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The development of methods for constructing exact
solutions to a nonlinear system of equations of mag-
netic hydrodynamics is of undoubted interest. The
Shafranov method [1] is applied to an axisymmetric
configuration of immobile plasma bounded in space.
This method allows us to reduce the system of equa-
tions

to the solution of the equation 

(1)

Here, p = P(ψ) is the plasma pressure and ψ(r, z), J(ψ)
are the magnetic flux and the total electric-current
across a circle of the radius r, which is perpendicular to
the z axis:

In this paper, we analyze a system of steady-state
equations of magnetic hydrodynamics [2]:

(2)

(3)

The problem posed is to formulate a method for con-
structing a solution to the system of Eqs. (2) and (3) for
an axisymmetric plasma configuration rotating as a sin-
gle whole. This construction is realized on the basis of
a known solution to Eq. (1) for the same configuration
of the immobile plasma.

For V = Vϕeϕ, the condition for magnetic-field line
freezing-in in the case of an axially symmetric plasma
configuration has the form

(4)
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Clearly, this condition is fulfilled for Vϕ = Ωr, where Ω
is a constant value since, in this case, expression (4) is
equivalent to the condition divB = 0.

It is evident that, in order to confine a rotating
plasma configuration, we need to use another distribu-
tion of the electric-current density as compared to the
case of an immobile plasma. First, we consider the par-
ticular case when, in the rotating plasma, only the total
current varies across the circle of radius r, which is per-
pendicular to the z-axis, whereas the azimuth compo-
nent of the current density conserves the previous form.

We now denote by G the total current across the cir-
cle of radius r and substitute expressions for the mag-
netic-field components

into Euler equation (3) with account of Shafranov
Eq. (1) for immobile plasma. Then, we arrive at the fol-
lowing equations:

(5)

(6)

(7)

Here, the notation F = G2 – J2 is introduced.

It follows from Eq. (6) that the function G depends
on the coordinates in the same manner as the function
J: G = G(ψ). Since the boundary of the plasma config-
uration is determined by the condition ψ(r, z) = C,
where C is a certain constant value, the function P(ψ)
satisfies the condition P(C) = 0. Therefore, with allow-
ance for vanishing pressure on the surface of the config-
uration, we find from Eq. (7) for the rotating plasma
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In contrast to the case of immobile plasma, whose
density is not determined concretely when constructing
a solution for axisymmetric configurations, the density
of rotating plasma, as follows from Eq. (5), has a defi-
nite form:

(9)

The obvious limitation when choosing the function G
is providing both nonnegative values of functions (8)
and (9) and the absence of singularities in the region
occupied with plasma. It is worth noting that expres-
sions (8) and (9) correspond to the known procedure of
allowance for a centrifugal force in the rotating coordi-
nate system by means of introducing an effective pres-
sure [3]

As a particular example, we consider a spherical
configuration of immobile plasma [1], for which the
solution is similar to the hydrodynamic Hill vortex:

Here, B0 is the magnitude of the external confining uni-
form magnetic field and R is the radius of the plasma
ball whose surface is defined by the condition ψ = 0.
For this configuration, the current density is distributed

in the azimuth direction: jϕ = – , J = 0, and the

function P linearly depends on the magnetic flux:

P(ψ) = – .

It follows from expression (9) that for the configura-
tion under consideration and the choice G(ψ) = αψβ,
the density of the rotating plasma in the case β ≥ 1 has
a finite value at the origin. In particular, assuming

β = 1, α = , where A is a certain constant, we find

the following solution to the system of equations (2)
and (3):

(10)
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It is evident that the plasma pressure has nonnegative

values inside the sphere of the radius R for A ≤ .

In the other variant of constructing a solution to the
system of equations (2) and (3), the radial and axial
components of the current density in the rotating
plasma have the same form as for the immobile plasma,
and only the azimuth component of the current density
changes its form:

Here, k is a constant. In this case, the components of the
magnetic field in the rotating plasma can be written out
in the form

Similarly, the following expressions are obtained
from the Euler equation for the pressure and plasma
density:

(11)

(12)

We illustrate the latter variant by an example of the
toroidal configuration:

(13)

where R is the radius of the magnetic axis and a, b, and
ψ0 are constants. Expression (13) describes the steady-
state plasma, whose pressure and the total current
across the circle of radius r is related to the magnetic
flux by the following relationship [2]:

In the case of a > 1, b > 0, and ψ0 > 0, we find for
the pressure and total current across the circle of radius
r in the immobile plasma

According to expressions (11) and (12) obtained above,
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the pressure and density of the rotating plasma are
defined by the following expressions:

The pressure and density of rotating plasma have
nonnegative values inside the toroidal configuration
provided that the conditions 

are fulfilled. Here, R1 is the inner radius of the configu-
ration in the plane z = 0:

The general formulation of the method for con-
structing the solution to the system of equations (2) and
(3) for the axisymmetric configuration whose boundary
is defined by the condition ψ(r, z) = C corresponds to a
change in all components of the current density in rotat-
ing plasma. It follows from formulas (8), (9), (11), and
(12) above that, in this case, the plasma magnetic field,
pressure, and density can be written out in the form

where the notation f = G2 – k2J2 is used. 
Thus, if a solution to the Shafranov equation is

known for a certain axisymmetric configuration of
immobile plasma, then, with the method described in
this paper, we can construct the solution to equations of
magnetic hydrodynamics for the same configuration of
a uniformly rotating plasma.

In conclusion, we would like to note that for the
plasma configuration with an azimuth distribution of
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the current density, i.e., for the case J = 0, the employ-
ment of an additional confining uniform magnetic field
Bext = Bextez is an alternative variant of constructing the
solution to the system of equations (2) and (3).

In this case, the effect of the centrifugal force is
compensated by the interaction of the azimuth current
with this field. Then, the expression for the plasma den-
sity is written as

In other words, the direction of the additional external
field depends on the sign of the azimuth component of
the current density. 

In particular, when using the additional external
magnetic field for a rotating plasma ball, a following
solution to the system of equations (2) and (3) is
obtained:

We should note that in this case, in contrast to previous
variant (10), the plasma-density distribution is uniform.
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The spin-selective adsorption of water vapor on an
aluminum-oxide surface was discovered about a decade
ago (see, e.g., [1]). As was shown in [2], this effect can
be used to separate the spin isomers of water by frontal
chromatography. When hydrogen spins in a water mol-
ecule are parallel and antiparallel to each other, the
molecule is in the ortho and para states, respectively.
The ratio of the statistical weights of the ortho and para
states is equal to three; therefore, in an equilibrium
water vapor under normal conditions, the ratio of ortho-
to-para isomer content is equal to three. Since transi-
tions between molecular ortho and para states are for-
bidden, water vapor is essentially a mixture of indepen-
dent ortho and para fractions. In this paper, we describe
a laboratory experiment in which the equilibrium ortho-
to-para ratio 3 : 1 in water vapor was changed by at least
a factor of 3 by spin-selective adsorption. This phenom-
enon is qualitatively explained. It is shown that the
change in the ortho-to-para ratio in the real atmosphere
can be responsible for marked variations in its radiative
characteristics.

In this experiment, the violation of ortho–para equi-
librium in water interacting with an adsorbent was
determined by continuously monitoring the intensity of
spectral ortho and para lines in the rotational spectrum
of water molecules. For convenient detection, we took
a pair of intense ortho and para lines that were close to
each other in the rotational region of the spectrum
(Fig. 1). The mixture of water vapor with nitrogen as
the carrier gas passed through an adsorption column
filled with porous carbon. The gas leaving the column
was directed to a cell connected with a submillimeter
BWO spectrometer. In the cell, the working mixture
was probed at frequencies 30–40 cm–1 by a beam of
tuned monochromatic radiation. In the piecewise-con-
tinuous mode with a rate of 10 points/s, a resolution of
0.0003 cm–1, and a period of 1 min, we recorded the
transmittance of the gas layer and observed the ortho–

Institute of General Physics, 
Russian Academy of Sciences, 
ul. Vavilova 38, Moscow, 119991 Russia

* e-mail: vigasin@kapella.gpi.ru
** e-mail: vit1@mailru.com
1028-3358/02/4712- $22.00 © 20842
para doublet shown in Fig. 2. As water vapor passed
through the adsorbent, a regular and well-reproducible
redistribution of the line intensities was observed. Since
water-vapor partial pressure in our experiment was
lower than 1 Torr, the Doppler broadening was ignored,
and only the collisional broadening was taken into
account. The lines observed are assumed to have the
Lorentz shape with integral intensities Sort, Spar, and
half-widths γort, γpar, respectively. The sum of two
Lorentz contours in the real time scale was fitted into
the measured line profiles, and thereby the change in
the integral intensities of ortho and para lines and, cor-
respondingly, the desired ortho-to-para ratio in water
vapor were quantitatively estimated. The resulting ratio

 =  as a function of time is shown in Fig. 3. As

is seen, ortho water molecules have higher mobility in
the carbon filter. For this reason, the initial and later
portions of water vapor diffusing through an adsorbent
were enriched in ortho and para molecules, respec-
tively. The ortho- and para-enriched portions of water
vapor were extracted from the flow at the correspond-
ing moments of time and frozen in a nitrogen trap.
Thus, accumulated samples of spin-modified water
with a volume up to 50 ml were stored in a household
refrigerator. After a certain time, they were defrosted
and subjected to repeated spectral analysis for the
ortho/para content. Water that had been in solid and liq-
uid phases and was enriched in ortho or para modifica-
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Fig. 1. Lower rotational levels of water. The arrows show
the transitions used for monitoring the ortho-to-para ratio.
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tions again exhibited an ortho-to-para ratio different
from the equilibrium value. The lifetime of the modifi-
cations was estimated to be tens of minutes for liquid
water and months for ice. We also found that, in addi-
tion to carbon, many other developed-surface sub-
stances such as zeolite, silica gel, etc., could serve as
spin modifiers of water.

The qualitative model of spin-selective adsorption
can be represented as follows. Let the total number of

water-vapor molecules be N0 and  and  mole-
cules be in the ortho and para states, respectively, so

that  +  = N0 . Assuming that the spin fractions
have different adsorption and desorption rates and do
not interconvert in gas phase and on the surface, we can
describe the diffusion process with the following set of
equations:

(1)

Here, the subscripts a and d refer to adsorption and des-
orption, respectively. The solution to this set of equa-
tions can be represented in the form
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Using this solution, we can describe the experimental
data (Fig. 3) finding the adsorption and desorption rates
by the method of least squares. At the initial time, the

ratio  = 3. The fit of the theory to experimental data

gives  = 0.9,  = 0.08,  = 3.5, and  = 0.5
in relative units. Thus, the kinetic constants for para
molecules are 3–6 times higher than the constants for
ortho molecules, which is possibly explained as fol-
lows. For a rarefied gas, the desorption of molecules
from a surface can be considered as a unimolecular pro-
cess [3]. This means that a molecule desorbs when
energy exceeding the separation energy from the sur-
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face is concentrated at the breaking bond. The corre-

sponding rate can be represented in the form k = .

Here, ν is the activation rate, W is the number of states
with energies higher than the dissociation threshold,
and Q is the quantum partition function. The basic
source of the excess internal energy is the intermolecu-
lar vibrational energy independent of the spin state of
an adsorbed molecule. Therefore, the number of states
W can also be considered as independent of the spin
modification. In contrast, the partition function can
involve the rotational component if the adsorbed mole-
cule accomplishes hindered or free rotation within the
molecule–surface complex. Therefore, the ratio

νW
Q

--------
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between the desorption constants is expected to be

.

To characterize the difference in desorption con-

stants, we introduce the equilibrium constant Keq = =

, where , Qsurf, and Qads are the partition

functions for the water molecule, surface, and mole-
cule–surface complex, respectively. Assuming that

 =  = 3, we conclude that  = .

Taking these ratios for the adsorption and desorption
rates, it is easy to approximate the experimental depen-
dence shown in Fig. 3 in the region where the ortho-to-
para ratio exceeds the equilibrium value. However, it is
impossible to describe the subsequent excess of the
para fraction over the ortho fraction. To make this
description complete, it is necessary to assume that the

ratio  is approximately equal to 0.5–0.7 rather than

to  = 0.3(3). As is shown in Fig. 3, the qualitative

behavior of the kinetics observed for the ortho-to-para
ratio is quite accurately reproduced under this assump-
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Fig. 4. Acceptable variations in the water-vapor absorption
coefficient normalized to the equilibrium value in the case of
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tively. Absorption averaged over the spectral regions
involving a large number of ortho and para lines is shown
by curve 3.
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tion. On the basis of the experiment and the model pro-
posed above, it is possible to assume that the nonequi-
librium separation of water into the ortho and para iso-
mers occurs spontaneously in various natural processes
in living organisms and environment. In particular, it is
not improbable that long-term fluctuational violations
of the ortho-to-para ratio 3 : 1 occur in the atmosphere.

Water vapor in the atmosphere is always under vary-
ing conditions and undergoes condensation and evapo-
ration in air on particles of aerosols and impurities, in
clouds, and on the ground. Therefore, the equilibrium
ratio between the spin modifications is likely violated
in water vapor under certain conditions during kinetic
transformations. It is of interest to estimate how this
violation can affect the transmission of the atmosphere.
If variations in the atmosphere transmission for a vio-
lated spin composition turn out to be significant, the
simulation of the radiative characteristics of the atmo-
sphere is impossible without comprehensive data on the
kinetic prehistory of water vapor in the atmosphere. To
estimate this effect, we calculated the model transmis-
sion spectrum for a water-vapor layer under atmo-
spheric conditions using the parameters of water-vapor
lines from the HITRAN database [4]. The calculations
were made for the spectral region near 10 µm, where
the Planck radiation curve for the heated ground has its
maximum. In addition to the “equilibrium” absorption
coefficient αeq corresponding to the radiation transmis-
sion through the water-vapor layer with the normal
ortho-to-para ratio 3 : 1, we calculated the “nonequilib-
rium” absorption coefficient αneq corresponding to a
violated ortho-to-para ratio. Absorption at individual
wavelengths and total absorption over the spectral
region turned out to be markedly sensitive to the viola-
tion in the ortho-to-para equilibrium. It is easy to show
that, depending on the degree of violation in the equi-
librium spin composition, the water-vapor absorption
coefficient normalized to its equilibrium value is in the
range

where x =  (see Fig. 4). The medium line shown in

Fig. 4 by a dashed line characterizes the nonequilib-
rium absorption coefficient averaged over the region
containing a large number of randomly arranged ortho
and para absorption lines.

Thus, in this study, we showed that the equilibrium
ortho-to-para ratio can be violated in water in contact
with an adsorbent. Metastable ortho and para modifica-
tions can exist in the form of independent substances
for a long time. We assumed that the ortho-to-para ratio

4
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can be violated in natural processes. This spin-equilib-
rium violation accompanying the condensation of
water vapor was shown to be of great importance for
the propagation of radiation and for the radiation bal-
ance in the atmosphere.
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All the available experimental data, starting with
those published in [1], indicate that the irreversible
change in the structure and physical properties after
low-temperature treatment (LTT) in liquid nitrogen or
helium (low-temperature ∆í effect) is common for
amorphous metal alloys (AMAs). Structural studies,
including diffraction of thermal neutrons; small-angle
scattering of neutrons and X-rays; Mössbauer, mag-
neto-optical, and spectral ellipsometric measurements
of both binary and multicomponent AMAs (a) Ni–P,
(b) Fe–Co–Si–B, (c) Co–Ni–Fe-Si–B, (d) Fe–Si–B,
(e) Fe–Ni–Si–B, and (f) Fe–Cu–Nb–Si–B testify to the
irreversible changes in topological and compositional
short-range order after low-temperature thermocycling.
Low-temperature treatment reduces the yield stress,
flow stress, Young modulus, and low- and high-temper-
ature parts of the relaxation spectrum, shifts the optical
conductivity spectra, attenuates the equatorial Kerr
effect, changes the Curie temperature, and increases the
saturation magnetization under a small decrease in the
coercive force or considerably decreases the coercive
force under a small increase in the saturation magneti-
zation. Experimental data were described and system-
atized in [2], where it was emphasized that the proper-
ties and magnitude of the irreversible changes in the
structure and physical properties of AMAs depend pri-
marily on the parameters of LTT (temperature and
duration) and the chemical composition of alloys.

The aim of this work was to elaborate a physical
model of the low-temperature ∆í effect. The corre-
sponding dynamical problem of thermoelasticity the-
ory has not yet been solved the initial and boundary con-
ditions for cooled AMA samples, which are thin plates
with a typical thickness-to-width ratio of ~10–3 [3]. For
this reason, we will first analyze the solution of the
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three-dimensional thermal-conductivity equation with
the boundary conditions assuming that all the surfaces
of the plate at the initial time τ = 0 are cooled instantly
to the coolant temperature íc, which is maintained con-
stant during the entire cooling process. The temperature
distribution has the form [4] 

(1)

where  is the Fourier number, α is the thermal diffu-

sivity; R1, R2, R3 are the plate length, width, and thick-

ness, respectively; , i = n, m, k; R is the

generalized size determined from R–2 = (R1)–2 + (R2)–2 +

(R3)–2; µi = ; and ki = . Let us analyze the

solution by substituting the typical parameters into
Eq. (1). It is known that the thermal diffusivity α for an
Fe-based AMA is equal to α ≈ 1.3 × 10–5 m2 s–1 [5].
Therefore, it follows from Eq. (1) that the time of the
complete cooling of the plate with R3 = 0.02 mm for the

relative temperature at its center θ = 

is equal to τ0 = 3.2 × 10–5 s with an accuracy of 0.01%.
Therefore, the cooling rate for LTT in liquid nitrogen
has a high value of V ~ 104–105 K s–1, which is compa-
rable to the cooling rate for amorphous ribbons under
quenching from a melt. Thus, since the ribbon AMA
samples have small thickness and relatively low ther-
mal diffusivity, the cooling process can be treated as a
“thermal shock” and its features can be analyzed by
taking only ribbon thickness into account, which
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reduces the problem to the one-dimensional case. The
numerical solution of the thermal-conductivity equa-
tion with similar initial and boundary conditions coin-
cides with the exact solution given by Eq. (1).

As the plate is cooled over the time interval 0 ≤ τ ≤
τ0 , thermoelastic stresses appear in the plate. Taking
into account the problem geometry (R1 ~ R2 ≥ R3), these
stresses can be determined by solving the one-dimen-
sional problem for the infinitely thin plate. The nonzero
thermoelastic-stress tensor components are [3]

(2)

where the Z axis is perpendicular to the plate surface,
σ11 and σ22 are the components of the stress tensor act-
ing at the unit areas that are perpendicular to each other
and parallel to the Z axis, G is the shear modulus, α0 is
the coefficient of thermal expansion, and ν is the Pois-
son coefficient. Thermoelastic stresses move with the
isotherm velocity, and their maximum magnitude σ11 =
σ22 ≈ 107–108 N m–2 is sufficient, as was shown in [2],
to initiate irreversible change in the short-range order,
which reduces density fluctuations in the AMA to their
disappearance.

The thermal shock changes only the plate volume.
Since the plate is thin, the problem of its oscillations
reduces to the two-dimensional case. In addition, the
plate can undergo only longitudinal oscillations,
because the temperature field is symmetric about the
neutral planes and, consequently, bending moments are
identically equal to zero in any of its sections. It is phys-
ically clear that the plate cannot be cooled infinitely
long, as follows from solution (1) of the thermal con-
ductivity equation. Therefore, the characteristic cooling
time (duration of the thermal shock) is taken to be equal
to τ0 = 3.2 × 10–5 s. At the time τ0 , the deformation rates

of the end surfaces are equal to  = .

As is customary in thermoelasticity theory, the aver-
aging is performed over the duration of the thermal
shock [6]. The equation of plate longitudinal oscilla-
tions has the form [7] 

(3)

where ∆ is the Laplace operator, 

is the speed of sound in the AMA, ρ is the density, and
Ö is the Young modulus. Solving Eq. (3) with the initial
and boundary conditions and normalizing the eigen-
functions, we finally obtain 

(4)
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where 

and 

 

Shear oscillations in the plate are absent, because its
shape does not change in the process of cooling, and,
consequently, the elementary-volume rotation  =

 is identically equal to zero. The above dis-

cussion indicates that thermoelastic stresses initiate the
process of changing the initial short-range order, and
longitudinal oscillations giving rise to the drift of the
mainly metalloid atoms make this process irreversible.
The drift of atoms can proceed via, e.g., the mechanism
proposed by Eiring [8]. Another possible mechanism of
relaxation of internal stresses rearranges atoms. The
irreversible displacement of one or several atoms under
the action of either thermoelastic stresses or longitudi-
nal oscillations of the plate can induce the avalanche
displacement of the group of neighboring atoms, if it is
accompanied by the reduction of their potential energy.
Such a process was realized in computational models of
amorphous clusters [9]. Thus, low-temperature thermal
cycling induces homogenization of the AMA structure,
which is accompanied by the lowering of the internal
stress fields in the amorphous matrix.

In order to evaluate the physical model developed
for the low-temperature ∆í effect, we carried out an
experiment aimed to test the following main state-
ments: (i) atomic drift responsible for the irreversible
changes in the short-range order is caused by the longi-
tudinal oscillations of the ribbon AMA samples and
(ii) thermoelastic stresses induce the process of chang-
ing the initial short-range order.

The first statement is proved by analyzing the solu-
tion of Eq. (3) with various boundary conditions. It fol-
lows from Eq. (3) that longitudinal oscillations do not
appear in samples with the ends fixed along the contour.
The joint LTT of Fe–Co–Si–B and Fe–Ni–Si–B amor-
phous alloy samples of systems with free and fixed ends
in liquid nitrogen demonstrated that both structural
characteristics and physical (magnetic, magneto-opti-
cal, and ellipsometric) properties do not change in sam-
ples with fixed ends [10]. The second statement could
be proved most conclusively by using an AMA ribbon
with zero internal stresses (σint = 0). For this purpose,
the Fe–Cu–Nb–Si–B AMA ribbon samples of 10-yr
age, in which σint ≈ 0 according to our studies, were
subjected to a two-stage treatment: annealing with a
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Magnetic characteristics of the Fe–Cu–Nb–Si–B amorphous metallic alloy in the initial state and after low-temperature treat-
ment (LTT) with preliminary 2-h annealing

Initial state Preliminary annealing (T = 493 K) with the subsequent LTT (T = 77 K)

coercive force, A cm–1 saturation induction, T LTT duration, h coercive force, A cm–1 saturation induction, T

0.1121 1.183 2 0.1066 1.192

0.1243 1.180 3 0.1109 1.183

0.0914 1.177 4 0.0930 1.187

0.1012 1.181 5 0.0992 1.189
subsequent LTT in liquid nitrogen. The results of inves-
tigations and the treatment parameters are listed in the
table. It follows from the table that the magnetic char-
acteristics after such a treatment do not change,
because a part of the LTT-induced thermoelastic
stresses compensated stress σint caused by heating. The
remaining part of thermoelastic stresses was insuffi-
cient to initiate structural changes in the amorphous
matrix.
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To explain mechanisms of generation of free charge
carriers in C60 single crystals under the action of light or
a penetrating radiation, we need to analyze both intramo-
lecular and intermolecular electronic processes [1]. The-
oretical calculations of the electronic structure [2, 3]
were recently compared with experimentally observed
optical transitions in molecular and solid (films and
microcrystals) states of C60 [1, 4, 5]. This comparison
testifies to the fact that the existence of a crystal field
changes the energy of intermolecular excited states and
forms a complicated electronic fine structure. In addi-
tion to the internal mechanisms, an external constant
magnetic field can also noticeably affect the process of
the photogeneration of charge carriers in C60 single
crystals [6, 7]. The main goal of the present study is to
clarify the role of intermolecular electronic processes
in the photogeneration of charge carriers in fullerite
single crystals and the possibility to affect these pro-
cesses by a weak magnetic field (B < 1 T).

In this study, comparative investigations of the pho-
toconductivity excitation spectra (within the photon
energy range from 2 to 5 eV) for C60 single crystals in
both the absence and presence of a magnetic field (B =
0.4 T) at room temperature are made. Qualitative differ-
ences in the photoconductivity spectra of fullerite sin-
gle crystals and films are determined in the absence of
a magnetic field. An increase in the photoconductivity
of C60 single crystals in a magnetic field within the pho-
ton energy range 2.4–4.5 eV is discovered. Local pho-
toconductivity peaks in the presence of a magnetic field
are shown to correspond to charge-transfer exciton
states.

In this study, we dealt with high-purity (99.95%) C60
single-crystal samples grown by vapor transport (subli-
mation). In order to excite the photoconductivity, we
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used the light of a DKSSh-200 xenon lamp that has a
virtually continuous emission spectrum in the visible
and ultraviolet spectral regions. In order to measure the
photoconductivity spectral curve, light from the lamp
was transmitted through a high-aperture monochroma-
tor. The electric current I flowing through indium con-
tacts that were fixed on one of the faces of a sample
with a silver paste served as a measure of the photocon-
ductivity. A constant voltage of 10–30 V was applied to
the contacts. To prevent light-induced oxidation, the
sample was placed into a sealed ampoule. A constant
magnetic field with the induction of 0.4 T was obtained
by means of an electromagnet.

The photoconductivity excitation spectra of C60 sin-
gle crystals in the presence and absence of the magnetic
field are shown in the figure. Decomposing the spectra
into Lorentz components allowed us to select three
optical transitions with energies of 2.64, 3.07, and
3.87 eV.

In the absence of a magnetic field, the photoconduc-
tivity excitation spectra of C60 single crystals had, in the
first approximation, the same basic spectral features as
thin fullerite films. Similarly to [1], the active genera-
tion of photocarriers occurred at photon energies E >
2.35 eV. Following [8], the photoconductivity spectrum
can be decomposed into three components. It was
shown in spectral studies of C60 films [1] that a peak
near 2.7 eV is the result of mixing of two types of exci-
ton states with the charge transfer, which mix with for-
bidden intramolecular excited states. In [3, 4], it was
found that the energy of 2.64 eV corresponds to the
hu  t1g allowed dipole optical transition.

The second optical transition, with the energy of
3.07 eV, is usually related to the charge-transfer exci-
tons, since this energy corresponds to none of the tran-
sitions in C60 and is higher than the energy of the lowest
Frenkel exciton [8].

At the same time, there exist qualitative differences
between spectral features of the photoconductivity for
fullerite single crystals and films. For example, the
3.5-eV peak observed for thin films and corresponding
to the hg  t1u allowed dipole optical transition [4] is
shifted towards higher energies in the photoconductiv-
002 MAIK “Nauka/Interperiodica”
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Photoconductivity spectra in the absence (curves 1 and 3) and in the presence (curves 2 and 4) of the magnetic field with the induc-
tion B = 0.4 T. Vertical solid and dashed lines indicate the positions of optical transitions in the presence of the magnetic field and
in its absence, respectively. Photoconductivity spectra of a sample after 10-min photoexposure are shown in the insert.
ity excitation spectra of C60 single crystals. In our
experiments, the shift of the optical transition in the
energy scale can be explained by the complicated inter-
nal structure of molecular zones, which is caused by
various disturbances in actual crystals. Owing to these
disturbances, the hu(hg) occupied five-fold degenerate
levels and the tu(tg) occupied three-fold free levels
split [9].

Investigation of the photoconductivity spectra in the
magnetic field with the induction B = 0.4 T yielded the
following results. An increase in the photoconductivity
of 5 to 15% was observed in the 0.4-T magnetic field
within the photon energy range 2.5–4.5 eV. In addition,
the photoconductivity spectra of C60 single crystals
placed into a magnetic field have a characteristic differ-
ence from those at B = 0. In the presence of the mag-
netic field, the band corresponding to E = 2.64 eV is
enhanced, and new maxima arise. The local photocon-
ductivity peaks at the energy E = 2.95 and 3.13 eV are
the most intense. The intensity of the local photocon-
ductivity peaks rapidly decreases in a magnetic field
with the oxidation of a sample (see insert in Fig. 1).
This is caused by the fact that deep traps for charge car-
riers appear when fullerites interact with oxygen.
Thereby, defects that promote the exciton dissociation
are neutralized. Eventually, this results in a decrease in
the charge-carrier number and quenching of the photo-
conductivity [10]. Decomposition into the Lorentz
components showed that the energy of the optical tran-
sitions had not changed in the magnetic field but that
the oscillator strength for the hu  t1g transitions had
increased (see figure).
Since features of the fullerite optical spectra are
formed by the intramolecular and intermolecular inter-
actions [1], we assume while discussing the mechanism
of the effect of a magnetic field on the photoconductiv-
ity that the field affects the exciton states. This conclu-
sion is also implied by the fact that the local photocon-
ductivity peaks lie within the zone of the charge-trans-
fer excitons. The effect of the magnetic field on the
mechanism of charge-carrier generation can be repre-
sented in the form of the following scheme. The light
absorption leads to the formation of an exciton. The
scattering on the surface, on the lattice oscillations, and
on the impurities, as well as on defects, results in the
dissociation of the excitons and formation of free carri-
ers. In [7], results were obtained that enable us to make
definite statements on the influence of spin states of
electron–hole pairs on transport processes in C60 single
crystals. The role of the magnetic field can be reduced
to only the variation of the spin state of an electron and
a hole in the excitons. This results in an increased prob-
ability of the electron–hole pair dissociating into free
charge carriers or in a reduced probability of their sub-
sequent recombination and, as a consequence, in an
enhancement of the photoconductivity in the presence
of a magnetic field. Thus, the magnetic field is capable
of governing intermolecular electronic processes of
the photogeneration of charge carriers in C60 single
crystals.
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Under the same external conditions, the fracture of
an amorphous metallic alloy can be either brittle or duc-
tile depending on its structural state, which is deter-
mined by the conditions of amorphization and struc-
tural relaxation [1–3]. Brittle fracture occurs as spalling
in the planes corresponding to the maximum tensile
stress and is not accompanied by any macroscopic flow
below the yield point. The ductile fracture of amor-
phous metallic alloys occurs along the planes corre-
sponding to the maximum shear stress after or simulta-
neously with plastic flow [1–3]. The fractographic pat-
tern of the fracture surface usually involves both a
nearly smooth zone caused by shear along a band
before the formation of a crack and a zone of vein-
shaped (brook-shaped) tracery. “Veins” are projections
produced at both surfaces due to the formation of a
local neck in the course of ductile fracture. Their thick-
ness is about 0.1 µm [1–3]. The morphology of the frac-
ture surface stems from the meniscus instability accom-
panying the development of viscous discontinuity in a
layer of a viscous material. It is a special case of the
Taylor instability.

However, the fracture surface in the samples of
amorphous metallic alloys sometimes has a cup-shaped
structure; i.e., a cellular pattern is observed. Such a pat-
tern results from fracture caused by the nucleation,
growth, and coalescence of pores. For instance, the
entire fracture surface of the FeBSiCo alloy that is par-
tially embrittled by thermal treatment had a cup-shaped
relief [4]. Veins in the FeBSb(Ce) amorphous metallic
alloy have a rather complicated structure: they consist
of chains formed by small pores and are separated by
chains of rather large pores [1]. The fracture pattern in
the Fe82B18 alloy is a combination of spalling regions
and domains of ductile fracture [1].
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Many details of the fracture of amorphous metallic
alloys still remain unclear, including the structural
mechanisms of their fracture and the conditions of the
implementation of these mechanisms. The aim of this
work is to analyze the structural mechanisms and con-
ditions of the fracture of amorphous metallic alloys
along shear bands and to classify the mechanisms of the
brittle, quasi-brittle, and ductile fracture of these mate-
rials.

BRITTLE AND QUASI-BRITTLE FRACTURE

Brittle and quasi-brittle fracture is initiated by tech-
nological or structural defects. In brittle materials,
where the stress σf of the nucleation and development
of cracks is lower than the yield point σy and local stress
concentration cannot decrease owing to the plastic flow,
fracture stress is determined by the most dangerous
structural defects, i.e., those resulting in the maximum
stress concentration.

When σf . σy, a plastic zone is formed near the
crack tip and has the form of a shear band or an array of
such bands. If the transverse size of the plastic zone is
much smaller than its length, it is the quasi-brittle frac-
ture of amorphous metallic alloys. The size of the thin
plastic zone arising near the tip of a crack under the
plane stress conditions and the displacement accompa-
nying crack opening can be well described quantita-
tively as functions of the crack length δ in the frame-
work of the Dugdale or Bilby–Cottrell–Swinden mod-
els [5, 6]. In these models, the material is assumed to be
ideally elastoplastic, which is the case for amorphous
metallic alloys. Assuming that fracture occurs when the
displacement at the crack tip reaches the critical value,
i.e., δ = δc, we obtain the fracture stress in the form

(1)

The fracture of an amorphous metallic alloy takes
place when the plastic-zone size, crack opening width,
and stress intensity factor reach certain critical values.

σf 2
σy

π
-----
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THE CONDITION FOR THE FORMATION
OF SHEAR BANDS

The threshold flow stress τm in amorphous metallic
alloys decreases with increasing excess free volume in
the deformation process and reaches a certain steady-
state value τ0 [1–3]. This loss of the material strength
(decrease in viscosity) causes the localization of plastic
flow, i.e., the formation and propagation of shear bands.
Ignoring the dependence of local flow stress on the
strain rate, one can represent the local stress–strain
curve of an amorphous metallic alloy in the simplified
form

(2)

In the framework of this approach, the stress τm of the
initiation of heterogeneous plastic flow and steady-state
stress τ0 are the main microscopic parameters charac-
terizing the plastic behavior of an amorphous metallic
alloy.

The stress field in the tip of the shear band is similar
to the stress field from a shear crack including stress τ0
corresponding to the resistance to shear in the band.
Using this analogy, we can introduce stress intensity
factor Kb for the band. Under uniform applied shear
stress τ, the stress intensity factor for the shear band of
width L has the form

(3)

where β is a numerical factor of about unity. When the
stress intensity factor reaches a certain critical value
determined by the mechanisms of energy dissipation
accompanying the propagation of the shear band, this
propagation becomes unstable. The energy dissipation
per unit length of the propagation of the shear band can

be represented as  = (τm – τ0)ue; here, ue is the mean
displacement at the end domain of the shear band,
where shear stress decreases from τm to τ0.

The criterion for the propagation of the band takes
the form

(4)

which is the Griffiths-type energy-balance equation
determining the critical size of the shear band with
respect to the applied stress.

Various structural inhomogeneities of different
scales in amorphous metallic alloys modify the condi-
tion for the development of shear bands and can induce
internal stresses [7] and impede the propagation of the
bands. The macroscopic condition for the development
of bands in amorphous metallic alloys, i.e., the condi-
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tion under which the shear band overcomes obstacles
caused by meso- and macroscopic structural inhomoge-
neities, is represented in the form 

(5)

where the second critical value  of the stress inten-
sity factor is determined by the nature, scale, and con-
centration of structural inhomogeneities in the amor-

phous metallic alloy and  < .

DUCTILE FRACTURE ALONG SHEAR BANDS

At σf > σy, the fracture of amorphous metallic alloys
is ductile; i.e, the nucleation of a microcrack is pre-
ceded by the formation of a shear band [1–3]. Steps
arising at the free surface of a sample due to the devel-
opment of shear bands are stress concentrators, whose
sizes reach the critical value corresponding to the
nucleation of a crack and its subsequent opening along
the shear band. The crack is formed along the shear
band, when the stress intensity factor K of the viscous
crack exceeds the critical value Kc.

The rheological behavior of the material within the
shear band is unknown. For this reason, the shear stress
dependence of the shear strain rate is approximated by
the power function

(6)

where ηn and n are the parameter and exponent of non-
linear viscosity, respectively, and material parameters
τ0 and  have dimensions of stress and inverse time,
respectively. In [8, 9], the conditions and features of the
formation and development of the meniscus instability
were analyzed for the fracture of amorphous metallic
alloys along shear bands. However, the fracture mecha-
nism associated with the nucleation and growth of
pores can be energetically and kinetically more favor-
able than the meniscus instability.

Let us discuss the conditions for the fracture of
amorphous metallic alloys along shear bands due to the
development of the system of pores. The kinetics of
pore nucleation in a deformed material were repeatedly
analyzed earlier [10]. The rate of the heterogeneous
nucleation of pores at structural inhomogeneities in the
shear band of amorphous metallic alloys under normal
stress σn is

(7)

where C0 is the concentration of the potential sites for

pore nucleation, Z = (3πFΓ3kT)–1/2 is the Zel’dov-

ich factor, R = , Ω is the atomic volume, G* =
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 is the nucleation energy for a pore of the critical

size at a structural inhomogeneity, F is the pore shape
factor, and Γ is the fracture energy.

In the kinetic calculations of the growth of pores in
the shear band, where the stress dependence of the
material strain rate is described by Eq. (6), the stress
distribution in the ensemble of growing pores confined
within the shear band is preliminary calculated [11].
The rate of increase of the volume fraction of pores in
the shear band is written as

(8)

where ψ = , L is the mean distance

between the pore centers in the plane of the shear band,
and h0 is the initial thickness of the shear band at the
beginning of the development of the pore system.

It is assumed that fracture occurs when the volume
fraction f of pores in the shear band reaches the critical
value f *. Then, the time until fracture as a function of
the applied stress and material viscosity in the band has
the form

(9)

and is proportional to material viscosity in the shear
band.

The fracture mechanism in an amorphous metallic
alloy changes from the finger-shaped development of a
viscous crack to the nucleation, growth, and coales-
cence of pores, when the characteristic time t3 of pore
nucleation in the volume v b = ∆xh of unit width and
length ∆x in the shear band is much smaller than the
characteristic time tcrack of passing distance ∆x by the
viscous crack. This kinetic criterion has the form

(10)

The velocity v (σ, n) of the meniscus-instability-
induced propagation of the viscous crack in the shear
band was calculated in [9] for different n values. The
mean distance between the sites of the heterogeneous
nucleation of pores can be used as the characteristic
size ∆x in Eq. (10).
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It is well known that structural relaxation in amor-
phous metallic alloys embrittles a material [1–3]. This
embrittlement is caused by the decrease in the excess
free volume, pore nucleation, and segregation of metal-
loids at the free and pore surfaces. The more relaxed the
state of an amorphous metallic alloy, the higher the
concentration of the potential nucleation sites for
microscopic discontinuities, C0 ~ (∆x)–3, and, therefore,
the higher the nucleation rate J and material viscosity;
i.e., the V value for fixed σ is lower.

The above analysis leads to the following conclu-
sions concerning the mechanisms and conditions of
fracture along shear bands in an amorphous metallic

alloy. When  > Kb >  and K > Kc, a crack devel-
ops along the shear band inhibited by structural inho-
mogeneities. This process can be accompanied by the
brittle fracture of large structural inhomogeneities in
the amorphous metallic alloy, which impede band
development. As a result, mixed ductile–brittle fracture

occurs along shear bands. When Kb >  and K > Kc,
ductile fracture occurs along shear bands. When crite-
rion (10) is met, this ductile fraction is due to the mech-
anism of the nucleation, growth, and coalescence of
pores. When the opposite criterion is satisfied, the frac-
ture is attributed to the meniscus instability. When the
conditions for both these mechanisms are close to each
other, the mixed mechanism of the development of the
ductile crack is realized.

In conclusion, we can list the following main frac-
ture mechanisms in amorphous metallic alloys.

(i) Brittle fracture, where the crack plane is perpen-
dicular to the tension axis.

(ii) Quasi-brittle fracture, i.e., the combined devel-
opment of a crack and a shear band and the formation
of an array of secondary bands near the crack tip.

(iii) Mixed brittle–ductile fracture along shear
bands, i.e., either the formation of pores in the shear
band, which are united by brittle cracks, or the develop-
ment of the main viscous crack due to the formation of
brittle cracks–satellites.

(iv) Ductile fracture along shear bands due to the
nucleation, growth, and coalescence of pores.

(v) Ductile fracture along shear bands due either to
the meniscus instability of the viscous crack front or to
the mixed mechanism of the nucleation and growth of
pores combined with the meniscus instability.

(vi) Ductile fracture accompanying homogeneous
flow in amorphous metallic alloys due to the develop-
ment of the pore system in the entire sample.
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Studies of high-speed unsteady supersonic flows are
of great importance from the standpoint of the develop-
ment of modern aviation and rocket engineering.
Unsteady effects become especially significant in the
case of controlling and correcting rocket engines,
whose operating times are comparable to those
required for attainment of the steady-state regime. The
same problem is urgent for telescopic nozzles and
engines with strong thrust control in the takeoff paths of
a rocket and at the moment of its launch. In these
regimes, unsteady effects are crucial; therefore, disre-
garding them may cause an emergency situation. The
structure of corresponding flows cannot be described
analytically. Therefore, it must be studied by experi-
mental and numerical methods.

Unsteady effects must be taken into account when
developing efficient methods for high-altitude captive
tests of rocket engines. To decrease loads on the nozzle
at the moment of initiating engines and to provide an
initial rarefaction in the gas path of the test bed, ejectors
are used [1]. However, when testing promising engines
with shorter settling times, it is difficult to ensure the
integrity of the nozzle.

On starting a rocket-engine nozzle, a starting shock
wave accompanied by an unsteady supersonic flow
propagates in the nozzle [2, 3]. Entering into the ejec-
tor, the shock wave interacts with an inducing jet. Per-
turbations caused by the shock–jet interaction can
move upstream along the boundary layer formed by the
flow behind the shock and can reach the region near the
nozzle, which may result in nozzle failure. This effect
is a specific danger for nozzles subjected to high-alti-
tude captive tests.

The effect of the starting shock wave can be another
possible cause for an increase in the pressure on the
exterior wall of the nozzle.
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** Moscow Institute of Heat Engineering, 
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Tentative experiments have shown that when a
shock wave escapes from a channel into semi-infinite
space, the diffracted shock wave propagates outside the
channel in the opposite direction along the channel gen-
eratrix (Fig. 1) [4]. When the diffracted shock wave
reaches the rear wall, the pressure on the wall rises by a
factor of 1.5. Such an effect was registered by pressure
transducers in the experiment described in [4]. When a
shock wave escapes from a nozzle into a bounded vol-
ume in conditions of high-altitude captive tests or in
flight conditions, an increase in the pressure on the noz-

1 5 6 2

8 3 4 7

Fig. 1. Shadow photograph of the shock-wave egress from
a cylindrical channel: (1) diffracted shock wave; (2) surface
separating the outward gas flow and environmental gas;
(3) line of flow separation, which convolutes into a vortex (4);
(5) fan of rarefaction waves, which is closed by the oblique
shock (6); (7) stagnation shock wave separating the
expanded gas escaping from the nozzle and the denser gas
behind the diffracted shock wave; and (8) back wall.
002 MAIK “Nauka/Interperiodica”
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zle exterior walls is also possible, which may lead to the
nozzle fracture.

In the present paper, we propose a method of exper-
imental and numerical analyses of perturbations that
originate when starting a rocket engine and affect its
nozzle under high-altitude captive tests. Modeling of
the captive tests of a rocket engine was carried out with
a test facility composed of a shock tube and a super-
sonic wind tunnel (Fig. 2). Our model was composed of
an axisymmetric diffuser with a nozzle installed and an
ejector providing the desired rarefaction in the diffuser.
The model was fixed to the shock-tube end wall. The
ejector was a square channel with two metallic walls.
Two other walls were formed by thick plane-parallel
glasses used for shadow photographing processes that
occur in the ejector. All features of the axisymmetric
gas-dynamic channel used in the high-altitude captive-
test bed were reproduced in the model presented in
Fig. 2. Moreover, complete geometric similarity was
provided in all of the sections except for the square-
shaped ejector. Such a change does not affect the gas
flow in the vicinity of the nozzle. In the ejector, the
change in the shape of the channel cross section causes
negligible perturbations with respect to the effect of the
ejector jets.

The process of starting the nozzle is simulated for
the case when a gas heated behind the reflected shock
wave in the shock tube escapes from the nozzle. The
desired pressure drop at the nozzle inlet is provided by
choosing initial pressures in the shock tube and dif-
fuser, and, in addition, the Mach numbers M0 for the
shock wave in the shock tube.

Visualization and registration of the starting process
were performed using an IAB-451 shadow device and
a VSK-5 high-speed camera. PSV dynamic-pressure
transducers with a time resolution of 1 µs were used for
measuring pressure in the diffuser.

Before the onset of the experiment, air in the low-
pressure channel of the shock tube was maintained at
atmospheric pressure. In order to provide the required
rarefaction in the diffuser, compressed air under a stag-
nation pressure up to 40 atm was injected into the ejec-
tor. Then, hydrogen under a pressure of 80 atm was
injected into the high-pressure chamber of the shock
tube. After a diaphragm between the high-pressure and
low-pressure chambers of the shock tube had been bro-
ken, a shock wave was formed that reached the shock-
tube end with the nozzle installed. As a result of the
shock wave’s reflection from the shock-tube end, a gas
volume appeared at a high pressure and with a high
temperature, both determined by the shock Mach num-
ber in the shock tube.

The experiments were carried out over a wide range
of diffuser pressures (from 0.15 to 1.0 atm) and for var-
ious Mach numbers (from 3.05 to 4.28) of the shock in
the shock tube. These values of the Mach number
ensure a pressure drop near the nozzle inlet of 100 atm
with varying diffuser pressure. The pressure trans-
DOKLADY PHYSICS      Vol. 47      No. 12      2002
ducer 1 (see Fig. 2) measured pressure behind the noz-
zle, while transducers 2, 3, and 4 recorded the propaga-
tion of the starting shock wave in the diffuser. As the
shock wave propagated in the channel, the pressure
amplitude dropped (Fig. 3). Motion of the shock wave
reflected by the ejector towards the nozzle was not
observed. Shadow photographs of the gas flow in the
ejector mixing chamber showed that, when entering the
ejector-jet region, the starting shock wave introduced
an additional turbulence into the flow, although it sub-
sequently decomposed and transformed into acoustic
perturbations.

The experiments have shown that the increase in the
pressure on the nozzle exterior wall is caused by the

Diffuser Pressure transducers Ejector

Observation
region

Ejector
nozzleRocket-engine 

 

Dcr

Ldiff Lej

D‡ Ddiff Dej

1 2 3 4

Fig. 2. Layout of the physical model for starting an engine.
Dcr, Da, Ddiff, and Dej are the diameters for the critical cross
section of the nozzle, for the nozzle exit section, for the dif-
fuser, and for the ejector, respectively; Ldiff and Lej are the

lengths of the diffuser and ejector.  = 6.5,  = 1.1,
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Fig. 3. Readings of the pressure transducers nos. 2 and 3
positioned in the diffuser (curves 1 and 2, respectively) as
functions of time (see Fig. 1). The diffuser pressure is P0 =
0.15 atm and the shock-wave Mach number is M0 = 4.18.
Curve 3 shows the time dependence of the pressure drop
calculated for the position of the transducer no. 2.
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starting shock wave, while the perturbation due to the
interaction of the shock wave with the ejected jet does
not affect the nozzle.

The same result follows from our numerical simula-
tion of the process. We have developed an algorithm for
evaluating the flow field, which is based on the Steger–
Warming finite-difference scheme for solving time-
dependent two-dimensional Euler equations. The com-
putational meshes used make it possible to resolve the
fronts of leading and secondary shocks with relative
errors of about 1% and 10%, respectively. We solved
the problem in dimensionless variables, choosing the
throat diameter d1 as the spatial scale and the quantity

 as the velocity scale, the latter being smaller by a

factor of  than the sonic velocity in the initial gas.

We chose the quantity  and initial values P2 and

ρ2 as scales of time, pressure, and density, respectively.
We calculated the starting process of a rocket engine

that had been initiated in a high-altitude test bed with an
ejector. Initial values for pressure and Mach number
corresponded to the experimental conditions. The lay-

P2

ρ2
-----

γ
d1

P2/ρ2

-----------------

987 6 5 4 3 2 1

7 9 7 7898

Fig. 4. Isobars found numerically for a two-dimensional
unsteady flow at a time moment of 70 µs (the corresponding
dimensionless time is equal to unity) after the onset of the
outflow from the nozzle. The pressure in the diffuser is P0 =
0.2 atm, and the rocket-engine jet pressure is 120 atm.
Curves from 1 to 9 correspond to pressures of 0.12, 0.14,
0.16, 0.18, 0.20, 0.22, 0.24, 0.26, 0.28 of P0, respectively.
out of our facility is shown in Fig. 2. It should be
emphasized that, in the mathematical model, the ejector
is assumed to have a circular cross section, as in an
actual test bed, in contrast to our experiments using the
ejector with a square cross section.

The calculation results qualitatively describe the
load distribution observed in the experiment. We imply
a pressure increase in the region between the nozzle
wall and diffuser after the egress of the shock wave
from the nozzle (Fig. 4). At the initial time, the pressure
outside the nozzle exceeds that inside it by a factor of
about 1.5.

The time dependence calculated for the pressure in
the diffuser cross sections containing the transducers is
smoothed compared to the experimental curve (Fig. 3).
At the stage of attaining steady-state flow near the noz-
zle, the total pressure impulse coincides with the exper-
imental value. According to the calculation results, the
reflection of the starting shock wave from the ejector is
negligible.

Thus, the pressure measurements, visualization of
the process, and numerical simulation show that no
reflected shock wave is observed when the starting
shock wave interacts with the ejector jets. The diffrac-
tion of the starting shock wave by the nozzle-exit sec-
tion results in the pressure on the nozzle exterior wall
becoming higher than that inside the nozzle, which may
cause its rupture.

The unsteady wave processes observed should be
taken into account when calculating the starting
regimes of rocket engines. The proposed method of
modeling the test-bed study of rocket engines signifi-
cantly lowers its cost. The method allows us to optimize
the operations of a high-altitude test bed with a full-
scale engine and to obtain additional information on
loads on the nozzle.
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The current status of the development of spacecraft
is characterized by the creation of a highly integrated
module architecture of a new class of small spacecraft
(nanosatellites) for a wide range of scientific and
applied problems [1].1 

The basic requirements for space microthrusters of
this class of spacecraft are associated with the possibil-
ity of reaching minimum thrust J ~ 1–5 nN s with a fine
dosage of an individual pulse in a wide range (within
four–five orders of magnitude) and high monochroma-
ticity of the accelerated flow ε > 0.8 in the undeveloped
micronewton propulsion range Fp ~ 10–7–10–5 N and
specific impulses Isp ≥ 103 s.

An energy–ballistic analysis of promising beam
space thrusters (solar and laser thermal, detonation,
solar sail [2, 3], etc.) indicates that the pulse and quasi-
steady-state laser microthrusters of the erosion type
with various mechanisms of creating propulsion (evap-
oration or detonation), where the working medium in
vacuum is exposed to laser radiation with power den-
sity I0 ~ 106–108 W/cm2, fulfill these requirements most
completely and use (as an energy source) high-bright-
ness semiconductor laser diodes with energy efficiency
higher than 60% and average radiation power Nrad ~
5−10 W for spacecraft [4].

In the parametric set of erosion-type laser space
thrusters (with various forms of optic discharges in vac-
uum) under development, the generation, heating, and
shock-wave acceleration of gas–plasma flows occur at
the following successive stages: laser ablation (light
erosion) of a solid working medium (easily vaporized
dielectric materials and metals) in the target chamber of
a thruster, radiative-gas dynamic heating, the formation

1 According to the definition of the International Aerospace Feder-
ation, the class of microspacecraft involves microsatellites with
mass 10–20 kg, nanosatellites with mass 1–10 kg, and picosatel-
lites with mass below 1 kg.
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and acceleration of the plasma under the optic break-
down of the medium, and the generation of a light det-
onation shock wave in the acceleration chamber of the
thruster.

The primary fundamental limit of an erosion-type
laser space thruster in the new range of propulsion and
minimal thrust is associated with the fact that the
ingress of an evaporated substance into the optical dis-
charge in a laser space thruster is delayed by ~∆t1 ~
(3−5) × 10–6 s (Fig. 1b) with respect to the laser pulse
due to the lag of phase transitions for any mechanism
(resonance or thermal laser ablation, light erosion, or
pyrolise) of the generation of the working medium [5].
The absence of a mass yield  coordinated withṁ t( )
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*
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Fig. 1. Timing diagram of the operating processes in a two-
stage erosion-type laser space thruster: (a) the power den-
sity of the first laser pulse in the irradiation area of a dielec-
tric target, (b) the mass rate of the target working medium
in the gaseous phase, (c) the power density of the second,
accelerating, laser pulse in the optical-breakdown area, and
(d) the x–t diagram of the gas–plasma flow behind the sec-
tion of the laser space thruster.
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laser pulse dynamics I0(t) is responsible for not only the
increase in the longitudinal dispersion of velocities and

the decrease in the flow monochromaticity ε ~  but

also for a considerable tail thrust, because a portion m2
of the evaporated substance is not involved in the accel-
erating laser cycle and continues to enter with thermal
velocity upon termination of the laser pulse.2 This cir-
cumstance makes it impossible to achieve the necessary
minimum thrust and to ensure a fine dosage of control-
ling pulses and restricts the range of mass-averaged
velocities  ~ 105 cm/s (specific impulses Isp < 103 s)
and frequency characteristics of the laser space thruster.

New possibilities of overcoming these limits are
associated with the combined (evaporation and detona-
tion) mechanism of creating propulsion in one operat-
ing cycle of the laser thruster. This two-stage scheme of
the laser space thruster implies the use of two consistent
(in spectral energy and dynamic parameters) laser
pulses (heating with  ~ 10–4 s and accelerating with

 ~ 10–6 s) at the generation stage of the working
medium and acceleration stage of the gas–plasma flow
in the front of the laser detonation wave.

The aim of our experimental investigations is to
determine the capabilities of the two-stage acceleration
of active gas–plasma media of erosion-type laser space
thrusters. This two-stage mechanism of laser accelera-
tion in a laser space thruster was analyzed theoretically
in [6].

Radiation gas dynamics and thermophysical pro-
cesses in chambers at all stages of transformation of
laser-radiation energy in thruster sections and propul-
sion–energy characteristics of the laser space thruster
were examined experimentally on a test bench devel-
oped for the LUCH complex [7]. This test bench
involves an evacuated (p0 ~ 10–2 Pa, Vch ~ 1.7 m3) ther-
mostabilized chamber with differential pumping and a
system of gas–vacuum collectors for preventing the
interference of accelerated gas–plasma flows ahead of
the section of the laser space thruster. This chamber is
electro-optically matched to the module of optical diag-
nostics and the propulsion measurement module. The
laser space thruster unit was mounted in the vacuum
chamber on a propulsion measurement platform of high
amplitude–frequency sensitivity, which was first devel-
oped to determine the pulse and periodic actions (∆τp ~
10–6–10–1 s, fm ~ 2 × 10–2 Hz) and to detect microdis-
placements [8] (quantitative characteristics of thrust J,

2 Mass loss m2 is approximately equal to mass m1 effectively par-
ticipating in the acceleration process, and flow monochromaticity

for v2 ! v1 is ε ~  and has the physical meaning of the

utilization factor of the working medium in the laser space
thruster.

v 2

v 2
------

m1

m1 m2+
--------------------

ṽ

τp1

τp2
propulsion Fpr, and specific mechanical recoil momen-

tum C ~  [N s/J) and involved a torsion balance

suspended in vacuum, pendulum trap–calorimeter of
gas flows, ballistic pendulum, and piezoelectric sensors
of pressure. The module of laser sources of the bench
makes it possible to carry radiation (λ1 = 10.6, 1.06, and
0.693 µm) pulses (τp ~ 10–7–10–3 s) to the active cham-
ber of the laser thruster with power density I0 = 104–

109 W/cm2 and energy density  ~ 10–1–102 J/cm2.

The module of optical diagnostics is designed to deter-
mine the space–time fields of densities, temperatures,
and velocities of charged and neutral particles in the
chamber and outside the laser space thruster. This mod-
ule involves the complex of pulse holographic interfer-
ometry with field visualization, schlieren photodetec-
tion of the macrostructure of gas–plasma flows in the
laser space thruster chamber prototypes with quartz
walls, spectral chronography, and emission and absorp-
tion spectroscopy with photoelectric detection of high
space–time resolution [9].

A (CH2O)n target of various shapes (plane, conic,
hemispherical) with a developed surface (S0 ~ 0.17–
3.1 cm2) was situated at the end of a cylindrical molyb-
denum target chamber connected to the profiled accel-
eration chamber and two optical entrance units for laser
radiation. The characteristic parameters of laser radia-
tion in the tandem are λI ~ 1.06 µm, I01 ~ 105–
108 W/cm2, and  ~ 4 × 10–4–3 × 10–5 s for the first
laser pulse introduced into the target chamber and λII ~
1.06 µm, I02 ~ 107–109 W/cm2, and  ~ 0.7–1.2 ×
10−6 s for the second laser pulse generated with the con-
trolled time delay ∆t2 ~ 10–5–5 × 10–5 s in the detonation
(acceleration) chamber.

Analyzing experimental data obtained for the
dynamics of radiative-gas dynamic and thermal pro-
cesses, stages of solid–gas–plasma phase transitions,
heating and shock-wave acceleration of the working
medium at optical breakdown of the medium, and the
formation of a laser detonation wave in the two-stage
laser space thruster, we arrive at the following conclu-
sions.

(i) The optimal mode of the generation of the work-
ing medium in the gaseous phase with controlled mass
expense [  ~ 10–4–10–6 g/s] and high efficiency of

laser ablation ηla ~  ≥ 0.8ηle (without condensed

phase) is the mode of the maintenance of the laser-
induced wave of developed evaporation in the target
chamber of the laser space thruster. Since the thermal-
ionization wave (i.e., plasma shielding of laser radia-
tion on the radiated target with low thermal conductiv-
ity) is absent at this stage (∆t2), it is possible to deter-

m∆v
Ep

------------

Ep

S0
-----

τp1

τp2

ṁ t( )
∆mṽ

Ep
------------
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mine the optical–thermal and criterion parameters of
the action, which are related to controlling parameters

I01, , , …  for realizing time-controlled laser-

light erosion and the controlled expense of the working
medium of ablated targets, whose chemical composi-
tion is complex and whose initial gas density distribu-
tion is isotropic until the onset of the optical breakdown
(generation of a laser detonation wave). Direct calori-
metric measurements of the power and energy of laser
radiation absorbed by a (CH2O)n target with the devel-
oped surface were carried out with a metallic bolome-
ter, which had bismuth thermal resistance and was
located in the target. The mechanical recoil momentum

C ~  was measured by a ballistic pendulum in

vacuum. These measurements make it possible to deter-
mine the effective heat-transfer coefficient Kht ~ 0.8 and
to achieve, by multiparametric optimization of the con-
ditions of irradiation of targets, the laser-ablation effi-
ciency ηla ~ 0.75–0.9 (Fig. 2) in the range 106 < I01 < 7 ×
107 W/cm2 of the power density of the first laser pulse.

(ii) The dynamics of the shock-wave acceleration
stage for the gas–plasma flow in the laser space thruster
are determined by the velocity characteristics (  ~ 5 ×
104 m/s), shape, and macrostructure of the laser detona-
tion wave generated in low-threshold optical break-
down (  ~ 108 W/cm2, tbr ~ 3 × 10–7 s) at the leading
edge of the second laser pulse (t2 ~ 3 × 10–6 s). The
acceleration efficiency, which is determined by the con-
dition of optimal space–time matching of the waves of
developed evaporation and laser detonation, depends
substantially on the dimension relations and profiles of
the target and laser-space-thruster chambers and the
spectral energy and dynamic parameters of the laser
pulses in tandem. By varying the duration  and
shape (slopes of the leading and trailing edges) of the
first laser pulse and time delay (∆t2) of the initiation of
the optical breakdown and spatial localization of the
generation area of the laser detonation wave in the
ranges limited by the conditions for achieving the max-
imum expense (∆t2), more than 90% of all the gas-
eous medium falling into the target chamber can be
involved into the acceleration cycle. Even under nonop-
timal space–time conditions of the development of the
laser detonation wave and size ratios of the active
chambers of the laser space thruster (dynamics and
macrostructure of the interaction area), the measured
values of the mass-averaged flow velocities at the sec-
tion of the laser space thruster and monochromaticity ε
(Fig. 2) exceed the respective values achieved at laser
space thrusters based on single-stage schemes with
evaporation or detonation mechanisms of creating
thrust by ~25 and ~30%, respectively.

---
 τp1

Ep1

S0
------- --



-
 m∆v

Ep1

------------


ṽ

I02**

τp1

ṁ
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(iii) The comparative analysis of the monochroma-
ticity of the flow and specific impulse, propulsion effi-
ciency, and minimum thrust in single-stage and two-
stage schemes of erosion laser space thrusters, which

have close values of the action parameters (Πa ~ I0 ),

energy contour, and energy of laser pulses , indi-

cates that, in contrast to laser space thrusters based on
the evaporation acceleration mechanism, fine control of
the dynamic parameters of thrust is possible within the
range of four to five orders of magnitude with minimum
(Jt < 0.05J) tail thrust in two-stage laser space thrusters.

(iv) In the range of the controlling parameters of the
laboratory laser-space-thruster models under investiga-
tion, the values experimentally determined for the spe-
cific mechanical impulse and mass-averaged velocities
are highest for microthrusters of this class of laser space
thrusters based on erosion and gas working media.
These experimental results are not extreme and can be
improved with multiparametric optimization of the
dynamics and macrostructure of the laser detonation
wave and the geometry of the laser space thruster
chambers.

Thus, successive stages of generation (laser abla-
tion), radiative gas dynamic heating, and shock-wave
acceleration of the working medium were realized by
two matched (in spectral, energy, and dynamic charac-
teristics) laser pulses. This makes it possible to achieve
both high thrust efficiency of the transformation of
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Fig. 2. Experimental data for specific mechanical impulse C
in the (1) single-stage (evaporation) laser space thruster and
(2) two-stage laser space thruster (parameters of the second,
detonation, laser pulse were I02 ~ 2 × 107 W/cm2 and τp ~

1.2 × 10–6 s), flow monochromaticity ε in the section for
(3) single-stage and (4) two-stage laser space thrusters, and
(5) mass-averaged velocity  of the flow in the section of
the two-stage laser space thruster. All the quantities are
given as functions of the power density of laser radiation
with λrad = 1.06 µm.
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laser-radiation energy into the kinetic energy of the
accelerated gas–plasma flow with minimum thrust and
high monochromaticity of the flow and to overcome the
fundamental limits of laser space thrusters based on the
evaporation mechanism of acceleration in the undevel-
oped micronewton thrust range of microsatellites.
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Remote control of robots over the Internet is a prom-
ising new direction of scientific research. Among its
possible applications are remote training, remote con-
trol of automated production, control of robots residing
in extreme conditions (e.g., the Internet was used for
controlling the Sojourner mobile robot for navigation
on the Martian surface [1]).

In the Keldysh Institute of Applied Mathematics,
Russian Academy of Sciences, methods for controlling
robots via the Internet network are being developed.
These methods employ mathematical models of a robot
and of its working space in the online regime [2–5].
Such an approach made it possible to use a convenient
control medium and, to a certain extent, to overcome
the existence of indeterminate time delays in a commu-
nication channel. The time delays are especially crucial
in the case of interaction of a robot with a mobile
object. Based on a dynamic model of an object, which
is capable of predicting its motion, and on a technical-
vision system that supplies the robot with data required
for predicting measurements and gives an operator a
view of the robot’s workspace, we have managed to
realize the control of such an interaction.

In the experiments being described, a rod vibrating
on a bifilar suspension (similar to a gymnastic trapeze)
having three degree of freedom was used as a mobile
object. Vibrations of the rod were recorded by two TV
cameras. One of them was attached to an immobile
beam to which the upper ends of the suspension threads
were fixed, while the other was situated to the side of
the rod. Previously, an algorithm of rapid automatic
gripping of a rod by a manipulating robot supplied with
only one TV camera was developed and successfully
tested in the experiments described in [6, 7]. Below, we
deal with an analogous experiment not automated but
being controlled by a remote operator via the Internet.
In this new experiment, the quantities to be measured,

Keldysh Institute of Applied Mathematics, 
Russian Academy of Sciences, 
Miusskaya pl. 4, Moscow, 125047 Russia
e-mail: belousov@keldysh.ru; sazonov@keldysh.ru; 
chebukov@gh60keldysh.ru
1028-3358/02/4712- $22.00 © 0863
mathematical models, and algorithms are strongly
redundant and universal. This makes the system stable
with respect to time delays and reduces requirements
for its preliminary adjustment.

1. The following scenario of the experiment is pro-
posed. At the moment of initiation of the control code,
the rod is immovably suspended, and the manipulating
robot is in the initial position outside the region in
which the rod must move. A remote operator choosing
a point on the image of the rod, which is generated by
the computer model, sets the initial motion of the rod.
Then, the robot excites vibrations of the rod by grab-
bing the chosen point with a random velocity. The con-
trol code (at the server side) determinates the motion of
the rod, calculates the moment of time for gripping and
the rod position at this moment, controls the robot, and
identifies whether the grip does occur or the attempt for
gripping should be repeated.

The listed problems are solved in the same manner
as in [6, 7]. The only difference consists in employing
more perfect cameras, algorithms for the primary treat-
ment of visual information, and algorithms for the
determination and prediction of the movement.

The cameras are digital, and they are connected to a
computer by an IEEE 1394 bus (Fire Wire). Each cam-
era yields an RGB24 color picture at a resolution of
640 × 480 pixels and at a frequency of 15 frames per
second. The rod ends are supplied with red markers,
whose images in the camera’s pictures can be recog-
nized with minimal calculation expenditures. The coor-
dinates of these images are transmitted to the client side
in real-time mode with the help of software packages,
yielding network traffic of 0.1 kb s–1. Results illustrat-
ing the potentialities of the code that determines the
marker positions in the camera’s picture planes are
shown in Fig. 1 (for the camera located on a side of the
workspace).

The cameras were calibrated such that the coordi-
nates (measured in the robot’s reference system and
expressed in millimeters) of a point (e.g., of the rod
end) in the robot’s workspace could be calculated
according to the coordinate (expressed in a number of
pixels) of the image in simultaneous frames of both
cameras. Unfortunately, the coordinates of the ends of
2002 MAIK “Nauka/Interperiodica”
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the rod image in the frames of two cameras relate to dif-
ferent moments of time. In order to find these coordi-
nates at the same moments, interpolation must be
applied. It is constructed by the least-square technique
according to data segments covering a time interval of

5 s or longer. The functions 1, t and sin  (k = 1, 2, …)

were used as basis functions. Here, t is time reckoned
from the onset of the interpolation segment and T is the
length of this segment [8]. Using the interpolation con-
structed on the uniform mesh with a step of 0.1, the
coordinates of the rod ends in the robot’s reference sys-
tem are calculated. These coordinate sequences are
used for estimating parameters of the rod as a linear
vibration system and serve for predicting its motion.

2. Estimation of the parameters is performed under
the assumption that the z axis in the manipulating
robot’s reference system is directed vertically, the rod
in its equilibrium position is horizontal and, together
with its suspension threads, forms an equilateral trape-
zoid. The normal coordinates in such a coordinate sys-
tem are related to the coordinates of the rod end (x1, y1,
z1) and (x2, y2, z2) by the relationships

(1)

Here, α is the angle between the y axis and the rod in its
quiescent position. The counting-off direction for this
angle is adjusted to the z-axis direction. Prior to the
experiment, the value of the angle α is unknown. The
normal coordinates introduced above have the follow-
ing sense. The θ coordinate describes torsional vibra-

πkt
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θ
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y1 y2–
---------------arctan ,=
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x1 x2+( ) α y1 y2+( ) αsin–cos

2
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Fig. 1. Rod image in the lateral TV camera.
tions of the rod, in which its middle point belongs to an
invariant vertical straight line. The ξ coordinate
describes rod vibrations as a swing. Finally, the η coor-
dinate describes the rod vibrations in which the rod and
the threads are situated in an invariant vertical plane. It
is assumed that in the case of small rod vibrations, the
time dependence of the normal coordinates is given by
the formulas

(2)

Here, α, ξ0, η0 ci, µj, and νj are constant parameters, α
being the same angle as in formulas (1). The values of
the parameters are found step by step using the least-
square technique. Initially, the values of the function θ
are calculated on the basis of the first expression of for-
mula (1) and of the coordinates of the rod ends on the
uniform mesh with the step of 0.1 (see above). Then,
constants α, ν1, µ1, c1, and c2 are determined from the
condition of the best approximation of these values by
the first expression of formula (2) (cf. [6, 7]). The
knowledge of the angle α allows the values of the func-
tions ξ and η to be calculated. Further, in accordance
with these values, the other parameters entering into
formula (2) are found. In particular, for the rod being
used, ν1 = 3.28 s–1, ν2 ≈ ν3 ≈ 2.07 s–1, 0 < µj < 0.1 s–1.

The knowledge of the parameters in formulas (2)
make it possible to use them for predicting the values of
the normal coordinates at t > T. Since the normal coor-
dinates are Lagrangian coordinates for the rod, the
problem of predicting its movement is solved. This is
an approach that was accepted in [6, 7], although it
requires knowledge of a number of geometric charac-
teristics of the suspension. In order to avoid the neces-
sity of this knowledge, we used another approach. The
representation of normal coordinates by formulas (2)
implies that the time variation of the rod end coordi-
nates may be approximately described by relationships
of the form (only the relationship for the x1 coordinate
is presented)

(3)

.

Here, the parameters µj and νj are considered to be
unknown. The coefficients a0, aj, and bj are found by the
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least-square technique under the condition of the best
approximation of the rod end coordinates in the seg-
ment 0 ≤ t ≤ T by expressions of type (3). When deriv-
ing expressions (3), in the expansions of these coordi-
nates in a series over normal coordinates, only terms
with a degree not higher than two are preserved. In
addition, we allowed for the relationship ν1 ≈ ν2. If the
amplitude of torsional vibrations of the rod does not
exceed 20°, then the above method makes it possible to
predict the rod-end coordinates in the segment T ≤ t ≤
2T with an error smaller than 5 mm. This error is quite
acceptable for performing the successful gripping.

Examples of the operation of the block determining
the motion are presented in Figs. 2 and 3. Figure 2 dem-
onstrates plots for six functions that are virtually pair-
wise coincident. The plots for differences of the func-
tions forming pairs are shown in Fig. 3. One of the
functions of each pair describes the virtual time varia-
tion for the corresponding coordinate of one of the rod
ends. This function is constructed by the above method
in accordance with the measurement data obtained by
the TV cameras. The other function of the pair corre-
sponds to expression (3) that approximates the first
function. The approximation is carried out according to
the data contained in the segment 0 ≤ t ≤ 10 s. For t >
10 s, the second function should be considered as a pre-
diction for the variation of the corresponding coordi-
nate with time. Within the scope of this interpretation,
Fig. 3 illustrates the accuracy of the prediction.

3. The operator interface is shown in Fig. 4. The
graphic window presented on the right-hand side of the
figure demonstrates the three-dimensional position of
the robot and the rod. In order to map all objects of the
work scene at the server side, it is necessary to transmit
only several numbers (angles in robot hinges and rod-
end coordinates). Therefore, the scene is drawn in real
time even for slow communication channels. Elements
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Fig. 2. Determination and prediction of the motion for one
of the rod ends.
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of the control interface are situated on the left-hand side
of the figure. On pushing the “Start” key (on the left,
below), the server control code is initiated, and the
robot strikes the rod in order to excite its vibrations.
After the observation of the rod’s motion by an opera-
tor, he chooses a desired grip point. To do this, he
pushes the keys “+” and “–” displacing the goal point
on the rod image. The command for performing the
gripping is given by pushing the “Grasp” key. The grip
signal is transmitted to the server, after which the server
control code grips in the automated mode. The algo-
rithms of the robot control for the case of gripping are
described in [6, 7]. The operator observes the gripping
process in the graphic window. He is able to stop the
process and to vary its scenario.

The algorithms described were verified at a test
table including the PM-01 manipulating robot with a
Sfera-36 control stand. The server control code was
operated with a computer equipped with the Windows
2000 operating system. The robot received commands
via an RS 232 interface. The data exchange with the cli-
ent side (i.e., the operator interface) was realized with
TCP/IP sockets. When developing the client side, Java
and Java3D open technologies were employed, which
provided operations via standard Web browsers for an
arbitrary computer base. During the experiments, an
operator residing at a long distance from the robot suc-
cessfully gripped a vibrating rod.

4. The method described of remote control for the
case of gripping a mobile object makes it possible to
use the operator’s skill in planning at the upper level of
an operation with the possibility to automatically per-
form its final stage. This approach turns out to be rather
useful in solving other problems of the control of robots
interacting with mobile objects. The methods devel-
oped can turn out to be especially efficient for the
remote control of robots in the case of delays in com-
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Fig. 3. Errors in the determination and prediction of the
motion for one of the rod ends.
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Fig. 4. Interface of a remote operator.
munication channels. In particular, such a situation
takes place in modeling, testing in laboratory condi-
tions, and directly gripping objects in extraterrestrial
space, which is realized with the help of remotely con-
trolled robotics systems.
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1. Trajectories of the motion of the instantaneous
position of Earth’s pole represent the complex evolution
of a dynamic system. Monitoring data of the Interna-
tional Earth-Rotation Service for the last 15–20 years
indicates that the following components are separated
in the complex motion of the Earth’s pole: the principal
component (free nutation or Chandler wobble) with an
amplitude of 0.20″–0.25″ and a period of (433 ± 2)
sidereal days [1]; the regular annual component with an
amplitude of about 0.07″–0.08″; and relatively slow
irregular drift (trend) of the axis of the Earth’s figure.
According to [2, 3], the annual wobbles of the Earth’s
axis are induced by the solar gravitational moment, by
the orbital motion of the rotating Earth, and by the diur-
nal tides of the Earth’s mantle. The causes and mecha-
nism responsible for the excitation of annual wobbles
are usually attributed to seasonal geophysical phenom-
ena [4, 5].

There are a large number of articles devoted to the
linear statistical analysis of measurements of the
motion of the Earth’s pole (see, e.g., review [6]). An
analytical stochastic model of the motion of the Earth’s
pole with allowance for tidal deformations in the form
of humps and protrusions was developed in [7] on the
basis of celestial mechanics. In this study, we further
develop this model and take into account the moments
of gravitational forces of the Moon, the moments of
dissipative forces, and fluctuation moments of forces
associated with the higher harmonics of the deform-
able-Earth figure.

2. The motion of the deformable-Earth pole can be
described by the following phenomenological three-
dimensional nonlinear stochastic differential system of

* Moscow State Institute of Aviation, 
Volokolamskoe sh. 4, Moscow, 
125080 Russia

** Institute of Informatics Problems,
Russian Academy of Sciences,
ul. Vavilova 30/6, Moscow, 117900 Russia
1028-3358/02/4712- $22.00 © 20867
equations:

(1)

(2)

(3)

where

(4)

ṗ N*q+

=  3V1bω*
2 ω*tcos V4r

2
– P t p q r V F, , , , ,( ),+

p t0( ) p0;=

q̇ N* p– –3V2bω*
2 ω*tcos V5r2 +=

Q+ t p q r V F, , , , ,( ),

q t0( ) q0;=

ṙ –3V3ω*
2

b' b'' 2ω*tcos+( ) R t p q r V F, , , , ,( ),+=

r t0( ) r0,=

P P t p q r V F, , , , ,( )=

=  –3V2V6d1 bω*
2 ω*tcos b1ω1*

2 ω
1*

tcos+( )

– 3V3V5d1 ω*
2

b' b'' 2ω*tcos+( )[

+ ω1*
2

b1' b1
'' 2ω1*

tcos+( ) ] 3V1b1ω1*
2 ω1*

tcos–

– D1 p Φ1 t( ),+

Q Q t p q r V F, , , , ,( )=

=  –3V1V6d2 bω*
2 ω*tcos b1ω1*

2 ω
1*

tcos+( )

– 3V3V4d2 ω*
2

b' b'' 2ω*tcos+( )[

+ ω1*
2

b1' b1
'' 2ω1*

tcos+( ) ] 3V2b1ω1*
2 ω1*

tcos–

– D2q Φ2 t( ),+

R R t p q r V F, , , , ,( )=

=  –3V1V2d3 bω*
2 ω*tcos b1ω1*

2 ω
1*

tcos+( )

+ 3V1V5d3 bω*
2 ω*tcos b1ω1*

2 ω1*
tcos+( )

– 3V3ω1*
2

b1' b1'' 2ω1*
tcos+( ) D3r– Φ3 t( ).+
002 MAIK “Nauka/Interperiodica”



868 MARKOV, SINITSYN
Here, p = pt , q = qt , and r = rt are the projection of the
terrestrial angular velocity on the Earth’s axes [3, 5];
V1, V2, and V3 are random parameters obtained by aver-
aging the axial moments of inertia of the deformable

Earth over the diurnal interval T∗  = 2π :

(5)

which characterize the effective diurnal tidal humps
from the Sun and the Moon; and V4, V5, and V6 are the
random parameters associated with the centrifugal
moments of inertia of the deformable Earth:

(6)

determining the effective tidal protrusions; A* + (t),

B* + (t), C* + (t) and  + (t),  + (t),

 + (t) are the axial and centrifugal moments of
inertia of the Earth, respectively, where the constant
components of the inertia tensor are marked by the
asterisk, and the variable components induced by the
solar and lunar diurnal tides, by the tilde; D1, 2, 3 are the
specific coefficients of the moments of dissipative
forces; and Φ1(t) = Φ1t, Φ2(t) = Φ2t, and Φ3(t) = Φ3t are
the specific fluctuation moments of forces and Ft =
[Φ1tΦ2tΦ3t]T. The magnitude of the fluctuation-dissipa-
tion moments of forces is assumed to be much smaller
than that of the moments of forces from the tidal defor-
mations. We denote the random initial conditions as

(7)

r*
1–

V1
1

T*
------ C̃ τ( ) B̃ τ( )–

A*
----------------------------- r*τ τ ,dcos

t

t T
*

+

∫=

V2
1

T*
------ C̃ τ( ) Ã τ( )–

B*
----------------------------- rsin *τ τ ,d

t

t T
*

+

∫=

V3
1

T*
------ B̃ τ( ) Ã τ( )–

C*
----------------------------- 2rsin *τ τ ,d

t

t T
*

+

∫=

V4
Jqr*

A*
-------

1
T*
------

J̃qr τ( )
A*

-------------- τ ,d

t

t T
*

+

∫+=

V5
J pr*

B*
-------

1
T*
------

J̃ pr τ( )
B*

--------------- τ ,d

t

t T
*

+

∫+=

V6
J pq*

C*
--------

1
T*
------

J̃ pq τ( )
C*

--------------- τ ,d

t

t T
*

+

∫+=

Ã

B̃ C̃ J pq* J̃ pq Jqr* J̃qr

Jrp* J̃ rp

V7 p0, V8 q0, V9 r0.= = =
In addition, we introduce the notation

(8)

where ω∗  and ω1∗  are constants determined by the
gravitational and focal parameters of the Sun and Moon

and b1 ≈ , where b is a known parameter [3].

When setting up the system of Eqs. (1)–(3), we took

into account that the terms involving r, r2, ω∗ , , ω1∗ ,

and  considerably exceed the corresponding terms

involving the squares and products of p, q, , ,

, etc.

3. Let us introduce the following notation for the
mathematical expectations, variances, covariance func-
tions, and covariances:

(9)

where M is the symbol of the mathematical expectation
(statistical averaging) and the zero in the superscripts
denotes centered random components of the real ran-
dom functions pt , qt , and rt .

We will use Eqs. (1)–(3) under the condition that
parameters Vi are real Gaussian random variables with

mathematical expectations , variances , and

covariances  (i, j = 1, 2, …, 9) and the fluctuation
moments of forces Φit are real Gauss–Markov pro-
cesses with known one-dimensional densities. As the

initial conditions for , , and , we take the math-

ematical expectations , variances , and

covariances , , and .

Applying the theory of nonlinear stochastic differ-
ential systems [8, 9] to Eqs. (1)–(3), we arrive at the fol-

N* C* B*–( )A* 1– ω*, r* 365ω*,= =

2b' 1 b
2

2
-----– 

  , 2b'' b
2
,–= =

2b1' 1
b1

2

2
-----– 

  , 2b1'' b1
2
, d1

B*C*
A*

--------------,= = =

d2
A*C*

B*
--------------, d3

A*B*
C*

--------------,= =

b
20
------

ω*
2

ω1*
2

C̃
C*
-------

.
J̃ pr

A*
-------

.

J̃ rq

B*
-------

.

mt
p

M pt, mt
q

Mqt, mt
r

Mrt,= = =

Dt
p

M pt
02

, Dt
q

Mqt
02

, Dt
r

Mrt
02

,= = =

Kt t ',
p

M pt
0
pt '

0
, Kt t ',

q
Mqt

0
qt '

0
, Kt t ',

r
Mrt

0
rt '

0
,= = =

Kt t ',
pq

M pt
0
qt '

0
, Kt t ',

qr
Mqt

0
rt '

0
, Kt t ',

rp
Mrt

0
pt

0
,= = =

mi
V

Di
V

Kij
V

pt
0

qt
0

rt
0

mt0

p q r, ,
Dt0

p q r, ,

Kt0

pq
Kt0

qr
Kt0

rp
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lowing final expressions for mathematical expectations,
variances, covariances, and covariance functions for the
times t and t ' > t:

(10)

(11)

(12)

Here, the Green’s functions  of the parameters Vi

are obtained by solving Eqs. (1)–(3) at P = Q = R = 0

and replacing pt, qt, and rt with  and are equal to

(13)

The ∆ , ∆ , ∆ , ∆ , ∆ , and

∆  are the components of the mathematical expec-
tations, variances, and covariances that take into
account the nonlinear functions P, Q, and R.

In the framework of the correlation theory of nonlin-
ear stochastic systems [8, 9], Eqs. (1)–(4) are equiva-
lent to the Gaussian stochastic differential system of

mt
p q r, , ψi t,

p q r, ,
mi

V ∆mt
p q r, ,

,+
i 1=

9

∑=

Dt
p q r, , ψi t,

p q r, , ψ j t,
p q r, ,

Kij
V ∆Dt

p q r, ,
,+

j 1=

9

∑
i 1=

9

∑=

Kt t ',
p q r, , ψi t,

p q r, , ψ j t ',
p q r, ,

Kij
V ∆Kt t ',

p q r, ,
,+

j 1=

9

∑
i 1=

9

∑=

Kt t ',
pq ψi t,

p ψ j t ',
q

Kij
V ∆Kt t ',

pq
,+

j 1=

9

∑
i 1=

9

∑=

Kt t ',
qr ψi t,

q ψ j t ',
r

Kij
V ∆Kt t ',

qr
,+

j 1=

9

∑
i 1=

9

∑=

Kt t ',
rp ψi t,

r ψ j t ',
p

Kij
V ∆Kt t ',

rp
.+

j 1=

9

∑
i 1=

9

∑=

ψi t,
p q r, ,

ψi t,
p q r, ,

ψ1 t,
p ψ2 t,

q
– b0ω* ω*t,sin= =

ψ2 t,
p ψ1 t,

q
N*b0 ω*t,cos–= =

ψ3 t,
r

3b'ω*
2

t t0–( )–=

–
3
2
---b''ω* 2ω*tsin 2ω*t0sin–( ),

ψ4 t,
q ψ5 t,

p
–r0

2
N*

1–
,= =

ψ7 t,
p ψ8 t,

p
N* t t0–( )cos ,= =

ψ8 t,
p

N* t t0–( )sin– ψ7 t,
q

, ψ9 t,
r

– 1,= = =

ψ9 t,
p q, ψ7 t,

r ψ8 t,
r

0,= = =

b0 3bω*
2 ω*

2
N*

2
–( )

1–
.=

mt
p q r, ,

Dt
p q r, ,

Kt t,
p q r, ,

Kt t ',
pq

Kt t ',
qr

Kt t ',
pr
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equations, where the nonlinear functions V4, 5r2, P, Q,
and R are replaced by the linearly normalized ones with

respect to , , and  according to the formulas

(14)

As a result, we arrive at the equivalent Gaussian
system

(15)

which is nonlinear for the mathematical expectations

 and linear for the centered components , ,

and ,

(16)

Here,

pt
0

qt
0

rt
0

ViV j mi
V
m j

V
Kij

V
mi

V
V j

0
m j

V
Vi

0
,+ + +≈

i j, 1 2 3 4 5,, , , ,=

Vir
2
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V

mt
r( )

2
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V
Dt

r
2mt

r
Kit

Vr
+ +≈

+ mt
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2
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+[ ] Vi

0
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V
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r
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0
,+

i 4 5.,=

ṁt
p N*mt

q
– D1mt

p
– m1

V
F1t m4

V
F2t– F4t,+ +=

mt0

p
m0

p
M p0,= =

ṁt
q N*mt

p
D2mt

q
–  – m2

V
F1t m5

V
F2t F5t,+ +=

mt0

q
m0

q
Mq0,= =

ṁt
r D3mt

r
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V
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r
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0
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0
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0
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0 N*qt

0
– D1 pt

0
– F7trt

0
– F1tV1

0
F9tV2

0
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– F11tV3
0

F8tV4
0

– F12tV5
0

– F10tV6
0
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pt0

0
p0

0
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0 N* pt

0
D2qt

0
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0
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0
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0
–+=

– F16tV3
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F17tV4
0
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0

F15tV6
0 Φ2t,+ + +

qt0

0
q0

0
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ṙt
0 D3rt

0
– F18tV1

0
– F19tV2
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– F3tV3
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0
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4. For the random fluctuation moments of forces Ft

in the form of Gaussian white noise, applying the for-
mulas of the theory of linear stochastic differential sys-
tems [8, 9] to Eqs. (16) and the equations for the param-

eters  = 0, we obtain the following system of ordinary
differential equations determining the fluctuation-dissi-
pation correlation model of motion

(17)

(18)

(19)

Here, mt = MΩt, where Ωt = [ VT]T is the joint vector;
T is the transposition symbol; wt = [ptqtrt]T is the math-
ematical expectation of the angular velocity ωt; Kt =

 (  = Ωt – mt) is the covariance matrix Ωt,
v t = [v ijt] is the matrix of the white-noise intensities Φt;

c( ) is the vector consisting of the right-hand
sides of Eqs. (15) and equations for the parameters V:

 = 0; and at and bt are the matrices of the coefficients

of  and Φt in Eqs. (16) and  = 0.

Hence, we immediately obtain the formulas (averaged

over ) for the mathematical expectations ,

F4t m4
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mt
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V
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V
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2

Dt
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F9t 3m6
V
d1χ1t, F10t 3m2

V
d1χ1t,= =

F11t 3m5
V
d1χ2t, F12t 3m3

V
d1χ2t,= =

F13t 2 m5
V
mt

r
K5t

Vr
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V
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V
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F17t 3m3
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V
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V
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F19t 3m1
V
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V
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V̇

ṁt c mt Kt,( ), m0 MΩt0
,= =

K̇t at mt Kt,( )Kt Ktat
T

mt Kt,( ) btν tbt
T
,+ +=

K0 Kt0
;=

∂Kt t ',

∂t '
------------ Kt t ', at '

T
mt ' Kt ',( ), Kt t, Kt.= =

ωt
T

MΩt
0Ωt

0T Ωt
0

mt Kt,

V̇

Ωt
0

V̇

2πω*
1–

mt
p q r, ,〈 〉
variances , and covariances , as well
as, in the case of stationary white noise, the formulas for

the covariance functions  =  and the spec-
tral densities 〈sp, q, r(λ)〉  as the corresponding Fourier
transforms.

In the case of non-Gaussian parameters V and fluc-
tuations F [10], the model given by Eqs. (17)–(19) can
be used as an approximation.

5. The analysis of Eqs. (17)–(19) provides the fol-
lowing qualitative conclusions.

(i) In the absence of fluctuation-dissipation
moments (Di = 0, and Φit = 0, i = 1, 2, 3) and the Moon’s

attraction (b1 =  =  = 0), the nonlinear differential
correlation model given by Eqs. (15) and (16) coincides
with the model proposed in [7].

(ii) In the linear approximation (in the absence of
protrusions and humps of V2, V3, V4, and V5), the fluc-
tuation-dissipation moments in the presence of station-
ary white noise Φt lead to random forced fluctuations
with finite constant variances and covariances deter-
mined from Eqs. (18) and (19) for spectral-correlation
characteristics:

(20)

(21)

where K = Kt =  is the matrix of variances and

covariances of the angular velocity; kτ =  is
the covariance matrix; a1 is the matrix of the coeffi-

cients of , , and  in Eqs. (16); Ψ(iλ) is the trans-

fer function over the variables , , and  that cor-
responds to the matrix a1; and the asterisk denotes com-
plex conjugation. A particular case where r = r0, D1 =
D2, and Φ1 = Φ2 and the case of stationary white noise
were considered in [6].

(iii) The presence of humps and protrusions Vi = 1,
2, …, 6 results in, first, additional stochastic fluctua-
tions at higher frequencies nω∗  and n1ω1∗  (n ≥ 2); sec-

ond, time-dependent trends th (h > 2); and third, cross-
correlation constraint in variables pt , qt , and rt due to
the nonlinearity of Eqs. (1) and (2) with respect to r2. In
particular, the average statistical trend in the variables
pt and qt is determined by Eqs. (15) and (16) available
in [7] with the additional terms

(22)

where  = Mrt ,  is the variance of , and  is

the covariances of V4, 5 and .
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Nonequilibrium processes in a gas with internal
degrees of freedom of molecules can be studied by
using the generalized Boltzmann equation, the Wang-
Chang–Uhlenbeck equation, where the internal and
translational degrees of freedom are considered in the
framework of quantum and classical mechanics,
respectively. For small deviations from local thermody-
namic equilibrium, an asymptotic method developed
for this equation yields hydrodynamic equations
including the effect of the internal degrees of freedom
on the viscosity and thermal conduction of the gas [1].

The aim of this study is to develop a numerical
method of solving the Wang-Chang–Uhlenbeck equa-
tion for an arbitrary degree of gas nonequilibrium.

The Wang-Chang–Uhlenbeck equation can be writ-
ten in the form

(1)

Here, dΩ = sinθdθdϕ, fi ≡ f(i, x, x, t) is the distribution
function, where i is the set of quantum numbers deter-
mining the internal state of the molecule; xi is the veloc-
ity of the molecule in the ith state; g = |xi – xj |; indices
i, j and k, l correspond to the molecular states before

and after the collision, respectively; and  is the cross
section for the collision responsible for this change of
the internal states. There is no summation with respect
to the repeated index i.

The cross sections for direct and inverse collisions
are related as

(2)

The magnitude g* = |xk – xl| of the velocity after the col-
lision and velocities xk and xl are determined from the

∂ f i

∂t
------- xi

∂ f i

∂x
-------+ f k f l f i f j–( )gσij

kl Ω x j.dd

Ω
∫

∞–

∞

∫
j k l, ,
∑=

σij
kl

gσij
kl

g θ ϕ, ,( )dxidx j g*σkl
ij

g* θ ϕ, ,( )dxkdxl.=
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1028-3358/02/4712- $22.00 © 20872
laws of conservation

(3)

Here, m is the molecular mass; ∆e = el + ek – ei – ej,
where ei is the energy of the ith internal state; and x0 =
0.5(xi + xj).

The condition mg2 ≥ 4∆e determines the admissibil-

ity of the transition (i, j )  (k, l). We set  = 0 for
forbidden transitions. The probability of the transition
(i, j )  (k, l) is defined as

and satisfies the condition 0 ≤  ≤ 1 and the normal-
ization condition

(4)

We assume that σij is independent of the internal molec-
ular state and is equal to the elastic scattering cross sec-
tion σij = σ0(g, θ). The introduction of quantities σ0 and

 obviously transforms Eq. (1).

The problem of numerically solving the Wang-
Chang–Uhlenbeck equation reduces to the construction
of a method of calculating its right-hand side, the gen-
eralized collision operator, which can be represented as
Ii = –Li + Gi, where

(5)

(6)

As in the case of the classical Boltzmann equation
[2, 3], an effective numerical method must ensure that

g* g 1 4∆e
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the collision operator be (i) conservative and (ii) equal
to zero on the equilibrium distribution function.

Operators Li and Gi are calculated on the jm × S0 lat-
tice, where S0 is the uniform lattice in volume V of
velocity space and jm is the number of quantum levels.
Similar to the case of a one-atom gas [2], we consider
the functional

(7)

Taking functions Φ(x) in the form

(8)

(9)

where δnq is the Kronecker delta and δ(x* – x) is the
three-dimensional δ function, we obtain

(10)

(11)

Functions (10) and (11) are calculated on the uniform
cubic lattice consisting of Nν sites Sν ={i, j, k, l, xi, xj, θ,
ϕ}ν such that (xi)ν, (xj)ν ∈ S0. Let (xi)ν ≡  and (xj)ν ≡

. Values (xk)ν and (xl)ν for each site of this lattice are
calculated by Eq. (3). The arrangement of vectors xi , xj ,
xk, and xl for the νth site of cubic lattice S0 is schemat-
ically shown in Fig. 1, where the three-dimensional
velocity lattice is given as a plane lattice and subscript

ν is omitted. Value  ≡ (xγ) calculated in site
x* = xγ ∈ S0 by Eq. (10) is determined by the part of the
cubic sum for iν = n, αν = γ and jν = n, βν = γ as

(12)

where B = , ∆ν = ( )νgνsinθν,

and fi, α ≡ f(i, xα, x, t). In what follows, the subscript ν
will be omitted where possible. Since velocities xk and

xl are not in the sites of lattice S0 ,  is calculated
with the replacement of Eq. (9) by projector Φ** into
pairs of sites xλ, xλ + s and xµ, xµ – s, which are nearest to
xk and xl and are shown in Fig. 1:

where s = (s1, s2, s3) is the vector whose components
take values 0, –1, and 1 and that determines the site that

Q Φ f i,( ) σ0 Φ f i f j pij
kl Ω xi x j.ddd

Ω
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∞

∫
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∞

∫
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Ln x*( ) Q Φ' f i,( ),=
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+( )∆ν,
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2πσ0 jm
2

V
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----------------------- f iν aν, f jν βν, pij
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Gn γ,'
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is nearest to xk and shown in Fig. 1. As a result,

(13)

Coefficient rν is determined from the laws of conser-
vation for each site of the cubic formula, i.e., for each

contribution ∆ν to operators  and . The conser-
vation of mass follows from the form of Φ**, and the
conservation of momentum follows from the symmet-
ric arrangement of lattice sites xλ, xλ + s and xµ, xµ – s
with respect to vectors xk and xl. In terms of the nota-
tion

,

the law of energy conservation, when contribution ∆ν is
split, has the form E0 = (1 – r)E1 + rE2. Therefore, r =

, which satisfies the condition 0 ≤ r ≤ 1, because

either E1 ≤ E0 ≤ E2 or E2 ≤ E0 ≤ E1 . It is important that
rν is independent of ∆ν. For this reason, additional lat-
tice sites , , , and  and coefficient rν

can be preliminarily determined for each site of cubic
lattice Sν, and then extended lattice  can be used
repeatedly, e.g., in various sites of physical space.
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Fig. 1. Scheme of an inelastic collision.
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Each contribution ∆ν can be treated as the result of a
“collision” transferring molecules from sites i, j to
sites λ, µ and λ + s, µ – s. In order to ensure that con-
dition (ii) above is satisfied, we consider a pair of
inverse collisions to sites i, j from sites λ, µ and λ + s,
µ – s with weights (1 – r*) and r*, respectively. The

probability  is determined from Eq. (2), and coeffi-
cient r*, from the condition

where

As a result, r* = .

An analysis similar to the above gives the contribu-
tion of inverse collisions in the form

(14)

(15)

Finally, the collision operators are determined as

For any (arbitrarily rough) lattice of integration sites
Sν, condition (ii) is satisfied to within an accuracy no
worse than O(h), where h is the step of lattice S0 . For
degenerate levels of internal energy, Eq. (1) must be
modified so as to reduce the number of substantial
levels.

Let jm levels be separated into JM groups of degener-
ate levels, J = 0, 1, …, JM, with degeneration degree qJ .

We determine the distribution function as FJ =  =

qJfq, where q ∈ J. Substituting  =  into Eq. (1),
summing this equation over the groups of levels i, j, k,

pkl
ij

E1∆
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kl
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1
2
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f qq∑
σij

kl σ0 pij
kl
and l forming degenerate levels I, J, K, and L, and
returning to the old notation, we arrive at the equation

(16)

for which Eqs. (12)–(15) are valid with the change
∆  qkql∆, ∆(1)  qiqj∆(1), and ∆(2)  qiqj∆(2).

The method was tested by solving two spatially uni-

form  problems, where the model of constant

cross section σ0 = const was accepted, and the number
of the spectral levels was taken to be jm = 21. The phys-
ical characteristics of the spectra were taken for a nitro-
gen molecule from [4]. The characteristic dimensional
parameters were the gas density n, the initial transla-
tional temperature T0 , and the mean-free-path time τ at
this temperature. The Maxwellian initial distribution
function in translational velocities was taken. Lattices
S0 and Sν consisted of 3582 and about 0.5 × 106 sites,
respectively, and the time step was ∆t = 0.005τ. Time
integration was performed according to the scheme
in [2, 3].

In the first example, the relaxation of vibrational
levels is calculated and Eq. (1) is solved. The jth level

has energy  = "ω , and the equilibrium distri-

bution for temperature Tv is

(17)

where Zv is the vibrational partition function. For nitro-

gen,  = 3340 K, where k is Boltzmann’s constant.

Temperature T0 is taken to be equal to 6680, and the ini-

tial vibrational temperature is  = 2T0 . Probabilities

 are arbitrarily taken to be equal to 1 and 0.2 for
elastic and inelastic collisions and are then normalized
according to (4).

Figure 2 shows the vibrational spectrum for t =
(solid line) 0, (diamonds) 1, and (crosses) 6. The latter
spectrum coincides with (dashed line) distribution (17)
for equilibrium temperature Tv = 1.4T0 .

The second example concerns the relaxation of rota-
tional levels. The level with the rotational quantum
number j has the degeneracy degree qj = 2j + 1 and

∂ f i
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energy  = , where Ir is the moment of iner-

tia of the molecule. The equilibrium distribution of the
gas density n over levels for temperature Tr is given by
the expression

e j
r "

2
j j 1+( )
2Ir

-------------------------
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Fig. 2. Evolution of the vibrational spectrum.
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Fig. 3. Evolution of the rotational spectrum.
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Fig. 4. Variation in the level energies.
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(18)

Transition probabilities  are taken from [5, 6],
where the molecular nitrogen was simulated. The prob-
lem is solved for T0 = 100, initial rotation temperature

 = 2T0 , and  = 2.9 K.

Figure 3 shows the rotational spectrum for t = (dia-
monds) 0, (crosses) 3, and (squares) 10. The latter spec-
trum coincides with (dashed line) the equilibrium spec-
trum for Tr = 1.4T0 .

Figure 4 shows the time dependence of energy per

degree of freedom: (solid line)  = ,

where Er =  is the rotational energy, Ek is the
kinetic energy, and superscript (0) means values for t =

0; and (dashed line)  = .

Each variant was calculated on a PIII 800 MHz
computer for about one hour.

The above examples demonstrate that the Wang-
Chang–Uhlenbeck master equation for a gas with non-
degenerate and degenerate internal degrees of freedom
can be solved numerically by the method proposed
above.
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When developing protective constructions for
underground structures, it is necessary to evaluate their
capability to withstand intense dynamic loads. One of
the effective methods of solving this problem is mathe-
matical modeling of the deformation and failure of such
constructions under shock or blast.

The problem of impact interaction between cylindri-
cal strikes and concrete obstacles was solved in [1],
where the failure of concrete was calculated in a phe-
nomenological approach with the strength criteria
expressed in terms of invariant relations between the
critical macroscopic parameters, stresses and strains, of
the process. Comparison of mathematical modeling
with the results of an ad hoc developed experiment
indicated that this approach to the static failure problem
can also be applied to calculate failures in concrete
under dynamic loading.

In this study, we propose a mathematical model
based on the mechanics of continua in order to calculate
the behavior of sandy ground under dynamic loading.

Soft sandy ground is considered as a three-compo-
nent medium characterized by the initial density ρ0 =
v1ρ01 + v 2ρ02 + v 3ρ03 and moisture content w0 [2],
where ρ0i (i = 1, 2, 3) are the initial densities of air,
water, and quartz, respectively; and 

v1 = 1–v 2 –v 3, v2 = , and v3 = 

are the bulk concentrations of the respective compo-
nents. Since v 1ρ01 is less than the initial density ρ0 by
several orders of magnitude, the effect of air in pores
can be neglected, and the sandy ground can be consid-
ered as a porous material consisting of a matrix, which
is a simple water–quartz mixture, and voids (pores).

The specific volume of the porous medium υ is rep-
resented as the sum of the specific volume of the matrix
υm and the specific volume of pores υp. The porosity of

w0ρ0

1 w0+( )ρ03
---------------------------

ρ0

1 w0+( )ρ03
---------------------------
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the material is characterized by the relative volume of

voids ξ = v 1 or by the parameter , which are

related as .

The system of equations describing the motion of a
porous elastoplastic medium has the form

(1)

where t is the time; V is the integration volume; S is its
surface; n is the unit outer-normal vector; ρ is the den-
sity; σ = –pg + s is the stress tensor; s is its deviator; p
is the pressure; g is the metric tensor; u is the velocity;

E = ε +  is the specific total energy; ε is the specific

internal energy;  is the deviator of the

strain rate tensor d = ; sJ =  + sω – ωs is

the derivative of the stress-tensor deviator in the sense

of Jaumann–Noll;  is the tensor of

the vortex; 

and σT are the effective shear modulus and the yield
point, respectively; and ρm0, cm0, and µm0 are the initial
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values of the density, bulk velocity of sound, and shear
modulus of the matrix material, respectively. The
parameter λ is eliminated by using the Mises plasticity
condition. The yield point of sandy ground is defined as
in [3]:

where Y1 is the cohesion, k1 is the internal-friction coef-
ficient, and Yp is the limiting value of the shear strength.

The system of equations (1) is closed by the equa-
tion of state and the relationships describing the kinet-
ics of the growth and coalescence of pores.

If the linear dependence of the shock-wave velocity
D on the mass velocity u for the matrix material is
known, the equation of state for a porous material has
the form

(2)

where η = 1 –  and γm0 is the Gruneisen coefficient

of the matrix material. The coefficients cm0 and Sm0 are
determined in terms of the shock adiabatic of the mix-
ture components Di = c0i + S0iu (i = 2, 3) by using the
following relationships on the shock wave:

where m2 =  =  is the water mass concen-

tration in the sandy ground (mass moisture) and m3 =

 =  is the quartz mass concentration in the

ground (m2 + m3 = 1). The Gruneisen coefficient γm0 is
expressed in terms of the coefficients of the mixture
components:

The equation that describes a change in porosity in
the process of deforming sandy ground is derived by
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using model representations implying that the behavior
of a medium with the initial porosity α0 under dynamic
loading is similar to the behavior of an individual
spherical pore with the radius a0 that is surrounded by a
spherical shell of sandy ground, whose plastic proper-
ties satisfy the Mohr–Coulomb condition. The outer
radius of the hollow sphere is taken so that the ratio of
the entire volume of the sphere to the total volume of
the matrix material is equal to the initial porosity α0.
Then, the solution to the problem of deforming a single
pore under the action of isotropic stress provides the
kinetic equation for calculating ground compaction [1]:

(3)

where 

and Y0 and k are the coefficients of the Mohr–Coulomb
condition.

In the case of tension, sandy ground is described as
a stress-free medium. Then, the relative content of
pores is obtained from the equation of state for the
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porous material with zero pressure between its par-
ticles.

Under the corresponding initial and boundary con-
ditions, Eqs. (1)–(3) form a complete system of equa-
tions that describe the behavior of sandy ground under
shock-wave loading.

The numerical values of Y0 and k are determined by
comparing the experimental and calculated shock adia-
batics for sandy ground. Figure 1 shows the calculated
shock adiabatic in variables (υ, p) and (u, D) for
(curve 1) dry and moist (curve 2) sand. The experimen-
tal data [4] are shown by circles.

The parameters of the model of sandy ground com-
posed of particles 0.07 mm in diameter are listed in the
table.

Let us consider a problem formulated as follows. A
cylindrical steel striker (diameter d0 = 7.6 mm and
length l = 4d0) penetrates into a protective double-layer
construction consisting of the upper 5.26d0-thick layer
made of dry sandy ground and the lower concrete layer
with a thickness of 3.68d0 . The impact velocity is

Fig. 2.
420 m/s and the incidence angle is 20°. This problem
was solved numerically by the modified finite-element
method [5].

Figures 2 and 3 show the isometric projections of
the striker and construction at 120 and 492 µs. When
the striker passes through the sandy-ground layer, an
inclined cylindrical cavity is formed in this layer. When
the striker attains the sand–concrete interface (solid
straight line), the decrease in its velocity is 26%. Next,
the striker having a velocity of 310 m/s begins to pene-
trate into the concrete layer. During first 221 µs, the
striker decelerates sharply. At this time, the concrete
begins to fail. The crack reaches the rear side by the
time of 300 µs. Then, the fragmentation of concrete
occurs near the rear side, and pieces scatter and break
down. The motion of the striker through the failed con-
crete is accompanied by a smaller decrease in its veloc-
ity and by a decrease in its angle to the normal of the
obstacle. The total time of the penetration of the striker
through the obstacle is equal to 492 µs, the residual
velocity is equal to 29 m/s, and the output angle is equal
to 12°. The head part of the striker is slightly deformed.

Fig. 3.
Table

ρ0, g/cm3 w0, % v1, % ρm0, g/cm3 cm0, cm/µs Sm0 γm0 µm0, GPa Y0, GPa k

1.29 0 51.5 1.95 0.368 2.12 1.0 0.073 0.1 0.75

1.8 28 7.75 1.95 0.245 1.86 1.28 0.073 0.025 0.5
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Flows around a cylinder in an unbounded fluid have
been analyzed in numerous scientific studies. In partic-
ular, the effect of rotational vibrations of a cylinder on
the hydrodynamic wake was experimentally investi-
gated in a wind tunnel (see [1, 2]). Among several tens
of papers devoted to the more complicated problem of
flows around a cylinder placed near a free surface, it is
worth noting the experimental studies described in [3–5],
in which flows around an immobile cylinder were con-
sidered. In the present paper, certain experimental data
related to the even more complicated problem on the
interrelated motion of a free surface and a cylinder are
given.

In an open channel of width B = 6 cm, a steady-state
subcritical flow with a depth h– and discharge Q was

formed. Below, we use the quantity U =  as a charac-

teristic velocity scale, where q =  is the specific dis-

charge. A horizontal circular cylinder made of organic
glass with the external radius R = 10 mm was placed
perpendicularly to the flow at a reasonably large dis-
tance from the channel entry, where the velocity profile
was typical of the turbulent regime of motion. The cyl-
inder had a hole with radius R1 = 2.5 mm at its symme-
try axis. This hole was penetrated by an immobile shaft
with radius r = 1.5 mm. The shaft axis was situated at
the height h above the channel bed. Owing to the differ-
ence between the radii of the hole and of the shaft, the
cylinder had three degrees of freedom bounded in
space. Experiments with an immobile cylinder were
also performed.

In the fixed rectilinear coordinate system (x, y)
whose origin is situated in the shaft center, the (x, y)
axes are directed downstream and vertically upward,
respectively, the shaft hole center having the coordi-
nates (x*, y*).
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B
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The character of the cylinder motion was recorded
by video filming. It was found that, under the action of
the flow, there was rolling motion of the surface of the
cylinder hole over the immobile shaft. In this case, var-
ious cylinder points performed angular, longitudinal,
and vertical vibrations. In particular, the point (x*, y*)

vibrated along the segment of the trajectory whose
equation can be written in parametric form as

where ϕ is the inclination angle to the x axis of the
radius passing to the common tangent point of the hole
surface and the shaft.

Below, we use independent dimensionless external

parameters, namely, the quantities Fr =  Re =

 h0 =   =   = , and ε =  (q

and ν are the acceleration of gravity and viscosity of the
fluid, respectively). Below, the set of these parameters
is denoted as Πi. The basic desired function is the free-
surface profile η0(x0, Πi). Here, η is the distance from
the channel bed to the free surface and the subscript
indicates the fact that the given quantity is normalized
to R. Small particles of aluminum powder with a char-
acteristic size of 10 µm were introduced into the flow.
Trajectories of their motion yield information on the
flow’s internal structure. These trajectories were
obtained by photography in a dark room with illumina-
tion by a narrow light knife of only the flow region of
interest.

In the experiments under discussion, the parameter
ε was small, while the angle ϕ varied with time t follow-
ing the harmonic law ϕ = ϕmsinωt, where ϕm(Πi) and
ω(Πi) are the amplitude and frequency of the vibra-
tions. The amplitude varied within the limits 0 ≤ ϕm ≤ 1
radian. Computer calculations and experimental results
have shown that, for these values of ϕm for x* and y*, it

is possible to accept

where a(Πi), b(Πi), and c(Πi) are oscillation parame-
ters. These formulas show that horizontal vibrations of
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Fig. 1. Profile of the free surface (1) in the absence of vibra-
tions and (2) in the presence of vibrations. R = 1 cm; U =

45.3 cm s–1; Fr = 1.022; Re = 9060;  = 8.3;  = 4.2;

 = 0.25; ε = 0.1; St = 2.16; c = 0.055.
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the cylinder occur with doubled frequency and with a
constant frequency shift with respect to the vertical
vibrations. For ϕm < 1, the vibration parameters are
related to each other by the relationships

In our experiments, the inequality c < ε was valid;
therefore, the amplitude of vertical vibrations of the
cylinder considerably exceeded that of horizontal
vibrations.

The most interesting experimental result is that the
small vibrations of the cylinder, which were caused by
the fluid flow, are capable of strongly changing both the
wave pattern beyond the cylinder and the flow in the
hydrodynamic wake. Examples illustrating this effect
are presented in Figs. 1 and 2.

In Fig. 1, profiles of the free surface beyond the
immobile and vibrating cylinders are compared.
Beyond the immobile cylinder, the profile has the shape
of a long and smooth wave. In this case, small vibra-
tions of the cylinder led to the production of an undular

ϕm
c
ε
--, a ε c2

4ε
-----, b–

c2

4ε
-----.= = =
(a)

(b)

Fig. 2. Pattern of a flow around the cylinder (a) in the absence of vibrations and (b) in the presence of vibrations. Values of the param-
eters are the same as in Fig. 1. The distances between vertical white reference lines are 10 cm.
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hydraulic jump with a breaking leading part. In the
cross section x0 = 23, the flow depth beyond the vibrat-
ing cylinder exceeded that beyond the immobile cylin-
der by a factor of 1.6. The vibrations of the cylinder
were accompanied by an increase in the energy loss of
the fluid.

Figure 2 illustrates an effect of vibrations of the cyl-
inder on the flow’s internal structure. Beyond the
immobile cylinder (Fig. 2a), a separation region being
transformed into a narrow twisting hydrodynamic wake
appeared. This pattern is analogous to that observed in
an unbounded flow with the corresponding values of
the Reynolds number Re. When vibrations of the cylin-
der (Fig. 2b) did exist, the separation region beyond it
was considerably reduced, and the hydrodynamic wake
turned out to be strongly distorted by a concentrated jet
that penetrated the wake from either above or below
synchronously with vertical vibrations of the cylinder.

The vibrations of the cylinder were accompanied in
its vicinity by oscillations of the free surface at the
same frequency ω. The phase difference of these oscil-
lations depended on values of the parameters Πi. In the
examples given in Figs. 1 and 2, the cylinder and the
free surface oscillated in antiphase. For larger values of
q, the oscillations occur with equal phase.

From the quantitative information obtained as a
result of the described experiments, it follows that there
exists a subregion of the phase space for the parameters
Πi in which the dimensionless parameter St = 

has a constant value equal to 2.16.
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We consider the problem of the determination of
turbulence constants for a steady-state stabilized axi-
symmetric turbulent channel flow of incompressible
fluid in an isothermal regime. In order to allow for a dif-
ference in the pulsation damping of the longitudinal
and transverse velocity components of such a flow near
the channel walls, we introduce two mixing lengths.
These lengths are approximated by power expansions
of the second and third orders in the radial coordinate.
On imposing boundary conditions, the number of
unknown coefficients is reduced to only two, namely, to
the conventional Karmán constant and a certain new
constant. Therefore, with allowance for the integration
constant in the mean-velocity profile, there are three
independent turbulence constants. It is shown that in
the case of the given Karmán constant (its theoretical
estimations are well known), the remaining parameters
can also be calculated. The solution to the problem is
based on a power expansion (divergent almost every-
where) of the velocity, which is of the ninth order in the
coordinate. The expansion is reduced to a convergent
form by a logarithmic transformation.

The semiempirical character of present-day theories
describing turbulent channel flows is determined by the
use of experimental values of constants entering into
these theories. There exists a standpoint (see, e.g., [1])
that these constants cannot be evaluated theoretically.
However, the appearance of papers devoted to the theo-
retical determination of one of these constants (the so-
called Karmán universal constant κ = 0.4) casts doubt
on this opinion. We now mention seemingly the most
fundamental publication [2], in which the value κ =
0.372 was found. This result was obtained within the
framework of the renormalization approach borrowed
from quantum field theory. In the present paper, using a
purely hydrodynamic approach, we evaluate the
remaining constants, in particular, a new constant
allowing for a difference in the pulsation damping of
the longitudinal and transverse velocity components.

Krzhizhanovskiœ Power Engineering Institute,
Leninskiœ pr. 19, Moscow, 117927 Russia
1028-3358/02/4712- $22.00 © 20883
1. Steady-state stabilized axisymmetric flows of an
incompressible fluid in an isothermal regime are
described by the well-known set of averaged hydrody-
namical equations involving the continuity equation
and two equations of motion:

(1)

(2)

(3)

Here,  =  < 0 and  =  < 0 are the laminar
and turbulent shear stresses, respectively (their signs
correspond to the case of a centrally symmetric flow);
the subscripts z and r stand for the derivatives with
respect to the coordinates; the linear and cylindrical
cases correspond to n = 0 and 1, respectively; and the
remaining denotations are conventional. The stabiliza-
tion condition (with respect to z coordinates) implies
that the quantities , , and  depend only on r with

 = 0. With regard to Eq. (2), the condition  = (z)
issuing from (3) yields  = const. As a result, we arrive
at one-dimensional equation (2) and the integral of
Eq. (1), which is the constant-flow-rate condition

(4)

where a is the channel radius.
The boundary conditions are formed by the condi-

tions at the channel wall

(5)

(6)

and by the symmetry condition

(7)

From the continuity equation

,

rnu( )z 0,=

rn pz

ρ
--------- rn τ l τ t+( )[ ] r,=

pr 0.=

τ l νur τ t u'v '–

u τ l τ t

v p p
pz

G urn rd

0

a

∫ const,= =

u a( ) 0,=

u' a( ) v ' a( ) 0= =

ur a( ) 0.=

rnu'( )z rnv '( )r+ 0=
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it follows by virtue of (6) for pulsations at the wall (see,
e.g., [3]) that

(8)

Hence, in addition to the equality

, (9)

we arrive at

(10)

In the simplest case, the relation of  to averaged
flow characteristics can be found on the basis of the
Prandtl kinetic analogy (see, e.g., [4]):

(11)

Here, l(y) is the mixing path length (an analogue of the
mean free path). Hence,

(12)

where y = a – r is the distance to the channel wall. In fact,
in view of both Eq. (8) and the condition (a) ≠ 0, the
mixing path lengths for u' and v ' differ slightly.
Namely,

(13)

where l1 ~ y and l2 ~ y2 , or, more exactly,

Here, ζ =  and the unknown functions f1, 2 are approx-

imated by the expansions into a power series

Hence,

(14)

The similar representation in the case of (11) takes the
form

(15)

With regard to (7), the integral in Eq. (2) has the
form

Introducing the dynamic velocity

v r' a( ) 0.=
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τ t
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= =
and the dimensionless quantities ψ =  and ξ = , we

arrive at the equation

(16)

where Λ1, 2 = , ∆ =  ≡ . Relation (16)

expressed in terms of the variable ζ takes the form

(17)

Hence,

(18)

In the case

,

we obtain from Eq. (18) the Darcy integral [4]

In our further consideration, the quantities Λ1, 2 should
be defined more concretely.

Considering only the simplest case, we set

Assuming that

we have

The quantities  =  and  = , as well

as their product, are shown in Fig. 1. It follows from the

equalities Λ2ζ(ζ) = Λ2ζ(1 – ζ) that  –  is an odd

function of ζ – .

The constant a10 ≡ κ is the Karmán constant men-
tioned above, while a20 is a new turbulence constant. In
this approximation, the product a10a20 = α0 is the only

u
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indefinite constant entering into Eqs. (16) and (17).
Furthermore, we determine the constant a20 and the sec-
ond turbulence constant κ0 entering into the expression

(19)

with only κ given and κ1 =  [4].

2. The theory presented below is analytical in the lit-
eral sense of this definition, because we seek solutions
to nonlinear equation (17) as power expansions. In this
case, the general solution can be found by a regular
method resulting in recurrence relations.

We assume that

The problem is reduced to expressing the coefficients bl

that enter into Eq. (17) in terms of a1i and a2j .

It is evident that

where

Then,

where

And lastly,

ψ ζ( ) u
v *
------- κ1 Rζ( )ln κ0+= =
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R5 . Naturally, these terms can be omitted as the low-
est in powers of R. A similar remark holds true for the

group of terms with the factor , etc.

In what follows, we consider an asymptotic regime,
i.e., the case of sufficiently large values of Reynolds
number

Here, the parameter R is assumed to be sufficiently

large, 〈u 〉  and d =  being the mean velocity and the

hydraulic diameter, respectively.

We can reduce strongly divergent expansion (22) to
a convergent form in the following manner. According
to Eq. (18), the function ψζ tends to a finite limit as
R  ∞ in the central region, whereas it turns out to be
a weak (logarithmic) function of R in the intermediate
domain between the central and near-wall regions. This
is seen, in particular, from expression (19). Because of
this, each term of expansion (22) can be approximately
considered as the first term of an expansion of the cor-
responding logarithmic function with a certain correc-
tion factor that disappears in the expansion in the vicin-
ity of the viscous sublayer. Namely, we make the
replacements

Here, we introduce the moduli of the multipliers in
order to provide for the arguments of the logarithmic
functions to be positive. To diminish the number of the
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multipliers, it is natural to take them as identical for all
terms of the same power in R, so that

(23)

where g1 > 0. For sufficiently small ζ, representation (23)
tends to expansion (22) and is reduced to a convergent
expression outside the viscous sublayer when the unity
in the arguments of the logarithmic functions can be
omitted.

Comparing the factors standing at lnζ and lnR in
expressions (19) and (23) for sufficiently small g1 when
g3, 5 > 0 (see below), we obtain the set of equations with
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This set has the solution
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following dependence of κ0 on γ1 , with the parameters
κ and α0 given:
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moduli of γ3 and γ5 , respectively. By virtue of physi-
cally evident condition κ0 > 0, the interval of admissible
values of α0 is bounded by the inequalities 2.534 ×
10−3 < α0 < 1.382 × 101 as is seen from Fig. 2. Within
this interval of values of α0 at γ1 = 0, the inequalities

κ0 > 0 and  < 0 take place. At the same time for

γ1 ≥ ,  > 0. As a result, for admissible α0 within

the interval γ1 ∈  (0, γ1*) such that 

(25)

the value κ0 < κ0* is realized doubly while for κ0 >

κ0*—only once. In other words, from the domains 1, 2,

and 3 in which, respectively, γ1 ∈  , , and

, as follows from Eq. (25), only in the domain 3,

the dependence κ0 (γ1, α0 = const) for admissible α0 is
monotonically increasing. For κ0 < κ0*, this fact

ensures the uniqueness of κ0. In this domain, for admis-
sible α0 the minimum value of γ1* is equal to 2/3, with

α0*  = 0.02178 and κ0* = 5.377. The latter value differs

from the experimental result κ0 = 5.5 [4] only by about
2%, which is probably smaller than the experimental
error. In any case, the calculated and experimental [4]

reduced velocity profiles  in the case of Re = 4.0 ×

103, 1.1 × 105, and 3.0 × 106 are visually indistingui-
shable.

The new turbulence constant is

(26)

The turbulence constant , which is similar to κ0*
entering into the expression for the average velocity

, (27)

is given by the conventional formula

.

Hence, (n = 1) = 1.627 (instead of the experimental

value κ0* = 1.75) and (n = 0) = 2.877. Allowing for

dκ0

dγ1
--------

2
3
---

dκ0

dγ1
--------

κ0* γ1 0; α0=( ) κ0* γ1*; α0( )=

0
3
5
---, 

  3
5
--- 2

3
---, 

 

2
3
--- ∞, 

 

u y( )
u a( )
-----------

α20 κ1α0* 0.05445.= =

κ0' *

ψ〈 〉            ω〈 〉 u 〈 〉 / v * κ 1 R ln= = κ 0 '
*+

κ0' * κ0* n 1+( )κ1 ζξ n ξdln

0

1

∫+=

κ0' *
κ0' *
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the channel-resistance coefficient λ, we can easily pass
from Eq. (27) to the universal resistance law [4].

In view of a certain spread of values of the Karmán
constant κ, we present in Fig. 3 the dependences α0*(κ)

and κ0*(κ), which are described analytically by the

expressions

(28)

Thus, any of the four quantities a10 = κ, a20, κ0*, and

 can be determined provided that one of them is
given.
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Along with the equations of motion of multicompo-
nent stratified fluids [1], various model systems [2] are
extensively used to describe physical processes in the
environment. These models include derivative models
based on simplifications of the original system [3] and
constitutive models, among which turbulence theories
are most extensively used [4, 5]. In order to construct
adequate and efficient models and to estimate the con-
sistency of various approaches, continuous group the-
ory is extensively used [6], and invariant properties of
compared sets of nonlinear equations are calculated
and compared. The development of the technique of
symbolic computer calculations makes it possible to
apply Lee-group-theory methods [7] to complex sets of
the general equations of motion [8, 9]. In this study, we
compare the invariant properties of the basic sets of
equations used to calculate flows of multicomponent
stratified media, which simulate processes in the atmo-
sphere and hydrosphere. Point-symmetry groups were
sought by the software package developed in the Maple
language [10].

The basic set of equations of motion of a multicom-
ponent stratified fluid has the form [1, 2]

(1)

Here, u = (u, v , w), P, and ρ are the velocity, pressure,
and density of the fluid, respectively; g is the accelera-

tion of gravity; ν =  is the kinematic viscosity, where

µ is the dynamic viscosity; and κi are kinetic coeffi-

ρ S( ) ∂u
∂t
------ u∇( )u+ 

  ∇ P ∇ µ S( )∇ u( ) ρ S( )g,+ +–=

∂Si

∂t
------- u∇( )Si+ ∇ κ i S( )∇ Si( ),=

divu 0.=

µ
ρ
---
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cients, which are the characteristics of the molecular
transport and depend on all the parameters determining
the density of the medium. The equation of motion
relating the medium density ρ = ρ(S) to the temperature
and concentration of dissolved or suspended particles
and gases involves an additional set of parameters.
These parameters—the thermal expansion coefficient,
salt compressibility factor, etc.—which are generally
nonlinear, are not presented in explicit form. Practical
problems are often solved in the Boussinesq approxi-
mation, where density variations are taken into account
only in the term that presents the buoyancy forces and
involves a large factor g.

The generators of the basic infinite-dimensional
symmetry group of complete set (1) present the basic
properties of classical mechanics and can be repre-
sented in the form (physical interpretation of the corre-
sponding transformation group is given in parentheses)

(spatial and time translations);

(Galilean relativity);

(2)

(rotations in the horizontal plane); 

(rotations in the vertical plane in a noninertial 
reference frame moving with the acceleration

of gravity);

infinite-dimensional subalgebra 

 (pressure translations),

where π(t) is an arbitrary function of time.
The Boussinesq approximation substantially

changes the basic symmetry group, whose set of gener-
ators in this case involve both some operators common
with algebra (2) and three new operators:

X1 ∂t, X2…4 ∂xi
= =

X5…7 t∂xi
∂ui

+=

X8 y∂x x∂y v ∂u u∂v–+–=

X9 10,
gt2

2
------- z+ 

  ∂xi
xi∂z– gt w+( )∂ui

ui∂w–+=

Xπ π t( )∂P=
002 MAIK “Nauka/Interperiodica”
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X1 =  (time translations);

(rotations in the horizontal plane);

and the infinite-dimensional subalgebras

(3)

(transition to a reference frame moving with an arbi-
trary linear acceleration).

The extension of Galilean relativity without diver-
gence [generators  in Eqs. (3)] in the Boussinesq

approximation is caused by the change of  to

, i.e., by giving the barotropy property to the

fluid. This invariance was first found for the equations
of an ideal incompressible fluid (Euler equations [7]).
However, the physical interpretation of the cause of the
extension follows only from an analysis of a more com-
plete system. Moreover, in the Boussinesq approxima-
tion, the symmetries of rotation in the vertical plane
(X9, 10) disappear due to the arising difference between
the gravitational and inertial masses. The linearization
of the equation of state and assumption that the kinetic
coefficients are constant transform the set of genera-
tors (3) to the set obtained previously in [11].

In the boundary-layer approximation, where gradi-
ents in the direction of the mainstream flow are much
lower than transverse gradients, the two-dimensional
variant of set (1) takes the following form:

(4)

which, in contrast to the standard form [3], involves the
equation of the transfer of the stratifying component
and the term presenting the buoyancy forces in the
equation of motion. Here, ξ and ζ are the local tangen-
tial and normal coordinates; α is the horizontal slope of
the flowed surface so that z = ξ sinα + ζ cosα, x =
ξcosα – ζ sinα, u = uex + v ey; and pressure P is deter-
mined from the Bernoulli equation for the incident
flow. Set (4) was derived with the linearized equation of

state ρ = ρ0 , where Λ =  is the

buoyancy scale, which, as well as the transfer coeffi-
cients, is assumed to be constant.

∂t

X2 y∂x   x –  ∂ y v ∂ u u ∂ v –+=

Xπ π t( )∂P=

Xχ i
χ i t( )∂xi

χ i' t( )∂ui
χ i'' t( )xi∂P, i–+ 1 3,= =

(pressure translations);

Xχ i

∇ P
ρ S( )
-----------

∇ P
ρ0
----- 

 

∂u
∂t
------ u

∂u
∂ξ
------ v

∂u
∂ζ
------++ ∂P

∂ξ
------ ν∂2u

∂ζ2
-------- gS α ,sin–+–=

∂S
∂t
------ u

∂S
∂ξ
------ v

∂S
∂ζ
------++ κS

∂2S

∂ζ2
--------

u α v αcos+sin
Λ

--------------------------------------,+=

∂u
∂ξ
------ ∂v

∂ζ
-------+ 0,=

1 z
Λ
----– S+ 

  d ρ z( )ln
dz

-------------------
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The reduction of the space dimension and disregard
of transverse gradients in the boundary-layer model
reduces the order of set (4) as compared to the original
set. As a result, some boundary conditions for Eqs. (1)
are surplus, and they cannot be satisfied entirely in the
model specified by Eqs. (4). For this reason, some
physically important elements of the flow near the
boundary are lost, and characteristics where the solu-
tion is singular appear [12] as in an ideal fluid.

The symmetry group of set (4) depends on the local
horizontal slope of the flowed surface. In the general

case α ≠ 0 and α ≠ , the set of the corresponding

generators are

 (time translations);

 
[salinity (density) translations (5)

and related pressure translations]; 

(extensions)

and infinite-dimensional subalgebras

 (pressure translations);

(transition to a reference frame moving
along the ξ axis);

(transition to a reference frame moving
along the ζ axis).

Here, π, χ, and η are arbitrary functions of their argu-
ments.

The symmetry group given by Eqs. (5) is very simi-
lar to the group specified by Eqs. (3) and does not
involve rotation groups as in a homogeneous fluid [7].
This anisotropy is caused by the disparity between the
ξ and ζ axes, which was a priori imposed by the con-
struction of the model. The conditions of incompress-
ibility and barotropy of the fluid are responsible for the
equivalence of all reference frames moving translation-
ally with an arbitrary acceleration as in Eqs. (3). Disre-
gard of the transverse velocity component in one of the
equations of motion extends the class of these systems.


 π

2
---



X1 ∂t=

X2 ∂S gξ α∂ Psin–=

X3 2t∂t 5ξ∂ξ ζ∂ζ 3u∂u v ∂v–+++=

+ S
4ξ αsin

Λ
------------------+ 

  ∂S 2 3P
g
Λ
----ξ2 αsin

2
– 

  ∂P+

Xπ π t( )∂P=

Xχ χ t( )∂ξ χ t+ ∂u
αsin

Λ
-----------+ χ∂S=

– χ tt x χ g
Λ
----ξ αsin

2
+ 

  ∂P

Xη η t ξ,( )∂ζ η t ηξu+( )∂v+=

+
αcos

Λ
------------η∂S

g
2Λ
------- 2α η ξd( )∂P∫sin–
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Reference frames moving with rotation and defor-
mation (generator Xη) are also equivalent in the trans-
verse direction. In this case, the transformation of the
transverse velocity component is determined by the
substantial derivative of the law of motion η(t, ξ) along
the tangential velocity component. Direct calculations
indicate that this property is inherent in the boundary-
layer equations for a homogeneous fluid. For these
equations, it is usually emphasized that the law of
motion depends only on time [7], and generator Xη is
given in the reduced form

For turbulent flows with zero average velocity and
nonzero vorticity, which are realized experimentally by
means of oscillating grids [13], the closure condition is
set in the form

(6)

where turbulent viscosity K is an empirical function of
the coordinates. The corresponding set of equations for
average quantities (hereafter, the averaging bar is omit-
ted), as well as its two-dimensional analogue,

(7)

admits the symmetry group whose generators are

(spatial translations);

(rotations);

(8)

(extensions); 

(inhomogeneous velocity translations);

and the infinite-dimensional subalgebras

 (pressure translations);

(generalized translations and extensions).

This model of the flow holds the basic symmetries
of set (1) that present the properties of uniformity and
isotropy of space and time and has groups of extensions
and translations specific for this model. At the same
time, set of operators (8) and their linear combinations
do not involve the operator of the Galilean transforma-

Xη η t( )∂ζ η t∂v .+=

ui∇ i( )u j ∇ j uiu j( ) ∇ jK
∂ui

∂x j

------- ∂u j

∂xi

--------+ 
  ,–= =

∂ui

∂t
------- ∂ui

∂x j

------- ∂u j

∂xi

--------+ 
  ∇ jK– ∇ P K∆ui,+–=

divu 0,=

X1…3 ∂xi
=

X4…6 xi∂
x

j x j∂
x

i– ui∂
u

j u j∂
u

i–+=

X7 r∂r P∂P K∂K , X8++ u∂u P∂P+= =

X9…11 xi∂u
j x j∂u

i–=

X π t( )∂P=

Xϕ i
ϕ i t( )∂ui

xiϕ̇ i t( )∂P,–=

Xτ τ t( )∂t τ̇ t( ) P∂P K∂K+( )–=
tion providing the basis of classical mechanics. Com-
prehensive analysis of the resulting symmetry proper-
ties reveals other physically unjustified properties of
the model [generators X9…11,  in Eqs. (7)].

In order to improve the description of the process
dynamics, more complex closure conditions are devel-
oped. In particular, a set of scale dissipative k – ε mod-
els is extensively used. One of the basic nonstationary
models of this set, the so-called k – ε – τ – ϑ  model, is
used to describe flows of a temperature-stratified fluid
and is specified by the set of equations [5]

(9)

where ui = , T = , and P =  are the average veloc-

ity, temperature, and pressure, respectively; wik = ,

qi = , and ϑ  =  are the second-order moments;

α, κT, ν, and νt =  are the coefficients of thermal

expansion, heat conduction, kinematic molecular vis-
cosity, and kinematic turbulent viscosity, respectively;
k is the kinetic energy of turbulent pulsations; ε is the
dissipation rate for the turbulent kinetic energy; Π =

 is the outcome of turbulence,

Xϕ i

divu 0,=

dui

dt
------- –

∂P
∂xi

------- ∂
∂x j

------- ν
∂ui

∂x j

------- wij– 
  giαT ,+ +=

dT
dt
------

∂
∂xi

------- κT
∂T
∂xi

------- qi– 
  ;=

dwij

dt
----------

∂
∂xm

---------
ν t

σk

-----
∂wij

∂xm

--------- 
 =

+ Pij
2
3
---δijε– c1

ε
k
-- wij

2
3
---δijk– 

 – c2 Pij
2
3
---δijP– 

  ,–

dk
dt
------

∂
∂xi

-------
ν ν t+( )

σk

------------------ ∂k
∂xi

------- Π ε ,–+=

dqi

dt
-------

∂
∂x j

-------
ν t

σϑ
------

∂qi

∂x j

------- 
  1 c2T–( )PiT wij

∂T
∂x j

-------– c1T
ε
k
--qi,–+=

dϑ
dt
-------

∂
∂xi

-------
ν t

σT

------∂ϑ
∂xi

------- 
  2qi

∂T
∂xi

-------– cT
ε
k
--ϑ ,–=

dε
dt
----- cε

∂
∂xi

-------
ν t

σε
----- ∂ε

∂xi

------- 
  cε1

ε
k
-- –wij

∂ui

∂x j

------- βgiqi+ 
  cε2

ε2

k
----,–+=

ui T P

ui'uk'

T 'ui' T ' 2

cµk2

ε
----------

–ui'uk'
∂Ui

∂xk

---------
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and c1, c2, c1T, c2T, cε, cε1, cε2, cµ, σk, and σϑ are empiri-
cal constants (fitting parameters) fitted from the condi-
tion of maximum agreement between calculations and
experimental data.

Complex set (9) is characterized by a poor set of the
symmetry groups whose generators are
X1 = ∂t , X2 = ∂T (translations of time and temperature),

and infinite-dimensional subalgebras

(pressure translations),

(10)

(transition to a reference frame moving 
with an arbitrary linear acceleration).

Translation operators X1, X2 , and Xπ for set (9) coin-
cide with the respective operators for set (1) with the
linearized [as in set (9)] equation of state. Set (9)
derived in the Boussinesq approximation conserves the
generalized Galilean invariance given by Eq. (4)
despite all the introduced complications. Symmetries
given by Eqs. (10) do not involve the rotation group
[such as X8 from Eqs. (2)]. A simpler analogue of the
model given by Eqs. (9) for a homogeneous fluid
(k − ε models) also does not obey rotation groups pre-
senting the fundamental isotropy of space.

As a whole, to completely estimate the equivalence
degree for the set of equations, it is necessary to deter-
mine, in addition to differential symmetries, their dis-
crete symmetries [14] and integral invariants. However,
even the knowledge of only point invariants substan-
tially simplifies the construction of exact and approxi-
mate (asymptotic) solutions and makes it possible to
classify boundary conditions allowing the total or par-
tial separation of variables. The reduction of all inter-
mediate calculations when constructing asymptotic
solutions to operations from the corresponding algebra
enables one to represent solutions in the invariant form
independent of the choice of the initial variables, i.e., to
determine the physical meaning of the equivalence con-

Pij wim

∂u j

∂xm

---------– w jm

∂ui

∂xm

---------– α giq j g jqi+( ),+=

PiT –q j

∂ui

∂x j

------- βgiϑ ;+=

Xπ π t( )∂P =

Xχ i
 = χ i t( )∂xi

χ i' t( )∂ui
χ i'' t( )xi∂P, i–+  = 1 2 3, ,
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dition for the sets and the scope of applicability of the
derivative models in each particular case.
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1. EQUATIONS
WITH AN INTEGRAL INVARIANT ON A TORUS

As is known, a system of differential equations that
is defined on a two-dimensional torus T2 and has an
invariant positive-density measure can be reduced to
the form

(1)

in certain coordinates xmod2π and ymod2π. Here, λ
and µ are the constants (λ2 + µ2 ≠ 0) and Φ(x, y) is the
smooth function 2π-periodic in the variables x and y.

Equations (1) have the invariant measure (x,

y)dxdy. Averaging the right-hand sides over this mea-
sure, we arrive at the differential equations

(2)

From the results obtained by Kolmogorov [1], it fol-
lows that if Φ: T2  R is a smooth (analytic) func-
tion, the smooth (analytic) change of variables x, y 
u, v  reduces the system given by Eqs. (1) to the form of

Eqs. (2) for almost all rotation numbers ω =  satisfy-

ing the condition of strong incommensurability. We
recall that this condition is as follows: there are num-
bers a > 0 and h > 0 such that the inequality |m – nω| ≥
ahn is valid for any integers m > 0 and n > 0.

For resonant (i.e., rational) number ω = , where p

and q ∈ Z, the torus T2 is stratified into the family of
closed periodic orbits so that the condition responsible
for reduction from form (1) to form (2) is equivalent to
the equality of the periods for different closed trajecto-
ries. When the periods for different trajectories on the

ẋ
λ

Φ x y,( )
------------------, ẏ

µ
Φ x y,( )
------------------= =

Φ∫∫

u̇
λ
ν
---, v̇

µ
ν
---,  ν  = 

1

4π2
-------- Φ x y,( ) x y.dd

0

2π

∫
0

2π

∫= =

λ
µ
---

p
q
---
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resonant torus are different, system (1) has the mixing
property [6]. Let us apply the above speculations to
investigate one nonholonomic problem.

2. NONHOLONOMIC CHAPLYGIN SYSTEMS

The integration of nonholonomic dynamic systems
is based, as a rule, on the Euler–Jacobi theorem, which
makes it possible to reduce the above system to sys-
tem (2) on the torus by using known first integrals. Let
us consider, for example, the following equations for
rolling a nonholonomic Chaplygin ball:

(3)

where I is the inertia tensor of the ball about its center, m
is the mass of the ball, and a is its radius. Equations (3)
are written in the components of the kinetic momen-
tum M with respect to the contact point, angular veloc-
ity w, and the unit vector g along the vertical direction
and have the invariant measure with the density

(4)

and four first integrals

(5)

which provide integrability of system (3) according to
the Euler–Jacobi theorem and reduction to the form of
Eqs. (1). In the explicit form, system (3) was reduced
by Kozlov [2] (see also [7]). For this reduction, it is pos-
sible to use sphero-conical coordinates on the Poisson
sphere

and, on the general level of integrals [for (M, g) = 0],

Ṁ M w, g× g w,×= =

M Iw Dg w g×( ), D×+ ma2,= =

ρ 1 D Ag g,( )–( )
1
2
---–

, A I DE+( )–1,= =

E δi
j=

F1 M w,( ), F2 M g,( ),= =

F3 g g,( ) 1, F4 M M,( ),= = =

γi
2 ai q1–( ) ai q2–( )

ai a j–( ) ai ak–( )
----------------------------------------, i j, k, 1 2 3, ,= =
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Absolute ∆ and relative δ deviations of the periods on the resonant tori. It is seen that the periods on the torus are different for D ≠ 0.
The system parameters are I1 = 1, I2 = 1.5, I3 = 3, D = mR2 = 1, g0 = 0, E = 10.0, and (M, g) = 3.0.
the equations take the form of Eqs. (1), where the func-
tion Φ(x, y) has the form

(6)

Here, the functions ξ(x) and η(y) are 2π-periodic in the
variables x and y and are derived from the inversion of
Abelian integrals. The reduction given in [2] can also
be done by using the result obtained in [3], according to
which system (3) is Hamiltonian on the level (M, g) =
0 after time change dτ = µdt, where µ is determined by
Eq. (4). Indeed, after time change, the action–angle
variables on the nonsingular invariant two-dimensional
tori can be introduced so that the angular variables
coincide with the required x and y variables from
Eqs. (1) [7].

3. OBSTACLE TO REDUCTION 
TO THE HAMILTONIAN FORM

According to the above discussion and study [3], the
four-dimensional phase space that is obtained from (3)
by fixing the integrals F2 = (M, g) and F3 = (g, g) = 1 is
stratified into two-dimensional invariant tori, where
motion reduces to the form specified by Eqs. (1) and
(6). As follows from the Liouville theorem, an integra-
ble Hamiltonian system near a nonsingular torus can
always be reduced to the form of Eq. (2). Therefore, if
such a reduction is impossible for the tori that are spec-
ified by Eqs. (1) and (6) and arise in the Chaplygin
problem, Eqs. (3) cannot be written in the Hamiltonian
form [on the level (M, g) = 0 and (g, g) = 1].

Our particularly accurate numerical calculations
indicate that periods for trajectories on different reso-
nant invariant tori are different along the same torus. In
addition, the impossibility of reduction is especially

Φ ξ 1– x( ) η 1– x( )–[ ] α ξ x( )–( ) α η y( )–( ).=
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pronounced in the vicinity of separatrices dividing
regions with different dynamic behaviors.1

The figure shows the numerical results for periods
of motion in the Chaplygin system on the resonant tori
for D ≠ 0 and D = 0. The latter condition corresponds to
the Hamiltonian case. In this system, the invariant torus
is parameterized by integrals (5), which are fitted
(numerically) so that the torus is resonant; i.e., all the
trajectories on it become closed. We take a section of
the torus by a certain plane transverse to these trajecto-
ries. Next, the points lying on the closed curve that is
formed by the section are parameterized by a certain
angular coordinate ϕ ∈  (0, 2π). For each value of ϕ, we
construct a trajectory starting from the corresponding
initial point on the chosen section and calculate the
period of motion along it T(ϕ). The periods are different
for different trajectories (dependences ∆(ϕ) = T(ϕ) –

T(0) and δ(ϕ) =  are shown in the figure).

The calculations and choice of the initial conditions are
so accurate that the period is calculated with an accu-
racy of ∆T = 10–8. (Only six significant figures are given
for G, although it was calculated with an accuracy of
10–10.) Thus, the periods of motion on the torus are dif-
ferent in the nonholonomic system (D ≠ 0) and are
identical for the holonomic case (D = 0) (more exactly,

1 According to the necessary condition for such a reduction [2], if
Φ(x, y) can be expanded into the Fourier series

on a torus and reduction is possible, the series

is convergent.

Φ x y,( ) ϕm n, i mx ny+( )[ ] ,exp∑=

ϕm n, ϕ m– n–,=

ϕm n,
mλ nµ+
-----------------

2

m n 0≠+

∑

T ϕ( ) T 0( )–
T 0( )

------------------------------
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the deviation in the latter case does not exceed the cal-
culation error).

4. CONCLUSION
The problem of the reduction of Eqs. (3) to the

Hamiltonian form was first formulated by Kozlov [4].
In [5], this problem was related to the problem of
“weak” mixing (weak chaos) on invariant tori. The
spectrum of a dynamic system on such tori can be con-
tinuous, although all the characteristics of chaos
(Lyapunov exponent and entropy) are equal to zero. In
this study, we showed numerically that reduction to the
Hamiltonian form is impossible on nonresonant tori.
The problem of reduction for nonresonant tori that do
not satisfy Kolmogorov’s condition of strong incom-
mensurability is still open. The statistical aspects of the
behavior of system (1) were considered in [6].

In conclusion, we note that the reduction of a
dynamic system to the Hamiltonian form, which may
be hidden [5], and the determination of obstacles to this
reduction are much more complex problems than the
problem of first integrals and invariant measure and are
still little studied [4]. As is seen, these obstacles for
integrable systems can nevertheless be analyzed
numerically.

A “cruder” obstacle to reduction to the Hamiltonian
form is typical for nonintegrable systems and is associ-
ated with the absence of an invariant measure with the
analytic density for nonholonomic equations. This
obstacle was mentioned in [2], where it was also estab-
lished that there is no invariant measure for Celtic
stones, which exhibit rather exotic dynamic behavior
and whose phase space involves complex attractive
manifolds.
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Cavitation Flows in Viscous-Fluid Films
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The Prandtl–Taylor–Birkhoff problem, i.e., the
mathematical description of flows with cavitation in
thin films of a viscous fluid [1–3], is considered. A
closed model of cavitation flows is proposed on the
basis of the analysis of unsteady dynamics of cavitation
bubbles and their hydrodynamic interaction in a thin
film.

The dynamics of cavitation bubbles involve strongly
nonlinear effects. When a bubble undergoes Rayleigh
collapse [4] in a low-viscosity fluid, the spherical
cumulation of energy is possible. Another practically
important mechanism of unsteady energy cumulation
accompanying bubble collapse is caused by bubble
nonsphericity. Dynamic variation in the bubble shape,
together either with stream inhomogeneity (the pres-
ence of a solid boundary and stream acceleration) or
with the initial momentum, can induce anomalous non-
Rayleigh energy cumulation responsible for the forma-
tion of a thin fluid “superjet,” whose velocity is enor-
mous and can even be infinite (in the framework of the
mathematical model of an incompressible fluid) [5].
The infinite velocity of a fluid stream for anomalous
cumulation, contrary to Rayleigh cumulation, corre-
sponds to a nonzero bubble volume, i.e., to an incom-
plete collapse.

The dynamics of many cavitation bubbles are stud-
ied most comprehensively for a low-viscosity fluid. The
Lagrange equations were proposed for the dynamics of
a system of bubbles undergoing ultrasonic cavitation
[6]. The dynamics of a system of interacting bubbles in
arbitrary vortex-free streams are described by asymp-
totic models and equations [7–10].

Cavitation in thin fluid films, which is one of the
most important mechanical problems [1–3], is of inter-
est in connection with the lubrication and technologies
of film deposition on solids. However, this problem is
insufficiently studied. In the phenomenological theory
of cavitation in films, formal schemes of flows were
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based on empirical information [11–13]. Here, in con-
trast to this theory, we consider cavitation flows in the
asymptotic model of bubble cavitation in the film of a
relatively high-viscosity fluid.

A fluid of density ρ flows steadily, forming a thin
film between the surfaces of solids 1 and 2 for low Rey-
nolds numbers. Pressure p in the neighborhood of the
minimum film thickness h = h0 > 0 is described by the
following Reynolds equation [14] in the coordinates x
and y on a tangential plane:

(1)

Here, µ is the viscosity, u1 and u2 are the velocities

of the respective surfaces,  ! 1, u = u1 + u2 , and

|∇ h| ! 1. Let u1 and u2 be aligned with each other and
uy = 0. If one of the surfaces is a sphere of radius RS @
h0 and the other surface is a plane, thickness is h = h0 +

. For larger thicknesses   ∞, we set pres-

sure p∞ > 0. For negative pressures in the region of low
thicknesses, where h increases in the direction of
motion of the surfaces, cavitation is possible. It is nec-
essary to determine when the cavitation flow is
described by Eq. (1) and to find the boundary condi-
tions on the cavity contour.

PARAMETERS OF FILM BUBBLES

Let surface 1 have microscopic inhomogeneities
coupled with small gas bubbles, which can be in equi-
librium and are not dissolved because of their coupling
with an inhomogeneity [15]. Identical bubbles form a
network with the mean number of nodes nS per unit
area. We consider sufficiently small-mesh networks;

i.e., the case nS ~  is allowed, but the case nS !  is

excluded. The diameter of a bubble is much smaller than
the network mesh. Bubbles are only near surface 1; the
case of bubbles in the fluid bulk can be considered sim-
ilarly. Velocity u1 is not low compared to u2 .

div h3ρ
µ
---—p 6ρh u1 u2+( )–

 
 
 

0.=

u h0

ν
-----------

x2 y2+
2RS

---------------- h
h0
-----

1

h0
2

----- 1

h0
2

-----
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Temperature T is constant. The pressure pv of satu-
rated vapors is low: pv ! p∞. The gas in the bubble is
ideal; i.e., its pressure is pg = ρgRgT, where ρg is the den-
sity. The concentration or density ρg1 of the gas in the
fluid near the bubble follows the Henry law ρg1 = kpg,
where k = const. The normal stress in the fluid on the
bubble is related to the gas pressure by the Laplace
expression pn = –pg + 2Hσ, where σ is the surface ten-

sion, H is the average interface curvature, and H = 

for the sphere of radius R. There are also certain condi-
tions on the bubble–solid contact line.

As the volume V of the bubble increases, the mass of
the gas inside it depends on gas diffusion to the fluid.
The role of this diffusion can be estimated from the
Peclet number, which is convenient to define as Pe =

, where D is the diffusivity , R is the

characteristic bubble radius (radius of the sphere of vol-

ume V), λ =  (ρg and ρg1 are the equilibrium

values for V = const), and τ is the characteristic time of
variation of the volume V. At the entrance to a cavity,
time τ can be very small (much smaller than 1 µs).

For fast growth of the bubble, the Peclet numbers
are high, Pe @ 1, and the gas mass inside the bubble is
almost constant. If the normal stress pn is approxi-
mately constant along the surface, the stress pn has a
maximum  = max{pn(V)} according to the capillary-
equilibrium problem. If pressure p in the film is less
than its critical value , the bubble can spontaneously
grow. A spherical bubble also has the maximum stress

 = , where R* is the critical radius. We con-

sider a spherical bubble with the same stress  as on
a nonspherical bubble associated with a wall inhomo-
geneity.

The inertial effects are immaterial in bubble dynam-

ics if viscosity is high, i.e., if  ! 1, where ν is kine-

matic viscosity. The equation of radius variation has the
form

(2)

where p is the mean pressure in the film, γ = 4, and the
bubble is far from the wall. The bubble is spaced from
the wall by a distance much smaller than h, so that the
bubble moves with the wall velocity u1 . Bubble–wall
interaction can approximately be taken into account by
considering γ > 4.

The asymptotic method described below is in prin-
ciple not restricted to the approximate spherical-bubble

1
R
---

Rλ( )2

Dτ
-------------- D

ν
----  ! 1 

 

ρg

ρg1
------- 

 
1/3

pn*

pn*

pn*
4
3
--- s

R*
-------

pn*

R2

ντ
------

γµR
.
R 1– 2σR 1–+ pg p,–=
model, and deformations of the bubble can be taken
into account. We note that the bubble does not break in
the shear stream due to the capillary forces if its radius
is sufficiently small.

ASYMPTOTIC METHOD 
OF THE TRANSITION LAYER

A steady cavity in a film differs fundamentally from
cavities in the case of developed cavitation at large Rey-
nolds numbers. The boundary of this cavity is not a
stream line, and the fluid flows through it [1–3, 11–13].

Let the critical stress be much smaller than the pres-

sure minimum without cavitation:  ! . In this
case, the effect of bubbles on the flow in the film can
manifest itself in the thin transition layer, when the fluid
flows into the cavity.

The flow of the film with bubbles is described by
Reynolds equation (1) with variable density ρ = ρ0(1 – c)

ρ0 = const, and c =  is a low concentration of bub-

bles . Such an approach is rigorous if the velocity

magnitude w = – ∇ p is much smaller than 0.5|u|.

This is the case near the cavity contour L, at which we
take p = 0 for solving the Reynolds equation for an
incompressible (ρ = ρ0) fluid. We introduce the coordi-
nate ξ along the external normal n at the point x0 ∈  L,
where ξ = 0. Let the indicated solution p have a mini-
mum in ξ, pmin, for small ξ = ξM (at the point xM = x0 +
ξMn). We consider a small neighborhood of the point

xM: |x – xM| ! l  is the scale of variation
in h). We approximate the quantity h by two terms of
the Taylor expansion at the point xM. We consider that
thickness increases in the direction of velocity, u∇ xh > 0.
Taking into account that the derivatives of p and c along
the normal are much greater than those along the layer,
we simplify the equation of the flow:

(3)

hM = h(xM), unx < 0, u ≡ ux, u1 ≡ u1x . The quantity ε is

small: |ε| ~  ! 1. According to Eq. (3), the strong ine-

quality |w| ! 0.5|u| is valid for small ξM and ξ. Equa-
tion (3) is asymptotically exact for c ! 1 and ξM ! l,
when the transition layer is thin.

In the transition layer, the concentration c decreases
with an increase in ξ, and the pressure p approaches the

pn* pmin
0


 nSV

h
---------




h2

12µ
---------

l RSh0( )1/2=(

hM
3

12µ
---------∂p

∂ξ
------ u

2
--- ε ξ ξ M–( ) nxhc–{ } , ε ∂h

∂x
------ xM( ),= =

h0

l
-----
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solution to the Reynolds equation for an incompressible
fluid:

(4)

The quantity pmin is unknown. The compatibility with a
cavity requires that

(5)

To complete the problem, it is necessary to have the
model of the variation in the bubble volume V with
varying pressure p. For this purpose, we use the
dynamic equation for the spherical bubble at large
Peclet numbers

(6)

Equations (3) and (6) describe the effect of interac-
tion between bubbles that is caused by the influence of
their concentration on the fluid flow. In the dimension-
less notation

(7)

we obtain the boundary-value problem

(8)

The dimensionless parameters β and G are indepen-
dent, and the constant α is determined from Eq. (8): α =
α(β, G). The parameter G is proportional to the num-
ber nS or to the initial (critical) gas volume per unit film
area. The cavity equation GY3 = ζ (for ∇ p ≈ 0) is estab-
lished for a low bubble concentration c, because

(9)

We note that this theory is suitable nonuniformly in nx.

It is reasonable to consider the boundary-value
problem given by Eqs. (8) only for β > 0.3. The solution

p pmin
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has no real meaning for β close to zero, because it eas-
ily fails for small pressure fluctuations in the film.

PROPERTIES OF THE FLOW MODEL

The dependence of the dimensionless-pressure min-
imum –α on the bubble dynamic parameter β is given
in Fig. 1 (solid curves 1, 
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tion coincides with l* ! l, which is equivalent to  !

 ~ µ|u| . The thickness ξM @ hM (because ε ! 1).

The solution reveals the flow pattern in the thin tran-
sition layer: the medium in the film undergoes a phase
transition controlled by bubble dynamics. A low initial
gas content in the film does not hinder this transition,
although the dissolved gas is not noticeably released. At
the beginning of the layer, the medium behaves as if it
were incompressible, whereas at the end of the layer,
the inhomogeneous medium is easily compressible due
to the presence of bubbles, and the pressure gradient
disappears. The end of the transition layer coincides
asymptotically with a cavity—the region of constant
pressure. In the cavity, the inhomogeneous medium in
the film has a simple equation of state: pressure is equal
to p = 0 independently of average density. The solution
quantitatively explains the film failure—the existence
of a visible cavity boundary fixed in many experiments
[2, 11–13].

The second boundary condition in Eqs. (10) does
not coincide with any known phenomenological
boundary conditions (Swift–Stieber, Prandtl–Hopkins,
Floberg, Coyne–Elrod [1–3, 11–13]).

Let all the conditions under which Eqs. (10) were
obtained be satisfied and  ! p∞. According to
Eqs. (10), ∇ np contributes term |w| = O(|ε|2/3)|u| =

O |u| to the average velocity in the film.

Neglecting this term compared to  and using

Eqs. (10), we obtain the condition ∇ np = 0 at the
entrance to the cavity. This is the Swift–Stieber bound-
ary condition [12, 13].
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STRUCTURE 
OF THE SECOND DENSITY JUMP

At the exit from the cavity, the region of the easily
compressible medium borders the region of incom-
pressible fluid. The structure of the boundary region is
qualitatively described by the one-dimensional prob-
lem of steady flow in a constant-thickness film. For
ξ  −∞, the bubble concentration is c  c0 ! 1.
For ξ  +∞, Ò  0. According to the solution of the
flow problem with these conditions, the front of density
variation is thin: its thickness is δ ~ h(6c0)–1/2. Conse-
quently, at the exit from the cavity, density increases
stepwise, whereas pressure varies continuously. This is
the mixing of fluids with and without bubbles rather
than simply a phase transition as in the transition layer.

CAVITY SHAPE

The flow was calculated for a sphere–plane system
unusual for experiments in which the film surfaces are
conventionally cylindrical [2, 11–13]. Introducing
modified pressure , we rewrite Eq. (1) in the form

(11)

The conditions at the cavity contour L are written as

(12)

(un = n · u). If x0 ∈ L for un > 0, x* ∈ L for un < 0, y* =
y0; h* = h(x*). For a given pressure p∞ at infinity and the
second condition from Eqs. (12) for the given contour
L, the problem was solved (in the dimensionless nota-
tion) by the finite-difference method with the grid in the
polar coordinate system r, θ. The condition p = 0 at L is
equivalent to the condition that minmax{p(x1) – p(x2)},
x1, x2 ∈ L is reached. To solve the minimax problem, the
radius r(θ) of the curve L was represented by a partial
sum of the Fourier series at the interval (0, π). The num-
ber N of the highest harmonics cos(Nθ) was taken so
that accuracy was not worse than 0.01, for which N ≤ 8
is sufficient. The calculated cavity contours are shown

in Fig. 2 for various Λ = , where

(13)

Curves 1, 2, …, and 6 correspond to Λ = 0.93, 0.79,
0.54, 0.3, 0.2, 0.1, respectively, and to the velocity u < 0.
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The repulsion force between the sphere and plane1 

(14)

The force coefficient C(Λ) gives the graph in Fig. 3.
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1 In this paper, the qualitative shape of the function
T(k) (k is the wave number) that characterizes the
energy transfer in two-dimensional decaying turbu-
lence is found. (As usual, we imply turbulent motion
beyond the grid [1]; such turbulence can be considered
as the free motion of a fluid with an initial random
velocity distribution.) The corresponding properties of
correlation functions, namely, two-point third moments
whose sign, in contrast to the three-dimensional case,
turns out to be anomalous (positive) in a certain region,
are also obtained. In addition, the sign of the third
moment in self-similarity intervals and directions of the
energy and enstrophy fluxes are unambiguously deter-
mined by the shape of the function T(k). The shape of
the correlation functions in the self-similarity intervals,
which is consistent with experimental data [2], is deter-
mined from a two-dimensional analogue of the Kar-
man–Howarth equation.

1. The usual methods for the description of two-
dimensional turbulence, which were originated in [3],
are based on the concept of turbulent motion as ran-
domly forced turbulence. In such a situation, energy
fluxes and enstrophy fluxes are determined not by the
dynamics of motion as such but by intuitive reasoning
that the fluxes are directed to the right and to the left
from the hypothetical spectral region into which the
energy is injected. (Note that in the presence of an
external energy source, the Karman–Howarth equation
becomes inapplicable.) On the other hand, in direct
experimental investigations of two-dimensional turbu-
lence in thin liquid films (this possibility was first pro-
posed in [4]), the case of “classic” unforced decaying
turbulence is realized. Note that such decaying turbu-
lence is unsteady, in contrast to the forced turbulence,
which can be considered as stationary, at least in theory.
The shape of the functions for the second and third two-
point moments of the velocity field was established in
the experiments described in [2]. The anomalous
behavior of the third moment is radically different from

1 The article was submitted by the author in English.
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the case of three-dimensional turbulence (and from the
corresponding results for two-dimensional forced tur-
bulence). Below, the general description of the decay of
isotropic two-dimensional turbulence is given (allow-
ing the consistency of its correlative and spectral prop-
erties with conservation laws to be established), which
explains, in particular, the experimental data mentioned
above.

The basis for the description of the isotropic turbu-
lence is the Karman–Howarth equation. This equation
is the exact consequence of the Navier-Stokes equation
or its spectral form

(1)

where E is the energy spectrum; 

(v is the velocity; the density of the fluid is equal to
unity; brackets denote statistical averaging); T(k, t) is
the function specifying the energy flux in k space and
is linked with nonlinear terms in the equations of
motion; and ν is viscosity. Equation (1) is valid for the
case of both two and three dimensions. Thus, the differ-
ence between two-dimensional and three-dimensional
situations is reduced to the fact that, in addition to the
energy-conservation law expressed in the form

(2)

the enstrophy-conservation law in the two-dimensional
case (at zero viscosity)

(3)

is also valid.

We can see from (2) that T as a function of k cannot
have the same sign for all values of k. In the three-
dimensional case, it is constructed in the following

∂E k t,( )
∂t

------------------- T k t,( ) 2νk2E k t,( ),–=

E k t,( ) kd∫ 1
2
--- v2〈 〉=

T k t,( ) kd

0

∞

∫ 0,=

k2T k t,( ) kd

0

∞

∫ 0=
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manner. There exists a certain κ such that T(k, t) ≤ 0 at
k ≤ κ and T(k) > 0 at k > κ. In this case, it is evident that

(4)

The last inequality corresponds to the usual concepts
regarding energy transfer from large-scale to small-
scale components, although its proof or the rigorous
definition of the conditions for its validity are still
unknown. This task is as difficult as integrating the
original hydrodynamic equations (relevant reasoning
based on the effect of the vortex-tube dilation [5], of
course, is not rigorous). This is the shape of T(k), which
is confirmed by all experimental data concerning labo-
ratory turbulence (tube and channel flows, decaying
turbulence beyond grids, etc.), as well as ocean and
atmospheric turbulent motions.

Passing to the two-dimensional case, we can now
easily see that condition (3) excludes such a shape of
the spectrum. Indeed, assuming that T(k) changes its
sign at a certain point κ, by virtue of the mean-value
theorem, we obtain from expressions (2) and (3) 

(5)

where p < κ and q > κ. Since set (5) is inconsistent at
non-zero values of the integrals and p and q, such a
shape of the spectrum is impossible, which is why the
function T(k) changes its sign more than once. There-
fore, in this case, the simplest choice corresponds to the
double change in the sign of T(k), which is schemati-
cally presented in Fig. 1. It is easy to see that the func-
tion –T(k) symmetric (with respect to k axis) to the
function T(k) also satisfies conditions (2) and (3). As in
the three-dimensional case, the theoretical choice
between T(k) and –T(k) is not possible and can be made
only by analysis of experimental data. In order to do
this, we do the following. Since third-moment data
were also obtained in [2] for the smallest values of r sit-
uated outside the inertial intervals, we can compare
with them the function DLLL (or, which is the same, the
function BLL, L , whose definitions are given below)
linked at small r with T(k) by a certain exact relation.
Deriving this relation, we note beforehand that, by vir-
tue of relationships (2) and (3), for the chosen sequence
of signs in T(k), the following inequality is valid:

k2T kd

0

∞

∫ 0.>

T k T kd

κ

∞

∫+d

0

κ

∫ 0,=

p2 T k q2 T kd

κ

∞

∫+d

0

κ

∫ 0,=

k4T kd

0

∞

∫ 0,<
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which we will need below. In order to prove the validity
of this inequality, we consider the function

For this function, the relations following from (2) and
(3), as well as from its definition, are valid:

As is easy to see, the quantity S changes its sign,
namely, from negative to positive, only once. Thus, by
virtue of the mean-value theorem, the last integral is
positive, so that the statement to be proved follows from
the last of these relations.

Furthermore, in order to derive the desired relation-
ship, we should use the relation between the correlation
tensor Blm, n(r) and its Fourier transform expressed in
terms of the scalar function F3(k) [1]:

Using now the identity

and expressing the tensor Blm, n in terms of BLL, L (the
relation corresponding to the two-dimensional case can
be found in [6]), we integrate over the angular variable
with allowance for the known identity

Thus, we obtain after relatively simple but cumbersome
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0

z
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S 0( ) S ∞( ) 0, kS kd

0
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∫ 0,= = =
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0
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Schematic shape of the function T(k).
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calculations

(6)

[in the two-dimensional case, T(k) = 4πk2F3], where the
prime corresponds to the derivative of the Bessel func-
tion J0 over its argument. Expanding J0 into the power
series in kr, we finally obtain from (6)

Because of the presence of two (but not one as in three-
dimensional hydrodynamics) conservation laws (2) and
(3), the first nonvanishing term in the expansion of
BLL, L (having here fifth order over r) takes the form

(7)

Since the integral on the right-hand side of expression (7)
is negative, the function BLL, L(r) must also be negative
at small r. The latter fact is actually verified in the
experiments [2]. Therefore, the above results corre-
spond to the known experimental data and allow us to
establish a possible shape of T(k) characterizing an
important property of turbulent motion, namely, the
energy transfer in wave-number space. Below, we use
this result for the determination of the third-moment
signs and directions of energy fluxes and enstrophy
fluxes in self-similarity intervals.

2. In order to link the spectra and correlation func-
tions with the function T(k), we should use exact
dynamic equations. Turning first to relationship (1), we
show, as a by-product, how the known self-similar
spectra can be obtained and, what is more important,
how exactly their location along the k axes is associated
with the shape of T(k). Since the solutions to two-
dimensional hydrodynamic equations as ν  0 con-
vert to the solutions with ν = 0, we can omit for simplic-
ity the last term on the right-hand side of (1). The inte-
grals

(8)

apparently yield the change in the energy and enstro-
phy, respectively, per unit time within the interval [0, z]
in k space. In the regions I and II shown in figure, these
integrals are independent of z, and thus the self-similar-
ity hypothesis can be used for the corresponding inter-
vals of the E(k) spectrum (note that the presence of such
regions with T(k) = 0 is, generally speaking, a necessary
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z

∫ k2T k,d
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∫= =
condition for Kolmogorov self-similarity [1]). Accord-
ing to this hypothesis, the quantity E(k) is defined by
the combination of one of the quantities in (8) and of
the wave number k, i.e., the combination having the
necessary dimensionality. In this case, the predominant
quantity should be chosen from ε and εω . In contrast to
the usual approach [3], for which arbitrary assumptions
concerning directions of fluxes in the inertial ranges are
made, in this case, they are uniquely associated with the
shape of the function T(k).

Certainly, it is impossible to directly compare the
values of ε and εω, which have different dimensionali-
ties. Therefore, we consider the dimensionless ratio

(9)

where λ is the differential scale of turbulent motion [1],
which remains invariable at zero viscosity. It is evident
now from relationship (9) that the quantities ε and εω
predominantly affect the spectrum at ϕ ! 1 and ϕ @ 1,
respectively. As follows from the shape of T(k) (due to
the presence of the factor k2 in the integrand for εω), it
can be only

ϕ ! 1 in region I,

ϕ @ 1 in region II.

Composing, as usual, combinations of a proper
dimensionality, which contain k and, correspondingly, ε
and εω, we arrive at

(10)

In this case, the energy fluxes and enstrophy fluxes have
the same directions for the chosen shape of T(k): they
are positive in region I (the energy and enstrophy are
transferred from large scales to small scales) and nega-
tive in region II. It is easy to see that this pattern corre-
sponds to the turbulent-energy concentration in the
interval located between the regions I and II. It is clear
that a change in the sign of T(k) would lead to the oppo-
site result, namely, an increase in the energy to the left
from the region I and to the right from the region II
(which is usually considered to be realized when inject-
ing the energy into certain narrow interval of the spec-
trum [3]).

It is worth noting that ignoring the viscous dissipa-
tion, in fact, should be expressed by the inequalities

Based on the reasoning above, these relationships can
be fulfilled in the two-dimensional case but can never

ϕ
εω λ2

ε
--------------,=

E k( ) ε 2/3k–5/3 in  region I, ∼  

E k
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ω

 

2/3

 

k
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2ν k2E k ! ε , 2ν k4E k ! εω .d∫d∫
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be fulfilled in the three-dimensional case because of the
so-called enstrophy catastrophe:

This makes the energy dissipation a single quantity that
determines the self-similarity of the inertial segment in
the three-dimensional turbulence spectrum.

As is well known, further use of Kolmogorov’s
hypotheses on the local structure of the velocity field
makes it possible to obtain in the three-dimensional
case, in addition to the spectrum, both qualitative and
quantitative characteristics of the second and third
moments of the velocity field [1, 7]. These characteris-
tics turn out to be in good agreement with available
experimental data. This possibility follows from the
existence of a quantity (averaged dissipation of turbu-
lent energy) determining the dynamics of the decay as
a whole. It manifests itself formally by the fact that, on
the left-hand side of the equation describing the veloc-
ity-field correlator DLL (the standard notation is used
below: the correlation functions BLL(r) = 〈uL(x)uL(x +
r)〉 , BLL, L(r) = 〈uL(x)uL(x)uL(x + r)〉 , uL is the velocity
component aligned in parallel to the straight line con-
necting points x and x + r; the structural functions are
DLL(r) = 2[BLL(0) – BLL(r)], DLLL(r) = 6BLL, L(r), there

exists a difference between the quantities  and

. According to the Kolmogorov theory, the sec-

ond of them becomes zero in the inertial interval. More
accurately, we should state [7] that

(11)

In the two-dimensional case, by virtue of the above rea-
sons, the energy dissipation cannot determine the
dynamics of the decaying turbulence. Hence, ignoring
it (together with ignoring viscosity) leads to the situa-
tion when the time derivative DLL remains in the corre-
sponding equation. Consequently, in this situation, we
can consider the equation for BLL, which takes the
form [6]

(12)

Each of the two inertial intervals (corresponding to the
spectra k–5/3 and k–3) is characterized by the quantities ε
and εω , respectively. Combining them with r in order

to obtain the same dimensionality as for , we pass

ν k2E k 0.≠d

0
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∫ν 0→
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from (12) to the following equations (C1, C2 are posi-
tive dimensionless constants):

(13)

Multiplying expression (13) by r3 and integrating with
allowance for the condition BLL, L(0, t) = 0, we obtain

(14)

Therefore, the dependence BLL, L on r (and also DLLL(r))
within the inertial interval determined by the energy
transfer is reduced to the linear one, since it takes place
in the three-dimensional case as well. Within the range
of the inverse enstrophy flux, the corresponding depen-
dence appears to be cubic, as follows from the result
obtained by a different method in [8]. However, in con-
trast to the three-dimensional case, it follows from (14)
that the opposite signs of the third moment correspond
to the intervals I and II [we note that ε and εω have dif-
ferent signs, as follows from (2) and (3)]. In particular,
relations (14) show that for the given shape of T(k), we
have BLL, L < 0 within region I and BLL, L > 0 within
region II. Since lower values of r correspond to higher
values of the wave vector, the function BLL, L must be
positive in a certain interval and must become negative
to the right of this interval. In this case, positive and
negative values of BLL, L correspond to the k–3 and k–5/3

spectrum, respectively. Such a pattern radically differs
from the third-moment behavior in the three-dimen-
sional case, when it is negative within the entire inertial
range (and it is certainly different from that for the
forced two-dimensional turbulence [3]) (see also [9],
where energy-injection intervals different from those
of [3] are considered).

The above anomaly was actually observed in the
recent experiments of [2] with turbulence generated by
a two-dimensional comb in a thin liquid film. In this
case, a part of the spectrum with the shape close to k–3

was found. This part corresponded to positive values of
BLL, L (at the same time, the result for the second
moment close to DLL ~ r2 was obtained as was expected
in the case of BLL, L ~ r3). However, an interval that
could be identified as the k–5/3 spectrum was not
observed. Apparently, this is associated with both the
insufficiently high Reynolds number (on the order of
several hundred) and the fact that the largest length
scales corresponding to the k–3 spectrum part were
comparable to the exterior scale of turbulent motion.
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Thus, as in the three-dimensional case, the use of
exact dynamic equations combined with the self-simi-
larity hypothesis allowed us to obtain for decaying two-
dimensional turbulence general results concerning both
the shape of the function T(k) and details of the behav-
ior of the spectrum and correlation functions in the self-
similarity intervals.
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ERRATA
Erratum: “Change in the Parameters 
of Surface Thermal Decomposition
of Energy-Intensive Materials 
Near the Phase-State Boundary” 
[Doklady Physics 47, 571 (2002);
Doklady Akademii Nauk 385, 482 (2002)]

O. F. Shlenskiœ and Yu. V. Zelenev

In our paper entitled “Change in the Parameters of Surface Thermal Decomposition of Energy-Intensive
Materials Near the Phase-State Boundary” published in Doklady Akademii Nauk 385, 482 (2002) [Doklady
Physics 47, 571 (2002)], expressions (11) and (12) should have the form

(11)

(12)

In the first line above Eq. (12), the expression for the velocity should be read as u2 = .

Translated by G. Merzon
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