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1. INTRODUCTION

The study of properties of conducting-fluid flows
through a porous medium in the presence of an electro-
magnetic field involves a wide scope of scientific and
technological knowledge, including earth science [1],
biological mechanics [2], metallurgy [3, 4], etc.

In [5], the effect of a magnetic field on the filtration
law in porous media was experimentally discovered.
In [1], a modified Darcy law was obtained by introduc-
ing the Lorenz force into the right-hand side of the fil-
tration law:

(1)

Here, v is the velocity of a conducting fluid, J is the
electric-current density, p is the pore pressure, B is the
magnetic-field induction; k is the permeability, and  is
the viscosity of the fluid.

As is known to the author of the present paper, there
exist three forms of modified Darcy law and Ohm’s law
that allow electrokinetic phenomena in porous media to
be described. The first group of studies [6–10] propose
to write out modified Darcy law and Ohm’s law in the
form

(2)

(3)

The second group [11, 12] uses the following form of
modified Darcy law and Ohm’s law:

(4)
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The third group of studies [13] suggests a modified
Darcy law and Ohm’s law (in the isotropic case) in the
form

(6)

(7)

In formulas (2)–(7), φ is the potential of the electric
field E; L1 and L2 are phenomenological coefficients;
and σl is the conductivity of a fluid. The terms contain-
ing L1 and L2 are responsible for the electrokinetic
effect. Based on the Onsager reciprocal relation, the
authors of [14] assume

(8)

In the present paper, we show that equality (8) is invalid
and establish thermodynamically consistent modified
Darcy laws in the presence of electromagnetic fields.

2. THE GENERALIZED DARCY LAW 
WITH ALLOWANCE FOR MAGNETIC FIELD

We now consider the simplest situation with due
regard to only kinetic processes associated with the
energy loss related to the friction coefficient χ. In this
case, we completely ignore quadratic effects with
respect to the velocity. The equation of motion for a
conducting fluid has the form [15]

(9)

Here, u is the velocity of a conducting porous body pos-
sessing the conductivity σs; σ = σl + σs; ρ = ρl + ρs , ρl

and ρs are the partial densities of the conducting fluid
and a conducting elastic porous body, respectively.

In the time-independent case,  = u = 0. In this case,
the velocity of a conducting fluid is determined from
the equation
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From here, with allowance for χρρl =  [15], we arrive

at the modified Darcy law that takes the magnetic field
into account:

Comparing this formula with relationship (1), we
can see that, on the right-hand side, the Lorenz force is
added with a weight factor equal to

3. THE GENERALIZED DARCY LAW
WITH ALLOWANCE FOR ELECTRIC FIELD

We now consider the case when the production of
the entropy in the system depends only on the kinetic
coefficients χ of friction and σ of diffusion, as well as
on the electrokinetic coefficient γ. In the linear approx-
imation, the equations of motion for a fluid and the

electric-current density in the steady-state mode  =
u = 0, B = 0) have the form

(10)

(11)

where E is the intensity of the electric field. In this case,
the kinetic coefficients χ, σ, and γ satisfy the inequality
[14, 15]

Substituting Eq. (10) into Eq. (11), we obtain 

From this formula and formula (10) with allowance for
E = –∇φ  we arrive at the modified Darcy law and
Ohm’s law stipulated by the electrokinetic coefficient γ:

(12)

(13)

It is worth noting that, in contrast to the cross phenome-
nological coefficients suggested previously in [2, 6–13],
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those entering into the modified Darcy law and Ohm’s
law are not equal to each other. Moreover, as distinct
from [2, 6–13], the coefficients in the definition of the
electric-current density depend on the friction factor
(permeability and viscosity of a fluid) and on the partial
densities of both a conducting elastic porous body and
a conducting fluid. When the electrokinetic coefficient
disappears, formulas (12) and (13) are transformed into
the well-known Darcy law and Ohm law’s, respec-
tively.
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In this paper, the effect of the rotation of the speckle
pattern for circularly polarized light outgoing from a
low-mode optical fiber is predicted for the case when
the sign of the T circular polarization changes. It is
shown that, for a spin particle with a nonzero mass, the
effect is caused by the spin–orbit interaction. For an
optical-fiber waveguide, the absorption coefficient and
the gamma-radiation T dose necessary for obtaining
this absorption coefficient are determined.

Recently, a number of unique polarization effects
depending on the photon helicity have been predicted
and experimentally observed. Among them, we should
mention the Magnus optical effect [1–4], the effect of
the Barry topological phase for a photon [5, 6], the
Rytov–Vladimirskiœ effect [7, 8], and the effect of the
speckle-pattern rotation for a T twisted multimode opti-
cal fiber [9, 10].

In this paper, we predict a new effect close to those
listed in [1–10]. This is the rotation of the speckle pat-
tern in the absorbing optical fiber when the sign of the
circular polarization is reversed. In contrast to the Mag-
nus optical effect, for the effect under consideration, the
magnitude of the speckle-pattern rotation when chang-
ing the sign of the circular polarization σ = ±1 is pro-
portional to the optical-fiber length z squared.

In the wave description, the allowance for the polar-
ization contribution H grad(divE) in the scalar wave
equation results (for a multimode optical fiber with an
insignificant absorption) in rotation of the speckle pat-
tern under the change in the sign of σ [1, 2].

We now consider an optical fiber with a relatively
large attenuation n = n' + in'', where n' and n'' are the real
and imaginary parts of the refractive index, n'' ! n'.
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With account of the polarization term, the wave equa-
tion can be written out as

(1)

where z is the longitudinal coordinate. In deriving

Eq. (1), we allowed for —⊥ lnn = —⊥ lnn' + in''—⊥ .

The last term on the right-hand side of Eq. (1) makes
it possible to describe the Magnus optical effect in the
wave approximation [2]. Therefore, we disregard this
term. We seek a solution for the circularly polarized
mode in the following form:

(2)

After simple transformations, we found from
Eqs. (1) and (2)

(3)

where e⊥  = (e1 + iσe2).

For an optical fiber with a parabolic profile of the
refractive index

(4)
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Since an arbitrary input radiation can be represented in
the form of a linear combination of directed circularly
polarized modes, we obtain according to formula (5)
that the speckle patterns for various σ will be T rotated
with respect to each other by the angle 

(6)

Indeed, for z ≠ 0, it follows for an arbitrary mode that

ϕ  ϕ – ; i.e., the intensity distribution for

various σ are similar but are shifted by the angle ∆ϕ
[see (6)].

In the case of the optical Magnus effect for optical
fiber (4), the T quantity δϕ is a linear function of σ:

(7)

We now estimate the quantity n'' and the optical-
fiber length z for which the effect under consideration
can be observed experimentally. Let ∆ = 0.01, nco = 1.5,
ρ = 5 µm, λ = 0.63 µm, z = 10 cm, ∆ϕ = 0.2 rad.
According to (6), we obtain for such parameters n'' =
3.75 × 10–8, which corresponds at λ = 0.63 µm to the

attenuation coefficient α =  ≈ 7.5 × 10–3 cm–1.

This can be attained when the optical fiber is exposed
to gamma-ray radiation. In order to accomplish this, fol-
lowing [12], the optical fiber should be subjected to the
exposure with a dose of ~250 Gy. In this case, in accor-
dance with (7), the speckle patterns for various σ in the
case of the optical Magnus effect are rotated by the
angle ∆ϕ = |2δϕ| ≈ 0.53 rad. This implies that the mag-
nitude of the rotation angle for the speckle pattern for
irradiated and nonirradiated optical fibers of equal lengths
will differ by the angle determined by equality (6).

A similar effect can be considered for a particle with

the spin of  and nonzero mass, which moves in a

weakly scattering medium. For a nonmeridional trajec-
tory of the particle, the wave function in the paraxial
approximation has the form

where s is the natural parameter measured along the
particle trajectory and z is the cylindrical coordinate.
Correspondingly, we arrive at the following scalar wave

∆ϕ 2δϕ ,  δϕ σn''
∆

ncoρ0
2

------------z2.= =

σn''∆z2
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-----------------

δϕ σλ∆
2πncoρ0

2z
----------------------.=
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λ

------------

1
2
---

Ψ Ψ̃ –β''s i β' zd∫+( ),exp=
equation, which includes spin–orbit interaction and is
written in the cylindrical coordinate system:

(8)

Here, β' =  + (z),  = const,  @ . When
deriving Eq. (8), we took into account the fact that, for

Ψ ~ exp(–β''z), the quantity  yields the following
correction to the wave equation:

(9)

Assuming l @ 1, we obtain from Eq. (8) for a particle
polarized along the OZ axis

where Ψ = σΨ, Ψ = mΨ, σ = ±1, and m is the pro-
jection of the orbital angular momentum.

As is seen from relationships (1) and (8), the quan-

tity  plays the same role that the quantity

n2k2 =  plays in optics. With allowance for this

fact, Eq. (9) takes the form 

(10)

where, in accordance with (4), we took into account the
fact that

Thus, for a nonrelativistic particle, the effect is

weaker by the value  than in the case of a photon.

This is not L surprising as far as the spin–orbit interac-
tion for a particle with a nonzero mass is an effect on

the order of .

The phenomena considered above for the case of an
optical fiber could be employed in measuring γ-radia-
tion fields doses in the range 102–104 Gy.
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ŝ l̂
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The hypothesis that ball lightening is not associated
with electricity is substantiated. It is intense light from
usual lightening that falls in a spherical air layer with
increased pressure and circulates in this layer for a long
time. Compressed air whose refractive index exceeds
that of the environment presents an optical thin-film
guide for circulating light and confines light propagat-
ing in it. Circulating intense light induces increased
pressure in the air due to electrostriction. Thus, com-
pressed air confines light, whereas light prevents the
equalization of the pressure of compressed air. Figure 1
shows the variation in pressure and intensity along the
section of such a self-restricting spherical layer
(SRSL). The SRSL is a kind of the well-studied planar
self-restricting layer, where the distribution of intensity
along the section of the layer has the form I =
I0cosh−1(ηx) [1]. It is known that this layer is stable.

It is difficult to imagine that light can circulate in air
for several seconds. Indeed, a 1-cm-thick air layer at
normal atmospheric pressure scatters a 2.7 × 10–7 frac-
tion of the white light passing through it [2]. Therefore,
the intensity of light passing through a 100-km-thick air
layer decreases by a factor of e2.7 . 15. Light travels
100 km in 0.3 ms. This time interval is comparable to
the lifetime of an SRSL and is shorter than the lifetime
of ball lightening by at least four orders of magnitude.
However, more careful analysis shows that the molecu-
lar scattering of light in real gases, and in particular, air,
at extremely high pressures decreases sharply. The
intensity I of scattered light for molecular scattering is
determined by Einstein’s formula [2]

(1)

where I0 is the intensity of light falling on a gas volume
V; λ is the light wavelength; L is the distance from the
volume V to the point where the intensity of scattered

I I0
πV

2λ4L2
-------------- ρ
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----------- 
 

T

2

βTkT 1 Θcos
2
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light is measured; βT = –  is the isothermal

compressibility of the gas; ρ, p, T, and ε are the density,
pressure, temperature, and dielectric constant of the
gas, respectively; ε0 is the permittivity of free space; k
is Boltzmann’s constant; and Θ is the scattering angle
of light. According to this formula, the scattering of
light in real gases described by the van der Waals equa-
tion tends to zero at extremely high pressures [3],
because molecular scattering is proportional to gas
compressibility, which tends to zero with increasing
pressure for real gases. The molecular scattering of
light at a pressure of 25 GPa is lower than that at normal
atmospheric pressure by four orders of magnitude.

We now analyze the stability of the SRSL. The elec-
trostriction pressure induced by light propagating in an
optical medium is determined by the expression [2]

(2)

where Ö is the amplitude of the electric field in the light
wave. Since the energy density of light in air is deter-

mined as w = ε0ε , Eq. (2) can be represented as ∆p .

∆ε(p)w, ∆ε(p) = σ(εn – 1), where εn = 1.00055 is the

1
V
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------- 
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2
-----,=

E2

2
-----

Pressure

Fig. 1. Schematic representation of the SRSL.
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dielectric constant of air at normal pressure and σ deter-
mines the air compression degree.

The SRSL is in equilibrium when the total energy is
minimal, i.e., when

(3)

where El and Eg are the energies of the light and gas,

respectively. In this case,  = p is the pressure of the

compressed gas.
To determine the volume dependence of the energy

of light, it is necessary to take into account that the
energy density of light w increases with a decrease in
the refractive index [4] and El ~ n–1. The refractive
index n depends on the air compression degree as n =
(1 + ∆ε)1/2, ∆ε = σ(εn – 1). Therefore, the volume
dependence of the energy of light is represented as

El = En 1 – 0.5(εn – 1) , 

where En and Vn are the energy of light and volume
occupied by the compressed gas at normal pressure. In
this case,

where wl =  is the energy density of light in com-

pressed air. Equilibrium condition (3) can be repre-
sented in the form p = 0.5 wlσ(εn – 1).

The table presents the energy density of air wg for
various pressures p and various energy densities of light
wl inducing this pressure. According to the table, the
energy density of compressed air is much higher than
the energy density of light. However, this difference
decreases with an increase in light intensity. This means
that the energy of the SRSL is predominantly the
energy of compressed air. The energy density of light is
equal to 405 kJ/cm3 at an air pressure of 21.9 GPa. If the
thickness of the SRSL is equal to h = 1 µm, a
20-cm-diameter SRSL has a volume of about 0.1 cm3

and contains a light energy of 40.5 kJ and a com-
pressed-air energy of 200 kJ. These estimates of the
energy of the SRSL completely agree with the available
estimates of 105–106 J for the energy of a 20-cm-diam-
eter ball lightening. The energy density is rather large.

When radiation circulates inside the SRSL, the radi-

ation momentum P = , where E is the energy of light,

varies. A fraction of electrostriction pressure is spent on

dEl

dV
--------

dEg

dV
---------+ 0,=

dEg

dV
---------


 Vn

V
------



dEl 0.5En εn 1–( )
Vn

V
------dV

V
-------=

=  0.5wl εn 1–( )
Vn

V
------dV 0.5wlσ εn 1–( )dV ,=

En

V
-----

E
c
---
DOKLADY PHYSICS      Vol. 48      No. 3      2003
the generation of centripetal pressure pc = , where h

is the thickness of the SRSL, which ensures the circu-
lation of P along a closed circular trajectory of radius
R0 . The equilibrium condition for the spherical layer

can be written in the form ∆p = p + . For thin layers

such that  ! , we have pc ! p.

In conclusion, let us show that all the mysterious
and surprising features of the behavior of ball lighten-
ing are explained quite simply. We will take into
account that each element of the surface of the SRSL in
the inhomogeneous atmosphere is obviously subjected
to an additional force proportional to the projection of
the gradient of the refractive index on the outer normal
to this surface. In particular, if the gradient is constant
in the region where the SRSL is located, the SRSL
moves along the gradient under the action of the result-
ing force. If air pressure is identical at all points of the
atmospheric volume under consideration, the refractive
index is inversely proportional to temperature, and the
SRSL moves towards the temperature gradient.

When approaching a hole in a wall, where the tem-
perature gradient is directed towards the motion of the
SRSL (Fig. 2a), the following effect arises. Due to radi-
ation, the SRSL heats the wall regions that hinder its
penetration to the hole (H in Fig. 2). Walls heat air near
them due to heat conductivity. As a result, the tempera-
ture gradient in these regions is directed to the walls,
and the regions of the SRSL that are situated near the
hole axis are subjected to forces repulsing these regions
from the walls. On the other hand, the regions of the
SRSL that are situated near the hole axis are subjected
to forces that tend to draw these regions toward the
hole. These opposite forces applied to different regions
of the SRSL deform the SRSL, whose restoring forces
are weak, and the SRSL takes the shape shown in
Fig. 2b. As the SRSL penetrates the hole, the following
feedback mechanism arises. The closer the SRSL to the
walls of the hole, the more air in the region between the
SRSL and the wall of the hole is heated, and the stron-
ger the SRSL is repulsed from this region. As a result,
the elongated deformed SRSL is situated equidistantly

wh
R0
-------

pc

2π
------

h
R0
----- 1

200
---------

Table

p, atm wl, kJ/cm3 wg, kJ/cm3

219 0.81 205

728 1.744 621

2190 4.46 1040

21900 40.9 1670

219000 405 2140



110 TORCHIGIN
from the walls of the hole, whose cross section can have
an arbitrary shape. Since the forces associated with the
original gradient of air density along the hole axis con-
tinue to act, the SRSL continues to be drawn to the hole.
Figures 2b–2f show the stages of the penetration of the
SRSL through the hole in the wall.

Ball lightening can penetrate through window glass,
sometimes destroying them. In this case, the destruc-
tion is located at the place where the ball lightening
penetrates. As is known, a plasma cannot penetrate
through glass, whereas light passes through glass. The
penetration of the SRSL through a plane glass plate can
be represented as follows. When light touches the plate,
light penetrates into glass and undergoes total internal
reflection from the opposite side of the plate, because
the refractive index of air inside the SRSL is higher
than that on the other side of the plate. In the range of
the total internal reflection at the interface between air

H

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 2. Stages of the SRSL passing through a hole.
and opposite side of the plate, an intense light field
arises and induces increased air pressure, which leads
to an increase in air density. This region is indicated by
the arrow with letter P in Fig. 3a. As a result, portions
of light radiation penetrate into this region of increased
pressure and form an SRSL on the other side of the
plate, as is shown in Fig. 3b. If the densities of atmo-
spheric air are somewhat different on the different sides
of the plate, the SRSL moves towards the side where
the density is higher according to the effect described
above. As is seen, the SRSL easily passes through glass,
as is shown in Figs. 3c and 3d. In fact, only the light
easily passes and forms a compressed-air layer on the
other side. The compressed air located in the SRSL
does not pass through glass.

The above-mentioned weakness of the forces restor-
ing the spherical shape of the SRSL is manifested not
only when traversing holes. For sufficiently large
sphere radii R, there is nonuniformity of air density
along the height of the SRSL. Indeed, if the SRSL is
located at constant height, its equator is in the air layer
with the maximum density. In this case, the gradient of
air density above and below the SRSL is directed
towards its center and leads to the deformation of the
SRSL, which takes the shape of a spheroid oblate in the
vertical direction or of a flying plate.

It is known that the color of ball lightening can vary
from white and yellow to green. The variation in the
color of the SRSL is explained as follows. In an SRSL,

P

(a)

(b)

(c)

(d)

Fig. 3. Stages of the SRSL passing through window glass.
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which is an equilibrium system of intense radiation and
air compressed by this radiation, the energies of radia-
tion and compressed gas are balanced. This balance can
be violated when forming the SRSL. When approach-
ing the steady state and restoring balance, gas and radi-
ation exchange energy. If air (radiation) returns a frac-
tion of its energy to radiation (air), the average fre-
quency of radiation increases (decreases), and the
radiation spectrum is shifted towards short (long) wave-
lengths. Thus, the color of the SRSL indicates the con-
ditions of its origin. We note that the SRSL is a peculiar
transformer of the energy of light to the energy of a gas
and vice versa.
DOKLADY PHYSICS      Vol. 48      No. 3      2003
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In this paper, the possibility of determining the
shape of the cascade curve of extensive air showers
(EAS) by the radio method is shown. This is essential
for increasing the reliability of the detection of ultra-
high-energy cosmic-ray particles in order to obtain
information on their nature.

The problem of ultrahigh-energy cosmic rays
(UHECR) is one of the challenges to modern high-
energy astrophysics [1–4]. As a consequence of the Gre-
isen–Zatsepin–Kuzmin effect [1, 2], cosmic rays with
energies E ≥ 5 × 1019 eV could not be observed in the
vicinity of the Earth. Nevertheless, they are observed.
Their flux is extremely low (~10−2 year–1 km–2 sr–1 for
E ≥ 1020 eV). Detectors dedicated to experimental stud-
ies of these particles are currently under construction.
In this case, the area being scanned ranges from
6000 km2 (for the ground-based Auger observatory [5])
to ~105 km2 (for satellite-borne detection of fluores-
cent light in the framework of the OWL and EUSO
projects [6]).

In [7–12], it was proposed to detect the UHECR
from satellites and balloons using radio emission gen-
erated in the Earth’s atmosphere by horizontal T EAS
initiated by such particles. This provides a means for
scanning over a very large area, up to (1.5–2) ×
107 km2, and makes possible a high UHECR detection
rate with a reasonable accuracy of the determination of
their energy E0 and arrival angles (θ, ϕ). Preliminary
estimates show that the realization of the radio method
using satellites would be by one or two orders of mag-
nitude less expensive than the construction and opera-
tion of the detectors discussed in [5, 6]. At the same time,
it is commonly supposed that the radio method has cer-
tain limitations compared to traditional methods.

First, when using a radio receiver without coinci-
dence with other EAS detectors, the identification of a
detected signal with a radio pulse from an EAS is usu-
ally based on two things. These are the expected signal-
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to-background ratio  and the typical short dura-

tion of an EAS-initiated pulse (τ ≈ 10−7–10–6 s [10]),
which differs from the much longer typical duration of
natural and artificial radio-noise pulses. Although this
situation resembles that for the EAS detection (only) by
Cherenkov T flares (this method is widely used in mod-
ern experimental practice), the mentioned signature for
the EAS radio-pulse separation casts some doubts in
the context of the variable character of the time depen-
dence of man-made noise.

Second, the EAS detection by ground-based shower
arrays (when they allow detection of different EAS
components, e.g., electron–photon and muon compo-
nents) or by fluorescent-light detectors (when the shape
of the EAS cascade curve can be determined) provides
information for separating EAS initiated by protons
and nuclei.

When detecting EAS by the radio method from sat-
ellites or balloons, it is not feasible to simultaneously
detect various shower components. In this case, only
the integral value of a radio signal is detected (during
the time of the total pulse duration), and information on
the shower development is absent. At first glance, these
limitations seem to be inevitable, but this is not true.
Below, it is shown that a radio pulse contains informa-
tion that allows researchers to determine the cascade-
curve shape and, consequently, distinguish between
proton-initiated and nucleus-initiated showers, as well
as obtain a clear signature for selecting an EAS signal
against the noise background.

We assume that the distance R between a radio
receiver and an EAS is known. (R can be determined
from the height H of the receiver position above the
Earth’s surface and the opening angle ∆θ of the
antenna’s directivity diagram [11].) In any case, this
distance is much larger than the EAS development
length L. In addition, we assume that all shower parti-
cles move in parallel to the EAS axis and ignore for a
moment the shower disk size. Then, the EAS develop-
ment can be considered as a motion with a velocity v
close to the velocity of light c of a compact shower
body with a variable particle number Ntot(t). We now
suppose that a point A corresponds to the shower origin.

S
B
--- 1> 

 
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In this case, t is the time elapsed between the moments
of the signal arrival at the receiver (located at a point Q)
from the point A and a certain point B of the shower.
This time is related to the time t ' required for the shower
disk to travel a path between these points by the follow-
ing relation:

(1)

Here, β = , µ = 1 + δ is the atmospheric refractive

index for radio waves (δ ≈ 3 × 10–4 for the normal atmo-
sphere), and α is the radiation observation angle with

respect to the shower axis. If αC =  is the

Cherenkov radiation angle, then t = 0 for α = αC, i.e.,
the signals from different points of the shower arrive at
the receiver simultaneously. This corresponds to the
condition of Cherenkov radiation. For α < αC, the sig-
nals arrive at an observer in antichronological order;
i.e., they come earlier from later stages of the EAS
development. For larger values of the observation
angle, the signals from various parts of the shower
come to the receiver in the proper order. (The form of
the dependence t(α) weakly changes with energy, since
the cascade length depends upon the EAS energy loga-
rithmically.) Using this dependence, we can find the
EAS energy E0 by simultaneous measurements of both
radio-signal magnitude and duration [7–12].

We now suppose that the time variation of a radio
pulse (which depends on Ntot(t)) is also measured. Then,
as is seen from Eq. (1) for α > αC, a possibility arises to
scan the shower development, i.e., to obtain an infor-
mation on the temporal development of the shower and,
consequently, on the cascade-curve shape Ntot(t) =

Ntot . As already was noted, the cascade-curve shape

carries important information on the nature of the pri-
mary particle that initiated the shower. Hence, the
knowledge of the cascade-curve shape allows discrimi-
nation between primary protons and nuclei. Further-
more, the EAS-produced signals can be separated from
background ones by comparison of the measured
dependence Ntot(t) with the typical shape of the EAS
cascade curve (which is reasonably well known from
both numerous experiments and results of mathemati-
cal modeling). As is evident from Eq. (1), the t depen-
dence of the radio-signal amplitude is conveniently
measured for the largest possible values of the angle α
when the observed signal duration is sufficiently long.

Finite longitudinal and transverse dimensions of the
shower disk result in an additional difference in the sig-
nal arrival time τ1 , which is on the order of 2 × 10–8 s

t
rAB

v
------- rBQ rAQ–( )µ

c
--- t'G,≈+=

G 1 βµ α α2

2
----- δ.–≈cos–=

v
c
----

1
βµ
-------arccos

x
c
-- 

 
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for high-energy EAS. This value should be compared
with a typical observed radio pulse duration

 

related to the EAS development. For α ≥ 0.05, we have
τEAS ≥ 2 × 10–7 s [10]; i.e., the time interval in which the
t dependence of radio pulses can be measured exceeds
the spreading due to finite disk dimensions by about a
factor of 10. It was shown in [7–12] that, in the case
when a system of two (or more) receivers is used, the
delay-time measurements make it possible to determine
the azimuth angle of the signal arrival with high accu-
racy. A similar system is also convenient for the mea-
surements under consideration of the EAS cascade-
curve shape. Properly choosing the distance between
the receivers, we can provide conditions when at least
one of two receivers is oriented at an angle α, which lies
in an interval favorable for the measurements of the
angle αC < α < αmax. Here, αmax is determined by regis-
tration conditions (background, ionosphere transpar-
ency).

We now obtain relations between the desired depen-
dence Ntot(t) and the measured field H(t) = E(t). To do
this, we use the results of the EAS radio-pulse calcula-
tions, which were obtained in [7–12]. First, we consider
only the contribution of the EAS electron excess [13].
We choose the origin at a point O in the shower axis.
Let R0 be the radius vector of the observation point, n =

, r0(t') is the radius vector of the shower-disk cen-

ter, and r' = r – r0(t'). The shower development time t '
is related to the observed time t of the signal arrival at
the point Q by the following relation (we assume µ = 1,
v  ≈ const ≈ c):

(2)

The electric current corresponding to the motion of
electron-excess particles can be represented in the form

(3)

Here, N(t') = ηNtot(t') is the number of the EAS excess
electrons, Ntot(t') is the total number of shower particles
as a function of the EAS development time (EAS lon-
gitudinal profile), and the coefficient η ≈ 0.2 is approx-
imately t'-independent. The function f(r') describes the
particle distribution in the shower disk, and it is normal-
ized to unity:

for an arbitrary t'. Taking into account relationships (2)
and (3), we can express the vector potential and radia-

τEAS
L
c
--- 1 βµ αcos–( )≈

R0

R0
---------

t' 1 vn
c

------– 
  τ r'n

c
-------+= , τ t

R0

c
-----.–=

j r t',( ) eN t'( )vf r'( )= .

f r r0– t'( )( ) rd∫ 1=
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tion fields produced by the current (3) at the observa-
tion point in the following form:

(4)

(5)

(6)

We introduce the cylindrical coordinate system r' with
the z axis directed along the vector n: r' = (z; r). Then
the argument of N' depends only on the single spatial
variable z, and

(7)

The relation for S(z) has a simple physical sense and
determines the area of the shower-disk cross section by
a plane perpendicular to the unit vector n. The waves
produced by the charges residing at this cross section
arrive at the observation point in the same phase. Rela-
tions (5)–(7) establish a link between the observed t
dependence of the radiation field and the desired depen-
dence N(t), which we are interested in. Evidently, in the
general case, an unambiguous reconstruction of the
EAS space–time structure from only the function H(τ)
is impossible. However, in the actual situation, the
function f(r'), which describes the shower-disk spatial
structure, is reasonably well known from experiments
and modeling of the EAS development. Moreover, as is
seen below, for α @ αC , the t dependence for the pulse
is predominantly determined by the EAS longitudinal
development, and the particle-distribution shape within
the shower disk turns outs to be of little significance for
finding the cascade curve. Thus, relations (5)–(7) allow
us to find the function N(t') from the measured depen-
dence H(t). In particular, in the point-charge approxi-
mation, we arrive at

(5a)

The simplest method for finding cascade-curve
parameters consists in using in expression (7) an
explicit parameterization for N(t) and f(r') and deter-

A R0 t,( ) cR0( ) 1– j r t',( ) rd∫≈

=  
ev
cR0
--------- N t'( ) 1 vn

c
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H τ
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c
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τ

1 nv/c–
-------------------- .
mining unknown parameters of the model. We suppose
that the charge distribution in the disk is of the form

(8)

Then, the integral entering into relationship (7) can be
calculated explicitly:

(9)

We now take into account a separation of positively and
negatively charged particles by geomagnetic field at a

certain distance ±  from the EAS axis. For definite-

ness, we assume that this separation takes place in a
plane passing through n and v. Then,

(10)

(11)

We also use the Gaussian form for the cascade curve
N(t'):

(12)

Here, t ' is measured from the moment when the cascade
reaches its maximum. Then,

(13)

In (13),  = T 2 1 –  corresponds to the pulse

duration squared that is related to the EAS longitudinal

development time T, while  is the duration squared

that is related to the finite dimensions of the shower
disk. To take into account the charge separation by vir-
tue of geomagnetic effects, the replacement z 

z  should be made in (13). This corresponds to
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the substitution τ  τ –  in the expression

for I(τ):

(14)

Since η < 1, Id is the difference of two bipolar
pulses, which are identical in their shape but differ in

the amplitudes factors 1 ±  and are shifted in time

by  with respect to each other. For radiation

angles α ≈ αC ≈ (2δ)1/2, σΤ ≈ 0, and the t' dependence
in (14) is entirely determined by the shower-disk
parameters. For α @ αC , the value σT prevails, and the
t dependence is determined by the EAS longitudinal
development. In this case, the cascade-curve shape can
be found without detailed knowledge of the form of the
function f(r'), just as is done in the point-charge approx-
imation [see formula (5a)].

The foregoing relations were obtained in the t repre-
sentation. Similar formulas can also be derived for Fou-
rier components. In a number of cases, this may be use-
ful in some instances (e.g., for taking into account a sig-
nal distortion during its propagation in a medium).

Thus, the relations obtained allow reconstruction of
the EAS profile function from the measured time
dependence or frequency dependence of the radiation
field or of the emission intensity. This information can
be used for both more reliable picking out of a desired
signal from the background noise and finding the nature
of the primary particle that initiated the EAS.

d
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Analysis of the energy-balance equation in a high-
frequency inductive discharge (HFID) indicates that the
three velocity components of a plasma-generating gas
are equal to zero at least at one point in the axis of any
HFID and that axial temperature is maximal at this
point [1].

However, it is possible to show that this physical
phenomenon is only a particular case of a more general
law inherent in the HFID as a whole.

Indeed, the total energy-balance equation (nonsim-
plified for the central part of the plasmoid) for the high-
frequency inductive plasma evidently has the form
1028-3358/03/4803- $24.00 © 20116
(1)

where T is the temperature; λ is the heat-conductivity
coefficient; ρ is the density; cp is the specific heat capac-
ity; QR is the radiation energy density; v r and v z are the
radial and longitudinal components of the velocity field
in the discharge, respectively; Eϕ is the electric-field
intensity in the discharge; and σ is the conductivity in
the discharge.

According to Eq. (1), the longitudinal velocity
v z(r, z) in the discharge is described by the formula

1
r
--- ∂

r∂
----- λr

T∂
r∂

------ 
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T∂
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------–+ +

ρcp
T∂
z∂

------
---------------------------------------------------------------------------------------------------------------------------.=
Let us consider a family of coaxial cylindrical sur-
faces whose axes coincide with the HFID axis and that
fill the entire inner volume of the plasmoid. Each sur-
face corresponds to a certain radial coordinate r. Since
this coordinate is continuous, the number of these sur-
faces is infinite. The surfaces corresponding to r = 0 and
r = R (R is the radius of a tube bounding the discharge)
coincide with the plasmoid axis and with the wall of the
discharge chamber, respectively.

Next, on each of these ancillary cylindrical surfaces,
we consider a circle that corresponds to the maximum
temperature on this surface (this is always possible,
because the heat source, the plasmoid, has a finite
length). Due to the continuity of this family of surfaces,

Kazan State Technological University, 
ul. Karla Marksa 68, Kazan, 420012 Tatarstan, Russia
* e-mail: gerasimov@kstu.ru
these circles in turn form a certain cylindrically sym-
metric surface of revolution whose axis coincides with
the plasmoid axis. This surface can be described by the
equation:

Further, following the method proposed in [1], we con-

sider a locus Ω0 satisfying the condition  = 0; i.e.,

the surface Ω0 inside the HFID is such that temperature
at its points is maximal for each fixed r.

At all points of this surface, the denominator in
Eq. (2) is equal to zero. Therefore, the numerator of this
expression is also equal to zero, because the velocity v z

as a continuous physical quantity must be limited.
Applying the l’Hópital’s rule to Eq. (1), we find

T∂
z∂

------
Ω0

0.=

T∂
z∂

------
Ω0
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because, at T(r, z) = T(Ω0),

and both expressions in square brackets in the numera-
tor of Eq. (3) have the form

(4)

and depend only on temperature and its radial rather
than axial derivatives. Therefore, at T = T(Ω0), we have

In Eq. (3),  ≠ 0, and consequently v z(Ω0) is a

finite quantity.
In view of Eqs. (4), Eq. (2) can be rewritten in the

form

(5)

At all points of the surface Ω0 , the denominator of this
expression is equal to zero and changes its sign when
passing the surface Ω0, because
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It is evident that the numerator of this expression
must obviously be equal to zero at these points, because
v z is a continuous quantity and is finite at points of this
surface, in view of Eq. (3). In this case, however, all the
terms in the numerator do not change their signs when
passing the surface Ω0 (R1 and R2), because they depend
only on temperature and its radial (rather than axial)

derivatives. The term  is negative to both the right

and the left of this surface, whereas the sign of the term

 is determined by the sign of the derivative

, which is negative in the temperature range under

investigation [2, 3].
As is seen, none of the terms in the numerator of

Eq. (5) for v z(r, z) changes its sign when passing the
surface Ω0 . Since all the terms of the numerator are
continuous and smooth, it retains its sign in the neigh-
borhood of this surface; i.e., it tends to zero both on the
right and on the left sides of the surface Ω0 with the
same sign. In turn, this means that the longitudinal
velocity of the plasma-generating gas changes its sign
at all points of the surface Ω0 , i.e., is equal to zero at
points on this surface:

(6)

Expression (6) physically means that the surface Ω0
separates opposite flows of the plasma-generating gas.

In this case, according to Eq. (3),

at the points of the surface Ω0 . Therefore, in the first
approximation, temperature T as a function of z near the
surface Ω0 behaves as an even-power function in z:

where a and b are certain functions on r.
Thus, the main result obtained in this study can be

formulated as follows. Inside the plasmoid of a HFID
under atmospheric pressure, the regions of direct and
inverse flow are separated by a certain surface (in view
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of the cylindrical symmetry of the problem, it is a sur-
face of revolution and is generally not a plane). This
surface is a locus of those points at which temperature
in the discharge is maximal.

As is seen, the effect of the fixed point in the high-
frequency discharge, which was established in [1], is
only a particular case of the more general physical phe-
nomenon. This is a surface whose axis has zero velocity
and that separates the direct and reverse flows in the
discharge chamber of a high-frequency plasmatron.

This result is evidently attributed to the fact that heat
that is mainly released in the discharge region, where
the temperature is maximal, is removed by convective
thermal flows to the end parts of the plasmoid.
This effect must probably be inherent in a wider
class of objects having an inner heat source limited
along the longitudinal coordinate.
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The partial oxidation of methane by atmospheric
oxygen,

2CH4 + O2 + 3.76N2 = 2CO + 4H2 + 3.76N2 (1)

is a promising method of producing hydrogen or syngas
for the needs of energy, chemical technology, transport,
etc. Fundamental interest is focused on the kinetic fea-
tures of the process, which requires the initiation of
combustion and catalytic promotion by some methods.
Below, we will analyze process (1) in a microwave dis-
charge. Methods of stimulating the conversion of
hydrocarbons that are based on the catalytic effect of a
plasma including a microwave-discharge plasma were
reported in [1–5, 8].

Since the content of methane in the original reagents
of reaction (1) is equal to about 30% and lies beyond
the limits of the ignition of the methane–air mixture (5–
15% under normal conditions), reaction (1) requires the
additional stimulation of methane combustion either by
increasing the temperature of reagents or by some kind
of initiation. A microwave discharge in use acts on the
system in both these directions. First, it efficiently
introduces additional thermal energy even to strongly
heated reagents due to the high temperature of the
plasma. Second, the plasma produces active particles
promoting the oxidation of methane in chain reactions
and initiates combustion.

The partial oxidation of methane (1) was studied
experimentally in two types of microwave discharge: a
pulsed periodic regime (streamer pseudocorona dis-
charge [1–5, 8] with a wavelength of 3 cm, pulse power
up to 300 kW, average power up to 300 W, a pulse dura-
tion of 1 µs, and a repetition frequency of 1 kHz) and a
continuous regime (coaxial torch discharge with a fre-
quency of 2.45 GHz and power in the range 1–5 kW).
Original reagents could be heated up to 500–900°C and
were supplied to a discharge chamber combined with

Hydrogen Energy & Plasma Technology Institute,
Russian Research Centre Kurchatov Institute,
pl. Akademika Kurchatova 1, Moscow, 123182 Russia
1028-3358/03/4803- $24.00 © 20119
the methane combustion zone. The composition of
reaction products was analyzed by chromatography.
The combustion criterion was the absence of oxygen in
the reaction products.

Figure 1 shows the experimental upper bounds of
the regions of methane combustion with and without
the discharge for ratios of reagents close to partial oxi-
dation (1) and for total energy contributions from the
preliminary heating and discharge that correspond to
the heating of reagents up to 500–900°C. The ratio of

reagents was described by the parameter S = 

characterizing the deviation of the composition of
reagents from the stoichiometry of partial oxidation;

QCH4

2QO2

------------

1

3 4

5

8
9

10

11 12

7

0.92

0.88

0.84

0.80

0.76

0.72

0.68

0.64
7 8 9 10 11 12 13

Tg, 102 K

S

I

II

2

Fig. 1. Boundaries of the combustion region. Experimental
points: (1–4) for the pulsed setup without a discharge,
(5) for the steady setup without a discharge, (7) for the
pulsed setup with preliminary heating and discharge,
(8−12) for the steady setup with a discharge, without pre-
liminary heating, and with the O2 content in the process
products of (9, 12) 0 and (8, 10, 11) 0.5–1%. Dashed lines
are the linear approximations of experimental dependences,
solid lines are the model calculations for (I) a methane dis-
sociation degree of 0.25%, E = 12984 ä, and ε2 =
−245 kJ/mol and (II) E = 14268 ä, ε2 = –353 kJ/mol, and
without methane dissociation.
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this parameter is equal to 1 for reaction (1) and
decreases to 0.25 with an increase in oxygen content
for the complete combustion of methane to produce
CO2 and H2O. The total energy contribution ε is deter-
mined as

(2)

where Tph is the temperature of preliminary heating,
Wdis is the discharge power, the effective temperature Tg

of reagents is determined by the sum of the energy con-
tributions from preliminary heating εph and discharge
εdis, and Q is the consumption of reagents. The ratios
CO2/CO and H2O/H2 of process products depend on S
(0.25 < S < 1), and the thermal effect increases with a
decrease in S compared to reaction (1), which facilitates
the ignition of the combustible mixture.

Figure 1 shows the bounds obtained for the combus-
tion region and experimental points important for the
construction of these bounds in the S–Tg coordinates.
Combustion arose in particular when transiting
between points 1 and 2, and 3 and 4 (increase in εph).
Point 5 corresponds to the onset of combustion and is
obtained by decreasing the parameter S to the ignition
instant with fixed preliminary heating. Since experi-
mental points 1–4 and 5, which were obtained at differ-
ent setups, can be approximated by one line, the result-
ing boundary is independent of the features of a specific
setup and is predominantly determined by the proper-
ties of the process itself. When the discharge is turned
on (points 7–12 in Fig. 1), the combustion boundary is
shifted towards lower temperatures and energy contri-
butions. The positive energy effect of the pulsed dis-
charge (point 7) compared to the equivalent thermal
energy contribution is approximately equal to
0.5 J/cm3. An even stronger effect (up to 2 J/cm3) was
obtained with continuous discharge (points 8–12).

The above results can be treated in the framework of
Semenov’s elementary theory [6], where the existence
condition of the steady combustion regime is written in
the form

(3)

where Q+ =  is the energy release in flame, q is the

specific heat of the reaction in the combustion zone, τ =

ε εph εdis+
1
Q
---- Cp T( ) T Wdis+d

T0
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∫ 
 
 

= =

=  
1
Q
---- Cp T( ) T ,d
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∫

Cpρ
dT
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dT
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dQ–
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---------,=
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τ0exp  is the characteristic time of the reaction,

and Q is the heat transfer from the flame.
The heat transfer is the sum Q– = Qconv + Qcond of

convective Q– = Qconv + Qcond, Qcond = α (T – T0),

Qconv =  and conductive losses, where α is

the heat transfer coefficient; S and V are the effective
area and volume parameters, respectively; T0 is the tem-
perature of the wall responsible for the conductive heat
transfer; Tg is the temperature of reagents entering the
flame;  = uρS is the rate at which reagents enter the
flame; and u is the velocity of flame propagation with
respect to the gas. A solution of system (3) specifies the
existence conditions of the flame under the assumption
that reagents are instantaneously mixed in the flame
when Tg ! E:

(4)

where qcr = (α + uρCp)  is the minimum energy

release in the flame for which the steady combustion

regime is possible, β =  is the ratio of conductive-

to-convective losses, and Tef = .

The energy release q in Eq. (4) depends on the com-

position of the combustible mixture 0.25 < S < 1

and, for pressure P = const, can be represented in the
form

(5)

where nL is the Loschmidt number. Formula (5) is
derived under the assumption that the combustion of a
fraction of the methane in oxygen in the flame front for
0.25 < S < 1, CH4 + 2O2 = CO2 + 2H2O (with reaction
enthalpy ε1 = 800 kJ/mol) is accompanied by the
decomposition of the remaining methane into products
with process enthalpy ε2 < 0.

The effective energy E of combustion activation in

the expression τ = τ0exp  for induction time is

determined by kinetic calculations of the ignition of the
original mixture for various initial temperatures and
various S values (Fig. 2). The role of the plasma in com-
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ṁ

E

Tef 1
Tef

E
-------+ 

 
-----------------------------–

 
 
 
 
 

exp
qcr

q
------

Tef

E
------- 

 
2

,=

ESτ0

V
------------

α
uρCp

-------------

βT0 Tg+
1 β+

---------------------

-





q S( )
nL300
T NA

--------------
ε1 ε2– 4S ε2+

2 2S 5+( )
--------------------------------------,=

–
E
T
--- 

 
DOKLADY PHYSICS      Vol. 48      No. 3      2003



STIMULATION OF THE PARTIAL OXIDATION OF METHANE 121
162754.791

22026.466

2980.958

403.429

54.598

7.389

1.000

0.135

0.018

0.002

lnτind

6 8 10 12 14 16 18
1/T, 10–4 K–1

1

2
3

4

Fig. 2. Combustion induction time τind calculated for the methane–air mixture vs. initial temperature T under adiabatic conditions:

approximations (1) 4.05 × 10−7exp  for methane dissociation degree α = 0%, (2) 8 × 10–7exp  for α = 0.25%,

(3) 1.8 ×10–6exp  for α = 0.5%, and (4) 6.93 ×10–6exp  for α = 1.0%; and (triangles) α = 0%, virtually independent of S,

(stars) S = 1 and α = 1%, and (circles) S = 0.6 and α = 1%.
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bustion initiation was simulated: calculation was car-
ried out for the partial dissociation of methane into rad-
icals (the dissociation degree was taken to be 0, 0.25,
0.5, and 1%; see Fig. 2). The plasma stimulation of
combustion was assumed to reduce to the generation of
active particles (radicals and ions). These particles are
formed both through the radical mechanism (CH4 =
CH3 + H), e.g., through reactions on the surface of soot
particles (CxHy), and through ion–molecule reactions

(e.g., in reactions with C , and C2  ions). Calcula-

tions were carried out with the special software pack-
age Khimicheskiœ Verstak. The kinetic scheme con-
sisted of more than 400 reactions based on the mecha-
nism that was proposed in [7] and agrees well with
experiment in the temperature range 500–1500 K.

Uniting Eq. (5) and solution (4) with an approxima-
tion of induction time (Fig. 2), we obtain the theoretical
boundaries of the combustion region in S–Tg coordi-
nates (lines I and II in Fig. 1). Calculations of the ther-
mal case (line II) were carried out under the condition
that the induction time is given by the approximation

τ  = 4.05 × 10–7 × exp , where E = Etherm = 14268 K

(Fig. 2), and the energy release of combustion is ε1 =
800 kJ/mol. The best agreement with experimental
results is achieved for a methane-decomposition
enthalpy of ε2 = ε2(therm) = –353 kJ/mol. This ε2 value
lies in the range of the possible enthalpy values of

H3
+ H5

+

E
T
---
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methane decomposition processes, in particular, ε2 =

−358 kJ/mol for CH4 = C3 + 2H2 .

The processing of experiments carried out on the
setup with a continuous discharge under the assumption
that the plasma generation of active particles affects
combustion provides good agreement with experiment
(line II in Fig. 1) when 0.25% of the methane is disso-
ciated. In this case, E = Edis = 12984 K, and the change
in the effective activation energy is Etherm – Edis =
1290 K. The enthalpy of the endothermic process is
equal to ε2 = ε2(therm) = –245 kJ/mol, which corresponds

to the change in enthalpy as soon as in the CH4 = C6 +

2H2 reaction. It is seen that the plasma effect promotes
both combustion, by reducing its effective activation
energy, and decomposition of methane in flame (at
lower temperature Tg) similarly to [1–5, 8].

The mechanism for generating active particles by
plasma was discussed previously [8]. Even a relatively
low effective degree of 0.25% of methane decomposi-
tion significantly accelerates the process due to the
chain reaction of methane combustion. This value is
actually attainable in experiment: the generation of
radicals in methane requires ~5–10 eV [8], and the
required plasma power is no more than W ~ 70–150 W.
Let us consider the mechanism for generating active
particles when methane and its derivatives (acetylene)
are decomposed on the surface of soot particles,
CH4 + C(s) = C(s) + CxHy . The growth rate of the

1
3
---

1
6
---
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mass of a soot particle is determined as  =

kS  (g/s), where the rate constant k = 3.75 ×

10−5exp  [g/(cm2 s Pa] is taken from the

analysis of experiments on growing pyrocarbon. The
contribution of these reactions to the methane balance is

 =  =  (cm–3 s–1).

The characteristic frequency of decomposition on the
surface of soot particles is determined by the formula

ω = kS ns (1/s). Under the assumption that each par-

ticle consists of N carbon atoms with the characteristic
size a ~ 1.3 Å and that the concentration of soot parti-

cles is such that ns < N, the upper bound of this fre-

quency is ω ≤ k  = (1–5) × 10–3 1/s. This

decomposition rate provides a relative conversion to
radicals 1 – exp(–ωτ) ~ 0.05–0.3% during the time τ for
which the particle is in the reactor; i.e., the value neces-
sary for the explanation of experimental data can in
principle be achieved.

The significant difference between the efficiencies
of the stimulation of combustion by pulsed and contin-
uous discharges is most likely attributable to the differ-
ent efficiencies of the generation of active particles in
the pulsed and continuous modes. The mechanism of
dissociation on soot particles for short pulses (1 µs) is
inefficient. Let us consider the mechanism of dissocia-
tion by an electron impact by using the electric field in
the head of the pulsed microwave streamer (Fig. 3),
which is determined from photos of the pulsed dis-
charge in air by an image converter. The length of the
streamer and its propagation velocity (V in Fig. 3) are
measured at various times from the onset of the micro-
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Fig. 3. Time dependence of (1) the propagation velocity of
the microwave streamer and (2, 3, and 4 for β = 3, 4, and 5,
respectively) the electric field in the streamer head for a
radiation pulse duration of 1 µs.
wave pulse. In the model proposed in [9], the velocity
V is related to the field E in the streamer head as

(6)

where D is the diffusion coefficient, v i is the ionization
frequency, v a is the adhesion frequency, Ebr is the
breakdown field, and β = 3–5 for Ebr < E < 5Ebr . Sub-
stituting the field value E = 75 kV/cm at the pulse onset
[5] into Eq. (6), one can recalculate the velocity
obtained for streamer propagation to the estimated time
dependence of the field E (lines 2–4 in Fig. 3). The elec-
tric field is in the range 30–75 kV/cm, and the concen-
tration of electrons in the streamer is ~1012–1014 cm–3

[5]. The dissociation rate constant kd by electron impact
for methane CH24 + e  CH3 + H + e is equal to
10−11–10–9 cm3/s (it depends strongly on the number of
excited methane atoms). For a 1-µs-long pulse, the
fraction of formed radicals is determined from the bal-
ance between methane dissociation and recombination

of radicals δ =  ~ 10–3–10–4. Taking into

account that the relative pulse duration of the pulsed
discharge is equal to 103, one obtains a value of ~10–6–
10–7 for the fraction of decomposed methane, which
slightly affects combustion stimulation.
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In this study, the dynamic strength of the AMg6M
aluminum alloy at high strain rates is investigated. A
method of determining the time when spallation occurs
in an opaque material is developed. It is shown that the
material is deformed and destroyed through different
mechanisms depending on the strain rate. The ultimate
value of the dynamic strength of the material under
investigation is measured.

1. EXPERIMENT

To determine the dynamic strength of a material, we
used the phenomenon of spallation, which arises when
the front of a shock wave is reflected from the free
surface of a target made of the material under investiga-
tion [1]. The shock wave was generated by pulsed laser
radiation acting on the face of the target.

Experiments were carried out with two Nd:glass
laser setups: Kamerton and Sirius (General Physics
Institute, Russian Academy of Sciences). The basic
parameters of the Kamerton are 0.53-µm wavelength,
100-J maximum pulse energy, and 2.5-ns pulse dura-
tion [2]. The parameters of the Sirius are 1.06-µm
wavelength, 60-J maximum pulse energy, and triangu-
lar-pulse duration varying between 5 and 80 ns [3].

Laser radiation was focused on a 1-mm-diameter
spot on the target. Targets were plates made of the
AMg6M aluminum alloy with thickness from 180 to
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460 µm. To decrease edge effects, the back of a target
had a shoulder 100 µm in height and 1 mm in diameter.
To determine the time tsp of spallation, the arrival time
of the spall layer tarr at an electric-contact detector was
measured by a Tektronix TDS-744A oscilloscope. The
target–detector distance was varied between 110 and
880 µm. The spall strength and the time when the spall
layer was separated from the target were obtained using
the thickness of the spall layer hsp and time tarr , which
were measured in each experiment. The features of the
shock-wave hardening were studied in experiments
with artificial spall layers. In this case, an 8–50-µm-
thick aluminum foil was attached with a slight force on
the back of the target.

2. SIMULATION

The velocity of a material layer that was separated
from the target in the process of spallation was calcu-
lated by numerical simulation for each experiment. We
developed a one-dimensional unsteady hydrodynamic
code [4, 5] based on the numerical calculation of differ-
ential equations representing the laws of conservation
of mass, momentum, and energy with the wide-range
semiempirical equation of state of the material under
investigation [6]. The shape of a pressure pulse was
assumed to coincide with that of a laser pulse. The rela-
tionship between the amplitude of the pressure pulse Pa

and the laser pulse intensity I was specified by the sim-
ilarity relation [7] in the form

Pa = AIm,

where the coefficient A and exponent m are determined
by particular conditions of the laser action [8].

3. DETERMINATION 
OF THE SPALLATION TIME tsp

In a target region undamaged after the laser action,
the average position of the spallation plane S and the
average thickness of the spall layer hsp were measured
2003 MAIK “Nauka/Interperiodica”
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with a microscope. The spallation time tsp was deter-
mined from the nonlinear equation

Here, L is the distance from the back of the target,
where the electric-contact detector was mounted, and

tsp
L

v sp
--------+ tarr.=
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Fig. 1. Pressure profiles in the spallation plane for the
(a) dynamic and (b) quasistationary regimes.
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Fig. 2. Spall strength of the AMg6M aluminum alloy as a
function of the strain rate in the dynamic regime: (s) laser
experiments, (h) explosion experiments [10], and e artifi-
cial spall layer.

.

the velocity of the spall layer v sp is calculated by the
formula

where the pressure profile P(t) in the spallation plane S
is calculated numerically, msp = ρ0hsp is the mass per
unit area of the spall layer, and the time t0 corresponds
to the onset of the pressure pulse acting in the spallation
plane (Fig. 1). Next, we determined the spall strength of
the material σ* by the formula σ* = P(tsp). The strain
rate of the material in the spallation plane at the time tsp,
which can be found by the formula

was calculated numerically. Here, V is the specific vol-
ume, ρ is the density, and the subscript 0 denotes their
initial values.

Note that the fracture of the material has a compli-
cated time-extended kinetic character [9]. In this study,
it was assumed for simplicity that the spallation occurs
instantly when the negative pressure reaches the
dynamic strength of the material.

4. RESULTS

In our experiments, we observed two basic modes of
deformation in the material under investigation that led
to its fracture. They can be defined as dynamic and qua-
sistationary modes. The qualitative difference between
these mechanisms is as follows. In the former case, load
increases linearly up to fracture. In the latter case, the
material expanded rapidly and was then destroyed
under a nearly constant load (Fig. 1). Both mechanisms
are competitive. The mechanism for which spallation
occurs earlier begins first under the given conditions of
the shock-wave loading of a sample.

Dynamic deformation mode. The experimental
spall strength of the material σ* as a function of the

strain rate  is shown in Fig. 2, where the results of

previous explosion experiments [10] are also shown. It
is seen that the dynamic strength of the material
increases monotonically in this mode up to a strain rate
of 107 s–1 and can be described by the empirical relation

Next, the spall strength increases sharply up to
 = 80 kbar and then remains virtually unchanged.

This behavior indicates that the dynamic strength of the
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material under investigation reaches its ultimate value.
A theoretical estimate of the ultimate dynamic strength

 ≈ 100 kbar [10] corresponds to the approximation
of the simultaneous rupture of all bonds in a solid.

As expected (see, e.g., [11]), the results of experi-
ments with artificial spall layers (except the first two
points on the lower curve in Fig. 2) show that the mate-
rial is hardened in the contact plane between the artifi-
cial layer and target surface. The static strength of the

material measured in the limit   0 as t  ∞ is

equal to  = 3.4 kbar [12] and is shown by the hori-
zontal straight line in Fig. 2.

Quasistationary deformation mode. In the exper-
iments, the material is deformed at the initial stage at a

rate  exceeding 5 × 107 s–1, and then the material is

in an expanded state for a time interval ∆t = tsp – t1
under a nearly constant load until the fracture of the
material (Fig. 1b). Here, t1 is the time when the pressure
becomes negative. The experimental spall strength as a
function of the duration of a quasistationary negative
pressure pulse is shown in Fig. 3. Data processing by
the method of least squares shows that the dynamic
strength of the material in this case is almost inversely
proportional to the duration ∆t of the negative pressure
pulse:

For small ∆t values, the spall strength in the quasista-
tionary mode tends to the maximum spall strength in

the dynamic mode accessible at large  values. At

σdyn*
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V0
------

σst*

V̇
V0
------

σ* kbar[ ] 7 102× ∆t   ns [ ]( ) 
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Fig. 3. Spall strength of the AMg6M aluminum alloy as a
function of the duration of the tensile stress in the quasista-
tionary regime: (s) laser experiments and (h) artificial spall
layer.
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0

∆t  80 ns, the spall strength tends to its static value
 = 3.4 kbar. The results of experiments with artifi-

cial spall layers (Fig. 3) corroborate that the material is
also considerably hardened under the shock-wave
action in this case.

Thus, the results of our investigations indicate that,
for the first time, we have determined the time of spal-
lation. This made it possible to establish that the mate-
rial is deformed and destroyed through different mech-
anisms at high strain rates. The ultimate dynamic
strength of the AMg6M aluminum alloy was measured.
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Physical Features of High-Velocity Interaction
of Elongated Technogenic Fragments with Constructions

A. V. Radchenko*, Academician V. E. Fortov**, and I. E. Khorev***
Received October 3, 2002
During the last four decades, the extension of
humanity’s activity in space has been accompanied by
the continuous increase in the accumulation of various
fragments in the Earth’s environment. Among these
fragments are satellites that have ceased operation, the
last stage of rockets, elements of systems that separate
satellites from rockets, acceleration blocks, wreckage
of satellites and rockets formed as a result of accidental
or planned explosions, etc. All these fragments accu-
mulated in near-Earth orbits make up the so-called
space garbage, whose excessive abundance presents a
real and current danger for various spacecraft and for
the lives of astronauts [1, 2]. Fragments of technogenic
garbage have wide spectra of masses, shapes, and
velocities of their collisions with launched space
objects. The possible velocities of overtaking and head-
on collisions with active spacecraft vary in a wide inter-
val (from 0 to 15 km/s). It is physically clear that the
frontal impact of dense high-strength elongated frag-
ments with a spacecraft is most dangerous.

This work is devoted to the physicomathematical
simulation of the processes of high-velocity impact of
elongated fragments with various targets imitating the
protection of space objects.

Experimental investigations were carried out on
special benches with gunpowder and light-gas ballistic
setups for throwing various models of technogenic
fragments, with further analysis of saved samples [3,
4]. The velocity of impacting bodies was measured by
an inductive velocity transmitter with an accuracy of
0.2%. As fragments we used high-strength steel
(HRC = 64–68) elongated pointed impacting bodies
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with diameter d =10.9 mm, length l = 3.3d, and weight
19.5 g. The head part of the impacting bodies, with a
height of h = 2.4d, was formed by the arc with radius
r = 6.2d. In order to conserve the integrity of impacting
bodies being thrown and to increase their piercing and
penetrating capabilities, they were placed in a soft
bimetallic shell with a diameter of 12.7 mm. The total
weight of a fragment was equal to 31.6 g. Monolithic
and shielded obstacles of various strengths were used
as targets. Steel plates with Brinell hardnesses of HB =
170, 300, and 440 kgf/mm2 were used as massive obsta-
cles. Steel and lead plates of various thicknesses were
used as shields.

The first run of experiments was carried out for
studying the features of the penetration of high-strength
elongated fragments into massive targets in a wide
range of collision velocities. Figure 1 shows the exper-
imental dependence of the crater (penetration) depth Lk

on the impact velocity for obstacles with HB = (1, cir-
cles) 170, (2, crosses) 300, and (3, triangles)
440 kgf/mm2. As follows from the results, the velocity
dependences of the crater depth are complex and con-
sist of three substantially different regions.

(i) The collision region with relatively low veloci-
ties. In this region, impacting bodies penetrating into a

Fig. 1. Crater depth vs. the impact velocity of a technogenic
fragment for obstacles with HB = (1, circles) 170,
(2, crosses) 300, and (3, triangles) 440 kgf/mm2.
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target are only elastically deformed and do not fail. In
penetration curves Lk(v 0), this behavior corresponds to
the region of sharp increase in the crater depth with an
increase in the impact velocity up to a certain maximum
depth Lk max determined by the ratio of the strength
parameters of a fragment–obstacle pair [4].

(ii) The region of critical interaction velocities. For
impact velocities v 0 > v cr, penetration depth for all
obstacles does not increase with collision velocity in a
narrow range of interaction velocities. For v 0 = v cr,
impacting bodies begin to be irreversibly deformed and
to undergo brittle failure. This behavior was first
observed and reported in [5, 6], where it was shown that
the relative penetration depth of copper, steel, and tung-
sten carbide balls into a lead half-space decreases due
to the deformation (flattening) of the balls and that the
transverse diameter increases, which leads to a sharp
increase in the resistance force and, therefore, to a
decrease in penetration depth. This behavior corre-
sponds to the local bend in the penetration curves.
Experiments indicate that initial failure usually arises
in the base of the head part of a fragment or in sections
close to it [4]. As collision velocity increases, the fail-
ure nucleation site propagates to the impacting body
vertex. Since the strength parameters of the impacting
body and obstacle are statistically distributed, various
technological factors exist, and impacting bodies inev-
itably undergo nutation, the failure process is stabilized
in a certain range of impact velocities (it is shaded in
Fig. 1). In this case, crater depth decreases sharply until
velocity reaches the value v hvt, called the high-velocity
threshold in [4].

(iii) The region of hydrodynamic collision veloci-
ties. In this region (v 0 > v hvt), penetration depth
increases again with impact velocity, and this increase
retards as velocity increases. The curve L(v 0) has a
point of inflection, and its upper branch (realized in
experiments) is convex, in contrast to the first region.
The failure of the impacting body has the character of
stable wear, and the process of crater formation can be
treated as “inflowing” of a variable-mass body into an
obstacle.

As follows from the extrapolation of line 1 to the
region of high impact velocities in Fig. 1, the maximum
penetration depth (80 mm) reached for an impact veloc-
ity of 1.6 km/s will be reached again only for a compar-
atively high collision velocity of 7 km/s (about orbital
velocity) even for the lowest strength obstacle. There-
fore, high-strength elongated fragments are most dan-
gerous in frontal impacts with comparatively low colli-
sion velocities (overtaking courses) up to 2–2.5 km/s.

It is known that the most efficient protection against
high-velocity impacts with compact fragments is a
shielded construction, i.e., the use of thin shields placed
in front of the basic obstacle (Whipple effect) [7]. In
this case, the shield breaks an impacting body into
smaller fragments, and a dispersed impact with a sig-
DOKLADY PHYSICS      Vol. 48      No. 3      2003
nificantly smaller penetration depth occurs instead of a
concentrated impact.

The second run of experiments was carried out to
reveal the effect of shields on the damage of massive
obstacles by the same elongated fragments in a frontal
impact. Steel plates (HB = 170 kgf/mm2) 5, 10, and
15 mm in thickness and 5-mm-thick lead plates were
used as shields. To ensure the outlet of a whole impact-
ing body from a shield, shields were placed at a dis-
tance of 50 mm from the face surface of a massive
obstacle. Figure 2 shows the results for the estimated
total penetration depth LΣ (shield thickness plus pene-
tration depth into massive targets) compared to the first-
run experiments on the penetration of the same frag-
ments into unshielded targets. The experiments show
that the total penetration depth into shielded obstacles
[line 2, shield thickness of (square) 5, (triangle) 10, and
(diamond) 15 mm] is smaller (by 20% on average) than
the penetration depth into unshielded targets (line 1) for
hydrodynamic velocities and that the shield thickness
does not substantially affect the total penetration depth.
Lead shields (line 3; squares correspond to a 5-mm-
thick lead shield) were found to have an increased effi-
ciency for high impact velocities of about 3 km/s,
which is associated with the increased destructive capa-
bility of dense materials (lead, tungsten, gold, uranium,
etc.). In the collision region with relatively low veloci-
ties, i.e., until the onset of the failure of impacting bod-
ies, lines 1–3 coincide with each other. It was shown
that fragments begin to fail on lead shields at lower col-
lision velocities than on steel shields, because the den-
sity of lead is higher, and a lead obstacle therefore acts
with a higher resistance force against the penetration of
an impacting body [5, 6].

Since such experiments are expensive, it is of inter-
est to simulate this complex process on a computer in
order to obtain missing information immediately from
the region of high-velocity deformation and failure of
interacting bodies.
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Fig. 2. Total penetration depth vs. the impact velocity of a
technogenic fragment on shielded obstacles with HB = (1, cir-
cles) 170, (2, crosses) 300, and (3, triangles) 440 kgf/mm2.
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Fig. 3. Configurations of an impacting body and shield with the contours of the specific volume of cracks for an impact velocity of
(a) 0.8 and (b) 1.5 km/s and a shield thickness of (a) 10 and (b) 5 mm at t = (a) 37 and (b) 12 µs.

(b)
The behavior of interacting bodies is mathemati-
cally described by using the model of a damaged
medium, which implies the presence of microcavities
(pores and cracks) [8–10]. The total volume W of this
medium is the sum of the volume Wc of the undamaged
part of the medium with the density ρc and the volume
W* of microcavities, where density is taken to be equal

to zero. The average density of the damaged medium is

related to the introduced parameters as ρ = . The

degree of medium damage is characterized by the spe-

ρc

Wc

W
-------
cific volume of microdamages V* = . The set of

equations describing the unsteady adiabatic motion of
this medium involves the equations of continuity,
motion, energy, and the master equation of the variation
of the specific volume of microdamages [9]. Numerical
simulation is carried out by the modified finite-element
method in the axisymmetric formulation [10–13].

Figure 3 shows configurations calculated for an
elongated fragment and shields with the contours of the
specific volume of cracks for an impact velocity of
(a) 0.8 and (b) 1.5 km/s and a shield thickness of (a) 10

W*
Wρ
--------
DOKLADY PHYSICS      Vol. 48      No. 3      2003



        

PHYSICAL FEATURES OF HIGH-VELOCITY INTERACTION 129

              
and (b) 5 mm. Analysis of contours for the specific vol-
ume of cracks shows that the degree of damage for a
collision velocity of 0.8 km/s is insufficient for the
appearance of macrocracks responsible for the division
of the head of an impacting body into parts. As impact
velocity increases, the development of damage of the
fragment-head material changes its qualitative charac-
ter. The evolution of microdamages in the impacting
body indicates that the nucleation site of damage rises
to 11 µs. It is located in the head part on the symmetry
axis and appears due to the interaction between off-
loading waves propagating from the lateral surfaces of
the head of the impacting body that partially penetrates
beyond the rear surface of the plate. To a time of 12 µs,
damage nucleation sites appear over the entire lateral
surface of the impacting body, and the degree of the
damage of its material is maximal over the perimeter of
the base of the head. Cracks nucleating on the lateral
surface of the fragment propagate rapidly in depth. The
development of cracks is accompanied by intense shear
deformations resulting in the division of the head of the
impacting body into fragments. Thus, calculations
show that the failure of an impacting body penetrating
through shields is most intense near the base of its head
due to simultaneous intense tensile and shear deforma-
tions.

Figure 4a shows the time dependences of the resis-
tance forces against the penetration of the impacting
body (line 1) with a velocity of 0.8 km/s into 10-mm-
thick shields and with a velocity of (2) 1.5, (3) 2, and
(4) 2.5 km/s into 5-mm-thick shields. For a velocity of
0.8 km/s, the resistance force increases monotonically
until 18 µs due to the monotonic increase in the contact
area between the head of the impacting body and the
shield. From 18 to 26 µs, the resistance force decreases
rapidly by 60%, because the head of the impacting
body emerges from the rear side of the shield. From 26
to 29 µs, the resistance force increases again by 50%
due to intense off-loading waves in the head of the
impacting body, which penetrates behind the rear sur-
face of the shield. After 29 µs, as the head of the
impacting body leaves the shield, the resistance force
decreases rapidly. The resistance force changes its
behavior when the impact velocity increases by a factor
of 2 or more. Lines 2–4 involve four characteristic
regions. In the first region, the resistance force
increases due to an increase in the body–shield contact
area. In the second region, whose length decreases with
an increase in velocity, the dependence of the resistance
force is sinusoidal curves whose half-period varies
from 4 µs for a velocity of 1.5 km/s to 1 µs for a veloc-
ity of 2.5 km/s. The behavior of the resistance force in
this region is considerably determined by wave effects
in the shield and impacting body. In the third region, the
resistance force decreases by more than half, because
the head of the impacting body penetrates behind the
rear side of the shield. In the last, fourth, region, the
resistance force increases rapidly. For a maximum
impact velocity of 2.5 km/s, this increase begins at the
DOKLADY PHYSICS      Vol. 48      No. 3      2003
earliest time of 7.5 µs and is the fastest. Comparison
between Figs. 3 and 4 shows that the fourth region of
the dependence of the resistance force coincides with
the onset of the stage of intense fragment deformation.
This deformation leads to the failure of the head of the
fragment. In Fig. 3 (for a velocity of 1.5 km/s), the gen-
eratrix of the surface of the impacting body has a pro-
nounced bend in the base of its head, which is caused
by an increase induced in the volume of this part due to
the off-loading of the material.

The effect of various factors on the penetration of a
fragment into a 5-mm-thick plate can be clearly
revealed by analyzing the time dependence of the deriv-
ative of the radial momentum of the impacting body
(Fig. 4b, where lines 1, 2, and 3 correspond to velocities
1.5, 2, and 2.5 km/s, respectively). These curves illus-
trate the radial vibrations of the material in the process
of penetration and the wave character of the body–
shield interaction. There are three characteristic time
regions in these curves: in the first, second, and third
regions, the radial momentum increases monotonically,
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Fig. 4. Time dependences of (a) the resistance force of the
shield and (b) the rate of variation of the radial momentum
of the impacting body (line 1) with a velocity of 0.8 km/s for
10-mm-thick shields and with a velocity of (2) 1.5, (3) 2,
and (4) 2.5 km/s for 5-mm-thick shields.
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decreases, and increases rapidly, respectively. The vari-
ation rate of the derivative of the radial momentum is
maximal in the third region. These three time regions
are most pronounced in curve 3 for a collision velocity
of 2.5 km/s. Comprehensive analysis of the above cal-
culations shows that the derivative of the radial momen-
tum changes its sign at the second stage due to the
intense off-loading wave in the head of the impacting
body, which has penetrated beyond the rear side of the
shield. As a result, after a short-term decrease in inter-
action intensity, which is caused by disagreement
between the radial vibrations of the shield and impact-
ing body, they gain opposing radial velocities in the
contact region, and a head-on collision occurs. This col-
lision leads to a sharp increase in the interaction force,
which is manifested in the unusual sharp increase in all
time dependences of the resistance forces. In this inter-
val, the maximum diameter of the cylindrical part of the
impacting body increases sharply by 8–10%. The con-
tact area increases as diameter squared, and the mass of
the shield material that resists the penetration of the
impacting body is proportional to the third power of the
diameter. As a result, this behavior leads to a short-term
(0.5–1 µs) sharp increase in the resistance force. As was
mentioned above, this increase in the interaction force
is responsible for rapid accumulation of damage in the
head of the fragment and finally for its fragmentation.

Thus, complex experimental and theoretical investi-
gations of the interaction of high-strength elongated
fragments with shielded obstacles show conclusively
that models of the piercing of shielded obstacles must
take into account the failure of not only obstacles but
also impacting bodies. Special attention must be con-
centrated on the development of physicomathematical
models of the joint interaction of the flux of fragments
and fragments of the impacting body with an obstacle
after shield piercing [13].
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In the theory of ideal plasticity, the strain rate inten-
sity factor was introduced in [1] on the basis of analysis
of the singular behavior of a velocity field near a maxi-
mum friction surface on which the following condition
is satisfied:

(1)

where τf are the specific friction forces and k0 = const is
the yield point in the case of simple shear. In [2], it was
shown that there is a fairly complete formal analogy
between the strain rate intensity factor in plasticity the-
ory and the stress intensity factor in elasticity theory. In
particular, the strain rate intensity factor Ke is deter-
mined from the following representation of the equiva-
lent strain rate near a maximum friction surface:

(2)

where s is the distance along the normal from the fric-
tion surface. From Eq. (2), it follows that the strain rate
intensity factor has the dimension

Ke [m1/2 s–1]. (3)

An equivalent strain rate is used in numerous mod-
els that are generalizations of a rigid/perfectly plastic
material and, in particular, in master equations describ-
ing the evolution of different properties of the material.
From Eq. (2), it follows that the equivalent strain rate
increases rapidly when approaching the friction sur-
face. Therefore, the properties of the material must be
characterized by a significant gradient near this surface,
which is in good agreement with many experimental
data [3, 4]. It should be noted that, if the value of ξeq is
sufficiently large, the resistance of the material in the
process of inelastic deformation depends on ξeq even
for cold treatment [5]. Since ξeq  ∞ as s  0, mas-
ter equations are meaningless for material points mov-
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ing along the friction surface. In the theory of cracks,
which is based on linear elasticity theory, an analogous
situation arises when the behavior of a solution is ana-
lyzed near the crack tip. Since stresses tend to infinity
at the crack tip, any criterion for stresses predicts frac-
ture, and any condition of yielding predicts the forma-
tion of a plastic zone near the crack tip for arbitrarily
small loads. One of the possible methods of predicting
fracture at the crack tip in the framework of linear plas-
ticity theory is extensively used in applications and
includes a fracture criterion based on the stress inten-
sity factor [6, 7]. The stress intensity factor can also be
applied to evaluate the size of the plastic zone [7], as
well as to construct similarity conditions for both brittle
and plastic fracture [8]. In this study, we suggest that
the last method be generalized and that the strain rate
intensity factor be used to estimate layer thickness near
a maximum friction surface, where intense processes
caused by a high strain rate occur. An approach that is
based on classical boundary-layer theory and considers
a rigid/perfectly plastic material was developed in [9,
10] to obtain solutions near friction surfaces. However,
the singular character of the velocity field near maxi-
mum friction surfaces was not taken into account in
those studies. The effect of such a behavior was not
analyzed in the framework of the above theories.

One of the simple viscoplastic models is determined
by the yielding condition

(4)

and the yielding law related to this condition. In this
equation, ξ0 = const is a certain characteristic strain
rate. For an infinitesimal strain rate, Eq. (4) tends to the
yielding condition of an ideal plastic material. In addi-
tion, relation (4) coincides with this condition for
ξ0  ∞. Thus, when the ideal plastic model is appli-
cable, ξ0 must be sufficiently large. From Eq. (4), it fol-
lows that ξ0 has the dimension

(5)

From Eqs. (3) and (5), the characteristic length for a
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given process and a given material can be determined as

(6)

Hence, it is seen that the characteristic length is small
for large ξ0 values, which is in qualitative agreement
with the available experimental data. For example, it
was shown in [4] that, for the plane extrusion of an alu-
minum alloy, the thickness of a layer in which signifi-
cant structural modifications of the material occur is
about 200 µm for a characteristic thickness of the
deformed zone of 3 mm. Assuming (by analogy with
fracture mechanics) that there is a certain critical value

 of the factor Ke and taking Ke = , we find from
Eq. (6) that the characteristic length for this material is

(7)

In most cases, the parameters of viscoplastic models
are obtained at elevated temperatures. To apply the
method proposed, it is necessary to know the quantity
ξ0 in the processes of the cold pressing of metals.
Experimental investigations of the behavior of stress–
strain curves in a wide range of the strain rate under
conditions of cold deformation were generalized in [5].
Using these curves and assuming that relation (4) is
valid, one can estimate ξ0 . In particular, the data pre-
sented for aluminum in [5] for the equivalent strain rate
in the range 10–4 ≤ ξeq ≤ 104 show that, for the deforma-
tions developed when the stress–strain curves tend to
the horizontal asymptotes, ξ0 is about 2 × 104 s–1. Using
this value and the strain rate intensity factor found from
the model of an ideal plastic material, one can evaluate
the thickness of the layer of large shear strains from

Eq. (6). If  can be found from an independent exper-
iment, Eq. (7) makes it possible to determine Lm .

As an example, we consider one of the well-known
problems in classical plasticity theory: compression of
a layer between rough plates (the Prandtl problem). The
solution to this problem is available, for example, in
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[11]. The geometry of the process is schematically
shown in Fig. 1. It is assumed that the maximum fric-
tion law is valid on the plate surfaces y = ±h. In the Car-
tesian coordinate system xy, the velocity-vector compo-
nents ux and uy are determined by the equations

(8)

Here, V is the velocity of the plates, l is the half-width
of the plastic layer, and h is the half-thickness of the
plastic layer. From Eq. (8), it is possible to find the
shear strain rate ξxy in the form

(9)

From this expression, it follows that ξxy  ∞ as
y  h. Since the remaining components of the strain-
rate tensor are finite, Eq. (9) determines the behavior of
the equivalent strain rate near a maximum friction sur-

face. By definition, ξeq = . Consequently, from

Eq. (9), we have

, (10)

as y  h. Taking into account that s = h – y in the case
under consideration and comparing Eq. (10) with
Eq. (2), we obtain

(11)

Substituting Eq. (11) into Eq. (6), we determine the
characteristic size of the large-strain zone:

(12)

The characteristic value of the velocity V depends on
the type of forge-and-pressing machine. In particular,
V = 0.2, 0.4, 7, and 18 m/s for hydraulic presses, crank
mechanisms, rotary-type machines, and hammers,
respectively [12]. Taking into account these V values
and using the previously obtained ξ0 value, we can
determine from Eq. (12) the relative thickness of the
layer of large strains as a function of the thickness of
the deformed layer. This function is shown in Fig. 2 for
(curve 1) hydraulic presses and (curve 2) crank mecha-
nisms and in Fig. 3 for (curve 1) rotary-type machines
and (curve 2) hammers. As is seen from Figs. 2 and 3,
in the range of sample thicknesses under consideration
for all types of machines (except for hammers), the
thickness of the layer of large strains is much less than
the characteristic size h for this process. In the case of
treatment by hammers, the thickness of the large-strain
layer is comparable with and much less than the char-
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acteristic length of the process for deforming suffi-
ciently thin and relatively thick samples, respectively.

When deformation happens at high temperatures, ξ0
decreases. For example, for an aluminum alloy [13], it
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was found that ξ0 = 220 s–1 at typical temperatures for
hot pressing. Apparently, under these conditions, the

ratio  increases by several orders of magnitude, so

that the theory proposed above will be inapplicable for
a wider velocity range than in the case of cold treat-
ment. On the other hand, the theory can be extended to
some incompressible materials, whose yield conditions
depend on average stress. In particular, as was shown
in [14], for materials satisfying the double-shear model
[15], the behavior of the equivalent strain rate near a
maximum friction surface is also described by Eq. (2).
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Three-dimensional boundary-value problems for
partial differential equations in bounded regions are
analyzed. A new approach to solving some boundary-
value problems is proposed. The approach is based on
the separation of functions into classes according to
their supports and their further analysis. This approach
represents a solution in a much more descriptive form
and enables one to analyze the state of the inner regions
of a deformed body and to naturally include objects
such as “vibration stability viruses” into consideration
of a lithospheric plate [1]. An advantage of this method
is that solutions for both simply connected bounded
regions and multiply connected unbounded regions are
represented in a similar form [1, 2].

Spatial dynamic problems of continuum mechanics
for anisotropic prestressed materials with inclusion of
temperature, piezoelectric, and electromagnetic proper-
ties corresponding to the real media of the Earth’s crust
and ecological problems are among such problems.
Investigations in this direction were begun in [3, 4] in
response to the concept of the Earth’s block structure,
which was proposed by Academician Sadovskiœ [5]. At
present, when the real structure of the Earth’s crust can
be determined experimentally and mechanical charac-
teristics in the earthquake preparation zone can be cal-
culated, these investigations are of current interest.

Below, we will analyze three-dimensional problems
for convex regions with smooth boundaries; the
n-dimensional case is analyzed similarly.

1. In a bounded convex simply connected region Ω
with boundary Γ whose curvatures are twice continu-
ously differentiable, we consider the boundary-value
problem for the following system of partial differential
equations with constant coefficients:

Q xn∂ xk∂,( )j 0, x Ω R3( ),∈=

R xk∂( )j f , x Γ .∈=
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Here, the Q operator can be represented in the matrix
form

(1)

Summation over repeated indices is implied, and the
notation is the following:

(2)

We consider that the boundary operator R satisfies the
Shapiro–Lopatinskiœ conditions and the boundary-
value problem is well posed.

This boundary-value problem generates a pseudod-
ifferential operator whose elliptic symbol is the matrix
function Q(a). It is known [6, 7] that this pseudodiffer-
ential operator acts in the space of slowly increasing
generalized functions Hs(Ω) and is limited from Hs(Ω)
to Hs – 2(Ω) for any s, where

(3)

Q xn∂ xk∂,( ) amrnk xn xk bmrk xk∂+∂∂ cmr+ .=

R xk∂( ) hmrk xk pmr+∂ ,=

x∂ ∂
x∂

-----, hmrk hmrk Γ( );= =

j ϕ r{ } , r 1 2 … M, m, , , 1 2 … M;, , ,= = =

f f r{ } , ϕ x( ) ϕ x1 x2 x3, ,( );= =

Q α( ) Q iαn– iα k–,( ), n k,≡ 1 2 3;, ,=

Q detQ α( ), det amrnkαnα k 0, a 0.>≠=

j s
2 ϕ r s

2, ϕ r s
2∑ Fϕ r

2 1 a+( )2s a,d

∞–

∞

∫∫∫= =

r 1 2 … M,, , ,=

a 2 α1
2 α2

2 α3
2
, da+ + dα1dα2dα3,= =

dx dx1dx2dx3,=

Fϕ r ϕ r x( )ei a x,〈 〉 x,d∫∫
∞–

∞

∫=

ϕ r
1

2π( )3
------------- Fϕ r x( )e i a x,〈 〉– a,d∫∫

∞–
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a x,〈 〉 α 1x1 α2x2 α3x3.+ +=
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For s > 0.5, the reduction operator from Ω to Γ acts
as a limited operator from Hs(Ω) to (Γ).

Considering that the generalized vector function is
such that j ∈  Hs(Ω), we take the triple Fourier trans-
form of system of differential equations (1). Taking the
Fourier transform of derivatives and integrating by
parts with inclusion of boundaries, we arrive at the rela-
tions

(4)

Here, matrices T(x, a) and G(x, a) are known, result
from integration, and include the relations between the
normals to the surface and axes of the chosen coordi-
nate system [3, 4], while dΓ is the element of the ori-
ented surface.

The right-hand side of Eq. (4) involves all 2M
boundary operators that are admissible by the bound-
ary-value problem and are referred to as natural. In par-
ticular, both the boundary operator corresponding to the
Dirichlet problem and the Neumann boundary operator
appear in the case of the boundary-value problem for
the Laplace equation.

Thus, the right-hand side of Eq. (4) involves the set
of natural boundary operators, the number of which,
due to the appearance of the S operator, exceeds the
number required for the correct formulation of the
boundary-value problem. Solving the system of equa-
tions with respect to the j(x) vector, we obtain the rep-
resentation

(5)

We introduce the vector functions f that specify the
boundary conditions to the right-hand side of Eq. (5).
The g vector generated by M independent boundary
conditions remains unknown:

Therefore, to determine the j vector function, i.e.,
to solve the boundary-value problem, it is necessary to
find the g vector. 

The relations necessary for its determination are
obtained by factorization, i.e., by separating a class of
functions that are equivalent due to the requirement that

they have a common support in . 
Factorization automatically leads to the formulation

of the boundary conditions of the given boundary-value
problem. When the dimension exceeds one, it is neces-
sary to analyze multidimensional manifolds.

H
s

1
2
---+

Q α( )Fj N a ξ,( )ei ax〈 〉 Γ ,d∫
Γ
∫=

N a x,( ) T x a,( )R x∂( )j x( )=

+ G x a,( )S x∂( )j x( ).

j x( )

=  
1

8π3
-------- Q 1– a( ) N a x,( )e i a x x–( )〈 〉– Γd a.d∫

Γ
∫∫

∞–

∞

∫∫

Sj x( ) g x( ).=

Ω
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2. Since Ω is a bounded region, it is a compact set.
We introduce topology in it, i.e., the covering of the
Euclidean space uλ by open balls. An atlas is con-
structed by introducing local coordinate systems in
each covering element so that the Jacobi determinants
of transitions from one coordinate system to another
have the same sign [8, 9]. In this case, at each point of
the boundary Γ that lies in the overlapping with a ball,
its covering Γλ and local coordinate system are gener-
ated. We take this coordinate system to be orthogonal;
one axis is directed along the outer normal, and the
other axes are directed along the geodesic lines. In this
case, the surface Γ is oriented and is covered by open
regions, and the Jacobian of the transition from the
local coordinate system in one region to the coordinate
system in another region is positive.

The manifold constructed above makes it possible to
represent integral relation (5) by means of exterior cal-
culus in terms of the exterior form [7–9]

(6)

Here, D(a) is the polynomial matrix of the cofactors of
the elements of the Q(a) matrix, the degree of the poly-
nomials of matrix elements is no more than 2(M – 1),
σ is the compactified cycle with identified infinite
points, and Q(a) is the 2M-degree polynomial of three
complex variables αk .

Taking into account the fact that the degree of the
elements of the N(a, x) matrix is no more than unity,
we conclude that the elements of the matrix

(7)

are polynomials of the parameters αk with degrees of no
more than 2M – 1.

We require that the vector function ϕ(x) vanish

beyond ; i.e., we factorize it with respect to this sup-
port. As a result, it is necessary to analyze the following
integrals of meromorphic exterior forms of the three
complex variables, which are generated by the elements
of the P(α, ξ) matrix:

(8)

j x( ) 1

8π3
-------- Q 1– a( )D a( )∫∫

σ
∫=

× N a x,( )e i a x x–( )〈 〉– Γd α1Λd α2Λd α3,d∫
Γ
∫

Q 1– a( ) Q 1– a( )D a( ).=

D a( )N a x,( ) Pmn a x,( ) P a x,( )= =

Ω

j x( ) 1

8π3
--------=

× P a x,( )
Q a( )

------------------∫ e i a x x–( )〈 〉– Γd α1Λd α2Λd α3,d

Γ
∫∫∫

σ
∫

x Ω.∉
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In terms of the theory of manifolds, the problem
reduces to the analysis of the homology and cohomol-
ogy groups of these meromorphic exterior forms.

For simplicity, we consider integral (8) under the
assumption that the Q(a) polynomial has first-order
zeros with a codimension of 1. 

Since the boundary Γ is a compact set, we realize the
unity decomposition by using the topology introduced
above [9]. As a result, the surface Γ is covered by a
finite set of nonoverlapping open regions Γβ. We equip
each region with orthogonal local coordinates tkβ, k = 1,
2, 3 with the t3β axis directed along the outer normal,
which are mutually disjoint due to the convexity of the
region.

Thus, each element Γβ of covering is equipped with
the local coordinate system tkβ with the origin on this
element. This coordinate system corresponds to the
coordinates xkβ, k = 1, 2, 3 in the original Euclidean

coordinate system. The  region is in the lower half-
space, t3β ≤ 0, in the local coordinate systems con-
structed on the elements Γβ.

Let the original coordinate system coincide with one
of the local coordinate systems tkλ . Ordering the
sequence Γβ and transforming from one local coordi-
nate system to another, we generate the local coordinate
systems αβ of three complex variables αkλ by the con-
dition

In the constructed local coordinates, the condition

x ∉  is equivalent to the condition t3β > 0. 

In this case, the Leray form residual can be calcu-
lated [9, 10]. To calculate it, we note that the Q(a) poly-
nomial has 2M analytic branches, because the symbol
is elliptic: its zeros are ('a) and ('a), such that
Im  ≥ 0 and Im  ≤ 0 for ('α)  ±∞. The prime
means the absence of α3β.

Let t3β > 0. Decomposing the cycle into the basis
cycles σr and calculating Leray form residuals, we
arrive at the relations

{expi[α1(ξ1 – x1) 

+ α2(ξ2 – x2) + (ξ3 – x3)]dΓdα1Λdα2 ≡ 0, x ∉ 

with integration over two-dimensional cycles δrβ that
are not homological to zero and that belong to the ana-
lytic set of zeros of the locally holomorphic function
Q(αβ) that lie in the region Im  ≤ 0.

Ω

aλ tλ,〈 〉 aλ 1+ tλ 1+,〈 〉 .=

Ω

α3r
+ α3r

–

α3r
+ α3k

–

1

4π2
--------

P α3r
– ξ,( )

α3Q α1 α2 α3r
–, ,( )∂

--------------------------------------------∫
Γ
∫∫

δrβ

∫
r 1=

M

∑
α3

– Ω

α3r
–

Since the terms of the sum are linearly independent,
these relations lead to the identities

(9)

Thus, we obtain the set of locally analytic functions
of two complex variables—integral equations of the
boundary value problem.

Note 1. In the case of the convex regions  under con-
sideration, in addition to locally analytic functions (9), the
following globally analytic functions can be con-
structed:

The latter functions can be constructed both by the
above factorization method and by using the properties
of the Fourier transforms of finite functions in convex
regions that have zero sets [11, p. 158].

The above representations, along with those
obtained in [1, 2], were constructed in [12, 13] for a
number of problems with anisotropy and electroelastic-
ity. Suitable analysis of the possibilities of applying the
methods of incorrect problems to these equations was
performed in those studies.

To regularize the systems of integral equations, we
represent, by using the unity decomposition, the inte-
grals specified by Eq. (9) in the form

Let us separate the element corresponding to the
decomposition em and represent the local coordinate
systems tm, αm associated with this element in the form

(10)

P α1rβ α2rβ α3rβ
– 'αβ( ) ξ, , ,[ ] e α ξ,〈 〉 Γ 0,≡d∫

Γ
∫

∞ α1β α2β, ∞, r< <– 1 2 … M., , ,=

Ω

P a x,( )e a x,〈 〉 Γ , Q α( )d∫
Γ
∫ 0.=

P0 α1rβ α2rβ α3rβ
– 'αβ( ) x, , ,[ ] e a x,〈 〉 Γd∫

Γ
∫

≡ e jP0 α1rβ α2rβ α3rβ
– 'αβ( ) ξ, , ,[ ] e α ξ,〈 〉 Γ j 0,≡d

Γ j

∫
j

∑

e j

j

∑ 1, r 1 2 … M., , ,= =

g ξ1m ξ2m,( ) T0 ξ1m ξ2m α1m α2m, , ,( )+[
Γm

∫∫
× f ξ1m ξ2m,( ) ]em i α1mξ1m α2mξ2m+( )dξ1mξ2mexp

+ ' G0 ξ1 j ξ2 j α1m α2m, , ,( )g ξ1 j ξ2 j,( )[∫
Γ j

∫
j

∑
+ T0 ξ1 j ξ2 j α1m α2m, , ,( )f ξ1 j ξ2 j,( ) ]e j

× ψ j ξ1 j ξ2 j α1m α2m, , ,( )dΓ jexp 0,=

Reψ j 0, α1m α2m ∞.±→,<
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Here, nonlinear functions ψj(ξ1j, ξ2j, α1m, α2m) of α1m

and α2m represent the transition from the local coordi-
nates of one system to the local coordinates of another
system. 

The prime means the absence of the j = m element
in the sum, while the vector functions g(ξ1j, ξ2j) ≡ g(ξ1j,
ξ2j, 0) depend only on the first two coordinates of their
local systems.

Vector functions g(ξ1j, ξ2j) on the supports of the
decomposition ej are treated as elements of the

(Γ) space that is the direct sum of the 

spaces with the norm

where gj ∈ (Γj) if the support belongs to Γj.

Applying the Fourier transform in the local coordi-
nate systems (ξ1m, ξ2m), (α1m, α2m) to Eqs. (10), we
arrive at the relations whose operator representation has
the form

(11)

Taking into account the properties of matrix func-
tions G0 entering into Eq. (10), one can prove that, first,
the A operator is completely continuous in the above
spaces and, second, the system of equations is a Fred-
holm system for Bf belonging to this space.

Note 2. Fredholm system (10) was constructed for

convex regions . However, it can be also constructed
for nonconvex regions that admit partition into convex
components, i.e., that have block structure. In this case,
Fredholm systems are constructed individually for each
block with inclusion of matching in the regions of block
contacts.

Note 3. To regularize the system of integral equa-
tions and construct approximate solutions, decomposi-
tion elements can be represented as plane elements due
to the smoothness of Γ. The error of approximation is
estimated in terms of the derivatives of curvatures of Γ.
When the boundary Γ is not smooth, angular points
including prismlike points exist, and boundary condi-

H
s

1
2
---+

H
js

1
2
---+

g H max g j H j
, H H

s
1
2
---+

Γ j( ),≡=

H j H
js

1
2
---+

Γ j( ), g≡ g1 g2 …} ,, ,(=

H
js

1
2
---+

g Ag+ Bf.=

Ω
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tions change in some lines (mixed conditions), it is nec-
essary to additionally regularize the operators entering
into A for system (11). If their contribution is small,
they can be omitted in approximate calculations.
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The problem of the deceleration of a supersonic flow
to subsonic velocities with the minimum loss of total
pressure arose in the 1940s in connection with the prob-
lem of designing efficient supersonic air intakes [1, 2].
This problem was developed by G.I. Petrov in Russia
and by K. Oswatitsch in Germany. They established the
appropriateness of decelerating a flow in a system of
several oblique shocks and a closing normal shock. It
was found that the loss of total pressure in such a sys-
tem was always lower than that in a single normal
shock. In this case, the intensities of a given number of
shocks can be chosen so that the loss of total pressure is
minimal. Petrov also investigated the behavior of the
total pressure in a system consisting of n oblique shocks
and a closing sonic shock. This system turned out to
provide better recovery of total pressure [1].

Petrov numerically determined the oblique-shock
intensities in optimal systems and found that these
intensities must be approximately equal to each other.
Oswatitsch solved the problem of the optimal recovery
of total pressure analytically and showed that the
oblique-shock intensities must be equal to each other at
the point of a possible extremum. However, he did not
obtain a solution in an explicit form. Such a solution
was presented in study [3] published in 1995. In [4], it
was established that the conditions of a strict local min-
imum are met at the point of a possible extremum.
However, the problem of the global optimality and
uniqueness of the obtained solution remained an open
question.

In this paper, we consider the problem of construct-
ing a shock-wave system that is optimal for the total
pressure and consists of several oblique shocks as a dis-
crete optimal-control problem. Using the dynamic-pro-
gramming method, we find the globally optimal and
unique solution to this problem. We investigate the
behavior of the optimal system as the number of shocks
increases infinitely.

St. Petersburg State University, 
Universitetskaya nab. 7/9, St. Petersburg, 199164 Russia
* e-mail: malv@gamma.math.spbu.ru
1028-3358/03/4803- $24.00 © 20138
1. We consider the plane steady supersonic flow of a
perfect inviscid gas with shocks in tandem. For exam-
ple, as was shown in [3], for a fixed Mach number M0
in the incident flow and a specific heat ratio γ ∈  (1, 2],
the ratio of the total pressure beyond the system to the
total pressure in the undisturbed flow can be expressed

in terms of the intensities Jk =  of shocks as

(1)

Instead of the Mach number, it is more convenient to
use the gas-dynamic function µ = 1 + ε(M2 – 1). The
ratio of the values of this function behind the shock and
in front of it is related to the intensity Jk of the kth shock
by the relationship [3]

(2)

The nondecreasing entropy condition imposes the
restriction Jk ≥ 1 on the kth-shock intensity. In addition,
for the existence of the (k + 1)th shock with k = 1, 2, …,
n – 1, the flow behind the kth shock must remain super-
sonic (µk ≥ 1). This condition is satisfied when Jk ≤
A(µk – 1), where

Behind the last shock, the flow becomes subsonic if the
intensity Jn satisfies the inequalities

Thus, in the general case,

(3)

pk

pk 1–
-----------

In
p0( )

Jk

Jk ε+
Jk 1 εJk+( )
---------------------------

λ

 
 
 

,
k 1=

n

∏=

λ 1 ε+
2ε

-----------, ε γ 1–
γ 1+
------------.= =

µk

µk 1–
----------- ϕ Jk( ), ϕ t( )

t ε+
t 1 εt+( )
--------------------.= =

A t( ) t 1–
2ε

---------- t 1–( )2

4ε2
----------------- t+ .+=

A µn 1–( ) Jn B µn 1–( ), B t( )≤ ≤ 1 ε+( )t 1–
ε

---------------------------.=

Jk Uk µk 1–( ), k∈ 1 2 … n., , ,=
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As a shock-wave system optimal for the total pressure,
we have in mind a system providing the maximum
value of goal function (1) under restrictions (2) and (3):

(4)

The problem of constructing the optimal shock-
wave system is seen to be a discrete optimal-control
problem [5]. In this problem, the intensities Jk of the
shocks involved in the system are the control parame-
ters, and the quantities µk are the phase variables speci-
fying the system state. The shocks in tandem convert
the supersonic flow from an initial state with µ0 ≥ 1 to a
final state with µn ≤ 1. In this case, the hyperbolic type
of equations describing such flows determines the evo-
lutionary nature of this transition, converting the extre-
mum problem under investigation into a discrete opti-
mal-control problem.

The principal result of this study is formulated as
follows.

Theorem 1. For all µ0 ≥ 1 and n ≥ 2, the unique
solution to problem (4) is determined as follows:

We propose the schematic proof of Theorem 1.
2. The function ϕ(t) with the derivative

decreases strictly from +∞ to 0 on the (0, +∞) semiaxis
with ϕ(1) = 1 and ϕ'(1) = –λ–1. The equation ϕ(t) = µ–1

for µ > 0 has a unique solution t = A(µ). Substituting
this solution into the equation, we obtain the equality

(5)

From the relationships µk = µk – 1ϕ(Jk), 1 ≤ Jk ≤
A(µk − 1), it follows that µk – 1 ≥ µk ≥ 1 so that µ0 ≥ µ1 ≥
… ≥ µn − 1 ≥ 1.

The function h(t) = t[ϕ(t)]λ with the derivative

also decreases strictly from +∞ to 0 on (0, +∞). In appli-
cation to problem (4), this means that, in particular, the
best value for Jn is Jn = A(µn – 1). According to Eq. (5),

µn – 1ϕ(Jn) = 1 and µ0  = 1 for such Jn . The goal

function for problem (4) takes the form

In
p0( )

 := Jk ϕ Jk( )[ ] λ{ } sup,→
k 1=

n

∏
µk µk 1– ϕ Jk( ), 1 Jk A µk 1–( ),≤ ≤=

k 1 2 … n 1;–, , ,=

A µn 1–( ) Jn B µn 1–( ).≤ ≤

J1* J2* … Jn* =: J∗ , J∗ A µ0
1/n( ).= = = =

ϕ' t( ) ε 1 2εt t2+ +( )
t 1 εt+( )[ ] 2

-----------------------------------–=

ϕ A µ( )( ) µ 1– , µ 0.>=

h' t( )
1 ε–( ) t 1–( )2

2 t ε+( ) 1 εt+( )
-------------------------------------- ϕ t( )[ ] λ–=

ϕ Jk( )
k 1=

n

∏
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A(µn − 1) . Discarding the positive factor ,

we arrive at the extremal problem

(6)

The feature of restrictions for problem (6) implies
that Jk + 1 = …= Jn – 1 = A(µn – 1) = 1 if Jk = A(µk – 1) for
certain k ∈  {1, 2, …, n – 2}.

3. We write problem (6) for n = 2:

(7)

Let us differentiate the goal function:

(8)

According to Eq. (5),

(9)

After differentiating this identity, we obtain

(10)

Further, according to the definition of µ1 and Eq. (9),

(11)

Substituting Eqs. (10) and (11) into Eq. (8), we obtain
the formula

(12)

Let us designate

In this case, Eq. (12) can be rewritten as

µ0
λ– Jk

k 1=

n 1–

∏ µ0
λ–

A µn 1–( ) Jk

k 1=

n 1–

∏ sup,→

µk µk 1– ϕ Jk( ), 1 Jk A µk 1–( ),≤ ≤=

k 1 2 … n 1.–, , ,=

Q2 J1( ) := A µ1( )J1 , µ1
J1 1 A µ0( ),[ ]∈

sup→ µ0ϕ J1( ).=

Q2' J1( ) A J1A' µ1( )µ1' J1( ).+=

µ1
A 1 εA+( )

A ε+
-------------------------.=

A' µ1( )
A ε+( )2

ε 1 2εA A2+ +( )
---------------------------------------.=

µ1' J1( ) µ1

ϕ' J1( )
ϕ J1( )
-------------=

=  εA 1 εA+( )
A ε+

-----------------------–
1 2εJ1 J1

2+ +
J1 J1 ε+( ) 1 εJ1+( )
----------------------------------------------.

Q2' J1( ) A
1 2εJ1 J1

2+ +
J1 ε+( ) 1 εJ1+( )

-----------------------------------------=

×
J1 ε+( ) 1 εJ1+( )
1 2εJ1 J1

2+ +
----------------------------------------- A ε+( ) 1 εA+( )

1 2εA A2+ +
--------------------------------------– .

χ t( )
t ε+( ) 1 εt+( )
1 2εt t2+ +

----------------------------------.=

Q2' J1( )
A

χ J1( )
------------ χ J1( ) χ A µ1( )( )–[ ] .=
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The function χ(t) with the derivative

which is negative for t > 1, decreases strictly on the
semiaxis [1, +∞). As J1 varies from 1 to A(µ0), the quan-
tity µ1 varies from µ0 to 1, and the quantity A(µ1), from
A(µ0) to A(1) = 1. Therefore, the difference χ(J1) –

χ(A(µ1)) vanishes at the only point  in the interval [1,

A(µ0)], is positive for J1 < , and is negative for J1 >

. Therefore,  is the unique solution to problem (7).

To determine , it is necessary to solve the equa-
tion A(µ1) = J1 . This can be done by means of the equiv-
alent transitions

Thus,  = A( ).

4. Let us execute the induction transition from n – 1
to n, n ≥ 3. In problem (6), we fix J1 ∈ [1, A(µ0)] and
µ1 = µ0ϕ(J1). In the remaining (n – 1)-shock system, the

optimal parameters are  = … =  =: J*, J* =

A( ) according to the induction assumption.
Problem (6) takes the form

(13)

Let us differentiate the goal function:

(14)

Since ϕ(J*) = , we have µ1 = [ϕ(J*)]–n + 1. After
differentiating the last identity, we obtain

(15)

At the same time,

(16)

Substituting Eqs. (15) and (16) into Eq. (14), we arrive

χ' t( )
1 ε2–( ) 1 t2–( )
1 2εt t2+ +( )2

------------------------------------,=

J1*

J1*

J1* J1*

J1*

A µ1( ) J1 µ1
1–⇔ ϕ J1( ) ϕ J1( )⇔= =

=  µ0
1/2– J1⇔ A µ0

1/2( ).=

J1* µ0
1/2

J2* Jn 1–*

µ1
1/ n 1–( )

Qn J1( ) := J1 J∗ µ1( )[ ] n 1–
.

J1 1 A µ0( ),[ ]∈
sup→

Qn' J1( ) J∗( )n 1–
n 1–( )J1 J∗( )n 2– dJ∗

dµ1
---------

dµ1

dJ1
---------.+=

µ1
–1/ n 1–( )

dJ∗
dµ1
---------

ϕ J∗( )[ ] n

n 1–( )ϕ' J∗( )
-------------------------------.–=

dµ1

dJ1
--------- –ε ϕ J∗( )[ ] –n 1+

J1χ J1( )[ ] 1– .=
at the formula

Now, similar to the case n = 2, we show that the
function Qn(J1) has the only maximum point  in the
[1, A(µ0)] interval, which is the unique root of the equa-
tion J*(µ1) = J1 in this interval. We write the sequence
of equivalent transitions:

We find that  = A( ).

5. It is evident that J*  1 for n  ∞. A more
exact result is valid.

Lemma. For µ0 > 1, the limiting relationship

(17)

is valid.
To prove this lemma, we rewrite the equality

ϕ(J*) =  in the form

(18)

Let us take the logarithm of Eq. (18) and pass to the
limit for n  ∞. Taking into account the fact that
ϕ'(1) = –λ–1, we obtain Eq. (17).

Theorem 2. For µ0 > 1, the relation

(19)

is valid.
The proof follows from the lemma and the equality

From the physical viewpoint, formula (19) means
that the ratio of the static pressure behind the last shock
in the optimal system to the pressure in the undisturbed

flow tends to the finite value , which is the intensity of
a simple compression wave decelerating the flow down

Qn' J1( )
J∗( )n 1–

χ J1( )
------------------ χ J1( ) χ J∗ µ1( )( )–[ ] .=

J1*

J∗ µ1( ) J1 ϕ J1( )⇔ µ1
–1/ n 1–( ) ϕ J1( )⇔= =

=  µ0
–1/n J1⇔ A µ0

1/n( ).=

J1* µ0
1/n

n J∗ 1–( )
n ∞→
lim λ µ0ln=

µ0
–1/n

µ0
1–

=  1 ϕ J∗( ) 1–( )+[ ] ϕ J∗( ) 1–( ) 1–

 
 
 

ϕ J∗( ) ϕ 1( )–( )/ J∗ 1–( )[ ] J∗ 1–( )n

.

J∗( )n

n ∞→
lim µ0

λ=

J∗( )n
1 J∗ 1–( )+( ) J∗ 1–( ) 1–

 
 
 

J∗ 1–( )n

.=

µ0
λ
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to sonic velocity. Such a system is the best one for mini-
mizing the loss of total pressure. Thus, relationship (19)
shows that a qualitative transition occurs in the optimal
system as the number of shocks increases infinitely: a
system of n oblique shocks becomes an optimal isen-
tropic wave.
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We consider vibrations of a half-space containing an
elastic medium. This medium is characterized by den-
sity ρ, longitudinal-wave velocity c1, and transverse-
wave velocity c2. Let a vertical harmonic axisymmetric
load p(r)exp(–iωt) be applied to a circular domain (r ≤
a, z = 0) of the half-space boundary (r is the circle
radius, ω is the vibration frequency, and t is time). We
assume that vertically oriented deep inclusions with a
length h are distributed over a circle with a radius r0 at
the boundary. In the general case, the inclusions expe-
rience both vertical and horizontal vibrations.

Displacements of material points of the medium are
described by the Lamé equations [1] (the common fac-
tor exp(–iωt) entering into all the characteristics is
omitted everywhere)

(1)

Here, Ur(r, z) and Uz(r, z) are the amplitudes of vertical
and horizontal displacements, respectively, and λ and µ
are parameters of the medium.

The load (inclusions) distributed over the depth is
taken as a localized bulk force with the components
Xr = fr(z)δ(r – r0) and Xz = fz(z)δ(r – r0).

λ 2µ+( )
∂2
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∂r
2

-----------
1
r
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∂Ur
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--------- 1

r
2
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-----

∂Uz
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1
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The boundary conditions of the problem have the
form

(2)

(3)

Using the integral-transformation method [2], we
reduce boundary-value problem (1)–(3) for the system
of partial differential equations to the corresponding
boundary-value problem for a system of ordinary dif-
ferential equations, which can be written out in the
matrix form

(4)

Here, we use the following notation:

 = {ur, , uz, },

z = 0: λ 2µ+( )
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--------- λ
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The components of the vector  are the Bessel trans-
forms of the displacement amplitudes Ur and Uz and
their derivatives, with α being the Bessel transform
argument.

We seek a solution to Eqs. (4) as the superposition
 = , where  =

 is a general solution to the homogeneous

system of equations with  = 0 and  =

 is a particular solution to the inhomo-

geneous system.

The quantities γk are eigenvalues of the matrix ,
with γ1, 2 = ±σ1, γ3, 4 = ±σ2, and  are the correspond-
ing eigenvectors. The variable coefficients tk(z) are
determined by the method of variation of constants:

 

Here, J0 and J1 are the zero-order and first-order Bessel
functions, respectively. The unknown coefficients dk are
found from boundary conditions (4).

Taking the components ur(α, z) and uz(α, z) of the

vector  and performing the inverse Bessel transfor-
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mation, we arrive at the integral representation of the
solution to problem (1)–(3):

(5)

Here,

In order to analyze the amplitude–frequency charac-
teristic of the vertical component Uz(r, 0) depending on
parameters of the vibration sources that excite the Ray-
leigh wave, we consider only the displacement-vector
component Uz(r, z) entering into general solution (5):

(6)

We choose the integration contour Γ1 in accordance
with the principle of ultimate absorption [2] and calcu-
late integral (6) by the theory of residues, after singular-
ities of the integrand have been found and the domain
of its decrease has been determined.
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Fig. 1. Amplitude–frequency characteristics of the vertical
component for the Rayleigh wave at p(r) = 0, fz(ζ) = kζ + b,
and h = 10 m: (a) r0 = 5 and (b) 7 m; ε = (1) 0, (2) 0.5,
and (3) 1.
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Fig. 2. The same as in Fig. 1 for p(r) = 100 N m–2 and
fz(ζ) = 0: a = (1) 2, (2) 3, and (3) 4 m.
The analysis shows that the singularities of the inte-
grand are Tsimple poles and branch points α = ℵ 1 and
ℵ 2 . The wave number ζ of the Rayleigh wave is a solu-
tion to the dispersion equation ∆(α) = 0 [3]. As a result,
we arrive at the expression

Here,

and ζ is the Rayleigh pole.
The amplitude of vertical displacements for z = 0

was evaluated numerically in the T far-field zone of the
source for a medium characterized by parameters typi-
cal of the ground (ρ = 1.4 × 103 kg m–3, c1 = 0.2 ×
103 m s–1, and c2 = 0.12 × 103 m s–1). In Fig. 1, we
present the amplitude–frequency characteristics for the
vertical component of the Rayleigh wave excited by the
anchor columns of a surface-vibration source [p(r) =
0 N m–2], with the stress function linear over the source

length: fz(ζ) = kζ + b. In this case, k =  and b =

. Curves 1, 2, and 3 correspond to ε = 0, 0.5,

and 1, respectively. The columns have the length h =
10 m, and the radius of their distribution on the circle is
either r0 = 5 or 7 m.

Our calculations indicate that the amplitude of the
surface wave excited by the columns increases with
their distribution radius (see Fig. 1). In addition, an
increase in the number of radiating elements compli-
cates the wave interference pattern and leads to an
increase in the number of T blocking frequencies and to
variations in their values. The presence of the interfer-
ence pattern and blocking frequencies is in complete
agreement with the general theory [4]. According to
this theory, the vibrational energy of surface waves
excited by anchor columns of a vibration source is con-
verted into the energy of bulk waves excited by the
same elements. As was mentioned above, the stresses
distributed over a generatrix of a column may vary with
the depth. When performing the numerical calcula-
tions, we analyzed the effect of this circumstance on the
surface-wave amplitude. As is seen from Fig. 1, the uni-
formly distributed load (ε = 1) excites vibrations with
smaller amplitudes, regardless of values of both fre-
quency and column length.

The function Uz(r, 0) is shown in Fig. 2 for the Ray-
leigh wave excited by the surface load p(r) = 100 N m–2

distributed over the circles with the radii a = 2, 3, and

Uz r 0,( )
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4 m (curves 1, 2, and 3, respectively). The results pre-
sented correspond to a vibrator that has no anchor col-
umns [fz(ζ) = 0]. An increase in the area of the applied
load results in a growth of the vibration amplitudes and
changes the interference pattern. As in the previous
case, there appear blocking frequencies in the system
for which the total energy of mechanical vibrations of
the radiating plate is converted into the vibrational
energy of the half-space inner points.

It is noteworthy that, at low and intermediate fre-
quencies, the amplitude of an excited surface wave is
significant regardless of the vibrator properties. This
amplitude decreases sharply with increasing frequency
(see Figs. 1 and 2). Moreover, the results presented in

1

100 20 30 40

ω, Hz

2

1
2

Uz, 107 m

Fig. 3. The same as in Fig. 1 for p(r) = 100 N m–2, a = 2 m,
ε = 0, h = 10 m: (1) fz(ζ) = kζ + b and r0 = 5; (2) fz(ζ) = 0.
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these figures indicate that the basic radiated element
(plate) of the vibrator excites surface wave whose
amplitude–frequency characteristic is greater by a fac-
tor of 100 than the amplitude of the displacements due
to vibrations of the columns. Figure 3 shows the ampli-
tude–frequency characteristics of the Rayleigh waves
excited (1) by all the radiating elements of the vibrator
and (2) by only the basic one.

The results obtained suggest that the effect of
anchor columns on the wave field is basically notice-
able at low frequencies. Hence, this fact should be
taken into account when anchor columns are used for
the purpose of increasing loads applied to a radiating
plate.
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The mathematical simulation of physical interaction
between targets and a group of variously sized particles
imitating a stream of technogenic fragments in near
space is a promising method of gaining reliable data
about the dynamics of the total process of a group
impact and its consequences [1]. The comprehensive
experimental and theoretical analysis of this compli-
cated problem must involve the following components:
the development of methods and devices for the launch-
ing of a group of particles under laboratory conditions
in air and in vacuum, the experimental investigation of
an impact of particles with targets and its consequences
for protected samples, and numerical simulation with
development of an adequate closed procedure for cal-
culation of the impact of a group of fragments with tar-
gets imitating the protection of space equipment and
directly with the space-apparatus construction.

Among a large variety of possible systems of con-
trolled launching of a fragment stream under laboratory
conditions, assemblies using the aerodynamic principle
of the step-by-step separation of a launched construc-
tion are of considerable interest, because they require
no additional power supplies to provide a given orien-
tation of fragments in the group. In this case, it is nec-
essary to organize the process of separation of various
trays and leading facilities in a possibly short time
interval [2].

1. In this study, we use the launching of a group of
particles (from 2 to 12) in air on the basis of the separa-
tion of compound systems which were composed of
identical bodies sequentially so that their longitudinal
axes coincided or were parallel to each other and to the
longitudinal axis of the whole system [3]. In this case,
we provided the process of the directed ejection of frag-
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ments from a container under the action of aerody-
namic forces. 

The basic experiments were carried out on a ballistic
path with gunpowder and light-gas launchers of various
calibers. As model technogenic fragments, we took
balls and L/D = 1 cylinders from engineering materials.
In a number of sections on the ballistic path, the flow
around for separating assemblies was made visible by
the “luminous-point” method [2]. The range of initial
velocities of motion for an assembly in air varied within
the range 500–3500 m/s. Parametric investigations
showed that the motion and the scattering of the com-
pound system as a whole can be purposefully con-
trolled by choosing the corresponding values of aerody-
namic and mass–geometric characteristics of constitu-
ent bodies of an assembly [4].

To launch a particle group, we fabricated a container
that ensured the safety of the fragment-group composi-
tion in moving along the barrel channel and their con-
trolled scattering at a given point of a trajectory. The
container was cylinder-shaped. Its head section was a
flat end, a truncated cone, or a needle. The motion of a
group of fragments with the parameters controlled over
the front (perpendicularly to the direction of motion)
and over the depth (along the trajectory of motion) was
provided by two methods of the directed ejection of
particles from the container under the action of aerody-
namic forces. The first method was ejection through the
lateral surface at a certain angle to the direction of
motion of the container. Ejection of particles through
the lateral surface of the container was investigated for
a cylinder with an axial channel that was made through
the front-end side and that branched into a number of
radial channels. The channels were connected with the
cavities in which ejecting fragments were placed.
Arranging the axial and radial channels with given
diameters, one can obtain various positions of the
model particles over front and depth. Figure 1 shows a
shadow photograph of the motion of the container and
a group of two spherical steel fragments each 7.5 mm
in diameter. The velocity of bodies corresponds to the
Mach number M = 3.1. It is seen in the photograph that
the centers of mass of the particles are at the same
depth, yielding a simultaneous impact with the target,
the so-called “frontal impact.” In the second case,
indentations arranged in a given sequence were made at
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. Shadow photographs of the motion of a container and groups of (a) two, (b) four, and (c) six spherical particles.

(a)

(c)(b)
the plane front surface, and the ejected model frag-
ments were placed into these cavities. Their number
varied from two to six. When the assembly moved in
air, the container was decelerated. In this case, the
group of particles was separated from the container and
moved along a given trajectory, forming the stream
configuration corresponding to its primary composi-
tion. Figure 1 also shows shadow photographs for the
KLADY PHYSICS      Vol. 48      No. 3      2003
motion of four and six spherical bodies, respectively, at
the Mach number M = 3.3. The spatial positions of the
particles corresponded to their primary arrangement in
the container, where four particles were disposed in the
vertices of a regular quadrangle and six particles were
arranged as two identical triples at the container ends,
i.e., formed a “dumb-bell.” Thus, the developed proce-
dures and facilities are well suited for the laboratory
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Fig. 2. Computer chronograms of the frontal interaction of the group of four L/D = 1 bodies with a plate at an angle of 60° with an
initial impact velocity of 2873 m/s.
simulation of the launching and the following action of
a fragment debris (with a given distribution of particles
in the flow over front and depth) on objects of space
equipment.

2. In the three-dimensional formulation, we numer-
ically simulated the processes of the interaction of a
group of high-velocity bodies with a target of finite
thickness during normal and oblique impacts. The aim
of this simulation was to develop a closed procedure for
calculating the impact of a fragment stream on con-
structions that is adequate to the available experimental
data, i.e., a method of estimating the ballistic limit of a
construction, the area and volume of failure, the pres-
ence of spall fragments in the space behind the target
inducing the shrapnel effect, etc.

Numerical calculations were focused on investigat-
ing the time evolution of processes of high-velocity
deformation and failure of bodies and on estimating
DOKLADY PHYSICS      Vol. 48      No. 3      2003
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Fig. 3. Contours of the specific volume of microdamages (left-hand sides, with an interval of 8 cm3/kg) and of the specific energy
of shear deformations (right-hand sides, 25 kJ/kg) along the front surface of the plate at the time instants of (a) 7 and (b) 17 µs.

(a)

(b)
their mutual effect during group impact. In the numeri-
cal calculations, we used a model of a damaged
medium with microcavities (pores and cracks). The set
of equations describing the unsteady adiabatic motions
of a compressible medium with allowance for the
nucleation and accumulation of microdamages and
temperature effects for the case of three spatial vari-
ables involved the equations continuity, motion, and
energy balance [5]. The failure of a material under
high-velocity impact was numerically simulated in a
kinetic model of active type [6]. This model determines
the growth of microdamages, which continuously mod-
ify the properties of the material, inducing the relax-
ation of stresses. The strength characteristics of the
medium (the shear modulus and dynamic yield
strength) depended on temperature and on the damage
level [7]. In this case, an athermal character of high-
velocity deformation was simulated up to temperatures
DOKLADY PHYSICS      Vol. 48      No. 3      2003
comparable with the melting point of the material [8].
As the criterion of the erosion failure of the material,
which occurs in the region of intense interaction and
deformation of contacting bodies, we took the critical
value of the specific energy of shear deformations [1, 9].

We considered the problem of the impact of four
identical L/D = 1 cylindrical projectiles, each 6 mm in
diameter and in height, with an 8-mm-thick target. The
projectiles were arranged in the same plane, which can
deviate at a certain angle from the front surface of the
target. Initially, the centers of the first and fourth pro-
jectiles was separated by 22.3 mm, and the other two
were arranged symmetrically between them at a dis-
tance of 11.4 mm from the first impacting body and
15 mm from the fourth one. The initial velocities of all
projectiles were equal to 2873 m/s in magnitude and
directed along their symmetry axes and along the nor-
mal to the flight plane (oblique impact). The interacting
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bodies were made of a steel whose constants can be
found in [5]. Slide conditions were realized at contact
surfaces. The problem was numerically solved by a
modified finite-element method [10, 11].

Figure 2 shows the chronograms of the process of
interaction between the group of four projectiles and a
target of finite thickness. In this case, the angle between
the particle-front plane and the front surface of the tar-
get was equal to 60°. Figure 2a corresponds to the time
when the group of elements approaches the target, and
Figs. 2b and 2c correspond to times of 7 and 14 µs,
respectively, after the onset of interaction between the
target and the first impacting body. Figure 2b illustrates
the time when two intermediate projectiles just begin to
interact with the target, the last, extreme right, impact-
ing body does not yet reach the target, and the first
impacting body penetrates the target and experiences
significant plastic deformation simulated by including
the concept of erosion failure. By 14 µs (Fig. 2c), the
impacting body that first began to interact has already
rebounded, losing contact with the target. The next two
projectiles have also rebounded almost completely by
this time, and the last, fourth, impacting body continues
to interact with the target.

The description of an impact of a group of particles at
a different time, when the initial stage of contact between
the target and last particle coincides with the final stages
of the interaction of the first particle, requires numerical
simulation of the late stages of the high-velocity-interac-
tion process, which are accompanied by significant defor-
mations and failures. In this study, we used the critical
value of the specific volume of microdamages and the
critical value of the specific energy of shear deformations
as the criteria of total failure [9]. The behavior of the
failed material was not simulated in further numerical cal-
culations. The use of the criteria for the total failure of the
material made it possible to calculate the penetration and
the rebound of the entire group of model fragments for
arbitrary impact angles and various distances between
particles over front and depth.

The calculations show that, under certain conditions
of interaction, the processes influence each other, and a
united zone of deformation and failure with extrema
corresponding to every impacting body is formed in the
target. Figure 3 shows the contours for a specific vol-
ume of microdamages and for a specific energy of shear
deformations for an impact angle of 30° (in each case,
half sections of the target surface are shown, because
there is a symmetry plane passing through the axes of
the first and fourth projectiles) and illustrates the con-
fluence of the zones of microdamages and deformation
that are induced by the action of the first and intermedi-
ate projectiles. The zone induced by the action of the
last impacting body is somewhat distant from the
united region due to the large initial distance between
the projectiles and the later onset of the impact. Fur-
thermore, in Fig. 3 (t = 17 µs), we can observe the for-
mation of an additional center of microdamages
between the last and intermediate projectiles. This cen-
ter is induced by the mutual influence of bodies and is
responsible for the nonuniform “elliptic” structure of
plate damage. The three-dimensional calculations of
this complicated problem are qualitatively corroborated
by the corresponding experiments.
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For the partial-equilibrium positions of nonlinear
nonautonomous systems of general ordinary differen-
tial equations, the problem of stability is considered,
and the problem of stability and asymptotic stability
with respect to some of variables is formulated. Solu-
tions to these problems are obtained in the context of
the Lyapunov direct method. In this case,

(i) for the nonuniform stability of partial-equilib-
rium positions, we introduce a requirement on the
Lyapunov function, which is weaker than the known
requirement of the infinitely small upper limit with
respect to some of variables for the uniform stability of
this type;

(ii) the requirements on the Lyapunov function in
problems of stability and asymptotic stability of partial-
equilibrium positions with respect to some of variables
are significantly weakened due to variation of the
region where this function is constructed: the function
is generally not sign definite with respect to some of
variables in the classical sense, and the derivative of
this function can be sign changing.

1. STABILITY 
OF PARTIAL-EQUILIBRIUM POSITIONS

In the framework of partial-stability theory [1–14],
the problem of the stability of sets that are the partial-
equilibrium positions of dynamic systems is studied [5,
9, 11–13]. Recently, interest in the problem of partial
stability has increased considerably. Moreover, the
more general problem of input-to-output stability was
considered [15], which before covered only the analy-
sis of input–output operator relations for describing
systems.
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For a precise formulation of the problem, let us con-
sider the nonlinear nonautonomous system of ordinary
differential equations

(1)

and, as usual in the theory of partial stability (Û stabil-
ity) [1–13], assume that system (1) is continuous in the
region

(2)

and that its solution is unique and z-extendable. Let the
condition

(3)

be valid. In the case of the uniqueness of the solution of
system (1), this condition means that the Û = 0 position
is an invariant set of this system and its partial-equilib-
rium position. 

Let x = (yt, zt,)t (“t” means transposition) and
x(t; t0, x0) be a solution of system (1) with the initial
condition x0 = x(t0; t0, x0).

Definition 1 [5, 9, 12]. The partial-equilibrium posi-
tion Û = 0 of the system of Eqs. (1) and (3) is

(i) stable if, for any ε > 0 and t0 ≥ 0, there is
δ(ε, t0) > 0 such that ||y(t; t0, x0)|| < ε for all t ≥ t0 , when
||y0|| < δ and ||z0|| < ∞;

(ii) uniformly stable if δ is independent of t0 .
When

(4)

system (1) has the total-equilibrium position ı = 0.
Definition 2 [5, 12, 13]. The equilibrium position

ı = 0 of the system of Eqs. (1) and (4) is
(i) y-stable for all z0 if, for any ε > 0 and t0 ≥ 0, there

is δ(ε, t0) > 0 such that ||y(t; t0, x0)|| < ε for all t ≥ t0 ,
when ||y0|| < δ and ||z0|| < ∞;

(ii) uniformly y -stable for all z0 if δ = δ(ε).
In what follows, the problems of stability (nonuni-

form) of the total and partial-equilibrium positions of
system (1) will be treated in the sense of the first parts

ẏ Y t y z, ,( ), ż Z t y z, ,( )= =

t 0, y h, z ∞,<≤≥

Y t 0 z, ,( ) 0≡

Y t 0 0, ,( ) 0, Z t 0 0, ,( ) 0≡≡
003 MAIK “Nauka/Interperiodica”
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of Definitions 1 and 2, and the common conditions of
their solvability will be compared with the conditions
of uniform stability that were previously obtained for
the same problems in [5, 9] (second parts of Defini-
tions 1 and 2) and with the results reported in [13].

We consider (i) continuous functions a(r) and b(r)
that increase monotonically for r ∈  [0, h] and satisfy the
condition a(0) = b(0) = 0, (ii) function V(t, x), which is
continuously differentiable in region (2) and satisfies

the condition V(t, 0) ≡ 0 and its derivative  in view of
system (1), and (iii) function V*(t, y), which is continu-
ous in region (2) and satisfies the condition V*(t, 0) ≡ 0.

Theorem 1. Let there exist functions V and V* that
satisfy the conditions

(5)

(6)

for system (1) in region (2). Then, (i) condition (3) is
satisfied for system (1) and the partial-equilibrium
position Û = 0 is stable; (ii) in case (4), the equilibrium
position ı = 0 of system (1) is Û-stable for all z0 .

Proof is divided into two steps.

1. We demonstrate that, when conditions (5) and (6)
are satisfied, condition (3) is also satisfied. To that end,
we consider the solution x(t; t0, 0, z0) of system (1) for
arbitrary t0 ≥ 0 and z0 . In view of Eq. (5), we have V(t0,
0, z0) ≡ 0. Taking into account the equality

(7)

and inequalities V ≥ 0 and (6), we arrive at the identity

(8)

which, in view of Eq. (5), leads to the identity

(9)

Let us prove that identities (3) and (9) are equivalent. In
view of Eq. (9) and the arbitrariness of t0 ≥ 0 and z0 , the
substitution of the solution x(t; t0, 0, z0) into system (1)
provides identity (3). Conversely, if identity (3) is valid,
system (1) has the stability position y = 0. Taking into
account the assumption that the solution of system (1)
is unique, we arrive at identity (9).

2. We demonstrate that, when conditions (5) and (6)
are satisfied, the partial-equilibrium position y = 0 of
system (1) is Û-stable. Since the functions V and V* are
continuous and conditions V(t, 0) ≡ V*(t, 0) ≡ 0 are valid
for any ε > 0 and t0 ≥ 0, there is a δ(ε, t0) > 0 such that
V(t0, x0) ≤ V*(t0, y0) < a(ε) when ||y0 || < δ and ||z0 || < ∞.

V̇

a y( ) V t y z, ,( ) V* t y,( ),≤ ≤

V̇ t y z, ,( ) 0≤

V t x t; t0 x0,( ),( ) V t0 x0,( )=

+ V̇ τ x τ ; t0 x0,( ),( ) τd

t0

t

∫

V t x t; t0 0 z0, ,( ),( ) 0,≡

y t; t0 0 z0, ,( ) 0.≡
Taking Eqs. (6) and (7) into account, we have

(10)

for all t ≥ t0 . In view of the properties of the function
a(r) and inequalities (10), we conclude that ||y(t; t0,
x0)|| < ε for all t ≥ t0 and any ε > 0 and t0 ≥ 0, when
||y0|| < δ and ||z0|| < ∞. Q.E.D.

Discussion of theorem 1. (i) If Eq. (5) is replaced
by the more stringent conditions [5, 9]

(11)

stability in theorem 1 is uniform.
(ii) Being weaker than the property V(t, y, z) ≤

V*(t, y), the property V(t, y, z) ≤ b(||y||) is more strin-
gent than the property V(t, 0, z) ≡ 0, which guarantees
the stability of the partial-equilibrium position Û = 0
and Û-stability of the total equilibrium position ı = 0
[when conditions (4) are satisfied] only for large z0 [10,
12, 13] rather than for all z0 .

(iii) When conditions (5) and (6) are satisfied, the
system does not need to have the equilibrium position
ı = 0.

Example 1. Let system (1) consist of the equations

(12)

We introduce the auxiliary function

(13)

which satisfies the conditions

in region (2). According to theorem 1, the partial-equi-
librium position y1 = 0 of system (12) is stable. At the
same time, system (12) does not admit the total-equilib-
rium position y1 = z1 = 0, and the function V specified
by Eq. (13) does not satisfy conditions (11).

2. PARTIAL STABILITY 
OF PARTIAL-EQUILIBRIUM POSITIONS

For the problem of stability with respect to some of
variables for the partial-equilibrium position Û = 0 of
system (1), we introduce the notation x = (yt, zt)t and

y = ( , )t. Let system (1) be continuous in the
region

(14)

its solution be unique and (y2, z)-extendable, and con-
dition (3) be satisfied for system (1).

a y t; t0 x0,( )( ) V t x t; t0x0( ),( )≤
≤ V t0 x0,( ) V* t0 y0,( ) a ε( )<≤

a y( ) V t y z, ,( ) b y( ),≤ ≤

ẏ1  =  1
2
--- y 1 – e 

t y 1
2 cos z 1 ,– 

z

 

˙

 

1

 

2e

 

t

 

y

 

1

 

2 sin

 

z

 

1

 

+

 

( )

 

z

 

1

 

.cos–=

V t y1 z1, ,( ) ety1
2 2 z1sin+( ),=

y1
2 V t y1 z1, ,( ) V* t y1,( )≤≤ 3ety1

2,=

V̇ ety1
2 z1cos

2
0≤–=

y1
t y2

t

t 0, y1 h, y2 ∞, z ∞,<<≤≥
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Definition 3. The partial-equilibrium position Û = 0
of the system of Eqs. (1) and (3) is

(i) y1-stable if, for any ε > 0 and t0 ≥ 0, there is
δ(ε, t0) > 0 such that ||y1(t; t0, x0)|| < ε for all t ≥ t0 , when
||y0|| < δ and ||z0|| < ∞;

(ii) uniformly y1-stable if δ is independent of t0 .
In what follows, we will consider that the function V

is continuously differentiable and that the function V*
and vector function W(t, x) such that W(t, 0) ≡ 0 are
continuous in region (14).

Theorem 2. Let there exist the scalar V* and vector
W functions that, in the region

(15)

satisfy the conditions

(16)

for system (1). In this case, the partial-equilibrium
position Û = 0 of the system of Eqs. (1) and (3) is (i) y1-
stable if V ≤ V*(t, y) and (ii) uniformly y1-stable if V ≤
b(||y||).

Proof. Since V, V*, and b are continuous functions
and satisfy the conditions V(t, 0) ≡ V*(t, 0) ≡ b(0) ≡ 0,
for any ε > 0 and t0 ≥ 0, there are (i) δ(ε, t0) > 0 and (ii)
δ(ε) > 0 such that, if ||y0|| < δ and ||z0|| < ∞, (i) V(t0, x0) ≤
V*(t0, y0) < a(ε) and (ii) V(t0, x0) ≤ b(||y0||) < a(ε),
respectively. Using Eq. (7) and taking into account that

 ≤ 0, we have Eqs. (10) and, in view of the properties
of a(r), conclude that, for any ε > 0 and t0 ≥ 0,
||y1(t; t0, x0)|| < ε for all t ≥ t0 in both cases, if ||y0|| < δ
and ||z0|| < ∞. Q.E.D.

Discussion of theorem 2. (i) For W ≡ 0, condi-
tions (16) are replaced by the conditions

(17)

in region (14). These conditions can be treated as a nat-
ural extension of Rumyantsev’s classical conditions [1]
for the stability of the equilibrium position ı = 0 of sys-
tem (1) with respect to some of variables to the problem
considered in this section.

(ii) For W ≠ 0, the introduction of the W function to
the formulation of theorem 2 makes it possible to vary
the region where the basic Lyapunov V function is con-
structed. We emphasize that the satisfaction of condi-
tions (16) in region (15) does not generally mean the
satisfaction of any of conditions (17) in region (14).

Example 2. Let system (1) consist of the equations

(18)

t 0, y1 W t x,( ) h, y2 ∞, z ∞<<≤+≥

V t y1 y2 z, , ,( ) a y1 W t x,( )+( ), V̇ 0≤≥

V̇

V t y1 y2 z, , ,( ) a y1( ), V̇ 0≤≥

ẏ1 –
1
2
--- e t– 1+( )y1

1
2
---ety2y3 z1,sin+=

ẏ2 y2
2y3 z1,sin=

ẏ3 y3 ety1 1+( )y3 z1,cos––=

ż1 ety1 1+( ) z1.sin=
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We introduce the auxiliary functions

(19)

which satisfy the conditions

in region (15) for small h. According to the first part of
Theorem 2, the partial-equilibrium position y =
(y1, y2, y3)t = 0 of system (18) is stable in y1 , although

the derivative  of function (19) is alternating in
region (14).

3. SOME MODIFICATIONS OF THE CONCEPTS
OF PARTIAL STABILITY

We consider some modifications of the concepts of
stability of the partial-equilibrium position Û = 0 of sys-
tem (1) with respect to some of variables under the
assumptions introduced in Section 2.

Definition 4. The partial-equilibrium position Û = 0
of the system of Eqs. (1) and (3) is

(i) y1-stable for all y20 if, for any ε > 0 and t0 ≥ 0,
there is a δ(ε, t0) > 0 such that ||y1(t; t0, x0)|| < ε for all
t ≥ t0 , when ||y10|| < δ, ||y20|| < ∞, and ||z0|| < ∞;

(ii) y1-stable for large y20 if, for any ε > 0, t0 ≥ 0, and
L > 0, there is a δ(ε, t0, L) > 0 such that ||y1(t; t0, x0)|| <
ε for all t ≥ t0 , when ||y10|| < δ, ||y20 || < L, and ||z0|| < ∞;

(iii) y1-stable for large z0 if, for any ε > 0, t0 ≥ 0, and
L > 0, there is a δ(ε, t0, L) > 0 such that ||y1(t; t0, x0)|| <
ε for all t ≥ t0 , when ||y0|| < δ and ||z0|| < L;

(iv) y1-stable for all y 2 0  and large z0 if, for any ε >
0, t0 ≥ 0, and L > 0, there is a δ(ε, t0, L) > 0 such that
||y1(t; t0, x0)|| < ε for all t ≥ t0 , when ||y10|| < δ, ||y20|| < ∞,
and ||z0|| < L;

(v) y1-stable for large y20 and z0 if, for any ε > 0, t0 ≥
0, and L > 0, there is a δ(ε, t0, L) > 0 such that
||y1(t; t0, x0)|| < ε for all t ≥ t0 , when ||y10|| < δ, ||y20|| < L,
and ||z0|| < L.

Theorem 3. Let there exist functions V and V* such
that conditions (17) for system (1) are satisfied in
region (14). In this case, the partial-equilibrium posi-
tion Û = 0 of system (1) is y1-stable

(i) for all y20 if the condition

(20)

is valid in region (14);
(ii) for large y20 if

(21)

V t y z1, ,( ) ety1
2 1

2
---y2

2y3
2 z1sin

2
, W1+ y2y3 z1,sin= =

y y1 y2 y3, ,( )t, y2 y2 y3,( )t,= =

y1
2 W1

2+ V t y z1, ,( ) V* t y,( )≤ ety1
2 1

2
---y2

2y3
2,+= =

V̇ –y1
2 y1W1 W1

2– W1
3 0≤++=

V̇

V t y1 y2 z, , ,( ) V* t y1,( )≤

V t y1 y2 z, , ,( ) V* t y1 y2, ,( ), V* t 0 y2, ,( ) 0;≡≤
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(iii) for large z0 if

(22)

(iv) for all y20 and large z0 if

(23)

(v) for large y20 and z0 if

(24)

In cases (i), (ii), (iv), and (v), system (1) also has the
partial-equilibrium position y1= 0, which is stable (i)
for all y20 and z0 , (ii) for large y20 and all z0 , (iv) for all
y20 and large z0 , and (v) for large y20 and z0 , respec-
tively.

Proof. Since V and V* are continuous functions and
satisfy the conditions V(t, 0) ≡ V*(t, 0) ≡ 0, and condi-
tions (20)–(24) are valid for cases (i)–(v), respectively,
for any ε > 0 and t0 ≥ 0 [and any L > 0 for cases (ii)–(v)],
there is [for case (i)] δ(ε, t0) > 0 and [for cases (ii)–(v)]
a 0 (δ(ε, t0, L) > 0 such that V(t0, x0) < a(ε) if

(25)

(26)

(27)

(28)

(29)

for cases (i)–(v), respectively. Using Eq. (7) and taking

into account that  ≤ 0, we have Eqs. (10) and, in view
of the properties of a(r), conclude that, for any ε > 0 and
t0 ≥ 0 [and any L > 0 for cases (ii)–(v)], ||y1(t; t0, x0)|| <
ε for all t ≥ t0 when corresponding conditions (25)–(29)
are satisfied.

The existence of the partial-equilibrium position y1= 0
for cases (i), (ii), (iv), and (v), as well as its stability (of
the corresponding types), is proven similarly to the
proof of Theorem 1. Q.E.D.

4. PARTIAL ASYMPTOTIC STABILITY 
OF PARTIAL-EQUILIBRIUM POSITIONS

We accept the assumptions introduced in Section 2.
Definition 5. The partial-equilibrium position Û = 0

of the systems of Eqs. (1) and (3) is uniformly asymp-
totically y1-stable if it is uniformly y1-stable in the
sense of Definition 1 and there is a ∆ > 0 such that the
relation

(30)

is satisfied uniformly in t0 and x0 for any solution of the
system of Eqs. (1) and (3) with ||y0|| < ∆ and ||z0|| < ∞;

(ii) uniformly asymptotically y1-stable for large z0 if
it is uniformly y1-stable for large z0 in the sense of Def-
inition 4 (where δ is independent of t0) and there is a

V t 0 0 z, , ,( ) 0;≡

V t y1 y2 z, , ,( ) V* t y1 z, ,( ), V* t 0 z, ,( ) 0;≡≤

V t 0 y2 z, , ,( ) 0.≡

y10 δ, y20 ∞, z0 ∞,<<<

y10 δ, y20 L, z0 ∞,<<<

y10 δ, y20 δ, z0 L,<<<

y10 δ, y20 ∞, z0 L,<<<

y10 δ, y20 L, z0 L,<<<

V̇

y1 t; t0 x0,( ) →0, t →∞,lim
∆(L) > 0 such that relation (30) is satisfied uniformly in
t0 and x0 for any solution of the systems of Eqs. (1) and
(3) with ||y0|| < ∆ and ||z0|| < L.

In addition to the functions V and W, we consider
the functions c(r) and d(r) similar to a(r) and the vector
function U(x), which is continuous in region (14) and
satisfies the relation U(0) ≡ 0.

Theorem 4. Let there exist scalar function V and
two vector functions W and U that satisfy the condi-
tions

(31)

in region (15). In this case, the partial-equilibrium
position Û = 0 is (i) uniformly asymptotically y1-stable
if V ≤ d(||y||) and (ii) uniformly asymptotically y1-stable
for large z0 if V(t, 0, 0, z) ≡ 0.

Proof. Uniform y1-stability for case (i) follows from
Theorem 2. Uniform y1-stability for large z0 for case (ii)
is proven similarly to the proof of the third part of The-
orem 3 by taking into account the fact that V ≤ b(||x||)
under conditions (31).

Let us prove that relations (30) are uniformly satis-
fied: for some ∆ > 0 [and for any given L > 0 in case (ii)]
and any ε > 0, there is (i) T(ε) > 0 or (ii) T(ε, L) > 0 such
that ||y1(t; t0, x0)|| < ε for all t ≥ t0 + T, when t0 ≥ 0, ||y0|| <
∆, and ||z0|| < (i) ∞ or (ii) L. 

Since (i) V ≤ b(||y1|| + ||U(x)||) and V ≤ d(||y||) or
(ii) V(t, 0, 0, z) ≡ 0, there is (i) a ∆ > 0 or (ii) a ∆(L) > 0
such that ||y10|| + ||U(x0)||) < b–1(a(h)) when ||y0|| < ∆ and
||z0|| < (i) ∞ or (ii) L. This ∆ value is taken to prove the
uniform satisfaction of relation (30).

If t0 ≥ 0, ||y0|| < ∆, and ||z0|| < (i) ∞ or (ii) L, we have

because V ≤ b(||y1|| + ||U(x)||) and  ≤ 0. Therefore,

for t ≥ t0. Let 0 < ε < ∆. We denote

and demonstrate that V(t*, x(t*; t0, x0)) < a(ε) for a cer-
tain t* ∈  (t0, t0 + T). Indeed, otherwise we have

a y1 W t x,( )+( ) V t y1 y2 z, , ,( )≤

≤ b y1 U x( )+( ),

V̇ c y1 U x( )+( )–≤

a y1 t; t0 x0,( ) W t; x t; t0 x0,( )( )+( )

≤ Vt x t; t0 x0,( )( ) V t0 x0,( ) b y10 U x0( )+( )≤≤, ,

< b b 1– a h( )( )( ) a h( )=

V̇

y1 t; t0 x0,( ) W t; x t; t0 x0,( )( )+ h<

T ε( ) a h( ) a ε( )–[ ] c 1– b 1– a ε( )( )( )=

a ε( ) V t x t; t0 x0,( ),( ) b y1 t; t0 x0,( )(≤≤
+ U x t; t0 x0,( )( ) )
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for t* ∈  (t0, t0 + T) and therefore,

for the same t. If this is the case,

which is impossible. Therefore, the existence of t* has
been proven.

Since  ≤ 0, we have

for t ≥ t* and therefore ||y1(t; t0, x0)|| < ε for t ≥ t0 + T >
t* if t0 ≥ 0, ||y0|| < ∆, and ||z0|| < (i) ∞ or (ii) L. Q.E.D.

Discussion of Theorem 4. (i) When W ≡ 0 and U =
 (  involves all y2 components or some of them),

conditions (31) are replaced by the conditions

(32)

in region (14). These conditions can be treated as a nat-
ural transfer of Rumyantsev’s classical conditions [1, 5]
for stability with respect to some of variables to the
problem under consideration.

(ii) For W ≠ 0, the satisfaction of conditions (31) in
region (15) does not generally mean the satisfaction of

conditions (32) in region (14), and the function  can
be alternating in region (14).

Example 3. Let a system (1) consist of the equations

(33)

We introduce the auxiliary functions

which satisfy the conditions

y1 t; t0 x0,( ) U x t; t0 x,( )( ) b 1– a ε( )( )≥+

a ε( ) V t0 T x t0 T+ ; t0 x0,( ),+( ) V t0 x0,( )≤≤

– c b 1– a ε( )( )( )T a h( ) c b 1– a ε( )( )( )T a ε( ),<–≤

V̇

a y1 t; t0 x0,( ) W t; x t; t0 x0,( )( )+( )
≤ V t*, x t*; t0 x0,( )( ) a ε( )<

y2* y2*

a y1( ) V t y z, ,( ) b y1 y2*+( ),≤≤

V̇ c y1 y2*+( )–≤

V̇

ẏ1 y1 y2y3 z1, ẏ2sin+– y2
2y3 z1,sin= =

ẏ3 y3 ety1 1+( )y3 z1,cos––=

ż1 ety1 1+( ) z1.sin=

V y z1,( ) 1
2
--- y1

2 y2
2y3

2 z1sin
2

+( ),=

W1 U1 y2y3 z1,sin= =

V y z1,( ) y1
2 W1

2+ y1
2 U1

2,+= =

V y z1,( ) d y( ),≤
DOKLADY PHYSICS      Vol. 48      No. 3      2003
in region (15) for small h. According to Theorem 4, the
partial-equilibrium position y = (y1, y2, y3)t = 0 of sys-
tem (33) is uniformly asymptotically stable in y1 ,

although the derivative  is alternating in region (14).
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GENERALIZED EULER PROBLEM 
FOR TWO CENTERS

As was shown in [1], an integrable analogue of the
plane Euler problem of particle motion in the field of
two fixed Newtonian centers can be formulated on a
two-dimensional sphere S2 . Integrability was proved by
the method of separation of variables. The integrability
of this problem in the three-dimensional case, i.e., for a
particle moving on a three-dimensional sphere S3 , was
proven in [2]. The proof consists of the elimination of a
cyclic variable so that the three-dimensional problem
on S3 reduces to a two-dimensional problem on S2 . But
in this case an additional Hookean center originates at
the pole on the perpendicular to the equatorial plane of
the two centers. In this paper, we explicitly write out
algebraic integrals in the more general case of a mate-
rial point moving in the field of two Newtonian centers
and three Hookean centers placed on mutually orthog-
onal axes so that two of the Hookean centers lie on the
plane of the Newtonian centers and the third one on the
perpendicular to this plane (see Fig. 1).

In order to write out the integrals, we use the well-
known analogy to rigid-body dynamics to introduce
corresponding variables M, γ ∈  R3 , which are ana-
logues of the angular moment vector and vertical unit
vector, respectively.

Indeed, in terms of M = p × q and g = q, where
p = (p1, p2, p3) and q = (q1, q2, q3) are the canonical
momentum and coordinates of a point on the sphere
|q|2 = 1, respectively, the equations of motion for an
arbitrary potential V(q) ≡ V(γ) can be represented as
Hamilton equations with the Poisson bracket deter-
mined by the algebra e(3) = so(3) ⊕ s R3:

(1)
Mi M j,{ } ε ijkMk, Mi γ j,{ } ε ijkγk,= =

γi γ j,{ } 0.=

Udmurt State University, Izhevsk, 426069 Russia
e-mail: mamaev@rcd.ru
1028-3358/03/4803- $24.00 © 20156
The corresponding Hamiltonian is

(2)

The equations determined by Poisson bracket (1) and
Hamiltonian (2) coincide with the equations of motion of
a spherical top in the potential V(γ). Poisson bracket (1)
is degenerate and has the two Casimir functions
F1 = (M, g) = c1 and F2 = (g, g) = 1. For our purposes,
the condition (M, g) = 0 must be satisfied; i.e., only a
particular integral must be found.

Omitting the physical justifications of the possibil-
ity of extending Newtonian and Hookean potentials to
the case of a sphere (see [2]), we write out the above-
mentioned potential of two Newtonian and three
Hookean centers in the form

(3)

Here, µ1 and µ2 are constants for the Newtonian cen-
ters; c1, c2 , and c3 are constants for the Hookean cen-
ters; and θi is the angle between the radius vector of the
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particle and that of the ith center. Assuming the Newto-
nian centers to be at the points r1 = (0, α, β) and r2 =
(0, –α, β) and introducing an additional Neumann-type
potential on the sphere, we find that the following qua-
dratic (in M) functions commute [i.e., {H, F} = 0] on
the level determined by the condition (M, g) = 0:

(4)

Here, µ1, µ2, α, β, c1, c2, c3, and C are constants and

(5)

The function H is a Hamiltonian, and the function F is
an additional quadratic integral. In this case, the system
under consideration is of the Liouville type and can be
integrated in spheroconical coordinates [1, 2]. It is
worth noting that finding integrals (4) in an algebraic
form is a tricky problem that involves the inversion of a
spheroconical transformation.

PROBLEM OF n HOOKEAN CENTERS 
ON A SPHERE

We now present a new integrable case of the prob-
lem of particle motion in the field of Hookean poten-

tials . In this case, the Hookean attracting cen-

ters ri (i = 1, 2, …, n) are placed arbitrarily over the
equator rather than positioned on mutually orthogonal
axes. For the sake of simplicity, we consider the case of
a two-dimensional sphere S2. In this case, the Hamilto-

H
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nian and additional integral [for (M, g) = 0] take the
form

(6)

An arbitrary function U(γ3) in Eqs. (6) corresponds to
an arbitrary central field, whose center is on the perpen-
dicular to the plane of the Hookean centers (see Fig. 2).
In particular, one more Hookean center can be placed at
the pole. In this case, as follows from [2], the three-
dimensional problem of particle motion in the field of n
Hookean centers placed on the equator of a sphere S3 is
also integrable.

In Euclidean space, the problem under consider-
ation is trivial, because variables can be separated even
in Cartesian coordinates for arbitrary arrangements of
Hookean centers (the problem reduces to the problem
of n coupled linear oscillators). In a curved space, even
for a two-dimensional sphere, the problem of motion in
the field of three arbitrarily positioned Hookean centers
is nonintegrable. This statement was not proven strictly,
but relevant numerical simulations showed a chaotic
motion. The other quadratic integral of motion F pre-
sented in Eqs. (6) appears due to the separation of the
variables of the problem in spherical coordinates (θ, ϕ).
Indeed, the Hamiltonian H can be written in the form

H
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(7)

where θ and ϕ are the spherical coordinates of a moving
material point and ϕi is the angular coordinate of the ith
Hookean center on the equator (Fig. 2). The expression
in square brackets is an additional integral of motion
presented in Eqs. (6). It is worth noting that the problem
under consideration is nonintegrable if the Hookean
centers (for n > 2) are off of a great circle (e.g., on a par-
allel) of the sphere.

+ U θ( ) 1
2
--- pθ

2=

+
1

2 θsin
2

---------------- pϕ
2 ci

ϕ ϕ i–( )cos
2

------------------------------
i 1=

n

∑+ U θ( ),+
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