
  

Doklady Physics, Vol. 48, No. 7, 2003, pp. 325–327. Translated from Doklady Akademii Nauk, Vol. 391, No. 1, 2003, pp. 32–34.
Original Russian Text Copyright © 2003 by Denisov, Denisova, Krivchenkov.

                                                                      

PHYSICS

    
Hamilton–Jacobi Equation
for Fermions Interacting Nonminimally

with Electromagnetic Field
V. I. Denisov*, I. P. Denisova*, and I. V. Krivchenkov**

Presented by Academician V.V. Kozlov March 18, 2003

Received March 18, 2003
As was shown in recent experiments carried out at
the Stanford electron accelerator [1], vacuum electro-
dynamics is a nonlinear theory. Therefore, a number of
electromagnetic effects must manifest themselves
while electromagnetic signals propagate in exterior
intense electromagnetic fields. We imply, e.g., curving
of light beams, which depends on the polarization of
the relevant electromagnetic wave [2], delay of an elec-
tromagnetic signal transferred on one normal mode
with respect to a signal transferred on another normal
mode [3], and generation of the second harmonic [4].

These effects attain measurable values provided that
the magnetic fields of such astrophysical objects as pul-
sars and magnetars are used as exterior fields. In addi-
tion, as is shown in [5], the effects of nonlinear vacuum
electrodynamics may be observed in experiments with
modern precision ring lasers.

Thus, the nonlinear electrodynamic action of exte-
rior electromagnetic fields on the motion of photons
will be able to be comprehensively studied in experi-
ments of the near future.

In this connection, a question arises as to whether
there exists the nonlinear electrodynamic action of
exterior electromagnetic fields on motion of massive
particles.

As is well known, in describing the motion of
charged particles, modern classical mechanics and
electrodynamics employ equations linear in exterior
electromagnetic fields, which correspond well to avail-
able data of laboratory experiments. However, owing to
the fact that electromagnetic fields (B ≤ 106 G) gener-
ated in laboratory conditions are considerably weaker
than fields corresponding to the characteristic quantum-

* Moscow State University, Vorob’evy gory, 
Moscow, 119899 Russia
e-mail: denisov@srd.sinp.msu.ru

** Tsiolkovsky Russian State Technological University 
(MATI), ul. Petrovka 27, Moscow, 103787 Russia
1028-3358/03/4807- $24.00 © 20325
electrodynamic value Bq = 4.41 × 1013 G, the magnitude
of the expected effects turns out to be extremely low.

Recently, a possibility stipulated by the progress in
development of femtosecond lasers has appeared to
subject charged particles to the action of superintense
electromagnetic fields. We imply that the intensity of
such fields is close to the characteristic electrodynamic
value Bq . This fact makes it possible to begin experi-
mentally studying effects of nonlinear electrodynamic
action of exterior fields on laws governing the motion
of charged particles and on their dynamic characte-
ristics.

From the theoretical standpoint, there are few unam-
biguous methods for deriving equations of motion for
massive particles, which nonlinearly depend on the
intensity of an exterior electromagnetic field. The sim-
plest of these methods is to pass in the Dirac equation
to the variant of nonminimal coupling [6]. In this case,
we may write out the post-Maxwellian Lagrangian of
the interacting spinor field and the electromagnetic
field in the form

(1)

Here, " is Planck’s constant; m0 and q are the mass of a
particle and its charge; ψ is the spinor field; γn are the
Dirac gamma matrices; An is the four-potential of the
electromagnetic field; Fnk is the tensor of this field; J2 =
FikFki and J4 = FikFkmFmlFli are independent invariants

of the electromagnetic-field tensor Fik, ξ = , η1, η2 ,
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and η3 are dimensionless parameters,; and µ =  is

the Bohr magneton.

The parameter η3 entering into Lagrangian (1)
describes the contribution of the nonminimal interac-
tion of fermions with an electromagnetic field. The val-
ues of dimensionless post-Maxwellian parameters η1

and η2 depend on the choice of the nonlinear vacuum
electrodynamics. For example, in Heisenberg–Euler
nonlinear electrodynamics, these parameters acquire

quite particular values η1 =  = 5.1 × 10–5 and η2 =

 = 9.0 × 10–5 [7]. At the same time, in the Born–

Infeld theory, η1 and η2 are expressed in terms of a cer-

tain unknown constant a2 , namely, η1 = η2 = a2 .

Equations for spinor and electromagnetic fields,
which are found from Lagrangian (1), have the form

(2)

Using the first of these equations, we can obtain the
Hamilton–Jacobi equation for a particle interacting
with an exterior electromagnetic field in a nonminimal
manner. To do this, we represent the spinor field in the

form ψ = Ψexp , where S is a certain function of

coordinates and time, which changes rapidly compared
to the spinor amplitude Ψ. We substitute this expression
into the first equation of the set of equations (2) and
then reduce it to the form

(3)

In order to have nontrivial solutions of the set of equa-
tions (3), we must, as is well known, satisfy the condi-

tion det  = 0. To find the determinant of the 4 × 4
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matrix  in the covariant form, it is convenient to apply
the formula

which follows from the theorem of [8] on degrees of a
second-rank tensor.

As a result, we arrive at the following Hamilton–
Jacobi equation:

(4)

where  = Fnp .

Using the last equation, we can analyze the motion
of fermions in the field of an intense plane electromag-
netic wave. With the goal of attaining the highest
degree of generality, we write out the vector potential in
the form

where A1 = A1  and A2 = A2 .

Denoting by dot the differentiation of A1 =

A1  and A2 = A2  with respect to the argu-

ment t – , we have

Substituting these expressions into Eq. (4), we arrive at
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--- Ȧ1ex Ȧ2ey+[ ] , H–

1
c
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in the variables x, y, u = t – z/c, and v  = t + z/c. Solving
this equation by separation of variables, we have

(5)

where α0, α1, and α2 are constants, and the sign ± cor-
responds to two spin states of a fermion.

Thus, the allowance for nonminimal interaction of a
fermion with the field of an intense plane electromag-
netic wave (η3 ≠ 0) results in the appearance of an addi-
tional term in the action function S.

It is easy to find the law of motion for a fermion in
the field of a plane electromagnetic wave:

In the case of the minimal interaction, these relation-
ships coincide (to an accuracy of denoting the integra-
tion constants) with the well known laws of motion for
a fermion in the field of an intense plane electromag-
netic wave. Analyzing expression (5), we can verify
that, in the case of fermion motion in the field of an
intense plane electromagnetic wave, there is only one
distinction of the nonminimal interaction from the min-
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imal one. This distinction is the dependence of the
energy E and the momentum component Pz on η3:

where u = t – .

Therefore, measuring the energy–momentum char-
acteristics of fermions under the action of powerful
femtosecond laser pulses, it is possible to determine the
phenomenological parameter η3 and thereby experi-
mentally clarify the measure of the nonminimal (non-
linear) action of electromagnetic fields on fermion
motion.

ACKNOWLEDGMENTS
The work was supported by the Russian Foundation

for Basic Research, project no. 02-02-16598.

REFERENCES
1. D. L. Burke, R. C. Field, G. Horton-Smith, et al., Phys.

Rev. Lett. 79, 1626 (1997).
2. V. I. Denisov, Teor. Mat. Fiz. 132 (2), 211 (2002).
3. V. I. Denisov, I. P. Denisova, and I. V. Krivchenkov, Zh.

Éksp. Teor. Fiz. 122, 227 (2002).
4. P. A. Vshivtseva, V. I. Denisov, and I. P. Denisova, Dokl.

Akad. Nauk 387, 178 (2002) [Dokl. Phys. 47, 798
(2002)].

5. V. I. Denisov, Phys. Rev. D 61, 036004 (2000).
6. N. F. Nelipa, Physics of Elementary Particles (Vysshaya

Shkola, Moscow, 1977), p. 120.
7. V. R. Khalilov, Electrons in a Strong Magnetic Field

(Énergoatomizdat, Moscow, 1988).
8. I. P. Denisova and B. V. Mehta, Gen. Relativ. Gravit. 29,

583 (1997).

Translated by G. Merzon

E
∂S
∂v
------- ∂S

∂u
------+ 

 – α0

2µη3

c
------------ Ȧ1
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† Physical phenomena that can be understood only
with the inclusion of fractal properties were recently
found in large systems (for which the statistical
description is applicable [1]). Anomalous diffusion,
i.e., diffusion for which the mean squared displacement
of a particle is proportional to a fractional power of time
(q〈x2〉q ~ tβ, where β is a fractional number), is among
these phenomena and has been actively studied in
recent years. It is observed in aerosols, gels, spin
glasses, certain disordered systems, aperiodic crystals,
electron–ion plasma, in systems described by the statis-
tical physics of open systems [2], etc. Anomalous diffu-
sion (or fractal relaxation) was described theoretically
by using fractal geometry [3] in numerous works
(see [4]). Many properties of solids (strength, brittle-
ness, etc.) are also well described in the fractal approx-
imation. In view of this circumstance, a new direction,
fractal materials science, arose [5]. The fractal proper-
ties of large systems are mathematically described by
equations with Riemann–Liouville fractional deriva-
tives with constant memory [4, 6, 7] and constant diffu-
sion coefficient. Experiments [8, 9] show that the frac-
tal dimension depends on physical parameters (time
and pressure); i.e., it is a variable quantity depending on
physical parameters such as time, coordinates, and
pressure. For this reason, the mathematical technique of
fractional derivatives must be changed so that it
includes the dynamics of the fractal (multifractal)
dimension.

Current statistical physics is insufficient to describe
the statistical properties of large systems with fractal
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structures. It must be supplemented and extended to the
fractal and multifractal sets of physical objects. The
question arises: How can we formulate a statistical
model including the fractal and multifractal properties
of large systems and what new properties does it intro-
duce to the statistical description of equilibrium statis-
tical systems?

In this work, we formulate statistical physics based
on fractional derivatives (integrals) of a variable frac-
tional order with respect to time and coordinates. We will
develop the theory following classical works by Bogo-
lyubov, Kirkwood, Green, and Yvon [1] (see also [2]).

Thus, to extend equilibrium statistical physics to
fractal and multifractal sets, ordinary derivatives and
integrals in the basic equations based on the Gibbs
canonical distribution must be replaced by the respec-
tive fractional derivatives and integrals describing pro-
cesses with constant or variable memory. Contrary to
memory previously taken into account for nonfractal
media in both thermodynamics and statistical physics
[10], this memory is introduced immediately through
fractional derivatives. Memory in nonfractal media is
beyond the scope of this study. The basic equations of
the Bogolyubov–Kirkwood–Green–Yvon theory for s-
particle distribution functions Fs(q1, …, qs, θ) (θ = kT,
s = 1, 2, …) are based on the Gibbs canonical distribu-
tion

Here, DN is the probability distribution function for the
positions of all objects of the system (for simplicity, we
will call them particles or molecules), UN is the poten-

tial energy of the system, UN = , Q

is the configuration integral, and QN =

dq1…dqN. These equations have the form
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(2)

(3)

where α = 1, 2, and 3 and v  = NV–1.
The chain of the distribution functions Fs, s = 1,

2, …, N (FN = DN) completely describes the equilibrium
statistical system and was proposed in this form in [1].
The fractal and multifractal properties of the equilib-
rium statistical system can be simply taken into account
by assuming that Eq. (3) is valid for very small dis-
tances (much smaller than the fractal clusters of parti-
cles forming the fractal structure of the system) and
small variations in the coordinates of particles of the
system. In other words, it is assumed that the effect of
fractal structures can be ignored for mathematically
small variations in the positions of particles of the sys-
tem. Physically small variations already involve the
effect of constant or variable memory, although such
variations can be described by means of derivatives but
fractional rather than ordinary. Therefore, all deriva-
tives and integrals in Eqs. (1)–(3) must be replaced by
fractional derivatives and integrals including memory.
In this case, the fractal and multifractal characteristics
of the system are taken into account for physically
small variations both in functions as physical quantities
treated as points and in the characteristics of the state of
the system. Depending on the form of used fractional
derivatives and integrals (Riemann–Liouville, Mar-
chaud, Ritz, etc.), the system under consideration,
where the fractal (multifractal) properties of equilib-
rium statistical systems is included, either transforms to
an open system (Riemann–Liouville, Ritz, etc., frac-
tional derivatives) or conserves its close character
(Marchaud, Caputo fractional derivatives). The choice
of the type of fractional derivative is determined by the
properties of the statistical systems under consider-
ation. In this work, we consider only equilibrium statis-
tical systems, where the presence of fractal characteris-
tics gives rise to energy dissipation and, therefore,
transforms these systems to open statistical systems.
Examples of such systems were given at the beginning
of this paper. In what follows, Riemann–Liouville frac-
tional derivatives and their generalization applicable to
multifractal systems (systems where the fractal dimen-
sion depends functionally on physical parameters) will
be used.

FRACTIONAL DERIVATIVES AND INTEGRALS 
OF A VARIABLE ORDER

To describe non-Markovian equilibrium statistical
systems with constant memory (fractional derivatives
and integrals have a constant fractional order), it is suf-
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ficient to use the well-known Riemann–Liouville frac-
tional derivatives and integrals [11, 12]. To develop sta-
tistical physics for a medium with a multifractal dimen-
sion depending on coordinates and time (or in physical
systems with such fractal properties), the generalized
Riemann–Liouville fractional derivatives, which were
introduced by one of us (L.Ya.K.) and used in a number
of works (see, e.g., [13]), must be used. These deriva-
tives are defined as (for left-side derivatives; for more
detail, see [13])

(4)

Here, Γ is the Euler gamma function; n = {d} + 1,
where {d} is the integer part of d for d ≥ 0 (i.e., (n – 1) ≤
d < n) and n = 0 for d < 0; dt = 1 + ε(t); and dq = 1 + ε(q).
Generalized fractional integrals are written for individ-
ual q components. The integral operators defined above
for fractional orders dt and dq depending on coordinates
and time can be expressed in terms of ordinary deriva-
tives and integrals [13, 14] for |ε| ! 1. In this case, gen-
eralized Riemann–Liouville fractional derivatives sat-
isfy the approximate relations (we present here only
relations for derivatives)

(5)

These relations make it possible to describe the
dynamics of a system including the effect of changes in
the fractal dimension (if they are much smaller than
unity) on the behavior of the physical system by means
of ordinary differential and integral equations [13].

CONFIGURATION INTEGRAL 
AND DISTRIBUTION FUNCTIONS

IN FRACTAL SPACES

We consider changes in Eqs. (1)–(3) both for a
medium with varying fractal dimensions dt(t, q) and
dq(t, q) characterizing non-Markovian processes with
variable memory and for a particular case of a medium
with constant memory (constant fractal dimensions). In
this case, both time and spatial (about passed trajecto-
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ries) memories are taken into account. Thus, equilib-
rium statistical physics of homogeneous statistical
media is replaced by nonequilibrium statistical physics
of systems with time and spatial memory. In this case,
nonequilibrium means that the total energy of the sys-
tem is not conserved, which follows from the mathe-
matical technique in use. Nonequilibrium in these sys-
tems is a consequence of the fractal properties of the
medium under consideration, because fractal properties
give rise to energy dissipation in the model in use. To
take variable memory into account, derivatives with
respect to time and coordinates and integrals with
respect to coordinates in both Eq. (1) and the definition
of s-particle distribution functions (4) must be replaced
by generalized fractional derivatives defined by formu-
las (4). This equation has the form (in the absence of
external forces)

(6)

After integration with respect to coordinates and
momenta in Eq. (6) (and in below formulas), the inte-
gration phase-space volume V(q) and q are set to infin-
ity. Equation (6) is one of the equations of the chain for
the distribution function Fs defined in terms of the dis-
tribution function Fs + 1 as

(7)

for a non-Markovian system with variable memory. In
this case, we assume that the system density (NV–1 = v)
is constant and the passage to the limit n  ∞ and
V  ∞ is carried out. Integrals are calculated between
infinite limits and we set a = –∞ and q = ∞ after their
calculation. For variable density, v  must be introduced
to the fractional integral and its dependence on the mul-
tifractal dimension dq must be taken into account. The
configuration integral is also defined in terms of frac-
tional integrals of a variable order as

(8)

Equations (6)–(8) are the basic equations of the statisti-
cal physics of fractal media with constant and variable
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memory. For nonfractal media, i.e., dq = 1, the equa-
tions transform to the well-known equations of the
Bogolyubov chain of distribution functions for equilib-
rium statistical physics [1]. These equations can be
approximately solved by the method of expansions in
the inverse density (or in density). For the fractal
dimension close to unity (|ε| ! 1), corrections to known
results are small. The equation relating the single-parti-
cle distribution function F1 to the two-particle function
F2 has the form

(9)

For the approximate representation F2(q1, q2) .
F1(q1)F1(q2) of the two-particle distribution function,
Eq. (9) takes the form

(10)

This equation differs from the corresponding equations
presented in [1] only by the replacement of ordinary
derivatives by fractional derivatives and integrals with
a variable order d(q, θ). The form of the fractal dimen-
sion is determined by the corresponding equations
(see [13]).

CASE OF CONSTANT MEMORY

As is known, Eq. (10) for a nonfractal medium
(α = 1) can be represented in the form

(11)

This form allows one to successfully apply the iteration
method to approximately solve Eq. (10), because
Eq. (11) is the Gibbs distribution for an arbitrary
particle in the mean-field potential. How does distribu-
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tion (11) change in the presence of constant memory in
the system? Equation (10) takes the form

(12)

Introducing the notation

(13)

we write Eq. (12) in the form

(14)

If K(q) is treated as a known quantity [by approxi-
mately specifying F1 in K(q)], Eq. (12) is a linear equa-
tion with fractional derivatives and the variable coeffi-
cient K(q). Let K(q) depend only slightly on q and
admit expansion in this variable. We take only the first
(constant) term of the expansion and, for simplicity,
consider the equation for one of the coordinates (solu-
tions for different coordinate projections coincide with
each other in the approximation in use). In this case,
Eq. (14) transforms to a relaxation-type equation with
the relaxation time τα = K–1. The exact solution of this
equation with the initial condition F1(q = 0) = F0 has the
form (see [6])

(15)

where  is the Fox function. The expansion of func-

tion (15) in  has the form

(16)

where Γ(1 + αk) is the Mittag-Leffler function. As qτ–1

increases and α decreases, a decrease in F1(qτ–1)
becomes slower than the exponential decrease for
α = 1, as could be expected for Levi distributions.
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APPROXIMATION
OF WEAK VARIABLE MEMORY

For weak variable memory (|ε| ! 1), fractional
derivatives and integrals can be expressed in terms of
ordinary derivatives and integrals and Eq. (10) takes the
form

(17)

In this case, ε can be determined from the approximate

equation [13] d = –L(q)d, which provides the solu-

tion

In the last equations, the Lagrangian density func-
tion L(q) is determined by the type of the fractal (or
multifractal) structure of the physical system under
consideration. Additional terms in Eq. (16), which are
absent for nonfractal media, arise due to the multifrac-
tal dimension ε of the medium. New forces (fractal
additions to forces existing in nonfractal media)
depending on ε appear due to the structure of the fractal
medium, which involves particles into additional
motion (see [15], where similar forces were obtained).

CONCLUSIONS

Equations for multiparticle distribution functions of
equilibrium statistical physics for systems with con-
stant and variable fractal memory were derived. It was
shown that, for constant-memory systems (systems
with a constant fractal dimension), the Gibbs distribu-
tion for the single-particle distribution function in the
mean field of remaining particles of the system for high
temperatures transforms to a Levi-type distribution. An
equilibrium statistical system with weak variable mem-
ory was considered. A new force proportional to the
gradient of the fractal dimension was found. It does not
vanish in the absence of external forces and vanishes
for constant memory.
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Lomonosov, in his works Tale of the Birth of Met-
als Due to Shaking of the Earth and On Terrestrial
Layers [1], wrote about acoustic, hydrologic, and light
precursors to earthquakes, referring to the testimony of
eyewitnesses and to works of other authors even of
ancient times.

Theoretical models of the development of earth-
quakes are based on solid mechanics and the physics of
rock fracture. The three most known models concern
elastoplastic deformation, avalanche-unstable crack
formation, and dilatant diffusion processes. Unfortu-
nately, while adequately describing the development of
earthquakes, these models do not provide indications
predicting their onset time.

The methodology of a long-term (years to decades)
seismic prediction was developed by Academician
S.A. Fedotov. The situation with short-term (weeks to
months) and particularly with operative predictions of
earthquakes is much worse, although numerous obser-
vational data make it possible to identify various types
of precursors, from acoustic to electromagnetic, of
strong earthquakes.

Electromagnetic precursors to earthquakes are asso-
ciated with the anomalous behavior of the atmospheric
electric field (AEF). In his famous Tale of Atmospheric
Phenomena Caused by the Electric Force [1], pub-
lished 250 years ago, Lomonosov stated that this field
existed even in clear, cloudless weather. Only two cen-
turies later did G. Simpson make considerably
advances in instrumental investigation of variations in
the AEF under thunderclouds [2] by using measuring
instruments available in the mid-20th century.

During recent decades, the attention of many scien-
tists in various countries has been focused on a new
atmospheric-electricity mystery—seismoelectromag-
netic phenomena (SEMP)—whose particular case is
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the seismoelectric effect. The determination of their
mechanism and the development of adequate physical–
mathematical models of these phenomena will provide
a reliable criterion for operative prediction of strong
earthquakes. The growth of the technosphere in the
Earth increases the risk that natural catastrophes, whose
number and intensity have recently been rising, can be
accompanied by induced technogenic catastrophes [3],
which can significantly increase the possible damage.
Therefore, the reliable operative prediction of earth-
quakes is much more important at present.

Systematic investigation of SEMP was begun in the
1970s by A.A. Vorob’ev and now represents a separate
direction of geophysics, where a wealth of data have
been accumulated [4–7]. This investigation was stimu-
lated by the observation of the anomalous increase in
the AEF before the Kurshabsk (1924), Chatkalsk
(1946), and Khait (1949) earthquakes [5]. Analysis
shows that the detected types of AEF anomalies do not
fit into a simple scheme. However, the following four
basic types of their manifestation in time before strong
earthquakes are distinguished [7].

(i) Disturbance of the characteristic form of a pre-
cursor signal, which successively passes through the
stages of growth, quasisaturation, and sharp drop to the
undisturbed level at the time of the earthquake.

(ii) Disturbance with a “fading phase” (even the
AEF direction can be reversed), which approaches the
background level immediately before an earthquake or
after a sharp burst.

(iii) Bell-shaped Gaussian-type disturbance, which
approaches the background level (a plunge is some-
times possible) before the earthquake onset.

(iv) Bell-shaped disturbance without plunge; in this
case, the time of the earthquake is not identified in the
signal record.

Other types of AEF disturbances for individual
earthquakes are obtained by the simple superposition of
these basic types. Disturbance types can be compli-
cated under foreshock or aftershock activity.
003 MAIK “Nauka/Interperiodica”
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Despite three decades of investigations, there is no
commonly accepted physical explanation of various
types of SEMP, and even the common origin of the four
basic types of the seismoelectric effect is in doubt [5–7].
For this reason, the method of mathematical analogues
with well-studied phenomena and processes is substan-
tial for the simulation of these types of the seismoelec-
tric effect [3, 8].

In this work, to describe the seismoelectric effect, I
propose the aircraft model [9], according to which the
fields of velocity v and turbulence w of an incom-
pressible ideal fluid passing over the airfoil of an air-
craft are magnetohydrodynamically similar to the
geomagnetic field H and corresponding electric cur-
rent j. The role of the airfoil profile of varying geom-
etry (due to slats and flaps) in this analogue is the
development of the main crack in the lithosphere until
its collapse, inducing an earthquake. The hydrody-
namic analogue of the seismoelectric effect is based
on airfoil theory that was developed by the well-
known Soviet scientists Chaplygin, Golubev, Kochin,
and Sedov [10] and date from Zhukovsky’s ideas of
the attached eddies of the airfoil.

The magnetohydrodynamic analogue follows from
the simple comparison of the kinematic boundary value
problems [9]
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for the airfoil flow and seismoelectric effect, respec-
tively. The braces mean the jump of the corresponding
quantity and subscript “n” denotes the normal compo-
nent to the contour G of the airfoil profile or the corre-
sponding crack in the aircraft model of the seismoelec-
tric effect.

We do not present assumptions accepted in airfoil
theory and mention only several fundamental points.

(i) The flow beyond the airfoil is potential. However,
if the airfoil is replaced by attached Zhukovsky eddies
of the airfoil and the flow is continued onto the entire
plane, the flow inside the airfoil is turbulent [10].

(ii) The transition from the boundary condition
v n = 0 to {v n} = 0 on the contour G corresponds to the
forward movement of slats and flaps, which changes
the character of the flow (including w and the integral
circulation around the airfoil). In the seismoelectric
effect, this phenomenon corresponds to the pushing of
field lines of H by the differential rotation of the
medium [11] inside the growing main crack and the for-
mation of current layers along its contour G. The differ-
ence is in the characteristic times: the rearrangement of
the flow around the cut airfoil takes 10 s, whereas the
seismoelectric effect continues 10 h or even several
days.

(iii) When the contour G is given, boundary value
problems (1) and (2) are standard but require, as a rule,
numerical solution. When the contour G is deformable,
problem (1) reduces to a complex problem of matching
of potential and turbulent flows at an a priori unknown
boundary with an additional dynamic condition on
pressure. In problem (2), the contour G, as well as an
additional condition on it, is unknown in principle.
However, the results obtained from mathematical ana-
logues between physical processes of different origins
are frequently more general if they follow from mini-
mal restrictions (e.g., kinematically possible flows)
than those derived from a hypothetical dynamic model
[3, 8, 11].

(iv) It is important that the equations of sets (1) and
(2) are invariant under the Galilean transformations.
This means that the problem of airfoil flow is equivalent
to the problem of airfoil motion with respect to the
unmovable medium, where vortices leaving the airfoil
remain at the place where they originate. According to
the magnetohydrodynamic analogue for the seismo-
electric effect, this circumstance makes it possible to
pass from the space coordinate to the time pattern of
AEF variation, which is detected by instruments before
earthquakes.

The problem of the stationary flow of the airfoil pro-
file (for simplicity, G is taken as the interval xOy: 0 ≤
x ≤ b, y = 0 of the x axis) reduces to the following sin-
gular integral equation with the Cauchy kernel for the
vorticity intensity γ(x):

(3)v y x( ) 1
2π
------ γ s( ) sd

x s–
---------------- x 0  b;[ ] .∈,

0

b

∫=
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When v y(x) = f(x) is a certain given function, Eq. (3)
can have three different types of solutions [9, 12]:

(4)

which are, respectively, unlimited at one end of the
interval and limited at the other end (where Chaplygin–
Zhukovsky condition is satisfied), unlimited, and lim-
ited at both ends of the interval 0 ≤ x ≤ b.

Singular integrals (4) are considered in the princi-
pal-value sense. To calculate them, it is convenient to
make the change

where θ, µ ∈ [0, π] . If f(x) is specified as an expansion
in cosnθ or Chebyshev polynomials, the calculation
reduces to a combination of known integrals [10]. For
the simplest case f(x) = 1,

(5)

where γ10, and γ1b are limited for x  0 and x  b,
respectively, and satisfy the Chaplygin–Zhukovsky
condition, whereas γ2 does not satisfy this condition.

For  = , we obtain
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Analysis reveals the clear similarity between the
shapes of the precursor signals of the AEF [7] and the
superposition of the corresponding plots of γ1b, γ10 , and
γ2 [Eqs. (5), (6)] without tails going to ± ∞ for x  0
or x  b. This similarity follows from the Galilean
invariance of systems (1) and (2) in combination with
the magnetohydrodynamic analogue.

Existing seismically active zones are usually attrib-
uted to the tectonics of lithospheric plates. According to
this concept, thermal convection in the Earth’s mantle
[3, 13] in combination with the dynamic effects of com-
plex Il’yushin loading due to the proper rotation of the
Earth and gravitational interaction with other bodies of
the solar system [14] is responsible for the motion of
lithospheric plates. High mechanical stresses arise at
the boundaries of plates. These stresses induce break-
ages in the lithosphere and the formation of cracks and
their collapse, which are responsible for earthquakes.
The development of earthquakes in the lithosphere is
accompanied by various SEMP in the atmosphere. In
particular, the seismoelectric effect anomalously
increases the natural AEF from 120–140 V/m to an
atmospheric prebreakdown voltage of almost several
kilovolts per centimeter.

Such voltages arise only under strong thunder-
clouds [2], which can be accompanied by strong distur-
bances of the atmospheric air under the pendulum-like
transfer of electric energy to the kinetic energy of the
hydrodynamic motion of a dielectric continuous
medium [15]. However, this phenomenon, as well as
the electric-field breakdown, which accompanies the
seismoelectric effect and passes from the lithosphere to
the atmosphere through sediment and soil layers, is
beyond the scope of this work.
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We recently showed [1–12] that, contrary to wide-
spread opinion, nondipole transitions, including
dipole–quadrupole and quadrupole, make a noticeable
contribution to the intensity and angular distribution of
electrons emitted in photoionization even for compara-
tively low energies 0.5–1 keV of photoelectrons. We
know of only one work [7] where it was shown that the
effect of even octupole transitions in the photoioniza-
tion of the Ne 2p shell on the determination of the
parameters of dipole–quadrupole transitions could be
revealed for photoelectrons with energies below 1 keV
under special experimental conditions. The experiment
reported in [7] was carried out with linearly polarized
radiation.

In this work, we determine the effect of octupole
transitions on the angular distribution of photoelectrons
in a solid with allowance for the elastic scattering of
photoelectrons when unpolarized exciting radiation is
used. The solution of this problem is important both
from the theoretical viewpoint and for practical appli-
cation of the X-ray–electron quantitative analysis of the
surface of solids to determine the sensitivity factors
and, with high-energy photoelectrons, to determine the
thicknesses of thin films.

When electron spectra are excited by unpolarized
radiation, the angular distribution of photoelectrons,
which is obtained with the inclusion of O(k1, r1) terms,
where k is the photon energy and r is the radius of the
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ionized atomic electron shell, has the form [6]

(1)

Here, σi is the cross section for the photoionization of

the ith atomic shell, P2(cosθ) = (3cos2θ – 1) is the

Legendre polynomial, θ is the angle between the pho-
ton momentum and the direction of the photoelectron
emission. The parameter β describes the angular distri-
bution of photoelectrons in the dipole approximation.
Parameters γ and δ describe the E1–E2 and E1–M1
interactions, where E and M mean the electric and mag-
netic interactions, respectively, and the number after
these letters means the multipole order. In particular,
E1–E2 means the electric dipole–quadrupole interac-
tion making the dominant contribution to the parame-
ters γ and δ.

The expression for the angular distribution of photo-
electrons in the octupole approximation for linearly
polarized excitation was presented in [7] and for excita-
tion by unpolarized radiation was first obtained in [12]:

(2)

where P4(cosθ) = (35cos4θ – 30cos2θ + 3). Here, two

additional parameters, ∆βunpol and ξ, appear compared
to Eq. (1). The notation of parameters corresponds to
the notation for linearly polarized excitation [7]. The
notation for angles is shown in Fig. 1.

The parameter ∆βunpol includes the terms M1–M1,
E1–M2, M1–E2, E2–E2, and E1–E3 and the (kr)2-order

dσi

dΩ
--------

σi

4π
------ 1 0.5βiP2 θcos( )–[=

+ δi 0.5γi θsin
2

+( ) θ ] .cos

1
2
---

dσi

dΩ
--------

σi

4π
------ 1 0.5 β ∆βunpol+( )P2 θcos( )–[=

+ δi 0.5γi θsin
2

+( ) θcos ξP4 θcos( ) ] ,+

1
8
---
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correction to the E1–E1 term. The parameter ξ is asso-
ciated with the E2–E2 and E1–E3 interactions.

For linearly polarized excitation, there are four addi-
tional parameters—∆βpol, η, µ, and ξ—to formula (1) [7].
Interactions corresponding to these parameters were
presented in [7]. For polarized and unpolarized excita-
tion of spectra, the parameters ∆βunpol and ∆βpol are dif-
ferent, whereas the parameter ξ is the same.

TRANSPORT THEORY

We will determine the angular distribution of photo-
electrons in a solid with allowance for octupole param-

Fig. 1. Notation of angles.

Table 1.  Octupole contribution to the Al 2s-line intensity
(excitation by the MgKα line)

α, 
deg δ A A + δ K

0 –1.279 × 10–05 –0.00091 –0.000927 0.013798

10 –1.215 × 10–05 –0.00064 –0.000649 0.018741

15 –1.220 × 10–05 –0.00032 –0.000334 0.036496

20 –1.242 × 10–05 6.02 × 10–5 4.776 × 10–5 –0.25999

30 –1.286 × 10–05 0.000829 0.0008166 –0.01575

40 –1.351 × 10–05 0.001281 0.0012672 –0.01066

45 –1.365 × 10–05 0.0013 0.001286 –0.01061

50 –1.435 × 10–05 0.001165 0.0011507 –0.01247

60 –1.537 × 10–05 0.000496 0.000481 –0.03195

65 –1.552 × 10–05 3.32 × 10–5 1.764 × 10–5 –0.87948

70 –1.633 × 10–05 –0.00045 –0.000467 0.035007

80 –1.616 × 10–05 –0.00126 –0.001279 0.01264

90 –3.379 × 10–06 –0.00158 –0.001584 0.002133

α

θ

hν

e

X

eters, elastic and inelastic scattering for the Al 2s line
excited by unpolarized 1253.6-eV Mg MgKα radiation
by two independent methods. The first method is asso-
ciated with transport theory [13]. The second method is
the Monte Carlo simulation of the paths of photoelec-
trons in the solid. According to Eq. (2), the contribution
of the octupole transitions to the intensity of a line
excited by unpolarized radiation for free atoms has the
form

(3)

where f = –0.5∆βunpolP2(cosθ) + ξP4(cosθ).

We consider experimental conditions of practical
interest (see Fig. 1). Ionizing radiation is perpendicular
to the plane of the sample. In this case,

(4)

According to transport theory, for a solid with allow-
ance for elastic and inelastic scattering of photoelec-
trons, the quantity f transforms to

(5)

Here,

(6)

where H(x, ω) is the Chandrasekhar function, ω is the
albedo of single scattering, and a = 1 – ω.

In order to show that δ is usually negligibly small
compared to A, we calculate δ for ω = 0.1, 0.25, 0.4 and
α = 0, 10, 20, …, 90. The quantities ∆βunpol and ξ are
taken from relativistic calculations for the 1s, 2s, and 2p
levels of atoms from Li to Ne and Al 2s, Ar 2p, Xe 4s,
4p, and 4d levels for Ekin = 1 keV. For the data calcu-
lated for 640 variants of δ, we can arrive at the follow-
ing conclusions illustrated by Table 1 for the Al 2s line.

(i) δ is always small and is equal to about 1% of A,
in addition to the α values, for which A is equal to or
close to zero.

(ii) The absolute value of A + δ is always close to A,

although K =  + δ can be large for angles α for which

A is close to zero.

F
σi

4π
------ f ,=
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f 1 A δ+=

=  a 0.5∆βunpolP2 θcos( )– ξP4 θcos( )+[ ] δ .+

δ ωa
16
-------H αcos ω,( )–=

× ξ x3H x ω,( ) 35x5 30x3– 3x+[ ] xd
αcos x+

-----------------------------------------------------------------------------

0

1

∫
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H x ω,( ) x 3x3–[ ]

αcos x+
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0

1

∫ ,

δ
A
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(iii) Since the absolute value of A is usually of inter-
est, δ is negligible.

MONTE CARLO CALCULATIONS

Monte Carlo calculations were carried out accord-
ing to [4, 13] for the Al 2s line excited by unpolarized
1253.6-eV Mg MgKα radiation for the experimental
case described above. The α and azimuth-angle range
were divided into 90 and 80 parts, respectively. One
thousand trajectories for 16 depths of the sample began
from each section. The number of independent trajecto-
ries was equal to 1.152 × 108, ω = 0.18 [13], and the
elastic and inelastic mean free paths were equal to 14.8
and 21.1 Å, respectively. In this work, we calculated the
parameters ∆β and ξ including the quadrupole and
octupole interactions E1–E3, E1–E2, and E1–M2 of the
O(k2α2) order for the Al 2s line excited by unpolarized
1253.6-eV MgKα radiation. As in [1], calculations were
made in the relativistic approximation. We used the
Dirac–Fock–Slater atomic potential with the coefficient
C = 1 for the exchange term. The wave functions of
bound states were calculated by the method of the self-
consistent field for a neutral atom. The continuous-
spectrum functions were calculated in the approxima-
tion of frozen orbitals with the Dirac–Fock–Slater
potential for an ion with a vacancy induced by photo-

20

15
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05

0

–5

–10

–15

–20

0 10 20 30 40 50 60 70 80 90

1

3
2
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f × 104

Fig. 2. Octupole corrections to the angular distribution of
photoelectrons in the ionization of the Al 2s level by unpo-
larized X rays from the MgKα line: (1) free atom, (2) Monte
Carlo method, and (3) transport theory.
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ionization. The calculated ∆β and ξ values are equal to
–0.00345 and –0.00284.

Figure 2 shows the Monte Carlo calculations in
comparison with the transport-theory calculations. In
addition, data for the 2s line of a free Al atom are
shown. As could be expected, the intensity for the solid
Al sample for most angles is lower than that for the free
atom due to the elastic scattering of photoelectrons in
the solid. The Monte Carlo calculations agree well with
transport-theory calculations.
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The improvement of the properties of magnetic
materials is a necessary element in the process of metal
and power saving. The formation of sharp crystallo-
graphic and magnetic textures in the most widely used
materials—anisotropic electrical steels (Fe–Si-based
alloys)—increases the magnetic induction. However,
large crystallites (up to 50 mm in size), or magnetic
domains, are formed in this case. As a result, eddy-cur-
rent (Pec) magnetic losses increase considerably up to
85% of the total losses. Large domains and high Pec

losses are also characteristic for a new class of soft
magnetic materials—strips of amorphous, nanocrystal-
line Fe- and Co-based alloys. Theoretically, Pec losses
can be reduced due to a decrease in the rate of domain-
wall motion. This can be realized by decreasing the
width of strip domains and by bending the planes of
domain walls over the section of a ferromagnet [1].

An effective method of narrowing the domains and
reducing the magnetic losses P is the formation of
structural barriers in the ferromagnet, which are trans-
versely oriented narrow regions whose structure differs
from the structure of the basic material [2]. Magnetic
charges are concentrated in these regions, thereby lim-
iting the sizes of main domains, and are responsible for
the appearance of closure regions—magnetic reversal
centers (see the upper panel in Fig. 1). An effective
method of producing such barriers is local laser treat-
ment, which deforms the material by rapid heating and
cooling. Laser treatment provides both the fragmenta-
tion of the domains and the longitudinal extension of
the ferromagnet [3]. The effect of local laser treatment
was experimentally found to increase from 10–15% to
20–25% after thermomagnetic treatment in an alternat-
ing magnetic field [4, 5] due to enhancement of mag-
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Russian Academy of Sciences, ul. S. Kovalevskoœ 18, 
Yekaterinburg, 620219 Russia

* e-mail: drago@imp.uran.ru
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netic uniaxiality in triaxial and amorphous ferromag-
nets. The effect is associated with the induction of
uniaxial magnetic short-range order anisotropy, which
increases a fraction of the strip domain structure, and
with the destabilization of the magnetic-domain walls
[6]. A new thermomagnetic-treatment concept includ-
ing the strain aging of materials makes it possible to
predict the efficiency of such an action. For the subse-
quent local laser treatment, the optimum irradiation
energy density (resulting in the minimization of Pec)
and its variations along the strip length (~10%) were
found to exist due to instabilities in radiation, material
properties, and the state of its surface [7].

To optimize the effect of reducing losses in various
parts of inhomogeneous anisotropic electrical steel,
methods of monitoring the magnetic characteristics,
which make it possible to determine the effect of laser

1
2

3
4

Fig. 1. (Upper panel) Magnified fragment of a region of
magnetic domains near the laser-action region; (lower
panel) 1 and 2 are the magnetically sensitive elements of the
transducer situated over transformer-steel strip 3 continu-
ously moving in direction 4.
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action and to correct the treatment regime, were devel-
oped. For nondestructive testing, we used the
Barkhausen effect, magnetoelastic acoustic emission,
eddy-current method, and electromagnetic induction
methods [8, 9]. Among them, two magnetic induction
methods, where ferroprobes and attached detectors
made of amorphous alloys are used, are best applicable
for a moving strip of a material [10, 11]. Ferroprobe
monitoring is realizable due to the correlation discov-
ered (Fig. 2) between variations in magnetic losses (for
the amplitude B ~ 1.7 T and frequency f ~ 50 Hz) and a
decrease in the magnetic induction B100 (the induction
in a magnetic field of 100 A/m), which corresponds to
an increase in a stray magnetic field Hs in regions sub-
jected to the laser action, when the radiation energy
density of a CO2 laser is controlled.

The minimum magnetic losses in a material corre-
spond to a certain decrease in induction (Fig. 2). Under
local laser treatment, the minimum level of energy
losses in a moving ferromagnetic strip is provided by
maintaining the optimum amplitude of the signal that

–8

Irradiation intensity, J/cm2

Modification of parameters, %

–2

–4

–6

–10

0

–12

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Losses

Induction

Fig. 2. Magnetic induction B100 and magnetic losses P1.7/50
vs. the intensity of laser irradiation.
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Fig. 3. Amplitude of the ferroprobe transducer signal that
corresponds to the regions of laser action (denoted by dark
squares along the x axis) and to the irradiation intensity
close to optimal (3.3 J/cm2).
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arises in miniature (0.1 × 2.5 mm) ferroprobe transduc-
ers, when stray fields Hs from the laser-action regions
pass near them (Fig. 1). The method of connection of the
ferroprobe elements makes it possible to measure the
horizontal gradient of the vertical component of the mag-
netic field Hs, thereby clearly revealing the regions of the
action of laser treatment and their intensity (Fig. 3).

Thus, the efficiency of laser treatment was moni-
tored by measuring an indirect characteristic Hs . In
addition, we developed a method of direct measure-
ment of magnetic losses in a moving steel strip by an
instrument based on an F-530 electronic wattmeter. The
basic element of the instrument is an attached inductive
detector containing (instead of an ordinary permeame-
ter) a core that is made of ten strips of a Fe80B20 amor-
phous soft magnetic alloy and is bent on a mandrel
25 mm in diameter. Magnetic losses in it are one-tenth
losses in the measured region of the material. For P1.5/50,
we detected small changes in losses in local regions
(~25 mm in length) of the steel strip. The measurement
error of magnetic losses did not exceed 6–7% [11].

1 2 3 4

5 6 7 8 9

10

11

Fig. 4. Ferroprobe instrument for measuring magnetic stray
fields over the transformer-steel strip and its block represen-
tation: (1) square-pulse generator at the frequency 2f,
(2) frequency divider (by 2), (3) power amplifier, (4) ferro-
probe transducer, (5) selective amplifier at the frequency 2f,
(6) synchronous detector, (7) low-pass filter, (8) direct-cur-
rent amplifier, (9) indicator, (10) switch of measurement
ranges, and (11) stabilizing block of secondary electric
power supply.
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Thus, by investigating the effect of local laser treat-
ment on soft magnetic electrical steels and alloys, we
developed representations about the processes of their
magnetization reversal and mechanisms of changing
the domain structure and magnetic properties. A new
thermomagnetic-treatment concept that includes the
processes of strain aging under treatment and makes it
possible to predict its efficiency was proposed. Two
magnetic methods (based on either of two measured
parameters Hs and P1, 5/50) for the continuous nonde-
structive monitoring of the effect of local laser treat-
ment on moving strips made of soft magnetic steels and
alloys in the process of their production were devel-
oped. Setups with a ferroprobe and inductive instru-
ments were constructed (Fig. 4).

ACKNOWLEDGMENTS

This work was supported by the Russian Foun-
dation for Basic Research (project nos. 02-02-16443,
03-02-16185).

REFERENCES
1. Yu. N. Dragoshanskiœ, V. V. Gubernatorov, B. K. Soko-

lov, and V. V. Ovchinnikov, Dokl. Akad. Nauk 383, 761
(2002) [Dokl. Phys. 47, 302 (2002)].
2. Yu. N. Dragoshanskiœ, Candidate’s Dissertation in Phys-
ics and Mathematics (Inst. Fiz. Met., Sverdlovsk, 1968).

3. B. K. Sokolov and Yu. N. Dragoshanskiœ, Fiz. Met. Met-
alloved. 72 (1), 92 (1991).

4. V. V. Gubernatorov, A. P. Potapov, B. K. Sokolov, et al.,
Fiz. Met. Metalloved. 91 (3), 40 (2001).

5. V. V. Gubernatorov and T. S. Sycheva, in Proceedings of
16th Ural School on Problems of Physical Metallurgical
Science of Perspective Materials, Ufa, 2002, p. 163.

6. Yu. N. Dragoshanskiœ, RF Inventor’s Certificate
No. 2025504, Byull. Izobret., No. 24, 105 (1994).

7. S. V. Smirnov, A. M. Yudin, B. P. Yatsenko, et al., in Pro-
ceedings of 9th International Conference on Using of
Accelerators of Charged Particles in Industry and Med-
icine (TsNII Atominform, Moscow, 2002), p. 397.

8. E. S. Gorkunov and Yu. N. Dragoshanskiœ, Defektosko-
piya, No. 12, 3 (2001).

9. E. S. Gorkunov and Yu. N. Dragoshanskiœ, in Proceed-
ings of 8th European Conference for Non-Destructive
Testing, Barcelona, 2002, p. MC-75.

10. B. K. Sokolov, Yu. Ya. Reutov, V. I. Pudov, et al., Defek-
toskopiya, No. 3, 54 (2003).

11. V. F. Tiunov, Defektoskopiya, No. 5, 41 (2003).

Translated by Yu. Vishnyakov
DOKLADY PHYSICS      Vol. 48      No. 7      2003



  

Doklady Physics, Vol. 48, No. 7, 2003, pp. 343–346. Translated from Doklady Akademii Nauk, Vol. 391, No. 1, 2003, pp. 47–50.
Original Russian Text Copyright © 2003 by Chuvil’deev, Kopylov, Gryaznov, Sysoev.

                                                                                  

TECHNICAL 
PHYSICS
Low-Temperature Superplasticity 
of Microcrystalline High-Strength Magnesium Alloys

Produced by Equal-Channel Angular Pressing
V. N. Chuvil’deev, V. I. Kopylov, M. Yu. Gryaznov, and A. N. Sysoev

Presented by Academician O.A. Bannykh December 9, 2002

Received January 13, 2003
Magnesium alloys are lighter than other structural
metals and have very low plasticity, which hampers
their practical use. The elongation to failure of high-
strength magnesium alloys to failure is usually less than
12–17% at room temperature and is equal to 25–40% at
temperatures 150–300°C. The formation of structures
facilitating the superplasticity effect is an efficient
method for improving the deformability of alloys. The
low-temperature superplasticity of magnesium alloys
from room temperature to 300°C is of particular inter-
est for applications. The transition to the superplasticity
state can be achieved through the formation of the
microcrystalline structure by intense plastic deforma-
tion. In this study, the microcrystalline structure in
MA14 (Mg–6% Zn–0.6% Zr) and MA2-1 (Mg–4% Al–
1% Zn) magnesium alloys was formed by equal-chan-
nel angular pressing (ECAP) [1–3], which is a new
method for processing metals by pressure and provides
an efficient control of the formation of their structure [1].
Multipass ECAP under the optimally chosen tempera-
ture–strain-rate conditions provides an efficient grain
refinement, formation of large-angle grain boundaries,
and a homogeneous nano- and microcrystalline structure
in bulk samples [3].

In this study, ECAP was realized in an instrument
where the angle between the working and output chan-
nels was equal to 90°. The homogeneity of the simple
shear strain was controlled at every cycle by observing
the fiducial marks scratched on the flow plane of the bil-
let in the direction perpendicular to the working axis.
We used an extremely rigid regime of ECAP during
which a bar was turned through 90° around its longitu-
dinal axis at every pass. The pressing speed for a 22 ×
22 × 165-mm bar was equal to 0.4 mm/s. The cast and
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extruded magnesium-alloy samples were processed in
six ECAP passes at temperatures 200–250°C. As a
result of pressing, the alloys had a homogeneous micro-
crystalline structure with a mean grain size of ~1 µm.
For mechanical tests, flat double-blade-shaped samples
with the gauge sizes of 2 × 2 × 3 mm were cut from the
bars by electric-spark cutting.

Tensile tests with a constant velocity of crosshead
displacement and with an initial strain rate from 10–4 to
3 × 10–1 s–1 were carried out on an INSTRON tensile
testing machine in the temperature region 20–430°C
(430°C is the maximum test temperature for magne-
sium alloys in air). The samples were heated to test
temperature in four minutes. To establish thermal equi-
librium, the samples were kept at working temperature
for three minutes.

The results of the tensile tests of MA14 and MA2-1
microcrystalline magnesium alloys at temperatures
200–430°C with a strain rate of 3 × 10–3 s–1 are shown
in Fig. 1.

Figure 2 displays the elongation δ to failure as a
function of deformation temperature. It is seen that the
temperature dependence of the quantity δ is nonmono-
tonic for a constant strain rate. In MA14 alloy, δ
increases rapidly from 170 to 810% with an increase in
the deformation temperature from 150 to 260°C and
decreases abruptly down to 170% at 280°C. With fur-
ther an increase in the deformation temperature, plas-
ticity increases slowly to 340% at 430°C.

A similar but less pronounced behavior is observed
in MA2-1 alloy. The elongation to failure increases rap-
idly from 175 to 385% with an increase in the deforma-
tion temperature from 200 to 250°C (Fig. 2). However,
δ decreases near 250°C less than in MA14 alloy, and
plasticity attains a maximum of 650% at 430°C.

The decrease in the plasticity of the alloys in the
region 260–280°C is caused by the rapid dissolution of
the structure-stabilizing Mg2Zn3 phase in both alloys at
these temperatures. In MA14 alloy, this dissolution is
accompanied by an intense growth of grains: at a tem-
perature of 280°C, grain size increases up to 10 µm dur-
003 MAIK “Nauka/Interperiodica”
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ing the heating of the sample up to the superplastic-
deformation temperature (4 min). In MA2-1 alloy, the
dissolution of the Mg2Zn3-phase particles also pro-
motes the growth of grains; however, this growth is
negligible (up to 2–3 µm), because this alloy includes
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Fig. 1. Stress–strain curves for the tension of (a) MA14 and
(b) MA2-1 microcrystalline alloys for a strain rate of
3 × 10–3 s–1 and various deformation temperatures.
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Fig. 2. Elongation to failure as a function of a deformation
temperature in (1) MA14 and (2) MA2-1 microcrystalline
alloys for a strain rate of 3 × 10–3 s–1.
Mg17Al12 particles of the second structure-stabilizing
phase.

The elongation to failure as a function of the strain
rate  is shown in Fig. 3 for the optimal superplasticity
temperature (260°C for MA14 and 400°C for MA2-1).
With a decrease in the strain rate, δ increases to 960 and
720% in MA14 and MA2-1 for  = 8 × 10–4 and 1.4 ×
10–4 s–1, respectively.

The comparison between our results and the results
of other authors (Table 1) shows that the plasticity of
MA2-1 and MA14 microcrystalline magnesium alloys
in the region of low-temperature superplasticity (200–
300°C) is higher than that of their analogues by factors
of 3 and 2, respectively [4–9].

The effect of an increase in plasticity at room tem-
perature without a significant decrease in strength
(Table 2), which was also found for the magnesium
alloys under consideration, is very interesting. The
elongation to failure in MA2-1 microcrystalline alloy is
equal to 65% for room temperature and a strain rate of
3 × 10–3 s–1 (in comparison with conventional 12–19%
and 46% obtained in [11]). The elongation to failure in
MA14 microcrystalline alloy is equal to 45% at room
temperature, which is twice as large as the best values
for analogues [7, 12].

Large elongations for magnesium alloys at temper-
atures 200–260°C and for a strain rate of 3 × 10−3 s–1

can be explained in terms of the low-temperature super-
plasticity developing under these conditions [13]. The
rheological equation relating the rate of superplastic
flow to the flow stress σ and deformation temperature T
has the form

Here, b is the Burgers vector, d is the mean grain size,
ϕ is the grain-boundary thickness, Db0 is the pre-expo-
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Fig. 3. (1, 2) Elongation to failure and (3, 4) tensile strength
as functions of a strain rate for (1, 3) MA14 (at a tempera-
ture of 260°C) and (2, 4) MA2-1 (at a temperature of
400°C) microcrystalline alloys, respectively.
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Table 1.  Best plasticity parameters of MA2-1 and MA14 magnesium alloys and their foreign analogs AZ31 and ZK60 for
deformation temperatures 150–300°C

Alloy Production technology Deformation
rate, s–1

Deformation
temperature, °C

Elongation
to failure, % References

MA2-1 ECAP + annealing 3 × 10–3 225 380 This study

MA2-1 Rolling – 250 30 [4]

AZ31 Rolling – 225 88 [5]

AZ31 Rolling 1 × 10–4 250 140 [6]

MA14 ECAP 3 × 10–3 260 810 This study

MA14 Rolling – 150 36 [7]

ZK60 ECAP 1 × 10–3 200 420 [8]

ZK60 Extrusion 1 × 10–3 300 400 [9]

Note: Chemical composition of alloys.
Ma2-1: Mg—3.8–5.0 wt % Al—0.8–1.5 wt % Zn—0.3–0.7 wt % Mn.
Ma14: Mg—5.0–6.0 wt % Zn—0.3–0.9 wt % Zr.
AZ31: Mg—2.5–3.5 wt % Al—0.6–1.4 wt % Zn—0.2 wt % Mn.
ZK60: Mg—4.8–6.2 wt % Zn—0.5 wt % Zr.

Table 2.  Same as in Table 1 but for room temperature

Alloy Production
technology

Deformation
rate, s–1

Elongation
to failure, %

Tensile strength, 
MPa References

MA2-1 ECAP 3 × 10–3 65 265 This study

MA2-1 Rolling – 14 260 [4]

AZ31 ECAP – 38 240 [10] 

AZ31 ECAP 1 × 10–3 46 265 [11] 

MA14 ECAP 3 × 10–3 45 260 This study

MA14 Rolling – 14 320 [7]

ZK60 Casting – 5 275 [12]

ZK60 Extrusion – 18 370 [12]
nential factor of the grain-boundary diffusivity, G is the
shear modulus, k is the Boltzmann constant, Q is the
activation energy for the strain-rate boundary diffusion,
R is the molar gas constant, p = 2, and A = 100. The
parameter n is inverse to the strain-rate sensitivity coef-

ficient  = , is determined from the analysis of

the experimental dependence , and is equal to n = 2
and 2.8 in the case under consideration for MA14 and
MA2-1 alloys, respectively. From the above expression
for , the activation energy for the process of grain-

boundary diffusion is easily expressed as  =

 (Y is the constant). The activation energy is

equal to 66 and 60 kJ/mol in MA14 and MA2-1 alloys,
respectively. For these Q values, the grain-boundary

m
∂ σln
∂ ε̇ln
------------

σ ε̇( )

ε̇
Q

Y n σln–
RT

----------------------
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diffusivity  for temperatures

240–260°C is larger than the value Db = 8 × 10–10 cm2/s
calculated on the basis of standard data by a factor of
about 350 (Db0 = 8 × 10–3 m2/s and Q = 92 kJ/mol [14]).

Thus, to explain the results, the classical model of
superplastic flow has to be completed by the conception
on changes in the parameters of the grain-boundary dif-
fusion under superplastic deformation. A variation in
Db as a function of the superplastic-strain rate can be
calculated in the model that was described in [15] and
based on the theory of nonequilibrium grain boundaries
in metals [3]. According to [15], the quantity 
can be represented in the form

The parameters M1 and M2 are calculated on the basis
of models [3] and are equal to M1 = 520 and M2 = 300

Db Db0
Q

RT
-------– 

 exp=

Db ε̇( )

Db ε̇( ) Db 1 M1 1 M2ε̇+( )ln+( ).=
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for magnesium (at T = 260°C). Substituting these val-
ues into the expression for , we find that the ratio

 representing the diffusion-acceleration coeffi-

cient is equal to 330 for  = 3 × 10–3 s–1. Thus, taking
into account that the grain boundaries are nonequilib-
rium, we can explain the possibility of superplasticity
in magnesium high-strength alloys for relatively low
temperatures 200–260°C.
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The upper temperature of the phase-state boundary
for which a substance conserves thermodynamic stabil-
ity in its condensed state can be attained as a result of
both intense heating and pressure drop [1, 2]. From the
practical standpoint, the most urgent problem is to
describe the thermal processes that accompany decom-
position of materials in extreme conditions of intense
one-sided surface heating. We imply, in particular, the
processes of both decomposition of heat-resistant coat-
ings and combustion [3, 4]. Regularities of changes in
the structure of materials under thermal decomposition
as the phase-state boundary is approached were ana-
lyzed previously [5, 6].

In this paper, the problem of estimating the parame-
ters of a surface thermal-decomposition zone for a
material, i.e., the zone depth and the time of residence
of a reacting substance in the zone, is set for the first
time. Further analysis is performed on the basis of data
available in the literature and novel experimental
results.

In thermodynamics, the position of the phase-state
boundary is determined from the condition of vanishing
of the second derivatives of one of the thermodynamic
potentials, e.g., δ2G = 0, where G is the Gibbs free
energy [1]. At the stability boundary, the derivatives

 and  vanish, which makes it possible to calcu-

late the parameters of the phase-state boundary from
the equation of state [7]. The position of the phase-state
boundary can be determined experimentally with a high
degree of precision by pulse methods according to tem-
peratures Tl of attainable superheating of samples [2].

In order to study the kinetics of thermal decomposi-
tion in the vicinity of the phase-state boundary, meth-
ods of physical experiments, which use thermal-vision
and laser diagnostics, have been developed [8]. In the
case under consideration, samples having the form of

p∂
v∂

------- T∂
v∂

-------

Russian Mendeleev University of Chemical Technology, 
Miusskaya pl. 9, Moscow, 125820 Russia
1028-3358/03/4807- $24.00 © 20347
thin (7–10 µm) substance layers were deposited onto a
metallic substrate preliminary heated to a constant tem-
perature. The intensity of the thermal decomposition of
the substance in the vicinity of the phase-state bound-
ary is determined by registering the infrared (IR) radia-
tion of the samples. In Fig. 1, an IR spectral thermo-
gram for the radiation of a low-density polyethylene
sample is presented as an example. In this thermogram,
a gradual decrease in the signal intensity along the sam-
ple length as a result of thermolysis of the substance is
seen.

As was shown by the tests of [8, 9], at high temper-
atures, kinetic curves of the thermal decomposition
acquire the form of inclined straight lines (Fig. 2). This
result implies that, at a constant temperature, the ther-
molysis process proceeds at a constant velocity W
defined, in the main, by the first stage of the reaction. In
this case, the heat-absorption (heat-release) function
F(T) can be represented in the form F(T) = ρQW(T),
where Q is the thermal yield of the reaction. The effect
of rectification of kinetic curves is associated to a large

Fig. 1. Thermogram obtained in the IR spectral region for
the surface of a metallic substrate with a thin melt of a sub-
stance. The dark band is the original sample fixed at a holder
and the light band is the melt.
003 MAIK “Nauka/Interperiodica”
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measure with the processes of arising nuclei and evap-
orating thermolysis products, which change with
increasing temperature. At moderate temperatures, the
number of nuclei arising on structure defects is small
and varies negligibly. The nuclei gradually grow,
merge, and reach the sample surface.

In this case, gaseous thermolysis products are
removed from the sample (Fig. 2a). The development of
these nuclei, called heterogeneous, is studied by
microscopy methods [10]. At high temperatures, heter-
ogeneous nucleation is replaced by the formation of
homogeneous nuclei, which is accompanied by a
higher activation barrier [2]. The volume of the sub-
stance is uniformly filled with homogeneous micronu-
clei having a radius on the order of 50 × 10–10 m at a
pressure of 0.5–1 MPa [2] (Fig. 2b). As a result of the
mutually contacting walls of the micronuclei, particles
of the substance that are not coupled to each other
appear. These particles are carried on the sample sur-

Fig. 2. Kinetic curves for the relative loss of the substance

mass . Curves 1 and 2 are obtained by the method of

contact thermal analysis using laser diagnostics; curves 3
and 4 are obtained by IR-spectroscopy methods: (1) poly-
ethylene siloxane PEG-400, T = 842 K; (2) polyethylene
siloxane PEG-400, T = 833 K; (3) high-pressure polyethyl-
ene, T = 789 K; (4) low-pressure polyethylene, T = 758 K.
On the right: variation of the substance structure, while
forming (a) heterogeneous nuclei and (b) homogeneous
nuclei.
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face, causing the formation of a foam and a dispersal of
condensed systems [10].

Logarithms of the inverse thermolysis time as a
function of inverse absolute temperature are plotted in
Fig. 3. The analysis of this figure shows that the Arrhe-
nius dependence (i.e., the rectilinear segments of the
plots) is valid only at moderate temperatures. In the
vicinity of the phase-state boundary, an increase in the
thermolysis process rate is observed, which is stipu-
lated by weakening of the intermolecular interaction
[8]. Below, we employ the obtained results for mathe-
matical simulation of the process of material decompo-
sition under nonuniform heating.

We now consider the one-dimensional process of
thermal decomposition of a half-space (0 < x < ∞),
which proceeds in accordance with the heat-conduction
equation
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mineral.
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under the following boundary conditions: T = Ts at x =

0 and  as x = ∞. Here, u is the surface-motion

velocity, λ is heat conduction of the material, and other
denotations are traditional. Equation (1) describes the
temperature profile in which we can distinguish a zone
of heating of the initial substance and a chemical-reac-
tion zone [3, 4]. We define the depth (thickness) of the
latter by the coordinate x = δ for which the reaction rate
at a temperature T = Tδ decreases by a factor of e com-
pared to its value on the heated surface. In the case
when the Arrhenius law is valid, it follows from this
definition that

where B and E are parameters. From this relation, we
obtain

We determine the thickness δ for the case where W(T)
does not correspond to the Arrhenius equation. To that
end, we integrate Eq. (1) after replacing the variables

 and denoting :

(2)

From here, it follows that

(3)

After the variables have been separated, as a result
of approximate integration, we arrive at the expression

(4)

Since integral (4) cannot be expressed in terms of ele-
mentary functions, we find its approximate value. In the
narrow interval Ts – T, we perform the replacement

where Wa and ϕa are certain average values of the func-
tions W and ϕ within the interval indicated.
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As a result, we have

where
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we find
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It is worth noting that, as a result of double integra-
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the function 
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Table 1.  Experimental and calculated data for parameters of the PMMA thermal decomposition

Thermal flux λϕs,
cal cm–2 s–1

Sample surface 
motion velocity

u, 102 cm s–1

Temperature Thickness of the sample sur-
face layer δ, 10–3 cm Time

Ts, K Tδ, K experimental calculated tr, s , s

R a d i a t i o n  h e a t i n g  o f  t h e  s u r f a c e  [ 1 ]

12.0 2.2 740 715 1.04 1.13 6.3 × 10–2 1.75

10.0 1.8 710 687 1.15 1.15 6.4 × 10–1 6

7.0 1.4 650 630 1.43 1.60 0.10 10

5.1 1.1 600 583 1.67 1.72 0.15 1

L i n e a r  p y r o l y s i s  [ 4 ]

Linear structure 10 785 757 – 0.62 6.2 × 10–2 3.39

" 3 772 754 – 0.60 2 × 10–2 3.28

Netlike structure 10 885 853 – 0.61 6.1 × 10–2 3.1

tı
Ä

the second derivative  at the point of inflection of

the temperature profile, as well as by the formula Tδ =

T1 – . Below, we present examples of the
calculations and compare their results with available
experimental data taken from the literature.

In Table 1, experimental data related to thermal-
decomposition parameters for polymethyl methacrylate
(PMMA) samples of the linear and net like structure are
given in the case of the action on their surface of an
intense radiation flux [11]. The samples are prepared by
the linear-pyrolysis method [4]. The data calculated
according to the Arrhenius equation are presented for

both the thickness δ and chemical-reaction time .

The characteristics of linear PMMA  = 21300 K,

B = 1012.47 s–1, a = 1 × 10–3 cm2 s–1, ρ = 1.2 g cm–3, Q =

2200 kJ kg –1  and netlike PMMA  = 21000 K and

B = 1012.3 s–1  are taken from [3, 4].The time of resi-

dence in the reaction zone  =  is estimated accord-

ing to the obtained values of the reaction zone thick-
ness.

As follows from Table 1, the calculated value of the
reaction zone thickness almost coincides with its exper-
imental value determined by the thermal flux incoming
to the sample surface. This is done according to the

relation , which testifies to a reasonably

high precision of the relationships obtained. As is

d2Tδ

dx2
-----------

T1 Ts–( ) e

tı
Ä

E
R
---
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
 E

R
---






tr
δ
u
---

δ
Ts Tδ–

ϕ s

----------------=
shown in [11], a certain difference between tr and 
(the superscript “A” implies the correspondence to the
Arrhenius equation) is caused by the decomposition of
PMMA as a result of the penetrating action of the radi-
ation on a transparent polymer. However, the signifi-
cant (by orders of magnitude) difference between tr and

 in the case of linear pyrolysis cannot be explained
by experimental causes. As is established in [5, 6], this
difference is determined by the fact that the temperature
of the sample surface approaches the phase-state
boundary (the temperature Tl in the case of linear
PMMA structure equals 788 K).

In Table 2, we demonstrate an example of the calcu-
lation of combustion parameters for ammonium per-
chlorate (PChA). The kinetic characteristics of PChA
in calculating the reaction time according to the results

of tests by the method of linear pyrolysis  =

15100 K and B = 106.8 s–1 (see the first number in the

last column) and  = 13500 K and B = 108.2 s–1 (see the

second number in the penultimate column)  are taken

from [10]. The values of δ are taken from the experi-
mental data of [12] or are obtained as a result of the cal-
culations.

As in the first example, the time of residence for the
substance in the reaction zone is many orders of magni-
tude shorter than the calculated time of occurrence of
the chemical reaction. However, this time is determined
according to kinetic parameters found at moderate tem-
peratures without allowance for the acceleration of the
process in the vicinity of the phase-state boundary. This

tı
Ä

tı
Ä

E
R
---

E
R
---
DOKLADY PHYSICS      Vol. 48      No. 7      2003



THERMAL SURFACE DECOMPOSITION OF CONDENSED SYSTEMS 351
Table 2.  Experimental and calculated data for parameters of the PChA thermal decomposition

Pressure 
P, MPa

Sample surface 
motion velocity

u, cm s–1

Temperature Thickness of the sample 
surface layer δ, 10–3 cm Time

Ts, K Tδ, K experimental calculated tr, s , s tx, s

0.1 0.02–0.03 750–770 710–730 – 1.9 1.4 × 10–2–8 × 10–2 1.44 × 102 8 × 10–2

3.4 × 10–1 –10–2

5.0 0.6 670–700 640–630 1.5    0.93 0.05 × 10–2 1 × 103 ~10–2

1.67 × 10–2 4.7

10.0 1.0 ~613 ~588 1.0 1.2 0.2 × 10–3–1 × 10–3 7.9 × 103 ~10–3

30.1

15.0 1.5 ~603 ~580 1.0 1.3 0.14 × 10–3 1.98 × 104 ~10–3

1.54 × 10–3 6.94

tı
Ä

discrepancy was indicated in due time by the authors
of [12].

In order to allow for the acceleration of the thermal-
decomposition process in the vicinity of the phase-state
boundary with the heterogeneous nucleation and homo-
geneous nucleation taken into account, the relationship

was suggested. However, a simpler and more obvious
representation is attained in the case of immediately
using experimental data (see Fig. 3). These data were
obtained in the regime of sample heating, which is
close to the conditions of heating of a substance in the
reaction zone. Inclined dashed lines in Fig. 3 corre-
spond to the Arrhenius equation. They extrapolate data
of low-temperature tests to the high-temperature
region. The points of intersection of the dashed lines

with the T1 vertical lines determine the ordinates . As

is shown in Fig. 3, for high temperatures close to the
phase-state boundary, both ordinates are more than two
orders of magnitude lower than the experimental value

 (without the superscript) of this physical quantity.

Hence, the true values of the times tx marked with the
subscript are more than two orders of magnitude lower

than the time  calculated using the Arrhenius equa-
tion. Thus, this equation carries no information on the
phase-state boundary and does not allow us to describe
thermal decomposition of condensed systems at high
heating rates adequate to actual processes. At the same
time, values of tx calculated with allowance for the
phase-state boundary in the case of both PMMA (~6 ×
10–2 s) and PChA, which are given in the last column of

W B νhet νhom+( )βkchem
λ=

1

tı
Ä

----

1
tı
---

tı
Ä
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Table 2, closely correspond to the residence time tr. The
dependence of temperature Tl on pressure is determined
by both experimental and calculation methods [2, 7, 8].
The results obtained testify to the fact that parameters
of the phase-state boundary should be necessarily
involved in calculations.

CONCLUSIONS

In this paper, relationships for determining chemi-
cal-reaction zone parameters such as zone thickness,
temperature gradients, and the time of substance resi-
dence in the vicinity of the phase-state boundary are
obtained.

The results of mathematical modeling of thermal-
decomposition processes in PMMA and PChA samples
under their intense heating are confirmed by experi-
mental data. An explanation of the discrepancy
between the kinetics of the low-temperature decompo-
sition and gasification of these substances under intense
heating in the vicinity of the phase-state boundary is
suggested.

A significant effect of destruction kinetics near the
phase-state boundary on the thermal-decomposition
rate for condensed systems at high temperatures is
shown. The allowance for parameters of the phase-state
boundary makes it possible to considerably increase the
precision of calculating the thermal-decomposition rate
of condensed systems under intense heating.
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A restricted two-body problem for an elastic-inter-
action potential on a unit-radius sphere has two degrees
of freedom and is described by the Hamiltonian

(cf. [1–5]). Here, θ and φ are the spherical coordinates
in the moving system associated with a body of nonzero
mass, pθ and pφ are the corresponding momentum com-
ponents, ω is the angular velocity of the body, and γ is
a constant.

The system described by the Hamiltonian H is con-
sidered in the complexified phase space M4. This space

is the direct product of the complexified circle ,
which is specified by the coordinate θ(mod2π) and the

deleted points , where n is an integer number, the

complexified circle  corresponding to the coordinate
φ, and the two complex straight lines C1 corresponding
to the coordinates pθ and pφ.

At γ = 0 and ω = 0, the system under consideration
has an additional (i.e., functionally independent of the
Hamiltonian) analytic first integral.

Remark. Generalization of the last fact to the case
of three motionless centers situated at the vertices of an
equilateral spherical right triangle is presented in [2].

Theorem. If γ ≠ 0,  is an irrational num-

ber, and  is a noninteger number, then the sys-
tem described by the Hamiltonian H has no additional
meromorphic first integral in the phase space M.

H
1
2
--- pθ

2 pφ
2

θ2sin
------------+

 
 
 

=

+ ω pθ φ pφ φ θcotsin–cos( ) γ θtan
2

+

SC
1

nπ
2

------

SC
1

x
ω
2γ

----------=

1 x2+
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Proof. The Hamiltonian H is invariant with respect
to the involutive symplectic diffeomorphism

J : M  M, J : (θ, φ, pθ, pφ) ° (θ + π, φ, pθ, pφ).

In the quotient manifold  = M/J, the induced
Hamiltonian system has a phase curve Γ that does not
represent an equilibrium position and is given by the
relations

We consider the variable z =  as a coordinate in
the phase curve Γ and, to contract the notation, denote
dφ by φ, dpφ by pφ, and the derivative with respect to z
by a prime. Then, in variations along Γ, the reduced
system of equations, i.e., the restriction of the system in
normal variations along this phase curve to the zero-
level surface of its first integral dH (cf. [6]), takes the
form

(1)

This system has three singular points z = ±i, ∞. In
addition, when passing around the points z = ±i, the
eigenvalues of the transformations under the action of
this system are equal to exp(±πix).

To find the eigenvalues of the transformations under
the action of this system when passing around the point
z = ∞, we represent the system as

(2)

where

M

φ pφ 0 pθ ω+, 2γ– θ 0.≠tan= = =

θcot

φ'
z

2γ– 1 z2+( )
-------------------------------- ωzφ– 1 z2+( )pφ+( ),–=

pφ'
z

2γ– 1 z2+( )
-------------------------------- ω 2γ–

z
------------- ω– 

  φ ωz pφ+ 
  .–=

φ'' a z( )φ' b z( )φ+ + 0,=

a z( )
a0

z
----- b z( ), ωz2

2γ 1 z2+( )2
--------------------------- 2γ–

z
------------- ω– 

 = =

=  
b0

z2
----- O

1

z3
---- 

  a0,+ 1 b0,–
ω2

2γ
------.–= =
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The determining equation [7]

at the point z = ∞ has the roots . Con-
sequently, when passing around this point, the eigenval-
ues of the transformation under the action of Eq. (2) are

equal to .
Let the system described by the Hamiltonian H have

an additional meromorphic first integral. Then, accord-
ing to the lemma from item 1.5 in [6], the induced sys-
tem also has an additional (functionally independent
of H) meromorphic first integral in the quotient mani-

fold . According to conditions of the theorem, the
eigenvalues of the transformations under the action of
system (1) when passing around the points z = ±i are
not equal to roots of unity. Therefore, according to the-
orem 2 from [6], the monodromy group of this system
is commutative. As a result,

where n is an integer number. According to the condi-
tions of the theorem, the last equation cannot be satis-
fied for any sign choice. The theorem is proven. 

r r 1–( ) a0r b0+ + 0=

r 1 1 x2+±=

2πi 1 x2+( )exp

M

1 x2+± x
2
--- x

2
--- n,+±=
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Two peculiar nonlinear phenomena are considered in
this work. The first of them, called the vibro-jet effect,
has been known for a comparatively long time [1]. It is
the appearance of slow flows of a fluid in the direction
of the narrowing of conic holes in a plate vibrating in
the fluid. The vibro-jet effect is successfully used in a
number of technical devices [1–3]. At the same time,
this phenomenon was possibly responsible for some
fatal air crashes when fuel stopped coming from tanks
due to vibration; i.e., vibration locking of the holes
occurred. In this case, the pressure facilitating the dis-
charge of the fuel was balanced by the vibration-
induced counterpressure. The second phenomenon—
vibrational injection of a gas into a fluid—was discov-
ered quite recently [4]. It is the suction of the gas
through a hole in the bottom of a fluid-filled vessel
vibrating in the gas. Moreover, injection also occurs
when the vessel vibrates in the fluid; i.e., there is vibra-
tional injection of a fluid into a fluid.

The theory of the vibro-jet effect was considered
in [1, 3]. We propose here a general explanation com-
prising the theory of both phenomena as special cases
and give the experimental results.

We consider a vessel (Fig. 1) that contains fluid 1
and is situated in either fluid or gas 2. The vessel can be
either open or closed and vibrates vertically according
to the law y = –Asinωt, where A and ω are the ampli-
tude and frequency of vibrations, respectively. The hole
is at the bottom of the vessel.

The volume discharge of the fluid or gas steadily
outflowing through the hole in the thin wall of the
immovable vessel is determined by the well-known
hydraulic formula [5]

(1)

Here, ∆P is the pressure difference between the inlet

Q µF
2∆P

ρ
-----------.=
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and outlet of the hole, ρ is the density of the outflowing
medium, F is the area of the hole, and µ is the so-called
discharge coefficient of the hole. For µ = 1 and free dis-
charge of the fluid into the atmosphere from the open
vessel with the fluid column of height h, ∆P = ρgh (g is
the gravitational acceleration) and formula (1) corre-
sponds to the Torricelli formula. We make the assump-
tion, which will be experimentally tested (see below),
that formula (1) is also valid for the instantaneous dis-
charge at a time-dependent pressure difference |∆p |. In
this case, the coefficient µ is assumed to depend both on
the direction of the outflow, which can be caused by the
shape of the hole channel, and on the properties of the
outflowing fluid. The pressure difference for the vibrat-
ing vessel is expressed as

(2)

Here, ∆P = P1 – P2 > 0 is the static pressure difference
at the hole, ρ1 is the density of fluid 1, h is the height of
the fluid in the vessel, τ = ωt, and

(3)

is the “overload parameter,” i.e., the ratio of the ampli-

∆p ∆P ρ1hy– ∆P 1 w τsin–( ).= =
..

w
ρ1hAω2

∆P
-------------------=

1

2

–y
P1

P2

Asinωt

Fig. 1. General scheme of the system “a vessel that contains
a fluid, has a hole, and vibrates in air or fluid.”
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tude of the dynamic pressure to the static pressure dif-
ference.

For w > 1 (Fig. 2), in the interval δ0 < τ < π – δ0,

where δ0 = , we have  < 0 and fluid or gas 2

flows into the vessel, while in the interval π – δ0 < τ <

2π + δ0, we have  > 0 and fluid 1 flows out of the

vessel. Periods of inflow and outflow are equal to T– =

 and T+ = , respectively.

1
w
----arcsin

∆p
∆P
-------

∆p
∆P
-------

π 2δ0–
ω

-----------------
π 2δ0+

ω
------------------

1 – w

0

1

1 + w

T– T+ T–

τ = ωtπ – δ0 2π + δ0δ0

w > 1

1 – wsinτ

∆p
∆P
-------

Fig. 2. Time dependence of the pressure difference.
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J–(w)/10

µf/µ

µ = 0.58

T+µf /µ

TQf exp w = 0 = 6.1 cm3/s

TQf exp/Qf exp w = 0
T

w = Aω2/g

Fig. 3. Water discharges  through the hole, the func-

tions J+ and J– , and the discharge coefficients µf and 

vs. the overload parameter w.

Qf  exp 
T

µf
T+
The outflowing and inflowing volume discharges

per second that are averaged over the period T =  =

T+ + T– are given by the expressions

(4)

respectively. Here, µ+ and µ– are the discharge coeffi-
cients for the outflow and inflow, respectively, and ρ+ =
ρ1 and ρ– = ρ2 are the densities of fluids 1 and 2, respec-
tively.

For 0 ≤ w ≤ 1, we always have ∆P > 0, and fluid 1
always flows from the vessel. Therefore, T– = 0,  T+ =

T = . In this case,

(5)

Expressions (4) and (5) can be represented as

(6)

(7)

where k± =  and K and E are the complete ellip-

tic integrals of the first and second kinds, respectively.
The plots of the functions J±(w) are presented in Fig. 3.
For practical calculations, one can use the approximate
formula

(8)

obtained by the parabolic approximation of the inte-
grands in formula (5).
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T ω

2π
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ω
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ω
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T ω
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  , J– w( ) 0,= =
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w 1±
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For comparison with experimental data, the dis-
charges

 

(9)

 

averaged over the outflow and inflow times 

 

T

 

+

 

 and 

 

T

 

−

 

,
respectively, are also of interest.

It is easy to show that relations (6) can be written in
the form of the equation of vibrational hydraulics [2],
which is an analogue of the Bernoulli equation for the
“slow” components of the velocity and pressure under
vibration.

 

In the case of the vibro-jet effect

 

, the fluids inside
and outside the vessel are the same, so that 

 

ρ

 

+

 

 = 

 

ρ

 

–

 

 = 

 

ρ

 

,

 

w

 

 > 1, and the total average discharge is determined by
the formula

 

(10)

 

When the inequality 

 

 < 

 

 is satisfied, the

fluid flows into the vessel (more fluid per period flows
in than flows out) in spite of the positive static pressure

difference 

 

∆

 

P

 

 = 

 

p

 

1

 

 – 

 

p

 

2

 

 > 0. When 

 

 = 

 

, 

 

the

vibration locking of the vessel

 

 occurs as described
above. For 

 

w

 

 > 5, the condition of the appearance of the
inverse flow and the condition of the vibration locking

can be represented as  < 1 –  and  = 1 – ,

respectively, with an accuracy of about 5% by using
formulas (8).

In the case of vibrational injection of a gas into a
fluid, we consider an open vessel where the pressure of
the gas on the surface of the fluid is equal to the pres-
sure at the outlet from the hole. Then, ∆P = ρ1gh and

formulas (6) for the gas and liquid discharges  = 

and  =  averaged over the period T take the form

(11)

Here, contrary to Eqs. (6), subscripts “f” and “g” refer

to the fluid and gas, respectively, and w = .

Vibrational injection takes place only when the vol-
ume of the gas entering the vessel in the time T– during
every vibration period is sufficient to form a bubble

Q+
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TT
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----------, Q–
T– Q–

TT
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----------,= =
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T Q–

T+=

=  
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T Qf

T

Q–
T Qg

T
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T Qf

T 1
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T Qg

T 1
2π
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2ghρf
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Aω2

g
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with the diameter of the hole (see below). This condi-
tion leads to the demand that the height of the column
of the fluid in the vessel must exceed a certain critical
value h*. Calculations show that h* is not large when

vibration is strong enough (w > 3), but it can be large
for w < 1.5 when J– is small (Fig. 3).

The experiments on studying the vibrational injec-
tion were carried out on a 157 A-UC vibration bench at
the Mekhanobr Institute. An open cylindrical glass ves-
sel 300 mm in height and 58 mm in inner diameter was
fixed on the table of the bench. The vessel had a round
hole at the center of the bottom. A certain level of water
was kept in the vessel. The vessel vibrated vertically
with a frequency and amplitude that could be changed.
Observation in stroboscopic light revealed that one
bubble of air was sucked into the vessel and one drop
of water flowed out during every oscillation period.
Figure 4 shows a photo of the vibrating vessel with air
rapidly sucked into it.

The average volume discharge of outflowing water

 was measured as a function of the parameter w
for the oscillation amplitude A = 2.5 mm, the height of
the water column in the vessel h = 200 mm, and the hole
diameter d = 2.6 mm (Fig. 3). As is seen, with an

Qf exp
T

Fig. 4. Vibrational injection of a gas into a fluid.
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increase in w from w = 1, the discharge first decreases
and then begins to increase. This behavior, as well as
the behavior of J+(w), can be easily explained by rela-
tions (7) and (11).

According to Fig. 3 and formula (11), the depen-

dence of the air discharge (w), as well as the J−(w)
dependence, is monotonic. A sufficiently rapid suction
of air into the vessel was observed in the experiment
beginning with w ≈ 2.5. At the same time, according to
the theory presented above, it must begin at w some-
what exceeding 1. This can be explained by the surface-
tension effect on the formation of bubbles.

To compare the theoretical results with the experi-
mental data, it is interesting to compare the discharge
coefficient µf with its value µ for the stationary flow of
the fluid through the hole. We calculated the µf values
by formula (11) using the experimental data and the

 values using the average discharges calculated by
formula (9) including the actual time of the outflow.
These quantities are shown in Fig. 3 by the dotted and

Qg
T

µf
T+
solid lines, respectively. As is seen, the  values for
w > 4 differ only moderately from the µ value. This fact
seems to corroborate the elements of the above theory
of the phenomenon.
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Interfaces in martensitic transformations can be
treated as strain-discontinuity surfaces, where, in addi-
tion to the ordinary kinematic and force conditions, an
additional thermodynamic condition must be satisfied
[1–4]. This condition restricts the geometry of the
interfaces [5–8].

Being a problem with an unknown boundary, the
problem of determination of equilibrium two-phase
configurations has as a rule several solutions; i.e., dif-
ferent equilibrium two-phase structures can correspond
to the same boundary conditions. In this case, locally
stable (metastable) states, as well as states providing
the global minimum of the energy functional, are of
interest. A certain state is realized depending on the ini-
tial conditions and kinetics of a phase transition. How-
ever, various equilibrium solutions can be a priori esti-
mated disregarding transition kinetics by analyzing the
stability of two-phase fields of strains and energy
changes induced by phase transitions.

In this paper, the nonuniqueness and stability of
two-phase states are analyzed by an example of cen-
trosymmetric two-phase strain fields. The equilibrium
of a two-phase ball on the class of solutions with one
spherical interface was previously analyzed in [6–9]. In
these works, the possibility of two or more equilibrium
interfaces, as well as the stability of two-phase states
under arbitrary disturbances, was not studied. The
results presented below continue investigations begun
in [10, 11].

1. EQUILIBRIUM CENTROSYMMETRIC 
STRAINS

For small strains, the problem of equilibrium two-
phase configurations of an elastic body reduces [7, 12]
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to the problem of determination of an interface Γ and
displacement field u(x), which is quite smooth for
x ∉ Γ , is continuous on Γ, and satisfies the boundary
conditions and equilibrium conditions

(1)

(2)

Here, x is a point of the body; the volume density f of the
free energy is approximated by the quadratic functions

(3)

ε and σ are the strain tensor and stress tensor, respec-
tively; θ is the temperature; n is the unit vector normal
to the interface Γ; C± are the positive definite tensors of

the elastic moduli of the phases;  and  are, respec-
tively, the free-energy densities and strain tensors for
the phases in unstressed state; [·] = (·)+ – (·)–; and sub-
scripts + and – mean the material in different phase
states. Mass forces, thermoelastic stresses, and surface
energy are ignored.

Thermodynamic condition (2) reduces to an equa-
tion determining a one-parameter family of normals to
the interface depending on strains on the one side of the
interface [5]. If the tensor C1 = C+ – C– is nondegener-
ate, this equation is represented in the q space as

(4)

(5)

x Γ : ∇ σ⋅∉ 0 θ, const,= =

x Γ : u[ ]∈ 0 σ[ ] n⋅, 0,= =

f[ ] σ : ε[ ]– 0.=

f ε θ,( ) f – ε θ,( ) f + ε θ,( ),{ } ,
–, +

min=

f ± ε θ,( ) f 0
± θ( ) 1

2
--- ε ε±

p–( ) : C± : ε ε±
p–( ).+=

f 0
± ε±

p

χ q± n,( )

=  γ*
1
2
--- q± : C1

1– : q± q± : K+− n( ) : q±±( ) =  0,+  
∆

q –C1 : ε C : εp[ ] ,+=

K± n( ) n G± n⊗ ⊗{ } s G±, n C±⋅ n⋅( ) 1– ,= =

γ* γ 1
2
--- εp[ ] : B1

1– : εp[ ] B±,+ C±
1– ,= =

B1 B+ B–,–=
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where the superscript s means symmetrization: Kijkl =
n(i Gj)(k nl).

The following statement for an isotropic material
can be proved by analyzing the possibility of satisfac-
tion of equilibrium condition (4) at several interfaces.

Statement. For the class of centrosymmetric equi-
librium two-phase solutions, only one spherical inter-
face for a solid body and no more than two interfaces
in a body with a spherical cavity can exist. 

This statement is valid for any type of boundary
conditions on the cavity surface.

2. STABILITY. 
THE LINEARIZED BOUNDARY VALUE 
PROBLEM FOR A TWO-PHASE BODY

We consider a certain initial equilibrium two-phase
state and a state infinitesimally different from it. The
displacement and radius vector of the interface in the
perturbed state are given by the formulas

u = u0 + w, r = r0 + ηn, (6)

where w is the vector of small additional displace-
ments, η is the perturbation of the interface in the n
direction, and u0 and r0 are the displacement vector and
radius vector of the interface in the initial state, respec-
tively. We consider quasistatic perturbations; i.e., the
field of displacements depends on time as on a param-
eter through the time dependence of the interface.

When the interface moves quasistatically, χ ≠ 0 is
the thermodynamic force. In the linear thermodynamic

Fig. 1. Pressure vs. volume strain for µ+ > µ–, where µ+ and
µ– are the shear moduli of the respective phases.

–p

ϑ
0

ϑA ϑB ϑEϑDϑC

A

B

C''

D
E

C'

approximation, the normal component of the interface
velocity is determined by the equation

, (7)

where the normal is out of the domain occupied by the
+ phase and k is the kinetic coefficient.

The linearization of the boundary value problem
specified by Eqs. (1) and (2) provides the set of equa-
tions for w and η

(8)

(9)

(10)

where Ω1 ∪ Ω 2 is the outer boundary of the body. Rela-
tion (10) follows from master equation (7) and
describes the evolution of initial perturbations of the
interface. If the initial state includes several interfaces,
consistency conditions (9) and (10) are imposed at each
of them.

The operator generated by the boundary value prob-
lem specified by Eqs. (8) and (9) is uniquely solvable
with respect to w, because additional displacements w
are expressed in terms of the interface perturbation η as
w = !η, where ! is a certain linear integral operator.
The substitution of this expression into master equa-
tion (10) provides the integro-differential equation
for η

(11)

For several interfaces, the solution of Eqs. (8)–(10)
leads to the set of integro-differential equations for per-
turbations of the interfaces.

The analysis of the stability of equilibrium solutions
reduces to the determination of the bifurcation points of
Eq. (11) and behavior of its small solutions. Bifurcation
points are determined from the existence condition of
stationary nonzero solution of the equation +η = 0. If
the operator + is positive definite, Eq. (11) (set of equa-
tions) admits only solutions decreasing with time. In
this case, the initial two-phase solution is stable. Other-
wise, undamped perturbations exist and, therefore, the
solution is unstable.

νn
Γ kχ q+ n,( ) k 0>,–=

x Γ : ∇ σ ± w( )⋅∉ 0 σ± w( ), C± : ∇ w,= =

x Ω1 Ω2 : w Ω1
∪∈ 0 n σ w( ) Ω2

⋅, 0,= =

x Γ : w[ ]∈ η n ∇ u0⋅[ ] ,–=

n σ w( )[ ]⋅ η σ0 u0( )[ ] η n n ∇σ⋅ 0 u0( )[ ] ,⋅–⋅∇=

q+:  C 1
1– K – n ( ) + ( ) :  q + . η n χ∇⋅ +

1
 

k
 --- 

d η
 

dt
 ------,–= 

q

 

+

 

.
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1

 

:  ε w ( ) ,–=  
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1
k
---dη

dt
------– +η .=
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3. STABILITY 
OF CENTROSYMMETRIC EQUILIBRIUM 

STATES

Figure 1 [6, 7] shows pressure p on the surface of a

solid ball as a function of  = , where u0 are radial

displacements at the ball boundary and R is the outer
radius of the ball.

The solution changes qualitatively at the points A, B,
D, and E, where the topology of the solution changes
and an internal interface can appear. Single-phase solu-
tions presented by intervals AC ' and C ''E in Fig. 1 are
locally stable on the class of one-phase deformations.
At the same time, both two-phase solutions presented
by intervals AE and BD are energetically favorable over
the single-phase solution and are stable on the class of
centrosymmetric solutions, where only the interface
radius is perturbed for given ϑ values [7]. 

Analysis of energy changes accompanying the
appearance of new-phase domains shows that cen-
trosymmetric two-phase states energetically favorable
over one-phase states even disregarding the thermody-
namic equilibrium condition first appear when achiev-
ing ϑΑ (loading) and ϑE (discharge). This means that
the single-phase solution is metastable with respect to
two-phase solutions, i.e., is unstable with respect to
finite two-phase perturbations. Therefore, the points ϑΑ
and ϑB can be called points of topological instability
(bifurcation).

For a body with a spherical cavity, similar depen-
dences can be plotted for equations with one and two
interfaces and for various phase alternating. For two-
phase solutions, the new-phase domain expands and
pressure decreases with an increase in ϑ .

We consider the stability of the above solutions with
respect to axisymmetric perturbations.

Equilibrium conditions for the solid ball admit two
two-phase solutions. It is shown that a solution where
the phase with the higher shear modulus occupies the
outer spherical layer is unstable (interval BD in Fig. 1)
[10, 11]. When the harder phase is located at the center
of the ball, loss of stability is not observed (interval
AE). Solid lines in Fig. 1 are solutions for the solid ball
that are locally stable and energetically favorable.
Dashed lines are unstable or metastable solutions.

Equilibrium conditions for the ball with the cavity
admit solutions with one and two interfaces and various
phase alternating. The analysis of stability, when the
bulk moduli of materials of phases are identical, for
zero stresses or displacements on the cavity surface
provides the following conclusions.

(i) When the cavity is small, only a solution with one
interface, where the phase with the higher shear modu-

ϑ
3u0

R
--------
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lus forms the inner layer, can be stable. Other solutions,
including those with two interfaces, are unstable.

(ii) When the radius of the cavity exceeds a certain
value, all two-phase solutions are unstable.

Comparison of results for the stability of the solid
ball and ball with the cavity reveals the passage to the
limit: the stable solution for the ball with the cavity
passes to the stable solution for the solid ball when the
cavity radius tends to zero.

4. TWO-PHASE STRAIN FIELDS 
AND PHASE-TRANSITION ZONE

We compare the strain fields in various two-phase
configurations of the ball with the phase-transition zone
formed in the strain space by all strains that can coexist
at the equilibrium interface [8, 12–14].

For centrosymmetric two-phase fields, spherical and
axisymmetric fields of the q tensor arise in the body. In
the principal-value space q1, q2, and q3 of the q tensor,
these fields lie on the q2 = q3 plane. Figure 2 shows the
sections of the phase-transition zone by this plane. The
two solutions of the problem for the solid ball corre-
spond to jumps aa' and bb' at the interface.

For µ1 > 0, the AE solution (Fig. 1), where the
inner + phase has higher shear modulus, corresponds to
the strain distribution shown in Fig. 2a by the point a
(+ phase in the hydrostatic state) and interval a'e
(strains in the ball layer formed by the – phase). When
the point e in the z0e path is achieved, the + phase can
originate at the center of the ball and an interface with
the strain jump aa' can arise. The interface expands
with further deformation of the ball. The strain of the
inner + phase remains unchanged (point a). Strains in
the ball layer of the – phase are represented by the
points of the interval a'e, but the point e is shifted to a'
with deformation.

The second solution (BD in Fig. 1) is represented in
Fig. 2a by the jump bb' and interval b'd.

For µ1 < 0, as the point a is achieved, the + phase
originates on the ball surface with the strain a' at the
interface (Fig. 2b). With the transformation of the ball,
strains in the ball layer of the + phase are distributed
over the interval a'e. The second solution is represented
in Fig. 2b by the jump bb' and interval b'd.

Thus, various two-phase states of the ball can corre-
spond to strain fields of the following two types.

(i) Strains at the interface correspond to the outer
boundary of the phase-transition zone, and strains at
other points of the body lie beyond the phase-transition
zone (interval a'e in Fig. 2).

(ii) At least in a part of the body, strains correspond to
inner domains of the phase-transition zone (interval db'),
and a jump occurs form the nonconvex part of the
boundary of the phase-transition zone (point b).
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In the case considered above, the unstable solution
corresponds to the second type of two-phase strains.

5. CONCLUSIONS

The above analysis reveals a number of fundamental
features of the formulation and solution of boundary
value problems for bodies that undergo phase transi-
tions under deformation and, therefore, have an addi-
tional degree of freedom associated with an interface.

(i) Since the boundary value problem specified by
Eqs. (1) and (2) is nonlinear due to the presence of an
unknown interface, the solution is not unique.

(ii) The new degree of freedom significantly affects
the stability of elastic two-phase bodies. In the absence
of a phase transition (η = 0), the problem specified by

z

0 q – q1

z0

q3

q2

q1

z
(a)

z
a

d

b

b'

a'
a

z

0 q – q1

z0

z

(b)

a

d

b

b'

a'

z0

z0

ω'

ω''

β
c

Fig. 2. Section of the phase-transition zone by the q2 = q3 =
q plane for (a) µ1 > 0 and K1 < 0 and (b) µ1 < 0 and K1 < 0:
ω' and ω" are the outer boundaries of the zone, β are the
inner boundaries, c is the surface, where the derivatives of

the function f(ε) are discontinuous, z = , and z0 is the

initial undeformed state.

I1 q( )

3
-------------

e

Eqs. (8) and (9) is a well-known homogeneous bound-
ary value problem for a composite, linearly elastic body
and has only zero solutions. In this case, the centrosym-
metric strain field is stable for any radius of the fixed
interface.

(iii) The appearance of a cavity, i.e., an additional
outer boundary, is responsible for a destabilizing action
independent of the type of boundary conditions
imposed at it.

(iv) Solutions of the problem of equilibrium two-
phase configurations of elastic bodies can substantially
differ from solutions obtained when designing two-
phase composites of the optimal structure. Centrosym-
metric solutions providing the global minimum of the
energy functional of the two-phase body for a fixed
fraction of one of the phases were considered in [15].
The phases differed only in the elastic moduli; i.e., this
case corresponds to εp = 0. A solution providing the glo-
bal minimum for the solid ball was shown to corre-
spond to a structure where the harder phase is concen-
trated at the center of the ball and is surrounded by the
softer phase. This conclusion coincides with the results
of the above stability analysis.

However, for the ball with the cavity, when the bulk
moduli of materials of the phases are identical, a solu-
tion in the form of the three-layered shell, whose mid-
dle layer is formed by the hard phase, is optimal (ener-
getically favorable on the class of states satisfying the
isoperimetric condition of the constant content). As was
shown above, this solution is unstable under phase tran-
sitions, which mean the appearance of the additional
degree of freedom associated with the change in the rel-
ative phase content.
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Measurements of the motion of the Earth’s pole
have been statistically analyzed in numerous papers
(see, e.g., review [1]). Analytical stochastic models of
the motion of the Earth’s pole were developed in [2–4]
on the basis of celestial mechanics. Stationary and non-
stationary one-dimensional distributions of fluctuations
in the motion of the Earth’s pole were studied in [5]. In
this paper, we continue that investigation and consider
multidimensional distributions for the deformable
Earth by using the equations for multidimensional dis-
tribution densities and characteristic functions.

1. The notation and assumptions in this paper are the
same as in [5].

(i) The state vector is denoted by Y = [Y1Y2Y3]T,
where Y1 = pt, Y2 = qt, and Y3 = rt are the projections of
the instantaneous angular velocity of the Earth’s rota-
tion on the Earth’s axes.

(ii) We assume that the components of the inertia
tensor ) = {Jij}, i, j = p, q, r (i.e., the axial and centrifu-
gal moments of inertia of the deformable Earth A = Jpp,
B = Jqq, and C = Jrr, with Jpq = Jqp, Jqr = Jrq, and Jrp = Jpr)

in the daily time interval T∗  = 2π  can be represented
in the form

where higher harmonics are disregarded.
(iii) The dimensionless combinations of the axial

moments of inertia

u1 = 〈(C – B)A*–1cosϕ〉 ,

u2 = 〈(C – A)B*–1sinϕ〉 , and u3 = 〈(B – A)C*–1sin2ϕ〉 ,

averaged over the daily time interval T∗  = 2π  are
referred to as effective daily humps. Here, 〈…〉  means

r*
1–

Jij Jij* Jij 1,' r*t Jij 1,'' r*tcos+sin+=

+ Jij 2,' 2r*tsin Jij 2,'' 2r*t,cos+

r*
1–
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averaging over the time interval T∗  = 2π , ϕ = r∗ t,
u1 ~ u2, and u3 ! u1, 2 .

(iv) The dimensionless combinations of the centrif-
ugal moments of inertia,

u4 = 〈JqrA*–1〉 , u5 = 〈JqrC*–1sinϕ〉 ,

u6 = 〈JqrA*–1cos2ϕ〉 ,

u7 = 〈JqrB*–1sin2ϕ〉 , u8 = 〈JprB*–1〉 ,

u9 = 〈JprC*–1cosϕ〉 ,

u10 = 〈JprB*–1cos2ϕ〉 , u11 = 〈JprA*–1sin2ϕ〉 ,

u12 = 〈JpqC*–1〉 ,

u13 = 〈JpqA*–1sinϕ〉 , u14 = 〈JpqB*–1cosϕ〉 ,

and u15 = 〈JpqC*–1cos2ϕ〉 ,

averaged over the daily time interval T∗  = 2π  will be
referred to as effective daily spikes, where u4–7 ~ u3 ,
u8−11 ! u4–7, and u12–15 ! u8–11.

(v) We allow for only the moments of gravitational
forces of the Sun with respect to the Earth’s axes [6, 7].
It is important to note that the amplitude of the gravita-
tional moment induced by the Moon is larger than that
induced by the Sun by a factor of 2–3. However, since
the natural frequency differs significantly from the
forcing frequency, the amplitude of monthly oscilla-
tions induced by the Moon is one twentieth to one fif-
teenth that of annual oscillations. Therefore, monthly
oscillations of the Earth’s pole are not manifested in
observations.

(vi) We allow for the moments of external random
and dissipative forces:

 = V1t – D1pt,  = V2t – D2qt, 

and  = V3t – D3rt .

Here, V1t, V2t , and V3t are the specific moments of exter-
nal random forces, and D1, 2, 3 are the coefficients of the
specific moments of dissipative forces.

r*
1–

r*
1–

M1
rd M2

rd

M3
rd
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(vii) Finally, 3 = 3(t, pt, qt, rt, u, V), 4 =
4(t, pt, qt, rt, u, V), and 5 = 5(t, pt, qt, rt, u, V) denote
the specific moments of external perturbing forces,
which depend on time, the state vector, the constant
parameters u = [u1u2 … ]T, and the random param-

eters V = [V1tV2tV3t … ]T, where n1, 2 ≥ 3.

Under assumptions (i)–(vii), the equations of the
Earth’s motion have the form [5]

(1)

(2)

(3)

where

(4)

(5)

(6)

(7)

(8)

(9)

Here, N∗  = (C* – B*)A*–1ω∗ , r∗  = 365ω∗ ; the quanti-
ties u1–3 and u4–15 are defined in (iii) and (iv), respec-
tively; and b and b1 ≈ b are known parameters such that
4 ≤ b ≤ (4/3)π–1 [7]. Terms involving the squares and
products of u, pt, qt, and rt – r∗ , as well as the averaged
(over the time interval T∗ ) rates of variation of the axial

un1

Vn2t

ṗt N*qt+ 31 32V, pt0
+ p0,= =

q̇t N* pt– 41 42V, qt0
+ q0,= =

ṙt 51 52V, rt0
+ r0,= =

31 3u1bω*
2 ω*tcos

3
2
---u4ω*

2 1 3b1
2 ω*tcos

2
–( )–=

–
3
2
---u6ω*

2 1 b1
2 ω*tcos

2
–( )

3
2
---u11ω*

2 1 b1
2 ω*tcos

2
–( )–

+
3
2
---u13ω*

2 b ω*tcos u4rt
2– D1 pt,–

32V V1t 32 t pt qt rt u, , , ,( )V ,+=

41 3– u2bω*
2 ω*tcos

3
2
---u7ω*

2 1 b1
2 ω*tcos

2
–( )+=

+
3
2
---u8ω*

2 1 3b1
2 ω*tcos

2
–( )

3
2
---u10ω*

2 1 b1
2 ω*tcos

2
–( )–

– 3u14bω*
2 ω*tcos u8rt

2 D2qt,–+

42V V2t 42 t pt qt rt u, , , ,( )V ,+=

51
3
2
---u3ω*

2 1 b1
2 ω*tcos

2
–( ) 3

2
---u5bω*

2 ω*tcos–=

+ 3u9bω*
2 ω*tcos 3u15ω*

2 1 b1
2 ω*tcos

2
–( ) D3rt,–+

52V V3t 53 t pt qt rt u, , , ,( )V .+=
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and centrifugal moments of inertia, are omitted in the
functions 31, 41 , and 51 . The specific moments of
external random–dissipative forces are denoted by 32,
42 , and 52; they are nonlinear in u, pt, qt , and rt and
depend on the parameters V.

2. We first consider the general case of non-Gauss-
ian parameters V with zero mathematical expectations
(MV = 0) and known one-dimensional distribution of

the independent increments W (  = V). The corre-
sponding one-dimensional characteristic function and
its logarithmic derivative are denoted by

(10)

respectively. According to [8, 9], Eqs. (1)–(3) treated in
the sense of θ-differentials reduce to the Ito form

(11)

where

(12)

(13)

(14)

If the parameters V represent broadband Markov
processes, Eqs. (1)–(3) should be treated as nonlinear
stochastic differential equations in the sense of θ-differ-

entials [8, 9] (e.g., in the Stratonovich sense, θ = ). In

the case of self-correlated noise, Eqs. (1)–(3) or (11)
should be completed by the equations of linear shaping
filters generated by white noise [8, 9].

3. We denote the one- and multidimensional proba-
bility densities and characteristic functions of the state
vector Y by fn = fn(y1, y2, …, yn; t1, t2, …, tn) and gn = gn

(λ1, λ2, …, λn; t1, t2, …, tn), respectively (n = 1, 2, 3, …).
Then, according to Eq. (11), the stochastic models of
fluctuations in the Earth’s motion are described by the

Ẇ

h1 h1 µ; t( ) M iµTW( ),exp= =

χ χ µ ; t( ) ∂
∂t
----- h1 µ; t( ),ln= =

dθY a Y t,( )dt b Y t,( )dθW , Y t0( )+ Y0,= =

a a Y t,( ) a1a2a3[ ] T= =

=  a θ ∂
∂η
------ 

 
T

b Y t,( )ν t( )b η t,( )T

η Y=

T

,+

a a Y t,( ) a1a2a3[ ] , a1 N*qt– 31,+= = =

a2 N* pt 41, a3+ 51,= =

b b Y t,( ) diag 32 42 52, ,[ ] .= =

1
2
---
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Pugachev linear integro-differential equations under
the corresponding initial conditions [8, 9]:

(15)

(16)

(17)

(18)

Here, yn = [ ]T and λn = [λpnλqnλrn]T; the function
χ(µ; t) is given by Eq. (10); and f0(y) and g0(t) are the
probability density and the characteristic function for
the initial state y0 = [pt0qt0rt0]T, respectively. The δ func-
tion enters into the right-hand side of the last equation
because the quantity  for tn = tn – 1 is very close

to .

If the parameters V are Gaussian random variables
characterized by the intensity matrix ν(t) = [νlh(t)]
(l, h = 1, 2, …, n2) with zero mathematical expecta-
tions, Eqs. (17) and (18) for n = 1 reduce either to the
Fokker–Planck–Kolmogorov equation [see Eq. (14)
in [5]] or to the equation for one-dimensional probabil-
ity density given in [5]. The transition density f =
f(y; t | η; τ) satisfies the same equation under the initial

∂gn

∂tn

--------
1

2π( )3n
--------------- … iλn

Ta yn tn,( )([
∞–

∞

∫
∞–

∞

∫=

+ χ b yn tn,( )Tλn; tn( ) ] i λ l
T µl

T–( )yl

l 1=

n

∑
 
 
 

exp

× gn µ1 µ2 … µn; t1 t2 … tn, , ,, , ,( )

× dµ1dµ2…dµndy1dy2…dyn,

gn λ1 λ2 … λn; t1 t2 … tn 1– tn 1–, , , ,, , ,( )
=  gn 1– λ1 λ2 … λn 2– λn 1– λn; t1 t2 … tn 1–, , ,+, , , ,( ),

g1 λ ; t0( ) g0 λ( );=

∂ f n

∂tn

--------
1

2π( )3n
--------------- … iλn

Ta ηn tn,( )[
∞–

∞

∫
∞–

∞

∫=

+ χ b ηn tn,( )Tλn; tn( ) ] i λ l
T η l

T yl
T–( )

l 1=

n

∑
 
 
 

exp

× f n η1 η2 … ηn; t1 t2 … tn, , ,, , ,( )

× dη1dη2…dηndλ1dλ2…dλn,

f n y1 y2 … yn 1– yn; t1 t2 … tn 1– tn 1–, , , ,, , , ,( )
= f n 1– y1 y2 … yn 1– ; t1 t2 … tn 1–, , ,, , ,( )δ yn yn 1––( ),

f 1 y; t0( ) f 0 y( ).=

ptn
qtn

rtn

Ytn

Ytn 1–
condition f(y; τ | η;τ) = δ(y – η). Using the recurrence
relation [8, 9]

(19)

we obtain the desired multidimensional probability
densities fn .

4. Using the orthogonal expansion method [8, 9], we
present both one-dimensional (n = 1) and multidimen-
sional (n > 1) kinetic models in the form

(20)

(21)

Here, {pµ(y), qµ(y)} and { (y1, y2, …, yn),

(y1, y2, …, yn)} are the known sets of orthog-

onal polynomials, and the functions  = (y1, y2, …,
yn) belong to the known standard consistent sequence
of probability densities (for n ≥ 1). Since the first- and

second-order moments of  are identical to those of

fn, the functions  depend on the mathematical expec-
tation mt , covariance matrix Kt , coefficients cµt , and
covariance function K(t', t'') of the vector Y for t', t'' =
t1, t2, …, tn . The parameters mt, Kt, cµt, K(t', t''), ,

and  entering into Eqs. (20) and (21) obey a set
of ordinary differential equations, which are generally
nonlinear in mt and Kt but linear in the coefficients of
the consistent orthogonal expansions.

In particular, for non-Gaussian parameters V in the
Gaussian approximation (normal approximation
method [8, 9]), the two-dimensional nonlinear kinetic
model is described (in terms of probability densities) by
the equations

(22)

(23)

f n y1 y2 … yn; t1 t2 … tn, , ,, , ,( )
=  f 1 y1; t1( ) f y2; t2 y1; t1( )…f yn; tn yn 1– ; tn 1–( ),

f 1 y; t( ) w1
st y( ) 1   c µ t p µ y ( ) 

µ

 

l

 

=

 ∑  

l

 

3=

 

n

 
*  ∑  + , ≈

f n y1 y2 … yn; t1 t2 … tn, , ,, , ,( ) wn
st y1 y2 … yn, , ,( )≈

× 1   c µ 
1

 µ 
2

 … µ 
n

 , , ,

µ

 

1

 

… µ

 

n

 

+ +

 

l

 

=

 ∑ 

l

 

3=

 

n

 ∑  +

× pµ1 µ2 … µn, , , y1 y2 … yn, , ,( ) .

pµ1 µ2 … µn, , ,

qµ1 µ2 … µn, , ,

wn
st wn

st

wn
st

wn
st

cµ1µ2

cµ1 … µn, ,

f 1 f 1 y mt Kt; t, ,( ) 2π( )3 Kt[ ] 1/2–
= =

× y mt–( )TKt
1– y mt–( )–{ } ;exp

ṁt MNa Y t,( ), mt0
m0;= =
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(24)

(25)

(26)

(27)

Here, the subscript N implies that the mathematical
expectation is calculated for equivalent normal distri-
bution (22) or (25) with unknown parameters mt, Kt, and
K(t1, t2). With known one- and two-dimensional Gauss-
ian distributions, the probability densities fn for n > 2
are calculated by the normal approximation method.

5. In conclusion, we make two remarks.
For Gaussian parameters V with n = 1, the kinetic

model described by Eqs. (15)–(18) coincides with the
model developed in [5]. In this case, it is advisable to
use the Pugachev linear operator equation [8, 9]

(28)

under initial condition (19) for the one-dimensional
characteristic function rather than the Fokker–Planck–
Kolmogorov equation for the polynomials a(y, t) and
σ(y, t) = b(y, t)ν(t)b(y, t)T. However, the method of
parameterization [8, 9] is more efficient in practical cal-
culations particularly for n > 1.

Integro-differential equation (15) allows us, first, to
formulate the following exact differential criterion of
the equivalence (with respect to the distribution of V) of
stochastic differential equations (1)–(3) or (11) for both
Gaussian and non-Gaussian parameters V:

(29)

where νeq(t) is the intensity matrix for equivalent white
noise. Second, in the normal approximation method [8,
9], the approximate criterion of equivalence, ν(t) =
νeq(t), follows from Eq. (24) [10, 11]. Third, it is possi-
ble to formulate integral (spectral and dispersion) crite-

K̇t = MN a Y t,( ) YT mt
T–( ) Y mt–( )a Y t,( )T σ Y t,( )+ +[ ] ,

σ Y t,( ) b Y t,( )ν t( )b Y t,( )T, Kt0
K0;= =

f 2 f 2 y1 y2 mt1
mt2

Kt1
Kt2

K t1 t2,( ); t1 t2,, , , , , ,( )=

=  2π( )2 K2[ ] 1/2– 1
2
--- y2

T m2
T–( )K2

1–
y2 m2–( )–

 
 
 

;exp

y2 yt1

T yt2

T[ ] T
, m2 mt1

T mt2

T[ ] T
,= =

K2
K t1 t1,( ) K t1 t2,( )
K t2 t1,( ) K t2 t2,( )

;=

∂K t1 t2,( )
∂t2

----------------------- MN Yt1
mt1

–( )a Yt2
t2,( )T[ ] ,=

K t1 t1,( ) K t1( ).=

∂q1

∂t
-------- iλTa

∂
i∂λ
-------- t, 

  1
2
---λTσ ∂

i∂λ
-------- t, 

  λ1– g1,=

i2 1–=

χ b y t,( )Tλ ; t( ) = 
1
2
--- b y t,( )Tλ[ ] Tνeq t( ) b y t,( )Tλ[ ] ,–
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ria of equivalence [10, 11]. Specific differential and
integral criteria of the replacement of stochastic equa-
tions (1)–(3) or (11) with non-Gaussian parameters V
by equivalent equations with Gaussian parameters can
be formulated on the basis of the above models. For
example, when analyzing the motion of the Earth’s pole
by means of Eqs. (1) and (2), terms containing rt must
be replaced by equivalent perturbations. This is very
important for the choice and identification of the param-
eters u entering into Eqs. (1)–(3). The problem of identi-
fication of the motion regimes of the Earth’s pole was
first deterministically formulated in [12] and solved
in [7, 13, 14].
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Propagation of pressure waves in a liquid containing
gas bubbles was investigated in detail by theoretical and
experimental methods [1–5]. In particular, a finite-
duration nonlinear perturbation propagating in a liquid
with gas bubbles was shown to decay into solitary
waves (solitons). The evolution, structure, and attenua-
tion of these solitons have been studied in detail. New
types of wave structures, multisolitons, have been dis-
covered and investigated in a liquid containing gas bub-
bles of two different dimensions for various ratios of
bubble radii [6, 7]. The effect of both the heterogeneity
of a gas–liquid mixture and compressibility of the liq-
uid on the pressure-wave structure was investigated
in [8, 9]. The attenuation and structure of moderate-
amplitude pressure waves propagating either in a liquid
containing bubbles of two different gases or in stratified
bubble media were studied experimentally in [10, 11].
Generation of high-power pressure pulses by spherical
bubble clusters was investigated numerically in [12].

In this work, we experimentally investigate the
interaction of a plane shock wave with a spherical bub-
ble cluster in a liquid.

The experiments were carried out on a shock-tube
setup. Its working section represented a vertical thick-
walled steel tube with an inner diameter and length of
53 mm and 1 m, respectively. A thin stainless wire
(1 mm in diameter) whose ends were fixed to walls of
the working section was situated along the working-
section axis. A part of the working section was filled
with a working liquid (distilled water). A foam-rubber
ball, which was filled with the liquid containing gas
bubbles and which served as a bubble cluster, was put
on the wire through its center. The upper cluster end
was spaced from the surface of the liquid by about
10 mm. In the experiments, we used foam-rubber balls
30 and 45 mm in diameter.

The bubble cluster was prepared on an additional
setup. We placed the foam-rubber ball in an active vol-
ume of the setup and saturated it with distilled water

Kutateladze Institute of Thermal Physics, Siberian Division, 
Russian Academy of Sciences, pr. Lavrent’eva 1, 
Novosibirsk, 630090 Russia
1028-3358/03/4807- $24.00 © 20368
under vacuum. Then, air bubbles were pumped through
the liquid in the active volume at static pressure exceed-
ing atmospheric pressure. As a result, the liquid in the
active volume reached equilibrium air saturation at the
given static pressure and the gas dissolved inside the
foam-rubber ball due to diffusion. When the active vol-
ume was depressurized down to the atmospheric static
pressure, gas bubbles were released and grew in the liq-
uid. Adhering to the foam-rubber skeleton, these bub-
bles formed the gas–liquid cluster. In the investigated
range of the volume gas content, the bubble diameter
increased up to d ~ 0.1 mm [13]. However, we observed
gas bubbles with diameters up to d ~ 0.5 mm on the
cluster surface that could be caused by the coalescence
of bubbles during their growth. Varying the drop of the
static pressure, we changed the initial volume content ϕ
of the gas in the cluster. This was determined by mea-
suring both the cluster volume and the increase in the
volume of the liquid with a decrease in the initial static
pressure in the medium [13].

Since the porosity of the foam-rubber ball was high
(98%) and its rigidity was low, the porous skeleton did
not affect the propagation of the pressure wave [13].

A step-shaped pressure wave was generated in air by
breaking a diaphragm, which separated the high-pres-
sure chamber and the working section, and then
allowed to propagate into the liquid. Pressure-wave
profiles were measured by piezoelectric pressure sen-
sors, which were situated on the lateral surface (D1–
D5) and at the bottom (D6) of the working section. Sig-
nals generated by the sensors were transmitted to an
analog-to-digital converter and then processed on a
computer.

Figure 1 shows the profiles of pressure waves in the
liquid behind the bubble cluster at various distances ï
from the shock-wave entry into the medium for two ini-
tial wave amplitudes. The amplitudes of the waves, as
well as the time scale, are shown above their profiles;
∆P0 is the amplitude of the shock wave entering the liq-
uid; ∆P is the pressure-wave amplitude in the liquid; P0
is the static pressure in the liquid ahead of the wave.
The sensor situated at a distance of 0.495 m from the
wave entry into the medium is flush with the working-
section bottom and measures the shock wave reflected
003 MAIK “Nauka/Interperiodica”
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X = 0.105 m

∆P = 1.26 MPa

0.305 m

1.27 MPa

0.409 m

2.17 MPa

X = 0.105 m

∆P = 2.46 MPa

0.305 m

2.37 MPa

0.495 m

3.83 MPa

4 × 10–4 s

(a)

(b)

Fig. 1. Profiles of pressure waves in the liquid behind the bubble cluster 30 mm in diameter for P0 = 0.1 MPa, ϕ = (a) 12 and
(b) 8.9%, and ∆P0 = (a) 0.36 and (b) 0.69 MPa.
from the bottom. It is seen that the bubble cluster trans-
forms the initial step-shaped wave into a solitary pres-
sure wave. It propagates in the liquid with the speed of
sound almost without variation in its shape and ampli-
tude (Fig. 1a, X = 0.105 and 0.305 m). The amplitude of
the solitary pressure wave considerably exceeds the
amplitude of the incident shock wave. Reflecting from
the rigid bottom, the solitary wave virtually doubles its
amplitude (Fig. 1a, X = 0.495 m). The solitary profile is
formed due to the re-emission of the refracted shock
wave preliminarily absorbed by the cluster [12]. High-
frequency oscillations at the front edge of the solitary
wave are mainly caused by vibrations of gas bubbles in
the cluster. With an increase in the amplitude of the
shock wave entering the medium, the width of the
forming solitary wave decreases and its amplitude
increases (Fig. 1b). As in the case of high-amplitude
solitons propagating in a homogeneous gas–liquid
medium [14], this transformation of the solitary pres-
sure wave is accompanied by the sharpening of its pro-
file. An increase in the amplitude of the solitary wave
intensifies its attenuation in the liquid.

Figure 2 shows the measured amplitude of the soli-
tary pressure wave formed by the bubble cluster versus
the amplitude of the shock wave entering the medium
for various parameters of the gas–liquid cluster. Here,
open (1, 3, 5) and closed (2, 4, 6) points correspond to
atmospheric and lowered static pressures in front of the
wave, respectively. In addition, points 1–4 show the
amplitude of the solitary wave formed by the cluster,
and points 5, 6 show the amplitude of the solitary wave
DOKLADY PHYSICS      Vol. 48      No. 7      2003
reflected from the rigid bottom. According to the data
plotted in Fig. 2, with an increase in the amplitude of
the shock wave entering the medium, the relative soli-

Fig. 2. Relative amplitude of the solitary pressure wave
formed by the bubble cluster 30 mm in diameter vs. the
amplitude of the shock wave entering the medium for P0 =
0.1 MPa and ϕ = (1) 4.8, (3, 5) 12% and P0 = 0.05 MPa and
ϕ = (2) 11.2, (4, 6) 24%.
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tary-wave amplitude  increases and decreases for

small and large  values, respectively. The maxi-

mum of the relative amplitude  apparently lies in

the range  ~ 5–10, which agrees with the numerical

calculations [12]. Comparison of experimental points 1
and 3, which are obtained at different initial volume gas
contents ϕ, shows that the amplitude of the solitary
wave increases with increasing ϕ in the cluster. A
decrease in the initial static pressure P0 in the cluster
ahead of the wave also increases the amplitude of the
solitary wave (points 3 and 2). Both a decrease in P0
and an increase in ϕ in the cluster increase its com-
pressibility. As a result, cluster compression in the
shock wave and therefore the amplitude of the solitary
wave increase. Reflecting from the rigid wall, the soli-
tary waves virtually double their amplitudes (points 3
and 5, 4 and 6). The most substantial deviation from the
linear reflection law is observed for large wave ampli-

tudes (points 3 and 5,  ~ 7), when dissipative loss

in the liquid becomes large.

Figure 3 presents the measured half-width of the
solitary pressure wave propagating in the liquid versus
the amplitude of the shock wave entering the medium
for various parameters of the gas–liquid cluster. The
half-width of the solitary wave was measured as for the

∆P0
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∆P
∆P0
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∆P
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---------
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Fig. 3. Same as in Fig. 2, but for the half-width of the soli-
tary pressure wave.
classical Korteweg–de Vries or Boussinesq soliton [3].
According to this approach, ∆t is the wave width from
the level 0.42∆P to the pressure maximum in the wave
∆P. The resulting wave widths for the corresponding
amplitudes are much larger than those for solitons cal-
culated by using bubble dimensions in the cluster [3,
14] and much smaller than those for the wave generated
by vibrations of the gas bubble whose size is equal to
the size of the cluster. As is seen, the width of the soli-
tary wave decreases with increasing the amplitude

. For small amplitudes of the shock wave, ∆t

depends strongly on both the initial volume gas content
ϕ and the static pressure ahead of the wave P0 . An
increase in ϕ (points 1 and 3) and a decrease in P0
(points 3 and 2) both increase the width of the solitary

wave. This effect occurs because, at small , the

duration of cluster compression and, consequently, the
width of the solitary wave formed by the cluster are
mainly determined by the time of propagation of the
refracted shock wave through the cluster. As the ampli-

tude  increases, the inertial properties of the cluster

become substantial for its compression. As a result, the

width of the solitary wave for  > 6 is almost inde-

pendent of the cluster parameters ϕ and P0 and is deter-
mined by the wave amplitude as for solitons propagat-
ing in bubble media [3, 14].

It is shown that the growth of the cluster increases
both the amplitude and width of the solitary pressure
wave formed by the cluster.

Thus, the interaction of a plane shock wave with a
spherical bubble cluster situated in a liquid was shown
to cause the formation of a solitary pressure wave,
which propagates in the liquid and whose amplitude
considerably exceeds the amplitude of the shock wave.
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A thermal-wave solution is considered for the non-
linear heat conduction equation (which is simulta-
neously the equation of nonstationary filtration of a gas
in porous soil) in the plane-symmetric case. A thermal
wave that is generated by a given boundary regime,
continuously adjoins the cold background, and propa-
gates through it with a finite velocity is considered. For
the gas-filtration process, such a boundary regime spec-
ifies pressure at a fixed bed point from which the filtra-
tion front propagates with a finite velocity. It is proved
that the boundary value problem, where a function
specifying the boundary condition is analytic and equal
to zero at the initial time, while its derivative is positive
at this time, has a unique analytic solution, which is the
corresponding thermal wave.

To successfully realize controlled thermonuclear
fusion, it is necessary to simulate complex gas flows,
including those in the presence of equilibrium radiation
and Compton scattering of photons [1, 2]. The simple
inclusion of these phenomena leads to the necessity of
the study of nonlinear heat-transfer processes for the
case where a thermal wave propagates through a cold
background with a finite velocity [3]. The problem for-
mulated by A.D. Sakharov for the construction of the
thermal wave generated by a given boundary regime [4]
is the most interesting and physically natural for
description of such processes. This problem also
describes the finite-rate filtration of a gas in porous soil
under a given boundary regime of an increase in pres-
sure in the bed [5–7].

For the one-dimensional case, with a power temper-
ature dependence of the heat conductivity, this problem
is formulated as follows. For the equation

(1)

the boundary condition

(2)

ut uuxx
1
σ
---ux

2, σ+ const 0,>= =

u t x,( ) x 0=  = f t( ), f 0( ) = 0, f ' 0( ) = f 1 0>
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is imposed. Here, u(t, x) is the desired function related
to temperature T as u = Tσ.

The condition f(0) ensures the continuous joining of
the desired solution u(t, x) ≥ 0 and the cold background
u ≡ 0 for t ≥ 0 and enables one to construct a thermal
wave propagating, for definiteness, from left to right

The function a(t) specifies the thermal-wave front; i.e.,

(3)

Figure shows the composite surface u∗ (t, x) for t ≥ 0
and x ≥ 0.

The theorem concerning the conditions on the coef-
ficients of the power series for the function f(t) under
which the problem specified by Eqs. (1) and (2) has a
unique solution in the form of a convergent double
series in powers of t and x was formulated in [8]. The
existence of a formal power series solving the problem
specified by Eqs. (1) and (2) was proved in [9], where
the convergence of this series was not shown (see [4,
p. 10]).

In this study, the theorem of existence and unique-
ness of the analytic solution of the problem specified by

u* t x,( )
u t x,( ) for x a t( )≤
0 for x a t( ).≥




=

u t x,( ) x a t( )= 0, a 0( ) 0, a' 0( ) 0.>= =

x

u u(t, x) ≥ 0

u = f(t)

u(t, x) ≡ 0

x = a(t)

t

Figure. 
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Eqs. (1) and (2) is proved. To this end, the problem
reduces to that for which the theorem of existence and
uniqueness was already proved [10]. In [10], the prob-
lem of a thermal wave determined by its specified front,
i.e., the problem specified by Eqs. (1) and (3) for a
given analytic function a(t), was analyzed.

Theorem. If the function f(t) such that f(0) = 0 and
f '(0) = f1 > 0 is analytic in a certain vicinity of the point
t = 0, the problem specified by Eqs. (1) and (2) has a
unique analytic solution near the origin.

Note. In contrast to the theorem proved in [8], this
theorem imposes no additional restrictions on the coef-
ficients of the power series for the function f(t).

Proof. We introduce one more unknown function
a(t) such that a(0) = 0 and a'(0) > 0, which presents an
unknown front of the thermal wave. The problem spec-
ified by Eqs. (1)–(3) is considered for unknown func-
tions u(t, x) and a(t).

Then, we change variables as

with the Jacobian equal to unity for a finite function
a'(t). After this change, the unknown thermal-wave
front is the new coordinate axis z = 0. In the new vari-
ables, Eqs. (1)–(3) take the form

respectively.
Further, we change the dependent and independent

variables, i.e.,

where the new desired function z depends on t and u.
The Jacobian of this transformation is determined as

Since

the latter change is nonsingular at the point τ = 0, z = 0
and near it. As a result, we arrive at the problem

The second relation is satisfied for t = 0 due to the third
relation and the relations f(0) = a(0) = 0. Therefore, the

z x a t( ), τ– t= =

uτ a' τ( )uz– uuzz
1
σ
---uz

2,+=

u τ z,( ) z a τ( )–= f τ( ),=

u τ z,( ) z 0= 0,=

z z t u,( ), τ t,= =

J zu–
1
uz

----.–= =

uz 0 0,( ) f 1σ– 0,≠=

zu
2 zt a' t( )+[ ] uzuu

1
σ
---zu,–=

z t u,( ) u f t( )= a t( ),–=

z t u,( ) u 0= 0.=
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second relation can be replaced by its derivative with
respect to t

This relation makes it possible to exclude the unknown
function a(t) from the first equation.

Thus, it is necessary to prove the existence and
uniqueness of the analytic solution of the problem

In this problem, we change variables

so that the u = f(t) line, as well as the u = 0 line,
becomes a coordinate axis. The Jacobian of this trans-
formation is equal to – f '(t) and is nonzero at the point
t = 0 and near it. The old variables are expressed in
terms of the new ones as

where ϕ is the inverse function of f. Then,

and, if the function f(t) is analytic near the point t = 0,
the function ϕ is also analytic near the origin.

We introduce the analytic function

which is obtained by substituting the expression t =
ϕ(v  – ζ) into the function f '(t). In this case, F(0) =
−f '(0) = –f1 .

As a result, the unknown function z(ζ, v ) satisfies
the equation

(4)

and the initial condition

(5)

For v  = 0, ζ = 0, Eq. (4) provides

zt zu f ' t( )+[ ] u f t( )= a' t( ).–=

zu
2 zt zt t u,( ) u f t( )=[ ]– f ' t( ) zu t u,( ) u f t( )=[ ]–{ }

=  uzuu
1
σ
---zu,–

z t u,( ) u 0= 0.=

v u, ζ u f t( )–= =

u v , t ϕ v ζ–( ),= =

ϕ 0( ) 0, ϕ' 0( ) 1
f ' 0( )
------------

1
f 1
----- 0,>= = =

F v ζ–( ) f ' ϕ v ζ–( )( ),–=

F v ζ–( )zζ F v ζ–( ) F v( )–[ ] zζ ζ 0=( )+{

+ F v ζ–( ) zv ζ 0=( ) } zv zζ+( )2

=  v zvv 2zv ζ zζζ+ +( ) 1
σ
--- zv zζ+( )–

z ζ v,( ) v 0= 0.=

z1 0( ) 1

σ f 1

-------------.±=
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According to the physical meaning of the problem
under consideration (thermal wave propagating from
left to right), we take the minus sign, i.e.,

Then, Eq. (4) for v  = 0 uniquely provides the coefficient

(6)

which is an analytic function near the point ζ = 0
because F(0) ≠ 0.

Taking into account relations (5) and (6), we replace
the desired function z(ζ, t) with the new unknown func-
tion Z(ζ, t) according to the relation

.

If the function Z(ζ, v ) is analytic, the function z(ζ, v )
is also analytic.

z1 0( ) 1

σ f 1

-------------.–=

z1 ζ( )
f 1

σ
-----

1
F ζ–( )
---------------,=

z ζ v,( )
f 1

σ
-----

1
F ζ–( )
---------------v v 2Z ζ v,( )+=
Equation (4) transforms to the equation

for the new unknown function, where

are analytic functions, where the unknown function
Z(ζ, v ) and its derivatives enter in the polynomial form.

We seek the solution of the equation for the function
Z(ζ, v ) in the form of the power series

(7)

whose coefficients are uniquely determined as the ana-
lytic functions

2 1 1
σ
---+ 

  Z 4 1
σ
---+ 

  v Zv v 2Zvv+ +

–
2 f 1

σF ζ–( )
------------------- Z ζ 0=( )

f 1

σF ζ–( )
-------------------v Zv ζ 0=( )–

=  g0 v g1 v 2g2 g≡+ +

g0 g0 ζ v,( ),=

g1 g1 ζ v Z Z ζ 0= Zζ Zζ ζ 0=, , , , ,( ),=

g2

=  g2 ζ v Z Z ζ 0= Zζ Zζ ζ 0= Zv Zv ζ 0= Zζζ Zζv, , , , , , , , ,( ),

Z ζ v,( ) Zk ζ( )v
k

k!
------, Zk ζ( )

k 0=

∞

∑ ∂kZ

∂v k
---------

v 0=

,= =
Z0 ζ( ) 1

2 1 1
σ
---+ 

 
--------------------- g 0( ) ζ( )

f 1

σF ζ–( )
-------------------g 0( ) 0( )

1 2
σ
---+

----------------+ ,=

Z1 ζ( ) 1

3 2 1
σ
---+ 

 
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f 1

σF ζ–( )
------------------- g 1( ) 0( )

2 1 1
σ
---+ 

 
---------------------+ ,=

Zk ζ( ) 1

k k 1–( ) k 4 1
σ
---+ 

  2 1 1
σ
---+ 

 + +

--------------------------------------------------------------------------------- g k( ) ζ( )
f 1

σF ζ–( )
------------------- k 2+( )g k( ) 0( )

k k 1–( ) k 4 1
σ
---+ 

  2 1 1
σ
---+ 

  k 2+
σ

------------+ + +

----------------------------------------------------------------------------------------------+

 
 
 
 
 

.=
Here, k ≥ 2 and

for l ≥ 0.

The convergence of series (7) is proved by the clas-
sical majorant method. We take the standard majorizing
functions

g l( ) ζ( ) ∂lg

∂v l
--------

v 0=

=

Φ ζ( ) @ 
f 1

σF ζ–( )
-----------------, W0 ζ( ) @ Z0 ζ( ), W1 ζ( ) @ Z1 ζ( );

G0 ζ v,( ) @ g0 ζ v,( ),

G1 ζ v W Wζ, , ,( ) @ g1 ζ v Z Z ζ 0= Zζ Zζ ζ 0=, , , , ,( ),

G2 ζ v W Wζ Wv Wζv Wζζ, , , , , ,( ) 

@ g2 ζ v Z Z ζ 0= Zζ Zζ ζ 0= Zv Zv ζ 0= Zζζ Zζv, , , , , , , , ,( )
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and introduce the function

If

for k ≥ 2, then

and the convergence of series (7) follows from the con-
vergence of the series

. (8)

The construction of series (8) by the above formulas is
equivalent to the construction of the solution of the
equation

The existence of the analytic majorizing zero solution
of the last equation follows from the theorem proved
in [10].

Thus, the theorem of the existence and uniqueness
of the analytic solution of the problem specified by
Eqs. (1) and (2) has been proved.

G G0 v G1 v 2G2 @ g+ + g0 v g1 v 2g2.+ += =

Wk ζ( ) G k( ) ζ( ) Φ ζ( )G k( )u ζ( )+

k k 1–( ) k 4 1
σ
---+ 

  2 1 1
σ
---+ 

 + +

---------------------------------------------------------------------------,=

G k( ) ζ( ) ∂kG

∂v k
---------

v 0=

=

Wk ζ( ) @ Zk ζ( ), k 2,≥

W ζ v,( ) Wk ζ( )v
k

k!
------, Wk ζ( )

k 0=

∞

∑ ∂kW

∂v k
----------

v 0=

= =

2 1 1
σ
---+ 

  W 4 1
σ
---+ 

  v Wv v 2Wvv+ +

=  1 Φ ζ( )+[ ] G0 v G1 v 2G2+ +[ ] .
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The analytic function a(t) specifying the thermal-
wave front is determined in the form

The proved theorem is generalized for the multidi-
mensional case.
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The equations of motion for a porous liquid-satu-
rated medium were derived in terms of displacements
[1, 2] and displacement velocities [3, 4]. In the first
case, the Frenkel’–Biot model [1, 2] is described by
four elastic constants. Moreover, these equations do not
go over to the equations of motion of the medium in the
single-velocity model (e.g., if the elastic-skeleton dis-
placements coincide with those of the liquid in pores,
the equations of motion have to go over to the Euler
equations in the absence of energy dissipation).

In [3, 4], a nonlinear mathematical model of motion
of a liquid in an elastically deformed porous medium
was constructed on the basis of the conservation laws
and the Galilean principle of relativity. In this approach,
the reversible reactions induced by interacting compo-
nents are correctly taken into account. The resulting
dynamic equations of motion of heterogeneous media
are hyperbolic [5]. Moreover, the model proposed by
Dorovsky involves three elastic constants in the case of
isotropic elastic porous media [5, 6].

Mindlin and Chen’ [7, 8] considered the problem of
strains arising in an elastic half-space under the action
of a concentrated force. Using the Galerkin vector, they
obtained the formula for calculating the displacement
vector and the stresses for various simple forces.

In this study, we consider a similar problem for an
elastic porous half-space x3 > 0; i.e., we calculate the
displacement of an elastic porous solid, stresses, and
pressure for simple forces. The x3 = 0 surface is consid-
ered to be free of stresses and the pressure.
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1. FORMULATION OF THE PROBLEM

We consider the static boundary value problem for
determining the displacements and pressure for an elas-
tic porous medium in the half-space x3 > 0 [9]:

(1)

(2)

(3)

Here, U and V are the displacements of the elastic
porous solid and a liquid with the partial densities ρs
and ρl , respectively; f is the volume force; λ, µ, and

α = ρα3 +  are the constants entering into the equa-

tion of state [4, 5]; ρ = ρs + ρl; K = λ + ;

(4)

where δik is the Kronecker delta; and

(5)

2. REDUCTION OF PROBLEM (1)–(3) 
TO TWO INDEPENDENT PROBLEMS

Eliminating ∇ divV from Eq. (1) and using Eq. (2),
we obtain [8]

(6)

where  = λ – (ρ2α)–1K2.

µ∆U λ µ αρ s
2 2K

ρs

ρ
-----–+ + 

  ∇ divU+

– ρl
K
ρ
---- ρsα– 

  ∇ divV ρsf+ 0,=

ρl– K
ρ
---- ρsα– 

  ∇ divU ρl
2α∇ divV ρlf+ + 0,=

σ13 x3 0= σ23 x3 0= σ33 x3 0=

ρl

ρ
---- p x3 0= 0.= = = =

K

ρ2
-----

2µ
3

------

σik µ
∂Uk

∂xi

---------
∂Ui

∂xk

---------+ 
  λ

ρs

ρ
-----K– 

  δikdivU+=

–
ρl

ρ
----KδikdivV pδik,–

p K ρρsα–( )divU ρρlαdivV.–=

µ∆U λ̃ µ+( )∇ divU αρ0( ) 1– Kf+ + 0,=

λ̃

003 MAIK “Nauka/Interperiodica”



A CONCENTRATED FORCE IN AN ELASTIC POROUS HALF-SPACE 377
We eliminate div  from boundary condi-

tions (3) and, using definitions (4) and (5) for the stress
tensor and the threshold pressure, obtain

(7)

Eliminating divV from (4) and using (5), we arrive at
the formula

(8)

relating the stress tensor to the displacement vector for
the elastic porous solid and pressure in pores. If the
porosity disappears, formula (8) goes over to the rela-
tionships of Hooke’s law [10] for a homogeneous elas-

tic isotropic solid because ρ2α3   [5], where Ks

and  are the bulk modulus and the density of the
homogeneous elastic isotropic solid, respectively.

Now, we take the divergence of both sides of Eq. (2).
With allowance for Eqs. (3) and (5), we arrive at the
Dirichlet problem for the Poisson equation:

(9)

(10)

Thus, for simple forces (f = Fδ(x – x0), where F is a
constant vector and x0 is the coordinate of the source),
initial boundary value problem (1)–(3) splits into two
independent problems: the Mindlin–Chen’ problem
specified by Eqs. (6) and (7) and the Dirichlet problem
specified by Eqs. (9) and (10) for the Poisson equation.

3. FORMULAS FOR SOLVING PROBLEM (1)–(3)
FOR SIMPLE FORCES

Similar to [8], we find the displacement vector in
terms of the Galerkin vector G:

Substituting these expressions into Eq. (8), we obtain

V x3 0=

µ
∂U1

∂x3
---------

∂U3

∂x1
---------+ 

 
x3 0=

0, µ
∂U2

∂x3
---------

∂U3

∂x2
---------+ 

 
x3 0=

0,==

2µ
∂U3

∂x3
--------- λ̃divU x3 0=+ 0.=

σik µ
∂Uk

∂xi

---------
∂Ui

∂xk

---------+ 
  λ̃δikdivU 1 K

αρ2
---------– 

  δik p–+=

Ks

ρs
f

------

ρs
f

∆p ρdivf , x3 0,>=

p x3 0= 0.=

U
1

2µ
------ 2 1 ν̃–( )∆G ∇ divG–[ ] .=
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the stress tensor in the form

Here,  =  is the Poisson-type ratio.

Solving Dirichlet problem (9), (10) for simple
forces, we determine the pressure in pores in the form

(11)

where x– = (x1, x2, –x3).

Thus, the problem of displacements in an elastic
porous liquid-saturated half-space under the action of
concentrated forces can be solved by using the formu-
las from [8] after replacing Poisson’s ratio ν with .
The components of the shear-stress tensor can be calcu-
lated as in [8] by replacing Poisson’s ratio ν with .
The components of the normal-stress tensor can also be

σ11 2 1 ν̃–( ) ∂
∂x1
--------∆G1=

+ ν̃∆ ∂2

∂x1
2

--------–
 
 
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divG 1 K
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  p,–
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 
 
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  p,–
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∂
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∆2G
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3
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obtained by the formulas from [8] by replacing Pois-
son’s ratio ν with  and adding Eq. (11).

Figures 1 and 2 show the vertical component of the
stress tensor as a function of coordinates (x, z) for
porosities d0 = 0.01 and 10%, respectively. In this case,
the elastic coefficients λ, µ, and α were calculated by
formulas taken from [6] for the velocities  =

6000 m/s, v s = , and  = 600 m/s and partial den-

sities ρs = (1 – d0), ρl = d0,  = 2900 kg/m3, and

 = 900 kg/m3. The force was specified as F =
F(cosφ, sinφ), F = 5 × 106 N, φ = 30° and its source was
located at a depth of 15 km.
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The prediction of the strength of materials under
long-term loading is among the important current prob-
lems of the mechanics of deformable solids.

During long-term creep tests, prevailing fracture
mechanisms change with stress σ and loading time t,
fracture under high stresses (σ > σcr1) is intragranular,
fracture for medium stresses (σcr1 > σ > σcr2) is inter-
granular and occurs due to the development of wedge
cracks, and fracture for low stresses (σ < σcr2) is inter-
granular and occurs due to the formation and develop-
ment of pores along grain boundaries (Fig. 1). The
change of the fracture mechanisms is responsible for
the appearance of kinks in the long-term strength curve
for stresses σcr1 and σcr2. Known temperature–time
parametric methods of the life prediction (Larson–
Miller, Dorn, Marrey, Manson–Succop, Manson–
Haferd, etc.) are based on relations with fixed determin-
ing constants in wide ranges of temperature and frac-
ture duration, which ignore the change of fracture
mechanisms. Therefore, these methods are not neces-
sarily reliable.

In this work, we propose a new method for estimat-
ing the material life under creep conditions. This
method is based on the theory of phase transitions and
on similarity in fracture mechanisms.

It was shown in [1] that fracture processes could be
considered in the theory of phase transitions by analogy
with the liquid–vapor phase transition. For this consid-
eration, it is necessary to find the order parameter for
such a transition and to find its dependence on the
determining factor. For creep fracture, the following
power dependence of the reduced order parameter on
the reduced stress was determined in [1]:

(1)
tII tcr–

tcr
--------------- C

σ σcr–
σcr

----------------
n

.=
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Here, the duration tII of the steady-state creep stage is
taken as the order parameter and tcr is its critical value
for the critical stress σcr corresponding to the disappear-
ance of the steady-state stages in the primary creep
curves. Taking into account the similarity of creep
curves, one can assume that the similar power depen-
dence

(2)

is valid for the total time t until fracture. The critical
order parameter tcr in Eq. (2) corresponds to the critical
stress σcr for which the prevailing mechanism of frac-
ture considered as a critical event changes. We have
σcr = σcr1 and tcr = tcr1 for material fracture caused by the
formation of wedge cracks and σcr = σcr2 and tcr = tcr2 for
material fracture caused by the formation of pores
(Fig. 1). The exponent m and coefficient A in relation (2)

t tcr–
tcr

------------ A
σcr σ–

σcr
----------------

m

=

1

2

3

45
6

Intragranular
fracture

Wedge
cracks

Pores

110–1 10 103 104tcr1
tcr2

t, h

50

100

300

σcr2

σcr1

σ, MPa

Fig. 1. Long-term strength curves for 1613 steel for temper-
atures (1) 550, (2) 600, (3) 650, (4) 700, (5) 750, and
(6) 800°C with the lines separating the regions with differ-
ent fracture mechanisms [6]. Points calculated on 103-h
base by the (+) Larsen–Miller method for C = 12 and
(×) proposed method.
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depend on the material and separated stress range,
where a definite fracture mechanism is realized.

Figure 2 shows the reduced order parameter 

as a function of the reduced stress  for CrNiNb

1613 steel and T = 550–800°C. Lines 1 and 2 corre-
spond to fracture caused by the growth of wedge cracks
and development of pores, respectively. The input data

are shown in Fig. 1. As is seen in Fig. 2,  as a

function of  for each fracture type is approxi-

mated by one straight line with the angular coefficient
m and free term  in the logarithmic coordinates
over the entire temperature range:

(3)

According to the proposed method, the coefficients

m and  are determined from the plot of 

vs.  for one temperature taken in the similar-

ity interval of fracture mechanisms, e.g., for the highest
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1

0
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m1 = 3.2

m1 = 3.4

Transition

1

Fig. 2. Reduced order parameter vs. the reduced stress for
fracture caused by (1) wedge cracks and (2) pores for
1613 steel and T = 550–800°C.
temperature, which requires the minimum test time. To
estimate the life for any temperature from this interval,
it is sufficient to substitute the critical stress σcr and
time tcr for this temperature, as well as the stress σ for
which the time to fracture is determined, into Eq. (3).

As is seen in Fig. 2, points in the initial part of plots
are spread due to the existence of transition regions
from one fracture mechanism to another.

The analysis of such plots constructed by using
measured long-term strengths for various materials and
test temperature ranges (1613 steel, T = 550–800°C;
S816 steel, T = 648–815°C; EI617 steel, T = 750–
880°C; EI826 steel, T = 750–800°C; E

 

P44 steel, 

 

T 

 

=
585–595

 

°

 

C; 

 

E

 

P17 steel, 

 

T 

 

= 700–750

 

°

 

C; 2.25Cr–1Mo
alloy, 

 

T

 

 = 600–650

 

°

 

C) shows that 

 

m

 

 = 4–6 for intra-
granular fracture, 

 

m

 

 = 2–4 for fracture due to wedge
cracks, and 

 

m

 

 = 3–5 for fracture due to the development
of pores.

The analysis of experimental data that was made
in [2–6] showed that temperature ranges of the similar-
ity of mechanisms of deformation and fracture under
creep conditions can be quite wide particularly for
materials with a high melting point.

The processing of experimental data shows that log-
arithms of the critical stresses and logarithms of the
critical times depend linearly on temperature in such
temperature ranges. This circumstance makes it possi-
ble to determine the critical values (

 

t

 

cr

 

 and 

 

σ

 

cr

 

) for inter-
mediate temperatures. Therefore, the characteristics of
long-term strength can be interpolated inside the indi-
cated temperature range.

By analogy with seismic prediction, three types of
predictions can be separated. These are (i) short-term
predictions in the 

 

σ

 

cr

 

1

 

 > 

 

σ

 

 > 

 

σ

 

cr

 

2

 

 range, (ii) medium-
term predictions for 

 

σ

 

 < 

 

σ

 

cr

 

2

 

, and (iii) long-term predic-
tions for 

 

σ

 

 

 

!

 

 

 

σ

 

cr

 

2

 

 for lives significantly exceeding the
time 

 

t

 

cr

 

2

 

 corresponding to the second kink in the long-
term strength curve. For short-term and medium-term
predictions, the critical stress and time are the coordi-
nates of, respectively, the first (

 

σ

 

cr

 

1

 

 and 

 

t

 

cr

 

1

 

) and second
(

 

σ

 

cr

 

2

 

 and 

 

t

 

cr

 

2

 

) kinks of the long-term strength curve
(Fig. 1). For 

 

σ

 

 

 

!

 

 σ

 

cr

 

2

 

, one more kink can appear in the
long-term strength curve. The coordinates of this kink
(

 

σ

 

cr

 

3

 

 and 

 

t

 

cr

 

3

 

) are the critical stress and time for long-
term predictions. For this reason, long-term predictions
require the analysis of the structure state of the material
with both the inclusion of its phase diagram for a given
temperature and the estimation of the diffusion rate of
basic and impurity elements. If this analysis shows that
the material does not substantially change its structure
for indicated temperature and test duration, the life pre-
diction can be made with the critical stress 

 

σ

 

cr

 

2

 

. If such
changes occur, a new threshold stress 

 

σ

 

cr

 

3

 

 appropriate
for long-term prediction must be estimated.

The accuracy of the linear extrapolation of the life-
time by the proposed method based on the theory of
phase transitions is compared with the accuracy of the
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Table 1.  Measured and calculated (on the base up to 103 h) lives for 1613 steel

T, °C σ, MPa texp, h Proposed
method, h δ, % Larson–Miller method

for C = 12, h δ, %

700 56 8912 8820 –1% 10575 +19%

700 63 5011 5100 +2% 6738 +34%

650 112 4823 3855 –20% 11400 +136%

600 178 6072 5470 –10% 9260 +52%
Larson–Miller method, because it is extensively used to
estimate lifetimes. In addition, as was shown in [7],
known parametric Larson–Miller, Dorn, Marrey, Tru-
nin, Manson–Succop, and Manson–Haferd approxima-
tions being extrapolated to a service life of 2 × 105 h
provide almost identical results differing by no more
than 3%.

The error of the proposed method is determined by
the standard deviation in linearizing the plot of

 vs.  and by the spread in the input

data. For all materials being investigated, the calculated
values deviate from experimental data by no more than
20%. At the same time, the Larson–Miller extrapolation
gives 20–140% deviation. Table 1 presents the mea-
sured and calculated results for the life of 1613 steel.
Calculated points are also shown in Fig. 1.

Thus, the proposed method was shown to estimate
the time to creep fracture with accuracy higher than the
known temperature–time parametric methods. More-
over, the results corroborate that practical problems of
estimates of the service life of materials can be solved
by generally analyzing kinetic processes in the theory
of critical phenomena.

t tcr–
tcr

------------log
σcr σ–

σcr
----------------log
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MECHANICS

         
On the Compression of a Perfectly Plastic 
Pyramid by a Flat Die

D. D. Ivlev*, A. Yu. Ishlinskiœ**, and R. I. Nepershin***
Received February 10, 2003
The problem of the compression of a perfectly plas-
tic regular square (or triangular) pyramid by a flat rigid
die is solved. A self-similar solution is given by using
the full plasticity condition for the Tresca yield crite-
rion (Haar–Karman hypothesis). The full plasticity
condition corresponds to the shear mechanism of three-
dimensional plastic strain and leads to statically deter-
minate hyperbolic equations [1–3]. A self-similar solu-
tion of the inverse problem of the indentation of the reg-
ular square (or triangular) pyramid into an ideal-plastic
half-space under the full plasticity condition was given
in [4]. The geometrically similar problem of the plastic-
wedge compression under plane strain was given in [5].

The compression of the perfectly plastic regular
square (or triangular) pyramid by a flat die, which
moves along the pyramid axis normal to the die, is con-
sidered in the Cartesian coordinate system {x, y, z}. The
z axis coincides with both the pyramid axis and the nor-
mal to the die plane. The x axis coincides with the nor-
mal to the middle point of a side of a square or regular
triangle that is the section of the pyramid by the die
plane z = 0 (Fig. 1).

The plastic-flow region in the regular pyramid com-
pressed by the flat die has planes of symmetry that are
orthogonal to the die boundary and pass through the
pyramid edges and middles of the faces. The plastic
region bounded by the two planes of symmetry and the
die boundary is considered. Cartesian coordinates,
stresses, and displacement velocities are made dimen-
sionless by dividing them by the die displacement h, the
yield stress σY of the plastic material under uniaxial
compression, and the die displacement velocity V,
respectively. The side length of the regular triangle or
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pr. Vernadskogo 101, Moscow, 117526 Russia

*** Moscow State Academy of Instrument Engineering 
and Informatics, ul. Stromynka 20, Moscow, 
107846 Russia
e-mail: nepershin_r@pop.mtu.ru
1028-3358/03/4807- $24.00 © 20382
square on the pyramid section by the die boundary z = 0
is given by

(1)

where α is the angle between the pyramid face and the

–z axis and c =  and 1 for the triangular and square
pyramids, respectively.

The velocity vector of the plastic flow is assumed to
lie on the planes y = const orthogonal to both the pyra-
mid face and the die boundary. This condition is exactly
valid on the plane y = 0 because of the plastic-flow sym-

metry. On planes 0 < y < , this condition leads to the

geometric similarity of the plastic flow in all planes y =

const. On the plane y = , the plastic region shrinks to

the point of the intersection of a pyramid edge with the
die boundary z = 0. The same mode of the plane plastic

L 2 α ,cot=

3

L
2
---

L
2
---

x

y

0

Fig. 1. Contact boundary of the perfectly plastic pyramid
with the flat rough die and projection of the plastic bound-

ary on the plane z = 0 for α = .
π
4
---
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flow on the planes y = const in the inverse self-similar
problem of the indentation of the rigid pyramid [4] was
corroborated by experiments [6].

The full plasticity condition for the problem under
consideration provides the following relations for the
principal stresses:

(2)

where σ is the mean stress.
The stress-tensor components on the planes y =

const under condition (2) are given by the relations

(3)

(4)

where θ is the angle between the σ3-stress direction and
the x axis and the stress σy coincides with the principal
stress σ2.

The sliplines ξ and η on the plane y = const are
defined by the differential equations

for ξ, for η (5)

with differential relations for the stresses and the dis-
placement velocities. These relations coincide with the
Hencky and Geiringer equations [7]

along ξ, along η, (6)

(7)

where ϕ = θ +  is the angle between the ξ-slipline

direction and the x axis and Vξ and Vη are the projec-
tions of the velocity on the sliplines.

Two possible modes of the plastic flow are deter-
mined by the die surface conditions. For the rough-
die surface (Fig. 2), the rigid region OAD moves with
the die along the –z axis. The velocity discontinuity

[V ] =  along the rigid-plastic boundaries AD and

DB arises at the point D. The velocity vector of the
region ABC is determined by the relations

(8)

where ψ is the angle of the centered fan of the slipline
field.

For a smooth die surface (Fig. 3), the region OAD
slides along the die contact boundary. The velocity dis-

σ1 σ2, σ3 σ1 1, σ– σ1
1
3
---,–= = =

σx σ 1
3
--- θ, σycos

2
–+ σ 1

3
---,+= =

σz σ 1
3
--- θ,sin

2
–+=

τ xz θ θ,cossin–=

dz
dx
------ ϕtan= dz

dx
------ ϕcot–=

dσ dϕ– 0= dσ dϕ+ 0=

dVξ Vηdϕ– 0 along ξ ,=

dVη Vξdϕ+ 0 along η ,=

π
4
---

1

2
-------

V x = 
1
2
--- ψsin ψcos+( ), Vz = 

1
2
--- ψsin ψcos–( ),
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continuity [V ] =  along the rigid-plastic boundary
OB arises at the point O. The velocity vector of the
region ABC is determined by the relations

(9)

The full plasticity condition determines the uniaxial
compressive state in the plastic region ABC along the
boundary AB

on AB. (10)

The angle ψ and length l of the contact boundary are
found from the incompressibility condition for the
plane plastic flow on planes y = const as follows. Coor-
dinates of the point B are determined by the relations

(11)

for the rough die and by the relations

(12)

for the smooth die. The intersection line of the pyra-
mid face with the plane y = const passing through the

2

V x ψsin ψ, Vzcos+ ψsin ψ.cos–= =

σ1 σ2 0, σ3 1, σ– 1
3
---–= = = =

xB l 1 2 ψsin+( ), zB 2l ψcos–= =

xB l 1 ψsin+( ), zB l ψcos–= =

x

V = 1

α
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C B

O

ψ

h

η η

z

π/4

π/4ξ
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O
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DA
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π/4
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z

Fig. 2. Slipline field and velocity hodograph on the plane
y = const for the rough die.

Fig. 3. Same as in Fig. 2, but for the smooth die.
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point B is determined by the equation

From this equation, the coordinate xF of the point F and
the coordinate zE of the point E, which is the height h of
the pyramid edge on the plane y = const over the die
plane z = 0, are found in the form

(13)

, (14)

where L and c are defined by Eq. (1). The incompress-
ibility condition leads to the equality of the areas of the
triangles OEF and ABF, and, using Eqs. (11)–(13), we
find the relations

(15)

for the rough die and the relations

(16)

for the smooth die.
The mean stress σ in the region OAD is found from

the boundary condition (10) and relation (6) along the
ξ slipline. The die pressure is found from the third of

relations (3) for θ =  

(17)

If ψ = 0, the entire plastic region degenerates into
the uniaxial-compression state p = 1 with the vertical
stress-free boundary AB. This condition, along with
relations (15) and (16), determines the minimum slope
αmin of the pyramid face when the plastic region retains
geometric similarity. This minimum slope is

αmin = 0.245 for the rough die,

αmin = 0.464 for the smooth die.

For the compression of the pyramid with a given
angle α, it is found that the angle ψ and pressure for the
rough die are somewhat larger than the respective val-

ues for the smooth die. For α  , we obtain p = 1 +

 for both the dies. It is the case of the pressure of the

flat triangle or square die on the perfectly plastic half-
space [7].

The limiting load capacity of the pyramid below the
rigid–plastic boundary can be tested by continuing the
static slipline field into the rigid region similarly to the
problem of the pressure of a flat die on the half-space [8].

x xB– α zB z–( ).tan=

xF xB zB α , htan+ zB xB α ,cot+= =

h 1
y
c
-- α , 0cot y

L
2
---≤ ≤–=

αtan 1 2 ψsin+( )2

4 ψ 1 ψsin+( )cos
-------------------------------------------=

αtan 1 ψsin+( )2

ψ 2 ψsin+( )cos
---------------------------------------=

π
2
---–

p 1 ψ.+=

π
2
---

π
2
---
Using Eqs. (11)–(14) and the relation xF = h ,
we determine the contact boundary length

(18)

(19)

for the rough and smooth dies, respectively.
The load Q applied to the die is determined by the

relations

and (20)

for the square and triangle pyramids, respectively,
where l0 is the contact length on the plane y = 0.

The contact boundary for the square pyramid com-
pressed by the rough die and the projection of the
stress-free boundary of the plastic region on the plane

z = 0 with α =  are shown in Fig. 1. For this example,

ψ = 0.673, p = 1.673, l0 = 1.466, and Q = 9.52 were
found from Eqs. (15), (17), (18), and (20). Similar cal-

culations for the square pyramid with α =  com-

pressed by the smooth die provide the values ψ = 0.486,
p = 1.486, l0 = 1.716, and Q = 10.2. The pressure on the
smooth die is lower than the pressure on the rough die,
but the contact area for the smooth die is larger, and the
pyramid is compressed by the rough die with lower
load than by the smooth die for the same die displace-
ment h.
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MECHANICS
First Integrals in the Problem of Rolling a Body 
of Revolution over a Rough Plane

A. S. Kuleshov
Presented by Academician V.V. Rumyantsev March 19, 2003

Received March 21, 2003
We consider the problem of the motion of a heavy
rigid dynamically symmetric body bounded by a sur-
face of revolution over a fixed horizontal plane without
sliding. The equations of motion are known [1, 2] to
have, in addition to the energy integral, two first inte-
grals linear in quasivelocity. However, the explicit form
of these integrals has been determined only for several
particular cases (for a moving ball or disk). In this
study, the explicit form of these integrals is obtained
under a certain condition for the surface of the moving
body and its mass distribution. It is also shown that a
denumerable set of surfaces of moving bodies satisfy
this condition.

1. FORMULATION OF THE PROBLEM 
AND EQUATIONS OF MOTION

Let a body, which has mass m and is symmetric in
shape and in mass distribution with respect to the Gζ
axis passing through its center of gravity G, rest on the
fixed horizontal plane Oxy at the point M. We introduce
the following notation: θ is the angle between the axis
of symmetry and a vertical line, β is the angle between
the meridian Mζ of the body and a certain meridian
plane, and α is the angle between the horizontal tangent
MQ to the meridian Mζ and the Ox axis. The position
of the body is entirely specified by the angles α, β, θ
and the coordinates x and y of the point M.

In addition, we introduce the system of coordinates
Gξηζ  moving both in space and in body so that the Gξ
axis always lies in the vertical–meridional plane, while
Gη is perpendicular to this plane (figure). Let the veloc-
ity v of the center of mass G, the angular velocity w of
the body, the angular velocity W of the trihedron Gξηζ ,
and the reaction vector R be given in the coordinate
system Gξηζ  by the components v ξ, vη, v ζ; p, q, r; Ωξ,
Ωη, Ωζ; and Rξ, Rη, Rζ, respectively. The moment of
inertia of the body with respect to the Gξ and Gη axes
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1028-3358/03/4807- $24.00 © 20385
is denoted by A1, and its moment of inertia with respect
to the axis of symmetry is denoted by A3 .

The distance GQ between the center of gravity and
the plane Oxy is a function of the angle θ; i.e., GQ =
f(θ) [1, 2]. The coordinates ξ, η, and ζ of the point of
contact M between the body and the plane in the system
of coordinates Gξηζ  also depend only on the angle θ,
η = 0, and

(1.1)

Since the Gζ axis is fixed in the body, Ωξ = p and
Ωη = q. The Gξζ  plane is always vertical; therefore,
Ωζ – Ωξ  = 0. The point of contact has zero veloc-
ity; therefore,

After simple transformations, the laws of variation
in the momentum component along the Gη axis and in

ξ – f θ( ) θsin f ' θ( ) θ,cos–=

ζ – f θ( ) θcos f ' θ( ) θ.sin+=

θcot

v ξ qζ+ 0, v η  + rξ pζ– 0, v ζ qξ– 0.= = =

ξ θ

η

α

z

y

x

O

G

QM

ζ

Figure. 
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the angular momentum around the Gξ and Gζ axes take
the form

(1.2)

Omitting the particular case of θ = const, taking into

account that q = , and eliminating Rη from

Eqs. (1.2), we obtain

(1.3)

Thus, two first integrals linear in p and r are deter-
mined from the set of Eqs. (1.3). Nowadays, the explicit
form of these integrals is known only for an inhomoge-
neous dynamically symmetric moving ball. In the case
of the motion of a round disk over a plane, the solution
of the set of Eqs. (1.3) gives the expressions for p and r
in terms of hypergeometric functions. Below, the
explicit form of the first integrals linear in p and r will
be determined for a body, whose shape differs from ball
or disk.

2. DERIVATION OF THE FIRST INTEGRALS 
AND DETERMINATION OF THE BODY SHAPE

Following [1], we assume that the meridian-section
shape of the moving body is such that the body can
move with a constant angular velocity about the axis of
symmetry:

To satisfy this relationship, the coordinates ξ and ζ
of the point of contact have to meet the condition

(2.1)

where n is an arbitrary constant.
Theorem 1. The set of Eqs. (1.3) under condition (2.1)

has the first integrals

(2.2)

(2.3)
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dt
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------,=
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dp
dt
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A3
dr
dt
----- ξ Rη .=

dθ
dt
------–
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dp
dθ
------ A3

ζ
ξ
-- dr

dθ
------+ –A1 p θcot A3r,+=

ζ dp
dθ
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A3 mξ2+( )
mξ

-------------------------- dr
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------– – ζ θcot ξ ζ '+ +( )p ξ'r.+=

r r0 const.= =

A3ζ A1ξ'–( ) θsin A3 θcos n+( ) ξ ζ '+( ),=

A1 p θsin A3 θcos n+( )r+[ ]
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r mc1
ξ ξ ζ '+( ) θd

θ A1A3 A1mξ2 A3mζ2+ +( )
3
2
---

sin

----------------------------------------------------------------------------∫– c2.=
We now determine the shape of the meridian section
of the moving-body surface for which condition (2.1) is
satisfied. We consider the case of n = 0. Substituting
expressions (1.1) for ξ, ζ, and their derivatives into con-
dition (2.1) and introducing the dimensionless parame-

ter k = , we obtain the differential equation for the

function f(θ):

(2.4)

To solve Eq. (2.4), it is sufficient to find its arbitrary
nontrivial solution. If f0 = f0(θ) is such a solution, the
general solution of Eq. (2.4) is determined by the for-
mula [3]

(2.5)

where λ1 and λ2 are arbitrary constants.

Theorem 2. Equation (2.4) has the nontrivial par-
ticular solution

(2.6)

The numerator of expression (2.6) involves the
Gaussian hypergeometric function F, which is an infi-
nite series depending on three parameters and variable

w = . This series generally diverges, and expres-

sion (2.6) therefore has meaning only if the function F
represents a finite sum rather than an infinite series.

Theorem 3. The series in the numerator of expres-
sion (2.6) is a finite sum if either of the conditions

 or 

where N is the positive integer or zero, is satisfied.

Thus, it is possible to find at least two parameters k
for each nonnegative integer N for which expression (2.6)
has meaning. We take λ2 = 0 in formula (2.5); i.e., func-
tion (2.6) determines the meridian section of the body
of revolution moving over a perfectly rough plane.
Thus, we can represent a denumerable set of surfaces,
whose meridian section is determined by function (2.6).
For example, for N = 0,

(2.7)
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2 k 1–( )
------------------- 2; 

1

θcos
2

-------------, , 
 

θcos
-----------------------------------------------------------.=

1

θcos
2

-------------

k
2 N 1+( )
2N 1+

---------------------= k
2 N 1+( )
2N 3+

---------------------,=

k 2, f θ( )
λ1

θcos
------------, ξ

2λ1 θsin
θcos

--------------------,–= = =

ζ
λ1 θsin

2

θcos
2

------------------ λ1–=
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or

(2.8)

The surface specified by expressions (2.7) represents
the paraboloid of revolution, while the surface deter-
mined by expressions (2.8) is formed by rotating a
parabola arc about an axis passing through its focus.

k
2
3
---, f θ( )

λ1

θsin
-----------, ξ

λ1 θcos
2

θsin
2

------------------- λ1– ,= = =

ζ –
2λ1 θcos

θsin
---------------------.=
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