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In this paper, results of studies of electrode erosion
in a dense medium at discharge-current amplitudes
exceeding 105 A are presented. These results indicate a
nonuniform (with respect to time) ingress of the elec-
trode material into the discharge channel. The simulta-
neous ejection of the cathode material from the entire
surface of the electrode end was observed for the first
time. The ejection is associated with a violation of the
balance between the pressure above the electrode sur-
face, which equilibrates the magnetic force, and the
pressure in the depth of the melted surface layer. The
mechanism of the electrode-material ejection proposed
in the paper allows us to hope for a possibility of regu-
lating the ingress of electrode-material impurities into
the discharge channel.

INTRODUCTION

The main goal of the studies being performed by us
presently is to generate an electric discharge in a super-
dense hydrogen medium at temperatures of 105–106 K
and concentrations of charged particles of 1019–1021 cm–3.
At these discharge parameters, hydrogen is contained
in a volume on the order of 1 cm3 and, in light of its
existence time of 10–5–10–4 s, can be a source of plasma
for thermonuclear studies, as well as for solving a num-
ber of other problems. In order to reach the indicated
temperatures and concentrations, the required ampli-
tude of the discharge current must attain the level of 1–
10 MA. At these currents and short durations of the dis-
charge, the erosion of electrodes exceeds 10–2 g C–1 [1].
This fact results in the appearance of a considerable
amount of electrode-material impurities in the dis-
charge channel. The temperature in the discharge chan-
nel decreases due to the increase in the number of heavy
particles and radiation loss, which is rather undesirable.
In order to reduce the electrode erosion in discharges
with the electric-current amplitudes of 0.1–10 MA, fur-
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ther studies of the erosion mechanism are necessary,
which is the object of the present paper.

In addition to the well-known phenomenon of ero-
sion in the form of vapor and drops [2], the discovered
ejection of the surface layer from the entire surface of
the cathode end is an erosion mechanism previously
unknown in the conditions under consideration.

EXPERIMENTAL RESULTS 
AND THEIR DISCUSSION

We studied heavy-current arcs in hydrogen at initial
pressures of 1.0–4.0 MPa and discharge-current ampli-
tudes of (0.5–5.0) × 105 A with its rate of rise attaining
(0.5–1.0) × 1010 A s–1. The distance between axisym-
metric tungsten electrodes 6 mm in diameter varied
from 5 to 40 mm. The discharge was initiated by
exploding a copper or steel wire 0.15 mm in diameter.
The walls of the discharge chamber served as a back
conducting lead. A sketch of the discharge chamber is
presented in Fig. 1. The method of optical measure-
ments is described in [3].

Oscillograms for the electric current and the voltage
in the discharge gap are presented in Fig. 2.
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Fig. 1. Diagnostic discharge chamber: (1) cathode; (2) ini-
tiating wire; (3) pressure sensor; (4) diagnostic windows;
and (5) anode.
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Shadow photographs of the material ejection from
the cathode end in the discharge characterized by the
initial hydrogen pressure of 1 MPa and the current of
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Fig. 2. Oscillograms of the electric-current J and voltage U
at the discharge gap. The initial hydrogen pressure and the
diameter of tungsten electrodes are 1 MPa and 6 mm,
respectively.
120 kA, which corresponds to the moment of the onset
of material ejection, are shown in Fig. 3.

The ejection (Fig. 3, frame 1) begins at the fall of the
discharge current after the intense cathode jet with the
base diameter equal to the cathode diameter has
formed. According to Fig. 3, the velocity of the metal
movement and the average ejection-jet width attain
~90 m s–1 and ~5 × 10–2 cm, respectively.

In our opinion, the ejection observed is associated
with the violation of the equality (corresponding to the
maximum of the discharge current) between the mag-
netic force j × B and the gas-kinetic pressure gradient
at the cathode base. The existence of this equality at the
base of the anode spot at currents of 10–20 kA was indi-
cated in [4, 5]. The fact of the magnetic confinement at
the base of the cathode jet was also observed in [3] at
the discharge-current amplitude of 315 kA. In this case,
the gas-kinetic pressure at the jet base, which had been
determined according to the position of the pressure
shock, was 126 MPa, whereas the average pressure
determined by formula (1) given below attained
177 MPa. At later times, the magnetic confinement was
observed at the anode-jet base.
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Fig. 3. Shadow photographs of the liquid-tungsten ejection from the cathode surface in a discharge with the initial hydrogen pres-
sure of 1 MPa and the electric-current intensity of 120 kA at the moment of the ejection onset. (1) Cathode end; (2) zone of the
liquid-metal ejection; (3) cathode contour; and (4) anode contour.
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As was shown in [6], for the constant axial current
density j, in the case when the radial gradient of the
gas-kinetic pressure is counterbalanced by the mag-
netic force j × B, which acts inward along the radius r,
the profile of the gas-kinetic pressure has the form

Here, r0 is the radius of the discharge channel, which is
equal to that of the electrode. In this case, the pressure
averaged over the channel cross section is

(1)

In the conditions of our experiment for the electric-
current intensity J = 120 kA and r0 = 3 × 10–3 m, we
have Pmax = 51 MPa.

Apparently, owing to the high-density energy fluxes to
the anode, which attain in our experiments 108 W cm–2, a
common melt wave is formed in several microseconds
with its diameter close to that of an electrode. The data
of [7] also testify to the high-density energy fluxes. In
that study, for approximately the same electric-current
amplitudes and geometric sizes, zones with diameters
close to those of electrodes and widths of about 1 mm
that emitted continuous X-ray radiation were observed
near the electrodes.

In the case of the formation of a common melt bath,
the melt is not concentrated at the surface of the elec-
trode edges under the action of a high gas-kinetic pres-
sure, so that the central hollow is not formed. There-
fore, there exist certain forces in the interior of the liq-
uid melt that equalize the pressure above its surface.
The presence of a similar effect for a separate cathode
spot was indicated in [8].

It seems that these forces are associated with non-
uniform heating of the electrode metal and are rather
inertial. Therefore, with a decrease of the discharge cur-
rent, the magnetic force and the gas-kinetic pressure
balancing this force at the electrode surface decay more
rapidly than the pressure in the interior of the liquid
melt. As a result, the melt is ejected from the cathode
surface.

Considering the ejected-shell radius to be equal to
the cathode radius r0 = 0.3 cm and the tungsten density
and the shell thickness to be ρ = 19.4 g cm–3 and 5 ×
10−2 cm, respectively, we arrive at the shell mass of
0.27 g. This result corresponds to the specific erosion of
8 × 10–3 g C–1. This is close to the value of the specific
erosion of the cathode, which was found in the dis-
charge chamber of the electric-discharge accelerator
for electric currents of about 106 A [1].

According to the above, the observed ejection of the
electrode material is associated with heating of the
electrode due to the formation of the common melt bath
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under the effect of magnetic forces. Therefore, owing to
the enhanced energy release in the discharge near-elec-
trode zones discovered by us previously [3], a similar
mechanism of material ejection must be observed at
both the cathode and the anode. In experiments with a
larger electrode diameter (10 mm), a bright flame with
a diameter of 1–2 mm was observed at the anode center
at later times (20–50 µs after the discharge onset). This
testifies to an increase in the electric-current density at
the center of an electrode. The larger current density
corresponds to a pressure even higher than was esti-
mated by formula (1). In this case, after the decay of the
electric current, metal ejection in the form of a narrow,
dark jet with a diameter of 1–2 mm is seen at the center
of the electrode (Fig. 4).

CONCLUSIONS

The observed ejection of the material from the entire
electrode surface substantially contributes to electrode
erosion at electric currents of 105–106 A.

We have proposed a mechanism of electrode-mate-
rial ejection. This mechanism is associated with the
violation of the balance between the pressure above the
electrode surface and in the electrode interior. The indi-
cated mechanism can act for both electrodes by virtue
of symmetry of the energy release in the near-electrode
discharge zones and close values of magnetic pressures.
The proposed ejection mechanism makes it possible to
decrease the ingress of erosion impurities into the dis-
charge channel. This can be attained by the squeezing
of the liquid melt at the electrode surface with gas-
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Fig. 4. Ejection of a narrow metal jet from the anode:
(1) metal jet and (2) anode end.
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kinetic pressure, which is balanced by the magnetic
force formed by the discharge current.
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Conditions for quenching and igniting an exother-
mic reactor differ from one another, since a hysteresis
takes place. In the parameter plane, the bistability
region is represented as a peninsula terminating in a
cusp. At the cusp point, the difference between high-
temperature and low-temperature regimes disappears.
In this respect, the cusp is similar [1] to the critical
point of a phase transition (e.g., the liquid–vapor tran-
sition) in which the distinction between phases disap-
pears. As is well known, density fluctuations are strong
at the critical point. Similarly, we can expect an
increase in the chaotic pulsations of temperature and
concentration in the neighborhood of the cusp. In con-
trast to equilibrium thermal fluctuations in the case of
phase transitions, these pulsations are caused by small
random variations in the composition and other param-
eters of the incoming mixture. Usually, such variations
do not lead to marked changes in the reactor state.
However, near the critical point in which the reactor
susceptibility is especially high, the pulsation intensity
increases infinitely when approaching this point. In this
study, we investigated the chaotic behavior of the reac-
tor in the critical region of parameters. The similarity
with the critical point of phase transition relates to reac-
tor steady-state regimes. Under certain conditions, the
region of periodic regimes [2–4] can include a cusp.
Below, we also consider the effect of this factor.

1. We can write equations for small deviations from
the steady-state regime in the form

(1)dη
dt
------ A11η A12θ,+=
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(2)

(3)

Here, η and θ are, respectively, the deviations in the
concentration of reaction products and in the dimen-
sionless temperature from their steady-state values and
t is the dimensionless time. Without noise, denoted as
y(t), the steady-state regime is stable if both eigenval-
ues of the matrix Aik have a negative real part. In other
words, it is necessary that p < 0 and q > 0, where p is the
trace and q is the determinant of this matrix. First, we
consider reactor parameters such that p < 0. At the crit-
ical point, the matrix Aik degenerates and q = 0. Indeed,
when the parameters correspond to the bistability
region, the reactor equations have three time-indepen-
dent solutions. Two of them are stable (q > 0), while the
third solution is unstable (q < 0). At the cusp, all the
three solutions merge, which is evidently possible only
for q = 0. In the neighborhood of the cusp, |q | is a small
quantity.

Weak random actions (y ≠ 0) lead to deviations in
concentration and temperature from steady-state val-
ues. According to Eqs. (1)–(3), the Fourier components
of the correlators 〈θ(0)θ(t)〉 and 〈η (0)η(t)〉 have the
form

(4)

(5)

At high frequencies, (θ2)ω decreases as ω–2. For ω 
0, the expression in the square brackets of formula (4)

is approximately equal to q2  + B2ω2, where B ≈

p . Thus, the pulsation spectra have a maximum at
zero frequency with the peak width q, so that the
peak narrows when approaching the critical point. Cor-
respondingly, the mean pulsations squared and correla-
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tion times diverge as . It should be noted that, in con-

trast to the flicker-noise (see [5]), the low-frequency
peak disappears with distance from the cusp.

Let the value of p at the negative critical point
approach zero. For p2 < 4q, the (attenuating) oscillatory

modes appear. Their frequency increases from 0 to 

as p varies from –2  to 0. For p2 ! q and frequencies

close to , the square bracket in formula (4) takes the
form of the resonance denominator:

(6)

As is seen, the periodic regimes do not affect the behav-
ior of the reactor near the critical point until the bound-
ary of the oscillatory instability lies in the neighbor-
hood of this point. Intense low-frequency fluctuations
recall the critical behavior in the case of continuous
phase transitions (e.g., critical opalescence, etc.). How-
ever, the fluctuations accompanying the phase transi-
tions are of thermal nature. Therefore, introducing a
random force y(t) for calculating correlators, we
choose the quantity 〈y2〉  in such a manner that the vari-
ance for the fluctuations turns out to be equilibrium. In
our case, 〈y2〉  should be considered as a given quantity
evidently independent of q, and the behavior of pulsa-
tions is completely determined by formulas (4)–(6).
These formulas obtained in the linear approximation
are valid until the pulsations are small. To avoid this
restriction, the pulsations were studied experimentally
with the help of an electric circuit modeling the opera-
tion of the reactor.

2. The circuit is based on a nonlinear element
(dynistor) with an S-shaped current–voltage character-
istic and a constant (independent of current and volt-
age) resistor R connected in series with the dynistor.
The direct-current regimes are determined by the inter-
section of the characteristic curve I(V) and the load

straight line I = . Here, I, V0 , and V are the elec-

tric current flowing across the circuit, the applied volt-
age, and the voltage across the dynistor, respectively.
Depending on R and V0 , one or three intersection points
are possible. The middle of three intersection points is
unstable. At the (R, V0) plane, the bistability region has
the shape of a peninsula terminating in a cusp. The sim-
ilarity with the reactor steady-state regimes is evident.
We used a KN102A dynistor. The voltage drop V across
the dynistor was applied to the analog-to-digital con-
verter in the form of an L-154 (L-CARD) computer
board. To this end, we used an amplifier made on the
basis of a K544UD2A chip with an input resistance of
6.8 MΩ, a frequency range of 500 kHz, and a gain of 1.
For the given values of R and V0 , the function V(t) was

1
q
---

q

q

q

θ2( )ω y
2〈 〉 A11

2– ω2
q–( )

2
p

2
q+[ ]

1–
.≈

V0 V–
R

---------------
recorded in the intervals of 10–3 s. Furthermore, another
pair of values of R and V0 was used, and a new function
was recorded, etc. Deviations of the function V(t) from
a constant value are caused by oscillations of the line
voltage and other random factors (when recording, the
constant value of V0 was maintained within an accuracy
of 0.01 V). Until R and V0 are far from the critical point,
such deviations are negligible (δV ~ δV0). In the vicin-
ity of this point, we observed deviations on the same
order as the mean value of V. The total number of exper-
iments was 256. From each of the V(t) records, we
determined the mean value 〈V〉 and the mean deviation
squared 〈v 2〉, where v  = V – 〈V〉. We also calculated the
spectral density (v 2)ω of the pulsations.

Studies of the chaotic behavior of circuits with a
nonlinear element were begun in [6]. However, the sit-
uation that was analyzed in [6] was such that, in the sys-
tem space of states, the trajectories converged to a
strange attractor. In our case, the attractor is a point,
which corresponds to the steady-state regime. But the
attraction to this point is weak due to the closeness of
unstable elements in the space of states (saddle points,
unstable cycles, etc.), which restricts the basin of attrac-
tion. From here, the mechanism of chaotization
described in the introduction to this paper follows. The
critical point in the (R, V0) plane was obtained [7, 8] for
a circuit with a semiconductor. The activation shape of
the temperature dependence for its conductivity leads
to a thermal instability as in the case of the exothermic
reactor. The disadvantage of such a circuit is its high
transit time for thermal processes compared to electric
ones.

In Fig. 1, we show the variance (〈v 2〉)1/2 as a func-
tion of R and V0 . As is seen, this quantity increases
when approaching the cusp. The highest values are con-
centrated near the straight line in the (R, V0) plane. The
boundaries of the bistability region, which have a com-
mon tangent, converge to the cusp. This tangent is an
analog of the phase-equilibrium line (in the vicinity of
the critical point). In this regard, the pulsations can be
considered as slow transitions between the regimes of
strong and weak currents. In the case of a reactor, these
transitions correspond to waves of ignition and quench-
ing. At the same time, for the liquid–vapor system, this
is a chaotic motion of interphase boundaries, which is
responsible for the critical opalescence. The measured
values of V lie within the interval of 2–6 V, so that the
variance near the cusp is comparable with a mean value
of a fluctuating quantity as is the case for the developed
turbulence. The most marked feature of the chaos under
consideration is the slow rate of its evolution.

This slowness is illustrated by pulsation spectra. An
example of such a spectrum is shown in Fig. 2a. For
comparison, in Fig. 2b, we show the spectrum calcu-
lated on the basis of a record obtained at a certain dis-
tance from the cusp. This spectrum represents the usual
DOKLADY PHYSICS      Vol. 48      No. 1      2003
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Fig. 1. Variance of pulsations. Below, the horizontals in the (R, V0)-plane are shown.
white noise, whereas the spectrum in Fig. 2a has a sharp
maximum at zero frequency. It is seen that approaching
the cusp leads to amplification at all frequencies, but
low frequencies are amplified to a larger degree. For the
major fraction of the experiments, the recording time
for V(t) attained t0 = 100 s (records with the 200-s and
500-s durations were also made). Therefore, an interval
with a width of ≥10–2 Hz can be resolved in the spec-
trum. The width of the spectral maximum near the cusp
is likely much smaller than ~10–4 Hz as in [8]. For the
100-s records, these low frequencies manifest them-
selves as a drift towards an increase or a decrease of V.
Near the cusp, we performed averaging over several
records made for the same values of R and V0 in various
day periods. In order to approach the cusp, it is neces-
DOKLADY PHYSICS      Vol. 48      No. 1      2003
sary either to gather statistics of long-term records or to
pass to another modeling circuit. Both these variants
are considered. We should also note that an additional
resonance was observed at a frequency of about 9 Hz
for R = 85 kΩ and V0 = 31 V. The intensity of this reso-
nance was lower than for the main peak by a factor of
approximately 15, and its width was ~1 Hz.

Thus, in this study, we observed an effect of enhanc-
ing pulsations near the cusp and indicated the nature of
this effect. As far as its scale is concerned, the pulsa-
tions are highly competitive with the developed turbu-
lence and must be considered as a new type of chaos.
The chaos is caused by the high susceptibility of the
system near the bifurcation point (in our case, near the
cusp). The low external noise inherent in both the
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Fig. 2. Frequency spectra of pulsations. (a) R = 75 kΩ, V0 = 30 V; (b) R = 60 kΩ, V0 = 32 V. The frequency ω is given in units of

, and the time of the experiment is t0 = 100 s.
2π
t0
------
incoming mixture and the mains turns out to be a source
of pulsations for the reactor and for the modeling circuit,
respectively. However, the properties of pulsations (to
within an accuracy of a constant factor in the expression
for their intensity) are independent of the noise. Indeed,
the correlation time increases infinitely for pulsations
when approaching the cusp, whereas this time remains
evidently finite for an external noise. Therefore, any arbi-
trary external noise near the bifurcation point can be con-
sidered as δ-correlated (white) noise.
DOKLADY PHYSICS      Vol. 48      No. 1      2003
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Unsteady solutions to magnetohydrodynamic equa-
tions were obtained for time-dependent one-dimen-
sional motions of plasma [1, 2]. These motions relate to
the class of self-similar motions of a continuum for
which velocities are proportional to the distance to the
symmetry center. In the present paper, the exact solu-
tion to the two-dimensional motion of the class indi-
cated above is constructed. This solution describes the
time dependence of the size of a toroidal configuration
for rotating plasma.

We initially present the results obtained for immo-
bile plasma. As is well known, one of the solutions to
the Shafranov equations corresponds to a toroidal con-
figuration with the following azimuth distribution of
the electric-current density:

(1)

where R is the radius of a magnetic axis and ψ0 and α
are certain constant values. Expression (1) describes
the unsteady state of plasma with pressure in it related
to the magnetic flux by the formula

(2)

We can find from relationship (1) for the magnetic
field

(3)

(4)

We consider that ψ0 = . Then, the density of the

electric current flowing through the plasma is jϕ = – .

In the case of the steady-state rotation of an axisym-
metric plasma configuration, the condition of freezing-
in of magnetic-field lines for V = Vϕeϕ has the form

(5)

ψ 1
2
---ψ0 r2z2 α 1–

4
------------ r2 R2–( )2

+ ,=

16π3 dP
dψ
------- div

∇ψ
r2

--------– αψ0.–= =

Br
1

2πr
---------∂ψ
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-------–

ψ0

2π
------rz,–= =

Bz
1

2πr
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∂r
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ψ0

2π
------ z2 α 1–

2
------------+ r2 R2–( ) .= =

8π2 j0

cRα
-------------

j0r
R

-------

∂Vϕ Br

∂r
---------------

∂Vϕ Bz

∂z
---------------+ 0.=
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As is easy to understand, this condition holds for Vϕ =
Ωr, where Ω is a constant quantity, since, in this case,
expression (5) is equivalent to the equation divB = 0.

The equilibrium condition for the rotating plasma
possessing an azimuth distribution of the electric-cur-
rent density includes the centrifugal term

If the solution to the equation of equilibrium for an
immobile plasmoid is known, we can easily generalize
this solution to the case of a configuration rotating as a
single whole. In order to do this, we should choose the
plasma-density distribution in the form

,

where β is a certain constant quantity.

In this case, to confine the rotating plasma, it is nec-
essary to impose the external homogeneous magnetic
field Bext = βez. The interaction of this field with the azi-
muth electric current compensates for the effect of the
centrifugal term. In particular, for toroidal configura-
tion (1) of the rotating plasma, we obtain the homoge-
neous plasma-density distribution:

and the expression for the axial magnetic-field compo-
nent (4) should be complemented by the quantity β.

We now will analyze the time-dependent problem.
We denote as a = a(t) and b = b(t) the axial and radial
dimensions of the moving plasmoid. We consider, for
definiteness, that a(0) = R and b(0) = L, where L is the
longitudinal size of the toroidal configuration in the
steady state. For the class of motions under consider-

1
c
--- jϕ Bz

∂p
∂r
------ ρ

Vϕ
2

r
------.–=

ρ
β jϕ

crΩ2
------------–=

ρ ρ0

β j0

cRΩ2
-------------,= =
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ation, the plasma density and velocity of plasma com-
ponents have the form

(6)

Here, ξ =  and η =  are self-similar variables.

In order to find expressions for magnetic-field com-
ponents that satisfy the freezing-in conditions, we use
the corollary to this condition

(7)

where S is an arbitrary quantity being conserved for the
plasma motion. Assuming in (7) the quantity S sequen-
tially equal to ξ and η, we immediately find the general
form of desired expressions:

(8)

where f and g are certain functions. As a result, with
allowance for expressions (3) and (4), we arrive at

(9)

In other words, in order to satisfy the freezing-in condi-
tion, the external homogeneous magnetic field must be

time-dependent: Bext = β ez.

It is worth noting that these results could also be
obtained by the self-similar extrapolation of solution (1),
which leads to the following expression for the mag-
netic flux:

For the determination of time dependences of the
configuration sizes, we should substitute expressions (6),
(8), and (9) into the Euler equations. Assuming the
pressure of the moving plasma to be related to the func-
tion ψ in the same manner as in the case of an immobile
plasma, i.e.,

ρ ρ0
LR2

ba2
---------, Vr ȧξ ,= =

Vϕ Ωξ R2

a
-----, Vz ḃη .= =

r
a
--- z

b
---

d
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ρ
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  0,=

Br
RL
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R2
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f
ψ0
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g β
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R
a
--- 

 
2

Ψ πβR2
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+= .

16π3 dP
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we obtain as a result

(10)

The solution of the second equation in Eqs. (10) is
evident. At the same time, at b = L, constructing a solu-
tion to the first equation is easy for small radial oscilla-
tions in the vicinity of the steady state. Linearizing this
equation, we find the relation for the radius of the mag-
netic axis

where u is constant and ω = Ω .

We now analyze the results obtained for the case of
a thin toroidal pinch. First, we consider the steady-state
solution. In the vicinity of the magnetic axis, the rela-
tionship

(11)

is valid. Here, q = r – R. Assuming that α = λ2 + 1, λ =

, we find that the cross section of magnetic surface

(11) is an ellipse with the semiaxes L and D. The small
parameter is the ratio of the transverse sizes of the pinch
cross section to the magnetic-axis radius.

In accordance with formula (2), the plasma pressure
of the thin toroidal pinch is

where Q = . We also find for the magnetic field

that, to within the accepted accuracy,

(12)

Magnetic field (12) includes the magnetic field
formed by the plasma pinch, as well as the external con-
fining magnetic fields, namely, the homogeneous field
and quadrupole-type field. The latter has the same form
as in the case of a rectilinear plasma pinch with the
elliptic cross section [4]:

(13)
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Supposing for the case of a moving toroidal pinch
that q = r – a, we determine the function ψ in the vicin-
ity of the magnetic axis:

Thus, the cross section of the magnetic surface repre-

sents an ellipse with the semiaxes b and d = a . For the

time-dependent solution, the density of the electric cur-
rent flowing in the pinch and plasma pressure are func-
tions of time:

(14)

(15)

Here, µ =  is the ratio of the cross-section semiaxes.

We find for the magnetic field of a thin pinch

(16)

We now represent magnetic field (16) in the form simi-
lar to (13)

(17)
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Thus, in the case of a thin toroidal pinch, the solu-
tion obtained describes the time dependence of both the

radius a =  and the sizes b and d of the pinch cross-

section with the variation of certain physical quantities.
They are electric current (14) flowing in the pinch,
plasma pressure (15), and external magnetic fields
required to confine the plasma, i.e., quadrupole-type
field (17) and the homogeneous field.

It is worth mentioning that the radial component of

the plasma can be represented in the form Vr =  + ,

i.e., the ratio  is a self-similar variable to within first-

order-term accuracy. Therefore, the results obtained for
the thin toroidal pinch correspond to solutions of mag-
netohydrodynamic equations in the framework of the
self-similar approximation. This approach was applied
previously in the study of electron-ring dynamics [5].
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Europium polytantalate was first observed (when
investigating an Eu2O3–Ta2O5 system [1, 2]) as a phase
that is characterized by a narrow homogeneity range of
11–16 mol % Ta2O5 and undergoes peritectoid transfor-
mation into α-Ta2O5 and EuTa3O9 phases in the tem-
perature range 1623–1673 K. Its X-ray and lumines-
cence properties were examined with polycrystalline
samples. As a result, this material was proposed as a
red-glow luminophor [3]. Later, it was established that
the polytantalate composition corresponds to the for-
mula EuTa7O19 [4].

Ln2O3–Ta2O5 systems [where Ln = Y, Sc, or a rare
earth element (REE)], along with individual phases that
are formed in them (in particular, LnTa7O19), were
investigated in [5–9], and their optical, dielectric, and
magnetic properties were studied in [9–14]. Particular
attention has been given to Eu3+-, Tb3+-, Tm3+-, and
Nd3+-activated polytantalates that exhibit intense pho-
toluminescence in red, green, and blue visible regions
and the near-IR region, as well as anti-Stokes lumines-
cence and cathodoluminescence. The production of
REE polytantalates in the form of single crystals and
films is of considerable interest in view of their applica-
tions as laser media, optical memory elements, in
microelectronics, and for detecting X and γ rays.

The aim of this work is to produce EuTa7O19 single
crystals and to investigate their properties.

We chose the method of growing EuTa7O10 single
crystals from a solution in a V2O5 melt. This method
was complicated, because the melt was multicompo-
nent, and competing processes of crystallizing foreign
phases could proceed. Therefore, it was necessary to
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preliminarily study the multicomponent system in
order to establish the optimum composition of the melt
and the temperature and concentration limits that
ensure the production of desirable single crystals.

As a result, we developed the following method of
obtaining EuTa7O19 single crystals [15]: a mixture of
10–16 mol % Eu2O3, 14–15 mol % Ta2O5, and 70–
75 mol % V2O5 was heated in a closed platinum cruci-
ble up to 1073 ± 20 K and was held at this temperature
for 10–15 h; further, it was heated to 1473 ± 10 K and
was held at this temperature for 40–60 h. Finally, the
mixture was cooled to room temperature at a rate of
1−5 K/h.

The resulting single crystals were separated from
the crystallized melt by treating it in concentrated
hydrochloric acid under heating and with further rins-
ing in water. The X-ray diffraction and optical micros-
copy analysis of the undissolved residual made it pos-
sible to identify phases EuTa7O19, transparent amber-
colored 1 × 2-mm crystals (Fig. 1), and EuVO4, trans-

Fig. 1. EuTa7O19 single crystals.
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parent colorless 3 × 2-mm crystals. In order to remove
a possible V5+ impurity in the EuTa7O19 crystals, they
were held in the flow of dry HCl at 873 K for 2 h and
then at 1273 K for 2 h, but a noticeable decrease in crys-
tal color was not observed.

Single crystals that were grown were identified by a
Siemens D5005 diffractometer (CuKα, λ = 0.5406 nm)
and a Bruker AXS microdiffractometer. The parameters
of a EuTa7O19 unit cell were determined by a SMART
CCD diffractometer.

The surface morphology of the EuTa7O19 crystals
was investigated with a scanning Hitachi S-800 micro-
scope and a JEOL-840 microscope. The latter was also
used for qualitative elemental analysis of the single
crystals and products of their thermal treatment.

Photoluminescence of the EuTa7O19 single crystals
was excited by the second harmonic of a Nd3+:YVO4

laser (λ = 532.25 nm), and cathodoluminescence was
excited by the electron beam of the JEOL-840 micro-
scope under voltage 10–40 kV and with a current den-
sity of 9 mA/m2 .
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Fig. 2. Cathodoluminescence spectra of EuTa7O19 single
crystals: (a) at 295 K and after annealing at (b) 1723 and
(c) 1823 K.
Spectra were recorded by a Mono CL2 “Cam-
bridge” spectrometer with a monochromator resolution
of 0.5 nm and a measurement accuracy of ±0.2 nm.

Our results indicate that the EuTa7O19 crystals have
a block structure and are susceptible to twinning. In
agreement with the data from [4], a unit cell is hexago-
nal and at 298 K has the parameters a = 0.621 nm,
c = 1.998 nm, V = 0.66812 nm3, ρ = 8420 kg/m3, and
Z = 2. Similar to CeTa7O19 crystals [5], we observed
intragrowth needle-shaped Ta2O5 inclusions that could
not be detected by X-ray analysis.

Analysis of the X-ray diffraction patterns of the sin-
gle crystals under investigation shows that EuTa7O19
retains its crystalline structure up to 1623 K. Its peritec-
toid transformation into α-Ta2O5 and EuTa3O9 phases
begins at 1723 K and completes at 1823 K. The crystals
becomes turbid, acquire a milky yellow color, and melt
in the temperature range 1823–1873 K.

The photoluminescence spectrum of EuTa7O19 sin-
gle crystals is similar to those described earlier in [4, 9,
10, 14] for polycrystalline samples, which testifies to
their chemical and phase identity. However, the 5D0–
7F1, 5D0–7F3 , and 5D0–7F4 electron transitions of a Eu3+

ion in single crystals are better resolved than those in
polycrystalline samples. The symmetry of the Eu3+

luminescence center correlates with the hexagonal
symmetry of the crystal cell [9]. Upon heating a single-
crystal sample up to 1623 K, weak 617- and 596-nm
lines, which are characteristic for the Eu3+ lumines-
cence center in EuTa3O9 [10], appear in the photolumi-
nescence spectrum. As the sample is further heated,
these lines dominate in the spectrum, whereas the
intensity of the strongest 610-nm line in the EuTa7O19
spectrum decreases significantly. This behavior is an
additional manifestation of the peritectoid transforma-
tion of polytantalate.

Compared to the photoluminescence spectrum of
EuTa7O19 single crystals, all the lines of their cathod-
oluminescence spectrum (Fig. 2a) are shifted towards
short wavelengths and broadened, and new 547- and
558-nm lines appear with the simultaneous disappear-
ance of the 590- and 592-nm lines (5D0–7F1 transition).
In addition, the relative intensity of the 610-nm line (the
5D0–7F2 transition) decreases noticeably due to the
change both in the character of charge transfer Eu3+ h
O2– and in the structure of the luminescence center. The
broadening of the cathodoluminescence spectral lines
testifies to the appearance of lattice defects and oxygen
vacancies, whose concentration most likely depends on
the stream of high-energy electrons capable of forming
new luminescence centers rather than on the conditions
of crystal growth.

Comparison between Figs. 2a and 2c shows that, as
in the case of photoluminescence, the spectrum of
EuTa7O19 single crystals after annealing at 1823 K does
not contain polytantalate spectral lines but represents a
DOKLADY PHYSICS      Vol. 48      No. 1      2003
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Eu3+ spectrum in EuTa7O19. The spectrum shown in
Fig. 2b contains spectral lines from both Figs. 2a and 2c
and therefore characterizes an intermediate stage of the
peritectoid transformation of EuTa7O19.

Cathodoluminescence intensity decreases with an
increase in the treatment temperature of EuTa7O10 sam-
ples. With an increase in the accelerating voltage, the
form of the cathodoluminescence spectra changes only
slightly. Cathodoluminescence intensity increases
insignificantly in the range V = 10–20 kV. In contrast, it
increases sharply in the range V = 20–40 kV without
saturation, which is of interest for practical usage of
EuTa7O19 as a cathodoluminescent material.

ACKNOWLEDGMENTS
We are grateful to Prof. L.E. Fransis for help in

experiments.

REFERENCES
1. M. M. Pinaeva, E. I. Krylov, and V. M. Ryakov, Izv.

Akad. Nauk SSSR, Neorg. Mater. 3 (9), 1612 (1967).
2. M. M. Pinaeva, E. I. Krylov, and V. M. Ryakov, Izv.

Akad. Nauk SSSR, Neorg. Mater. 4 (7), 1118 (1968).
3. M. M. Pinaeva and E. I. Krylov, Inventor’s Certificate

No. 199305, Byull. Izobret., No. 15/67 (1967).
DOKLADY PHYSICS      Vol. 48      No. 1      2003
4. V. S. Vasil’ev and M. M. Pinaeva, Zh. Neorg. Khim. 25
(4), 900 (1980); ASTM PDF-card 35-1191.

5. R. C. Roth, T. Negas, H. S. Parker, et al., Mater. Res.
Bull. 12, 1173 (1977).

6. B. M. Gatehouse, J. Solid State Chem. 27, 209 (1979).
7. B. Langenbach-Kuttert, J. Sturm, and R. Gruehn, Z.

Anorg. Allg. Chem. 54 (3), 117 (1986).
8. U. Schaffrath and R. Gruehn, Z. Anorg. Allg. Chem. 58

(8), 43 (1990).
9. M. M. Pinaeva, V. V. Kuznetsova, V. S. Vasil’ev,

S. F. Shkirman, and V. A. Svetlova, Zh. Prikl. Spektrosk.
27 (3), 442 (1997).

10. V. V. Kuznetsova, M. M. Pinaeva, and V. S. Khomenko,
Zh. Prikl. Spektrosk. 13 (4), 733 (1970).

11. J. C. Michel, D. Morin, G. Primot, and F. Azel,
C.R. Seances Acad. Sci., Ser. B 284, 555 (1977).

12. M. G. Zuev, E. I. Yashin, F. A. Rozhdestvenskiœ, and
E. I. Krylov, J. Lumin. 21 (2), 217 (1980).

13. M. G. Zuev, E. D. Politova, and S. Yu. Stefanovich, Zh.
Neorg. Khim. 36 (6), 1540 (1991).

14. S. Kubota, H. Yamane, M. Shimada, et al., J. All. Comp.
275/277, 746 (1998).

15. V. S. Vasil’ev and M. M. Pinaeva, Inventor’s Certificate
No. 873680, Byull. Izobret., No. 38/81 (1981).

Translated by Yu. Vishnyakov



  

Doklady Physics, Vol. 48, No. 1, 2003, pp. 24–29. Translated from Doklady Akademii Nauk, Vol. 388, No. 3, 2003, pp. 323–328.
Original Russian Text Copyright © 2003 by Namiot.

                                                                                                     

PHYSICS
Cavitation and Thermonuclear Fusion. Estimates
of the Parameters and a Possible Method 

of Obtaining Positive Energy Balance
V. A. Namiot

Presented by Academician V.L. Ginzburg August 19, 2002

Received August 23, 2002
The possibilities of generating thermonuclear neu-
trons at the collapse of cavitation cavities filled with a
gas including deuterium or deuterium–tritium mixture
are simply estimated. Some possibilities of increasing
this neutron yield are discussed. However, a positive
energy balance in ordinary (spherical) cavitation is esti-
mated as impossible. A new approach is proposed that
is based on so-called cylindrical cavitation and can in
principle ensure a positive energy balance. In this
approach, cavitation is used to recover thermal energy
lost by a tritium ion beam in a deuterium target rather
than to generate neutrons in the process of collapse.

Interest in the possible use of cavitation in the prob-
lem of controlled thermonuclear fusion was initiated by
work [1], where thermonuclear neutrons were likely
observed when cavitation cavities collapsed in a liquid
involving deuterium. (There were earlier studies where
such a possibility was discussed at least as a hypothesis
and neutron yield was even measured [2], but a definite
relation to cavitation was not established [2, 3, 15].)

This study aims to simply estimate the possibilities
(and implicitly corroborate the results of [1]) and meth-
ods of increasing neutron yield and to suggest a method
(based on so-called cylindrical cavitation [4, 5]) that
can in principle ensure a positive energy balance.

1. ESTIMATES CONCERNING 
ACOUSTIC CAVITATION

The problem of the collapse of an empty cavitation
cavity in inviscid incompressible fluid was first consid-
ered by Rayleigh [6], who obtained the following
expressions for the collapse rate (velocity of the cavity

Skobel’tsyn Institute of Nuclear Physics, 
Moscow State University, Vorob’evy gory, 
Moscow, 119899 Russia
1028-3358/03/4801- $24.00 © 20024
boundary) (R) and pressure P(r, R):

(1)

(2)

where P0 is the pressure applied to the fluid, ρ0 is the
fluid density, and R0 is the initial radius of the cavity. As
an estimate, Eq. (1) can be easily obtained in the

approximation  @ R3 as follows. The energy En

released when the cavity collapses is equal to about

P0 . For an inviscid incompressible fluid, this energy
transforms entirely to the kinetic energy of the fluid Ek.
The mass and velocity of the moving fluid are about

ρ0R3 and (R), respectively. The condition En ≈ Ek

takes the form

(3)

which agrees with Eq. (1) up to a factor of .

The viscosity effect was considered by Zababakhin
[7]. To estimate this effect, it is reasonable to evaluate
energy Eν dissipated in the fluid due to viscosity.
According to [7, 8], we have

(4)

where η is the fluid viscosity. The viscosity effect is
substantial and negligible when Eν ≥ En and En @ Eν,
respectively. The latter condition is satisfied for low-
viscosity fluids (water, mercury) at P0 > 1–10 atm and
R0 ~ 10–3–10–4 m.

The stability of collapse was analyzed by Birkhoff
[9], who showed that the deviation from the spherical
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shape δR (Fig. 1) increases slowly as R–1/4 with collapse
of the cavity. This dependence can be qualitatively
obtained as follows. Let us consider the proper coordi-
nate system, where the surface of the undisturbed
sphere is at rest. There is a force directed against devi-
ation δR, which must therefore satisfy the following
oscillator equation with variable coefficients:

(5)

where M'(R) ~ ρ0R3 and K(R) ~ M'(R)  accord-

ing to dimensions. The estimate of δR can be obtained
in the adiabatic approximation (although, strictly
speaking, this is insufficiently correct); i.e., M'(R) and
K(R) are assumed to vary slowly enough to conserve
the adiabatic invariant. In this case,

(6)

This slowly developed instability at small initial pertur-
bations likely does not restrict the collapse of the cavity.

The effect of fluid compressibility. In contrast to
the collapse of an empty cavity in an incompressible
fluid, when all the energy is transferred to a small mass
~ρ0R3 , the basic part of the energy release in this case
is spent on the compression of the fluid outside of this
small region. Correspondingly, the compressibility of
the fluid significantly weakens cumulation but does not
eliminate it.

The collapse of an empty cavity in water was ana-
lyzed by Hunter [10] (see also [8, 11]), who took into
account compressibility but ignored viscosity. The

equation of state was taken in the form P = B ,

where B = 3000 atm, ν = 7, and ρ is the fluid density,
which is similar to the gas case. The numerical solution
to the problem was shown to become self-similar (as
was expected [11]) for small R when the velocity of
walls considerably exceeds the speed of sound. In this

case, energy ER in a region of about R behaves as ,
where α ≈ 0.545; i.e.,

(7)

Here, s ≈ , where RC is the cavity radius from which

the asymptotic formulas of the self-similar mode are
applicable. This radius can be estimated from the con-

dition (RC) ≈ c', where c' is the speed of sound in the

fluid and (R) is determined by Eq. (1). For P0 ≥
10 atm, s is about 2–5, and s = 1 can be taken for esti-
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Ṙ R( )
R

------------ 
 

2

δR δR 0( ) K R( )
M' R( )
--------------- 

 
1/2

K 1– R( )
1/2

σR 0( )
R0

R
----- 

 
1/4

.∼∼

ρ
ρ0
----- 

  ν

R
5 2

α
---–

ER En s
R
R0
----- 

 
5 2

α
---–

P0R0
3 s

R
R0
----- 

  .≈ ≈

R0

RC
------

Ṙ
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mates, because the equation of state is also approxi-
mate. For other fluids and other equations of state, α
can vary, but Eq. (7) (and s = 1) can be used at least as
a crude estimate even in these cases.

Cavity filled with a gas. At least at the initial stages
of the collapse of a cavity filled with a gas unsolvable
in the fluid, when nonlinear thermal conductivity is
immaterial, the heating of the gas in the cavity can be
considered as adiabatic [8]. In this case, the tempera-
ture and density of the substance in the cavity at the
time when the walls stop can be determined from the
condition

(8)

where N is the number of gas particles in the cavity; kB
is the Boltzmann constant; T0 and Tk are the initial and
final temperatures, respectively; and Rk is the final
radius of the cavity. Substituting Eq. (7) into Eq. (8), we
find that the particle density at the time of collapse is

(9)

In particular, nk can reach a value of 1029 m–3 for very
high acoustic pressure P0 ~ 103 atm and T0 ~ 10–2 eV
and is lower by two to three orders of magnitude for
normal acoustic pressures 1–10 atm.

Heat losses caused by electron thermal conductivity
are the most dangerous form of heat losses, which
restrict the maximum temperature of a plasma in a cav-
ity. According to [11], the effective electron thermal

conductivity can be written as T5/2, where χ ~

10−10 J/(s m K), Z is the ion charge, Λ is the Coulomb

ER kBTk N kBT0N
R0

Rk

----- 
 

2

,∼ ∼

nk
N

Rk
3

------
P0

kBT0
-----------.∼ ∼

χ
ZΛ
------- 

 

F

δR

Fig. 1. Collapse of a spherical cavity, where δR is a distur-
bance on the surface and F is the force acting on the dis-
turbed surface.
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logarithm, and T is the temperature. Equating ER to the
heat flux to walls during the time

of the existence of the heated region, we obtain

(10)

In particular, Tk ≤ 103 eV for Z ~ 10, Λ ~ 10, P0 ~
103 atm, R0 ~ 10−3 m, and T0 ~ 10–2 eV. Correspond-
ingly, the estimate

(11)

yields ~1012–1013 in this case.

Neutron yield per cavitation collapse is estimated as

(12)

where 〈σ〉  is the effective reaction cross section, 〈v 〉  is
the relative velocity of nuclei, and their product is aver-
aged over the velocity distribution [12]. For the condi-
tions described in [1], Nn ~ 0.1 even in the optimal case,
which can likely be observed in experiment.

Method of increasing the neutron yield. The situ-
ation can be substantially improved in the case where a
deuterium–tritium gaseous mixture is blown through a
liquid metal (e.g., mercury) taken as a fluid in which
cavitation is created and acoustic pressure is strongly
increased up to (2–3) × 103 atm at the focus. In this
case, Nn can reach 105 under the optimal conditions.

Energy balance. The conclusion on such a device
as a setup with a positive energy balance rather than as
a generator of neutrons is pessimistic. Comparing Etot =
NnE', where E' is the energy release per neutron, with
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Fig. 2. Layout of cylinder G that has radius Rc and is filled
with fluid S, where a cavity with radius R(t) is filled with
gas H; q is the piston whose position is specified by func-
tion l(t).
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En , we conclude that  is much less than unity (it is

equal to about 10–5 or less) even in the optimal case,
where neutrons release additional energy in the corre-
sponding blanket surrounding the system. Thus, in
order to obtain a positive energy balance (if it is possi-
ble), the cavitation scheme of the controlled thermonu-
clear fusion must be fundamentally changed. This
change is discussed below.

2. CYLINDRICAL CAVITATION, 
ENERGY RECUPERATION, 

AND HYBRID THERMONUCLEAR FUSION

At present, thermonuclear neutrons can be obtained
most simply by bombarding a deuterium target with tri-
tium ions accelerated up to an energy of ~150 keV.
Even if neutrons produced in the D–T reaction release
additional energy in the natural-uranium blanket,
energy spent on the heating of the target for the ioniza-
tion of deuterium is higher than this total energy
release. However, this excess is not so high and is equal
to a factor of 3 for the optimal case. Therefore, this pro-
cess can be made energy-profitable according to Car-

not’s theorem K' ≤ , where Tf and Ti are the tem-

peratures of the heater and cooler, respectively, by
recovering energy spent on heating the target with the
recovery factor K' exceeding 0.75. Thus, it is sufficient
to ensure Tf ~ 2000 K (which is much lower than the
melting temperature for molybdenum and the more so
for tungsten) for the optimal case with Ti ~ 300–400 K.

As was shown in [4, 5], the cavitation process can be
of interest for controlled thermonuclear fusion, not only
as a method of reaching thermonuclear temperatures
for a short time, but also as a method of recovering ther-
mal energy with very high recovery factor K'. Indeed,
the collapse of a cavitation cavity is accompanied by
the adiabatic compression and heating of the gas up to
sufficiently high (above several electronvolts) tempera-
tures [8], although the initial gas temperature, as well as
the temperature of the fluid, is close to room tempera-
ture during the whole process. Correspondingly, if one
could feed additional heat into the cavity when it col-
lapses and remove heat from the cavity when it
expands, this temperature difference would ensure K' ≥
0.95–0.98. However, the real method of such a feed and
removal of heat for ordinary (spherical) cavitation has
not yet been proposed. In spite of this circumstance, we
can consider an unusual cavitation process, so-called
cylindrical cavitation [4, 5], where such a possibility
could be realized at least in principle. In this case, only
K' ~ 0.8–0.9 can be expected, but it is sufficient for a
positive energy balance.

Cylindrical cavitation is the process of the collapse
and expansion of a cylindrical cavity in a rotating fluid
in a cylinder, where a piston moves (Fig. 2). This pro-

Etot

En

--------

T f T i–
T f

----------------
DOKLADY PHYSICS      Vol. 48      No. 1      2003



CAVITATION AND THERMONUCLEAR FUSION 27
A
T

Z H B

YRc

O'

q

G l(t)

WK

U

JD

P

S

S

+
–

O
R(t)Rρ

l1

Fig. 3. Possible layout of the device under consideration: A is the source of accelerated tritium ion beam J, D is the deuterium gas,
P is the blanket, K is the case, T is the heat-storage enclosure, W is the operating chamber of width l1 , G is a rotating cylinder of
radius Rc, S is the fluid, R(t) is the time-dependent cavity radius (Rρ is the radius at the time of the maximum expansion), H is the
working gas filling the cavity and chamber W, q is the piston whose position is specified by function l(t), Y is the inlet–outlet valve
automatically synchronized with the motion of the piston, B is the permanent magnet of the system for the direct transformation of
the energy of piston motion to electrical energy (coils of this system are not shown), U is the compensator of beam-energy losses,
and Z are wall protrusions for the initiation of the controlled turbulent mode.
cess is similar to the convenient cavitation. In particu-
lar, the collapse rate increases with decreasing radius
[4], fluid viscosity is immaterial in most cases, the gas
in the cavity is compressed adiabatically, the ratio of the
initial to final volumes can be so large that Tf can sub-
stantially exceed Ti, etc. However, there are differences.
In particular, the collapse of a cylindrical cavity, in con-
trast to a spherical one, is stable [4]. The energy of the
moving fluid can be transmitted to the piston and then
transformed to electrical energy. (For ordinary cavita-
tion, this energy can be associated with turbulent
motion, which considerably hinders its utilization.)
Finally, the direct contact of the cavity with the piston
and cylinder end makes it possible to comparatively
easily feed and remove a substance and energy into and
from the cavity through corresponding holes and valves
at the required times.

Figure 3 shows one of the possible layouts of such a
device, which could be used to recover energy released
in a hybrid thermonuclear system. A tritium ion beam
that is created by source A and accelerated up to an
energy of ~150 keV passes through low-density deute-
rium gas D, whose density is chosen so that tritium ions
lose ~20–30 keV over the length of chamber K. Gener-
ated neutrons release additional energy in blanket P.
This energy, along with energy lost by the beam in D,
is spent on heating working gas H (e.g., a light inert gas
such as helium, neon, or argon) in chamber W con-
nected with case K containing the blanket.
DOKLADY PHYSICS      Vol. 48      No. 1      2003
Let us discuss the recovery of energy. Chamber G is
partially filled with fluid S and rotates about the O–O'
axis. This rotation gives rise to the formation of a cylin-
drical cavity at the center of the chamber. As piston q
moves in the chamber, cavity radius R(t) varies with
time. When the piston enters the cylinder, the cavity
collapses, and the gas in it and in chamber W is com-
pressed and heated adiabatically [4, 5]. Correspond-
ingly, the cavity is expanded adiabatically at the reverse
motion of the piston, and the gas in the cavity liberates
its energy to the fluid and piston. At the time of maxi-
mum expansion ti , valve Y is opened, and the working
gas is partially replaced by a cooler gas. The gas
removed from the cavity is then also cooled and used
again.

The problem of feeding heat released in deuterium
and in the blanket into the working gas is most difficult.
This heat must be fed only during a short time interval
near the collapse time tf, when the working gas is max-
imally heated. The heat capacity of the blanket is too
high to substantially change its temperature for such a
short time. On the other hand, the gas thermal conduc-
tivity χH is sufficiently low and varies relatively slightly
during the entire operating cycle. Therefore, the com-
pression of the gas in the process of collapse is adia-
batic [4]. Thus, it seems impossible to transfer heat
from heated chamber walls W to gas H during a short
time interval, when the gas is maximally heated.
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Nevertheless, this problem can be solved. For the
laminar mode of gas motion, heat flux from the walls of
chamber W to the gas is estimated as

(13)

where δT is the temperature difference between the
walls and gas and l1 and  are the thickness and area
of the walls of chamber W, respectively. In the case of
developed turbulence, the heat flux is determined as

(14)

where nH is the density of gas H and v turb is the charac-
teristic velocity of turbulent motion and is determined
by the velocity of directed motion at the passage to the
turbulent mode, i.e., by the velocity

(15)

with which the gas enters chamber W, where R1 is the
radius of the hole connecting chamber W with G, VW is

the volume of chamber W and  is the collapse rate

of the cylindrical cavity. According to [4],  is esti-
mated as

(16)

where P' is the pressure applied to the piston. In partic-
ular, vH(t) can reach ~(0.1–0.2)vT, where vT is the ther-
mal velocity of atoms of gas H, near the time of col-

lapse when  ~ 2–3 and  ~

102 m/s. Correspondingly, ST(turb) can be higher than
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Fig. 4. A are sources of fast ion beams J, K are chambers for
deuterium that are surrounded by the blanket, G are coupled
recovery systems such as that shown in Fig. 1 (pistons of the
systems are joined with each other, and, when the gas is
compressed in one of systems, it expands in the other sys-
tem and vice versa).
ST(lam) by three to four orders of magnitude for nH ≥
1027 m–3. Therefore, if one creates the conditions for the
laminar motion of gas H during almost the entire oper-
ating cycle but the motion becomes turbulent near the
collapse time, the gas is heated exactly at this time.

The turbulent mode arises formally when the Rey-
nolds number of this flow exceeds a certain critical
value Rcr [13]. In the case under consideration, the Rey-
nolds number has the form

(17)

where ρH(t) and η are the density and viscosity of gas
H. The Reynolds number given by Eq. (17) reaches its
maximum RM at a time close to tf (which is required in
the case under consideration). For the transition to tur-
bulence, the inequality RM > Rcr must be satisfied. One
can control the Rcr value by varying the shape of cham-
ber W or by introducing additional protrusions on the
walls of the chamber.

The physical cause for changing the conditions of
the transition to the turbulent mode due to the introduc-
tion of protrusions on the surface of chamber W is as
follows. Chamber W can be treated as an acoustic cav-
ity. The introduction of protrusions on the surface
changes the phase velocity v f of waves induced in it. In
particular, it can be made much lower than the speed of
sound in the gas. If vH(t) exceeds v f, acoustic oscilla-
tions build up near tf. When their amplitude becomes
sufficiently high, the transition to the turbulent mode
occurs. (Various other methods of initiating the transi-
tion to turbulence can be proposed.)

We discuss now the problem of optimizing energy
expenses for the generation of neutrons. As fast ions
move through deuterium, their energy decreases from
the optimal value, which gives rise to a substantial
decrease in the cross section σDT for the D–T reaction.
Therefore, energy release decreases, whereas energy
expenses remain. In order to avoid this behavior, it is
necessary to compensate energy loss. Fast tritium ions
are removed from the deuterium gas when cross section
σDT is close to its maximum value and fall into capaci-
tor U, where they are additionally accelerated to the
optimum energy. Then, they fall into the next unit
(Fig. 4), where they again pass through the deuterium
gas, and so on. The total number of units N' is limited
by the voltage that must be applied to capacitors com-
pensating energy losses. To avoid an increase in the
energy spread of fast ions, the condition

(18)

must be satisfied, where (E) is the mass stopping
power of a hydrogen ion of energy E in the molecular
hydrogen medium and E1 = 50 keV. According to data
presented in [14], condition (18) is satisfied. In addi-
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tion, the case N' @ 1 is interesting, because the require-
ments for a source of fast ions can be weakened. Energy
loss at acceleration is efficiently decreased by a factor
of N'.
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At present, martensitic transformations are consid-
ered as a diffusionless transition of the high-tempera-
ture austenitic phase to the low-temperature martensitic
phase. Since this transition proceeds through the collec-
tive displacement of atoms without the rearrangement
of chemical bonds, martensitic transformations can
occur at extremely low temperatures. The crystallo-
graphic aspects of martensitic transformations and
microstructure of the martensitic phase are well studied
(see, e.g., [1]). In contrast, chemical mechanisms are
poorly studied, primarily because experimental data
concerning the origin of the formation of a chemical
bond and martensitic transformations are not available.
In addition, distinct concepts of the chemical mecha-
nisms of solid-state reactions are also absent. Solid-
state reactions in thin films proceed at temperatures of
400–800 K, which are lower than the corresponding
temperatures for bulk samples by 400–600 K. Diffusion
along the edges of grains is the primary cause responsi-
ble for large mass transfer accompanying low-tempera-
ture reactions in thin films (see [2, 3] and references
therein). The diffusion mass-transfer mechanism with
Arhenius temperature dependence of diffusion implies
that solid-state reactions at the film interfaces must pro-
ceed at any temperature, and the thickness of the reac-
tion products depends only on temperature and anneal-
ing time. However, numerous investigations indicate
that a phase that is called the first phase is first formed
at the film interface at a certain temperature T0 (initia-
tion temperature). A further increase in annealing tem-
perature gives rise to the appearance of new phases with
the formation of a phase sequence (see, e.g., [3]). From
the fundamental and practical viewpoints, it is impor-
tant to know (i) which phase among numerous phases
of a given binary system is formed first and (ii) what
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factors determine the initiation temperature T0 for the
first phase.

Although various rules and their modifications are
proposed to predict the first phase [3], no general rule
of the first phase explains the entire set of experimental
data.

In [4], it was shown that the solid-state synthesis in
thin films for high heating rates η > ηcr can proceed as
self-propagating high-temperature synthesis (SHS),
which has the form of a surface combustion wave in
thin films. Therefore, solid-state reactions in thin films
can proceed both as an SHS wave for η > ηcr and as
reaction diffusion for η < ηcr . It was shown for the first
time in [5, 6] that

(i) a phase with the minimum temperature of solid-
phase transformation according to the phase-equilib-
rium diagram is first formed at the interface of two film
condensates and

(ii) the initiation temperature T0 of the solid-state
reaction in thin films coincides with the solid-phase-
transformation temperature TK of the first phase
(T0 = TK).

In particular, the initiation temperature T0 of the
solid-state reaction in the S/Fe two-layer thin-film sys-
tem coincides with the temperature of the metal–insu-
lator phase transition in the iron monosulfide, i.e.,
T0(S/Fe) = TK(FeS) [5]. For the Au–Cu system classical
in the ordered state, the initiation temperature T0 of the
solid-state reaction in Cu/Au two-layer films coincides
with the Kurnakov temperature of the order–disorder
transition in the CuAu alloy, i.e., T0(Cu/Au) =
TK(CuAu) [6]. Further investigations unambiguously
showed that the Kurnakov temperature for many super-
structures well studied in the ordered state determines
the initiation temperature T0 of the solid-state reaction
in the corresponding two-layer film system. The struc-
ture mechanism of the above solid-phase transforma-
tions (metal–insulator and order–disorder) is deter-
mined by diffusion. For martensitic diffusionless trans-
formations, where chemical bonds are not broken and
diffusivity is extremely low, atomic transport is not
very large, and compounds are not likely to be formed
003 MAIK “Nauka/Interperiodica”
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at the martensitic-transformation temperature. How-
ever, solid-state reactions in Ni/Ti two-layer film sam-
ples surprisingly turned out to be initiated at the starting
temperature AS of the reverse martensitic transforma-
tion in titanium nickelide, i.e., T0(Ni/Ti) = TK(NiTi) ~
400 K. This reaction was shown to be accompanied by
the formation of martensitic phases in reaction products
and to proceed in the reaction-diffusion mode up to
heating rate η ~ 20 K/s [7].

The above-listed properties imply that the solid-
state reaction in the Au/Cd film system must lead to the
formation of martensite at the martensitic transforma-
tion temperature TK(AuCd) ~ 60°C, because this temper-
ature is the minimum temperature of the structural
phase transformations in binary Au–Cd system.

The martensitic phases of AuCd alloy have attracted
interest for 70 years, because they exhibit the shape
memory effect and resinlike deformation, which is
attributed to the processes of short atomic ordering of
martensitic phases during aging at room temperature
(see [8, 9] and references therein). It is known that,
depending on content, the austenitic β2 phase under-
goes two martensitic transformations β2   and
β2  , where  is the orthorhombic phase for the
Au–Cd 47.5 at. % alloy and  is the trigonal phase
with 49–52 at. % Cd. The lattice of  martensite is
orthorhombic, the positions of atoms were continu-
ously determined more precisely, and the crystal struc-
ture is now well known [10]. The structure of  mar-
tensite is less studied. Refined data [11] indicate that
the  phase has the trigonal elementary cell. In the
absence of reliable diffraction reflections from marten-
sitic phases, diffraction reflections for the reaction
products are determined according to the JCPDS data-
base (cards 26-0256 and 26-0257).

In experiments, Au/Cd two-layer film samples
deposited by vacuum sputtering at a pressure of 10–3 Pa
on 0.18-mm thick glass substrates were used. To pre-
vent reaction between Au and Cd films, these films were
deposited at room temperature. The typical thickness of
Cd and Au layers was ~100–250 and ~50–100 nm,
respectively. The samples were heated at the rate η ~
5−10 K/s. The solid-state reaction between Au and Cd
layers was actually initiated at T0(Au/Cd) = 340 K and
proceeded in the SHS mode, and front motion was eas-
ily visible. The propagation pattern of the reaction front
was typical for two-layer film samples for which the
SHS mode was realized. The electric resistance of the
Au/Cd sample changed upon passing the SHS front
(Fig. 1). The X-ray diffraction spectrum of the initial
sample involves reflections only from the Au and Cd
layers (Fig. 2a) and did not change upon 150-h anneal-
ing at 315 K. The diffraction pattern changed drasti-
cally as the SHS wave passed through the Au/Cd sam-
ple (Fig. 2b). The intensity of reflections from Au and
Cd decreased, which testified to a reaction between Cd

γ2'

ζ2' γ2'

ζ2'

γ2'

ζ2'

ζ2'
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and Au layers. The analysis of diffraction reflections
shown in Fig. 2b indicates that a mixture of the  and

 martensitic phases dominates in the reaction prod-
ucts. However, reflections with interplane distances d =
0.256 and 0.206 nm were not identified. These reflec-
tions can be attributed to intermediate martensitic
phases arising due to the nonequilibrium synthesis pro-
cess. A small amount of CdO was found in samples
after the reaction. The remnant unreacted Cd layer also
existed after the reaction. Therefore, the final reaction
product is predominantly the  + /Cd two-layer
system consisting of the Cd film adjoining the substrate
and the (  + )-martensite film. However, it is
extremely surprising that the reaction can continue if an
80-nm Au layer is deposited on the upper surface of the
reacted  + /Cd sample. The SHS in such Au/  +

/Cd thin-film systems occurs with the same initiation
temperature T0 = 340 K. The qualitative diffraction pat-
tern does not change after the passage of the second
SHS front. However, reflections from Cd disappear
completely (Fig. 2c), which implies that the reaction
between Au and Cd films proceeds through the (  +

)-martensite layer, which is a diffusion barrier for the
reaction proceeding until the complete disappearance
of the Cd layer. Indeed, subsequent Au layers deposited
on reacted samples do not initiate the SHS wave. To
determine the heat released as the SHS front passed, a
chromel–copel thermocouple, where each layer was
~100 nm in thickness, was deposited on a glass sub-
strate, and the (80-nm Au)/(200-nm Cd) film pair was
then sputtered. However, the thermocouple did not
detect any increase in the temperature of the (80-nm
Au)/(200-nm Cd) sample as the SHS wave was passing.
Therefore, (i) the SHS in the Au/  + /Cd sample
(Fig. 2c) proceeds in the solid phase, because the tem-
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Fig. 1. Relative resistance R vs. substrate temperature Ts for
the heating rate η = 5 K/s of the (80-nm Au/200-nm Cd)
two-layer film sample. The arrows show the direct and
reverse variation in resistance.



32 MYAGKOV et al.
I, arb. units

(a)

(b)

(c)

Cd
Au

CdO
γ2'
ζ2'

Au

Cd

γ2' + ζ2'

Cd

Au

γ2' + ζ2'

Cd

Au

γ2' + ζ2'

T0 = 340 K

Au(80 nm)

T0 = 340 K

25° 50° 75°
2Θ

Fig. 2. Diffraction patterns of the (80-nm Au/200-nm Cd) two-layer film sample: (a) before the reaction, (b) after the passage of the
SHS wave through the sample, and (c) after the secondary initiation of the SHS front in the reacted sample with the 80-nm Au layer
deposited on it. The scheme in the right-hand part of the figure illustrates the corresponding changes in the phase content of the
(80-nm Au/200-nm Cd) two-layer film sample.
perature of the -martensite layer coincides with the
initiation temperature T0 = 340 K, and (ii) the solid-
state synthesis in the film state between the Au and Cd
layers is low-energy.

The velocity of the SHS front near the initiation
temperature is Vf ~ 10–2 m/s [4]. Assuming that the
reaction begins at the interface of film reagents and
propagates inside the sample bulk and along the sample
surface with the same velocity, we estimate diffusivity
as D ~ dVf = 2 × 10–9 m2/s, where d = 200 nm is the
thickness of the reaction products, which is characteris-
tic for the liquid phase. The typical diffusivity over
grain edges in thin films is equal to Dgb ~ 10–17 m2/s [2].
The low temperature and the threshold character of
atomic transport to depth 100–200 nm, together with
extremely overestimated diffusivity D, indicate that dif-
fusion along the edges of grains is not the basic mech-
anism of mass transfer accompanying the passage of
the SHS wave in the Au/Cd sample.

Reaction between Ni and Al is one of the well-stud-
ied solid-state synthesis reactions. In particular, solid-
state reactions in Al/Ni two-layer films and multilayers
are actively studied (see [12, 13] and references
therein). The initiation temperature of these reactions

γ2'
 lies in the interval ~440–500 K [13], which coincides
with the temperature interval of the formation of mar-
tensite in NiAl alloy [14]. Preliminary results indicate
that the SHS in Mn/Fe two-layer films is initiated at
~500 K, which is close to the starting temperature of the
martensitic transformation As = 470 K in 24MnFe alloy.

The above discussion indicates that the initiation
temperature T0 of the solid-state synthesis in two-layer
film samples must coincide with the starting temperature
of the reverse martensitic transformation As (T0 = As) for
a given binary system, if other structural transforma-
tions in the reaction product do not precede the marten-
sitic transformation.

Since martensitic transformations can determine a
solid-state reaction, the chemical and structural mecha-
nisms must be identical. Therefore, a martensitic-like
mechanism of atomic transport in the reaction can be as
follows. As a result of chemisorption, the initial inter-
face of the film reagents is a two-dimensional reaction
product (martensite). When temperature increases up to
the temperature of the reverse martensitic transforma-
tion, collective displacement transforms martensite to
austenite. The reverse martensitic transformation is
responsible for the approach of atoms of reagents and
high stresses on both sides of the two-dimensional reac-
DOKLADY PHYSICS      Vol. 48      No. 1      2003
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tion product. As a result, the activation energy for the
initiation of the reaction decreases. The reaction is
accompanied by the local diffusionless redistribution of
atoms of reagents without transition to the liquid phase
and with the formation of the martensite layer in the
reaction products. Structural atomic rearrangement at
the interface can occur through the formation of nano-
clusters, whose ultrafast coherent rotation induces the
directed ordered mixing of the reagents layers. Fast
solid-phase diffusionless atomic rearrangement is
responsible for the high effective diffusivity in the reac-
tion. Reactions induced in thin films by martensitic
transformations can be directed and cooperative with
the formation of the orientational relations between the
lattices of reagents and the martensitic phase.

It is well known that martensite is formed under
mechanical stresses. Mechanical loads strongly affect
the kinetics and temperature of martensitic transforma-
tions. Therefore, solid-state reactions determined by
martensitic transformations can be initiated by pressure
or impact. Indeed, the solid-state synthesis in Ni + Al
powders is initiated by impact loads [15]. Thadhani [15]
suggested the martensitic reaction mechanism but did
not attribute it to martensitic transformations in NiAl
alloy. The martensitic-like mechanism discussed above
is expected to be able to ensure high rates of mass trans-
fer in the shock-wave-induced synthesis. Therefore, the
solid-state synthesis in Au + Cd powder systems must
also be initiated by shock-wave compression.

In summary, we arrive at the following conclusions.
(i) The temperature of the martensitic transforma-

tion in binary alloys is the initiation temperature of the
synthesis between alloy atoms if other structural trans-
formations do not precede the martensitic transfor-
mation.

(ii) The solid-state synthesis in Au/Cd film samples
proceeds in the SHS mode and is accompanied by the
formation of martensitic phases in the reaction products.

(iii) Low-energy diffusionless processes are respon-
sible for atomic transport up to 200 nm in Au/Cd-film
samples during the reaction.
DOKLADY PHYSICS      Vol. 48      No. 1      2003
ACKNOWLEDGMENTS

This work was supported by the Krasnoyarsk Sci-
ence Foundation (project no. 11F001C).

REFERENCES
1. H. Warlimont and L. Delaey, Martensite Transforma-

tions in Copper-, Silver-, and Gold-Based Alloys (Perga-
mon, Oxford, 1974; Nauka, Moscow, 1980).

2. Thin Films. Interdiffusion and Reactions, Ed. by
J. Poate, K. Tu, and J. Mayer (Willey, New York, 1978;
Mir, Moscow, 1982).

3. L. A. Clevenger, B. Arcort, W. Ziegler, et al., J. Appl.
Phys. 83 (1), 90 (1998).

4. V. G. Myagkov and L. E. Bykova, Dokl. Akad. Nauk 354
(6), 777 (1997).

5. V. G. Myagkov, L. E. Bykova, G. N. Bondarenko, et al.,
Dokl. Akad. Nauk 371 (6), 763 (2000) [Dokl. Phys. 45,
157 (2000)].

6. V. G. Myagkov, L. E. Bykova, G. N. Bondarenko, et al.,
Pis’ma Zh. Éksp. Teor. Fiz. 71 (5), 268 (2000) [JETP
Lett. 71, 183 (2000)].

7. V. G. Myagkov, L. E. Bykova, L. A. Li, et al., Dokl.
Akad. Nauk 382 (4), 463 (2002) [Dokl. Phys. 47, 95
(2002)].

8. R. W. Cahn, Nature (London) 374, 120 (1995).
9. X. Ren and K. Otsuka, Nature (London) 379, 579

(1997).
10. T. Suzuki and K. Fujimoto, Scr. Metall. 37 (10), 1525

(1997).
11. M. Kogachi, H. Ishibashi, T. Ohba, et al., Scr. Metall. 42

(9), 841 (2000).
12. U. Rothhaar, H. Oechsner, M. Scheib, and R. Muller,

Phys. Rev. B 61 (2), 974 (2000).
13. C. Michaelsen, K. Barmak, and G. Lucadanno, J. Appl.

Phys. 80 (12), 6689 (1996).
14. P. L. Potapov, N. A. Poliakova, and V. A. Udovenko, Scr.

Mater. 35 (3), 423 (1996).
15. N. N. Thadhani, J. Appl. Phys. 76 (4), 2129 (1994).

Translated by R. Tyapaev



  

Doklady Physics, Vol. 48, No. 1, 2003, pp. 34–37. Translated from Doklady Akademii Nauk, Vol. 388, No. 1, 2003, pp. 51–55.
Original Russian Text Copyright © 2003 by Panchenko, Kireeva, Chumlyakov, Aksenov, Efimenko, Karaman, Sehitogly.

                                                                                           

TECHNICAL
PHYSICS
Features of Thermoelastic Martensitic Transformations
in [001] Titanium–Nickel Single Crystals
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Deformation in titanium–nickel polycrystals at T >
Ms [Ms is the start temperature of the direct B2–B19'
martensitic transformation (MT) upon cooling] leads to
the formation of stress martensite, which is thermody-
namically unstable at T > Af (Af is the finish temperature
of the reverse B19'–B2 MT upon heating). If the direct
B2–B19' MT under loading is not accompanied by
plastic deformation, the reverse B19'-B2 MT occurs
when the load is removed, and, as a result, the phenom-
enon of superelasticity is observed [1]. The low yield
stress of the high-temperature B2 phase favors the
development of plastic deformation in the process of
the MT under loading, and, consequently, the mobility
of martensite–austenite interfaces decreases [1]. In the
process of unloading, the reverse B19'–B2 MT occurs
partially or is completely suppressed. In this case, stress
martensite is stabilized by plastic deformation and
superelasticity is absent. Thus, in order for superelastic-
ity (SE) to appear, it is necessary, first, to apply a load
at T > Af and to form thermodynamically unstable mar-
tensite and, second, to suppress the processes of plastic
flow in the B2 phase in the MT under loading.

In twinned titanium–nickel single crystals and poly-
crystals near the stoichiometric composition, the neces-
sary conditions of the appearance of superelasticity,
which is not observed in the quenched state, are
achieved by thermomechanical treatment—cold defor-
mation up to strain ε = 30% and subsequent annealing
at T = 673–773 K [1, 2]. In titanium–nickel alloys with
nickel content CNi > 50.6 at. %, superelasticity is
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observed after both thermomechanical treatment and
aging of previously quenched alloys at T = 673–823 K
[1–3]. Consequently, the formation of a high density of
crystal-structure defects—dislocations and twins in
stoichiometric titanium–nickel alloys—and the precip-
itation of disperse particles along with dislocations in
aging titanium–nickel alloys result in the hardening of
the high-temperature B2 phase and the appearance of
superelasticity [1–3].

In this study, using Ti–50.3 at. % Ni and Ti–51 at. %
Ni single crystals oriented along the [–111], [001], and
[−117] directions, we analyze the principle possibility
of obtaining superelasticity in quenched titanium–
nickel single crystals that are free from crystal-structure
defects and disperse particles. The formulation of the
problem is based on the following concepts. First, slip
deformation in B2 intermetallides (including titanium–
nickel) having high energies of the antiphase interface
are realized by a〈100〉{110} dislocations [4]. The
Schmid factor for these slip systems in crystals oriented
for tensile and compressive deformations along the
[001] direction is equal to zero. Consequently, a high-
strength state in titanium–nickel single crystals can be
obtained by decreasing the Schmid factor for slip sys-
tems in the [001] orientation [4]. Second, deforming
stresses in the B2 phase in titanium–nickel can be
increased by deviating nickel content from the stoichi-
ometric value, i.e., by taking ëNi > 50 at. % [5]. If these
factors actually suppress plastic flow processes of the
B2 phase in the MT under loading, superelasticity is
possible in quenched Ti–51 at. % Ni crystals with the
tension–compression axis along the [001] direction. In
quenched Ti–51 at. % Ni crystals with the deformation
axis along the [–111] direction, where the Schmid factor
is nonzero (m[–111] = 0.47), as well as in Ti–50.3 at. % Ni
single crystals, the low strength properties of the B2
phase will favor the development of plastic flow in the
B2–B19' MT under loading, and superelasticity is
impossible.

The experimental technique was presented in detail
in [6]. The start (Ms) and finish (Mf) temperatures of the
direct B2–B19' MT upon cooling and the respective
temperatures As and Af of the reverse B19'–B2 MT upon
003 MAIK “Nauka/Interperiodica”
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Fig. 1. Temperature dependence of the yield stress for quenched Ti–51 at. % Ni single crystals whose axis is directed along
(1) [−111] and (2) [–117] directions as obtained under (a) tension and (b) compression.
heating were determined from the temperature depen-
dence of electrical resistivity (Table 1).

Figure 1 shows the dependence of the yield stress
σ0.1 on testing temperature for quenched Ti–51 at. % Ni
crystals under tension and compression. It is seen that,
in the high-temperature B2 phase at T > Md (Md is the
temperature at which the critical stresses for the forma-
tion of stress martensite are equal to the stress of plastic
deformation in the B2 phase), crystals with the tension–
compression axis along the [–117] direction are “hard,”
because their σ0.1 values are larger than those for “soft”
crystals oriented along the [–111] direction. For the
[001] and [–117] orientations (the [–117] orientation is
deviated from the [001] pole by 12°), σ0.1 in the high-
temperature B2 phase is large (Fig. 1, Table 2), because
the Schmid factor for a〈100〉{110} systems is close to
zero (m[–117] = 0.19 and m[001] = 0), and slip deformation
is therefore hindered. The minimum of σ0.1(T) coin-
cides with the start temperature Ms of the MT upon
cooling (Table 1). In the temperature range Ms < T < Md

of the development of the MT under loading, σ0.1

increases with a rise in temperature (Fig. 1) and the
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slope α =  depends on the orientation of the crys-

tal and the type of deformation (tension or compres-
sion, see Table 2). In this temperature range, σ0.1(T) is
described by the Clapeyron–Clausius relationship [1]

(1)

where T0 is the phase equilibrium temperature, ∆H is
the enthalpy of the transformation, and the lattice strain
ε0 in the process of the MT can be experimentally
obtained from the shape memory effect (Table 1). This
effect in the quenched crystals depends on their orien-
tation and the type of deformation (tension or compres-
sion) and is close to values calculated in the model that
takes into account only lattice deformation (Table 2).
This means that, being heated higher than Af, a com-
pletely untwinned B19'-martensite single crystal,
which is obtained under deformation at T < Ms, is trans-
formed to a B2-phase single crystal. The dependence of

the slope α =  on the orientation of crystals and

the type of deformation (tension or compression) in the

dσ0.1

dT
------------

dσ
dT
------

∆H
ε0T0
----------,–=

dσ0.1

dT
------------
Table 1.  Temperatures of the B2–B19' thermoelastic martensitic transformations in titanium–nickel single crystals

Chemical
composition Thermal treatment Ms, K Mf, K As, K Af, K

Ti–50.3 at. % Ni 0.5-h annealing at 1203 K, water quenching 265 243 270 293

Ti–51 at. % Ni 0.5-h annealing at 1203 K, water quenching 150 123 168 190

0.5-h annealing at 1203 K, water quenching 
and 1-h aging at 673 K

≤77 K – – –
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temperature range of the MT under loading (Table 2)
can be explained by Eq. (1). The values of the shape
memory effect for [–117] and [001] Ti–51 at. % Ni and
Ti–50.3 at. % Ni monophase single crystals under ten-
sile deformation are less than those for [–111] crystals,
i.e., ε0[−117], [001] < ε0[–111], and therefore α[001], [–117] >
α[−111] in the [–117] and [001] orientations according to
Eq. (1) (Table 2). Under compression (Fig. 1b), as well
as under tension, deforming stresses in the high-tem-
perature B2 phase (T > Md) depend strongly on orienta-
tion. However, slope α is independent of orientation in
the temperature range Ms < T < Md of the MT under
loading. Therefore, ε0 is independent of orientation
according to Eq. (1). This conclusion is corroborated by
the closeness of ε0 values both measured and calculated
with inclusion of only lattice deformation for these ori-
entations under compression (Table 2).

σ, MPa
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800
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Fig. 2. Superelasticity curves for Ti–51 at. % Ni single crys-
tals in the quenched state under compression along the
[001] direction.

∆σ
It is impossible to investigate superelasticity effects
in TI–51 at. % Ni single crystals whose tensile axis is
oriented along the [–117] and [001] directions, because
these crystals undergo brittle fracture near the yield
stress. In other orientations ([–111], [–112], and [122]),
superelasticity is not observed in quenched single crys-
tals under tension.

In Ti–51 at. % Ni monophase single crystals ori-
ented near the [001] direction, we observed superelas-
ticity under compression for the first time (Fig. 2).
Superelasticity in [–117] and [001] quenched single
crystals is observed in the temperature ranges 60 and
130 K, respectively. The strength properties of the B2
phase in [001] single crystals are higher than those for
[–117] crystals by 200 MPa (Table 2). Consequently,
the temperature range, where superelasticity in the
quenched titanium–nickel single crystals is observed, is
determined by deforming stresses in the high-tempera-
ture B2 phase. Superelasticity is not observed in the
quenched [001] and [–111] Ti–50.3 at. % Ni crystals
under tension, primarily because the strength properties
of the B2 phase in them are considerably lower than
those in Ti–51 at. % Ni crystals (Table 2). The mea-
sured values of the shape memory effect and superelas-
ticity in quenched Ti–51 at. % Ni [001] single crystals
Ti–50.3 at. % Ni under compression coincide with the
calculated values of lattice strain ε0 under the B2–B19'
MT in this orientation (Table 2). Consequently, in [001]
Ti–51 at. % Ni quenched crystals, deformation accom-
panying measurements of both the shape memory
effect (T < Ms) and superelasticity (T > Af) results in the
same final product, a defect-free B19'-martensite crys-
Table 2.  Strength and functional properties for titanium–nickel single crystals for various Ni contents and orientations of the
tension–compression axis

Chemical
composition

Thermal
treatment Deformation Orienta-

tion
σ0.1 (473 K), 

MPa
,

MPa/K

Shape memory
effect, ε0, %

∆TSE, K
εSE, % at 

T = Af + 10 K theor.
[1, 7] exp.

Ti–50.3 at. % Ni 0.5-h annealing 
at 1203 K, water 
quenching

Tension [–111] 530 1.6 9.8 9.6 No SE

[001] 580 5.3 2.7 2.7

Ti–51 at. % Ni 0.5-h annealing 
at 1203 K, water 
quenching

Tension [–111] 700 2.1 9.8 8.8 No SE

[–117] 1100 4.3 5.0 4.5 Failure at ε < 1%

Compression [–111] 800 3.6 3.6 3.4 No SE

[–117] 1100 3.0 5.3 4.8 60 4.3

[001] 1300 3.25 4.2 4.15 130 4.2

0.5-h annealing 
at 1203 K, water 
quenching and 
1-h aging at 
673 K

Tension [–111] 1000 2.5 9.8 5.4 150 4.2

Compression [001] 1400 3.0 4.2 4.1 150 4.0

dσ
dT
------
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tal, which is transformed to the B2-phase single crystal
at T > Af, when load is removed.

The precipitation of disperse Ti3Ni4 particles (30 nm
in size) in [001] crystals after 1-h aging at 673 K
increases the strength properties of the B2 phase and
extends the temperature range where superelasticity is
observed by 30 K compared to the monophase crystals
(Table 2). The values of the shape memory effect and
superelasticity in aging [001] crystals are equal to each
other and are virtually identical to those obtained for
monophase crystals (Table 2).

The aging of [–111] crystals decreases the value of
the shape memory effect for tension–compression
deformation compared to monophase crystals (Table 2)
and leads to the appearance of the superelasticity
effects [3], which are absent in the quenched state of
these crystals. The ∆σ value, which is determined from
the height of a mechanical hysteresis loop for strain
equal to half the superelasticity value (Fig. 2),
decreases with increasing testing temperature in [–111]
aging crystals and depends only slightly on testing tem-
perature in [001] quenched and aging crystals (Fig. 3).
The difference in the temperature dependences of ∆σ in
[–111] and [001] aging crystals is attributed to the fea-
tures of the fine structure of B19' martensite crystals.
Electron-microscope investigations showed that the
〈110〉{0.7201 1 –1} type-II twinning and compound
twinning prevail in monophase single crystals and sin-
gle crystals containing disperse 〈001〉{100} particles,
respectively [8]. Disperse particles hinder detwinning
in [–111] aging crystals, whereas type-II twins in the
monophase crystals have high mobility. Therefore, the
shape memory effect in [–111] aging crystals is less
than that in the same quenched crystals (Table 2). In
[001] aging crystals, compound twins do not contribute
to the measured values of the shape memory effect and
superelasticity, because the Schmid factor for
〈001〉{100} compound twins in these crystals is equal
to zero. Therefore, the experimental values of the shape
memory effect and superelasticity in quenched and
aging [001] crystals coincide with the calculated value
of the lattice strain ε0, theor (Table 2). Thus, the final
product after deformation at both T < Ms and T > Af in
aging [001] and [–111] crystals is the same B19' mar-
tensite with a high density of geometrically necessary
〈001〉{100} twins.

Finally, the field of external stresses in [–111] aging
crystals can interact with compound twins, because the
Schmid factor for multiple twinning in this orientation
is nonzero. This interaction is absent in [001] aging
crystals, because the Schmid factor for multiple twin-
ning equals zero. Therefore, the mechanical-hysteresis
value ∆σ in [001] aging crystals is independent of test-
ing temperature and, accordingly, of applied loads,
whereas the fine structure of the B19' martensite in
[−111] crystals can depend on deforming stresses and
can be responsible for the temperature dependence of
mechanical hysteresis ∆σ (Fig. 3, curve 3).
DOKLADY PHYSICS      Vol. 48      No. 1      2003
Thus, quenched Ti–51 at. % Ni single crystals,
where defects of the crystal structure and disperse par-
ticles are absent, exhibit superelasticity when the com-
pression axis is close to the [001] direction. It is shown
that superelasticity and the temperature range where it
is observed in titanium–nickel single crystals are con-
trolled by deforming stresses of the high-temperature
B2 phase.
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Fig. 3. Temperature dependence of mechanical hysteresis
∆σ for Ti–51 at. % Ni single crystals with (1) [001] orienta-
tion under compression after 0.5-h quenching from 1203 K,
(2) [001] orientation under compression after 0.5-h quench-
ing from 1203 K and 1-h annealing at 673 K, and (3) [–111]
orientation under tension after 0.5-h quenching from
1203 K and 1-h annealing at 673 K.
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In this study, the conditions of stability in the sense
of Joukowski for orbits of the equations of celestial
mechanics were found. The problem of stability of
orbits was first considered in [1]. The related notion of
stability in the sense of Jacobi was introduced and
investigated in [2].

Here, we introduce the following definitions.

Definition 1. Let  be the semiorbit of the solution
ϕ(t) = (x0(t), y0(t)) to the equations of motion

(1)

with the energy integral

(2)

where the functions f1, f2 , and g are such that the solu-
tion exists and is unique. A segment of the semiorbit

 is called stable in the sense of Joukowski if the con-
tinuation of the perturbed-motion trajectory

(3)

always approaches the segment to a distance less than
the first order of smallness when the difference between
the initial data of the semiorbit C+ and the correspond-

ing point of the segment of the semiorbit  has small-
ness higher than the first order.

The point that lies in the segment of the semiorbit

 and is conjugate with the point (x0, y0) in this sense
is named the kinetic focus of this point [3]. For isoener-
getic variations, these are kinetic focuses in the sense of
Maupertuis. Definition 1 is equivalent to the following

proposition: a segment that belongs to the semiorbit 
of Eqs. (1) and is adjacent to the point (x0, y0) is stable
in the sense of Joukowski if its points have kinetic
focuses in the sense of Maupertuis.

C0
+

ẋ̇ f 1 t x y ẋ ẏ, , , ,( ), ẏ̇ f 2 t x y ẋ ẏ, , , ,( )= =

ẋ2 ẏ2+ g x y h, ,( ),=

C0
+

x x0 t( ) δx t( ), y+ y0 t( ) δy t( )+= =

C0
+

C0
+

C0
+
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Definition 2. The semiorbit  of Eqs. (1) is called
stable in the sense of Joukowski if each of its segments
is stable in the sense of Joukowski.

Definition 2 renders concrete the definition of semi-
orbit stability proposed in [4].

Let the Lagrange function have the form

(4)

where T( ) = ( ) is the kinetic energy and

Π(x, y) is the potential. Since this Lagrange function (4)
explicitly lacks time t, the corresponding mechanical
system has the energy integral [3]

(5)

where h is a constant.

Let points c0 and c at time t lie in the semiorbits 
and C+, respectively, and cd be the linear segment

orthogonal to the semiorbit . The lengths of arc c0d
and segment cd are δs and δn = z, respectively.

Let α and β be the lengths of the arcs of the semior-

bit  from a certain fixed point O to the points c0 and
d, respectively. It is evident that

(6)

We take the quantities α and δn as Lagrange’s gen-
eralized coordinates. This is always possible, because
the positions of the points of the semiorbit C+ adjacent

to the semiorbit  are uniquely defined in terms of α
and δn.

Theorem 1. Semiorbit  is stable in the sense of
Joukowski if the inequality

(7)

C0
+

L T ẋ ẏ,( ) è x y,( ),–=

ẋ ẏ, 1
2
--- ẋ2 ẏ2+

ẋi
∂L
∂ ẋi

------- L–
i 1=

2

∑ h,=

C0
+

C0
+

C0
+

δs α β .–=

C0
+

C0
+

èzz
0

3β̇
2
Rc0

2– 0 c0 C0
+∈∀>+
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is valid. Here, β is the length of the arc of the semiorbit

 from a fixed point to the point c0 and  is the
radius of curvature of the semiorbit at the point c0 . 

The principal ideas of the proof are as follows. We
consider the semiorbit C+ that is adjacent to the given

semiorbit  and has the same energy. Let Lagrange
function (4) in the coordinates (α, δn) have the form

(8)

where R is the radius of curvature of the semiorbit C+ at
the point c0.

Lagrange’s equations of motion corresponding to
Eq. (8) have the form

(9)

(10)

These equations have the energy integral

(11)

Equations (9) and (10) linearized with respect to (α, δn)
have the form

(12)

(13)

Here, the superscript 0 denotes that the derivatives are

calculated at the point c0 ∈ . It is easy to find that

(14)

(15)

because β and  correspond to the known solution.

Substituting Eqs. (12) and (13) into Eqs. (10) and
(11), we arrive at the respective equations

(16)

C0
+ Rc0

C0
+

L
1
2
--- δṅ( )

2 1
2
--- 1 R 1– δn+( )2α̇2 è δn α,( ),–+=

δn˙̇ 1 R 1– δn+( )R 1– α̇2– èδn,–=

d
dt
----- 1 R 1– δn+( )2α̇[ ]

+ 1 R 1– δn+( )R 2– α̇2dR
dα
-------δn èα .–=

1
2
--- δṅ( )

2 1
2
--- 1 R 1– δn+( )

2
α̇2 è+ + h.=

δn˙̇ Rc0

2– β̇
2
δn β̇

2
2β̇δs+( ) Rc0

δs
dR
dβ
------- 

 
c0

+
1–

–+

=  – èδn
0 δsèδβ

0 èδnδn
0 δn+ +[ ] ,

1
2
--- 1 2Rc0

1– δn+( ) β̇
2

2β̇δs+( )

+ èc0
δsèβ

0 δnèδn
0++ h.=

C0
+

Rc0

1– β̇
2

èδn
0 , β̇̇ èβ,–= =

1
2
---β̇

2
èc0

+ h,=

β̇

β̇δs sβ̇̇ 2Rc0

1– β̇
2
δn+– 0,=
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(17)

From (12), it follows that

(18)

Consequently, Eq. (18) reduces to the form

(19)

Eliminating the difference δs – s  from Eqs. (16) and
(19), we obtain the variational equation

(20)

Let us write Eq. (20) in the form

(21)

where the function Θ is defined by the formula

(22)

We consider only variations δs and δn such that the
roundabout (perturbed) motion s = s0(t) + δs(t), n =
n0(t) + δn(t) belongs to the same isoenergetic family (h)
as the reference motion s = s0(t), n = n0(t). In this case,
the variational equations admit the energy integral,
which is linear with respect to the variations δs, δn and

their rates  and . This energy integral can be for-
mally obtained from energy integral (5) by varying and
retaining only the terms of the first order of smallness.

Stepanov [2] showed that, in the isoenergetic case,
Θ can be represented as a function of the constant h,
coordinates of the point c0 at the reference semiorbit,
and the angle ϕ0 between the velocity in the reference
semiorbit and the abscissa axis.

If the function Θ(x, y, ϕ) along the semiorbit  is

positive, every perturbed semiorbit C+ approaches .

At the last stage of proving Theorem 1, the follow-
ing fact from the Sturm–Liouville theory [5] is used.

Lemma. Let the function Θ in Eq. (21) be defined in

the interval (t1, t2) and vary between > 0 and  > 0.
In this case, any function that is a solution z to Eq. (21)
and is equal to zero at t3 ∈ (t1, t2) has another zero t4 ∈

(t1, t3), where t1 – t3 lies between  and  provided

that the last interval is sufficiently small compared
to (t1, t2). 

δn˙̇ Rc0

2– β̇
2
δn s Rc0

2– β̇
2 dR

dβ
------- 

 
0

èδn
0++–

– 2Rc0

1– β̇δṡ δnèδnδn
0 .–=

èδn
0 Rc0

2– β̇
2 dR

dβ
------- 

 
0

– 2Rc0

1– β̇ d
dβ
------ dβ

dt
------ 

 +=

=  –2Rc0

1– β̇
2 dR

dβ
------- 

 
0

2Rc0

1– β.+

δn˙̇ Rc0

2– β̇
2
δn Rc0

1– β̇δs sβ̇̇–( )–– δnèδnδn
0 .–=

β̇ β̇̇

δn˙̇ èδnδn
0 3Rc0

2– β̇
2

+( )δn+ 0.=

δn˙̇ Θδn+ 0,=

Θ èδnδn
0 3Rc0

2– β̇
2
.+=

δ̇s δ̇n

C0
+

C0
+

p1
2 p2

2

π
p1
----- π

p2
-----
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Using the lemma, we obtain the proposition of The-
orem 1.

Now, let  be a periodic orbit C0 with perimeter l.

We take α as an independent variable and designate 
as γ. Then, it follows from Eq. (20) that

(23)

Let k be an arbitrary integer. If z = ϕ0(α) is the solu-
tion to Eq. (23), the functions

(24)

also are the solutions to Eq. (23). Let us consider three
solutions zk, zk + 1, and zk + 2 for a fixed k. Since Eq. (21)
is linear, the solutions must be related as

(25)

where the constants c1 and c2 are independent of α
and k.

Let us show that c1 and c2 depend only on the unper-
turbed orbit C0 . Indeed, let

(26)

represent the set of solutions generated by another solu-
tion z = ϕ(α) to Eq. (23). Since these solutions must be
related as

(27)

where c3 and c4 are constants,  satisfies Eq. (25) with
the same c1 and c2 . From the equations

(28)

(29)

it is easy to derive the equality

from which it follows that

(30)

where c5 is a constant. Replacing the subscript k with
k + 1 in Eq. (30), we obtain

(31)

C0
+

α̇

d2δn

dα2
----------- γ 1– dγ

dα
-------dδn

dα
--------- γ 2– èzz

0 3Rc0

2–+( )δn++ 0.=

zk φ0 α kl+( ), k 1 2 …, ,= =

zk 2+ c1zk 1+ c2zk,+=

z̃k ψ α kl+( ), k 1 2 …, ,= =

z̃k c3zk 1+ c4zk,+=

z̃k

d2zk

dα2
--------- γ 1– dγ

dα
-------

dzk

dα
------- γ 2– èzz

0 3Rc0

2–+( )zk++ 0,=

d2zk 1+

dα2
--------------- γ 1– dγ

dα
-------

dzk 1+

dα
------------- γ 2– èzz

0 3Rc0

2–+( )zk 1++ + 0,=

d
dα
------- zk 1+

dzk

dα
------- zk

dzk 1+

dα
-------------– 

 

=  γ 1– dγ
dα
-------– zk 1+

dzk

dα
------- zk

dzk 1+

dα
-------------– 

  ,

zk 1+
dzk

dα
------- zk

dzk 1+

dα
-------------– c5γ

1– ,=

zk 2+

dzk 1+

dα
------------- zk 1+

dzk 2+

dα
-------------– c5γ

1– .=
From Eqs. (25), (30), and (31), we have the relation

(32)

according to which c2 = –1. Consequently, the function
zk that is generated by an arbitrary solution to Eq. (23)
is also the solution to the difference equation

(33)

where the constant M depends only on the reference
orbit C0. The general solution to Eq. (33) has the form

(34)

where fi, i = 1, 2 are arbitrary functions of the period α
chosen such that z satisfies Eq. (23) and the numbers λi,
i = 1, 2 are the roots of the quadratic equation

(35)

Relationship (29) means that the equality

is valid for all the orbits C roundabout with respect to
the reference orbit C0 .

The roots of Eq. (35) are real for |M | ≥ 2 and com-
plex for |M| < 2. Therefore, the reference periodic orbit
C0 is stable and unstable in the sense of Joukowski if
|M| < 2 and |M | ≥ 2, respectively. This statement can be
formulated as the following theorem.

Theorem 2. A periodic orbit C0 is stable in the sense
of Joukowski if and only if |M | < 2 in Eq. (35).

Example. We consider the equations

(36)

Here, Π = , where r2 = x2 + y2. For negative energy

integral h < 0, all the orbits of Eqs. (36) are ellipses. Let
the trajectory C be the ellipse

It is evident that the quantities e0, p0, and h0 are related as

We consider the family of ellipses p = r(1 – e0cosϕ).

zk 1+
dzk

dα
------- zk

dzk 1+

dα
-------------– c1zk 1+ c2zk+( )

dzk 1+

dα
-------------=

– zk 1+
d

dα
------- c1zk 1+ c2zk+( )

=  –c2 zk 1+

dzk

dα
------- zk

dzk 1+

dα
-------------+ 

  ,

zk 2+ Mzk 1+– zk+ 0,=

zk f 1λ1
k f 2λ2

k ,+=

λ2 Mλ– 1+ 0.=

zk zk 2++
zk 1+

-------------------- M=

ẋ̇ èx, ẏ̇ èy.= =

1
r
---–

r
p0

1 e0 ϕcos–
--------------------------.=

2h0
1 e0

2–
p0

-------------= .
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The condition of contact with the orbits is

(37)

The second derivative is given by the expression

(38)

which can be represented as

(39)

Assuming that p0 > 0, one can always choose numbers
p– and p+ such that 0 < p– < p0 < p+. This ring contains
the orbit C. From Eq. (39), it follows that

All the Kepler ellipses with nonzero p0 ≠ 0 are stable in
the sense of Joukowski, because the function Θ in
Eq. (21) is positive. Stepanov [2] showed that, if

, ellipses are stable in the sense of Jacobi.

ṗ ṙ 1 e0 ϕcos–( ) re0ϕ̇ ϕsin+ 0.= =

ṗ̇ ṙ̇ 1 e0 ϕcos–( ) 2e0ṙϕ̇ ϕsin+=

+ e0rϕ̇2 ϕ e0r ϕ̇̇ ϕ ,sin+cos

ṗ̇
1 e0

2–( ) 1 e0 ϕcos–( )2

r 1 2e0 ϕ e0
2+cos–( )

---------------------------------------------------- p 1– p0
1––( ).–=

ṗ̇ 0 if p– p p0;<≤>
ṗ̇ 0 if p0 p p+.≤<<

p
1 e+
----------- 1

4h
------–≥
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This example illustrates that the notion of stability in
the sense of Jacobi introduced in [2] differs from the
notion of stability in the sense of Joukowski.
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We study the basic properties of the characteristic
set of homogeneous solutions of elasticity theory. It is
known that homogeneous solutions of elasticity theory
do not form a basis in the classical sense, i.e., on a seg-
ment. In particular, there are no sets of functions bior-
thogonal to homogeneous solutions in the classical
sense. Here, we show that a set of functions biorthogo-
nal to homogeneous solutions can be uniquely con-
structed by generalizing classical concepts of a func-
tion basis. The biorthogonal relation constructed for
homogeneous solutions is of fundamental importance
for solving boundary-value problems of elasticity the-
ory in a rectangle [1].

Let us consider the following set of homogeneous
solutions defined in the segment |y| ≤ 1:

(1)

where numbers λk form the set {±λ k, ±  = Λ of
all complex zeros of the entire function of exponential
type two

The set of functions (1) arises in particular when the
first basic problem of elasticity theory is solved in the
semi-strip {|y| ≤ 1, x ≥ 0} with free longitudinal sides [1].

Let us represent an even function f(y) that is speci-
fied in the segment |y | ≤ 1 and is self-balanced (i.e., its
integral over this segment is equal to zero) in the form
of the series

(2)

in the set of homogeneous solutions (1) with coeffi-
cients Ak . Since the function is even, the sum in Eq. (2)

σ λk y,( ) λ k λ k λ kcos–sin( ) λ kycos=

– λ ky λ k λ ky,sinsin

λ k } k 1=
∞

L λ( ) λ λ λ .cossin+=

f y( ) Akσ λk y,( ) Akσ λk y,( ) y 1<,+
k 1=

∞

∑=
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can be calculated only over λk satisfying the condition
Reλk > 0.

The function

(3)

generates the set of homogeneous solutions (1). Func-
tion (3) is the even part of the more general function

, (4)

which can be represented as the following differential
operation for function eiλy:

(5)

To construct a set of functions biorthogonal to
homogeneous solutions (1), we use general classical
methods [2, Appendix III; 3, ch. IV]. Let a certain
(λν-dependent) set of even functions sν(y) (ν ≥ 1) be
defined in the real axis y so that

(6)

If the set of functions  (square-integra-
ble in the support in |y | < 1) satisfying Eq. (6) existed,
it would be the desired biorthogonal set, because func-

tion Rν(λk) is equal to Mk =  and zero when λν =

λk and λν ≠ λk , respectively. In this case, λν and  are

different, because Rν( ) = (λν) = 0 for all k, ν ≥ 1.
However, this set of functions cannot exist, because the
set of homogeneous solutions is not minimal in the seg-
ment |y | ≤ 1. Nevertheless, a certain generalization of
the classical concept of biorthogonality in a segment
enables us to construct the biorthogonal relation. In this
case, the biorthogonal set of functions is uniquely
determined in the class of functions for which the Borel

σ λ y,( ) λ λ λcos–sin( ) λy λy λ λ ysinsin–cos=

σe λ y,( ) λ λ λcos–sin( )e
iλy

iλy λe
iλy

sin+=

σe λ y,( ) D λ( ) e
iλy{ } ,=

D λ( ) λ λ d
dλ
------sin λsin λ λcos–( ).+=

σe λ y,( )sν y( ) yd

∞–

∞

∫ L λ( )
λ 2 λν

2
–( )rν

--------------------------- Rν λ( ),= =

λ R λν Λ rν,∈,∈ λ ν
2 λν

2
ν 1.≥,–=

sν y( ){ } ν 1=
∞

λ kcos
2

λ krk

----------------

λν

λν Rν
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transform is a quasi-entire function of exponential type
one that is square-integrable in the real axis [4] (we
recall that, in the classical case, it is an entire function
with the same properties [5]).

Taking Eq. (5) into account, one can represent
Eqs. (6) in the compact form

(7)

where Sν(λ) is the Fourier transform of the function
sν(y). For each λν, Eq. (7) provides the following ordi-
nary differential equation for the function Sν(λ):

(8)

whose solution is const [which is equivalent to the

self-balance of function (3)]. The solution of the inho-
mogeneous equation can be represented as (see [6,
p. 440])

Using the Mittag-Leffler expansion [7] for the mero-
morphic function in the integrand, we represent the
function Sν(λ) in the form

(9)

where both series converge uniformly and are functions
square-integrable over the entire axis. Therefore,
Sν(λ) ∈ L2(–∞, ∞). Since the second series consists of
entire functions of exponential type one from L2(–∞,
∞), it is an entire function with the same properties.
Therefore, according to the Paley–Wiener theorem [5],
the Fourier transform of the second series is a finite
function from L2(–1, 1). The Fourier transform of the
second series is easily found in the form

The first term in Eq. (9) and the terms of the first series
are not entire functions. Therefore, their Fourier trans-
forms are not finite functions from the class L2(–∞, ∞).

Let us consider functions  and

 in detail. According to the known

property of the logarithm, the latter function is repre-
sented as the sum of two functions. Therefore, we can

D λ( ) Sν λ( ){ } Rν λ( ) ν 1,≥,=

dSν λ( )
dλ

----------------- 1
λ
--- λcot– 

  Sν λ( )+
Rν λ( )
λ λsin
-------------- ν 1,≥,=

λsin
λ
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Sν λ( ) λsin
λ
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tsin
2
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0

λ

∫=

Sν λ( ) 2 λ λlnsin

λλ ν
2
rν

--------------------------–
2λν

2

rν
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λ λ 2 ωn
2

–lnsin

λ ωn
2 λν

2–( )2
--------------------------------------

n 1=

∞

∑–=

–
2
rν
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ωn
2 λsin

λ λ 2 ωn
2

–( ) ωn
2 λν

2
–( )

------------------------------------------------- ωn,
n 1=

∞

∑ nπ,=

ψν y( ) 1
2rν
-------

λνycos
λν λνsin
------------------- 1

λν
2

-----– 
  .=

λsin
λ

----------- λln

λsin
λ

----------- λ 2 ωn
2

–ln
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consider all the three functions as one function

, n = 0, 1, 2,…, setting ω0 = 0. For com-

plex λ, this function admits analytic continuation

 as a quasi-entire function of expo-

nential type one that is square-integrable in the real
axis [4, 8].

We consider cuts { : x = 0, |y | ≤ 1} and {κ: y = 0,
|x | ≤ 0} in the plane C(p) of the complex variable p =
x + iy. Let T be the cut formed by the imaginary-axis
segment  and ray κ, and let C be an arbitrary contour
enclosing cut T. This contour can consist of a circle,
which has its center at the origin and encloses the cut

, and infinite branches over the upper and lower edges
of cut κ [8]. We suppose that contour C is passed in the
positive (counter-clockwise) direction. In this case, the

quasi-entire function  can be repre-

sented as the Borel transform of the function

 (see [4, p. 768, example 2]), i.e.,

(10)

where the Borel transform  of the quasi-entire

function  is analytic and single-valued

in the region C(p)\T [4]. To determine function (10) for
Re( ) < 0, it is necessary to turn cut κ and contour
C with respect to the origin by 180o [4, p. 763,
Eq. (1.11)].

For quasi-entire exponential-type functions that are
square-integrable over the real axis, such as

, the circle enclosing cut  can

approach arbitrarily close to the imaginary axis [4]. In
this case, in terms of the following jumps of the func-
tion  in cuts  and κ:

(11)

where ε > 0 and –x = u, the Borel transform given for
the quasi-entire function under consideration by

λsin
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λsin
λ

----------- λ ωn+−( )ln

Γ

Γ

Γ

λsin
λ

----------- λ ωn+−( )ln
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1

2πi
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C
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Re λ ωn+−( ) 0 n,> 0 1 2 …,, , ,=
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λ ωn±( )sin

λ ωn±
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λ ωn+−

λsin
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g n+− p( ) Γ

(a ) g ny+− y( ) 1
2π
------ g n+− iy ε+( ) g n+− iy ε–( )–[ ] ,

ε 0→
lim=

(b ) g nx+− u–( ) 1
2πi
-------- g n+− ue

iπ–( ) g n+− ue
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Eq. (10) is represented in the form of the sum of
Laplace and Fourier integrals:

(12)

According to [4, 8], the Laplace integral in Eq. (12) is
a quasi-entire minimum-type function. According to
the Paley–Wiener theorem [5], the Fourier integral in
Eq. (12) is an entire function of exponential type one
and is square-integrable in the real axis.

Formula (12) provides the following representation
for the analytic continuation Saν(λ) of function (9) to
complex λ:

(13)

where

(14)

Thus, function Saν(λ) for each ν ≥ 1 is the Borel
transform of function {sνx(–u), sνy(y)} defined in con-
tour T. We recall that representation (13) is valid for
Re( ) > 0. To obtain an analogue of Eq. (13) for

Re( ) < 0, it is necessary, as was mentioned
above, to turn cut κ and contour C in Eq. (10) by 180°
and introduce jumps similar to Eq. (11), but in the pos-
itive x semiaxis (for more details, see [4]). In what fol-
lows, we consider that integrals given by Eqs. (13) are
supplemented by the corresponding integrals associ-
ated with the turn of the integration contour so that
functions Saν(λ) are defined for all λ. Formula (13) can
also be considered as an analytic continuation of the
Fourier transform

to complex λ values, for which the above integral does
not exist. In this case, functions sν(y) are definitely
related to functions sνx and sνy [4]. Thus, Eqs. (6) can be
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Sν λ( ) sν y( )e
iλy

yd

∞–

∞
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replaced by the following formulas valid for complex λ
values:

(15)

which can be written in the following form equivalent
to Eq. (7):

(16)

Substitution of λ = λk  into Eqs. (15) yields the
equalities

(17)

which can be treated as the biorthogonal relations for
the set of the homogeneous solutions under consider-
ation and, by using Eqs. (16), can be represented in the
form

(18)

It can be proved that the set of functions that are
given by Eqs. (14) and biorthogonal to homogeneous
solutions in the sense of Eqs. (17) or (18) is unique in
the class of functions for which the Borel transform
Saν(λ) is a quasi-entire function of exponential type one
and is square-integrable in the real axis.

Let even self-balanced function σ(λ, y) given by
Eq. (3) be specified in the segment |y | ≤ 1. Taking its
expansion (2) in the set of homogeneous solutions
given by Eqs. (1), we continue the function to the entire
real axis according to Eq. (3). The correspondence

(19)

of the resulting function to the series is the even part of

sνx u–( )D λ( ) e
λu–{ } ud

0

∞

∫

+ sνy y( )D λ( ) e
iλy{ } dy

1–

1

∫ Rν λ( ),=

ν 1,≥

D λ( ) Saν λ( ){ } Rν λ( ) ν 1.≥,=

sνx u–( ) λ k λ k λ kcos–sin( ) λ ku λ ksin–[ ] e
λku–

du 

0

∞

∫

+ sνy y( ) λ k λ k λ kcos–sin( ) iλ ky λ ksin+[ ] e
iλk y

dy

1–

1

∫

=  
Mk λ k, λν=

0 λ k λν ,≠,



ν k 1,≥,

D λ( ) Saν λ( ){ } λ λ k=  = 
Mk, λν = λ k

0, λν λ k,≠



ν k 1.≥,

σ λ , y( ) Akσ λk, y( ) Akσ λk, y( ),+
k 1=

∞

∑∼

λ y R∈,
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the more general correspondence

(20)

The sign ~ in Eqs. (19) and (20) means that the series
on the right-hand sides of Eqs. (19) and (20) cannot
converge to the function under consideration over the
entire axis y ∈ (–∞, ∞). However, these series can con-
verge to this function in the interval (–1, 1) for the cor-
responding choice of expansion coefficients Ak.

Analytically continuing Eq. (20) to the left-hand
half-plane of the complex variable C(p) and to the
semiaxis x ≤ 0 (e.g., as in [4, Sect. 2]) and substituting
−x = u, we obtain

(21)

We multiply Eqs. (20) and (21) by functions sνy(y) and
sνx(–u), respectively, integrate the results with respect
to y and u, respectively, over the corresponding sup-
ports, and sum the results. In view of Eqs. (15) and (17),
we arrive at the ordinary algebraic equation for each
ν ≥ 1 for the determination of unknown expansion
coefficients Aν . The solution of this equation has the
form

(22)

Statement. Let variables y, t ∈ R. Then,

(23)

σe λ , y( ) Akσe λ k, y( ) Akσe λ k, y( ),+
k 1=

∞

∑∼

λ y R.∈,

D λ( ) e
λu–{ } AkD λ( ) e

λu–{ } λ λ k=∑∼

+ AkD λ( ) e
λu–{ } λ λ k= .

Aν
Rν λ( )

Mν
--------------, ν 1, λ R.∈≥=

1
2
--- δ t y+( ) δ t y–( ) θ 1 t–( )–+[ ]

=  2Re sk t( )
σ λk y,( )

Mk

-------------------
 
 
 

, y 1<
k 1=

∞

∑
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and

where δ and θ are the delta function and unit step func-
tion, respectively.

Thus, series (23) and, therefore, expanded function
f(y) generally discontinuous at points y = ±1. However,
function f(y) can always be continued beyond the seg-
ment |y| ≤ 1 so that series (23) converges uniformly to
the expanded function over the entire segment.
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1. The authors of [1–12] theoretically and experi-
mentally investigated vibroimpulsive systems with par-
allel impact pairs and/or with distributed impact ele-
ments and found the possibility of the existence of syn-
chronous periodic regimes of clap-type motion. In
these regimes, spatially separated sections of concen-
trated or distributed impact elements can synchro-
nously collide with the corresponding sections of vari-
ous stops, and standing-wave profiles are broken. At the
same time, the authors of [6, 9–14] investigated strings
interacting with point stops of motion, and experimen-
tal results for these systems were reported in [14]. The
T-beam stop under consideration is simulated by an
object composed of the mentioned rectilinear and point
stops.

2. We consider a string vibrating near a T-beam stop
(Fig. 1a). The extended section of the stop is parallel to
the static-equilibrium axis of the string. The desired

bend u(x, t); t ≥ 0, x ∈   satisfies the conditions

u(x, t) ≥ ∆ > –1; u(0, t) ≥ ∆1 > ∆. (1)

When these inequalities are strict, the system is
described by the linear wave equation hu ≡ utt – uxx = 0,
where the unit mass per unit length and unit tension are
taken without loss of generality. The boundary and ini-
tial conditions

u  = u  = 0, u(x, 0) = u0(x), ut(x, 0) = 0(2)

are assumed to provide the existence and uniqueness of
the solution to the Cauchy problem for the equation
hu = 0, at least in the generalized sense [15]. In addi-
tion, when studying standing waves, which are in a cer-
tain sense similar to the first form of vibrations, we

1
2
---–

1
2
---,

1
2
---– t, 

  1
2
--- t, 
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assume that the function u0(x) is unimodal and even in

the segment x ∈   (Fig. 1a). We derive the rela-

tionships describing the interaction of the string with an
obstacle.

When string points reach flat sections of the stop,
conditions similar to those given in [4, 11] are con-
served: for x ≠ 0, if u ≤ 0, hu ≥ 0. Using the generalized
solutions, we require that supphu ⊂  {(x, t), x = 0,
|u(x, t) | = ∆}. It is assumed that, similar to the case of a
linear string in the sense of generalized functions,
energy is not lost during the impact; i.e., (|ux |2 + |ut |2)t =
(2utux)x. In the nonlinear case under consideration, this
relationship is postulated and, in particular, expresses
the hypothesis of interaction, because it immediately

1
2
---–

1
2
---,

Fig. 1. (a) String and T-beam stop; (b) experimental bench:
(1) rubber cord, (2) force sensor, (3) cathode-ray oscillo-
scope, (4) armature of electrodynamic exciter, (5) master
generator, (6) Getinaks T-stop, (7) carrier, (8) photographic
camera, (9) lamp, and (10) stroboscopic motion analyzer.
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leads to an analogue of the classical hypothesis about
absolutely elastic impact:

(3)

The introduction of certain analogues of coefficients
of restitution is associated not only with the type of the
distributed impact element [6] but also with the type of
the established standing wave [3] and is not considered
in this paper.

As the middle sections interact with the stops at x =
0, temporal lags of the string are formed [10–14]. In
this case, during the lag, the reaction force Rk(t) of the
“point section” of the stop acts on the string at u(0, t) =
∆1, where t ∈ [tk, θk]; tk and θk are the times of the onset
and end of the lag, respectively; and k is the integer sub-
script corresponding to the kth interaction.

In this case, the function Φ0[u] that symbolically
expresses the force of the impact interaction can be rep-
resented as the sum of two generalized functions:
Φ0[u] = Φ1[u] + Φ2[u]. Moreover, Φ1[u] = J(x)δ[t –
tn(x)]γ(x; ∆) for the nth interaction, where J(x) is the
density of the impact momentum; tn(x) is the distribu-
tion of the nth impact “phase” defined in this case as a
solution to the equation u[x, tn(x)] = ∆, where x ≠ 0; and
δ(t) is the Dirac δ function.

The indicator function γ(x; ∆) = 0 for x values at
which the string does not interact with the flat section
of the stop, and γ(x; ∆) = 1 when such an interaction is
possible.

For the second component of the interaction force in
the certain jth case (cf. [13]),

Φ2[u] = Rj(t)δ(x)[η(t – tj) – η(t – θj)],

Rj(t) = ux(–0, t) – ux(+0, t) ≥ 0, t ∈ [tj, θj], 

where η(t) is the unit step function. Consequently, the
problem under analysis can be written in the form of the
Klein–Gordon nonlinear equation hu – Φ0[u] = 0 with
boundary and initial conditions (2).

Considering the conservative nonlinear problem, we
seek periodic standing waves with a certain period

T(E) = , where ω is the string-vibration frequency

and E is the total energy of the system. We use the
methods of the time–frequency analysis of the vibroim-
pulsive processes [9, 15] and pass to the following inte-
gral equation of T-periodic vibrations:

(4)

In this case, the periodic Green’s function of the

ut x t 0–,( ) ut x t 0+,( ),–=

x t,( ) supp u; u x t,( )∈ ∆ ; x 0.≠=

2π
ω
------

u x t,( ) χ x y; t s–,( )Φ0 u x t s–,( )[ ] sd y.d

1/2–

1/2

∫
0

T

∫=
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string has the form [13, 15]

χ(x, y; t) = χn(t),

n = 1, 2, ….

Here, the functions χn(t) are the “elementary” periodic
Green’s functions of linear oscillators with the frequen-
cies of the string spectrum {Ωn} = {2πn} and, for 0 ≤
t < T, have the form [9, 15]

χn(t) = (2Ωnsin0.5ΩnT)–1 × cos[Ωn(t – 0.5T)].

Substituting the expression for the impact force into
Eq. (4) and assuming that only one interaction event
occurs for each period of the desired periodic motion,
we represent the desired process in the form

(5)

where ϕ(x) is the impact-phase distribution.
3. Studying waves with broken profiles similar to

the claps mentioned in Section 1, we put u0(x) = L(1 –
2|x |) in the second initial condition in Eqs. (2), where
L = const > 0 is related to the total energy E in a one-to-
one manner. Without the stops, the linear string vibrates
with the period T0 = 2.

Standing waves can have two types of profile. If the
initial potential energy is insufficient and |∆1| ≤ L, |∆| >
L, there is a standing wave interacting only with a T-
beam projection; this case was discussed in [10–14]. If
|∆1| ≤ |∆| ≤ L, double interaction (Fig. 2) is possible.

The first case can be considered similar to, for

example, [10–14]. According to [10, 13], t1 = (L –

∆1)L–1, θ = 1, R(s) = 4L, and the standing-wave period
T ≡ T1 is related to the energy parameter L as T1 =

(3L – ∆1)L–1. Correspondingly, L(ω1) = ∆1ω1(3ω1 –

4π)–1 and ω1 = . Since ∆1 < 0 in this case, vibrations

are possible only when π < ω1 < . The first inequal-

ity follows from the linearity of the system for ω1 = π:
L = –∆1 .

For the second type of profile, T ≡ T2 = 1 + 2|∆|L–1.
Correspondingly, L(ω2) = 2|∆|ω2(2π – ω2)–1, and vibra-
tions are possible if ω0 < ω2 < 2π, where ω0 is the fre-
quency of free vibrations that corresponds to the occur-
rence of claps (when string sections reach the flat sec-

πn x
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---+ 

  πn z
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---+ 

 sinsin∑

u x t,( ) J y( )γ y; ∆( )χ x y; t ϕ y( )–, ]( yd
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1/2–
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1
2
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2π
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tion of the T-stop). It is evident that ω0 = 8π|∆|(2|∆| –
|∆1|)–1.

Figure 3 shows (solid line) the energy parameter L =

L(ω) ω =   is the frequency of free standing

waves of the given type  for the given standing wave

and the “skeleton curves” of the systems with a (1)
point stop and (2) rectilinear extended stop. The solid
curve is characteristic for rigid systems [6, 9, 15]. Thus,
for this nonlinear system, we obtain the half-interval of
“natural” frequencies Λ = {ω| ω ∈ [π, 2π)} [9, 15].

The parameters that enter into three-functional rep-
resentation (5) and are necessary for finding the desired
standing wave are determined conventionally. For
waves of the first type, the problem was virtually solved
in [13]. This solution has the form

u(x, t) = B02(L; x, t) 

= 8L (t0; ω1; t – ϕ)sinkπ ,

where Dk(t0; ω1; t) is the easily calculated T1-periodic
function [13] and the summation is hereafter performed
over positive integer subscripts.

After some transformations, waves of the second
type (whose evolution is shown in Fig. 2) are repre-


 2π

T
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Dk∑ 1 1
2
---+ 
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Fig. 2. Profile of the “double-interaction” string.
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Fig. 3. “Skeleton curve.”

0

t   =  t 1
–

1
2
---
sented in the form

u(x, t) = B01(L; x, t – ϕ0) + B02(L; x, t),

ϕ0 = 1 + |∆|L.

Here, the function B02 has the form similar to that given
above; the limits of integration in Eq. (5) (the lag time)
depend on the gap ∆;

where the numbers b and d are determined by the geo-
metric parameters ∆ and ∆1 and by the energy parame-
ter L; and J(y) = 4L.

4. Designating the obtained solution as W(L; x, t),
we consider the problem with more general initial con-
ditions (2): u(x, 0) = u0(x); ut(x, 0) = 0, where the func-
tion u0(x) is assumed to be even and unimodal at the

segment x ∈  (see Section 1).

We seek the solution (see [8, 10–13]) to the general
problem in the form

u(x, t) = W[L; y1(x, t); y2(x, t)],

y1, 2(x, t) = g(x + t) ± g(x – t).

Without loss of generality, we take L = 1. The func-
tion g(x) depending in particular on the initial and
boundary conditions is defined in two steps. First, it is

defined for x ∈  as

(6)

Second, the definition is completed by the two transfor-
mations

g(x + 1) =  – g(–x), g(x + 2) = 1 + g(x), x ∈ R, (7)

which convert the function u0(x) that is unimodal and

even on the segment  into the odd function g(x)

increasing monotonically over the whole real axis. In

this case, if, for example, u0(x) ∈ C2 , it is easy

to show that g(x) ∈ C2(R1). In addition,  ≤ y1(x, t) ≤

, y1(x, t + 2) = y1(x, t), and y2(x, t + 2) = y2(x, t) + 2;

B01 L; x t ϕ0–,( ) 8L π2n( ) 1– χn t ϕ0–( )∑=
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                                                                                                                                     Fig. 4. Broken profile of the string in stroboscopic illumination.
i.e., the function y1 is periodic with the period T0 = 2 of
vibrations of the linear string, whereas the function y2
evolves.

Taking into account the definition of functions g and
y1, 2, it is easy to establish that the representation u = W
satisfies the initial equation hu – Φ0[u] = 0, i.e., all the
conditions of interaction that were formulated in Sec-
tion 2, configuration restrictions (1), and boundary con-
ditions (2) (cf. [4]).

Substituting the representation u = W (here, L = 1!)
into initial Klein–Gordon equation (10), making certain
transformations, and taking into account that the sum or
difference of two traveling waves satisfies the linear
wave equation, we arrive at the equation

2g'(x + t)g'(x – t)hw – Φ0[w(y1, y2)] = 0.

In this case, taking into account that the function
g(x) increases and the solution W(x, t) satisfies the sec-
ond inequality (1), we find that W ≤ 0 for hW ≥ 0 and
arbitrary admissible values of the arguments of the
function W. Similarly, we can verify that other condi-
tions from Section 2 are also satisfied, for example,
R0 = 8g'(t) > 0.

Thus, the formula u = W does in fact specify the
desired process, because the assumption L = 1 does not
restrict generality. The structure of this solution is com-
pletely determined by the structure of the above repre-
senting series B01 and B02; i.e., the solution is con-
structed as a series every term of which is the product
of a T-periodic time function Q1k by a certain function
Q2k of the coordinate x:

u(x, t) = w[L; y1(x, t); y2(x, t)] 

= [L; y1(x, t)]Q2k[L; y2(x, t)].

All the functions Q1k are T-periodic functions of the
variable y1 and, at the same time, y1(x, t + 2) ≡ y1(x, t)
and y2(x, t + 2) ≡ y2(x, t) + 2. The period (see Section 3)

is T = T1 = (3L* – ∆1)L–1 for |∆1| ≤ L, |∆| > L, |∆1| ≤

|∆| ≤ L, and T = T2 = 1 + 2|∆|L–1 for |∆1| ≤ |∆| ≤ L. The
last series defines a periodic process if and only if the
quantities T and T0 = 2 are commensurable. Thus, the
problem under study can have a periodic solution if and
only if the period T is a rational number. Otherwise, the
solution is almost periodic (cf. [8, 10–13]).

Q1k∑

1
2
---
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The methods of time–frequency analysis can be
similarly applied to other cases, such as a stop with a
T-beam on either side of the string and various combi-
nations of the stop types. In addition, solutions can also
be constructed for systems with weak nonconservative
forces.

5. Figure 1b shows the layout of the Alligator–
T-Beam experimental bench. T-beam stop 6, which is
made of Getinaks (a paper-based laminate), is mounted
on carrier 7 handled by a micrometer screw, which var-
ies the adjustable gap ∆. Rubber cord 1 is used as a dis-
tributed elastic element. Standing waves are visualized
by stroboscopic motion analyzer 10, and the flashes of
lamp 9 are synchronized by pulses from the master gen-
erator.

The experimental results agree satisfactorily with
the above conclusions.

We visualized periodic standing waves of only the
two types described above. The waves of the first type
were observed upon passing linear resonance and were
the same as those described in [14]. The waves of the
second type arose when increasing the excitation
amplitude, excitation frequency (frequency pulling), or
gap ∆ (amplitude pulling).

Figure 4 shows the characteristic profile of the string
for f = 27.3 Hz, ∆1 = 20 mm, and ∆ = 25 mm (the pho-
tography was performed by A.I. Sternin). Using this
installation for regimes with trapezoidal profiles of
claps, we detected the usual dynamic effects character-
istic for “impact vibrators” [3, 4, 9, 14, 15]. In addition,
aperiodic waves of a more complicated nature were
also detected.
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The development of laser facilities and in particular
of the technique of generating intense light fluxes is
being held back, because intense laser radiation induces
an optical breakdown leading to irreversible changes in
the optical elements of lasers. Interest in the optical-
breakdown phenomenon in transparent dielectrics is
primarily associated with the practical requirements of
laser facilities, because the focusing and transfer of
intense laser pulses are impossible without revealing
mechanisms of the laser destruction of dielectrics.
Laser destruction is of its own scientific interest as one
of the fundamental problems concerning the physics of
the interaction of intense electromagnetic radiation
with matter.

In this paper, we propose a mechanism of the optical
breakdown of extremely pure solid dielectrics that is
associated with the stepwise narrowing of the gap, i.e.,
with the metallization of a dielectric in the intense field
of the light wave of laser radiation. Metallization theory
is treated in terms of the electron density functional.

The theoretical concept of the mechanism of optical
self-breakdown is based on familiar experimental facts
[1–3]. Laser radiation interacting with a substance is
supposed to induce intense tunnel, impact, or multipho-
ton ionization of the substance matrix [4, 5]. This ion-
ization results in the nonlinear accumulation of free
charges, which, in turn, gives rise to an increase in
absorption, production of plasma in the focal volume,
and further destruction of a sample in intense light
fields.

However, the previous mechanisms of optical
breakdown do not explain the entire body of experi-
mental data. In particular, familiar mechanisms of opti-
cal self-breakdown imply the pre-threshold ionization
of the matrix; i.e., the appearance of free electrons
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accompanies pre-threshold excitation. However, exper-
iments [1, 5] demonstrate in particular that the forma-
tion of color centers and self-luminescence in silicate
glasses and quartz, where breakdown thresholds are
very high (about 1013 W/cm2), are not observed, even
when the power of laser radiation is equal to 0.95–0.98
of the threshold power, if the energy of a radiation
quantum is lower than 0.5Egv, where Egv is the width of
the dielectric gap in volume. These results cannot be
explained by avalanche and multiphoton ionization. In
particular, it is difficult for this theory to explain the
experimental observation that the threshold of optical
breakdown depends only slightly on the incident-light
frequency, because the probability ω(n) of the n-photon
process is proportional to the nth power of the incident-
radiation intensity I; i.e., ω(n) ~ In [6].

Glebov et al. [1, 5] proposed a mechanism of the
optical self-breakdown of dielectrics that was attributed
to the stepwise change in the optical parameters of a
medium, in particular, to the stepwise appearance of the
spectrum of electron states corresponding to the delo-
calization of valence electrons, i.e., the metallization of
the substance at the breakdown strength of the electric
field of laser radiation. In a definite sense, this transfor-
mation is similar to the Mott dielectric–metal transition
[7] but concerns only the electron subsystem. As a
result, a metallic nucleus is formed at the center of the
caustic of the focusing lens. The absorption of laser
radiation in this nucleus gives rise to the appearance of
a plasma cloud in the focal volume and the further
destruction of the sample.

According to experimental data [4, 8], laser radia-
tion induces a pressure of several megabars in a dielec-
tric. Let us estimate the pressure of omnidirectional
compression at which the gap of the dielectric disap-
pears (metallization occurs).

We consider alkali halide crystals, whose thresholds
of breakdown by laser radiation are on the same order
of magnitude as corresponding values for silicate
glasses [9]. The behavior of energy bands for compres-
sion of a crystal is shown schematically in Fig. 1, where
E1 and E2 are the electron energy levels in the filled and
empty bands, respectively; the equilibrium interparticle
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spacing R0 at normal pressure corresponds to the mini-
mum of the thermodynamic potential of the crystal; and
R* is the interatomic spacing in the crystal when the
energy bands intersect. When the crystal is compressed,
bands are shifted upward by different amounts. Some
levels of lower bands often rise faster than levels of
upper free bands. When the upper level of a filled band
intersects with the lower level of an empty band, elec-
trons can occupy energy levels in both bands. Begin-
ning with this instant, an electron of the crystal can gain
kinetic energy from the external electric field. There-
fore, the crystal becomes a conductor; i.e., it transitions
to the metallized state. In this study, the omnidirec-
tional-compression pressure at which a dielectric is
metallized is calculated in the electron-statistical model
by the density-functional method [10].

We consider ion crystals with the NaCl-type lattice
(B1 structure). These crystals undergo polymorphic
transition to the B2 structure at pressures of tens and
hundreds of kilobars (which are much lower than the
metallization pressure) [10, 11]. For this reason, the
thermodynamics of the ion-crystal phase will be
described in the model of a perfect crystalline lattice
having B2 structure (CsCl type) consisting of point
charges of opposite sign [11]. Temperature is taken to
be equal to absolute zero. The thermodynamic potential
of the ion lattice has the form [11]

(1)

where αµ = 1.76268 is the Madelung constant of the

B2 structure; UB2(R) =  is the pair inter-

action potential of ions, which is self-consistently calcu-
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Schematic behavior of the energy bands of a compressed
crystal.
lated in the theory of an inhomogeneous electron
gas [10]; aj = Rj/R1 is the ratio of the radii of the jth and
first coordination spheres; and Nj is the number of near-
est neighbors in the jth coordination sphere.

Thermodynamic potential (1) must be supple-
mented by the following term corresponding to the sur-
face energy of the crystal [11]:

(2)

where σ is the specific free surface energy (surface
energy in what follows), r is the radius of the crystalline
nucleus, and K is the factor representing the deviation
of the crystal shape from the perfect spherical shape,
for which K = 1. The surface energy is calculated by
summing over the plane grids within the semi-infinite
crystal. In the zeroth approximation, we have [11]

(3)

where β(i) =  is the ratio of the sums over the infi-

nite plane grid and infinite lattice for the ith type of the
interaction between ions; n0 is the number of particles
per unit area of the grid; n, k, and l are the Miller indi-

ces; and  and  are the ith-type interaction
energy of a particle in the grid and in the bulk of the
crystal, respectively.

Thus, the thermodynamic potential of the dielectric
phase of the ion crystal is written as

(4)

In what follows, the dielectric phase with the CsCl
structure and metallized state of the crystal will be
referred to as phases I and II, respectively. In calcula-
tions, we suppose that the surface for phase I consists
of (110) faces, for which the surface energy is minimal.
The thermodynamic potential of this phase is calcu-
lated by Eq. (4) for T = 0 K.

The thermodynamic potential of the metallized phase
is calculated (volume part) in the Gombas model [12],
which satisfactorily describes the properties of alkali
metals, and (surface part) in the jellium model [10].
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POSSIBLE RELATION BETWEEN OPTICAL BREAKDOWN AND METALLIZATION 7
According to the former model, the metal-lattice
energy per pair of atoms is

(5)

where Z is the oxidation state of the metal, Rm is the
nearest-neighbor spacing, r0 is the radius of the ion in
the metal, and Ca = 0.738 is the constant of the Gombas
model. In order to determine the oxidation state of the
metallized phase, we consider NaCl, where the conduc-
tion band is formed by single (double) ionization of
negative halogen ions. Since the ionization potential of
a Na+ ion is high (47.25 eV), this ion is unlikely to lose
an electron. The metal with Z = 0.5 appears to be ener-
getically favorable, because the ionization potential of
a Cl atom is quite high (13 eV), and the energy gain
appearing upon the transition to phase II is compen-
sated by the energy necessary to form Na+ ions. Thus,
the lattice of the metallized phase consists of Na+ ions
and Cl atoms, and one valence electron falls per lattice
volume Vm corresponding to a pair of these atoms.

The volume part of the thermodynamic potential of
phase II in the presence of external pressure is

(6)

where N is the number of pairs of oppositely charged
ions in the original crystal.

The surface energy of the metallized phase is calcu-
lated by the following jellium-model [10] formula,
which disregards both the contribution from the ion
sublattice and the discreteness of ions:

(7)

where
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+

tron density n+ is related to the distance Rm of phase II as

(8)

Taking Eqs. (6) and (7) into account, we obtain the total
thermodynamic potential of the cubic crystal in the
form

(9)

where A is the electron affinity potential for Cl and dm

is the length of the crystal edge in phase II.
Calculations are simplified by supposing that

parameter β depends only slightly on the jellium den-
sity n+, which varies with increasing pressure. This sup-
position is supported by the fact that this parameter
takes very close values for metals whose n+ values dif-
fer by an order of magnitude [10]. Thus, the metalliza-
tion pressure can be determined from the equality of the
thermodynamic potentials of phases I and II:

(10)

Our results for the metallization pressure for massive
samples are presented in the table, which also includes
the results of other studies [13–15] where the metalliza-
tion pressure for ion crystals was calculated. For compar-
ison, the table also presents our results for the pressure of
polymorphic B1–B2 transition, which occurs under the
omnidirectional compression of a crystal [11].

Similar to the polymorphic transformation [11], the
metallization pressure increases as the size of a crystal
sample under investigation decreases. In [11], we
observed that, in contrast to other alkali-halide crystals,
the pressure of polymorphic transformation for a LiF
crystal decreases rather than increases as its size
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Pressures of metallization and polymorphic B1–B2 transition
in massive samples of alkali-halide crystals

Crystal

pmet, Mbar
p(B1–B2),
kbar [11]this 

study [13] [14] [15]

LiF 27 – – – 300

LiCl 20 – 14 – 149

LiBr 18 – – – 100

NaF 22 – – – 154

NaCl 15 1.3 11 13 138

NaBr 12 1.7 16 – 45

KF 9 0.8 – 17 89

KCl 6 0.5 4 10 29

KBr 5 – – – 29

RbF 2 – – – 34

RbCl 2 – – – 17

RbBr 1.5 – – – 14
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decreases. This behavior is attributed to the fact that the
surface energy of this compound in the B2 structure is
lower than the value in the B1 structure. For this reason,
the inclusion of the surface contribution to the thermo-
dynamic potential of the crystal “accelerates” the phase
transition and reduces the pressure of polymorphic
transformation. However, in the dielectric–metal transi-
tion, the LiF crystal behaves similarly to other alkali-
halide compounds being investigated; i.e., the metalli-
zation pressure increases with decreasing sample size.
The density-functional calculation indicates that the
surface energy of the metallized phase of LiF is higher
than the value for the dielectric phase with the CsCl
structure by 15–20%. Therefore, it is reasonable to
expect an increase in the metallization pressure for
small samples. Our calculations corroborate this expec-
tation.

On the whole, our calculations for the metallization
pressure agree satisfactorily with the results obtained
by other authors, except the results of [13], where data
are obviously underestimated. On the other hand, the
electron effects ignored in our model must be taken into
account more rigorously. In particular, effects associ-
ated with the deformation of electron shells of atoms
when a crystal is compressed must be analyzed further,
and shell effects may contribute considerably.

Thus, the pressures at which the dielectric–metal
phase transition takes place were calculated by the
method of the electron density functional, and the
results indicate that the pressure induced in dielectrics,
including alkali-halide crystals, under optical break-
down caused by an intense laser pulse is approximately
equal to the omnidirectional-compression pressure at
which a substance is metallized. Therefore, the optical
breakdown of extremely pure transparent dielectrics
can result from the stepwise narrowing of the gap in an
intense field of a light wave due to high pressures.
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Acoustical probing is one of the rapidly developing
methods aimed at determining physical properties and
identifying processes in both a stratified ocean and the
atmosphere [1, 2]. In this connection, the problem
arises to determine the nature of elementary scatterers
that may have physical (bubbles and suspensions), bio-
logical, or mechanical (turbulence, vortices, disconti-
nuities) origin. The identification is based on empirical
regularities for the given class of scatterers [3], which
are found in scale-sized and laboratory conditions.
Recently, when studying scattering on turbulent flows
in fluids [1] and gases [2], particular attention was
given to the role of compact formations, i.e., plane vor-
tex bundles and ring vortices, as well as coherent struc-
tures [4–6]. In this case, we observe the existence of
zero scattering levels in the forward and backward
directions. These levels are determined by the form of
the scattering coefficient when the scattering occurs on
an immobile single two-dimensional vortex with the
circulation parameter Γ:

(1)

Here, ρi and ρs are the amplitudes of density variations

in the incident and scattered waves, ε =  ! 1 is a

small parameter of the problem, θ is the angle between
the vectors of the impinging and scattered waves, φm is
the eigenfunction of the problem under consideration,
c0 is the unperturbed speed of sound, and λ is the wave-
length of the sonic wave. The equation of state is taken
in the form pρ−γ = const, where γ is the adiabatic con-
stant [4].
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Solution (1) has been constructed under the assump-
tion of the smallness of the parameter ε and uses non-
reflective boundary conditions. This solution agrees
with the results of laboratory experiments conducted in
the air medium [4]. However, according to data of the
laboratory experiments in a stratified fluid [5], a com-
pact vortex intensely scatters ultrasound in all direc-
tions similarly to the hydrodynamic wake beyond an
obstacle [6].

In the present paper, we describe results of the ultra-
sound backscattering from both a sole vortex ring mov-
ing in a continuously stratified fluid and its hydrody-
namic wake while simultaneously recording the optical
pattern of the flow by the shadow method.

The experiments were carried out in a basin with the
dimensions 240 × 60 × 40 cm3, which was filled with
linearly stratified solution of the common salt. The
buoyancy period Tb was determined by measurements
with a contact sensor detecting the electrical conduc-
tion of fluctuations excited by a density marker and
attained 6.7 s in the experiments under discussion.

The vortex ring moving in the horizontal direction is
formed by a pulse pushing on a portion of the fluid from
a nozzle 2 cm in diameter [5]. The flow pattern and den-
sity markers are observed from the side by an IAB-458
shadow device (with a visual-field diameter of 23 cm).
The photograms of shadow images are introduced into
a computer to be used in the calculation of spatial spec-
tra and determination of perturbation scales on the basis
of software developed in the “Matlab” medium. A vor-
tex and its wake are probed by a vertical sonic beam in
pulse mode (with a carrying frequency of 1 MHz, pulse
duration of 40 µs, repetition period of 0.32 s, and beam
width of 3 cm at the vortex-motion horizon). A signal
formed as a result of sonic-beam reflection from the
basin bed made of organic glass is employed for the
active-sonar calibration. Echo signals are introduced
via a special interface in real-time mode into a personal
computer and are stored in the form of a two-dimen-
sional matrix. Each matrix element corresponds to the
current scattering level, while the ordering numbers of
the matrix rows and columns correspond to the occur-
rence depth of a scattering inhomogeneity and to a cur-
rent time, respectively. In this experiment, a receiver
003 MAIK “Nauka/Interperiodica”
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t = 1.2 s

t = 2.6 s

Fig. 1. Successive schlieren photograms of a ring vortex moving in a stratified liquid. The time elapsed from the start is (a) t = 1.2
and (b) 2.6 s.
with electronic gain adjustment and a dynamic range of
4 × 103 is employed. The data-processing software per-
forms data grouping, transformation of echograms into
periodgrams, and spectral analysis. For comparison
with available scale-sized data, the output scattering
levels are estimated in units of the dimensionless scat-
tering cross section σ = mVλ, where mV is the cross sec-
tion for scattering per unit volume per unit solid angle
and λ is the wavelength of the sonic wave [5].

Consequent photograms of a vortex with a diameter
D = 3 cm, which moves with a velocity U = 8 cm s–1, as
well as the wake beyond it, are presented in Fig. 1. The
dimensionless quantities being determined by the vor-

tex parameters are the Reynolds number Re =  =

2200, the Frude number Fr =  = 2.8, and the dimen-

UD
ν

---------

U
ND
--------
sionless stratification scale C =  = 370. Here, g is

the acceleration of gravity and ν = 0.01 cm2 s–1 is the
kinematic viscosity.

The light and dark spots ahead of the vortex illus-
trate a blocking effect: the damping of the fluid, which
is similar to that ahead of a solid three-dimensional
obstacle [7]. The leading high-gradient vortex shell
with low-scale shape inhomogeneities is more convex
than the bed one. A thin finely structured density wake
adjoins the vortex. At the external boundary of this
wake, regular secondary structures characteristic of the
given mode and represented by a sequence of thin vor-
tices are clearly seen. As is shown in Fig. 1, the motion
trajectory is a wavy line, which is caused by a small
inclination of the vortex at the initial moment. Buoy-
ancy forces return the vortex to the horizon of neutral
buoyancy and symmetrize the vortex shape.

g

N
2
D

-----------
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The thin vertical line at the center in Fig. 1 (t = 2.6 s)
is the density wake beyond the gas bubble captured at
the moment of vortex appearance. The bubble floats up
vertically after escaping from the wake domain. In the
case under consideration, the bubble resides within the
zone subjected to the action of the sound. This allows
us to record it by the scattered signal at a considerable
segment of the trajectory.

The scattering level R (vertical axis) normalized to
its maximum value Rm as a function of the depth and the

dimensionless age  of the vortex flow shown

in Fig. 1 is presented in Fig. 2. In it, three groups of sig-
nals are isolated. The first group is represented by two
pulses that correspond to the vortex motion across the
sonic beam. The second group adjoins the first group.
The second group is composed of signals with increas-
ing amplitudes, which come from depths rapidly
decreasing with time according to a linear law. Com-
parison with the shadow pattern (Fig. 1, t = 2.6 s) makes
it possible to identify this sequence as an echo from the
air bubble floating up with constant velocity. As the
bubble floats up, its radius increases, the intensity of
scattering by the bubble enhances and begins to exceed
the level of scattering by the vortex. The commensura-
bility of the scattering intensities testifies to a rather
high scattering capability of a sole vortex, since air bub-
bles are considered to be the most intense scatterers of
sound in seas and they exceed in this extent biological
and hydrophysical components [3].

The third group of the scattering signals , with

considerably smaller amplitudes, is positioned along
the time axis. The depth of occurrence for this group
virtually does not vary with time. This group represents
echo signals from the wake that, residues near a horizon
of the neutral buoyancy in which the vortex moves. The
lifetime of the acoustical wake for the given mode of
the motion attains about four buoyancy periods. In this
case, the optical wake, whose initial segment was
shown in Fig. 1, is visualized in the density-gradient
field for a longer time (on the order of 50 Tb).

The relation between the scattering levels for the
vortex and the wake is illustrated by the time depen-
dence of the dimensionless backscattering cross sec-
tion σ (Fig. 2). This cross section is an invariant of the
acoustical modeling. The given curve is calculated
using values of the echo signal, which are extracted
from the 28-cm horizon with a moving average within
a 0.6-s time window. The maximum echo levels
(10−5−10–8) are observed within the initial segment,
which corresponds to the passage of the vortex, of the
air bubble, and of the near wake. In the far wake, the
average scattering levels are lower by almost three
orders of magnitude. The maximum values of the scat-
tering cross section, which were measured at the
moment of the vortex passage, correspond to those

tb
t

Tb
-----= 

 

R
Rm

------
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observed in the ocean in the case of scattering by bub-
bles. In sea conditions, signals on the order of 10–6–10–8

and of 10–9 and lower are formed by a fine dispersed bio-
logical suspension and by turbulence, respectively [3].
Thus, the ring vortex of an average intensity and its
wake form an echo signal whose variability range cov-
ers the sound-scattering levels in the natural medium.

In digital form, the wake fragment shown in Fig. 3
is a matrix with the values of its elements characteriz-
ing the blackening density of the shadow image, the
ordering numbers of rows and columns corresponding
to the horizontal coordinate with the step of 0.017 cm.
The matrix obtained is applied in calculations of spatial
spectra for the gradient of the blackening density of the
optical image, which is proportional to the fluid-density
gradient. As a result of the calculation, two matrices are
obtained, each of them containing a family of one-
dimensional spectra Sx(κx) and Sz(κz) for horizontal κx

and vertical κz wave numbers [6]. The spectral families
obtained characterize the distribution of the vertical
scales along the horizontal coordinate x and of the hor-
izontal scales over the depth z. The amplitudes Sx and Sz

normalized to the absolute maximum of the spectral
matrix are expressed in terms of the blackening inten-
sity in the (z, κx) and (x, κz) planes (Fig. 3).

The spectrum Sx of horizontal wave numbers
expresses the symmetry of the basic flow pattern with
respect to the wake axis. This spectrum is concentrated
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Fig. 2. Echo-signal characteristics for a vortex flow: the nor-

malized level of backscattering  and dimensionless

cross section σ of volume scattering are shown.
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Fig. 3. Schlieren image of a wake fragment and its spectral images Sx and Sz .
in a considerably narrower range of wave numbers than
the spectrum of vertical wave numbers Sz (vertical spec-
trum). The comparison of halftone images of the spec-
tra Sx and Sz exhibits sharp anisotropy of the wake struc-
ture in which extended horizontal scales (where κx <
1.5 cm–1) are combined with short vertical ones (where
κz > 10 cm–1). An increase in the vertical wake sizes is
limited by buoyancy forces that do not affect the flow in
the horizontal plane.

In the left part of the vertical spectrum in Fig. 3, the
sequence of contrasting horizontal bands with 0.6-cm–1

steps is clearly seen. This sequence corresponds to the
spectrum of a rectangle with the width of 1.7 cm, which
is equal to the average height of the initial wake seg-
ment. The upper spectrum boundary κm characterizes
fine-structure flow elements. At the wake onset, κm

attains about 10 cm–1 and then decreases and is stabi-
lized at the value of 6.5 cm–1 at distances exceeding
10 cm from the vortex core. The given wave number
corresponds to inhomogeneities of the scale δ =
0.15 cm, which coincide with the sound wavelength.
Structures on such a scale are efficient coherent ultra-
sound scatterers.

These anisotropic structures form the directed scat-
tering with maxima corresponding to the mirror direc-
tion (with respect to the horizontal plane). As far as the
scattering structure participates in the oscillatory
motion, this direction is realized doubly for a period of
attached internal waves. By virtue of this fact, immedi-
ately after the passage of the vortex, the acoustical
pulses arrive at the antenna’s input. Their repetition fre-
quency is close to the doubled frequency ω of internal
waves on the scattering horizon. In Fig. 4, we demon-
strate a record of echo signals from a wake, which are
normalized to their own maximum Wm . The scattering
maxima grow during the first two oscillations and rap-
idly decay during the subsequent three. The value of the
initial maximum is determined by the phase of wave
oscillations.

In order to identify the character of the motion in the
scattering domain, the energetically significant seg-
ment of the echo signal (t < 3Tb ≈ 25 s) is approximated
by a finite series containing m Gaussian-shaped pulses.
Their amplitudes at and arrival times ti are taken from

the experimental curve . At the same time, the dura-

tions τi are given as equal and are selected from the con-
dition of the best coincidence with experimental data:

(2)

For the first five pulses (m = 5), the parameters of the
model signal are am = 0.63, 1.00, 0.91, 0.39, and 0.22;
tm = 5.7, 10.2, 14.4, 18.0, and 21.6 s. The best approxi-
mation corresponds to τm = τ0 = 2 s.

The frequency spectra  of the original signal and

sequences (2) normalized to their own maxima (curves 1
and 2 in Fig. 4) are consistent with each other. The iso-
lated secondary spectral peaks are positioned at the
same frequency fm = 0.25 Hz. The process with the indi-
cated parameters corresponds to scattering from a sin-
gle inhomogeneity that performs damping oscillations
within the zone of the sonic beam under the action of
internal waves with a circular frequency ω = πfm =

W
Wm

--------

A t( ) ai 2
t ti–

τ
---------- 

 
2

– .exp
1

m

∑=

F
Fm

------
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0.8 s–1. The given value is used in the calculation of the
characteristic thickness of the scattering inhomogeneity.

High-resolution optical methods show that, in addi-
tion to internal waves, thin high-gradient interlayers
exist in the wake beyond a solid body. These interlayers
are formed due to the separation of boundary layers or,
directly, in the bulk of the continuously stratified fluid
[8]. The scales of the interlayer thicknesses, i.e., of
internal boundary flows, are determined by both the
kinematic viscosity and wave frequency in the velocity

field , as well as by the diffusivity in the

salinity field  [9]. For an aqueous solution

δν
2ν
ω
------= 

 

δs
2κ s

ω
--------= 
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Fig. 4. Normalized characteristics of the echo signal from

the wake. The echo-signal level  and frequency spectra

 for echo signal (1) and approximating function (2) are

shown.
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of common salt, the ratio of the thicknesses of dynamic

and concentration layers is  =  = 27. In the con-

ditions of the given experiments, the value of the oscil-
lation frequency ω = 0.8 s–1 corresponds to the scales
δν = 0.16 cm and δs = 0.005 cm. The former value is
close to the δ = 0.15 cm found experimentally in accor-
dance with the vertical spectra (Fig. 3). This consis-
tency indicates the noticeable role of internal dynamic
boundary layers in the formation of acoustically con-
trasting structures in laboratory and full-sized condi-
tions. For detection of these structures against the back-
ground of a totality of bulk undirected scatterers, algo-
rithms of coherent processing with the phase correction
of the scattered sound-pulse front are efficient.
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Semiconductor, or diode, lasers are the key and
indispensable elements in informatics and telecommu-
nication facilities, in devices for optical memory, print-
ing, material processing, and pumping of optical-fiber
and solid-state lasers, etc.

The fundamental disadvantage of modern facet
diode lasers is the small emission area on the output
facet in the vertical plane. This circumstance is respon-
sible for the high density of laser radiation from the out-
put facet and for the large divergence of laser radiation
in the vertical plane. The high radiation density limits
output power because of catastrophic damage to the
facet and significantly decreases the reliability and ser-
vice life of diode lasers.

Much effort is directed to overcoming this critical
disadvantage and in particular to hardening the output
facet surface.

There were also attempts to extract radiation from
the active layer into a substrate by means of leaking
radiation. For example, such diode lasers were pro-
posed and implemented in [1–5]. However, lasing in
them is similar to that in conventional facet diode lasers
(it occurs in a thin active wave-guide region), and radi-
ation flowing into a semiconductor substrate is directly
extracted. In spite of the high output-radiation directiv-
ity achieved in this case, these diode lasers have the fol-
lowing disadvantages:

(i) the use of a substrate as an inflow region limits
both laser wavelengths and necessary outflow angles;

(ii) since two kinds of radiation—inclined leaking
and divergent facet—are simultaneously present on the
same facet, the efficiency of diode lasers decreases
because of technological difficulty in separating these
radiations.

In this study, we propose novel designs of diode
lasers based on [6, 7] and on new principles of using
leaking radiation, i.e., radiation flowing from the active
region (optical wave guide) under certain conditions, in
lasing. These designs of diode lasers with leaking radi-
ation in the optical resonator, along with their other
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advantages, provide a multiple increase in the size of
the emission area on the output surface of diode lasers.

Figure 1 shows one of the possible simple designs of
a heterostructure for the proposed leaking-mode diode
lasers. The active region of this heterostructure consists
of two quantum-well InGaAs layers 1 and 2 and three
barrier GaAs layers 3, 4, and 5. On the side of the
p-type layer (on the barrier layer 4), there is cladding
AlxGa1 – xAs layer 6, which is adjacent to highly doped
p-type contact GaAs layer 9. On the side of the n-type
layer, barrier layer 5 borders on inflow AlÛGa1 – ÛAs
layer 7, whose thickness is as a rule largest. Next,
reflective (for leaking radiation) AlxGa1 – xAs layer 8 is
located on n-type GaAs substrate 10. The inflow-layer
composition satisfies the condition Û < x.

Despite a certain resemblance between conventional
modern diode lasers and leaking-mode diode lasers,
there is a radical difference between them. In the former
case, leaking radiation is reduced to virtually negligible
values, because it represents the loss of laser radiation.
In contrast, quite intense leaking radiation from the
active layer into the inflow layer is formed in the range
of operating currents in the latter case. This is achieved
by choosing the composition and thicknesses of the lay-
ers of the laser heterostructure so that the refractive
index nin of the inflow layer exceeds the effective
refractive index neff for the entire heterostructure, at
least in a given range of currents [6, 7]. In this case,
leaking radiation distributed over the entire surface of

10

5
3
4
6

7

8

9

2
1

Fig. 1. Scheme of the simplest construction of a heterostruc-
ture for a leaking-mode diode laser: (1 and 2) active InGaAs
layers; (3–5) barrier layers; (6) cladding p-type layer;
(7) outflow layer; (8) reflective n-type layer for leaky radia-
tion; (9) contact p+-type layer; and (10) n-type GaAs sub-
strate.
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the active layer (which consequently has a small diver-
gence angle) will penetrate into the inflow layer along
the longitudinal axis of the optical resonator at certain

divergence angles ϕ = ±cos  in two opposite direc-

tions. Since  @  in the case under consider-

ation (where din is the thickness of the inflow layer and
Lres is the length of the optical resonator), leaking radi-
ation is multiply reflected in the vertical plane from the
cladding and reflective layers, as well as from the mir-
rors of the optical resonator (with reflectivities R1 and
R2). As a result, wave-guide-mode radiation is formed
in leaking-mode diode lasers. Therefore, output radia-
tion will be directed approximately at a right angle to
the plane of the optical output facet, and its directivity
pattern will depend mainly on the number of the excited
mode and the thickness of the inflow layer.

In applications, it is often required to obtain the
zeroth (fundamental) mode. The main feature of the
diode lasers under consideration is that the stable con-
trol of the fundamental mode in them is possible at
large values of inflow-layer thickness (at least up to
10 µm, as we verified experimentally). Therefore,
small divergence angles of radiation θ⊥  in the vertical
plane can be obtained (in our experiments, we obtain
θ⊥  = 6.9°). In the available diode lasers with a broad-
ened wave-guide [8], higher order modes appear even
at wave-guide-layer widths exceeding 1 µm. Such a
significant difference is attributed to the fundamentally
different mechanism of the mode formation in leaking-
mode diode lasers, where the index (number) of the
excited mode is strictly determined by the outflow
angle ϕ, which depends in turn on the thickness of the
inflow layer.

In order to create efficient leaking-mode diode
lasers with high-quality radiation, it is necessary to
control the current-density dependence of the localiza-
tion factor Γ of optical radiation in the active layer. For
lasing thresholds to be low for low current densities, it
is desirable that the fraction of this radiation that is
determined by Γ is comparatively large, i.e., compara-
ble with Γ for conventional diode lasers. In this case,
leaking radiation may be insignificant or even virtually
absent. After the threshold current of emission is
achieved in the remaining range of operating currents,
it is sufficient only to maintain the reached threshold
level of emission in the active layer. Here, leaking radi-
ation will increase with increasing current above the
threshold, and, for a sufficient excess of emission
threshold, radiation leaving the inflow layer will prevail
in total output radiation.

When experimentally realizing novel diode lasers,
we focused on the production of laser radiation whose
wavelength is near 980 nm. This range of wavelengths
is successfully used to create diode pumping modules

neff

nin
-------

ϕtan
d in

Lres
--------
of optical-fiber amplifiers and lasers. The basic param-
eters of the structure were calculated by mathematical
simulation based on the above conditions of the balance
of leaking radiation before and after achieving the
emission threshold.

In accordance with the calculation results, hetero-
structures for leaking-mode diode lasers were made on
n-GaAs substrates by the MOCVD method with lower
pressure. Both In0.20Ga0.80As stressed quantum-well
active layers were grown 8 nm in thickness. The thick-
ness of the barrier layer between them was 12 nm. The
p-type cladding and n-type reflective layers of the iden-
tical Al0.3Ga0.7As composition had the same thickness
of 1 µm. The 5-µm-thick inflow n-type layer was grown
from the undoped n-type Al0.21Ga0.79As. The thickness
of the highly doped contact layer (made of p+-type
GaAs) was equal to 0.1 µm.

The ridge-type active element (chip) of a leaking-
mode diode laser was prepared by ion etching followed
by obliteration of the etched side regions with semi-
insulating zinc selenide [9]. The widths of current-
pumped strips were 6, 10, 15, 20, and 50 µm. The
ohmic contacts to the p-type layer were obtained by the
laser evaporation of thin layers of Zn-doped nickel and
further of the barrier Mo–Ti–Ni layers, followed by
thermal evaporation of Au. Ohmic contacts to the
n-GaAs substrate were produced by the usual method
of thermal evaporation of Ge–Au.

We prepared a number of novel wide-aperture high-
efficiency high-power semiconductor lasers, where
leaking radiation from the active region was involved in
lasing. The test of the prepared samples provided the
following results:

(i) single-mode (in the transverse index) semicon-
ductor lasers, where the near-field zone had sizes from
5 to 10 µm and corresponding angle θ⊥  of mode diver-
gence in the vertical plane was 11.1° to 6.9°, were
realized;

(ii) semiconductor lasers with the output aperture
with the dimensions 5 × 6, 7 × 7.5, and 10 × 10 µm on
the optical facet, were produced;

(iii) at a wavelength of 980 nm for the strip width
w = 5 µm with the divergence angles θ⊥  × θ= = 12.3° ×
5.7° and low threshold current densities, a single-mode
semiconductor laser with a radiation power of 0.5 W
and a high-brightness semiconductor laser with a radi-
ation power of 1.3 W were implemented;

(iv) in the continuous mode, a radiation power of
3.0 W was obtained from a wide-aperture laser diode
with the strip width w = 50 µm at small divergence
angles θ⊥  × θ= = 11.5° × 7.2°;

(v) single-frequency 925-nm laser radiation with a
power of 500 mW and divergence angles θ⊥  × θ= =
12° × 5.7° was generated.
DOKLADY PHYSICS      Vol. 48      No. 1      2003
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Figure 2 shows the power–current characteristics
for two samples of leaky-mode diode lasers (strip width
w = 50 µm, length Lres = 1600 µm, R1 = 95%, and R2 =
10%). All the measurements were carried out in the
continuous mode. The maximum radiation power
obtained for a current of 3.0 A was 3.0 W (22 W in the
pulsed mode). The decrease in power for currents
exceeding 3.0 A is reversible and caused by over-
heating.

The far-zone field of radiation in the vertical plane
for these samples is presented in Fig. 3. The divergence
angle θ⊥  in the vertical plane is equal to 11.5° and
depends slightly on the radiation power. In contrast, the
divergence angle θ= in the horizontal plane increases
from 3.28° to 7.8° with increasing radiation power from
100 to 800 mW, respectively.

Figure 4 shows the power–current characteristics
for two leaking-mode diode lasers with strip-region
width w = 10 µm. Reflectivities R1 and R2 were equal to
95 and 7%, respectively, and Lres = 1600 µm. The output
powers were measured up to ê = 1.0 and 1.3 W. For the
sample with ê = 1.0 W, the threshold current is jthre ≈
70 mA and the maximum differential efficiency is ηd =
58%. With increasing radiation power from 100 to
1000 mW, the divergence angle θ⊥  increases from 11.5°
to 12.3°. The lasers under consideration stably generate
a single spatial mode up to a power of 0.5 W. With a fur-

1

2

0 2 4 6
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2

3
P, W

I, A

Fig. 2. Power–current characteristics of a leaking-mode
diode laser with strip width w = 50 µm. A chip is soldered
on a Cu plate so that its heterostructure is at the (1) bottom
and (2) top.
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ther increase in power up to 1 W, the single mode in the
transverse index in the vertical plane was retained when
θ⊥  increased up to 12.3°. Weak mode interference arose
in the horizontal plane, and the angle θ= increased up to
7.0° (i.e., by ~13%).

0.4

0.2

0

0.6

0.8

1.0

–20.5 –10.0 0 10.0 20.5

11.5°

800 mW

Angle, deg

Intensity, arb. units

Fig. 3. Distribution of 0.8-W radiation in the far-field zone
in the vertical plane for a leaking-mode diode laser with w =
50 µm, L = 1600 µm, R1 = 95%, and R2 = 10%.
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Fig. 4. Power–current characteristics for a leaking-mode
diode laser with w = 10 µm, L = 1600 µm, R1 = 95%, and
R2 = 7%.
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