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Properties of the ocean considered as an acoustic
medium vary over a wide range of spatial and temporal
scales. Both the position and shape of ocean bound-
aries, as well as the speed of sound c and the flow veloc-
ity u, vary in time under the action of tides, surface and
internal waves, mesoscale vortices, and other hydro-
physical processes. When numerically simulating the
sound propagation in a medium, its unsteadiness is usu-
ally disregarded, because the relative changes ε of its
parameters are small for time intervals on the order of
the sound-propagation time [1, 2]. Although effects
caused by the nonstationarity are small compared to
nonuniformity effects, the allowance for the unsteadi-
ness becomes necessary in applications based on the
reciprocity principle of sound fields in quiescent sta-
tionary media, as well as in the case of sufficiently large
lengths of the ray paths. The tomographic reconstruction
of a flow-velocity field by the method of reciprocal
transmission of sound [3, 4] and the time-reversal mir-
ror [5, 6] are the most topical examples of such applica-
tions.

In this paper, we substantiate the quasi-stationary
approximation suggested in [7], which is a simple
method allowing us to describe the effect of the nonsta-
tionarity on sound fields using well-developed mathe-
matical models of sound propagation in nonuniform
stationary fluids. We consider the quasi-stationary
approximation only as applied to ocean acoustics even
though similar problems arise also in atmospheric
acoustics and in ultrasound technology of measuring
flow velocities.

The propagation of short waves in a medium whose
parameters smoothly vary with time can be considered
in the ray approximation [8] and requires that space–
time rays between a source and a receiver be found in
the four-dimensional space (x, y, z, t). A similar descrip-
tion in terms of normal modes is possible in the case of
weakly interacting modes [9] when the space–time rays
for the modes should be found in three-dimensional
space (x, y, t). In both cases, the dimensionality of a
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nonstationary problem to be solved exceeds by unity
that of a stationary problem. This leads to a consider-
able increase in the amount of calculations required. In
the weak-nonstationarity limit (ε  0), it is sufficient
to allow for only phase terms on the order of O(ε)
which accumulate with the distance, while corrections
proportional to ε can be ignored in the mode amplitudes
and in the field amplitudes along the rays. As is shown
below, dominant terms of the expansion in powers of ε
can be found analytically without evaluating the space–
time rays numerically.

We now consider for definiteness the multimode
propagation in a horizontal, nonuniform, and nonsta-
tionary waveguide in the presence of a flow. In the
approximation of vertical modes and horizontal rays,
the acoustic pressure acquires the form

(1)

where the sum is taken over the mode orders and the
phases satisfy the eikonal equation

(2)

The local-mode propagation constants ξn are consid-
ered as given functions of the horizontal vector r =
(x, y, 0), time t, frequency ω, and direction of the wave
vector k = k(cosα, sinα, 0). Here, ξn = ξn0(ω, α; r) +
µn(ω, α; r, t), where ξn0 and µn are propagation con-
stants for a corresponding stationary medium and their
time-dependent perturbances, respectively. Introducing

the Hamiltonian H(k, ω; r, t) = 0.5(k2 – ), we obtain
from Eqs. (2) the ray equations (cf. the steady case [10,
Sect. 7.3]) 

(3)

The parameter τ entering into Eqs. (3) determines a
point on the space–time ray of a mode.
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Expanding both the phase and the azimuth angle
entering into Eqs. (2) in power series of ε, 

ψ(n) = ψ0 + ψ1 +…, α = α0 + α1 + … ,

we arrive at

(4)

(5)

Here, ξn0, µn, and derivatives of ξn0 are taken for ω =

−  and α = α0. With regard to Eqs. (3), Eq. (5) is

reduced to

(6)

The quantity (r0(τ), t0(τ)) is a point on the unperturbed
space–time ray, the derivative being taken along the
unperturbed mode ray,

(7)

ts is the time of the signal emission, and ωs = –  is

the excitation frequency conserved along the unper-
turbed space–time ray. We then integrate along the
coordinate projection of the unperturbed space–time
ray (i.e., along the mode ray in the stationary limit) and
use the well-known expression for the phase ψ0 of the
acoustic field excited by a stationary monochromatic
source (see [10], Sect. 7.3). As a result, we have

(8)

Here, rs is the radius vector of the source and k0 = —ψ0
and dl = |dr | are the wave vector and the arc-length dif-
ferential of the mode ray in the stationary waveguide,
respectively.

In the quasi-stationary approximation, an auxiliary
medium is introduced, with its parameters assumed to
be independent of time and coincident with the corre-
sponding parameters of the actual medium at an arbi-
trary moment of time t = tret . The phase of a mode is
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evaluated as an integral (taken along the ray r0(l) in the
stationary medium) of the propagation constant of the
mode, which is evaluated at the time t0(l) of the signal
arrival at the point under consideration in the auxiliary
medium [7]:

(9)

Within the framework of perturbation theory, we
choose an unperturbed medium such that it coincides
with the auxiliary medium in the quasi-stationary
approximation. In other words, we assume that
ξn0(ω, α; r) = ξn0(ω, α; r, tref). As directly follows from

the comparison of Eqs. (8) and (9), ψ(n) –  = O(ε2);
i.e., the quasi-stationary approximation yields a correct
expression for the principal term of the phase distur-
bance, which is caused by the nonstationarity. How-
ever, this approximation does not allow us to correctly
evaluate quadratic corrections. This can be easily veri-
fied in the case of straight-line mode rays when the
problem is solved exactly.

With the instantaneous phase given, the frequency ω
and the travel time T for a mode are determined from
the relationships

ω = –  and  = 0.

It follows from Eq. (9) in the quasi-stationary approxi-
mation that

(10)

(11)

Just as the phase, both the frequency and the travel time
found in the quasi-stationary approximation differ from
their exact values by terms on the order of O(ε2). It
should be emphasized that in order to evaluate the

quantities , Tq, and ωq, it is sufficient to find the
mode rays between the source and the receiver only in
the auxiliary stationary medium. Thus, in the case of an
nonstationary medium, the quasi-stationary approxi-
mation allows dominant terms of the wave perturbed by
the effect of nonstationarity to be found in quadratures
without analyzing rays in the time-dependent medium.
The result obtained is similar to the property of rays in
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a stationary medium, which being well known is widely
used in linear tomography [3]. Namely, to evaluate the
travel time with an accuracy to the terms of the second
order, it is sufficient to integrate the perturbed value of
the slowness along an unperturbed ray.

We now compare the quasi-stationary approxima-
tion to the frozen-medium one. The validity of the latter
is implied in most studies devoted to ocean acoustics. In
this approximation, the medium is considered invari-
able (frozen) during the propagation of an acoustic sig-
nal. The corresponding expression for the mode phase
is obtained by substituting tref for t0(l) in Eq. (9). This

result differs from  and, therefore, from the exact
phase value ψ(n) by terms on the order of O(ε). Terms of
the same order arise when the frozen-medium approxi-
mation is used for evaluating both the travel time and
the mode frequency, with ω = ωs = const [see Eq. (10)].

In the important particular case of a quiescent
medium, the mode propagation constants are indepen-
dent of the direction of the wave vector. In this case, the
expressions for the phase, frequency, and travel time of
the mode are simplified. Specifically, it should be
assumed in Eqs. (8)–(11) that

The analysis of the quasi-stationary approximation
within the framework of geometrical acoustics is simi-
lar to that considered above for the mode representation
of an acoustic field. Namely, the eikonal, the time of
travel along a ray, and the instantaneous frequency are
given by the expressions

(12)

(13)

Here, the integral is taken along the unperturbed ray r =
r0(l) between a source at the point rs = (xs, ys, zs) and a
receiver at r = (x, y, z) in the stationary medium, t0(l) is

the time of travel along the unperturbed ray, V = u  +

c2 – u2 +  is the group wave velocity, c(r, t)

is the speed of sound, u(r, t) is the flow velocity, and V0
is the value of V in the stationary medium. For simplic-
ity, we assume that in the medium there are no bound-
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aries varying with time and that c–1  =

O(ε). The estimations obtained above for accuracies of
both of the approximations under study also remain
valid in the case of geometrical acoustics.

We now consider the traveling-time nonreciprocity,
which is defined as the difference between the time T+
of travel of an acoustic signal from a point A to a point
B and the time T– of the backward travel. According to
the reciprocity principle ([10], Sect. 4.2), T+ = T– in a
quiescent stationary nonuniform medium. The differ-
ences T+ – T– measured in the ocean are used as input
data for solving the inverse problem of the tomographic
reconstruction of flow velocity fields ([3], Sect. 3),
because such measurements in the stationary case allow
us to separate out relatively weak effects due to flows
from more pronounced effects caused by unknown
variations in the sound-velocity field. In the case of a
nonstationary medium, the nonreciprocity arises even if
flows are absent.

It follows from Eq. (12) that with an accuracy to the

first order in both ε and the ratio , the traveling-time

nonreciprocity is given by the relationships

(14)

(15)

Here, the integral is taken along the ray between the
points A and B in the quiescent stationary medium; t+
and t– are the arrival times for signals traveling from the
points A and B, respectively, in the same medium; and
tA and tB are the time moments of the signal emission at
the corresponding points. In the stationary case,
Eq. (14) is reduced to the well-known expression ([3,
Sect. 3]).

The traveling-time nonreciprocity evaluated in the
frozen-medium approximation is given by formula (14)
with tref substituted for t+ and t–. In this approximation,
the contribution due to the nonstationarity of speed of
sound completely disappears. This result is consistent
with the fact mentioned above that the use of the fro-
zen-medium approximation leads to errors of the same
(first) order in ε as the desired quantity itself. In other
words, the frozen-medium approximation, in contrast
to the quasi-stationary one, turns out to be too rough to
be applicable for analyzing the traveling-time nonreci-
procity.
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The contribution of flows and of temporal variations
in the speed of sound to the acoustic nonreciprocity
were estimated on the basis of Eq. (14) in the problems
on the sound transmission through an internal gravity
wave soliton propagating on a continental shelf [11]
and through the thermocline lens of Mediterranean
water in the Atlantic ocean [12]. The estimates show
that the ratio of these contributions can be both much
more and much less than unity. Thus, the contribution
of temporal variations in the speed of sound to the non-
reciprocity can be either dominant or negligible and
should be estimated under actual conditions of tomo-
graphic experiments. Data on the frequency shift of an
incoming signal [see Eqs. (10) and (13)] and on the
change in the shift with time can be used for separating
the contributions considered above. The quasi-station-
ary approximation provides an adequate method to
relate all these acoustic quantities to hydrophysical
parameters along the acoustic-signal path.
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Since the parabolic approach [1; 2; 3, Sect. 7.6] is
numerically efficient and describes diffraction effects
with reasonable accuracy, it is successfully used for
simulating wave fields in inhomogeneous media. In
particular, this approach is extensively used in atmo-
spheric and ocean acoustics [4]. For describing sound
fields in a moving medium, a 2D wide-angle parabolic
equation was derived in [5]. Solutions of this equation
satisfy the reciprocity principle and the law of energy
conservation, which express the fundamental symme-
tries of a true wave field. In practice, the exact validity
of the reciprocity principle in the absence of flows and
the correct reproduction of flow-induced deviations
from reciprocity are necessary for the application of the
parabolic approximation to the problems of ocean
tomography, where the nonreciprocity of acoustic
fields measured in experiments concerning the counter
propagation of sound is used for reconstructing the
flow-velocity field.

In this study, results [5] are generalized such that the
parabolic approximation simultaneously becomes
more accurate and is extended to inhomogeneous 3D
media with a flow.

We assume that a fluid density and the velocities c
and u of sound and flow, respectively, are time-inde-
pendent but depend arbitrarily on the vertical coordi-
nate z and weakly on the horizontal coordinates x and y.
The problem has three small parameters: the Mach

number M = , the ratio κ between the characteristic

vertical and horizontal scales of inhomogeneities, and
the narrow-angle parameter ε equal to the characteristic
relative deviation of mode propagation constants from
a certain constant k0 . In a moving medium, the acoustic
pressure p satisfies the wave equation [3, Sect. 4.1]

(1)

u
c
---

d
dt
----- d

dt
----- 1

ρc2
--------dp

dt
------ 

  div
∇ p
ρ

------- 
 – 2∇ um

∂
∂xm
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ρ

------- 
 +

=  b O κM2( ),+
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(2)

Here,  = –iω + u∇  for monochromatic waves of fre-

quency ω, a and f are the volume densities of the vol-
ume-velocity and extraneous-force sources, respec-
tively. Let the Ox axis be directed along the primary

direction of wave propagation and µ =  ! 1 in the

region essentially affecting the sound field in the plane
y = 0. In this case, it follows from Eq. (1) that the field
complex envelope ψ = pexp(–ik0x) satisfies the equa-
tion

(3)

(4)

The operator  acts on the coordinates transverse to the

primary propagation direction; ∇ T = 0, ,  and

uT = (0, u2, u3). The flow-velocity components u2 and u3
transverse to the primary propagation direction are

explicitly involved in the operator , whereas the lon-
gitudinal component u1 appears through the factor β =

1 – . It follows from definition (4) that arbitrary

fields p and p1satisfy the identity
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2ρ
------∂ρ

∂x
------ψ ρb

2k0ω
------------e

–ik0x
–+=

+ O ε µ M+ +( ) ε µ κ+ +( )( ),
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in a waveguide that is unbounded along the transversal
coordinates or has free and absolutely rigid boundaries.

Here,  is operator (4), where uT is replaced by –uT.
Identity (5) plays the key role in the following analysis
of reciprocity and acoustic-energy conservation in the
parabolic approximation.

Approximately expressing derivatives ψxx and ψxxx

involved in (1) in terms of  and neglecting the terms
of the order of pO(ε(ε2 + µ2) + µ4 + M(ε +µ + M2) + κ(κ +
ε2 + M)) and bO(κ), we obtain after a number of trans-
formations

(6)

In the 2D problem i.e., for  = 0 and u2 = 0 ,

Eq. (6) becomes the familiar generalized 2D Claerbout
equation, which was considered for the case of small
vertical flows {u3 = O(κu)} [5] and for a stationary
medium [3, Sect. C.3].

As a rule, the characteristic values of the parameter
ε in geophysical applications exceed µ, M, and κ by
1−3 orders of magnitude, and the accuracy of the para-
bolic approximation based on (6) is limited by the
rejected terms pO(ε3). For increasing the accuracy with
respect to the parameters ε and µ, similar to the case of
a stationary medium [6], we consider the parabolic
equation

(7)

where ΦN (a) are the analytic functions that satisfy the
condition ΦN (a*) = [ΦN (a)]* and approximate the
functions (1 + a)1/2N, N = 1, 2. Efficient numerical
methods of solving parabolic equations are developed
for the cases where pseudodifferential operators are

approximated by rational functions ΦN ( ) [4, 7–10].
When

(8)

Eq. (7) is the generalized 3D Claerbout equation (6). In
a stationary medium, Eq. (7) becomes the parabolic 3D
equation that conserves energy and provides arbitrarily
high accuracy with respect to the parameters ε and µ
owing to the choice of the functions ΦN . The properties

of flows appear in Eq. (7) through the operator , fac-
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tor β, and quantity b, which is defined in Eq. (2) and
describes the sources of sound.

We consider the reciprocity properties inherent in
the solutions of Eq. (7). Let a solution p of Eq. (7) be
the sound field generated for x > x0 by sources arranged
with density b in the neighborhood of the cross section
x = x0 of the waveguide in the initial medium, whereas
p1 be the field generated for x < x1 by sources arranged
with density b1 in the neighborhood of the cross section
x = x1 > x0 in the medium with an inverted flow [i.e.,
where the velocity of flows is –u(r)]; p1 satisfies Eq. (7)

where b and  are replaced by b1 and , respectively.

Multiplying Eq. (7) by (ρβ3)–1/2 Φ2( )p1 and (ρβ3)–1/2

Φ2( )p, summing the results, integrating over volume,
and using Eq. (5), we obtain

(9)

This identity expresses the flow-inversion theorem [3,
Sect. 8.4] and shows that certain characteristics of a
field generated by point sources of sound are invariant
when the source and observation point are interchanged
and the flow is simultaneously inverted. Comparison
of (9) and (2) with the flow-inversion theorem for true
sound fields [3, Sect. 8] shows that the invariant charac-
teristics are reproduced by the parabolic approximation
with an accuracy of O{(ε + µ)M(ε + µ + M + κ)}. In
particular, Eq. (9) for u = 0 coincides with the exact
relationships of the sound-field symmetry with respect
to the source–receiver rearrangement. In other words,
acoustic nonreciprocity in parabolic approximation (7),
as well as in the true sound field, is completely caused
by flows.

In the source-free region, the flow-inversion theo-
rem is expressed by the identity following from Eqs. (7)
and (5):
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where the integration is performed over the waveguide
cross section x = const. For generalized Claerbout equa-
tion (6), the local relationship

(11)

is also valid. Relationships (11) were derived similar to
identity (9), but without integration over volume.

In the medium with real values of ρ, c, and u, i.e.,
without absorption, the complex conjugate field p* and
field p1 satisfy the same parabolic equation. Therefore,

Ŝ Ŝ1

Ŝ1
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------ dy z j1d∫∫ 0,=

j1

k0

2ωρβ3
----------------Φ2 Ŝ( )pΦ2 Ŝ1( )p1,=
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Eqs. (9)–(11) remain to be valid when p1 is replaced by
p*. In this case, Eqs. (10) and (11) express the law of
energy conservation for solutions of Eq. (7). Equation (10)
physically means that the acoustic-energy flow is con-
stant when a wave propagates along a waveguide, and
the quantity j in Eqs. (11) has the meaning of power-
flow density averaged over the wave period. The quan-
tity j and the exact power-flow density J [3, Sect. 8.6]
in a moving medium can be compared similarly to the
2D case [5]; it turns out that the two expressions are
asymptotically close when Eq. (6) is applicable:

If there are interfaces in the fluid, i.e., surfaces on
which ρ, c, and u are discontinuous, then the parabolic
equation must be supplemented by boundary condi-
tions. Boundary conditions consistent with the para-
bolic equation can be derived by replacing an abrupt
interface by a thin transition layer with the further pas-
sage to the limit in the thickness of this layer [3,
Sect. C.3.3]. Equivalently, we can require that the para-
bolic equation be satisfied everywhere in space in the
generalized-function sense. In this case, boundary con-
ditions follow from the balance of singularities in the
left-hand and right-hand sides of the parabolic equation
at the interface. For simplicity, we assume that the
sound sources are not at the interface. Then, for the
interface x = const, which is perpendicular to the pri-
mary wave-propagation direction, it follows from
Eq. (7) that

(12)

where [ f ]Γ is the jump of the function on the surface Γ.
For other interfaces, the type of the boundary condition
depends on their orientation and on the choice of the
functions Φ1 and Φ2 approximating the roots of opera-
tors. We here present only the results for generalized
Claerbout equation (6). Let N = (N1, N2, N3) be the nor-
mal to the interface Γ. If N1 = 0, two boundary condi-
tions must be satisfied:

(13)

If  +  = 0, boundary condition (12) [where Φ2 is
given by Eq. (8) for parabolic equation (6)] must be sat-

isfied. If N1(  + ) ≠ 0, both boundary condition (12)
and boundary condition (13) must be satisfied. In all
these cases, the number of imposed boundary condi-
tions is equal to the order of differential equation (7) or
(6), respectively, relative to the derivative along the nor-
mal to the interface. As would be expected, the direct
test shows that the above boundary conditions guaran-
tee the continuity of the normal component for the
power-flow density j given by Eqs. (10) and (11) at the
interface.

j J 1 O ε µ M κ+ + +( )2( )+[ ] .=

ρβ3( )–1/2Φ2 Ŝ( )p Γ 0,=

p[ ] Γ 0,
1

ρβ2
---------N∇ T p

ik0

ω
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NuT p

ρβ3
--------------+

Γ
0.= =

N2
2 N3

2

N2
2 N3

2
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To use the parabolic equation for simulating scatter-
ing by irregular surfaces, it is important to find bound-
ary conditions for perfect (free and absolutely rigid)
interfaces. These boundary conditions follow from the
above at the interface when the density of one medium
tends to zero or to infinity. For a free interface, p = 0 if

N1(  + ) = 0, whereas p = 0 and p = 0 if N1(  +

) ≠ 0. At an absolutely rigid interface, Φ2( ) p = 0 if

 +  = 0, N(ωβ∇ T p + ik0puT) if N1 = 0, and both
last boundary conditions must be satisfied simulta-

neously if N1(  + ) ≠ 0. For  +  = 0, the above
energy-conserving boundary conditions are valid not
only for solutions to Eq. (6), but also in the more gen-
eral case of Eq. (7).

For estimating the asymptotic accuracy of the para-
bolic approximation based on Eq. (7), we compare the
solutions to this equation and to exact equations of lin-
ear acoustics in the ray approximation. Substituting the
field in the form of the Debye series p = Aexp(ik0θ),
where A = A0 + (ik0)–1A1 + …, and Aj and θ is indepen-

dent of k0 in the leading order in  into Eq. (7), we

obtain the equation

(14)

Here, v = ∇θ  and ζ is the value of  in the parabolic

approximation. Equation (14) approximates the exact

eikonal equation  = cν + uv [3, Sect. 5.1.3]. Let

Φ1(a) = (1 + a)1/2. Comparing the exact (ν1) and

approximated (ζ) values of , we obtain the leading

phase-error term of the parabolic approximation, which
is accumulated with distance, in the form

If Φ1(a) approximates (1 + a)1/2 with an accuracy of
O(am), δθ = k0xO(M(ε + µ)2 + (M + ε + µ)m) because
α = O(M + ε + µ) in Eq. (14). For generalized Claer-
bout equation (6), m = 3, and the expression obtained
for δθ agrees with the results obtained above by esti-
mating the terms rejected when deriving Eq. (6). The
accuracy of the approximation Φ2(a) ≈ (1 + a)1/4 does
not affect the phase error but affects the agreement
between power flows J and j and, therefore, the ampli-
tude error of parabolic-equation solutions.

The parabolic approximation is applicable up to the

distances x !  from the source. Since ε @ M + µ in
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the geophysical applications, the region of applicability
of the generalized Claerbout equation in moving and
stationary media as well as in the 2D and 3D problems
are virtually identical. The choice of high-order
approximations for ΦN extends the region of applicabil-
ity and improves the accuracy of Eq. (7) compared to
Eq. (6).

Thus, we here proposed a class of wide-angle para-
bolic wave equations for sound in a 3D inhomogeneous
moving fluid. These equations provide higher accuracy
than the familiar wide-angle parabolic equations [4, 5,
10–14] for moving media and are consistent with the
law of energy conservation and with the flow-inversion
theorem in the parabolic approximation.
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In the problem of deformation and annealing of met-
als and alloys, the urgent question on the thermal stabil-
ity of the microcrystalline structure exhibiting unique
properties remains open. At present, the following
methods of retarding crystal (grain) growth are well
known and widely used: (1) texture retardation;
(2) inhibition by segregation and by disperse particles
of the second phase; (3) grooves of thermal etching;
and (4) weak (down to 1%) deformation of the recrys-
tallized material [1, 2].

From general concepts on crystallite growth, an
additional method for stabilizing the grain structure fol-
lows. If in a polycrystalline material a honeycomb
structure with an equal crystallite size and balanced tri-
ple junction is obtained, then the system can reside in
the quasi-stable state as long as wished [1]. However,
this method has not yet been confirmed experimentally
and is not applied, due to fundamental difficulties in the
formation of the above structure. Nevertheless, these
difficulties to some extent can be avoided by using
shear plastic deformation under a high hydrostatic pres-
sure. Severe strains realized by this method form in a
material a homogeneous microcrystalline structure [3].

In the present paper, we have studied the thermal
stability on isothermal heating of a microcrystalline
structure with a different homogeneity. The structure
1028-3358/02/4709- $22.00 © 20647
was obtained in single-phase iron as a result of shear
plastic deformation under pressure.

We studied iron of 99.97% purity with a content of
C ≤ 0.003; Mn ≤ 0.006; Si < 0.009; Cr < 0.008; and
Ni < 0.003%. Specimens 5 mm in diameter and 0.3 mm
thick were deformed by shear under a pressure of
6 GPa. In order to provide different structure homoge-
neities, the rotation angle of an anvil was chosen to be
1 or 5 revolutions. True logarithmic shear strains at a
distance of 1.5 mm from the center of the deformed
specimens attained e = 6 and 8, respectively. The
deformed specimens were annealed in a salt bath at
200°C with a holding of 1 to 64 h. In order to avoid con-
tact with salt, the specimens were placed into a box
made of permalloy foil.

We investigated the material structure at a distance
of 1.5 mm from the center of the specimen by the elec-
tron-microscopy method. The size of microcrystallites
was determined by their bright-field and dark-field
images in (110)α-type reflection. Not less than 200 sep-
arate measurements were performed, which provided
an error lower than 10%. Then, size histograms and
microcrystallite-size distributions were plotted accord-
ing to the measurement results for microcrystallite
diameters. The microstructure inhomogeneity was cal-
culated according to the full width at half-maximum
Institute of Metal Physics, Ural Division, Russian Academy of Sciences, 
ul. Sof’i Kovalevskoœ 18, Yekaterinburg, 620219 Russia
E-mail: highpress@imp.uran.ru

The effect of treatment on the microcrystalline-structure parameters

Treatment dmin, µm dmax, µm dav, µm dprob, µm FWHM v , µm h–1

e = 6 0.03 0.75 0.19 0.1 0.17

e = 6, 200°C, 1 h 0.05 1.2 0.35 0.2 0.33 0.16

e = 6, 200°C, 64 h 0.14 2.6 0.74 0.4 0.69 0.009

e = 8 0.02 0.75 0.15 0.07 0.13

e = 8, 200°C, 1 h 0.04 0.75 0.19 0.12 0.17 0.04

e = 8, 200°C, 64 h 0.04 0.75 0.22 0.13 0.19 0.001
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Histograms of microcrystallite size distributions obtained after deformation and annealing of specimens at 200°C.
(FWHM) for the microcrystallite-size distribution
obtained.

The parameters of the microcrystalline structure and
of the microcrystallite-size distribution, which were
measured after deformation and annealing of the spec-
imens, are presented in the table and shown in Fig. 1.

With an increase in the logarithmic strain e from 6
to 8, the minimal size of microcrystallites decreases
from 0.03 to 0.02 µm. In both cases, the size of the larg-
est microcrystallites does not exceed 0.8 µm. An increase
in the degree of strain is accompanied by a decrease in
the fraction of the largest crystallites and a shift of the
size-distribution maximum to smaller values (from 0.1 to
0.07 µm). The average microcrystallite size decreases
from 0.19 to 0.15 µm. The FWHM of the size distribu-
tion decreases from 0.17 to 0.13 µm, which testifies to
the improvement of the structure homogeneity.

After a strain of e = 6 and 1-h annealing, large
microcrystallites increase up to 1.2 µm. The most prob-
able microcrystallite size grew by a factor of two (from
0.1 to 0.2 µm). The FWHM attained 0.33 µm. The
increase in the annealing duration to 64 h resulted in a
growth of both small and large microcrystallites and a
DOKLADY PHYSICS      Vol. 47      No. 9      2002
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shift of the size-distribution maximum towards larger
sizes (0.4 µm). The FWHM increased to 0.69 µm.

On annealing specimens deformed with the strain
e = 8, we observed other kinetics of the microcrystallite
growth. Holding for both 1 and 64 h did not lead to a
significant change in the size distribution of microcrys-
tallite: the size of the largest of them remained
unchanged. The fraction of microcrystallites with a size
of 0.3–0.7 µm increased only slightly. The most proba-
ble and the average microcrystallite size grew negligi-
bly, by less than a factor of two. After holding for 1 and
64 h, the FWHM attained 0.17 and 0.19 µm, respec-
tively.

The microcrystallite growth rate calculated by a
change in the average size of the annealing time
depends on the degree of strain. The average growth
rate after 1-h holding was 0.16 and 0.04 µm in the case
of e = 6 and 8, respectively. The further isothermal
holding for 64 h led to the reduction in the growth rate
to 0.009 and 0.001 µm h–1; i.e., the difference in the
growth rate increased all the more. This is the fact that
constitutes a fundamental feature of the method under
consideration of the structure stabilization. When stabi-
lizing the grain structure, e.g., by disperse particles of
the second phase, the initial fine grains grow more rap-
idly than initial coarse grains [4].

Figure 2 presents the microstructure after the
annealing of deformed specimens with e = 6 and 8.
Annealing after a severe strain resulted in the appear-
ance of microcrystallites of a regular hexagonal shape
(Fig. 2a). The angles in junctions of these microcrystal-
lites are close to equilibrium ones. After smaller defor-
mation, as a result of annealing, finely divided microc-
rystallites appear in the structure. Their shape is close
to the equilibrium one. Along with them, multiangular
large growing microcrystallites with concave bound-
aries are observed (Fig. 2b).

Electron microscopy analysis of the structure by the
dark-field method after both degrees of strain and hold-
ing for 1 h revealed a difference in the misorientation of
growing microcrystallites. After the strain with e = 6,
certain neighboring microcrystallites have a close ori-
entation (Fig. 2c). In the case of further increasing the
holding time, microcrystallite merging can occur,
which leads to the formation of separate coarse grains.
After the strain with e = 8, close orientations of neigh-
boring microcrystallites were not observed. As was
shown in [5] when investigating iron of the same purity
as in the present study, the shear strain with e = 6 under
pressure forms an axial torsion texture. The increase of
the strain to e = 8 destroys the texture, and the material
state approaches the textureless one. This provides a
chaoticity of microcrystallite misorientations after a
severe strain. As a result, some microcrystallites do not
get advantages in their growth, which leads to the
improvement of the homogeneity and stability of the
structure with respect to isothermal annealing.
DOKLADY PHYSICS      Vol. 47      No. 9      2002
The application of severe plastic shear strain under
hydrostatic pressure opens a new outlook on the eleva-
tion of thermal stability of single-phase materials with
the microcrystalline structure.

The high degree of the size homogeneity of the
microcrystalline structure and the absence of a texture
in a material strongly deformed by shear under pressure
hampers the growth of individual microcrystallites on

(a) 0.1 µm

(b) 0.5 µm

(c) 0.2 µm

Fig. 2. Microstructure of iron after a strain with (a) e = 8 and
(b, c) e = 6 and annealing at 200°C: (a, b) 64 and (c) 1 h. The
image is obtained by the dark-field method in the
(110)α-type reflection.
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heating. In this case the increase in the structure regu-
larity occurs at the expense of the perfection of micro-
crystallite boundaries and shape in the conditions of a
low growth rate. The resulting perfect single-phase
structure manifests a high thermal stability with an
increase in the duration of isothermal annealing. This
can provide a perfect set of properties (including
strength and plasticity) of such a microcrystalline
material.
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Polycrystalline diamond as an instrumental material
is subjected to the action of high temperatures during
both fabrication of diamond tools and their exploita-
tion. As a result, strength properties of diamond poly-
crystals decrease. The elevation of the temperature
below which heating polycrystals does not lead to the
deterioration of their physicomechanical properties is
an important practical task. The increase in thermal sta-
bility of diamonds allows more rigorous regimes to be
applied while processing materials and, hence, the effi-
ciency of the diamond processing to be elevated. This
also allows us to improve the quality of a diamond tool
owing to the employment of more durable refractory
binders at its fabrication.

It is well known that boron affects the increase in the
oxidation-onset temperature and the decrease in the
oxidation intensity of both polycrystalline [1] and
monocrystalline diamonds [2]. Carbonado polycrystals
are obtained by synthesis of a carbon material in the
presence of catalyzing alloys based on iron, nickel, and
cobalt, which promote the transformation of these poly-
crystals into diamond. The carbonado polycrystals con-
sist of both diamond crystallites and an intercrystallite
binder.

The goal of this paper is to elucidate the effect of
boron on the elevation of the thermal stability of poly-
crystalline carbonado diamonds. A possibility is shown
by purposefully doping an initial catalyzing alloy that
promotes the graphite-diamond transformation to affect
the thermal stability of carbonado as a whole and to
open the mechanism of the phenomenon. We have
established that the thermal stability of polycrystalline
carbonado diamond depends not only on the intensity
of its interaction with oxygen but on the relation
between the thermal-expansion coefficients of diamond
crystallites and a metal-ceramic binder. The regularity
established allows us to develop an approach to the pur-
poseful doping of carbonado polycrystals with the aim
of obtaining the desired properties.

The catalyzing alloy of the (20Cr–80Ni)–B compo-
sition was prepared by methods of the powder metallurgy

Moscow Institute of Steels and Alloys,
Leninskiœ pr. 4, Moscow, 117936 Russia
1028-3358/02/4709- $22.00 © 20651
from powders of nickel (PNK–OT4 GOST 9722-79),
chromium (PKh1, TU 14-1-14-74), and amorphous
boron (MRTU 6-02-293-64). Polycrystals were synthe-
sized at a pressure of 8.0 GPa at a temperature of
1800−2000 K, the duration of the synthesis being 15 s.
The mass of the polycrystal formed was 0.8–1.0 carat.

For determining the chemical composition of the
polycrystal, its spectral analysis was carried out by the
method developed in the Institute of Synthetic Materi-
als of the Ukrainian Academy of Sciences. The method
is based on the burning of the preform placed in the cra-
ter of the carbon electrode in an alternating-current arc
(I = 12–14 A) and the photographing of spectra by an
ISP-30 spectrograph. The boron concentration was
determined by the method of three standards. S-3
(OSCh-7-4) spectrally pure graphite was the basis for
the preparation of standards. The boron content in a
polycrystal as a function of its content in the initial
Kh20N80 agent alloy is shown in Fig. 1.

The ability of retaining strength properties in the
case of heating carbonado was studied according to the
change in the strength of the ARK4 diamond abrasive
powder (fraction 400/315). The powder was obtained
by milling diamond polycrystals synthesized with the
employment of catalyzing alloys having a different
boron content.

0.2

0 1

Boron content in a polycrystal, %

0.8

4

0.4

0.6

2 3 5 6 7
Boron content

in the Kh20N80 catalyzing alloy, %

Fig. 1. Effect of the boron content in the Kh20N80 cata-
lyzing alloy on the boron content in a polycrystal.
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Diamond grains were processed by the following
method. Ceramic crucibles with the ARK4 400/315
powder were introduced into a muffle furnace heated to
an assigned temperature. After their heating to the fur-
nace temperature and 5-min holding, they were cooled
in ambient air. The temperature was measured with a
chromel–alumel thermocouple with an accuracy of
±10  K. Thermally treated and initial powders were
subjected to strength testing at a PA-4E test machine in
accordance with the GOST 9206-80 procedure. The
results of these tests are shown in Fig. 2. As follows
from the data presented, the effect of treatment temper-
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Fig. 2. Strength of the ARK4 400/315 diamond abrasive
powder as a function of the calcination temperature in ambi-
ent air. The boron content in the catalyst is: (1) 0, (2) 0.5,
(3) 2, (4) 3.5, and (5) 7%.
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Fig. 3. Effect of the boron content in the catalyzing alloy on
the thermal stability of ARK4 400/315 (exposure at this
temperature results in a decrease in the strength).
ature on the strength of a polycrystal depends on the
boron content in the catalyzing alloy. The effect of the
boron content in the catalyzing alloy on the temperature
(for which the 5-min exposure results in the loss of
ARK4 400/315 strength more than by 5%) is presented
in Fig. 3. Introducing boron elevates the thermal stabil-
ity of diamond polycrystals from 970 to 1220 K.

By annealing a boron-containing diamond powder
in ambient air, a film of B2O3 boron oxide is formed,
which hinders the oxidation of the powder. In order to
assess the effect caused by the presence of this film on
the increase in the heat resistance of boron-containing
polycrystals, annealing of ARK4 400/315 powder was
carried out for 15 min at a temperature of 1270 K in
vacuum. The results of the tests for the strength of
boron-containing diamond powders annealed in vac-
uum for 15 min and calcined in ambient air for 5 min at
a temperature of 1270 K are shown in Fig. 4. It follows
from the data presented that doping a catalyzing alloy
with more than 3% of boron reduces the loss of ARK4
400/315 strength after the thermal treatment in both
ambient air and vacuum. Therefore, the positive effect
of boron on the thermal resistance of the diamond pow-
der cannot be explained by only the enhancement of its
resistance to oxidation. Boron enters into a polycrystal
in the form of nickel borides, whose coefficients of
thermal expansion are closer to those of diamond than
the coefficient of thermal expansion of the catalyzing
alloy [3, 4]. When heating, a noticeable difference in
the coefficients of thermal expansion of the diamond
and inclusions presented by the catalyzing alloy results
in the appearance of significant thermal stresses that
lower the strength of diamond grains [5]. In addition to
an increase in the resistance to the oxidation of dia-
mond, introducing boron into a catalyzing alloy
reduces thermal stresses caused by heating and thereby
increases the thermal stability of polycrystalline dia-
mond. The estimation of the contribution of each of the
processes under consideration determining the effect of
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2

Fig. 4. Effect of the boron content in the catalyzing alloy on
the strength of ARK4 400/315 diamond powder after the ther-
mal treatment at 1270 K: (1) air, 5 min; (2) vacuum, 15 min.
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boron on the thermal stability of polycrystalline dia-
mond needs further study.

Thus, doping of a catalyzing alloy with boron
results in the formation of borides in a polycrystal,
which enhance its stability to the oxidation and lower
its thermal stresses as a result of heating due to a
decrease in the coefficient of thermal expansion of the
inclusions (binders), which increases the thermal sta-
bility of diamond from 970 to 1220 K.
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Flicker noise  noise  is a widespread phenome-

non in nature [1]. It is observed in radio engineering
devices, in solid-state physics, in fracture mechanics, in
chemical reactions, etc. An intrinsic feature of systems
with noise lies in the fact that the power spectrum in
this case is inversely proportional to the frequency f.
Such a dependence suggests that a considerable part of
the fluctuation energy is associated with slow processes
and, moreover, implies a possibility of huge cata-
strophic surges in the system.

Although the problem on the origin of the  noise

is fairly general, to a large extent, it remains unre-
solved. The physical picture of this phenomenon has
not been elucidated to date, and mechanisms responsi-
ble for such a fluctuation spectrum are often unclear.
The dynamics of fluctuations in certain systems non-
conventional from the standpoint of flicker-noise stud-
ies was investigated in [2–8]. We imply systems in boil-
ing-crisis regimes, under explosive boiling of super-
heated-liquid jets, in oscillatory regimes of
combustion, and in arc electric discharge. The presence
of low-frequency intense pulsations with a power spec-
trum inversely proportional to the frequency was estab-
lished in both crisis and transient regimes of the pro-
cesses under investigation. An elementary source of

fluctuations with the  power spectrum was first

revealed in these experiments. This allowed the kinetics
of the source to be systematically affected in experi-
ments.

A new model of the flicker noise was formulated on
the basis of the experiments performed in [3, 9].

1
f
---





1
f
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1
f
---

Institute of Thermal Physics, Ural Division,
Russian Academy of Sciences, Pervomaœskaya ul. 91, 
Yekaterinburg, 620219 Russia
1028-3358/02/4709- $22.00 © 20654
According to the model, fluctuations with a  power

spectrum originate in a system as a result of simulta-
neously interacting phase transitions in the presence of
sufficiently intense white noise. In the case of a concen-
trated system, the simplest stochastic equations
describing the dynamics of fluctuations take the form

(1)

Here, φ and ψ are dynamical variables (order parame-
ters), while Γ1 and Γ2 are Gaussian δ-correlated noises
that can have various realizations but identical vari-
ances provided that the equations are written out in the
form of Eqs. (1). The factor φ entering into the second
term of the second equation specifies a certain macro-
scopic flux in the system under consideration.

In order to numerically integrate Eqs. (1), we write
them out in the form [3]

(2)

where ξi and ηi are Gaussian sequences of random num-
bers with zero mean value and a standard deviation σ.

In the absence of an external noise, the system of
equations (1) describes a relaxation process with φ ~

 and ψ ~  as t  ∞. However, under the action
of an external noise, this process transforms into the
stationary stochastic processes described by the func-
tions φ(t) and ψ(t) [3, 9]. Over a wide range of the inte-
gration steps (0.05 < ∆t < 0.3), a noise intensity (σc =
0.8) can be chosen in such a manner that the power
spectra of fluctuations of φ(t) and ψ(t) have the forms of

 and , respectively, for noise intensities close to

this value. The power spectra of fluctuations of φ(t) and

1
f
---

dφ
dt
------ –φψ2 ψ Γ1 t( ),+ +=

dψ
dt
------- –φ2ψ 2φ Γ2 t( ).+ +=

φi 1+ φi ψi∆t+( ) 1 ψi
2∆t+( ) 1– ξ i∆t0.5,+=

ψi 1+ ψi 2φi∆t+( ) 1 φi
2∆t+( ) 1– η i∆t0.5,+=

t
–

1
2
---

t
1
2
---

1
f
--- 1

f 2
-----
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ψ(t) obtained from numerical solutions to Eqs. (2) are
shown in Fig. 1. Such frequency dependences of the
power spectra appear also for ∆t < 0.005 but for larger
realization lengths. Therefore, if we had a true source of
white noise being a sequence of the δ-functions follow-
ing in infinitesimal intervals one after another, and
could integrate such equations, then system (1) would
exhibit for the corresponding power spectra the asymp-

totic  and  behavior as f  0.

Noise-induced transitions in system (1) are one of
its notable features. As was proposed in [10], such tran-
sitions could be found according to the number and
positions of extrema of the probability-density distribu-
tions.

The numbers of extrema of the probability-density

distributions P(ψ) and P  for both the variable

ψ and the quantity , respectively, vary with the
external-noise intensity in system (1); i.e., there occur
two transitions induced by the noise. The positions of
these extrema are adequate characteristics of transitions
between stationary states of system (1). They can be
identified as macroscopic stationary states of the sys-

tem, while the variables ψ and  represent order
parameters for nonequilibrium phase transitions.

In order to illustrate these noise-induced transitions,
we numerically solved system (2) with various standard
deviations for the sequences of Gaussian random num-
bers. For a given integration step ∆t at the same value
of σ, the probability density for corresponding quanti-
ties was evaluated by averaging over 256 realizations
containing 16384 integration time steps.

The first transition caused by a change in the num-
ber of extrema of the probability density P(ψ) occurs at
large intensities of the external noise (σ . 2σc) and have
a trivial character. In this case, the variables φ(t) and
ψ(t) become statistically equal. At large intensities of
the external noise, the differences in the two equations
of system (1) become insubstantial; as a result, the fluc-
tuations of φ(t) and ψ(t) are described by the Lorentz
spectrum.

The formation of the  and  power spectra is

related to the behavior of the probability density

P  of the quantity . If 0 < σ < σc, the

probability density P  has two maxima corre-
sponding to two stationary states (Fig. 2, curve 1). There
occurs a transition at the point σ = σc = 0.8 (Fig. 2,
curve 2), because for σ > σc, the zero stationary point
becomes stable (Fig. 2, curve 3).

It is remarkable that the critical value of the exter-
nal-noise intensity, at which a qualitative change in

1
f
--- 1

f 2
-----

φ2ψ2( )

φ2ψ2

φ2ψ2

1
f
--- 1

f 2
-----

φ2ψ2( ) φ2ψ2

φ2ψ2( )
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f

macroscopic properties of system (1) takes place, just
corresponds to the flicker spectrum. This is responsible
for both the existence of a fairly wide interval of the
external-noise intensities and the lack of a “fine tuning”
of the system with respect to the flicker-noise behavior.
This property is illustrated in Fig. 3, where the averaged

value  (the fourth moment) is shown as a
function of the external-noise intensity.

φ2ψ2〈 〉

100
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Sφ( f ), Sψ( f )

1

108

101 f10–3 10–1

104

2

Fig. 1. Power spectra of fluctuations (1) φ(t) and (2) ψ(t)
obtained from numerical solutions to Eqs. (2) and averaged
over various realizations. The dashed lines represent the

dependences (1)  and (2) .
1
f
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Fig. 2. Stationary probability-density distributions

P  for system (2), which are calculated with the
integration step ∆t = 0.1: (1) σ < σc, (2) σ = σc, and (3) σ >
σc; σc = 0.8.

φ2ψ2( )



656 KOVERDA, SKOKOV
Equations (1) can be generalized to the case of spa-
tially distributed systems [8]:

(3)

where D is the diffusion coefficient. The potential

corresponds to system (3), which will be a stationary
system as t  ∞ if the external noise is absent.

It is easy to generalize the conditions of a noise-
induced transition to the case of a distributed system.
Using cyclic boundary conditions for system (3), we
found the critical value σc = 0.7, which corresponds to
the flicker spectrum as in the case of a concentrated
system.

Thus, the intersection and interaction of two non-
equilibrium phase transitions can lead to the formation

of a source of fluctuations with a  power spectrum.

∂φ
∂t
------ D

∂2φ
∂x2
-------- φψ2– ψ Γ1 x t,( ),+ +=

∂ψ
∂t
------- –φ2ψ φ Γ2 x t,( ),+ +=

Φ φ2ψ2 φψ–
1
2
---D ∇φ( )2+=

1
f
---

1.18

1.16
0.50

1.24

0.75 1.00 σ

φ2ψ2〈 〉

1.20

1.22

σc = 0.8

Fig. 3. Averaged value  as a function of the exter-
nal-noise intensity, ∆t = 0.1.

φ2ψ2〈 〉
Using numerical methods, we have shown that noise-
induced transitions take place in a system of two non-
linear stochastic differential equations describing the
generation of fluctuations with the flicker power spec-
trum. The intensities of the external noise for which the

critical transition occurs correspond to a  power spec-

trum. Such a behavior does not require a fine tuning and
suggests that the criticality of the system is induced by
the noise.
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The model of an ideal association solution is one of
the models successfully used in calculating thermody-
namic characteristics of multicomponent liquid sys-
tems. Traditionally, the model is applied to solutions
that have stable compounds in their solid phases. In this
case, it is usually assumed that a melt consists of indi-
vidual atoms of initial components and of one or sev-
eral associates with a fixed stoichiometry and a mini-
mum size. The equilibrium constants responsible for a
reaction of the formation of the associates from initial
components and, often, the stoichiometries of associ-
ates are adjustable parameters [1–4]. The possibility of
the existence of associates composed of individual
atoms was considered in the general theory of an ideal
association solution [1, 5, 6]. However, only recently, a
number of studies have appeared in which the existence
of self-associates was taken into account in calculating
particular systems [7, 8]. In [9–14], it was shown that
the consideration of the self-association, even in the
case of allowance for only the configurational contribu-
tion into entropy, is sufficient to qualitatively explain
features of the thermodynamic properties of the process
of melting metals and of thermodynamic characteristics
of melting and mixing liquid eutectic alloys.

The successful use of self-associates in calculating
properties of pure metals and simple eutectics makes it
possible to assume that, in multicomponent melts, asso-
ciates with an arbitrary stoichiometry can also exist. If
we admit the existence of such associates, then, evi-
dently, their effect must first of all be manifested in sys-
tems characterized by infinite solubility in the solid and
liquid phases. However, for both simple eutectics and
systems containing a stable compound in the solid
phase, the consideration of associates with an arbitrary
stoichiometry may, in principle, affect the magnitudes
of calculated properties, as well as the qualitative pat-
tern of their behaviors. The goal of this study is to
develop a general scheme that takes into account asso-
ciates with an arbitrary stoichiometry in the model of an
ideal association solution and to analyze the effect of
these associates on the behavior of the thermodynamic
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Russian Academy of Sciences, 
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characteristics of mixing and on a position of the liqui-
dus line.

We now consider a binary system AcB1 – c whose
components in the liquid phase form a solution with the
complete mutual dissolution. We present this solution
as an ideal solution consisting of the An(i), Bn(j), and
AnBm(i, j, q) associates. (Here, n and m are the numbers
of corresponding atoms in the complex and i, j, and q
are, respectively, the numbers of nearest-neighbor pairs
of the AA, BB, and AB types in the complex.) Next, we
assume that the energy of the complex is determined by
the sum of energies of the nearest-neighbor pairs and
restrict our consideration by only configurational con-
tributions into the entropy. Then, the molar fractions of
the complexes are related to each other by the following
equations [10]:

(1)

where , , , , and  are the molar
fractions of the complexes An,i, Bn, j, and AnBm and of
the individual atoms A1 and B1 , respectively; αA, αB
and αAB are the binding energies (taken with the oppo-
site sign) of the AA, BB, and AB nearest-neighbor
pairs; and , , and  are the correspond-
ing equilibrium constants.

In this case, the system of balance equations for deter-
mining concentrations of single atoms takes the form

(2)
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The solution to the system of equations (1) makes it
possible to find the molar fractions of single atoms in
the solution. Afterwards, it is not difficult to calculate
the thermodynamic characteristics of the system (see,
e.g., [1–4, 10–13]). It is especially easy to express
activities of the components in the most simple form

(3)

where  and  are the fractions of the single atoms
in the corresponding pure components at the tempera-
ture under consideration.

For performing calculations, it is necessary to know
the energy parameters αA, αB, and αAB, as well as the
number of nearest-neighbor pairs of different types in

aA

xA1

xA1

0
------- aB,

xB1

xB1

0
-------,= =

xA1

0 xB1

0
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0.2 1.00.8

Fig. 1. Dependence of the mixing enthalpy of a model alloy
at T = 1100 K for different values of the energy parameter:
W = (1) 0; (2) –3000; (3) 3000; (4) 10000; and (5) 13000.
the associates. The energy parameters αA and αB can be
estimated from the meting temperatures of the pure
components [9]. Therefore, the quantity αAB remains
the only varied parameter. We can count the total num-
ber of pairs in the associate on the basis of the assump-
tion that the local structure of a corresponding crystal
remains unchanged in the liquid [9, 12]. In the prelimi-
nary analysis of potentialities of our model, we employ
the approximation of a linear chain for the associate
structure, as was done for simple eutectics in [10]. Such
a simplification makes it possible to readily perform the
summation in Eq. (2). In this case, in accordance with
the analysis performed in [10], the loss in the accuracy
of the calculated properties is no more than 10%.

Figures 1 and 2 and Table 1 show the calculated
results for some properties of a model alloy whose
components have melting temperatures of 700 and

0 0.4

aA, aB

cA

1.0

1.00.80.60.2

0.2

0.4

0.6

0.8

2

3

4
5

6

Fig. 2. Activities of components of a model alloy at T =
1100 K for different values of the energy parameter: W =
(2) –3000, (3) 3000, (4) 10000, (5) 13000, and (6) 30000.
Table 1.  Properties of an equi-atomic model melt at T = 1100 K as a function of the energy parameter W

W, 103 J/mol ∆HM, J/mol ∆GM, J/mol ∆SM, J/(mol K) aA

–60 289 –3535 3.476 0.68

–30 515 –3670 3.805 0.669

–10 641 –4159 4.364 0.635

–6 534 –4382 4.469 0.619

–3 370 –4600 4.518 0.605

–2 295 –4684 4.526 0.54

0 104 –4872 4.524 0.587

3 –300 –5210 4.464 0.566

10 –1987 –6329 3.947 0.501

30 –12460 –12590 0.122 0.253
DOKLADY PHYSICS      Vol. 47      No. 9      2002
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1000 K. The parameters αA and αB were determined
from the melting temperatures of the components,
while the parameter W = [αAB – 0.5(αA + αB)] varied.
As was expected, the model allows us to describe both
positive and negative deviations from the ideal behav-
ior. Note that the negative deviations can be arbitrarily
large, whereas, at large positive values of W, the behav-
ior of thermodynamic characteristics of mixing
becomes the same as for systems with the strong inter-
action of components. Another situation is observed for
negative values of W when the formation of pairs of the
AB type is unprofitable from the energy standpoint. For
small values of W, an increase in positive values of the
mixing enthalpy is observed, as long as the energy loss
can be compensated by the configurational entropy. On
further increasing the value of W, the mixing enthalpy

0.2

0 0.2

aAg, aBi

cBi

1.0

1.00.4 0.6 0.8

0.4

0.6

0.8 1

2
2

Fig. 3. Activities of components of Ag–Bi alloy at T = 1000 K.
The calculations are performed with allowance for (1) only
self-associates and (2) associates with an arbitrary stoichiom-
etry (+ and × are the experimental points taken from [15]).
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begins to decrease. The mixing entropy also passes
through its maximum but at other considerably smaller
values of W. At the same time, activities of the compo-
nents and the mixing free energy vary monotonically
(Table 1). Moreover, it turned out that the model can
describe the situation when the mixing enthalpy is neg-
ative and positive deviations from the Raoult law are
observed for activities of the components. This is an
additional illustration in favor of the model proposed.
Despite the fact that this model contains only one var-
ied parameter (of the interchange-energy type), it is
capable of treating a much more diverse range of
behaviors compared to other similar models. For exam-
ple, unlike the model of a regular solution, in which the
sign of the deviation of all properties from ideality is
determined by only the sign of the energy parameter, in

500

Ag

T, K

1200

Bi0.2 0.4 0.6 0.8

600

700

800

900

1000

1100

544.52 K

(Bi)
0.95

535.6 K

1234 K

(Ag)

L

Fig. 4. Phase diagram of the Ag–Bi system [15]. The calcu-
lations of the position of the liquidus line are performed
with allowance for (d) only self-associates and (×) associ-
ates with an arbitrary stoichiometry.
Table 2.  Calculated and experimental properties of liquid Ag–Bi alloys at T = 1000 K. Subscripts correspond to (1) calcula-
tion with allowance for only self-associates; (2) calculation with allowance for associates with an arbitrary stoichiometry. The
experimental results are taken from [15]

cBi

∆H1 ∆H2 ∆Hexp. –∆G1 –∆G2 –∆Gexp.

J/mol J/mol

0.2 398 276 473 1728 3047 4305

0.3 474 352 699 2017 3655 4489

0.4 514 396 946 2175 3992 5100

0.5 525 410 1222 ± 210 2226 4102 4945 ± 1050

0.6 508 395 1540 2177 3995 4515

0.7 462 350 1711 2022 3660 3920

0.8 380 273 1582 1735 3053 3096

0.9 246 160 1046 1243 2055 1954

1.0 0 0 0 0 0 0
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our model, such an unambiguous dependence is absent.
The character of a property is determined as a resulting
value obtained from several contributions, e.g., from
the direct pair contribution into the energy and an indi-
rect configurational contribution. In this case, the result
depends on the value of the energy parameter, the melt
temperature, and the melting temperatures of the com-
ponents.

The calculated results for the mixing thermody-
namic characteristics and the position of the liquidus
line for the binary Ag–Bi system are presented in
Figs. 3 and 4 and in Table 2 (the value of the parameter
W is equal to –3500 J/mol). For comparison, the calcu-
lation results obtained within the model taking into
account only self-association of the components are
also presented. As is seen, in the latter case, the agree-
ment between the calculated and experimental results
becomes considerably better for the entire totality of
calculated properties.

ACKNOWLEDGMENTS
This work was supported by the Russian Foundation

for Basic Research (project no. 01-03-32621) and by
the program “Leading Scientific Schools” (grant
no. 00-15-92420)

REFERENCES
1. I. Prigogine and R. Defay, Chemical Thermodynamics

(Longmans Green & Co., London, 1954; Nauka,
Novosibirsk, 1966). 
2. K. Wasai and K. Mukai, J. Japan Inst. Met. 46 (3), 266
(1982). 

3. F. Sommer, Z. Metallkd. 73 (2), 72 (1982). 

4. R. Schmid and Y. A. Chang, CALPHAD: Comput. Cou-
pling Phase Diagrams Thermochem. 9 (4), 363 (1985). 

5. H. Kehiaian, Bull. Acad. Pol. Sci., Ser. Sci., Chim. 12
(7), 497 (1964). 

6. A. G. Morachevskiœ, A. G. Mokrievich, and E. A. Maœo-
rova, Zh. Obshch. Khim. 59 (9), 1927 (1989). 

7. M. Ivanov, Z. Metallkd. 82 (1), 53 (1991). 

8. R. N. Singh and F. Sommer, Z. Metallkd. 83 (7), 533
(1992).

9. N. K. Tkachev, K. Yu. Shunyaev, A. N. Men’, and
N. A. Vatolin, Rasplavy 2 (1), 3 (1988). 

10. N. K. Tkachev, K. Yu. Shunyaev, A. N. Men’, and
N. A. Vatolin, Dokl. Akad. Nauk SSSR 302, 153 (1988). 

11. K. Yu. Shunyaev and N. A. Vatolin, Dokl. Akad. Nauk
332, 167 (1993) [Dokl. Phys. 38, 391 (1993)]. 

12. K. Yu. Shunyaev and N. A. Vatolin, Rasplavy, No. 5, 28
(1993). 

13. K. Yu. Shunyaev and N. A. Vatolin, Metally, No. 5, 96
(1995). 

14. K. Yu. Shunyaev, N. C. Tkachev, and N. A. Vatolin, Ther-
mochim. Acta 314, 299 (1998). 

15. R. Hultgren, P. R. Desai, D. T. Hawkins, et al., Selected
Values of the Thermodynamic Properties of Binary
Alloys (ASM, Metal Park Ohio), 1973). 

Translated by Yu. Vishnyakov
DOKLADY PHYSICS      Vol. 47      No. 9      2002



  

Doklady Physics, Vol. 47, No. 9, 2002, pp. 661–666. Translated from Doklady Akademii Nauk, Vol. 386, No. 3, 2002, pp. 322–327.
Original Russian Text Copyright © 2002 by Litvinov.

                                                                                 

PHYSICS
An Analytical Model of the Active Medium 
and the Optimum Resonator for a CO Laser

I. I. Litvinov
Presented by Academician B.V. Bunkin May 23, 2002

Received May 24, 2002
Electric-discharge CO lasers have a uniquely high
efficiency and energy extraction per unit volume of gas
flow rate [1–4]. The processes of excitation and lasing
in them involve a large number (up to ~100) of vibra-
tional levels (with allowance for VV′ exchange with N2
molecules). Therefore, theoretical models of these
lasers are complicated, and basic results are usually
obtained in cumbersome computer calculations. In
addition, a number of problems remain.

Even in the first calculations, it was shown that the
efficiency of CO lasers is significantly higher (~50–
70%) [5, 6] than experimental values ~20−40% [2–4].
In order to bring the calculations and experiments into
agreement, the pumping efficiency ηp of the vibrational
levels in CO molecules, which is normally very high
(up to ~95%), was artificially reduced (down to ~75%)
[7]. At the same time, experimental evidence has been
published that the efficiency of CO lasers can be very
high (~60% [1]), which agrees with theoretical values
without fitting the parameters. For some reason, these
data are ignored. However, they demonstrate that other
causes can also be responsible for underestimating the
efficiency in experiments.

For example, the efficiency of solid-state lasers was
also overestimated [8] even in quite adequate models
[9]. Now, this problem is solved by simultaneously fit-
ting the pumping efficiency  (with allowance for the
Stokes losses) and the coefficient of internal losses αi,

which determine the resonator efficiency  and the

total efficiency of a laser (ηl = ). For this aim, it is
sometimes necessary, on the contrary, to increase the
calculated efficiency and to decrease  (due to
increasing αi), for which agreement in the optimum
transmission of the output mirror T2 is also achieved. As

a result, the effects from  and αi are separated, and
they are determined simultaneously as a pair.
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'
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However, the situation for solid-state lasers is much
simpler. For these lasers, it is possible to independently
(experimentally) determine the basic laser parameters
of an active medium—unsaturated gain k0 , saturation
intensity I0, and loss factor αi—because exclusively sim-
ple (linear) kinetics for four-level media enabled one to
develop the theory of the optimum resonator [10, 11].
Thus, theory and experiment can successfully comple-
ment each other in this case.

For CO lasers, it would be desirable to construct an
equally simple model that would retain the main fea-
tures of actual media. But such a model has not been
developed yet. Moreover, the true place of the active
media of CO lasers among the other known types of
N-level media is also unknown. Here, even parameters
k0 and I0 are not defined properly, and parameter αi for
CO lasers is completely absent. However, almost all
separate elements of such a model have already been
available for a long time. These are the familiar analyt-
ical model of the active medium of CO lasers [12–14]
and the resonator model mentioned above [10, 11].
Although the characteristics of the active medium of
CO lasers are much different, this problem can be com-
pletely solved.

1. FOUNDATIONS OF AN ANALYTICAL MODEL 
OF THE ACTIVE MEDIUM FOR CO LASERS

As is known [12], the active medium in CO lasers
operates principally on the anharmonicity of vibra-
tional levels in a CO molecule with the key role of non-
linear (pair) VV exchanges, i.e., has no analogs among
other known types of linear N-level systems. However,
under reasonable assumptions, this complex system
can be described by one differential equation for the
level distribution function fv . This equation has the
form of a conservation law for the flux of quanta Fv in
v  (per CO molecule):

(1)

Here, the first and second terms on the right-hand side
are the rate of the VT relaxation on a given level v  and

dFv

dv
---------- –Pv 1+ f v

Iv kv

hνv

-----------.–=
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the rate of the depopulation of this level in the resonator
with intensity Iv and gain kv (per CO molecule). In this
section, the basic notation corresponds to the notation
used in [13].

In the simplest case, the expression for flux Fv has
the form

(2)

Here, Q10 is the constant of the pair VV exchange
between the two lower levels, δvv  is the inverse
VV-exchange radius, ∆E = 19.1 K is the anharmonicity
energy, and T is the temperature of the gas mixture.

At small values v  < i*, the solution to Eqs. (1) and
(2) for fv is close to the left branch (falling off steeply)
of the Treanor formula [12, 13]

(3)

Here, E1 = 3084 K is the energy of the first vibrational
level; T1 is the filling temperature of lower levels, which
is determined by the pumping power density wp =
ηpjeE = ηpwel , where ηp is the pumping efficiency; and
i* is the minimum point in the Treanor formula. At T ~
100 K, i* ~ 4–6.

Conversely, the solution to Eq. (1) for v  > i* (in the
absence of lasing) has a long section (up to v  ~ 20–40),
where fv decreases smoothly (plateau region). Further,
this section is replaced by a section where fv falls
steeply due to the sharp (exponential) rise in the weak
term responsible for the VT exchange in Eq. (1).

The smallness of the VT-exchange term in Eq. (1) on
the plateau is equivalent to the constant flux of quanta
in v  (Fv ≈ F0 = const). Therefore, fv becomes much
simpler:

(4)

The flux F0 is related to the constant c (the filling factor
of the levels) by a nonlinear dependence: F0 ~ c2, or,

conversely, c ~ .

The gain entering into Eq. (1) has the form

(5)

where σv is the amplification cross section and γv is the
rotary factor. For the lasing zone (v  ~ 5–15), we have

σv ≈ σ0(v  + 1) and γv ≈ γm =  ≈ const, where

Fv

2Q10

δvv
3

----------- 
  v 1+( )2 f v

2 2∆E
T

-----------
d2ln f v

dv 2
----------------–

 
 
 

.=

f v f 0
E1v
T1

---------- ∆Ev v 1–( )
T

------------------------------– 
  .exp=

f v
c

v 1+
-------------, F0

4Q10

δvv
3

-----------∆E
T

-------c2.= =

F0

kv σv γv f v

d f v

dv
---------+ 

  ,=

2B jm

T
------------
jm ≈  and B ≈ 2.78 K is the rotational constant of a

CO molecule.

However, in the presence of lasing, the distribution
of fv differs from (4) [13] and is determined from the
condition of equality between gain (5) and the loss fac-

tor in the resonator (per CO molecule) ∆0 = ,

where R = R1R2 is the reflection coefficient of the mir-
rors and La is the length of the active medium.

Above the lasing zone (as for the plateau section),
factor c in solution (4) must be replaced by smaller fac-

tor [13] k = , which is determined by threshold

∆0 and has two same meaning. As a result, the flux
of quanta Fk outgoing upward into the zone of VT
relaxation is smaller than the incoming flux F0 by the

factor  and their difference  gives the part of

this flux that is spent for lasing.

The flux F0 is related to the pumping power density
of the lower levels wp and to the electric power in the

discharge wel as wp ≈ hν1F0Nc = ηpwel, where  = 

is the frequency corresponding to the 1–0 transition in
a CO molecule. Hence, the power density of lasing per
unit volume of the active medium has the form

(6)

where  is the pure pumping efficiency (with allow-

ance for Stokes losses),  is the mean frequency in the

lasing spectrum, and  is the quantum effi-

ciency due to a decrease in the value of a quantum in the

lasing zone  ≈ 1.24% per transition .

As a whole, these relationships complete the model
of the active medium of CO lasers for the quasistation-
ary lasing mode [13, 14]. However, this analysis was
not properly developed for the resonator. For example,

the fundamentally important factor  is treated

there as the total efficiency of the resonator ηR. How-
ever, this is not entirely the case. In order to provide a
better insight into this problem and to obtain the closed
model of CO lasers, we first consider how this problem
is solved for simpler media.

T
B
---

1/R( )ln
2LaNc

-------------------

∆0

γmσ0
-----------

k2

c2
---- 1 k2

c2
----–

ν1

E1

h
-----

wg = hνg F0 Fk–( )Nc = ηp' 1 k2

c2
----– 

  wel; ηp'  = ηpηv ,

ηp
'

νg

ηv

νg

ν1
-----=

2∆E
E1

-----------





1 k2

c2
----– 

 
DOKLADY PHYSICS      Vol. 47      No. 9      2002



AN ANALYTICAL MODEL OF THE ACTIVE MEDIUM AND THE OPTIMUM RESONATOR 663
2. FOUNDATIONS OF THE THEORY
OF THE OPTIMUM RESONATOR

FOR FOUR-LEVEL MEDIA

In the stationary regime, the main rate equation has
the form

(7)

Here, the left-hand side is the pumping rate determined
by the pure pumping power (with allowance for Stokes
losses) , and the right-hand side is the
depopulation rate of the upper laser level with popula-
tion n3 under the action of radiation with intensity I and
the relaxation of this level with lifetime τ*. Hence, tak-
ing into account the evident relation k = n3σg, we find
the following fundamental saturation formula for the
gain [10, 11]:

(8)

or, on the contrary,

Here, I is the total intensity of two counterpropagating
waves in the resonator.

By definition of k0 and I0 , it follows that k0 for these

media rises strictly linearly with , whereas I0 is inde-

pendent of . In addition, we arrive at the important

relation  ≡ k0Ι0, which will be used below in the
model of CO lasers.

Finally, for the power density of lasing in the active
medium, it follows from (7) and (8) that

(9)

As follows from the derivation of Eq. (9), the multiplier
in the parentheses is the efficiency of producing the
laser power in the resonator , which is determined
here only by relaxation losses in the active medium. To
obtain the total efficiency ηR, it should be multiplied by

the output efficiency from the resonator , which pre-
sents all other losses. When the losses in the mirrors are
neglected, the output efficiency can be written as  =

, where  is the coefficient of use-

ful losses and kth = kR + αi is the total (threshold) gain.
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The above discussion indicates that the total effi-
ciency of the resonator is written as

(10)

Hence, for the maximum efficiency, we find the impor-
tant relations

(11)

which play the central role in the theory of the optimum
resonator for four-level media.

It is easy to see that the both factors entering into
Eq. (10) make the same contribution to the decrease in
the efficiency at the maximum point. Therefore, the
second factor in Eq. (10) cannot be neglected.

3. GENERALIZED THEORY
OF THE OPTIMUM RESONATOR

OF A CO LASER

Comparing the results and conclusions of Sections 1
and 2, we conclude that the expression in the parenthe-
ses in Eq. (6) is the production efficiency of the laser
power  in the active medium of a CO laser. In the
detailed form, this expression can be written as

(12)

where  is the revised (with allowance for αi)

threshold per CO molecule and I is the integrated inten-
sity (in v) of radiation in the resonator.

As is seen, this expression is quite similar to analo-
gous expression (9) for four-level media. It only

remains to transform the component with  in Eq. (12)

to the customary (laser) form

(13)

The new parameter k0 introduced here is the general-
ized unsaturated gain of the active medium in CO
lasers.

To demonstrate this fact, we take into account that,
under the typical conditions for T = 100 K, jm ≈ 6 and
γm ≈ 1/3 for CO lasers. Therefore, the contribution of
the term with the derivative in Eq. (5) is small in the pla-
teau region. As a result, we have

(14)
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Thus, because of the inverse dependence of σv and fv on
v  + 1, kv is almost constant within the lasing zone. This
behavior determines the importance of the parameter k0
for these media.

Consequently, the expression in the parentheses in
Eq. (12) is actually the efficiency  of laser-power
production in the active medium of CO lasers. The qua-

dratic dependence in Eq. (12) [instead of the linear

dependence in Eq. (9)] is the direct consequence of the
main mechanism of the pair VV exchange in the kinet-
ics of CO lasers.

As a result, in contrast to solid-state lasers, the
power of CO lasers is proportional to the square of the

population of laser levels ( ), whereas the gain,
to the population (k0 ~ c). This is the main difference of
the nonlinear active medium of CO lasers from conven-
tional linear media.

Hence, the gain of CO lasers has a specific (nonlin-

ear) dependence . This simple dependence is
clearly pronounced in many experiments and detailed
numerical simulations of CO lasers. In our case, it is an
obvious consequence of the main VV-exchange mech-
anism.

Developing the analogy further and rewriting
Eq. (12) in the form

(15)

we find the new (energy-balance) definition for the
intensity I0 in CO lasers:

(16)

Thus, the quantity I0 introduced here is proportional to

, whereas, for the four-level media, it is indepen-

dent of .

Intensity I0 , as well as k0 , can be written in terms of
the pumping power wel, flux F0 , and other parameters of
a CO molecule.

In turn, Eq. (15) provides the direct relation:

(17)

which differs significantly from analogous depen-
dence (8) for solid-state lasers. Considering this rela-
tion as an implicit (quadratic) equation for the inverse

ηR'
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wp' c2∼

k0 wp'∼

wg kthI k0I0 1
kth
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2
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  k0

kth
-----

kth

k0
-----– ,= =
dependence kth(I) and normalizing kth to k0 and I to I0 ,
we obtain

(18)

This formula for the CO lasers is of the same funda-
mental importance as the analogous dependence

 for four-level media.

Despite of different forms, the both dependences
have the similar shape of monotonically falling curves
with the same asymptotics . At the same time,
curve (18) passes higher than curve (8) and its slope at
small  is equal to half the slope of curve (8).

Returning to the optimum resonator of CO lasers,
we write, by analogy with Eq. (10), the total resonator
efficiency in the form

(19)

The optimum value of  is now determined by solving

the cubic equation. For small relative losses  = , it

is equal to

(20)

Since  is small, the first term is usually sufficient. In
this case, the maximum efficiency of the resonator of a
CO laser equals

(21)

For comparison, the same quantities for four-level

media in the same notation are  =  and  =

.

Thus, losses in the power output in CO lasers are
twice as large as losses in the energy extraction. There-
fore, the contribution of the last component in Eq. (19)
and (21) cannot be ignored.

Figure 1 shows two components (  and ) and
the total resonator efficiency ηR for (solid lines) the
active medium of CO lasers and (dashed lines) four-
level media at the same losses  = 0.1.

It is natural that the components  coincide for the

both media, whereas  significantly differ. For four-

level media,  decreases linearly, whereas for the
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active medium of CO lasers, it decreases parabolically
and, therefore, passes higher than the former curve.

Therefore, the total efficiency of the resonator for
CO lasers, which is equal to the product of the functions

 and , also passes higher than the value for four-

level media. In addition, its maximum value  indi-
cated by asterisk, as is seen in Fig. 1, is always higher
than the value for four-level media and is achieved at
higher .

For the same losses  = 0.1 for the four-level media
and the active medium of CO lasers, we have

 = 0.316 and 0.385, and  = 0.467 and 0.630,  (22)

respectively. As is seen, the optimum values of  in a
CO laser are significantly higher (in the given case, by
21.5%) and, despite the higher threshold, the maximum

efficiency  is also larger (by ~35%).

Figure 2 shows the optimum thresholds  and the

maximum efficiencies  in these two models. The
notation of the curves is the same as in Fig. 1. However,
for CO lasers, solid curves are the exact calculations by
Eq. (19), whereas dash–dotted and short dashed curves
are the calculations by Eqs. (20) and (21) without and
with the second term in Eq. (20), respectively. Thus, in
the majority of cases (up to  ~ 0.2), Eqs. (20) and (21)
including the most simple one [without the second term
in Eq. (20)] are enough.

4. EXPERIMENTAL EVIDENCE
OF THE EFFECTIVENESS OF THE MODEL

OF CO LASERS

Since the new model of CO lasers is the complete
analog of the classical model for four-level media, it
can be successively applied in all cases where the clas-
sical model is used for solid-state lasers, in particular,
for the recalculation of the three basic parameters of the
active medium (k0, I0 , and αi) using the experimental
information on the output laser power (for three values
of transmission T2), the correction of the constants of
the VV exchange, and determination and elimination of
the causes responsible for decreasing the efficiency of
CO lasers.

Such a treatment was actually performed for a high-
power subsonic CO laser [4]. The table presents the two
triple of the laser parameters for one of the regimes with
the specific energy contribution wel = 25 W/cm3 and the
main characteristics of the CO laser resonator, which
were recalculated on their basis.

The new triple of the parameters seemingly does not
differ from the initial one. Moreover, the direct use of
each of the two triples provides the same result for the
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output power. On the other hand, the decrease in all
three parameters in the model of CO lasers and the cor-

responding increase in  must lead to a change in the
other (input) characteristics of CO lasers. Thereby,
degeneracy between these two models is removed. Let
us compare the calculated and measured values of wel .

According to Sections 2 and 3, the pure pumping
power density is determined as  =  = . The
values of the internal efficiencies ηp and ηv can easily

ηR
m

wp' k0I0 ηp' wel
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Fig. 1. Components of the resonator efficiency vs. the rela-
tive threshold.

Fig. 2. Optimum parameters of the resonator vs. the relative
losses.
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be found. For the N2 + CO medium, we have ηp ≈ 0.85
[7, 15], and the quantum efficiency ηv of the process
consisting of three stages: carrying excitation in N2 up
to sixth–seventh level, its resonant transfer to the lower
level in CO, and then its carrying upwards to the CO
lasing zone with  ~ 8 [7, 13] is also equal to ≈ 0.85.

As a result, the total pumping efficiency is  ≈ 0.70.

Dividing the table values of  by , we find the
desired energy-contribution power wel = 58.0 and
25.4 W/cm3 in the models of four-level media and CO
lasers, respectively. Since the latter value almost coin-
cides with the experimental value, whereas the former
value is far from it, the new model of CO lasers is
undoubtedly adequate.

Considerable induced losses αi in the active medium
of CO lasers can be one of the main causes responsible
for underestimating the efficiency. For example, their

suppression (   1) increases the total efficiency of
CO lasers by a factor of ~1.3 that approaches it to the
values given in [1].

In conclusion, we emphasize that the above relation-
ships were found for the quasistationary operation
mode of CO lasers when the pulse duration (or the
flight time through an active medium) significantly
exceeds the time of VV exchange. Otherwise, as for
solid-state lasers, it is necessary to take into account the
energy consumption on increasing inversion to the
threshold with allowance for the specific character of
this new active medium.

v g

ηp'

wp' ηp'

ηR''

Table

Model
k0,
m–1

I0,
kW/cm2

αi,
m–1

Four-
level

1.40 2.90 0.290 0.455 0.297 0.545 0.545

CO 
laser

1.17 1.52 0.095 0.3575 0.674 0.872 0.773

kth
m ηR

m ηR
' ηR

''
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By the method of molecular dynamics, various equi-
librium characteristics of many-particle systems are
determined: equation of state, radial distribution func-
tion, heat capacity, elastic moduli, diffusion coefficient,
etc. The value of a quantity being calculated is obtained
by averaging its instantaneous value over a sampling of
statistically independent points on a certain equilibrium
molecular-dynamic (MD) trajectory along which the
thermodynamic parameters of the system are invari-
able. In particular, by this method, the equation of state
for superheated crystals and characteristics of their
melting were calculated in [1–6].

When investigating nonequilibrium phenomena, we
cannot use a set of points in a single MD trajectory for
averaging a desired quantity. In this case, it is necessary
to consider an ensemble in a certain sense of indepen-
dent trajectories. Formation of such an ensemble repre-
sents a nontrivial problem whose solution depends on
specific features of the nonequilibrium process.

In this paper, the method of molecular dynamics is
applied for simulating a homogeneous-nucleation pro-
cess (formation of nuclei) in a superheated crystal. Spe-
cific features of the simulation are considered, which
are associated with a finite calculation accuracy and
instabilities of trajectories inherent in many-particle
dynamical systems. An approach is proposed for aver-
aging the calculated data, which allows us to obtain the
estimates of such physical parameters as the rate and
the activation energy of homogeneous nucleation.

THE MODEL AND CALCULATION METHOD

The system under study represents a face-centered
crystal of particles whose interaction energy is deter-

mined by a soft-repulsion potential U = ε . The

uniformity of the potential makes it possible to describe

σ
r
--- 

 
n
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the thermodynamic state of the system by a single nor-
malized parameter

where ρ is the density, m is the atomic mass, kB is the
Boltzmann constant, and T is temperature [7, 8]. In this
case, the virial theorem is valid, according to which

(n + 2)K = nE + 3PV, where K =  and E are the

average kinetic and total energies of the system, P is
pressure, V is the volume of the system, and N is the
number of particles in it.

The model system contained N particles in a basic
cubic cell of the volume. The calculations were carried
out for N = 108, 256, 500, and 864 with periodic bound-
ary conditions. For the numerical integration of classi-
cal equations of motion, the Euler–Störmer calculation
scheme of the second order of accuracy was applied [9].
The integration step h varied within the range 0.001–

0.01 here and below, normalized units are employed,

in which ε = σ = m = 1 and time is expressed in units of

. The energy E in the process of calculations

is, on the average, constant.

The initial configuration of the system was an ideal
face-centered lattice in which particles possessed arbi-
trary velocities. Then, the system dynamics were calcu-
lated for a number of steps until the particle-velocity
distribution became Maxwellian. Starting parameters
were adjusted in such a manner that in the thermody-
namic-equilibrium state, the density and temperature of
the system corresponded to a stable solid crystal. After-
wards, gradual heating was carried out, namely, the par-
ticle velocities were simultaneously scaled: v 
(1 + δ)v, where 0 < δ ! 1. Then, 104 steps were calcu-
lated, each of them being h = 0.001. The procedure was
then repeated. As a result, the temperature of the system
became higher than the melting temperature of a solid
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Fig. 1. Fluctuations of the mean kinetic energy K of parti-
cles as a function of time t for two MD trajectories calcu-
lated at the same initial conditions with different integration
steps h for N = 500 particles in a cell: (a) h = 0.0021;
(b) 0.002. The onset and the end of the transition region cor-
respond to the appearance of a critical nucleus and to the
complete disordering (melting) of the MD system. Arrows
indicate the values of lifetimes τ of the ordered metastable
configuration. n = 12 and X–1 = 1.308 ± 0.003.
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Fig. 2. (a) Lifetimes τ of a superheated metastable ordered
structure for M = 100 various MD trajectories calculated for
the same initial configuration with a different step h of
numerical integration; (b) is the number of MD trajectories
p(τ), for which the melting occurred within the time interval
from τ to τ + ∆τ (∆τ = 5); n = 12, X–1 = 1.308 ± 0.003.
crystal with a given density. By this method, the system
was transformed into a metastable state. The pressure P
in the system was determined according to the values of
E and T.

The lifetime of an ordered phase in a metastable
state is finite as far as the system becomes unstable with
respect to the formation of nuclei of a new disordered
(liquid) phase. The probability of the formation of a
critical nucleus in the system is higher the larger the
degree of superheating. On the basis of the results of
[6], superheating degrees were chosen for which the
decomposition of the ordered crystalline structure
(melting) proceeded for the times of the MD simulation
(103–106 steps).

RESULTS AND THEIR ANALYSIS

The melting process was analyzed from the stand-
point of both the position of particles in a cell and the
dependence of the mean kinetic energy of particles
(temperature) on time. For isochoric melting, the tem-
perature of the system decreases when forming and
growing a critical nucleus (Fig. 1). The onset and the
end of the transition region correspond to the appear-
ance of a critical nucleus and the moment of complete
disordering of the system of particles. The calculation
of the dynamics of the MD system beginning from a
certain initial configuration allows us to determine the
lifetime τ of the ordered metastable state.

The value of τ must be dependent only on the initial
configuration of a system, since, in the case of certain
initial conditions, the single solution of the Cauchy
problem exists for a system of classical differential
equations of motion determining the evolution of the
MD model under consideration. However, while per-
forming numerical MD calculations, it turned out that
the calculations with various steps of numerical inte-
gration for the same initial configuration of the system
yielded completely different values of τ. The values of
τ obtained as a result of the calculations even with very
close values of h can differ by several times (Fig. 1).

At the same time, the analysis of values of τ for an
ensemble consisting of M trajectories of the system,
which had been calculated for equal initial conditions
with different h, has shown that the distribution p(τ) is
independent of the interval of values of the numerical
integration step h for which the trajectories were calcu-
lated (Fig. 2a). An example of the distribution p(τ) is
shown in Fig. 2b. The shape of the distribution virtually
does not vary for M ≥ 40. The existence of similar dis-
tributions is evidence that even for quite definite initial
conditions, the calculation can yield only probabilistic
characteristics of the nonequilibrium process under
consideration. The maximum of the distribution p(τ)
corresponds to the most probable value of the lifetime
τ* of the ordered metastable state.
DOKLADY PHYSICS      Vol. 47      No. 9      2002
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Such an independence of the result for p(τ) on the
integration step with the values of τ dispersed by more
than an order of magnitude for various h is associated,
first of all, with the strong instability of phase trajecto-
ries. This is intrinsic to many-particle systems in which
any arbitrarily small perturbation exponentially
increases with time.

In connection with this, the concept of the dynamic-
memory time is introduced. It can be interpreted as a
time interval for which an MD trajectory calculated
with the step h loses the correlation with a hypothetical
exact dynamic trajectory of a system for the same initial
conditions. It was shown in [10] that for a broad class
of many-particle dynamical systems, the time of the
dynamic memory only logarithmically increases with
the accuracy of numerical integration and can be
increased only twice with the employment of refined
high-order numerical schemes. Therefore, the improve-
ment of the accuracy of numerical integration does not
affect the results obtained.

For the system under consideration, the time of
dynamic memory is on the order of 5. The trajectories
calculated with different integration steps completely
lose the correlation for a time period of the same order.
In the calculations performed, the nucleation processes
at melting started, in the overwhelming majority of
cases, at larger and larger times. Therefore, the MD tra-
jectories calculated for the same initial conditions with
a different integration step are independent, and distri-
butions p(τ) are equivalent to those over the ensemble
of initial microstates corresponding to the same degree
of superheating (i.e., having the same values of the den-
sity and temperature). Along with the distribution p(τ),
we can construct distributions of the number of trajec-
tories m(τ) in which none of the critical nuclei have
been formed by the time τ (Fig. 3). The distributions
p(τ) and m(τ) can be obtained one from the other.

The decomposition of metastable configurations
occurs as a result of the formation of nuclei. If we
assume that the probability λ of the formation of a
nucleus in the system is independent of time, then the
nucleation can be described within the framework of
the Poisson random process [2]. In this case, the prob-
ability P0 that there are no critical nuclei in the system
by the time τ exponentially decreases with time: P0(τ) =
exp(–λτ). The obtained distributions m(τ) are well

described by this formula:  ≈ P0(τ) (Fig. 3). This

testifies to the fact that the model of the Poisson random
process is adequate to the MD system under consider-
ation. A similar situation is characteristic of the process
of homogeneous nucleation for various phase transi-
tions. This situation was observed experimentally, e.g.,
the histogram presented in [2] (similar to that in Fig. 3)
was obtained in the experiments on crystallization of
supercooled tin drops. The shape of the histogram also

m τ( )
M

------------
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confirms the validity of the model of the Poisson ran-
dom process.

The most probable lifetime of the ordered metasta-
ble structure is τ* = λ–1. Note that the values of λ and,
consequently, also those of τ* are determined from the
distribution m(τ) (Fig. 3) more exactly than from the
distribution p(τ) (Fig. 2). The distributions m(τ), which
were used for the determination of the values of τ*, had
been calculated for certain values X–1 of superheating.
However, τ* is inversely proportional to the size of the
model system: the greater the number of particles N, the
larger is the number of independent centers of possible
nucleation, and, consequently, the smaller τ*. The
nucleation rate J = (τ*V)–1, which has the sense of the
mean number of nuclei formed per unit time per unit
volume, is the quantity independent of the system size.
The nucleation rate is a physical parameter that charac-
terizes the melting of a superheated crystal; this param-
eter can be determined from both the MD calculations
and experiments. In the general case, J = J(P, V, T). In
the case of a system of particles whose interaction
obeys a homogeneous potential, we can show that the

combination  depends only on X–1; i.e.,

J/ρ(8 + n)/6 = f(X–1).

J

ρ 8 n+( )/6
-----------------
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Fig. 3. Distributions m(τ) for the number of metastable
ordered configurations not decomposed to the time moment
τ. The configurations belong to the ensemble of M trajecto-
ries calculated with a different step of numerical integration
in the case of two superheatings: (1) X–1 = 1.3013 (M = 50,
N = 500); (2) X–1 = 1.2993 (M = 40, N = 256); (3) approxi-

mation m(τ) = Mexp , according to which τ* = 16.4 ±

0.5 for (1) and τ* = 62 ± 3 for (2); n = 12.
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Such a dependence was constructed within the
range of values 1.28 < X –1 < 1.31 for a potential with
n = 12 (Fig. 4). The value X –1 = 1.23 corresponds to
the melting point. The temperature T (average kinetic
energy) of the system prior to the melting onset was
determined by averaging over MD trajectories until
the moment τ. Furthermore, the temperature was aver-
aged over various trajectories with different integra-
tion steps h. This allowed us to plot the calculation
errors in Fig. 4.

The exponential increase in the observed nucleation
rate with the superheating can be described by the the-
ory of a steady-state homogeneous nucleation. Accord-

ing to this theory, J = J0exp , where W is the

work spent for the formation of a critical nucleus. The
approximation of the calculated points by the above
dependence yields an estimate of the quantity W within
the superheating range under discussion: W = (24.5 ±
3.3)ρ4. In this case, the value of J0 is determined with a
significantly higher error: J0 = [(5.7 ± 2.6) × 1010]ρ10/3.

A separate issue relates to the critical nucleus size.
According to visual estimates, within the superheating

–
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Fig. 4. Values of the combination  calculated for

the case of an interparticle potential with n = 12 as a func-
tion of the parameter X–1 for a different number of particles
in a calculation cell: (1) N = 108 (ρ = 1.08145); (2) N = 108
(ρ = 1.03030); (3) N = 256 (ρ = 1.08145); (4) N = 500 (ρ =
1.08145); (5) N = 864 (ρ = 0.78917); and (6) approximation

J = J0exp .

J
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--------------------

–
W

kBT
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range under consideration, the number of particles is on
the order of 100–200, which agrees with the results
of [5]. For N = 108, the question on the appearance of
such a nucleus is meaningless. In this case, the melting
mechanism likely corresponds to the cooperative
decomposition process. Despite this fact, the calcula-
tion results for the nucleation rate J in the case of
108 particles well agree with those obtained in calcula-
tions with a larger number of particles.

The dashed line in Fig. 4 can be continued to the
right up to a certain limiting value Jmax. An estimate of
the maximum nucleation rate Jmax can be obtained
from the following considerations: the minimum char-
acteristic time in a system corresponds to the mean
vibration period tmin for lattice nodes (on the order of
unity, whereas the values of τ* obtained in the calcu-
lations are equal to 10–100). The minimum character-
istic volume is vmin = ρ–1, thus, Jmax = (tminvmin)–1. The
corresponding value (X–1)max ≈ 1.37 ± 0.02 (superheat-
ing of 50%) determines a kinetic limit of the solid-
phase stability. The error is estimated by the accuracy
of the extrapolation over X–1 for a chosen value
of Jmax .

In the literature [11–14], the consistency of various
stability criteria is now being discussed. The prelimi-
nary results of [15] show that, in our case, the thermo-
dynamic, mechanical, and kinetic stability limits yield
close values of (X–1)max .

ACKNOWLEDGMENTS

The authors are grateful to M.N. Krivoguz for fruit-
ful discussions and V.S. Vorob’ev and I.L. Iosilevskiœ
for their interest in this study.

This work was performed according to the pro-
gram of Russian Academy of Sciences “Physics and
Chemistry of External States.” It was supported by the
Russian Foundation for Basic Research, project
no. 00-02-16310a and [for one of the authors (V.S.)]
project no. 01-02-06384/02-02-06654mas, as well as
by the program “Integratsiya,” project nos. Yu0022 and
IO661.

REFERENCES

1. V. G. Baœdakov, A. E. Galashev, and V. P. Skripov, Fiz.
Tverd. Tela 22, 2681 (1980) [Sov. Phys. Solid State 22,
1565 (1980)].

2. V. P. Skripov and V. P. Koverda, Spontaneous Crystalli-
zation of Supercooled Liquids (Nauka, Moscow, 1984).

3. J. Wang, J. Li, S. Yip, et al., Physica A (Amsterdam) 240,
396 (1997).

4. J. Solca, A. J. Dyson, G. Steinebrunner, et al., J. Chem.
Phys. 108, 4107 (1998).

5. Z. H. Jin, P. Gumbsch, K. Lu, and E. Ma, Phys. Rev. Lett.
87, 055703 (2001).
DOKLADY PHYSICS      Vol. 47      No. 9      2002



HOMOGENEOUS NUCLEATION IN A SUPERHEATED CRYSTAL 671
6. M. N. Krivoguz and G. É. Norman, Dokl. Akad. Nauk
379, 177 (2001) [Dokl. Phys. 46, 463 (2001)].

7. W. G. Hoover, G. Stell, E. Goldmark, and G. D. Degani,
J. Chem. Phys. 63, 5434 (1975).

8. L. D. Landau and E. M. Lifshitz, Statistical Physics
(Nauka, Moscow, 1976, 1995; Pergamon Press, Oxford,
1980), Part 1.

9. A. A. Valuev, G. É. Norman, and V. Yu. Podlipchuk, in
Mathematical Simulation. Physicochemical Properties
of Substances, Ed. by A. A. Samarskiœ and N. N. Kalitkin
(Nauka, Moscow, 1989), pp. 5–40.

10. G. É. Norman and V. V. Stegaœlov, Zh. Éksp. Teor. Fiz.
119, 1011 (2001) [JETP 92, 879 (2001)].
DOKLADY PHYSICS      Vol. 47      No. 9      2002
11. K. Lu and Y. Li, Phys. Rev. Lett. 80, 4474 (1998).
12. V. P. Skripov and M. Z. Faœzullin, Teplofiz. Vys. Temp.

37, 814 (1999).
13. V. I. Zubov, N. P. Tretiakov, and J. N. Teixeira Rabelo,

Mol. Mater. 13, 349 (2000).
14. B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde,

and S. I. Anisimov, Phys. Rev. B 65, 092103 (2002).
15. M. N. Krivoguz, G. É. Norman, and V. V. Stegaœlov, Tr.

Inst. Teplofiz. Ékstrem. Sostoyaniœ, No. 4-2001 (OIVT
RAN, Moscow, 2001), pp. 145–150.

Translated by T. Galkina



  

Doklady Physics, Vol. 47, No. 9, 2002, pp. 672–676. Translated from Doklady Akademii Nauk, Vol. 386, No. 1, 2002, pp. 38–42.
Original Russian Text Copyright © 2002 by Kravchenko, Pustovo

 

œ

 

t.

                                    

TECHNICAL 
PHYSICS

        
A New Class of Weight Functions and Their Spectral Properties
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Digital processing that uses weight functions (win-
dows) is employed in practice for controlling physical
effects that arise in the case of the existence of side
lobes while estimating signal spectra. In this paper,
starting from the concepts and results previously pub-
lished in [1–4], we develop and substantiate a new
method of constructing synthesized weight functions
(windows). This method is based on the combination
(direct product) of so-called atomic functions (AF)
fupn(x) with classical Gauss functions, Bernstein–
Rogozinskiœ functions, and Dolf–Chebyshev functions.
The results obtained in the course of numerical experi-
ments prove the efficiency and reliability of the method
proposed in solving problems of signal spectral analy-
sis compared to the method of classical windows.

ATOMIC FUNCTIONS fupN(x)
The finite function fupN(x) is the fractional compo-

nent of the function up(x) [1–4] and is determined as

(1)

For calculating its value, it is convenient to take a finite
number of terms of an infinite product and use an
expansion into a Fourier series

(2)
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In this case, we have no need of calculating improper
integral (1).

OPERATIONS OF THE DISCRETE FOURIER 
TRANSFORMATIONS 

AND OF THE CONVOLUTION

The Fourier transformation of a continuous signal
f(t) is written out as

and its approximation within a finite interval [discrete
Fourier transformation (DFT)] has the form

(3)

The product of two functions within a time region is
equivalent to the convolution of their Fourier trans-
forms written out in the frequency form

or in the discrete form

This property is useful in the determination of spectra
for windows being synthesized according to known
Fourier transforms of initial weight functions.

NEW SYNTHESIZED WINDOWS

As is well known, in signal analysis, two problems
are solved: namely, problems of detection and of esti-
mation. The detection implies a search for an answer to
the question of whether a given signal with known
parameters at a given time is observed. The estimation
implies the determination of parameters of a certain
signal. At the same time, the spectrum of an initial sig-
nal is rarely composed of only frequency components
that we are interested in and often contains overlapping

F ω( ) f t( ) jωt–( )exp t,d
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noise. To simplify solving the above problems, signals
usually are decomposed into their basis components. To
this aim, the expansion in terms of basis functions, i.e.,
simple periodic functions sinx and cosx, which corre-
sponds to the classical Fourier transformation, is used.
In practice, when employing modern computers, we
usually present signals as sequences of equidistant
readings taken in a finite time interval. The choice of a
finite interval and an orthogonal trigonometric basis
results in a parasitic effect of the infiltration of spectral
components (see [5, 6]). This implies that from the
entire frequency continuum, only frequencies coincid-
ing with that of the basis vector are exactly projected
onto only one vector, whereas all other frequencies are
projected onto all basis vectors. When using the Fourier
transformation, we assume that the function under con-
sideration is periodic and has a period equal to the
observation period. At the same time, if the signal
period is not multiple to the observation interval, the
signal will have discontinuities at the interval ends. In
order to avoid this obstacle, weight functions (win-
dows) are applied. They make it possible to decrease
the spreading of spectral components, which is caused
by the finiteness of the observation interval. The basic
effect of the windows manifests itself in the fact that
they allow the values of a function and of its derivatives
at the interval ends to be adjusted. For estimation of the
weight functions (windows), the following physical
characteristics are applied [6].

1. The equivalent noise band

2. The correlation of overlapping segments

3. The parasitic amplitude modulation (AM)

4. The maximum transformation loss
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5. The maximum level of side lobes

where {θk} are points of local maxima (except of θ0);
6. The bandwidth for the 6-dB level

k6 = 2θ,

where θ is the maximum frequency such that

 = 6;

7. The coherent amplification

8. The quality functional of the new weight func-
tions for the determination of the optimal weight func-
tions (windows) is

The procedure of constructing the quality functional
involves several stages. At the first stage, we determine
necessary physical parameters for windows according
to the above relationships 1–7. At the second stage, we
determine the value of J(w) for particular weight func-
tions. Then, the quality functional takes the following
form:

(4)

where we is the reference window with the parameters
required: k4 = 3 dB, k5 = –100 dB, and k7 = 0.5.

Analytical expressions for the determination of the
discrete-temporal Kravchenko windows are presented in
Table 1. Their physical parameters are given in Table 2.
The figure shows logarithmic amplitude–frequency
characteristics for certain synthesized weight functions.
Time and amplitude (at the left) and the frequency
(radians) and amplitude logarithm (at the right) are
plotted along the x and y axes, respectively. The win-
dows given in Tables 1 and 2 are normalized to the
value w(0) so that their maximum value is unity. The

definition region is n ∈  . In Table 2, charac-

teristics of a number of known classical windows are
presented:

1. Gaussian window Gα(t) = exp .

2. Bernstein–Rogozinskiœ window B(t) = .
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Table 1.  New synthesized Kravchenko windows

Window Discrete temporal function

Kravchenko ( ) w(n) = (2n/N)

Kravchenko–Gauss (K2G3) w(n) = fup2(2n/N) · G3(2n/N)

Kravchenko–Bernstein–Rogozinskiœ ( BR) w(n) = (2n/N) · B(2n/N)

Kravchenko ( ) w(n) = (2n/N)

Kravchenko–Gauss ( G3) w(n) = (2n/N) · G3(2n/N)

Kravchenko–Bernstein–Rogozinskiœ ( BR2) w(n) = (2n/N) · B2(2n/N)

Kravchenko–Dolf–Chebyshev (K4Ch3.5) w(n) = fup4(2n/N) · D3.5(2n/N)

Kravchenko–Gauss ( G3) w(n) = (2n/N) · G3(2n/N)

Kravchenko–Bernstein–Rogozinskiœ ( BR2) w(n) = (2n/N) · B2(2n/N)
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Kravchenko ( ) 1.9861 4.2498 0.8518 3.8318 –51.6112 2.6276 0.3610 0.3883

Kravchenko–Gauss (K2G3) 1.9643 4.7297 0.8781 3.8101 –68.8390 2.6276 0.3614 0.2469
Kravchenko–Bernstein–Rogozinskiœ 

( BR)

1.7411 8.6540 1.0856 3.4939 –55.1020 2.2234 0.4166 0.2565

Kravchenko ( ) 1.6295 12.2556 1.2596 3.3801 –52.1313 2.2234 0.4371 0.2610

Kravchenko–Gauss ( G3) 2.0415 3.7429 0.8156 3.9152 –74.8054 2.6276 0.3467 0.2505

Kravchenko–Bernstein–Rogozinskiœ 

( BR2)

1.8126 6.8755 0.9986 3.5816 –62.1117 2.4255 0.3998 0.2213

Kravchenko–Dolf–Chebyshev (K4Ch3.5) 1.8007 7.3910 1.0249 3.5793 –74.9523 2.4255 0.3988 0.1410

Kravchenko–Gauss ( G3) 1.9598 4.8492 0.8844 3.8066 –70.2968 2.6276 0.3611 0.2377

Kravchenko–Bernstein–Rogozinskiœ 

( BR2)

1.7336 8.6977 1.0859 3.4753 –51.1199 2.2234 0.4201 0.2896

Gauss, α = 3 1.7017 10.1829 1.1632 3.4721 –56.0922 2.2234 0.4166 0.2454
Gauss, α = 3.5 1.9765 4.6147 0.8702 3.8292 –71.0006 2.6276 0.3579 0.2413
Hamming 1.3638 23.3241 1.7492 3.0967 –45.9347 1.8191  0.5395 0.2996
Blackman–Harris (4-term) 2.0044 3.7602 0.8256 3.8453 –92.0271 2.6276 0.3587 0.1656
Nuttall (4-term) 1.9761 4.1760 0.8506 3.8087 –97.8587 2.6276 0.3636 0.1475
Dolf–Chebyshev, α = 3.5 1.6328 11.8490 1.2344 3.3636 –70.0161 2.2234 0.4434 0.1174
Bernstein–Rogozinskiœ 1.2337 31.8309 2.0982 3.0103 –23.0101 1.6170 0.6366 0.6674
Kaiser–Bessel, α = 3 1.7952 7.3534 1.0226 3.5639 –69.6568 2.4255 0.4025 0.1654
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3. Dolf–Chebyshev window Dα(n) = F−1[Wα(n)], 

The passage from the continuous to the discrete time
was performed in the following way. First, the initial
window w(x) was subjected to discretization over time

Wα n( ) 1–( )n

N βα π n
N
---- 1

2
---– 

 cos 
 arccoscos

N βα( )cosh
1–[ ]cosh

------------------------------------------------------------------------------------,=

βα
1
N
---- 10α( )cosh

1–
.cosh=
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w[nT] = w(t)|t = nT . Since the quantity T (discretization
period) is constant, we denote the discrete window as
w[n]. Furthermore, we applied to the obtained discrete
window w[n] the discrete Fourier transformation
(DFT). In the case when the number of discretization
points is multiple to 2k, we used the fast Fourier trans-
formation (FFT)

where ωk =  is the discrete frequency.

W ω( ) F w nT[ ][ ] w n[ ]
n 0=

N 1–

∑ jωnT–( ),exp⋅= =

2π
N
------



676 KRAVCHENKO, PUSTOVOŒT
A NUMERICAL EXPERIMENT

We now analyze the most typical physical character-
istics of the proposed and substantiated weight func-
tions. As follows from Table 2, new synthesized
Kravchenko windows constructed on the basis of
atomic functions fupN(x) have a reasonably low level of
side lobes at the acceptable width of the main lobe
according to the 6-dB level. Values of the maximum
transformation loss vary from 3.38 to 3.92 dB, which is
a significant milestone in the analysis of signals of dif-

ferent physical nature. The  Kravchenko–Gauss
window (comparable in this case with the 4-term
Blackman–Harris window) has the maximum equiva-
lent noise band. The minimum value of the equivalent

noise band is attained for the  Kravchenko weight
function, which is close to the Dolf–Chebyshev win-
dow (α = 3.5). The quality functional J(w) allows for an
effect of the three most important parameters: maxi-
mum transformation loss, maximum level of side lobes,
and coherent amplification. Kravchenko–Dolf–Cheby-
shev windows (K4Ch3.5, K4Ch3) and Kravchenko–

Bernstein–Rogozinskiœ windows ( BR2) correspond
to the minimum values of J(w) and therefore have a low
level of side lobes, small transformation loss, and good
coherent amplification.

K4
2G3

K4
4

K4
2

The numerical experiment and physical analysis of
its results has demonstrated that the new synthesized
windows, i.e., Kravchenko, Kravchenko–Gauss,
Kravchenko–Bernstein–Rogozinskiœ, and Kravchenko–
Dolf–Chebyshev windows are highly competitive by
their physical parameters with classical windows and
even exceed them by certain parameters. These results
may be considered as basis ones while performing
spectral digital processing of multidimensional signals
with Doppler radars, as well as in radar stations with
synthesized-aperture antenna.
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An elastic half-space containing a set of N flat hori-
zontal cracks and executing steady vibrations is consid-
ered. Similar problems are of interest for engineering
geology, geophysics, seismology, etc.

In this paper, the effect of certain factors such as
spacings between neighboring cracks and crack-system
occurrence depth on the wave-process localization is
revealed.

1. We suppose that in a rectangular coordinate sys-
tem (x1, x2, x3), where the plane x1ox2 is parallel to the
half-space surface and the axis ox3 is directed upwards,
cracks are situated in planes parallel to x1ox2 at the
heights h1, h2, …, hN (h1 < h2 < … < hN) and occupy sim-
ply connected regions Ωl, l = 1, 2, …, N. These simplest
irregularities among those localizing a wave process in
the half-space are defined, in terms of [1–3], as an
(N + 1)-level vibration-strength virus of class 2 and of
the type S, which is denoted by V(2/h1; S1/…/hN;
SN/hN + 1; ∞/). The elastic medium is characterized by
the Lamé constants λ, µ and by the density ρ.

We denote the displacement amplitudes in the cross
sections x3  ±hl for a given frequency ω and the
amplitudes of stresses acting on the boundaries x3 = hl

of cavities by  = ( , , ) and tl = (τl1, τl2, τl3),
respectively.

The relationship between displacements and
stresses in the crack planes for an elastic layer with
plane-parallel boundaries (x3 = h0 and x3 = hN + 1) is
expressed in the matrix form [3] as

(1)

Here, the following notation is introduced:  =

, Tl = {Tl, m}, m = 1, 2, 3, l = 0, 1, …, N. Taking

ul
± ul1

± ul2
± ul3

±

Ll
±Ul

± Ll 1+
± Ul 1+

±– Dl
±Tl Dl 1+

± Tl 1+ .–=

Ul
±

Ul m,
±{ }
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into account the character of the irregularities under con-

sideration, we assume hereinafter that Tl =  = ,

where V is the two-dimensional Fourier transform ope-
rator;

Here, the following denotations are used:

The system of operator equations (1) is equivalent to
a system of integral equations of the first kind.

Within the framework of the developed approach, it
is easy to turn to the consideration of an elastic half-
space with an array of cracks. For constructing a matrix
representation of the system of integral equations in the
case of half-space x3 ≤ hN + 1, it is sufficient to formally

Tl
+ Tl

–

Ul m,
± α1 α2,( ) Vum

± x1 x2 hl, ,( ),=

Tl m, α1 α2,( ) Vτm x1 x2 hl, ,( ),=

Ll
±

=  

α1α31e
iα31hl±

± α2α31e
iα31hl±

± se
iα31hl±

α2α32e
iα32hl±

± α1α32e
iα32hl±

+− 0

2s α2
2+( )e

iα32hl±
α1α2e

iα32hl±
– 2α1α32e

iα32hl±
+− 

 
 
 
 
 

,

Dl
± i

µ
---

α1

2
-----e

iα31hl± α2

2
-----e

iα31hl± α± 31

2
-----------e

iα31hl±

α2e
iα32hl±

α1e
iα32hl±

– 0

α± 32e
iα32hl±

0 α1e
iα32hl±

– 
 
 
 
 
 
 

.=

α2 α1
2 α2

2, s+ 0.5γ2
2 α2,–= =

α31 γ1
2 α2– , α32± γ2

2 α2– ,±= =

γ1
ω
ν1
-----, γ2

ω
ν2
-----, ν1

λ 2µ+
ρ

----------------, ν2
µ
ρ
---.= = = =
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exclude the terms with , k = 1, 2 and  in
relationships (1) for l = 0:

(2)

The system obtained can be rewritten in the form
resolved in terms of Tl, l = 1, 2, …, N + 1. Using the

denotation Ul =  – , we obtain the matrix form of
the system

(3)

where 

e
iα3kh0±

e
iα3kh1

L1
–U1

– D1
–T1,=

L1
–U1

+ L2
–U2

–– D1
–T1 D2
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+U2
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+T1 D2
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– UN

+ LN 1+
– UN 1+

–– DN
– TN DN 1+
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Fig. 1. Function of the determinant modulus for AN at N =

2, ε = 0.3: (1) γ2h12 = γ2h23 = , (2) ; (3) π. β ∈  [0; 1.5].
π
3
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3
------

Fig. 2. Function of the determinant modulus for AN at

N = 2, ε = 0.3, γ2h12 = , γ2h23 = (1) ; (2) ; (3) π.

β ∈  [0; 1.5].

π
3
--- π

3
--- 2π

3
------
Here,  = ,  = , m < k,

M =  – , k, l, m = 1, 2, …, N.

It is evident that  = .
Then, we can write out

(4)

2. Methods for calculating the determinant of the
matrix AN are analyzed in [4]. Thus, the study of the
properties of the matrix determinant of system (3) for
the half-space with a set of N flat horizontal cracks is
formally reduced to the previously considered case for
an elastic half-space with N + 1 cracks. Extra factor (4)
contains the known Rayleigh function and has the real-
valued zero ξR . By virtue of the complexity of func-
tion (4), analytically investigating the distribution of its
zeros seems to be impossible.

The results of the numerical investigation of the
matrix determinant AN are shown in the graphic repre-
sentation in Figs. 1 and 2. From the analysis of these
results, the following conclusions can be drawn: The
number of real zeros increases with vertical distance
between neighboring cracks. The change in the dis-
tance between cracks, which is a multiple of the half-
length of the transverse wave in the medium, gives rise
to an additional real-valued zero. The crack-system
deepening affects the number of real-valued zeros of
the determinant in a similar manner. In addition, the
determinant of the system matrix SN has the zero ξR and
two branch points as real-valued singularities. Upon
passing to dimensionless coordinates, the branch points

will be β = ε, 1, where β = , ε = .

SN GN
1– AN ,=

GN
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Figure 1 shows the modulus of the determinant AN

for N = 2, ε = 0.3 in the cases of γ2h12 = γ2h23 = 

(curve 1), γ2h12 = γ2h23 =  (curve 2), and γ2h12 =

γ2h23 =  (curve 3). Figure 2 corresponds to N = 2, ε =

0.3, γ2h12 =  in the cases of γ2h23 =  (curve 1), γ2h23 =

 (curve 2), and γ2h23 = π (curve 3).
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Theory of multiple overlap of severe strains [1]
allows us to analyze crack growth for finite strains of a
body made of viscous elastic material on the basis of
subsequently merging micropores and secondary
cracks with the main crack. To do this, a criterion for
the breakage of a wall between the main crack and a
secondary crack or a micropore merging with the main
crack is necessary, as well as a criterion for the forma-
tion (opening) of micropores in the course of the defor-
mation process. We should note that for finite strains,
the models of the viscous growth of cracks in bodies
made of a viscous elastic material have not been con-
sidered previously.

One of the versions of such criteria, namely, “aver-
aging” criteria is proposed in this paper. Generally
speaking, fracture criteria in the form of averaging the
criterion quantity both over space and over time (but
not for finite strains and for bodies made of a viscous
elastic material) are well known [2–4]. However, the
versions proposed here do not coincide with them.

In our opinion, in viscous elastic bodies (especially
for finite strains), we should take into account the his-
tory of the body deformation preceding the moment of
the intercrack-wall breakage or the micropore opening
within the time interval 0 ≤ t ≤ T. We propose the fol-
lowing criterion 

(1)

Here, K = K(σi) is the given function of σi if the force
criterion is employed (the use of the deformation crite-
rion also is possible); σi(xj , t), i = 1, 2, 3, j = 1, 2, 3, are
the principal values of the true-stress tensor (Cauchy
tensor); xj are the spatial coordinates; t is time; K01 is an
experimentally chosen (determined) material parame-
ter; and T is the time at which the strength analysis is
performed.

K τd

0

T

∫ K01≤ T .
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Criterion (1) can be used either for the determina-
tion of the moment T, at which, according to this crite-
rion, the onset of the intercrack-wall breakage (or the
micropore opening) occurs, or simply in the form of a
separate criterion of the intercrack-wall breakage (or
micropore opening).

We here repeat that, according to criterion (1), the
intercrack-wall breakage occurs while attaining a limit-
ing value of an averaged criterion quantity for a certain
finite time interval T, which we are interested in and
which is assigned by us (and involves the entire history
of loading). Among all the time moments t ≤ T being
analyzed, the equality in condition (1) is valid only at
the moment of the intercrack-wall breakage or opening
(formation) of a micropore at t = T.

Assuming K(σi) = σ1, we write out criterion (1) in
the form

(2)

where σ01 is an experimentally chosen (determined)
material parameter.

In addition, in our opinion, in viscous elastic bodies
(especially for finite deformations), the micropore
opening (formation) occurs not when the ultimate
strength is exceeded at a certain point but when the total
(integrated) level of the ultimate strength is exceeded
over the entire length (diameter) of a micropore. It
occurs when in the center of this (future) micropore, the
ultimate strength reaches its maximum, which deter-
mines the position of this center. Therefore, criterion (2),
as the criterion of the micropore opening in the loaded
body (for the plane problem), is supposed to be gener-
alized and used in the following form:

(3)

Here, D is the micropore length and σ02 is an experi-
mentally chosen (determined) material parameter.

While solving concrete problems of such a type, we
should probably choose the center of a future
micropore at the point corresponding to the distance of

σ1 τd

0

T

∫ σ01T ,<

x σ1 τd

0

T

∫d

1/2b–

1/2b

∫ σ02TD.<
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more than 0.5D from the tip of the main crack, where
σ1 reaches its largest value.

Employment of criterion (2) as a criterion of the
breakage of a wall between the main crack and the sec-
ondary crack or the micropore (the plane geometry)
allows us to write out this criterion in the following
form:

(4)

Here, AB = b is a distance between the main crack and
a secondary crack or micropore; x is the axis perpendic-
ular to the first principal direction of the true-stress ten-
sor (in the deformation plane); and σ03 is an experimen-
tally chosen (determined) material parameter.

Note that criteria (3) and (4) have different scale lev-
els so that usually b @ D.

Criteria (3) and (4) with account of criterion (1)
have the following form:

(5)

(6)

Finally, we note that in the general case, criterion (5),
which is the criterion of the micropore opening, can be
written as

(7)

where, as before, K = K(σi), K02 is an experimentally
chosen (determined) parameter, and Vc is the mean
micropore volume.

Thus, the opening (formation) of a micropore occurs
when the “total” (integrated) level of the ultimate
strength is exceeded over the entire volume Vc of a
micropore and, in the center of this (future) micropore,

x σ1 τd

0

T

∫d

A

B

∫ σ03Tb.≤

x K τd

0

T

∫d

1/2b–

1/2b

∫ K02TD,≤

x K τd

0

T

∫d

A

B

∫ K03Tb.≤

V K τd

0

T

∫d

0

Vc

∫ K02TVc,≤
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the ultimate strength reaches its maximum (which
determines the choice of the position of this center in
particular calculations).

The physical meaning of the averaging criteria pro-
posed by us can be speculatively substantiated by the
fact that a body cannot be fractured by a mechanical
field (external action) at a single point, since the
neighboring points inevitably should be involved in
the fracture process. This involvement is extended in
both time and space by virtue of the nonuniformity of
action of the mechanical field (also owing to the vis-
cous elastic processes among those occurring in the
body’s material).

It is worth noting that the averaging over the space
was realized in the fracture mechanics by introducing
an averaged coefficient of the stress intensity at a cer-
tain segment along the crack front [5]. As was indicated
in [5], an attempt to average the stress-intensity coeffi-
cient even along the entire length of the contour of the
surface semi-elliptical crack in a mechanical part being
calculated satisfactorily agrees with experimental data.
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The propagation of pressure waves in a liquid with
gas bubbles has been adequately investigated over the
last 30 years both theoretically and experimentally [1–5].
In particular, a nonlinear finite-duration perturbation in
a liquid with gas bubbles was shown to decompose into
solitary waves (solitons), whose evolution and structure
were studied in detail. The heat exchange between a gas
in bubbles and an ambient liquid was shown to be the
basic mechanism of wave dissipation in bubble media
over a wide range of their parameters. In [6, 7], the
structure and attenuation of solitary pressure waves
with moderate amplitude were investigated experimen-
tally in a liquid with gas bubbles uniform in size.
Allowance for the polydispersity of a gas–liquid
medium leads to additional attenuation of pressure
waves [8, 9]. New types of wave structures, multisoli-
tons in a liquid with gas bubbles of two different sizes,
were discovered in [10] for various ratios between the
bubble radii. The effect of the inhomogeneity of a gas–
liquid mixture and the compressibility of a liquid on the
structure of a pressure wave was investigated in [11, 12].
The structure of upward and downward bubble flows
was studied in [13, 14]. The gas phase is substantially
redistributed over the pipe cross section even for low
volume gas contents. Bubbles are almost entirely con-
centrated either in the central region of the pipe (down-
ward flow) or in the near-wall region (upward flow).

In this study, we experimentally investigated the
evolution and attenuation of moderate-amplitude pres-
sure waves in a liquid containing gas bubbles inhomo-
geneously (stepwise) distributed over a section trans-
verse to the wave-propagation direction.

The experiments were carried out in a shock tube.
Its active region is a 1.5-m-long vertical thick-walled
steel pipe with an inner diameter of 53 mm. A thin-
walled (30-µm-thick) Dacron pipe 37.5 mm in diameter
was arranged inside the active region. The Dacron pipe
was rigidly mounted by thin partitions to the active
region. This region was filled with a liquid and satu-
rated with gas bubbles by a generator arranged in the
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lower part of the pipe. The experiments were carried
out for three structures of the bubble medium. Bubbles
were supplied uniformly either over the cross section of
the entire active region, over the ring between the
Dacron pipe and the active-region wall (gas–liquid
ring), or inside the Dacron pipe (gas–liquid column).
The spread of gas-bubble sizes was equal to ±5%. The
mean bubble radius was equal to 0.53 mm. As a work-
ing liquid, we used the 50% (in mass) solution of glyc-
erin in distilled water. Freon 12 and nitrogen having dif-
ferent thermal diffusivities were used as a gas phase. A
volume gas–bubble fraction average over both cross
section and active-region length was determined from
the liquid-level increase in the active region upon intro-
ducing gas bubbles and was equal to 0.5% for all of the
experiments. The experiments were carried out at room
temperature and atmosphere static pressure P0 over the
level of the gas–liquid medium.

Bell-shaped pressure waves were generated by an
electromagnetic radiator arranged at the active-region
bottom. A signal is formed when a thin copper plate is
repulsed from the coil through which a current pulse
flows. The pressure-wave profiles were detected by six
piezoelectric pressure sensors arranged along the active
region. The sensor signals were applied to an analog-to-
digital converter and processed by a computer.

The experimental results showed that the inhomoge-
neous distribution of the gas phase over the pipe cross
section substantially affects the evolution and attenua-
tion of waves in bubble media. Figure 1 shows the time
dependence of pressure-wave profiles at various dis-
tances ï from the entrance of the wave into a liquid
with bubbles of a gas (Freon) with low heat conductiv-
ity for various structures of the medium and almost
identical amplitudes ∆P0 of the initial signal (∆P is the
wave amplitude or the first-oscillation amplitude for a
group of solitary waves and oscillating shock waves).
Comparison between the evolutions of waves in
Figs. 1a and 1b demonstrates that the displacement of
gas bubbles from the central part of the pipe to the near-
wall region with conservation of the volume gas-con-
tent average over the cross section considerably
increases the attenuation rate and qualitatively changes
the wave structure. Whereas solitary waves (solitons)
were isolated from the initial signal even at distance
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Profiles of the pressure wave in a liquid with Freon bubbles for X = (1) 0, (2) 0.25, (3) 0.76, and (4) 1.25 m and for (a) homo-
geneous medium where ∆P0 = (1) 0.272 MPa, ∆P = (2) 0.172, (3) 0.117, and (4) 0.068 MPa and (b) gas–liquid ring near the wall,
where ∆P0 = (1) 0.219 MPa, ∆P = (2) 0.195, (3) 0.072, (4) 0.031 MPa.
X = 0.76 m (Fig. 1a, curve 3) for the homogeneous dis-
tribution of bubbles over the pipe cross section, an
oscillating shock wave was formed near the pipe wall in
the gas–liquid ring (Fig. 1b, curve 3). The oscillating
shock wave is formed due to increasing dissipative
losses in the medium. It should be noted that the gas-
phase redistribution over the pipe cross section does not
change the frequency of oscillations in the wave. The
duration of the first oscillation corresponds to the reso-
nance oscillations of gas bubbles in the wave as for the
medium with homogeneously distributed bubbles.

When, instead of low heat-conducting Freon bub-
bles, homogeneously distributed nitrogen bubbles that
have higher heat conductivity and the same size and
volume gas content are used, waves with close initial
amplitudes are attenuated faster. This increase takes
place because the basic mechanism of wave dissipation
in a homogeneous bubble medium is thermal dissipa-
tion [3, 6].

When the wave amplitude increases, its attenuation
rate also increases. Due to this fact, oscillating shock
waves are formed from the initial signal for every struc-
ture of the gas–liquid medium.

We obtained experimental data on the velocity of
low-amplitude pressure waves in the medium with var-
ious distributions of gas bubbles. The speed of sound in
the gas–liquid medium was shown to be independent of
the degree of homogeneity of the gas-bubble distribu-
tion over the pipe cross section and to be determined by
the volume gas content average over the cross section.

The experiments showed that a solitary wave is
formed from the initial signal due to dispersion and
nonlinear effects in the gas–liquid ring near the wall or
DOKLADY PHYSICS      Vol. 47      No. 9      2002
in the gas–liquid column in the pipe center faster than
in the case of the homogeneous distribution of bubbles
in the liquid.

Figure 2 shows the attenuation rate of a pressure
wave (first oscillation) in a liquid with gas bubbles as a

0.1

0 4

∆P0

8 12 16 20

0.2

0.3

1
2
3

Fig. 2. Attenuation rate of the pressure wave in a liquid with
Freon bubbles as a function of its amplitude: (1) homoge-
neous medium, (2) gas–liquid ring near the wall, and
(3) gas–liquid column at the pipe center.
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function of wave amplitude at distance X = 1.25 m from
the entrance of the wave into the medium. It is seen that
the attenuation rate is independent of the bubble distri-
bution over the pipe cross section for high wave ampli-
tudes. As the wave amplitude decreases, points 1 and 2
in Fig. 2 are separated from each other. Therefore, the
inhomogeneity of the gas-phase distribution for Freon
bubbles in the liquid leads to additional attenuation
comparable with thermal dissipation. For the liquid
with nitrogen bubbles, attenuation rates for various
structures of the medium differ from each other much
weaker because thermal dissipation prevails for nitro-
gen bubbles. Additional dissipation due to the inhomo-
geneity of the bubble medium over the section perpen-
dicular to the wave-propagation direction can be caused
by the relative motion of gas bubbles in the liquid. The
effect of the relative motion of bubbles in a liquid for
homogeneous bubble media was first considered
in [15]. However, as was shown later in [3, 4], thermal
dissipation in homogeneous bubble media usually
dominates over viscous dissipation due to the relative
motion of bubbles. For bubble media substantially
inhomogeneous over the cross section, the relative
motion of bubbles in a wave occurs not only along the
wave propagation, but also in the transverse direction
towards a higher compressibility of the medium. This
motion increases the magnitude and changes the direc-
tion of the relative velocity of bubbles as compared to a
homogeneous medium and, correspondingly, increases
the attenuation rate. In addition, vortex structures can
be formed when the liquid moves in the pressure wave
due to the transverse component of the velocity of the
liquid and to the solid wall of the active region. The
presence of vortex structures also gives rise to addi-
tional attenuation of the pressure wave.

Thus, we showed that the distribution of gas bubbles
over the section transverse to the direction of wave
propagation can increase its attenuation. An attenuation
mechanism associated with the relative motion of gas
bubbles in a liquid and with the formation of vortex
structures in the wave was proposed.
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The swirl of a flow has long been used to increase
mass transfer. Numerous experimental data obtained in
this field are still processed and compared with each
other only by using empirical formulas [1–4]. In partic-
ular, the Sherwood number Sh is conventionally repre-
sented in terms of the rate-averaged Reynolds number
Re as [2]

(1)

Here, Sc is the Schmidt number; ν is the kinematic vis-

cosity of a fluid; d is the hydraulic diameter; U =  is

the rate-averaged velocity of a flow, where Q is the vol-

ume rate and Σ is the cross-section area Σ = πR2 for a

tube of radius R = ; and c and n are the empirical

parameters. However, in contrast to axial non-swirling
flows, the comparison [4] of experimental data [1–4]
for various set-ups and flow regimes did not reveal the
generalized character of Eq. (1) for swirling flows.

To verify the applicability of Eq. (1) to mass transfer
in swirling flows, we consider the problem of mass
transfer from a swirling flow to a microelectrode flash
mounted with the wall of a cylindrical tube of radius R
(corresponding measurements were reported, e.g.,
in [4]). In order to simplify the mathematical formula-
tion of the problem, we examine only axisymmetrically
developed flow regimes (turbulent pulsations and three-
dimensional effects are ignored). Let the distance z0
from the entrance of the cylindrical section to the
microelectrode be so small that the boundary layer
developed in this length is thin (its thickness δ ! R) and

Sh cRenSc1/3, Re
Ud
ν

-------.= =

Q
Σ
----




d
2
---
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only slightly affects the inviscid flow in the stream core.
We assume that mass transfer does not affect the hydro-
dynamics of the stream (the Schmidt number is
assumed to be constant and we do not discuss the
dependence of processes on it; let it be sufficiently large
and the diffusion layer be deep inside the boundary
layer). To describe the swirl motion of an electrolyte in
the tube, we consider the flow induced by the axisym-
metric vortex structure determining the inviscid stream
core. Let the vortex axis coincide with the cylinder axis
and the vortex core be of radius ε < R and consist of vor-
tex helixes, which have constant pitch 2πl and constant
axial vorticity component corresponding to the simple
velocity field [5]

(2)

where Γ is the vortex circulation, w0 is the velocity in
the stream axis, and wz and wϕ are, respectively, the
axial and tangential components of the velocity of the
inviscid flow. This solution (2) to the Euler equations
well describes experimental velocity profiles [6, 7] in
various swirling flows (see Fig. 1). Since Eq. (2)
involves the second velocity component associated
with flow swirl, it is necessary to consider the following
equations of the three-dimensional boundary layer [8]:

(3)

wϕ
Γ
r
---

r2

ε2
----, r ε<

1, r ε,≥
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wz w0
Γ
l
---

r2

ε2
----, r ε<

1, r ε,≥
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Fig. 1. Profiles of the (left panel) tangential and (right panel) axial velocity components for swirling flows with (a) jetlike [6] and
(b) tracelike profiles of the axial velocity component: LDA measurements for distances (closed circles) 3–4 and (open circles) 8–9
tube diameters from the swirler and (lines) approximation by Eq. (1).
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with the boundary conditions

Equations (3) were obtained by changing to the ref-
erence frame connected with the tube wall: the z axis is
oriented along the tube; the x axis coincides with the
tangential direction; y = R – r is the distance from the
tube wall in the radial direction; ux = uϕ, uy = –ur, and uz

are the velocity components in the boundary layer; and
wϕ(R) ≡ V and wz(R) ≡ W are, respectively, the tangen-
tial and axial velocity components of inviscid flow (2)

y 0: ux uy uz 0;= = = =

y ∞: ux wϕ R( ) V ;≡= =

uz wz R( ) W .≡=
on the tube wall. In addition, the curvature of the tube
wall (i.e., radial pressure gradient) was ignored, and we
took into account that all the characteristics of the flow
do not vary along the x axis, because the flow is axisym-
metric.

In view of the assumption that the inviscid flow does
not change up to the microelectrode, i.e, that V and

W are constant, we have  = 0 and, therefore, arrive

at the familiar problem for the boundary layer on a thin
plate with the grazing angle. The solution to this prob-
lem is expressed in terms of the solution to the Blasius
equation φ [8] as

∂p
∂z
------
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(4)

Therefore, the friction stresses on the tube wall have the
form

(5)

where µ is the dynamic viscosity and ρ is the fluid den-
sity.

Turning to the mass transfer processes within the
boundary layer with velocity field (4), we write the
equation of stationary diffusion in cylindrical coordi-
nates as

(6)

where the velocity components ur, uϕ, and uz within the
thin diffusion layer (R – r ! δ) can be expressed in
terms of the friction components given on the wall by
Eqs. (5):

(7)

Here, the equation for the radial velocity component ur

follows from the continuity equation.
Since the curvature of the diffusion layer is ignored,

it is possible to go over from the radial coordinate r to
the distance from the wall y = R – r, and the cylindrical
problem reduces in fact to the plane one. The further
simplification of Eq. (6) follows from the approxima-
tion of the diffusion boundary layer (longitudinal and
transverse molecular diffusions are ignored). As a result
and in view of Eqs. (7), Eq. (6) takes the form

(8)

Let us consider mass transfer on the surface of a ring
microelectrode flash mounted with the wall at the dis-
tance d0 from the entrance section. The second term in
the left-hand side of Eq. (8) can be neglected if the ratio

 is small, i.e., if the characteristic length of the vari-
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ance of the concentration c along the microelectrode
surface is small compared to the characteristic length of
varying the friction stress on the tube wall. Turning the
reference frame along the y-axis so that the z-axis coin-
cides with the local direction of the flow near the micro-
electrode, we represent Eq. (8) in the following form of
the familiar Leveque equation [9]:

By the change of variables η = y , this

equation is modified to the ordinary differential equa-
tion

As a result, the surface-average Sherwood number is
expressed as

(9)

The substitution of the friction components given by
Eqs. (5) into Eq. (9) provides

(10)

where the parameter

(11)

can be treated as an analog of the Reynolds number,
which is expressed in terms of the axial and tangential
velocity components of the main stream near the cylin-
der wall.

On the basis of the simplest generalization (10) of
the solution to the Leveque problem [9] for describing
local mass transfer in swirling flows, we can make the
following important remarks.

1. In spite of the simplicity of the model proposed
above, solution (10) quite correctly describes the varia-
tion of local mass transfer along the entrance region of
the mass transfer section. Figure 2 shows mass transfer

coefficients k =  both measured in [4] and calcu-

lated by Eq. (10) for fixed Re(V, W) (Fig. 3, solid line)
characterizing the flow for distances up to 5–6 tube
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diameters from a swirler, where the above assumptions
of the model are applicable.

2. Function (10) can be successfully applied to
describe the variation of local mass transfer not only in
the entrance region (where the model assumptions are
applicable) but also in the region with the developed
flow regime (dashed lines in Fig. 2 in the region from
10 to 30 tube diameters). In this case, Re(V, W) values are
different (dashed line in Fig. 3). This fact is also known
for non-swirling flows (V = 0). Although Eq. (1) deter-
mines the form of the exact solution (10) only in the
entrance tube region (W = U), Isaev et al. [10] empha-
sized that functions similar to Eq. (1) can be success-
fully applied to generalize experimental data on mass
transfer in developed, laminar, and turbulent flows. In
non-swirling flows, this is the fact because the rate-
average Reynolds number is a universal similarity
parameter even though the laws of varying friction on
the wall are different for different flow regimes. For this
reason, mass transfer in these flows is well described by

30
0

k × 106, ms–1

z
5 10 15 20 25 30 35

90

210

270

150

8850
13285

22140
17715

Re

Fig. 2. Mass-transfer coefficients k both measured in [4] and
calculated by Eq. (10).

d

Parameter Re(V, W) for the fixed rate-average Reynolds num-
ber Re = 2.8 × 105

Vortex type S

Set-up with rotating honeycomb section as a swirler [6]

Right-handed 0.5 0.85 0.58 0.966

Right-handed 1.0 0.79 1.13 1.145

Set-up with axial-tangential input [7]

Right-handed 0.1 0.91 0.19 0.923

Right-handed 0.35 0.97 0.41 1.025

Left-handed 0.7 1.12 0.70 1.25

W
U
----- V

U
----

Re V W,( )

Re
------------------
Eq. (1) with different values of empirical parameters c
and n.

3. Comparison [1–4] of mass transfer processes in
swirling flows in terms of Sherwood number (1) repre-
sented as a function of the rate-averaged Reynolds
number is incorrect. This conclusion is clear from the
table, where the relative values of the parameter Re(V, W)

characterizing local mass transfer for various swirlers
and flow swirl numbers S were calculated for the same
rate-averaged Reynolds number [6, 7]. Moreover, at
least two fundamentally different flow regimes exist in
swirling flows. These are flows that involve right- and
left-handed helical vortices [5] and have jetlike (convex
as in axial flows) and tracelike (concave) profiles of the
axial velocity. As a result, the axial velocities near the
wall are different for these two regimes even for the
same rate-averaged Reynolds number and flow swirl
number. In addition, both regimes can be realized in the
same flow. This fact was shown for flows with vortex
breakdown for the broad Re range from 1500 to
300000 [11–13]. Due to this uncertainty, it is impossi-
ble to characterize local mass transfer in swirling flows
by Eq. (1) even when Eq. (1) is refined by introducing
a factor characterizing the swirl number [4].

4. We emphasize that the notions of “continuous”
and “decaying” swirling flows, which were used in
experimental studies [1–4], must be defined more
exactly. Indeed, Eq. (10) was obtained in the model of
the inviscid flow which is still independent of the devel-
oped boundary layer. This means that an experimental-
ist carrying out LDA measurements in an inviscid core
considers that the flow is continuous (open and closed
circles in Fig. 1). At the same time, the local friction
stress and local mass transfer coefficient (10) decrease
along the tube (Fig. 2) such as in a plane plate [8]. This
means that an experimentalist conducting electrochem-

0.4
7000

Re

Re
1.3 × 104 1.9 × 104 2.5 × 104

0.5

0.6

0.7

0.8

Fig. 3. Relative Re(V, W) values (solid line) in the entrance
region of the mass transfer section and (dashed line) for the
developed flow regime.

Re(V, W)
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ical measurements between electrodes mounted in
series regards that the flow is decaying.
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On the Regularity of Stresses for a Bounded Domain
in the Linear Theory of Elasticity1
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1 The problem of regularity of stresses plays an
important role in modern elasticity theory. This prob-
lem is closely related to the fracture of materials,
appearance of cracks, and certain other extreme situa-
tions. It is desirable to obtain explicit estimates for the
upper bounds of stress moduli in a closed bounded
domain in which the boundary value problem of the
elasticity theory is solved.

We consider in a bounded domain Ω ⊂ Rm, m ≥ 2,
with the boundary ∂Ω ∈ C1,κ, κ > 0 the equilibrium
equations of the elasticity theory

(1)

where Di is the operator of differentiation with respect
to xi (x ∈ Ω ) and f (k)(x) is the projection of the mass
force f (x) = {f (1)(x), f (2)(x), …, f (m)(x)} on the k-axis.
The strains εjl[u] in the linear theory are given by the
formula

(2)

where u(x) = {u(1)(x), u(2)(x), …, u(m)(x)} denotes the
vector function of displacements.

The coefficients ai(x, εjl) = { (x, εjl), (x, εjl),

…, (x, εjl)} in Eqs. (1) are determined by the phys-
ical dependences

(3)

From (2) and (3), it follows that pointwise estimates for
stresses can be obtained from the same estimates for the
first derivatives of the solutions to Eqs. (1). In the case
of a linear homogeneous isotropic medium, these can

1 This article was submitted by the author in English.

L k( ) u( ) Diai
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2
--- D ju

l( ) Dlu
j( )+( ),=

ai
1( ) ai
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ai
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σik ai
k( ) x ε jl u[ ],( ).=
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be estimates written in the form

(4)

where λ, µ = const > 0 are the Lamé constants.
We now consider the matrix

(5)

It is known that in the general case of system (1), this
matrix is positive but not positive definite.

If the operator L(u) is defined on the twice differen-
tiable functions then the system of equations (1) can be
written in the form

(6)

This system is strongly elliptic.
The present paper is devoted to the pointwise

explicit estimation of the first derivatives of the solu-
tions to Eq. (6), which satisfy the boundary condition

(7)

The estimates are obtained in a certain strong norm. If
the norm of f in +2 is sufficiently small with respect to
its strong norm, then the inequalities acquire an explicit
form.

We write system (6) in the following form:

(8)

where

and the summation over h occurs from 1 to m.
Therefore, the ellipticity matrix A (5) has the follow-

ing elements:

σik λdivuδik 2µεik u[ ] ,+=

A
∂ai

k( )

∂p j
l( )-----------

 
 
 

(i j k l, , , 1 2 … m)., , ,= =

L u( ) µ∆u λ µ+( )∇ u( )+≡ f x( ).–=

u ∂Ω 0.=

L k( ) u( ) Diai
k( ) x D ju

l( ),( )≡ f k( ) x( ),–=

k 1 2 … m,, , ,=

ai
k( ) x p j

l( ),( ) λ µ+( )ph
h( )δik µpi

k( )+=

(i h, 1 2 … m), , ,=

∂ai
k( )

∂p j
l( )----------- λ µ+( )δikδjl µδijδkl.+=
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It is clearly seen that the eigenvalues λi(x, p) of A are
equal only to either µ or mλ + (m + 1)µ.

Therefore,

(9)

Thus, the dispersion K = (  + )–1(  – ) of the spec-
trum is

(10)

In [1], the exact results related to the existence of gen-

eralized solutions to Eqs. (1), which belong to 
for basic problems of the elasticity theory in the case of
hardening, were obtained. Some results concerning the
existence of regular (continuous, continuously differen-
tiable, satisfying the Hölder condition) solutions to the
system of equations (1) and (8) were obtained in [2–5].
Some of these results contain sharp conditions imposed
on the spread of K. When these conditions are valid, the
generalized solution to problem (7), (8) is of the Hölder
type (see, e.g., [2, Chapter 5; 4, Chapters 3 and 4]).

We will consider the functional spaces 
that contain functions having all k generalized deriva-
tives with the finite norm

(11)

Here β (β1, …, βm) is the length multiindex |β| = β1 +

β2 + … + βm, Dβ = … , r = |x – x0|, x0 ∈  Ω,
and α = 2 – m – γ (0 < γ < 1). For k = 0, the space

 coincides with the space +2, α(Ω; x0).

We now consider the space  ⊂

. In this space, the norm is defined by the
formula

(12)

We also consider the space  in which the norm can
be introduced in a different manner. Let Bδ(x0) = {x: |x –
x0| < δ}, and Ωδ(x0) = Bδ(x0) ∩ Ω. Then, we take a fixed
sufficiently small δ0 > 0. The norm

(13)

is equivalent to norm (12). These spaces were first
introduced in a similar way by Morrey [6] and applied
by Nirenberg [7] is studies of the regularity problem for
the second-order quasilinear elliptic equations with two
variables.

λ  = λ i
i x p, ,
inf  = µ and Λ λ i

i x p, ,
sup  = mλ m 1+( )µ.+=

Λ λ Λ λ

K
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------------------------------------- 1.<≡
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x0 Ω δ δ0≤,∈
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Note that for α = 2 – m – 2γ (0 < γ < 1), we have the
embedding

(14)

 

It is known that for arbitrary 
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 > 0, the inequality

holds. Here, 
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(See [6, formula (2.1.21)]). From here, we arrive at the
inequality
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, where 

 

q0 is a sufficiently large

number and ∀ u ∈ (Ω), ai(x, Du) ∈ +q(Ω);

(4) for ∀ u ∈ , ai(x, Du) ∈ +2, α

 ∈ +2,α , and f ∈ +2, α  for arbit-

rary x0 ∈ .

It is evident that all these conditions hold for sys-
tem (6).

In [3, Theorem 5.5.1; 8], Chelkak proved that if the
basic conditions are satisfied and the inequality

(16)

holds, then the solution to problem (8) with boundary
condition (7) belongs to C1, γ( ). For m = 2, inequal-

H2 α,
k( ) Ω( ) Ck 1 γ,– Ω( ).⊂
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ity (16) is satisfied, since K < 1. For m = 3, the condi-
tion (16) leads to the inequality

(17)

which yields the condition of smallness for the disper-
sion of the spectrum of the quadratic form A.

On the basis of inequality (16), the following theo-
rems can be proved.

Theorem 1. Let α = 2 – m – 2γ with m = 2 or m = 3,
f ∈ +2, α , x0 ∈ , and δ0 > 0 be a fixed con-

stant, whose smallness is determined by local proper-
ties of the boundary ∂Ω .

If the inequality

(18)

holds, then for the solution of problem (6), (7), which is
extended in the odd manner together with f locally
through ∂Ω , an estimate

(19)

is valid with the positive constant C depending only on
δ0, α and an arbitrary small η > 0. 

Theorem 2. Under conditions of the previous theo-
rem for m = 2, the exact inequality

(20)

holds.
Indeed, the constant ahead of the first integral in ine-

quality (20) can be obtained from estimate (19) if we

substitute there the values of , Λ, K from formulas (9)
and (10) for m = 2. The accuracy of the estimate can be
proved by the following example. Let Ω = B1(0), u(1) =

3
2
---K 1,<

Ω; x0( ) Ω

K 1 m 2–( )2

m 1–
--------------------+ 1<

D2u
2
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sup
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--------------------+– 
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× 2 f

Λ λ+
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  2
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∫x0 Ω δ δ0<,∈

sup

+ C f 2 x Du 2 xd
Bδ x0( )
∫+d
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x0 Ω δ δ0<,∈

sup

D2u
2

x x0– α xd
Bδ x0( )
∫x0 Ω δ δ0<,∈

sup

≤ 1

µ2
----- O γ( ) η++ f 2 x x0– α xd

Bδ x0( )
∫x0 Ω δ δ0<,∈

sup

+ C f 2 x Du 2 xd
Bδ x0( )
∫+d

Bδ x0( )
∫ 

 
x0 Ω δ δ0<,∈

sup

λ

(r1 + ε – 1)q(ϕ) and u(2) = 0, where (r, ϕ) be the polar
coordinates. Here ε > 0 is sufficiently small and q(ϕ) is
the solution to the problem q'' + q = pn(ϕ), q(–π) =
q(π) = 0, with pn(ϕ) = 0 for ϕ ∈ [ –π, –(2n)–1] ∪ [(2n)–1, π],

pn(ϕ) =  for ϕ ∈  (−(2n)–1, (2n)–1) (n = 1, 2, …). It is
clear that u = (u(1), u(2)) is the solution to problem (6),
(7), where f (1) = –rε – 1(q'' + q) (µ + (λ + µ)sin2ϕ) + O(ε)
and f (2) = rε – 1(q'' + q) (λ + µ) sinϕ cosϕ + O(ε).

By simple considerations, it can be proved that with
an accuracy of O(n–1), the supremum of the integrals is
attained for x0 = 0. It can be shown by elementary cal-
culations that the constant ahead of the first integral at
the right-hand side in (19) is equal to µ–2 + O (γ) +
η + O(n–1).

It is worth noting that the application of estimate (15)
for the derivatives of the solution to problem (6), (7)
with the help of (20) leads to the explicit pointwise esti-
mates for these derivatives.

In fact, if the norm of f in +2(Ω) is sufficiently small
compared to the norm of f in +2,α(Ω) for α = 2 – m – 2γ
(0 < γ < 1), then for m = 2, inequality (15) for the deriv-
atives can be written in the explicit form

In this case, the corresponding estimates for the
stresses follow from formulas (4).

When m = 3, condition (17) is also exact, since there
exists an example of system (1) (see [6]) when the gen-
eralized solution can loose its regular properties pro-
vided that condition (17) is not true.
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Various scenarios for the motion of a thin pointed
body in an elastoplastic medium for an asymmetric sep-
aration are presented for various values of initial pertur-
bations, body shape, and separation angle, which is the
parameter appearing in the separation criterion. The
physical model [1] in which a relation between kine-
matic and force factors on the contact area is postulated
on the basis of exact solutions [2, 3] and experiment [4]
reduces to the Cauchy problem for a set of integrodif-
ferential equations of motion of a body, which is solved
numerically with a high accuracy. First, the practical
stability of linear motion with constant axial velocity is
studied. Comparison with local stability criteria [1] is
given. In the instability region, a soft relaxation regime
whose limiting cycle is the circular motion is found. A
classification of trajectories with allowance for drag is
proposed. It is shown that a trajectory can, in principle,
pass close to a given one, in particular, to that with back
ejection from the day surface when a striker enters a
half-space (the effect previously found experimentally
by Yu.K. Bivin). Since there is no reliable verification
of the separation criterion taken from engineering prac-
tice, it is important that the characteristic features of
trajectories depend only slightly on separation angle.
This study is promising for designing penetrators, i.e.,
stations for investigating inner layers of extraterrestrial
objects [5] and for other purposes [6].

1. A rigid axisymmetric body moves with a high
velocity in an unbounded isotropic and homogeneous
elastoplastic medium. The length of the body L and its
largest radius rm are used as the longitudinal and trans-

verse length scales, respectively. Let R = R(l) =  be

the dimensionless meridian equation in the cylindric
coordinates R, φ, and l rigidly bound to the body and to
the local Cartesian coordinate system: x = lc – l, y =

r
rm
-----

Institute for Problems in Mechanics,
Russian Academy of Sciences,
pr. Vernadskogo 101, Moscow, 117526 Russia
1028-3358/02/4709- $22.00 © 20693
Rcosφ, and z = Rsinφ, where l is the distance from the
body nose; l = lc and R = 0 are the coordinates of the
center of mass. We suppose that the body is thin:

. (1)

At the initial time t = 0, the velocity v0 of the body’s
center of mass and the rotation angular velocity W0 rel-
ative to this center in the plane formed by the vector v0
and the body axis are given, and there are no yaw or
other rotations. We denote the vectors of current trans-
port, angular, total, and normal (to the surface) veloci-
ties as

The dimensionless functions ω and η can take values
O(1). The mass of the body is expressed in terms of its
average density ρ1 and the length le of a cylinder equiv-

alent in mass and midsection: m = π Lleρ1 . The
incompressible medium is characterized by the density
ρ0, shear modulus µ, and von Mises yield stress τd . A
plastically compressible (porous) medium can be con-
sidered as being packed far from the body, and ρ0 is its
density in the packed state.

The separation criterion taken from engineering
applications is that the inclination angle of an elemen-
tary area of the body surface to the flow velocity takes
the critical value β* at infinity:

(2)

For low velocities, β* = 0, which means perfect separa-
tion from midsection edges, and this angle increases

ε
rm

L
-----  ! 1, εβ ! 1, β dR

dl
-------, 0 l 1< <= =

v v x v y 0, ,( ), W 0 0 Ω, ,( ),= =

V v W x y z, ,( ), Vn×+ nV εδv x,= = =

δ β a φ, acos– –ωx η ,–= =

ω ΩL
εv x

---------, η
v y

εv x

---------.= =

rm
2

δ∗ δ β* σij
0 V,( )–≡ 0.=
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with velocity and decreases with an increase in initial

compressing stresses  in the medium. In [7], an
experimental procedure for determining β* was pro-

posed. We denote the wetting area as S+ (under condi-
tion that δ* > 0) and the separation area as S– (δ* < 0);
S = S+ + S– is the total surface of the body. We consider
only regimes without the flow attachment on the body
surface. According to the local-interaction method [2],
which was justified theoretically [3] and experimen-
tally [4], the vector of contact stresses S on each ele-
ment of the surface S+ is the sum of the hydrodynamic
and strength terms and thus is directly related to the
kinematic characteristics of the body motion:

(3)

Here, τS = const ≤ τd is the plastic friction (the law cor-
roborated experimentally [4]) and the unit vector nτ in
the direction of sliding is equal to (–1, 0, 0) in the
approximation under consideration. In this case, we
neglect the initial stresses and virtual masses. The
square dependence for Cx is valid up to values Cx < 0.2.
This fact, Eqs. (3), and the definition of quantities δ and
ε provide restrictions for the angles β, η, and lcω. Gen-
erally speaking, coefficients Cf and bf [4] can be set by
different methods based on experiments or solutions to
other flow problems [8]. The coefficient bf for typical

values of  = 102–103 is equal to bf = 5–8. The physi-

cal separation condition σn = 0 is violated because the
model is approximate: σn is treated not as a pointwise
value but as a value averaged over the surface element.

2. Equations of motion of a pointed axisymmetric
body reduce to an autonomous system of integrodiffer-
ential equations for the functions κ, η, and ω, and the
Cauchy problem is formulated:

(4)

σij
0

S τSnτ σnn, σn–
1
2
---Cxρ0V2 b f τd S+( );+= =

S 0 S–( ),=

Cx C f δ
2ε2, b f

4µ
τd
------ln 1, C f– µ

τd
---- 2.55.+ln= = =

µ
τd
----

κ ' 2κε2 f κ ωη–( ), η' f η ω, ω'– j f ω,= = =

k κ η ω, ,( ) k0, ξ 0; '( ) ξd
d

,= = = =

f f κ f η f ω, ,( )=

=  D τκ βσ+ σ φcos– σx φcos–, ,( )R ld φd

S+

∫∫
(5)

(6)

Here, H is the step function, I is the principal moment
of inertia of the transverse rotation, j ~ 101, criterion (2)
is used, and quantities on the order of O(ε2) are
rejected. The angle values φ0 = π, 0, or φ0 ≠ π, 0, deter-
mine the character of flow around a parallel: (i) contin-
uous, (ii) complete separation, or (iii) partial separa-
tion. Unknown functions depend on the body shape and
on eight dimensionless parameters. In the model, only
the separation angle β* remains undetermined; its
effect will be studied parametrically. The quantity κ can
be characterized as the ratio of the strength resistivity to
the velocity head. During the body motion, this ratio
varies within the range κ0 < κ < ∞, and dynamic set (4)–
(6) adequately describes almost all stages of deceler-
ated motion of the body.

The asymptotic orders of Eqs. (4) are different:
O(κε2) for the first one, and O(κ) for the remaining
equations because the lateral resistance dominates over
the axial resistance for a thin body. This fact makes it
possible to investigate the practical stability of the lin-
ear motion when the axial velocity is constant.

3. We carried out the series of calculations for κ =
const and a parabolic body with allowance for the
entrance into the half-space without a splash:

=  D Θ Φ lc l–( )Φ, ,( )R l( ) l,d

0
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∫
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We fix ε = 0.065, D = 0.115, j = 5.5, and τ = 1 and vary
the parameters k0, β0, β*, and lc . First, we consider the
case of β* = β(1), where the separation areas of merid-
ian length ∆ appear near the stern for any perturbations
g = (η, ω). The numerical experiment points to the
bifurcation of the solution on a certain surface li =
li(k0, b0, …), la(k, b0, …) ≤ li ≤ ls(k, b0, …) in the phase
space of parameters: disturbances decay for lc < li and
grow for lc > li (exponentially for small perturbations).
For lc < la or lc > ls, disturbances decay or grow for arbi-
trary initial conditions. The numerical value of li tends
to ls according to the stability criteria in the Lyapunov
sense [1] when disturbances decrease; la is the absolute
critical value. For example, ls = 0.85817 and la = 0.6391

for β0 = , β* = 0.5, and κ0 = 2.

The bifurcation region can contract to a point (la =
ls) in other cases, for example, when the separation-area
boundary is localized near the center of the body for
β* ≈ β(0.5).

In the instability region lc > li , stabilization occurs
for a finite time: g, ∆  γ∗ , and ∆∗ . The limiting cycle

is the circular motion of radius R∗  = : the moment

of forces vanishes, and the constant resultant force
induces centripetal acceleration. With increasing lc,
amplitudes g* increase, and finite lengths ∆* rapidly
attain a maximum. The calculations point to global
orbital stability.

In the regime of a continuous flow around a lateral
surface, we have Φ = –2βπ(ωx + η), integrals (5) are
calculated analytically, and, for κ = const, Eqs. (4)
reduce to a homogeneous set of linear equations for
unknown ω and η with, generally speaking, nonzero
determinant: the solutions exponentially increase or
decay; i.e., the limiting cycle does not exist. An analysis
of small separation areas [1] leads to a similar conclu-
sion, which is corroborated by the calculations: even
near the critical number (lc  ls + 0) and for small ini-
tial perturbations, the solution has asymptotic behavior
with finite separation areas.

As an example, we consider a cone (β0 = 1, β* = 0)
moving under small perturbations in the regime of con-
tinuous flow. Evolution is determined by the critical
value lg = 0.68674 [1]. We recall that lc = 0.75 for a con-
tinuous homogeneous cone, and its motion is unstable,
which was corroborated experimentally. A cone is often
used in experiments, in particular, when the penetra-
tions of axisymmetric and three-dimensional configu-
rations are compared. In this case, the stability of its

R l( ) β0l β0 1–( )l2,–=

β l( ) β0 2 β0 1–( )l, 0 l 1.< <–=

3
2
---

1

ε2ω*

------------
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motion must be provided for the correctness of this
comparison.

When lc > lg for the cone, the calculations show that
perturbations increase; then, an asymmetric separation
area is developed and established. Its length ∆* for val-
ues lc close to the critical value is small; and then, in the
narrow interval 0.71 < lc < 0.7119, it increases rapidly
up to the total length of the body. The limiting cycle is
the circumference of radius 6L when ∆* = 1. In the
interval 0.72 < lc < 0.8, the behavior is the same; how-
ever, the separation area is shortened beginning with
lc = 0.8 and then is localized near the cone nose.

4. We carried out the calculations taking into
account body deceleration (κ ≠ const). The coordinates
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30 40

Fig. 1. Trajectories of a parabolic body with the beginning
of separation at the stern point for k0 = (2, –0.5, 0.5).
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X
20

20 30 40
Y

Fig. 2. Trajectories of a parabolic body with the beginning
of separation at the stern point for k0 = (1, –0.5, 0.5).
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(X, Y) of the body center of mass were calculated with
allowance for entry into the day surface Y = 0. Figures 1
and 2 show the trajectories for k0 = 2, 1; g0 = (–0.5,
0.5); lc = (+) 0.6, (×) 0.625, (e) 0.65, and the same
remaining parameters. For κ0 = 1, lc = 0.6 > li(1), and

20
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X
80

8040 60

40

60

Y

20

0 20

X

60

Y

40

Fig. 3. Trajectories of a parabolic body with the beginning
of separation at the point l = 0.5 for k0 = (2, –0.5, 0.5).

Fig. 4. Trajectories of a cone for k0 = (2, –0.5, 0.3).
the kinetic energy is twice as high as the energy for the
case k0 = 2, where li(2) > 0.6 and the trajectory is
almost linear for lc = 0.6 in Fig. 1, whereas it is curvi-
linear in Fig. 2 due to the axial velocity. In both figures,
there are trajectories that are curvilinear at the initial
section and then become linear because unstable
motion becomes stable when the velocity decreases.
However, this behavior is observed only when the value
lc is close to the critical value li(κ0). Certain curves are
classified among inverted trajectories when the stop-
ping point (Xm, Ym) of the body lies outside the half-
space: Xm ≤ 0. In this case, the striker describes a loop
with ejection from the day surface.

Due to deceleration, not all the curvilinear sections
are close to the circumference arcs as for κ = const,
whereas “unstable” trajectories of the same body are
close to the arcs (Fig. 3), but for β* = 1 (in this case, the
separation line is localized near the geometric center of
the body) lc = (+) 0.45, (×) 0.49, and (e) 0.54; k0 =
(1, −0.5, 0.5).

When the moment of inertia varies by a factor of 3,
there are no essential modifications. The trajectories of
the cone in Fig. 4 {lc = 0.67, 0.69, and 0.71; k0 = (2,
−0.5, 0.3)} are characterized by a sharp transition from
weakly curved to strongly curved trajectories.

We propose the following classification of trajecto-
ries:

(1) linear trajectories with a weakly curved initial
section if the stability criterion lc < li(κ0) is satisfied; in
this regime, the body penetrates to the maximum depth;

(ii) trajectories that are curved at the initial section
and then linear if lc ∈ Λ +(li), where Λ+ is the right-hand
neighborhood of the point li; in this case, the striker can
move away, move parallel, or approach the day surface
so that inversion of the trajectory is possible;

(iii) curvilinear trajectories close to a circumference
arc if the center of mass lc lies to the right from the
neighborhood Λ+(li); the trajectory can end inside a tar-
get or be inverted.

5. Thus, the investigation of practical stability
showed that large disturbances can considerably reduce
the stability inherent in the motion of a body with small
perturbations; in certain cases, stability can depend
only slightly on the magnitude of perturbations. We
established orbital stability; i.e., the limiting cycle is
independent of initial perturbations and depends only
slightly on the separation angle in the regime of devel-
oped separation. It is of methodical importance that a
curvilinear trajectory qualitatively close to a given one
is possible for essentially different separation parame-
ters. This fact indicates that the basic characteristics of
the motion under investigation depend only slightly on
the choice of the separation criterion, which, generally
speaking, must be checked and improved.
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The formulation of the classical Jeffery–Hamel
problem [1–3] on the radial steady flow of a viscous
fluid in a plane confuser includes two dimensionless
parameters—the opening angle and the Reynolds num-
ber. Traditionally, the case of small angles, which is of
great importance in technological applications, was
investigated by analytical and numerical methods. In
the mathematical and natural-scientific aspects, it is
interesting to solve the problem for any opening angle
in a wide range of the Reynolds number. In this study,
we report the new results of numerical-analytical inves-
tigation of viscous-fluid for arbitrary possible angles
(including the “exotic regions” of a confuser) ranging
from a half-space (a plane with an outflow aperture) to
a whole space with two extremely close half-planes
between which the fluid drains off. A number of the
new qualitative features of the velocity and pressure
profiles are established and discussed.

1. The investigation of the radial motion of a viscous
incompressible fluid in a plane confuser with opening
angle 2β (0 < β ≤ π) under the action of pressure applied
at infinity reduces to solving the nonlinear boundary
value problem with an additional condition of constant
flow rate [4]:

(1)

Here, y(x) is the unknown dimensionless function char-
acterizing the profile of the radial velocity v r =
−QV(θ)r–1 and the transverse velocity vθ ≡ 0. The
unknown function V is related to y by the relationship
y(x) = 2βV(θ), where θ = β(2x – 1) is the polar angle
lying in the interval –β ≤ θ ≤ β for 0 ≤ x ≤ 1. The Rey-

nolds number Re = , where Q is the intensity of the

y'' + a2y by2–  = λ , 0 x 1, y 0( ) = y 1( ) = 0;< <

y x( ) xd

0

1

∫  = 1, a 4β, b = 2βRe, 0 Re ∞.< <=

Q
ν
----
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outflow at the point r = 0 and ν is the kinematic viscos-
ity of the fluid, is given. The constants λ = y''(0) = y''(1)
and y'(0) = γ (y'(1) = ± γ) are unknown and should be
determined for given (a, b) or (β, Re). The pressure p in
the fluid and the velocity profile y are related as

(2)

where ρ is the density and P is the pressure profile.
Relation (2) indicates that the pressure becomes infinite
when Re  0 (b  0); i.e., there is a singularity,
although the solution to problem (1) can be regular [4].

The classical results were obtained by analyzing
elliptic integrals depending on several parameters, as
well as the roots of the system of the two transcendental
equations in two unknown parameters (constants of
integration) [1–3]. However, these investigations are
rather incomplete. It was thought that the diffuser flow
(Re < 0) is more complicated and diverse than the con-
fuser flow (Re > 0), because symmetric single- and mul-
timode flow regimes (both symmetric and asymmetric

about the point x = ) were known for the former. A mul-

timode regime implies the alternation of intervals
(zones) of fluid inflow and outflow for 0 < x < 1 [1]. For
the confuser Jeffery–Hamel flow, such regimes were
not explicitly established.

Using a modified numerical-analytical method
ensuring fast convergence, we investigated the single-
mode [4] and multimode [5] confuser flows for 1° ≤ β ≤
89° in the wide Re range ~102–104 (0 ≤ b ≤ 300) and
found that, at b @ 1, there is an asymptotic transition to
the model of inviscid fluid, whose velocity profile is
described by the Kochin formula [1, 6]

(3)

p r θ,( ) 2ρQ2r 2– P x( ), P x( )
λ a2y x( )–

a2b
-------------------------≡ ,=

1
2
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-----------------------------------------------------------------------------------------------------,–=
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Expressions (3) have satisfactory accuracy for b ~ 103–
104. The multimode solutions to problem (1) are
“close” to Eq. (3) in a certain integral metric [5]. It was
also established that the single-mode solutions are reg-
ular functions of the parameter b for b ≥ 0 and can be
found by continuing in this parameter [4]. Multimode
solutions are singular functions of b in the vicinity of
b = 0: γ(b)  +∞ and λ(b)  –∞ for b  +0,
which results in infinite variations of the functions y(x).
These qualitative features take place for any opening
angle β in the above range [5].

2. It is of mathematical and natural-scientific inter-
est to solve problem (1) for the entire range of angles

0 < β ≤ π including their “exotic” values β =  (flow

over a half-space with an outflow aperture) and π (flow
in the entire space with fixed extremely close half-
planes between which the fluid drains off). An increase
in the angle 2β between the confuser walls leads to the
significant modification of the velocity profile and new
qualitative effects.

For the limiting value b = 0, boundary value prob-
lem (1) is linear, and its asymptotic solution is
expressed in terms of a trigonometric function symmet-

ric about the point x =  [1, 4, 6]:

(4)

For clarity, curves γ(β) and λ(β) are shown in Fig. 1.
Expressions (4) lose their meaning at β = β*≈
2.247 ≈128.7° (β* is the minimum positive root of the
equation d(β) = 0), and the desired solution for b > 0
cannot be found by perturbation methods or the contin-
uation procedure in parameter b. The critical value β*
corresponds to a geometrically actual confuser with the

opening angle larger than the straight angle β* > .

In addition, the points where these curves change sign
divide the entire interval of β into five qualitatively dif-
ferent domains:

(5)

which correspond to different flow regimes for suffi-
ciently small positive b values. Figure 2 shows the

velocity profiles y(x) (4) for b  0 and β = , 2.2 <

π
2
---

1
2
---
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β*, 2.3 > β*, and π (curves 1–4, respectively), which
belong to domains 3–5 (5).

Single-mode solutions y(x) regularly continuable in
b ≥ 0 (domain 1) are thoroughly studied [4] and have a
simple form: they are convex (λ < 0) for all b > 0; at the

limiting point, where β =  and b = 0, λ = 0, but γ > 0

and y''(x) < 0 for 0 < x < 1. In domain 2, these solutions
are convex in the central part of the interval 0 < x < 1,
whereas they are concave at the edges, y''(x) > 0,

because λ > 0. For all β < , γ > 0 and γ = 0 at the lim-
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Fig. 1. Determining parameters γ and λ vs. half-angle β
at b = 0.
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Fig. 2. Family of velocity profiles y(x) for the characteristic
values of β as b  0.
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iting point β =  – 0 for b = 0 (Fig. 2, curve 1). With

increasing parameter b (i.e., Reynolds number Re), γ
remains positive and increases, whereas λ decreases
and becomes negative at a certain sufficiently large b
(Fig. 3, curves 1) depending on β. Thus, the solution
becomes convex. The qualitative behavior of the veloc-
ity profile y(x) for the above-indicated large values of b
is the same in both domains and tends to the asymptotic
limit (3) when b  ∞ [4].

In domain 3, where β > , γ < 0 (i.e., y'(0) < 0 and

y'(1) > 0) and the parameter λ is positive (Fig. 2, curve 2).
This means that the intervals (zones) of reverse flows
(inflow) [y(x) < 0] appear along the confuser walls in
certain neighborhoods x > 0 and x < 1, and the outflow
zone is in the central part of the confuser in a certain

neighborhood x = ; i.e., the flow has three modes. Two

additional symmetric points with zero flow velocity (as
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Fig. 3. (a) Evolution of velocity profiles y(x) at b = 20 and
(b) their ultimate behavior at b = 300 for the characteristic
values of β.
at the points x = 0 and 1) appear; the absolute values of
y' and y'' at these points are equal to |γ| and λ, respec-
tively. As β  β* – 0, the values of |γ| and λ increase
indefinitely that results in the indefinite rise in the
amplitudes of y(x) for the above-indicated x intervals
(i.e., in the outflow and inflow zones) such that the total
flow rate is equal to unity according to Eqs. (1). An
increase in the parameter b is accompanied by a rise in
the first derivative, and, therefore, this regime goes over
into the single-mode flow at a certain sufficiently large
b (depending on β). In this case, the single-mode veloc-
ity profile near the walls is first close the abscissa axis,
and then, with further increasing the parameter b,
becomes everywhere strictly convex similar to the
behavior described in [4] (Fig. 3, curves 2).

At b = 0 and as β  β*– 0, parameters γ and λ tend
to –∞ and +∞, respectively. For b = 0 and β = β*, prob-
lem (1) has not solution; for b > 0, the problem can be
solved and investigated (see below). Thus, on the plane
of the parameters (β, Re) or (a, b), the point (β*, 0) or
(4β*, 0) is singular in the sense of solving linear bound-
ary value problem (1).

3. The principal modification of the steady flow
occurs at β = β*, i.e., at the boundary between
domains 3 and 4 (5). For b = 0 and decreasing β values
such that β > β* and β  β* + 0 (domain 4), γ 
+∞ and λ  –∞ according to Eqs. (3); i.e., the signs
of those parameters are opposite to their signs in the
above case β  β* – 0. When the opening angle of the
confuser increases such that it passes through the criti-
cal value β* another type of three-mode flow arises. In
this type, in contrast to the above case of flows in
domain 3, the outflow of the fluid near the confuser
walls occurs symmetrically and the inflow takes place
in its central part (Fig. 2, curve 3). There are also two
symmetric points (x > 0 and x < 1) with zero velocity
y(x). With the further rise in the opening angle, γ
decreases remaining positive, whereas λ increases and

is equal to zero at β = . The smaller the angle β, the

larger amplitudes of the profile y(x), which characterize
the outflow and inflow zones of the fluid. With increas-
ing parameter b, the flow remains qualitatively the same
three-mode flow (Fig. 3, curves 3) similar to the three-
mode flow for small β, for which γ  +∞ and λ 
–∞ when b  +0 [5]. In the limit b  ∞, the profile
y(x) asymptotically, in weak sense, tends to expres-
sion (3), which corresponds to an inviscid fluid. Thus,
for large angles β > β* the three-mode flow rises reason-
ably in the confuser and retains for all positive b. This
new hydrodynamic effect is very interesting.

The further evolution of the three-mode flow occurs

in domain 5. At b = 0, an increase in the angle β > 

leads to the monotonic decrease in parameter γ from

γ =  at β =  to γ = 0 at β = π, (Fig. 1). Parameter λ

3π
4
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4
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2
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DOKLADY PHYSICS      Vol. 47      No. 9      2002



THE FLOW OF A VISCOUS FLUID INSIDE A CONFUSER WITH LARGE OPENING ANGLE 701
increases monotonically from λ = 0 at β =  to λ =

16π2 at β = π. For b ! 1, the amplitudes of the velocity
profile, which correspond to the outflows near the walls
and the inflow in the central part, decrease. At β = π, the

inflow ceases y  = 0 ; the velocity profile y(x)

attains the maximum value y = 2 at the points x =  and

, i.e., at the right angles to the half-planes forming the

outflow aperture (Fig. 2, curve 4). An increase in
parameter b > 0 results in the small shift of these out-
flow maxima to the edges (Fig. 3, curves 4). For b @ 1
(b  ∞), the maxima decrease and the velocity profile

y(x) becomes flater near the points x =  and . In this

case, there is a fine of a small reverse flow near the mid-

point x = ; the velocity profile of this flow becomes

sharper, and the minimum y( ) becomes deeper. The

zone of the reverse flow contracts indefinitely, and, in the
asymptotic limit, the velocity profile y(x) tends to expres-
sion (3); curves 3 and 4 approach each other indefinitely.
For small positive b, the outflow can somewhat increase
throughout domain 5 that requires additional calculations.

The most hydrodynamically surprising and interest-
ing feature is the presence of the critical opening angle
of the confuser 2β*, at which the confuser flow qualita-
tively changes for b > 0. The solution regularly contin-
uable in b (i.e., in Re) is single-mode at β < β* and
three-mode at β > β* for any positive b [5]. For β = β*
(β* = 2.246704729 with ten significant digits), we con-
structed the two desired solutions at b > 0. For β > β*,
the single-mode solution has the property γ  –∞ and
λ  +∞ at b  0; for β < β*, it goes over into the
solution regularly continuable in the parameter b ≥ 0
(domain 3). For β ≤ β*, the three-mode solution has the
property γ  +∞ and λ  –∞ at b  0; for β > β*,
it is regularly continuable in b, i.e., in Re (domain 4).

The main computational result is the high-accuracy
[with a relative error of O(10–9)] construction of curves
γ and λ as functions of parameter b for the β values of
interest (Fig. 4). The corresponding profiles of velocity
y(x) and pressure P(x) can be found by integrating the
Cauchy problem according to Eqs. (1) and (2).

Thus, steady flows of a viscous fluid in a plane con-
fuser with arbitrary opening angle, which are regularly
continuable in Re ≥ 0, were quite completely analyzed.
For angles 0 < β < π/2, multimode solutions with quan-
tities γ and λ infinite at b → 0 were established and con-
structed earlier [5]. For hydrodynamic applications, the
investigation of multimode solutions for confuser open-
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ing angles π ≤ 2β ≤ 2π and moderate Re values ~1–100
can be of certain interest. The effective investigation of
the viscous fluid flows is important both itself and for
the numerical-analytical solution of more complicated
perturbed problems of the deformation of viscoplastic
media [6] and the problems of heat and mass transfer,
where viscous flows can be considered as unperturbed
reference motions.
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A growth in the number of catastrophes is character-
istic of modern Russia, especially in recent years [1].
According to the data of the Russian Ministry of Emer-
gency Situations, 2877 emergency events associated
with natural dangerous processes were recorded in the
last ten years (1990–1999). Among these events, cata-
strophic phenomena caused by floods amounted to 19%
of the total number.

United States statistics of tornado, earthquakes,
floods, and hurricanes occurred in the past century
show that the data of observations lie in straight lines
corresponding, with a reasonably good accuracy, to
perfect power-low statistics [2].

From the standpoint of random-process theory, this
implies that the probability-density distributions of ran-
dom quantities characterizing floods (water levels in a
river, volumes of high-water outflow, maximum water
discharge, etc.) are long-tail distributions. Thus, the
probability of catastrophic floods turns out to be much
higher than follows from the assumption on the Gaussian
distribution law.

Below, we show how long-tail distributions arise in
hydrological processes.

ON THE PHYSICAL MECHANISM
OF THE POWER LAW

We consider the equation of water balance in a river
basin

(1)

where W and Q are the water content and the river out-

flow, respectively,  and  are the many-year aver-
aged values of rainfall and evaporation, ξ(t) is the delta-
correlated random process of fluctuations of rainfall
and evaporation, and σ is the intensity of this process.

dW
dt

-------- P E Q– σξ t( ),+–=

P E
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We now assume that the outflow and the water con-
tent of the basin are related to each other by a nonlinear
(hyperbolic) dependence

(2)

where  is the effective value of rainfall and  is a
certain characteristic water content of the basin.

The physical mechanism of an increase in the out-
flow with a growth of the water contents is the follow-
ing. First, the larger the volume of surface water, soil
water, underground water, and waters of lakes and
swamps composing the water content of a basin, the
higher is the potential energy of these waters. Second,
according to the Newtonian law of a linear relation
between the stress tensor and the velocity tensor in a
viscous fluid, the energy dissipation in the case of the
water motion in a moistened basin is much lower than
in a dry basin (this is the reason that ensures an abrupt
increase in the filtration coefficient of water with a
growth of the soil moisture). Thus, an increase in the
potential energy of water and a decrease in the resis-
tance to its motion in the river basin lead to a nonlinear
increase in the water discharge.

We introduce the dimensionless quantities

Replacing the variables in (1) according to formula (2),
we obtain the stochastic differential equation (SDE)
with respect to the outflow Xt

(3)

where Wt is the standard Wiener process.

Q

P̃
----

µW
W* W–
-------------------, P̃ P E, 0 W W*,<≤–= =

0 Q ∞, µ 0,<<≤

P̃ W*

X
Q

P̃
----, σ σ

µW*

------------, T
µW*

P̃
------------= = = ,

β 2 1 1

σ2T
---------+ 

  .=

dXt T–1 1 Xt–( ) Xt µ+( )2dt σ Xt µ+( )2dWt,+=
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SDE (3) has the following important feature: the
action of an external noise depends on a system state.
Such a noise is multiplicative and represents the physical
cause of a wide class of noise-induced transitions [3].

In the theory of SDE [3], the necessity to interpret
Eq. (3) in terms of the Stratanovich theory is proved.

In this case, the Fokker–Planck–Kolmogorov (FPK)
equation with respect to the probability density p(x, t)
takes the form

(4)

It is easy to obtain a time-independent solution to (4)

 for the one-dimensional probability density

(5)

The parameter C is determined from the normalization
conditions

The most probable mode of the distribution is

 = . For β > 2(1 + ), the mode exists;

for β ≤ 2(1 + ), it does not. Thus, the behavior of the
nonlinear nonequilibrium dynamic set (1)–(3) when the
critical level of rainfall noise is exceeded (  =

) radically changes. Therefore, the interaction
between the nonlinear outflow dynamics and the ran-
dom nature of the environment (climatic noise) leads,
under certain conditions, to an essential reconstruction
of the steady outflow regime.

The most important feature of this interaction is the
appearance of the Pareto component (x + )–β in the
probability-density distribution for a river outflow. For
large values of x, the outflow dynamics corresponds to
the power law with the exponent β. It is of interest that
the exponent σ abruptly decreases with the rainfall-
noise intensity β and, for 2 < β < 3, the variance of the
random outflow process becomes infinitely large. It

∂p x t,( )
∂t

------------------- –
∂
∂x
------ 1 x–( ) x µ+( )2

T
------------------------------------ σ2 x µ+( )3+ p x t,( )=

+
σ2

2
----- ∂2

∂y2
-------- x µ+( )4 p x t,( )[ ] .

∂p
∂t
------ 0= 

 

ps x( )
C x µ+( )–β β 2–( ) µ 1+( )

x µ+
----------------------------------– 

  , x 0>exp

0, x 0.≤





=

C β 2–( ) µ 1+( )[ ] β 1– uβ 1– e–u ud

0

β 2–( ) µ 1+( )
µ

-----------------------------------

∫
–1

.=

xmod
β 2– 2µ–

β
------------------------ µ

µ

σ

µT( )–1

µ
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should be noted that distribution (5) has no moments of
the [β]th order ([β] is the integer part of β). For exam-

ple, for  = 0.4 m year–1, W* = 4 m, σ = 0.9 m year–0.5,
and  = 1, the exponent β = 6, and the distribution
obtained has no moments of the sixth, seventh, and
higher orders. Using the theory developed in [3, 4], it is
possible to show that the time-independent solution
p(y, t) to the FPK equation converges to ps(y) as t  ∞,
whence follows the global asymptotic stability of the
steady state.

For a random process of the accumulation of the
water content Wt, the boundary W* is natural, and the
probability to attain it is zero. For the water outflow, the
natural boundary is infinity. Thus, SDE (3) for the out-
flow is mathematically correct.

Physically, the appearance of the power law is
explained by a nonlinear dependence of the outflow on
the basin water content. The two most important factors
of the outflow, namely, an increase in the water content
and a decrease in the resistance to the water motion in
the basin, are mutually dependent, and the random pro-
cess Xt already cannot be Gaussian. Let us assume that
abundant rainfall has occurred in the river basin. In this
case, the resistance to the water motion decreases so
that not only this rainfall will drain down to the river but
also the rainfall from previous rains, which earlier
failed to do this due to a high frictional resistance. The
mathematical formalization of this well-known hydro-
logical phenomenon leads to power laws for floods and
high waters. We call attention to the fact that the rainfall
follows the Gaussian law, and, therefore, the distribu-
tion long tail is formed by the hydrophysical processes
when collecting water.

We emphasize once more that the previous rainfall
takes part in the formation of the outflow at the present
moment of time.

Therefore, the catastrophic floods are a result of the
nonlinear interaction between underground water and
surface water. The isotopic composition of water com-
ing to the river bed at the moment of a catastrophe must
strongly differ from that in an atmospheric rainfall
(e.g., the concentration of the heavy hydrogen isotope
tritium is quite different).

For example, in the early spring of 1997, northern
plains (Midwest, USA) were covered by a destructive
flood. Towns situated on the Red River, such as Grand
Fork and Northern Dakota, were completely sub-
merged as a result of this flood, which totally paralyzed
these towns and left entire regions under water. During
showers of 1996, the towns situated on the Red River
got a record quantity of rainfall. In winter, the water
was frozen before draining down to the ocean. During
the long winter, once again, a record amount of snow
fell, which began to thaw when a warming began. How-
ever, not only the snow fallen in winter began to thaw,

P̃
µ
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but also the frozen rainwater remaining from the previ-
ous rain season. As a result, too much water, which
could not be localized in springs and rivers (e.g., in the
Red River), has been accumulated, and, as a conse-
quence, vast areas of dry land were flooded.

STATISTIC 
OF MAXIMUM WATER DISCHARGES

AND LEVELS

We have performed statistical analysis of a large
number of time series for maximum water levels in riv-
ers, outflow volumes during the high water, and maxi-
mum water discharges. We gave special emphasis to the
analysis of catastrophic floods in St. Petersburg,
because detailed physical models were developed for
this phenomenon, and this was a good possibility to
compare the probabilistic and hydrodynamic maximum
water levels in the Neva River near the Institute of Min-
ing (Fig. 1).

We consider the sampling X1, X2, …, Xn from the
general set of mutually independent and identically dis-
tributed random quantities, which can obey one of two
distributions and satisfies the condition that the sam-
pling average is equal to 1. As the distributions we
choose:

gamma distribution

(6)

and power distribution

pΓ x( )
µµxµ 1– e–µx

Γ µ( )
--------------------------, x 0>

0, x 0;≤





=

400

350
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250

200

150

100

50
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Maximum levels of the Neva River, cm of the BS

Fig. 1. Maximum water level of the Neva River near the
Institute of Mining (1878–1994).
(7)

Here, µ > 0, β > 2, are the distribution parameters, and
Γ(·) is the Euler gamma function. The mathematical

expectation for both distributions is EX =  = 1;

the asymmetry coefficient cs and the standard deriva-

tion σ are linked by the relationships  = 2σΓ for the

gamma distribution and  = 2σpow for the power dis-
tribution (when the second moment exists).

We estimate the parameters µ and β by the maxi-
mum-likelihood method [4]. The logarithmic likeli-
hood functions for distributions (6) and (7) are
expressed, respectively, as

The maximum-likelihood equations for each distribu-
tion have the form

(8)

Equations (8) were numerically solved using the
Stirling asymptotic formula for the gamma function.

Both models under consideration are regular [4]. In
this case, the estimates of the maximum likelihood are
unbiased, consistent, and asymptotically normal. Their
variance attains the lowest value in the class of unbi-
ased estimates and is expressed in terms of the Fisher
information:

ppow x( )
β 2–( )β 1– e

–
β 2–

x
------------

Γ β 1–( )xβ--------------------------------------, x 0>

0, x 0.≤





=

xp x( ) xd

0

∞

∫

cs
Γ

cs
pow

pΓ X1 X2 … Xn, , ,( )( )ln µ 1–( ) Xiln µ–
i 0=

n

∑=

+ nµ µ n Γ µ( ),ln–ln

ppow X1 X2 … Xn, , ,( )( )ln – β 2–( ) 1
Xi

-----
i 1=

n
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+ n β 1–( ) β 2–( ) β Xi n Γ β 1–( ).ln–ln
i 1=

n

∑–ln

d Γ µ( )ln
dµ

--------------------- µln–
1
n
--- Xi,ln
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n
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d Γ β 1–( )ln
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(9)

We introduce the probability of exceeding the value
X* for the gamma distribution and power distribution,

respectively:

σΓ
2 –

1

n
d2 p x µ,( )ln

dµ2
----------------------------- p x µ,( ) xd

0

∞

∫
------------------------------------------------------------=

= 
1

n
d2 Γ µ( )ln

dµ2
----------------------- 1

µ
---–

------------------------------------------,

σpow
2 –

1

n
d2 p x β,( )ln

dβ2
---------------------------- p x β,( ) xd

0

∞

∫
------------------------------------------------------------=

=  
1

n
d2 Γ β 1–( )ln

dβ2
-------------------------------- β 3–( )

β 2–( )2
-------------------–

------------------------------------------------------------------.
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(10)

For maximum water discharges in rivers (Table 1), we
present the estimates of parameters for each distribu-
tion, which were obtained by numerically solving
Eqs. (8) and their bilateral confidence intervals at the
significance level of 0.05 (i.e., the probability that the
true value of a parameter does not lie within the indi-
cated interval is 0.05).

For maximum water levels in the Neva River (1878–
1994), the following estimates were obtained:  =

15.906 and  = 16.283. For these estimates, the confi-
dence intervals at the confidence level of 0.95 are equal
to (11.529; 20.283) and (12.359; 20.207), respectively.

PΓ X X*>( ) 1
1

Γ µ( )
------------ xµ 1– e–x xd ,

0

µX
*

∫–=

Ppow X X*>( ) 1
Γ β 1–( )
--------------------- x β 2–( )e–x x.d

0

β 2–
X

*
------------

∫=

µ(

β

(

Table 1.  Characteristics of distributions for maximum water discharges

River, observation 
point (sampling size)

Estimate of the distribution
parameter (confidence interval) Probabilities of exceeding the value X*

 (  – 2σpow;

  + 2σpow)

 (  – 2σΓ;

  + 2σΓ)

2 3 4

Ppow PΓ Ppow PΓ Ppow PΓ

Zapadnaya Dvina Riv-
er, Daugavpils (80)

8.90 (6.77; 11.14) 7.64 (5.27; 10.01) 0.0274 0.0114 0.0030 7 × 10–5 5 × 10–4 3.6 × 10–6

Danube River (July), 
Stvor Orsova (Romania) 
(149)

11.96 (9.69; 14.23) 11.45 (8.83; 14.07) 0.0058 0.0010 0.00011 9.6 × 10–8 4.5 × 10–6 5.3 × 10–9

Danube River (Au-
gust) (149)

15.90 (12.71; 19.09) 14.65 (11.29; 18.01) 0.0321 0.0155 0.0042 0.00017 0.00082 1.3 × 10–5

Tura River, Tyumen 
(70)

2.83 (2.59; 3.08) 1.52 (1.05; 1.98) 0.0885 0.1078 0.0456 0.0242 0.0279 0.0025

Yangtze River 
(November), Haikou 
[30.58°N, 114.28°W 
(113)

27.56 (20.76; 34.36) 27.57 (20.22; 34.92) 0.00049 0.00015 – – – –

Primorskiœ-Kraœ rivers

Code 79695 (67) 3.59 (3.45; 3.73) 2.92 (1.96; 3.88) 0.0854 0.0639 0.0360 0.0067 0.0187 0.00059

Code 78141 (87) 6.14 (4.93; 7.35) 5.63 (3.97; 7.29) 0.0510 0.0233 0.0110 0.00053 0.0033 7.2 × 10–5

Code 78138 (58) 5.36 (4.17; 6.55) 4.20 (2.70; 5.70) 0.0606 0.0399 0.0160 0.0024 0.0056 0.00063

Code 78144 (57) 6.21 (4.69; 7.72) 5.18 (3.29; 7.06) 0.0627 0.0275 0.0172 0.00085 0.0063 0.00014

Code 78252 (51) 2.98 (2.97; 2.99) 1.86 (1.18; 2.54) 0.0904 0.1181 0.0451 0.0413 0.0270 0.0251

Code 01801 (58) 20.19 (13.47; 26.90) 19.47 (12.27; 26.67) 0.0023 0.00021 1.6 × 10–5 2.8 × 10–9 2.7 × 10–7 1.8 × 10–9

Code 05254 (55) 10.81 (7.51; 14.11) 10.76 (6.72; 14.81) 0.0178 0.0038 0.0012 3.5 × 10–6 0.00014 5.3 × 10–8

Code 05287 (58) 8.71 (6.28; 11.15) 8.48 (5.39; 11.57) 0.0285 0.0084 0.0032 3.1 × 10–5 0.00057 1.1 × 10–6

β

(

β

(

β

(

µ

(

µ

(

µ
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The probabilities of exceeding the given level calcu-
lated from formulas (10) are displayed in Table 2 for the
maximum levels in the Neva River.

On the basis of the analysis of various goodness-of-
fit tests (Figs. 2 and 4), we can conclude that both

1.2

0

Probability density distribution function

Maximum level of the Neva River, cm of the BS

50 100 150 200 250 300 350 450400

1.0

0.8

0.6

0.4

0.2

1

2

Fig. 2. Functions of the (1) power distribution and
(2) gamma distribution both corresponding to the sampling
distribution function (broken line) for the water level in

Neva River [8].  = 16.283 and  = 15.906.β

(

µ(
gamma and power distributions satisfactorily corre-
spond to the measurement data. However, the probabil-
ities of catastrophic floods calculated on the basis of
these distributions are substantially different (Fig. 3).

For example, according to the power distribution,
the famous St. Petersburg flood, which occurred on
November 19, 1824 (the Neva water level was 421 cm
of the Baltic System (BS)), must take place once every
667 years. According to the gamma distribution, this
event is virtually impossible (once every 22222 years).

The flood which occurred on September 23, 1924
(the Neva water level of 380 cm of the BS) has a prob-
ability of 0.0039 (once every 256 years) according to the
power distribution and 0.00036 (once every 2777 years)
according to the gamma distribution; i.e., again, it is
virtually impossible. However, these events did take
place.

The flood of 1954 in the Yangtze River in China has
a probability four times higher according to the power
distribution (once every 167 years) than according to
the gamma distribution (once every 667 years).

A further example. The probability of exceeding the
catastrophic level of the flood in 1931 in the Zapadnaya
Dvina River near Vitebsk is equal to 0.0144 (once every
69 years) and exceeds the probability according to the
gamma distribution equal to 0.0032 (once every
Table 2.  Probabilities of exceeding the maximum water level in the Neva River near the Institute of Mining

Level, cm 
of the BS

Probabilities of exceeding the 
water level Level, cm 

of the BS

Probabilities of exceeding the 
water level Level, cm 

of the BS

Probabilities of exceeding the 
water level 

power
distribution

gamma
distribution

power
distribution

gamma
distribution

power
distribution

gamma
distribution

160 0.632 0.673 250 0.097 0.084 340 0.010 0.0024

165 0.593 0.630 255 0.086 0.071 345 0.0092 0.0019

170 0.547 0.586 260 0.076 0.060 350 0.0081 0.0015

175 0.501 0.540 265 0.067 0.050 355 0.0072 0.0012

180 0.460 0.498 270 0.059 0.042 360 0.0063 0.00095

185 0.417 0.454 275 0.052 0.035 365 0.0056 0.00075

190 0.379 0.412 280 0.046 0.029 370 0.0050 0.00059

195 0.342 0.371 285 0.041 0.024 375 0.0044 0.00046

200 0.308 0.333 290 0.036 0.020 380 0.0039 0.00036

205 0.277 0.297 295 0.032 0.016 385 0.0035 0.00028

210 0.248 0.264 300 0.028 0.013 390 0.0031 0.00022

215 0.221 0.232 305 0.025 0.011 395 0.0028 0.00017

220 0.197 0.204 310 0.022 0.009 400 0.0024 0.00013

225 0.176 0.178 315 0.019 0.0072 405 0.0022 0.00010

230 0.157 0.155 320 0.017 0.0058 410 0.0019 0.000079

235 0.140 0.134 325 0.015 0.0047 415 0.0017 0.000061

240 0.123 0.114 330 0.013 0.0038 420 0.00154 0.000047

245 0.109 0.098 335 0.012 0.0030 421 0.00151 0.000045
DOKLADY PHYSICS      Vol. 47      No. 9      2002
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Fig. 3. Probability densities for (1) power distribution and (2) gamma distribution in the natural series of maximum levels in the
Neva River (1878–1994). In the insert, the behavior of tails for the (1) power distribution and (2) gamma distribution in the region
of catastrophic floods is shown.
312 years) by a factor of 4.5. It should be emphasized
that the catastrophic rise of the water level in the Zapad-
naya Dvina River was repeated in 1951.

The probability of exceeding the maximum water
discharge in Missouri River in 1951 (12606 m3/s) is
0.026 (once every 38 years) according to the power dis-
tribution and to 0.0055 (once every 181 years) accord-
ing to the gamma distribution, i.e., five times lower.

Thus, the power-low statistic indicates that the cata-
strophic floods occurring on our planet are not such out-
standing events and have a sufficiently high probability,
which cannot be ignored.

Associated with the hydrological substantiation of
certain projects destined to protect St. Petersburg and
its nearest suburbs against floods, extensive investiga-
tions were carried out on the problem of predicting the
maximum water levels of the Neva River [5–7].

We emphasize that, for calculating the probabilities
of exceeding the levels cited in Table 3, we used the sta-
tistical data on the Neva River maximum levels only for
the period of 1878–1994. The statistic of St. Petersburg
floods for the period of 1703–1994 turned out to be well
described by the power law, whose parameters have
been calculated for a relatively short run of observa-
tions. This comparison shows that the concept of a low
information content of serial floods is invalid.

We compared the results of these investigations and
of the calculations using the statistical models (see
Table 3). This comparison shows that the power distri-
DOKLADY PHYSICS      Vol. 47      No. 9      2002
bution well corresponds to the hydrodynamic models of
floods.

If we introduce a new random value, for example,
the material damage caused by floods, it is evident that
this damage exponentially depends on physical scales
of a disaster (water level or water discharge). From
probability theory, it is well known that the distribution
density of this quantity has a much longer tail than the
distribution density for the maximum water level or for

0
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Maximum water discharge of the Yangtze River, 103 m3/s
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2

Fig. 4. Functions of (1) power distribution and (2) gamma
distribution both corresponding to the sampling distribution
function (broken line) for the maximum water level in the

Yangtze river (China);  = 27.56 and  = 27.57.β

(
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the water discharge. This explains the power shape of
histograms illustrating distributions of the number of
victims and homeless people caused by floods of the
last decades of the past century.

For example, let a damage value be Y = Xm (m @ 1).
Then, the distribution density of this quantity has the
form for y = 0, 

p y( )
β 2–( )β 1– –

β 2–

ym
------------ 

 exp

mΓ β 1–( )y
β 1–

m
------------ 1+

--------------------------------------------------------.=

Table 3.  Recurrence of water levels in the Neva River near
the Institute of Mining

Recurrence
of water levels

Hydrodyna-
mic models

Power
distribution

Gamma
distribution

Once every: 10000 years 540 548 406

Once every: 1000 years 475 439 359

Once every: 100 years 345 341 307

Once every: 20 years 257 275 265

Once every: 5 years 215 219 220
The statistical estimates show that  < 1.
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