains helical. However, both the diameter and
inclination of the coils vary, and the azimuthal cross
section o of a spring coail, i.e., its section by the half-
plane ¢ = const, undergoes deformation described by
the two-variable functions a, 3, and y.

Atk <0, thespringisturned inside out; i.e., the cir-
cular ring that represents the projection of the spring
body on the plane x;x, is turned inside out so that the
inner and outer circles of the ring exchange places.

According to Egs. (1), (4), and (7), the tensor fields
of both the strain gradient and the Cauchy strain mea-
sure, which correspond to the displacement field (8),
have the form

C(p! E’q)) = CSk(p! E)gSD dk!
d, = i;cosK¢ +i,SINK, ©)
d, = —i;SINK$ +i,CosK},
d; = i
aa o oy
Cll ap’ C12 - ap1 Cl3 apl
oar]
__E(B uaEDl
(10)
C22 = B(G uaED’ 2 %/ uaEDl
da 0 0
Cqy = ﬁ’ Cqp = a_g’ Cyp = O_\E/;
G = Gsk(pv E.)gsD gkv Gsk = Cskam- (11)

It is further assumed that, being considered as a
function of the components Gg of the Cauchy strain
measure in the orthonormal basis g,,, the elastic-mate-
rial specific energy W does not explicitly depend on the
coordinate ¢ but can depend on the coordinates p and
& W=WGgy, p, &). Such materials will be called uni-

ZUBOV

forminthe coordinate ¢. Along with certain anisotropic
media, this class of materials includes isotropic elastic
media with arbitrary nonuniformity in the coordinates
p and &, which are taken in the plane of the azimuthal
Cross section o.

According to Egs. (10) and (11), the quantities Gq
areindependent of the coordinate ¢. Therefore, Egs. (6)
indicatethat, for amaterial uniformin the coordinate ¢,
the components Py = g, - P - g, of the Kirchhoff stress
tensor depend only on the two coordinates p and &.
Therefore, for a strain of form (8), the Piola stress ten-
sor iswritten as

D(p! Ei ¢) = Dsk(pl E.)gs U dk'

Substituting Eg. (12) into Eq. (5), we arrive at the
following scalar form of equilibrium equations for the
Piola stresses:

(12)

oD oD oD
11"' a:)n KDy —H 6521% ;1 =0,
aDlz l aDzﬂ 0D32 _
55 *5PeKDa—uGE 5E = 0 (1)
aDlg 1 aquj 6D33 _
ap +pEPl3 2e0 5 O

Taking into account the equations of state (6) and
Egs. (10) and (11), one can see that Egs. (13) are asys-
tem of three scalar equations for the three two-variable
functions a(p, &), B(p, &), and y(p, &). According to
Egs. (3) and (12), the boundary conditions on thelateral
spring surface, which is assumed to be unloaded, are

nDy =0, k=123 (14)

Expression (3) shows that the components ng of the
normal vector are independent of the coordinate ¢.
Therefore, boundary conditions (14) do not contain the
variable ¢ and, together with equilibrium equations (13),
form the two-dimensional boundary value problem for
the plane region o. Thus, assumptions (8) concerning
the character of the deformation of an elastic medium
reduce the initial three-dimensional nonlinear problem
of a helical spring to the two-dimensional boundary-
value problem for the plane region o presented by the
azimuthal cross section of a spring coil.

Letag(p, &), Bo(p, &), and yy(p, &) beasolutiontothe
boundary value problem (13), (14). Then, the functions

0 = ayc0sK —BysinK, B = aysinkK + B,cosK,

Y = Yot+tL, K,L = const

also satisfy both Egs. (13) and boundary conditions (14);

i.e., the position of the elastic body after deformationis
DOKLADY PHYSICS Vol. 47
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determined up to both rotation about and translation
along the x; axis. This solution nonunigqueness can be
removed by imposing the additional conditions

U[v(p, §—¢&Jdpde = 0,

If[cosdb—l]dpdé =0, (15)

oa , 9B
0 0p

oa , 0pT", 9B _daf’
[og  apd  L[pE opHd

cosd =

on the desired functions.

3. A solution to the two-dimensional boundary value
problem (13)—(15) formulated in the plane region o
exactly satisfies both the equilibrium equations in the
body bulk and the boundary conditions at itslateral sur-
face. In addition, by fitting the constants k and v, the
boundary conditions specified at the ends of a spring
can be satisfied approximately, i.e., in the Saint-Venant
integral sense. For this purpose, considering a spring
deformed according to (8), we determine the resultant
force F and resultant moment M both applied to an
arbitrary azimuthal cross section ¢ = const of a spring
coil. Taking account of Eg. (12) and the fact that the | at-
eral surface of the body is unloaded, we obtain

F(o) = _[[92 [Ddpd¢ = F,d,,
? (16)

F, = IIDdepdE = const.

The condition of equilibrium of an arbitrary spring-
coil segment bounded by the half-planes¢ = ¢, and ¢ =
¢, hasthe form F(¢,) = F(¢,), which leads to the rela-
tionsF, = F, = 0 and F = F;i;. Therefore, the resultant
forceisparalle tothe X, axis, so that the resultant force
moment is independent of a position of the axial point
used for its determination. Calculating the moment

625

with respect to the point X, = X, = X; = 0, we derive the
expressions

M(¢) = —I g, [D xRdpd¢ = M,d,,

M, = JI(Dzsﬁ —Dyy)dp g,
° (17)

M, = II(Dzly—Dzsa)dp dg,
M; = II(Dzza —DxB)dpdg.

According to Egs. (12) and (17), the quantities My
(k= 1, 2, 3) are constant. The balance of the moments
of all forces applied to the spring-coil segment bounded
by the sections ¢ = ¢, and ¢ = ¢, leads to the relations
the system of forces applied to spring ends must be stat-
icaly equivalent to the force and moment that are
applied to a point of the spring axis and directed along
this axis. After solving the two-dimensional boundary
value problem (13)—«15), the force and moment
become known functions of the parametersv and k:

F;=F(Vv,K), Mz = M(v,K). (18)
The inversion of the functions F and M in (18) alows
the parameters v and K to be determined for given val-
ues of both the longitudinal force F; and torque M.

4. Potential strain energy of the spring-coil segment
bounded by the sections$ = ¢, and ¢ = ¢, isexpressed
by the formula

(¢1—9)M, N = HPdedE-

In view of Egs. (10) and (11), the functional I cal-
culated for a solution to the two-dimensional boundary
value problem (13)—15) has the form

NE.k) = [[pW[a(P. & v k), Bp. & V. K), ¥(p & v, K); v, K] P d,

which takesinto account the fact that a solution to prob-
lem (13)—(15) depends on the parametersv and K. By
DOKLADY PHYSICS Vol. 47
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using equilibrium equations (13), boundary condi-
tions (14), and Egs. (16) and (17), one can prove the
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following energy relations of the nonlinear theory of
the tension and torsion of helical springs:

F(v,K) = % M(v, K) = % (19)
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In this paper, an optimality criterion for the struc-
tural and functional organization of the blood-circula-
tion system is proposed. In addition to the previously
analyzed energy expenditure, an energy-based
approach to functioning smooth vascular-wall muscles
is aso developed. In other words, the energy spent for
the regulation of peripheral vascular resistance is taken
into account. Much better agreement between the theo-
retical results and morphological datais attained. The
model proposed determines the blood vascular volume
depending on the vessel generation number, whereasall
known optimization models use the same blood vascu-
lar volume for all generations.

Optimization models of the blood circulation sys-
tem (CS) were proposed in papers by Cohn [1],
Chernous' ko [2], Obraztsov and Khanin [3], and Kha-
nin and Bukharov [4]. According to these models, the
blood volume of a certain vessel generation turned out
to be equal for all vessel generations except capillaries.

The goal of this paper is to explain the observed
dependence of the blood volume in vessels of a certain
generation on the number of this generation. The pro-
posed model is purely phenomenologicdl; i.e., the con-
trol mechanisms of the vascular tone are not consid-
ered.

In this study, the principle of minimum energy
expenditure of the CSisformulated in the form

W = W, + Wg + W+ W, = min, €))

where Wisthe goal function of the CS, W, isthe power
consumed by the heart, W isthe power spent for eryth-
rocyte generation, Wy is the power spent for blood-
mass transportation during locomotion, and W, is the
power consumed by the vascular-wall smooth muscles.

The energy-optimality criterion arisesfrom the prin-
ciple of the evolutionary survival in the course of natu-
ral selection. The decrease in the energy expenditure

1 The article was submitted by the authors in English.

Russian Sate Technological University (MATI),
Orshanskaya ul. 3, Moscow, 121552 Russia

associated with functioning body organs and systemsis
profitable for both individual species and the popula-
tionin general.

In comparison with the optimality criterion pro-
posed previousy [4], in (1) an additional term is
included that accounts for the energy transformation in
smooth vascular-wall muscles.

The mechanical work W,,..,, executed by smooth
vascular-wall muscles for contraction is determined by
the expression

N

Wmech = Z I:’nAVn!

n=0

where P, is the blood pressure in the vessels of the nth
generation, V, is the blood-volume variation in these
vessels, and N isthe number of generationsin the arte-
rial system.

While varying peripheral vascular resistance,

smooth vascular-wall muscles execute a certain work.
Hence, the power consumed by these musclesis

N
W P.AV

W, = v mech:V n n
v Nwm nz Nwm

=0

, (@3]

where ny, isthe efficiency of the smooth musclesand v
is the variation frequency of the peripheral vascular
resistance (vessel tone), stochastic vasomotions being
not considered here.

According to the Poiseuille law,

Py = RiQ, 3)
where Q isthe blood flow rate and R, is the resistance
for vessels of Oth—nth generations:

S |
R, ==Y . 4)
n n= Or”mn

Herg, |, isthe length of the nth-generation vessels, r, is
their radius, mis the branching coefficient, and (L isthe

1028-3358/02/4708-0627$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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blood viscosity. Formula(4) doesnot allow for thelocal
blood-flow resistance at branching points.

Substituting relationships (3) and (4) into expres-
sion (2), we obtain

8 .
WV = —%Qlov
0
N

X Z r2l.m'e (2 —¢,)(n+ l)ﬁ, (%)

where |, and r,, are the aorta length and radius, respec-
tively, and €, isthe strain of the nth-generation vessels.

The muscular efficiency is determined by the
expression [5]

f(l-f
o = 1 ) ©)
Df+_ +2(1—f)(12+02f)
Here, f = FF and F and F,, are the forces developed by
0

amuscle in the case of its isotonic and isometric con-
traction, respectively.

Theresults obtained by Hill for askeletal muscleare
also applicableto a smooth muscle[6]. The dimension-
less parameter f in expression (6) completely deter-
minesthe muscular efficiency in the case of theisotonic
contraction, and the efficiency n,, is approximated by a
parabolic function

Ny = cf +df?, 0<f<1, (7

where ¢ and d are certain constants.

In order to determine the parameter f, the stress dis-
tribution throughout the vascular wall needs be known.
Thisdistribution is described by equilibrium equations,
by continuity equations, and by Hooke's law [7].

The Lamé problemissolved for avascular wall after
the muscle contraction has occurred and equilibrium
has been attained:

E+O——r_o-¢ = O’ M - SI”

dr r dr @)
8210' L +ls € =10 —=—0, —¢
r T 9 TG "o & T E9eT5EO T

Here, €, and €, are the radial and tangential strains, o,
and g, aretheradial and tangential stresses, and Eisthe
Young's modulus.

The boundary conditions are
c)-rlr:rn = =Py, C)-flr:rn+2'>n =0, ©)

where 9, is the wall thickness for the nth-generation
vessels.

OBRAZTSOV et al.

Solving Egs. (8) in combination with (9) with
respect to g, we find

1 1
_Esn to—_—
2 Yn(2+VYn)

X [Py—Een(1+Y,) In(1 +y,)] + Ee,In=

O'¢=

2
L (1+yy)

5[Pn+ E€qIn(1+y0)], (10)

arm
Va2 * Yol
S,

wherey,= —.
rn

Using solution (10) and averaging it over r, we
arrive at

_ o 2+ Vo= &
= ¢ - - rn_-n
f Ag, + BD v D(n+ 1),

0o n

(11)
where g, is the isometric stress,

A:l'_E_ B:é.l‘_'l_(gl_g

’ 4 .
20, T 50,

Thus, the goal function of the CS takes the form

:B_MQ_Z%'_n

TNy & rom'”
N
W Cq 2,
+ - B rolam
n%}VB BTeDzO n'n
n=

SHVQIOZ r’l,m'e, (2 —¢ )(n
n=0

o

D - min. (2

Nwm

In solving optimization problem (12), the constraint
for arelative variation in the total peripheral vascular
resistance K should be taken into account in accordance
with the physiological data of [8]:

R

=K
RO ’

(13)

where Risthetotal peripheral vascular resistancein the
quiescent state and R* is the total peripheral vascular
resistance during maximal exertion.

In order to minimize goal function (12) with allow-
ance for constraints (13), the Lagrange multiplier tech-
nigueis used.
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0 4 8 12 16 20 24 28 n

Vascular blood volume V,, as a function of the generation

number n. Solid and dotted lines are the calculated depen-
dences (with and without allowance for the energy transfor-
mations in vascular-wall vessels, respectively). Circles cor-
respond to the experimental data of [15].

The optimal structural parametersr,, Y, €, and the
Lagrange multiplier A are determined by the expres-
sions

1/6
. F . m—n/3’
G+ H(n+1)
1-&(n+1)°
Yo, = P(N+1), € =qh+1),

(N+1)(N +2)
A(K-1)c '

M

(14)

A=D

where

_anQo o_16uQ L o Wo, 0o
D=8uv—-, F= , G_H%O(VB+BTQD'

re T Ny
_64duvQlog
H=——
c 1
_ _,d _ 1K-1 _1
p__4CBl q_2N+21 E_4q

Knowing Mo, » WECan determinethe optimal blood vol-
ume in nth-generation vessels.
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The following numerical values of the model
parametersfor ahuman body were taken in the calcula
tions E=1x10*Pa, K=5,Q =13x10*m3s?, T, =
1.7x10°s, Vg=75%x102m*, W, =83.7W, c=0.5, c,=
45x105m3,d=-04,1,=0.45m,r, =8 x 103 m,
a=0.7,B=1310x10°J,ny=035u=3.6 x102PR,
v=0.8 Hz, 0, =2.9 x 10° Pa[9-14].

The optimal vascular blood volume as a function of
the generation number is shown in the figure along with
the experimental data of [15]. With alowance for the
vascular-wall energy transformation, the theoretical
results are in good agreement with experimental data.
As seen in the figure, the effect of the vascular-wall
energy transformation is most pronounced in terminal
generations.

Thus, a decrease in the blood volume in terminal-
generation vessels (except capillaries) reduces the
energy consumed by the blood circul ation system, pro-
vided that the energy requirements for the contraction
of the vascular-wall smooth muscles are taken into
account.
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This paper deals with a self-similar solution to the
problem of the indentation of regular square and trian-
gular pyramids into an ideal plastic half-space. When
deriving a solution, the full-plasticity condition for the
Tresca yield criterion (Haar—Karman hypothesis) is
used. The contact friction on pyramid facesistaken into
account. The problem models the testing of hardened
materials by rigid-pyramid indentation. The pressure
on apyramid and the shape of aplastic print arein rea-
sonable agreement with experimental data. Results for
modeling tests of materials by spherical indenters were
presented in[1, 2].

We consider the problem of indentation of regular
square and triangular pyramids into an idea plastic
half-space along the normal direction to the surface
forming the half-space boundary. We introduce the Car-
tesian coordinate system{x, y, zZ} withitszaxisdirected
along the normal to this surface and along the pyramid
axis. The direction of the x axis coincides with the nor-
mal to the middle point of a side of the square or areg-
ular triangle that form the pyramid base on the half-
space boundary z= 0 (Fig. 1).

In the case of regular pyramid indentation, the plas-
tic-flow region has symmetry planes orthogonal to the
half-space boundary. These planes pass through the
pyramid edges and the face middle points. We consider
the plastic region constrained by two symmetry planes,
by a pyramid face, and by the half-space boundary. The
Cartesian coordinatesx, y, z, stresses, and displacement
velocities are taken as dimensionless variables. In this
case, we take the half-length of aside of a square or a
regular-triangle base as a characteristic length. We also
take the uniaxial compression yield stress of the plastic
material as a characteristic stress and the pyramid

1 The article was submitted by the authors in English.

* Yakovlev Chuvash Sate Pedagogical University,
ul. Karla Marksa 38, Cheboksary, 428000 Russia
** |ngtitute for Problems in Mechanics,
Russian Academy of Sciences,
pr. Vernadskogo 101, Moscow, 117526 Russia
*** Moscow State Academy of Instrument Engineering
and Informatics,
ul. Stromynka 20, Moscow, 107846 Russia
E-mail: nepershin_r@pop.ntu.ru

indentation velocity as a characteristic displacement
velocity.

The full-plasticity condition for the pyramid-inden-
tation problem in the space of principal stresses hasthe
form

0, =0, 03=0,-1 0= 01—%7 (1)

where o isthe mean stress.

We assume that the velocity vector of the plastic
flow liesin the planesy = const orthogonal to the pyra-
mid face and to the half-space boundary. This assump-
tion istrue for the symmetry planey = 0 because of the
symmetry condition for the plastic flow. For the planes
0 <y < 1, this assumption ensures the geometric simi-
larity of the plastic flow during pyramid indentation for
all cross sectionsy = const. For y = 1, the plastic region
ahead of the pyramid face is reduced to the point that
coincides with the point of the pyramid-edge inter-
section with the boundary z = 0 of the half-space. This
is confirmed by the experiments with pyramidal inden-
ters[3].

Fig. 1. Projection of a plastic print onto the planez=0 and
plastic region boundaries (dashed lines) in the case of the
indentation of asmooth triangle pyramid into the half-space
z<0.

1028-3358/02/4708-0630$22.00 © 2002 MAIK “Nauka/Interperiodica’
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v, ABC
[Vl
O Y v,
X a— v
a ADE

Fig. 2. Slip-line field and the displacement-vel ocity hodograph in the planey = const.

The direction cosines of the stress g, with the coor-
dinate axes x, y, zare given by the relations

n, = cosb, n, =0, ng; = sno,

where 0 is the angle between the direction of the stress
0, and the x axis. Under condition (1), the nonzero
components of the stress tensor are

- 1 2 _ 1
ox-0+§—cose, Oy =0+3,
@)

1 .2
g, = o+§—sm 0,

T,, = —SinBcosH. 3)

In the planes y = const, the direction of the principal
stress 0, = g, is parallel to the y axis. The dlip lines §
and n are defined by the differential equations

dz _ dz _ _
X tand for &, X cotp for n. 4)

In this case, the differential relations for stresses and
displacement velocities coincide with Hencky’'s and
Geiringer’s equations [4]:

do—dd = 0aongé, do+dp = 0aongn, (5
dVe-V,d¢ =0 alongg,
dV, +Vdp =0 alongn,

where ¢ isthe angle between the tangent to the slip line
¢ and thex axisand V; and V,, are the projections of the
velocity vector onthe dip lines. Theangles¢$ and 6 are

related to each other by theformula® = ¢ — g

(6)

We now consider the plastic region and the bound-
ary conditions of the problem in the plane y = const
(Fig. 2). The depth h of the pyramid indentation is
defined by the relations

h= 1=V
J3tana

for the triangular or square pyramid, respectively,
where a is the angle of the pyramid-face inclination to
thezaxis. The normal and shear stresses are constant on
the contact boundary AE. In the region ADE, the dlip

h=1Y o<y<t, @)

DOKLADY PHYSICS Vol. 47 No.8 2002

linesarerectilinear and the stress state is homogeneous.
In the region ACD, the rectilinear dip lines n form a
centered fan with asingular point A. Intheregion ABC,
the stress state is also homogeneous, and the boundary
AB is free from the external normal stresses and shear
stresses.

Under the full-plasticity condition, the material of
the plastic region ABC is in the uniaxial compression
stress state along the boundary AB:
o;=-1, 0= —% on AB. (8)
At the contact boundary AE, we specify the friction

shear stress |1, which determines the inclination angley
of the dlip line n to the boundary AE:

y = %arccosZu, O<sp< % on AE. ©)
The angles B and Y are related to each other by the
expression

B+ = Fra-y. (10)
The anglesa and p are the problem parameters and, in
accordance with the symmetry condition of the plastic
flow in the z axis, must satisfy the inequality that fol-
T

lowsfrom thelimiting value 5

of thevertex angleat the

point E of the rigid region:

as’—”%arccosZu. (11)

4

For aperfectly smooth pyramid (i = 0), we havea <

Y=

and for a completely rough pyramid H,l = %E we

T
have a < 7

If the angle a exceeds limiting value (11), which
depends on the contact friction, then a bump of the
undistorted material arises on the pyramid faces. This
bump forms a natural wedge with the inclination angle
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oF = g Afterwards, the plastic region slides along this

wedge with the maximum friction shear stress. In this
case, the pyramid pressure does not depend on the
anglea. Thisisconfirmed by the experiments[3] onthe
indentation of a rough nonlubricated square pyramid

for theanglesa > g

In order to find the angle 3, we use the incompress-
ibility condition that results in the equality of areas of
the triangles ABF and EOF. Using the relation

? = cosa — ./2cosysin, (12)

where | is the length of the contact boundary AE, we
arrive at the nonlinear equation in terms of the angle 3

. J2sino]  1sin2a
+ - =
smB%osB cosy U X ooy 0 (13)
with the exact solution B =0fora =0and a = g

n
2
icaly solving Eq. (13) by Newton’s iterative method.
Then, we find the angle Y and the contact-boundary
length | from relations (10) and (12).

Thevelocity field in theregion AED and the vel ocity
discontinuity V at the point E and along therigid-plastic
boundary (Fig. 2) are defined by the continuity condi-
tion for the velacities normal to the pyramid face and to
the rigid-plastic boundary. Equations (6) define con-
stant velocities along the rectilinear dip lines n and
rotation of the velocity discontinuity along the bound-
ary DC, which is mapped on the velocity-hodograph
plane by the circle arc with the radius V. From the plots
shown in the velocity-hodograph plane, we find V and
the vel ocity-vector projections onto the x and z axes:

WithintherangeO < a < =, wefind the angle 3 numer-

y = 3ha (14)
cosy

Vi = [Vlcos(, V, = [V]sin,

y-asgsz-B. ()

The average stress within the region ADE is found by
integrating relation (5) along the slip line & using both
the angle Y defined by Eq. (10) and boundary condi-
tion (8):

(16)

We can now find the normal pressure on the pyramid
face from the first relation of formula (2) by orienting

IVLEV et al.

the x axis along anormal to the pyramid face and using
L

theangle®=y- 2

for the stress 0, and Eq. (16) for o:

p=S(+sn2y)+T+a-y-p. 7

The vertical pressure related to the projection of the
plastic-print area onto the planez=0is
g = p+pcota. (18)

We also find the vertical pressure related to the area
of the pyramid base in the plane z = 0 from relation-
ships (7), (12), and (18):

d, = gxsina,
X = (sina — J/2cosytanasin) .
Thevertical force Q acting on the triangular and square

pyramidsis »/3q, and 4q,, respectively.

We determine the height of the elevation of the plas-
tic region on the pyramid face over the planez= 0 and
projection of the plastic-print boundary onto this plane
from relations (7) and (12):

hO = ./2¢(1-y)xcosysinB,
X = c[y+(1-y)xsina],

(19)

(20)
21)

where X is defined in Eq. (19) and c = %3 orc=1for
the triangular or sguare pyramids, respectively. The
boundary of the plastic region in the plane z = 0 is
defined by the relationship

x = c[y+ (L—y)x(sina + ./2cosycosp)]. (22)

The boundaries of the plastic region and projections
of the plastic print onto the plane z = 0, which were cal-
culated from Egs. (13), (21), and (22) for the smooth

T and 3=0.16, are shown

triangular pyramid with a = 3

by dashed linesin Fig. 1.

The experiments performed in [3] on theindentation
of triangular and square pyramids into hardened metals
exhibit a linear increase in the required load and geo-
metric similarity of the plastic-print shape. This result
is consistent with the obtained self-similar solution to
the problem. The predicted pressure on the projection
of the plastic print in the plane z = 0 or the pressure
related to the area of the pyramid base are the same for
both the triangular and square pyramid. This conclu-
sion is consistent with the experimental data presented
in Table 1 of [3].

The results calculated according to Egs. (20) and
(21) on the elevation of the plastic region over the plane
z=0and projections of the plastic print onto this plane
in the cross section y = 0 for different angles a are in
reasonabl e agreement with the experimental dataof [3].

DOKLADY PHYSICS Vol. 47
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However, the predicted boundary of the plastic region
in the cross section y = 0, which is calculated from
Eq. (22), is considerably greater than the experimental
boundary. Such a discrepancy can be explained by the
rather small inclination angles of the free boundary of
the plastic region to the half-space boundary. Another
explanation isthe existence of a smooth transition zone
between the plastic-region boundary and the nonde-
formed boundary of the half-space. These facts can
hamper the exact experimental determination of the
plastic boundary.

The predicted pressures g, as functions of the angle
o, which were calculated by Eq. (19) for =0, 0.1, and
0.5, are compared in Fig. 3 with the experimental data
of [3] on the indentation of a square pyramid with and
without a lubricant into hardened copper. In this case,
the stress—strain dependence is close to the model of a
perfectly plastic body. The deviations of the predicted
and experimental data lie within the accuracy range of
the estimates for the contact friction and shear yield
stress of the deformable material.

n
2

from Egs. (13) and (17)~(22) that B=0, q =g, = 1 + g

and h* = 0. In this case, the print boundary coincides
with the pyramid base. In addition, the plastic-region
boundary in the plane z= 0 is determined by the equa-
tion x=c(2 —y). Thisisthelimiting case of the pressure
of a smooth triangle and square flat die on a perfectly

In the limiting caseof o — = and pu =0, it follows

plastic half-space [4]. The limiting pressureq =1 + g

on the lubricated square pyramid asa —~ g h* =0

DOKLADY PHYSICS Vol. 47 No.8 2002
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Fig. 3. Pressure on the pyramid base as a function of the
face inclination angle to the pyramid axis and experimental
datafor the lubricated (0) and rough (®) quadratic-pyramid
indenters[3].

and the plastic region boundary x = 2 in the cross sec-
tion y = 0 have been determined in the experiments
of [3].
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A solution to the three-dimensional problem in the
theory of perfect plasticity for anisotropic medium was
obtained by Ishlinskii [1, 4]. For the genera case, the
statically determinate states in this theory were found
in[2]. In this study, we consider the limiting anisotro-
pic state of a perfect plastic material.

1. The yield condition for the three-dimensional
problem in the theory of perfect plasticity, in the gen-
eral case, can be written in the form

fi(oy) =0, (1.1)
where g;; are the stress-tensor components in the Car-
tesian xyz coordinate system.

The relationships between the principal stresses g,
and the stress components o;; have the form

o = (1.2)

i ollilj +a,mm; + asnn;.

For the direction cosines, the relations

Ll + mm; + nin; = §;; (1.3)

arevalid.

Using relationships (1.2), conditions (1.1) can be
written in the form

f (o, I;, m,n) = 0. (1.4)

The presence of |;, m, and n; in relations (1.4) deter-
mines the directional properties and characterizes the
anisotropy of amaterial.

We consider acasewhen relations (1.4) areindepen-
dent of g, i.e,

fi(li, m,n) = 0. (1.5)

We call amedium being described by relationship (1.5)
[imiting anisotropic.

Yakovlev Chuvash Sate Pedagogical University,
Cheboksary, 428013 Russia

According to [3], in the two-dimensional case, con-
dition (1.5) hasthe form

2y (1.6)

= const, ,
0 0,—0,

tandg =

where ¢ is the angle determining the direction of the
first principal stress in the orthogonal xyz coordinate
system. From condition (1.6), it follows that

(0,—0,)cos2¢ —21,, = O. (1.7)

Condition (1.7) corresponds to the absence of shear
stresses on the principal area elements.
In the general case, this condition is set in the form

O = Oylimy + o l,m, + 0, lsmg + 1, (1;m, +1,my)
+ T, (I,mg + 13my) + T, (I;mg +1;my) = 0, (1.8)
(123, Imn, xyz).
Hereafter, the symbol (123, Imn, xyz) implies that the

missing equations are obtained by the cyclic permuta-
tionof 1,2,3,1,mn,x,y,and z

The three conditions (1.8), similarly to (1.7), are
used below as relations that determine the behavior of
the limiting anisotropic medium.

Furthermore, I;, m, and n; are assumed to be con-
stant and independent of the coordinates x, y, and z.

Using the Maxwellian stress functions

%X, 97X, %X,
we satisfy the equilibrium equations
do, 01,  0T,, _
R+ 3y + 3y =0 (xy2.
From (1.8), according to (1.9), we arrive at
0%X a°X 0°X
|3m3——2‘1—(|2m3+|3m2)a—>7£+|2m23‘2‘2‘1

1028-3358/02/4708-0634%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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2 2 2

0°X

+13mg _(|1m3+|3m1)a 37 +1,my 6222
(1.10)

2 2 X,
+l,m— —(l m2+|2ml) 2 +1,m—==0
xdy oy’
(123, Imn, xy2).

The characteristic surfaces p(x, y, z) = C of sys-
tem (1.10) can be found from the equations

T
1a“+|26‘;+|3a“ =0 (Imn).

The general solution to system (1.10) can be repre-
sented in the form

X = AX(Ix+ 1,y +152) (1.12)
+ B,Y(MyX + myy + Maz) + C,Z(N,X + N,y + nyz),

(1.11)

where the coefficients A, B;, and C; meet the relations
[,m,C; +1,m,C, +1;m;C; = 0 (Imn, CAB). (1.13)
Inview of solution (1.12), it follows from (1.9) that
O = (Agl3+ Adl2)94(8) 114

+ (BoMs + Bymy) §(n) + (Cons + C3no) 95(0),

xy = —Aslil01(&) — Bymymyd,i(Nn)

(1.15)
—C3ninyd5(Q) (xyz 123),
where

€ = Iix+ly+lsz, n = mx+my+mgz,

(= nx+ny+ngz, 6,¢) = d?X
d’y d’z
d,(n) = ?2 and ¢5(() = E

The expression for the dissipation power of the
mechanical energy has the form

N = o,&+0 €, + 0.,
+ 2T, &y + 2T,€, + 2T,,€,,.
According to (1.2),
N = 0.8, + 0,8, + 0385, (1.16)
where
g = gli+tegli+els+2e 0,
+28,l,l3+ 28,1115 (xyz Imn),
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2 2 2
0, = o li+oly+0,l5
+ 2T, 415 + 21,15 + 21,1415 (123, Imn, xyz).

The values of €, €,, and &; determine the deforma-
tion rates along the principal -stress components and, in
the general case, do not coincide with the principal
components of the strain rate.

The relationships for the associate law of plastic
flow are determined from the condition for the extre-
mum of the functional

A = N _)\lFl_)\ZFZ_)\3F3'

where F,, F,, and F; are the right-hand sides of rela-
tions (1.8), and have the form

€, = Mlymy+ A,myng + Agnyly, (1.17)
28y, = Aq(I1my +1,my) + A, (myn, + myn,)
+As(ngl, +nyly) (2123, 1mn, xyz).
From (1.17) and (1.18), we obtain

ete,te, =0,

(1.18)

g = gli+eli+el; (1.19)

+28, 1415+ 2€ 1,13+ 28,1413 = O (xyz Imn, 123).

According to (1.8) and (1.19), we find that, along
the directions of the principal stresses, the normal com-
ponents of the strain rate are equal to zero.

It followsfrom (1.16) and (1.19) that, in the limiting
anisotropic case, the dissipation power N of the
mechanical energy is equal to zero due to the absence
of adhesion.

Using the Cauchy formulas, we pass from the com-
ponents of the strain rates to those of displacement
rates:

xox' Y oy’ T 0z’
e - 1u, ovp e - 1pv  owg
Xy Zﬂ)y ax BT 50 T ayr

(1.21)
¢ 1[@u ow
xz ZEBZ ox

Then, from formulas (1.19)—<1.21), we have

Ju ou ou ov ov
'ia +|1lzay+| lags + s +|§ay

il |3‘3" ‘] |3‘(’)W

(1.20)

20W _ (1.22)

ow o
35z

+1, I3ay
(123, Imn, xyz).

The equationsthat make it possible to determine the
characteristic surfaces v(x, y, z2) = C of system (1.22)

=0
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are of theform
av ov ov
l,=—+1l,— +1;=— = 0 (Imn). 1.23
lax Zay 362 ( ) ( )

Asis seen from Egs. (1.11) and (1.23), the charac-
teristic surfaces of systems (1.10) and (1.22) coincide.

The general solution to Eq. (1.22) can be written in
the form

u = a,U(€) + bV(n) + ¢, W(Q)

(1.24)
(uvw, xyz, 123),
where g, b;, and ¢; meet the relations
al, +a,l,+asl; = 0, (1.25)

b,m; + b,m, + b;m; = 0, cyn;+cyn,+c3n3 = 0.

2. We now consider the case when A, = A, = A;,
Blz Bzz B3,C1:CZ=C3,ai:m, b|=n|,andC,=|,
Without the loss of generality, we assume that A =
Bi = Ci = 1

Then, from relationships (1.14), (1.15), and (1.24),
we find

o, = (1-19)94()

, , 2.1
+(1-my)d,(n) + (1-n1)¢s(0),
Ty = —l11:94(&) —mmyd,(n) — NN 05(0) 2.2)
(xyz, 123),
u=muU()+nV(n) +1,WQ) (uvw, 123). (2.3)

MIRONOV

We assume that, in the plane z= 0, stresses and dis-
placement rates are set in the form

0, = p(Xv y)v Tyz =Ty = 0, (24)
u=v =0, w=q(xYy). (2.5)
According to relationships (2.1)—«2.3),
o =1
2 2.6)
x[(1-13)p(€) + (1—m5) p(n) + (1 -n3) p(Q)],
Ty = —%[hlzp(i) +mm,p(n) + nyn,p(Q)] @7
(xyz, 123),

u = mymgq(&) + nynza(n) + 1415a(<),

v = mmgq(€) + nynga(n) +1,150(0), (2.8)

w = mgq(€) +nq(n) +159(Q).
Here, p(&) and q(§) are the continuations of the func-
tions p(x, y) and q(x, y) along the planes € = &,. Simi-
larly, the sameisvalid for p(n), p(Q), q(n), and g(Q).

As an example, we consider the distribution of a
constant pressure in the triangle AOC (see figure):

AO: I, x+1l,y =0, OC: mx+my = 0,
AC: nix+nyy = d,
0, = p = const inside the triangle AOC
and o, = 0 outside the triangle AOC.

Then, in view of relationships (2.6) and (2.7), we
have:

in the pyramid SAOC,
o, = o'y:()'z = p, Txy = Tyz =

in the pyramid SACO,,

o, = §(1+nf), Ty = gnlnz (xyz, 123);

in the pyramid SAOC, ,

o, = §(1+|§), Ty = F—2)|1|2 (xyz, 123);

in the pyramid SOCA, ,

GX = g(1+m]2_)1 Txy = F_Z)rnlrnZ (Xyz’ 123)’

DOKLADY PHYSICS Vol. 47 No.8 2002



ON THE LIMITING ANISOTROPIC STATE OF A PERFECT PLASTIC MEDIUM 637

in the zone CSO,C,A,,
o= Ba-1d), v, =B, vz 129);
in the zone ASO,A,C,,

o, = g(l—mi), Ty = _gmlmZ (XyZ, 123)’

in the zone OSC,0,A,,

o, = Ba-nd, 1y = L, (2129,

In the rest of the zones, all the stress components are
Zero.
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