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In many problems of polymer physics, it becomes
necessary to reconstruct the density ρ(τ) of the mode

distribution exp  over relaxation times [1]. The

spectrum of the relaxation times makes it possible to
describe in broad limits rheological properties of poly-
mers. At the same time, this spectrum is assumed to be
closely related to the structure of macromolecules [2].

It is considered that initially predetermined arbi-
trariness is inherent in well-known methods of describ-
ing relaxation spectra [3, 4]. This arbitrariness is mani-
fested in attempts of interpreting experimental data. For
example, in the case of the discrete description method,
while realizing different fitting procedures, it is easy to
obtain unboundedly many complexes of relaxation
times and discrete-mode weights. These complexes
describe experimental curves with a given accuracy but
have no direct correlation either with each other or with
the polymer structure. In the continuous description
method, an ill-posed problem arises of reconstructing
ρ(τ) as a solution to a linear integral equation of the first
kind, which is traditionally solved by regularization
methods. In this case, the arbitrariness of reconstruct-
ing ρ(τ) is masked by the method of the organization of
the regularization process and discretization of the inte-
gral equation. However, it was noted [3] that, in spite of
the apparent arbitrariness in describing the relaxation
spectrum, its integral characteristics very often reveal
an entirely consistent behavior.

In this paper, we suggest a method that allows the
indicated discrepancies to be overcome.

In the discrete variant, the relaxation function g(t)
being experimentally measured and the corresponding
complex function G(ω) of the frequency modulus are

t
τ
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related to the relaxation spectrum [2] by the formula

(1)

Here, {τk, ρk}, k = 1, 2, …, N is a set of N relaxation
times and weights of the corresponding modes. In the
continuous variant, formula (1) has the form

(2)

According to their physical sense, the values τk, ρk,
and ρ(τ) are nonnegative. The kinetic function and fre-
quency function are related to each other by the Fourier
transformation

Representations (1) and (2) admit their natural uni-
fication in terms of distribution functions and Stieltjes
integral construction. We now assume [5, 6] that the
relaxation spectrum is described by the distribution
function P(τ), where P(τ) is the integral intensity of the
relaxation spectrum in the half-interval [0, τ). The func-
tion P(τ) is defined on the extended semiaxis R+ =
[0, ∞] so that P(0) = 0. This function is continuous to
the left for 0 < τ < ∞ but it may have discontinuities at
the points τ = 0, ∞. These end discontinuities exist in
the case of purely elastic and inert contribution, respec-
tively, to the relaxation spectrum. We denote the totality
of all distribution functions in R+ as M(R+) and express

g t( ) = t
τk
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the functions g(t) and G(ω) by an integral in the
Stieltjes sense [7] with respect to P(τ):

(3)

In terms of the Stieltjes integral, the steplike distribu-
tion function

corresponds to discrete case (1). Here, h is the Heavi-
side step function. The distribution function

corresponds to the continuous variant; i.e., P(τ) is the
antiderivative of the density ρ(τ).

In order to avoid an uncertainty in formulas (3) at
τ = 0, we complement the definition of the integrand

kernels setting a(t, τ) = exp , b(ω, τ) =  at

τ > 0 and a(t, τ) = δ0t , b(ω, τ) = δ∞ω at τ = 0, where δxy is
the Kronecker delta. Thus, written out in a rigorous
form, formulas (3) are transformed to 

In applications associated with reconstructing the
function P(τ), a question of the uniqueness of this func-
tion and its stability to perturbations of both g(t) and
G(ω) unavoidably arises. We restrict our further analy-
sis to construction of P(τ) according to the kinetic func-
tion g(t), since the description of the frequency-recon-
struction variant differs negligibly.

The property of uniqueness follows from the prop-
erty of unambiguous reversibility of the Laplace trans-
formation. The property of stability is formulated in
terms of the weak convergence of monotonous func-
tions on R+ [7, 8] similarly to the following continuity
principle.

Let gn, Pn (n = 1, 2, …), g, P be the sequence com-
posed of kinetic curves and of the corresponding distri-
bution functions. Then, the convergence gn(t)  g(t)
for all 0 ≤ t < ∞ is equivalent to the weak convergence
Pn ⇒  P on R+.

This statement is proved by combining the Helly
theorem on the choice of a convergent subsequence of
monotonic functions and the property of uniqueness.

The convergence condition for gn(t) at t = 0 is rather
important. If it is then eliminated from the convergence
gn(t)  g(t) at t > 0, it follows only that limPn(τ) =
P(τ) + Ch(τ), where C is an arbitrary constant.

g t( ) = t
τ
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The properties of the uniqueness and continuity
imply that the inverse problem

(4)

where A[P](t) = dP(τ) is an integral operator,

belongs to a well-posed problem in the classic Had-
amard sense for the functions g belonging to the trans-
form Z = A[M(R+)]. Here, Z is treated as a space with

the metric ρ(z1, z2) = |z1(0) – z2(0)| +  or

its equivalent. It is worth noting that Z has an indepen-
dent faithful description: it is a class of absolutely
monotonic Bernstein functions [8].

Due to the limited convexity of the definition region
and the region of values, operator equation (4) is not the
traditional linear equation of the first kind. These are
the limitations that provide continuous reversibility of
the affine operator A: M(R+)  Z and, consequently,
the correctness of inverse problem (4).

It is well known that from the weak convergence of
the distribution functions Pn ⇒  P follows the conver-
gence of the Stieltjes integral

for an arbitrary function f(τ) continuous on R+. Hence,
it follows that the integral moments of the distributions
converge when the corresponding kinetic functions
gn(t) converge pointwise, and the distributions Pn(τ), in
themselves, are concentrated within the range τ ≤ C of
relaxation times.

When measuring g(t) experimentally, we obtain a
function with a noise component certainly violating the
fine descriptive condition of the solvability g ∈  Z.
Therefore, after the extremal problem

(5)

has been analyzed, we introduce a natural notion of the
generalized solution. Here, q, ν(dt), T are the parame-
ters of the functional being minimized, namely, q > 1 is
the Hölder index, T is the set of nonnegative numbers of
measurement times, and ν(dt) is a certain nonnegative
Radon weight measure. It is finite and locally positive
on T, has a jump at t = 0, i.e., ν({0}) > 0. The set T must
contain 0 and must have a finite positive limiting point.
For example, T = {0} ∪  [t1, t2] is suitable, where t1 < t2 . 

In expression (5), the minimum is sought among
monotonic functions of the class M(R+). Solution (5) is
called the optimal integral representation of the func-
tion g over the kernel a(t, τ) in the Banach space
Lq(T, ν). The following property of uniqueness and sta-
bility is valid for optimal integral representation.

A P[ ] g, P M R+( ),∈=

a t τ,( )
0

∞

∫

z1 t( ) z2 t( )– td∫

lim f τ( ) Pn τ( )d∫ f τ( ) P τ( )d∫=

ν td( ) A P[ ] g– q

T

∫           min for    P M R + ( )∈
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(a) For any arbitrary function g ∈  Lq(T, ν), there
exists a unique optimal distribution P[g].

(b) If the sequence of the functions gn is weakly con-
vergent in Lq(T, ν) to g, then the corresponding optimal
integral representations weakly converge as monotonic
functions on R+, i.e., P[gn] ⇒  P[g].

Thus, the optimal integral representations are espe-
cially stable: they are stable to integrated small errors
and even ignore the white noise with arbitrary ampli-
tude, which is superimposed on the true function g(t).

While setting extremal problem (5), it is theoreti-
cally admissible to use an arbitrary finite positive
weight measure ν(dt) and the Hölder index q that con-
trol the contribution to the measurement functional at
different t and the sensitivity of the functional to large
spikes.

In the case of numerical realization of the method,
we deal with a finite set of measurement times T = {tj},
j = 1, 2, …, n. We perform the discretization of the con-
tinuous problem introducing a fixed net of nodes {τi},
i = 1, 2, …, m. The desired distribution function is
approximated by the steplike combination P(τ) =

(τ – τi).

Instead of infinite-dimensional extremal problem (5),
we now obtain

(6)

where νj is a set of fixed positive weight coefficients.
This is the problem of minimizing a finite-dimensional
convex function on a cone of nonnegative vectors. In its
solution, the logarithmic penalization method [9] com-
bined with the second-order descent is rather efficient,
which results in rapidly convergent iterations. In the
usual case of employing the index q = 2, problem (6)
relates to the quadratic programming, and the NNLS
finite-step algorithm [10] is applied in solving the
problem.

In order to attain a good approximation of continu-
ous problem (5) by discrete problem (6), a sufficiently
dense net of nodes τi , tj about tens per decade is neces-
sary, which covers the region of a possible concentra-
tion of the relaxation spectrum. Among moments of
measurements of T and among discretization nodes, it
is desirable (but not necessarily) to have t = 0 and τ = 0,
∞, respectively. The window of the concentration of
positive times t must be wider to both sides by an order

α ih
i 1=

m

∑

J α( ) ν j a t j τ i,( )α i g t j( )–
i 1=

m

∑
q

j 1=

n

∑ min,→=

α i 0, i≥ 1 2 … m,, , ,=
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of magnitude than the window of positive nodes τi .
This allows the manifestation of the degeneration of the
matrix columns {a(tj , τi)} to be avoided As a result, the
typical dimension of problem (6), which we meet in
applications, is rather high (m, n ~ 300). The practice of
solving problem (6) has shown that the method of dis-
posing calculation nodes {τi} does not affect the quality
of the solution, only the net density is important.
Although different sets of weights are calculated for
different representations of nodes, the corresponding
final primitive steplike distribution functions coincide
with each other within an accuracy determined by both
the density of the nets and the error in g(t). The nonu-
niqueness of the solution (undetermined case) possible
in the case of m > n is insignificant. In practice, it is rea-
sonable to distribute finite positive nodes τ uniformly in
the logarithmic scale and equalize weights for t > 0.
These practical observations are consistent with the
theory of the correctness of the optimal integral repre-
sentation, which was described above.
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An increase in the reactivity of reagents under crys-
tallographic transformations in solid-state synthesis is
known as the Hedvall effect (see, e.g., [1]). However, as
was shown in [2–5], solid-state reactions in thin films
are initiated independently of crystallographic transfor-
mations in reagents and begin at temperatures of struc-
tural solid-state transformations in the reaction prod-
ucts. In particular, the initiation temperature in a Fe/S
bilayer film system is determined by the temperature of
the metal–dielectric phase transition in iron monosul-
phide (FeS) [2]. Solid-state synthesis in Cu/Au films
occurs in the mode of self-propagating high-tempera-
ture synthesis (SHS) whose initiation temperature coin-
cides with the temperature of the order–disorder transi-
tion in a CuAu alloy [3]. The connection of solid-state
reactions in Ni/Ti and Cd/Au thin-film samples with
martensitic transformations in NiTi and AuCd alloys
was studied in [4, 5]. The general rule of the formation
of the first phase and phase sequence in bilayer films
and multilayers with increasing annealing temperature
was formulated in [4] as follows. The first phase form-
ing at the film interface is a phase with the minimum
temperature of structural phase transformations in the
phase diagram. Further phase formation with an
increase in the annealing temperature for solid-state
reactions in thin films is determined by structural trans-
formations in a given binary system. The initiation tem-
peratures of solid-state reactions coincide with the tem-
peratures of structural phase transitions.

The first-phase rule indicates that the initiation tem-
peratures T0 of synthesis in bilayer films and multilay-
ers are equal to the temperatures TK of solid-state tran-
sitions in the corresponding binary systems and implies
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that the mechanisms of synthesis and phase separation
are of primary importance in solid-state transforma-
tions.

The aim of this work is to expand the first-phase rule
to superionic transformations by the example of solid-
state synthesis of copper selenide in the Se/Cu thin-film
system.

In the Se–Cu system, the low-temperature α-Cu2Se
phase, whose structure is not definitely determined, is
transformed to the cubic superionic high-temperature β
phase at a temperature of TK ~ 380–400 K. The super-
ionic-transformation temperature TK decreases strongly
with deviation from stoichiometry, and TK for Cu2 – xSe
samples with x ~ 0.2 is about room temperature. The
β-Cu2Se superionic phase exhibits mixed conductivity,
whose ionic component is about 10% [6].

The experiments were carried out with bilayer film
systems consisting of Cu and Se layers obtained by
sequential deposition on glass substrates and freshly
spalled (001)MgO surface. The thicknesses of Cu and
Se films were in the ranges 50–100 and 100–200 nm,
respectively. More complete data concerning the condi-
tions of the production of bilayer film samples and ini-
tiation of SHS in them were given in [2–4]. The original
bilayer samples exhibit reflexes only from (111) and
(200) Cu planes, which indicates primary growth in
these planes with respect to the glass substrate (Fig. 1a).
The absence of reflexes from Se implies that it is grown
amorphous or small-crystalline on the Cu surface. Sam-
ples were heated at a rate of η ~ 1 K/s. The solid-state
reaction between Cu and Se layers was initiated at a
substrate temperature of TS ~ 380 K and occurred in the
SHS mode, whose front propagated typically for SHS
in thin films. Figure 2 shows the relative resistance R as
a function of the substrate temperature TS. Behind the
SHS front, there is a region where the color of the orig-
inal film changes. However, diffraction patterns do not
indicate the formation of compounds in this region. It
likely exists due to the melting or structural transforma-
tion of amorphous selenium. Analysis of reacted Se/Cu
film samples indicates that synthesis occurs over the
entire thickness of a film. As follows from diffraction
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. Diffraction patterns of the Se/Cu bilayer film system: (a) before the reaction, (b) after the passage of the SHS wave through
the original sample and after the secondary initiation of SHS in the film system consisting of the Cu2Se reacted sample and the Se
layer deposited on it.
patterns, reacted samples (Fig. 1b) consist of a mixture
of the α-Cu2Se and β-Cu2Se phases. The reaction prod-
ucts can also include CuSe and Cu3Se2 phases due to
the Cu2Se–Cu2 – xSe and CuSe–Cu3Se2 phase transforma-
tions as a result of aging and thermal processing [7, 8].
Reacted samples do not include the nonstoichiometric
Cu2 – xSe phase, which is always present when other
obtaining methods are used [7–10]. The most substan-
tial feature is the possibility of continuing solid-state
synthesis if a reacted Cu2Se sample is covered by an Se
layer. The reaction in these Se/Cu2Se and Se/Cu2Se/Cu
film systems occurs in the SHS mode and is initiated at
the same temperature T0 = 380 K. The diffraction pat-
tern from twice-reacted samples was similar to that
from samples reacted only once (Fig. 1b). The continu-
ation of the reaction implies that synthesis in Se/Cu2Se
and Se/Cu2Se/Cu film systems is accompanied by the
formation of nonstoichiometric Cu2 – xSe phase, as well
as CuSe and Cu3Se2 phases, which exist in a wide com-
position range and can be produced from Cu2Se phase.

Solid-state synthesis in bilayer film systems can also
be initiated if the upper layer is deposited at the sub-
strate temperature TS above the initiation temperature
T0 (TS > T0). When Se is deposed on a single-crystal
Cu(001) surface grown on a MgO(001) spall, the dif-
fraction pattern involves only reflexes with interplane
spacings d1 = 0.68 nm and d2 = 0.34 nm. These reflexes
correspond to reflections from (110) and (220) planes
of the (card 19-0401 JCPSD) orthorhombic form, from
(111) and (222) planes of the (card 29-568 JCPSD) tet-
DOKLADY PHYSICS      Vol. 48      No. 5      2003
ragonal form, or from (030) and (060) planes of the
(card 27-1131 JCPSD) monoclinic form of the α-Cu2Se
phase. Self-propagating high-temperature synthesis
often leads to single-crystal reaction products [11]. The
formation of an α-Cu2Se single-crystal layer on the
Cu(001) surface implies that atomic transport through a
reaction product in synthesis is directed and ordered.
This deterministic atomic motion is responsible for ori-
ented growth with the formation of orientational rela-
tions between reagents and reaction products.

The initiation temperature T0 of SHS in Se/Cu
bilayer films is equal to the temperature TK of the supe-
rionic transition in Cu2Se phase, and the reaction prod-
ucts include the Cu2Se phase and phases to which it is
transformed. Therefore, solid-state synthesis in Se/Cu
film systems is determined by the superionic transition
in the Cu2Se phase and satisfies the first-phase rule pre-
sented above. Assuming that the initial resistance R0
corresponds to the resistance of the original sample and
the final resistance RK corresponds to the reaction prod-
ucts, we conclude that the reaction rate κ(TS) depends

on the substrate temperature TS as . Assum-

ing that η in this relation is constant and κ(TS) =

Aexp , where A is constant, we obtain the reac-

tion activation energy Ea from R(TS) (Fig. 2). This
energy is equal to 0.9 eV near the initiation tempera-
ture. This value agrees with the low energy of ionic-

R TS( ) R0–
η RK R0–( )
---------------------------

Ea

kTS
---------– 

 
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conductivity activation, which does not exceed 0.3–
0.4 eV in the superionic state [12].

Let us assume that the reaction front starts at the
interface and propagates inside the film with the SHS
front velocity Vf in the film plane. In this case, the lower
limit of the diffusion coefficient when the SHS front
passes is estimated as Deff = Vf d ~ 10−9 m2/s, where d =
100 nm is the thickness of the reacted layer and Vf  =
100 m/s is the front velocity near the initiation temper-
ature. This estimate coincides with the diffusion coeffi-
cients of Ag+ cations in Ag-based superionic conduc-
tors [12]. The above results imply common mecha-
nisms of solid-state synthesis and fast ionic transport
and make it possible to propose the following model of
solid-state synthesis in Se/Cu bilayer systems deter-
mined by the superionic transformation in the Cu2Se
phase. The interface between film condensates after
chemisorption is a 2D reaction product, which is a germ
of the first phase. When the temperature of the bilayer
film exceeds the superionic transformation temperature
(TS > TK), the 2D germ of the first phase is transformed
to the Cu2Se superionic phase. Since the cation mobility
of Cu atoms is high in the superionic state, copper cat-
ions migrate through the 2D β-Cu2Se layer of the reac-
tion products into the selenium film. The transport of Cu
cation lines through the β-Cu2Se layer must occur via
cooperative jumps from one crystallographic position to
another in channels coinciding with conductivity chan-
nels [12] and must be directed, which ensures a low
energy of synthesis activation. Self-organization in the
motion of Cu cations is responsible for the growth of a
new epitaxial β-Cu2Se layer at the interface with sele-
nium. As the substrate temperature decreases below the
initiation temperature (TS < T0), the high-temperature
β-Cu2Se phase is transformed to the low-temperature
α-Cu2Se phase and synthesis is damped.

In conclusion, we note that SHS in thin films propa-
gates to a depth up to 200 nm and indicates that synthe-
sis mechanisms are long-range. The way of the migra-

440400360320280
TS, K

R, arb. units

Fig. 2. Relative resistance R vs. the substrate temperature TS
for the heating rate η ~ 1 K/s of the Se/Cu bilayer film sam-
ple. The arrows show the direct and reverse variation in
resistance.
tion of atoms to the reaction zone is important. The
kinetics of front propagation are independent of the
kind of the solid-state transformation (order–disorder
transition, martensitic transformation, or superionic
transition) determining SHS in thin films. This property
implies that these transformations have a common
physicochemical mechanism. Indeed, the order–disor-
der phase transition can proceed through the martensi-
tic mechanism (see, e.g., [13]). The similarity between
martensitic and superionic transformations was previ-
ously analyzed in [1, 14]. Since the activation energy is
low and mobility of atoms is high at TS > T0 = TK, dif-
fusionless, martensitic-like, and collective mechanisms
of atomic transport can play the primary role in the
solid-state transformation and at the initial stage of
solid-state synthesis in thin films.
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Investigations of the last decade significantly
extended the list of known zeolite-like compounds,
whose crystal structure is based on mixed frameworks
composed of various anion polyhedra. In addition to the
well-known natural and artificial zeolites with the Al
and Si tetrahedron frameworks, a large number of
microporous phases with three-dimensional anion con-
structions based on Zn–P, Be–P, Zn–As, Al–P, and other
cation matrices were found [1–6]. Oxygen complexes
of amphoteric metals in combination with [PO4]3– acid
complex anions form mixed anion frameworks contain-
ing pores or channels, where either alkaline or organic
cations are located. In this group of compounds, which
are often used as molecular sieves as an alternative to
aluminum silicates, aluminum phosphates are most
studied. Systematically investigating aluminum phos-
phates, we synthesized one more such compound.

In this work, we study colorless transparent isomet-
ric well-cut crystals up to 5 mm in size, which were
produced in standard Teflon-lined 4-cm3 autoclaves by
the method of soft hydrothermal synthesis (T = 250°C
and P = 100 atm). A mechanical mixture of Na2O–
Al2O3–P2O5–B2O3 components prepared in equal
weight amounts was introduced into a water-filled auto-
clave. Experiments continued for 18–20 days. The dif-
fraction pattern recorded from a powder sample by a
DRON UM diffractometer indicated that the synthe-
sized compound is original. The X-ray analysis (Can-
Scan 4DV) showed that this phase include Na, Al, and
P atoms.

Investigating a single crystal with a SYNTEX P
four-circle autodiffractometer, we found that the param-
eters of a rhombic (pseudotetragonal) unit cell are a =
8.475(2) Å, b = 8.471(2) Å, and c = 14.319(3) Å. Exper-
imental data needed to interpret the structure were
obtained with the same diffractometer (MoKα radia-

1

Moscow State University, 
Vorob’evy gory, Moscow, 119899 Russia
* e-mail: yakubol@geol.msu.ru
1028-3358/03/4805- $24.00 © 20209
tion) by the 2θ : θ-scanning method. The intensities of
reflexes were adjusted with allowance for the Lorenz
factor and polarization effect.

Calculations were made with the SHELX program
package [7, 8] by using the curves of atomic scattering
and the corrections for anomalous dispersion taken
from [9]. We could not find a structural model in the
framework of the tetragonal symmetry (P42212 space
group). For this reason, we supposed that the crystal has
rhombic symmetry, and the pseudotetragonal symme-
try results from merohedric or pseudomerohedric
microtwinning. The structure was determined by direct
methods and refined in the anisotropic full-matrix
approximation with allowance for absorption and sec-
ondary isotropic extinction. In the absence of chemical
analysis, atoms were identified by taking into account
the composition of the system in the process of crystal
synthesis, interatomic spacings, temperature factors,
and the character of ellipsoids of thermal vibrations.
Allowance for pseudotetragonal twinning showed that
the samples under investigation contain two kinds of
objects with different orientations in a ratio of
0.440(3) : 0.560(3). The Flack parameter [10] testified
to the proper choice of an “absolute” acentric configu-
ration (P212121 space group). The structure is described
by the formula 

Na2{ Al3(OH)2[PO4]3} .

The positions of hydrogen atoms were localized by
difference synthesis of the electron density and refined
in the isotropic approximation. The crystallographic
characteristics of the new phase, data of X-ray analysis,
and refinement parameters of the structure are listed in
Table 1. The coordinates of basic atoms (with the aniso-
tropic and equivalent temperature factors) and inter-
atomic spacings are presented in Tables 2 and 3, respec-
tively. Table 4 presents the geometric characteristics of
hydrogen bonds. The local balance of valences includ-
ing the contribution of protons [11, 12] is given in
Table 5.

The crystal structure is formed by two types of Al
polyhedra (in three nonequivalent positions)—octa-
003 MAIK “Nauka/Interperiodica”
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Table 1.  Crystallographic characteristics and data of the experiment and structure refinement

Crystallographic characteristics

Chemical formula Na2{Al3(OH)2[PO4]3}

Absorption µ, mm–1 1.014

Space group P212121

The number of formula units Z 4

Parameters of a unit cell, Å:

a 8.475(2)

b 8.471(2)

c 14.319(3)

Unit-cell volume V, Å3 1028.0(4)

Density ρ, g/cm3 2.881

Experimental data

Diffractometer SYNTEX P 

Radiation MoKα (Graphite monochromator)

Temperature, K 293

Measured range: θmax 35°00

Data of structure refinement

The number of reflection: independent I and observed with I > 1.96σ(I) 2404/2251

Refinement method in F2

The number of refined parameters 206

Correction for absorption DIFABS

Tmax, Tmin 1.000, 0.758

Uncertainty parameters:

R (for observed reflexes) 0.046

wR2 (for all independent reflexes) 0.099

s 1.099

Extinction coefficient 0.0004(7)

Residual election density, e/Å3 ρmax = 0.71,
ρmin = –0.65

1

and pentahedra. The shape of Al1 octahedra is rather
regular, and they are larger than Al2 and Al3 pentahe-
dra. Cation–oxygen interatomic spacings in Al1 octa-
hedra vary from 1.869 to 1.909 Å (the average value is
equal to 1.891 Å), while the average spacings in Al2
and Al3 polyhedra are equal to 1.830 and 1.832 Å,
respectively. The cis-type conformation is typical for
AlO4(OH)2 octahedra. The bond lengths between Al
atoms and two OH groups in the cis-position are minimal
in a polyhedron and are equal to 1.869 and 1.880 Å. One
vertex in each of the Al2 and Al3 pentahedra is also
occupied by a hydroxyl group, but the interatomic spac-
ings (Al2–OH = 1.801 Å and Al3−OH = 1.842 Å) are
not minimal in the corresponding polyhedra. Although
the mean aluminum–oxygen bond lengths in pentahe-
dra coincide to within the limits of experimental error
(0.005 Å), it is seen (Table 3) that the spread of the
lengths in Al2 polyhedra is wider. For example, Al2–O
interatomic lengths lie in the range 1.782–1.884 Å,
whereas the minimum and maximum Al3–O lengths in
Al3 pentahedra are equal to 1.795 and 1.858 Å, respec-
tively.
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Table 2.  Coordinates of the basic atoms and equivalent and anisotropic thermal parameters (Å2)

Atom x/a y/b z/c Ueq U11 U22 U33 U23 U13 U12

Al1 0.6540(2) 0.6181(2) 0.0418(2) 0.0072(3) 0.0090(8) 0.0053(7) 0.0073(6) –0.0001(7) 0.0009(7) 0.0002(6)

Al2 0.8631(2) 0.3832(3) 0.1994(1) 0.0078(3) 0.0089(9) 0.0077(8) 0.0070(7) 0.0005(7) 0.0001(6) 0.0010(6)

Al3 0.3923(2) 0.1099(2) 0.1134(1) 0.0080(3) 0.0075(7) 0.0083(8) –0.0006(7) 0.0006(7) 0.0005(6) –0.0003(6)

P1 0.5369(2) 0.2837(2) 0.2924(1) 0.0070(2) 0.0084(7) 0.0067(7) 0.0058(4) 0.0002(5) 0.0009(5) 0.0005(5)

P2 0.9712(2) 0.7247(2) 0.1280(1) 0.0067(2) 0.0060(7) 0.0067(7) 0.0075(5) 0.0001(5) –0.0005(5) –0.0003(4)

P3 0.0508(2) 0.2021(2) 0.0459(1) 0.0073(2) 0.0079(6) 0.0061(7) 0.0079(5) –0.0018(6) –0.0006(5) 0.0008(5)

Na1 0.7603(4) 0.9798(4) –0.0365(3) 0.0374(9) 0.019(1) 0.021(2) 0.073(2) 0.002(2) –0.011(2) –0.005(1)

Na2 0.2205(4) 0.5008(4) 0.2890(3) 0.0402(10) 0.017(2) 0.024(2) 0.080(3) 0.023(2) –0.009(2) –0.006(1)

O1 0.5150(6) 0.1813(6) 0.3796(3) 0.0109(9) 0.012(2) 0.010(2) 0.011(2) 0.003(2) 0.001(2) –0.003(2)

O2 0.0167(6) 0.0359(5) 0.0097(3) 0.0086(8) 0.011(2) 0.007(2) 0.008(2) –0.002(2) 0.003(2) –0.003(2)

O3 0.7035(5) 0.4725(5) 0.1353(3) 0.0141(9) 0.010(2) 0.013(2) 0.019(2) 0.010(2) –0.006(2) –0.003(2)

O4 0.3131(5) 0.9488(5) 0.0408(4) 0.0099(7) 0.012(2) 0.008(2) 0.010(1) 0.001(2) –0.005(2) 0.001(2)

O5 0.8023(6) 0.7628(6) 0.0940(3) 0.0107(8) 0.009(2) 0.009(2) 0.014(2) 0.001(2) –0.001(2) 0.002(2)

O6 0.9233(6) 0.2333(6) 0.1197(3) 0.0102(9) 0.013(2) 0.012(2) 0.006(2) –0.004(2) 0.001(2) –0.003(2)

O7 0.0081(6) 0.8526(6) 0.2014(3) 0.0109(9) 0.011(2) 0.007(2) 0.014(2) 0.000(2) –0.003(2) –0.000(2)

O8 0.5868(5) 0.7713(6) –0.0460(3) 0.0087(8) 0.009(2) 0.012(2) 0.005(2) 0.003(2) –0.002(2) –0.001(2)

O9 0.9869(6) 0.5599(6) 0.1716(3) 0.0103(9) 0.012(2) 0.007(2) 0.012(2) 0.003(1) –0.003(2) –0.001(2)

O10 0.2917(6) 0.7613(6) 0.2395(3) 0.0108(9) 0.007(2) 0.010(2) 0.015(2) –0.002(2) 0.003(2) 0.003(2)

O11 0.4231(6) 0.2479(6) 0.2125(3) 0.0114(9) 0.013(2) 0.010(2) 0.011(2) –0.005(2) –0.003(2) –0.001(2)

O12 0.5032(6) 0.4589(5) 0.3176(3) 0.0101(8) 0.009(2) 0.007(2) 0.014(2) –0.000(2) –0.002(2) 0.003(2)

O13 0.2143(6) 0.2233(6) 0.0892(4) 0.0128(9) 0.006(2) 0.013(2) 0.019(2) –0.003(2) –0.002(2) 0.003(2)

O14 0.0423(6) 0.3243(6) –0.0339(3) 0.0120(9) 0.009(2) 0.011(2) 0.016(2) 0.008(2) –0.000(2) –0.003(2)

H1 0.63(1) 0.44(1) 0.137(8) 0.05(3)

H2 0.36(1) 0.88(1) 0.043(8) 0.04(3)

Note: For H atoms, the isotropic thermal factors are presented.

Table 3.  Interatomic spacings, Å

Al1-octahedron Al2-pentahedron Al3-pentahedron P1-tetrahedron

Al1–O3 1.869(5) Al2–O6 1.782(5) Al3–O14 1.795(5) P1–O11 1.527(5)
O4 1.880(5) O3 1.801(5) O13 1.821(5) O1 1.531(5)
O8 1.895(5) O7 1.810(5) O4 1.842(5) O10 1.535(5)
O2 1.896(5) O9 1.871(5) O12 1.844(5) O12 1.553(5)
O1 1.899(5) O10 1.884(5) O11 1.858(5)
O5 1.909(5)

Mean 1.891 Mean 1.830 Mean 1.832 Mean 1.537

P2-tetrahedron P3-tetrahedron Na1-octahedron Na2-octahedron

P2–O8 1.529(5) P3–O2 1.529(5) Na1–O8 2.303(6) Na2–O7 2.313(6)
O9 1.535(5) O13 1.529(5) O2 2.326(6) O10 2.394(6)
O7 1.542(5) O6 1.534(5) O1 2.634(6) O12 2.456(6)
O5 1.546(5) O14 1.544(5) O5 2.645(7) O5 2.629(6)

O13 2.654(7) O9 2.645(6)
O14 2.680(6) O6 2.660(7)

Mean 1.538 Mean 1.534 Mean 2.539 Mean 2.516
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Table 4.  Geometric characteristics of hydrogen bonds

D–H···A D–H, Å H···A, Å D···A, Å
Angle

D–H···A

O3–H1···O11 0.66(9) 2.63(9) 3.238(6) 155(11)°

0.69(9) 2.29(9) 2.925(7) 154(12)°

0.69(9) 2.50(9) 3.031(6) 136(11)°

Note: D and A are the donor and the acceptor of a hydrogen bond.

O4–H2
O1

O8

······

Table 5.  Bond–valence analysis

Atom Al1 Al2 Al3 P1 P2 P3 Na1 Na2 H1 H2 Σ |δ|

Ο1 0.51 1.26 0.11 0.07 1.95 0.05

O2 0.52 1.27 0.25 2.04 0.04

O3(OH) 0.55 0.67 0.92 2.14 0.14

O4(OH) 0.54 0.60 0.89 2.03 0.03

O5 0.50 1.21 0.10 0.11 1.92 0.08

O6 0.70 1.25 0.10 2.05 0.05

O7 0.65 1.22 0.25 2.12 0.12

O8 0.52 1.27 0.26 0.04 2.09 0.09

O9 0.55 1.25 0.10 1.90 0.10

O10 0.53 1.25 0.20 1.98 0.02

O11 0.57 1.28 0.04 0.08 1.97 0.03

O12 0.59 1.19 0.17 1.95 0.05

O13 0.63 1.27 0.10 2.00 0.00

O14 0.68 1.22 0.10 2.00 0.00

Σ 3.14 3.10 3.07 4.98 4.95 5.01 0.92 0.97

Note: The balance is calculated using the relationship sij = , where sij is the valence force of the ith cation that is transmitted

to the jth anion; the bond length RI of unit valence for a particular cation–anion pair is tabulated as an empirical constant; and Rij is
the experimental cation–anion length in a particular crystal structure; and b = 0.37.

RI Rij–

b
------------------ 

 exp
The lengths of P–O bonds in three independent PO4
tetrahedron complexes vary from 1.527 to 1.553 Å (the
mean value is equal to 1.536 Å), which is quite usual
for orthophosphate groups. Cation–oxygen interatomic
spacings in sodium octahedra lie in the range 2.303–
2.680 Å (the mean value is equal to 2.539 Å) and
2.313–2.660 Å (the mean value is equal to 2.516 Å) for
Na1 and Na2, respectively. An additional oxygen atom
lying at a distance of 2.955 Å completes an anion poly-
hedron around Na2 to a septahedron.

Hydrogen bonds in the structure are rather weak and
(as is typical of inorganic compounds) asymmetric and
essentially nonlinear (Table 4). The system of hydrogen
bonds is complicated by the presence of bifurcated
bonds between an O4 donor and two O1 and O8
acceptors.

Each Al1 octahedron shares two OH vertices with
the neighboring Al2 and Al3 pentahedra, which form
band-shape constructions parallel to the c axis in a unit
cell (Fig. 1). The Al2 and Al3 polyhedra have no com-
mon vertices and interact via Al1 octahedra within
bands consisting of Al3(OH)2O12. Orthophosphate tet-
rahedra share all oxygen vertices with Al polyhedra,
thereby uniting the bands described above into a frame-
DOKLADY PHYSICS      Vol. 48      No. 5      2003
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ab

c

P1

Al2

Al3

P2

P2
Al2

Al3
Al1

Al1

Fig. 1. Crystal structure of Na2{Al3(OH)2[PO4]3} in the projection along the diagonal of the ab plane. Bands that are parallel to the
c axis and consist of vertex-linked Al polyhedra are clearly seen. Circles are Na atoms.

Al3

P3
work construction (Fig. 2). Each of the P1 and P3 tetra-
hedra shares two vertices with the Al3 pentahedra and
one vertex with the Al1 and Al2 polyhedra. A P2 tetra-
hedron has no common oxygen atoms with the Al3 pen-
tahedra and shares two vertices with an Al1 octahedron
and two vertices with an Al2 pentahedron. The result-
ing mixed-type framework {Al3(OH)4[PO4]3} ∞ ∞ ∞ con-
tains parallel [001] channels having tri- and octagonal
cross sections. In the latter, Na+ cations are situated
(Fig. 3a).

In the framework of the Na–Al–P–O–H system,
there are two natural minerals: wardite

Na{ Al3(OH)4(H2O)2[PO4]2}  [13]

and brazilianite

Na{ Al3(OH)4[PO4]2}  [14].

Their structures are based on mixed anion frameworks
composed of Al octahedra and P tetrahedra. However,
the topologies of the frameworks differ significantly
from each other and from the topology of the structure
of the new artificial phase described above. For exam-
ple, the wardite structure includes layers consisting of
DOKLADY PHYSICS      Vol. 48      No. 5      2003
b

c

P Al

Na

Al

Fig. 2. Anion mixed-type framework consisting of Al and P
polyhedra in the Na2{Al3(OH)2[PO4]3} structure (yz pro-
jection). Circles are cation “sodium” filling of the frame-
work.
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b

a

Al3
P3

P2
Al1

Al1

Al3

Al2

Al3

P3
P1

P2

(a)

Fig. 3. Crystal structure of the (a) Na2{Al3(OH)2[PO4]3} synthetic phase and (b) K{Al2F(H2O)4[PO4]2} minyulite mineral. The
view along the c axes of unit cells.
vertex-linked Al octahedra. These layers are united into
a framework by orthophosphate octahedra and hydro-
gen bonds. In the crystal structure of brazilianite,
chains composed of edge-linked Al octahedra are
united to a framework by orthophosphate tetrahedron
complexes. The voids in the microporous frameworks
are filled with Na+ cations.

The Na2{Al3(OH)2[PO4]3} aluminum phosphate,
which we synthesized, is described by a new structure
type. However, the topology of the Al- and P-based
framework in the ab projection (up to the “absolute”
configuration) is close to that of Al- and P-layers in the
crystal structure of the pseudotetragonal minyulite min-
eral described by the formula 

K{ Al2F(H2O)4[PO4]2}  [15].
Pores of octagonal cross sections in layers parallel
to the {001} plane contain K+ cations, which are larger
than Na+ cations. An “elementary link” of mixed-type
anion layers in the minyulite structure is an
{Al2F(H2O)4[PO4]2} quasi-cluster (Fig. 3b) consisting
of two Al octahedra and two P tetrahedra. In the Ò-axis
direction, the layers are connected by hydrogen bonds.
Similar quasi-clusters are present in the
Na2{Al3(OH)2[PO4]3} structure. However, one octahe-
dron is replaced by an Al pentahedron in the formation
of these quasi-clusters. In the framework structure of
sodium aluminum phosphate, these clusters are con-
nected by common oxygen vertices with similar clus-
ters not only in the ab plane (as in the minyulite struc-
ture), but also in the direction of the third crystallo-
DOKLADY PHYSICS      Vol. 48      No. 5      2003
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Fig. 3. (Contd.)
graphic axis. Since sodium aluminum phosphate was
synthesized under soft hydrothermal conditions and its
structure is topologically similar to the structure of
minyulite, the probability of the existence of a natural
mineral analogue of the new phase is quite high.
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1. INTRODUCTION

Magnetic fields play an important role in the forma-
tion and evolution of structures peculiar to space and
laboratory plasma. In the evolution process of these
structures, rapid dissociation of magnetic energy with
its transformation into that of accelerated particles and
of radiation, as well as into plasma energy, is observed.
Examples of these phenomena are solar bursts, sub-
storms in the Earth’s magnetosphere, and disruptive
instabilities in tokamak plasmas, the main reason of
such instabilities being a physical process known as
reconnection of magnetic-field lines [1–4]. The mag-
netic reconnection occurs in the vicinity of critical
points in magnetic configurations. It is accompanied by
a change in topology of the magnetic field and leads to
the formation of singular distributions of the electric
current in plasma (current sheets) and shock waves.

The problem of reconnection of magnetic-field lines
is closely related to that of the structural stability of
vector fields. It is well known that the magnetic-field
topology is described in terms of a phase space of the
corresponding dynamical system. Therefore, results
obtained in the theory of dynamical systems can be
used to analyze the structural stability of magnetic
fields. The general problem of the structural stability
was comprehensively discussed in [5]. It was con-
cluded there that a system is structurally stable if, for
small perturbations of an initial configuration, the
resulting system is equivalent to the original one. Oth-
erwise, the system is structurally unstable. In particular,
fields with degenerate critical points, i.e., with points in
the vicinity of which the eigenvalues of the linearized
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problem vanish, correspond to structurally unstable
vector fields.

Recently, magnetic reconnection in structurally
unstable magnetic fields has attracted much attention
owing also to the fact that these fields exhibit important
features of magnetic configurations in tokamaks with
the inverse shear [6]. These are the configurations that
make it possible to attain a more efficient plasma con-
finement. Thus, the analysis of magnetic reconnection
in structurally unstable fields acquires a practical
importance in studies of both stability and transport
processes in thermonuclear plasma with magnetic con-
finement.

As was mentioned above, magnetic reconnection
changes the magnetic-field topology. It is natural to
assume that, as a result of this situation, structurally
unstable magnetic configurations transform into struc-
turally stable ones. However, the analysis of the struc-
tural stability in the case of the magnetic reconnection
turns out to be more complicated than in the case of the
structural stability of only one vector field depending
on a parameter. This is explained by the fact that the
magnetic reconnection in high-conductivity plasma is
determined by the nonlinear interaction of two vector
fields, namely, the magnetic field and the plasma veloc-
ity field. The analytic description of such nonlinearly
evolving systems under conditions of multidimensional
geometry encounters essential difficulties. Therefore,
the adequate description of these processes requires the
application of numerical-simulation methods.

Until the present time, the theory of reconnection in
structurally unstable configurations was considered
only for one-dimensional and two-dimensional systems
[7–9]. The goal of the present paper is the study of the
magnetic reconnection in the process of a passage of
structurally unstable three-dimensional magnetic con-
figurations into structurally stable ones.

Our analysis is developed in the following manner.
In Section 2, analytic expressions describing the shape
of the magnetic field in the vicinities of degenerate
high-order critical points are given. In the next section,
the results of a numerical magnetohydrodynamic
(MHD) simulation are presented. In the concluding
section, the basic results of the analysis are formulated.
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2. MAGNETIC-FIELD STRUCTURE
IN THE VICINITY

OF A DEGENERATE CRITICAL POINT

In the vicinity of a critical point, in which the mag-
netic field vanishes, this field can be represented in the
form of the following power expansion:

(1)

Here, Bij = , Bijk = , and ä is a

residual term. If the magnetic field is potential, i.e., is
produced by sources situated far from the critical point,
then the field can be represented in the form of a gradi-
ent of a scalar potential F(x, y, z): B = gradF.

Locally, the topology of a magnetic field is deter-
mined by the first nonzero term on the right-hand side
of expression (1). We now suppose that the matrix Bij is
not the zero matrix. For a potential field (curlB = 0), this
matrix can be represented in the diagonal form with the
zero trace:

In this expression, the superscript (2) describes the
order of a singular point. The scalar potential of the
magnetic field has the form

(2)

The magnetic configuration is determined by the
parameters a(2), b(2) and corresponds to the zero point.
The magnetic field related to this potential function has
a critical (singular) field line connecting the zero point
to the infinitely remote point. This field also has a sin-
gular (separatrix) plane passing through the zero point.
By virtue of the condition divB = 0, the sum of eigen-
values of the matrix Bij is zero, whereas l1 = a(2), l2 = b(2),
and l3 = –(a(2) + b(2)). As follows from expression (2), in
this case, the magnetic field may be represented as a
superposition of two two-dimensional magnetic fields

with the potentials a(2)(x2 – z2) and b(2)(y2 – z2). The

potential function describing the two-dimensional field
is the real-valued part of the complex potential
W (2)(h) = F – iA, which, in turn, has the form of the qua-

dratic function W(2)(h) = a(2)h2. For the first and sec-

ond terms in formula (2), the complex variables are in
this case h = x + iz and g = y + iz, respectively.

In the general case, the critical point of field (2) is
nondegenerate. To provide the degeneration of the crit-
ical point, one of the eigenvalues vanishes. Let b(2) = 0,

then the potential function is F(2) = a(2)(x2 – z2). This
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is a magnetic field with the X-type zero field line
located in a plane parallel to the éY axis. The X-type
field line is a zero line of the magnetic field. Along this
line and on it, two separatrix surfaces and the magnetic
field intensity, respectively, vanish. While passing to
the structurally stable field, the zero point disappears
and a second separatrix plane arises.

For the zero matrix Bij , the next term on the right-
hand side of expression (1) becomes the defining one,
the potential function

 (3)

corresponding to this term. At the critical point x = 0,
all elements of the matrix Bij vanish, and the magnetic-
field configuration is then determined by the parame-
ters a(3), b(3), c(3) ,  d(3), e(3), and f (3). In this case, the mag-
netic field, in itself, is a superposition of two-dimen-
sional magnetic fields, each of them determining the
zero line of the third order. The characteristic shape for
one of the coordinate-dependent two-dimensional mag-
netic fields is given by the potential function F(3)(x, y) =

c(3) . As in the preceding case, the potential

function is equal to the real-valued component of the
complex potential W(3)(z) = F – iA, which depends on
the complex variable z = x + iy in the following way:

W(3)(z) = . We now consider a surface given by the

equation F(3) = 0 for the following values of the param-
eters:

a(3) = 1, b(3) = 0, c(3) = 0, d (3) = 1,

e(3) = –1, f (3) = 0. 

The magnetic field defined by this equation is of cer-
tain interest, because it possesses only one critical field
line connecting the zero point to an infinitely remote
point. It also has two separatrix planes passing through
the zero point. It is worth noting that the magnetic field
acquires a more complicated form in the case of a spe-
cial relation between the parameters a(3), f (3), on one
hand, and the residual term ä of the power expansion,
on the other. In particular, a combination is possible in
which there are critical field lines and no separatrix sur-
face. In this case, by the proper choice of parameter val-
ues and by a linear transformation of coordinates, rela-
tionship (3) can be reduced to the expression
F(3)(x, y, z) = g(3)xy.
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In the two-dimensional case, the peculiar shape of
the magnetic field in the vicinity of a critical point of
the third order is determined by the potential function

(4)

The magnetic configuration contains three separatrices
intersecting each other at the zero point. Perturbations
of the magnetic field, which were caused by the excita-
tion of a low electric current by potential magnetic field
(2), as well as by the external homogeneous magnetic
field, result in either a bifurcation of the degenerate sin-
gular point or its disappearance. A comprehensive anal-
ysis of the bifurcations in magnetic field (4) can be
found in the book by Postone and Stewart [10].

In the three-dimensional case, small perturbations
caused by electric current, as well as by terms of a
lower order, including a homogeneous magnetic field,
lead to a change in the magnetic-field topology. For
example, the superposition of a homogeneous field or a

F 3( ) x y,( ) f 3( ) y3

3
---- yx2– 

  .=

Fig. 1. Magnetic-field lines at the times (a) t = 0 and (b) t = 4
(two-dimensional case).
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quadrupole field and a field of form (3) leads to the
appearance of a structurally stable configuration pos-
sessing zero points of a lower order. However, from the
standpoint of ideal magnetohydrodynamics, the trans-
formation of a structurally unstable configuration into a
structurally stable one is impossible, since this transfor-
mation must be accompanied by a change in the mag-
netic-field topology. In order to describe such a trans-
formation, it is necessary to allow for dissipative
effects.

3. MHD SIMULATION OF TRANSFORMATION 
OF A STRUCTURALLY UNSTABLE MAGNETIC 

CONFIGURATION 
INTO A STRUCTURALLY STABLE ONE

The mixed problem for MHD equations, whose
solution describes a self-consistent evolution of both
plasma and the magnetic field in the vicinity of the ini-
tial critical point, was solved numerically. It was
assumed that, at the initial time, a plasma with a uni-
form density and pressure is in the quiescent state in a
two-dimensional potential field of type (4) (in the first
variant of the calculations) or in a three-dimensional
potential field of the type (3) (in the second variant of
the calculations). The set of MHD equations used and
boundary conditions were described in detail in [11, 12].
There, a magnetic reconnection in fields with other ini-
tial structures was simulated.

Restructuring the magnetic-field structure in the
vicinity of a two-dimensional third-order zero point.
The results of the third calculation variant show the
evolution of initial two-dimensional configuration (4)
under the action of azimuth-symmetric perturbations
that excited in plasma an electric current of a finite
intensity.

Figure 1a demonstrates the distribution of magnetic-
field lines at the initial moment of time. Hereinafter, the
time is measured in Alfven periods [11].

The magnetic field corresponding to this configura-
tion is conveniently represented in the complex form:
B = Bx – iBy. In this case, the dependence of Ç on the
complex variable z = x + iy is of the form

, (5)

where l is the dimensionless length of the current sheet.
Analytical and numerical study of the self-consistent
plasma evolution in magnetic field (5) shows that there
are three cuts (current sheets) with the length l in the
plane of the complex variable z. Each current sheet is

directed along one of the rays j = 0, π, or π. The

magnetic field vanishes at the ends of the current sheets,
whereas at the center, z = 0, both the magnetic field and
the electric-current density vanish. Such behavior of the
magnetic field is intrinsic to the transient stage of the
development process. The duration of this stage is
shorter than one Alfven period.

B C z3 l3–( )1/2
=

2
3
--- 4

3
---
DOKLADY PHYSICS      Vol. 48      No. 5      2003



STRUCTURALLY UNSTABLE MAGNETIC CONFIGURATIONS 219
In a time on the order of the Alfven period, a current
region of finite dimensions is formed, which is bounded
by three magnetic-field separatrices. In the corners of
these region, three zero X-type magnetic-field lines are
situated, whereas, in its center, an O-type zero line is
formed [1]. In the corners of the current region, the cur-
rent sheets are located. They are similar to those that
appear in the vicinity of the X-type zero field line.
Plasma flows around the current region moving along
the magnetic separatrices at its boundaries (Fig. 1b). In
the neighborhood of the current sheets, shock waves
arise. These magnetic configurations can be compared
with the triangular magnetic “islands” that were
observed in [13], where the double tearing mode in a
tokamak plasma with the inverse magnetic shear was
studied.

Restructuring the magnetic-field structure in the
vicinity of a three-dimensional zero point of the
third order. The boundary conditions for the set of
MHD equations correspond to the excitation of the
electric current directed along the OZ axis, similar to
the case analyzed in [12]. We have considered initial
three-dimensional magnetic fields of the form

(6)

(7)

(8)

As an example, we present the results of the numer-
ical study for the transformation of a structurally unsta-
ble configuration into a structurally stable one for mag-
netic field (8).

In Fig. 2a, an initial magnetic configuration that cor-
responds to this magnetic field is shown. As a result of
exciting the electric current at the boundary of the cal-
culation region, the initial magnetic configuration
transforms into a structurally stable one (Fig. 2b). We
can see that splitting of the third-order zero point into
two three-dimensional zero points of the second order
has occurred. In the figure, formation of the separatrix
surface separating these points is clearly seen. Local-
ization of the electric current in the vicinity of the zero
points does occur.

4. CONCLUSIONS

Thus, we have managed to show that the potential
magnetic field in the vicinity of a critical point of the
third order is determined by 6 parameters. Since a crit-
ical point of the third (and higher) order is degenerate,
the problem of the evolution of a structurally unstable
magnetic configuration into a structurally stable one
acquires a principal importance.

In the framework of the plasma model based on the
use of ideal magnetic hydrodynamics, the condition of
freezing-in the magnetic field into plasma is valid. By
virtue of this fact, the topology of the magnetic field

B x2 z2– 2xz z2 y2 z2,– x2– 2z y x–( )+,–{ } ,=

B x2 z2 2x y z+( ) y2,– x2 z2,– x2– 2zx––{ } ,=

B x2 z2– 2xy x2 y2– 2yz  z2, y2– 2zx––,+{ } .=
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must be conserved and the transformation of a structur-
ally unstable magnetic configuration into structurally
stable one turns out to be impossible. Therefore, in
order to describe this transformation, it is necessary to
take into account dissipative effects and to use numeri-
cal methods for detailed simulation of magnetic-recon-
nection processes.

In this paper, we have presented the results of a
numerical MHD simulation for processes of the pas-

1
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Y

Z
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Fig. 2. Magnetic-field lines at the times (a) t = 0 and
(b) t = 15 (three-dimensional case).
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sage from a structurally unstable magnetic configura-
tion into a structurally stable one in conditions of two-
dimensional and three-dimensional geometry. The
structure transformation of the initial structurally unsta-
ble magnetic field into a structurally stable one is
accompanied by the reconnection of magnetic-field
lines in plasma with the formation of current sheets
near magnetic separatrices. This fact was discovered
previously when investigating the reconnection in
structurally stable systems. At the same time, formation
of current regions with finite dimensions takes place,
which demonstrates novel features of the magnetic-
reconnection phenomenon.
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It is thought that the theory of film boiling in liquids
is well developed on the basis of an assumed analogy
with the film-condensation process [1, 2]. However,
experimental data corroborating the theoretical repre-
sentations are predominantly obtained for cryogenic or
easily boiling organic liquids such as carbon tetrachlo-
ride, methanol, ethanol, isopropanol, gasoline, etc. The
possibility of the existence of special features of film
boiling in organic liquids was never discussed.

We studied film boiling in organic liquids on the
basis of the available data indicating that the heat
exchange in this regime was accompanied by pro-
nounced signs of chemical reactions. The purpose of
this study was to determine the degree of the effect of
chemical reactions proceeding in a film on the heat-
exchange processes.

Applying the heated-filament method, supple-
mented by various methods of chemical analysis, we
used a Pt wire 0.1 mm in diameter and 4 cm in length
as a heater. Current in the heater was constant (I =
const). The parameters were stabilized by a special fast
analog control unit. Current and voltage were measured
by 12-digit analog-to-digital converters (ADCs) con-
nected with a computer and were used to calculate the
working temperature of the heater and the released
power. The ADC sampling frequency was 5 kHz.

The film regime was studied in a hermetic quartz
reactor, which contained 15 ml of the liquid under
investigation and was equipped with a dephlegmator
and a reflux condenser. The liquid-bulk temperature,
product-condensation temperature, change in the vol-
ume of the liquid, and the release rate and volume of
permanent gaseous products were measured in the
experiments. The volume of gas released in boiling was
measured with an accuracy of 0.1 mm3. The liquid-bulk
temperature was controlled by a liquid thermostat.

The products were analyzed by the following meth-
ods: chromatography, nuclear magnetic resonance,
mass spectrometry, chromatographic mass spectrome-

Institute of Problems of Chemical Physics, 
Russian Academy of Sciences, Chernogolovka, 
Moscow oblast, 142432 Russia
1028-3358/03/4805- $24.00 © 0221
try, and analytical chemistry methods. The visual infor-
mation was recorded by a digital video camera with a
magnification of 10–25×.

As working liquids, we used carbon tetrachloride
and various alcohols (C1–C5). The purity degree of
original liquids was monitored by chromatography and
IR spectroscopy.

Intense steady gas emission was observed in the
film-boiling regime for all liquids under investigation.
This emission in different substances became notice-
able for different heater temperatures. For example, the
indications of the decomposition of carbon tetrachlo-
ride appear already at 550–600°C, whereas the decom-
position of ethanol becomes noticeable only at temper-
atures above 900°C. Figure 1 shows the time depen-
dences of the volume of gas released for various heater
temperatures in methanol, and Fig. 2 displays the sum-
mary data for gas emission in four liquids.

Organic liquids have a low heat of vaporization, and
the transition to the film regime in them is not accom-
panied by catastrophic superheating of the heater even
at low liquid temperatures. For this reason, they are
often used as model systems to investigate mechanisms
of the underheated film regime. It is well known that
film thickness decreases with an increase in underheat-
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Fig. 1. Time dependence of the emitted-gas volume for
methanol, Tl = Tsat, and heater temperatures (1) 910, (2) 950,
(3) 1000, (4) 1050, (5) 1065, (6) 1090, and (7) 1130°C.
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ing and, thus, temperature gradients inside the film
increase. Chemical transformations, which are
extremely sensitive to the temperature regime, cannot
be unchanged under these variations. This conclusion is
corroborated in Fig. 3, where the specific gas-emission
rate is shown for two temperatures of the liquid.

Our investigations of the kinetics and mechanisms
of chemical reactions proceeding in the vapor cavern
provide the following general conclusions.

The composition of gas released in the film regime
is determined by all basic parameters of the process,
such as the heater temperature, underheating degree,
purity of liquid, and heater material. For lower alco-
hols, where the bulk temperature is sustained near the
saturation temperature, the main products are hydro-
gen, methane, ethane, ethylene, and carbon oxide. As
underheating increases, the number of components
decreases. The primary components are now simple
substances—hydrogen and carbon oxide. For higher
alcohols, the composition of the gas phase is more com-
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Fig. 2. Gas-emission rate vs. heater temperature in
(1) methanol, (2) t-butanol, (3) isobutanol, and (4) ethanol
for Tl = Tsat.
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Fig. 3. Gas-emission rate vs. heater temperature in metha-
nol for Tl = (1) –20 and (2) 75°C.
plicated. The chemical analysis reveals significant
quantities of unsaturated compounds. More compli-
cated, often exotic substances are formed in addition to
typical pyrolysis products, which testifies to secondary
synthesis reactions, whose components are likely radi-
cals formed at the primary stages. The liquid-phase
composition also varies. This phase accumulates such
compounds as aldehydes (primarily, formaldehyde),
various alcohols, and ketones. In carbon tetrachloride,
the major fraction of the product remaining in the liquid
is represented by hexachlorethane.

Thus, the experiments corroborate that the chemical
composition of organic liquids is substantially modified
in film boiling, and the boiling is accompanied by gas
emission of the chemical nature. Undoubtedly, these
features significantly affect film-boiling mechanisms.

We observed film boiling within a very wide interval
of underheating. Under these conditions, heater-tem-
perature fluctuations increase significantly in all liquids
being investigated, which is manifested with an
increase in underheating. This effect is pronounced in
carbon tetrachloride. Furthermore, in this system,
heater-temperature fluctuations are easily visible. As
underheating increases, spots darker than the remaining
surface appear periodically on the heater surface heated
up to a temperature of 700–1200°C. Their size depends
only slightly on the underheating degree and heater
temperature.

Video recordings show that local temperature oscil-
lations are periodic and associated with the growth and
separation of a bubble from the heater surface.

For further investigations, we use the procedure pro-
posed in [3] for studying critical phenomena accompa-
nying boiling of a metastable liquid. The essence of this
procedure is in using a heater whose length is compara-
ble with the characteristic size of the process under
investigation. In this case, the system is concentrated
rather than distributed. Both the advantages and disad-
vantages of this procedure are evident. An advantage is
the insensitivity or low sensitivity of heat exchange on
such a heater to spatial inhomogeneities. For this rea-
son, we can investigate the regime in detail. A disad-
vantage of this procedure is the impossibility of directly
measuring temperature by using ohmic resistance.

Figure 4 displays thermograms obtained for a
2-mm-long heater in carbon tetrachloride when I =
const. Being estimated from the luminous exitance, the
temperature in the glow maximum was equal to about
900–1000°C depending on experimental conditions. At
the same time, the heater remained dark at the mini-
mum-temperature point. This fact means that its tem-
perature was below 650°C. Thus, the amplitude of
observed oscillations is equal to 350–450°C. For slight
underheating, the oscillation frequency increased with
decreasing liquid temperature but then became constant
for Th – Tl = 30–40°C.

The synchronization of the video recording of the
process occurring on an individual domain with ther-
DOKLADY PHYSICS      Vol. 48      No. 5      2003
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mograms leads us to the conclusion that the oscillation
process involved several repeating stages. At the first
stage, a bubble separates and leaves a thin (~10 µm)
vapor–gas layer symmetrically covering the heater sur-
face. Immediately after the bubble separation, the film
thickness increases, which is accompanied by an
increase in the heater temperature. The further growth
of the bubble leads to a significant transformation in its
shape. Its upper section extends upwards rising over the
heater, while a base length decreases. The major tem-
perature drop is associated with the development of this
process. Attaining a certain size, the bubble separates.
At the moment of separation, the heater temperature is
minimal. Further, the first stage begins again, and the
process is repeated.

We try to construct a qualitative model explaining
the mechanism of self-oscillations of the surface tem-
perature on the basis of the data obtained.

Let the heater be surrounded by a spherically sym-
metric vapor film at the initial time. We assume that
heat is transferred from the heater to the liquid phase
due to the thermal conductivity through the vapor layer
and is entirely spent on evaporating the liquid. As the
film thickness increases, the heater temperature
increases because the heat-removal conditions deterio-
rate. When a certain temperature is reached, a chemical
reaction accompanied by gas emission becomes notice-
able. This leads to an increase in the diameter of the
vapor film and, respectively, in the heater temperature,
which further increases the reaction rate. When the
bubble grows so that the contribution of the buoyancy
force becomes considerable, the film extends upwards.
In addition, its lower boundary further approaches the
heated surface, whereas its upper section recedes from
it. As follows from experimental data, the thickness of
the lower section of the film is equal to about 10 µm,
whereas the film dome is at a distance of about 2 mm
from the heated surface at this moment of time. Under
these conditions, all the vapor is exceptionally formed
in the lower section of the heater and is transferred into
the upper section of the film through a vapor gap,
whose size is of the same order of magnitude as the
minimum thickness of the vapor coat. The estimates
made in this simplest of models show that the amount
of liquid evaporated in the lower section of the film is
sufficient for the vapor velocity in the narrowest section
of the gap to exceed tens or even hundreds of meters per
second.

Forced convection with such a high velocity of
motion has to abruptly increase the heat transfer coeffi-
cient and, thus, to decrease the heater temperature.
Passing to the upper section of the dome, most of the
vapor can be condensed on the cool interface surface.
However, the domain grows due to the accumulation of
gaseous reaction products. When the bubble diameter
DOKLADY PHYSICS      Vol. 48      No. 5      2003
exceeds the separation diameter, the bubble separates
from the surface, leaving a thin vapor–gas layer on it,
and the process is repeated.

Thus, our experiments confirm that the film-boiling
mechanism in organic liquids is primarily determined by
chemical reactions proceeding in the film. The self-oscil-
lation regime of the film boiling has been discovered.
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Electrorheological fluids are extensively used in
industry and technology due to their unique ability to
considerably change their effective viscosity in an elec-
tric field. Typical electrorheological fluids have low per-
mittivity and contain a given concentration of fine dielec-
tric particles (a dispersed phase) of high permittivity.

Extensive use of electrorheological fluids has stim-
ulated their theoretical and experimental investigation.
The rheological properties of electrorheological fluids
were recently studied by various methods in numerous
theoretical works. A phenomenological approach is
based on the Bingham equation and on its modifica-
tions such as the Cason equation [1] or the Shul’man
equation [2], which involves fractional-powers terms.
A continuous approach was developed in [3]. Motion of
particle in an electrorheological fluid in the presence of
both an electric field and velocity gradients has been
extensively simulated by numerical methods [4].

Most theoretical works are based on models of elec-
trorheological fluids. For example, models involving
filler-particle chains, which are directed along the elec-
tric field when velocity gradients are absent, were used
in [5–7].

In this paper, the rheological properties of elec-
trorheological fluids are described in a three-dimen-
sional ordered many-particle model of a composite
(crystal model) [8] rather than in the model of one-
dimensional chains of particles.

Suspension of dielectric particles in a viscous fluid
is modeled by identical rigid particles, which are
located in sites of a given-symmetry lattice in the
absence of an electric field and velocity gradients. The
permittivities of the particles (εp) and fluid (εl) differ
from each other. The electrorheological fluid is situated
in a uniform electric field E with components Ei (i = 1,
2, 3) in the laboratory coordinate system. The applied
field polarizes the particles, which begin to electrostat-
ically interact with each other. We use the approxima-
tion of pair interaction between particles considered as
equivalent dipoles. In addition to electrostatic forces,
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viscous forces act on particles moving in the viscous
fluid due to velocity gradients. The figure shows a con-
figuration of an experimental setup, where the elec-
trorheological fluid is subjected to both an electric field
(the plates represent electrodes) and velocity gradient.
The left positive electrode is fixed, while the right one
moves from its initial position with the given velocity U.
Thus, the experimental setup provides both electro-
static and viscous forces on each particle.

The origin of the Cartesian laboratory coordinate
system with the axes Xi (i = 1, 2, 3) is situated in the pat-
tern center.

To derive the governing equation of motion, which
represents the balance of forces applied to a chosen vol-
ume element of the model, we first derive an expression
for the electrostatic potential energy density of the
model.

We consider a pair of neighboring particles of the
model and place the origin of the local coordinate sys-
tem at the center of one of them. Particles are polarized
by an external electric field, and the potential energy of
their interaction with each other as equivalent dipoles
has the form [9]

(1)

Here, pi is the dipole moment of the ith particle, r is the
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Configuration of the setup for experiments with an elec-
trorheological fluid.
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vector directed from the center of the chosen particle to
the center of the closest neighboring particle, r is the
distance between the above-mentioned centers, ε0 =
8.85 × 10–12 F/m is the permittivity of vacuum, and
parentheses denote the scalar product.

The dipole moment of a polarized sphere is
expressed as [3]

(2)

where a is the sphere diameter. It is assumed that all
particles of the dispersed phase are identical and the
dipole moments of equivalent dipoles are equal to each
other. Substituting Eq. (2) into Eq. (1), we obtain

(3)

where A = .

For small displacements of particles with respect to
each other (r = r0 + u, where u ! r0 and r0 is the initial
distance between the centers of the particles), the
potential energy of the dipoles is equal to

(4)

up to the second order, where summation over repeated

indices is implied and  =  is the unit vector. Corre-

spondence of this vector to the chosen pair of neighbor-

ing particles will be denoted as , where l

and l ' mark the unit lattice cells of the two neighboring
particles and s and s' number the particles in the corre-
sponding cells. Particle displacements with respect to
each other will be denoted in a similar way. Summing
expression (4) over the closest neighbors of the chosen
particle throughout the unit cell and dividing the sum
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by the doubled cell volume V, we obtain the electro-
static energy density of the model in the form

(5)

The first term (the first line) of the sum in the square
brackets in Eq. (5) represents the interaction energy of
the chosen dipole with the closest neighboring dipoles.
It is equal to zero for an isotropic body and a crystal
with cubic symmetry [10], as well as for bcc, fcc, and
hexagonal lattices. This statement is verified by directly
calculating the sums for these lattices with the expres-

sions for components of the unit vectors  from [11, 12]
and is associated with the fact that the total field formed
by the closest neighboring particles vanishes on the
chosen dipole in these lattices.

Further, we consider the particular case correspond-
ing to the figure. The electrostatic field E is directed
along the X1 axis so that its components are Ei = Eδi1,
where δi1 is the Kronecker delta, which is equal to unity
and zero for i = 1 and i ≠ 1, respectively. It is assumed
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that the displacement is uniform and its gradient 

(ui is the component of the displacement of a body point
from its initial position) is constant throughout the sam-
ple. According to the figure, i = 2 and k = 1. Direct cal-
culations show that the term linear in displacements in
Eq. (5) vanishes for the above types of lattices. In addi-
tion, the last line of Eq. (5) also vanishes, because the
displacement is perpendicular to the electric field (see
figure), and therefore (En, un) = 0. Finally, the electro-
static energy density of the model for this case is
expressed in the form

(6)

where all terms are quadratic in the displacement of
particles, which is related to the displacement gradi-
ent as

(7)

External forces causing the displacement gradient u2,1
in the body do the work per unit volume F, which is
opposite to the electrostatic field energy (6) [10].

In what follows, we omit indices numbering cells
and particles in them and denote the summation over
the closest neighbors as cn.

Substitution of Eq. (7) into Eq. (6) and certain trans-
formations yield

(8)

Since the displacement gradient is constant throughout
the sample, it is extracted from the sum.

The numerical simulation [4] shows that particles of
the electrorheological fluid are aggregated in a tetrago-
nal body-centered crystal lattice. Therefore, we choose
a bcc lattice and describe the rheological properties of
this model.

Direct calculations by Eq. (8) for a bcc lattice yield

(9)

Stress is calculated from Eq. (9) as
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Using the volume V =  of a unit cell [11, 12], we

obtain the relation  = ϕ2, where the volume

fraction ϕ of filling is equal to the ratio of the particle
volume to the unit-cell volume of the bcc lattice. The
substitution of the last expression into Eq. (10) yields

(11)

where .

The viscous stress tensor for the bcc lattice is given
by the formula [8, 12]

(12)

where ψ(ϕ) =  and ϕmax is

the maximum filling. Expression (12) is derived in the
approximation of high filling, when ϕ is close to ϕmax
[8, 12]. If ϕ tends to zero, ψ(ϕ) also tends to zero.

However, at ϕ = 0, relation (12) must take the form
 = η  characteristic for a pure fluid. The function

(13)

satisfies these conditions.
The equation of motion of the system represents

the balance of external and internal elastic (11) and
viscous (13) forces applied to the unit body volume. It
has the form

(14)

Here, f21(t) is the time-dependent external force per unit
area. It is directed along the ï2 axis and is applied to the
surface perpendicular to the ï1 axis. A solution of
Eq. (14) is known for an arbitrary given function f21(t).
In particular, if load varies as a periodic function f =

eiωt with the cyclic frequency ω, we have [13]

(15)

Therefore, the complex shear modulus is written in the
form

(16)

which shows that, for small displacement gradients
under the loading conditions described in the figure, the
electrorheological fluid behaves as a viscoelastic body.

An important advantage of the approach under
development is that an expression for stress can be
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obtained for arbitrary displacement gradients by using
both a microscopic theory of crystals and the results for
small displacement gradients (14). As a result, stress
can be determined as a function of the velocity gradient
in an electrorheological fluid. To obtain this depen-
dence, we use the Peierls approach presented in [11].
According to the crystal model (see figure), the elastic
part of stress (11) associated with the displacement of
crystal planes must be a periodic odd function of the
displacement S2 = γX1 along the X2 axis, where γ is the
displacement gradient. Expanding this function in a
Fourier series and retaining only the first term of the lat-
ter, we obtain

where c is the lattice constant. For small displacements,
this expression must take the form of Eq. (11). Conse-

quently, a1 = ε0εlβ2E2 and the maximum displace-

ment stress, which is an analogue of the yield stress of
a crystal, can be estimated as

Thus, the final expression has the form

(17)

For small velocity gradients, the second term can be
neglected and the stress is determined by the first term
of Eq. (17). In this case, the stress is independent of the
velocity gradient, so that the corresponding part of the
stress vs. velocity gradient plot is a straight line parallel
to the abscissa axis. For large velocity gradients, the
first term can be neglected and the diagram corresponds
to the Newtonian flow. The dependence of the stress on
both the electric intensity and the velocity gradient that
is described by Eq. (17) agrees well with the experi-
mental data [14]. We note that, if pair interaction
between particles is taken into account up to the third

σ21 S2( ) a1 2π
S2

c
----- 

  ,sin≈

3.43
2π

----------

σmax
3.43
2π

----------ε0εlβ
2ϕ2E2.≈

f 21
3.43
2π

----------ε0εlβ
2ϕ2E2 0.21πψ ϕ( ) 1+[ ]η u̇2 1, .+=
DOKLADY PHYSICS      Vol. 48      No. 5      2003
order, a factor of 5.54 appears in Eq. (17) instead
of 3.43.

ACKNOWLEDGMENTS
This work was supported by the Russian Foundation

for Basic Research, project no. 02-01-01060.

REFERENCES
1. L. G. Loœtsyanskiœ, Fluid and Gas Mechanics (Nauka,

Moscow, 1973).
2. A. V. Lykov, Z. P. Shul’man, and Yu. F. Deinega, Elec-

trorheological Effect (Nauka i Tekhnika, Minsk, 1972).
3. Y. M. Shkel and D. J. Klingenlerg, J. Rheol. 43 (5), 1307

(1999).
4. R. Tao and Qi Jiang, Phys. Rev. Lett. 73, 205 (1994).
5. P. M. Adriani and A. R. Gast, Phys. Fluids 31, 2757

(1988).
6. A. M. Kraynik, R. T. Bonnecaze, and J. F. Brady, in Pro-

ceedings of International Conference on Electrorheo-
logical Fluids, Singapore, October 15–16, 1991 (World
Science, Singapore, 1992), p. 59.

7. J. E. Martin and R. A. Anderson, J. Chem. Phys. 104
(12), 4814 (1996).

8. V. E. Zgaevskiœ, Dokl. Akad. Nauk 350 (1), 45 (1996)
[Phys. Dokl. 41, 412 (1996)].

9. W. Panofsky and M. Fillips, Classical Electricity and
Magnetism (Addison-Wesley, Cambridge, Mass., 1962;
Fizmatgiz, Moscow, 1963).

10. I. E. Tamm, Principles of Electricity Theory (Nauka,
Moscow, 1989).

11. G. Leibfried, Gittertheorie der Mechanischen und Ther-
mischen Eigenschaften der Kristalle. Handbuch der
Physik (Springer-Verlag, Berlin, 1955; Fizmatgiz, Mos-
cow, 1963), Vol. 7, Part 2.

12. V. E. Zgaevskiœ and Yu. G. Yanovskiœ, Mekh. Kompoz.
Mater. Konstr. 2 (1), 137 (1996).

13. I. Narisava, Strength of Polymeric Materials (OHMSHA,
Tokyo, 1982; Khimiya, Moscow, 1987).

14. L. Marshall, C. F. Zukoski, and J. W. Goodwin, J. Chem.
Soc., Faraday Trans. 1 85 (9), 2785 (1989).

Translated by Yu. Verevochkin



  

Doklady Physics, Vol. 48, No. 5, 2003, pp. 228–231. Translated from Doklady Akademii Nauk, Vol. 390, No. 2, 2003, pp. 192–195.
Original Russian Text Copyright © 2003 by Skripov, Starostin, Volosnikov.

                                                                                                                                              

TECHNICAL 
PHYSICS

                                           
Heat Transfer in Pulse-Superheated Liquids
P. V. Skripov*, A. A. Starostin, and D. V. Volosnikov

Presented by Academician V.E. Fortov November 25, 2002

Received November 25, 2002
Thermophysical properties [thermal conductivity
λ(p, T) and thermal diffusivity a(p, T), which depend on
pressure p and temperature T] are usually determined
for liquids in a stable state. Measurements are carried
out with small temperature perturbation δT(t) ! T0 [1].
Reference to the thermostat temperature T0 and long
measurement time texp provide the upper limit of the
temperature range in a thermophysical experiment ∆T =
Ts(p) – T0, where Ts(p) is the temperature of the equilib-
rium coexistence of a liquid and vapor. The region
beyond the line of the absolute stability of the liquid is
poorly studied.

We aim to experimentally study heat transfer in
short-lived liquids superheated with respect to the equi-
librium temperature Ts(p) and/or with respect to the
onset temperature Td of the thermal destruction of mol-
ecules in a quasi-static process. The investigation is dis-
tinctive because the system lifetime (T) is limited, and
the farther the system is from thermal stability, the
more stringent is this limit. The approach under devel-
opment is aimed at creating short-term quasi-isother-
mal conditions t (T = const) in a chemically reacting
system, texp < ). Single- and multicomponent polymer
liquids were studied as typical thermally unstable sys-
tems (Td < TÒ, where TÒ is the effective critical temper-
ature of a substance). In pulsed processes with charac-
teristic times texp ~ 10–5–10–3 s, a polymer can be sub-
stantially superheated with respect to a temperature of
Td with negligible thermal destruction [2].

To solve the problem, we developed methods for an
automatic choice of the heating function for a thermal
probe, determination of the phase stability boundary by
using the heat flux density into the substance q(t)T , and
calculation of the effective coefficients of thermal con-
ductivity and thermal activity of locally superheated
liquids on the basis of pulsed-experiment data and cho-
sen model of the process. Experiments were carried out
in a virtually unstudied part of the phase diagram,

t

t
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including experiments where a system exhibits phase
and chemical instabilities as factors perturbing the heat-
transfer process.

For definiteness, we analyze the liquid–vapor phase
diagram for a monomer (lines 1 and 2 with point 3 in
Fig. 1). The upper limit of the region of stable states of
the liquid in the p–T plot is determined by the binodal
Ts(p). The region that is located above the binodal and
below the attainable-superheating curve T*(p) is the
region of metastable (superheated) states of the liquid
[3]. The latter line can be observed in an experiment,
because the spontaneous boiling of the highly super-
heated liquid is almost at the threshold temperature.

As the length of the molecular chain increases
sequentially and achieves a certain critical value, the
critical temperature of the liquid and then the curve
T*(p) exceed a temperature of Td (lines 4 and 5 in

1
2

4 5

6

3

Tim
e

p

T

Fig. 1. Phase diagram of a monomer in p–T coordinates:
(1) Ts(p) binodal, (2) attainable-superheating curve T*(p),
(3) critical point, (4) line of the critical points in a mono-
mer–polymer system, (5) temperature Td of the thermal
destruction of the liquid in a quasi-static process, and
(6) kinetic surface T*(p; texp) of the spontaneous boiling for
the products of the thermal destruction of the pulse-heated
polymer liquid.
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Fig. 1). In this case, the liquid–vapor phase transition
ceases to be pointlike and is expanded in temperature.
Since the characteristic time of spontaneous boiling is
much less than the temperature of thermal destruction
(tsb ! td at a comparable transformation degree [4]), the
coordinates in the attainable superheating curve corre-
spond to the initial stage of thermal destruction and
depend on the heating time (line 6 in Fig. 1). Since the
thermal destruction process is involved in the relaxation
of the pulse-superheated polymer, it is possible to
observe boiling in the melt of macromolecules. The
temperature range T*(texp)–Td of the thermal instability
of polymers achieves 500 K [2, 4–6]. Numerical data
concerning the characteristics of heat transfer in this
temperature range are absent.

It is important to apply an appropriate method for
solving the problem under consideration. A search for a
method of controlling the probe temperature, as well as
analysis of both the engineering capability of experi-
ments and the correspondence of their conditions to the
mathematical description of the process, led us to a new
variant of the isothermal-heater method [7], the method
of the thermal stabilization of a pulse-superheated
probe. It is based on the selection of a combination of a
short heating pulse and thermal stabilizing pulse serv-
ing as a highly sensitive transmitter of the heat-transfer
intensity in the experiment. The advantage of the
method is that the desired quantity—heat transfer from
the thermally stabilized probe to the medium—is in
balance with electric power supplied to the probe,
which is a quantity convenient for automatic adjust-
ment and detection [8] (Fig. 2).

The method enables one to rapidly increase the
probe temperature up to a chosen “plateau” tempera-
ture Tpl and to maintain this temperature T(t > tpl) ≈ Tpl
during the time interval necessary for measurement. A
wire probe 20 µm in diameter achieves the thermal-sta-
bilization regime in tpl ≈ 100 µs, and a constant temper-
ature is maintained for texp – tpl ~ 1–10 ms. This regime
is convenient, because the characteristics of heat trans-
fer are involved at a definite temperature and the probe
temperature can be gradually increased from one exper-
iment to another up to the attainable-superheating tem-
perature of the substance. As an example, Fig. 2 shows
the heating function near the spontaneous-boiling tem-
perature T*(t – tpl) at texp = 2.7 ms. The solid line is the
projection of the boundary of substance continuity
breaking t* = (Tpl). Heat exchange between the probe
and two-phase medium is perturbed at t > t*. This
“unexpected” perturbation is detected by the fast feed-
back system and is compensated by the corresponding
change in the heating function, which maintains the
probe temperature near a given value of Tpl.

Test experiments with standard substances (toluene,
hexadecane) showed that the input P(t) and output T(t)
functions are reproducible and consistent with each
other. The high resolution of the method is revealed
when pressure is taken as a parameter, ensuring a small

t
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shift in the characteristics of heat transfer in the sub-
stance.

At the next stage, it is necessary to separate contri-
butions associated in the generalized heat-transfer
function with thermal conductivity and thermal diffu-
sivity of the substance. These contributions are effec-
tive values, because local superheating is high and
observations are short-term. The correspondence
between the electric quantities measured in the experi-
ment and thermophysical properties of the substance is
established in the model of unsteady heat exchange
between an instantaneously thermostated cylinder and
a substance with zero temperature [9]. Assuming that
the thermal contact is ideal, superheating ∆T does not
vary over the probe length, and coefficients λ and ‡ are
temperature independent, we write heat exchange in the
form

(1)

where r and l are the radius and length of the probe, I(t)
is the current through the wire probe thermometer with
a resistance of RT = R(T), and J0 and Y0 are the Bessel
functions.

For convenience, we consider the regular stage of
the thermal regime [7]. The corresponding dimension-
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Fig. 2. Heat power that must be released in the probe for its
thermal stabilization in polymethyl siloxane PMS-350 as a
function of the heating time and temperature Tpl. The spon-

taneous-boiling region to the right from the t* = (Tpl) line
is characterized by a time-localized increase in the thermal
resistance of the system.
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less time range (Fourier number) is Fo =  = 0.25–1.

In this interval, the dimensionless heat flux ,

where q is given by Eq. (1), as a function of Fo–1/2 is
approximated by the linear function

 = 0.392 + 0.594 Fo–1/2 = A + B Fo–1/2 (2)

to within an accuracy of 99%. Relation (2) indicates an
obvious method for separating the contributions associ-
ated with thermal conductivity and thermal activity b =
λa–1/2 of the substance. End corrections are taken into
account by measurements with probes of various
lengths. The final relations for a pair of probes with
lengths l1 and l2 have the simple form

(3)

where C and K are experiment constants.
The applicability of the model to the real process

was verified by the direct use of Eq. (1) in the iteration
procedure of the formation of a thermal stabilizing
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Fig. 3. Superheating-divided heat power that must be
released in the probe for its thermal stabilization in polym-
ethyl siloxane PMS-350 vs. t–1/2, where t is the heating
time, for Tpl varying from 323 to 773 K with a step of 50 K.
pulse [2] and by the generalization of experimental data
in coordinates corresponding to Eq. (2). It was revealed
that these data can be represented in the linear approx-
imation in wide ranges of temperature (323–923 K),
pressure (0–4 kbar) [10], and probe length (0.5–5 cm).
In particular, Fig. 3 shows the results of data processing
for various temperatures Tpl . Changes in shift and slope
of isotherms indicate a decrease in heat transfer with
increasing temperature.

The total scheme of experiments with thermally
unstable objects includes various measurements. The
temperature T*(p) of the attainable superheating of a
substance was determined by the method of monotonic
pulsed heating with variation of the thermostat temper-
ature T0 and rate of heating. The temperature of the
characteristic step in the smooth dependence T*(T0),
which is associated with the appearance of the first low-
molecular products in the system, was considered as the
thermal-destruction temperature Td for the polymer.
The coordinates of the end point of the attainable super-
heating curve T*(p; t  0) were taken as an approxi-
mation for the critical point, which was used to gener-
alize experimental data concerning heat transfer in the
dimensionless coordinates. Then, the method of the
iteration selection of the heating function is applied to
simulate the thermal stabilization regime [2] and to
estimate the boundary Tpl–  of the region where the
sample exhibits short-term thermal stability and pulsed
measurements of its thermophysical properties are pos-
sible.

When measuring the coefficients λ(T; t < ) and
b(T; t < ) for high-molecular-weight compounds, cur-
rent I(t) in the probe circuit was recorded for a constant
thermal resistance RT of the probe and given superheat-
ing ∆T = Tpl – T0 . Using these data for times  ≥ 1 ms,
we determined the ratio of heat release in the probe to
its superheating (Fig. 3). The effective thermophysical
properties were calculated by Eqs. (3) for known sizes
of the probe.

Figure 4 shows the thermal conductivity measured
for PMS-350 polymethyl siloxane (Td ≈ 570 K) and
Stirosil polystyrene–polysiloxane copolymer (Td ≈

490 K) in a wide temperature range  ~ 0.3–0.9. In

the temperature range characteristic for quasi-static
changes, our results for PMS-350 agree with the data
on the molecular thermal conductivity [11], which were
obtained by a precise method, when a cell was thermo-
stated at the measurement temperature. The last points
in the plots, which deviate from the smooth continua-
tion of λ(T), are of interest for discussing the specific
behavior of heat transfer in the thermal-instability
region. These points include the contribution from the
thermal destruction and microphase separation of the
components of the chemically active system in the heat-
transfer process. This deviation increases, and the cor-

t

t
t

t

T
Tc
-----
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responding temperature decreases, when carbon diox-
ide, which imitates the final products of thermal
destruction, dissolves in given substances. After spon-
taneous boiling, the perturbation of heat transfer is
alternating, which is determined by pressure and by the
length of the thermal stabilization interval δq(t) =
δq(p; t* – tpl). The entire set of objects under study (in
addition to those indicated above, these are polyethers
and motor and synthetic compressor oils) exhibit a
common tendency to decreasing λ and b with increas-
ing temperature. This result was not a priori obvious.
Data obtained by various authors on the sign of λ(T) for
melts of identical polymers are contradictory [12].

Thus, an approach to studying heat transfer in the
region of the thermal instability of a substance was
developed. It can be applied to compare the thermo-
physical properties of substances as functions of the
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Fig. 4. Thermal conductivity of (triangles) PMS-350 poly-
methyl siloxane and (circles) Stirosil polystyrene–polysi-
loxane copolymer vs. temperature for T0 = 295 K, texp =
2.7 ms, and p = 0.1 MPa. The straight line approximates
data obtained in [11] by the method of the equivalent
impedance for the identical PMS-350 sample. The solid
points correspond to the system lifetime (Tpl) = 1 ms min-
imal in our experiments.
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superheating degree and to follow the transformation of
the high-temperature part of the phase diagram for a
chemically active system by using the characteristic
perturbation of its thermal resistance.
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Previously, we showed that the shape effect can sub-
stantially modify the composition and the distribution
of chemical components in gas [1] and liquid [2] mix-
tures. In this study, we considered those features of the
vessel-shape effect in liquid-phase systems that can
provide much higher degrees of separation in liquid
centrifuges than for gas mixtures.

From the condition of a constant mechanical–chem-
ical potential in equilibrium [1], the distribution of the
component concentration over the rotor radius is found
in the form

 (1)

(2)

where xi(r) is the molar fraction of the ith component at

the radius r,  is the standard chemical potential of

the component in a liquid,  is the molar volume of
the component, Mi is the molecular mass of the compo-
nent, and ω is the angular velocity of the centrifuge
rotor, 

P(r) = (r)ω2rdr

is the hydrostatic pressure at the radius r, ρ(r) is the
local density of the liquid at the radius r, and rh is the
liquid-surface radius. For a binary mixture, it follows
from Eqs. (1) and (2) that

(3)
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where

xi(r0) is the ith-component concentration at the rotor
radius r = r0 . Relationship (3) describes the composi-
tion at an arbitrary point of the two-component system
in the form xi(r) = f(xi(r0)).

We describe the two-component mixture in the
cylindrical rotor with a conic diaphragm dividing the
rotor in two insulated sections (see Fig. 1a). The gener-
atrices of the upper (u) and lower (d) sections have the

form hu(r) = r and hd(r) = (r0 – r), respectively. The

b
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Fig. 1. Section of rotors; the colorless section is filled with
a liquid, the dark one is the rotor material.
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geometric sizes are indicated in Fig. 1. The volume
concentration of the mixture is identical in both sec-
tions:

(4)

Equations (3) and (4) enable us to calculate xi, s(r) and
Ps(r) in both sections. We illustrate the result by the
example of a particular system. The disconnected upper
and lower sections of the rotor (Fig. 1a), whose angular
velocity is equal to ω = 60000 rpm, are filled with an
equimolar pentane–methyl-iodide mixture, whose tem-
perature is equal to T = 300 K. Under equilibrium in the
centrifugal field, the C5H12 concentration and hydro-
static pressure in the upper section for an arbitrary
radius r are higher and lower than the respective quan-
tities in the lower section (Fig. 2). Thus, the properties of
the liquid-phase chemical system depend on the vessel
shape much stronger than those of gaseous systems [1].

This feature of the behavior of liquids in a centrifuge
makes it possible to search for nonstandard solutions to
the fundamental problem of centrifugal technologies—
the most complete separation of mixture components.
We illustrate this by a particular example. The binary
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mixture of equal volumes of CH3I and C5H12 is placed
in a rotor composed of two sections (Fig. 1b). The sec-
tions have the shapes of a cylinder and a ring, whose
principal axes coincide with the rotation axis. The
heights of the sections are chosen so that the volumes
of the cylinder and ring are equal to the volumes of the
light (C5H12) and heavy (CH3I) components of the mix-
ture, respectively. The sections are connected with each
other by a slot cavity, whose volume is negligible com-
pared to the cylinder and ring volumes. In the general
case, the heights of the sections are chosen so that their
volumes are equal to the volumes of the light and heavy
components, respectively.

Using Eq. (4), we calculate the volume fractions of
the components in every section for T = 300 K and ω =
60000 rpm (see table).

This calculation shows that, in equilibrium, 98.92%
of the C5H12 contained in the system is located in the
cylinder section, whereas 98.97% of the CH3I is in the
ring section of the rotor.

The centrifugal field made it possible to almost
completely separate the components in the single-stage
process. The result can be optimized by varying the
rotation velocity, the radius and shape of the rotor sec-
tions, and other parameters. However, the successful
use of the vessel-shape effect is principally based on
minimizing the volume section where the mixture has
an “unsatisfactory” composition.

The result obtained is purely thermodynamic.
Meanwhile, the diffusivities in liquids are lower than

Table

Cylinder
(V = 59.7 ml)

Slot
(V = 0.24 ml)

Ring
(V = 59.7 ml)

C5H12, vol % 99.12 63.06 0.82

CH3I, vol % 0.88 36.94 99.17
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those in gases by a factor of 105. Therefore, the time of
establishing equilibrium by means of diffusion through
a narrow slot is very long. However, this time can be
reduced by using the shape effect. We consider the rotor
shown in Fig. 1c. The pressure drop between rotor sec-
tions of different shapes is caused by the difference in
the radial distribution of the components. If the sections
are connected by orifices at various levels as is shown
in Fig. 1c, the pressure difference leads to the circula-
tion of the liquid in the system until the radial distribu-
tions in sections are equalized. This situation corre-
sponds to establishing equilibrium. It is evident that the
time of this establishment is reduced to the extent to
which the diffusion rate is lower than the viscous-flow
velocity. We emphasize that the pressure difference
plays here the role of feedback in self-controlled sys-
tems.
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As was shown in [1], the film boiling of organic liq-
uids is accompanied by various chemical reactions
most of whose products are gaseous compounds. To
determine features of heat exchange due to chemical
reactions, we carried out experiments concerning the
film boiling of distilled water.

We applied a method close to that described previ-
ously for a short wire in [1]. The film regime was initi-
ated at the saturation temperature, and power on an
external heater was then decreased so that a liquid was
cooled at a rate of 0.01–0.5°C per minute. In this pro-
cess, with a step of 0.5°C, voltage on a sensor was
recorded and boiling regimes were videotaped. Plati-
num wires with diameters 50, 100, and 200 µm and
lengths from 0.8 to 40 mm were used as heaters.

In [1], the self-oscillating regime of heat transfer in
the film boiling of subcooled liquids was observed, and
it was supposed that a similar regime must also be real-
ized in water.

Figure 1 shows some time scans of voltage on a
short heater for various temperatures of the liquid. The
heater length was chosen so that only one domain
existed on the heater. For Tliq = Tsat, even such a heater
ensures a film boiling regime similar to the film regime
on a long element. This regime (Fig. 1, Tliq = 98°C) is
easily identified by the presence of high-frequency
(~100 Hz) oscillations associated with the separation of
vapor bubbles from the upper part of a vapor cavity.
Since the separation frequency is high and the vapor
film is thick, the time-average temperature of the sensor
does not noticeably vary.

As the liquid temperature decreases to 93°C,1 the
separation frequency decreases to about 20 Hz. With
the further decrease in temperature, the self-oscillating

1 For a given heater diameter, this temperature is reproduced in dif-
ferent experimental runs within an accuracy of about ±0.5°C.
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regime of heat transfer is almost instantaneously estab-
lished on the heater, where each bubble is formed from
one second to tens of minutes (Figs. 1–3). This behav-
ior indicates that the rearrangement of the heat-transfer
regime is critical in the temperature of the liquid,
because the transition from one regime to another
occurs in a very narrow temperature interval (<0.1°C).
In one oscillation period, the heater temperature varies
in the interval 650–1200°C, according to visual esti-
mates.

As the temperature of the liquid decreases, the
period of oscillations increases until the emission of
vapor from the film surface to the bulk of the liquid
ceases at a temperature of 80–81°C. Thus, the disap-
pearance of the self-oscillating regime of heat transfer
and the transition to steady film boiling occur smoothly
(Fig. 2). As temperature decreases further, a single
domain of the film regime occupies a symmetric posi-
tion with respect to the heater. The shape and size of the
bubble do not then vary until a minimum achieved liq-
uid temperature of 35°C.

If only one elementary (single) domain is realized
on the heater, the critical temperatures, as well as the
form of oscillations and their period, from which the
temperature of the liquid can be estimated with a high
accuracy, are completely reproduced in different exper-
imental runs. However, when the heater length exceeds
the size of the single domain of the film regime, the
behavior is more complex. Even when the temperature
of the liquid is below the saturation temperature by 2–
3°C, the formation of a dynamic structure begins on the
heater. This structure consists of several single
domains, one of which has sizes characteristic for this
regime, and the remaining domains are in a suppressed
state. The sizes of the latter domains only slightly
exceed the heater diameter, and vapor is not emitted on
the surface. When vapor is separated from the vapor-
film surface, the structure is rearranged, and one of pre-
viously suppressed domains can become the dominat-
ing domain. The regular pattern of thermograms disap-
pears, and oscillations take a complicated form. The
coordinate of the point corresponding to the maximum
temperature moves periodically over the wire surface.
003 MAIK “Nauka/Interperiodica”
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and 87°C.

Fig. 2. Pictures of oscillations.
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Thus, the heater exhibits indications characteristic for a
spatially distributed system.

A steady symmetric vapor structure is formed on
longer heaters below 93°C. This structure consists of
one large elementary domain located at the center of the
heater and several suppressed domains located on both
sides of the central domain. Vapor is separated only in
the central part of the structure. As the temperature of
water decreases to 89°C, the film disappears through
the autowave process.

The observed phenomena are completely reproduc-
ible. When the temperature of the liquid increases to
Tsat, the structure of the domain becomes homogeneous
again; i.e., all elementary domains have an identical
size.

To determine the properties of interaction between
elementary domains, experiments were carried out with
heater lengths 1, 2, 4, 8, 12, 24, and 48 mm. The results
can be briefly formulated as follows.

(i) Heaters with different lengths behave identically
if the water temperature is maintained near the satura-
tion temperature.

(ii) As the heater length increases, it is more difficult
to separate the self-oscillating-instability region in an
average-integrated signal, the amplitude of oscillations
decreases, and they become more chaotic. A 24-mm-
long sensor can already be considered as infinitely
long.

(iii) As the temperature of the liquid decreases by
3−4°C below Tsat, the formation of a structure begins on
short heaters. This structure consists of several domi-
nating domains located at the center of the film-boiling
region and a system of suppressed domains located at
the edge of this region symmetrically with respect to
the central part.

The effect of the diameter and material of the heater
on the above properties was tested in experiments with
heaters of diameters 50 and 200 µm. The phenomena
are reproduced on any wire heaters (Fig. 2). Experi-
ments with wires whose resistance is virtually indepen-
dent of temperature corroborate that the observed
effects are not attributed to the thermal sensors used as
heaters. The phenomena observed on platinum samples
were also reproduced on 0.1-mm sensors made of the
high-resistivity Kh27Yu5T (Chromal) alloy.

In our opinion, the formation of ordered structures
on small domains is attributed to the existence of mass
flows along the heat-releasing surface within the film.
These flows arise due to the dependence of pressure
within a single domain on its size. Therefore, a system
of a limited number of domains, which are originally
identical and joined with each other through vapor
channels, is unstable. A random fluctuation in the sizes
of one domain is developed due to the positive pressure
feedback. Pressure in a larger domain is lower than in
surrounding domains, and vapor generated in neighbor-
ing domains flows to this larger domain. As the process
DOKLADY PHYSICS      Vol. 48      No. 5      2003
develops, pressure within donor domains increases,
while sizes and, therefore, the heater temperature under
them decrease. Therefore, the film structure on a small
heater is rearranged, and a temperature-inhomogeneous
regime involving domains of various sizes is finally
established.

We suppose that structures similar to those observed
on short wires must also exist on long heaters. A film
part that adjoins the bubble regime and is in a colder
region must have characteristics different from those
for the central part of the film. Therefore, the formation
of a system of suppressed domains must begin at the
interface of the film regime. This gives rise to the fun-
damental rearrangement of the structure of this part of
the film. As a result, a region where temperature is
lower than temperature in the central region and is pri-
marily determined by hydrodynamic factors arises in
this part of the heater.

According to our observations, the processes
described above occur on long heaters as the tempera-
ture of water decreases to 93–94°C (Fig. 4). For
0.1-mm-diameter heaters at Tliq = Tsat, the length of
“cold ends,” where temperature decreases from Tfilm to
Tbub, is less than 0.5 mm. At the same time, videotaping
shows that the length of the region from the end of
luminosity to the visible boundary of the film is equal
to about 6–8 mm for Tliq = 90°C. Film boiling in this
part of the heater is realized as a system of domains
decreasing in size. This structure is naturally much less
stable than the central part of the film.2 It is the decom-
position of this structure that is responsible for the pre-
mature destruction of the film. This is corroborated by
our experiments with short sensors. A low-temperature
structure cannot be realized on a heater whose size is

2 This is probably due to narrowing of a vapor channel joining sup-
pressed domains, which weakens mass exchange.
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Fig. 3. Bubble separation frequency ν vs. the temperature of
the liquid Tliq for a heater diameter of (top) 50 and (bottom)
200 µm.
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Fig. 4. Pictures of the film boiling structure on (left panel) a short wire (L = 2.5 mm) and (right panel) at the end of a long wire.
commensurate with the elementary-domain size.
Therefore, the elementary domain remains stable for
any subcooling of the liquid.

A mechanism of origin of self-oscillating instability
in the boiling of chemically reacting liquids was
described in [1]. It is applicable with small refinements
for the case under consideration. It is assumed that the
heater temperature oscillates due to the change of the
conduction mechanism of heat transfer in a film to the
convection mechanism. Convective flows arise when a
vapor film moves to the upper part of the heater under
the action of the buoyancy force, and the liquid evapo-
rates into a very thin vapor layer remaining at the bot-
tom. The produced vapor passes through the narrow
channel to the upper part of the vapor dome, where it
condensates. Estimates show that, due to the narrow-
ness of the vapor channel, the velocity of the flow can
achieve about 10 m/s, which significantly increases the
heat-transfer coefficient. In contrast to organic liquids,
where gaseous reaction products constitute a consider-
able part of the flow and oscillations exist over the
entire subcooling region, the self-oscillating regime in
water can be realized only in a narrow interval of
parameters, where the rates of evaporation and conden-
sation are approximately equal to each other.
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New Type of the Cumulation of the Energy and Momentum 
of Plates and Shells Accelerated by Explosions

S. I. Zonenko and Academician G. G. Chernyœ

Received January 17, 2003
The instability of the interface between two deform-
able media, in particular the instability of the free sur-
face of a deformable medium, has been studied for a
long time in numerous investigations.

The problem of the stability of various material lay-
ers under the dynamic action of bulk and surface forces
is a specific branch of this field of research. The follow-
ing cases can serve as examples: the behavior of a hor-
izontal layer of a magnetic fluid after switching on a
magnetic field opposite to the direction of gravity [1]
and the formation of periodic structures at the interface
between two high-velocity metallic plates undergoing
an oblique collision under explosive welding [2].

The instability of cylindrical shells expanding under
the action of intense pressure waves traveling inside
them and the formation of azimuthally periodic struc-
tures at the shell surfaces were observed in [3], where
the schematic view of a shell before its fracture and
expansion and corresponding photographs were pre-
sented. However, the authors did not analyze their find-
ings and estimated only the axisymmetric deformation
of the shell under high internal pressure produced by an
explosion. The mechanical model accepted in [3] will
be discussed and used below.

In experiments [4] with high-velocity lead plates
impinging normally on fixed plates (made of steel or
other metals), localized axisymmetric structures with
typical cone-shaped splashes of the target material were
observed. In the case of a 2-mm-thick lead plate with a
velocity of about 500 m/s, the transverse dimension λ
of the axisymmetric structure was several times larger
than the thickness of the accelerated plate (6, 5, and
8 mm for steel, copper, and titanium plates, respec-
tively), while the height-to-diameter ratio for the
splashes was equal to about 0.5.

The papers mentioned above revealed the formation
of localized and periodic structures that significantly
change the initially unperturbed surface of a deform-
able medium. A needle-shaped structure (“hedgehog”)
at the outer surface of a thick water shell before its

Institute of Mechanics, Moscow State University, 
Michurinskiœ pr. 1, Moscow, 119192 Russia
1028-3358/03/4805- $24.00 © 20239
decomposition into drops was observed by K.I. Kozo-
rezov (personal communication) under conditions sim-
ilar to those of the experiment reported in [3].

The well-known classical works on the stability of
the interface between two different fluids in the gravity
field analyzed the problem in the linear approximation
(the Rayleigh–Taylor instability of a fluid over a lighter
one). The nonlinear evolution of perturbations was ana-
lyzed in later papers. It was shown that the concavities
of an initial small sine perturbation at such an interface
are transformed into “fingers” growing with accelera-
tion. At the same time, there are “bubbles” emerging
upwards with a velocity tending to a constant value.1 

Similar structures were also studied for an interface
perturbed in two directions when three-dimensional
periodic structures were formed.

In this paper, we consider the stability of a flat fluid
layer against long-wave perturbations (i.e., the pertur-
bation wavelength is much larger than the initial layer
thickness) for a layer moving under the action of a con-
stant pressure drop on its surfaces. The formation and
development of a very unusual periodic structure at the
layer surface were observed. Our analysis was per-
formed within the framework of the simplest “force-
less” model used previously in [3].

The theoretical results were used to carry out exper-
iments with copper plates accelerated by explosions
and to interpret the experimental results concerning the
interaction of the plates with metallic targets.

A new mechanism of cumulation of the energy and
momentum of a moving plate was found. This mecha-
nism is due to the dynamical instability of the plate
when its material can be treated as a liquid medium. For
certain practical applications, this cumulation mecha-
nism can have significant advantages over the well-
known and widely used method of forming fast cumu-
lative jets in oblique collisions of plates.

In connection with the problem under consideration,
we mention paper [5], where the stability of a flat layer
accelerated by a constant pressure drop on its surfaces
was considered within the framework of a linearized

1 S.Ya. Gertsenshteœn, V.M. Chernyavskiœ, and Yu.M. Shtemler, On
the Rayleigh–Taylor Instability, Preprint of Institute of Mechan-
ics, Moscow State University, no. 49-99 (Moscow, 1999).
003 MAIK “Nauka/Interperiodica”
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model of potential motion of a perfect incompressible
fluid. The authors found that the layer surfaces are
unstable to arbitrary harmonic perturbations, because
the perturbation amplitude increases exponentially
with time (the perturbations certainly remain har-
monic). In this case, the perturbation growth rate
increases with decreasing wavelength. As was shown in
that paper, the allowance for surface tension suppress-
ing the shortest wavelength perturbations makes it pos-
sible to determine the wavelength of the fastest growing
perturbation. The same result was obtained when the
elastic properties of the medium were approximately
taken into account.

We now derive the equations of motion of a layer.
Let us assume that the thickness of the layer is much
less than both the linear sizes of its surface and the char-
acteristic range of the perturbation under consideration.
This implies that the layer can be treated as a moving
material surface subjected to mass and surface forces.
We use the simplest model of the layer, where its
strength properties are ignored; i.e., we suppose that
each element of the moving layer is subjected to only
mass forces and forces applied to its surfaces, and
forces in the cross-sections of the layer are neglected.

To complete the model, we assume that the collision
of the layer with an impermeable surface is completely
inelastic; i.e., the relative momentum component tan-
gential to the surface is conserved, while the normal
component is absorbed. In particular, two colliding lay-
ers form a united layer with summed mass and momen-
tum. In this case, the total kinetic energy is certainly
transformed into the heat energy of the layer.

To simplify calculations, we consider only the two-
dimensional case.

Let us consider the forces acting upon an element ds
of the layer (Fig. 1).

y

xL

dy

dx

ds

P

tρ, h

0

ρ0, h0

Fig. 1. Element of a deformed plate accelerated by an exp-
losion.

t0
In accordance with the problem formulated above,
we allow for only pressure forces, assuming pressure in
front of the layer to be constant. The excess pressure on
the back of the layer is denoted by p. In this case, the
equations of motion of the layer take the form

(1)

Here, x and y are the Cartesian coordinates of a layer
point; t is the time; and ρ and h are the density and
thickness of the layer, respectively.

The condition of mass conservation yields the equa-
tion

(2)

Here, the subscript 0 stands for the initial values of the
corresponding quantities and ξ is the Lagrangian coor-
dinate of the layer point (i.e., the initial value of the
coordinate s). The quantities ρ0 and h0 can be functions
of ξ. The mass coordinate m can be used instead of ξ.

Since these equations will be used in the problem of
the acceleration of an initially flat homogeneous plate,
we take ρ0 and h0 as constants, with ξ being an initial
value of x. The plate size is denoted by L. To simplify
our calculations, we consider only the case of p = const.
We divide coordinates x, y, s, and ξ by L, thickness h by

h0 , and time t by . In this case, Eqs. (1) and (2)

take the dimensionless form without parameters:

(3)

(4)

After finding the dependences x = x(ξ, t) and y(ξ, t)
from Eqs. (3), we determine the layer thickness h(ξ, t)
from Eq. (4).

Equation (3) has the simple solution

(5)

corresponding to an undeformed plate uniformly accel-
erated from rest at t = 0.

Equations (3) and (4) are invariant under the trans-
formation to the reference frame fixed to the moving
undeformed plate. These equations are linear equations
with constant coefficients. Under the given boundary
[x(0, t) = 0, x(1, t) = 1] and initial [x(ξ, 0) = x0(ξ),

y(ξ, 0) = y0(ξ),  = ,  = ] conditions,

the general solution of the problem of an accelerated
plate (material surface) can be found as an eigenfunc-

ρhds
∂2x

∂t2
-------- pdy, ρhds– ∂2y

∂t2
-------- pdx.= = =

ρhds ρ0h0dξ dm.= =

ρ0h0L
p

--------------

∂2x

∂t2
--------

∂y
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------,

∂2y

∂t2
--------–

∂x
∂ξ
------,= =

1
h
--- ∂s

∂ξ
------

∂x
∂ξ
------ 

 
2 ∂y
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------ 

 
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2
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tion expansion. It is easy to verify that the eigenfunc-
tions of the problem have the form

(6)

It is worth noting that Eqs. (3) and the superposi-
tions of their solutions (6) describe arbitrary finite per-
turbations of the layer under consideration, in contrast
to solutions of the linearized problem of perturbed
motion of a finite-thickness layer [5], which are appli-
cable only for small perturbations.

In order to avoid the cumbersome calculations
required for considering the evolution of arbitrary ini-
tial perturbations, which must be expressed as series in
eigenfunctions (6), we consider only the following sim-
ple solution satisfying the initial conditions given
above:

, (7)

where ε = ε0exp . For t = 0 and ε  0, the per-
turbed plate has the evidently harmonic shape

y = εcos(2πx), h = 1 – ε · 2πcos(2πx) + O(ε2). 

We now trace its evolution. The plate profile y' = y –

 = y'(x, t) is shown in Fig. 2 in variables x and  for

ε  0 (cosine curve), ε = 0.05, 0.1, , 0.25, 0.5, and

1 (in what follows, the prime is omitted). At the time t

corresponding to ε = , a cusp x =  origi-

nates on the curve y = y(x) so that the left and right sec-
tions of the deformed layer begin to approach each
other. In view of the mirror symmetry of the problem, it
is sufficient to consider only the left half with ξ ∈

.

Let ξ* and t* denote the values of ξ and t corre-
sponding to the starting point of the collapse. After a
layer section collapses, the pressures on its sides
become identical. Therefore, under the above assump-
tion that an impact is inelastic, any point of this section

moves inertially along the x =  line from its position

y = y*(t) at the impact instant, and its velocity is equal

x e nπt± nπξ( ), ysin e nπt± nπξ( ),cos= =

x e nπt± nπξ( )cos , y e nπt± nπξ( )sin ,= =

n 1 2 … ., ,=

x ξ ε 2πξ( ), ysin+
1
2
---t2 ε 2πξ( )cos+= =

2πt

1
2
---t2 y

ε
--

1
2π
------

1
2π
------ 1

2
--- ξ 1

2
---= 

 

0
1
2
---,

1
2
---
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to the y component of its velocity at the impact instant.
Therefore, this motion is described by the equation

or (8)

Thus, beginning with the time corresponding to ε =

, a finger begins to grow at x =  behind the layer

front exponentially accelerated relative to the linearly
accelerated reference frame. The growing finger is first
in the y < 0 region, because the initial velocities of the

middle section with ξ ∈  are negative due to the

initial conditions. Beginning with ε = , the maximum

velocity of the finger end directed backwards is equal to

, and the finger extends into the y > 0 region,

while the velocity of the leading end of the finger (at the
intersection point of the left and right sections of the
layer) increases exponentially with time.

Using Eqs. (7), we determine the following relations
between ξ*, y*, and t* (or ε*):

(9)

y y* ∂y
∂t
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ξ ξ *=
t t*=

t t*–( )+=

y ε* 2πξ*( ) 1 ε
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2
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Fig. 2. Plate profile and the finger formed for times corre-

sponding to (1) ε  0 and ε = (2) 0.05, (3) 0.1, (4) ,

(5) 0.25, (6) 0.5, and (7) 1.
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These dependencies are presented in Fig. 3, which
shows how an initial ξ distribution linear in the x coor-
dinate of an unperturbed plate varies when the plate is
gradually transformed into the finger in the y direction.

At the same time, the mass of the ξ ∈  (y < 0)

half of the plate is concentrated in the slowly moving
finger section (relative to the linearly accelerated coor-

dinate system). The other half, with ξ ∈  and ξ ∈

, i.e., y > 0, is gradually concentrated in the fin-

ger section accelerated exponentially with time.

It is easy to evaluate the total momentum J of the
finger under the conditions described above:

1
4
--- 3

4
---,

0
1
4
---,

3
4
---, 1

ξ*

0.50

0 1.0 1.5 2.0

2.0

1.0

–1.0

0.25

y*

ξ*

 J

 J

π

0.5

Fig. 3. Mass and momentum of a finger vs. y* (time t*).

1
2
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1
2
---

–
1
2
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Fig. 4. Craters produced in a steel target by fingers formed
on an accelerated plate.
The momentum J as a function of y* is also shown
in Fig. 3.

As has already been mentioned, the scale of the fast-
est growing perturbations cannot be determined in the
model presented above.

Analyzing our experiments with circular copper
plates accelerated by explosions, we found, in addition
to ordinary irregularities, barely visible circular dents
symmetrically distributed over a circle at the bottom of
a shallow crater formed on the steel target. By analogy
with the instability of liquid layers described above,
which results in the development of periodic finger-
shaped structures, we suppose that the same effect can
occur in the case under consideration; i.e., instability
can give rise to the formation of periodic structures (fin-
gers). This consideration was the starting point of the
theory presented above.

The launcher that was used in our experiments was
a thin-walled cylinder with a height of ~9 cm and a
diameter of ~4.5 cm. The upper half of the cylinder was
filled with a ~100-g explosive on a 0.2-cm-thick copper
plate. According to the model described above, initial
perturbations for a launching pressure of about 100 kbar
have increased by a factor of several thousands before
the accelerated plate impinges upon the target under the
cylinder. This suggests that high-velocity finger-shaped
periodic structures can originate in our experiments.

In order to increase the perturbation growth rate in a
plate, we attempted to preset its initial deformation
such that it corresponded to a sufficiently developed
evolution stage. The result exceeded all our expecta-
tions. Indeed, the theory under consideration and,
therefore, the predicted shape of a moving layer are
approximate. Moreover, following the model accepted
above, we should reproduce the initial velocity profile
as well as the initial shape of the accelerated plate.
However, this is impossible in our experiments. Never-
theless, after a few trials, we found that presetting a
periodic perturbation with six periods (this number was
established experimentally) led to the result predicted
by the theory; namely, six deep craters originated on the
target (Fig. 4). In the case of four-period initial defor-
mation of the plate, the symmetry of the craters was
broken, so that two of them are each split into two cra-
ters. In order words, the development of finger-shaped
structures tends to form just six fingers.

Ordered structures were also observed in our exper-
iments, where a copper cylindrical shell with small lon-
gitudinal bulges regularly distributed on its inner sur-
face was compressed by an explosion-induced detona-
tion wave traveling along the outside of the shell.

Between longitudinal hollows caused by the impact
of the shell bulges, circular dents uniformly distributed
over a cylindrical target, which was coaxially placed

1
2
---J 2π ε ξ*( ) 2πξ*( )cos ξ*.d

ε*

1/2

∫=
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within the shell, were distinctly observed. It is reason-
able to suppose that these dents are formed by suffi-
ciently large periodic perturbations.

The discovered development of small perturbations,
which is accompanied by energy–momentum cumula-
tion in finger-shaped structures, was used to design an
explosion unit for making deep grooves in a metal and
for perforating thick metallic plates. In this case, the
areas of craters or holes approach the cross area of a
launched plate or the whole launcher.

Comparative experiments indicated that the usual
axisymmetric combination of central and annular
cumulative jets requires a significantly greater amount
of explosive and a launcher with a larger diameter to
achieve the same results.
DOKLADY PHYSICS      Vol. 48      No. 5      2003
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Solutions to problems of plasticity theory for piece-
wise-homogeneous materials are of significant interest
for the analysis and design of metal-forming processes
of composite materials. However, these solutions can
qualitatively differ from the corresponding solutions
for homogeneous materials. Therefore, defects arising
when composite materials are fabricated can signifi-
cantly differ from defects arising when homogeneous
materials are fabricated. Defects arising when compos-
ite materials are fabricated were reviewed in [1]. More-
over, when the plastic flow of piecewise-homogeneous
materials is studied, it is necessary to take into account
the fact that the constitutive laws can be different for
different domains [2].

Classical problems of plasticity theory for piece-
wise-homogeneous materials are of interest for reveal-
ing the main features of solutions. Such solutions were
obtained in [3–5] for flow through infinite channels and
compression between parallel plates. In particular, pla-
nar and axisymmetric flow of multilayer plastic materi-
als in converging channels was considered in [3]. How-
ever, in this paper, based on the assumption that friction
is low, the solution was found in the vicinity of the triv-
ial frictionless solution. As was shown in [4] for planar
flow, such an approach can provide qualitatively incor-
rect results for some boundary conditions. In this paper,
the results obtained in [4] are generalized to the case of
the axisymmetric flow of a bilayer plastic material
through an infinite conical channel. The solution is
based on the corresponding solution for the flow of a
homogeneous material through an infinite channel [6].
Note that flow through infinite converging conical
channels for other models of the material, including
rotating channels, was analyzed in [7–10]. The method
used in [3] was also applied in [10].
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The flow of a bilayer material through a conical
channel is illustrated in Fig. 1. It is assumed that each
material is rigid/perfectly plastic and meets the von
Mises criterion. However, the yield stresses of the
materials are different. In the spherical coordinate sys-
tem ρϕθ shown in Fig. 1, the channel surface is defined
by the equation ϕ = α. Friction on this surface is deter-
mined by the law

(1)

where σρϕ is the shear stress in the spherical coordinate
system (σρρ, σϕϕ, and σθθ will denote the respective nor-
mal stresses), ke is the shear yield stress of the outer
material (ki will denote the shear yield stress of the
inner material), and mw is the friction factor lying in the
interval 0 ≤ mw ≤ 1. We assume that the bimaterial inter-
face is defined by the equation (Fig. 1)

(2)

The quantity γ should be determined from the solution.
We assume that there is sliding at the bimaterial inter-

σρϕ mwke,=

ϕ γ .=

0

ϕ

γ

α

r

Fig. 1.
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face and that the friction law takes the form

(3)

where kmin = min{ki, ke} and mb is the friction factor at
the bimaterial interface, 0 ≤ mb ≤ 1. The upper sign
in (3) corresponds to the case where the velocity of the
inner material is higher than the velocity of the outer
material at the bimaterial interface. On the axis of sym-
metry, ϕ = 0, the natural condition

(4)

is satisfied. Since the flow is assumed to be radial, all
the kinematic boundary conditions are automatically
satisfied.

In [6], the solution to the problem of the flow of a
homogeneous rigid/perfectly plastic material with the
shear yield stress k through a converging conical chan-
nel reduces to the solution of the first-order ordinary
differential equation

(5)

where τ =  and c0 is an arbitrary constant. Once the

solution to Eq. (5) has been found, the normal stresses
and the radial velocity u are determined from the equa-
tions

(6)

(7)

where A0 and B0 are arbitrary constants, which remain
undetermined in the case of the flow through an infinite
channel.

For the flow of the bilayer material, the solution
given by Eqs. (5)–(7) is valid in each layer, assuming
that k = ki in the inner layer and k = ke in the outer layer.
In addition, the constants can have different values in
each material layer. We denote c0 = ci, A0 = Ai, and B0 =
Bi in the inner material and c0 = ce, A0 = Ae, and B0 = Be

in the outer material. Because the contact stresses must
be continuous across the bimaterial interface, it follows
from (6) that

(8)

where s = . It is also convenient to introduce the new

variable ψ such that τ = sin2ψ. Then, Eq. (5) with the

σρϕ mbkmin,±=

σρϕ 0=

dτ
dϕ
------ τ ϕ 2 3 1 τ2–( )1/2
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k
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use of Eq. (8) takes the form

(9)

at 0 ≤ ϕ ≤ γ and

(10)

at γ ≤ ϕ ≤ α. The boundary conditions (1), (3), and (4)
in terms of the function ψ have the form

(11)

at ϕ = α,

(12)

at ϕ = γ + 0,

(13)

at ϕ = γ – 0,

(14)

at ϕ = 0. The sign in Eqs. (12) and (13) is determined in
the same way as in Eq. (3). In order to satisfy these four
conditions, there are two constants of integration of
Eqs. (9) and (10), c and γ. The existence and uniqueness
of the solution of this boundary-value problem depend
substantially on s, the sign in Eqs. (12) and (13), and the
friction factors mw and mb . It is possible to show that the
general structure of the solution is similar to the case of
planar flow [4]. This structure is illustrated in Figs. 2
and 3. Figure 2 shows the case where the velocity of the
inner material is higher than the velocity of the outer
material at the bimaterial interface. The solution is
unique in domain 3, two solutions exist in domain 2,
and there is no solution in domain 1. The solution is
unique at the boundary OA and does not exist at the
boundary ABC. It is possible to show that the point A is

located below the line s = (1 + . Figure 3 shows
the case where the velocity of the outer material is
higher than the velocity of the inner material at the
bimaterial interface. There are two solutions in
domain 2, and there is no solution in domain 1. The
solution is unique at the boundary AB. It is possible to

2 ϕ 2ψdψ
dϕ
-------cossin ϕ 2ψsincos+

+ 2 3 ϕ 2ψcossin c ϕsin=

2 ϕ 2ψdψ
dϕ
-------cossin ϕ 2ψsincos+

+ 2 3 ϕ 2ψcossin sc ϕsin=

ψ 1
2
--- mwarcsin=

ψ 1
2
---

mbkmin

ke

--------------- 
 arcsin±=

ψ 1
2
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mbkmin

ki

--------------- 
 arcsin±=

ψ 0=

mb
2 ) 1/2–
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show that the point A is located above the line s = (1 +

. It is necessary to note that the structure of the
solution at mb = 0 corresponds neither to the structure
mb

2 )1/2

1

2

3

A

B

(1 + mb
2)–1/2

1

s
C

0  mb  mw

D

1

Fig. 2.
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A

s
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2)1/2
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B

Fig. 3.
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34
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α 
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Fig. 4.
shown in Fig. 2 nor to the structure shown in Fig. 3.
Nevertheless, the properties of this solution can be
described by means of Fig. 3. The line AB keeps its
shape but intersects the axis at s = 1. A unique solution
excluding the axis s exists above this line, and there is
no solution below the line. In addition, no solution
exists on the line AB and the s axis. The point A (mw =
0, s = 1) is an exception corresponding to the solution
ψ = 0 at 0 ≤ ϕ ≤ α. The special solution at mb = 0 shows
that small changes in mb near mb = 0 can lead to quali-
tative changes in the behavior of the solution. For this
reason, the analysis performed in [3, 10] can lead to
incorrect results.

The dependence of γ on ϕ is of a certain practical
interest, because it can be used to approximately ana-
lyze some technological processes [11]. This depen-
dence, found from a numerical solution of Eqs. (9) and
(10) with the boundary conditions (11)–(14) for the s
values [s = (1) 0.65, (2) 0.7, (3) 0.8, and (4) 0.9), is
shown in Fig. 4 for the case where the velocity of the
inner material is higher than the velocity of the outer
material at the bimaterial interface and the solution is
unique. It was assumed that mw = mb = 1 under the con-
ditions (11) and (12).

The solution for the flow of a homogeneous material
satisfying Tresca’s yield condition was also obtained in
[6]. This solution reduces to Eq. (5) with different
numerical coefficients. Therefore, its generalization to
the flow of a piecewise-homogeneous material can be
obtained in the same manner as in the case of the von
Mises condition.
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For exciting and damping self-oscillations and
forced oscillations, additive controlling actions are
most frequently used. However, parametric controlling
schemes are also sometimes used [1–6], because
schemes with a parametric active action are more easily
realizable in some cases. At the same time, parametric
control often allows the realization of those useful
properties of closed systems that are more difficult to
realize with additive control. In particular, a relay para-
metric control of self-oscillations makes it possible to
obtain approximately optimal laws invariant with
respect to nonlinearity of the pure elastic or pure dissi-
pative type [7].

However, many periodic regimes are possible in
systems with a parametric control, as well as in periodic
regimes of systems without active controlling actions
and systems with an additive control. This means that
regimes different from the calculated optimal regime
can exist in a synthesized system, which can give rise to
a negative effect in some cases. In particular, when
solving the problem of active vibration damping,
regimes that differ from the calculated regime and have
higher intensities than in the original uncontrolled sys-
tem can arise in the controlled system.

This paper presents a method for constructing quasi-
optimal parametric controls for both autonomous sys-
tems and systems with an external periodic excitation
for stationary regimes of quasi-harmonic systems. The
desired controlling functions are bounded in either the
Lp(0; 2π) space or the M(0; 2π) space. In the first
approximation of asymptotic methods [8], we obtain
linear isoperimetric conditions imposed on the desired
controlling actions. Optimizing functions are then
determined by the method of moments [9]. Further,
based on a generalization of the principle of construc-
tion of the extended (multiplicative stabilizing) control,
which was proposed in [10] for systems with the addi-

Blagonravov Institute of Mechanical Engineering, 
Russian Academy of Sciences, M. Khariton’evskiœ per. 4, 
Moscow, 101830 Russia
1028-3358/03/4805- $24.00 © 20247
tive control, we construct extended parametric controls,
which are artificial attractors with arbitrary attraction to
the nominal (quasi-optimal) limit cycle. The resulting
controls are proven to ensure the uniqueness and stabil-
ity of the nominal limit cycle.

1. CONSTRUCTION OF CONTROLS
FOR PERIODIC REGIMES

OF AUTONOMOUS SYSTEMS

We consider the periodically controlled quasi-har-
monic autonomous system

(1)

where ε is a small parameter, u is the desired controlling
action, and f(x, ) is a given nonlinear characteristic.

Let the functional J(x, ) characterize the intensity
of stationary oscillations of system (1) and the intensity
of the control be restricted by the condition

(2)

where 1 ≤ p < ∞, ω is the given frequency of self-oscil-

lations such that ω2 –  is equal to about ε, and Up is
the constant characterizing the limit control resource.
Inequality (2) for p  ∞ corresponds to the restriction
on the amplitude of the controlling action.

We have to find u*(x, ) providing a maximum (or
minimum) of the functional J(x, ) in a stationary
regime with a frequency of ω. The problem of the max-
imization of the periodic-regime intensity corresponds
to the synthesis of the generation system for self-oscil-
lations, and the problem of minimization corresponds
to the reduction of the level of noise self-oscillations. In
the latter case, it is assumed that the nonlinear charac-
teristic f(x, ) corresponds to the characteristic of the
self-oscillating type.

ẋ̇ ω0
2x+ ε f x ẋ,( ) ux+[ ] ,=

ẋ

ẋ

u p td

0

2π/ω

∫
1
p
---

U p,≤

ω0
2

ẋ
ẋ

ẋ
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After the change of variables

and further averaging of the right-hand side of Eq. (1),
we obtain the following set of first-approximation
equations of the asymptotic method [8]:

(3)

(4)

where

From Eq. (4), we obtain the frequency-squared
expression

(5)

accurate to ε2.

Since  = 0,  = 0 for a stationary regime, Eqs. (3)
and (5) provide the following isoperimetric conditions
that are imposed on the desired function u:

(6)

where

After the change of variables, the functional J(x, ),
which must be optimized, transforms to a function of
the variable A. In what follows, this function is assumed
to increase monotonically. In particular, for the square
functional,

x A ψ, ẋcos ω0A ψ, ψsin– ω0t ϕ+= = =

Ȧ
ε

2πω0
------------- Φ̇ A( ) 1

2
---Au1– ,=

ϕ̇ ε
2πω0A
----------------- Ψ A( ) 1

2
---Au2+

2π
,–=

Φ A( ) f A ψ ω0A ψsin–cos( ) ψsin ψ,d

0

2π

∫–=

ψ A( ) f A ψ ω– 0A ψsin,cos( ) ψcos ψ,d

0

2π

∫=

u1 A( ) u 2ψsin ψ, u2 u 2ψcos ψ.d

0

2π

∫=d

0

2π

∫=

ω2 ω0
2 ε

πA
------- ψ A( ) 1

2
---Au2+–=

Ȧ ϕ̇

u 2ψsin ψd

0

2π

∫ β1 A( ), u 2ψcos ψd

0

2π

∫ β2 A( ),= =

β1 A( ) 2Φ A( )
A

-----------------,=

β2 A( )
2 π ω0

2 ω2–( ) εΨ A( )–[ ]
εA

---------------------------------------------------------.=

ẋ

J x2 α ẋ2+( ) t  . 
π
ω
---- 1 α2ω2+( )A2.d

0

2π/ω

∫=
Therefore, the minimization and maximization of
the functional J are equivalent to the minimization and
maximization of the amplitude A.

We now consider the following auxiliary problem
(which is of interest itself). Let A be given. It is neces-
sary to find the function u0(ψ) that satisfies Eqs. (6)
(moment relations) and has the minimum norm

(7)

According to [9], the solution of this problem has the
form

(8)

where  +  = 1 and  and  are determined by

solving the extreme problem

(9)

under the condition β1ε1 + β2ε2 = 1. In this case, l–1 is
equal to the minimum norm (7); i.e., l–1 = Ip(u0).

Transforming the left-hand side of Eq. (9) as

(10)

where

we determine the minimizing  and  values in the
form

(11)

According to Eqs. (10), (11), and (6), the minimum
control intensity is related to the regime parameters A
and ω as

(12)

The original problem of the maintenance of the maxi-
mum (or minimum) amplitude A* corresponds to the
limit intensity of the controlling action. Therefore,

I p u p td

0

2π/ω

∫ 
 
 

1
p
---

1

ω1/ p
---------- u p ψd

0

2π

∫ 
 
 

1
p
---

.= =

u0 ψ( ) 1

lq
--- ε1

0 2ψsin ε2
0 2ψcos+

q 1–
=

× ε1
0 2ψsin ε2

0 2ψcos+( ),sgn

1
q
--- 1

p
--- ε1

0 ε2
0

ε1 2ψsin ε2 2ψcos+ q ψd

0

2π

∫ 
 
 

1
q
---

ε1 ε2,
min 1

lq
---=

ε1
2 ε2

2+ 2ψ ψ1+( )sin q ψd

0

2π

∫
1
q
---

ε1 ε2,
min

=  ε1
2 ε2

2+ Mq,
ε1 ε2,
min

Mq 2ψ ψ1+( )sin q ψd

0

2π

∫
1
q
---

2ψsin q ψd

0

2π

∫ 
 
 

1
q
---

;= =

ε1
0 ε2

0

ε1
0 β1

β1
2 β2

2+
-----------------, ε2

0 β2

β1
2 β2

2+
-----------------.= =

β1
2 β2

2+ Mq I p
0( )qωq/ p.=
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replacing  with Up on the right-hand side of Eq. (12)
in accordance with restriction (2), we arrive at the
equation

(13)

The optimal amplitude A* is determined as the max-
imum or minimum root of Eq. (13). From Eq. (8) with
allowance for Eqs. (11)–(13), we obtain the corre-
sponding function u*

(14)

where

Since x = A*cosψ and  = –ω0A*sinψ, the function
u*(x, ) is determined from Eq. (14) as

(15)

2. ANALYSIS OF REGIMES 
OF CLOSED SELF-OSCILLATING SYSTEMS:
MULTIPLICATIVE STABILIZING CONTROL

For set (1) with parametric control (15), truncated
Eqs. (3) and (4) have the form

(16)

(17)

where

and u* is given by Eq. (15).
We assume that the following two cases are possible

for set (1) with control (15).

I p
0

ω
q
p
---2εA

π
----------MqU p

q

=  ε2Φ2 A( )
π2

-------------------- ω0
2 ω2–( )A εψ A( )

π
-------------–

2

+
 
 
 

1
2
---

.

u* ψ( ) U p
q β1* 2ψ β2* 2ψcos+sin

q 1–
=

× β1* 2ψsin β2* 2ψcos+( ),sgn

β1* β1 A*( ), β2* β2 A*( ).= =

ẋ
ẋ

u* x ẋ,( ) U p
q –2β1*

xẋ
ω0
------ β2* x

ẋ2

ω0
2

------–
 
 
 

+
q 1–

=

× A*( ) 2 q 1–( )–
–2β1*

xẋ
ω0
------ β2* x2 ẋ2

ω0
2

------–
 
 
 

+ .sgn

Ȧ
ε

2πω0
------------- Φ A( ) 1

2
---Au1* A( )– ,=

ϕ̇ –
ε

2πω0
------------- ψ A( ) 1

2
---Au2* A( )+ ,=

u1* A( ) u* A ψ ω0A 2ψsin–,cos( ) 2ψsin ψ,d

0

2π

∫=

u2* A( ) u* A ψ ω0 ψ ψdsin–,cos( ) 2ψcos ψ,d

0

2π

∫=
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(i) There are n limit cycles; i.e., in accordance with
Eq. (16), the equation

(18)

has n – 1 positive roots Ai, i = 1, 2, …, n – 1 in addition
to the A* root corresponding to the nominal regime,
which can be either stable or unstable; i.e., the inequ-
ality

(19)

for A = A* can be either satisfied or unsatisfied in view
of Eq. (16).

(ii) There is the unique limit cycle A*; i.e., Eq. (18)
has one positive solution A*; however, the regime is
unstable; i.e., inequality (19) is unsatisfied for A = A*.

To remove the plurality of regimes and to stabilize
the regime A* (if it is unstable), the originally deter-
mined control (15) is replaced by the extended (multi-
plicative stabilizing) control

(20)

where χ(A, A*) = 1 + ρσ(A, A*), A =  is the

amplitude determined in terms of phase coordinates,
σ(A, A*) is a continuously differentiable function such
that

and ρ is a constant.

When u*(x, ) given by Eq. (15) is replaced by the
control ums given by (20), Eq. (18) and inequality (19)
for A = A* take the form

(21)

(22)

Theorem 1. There are functions σ(A, A*) belonging
to the class defined above and values of the parameter
ρ(–∞ < ρ < ∞) such that Eq. (21) has the unique solu-
tion A = A* and inequality (22) is satisfied.

As an example, we consider set (1) with the nonlin-
earity

In this case, ω = ω0 , restriction (2) is given in the
form |u| ≤ U, and Φ(A) = a0 + a1A2, where a0 = 4f0 and

Φ A( ) 1
2
---Au1* A( )– 0=

Φ̇ A( ) 1
2
---u1 A( )–

1
2
---Au̇1 A( )– 0<

ums χ A A*,( )u* x ẋ,( ),=

x2 ẋ2

ω0
2

------+
 
 
 

1
2
---

σ A* A*,( ) 0,
∂

∂A
------σ A* A*,( ) 0,≠=

ẋ

Φ A( ) 1
2
---Aχ A A*,( )u1* A( )– 0,=

Φ̇ A*( ) 1
2
---u1* A*( ) – 

1
2
---ρA* ∂

∂A
------σ A* A*,( )u1* A*( )–

–
1
2
---A*u̇1* A*( ) 0.<

f f 0 ẋ ẋ ẋ.+sgn=
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a1 = . According to Eq. (15), the parametric con-

trol providing the maximum amplitude of self-oscilla-
tions has the form

(23)

The corresponding amplitude of self-oscillations has
the form

(24)

Equation (18) has two solutions: A1 = A* , given by

Eq. (24), and A2 =  – . Therefore,

the system involves the nominal regime A* (24) and the
regime with lower amplitude A2 . In this case, stability
condition (19) has the form 2a1A – πU < 0. Therefore,
the regimes A* and A2 are unstable and stable, respec-
tively. For this reason, u* given by Eq. (23) is replaced
by extended control (20) given in the form

In this case, Eq. (21) takes the form

which degenerates to a linear equation for ρ =  and

has the unique solution A = A*. The regime A* is stable,
because

in view of inequality (22).

3. CONSTRUCTION
OF VIBRATION DAMPING CONTROLS

FOR FORCED PERIODIC REGIMES

We consider the quasi-harmonic system

(25)

where Bsinωt is the external perturbation, whose fre-
quency ω differs from ω0 by a value of about ε. Accord-

8
3
--- ω0

2
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A* πU
2a1
--------

πU
2a1
-------- 

  2 a0

a1
-----–

1
2
---

+=

for   U 
2

 
a

 
0 
a

 
1 π ------------------ excitation  condition ( ) . >

πU
2a1
-------- πU

2a1
-------- 

  2 a0

a1
-----–

1
2
---

ums 1 ρ A A*–( )+[ ] u*.=

a0 a1A2 A 1 ρ A A*–( )+[ ]πU–+ 0,=

a1

πU
--------

1 ρA*–( )πU– 1
2
--- 1

4
---

a0a1

π2U2
------------– 1–+

 
 
 

πU 0<=
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ing to [8], the first-approximation equations for 

 

A

 

 and 

 

ϕ

 

have the form

 

(26)

 

Stationary-regime equations determined from Eq. (26)

for 
 

 = 0, 
 

 = 0 have the form
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) = 

 

π

 

(  – 
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)

 

.

Equations (27) provide the following moment rela-
tions imposed on the desired function 

 

u

 

:

 

(28)

 

where

We have to find 

 

u

 

*(

 

ψ

 

)

 

 and phase 

 

ϕ

 

*

 

 that satisfy condi-
tions (28) and provide the minimum amplitude 

 

A

 

*

 

under restriction (2). To solve this problem, the follow-
ing auxiliary problem is first considered. The function
that satisfies moment relations (28) and has minimum
norm 

 

I

 

p

 

 (7) must be found for given 

 

A

 

 and ϕ values.
This problem is solved similarly to the problem
described above for autonomous systems. As a result,

by analogy with Eq. (12), the equation relating  to the

regime parameters A and ϕ is found in the form

(29)

Ȧ ε Φ A( )
2πω
-------------

B
ω ω0+
---------------- ϕ 1

2
--- A

2πω
-----------u1–cos– ,=

ϕ̇ ω0 ω–
ε

2πωA
---------------Ψ A( )–=

+
εB

ω ω0+( )A
------------------------- ϕ 1

2
--- ε

2πω
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Ȧ ϕ̇

X A ϕ,( ) εΦ A( ) επB ϕ ε A
2
---u1–cos– 0,= =

Y A ϕ,( ) Ψ1 A( ) επB ϕsin εA
2
---u2–+ 0,= =

ω0
2

u 2ψsin ψd

0

2π

∫ γ1 A ϕ,( ),=

u 2ψcos ψd

0

2π

∫ γ2 A ϕ,( ),=

γ1 A ϕ,( ) 2
A
--- Φ A( ) πB ϕcos–[ ] ,=

γ2 A ϕ,( ) 2
A
---

Ψ1 A( )
ε

---------------- πB ϕsin+ .=

I p
0

ωq/ pMq I p
0 A ϕ,( )[ ] q γ1

2 A ϕ,( ) γ2
2 A ϕ,( )+[ ]

1
2
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Further, we determine the phase ϕ0(A) providing the

minimum intensity (A, ϕ) (29). Since

we have

(30)

Substituting ϕ = ϕ0(A) given by Eq. (30) into Eq. (29)

and replacing  with the limit control intensity Up , we
arrive at the following equation for the amplitude:

(31)

The minimum amplitude A* is determined as the least
positive root of Eq. (31). In view of Eqs. (30), parame-
ters γ1[A, ϕ0(A)] and γ2[A, ϕ0(A)] for A = A* are given
by the formulas

According to Eq. (15), the replacement of  and

 by  and  leads us to the function of parametric
vibration damping with feedback

(32)

providing the minimum amplitude A*.

4. ANALYSIS OF REGIMES OF SYSTEMS 
WITH A VIBRATION-DAMPING ACTION: 

MULTIPLICATIVE–STABILIZING CONTROL

Regimes different from the minimum-amplitude
regime can also exist in system (25) with parametric
vibration-damping control (32). Stationary regimes are

I p
0

γ1
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analyzed by analyzing the set of equations (27), where
u1 and u2 must be replaced by

and

respectively. According to Eq. (32), u*(x, ) in these
formulas is determined by the equations

(33)

Excluding the phase ϕ from Eqs. (33), we arrive at the
following equation for amplitudes:

(34)

Stability conditions for forced-oscillation regimes
have the form [8]

(35)

where , , ,  are the derivatives calculated
from Eqs. (33) for arguments A and ϕ corresponding to
the regime under consideration. The substitution of
thus calculated derivatives transforms conditions (35)
to the form

(36)

Similar to the case of autonomous systems, it is
assumed that either Eq. (34) has n – 1 positive solutions
in addition to the solution A* or the solution A* is
unique. However, inequalities (36) are not satisfied for
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ẋ

X A ϕ,( ) εΦ A( ) επB ϕ ε A
2
---u1* A( )–cos– 0,= =

Y A ϕ,( ) Ψ1 A( ) επB ϕ ε A
2
---u2* A( )–sin– 0.= =

Φ A( ) A
2
---u1* A( )–

2

+
Ψ1 A( )

ε
----------------

A
2
---u2* A( )–

2

π2B2.=
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---u1* A( )–+ 0,<

ε2 Φ A( ) A
2
---u1* A( )–

× Φ̇ A( ) 1
2
---u1* A( )–

A
2
--- u̇1* A( )–

+ Ψ1 A( ) ε
2
---Au2* A( )–

× Ψ̇1 A( ) ε
2
---u2* A( )–

εA
2

------ u̇2* A( )– 0.>
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A = A*. For this reason, the originally determined
quasi-optimal control u*(x, ) given by Eq. (32) is
replaced by the extended control

(37)

where u*(x, ) is control (32) and the structure of
χ(A, A*) is the same as that for autonomous systems.
With ums (37), Eq. (34) takes the form

(38)

Stability conditions (36) for A = A* transform to

(39)

ẋ

ums χ A A*,( )u* x ẋ,( ),=

ẋ

Φ̇ A( ) A
2
---χ A A*,( )u1* A( )–

2

+
Ψ1 A( )

ε
----------------

A
2
---χ A A*,( )u2* A( )–

2

π2B2.=

A*Φ̇ A*( ) A*2

2
---------u̇1*A–

A*2

2
---------ρ∂σ

∂A
------ A* A*,( )u1* A*( )–

–
A*
2

-------u1* A*( ) Φ A*( ) A*
2

-------u1 A*( )–+ 0,<

ε2 Φ A*( ) A
2
---u1* A*( )–

× Φ̇ A*( ) 1
2
---u1* A*( ) A*

2
------- u̇1* A( )––

–
A*
2

-------ρ ∂
∂A
------σ A* A*,( )u1* A*( )

+ Ψ1 A*( ) ε
2
---u1* A*( )–

× Ψ̇1 A*( ) ε
2
---u1* A*( )–

εA*
2

----------u̇2* A*( )–

–
εA*

2
---------- ∂

∂A
------σ A* A*,( )u2 A*( ) 0.>
Theorem 2. There are functions σ(A, A*) belonging
to the class defined above and values of the parameter
ρ(–∞ < ρ < ∞) such that Eq. (38) has the unique solu-
tion A = A* and inequality (39) is satisfied. 

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation
for Basic Research, project no. 00-01-00217.

REFERENCES

1. K. V. Frolov, Mashinovedenie, No. 3, 38 (1965).

2. M. E. Gerts, Mashinovedenie, No. 5, 10 (1982).

3. L. D. Akulenko, Izv. Akad. Nauk, Mekh. Tverd. Tela,
No. 3, 18 (1993).

4. M. Ya. Izrailovich, Probl. Mashinostr. Nadezhnosti
Mash., No. 4, 15 (1994).

5. M. Ya. Izrailovich, Probl. Mashinostr. Nadezhnosti
Mash., No. 4, 20 (1996).

6. M. Ya. Izrailovich, Izv. Akad. Nauk, Mekh. Tverd. Tela,
No. 3, 54 (1997).

7. M. Ya. Izrailovich, Dokl. Akad. Nauk 376, 751 (2000).

8. N. N. Bogolyubov and Yu. A. Mitropol’skiœ, Asymptotic
Methods in the Theory of Nonlinear Oscillations (Fiz-
matgiz, Moscow, 1963; Gordon & Breach, New York,
1962).

9. A. G. Butkovskii, Distributed Control Systems (Nauka,
Moscow, 1965; Elsevier, New York, 1969).

10. M. Ya. Izrailovich, Dokl. Akad. Nauk 377, 25 (2001).

Translated by R. Tyapaev
DOKLADY PHYSICS      Vol. 48      No. 5      2003



  

Doklady Physics, Vol. 48, No. 5, 2003, pp. 253–256. Translated from Doklady Akademii Nauk, Vol. 390, No. 3, 2003, pp. 343–346.
Original Russian Text Copyright © 2003 by Markov, Sinitsyn.

                                                                                                                                                                  

MECHANICS
Distributions of Fluctuations in Motion of the Earth’s Pole
Yu. G. Markov* and I. N. Sinitsyn**

Presented by Academician V.V. Kozlov February 19, 2003

Received February 21, 2003
1. According to observation data and measurements
made by the International Earth Rotation Service in the
last 15–20 years, motion of the Earth’s pole involves a
principal component (free nutation and Chandlers wob-
ble) with an amplitude of 0.20″–0.25″ and a period of
433 ± 2 sidereal days [1], a regular annual component
(365 sidereal days) with an amplitude of about 0.07″–
0.08″, and a comparatively slow irregular drift (trend)
of the axis of the Earth’s figure. The annual wobbles of
the Earth’s axis are caused by the moment of gravita-
tional forces of the Sun, the Earth’s revolution around
the Sun, and the diurnal tides of the mantle [2, 3]. The
causes and mechanism of exciting the annual wobbles
are usually attributed to seasonal geophysical phenom-
ena [4, 5].

Measurements of motion of the Earth’s pole were
statistically analyzed in many works (see, e.g., [6]).
Analytical stochastic spectrally correlation models of
motion of the Earth’s pole were developed in [7–9] on
the basis of celestial mechanics.

In this paper continuing studies [7–9], we consider
one-dimensional distributions of fluctuations in motion
of the deformable Earth.

2. We now introduce the following notation and
assumptions. 

(i) The projections of the instantaneous angular
velocity of the Earth’s rotation on the Earth’s axes are
denoted by Y = [Y1Y2Y3]T, where Y1 = pt , Y2 = qt , and
Y3 = rt.

(ii) We assume that the axial and centrifugal
moments of inertia of the deformable Earth, A = Jpp, B =
Jqq, C = Jrr, Jpq = Jqp, Jqr = Jrq, Jrp = Jpr , in the diurnal

time interval T∗  = 2π , r∗  = 365ω∗  can be repre-r*
1–
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sented in the form

where higher harmonics are ignored and i, j = p, q, r.
(iii) We introduce the term “effective diurnal tidal

humps” for the following dimensionless combinations
of the axial moments of inertia:

Here, 〈…〉  means the averaging over the diurnal time

interval T∗  = 2π  (ϕ = r∗ t), u1 ~ u2 , and u3 ! u1, 2 .

(iv) The dimensionless combinations of the centrif-
ugal moments of inertia,

will be referred to as effective tidal protrusions aver-

aged over the diurnal time interval T∗  = 2π , where
u4…7 ~ u3 , u8…11 ! u4…7, and u12…15 ! u8…11.

(v) We allow for only the moments of gravitational
forces of the Sun with respect to the Earth’s axes [3]. It
is important to note that the moment of gravitational
forces of the Moon is larger than that of the Sun by a
factor of 2–3. However, since the natural frequency dif-
fers significantly from the forcing frequency, the ampli-
tude of monthly oscillations induced by the Moon is
one twentieth to one fifteenth that of annual oscilla-
tions. Therefore, monthly oscillations of the Earth’s
pole are not manifested in observations.

Jij  =  J ij * J ij 1 , ' r * t sin J ij 1 , '' r * t cos+ +

+
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ij
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' 2

 

r

 

*

 

t
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J

 

ij

 

2

 

,

 

'' 2

 

r

 

*

 

t

 

,cos+

u1 = C B–( )A* 1– ϕcos〈 〉 , u2 = C A–( )B* 1– ϕsin〈 〉 ,

u3 B A–( )C* 1– 2ϕsin〈 〉 .=

r*
1–

u4 Jqr A* 1–〈 〉 , u5 JqrC* 1– ϕsin〈 〉 ,= =

u6 Jqr A* 1– 2ϕcos〈 〉 , u7 JqrB* 1– 2ϕsin〈 〉 ,= =

u8 J prB* 1–〈 〉 , u9 J prC* 1– ϕcos〈 〉 ,= =

u10 J prB* 1– 2ϕcos〈 〉 , u11 J pr A* 1– 2ϕsin〈 〉 ,= =

u12 J pqC* 1–〈 〉 , u13 J pqA* 1– ϕsin〈 〉 ,= =

u14 J pqB* 1– ϕcos〈 〉 ,  and  u 15 J pq C * 
1– 2 ϕ cos 〈 〉 ,= =

r*
1–
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(vi) We allow for the external linear fluctuation–dis-

sipation moments of forces:  = V1t – D1pt ,  =

V2t – D2qt , and  = V3t – D3rt , where V1t , V2t , and V3t

are the specific moments of external random forces and
D1, 2, 3 are the specific coefficients of the moments of
dissipative forces.

(vii) At last, 3 = 3(t, pt , qt , rt , u, V), 4 = 4(t, pt , qt ,
rt , u, V), and 5 = 5(t, pt , qt , rt , u, V) denote the spe-
cific moments of external perturbing forces, which
depend on time, state vector, constant parameters u =
[u1u2… ]T, and fluctuation parameters V =

[V1tV2tV3t… ]T, where n1, n2 ≥ 3 are the dimensions
of the vectors.

3. Under assumptions (i)–(vii), the equations of the
Earth’s motion have the form

(1)

(2)

(3)

Here,

(4)

(5)

(6)

(7)

(8)

(9)

M1
fd M2

fd

M3
fd

un1

Vn2t

ṗt N*qt+ 31 32V, pt0
+ p0,= =

q̇t – N* pt 41 42V, qt0
+ q0,= =

ṙt 51 52V, rt0
+ r0.= =

31 = 3u1bω*
2 ω*tcos

3
2
---u4ω*

2 1 3b1
2 ω*tcos

2
–( )–

–
3
2
---u6ω*

2 1 b1
2 ω*tcos

2
–( )

3
2
---u11ω*

2 1 b1
2 ω*tcos

2
–( )–

+
3
2
---u13ω*

2 b ω*tcos u4rt
2– D1 pt,–

32 V1t 32 t pt qt rt u, , , ,( ),+=

41 = –3u2bω*
2 ω*tcos

3
2
---u7ω*

2 1 b1
2 ω*tcos

2
–( )+

+
3
2
---u8ω*

2 1 3b1
2 ω*tcos

2
–( )

–
3
2
---u10ω*

2 1 b1
2 ω*tcos

2
–( )

– 3u14bω*
2 ω*tcos u8rt

2 D2qt,–+

42V V2t 42 t pt qt rt u, , , ,( )V,+=

51 = 
3
2
---u3ω*

2 1 b1
2 ω*tcos

2
–( )

–
3
2
---u5bω*

2 ω*t 3u9bω*
2 ω*tcos+cos

+ 3u15ω*
2 1 b1

2 ω*tcos
2

–( ) D3rr,–

52V V3t 52 t pt qt rt u, , , ,( )V.+=
                               

In Eqs. (1)–(9), N∗  = (C* – B*)A*–1ω∗ , and b and b1

are dimensionless parameters such that 0.4 ≤ b ≤ π–1

and b1 ≈ b [3]. The quantities u1…3 and u4…15 are defined
in (iii) and (iv). Terms involving the squares and prod-
ucts of u, pt , qt , and rt – r∗ , as well as the averaged (over
the time interval T∗ ) rates of variation of the axial and
centrifugal moments of inertia, are omitted in the func-
tions 31, 41 , and 51 . The specific moments of external
random and dissipative forces are denoted by 32, 42 ,
and 52; they are nonlinear in u, pt , qt , and rt and
depend on the parameters V. When the fluctuation
parameters V represent broadband Gauss–Markov pro-
cesses similar to white noise, Eqs. (1)–(3) should be
treated as nonlinear stochastic differential equations in
the sense of θ-differentials [10, 11] (e.g., in the Stra-
tonovich sense). For self-correlated Gaussian noise,
Eqs. (1)–(3) should be completed by the equations for
linear shaping filters [10, 11].

4. According to [10, 11], if the parameters V are
Gaussian random variables with zero expectation and
intensity matrix ν(t) = [νl, h(t)] (l, h = 1, 2, …, n2),
Eqs. (1)–(3) reduces to the Ito form

(10)

Here,

(11)

(12)

(13)

As follows from Eq. (10), the Fokker–Planck–Kol-
mogorov equations for the nonstationary one-dimen-
sional density f1 = f1(y; t) and stationary density  =

(y) have the form

(14)

(15)

4
3
---

Ẏ a Y t,( ) b Y t,( )V , Y t0( )+ Y0.= =

a a Y t,( ) a1a2a3[ ] T= =

=  a
1
2
--- ∂

∂η
------ 

 
T

b Y t,( )ν t( )b η t,( )T

η Y=

T

,+

a a Y t,( ) a1a2a3[ ] , a1 –N*qt 31,+= = =

a2 N* pt 41, a3+ 51,= =

b b Y t,( ) diag 32 42 52, ,[ ] .= =

f 1*

f 1*

∂ f 1

∂t
-------- –

∂T

∂y
----- a f 1( ) 1

2
---tr

∂
∂y
----- ∂T

∂y
----- σ f 1( ) ,+=

–
∂T

∂y
----- a f 1*( ) 1

2
---tr

∂
∂y
----- ∂T

∂y
----- σ* f 1*( )+ 0,=
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where

(16)

Equations (14) and (15) are the basis for stochastic
kinetic models of the Earth’s motion under Gaussian
nonlinear random–dissipative perturbations.

5. If both the dissipative matrix D = diag[D1, D2, D3]
and the inertia tensor 7 = diag[A, B, C] are constant
and the moments of gravitational forces have the force
function

(17)

Eq. (15) has an exact solution. In accordance with [12],
we arrive at the following statement.

Statement. If the dissipative matrix $ can be repre-
sented as $ = λσ*, where λ is a certain real number,
and the form Q = yTΛy, where Λ = λ7 is positive defi-
nite, then stationary (in the narrow sense) fluctuations
of the vector y exist and their one-dimensional density

 is determined by the formula

(18)

where c is the normalization constant. Distribution (18)
is unique and limiting for an arbitrary initial distribu-
tion, and the fluctuations are statistically reversible in
the Yaglom sense [12, 13].

6. Using the method of orthogonal expansions of a
one-dimensional distribution [10, 11], we rewrite
kinetic model (14) in the form

(19)

Here, (y, mtKt) is the standard distribution, cµt are the
coefficients of the expansion in known orthogonal
polynomials {pµ(y), qµ(y)}; and n is the number of the
expansion terms. The parameters mt , Kt , and cµt of the
one-dimensional distribution are determined by the
ordinary differential equations

(20)

(21)

(22)

where λ, µ = 1, 2, …, n; and !, _, and #µ are the given
functions.

σ σ y t,( ) b y t,( )ν t( )b y t,( )T
,= =

σ* b* y( )ν*b* y( )T det σ det σ*, 0≠( ).=

8 3ω*
2 A 1 3γ2–( )[=

+ B 1 3γ'2–( ) C 1 3γ''2–( ) ] ,+

f 1*

f 1* y γ γ' γ'', , ,( )

=  c Q y( ) 2λ8 γ γ' γ'', ,( )–[ ]–{ } ;exp

f 1 y; t( ) w1
s y mtKt,( ) 1 cµt pµ y( )

µ l=

∑
l 3=

n

∑+ .≈

w1
s

ṁt ! mt Kt cλ, ,( ), mt0
m0,= =

K̇t _ mt Kt cλ, ,( ), Kt0
K0,= =

ċµt #µ mt Kt cλ, ,( ), cµt0
cµ0,= =
DOKLADY PHYSICS      Vol. 48      No. 5      2003
In the Gaussian approximation (where f1 is approxi-
mated by the normal distribution [10, 11]), kinetic
model (14) is described by the equations

(23)

(24)

(25)

Here, the subscript N means that the mathematical
expectation should be evaluated for the equivalent nor-
mal distribution with unknown expectations mt and
covariance matrix Kt .

7. If the parameters correspond to the first harmon-
ics, i.e., the linear fluctuation moments are fixed, the
model based on Eqs. (24) and (25) coincides with the
spectral correlation model [9].

In the linear approximation, the first and second har-
monics of the Earth’s inertia tensor are responsible for
both additional stochastic oscillations at higher fre-
quencies mω∗  (m ≥ 2) and trends. In particular, for

 =  =  = 0 and Jqr  Jpr , the average statis-
tical trend in pt and qt is determined by the formulas

(26)

where

Here, 〈〈 …〉〉  means double averaging over the time

intervals 2π  and 2π , and the expectation  and

the variance  of rt are determined by Eq. (3). There-
fore, in the linear approximation, the second harmonics

give rise to additional terms proportional to .

The inclusion of the nonlinear (in u, pt , qt , and rt)
components of the moments 31, 2, 41, 2 , and 51, 2 enter-
ing into Eqs. (1)–(3) allows us to improve the linear and
nonlinear spectral correlation models [7–9]. In this
case, by virtue of Eqs. (11) and (12), parametric and
nonlinear stochastic perturbations directly affect both
the parameters of stochastic oscillations at the frequen-
cies mω∗  and trends.

f 1 f 1 y mt Kt t, , ,( )=

=  2π( )3 Kt[ ][ ] 1/2–
y mt–( )TKt

1– y m1–( )–{ } ,exp

ṁt ! mt Kt t, ,( ) MNa Y t,( ), mt0
m0,= = =

K̇t _ mt Kt t, ,( )=

≡ MN a Y t,( ) YT mt
T–( ) Y mt–( )a Y t,( )T σ Y t,( )+ +[ ] ,

σ Y t,( ) b Y t,( )ν t( )b Y t,( )T, Kt0
K0.= =

32 42 52 @@

∆mt
p〈 〉〈 〉 41〈 〉〈 〉 N*

1– , ∆mt
q〈 〉〈 〉 31〈 〉〈 〉 N*

1– ,==

31〈 〉〈 〉 u4 mt
r( )2

Dt
r 3
2
---+–=

+
3
2
---ω*

2 1
3
2
---b1

2– 
  3

2
---u6ω*

2 1
b1

2

2
-----– 

  ,–

41〈 〉〈 〉 3
2
---u7ω*

2 1
b1

2

2
-----– 

  .=

r*
1– ω*

1– mt
r

Dt
r

b1
2
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More than a century ago, Woehler established that
any metallic construction material is characterized by a
fracture curve called a fatigue curve peculiar to the
given conditions of cyclic loading. Since then, engi-
neers and investigators have focused their efforts on
obtaining fatigue curves for various constructional
materials under different loading conditions (soft and
rigid loadings, various testing temperatures, loading
frequency, asymmetry of a cycle, etc.). These investiga-
tions were performed in two directions: elastoplastic-
deformation loading, when the number of cycles before
fracture is small (low-cycle fatigue with less than
104 cycles before fracture), and elastic (inelastic) load-
ing, when the number of cycles before fracture is large
(more than 104 cycles). Later, a unique scientific direc-
tion, cyclic fracture mechanics, was divided into the
cyclic loading before the formation of a crack and load-
ing at the crack-propagation stage. At the latter stage, as
well as at the crack-initiation stage, there are rapture
curves corresponding to each material and each loading
condition. To date, numerous experimental data on the
characteristics of material resistance to cyclic loading
have been accumulated for the stages of both the initia-
tion and propagation of cracks. Thousands of hand-
books summarize these properties of construction
materials used in each branch of mechanical engineer-
ing and other fields.

At the same time, rupture criteria for estimating the
strength of machines, equipment, and constructions
have attracted much attention in force, deformation,
and energy approaches. Tens of such criteria have been
suggested in each of these approaches [1]. Unfortu-
nately, the available criteria are, as a rule, either the
equations of the fatigue curve for a particular material
and given loading conditions or valid only for a very
limited number of materials and loading conditions. In
the former case, the criteria cannot be extended to other
materials and other testing conditions. In the latter case,
numerous experimental data continue to be required.

Blagonravov Institute of Mechanical Engineering,
Russian Academy of Sciences, M. Khariton’evskiœ per. 4, 
Moscow, 101990 Russia
1028-3358/03/4805- $24.00 © 20257
In this study, a unique fracture criterion based on the
hypothesis of the damaging role of microstress on the
path of plastic [2] and elastic deformations is obtained.
It can be applied for all metallic materials in the entire
range of cyclic loading (low- and high-cycle regions).
In addition, the criterion is independent of loading con-
ditions (temperature, frequency, and asymmetry of a
cycle) at both the crack-initiation and crack-propaga-
tion stages under soft loading (loading with a given
stress amplitude) [3]. This criterion has the form

(1)

where eep = δ + ee.
For rigid loading (loading with a given amplitude of

elastoplastic strain), it is possible to assume that δ =
const. Then, Eq. (1) can be written in the form

(2)

The first term in Eq. (1) is responsible for the level
of accumulated damage under the action of cyclic plas-
tic and elastoplastic deformations, whereas the second,
to damage due to plastic deformation unilaterally accu-
mulated in the given number of loading cycles. The
fracture happens when the level of damage is equal to
unity. Dependence (1) makes it possible to find the level
of accumulated damage for any number of loading
cycles, including programmable loading.

The assumption concerning the damaging role of
microstress in elastic and plastic deformations made it
possible to describe fracture conditions by a unique
dependence (1) in the entire range of fatigue life under
cyclic loading [in the ranges of both low- and high-
cycle fracture (see figure)].

The criteria obtained indicate that, under cyclic
loading, the process of accumulation of damages and
the fracture conditions obey a unique rule (law) inde-
pendently of loading conditions.

Let us introduce the notation

δeep

ε2
--------- Nd

0

Nf

∫ ∆ε
ε

------ Nd

0

Nf

∫+ 1,=

δeep

ε2
---------N f 1.=

ηe

δeep

ε2
--------- and ηp

δeep ∆εε+

ε2
-------------------------,==
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Unique (integrated) fatigue curve.
for rigid and soft loading, respectively. Then, criteria (1)
and (2) can be rewritten in the form

(3)

where ηp is defined from the averaged values of δ
and ∆ε.

Earlier, it was shown [1] that the ratio  satisfacto-

rily defines the cyclic Bauschinger effect for a small
number of cycles before fracture. One can assume that
this ratio describes the Bauschinger effect in both the
low- and high-cycle ranges.

The experimental test of criteria (1) and (2) corrob-
orated the existence of the unique (integrated) fatigue
curve for low- and high-cycle loadings (see figure). The
integrated fatigue curve is common for all metallic
materials (and their structural states, i.e., independent
of the thermal-treatment kind) and for all cyclic-load-
ing conditions (temperature, loading frequency, and
asymmetry of a cycle). The loading conditions influ-
ence the characteristics of the resistance to deforma-
tion, which enter into Eqs. (1) and (2). However, they
do not change the rule (law) of accumulating damages
in accordance with these criteria, including program-
mable loading (two-frequency loading, steplike load-

ηeN f 1,    ηpN f 1,= =

δ
ε
--
ing, overloading, loading with holding in half-cycles of
loading, etc.).

Criterion (1) describes the kinetics of damage accu-
mulation, whose ultimate case is the appearance of a
macrocrack.

To describe the macrocrack-propagation stage,
numerous criteria of final fracture (durability) were
also proposed. Unlike the criteria introduced above,
these criteria, as well as the available criteria describing
the fracture of materials at the stage before initiation of
a crack, are not universal.

The application of the concepts described above to
the crack-propagation stage made it possible to obtain
the durability criterion of a material (a construction) in
the form

(4)

where v p, v e, v ep, and ∆v  are the plastic (residual and
reversible), elastic, and elastoplastic (reversible) dis-
placement of the crack edges in a half-cycle of exten-
sion and unilaterally accumulated crack opening in a
cycle, respectively; and v c is the limiting crack opening
under the single failure of a sample with a crack.

v epv p

v c
2

-------------- Nd

0

Nf

∫ ∆v
v c

-------- Nd

0

Nf

∫+ 1,=
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When crack opening is not accumulated (rigid load-
ing), the second term in Eq. (4) is equal to zero. In this
case,

(5)

In terms of the notation

criteria (4) and (5) take the form

(6)

Thus, the limiting cases of damage accumulation and
loading conditions obey the same law as that for the
crack-initiation stage. However, each stage is character-
ized by individual deformation characteristics.

Criteria (6) are corroborated experimentally (open
circles in figure).

To substantiate the existence of the unique fatigue
curve, we used the fatigue-test data of the following
materials: 22k steel (soft and rigid loading; rσ = –0.3,
−0.7, –0.9, and –1.0; specimens with a concentrator;
T = 150, 270, 350, and 450°C), TS steel (soft and rigid
loading; rσ = –0.3, –0.7, –0.9, and –1.0; notched sam-
ples; T = 270, 350, and 450°C), H18N10T steel (soft
and rigid loading; T = 250, 450, 550, and 650°C; pro-
grammed loading and two-frequency loading; the
stages of the initiation and propagation of cracks),
16GNMA ÉShP steel, CSN steel, steel with 0.22% of
carbon, 1H13 steel, 45 steel (two-step loading),
SAE4340 steel (training), 713C-LC Inconel, 713C-SG
Inconel, BW Vaspaloy, BK Vaspaloy, A Vaspaloy,
AD-33 (rσ = 0, –1, and +0.5), Ni–Mo steel, and
ÉI-437B steel (T = 700°C).

The unique (integrated) fatigue curve is common for
(i) all metallic constructional materials;

v epv p

v c
2

-------------- Nd

0

Nf

∫ 1.=

ηme

v epv p

v c
2

--------------,    ηmp

v epv p ∆v v c⋅+

v c
2

---------------------------------------,==

ηmeN f 1,    ηmpN f 1.= =
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(ii) low- and high-cycle fatigues (i.e., the entire
range of durability);

(iii) the crack-initiation and crack-propagation
stages;

(iv) any kind of loading (cyclic extension–compres-
sion, torsion, and bend);

(v) any positive test temperature;
(vi) any loading frequency;
(vii) any asymmetry of a loading cycle;
(viii) rigid loading (loading with a given strain) and

soft loading (loading with a given stress in a cycle when
the parameters of the curve are taken in average values).

Thus, a unique (integrated) fatigue curve of materi-
als (see figure) exists in the entire range of durability
(low- and high-cycle fatigues) independent of the type
of a material, its structural state (thermal treatment), the
kind of loading (single-frequency, double-frequency,
asymmetric, with time lags, and programmable), and
loading conditions (temperature and frequency). This
circumstance makes it possible to formulate new
approaches to fatigue tests of materials, obtaining
deformation characteristics, the methods of cyclic
strength calculations, the rules of choosing a material in
the process of designing, the production of testing and
measuring instrumentations, the volume and the char-
acter of reference data, and the conditions of optimiz-
ing the properties of constructional materials and the
kinds of their treatment.
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