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In study [1], we showed that the transconductance
and speed of field-effect transistors could be signifi-
cantly increased by sectioning the channel with low-
resistance local inclusions providing an efficient “cool-
ing” of electrons and a corresponding increase in
mobility and drift velocity. In qualitative estimates pre-
sented in [1] for advantages of the proposed structural
modification of the transistor channel, we described the
electron drift in the quasihydrodynamic (thermal)
model [2], which was simplified by neglecting the ther-
mal relaxation and the thermoelectric current but, nev-
ertheless, revealed the primary features of the so-called
overshoot effect [3].

In [1], we assumed that the mean electric field was
constant and analyzed only the desired maximum-to-
minimum electric-field ratio sufficient for an efficient
cooling of carriers in the low-resistance inclusions.
However, as is known [4], the electric field in the MOS-
transistor channel in the near-saturation regimes is sub-
stantially inhomogeneous and increases from the
source to the drain. The mean electric field must be sim-
ilarly inhomogeneous in the proposed structure sec-
tioned by low-resistance inclusions.

The purpose of this study is to develop a mathemat-
ical model, which includes the indicated spatial inho-
mogeneity in the mean field, for adequate calculation of
the current–voltage (I–V) characteristics of the transis-
tor. In addition, in order to illustrate the advantages of
the proposed sectioned structure including an increase
in the mean velocity of carriers in the transistor channel
and its high transconductance, we carry out corre-
sponding test calculations of I–V characteristics.

Figure 1 shows the hypothetical transistor structure
under consideration, whose channel is divided into n
sections by specific low-resistance regions obtained by
the corresponding local doping. The level of local dop-
ing and, correspondingly, the conductivity in these
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regions are assumed to be so high that a voltage drop
across these regions is negligible and electrons leaving
them can be considered as completely cooled (down to
the equilibrium temperature). In this case, using the
classical concept of drift [4]

(1)

and the ultra-quasihydrodynamic dependence [2] of
mobility on potential

(2)

where ϕ0 = T0 ≈ 0.065 V in the simplest case, we can

write the relation

(3)

for any high-resistance section of the channel. Here, I is
the current density per unit channel width; C0 and µ0 are
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Fig. 1. Schematic representation of the subgate region of the
sectioned-channel MOS transistor.
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the specific oxide capacitance and the original (low-
field) mobility, respectively; VG is the gate voltage mea-
sured from the threshold voltage; li is the length of the
ith high-resistance section; and Vi – 1 and Vi are the
potentials at its boundaries, i = { 1, 2, …, n} . A solution
of this set of n equations must satisfy the following two
boundary conditions: (i) V0 = 0; i.e., the potential at the
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Fig. 2. Current–voltage characteristics of the (solid lines)
sectioned and (dashed lines) ordinary transistors. Numbers
near the curves are the gate voltage VG = (2.4–10) V.
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Fig. 3. Highest transconductance  vs. the gate volt-

age VG.
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beginning of the first section is equal to the source
potential, and (ii) Vn = VD; i.e., the drain potential is
equal to the potential at the end of the last section.

We developed a simple algorithm for the step-by-
step solution of set (3). Namely, for a certain current I,
we find V1 by numerical integration of the first (i = 1)
equation. This value appears as a parameter in the sec-
ond equation, whose solution gives us V2 and so on
until Vn = VD. Similar calculations for the correspond-
ing sequence of currents provide the desired I–V char-
acteristic.

The corresponding test calculation was performed
for the typical transistor structure with a channel length
of L = 0.95 µm divided into ten high-resistance sections
each li = 50 nm in length by nine low-resistance inclu-
sions of the same size. We chose a specific capacitance
of 3.5 × 10–7 F cm–2, which corresponds to a 10-nm-thick
oxide, and an original mobility of µ0 = 700 cm2 (V s)–1,
which is typical for the electron inversion layer in Si
(this µ0 value corresponds to ϕ0 = 0.2 V).

For these parameters, Eq. (3) transforms to

(4)

where i = { 1, 2, …, n} , I is measured in amperes per
millimeter, and the voltage and potential are measured
in volts.

The numerical solution of set (4) for the characteris-
tic gate voltages VG = (2–10) V is shown in Fig. 2. For
comparison, the dashed lines in Fig. 2 display the char-
acteristics calculated by the equation

(5)

for a standard MOS transistor with a homogeneous
channel of the same (0.95 µm) length.

It is seen that currents in the sectioned-channel tran-
sistor considerably exceed currents in the ordinary
structure. Figure 3 shows the device transconductance

S = I (VD = VG). As is seen, S for the sectioned-

channel structure is much higher than the transconduc-
tance of the ordinary device with the homogeneous
channel.

I 5
VG ϕ–

1
ϕ Vi 1––

0.2
--------------------+

---------------------------------- ϕ ,d

Vi 1–

Vi

∫≈

I
5
19
------

VG ϕ–

1 ϕ
0.2
-------+

--------------------- ϕd

V0

VD

∫≈

∂
∂VG
----------
DOKLADY PHYSICS      Vol. 48      No. 6      2003



SIMULATION OF A SIGNIFICANT INCREASE IN THE TRANSCONDUCTANCE 263
Higher transconductance naturally implies higher
speed. In our opinion, the above results obviously and
conclusively demonstrate the expected advantages of
the proposed technological solution. We think that
these results will stimulate the search for particular
technological solutions for the practical realization of
this highly promising idea.
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† INTRODUCTION

Anomalous diffusion, i.e., diffusion for which the
mean squared displacement of a particle is proportional
to a fractional power of time (q〈x 〉q ~ tβ, where β is a
fractional number), has been actively studied in recent
years. It is observed in aerosols, gels, spin glasses, cer-
tain unordered systems, aperiodic crystals, electron–
ion plasma, in systems described by the statistical phys-
ics of open systems [1], etc. Anomalous diffusion (or
fractal relaxation) was described theoretically by
using fractal geometry [2] in numerous works (see
review [3]). The authors of these works used equations
with fractional derivatives in time [4], coordinates [5]
(see also equations with distributed fractional order [6]),
or in time and coordinate simultaneously [7]. In this
case, one-coordinate-dimensional anomalous diffusion
in the absence of external forces is described by the
equation [7]

(1)

Here, Riemann–Liouville left fractional derivatives [8, 9]
are used and

(2)
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Equation (1) and its exact solution were analyzed
in [7], where the fractional number α associated with
the fractal dimension of the space where diffusion
occurs was supposed to be constant. Equations with
fractional derivatives describe non-Markov processes
with constant memory. In particular, certain gels and
aerosols, spin glasses, viscoelastic glasses and poly-
mers, electron–ion plasma, aperiodic crystals, turbu-
lence, economic systems, certain nonlinear-dynamic
systems, etc., are among systems with memory. How-
ever, memory (both temporal memory and memory
about trajectories passed by a system) in some physical
systems can vary in time and coordinates. Available
experimental data indicate that the fractal dimension of
physical objects depends on the parameters of the envi-
ronment (temperature, pressure, etc.) and internal char-
acteristics of the system (elasticity, strength, etc.). In
particular, the dependence of the fractal dimension of a
growing polycrystalline film on its growth time was
determined in [10], the dependence of the fractal
dimension for zirconium oxide on the external shock
pressure was found in [11], and numerous examples of
the fractal properties of materials were given in [12].
Diffusion processes are important for all listed exam-
ples (and many other systems). Therefore, it is of inter-
est to analyze, as a first step, diffusion in a model fractal
medium, where fractal dimension depends slightly on
time and coordinates. Such a model can be used to
describe diffusion in numerous applications (in partic-
ular, diffusion in a growing polycrystal in a medium
with oscillating temperature, diffusion over the surface
of a solid with fractal dimension varying from one its
region to another, etc.). In addition, this model attracts
independent attention (a number of interesting prob-
lems of heat transfer are beyond the scope of this
study). Dynamic processes in systems with time- and
coordinate-dependent memory cannot be described in
terms of Riemann–Liouville fractional derivatives (2)
that do not reproduce variations in memory. For this
reason, it is necessary to develop a new mathematical
technique generalizing fractional derivatives and Rie-
mann–Liouville integrals for the dynamics of multi-
fractal objects (i.e., objects whose fractal dimension
003 MAIK “Nauka/Interperiodica”
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depends on time and coordinates). One of us (L.Ya.K.)
introduced such a technique in [13–15].

GENERALIZED FRACTIONAL DERIVATIVES 
AND RIEMANN–LIOUVILLE INTEGRALS

To describe diffusion in a medium with coordinate-
and time-dependent multifractal dimension (or in a
physical system with such fractal properties), one must
use Riemann–Liouville fractional derivatives that were
introduced in [13] and used in a number of works (see,
e.g., [14]). These derivatives are defined as (for left
derivatives; for more detail, see [13])

(3)

Here, Γ is the Euler gamma function; n = {d} + 1,
where {d}  is the integer part of d for d ≥ 0 (i.e.,
(n − 1) ≤ d < n) and n = 0 for d < n; dt = 1 + ε(t); and
dx = 1 + ε(x). The integral operators defined above for
fractional exponents dt and dx depending on coordinates
and time can be expressed in terms of ordinary deriva-
tives and integrals [13] for |ε| ! 1. In this case, gener-
alized Riemann–Liouville fractional derivatives satisfy
the approximate relations (we present here only rela-
tions for derivatives)

(4)

These relations make it possible to describe the dynam-
ics of a system including the effect of changes in the
fractal dimension (if they are much smaller than unity)
on the behavior of the physical system by means of
ordinary differential and integral equations. To deter-
mine the fractal dimension dα , the equations corre-
sponding to the problems under consideration were
obtained in [13].
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ANOMALOUS-DIFFUSION EQUATION

The equation for anomalous diffusion in a medium
with varying fractal dimensions dt(t, x) and dx(t, x) has
the form (in the absence of external forces)

(5)

When the diffusion coefficient is constant [D(x, t) =
D0], it can be separated from the fractional derivative
similarly to the case of constant fractal dimension. In
contrast to equations describing constant-memory
anomalous diffusion, which was recently studied in
detail, Eq. (5) includes slow variations in memory both
in time and in coordinates. Since weak memory and its
variations occur near normal diffusion, Eq. (5)
describes almost normal diffusion characterizing by
weak varying memory in contrast to normal diffusion.
Only the |ε| ! 1 case, which corresponds to weak mem-
ory, will be analyzed below for this equation. The equa-
tion for anomalous diffusion with constant fractal
dimension α ≠ 1, γ ≠ 1, and slightly varying memory
has the form

The equation for diffusion with α ≠ 1, γ ≠ 1, and
weak memory is not analyzed in this work. There are
considerable mathematical difficulties in its solution
even for the ε ! 1 case. However, its solutions can be
found in the analytical form by means of Fox functions
for particular cases.

WEAK-MEMORY APPROXIMATION

Using relations (4) and the approximate expression
for Eq. (5), generalized fractional derivatives (3) for
|ε| ! 1 can be expressed in terms of ordinary deriva-
tives as

(6)

where ε2 terms are omitted. Since fractal additions to
unity are small, the right- and left-hand sides of Eq. (6)
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can be divided by 1 + εx . In this case, we obtain

(7)

Let us represent Eq. (7) in the following form corre-
sponding to the description of diffusion in hydrody-
namic systems:

(8)

where

(9)

Equation (8) differs from Eq. (1) in three properties.
First, the diffusion coefficient depends on time and
coordinates due to the effect of a fractal medium with
memory depending on time and coordinates. Second,
the “force”

appears due to the coordinate dependence of fractal
dimensions (such forces were first considered in [13–
15]). Third, there is a derivative-free term that depends
only on the fractal time dimension, is proportional to n,
and characterizes, depending on the coefficient sign,
the retardation or enhancement of diffusion. Therefore,
even weak memory, which is taken into account by gen-
eralized Riemann–Liouville fractional derivatives and
presents the characteristics of a fractal medium, trans-
forms constant-coefficient diffusion to varying-coeffi-
cient diffusion. Moreover, this memory is responsible
for a force with which the fractional medium acts on a
diffusing particle. This force appears only if the diffus-
ing particle has memory depending on coordinates; i.e.,
it “remembers” its trajectories.

Those terms in Eq. (8) that involve fractional addi-
tions (F and A) to the time and space dimensions are
small. Therefore, this equation can be solved approxi-
mately by changing the function n to n0 , which satisfies
Eq. (1), in terms involving ε (or in some of these terms).
In particular, if such a change is made only in the term
involving A, we arrive at the following equation of dif-
fusion in the external field F(x) induced by the fractal
structure of the medium with the source An0:

(10)
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The external force leads, depending on its sign, either
to retardation or to enhancement of particle diffusion.
Owing to the term involving A(x, t), the energy of the
diffusing particle decreases depending both on time and
coordinates [due to εt(t, r) dependence]. The roughest
approximation for Eq. (10) has the form

(11)

where the exact value n in all terms involving εt and εx

is replaced by the approximate value n0 satisfying
Eq. (1) with α = γ = 1. In this case, the diffusion equa-
tion involves a more complex source B(x, t, n0), and
small fractal corrections to dimensions provide correc-
tions to the Gaussian distribution.

EXAMPLE OF ANOMALOUS DIFFUSION
IN A MEDIUM WITH A PERIODIC DEPENDENCE 

OF MEMORY ON TIME AND COORDINATES

As an example, let us consider the diffusion equa-
tion in a model medium, where

(12)

Here, ωt and ωx are frequencies characterizing variation
in fractal dimensions dt and dx . Such a medium corre-
sponds, e.g., to the growth of a polycrystalline film with
surface irregularities described by clusters with coordi-
nate-dependent fractal dimension in a varying temper-
ature mode (i.e., the Lagrangian density of clusters
depends on time). In this case, if αt and αx are small,
fractal dimension can be represented in the form (when
αt and αx depend only on time and coordinates, respec-
tively)

Since εt and εx are small, a solution of Eq. (11) can be
sought in the form n = n0 + n1, where n0 is the solution
of diffusion equation (1) with α = γ = 1 and n1 ! n0 is
proportional to εt or εx . Then,

(13)
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Solution (14) includes terms that involve εt and εx and
depend periodically on ωt and ωx . Figures 1 and 2 show
qualitative plots illustrating the weak-memory effect
depending periodically on time and coordinates on the
Gaussian distribution describing diffusion in the non-
Markov fractal medium for various ωt , ωx , εt , and εx

values. As frequencies ωt and ωx increase, individual
maxima and minima in the figures superpose, looking
like flicker noise. We emphasize that slightly time- and
coordinate-dependent memory for fractal media with
d = d0 + ε(t) for d0 ≠ 1 does not lead to new qualitative
effects occurring for d0 = 1 (excluding the appearance
of Levy distributions instead of Gaussian distributions,
which also appear in constant-memory systems). As

0

f (x, t)

x

2w w 3w

Fig. 1. Qualitative pattern of a Gaussian distribution includ-
ing corrections to weak varying memory approximated by a
periodic function of coordinates and time at time t. For con-
venience, plots are shifted with respect to each other.

0

f (x, t)

t

2w w

Fig. 2. Same as in Fig. 1, but at the point x.
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follows from the equations determining the fractal
dimensions, which are not considered here, when the
Lagrangian density is proportional to expression (12),

ε0t  and ε0x are proportional to  and , respec-
tively.

CONCLUSIONS

The basic differences of anomalous diffusion in a
fractal medium with weak memory depending on time
and coordinate from normal diffusion are as follows.

(i) Appearance of an analogue of an external force
caused by coordinate-dependent memory. The appear-
ance of this force, which was found for the first time,
can be responsible for observable effects (e.g., addi-
tional motion of magnetic domain walls, change in the
electric parameters of solid electrolytes, motion of ions
in biological structures, etc.). Since fractal structures
are widespread in biological objects, which are often
described in statistical physics, the inclusion of forces
of new (multifractal) origin is of considerable interest.

(ii) Appearance of a shift of the Gaussian-distribu-
tion maximum.

(iii) Time- and coordinate-dependent changes in
wings and maxima of the Gaussian distribution [or
Levy distributions for d0 = α ≠ 1 + ε(t, x) or d0 = γ ≠ 1 +
ε(t, x)].

(iv) The example analyzed above shows that weak
memory depending periodically on time or coordinates
for high frequencies ωt and ωx is an imitation of exter-
nal noise (including flicker noise) that arises as an addi-
tion to ordinary noise, particularly in the cases where
frequencies ωt and ωx are incommensurable.
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1. As the theory of the structure of atomic electron
shells is developed, perturbations of atomic states are
attracting increasing interest. This interest is primarily
focused on the precise calculation of the positions of
energy levels. The behavior of radiative lifetimes in
perturbed series including high lying levels was also
recently analyzed in the framework of multichannel
quantum-defect theory (see, e.g., [1]). The correspond-
ing results agree satisfactorily with experimental data.

However, similar calculations of cross sections for
the excitation of atoms by an electron impact are virtu-
ally absent. This remark refers to excitation cross sec-
tions for spectral series, because perturbation (configu-
ration mixing) was taken into account by Peterkop (see,
e.g., [2] and discussion in [3]) and other authors in cal-
culations of cross sections for individual low-lying lev-
els. As a rule, only excitations of low-lying states are
studied experimentally. Therefore, it is difficult to
observe perturbation in the behavior of cross sections.
This does not refer to experiments with the use of the
method of extended crossing beams. In these experi-
ments, the behavior of cross sections was studied up to
n ~ 20 or higher [4]. The following three basic manifes-
tations of perturbation were formulated in [4]: (i) devi-
ation of the cross section magnitudes in a spectral series
from the regular behavior, (ii) significant change in the
shape of the optical excitation functions, (iii) signifi-
cant change in the branching character.

Experimental investigations of perturbation in the
behavior of excitation cross section are of considerable
interest, the more so since corresponding theoretical
investigations are sparse. It is known that the role of
perturbations increases as a rule with the atomic mass
of an element. For this reason, these investigations are
particularly urgent for heavy atoms. In this paper, the
experimental results for the perturbation effect on the
behavior of excitation cross sections for 1D2 atomic lev-
els of barium are reported.

Moscow Power Engineering Institute (Technical University), 
ul. Krasnokazarmennaya 14, Moscow, 111250 Russia
e-mail: SmirnovYM@mpei.ru
1028-3358/03/4806- $24.00 © 20269
2. The technique and procedure of experiments with
extended crossing beams were discussed in detail
in [5]. It is not difficult to form a barium atomic beam
with the parameters necessary for an experiment. When
a crucible with metallic barium is heated up to a tem-
perature of 1100 K, the concentration of atoms in the
crossing area of the atomic and electron beam reaches
6.6 × 1010 cm–3. When intense resonance lines were
detected, the atomic concentration was reduced to 1.5 ×
109 cm–3. As a result, reabsorption was reduced to neg-
ligible values.

Since the 6s2 1S0 ground atomic level of barium is a
singlet separated from the nearest excited level by more
than 9000 cm–1, the role of thermal excitation in evapo-
ration is extremely small. Therefore, the excitation of
the barium atom in this experiment occurs from the
only original level, 6s2 1S0 . Other experimental condi-
tions were not specific for barium and were presented
in detail in previous works [4, 5]. Special attention was
focused on the maintenance of stable experimental con-
ditions, because this is one of most important factors of
the correctness of analysis and comparison of the
results.

3. In the emission spectrum excited in collisions of
a 30-eV monoenergetic electron beam with barium
atoms, 380 spectral lines were observed in the range
202–852 nm. Among them, 280 lines were attributed to
the barium atom, 52 lines to a single-charged ion, and
47 lines were not identified. A considerable fraction of
the last lines are undoubtedly attributed to transitions

from high-lying  levels with n > 9, for which refer-
ence data on the level positions are not available.

Among the results, information about the excitation
of the 1D2 levels is exceptional. The radiative lifetimes
τ of these levels were measured by the method of pulse-
modulated laser spectroscopy for the principal quantum
numbers n = 8–17 [6] and 12–30 [7]. The results of
these works are shown in Fig. 1, where deviations from
the monotonic behavior are observed for the levels
under consideration. These deviations are most pro-
nounced in the data presented in [7]. We emphasize that
a deviation from the regular behavior at n = 14 was

F1 0
3
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observed in [7] but was absent in the data obtained
in [6]. The theoretical dependence τ = f(n) without per-
turbation (i.e., for hydrogen-like atoms or in the single-
electron approximation) is given by τ ~ n3 . For many-
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Fig. 1. Radiative lifetimes of the nd1D2 atomic levels of bar-
ium vs. the effective quantum number according to the data
from (a) [6] and (b) [7]; triplet perturbing levels of the 6snd
(n = 14, 26, 27) configuration are shown by ( and of the
5d7d configuration are shown by n.
electron atoms, the effective quantum number n* is
used instead of the principal quantum number n. As was
shown in [8], the behavior of radiative lifetimes
strongly correlates with excitation cross sections in per-
turbed series.

Table 1 presents the measured excitation cross sec-
tions for BaI and necessary spectroscopic information.
These data are the wavelength λ, transition and internal
quantum number J, energies of lower Elow and upper
Eup levels, excitation cross sections Q30 and Qmax for
electron energy and at the maximum of optical excita-
tion function, and the position of the maximum
E(Qmax). The optical excitation functions in Table 1 are
numbered according to the numbering of lines in Fig. 2.
Data for lines that are absent in available sources and
are classified in this work are given in Table 1 in paren-
theses. Most levels in Table 1 are attributed to the 6snl
single-electron excitation configurations. However,
there are also double-electron excitation levels attrib-
uted to the 5dn'l ' configuration. Since the barium spec-
trum is very dense, some spectral lines overlap. In these
cases, the contributions of lines to the total cross sec-
tion are determined by separation based on all available
data on the transition probabilities, oscillator strength,
and branching ratios. Cross sections obtained by the sep-
aration procedure are marked by asterisks in Table 1.

When perturbations are absent, the cross sections q
for excitation of energy levels in the single-electron
approximation depend on n* as q ~ (n*)–3. There is no
theoretical prediction for cross sections Q for excitation
of spectral lines (line emission cross sections). How-
ever, as was shown in many experiments, it has the fol-
lowing form in unperturbed series:

(1)

where the constants Ai and αi are individual for each
spectral series. The function Q = f(n) is most clearly
represented as a plot in double logarithmic coordinates,
because an exponential function is a straight line in
these coordinates. Such functions for perturbed and
unperturbed atomic series of calcium were presented
in [4]. Figure 3 shows the function Q = f (n) for the

–nd1D2 atomic series of barium. Significant
irregularities are observed in excitation cross sections
at n = 7, 11, 14, 24–27. The n = 25 line was not
detected. The positions of these irregularities agree
with those found in [6, 7]. Deviation from the mono-
tonic power behavior is most pronounced at n = 14, in
agreement with [7]. As was mentioned above, this devi-
ation was not observed in [6].

As was known, perturbing and perturbed levels have
the same parity [9]. For the barium-atom series under
consideration, perturbing levels for n > 12, which are
characterized by the 6snd and 5d7d configurations, are
shown in Fig. 1b. Assumed perturbing levels for the

Q Ain
α i–

,=

6 p P1 0
1
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Table 1.  Excitation cross sections for a barium atom

λ, nm Transition J Elow, cm–1 Eup, cm–1 Q30,
10–18 cm2

Qmax,
10–18 cm2

E(Qmax),
eV

OEF

358.810 5d3D–5d7p1D0 2–2 9215 37077 0.72 0.77 14 17
(377.485 6p3P0–10d1D 2–2 13514 39998) 0.47 0.50 20 5
(387.183 6p3P0–9d1D 2–2 13514 39334) 0.195 0.22 20 4
389.265 5d1D–5d7p1D0 2–2 11395 37077 9.06 9.64 14 17

(396.701 6p3P0–5d6d1D 1–2 12636 37837) 0.125 – – –
417.937 6p3P0–7d1D 2–2 13514 37434 1.47 1.81 16 2
420.197 6p1P0–27d1D 1–2 18060 41851 0.079 – – –
420.596 6p1P0–26d1D 1–2 18060 41829 0.105 – – –
421.249 6p1P0–24d1D 1–2 18060 41792 0.145 – – –
421.681 6p1P0–23d1D 1–2 18060 41768 0.16 – – –
422.182 6p1P0–22d1D 1–2 18060 41740 0.20 – – –
422.769 6p1P0–21d1D 1–2 18060 41707 0.25 – – –
423.462 6p1P0–20d1D 1–2 18060 41668 0.32 – – –
424.291 6p1P0–19d1D 1–2 18060 41622 0.48* 0.53 20 14
425.288 6p1P0–18d1D 1–2 18060 41567 0.71 0.77 20 13
426.506 6p1P0–17d1D 1–2 18060 41499 1.01* 1.08 20 12
428.011 6p1P0–16d1D 1–2 18060 41417 1.22 1.30 20 11
429.890 6p1P0–15d1D 1–2 18060 41315 1.37 1.43 20 10
432.738 6p1P0–14d1D 1–2 18060 41162 0.36 0.39 20 9
435.656 6p1P0–13d1D 1–2 18060 41007 2.50 2.66 20 8
439.995 6p1P0–12d1D 1–2 18060 40781 3.69 4.34 20 7
440.254 6p3P0–6p2 1D 1–2 12636 35344 0.69 0.81 13; 19 15
445.839 6p1P0–11d1D 1–2 18060 40483 3.85 4.42 20 6
451.066 6p1P0–5d8s1D 1–2 18060 40223 0.60 – – –
455.700 6p1P0–10d1D 1–2 18060 39998 10.0 10.6 20 5
457.964 6p3P0–6p2 1D 2–2 13514 35344 5.30 6.22 13; 19 15
469.911 6p1P0–9d1D 1–2 18060 39334 14.0* 15.8 20 4
487.765 6p1P0–8d1D 1–2 18060 38556 24.6 28.9 18 3
492.935 6p3P0–5d7s1D 2–2 13514 33795 0.13 – – –
505.498 6p1P0–5d6d1D 1–2 18060 37837 0.29 – – –
515.994 6p1P0–7d1D 1–2 18060 37434 18.7 23.1 16 2
568.018 6p3P0–6d1D 1–2 12636 30236 5.12* 5.88 16 1

(578.868 5d6p3F0–9d1D 2–2 22064 39334) 0.62 0.70 20 4
597.850 6p3P0–6d1D 2–2 13514 30236 1.54 1.77 16 1

(610.086 5d6p3F0–9d1D 3–2 22947 39334) 0.76 0.85 20 4
635.320 6p1P0–5d7s1D 1–2 18060 33795 0.30 – – –

(645.743 5d6p1D0–8d1D 2–2 23074 38556) 1.47 1.73 18 3
671.403 5d6p3F0–5d6d1D 3–2 22947 37837 0.68 – – –
677.185 5d6p1D0–5d6d1D 2–2 23074 37837 0.91 – – –
696.163 5d6p1D0–7d1D 2–2 23074 37434 1.77 2.18 16 2
712.033 5d3D–5d6p1D0 1–2 9033 23074 4.71 6.11 10 16
713.316 5d2 1D–5d7p1D0 2–2 23062 37077 0.95 1.01 14 17
751.340 5d6p3D0–5d6d1D 2–2 24531 37837 0.81 – – –
752.820 5d6p3F0–6p2 1D 2–2 22064 35344 1.28 1.50 13; 19 15
821.024 6p1P0–6d1D 1–2 18060 30236 71.6 82.3 16 1
852.196 5d6p3F0–5d7s1D 2–2 22064 33795 3.82 – – –
DOKLADY PHYSICS      Vol. 48      No. 6      2003
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Fig. 2. Optical excitation functions of the –nd1D2 spectral series of BaI.6 p P
1 0

1

6snd1D2 levels with n < 12 were indicated in [6]. These
levels are the 5d8s1D2 level with E = 40223 cm–1 for the
n = 10, 11 levels and the 5d6d1D2 level with E =
37837 cm–1 for the n = 8 level. We note that intervals
between perturbed and perturbing levels are large and
reach 225, 260, and 719 cm–1, respectively.

At the same time, any data on the perturbation of the
radiative lifetime of the 7d1D2 level were absent in [6, 7],
because n < 8 levels were not investigated. However,
perturbation of this level was observed in [10], where
cross sections for transitions from the nd1D2 levels for
n = 6–9 were measured. Table 2 presents cross sections
obtained for an electron energy of 30 eV in this work
and in [10]. Results differ by about 10% or less, and the
difference reaches almost 36% only for the headline
lying in the IR spectrum. The general behavior of the
function Q = f(n) is virtually the same, with a pro-
nounced minimum at n = 7 compared to n = 6 and 8.
The perturbing level for the n = 7 level is apparently the
above-mentioned 5d6d1D2 level spaced from the level
under consideration by 403 cm–1, i.e., closer than to the
n = 8 level.

Excitation cross sections are measured for a number
of transitions involving doubly excited levels, as well as

for the transitions in the perturbed –nd1D2 series.
However, these data are sparse and cannot be analyzed
and generalized. At the same time, these data can be of

6 p P1 0
1

interest for further theoretical analysis of cross sec-
tions, because many doubly excited levels are responsi-
ble for perturbations in the spectral series of single-
electron excitation.

The optical excitation functions shown in Fig. 2
noticeably change their shapes for n = 10, 11 and 14, 15
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Fig. 3. Q = f(n) for –nd1D2 spectral series of BaI.6 p P
1 0
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as compared to the optical excitation functions for
unperturbed lines of the series. Similar changes were
previously observed in the 1D2 atomic series of cal-
cium [4], where perturbation was manifested at n = 8.
However, this effect is not analyzed theoretically, as far
as I know.

4. Significant perturbation was observed in excita-

tion cross sections in the –nd1D2 atomic spectral
series of barium. The most probable perturbing levels
are attributed to the 6snd, 5d8s, 5d6d, and 5d7d even
configurations.

6 p P1 0
1

Table 2.  Excitation cross sections for the 6p1 –nd1D2

atomic series of barium for an electron energy of 30 eV

n Eup, cm–1 λ, nm
Q30, 10–18 cm2

this work [10]

6 30236 821.024 71.6 110

7 37434 515.994 18.7 20

8 38556 487.765 24.6 25

9 39334 469.911 14.0* 16

P1
0
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In contrast to widely propagated concepts, nondi-
pole transitions, in particular dipole–quadrupole and
quadrupole transitions, significantly contribute to both
the intensity distribution and angular distribution of
photoelectrons under photoionization. As was shown in
recent studies [1–11], this takes place even at relatively
low photoelectron energies 0.5–1 keV. At present, only
one paper [7] is known in which its authors declared
that (under certain experimental conditions) there
exists a possibility to observe an effect of octupole tran-
sitions on ionization of the 2p-shell of a neon atom.
This effect can manifest itself in the case of determin-
ing parameters of dipole–quadrupole transitions for
photoelectron energies lower than 1 keV. It is worth
noting that the experiment of [7] was carried out with
linearly polarized radiation.

The goal of the present study is to clarify the effect
of octupole transitions on the intensity of the resulting
spectra under usual experimental conditions and in the
case of both unpolarized and polarized exciting radia-
tion. Solving this problem is important from the theo-
retical standpoint, as well as for the practical applica-
tion of X-ray–photoelectron quantitative analysis of solid
surfaces in the case of determining sensitivity factors.

Under excitation of photoelectron spectra by unpo-
larized radiation, the photoelectron angular distribution
has the form [6]

(1)

dσi

dΩ
--------

=  
σi

4π
------ 1 0.5βiP2 θcos( )– δi 0.5γi θsin

2
+( ) θcos+[ ] .
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Here, σi is the photoionization cross section for the ith
atomic shell,  is the second Legendre polyno-

mial, and  is the angle between the photon propaga-
tion vector and the direction of the photoelectron emis-
sion. In formula (2), terms on the order of O(k1, r1) are
taken into account, where k is the photon energy and r
is the radius of an atomic shell being ionized. The
parameter β describes (in the dipole approximation) the
photon angular distribution. The two additional param-
eters γ and δ describe the Ö1–Ö2 and Ö1–å1 interac-
tions. Denotations Ö and å correspond to the electric
and magnetic interactions, respectively, whereas a
number following Ö or å indicates multiple order. For
example, Ö1–Ö2 implies the electric dipole-quadrupole
interaction that predominantly contributes to the
parameters γ and δ.

The formula for the photoelectron angular distribu-
tion in the octupole approximation for linearly polar-
ized exciting radiation is given in [7], while the formula
for the excitation by unpolarized radiation,

(2)

is obtained for the first time in the present paper. Here,
in contrast to Eq. (1), two additional terms, ∆βunpol
and ξ, appear. The notation for the parameters corre-
sponds to that used in [7] for linearly polarized exciting
radiation.

The parameter ∆βunpol involves the terms å1–å1,
Ö1–M2, å1–Ö2, Ö2–Ö2, and Ö1–Ö3, as well as the
(kr)2-order correction to the Ö1–Ö1 terms. The para-
meter ξ is associated with the Ö2–Ö2 and Ö1–Ö3 inter-
actions.

In the case of linearly polarized exciting radiation, it
is necessary to introduce into formula (1) (see [7]) four
additional parameters, namely, ∆βpol, η, µ, and ξ. The
interactions corresponding to these parameters are also

P2 θcos( )
θ

dσi

dΩ
--------

σi

4π
------ 1 0.5 β ∆βunpol+( )P2 θcos( )–[=

+ δi 0.5γi θ2sin+( ) θ ξP4 θcos( )]+cos
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given in [7]. The quantities ∆βpol and ∆βunpol differ for
the excitation of spectra by polarized or unpolarized
radiation, whereas the values of ξ are the same. The

Table 1.  Nondipole parameters for 1s shells. The first and sec-
ond lines in the table relate to Ekin = 5 and 10 keV, respectively

Atom γ η × 102 µ × 102 ξ × 102 ∆βunpol × 
102

∆βpol ×
102

Li 1.640 2.70 3.77 –6.48 –9.90 –1.82

2.312 5.42 7.56 –13.0 –19.8 –3.65

Be 1.627 2.65 3.70 –6.36 –9.70 –1.76

2.302 5.37 7.46 –12.9 –19.6 –3.60

B 1.613 2.61 3.64 –6.25 –9.51 –1.71

2.292 5.32 7.41 –12.7 –19.4 –3.54

C 1.600 2.56 3.58 –6.15 –9.34 –1.70

2.280 5.27 7.34 –12.6 –19.2 –3.49

N 1.589 2.53 3.54 –6.07 –9.21 –1.63

2.268 5.21 7.26 –12.5 –19.0 –3.42

O 1.579 2.50 3.49 –6.00 –9.07 –1.58

2.256 5.16 7.19 –12.4 –18.8 –3.36

F 1.567 2.47 3.45 –5.92 –8.90 –1.52

2.147 5.12 7.14 –12.3 –18.6 –3.31

Ne 1.554 2.43 3.39 –5.82 –8.72 –1.46

2.237 5.08 7.08 –12.2 –18.4 –3.24
DOKLADY PHYSICS      Vol. 48      No. 6      2003
parameters are related as

η + µ + ξ = 0. (3)

For the “magic” angles  =  and  = 

(θ is the angle between the directions of an emitted pho-
toelectron and the polarization vector of the exciting
linearly polarized radiation), in accordance with for-
mula (2) of [7], we have for linearly polarized radiation
(φ = 0)

(4)

At the same time, in accordance with formula (2) of the
present paper, for unpolarized exciting radiation, we
have

(5)

Relativistic calculations of the parameters β, ∆β, γ,
δ, η, µ, and ξ (see [1] for details) were performed with
allowance for the Dirac–Fock–Slater potential with the
coefficient C = 1 taken for the exchange term. The
vacancy arising after the photoelectron had been emit-

θ2cos
1
3
--- θ2cos

1
3
---

dσi

dΩ
--------

=  
dσi

4π
-------- 1 0.272γ 0.861δ 1.778µ 0.778η+ + ++( ).

dσi

dΩ
--------

=  
σi

4π
------ 1 0.192γ 0.577δ 0.389ξ–++( ).
Table 2.  Nondipole parameters for 2s and 2p shells (Ekin = 500 eV)

Atom Shell γ × 10 δ × 100 η × 104 µ × 104 ξ × 103 ∆βunpol × 103 ∆βpol × 104

Li 2s 4.68 21.8 30.5 –5.23 –7.88 –13.4

Be 2s 4.29 18.4 25.7 –4.41 –6.59 –10.7

B 2s 3.9 15.2 21.3 –3.66 –5.37 –7.97

2p1/2 2.62 1.85 42.5 –4.44 –12.7 –21.8

C 2s 3.49 12.1 17.0 –2.91 –4.16 –5.26

2p1/2 2.88 5.84 3.92 40.7 –4.62 –12.3 –19.2

N 2s 3.03 9.14 12.7 –2.19 –3.04 –3.00

2p1/2 3.10 4.37 5.30 38.9 –4.42 –11.3 –18.3

2p3/2 3.11 4.37 12.4 31.8 –4.42 –9.17 –18.3

O 2s 2.57 6.52 9.12 –1.56 –2.07 –1.13

2p1/2 3.21 3.81 6.02 36.4 –4.25 –10.5 –16.7

2p3/2 3.22 3.80 12.5 30.0 –4.25 –8.54 –16.7

F 2s 2.12 4.19 5.86 –1.01 –1.21 –0.419

2p1/2 3.26 3.40 6.19 34.1 –4.03 –9.75 –15.2

2p3/2 3.27 3.39 12.3 28.1 –4.04 –7.93 –15.2

Ne 2s 1.67 2.24 3.14 –0.538 –0.523 –0.15

2p1/2 3.25 3.09 5.89 31.8 –3.77 –9.04 –13.8

2p3/2 3.25 3.09 11.8 26.0 –3.78 –7.28 –13.8
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ted was taken into account in the approximation of fro-
zen orbitals. In this case, experimental values for elec-
tron binding energies in atoms were used.

Quantitative calculations of nondipole parameters
were carried out for atoms from Li to Ne. The 1s shells
(excitation by Al(Kα) line and by the Mg(Kα) line, as
well as at photoelectron kinetic energies of 5 and
10 keV) and 2s and 2p shells (Ekin = 0.5 keV and Ekin =
1 keV) were analyzed. In Tables 1 and 2, data are given
for 2s and 2p shells (Ekin = 0.5 keV) and for the 1s shell
(Ekin = 5 and 10 keV).

The values of δ for s shells are omitted due to their
smallness. In the nonrelativistic approximation, δ = 0.
The contribution of octupole transitions to the total
intensity of the photoionization spectrum was calcu-
lated for the “magic” angles. In all cases, these contri-
butions for 1s shells (excitation by the Al(Kα) line and
by the Mg(Kα) line), as well as for 2s and 2p shells
(Ekin = 0.5 and 1 keV), are virtually lower than 1%. In
other words, we may ignore these contributions when
performing quantitative X-ray–photoelectron analysis
within the range of the indicated excitation energies.

The situation is noticeably transformed in the case
of 1s shells at kinetic energies of 5 and 10 keV. For
magic angles, when passing from Li to Ne and in the
case of unpolarized exciting radiation, the contribution
of octupole transitions decreases from 1.9 to 1.0%
(Ekin = 5 keV) and from 3.4 to 1.6% (Ekin = 10 keV). In
the case of linearly polarized radiation, these values
change from 6.0 to 5.6% and from 10.6 to 8.1%, respec-
tively. Evidently, these significant contributions of
octupole transitions should be taken into account at the
photoelectron energies under consideration, especially
in the case of linearly polarized exciting radiation.
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Mössbauer absorption spectra of magnetic materials
are usually analyzed with the inclusion of group lines
(subspectra) formed due to hyperfine interaction in a
static hyperfine magnetic field on a nucleus and lines
attributed to the quadrupole interaction in the presence
of the electric-field gradient on the nucleus. In particu-
lar, for the 57Fe isotope most extensively used in Möss-
bauer spectroscopy, the hyperfine magnetic field splits
the levels of the ground state of the nucleus with spin

Ig =  into two sublevels with different spin projections

mg onto the hyperfine-field direction. The excited

14.4-keV state with spin Ie =  is split into four sublev-

els with different spin projections me in accordance
with the energies of the Zeeman interaction between
magnetic moments of the nucleus and the hyperfine
magnetic field Hhf:

(1)

Here, µN is the nuclear magneton and gg, e are the

nuclear g factors and  are the nuclear spins of the
ground and excited nuclear states, respectively. Figure 1
shows the splitting scheme of nuclear energy levels.

Transitions can occur between split nuclear sublev-
els in the excited and ground states. These transitions
are observed in experimental absorption spectra as a
certain set of lines, whose positions and intensities are
completely determined by Hamiltonian (1) and the
multipole order of the corresponding transition from
the ground state of the nucleus to the excited state.
These transitions in 57Fe nuclei are accompanied by M1

1
2
---

3
2
---

Ĥ
g e,( )

gg e, µNHhf Î
g e,( )

.–=

Î
g e,( )
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magnetic dipole radiation, which cannot change the

nuclear spin projection by more than one unit mg =

 → me = . For this reason, the absorption spec-

trum consists of six lines, a so-called magnetic sextet,
rather than of eight lines corresponding to the splitting
scheme shown in Fig. 1 [1]. In addition, in polycrystal-
line samples or magnetic alloys, when the hyperfine
field on the nucleus is oriented arbitrarily, the intensi-
ties of corresponding spectral lines are related as 3 : 2 :
1 : 1 : 2 : 3 (see Fig. 1).

The majority of Mössbauer spectra of magnetic
materials are analyzed with the inclusion of this mag-
netic sextet. Experimental spectra are approximated by
a combination of sextets corresponding to different
hyperfine fields. These sextets arise due to the presence
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Fig. 1. (Upper) Splitting scheme for the energy levels of the
57Fe nucleus in (e) excited and (g) ground states in the static
hyperfine field and (lower) the corresponding Mössbauer
absorption spectrum, magnetic sextet.
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of different magnetic phases, magnetic sublattices in
ferrimagnetic and antiferromagnetic substances, and
defects in the crystal structure. If experimental spectra
do not fit this scheme, more complex models are
involved to describe so-called relaxation effects (e.g.,
for paramagnets [2], ferrofluids [3], superparamagnetic
particles [4], etc.), when the magnitude and direction of
the hyperfine field on the nucleus vary randomly in time
due to spin–lattice, spin–spin, or other relaxation pro-
cesses.

As was mentioned above, the ground and excited
states of the 57Fe isotope have different spins. In addi-
tion, the nuclear g factors of these states differ from
each other not only in magnitude but also in sign (gg  =
0.18 and ge = –0.10). This circumstance is substantial
for the phenomena considered below.

The magnetic moment of superparamagnetic parti-
cles and, therefore, the hyperfine field on a nucleus
rotate about the easiest magnetization axis of the parti-
cle. This phenomenon is known in Mössbauer spectros-
copy. However, this phenomenon is analyzed under the
assumption that the characteristic precession frequency
Ω of the magnetic moment of the particle is much
higher than the precession frequency of the nuclear spin
in the hyperfine field. In this case, the magnetic sextet
typical for static spectra is formed [5]. The ratio of the
frequency Ω to the precession frequencies of nuclear
spins in the hyperfine field can be different in real sam-
ples. In these cases, spectra can qualitatively differ
from known static hyperfine-structure spectra. In par-
ticular, as will be shown below, spectra consisting of
three, four, and five lines arise for the 57Fe isotope in
addition to the static magnetic sextets. In other words,
the hyperfine-structure spectra of 57Fe nuclei can
include magnetic triplets, quartets, and quintets. If this
fact is disregarded, analysis of hyperfine-structure
spectra can face insuperable difficulties even when
these anomalies are not pronounced but smeared due to
the superposition of partial spectra and relaxation
effects.

Let us consider a small particle that can be consid-
ered as uniformly magnetized. Such particles are usu-
ally magnetically anisotropic. For axial magnetic
anisotropy, the energy of such a particle is determined
by the known expression

(2)

where K is the magnetic-anisotropy constant, V is the
particle volume, and θ is the angle between the mag-
netic moment of the particle and symmetry axis. For
K > 0, i.e., when the easiest magnetization axis exists,
the anisotropy energy is minimal for θ = 0 and π, when
the magnetic moment of the particle is directed along
the symmetry axis. Current technologies make it possi-
ble to grow systems with very small magnetic particles
whose size is equal to about several nanometers (see,

E KV θ,cos
2

–=
e.g., [6–10]). In this case, the quantity  (kB is the

Boltzmann constant) is equal to about several hundred
degrees Kelvin due to small volume, so that all states
with arbitrary directions of the magnetic moment with
respect to the anisotropy axis are occupied, even for
room temperature.

It is well known that the magnetic moment deviating
at a certain angle θ from the easiest magnetization axis
precesses about this axis with the frequency [11]

(3)

Here, γ is the gyromagnetic ratio and Han is the mag-
netic anisotropy field determined from the equation

(4)

where Mz is the magnetic-moment projection of the
particle onto the easiest magnetization axis and M0 is
the saturation magnetic moment of the particle. Then,
the precession frequency is expressed as

(5)

where

(6)

These formulas show that the precession frequency Ω
is independent of the particle volume, because the mag-
netic moment of the particle is proportional to its vol-
ume and is determined by the deviation angle θ. It is
substantial that the precession frequency Ω is maximal

for small angles θ and vanishes for θ = . Therefore,

the angle range θ, where the frequency Ω is comparable
with the precession frequencies of nuclear spins in the
hyperfine field always exists.

The hyperfine field on the nucleus follows the mag-
netic moment, i.e., rotates about the magnetic anisot-
ropy axis:

(7)

where nx , ny, and nz are the unit vectors of the x, y, and
z axes, respectively. This phenomenon is well known in
the Mössbauer spectroscopy of superparamagnetic par-
ticles. However, it is taken into account under the
assumption that the characteristic frequency Ω is much
higher than the precession frequency of nuclear spins.
In this case, the time-dependent hyperfine field compo-

KV
kB
--------

Ω γHan.–=

Han
∂E
∂Mz

----------–
2KV θcos

M0
------------------------,= =

Ω Ω0 θ,cos=

Ω0
2γKV

M0
--------------.–=

π
2
---

Hhf t( ) Hhf nz θ nx( Ωt( )cos+cos=

+ ny Ωt( )) θsinsin ,
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nent vanishes after averaging, and the rotation-aver-
aged hyperfine field is given by the expression

(8)

Particular estimates show that only lower energy
states with θ ! 1 are occupied for large particles. At the
same time, for superparamagnetic particles, whose
sizes are equal to about several nanometers, the fre-
quency Ω0 is only several times higher than the preces-
sion frequency of the nuclear spin in the hyperfine mag-
netic field. As θ increases, the frequency Ω can become
equal to or lower than nuclear-precession frequencies.
As will be shown below, the magnetic hyperfine struc-
ture of Mössbauer spectra is substantially rearranged
when the finiteness of Ω is taken into account.

Hamiltonians of the hyperfine interaction between
magnetic moments of the nucleus in the ground and
excited states and the hyperfine magnetic field Hhf
rotating about the z axis with the frequency Ω depend
on time:

(9)

We note that a quadrupole interaction between the
nuclear spin and the electric field gradient on the
nucleus also exists. However, it is as a rule significantly
smaller than the hyperfine interaction and will be
neglected below. In the coordinate system rotating
about the z axis with the frequency Ω , Hamiltonians (9)
take the form of time-independent operators:

(10)

where ωg, e = –gg, eµNHhf are the hyperfine-splitting con-
stants for the ground and excited states of the nucleus,
respectively. The eigenvalues of operators (10) are
obviously determined by the expression

(11)

where

(12)

and  are the nuclear-spin projection on the quanti-

zation axes for which operators  are diagonal. As
is seen in Fig. 2, the quantization axis for the ground
state differs from the axis for the excited state.

An analytical expression for the cross section for the
absorption of a gamma-ray photon by the nucleus was
obtained in [12] for the case where the hyperfine field
on the nucleus rotates in the plane perpendicular to the
rotation axis. This result is easily generalized to the
case of hyperfine field (7) rotating at arbitrary angle θ.

Hhf Hhf θnz.cos=

Ĥ
g e,( )

t( ) gg e, µNHhf t( )Î
g e,( )

.–=

Ĥ̃
g e,( )

–Ω ωg e, θcos+( ) Îz
g e,( ) ωg e, θÎ x

g e,( )
,sin+=

Ẽg e, λ̃g e, m̃g e, ,=

λ̃g e, –Ω ωg e, θcos+( )2 ωg e,
2 θsin

2
+ ,=

m̃g e,

Ĥ̃
g e,( )
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In this case, absorption cross section with allowance for
averaging over the polarization ηof the incident radia-
tion is expressed as

(13)

where ω is the spectral frequency, Γ0 is the line width

of the excited state of the nucleus,  are the matrix

elements of the interaction operator between a gamma-
ray photon and the nucleus, and mg, e are the nuclear-
spin projections onto the z axis.

According to Eq. (13), when the hyperfine field
rotates, the absorption spectrum must involve pro-
nounced natural-width lines, whose number is gener-
ally equal to N = (2Ig + 1)2(2Ie + 1)2 . For the 57Fe iso-
tope, N = 64. However, the selection rule for M1 mag-
netic dipole transitions reduces the number of resolved
lines to 24, each of which is doubly degenerate, because
(mg, me) and (mg ± 1, me ± 1) lines have identical transi-
tion energies.

Figure 3 shows the Mössbauer absorption spectra of
57Fe nuclei for the hyperfine field rotating about the eas-
iest magnetization axis at an angle of θ = 80° for vari-
ous Ω0 values corresponding to various magnetic-
anisotropy constants K. It is seen that three-, four-, and
five-line spectra can be formed instead of the classical
six lines of the static (relaxation processes are ignored)
hyperfine structure. In other words, the rotation of the
magnetic moment can fundamentally rearrange hyper-
fine-structure spectra.

σ ω( )
Γ0

2
-----Im Vm̃gm̃e

η( )+

mgme

m̃gm̃e

∑
η
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m̃g mg〈 〉 me m̃e〈 〉

ω λ̃em̃e λ̃gm̃g–( )– Ω mg me–( )– iΓ0/2+
--------------------------------------------------------------------------------------------------Vmemg

η( ) ,

Vmemg
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y

Hhf
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~

~

Fig. 2. Rotating hyperfine field in the laboratory coordinate
system and the quantization axes for operators (10) for the
ground and excited states of the 57Fe nucleus and positive K
(negative frequency Ω) in the rotating coordinate system.
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Fig. 3. Mössbauer absorption spectra of 57Fe nuclei in the
rotating hyperfine field with the parameters Hhf = 330 kOe

and θ = 80° and for  = (from top to bottom) 0, 0.35, 0.8,

2.3, and 50 GHz.
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Fig. 4. (Upper) Splitting scheme for energy levels of the
57Fe nucleus in (e) excited and (g) ground states in the rotat-
ing hyperfine field with the parameters Hhf = 330 kOe,

Ω0/2π = 1 GHz, θ = 81°, and  = 0 and (lower) the corre-

sponding Mössbauer absorption spectrum, magnetic quartet.
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The physical origin of such a fundamental transfor-
mation of spectra can be revealed by analyzing the case
of high rotation frequencies, when

(14)

In this case, the spectrum is divided into the central
group of six doubly degenerate lines and side groups of
lines (satellites). The shape of satellites is not analyzed
here, because they are far beyond the velocity range
of Mössbauer spectrometers, when condition (14) is
satisfied.

The  = mg and  = me central lines make the
basic contribution to the absorption intensity, and it is
easy to express the absorption cross section as

(15)

Here, the effective hyperfine-splitting constants  and

 for the ground and excited nuclear states, respec-
tively, are determined from Eq. (12) by taking into
account Eq. (14) in the form

(16)

where

(17)

are the renormalized nuclear g factors. According to
Eqs. (16) and (17), rotation effectively reduces the
hyperfine field proportional to cosθ and qualitatively
transforms hyperfine-structure spectra through the
renormalization of nuclear g factors (17). In this case,
changes in the effective  factors for ground and
excited nuclear states are different, because the original
nuclear g factors are different. As a result, for the coun-
terclockwise rotation corresponding to the positive
constant K, the -factor magnitude for the ground and
excited states decreases and increases, respectively. For

angles θ close to , the  factor for the nuclear ground

state can even change sign. This circumstance is
responsible for the fundamental rearrangement of spec-
tra shown in Fig. 3. In particular, for the angle θ deter-
mined by the condition

(18)
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the effective  factor for the nuclear ground state van-
ishes, and four lines are observed in the spectrum of the
hyperfine magnetic structure. Figure 4 shows the split-
ting scheme of nuclear energy levels and absorption
spectrum for this case.

As the angle θ decreases, the fast-rotation effect on
the shape of the hyperfine-structure spectrum weakens.
However, the rotation effect is pronounced not only
when spectra are of the nonstandard shape shown in
Fig. 3 but also when corresponding line shifts are com-

parable with the line width Γ0 . For  = 0.5 GHz cor-

responding to γ-Fe2O3 particles of a mean diameter of
7 nm and a characteristic magnetic-anisotropy energy

 of about 1000 K [9], the rotation effect is estimated

to be significant for angles θ > 30°.

We emphasize that spectra cannot be well approxi-
mated in the framework of standard static components
with the introduction of the distribution of hyperfine
fields and relaxation processes disregarding the above-
revealed features of hyperfine structure spectra, even if
these features are not manifested explicitly due to the
superposition of various subspectra under real condi-
tions.

g̃

Ω0

2π
------

kV
kB
------
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The experimental data for the angular spectrum of
the cosmic microwave background make it possible to
numerically determine a number of cosmological

parameters [2], including the ratio Ωtot =  of the

density ρtot of all types of matter to the critical density

ρc = , where G is the gravitational constant and H0

is the current Hubble constant [3]. Jaffe et al. [1] ana-
lyzed the last two experiments BOOMERANG-98 [4]
and MAXIMA-1 [5] taking into account the previous
experiment COBE DMR [6] and the data obtained from
the observation of type-1a supernovae (SN1a) [7, 8]
and large-scale structures of the universe [9]. The anal-
ysis [1] shows that the average Ωtot value for the com-
bination of various experiments systematically exceeds
unity and

Ωtot = 1.11 ± 0.07 (68% c.l.). (1)

This fact seems to be rather intriguing. Actually,
according to the most popular theory of the inflationary
expansion of the universe at an early stage of its evolu-
tion, Ωtot must be equal to unity with a high accuracy
(which provides a flat space geometry). For this reason,
although

Ωtot = (95% c.l.) [1] (2)

in a wider interval of experimental errors does not con-
tradict the model of inflationary expansion, it is impor-
tant that a fundamental consequence of the field relativ-
istic theory of gravity (RTG) [10, 11], where the
Euclidean character of the three-dimensional space fol-
lows from the equations of the gravitational field, is that
the quantity Ωtot must certainly exceed unity.

ρtot

ρc
-------

3H0
2

8πG
-----------

1.11 0.12–
+0.13
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The RTG implies that the total energy–momentum
tensor, which is conserved in the Minkowski space and
involves the gravitational field, is a source of the gravi-
tational field. In this sense, the RTG is similar to the
current gauge theories of the electroweak interaction
and quantum chromodynamics, where conserving cur-
rents are sources of vector fields. According to this
approach, the gravitational field has to be described by
the second-rank symmetric tensor ϕµν. Owing to this
fact and since the gravitational field is universal, theory
can be geometrized: the motion of matter under the
action of the gravitational field in the Minkowski space
looks as if it proceeds in the effective Riemann space

with the metric-tensor density  specified by the
equality

(3)

where  and  are the metric-tensor density and
the gravitational-field density in the Minkowski space,
respectively. It should be noted that this field approach
necessarily requires a nonzero graviton mass mg
because, otherwise, the metric tensor of the Minkowski
space disappears from the equations and only the Rie-
mann space remains. The set of RTG equations for the
gravitational field [10, 11] has the form

(4)

(5)

where  and R are the corresponding curvatures in the

effective Riemann space,  is the energy–momentum
tensor for matter in this space, and Dµ is the covariant
derivative in the Minkowski space. Equations (4) and
(5) are covariant under arbitrary transformations of
coordinates, are form-invariant under the Lorentz trans-
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g̃µν γ̃µν ϕ̃µν; g̃µν+ g– gµν,= =
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formations, and correctly describe all gravitational
effects observed in the solar system.

It is important that Eq. (5) in this scheme appears
not as an additional condition but as a consequence of
the gravitational-field equations and the conservation
law of the total energy–momentum tensor.

Writing the interval in the effective Riemann space
for the uniform and isotropic universe in the form

(6)

(where k = 1, –1, 0 for a closed, hyperbolic, and flat uni-
verse, respectively), we obtain from Eqs. (5)

i.e. (7)

(8)

Equation (8) is valid only for k = 0. Thus, according to
the RTG, the spatial geometry of the universe has to be
flat at all stages of its evolution (independently of
whether or not inflationary expansion took place).

Passing to the proper time dτ = U1/2dt and denoting
a2(τ) = U1/3, we can write interval (6) as

(9)

For the scale factor a(τ), Eq. (4) takes the form

(10)

(11)

The constant β in expressions (9) and (10) has a simple
meaning. According to the causality principle, matter in
the Minkowski space cannot move beyond the light

cone in this space. Therefore, a4(τ) ≤ β; i.e., β = .

Thus, according to the RTG, the universe cannot
expand infinitely. Thereby, the currently observed
accelerated expansion of the universe cannot be
explained by assuming nonzero vacuum energy. This
fact seems to be quite natural, because the vacuum
energy density must identically vanish in the field inter-
pretation of gravity in the Minkowski space. From the
RTG viewpoint, the observed acceleration can be
explained by assuming the existence of a special sub-
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stance, or quintessence [12, 13], which is described by
the equation of state

(12)

and whose density decreases as ρq ~ . (This oppor-

tunity was pointed out by Kalashnikov [14].) It follows
from Eq. (10) that the maximum expansion of the uni-

verse (  = 0 and a @ 1) is achieved for density ρmin =

. Equation (10) shows that the cosmo-

logical singularity is also eliminated according to the
RTG. Indeed, since the left-hand side of the equation is

positive definite, the matter-density growth as ρ ~ 

for a  0 at the radiation-dominant stage must com-
pensate the negative term on the right-hand side of the

equation, which grows as , for a certain minimum

value amin ≠ 0.

Thus, the nonzero graviton mass in the RTG (elimi-
nating both the cosmological singularity and the possi-
bility of the infinite expansion of the universe) is
responsible for the cyclic character of its evolution and
ensures the flat geometry of the three-dimensional
space at all stages of the evolution. However, Ωtot > 1 in
this case. Indeed, writing Eq. (10) for the present time
(a @ 1) and dividing both sides by the Hubble constant

, we obtain

(13)

where

(14)

can be called the “Hubble mass.” From value (2) and

formulas (13), it follows that  ≤ 0.24; i.e.,

(15)

Using values (1), we obtain 0.04 ≤  ≤ 0.18 and,

P 1 ν–( )ρq 0 ν 2
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"H0
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mH
0 "H0
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0.71=( )

f 2
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therefore, the graviton mass can be equal to

(16)

There is a question of whether the closeness of mg .

 is accidental or fundamental.
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Remark on proofreading. After this paper was
sent for publication, there appeared the preliminary
data of the WMAP experiment (arxiv.org/abs/astro-
ph/0302207; February 12, 2003), where the value
Ωtot = 1.02 ± 0.02 was presented. These data provide
more stringent restrictions on the graviton mass. At the

2σ  ≤ 0.06; i.e., mg ≤ 0.6  = 1.6 × 10–66 g. At the

same time, at the 1σ level,  = 0.04 is also admissible;

i.e., mg = 1.3 × 10–66 g in agreement with (16).
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statistical systems are based on averaging of either the
Liouville equation for the density distribution function
for an N-particle system D(x1, …, xN, t), x = r, p or the
canonical equations for D in the form of classical Pois-
son brackets and the investigation of the equations for
one-, two-, etc., particle distribution functions [Bogoli-
ubov–Kirkwood–Green–Yvon method (see, e.g., [1]),
Klimontovich method (see [2]), and Prigogine method
(see [3])]. It was recently established that many-particle
systems (aerosols, gels, macromolecules, anomalous
diffusion, turbulence, partially ordered systems, elec-
tron–ion plasma, solids, etc.) have fractal and multi-
fractal properties, whose explanation requires equa-
tions with fractional derivatives. Anomalous relaxation
and anomalous diffusion (diffusion for which mean
squared displacement of a particle is proportional to the
time in a fractional power, i.e., q〈x 〉q ~ tβ, where β is a
fractional number), which is observed in many systems
and testifies to the presence of fractal properties in a
system, were studied and theoretically described on the
basis of fractal geometry in numerous works [4] (see
also [2, 5] and references therein). In such a descrip-
tion, equations with Riemann–Liouville fractional
derivatives with respect to time [6] and coordinates [5]
or with respect to time and coordinates simultaneously
[7] are used. The diffusion coefficient is assumed con-
stant. Equations with fractional derivatives and con-
stant fractional order describe non-Markov processes
with fixed memory, i.e., systems whose state at a given
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time depends on the previous behavior of the system:
temporal and coordinate memories. Systems with
memory that were previously considered in thermody-
namics and statistical physics (see [8] and reference
therein) did not describe fractal structures and are not
considered in this study. In particular, the systems men-
tioned above are systems with memory. However,
memory (both temporal memory and memory on tra-
jectories of a system) in certain physical systems can
vary both in time and in coordinates. Available experi-
mental data indicate that the fractal dimension of phys-
ical objects depends on both the parameters of the envi-
ronment (temperature, pressure, etc., [9, 10]) and the
internal parameters characterizing the system (elastic-
ity, strength, etc., [11]). All the above examples show
that the dynamics of statistical systems must be formu-
lated on the basis of extension of the Liouville equation
to fractal and multifractal media. It is interesting to
investigate statistical and dynamic systems with fixed
and variable memories. Dynamic processes in systems
with time- and coordinate-dependent memory cannot
be described in terms of Riemann–Liouville fractional
derivatives that do not reproduce variations in memory.
Therefore, it is necessary to use a new mathematical
technique generalizing Riemann–Liouville fractional
derivatives and integrals for the dynamics of multifrac-
tal objects with the fractal dimension depending on
time and coordinates. Such a technique (considered in
the following section) was proposed by one of us
(L.Ya.K.) in [12]. In this study, the method of multipar-
ticle distribution functions, which was introduced by
Bogoliubov, Green, Kirkwood, and Yvon and devel-
oped by Klimontovich and Prigogine, is generalized to
systems with fixed and variable memories. For this pur-
pose, we use Riemann–Liouville fractional derivatives
with a variable order of differentiation and integration.
We derive the equations for multiparticle distribution
functions in a statistical medium with variable memory
and consider the case of small variable memory. For
this case, we find fractal forces acting on the particles
of the system in the presence of fractal-dimension gra-
dients.
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FRACTIONAL DERIVATIVES
AND INTEGRALS WITH A VARIABLE ORDER 

OF DIFFERENTIATION AND INTEGRATION

To describe statistical non-Markov systems with
fixed memory (in this case, the fractional order of deriv-
atives and integrals is fixed), it is sufficient to use the
well-known Riemann–Liouville fractional derivatives
and integrals [13, 14]. However, to construct statistical
physics for a medium with a multifractal dimension
depending on time and coordinates (or in a physical
system with such fractal properties), it is insufficient to
use only Riemann–Liouville fractional derivatives. In
this case, fractional derivatives and integrals with a
variable order (generalized Riemann–Liouville frac-
tional derivatives (GFDs), which were introduced by
one of us in [12]) should be used. These derivatives are
defined by the relationships (we give the definitions for
left derivatives; more detailed information is available
in [12])

(1)

where Γ is the Euler gamma function; n = {d} + 1,
where {d} is the integer part of d if d ≥ 0 [i.e., (n – 1) ≤
d < n]; n = 0 if d < 0; dt = 1 + ε(t); and dx = 1 + ε(x). For
d = const, definitions (3) coincide with Riemann–Liou-
ville derivatives. For |ε| ! 1, the integral operators
defined above for the fractional exponents dt and dx

depending on time and coordinates can be represented
in terms of ordinary derivatives and integrals [12] for
|ε| ! 1. In this case, generalized fractional derivatives
satisfy the approximate relationships (we give only the
relationships for derivatives)

(2)

These relationships make it possible to describe the
dynamics of the system including the effect of changes
in the fractal dimension (if they are much smaller than
unity) in terms of ordinary differential and integral

∂
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∫
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∫

D
1 εt+

f x t,( ) 1 εt+( ) ∂
∂t
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∂εt

∂t
------- f x t,( ),+=

D
1 εx+

f x t,( ) 1 εx+( ) ∂
∂x
------ f x t,( )

∂εx

∂x
-------- f x t,( ).+=
equations. To determine the fractal dimension dα, the
equations corresponding to the problems under consid-
eration were derived in [12].

MULTIPARTICLE DISTRIBUTION FUNCTIONS 
AND EQUATIONS 

FOR A DISTRIBUTION FUNCTION IN SPACE 
WITH FIXED AND VARIABLE MEMORIES

Although the theory of multiparticle distribution
functions in statistical physics is well known [1, 2], we
briefly outline it to clearly reveal the generalizations
necessary for the inclusion of fixed and variable mem-
ories, as well as to introduce the notation used in the
following. The Bogoliubov–Kirkwood–Green–Yvon
model is characterized by the following equations for
s-particle distribution functions in the N-dimensional
phase space of coordinates and momenta x (x = q, p)
after passage to the limit N = ∞, V = ∞, and NV –1 = v  =
const:

(3)

Here, the square brackets denote classical Poisson
brackets;

(4)

where T(pi) is the kinetic energy of the ith particle and
Φ(|qi – q j |) is the interaction energy between particles;

(5)

(6)

where the probability density D(x1, …, xN, t) that all N
particles have the coordinates x1, …, xN at the time t sat-
isfies the normalization condition

(7)

The above equations completely describe the behavior
of a dynamic statistical system in space and time with
topological dimensions. In order to apply them to sta-

∂Fs
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-------- = Hs; Fs[ ] 1

v
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1 i s≤ ≤
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Q
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N
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=  Vs … D x1 … xN t, , ,( ) xs 1+ …d xN ,d
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1 i N≤ ≤
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D x1 … xN t, , ,( ) x1… xNdd
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tistical processes in systems with memory, all deriva-
tives and integrals in Eqs. (1)–(6) should be replaced by
DOKLADY PHYSICS      Vol. 48      No. 6      2003
fractional derivatives and integrals defined by Eq. (3).
In this case, we have
(8)

(9)

(10)

(11)

∂
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In the Poisson brackets appearing in Eq. (10), all
derivatives are replaced by GFDs and, after passage to
the limit Q = ∞, all x’s without indices are taken to be
∞ and the lower limits in the integrals, a = –∞. Equa-
tions (8)–(11) completely describe the statistical prop-
erties of dynamic systems with both fixed (d = const)
and variable memories.

EQUATIONS 
FOR DETERMINING FRACTAL DIMENSIONS

The fractal dimension d(x, t) depends on the energy
density at a given point and meets the equation (this
equation was first derived in [12] by using the varia-
tional method for the minimum of the fractal dimension
considered as an order parameter):

(12)

where L is the Lagrangian density, a is the L-indepen-
dent quantity of the energy-density dimension, and Ddiff

is the diffusion coefficient of the fractal dimension in
the energy space. For d = 1 + ε(x, t ), where |ε | ! 1 (in
this study, we will consider only this case), neglecting
the diffusion of the fractal dimension in the space L,

a
∂d x t,( )

∂t
------------------- ∂

∂L
------ Ddiff L x t, ,( )∂D x t,( )

∂L
--------------------=

– a L–( )d x t,( ) ad x t,( )2,+
we find the time-independent fractal dimension in the
form

(13)

In the simplest case of the time-dependent fractal
dimension, d has the form of Eq. (13), where L is

replaced by (x(t')ω(t '))dt ' with the correlation func-

tion ω(t ') between energy at various times. For ω(t) =
δ(t – t '), it is only necessary to take into account time
functions in L.

VLASOV AND KLIMONTOVICH EQUATIONS 
FOR SYSTEMS WITH VARIABLE MEMORY
The equation that relates one- and two-particle dis-

tribution functions is of most interest. For systems with
variable memory, this equation has the form

(14)
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For d = 1, this equation takes the form

(15)

where m is the mass of a particle and F1(q) =

(q, p)dp, and coincides with the Vlasov equation.

For d ≠ 1, we obtain the equation

(16)

What are the differences between Eq. (16) and the Vla-
sov equation? First, Eq. (16) involves terms propor-
tional to F1 that lead to a change in energy. Second, the
generalized velocity and the mean force acting on a par-
ticle change as 

and

respectively. These changes can considerably modify
the spectrum of elementary excitations of the system
(even for small fractal corrections proportional to ε)
and probably provide new stability conditions for the
electron–ion plasma with fractal structures (see [15]).

Now we consider the Klimontovich equation in the
fractal space. Unlike the Fokker–Planck equation, the

∂
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Klimontovich equation takes into account diffusion in
both the momentum and coordinate spaces (its solution
for d = const was considered in [15]). For systems with
variable memory, it has the form

(17)

where the  terms on the right-hand side

are the products of right fractional derivatives by left
fractional derivatives.

EQUATION FOR THE ONE-PARTICLE 
DISTRIBUTION FUNCTION.

THE CASE OF WEAK VARIABLE MEMORY

To describe systems with weak variable memory
(|ε| ! 1), relationships similar to Eq. (2) should be
used. In this case, GFDs are represented in terms of
ordinary derivatives and integrals according to the fol-
lowing rules (when ε2 terms are ignored):

(18)

In the approximation of the Vlasov master equation,
Eq. (17) takes the form
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In the approximation of the Klimontovich master equation, using Eq. (18), we find
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where

(21)

When ordinary derivatives in the diffusion terms of
the Klimontovich equation are replaced by GFDs, new
forces of two types appear. They are proportional to the
gradients of the fractal dimension ε in momenta and
coordinates (in the latter case, similar forces were
obtained in [15]). In addition, terms proportional to F1
appear (as in the fractal Vlasov equation).

CONCLUSIONS

Thus, the main equations of statistical physics of
fractal dynamic systems with variable memory (i.e.,
systems with variable fractal dimension) were pre-
sented. New forces proportional to the gradients of
fractal dimension in coordinates and momenta were
found. The resulting equations can be widely applied in
condensed-matter physics, biophysics, economic sci-
ences, etc., when variable fractal memory (temporal or
spatial) is a significant factor (see also [15]).
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INTRODUCTION

Theoretical grounds of order–disorder processes in
crystals with a simple cubic lattice when crystallizing
stoichiometric binary metallic melts were studied
in [1–5]. These works presented mathematical models
of the growth of binary crystals that accompanies the
solidification of corresponding metallic melts. These
models are based on time-independent master equa-
tions describing the structure and growth kinetics of
binary metallic crystalline phases. It is noteworthy that,
at significant supercooling of the melt–crystal system,
there is a point where a disordered crystalline phase is
formed at temperatures lower than the corresponding
Curie temperature for the binary alloys in question. The
above order–disorder effect is studied in connection
with the fluctuation crystal-growth theory, where the
model of the so-called two-phase transition (TPT) zone
was used [6, 7]. The TPT zone separates two contigu-
ous massive areas—a crystalline phase and the binary
melt (see Fig. 1). In this model, the probability distribu-
tion functions of so-called growth monomers in TPT-
zone layers were introduced and studied (see [2–5]). In
the model of the concentration image of the TPT zone,
these monomers are the analogues of liquid and solid
metallic particles within the layers of the real TPT zone
or the melt–crystal interface (see Fig. 2). As was noted
in [2–5], the topological structure of the concentration
image of the TPT zone affects the disordering process:
the long-range order parameter η tends to zero in a way
different from that for the Bragg–Williams thermody-
namic order–disorder transition.

1. DISORDERING 
OF QUASI-STOICHIOMETRIC BINARY ALLOYS 

WITH THE SIMPLE CUBIC LATTICE

We consider here only stoichiometric metallic
alloys with the simple cubic lattice when the number of
particular-type atoms is approximately equal to the

Mendeleyev University of Chemical Technology, 
Miusskaya pl. 9, Moscow, 125190 Russia

* e-mail: clogist@muctr.edu.ru
1028-3358/03/4806- $24.00 © 20290
number of sites designed for them in the lattice. As was
noted in [1–5], at large supercooling of 50%-alloy
melts, the disordering temperature Tk for binary crystals
can in principle lie within a certain temperature range
below the so-called Curie point TC. As was established
in [8], when the distribution coefficients of both com-
ponents are approximately equal to each other, i.e.,

 = , where i = 1, 2, …, n marks TPT-zone layers
(see Fig. 2), a crystalline quasi-stoichiometric binary
phase can be formed for arbitrary fluctuations in the
concentrations of solid-state particles.

The general composition structure of growth mono-
mers in all layers of the concentration image of the TPT
zone near the sharp interface of the binary melt–crystal
system can be described by a closed system of six time-

independent master equations in six unknowns (0)
(α, β = Ä, Ç) (k = 1, 2), λ and η1 (see [2–5]). Here,

(0) are the probability distribution functions of

kA
i kB
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Xαβ
k( )

Xαβ
k( )

B
in

ar
y 

cr
ys

ta
l

ë
1

i  –  110

Y1

i i  +  1

A + B

n X

B
in

ar
y 

m
el

t

Fig. 1. Concentration image of the TPT zone for A + B
binary systems. The shaded part of the column–layers for
i = 1, …, n is the concentration C1 of solid-state particles,
and the unshaded part is the concentration C2 = 1 – C1 of
liquid-state particles.
003 MAIK “Nauka/Interperiodica”
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αN–1 and βN−1 growth monomers in each layer of the
TPT zone at the sharp interface of the melt–crystal sys-
tem, i.e., at the zero-height fractures (see Fig. 2). Here,
N is the total number of atoms of all kinds and states in
each layer of the TPT zone, k marks a sublattice type to
which the given αN−1 monomer belongs, α and β mark
a particular particle type, and λ ~ 1 is the so-called
roughness parameter of the given interface. Further,

η1 = |(m – 1)lnq |, where q = exp , m appears in

the relation εAB = mξAA and is usually equal to 2 for
metals, and εAA and εAB are opposite to the energies of
interaction between the nearest A–A and A–B particles,
respectively. As was noted in [2–5, 8], near the disor-
dering temperature Tk, i.e., at q = qk, the above closed
system of six independent equations with six unknowns
can be replaced by a linearized system of six homoge-
neous equations with the six unknowns 

and . Here, all functions (0) and λ depend on q

and η, and the functions (0) and λ0 are taken in the
completely disordered phase, i.e., at η = 0. Thus, all

(0) (α, β = A, B) specify the distribution of growth
monomers near the sharp interface of the binary melt–
crystal system in the completely disordered state. This
linearized system has the form

(1.1)

Here, coefficients αij (i = 1, 2, 3; j = 1, …, 6) are func-

tions of q, m, N, λ0, and R = , where the transition

frequency ω+ of growth monomers from the binary melt

εAA

T
--------–

∆x1 XAA
1 0( ) XAA

0 0( ), ∆x2 XAB
1 0( ) XAB

0 0( ),–=–=

∆x3 XBA
1 0( ) XAB

0 0( ), ∆x4– XBB
1 0( ) XAA

0 0( ),–= =

∆x5 λ λ 0,–=

η̃1 Xαβ
1

Xαβ
1

Xαβ
1

α11∆x1 α13∆x3 α14∆x4 α15∆x5 α16η1+ + + + 0,=

α14∆x1 α13∆x2 α11∆x4 α15∆x5 α16η1–+ + + 0,=

α31∆x1 α32∆x2 α33∆x3 α34∆x4+ + +

+ α35∆x5 α36η1+ 0,=

α34∆x1 α33∆x2 α32∆x3 α31∆x4+ + +

+ α35∆x5 – α36η1 0,=

α51∆x1 α53∆x3 α54∆x4 α55∆x5 α56η1+ + + + 0,=

α54∆x1 α53∆x2 α51∆x4 α55∆x5 – α56η1+ + + 0.=

ω+

ν
------
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to the crystalline phase in a single layer is supposed to
be identical for all layers of the TPT zone and ν is the
oscillation frequency of a particle near the site in the
real crystalline phase. System (1.1) was obtained by
taking into account the symmetry properties of the
above system of time-independent master equations
under the η  –η transformation, when the first,
third, and fifth equations are transformed to the second,
fourth, and sixth ones, respectively, and vice versa; i.e.,
the whole system is invariant under this transformation.
Moreover, under the η  –η transformation, ∆x1 
∆x4, ∆x2  ∆x3 , and ∆x5 = inv due to the following
symmetry properties of the functions in question:

(1.2)

These properties follow from equivalence between A
and B atoms and between 1 and 2 sublattices in stoichi-
ometric binary alloys with the simple cubic lattice.
Hence, ∆xi (i = 1, …, 5) near the disordering tempera-

XAA
1 0( ) η–[ ] XBB

1 0( ) η[ ] ,=

XAA
1 0( ) η[ ] XBB

1 0( ) –η[ ] ,=
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1 0( ) η[ ] ,=

λ η–( ) λ η( ).=

0 1

γΝ–1

βΝ–1

αΝ–1

αΝ–1

βΝ–1

αΝ–1

A + B

B
in

ar
y 

m
el

t

i – 1 i i  + 1 Xn

Y1

B
in

ar
y 

cr
ys

ta
l

ë
1

Fig. 2. Concentration image of the TPT zone consisting of
n atomic layers, where layer nos. i – 1; i; and i + 1 end with
the so-called growth monomers αN–1, βN–1, γN–1; αN−1,
βN−1; and αN−1, respectively. The abscissa and ordinate
axes are the layer number and the concentration of solid-
state particles, respectively.
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ture Tk can be expanded in the small parameter η up to
~η3 terms, i.e.,

(1.3)

where a1, b1, c1, a2, b2, c2, and b3 are undefined constants
depending on the properties of the system under consid-
eration. The system of homogeneous equations (1.1) lin-
ear in small parameters ∆xi (i = 1, …, 5) and η1 has a
nontrivial solution under the condition

(1.4)

where

Expanding the functions (0)[q, η] (α, β = A, B),
λ(q, η), which appear in the system of six time-inde-
pendent master equations presented in [2–4], in the
small parameter η up to ~η3 terms and taking into
account the symmetry and invariance of Eqs. (1.2)
and (1.3), we arrive at a system of three homogeneous
equations in the long-range order parameter η. In each
of these equations, all η2 terms disappear, because
∆x1  ∆x4, ∆x2  ∆x3, and λ(–η) = λ(η) under the
η  –η transformation. Thus, instead of system (1.1),
we obtain the system

∆x1 . a1η b1η
2

c1η
3, ∆x2 . a2η b2η

2 c2η
3,+ + + +

∆x4 . –a1η b1η
2 c1η

3,–+

∆x3 . –a2η b2η
2 c2η

3, ∆x5 . b3η
2,–+

det α ij=

=  

α11 0 α13 α14 α15 α16

α14 α13 0 α11 α15 α16–

α31 α32 α33 α34 α35 α36

α34 α33 α32 α31 α35 α36–

α51 0 α53 α54 α55 α56

α54 α53 0 α51 α55 α56–

2I det⋅ 0,= =

I
α11 α14+( ) α13 α15

α31 α34+( ) α32 α33+( ) α35

α51 α54+( ) α53 α55

,=

det α14 α11–( ) α36α53 α56 α32 α33–( )+[ ]=

+ α31 α34–( ) α16α53 α13α56–( )
+ α51 α54–( ) α13α36 α16 α32 α33–( )+[ ] .

Xαβ
1

A1η K1η
3+ 0, A2η K2η

3+ 0,= =

A3η K3η
3+ 0.=
Here,

(1.5)

where

.

In the general case, the coefficients Ki (i = 1, 2, 3) are
determined from the initial system of time-independent
master equations presented in [2–4], and their explicit
form is of no importance here. Furthermore, a1 and a2
can be expressed in terms of the coefficients αij of sys-
tem (1.1) and unknown ratios

and 

A solution of Eqs. (1.5) that is different from the trivial
solution η = 0 can be obtained from the equations

(1.6)

Excluding the η variable from Eqs. (1.6) by calculating
the resultants R1[f1, f3] and R2[f2, f3] and equating the
resultants to zero, we arrive at the following equations

in the unknowns  and :

(1.7)

whose solution has the form

A1 α11 α14–( )a1
p α13α2

p– α16,+=

A2 α31 α34–( )α1
p α32 α33–( )α2

p α36,+ +=

A3 α51 α54–( )α1
p α53α2

p– α56,+=

a1
p a1

m 1–( ) qln
-----------------------------, a2

p a2

m 1–( ) qln
-----------------------------= =

A1

A3
------

K1

K3
------ Ω1= =

A2

A3
------

K2

K3
------ Ω2.= =

f 1 A1 K1η
2+ 0,= =

f 2 A2 K2η
2+ 0, f 3 A3 K3η

2+ 0.= = = =

α1
p α2

p

R1 f 1 f 3,[ ] α 11 α14– Ω1 α51 α54–( )–[ ]α 1
p=

+ Ω1α53 α13–( )α2
p Ω1α56– α16+ 0,=

R2 f 2 f 3,[ ] α 31 α34– Ω2 α51 α54–( )–[ ]α 1
p=

+ Ω2α53 α32 α33–+( )α2
p Ω2α56– α36+ 0,=

a1
p ∆1 Ω1 Ω2,( )

∆ Ω1 Ω2,( )
---------------------------, a2

p ∆2 Ω1 Ω2,( )
∆ Ω1 Ω2,( )
---------------------------,= =
DOKLADY PHYSICS      Vol. 48      No. 6      2003



ORDER–DISORDER PROCESSES IN CRYSTALS 293
where

(1.8)

Hence, the coefficients A1, A2, and A3 have the form

Multiplying the first, second, and third of Eqs. (1.5) by

, 

,

and

,

respectively, and summarizing the results, we obtain

(1.9)

where

In addition to the trivial solution η = 0, Eq. (1.9) has the

solution η = . Values qk at which det = 0 deter-

mine the disordering temperature of binary crystals,
which have the simple cubic lattice and are crystallized
from 50%-alloy melts.

∆1 Ω1 Ω2,( ) α56 α32 α33–( ) α36α53+[ ]Ω 1=

– α16α53 α13α56–( )Ω2 α13α36– α16 α32 α33–( ),–

∆2 Ω1 Ω2,( ) α16 α31 α34–( ) α36 α11 α14–( )–=

+ α36 α51 α54–( ) α56 α31 α34–( )–[ ]Ω 1

– α16 α51 α54–( ) α56 α11 α14–( )–[ ]Ω 2,

∆ Ω1 Ω2,( ) = α11 α14–( ) α32 α33–( ) α13 α31 α34–( )+

– α53 α31 α34–( ) α32 α33–( ) α51 α54–( )+[ ]Ω 1

– α13 α51 α54–( ) α53 α11 α14–( )–[ ]Ω 2.

A1

det Ω1⋅
∆ Ω1 Ω2,( )
-------------------------, A2–

det Ω2⋅
∆ Ω1 Ω2,( )
-------------------------,–= =

A3
det

∆ Ω1 Ω2,( )
-------------------------.–=

α53 α32 α34–( ) α32 α33–( ) α51 α54–( )+[ ]
α13 α51 α54–( ) α53 α11 α14–( )–[ ]

α31 α34 α31–( ) α11 α14–( ) α33 α32–( )+[ ]

det η⋅ Mη3+ 0,=

M = 2I K1 α53 α31 α34–( ) α32 α33–( ) α51 α54–( )+[ ]{
+ K2 α13 α51 α54–( ) α53 α11 α14–( )–[ ]

+  K 3 α 13 α 34 α 31 – ( ) α 11 α 14 – ( ) α 33 α 32 – ( ) + [ ] } .

det
M
-------–
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2. ORDER–DISORDER PROCESS
IN BINARY METALLIC CRYSTALS
IN THE QUASI-BRAGG–WILLIAMS 

APPROXIMATION

When expansions (1.3) are valid, the linearized
homogeneous system (1.1) can be used instead of the
Taylor series of all time-independent master equations
in the η parameter up to η3 terms. In this approach and
in view of the symmetry properties (1.2), system (1.5)
is an analogue of such a virtual approximate system. In
this approximation, the coefficients K1, K2, and K3 in
Eqs. (1.5) can be written in the form

(2.1)

where

Taking into account that R =  ! 1 for many practical

cases [8], we obtain the following estimates of the coef-
ficients αij appearing in Eqs. (1.1):

(2.2)

where κ =  – 1, which are accurate up to ~

K1 . α11 α14–( )c1
p α16c2

p,–

K2 . α31 α34–( )c1
p α32 α33–( )c2

p,+

K3 . α51 α54–( )c1
p α53c2

p,–

c1
p c1

m 1–( ) qln
-----------------------------, c2

p c2

m 1–( ) qln
-----------------------------.= =

ω+

ν
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terms. In this case, Eq. (1.9) is transformed to the equa-
tion

(2.3)

In the approximation given by Eqs. (2.1) and (2.2) and

in the general case where  ≠ , the coefficient of the
η3 term in Eq. (2.3) has the form

In addition to the trivial solution η = 0, Eq. (2.3) has
the solution

2κ
N
------qm 1+ 1 q

1
2
--- m 1+( )

+ 
  1 qm–( )η

– 6K2 K1 3 2qm 1–+( )–[ ]η 3 0.=

c1
p c2

p

6K2 – K1 3 2qm 1–+( ) 8Rκ
N

---------- κ 2–( )c1
p 2qm 1– c2

p–[ ] .=

η const 1
κ
2
--- 1 qm 1– c2

p

c1
p

----–
 
 
 

+ ,=

1

1

1

0

0

0
qk qe qc

qc

qeqk
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qc

qe q

η

Fig. 3. Qualitative dependence of the long-range order

parameter on q = exp  in the case of the topological-

form effect of the TPT zone on the disordering process for
(a) qk < qe < qc , (b) qk < qe & qc , and (c) qk < qc < qe . The
dashed and solid lines are the thermodynamic-ordering and
kinetic-disordering curves, respectively.

εAA

T
---------–

(a)

(b)

(c)
where 

Since the coefficients  and  are commensurate
due to the physical nature of series (1.3) and in view of

the inequality qm – 1  < 1, it is obvious that  < 0 for

real systems. The long-range order parameter η tends to
zero; i.e., the disordering process is possible only for qk

values that are the roots of the equation

Considering that R ~ q2m + 1 ! 1 in real physical sys-

tems (see [2–4]) and neglecting the Rqm – 1  ~ 0 term,

we estimate the root of Eq. (2.4) as qk . . As

is seen from this solution, the disordering process in
stoichiometric binary crystals, which are grown from
50%-alloy melts and have the simple cubic lattice, is

realized only under the condition  = ; i.e.,

when both quantities  and  appearing in series (1.3)

are negative. Since qk =  is a first-order root,

the long-range order parameter η tends to zero as

 ~ , i.e., similarly to the Bragg–Will-
iams thermodynamic order–disorder transition. Thus,
in the presence of the concentration image of the TPT
zone and under conditions (2.1), the disordering pro-
cess in quasi-stoichiometric binary crystals with the
simple cubic lattice is realized in the so-called quasi-
Bragg–Williams approximation. In this case, the topo-
logical structure of the concentration image of the TPT
zone (its steplike form) is not manifested in the disorder-
ing process in question. In the general order–disorder
phenomenon analyzed in [2–5], where conditions (2.1)
were not taken into account, the long-range order
parameter η tended to zero as (T – Tk)5/2 (see Fig. 3).

The η(q) dependence obtained in the quasi-Bragg–
Williams approximation is shown in Fig. 4, where three
possible cases of ratios between the parameters qk, qe,
and qc are presented. These parameters are related to

const
qm 1+ 1 qm–( ) 1 q

1
2
--- m 1+( )

+ 
 

8Rc1
p 1 qm 1– c1

p

c2
p
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p

c1
p

----–
 
 
 

+ 0.=
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the disordering temperature Tk, kinetic equilibrium
temperature Te , and Curie temperature TC by the for-
mulas 

and 

respectively. Therefore, the three cases shown in Fig. 4
are as follows: (a) Tk < Te < TC, (b) Tk < Te ( TC, and
(c) Tk < TC < Te . The kinetic equilibrium temperature Te

is determined from the condition V = 0, where V is the
average rate of TPT-zone crystallization (see [2–4]). As
is seen in Figs. 3 and 4, the kinetic equilibrium temper-
ature Te is determined by the point where the thermody-
namic curve crosses the kinetic curve, because the dis-
ordering process begins just at the instant of the onset
of crystal growth.

qk = 
εAA

Tk

--------– , qe = 
εAA

Te

--------– ,expexp

qc = 
εAA

TC
--------– ,exp

1

1

1

0

0

0
qk qe qc

qeqk qc

qk qe qc

η

Fig. 4. Same as in Fig. 3, but for the quasi-Bragg–Williams
approximation, where q is proportional to the temperature
of the TPT zone.

(a)

(b)

(c)
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CONCLUSIONS

The long-range order parameter in the disordering
process considered above was shown to tend to zero as

η ~  when the melt temperature T approaches
the disordering temperature Tk. This behavior is similar
to the thermodynamic order–disorder transition in the
Bragg–Williams approximation. For this reason, this
case was called the quasi-Bragg–Williams approxima-
tion. The above analysis demonstrated that the fluctua-
tion crystallization mechanism developed in [9–13] is
immaterial for the disordering process of quasi-stoichi-
ometric binary crystals with the simple cubic lattice.
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1. Nonlinear filtration methods are extensively used
in remote sounding, processing of medical information
such as electroencephalograms, cardiograms, or tomo-
grams. These methods suppress the effect of noise of
various physical natures [1–3].

In this work, we proposed a new approach based on
the joint use of rank statistics and M-estimates (gener-
alized maximum-likelihood estimates) [4]. This
approach enables one to use the advantages of each
method of nonlinear filtration and to develop a new
class of robust algorithms of filtering both individual
images and sequences of exposures (video and tomo-
graphic). This provides a significant improvement in
the quality of filtering images and sequences of video
exposures, including the suppression of various types
of noise, reconstruction of small details of images, and
on-line realization of filtration procedures. The latter is
particularly important and realized through algorithms
based on the digital processing of signals with the use
of a TMS320C6701 digital signal processor [5]. This
experimentally corroborates the possibility of on-line
filtering of various sequences of video images in the
presence of various types of noise.

2. It is known that nonparametric estimates are
based on calculations of ranks and rank statistics [4, 6].
A hypothesis of a shift in one of two samples x1, x2, …,
xm and y1, y2, …, yn with the same probability distribu-
tion is generally verified by the Fisher–Jets–Terry–
Hefding criterion. It has the form [4]

SN
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m
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where

is a positive affine transformation for ranks Ri of the
sample formed from two original samples. For a Gaus-
sian distribution [J(u) = Φ–1(u)], this criterion is equiv-
alent to the van der Waerden test. For a logistic distri-
bution, the solution is determined by the Hodges–Leh-

mann estimate , and the criterion

transforms to the Wilkokson test. Finally, a double
exponential distribution determines the sign criterion:

J(u) = –1 for , J(u) = 1 for , and the median

algorithm for estimating a shift [2, 4]. When there is no
prior information about the probability distribution of
data and moments, the sign criterion is the most power-
ful asymptotic rank criterion. When the probability dis-
tribution is symmetric, the Wilkokson test is such a cri-
terion. Other R-estimates can be obtained similarly by
using various functions J(t). Two estimates additionally
presented below are used to construct new nonlinear fil-
ters. The Ansari–Bradley–Siegel–Tukey function

 [4] determines the general-criterion

coefficients  and corresponding

R-estimate in the form
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the general-criterion coefficients

and corresponding R-estimate in the form

 (2)

3. The maximum-likelihood (ML) estimate modi-
fied by Huber is determined by the so-called M-esti-
mate following from the generalized maximum-likeli-
hood equation [2, 4, 7]

(3)

Here,  =  with ρ(X) = ln(f(X)),

where f(x) is the probability density of the sample of
outcomes. In contrast to the classical maximum-likeli-
hood estimate θ, a robust estimate is obtained under
certain restrictions on the function ψ(X). In particular,
these are restrictions on the function amplitude, which
leads to the Huber M-estimate for the simplest case,
when the normal distribution has long tails:

with the interval (–r, r) determined by prior data. As
was shown in [4], the truncated median

is the most robust variant of the reduced M-estimate.

We also use other influence functions, such as three-
interval Hampel, sine Andrews, Tukey, and Bernoulli
functions. Our approach is based on the joint applica-
tion of rank statistics and M-estimates and uses rank
procedures rather than the arithmetic smoothing used in
M-estimates. As was shown in [6, 8], the simplest
RM-estimates associated with rank median and
Wilkokson procedures are written as

(4)

(5)

Using estimates given by Eqs. (1) and (2), we simi-
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larly arrive at the following new RM-estimates:
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To estimate various kinds of noise, we use the
results [7, 8]
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is the functional determining the impulsive-noise
effect.

When an image is contaminated with multiplicative
and impulsive noise, the model has the form
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where εmul(x, y) is multiplicative noise.

Our aim is to develop robust RM-estimates that are
based on the above approach and make it possible to
remove impulsive and multiplicative noise and to
reconstruct small details of the image. This approach
was applied to develop a class of filtration algorithms,
some of which were presented in our previous papers
[7, 9].

The robust properties of the standard KNN filtration
algorithm (K nearest neighboring readings) are
improved by using the MMKNN filter (maximum-like-
lihood median filter of K nearest neighboring readings)

(10)

or the WMKNN filter (maximum-likelihood Wilkokson
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filter of K nearest neighboring readings)

(11)

Here, g(q)(i + m, j + n) and g(q)(i + m1, j + n1) are sets of
Kc pixels that are weighted with the  function and
are close to the values at the preceding step

 and  for filters (10) and
(11), respectively]. In addition, m, n = –L, ..., L;

 =  = ; (2L + 1)2 is the
size of the filtration window; q is the current iteration

number;  and  are the estimates at the
qth iteration; and Kc(i, j) is the current number of near-
est neighboring pixels. This number presents the local
activity of data and the presence of outliers in the filtra-
tion window and is determined as

Kc(i, j) = Kmin + aS(u(i, j)) ≤ Kmax.

Here,

the parameter a controls the sensitivity of the filtration
algorithm to local variations in data in order to deter-
mine the boundaries of objects, the maximum number
Kmax of elements neighboring the central element char-
acterizes the smoothing of boundaries and conservation
of small details of the image, and Kmin is the minimum
number of neighboring pixels for suppressing noise in
regions where sharp changes in the image are absent. In
the last formula, MADM is the median of the absolute
deviations from the median [9].

Using RM-estimates (6) and (7), we obtain new
algorithms: AMKNN (Ansari–Bradley–Siegel–Tukey
maximum-likelihood filter of K nearest neighboring
readings)

(12)

and MoMKNN (Mood maximum-likelihood filter of K
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(13)

Here, g(q)(i + m, j + n) and g(q)(i + m1, j + n1) mean the
same as in the above filters specified by Eqs. (10) and
(11). To suppress multiplicative noise, another robust
filter was proposed [8]. It recovers the details of an
image by using the above estimates , ,

, and  in the form

(14)

where

when using the simplest function ψ, which is replaced
with other functions: truncated median, Hampel, sine
Andrews, Tukey, or Bernoulli function. Here,
med{u(i, j)} is the median of the samples of pixels
within the filtration window; b controls the suppression
of multiplicative noise; m, n = –L, …, L, 2(L + 1) deter-
mines the size of the filtration window; and the initial

iteration is  =  or  =

 depending on the type of the preceding
filter. To conserve small details in the image, we apply
the following adaptive scheme, similar to that realized
in the Lee local statistical filter [9]:

(15)

where Q(i, j) is the robust estimate of the local activity
of the sample and c controls the reconstruction of small
details of the image.
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êM i j,( )

=  

u i j,( )ψ'˜ u i m j n+,+( ) ê 0( ) i j,( )–{ }
n L–=

L

∑
m L–=

L

∑

ψ'˜ u i m+ j n+,( ) ê 0( ) i j,( )–{ }
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=  
1   u i m + j n + ,( ) e ˆ 

0
 

( ) i j , ( ) b  med{ u i j ,( )≤  –  ,  

0   otherwise                
 
 

 
,
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Table 1.  Results of the filtration of various images contaminated with 20% impulsive noise

Algorithm
Barbara Boat Goldhill Lena Peppers 

PSNR MAE PSNR MAE PSNR MAE PSNR MAE PSNR MAE

5 × 5 median 21.62 14.32 20.80 14.51 22.41 14.46 23.09 10.95 22.83 11.24

WM 5 × 5 22.83 11.04 21.99 10.56 24.07 10.36 24.33 8.12 24.29 8.04

LUM 5 × 5 22.26 12.50 21.91 12.08 23.10 12.07 23.26 10.62 23.65 11.37

FIRMH 5 × 5 21.44 12.81 21.28 12.35 22.21 12.39 22.37 10.61 21.96 11.17

ROM 3 × 3 23.84 10.96 23.40 10.55 24.82 10.57 25.20 9.11 25.04 9.62

MMEM 3 × 3 22.93 12.09 22.92 11.36 24.16 11.09 24.52 9.46 24.40 9.67

TSM 3 × 3 21.77 13.86 21.47 13.13 23.11 12.43 23.56 10.80 22.96 11.38

ACWM 3 × 3 23.67 11.08 23.26 10.57 24.84 10.43 25.56 8.75 25.18 9.21

MMKNN, simple 23.13 11.26 22.19 11.95 24.80 10.28 24.90 8.54 24.74 8.83

MMKNN, truncated 23.49 10.79 22.89 10.04 25.33 9.93 25.68 7.55 25.97 7.52

MMKNN, Hampel 23.47 10.83 23.60 9.75 25.35 10.01 25.54 7.65 26.20 7.68

WMKNN, simple 23.42 10.86 22.99 10.19 25.22 10.00 25.63 7.62 25.90 7.59

WMKNN, truncated 23.45 10.81 23.02 10.15 25.29 9.97 25.66 7.60 25.92 7.55

WMKNN, Hampel 23.38 10.85 22.84 10.26 25.19 10.00 25.45 7.67 25.60 7.63
Therefore, the resulting cascade RM filter is deter-
mined by two filters: the MMKNN (WMKNN or new
filters AMKNN and MoMKNN) filter specified by
Eqs. (10)–(12) or (13), which suppresses noise with the
conservation of small details of the image, and the M
filter given by Eqs. (14) and (15), which suppresses
multiplicative noise.

5. The above filtration algorithms are realized by
using a Texas Instruments TMS320C6701 floating-point
processor for detecting and processing signals [5, 8].

Comparison was made with the following criteria:
(i) the peak signal-to-noise ratio

measured in decibels, where

is the mean square error, and (ii) the mean absolute
error

determining the quality of the reconstruction of small
details in the image [2].

PSNR 10log
255( )2

MSE
--------------- ,=
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To compare the qualitative characteristics, we also
simulate the following filters: (i) standard median,
(ii) general weighted median (WM) [2], (iii) lower–
middle–upper (LUM) [2], (iv) median hybrid (FIRMH)
[2], (v) rank ordered mean (ROM) [2], (vi) minimum–
maximum mean (MMEM) [10], (vii) three-state
median (TSM) [11], (viii) stack [2], and (ix) adaptive
center-weighted (ACWM) [12].

The developed filters were applied to process the
well-known and extensively used Barbara, Boat, Gold-
hill, Lena, Peppers, etc., images as test images. For the
PSNR and MAE criteria of the signal-to-noise ratio,
Table 1 presents some simulation results for various
probabilities of impulsive noise (in the absence of mul-
tiplicative noise). The results of the processing of vari-
ous images show that the proposed filters are preferable
for the reconstruction of small details (MAE values).
Moreover, the PSNR criterion for new filters is often
better than that for known filters [2, 9–12]. The filters
used for comparison with proposed filters were chosen
and realized according to [2, 9–12]. The characteristics
of these standard filters are better than those of other
known algorithms. We note that the ROM filter requires
a training stage and therefore cannot be realized in the
on-line regime.

The properties of the cascade RM filter specified by
Eqs. (10), (14), and (15) are tested on the Lena test
image contaminated by multiplicative noise with rms
deviations 0.05, 0.1, and 0.25 and impulsive noise with
various intensities. This filter is compared with the fol-
lowing filters developed to process images in the pres-
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Table 2.  Peak signal-to-noise ratio criterion in decibels for various filters

Exposure 
no.

Filter MMKNN-filter WMKNN-filter

WM TSM ACWM MMEM simple truncated Hampel simple truncated Hampel

1 23.53 27.90 29.52 27.68 32.54 33.04 33.75 32.84 36.63 35.11

2 27.49 28.21 29.85 27.78 34.59 35.21 36.63 35.05 44.25 40.33

3 29.01 28.34 29.82 28.16 36.22 37.06 39.03 36.67 37.66 40.09

4 30.04 28.79 29.95 27.73 36.26 38.51 42.75 37.15 40.11 47.24

5 26.58 27.96 29.59 27.72 34.06 35.19 35.94 34.43 40.17 39.44

6 27.58 28.08 29.78 27.77 35.81 36.97 38.75 36.38 46.53 53.95

7 32.41 28.12 29.66 28.54 39.95 45.90 42.09 41.80 34.34 36.70

8 32.36 28.17 29.82 28.16 37.49 39.67 42.64 38.48 39.52 40.63

9 30.65 28.48 30.10 28.17 40.75 44.12 42.50 41.97 35.23 36.74

10 30.22 29.08 29.91 28.29 40.01 43.18 42.45 41.52 38.18 40.18

Table 3.  Mean absolute error for various filters

Exposure 
no.

Filter MMKNN-filter WMKNN-filter

WM TSM ACWM MMEM simple truncated Hampel simple truncated Hampel

1 8.16 8.26 7.24 6.63 5.24 5.17 5.26 5.11 5.64 5.73

2 8.17 8.18 7.21 6.49 4.99 4.97 5.05 4.86 5.34 5.44

3 8.00 8.18 7.26 6.41 4.78 4.80 4.82 4.69 5.21 5.29

4 7.73 8.01 7.22 6.38 4.47 4.56 4.60 4.40 4.90 5.05

5 7.96 8.23 7.26 6.41 4.79 4.77 4.84 4.68 5.18 5.27

6 8.08 8.25 7.37 6.68 4.88 4.83 4.91 4.77 5.25 5.36

7 7.81 8.08 7.27 6.16 4.44 4.46 4.45 4.35 4.89 4.98

8 7.60 8.02 7.20 6.01 4.18 4.20 4.22 4.10 4.58 4.68

9 7.37 7.96 7.19 6.09 4.18 4.24 4.19 4.12 4.66 4.79

10 7.48 7.66 7.07 5.88 4.01 4.02 4.06 3.92 4.33 4.49
ence of such noises: normalized least squares NLMS-L
3 × 3, ROM 3 × 3, and vector median rational hybrid
VMRH 3 × 3. The developed RM filter specified by
Eqs. (10), (14), and (15) was realized for various influ-
ence functions ψ. The results show that the ROM and
VMRH filters better suppress noise and reconstruct
small details when the intensity of impulsive noise is
less than 5% or the intensity of multiplicative noise is
less than 0.05. For other cases, the proposed filters pro-
vide a significant gain for processing.

6. The MMKNN and WMKNN algorithms proposed
above were applied to process image sequences,
including a video sequence of positron emission
tomography (PET) with a rate of ten exposures per sec-
ond. Each exposure had a size of 256 × 256 pixels and
256 intensity grades. The PET sequence contaminated
with 20% impulsive noise was also processed by the
WM 3 × 3, MMEM 3 × 3, TSM 3 × 3, and ACWM 3 ×
3 filters, which were realized. The PSNR values pre-
sented in Table 2 show that the MMKNN and WMKNN
filters suppress noise better than other filters. Table 3
presents similar results for another criterion corre-
sponding to the quality of reconstructing small details
in the image. In this case, the proposed filters have bet-
ter criterion values than all other filters. In the last
experiment, the Carphone and Miss America video
sequences, which are often used in applications and
have sizes 176 × 144 pixels, were contaminated with
20% impulsive noise and filtered. The results of their
processing by various filters (Table 4) show that the
DOKLADY PHYSICS      Vol. 48      No. 6      2003
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(a) (b)

(d)(c)

Fig. 1. Suppression of multiplicative and impulsive noise in the Miss America video sequence: (a) original image, (b) noisy image,
(c) Frost filter, and (d) cascade Hampel filter.
MMKNN and WMKNN algorithms are preferable
according to the PSNR and MAE criteria. The
MMKNN, WMKNN, AMKNN, and MoMKNN filters
can process 176 × 144-pixel sequences, improving their
quality by suppressing noise and reconstructing small
details at nearly the rate of a standard film, which is
important for computer visualization. The Miss Amer-
ica video sequence contaminated with multiplicative
and impulsive noise (Fig. 1) was processed by the Frost
filter (Fig. 1c) and proposed cascade RM filter specified
by Eqs. (10), (14), and (15) with the Hampel influence
DOKLADY PHYSICS      Vol. 48      No. 6      2003
function (Fig. 1d). The visual results of processing
show that the proposed filter ensures virtually on-line
processing with better suppression of noise and recon-
struction of small details.

Experimental investigations of new robust filtration
algorithms provide the following conclusions.

(i) The proposed RM robust filters combine the
properties of rank and M-estimates and can therefore
efficiently suppress noise of various physical natures
and reconstruct small details of images.
Table 4.  Characteristics of the processing of noisy video sequences by various filters

Algorithm
Carphone Miss America 

PSNR MAE time PSNR MAE time

WM 23.84 9.81 0.008 35.53 5.76 0.008

TSM 21.53 13.25 0.029 27.89 8.74 0.0219

ACWM 24.35 9.79 0.092 29.28 7.86 0.092

MMEM 23.61 11.11 0.016 28.11 7.056 0.016

LMMSE 24.16 10.05 0.030 30.72 7.158 0.0299

MMKNN, simple 24.59 9.27 0.042 33.087 5.993 0.045

MMKNN, truncated 24.77 9.084 0.024 36.99 4.293 0.026

MMKNN, Hampel 24.76 9.107 0.027 39.70 4.239 0.0292

WMKNN, simple 24.78 9.084 0.028 37.17 4.136 0.0307

WMKNN, truncated 24.08 9.47 0.055 40.68 4.663 0.0605

WMKNN, Hampel 24.02 9.47 0.031 35.58 4.806 0.0326
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(ii) The cascade RM filter suppresses noise and
reconstructs small details better than do other known
filters.

(iii) The application of new algorithms to the filtra-
tion of video sequences of various types of images
shows that these sequences can be processed on-line by
a digital signal processor.
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It is known that the best mechanical properties of
polymer composite materials for constructional pur-
poses are achieved by using carbon fibers to reinforce
thermoplastic and thermosetting matrices [1]. It is com-
monly accepted that carbon fibers, in contrast to ori-
ented aramide fibers, hold stable properties under
extremely difficult operation conditions (mechanical
loadings, moisture and corrosive media, radiation, ele-
vated temperatures, thermal cycling, etc.) [1–3]. Never-
theless, instability is inherent in carbon fibers. Carbon
fibers are produced by means of the thermal treatment
of oriented polymer fibers [1, 3]. To ensure high elastic
modulus, additional tensile stresses are applied in the
process of thermal treatment. The structure and proper-
ties of such fibers are formed and stabilized in a field of
mechanical stresses. Therefore, the heating of carbon
fibers and related polymer composite materials is usu-
ally accompanied by shrinkage rather than by an
increase in linear dimensions in the reinforcement
direction [4–7].

It is structural nonequilibrium resulting from the
production method that is responsible for the negative
coefficient of linear thermal expansion (CLTE) of car-
bon fibers. It is usually assumed [2, 4] that the temper-
ature deformations of carbon fibers are reversible,
because fibers can retain the level of built-in nonequi-
librium upon heating and cooling. However, this is not
corroborated experimentally due to the insufficient sen-
sitivity of measuring instruments (linear dilatometers)
when investigating fibers with a low CLTE [4–7].
Therefore, reliable information concerning temperature
deformations in carbon fibers after several thermal
cycles is of particular interest.
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For this reason, we precisely measured the thermal
expansion of carbon fibers by using a specially
designed linear dilatometer [8]. This instrument can
continuously measure the length of a sample that is
heated and cooled with a rate of about 1 K/min. The
method used to monitor the absolute expansion makes
it possible to reliably measure the CLTE of carbon
fibers (consisting of bundles or bands) with an accuracy
of 0.5 × 10–7 K–1. In our experiments, variations in the
length of the sample in five heating–cooling cycles
between room temperature and 350–400°C were mea-
sured.

Typical examples of measurements are shown in
Figs. 1 and 2. For comparison, the thermal strains of
T-300JB, LZhU-35, and LU-24P carbon fibers, as well
as unidirectional carbon plastics made of these fibers
and a VS-2526 epoxy binder, are also shown [1].
Depending on the fiber type, production method, elastic
modulus, and other factors, the thermal strains of fibers
and carbon plastics are different in absolute value on
the first heating to 350–400°C but have common nega-
tive sign.

The temperature strains of each fiber shown in
Fig. 1 were measured in five heating–cooling cycles
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Fig. 1. Temperature dependence of the thermal strain of
(1) T-300JB, (2) LZhU-35, and (3) LU-24P carbon fibers.
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from room temperature to 350–400°C. As a result, we
experimentally proved the instability of thermal expan-
sion after several heatings. In all cases, with increasing
number of thermal cycles, negative thermal strains
decreased and the effect obviously exceeded possible
experimental error. The effect is illustrated in Fig. 3,
where the temperature dependences of the thermal
strain and the CLTE of the LU-24P carbon fiber in the
first and fifth cycles are shown.

Some quantitative results describing the effect of
heatings on the thermal extension of fibers are listed in
the table. It should be noted that the effect of decreasing
temperature strains varies in the temperature range
under investigation. For example, for the LU-24P fiber
at a temperature of 50°C, the CLTE rises by 40%,
whereas at 250°C, by 20%. In specific cases, e.g., for
T-300JB fiber at 250°C, the CLTE changes its sign with
an increase in the number of cycles but nevertheless
increases. At the same time, the thermal gravimetric
measurements showed that the sample masses remain
unchanged after thermal cycling. Therefore, the results
obtained are unrelated to the processes of thermal oxi-
dation of fibers but corroborate the assumption that
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Fig. 2. Temperature dependence of the thermal strain of car-
bon plastics made of the VS-2526 binder and (1) T-300JB,
(2) LZhU-35, and (3) LU-24P carbon fibers.
structural nonequilibrium relaxes in the process of ther-
mal cycling.

Since only a few measurements were carried out, it
is impossible to quantitatively estimate the effect.
Therefore, additional measurements with variable
amplitude and number of thermal cycles are of current
interest. This is illustrated by the following final exam-
ple. To estimate the serviceability of KMU-4l carbon-
plastic specimens made of the LU-P fiber and ENFB
binder under outer-space conditions, they were exposed
for a long time in the open state on the surface of the
Mir orbital space station. Detailed information on this
experiment is available in [9, 10]. It was shown that,
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Fig. 3. Temperature dependences of the thermal strain and
the coefficient of linear thermal expansion for the LU-24P
carbon fiber in the (1) first and (2) fifth thermal cycling.
Coefficients of linear thermal expansion on successive heatings of carbon fibers at temperatures 50 and 250°C

Fiber

CLTE, 10–7 K–1

T = 50°C T = 250°C

1 2 3 4 5 1 2 3 4 5

T-300JB –6.1 –4.3 –4.2 –3.6 –3.2 1.0 2.5 2.9 4.3 4.6

LZhU-35 –7.5 –6.8 –6.6 –6.5 –6.0 –3.5 –3.0 –2.5 –2.2 –2.0

LU-24P –18 –15 –14 –12 –11 –7.8 –6.6 –6.5 –5.6 –5.6
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among all factors acting in near-Earth orbit, thermal
cycling, where temperature varied between +125 and
−100°C every 1.5 h, and a vacuum of about 10–4 Pa pro-
vided the most significant effect.

Figure 4 shows the temperature dependences of the
thermal strain of the KMU-4l carbon plastic in the ini-
tial state and after exposure in outer space for 839,
1024, and 1218 days. It turned out that great number of
thermal cycles (13000–19000) even for such a small
amplitude causes significant relaxation of the carbon
fiber. After thermal cycling in outer space, the speci-
mens virtually lost the capability to be shortened with
an increase in temperature. As was shown in [9, 10], the
character of deformations in the KMU-4l carbon plastic
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Fig. 4. Temperature dependences of the thermal strain of the
KMU-4L carbon plastic (1) in its initial state and after expo-
sure in the outer space for (2) 839, (3) 1024, and
(4) 1218 days.
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in this example changed due to the modification of the
properties of the fiber rather than the binder.

Thus, the above results prove that present high-mod-
ulus carbon fibers can reduce both the level of their
structural nonequilibrium and their negative tempera-
ture strains in thermal cycling. This effect is of great
importance in the forecasting of size stability of car-
bon-plastic elements designed to operate at variable
temperatures.
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INTRODUCTION

The application of polymer composites as construc-
tion materials in the aviation industry requires the com-
prehensive investigation of their mechanical properties.
Moreover, variations in these properties under various
external factors (heat and moisture actions, thermal
cycling, irradiation, atmospheric aging, etc.) must be
predicted. Variation in the anisotropy of the mechanical
properties of sheet polymer composites is among the
less studied aspects of external actions on these materi-
als. In this paper, we study the moisture action on the
anisotropy of the dynamic shear modulus of sheet
glass-reinforced plastics used in aviation.

EXPERIMENT

We investigated samples of the KMKS-1.80.T-10
sheet glass-reinforced plastic based on adhesive
prepregs [1, 2]. The material was developed at VIAM
for the aviation industry.

To investigate the effect of moisture on the anisot-
ropy of the mechanical properties of the material, we
used 80 × 10-mm samples cut from a sheet of the glass-
reinforced plastic at the angles 0°, 45°, 60°, and 90° to
the principal reinforcement direction. All samples were
divided into three identical sets and subjected to pre-
liminary drying in an exsiccator at a temperature of
60 ± 2°ë to stabilize their mass. Then, samples of the
second and third sets were exposed to a humid environ-
ment with a relative humidity of 98 ± 2% at the same
temperature until their moisture content reached its
limiting value (2.5%). Then, the third-set samples were
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dried repeatedly. Moisture sorption and desorption in
laminated plastics with allowance for both the effects of
the cutting edge and nonequilibrium processes were
simulated in detail in [1].

Original (preliminarily dried), moistened, and
repeatedly dried samples were investigated by the
method of dynamic mechanical analysis [3] with an
automatic inverse torsion pendulum [4]. As a result, we
obtained their dynamic shear modulus G' and mechan-
ical-loss tangent  as functions of temperature.

RESULTS AND DISCUSSION

The dynamic mechanical analysis revealed a con-
siderable plasticizing moisture action on the epoxy
matrix of the material under investigation. For samples
cut along the principal reinforcement direction, Figs. 1
and 2 show the temperature dependences of the
dynamic shear modulus and mechanical-loss tangent,
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Fig. 1. Temperature dependence of (a) the dynamic shear
modulus and (b) its temperature derivative for samples of
the glass-reinforced plastic with 0° cutting angle (1) in the
original state, (2) for a moisture content of 2.5%, and
(3) after repeated drying. Temperatures at the minima are
shown near the lines.
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when the glassy binder transforms to the high-elasticity
state. Data of the dynamic mechanical analysis were
processed by the method proposed in [5]. The vitrifica-
tion temperature of the binder, which was determined
by the minimum of the temperature derivative G',
decreases by 36°C in the moistened state but is recov-
ered after moisture desorption. The dynamic shear
modulus after moistening at room temperature
decreases by 31% from its initial value but is recovered
after desorption. Reversibility of the plasticizing action
of moisture is also corroborated by the temperature
dependence of the mechanical-loss tangent: the peak
corresponding to the binder vitrification temperature
(to the α-transition [5]) in the  curve is shifted to
lower temperatures after moisture sorption and recov-
ers its position after moisture desorption (Fig. 2).

It is noteworthy that moistening is responsible for a
two-stage relaxation transition in the temperature
dependence of the dynamic shear modulus (Fig. 1) and
transforms one peak in the temperature dependence of
the mechanical-loss tangent into two pronounced max-
ima (Fig. 2). For the moistened epoxy matrix, one max-
imum of  is situated near 77°C and is associated
with the mobility of kinetic segments interacting with
water molecules. The second maximum is located near
115°C and corresponds to regions where water is des-
orbed during measurements for the dynamic mechani-
cal analysis.

The two-stage variation in the temperature depen-
dence of the G' parameter can be attributed to the same
kinetic effect. Similar effects were observed in experi-
ments with samples cut at different angles.

Thus, the results presented above prove that mois-
ture absorbed by a glass-reinforced plastic plasticizes a
binder. However, this effect is reversible in the glass-
reinforced plastic based on adhesive prepregs. Similar
results were obtained in [1, 2].

Figure 3 shows the temperature dependence of the
dynamic shear modulus for original samples cut at var-
ious angles. This figure clearly shows that the behavior
of the parameter G' is anisotropic. The virtually com-
plete coincidence of the curves that correspond to cut-
ting angles 0° and 90° with respect to the principal rein-
forcement direction can be attributed to the symmetry
of the packing of reinforcing glass fibers.

To quantitatively describe the anisotropy of the
dynamic shear modulus in a sample cut at the angle ϕ
with respect to the principal reinforcement direction,

we use the parameter  =  proposed in [6]. Here,

 is the dynamic shear modulus in the sample cut at
an angle such that G' is maximal. For the reinforcement
pattern used in the glass-reinforced plastic under inves-

tigation,  = .

The temperature dependence of the anisotropy
parameter ξ (Fig. 4), which is obtained by the dynamic

δtan

δtan

ξ
Gmax'
Gϕ'

-----------

Gmax'

Gmax' G45'
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mechanical analysis, shows that ξ in the glassy state of
the binder (before its softening) is almost independent
of temperature. In addition, the anisotropy of the moist-
ened material is much larger than the anisotropy of both
the original and repeatedly dried samples. In the region
of the α transition (transition of the binder from the
glassy state to the high-elasticity state), the anisotropy
of the dynamic shear modulus also increases sharply.
For all investigated cutting angles, maxima in the tem-
perature dependences of the anisotropy of the dynamic
shear modulus shift to lower temperatures when the
material is moistened. When the sample is repeatedly
dried, maxima recover their positions. This fact again
illustrates the effect of the reversible plasticization of
the epoxy binder under the action of moisture. Here, the
two-stage character of softening of the binder under
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Fig. 2. Temperature dependence of the mechanical-loss tan-
gent for samples of the glass-reinforced plastic with 0° cut-
ting angle (1) in the original state, (2) for a moisture content
of 2.5%, and (3) after repeated drying. Temperatures at the
minima are shown near the lines.
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Fig. 3. Dynamic shear modulus versus temperature for the
original samples of the glass-reinforced plastic, which were
cut at angles (1) 0°, (2) 45°, (3) 60°, and (4) 90°.
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humidification is also pronounced. The second, less
distinct, high-temperature peak is associated with the
mobility of epoxy-binder macromolecules in sample
regions, where water is desorbed during measurements
with the torsion pendulum and heating of the sample at
a rate of 1 K/min.

A common feature of the measurements conducted
for four sorts of similar glass-reinforced plastics based
on adhesive prepregs is that the parameter ξ is indepen-
dent of temperature or depends on it only slightly in the
region of the high-elasticity state of the binder. For
example, Fig. 4 shows that the anisotropy of the
dynamic shear modulus is approximately identical for
both original and repeatedly dried samples in the tem-
perature range 140–180°C. However, in the region of
the high-elasticity state of the binder, the curves corre-
sponding to the moistened samples lie higher, because
moisture is not completely desorbed from samples dur-
ing experiments even at temperatures 170–180°C. The
moistened samples with the glassy binder contain much
more moisture than the same samples after the binder’s
transition to the high-elasticity state. Nevertheless, the
residual moisture noticeably affects anisotropy at
higher temperatures, because the plasticizing action of
moisture on the epoxy binder is much stronger in the
high-elasticity state.

In the region of α transition, the temperature depen-
dences of the anisotropy parameter ξ are similar for dif-
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Fig. 4. Temperature dependence of the anisotropy parame-
ter ξ for samples of the glass-reinforced plastic with 0° cut-
ting angle (1) in the original state, (2) for a moisture content
of 2.5%, and (3) after repeated drying. Temperatures at the
minima are shown near the lines.
ferent samples (all curves have maxima) and fluctuate
strongly (peak heights vary in a wide range from sam-
ple to sample). These fluctuations are probably caused
by high sensitivity of the experimental procedure. Pos-
sible temperature gradients in the sample during exper-
iments of the dynamic mechanical analysis with vary-
ing temperature affect the temperature dependence of
the anisotropy of the dynamic shear modulus in the
region of the α transition. The determination of the
cause of these fluctuations requires additional measure-
ments with new series of glass-reinforced plastics and
analysis of their results.

Nevertheless, in the α-transition region of the
binder, the characteristic temperatures in the tempera-
ture curves of the parameter ξ correlate well with the
corresponding temperatures obtained by well-known
methods [5, 6], where curves of the dynamic mechani-
cal analysis are processed by spectrometric methods.
The correlation dependence of the characteristic tem-
peratures (extrema and inflection points corresponding
to the α-transition region), which are determined by
using the temperature curves of the parameter ξ and the
temperature derivatives of the dynamic shear modulus
G', is linear with the correlation coefficient R2 = 0.91.
Therefore, the maxima and inflection points in the tem-
perature dependence of the anisotropy parameter ξ can
be used as additional independent criteria when deter-
mining the vitrification temperature and boundaries of
the α transition in anisotropic laminated polymer com-
posites.
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Experimental investigations of various scenarios of
the transition from laminar to stochastic flow modes are
extensively used to study turbulence. Scenarios whose
development is accompanied by the formation of inter-
mittency can be separated among typical scenarios of
the transition to stochasticity. Intermittency means that
the regular time behavior of a system is interrupted by
intervals of the irregular behavior for the same values of
controlling parameters [1]. As one of the controlling
parameters increases, the average duration of the regu-
lar behavior of the system decreases, and the behavior
of the system becomes completely chaotic at a certain
value of this controlling parameter.

Intermittency can exist both in time (time alterna-
tion of periodic and aperiodic sections, when a detector
is fixed in space) and in space (coexistence of laminar
and turbulent sections in the flow structure) [2]. Both
spatial and time intermittencies for boundary layers
have been studied experimentally for a long time [2].
The possibility of the transition to chaos through time
intermittency in confined hydrodynamic flows was exper-
imentally corroborated for convection (see, e.g., [3]). For
confined shear flows such as the Couette flow, spatial
intermittency is determined from the structure of the
surface layer of the flow [4]. Time or spatial intermit-
tencies in the spherical Couette flow have not yet been
observed.

Experimental investigations of the processes of
space–time intermittency are very important particu-
larly for three-dimensional flows, because comparison
between regular and irregular parts of a time signal can
apparently provide the basis for testing the methods of
averaging used in calculations of turbulent flows.

In this work, we present the experimental results for
intermittency modes in a spherical Couette flow, which
is the shear flow arising in a viscid incompressible fluid
between two spherical boundaries when the spheres
rotate about a common axis. The flow in a spherical
layer is determined by three characteristic parameters:

Institute of Mechanics, Moscow State University, 
Michurinskiœ pr. 1, Moscow, 117192 Russia
1028-3358/03/4806- $24.00 © 20309
relative thickness δ =  of the spherical layer,

where r2 and r1 are the radii of the outer and inner

spheres, respectively, and two numbers Rei = ,

where i = 1 and 2 for the inner and outer spheres,
respectively; Ωi is the angular velocity of the corre-
sponding sphere; and ν is the kinematic viscosity of the
fluid in the layer. Experiments were carried out in a
wide spherical layer with relative thickness δ = 1.006
while varying the two controlling parameters, Re1 and
Re2, in the range –950 < Re2 < –850; negative Re2 val-
ues correspond to the opposite direction of the rotation
of the spherical boundaries.

The processes of the transition to stochasticity for
the flow in a wide spherical layer were previously stud-
ied experimentally both for the rotation of only the
inner sphere (Re2 = 0) [5, 6] and for the opposing rota-
tion of the spherical boundaries (–950 < Re2 < –700) [7,
8]. In the latter case, it was shown that, for Re2 fixed in
the above range and for a quasistatic variation of Re1,
the transition to stochasticity occurs from the single-
frequency periodic mode of the flow. The spatial struc-
ture of this periodic flow, which is called the mode of
localized vortices, is symmetric about the equatorial
plane and presents vortices that are located equidis-
tantly in azimuth on both sides of the equator and are
similar to open Taylor rings. The vortices are inclined
to the equatorial plane and propagate in the direction of
the outer-sphere rotation.

As excess over the critical value increases, a hard
transition to chaos occurs with the breaking of the equa-
torial symmetry of the spatial flow structure. At the
same time, as will be shown below, the scenarios of
transition to stochasticity that were obtained in [7, 8]
are not uniquely possible in the controlling-parameter
range under consideration, because they can depend on
the prehistory of the flow. The aim of this work is to
analyze the possibility of obtaining intermittency
modes in the spherical Couette flow and to determine
the basic features of these flow modes.

r2 r1–
r1

--------------

Ωiri
2

ν
----------
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Fig. 1. Signal of velocity pulsations for Re1 = 429.6 and Re2 = –900, ∆i = 1000 corresponds to 60 s.
Experiments were performed on a setup ensuring a
spherical gap with the use of transparent concentric
spheres 300 and 150 mm in diameter [9]. A transparent
solution of silicon oils with a viscosity of about 50 ×
10–6 m2/s at 20°C was used as the working fluid. For the
visualization of the flow, a small amount of an alumi-
num powder (less than 0.002 vol %) was added to the
silicon oil, which held the optical transparence of the
spherical layer. The pulsations of the flow velocity were
measured by a laser Doppler anemometer (with the use
of a 55L10 DISA photomultiplier and 1090 TSI signal
processor). An analog signal from the exit of the signal
processor was obtained with the cutoff of the constant
component and removal of the low-amplitude high-fre-
quency component whose frequency exceeds 3 Hz.

Measurements were carried out at a point spaced by
120 mm from the rotation axis of the spheres. The mea-
sured projection of the velocity lies in the plane that is
parallel to the equatorial plane and spaced from it by
75 mm. The results of measurements are discrete sam-
ples of an analog signal, which have a length of 215–216

points and are obtained with an interval of 0.06 s. All
measurements were carried out under the stationary
conditions for constant (with a relative deviation of
0.05% or less) rotation velocities of the spheres and
constant temperatures in the layer. The transition from
the zero initial conditions to each of the modes under
consideration was made as follows. The required veloc-
ity of the outer sphere was established for the fixed
inner sphere (Re1 = 0), and then the rotation velocity of
the inner sphere was varied at a constant Re2 value.

To avoid the effect of the acceleration of the inner
sphere, the method of so-called quasistatic variation of
its rotation velocity was previously used [7, 8]. In this
case, near the region of the transition from one flow
mode to another, the rotation velocity of the inner
sphere is changed by a small value with acceleration

 < 0.1% per second. Then, the rotation velocity

holds constant during 15 min or longer. In this scheme,
the change in the inner-sphere acceleration (when this
quantity is below the threshold value) does not affect
the results, which was pointed out in previous experi-
ments on studying transitions to chaos in a cylindrical
Couette flow [4].

∆Re1

Re1
------------
The method of the acceleration of the inner sphere
in that work is different than the method described
above. Once the mode of localized vortices is estab-
lished, the rotation velocity of the inner sphere varies
continuously to the given values, with the acceleration

lying in the range 0.3 <  < 0.5% per second. The

method of experimentally determining the time of tran-
sient processes accompanying the change in Re1 with a
nonzero acceleration was developed. To this end, the
signal of velocity pulsations was continuously recorded
when Re1 is varied: first, at the Re1 value corresponding
to the mode of the flow of localized vortices, second, in
the process of variation from Re1 to Re1 + ∆Re1
(∆Re1 < 5), and finally, at Re1 + ∆Re1 . The Fourier
transform for the time-record section corresponding to
the Re1 + ∆Re1 flow mode can exhibit the presence of
two close frequencies (corresponding to Re1 and Re1 +
∆Re1 , respectively). Owing to the shift of the constant-
length time section from the termination of the process
of varying Re1, only the second frequency remains in
the spectrum, and the value of this shift corresponds to
the duration of the transient process. The application of
this method indicated that the transient process is
12 min or less.

The results of measurements indicate that the equa-
torial symmetry of the spatial structure of the flow
under the rapid change in Ω1 is broken at the same Re1
values as those previously obtained in [7, 8]. However,
the qualitative shape of the velocity signal can be fun-
damentally different: regular sections can be observed
in the signal, while the signal became completely irreg-
ular in previous experiments reported in [7, 8]. The sig-
nal of pulsations from the analog exit of a TSI laser
Doppler anemometer is shown in Fig. 1, where inter-
mittency—the time alternation of periodic and aperi-
odic sections for the same boundary conditions of the
flow—is pronounced. In this case, different sections of
the time record correspond to different spatial struc-
tures. Namely, time-periodic sections correspond to the
azimuth-periodic spatial structure that presents local-
ized vortices observed previously before the transition
to chaos for the quasistatic change in the Re1 number
[7, 8], while time-aperiodic sections correspond to
irregular spatial structures.

∆Re1

Re1
------------
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We emphasize that the spatial structure of the flow
with intermittency in both periodic and aperiodic sec-
tions of the signal depends on the direction of the vari-
ation of Re1.

As Re1 decreases in the aperiodic section, the flow
structure involves short-term intervals of formation and
decay of vortices localized near the inner sphere; the
flow is most irregular near the inner sphere. As Re1
increases, small-scale structures expand over the entire
width of the spherical layer.

For any direction of Re1 variation in periodic sec-
tions of the signal, the mode of localized vortices is
symmetric about the plane parallel to the equator. How-
ever, this symmetry plane is slightly shifted above and
below the equator with a decrease and increase in Re1,
respectively. This asymmetry can be attributed to the
effect of the suspension of the inner sphere. The shift of
the symmetry plane of spatial structures from the equa-
torial plane for a rapid change in the rotation velocity of
the inner spherical boundary at Re2 = 0 was previously
observed in a layer of relative thickness δ = 0.154 [10].

Experiments indicated that, to obtain reproducible
characteristics of intermittency, it is necessary to ensure
a certain sequence of changes in the controlling param-
eters: first, the mode of localized vortices must be
established by quasistatically varying the controlling
parameters (as was done in [7, 8]); then, it is necessary
to rapidly vary Re1 to the Re1h value corresponding to
the transition to chaos for a quasi-static variation of Re1
and hold the parameters of the flow constant for 40 min
or longer. After the appearance of intermittency, one
can quasistatically vary Re1 to the necessary value and
conduct measurements. All the data below were
obtained by this method of varying Re1.

In this work, intermittency modes were observed in
the Re2 range from –870 to –950, and the most complete
data were obtained for Re2 = –900. Figure 2 shows the
various characteristics of intermittency for this Re2 value.

Time intermittency is characterized by the average
duration 〈l〉  of the laminar phase and by the time-signal
type [1, 3]. The average duration of the laminar phase
is the ratio of the total length of laminar sections to the
total length of the record. Figure 2a shows 〈l〉  as a func-
tion of Re1 and direction of its variation. Line 1 in Fig. 2
corresponds to the boundary of intermittency appear-
ance, which coincides with the boundary of the transi-
tion to the completely irregular mode of the flow for a
quasistatic increase in Re1. With the increase in Re1,
the total duration of periodic sections decreases, and
the flow becomes completely stochastic for Re1 > 432
(line 2 is the boundary of the intermittency existence
region with an increase in Re1). As Re1 decreases, inter-
mittency is observed to the left of line 1 until the lower
boundary of the hysteresis region of the mode of local-
ized vortices, which was obtained in [8] for a quasis-
tatic variation of Re1 (line 3) and thus coincides with
the lower boundary of the intermittency hysteresis.
DOKLADY PHYSICS      Vol. 48      No. 6      2003
The signal from the laser Doppler anemometer that
was observed in the experiment (Fig. 1) enables one to
easily distinguish between time-periodic and time-ape-
riodic sections of the flow. For the time intermittency
considered in this work, all spectra of aperiodic sec-
tions for all values and directions of Re1 variation
involve 3 to 15 discrete peaks above the noise level in
the range from 0.001 to 0.2 Hz. All peaks can be repre-
sented in the form of a linear combination of two inde-
pendent frequencies (f1 and f2 in Fig. 3) within the accu-
racy of data processing. These frequencies differ from
the frequency fp characteristic for periodic sections.
Thus, irregular sections of the intermittency mode are
quasiperiodic in a certain sense. The independent fre-
quencies f1 and f2 are virtually independent of Re1. As
excess above the critical value increases, the number of
peaks at combination frequencies in the spectrum
increases, and amplitudes of these peaks also increase.

The noise levels for periodic and aperiodic sections
of the signal differ from each other by more than two
orders of magnitude (Fig. 3). We emphasize that all the
above qualitative characteristics of the spectra of irreg-
ular sections of the flow completely correspond to the
properties of the spectrum of the chaotic mode obtained
previously in [7] for a quasistatic variation of Re1. The
spectrum of periodic sections includes one frequency
with higher harmonics (the peak at frequency fmod cor-
responds to the amplitude modulation of the instru-
ments), and the ratio of the amplitudes of peaks at the
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Fig. 2. Intermittency parameters for Re2 = –900: (a) average
duration of the laminar mode and (b) relative amplitude of
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fundamental frequency fp and second harmonic 2fp is
constant.

The relations between periodic and irregular parts of
the signal, which were determined experimentally, pro-
vide the assumption that the observed transition to sto-
chasticity can be attributed to intermittency between
the regular periodic and irregular quasiperiodic modes
of the flow. Similar transitions to stochasticity, which
were also accompanied by hysteresis, were observed
previously in radio physics systems [11].

Figure 2 shows the relative amplitude of velocity
pulsations as a function of Re1 for various signal sec-
tions and different directions of varying Re1. The rela-
tive amplitude is determined as

where xi is the instantaneous value of the measured
velocity projection and N is the sample length.

It is seen that the increase in the relative amplitude
in the transition to chaos, which is well known from the

A
x
σ
--- x, 1

N
---- xi,

i 1=

N

∑= =

σ2 1
N 1–
------------- xi x–( )2,

i 1=

N

∑=
results of numerical calculations (see, e.g., [12]), exists
in the entire range of existing intermittency modes
(lines 4 and 5 in Fig. 2, which were calculated for irreg-
ular sections of the signal, lie above lines 6 and 7, cal-
culated for periodic sections of the signal). The behav-
iors of the relative amplitude with varying Re1 are dif-
ferent for the chaotic and periodic sections of the
signal. As Re1 decreases, the relative amplitude of peri-
odic sections (line 6) is virtually constant, while the rel-
ative amplitude for chaotic sections (line 4) increases
by 30% or more. As Re1 increases, the relative ampli-
tude of chaotic sections (line 5) is constant, and the rel-
ative amplitude of laminar sections (line 7) decreases.
The difference between the relative amplitudes for peri-
odic and aperiodic sections is maximal at the bound-
aries of the region of intermittency existence (lines 2
and 3) and is minimal at the boundary of the transition
to chaos for a quasistatic increase in Re1 (line 1).

The discrepancy between the amplitudes and com-
positions of the spectra of velocity pulsations for peri-
odic and aperiodic sections testifies to the presence of
transient processes when a periodic section of the flow
changes to an irregular one and vice versa. It is difficult
to identify these transient processes directly in the
record of the signal (Fig. 1). Since the most pronounced
differences between laminar and chaotic modes are
DOKLADY PHYSICS      Vol. 48      No. 6      2003



EXPERIMENTAL INVESTIGATION OF INTERMITTENCY MODES 313
1

10000 2000 3000 4000 5000
i

2

3

–2

0

–4
x

dx dt



2

dx dt



 av

2–
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associated with different levels of dissipation of the
kinetic energy of the flow, these transient processes can
be revealed in the time dependence of local dissipation.

Local dissipation in turbulent flows has not yet been
directly measured. To indirectly determine this quantity
in experiment, Meneveau and Sreenivasan [13] sug-

gested using the velocity derivative squared  nor-

malized to its average value. Figure 4a shows the part of
the signal record from the laser Doppler anemometer
with two transitions: from a periodic to irregular section
and vice versa. Figure 4b shows the time dependence of
the normalized velocity derivative squared (finite-differ-
ence approximation of the time derivative with further
averaging over 50 points is used).

It is seen that the onset of the chaotic section is
accompanied not only by an increase in the maximum
amplitude of local dissipation but also by further oscil-
lation variations in amplitude. It is notable that the
composition of the spectrum of the local dissipation
amplitude in all regular sections of the time record
coincides with the spectrum of the original signal. The
same behavior is observed for some irregular sections
of the time record, which can provide the selection of
coherent structures in chaotic flows.

Thus, a rapid variation of Re1 is shown to be respon-
sible for a new scenario of the transition to chaos, and
this scenario is characterized by the presence of inter-
mittency between regular periodic and irregular aperi-
odic modes. This scenario is accompanied by hysteresis
whose boundaries coincide with the boundaries of the
hysteresis of the chaotic mode obtained in [8] for a qua-
sistatic variation of Re1. We emphasize that all the
above characteristics of intermittency belong to only
one way of varying Re1 that is considered in this work.

∂xi

∂t
------- 

 
2
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In many problems of nonlinear mechanics, the equa-
tions of motion (or state) cannot be reduced to a com-
pletely dimensionless form by using only the parame-
ters of a system [1–4]. In these cases, it is impossible to
introduce small numerical parameters characterizing
the relative smallness of the terms taken into account in
equations. The introduction of such parameters is usu-
ally of primary interest in physics and mechanics, when
the effect of various perturbing factors is investigated.
The equations of perturbed motion (or state) will
involve so-called dimensional parameters, whose spe-
cific (in particular, zero) values correspond to the
known generating solution. The application of the stan-
dard perturbation method leads to an apparent difficulty
associated with the proper choice of units of measure
for the above parameters. However, since terms that are
compared when expanding solutions and operators
have the same units of measure, dimensional parame-
ters can be properly used to determine and include per-
turbing factors with the required relative or absolute
errors. In particular, in comparatively scarce cases,
where numerical parameters are introduced, actual dif-
ficulties appear due to both the irregular behavior of
other (not small) parameters and the absence of the
physical meaning of the generating problem.

In this study, we describe a perturbation procedure
for solving a class of nonlinear problems in mechanics.
The procedure is based on introducing an artificial small
parameter (intermediate asymptotic behavior [3, 4]) to
construct a solution with the required accuracy.

1. We consider a nonlinear initial–boundary value
problem in mechanics. It can be written in the operator
form

(1)A z[ ] ωB z[ ]+ 0,=
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where z = z(x, t) is an unknown function that can be
vector or tensor; x ∈  D is the vector coordinate; t is the
time, 0 ≤ t ≤ T < ∞; A and B are sufficiently smooth non-
linear operators, which specify the equations in a
domain and the boundary and initial conditions; and ω
is a dimensional parameter that, for brevity, does not
enter into the expressions for A and B [5, 6].

Let the characteristic geometric physicomechanical
parameters of the system, on which the A and B opera-
tors depend, be unable to form a combination Ω with
the unit of measure of ω. In other words, a basis com-
posed of any characteristic quantities excluding ω is
incomplete; i.e., it is impossible to represent ω in
dimensionless form and to introduce a so-called small

numerical parameter ε =  ! 1.

Let problem (1) for ω = 0 have a known solution z0:

(2)

Then, there appears the problem of the asymptotic rep-
resentation of the solution z(x, t, ω) of problem (1) near
z0(x, t) for ω  0. As is known, the smaller the asymp-
totic parameter, the closer the finite sum of the corre-
sponding asymptotic series (e.g., in the Poincaré sense)
to the sum of the entire series. However, in this case, the
parameter ω is dimensional, and its smallness is mean-
ingless.

Nevertheless, we introduce a certain artificial
dimensionless parameter τ, which has not yet related to
the original mechanical system, and perform an asymp-
totic expansion in terms of this parameter:

(3)

According to the formulation of problem (1), which
does not involve τ in an explicit form, both the func-
tions z and Z are independent of this parameter. Substi-
tuting representation (3) into Eq. (1) and assuming that

ω
Ω
----

A z0 x t,( )[ ] 0, z0 ò 0.=

z = z x t ω, ,( ) = z0 x t,( ) τnzn x t ω τ, , ,( )
n 1=

∞

∑ z0 Z .+≡+
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the A and B operators are sufficiently smooth, we arrive
at the relation

(4)

where the An and Bn coefficients are expressed in terms
of the Freshet derivatives of the A and B operators [5, 6].
To meet operator equation (4), the following chain of
equalities—a sequence of coupled equations for the
unknowns zn—is proposed:

(5)

The operator expressions ∆An and ∆Bn are defined in
terms of the functions z0, z1, …, zn – 1 and have the cor-
responding structure in powers of these coefficients,
which are assumed to be found recurrently from the lin-
ear inhomogeneous equations at the preceding steps.

Next, we assume that the linear operator A'[z0] in
Eqs. (5) has the unique continuous inverse operator
(A')–1; i.e., the equation A'[z0]y = 0 has the unique solu-
tion y(x, t) ≡ 0 (the operator A is nonsingular). Then, the
unknown quantities zn (n ≥ 1) are uniquely determined
from the sequence of Eqs. (5):

(6)

The conditions of relative smallness and decrease in
each subsequent term τnzn in series (3) can be provided
by, for example, a sufficient smallness of the numerical
parameter τ > 0 and by decreasing the dimensional
parameter ω so that the coefficients zn are nonincreas-

An z0[ ] Zn ωB z0[ ] ω Bn z0[ ] Zn

n 1=

∞

∑+ +
n 1=

∞

∑ 0,=

A' z0[ ] z1
ω
τ
----B z0[ ]+ 0,=

A' z0[ ] z2
1
2
---A'' z0[ ] z1

2 ω
τ
----B' z0[ ] z1+ + 0,=

A' z0[ ] zn ∆An
ω
τ
----∆Bn+ + 0, n 1.≥=

z1 –
ω
τ
---- A'( ) 1– z0[ ] B z0[ ] ω

τ
----Y1 z0[ ] ,≡=

z2
ω
τ
---- 

 
2

Y2 z0[ ] ,=

Y2 A'( ) 1– z0[ ] 1
2
---A'' z0[ ] Y1

2 B' z0[ ] Y1+ 
  , …,–=

zn
ω
τ
---- 

 
n

Yn z0[ ] .=
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ing. The substitution of Eqs. (6) into Eq. (3) gives the
expression

(7)

which is a power expansion in terms of ω. The conver-
gence of series (7) or the corresponding procedure of
successive approximations for |ω| ≤ ω0 is substantiated
by using the theorems on an implicit function and a
contraction operator. This is a separate mathematical
problem [5, 6].

2. Thus, the above procedure of constructing an
approximate solution provides a meaning to the notion
of “small dimensional parameter” ω. In essence, the
“smallness” of ω means that each term in the series is
much smaller than the preceding terms, in particular,
ωn||yn || @ ωn + 1||yn + 1 ||, i.e., ω||yn + 1 || ! ||yn ||. Only the
first approximation is usually constructed in applica-
tions. In this case,

(8)

This procedure can be applied even when z0 ≡ 0. In
this case, the terms y1 and ωy2 and so on are compared.
In addition, the procedure can be used in the absence of
the parameter ω. In this case, it is necessary to satisfy
the strong inequalities ||yn || @ ||yn + 1 ||. The parameter ω
can also appear in a more complicated way, for exam-
ple, B = B[z, ω] (||B ||  0, ||ω||  0). Moreover, it
can be a functional or an operator [7].

We note that the mathematical analysis of perturbed
operator equations is independent of the units of mea-
sure [5, 6].

Thus, the artificial introduction of the dimensionless
asymptotic parameter τ (intermediate asymptotic
behavior [3, 4]) made it possible to expand the function
z(x, t, ω) into an asymptotic series in terms of a dimen-
sional quantity ω that cannot be represented in the
dimensionless form in this problem. The resulting solu-
tion given by Eq. (7) is independent of τ. Therefore, the
procedure described above is auxiliary. Thus, the
notions smallness and asymptotic smallness are not
identical in application to the dimensional parameter ω.

The introduction of a fictitious dimensionless param-
eter will be exemplified below in Sections 3 and 4.

3. We consider a Cauchy problem for a scalar vari-

able z, A = , B = z2 – 1 (N = 1, 2, …), and with zero

initial conditions. Let t be dimensional time such that
ω > 0 is measured in the [t ]–N unit and the variable z is
dimensionless. Since the problem involves no charac-
teristic parameters, it is possible to use the procedure

z x t ω, ,( ) z0 x t,( ) ωnyn x t,( ),
n 1=

∞

∑+=

yn Yn z0[ ] ,≡

ω A'( ) 1– z0[ ] B z0[ ]  ! z0 x t,( ) , z0 ò 0.

dN

dtN
--------
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described in Sections 1 and 2 and to find the unknown
solution in the asymptotic-expansion form

(9)

.

In particular, series (9) for N = 1 can be summed in
the closed form: z(t, ω) = ; for N = 2, it is an
expansion of an elliptic function.

Let us consider a model problem of the one-dimen-
sional motion of a body with mass m in a stratified
medium with quadratic resistance under the action of a
constant force F:

(10)

Here, k > 0 is the variable coefficient and h > 0 is the
stratification parameter. Cauchy problem (10) is solved
in quadratures, but the analysis of the solution is difficult.

For definiteness, we take the case where v 0 = 0, F ≥

0, and k = k0exp  (exponential stratification). After

the division of both sides of Eq. (10) by m > 0, the prob-
lem is written in the form of Eq. (1):

(11)

where λ =  and g = . Depending on the aim of

investigation, one can consider various limiting cases
for the dimensional parameters λ, h, g, and z0 .

Let g = ω be an asymptotically small quantity [the
operator B in Eq. (1) is the multiplication by –1]. The
remaining parameters λ, h, and z0 of problem (11) can-
not form a characteristic time unit. The unknown z can
be represented in dimensionless form by these three
parameters, but this is unnecessary. The desired

z2 j 0, z2 j 1+≡ ω
τ
---- 

 
2 j 1+

y2 j 1+ tN N,( ),=

j 0 1 2 …,, , ,=

y1
tN

N!
------, y3

2N( )!t3N

N!( )2 3N( )!
----------------------------,–= =

y5 2
2N( )! 4N( )!t5N

N!( )3 3N( )! 5N( )!
------------------------------------------- …,,=

z t ω N, ,( ) ωy1 ω3y3 ω5y5 …+ + +=

ωttanh

mż̇ F k
z
h
--- 

  ż ż, z 0( )– z0, ż 0( ) v 0.= = =

z
h
---± 

 

ż̇ λ ż ż
z
h
---± 

 exp g–+  = 0, z 0( ) = z0, ż 0( ) = 0,

k0

m
---- F

m
----
approximate solution is uniquely constructed by the
procedure described in Sections 1 and 2 in the form

(12)

The mechanical meaning of any term in expan-
sion (12) is quite obvious. These terms, sequentially in
powers of the dimensional parameter g, present the
effect of the applied force on the motion of the body in
the stratified medium.

Now, we consider problem (11) in the other extreme
case

(13)

Here, µ ~ 1 is a certain number and ω is a quantity
inverse to length. Conditions (13) correspond to a
weakly stratified medium and a low resistance coeffi-
cient. The only characteristic parameter of the problem
is acceleration g; the time and length scales are absent.
The desired approximate solution of the problem spec-
ified by Eqs. (11) and (13) is constructed similarly to
solution (12):

(14)

An expansion [e.g., given by formulas (7), (9), (12),
and (14)] of the solution in terms of the parameter ω is
unique regardless of intermediate normalizations.

4. As the generating problem specified by Eq. (2),
we consider the problem of the stationary flow of a vis-
cous incompressible fluid in a plane confusor (the Jef-
fery–Hamel problem) [1, 2]. This problem involves
four characteristic parameters: the opening angle of a
confusor 2β, the inflow–outflow intensity Q, the fluid
density ρ, and its dynamic viscosity µ. In what follows,
the variables characterizing the flow are marked by the
superscript “°.” These are the velocity field v°, the field
of the deformation-rate tensor , the stress-deviator
field , and the pressure field p°. The maximum shear
stress and the maximum sliding velocity, which are the
quadratic invariants of the tensors  and , are
denoted by T° and U°, respectively.
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Based on the modified numerical–analytic method
of accelerated convergence [7], we investigate single-
and multimode confusor flows in a wide range of the

parameters β and Re =  [7–9]. The renewed interest

in the Jeffery–Hamel problem is stimulated by both
increased capabilities of computers and development of
software, as well as by practical demands for solving a
wider class of problems on the flow of a viscoplastic
medium with the low yield point in a plane confusor.
For such flows, the Jeffery–Hamel solution is the refer-
ence, or zero-order, approximation [4, 9].

The process of deforming an incompressible visco-
plastic material with the shear stress point ω = τs in a con-
fusor is no longer self-similar and radial. For such a
material, the determining relationships have the form [4]

(15)

Analysis of the units of measure indicates that the
four quantities β, Q, ρ, and µ in the two-dimensional
case cannot form a combination with the unit of mea-
sure of τs . On the basis of the procedure described in
Sections 1 and 2, one can investigate the confusor flow
of a viscoplastic medium with the asymptotically low
yield point τs by setting ω = τs .

Representing the solution in the form of asymptotic
series (3) in terms of the parameter τ,

(16)

we immediately arrive at the expansion [4, 9]

(17)

Now, using expansion (17), we linearize the deter-
mining vector relationships (15):

(18)
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In accordance with Eqs. (3)–(5), we set

(19)

After the substitution of stress deviator (19) into the
two linearized equations of motion, the last two equa-
tions along with the incompressibility condition form a
closed system of three equations with respect to the

pressure p(1) and two components  and  of the
vector v(1) [4, 9]. We seek the solution of this system in
the form

(20)

(21)

It was established [4] that, in the first approximation
in τ, the original boundary-value problem can be
reduced to a fourth order equation for a dimensionless
function W(θ)

(22)

with the homogeneous boundary conditions

(23)

In Eq. (22), V(θ) = –  is the function completely

characterizing the Jeffery–Hamel flow.

The problem specified by Eqs. (22) and (23), where
the parameter τ is already absent, was investigated
numerically and analytically in detail in [8, 9]. We
emphasize that the presence of the small asymptotic
parameter τ in the denominators in Eqs. (19)–(21) does
not mean an apparent singularity of the solution. Actu-
ally, substituting expressions (21) into the function (1)

given by Eq. (19) and, next, Eqs. (19) and (21) into
Eqs. (16), we find that the parameter τ is absent in final
formulas (16), not only in the denominators, but also in
any approximation order n. These formulas represent
formal asymptotic expansion (7) of the parameters v,

, p, , and U in the problem of the viscoplastic flow
in terms of the dimensional yield point τs.
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In his outstanding study entitled “Table about Air
Phenomena Caused by an Electric Force,” Mikhail
Lomonosov thoroughly analyzed all types of gas dis-
charges known at that time [1]. The surprising fact is
that this analysis almost entirely corresponded to the
modern classification of these discharges (excluding
the arc discharge discovered by Petrov in 1802). In
addition, Lomonosov found “…the most general regu-
larities in the process of generation of atmospheric
electricity…” [2]. He also announced the discovery
(with the help of a Rikhman electrometer) of the Earth’s
electric field existing even in the case of a clear cloud-
less sky. Lomonosov was one of the first scientists to
suggest a hypothesis on the electric nature of ball light-
ning, tornados, and aurora borealis. These phenomena
were considered by him as the most intricate ones asso-
ciated with the atmospheric electricity. Only several
lines in “Explanation…” were devoted to ball lightning,
without directly mentioning its name. It is worth citing
these lines here: “Both legends of ancient history and
recent news of eyewitnesses testify to the fact that a fire
drops onto the ground from thunderstorm clouds. This
fire exhibits relatively slow motion compared to usual
lightning and, thereby, should be distinguished from it
as having a specific nature….”

Up to now, a set of descriptions presented by eyewit-
nesses that have observed ball lightning were collected
in well-known monographs of numerous authors, from
Arago to Stakhanov (see, e.g., [3–5]). More than
20 models based on hundreds of various hypotheses
were proposed. Many attempts aimed at reproducing
ball lightning in laboratory conditions were performed.
Despite these facts, this paradoxical natural phenome-
non still remains an enigma. In [5], statistical analysis
of data related to ball lightning is carried out and a crit-
ical review of models, which complements the above-
mentioned studies [3, 4], is given.

To summarize briefly, ball lightning is an autono-
mous physical body of approximately spherical shape
and with the most probable diameter 2R = 10–15 cm

Moscow State University, 
Vorob’evy gory, Moscow, 119899 Russia
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1028-3358/03/4806- $24.00 © 20319
(the mean diameter is 2R = 28 ± 4 cm). The ball light-
ning emits visible light and can move in a complicated
manner in the environment. In the mature stage, ball
lightning exhibits the following basic attributes and
contradictory properties.

(1) In the majority of cases, ball lightning emits light
without heat. (According to Stakhanov, this is the first
paradox.)

(2) The substance of ball lightning probably has the
density of air and possesses a surface tension, which is
intrinsic to liquids. (Following Stakhanov, this is the
second paradox.)

(3) The unpredicted character of ball-lightning
motion (up and down, leeward and windward) can be
called the third paradox.

(4) Numerous data testify to the fact that ball light-
ning can have an electric charge. However, the nature of
ball lightning (i.e., whether it has a volume charge or a
surface charge) is not clear at this point.

(5) It is assumed that the average energy density of
ball lightning does not exceed 10 J cm–3. The nature of
this energy, as well as the question of whether it is
stored initially in ball lightning or comes from the out-
side, remains open.

In [6, 7], a hypothesis was proposed that ball light-
ning represents a certain electric-hydrodynamic capac-
itor of spherical shape with mobile and oppositely
charged plates. In its electric structure, this capacitor is
similar to a well-conducting Levich droplet [8] residing
in an electrolyte solution. In this case, the ball-lightning
substance represents a specific phase of atmospheric air
subjected to the action of an intense electric field, the
role of an external electrolyte being played by ionized
air. The theoretical possibility for the existence of
strong double electric layers in a gas-flame medium
was suggested even by Langmuir in 1929. This possi-
bility was experimentally confirmed in the 80th-anni-
versary studies of [8], devoted to computer simulation
of plasma-physics problems [9] on the basis of the Vla-
sov equations. However, in this case, the Reynolds
numbers inside and outside a ball lightning must not be
small, as in the problem of the electrocapillary drift
(motion) of a Levich droplet with a thin double electric
layer carrying the surface charge.
003 MAIK “Nauka/Interperiodica”



 

320

        

NATYAGANOV

                                                                           
We call the electrocapillary eddy structure a gas-
flame structure similar to a Levich droplet [8] with a
triple electromagnetic layer at the interphase bound-
ary [6, 7]. In this case, we arrive at a rather important
statement that can be formulated in the form of the fol-
lowing theorem.

Theorem. Let ball lightning have an electrocapil-
lary eddy structure and let the densities of the sub-
stance outside and inside the ball lightning be equal to
each other. If, in this case, the linear Stokes equations
in the modified system of equations (1) of [7] are
replaced by the nonlinear Navier–Stokes equations

(1)

and if the equality of the jump of normal stresses (at r =
1) to the excess pressure is taken into account, this sys-
tem has an exact solution obtained in [6, 7] for the elec-
tric potential ϕ and the velocity field (the potential flow
outside ball lightning and Hill vortex inside it). The
velocity field is written out in terms of the stream func-
tion Ψ:

(2)

Corollary. In the case of such a replacement, the
allowance for the term (u · ∇ )u in the equations of
motion results in only redistribution of pressure outside
and inside ball lightning without violation of both its
spherical shape and flow kinematics.

The Levich formula in [8] also remains valid for the
ball-lightning velocity in the case Re @ 1:

(3)

This velocity (expressed in dimensional variables) is
proportional to the radius a of the ball lightning, to the
density q of the surface charge in its double electric
layer, and to the intensity E0 of the local electric field.
The electrocapillary drift of ball lightning in the direc-
tion of the atmospheric electric field is similar to the
thermocapillary drift of a droplet or a bubble, which is
explained by the Marangoni effect [10, 11].

It should be emphasized that the validity of the for-
mulated theorem is stipulated by specific features of the
solutions obtained for the velocity field inside and out-
side the ball lightning. This is caused by the fact that
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both the potential flow and Hill vortex are related to the
important class of dynamically reversible flows intro-
duced in [12] by analogy with thermodynamically
reversible processes. For this class of flows, nonlinear
terms of the (u · ∇ )u type have a gradient nature. At the
same time, for the potential flow outside the ball light-
ning, the additional pressure is determined by the Ber-
noulli integral, whereas the validity of the relation

(4)

can be proven for the Hill vortex. In the case of equal
densities, expression (4) results in equal additions to the
pressures outside and inside the ball lightning and does
not contradict the conservation of its spherical shape.

Based on the hypothesis of the electrocapillary eddy
structure of ball lightning and on the above-formulated
theorem, we can explain not only the basic characteris-
tic attributes of ball lightning in the quasisteady stage of
its history, which correspond to items (1)–(5), but the
wider list of properties presented in [5].

(i) The emission of visible light is one of the most
well-known properties of ball lightning, which usually
makes possible its observation. As follows from solu-
tion (2), in the case of electrocapillary motion of ball
lightning, there exists a direct electric current inside it,

j' = –σ*∇ϕ ' = 2qv 0k,

which provides the electroluminescence of the ball-
lightning substance. The nature of this electrolumines-
cence is glow discharge or corona discharge [2] that
emits visible light without heat.

(ii) The existence of the surface tension γ and its
dependence on the electric-potential jump outside and
inside the ball lightning, in fact, enter as necessary con-
ditions into the formulation of the above theorem. The
equality of the densities ρ' = ρ for both the substance of
the ball lightning and the ambient air provides the con-
servation of the spherical shape even at large velocities
of the electrocapillary drift and Reynolds numbers
Re @ 1. The additional stability is provided by the tri-
ple electromagnetic layer with mutually orthogonal
electric and magnetic fields [6, 7]. In the case of ρ' ≠ ρ,
solution (2) can be considered as the first approxima-
tion to the solution of the problem in the general case
provided that the Weber number is smaller than 2.

(iii) In the majority of cases, the cause of the elec-
trocapillary drift of ball lightning is the natural atmo-
spheric electric field, previously discovered by Lomo-
nosov [1]. In the case of fine weather, this field attains
12–140 V m–1, whereas under thunderstorm clouds, the
electric field is able not only to reverse its direction [2]
but also to increase by 2–4 orders of magnitude [5]. In
regions of elevated electric field, ball lightning moves
at the velocity of the electrocapillary motion, which is
described by formula (3), almost independently of the
wind direction. In the case of ρ' ≠ ρ and at low values
of E0 , in addition to the electrocapillary motion and the

u' ∇⋅( )u'
9
16
------ue

2∇ r2 3r2 2r4–( ) 2θcos+[ ] ,=
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wind, it is necessary to allow for the balance of the
force of gravity, the buoyancy force, and the force of
viscous resistance, which can be made sequentially at
Re ! 1.

For example, as E0  0, and in the absence of a
wind, ball lightning falls out (emerges) in the ambient
air at the velocity

(5)

This result follows from the generalization of the clas-
sical Hadamard–Rybchinsky problem for a droplet
with the surface charge of a double electric layer [8].
The complementary analysis of the solution to the
problem of the magnetohydrodynamic flow around a
droplet [13] having a double electric layer was also per-
formed for the case of ball lightning. It was shown that
allowance for the external geomagnetic field with the
induction B0 , which is directed at an angle α with
respect to the force of gravity, leads to three effects:
(a) a term proportional to the Hartmann number Ha =

B0a  ! 1 appears in formula (5); (b) a force propor-

tional to Hasin2α acts in the lateral direction in the
plane of the vectors B0 and V0; and (c) in the plane
orthogonal to this direction, an induced electrocapillaty
drift of the ball lightning arises, which has a velocity
given by formula (3) (in this case, it is necessary to
replace E0 by the vector product [V0 × B0]). Therefore,
even at E0  0 in the absence of wind, ball lightning
falls out in a complicated manner.

The electrocapillary eddy model of ball lightning
makes it possible to explain such strange behavior as
the tendency to approach chimneys, which was noted
long ago by Arago [2], and phenomena of levitation and
guiding [4, 5]. The levitation arises in the case of ρ' ≠ ρ
and in the presence of a vertical electric field, when the
ball lightning hovers in the air. Either wind or the hori-
zontal component of the field can carry away ball light-
ning residing in such a quasi-zero-gravity state. A sim-
ilar situation arises when ball lightning is guided along
telephone-line conductors or electric-power lines. In
these cases, ball lightning gets into an electromagnetic
well like the bobsled route.

(iv) The basic point of the hypothesis under discus-
sion on the structure of ball lightning is the existence of
a double electric layer (q ≠ 0). We here emphasize the
fact that specific electrokinetic features of the double
electric layer allow us to consider the atmospheric elec-
tric field as a source of electrocapillary drift of the ball
lightning. The existence of ball lightning in itself is pos-
sible until the ion concentration in ambient air is suffi-
ciently high for maintaining the quasiequilibrium state
on the external plate of the double electric layer. Every
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motion of the ball-lightning surface (independently of a
cause) results in a transformation of the electrostatic
double electric layer into an electrodynamic one [6, 7].
This layer not only hampers the diffusion of the vortic-
ity into the environment and thereby promotes conserv-
ing the momentum and kinetic energy of the ball light-
ning as an eddy cluster but also plays an important role
in the energy exchange with the environment.

(v) It follows from the electrocapillary eddy model
that the atmospheric electric field is not only the source
of the mechanical momentum of ball lightning as an
entire system but also the energy source. This is con-
firmed by the immediate calculation of the divergence
of the Pointing vector P = [E × H], which corresponds
to the energy flux density of the electromagnetic field
[14]. Here, H is the magnetic self-field of electric cur-
rents, which was first obtained in [6, 7].

Inside the ball lightning, divP' = const < 0; i.e., the
substance of the ball lightning is fed by the electromag-
netic energy from the external space. Outside the ball
lightning, divP has a more complicated character. We
can show that divP < 0 as r  1 and in the case when

–  < β = qv 0 –  ≤ . This implies that ball light-

ning, together with the double electric layer, is fed by
the electromagnetic-field energy across its entire sur-
face independently of the value of the angle θ. How-

ever, with the increase in β, in the case when  <

β < 1, a zone begins to grow from the ball-lightning

equator  in which divP > 0. In this zone, the

ball lightning (more precisely, the triple electromag-
netic layer) returns energy to the environment. Outside

this zone (as β  1  < 3), the energy always
comes from the outside into the ball lightning (and to
the triple electromagnetic layer).

The initial electrostatic energy of ball lightning as a
spherical capacitor (having diameter 2R ~ 20 cm with
the thickness of the double electric layer of about 0.1–
1 cm and the voltage difference between the plates up
to 30 kV cm–1) does not exceed several units of Joule,
i.e., is reasonably low. Events of catastrophic conse-
quences of ball-lightning contacts with other objects
can be explained by the appearance of intense (up to
10 A) electric-current pulses. Explosion of ball light-
ning in the case of thunderstorm weather serves as a
trigger mechanism [5] causing the scattering of electric
charges induced on these objects.
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Erratum: “Hydrodynamic Mechanism of Bleaching a Strongly 
Absorbing Liquid by a Laser Pulse” 
[Doklady Physics 48 (2), 90 (2003);
Doklady Akademii Nauk 388, 5 (2003)]

A. N. Kucherov

In my paper “Hydrodynamic Mechanism of Bleaching a Strongly Absorbing Liquid by a Laser Pulse,” for-
mula (2) should be read as

(2)
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