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The current state of the art in the physics of meso-
scopic and strongly correlated electron systems [1]
necessitates an appeal to the conceptual tenets of quan-
tum mechanics [2, 3]. We associate the |ow-frequency
(LF) dispersion region in the dielectric spectrum of
polyacenequinone (PAQ) synthesized by polyconden-
sation of pyrene with pyromellitic dianhydride at
300°C with the phenomenon of quantum coherence in
a system of donor—acceptor (D-A) complexes. We
imply a system of atmospheric oxygen intercalated into
graphite-like fragments of the surface-layer structure of
PAQ granules and two-dimensional polyaromatic lay-
ers [4]. In the present paper, the temperature behavior
of the LF maximum in the frequency dependence of the
tangent tand(v) of thedielectric-lossangle d(v) isinter-
preted on the basis of a scheme of quantum measure-
ments that was recently proposed [3]. For definiteness,
we assume that the intercalated oxygen interacts with
the T-conjugate system of only one of the adjacent pol-
yaromatic layers. The problem of possible elementary
mechanisms of the relaxation polarization isbeyond the
scope of the present discussion.

In the temperature dependence of the position v, ¢
of the LF maximum of tand(v), aplateau similar to that
of the rate constant for tunnel chemical reactions[5] is
observed (Fig. 1a, segment 1). This plateau has the
meaning of a low-temperature limit for the electron-
tunneling rate and, as arule, is replaced by the activa-
tion dependence only upon elevation of temperature.
This behavior is aso characteristic of known examples
in which tunneling is revealed in the phenomenon of
dielectric polarization [6]. Such behavior corresponds
to the well-known concept of an increase in the proba-
bility of above-barrier transitions compared to tunnel-
ing under these conditions. From this standpoint, the
dependence v, ((T) isunusual. Asis seen from Fig. 1la
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(segment 1), electron tunneling is observed at higher
temperatures compared to the corresponding activation
dependences (segment I1). In this case, an attribute of
the activation behavior is a shift of the maximum of
tand(v) towards low frequencies at —90°C (Fig. 1b).
However, according to [ 7], the effect of dissipative pro-
cesses in a medium does not always accel erate the tun-
neling reaction, and as T — 0 K, a quantum particle
may be localized in a potential well of the initial state.
Using this conclusion for interpreting the dependence
Vi Le(T), we should associate segment 11 in Fig. 1a(in
the simplest structure model) with the passage from the
tunneling of an eectron in the two-well potential,
which isinduced by an aternating electric field, to the
localization of the electron in the donor part of the D-A
complex.

The effect of dissipative processes in a medium on
the tunneling kineticsis considered, not only in the qua-
siclassical approximation [7], but as a violation of the
coherence in the quantum system [8]. With allowance
for the existing concepts of open continuously measur-
able quantum systems, the process of coherence viola-
tion is associated with quantum measurements, since,
inthismodel, the medium playsthe role of ameasuring
device[3, 9, 10]. Thisimpliesthat the electron localiza-
tion in the donor part of the D—A complex at atemper-
ature of -90°C may be considered the result of a quan-
tum measurement. In this case, segments | and Il in
Fig. 1laare, respectively, the macroscopic manifestation
of the coherent superposition of two alternative results
of the quantum measurement and the choice of one of
them. A hypothetical segment I11 (Fig. 1a) could corre-
spond to the realization of the second choice (electron
localization on the acceptor). In this case, evidently, at
temperatures exceeding room temperature, a shift of
the maximum of tand(v) towards high frequencies
should be observed (Fig. 1b). In principle, thisis possi-
ble under certain experimental conditions. In such an
interpretation, the appearance of the temperature
dependence in the rate of the LF relaxation process
beyond the plateau from the sides of both low and high
temperatures has the following natural explanation: in
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Fig. 1. () Temperature dependence of the position v,y | g of
the low-frequency maximum for the tangent of the dielec-
tric-loss angle (tand) in the spectrum of a composite con-
taining a mixture of PAQ granules with paraffin (polymer
concentration is 10%; specimen thicknessis 242 um; diam-
eter of electrodes is 15 mm). Experimental points of seg-
ment | correspond to the data of Fig. 1b. Segment || demon-

strates a shift of the low-frequency maximum for tand(v)

towardslow frequencies (see Fig. 1b). Inthiscase, values of
Vm L correspond to an approximate estimate. (b) Fre-

quency dependence of the low-frequency (LF) maximum of
tand(v) for the same specimen at temperatures. (1) 20;
(2) -90; (A) O; (o) 20; (+) —60°C. Frequency dependences
of the high-frequency (HF) maximum of tand(v) at the
same temperatures are not shown.

both cases, the activation behavior is associated with
the incoherence phenomenon [3]. It turns out that by
varying the temperature, we are capable of parametri-
cally controlling the rather fine mechanism of the
choice of alternative possibilities in quantum measure-
ments. Parametric control of the collective reaction of a
system of bistable quantum elements in the surface
layer of PAQ granules can be realized on the basis of
the quantum-measurement scheme proposed by Men-
sKkii [3]: asysterm —— amicrosensor — areservoir.
The basis of this scheme is the author’s conception
of areversible incoherence, which is possible provided
that the interaction of the medium and the quantum sys-
tem being measured is limited by the small number of
the degrees of freedom at a microscopic or mesoscopic
structural level. These selected degrees of freedom are
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functionally equivalent to amicrosensor, i.e., to adevice
in which the quantum information is recorded [3]. This
possibility arises dueto the appearance asaresult of the
interaction of atwo-content entangled (quantum-corre-
lated) state of an Einstein—Podolsky—Rosen (EPR)
pair [2, 3, 10]. With allowance for this model, we may
assume that an external alternating electric field reads
out the quantum information recorded in the polarized
state of the microsensor and transformed by it into a
macroscopic information signal, namely, the maximum

of tand(v) (Fig. 1b). The plateau region in the depen-
dence v, (T) (Fig. 1a) corresponds to the state of
reversible incoherence.

The transition from reversible incoherence to irre-
versible incoherence is accompanied by the disappear-
ance of the coherent-superposition contribution to the
polarization of the medium (Fig. 1a, segment I). This
transition occurs in accordance with the scheme of [3]
and has areservoir that also correspondsto apart of the
environment for the quantum system being measured
but possesses, however, a considerably larger number
of degrees of freedom. The author of [3] did not discuss
the problem of the interior functional system of this
block. We assume that it can be defined as an ordered
system of these degrees of freedom, which possessesan
information behavior involving a stage of analog pro-
cessing of information [4]. The realization of the func-
tions of the parametric control in such asystem may be
represented as a certain sequence of elementary events
that is caused by quantum correlations and whaose chain
penetrates the entire structure of temporal hierarchies
and connects quantum and mesoscopic levels. Thefina
result is the formation of particular steric conditions
promoting or preventing electron transport in D-A
complexes.

The scheme of quantum measurements proposed
in[3] isin fact close to the principle of the functional
integration that represents the basis of an approach to
controlling quantum processesin the context of the the-
ory of automatic control systems with distributed
parameters, which was developed in [11, 12]. The sug-
gested interpretation of the phenomenon of theirrevers-
ible incoherence in the quantum-measurement scheme
allows us to make the following assumption. We may
assume that the function of an analog control device
can be realized with respect to a system of D—A bonds
in the surface layer of PAQ granules as a result of the
regulatory properties of the polymeric surface layer in
itself.

In biological objects, asimilar mechanism of analog
information processing and decision making appar-
ently acts at the level of cell membranes. At the same
time, in solid-state structures, this occurs at the level of
interface surfaces and is associated with the phenome-
non often called interphase polarization [13]. As fol-
lows from the above, there exists a basis for the devel-
opment of a nontraditional approach to studies of
mechanisms regulating nonequilibrium surface pro-
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cesses. This basis consists in the integration of the
physics of polarizable mediaand the physics and chem-
istry of high-molecular compounds, as well as the the-
ory of automatic control of systems with distributed
parameters.
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Acoustic waves in solids are actively studied. The
effect of acoustic oscillations on the mobility of charge
carriersand electrical conductivity werestudiedin[1, 2].

In semiconductor samples, where a strong-field
region is produced in p—n junctions, we observed sur-
face wavesthat accompany a breakdown and propagate
from sources of concentrated energy release.

In the micrographs taken on optical (Fig. 1) and
electron (Fig. 2) microscopes, three developed and one
incompl ete breakdown channels are seen (at the initial
stage, several breakdown channels can be formed);
channels 1 and 2 partially overlap.

Inthe lower part of channels 1, 2, and 4, “ solidified”
waves generated by the explosive energy release upon
a breakdown are seen. Wave crests are separated by
25-70 um, and the channel length and width are equal
to ~300 and ~150 pum, respectively.

The waves can be photographed, because a molten
filmisformed on the surface and israpidly solidified in
atime lessthan the period of wave propagation. Taking
into account the vel ocity of acoustic waves, wefind that
the period of wavesis equal to 15-50 ns. Thermal cal-
culationsindicate that the thickness of the molten layer
does not exceed fractions of a micron, and the temper-
ature jJump between the molten layer and crystal is sev-
eral hundred degrees.

In the breakdown channels (Figs. 2 and 3) at the
boundary between C* and C-, as well as at the bound-
ary between C- and B, thin grooves intersecting the
breakdown channels in the transverse direction are
observed. The length, average depth and width, and
volume of a groove are equa to ~150, 10 um, and
~1.5x 10° mm?3, respectively. The small sizes of
grooves indicate that the process is short-term.

In the micrographs (Figs. 2 and 4), it is seen that a
substance evaporates and is ejected from grooves.

K. Petersburg Sate University of Telecommunications,
ul. Moika 61, S. Petersburg, 191186 Russia

Therefore, temperature reached 2783 K (for silicon)
and 1693 K on the boundary molten surface. An energy
of 7.2 x 10* and ~1.5 x 103 Jis expended on forming
one and two grooves in the channel, respectively (tak-
ing into account short-term energy losses due to ther-
mal conductivity). The 0.1-um-thick layer over the
surface B and the 1-um-thick layer over the surface
C- melt in 1 and 10 ns, respectively. An energy of
0.12 mJis expended in one channel. The total energy
expenditure on forming the breakdown channel is
equal to 2 mJ.

Samples under a blocking voltage of 800—1000 V
are periodically exposed to gate voltage pulses. The
pulse duration isfrom 1 ps up to tens of milliseconds,
and the pulse period-to-pulse duration ratio is no less
than 100. At a current of 15 A, voltage of 800V, and
dissipated power of 12 kW, an energy of 2.4 mJ is
released in 200 ns. During this time, the energy is
accumulated and released through explosive evapo-
ration.

A breakdown isindicated if blocking voltage is not
restored after the end of a pulse.

A voltage pulse givesrise to the redistribution of the
electric field and creates conditions for breakdown
development. The electric field is redistributed in a
time depending on the time it takes for charge carriers
to penetrate through the layer C-, which is equal to
about 2 ns.

A gate voltage pulse initiates the energy release and
heating of the surface layer. Near the region B, elec-
trons compensate for the positive space charge. As a
result, the strong-field region is displaced toward the
highly doped region C*. Under the action of the strong
field in the region C-, electrons cover a distance of
100 pm in approximately 1 ns, and the strong-field
region is displaced by the same distance from the
boundary of the region B. Therefore, conditions suit-
able for ionization processes are produced. The rate of
these processes increases when the thickness of the
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In [1], we formulated the concept of the possibility
of substantial elevation of transconductance and opera-
tion speed of field-effect transistors. This concept can
be realized through sectioning the transistor channel by
low-resistance local inclusionsthat provide for the effi-
cient cooling of electrons and the corresponding
increase in their mobility and drift velocity. The quan-
titative estimates performed in [1] to reveal advantages
of the structural modification of the transistor channel
which had been proposed by us were based on a quasi-
hydrodynamic (thermal) model [2] of the electron drift.
Thismodel was simplified by ignoring the contribution
of the thermal relaxation and thermal current. Never-
theless, the model made it possible to demonstrate the
basic features of the so-called overshoot effect [3].

Thegoal of the present study isamore rigorous sub-
stantiation of the concept for the super-speed electron
drift in a profiled channel, which is being devel oped by
us. In doing this, we exploited the complete stationary
guasi-hydrodynamic eectron-drift model, which was
developed on the basi s of the well-known PISCES-2ET
software package. In due course, we even used this pro-
gram package to study features of the avalanche break-
down of GaAs field-effect transistors [4]. The package
was modified by introducing exact dependences of
kinetic coefficients on the electron temperature, which
were obtained by the Monte Carlo method [5].

Unfortunately, propertiesintrinsic to the given soft-
ware package did not alow us to advance deeply into
the nanometer-size region which we were interested in.
We had to restrict our analysis to the corresponding
numerical experiments with three submicron model
structures. The first of them was a usual GaAs field-
effect transistor with channel length L = 0.6 um. In the
second modd structure, the channdl was divided into

Institute of Radio Engineering and Electronics,
Russian Academy of Sciences,
Mokhovaya ul. 18, Moscow, 103907 Russia

two parts by a central quasi-drain highly doped region
with alength of 0.2 um. In thethird structure, two inter-
mediate quasi-drain regions were formed, whereas the
channel itself was divided into three equal parts
(Fig. 1). It is worth noting that for al three cases, the
total length of active (high-resistance) channel parts
was equal to the same value of 0.6 pm.

In Fig. 2, we present a typical distribution of the
electron temperature along the channel length, which

10

0 1 2 3 4 5
X, Mm

Fig. 1. Profile of the donor-admixture distribution in afield-
effect transistor with the sectioned channel.
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Fig. 3. Calculated current—voltage characteristics of afield-
effect transistor with a sectioned channel in (a) open regime
(the gate voltage Vg = 0) and (b) in the case of V; = -2 V.
Denotations 1, 2, and 3 correspond to the ordinal number of
a high-resistance section.

was obtained in the course of numerical experiments.
Thisdistribution clearly demonstrates an effect of cool-
ing of carriers in intermediate quasi-drains. Plots of
Fig. 3 exhibit typical calculated current—voltage char-
acteristics for all three modeled structures. These plots
clearly show the expected tendency of an increase in
currents and in the transconductance for the sectioned
structures.

In conclusion, we emphasize that limitations inher-
ent in the software package employed by us did not
alow us to model situations we were interested in,
namely, those with 10 or more nanometer-size inclu-
sions. Nevertheless, the obtained results for submi-
cron inclusions clearly and convincingly demonstrate
a tendency to the improvement of device characteris-
tics as a result of sectioning the channel of a field-
effect transistor.
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Periclase (MgO) haslong been actively studied both
theoretically and experimentally. A large body of data
concerning the structure, properties, and features of the
chemical bond of this oxide, which has a NaCl-type
structure stable over a very wide range of temperatures
and pressures, was accumulated. For this reason, peri-
clase is often used to test new theories, experiments,
and even asastandard for determining pressurein high-
pressure investigations. In addition, most researchers
admit that periclase is one of the primary components
of the Earth's lower mantle. Thus, the properties of
MgO at high temperatures and pressures are of great
significance for interpretation of geophysical data on
the structure of deep geospheres.

In this study, we simulate the properties of periclase
in terms of the semiclassical atomistic method [1],
where semiempirical potentials of interatomic interac-
tion are used to cal cul ate atomization energy and elastic
and thermodynamic properties and to derive the equa-
tion of state for MgO in awide range of pressures. The
results are compared with measurements and theoreti-
cal data obtained by advanced simulation methods
based on quantum-chemical calculations [2].

In terms of the semiclassical atomistic approach,
atoms, which have definite size (radius) and carry cer-
tain effective charges, are bound by the Coulomb and
short-range interatomic forces to an infinite three-
dimensional periodic structure. The most stable and
thermodynamically probable structure has the lowest
structural energy E,, whichisdetermined asthe sum of
all interatomic interactions over all atomic pairs.
Among the available software packages for minimizing
the energy of this system, the package GULP1.3 for the
LINUX operating system [3] hasthe widest capabilities
and highest operation speed.

In the pure ionic model, which is completely appli-
cable only to a narrow set of alkali-metal halides, the
structural energy coincides in physical meaning with
the energy of theionic crystal lattice. The ionic model
fails to reproduce the structure and properties of peri-

Moscow Sate University, Vorob' evy gory,
Moscow, 119899 Russia

clase in most cases. For example, the lattice constant
and bulk modulus calculated in [4] much exceed the
experimental values: gy, = 2.178 A, a,,, = 2.104 A,
Kiheor = 234 GPa, and K, = 163 GPa. In fact, most
oxide inorganic compounds and minerals have an inter-
mediate type of bond rather than pure ionic or covalent
chemical bond. In this case, ions have effective charge
g = fz, where f is the bond ionicity (0 <f< 1) and zis
the formal valence. In this case, the structural energy
E4 cannot be directly associated with either the lattice
energy or the atomization energy. The atomization
energy is the sum of Ey and the energy AE of the
charge transfer from a cation to an anion;

E, = Eq + AE. (1)

The calculation of the charge-transfer energy AE is
complicated primarily because, instead of using the
subsequent ionization potentials of isolated atoms in
their ground state, it is necessary to take into account
the formation of a valence state and an effective (posi-
tive and negative) charge when an atom passes into the
crystalline substance. For example, for Mg with the
electron configuration [1s?2s*2p°)3<’, it is necessary to
takeinto account the energy of the s—p valence-electron
hybridization, which is not known with certainty. The
simplest and most natural method isto take the average
ionization energy for the 3s and 3p electrons instead of
thefirst ionization potential. The method of calculation
of the charge-transfer energy AE was detailed in [5].
For an oxygen atom O, the charge-transfer energy due
to the attachment of a fraction of magnesium valence
electronsis determined more precisely [5].

In the total-minimization method, the structura
energy Eg, iscalculated for the whole range of the ion-
icity f from O to 1 (corresponding to effective chargesq
from Oto +2g,) and, according to Eq. (1), isadded to the
corresponding charge-transfer energy AE.

The structural energy Eg; isdescribed by the expres-
sion

Ey = Eq + Eq, (2)
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the distance between atomsi and j, E is the energy of
the short-range potentials, the Buckingham potential
Vy describes the repulsion between oppositely charged
Mg and O ions and the van der Waals attraction, V,, is
the Morse potential responsible for the covalent Mg-O
bond, the three-particle angular O—-Mg-O potential Vg
taking into account that the bond is partially oriented is
necessary for reproducing the deviation from the
Cauchy relationship for the elastic constants (C,, =
C4), 0 isthe O-Mg-O angle, and 6, = 90° is the equi-
librium angle.

The parameters of interatomic potentialswerefound
by fitting the calculated properties (lattice constant,
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1.0 1.1

I I I I I I L |

12 13 14 15 16 1.7 1.8 1.9 20
q, €y

Fig. 1. Structural energy Eg,, charge-transfer energy AE,

and atomization energy Eg on the effective charge of ions.

The dashed line shows the atomization-energy minimum
corresponding to an effective charge of +1.84 g, and to the

calculated atomization energy.

URUSOV, KANTOR

bulk modulus, and elastic constants under normal con-
ditions) to the corresponding experimental values and
are presented below.

For the eectrostatic interactions, q = 1.84g,, the
action range is O—co.

For the Buckingham potential between (i) Mg-O,
A=224.18¢eV,p=0.463 A, C=0.0,theactionrangeis
0-8.0 A; and (ii)) O-0, A = 22764.0 eV, p = 0.149 A,
C =27.88eV A®, the action rangeis 0-8.0 A.

For the Morse Mg—O potential, D = 1.023 eV, a=
1.043 A1, r,=1.83 A, the action range is 0-8.0 A.

For the three-particle O-Mg-O potential, 6, = 90°,
k = 1.736 eV, the action range is 0-3.2 A.

When calculating the structural energy Eg,(f) as a
function of f, it is necessary to introduce the corre-
sponding weight function f2 for the short-range Buck-
ingham potential Vg and the weight function 1 —f2 for
the Morse potentia V), and three-particle potential V.
After adding the corresponding values of AE(f) to
E..(f), we find the atomization energy E(f) as afunc-
tion of the ionic character. The minimum of this func-
tion corresponds to the most stable state of acrystal for
certain optimal effective charges, which cannot be
found from experiment with sufficient accuracy, and
the atomization energy E; (Fig. 1). The effective charge
for MgO turned out to be equal to +1.84¢,, and the
effective charge found from the quantum-chemical cal-
culations[2] for various pressuresin MgO ranges from
*+1.93 to £1.77¢,. The energy E, has a minimum value
of —1035 kJmole, which is very close to the experimen-
tal atomization energy for MgO at 0 K (1012 kJmoal).
Thus, minimizing the atomization energy makesit pos-
sible to find both the effective charges (or ionicity) and
acrystal cohesive energy by using only the density and
elastic properties of the crystal. This is a substantial
advantage of the above approach.

Using the above parameters of interatomic poten-
tials, one can calculate certain basic properties of the
crystal: the unit-cell volume, bulk modulus, and the
matrix of the elastic constants among which only three
constantsC,,, C,,, and C,, are independent for a cubic
crystal. Performing calculations for various pressures,
we find the elastic properties of the crystal as functions
of pressure. Figure 2 shows the bulk modulus and elas-
tic constants calculated in this study, aswell asthe the-
oretical [2] and experimental [6-9] values of these
guantities. The bulk modulus K calculated hereisvirtu-
aly in the middle of the range given by other studies.
At the same time, the elastic constant C, is systemati-
cally lower, whereas C,, is systematically higher than
most other data. Furthermore, al the elastic properties
calculated in this study depend almost linearly on pres-
sure. This behavior agrees only with some of the
reported data [2, 7]. The pressure dependence of the
MgO molar volume is shown in Fig. 3 along with the
published data. It is seen that all the data agree satisfac-
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SIMULATION OF THE PROPERTIES OF PERICLASE

K, Cll’ C12’ C44, GPa
800+

— Thisstudy
- - -[2] (theory)
[6]

700 -

600

500

P, GPa

Fig. 2. Bulk modulus K and elastic constants Cy 4, C,, and
Cy4 VS. pressure.

torily up to pressures of about 40 GPa, whereas our
results for higher pressures point to a noticeably higher
compressibility of this crystal than follows from the
most reliable experiments [6, 10-13].

Using molecular dynamics, one can find the unit-
cell volume as a function of temperature and calculate
the thermal-expansion coefficient a. The calculation of
phonon properties makes it possible to find important
thermodynamic quantities such as the entropy S and
specific heat at constant volume Cy, and their tempera-
ture dependences (Fig. 4). Although the specific heat
found here differs significantly from the experimental
value for normal conditions, the corresponding func-

Calculated and experimental properties of periclase

719
v, A3
20
-o- Thisstudy
19} --- [2] (theory)
g o [6]
o [10
18F + |11
a [12
o [13
17+
16+
15+
14+
13
12 1 1 1 1 1
0 20 40 60 80 100
P, GPa

Fig. 3. P-V diagram for MgO.

tion C(T) is quite close both to the experimental and
theoretical curves at higher temperatures. However,
entropy is systematically lower than the standard exper-
iment data [14] and is somewhat closer to the theoreti-
cal abinitio calculations[2].

The table presents the fundamental physical proper-
ties both calculated and measured for the crystal. Asis
seen, the calculated thermal -expansion coefficient, spe-
cific heat, and entropy differ considerably from the
respective experimental data. Furthermore, the elastic
constants and volume differ substantially from the
experimental values at high pressures. This means that
the semiclassical atomistic calculations with fixed

Property Calculation Experiment
Lattice constant a, A (0K) 4.203 4.199
a A (300K) 4213 4.211
Bulk modulus K, GPa 163.06 162.5
Elastic constants, GPa: Cy4 297.08 297.0
Cp, 96.05 95.3
Cu 156.00 155.7
Thermal-expansion coefficient a, K™ (300 K) 2.11x10° 3.12x10°
Specific heat Cy, Jmol~ K~ (300 K) 33.37 37.67
Entropy S, Jmol~! K= (300 K) 23.04 26.9
Atomization energy E,, kJmol™ (0 K) -1035 -1012
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Fig. 4. Temperature dependence of the heat capacity C, and
entropy S

effective charges of atoms cannot be sufficiently accu-
rate, because there are strong reasons to believe that the
degree of covalency of the chemical bond increases
considerably with pressure, aswas shown, for example,
in [2]. The inclusion of this effect can likely improve
the simulation results, but computer-time expenditure
increases substantially in this case.

1

11.

12.

13.

14.
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To create wideband systems of coherent optical
communication and many other optical-fiber devices,
e.g., optical-fiber interferometers, it is necessary to
have waveguides conserving the polarization of radia
tion passing through them. One type of such
waveguides are singlemode elliptic waveguides,
which, with the appropriately chosen refractive-index
profile, can ensure the single-polarization mode [1] and
have quite high dispersion characteristics[2, 3].

In this paper, the problem of the natural waves of a
gradient elliptic waveguide with an arbitrary refractive-
index profile is rigorously solved. For all directional
modes of thiswaveguide, the exact expressionsfor field
components, dispersion equations, and equations for
critical wavelengths are obtained. Dispersion equations
and equations for critical wavelengths are derived from
the condition that a determinant whose order is virtu-
aly independent of the refractive-index profile of the
waveguide is equal to zero.

Let ustreat agradient elliptic waveguide asadielec-
tric structure (light guide) homogeneous along acertain
axis, which istaken asthe z axis. This structure consists
of (i) a core whose dielectric constant is stepwise con-
tinuousin the & coordinate in the elliptic-cylinder coor-
dinate system €, n, z and (ii) an infinitely thick shell
with constant permittivity.

In the general case, the permittivity of this
waveguide has the form [4]

) O, _1<&<&,1 =1,2,...,N
0
|:£001 ENSE<°01

where g,, < maxg(&) (otherwise, all modes of thislight
guide are outflowing), & =0, and &, &, ..., &y_, are

Moscow State Academy of Instrument Engineering
and Informatics, ul. Stromynka 20, Moscow, 107846 Russia

singular points of the permittivity of the waveguide
core.

All components of the electric E = (E;, E,, E,) and
magnetic H = (H, H,,, H,) fields of a directional mode
of the waveguide depend on time t and longitudinal
coordinate z as expl[j(wt — B2)], where w and (3 are the
circular frequency and constant of the longitudina
propagation of the mode, respectively. In what follows,
this dependence will be omitted.

Let us consider the vectors

0
e = JeO E. j
0jG(&,n)E, O
O O
h = J/ud H. g
0jG(&, n)H, O

where

G(E,n) = kopa/SINh’E + 8NN, Ky = W,/EqHo,

g, and p, are the electric and magnetic constants,
respectively; and p is half the distance between the foci
of the elliptic-cylinder coordinate system, in the form

e€n) = % Sun(&nled),
k=0

h(gn) = Y Sactu(& nhe(@).
k=0

uvio{o, 1.
Here,
cre v _OsHMA@) 0 0
Sm(zﬂ]) D 1—q D'
O 0 scn (N,q(§)) 0
a=0,1,
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Ebll for 0<g <&,

q(é) = ?2 for &, <&<¢,

EHN+1 for {ys& <o

q =- 2 y U =Y =€,

_ 2
(En+1,0 = €0 Un+1>0),

chm+v(r]! q) = Se2m+2—v(n1 q)’
sch(n,q)=ce.(n,q), m=0,1, ...

Amn(&)

1l
OoOo0od

s(z)képz

Gn(8) =

—~yfin(a(g), a(g)) 0
Gin(&) +29(8)gmn(A(E)) = BmAn(a(E))  Vrm ™ (a(€), a(®)) O

[8mnCOSN°E =G (A(E))],  Brun =

KRIVENKOV

se,(n, 9), ce,(n, q) are the angular Mathieu functions
[5]. This form corresponds to even modes HE,,, and
&EH,,, for = 0 and to odd modes ,HE,,,, and ,EH,,,, for
K =1, where the azimuthal index mis odd and even for
v = 0and 1, respectively.

Excluding the components E; and H; from Max-
well’s equations for a nonmagnetic dielectric medium,
we arrive at the set of equations

(E) Z Azmty, 2n+u(€),

dh
Z Aum+v 2n+v(E)en’

m=201,.. (KvUO{0 1),

where
Sy’ -2(®) 0

M for m=n
for m#n,

2n

a 1 o o
Omn(Q) = =t J’ c0S2nSCy(N, q)SCy(n, g)dn,
0

21

aj ! 1 j—a ! dj a :
fn(@ @) = S som “(n, d)-S[sci(n ), j=0,1, a=0,1,
dn
0

a . . a _ The continuous solution of this set of equations,
An () are eigenvalues for the functions sc, (n, g, | = which satisfies the familiar boundary conditions at & =

1,2,....,N+ 1 Oand & — =, isrepresented as

-8 8,0 He, X k
EZ[anu ....... O+b,0...... DDDE_E'_lD, for §_,<&<&, 1=1,2 ....,N
0. o0 4000 D M e
gén@ g = 57°0 Ohyy D Ohpy D
Do 0 = ZE
Ohe(®3 "°fH H em@® 5 Bt F
S O D+dn[1 ........... DD for Ey<&<w, m=0,1
(0O O O [

0 O-ghhn(®)0 Depg(8) @
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DISPERSION EQUATIONS FOR THE DIRECTIONAL MODES

where

ol

0
emnO = p-émn U
0

a I+1 _ Fpl cxI
mnO Z Z 2m+v, 2j +v ]nk!

j=0k=

al+1 _ 1—p,l —
mnO Z ZF2m+v 2j+v ]nk! I = 11 21-'-

j=0k=

.

[of

Amk = g
0

o K3 1+ (-1 o 0
Gmlnk = Op Eﬁmnz[——_g———)—]—el k—i — EkGmn ()T,
g

il
i=0

O 5 O
em®=0 . ™ 5
O~ Tom+v,2n+v []
. O o O
@®=0_ ) 0
|:lémnK2n+v(E)|:|
a  _ al
fmn - fmn(qN+1! qN+l)-
Un+1
dE[M“)(z On+1)]
KR(§) =

N+1Mg3r3(EN’ QN+1)

a =01, uvdo{o 1,

M m v (&, @) = MsS ., (&, 9),
M2E gy =McP(E,q), m=0,1,...,

B &, gyandMc? (&, g) aretheradial Mathieu func-
tlons of the third kind [5], and constants a,, b,, ¢, and
d,n=0,1, ... present the nontrivial solution of the
homogeneous linear set of equations
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-y f ?n%w(Qh ;) Ok
Gk + Bo(20Gmn () = A (@)
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ol - _ 1
€o(k+1)

em,n,k+1 -

k 0 ) -~ D
XIZ%SI k— J+1emnj -ZA2m+v 2i+v, k- ]hInJE
i=0

k 00
1
h?nl,nk+l = k_z ZA2m+v 2i+v,k—j |an|j)1
=0i=
=01,.

g O
cal = O fron(C G 1) 0 0
mn D

g

0 fon ao(QhQHl)D

|
-0 mn(501<\/2 —€) 0

1-a,1

0
Yfmn (0 )00k O

0,N+1[] O LN+1[T]
mn0 D Demno DD

hO,N+1E Dth+l%

mn0

m=201,...,

whose determinant must be equal to zero.

Excluding unknownsc,andd,, n=0, 1, ... from the
last set of equations and equating the determinant of the
resulting set of equationsto zero, we obtain the follow-
ing dispersion equation for directional modes of the
gradient elliptic light guide:

det(P*'Q") = 0, w,vO{0, 1},

where

QW -(Q ) mn=0,1,.

O on+1: 1 n+10
MV _ D emnO . emnO
mn0 mn0

W= (PL), mn=01,.
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O . O —H1000E
pHY = U fgm+v,2n+v 6mn _6mnKénfv(EN) 0 [l 1" = (_1)H €00l 0,
mn = ] u 1-u O 0ooo10
DamnSOOKZn+v(EN) 0 f2m+v,2n+v 6mn|:|
_ . D. - g0 0 104
This equation corresponds to even modes HE,,,, and n— [0 g -, 00

JEH,, for 1 = 0 and to odd modes HE,,, and .EH,, for

KU = 1, where the azimuthal index m = 2k + v, k =

0,1, ...

21 . .

P the dispersion equa-
0

tionisan equation for unknown phase constant y, which

For given wavelength A =

can take values y > ,/eq,. For the limiting case y =

«/go, we have the following equation for unknown
wavelength A:

det(Ruv(qu)y: @) = 01 M,V U { Oa 1} ’
where

R™ = (REY), mn=01,..,

Rby = 3on(K, 0, 1—1, 0),

uo —
Rm, m-u = D2m1

- H
RHO _[1+(_1)]|H+T
mm-p+xl = 2 2m, 1y
plr _ u pl —
Rmm - I + D2m+1’ Rm,m—ptl - T2m+1,ill

m=12 .., m—u+x1=0,

R =[0], n#m, nZzm=1,
m=12.., n=01,..,

Eookop (N +2K)d g 0 0 0

Tn = k 1]
“ 8(n+k) Hoo100

k = +1,

- 4 n-1 n+1
n=23,...,

. _sooképz[exp(zzN) 4 EXP(=28,)(2n + 1)]

and [Q] is the zero 2 x 4 matrix. This equation is an
equation for the critical wavelengths of even and odd
directional modes for u = 0 and 1, respectively, where
the azimuthal index is even and odd for v = 0 and 1,
respectively.

The order of the determinant in the left-hand side of
the above equations is equal to double the number of
terms in the decomposition of the field components of
the mode in terms of the angular Mathieu functions and
is virtually independent of the refractive index profile
of the waveguide in question.
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1. Studies of ionization of atomsand ions, aswell as
of photoabsorption processesin crystalsin intense elec-
tromagnetic fields, began morethan 35 yearsago [1-3].
However, up to now, complete understanding of anum-
ber of questions having a vital importance for both
atomic physics and solid-state physics is absent. This
statement is valid, e.g., for investigations of nonlinear
phenomenain strong electromagnetic fields of compli-
cated configurations, which again have attracted the
attention of researchersin recent years[4—7]. In partic-
ular, the possibility of retarded decays of unstable
atomic nuclei with increasing field intensity (the so-
called stabilization regime) was studied. However,
independently of the type of electromagnetic-field con-
figurations being applied, only the case of scaar
charged particles was analyzed. This constraint made it
impossible to revea physically interesting polarization
regularities arising in a strong magnetic field. We have
managed to clarify the problem on the possibility of sta-
bilizing decays of bound states of spinor and scalar par-
ticles in high-intensity magnetic fields. The results
obtained require a fresh examination of the accepted
concept that the growth of a magnetic field reduces the
width of atomic energy levels and thereby stabilizes an
atom and suppresses its ionization by an electric field.

2. We consider a process of gjecting charged parti-
cles from a potential well of short-range forces by a
constant electric field F in the presence of a normal
(with respect to the electric field) constant magnetic
field H, with field intensities being assumed to be not
low. To do this, we exploit the model of the three-
dimensional delta-potential, which is applicable to
many realistic physical systems, including atoms and
ions[1-4]. We now analyze the decay process of quasi-

stationary states for particles with spins s = 0 and %

under the action of external fields. Using the method of

Moscow Sate University of Geological Exploration,
ul. Miklukho-Maklaya 23, Moscow, 118873 Russia

exact solutions [8] and performing standard calcula-
tionsfor the probability of the process per unit time, we
arrive at the expression

ex D—i§
W o PO 2 HenEl?
q /\/_‘__[ m3/2 (1)

- |
xir%)qu(v)exp(lsy

Below, the system of unitswith 4 =c = 1isused; eand
m are the electron charge and mass; and E; is the par-
ticle coupling energy in the short-range potential,
which is unperturbed by the external field. The sub-
script g = 1, 2, which corresponds to the functions
f,(v) = (sinv)~! and f,(v) = cotv for scalar and spinor
particles, respectively (after summation over polariza-
tion states). Poles in expression (1) are bypassed from
below, and

FZD szzt \_}

Om op0 e® 2 T

S=p

The integral entering into (1) can be calcul ated ana-
lytically by expanding exp E’atan\—z’% into the Laguerre

polynomials [9]. However, it is more convenient to use
asimpler and physically more justified approximation
based on the fact that the basic contribution to (1)
occurs from the vicinity of the zero point. Thus,
employing the calculation method thoroughly
described in [10] and passing to normalized field inten-
sities and coupling energies inherent in atomic physics,

k’me*
2

2
m’e’,

2
F, = Ha=me3c, E, =

(in ordinary units, F, = 5.14 x 10° V cm™ and H, =
2.35 x 10° G and the dimensionl ess parameter k charac-
terizes different energy states of an atom and negative
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W, W,
Ey' E,

8§ x 1077} -
6x107 7}
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Normalized probabilities for the gection from ashort-range

W, W,
potential of scalar -E— and spinor E— particles at fixed val-
0 0

ues of the electric field as a function of the magnetic field
intensity.

ions), we find that the probability of the gjection from
the potential well of a spinless particle and a particle
with a spin is described, respectively, by the expres-
sions
_ 4B
T I A "), @)

4E

W2 - T[O 1/3|: SAI (ZO) + ZAI (Zn)i| (3)

Here, Ai(x) aretheAiry functionsregular at infinity [8]
whose arguments equal
_1+p/2+np, _1l+np

n - 2/3 ! n 2/3
€ €

and are determined by dimensionless externa-field
intensities

_ 2F _ 2H
8—3—, = .
KCF, KH,

3. We now discuss the results obtained. As is seen
from relationships (2) and (3), the gjection probabilities
at a constant coupling energy are determined by only
the two parameters € and p. We emphasize that the
argument z, of the Airy function in the first term of
expression (3) is independent of Y. In expression (2),
there are no such terms, a fact which acquires a funda-
mental significance in the case of a strong magnetic
field.

RODIONOV et al.

Plots of the normalized particle-gjection probabili-
tiesby an eectric field as afunction of theintensity p of
the magnetic field, which are calculated by formulas (2)
and (3) for afixed coupling energy corresponding to a
negative helium ion He(2p) with k = 0.075, are pre-
sented in the figure. Solid and dashed lines correspond
to scalar and spinor particles, respectively. In this cases,
curves / and 4, 2 and 5, and 3 and 6 relate to the elec-
tric-field intensity €, = 0.11, 0.1, and 0.09, respectively.
In usual units, the intensities turn out to be on the order
of 10°V cm™.

Itiseasy to seethat in weak fields, the dependences
of the gjection probabilities on the intensity u of an
external magnetic field in the case of scalar and spinor
particles differ rather negligibly. Indeed, in the case of
€ <1 and u < €, we can derive from formulas (2), (3)
for spinless and spinor particles

1|:|_ 5) _ Di[l
WZE— 2(€+91,2)9XPD—3€D 4)

2
where g, = %E and g, = 2¢;.

Relationship (4) is quite expected: the ionization
probability in aweak electromagnetic field is exponen-
tially suppressed and for . = O transforms to the known
Demkov—Drukarev expression for a pure electric field
[11]. Inthelimiting case U < €, correctionsto the prob-
ability given in [11] are quadratic over the magnetic
field and their signs for W, and W, are different. It is
worth noting that in this approximation, the relation-
ship for W, is aso consistent with the corresponding
results of [12].

Asfollows from the same figure, for a spinless par-
ticlein astrong magnetic field, the decay probability as
afunction of an external magnetic field decreases with
anincreasein . In contrast, for particles with the spin

% , inthe case of U > €, we observe a practicaly linear
rise of W, with the magnetic-field intensity. The analyt-
ical estimate of expression (2) at 4 > €23, € < 1 yields

~1/2 3/2
_ Yn| 4(1+ p/2)
W, = pH+E Eoexp[ T} (5)
In the same limit, it follows from formula (3) that
HE 4
W, = > expgz (©6)

Thus, the results obtained testify to the fact that the
stabilizing role of a strong magnetic field in the case of
ionization of atoms|[4, 12] isrestricted only by the case
of scalar charged particles. Indeed, expressions (2) and
(5) are quite consistent with this statement: according
to them, the probability of the processis exponentially
suppressed with an increase of the magnetic-field inten-
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sity. However, relationships (3), (4), (6), in which con-
tributions of various particle spin statesin the magnetic
field are taken into account, demonstrate a rise of the
ionization probability with theincreasein p. Evidently,
acause of the different behavior of theionization prob-
abilities W, and W, in strong magnetic fieldsis the fact
that the Landau level with the minimal energy (ground
state) is attained only by particles with their spins
aligned opposite to the direction of the magnetic field.
With an elevation of the magnetic-field intensity, ener-
giesof al Landau levelsdifferent from the ground level
increase. Therefore, the defining contribution to the
level width of aspinor particlein aquantizing magnetic
field is determined by the particle transition into the
ground state whose energy is independent of H. How-
ever, for spinless particles, such a selected level is
absent. Asaresult, as opposed to scalar particles, in the

case of particleswiththespins= %,ariseinionization,

not its suppression, takes place with an increase of the
magnetic-field intensity.

Similar differences in the dependences of the prob-
abilities and cross sections of reactions in strong mag-
netic fields with participating spinor and scalar parti-
cles are well known. They are manifested, e.g., in the
processes of e*e pair photoproduction [3, 8, 9], as well
as when studying the induced photoabsorption of non-
conducting crystals in a quantizing magnetic field [13]
and in reactions of the induced nuclear betadecay [14].

As is well known, numerous data obtained while
investigating tunnel ionization of atoms and ions were
accumulated in experiments with the application of
optical radiation of the infrared, visible, and near ultra-
violet ranges at wave-field intensities having attained
F ~0.1 au.[7]. Under laboratory conditions, stationary
magnetic fields H ~ 3 x 10° G are formed with the help
of cooled superconducting solenoids. Thus, the calcu-
lated val ues presented in figure are accessible presently
in experiments with the use of laser beams and modern
superconducting magnets. We can also expect the
applications of the results obtained in experimental
studies of processes associated with tunneling weakly
coupled electrons in semiconductors in the case of
crossed electric and magnetic fields.
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Depending on treatment conditions,
Fe;35Cu;NbsSi; 5 5B, aloy can exist in both amorphous
and nanocrystalline states. The magnetic behavior of
thisalloy is associated with its structural state, specific
features of the domain structure, and the degree of sta-
bilization of domain walls. By modifying the structure
of ferromagnetic materials, it is possibleto control their
magnetic properties. Using the Barkhausen effect,
additiona information concerning both magnetic and
structural properties of an aloy under study can be
extracted [1].

In this study, we investigate the effect of phase inho-
mogeneity of the aloy on the distribution of
Barkhausen jumps along the field applied and on a
change of the critical fields of the magnetization rever-
sal [2]. The comparison of distributions of the
Barkhausen jumps in the chosen alloy with the nanoc-
rystalline structure is performed for cases with stabi-
lized and destabilized domain walls. The possibility of
decreasing the interval of critical fields for the magne-
tization reversal in the nanocrystaline alloy under
study by means of the destabilization of domain walls
isanalyzed.

Amorphous ribbons of Fe;;sCu;Nb;Si;;:By aloy
were obtained by the method of melt quenching. The
experiments were performed with strip and toroidal
samplesfabricated from theseribbons. In order to avoid
guenching stresses, the amorphous samples were sub-
jected to one-hour annealing in vacuum at a tempera-
ture of 350°C. To obtain the nanocrystalline structure,
the samples were also annealed in vacuum at a temper-
ature of 530°C for one hour. Various domain structures
of the samples were obtained after annealing in a mag-
netic field. The thermomagnetic treatment was carried
out inthefollowing way. A sample was heated to atem-
perature of 530°C in a magnetic field and was held in

* Ingtitute of Engineering Science, Ural Division,
Russian Academy of Sciences, Yekaterinburg, Russia
** |ngtitute of Metal Physics, Ural Division,
Russian Academy of Sciences,
ul. S. Kovalevskor 18, Yekaterinburg, 620219 Russia

the field at the same temperature for one hour. It was
then cooled to room temperature at arate of 200°C ht
(the thermomagnetic treatment was combined with the
phase transition in the alloy from its amorphous state
into the nanocrystalline one). The magnetic field was
oriented either along the long side of a sample or nor-
mally to it. To eliminate the destabilization of domain
walls, a number of nanocrystalline samples were sub-
jected to water quenching from the Curie temperature
of 570°C (the classical method of domain-wall destabi-
lization).

For the strip samples, we measured the electromo-
tive force (EMF) € (averaged over a period) of the
Barkhausen jumps with alay-on sensor. A lay-on elec-
tromagnet with a 7-mm pole gap served as atransducer.
The magnetization reversal of the samples was per-
formed by an aternating current at a frequency of
10 kHz. The magnetic-field intensity in the electromag-
net gap was 0.5A cm . The signal from the measuring
coil was fed to an amplitude detector determining the
value of € via a broadband amplifier with a transmis-
sion band of 200 kHz:

.

s 1

€ = TIls(t)ldt.
0

The flux of the Barkhausen jumps was visualy
observed on the oscilloscope screen [3]. For the toroi-
dal samples, we measured static hysteresis loops and
the initial magnetic permeability y, In addition, we
measured static hysteresis loops for the strip samples.

Figure 1 shows a histogram for the EMF (averaged
over a period) of Barkhausen jumps, which was mea-
sured for Fey; sCu;Nb;Si 5 5Bg-aloy samples under dif-
ferent conditions of the thermal and thermomagnetic
treatments.

The magnetic properties of the samples manufac-
tured from Fe;;5Cu;Nb;Sii3sBy aloy, which were
obtained after the thermal and thermomagnetic treat-
mentsin the conditionsindicated in Fig. 1, arelisted in
the table.
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Andysis of the experimental data shows that the
value of € isminimal for the amorphous sample rather
than for the nanocrystalline sample with unique soft
magnetic properties (see Figs. 1a and 1b). This result
can bereadily understood by analyzing Fig. 2, in which
oscillograms of amplitude envelopes of the flux of the
Barkhausen jumps for the amorphous and nanocrystal-
line samples are presented. In the amorphous alloy, the
distribution of the Barkhausen jumps along the field
obeys the Gaussian law (Fig. 2a). Thisis caused by the
presence in the sample of small domains of magnetiza-
tion reversal with critical fields distributed in arandom
fashion. In the nanocrystalline sample, we observe two
regions of the critical fields of the magnetization rever-
sal on an oscillogram of the amplitude envelope for the
flux of the Barkhausen jumps (Fig. 2b). Thisis associ-
ated with the existence of two magnetic phases charac-
terized by different distribution of critical fieldsand dif-
ferent coercive forces. remnants of the amorphous
phase and the appearance of the a -Fe/Si phase[4]. The
presence of the magnetic inhomogeneity results in an
increase in € of the nanocrystalline sample compared
to that in the amorphous one.

The destabilization of domain wallsin the nanocrys-
talline sample by the thermomagnetic treatment in an
aternating magnetic field increases their mobility [5].
Magnetically, the material becomes more homoge-
neous: the distribution of the critical fields of the mag-
netization reversal in two phases becomes closer and,
accordingly, the interval between field dependences of
the critical fields becomes narrower. This resultsin an
overlapping of the distributions of the critical fields
(Fig. 2¢). Inthis case, the value of € decreases by 30%
compared to that measured in the sample after the
annealing in the absence of an external magnetic field,
i.e, in the sample with stabilized domain walls
(Figs. 1b and 1c¢).

It should be noted that the classical method of desta-
bilizing the domain structure, namely, water quenching
from the Curie temperature, increases € in the nano-
crystalline Fe,3sCu;Nb;Si55Bg alloy. Apparently, this
iscaused by the fact that, asaresult of quenching, inter-
nal stressesin the sampleareincreased, asevidenced by
an increase in H, (seetable), an effect which leadsto a

riseof €.

In the nanocrystalline sample, the maximum value
of € isobserved after the thermomagnetic treatment in
alongitudinal field (Fig. 1d). Thisis explained by the
fact that the uniaxial anisotropy arising after thermo-
magnetic treatment in a longitudinal constant field
leads to an increase in the magnetic texture and to the
formation of larger complexes of domains that undergo
magnetization reversal in severa large jumps. The
resemblance of the hysteresis|oop to arectangular one
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Fig. 1. Histogram of the EMF (averaged over a period) for
the flux of Barkhausen jumps for samples of
Fe73'5CU1N b3S| 13_589 a||0y after different treatments:
(a) annealing at a temperature of 350°C; (b) annealing at a
temperature of 530°C; (c) thermomagnetic treatment of a
nanocrystalline sample in a longitudinal alternating mag-
netic field; (d) thermomagnetic treatment of a nanocrystal-
line samplein alongitudinal constant field; (€) thermomag-
netic treatment of a nanocrystalline sample in a transverse
constant magnetic field; and (f) water quenching from the
temperature of 570°C.

E% = 0.9‘% and the high maximum magnetic perme-
m
ability testify to the validity of this assumption.

For thermomagnetic treatment in a transverse con-
stant magnetic field, a uniaxial anisotropy perpendicu-
lar to the field direction appears when measuring. As a
result of the treatment, the domain structure is commi-

nuted, and, as a consequence, € decreases. It is worth

Mwneﬂc pI’OpertIeS of Fe73.5Cu1Nb3Si13'5B9 a||0y after dif-
ferent treatments

Treatment U, Hinax H,,Acm!
350°C, 1 h 5000 40000 0.04
530°C, 1 h 40000 500000 0.007
Thermomagnetic 60000 1000000 0.005
treatment, H~|I
Thermomagnetic 35000 1200000 0.005
treatment, H:”

Thermomagnetic 1000 25000 0.06
treatment, H_,
Water quenching 10000 30000 0.02
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€ noting that under this treatment, the initial and maxi-
100 mum magnetic permeabilities considerably decrease.
) Thus, based on theinvestigation carried out, we may

conclude that

(i) the EMF (averaged over aperiod) for the flux of
the Barkhausen jumps in Fe;; sCu;NDb;Si 5 5Bg aloy is
506 smaller in its amorphous state than that in the crystal-
line one;

(i) destabilization of the domain wallsin the nanoc-
rystalline aloy by means of thermomagnetic treatment
in an aternating magnetic field increases the magnetic
permeability of the alloy and decreases the EMF (aver-

0 : ' ' aged over a period) of the flux of Barkhausen jumps by
30% compared to that for the aloy with the stabilized

100 - domain structure;
(b) (iii) the refining of the domain structure of the

nanocrystalline sample for Fe;; sCu;Nb;Si ;B4 aloy
after the thermomagnetic treatment in a transverse
magnetic field decreases the EMF (averaged over a
period) for the flux of the Barkhausen jumps by afactor
of two compared to that observed after annealing in the
absence of the magnetic field. However, the magnetic
permeability islowered in this case; and

(iv) parameters of the Barkhausen jumps can be
used to determine the structural and magnetic states of
0 ' dloys.
100 -

50
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In modern cosmology, that is, the science of the Uni-
verse, concepts and results based on the construction
and analysis of the simplest solutions to equations of
the general theory of relativity (GTR) (Einstein’s grav-
itational theory and its modern modifications) are alto-
gether accepted and almost canonized. A substantial
initial assumption isthe so-called Cosmological Princi-
ple, namely, the assumption that the spatial distribution
of the parameters of the Universe is homogeneous and
isotropic. However, solutions to the ordinary differen-
tial eguations obtained in this case (Friedmann solu-
tions and others similar to them) have a number of
properties presenting challenging problems. We havein
mind the finiteness of the lifetime of the Universe; the
possible spatial boundedness (closure) of the Universe;
the singularity of its initial state; the necessity of an
explosive pulse giving rise to its expansion; and the
production of strange (also singular) formations in the
course of the evolution of localized masses of matter:
black holes, etc. These are the unavoidable predictions of
the solutions obtained in the framework of the GTR.
Therefore, it isnatura that attemptsto radically improve
the gravitational theory of matter with the god of obtain-
ing more realistic results in describing the structure and
dynamics of the Universe are till in progress.

Fairly recently, Academician A.A. Logunov and
coworkers constructed a gravitational-field theory
[called the relativistic theory of gravitation (RTG)].
This theory radically differs from the GTR and is free
of al the awkwardnesses of GTR predictions with
respect to the large-scale model of the Universe, the
evolution of localized masses of matter, etc. [1]. The
RTG isbased on the natural concept of the gravitational
field asaconventiona physical field similar to the elec-
tromagnetic and other fields embedded in the pseudo-
Euclidean Minkowski space in which all physical laws
are represented uniformly and invariantly with respect
to the Lorentz transformations. In[1], there isa section
devoted to analyzing the large-scale model of the Uni-
verseintermsof the RTG. Inthisstudy, asin other ones
devoted to modern cosmology, the Cosmological Prin-
ciple is taken as an initial assumption, and a time-
dependent solution for describing the structure and

Research Ingtitute of Mechanics, Moscow State University,
\orob' evy gory, Moscow, 119899 Russia

Central Clinical Hospital “ Uzkoe,” Moscow

dynamics of the Universe is constructed. According to
this solution, matter is at rest in the large-scale consid-
eration of the Universe, and its unsteadiness is induced
by the time variability of the gravitational field; thisis
avariability that is quantitatively described by the con-
structed solution. This solution does not have the unac-
ceptable properties of the Friedmann solutions and
their modifications. Although fluctuations of the Uni-
verse's parameters are strictly periodic in time, no sin-
gular states appear: the density, temperature, and pres-
sure do not become infinite, the linear scale does not
vanish, etc. However, this solution has another draw-
back. As was noted above, according to this solution,
the gravitational field oscillates with time synchro-
nously at all points with the matter being quiescent.
However, the nature of this effect and its adequacy are
not discussed in this study. We consider this effect as
unacceptabl e for the large-scal e description of the Uni-
verse, because thisis a purely theoretical or mathemat-
ical result arising due to the fact that the author, follow-
ing Friedmann, assumed the unsteadiness of universal
dynamics and, naturally, constructed a time-dependent
solution. In this regard, we recall that Einstein also tried
to construct a time-independent solution to the gravita:
tiona equationsin due time and, because of the absence
of such asolution, had to modify the GTR equations, i.e.,
had to supplement them with A terms. (L ater, thisA mod-
ification of the GTR equations was declared by him as
his most serious mistake.) The intention of Einstein to
solve this problem in such a way was natural: from the
initial concepts regarding a spatialy infinite and time-
invariant Universe (which, of course, arose from the
observation of the picture of “immobile” stars by many
generations of people), an attempt followed to primarily
construct just a time-invariant theoretical picture of the
Universe on a large scale. However, in contrast to the
GTR eguations, the Logunov RTG equations admit a
time-independent solution for the model of the homoge-
neous and isotropic Universe. This solution is con-
structed by avery simple method, which is made in this

study.

The basic RTG equations for a homogeneous and
isotropic model of the Universe are Egs. (10.24) and
(10.25) from [1]:

1d°R _  4mG[. , 307 10
i _TE”L?D_Z(”%L_E@’ (10.24)
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MdR? _ 8nG_. wr 3R, .47
Eqd < 3 __6%1_? +2RE. (1029
Here, R is the dimensionless scale parameter of the
model;t istime; p and p are the density and pressure
of matter, respectively; G is the gravitational constant;
cisthe speed of light in free space; w is the constant of
the model, and

_ et
w=5E70- (10.26)
Furthermore, mis the graviton mass (this quantity nec-
essarily arises in the RTG) and # is Planck’s constant.
The parameter aisacertain integration constant linking
the quantities VV and U by therelation V = aU'3, where
U and V are the parameters of the metric of the effective
Riemann space induced by the gravitationa field. The
metric in this model has the form

(dS?? = U(cdt)? — V{(dr)? — r2[(d6)? + si?8(dd)?]},

where r, 8, and @ are the spherical coordinates. The
guantities U and R are connected by the relationship
U=R.

We construct the time-independent solution to
Egs. (10.24) and (10.25) by assuming that p = 0, which
is well corroborated by the observational data within
the visible region of the Universe. For R = const (sta-
tionary case), p=0, and w #0, Egs. (10.24) and (10.25)
yield the steady-model relationships

= 2 (x-1)=pe(x-1),

p=0, v;=0, i=123,

2_1 2
(d9)” = X(Cd'[) 0

‘2T1x{ (dr)?—r[(d)? + sinB(dd)}

1/3 1

R ==

a= , .
2—-X X

Here, v, isthe velocity of matter. The constant parame-
tersa and R should satisfy the inequality
R (R

_a) SO, (1030)

Lin [1], the following units of measurement are taken: L = /%ff =
c

1.GX10‘33cm,T=I(—; =53x10%s M= /%ﬁ =21%x107°g.

Although these values are very small and cannot serve as charac-
teristic quantities in cosmological problems, this fact does not
interfere with the general analysis performed in [1].

GRIGORYAN

which expresses the causdlity principle [1]. This
impliesthat values of the parameter xin model (1) must
lie within the interval

1<x<2. (2)

For the constructed time-independent solution, it
follows from relationships (10.20) and (10.21) of [1]
that the curvature tensor of the effective Riemann space
is zero; i.e., this space is pseudo-Euclidean like the ini-
tial Minkowski space in which the steady model is
embedded. In the absence of matter (p = 0 but w #0),
x=a=R=1, and these two spaces coincide, which in
the general caseis predicted by the RTG [1]. ASX —»
2, the effective-space metric very strongly deviates
from the initia Minkowski-space metric, athough,
according to (1), the density varies only dlightly and
remains limited from above by avery small valuep; In

this case, the speed of light sharply decreases E[here is

afactor 2-X ahead of CET
NoX

It is significant that the constructed solution is non-
trivial only due to the presence of a nonzero graviton
rest mass (w #0), which isthe most important property
of the RTG. For w = 0, relationships (1) cannot be
derived from (10.24), (10.25) when R = const.

The time-independent solution has a very important
property. It is infinite in time and space, the space is
pseudo-Euclidean and homogeneous, and matter is qui-
escent with respect to it. But this is just the natura
material reference space into which an inertial coordi-
nate system is introduced. This space represents a con-
crete and very simple realization of the Mach principle
[1]. Indeed, according to this solution, the matter
homogeneously and invariably in time fills the
Minkowski empty space, with all its parts being equiv-
alent and identical. In the case of conceptual displace-
ments along this space in an arbitrary direction, no
changes are observed, because everywhere there exists
a mass distributed geometrically identically. This
occurs at arbitrary distances; i.e.,, no problem arises
concerning the particular understanding of physica
infinity (everywhere, there is quiescent matter with
respect to which it is possible to count off geometrical
guantities, and to which the coordinate system mathe-
matically expanded into infinity can be related).

At the same time, the constructed model has a fea-
ture requiring the discussion and formulation of a new
and apparently very difficult mathematical problem.
The casein point is that matter actually moves instead
of being at rest asfollowsfrom (1), and, at small scales,
the model constructed is certainly unsuitable for
describing the Universe. This model should be consid-
ered only as that obtained by the mathematical opera-
tion of averaging from a more complicated essentially
inhomogeneous and unsteady model thoroughly
describing the Universe filled with various scales of
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clumps of matter which participate in an infinite pro-
cessof gravitational compression and their replacement
by explosive disintegration and matter divergence. The
observed motion of matter (e.g., of stars, galaxies, var-
ious sizes of clusters of galaxies) and its inhomoge-
neous spatial distribution must be considered as fluctu-
ations against an averaged, homogeneous, isotropic,
and steady background. The dynamics and structure of
the Universein such adetailed consideration, instead of
that averaged over vast scales, is described by the
author in genera (principal) outlinesin [2]. According
to [2], the detailed dynamics of the Universe represent
a struggle between gravitation tending to ultimately
compress various sizes of matter clumps and the pro-
cesses of high-energy physics proceeding in these
clumpsin the case of their severe compression. For rel-
atively large masses of the clumps, these processesini-
tiate evolution accomplished by the explosive disinte-
gration of the clumps and divergence of their matter to
significant distances (the processes of the supernova-
explosion type). The Big Bang, effects of recession of
galaxies observed at present, and the existence of relic
radiation are examples of the evolution of such aclump,
but a very large one. (For this example, an important
and still unsolved problem on the unsteady evolution of
a so-called idand system arises. A steady case of such
asystemwas studied in[1].) Thus, accordingto[2], the
matter in the Universe represents a specific gas that is
composed of various scales of clumps compressed by
gravitation and disintegrated by their internal explosion
and isthen formed anew from the diverged matter of the
previous clumps. This gas dynamics is played out
against the homogeneous, isotropic, and steady back-
ground.

Here, the question arises as to whether or not the
steady model obtained by averaging the detailed model
over large scales coincides with the model constructed
above. This question is nontrivial, because the mathe-
matical relationships of the RTG are essentially nonlin-
ear and, in their formal mathematical averaging with a
given averaging scale, residuals of the Reynolds stress
type existing in hydrodynamics arise due to the nonlin-
earity. For this reason, when constructing the model in
terms of average values, a closure problem arises asin
the theory of turbulence in hydrodynamics. For exam-
ple, it is clear that in the averaged model, in particular,
a certain averaged quantitative measure for the motion
of matter must appear, which is absent in the above-
constructed model. Inthisregard, thismodel isvaluable
in the qualitative but not quantitative sense: a possibil-
ity is shown of constructing a steady, homogeneous,
and isotropic solution, namely, in terms of the RTG.
With this solution, it is possible to relate the physical
(material) pseudo-Euclidean space playing the role of
the absolute space (instead of the physical ether) and
satisfying the Mach principle [1].

The solution to the closure problem leading to the
construction of the model in terms of average values
depends, generally speaking, on the averaging scale.
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For our cosmological problem, the following result
must certainly be obtained: the averaged model isinde-
pendent of the averaging scale starting with a certain
value of this scale. Only in this case is it possible to
construct a homogeneous and isotropic solution of the
above type for the averaged model and connect the
physical reference space with it. Whether or not such a
solution to the averaged model coincides in both form
and principal details of final formulas with that con-
structed above remains an open guestion. To answer
this question, which depends on the possibility of an
efficient realization of the averaging procedure for the
RTG exact equations in the model of the Universe, the
following estimates, which are of substantial impor-
tance for this paper and for themselves, may help.

Using for the graviton rest massthevauem= 10" g
taken in [1], we obtain for p7from [1] the value p=

5x 103 g cmS. The steady background density p
taken in (1) is lower than p;by virtue of (2). At the

same time, the averaged density of the Universe region
under current observation is p,, = 102° g cm, i.e,
20 times higher than p; This fact must not confuse us,

because, according to the empirical Hubble law, an
intense expansion continues in our very large matter
bunch, and the bunch density gradually decreases. Of
course, in due time, according to (1), it will become
substantially lower than both pjand the background

density p because, when the bunch diverges, the matter
can also diverge, so that a rarefaction is developed in
the bunch with respect to the background. However,
another factor is of importance, namely, that values of
p (and the background density p) and py, differ only
dlightly (by only a factor of 20, which can be consid-
ered as a trivia distinction in this problem). On the
other hand, since the graviton mass m quadratically
enters into the expression for ppy it is sufficient to

increase the value of monly by afactor of /20 =4.51in
order to equaize pjand p,,. At the same time, an

increase in m by the factor of 45 leadsto increasing pr;
by 2000 times; i.e., we have pp= 107 g cm=, and we

[

need thevalueof x—1 = =0.01in order to equalize

*
the background density and p,,,- The background density
can be substantialy lower than p,,,. For example, for this
reason, if our bunch expands by further 10 times, p,,
decreases by three orders of magnitude and becomes
equal to the background density. In this case, we obtain
x—1=0.02 even for m= 10 g. If in this case mis
increased by a factor of 4.5, we arrive at x — 1 = 1073,
Since the variations in m under consideration are quite
acceptable (an exact value of m is unknown), the
general conclusion from the presented estimates is that
X—1=¢e<1.Byvirtueof (1), thisimpliesthat the devi-
ation of the effective averaged material space from the
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empty Minkowski space is negligibly small (on the
order of €). In other words, we may state that the initial
Minkowski space with a high accuracy represents the
actual material physical space corresponding to the
Mach principle. On the other hand, the background
averaged density p = p¢ of matter isalso quitelow; i.e.,

the matter is very rarefied in the Universe. These two
arguments enabl e us to hope that substantial simplifica-
tions can be made in the procedure of averaging the
RTG nonlinear relationships for the problem under
consideration. These simplifications will make it possi-
ble to efficiently solve this problem and to answer the
posed question. Inthiscase, it ispossible that the above
analogy between a cluster of pulsating-matter bunches
and gas will turn out to be deeper. We imply that, when
averaging, we will succeed in introducing the notion of
temperature, pressure, and other averaged characteris-
ticsfor the gas of these bunches and in constructing the
corresponding thermodynamics and gas kinetics of the
Universe.

We present one more formula for estimating the
maximum scale | of averaging. When exceeding this
scale, the averaged model isindependent of the averag-
ing scale. Thisformulacan be derived from the consid-
erations of dimensional theory after accepting an
assumption natural for our problem that the scalel (the
same scale determines on the order of magnitude of a
maximum size for a material bunch in the gas of the
Universe) determines unsteady gravitational processes
(with the possible participation of relativistic effects) of
the evolution of inhomogeneities against a homoge-
neous background. These inhomogeneities are induced
by the dynamic instability of the background. (The
problem of background stability in terms of the RTG
must be formulated and solved.) This implies that |

GRIGORYAN

depends on the parameters G, ¢, p = p{x — 1). From
dimensional theory, we find

C

N p*(X—l)G

The substitution of values ¢, G, and the results of the
above estimates for pjand x — 1 into (3) yields | ~

10% cm ~ 10! light years. For comparison, thisis only
5-7 timeslarger than the age of the Universe according
to modern cosmol ogy.

It should also be noted that, according to (1), the
speed of light ¢ in averaged space differs from the
speed c in free space by thevalue Ac = € — ¢ = £c; the
smallness of € aso implies the smallness of this devia-
tion. It is possible that using only this estimate of Ac,
we can abtain an independent estimate of € from obser-
vations.

The fundamental mathematical problems generated
by the problem of averaging physical fields were for-
mulated and discussed by the author in [3].

| = const. 3)
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Modeling and investigating wave processes in mac-
roinhomogeneous and microinhomogeneous anisotro-
pic media are one of the topical problemsin both seis-
mology and composite-material stheory. In geophysics,
modeling wave fields is often aimed at the comparison
of seismic signals for a vertical-inhomogeneous (refer-
ence) reservoir with a perturbed one that contains cer-
tain three-dimensiona inclusions and more general
macroscopic inhomogeneities. The present study is
devoted to the development of a normal-wave method
suitable for investigating wave processes in compli-
cated media with three-dimensional inhomogeneity.

Microscopic inhomogeneities are taken into account
with the help of efficient-parameter theory [1, 2]. Asa
result, a microinhomogeneous medium is replaced by
an equivalent medium having nontrivial dispersion
properties, which allows the resonance and dissipative
phenomena inherent in an actua medium to be
observed [3, 4]. If a macroscopic inhomogeneity is
additionally presented in the medium, then along with
the appearance of dispersion, the coordinate depen-
dence is preserved in its local quantities. In this case,
the equivalent medium remains inhomogeneous but
contains only large-scale inhomogeneities. Therefore,
the application of spectral methods makes it possibleto
simplify the problem under consideration and to
present the wave field generated by apoint sourcein the
form of a superposition of normal waves, each of them
being an independent scalar wave. An arbitrary scalar
wave (or normal mode) may be interpreted as an exci-
tation propagating in such a homogeneous equivalent
medium in which the dispersion law corresponding to
this medium is realized. Hence, in the momentum rep-
resentation, a normal wave is a generalized solution to
the eguation that determines the interconnection
between the frequency and the wave vector [5, 6].
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We now use denotations for space-time 4-vectors
X = {Xy, X}, where x, = ct, and awave vector k = {k,, k }

with thefrequency w, wherek, = %) . Thedispersion law

for a normal wave can be formulated in the implicit
form

LK = k'k,-M*k) =0, v=0,1,23 (1)
The function L(k) must vanish on the dispersion branch

2 .
M2(k) = gﬁ(ék—)g K2, K*=k, i=1,23, (2

where w(k) isthe explicit dependence of the frequency
on the wave vector and w(k) = w(—k). According to our
assumption, at large |k |, the function w(k) approaches
a hyperbolic one. The short-wave limit of the phase
velacity c playstherole of the absolute vel ocity. Below,
function (2) representing a deviation from the linear
law of dispersion is conditionally called the mass
squared.

A wave excited by a point source in ahomogeneous
medium given by dispersion law (1) is described by a
retarding Green’s function :

W) = 80x) Fl (K] (%),
(k) = —isgn(ko)S(L(K)),
where %, is an inverse four-dimensional Fourier trans-

formation. The spectral density ¢ is the 8-function on
the manifold L(k) = 0. It satisfies the homogeneous
equation

3)

(K'k, = M?*(k))(k) = 0. )

The Fourier transform of the retarding Green’sfunction
P(x) is a solution to corresponding inhomogeneous
equation

(kk, = M) B (K) = 1,

which corresponds to Eq. (4).

The goal of the present study is to derive aform of
Eq. (4) that is invariant with respect to transformations
of the Poincaré group and to find the solution Y(x) in

1028-3358/02/4710-0735%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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the coordinate representation. The invariance of the
equation is necessary to satisfy the causality principle
in the process of the wave propagation. According to
theorems proved in [7], an equation of theform L =0
is invariant with respect to the continuous transforma:
tion group if the equation operator L commutes with all
elements of the Lee algebrafor this group. For constant
mass parameter, Eq. (4) coincides with the Klein-Gor-
don-Fok eguation, and its operator commutes with all
elements of the Poincaré algebra [7]. It turns out that in
the case of a complicated dispersion law when the
parameter M depends on the vector k, for the preserva
tion of the Poincaré invariance, a special extension of
the mass-squared function beyond the dispersion
branchisrequired. Thisis caused by thefact that, in the
general case, the operator of EQ. (4) does not commute
with generators of the rotation and of the Lorentz trans-
formations

d 0
Jy = ky——k,—.
ek ok
The behavior of thefunction L(K) in the zero point com-
pletely determines the solution to Eq. (4). Therefore,

the continuation of the function A (k) of the mass

squared satisfies the boundary conditions on the disper-
sion branch:

AR =0 = MK),  [30 AW [gg=0 = 0. (5)
The desired invariant form of Eq. (4) is
(K'k, —~A(K)G(K) = 0. ©6)

By virtue of conditions (5), the operator of Eq. (6) com-
mutes on the dispersion branch with all elements of the
Poincaré algebra. In the k-representation, the solutions
to Egs. (4) and (6) coincide; however, these equations
possess different transformation properties. In the case
of the replacement of k, by a new variable

N = ko—sgn(ko) 'k + M?*(k)

equal to zero on the manifold L(k) = 0, conditions (5)
consisting of seven equations are reduced to two “ini-

tial” conditions for the function A n, k):

= 2k,

ALKy 20 = M2(K), 9AQK)
M=o ™

ko = £/k%+ M?(K).

Since the behavior of the function A (k) on the three-
dimensional manifold L(k) = O completely determines
solution (6), the four-dimensional Fourier transfor-
mation

k

AK) = J’d4x/\(x)e_ixv . @®)

VIKHOREV, CHESNOKOV

must be reversible on athree-dimensional manifold. In
other words, the function A(X) must be completely

determined only by the behavior of A (k) on the disper-
sion branch. Hence, A(x) is the function of a smple
layer on an invariant three-dimensional manifold in
space-time:

AX) = B(X)d(x, X" —a)\(X). )

Here, the choice of the positive time coordinate x, > 0
corresponds only to retarding solutions for the wave
field. Integrating over the coordinate X, in representa-
tion (8) with allowance for form (9) and reversing the
three-dimensional transform obtained, we arrive at
(see[6])

A = J’d3keikvxv§<o—iaikogf\(k),
ko = +4/k?+ M?(K).

Here, integration of the function A (k) occurs on the
dispersion branch, i.e., at L(k) = 0. However, inthis case,
theintegrand is completely determined by conditions (7)

(10)

AX) = J’d?’keikvxv(xoMZ(k)—i [Pk,),

ko = £/k*+ M?(K).

In this case, inintegrals (10) and (11), the value of the

coordinate x, = «/x* + a’ isfixed.

Differentiating representation (8) with respect to
components k with allowance for form (9), we find that
beyond the dispersion branch, the function of the con-

tinuation of A (K) isthe solution to the Cauchy problem
for the equation

(11)

(O, +a)AK) =0 (12)
with initial conditions (7) (for the change of variable
Ko —= n). The condition of the uniqueness of the solu-
tion to the given problem is proved in [5]. For constant
mass squared, the continuation function must also be
constant; this is the condition of the limiting process.
However, in this case, in accordance with Eq. (12), the
parameter a should be set to zero.

We write out Eq. (6) in the coordinate representa-
tion. The corresponding inhomogeneous equation has
the form

T + [AXAR)W(x=x) = 59,
where the D’ Alembert operator is denoted by its usual

symbol. We now begin to search for aretarding solution
P(x). We perform the Laplace transformation for both

(13)
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parts of Eq. (13) over the time coordinate x, with the

parameter p, = p and seek the transform ) (p, x) of the
desired function Y(x,, X) in the form of a convolution

P(p, x) = jd?’x'

x Y Vdp, 0)V{p, X)D(p, x—X; myp)).  (14)

s=1
Here, V(p, X') are the eigenfunctions of the symmetric
kernel A (p, X —X') that correspondsto the Laplace trans-
form of the original function A(x) [formulas (9), (11)]:

—pIX|

jd3x'?2—|—X¢A(x')vs(p,x—x') = m(p)Vy(p, ). (15)

n

Thetransform D (p, X; m) of Green’s function with the
mass parameter mis of the form
1 o+’

D(p, x; m) = ATlxle

and satisfies the equation
(P? = A+ ) D (p, x; M) = 8(X).

Function (14) isthe solution to transformed equation (13)
provided that the eigenfunctions of problem (15) form
a complete orthogonal system and, hence, at each fixed
p, with an increase in the number of terms n, the sum

(16)

lim $ V(p, 0)V(p,X) = 8(x), Re(p) >0
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converges to the & function. Thus, if problem (15)
admits constructing a discrete finite-dimensiona ana-
log, then solution (14) can be represented as a sum of
transforms for elementary waves forming the desired
wave P(x). The transform of each elementary wave is
described by Green's function (16) with the mass
parameter m= my(p).

REFERENCES

1. T. D. Shermergor, Elasticity Theory of Microinhomoge-
neous Media (Nauka, Moscow, 1977).

2. 1.0.Bayuk and E. M. Chesnokov, Fiz. Zemli, No. 11, 40
(1999).

3. S. A. Shapiro and P. Hurbal, Elastic Waves in Random
Media (Springer, Berlin, 1999).

4. E. M. Chesnokov, J. H. Queen, A. A. Vikhorev, et al., in
Expanded Abstracts of LXXI Annual Meeting of SEG
International Exposition, Frequency-Dependent Anisot-
ropy, September 9-14, 2001, San Antonio, Vol. 1,
ANI 1.9.

5. V. S. Vladimirov, Equations of Mathematical Physics
(Nauka, Moscow, 1988; Mir, Moscow, 1984; M. Dekker,
New York, 1971).

6. N. N. Bogolyubov and D. V. Shirkov, Introduction to the
Theory of Quantized Fields (Nauka, Moscow, 1984,
Wiley, New York, 1980; Interscience Publishers, New
York, 1959).

7. V. 1. Fushchich and A. G. Nikitin, Symmetries of Quan-
tum-Mechanical Equations (Nauka, Moscow, 1990;
Naukova Dumka, Kiev, 1983; Reidel, Dordrecht, 1987).

Trandated by G. Merzon



Doklady Physics, \ol. 47, No. 10, 2002, pp. 738-741. Translated from Doklady Akademii Nauk, Vol. 386, No. 4, 2002, pp. 478-481.

Original Russian Text Copyright © 2002 by Levin, Zingerman.

MECHANICS

Thelnfluence of Small Defects on the Stress Concentration
near aHole

V. A. Levin* and K. M. Zinger man**
Presented by Academician V.P. Myasnikov April 29, 2002

Received May 7, 2002

We discuss the effect of small defects (pores) on the
stress concentration near a hole formed in apreliminar-
ily loaded nonlinearly elastic materia with finite
strains. The shape of the new stress concentrator is
assumed to be known at the moment of its formation.
We compare two approaches to this problem. The first
oneis based on the calculation of the stressed—strained
state near a hole perforated in the effective medium
(also subjected to large initial strains).

The second approach is based on the analysis of
local strains in a porous body after the formation of a
holeinit. Asan example, theselocal stresses are calcu-
lated in the case of the boundary value problem for a
body with two closely situated circular holes, onebeing
considerably larger than another in its size. Finaly, we
consider an important case when a pore turns out to be
located at the boundary of the perforated hole and
forms a dimple-shaped projection.

In the specific calculations, the mechanical proper-
ties of the material are described by the constitutive
relations for the Murnaghan potential [1]

0 0 0 0 2
> = ME : 1)l +2GE + 3G,4(E : 1)l
02 0 0 02
+C,(E: 1)l +2C,(E : 1)E + 3C,E>. (1)

In the present paper, all calculations are performed

for the following values of constants [2]: é = 2.096,

Cs C, _ Cs _
C 0.07, G 0.38, and G 0.34.

We use the following approach to the construction
of the effective constitutive relations [3-5]. We isolate
a representative domain in the material (in its undis-
torted state) containing pores. For this domain, we
solve a static problem of nonlinear elasticity theory for

* Moscow Sate University, Vorob’evy gory,
Moscow, 119899 Russia
** Tver State University,
Sadovyi per. 35, Tver, 170000 Russia

fixed stresses at the boundary by the method of succes-
sive approximations. We perform averaging of the dis-
placement gradient over this domain and of the true
strain tensor over the corresponding domain in the
deformed state. Then, we find the Green strain tensor
and the second Piola—Kirchhoff stress tensor for the
effective material. The effective constitutive relations
are constructed as rel ationships between these tensors.
Such calculations are carried out for different kinds of
pore arrangements in the representative domain, and
then averaging over the ensemble is performed. Fur-
thermore, we perform averaging over various orienta-
tions of the coordinate axes [3]. This alows usto write
out the effective congtitutive relations for the porous
material in the form

0 0 0 0

3¢ = A%(E®: 1)l +2G°E®+3CS(E®: 1)’

er le2 e, le 0¢ e, e 2
+C[(E®”: 171 +2CS(E®: 1)E®+3CS(E®)°, (2)

where superscript e implies that the corresponding
parameter is pertinent to the effective material.

The problem of the hole formation isformulated on
the basis of thetheory of repeatedly superimposed large
strains [4, 6] in coordinates related to the intermediate
dtate. It can be posed as follows. In the initia
(unstressed) state, the body is free of stresses and
strains. Then, under the effect of theinitial load applied
to the body, large strains are accumulated in it. The
body passes into an intermediate state. In the domain
occupied by the body, we mentally select a closed sur-
face (or contour in the two-dimensional case). The part
of the body bounded by this surface isremoved, and its
action on the rest of the body is replaced by the forces
distributed over this surface (according to the principle
of releasing from bonds). Further on, these forces,
being now external ones, are quasi statically reduced to
zero. In the rest of the body, this causes the formation
of additional large (at least, in the vicinity of the newly
formed boundary surface) strains and stresses, which
are superimposed on the initial ones. The boundary of
the body changes, and the body passes into the final
State.

1028-3358/02/4710-0738%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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The problem concerning hole formation in the effec-
tive medium at a certain fixed porosity is solved in the

following way. Effective elastic moduli A¢, G, and C;

of the porous material are determined (for a given
porosity) according to the procedure described above
[3-5] for the case of plane deformation. Then, for the
preliminarily loaded infinite body made of the effective
material, we solve the static boundary value problem of
the nonlinear elasticity theory on the formation of an
initially circular hole in this body. The procedure of
solving this problem is described in [4] and is based on
the method of successive approximations [1, 7]. The
linearized problem is solved using the Kolosov—
Muskhelishvili method [7, 8]. In our calculations, we
used the “Superposition” special-purpose program
package for analytical computer calculations[4, 9].

Certain calculation results for the uniaxia initial
loading with g = 0.15G are shown in Fig. 1. In thisfig-
ure, we present the dependence of maximum stress

concentration —a— on the hole contour on the porosity

p in the linear (zeroth approximation) and nonlinear
cases. Note that in the linear case, the stress concentra-
tion isindependent of the porosity and isequal to three.
This stems from the well-known property of the solu-
tion to the plane problem of linear elasticity for ahole
in the infinite body made of the isotropic material. In
this case, the stress concentration does not depend on
the elasticity moduli of the material and is determined
by both the hole shape and type of loading [8]. In the
nonlinear case (see Fig. 1), the stress concentration
grows dlightly with the porosity. Note that both in the
linear and nonlinear cases, the maximum stress concen-
tration for values of the porosity, which were used in
the calculations, is attained at the same points of the
hole. These pointslie at the ends of its diameter perpen-
dicular to the direction of the initial loading (in Fig. 1,
one of these points, point A, isindicated).

We now discuss the solution to the problem for the
body with two closely situated circular holes, onebeing
considerably larger than another. It is assumed that the
small hole exists in the infinite-length body before the
loading (in theinitial state) and that in this state, it has
acircular shape. External loads are applied to the body.
As aresult, the shape of the small hole varies, and the
body passes into the intermediate state. In this state, a
large hole is formed in the body. The hole acquires a
circular shape at the moment of its formation.

We introduce the following notation: Xyge, Yiage.
and R 44 are the coordinates of the center and theradius
of the large hole at the moment of its formation. Simi-

larly, Xgnai» Yemar » and Ry, are the coordinates of the

center of the small hole and its radius at the moment of
its formation. In Fig. 2, the dependences of the maxi-
mum stress concentration in the contours of the holes
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Fig. 1. Maximum stress concentration % in the hole con-
tour as a function of porosity p in the linear (dashed line)
and nonlinear (solid line) cases of the problem on the for-
mation of a hole in the effective medium.
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Fig. 2. Maximum stress concentration % in the contours

of holes asafunction of the distance o between their centers
in the problem of subsequent formation of small and large
holes.

on the distance between the hole centers & = Xg —

XICarge are glven The case ylcarge = ygmall = 0! Rlarge=
10R,,,.,; a the uniaxial loading g = 0.15G in the direc-
tion of they axis for the linear and nonlinear problems
is considered. Comparing the results presented in
Figs. 1and 2, we can seethat for 8 = 1.2R ;4 the stress
concentration in the contour of the large hole exceeds
by afactor of 1.2—1.5 (depending on the porosity) that
in the vicinity of the hole formed in the effective
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Fig. 3. The distribution diagram for true contour stressesin
the contour of alarge hole for the case d = 1.25R ;g The
linear (solid line) and nonlinear (dashed line) solutions are
presented.

Fig. 4. The distribution diagram for true contour stressesin
the contour of a hole in the problem of the hole formation,
when the initial hole has circular shape with a hollow-
shaped projection. The linear (solid line) and nonlinear
(dashed line) solutions are presented.

medium. At the same time, in the contour of the small
hole, this factor exceeds two. Note that if the holes are
situated sufficiently close to each other (3 < 1.5R 4q0),
the maximum stress concentration in the contour of the
large hole is attained, not at a point lying in the x axis
(asinthe case of the isolated hole), but at a certain dis-
tance from this point. The contour stresses at the point
of the large hole lying in the x axis turn out to be some-
what lower than in the case without the small hole. As
an example, in Fig. 3, we present the distribution dia-
gram for true contour stressesin the contour of thelarge
hole for the case 0 = 1.25R 4. The thick solid line
denotes the contour of the hole, whilethethin solid line
and dashed line correspond to the linear and nonlinear
solutions, respectively. By virtue of symmetry of the
problem, only one half of the distribution diagram is
shown in Fig. 3. Numbers indicate the values of stress

.0 . L .
concentration # at the hole points lying in the x axis

for the solutions of the problem corresponding toitslin-
ear and nonlinear formulation.
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The results of the solution to the problem concern-
ing the formation of the holein the preliminarily loaded
body with the hole having circular shape with ahollow-
shaped projection (the large hole absorbs a part of a
pore) areillustrated in Fig. 4. In this figure, we present
the distribution diagram for true stresses in the hole
contour for the solutions to the problem corresponding
to its linear and nonlinear formulations. The initial
loading is directed along the y axis and has the same
valueq=0.15G asin the problem discussed above. The
circle center lies on the x axis. The form of the hollow-
shaped projection is close to an isosceles triangle with
a rounded vertex. The triangle is symmetric with
respect to the x axis. The atitude of the triangle is
approximately equal to 0.1R, and its base has a length
of 0.4R, where Ristheradius of thecircle. Thefunction
that performs the conformal mapping of the hole con-
tour onto a unit circle is specified in the form

ER

where h = 0.01 and p = 1.15 (in the course of calcula-
tions, we performed the Laurent series expansion of
thisfunction holding thetermsup to &-15). Thisfunction
was constructed following the approach analogous to
that discussed in [10].

Numbers in Fig. 4 indicate the values of stress con-

. O : . .
centration % a the hole points lying on the x axis

while solving the problem in its linear and nonlinear
formulations. Comparing the results presented in Fig. 4
andin Fig. 1, we can see that the stress concentration at
the hollow apex exceeds that about the circular holein
the effective medium by factors greater than three and
four in the linear and nonlinear cases, respectively.

Thus, caculating stress concentration near a hole
formed in the porous medium under finite strains, we
can seevariations of the resultsif wereplaceit with the
homogeneous effective material. In this case, the calcu-
lated maximum stress concentration can be much lower
than that cal culated with adue account of local stresses
related to theinhomogeneity of the material (by afactor
of 1.5-4 for the problems considered here).
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Hamiltonian mechanics involves two constructive
methods of constructing canonical changes: the gener-
ating function method and generator method.

In this paper, a new independent method of con-
structing canonical changes in the parametric form is
proposed. A criterion of existence for a parametric rep-
resentation of acanonical change of variablesisformu-
lated, and the law of Hamiltonian transformation is
obtained. This method is applied to find the normal
form of Hamiltonians, which is defined in [1, 2]. This
choice of the definition of the normal form is conve-
nient, because it ensures a unified approach for autono-
mous and nonautonomous cases as well as for resonant
and nonresonant cases.

For asymptotics of the normal form, a set of equa-
tions similar to the equations obtained in [1, 2] is
derived. A parameterized generating function, whichis
used instead of the method of a generator and generat-
ing Hamiltonian, enables us to derive the set of equa
tionsimmediately for nonautonomous Hamiltoniansin
contrast to [1, 2], where the previous reduction to the
autonomous form was required.

The method is applicable to Hamiltonian systemsin
both classical mechanics and hydrodynamics (motion
of particles of aviscid incompressible fluid in a layer
with a periodically varying boundary).

1. PARAMETRIC
FORM OF CANONICAL TRANSFORMATIONS

The genera result of parameterizing the canonical
change of variables in Hamiltonian systems is formu-
lated as a theorem.

Ingtitute for Problems in Mechanics,
Russian Academy of Sciences,
pr. Vernadskogo 101, Moscow, 117526 Russia

Theorem 1. Let
1
q-= x—éwy,
1
p = y+§q',xa
1 (D
Q =x+3%,
1
P = —ELPX

be the parametric form of the variable transformation
g, p — Q, P. Then, for any function W(t, X, y),

(i) Jacobians of two transformations q = q(t, X, Y),
p=p(t X Yy)andQ =Q(t, x,y), P=P(t, x,y) areiden-
tical:

0(q,p) _ 9(Q,P) _
o(x,y)  9(x,y)
(ii) in the region J > O, the transformation of vari-

ablesqg, p — Q, P specified by Egs. (1) transformsthe
Hamiltonian systemH = H(t, g, p) into the Hamiltonian

systemI:| = I:I(t,Q, P) as
W(t, x, )+ H(t, q,p) = H(t, Q,P), 3)

whereq, p, Q, and P in the Hamiltonians H and H are
expressed in terms of X and y through Eqgs. (1).

Statement (ii) is proven by using the criterion of
canonicity, according to which the differential form
OF = P3Q — pdg — (H — H)dt isthe total differential of
acertain function oF(t, X, y) = Fdt + F,0x + F,0y [1].

Substituting Egs. (1) into the differential form &F,
replacing H — H by W, according to Eq. (3), and per-
forming obvious manipulations, we obtain oF =
d(yw, - W) QED.

Statement (i) follows from the fact that the Jacobian
of the superposition of mappingsisequal to the product
of Jacobians of these mappings. Moreover, the Jacobian

J(t, X, y); )

1028-3358/02/4710-0742%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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of the canonical transformation g, p — Q, P isequal
to unity. Therefore,

_0(P,Q) _ a(P,Q)d(p, )"
a(p,q)  0(xy)Lb(x, y)H ’

and Eq. (2) has been proven.

Let us study for which canonical transformations
the parametrization exists.

2. GENERATING FUNCTIONS

The canonical transformation can be expressed in
terms of the generating functions St, g, P) and

S(t,p, Q) as
dS, = pdg + QdP + (H —H)dt,
dS, = —qdp—PdQ + (H—H)dt, detS,,o#0.
Let usintroduce the new generating function
1
® = E[Sl(tqup)_qp-i-sz(t!va)+Qp] (4)

Itsdifferential formis
| P - pi

22 dQ.+dq. dP, +dp,

The differential form d® for dt = 0 was introduced
in [3], where it was shown that, if Q(q, p), P(q, p) isa
canonical transformation, d® is the total differential,
and the function ®(q, p) exists. Solving Egs. (1) with

detS,4p % 0,

+(H-H)dt. (5)

respect to x, y and ¥, W,, we obtain
1 1
X =z(qg+Q), ==(p+P),
5(@+Q), y=3(p+P) ©
= Q_Q- l'I',x = _P+p!

which, if the Jacobian of change (6) is nonzero, i.e.,

g((x y)) # 0, leads to the equality d® = d¥ and
+ , + P(q,
wix,y) = wELE QD) PGP < g p).

ox,y) _
It follows from Egs. (2) and (6) that =
as. (9) ©6) 2(q, p) J

272det(E + A), where E is the identity matrix and

%((Q P)) is the Jacobian matrix. Therefore, the
condition that change (6) is not degenerate hastheform
det(E + A) 2 0.

The result is formulated as follows.

Theorem 2. If the transformation Q(q, p), P(q, p)
is canonical in the region (g, p) CQ and eigenvalues
of the Jacobian matrix A differ from—1, parameteriza-
tion (1) existsin Q.
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3. INVARIANT NORMALIZATION
OF HAMILTONIANS

The normal form of the Hamiltonian in a Hamilto-
nian system is called normal Birkhoff form [4], whose
briefest definition wasgivenin [5]. Inall cases, thegen-
erated Hamiltonian is taken in the simplest quadratic
form for alinear oscillating system, and the definition
of the normal form is associated with the choice of the
generated Hamiltonian and is noninvariant. Two meth-
ods of constructing canonical changes transforming the
system to the normal form are most extensively used.
The first method is based on generating functions and
goes back to Birkhoff [4]. In the second method, Lee
generators are used instead of generating functions.
The second method is more convenient, because, in
contrast to the first method, it does not involve the
inversion of power series.

For the perturbed Hamiltonian
H(t’ qg, p) = HO(t’ qa, p) + SH*(t9 g, p)

Zhuravlev [1, 2] proposed the general criterion of the
normal form: The perturbed Hamiltonian has the nor-
mal formif and only if the perturbation isthe first inte-

oH _
at* +{Ho, Hp =0,

where {f, q} = f,g, — f,g, is the Poisson bracket. Since
the criterion isinvariant, normalization does not require
the preliminary simplification of the unperturbed part
and separation of autonomous—-nonautonomous and
resonant—nonresonant cases. Moreover, the norma
form defined in [1, 2] has an important property that
simplifies the construction of a solution and is formu-
lated as atheorem [2].

Zhuravlev'stheorem. If a systemwith the Hamilto-
nian H satisfies the condition of the normal form, for
constructing the general solution to the corresponding
Hamilton equation, it is sufficient

(i) to find the general solution to the generating sys-
tem with the Hamiltonian Hy(t, p, g); and

(i) to find the general solution determined only by
the perturbation eHH0, p, q) for zero time.

gral of the unperturbed part; i.e.,

Inthiscase, the general solution totheoriginal non-
autonomous system is represented as the composition
of the solutionsin arbitrary order (solutionsto the first
system are substituted for arbitrary constants in the
solution to the second system and vice versa).

L et us demonstrate that Theorem 1 reasonably leads
to an analog of the normalization method [1, 2].

Let the Hamiltonian H(t, g, p) = Hy{t, g, p) +
eH[{(t, g, p) must be transformed to the normal form

H(t Q,P),and H, + €H, ., bethe kth order asymp-
totic of the normal form H(t, Q, P) = Hy(t, Q, P) +

(t, Q, P) + O(ek* ") with canonical change (1).

*kl



744

Table

This agorithm Algorithm [1, 2]

Original system H(t, g, p)| System H(q, p) is autonomous,
iS nonautonomous original system reducesto

a autonomous system with
increasing order

Function Y(t, €, X, y) Generating Hamiltonian

G(e, Q, P)
Canonica change Canonical change
(@,p) 0 (Q,P)in dQ _ 0G oP _ 4G
parametric form (1) de _ oP' 9 _673’

Q) =q,P0O) =p

According to Theorem 1, we arrive a Eg. (3), which
reduces to the form

oy 0
5t * Horh X 2 Py s LPG
1
—Hogx+2 Y~ ZLP)%
O
*k 1BX 2 Py qJ)D

g O k+1
= e, Jx+3w.y-3wEroEy, @)
where the asymptotics

W= eW _, +0("Y), Hy = H  +0(E"

* k-1
are introduced according to the method [1, 2]. Equa-
tion (7) leads to the following chain of equations for
determining the asymptotics of canonical changes

Wy, and normalized HamiltoniansH, + eH, .

v,
e 0ty W J 4R, = e

* k-1’
oH ®
— k14 (H,H,  } =0, k=

12, ...
at ) )

Here, R, are sequentially calculated by the formulas

R, = €Hyo,
12 - ©)
R2 = 8H*1+é€ {H*0+H*O, LPQ} groe ow

Itiseasy to derive the general formulafor the represen-
tation of R, interms of the cal culated lower asymptotics

of W and H . When H, is apolynomial whose power in

PETROV

p and g isno morethan 2, Eq. (7) simplifi&eto
+{Ho, ¥} +& Hi\_ 1% X— 2 Wy, y+35 q”%

1y0

_SH*k 1%X+2 yly 2 )1]’

(10)

and R, isthe kth order asymptotic of the expression

el Heff x5,y + 398

1 _
_H*k l% X+2 y’y_éw%+ H, k—l(tix’y)i|'

The chain of Egs. (8) was derived in [1, 2], where
these equations were called homological and writtenin
the form

dLIJ _
dI; 1+ Rk = 8H*k—11 (11)
dﬁ*k—l _ _
it =0, k=1,2,...,

where the total derivative is calculated for the solution
X(t, Xo, Yo), Y(, Xy, Yo) Of the unperturbed system. The
following quadrature of Eg. (11), which was found
in[1, 2]

8[ l'IJk—:I.(t’ X, y) - ka—1(01 Xos yO)]

t

+J’Rk(t,x,y)dt = teHxk-1(0, X0, Yo),
0

provides the key to solving the problem of normalizing
the Hamiltonian. In particular, the asymptotic of the

normal formisequal to H = H, + RO+ O(ek+1).
Table 1 comparesthe above algorithm with the algo-
rithm proposed in [1, 2].
Relation of the generating Hamiltonian G to the
function ¥. In the method proposed in [1, 2], the

changeq, p — Q, P issought on the phase flux of the
Hamiltonian system

dX _ . dY
dr ~ Gy, dt

Attheinitial timet =0, X(0) =q, Y(0) = p; at thetime
T=¢, X(€)=Q, Y(¢) = P, wherethe auxiliary parameter
Tintheinterval 0 < T < ¢ isthe analog of timet.

The same changein the present algorithm isrealized
by parameterization. The function W specifying the

mapping on the phase flux of Hamiltonian system (12)
is determined from the equation

= —Gy. (12)

1
WY.(1,x,y) = G%+§\Py,y 5 g Y0, x,y) = 0.
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Up to theterms T3 = €3, W = €G. For this reason, the
asymptotics of the first two approximations coincide in
both methods; i.e., W,=G,and W, =G,,and R, and R,
are also identical in both methods. Higher approxima-
tionsfor Ry, R,, ... are different. The normal form as a
wholeisindependent of the method choice.

The very instructive examplesin [1, 2] demonstrate
substantial simplifications as compared to all methods
known previously. This method is as simple as the
method [1, 2], but different in that the chain of equa-
tionsfor asymptoticsiswritten in the original Hamilto-
nian system whether it be autonomous or nonautono-
mous. In method [1, 2], a nonautonomous system
should be reduced to the autonomous system with
increasing order, and then the chain of equations for
asymptotics is written. Let us apply the method to two
systems. Both examples concern forced resonance
oscillations. These systems have no classica normal
form [3]. In this case, another definition of the normal
form must beintroduced [5], which is not necessary for
the normal form defined in [1, 2], because it exists in
the resonant case aswell. Let us show how it is defined
and how a solution is found.

Example 1. Forced oscillations of the linear oscilla-
tor described by the Hamiltonian H = H, + eéH5 where
H, = %(q2 + p?) and H= —qsint. The equation of the

form g + q = ednt has the exact solution q =

B}O ZEECOS'H EP

by the normal form method asfollows.

(i) The solution to the unperturbed system is found
in the form

sint. The solution is obtained

g = g,cost + p,Sint, p=-q,sint + p,cost.

(i) The function R, gy, py) = —€(gycost +
p,sint)sint is obtained, and the integral

[Ruct =

is calculated.

(iii) The linear part presents the norma form. To
construct the solution according to the Zhuravlev theo-
rem, it is sufficient to know the Hamiltonian

—% Pot + Z(qocoszt + poSin2t)

Hx« (0,Q,P) = —% P, which corresponds to the equa-

thﬂSQ——%E P =0 having the solution Q = Q- St

P = P,. According to the Zhuravlev theorem, the totaI

solution is obtained in the form Q = BQ cost +
. € .

P,sint, P:—%}O—Egsnu P,cost.
DOKLADY PHYSICS Vol. 47 No. 10 2002
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(iv) Theintegrand in (ii), which is limited in time,
determines the parametric-change function W. Express-
ing g, and p, in terms of the variables g and p and
changing them to the parameters x and y, we find W =

- %1 g(xcost + ysint). Excluding parametersx andy in the

lz»:sint and p =

parametric change, we obtain = Q + 7

P- %scost and find the exact solution to the original

system.

Example 2. Forced oscillations of the Duffing non-
linear oscillator described by the equation ¢ + w’q =
e(—g’ + sint). It is required to find the amplitude—fre-
guency characteristic w(A) for which the periodic solu-
tion exists. This problem was solved in [1, 6] by the
averaging method. For comparison, we present the
solution by the normal-form method.

The frequency is sought intheform w=1-¢€A. Up

to €2, the Hamiltonian of the system is written asH =
4

H, + eHp whereH, = %(q2+ p?) and H=-Ap? + qZ _

gsint. Then, the manipulations of the above example
are repeated.

(i) The solution to the unperturbed system is the
same asin example 1.

(if) We find the function

Ry(t, 0o, Po) = s[—(qocost + posint)sint

~A(~gysint + pycost)® + %(qocost + posint)‘l]

(iii) The part of theintegral of R, that islinearintis
caculated and determines the norma form H =

1
5(Q+

P2) + eHx« , where

A = —3p-3(Q7+P) + S(@+ P
From the set of equations
oH, _ T~ _
O+ A
50 ~ O Q=0
OH, _ 0, ,3a0p_1 - g

op  O7 g0 2

we find the stationary point Q = 0, P = A and the
desired frequency A = gAZ + i as a function of the
amplitude A = ,/Q? + P?. According to the Zhuravlev
theorem and the second Bogolyubov theorem [6], this
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stationary point determines the periodic solution to the
original nonlinear system. Stability corresponds to the

minimum of the function H« (Q, P) at the stationary
point. Therefore, the condition of the stability of the
periodic solution has the form

0°H, 0°H, 0°HaT _ Oy L 3a210 5 4 9 a7]
af op> Dgopd ~ T tghomt tghn” o

g 8
which agrees with the similar condition obtained by the
averaging method.

(iv) If necessary, the residue of the part of the inte-
gral of R, that islinear in time can be calcul ated, and the
function W determining the canonical change can be
found. Then, the solution in the original variables can
be found.

The application of the parameterization method to
the construction of Poincaré mappings and to new
problems of classical mechanics and hydrodynamics
was exemplified in [7-10].
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The elastic properties of ideal loose media are
described by the elasticity-theory models of materials
with different moduli and convex stress potential W,
which is equal to zero on a certain cone C in the space
of straintensors[1-3]. In accordance with Hooke's law

ow
c=—, (1)
de’®

the stresses corresponding to strains from this cone are
also equal to zero. Therefore, for €8 [ C, the medium
loses its bearing capacity.

The dual deformation potential can be found by the
Young transformation and has the form

[W; (o), if o OCU
=0
[Hoo, if o O CL.

wid

Here, W; isthe regular part of the potential and C* =
{o]o:€2<0 ¢ [0 C} is the conjugate cone. The
inclusion € [P W* (o) represents the inverted form of
Eq. (1), where 0 is the subdifferential.

For small deformations, W can be approximated

by a quadratic function. In this case, the Haar—Karman
inequality isvalid [4]:

(6-0):(a:0-£%20, o,c0CH )

where a is the fourth-rank tensor of the elastic compli-
ance moduli. The solution to inequality (2) is the pro-
jection o = s™ of the conditional-stress tensor s, which
isdetermined from the equation a : s= €°, onto the cone

C* interms of the Euclideannorm|o| =./0:a: 0.
The plastic properties of the medium are described

by theinclusion o (B¢ (£”), where ¢ isthe convex dis-
sipative potential of stresses. Since the plastic deforma-
tion is independent of the time scale, ¢ is a homoge-

Institute of Computational Modeling, Sberian Division,
Russian Academy of Sciences, Akademgorodok,
Krasnoyar sk, 660036 Russia

neous linear function [5]. Therefore, the dual potential
of the plastic-deformation rates, ¢*(0), is equal to the

indicator function of the set F = {o] o : &° <
o(e”) D)

,if oOF

[0
oU=1g" =
Ttoo, if o F.

The dua formulation of the plastic-flow law £ O
0¢* (o) leadsto the von Mises inequality

(6-0):&"°<0, o,00F. (3)
Inequalities (2) and (3), along with the equations of
motion and the kinematic relations

pv = 0@, 2:&°+&” =0v+@Ov)D @

form aclosed model describing the dynamics of aloose
medium. In this model, we consider the class of gener-
alized solutions with a strong discontinuity.

Let U be avector function composed of the velocity
components v and the tensor of conditional stresses s
with respect to the Cartesian coordinate system. In
terms of U, the model specified by Egs. (2)—(4) istrans-
formed to the variational inequality

_ o . 2 _
(U—U")%AU—ZBKU@ZO, U"OOF, ()
k=1

where A and B* are symmetric matrices (A is positive
definite). Taking into account the identity UTAU =
UTAU™ following from the definition of a projection on

acone, inequality (5) can be reduced to adivergent ine-
quality. Using itsintegral generalization and passing to

1028-3358/02/4710-0747$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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O3

Fig. 1. Stress trgjectories in the cases of (1) tension and
(2) compression.

the limit [6], we find the strong-discontinuity relations

(U—uﬂj%ﬁuy+zv@ﬁwf
0 £ 0

+cUTA[U-UT =0,
U UOF. (6)

Here, [U] is the jump, [WOis the average value of the
vector-function U on the discontinuity surface, and ¢ >
O isthe velocity of the front in the direction of the nor-
mal vector v.

When the deformation of a medium is three-dimen-
siona, it islaboriousto classify discontinuous solutions
on the basis of inequality (6). We consider only
signotons, i.e.,, plane longitudinal shock waves, in
which the strain of an element changes sign. Let the
medium in the neighborhood of the uniform-compres-
sion state be isotropic and obey the linear Hooke's law,
and let the cone C* and set F be approximated by the
von Mises-Schleicher cone and von Mises cylinder,
respectively. Then, in the space of principal stresses, the
trajectories of uniaxial deformation a(g,) and s(g,) are
represented by a broken line on the plane o, = 0,
(Fig. 1). If the coefficient of internal friction K liesin
the range

,B

<K<AZ

ﬁk

where 1 and k are the shear modulus and bulk modulus,
respectively, the stresses g, and o5 inthe case of tension

SADOVSKII

Fig. 2. Shock adiabats of (1) elastic and (2) plastic
signotons.

are equal to zero:

S = %"’%EEL S = a( 3551 @)

Inthe case of compression, themediumiseither in elas-
tic state (7) with o = s or in the plastic state (T is the
shear yield point):

21 1
01 = Sl = ——3+k81, 0-3 = = ﬁ+k£1 (8)
The limiting elastic compressive strain is equal to €, =
_Jf3t
2u

If the coefficient K is outside the above range, this
model indicates that a medium exhibiting elastic and
plastic properties can resist uniaxial tension or can be
loosened under compression. Below, such variants of
the model are not considered.

Using Egs. (6)—(8), we construct the following
shock adiabats of elastic and plastic signotons (Fig. 2):

02
Vi— Vi _ 0
= g,(e,—¢4),
D Cp |:| 1\¢c1 1
V-V 21
- 0
0 lcf % = (e1—€¢)(g1—8y) %f = :7_3;5,

wherec, = IIH%“B andcf:A/TF—; arethe velocities of

the elastic and plastic shock waves, which are the angu-
lar coefficients of the corresponding asymptotes. The
signoton velocities are determined by the angular coef-
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ficients of the secants joining the states (€5, v3) and
(g, v,) ahead of and behind the front, respectively.

For €, = €, the solution to the elastic problem was
described in [7]. A typical configuration of discontinu-
ities arising in an elastoplastic medium in the absence
of initial stresses contains two shock waves: the elastic
precursor wave, which propagates with velocity ¢, and
behind the front of which the stresses tend to the yield
surface, and the plastic wave [6]. This configuration is

observed in a densified loose medium (s(l) <0).lna

loosened medium, the precursor wave gives way to an
elastic signoton moving with the lower velocity

€
C, = Cp [———

5 .
€1 -&

If the strain ahead of the front s‘l) exceeds€;, the veloc-

ity of the signoton—precursor is less than ¢;. The shock
wave turns over, and the two-wave configuration is
replaced by a solitary plastic signoton moving with the

velocity
€ —¢€
C = ¢ [4+—=<cy.
€1—8&

Variational inequality (6) alows a discontinuous
solution with a solitary plastic signoton under the con-
dition

0 0
€1(e1—€¢) < €¢(€1—€y),

even if 82 < &. Inthis case, the unique solution is cho-
sen by the principle of the maximum rate of energy dis-
sipation on the discontinuity. Thisrateis determined by
the left-hand side of inequality (6) at U = 0. For the
plastic signoton, the energy-dissipation rate is equal to
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d= %ck{sf(eg +8) -8 +&)).

On the precursor and plastic shock waves,
o+ di = %Crk?'g (& — &) + Crkes (8. — €)).

An analysis showsthat inequality d > d; + d; is satisfied

only if 8(1) > &. Thus, in aloose medium whose loose-

ness degree is less than the critical value, the one-wave
configuration is not realized.
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Lyapunov [1] proved that the Euler—Poisson system
describing the motion of a heavy rigid body near a sta-
tionary point has, in all cases except the familiar Euler,
Lagrange, and Kovalevskaya cases, a meromorphic
particular solution such that the set of equationsin vari-
ations along this solution has an ambiguous genera
solution.

In this paper, | will provethat, in all cases except the
three indicated above and the Goryachev—Chaplygin
case, this set has a meromorphic particular solution
such that the set of equations in variations along this
solution is nonintegrable in generalized quadratures.
The generalized quadrature is understood as follows
(cf. [2-4]). A univaent function of one complex vari-
ableis called a generalized meromorphic function if it
is analytic in the entire complex plane except at most
countable points. A function expressed in terms of gen-
eralized meromorphic functions by means of differen-
tiation, integration, superposition, and meromorphic
operations is called a generalized quadrature function.

(According to [2], the meromorphic operation F isthe
correspondence of the set of n functionsf,, f,, ..., f;, to
a meromorphic function F defined for amost all argu-

ment values, i.e., F: (f,,f,, ..., f)— F({,f, ..., f).)

A similar result is valid for some other systems.
Among these systems arethe Henon—Heiles system [ 5],
the Yang—Mills system for a uniform two-component
field with the SU(2) gauge group [6], Suslov’s problem
of the motion of a rigid body near a stationary point
with a nonholonomic constraint in the case considered
by Kozlov [7] for unequal moments of inertia with
respect to a chosen axis, and the familiar system
describing a steady flow of an ideal incompressible
fluid with periodic boundary conditions and a velocity
field collinear to its curl (see, e.g., [8]), which is called

Ingtitute of Radio Engineering and Electronics,
Russian Academy of Sciences,
ul. Mokhovaya 18, Moscow, 103907 Russia

ABC flow, for A2=B?#(0and C*#

2, 2
Z_A__(Z_rl_:_]:) , where

n~+7
nisaninteger, or C> = A2,
Theorem. Each of the systems above has a mero-
mor phic particular solution such that the set of equa-

tionsin variationsalong it is nonintegrable in general-
ized quadratures.

Note. Therefore, the general solution to these sys-
temsis not expressed in terms of generalized quadra-
tures depending analytically on the initial conditions
(cf. [1]).

Proof. According to [3], if alinear set of differential
equations with meromorphic coefficients is integrable
in generalized quadratures, its monodromy group has a
triangular (i.e., consisting of triangular matrices in the
corresponding basis) normal subgroup of afinite index.
Here, the monodromy group is the group of linear
transformations under the action of the system when
the independent variable goes around closed paths with
acommon initial point in the complex plane. However,
it can also be treated as a group of transformations
under the action of this system when the independent
variable varies aong paths that have a common initial
point and whose beginnings and ends differ by the
period of coefficients. Indeed, according to[9], amatrix
group over a zero-characteristic field has a finite-index
triangular normal subgroup even when this group hasa
finite chain of subgroups embedded into each other.
This chain must be such that the first of the subgroups
coincides with the entire group and the last subgroup
consists of the unit element. Moreover, each subsequent
subgroup is the normal subgroup of the preceding sub-
group with the commutative or finite factor group, and
the monodromy group in the first sense is the normal
subgroup of the monodromy group in the second sense
with the commutative factor group. We will use this
term in the latter sense.

In [10-14], for each of the above systems, the exist-
ence of ameromorphic particular solution such that the
set of equations in variations along this solution has
meromorphic coefficients was proven. Moreover, the
monodromy group G of the reduced variational set, i.e.,
the restrictions of the set in the normal variationsto the
zero level surface of itsfirst integralslinear in thefibers
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of the normal fiber space (cf. [15]), is a subgroup of the
SL(2, C) group. In addition, its transformations are
different from the roots of the identical transformation
and have no common eigenvector. The set of eigenvec-
tors of each such transformation coincides with the set
of eigenvectors of any of its nonzero powers. Any
finite-index normal subgroup of the group G involves
each of these transformationsin a certain nonzero power
and, therefore, is not triangular. Since the group G isthe
homomorphic image of the monodromy group of the
variational set, this set aso has no triangular finite-
index normal subgroup Q.E.D.
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From a number of theoretical studies [1-3], it is
known that the so-called soft excitation of two-dimen-
siona (plane) perturbations (of the type of the famous
Karman vortex street) takes placein amixing layer and
free jet flows. This “soft” scenario of transition to tur-
bulence is observed in many experiments [4].

However, a qudlitatively different transition was
observed in certain experiments [5]. In this case, three-
dimensional perturbations were developed, the charac-
teristic scales of perturbations changed, etc. At the
same time, these perturbations must not be devel oped
according to Squire's theorem, because two-dimen-
sional perturbations increase faster than three-dimen-
sional perturbations.

It was here that the hypothesis about a possible
“hard” instability of the flows under consideration
appeared. However, it concerns not conventional plane
waves, but three-dimensional finite-amplitude pertur-
bations involving the so-called difference resonance of
a pair of symmetric waves propagating at the same
angle to the main flow [6-8]:

AW, (y)sin(ax + Bz+ wt)
+ A(t)W,(y)cos(ax + Bz + wt),

A(t)W,(y)sin(ax—pBz+ wt)
+ A()W,(y)cos(ax— Pz + wt)
with the transverse standing wave
¢1(y, 1)sin(2B2) + ¢,(y, t) cos(2B2).

In this case, the nonlinear interaction of symmetric
waves generates a transverse standing wave, which, in
turn, interacting with the primary waves, induces them
anew.

Institute of Mechanics, Moscow State University,
Michurinskii pr. 1, Moscow, 117192 Russia

According to linear theory, we have

dA _

A= A, @ = A

In the nonlinear case, following L andau and the Stu-
art-Watson method [9], we have

dA

- 3
00 f(A)=a,A+aA".

We aim at calculating a&’. If a; < 0, soft excitation
takes place; i.e., a small perturbation first rises expo-
nentialy (nonlinear termsare small) for a, > 0. Further,
the nonlinear terms weaken the primary rise, and the

ag

amplitude tends to a certain limit: A —» =
3
If a; > 0, even for a, < 0, i.e.,, when perturbations
with a small amplitude attenuate according to linear

theory, perturbations rise ot > (H for a sufficiently

large initial amplitude A, > —Z—O.
3

Mathematically, the investigation reducesto arather
complicated problem of numerical anaysis. the three-
dimensional time-dependent Navier—Stokes equations
must be solved in the intricate region of transition from
alaminar flow to the turbulent one. The solution to this
problem can be constructed by the Stuart—-Watson
method in terms of the corresponding expansions of the
desired solution for small initial amplitude. Inthiscase,
the analysis reduces to solving sets of ordinary differ-
ential equations and the solution is actually obtained in
the semianalytical form

u(x y,zt) = A€ [y (y)sin(ax + Bz + wt)
+ @y (y)sin(ax—Ppz + wt)
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+¢1(y) cos(ax + Bz + wi)

+ @y (y) cos(ax—Bz+ wt)]

2 _2At

+ A e [ py(y)sin(20x + 2Bz + 2wt)
+qy(y)sin(2ax —2pBz+ 2wt)

+ p5i(y) cos(2ax + 2Bz + 2wt)
+ 05 (y) cos(2ax — 2Bz + 2wt)
+ s, (y)sin(2ax + 2wt)

+15i(Y) Sin(2B2) + s (y) cos(2ax + 2wt)

+13i(y) cos(2B2) + w(y)]
+ A% [05(y)sin(ax + Bz + wt)

+ 05 (y)cos(ax+Bz+wt) +...] +....

Here, A = A\; + A%\, w = W), + A’w,, whereas the non-
linear corrections A, and w, are determined from the
condition of solvability of the ordinary differential

equations for 6,; and 83; , which are obtained when the

substitute the above expansions into the original
Navier—Stokes equations and equate the coefficients of
the corresponding small-parameter powersto zero. The
calculations were performed using a system of analyti-
cal transformations on a computer.

Thus, the numerical analysis reduces to solving the
problem on eigenvalues for the Orr—Sommerfeld equa-
tion in the first approximation, to solving differential
equations with inhomogeneous right-hand sides in the
second approximation, and to using the conditions of

as;
0.4

021

20
Re

-0.2

—04F

-0.6

-0.8

Fig. 1.
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solvability for degenerate differential equations in the
third approximation.

This study is devoted to jet flows. The calculations
were performed aong the neutral curve. The numerical
analysisestablished that the jet with the vel ocity profile

1 ye3

Ecoshz(s)' -

o 1

Heosh’(y)’

5 1
2 L
Ucosh®(-3)

manifests hard instability with respect to finite-ampli-
tude three-dimensional perturbations. For afixed wave
number a, the coefficient a; responsible for the charac-
ter of perturbation (Fig. 1) can both increase and
decrease with increasing Reynolds number. For certain
wave numbers a, this coefficient decreases with
increasing wave number 3 (Fig. 2). In the region of the
“nose” of the neutral curve, a; is closeto zero.

U(y) =

y<-3

In this study, we obtained the distributions of pertur-
bation velocities for certain sets of the parameters
(wave numbers and Reynolds number) in the first and
second approximations. In the first approximation,
these are X and Y components u,, and u,, of the wave
velocity. The Z component u,; isqualitatively similar to
the X component and differs from the latter only quan-
titatively. The functions u,, and u,; are antisymmetric,
whereas u,, is symmetric (Fig. 3). The behavior of u;,
isvirtually independent of the parameters, whereas the
behavior of u,, changes strongly with variation of the
parameters. For example, the amplitudefor alarge Rey-
nolds number takes a maximum value at zero and then
decreases smoothly.

as;
0.2

0.1

-0.1

-0.2

-0.3

Fig. 2.
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As was mentioned above, interaction in the second
approximation gives rise to several new waves—20x
(S315 S32), 20X + 2BZ (S, Sios Si3)s 2BZ (Sy15 Spps Sia)
(Fig. 4) and to the free term. The behavior of the free
term is virtually the same: it has a minimum at the jet
axis and tends to zero wheny approaches 4 and —4. The
X and Z components of the velocity of thewavess;; and

GERTSENSHTEIN, ZHUKOVA

S,; behave identically: they are symmetric, whereas the
Y component is antisymmetric. Moreover, the Y compo-
nents of the 2ax and 2ax + 23z waves are virtualy
identical. The functions s;;, S35, S;1, Spp, @nd S;; are not
plotted, because they are qualitatively similar to the
functions in the linear approximation, and the only dif-
ference is that the X and Y components change places.
The lowest order has the (2ax + 232) wave: 10°-1072,

Thus, we showed that the transition to chaos for
large initial perturbations can qualitatively differ from
the transition for small initial perturbations; i.e., the
ordinary character of transition can change radically in
the case of large initial three-dimensional perturba-
tions.

The region of hard instability was also found in [7]
for an axisymmetric jet flow in a circular tube. In this
case, hard finite-amplitude instability arises due to a
similar mechanism of perturbation initiation: a pair of
symmetric spiral waves nonlinearly interacts with the
appearing transverse standing wave. In[7], aswell asin
this study, hard instability was observed at the upper
branch of the neutra curve. Instability was not
observed in the region of the nose of the neutral curve.
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Experimental studies of heat transfer in narrow
channelswith dimplesonthewalls(see, e.g.,[1, 2]) tes-
tify to the promising features of this method for inten-
sifying heat-and-mass exchange processes including
cooling of devicesfor various applications. For a set of
deep (on the order of 0.25-0.3 diameters) spherical
dimples, aheat-transfer rise by afactor of 2.4-2.5 com-
pared to a smooth-walled channel was demonstrated
along with amoderate increasein the hydraulic loss (by
afactor of approximately 1.5).

Experimental methods applied to the analysis of the
physical mechanism of the heat-transfer intensification
turned out to be limited in a certain sense. Thisis asso-
ciated with both the multiplicity of affecting causes and
a complication of structural features of spatial vortex
flows. Therefore, the emphasisin investigations of such
flowsisal the more shifted towards numerical model-
ing. At the same time, a unique case of such modeling
performed abroad (see, e.g., [3]) was not very infor-
mative.

Recently, the authors of the present paper have car-
ried out calculations of convective heat transfer when
flowing around a sole dimple located on a plane [4-7].
In the process of these calculations, significant experi-
ence in the identification of spatial jet-vortex structures
in dimples was accumul ated.

The present paper is devoted to calculations of tur-
bulent flows and the heat transfer in a narrow plate-par-
alel channel with aset of 15 spherical dimplesof acon-
siderable depth (0.29) and dense packing (1.155) on
one of the channel walls. The channel configuration
under consideration is similar to that (Fig. 1a) chosen
in[2] for analysis of the convective heat transfer and

* Academy of Civil Aviation, &. Petersburg, Russia
** Bauman Moscow State Technical University,
Vtoraya Baumanskaya ul. 5, Moscow,
107005 Russia
*** Gate Research Center (TSAGI),
ul. Radio 17, Moscow, 107005 Russia

differs only in the smaller number of dimples in rows
and smaller number of elementsin each row (Fig. 1b).

In the calculations, the Reynolds number was taken
equal to 6 x 10%, while the temperature of the hot wall
containing dimples attained 350 K, as was the case in
the experiment of [2].

We consider a plate-parallel channel with the rela-
tive length 30.372, height of 1, and width of 6. The
channel is covered with a nonuniform rectangular 78 x
56 x 46 mesh (with the total number of cells on the
order of 200000). The mesh steps in the longitudinal
and transverse directions of the middle part of the chan-
nel are chosen equal to 0.2. The mesh steps near the
lower or upper walls and lateral walls are taken to be
0.0005 and 0.005, respectively.

The areawith 15 dimples disposed in the staggered
order is covered by an additional rectangular mesh with
asize of 7.372 x 0.175 x 3.866 and containing 160 x
20 x 80 cells (with their total humber on the order of
300000). In the longitudinal and transverse directions,
the minimal steps are 0.05, while the size of the near-
wall step is 0.0005.

Each of the 15 equal spherical dimples with arela
tive depth of 0.29 (with respect to the dimple diameter)
has asharp edge. The distance between the dimple rows
and between the dimple centersin each row is 1.155 of
the dimple diameter.

Each dimpleiscovered with acylindrical mesh. Itis
adapted to awall, and its shape is close to orthogonal.
This mesh is generated with the help of an elliptical
procedure with nodes concentrated as the wall is
approached. The near-wall step is 0.0005. Along the
circumferential coordinate and along a vertical line, 40
and 37 cells are chosen, respectively. Between the dim-
ple center and the sharp edge and in the ring-shaped
subdomain withthesizeof 0.115, 16 and 7 cellsaredis-
posed, respectively. It isworth noting that near the axis,
the cylindrical mesh in each dimple is replaced by a
rectangular one whose cell size agrees with that of the
cylindrical mesh.
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Fig. 2. (a) Patternsfor flows around dimples (view from above); (b) isothermsin the near-wall layer (at the dtitude of 0.00025 from
thewall) in the vicinity of the wall with dimples (axonometry); (c) distributions over the longitudinal coordinate of the relative heat
transfer on the wall with dimples while varying the average bandwidth over the transverse coordinate. Solid lines and dots corre-
spond to bandwidths of 4.266 and 2.133, respectively. The digitized isotherms are plotted with a step of 0.5° from 74° to 77°

[T=(1) 77° (2) 76.5°; (5) 75°; (6) 74.5°; (7) 74°].
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In the neighborhood of the dimples, there are
approximately 580000 calculation cells.

In the channel input section, auniform velocity pro-
fileisgiven. At the output boundary, soft boundary con-
ditions are set (conditions of solution continuation). On
the channel walls, the adhesion condition is fulfilled.
Side walls are assumed to be heat-insulated, while the
opposite “cold” wall is considered to be isothermal
with atemperature of 293 K. Theincoming-flow veloc-
ity outside the boundary layer and the dimple diameter
are used as normalization parameters. While solving
the thermal problem, the laminar and turbulent Prandtl
numbers are taken to be 0.7 and 0.9, respectively. Some
of the numerical results obtained with the use of a
TECPLOT-7.5 system for the computer visualization of
spatial fields are presented in Fig. 2.

The analysis of the pattern for flows around the dim-
plerelief (Fig. 2a) shows that asymmetric vortex struc-
tures are formed within the dimples. These structures
are similar to those observed in [6] for asole deep dim-
ple. We should note that starting from the third row, the
flow patterns in dimples become topologically analo-
gous; i.e., asynchronization of the detached flow in the
dimple set is observed.

The pattern of isotherms in the near-wall layer (at a
distance of 0.00025 from the wall) and the plot of rela-
tive thermal loads averaged over the transverse coordi-
natein bands of different sizes demonstrate the nonuni-
formity of the thermal-flow fields on the dimple relief.
The most significant fact is the rise of thermal loads,
which increases with the number of dimple rows. Asis
seen from Fig. 2b, theincreasein the local heat transfer
occurs not only within the dimples but (more impor-
tantly) in the near wake beyond them. It is of interest
that in this case, the minima of thermal loads onto the
wall with dimples remain approximately the same
(Fig. 2¢).

For the rectangular domain with the size of 7.372 x
4.266 completely covering the dimple set, the heat-
exchange coefficient C, related to the equivalent area of
the smooth wall is equal to 1.62. In the case of a nar-
rower band (as wide as half of the previous one and
equa to 2.133), the value of C, turns out to be higher
and equals 1.93. This more adequately corresponds to
the situation in the dimple set of a longer extension. It
is expedient to determine the relative heat transfer from
the dimples by ignoring the effect of the first rows. In
order to do this, it is of interest to estimate the heat
transfer from the last two dimple rows in the set of
15 dimples under consideration for bandwidth 2.133. It
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turns out that C, = 2.37, which is consistent with exper-
imental data. It is noteworthy that a weak dependence
of C, on the Reynolds number is found in experiments.
This fact makes it possible to correctly perform com-
parisons similar to the ones mentioned above.

The estimate of an increasein the hydraulic loss for
the part of the channel covered with dimples shows that
thisincrease reaches 37%, which also corresponds well
to the experimental data of [2].

In conclusion, this study has revealed the interrela-
tion between, on the one hand, the synchronization of
large-scale vortex structures generated in the dimple set
on one of the walls in a narrow channel and, on the
other hand, the intensification of the heat transfer in the
channel. In this case, an increase in the heat transfer
considerably anticipates a rise of the hydraulic resis-
tance in the channel with dimples. In addition, the effi-
ciency of the developed multibank calculation ago-
rithm is also demonstrated.
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In view of rapid progress in nanotechnologies, it is
necessary to develop new methods of determining the
diverse physical properties of nanoparticles. The sizes
and diffusion coefficient of particles are basic proper-
ties. In practice, these properties are determined by so-
called dlfferentlal mobility (electromobility) analyzers
(DMASs).! The feasibility of using DMAsin this range
wasshownin[1]. Theinterpretation of dataobtained by
this method is based on the Stokes law of resistance
with the Canningham-Millikan—Davis corrections. For
example, the diffusion coefficient is determined by the
formula

Yk (1)
o Lig7
Ve = 6T[r]R[1+ 1.257Kn + 04KnexpD }

_ 6mnR
C )

where Kn = l_R is the Knudsen number, Ris the radius

of aparticle, and T and n are the temperature and vis-
cosity of the base gas, respectively.

Asisknown, the Stokes coefficient of resistancey, =
6TiNR is abtained by solving the Navier—Stokes equa-
tions, but the hydrodynamic approximation is inappli-
cable to nanoparticles (particles with sizes of about 1—

170 date, so-called diffusion batteries are extensively used. How-
ever, they face problems when measuring the sizes of rather small
particles. On the other hand, this method is also based on rela
tions (1). Therefore, the below analysis of the applicability of the
DMA method also largely concerns the method where diffusion
batteries are used.
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100 nm). The Canningham—Millikan—Davis correction
does not improve the description. It is introduced only
to take into account the rarefaction of a base medium.

In [2], the diffusion of nanoparticles was described
by kinetic theory, and the interaction of nanoparticles
with base-gas mol ecul es was described by the potential
taken from [3]. In particular, Eq. (1) was shown to be
validinavery narrow temperature range. For small par-
ticleradii (below 20 nm), the kinetic calculations differ
systematically from the values obtained by phenome-
nological Eq. (1).

In this study, we measured the diffusion coefficient
as a function of the diameter of particlesin the range
mentioned above in order to test both the adequacy of
using Eq. (1) to interpret experimental data and its
applicability to the diffusion of nanoparticles. Simulta-
neously, the diffusion coefficient was calculated in
kinetic theory [2]. In order to obtain unbiased experi-
mental data, the particle diameters were measured by
both the DMA method and electron microscopy (EM).
The comparison of the experimental data with theoret-
ical resultsindicatesthat, in therange of small sizes, the
DMA method leads to a systematic error that is associ-
ated with the use of Eq. (1) and can reach several tens
of percent for the diffusion coefficient and the sizes of
nanoparticles. At the same time, kinetic theory [2]
describes the experimental data concerning the diffu-
sion of nanoparticles, at the least, within the experi-
mental errors.

In our experiments, we used nanoparticles of copper
oxide Cu,O, which were produced by the thermal
decomposition of the metallorganic precursor of copper
acetylacetonate [4, 5]. The experiments were per-
formed in a vertical laminar-flow reactor (its detailed
description is available in [4]). As a base gas, we used
nitrogen, whose bulk concentration was equa to
99.999%.

In the range 2-200 nm, the size distribution of dis-
perse particles was measured by a differential mobility
analyzer consisting of a radioactive ionizer, a classifier
[6], and a condensation particle counter (CPC) TSI
3027. An electrostatic precipitator (ESP, InTox) was
used to collect the particles on a carbon-coated copper
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mesh (SPI). The sizesand crystal properties of particles
were investigated with a transmission electron micro-
scope (Philips, CM 200 FEG).

The operation of DMASs is based on the separation
of charged particles in accordance with their mobility.
Charged particles (in our case, these are Cu,0) moving
in a potential applied to the plates of a DMA deviate
and fall into a narrow split if the particles possess cer-
tain mobility [5]. Measuring the el ectric mobility of the
particles Z, we find their diffusion coefficient to be

ZKT
Dp = e (2)

where the particle charge nis measured in units of ele-
mentary charge e.

Mobility measured in experiments is related to par-
ticle diameter d =2R as

ne

Z = .
Yk

3)

Asaresult, using the DMA, we measured the parti-
cle diameters dy (Table 1). In addition, the particle
diameters were independently measured by EM, dc.
Figure 1 shows the normalized particle distributions
obtained by both methods. It is seen that the curves dif-
fer noticeably from each other, and the DMA method
overestimates particle sizes. For small particle diame-
ters, these differences reach 20-30%.

The experimental diffusion coefficient can be cal cu-
lated by EqQ. (2). Relating this diffusion coefficient to
the particle diameter measured by the DMA and EM
methods, we find the DMA diffusion coefficient D and
the diffusion coefficients Dg. The results are presented
in Fig. 2, where the dashed curve corresponds to Dy
obtained by using the Canningham-Millikan—Davis
correlation (1), whereas points correspond to Dg. For
small particle sizes, these coefficients differ consider-
ably from each other.

To obtain the theoretical dependence, we applied the
kinetic theory of rarefied gases. Aswas shownin [7, 8],
transport processes in rarefied fine aerosols can be well
described by the system of Boltzmann kinetic equa-
tions. Then, the diffusion coefficient is determined by
the formula[2]

—) J21pkT

- 2 (1, 1)% '
nUMR™ Q" 7" (T*, 0;/R)

16 “)

mM
(m+M)’
base-gas molecule and a disperse particle, respectively;

Here, u= where mand M are the masses of a
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Fig. 1. Distribution function f of the particle diameters d
obtained on the basis of the (squares) DMA and (circles)
EM measurements.

T = sI ; Qf'"* are the so-called reduced Q-integrals
i

[9]; and g; and g;; are the parameters of the Lennard-
O O
. i i -
Jones potential ®;; = 4g;; [DTJD - DTJD } describing

the interaction between base-gas molecules and the
atoms (or molecules) of a disperse particle.

In order to use Eq. (4), it is necessary to have an
interaction potential between base-gas molecules and
the atoms (or molecules) of a disperse particle as a
function of the size of this particle. Such apotential was
constructed in [3] as a sum of potentials between a
given molecule and all atoms of the particle, which was
considered as an aggregate of atoms (or molecules). If
a solid particle has the radius R and the interaction
between its atoms (molecules) and a molecule of the

Table 1. Nanoparticle diameters dy, and di measured by the
DMA and EM methods, respectively

dp, Nm dg, nm

11.26 8.94
9.18 754
7.48 6.32
6.75 5.84
6.10 5.35
551 4.79
4,98 451
4.50 3.87
4.06 3.33
3.67 2.94
3.32 2.55
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12 14
d, nm

Fig. 2. Diffusion coefficient D vs. the particle diameter d.
The solid and dashed curves are obtained with potential (5)
and by Canningham—Millikan—Davis formula (1), respec-
tively, and points are experimental data.

base gasis described by the Lenard-Jones potential, the

desired potentia hasthe form

®(r) = Dy(r) — Dy(r),
®i(r) = C{[(r-R) " =(r+R)7]
—al(r-R V- (r+ R

&)

Here,agzé,%:

2mg;o;

I where V is the effective volume per molecule

3V

of the disperse particle.

It is necessary to calculate the diffusion coefficient
of Cu,O particles in N, at atmospheric pressure and

Table 2. Diffusion coefficient D asafunction of the particle

_ 4mgo)
45V

, and C;

diameter d
d, nm Dp, m?/s Dg, m?/s D (4), m?/s
894 | 6.701x10° | 4373x10° | 6.694x 108
754 | 9.385x10° | 6.543x10° | 9.044x 108
6.32 | 1.331x107 | 9.810x10° | 1.215x 107
584 | 1.557x107 | 1.202x107 | 1.397 x 10~/
535 | 1.853x107 | 1.470x107 | 1.601x 10”7
479 | 2308x107 | 1.798x 107 | 1.932x 107
451 | 2602x107 | 2198x107 | 2.118x 107
3.87 | 3528x107 | 2.689%x107 | 2.678x 107
3.33 | 4758x107 | 3.299x107 | 3.418x 107
294 | 6.097x107 | 4.034x107 | 4.102x 1077
255 | 8.097x107 | 4925%x107 | 5.063x 1077

temperature T = 21°C. This calculation requires the
constants of the pair interaction potential of a base-gas
molecule with an atom (molecule) of the particle. To
find these constants, we used the combination relations

Gij = AOii0jj &) = JE;iEj-
For N, molecules, we used g;= 71.4 K and oj; =
3.798 A [10].

The parameters of the potential of Cu,O were deter-
mined by using the law of corresponding states.
Describing the interaction between Cu,O molecules by
the Lenard—Jones potential, we take g; = 1.92KT,,

where T, isthemelting point, and g;; = 3/1.8v ,,, where
V,, isthe volume per molecule of the solid phase at the

melting point [11]. In calculations, we used the follow-
ing reference data for Cu,O: T,, = 1242°C and p =
6.1 g/cm. As aresult, we obtain g; = 2909 K and o;; =
4.124 A. Hence, applying the above combination rela-
tions, we find the following constants of the pair inter-
action potential between anitrogen molecule and acop-
per-oxide molecule: g; = 455.8 K and gj; = 3.957 A.

The solid line in Fig. 2 is the diffusion coefficient
obtained in kinetic theory [i.e., by Egs. (4) and (5)] asa
function of the radius of particles. As expected, the dif-
ference between the diffusion coefficients is especially
noticeable for small disperse particles. The theoretical
curve isin good agreement with the experimental data
even for particle sizes of about 1 nm. As is seen, with
decreasing diameter of particles, diffusion coefficient (1)
differs more strongly both from the calculation by
Egs. (4) and (5) and from the experimenta data. Table 2
presents the results for the diffusion coefficient. For
small radii, the DMA method with the use of the Can-
ningham-Millikan—Davis correlation (1) strongly over-
estimates the diffusion coefficient. For example, for
particles with a typical size of about 2 nm, diffusion
coefficient (1) is more than twice as large as both the
experimental value (obtained by EM to determine the
particle diameter) and theoretical result.

In summary, we arrive at two basic conclusions.

(i) The DMA method determines the sizes of ultra-
dispersed (below 10 nm) particles with systematic
error, because these sizes are determined in terms of
electromobility by using Eq. (3) as

_ neC
3nnZ’

Thisformulaisvalid for sufficiently large particles, but
isinapplicable for nanoparticles. As aresult, the DMA
method |eads to systematic errorsin the diffusion coef-
ficients of nanoparticles, since the diffusion coefficient
is associated with the incorrect particle diameter. As
was seen, the errors can reach 100%.

Disadvantages associated with the use of Eq. (1) are
inherent in not only the DMA method, but also other
methods of measuring the diffusion coefficient of nano-
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particles. The method using so-called diffusion batter-
ies also faces similar problems.

(if) The kinetic theory proposed in [2] satisfactorily
describes the diffusion of nanoparticles over a wide
temperature range. At the same time, the empirical
Canningham—Millikan-Davis Eqg. (1) is valid only in
the room-temperature range, where its parameters were
determined. We emphasi ze that the diffusion coefficient
and the mobility of nanoparticles depend generally not
only on the particle diameter but also on the type of
base gas and the material of disperse particles. The
kinetic theory developed in [2] takes these dependences
into account viathe interaction potential between base-
gas molecules and a dispersive particle.
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Free turbulent flows are among the classical objects
studied in theoretical, computational, and applied
hydrodynamics. Such flows play an important role in
flow around a body, in geophysical phenomena, and in
power-engineering and ecology problems.

The turbulent wake arising behind an axisymmetric
body in a stable stratified medium is an interesting
example of afree turbulent flow in space. In the case of
comparatively low stratification, the turbulent flow is
first developed as in a homogeneous fluid and expands
symmetrically. However, buoyancy forces hinder tur-
bulent diffusion in the vertical direction so that the
wake becomes oblate far from the body and finaly
ceases to grow in this direction.

Turbulent wakes behind axisymmetric bodies in a
stratified medium were considered in anumber of stud-
ies[1-10]. A detailed experimental investigation of the
turbulent characteristics in the momentumless wake
behind abody moving in alinearly stratified liquid was
performed in [5]. Studies devoted to experimental mod-
eling, theoretical calculation, and numerical simulation
of the dynamics of the momentumless turbulent wake
in such a medium were reviewed in [10], where the
results of numerical simulation based on the hierarchy
of classical semiempirical models of the second-order
turbulence were also presented. It was shown that alge-
braic models of Reynolds stresses make it possible to
satisfactorily describe the geometrical characteristics
of the wake. The calculated and measured intensities of
turbulent fluctuations for the vertical and horizontal
velocity components are significantly different. In con-
trast, models including differential transport equations
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pr. Akademika Lavrent’ eva 6, Novosibir sk,
630090 Russia

** |ngtitute of Thermophysics, Sberian Branch,
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630090 Russia

of normal Reynolds stresses satisfactorily describe the
degeneracy of intensities but reproduce the vertical
wake size with significant errors.

In this study, we propose an original numerical
model of thefar momentumlesswakein alinearly strat-
ified fluid, which makes it possible to satisfactorily
describe the anisotropic degeneracy of the wake. The
model is based on the refined approximations of thetri-
ple correlations of the velocity field.

STATEMENT OF THE PROBLEM

To describe a flow in the far turbulent wake behind
an axisymmetric body in a stratified medium, we apply
the following parabolized system of averaged equations
of motion, incompressibility, and continuity in the
Oberbeck—Boussinesq approximation:

Uy, _ 4 0

X 3y +WE WUJVD+6—ZEUW'D, (1)

ov ov ov
Um& + Vay WE

16Et31D 0 2 0

— " -=—0r'wg
pp 0y 0y 0z
6W

oW . AW
U Ve Wz

190p0 a[vwm_awm— Eblﬂ
pO 9z oy 0z Po
0Lp,]  0Lp,] 0@15 dps
x Vay TWe vV
0 .y O :
——WD/pD a—ZD/VpEL

oV oW _
ay 0z

Here, U, isthe velocity of the undisturbed liquid; U, =
U., — U isthe defect of the averaged longitudinal com-

2

3)

U

)

®)
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ponent of the velocity; U=U,, V=U,,and W= U, are
the velocity components of the averaged motion along
the x, y, and z axes, respectively; p, is the deviation of
the pressure from hydrostatic pressure associated with
the stratification of pg g is the acceleration of gravity;
P, =P —pPs [P,C0sthe averaged density defect; ps= p42)

isthe density of the undisturbed liquid: (Lps <0 (stable

stratification); p, = p«(0); the prime denotes pulsating
components; and the angular brackets mean averaging.
The coordinate system isfixed to the moving body such
that the velocity of the body is equal to -U,, and the z
axis is directed upwards, i.e., opposite to the force of
gravity. It is assumed that the density of the liquid is a
linear function of temperature and dtratification is
weak. The terms responsible for molecular viscosity

and diffusion in Egs. (1)—(4) and U

X
assumed to be small and are omitted (this assumption
isdiscussed in [6, 10]).

The system of equations (1)—(5) is nonclosed. Tak-
ing into account the specific character of the flow in the
wake, we write the Reynolds stresses [U1'v 'Cand ['w'[]
inthe form [9, 10]

in Eq. (5) are

Lo 1—C28D/'2[0Ud _ aUd
w'wd
(1—02)6@\/'21] (1-cy)(1- CzT)ge Wl
- Cit Po €
(1—c3) g €°0 [plh (7
018%1— C1Cir Pog? 0z U
dz ‘0z’

The components of the Reynolds stress tensor can be
found by solving the differential transport equations[11]
(i=j=1,23i=2,j=3)

U 0 Ll Va RN
Y ) oy

)
S ox

Wa [ ui0]
0z

- [uui0+ P + G;; %6
®)

iui0— 6

_Cl
2 = 2
_CZBDij _ééij D_Czasij —§5ij(%’
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e= %(m'zm v+ W),

g = (Ol Ol _g)l
Hereafter, summation over repeated indicesis assumed.

The triple correlations of the pulsating components
of the velocity field are calculated from the relation-
ships[12]

2P = P,, 2G = G,.

é\ggm{u}p'ﬂ
[yujuid = 3Po

C3C3pPog? 0Z
A =08;3+0Q3+ 93,

(10)

where the moments m;u;u}Do and [Ci;

mined as[13, 14]

u;p'0 are deter-

0 kui0
Csz Duk| anJ,

—[u;pd= cs¢ EI]J,'(u' la———-D+ i, u; la————ij P

akD

. E()

GXD

~uuul = (11)

= Cs¢ EDJ; ]Da____D

For the more detailed description of the vertical diffu-
sion of the quantity [W3[) we use the differential equa-
tion [12]

ow omw L amwn_ 9
U., Ix +V 3y +W FE —Wcszsz
|:| 2
_9 =3y wr D, w3
0z 0 ay 0z

3
a0 2 W' g
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where the functions C;5, and Cs;55 are fourth-order
cumulants, which are approximated as[12]
1 eV o w0
o =, 3 géaph 9y
e 3 geolpn
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The dissipation rate € is found from the differentia
equation
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The turbulent flows [ p'Cland the variance of the den-

sity fluctuations [p"Care determined on the basis of the
local equilibrium representations:

QJ'ZD — 2e
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The empirical constantsin this model are quite gen-
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eraly accepted [11-14]: ¢, = 2.2, ¢, = 0.55, ¢,;+ = 3.2,
C,r =05 ¢ =125 ¢, =145 ¢, =19, c, = 0.22,

0=13,C4 =011, ¢, =45,C; =45, ¢ = c§ Cy =
S

2Cy,— 1, and Cyg = 2 1.
Cso
The variable x in Egs. (1)—(4), (8), (13), and (14)

playstherole of time: t = -Uz(— . Theinitia conditions are

consistent with experimental data on the evolution of a
momentumless turbulent wake in a homogeneous liquid
[5, 6] and are set at adistance x, = 8D from the body.

The problem is solved numerically in dimensionless
variables, where lengths and vel ocities are measured in
the body diameter D and the incident flow velocity U.,,,
respectively. Then, the characteristic parameters of the
flow in the momentumless wake in a stratified
medium—the Froude number F and theV asal a—Brunt
period T—are determined as

F :l_J_“I T:_Z.E __lg_p_s =
D D! /\/a_g’ pOdZ’

The computational finite-difference algorithm is based
on the splitting method with respect to spatial variables
and was explained in detail in [9, 10].

CALCULATION RESULTS

Dynamics of the momentumless turbulent wake in
the linearly stratified medium isillustrated in Figs. 1-3.
Here, curves 1 correspond to the numerical calculations

H
5~
Fp [5]
o 565
x 314 5
A 103
It |65
v 65
0 9x Avoelva Bt
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)
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Fig. 1. Evolution of the vertical size of the turbulent wake.
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Fig. 2. Dimensionlessintensity of the turbulent fluctuations
of the longitudinal velocity at the wake axis.
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Fig. 3. Dimensionless axial variance of turbulent fluctua-
tions of the density field.

based on the above model, points are the data of labo-
ratory experiments [5], and curves 2 are the results
obtained in the mathematical model [10], wherein con-
trast to our model, the classical approximations of all
triple correlations of the velocity field were used:
mjuu0 = mwjuuf

Figure 1 showsthe variation of the vertical size H of
the wake in a plane orthogonal to the direction of the
body motion. The value of H was determined from the
relationship

et,0,H) = 0.01e(t,0,0), H = LM ,
D(cpFp)
DOKLADY PHYSICS Vol. 47 No. 10 2002
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where ¢, = 0.22 is the drag coefficient. Asis seen in
Fig. 1, the results obtained in our model are in good
agreement with the experimental data.

Figure 2 shows the evolution of the axial intensities

for the turbulent fluctuations G of the longitudinal
velocity

¥ 000w >

u= B—ZD y tO = =
0 Us O Fo

It is seen that the proposed model with the refined

approximations of triple correlations (10) and differen-

tial equation (13) is more adequate at large _% . Theval-

ues of the vertical velocity that were calculated in this
model also satisfactorily agree with the experimental
data of [5].

Figure 3 shows the calculated intensities of turbu-
lent density fluctuations

5. = (7.0.00"
aDp,Fo’

and corresponding experimental data of [5]. The calcu-
lations agree well with the experimental data.

Thus, in this study, a numerical model of a far
momentumless turbulent wake in a linearly stratified
fluid was constructed on the basis of refined approxi-
mations for the triple correlations of turbulent fluctua-
tions. The calculated and experimental results are in
good agreement.
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In 1958, aproblem was posed by Dzhanelidze[1] on
the stability of a cantilever column compressed at the
freeend by aforceinclined at acertain angleto the tan-
gent of theelastic line (partialy following force). It was
shown that, depending on the values of problem param-
eters, this nonconservative system is subjected to both
static (divergence) and dynamic (flutter) instability.

Kordas and Zyczkowski [2] have thoroughly analyzed
the boundaries of stability and instability domains in
this problem. Furthermore, Smith and Herrmann [3]
have generalized the problem by considering a column
attached to the Winkler elastic foundation. They found
that the critical 1oad causing the flutter does not depend
on the modulus of the uniform elastic foundation. This
effect, known as the Herrmann—Smith paradox, has
stimulated considerable interest and many publications
throughout the world [4-9].

In the present paper, the complete solution to the
Herrmann-Smith problem is given. The effect of the
elastic-base modulus K on the stability, flutter, and
divergence domains in the plane of parameters (fol-
lower force p—deviation anglen) is analyzed. It turned
out that the increase in the elastic-foundation modulus
shifts the static-instability domain away expanding the
stability domain. Since the flutter boundary of the cir-
culatory system is determined by the multiple eigenval-
ueswith the Keldysh chain, the derivative of the critical
flutter load with respect to k at the flutter boundary is
zero, whence follows the invariance of the flutter bound-
ary with respect to the variation of the parameter k. The
explicit expression for the gradient of the critical flutter
load with respect to the distribution of the elastic-foun-
dation modulus k(x) along the column length is
obtained. It is shown that the gradient function has
aternating sign. Therefore, the rearrangement of the
elastic-foundation modulus k(x) along the column may
lead to both an increase and adecreasein the critical flut-
ter load. It turned out that within therange 0.6 =n <1,
the free end of the column is the most sensitive to the
change of the uniformity of k(x) with respect to the crit-
ical load.

1 The article was submitted by the authorsin English.

Institute of Mechanics, Moscow State University,
Michurinskii pr. 1, Moscow, 117192 Russia

1. STABILITY DIAGRAM
FOR A COLUMN ATTACHED
TO AN ELASTIC FOUNDATION

We consider a uniform elastic cantilever column of
length L attached to an elastic Winkler base having the
constant modulus of rigidity x (Fig. 1). It is assumed
that the free end of the column isloaded by a non-con-
servative force P whose direction is determined by the
parameter n. The case n = 1 impliesthat the columnis
loaded by a purely tangentia follower force (Beck’s
problem). If n =0, thentheforce P is potential (conser-
vative).

We consider plane transverse vibrations of the col-
umn introducing dimensionless variables

. = X _Y __ . [E
L1 y Ll pAL4|
_PL? _xL
“E T ED

wheretistime, pisthecolumn material density, Aisthe
cross-section area, E istheYoung modulus, and | isthe

X q

nu'(1)

u

Fig. 1. Columninstalled on an el astic foundation and | oaded
by the tangential follower force.
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moment of inertia of the column cross section. The dif-
ferential equation describing small column vibrations
and the appropriate boundary conditions have the form

y* (% 1) +ay' (X 1) +Ky(X, 1) + ¥(X, T) = 0,
y(0,1) = y(0,1) = y'(1,1) D
=y"(L 1)+ (1-n)ay(1,1)=0.
Here, dots and primes imply differentiation with
respect to time t and coordinate x, respectively. Isolat-
ing timein therelationship y(x, T) = u(X)exp(i /AT ), we
arrive at the eigenvalue problem [3]
u™+qu'+kKu = Au, u(0) = u"(1) = u(0)

_ vy (@)
= u"(1) +(1-n)qu(1) = 0.

The adjoint problem has the form

v'™+qv'+kv = Av, v(0) = v"(1)+nqv(l)

=v'(0) = v"(1)+qv'(l) = 0.

Eigenfunctionsfor adjoint eigenvalue problems (2) and
(3) are

a’cosha + b°cosb
ab(asinha + bsinb)
x (asin(bx) —bsinh(ax)), )

u(x) = cosh(ax) — cos(bx) +

v(Xx) = cosh(ax) — cos(bx)

, (& +ng)cosha + (b*—ng)cosb

2 ; 2 ; ©)
b(a”+nqg)sinha+a(b®—nq)sinb
x (asin(bx) —bsinh(ax)),
2 2
a:J—§+ q—+)\—K, b= g+ q—+>\—K,
(0)

Eigenvalues A are solutions to the characteristic
equation

AM, g, A —K) =(2(A k) + (1-n)q")
x (1 + coshacosb) 7
+q(2n —1)(q + absinhasinb) = 0.

Solution of the boundary value problem (1) is stable
if and only if all the eigenvalues A of eigenvalue prob-
lem (2) are positive and semisimple. If for al A O R,
some of them are negative, then the system is stati-
cally unstable (the case of divergence). The existence
of at least one A O C implies the dynamic instability
(flutter).

KIRILLOV, SEYRANIAN

For given values of the parametersn =n,, q = g, and
rea-valued A, zeros of the function A(A — K) differ from
zeros of A(A) by the quantity k, while their multiplici-
ties remain the same. Since the flutter boundary is
defined by the multiple real-valued eigenvalues, the
point (K, N, d,) belongsto theflutter boundary for arbi-
trary K if the point (0, n,, g,) aso belongsto this bound-
ary. The boundary between the stability and divergence
domains determined by zero eigenval ues has to change
while varying the modulus k of the elastic foundation,
since the eigenvalue A, = 0 becomes nonzero after the
shift A = K.

We now find the divergence domain in the Her-
rmann-Smith problem. Substituting A = O into both
characteristic equation (7) and expressions (6), we
obtain

2
r,q—ri(q —fK), r, = 1+ coshacosb,
2r,0—r40 (8)

r, = q+absnhasnb.

n(g, k) =

The function n(g, 0) attains its maximum n,. = % at

gy =(2j+1)’1®,j=0,1,...,whereasn(g, 0) —= —o at

the points g, = (2))*1 [2]. For arbitrary k > 0, the
function n(qg) (q> 0) defined in (8) represents a smooth

curve of zero eigenvalues on the plane of the parame-
tersn and g. In this case, the maximum value of . and

the corresponding value of the parameter g, change
when varying the parameter K. The numerical solution

totheeguation 3—2 =0at different values of K yieldsthe

function g..(k) and [with the use of (8)] n4(k). Knowl-

edge of these functions allows us to find the trajectory
in the plane of the parametersn and g of the point p, =

(N, 0x) that corresponds, e.g., to the first maximum

associated with a change in the parameter k. The point
of the first maximum of the function n(gq) with an
increase in K moves along the g axis oscillating and

tending to thelinen = % asK —» oo, |t can be shown

that all other maxima of the function n(qg) manifest the
same behavior. Therefore, for n > % , the divergenceis

absent for any Kk = 0.

Figure 2 demonstrates stability diagrams for n O
[0, 1] and g O [0, 150]. Asis seen, within this range of
parameters, there exist two curves for double real-val-
ued eigenvaluesinvariable with respect to the change of
the parameter k. Certain parts of these curves form the
flutter boundary (F). The lower curve corresponds to
the confluence of the first two eigenvalues, while the
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Fig. 2. Shift of the divergence domain due to an increase in the base modulus of rigidity k.

upper curve corresponds to the coincidence of the third
and fourth eigenvalues. In the region of Fig. 2 corre-
sponding to k < 3000, there also exist two curves of
zero eigenvalues. At the points of the upper curve, the
third and the fourth eigenvalues change their sign. The
second eigenval ue passes through the zero at the points
of the upper part of the lower curve. The part of the
lower curve in which the first eigenvalue changes its

DOKLADY PHYSICS Vol. 47

No. 10 2002

sign forms the boundary between the stability and
divergence domains.

In [2, 10] it was shown that for kK = 0 at the flutter
boundary, there exists a point p, = (0.35431330,
17.0695748) corresponding to the double zero eigen-
value (0%) at which the curve of the simple zero eigen-
values is tangent to the flutter boundary, Fig. 2. With
the increase of the modulus of the elastic foundation,
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the flutter boundary preservesitsform while the double
real-valued eigenvalues linearly change with the varia-
tion of K. Asaconsequence, the double zero eigenvalue
moves along the flutter boundary. Since the curve of the
zero eigenvalues and the flutter boundary have the same
tangent at the point 02, the curves of the zero eigenval-
ues and the divergence domain travel together with
them in the plane of the parameters | and q with the
increasein Kk clearing the place for the stability domain.
Thisprocessisreproduced in Fig. 2 for k [0, 15000].
In the case of k > 3000, only the lowest curve of the
zero eigenvalues remains within the range n O [0, 1],
g [0, 150]. At k = 15000, the divergence domain
almost completely goes out of this range, and we have
inthisregion avast stability domain, asshowninFig. 2.

Of al publications devoted to the Herrmann—-Smith
problem, probably only in [8] was the question of the
change of the stability diagram in the plane of the
parameters n, g while varying the modulus k of the
elastic foundation touched upon. However, the authors
of [8] did not find the necessary curvesin the parameter
plane and omitted the phenomenon of the divergence
domain traveling along the flutter boundary. In [2], the
stability diagram for k = 0 was found without the frag-
ment of the flutter boundary, which corresponds to the
negative double eigenvalues since it does not corre-
spond to any physical interpretation[2]. Asisseen from
Fig. 2, introducing the parameter K considerably
changes the problem, transforming this curve segment
into the boundary between the flutter domain and sta-
bility domain.

2. SENSITIVITY OF THE CRITICAL LOAD
TO THE NONHOMOGENEITY
OF AN ELASTIC FOUNDATION

We consider the point p, = (K, Ng, ) ON the flutter
boundary, which corresponds to the double real eigen-
value A, with the Keldysh chain of length 2. The chain
consists of the eigenfunction u, and the associated
function u,. The adjoint eigenfunction and associated
function of the eigenvalue A, are denoted by v, and v, ,
respectively. The functions u,, u,, Vv, and v, can be
chosen real-valued. Since the eigenvalue A, has the

KIRILLOV, SEYRANIAN

Keldysh chain, the eigenfunctions u, and v,, are orthog-
1

onal: J’uovodx =0, [10].
0

In[3], it was shown that the critical flutter load g, in
the Herrmann—Smith problem does not depend on the
modulus of the uniform elastic foundation k. We now
study the sensitivity of this load with respect to the
small inhomogeneity of the base. In doing this, we con-
sider the variation of the rigidity of the elastic founda-
tion K(X) = Ky + OK(X), where dk(X) = ee (X) ande =0 is
asmall parameter. In that case, the parametersn and g
take the increments

N =nNo+e€ +0(e), q = o+eey+0(e).

Substituting these variations into the eigenvalue prob-
lem (2) and taking into account the expansions

_ 1/2 3/2
A =Agte A +ter,te A+ ...,

1/2 32
U=Uyte W, +tew,+e Wz+...,

valid for the double eigenval ue, we arrive at the bound-
ary value problems determining the first coefficients to
these expansions:

Wi+ QoW + KWy = AWy + AU,
w,;(0) = wi(0) = w;y(1) )

= wyi (1) +(1-no)qow; (1) = O;

Wy + QoW5 + KW,
= )\0W2+)\1W1+)\2U0—eqU3—eK(X)Uo'
W,(0) = w,(0) = w;(1)

= w; (1) + (1-N0)doW; (1)
+[€5(1—No) —€40ol Ug(1) = 0.

After taking the scalar product of Eg. (10) and the
eigenfunction v,, and substituting the solution w; of
problem (9) into the resulting product, we found the
approximate formula describing the splitting of the
double real-valued eigenvalue A,

(10)

(8K(XQ)Uo: Vo) , GolUo(1)Vo(1)

A=Ayt
0 (U, V1) (Up, V1)

1

Here, An =n - no, Aq =g - g, and (o, LIJ)=J’<pEIJdX
0

denotes the scalar product. In the first approximation,
the double eigenvalue A, splits due to the variation of

(U, Vo) —(1—No)ug(1)ve(1)
+ Wo, Vo ™ Vol) 0 oAq.

(11)

the parameters into two simple eigenvalues (stability or
divergence depending on the sign of A) if the radicand
in formula (11) is positive. If the radicand is negative,
then the double eigenvalue A, splits into the complex-
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adjoint pair (flutter). Zero radicand in (11) implies the
absence of splitting of A,. The corresponding condition
can be written in the form

(OK(X)Uo, Vo)
(Uo, Vo) = (1=No)Ug(1) V(1)
L au(Dve() ;
(Ug, Vo) = (1 —No)Up(1)voe(1)

Formula (12) represents the linear part of the incre-
ment of the critical flutter load g, while changing the
parameter ) and the rearrangement of therigidity of the
elastic foundation k along the column. If the base mod-
ulusincreases uniformly so that &k = const, then

1 1

J'6Kuov0dx = 6Kj'uovodx =0
0 0

Ag =

(12)

and the flutter load does not depend on therigidity K of
the uniform elastic foundation.

Introducing the function of the gradient of the criti-
cal flutter load with respect to the distribution of the
€l astic-base modul us K(x)

—Uo(X) V(X
g(x) — - 0( ) O( ) ’ (13)
IUSVodX—(l—no)UB(l)Vo(l)
0
we rewrite formula (12) in the form
1
Ag = g(x)6K(x)dx+%An
oo on
9q _ —Qolo(1) V(1) (14)
on 1

J-Ug Vodx —(1-ng)up(1)ve(1)
0

We consider, e.g., the point (K, = const, Ny =1, gy =
20.0509536) on the boundary between the flutter
domain and stability domain corresponding to the
purely tangential follower force. Substituting into (13)
the eigenfunctions uy(x) and v,,(X) evaluated at this point
with the use of (4)—6), we find the gradient function
g(x). From Fig. 3, it is seen that the gradient is an oscil-
lating function. Hence, for n, = 1, the column’sfreeend
isthe most sensitive to a variation of the modulusk.

We now vary the parameter K in the gradient direc-
tion: dK(X) = yg(x). Assuming the parameter n, to be
fixed and substituting dk(x) into (14), we find the
approximate expression for the critical flutter load for
No = 1 and g, = 20.0509536:

1

q= qo+vj g’ (x)dx = g +y [0.00708579.
0

DOKLADY PHYSICS Vol. 47 No. 10 2002
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Fig. 3. Gradient function g(x) of the critical flutter load with
respect to K(X).

The formula obtained shows that the violation of the
uniformity of the elastic foundation can both increase
(y> 0) and decrease (y < 0) the critical flutter load.
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A mobile one-wheel robot with a gyroscopic stabi-
lization system is investigated both theoretically and
experimentally. The equations of motion are separated
into the equations of longitudinal and lateral motions.
The conditions of imperturbability of the platform of
the mobile robot are discussed.

The design of the mobile robot under consideration
isbased on the analysis of the classical problem of roll-
ing a heavy disc that carries aflywheel and whose rota-
tion axis Cz is perpendicular to the disc plane and
passes through its center of mass C on an absolutely
rough horizontal plane [1] (see Fig. 1). The nonholo-
nomic mechanical system “disc + flywheel” has four
degrees of freedom and is a gyrostat. Its position is
uniquely specified by six generalized coordinates:
Euler angles |, 6, and ¢ between the trihedron rigidly
bound to the principal central axes of inertia of the disc
and stationary trihedron OX*Y+*Z*, angle y of the fly-
wheel rotation with respect to the disc about the Cz
axis, and coordinates x and y of the projection of the
disc's center of mass in the plane OX*Y*, where the
disc rolls. The problem involves three cyclic coordi-
nates |, 6, and ¢ and the energy integral. Thus, the ana-
Iytical analysis of the equations of motion of adisc with
aflywheel reduces to integrating one second-order lin-
ear differential equation of the form

_ mr’H

dy mr?| 3
Qa3

dae a;a,

2

d—% + cot@ )
de

in quadratures. Here, y = () cosB + ¢ isthe projection
of the angular velocity of the disc onto its symmetry
axis; H=J;(Qcos® + ¢ + y) isthekinetic moment of
theflywhed; a, =1, + J;; & = a, + mr%; a; = |5 + mr?,
[, 15, J;, and J; are the moments of inertia of the disc

Moscow Power Institute, ul. Krasnokazarmennaya 14,
Moscow, 111250 Russia

Institute of Mechanics, Moscow State University,
Michurinskii pr. 1, Moscow, 117192 Russia

and flywheel, respectively; and m is the mass of the
gyrostat. The change z = cos?6 transforms Eq. (1) into
the familiar Gauss hypergeometric equation. The nec-
essary and sufficient conditions of the stability of the
steady-state motions of the system make it possible to
reveal the effect of the gyrostat on its dynamic behavior
and the properties of uncontrollable trajectories. More-
over, the exact integration of the gyrostat equations
simplifies the solution to the problem of motion con-
trol, because the controlled motion can be assembled
from the fragments of free (ballistic) trgjectories.

To accelerate, decelerate, and turn the one-wheel
robot Gyrowheel and to place useful equipment on it,
the disc—flywheel system is supplemented by a plat-
form and enclosure which are similar to the outer and
inner rings of a universal joint and ensure additional
degrees of freedom of the flywheel with respect to the
disc. Asaresult, the system consists of four rigid bodies
joined by cylindrical hinges. This system is shown in
Fig. 2, where [ isthe whedl, 2 isthe platform, and 3 is
the enclosure containing the flywheel. The mathemati-
cal model of the system is supplemented by two gener-
alized coordinates—the angle a between the platform
and the whed and the angle 3 between the enclosure
and the platform. The platform is inserted into the
cylindrical hole inside the wheel with a certain clear-

Fig. 1.

1028-3358/02/4710-0772%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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ance filled with small-diameter balls (original-design
bearing).

This gyroscopic-stabilization system in the arrange-
ment of the kinetic moment vector coincides with the
Brennan scheme of aone-rail railroad [2, p. 213]. Inthe
|atter scheme, the kinetic-moment vector is normal to
the plane of motion; however, the gyroscope precession
axis is vertical, whereas this axis is horizontal in the
system under consideration.

The robot’s mation is controlled by two dc engines.
Engine 4 creates the moment M, between platform 2
and wheel 7 and, if platform 2 is pendul ous, accelerates
and decelerates the robot. Engine 5 creates the moment
M; along the precession axis of enclosure 3 (Fig. 2)
and, duetotheinclination of the wheel, ensuresthe pre-
cession of the kinetic-moment vector about the vertical
axis and, therefore, turns the robot.

The generalized-coordinate vector ¢, = |WOoaf[
satisfies the set of Chaplygin nonlinear differential
equations presented in matrix form [3]:
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Here, © is the reduced kinetic energy, U is the force
function of weight, A isthe matrix in the nonholonomic

constraints |xyl" = Ady, p,=mixy|" isthe generalized
momentum, and Q= |0 0 0 M, Mg|[" isthe vector of the
generalized controlling forces. Set (2) in scalar formis
a set of nonlinear differential equations of tenth order.
To numerically solve this set and visualize it online, a
special software package was devel oped.

In the absence of controlling forces, the equations of

motion of system (2) have a particular solution of the
form

2

$b=0 6=3 ¢=w a=-0 B=00)
which corresponds to motion such that the wheel rolls
along a straight line, the wheel plane is vertical, the
wheel’s center moves with the constant velocity |ux|,
the center of mass of the platform isin the lowest posi-
tion, the enclosure axis is horizontal, and the kinetic-
moment vector is normal to the plane of motion.

The linearization near solution (3) decomposes the
eguations of motion (2) into the sixth-order subset for
Wy, 6, and B with the scalar control Mg and fourth-order
subset for ¢ and a with the scalar control M,. These
subsets describe the lateral and longitudinal motions,
respectively.

The determinant of the controllability matrix for the
linear stationary set describing lateral motion isidenti-
caly equa to zero; i.e, the lateral-motion set is not
completely controllable. The cause is that the lateral-
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Fig. 2.

motion set has the first integral expressing the con-
stancy of the kinetic moment about the vertical axis. If
the robot can detect the angle B of the flywheel enclo-
sure, the equation of lateral motion can be supple-
mented by the observer equation A = h'z, where h™ =

00010/andz"=|{ 86 B Pl.A test of the observ-
ability conditionsindicatesthat the lateral maotion of the

gyrowheel is observable in the variables s, 6, .

The characteristic equation for the equations of
uncontrolled lateral motion has one positive, one nega-
tive, one zero, and two imaginary roots. Transforming
the matrix of the equations of controlled lateral motion
to diagonal form, one can estimate the controllability
region for the unstable equilibrium position of the lat-
eral-motion set and formulate the requirements for the
engine creating the moment along the flywheel-enclo-
sure axis.

The lateral motion of the gyrowheel is investigated
with allowancefor the effect of the reducer transmitting
the engine moment to the wheel. In this case, amoment
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that is equal in magnitude but opposite in direction is
applied to the platform and induces its angular motion
(whichisgeneraly not small). The special choice of the
parameters of the engine and gyrowheel transmission,
in particular, the special choice of the transfer ratios of
the gears and reduced moments of inertia ensures the
imperturbability of the gyrowhedl platform. Let the
condition

O PR
Dnl+m2+m3+_2+ ZDF
_ lpia(is+1)

. +mya+ mg(r,+ry)
bevalid for areducer consisting of apair of gears. Here,
m;, m,, and m; are the masses of the wheel, platform,
and gear, respectively; |, is the gear moment of inertia;
aisthedistance between the centers of mass of the plat-
form and whesl; r, and r; are the radii of the platform
bearing and gear, respectively; and i, is the transfer
ratio of the reducer. In this case, the coefficient of the
moment created by the engine in the equation for the
angle o = ¢ + a determining the deviation of the plat-
form from the vertical is equal to zero. In a certain
sense, condition (4) is similar to the condition of the
imperturbability of inertial navigation systems|[4, 5].
Theoretical investigation and analysis of the actual
motion of the one-wheel robot Gyrowheel, which was
engineered at the Institute of Mechanics, Moscow State
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University, were carried out at the M oscow Power I nsti-
tute. As aresult, we concluded that the gyroscopic sta-
bilization system of the one-wheel robot is serviceable.
Therefore, a mobile one-wheel apparatus performing
autonomous controllable motion can be designed.
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