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The development of methods for constructing exact
solutions to a nonlinear system of equations of mag-
netic hydrodynamics is of undoubted interest. The
Shafranov method [1] is applied to an axisymmetric
configuration of immabile plasma bounded in space.
This method allows us to reduce the system of egqua-
tions

o 1 B
divB = 0, 4H[Bcurl B]+Op =0
to the solution of the equation

W - _qpdP_8mds
div > 167t a2y )

Here, p = P(Y) isthe plasma pressure and Yi(r, 2), J({)
are the magnetic flux and the total electric-current
acrossacircle of theradiusr, which is perpendicular to
thezaxis:

r r

P = {BZZTIrdr, J = Jo’jz><2nrdr.

In this paper, we analyze a system of steady-state
equations of magnetic hydrodynamics [2]:

cul[VB] = 0, divpV =0, 2)
-_1 _
p(VO)V = —4n[BcurI B] — Op. 3)

The problem posed is to formulate a method for con-
structing a solution to the system of Egs. (2) and (3) for
an axisymmetric plasma configuration rotating asasin-
gle whole. This construction is realized on the basis of
a known solution to Eq. (1) for the same configuration
of theimmobile plasma.

For V = V,e,, the condition for magnetic-field line
freezing-in in the case of an axially symmetric plasma
configuration has the form

VB, OVeB, _

or 0z 0 @

Clearly, this condition isfulfilled for V, = Qr, where Q
is a constant value since, in this case, expression (4) is
equivalent to the condition divB = 0.

It is evident that, in order to confine a rotating
plasma configuration, we need to use another distribu-
tion of the electric-current density as compared to the
case of an immobile plasma. First, we consider the par-
ticular case when, in the rotating plasma, only the total
current varies acrossthe circle of radiusr, which is per-
pendicular to the z-axis, whereas the azimuth compo-
nent of the current density conservesthe previousform.

We now denote by G the total current acrossthe cir-
cle of radius r and substitute expressions for the mag-
netic-field components

-_10dy -1y
T 2mr dz’ 27 21 or

into Euler equation (3) with account of Shafranov
Eqg. (1) for immobile plasma. Then, we arrive at thefol-
lowing equations:

- 2G
¢~ ¢cr’
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0YIG _ 0ydG ©
or 0z dzor’
0 F =
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Here, the notation F = G? — J? isintroduced.

It follows from Eqg. (6) that the function G depends
on the coordinates in the same manner as the function
J: G = G(U). Since the boundary of the plasma config-
uration is determined by the condition Y(r, 2) = C,
where C is a certain constant value, the function P({)
satisfies the condition P(C) = 0. Therefore, with allow-
ancefor vanishing pressure on the surface of the config-
uration, we find from Eq. (7) for the rotating plasma

p = P(Y) - —=—[F(W)-F(C)].
2TICr
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In contrast to the case of immobile plasma, whose
density is not determined concretely when constructing
a solution for axisymmetric configurations, the density
of rotating plasma, as follows from Eq. (5), has a defi-
nite form:

p = —=—[F(y)-F(O). ©)
Tcr Q

The obvious limitation when choosing the function G
is providing both nonnegative values of functions (8)
and (9) and the absence of singularities in the region
occupied with plasma. It is worth noting that expres-
sions (8) and (9) correspond to the known procedure of
allowance for acentrifugal forcein the rotating coordi-
nate system by means of introducing an effective pres-
sure[3]

1
p = P()-5pQ°r".

As a particular example, we consider a spherical
configuration of immobile plasma [1], for which the
solution is similar to the hydrodynamic Hill vortex:

_3m 2P+

Here, B, isthe magnitude of the external confining uni-
form magnetic field and R is the radius of the plasma
ball whose surface is defined by the condition { = 0.
For this configuration, the current density is distributed

: , RS 15¢cByr
in the azimuth direction: j, :—————9— ,J=0, and the
8nR’
function P linearly depends on the magnetic flux:
15B
P = -2
16T'R

It follows from expression (9) that for the configura-
tion under consideration and the choice G(JJ) = ayP?,
the density of the rotating plasmainthe case3 = 1 has
a finite value at the origin. In particular, assuming

B=1,a= A;RC where A is a certain constant, we find

the following solution to the system of equations (2)
and (3):

_ 9 _[AB, r? +77 _
p= Zn[m%l = D} V = Qre,  (10)

B, = B2, B,
2R
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It is evident that the plasma pressure has nonnegative

/\/B .

valuesinside the sphere of the radius Rfor A< o

r +zg}

In the other variant of constructing a solution to the
system of equations (2) and (3), the radial and axia
components of the current density in the rotating
plasma have the same form asfor theimmobile plasma,
and only the azimuth component of the current density
changesits form:

= ke W
\ 81er Da r?
Here, kisaconstant. In this case, the components of the

magnetic field in the rotating plasma can be written out
in the form

10y , 9y
ror Py,

kK oy _ 2] kg

B = —2moz 2T o BT omoar

Similarly, the following expressions are obtained
from the Euler equation for the pressure and plasma
density:

K-1
p = K'P(W) - —5[3%(C) - I°(w)],
21Cr

(11)

_ K—1 . .2 2
Tc Q°r
We illustrate the latter variant by an example of the
toroidal configuration:

=Ry a3
4

where Risthe radius of the magnetic axisand a, b, and

Y, are constants. Expression (13) describes the steady-

state plasma, whose pressure and the total current

across the circle of radiusr is related to the magnetic

flux by the following relationship [2]:

sdP grdJ’ _ >

Inthecaseof a> 1, b> 0, and Y, > O, we find for

the pressure and total current acrossthe circle of radius
r in theimmobile plasma

e %wo[(sz+rz>zz+

= —ay,,

= P(y) = o c_y),
16717

J(llJ)— CR(C V).

According to expressions (11) and (12) obtained above,
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the pressure and density of the rotating plasma are
defined by the following expressions:

2
D= [akz—b(l—kz)-R;}
r

b
o= Li"’u(l ) (C—).
8T Q

The pressure and density of rotating plasma have
nonnegative values inside the toroidal configuration
provided that the conditions

2
1<1<1+a_Rl

K bR

arefulfilled. Here, R, isthe inner radius of the configu-
ration in the planez= 0:

2 _ 2 8C
BT R @ e,

The genera formulation of the method for con-
structing the solution to the system of equations (2) and
(3) for the axisymmetric configuration whose boundary
is defined by the condition Yi(r, 2) = C corresponds to a
changein all components of the current density in rotat-
ing plasma. It follows from formulas (8), (9), (11), and
(12) above that, in this case, the plasma magnetic field,
pressure, and density can be written out in the form

- __koay - 2G _ _koy
r 2rr oz’ " o’ ¢ 2mror’

p=K P(lIJ)— e 2[f(LIJ)—f(C)]

o= %{f(w)—f(cn,
Tc Q°r

where the notation f = G2 — k2J2 is used.

Thus, if a solution to the Shafranov equation is
known for a certain axisymmetric configuration of
immobile plasma, then, with the method described in
this paper, we can construct the solution to equations of
magnetic hydrodynamics for the same configuration of
auniformly rotating plasma.

In conclusion, we would like to note that for the
plasma configuration with an azimuth distribution of
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the current density, i.e., for the case J = 0, the employ-
ment of an additional confining uniform magnetic field
B = Beg€, 1S an alternative variant of constructing the
solution to the system of equations (2) and (3).

In this case, the effect of the centrifugal force is
compensated by the interaction of the azimuth current
with thisfield. Then, the expression for the plasma den-
sity iswritten as

_j¢Bext
-—.
crQ

In other words, the direction of the additional external
field depends on the sign of the azimuth component of
the current density.

In particular, when using the additiona external
magnetic field for a rotating plasma ball, a following
solution to the system of equations (2) and (3) is
obtained:

15B,B
=—2% V =0re,
8TIR°Q
_ 45B) 2%[_r2+225
2R R
_ 3rz _
B, = _B°2_R2’ By, = 0,
_ 3, R +Z O
Bz - Bext+250|:| R _J-D-

We should note that in this case, in contrast to previous
variant (10), the plasma-density distribution isuniform.
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The spin-selective adsorption of water vapor on an
aluminum-oxide surface was discovered about adecade
ago (see, e.g., [1]). Aswas shown in [2], this effect can
be used to separate the spin isomers of water by frontal
chromatography. When hydrogen spinsin awater mol-
ecule are paralel and antiparalel to each other, the
molecule is in the ortho and para states, respectively.
Theratio of the statistical weights of the ortho and para
states is equal to three; therefore, in an equilibrium
water vapor under normal conditions, theratio of ortho-
to-para isomer content is equal to three. Since transi-
tions between molecular ortho and para states are for-
bidden, water vapor is essentially a mixture of indepen-
dent ortho and parafractions. In this paper, we describe
alaboratory experiment in which the equilibrium ortho-
to-pararatio 3: 1inwater vapor was changed by at |east
afactor of 3 by spin-selective adsorption. This phenom-
enon is qualitatively explained. It is shown that the
change in the ortho-to-pararatio in the real atmosphere
can beresponsible for marked variationsinitsradiative
characteristics.

In this experiment, the violation of ortho—para equi-
librium in water interacting with an adsorbent was
determined by continuously monitoring the intensity of
spectral ortho and para linesin the rotational spectrum
of water molecules. For convenient detection, we took
apair of intense ortho and para lines that were close to
each other in the rotational region of the spectrum
(Fig. 1). The mixture of water vapor with nitrogen as
the carrier gas passed through an adsorption column
filled with porous carbon. The gas leaving the column
was directed to a cell connected with a submillimeter
BWO spectrometer. In the cell, the working mixture
was probed at frequencies 3040 cm by a beam of
tuned monochromatic radiation. In the piecewise-con-
tinuous mode with arate of 10 points/s, aresolution of
0.0003 cm™, and a period of 1 min, we recorded the
transmittance of the gas layer and observed the ortho—

Institute of General Physics,
Russian Academy of Sciences,
ul. Vavilova 38, Moscow, 119991 Russia

* e-mail: vigasin@kapella.gpi.ru
** email; vitl@mailru.com

para doublet shown in Fig. 2. As water vapor passed
through the adsorbent, aregular and well-reproducible
redistribution of thelineintensitieswas observed. Since
water-vapor partial pressure in our experiment was
lower than 1 Torr, the Doppler broadening wasignored,
and only the collisional broadening was taken into
account. The lines observed are assumed to have the
Lorentz shape with integral intensities S, S, and
half-widths y°r, yprar respectively. The sum of two
Lorentz contours in the real time scale was fitted into
the measured line profiles, and thereby the change in
the integral intensities of ortho and paralines and, cor-
respondingly, the desired ortho-to-para ratio in water
vapor were quantitatively estimated. The resulting ratio
Sort ort

is seen, ortho water molecules have higher mobility in
the carbon filter. For this reason, the initial and later
portions of water vapor diffusing through an adsorbent
were enriched in ortho and para molecules, respec-
tively. The ortho- and para-enriched portions of water
vapor were extracted from the flow at the correspond-
ing moments of time and frozen in a nitrogen trap.
Thus, accumulated samples of spin-modified water
with a volume up to 50 ml were stored in a household
refrigerator. After a certain time, they were defrosted
and subjected to repeated spectral analysis for the
ortho/para content. Water that had been in solid and lig-
uid phases and was enriched in ortho or para modifica-

asafunction of timeisshowninFig. 3. As
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Fig. 1. Lower rotationa levels of water. The arrows show
the transitions used for monitoring the ortho-to-pararatio.
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tions again exhibited an ortho-to-para ratio different
from the equilibrium value. The lifetime of the modifi-
cations was estimated to be tens of minutes for liquid
water and months for ice. We also found that, in addi-
tion to carbon, many other developed-surface sub-
stances such as zeolite, silica gel, etc., could serve as
spin modifiers of water.

The qualitative model of spin-selective adsorption
can be represented as follows. Let the total number of

ort

water-vapor moleculesbe N, and Ny and N§* mole-
cules be in the ortho and para states, respectively, so
that Ng" + N&* = N,. Assuming that the spin fractions
have different adsorption and desorption rates and do
not interconvert in gas phase and on the surface, we can

describe the diffusion process with the following set of
eguations:

ort

dgt _ _kgrtNort + kgrt(Ngrt 3 Nort),

. (1)
d N — par \ par par ort par
—at—- = =k N™ +ki (Ng —N™).

Here, the subscripts aand d refer to adsorption and des-
orption, respectively. The solution to this set of equa-
tions can be represented in the form

Nort, par _ Ngrt, par(ka+ kd)—l

x [kq + ka&xp(—(ka + kg)1)], 2)

which must satisfy the initial conditions of thermody-
namic equilibrium. Therefore,

843
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Fig. 2. Typica profiles of measured lines (dashed line)
under the equilibrium and after six hours of the experiment.
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Fig. 3. Time evolution of the ortho-to-para ratio in water

vapor after its passage through an adsorbent layer. The solid
lineis calculated by Eq. (3).

N (ke + kg (ke + ke exp((Kg" + kg)D)]
(ke + kg )[kE™ + K5 exp(~(k5™ + ki)

NP

Using this solution, we can describe the experimental
data (Fig. 3) finding the adsorption and desorption rates
by the method of least squares. At the initia time, the
ort
ratio "SE = 3. Thefit of the theory to experimental data
N

0
ort ort

gives ki =0.9, kg =0.08, k" =3.5, and ki =0.5
in relative units. Thus, the kinetic constants for para
molecules are 36 times higher than the constants for
ortho molecules, which is possibly explained as fol-
lows. For a rarefied gas, the desorption of molecules
from asurface can be considered as aunimolecular pro-
cess [3]. This means that a molecule desorbs when
energy exceeding the separation energy from the sur-
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face is concentrated at the breaking bond. The corre-

sponding rate can be represented in the form & = \%V

Here, v isthe activation rate, W is the number of states
with energies higher than the dissociation threshold,
and Q is the quantum partition function. The basic
source of the excessinternal energy isthe intermolecu-
lar vibrational energy independent of the spin state of
an adsorbed molecule. Therefore, the number of states
W can also be considered as independent of the spin
modification. In contrast, the partition function can
involve the rotational component if the adsorbed mole-
cule accomplishes hindered or free rotation within the
molecule-surface complex. Therefore, the ratio



Ol peq(V)/0eq(V)
4

Fig. 4. Acceptable variations in the water-vapor absorption
coefficient normalized to the equilibrium value in the case of

ort
il
violating the ortho—para equilibrium x = —{J. Curves 1
0O NPO

and 2 correspond to the strong ortho and paralines, respec-
tively. Absorption averaged over the spectral regions
involving alarge number of ortho and paralinesis shown
by curve 3.

between the desorption constants is expected to be
kort 1
d

To characterize the difference in desorption con-

. I K,
stants, we introduce the equilibrium constant K, = — =

Kg
QHZOqurf
Qads

functions for the water molecule, surface, and mole-
cule-surface complex, respectively. Assuming that

;where Qy o, Oy @nd O, arethe partition

Qn,o(0rt)  Qu(ort) k' 1
2 = =& =3, weconcludethat =- = =.
Qn,o(par)  Qus(par) K 3

Taking these ratios for the adsorption and desorption
rates, it is easy to approximate the experimental depen-
dence shown in Fig. 3 in the region where the ortho-to-
pararatio exceeds the equilibrium value. However, itis
impossible to describe the subsequent excess of the
para fraction over the ortho fraction. To make this
description complete, it is necessary to assume that the
ort
ratio k%' is approximately equal to 0.5-0.7 rather than

a

to % = 0.3(3). Asis shown in Fig. 3, the qualitative

behavior of the kinetics observed for the ortho-to-para
ratio is quite accurately reproduced under this assump-

VIGASIN et al.

tion. On the basis of the experiment and the model pro-
posed above, it is possible to assume that the nonequi-
librium separation of water into the ortho and paraiso-
mers occurs spontaneously in various natural processes
in living organisms and environment. In particular, itis
not improbable that long-term fluctuational violations
of the ortho-to-pararatio 3 : 1 occur in the atmosphere.

Water vapor in the atmosphereisaways under vary-
ing conditions and undergoes condensation and evapo-
ration in air on particles of aerosols and impurities, in
clouds, and on the ground. Therefore, the equilibrium
ratio between the spin modifications is likely violated
in water vapor under certain conditions during Kinetic
transformations. It is of interest to estimate how this
violation can affect the transmission of the atmosphere.
If variations in the atmosphere transmission for a vio-
lated spin composition turn out to be significant, the
simulation of the radiative characteristics of the atmo-
sphereisimpossible without comprehensive dataon the
kinetic prehistory of water vapor in the atmosphere. To
estimate this effect, we calculated the model transmis-
sion spectrum for a water-vapor layer under atmo-
spheric conditions using the parameters of water-vapor
lines from the HITRAN database [4]. The calculations
were made for the spectral region near 10 um, where
the Planck radiation curve for the heated ground has its
maximum. In addition to the “equilibrium” absorption
coefficient a,, corresponding to the radiation transmis-
sion through the water-vapor layer with the normal
ortho-to-pararatio 3 : 1, we calcul ated the “ nonequilib-
rium” absorption coefficient a,,, corresponding to a
violated ortho-to-para ratio. Absorption at individual
wavelengths and total absorption over the spectral
region turned out to be markedly sensitive to the viola-
tion in the ortho-to-para equilibrium. It is easy to show
that, depending on the degree of violation in the equi-
librium spin composition, the water-vapor absorption
coefficient normalized to its equilibrium valueisin the
range

a
4x<neq

4 4
3(x+1) a

X+1

<

eq

ort

where x = (see Fig. 4). The medium line shown in

par
Fig. 4 by a dashed line characterizes the nonequilib-
rium absorption coefficient averaged over the region
containing a large number of randomly arranged ortho
and para absorption lines.

Thus, in this study, we showed that the equilibrium
ortho-to-para ratio can be violated in water in contact
with an adsorbent. Metastable ortho and para modifica-
tions can exist in the form of independent substances
for along time. We assumed that the ortho-to-pararatio
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All the available experimental data, starting with
those published in [1], indicate that the irreversible
change in the structure and physical properties after
low-temperature treatment (LTT) in liquid nitrogen or
helium (low-temperature AT effect) is common for
amorphous metal aloys (AMAS). Structural studies,
including diffraction of thermal neutrons; small-angle
scattering of neutrons and X-rays, Mossbauer, mag-
neto-optical, and spectral ellipsometric measurements
of both binary and multicomponent AMAs (a) Ni-P,
(b) FeCo-Si-B, (¢) CoNi—-Fe-S-B, (d) Fe-Si-B,
(e) Fe-Ni-Si-B, and (f) Fe-Cu—Nb-Si-B testify to the
irreversible changes in topological and compositional
short-range order after low-temperature thermocycling.
Low-temperature treatment reduces the yield stress,
flow stress, Young modulus, and low- and high-temper-
ature parts of the relaxation spectrum, shifts the optical
conductivity spectra, attenuates the equatorial Kerr
effect, changesthe Curie temperature, and increasesthe
saturation magnetization under a small decrease in the
coercive force or considerably decreases the coercive
force under a small increase in the saturation magneti-
zation. Experimental data were described and system-
atized in [2], where it was emphasized that the proper-
ties and magnitude of the irreversible changes in the
structure and physical properties of AMASs depend pri-
marily on the parameters of LTT (temperature and
duration) and the chemical composition of aloys.

The aim of this work was to elaborate a physical
model of the low-temperature AT effect. The corre-
sponding dynamical problem of thermoelasticity the-
ory has not yet been solved theinitial and boundary con-
ditions for cooled AMA samples, which are thin plates
with atypical thickness-to-width ratio of ~10-3 [3]. For
this reason, we will first analyze the solution of the

Kurdyumov Institute for Metal Physics
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Bardin Central Research Institutefor Ferrous Metallurgy,
Vtoraya Baumanskaya ul. 9/23, Moscow, 107005 Russia
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three-dimensional thermal-conductivity equation with
the boundary conditions assuming that all the surfaces
of the plate at theinitial time T = 0 are cooled instantly
to the coolant temperature T, which is maintained con-
stant during the entire cooling process. The temperature
distribution has the form [4]

00 o]

T yz)=(T-T)Y 3 5

n=1m=1k=1

X z

x cosh> coshmY coshk?
R; R, Rs

x exp[—(uikf FUAKE+ ufki)%} T, D
R

An Am Ak

where G—TZ isthe Fourier number, a isthethermal diffu-
R

sivity; Ry, R,, R; are the plate length, width, and thick-
i+l§ ,i=n,m,k; Risthe

generalized sizedetermined fromR2=(R,) >+ (R,) > +

2. L= i —_— ]—T L= —F\:
(RS) s ul (2| 1)2 ’ and kl Ri :
solution by substituting the typical parameters into
Eq. (1). It isknown that the thermal diffusivity a for an
Fe-based AMA isequal to a = 1.3 x 105 m? s [5].
Therefore, it follows from Eq. (1) that the time of the
complete cooling of the plate with R; = 0.02 mm for the
T(0,0,0,7)-T,

Tc - Tk
isequal to T, = 3.2 x 107 swith an accuracy of 0.01%.
Therefore, the cooling rate for LTT in liquid nitrogen
has ahigh value of V ~ 10*-10° K s, which is compa-
rable to the cooling rate for amorphous ribbons under
guenching from a melt. Thus, since the ribbon AMA
samples have small thickness and relatively low ther-
mal diffusivity, the cooling process can be treated as a
“thermal shock” and its features can be analyzed by
taking only ribbon thickness into account, which

ness, respectively; A, = (-1)

Let us analyze the

relative temperature at its center 6 =
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reduces the problem to the one-dimensional case. The
numerical solution of the thermal-conductivity equa
tion with similar initial and boundary conditions coin-
cides with the exact solution given by Eqg. (1).

Asthe plate is cooled over thetimeinterval 0 < T <
Ty, thermoelastic stresses appear in the plate. Taking
into account the problem geometry (R, ~ R, 2 R5), these
stresses can be determined by solving the one-dimen-
sional problem for the infinitely thin plate. The nonzero
thermoel astic-stress tensor components are [3]

l1+v
O3y = 0 = ZGGO[T(Z,T)—Tc]m: 2

where the Z axis is perpendicular to the plate surface,
0,, and g,, are the components of the stress tensor act-
ing at the unit areasthat are perpendicular to each other
and parallel to the Z axis, G isthe shear modulus, o, is
the coefficient of thermal expansion, and v is the Pois-
son coefficient. Thermoelastic stresses move with the
isotherm velocity, and their maximum magnitude o,, =
0,5, = 107-10% N m= is sufficient, as was shown in [2],
to initiate irreversible change in the short-range order,
which reduces density fluctuationsin the AMA to their
disappearance.

The thermal shock changes only the plate volume.
Since the plate is thin, the problem of its oscillations
reduces to the two-dimensiona case. In addition, the
plate can undergo only longitudinal oscillations,
because the temperature field is symmetric about the
neutral planes and, consequently, bending moments are
identically equal to zeroin any of itssections. Itisphys-
icaly clear that the plate cannot be cooled infinitely
long, as follows from solution (1) of the thermal con-
ductivity equation. Therefore, the characteristic cooling
time (duration of the thermal shock) istakento be equal
to1,=3.2x 10°s. At thetime1,, the deformation rates
of the end surfaces are equal to 98—0 = OoAT .

ot T,

Asiscustomary in thermoel asticity theory, the aver-
aging is performed over the duration of the thermal
shock [6]. The equation of plate longitudinal oscilla-
tions has the form [7]

_ p(1-v)d°D

AD F o 3)

1/2
where A isthe Laplace operator, a, = [%}
p(1-v)
isthe speed of sound in the AMA, p isthe density, and
E istheYoung modulus. Solving Eg. (3) with theinitial
and boundary conditions and normalizing the eigen-
functions, we finally obtain

00 00

1/2

Z Bn,mSin()\l, n,malt)vn, m(Xv y)’ “4)

n=1m=1

D =
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where
_ 1/2 _1R1R2a0AT
Bn,m - 32(0‘1}\ ) anO ’
2 2
Lonm ™ 0 0OR, 0"
and
_ 12 g TMX g TNy
Vom(%Y) = (RRy) SInZRlsanRZ.

Shear oscillationsin the plate are absent, becauseits
shape does not change in the process of cooling, and,

consequently, the elementary-volume rotation 2Q =
ou, du,
ox ody
cussion indicates that thermoel astic stresses initiate the
process of changing the initial short-range order, and
longitudinal oscillations giving rise to the drift of the
mainly metalloid atoms make this process irreversible.
The drift of atoms can proceed via, e.g., the mechanism
proposed by Eiring [8]. Another possible mechanism of
relaxation of internal stresses rearranges atoms. The
irreversible displacement of one or several atoms under
the action of either thermoelastic stresses or longitudi-
nal oscillations of the plate can induce the avalanche
displacement of the group of neighboring atoms, if itis
accompanied by the reduction of their potential energy.
Such aprocesswasrealized in computational models of
amorphous clusters[9]. Thus, low-temperature thermal
cycling induces homogenization of the AMA structure,
which is accompanied by the lowering of the internal
stress fields in the amorphous matrix.

In order to evaluate the physica model developed
for the low-temperature AT effect, we carried out an
experiment aimed to test the following main state-
ments: (i) atomic drift responsible for the irreversible
changesin the short-range order is caused by the longi-
tudina oscillations of the ribbon AMA samples and
(it) thermoelastic stresses induce the process of chang-
ing theinitial short-range order.

The first statement is proved by analyzing the solu-
tion of Eq. (3) with various boundary conditions. It fol-
lows from Eq. (3) that longitudinal oscillations do not
appear in sampleswith the endsfixed along the contour.
Thejoint LTT of Fe-Co-Si-B and Fe-Ni—Si-B amor-
phous alloy samplesof systemswith free and fixed ends
in liquid nitrogen demonstrated that both structural
characteristics and physical (magnetic, magneto-opti-
cal, and ellipsometric) properties do not change in sam-
ples with fixed ends [10]. The second statement could
be proved most conclusively by using an AMA ribbon
with zero internal stresses (o;,, = 0). For this purpose,
the Fe-Cu—Nb-S-B AMA ribbon samples of 10-yr
age, in which o;,, = 0 according to our studies, were
subjected to a two-stage treatment: annealing with a

isidentically equal to zero. The above dis-
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M agnetic characteristics of the Fe-Cu—Nb-Si—B amorphous metallic alloy in the initial state and after |low-temperature treat-

ment (LTT) with preliminary 2-h annealing

Initial state Preliminary annealing (T = 493 K) with the subsequent LTT (T =77 K)
coerciveforce, Acm | saturationinduction, T LTT duration, h coerciveforce, Acmt | saturationinduction, T
0.1121 1.183 2 0.1066 1.192
0.1243 1.180 3 0.1109 1.183
0.0914 1.177 4 0.0930 1.187
0.1012 1.181 5 0.0992 1.189
subsequent LTT inliquid nitrogen. Theresultsof inves- 3. V. Novatskit, Problems of Thermoel asticity (Akad. Nauk

tigations and the treatment parameters are listed in the
table. It follows from the table that the magnetic char-
acteristics after such a treatment do not change,
because a part of the LTT-induced thermoelastic
stresses compensated stress o, caused by heating. The
remaining part of thermoelastic stresses was insuffi-
cient to initiate structural changes in the amorphous
matrix.
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To explain mechanisms of generation of free charge
carriersin Cg, single crystals under the action of light or
apenetrating radiation, we need to analyze both intramo-
lecular and intermolecular electronic processes[1]. The-
oretical calculations of the electronic structure [2, 3]
were recently compared with experimentally observed
optical transitions in molecular and solid (films and
microcrystals) states of Cy [1, 4, 5]. This comparison
testifies to the fact that the existence of a crystal field
changes the energy of intermolecular excited states and
forms a complicated electronic fine structure. In addi-
tion to the internal mechanisms, an external constant
magnetic field can also noticeably affect the process of
the photogeneration of charge carriers in Cg, single
crystals [6, 7]. The main goal of the present study isto
clarify the role of intermolecular electronic processes
in the photogeneration of charge carriers in fullerite
single crystals and the possibility to affect these pro-
cesses by aweak magnetic field (B< 1 T).

In this study, comparative investigations of the pho-
toconductivity excitation spectra (within the photon
energy range from 2 to 5 eV) for Cg, single crystalsin
both the absence and presence of a magnetic field (B =
0.4T) at room temperature are made. Qualitative differ-
ences in the photoconductivity spectra of fullerite sin-
gle crystals and films are determined in the absence of
amagnetic field. An increase in the photoconductivity
of Cgy single crystalsin amagnetic field within the pho-
ton energy range 2.4-4.5 eV is discovered. Local pho-
toconductivity peaksin the presence of amagnetic field
are shown to correspond to charge-transfer exciton
states.

In this study, we dealt with high-purity (99.95%) Cy,
single-crystal samples grown by vapor transport (subli-
mation). In order to excite the photoconductivity, we

* Tambov Sate University, ul. Internatsional’ naya 33,
Tambov, 392622 Russia
** |ngtitute of Solid-Sate Physics,
Russian Academy of Sciences,
Chernogolovka, Moscow oblast, 132432 Russia

e-mail: lopatin@tsu.tmb.ru

used the light of a DKSSh-200 xenon lamp that has a
virtually continuous emission spectrum in the visible
and ultraviol et spectral regions. In order to measure the
photoconductivity spectral curve, light from the lamp
was transmitted through a high-aperture monochroma-
tor. The électric current | flowing through indium con-
tacts that were fixed on one of the faces of a sample
with asilver paste served as ameasure of the photocon-
ductivity. A constant voltage of 10-30V was applied to
the contacts. To prevent light-induced oxidation, the
sample was placed into a sealed ampoule. A constant
magnetic field with theinduction of 0.4 T was obtained
by means of an electromagnet.

The photoconductivity excitation spectra of Cg, Sin-
gle crystalsin the presence and absence of the magnetic
field are shown in the figure. Decomposing the spectra
into Lorentz components allowed us to select three
optical transitions with energies of 2.64, 3.07, and
3.87eV.

In the absence of amagnetic field, the photoconduc-
tivity excitation spectraof Cg, single crystalshad, inthe
first approximation, the same basic spectral features as
thin fullerite films. Similarly to [1], the active genera-
tion of photocarriers occurred at photon energies E >
2.35¢eV. Following [8], the photoconductivity spectrum
can be decomposed into three components. It was
shown in spectral studies of Cg, films [1] that a peak
near 2.7 eV istheresult of mixing of two types of exci-
ton states with the charge transfer, which mix with for-
bidden intramolecular excited states. In [3, 4], it was
found that the energy of 2.64 eV corresponds to the
h, — t,, allowed dipole optical transition.

The second optical transition, with the energy of
3.07 eV, is usualy related to the charge-transfer exci-
tons, since this energy corresponds to none of the tran-
sitionsin Cy, and is higher than the energy of the lowest
Frenkel exciton [8].

At the same time, there exist qualitative differences
between spectral features of the photoconductivity for
fullerite single crystals and films. For example, the
3.5-eV peak observed for thin films and corresponding
to the hy —= t,,, allowed dipole optical transition [4] is
shifted towards higher energies in the photoconductiv-

1028-3358/02/4712-0849%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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Photoconductivity spectrain the absence (curves 1 and 3) and in the presence (curves 2 and 4) of the magnetic field with the induc-
tion B=0.4T. Vertical solid and dashed lines indicate the positions of optical transitions in the presence of the magnetic field and
in its absence, respectively. Photoconductivity spectra of a sample after 10-min photoexposure are shown in the insert.

ity excitation spectra of Cg, single crystals. In our
experiments, the shift of the optical transition in the
energy scale can be explained by the complicated inter-
nal structure of molecular zones, which is caused by
various disturbancesin actual crystals. Owing to these
disturbances, the h,(hy) occupied five-fold degenerate
levels and the t,(ty) occupied three-fold free levels

split [9].

Investigation of the photoconductivity spectrain the
magnetic field with theinduction B = 0.4 T yielded the
following results. An increase in the photoconductivity
of 5 to 15% was observed in the 0.4-T magnetic field
within the photon energy range 2.5-4.5 eV. In addition,
the photoconductivity spectra of Cg single crystals
placed into amagnetic field have a characteristic differ-
ence from those at B = 0. In the presence of the mag-
netic field, the band corresponding to E = 2.64 €V is
enhanced, and new maxima arise. The local photocon-
ductivity peaks at the energy E = 2.95 and 3.13 eV are
the most intense. The intensity of the local photocon-
ductivity peaks rapidly decreases in a magnetic field
with the oxidation of a sample (see insert in Fig. 1).
Thisis caused by the fact that deep trapsfor charge car-
riers appear when fullerites interact with oxygen.
Thereby, defects that promote the exciton dissociation
are neutralized. Eventually, thisresultsin adecreasein
the charge-carrier number and quenching of the photo-
conductivity [10]. Decomposition into the Lorentz
components showed that the energy of the optical tran-
sitions had not changed in the magnetic field but that
the oscillator strength for the h, — t,4 transitions had
increased (see figure).

Since features of the fullerite optical spectra are
formed by the intramolecular and intermolecular inter-
actions[1], we assume while discussing the mechanism
of the effect of a magnetic field on the photoconductiv-
ity that the field affects the exciton states. This conclu-
sion isaso implied by the fact that the local photocon-
ductivity peaks lie within the zone of the charge-trans-
fer excitons. The effect of the magnetic field on the
mechanism of charge-carrier generation can be repre-
sented in the form of the following scheme. The light
absorption leads to the formation of an exciton. The
scattering on the surface, on thelattice oscillations, and
on the impurities, as well as on defects, results in the
dissociation of the excitons and formation of free carri-
ers. In[7], results were obtained that enable us to make
definite statements on the influence of spin states of
electron—hole pairs on transport processesin Cg, single
crystals. The role of the magnetic field can be reduced
to only the variation of the spin state of an electron and
aholeinthe excitons. Thisresultsin an increased prob-
ability of the electron-hole pair dissociating into free
charge carriers or in areduced probability of their sub-
sequent recombination and, as a consequence, in an
enhancement of the photoconductivity in the presence
of amagnetic field. Thus, the magnetic field is capable
of governing intermolecular electronic processes of
the photogeneration of charge carriers in Cg, single
crystals.
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Under the same external conditions, the fracture of
an amorphous metallic alloy can be either brittle or duc-
tile depending on its structural state, which is deter-
mined by the conditions of amorphization and struc-
tural relaxation [1-3]. Brittle fracture occurs as spalling
in the planes corresponding to the maximum tensile
stress and is not accompanied by any macroscopic flow
below the yield point. The ductile fracture of amor-
phous metallic alloys occurs along the planes corre-
sponding to the maximum shear stress after or simulta-
neously with plastic flow [1-3]. The fractographic pat-
tern of the fracture surface usually involves both a
nearly smooth zone caused by shear along a band
before the formation of a crack and a zone of vein-
shaped (brook-shaped) tracery. “Veins' are projections
produced at both surfaces due to the formation of a
local neck in the course of ductile fracture. Their thick-
nessisabout 0.1 um [1-3]. The morphology of thefrac-
ture surface stems from the meniscusinstability accom-
panying the development of viscous discontinuity in a
layer of a viscous material. It is a special case of the
Taylor instability.

However, the fracture surface in the samples of
amorphous metallic alloys sometimes has a cup-shaped
structure; i.e., acellular patternis observed. Such a pat-
tern results from fracture caused by the nucleation,
growth, and coalescence of pores. For instance, the
entire fracture surface of the FeBSiCo alloy that is par-
tialy embrittled by thermal treatment had a cup-shaped
relief [4]. Veins in the FeBSb(Ce) amorphous metallic
alloy have a rather complicated structure: they consist
of chains formed by small pores and are separated by
chains of rather large pores [1]. The fracture pattern in
the Feg,B,g alloy is a combination of spalling regions
and domains of ductile fracture [1].
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Many details of the fracture of amorphous metallic
aloys «ill remain unclear, including the structural
mechanisms of their fracture and the conditions of the
implementation of these mechanisms. The aim of this
work is to analyze the structural mechanisms and con-
ditions of the fracture of amorphous metallic aloys
along shear bands and to classify the mechanisms of the
brittle, quasi-brittle, and ductile fracture of these mate-
rials.

BRITTLE AND QUASI-BRITTLE FRACTURE

Brittle and quasi-brittle fracture is initiated by tech-
nological or structural defects. In brittle materials,
where the stress o; of the nucleation and devel opment
of cracksislower than theyield point o, and local stress
concentration cannot decrease owing to the plastic flow,
fracture stress is determined by the most dangerous
structural defects, i.e., those resulting in the maximum
stress concentration.

When o; = g, a plastic zone is formed near the
crack tip and hasthe form of a shear band or an array of
such bands. If the transverse size of the plastic zone is
much smaller than itslength, it is the quasi-brittle frac-
ture of amorphous metallic alloys. The size of the thin
plastic zone arising near the tip of a crack under the
plane stress conditions and the displacement accompa:
nying crack opening can be well described quantita-
tively as functions of the crack length o in the frame-
work of the Dugdale or Bilby—Cottrell-Swinden mod-
els[5, 6]. Inthese models, the material isassumed to be
ideally elastoplastic, which is the case for amorphous
metallic alloys. Assuming that fracture occurs when the
displacement at the crack tip reaches the critical value,
i.e, 0 =90, we obtain the fracture stressin the form

T[EEC}D )

o; = Zoyarccosgexp[ 0
f - - - .
T 0 80,a7

The fracture of an amorphous metallic alloy takes
place when the plastic-zone size, crack opening width,
and stress intensity factor reach certain critical values.
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STRUCTURAL MECHANISMS OF FRACTURE IN AMORPHOUS METALLIC ALLOYS

THE CONDITION FOR THE FORMATION
OF SHEAR BANDS

The threshold flow stress 1,,, in amorphous metallic
alloys decreases with increasing excess free volume in
the deformation process and reaches a certain steady-
state value 1, [1-3]. This loss of the materia strength
(decrease in viscosity) causesthe localization of plastic
flow, i.e., the formation and propagation of shear bands.
Ignoring the dependence of local flow stress on the
strain rate, one can represent the local stress—strain
curve of an amorphous metallic alloy in the simplified
form

Tm
T(y) = Wy, VSE,

. (2)
(y) = To, v>im-

In the framework of this approach, the stress 1,,, of the
initiation of heterogeneous plastic flow and steady-state
stress T, are the main microscopic parameters charac-
terizing the plastic behavior of an amorphous metallic
aloy.

The stressfield in thetip of the shear band is similar
to the stress field from a shear crack including stress t,,
corresponding to the resistance to shear in the band.
Using this analogy, we can introduce stress intensity
factor K, for the band. Under uniform applied shear
stress T, the stress intensity factor for the shear band of
width L has the form

1/2

Ko = BE-1)H | 3)

where 3 isanumerical factor of about unity. When the
stress intensity factor reaches a certain critical value
determined by the mechanisms of energy dissipation
accompanying the propagation of the shear band, this
propagation becomes unstable. The energy dissipation
per unit length of the propagation of the shear band can

be represented as G = (T,,,— To)U,; here, U, isthe mean

displacement at the end domain of the shear band,
where shear stress decreases from 1,,,t0 T,.

The criterion for the propagation of the band takes
the form
2p‘(Tm —To)Ue vz
T )

which is the Griffiths-type energy-balance equation
determining the critical size of the shear band with
respect to the applied stress.

Various structural inhomogeneities of different
scales in amorphous metallic alloys modify the condi-
tion for the devel opment of shear bands and can induce
internal stresses [7] and impede the propagation of the
bands. The macroscopic condition for the development
of bands in amorphous metallic aloys, i.e., the condi-

Ky 2 K% = [
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tion under which the shear band overcomes obstacles
caused by meso- and macrascopic structural inhomoge-
neities, is represented in the form

Ky 2 Kpa, &)

where the second critical value K, of the stressinten-

sity factor is determined by the nature, scale, and con-
centration of structural inhomogeneities in the amor-

phous metallic alloy and K;, < K};.

DUCTILE FRACTURE ALONG SHEAR BANDS

At o; >0y, thefracture of amorphous metallic alloys
is ductile; i.e, the nucleation of a microcrack is pre-
ceded by the formation of a shear band [1-3]. Steps
arising at the free surface of a sample due to the devel-
opment of shear bands are stress concentrators, whose
sizes reach the critical value corresponding to the
nucleation of a crack and its subsequent opening along
the shear band. The crack is formed along the shear
band, when the stress intensity factor K of the viscous
crack exceeds the critical value K...

The rheological behavior of the material within the
shear band is unknown. For this reason, the shear stress
dependence of the shear strain rate is approximated by
the power function

\ n

=" = TOE%E, ©)
where n,, and n are the parameter and exponent of non-
linear viscosity, respectively, and material parameters
T, and y, have dimensions of stress and inverse time,
respectively. In[8, 9], the conditions and features of the
formation and development of the meniscus instability
were analyzed for the fracture of amorphous metallic
alloys along shear bands. However, the fracture mecha-
nism associated with the nucleation and growth of
pores can be energetically and kinetically more favor-
able than the meniscus instability.

Let us discuss the conditions for the fracture of
amorphous metallic alloys along shear bands due to the
development of the system of pores. The kinetics of
pore nucleation in adeformed material were repeatedly
analyzed earlier [10]. The rate of the heterogeneous
nucleation of pores at structural inhomogeneitiesin the
shear band of amorphous metallic alloys under normal
stress g, is

*
J = C,ZRexp E—(k;—TE, )
where C, is the concentration of the potential sites for
2

Q
pore nucleation, Z = ch BnFr3KT) 2 is the Zel’dov-

ich factor, R = %, Q is the atomic volume, G* =



3

>— isthe nucleation energy for a pore of the critical
Gn

size at a structural inhomogeneity, F is the pore shape

factor, and I' is the fracture energy.

In the kinetic calculations of the growth of poresin
the shear band, where the stress dependence of the
material strain rate is described by Eq. (6), the stress
distribution in the ensemble of growing pores confined
within the shear band is preliminary calculated [11].
The rate of increase of the volume fraction of poresin
the shear band iswritten as

h(()l n)/nyo

= (1_ f)(3+n)/nL(1+n)/an1/nTé/n

% [o—zh—l;(l— f)z}ﬂn, @®)

2'""(1+2n)"

(2+n)n"
between the pore centersin the plane of the shear band,
and hy is the initial thickness of the shear band at the
beginning of the development of the pore system.

It is assumed that fracture occurs when the volume
fraction f of poresin the shear band reaches the critical
value f *, Then, the time until fracture as a function of
the applied stress and material viscosity in the band has
the form

where Y = , L is the mean distance

_ o cunEq -yt
LY gah oo
(1_ f)(3+n)/ndf

XI 1/n 20 2]Jn
1,0 [1——h o(l—f)}
0

f*

©))

and is proportional to material viscosity in the shear
band.

The fracture mechanism in an amorphous metallic
alloy changes from the finger-shaped development of a
viscous crack to the nucleation, growth, and coales-
cence of pores, when the characteristic time t; of pore
nucleation in the volume v, = Axh of unit width and
length Ax in the shear band is much smaller than the
characteristic time ty of passing distance Ax by the
viscous crack. Thiskinetic criterion has the form

Vv
h(Ax)>

The velocity v(o, n) of the meniscus-instability-
induced propagation of the viscous crack in the shear
band was calculated in [9] for different n values. The
mean distance between the sites of the heterogeneous
nucleation of pores can be used as the characteristic
size Axin Eq. (10).

J>

(10)
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It is well known that structural relaxation in amor-
phous metallic alloys embrittles a material [1-3]. This
embrittlement is caused by the decrease in the excess
free volume, pore nucleation, and segregation of metal-
loids at the free and pore surfaces. The more relaxed the
state of an amorphous metallic alloy, the higher the
concentration of the potential nucleation sites for
microscopic discontinuities, C, ~ (AX)=3, and, therefore,
the higher the nucleation rate J and material viscosity;
i.e., theV vauefor fixed o islower.

The above analysis leads to the following conclu-
sions concerning the mechanisms and conditions of
fracture along shear bands in an amorphous metallic

aloy. When Kp, >K,> K;; and K> K, acrack devel-

ops along the shear band inhibited by structural inho-
mogeneities. This process can be accompanied by the
brittle fracture of large structural inhomogeneities in
the amorphous metallic alloy, which impede band
development. As aresult, mixed ductile-brittle fracture

occurs aong shear bands. When K, > Kp, andK > K,

ductile fracture occurs along shear bands. When crite-
rion (10) is met, thisductilefraction is due to the mech-
anism of the nucleation, growth, and coalescence of
pores. When the opposite criterion is satisfied, the frac-
ture is attributed to the meniscus instability. When the
conditions for both these mechanisms are close to each
other, the mixed mechanism of the development of the
ductile crack isrealized.

In conclusion, we can list the following main frac-
ture mechanisms in amorphous metallic alloys.

(i) Brittle fracture, where the crack plane is perpen-
dicular to the tension axis.

(i) Quasi-brittle fracture, i.e., the combined devel-
opment of a crack and a shear band and the formation
of an array of secondary bands near the crack tip.

(iii) Mixed brittle—ductile fracture along shear
bands, i.e., either the formation of pores in the shear
band, which are united by brittle cracks, or the develop-
ment of the main viscous crack due to the formation of
brittle cracks—satellites.

(iv) Ductile fracture along shear bands due to the
nucleation, growth, and coal escence of pores.

(v) Ductile fracture along shear bands due either to
the meniscus instability of the viscous crack front or to
the mixed mechanism of the nucleation and growth of
pores combined with the meniscus instability.

(vi) Ductile fracture accompanying homogeneous
flow in amorphous metallic alloys due to the devel op-
ment of the pore system in the entire sample.
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Studies of high-speed unsteady supersonic flowsare
of great importance from the standpoint of the devel op-
ment of modern aviation and rocket engineering.
Unsteady effects become especially significant in the
case of controlling and correcting rocket engines,
whose operating times are comparable to those
required for attainment of the steady-state regime. The
same problem is urgent for telescopic nozzles and
engineswith strong thrust control in the takeoff paths of
a rocket and at the moment of its launch. In these
regimes, unsteady effects are crucial; therefore, disre-
garding them may cause an emergency situation. The
structure of corresponding flows cannot be described
analytically. Therefore, it must be studied by experi-
mental and numerical methods.

Unsteady effects must be taken into account when
developing efficient methods for high-altitude captive
tests of rocket engines. To decrease |oads on the nozzle
at the moment of initiating engines and to provide an
initial rarefaction inthe gas path of the test bed, gjectors
are used [1]. However, when testing promising engines
with shorter settling times, it is difficult to ensure the
integrity of the nozzle.

On starting a rocket-engine nozzle, a starting shock
wave accompanied by an unsteady supersonic flow
propagates in the nozzle [2, 3]. Entering into the gjec-
tor, the shock wave interacts with an inducing jet. Per-
turbations caused by the shock—et interaction can
move upstream along the boundary layer formed by the
flow behind the shock and can reach the region near the
nozzle, which may result in nozzle failure. This effect
is a specific danger for nozzles subjected to high-alti-
tude captive tests.

The effect of the starting shock wave can be another
possible cause for an increase in the pressure on the
exterior wall of the nozzle.

* |nstitute of High Energy Densities,
Joint Institute of High Temperatures,
Russian Academy of Sciences,
ul. Izhorskaya 13/19, Moscow, 127412 Russia

** Moscow Ingtitute of Heat Engineering,
Berezovaya alleya 10/1, Moscow, 127276 Russia

Tentative experiments have shown that when a
shock wave escapes from a channel into semi-infinite
space, the diffracted shock wave propagates outside the
channel in the opposite direction along the channel gen-
eratrix (Fig. 1) [4]. When the diffracted shock wave
reachesthe rear wall, the pressure on thewall risesby a
factor of 1.5. Such an effect was registered by pressure
transducers in the experiment described in [4]. When a
shock wave escapes from a nozzle into a bounded vol-
ume in conditions of high-altitude captive tests or in
flight conditions, an increase in the pressure on the noz-

Fig. 1. Shadow photograph of the shock-wave egress from
acylindrical channel: (1) diffracted shock wave; (2) surface
separating the outward gas flow and environmenta gas;
(3) lineof flow separation, which convolutesinto avortex (4);
(5) fan of rarefaction waves, which is closed by the oblique
shock (6); (7) stagnation shock wave separating the
expanded gas escaping from the nozzle and the denser gas
behind the diffracted shock wave; and (8) back wall.

1028-3358/02/4712-0856$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Zle exterior wallsisalso possible, which may lead to the
nozzle fracture.

In the present paper, we propose a method of exper-
imental and numerical analyses of perturbations that
originate when starting a rocket engine and affect its
nozzle under high-altitude captive tests. Modeling of
the captive tests of arocket engine was carried out with
a test facility composed of a shock tube and a super-
sonic wind tunnel (Fig. 2). Our model was composed of
an axisymmetric diffuser with anozzle installed and an
gjector providing the desired rarefaction in the diffuser.
The model was fixed to the shock-tube end wall. The
gjector was a sguare channel with two metalic walls.
Two other walls were formed by thick plane-parallel
glasses used for shadow photographing processes that
occur in the gjector. All features of the axisymmetric
gas-dynamic channel used in the high-altitude captive-
test bed were reproduced in the model presented in
Fig. 2. Moreover, complete geometric similarity was
provided in all of the sections except for the square-
shaped gjector. Such a change does not affect the gas
flow in the vicinity of the nozzle. In the gector, the
change in the shape of the channel cross section causes
negligible perturbations with respect to the effect of the
gjector jets.

The process of starting the nozzle is ssimulated for
the case when a gas heated behind the reflected shock
wave in the shock tube escapes from the nozzle. The
desired pressure drop at the nozzleinlet is provided by
choosing initial pressures in the shock tube and dif-
fuser, and, in addition, the Mach numbers M, for the
shock wave in the shock tube.

Visualization and registration of the starting process
were performed using an |AB-451 shadow device and
a VSK-5 high-speed camera. PSV dynamic-pressure
transducers with atime resolution of 1 pswere used for
measuring pressure in the diffuser.

Before the onset of the experiment, air in the low-
pressure channel of the shock tube was maintained at
atmospheric pressure. In order to provide the required
rarefaction in the diffuser, compressed air under a stag-
nation pressure up to 40 atm was injected into the gjec-
tor. Then, hydrogen under a pressure of 80 atm was
injected into the high-pressure chamber of the shock
tube. After a diaphragm between the high-pressure and
low-pressure chambers of the shock tube had been bro-
ken, a shock wave was formed that reached the shock-
tube end with the nozzle installed. As a result of the
shock wave's reflection from the shock-tube end, agas
volume appeared at a high pressure and with a high
temperature, both determined by the shock Mach num-
ber in the shock tube.

The experiments were carried out over awide range
of diffuser pressures (from 0.15 to 1.0 atm) and for var-
ious Mach numbers (from 3.05 to 4.28) of the shock in
the shock tube. These values of the Mach number
ensure apressure drop near the nozzleinlet of 100 atm
with varying diffuser pressure. The pressure trans-
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Fig. 2. Layout of the physical model for starting an engine.
Der, Da, Dgiff, and Dy arethe diametersfor thecritical cross
section of the nozzle, for the nozzle exit section, for the dif-
fuser, and for the gjector, respectively; L and Lg are the
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Fig. 3. Readings of the pressure transducers nos. 2 and 3
positioned in the diffuser (curves 1 and 2, respectively) as
functions of time (see Fig. 1). The diffuser pressureis Py =

0.15 atm and the shock-wave Mach number is Mg = 4.18.

Curve 3 shows the time dependence of the pressure drop
calculated for the position of the transducer no. 2.

ducer 1 (see Fig. 2) measured pressure behind the noz-
Zle, while transducers 2, 3, and 4 recorded the propaga-
tion of the starting shock wave in the diffuser. As the
shock wave propagated in the channel, the pressure
amplitude dropped (Fig. 3). Motion of the shock wave
reflected by the ejector towards the nozzle was not
observed. Shadow photographs of the gas flow in the
gjector mixing chamber showed that, when entering the
gjector-jet region, the starting shock wave introduced
an additional turbulence into the flow, although it sub-
sequently decomposed and transformed into acoustic
perturbations.

The experiments have shown that the increasein the
pressure on the nozzle exterior wall is caused by the
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Fig. 4. Isobars found numerically for a two-dimensional
unsteady flow at atime moment of 70 ps (the corresponding
dimensionless time is equal to unity) after the onset of the
outflow from the nozzle. The pressurein the diffuser isPy =

0.2 atm, and the rocket-engine jet pressure is 120 atm.
Curves from 1 to 9 correspond to pressures of 0.12, 0.14,
0.16, 0.18, 0.20, 0.22, 0.24, 0.26, 0.28 of Pg, respectively.

starting shock wave, while the perturbation due to the
interaction of the shock wave with the gected jet does
not affect the nozzle.

The same result follows from our numerical simula-
tion of the process. We have devel oped an algorithm for
evaluating the flow field, which is based on the Steger—
Warming finite-difference scheme for solving time-
dependent two-dimensional Euler equations. The com-
putational meshes used make it possible to resolve the
fronts of leading and secondary shocks with relative
errors of about 1% and 10%, respectively. We solved
the problem in dimensionless variables, choosing the
throat diameter d, as the spatial scale and the quantity

JE:Z asthe velocity scale, the latter being smaller by a
2

factor of ./y than the sonic velocity in the initia gas.

d,

NJP2Ip;

p, as scales of time, pressure, and density, respectively.

We cal culated the starting process of arocket engine
that had been initiated in ahigh-altitude test bed with an
gjector. Initial values for pressure and Mach number
corresponded to the experimental conditions. The lay-

We chose the quantity andinitial values P, and

FORTOV et al.

out of our facility is shown in Fig. 2. It should be
emphasi zed that, in the mathematical model, the gjector
is assumed to have a circular cross section, as in an
actual test bed, in contrast to our experiments using the
gjector with a square cross section.

The calculation results qualitatively describe the
load distribution observed in the experiment. We imply
a pressure increase in the region between the nozzle
wall and diffuser after the egress of the shock wave
from the nozzle (Fig. 4). At theinitial time, the pressure
outside the nozzle exceeds that inside it by a factor of
about 1.5.

The time dependence calculated for the pressurein
the diffuser cross sections containing the transducersis
smoothed compared to the experimental curve (Fig. 3).
At the stage of attaining steady-state flow near the noz-
Zle, thetotal pressure impul se coincides with the exper-
imental value. According to the calculation results, the
reflection of the starting shock wave from the gjector is
negligible.

Thus, the pressure measurements, visualization of
the process, and numerical simulation show that no
reflected shock wave is observed when the starting
shock wave interacts with the gjector jets. The diffrac-
tion of the starting shock wave by the nozzle-exit sec-
tion results in the pressure on the nozzle exterior wall
becoming higher than that inside the nozzle, which may
causeitsrupture.

The unsteady wave processes observed should be
taken into account when calculating the starting
regimes of rocket engines. The proposed method of
modeling the test-bed study of rocket engines signifi-
cantly lowersits cost. The method allows usto optimize
the operations of a high-altitude test bed with a full-
scale engine and to obtain additional information on
loads on the nozzle.
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The current status of the development of spacecraft
is characterized by the creation of a highly integrated
modul e architecture of a new class of small spacecraft
(nanosatellites) for a wide range of scientific and
applied problems[1].1

The basic requirements for space microthrusters of
this class of spacecraft are associated with the possibil-
ity of reaching minimum thrust J ~ 1-5 nN swith afine
dosage of an individua pulse in a wide range (within
four—five orders of magnitude) and high monochroma-
ticity of the accelerated flow € > 0.8 in the undevel oped
micronewton propulsion range F, ~ 107-10° N and

specificimpulses |, > 10° s.

An energy-ballistic analysis of promising beam
space thrusters (solar and laser thermal, detonation,
solar sail [2, 3], etc.) indicates that the pulse and quasi-
steady-state laser microthrusters of the erosion type
with various mechanisms of creating propulsion (evap-
oration or detonation), where the working medium in
vacuum is exposed to laser radiation with power den-
sity I, ~ 10°~10% W/cm?, fulfill these requirements most
completely and use (as an energy source) high-bright-
ness semiconductor laser diodes with energy efficiency
higher than 60% and average radiation power N, ~
5-10 W for spacecraft [4].

In the parametric set of erosion-type laser space
thrusters (with various forms of optic dischargesin vac-
uum) under development, the generation, heating, and
shock-wave acceleration of gas—plasma flows occur at
the following successive stages. laser ablation (light
erosion) of a solid working medium (easily vaporized
dielectric materials and metals) in the target chamber of
athruster, radiative-gas dynamic heating, the formation

1 According to the definition of the International Aerospace Feder-
ation, the class of microspacecraft involves microsatellites with
mass 10-20 kg, nanosatellites with mass 1-10 kg, and picosatel-
liteswith mass below 1 kg.
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and acceleration of the plasma under the optic break-
down of the medium, and the generation of alight det-
onation shock wave in the acceleration chamber of the
thruster.

The primary fundamental limit of an erosion-type
laser space thruster in the new range of propulsion and
minimal thrust is associated with the fact that the
ingress of an evaporated substance into the optical dis-
charge in a laser space thruster is delayed by ~At, ~
(3-5) x 10°% s (Fig. 1b) with respect to the laser pulse
due to the lag of phase transitions for any mechanism
(resonance or thermal laser ablation, light erosion, or
pyrolise) of the generation of the working medium [5].

The absence of a mass yield m(t) coordinated with

Iy, W/em?

lpy

m, kg/s

Iy, W/cm?
In

1

A 1 A ! t,s

f3t4 [5

Fig. 1. Timing diagram of the operating processesin a two-
stage erosion-type laser space thruster: (a) the power den-
sity of thefirst laser pulsein theirradiation area of adielec-
tric target, (b) the mass rate of the target working medium
in the gaseous phase, (c) the power density of the second,
accelerating, laser pulse in the optical-breakdown area, and
(d) the x-t diagram of the gas—plasma flow behind the sec-
tion of the laser space thruster.
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laser pulsedynamics|(t) isresponsiblefor not only the
increasein the longitudinal dispersion of velocities and
—2
the decrease in the flow monochromaticity € ~ V:2 but
%
also for aconsiderable tail thrust, because a portion m,
of the evaporated substanceisnot involved in the accel-
erating laser cycle and continues to enter with thermal
velocity upon termination of the laser pulse.© This cir-
cumstance makesit impossibleto achieve the necessary
minimum thrust and to ensure a fine dosage of control-
ling pulses and restricts the range of mass-averaged
velocities v ~ 10° cmV/s (specific impulses |, < 10° 5)
and frequency characteristics of thelaser spacethruster.

New possibilities of overcoming these limits are
associated with the combined (evaporation and detona-
tion) mechanism of creating propulsion in one operat-
ing cycle of the laser thruster. Thistwo-stage scheme of
the laser spacethruster impliesthe use of two consistent
(in spectral energy and dynamic parameters) laser
pulses (heating with T, ~ 10~ sand accelerating with

T,, ~ 10 ) at the generation stage of the working

medium and accel eration stage of the gas—plasma flow
in the front of the laser detonation wave.

The aim of our experimental investigations is to
determine the capabilities of the two-stage acceleration
of active gas—plasma media of erosion-type laser space
thrusters. This two-stage mechanism of laser accelera-
tion in alaser space thruster was analyzed theoretically
in[6].

Radiation gas dynamics and thermophysical pro-
cesses in chambers at all stages of transformation of
laser-radiation energy in thruster sections and propul-
sion—energy characteristics of the laser space thruster
were examined experimentally on a test bench devel-
oped for the LUCH complex [7]. This test bench
involves an evacuated (p, ~ 1072 Pa, Vg, ~ 1.7 m3) ther-
mostabilized chamber with differential pumping and a
system of gas—vacuum collectors for preventing the
interference of accelerated gas—plasma flows ahead of
the section of the laser space thruster. This chamber is
electro-optically matched to the module of optical diag-
nostics and the propulsion measurement module. The
laser space thruster unit was mounted in the vacuum
chamber on apropulsion measurement platform of high
amplitude—frequency sensitivity, which wasfirst devel-
oped to determine the pulse and periodic actions (AT, ~
106107 s, f,, ~ 2 x 102 Hz) and to detect microdis-
placements [8] (quantitative characteristics of thrust J,

2Mass loss my, is approximately egual to mass my effectively par-
ticipating in the accel eration process, and flow monochromaticity

m

forv, <vyise~ and has the physical meaning of the
ml + m2

utilization factor of the working medium in the laser space

thruster.

Yu. S. PROTASOV, Yu. Yu. PROTASOV

propulsion F,,, and specific mechanical recoil momen-
tum C ~ m@v [N s/J) and involved atorsion balance

Y

suspended in vacuum, pendulum trap—calorimeter of
gasflows, ballistic pendulum, and piezoel ectric sensors
of pressure. The module of laser sources of the bench
makesit possibleto carry radiation (A, = 10.6, 1.06, and
0.693 pm) pulses (1, ~ 10-10- s) to the active cham-
ber of the laser thruster with power density |, = 10*—

E
10° W/cm? and energy density §‘)’ ~ 10'-10% Jcm?.

The module of optical diagnosticsis designed to deter-
mine the space-time fields of densities, temperatures,
and velocities of charged and neutral particles in the
chamber and outside the laser space thruster. This mod-
uleinvolves the complex of pulse holographic interfer-
ometry with field visualization, schlieren photodetec-
tion of the macrostructure of gas—plasma flows in the
laser space thruster chamber prototypes with quartz
walls, spectral chronography, and emission and absorp-
tion spectroscopy with photoelectric detection of high
space-time resolution [9].

A (CH,0), target of various shapes (plane, conic,
hemispherical) with a developed surface (S, ~ 0.17—
3.1 cm?) was situated at the end of acylindrical molyb-
denum target chamber connected to the profiled accel-
eration chamber and two optical entrance unitsfor laser
radiation. The characteristic parameters of laser radia
tion in the tandem are A, ~ 1.06 um, |, ~ 10°-

108 W/em?, and 1, ~ 4 x 10°-3 x 107 s for the first
laser pulse introduced into the target chamber and A, ~
1.06 pum, 1y, ~ 10™-10° W/cn?, and 1, ~ 0.7-1.2 X

107¢ sfor the second laser pul se generated with the con-
trolled timedelay At, ~ 10-5-5 x 10~ sin the detonation
(acceleration) chamber.

Anayzing experimental data obtained for the
dynamics of radiative-gas dynamic and thermal pro-
cesses, stages of solid—gas—plasma phase transitions,
heating and shock-wave acceleration of the working
medium at optical breakdown of the medium, and the
formation of a laser detonation wave in the two-stage
laser space thruster, we arrive at the following conclu-
sions.

(i) The optimal mode of the generation of the work-
ing medium in the gaseous phase with controlled mass
expense [M(t) ~ 1010 g/s] and high efficiency of

Amv

laser ablation n,, ~ = 0.8n,, (without condensed

p

phase) is the mode of the maintenance of the laser-
induced wave of developed evaporation in the target
chamber of the laser space thruster. Since the thermal-
ionization wave (i.e., plasma shielding of laser radia-
tion on the radiated target with low thermal conductiv-
ity) is absent at this stage (At,), it is possible to deter-
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mine the optical-thermal and criterion parameters of
the action, which are related to controlling parameters

O Ep1 O L. .
DIOI, Ty, g yene Dfor realizing time-controlled | aser-
light erosion and the controlled expense of the working
medium of ablated targets, whose chemical composi-
tion is complex and whose initial gas density distribu-
tionisisotropic until the onset of the optical breakdown
(generation of a laser detonation wave). Direct calori-
metric measurements of the power and energy of laser
radiation absorbed by a (CH,0),, target with the devel-
oped surface were carried out with a metallic bolome-
ter, which had bismuth thermal resistance and was
located in the target. The mechanical recoil momentum
HC ~ mEAVEwas measured by a ballistic pendulumin
P1
vacuum. These measurements make it possible to deter-
minethe effective heat-transfer coefficient K, ~ 0.8 and
to achieve, by multiparametric optimization of the con-
ditions of irradiation of targets, the laser-ablation effi-
ciency n,, ~ 0.75-0.9 (Fig. 2) intherange 10° < 1, <7 x
107 W/cm? of the power density of thefirst laser pulse.

(ii) The dynamics of the shock-wave acceleration
stage for the gas—plasmaflow in the laser space thruster

are determined by the velocity characteristics (V ~ 5 x

10* m/s), shape, and macrostructure of the laser detona-
tion wave generated in low-threshold optical break-
down (I3, ~ 108 W/cm?, t,, ~ 3 x 107 s) at the leading
edge of the second laser pulse (t, ~ 3 x 10° s). The
acceleration efficiency, which is determined by the con-
dition of optimal space-time matching of the waves of
developed evaporation and laser detonation, depends
substantially on the dimension relations and profiles of
the target and |aser-space-thruster chambers and the
spectral energy and dynamic parameters of the laser

pulses in tandem. By varying the duration T, and

shape (slopes of the leading and trailing edges) of the
first laser pulse and time delay (At,) of the initiation of
the optical breakdown and spatial localization of the
generation area of the laser detonation wave in the
ranges limited by the conditions for achieving the max-
imum expense m(At,), more than 90% of al the gas-
eous medium falling into the target chamber can be
involved into the accel eration cycle. Even under nonop-
timal space-time conditions of the development of the
laser detonation wave and size ratios of the active
chambers of the laser space thruster (dynamics and
macrostructure of the interaction area), the measured
values of the mass-averaged flow velocities at the sec-
tion of the laser space thruster and monochromaticity €
(Fig. 2) exceed the respective values achieved at laser
space thrusters based on single-stage schemes with
evaporation or detonation mechanisms of creating
thrust by ~25 and ~30%, respectively.
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Fig. 2. Experimental datafor specific mechanical impulse C
inthe (1) single-stage (evaporation) laser space thruster and
(2) two-stage laser space thruster (parameters of the second,
detonation, laser pulse were |op ~ 2 x 10" W/em? and T, ~
1.2x 1078 s), flow monochromaticity ¢ in the section for
(3) single-stage and (4) two-stage laser space thrusters, and
(5) mass-averaged velocity v of the flow in the section of
the two-stage laser space thruster. All the quantities are
given as functions of the power density of laser radiation
with A gg = 1.06 um.

(iif) The comparative analysis of the monochroma
ticity of the flow and specific impulse, propulsion effi-
ciency, and minimum thrust in single-stage and two-
stage schemes of erosion laser space thrusters, which

have close values of the action parameters (I, ~ IO)\;JZ),

E
energy contour, and energy of laser pulses =, indi-

S

cates that, in contrast to laser space thrusters based on
the evaporati on accel eration mechanism, fine control of
the dynamic parameters of thrust is possible within the
range of four to five orders of magnitude with minimum
(J,<0.05J) tail thrust in two-stage laser spacethrusters.

(iv) Intherange of the controlling parameters of the
laboratory laser-space-thruster models under investiga-
tion, the values experimentally determined for the spe-
cific mechanical impulse and mass-averaged velocities
are highest for microthrusters of thisclass of laser space
thrusters based on erosion and gas working media.
These experimental results are not extreme and can be
improved with multiparametric optimization of the
dynamics and macrostructure of the laser detonation
wave and the geometry of the laser space thruster
chambers.

Thus, successive stages of generation (laser abla-
tion), radiative gas dynamic heating, and shock-wave
acceleration of the working medium were realized by
two matched (in spectral, energy, and dynamic charac-
teristics) laser pulses. This makesit possible to achieve
both high thrust efficiency of the transformation of
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laser-radiation energy into the kinetic energy of the
accelerated gas—plasma flow with minimum thrust and
high monochromaticity of the flow and to overcomethe
fundamental limits of laser space thrusters based on the
evaporation mechanism of acceleration in the undevel-
oped micronewton thrust range of microsatellites.

REFERENCES

1. F S Gulczinxki 11l and M. J. Dulligan, in Proceedings of
the XXXVIII Joint Propulsion Conference on Micropro-
pulsion Research at AFRI, AIAA Pap. No. 2000-3255.

2. C. R. Phipps, Jr., T. P. Turner, R. F. Harrison, et al.,
J. Appl. Phys. 64 (3), 1083 (1988).

3. C. R. Phipps and R. F. Harrison, Laser and Particle
Beams 8 (2), 281 (1990).

4. C.Rossel, Design, Fabrication, and Thrust Prediction of
Solid Propellant Microthrusters for Space Application:
Design, Test, and Microfabrication of MEMS and
MOEMS (IAF, Paris, 1999).

5.

10.

11

R. Lang, S. O. Brien, and S. Demars, High Power, High
Brightness Diode Laser Technology Review (Albuguer-
gue, N. M., 1998).

Yu. S. Protasov and Yu. Yu. Protasov, in Proceedings of
the LIl International Astronautic Congress, Toulouse,
2001, Pap. No. IAF-01.5.6.08.

Yu. Yu. Protasov, Vestn. Mosk. Gos. Tekh. Univ., Ser.
Mashinostroenie, No. 4, 58 (1997).

Yu. S. Protasov and Yu. Yu. Protasov, lzv. Vyssh.
Uchebn. Zaved., Mashinostroenie, No. 2, 98 (2002).
Yu. S. Protasov, Yu. Yu. Protasov, and V. D. Telekh, Laser
Propulsion: Radiative Gasdynamic and Thermophysical
Interchamber Processes of Two-stage Laser Rocket
Thruster, AIAA Pap. No. 2000-3485.

Yu. Yu. Protasov, The Physics of Heat Transfer in Boil-
ing and Condensation (Nauka, Moscow, 1997),
pp. 504-511.

Optical Properties of lonized Gases at Temperature Up
to 100 eV, Ed. by Yu. S. Protasov (Hemisphere, New
York, 1997).

Trandlated by R. Tyapaev

DOKLADY PHYSICS Vol. 47 No. 12 2002



Doklady Physics, \ol. 47, No. 12, 2002, pp. 863-866. Translated from Doklady Akademii Nauk, Vol. 387, No. 4, 2002, pp. 478-481.

Original Russian Text Copyright © 2002 by Belousov, Sazonov, Chebukov.

MECHANICS

Gripping a Mobile Object with a Manipulating Robot
Controlled via the Inter net

. R. Belousov, V. V. Sazonov, and S. Yu. Chebukov
Presented by Academician D.E. Okhotsimskii June 27, 2002

Received June 28, 2002

Remote control of robots over theInternet isaprom-
ising new direction of scientific research. Among its
possible applications are remote training, remote con-
trol of automated production, control of robots residing
in extreme conditions (e.g., the Internet was used for
controlling the Sojourner mobile robot for navigation
on the Martian surface [1]).

In the Keldysh Institute of Applied Mathematics,
Russian Academy of Sciences, methods for controlling
robots via the Internet network are being developed.
These methods employ mathematical models of arobot
and of its working space in the online regime [2-5].
Such an approach made it possible to use a convenient
control medium and, to a certain extent, to overcome
the existence of indeterminate time delays in acommu-
nication channel. Thetime delays are especially crucial
in the case of interaction of a robot with a mobile
object. Based on a dynamic model of an abject, which
is capable of predicting its motion, and on atechnical-
vision system that supplies the robot with data required
for predicting measurements and gives an operator a
view of the robot’'s workspace, we have managed to
realize the control of such an interaction.

In the experiments being described, a rod vibrating
on ahifilar suspension (similar to a gymnastic trapeze)
having three degree of freedom was used as a mobile
object. Vibrations of the rod were recorded by two TV
cameras. One of them was attached to an immobile
beam to which the upper ends of the suspension threads
were fixed, while the other was situated to the side of
the rod. Previously, an algorithm of rapid automatic
gripping of arod by a manipulating robot supplied with
only one TV camera was developed and successfully
tested in the experiments described in [6, 7]. Below, we
deal with an analogous experiment not automated but
being controlled by a remote operator via the Internet.
In this new experiment, the quantities to be measured,

Keldysh Institute of Applied Mathematics,

Russian Academy of Sciences,

Miusskaya pl. 4, Moscow, 125047 Russia

e-mail: belousov@keldysh.ru; sazonov@keldysh.ru;
chebukov@gh60kel dysh.ru

mathematical models, and agorithms are strongly
redundant and universal. This makes the system stable
with respect to time delays and reduces requirements
for its preliminary adjustment.

1. The following scenario of the experiment is pro-
posed. At the moment of initiation of the control code,
the rod isimmovably suspended, and the manipulating
robot is in the initial position outside the region in
which the rod must move. A remote operator choosing
a point on the image of the rod, which is generated by
the computer model, sets the initial maotion of the rod.
Then, the robot excites vibrations of the rod by grab-
bing the chosen point with arandom velocity. The con-
trol code (at the server side) determinates the motion of
the rod, calculates the moment of time for gripping and
the rod position at this moment, controls the robot, and
identifieswhether the grip does occur or the attempt for
gripping should be repeated.

The listed problems are solved in the same manner
asin[6, 7]. The only difference consists in employing
more perfect cameras, algorithmsfor the primary treat-
ment of visual information, and algorithms for the
determination and prediction of the movement.

The cameras are digital, and they are connected to a
computer by an |EEE 1394 bus (Fire Wire). Each cam-
era yields an RGB24 color picture at a resolution of
640 x 480 pixels and at a frequency of 15 frames per
second. The rod ends are supplied with red markers,
whose images in the camerd's pictures can be recog-
nized with minimal cal culation expenditures. The coor-
dinates of theseimages are transmitted to the client side
in real-time mode with the help of software packages,
yielding network traffic of 0.1 kb s. Results illustrat-
ing the potentialities of the code that determines the
marker positions in the camera's picture planes are
shownin Fig. 1 (for the cameralocated on aside of the
workspace).

The cameras were calibrated such that the coordi-
nates (measured in the robot’s reference system and
expressed in millimeters) of a point (e.g., of the rod
end) in the robot’s workspace could be calculated
according to the coordinate (expressed in a number of
pixels) of the image in simultaneous frames of both
cameras. Unfortunately, the coordinates of the ends of

1028-3358/02/4712-0863%22.00 © 2002 MAIK “Nauka/Interperiodica’
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Fig. 1. Rod imagein the lateral TV camera.

therod imagein the frames of two camerasrelateto dif-
ferent moments of time. In order to find these coordi-
nates at the same moments, interpolation must be
applied. It is constructed by the |least-square technique
according to data segments covering atime interval of

5sorlonger. Thefunctions1, tandsinn?kt (k=1,2,...)

were used as basis functions. Here, t is time reckoned
from the onset of the interpolation segment and T isthe
length of this segment [8]. Using the interpolation con-
structed on the uniform mesh with a step of 0.1, the
coordinates of the rod endsin the robot’sreference sys-
tem are calculated. These coordinate sequences are
used for estimating parameters of the rod as a linear
vibration system and serve for predicting its motion.

2. Estimation of the parametersis performed under
the assumption that the z axis in the manipulating
robot’s reference system is directed vertically, the rod
in its equilibrium position is horizontal and, together
with its suspension threads, forms an equilateral trape-
zoid. The normal coordinates in such a coordinate sys-
tem arerelated to the coordinates of the rod end (x,, y;,
z)) and (x,, ¥, 2,) by the relationships

0 = arctanxl—xz,
Yi—Y2

_ (X + %p) oSt —(y; +y,)sina
2 1
_ (X +x;)sina + (y, +y,)cosa
= 5 _

Here, a isthe angle between they axisand therod inits
guiescent position. The counting-off direction for this
angle is adjusted to the z-axis direction. Prior to the
experiment, the value of the angle a is unknown. The
normal coordinates introduced above have the follow-
ing sense. The 8 coordinate describes torsional vibra-

g ey
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tions of the rod, in which its middle point belongs to an
invariant vertical straight line. The & coordinate
describesrod vibrations as a swing. Finally, then coor-
dinate describesthe rod vibrationsin which the rod and
the threads are situated in an invariant vertical plane. It
is assumed that in the case of small rod vibrations, the
time dependence of the normal coordinatesis given by
the formulas

iyt .

B8 = a+e "(c,cosv,t+c,sinvgt),
Lt .

& = &,+e " (C3cosV,t +c,sinv,t), (2)
gt .

N =nNo+e  (CsCosVst+ CeSiNV,t).

Here, a, &, N, G, 1, and v; are constant parameters, a
being the same angle as in formulas (1). The values of
the parameters are found step by step using the least-
square technique. Initially, the values of the function 6
are calculated on the basis of thefirst expression of for-
mula (1) and of the coordinates of the rod ends on the
uniform mesh with the step of 0.1 (see above). Then,
constants a, v,, |,, ¢;, and ¢, are determined from the
condition of the best approximation of these values by
the first expression of formula (2) (cf. [6, 7]). The
knowledge of the angle a allows the values of the func-
tions & and n to be calculated. Further, in accordance
with these values, the other parameters entering into
formula (2) are found. In particular, for the rod being
used, v, =3.28s,v,=v;=207s%, 0<y <0.1s™

The knowledge of the parameters in formulas (2)
makeit possible to usethem for predicting the val ues of
the normal coordinates at t > T. Since the normal coor-
dinates are Lagrangian coordinates for the rod, the
problem of predicting its movement is solved. Thisis
an approach that was accepted in [6, 7], although it
requires knowledge of a number of geometric charac-
teristics of the suspension. In order to avoid the neces-
sity of this knowledge, we used another approach. The
representation of normal coordinates by formulas (2)
implies that the time variation of the rod end coordi-
nates may be approximately described by relationships
of the form (only the relationship for the x, coordinate
is presented)

7
X; = @+ ze“’t(ajcosijbjsinvjt), 3)
j=1

Ha = 2H3, V4 = 2V5, Hs = HptHg,
Mo+ |

Vs =V, Vg, H6:H7:U1+‘3"§”‘31
V,+V V,+V

Here, the parameters | and v; are considered to be
unknown. The coefficients a,, a, and b; are found by the
DOKLADY PHYSICS Vol. 47
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Fig. 2. Determination and prediction of the motion for one
of therod ends.

least-sguare technique under the condition of the best
approximation of the rod end coordinates in the seg-
ment 0 <t < T by expressions of type (3). When deriv-
ing expressions (3), in the expansions of these coordi-
nates in a series over normal coordinates, only terms
with a degree not higher than two are preserved. In
addition, we allowed for the relationship v, = v,. If the
amplitude of torsional vibrations of the rod does not
exceed 20°, then the above method makesit possible to
predict the rod-end coordinates in the segment T< t <
2T with an error smaller than 5 mm. This error is quite
acceptable for performing the successful gripping.

Examples of the operation of the block determining
the motion are presented in Figs. 2 and 3. Figure 2 dem-
onstrates plots for six functions that are virtually pair-
wise coincident. The plots for differences of the func-
tions forming pairs are shown in Fig. 3. One of the
functions of each pair describes the virtual time varia-
tion for the corresponding coordinate of one of the rod
ends. Thisfunction is constructed by the above method
in accordance with the measurement data obtained by
the TV cameras. The other function of the pair corre-
sponds to expression (3) that approximates the first
function. The approximation is carried out according to
the data contained in the segment 0 <t < 10 s. For t >
10 s, the second function should be considered asapre-
diction for the variation of the corresponding coordi-
nate with time. Within the scope of this interpretation,
Fig. 3illustrates the accuracy of the prediction.

3. The operator interface is shown in Fig. 4. The
graphic window presented on the right-hand side of the
figure demonstrates the three-dimensional position of
the robot and the rod. In order to map all objects of the
work scene at the server side, it is necessary to transmit
only several numbers (angles in rabot hinges and rod-
end coordinates). Therefore, the scene is drawn in real
time even for slow communication channels. Elements
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Fig. 3. Errors in the determination and prediction of the
motion for one of the rod ends.

of the control interface are situated on the left-hand side
of the figure. On pushing the “Start” key (on the left,
below), the server control code is initiated, and the
robot strikes the rod in order to excite its vibrations.
After the observation of the rod’'s motion by an opera-
tor, he chooses a desired grip point. To do this, he
pushes the keys “+" and “~" displacing the goal point
on the rod image. The command for performing the
gripping is given by pushing the “ Grasp” key. The grip
signal istransmitted to the server, after which the server
control code grips in the automated mode. The ago-
rithms of the robot control for the case of gripping are
described in [6, 7]. The operator observes the gripping
process in the graphic window. He is able to stop the
process and to vary its scenario.

The agorithms described were verified at a test
table including the PM-01 manipulating robot with a
Sfera-36 control stand. The server control code was
operated with a computer equipped with the Windows
2000 operating system. The robot received commands
viaan RS 232 interface. The dataexchange with thecli-
ent side (i.e., the operator interface) was realized with
TCP/1P sockets. When developing the client side, Java
and Java3D open technologies were employed, which
provided operations via standard Web browsers for an
arbitrary computer base. During the experiments, an
operator residing at along distance from the robot suc-
cessfully gripped avibrating rod.

4. The method described of remote control for the
case of gripping a mobile object makes it possible to
use the operator’s skill in planning at the upper level of
an operation with the possibility to automatically per-
formitsfinal stage. Thisapproach turns out to be rather
useful in solving other problems of the control of robots
interacting with mobile objects. The methods devel-
oped can turn out to be especidly efficient for the
remote control of robots in the case of delays in com-
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Fig. 4. Interface of aremote operator.

munication channels. In particular, such a situation
takes place in modeling, testing in laboratory condi-
tions, and directly gripping objects in extraterrestrial
space, which is realized with the help of remotely con-
trolled robotics systems.
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1. Trajectories of the motion of the instantaneous
position of Earth’s pole represent the complex evolution
of a dynamic system. Monitoring data of the Interna-
tional Earth-Rotation Service for the last 1520 years
indicates that the following components are separated
in the complex motion of the Earth’s pole: the principal
component (free nutation or Chandler wobble) with an
amplitude of 0.20"-0.25" and a period of (433 % 2)
Sidereal days[1]; theregular annual component with an
amplitude of about 0.07"-0.08"; and relatively slow
irregular drift (trend) of the axis of the Earth’s figure.
According to [2, 3], the annual wobbles of the Earth’'s
axis are induced by the solar gravitational moment, by
the orbital motion of the rotating Earth, and by the diur-
nal tides of the Earth’s mantle. The causes and mecha-
nism responsible for the excitation of annual waobbles
are usually attributed to seasonal geophysical phenom-
ena[4, 5].

There are alarge number of articles devoted to the
linear statistical anaysis of measurements of the
motion of the Earth’s pole (see, e.g., review [6]). An
analytical stochastic model of the motion of the Earth’'s
pole with allowance for tidal deformations in the form
of humps and protrusions was developed in [7] on the
basis of celestial mechanics. In this study, we further
develop this model and take into account the moments
of gravitational forces of the Moon, the moments of
dissipative forces, and fluctuation moments of forces
associated with the higher harmonics of the deform-
able-Earth figure.

2. The motion of the deformable-Earth pole can be
described by the following phenomenologica three-
dimensional nonlinear stochastic differential system of

* Moscow Sate I nstitute of Aviation,
\ol okolamskoe sh. 4, Moscow,
125080 Russia

** | nstitute of Informatics Problems,

Russian Academy of Sciences,
ul. Vavilova 30/6, Moscow, 117900 Russia

equations:
P+N«q
= 3V,bw: coswyt—V,r° +P(t, p,q,r,V,®), (1)
P(to) = Po;
d— N, p =—3V,bw? coswy t +Ver?

+Q(t, p.q,r,V, @),
q(ty) = dos

r = —3V3wf(b‘ +b"cos2w, t) + R(t, p,q,r,V,®),
3)

(@)

r(ty) = ro,
where
P = P(tpq,r,V,®)

= —3V2V6d1(bcof COSW, t + blcof* cosw, , t)
—3V,Ved, [wZ (b + b"coS20w, t)
+ cof* (b; + by cos2w,, )] — 3V1b1mf* cosw, , t
—Dip+ ®y(1),
Q=0Q(pq,rV,o)
= —3V1V6d2(boof COSW, t + bloof* cosw,, t)
—3V,V,d,[0 (b + b"cos2w, t) X
+ wf* (b; +b; cos2w,, t)] - 3V2blwf* cosw,, t
—D,q + @,(1),
R = R(t, p,q,r,V,®)
= —3V1V2d3(bwf COSW, t + bloof* cosw,, t)
+ 3V1V5d3(boof CoSWy t + blmf* cosw, , 1)

—3V3wf* (b; + by cos2w,, t) — Dar + ®y(t).
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Here, p=p;, g=q;, and r = r, are the projection of the
terrestrial angular velocity on the Earth’s axes [3, 5];
V,, V,, and V; are random parameters obtained by aver-
aging the axial moments of inertia of the deformable

Earth over the diurnal interval Tp= o,

t+T, ~ ~
Vv, = Ti* I WCOSF*TdT,
t
t+T, ~ ~
V, = 'I—'l; I -C—(-T—)—E;_;'—A—(-T—)sinr*rdr, 5)
t
t+
V,; = T—* J' Msmﬂ Tdr,

t

which characterize the effective diurnal tidal humps
from the Sun and the Moon; and V,, Vs, and V, are the
random parameters associated with the centrifugal
moments of inertia of the deformable Earth:

14T, ~
V4:JK%+T1 o
t
+T~
Ve = 22 T j U, (©)
t+T, ~
Vi * T J-Jpq(T)d

determining the effective tidal protrusions; A* + A(t),
B* + B(t), C*+ C(t) and J7, + Jpq(t), Jgr + Jar (1),
J, + Jip (1) arethe axia and centrifugal moments of
inertia of the Earth, respectively, where the constant
components of the inertia tensor are marked by the
asterisk, and the variable components induced by the
solar and lunar diurnal tides, by thetilde; D, , ; arethe
specific coefficients of the moments of dissipative
forces; and ®,(t) = @y, P,(t) = Py, and P5(t) = Py are
the specific fluctuation moments of forces and @, =
[P, D, D5 ]". The magnitude of the fluctuation-dissipa-
tion moments of forces is assumed to be much smaller
than that of the moments of forces from the tidal defor-
mations. We denote the random initial conditions as

Vg = T1,. (7

V7 = Po, Vg = Qo

MARKOV, SINITSYN

In addition, we introduce the notation

N, = (C*—B*)A*‘lw*, re = 3650,
20 = %I. Ho2b = b
3)
. B* C*
2b; = %L S0 2bi =bi, di= =
A* C* A* B*
d2 = B* ] d3 = C* ’

where wpjand w,7 are constants determined by the
gravitational and focal parameters of the Sun and Moon

andb, = where b isaknown parameter [3].

When setting up the system of Egs. (1)—(3), we took
into account that thetermsinvolvingr, r%, wn 0’ , W

and oof considerably exceed the corresponding terms

involving the squares and products of p, g, g* , %

J
Brf, etc.

3. Let us introduce the following notation for the
mathematical expectations, variances, covariance func-
tions, and covariances:

m’ = Mp, m=Mgq, m = Mr,
D’ = Mp”, D{ = Mg, D{=Mrp o
Kt?t' = Mptoptql KSt' = ngqg, Ktr,t' = Mrtorto',
KEE = Mplae,  Kie = Malre, Kb = Mrlp],

where M isthe symbol of the mathematical expectation
(statistical averaging) and the zero in the superscripts
denotes centered random components of the real ran-
dom functions p;, q;, and r,.

We will use Egs. (1)—(3) under the condition that
parameters V; are real Gaussian random variables with
mathematical expectations miV , variances DiV , and

covariances Ki\j/ (i, =1,2,...,9) and the fluctuation
moments of forces @, are rea Gauss-Markov pro-
cesses with known one-dimensional densities. As the

initial conditionsfor pto, qto, and rto,wetakethe math-

ematical expectations m{"®", variances D{"*", and

covariances K¢', K¢ , and K" .
Applying the theory of nonlinear stochastic differ-
ential systems|[8, 9] to Egs. (1)—(3), wearrive at thefol-
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lowing final expressionsfor mathematical expectations,
variances, covariances, and covariance functionsfor the
timestandt'>t:

9
par _ par vV P.ar
m; = zwi,t m; +Am: ",

i=1

o o (10)
DX =% S kM e K +AD
i=1j=1
9 9
K =3 S Wit et Ky +AKEH,
i=1j=1
9 9
\%
Kt?(tq' = Z Z quF,)th?,t'Kij +AKt,,J?'v
i=1j=1
9 9
\Y
Kle = 5 S Wil oKy +AK, (12)

i=1j=1
9 9

rp _ r p Vv rp

Kiv = Z ZUJi,tlle,t'Kij +AK -
i=1j=1

Here, the Green'sfunctions " of the parametersV
are obtained by solving Egs. (1)—<3) aaP=Q=R=0
and replacing p,, ¢, and r, with ¢”,*" and are equal to

Wy = -3, = bow, sinw,t,
Wy = W, = =N, bycosw,t,
W3 = —3b'w (t-to)

3

—Eb"oo* (SiN2w,t —sin2w, ty),

2,1

Wi, = Ws, = —roNy,

Wy = Py, =

Wg: = —SNN, (t—to) = U7, Wg, = 1,
Wel = Wy = Pg, = 0,

by = 3bw? (w2 —N2)™

(13)

cosN, (t —t;),

The AmP™®", AD{™", AKS*', AKPY, AK{ . and

AK?,. are the components of the mathematical expec-

tations, variances, and covariances that take into
account the nonlinear functions P, Q, and R.

Intheframework of the correlation theory of nonlin-
ear stochastic systems [8, 9], Egs. (1)—(4) are equiva-
lent to the Gaussian stochastic differential system of
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equations, where the nonlinear functions V, sr2, P, Q,
and R arereplaced by the linearly normalized oneswith

respect to ptO , qtO , and rt0 according to the formulas
ViV, =m'm’+ K+ mV]+mv,
i,j =1,23,4,5,
Vir'=m'(m)"+ m’'D{ + 2mKy/ (14)
+[(m)" + DIVE + 2(mm] + K,
i = 4,5.

As a result, we arrive at the equivalent Gaussian
system

. v v
M = —Nem{=Dym{ + myFy —m, Fyp + Fy,

md = m; = Mp,

m' = N, rntp_DZrntq_m;/Flt'i-mg/FZt'{' Fs, (15)
mg = mg = Md,

. r \% r r

My = —Dgm —my Fy + Fe, m, = my, = Mr,

which is nonlinear for the mathematical expectations

m™*" and linear for the centered components p;, o,

and r?,
. 0 0 0 0 0
B = —NeQ —Dip —Fpr + Fr Vi —FgV;
0 0 0 0
—FuVs—FgVy —F15 Vs —Fip Ve + ®yy,

0 _ 0

pto = Po,
. 0 0 0 0 0
Q? = Nupr = D0 + Fygily —FiaVi —FiVy

0 0 0 0
—Fi6Vs —F17(V4 + Fg Vs + Fi5 Vg + @y, (16)
0o _ 0
G, = Yo:
.0 0 0 0
re = =Dl —FgV1 —F1(V3

0 0
—F3V3 + Fp Vs + P,
0 _ .0
r, = To.
Here,

X1t = boof cosw, t + blmf* cosw,, t,
Xor = 02 (D' + b"COS20, t) + wf* (b; +b; cos2w,, 1),

2
Fit = 3w, Fa = o, Fat = 3Xan
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Far = —{my[(m)" =rg] +myD; + 2m{Kyy
+3(My Mg + Kge)diXy + 3(My Mg + Kgo)diXar}
Fo = my[(m)" = ro] +mgD; + 2m{Ky
=3(my Mg + Ki6)doXa = 3(Msmy + K3)doXan,
Fet = —3(m¥m¥+ K;./Z)d3X1t
+ 3(ml/mg + KYE)dBXH’

Fro = 2(mym; +Ky), Fg = (M) + D],
Fo = 3m(\5/d1X1t1 Fioe = 3m¥d1X1u
Fi = 3m;/d1x2t, Fi = 3m;’d1x2t,

Fiat = Z(m;/rntr-'-K;/tr)’ Fia = 3m23/d2X1t'
Fise = 3m}’d2x1t, Fiet = 3de2x2t,

Fin = 3m¥d2X2u Fig = 3(m¥_m;/)d3Xlt’

Fiot = 3m¥d3X1u Foot = 3mZ\L/d3X1t'

4. For the random fluctuation moments of forces @,
in the form of Gaussian white noise, applying the for-
mulas of the theory of linear stochastic differential sys-
tems[8, 9] to Egs. (16) and the equationsfor the param-

eters V = 0, we obtain the following system of ordinary
differential equations determining the fluctuation-dissi-
pation correlation model of motion

rTlt = C(m’ Rt)v mO = MQtO! (17)
Ki = a(m, K)K, + Ka] (M, Ky) + by,

Ko = Rto;

(18)

aKty t'

FIT = Rt,t'atT-(m[-, Ke), Kit = K.

(19)
Here, m = MQ,, where Q, = [ VT]Tisthejoint vector;
T isthetransposition symbol; o, = [ p,g;]" isthe math-
ematical expectation of the angular velocity wy; K; =
MQtoQtOT (Qt0 = Q;—m) is the covariance matrix Q,,
Vi =[V;;.] isthe matrix of the white-noise intensities @;;
c(m, K;) is the vector consisting of the right-hand
sides of Egs. (15) and equations for the parameters V:
V =0; and a and b, are the matrices of the coefficients
of Q. and ®,in Egs. (16) and V = 0.

Hence, weimmediately obtain the formulas (averaged
over 21tog ) for the mathematical expectations [ *'T]

MARKOV, SINITSYN

variances [D,” *'] and covariances (K" " "] as well
as, in the case of stationary white noise, the formulas for
the covariance functions k" *" = K %1 and the spec-
tral densities [3”%"(\)Oas the corresponding Fourier
transforms.

In the case of hon-Gaussian parameters V and fluc-
tuations @ [10], the model given by Egs. (17)—«19) can
be used as an approximation.

5. The analysis of Egs. (17)—19) provides the fol-
lowing qualitative conclusions.

(i) In the absence of fluctuation-dissipation
moments(D; =0, and ®;=0,i =1, 2, 3) andtheMoon’s
attraction (b, = b; = by =0), the nonlinear differential
correlation model given by Egs. (15) and (16) coincides
with the model proposed in[7].

(if) In the linear approximation (in the absence of
protrusions and humps of V,, V;, V,, and V;), the fluc-
tuation-dissipation momentsin the presence of station-
ary white noise ®, lead to random forced fluctuations
with finite constant variances and covariances deter-

mined from Egs. (18) and (19) for spectral-correlation
characterigtics:

a,K+Ka; +v = 0, (20)

K = ak, s(\) = WEAVW(IA)*, Q1)

whereK=K;=M ooto (JotOT isthe matrix of variances and

covariances of the angular velocity; k, = thowtof TS
the covariance matrix; a, is the matrix of the coeffi-

cientsof pto, qto,and r? inEgs. (16); W(iA) isthetrans-

fer function over the variables ptO , qtO ,and rt0 that cor-
responds to the matrix a,; and the asterisk denotes com-
plex conjugation. A particular case wherer =r,, D, =
D,, and @, = @, and the case of stationary white noise
were considered in [6].

(i) The presence of humps and protrusions 'V = 1,
2, ..., 6 reaultsin, first, additional stochastic fluctua-
tions at higher frequencies ncwand nyw, (N = 2); sec-
ond, time-dependent trendst" (h > 2); and third, cross-
correlation constraint in variables p;, g;, and r, due to
the nonlinearity of Egs. (1) and (2) with respecttor2. In
particular, the average statistical trend in the variables
p; and g, is determined by Egs. (15) and (16) available
in [7] with the additional terms

am> 0
Vv 2 2 \% Vi -1
= {mg o[ (my)"—rg] +mg Dy +2mKg 3 N, (22)
where m{ = Mr,, D, isthevarianceof r, and Kg 4, is

. 0
the covariancesof V, sand r, .

DOKLADY PHYSICS Vol. 47 No. 12 2002
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Nonequilibrium processes in a gas with interna
degrees of freedom of molecules can be studied by
using the generalized Boltzmann equation, the Wang-
Chang—Uhlenbeck equation, where the internal and
tranglational degrees of freedom are considered in the
framework of quantum and classicd mechanics,
respectively. For small deviationsfrom local thermody-
namic equilibrium, an asymptotic method developed
for this equation yields hydrodynamic equations
including the effect of the internal degrees of freedom
on the viscosity and thermal conduction of the gas[1].

The aim of this study is to develop a numerical
method of solving the Wang-Chang—Uhlenbeck equa
tion for an arbitrary degree of gas nonequilibrium.

The Wang-Chang—Uhlenbeck equation can be writ-
tenintheform

Gfi afl —_ . W
E"'gi& = _;,””kf'_f‘f")gG”deF’j' M
1K1l Q

Here, dQ =sinB6d6do, f; =f(i, &, x, t) isthe distribution
function, wherei is the set of quantum numbers deter-
mining theinternal state of the molecule; &; istheveloc-
ity of the molecule in the ith state; g = [§; — §;[; indices
i, j and k, | correspond to the molecular states before

and after the collision, respectively; and oi'}' isthecross

section for the collision responsible for this change of
theinternal states. There is no summation with respect
to the repeated index i.

The cross sections for direct and inverse collisions
arerelated as

goi (9, 0, )d&,d&; = g* oy (g*, 8, 9)dEdE,. (2)

Themagnitude g* = |§, — & | of the velocity after the col-
lision and velocities &, and &, are determined from the

Computer Center, Russian Academy of Sciences,
ul. Vavilova 40, GSP-1, Moscow, 117967 Russia

e-mail: tcherem@ccas.ru

laws of conservation

_4Ae

gt =9 [1-—, & = §-059*,

3)
& = & +0.5g*.

Here, mis the molecular mass, Ae =g + 6 — € — §,

where g is the energy of theith interna state; and &, =

0.5 + §j).

The condition mg? = 4Ae determines the admissibil-
ity of the transition (i, j) — (k. I). We set oj; =Ofor
forbidden transitions. The probability of the transition
(i,j) — (k1) isdefined as

ki
(0}

K _ Ojj _ Ki
Pij = o O = zoij

' k1

and satisfies the condition 0 < pif' < 1 and the normal-
ization condition

Spj =1 “)
k|

We assume that oj; isindependent of theinternal molec-
ular state and is equal to the elastic scattering cross sec-
tion g;; = 0,(g, 6). Theintroduction of quantities g, and

pi'}' obviously transforms Eq. (1).

The problem of numerically solving the Wang-
Chang—Uhlenbeck equation reduces to the construction
of amethod of calculating its right-hand side, the gen-
eralized collision operator, which can be represented as

|i=—Li+Gi,Whel’e
L = 00y [[fifip]gdQds,, 5)
iklva
G = GOZJ' ff,pi gdQdE;. (6)
iLklva

As in the case of the classical Boltzmann equation
[2, 3], an effective numerical method must ensure that

1028-3358/02/4712-0872%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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the collision operator be (i) conservative and (ii) equal
to zero on the equilibrium distribution function.

OperatorsL; and G, are calculated onthej,,, x § lat-
tice, where S, is the uniform lattice in volume V of
velocity space and j,,, is the number of quantum levels.
Similar to the case of a one-atom gas [2], we consider
the functional

00 00

AP ) =0,y “’Iqafifjpik,-'dgdgidgj. (7)

Lkl —w—0Q

Taking functions ®(§) in the form
@' = 05[5,8(8* —&) +0,0(8* -&)], (¥

© = 05[043(8* &) +0,8(8* -&)I, (V)

where &, is the Kronecker delta and 8(&* — &) is the
three-dimensional & function, we obtain

La(§%) = Q(@', 1)), (10)

Gh(§%) = Q(@*, f)). (11)
Functions (10) and (11) are calculated on the uniform
cubic lattice consisting of N, sites §, ={i, ], k I, &, §;, 6,
q) }v such that (&I )v, (gj )v U S) Let (gi)v = ga\, and (&J )v =
&g, - Values(§y), and (§)), for each site of thislatticeare
calculated by Eq. (3). Thearrangement of vectorsg;, §;,
&, and & for the vth site of cubic lattice S, is schemat-
ically shown in Fig. 1, where the three-dimensional
velocity lattice is given as a plane lattice and subscript
v is omitted. Value L,, = L, (&) calculated in site
&+ =§,0 8 by Eq. (10) isdetermined by the part of the
cubicsumfori,=n,a,=yandj,=n,B,=yas

Loy = B (80i,8ya, * 30,8y, (12)

210G, jﬁ,V )
N#V ’ AV = fiV’ a, f jvr Bv ( plljl )ng Sin ev’
and f, , =1(i, &, X, t). In what follows, the subscript v
will be omitted where possible. Since velocities &, and

€ are not in the sites of lattice S, G, is calculated
with the replacement of Eq. (9) by projector ®** into
pairsof sites§,, &, ,sand§,, §, s, which are nearest to

& and & and are shown in Fig. 1:
O** (gy) = (1 - r)[an)\a(gy_g)\) + 6nu6(§y _gu)]
+ r[6n,)\+56(§y_§)\+s) + 6n,u—56(§y_§u—s)] '

where s= (s, S,, S;) is the vector whose components
takevalues 0, -1, and 1 and that determinesthe site that

where B =
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873
T [ T
/ gl
Sus fe, | A N
d H
g~/ | 1\ \
/ = $ \
\ - )
\ CRPR
N IPANAE
N & |
~1_ | |
Fig. 1. Scheme of an inelastic collision.
is nearest to &, and shown in Fig. 1. As aresult,
Grl1,y = BZ{[(l_r)(ankéy)\+6nléyu)
+r(énk6y|)\+s+6nI6y,u—s)]A}v- (13)

Coefficient r,, is determined from the laws of conser-
vation for each site of the cubic formula, i.e., for each

contribution A, to operators L, , and G, , . The conser-
vation of mass follows from the form of ®**, and the
conservation of momentum follows from the symmet-
ric arrangement of lattice sites §,, §,,sand §, §, s
with respect to vectors &, and &,. In terms of the nota-
tion

2 2
e oo MEC, MET L mEY mE]
0 2 2 1 2 2
2 2
E m&)\+s+mgp—s
27 2 2

the law of energy conservation, when contribution 4, is
split, has the form E, = (1 — r)E, + rE,. Therefore, r =
E.—E
E,-E;
either E, < E,<E, or E, < E, < E,. It isimportant that
r, isindependent of A,. For this reason, additional |at-
ticesites§, , &, , &) +s,and §, _s and coefficientr,
can be preliminarily determined for each site of cubic
lattice S,, and then extended lattice S; can be used
repeatedly, e.g., in various sites of physical space.

, which satisfiesthe condition0 <r < 1, because
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Each contribution A, can be treated asthe result of a
“collision” transferring molecules from sites i, j to
sitesA, pand A + s, L —S. In order to ensure that con-
dition (ii) above is satisfied, we consider a pair of
inverse collisions to sitesi, j from sitesA, pand A + s,
M — s with weights (1 — r*) and r*, respectively. The
probability p, is determined from Eq. (2), and coeffi-
cient r*, from the condition

EAD(L %) + E, 0P = B[ AP —r%) + 4Pr],

where
AW = £, .pi gsin(e),
AP = £y, u_sPi gsin(e).
(1)
Asaresult, r* = AT

AYr AP (1-r)’

An anaysis similar to the above gives the contribu-
tion of inverse collisionsin the form

Liy = BS {(1=r*)(Budy + 818,,)A"

+ r(énkay,}\+s+ 6nI6y, p—s)A(Z)}va (14)

*
Gyy

= BY {(8udye + 3,8, (1) +r22®y
v (15)

Finally, the collision operators are determined as

1 1 1 1
Ln,y = E(Ln,y'l' I—:,y)a G = E(Gn,y-"G:,y)-

n,y

For any (arbitrarily rough) lattice of integration sites
S,, condition (ii) is satisfied to within an accuracy no
worse than O(h), where h is the step of lattice §,. For
degenerate levels of internal energy, Eq. (1) must be
modified so as to reduce the number of substantial
levels.

Letj,,levelsbe separated into J,, groups of degener-
atelevels, J=0, 1, ..., Jy, with degeneration degree q;.
We determinethedistribution function asF; = zq fq =
Q,fg, Whereq 0 J. Substituting 05' =g, pi'i' into Eq. (1),
summing this equation over the groups of levelsi, j, k,

CHEREMISIN

and | forming degenerate levels I, J, K, and L, and
returning to the old notation, we arrive at the equation

of, . of,
_+Ei_
ot ox

o (16)
ki
= Goz J-J-(qiqukfl —-qq fi f;)gp;; dQdE;,

iikl-wQ

for which Eqgs. (12)«(15) are valid with the change
A — g, AV — gAY, and AP —» ¢ g A

The method was tested by solving two spatially uni-
09 _
form Chx (H problems, where the model of constant

Cross section g, = const was accepted, and the number
of the spectral levelswastaken to bej,,= 21. The phys-
ical characteristics of the spectrawere taken for anitro-
gen molecule from [4]. The characteristic dimensional
parameters were the gas density n, the initial tranda
tiona temperature T,, and the mean-free-path time 1 at
this temperature. The Maxwellian initial distribution
function in tranglationa velocities was taken. Lattices
S and S, consisted of 3582 and about 0.5 x 10° sites,
respectively, and the time step was At = 0.0051. Time
integration was performed according to the scheme
in[2, 3].

In the first example, the relaxation of vibrational
levelsis calculated and Eq. (1) is solved. The jth level

has energy e/ :hw% + %,and the equilibrium distri-

bution for temperature T, is

(17)

o = nz;lexp[_m( j +1/2)}

T

where Z, isthe vibrational partition function. For nitro-
hw
k
Temperature T, istaken to be equal to 6680, and theini-
tial vibrational temperatureis T\(,O) =2T,. Probabilities

gen, = 3340 K, where k is Boltzmann’'s constant.

pi'}' are arbitrarily taken to be equal to 1 and 0.2 for

elastic and inélastic collisions and are then normalized
according to (4).

Figure 2 shows the vibrational spectrum for t =
(solid line) 0, (diamonds) 1, and (crosses) 6. The latter
spectrum coincides with (dashed line) distribution (17)
for equilibrium temperature T, = 1.4T,,.

The second example concernsthe relaxation of rota-
tional levels. The level with the rotational quantum
number j has the degeneracy degree g, = 2j + 1 and

DOKLADY PHYSICS  Vol. 47
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Fig. 2. Evolution of the vibrational spectrum.
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Fig. 3. Evolution of the rotational spectrum.

Fig. 4. Variation in the level energies.

ﬁz. i+ 1

energy e = RITD) (ZJI )
r

tia of the molecule. The equilibrium distribution of the

gas density n over levels for temperature T, is given by

the expression

, Where |, isthe moment of iner-
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2.,
N = nZ (2] +1)exp[—@—1il-i-1-)] (18)

! 21T,

Transition probabilities pi'}' are taken from [5, 6],
where the molecul ar nitrogen was simulated. The prob-
lemis solved for T, = 100, initial rotation temperature
2
0 _ A
T, =2T,, and oIk 29K.

Figure 3 shows the rotational spectrum for t = (dia-
monds) O, (crosses) 3, and (squares) 10. Thelatter spec-
trum coincides with (dashed line) the equilibrium spec-
trum for T, = 1.4T,.

Figure 4 shows the time dependence of energy per
5E,
2(E”+E")
where E, = ', ejn; isthe rotational energy, E, is the
kinetic energy, and superscript (0) means valuesfor t =

. 5E
0; and (dashed line) E; = ﬁ.
3(Er + Ek )
Each variant was calculated on a Plll 800 MHz

computer for about one hour.

The above examples demonstrate that the Wang-
Chang—Uhlenbeck master equation for a gas with non-
degenerate and degenerate internal degrees of freedom
can be solved numerically by the method proposed
above.

degree of freedom: (solid line) Ef =
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When developing protective constructions for
underground structures, it is necessary to evaluate their
capability to withstand intense dynamic loads. One of
the effective methods of solving this problem is mathe-
matical modeling of the deformation and failure of such
constructions under shock or blast.

The problem of impact interaction between cylindri-
cal strikes and concrete obstacles was solved in [1],
where the failure of concrete was calculated in a phe-
nomenological approach with the strength criteria
expressed in terms of invariant relations between the
critical macroscopic parameters, stresses and strains, of
the process. Comparison of mathematical modeling
with the results of an ad hoc developed experiment
indicated that this approach to the static failure problem
can aso be applied to calculate failures in concrete
under dynamic loading.

In this study, we propose a mathematical model
based on the mechanics of continuain order to calculate
the behavior of sandy ground under dynamic loading.

Soft sandy ground is considered as a three-compo-
nent medium characterized by the initial density p, =
ViPo1 + VaPoa + V3Py; and moisture content w, [2],
where p,; (i =1, 2, 3) are the initial densities of air,
water, and quartz, respectively; and

WoPq Po
(1+Wp)pos (1+Wp)pos

are the bulk concentrations of the respective compo-
nents. Since v,p,, is less than the initial density p, by
several orders of magnitude, the effect of air in pores
can be neglected, and the sandy ground can be consid-
ered as a porous material consisting of a matrix, which
is asimple water—quartz mixture, and voids (pores).
The specific volume of the porous medium v isrep-

resented as the sum of the specific volume of the matrix
Um and the specific volume of poresu,. The porosity of

Vi=1=V,—V;3, V,= ,and v,y =

Tomsk State Architecture and Building University,
Tomsk, Russia

e-mail: svetl@niipmm.tsu.ru

the material is characterized by the relative volume of

voids & = v, or by the parameter a = ui , which are

m

_ 1
relatedas a = it
The system of equations describing the motion of a
porous el astoplastic medium has the form

dgtfpdV:O, d%IpudeJ’n[de,
\Y \% S (1)
d
—[(pEdV = [n [o [LudS,
e

J
S 2 >
= — + = -
e 2n As, s.s 30T,

wheret isthetime; V isthe integration volume; Sisits
surface; n isthe unit outer-normal vector; p isthe den-
sity; 0 = —pg + sisthe stress tensor; sisits deviator; p
isthe pressure; g isthe metric tensor; u is the velocity;
ulu

E=¢c+ 5

isthe specific total energy; € isthe specific

internal energy; e = d _(_9_159)9 isthe deviator of the

strain rate tensor d = %(Du +0u"); s’ = § +sw—usis
the derivative of the stress-tensor deviator in the sense
of Jaumann-Noll; w = %(DUT—DU) is the tensor of

the vortex;

2
H o= umo(l _ E)|:1 _ (6pm0Cm0 + 12“m0)£i|

9pm002m0 + 8Umo

and o5 are the effective shear modulus and the yield
point, respectively; and p,,o, ¢no, aNd o are the initial
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values of the density, bulk velocity of sound, and shear
modulus of the matrix material, respectively. The
parameter A is eliminated by using the Mises plasticity
condition. Theyield point of sandy ground is defined as
in[3]:

ki p
K p
pa

or =Y+

where Y, isthe cohesion, k, istheinternal-friction coef-
ficient, and Y, isthelimiting value of the shear strength.

The system of equations (1) is closed by the equa-
tion of state and the relationships describing the kinet-
ics of the growth and coal escence of pores.

If the linear dependence of the shock-wave vel ocity
D on the mass velocity u for the matrix materia is
known, the equation of state for a porous material has
the form

p= p—m[vmoe " @)

cho(l —vmon/Z)H}
a H

(1-Smon)?

wheren:l—%

andy,,, isthe Gruneisen coefficient
of the matrix material. The coefficients ¢, and S, are
determined in terms of the shock adiabatic of the mix-
ture components D; = ¢y + S;u (i = 2, 3) by using the
following relationships on the shock wave:

_ Pa _ -
D = l-)mO VmO_Vm(pmy u /\/pm(UmO Um(pm))l
on(pn) = 3 b [ g |B }m
m\Mm/) — i OI__ o 2 )
= O Soi po|CO| 4
wherem, = Wo_ _ V2P i the water mass concen-
1+w, P

tration in the sandy ground (mass moisture) and m; =

L _ VP& isine quartz mass concentration in the
1+ Wo Po

ground (m, + m; = 1). The Gruneisen coefficient y,,, iS
expressed in terms of the coefficients of the mixture
components:

Umo
m m,
> M
Po2Yo2  PozYos

Ymo =

The equation that describes a change in porosity in
the process of deforming sandy ground is derived by
DOKLADY PHYSICS Vol. 47
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using model representations implying that the behavior
of amedium with the initial porosity o, under dynamic
loading is similar to the behavior of an individua
spherical porewith theradius «, that is surrounded by a
spherical shell of sandy ground, whose plastic proper-
ties satisfy the Mohr—Coulomb condition. The outer
radius of the hollow sphere is taken so that the ratio of
the entire volume of the sphere to the total volume of
the matrix materia is equal to the initial porosity a,.
Then, the solution to the problem of deforming asingle
pore under the action of isotropic stress provides the
kinetic equation for calculating ground compaction [1]:

2k

. Y 3-2k

where
2 _ poag
T 23
3(0(0—1) Yo
3+ 4k
_3-2ka |, o pFe-2
Q(a,a,6) = 3575 1/3[ b —10
2(6-K)
3-2k a° ] a Pe-2k |
S 3(6-K) g% -1 ’

and Y,, and k are the coefficients of the Mohr—Coulomb
condition.

In the case of tension, sandy ground is described as
a stress-free medium. Then, the relative content of
pores is obtained from the equation of state for the
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porous material with zero pressure between its par-
ticles.

Under the corresponding initial and boundary con-
ditions, Egs. (1)—«3) form a complete system of equa-
tions that describe the behavior of sandy ground under
shock-wave loading.

The numerical values of Y,, and k are determined by
comparing the experimental and cal culated shock adia-
batics for sandy ground. Figure 1 shows the calculated
shock adiabatic in variables (u, p) and (u, D) for
(curve I) dry and moist (curve 2) sand. The experimen-
tal data[4] are shown by circles.

The parameters of the model of sandy ground com-
posed of particles 0.07 mm in diameter are listed in the
table.

Let us consider a problem formulated as follows. A
cylindrical stedl striker (diameter d, = 7.6 mm and
length | = 4d,) penetratesinto a protective double-layer
construction consisting of the upper 5.26d,-thick layer
made of dry sandy ground and the lower concrete layer
with a thickness of 3.68d,. The impact velocity is

AFANAS’EVA et al.

v
RO
S &
%!
X

EEEEEELLE
DI DOGEDE

BOA

Fig. 3.

420 m/s and the incidence angle is 20°. This problem
was solved numerically by the modified finite-element
method [5].

Figures 2 and 3 show the isometric projections of
the striker and construction at 120 and 492 ps. When
the striker passes through the sandy-ground layer, an
inclined cylindrical cavity isformed in thislayer. When
the striker attains the sand—concrete interface (solid
straight line), the decrease in its velocity is 26%. Next,
the striker having a velocity of 310 m/s beginsto pene-
trate into the concrete layer. During first 221 s, the
striker decelerates sharply. At this time, the concrete
begins to fail. The crack reaches the rear side by the
time of 300 ps. Then, the fragmentation of concrete
occurs near the rear side, and pieces scatter and break
down. The motion of the striker through the failed con-
creteisaccompanied by asmaller decreasein itsveloc-
ity and by a decrease in its angle to the normal of the
obstacle. The total time of the penetration of the striker
through the obstacle is equal to 492 s, the residual
velocity isequal to 29 m/s, and the output angleisequal
to 12°. The head part of the striker isslightly deformed.

Table
P g/cmd | wy, % V, % | Pmo» g/em3 | G, CMVS|  Sip Viro Umo, GPa | Y, GPa K
1.29 0 515 1.95 0.368 212 1.0 0.073 0.1 0.75
18 28 7.75 1.95 0.245 1.86 1.28 0.073 0.025 0.5
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Flows around a cylinder in an unbounded fluid have
been analyzed in numerous scientific studies. In partic-
ular, the effect of rotational vibrations of a cylinder on
the hydrodynamic wake was experimentally investi-
gated in awind tunnel (see[1, 2]). Among severa tens
of papers devoted to the more complicated problem of
flows around a cylinder placed near a free surface, it is
worth noting the experimental studiesdescribedin[3-5],
in which flows around an immobile cylinder were con-
sidered. In the present paper, certain experimental data
related to the even more complicated problem on the
interrelated motion of a free surface and a cylinder are
given.

In an open channel of width B = 6 cm, a steady-state
subcritical flow with a depth #_ and discharge O was

q
h

formed. Below, we usethe quantity U = = asacharac-

Q

teristic velocity scale, where g = B is the specific dis-

charge. A horizonta circular cylinder made of organic
glass with the external radius R = 10 mm was placed
perpendicularly to the flow at a reasonably large dis-
tance from the channel entry, where the vel ocity profile
wastypical of the turbulent regime of motion. The cyl-
inder had aholewithradius R, = 2.5 mm at its symme-
try axis. This hole was penetrated by an immobile shaft
with radius r = 1.5 mm. The shaft axis was situated at
the height i above the channel bed. Owing to the differ-
ence between the radii of the hole and of the shaft, the
cylinder had three degrees of freedom bounded in
space. Experiments with an immobile cylinder were
also performed.

In the fixed rectilinear coordinate system (x, y)
whose origin is situated in the shaft center, the (x, y)
axes are directed downstream and vertically upward,
respectively, the shaft hole center having the coordi-
nates (., yx)-

Lavrent’ ev Institute of Hydrodynamics,
Shberian Division, Russian Academy of Sciences,
pr. Akademika Lavrent’ eva 15, Novosibirsk, 630090 Russia

e-mail: bukreev@hydro.nsk.ru

The character of the cylinder motion was recorded
by video filming. It was found that, under the action of
the flow, there was rolling motion of the surface of the
cylinder hole over the immobile shaft. In this case, var-
ious cylinder points performed angular, longitudinal,
and vertical vibrations. In particular, the point (x., y.)

vibrated along the segment of the trajectory whose
equation can be written in parametric form as
Y« = (Ry—r)sing,

where ¢ is the inclination angle to the x axis of the
radius passing to the common tangent point of the hole
surface and the shaft.

Below, we use independent dimensionless external

Xx = (Ry—r)cosd,

. U
parameters, namely, the quantities Fr = ——, Re =
~20R
2UR ., h o h o R _(Ri=1)
V’h_R, h__R,Rl_R,ands_ R (f]

andv arethe acceleration of gravity and viscosity of the
fluid, respectively). Below, the set of these parameters
is denoted asT1,. The basic desired function isthe free-
surface profile n°x°, M;). Here, n is the distance from
the channel bed to the free surface and the subscript
indicates the fact that the given quantity is normalized
to R. Small particles of aluminum powder with a char-
acteristic size of 10 um were introduced into the flow.
Trajectories of their motion yield information on the
flow’s internal structure. These trajectories were
obtained by photography in adark room with illumina-
tion by a narrow light knife of only the flow region of
interest.

In the experiments under discussion, the parameter
e wassmall, whiletheangle ¢ varied withtime follow-
ing the harmonic law ¢ = ¢,,sinwr, where ¢,,(1,) and
w(M;) are the amplitude and frequency of the vibra-
tions. The amplitude varied within thelimits0 < ¢,,< 1
radian. Computer calculations and experimental results
have shown that, for these values of ¢,, for x, and y.., it

is possible to accept
Xy = acos(2mwt) +b, ys =csinwt,

where a(,), b(M,), and ¢(M,) are oscillation parame-
ters. These formulas show that horizontal vibrations of
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0 | | | |
=20 0 20 40 60 80

50

Fig. 1. Profile of the free surface (1) in the absence of vibra-
tions and (2) in the presence of vibrations. R =1 cm; U =

453 cm st Fr = 1.022; Re = 9060; h° =8.3: h° = 4.2;
R) =0.25; £ = 0.1; St = 2.16; ¢ = 0.055.

the cylinder occur with doubled frequency and with a
constant frequency shift with respect to the vertica
vibrations. For ¢,, < 1, the vibration parameters are
related to each other by the relationships

2 C2
¢m_§! a—8—4"-'é, b—ZE
In our experiments, the inequality ¢ < € was valid,
therefore, the amplitude of vertical vibrations of the
cylinder considerably exceeded that of horizontal
vibrations.

The most interesting experimental result is that the
small vibrations of the cylinder, which were caused by
the fluid flow, are capable of strongly changing both the
wave pattern beyond the cylinder and the flow in the
hydrodynamic wake. Examples illustrating this effect
are presented in Figs. 1 and 2.

In Fig. 1, profiles of the free surface beyond the
immobile and vibrating cylinders are compared.
Beyond the immobile cylinder, the profile has the shape
of along and smooth wave. In this case, small vibra-
tions of the cylinder led to the production of an undular

Fig. 2. Pattern of aflow around the cylinder (&) in the absence of vibrationsand (b) in the presence of vibrations. Values of the param-
eters are the same asin Fig. 1. The distances between vertical white reference lines are 10 cm.

DOKLADY PHYSICS Vol. 47 No. 12 2002



882

hydraulic jump with a breaking leading part. In the
cross section x° = 23, the flow depth beyond the vibrat-
ing cylinder exceeded that beyond the immobile cylin-
der by a factor of 1.6. The vibrations of the cylinder
were accompanied by an increase in the energy loss of
the fluid.

Figure 2 illustrates an effect of vibrations of the cyl-
inder on the flow's interna structure. Beyond the
immobile cylinder (Fig. 2a), a separation region being
transformed into a narrow twisting hydrodynamic wake
appeared. This pattern is analogous to that observed in
an unbounded flow with the corresponding values of
the Reynolds number Re. When vibrations of the cylin-
der (Fig. 2b) did exist, the separation region beyond it
was considerably reduced, and the hydrodynamic wake
turned out to be strongly distorted by aconcentrated jet
that penetrated the wake from either above or below
synchronously with vertical vibrations of the cylinder.

The vibrations of the cylinder were accompanied in
its vicinity by oscillations of the free surface at the
same frequency w. The phase difference of these oscil-
lations depended on values of the parameters ;. In the
examples given in Figs. 1 and 2, the cylinder and the
free surface oscillated in antiphase. For larger values of
g, the oscillations occur with equal phase.

From the quantitative information obtained as a
result of the described experiments, it follows that there
exists asubregion of the phase space for the parameters

BUKREEV

IM; in which the dimensionless parameter St = w /%Q
has a constant value equal to 2.16.
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We consider the problem of the determination of
turbulence constants for a steady-state stabilized axi-
symmetric turbulent channel flow of incompressible
fluid in anisothermal regime. In order to allow for adif-
ference in the pulsation damping of the longitudinal
and transverse vel ocity components of such aflow near
the channel walls, we introduce two mixing lengths.
These lengths are approximated by power expansions
of the second and third orders in the radia coordinate.
On imposing boundary conditions, the number of
unknown coefficientsisreduced to only two, namely, to
the conventional Karmén constant and a certain new
constant. Therefore, with allowance for the integration
constant in the mean-velocity profile, there are three
independent turbulence constants. It is shown that in
the case of the given Karméan constant (its theoretical
estimations are well known), the remaining parameters
can also be calculated. The solution to the problem is
based on a power expansion (divergent almost every-
where) of the vel ocity, which is of the ninth order inthe
coordinate. The expansion is reduced to a convergent
form by alogarithmic transformation.

The semiempirical character of present-day theories
describing turbulent channel flowsis determined by the
use of experimental values of constants entering into
these theories. There exists a standpoint (seg, e.g., [1])
that these constants cannot be evaluated theoretically.
However, the appearance of papers devoted to the theo-
retical determination of one of these constants (the so-
called Karméan universal constant k = 0.4) casts doubt
on this opinion. We now mention seemingly the most
fundamental publication [2], in which the value K =
0.372 was found. This result was obtained within the
framework of the renormalization approach borrowed
from quantum field theory. In the present paper, using a
purely hydrodynamic approach, we evaluate the
remaining constants, in particular, a new constant
allowing for a difference in the pulsation damping of
the longitudinal and transverse velocity components.

Krzhizhanovskii Power Engineering Institute,
Leninskir pr. 19, Moscow, 117927 Russia

1. Steady-state stabilized axisymmetric flows of an
incompressible fluid in an isotherma regime are
described by the well-known set of averaged hydrody-
namical equations involving the continuity equation
and two equations of motion:

(r"o), = 0, (1)
rppz = (T + 1], @)
p, = 0. 3)

Here, T, = v0, <0and T, = —u'v' <0 arethelaminar
and turbulent shear stresses, respectively (their signs
correspond to the case of a centraly symmetric flow);
the subscripts z and r stand for the derivatives with
respect to the coordinates; the linear and cylindrical
cases correspond to n = 0 and 1, respectively; and the
remaining denotations are conventional. The stabiliza-
tion condition (with respect to z coordinates) implies

that the quantities U, T,, and T, depend only on r with
v = 0. With regard to Eq. (2), the condition p = p(2
issuing from (3) yields p, = const. Asaresult, wearrive

at one-dimensional equation (2) and the integral of
Eq. (1), which is the constant-flow-rate condition

a

G = Iur"dr = const, 4)
0

where a is the channd radius.

The boundary conditions are formed by the condi-
tions at the channel wall

a(a) = 0, &)
u@ =v'(a) =0 ©6)

and by the symmetry condition
0.(a) = 0. @

From the continuity equation

(r"u)z+ (r"v') = 0,
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it follows by virtue of (6) for pulsations at the wall (see,
e.g. [3]) that

vi(a) = 0. ®)
Hence, in addition to the equality
T(a) = (Tu.(a) = 0, €
we arrive at
(t),,(a) = 0. (10)

In the simplest case, the relation of T, to averaged

flow characteristics can be found on the basis of the
Prandtl kinetic analogy (see, e.g., [4]):

lu| OJv0 1]g). (11)

Here, |(y) isthe mixing path length (an analogue of the
mean free path). Hence,
T, = -uv' = I’lo)o, = sgnoy(lo,)®,  (12)

wherey=a-r isthedistanceto the channel wall. Infact,
in view of both Eq. (8) and the condition u, (a) # 0, the

mixing path lengths for u' and v' differ dlightly.
Namely,

| Olja), 1vi01,/a,), (13)

wherel, ~yand |, ~ y?, or, more exactly,
2
lh=yi(Q) and 1, = £1,(Q).

Here, ( = %/1 and the unknown functionsf, , are approx-

imated by the expansionsinto a power series

k k
f, = zaui', f, = ZaZjZJ-
i=0 i=o
Hence,

3
T, = sgnay%flfzuj (14)

The similar representation in the case of (11) takes the
form

T, = sona,(yf,0,)° (15)

With regard to (7), the integral in Eqg. (2) has the
form
- P
|l|2Ur2—VUr + Bzm =
Introducing the dynamic velocity
0.1 Pg”_gl Apay
Vi = D_n+1p% -

PLESHANOV

and the dimensionless quantities P = -VU— and¢ = g,we
*

arrive at the equation
AWz — DY & = 0, (16)

Vv
Via

I :
where A, = 2% A = = 1 Rdation (16)
’ a R
expressed in terms of the variable ¢ takes the form

RAAWZ + W, —R(1-7) = 0. (17)

Hence,
2
qJZ = _qJE = - E'
A+ JAT+ AN NE
= 2RE . (18)
1+ J1+4RPANE
In the case

[AR (AN <E <1,
we obtain from Eqg. (18) the Darcy integral [4]

_U-o_2 &*¥
PO)-(&) = — =3 TR
* INAGASTAVI )

In our further consideration, the quantities A\, , should
be defined more concretely.

Considering only the simplest case, we set

A = agC +611112 and N\, = azoZ2+321Z3-
Assuming that
/\u(l) = Azz(l) =0,

we have

1
A = alol%l—élg, N, =

aZOZZ% - :_23)%!

Nz = ap(1-0), Ny = 2a,((1-0);

7,1
A, = @il Bl - 50+ 3T

L oand A, = as well

A N

(1) No(1)’
astheir product, are shownin Fig. 1. It followsfrom the
equalities As(Q) = Ax(l — ) that Az — % is an odd

The quantities A; =

function of ¢ — % .

The constant a,, = K is the Karman constant men-
tioned above, while a,, isanew turbulence constant. In
this approximation, the product a,,a,, = d, is the only
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indefinite constant entering into Egs. (16) and (17).
Furthermore, we determine the constant a,, and the sec-
ond turbulence constant k,, entering into the expression

W) = Vi = KyIn(RY) + K, (19)

with only k given and Kk, = % [4].

2. Thetheory presented below isanalytical inthelit-
eral sense of this definition, because we seek solutions
to nonlinear equation (17) as power expansions. In this
case, the general solution can be found by a regular
method resulting in recurrence relations.

We assume that

M=y el A=Y ayl
i=0 i=0
Py = z
The problem is reduced to expressing the coefficients b,

that enter into Eq. (17) interms of a;; and ay;.
Itisevident that

NN, = Zazaliazjzlﬂ = Z ZGKZ
i

Wi =y bl = ZBHZ”.
I,m n=0

where

K
ay = zaliaz,k—i and B, =
i=0

n
Zblbn_,.
1=0

Then,

/\1/\qu§ = Z3Zakﬁnzk+n = ZSZ szp,
k,n =0

where

p = z ckap—k'
k=0

And lastly,
Yy = (bp+Dby() + bzzz + Zg z bp+3Zp'

p=0
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The substitution of these expansions into Eq. (17)
yields

b =R, b, =-R, b, =0,
b,.3 = —Rc,.

Theequality b, = 0ismentioned in [3]. Asaresult, sub-
stituting d, > O for by, we have

Wy = (do—dyZ +dy0%) + (=d30® + d,* — dsZ)
+(deZ® — 070" +dgl®) + ... = (gy— €, + &C°)R

+ (_e3Z3 + 6414 - eszs)aoR3

+ (e’ — e + el oR + .., (20)
where
&g =1 =1, e = 2,
e =1, e4=@, e7:3—2,
6 3 (21)
e, =0, e5:1—1, e8:4i3.
3 18
Finally, in view of condition (5) we obtain
E“ef 2ol if% @

Itisworth noting that, if we expand representation (18)
in powers of the parameter 4R2A, A€ (i.e., of aR?)
rather than initial equation (17) in powers of the argu-
ment ¢, the group of expansion terms in (20) with the
common factor a,R* will include additional terms e; {°

and e, 7. The expansion in C taken above yields these
terms in the group of terms with the common factor
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O(S R’>. Naturally, these terms can be omitted asthe low-
est in powers of R. A similar remark holds true for the

group of terms with the factor a;R’, etc.

In what follows, we consider an asymptotic regime,
i.e., the case of sufficiently large values of Reynolds
number

Re:_lj'_'l_[g: &Eg

Y Ved
Here, the parameter R is assumed to be sufficiently
large, WCandd = n4Ta1 being the mean vel ocity and the

hydraulic diameter, respectively.

We can reduce strongly divergent expansion (22) to
a convergent form in the following manner. According
to Eq. (18), the function Y, tends to a finite limit as
R — o inthe central region, whereasit turns out to be
aweak (logarithmic) function of R in the intermediate
domain between the central and near-wall regions. This
is seen, in particular, from expression (19). Because of
this, each term of expansion (22) can be approximately
considered as the first term of an expansion of the cor-
responding logarithmic function with a certain correc-
tion factor that disappearsin the expansion in thevicin-
ity of the viscous sublayer. Namely, we make the
replacements

2k+1 2k+1
2 €

0
oy ~ 192 '”%l |gzk| 2k + 17

2

In + —2k=1 2k 1Z
|92k 1| ETJ’L |g2k ll 2k|:|

Here, we introduce the moduli of the multipliers in
order to provide for the arguments of the logarithmic
functions to be positive. To diminish the number of the

d2k 12k

PLESHANOV

multipliers, it is natural to take them asidentica for al
terms of the same power in R, so that

P — = gl[ln%H ORZD In%H FeZ D+0}
|93|[ In%l —0( R3ZD In%[ 5%
In%1+—0(0 3Z D} |95|[In%1+ma R5Z7E

_ & 205, & 2501
In%l |95|O(R In%l |5|0(R } .,(23)

whereg, > 0. For sufficiently small ¢, representation (23)
tends to expansion (22) and is reduced to a convergent
expression outside the viscous sublayer when the unity
in the arguments of the logarithmic functions can be
omitted.

Comparing the factors standing at In{ and InR in
expressions (19) and (23) for sufficiently small g, when
0s. 5 > 0 (see below), we obtain the set of equations with

Ook—1
K1

I'eSpeCt tO y2k7 1 =

—5y;+8ys = 1+y,,
This set has the solution
ys = 3-5y;,

—3y3+5ys = 1.

Ys = 2-3Y;.

%, we have |y| =

Iys| = [2 — 3y;|, respectively. In addition, we obtain the
following dependence of K, ony,, with the parameters
K and a,, given:

For y, > g and y, > [3 - 5y,| and

InE?]D+O}

Ko = gl[lneo OO0

*+lgd| -Inf;

B0 B0, el
|g5|[lnD7D InsgH+ InEgT |D}

(B0, (PO [Fs%d]
In +InD5D InE6|g3|D}

(24)

For y, satisfying the condition
[vel = 21y,

i.e, fory, = 11 ory; = 1, the quantity K, isindependent

of 0. The dependence under consideration is shownin

Fig. 2 for six values of a,, with kK = 0.4. The disconti-
nuitiesat y, = g andy, = % (wheny; =0andy; =0) are

caused by the presence in the last expression of the
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moduli of y; and s, respectively. By virtue of physi-
cally evident condition K, > 0, theinterval of admissible
values of a, is bounded by the inequalities 2.534 x
103< a, < 1.382 x 10* asis seen from Fig. 2. Within
this interval of values of o, at y, = 0, the inequalities

dK,

Ko>0 and —
0 dy,
2 dKg
vi= 3" dy,
theinterva y, O (O, v, %) such that

< 0 take place. At the same time for

> 0. As aresult, for admissible a, within

Kox (Y1 = 05 0g) = Kox (Y1x: Qo) (25)
the value K, < Ky is realized doubly while for K, >
Ko+—only once. In other words, from the domains 1, 2,

and 3 in which, respectively, y; U B) % s %3 % , and

%, OGH, as follows from Eq. (25), only in the domain 3,

the dependence K, (Y;, 0, = const) for admissible a, is
monotonically increasing. For K, < Ky, this fact

ensures the uniqueness of K,,. In thisdomain, for admis-
sible a,, the minimum value of v, . isequal to 2/3, with

Oy =0.02178 and K4 = 5.377. The latter value differs

from the experimental result Kk, = 5.5 [4] only by about
2%, which is probably smaller than the experimental
error. In any case, the calculated and experimental [4]

reduced velocity profiles uly) inthe caseof Re=4.0 x

a(a)
103 1.1 x 10°, and 3.0 x 10° are visually indistingui-
shable.

The new turbulence constant is

Oy = KiOgx = 0.05445. (26)

The turbulence constant Ko, , which is similar to Ky
entering into the expression for the average velocity

0 — 0= v, =K INR+Ky ,  (27)

is given by the conventional formula
1

Kox = Kox +(N+ 1)K, [INZE"CE .
0
Hence, Kq, (N= 1) =1.627 (instead of the experimental
value Ky = 1.75) and Ko, (n=0) =2.877. Allowing for
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Fig. 3.

the channel-resistance coefficient A, we can easily pass
from Eq. (27) to the universal resistance law [4].

In view of acertain spread of values of the Karman
constant k, we present in Fig. 3 the dependences d4(K)
and K,4(K), which are described analytically by the

expressions

Inao*—%lnk = Ina20+%InK = —3.368,
28
1 (28)
KK os +§InK = 1.693.

Thus, any of the four quantities a,, = K, ay, Kys, and

Kox Can be determined provided that one of them is
given.
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Along with the equations of motion of multicompo-
nent stratified fluids [1], various model systems[2] are
extensively used to describe physical processes in the
environment. These models include derivative models
based on simplifications of the origina system [3] and
constitutive models, among which turbulence theories
are most extensively used [4, 5]. In order to construct
adequate and efficient models and to estimate the con-
sistency of various approaches, continuous group the-
ory is extensively used [6], and invariant properties of
compared sets of nonlinear equations are calculated
and compared. The development of the technique of
symbolic computer calculations makes it possible to
apply Lee-group-theory methods [ 7] to complex sets of
the general equations of motion [8, 9]. In this study, we
compare the invariant properties of the basic sets of
equations used to calculate flows of multicomponent
stratified media, which simulate processesin the atmo-
sphere and hydrosphere. Point-symmetry groups were
sought by the software package developed in the Maple
language [10].

The basic set of equations of motion of a multicom-
ponent stratified fluid hasthe form [1, 2]

p(SF + (uD)f = ~OP+ 0t (S)0u) +p(S),

1
Brwos = o6 908,

divu = 0.

Here, u = (u, v, w), P, and p are the velacity, pressure,
and density of the fluid, respectively; g isthe accelera-

tion of gravity; v = :—; is the kinematic viscosity, where

M is the dynamic viscosity; and k; are kinetic coeffi-

Ingtitute for Problemsin Mechanics,
Russian Academy of Sciences,
pr. Vernadskogo 101, Moscow, 117526 Russia

* e-mail: bayd@ipmnet.ru
** e-mail: chakin@ipmnet.ru

cients, which are the characteristics of the molecular
transport and depend on all the parameters determining
the density of the medium. The eguation of motion
relating the medium density p = p(S) to the temperature
and concentration of dissolved or suspended particles
and gases involves an additional set of parameters.
These parameters—the thermal expansion coefficient,
sat compressibility factor, etc.—which are generaly
nonlinear, are not presented in explicit form. Practical
problems are often solved in the Boussinesq approxi-
mation, where density variations are taken into account
only in the term that presents the buoyancy forces and
involves alarge factor g.

The generators of the basic infinite-dimensional
symmetry group of complete set (1) present the basic
properties of classical mechanics and can be repre-
sented in the form (physical interpretation of the corre-
sponding transformation group is given in parentheses)

X1 =0, Xp. 4= 0y
(spatial and time trandations);
Xs..7 = 10, +0,
(Galilean relativity);
Xg = y0,—X0d,+Vv0,—ud, 2)

(rotations in the horizontal plane);
t2
Xo,10 = Egz— + %axi —%0,+ (gt +w)d, —u;9,

(rotations in the vertical plane in anoninertial
reference frame moving with the acceleration
of gravity);

infinite-dimensional subalgebra
X, = T(t)0dp (pressuretrandations),

where 11(t) is an arbitrary function of time.

The Boussinesy approximation substantialy
changes the basic symmetry group, whose set of gener-
ators in this case involve both some operators common
with algebra (2) and three new operators:

1028-3358/02/4712-0888%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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X, = 0, (timetrandations);
X, = y0, — X0, +Vvad,—ud,
(rotations in the horizontal plane);
and the infinite-dimensional subalgebras

X = Ti(t)0p (pressure translations);

)
Xy, = Xi(D3, + Xi(1)d, ~ X7 ()%, i

=13
(transition to a reference frame moving with an arbi-
trary linear acceleration).

The extension of Galilean reativity without diver-
gence [generators X, in Egs. (3)] in the Boussi nesq

approximation is caused by the change of — ( S)

DDPD i.e., by giving the barotropy property to the

Chd”
fluid. This invariance was first found for the equations
of an ideal incompressible fluid (Euler equations [7]).
However, the physical interpretation of the cause of the
extension follows only from an analysis of amore com-
plete system. Moreover, in the Boussinesq approxima-
tion, the symmetries of rotation in the vertical plane
(X9, 1) disappear due to the arising difference between
the gravitational and inertial masses. The linearization
of the equation of state and assumption that the kinetic
coefficients are constant transform the set of genera-
tors (3) to the set obtained previously in [11].

In the boundary-layer approximation, where gradi-
ents in the direction of the mainstream flow are much
lower than transverse gradients, the two-dimensional
variant of set (1) takes the following form:

ou, Qu, Ou_ 0P, 0°u
at+ aE+ P 65 vaZ gSsina,

dS. 9S, 0S _ 9°S_ usina + vcosa 4)
ot Ve TVar T Moyt A
au ov _
az al =0

which, in contrast to the standard form [3], involvesthe
equation of the transfer of the stratifying component
and the term presenting the buoyancy forces in the
equation of motion. Here, & and ¢ are the local tangen-
tial and normal coordinates; a isthe horizontal slope of
the flowed surface so that z = €sina + {cosa, X =
&cosa — sina, u = ue, + Ve, and pressure P is deter-
mined from the Bernoulli equation for the incident
flow. Set (4) was derived with the linearized equation of

_ z _ dinp(2)
State p = pO%_/_\+%1 where A = “dz

buoyancy scale, which, as well as the transfer coeffi-
cients, is assumed to be constant.

is the
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The reduction of the space dimension and disregard
of transverse gradients in the boundary-layer model
reduces the order of set (4) as compared to the original
set. As aresult, some boundary conditions for Egs. (1)
are surplus, and they cannot be satisfied entirely in the
model specified by Egs. (4). For this reason, some
physicaly important elements of the flow near the
boundary are lost, and characteristics where the solu-
tionissingular appear [12] asin an ideal fluid.

The symmetry group of set (4) depends on the local
horizontal slope of the flowed surface. In the general

case H} Z0anda # 1_2% the set of the corresponding

generators are
X; = 0, (timetrangdations);
X, = 0s—0&sinad,
[salinity (density) trandlations 5
and related pressure trandations);
X3 = 2t0, + 580, + (9, +3ud,—va,

4&sina . 2
+ 5+ E/\ EOS+2%P—%Ezsm a=05

(extensions)
and infinite-dimensional subalgebras

X, = T(t)0p (pressure trandations);

= X(0)0; + X2, + T1%x0,

—§<nX+XgES‘n C(Eap

(transition to areference frame moving
along the & axis);

X, =n(t, &), + (N +neu)d,

cosa g

(transmon to areference frame moving
along the  axis).

Here, 11, X, and n are arbitrary functions of their argu-
ments.

The symmetry group given by Egs. (5) isvery simi-
lar to the group specified by Egs. (3) and does not
involve rotation groups as in a homogeneous fluid [7].
This anisotropy is caused by the disparity between the
& and ¢ axes, which was a priori imposed by the con-
struction of the model. The conditions of incompress-
ibility and barotropy of the fluid are responsible for the
equivalence of all reference frames moving translation-
aly with an arbitrary acceleration asin Egs. (3). Disre-
gard of the transverse velocity component in one of the
equations of mation extends the class of these systems.
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Reference frames moving with rotation and defor-
mation (generator X)) are also equivalent in the trans-
verse direction. In this case, the transformation of the
transverse velocity component is determined by the
substantial derivative of the law of motion n(t, &) along
the tangential velocity component. Direct calculations
indicate that this property is inherent in the boundary-
layer equations for a homogeneous fluid. For these
equations, it is usually emphasized that the law of
motion depends only on time [7], and generator X, is
given in the reduced form

X, = n(t)o;+nd,

For turbulent flows with zero average velocity and
nonzero vorticity, which are realized experimentaly by
means of oscillating grids [13], the closure conditionis
set in the form

where turbulent viscosity K isan emplrlcal function of
the coordinates. The corresponding set of equations for
average quantities (hereafter, the averaging bar is omit-
ted), aswell asits two-dimensional analogue,

(uiDi)uj = Dj(uiuj) = -

%—‘:—Eg)‘j gl)J(EDJK = _0OP+KAu, -
divu = 0,
admits the symmetry group whose generators are
X1.3 = Oy

(spatia trangdlations);
X4 6 = xiaxj—xjc)Xi +ui6uj—ujaui
(rotations);
X; =10, +Pop+Kady, Xg=ud,+Pdp (8)
(extensions);
Xg 11 = Xiauj—Xjaui
(inhomogeneous vel ocity trandations);
and the infinite-dimensional subalgebras
X = m(t)dp (pressuretranglations);

Xp, = $i(t)0y, —Xidi(t)05p,
X, = 1(t)0, —T(t)(Pdp + Kdy)
(generalized tranglations and extensions).

This model of the flow holds the basic symmetries
of set (1) that present the properties of uniformity and
isotropy of space and time and has groups of extensions
and trandations specific for this model. At the same
time, set of operators (8) and their linear combinations
do not involve the operator of the Galilean transforma-

BAIDULOV, CHASHECHKIN

tion providing the basis of classical mechanics. Com-
prehensive analysis of the resulting symmetry proper-
ties reveals other physically unjustified properties of
the model [generators X, ,;, X, in Egs. (7)].

In order to improve the description of the process
dynamics, more complex closure conditions are devel-
oped. In particular, a set of scale dissipative k — € mod-
elsis extensively used. One of the basic nonstationary
models of this set, the so-called k — € — T — 9 moddl, is
used to describe flows of a temperature-stratified fluid
and is specified by the set of equations[5]

divu = 0,

duy, _ 0P 9 9y

at = ox  oxlax Wi+ gaT,

d_Tzi% oT _ 0O

P,,—%éijs—clﬁalvij 6,,% CZED” &ij D’ )
- ax[“;:”su
@ 51%.?33% 2%%-%&3'

whereu, =0, T=T,andP="P aretheaverageveloc-
ity, temperature, and pressure, respectively; w;

qi=T'Ui,and19=

ik= UUk’

T'2 are the second-order moments;
c K o
a, K, v, and v, = e are the coefficients of thermal

expansion, heat conduction, kinematic molecular vis-
cosity, and kinematic turbulent viscosity, respectively;
k is the kinetic energy of turbulent pulsations; € is the
dissipation rate for the turbulent kinetic energy; N =
|

——0U; .
—U; UKW is the outcome of turbulence,
k
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ou; ou;
Py = _Wimé;(r—i]_wjmg)?r—n_i-a(giqj +0;0),

ou;
Pir = _qja_xj +Bgid;

and ¢, Gy, C1, Gy, G, Gy, Ceas €, O, aNd O are empiri-
cal constants (fitting parameters) fitted from the condi-
tion of maximum agreement between calculations and
experimental data.

Complex set (9) is characterized by a poor set of the
symmetry groups whose generators are

X, = 0;, X, = 07 (trandations of time and temperature),
and infinite-dimensional subalgebras
Xy = 1(t)0p
(pressure translations),
Xy, = Xi(0y + Xi(1, — X ()%p, 1=1,2,3 (10)

(transition to areference frame moving
with an arbitrary linear acceleration).

Trandation operators X, X,, and X for set (9) coin-
cide with the respective operators for set (1) with the
linearized [as in set (9)] equation of state. Set (9)
derived in the Boussinesq approximation conserves the
generalized Galilean invariance given by Eqg. (4)
despite all the introduced complications. Symmetries
given by Egs. (10) do not involve the rotation group
[such as X; from Egs. (2)]. A simpler analogue of the
model given by Egs. (9) for a homogeneous fluid
(k — € models) also does not obey rotation groups pre-
senting the fundamental isotropy of space.

As awhole, to completely estimate the equivalence
degree for the set of equations, it is necessary to deter-
mine, in addition to differential symmetries, their dis-
crete symmetries[14] and integral invariants. However,
even the knowledge of only point invariants substan-
tially simplifies the construction of exact and approxi-
mate (asymptotic) solutions and makes it possible to
classify boundary conditions allowing the total or par-
tial separation of variables. The reduction of all inter-
mediate calculations when constructing asymptotic
solutions to operations from the corresponding algebra
enables one to represent solutionsin the invariant form
independent of the choice of theinitia variables, i.e., to
determinethe physical meaning of the equivalence con-
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dition for the sets and the scope of applicability of the
derivative modelsin each particular case.
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1. EQUATIONS
WITH AN INTEGRAL INVARIANT ON A TORUS

Asis known, asystem of differential equations that
is defined on a two-dimensional torus T2 and has an
invariant positive-density measure can be reduced to
the form

. _ A . _ vl 1
= oty YT Bxy) W

in certain coordinates xmod 21t and ymod 21t Here, A
and p are the constants (A2 + p2 # 0) and ®(x, y) isthe
smooth function 21e-periodic in the variables x and y.

Equations (1) have the invariant measure [P (x,

y)dxdy. Averaging the right-hand sides over this mea-
sure, we arrive a the differential equations

2121

| 1
u=-, v==L v=— d(x, y)dx dy. 2
y y 42{{(y) y. @

From the results obtained by Kolmogorov [1], it fol-
lows that if ®: T2 — R is a smooth (analytic) func-
tion, the smooth (analytic) change of variablesx,y —»
u, v reducesthe system given by Egs. (1) to the form of

Egs. (2) for amost al rotation numbers w = 3 satisfy-

ing the condition of strong incommensurability. We
recall that this condition is as follows: there are num-
bersa > 0 and h > 0 such that the inequality |[m— nw|=
ah"isvalid for any integersm>0and n> 0.

For resonant (i.e., rational) number w = g , Wherep

and q 0 Z, the torus 2 is stratified into the family of
closed periodic orbits so that the condition responsible
for reduction from form (1) to form (2) is equivalent to
the equality of the periods for different closed trgjecto-
ries. When the periods for different trajectories on the

Institute of Computer Research,
ul. Universitetskaya 1, | zhevsk, 426034 Russia

resonant torus are different, system (1) has the mixing
property [6]. Let us apply the above speculations to
investigate one nonholonomic problem.

2. NONHOLONOMIC CHAPLYGIN SYSTEMS

The integration of nonholonomic dynamic systems
isbased, asarule, on the Euler—Jacobi theorem, which
makes it possible to reduce the above system to sys-
tem (2) on the torus by using known first integrals. Let
us consider, for example, the following equations for
rolling a nonholonomic Chaplygin ball:

M:wa, Y =YX, 3)
M =lo+Dyx(wxy), D=ma’,
wherel istheinertiatensor of the ball about its center, m
is the mass of the ball, and a isits radius. Equations (3)
are written in the components of the kinetic momen-
tum M with respect to the contact point, angular veloc-
ity @, and the unit vector y along the vertical direction
and have the invariant measure with the density

1
p=(1-DAYY L A=(+DE), (4
E = |3
and four first integrals
F,. = (M, ®),
Fs=(v.v) =1,

which provide integrability of system (3) according to
the Euler—Jacobi theorem and reduction to the form of
Egs. (1). In the explicit form, system (3) was reduced
by Kozlov [2] (seealso[7]). For thisreduction, it ispos-
sible to use sphero-conical coordinates on the Poisson
sphere

F,=(M,y),

Fo= MMy, O

V-2 _ (& —d,)(a—qp)
I (a—-a)(a-a)’

i j, k=123

and, on the general level of integrals [for (M, y) = 0],

1028-3358/02/4712-0892%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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Absolute A and relative 6 deviations of the periods on the resonant tori. It is seen that the periods on the torus are different for D # 0.
The system parametersareI; = 1,1, =1.5,13=3,D = mR2 = 1, 0o =0, E=10.0, and (M, y) = 3.0.

the equations take the form of Egs. (1), where the func-
tion d(x, y) hasthe form

@ = [E(x) -n" ()] S =€ (¥))(a—n(y)). (6)

Here, the functions &(x) and n(y) are 2me-periodic in the
variables x and y and are derived from the inversion of
Abelian integrals. The reduction given in [2] can aso
be done by using the result obtained in [3], according to
which system (3) is Hamiltonian on the level (M, y) =
0 after time change dt = udt, where [ is determined by
Eqg. (4). Indeed, after time change, the action—angle
variables on the nonsingular invariant two-dimensional
tori can be introduced so that the angular variables
coincide with the required x and y variables from

Egs. (1) [7].

3. OBSTACLE TO REDUCTION
TO THE HAMILTONIAN FORM

According to the above discussion and study [3], the
four-dimensional phase space that is obtained from (3)
by fixing theintegralsF, = (M, y) and F; = (y,y) = 1is
stratified into two-dimensional invariant tori, where
motion reduces to the form specified by Egs. (1) and
(6). Asfollows from the Liouville theorem, an integra-
ble Hamiltonian system near a nonsingular torus can
always be reduced to the form of Eq. (2). Therefore, if
such areduction isimpossible for the tori that are spec-
ified by Egs. (1) and (6) and arise in the Chaplygin

pronounced in the vicinity of separatrices dividing
regions with different dynamic behaviors.

The figure shows the numerical results for periods
of motion in the Chaplygin system on the resonant tori
for D # 0 and D = 0. Thelatter condition correspondsto
the Hamiltonian case. In this system, theinvariant torus
is parameterized by integrals (5), which are fitted
(numerically) so that the torus is resonant; i.e., all the
trajectories on it become closed. We take a section of
the torus by a certain plane transverse to these trajecto-
ries. Next, the points lying on the closed curve that is
formed by the section are parameterized by a certain
angular coordinate ¢ I (0, 21). For each value of ¢, we
construct a trgjectory starting from the corresponding
initial point on the chosen section and calculate the
period of motion along it T(¢). The periodsare different
for different trgjectories (dependences A(¢p) = T(¢) —

T(0) and () = W are shown in the figure).

The calculations and choice of theinitia conditionsare
so accurate that the period is calculated with an accu-
racy of AT=1073. (Only six significant figuresare given
for G, athough it was calculated with an accuracy of
10719 Thus, the periods of motion on the torus are dif-
ferent in the nonholonomic system (D # 0) and are
identical for the holonomic case (D = 0) (more exactly,

1 According to the necessary condition for such a reduction [2], if
d(x, y) can be expanded into the Fourier series

d(x,y) = Zcbm,nexp[i(mxmy)],

problem, Egs. (3) cannot be written in the Hamiltonian ®mn = ®mon
form [on thelevel (M, y) =0and (v, y) = 1]. on atorus and reduction is possible, the series

Our particularly accurate numerical calculations O |2
indicate that periods for trajectories on different reso- m)\—mu
nant invariant tori are different along the same torus. In Im +In| 20

addition, the impossibility of reduction is especially
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the deviation in the latter case does not exceed the cal-
culation error).

4. CONCLUSION

The problem of the reduction of Egs. (3) to the
Hamiltonian form was first formulated by Kozlov [4].
In [5], this problem was related to the problem of
“weak” mixing (weak chaos) on invariant tori. The
spectrum of a dynamic system on such tori can be con-
tinuous, athough all the characteristics of chaos
(Lyapunov exponent and entropy) are equal to zero. In
this study, we showed numerically that reduction to the
Hamiltonian form is impossible on nonresonant tori.
The problem of reduction for nonresonant tori that do
not satisfy Kolmogorov's condition of strong incom-
mensurability isstill open. The statistical aspects of the
behavior of system (1) were considered in [6].

In conclusion, we note that the reduction of a
dynamic system to the Hamiltonian form, which may
be hidden [5], and the determination of obstaclesto this
reduction are much more complex problems than the
problem of first integrals and invariant measure and are
ill little studied [4]. As is seen, these obstacles for
integrable systems can nevertheless be analyzed
numerically.

A “cruder” obstacle to reduction to the Hamiltonian
formistypical for nonintegrable systems and is associ-
ated with the absence of an invariant measure with the
analytic density for nonholonomic equations. This

BORISOV, MAMAEV

obstacle was mentioned in [2], where it was also estab-
lished that there is no invariant measure for Celtic
stones, which exhibit rather exotic dynamic behavior
and whose phase space involves complex attractive
manifolds.

ACKNOWLEDGMENTS

We are grateful to V.V. Kozlov for stimulating dis-
cussions and helpful remarks and to A.A. Kilin, who
developed the software package for numerical experi-
ments.

REFERENCES

. A. N. Kolmogorov, Dokl. Akad. Nauk 93, 763 (1953).
V. V. Kozlov, Usp. Mekh. 8 (3), 85 (1985).

3. A. V. Borisov and |. S. Mamaev, Mat. Zametki 70 (5),
793 (2001).

4. V.V. Kozlov, Symmetries, Topology, and Resonances in
Hamiltonian Mechanics (lzd. Udmurtskogo Univ.,
I zhevsk, 1995).

5. A.V.Borisov and I. S. Mamaev, Poisson Structures and
Lee Algebras in Hamiltonian Mechanics (1zd. RKhD,
| zhevsk, 1999).

6. V.V.Kozlov, Dokl. Akad. Nauk 381 (5), 596 (2001).
. A.A.Kilin, Regul. Chaot. Dyn. 6 (3), 291 (2001).

N B

~

Translated by Yu. Vishnyakov

DOKLADY PHYSICS Vol. 47 No. 12 2002



Doklady Physics, \ol. 47, No. 12, 2002, pp. 895-899. Translated from Doklady Akademii Nauk, Vol. 387, No. 6, 2002, pp. 767-771.

Original Russian Text Copyright © 2002 by \oinov.

MECHANICS

Cavitation Flowsin Viscous-Fluid Films

O. V. Voinov
Presented by Academician G.G. Chernyi September 2, 2002

Received September 2, 2002

The Prandtl-Taylor—Birkhoff problem, i.e, the
mathematical description of flows with cavitation in
thin films of a viscous fluid [1-3], is considered. A
closed model of cavitation flows is proposed on the
basis of the analysis of unsteady dynamics of cavitation
bubbles and their hydrodynamic interaction in a thin
film.

The dynamics of cavitation bubblesinvolve strongly
nonlinear effects. When a bubble undergoes Rayleigh
collapse [4] in a low-viscosity fluid, the spherica
cumulation of energy is possible. Another practically
important mechanism of unsteady energy cumulation
accompanying bubble collapse is caused by bubble
nonsphericity. Dynamic variation in the bubble shape,
together either with stream inhomogeneity (the pres-
ence of a solid boundary and stream acceleration) or
with theinitial momentum, can induce anomal ous non-
Rayleigh energy cumulation responsible for the forma-
tion of athin fluid “superjet,” whose velocity is enor-
mous and can even be infinite (in the framework of the
mathematical model of an incompressible fluid) [5].
The infinite velocity of a fluid stream for anomalous
cumulation, contrary to Rayleigh cumulation, corre-
sponds to a nonzero bubble volume, i.e., to an incom-
plete collapse.

The dynamics of many cavitation bubbles are stud-
ied most comprehensively for alow-viscosity fluid. The
L agrange equations were proposed for the dynamics of
a system of bubbles undergoing ultrasonic cavitation
[6]. The dynamics of a system of interacting bubblesin
arbitrary vortex-free streams are described by asymp-
totic models and equations [ 7-10].

Cavitation in thin fluid films, which is one of the
most important mechanical problems[1-3], is of inter-
est in connection with the lubrication and technol ogies
of film deposition on solids. However, this problem is
insufficiently studied. In the phenomenological theory
of cavitation in films, formal schemes of flows were

Tyumen Branch, Institute of Theoretical

and Applied Mechanics, Sberian Division,
Russian Academy of Sciences,

Taimyrskaya ul. 74, Tyumen, 625026 Russia

e-mail: 0.voinov@mtu-net.ru

based on empirical information [11-13]. Here, in con-
trast to this theory, we consider cavitation flows in the
asymptotic model of bubble cavitation in the film of a
relatively high-viscosity fluid.

A fluid of density p flows steadily, forming a thin
film between the surfaces of solids 1 and 2 for low Rey-
nolds numbers. Pressure p in the neighborhood of the
minimum film thickness h = h, > 0 is described by the
following Reynolds equation [14] in the coordinates x
and y on atangentia plane:

div%ﬁ‘BVp—Gph(Uﬁuz)E = 0. (1)
o H O

Here, [ is the viscosity, u, and u, are the velocities
lulhg

of the respective surfaces, <1,u=u;+Uu,,and

|Oh] < 1. Let u, and u, be aigned with each other and
u, = 0. If one of the surfacesis a sphere of radius Rs >
h, and the other surfaceis aplane, thicknessish=h, +
X + y2 . h

. For larger thicknesses — — oo, we set pres-
sure p,, > 0. For negative pressures in the region of low
thicknesses, where h increases in the direction of
motion of the surfaces, cavitation is possible. It is nec-
essary to determine when the cavitation flow is
described by Eq. (1) and to find the boundary condi-
tions on the cavity contour.

PARAMETERS OF FILM BUBBLES

Let surface 1 have microscopic inhomogeneities
coupled with small gas bubbles, which can be in equi-
librium and are not dissolved because of their coupling
with an inhomogeneity [15]. Identical bubbles form a
network with the mean number of nodes ng per unit
area. We consider sufficiently small-mesh networks;

i.e., thecaseng~ —1—2 isallowed, but the case ng << —1—2 is

0 0
excluded. The diameter of abubbleis much smaller than
the network mesh. Bubbles are only near surface 1; the
case of bubblesin the fluid bulk can be considered sim-
ilarly. Velocity u, is not low compared to u,.

1028-3358/02/4712-0895%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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Temperature T is constant. The pressure p, of satu-
rated vaporsis low: p, < p,. The gasin the bubble is
ideal; i.e., itspressureispy = pyR, T, where pyisthe den-
sity. The concentration or density p,, of the gasin the
fluid near the bubble follows the Henry law py, = kpy,
where k = const. The normal stress in the fluid on the
bubble is related to the gas pressure by the Laplace
expression p, = —pg + 2Ho, where o is the surface ten-

sion, H is the average interface curvature, and H = é
for the sphere of radius R. There are also certain condi-
tions on the bubble-solid contact line.

AsthevolumeV of the bubbl e increases, the mass of
the gas inside it depends on gas diffusion to the fluid.
The role of this diffusion can be estimated from the
Peclet number, which is convenient to define as Pe =
(RN

Dt '’
characteristic bubble radius (radius of the sphere of vol-

1/3
ume V), A = P[]

Loy

valuesfor V = const), and T is the characteristic time of
variation of the volume V. At the entrance to a cavity,
time T can be very small (much smaller than 1 us).

For fast growth of the bubble, the Peclet numbers
are high, Pe > 1, and the gas mass inside the bubbleis
amost constant. If the normal stress p,, is approxi-
mately constant along the surface, the stress p,, has a
maximum p;; = max{p,(V)} according to the capillary-
equilibrium problem. If pressure p in the film is less
thanitscritical value pj; , the bubble can spontaneously
grow. A spherical bubble also has the maximum stress

x» _40
Pn =3 R,
sider a spherical bubble with the same stress p; ason
a nonspherical bubble associated with a wall inhomo-
geneity.

Theinertial effectsareimmaterial in bubble dynam-

2
icsif viscosity is high, i.e., if \% < 1, where v is kine-

where D is the diffusivity 5\9) <1, Risthe

(py and pgy; are the equilibrium

, where R, is the critica radius. We con-

matic viscosity. The equation of radius variation hasthe
form

YURR'+20R™ = p,—p, 2)

where p is the mean pressure in the film, y = 4, and the
bubble is far from the wall. The bubble is spaced from
the wall by a distance much smaller than h, so that the
bubble moves with the wall velocity u,. Bubble-wall
interaction can approximately be taken into account by
considering y > 4.

The asymptotic method described below is in prin-
ciple not restricted to the approximate spherical-bubble

VOINOV

model, and deformations of the bubble can be taken
into account. We note that the bubble does not break in
the shear stream due to the capillary forcesif itsradius
is sufficiently small.

ASYMPTOTIC METHOD
OF THE TRANSITION LAYER

A steady cavity in afilm differs fundamentally from
cavitiesinthe case of devel oped cavitation at large Rey-
nolds numbers. The boundary of this cavity is not a
stream line, and the fluid flows through it [1-3, 11-13].

Let the critical stress be much smaller than the pres-

sure minimum without cavitation: p; < |p21m| .Inthis
case, the effect of bubbles on the flow in the film can
manifest itself inthethintransition layer, when thefluid
flows into the cavity.

The flow of the film with bubbles is described by
Reynolds equation (1) with variable density p = py(1 —¢)

ngVv . .
Epo =const, andc= —%— isalow concentration of bub-

bI%E. Such an approach is rigorous if the velocity

2

magnitude w = _1%1 Op is much smaller than 0.5|ul.

Thisis the case near the cavity contour L, at which we
take p = O for solving the Reynolds equation for an
incompressible (p = p,) fluid. We introduce the coordi-
nate & along the external normal n at the point x, O L,
where & = 0. Let the indicated solution p have a mini-
mum in &, Pin, for small & = &y, (at the point xy;, = X, +
&un). We consider a small neighborhood of the point
Xy X =Xyl <1 (1 = (Rehy)™? isthe scale of variation
in h). We approximate the quantity h by two terms of
the Taylor expansion at the point x,,. We consider that
thicknessincreasesin the direction of velocity, ulJ;h > 0.
Taking into account that the derivatives of p and c along

the normal are much greater than those along the layer,
we simplify the equation of the flow:

h3
mOp _ g{g(E—EM)—nXhC}, € = %E(XM)! &)

12u0¢

hy = h(xy), un, < 0, U = u,, U, = u,,. The quantity € is
h

small: |g|~ I—O < 1.Accordingto Eq. (3), the strong ine-

quality |w| < 0.5|u| isvalid for small &y, and &. Equa-
tion (3) is asymptoticaly exact forc < 1 and &, < |,
when the transition layer is thin.

In the transition layer, the concentration ¢ decreases
with anincreasein &, and the pressure p approachesthe
DOKLADY PHYSICS Vol. 47
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solution to the Reynolds equation for anincompressible
fluid:

a€-&w)’, &=
S ,

-3 0 meirﬂﬂz
a = 6uuehy, &y = 05 0

p = pmin+
4)

The quantity py,i, is unknown. The compatibility with a
cavity requires that

E-fy
&

To complete the problem, it is necessary to have the
model of the variation in the bubble volume V with
varying pressure p. For this purpose, we use the
dynamic equation for the spherical bubble at large
Peclet numbers

nxhC_S(E _EM) - O,

_ PURE R YHUINOR
P=%5as 3RO R a9t ©)
Equations (3) and (6) describe the effect of interac-
tion between bubbles that is caused by the influence of
their concentration on the fluid flow. In the dimension-
less notation

R 2 § 8w
Y = —_— = p—, = — ,
2 _ p_: _ yul”xljﬂl]3 _ ‘_‘- 3 |nx|
b = 2a’ B = 6us 0,0 G= nS3T[R*|s|I*
we obtain the boundary-value problem
g—p = — 3 D= _];_g_Ed_Y
dc _ © Gv..p v Y Yd¢
_ ¢ ®)

(-GY’—0, ¢ — +o.

The dimensionless parameters 3 and G are indepen-
dent, and the constant a is determined from Eq. (8): a =
a(B, G). The parameter G is proportional to the num-
ber ngor to theinitial (critical) gas volume per unit film
area. The cavity equation GY? = { (for Op = 0) is estab-
lished for alow bubble concentration c, because

c=GY’n'E, E = |e|r|]—* DII—* <1. )
M

We notethat thistheory issuitable nonuniformly inn,.

It is reasonable to consider the boundary-value
problem given by Egs. (8) only for f > 0.3. The solution
DOKLADY PHYSICS Vol. 47
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Fig. 1.

has no real meaning for 3 closeto zero, because it eas-
ily failsfor small pressure fluctuationsin the film.

PROPERTIES OF THE FLOW MODEL

The dependence of the dimensionless-pressure min-
imum —a on the bubble dynamic parameter 3 is given
inFig. 1 (solidcurves/, 2, ..., and 6 correspondsto G =
101,107, ..., and 107, respectively). The minimum —a
can be markedly lower than the critical value -2. It
dependsweakly on the parameter G: the quantity a var-
ies by a factor less than 2, when G varies by a factor
of 10°.

The boundary conditions for pressure p satisfying
the Reynolds equation for anincompressiblefluid at the
entrance to a cavity (u, < 0) have the form

yupn, e

ue

p=0 0O,p=-ya, &y =Kh (10)

(0,=n -0, K = 2a)"2(6B)"'7). The dependence of K
on Bisgivenin Fig. 1 by the dashed lines.

For large 3, dependences are simple. In the limit
B> 1, the function K(B, G) isindependent of B and is
close to unity: K(B, G) = 0.77G %%, The effect of the

number ng of cavitation nuclei is absent, because K ~

na . The pressure minimum is independent of the

critical stress p} , and p,i, ~ u. For B > 2, the transition-

layer thickness &), isindependent of velocity Efor uUl =

const% andissmall: &, < |. For 3 < 2, thelatter condi-
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tion coincideswith |, <, whichisequivalent to p; <

P ~ p|u|h'—2 . Thethickness§,, > h,, (becausee < 1).
0

The solution revealsthe flow pattern in the thin tran-
sition layer: the medium in the film undergoes a phase
transition controlled by bubble dynamics. A low initial
gas content in the film does not hinder this transition,
although the dissolved gasis not noticeably released. At
the beginning of the layer, the medium behaves as if it
were incompressible, whereas at the end of the layer,
the inhomogeneous medium is easily compressible due
to the presence of bubbles, and the pressure gradient
disappears. The end of the transition layer coincides
asymptotically with a cavity—the region of constant
pressure. In the cavity, the inhomogeneous medium in
thefilm has asimple equation of state: pressureis equal
to p = 0 independently of average density. The solution
guantitatively explains the film failure—the existence
of avisible cavity boundary fixed in many experiments
[2, 11-13].

The second boundary condition in Egs. (10) does
not coincide with any known phenomenological
boundary conditions (Swift—Stieber, Prandtl-Hopkins,
Floberg, Coyne-Elrod [1-3, 11-13]).

Let al the conditions under which Egs. (10) were
obtained be satisfied and p; < p,. According to
Egs. (10), O,p contributes term |w| = O(|ef)|u] =

OEE.TR(E 3E|u| to the average velocity in the film.
ul

Neglecting this term compared to >

Egs. (10), we obtain the condition [,p = 0 at the
entrance to the cavity. Thisisthe Swift—Stieber bound-
ary condition [12, 13].

and using

o~

-2

Fig. 2.
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STRUCTURE
OF THE SECOND DENSITY JUMP

At the exit from the cavity, the region of the easily
compressible medium borders the region of incom-
pressible fluid. The structure of the boundary region is
qualitatively described by the one-dimensional prob-
lem of steady flow in a constant-thickness film. For
& — —oo, the bubble concentration isc — ¢, < 1.
For & — +o, ¢ — 0. According to the solution of the
flow problem with these conditions, the front of density
variation is thin; its thickness is d ~ h(6¢,)"'/>. Conse-
guently, at the exit from the cavity, density increases
stepwise, whereas pressure varies continuously. Thisis
the mixing of fluids with and without bubbles rather
than simply a phase transition asin the transition layer.

CAVITY SHAPE

The flow was calculated for a sphere—plane system
unusual for experiments in which the film surfaces are
conventionally cylindrical [2, 11-13]. Introducing

modified pressure p, we rewrite Eq. (1) in the form

Om0p=0, p=p-p° p° = —gpuxh_z.(ll)

The conditions at the cavity contour L are written as

p=0, 0,p=-0,p+f f=0, u,<0,

o (12)

f = 6pu,—/——, u,>0

(Uy=n-u).Ifx,0Lforu,>0,x* 0L foru,<0,y*=
Yo; h* =h(x*). For agiven pressure p,, a infinity and the
second condition from Egs. (12) for the given contour
L, the problem was solved (in the dimensionless nota:
tion) by thefinite-difference method with the gridinthe
polar coordinate systemr, 8. The conditionp=0atLis
equivalent to the condition that minmax{p(x,) — p(x,)},
Xy, X, O L isreached. To solvethe minimax problem, the
radius r(6) of the curve L was represented by a partial
sum of the Fourier seriesat theinterval (O, ). The num-
ber N of the highest harmonics cog(N8) was taken so
that accuracy was not worse than 0.01, for which N< 8
is sufficient. The calculated cavity contours are shown

Pe
= where

m

inFig. 2for various A\ =

9./6
o0 = f||—, | = JRef.

(13)

Curves 1, 2, ..., and 6 correspond to A = 0.93, 0.79,
0.54,0.3,0.2, 0.1, respectively, and to the velocity u < 0.
DOKLADY PHYSICS Vol. 47
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In this paper, the qualitative shape of the function
T(K) (k is the wave number) that characterizes the
energy transfer in two-dimensional decaying turbu-
lence is found. (As usual, we imply turbulent motion
beyond the grid [1]; such turbulence can be considered
as the free motion of a fluid with an initial random
velocity distribution.) The corresponding properties of
correlation functions, namely, two-point third moments
whose sign, in contrast to the three-dimensional case,
turns out to be anomalous (positive) in a certain region,
are also obtained. In addition, the sign of the third
moment in self-similarity intervalsand directions of the
energy and enstrophy fluxes are unambiguously deter-
mined by the shape of the function T(k). The shape of
the correlation functionsin the self-similarity intervals,
which is consistent with experimental data[2], is deter-
mined from a two-dimensional analogue of the Kar-
man—Howarth equation.

1. The usual methods for the description of two-
dimensional turbulence, which were originated in [3],
are based on the concept of turbulent motion as ran-
domly forced turbulence. In such a situation, energy
fluxes and enstrophy fluxes are determined not by the
dynamics of motion as such but by intuitive reasoning
that the fluxes are directed to the right and to the left
from the hypothetical spectral region into which the
energy is injected. (Note that in the presence of an
external energy source, the Karman—-Howarth equation
becomes inapplicable)) On the other hand, in direct
experimental investigations of two-dimensional turbu-
lence in thin liquid films (this possibility was first pro-
posed in [4]), the case of “classic” unforced decaying
turbulence is realized. Note that such decaying turbu-
lence is unsteady, in contrast to the forced turbulence,
which can be considered as stationary, at least in theory.
The shape of the functionsfor the second and third two-
point moments of the velocity field was established in
the experiments described in [2]. The anomalous
behavior of the third moment isradicaly different from

1 The article was submitted by the author in English.

Joint Ingtitute for High Temperatures,
Russian Academy of Sciences,
ul. Izhorskaya 13/19, Moscow, 127412 Russia

the case of three-dimensional turbulence (and from the
corresponding results for two-dimensional forced tur-
bulence). Below, the general description of the decay of
isotropic two-dimensional turbulence is given (allow-
ing the consistency of its correlative and spectra prop-
erties with conservation laws to be established), which
explains, in particular, the experimental data mentioned
above.

The basis for the description of the isotropic turbu-
lence is the Karman—-Howarth equation. This equation
is the exact consequence of the Navier-Stokes equation
or its spectral form

% = T(k t) —2vK*E(K, 1), (1)

where E is the energy spectrum; J' E(k, t)dk = %

K/gn
(v is the velocity; the density of the fluid is equal to
unity; brackets denote statistical averaging); T(k, t) is
the function specifying the energy flux in k space and
is linked with nonlinear terms in the equations of
motion; and v is viscosity. Equation (1) isvalid for the
case of both two and three dimensions. Thus, the differ-
ence between two-dimensional and three-dimensional
situations is reduced to the fact that, in addition to the
energy-conservation law expressed in the form

00

[T(k tydk = 0, )
0

the enstrophy-conservation law in the two-dimensional
case (at zero viscosity)

00

IkZT(k, tydk = 0 3)
0

isasovalid.

We can see from (2) that T as afunction of k cannot
have the same sign for all values of k. In the three-
dimensional case, it is constructed in the following

1028-3358/02/4712-0900$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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manner. There exists a certain K such that T(k, t) < 0 at
k<kandT(k) > 0at k> K. Inthiscase, it isevident that

[

Iszdk >0. 4)

The last inequality corresponds to the usual concepts
regarding energy transfer from large-scale to small-
scale components, although its proof or the rigorous
definition of the conditions for its validity are still
unknown. This task is as difficult as integrating the
original hydrodynamic eguations (relevant reasoning
based on the effect of the vortex-tube dilation [5], of
course, isnot rigorous). Thisisthe shape of T(k), which
is confirmed by all experimental data concerning labo-
ratory turbulence (tube and channel flows, decaying
turbulence beyond grids, etc.), as well as ocean and
atmospheric turbulent motions.

Passing to the two-dimensiona case, we can now
easily see that condition (3) excludes such a shape of
the spectrum. Indeed, assuming that T(k) changes its
sign at a certain point K, by virtue of the mean-value
theorem, we obtain from expressions (2) and (3)

K [

J’Tdk +ITdk =0,
)

K o

szTdk+ 5 ITdk =0,

where p < K and g > K. Since set (5) is inconsistent at
non-zero values of the integrals and p and g, such a
shape of the spectrum is impossible, which is why the
function T(K) changes its sign more than once. There-
fore, inthis case, the simplest choice correspondsto the
double change in the sign of T(k), which is schemati-
cally presented in Fig. 1. It is easy to see that the func-
tion —T(k) symmetric (with respect to k axis) to the
function T(k) also satisfies conditions (2) and (3). Asin
the three-dimensional case, the theoretica choice
between T(k) and —T(k) is not possible and can be made
only by analysis of experimental data. In order to do
this, we do the following. Since third-moment data
were aso obtained in[2] for the smallest values of r sit-
uated outside the inertial intervals, we can compare
with them the function D, (or, which is the same, the
function By, |, whose definitions are given below)
linked at small r with T(k) by a certain exact relation.
Deriving this relation, we note beforehand that, by vir-
tue of relationships (2) and (3), for the chosen sequence
of signsin T(k), the following inequality is valid:

00

J’k4Tdk <0,
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Schematic shape of the function T(K).

which we will need below. In order to provethe validity
of thisinequality, we consider the function

S(2) = [Tdk.
0

For this function, the relations following from (2) and
(3), aswell asfrom its definition, are valid:

S(0) = S() =0, J’dek =0,
0

[ [

J’k"Tdk = —4Ik3Sdk.

As is easy to see, the quantity S changes its sign,
namely, from negative to positive, only once. Thus, by
virtue of the mean-value theorem, the last integral is
positive, so that the statement to be proved followsfrom
the last of these relations.

Furthermore, in order to derive the desired relation-
ship, we should use the relation between the correlation
tensor By, (r) and its Fourier transform expressed in
terms of the scalar function F5(k) [1]:

Blmn — I‘[e|kr|:3@mnkl 6Ir|1(

2k, ksmkr% "
k

Using now the identity

ikr _ 10 ik
[ kF(dk = 3 [ F (k)

and expressing the tensor By, , in terms of B, | (the
relation corresponding to the two-dimensional case can
be found in [6]), we integrate over the angular variable
with allowance for the known identity

J’eikm"sede = TJy(kr).
0

Thus, we obtain after relatively simple but cumbersome
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caculations

00

_ 103 I IT(K)
B = | =— —-—— |——dk 6
LL, L Z!)-[kr (kr)2i| k ( )

[inthe two-dimensional case, T(k) = 4Tk’F;], where the
prime corresponds to the derivative of the Bessel func-
tion J, over its argument. Expanding J, into the power
seriesin kr, we finally obtain from (6)

_ Lk (k) 3(kn)® TR
BLL,L = 2.([[8 % +16(4!)2 } kdk -

Because of the presence of two (but not one asin three-
dimensional hydrodynamics) conservation laws (2) and
(3), the first nonvanishing term in the expansion of
B, (having here fifth order over r) takes the form

0

5
r 4
B = —— (k' Tdk. 7
LL, L 3)(211 ( )

Sincetheintegral on theright-hand side of expression (7)
is negative, the function By, | (r) must also be negative
at small r. The latter fact is actually verified in the
experiments [2]. Therefore, the above results corre-
spond to the known experimental data and allow us to
establish a possible shape of T(k) characterizing an
important property of turbulent motion, namely, the
energy transfer in wave-number space. Below, we use
this result for the determination of the third-moment
signs and directions of energy fluxes and enstrophy
fluxesin self-similarity intervals.

2. In order to link the spectra and correlation func-
tions with the function T(k), we should use exact
dynamic equations. Turning first to relationship (1), we
show, as a by-product, how the known self-similar
Spectra can be obtained and, what is more important,
how exactly their location along the k axesis associated
with the shape of T(k). Since the solutions to two-
dimensional hydrodynamic equations asv — 0 con-
vert to the solutionswith v = 0, we can omit for simplic-
ity the last term on the right-hand side of (1). The inte-
grals

z z

£(2) = J’Tdk, £,(2) = J’szdk, )
0 0

apparently yield the change in the energy and enstro-
phy, respectively, per unit time within theinterval [0, Z]
ink space. Intheregions| and Il shown infigure, these
integrals areindependent of z, and thusthe self-similar-
ity hypothesis can be used for the corresponding inter-
vals of the E(k) spectrum (note that the presence of such
regionswith T(k) = 0is, generally speaking, anecessary

TSESKIS

condition for Kolmogorov self-similarity [1]). Accord-
ing to this hypothesis, the quantity E(k) is defined by
the combination of one of the quantities in (8) and of
the wave number Kk, i.e., the combination having the
necessary dimensionality. In this case, the predominant
quantity should be chosen from € and €, . In contrast to
the usual approach [3], for which arbitrary assumptions
concerning directions of fluxesin theinertial rangesare
made, in this case, they are uniquely associated with the
shape of the function T(k).

Certainly, it is impossible to directly compare the
values of € and €, which have different dimensionali-
ties. Therefore, we consider the dimensionless ratio

e\’
le]

¢ = ; €))

where A isthe differential scale of turbulent motion [1],
which remains invariable at zero viscosity. It is evident
now from relationship (9) that the quantities € and ¢,
predominantly affect the spectrumat ¢ <1 and ¢ > 1,
respectively. As follows from the shape of T(k) (due to
the presence of the factor k? in the integrand for €,), it
can be only

¢ <linregionl,
¢ > linregionll.

Composing, as usua, combinations of a proper
dimensionality, which contain k and, correspondingly, €
and g, we arrive at

E(k) Ole|”’k™® inregion 1,

(10)
E(k) Ole,|**k™ inregion .

Inthis case, the energy fluxes and enstrophy fluxes have
the same directions for the chosen shape of T(k): they
are positive in region | (the energy and enstrophy are
transferred from large scalesto small scales) and nega-
tiveinregion Il. It is easy to see that this pattern corre-
sponds to the turbulent-energy concentration in the
interval located between theregions | and I1. It is clear
that achangein the sign of T(k) would lead to the oppo-
site result, namely, an increase in the energy to the left
from the region | and to the right from the region II
(whichisusually considered to be realized when inject-
ing the energy into certain narrow interval of the spec-
trum [3]).

It is worth noting that ignoring the viscous dissipa-
tion, in fact, should be expressed by the inequalities

2vJ'k2Edk < g, 2ka4Edk <&y

Based on the reasoning above, these relationships can
be fulfilled in the two-dimensional case but can never
DOKLADY PHYSICS  Vol. 47
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befulfilled in the three-dimensional case because of the
so-called enstrophy catastrophe:

[

limv (k*Edk # 0.

v-0
0

This makesthe energy dissipation asingle quantity that
determines the self-similarity of the inertial segment in
the three-dimensional turbulence spectrum.

As is well known, further use of Kolmogorov's
hypotheses on the local structure of the velocity field
makes it possible to obtain in the three-dimensional
case, in addition to the spectrum, both qualitative and
quantitative characteristics of the second and third
moments of the velocity field [1, 7]. These characteris-
tics turn out to be in good agreement with available
experimental data. This possibility follows from the
existence of a quantity (averaged dissipation of turbu-
lent energy) determining the dynamics of the decay as
awhole. It manifestsitself formally by the fact that, on
the left-hand side of the equation describing the veloc-
ity-field correlator D, (the standard notation is used
below: the correlation functions By (r) = O (x)u (x +
)L By () = [ (x)u (x)u (x + r)Clu, is the velocity
component aligned in paralld to the straight line con-
necting points x and x + r; the structural functions are
Dyu(r) = 2[B(0) = B (N], Dy (r) = 6B (1), there

BLL
It and

0
exists a difference between the quantities

l_aDLL
2 ot

ond of them becomes zero in theinertial interval. More
accurately, we should state [7] that

. According to the Kolmogorov theory, the sec-

<[Buley) - 2

. 11
T gl (11)

l"aDLL(ra t)
2| ot

In the two-dimensional case, by virtue of the above rea-
sons, the energy dissipation cannot determine the
dynamics of the decaying turbulence. Hence, ignoring
it (together with ignoring viscosity) leads to the situa-
tion when the time derivative D, remainsin the corre-
sponding equation. Conseguently, in this situation, we
can consider the equation for B, which takes the
form [6]

aBLL _ |:|a a]
gt~ Lor ot

(12)

Each of the two inertial intervals (corresponding to the
spectra k" and k) is characterized by the quantities €
and g, , respectively. Combining them with r in order

. . . . 0B
to obtain the same dimensionality as for —5,[55 , We pass
DOKLADY PHYSICS Vol. 47 No.12 2002
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from (12) to the following equations (C,, C, are posi-
tive dimensionless constants):

Ce = %%+%BLL,L inregion |1,
(13)

Coe r° = %—;9?+%BLL,L inregion 1.

Multiplying expression (13) by r* and integrating with
allowance for the condition B, | (0, t) = 0, we obtain

C . .
Bl = ler inregion 1,
(14)

Ezewr3 inregion 1.

B =
Therefore, the dependence B | onr (and aso Dy (1))
within the inertia interval determined by the energy
transfer isreduced to the linear one, sinceit takes place
in the three-dimensional case as well. Within the range
of the inverse enstrophy flux, the corresponding depen-
dence appears to be cubic, as follows from the result
obtained by adifferent method in [8]. However, in con-
trast to the three-dimensional case, it follows from (14)
that the opposite signs of the third moment correspond
totheintervals| and Il [we note that € and €, have dif-
ferent signs, as follows from (2) and (3)]. In particular,
relations (14) show that for the given shape of T(k), we
have B, | < O within region | and B, | > 0 within
region 1. Since lower values of r correspond to higher
values of the wave vector, the function B, | must be
positive in a certain interval and must become negative
to the right of this interval. In this case, positive and
negative values of B, correspond to the k= and k=3
spectrum, respectively. Such a pattern radically differs
from the third-moment behavior in the three-dimen-
sional case, when it is negative within the entire inertial
range (and it is certainly different from that for the
forced two-dimensiona turbulence [3]) (see also [9],
where energy-injection intervals different from those
of [3] are considered).

The above anomaly was actually observed in the
recent experiments of [2] with turbulence generated by
a two-dimensional comb in a thin liquid film. In this
case, a part of the spectrum with the shape close to k3
was found. This part corresponded to positive val ues of
B, . (at the same time, the result for the second
moment closeto D, ~ r? was obtained as was expected
in the case of B | ~ r’). However, an interva that
could be identified as the k73 spectrum was not
observed. Apparently, this is associated with both the
insufficiently high Reynolds number (on the order of
several hundred) and the fact that the largest length
scales corresponding to the k3 spectrum part were
comparable to the exterior scale of turbulent motion.
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ERRATA

Erratum: “Changeinthe Parameters
of Surface Thermal Decomposition
of Energy-Intensive Materials
Near the Phase-State Boundary”
[Doklady Physics 47, 571 (2002);
Doklady Akademii Nauk 385, 482 (2002)]

O. F. Shlenskii and Yu. V. Zelenev

In our paper entitled “Change in the Parameters of Surface Thermal Decomposition of Energy-Intensive
Materials Near the Phase-State Boundary” published in Doklady Akademii Nauk 385, 482 (2002) [ Doklady
Physics 47, 571 (2002)], expressions (11) and (12) should have the form

_KS_ fak _a

1—cak/f
Th = Qfy C +To. (12)
p

In the first line above Eq. (12), the expression for the velocity should be read as u? = kTa :

Trandated by G. Merzon
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