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Times of signal propagation between given sources
and receivers contain valuable information on the prop-
erties of the medium. In particular, important methods of
investigating the Earth, such as seismic tomography [1],
acoustic tomography [2, 3], and thermometry of the
ocean [4], are based on precisely measuring signal
propagation times. In these and numerous other appli-
cations, large-scal e inhomogeneities of amedium (and,
in the case of investigating the ocean, their variations
with time) are of interest. At the same time, an effect of
small-scale random inhomogeneities that are not
resolved by data inversion represents noise. In order to
suppress fluctuations associated with small-scale inho-
mogeneities, the method of averaging with respect to
either the radiation time or positions of corresponding
points is employed. Apart from fluctuations, random
inhomogeneities generate systematic distortions of the
arrival time, i.e., differences between the signal aver-
age velocities in deterministic and fluctuating media.
These differences were studied by numerical methods
for a number of specific cases and turned out to be
rather substantial in the acoustical tomography of the
ocean [5—7] and seismology [8]. The analytical studies
[9-11] are limited to the case of statistically homoge-
neous media without regular refraction. This excludes
application of the results obtained in [9-11] to prob-
lems of propagating seismic waves, sound in the
ocean, and radio waves in the ionosphere for long dis-
tances.

In the present study, we develop atheory that allows
us to calculate statistical moments of signal arrival
times from known fluctuation moments of a medium
that, along with small-scale fluctuations, has a large-
scale structure. The wave frequency is assumed to be
sufficiently high in order to allow the application of the
ray theory to small-scale inhomogeneities. For smplic-
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ity, the medium is assumed to be isotropic and free of
dispersion.

Let a source and a receiver be located at the points
rs=Xs, 0, Z9), rr = (Xg, 0, Zg), and the wave velocity
C(r) be represented in the form

C(r) = c(x, 2) +€cy(r) + €°c,(r) + ...,

where||c,|| > ||ci||and the parameter € (0 < € < 1) char-
acterizes the smallness of deviations of C from the
unperturbed velocity c. Such a choice of the model of
the medium is dictated by the three following reasons.
First, after averaging over small spatial scales, in geo-
physical applications, the medium becomes close to a
vertically stratified one. Second, propagation times are
much more sensitive to horizontal gradients of C in the
vertical plane that contains the source and the receiver
than along the normal to this plane [12]. Third, numer-
ical realizations of the ray theory in a two-dimensional
inhomogeneous medium turn out to be rather efficient
and are widely used. Below, we consider as known all
guantities related to a ray in an unperturbed medium,
including the trajectory r, = (X, 0, Z,(X)), the diding
angle x formed with the plane z = const, and the deriv-

ativep = (P2

Loxd,
exit from the source. All these quantities, including the
derivative p used for expressing the field amplitude in
the ray [13], are calculated with the help of standard
ray-geometry codes adapted to a two-dimensional
inhomogeneous medium. We also assume for definite-

with respect to the angle xs of the ray

ness that xg < Xg and [x| < 1_21 i.e., the wave propagates

towards increasing values of x.

In order to caculate the terms T, (j > 1) caused by
fluctuations and entering into the expression T= T, +
€T, + €T, + ... that describes the signal propagation
time along the ray, we employ perturbation theory for
an eikonal (PTE) [14]. Thistheory solves ordinary dif-
ferential equations for T;, which follow from the
eilkonal equation (OT)? = ¢ 2. The theory leads to the
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following linear (T,) and quadratic (T, = T, + T, + Ty3)
corrections:

2
_ _ G _ € —CCy
Xs (1
_ T _ OTyf
po = ST An = SHos -G

Hereinafter, except as otherwise noted, the integration
occurs aong the unperturbed ray, i.e, fory =10, z=
Z,(X). Thecontributions of terms T, and T,, to the arrival
time are due to fluctuations of the wave velocity along
the unperturbed ray, whereas the contributions of terms
T,, and T,; are due to the variation of the ray trajectory.
In this case, T,, and T,; describe the so-called horizon-
tal refraction effect, i.e., escaping of the ray from the
plane xz, and the effect of ray deformation in thisplane,
respectively. To calculate T,;, we apply the method
used in [12] for analyzing the horizontal refraction.
Thus, we can derive from formula (1) the explicit for-
mulas for quadratic correctionsin terms of the fluctua-
tions (IC:

acl ng ’ cdx
A(X) = =
=) g 6yc cosxd o0 = J cosy’
2
C dxt )
Ap(X) = —S—Frpa®Xy
= 2p2coszxgx— c

_ 0 [t 9 H3_1D
a(x) = CosxachD smxax

It follows from formulas (1) and (2) that, in accordance
with the Fermat principle, the corrections to the propa-
gation time, which are associated with small ray defor-
mations, are negative and quadratic with respect to per-
turbations.

Onthecaustic, p=0[13], which resultsin diverging
values of T,; if the ray turns out to be tangent to the
caustic on the way from the source to the receiver. The
divergence testifies to the inapplicability of the PTE in
the case of the existence of caustics. To find results that
areapplicablein the case of long-range propagation, we
use the perturbation theory for rays (PTR), in which
perturbations of theray trajectory are expanded in pow-
ers of asmall parameter:

Z(X) = zy(X) +€z,(X) + szzz(x) + ...

For a ray connecting the source and the receiver,
Z(xgr) =0asj = 1. Inthe PTR, the number of contacts
of the ray with the caustic is unlimited. However, it is
assumed in this case that the receiver does not lie on the
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caustic of the rays outgoing from the source. Other-
wise, the perturbations are singular, and the PTR is
inapplicable for the family of the rays forming the
caustic.

Now, neglecting the terms O(e?) and allowing for
additivity of the contributions of the horizontal refrac-
tion and perturbationsin the xz plane to the signal prop-
agation time, we may apply the PTR to the two-dimen-
sional inhomogeneous medium. The differential equa-
tions of aray [13, 14] can be represented in the form of
a closed nonlinear equation of the second order with
respect to z(x):

9_2_(;[

BjZD Cxdz
. } —cg. 3)

Lo |0 dx

From Eq. (3), it follows the equation for trgjectory per-
turbation

d°z, Bydz

o2 X -B,z, = —acos_sx, 4

where the coefficients are calculated in the unperturbed
ray. Here,

B, = ¢ ¢ (1+ 3tan’X) —2¢ ¢ tan, )

B, = ¢ 2cos “x[cc,, + C + (cC, —C,C,) tanX] .

If the unperturbed trgjectory depends on a certain
parameter b, e.g., on the coordinate of the source or on
the ray emission angle, then, for the derivative f(x) =

%—iﬁ , differentiating Eq. (3) with respect to b yields
the equation

d’f Bdf -

" dx -B,f = 0. (0)

One of the solutions to Eq. (6) is the quantity p intro-
duced above. By virtue of the reversibility of rays,
which follows from the reciprocity principle (see[13]),

P2

Loxd,

angle xR at the point r g isaso the solution to Eq. (6) for
rays outgoing from this point towards decreasing val-
ues of x. The solutions q(x) and p(x) are linearly inde-
pendent. Indeed, p(xs) = q(Xg) = 0 and p(Xg) # 0, since
the receiver does not lie on the caustic. For the Wron-

the derivative q(x) = with respect to the sliding
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skian of the two solutions, we obtain from Egs. (5)
and (6)

W(X) = pd— Pay = C (Xs 0, Zo(Xg) (X9
x CoSX<C(X, 0, Z(X)) €08 “X(X, 0,2o(x)). (7

The solutions to inhomogeneous equation (4) can be
simply expressed in terms of the solution to the homo-
geneous eguation (6). Taking into account the boundary
conditions for the values of z in the source and
receiver, we find for the perturbation of the ray tra
jectory

Xp

z)(x) = J'G(x x) p(Xa)a(x.)

Cw(x) (8)

adx

G(x, X) =

X. = min(x, X), X, = max(x, X).

It follows from formulas (7) and (8) that z, is certainly
limited along the entire ray and has no singularities or
caustics. It is worth noting that the choice of linearly
independent solutions to Eqg. (6), which enter into the
Green's function G of Eq. (8), is arbitrary. We use the
solutions p and g, since they have aclear physical sense
and can be calculated using standard ray codes.

The signal propagation time along a ray having the
trajectory r = (X, y(X), z(X)) is

Xr

T = J’C‘%u%ﬂﬁ EE'E dx. ©

Here, the integration is performed along this ray. We
now expand the trgjectory in powers of the perturba
tion. After a number of transformations based on
Eg. (4) and on the identities

XR

X [m(m M)F — FDC] =0,

CCOSX (10)

m = (cosy, 0, siny),

valid for arbitrary smooth vector functions F(r) such
that F(rg) = F(rg) =0, weagain arrive a therelationship

T=Ty+eT + 82(T21 + T+ Ty)+ 0(33)-

Here, T,, T,;, and T,, are given by the same formulas (1)
(for T, A;, and A,,) and by formulas (2) (for Ay,),
which we deal with in the case of PTE). For the contri-
bution T, to the signal propagation time perturbation
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(which corresponds to the ray deformation in the xz
plane), we obtain

Ty = —% J’ ¢ 'z,adx.

Xs

(11)

Thus, the PTR reduces finding fluctuations of signal
propagation times in a three-dimensional inhomoge-
neous medium to calculating integrals along an unper-
turbed ray. The practical advantage of formulas (1), (2),
(8), and (11) compared to the results obtained by other
methods (see [3, Appendix 2; 15]) consists in the fact
that cal culating the integrands does not require solving
any supplementary differential equations.

The condition of applicability of the PTR consistsin
the smallness of theray deformation z, being calculated
by formula (8) compared to the characteristic spatial
scale of inhomogeneities in the medium along the z
coordinate. Furthermore, the maximum distance of the
perturbed ray from the xz plane must be small com-
pared to the characteristic spatial scale of inhomogene-
ities in the medium aong the y coordinate. The latter
condition has been thoroughly discussed in [12]. We
can show that, for rays having no caustics, when both
the PTR and the PTE are applicable, formulas (1) and
(2) for T, are equivalent to formulas (8) and (11).
Therefore, the results of the two different perturbation
theories are identical in this case.

We now assume that the quantity C is a random
function. We consider that the wave velocity fluctua-
tionsarise asaresult of small (proportional to €) fluctu-
ations with a zero average value of medium parameters
(e.g., temperature, pressure, or composition). In this
case, [¢,[F 0. The higher termsin theexpansion of Cin
powers of € are stipulated by the nonlinear dependence
of the velocity on parameters of the medium so that, in
the genera case, [¢,[ % 0. We consider the fluctuations
to belocally statistically homogeneous and small-scale
in the sense that the variation of ¢ can be ignored at
distances where strong variations of the correlation
function

+
or)era= K- 2 a2)

with respect toitsfirst argument r , —r, take place. Vari-
ations in the space of one-point moments such as [c,[]
and also of the correlation function K with respect to its

ry+r;
second argument —

No constraints are imposed on the relative variation of
the fluctuation intensity.

The formul as obtained above predict fluctuations of
the signal arrival time for each realization of C and
make it possible to calculate different statistical

are assumed to be large-scale.



392

moments of T using the known momentsof C. Here, we
restrict our consideration to both the average value [T

and the dispersion o-zr of the signal propagation timeto

distances much longer than the fluctuation correlation
radius. Under the above assumptions, the signal arrival
time perturbations linear in € and quadratic corrections
introduce basic contributions to the dispersion and into
the deviation of the arrival time from the unperturbed
signal, respectively:

o = €2 M1+ O(e)],
[TO= Ty+ € My + Ty + T+ OEY).

Thus, we obtain from formulas (1) and (2)

(13)

0

= Ko —ro(x); (ro(x) + ro(x))/2) dx dx
J f ¢*(r o(¥)c7(r o(x)) COSX(r o(x)) COSX (1 o(X))

Passing in (14) to integration over difference and sum-

X+ X
2
account that the fluctuations in the medium are small-

scale, wefind in the principal order with respect to €

mary coordinates X — X' and and taking into

XR
D,dx
c*cosy

Xs

2 2
o7 = 2¢

+oo

——1—I K(x, 0, xtany; r)dx
0

cosx

Dy(X,r) = (15)

+00

= [K(R ndR

When calculating the integral characteristic D, for fluc-
tuations in the medium, the integration is performed
aong a straight line. The last of expressions for D,
in (15) refers to the specia case of isotropic fluctua-
tionsin the medium, when K(R; r) = K /(IR |; r). Below,
we need two further integral characteristics of fluctu-
ations

o1 _ (OKidR
Du(x, 1) = FSXIKyy|y=O,Z=erXdX ~ J AR R’
O O
B 1 +o00 o, (16)
Da(X, 1) = FSXI(Sm XK
0
—2sinxcosxK,, + COSZXKzZ)|y:O,z: xtany IX-
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In the isotropic case, theterms D, , ; do not depend on
the direction of the tangent to the ray, so that D, = D;.
Inastatistically homogeneous medium, D, , ; areinde-
pendent of coordinates.

Formulas (1), (2), (8), and (11) for T,;, T,,, and T,
are averaged similarly to the derivation of formula (15).
Asaresult, we have

XR

_ 2, dx
TO-To= e[ s
(| KO@irg _ed . cpaDy a7
2 c ' weosy |’
C2X D gzdx'
M,(x) = = [—=——.
! gzI c* cosy

Xs

When the PTE is applicable, the last term in square
brackets of (17) can be replaced by

@ .D,p’cosxdx

2 .

My(x) = (18)

p’ coszx-[ c

Xs

It isworth noting that M, , < 0. Formula (17) describes

[with an accuracy to the terms O(e?)] the deviation of

the average signal propagation time in a random

medium from the propagation time in the absence of

fluctuations. If we eliminate the term containing c[¢,[]
on the right-hand side of (17), then the expression

obtained represents (with the same accuracy) the differ-

ence between the average arrival time and the arrival

time in the averaged medium. We would like to empha-

size that due to random deformations of aray, the aver-

age propagation time differs from the propagation time
in an unperturbed and averaged media, even when wave
velocity fluctuations vanish along an unperturbed ray. If

the fluctuations in the medium are caused by severa

uncorrelated random processes, then, by virtue of for-

mulas (15)—(18), the contributions of these processesto

both the dispersion of arrival times and the deviation of

the average arrival time from the unperturbed arrival

time are additive.

In the absence of regular refraction (c = const), for-
mulas (15) and (17) are transformed into the results
of [9] (in the isotropic case) and of [11] (in the specia
case of anisotropy considered there). In the genera
case, formulas (15) and (17) reduce the problem of
determining dispersion and the systematic shift (bias)
in signal travel time, which are caused by fluctuations
in environment parameters, to that of calculating cer-
tain definite integrals. Here, we imply integrals of
guantities that characterize three-dimensional random
inhomogeneities in a two-dimensional inhomogeneous

DOKLADY PHYSICS Vol. 48

No. 8 2003



SYSTEMATIC DISTORTIONS OF SIGNAL PROPAGATION TIMES 393

medium. Theseintegrals are calculated along an unper-
turbed deterministic eigenray.
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According to current concepts, Fe,_,O wustite
enters into the composition of the Earth’s mantle both
as one of the components of (Mg, Fe)O magnowustite
and, perhaps, asan individual phase. Therefore, knowl-
edge of its properties at high pressures and tempera-
tures is of great importance not only for solving prob-
lems of materials science but also for geophysics and
geochemistry when interpreting data on the composi-
tion and structure of deep geospheres. In addition, the
study of interactions between wustite and metallic iron
isimportant for explanation of the formation and com-
position of the Earth’s core, where iron—nickel alloy
must contain “light” elements, e.g., oxygen as impuri-
ties [1]. For these reasons, wustite is extensively stud-
ied both experimentally and theoretically.

Since Fe is a transition element, the properties of
wustite result from the magnetic and chemical interac-
tions between unpaired 3d electrons in iron atoms.
These interactions are responsible for the polymorphic
transformations in wustite with increasing pressure,
which are absent in compounds such as MgO periclase.
Under normal conditions, wustite has the cubic NaCl-
type structure (hereafter, the structural type B1). Below
the Néel point (198 K), the FeO structure is no longer
strictly cubical, because it acquires rhombohedral sym-
metry that is not associated with the displacements of
atomsfrom theregular sitesinthe cubic lattice[2]. This
symmetry appears due to the ordering of magnetic
moments along one of the third-order crystallographic
axes. With an increase in pressure, rhombohedral dis-
tortion of the cubic structure in wustite is observed.
Such a distortion is associated with the extension of a
cubic cell along one of the three axes (structural type
rB1) [2—4]. The main indicator of the distortion degree
of the structure is the rhombohedral angle a, which is
equal to 60° in the undistorted cubic structure and less

Moscow State University, orob' evy gory;,
Moscow, 119899 Russia
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than 60° in the rB1 structure. This transition is attrib-
uted neither to the discontinuity in density nor to essen-
tial transformations in the structure and belongs to sec-
ond-order polymorphic transitions. At room tempera-
ture, the rhombohedral distortion appears at about
15 GPa[2, 4]. At pressures 100-150 GPa (the available
dataarewidely spread), FeO transformsto anew phase.
At present, there is no commonly accepted opinion on
the structura type of this phase. The structura type
NiAs (B8), anti-NiAs (aB8, where the Fe and O atoms
are replaced by the As and Ni atoms, respectively), or
even complex polytypes consisting of alternating layers
of the B8, aB8, and B1 structures are usually consid-
ered [5]. The very recent experimental data indicate in
favor of the B8 structure [2]. The summary phase dia-
gram of FeO isavailablein [3].

Under normal conditions, wustiteisnot entirely sto-
ichiometric. Theiron deficit in it is equal to 0.03-0.10.
However, when pressure and temperature increase, the
stoichiometry of wustite improves. Therefore, under
high pressures, deviation in the FeO composition can
be neglected when calculating the FeO properties. In
addition, at the Earth’s mantle—core interface (in equi-
librium with metallic iron), wustite must exist in the
strictly stoichiometric form.

In order to simulate the Fe-O system, various meth-
ods and approaches are applied. In this study, computer
simulation of the structure and properties of wustite are
carried out by the atomistic method. In this method, in
accordance with the classica crysta-chemistry
approach, atoms are characterized by some effective
properties (charges, radii, etc). The interaction
between such atoms determines the structural energy
Eg, that isthe sum of Coulomb forces and the energy of
short-range repulsive and attractive potentials defined
in an explicit form. Among available programs, the
GULF software package for Linux [6] isthe most elab-
orate for these calculationsin terms of both capabilities
and operation speed.

The parameters of interatomic interaction potentials
were chosen by fitting the calculated crystal properties
(elastic constants C,;, Cj,, and C, and the lattice
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parameters) to the experimentally determined proper-
tiesof FeO at 298 K [7] by minimizing the atomization
energy [8]

Ea=Es +Ey, (1)

where E;, = AE(O) + AE(Fe) isthe energy of the charge
transfer from a cation to an anion. To evaluate E;, the
ionization energy was approximated by both the fourth
power function [9]

AE(O) = 6.62q+5.76q" + 0.92q° + 0.32q",
-2<q<0

and the parabola

AE(Fe) = 2.22q+4.91¢°, 2=q=0.
To estimate AE(Fe'*), we used the following data about
the ionization potentials IV of valence sd states [10]:

M(Fe)=7.13eV and § 1V (Fe) = 24.09 eV.

The structural energy of the B1 and rB1 phases was
calculated with the pair Buckingham potential Vg for
interactions of O ions with each others and with Fe
ions, pair Morse potential V,, for partialy covalent
interaction between Fe and O ions, and three-particle
potential V, for interaction in O—Fe-O triples of atoms.
These potentia's have the form

Ci
Vg = A explid_ 'J, 2
where r;; is the distance between the ith and jth atoms
and the optimum parameters are Ag o = 22764 eV,
Po-o =0.149A Cy ,=22.88eV A A, ,=342.98¢V,
Preo=0.389 A andCr o =0;

e s i ST

where De, o = 0.097 eV, 8 o = 0.247 A, and 1, =
2.07 A; and

Vo = (Jijkexp(Lijr) + Mijk)(e_eo)za 4)

where Jg ro 0 = —16.07 X 10° €V, Lo g o =—0.105 A1,
Mo reo = 12.81 x 10° eV, T is the average Fe-O dis-
tance in a given triple of atoms, and 6 is the O—-Fe-O
angle (8, = 90° is the equilibrium angle).
Thethree-particle potentia isappliedinform (4) for
thefirst time and enables us both to reproduce the devi-
ation from the Cauchy relation (C,, = C,,) and to take
into account the interatomic-distance dependence of
DOKLADY PHYSICS \Vol. 48
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the potential in addition to the dependence on the angle
between the bonds. This makes it possible to describe
both the experimentally observed decrease in C,, with
increasing pressure and the rhombohedral distortion of
the cubic lattice, i.e., the B1+B1 phase transition.

For the B8 and B1 phases, the minimum in the atom-
ization energy E,(FeO) corresponds to the ion charges
t1.41e, and +1.80g,, respectively. The atomization
energy obtained for the B1 phase of FeO is equal to
11.96 eV (its experimental value is 9.67 eV).

Inthe B8 structure, aswell asin the B1 structure, Fe
ions have octahedral coordination. However, octahe-
drons have not only common edges, but also common
faces, forming columns along the hexagonal axis. This
indicatesthat the Fe-Feinteractionsin the B8 phase are
much stronger than those in the B1 phase. In addition,
since iron can transit from the high-spin state to the
low-spin state at high pressures, the effective charges of
ions in the B8 phase are expected to be much smaller
than those in the B1 phase. Therefore, in order to
describe the B8 phase in FeO, we used another set of
interatomic potentials, which were found using the
minimum experimental data concerning the B8 phase
in FeO. At present, it isonly reliably known that, at the
point of the B1-B8 transition (~100-120 GPa), volume

decreases by about 2% and the g ratio for the hexago-

nal cell is equal to 1.985 [4]. Based on these data, we
found the following set of theinteratomic potentialsfor
the B8 phase in FeO: (i) Buckingham potentias (2)
with the same parameters of the O-O interaction,
Are o= 317.39 €V, pPreo = 0.389 A, and Cr o = O;
(ii) Morse potentias (3) of the partially covalent Fe-O
interaction and the Fe—Fe interaction with the parame-
ters Deg o = 0.245 €V, ag. o = 0.675 A, ry = 2.07 A,
Drere=114€V, ar. o= 1.11 A, and r0_248/-\

To compare the enthalpies of the B1 and B8 phases
in FeO, adifference of 11.17 eV between the energies
of the charge transfer from Fe to O must be subtracted
from the structural energy of the B8 phase. The atomi-
zation energies of both phases as functions of the effec-
tive chargesonions are shown in Fig. 1.

Using the above sets of interatomic potentials, it is
possibleto calculate the P-V diagram for FeO (Fig. 2).
To this end, one often uses the Birch—-Murnagham
equation (it is generally a fourth-order equation) [13].
For most compounds, it is sufficient to apply the third-
order eguation:

5
p= 3K0fE(1+2fE)2E*TL+g(K'—4)f O )

2
ey

where fg = 5 Oy ~ , V, is the volume at zero

pressure, and V isthe volume at pressure P.
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Fig. 1. Atomization energies of the B1 and B8 phases in
FeO vs. the effective charge of the ions. The insert shows
the energy diagram of the polymorphic transitions in FeO:
the differencein enthal pies (solid thick line) betweenthe B1
and rB1 phases and (dashed line) between the rB1 and B8
phases.

If wetakeK' =4, then Eq. (5) transformsto the sec-
ond-order equation

5
P = 3K,fe(1+2fp)° (6)

The parameters of the egquation of state from the
known P-V data can be found by the EoSFit program
[13]. Some experimental and theoretical parameters of
the equation of state of FeO are listed in the table. The
recent experiments show [11, 12] that K" is not equal to
4 at normal temperatures; i.e., it is necessary to apply
the third-order equation of state (5). Thisconclusionis
corroborated by our calculations. However, the experi-
ment for 1500 K [4] demonstrates that the second-order

V, cm? mol™!
14

13

12

11

10

KANTOR, URUSOV

equation of state (6) quite accurately describes the P-V
diagram of the B1 phase for high temperatures.

The calculated pressure dependence of the eastic
constants of wustite (Fig. 3) reproduces experimental
data well, including the “softening” of C,, with an
increase in pressure. At a pressure of about 39 GPa, the
transition of wustite from the cubic phase to the rhom-
bohedral phase is accompanied by a steplike change in
the el astic constants and a continuous changein thevol -

ume and bulk modulus K = %(C11 +2C,,). Inthe static

approximation (at T = 0), the points of polymorphic
transitions are found from the condition that the enthal -
pies of both phases are equal to each other. Theinsertin
Fig. 1 shows the differences in enthal pies between the
B1 and rB1 phases, as well as between the rB1 and B8
phases. It is seen that the slopes of these curves are con-
siderably different, because the B1—rB1 and rB1-B8
transitions are second- and first-order transitions,
respectively. In this case, the enthalpy of the rB1 phase
is the enthalpy of the relaxed structure with o < 60°
(Fig. 4). Comparing the insert in Fig. 1 with the insert
in Fig. 4, one can note the following interesting feature.
Although the rhombohedral distortion of the B1 phase
starts at a pressure of 39 GPa, the enthalpies of the B1
and rB1 phases virtually coincide with each other up to
a pressure of 60 GPa. However, this cannot be treated
as the coexistence of the two phases, because amost
zero difference between enthalpies is characteristic for
second-kind phase transitions.

Thus, the calculations demonstrate that the atomis-
tic computer simulation of crystal properties has rather
high prediction ability even in static calculations.

1
140
P, GPa

1
120

1
80 100

Fig. 2. P-V diagramin FeO. Solid lineis our results (the point of discontinuity at 100 GPa corresponds to the polymorphic rB1-B8
transition); crosses and circles are experimental data for Fey 9440 (T = 298 K) [11] and o, Fey 940 (T = 300 K) [12], respectively;
and squares and triangles are experimental data for the B1 and B8 phasesin Fey ;0 (T = 1500 K) [4], respectively.
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Calculated and experimental parameters of the Birch—Murnagham equations of state given by Egs. (5) and (6) for FeO

B1 phase
B8 phase,
reremeer our calculation F€0.9460, Fep 940, Fep.s0, FeO, 0K our calculation
298 K [11] 300K [12] 1500 K [4] (theory) [2]

Vo, cm¥mol 12.172 12.03 12.04 12.04 11.99 12.045

Ko 158.92 153.0 125.41 128.39 193 130.84

K' 3.32 5.55 332 (4.0) 3.72 (4.0)
Moreover, the use of the methods of molecular dynam- ACKNOWLEDGMENTS

ics in the future will make it possible to find the com-
plete and rather reliable P-V-T state diagram of FeO.

Elastic constants, GPa
600 -
500
400
300
200

100

I I I I I I I I I 1]
0 10 20 30 40 50 60 70 80 90 100
P, GPa

Fig. 3. Pressure dependence of the elastic constants C,;,
C;,, and C4y and the bulk modulus K. Discontinuity of the

elastic constants at 39 GPa for the continuous variation in
the bulk modul us corresponds to the second-order polymor-
phic B1-rB1 transition. Triangles, circles, and squares are
the experimental data under normal conditions [7], X-ray
diffraction data [12], and ultrasonic measurements [14],
respectively.

a, deg
60¢ ° ° ° o

59r .

58 ®
57
56
55
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T
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Fig. 4. Pressure dependence of the rhombohedral angle a
for the rB1 phase, where a = 60° corresponds to the undis-
torted cubic structure.
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INTRODUCTION

The application of resonance radiation to intensify
combustion processes has been studied for along time
[1-6]. At present, three possible methods of initiating
combustion by laser radiation are discussed. First, the
local heating of a gas due to radiation absorption by
molecules (SFg, NH3, etc.) specialy introduced into a
mixture [1, 2]. Second, the photodissociation of mole-
cules by resonance laser radiation, which leads to the
formation of free radicals [4]. Third, the generation of
a plasma in the field of a narrow intense laser beam
(~10'W cm?) [5, 6]. However, all these methods have
considerable restrictions and low efficiency [5].

In thiswork, we discuss another method of initiating
combustion, which is based on the intensification of
chain reactions when exciting electron degrees of free-
dom of O, molecules by laser radiation.

FORMULATION OF THE PROBLEM
AND FEATURES OF EXCITATION OF O,

MOLECULES TO THE a'!Ag AND b! Z; STATES

We consider an H,/O, homogeneous gas mixture
subjected to aradiation pulse whose frequency isin res-
onance with the center of the line of the electronic—
vibrational transition in the O, molecule

m(el’ V', jl’ KI) = n(e”, V", j", K"),

where € = X°%, €' = a'fj or b'Z;, v and v" vibra-
tional quantum numbers, and j' and K' and j" and K" are
rotational quantum numbers in the ground X*X; and
excited ald; (b'Z;) states, respectively. The

Baranov Central Institute of Aviation Motors,
Aviamotornaya ul. 2, Moscow, 111116 Russia

* e-mail: star @ciam.ru

Xz, — a'Ay(b'sy) transition is alowed only in the
magnetic-dipole approximation. Rotational levels are
manifested only beginning with " = K" = 2. Every rota-

tional level inthe X*X; state with the quantum number
K" involves three components with j' = K' + 1, K', and
K—-1][7].

We analyze transitions of the °P(9) branch with v' =
v"=0,j'=10,and|"=K'=K" =9. Inthiscase, the spec-

tral-line center for the X*%Z;, — a'Ay and X*%; —
blzg transitions corresponds to the wavelength A, =
1268 and 762 nm, respectively. The Einstein coeffi-
cients A, for these transitions are equal to 2.58 x 10~
and 8.5 x 1072 sL, respectively. Variation in the concen-

tration of excited O,(a'A,) and Oz(blz; ) molecules is
determined by the rate of induced transitions

_ O mn _ )\zmn In2
W, = hv. ,where 0, = 4TthAm” | - H(x, a).

Here, | and v, are the intensity and frequency of acting
radiation, respectively; hisPlanck’s constant; A, isthe
wavelength of the center of the m — ntransition line;
by is the Doppler FWHM; and H(x, a) is the Voight
function. In the absence of chemical reactions, the con-
centration of Oy@'s, and Oz(blz;) molecules
decreases due to electronic trandational relaxation

O,(b'Z) + M = O,(a'a,) + M
O,(a'Ag) +M = O,(X°Zy) + M,

and

because the radiative lifetimes of these states are anom-
alously long. Under the typical experimental conditions
(initial temperature T, = 300-700 K and P, = 10—
10* Pa), the time of electronic transitional relaxation of
excited O, moleculesis equal to 15 ~ 0.1-3 s, and the
induced-transition time is equal to T, = 10°-10 sfor

1028-3358/03/4808-0398%$24.00 © 2003 MAIK “Nauka/ Interperiodica’
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| =1-10 kW/cm?. Thus, high excitation efficiency (T, <
To) can be ensured even for low intensities of acting
radiation. At the same time, for these | values, we have
T, > 1 and 1y, where 1 and 1, are the characteristic
times of rotational and vibrational relaxation, respec-
tively. Therefore, one can think that trandational, rota-
tional, and vibrational degrees of freedom are in ther-
modynamic equilibrium.

Variation of the hydrodynamic parameters in the
irradiation zone is determined by the hierarchy of the
characteristic times of various macro- and microtrans-
port processes. For a nonreacting inviscid gas, these
times are the time T, of propagating acoustic perturba-

tions across the interaction region; the times TB and T

of multicomponent and thermal diffusion of the ith
component, respectively; the thermal-conductivity time
T, theinduced-transition time 1;; the relaxation time 14

of the excited O,(a'y) and O,(b'%; ) states; the pulse
duration 1, of acting radiation; and the time 1 of
change in the medium state due to the striction force
[8]. For areacting gas, it is necessary to additionally
introduce thetime rﬁ;‘ of achemical reaction leading to
the appearance (destruction) of the component respon-
sible for the chain mechanism of the reaction. The
quantity rfg determines the ignition delay time or
induction period T;,,.

We consider the ignition of the H,/O, (2/1) mixture
in a laser beam with a Gaussian radial distribution of
intensity

1(r, 1) = I4(t)ex 0
) = LoD expE %,

where R, is the characteristic beam radius and 1,(t) = 1,
and Ofor 0 <t<tpandt > tTp, respectively. For |, =
1-10 kW/cm?, R, = 10 cm, P, = 10°-10* Pa, and T, =

300-700 K, we have T,=2 x 104 S, Ty ~ Ty~ T =
0.3-10s, and 1 = 0.5-10 s. We consider regimeswhere
T, <Tp~ T, £ Ty < Tp, Tg. Under these conditions, the
absorptivity k, of 762-nm radiation variesfrom 8 x 107°

to2 x 103 cm and therefore k' > R,. Inthiscase, the

approximation of athin optical layer isapplicable, vari-
ation in the parameters in the reacting mixture can be
considered only across the beam, and macrotransport
processes can be disregarded in the [0, T;,] interval. In
this case, the equations describing the state of the
medium in the central irradiation zone (r < R,) can be
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represented in the form

oN;
ot

pat = pzho.q. pzho. i
M,
G = ZSqi Sq - |q

+()

=G+ Qn

a;ig) [Ry =Ry,

a’®

+()_ iq
= +()q|_|N

= w By oD ,
q | ID&]ml 0N - ]

M
E= S CuT,

i=1

Ij?’+CR+C'D

CivT = V|E2 Vil

N, v
U=ZUiVia Vizﬁl, N:zNi-
i=1

i=1
Here, p and T are the density and temperature of the
mixture, respectively; N, and |, are, respectively, the
density and molecular mass of molecules (or atoms) of

the ith kind [i = 1, 2, and 3 correspond to O,(X*Z),

Oy(a'l\), and Oy(b'E;) molecules, respectively, while
i =4-11 correspond to the other components of the
reacting mixture H,, H,0O, OH, HO,, H,0,, O3, O, HJ;
hy; is the enthalpy of the formation of the ith compo-
nent; M is the total number of components in the mix-

ture; C; = 1 and 1.5 for components involving linear
and nonlinear molecules, respectively; 6; isthe charac-
teristic vibrational temperature of the jth mode of the
ith component (j = 1, 2, ..., L)); M, is the number of
reactions leading to the formation (destruction) of the

ith component; O(f'q and a;, arethe stoichiometric coef-

ficients of the gth reaction; n, and n, are the numbers
of components involved into the direct and inverse
reactions, respectively; k, and k_ are the rates of the
respective reactions; R is the universal gas constant; |;;
is the number of quanta acquired by the ith component
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(i =1, 2, 3) in induced transitions; N,, and N, are the
densities of O, moleculesin the lower and upper states
involved into the m — n transition, respectively; and
O, and g, are the degrees of degeneracy of the respec-
tive states.

KINETIC MODEL
Asis known, to describe the ignition of H,/O, mix-
turesin awide range of P, and T, it is necessary to use

a quite complete kinetic scheme, including 29 revers-
ible reactions even in the absence of excited O, mole-

cules [9]. The excitation of O, molecules to the a'A,

and bt Z; statesinitiates new reactions, the most impor-

tant of which are presented in Table 1. Below, we will
refer to reactions according to their numbering in
Table 1.

The rates of reactions involving unexcited O, mole-
cules in the reacting H,/O, system are known quite
well. At the same time, information for processes

involving O,(a'Ay) and Oz(blzg) molecules is sparse.
Experimental data are available only for certain reac-

STARIK, TITOVA

tions (nos. 3, 9, 29-33) [10]. Two types can be sepa-
rated among the processes under consideration: first,
endothermic reactions with activation barrier (reac-
tions 1-6, 9-24) and, second, barrierless reactions
(nos. 7, 8, 25-28). Therates of reactions of thefirst type
were calculated by using the procedure of decreasing
the activation barrier. This procedure is based on the

assumption that the potential surfaces u, and u; of
direct reactions involving unexcited and excited mole-
cules, respectively, are equidistant [11]:

u(r) = AH + EgexprL,

1
u(r) = AH +E, + EgexprL.
1

Taking into account that the potential-energy surface
for theinverse reaction is expressed as

(1) = (AH + Ep)expt

and using the ordinary relationr, =r, [11], one can rep-

Tablel
No. Reaction No. Reaction
1 Oy(a'A) +M=0+0+M 17 H,0 + Oy(a'Ag) = H,0, + O
2 Oyb'Zy) +M=0+0+M 18 H,0 + Oy(b!Zy) = H,0,+ O
3 Oy(a'Ag) +H=0H + O 19 O3 +M =0+ 0,@'ay) + M
4 Oy(b'2y) +H=0H+0 20 O3+M =0+0,b'5;) + M
5 H, + O,(a'Ag) = 20H 21 O3+ H=0OH + O,(a'a)
6 H, + Oy(b'Z,) = 20H 22 O3+ H=0H + O,(b'z,)
7 HO, + M = O,(a'Ag) + H+ M 23 O3+ 0 =0,(X3%) + Ox(a'ay)
8 HO, + M = Oy(b3y) + H + M 24 03+ 0=0,(X5;) + Oy(b'5y)
9 H, + Oy(a'Ay) = H + HO, 25 O3+ OH = HO, + Oy(a'A,)
10 Hy+ Oy(b'Zy) = H +HO, 26 O3+ OH = HO, + Oy(b*3y)
1 H,0 + Oy(a'Ay) = OH + HO, 27 03+ HO, = OH + 0,(X33 ) + Oya'hy)
12 H,0 + Oy(b!Z;) = OH + HO, 28 O3+ HO, = OH + O,(X3%) + Oy(b* %)
13 OH + O,(a'Ay) = O + HO, 29 03+ Oy(a'fy) = 20,(X32;) + O
14 OH + Oy(b'Z;) = 0+ HO, 30 03+ 0x(b'3) = 20,(X%%;) + O
15 2HO, = H,0, + O,(a'A,) 31 20,(alhg) = Ox(b* 3y ) + Ox(X°Z,)
16 2HO, = H,0, + Oy(b*2y) 32 Oj(a'hg) + M = 0,(X3%;) + M
33 Oy(b'Zy) + M = Ox(a'Ag) + M

DOKLADY PHYSICS Vol.48 No.8 2003
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resent the activation barrier for the reaction involving
an excited molecule in the form

ES = %(J(AH +E.)® + 4E2(AH + E2) — (AH + E,)).

Here, AH isthe thermal effect of the reaction; Eg isthe
activation energy of the reaction in the absence of the
excitation of reacting molecules; E, is the energy of an
excited molecule; and r, andr, aretheradii of exchange
forces for reagents and products, respectively. The rate
of such areaction has the Arrhenius form

Ee

Koy = AT exp E_T%’

where A and n are the parameters of the corresponding

dependence for the reaction involving an unexcited
molecule.

Similar to [10], the probability of the formation of

the O, moleculeinthe X*, a'A,, and b'Z, electronic

statesin reactions of the second type with Eg =0ispro-
portional to the degree of degeneracy of these states,
i.e, gx=0.5,g,=0.33, and g, = 0.17. The rates of the
inverse processes for the two types of reactions under
consideration were calculated based on the principle of
detailed balance.

IGNITION DYNAMICS
FOR A MIXTURE UNDER RADIATION

Combustible mixtures are ignited by chain reac-
tions. For the H,/O, mixture, these are reactionsinvolv-
ing O and H atoms and OH radicals. For ignition, the
rate of the formation of O, H, and OH must exceed the
rate of their destruction in chain-break reactions or the
rate of leaving of these components from the reaction
zone due to diffusion processes (their characteristic

time is determined by the diffusion time H, TE of light
carriers, H atoms, of the chain mechanism). Since t;, ~

Tf(:‘ , the ignition condition has the form T1;, < rg .

Figure 1 shows T,(T,) and T4 (T,) for radiation with
the parameters A, = 1268 and 762 nm, 1, = 107 s, and
various |, values. It is seen that 762-nm radiation
reduces T;, stronger than 1268-nm radiation does and
correspondingly reduces the self-ignition temperature
Tign» Which can be determined in the first approximation
from the relation

Tin(Tign! |0, PO) = Tg(Tignl PO)'
For a supplied energy of E;, = 1,Tp = 5 Jcm?, 762-nm
radiation reduces the temperature Ty, to 300 K. We
2003
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Fig. 1. (Dottedline) Tpy (To) and Tjn(To) for the H,/0, = 211
mixture at P, = 10° Pa under (dashed lines) 1268- and
(solid lines) 762-nm radiation with 1, = (1) 1, (2) 5, and
(3) 10 kW/em? and Tp = 10~ s. The dash—dotted line is
Tin(To) for IO =0.

emphasize that this E;,, value corresponds to 0.082-eV
energy spent on the excitation of one O, moleculeto the

blzg state. At the same time, the photodissociation of
the O, molecule from the ground state (this processini-
tiates the chain mechanism of theignition of the H,/O,
mixture due to the formation of O atoms) requires
5.8 eV. Moreover, the recombination of O atoms for
low gas temperatures (T, < 600 K) proceeds at a very
high rate. Thisadditionally reduces the efficiency of the
photochemical method of ignition based on the photo-
dissociation of molecules by laser radiation [12].

Figure 2 shows the time variation in the mole frac-
tions y; of the components of the reacting H,/O, mix-
ture in the absence of irradiation and under radiation
with the parameters A, = 1268 and 762 nm, |, =
10 kW/cm?, and 1, = 1078 s. Asiis seen, the y(t) behav-
ior, aswell astheT;, value, changes when O, molecules
are excited to the a'A, and blz; states. We emphasize

that the concentration of both Oz(blz;) and Oy(@'Ay)

molecules increases under 762-nm radiation in the
[0, T;,] interval. This effect is caused by the quenching

of the bt Z; state (reaction no. 33). In this case, the con-

centration of O,(a'A;) molecules at t = Tp is much
higher (by a factor of about 40) than that produced by
the excitation of O, molecules to the a'A, state by
1268-nm radiation. This difference is attributed to the

fact that the rate of theinduced X’*%, —= b'Z; transi-
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Fig. 2. Time variation in the concentrations of the components of the H,/O, = 2/1 mixturefor Ty = 600 K and Py = 10° Pa(a) in the
absence of irradiation and under (b) 1268- and (c) 762-nm radiation with I = 10 kW/cm? and Tp = 105 s,
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Fig. 3. Processes responsible for the formation of O and H atoms and OH radicals (a) in the absence of irradiation and under

(b) 762-nm radiation.

tionishigher than therate of the X*>; —» a'A, transi-
tion by afactor of 75 for the same |, value.

Collisional quenching of the bt Z; state dlightly
increases T in the [0, Tp] interval. In particular, for 1, =
10 kW/cm? and 1p = 1072 s, temperature increases from
600K att=0t0 688K att=1p. However, T;, decreases
inthis casedue not to anincreasein T but to the appear-
ance of new channels of the formation of O and H
atoms and OH radicals. Indeed, an increase in T, from
600 to 688 K reduces T;,t0 0.14 s. Thisvalue is larger
than the value of 4.6 x 1073 s, which is achieved when
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the radical mechanism, along with thermal one, istaken
into account, by afactor of 30. Figure 3 shows the pro-
cesses responsible for the formation of O and H atoms
and OH radicals in the absence of radiation and under
762-nm radiation. In the absence of excited O, mole-
cules, theH, + O, = 20H reaction isthe basic chain-ini-
tiation reaction for T, < 1000 K. The reaction of OH
radicals with H, molecules yields H atoms, which are
involved in the chain-branching reaction H + O, =
OH + O. The H, + O = OH + H process is the second
reaction of chain propagation.



Po, Pa

102 103 104 10°

Fig. 4. Initial-pressure dependences of T;,(Py) for the
H,/O, = 2/1 mixture at Ty = 600 K (solid lines) when O,

molecules are excited to the b! Z; state by 762-nm radiation

and (dotted lines) when all the absorbed energy is spent on
gas heating for Ej, = (1) 1, (2) 5, and (3) 10 Jcm?. The
dashed lineis Tj,(Py) for Ej, = 0.

When O, molecules are excited to the bz state

with the emission of 762-nm radiation, the basic chain-
initiation reactions are reaction nos. 6 and 10 yielding
OH radicals and H atoms, respectively. Under 762-nm
radiation, O,(a'A,) molecules, along with Oy(b'%;)
molecules, arise in the mixture. Therefore, at the initial
stage of the process, O atoms are predominantly
formed in chain-branching reaction nos. 3 and 4. For
low T, temperatures (<600 K), reaction nos. 29 and 30
also considerably contribute to the formation of
O atoms. The appearance of these new intense channels
of the formation of chain-mechanism carriers acceler-
ates chain reactions and reduces T;,,.

The method based on the excitation of O, molecules
by laser radiation is much more efficient for the initia-
tion of combustion than the method of direct heating of
the reacting mixture by laser radiation (all radiation
energy absorbed by the gas is spent on the heating of
the medium), which is now extensively discussed. This
isillustrated in Fig. 4, where T;, is shown as afunction
of the initial pressure of the H,/O, mixture for various
E;, valuesin these two cases. Asis seen, theT;, valuefor
the excitation of O, molecules by 762-nm radiation can
be equal to one-seventieth to one-tenth of that for the
pure thermal action of laser radiation. It is also seen

STARIK, TITOVA

that, for every E;,, value, when a certain boundary value
P, is exceeded, radiation does not reduce T;,, compared
tothecasel, = 0. The Py, value increaseswith E;,, or |,.
In particular, Py, = 2 x 10* and 2 x 10° Pafor the exci-
tation of O, molecules with 1, =102 sand E;, = 1 and
10 Jcm?, respectively. The boundary value Py, exists
due both to the intense formation of chemically inert
hydrogen peroxide (Fig. 3) for quite low T, at P, > Py,
and to a decrease in the concentration of H atoms and
OH radicals.

Thus, the excitation of O, molecules to the blig
state by 762-nm laser radiation opens new channels of
the formation of active O and H atomsand OH radicals.
This considerably reduces both the induction period
and ignition temperature of hydrogen—oxygen mix-
tures. These components are carriers of the chain mech-
anism for the oxidation of other gases. Therefore, this
method of intensifying combustion is expected to be
very efficient for hydrocarbon fuels.
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The properties of melts were apparently first inves-
tigated by Fogel [1] and Fulcher [2]. In these pioneer-
ing studies, they measured the viscosity of substancesn
in the vicinity of the crystallization temperature T,,. It
was shown empirically that viscosity must obey the law

_ A
N = No®XP7 77

where n, and A are certain constants and T is a param-
eter equivalent to the thermostat temperature. More
recently, Yal. Frenkel (see collected articles [3]) stud-
ied crystallization in liquids and melting in solid-phase
structures using the free-volume model. This model
was later applied in a modified form to study the non-
equilibrium properties of glassy materials [4-9]. In
addition to the above investigations, some aspects of
crystallization theory were considered in [10, 11],
where an analytical explanation of the empirical Fogel—
Fulcher law was proposed. A rigorous mathematical
model of melting was described in detail in [12], where
atheory of melting of solid crystal structures was con-
structed on the basis of the gradual breaking of the
long-range crystal order.

In this study, | propose an alternative model of crys-
tallization, which provides rigorous calculation of the
growth of the crystallization region as afunction of the
deviation of the current temperature T from the crystal-
lization temperature T,,.

Let us consider a melted substance that is sowly
cooled to the crystallization temperature T.. We
describe the growth of locally formed crystallization
regions with allowance for heat transfer. To mathemat-
ically describe an increase in the average size of a
nucleus of the crystalline phase, we use the Smolu-
chowski equation modified for the case under consider-
ation. The evolution of the crystallization regions is

Moscow State Regional University,
ul. Radio 10a, Moscow, 105005 Russia

e-mail: sglad@newmail.ru

assumed to be similar to that of a nuclear chain reac-
tion. The process is schematically shown in Fig. 1,
which illustrates an increase in randomly nucleated
crystallization regions {A} = A, A, A", ... in ageomet-
ric sequence with the multiplier g = 2. Theregions{ A}
are numbered by the superscript v. Let the temperature
of the region A be T, = T,, and the temperatures of the
adjacent regions A, Ay, Ay, ..., AbeT, < T, <Tz< ... <
T, respectively. The regions A, are uncrystallized
regions in the liquid melt rather than solid phases. The
last, kth, region is determined by the condition that
(k + 1)-th region is absent and that the regions with a
linear size p, into which the entire conditional area L?
of the melt isuniformly divided, overlap.

The size p can be estimated from the step d in the
radial direction of the nucleus growth of the crystalline
phase (Fig. 2). We have p = K, d, where k., is intro-
duced below [formula (3)].

For each of theregionsl|, 11, 111, ..., the heat conduc-
tion equation should be introduced. The most complete
system of equations that takes into account both the
latent heat of crystallization (as is known, it is propor-
tional to the crystalization rate v,,) and the purely
hydrodynamic flow of a very viscous liquid to the
nucleusitself can be represented in the following finite-

Méelt regions

7
Substrate (thermostat)

Fig. 1. Schematic representation of crystallization as the
growth of regions in a geometric sequence with the multi-
plierg=2.

1028-3358/03/4808-0405%$24.00 © 2003 MAIK “Nauka/Interperiodica’
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Fig. 2. Simplified model of the growth of the crystallization
region shown schematically in Fig. 1. Theregions {A} = A,
A, A", ... arethe attractors specified by the superscript v in
Eq. (4). Thermal flows along the temperature gradients to
the corresponding attractor are conventionally shown by
arrows.

difference form:

oTY v
S = (Mh-T) + 0P +ae, (o)
3
avcr I -1 0 r]avcr
ot +(Vcr|:|)vcr - _F"' 16xn aXn . (Ib)
n=

Here, a; = % is the heat-transfer coefficient, where K

is the thermal conductivity, 0 is the size of the heat-
exchange area (the liquid-to-crystal transition region),
and s is the contact area between theith and (i + 1)-th

regions,i=1,...,k;v=I1,11,1ll,...; c, isthe heat capac-
. . dgy .
ity per unit volume of the crystal; ;” isthelatent heat

of crystallization; the Boltzmann constant kg is hereaf-
ter taken to be equal to unity; and OP is the pressure
gradient between the crystalline phase and the sur-
rounding liquid melt. Strictly speaking, [P would also
be written in the finite-difference form, i.e., as OP =
E'—+—18——B. However, this is not necessary for the fol-
lowing reason. Since the crystallization rate is low, the
nonlinear term in Eq. (1b) can be omitted. The remain-
ing linear equation shows that, when the second term
with the dynamic viscosity n on the right-hand side of
Eqg. (1b) is disregarded, the crystallization rate is pro-
portional to the pressure gradient. Therefore, the penul-
timate term on the right-hand side of Eqg. (14) is propor-
tional to (OP)2. We ignore this term of second-order
smallness and consider that the crystallization heat
dependsimplicitly on time and is virtually independent
of coordinates. Then, it can be introduced on the left-
hand side of Eg. (1a). Introducing the new renormal-
ized temperature (retaining the earlier notation T), we
finally arrive at the following approximate linear finite-

GLADKOV

difference equation:

ot
ot

Equations (1a) and (1b) represent acomplete closed
system of linear differential equations written for indi-
vidual regionsl, I, 111, .... Thisisphysically clear: each
region of theinitial crystalline phase A, A, A", ... isan
attractor to which temperature gradients are directed. In
our case, the heat-transfer coefficient in Eg. (1) hasthe
quite unconventional dimension [s™!], whereas the ordi-
nary dimension of this coefficient is [W/m? K]. How-
ever, since [W/m? K] = [Js m? K] = [kg/s® K] =
108 (¢/s%)(10'%/1.38 Erg) = 8 x 108 (1/s cn?) = a*, the
relation between a and a* isevident: a; = a}* §.

It should be noted that, in our model, we do not take
into account the effect of the (i — 1)-th region on tem-
perature in the ith region, because the (i — 1)-th region
in our model istreated as aready crystallized and con-
sidered thereby astheith region.

The temperature hierarchy for each of the given
regionsv isasfollows:

T<Ty=T,<T <T,<T3<...<T, 2)
where T is the thermostat temperature (or the super-
cooling temperature kept constant).

The simplest approximation of variation in temperature
can, for example, have the form

TV =T, + ke3T, (3)

where 8T = T, — T and the exponential factor isthe cut-
off factor limiting the growth of the number of the

attachment zones. Hence, it is seen that K., = \—1/ The

= o(T2-T1).

coefficient y is assumed to be small (y < 1).

Next, it is necessary to modify the Smoluchowski
equation for our particular case and to writeit in conve-
nient terms. Let us introduce a time-continuous varia
tion of theith sizel;, whichisrelated to the probabilistic
pattern of the growth of the crystallization region { A}.
Then, in accordance with our scheme (Fig. 1), the evo-
lution of the vth region must obey the phenomenologi-
cal equation

2i-2
=db S OPWE W @)

i"'=2i+1

a1
ot

Here, W(T) = we™T, where w is the characteristic fre-
guency of the tunneling transition from the liquid to
crystal region through the potential barrier; A=U, - U,
is the barrier height, where U, and U, are the energies
per particle in the liquid and solid phases, respectively;
and the subscript i varies from 0 to k. The term propor-

tional to W(T{") on the right-hand side of Eq. (4) cor-
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responds to the possibility of the ith crystallization
region drifting to another crystal i'. It is easy to see that
temperature hierarchy (2) leads to the following evi-
dent, easily verifiable hierarchy for the transition fre-
guencies:

Wy <W, <W,<... <W. %)

The physica meaning of inequality (5) is quite
clear. Thermal fluctuations in the liquid phase (melt)
increase with temperature. This means that the thermal
barrier decreases and the tunneling probability (accord-
ing to the Arrhenius law of tunneling transition)
increases. Thisbehavior isexpressed as hierarchy (5) of
the frequency probabilities.

Finaly, it is necessary to set the phase size |, as a
function of the number i. It is quite reasonable to
assume that

Ii:|0+ F—— (6)

As aresult, Egs. (1), (3), (4), and (6) can be com-
bined into the unified system

ol _
a_tk =d l{|2k+1[W(T2k+1)|k_W(Tk)|2k+1]

+ o ol W(T 2 ) e = W(T ) 2] } (7a)
oT
= = A(Tea=To), (7b)
T =T, + ke 3T, (7¢)
kd
Le=1o+ k—+i, (7d)

where the superscript v is omitted and the heat-transfer
coefficient is assumed to be constant in the ith region.

To solve this system of equations and to find the
relation between the size |, and T, we divide Eq. (7a)
by Eq. (7b) and take into account Egs. (7c) and (7d). As
aresult, we arrive at the rather awkward equation

O
7
% OdWO E(D'i' —D

2
;19 (5Tda )*[r d Mh;ﬂk@
0 (kD+ 1) B(D+
AW,
t 3T + 2125T aTO(kD+ 1)
.
+1,08T f (kD) + d°8TKOf (kD [ (8)
O
O
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1
O+ =
f, (kD = ‘ "2 + KD+ 2
1 (kl:'+ 1)2 Bd]_l_ §:|2
2
f (kD = kD+1+M
2 kD+§
2
9)
O ? 0 (
kLT + 2k0+
+ kD E(D+1+%,
kU+ 1 2 kD+§ 0
O 2 0O
2
D+% kEF+2kD+%
fokD) = 5+ >
(kO+ 1) %D_I_g]
2

Here, k* = ke k,

It isseen that the solution of Eq. (8) for small 8T can
be found by omitting the terms proportional to 8T in

curly brackets. Asaresult, for k* > 1, we havef, = -%.—2
k
f, = 4k*, f; =2, and
alO
a7~ o+ d) e (10)

From this smple differential equation, the size of
the crystallization region can be determined as a func-
tion of the deviation of T, = T, from T. Actuadly, it fol-
lows from Eq. (10) that

g

5008_AT
stkkO’

the dimension of length, and s* isacertain average con-
tact area.

(11)

where3 =

I* isan integration constant having

Formula (11) is the solution of the problem.

Using the above analysis and calculating the expo-
nent 3, one can compare its value with the numerical
calculation based on percolation theory. According to
thistheory, the exponent isindependent of any physical
parameter of asubstance and introduced as ageometric
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The Landau—L ifshitz equation

IM = —gIMHL) 1)

describes the dynamics of the macroscopic dissipation-
free motion of the magnetization vector of aferromag-
net in amagnetic field. Here, M(r, t) is the magnetiza-
tion per unit volume of the ferromagnet and g is the
gyromagnetic ratio. When only the exchange interac-
tion and the magnetic-anisotropy energy are taken into
account, the effective magnetic field H; can be written
in the form

1. 3°M_ dW(M)

Hei = 2%ik9%a%, oM

+H, 2)

where the first, second, and third terms are the
exchange-interaction contribution, anisotropic-energy
contribution, and external magnetic field, respectively.
We allow both uniform and nonuniform spin distribu-
tions over the ferromagnet, as well as the existence of
magnetic clusters, domain walls, etc. The dimension of
the above formations is taken to be topological. How-
ever, memory (both time memory and memory about
past trajectories) in certain physical systems can vary
both in time and in space. Available experimental data
show that the fractal dimension of physical objects
depends on the parameters of the surrounding (temper-
ature, pressure, etc.) and internal parameters character-
izing a system (elasticity, strength, etc.).
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Fractal structures are observed in many physical
phenomena, including those in solids. This indicates
that the momentum and coordinate distributions of
magnetically ordered systems (or magnetic clusters) of
the electron magnetic moments can be quite well
described in terms of fractal representations (in partic-
ular, Levi-type distributions for magnetic glasses). In
this case, the distribution over asystem of such clusters
will have afractal or multifractal dimension. The latter
implies the existence of time or spatia memory
(including that varying in time or with spatial distribu-
tion, e.g., with motion of domain walls, temperature,
etc.) in the magnetic-moment system (consisting of
magnetic clusters). To describe such magnetic systems,
the Landau—L ifshitz phenomenologica equations must
be extended to fractal or multifractal setsinvolvingion,
atomic, molecular, or electron clusters; i.e., they must
be expressed in terms of fractional derivatives. In any
case, this must be done when magnetic moments
undergo anomalous diffusion caused by the fractal
structure of the surroundings.

Anomalous diffusion, i.e., diffusion for which the
mean squared displacement of aparticleis proportional
to afractional power of time (X~ t?, where B isafrac-
tional number), has been actively studied in recent
years. It is observed in aerosols, gels, spin glasses, cer-
tain disordered systems, aperiodic crystals, electron—
ion plasma, in systems described by the statistical phys-
ics of open systems[1], and apparently in magnetically
ordered systems under certain conditions. Anomalous
diffusion (or fractal relaxation) was described theo-
retically by using fractal geometry [2] in humerous
works (see [3]). Diffusion equations in fractional
derivatives [4, 5] are usualy used in these works.
Experiments [6-8] show that the fractal dimension
depends on physical parameters, and anomalous diffu-
sion isimportant in this case.

Inthiswork, we study magnetically ordered systems
(by an example of aferromagnet) with fractal or multi-
fractal properties. These systems are apparently quite
common, because the fractal structure of ion or atomic
clusters plays an important role in polycrystalline sol-
ids [8]. To take into account the effect of fractal struc-
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tures on the magnetic properties of the system, the Lan-
dau—Lifshitz equations and equations for spin waves
are written in the fractal space with constant and vari-
able memory, and the corresponding spectra of spin
waves are found. We analyze the effect of the fractal
force found in [9, 10] on the behavior of magnetic
moments, spin-wave spectrum, and the behavior of the
magnetic system as awhole. Thisforce was studied for
anomalousdiffusionin[11], is proportional to the coor-
dinate gradient of the multifractal dimension, and is
induced by the multifractal medium.

FRACTIONAL VARIABLE-ORDER DERIVATIVES
AND INTEGRALS

Equations with fractional derivatives describe non-
Markovian processes with constant memory. Dynamic
processes in systems with time- and coordinate-depen-
dent memory cannot be described in terms of Rie-
mann—Liouvillefractional derivativesthat do not repro-
duce variationsin the fractal dimension of the variable-
memory physical system under consideration. For this
reason, it is necessary to use variable-order fractional
derivatives generalizing fractional Riemann—Liouville
derivatives and integral s for the dynamics of multifrac-
tal objects (i.e., objects whose fracta dimension
depends on time and coordinates). One of us (L.Ya.K.)
introduced such atechniquein [9-12].

To describe the behavior of magnetic momentsin a
medium with coordinate- and time-dependent multi-
fractal dimension (or in a physical system with such
fractal properties), one must use the generalized Rie-
mann-Liouville fractiona derivatives that were intro-
duced in [9] and used in a number of works (see,
e.0., [12]). These derivatives are defined as (for left-
side derivatives; for more detail, see [9])

l+g

0

e

=DL ()

t

= Djljn dt' f(tl)
] d(t)—n+1’
40 rn-d@)t-1) 5
1+g,
9 _i=p¥,iKx

_ DdD f(X)

Id d(x)-n+1"

M (n—d,(x))(x=X)

Here, I is the Euler gamma function; n = {d} + 1,
where{d} istheinteger part of dford=0(i.e., (n—-1) <
d<nyandn=0ford<n; d,=1+¢(t); andd, =1 + &(X).
The integral operators defined above for fractional
orders d; and d, depending on coordinates and time can
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be expressed in terms of ordinary derivatives and inte-
grals[9, 12] for || < 1. In this case, generalized Rie-
mann-Liouville fractional derivatives satisfy the
approximate relations (we present here only relations
for derivatives)

D' " (x, t) = (1+st) U t)+ f(x ),

de C))

" (x 1) = (1+sx) T, t)+——Xf(x t).

These relations make it possible to describe the
dynamics of asystem including the effect of changesin
the fractal dimension (if they are much smaller than
unity) on the behavior of the physical system by means
of ordinary differential and integral equations.

LANDAU-LIFSHITZ EQUATION
FOR MAGNETIC MEDIA
WITH VARIABLE MEMORY

Variable memory can be taken into account by
replacing the derivativesin Egs. (1) and (2) with gener-
alized fractional derivatives (3). Thisreplacement leads
to the following integro-differential equations for the
magnetic moment:

adl(l‘,t)
WM = —g[MH], ®)
t
10" 3% oy
Hor = 500 G0 am ~ a0 10 6
X 9%, oM (6)
X=r,t.

Hereafter, we use the scale for which dimensional fac-
tors arising due to the presence of fractional derivatives
are equal to unity. Timefractal dimension d; and spatial
fractal dimension d, characterizing time and spatial
memory, respectively, do not generally coincide with
each other, i.e, d; # d,. These dimensions can also be
different in different directions of crystallographic or
magnetic structures, but this fact is disregarded. The
Landau—Lifshitz equations for magnetic systems with
constant or partialy constant memory are a particular
case of these equations for constant fractal dimensions
or one of these fractal dimensions. The following cases
must be distinguished: (i) d; = const and d, is variable
and (ii) d, = const and d, is variable. Completely con-
stant memory corresponds to constant d, and d, values,
which, as was mentioned above, can differ from each
other, in any case for different directions of the crystal-
lographic axes.
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SPIN-WAVE EQUATIONS
IN A FRACTAL MEDIUM WITH CONSTANT
AND VARIABLE MEMORY

Phenomenological equations for spin waves in a
nonfractal medium follow from the Landau-Lifshitz
equations when determining the effective magnetic
field and linearizing magnetic moments and magnetic
field near their equilibrium values[13]. Since thiswork
aims to illustrate the application of the new mathemat-
ical technique (variable-order fractional derivatives) to
magnetically ordered systems, we analyze the effect of
the fractal properties of the system on spin waves only
for auniaxial ferromagnet. Let

M(r,t) = Mg+ m(r,t)
and
HOr, 1) = HE +h(r, b).

Equations for spin waves in a fractal magnetic
medium can be derived from Egs. (5) and (6). They
can also be derived from equations for spin waves[13]
by replacing ordinary derivatives with generalized
fractional derivatives. This method is simplest and,
carefully applied, yields correct equations (although
they, as well as the Landau—Lifshitz phenomenologi-
cal equations, can be derived from first principles).
The linearized equation of motion for the magnetic
moment density m in a variableememory fractal
medium (the equation for spin waves in a variable-
memory magnetic medium described by fractal
dimensions d; and d,) for a uniaxial ferromagnet has
the form

a t(r t)
dy(r, (1)

di( k(x)
ng[Mo |:h+alka 4

di(x) k(X)

ot ax"™ ax;

. 1 i . 2 O
+Bn(mn)—W(MoHo+B(Mon) )m}% @)

0

The linearized spin-wave equations for “easy axis’ or
“easy plane” magnetic anisotropy are written as

JCICICHR
0" 0
X [h Ui d(x)W
9x® gx?

adt(rv t)
—_———m =
atdt("« (t) 0

+B'n(mn) — El3 +—m

Hy'O .
MoO ©
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DOKLADY PHYSICS Vol.48 No.8 2003

411
d(r. ) 0 500
0 00
oM = QEMO {h”“k D A
NCIRD) 'ad()ak()
HY 0
+p'n(mn) ——=m |0 )
Mo |0

The boundary conditions in a magnetic medium with
memory have the form

G 'm O
) *Yik; |mHVk =0,

S

O
O — (10)
O

ox;’

in the absence of dissipative processes,

q

om,

ax,

O

+ Vi MOV =0
0

S

0
8rp||v|0p%:‘kl (11)

or in the presence of a symmetry center of the crystal
|attice,

(12)

The above equations, together with the boundary con-
ditions, describe the propagation of spin waves in a
variable-memory magnetic medium. Below, we con-
sider amore simple case of constant memory in aniso-
tropic ferromagnet.

SPIN-WAVE EQUATIONS
FOR A CONSTANT-MEMORY
UNIAXIAL FERROMAGNET

In this case, and with allowance for only exchange-
energy contribution for the uniaxial ferromagnet (3, =
B, = B, = B), the spin-wave equation has the form (d, =
o = const, d, = 3, = const)

0%’ m
OxPaxE

9 —m = gD\/Io h+a;,
ot®

. 1 i . 2 O
+Bn(mn)—M_2(MoHo+B(Mon) )m}% (13)
0

It is easy to obtain the following relation between the
energy and wavenumber of spin-wave spectra:

1

E O(a,kPKP)°. (14)
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SPIN-WAVE EQUATIONS
IN THE APPROXIMATION
OF WEAK VARIABLE MEMORY

In the approximation of weak variable memory,
fractional derivatives can be replaced with ordinary
derivatives by using Egs. (4) and writing Eqg. (7) in the
form

2@+, y)m

6[(1+8xi)m]D
Yl

- MO an 0

|ka D(l (15)

This equation is similar to the equation for anomalous
diffusion with variable memory, which is analyzed
in [11]. After reduction to the form

om

_ 0 0 =
9t a—Xi[Dik(X: t)()_ka F|m} +Am,

(16)

typical for diffusion equations, where [for D;(r, t) =
const]

g, 0
Fi(x) = |kgx (')XLD
0¢, 0 0 (1n
- ﬁ &, 0gQ
A= a:)'kaxiaxk ot

similar to [11], the spin-wave equation involves two
new terms: (i) aforce (which will be referred to as the
“fractal force”) proportional to the gradients of fractal
coordinate dimensions and (ii) terms proportional to m
corresponding to the appearance of a gap in the spin-
wave spectrum for certain types of the coordinate
dependence of the fractal dimension. We emphasize
that fractal structures of this type can in principle be
formed technologically. We will seek the solutioninthe
formm =m, + em, for |e< 1|. Inthis case, m, satisfies
a diffusion-type equation with variable coefficients of
the term proportional to m,, and m,, has the ordinary
spin-wave spectrum.

FRACTAL-FORCE EFFECT
ON THE BEHAVIOR OF SPIN WAVES

We consider the fractal-force effect on the behavior
of the magnetic moment in more detail. As follows

from Eq. (17), the fractal force has the form F ~ %}'
1
For constant €, this force vanishes. Depending on sign
(which is always opposite to the sign of forces that act
on magnetic moments and are proportional to €), this
force can lead both to dissipation of the ordering of
magnetic moments and to an increase in this ordering.

KOBELEV et al.

Its magnitude depends on the type of the coordinate
dependence of the fractal dimension. In particular, for
€, = £X, this force, as well as the energy gap, is con-
stant, i.e., EjF ~ €, and E, ~ €,. The last quantities are
proportional to the derivative with respect to €. For the
fractal structure approximated by €, ~ a;x + a,x*, dis-
crete frequencies appear in the spin-wave spectrum. |If
€ depends periodically on time and coordinates with
frequencies w, and w,, respectively, and can be approx-
imated by sinwyt and sinw,X;, then the equation for spin
waves involves terms with variabl e coefficients respon-
sible for interesting properties of spin waves.

CONCLUSIONS

The new results following from the existence of
variable memory in magnetic systems are as follows.

First, there is the appearance of the fractal force,
which disappears in the absence of memory or in the
presence of constant memory (in essence, it is a new-
type magnetic hysteresis) and is proportiona to the
coordinate gradient of fractal dimension. Can a fractal
medium with constant or variable memory (in the latter
case, determined by time and coordinate variations in
the fractal dimension) be used to write information?
Can the fractal dimension be used to control variation
in information? Since the behavior of the multifractal
dimension can be controlled by varying external forces,
this is apparently possible. The fractal dimension can
apparently be used as memory. Thereisonly aquestion
of whether this use is economically and technicaly
appropriate.

Second, a gap appears in the spin-wave spectrum
due to variable memory (it disappears for constant
memory). The spin-wave spectrum in a magnetic sys-
tem is more complex and can vary in time in certain
cases. Thelatter property is caused by the fact that vari-
able-memory systems are open and therefore always
lose (or acquire) energy on dissipation processes.
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Photonic crystal (PC) light guidesrepresent area 2D
periodic set of close-packed hollow glass fibers; i.e.,
they actually have a 2D photonic-crystal structure.
They exhibit a number of remarkable properties, such
as the presence of photonic gaps, which are character-
istic only for periodic structures, and the possibility of
both redlizinge the single-mode regime and forming
dispersion in a wide spectral range. These fibers are
exceptionally efficient for solution of actual problems
of nonlinear optics, physics of photonic crystals, quan-
tum electrodynamics, and many other problems. The
field of their use is continuously being extended. The
fabrication technology, properties, and application
prospects of PC fiberswearereviewedindetail in[1, 2].

Available methods of numerically solving the prob-
lem of eigenfunctions and eigenvalues for light guides
with an intricate section shape such asholelight guides
was briefly reviewed in [2], where PC fibers were
treated as a particular case of hole light guides, for
which the periodic-structure requirement is optional.
These methods applied to PC fibers either provide only
a genera representation about their properties, as the
approximate method of replacing theindex of refraction
of ahole shell by an effective index of refraction [3], or
requires significant computational resources, as in the
case of numerical integration of the Maxwell equations
by the finite-difference technique, because these meth-
ods ignore the features of the PC-fiber mode structure.

In this study, we describe arigorous method of solv-
ing the problem of natural waves in a general-type PC
fiber with the inclusion of the feature of its mode struc-
ture. For all guided modes of this fiber, exact expres-
sionsfor the field components, aswell asthe dispersion
relations, which are simple compared to the genera
case of a fiber with an intricate section [4], and the
equations for critical wavelengths are obtained. The
dispersion relations and the equations for critical wave-
lengths are represented as the equality to zero for a
determinant, whose order is minimal and depends only
on the mode structure of the PC fiber under consider-
ation for a given accuracy.

Moscow State Academy of Instrumentation Engineering
and Informatics, ul. Stromynka 20,
Moscow, 107846 Russia

As a generalized PC-fiber model, we consider an
infinite, transversely periodic, dielectric structure that
is homogeneous along a certain z axis and includes a
core and an infinitely thick shell (r = a) with a constant
permittivity €5, < maxe(r, ¢). Without loss of general-
ity, the core permittivity €(r, ¢), aswell as€!(r, ¢), in
the cylindrical coordinate system r, ¢, z can be repre-
sented in the form

er, ) = Z £l (r)cos(nNd),

O<r<a, i=0,=1.

Here, N O {1, 2, ...} is the parameter specifying the
structure periodicity, a is the core radius, and

. 52"
e(r) = - Is'(r, $)cos(nN¢)dd,
0
n=01.., i=0=1

(3(x#0) = 0, 5(0) = 1)

are generaly the piecewise continuous functions,
which can be represented as [5]

. © _ k
&0 = Y endr g
k=0
r_,<r<r, |1 =12,..,L,
after determining the discontinuity pointsry, r,, ...,
r._,.Here €t =0,k=0,1,...n=1,2,...;i =0, +1;
r,=0,r,=a

The dependence of the electric field E = (E,, Ey, E)
and magneticfield H = (H,, H,, H,) for the guided mode
in the fiber under consideration on timet and longitudi-
nal coordinate zis specified in the form exp[j(wt — 32)]
(it will be omitted below), where w and 3 are the circu-
lar frequency and the longitudinal-propagation con-
stant for the mode. In this case, from the Maxwell equa-
tions for a nonmagnetic dielectric medium, we obtain

1028-3358/03/4808-0414%$24.00 © 2003 MAIK “Nauka/ Interperiodica’
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the following set of first-order partial differential equa-
tions:

oh®

ra—-A(q))hl“ a =01,
where

0

e = 0 jJEoE, J_D iH,

kot JiH, DkOrH¢

o 1)1—aE'.c‘(r,¢)DZ“‘1 0 y-erd) B
ag=d Ty T 00 ye T gD

0 2.2 1-a_a 1-a 0 [

O kry Te(r,9) (-1) 3¢ O

= kEo , ko= w. /€00, € and Y, are the permittivity and
permeability of free space, respectively.
By using the substitution

' 9) = (D' S SIbu@hi®. o =01,

o

m=-M
nd{0,13, vO{01,..,N-1,
M = 50 i.f 2v = O,N
[P, if 2v#0, N,
where
0 s 0
) DsmBanaED 0 0
Sn(¢) = O O,
0 0
[l
0

sin[md) +(a -1)2}5

which corresponding to even modes HE,,, and .EH,,
for u = 0 and to odd modes HE,,, and ,EH,,,, forp =1
with the azimuth subscript m= |KN + v|, k=0, %1, ...,
this set of equations can be transformed into the infinite
set of first-order ordinary differential equations

o [ml =1+ &(/m —m)
dhy(r) _1 . 1
r 5 = §|: Z Am—smi, i{(Nhm_sm;(r)

i=0

415
+ ZAm+f}(m)J J(r)hm+8(m)](r)
—(—1)‘”“(1—6(m+ M))I
X Z A%w(-m)j, i(n) hir_nu—s(—m)j(r)i|1

j={m+3(m +m)

a=0,1 m-= (il)(1—5(M))(0,l,...),

where
[l l
OlmN + Ve ) ol (D) g B0
A% (r) = E o1 Y Oy 22D DE’
D 1-0,,2.2 2 D
09" Kr’edr)  ImN+v|§n) O
O O
=090 sm =2 (800 = ).

00-10 Im

We represent the continuous solution to of the last
set of equations, which decreases faster than r—! for
r — oo, in theform

S(I —1)[mN +v| +k

1 o o
CCRDID WL =t ,

i=0 n=-M

U
4
20
0
U
4
0

SOOF\mN +v\(r)

o
|

0
t
D; I’LSI’<00,
0
0

a=01 m=(x1)"""(0,1,..),

where aj = by =0,if v=0,

o = d(m— n)D(l 3(Im +v+|1—a—il))y™ (e’ D

hmnO -
D
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Z[(lmN"'Vl +k)AmOk ]hlmnja I'l""b‘mOO'A‘rl’n 00(kl j ﬁ]lnl]]
ail — [=0 =12
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ull _ a,i,l-1 _
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Here, K, (X) isthe modified Bessel function of thesec-  where
ond kind and the constants a},, by, i = 0, 1; n = P=("Pm, Q=(Qm
(D', 1, ...) are the nontrivial solution of the _ 1-5(M)
homogeneous linear set of equations (m,n) = (£1) 0.1,..),
1 ] 0 _— 1 i DhOOL hOlLE
TRatt — ! ! — mnk: Mmnk
z Z zanhmnk mehma Qmn = O ol g O In +v#0,
i=0n=-Mk=0 = kZODhmnk hmnk
a=01 m=(x1)""™(0,1,..),
o O o1-p0
where - ZD.h.m.O.k ..... 0 v=o0
mo AR '
|:| i D ODhmOk
hi = E (-1) E
|:|£é|.)O—IyI|mN +V|u_2D Pmn = 6(m_n)
O 2.4
L. 0O 0 0 < E —€0oFmn+y(y) 0 yImN+vfu ? 1%
h, ™ =0 , 0, i=01. - '
i DS y F\mN+v\(rL)D D—EoolmN'l'Vle 1 yF\mN+v\(rL) OD
Equating the determinant of this set of equations to Im +v#0,
zero, after simple transformations, we obtain the equa-
tion with respect to an unknown phase constant v: Pon = &(N)(—HegFo(ry), 1 -4, (L—W)YyFo(ry), 1),
det(PQ) = 0O, v =0,
DOKLADY PHYSICS Vol. 48 No.8 2003
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po{o 13, vo{o1 .., N=-1,

which is the dispersion relation for either even modes
HE,, and EH,,, for p = 0 or odd modes HE,,, and
oEHm for p = 1 with the azimuth subscript m= |kN + v,
k=0, =1, ....

In the limiting case of y — , /g4, We obtain the

equation for the unknown wavelength A = i—n ;
0

det[RQ(Y = /ex)] = O,
where

R = (R,,), mn=(x1)""*"(0,1,...),
O O
0 Jeo 0100
_ 0 O
Rmn - 6(m_n)g 4T[2€00ri 10 151
OA*(JmN +v| - 1) 0

ImN+v|#0,1,

O O

Ron = ES(m—n)D1 00 OD, ImN+v| = 1,

goo1o00
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ROn = 5(”)(Uv 01 1—l1, O)! Vv = 0!

po{o 13, vOo{o1,..,N=-1},

which is the equation for the critical wavelengths for
either even modes HE,,, and .EH,,, for p = 0 and odd
modes ,HE,,, and ,EH,,, for p = 1 with the azimuth sub-
scriptm= [kN+v|, k=0, £1, ....

The order of the determinants on the left-hand side
of the resulting equations is actually equal to twice the
number of termsin the Fourier expansion for the mode-
field components. It is evident that the number of these
terms is minima for the given accuracy due to the
inclusion of the feature of the mode structure of the PC
fiber under consideration.
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After first investigations [1], a kinetic model of ion-
izing monatomic gases in shock waves has been devel -
oped [2]. However, this model only partially describes
the actual process of ionization relaxation: certain
experimental results, e.g., [3-6], are not explained in
this model. Tumakaev [3] revealed an energy imbal-
ance for electrons in monatomic gases (mercury
vapors, argon): energy spent on the ionization and radi-
ative lossesin the greater part of the relaxation zone are
not compensated by the heating of electrons dueto Cou-
lomb (electron—ion) collisions. Schneider and Park [4]
showed that variation in electron temperature behind
the shock front at the initial stage of an avalanche is
undetermined. Under the same initial conditions in
argon, this temperature was both considerably below
atomic temperature and close to atomic temperature,
which contradicts the energy balance equation for elec-
trons. Moreover, the activation energy determined
using the known temperature dependence of the rate of
avalancheionization was almost one-tenth the expected
value. The electron temperature determined in [5] by
using this temperature dependence for electrons in the
relaxation zone coincides with the atomic temperature
immediately behind the shock front even in the ava
lanche region. At the same time, according to the energy
balance equation for electrons, this parameter must
decrease due to increasing energy losses of electrons
inglastically colliding with atoms. Mclintyre et al. [6]
revealed anomalies in the distribution of excited states
of neon and argon atoms behind the shock front.

These facts enable oneto assume (asin [3]) the pos-
sibility of the existence of additional (compared to the
commonly accepted model) channels of energy
exchange between particles in the relaxation zone. The
structure of a shock wave was calculated with allow-
ance for additional kinetic mechanisms (involving
metastable particles, molecular ions, and radiative pro-
cesses), because the conditions of irregular variation in

Ingtitute of Theoretical and Applied Mechanics,
Sberian Division, Russian Academy of Sciences,
ul. Institutskaya 4/1, Novosibirsk, 630090 Russia
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the flow parameters behind ionizing shock waves in
monatomic (and even molecular) gases were observed
in certain ranges [7, 8]. These calculations and the
approaches used in them werereviewed in [9, 10]. Con-
clusive experimental evidence of the determining role
of these processes has not been obtained. For this rea-
son, other mechanisms of the formation of unstable
flow regimes were aso proposed (see, e.g., [9-11]).
In this case, the general analysis [9] of the flow struc-
ture behind the shock front, aswell asthe detailed anal -
ysis[11] of theionization relaxation zone based on the
traditional model, is used. The role of radiation was
analyzed in [10]. We emphasize that, athough the
available hypotheses are considerably different, some
authors consider that instability is fundamentally asso-
ciated with the presence of the nonequilibrium (relax-
ation) zone behind the shock front (see, e.g., [9, 11]).
Therefore, in spite of numerous available results, inves-
tigation of the flow structure and the physics of pro-
cesses inionizing shock wavesis of current interest.

In this work, we analyze the flow structure for a
monatomic gas (argon) behind the front of ionizing
shock waves for Mach numbers 10.5-12.5, which cor-
respond to stable flow regimes. Irregular variation in
detected signals (interference and plasma glow) was
observed for M < 10.5-10.7. For an initial argon pres-
sure of 400 and 666.5 Pa (3 and 5 Torr), the equilibrium
parameters of the plasma varied in the following
ranges. electron density N, = (1-3) x 10'° cm3, ioniza-
tion degree a = (1-5) x 1072, and temperature T =
0.9-1.2 eV.

In contrast to the frequently applied approach based
on comparison between measurements and cal cul ations
of the electron density profiles and length (duration) of
the relaxation zone, the method [12] that we used is
based on comparison between measured and cal culated
distributions of the rate of avalanche ionization (source
of electrons S, in terms and notation proposed in [2])
behind the shock front. The only ionization mechanism
(electron—atom collisions) dominates in the avalanche
region. Therefore, justified analysis of mechanisms of
energy exchange between particlesis possible, because
the rate of avalanche ionization is determined by the
rate of energy exchange between electrons and heavy

1028-3358/03/4808-0418%24.00 © 2003 MAIK “Nauka/Interperiodica’
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particles according to the energy balance equation [1, 2].
Thus, the novelty of the method is in the possibility
of experimentally testing the adequacy of the model
used for the kinetics of electron heating and the actual
process.

M easurements of theionization rate behind the front
are used as a method of investigation in, e.g., [4] only
when analyzing the initial stage of the relaxation zone,
where initial ionization depends on severa factors
(impurities, radiation, atom—atom collisions) and only
slightly affects the gasdynamic parameters of the flow.
In[12], it was shown that the application of conserva-
tion laws and the measured time dependence of the
electron density N¢(t) makesit possibleto determinethe
distributions of gasdynamic parameters and the rate of
avalanche ionization behind the front in the approxima-
tion of a one-dimensional or quasi-one-dimensional
(with allowance for the boundary layer) flow. For the
guasi-one-dimensional case, S, is related to the rate

e

dt

of variation in the electron density as

20 E,

0
0

® 1] DUDZEI%

5KT, + 2K T:M L ~40m

u dN,
X —
u, dt

Se=

I:H:IIEI:JD

-
or

_ udN,
S = Ksu1 dt -,

where E; isthe atom ionization energy, kisBoltzmann's
constant, uisthe flow vel ocity with respect to the shock
front moving with thevelocity u,, and T, isthe gastem-

perature before the front. The second term S§ repre-
sents the geometry of the shock-tube channel and
boundary-layer character and is less than 10% of the
first term under the experimental conditions. The factor
Ksvaried intherange 0.8-1.0 because a < 1. Thedom-
inant effect of the boundary layer isin adecreasein the

relative velocity uﬂ (to 30% compared to the one-
1

dimensional solution) and in the corresponding
decreasein S..

The application of IR interferometry with a wave-
length of 10.6 um [13] and a sensitivity of 2.8 x
10'* cm~3 (one tenth of the interference band) enabled
us to measure the electron density distribution behind
the shock front with a high accuracy. Figure 1 shows
typical measured distributions N(t) (t is the time from
the passage of the shock front), which were used to
determine the experimental ionization rates. Asis seen
in Fig. 1, the measured rates S, of argon ionization
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Fig. 1. (a) Electron density measured for M = (closed
squares) 11.94 and (open squares) 12.47 and (b) ionization
rate distribution that is measured for M = (closed squares)
11.94 and (open squares) 12.47 and is calculated for M =
(closed circles) 11.94 and (open circles) 12.47 in the ava-
lanche region behind the shock front in argon for an initial
pressure of 3 Torr.

exceed the calculated results Sﬁa' by afactor of 2-3 at
the maximum.

Calculations were based on the known relation [2]
S = BTINNa—al(ToN;
or
N2
S = BTINGN,| 1-K(TD)|,
where B(Ty), a*(T,), and K(T,) are the ionization rate,

recombination rate, and ionization-equilibrium con-
stant, respectively. In the instantaneous-ionization
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Fig. 2. Experimental results in argon vs. the Mach number
when pressure before the shock front isequal to (1, 2) 3 and

(3) 5 Torr and the impurity level is equal to (1, 3) 10 and
(2 1075,

approximation (single-level model of the atom), we
have

A 32 A
B(TY = Cfp+ FHTe e
where AE is the difference between the ionization
energy and the energy of the first excited atomic level
and C, isthe constant determining the cross section for
atom excitation by an electron impact. According
to[1, 8], the values C, = (4.7-7.0) x 10°'® cm?/eV are
used. Calculation of B(T,) with allowancefor multilevel
atomic structure in the modified diffusion approxima-

FOMIN et al.

tion [2] indicatesthat the effective valueisequal to C, =

9 x 10~'8 cm?/eV in the parameter range under consid-
eration. Temperature T, is calculated by using a proce-
dure developed in [12, 15] from the equation of local
energy balance for electrons [2]:

1.5KT, S = Qg — Qi
or

2

N
LT BTINN, 1~ 17K | = Qu-Qun

wherethe parameters3(T,), Qg (rate of electron heating
under éastic collisions), and Q,, (rate of energy loss
under inelastic collisions) are known functions of elec-
tron temperature and parameters of the plasma state.
For conditions under consideration (a << 1), the effect
of the energies of radiation and excited states is disre-
garded, because their contributions to the total energy
balance are relatively small.

Figure 2a shows the ratio S= % of the measured
and calculated rates of avalanche ionization for argon
near the S, maximum as afunction of the Mach number
of the shock wave for variousinitial conditions such as
gas pressure and gas purity. For most experiments, S>
1; i.e., the maximum measured rates of avalanche ion-
ization exceed the cal cul ated rates. It was found that the
electron temperature is equal to and higher than the
atomic temperature for S= 1.8-2 and higher Svalues,
respectively. However, these states, as well as states
with S=1, arerarely observed.

Since the result is novel, additional analysis of data
was carried out to determine Svalues more precisely by

increasing the accuracy of the calculation of Sﬁa‘ . This

accuracy isprimarily determined by the accuracy of the
calculation of the integral temperature parameter [12]
from the energy conservation law by using measured
velocity (or Mach number M with a relative error of
about 0.8%). The parameter S can be calculated more
accurately due to measurements of the electron density
distribution both in the relaxation zone and in the equi-
librium state (with an accuracy of 3%). This parameter
is the most sensitive indicator of the equilibrium state
of the ionized gas behind the shock front, because it
depends most strongly on temperature (according to the
Saha eguation) and correspondingly on the Mach num-
ber of the shock wave. Figure 2b shows the measured-
to-calculated ratio of the electron density N as a func-
tion of the Mach number for various experimental con-
ditions. Aswas shown in [13], N=1 0 (d < 1) for
most experiments; i.e., measured and calculated elec-
tron density coincide with each other in the equilibrium
state. Assuming that the spread & in experimental data
is primarily attributed to the error in measurements of
the Mach number, its new value in correction is chosen
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from the condition that 6 =0, i.e., that the measured and
calculated electron densities are equal to each other.
The refined M values (except two of them) agree with
the measured values within the indicated error (0.8%)
of the velocity measurement. Figure 2c shows the
results of such a correction of data. Virtually the same
effect is observed: the desired parameter varies within
the range S= 1-2.3 and often exceeds unity. Since the
range of M variation is narrow and the number of
experiments is small, the dependence of Son the Mach
number (and other parameters) is not definitely deter-
mined. We emphasi ze that the results are analyzed with
the maximum constant C,= 9 x 10-'8 cm?/eV, which is
larger than the values used in other similar investiga:
tions by a factor of 1.3-1.5. The use of its commonly
accepted values leads to a more pronounced effect
(increase in Shy an additional factor of 1.5-2).

Thus, complex analysis of data (including measure-
ments of the el ectron density intheionization equilibrium
region) corroborates the preliminary conclusion [12] that
the rate of avalanche ionization of argon (and krypton)
exceedsthat calculated in thetraditional model. Thebasic
result obtained for the first timeisthat the relative excess
intherate in this case is not fixed and variesin the range
S=1-3. Various phases of the dynamic structure of ion-
ization relaxation are possibly detected in experiments;
i.e., indications of the oscillation devel opment of this pro-
cess are manifested even in the stable flow regime. This
conclusion is indirectly corroborated in [14], where the
auto-oscillating variation in plasma radiation behind the
front and the length of the relaxation zone were studied
for devel oped instability of shock waves.

It is difficult to observe the revealed effect by the
frequently used method of comparing measurements
and calculations of the variation in the electron density
behind the shock front, because onetriesto fit (by vary-
ing kinetic parameters) an integral parameter, the
length of the relaxation zone, which depends strongly
on processes proceeding at the initial stage. Indeed,
similar analysis of the data of previous experiments [5,
8] showed that they also exhibit ahigh rate of avalanche
ionization of argon with S= 1.8 (M = 11.5) for data
from[5] and S=2.9,3.5,and 1 (M =16.5, 16.2, and 13)
for datafrom [8].

In [15], we attempted to attribute the observed high
rate of avalancheionization to the existence of an addi-
tional channel of energy exchange between particles
dueto the associativeionization of excited atomsin col-
lisionswith unexcited particles. The general form of the
energy balance equation for electrons was found with
allowance for the multilevel structure of the atomic
energy terms. In this equation, additional energy fluxes
due to associative ionization (and the inverse process)
of excited levels are taken into account in addition to
the energy fluxes in electron-atom collisions. The
structure of the equation shows that energy fluxes of
electrons can in principle be redistributed when elec-
tronstransit from bound states to continuum. Estimates
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made in [15] for the flow region, whereionization dom-
inates (until the S, maximum), indicate that the energy
expenses of electrons decrease and are primarily attrib-
uted to thetransition to thefirst excited level. Moreover,
the energy fluxes in transitions between excited states
and to continuum (the latter and former are of the same
order) are ensured by avalanche ionization of excited
atoms. As a result, the electron temperature increases
(by no more than 10% under the experimental condi-
tions), which noticeably increases the rate of avalanche
ionization due to its strong temperature dependence.
The causes of the variationin therate of the process must
be determined by further analysis of the connection
between mechanisms of ionization and energy exchange
between particlesin therefined model (equations) of ion-
ization relaxation kinetics behind the shock front.
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1. The engineering of selective reflecting setups
with a high reflectance or separation of narrow-band
radiation from wide-band radiation is alwaysaproblem
of current interest for both electromagnetic and acous-
tic waves. Various spectral -sel ection methods based on
interference and diffraction of waves[1, 2] and on para-
metric interaction of waves in media with parameters
periodically varying in space[3-6] are extensively used
in practice. The creation of high-contrast optica and
acoustic filters, where asigna beyond the transmission
band is suppressed by 6-8 orders of magnitude and,
what isparticularly important, side (parasitic) transmis-
sion windows are absent, is a rather difficult problem,
which is not necessarily solvablein practice. This prob-
lem is particularly pressing in Raman spectroscopy,
when intense laser radiation must be suppressed to
measure rather weak Raman scattering, which is
weaker than the exciting laser radiation by 7-10 orders
of magnitude and is spaced from the laser-radiation line
by only 50-100 cm™ for certain substances (the so-
called notch-filter problem).

Contrary to most approachesto this problem, which
are based on the diffraction of waves by the periodic
structure of varying medium properties, we will con-
sider the diffraction of waves by an apodized periodic
structure, where variation in the medium properties
depends exponentially on coordinates. The propagation
and diffraction of waves by unapodized periodic struc-
tures were analyzed in detail for acoustic wavesin [7],
for light wavesin [8, 9], where various types of optical
filters on this basis were considered, and for X-raysin
[10]. Extensively used in acoustoelectronic devices
based on surface acoustic waves [11], various spatial-
apodization methods [12] enabled one, in particular, to
design electromagnetic-radiation filters with idead
selective properties (see, e.g., [12, Ch. 3]).

* |nstitute of Radio Engineering and Electronics,
Russian Academy of Sciences,
ul. Mokhovaya 18, Moscow, 103907 Russia
** Sientific and Technological Centre
of Unique Instrumentation, Russian Academy of Sciences,
ul. Butlerova 15, Moscow, 117342 Russia

Contrary to[13, 14], where spatially periodic media
with sharp boundaries were considered and the prob-
lem of the propagation of waves in such media was
solved by matching solutions for various homogeneous
layers(i.e., by using boundary conditions), wewill con-
sider a medium with smoothly varying parameters,
which vary negligibly at wavelength distances. We
emphasize that the concepts and approaches considered
below are applicable to both acoustic and el ectromag-
netic waves.

2. We consider the problem of the collinear diffrac-
tion of awave by an apodized spatialy periodic struc-
ture of variation in the permittivity of a medium. For
simplicity, we analyze the electrodynamic problem of
the propagation of a plane electromagnetic wave in an
isotropic medium, whose permittivity varies as

g(x) = g,+ae cos(gx), (1)

where g, is unperturbed permittivity, o isthe amplitude
of variation in permittivity, y' is the characteristic spa-
tial scale of thisvariation, and g isthe “wave vector” of

the spatial structure and satisfies the condition ‘Y <1.

q

Substituting permittivity (1) into the Maxwell equa-

tions, we arrive at the following set of equationsfor two
interacting electromagnetic waves:

1

o t—ikyx

E.(x,t) = 2E1e +c.c.,
1 f,t +ik,x
E_(xt) = éEze +c.c.,
propagating in opposite directions:
dEl — (iAk—y)x
i ire E,, o
dE . (ink—
5o = —re e,
ka . .
Here, ' = —, Ak = k; + k, — q is the wave detuning,
€

which isequal to Ak = 2k — g, because w, = w, and k, =

1028-3358/03/4808-0422%$24.00 © 2003 MAIK “Nauka/Interperiodica’



ON THE DIFFRACTION OF WAVES BY AN APODIZED PERIODIC STRUCTURE

k, = k. The set of Egs. (2) was derived using the condi-
tions

d El, 2
dx

ved .

These are ordinary requirements of dow variation in
wave amplitudes near the synchronism conditions,
which are usually used when deriving the set of Egs. (2)
from the Maxwell equations. The only difference of the
set of Egs. (2) from the sets of equations for nonlinear
or parametric interacting waves is the presence of the
exponential factor e¥* describing the “apodization” of
the periodic structure. The condition

SHES-ED =0 )

meaning the conservation of thetotal flux of wave ener-
giesat every point x followsfrom the set of Egs. (2). We
emphasize that relation (3), in contrast to asimilar rela-
tion for a spatialy periodic medium without apodiza-
tion, i.e,, for y=0, follows from Egs. (2) also for y # 0.

Near the Bragg conditions, i.e., for Ak = 0, two
waves, rather than one wave, propagate with dlightly
different velocities in each direction in a homogeneous
periodic medium. It is easy to show that the wavenum-
ber k and frequency w of these waves are related as

- a _ an
ki, = w5 lli%—w@%likd].

We note that the relation between w and k for
k, <k<k,

iscomplex. Therefore, waves propagating in this direc-
tion are attenuated and a so-called gap in eigenvalues w
arises. This attenuation value and width of the gap
depend strongly on the amplitude of variation in the
medium properties. Since we consider variationsin the

423

100

Fig. 1. General form of the function R(Ak, y) for y< 0.

medium properties such that |ae Y| < g, the above
effects will be disregarded.

From Egs. (2), we derive the equation for one of the
waves, for example, for the reflected wave E,:

2
dE .
d__EZZ+ (ibk+y) 57 -T"e™"E, = 0. @)

The boundary conditions for the reflected wave obvi-

ously have the form

dE,
X

E,(L) = 0, = —il'E(0),

x=0

&)

where L is the length of interaction between waves or
the characteristic scale of the periodic structure.

To solve Eq. (4), it is necessary to change the vari-
ableasu = e Inthiscase, the solution of Eqg. (4) with
boundary conditions (5) is obtained in the general form

| d:e_y)ch Ij:e_VI'D_| d:e_yu:“ d:e_yﬂ
) _Z_A_kljl 01,4k O] _}_A_kljl Ol AkD{ H
EZ(X):iElre—(yHAk)x 2y 2y 2y 2y (6)
Iy Aklj;l]ll Akd:e_yLD—l 1 Akd;e_VLDI 1 Ak[[D
E_TD\/D 5*7'3/ O _5_7[{/ 0 _§+7D‘/D

where |,,(X) is the modified Bessel function.

Solution (6) describes the amplitude of the dif-
fracted wave propagating towards the incident wave.
This expression enables one to determine the intensity
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of the reflected wave at the point x = 0 and then to cal-
culate reflectance R(Ak) =

_EZ(O)‘Z for the apodized
E,(0)

periodic structure:
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4 aj® ‘Vﬂll AkBl
R(Ak,y) =

—vLD
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T, Akg e

-1 1 _Ak
[V (N

|; Akﬂlmll AkD/

The intensity of the transmitted wave is obviously
determined by the quantity

T(Ak,y) = 1-R(Ak,y), ®)

which is the ratio of the intensity of the transmitted
wave at the point x = L to the intensity of the incident
wave at the point x = 0. Expression (8) determines the
efficiency of the suppression of radiation at the exit

R,-o(bK) =

llAkD/ e’dl i AKD/D ‘

from the apodized periodic structure and isadirect con-
sequence of condition (3).

It is very difficult to determine the asymptotic
behavior of solution (6) for y — 0, because initial
equation (4) is solved by changing the variable x to u,
which is meaningless for y — 0. Fortunately, Eq. (4)
is easily solved for y = 0. According to this solution,
reflectance has the form

sinh(LT J/1—£2) § ©

where & = S_#

tance for the sinusoidal periodic structure without
apodization.

Formula (9) gives the wave transmit-

3. Thus, we obtain exact sol utions of the problem of
the diffraction of incident radiation by a periodic struc-
ture with exponential apodization. These solutions
make it possible to determine the refl ectance and trans-
mittance of the wave by such astructure. We emphasize
that the reflectance R(AK) and transmittance T(Ak) of
the apodized structure under consideration are indepen-
dent of the sign of y and have the necessary symmetry;

R(AK)

[—1.0-

0.8

|/ o

04r

L y=0

- -1
| _y=0.1cm

02r

-1 Nk, cm~! 1 2 3

-3 -2

Fig. 2. Reflectance R(AK) of the apodized periodic medium
vs. the wave detuning Ak as calculated by Egs. (7) and (8)
for interaction length L = 15 cm%, coupling constant I” =
0.1cm, and y values indicated in the figure. The plot for
the transmittance T(AK) = 1 — R(AK) of this structure is
obvious.

iA/l—Ezcosh(LI'A/l—Ez)—Esinh(LI'A/l—Ez)‘ ’

i.e., they arethe same for wavesincident on this period-
ically apodized structure both from the left and from the
right. Indeed, expression (7) is invariant under the for-
mal replacement

y - -y, - re™ (10)

where the latter condition arises due to the necessity of
satisfying boundary conditions (5).

Further analysis can be only numerical. To thisend,
we plot function R(AK, y) (7) (see Fig. 1). Asis seen,
apodization strongly changes the character of the
reflection and transmission of the wave by such struc-
ture. Figure 2 showstwo linesfor different y valuesand
demonstrates that apodization strongly reduces the
amplitude of side maxima.

To use periodic structures as cutoff filtersin Raman
spectroscopy, it isvery important to estimate the possi-
ble degree of the suppression of radiation. Figure 3
shows reflectance R(Ak, —3 cm™) asafunction of detun-
ing Ak near the maximum at the point Ak = 0. In particu-
lar, R(O, =3 cm™®) = 0.9999880813 and R(5 cm?,
-3 cm™) = 0.9999702333. Therefore, suppression can
easily achieve 10-° and can be considerably stronger for
larger interaction scales L.

For the practical quality of a cutoff filter, the light-
energy fraction that infiltrates through all side maxima
and leads to the parasitic exposure of a photoreceiver is
very important. This energy obviously depends on the
spectrum of incident radiation. We estimate this energy
for apodized and unapodized periodic structures and
for uniform-spectrum incident radiation. For the

DOKLADY PHYSICS Vol. 48
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reflecting fraction of radiation, the problem reduces to
the calculation of the ratio of the integrals

Ak, Ak

Fx R(AK)dAK,

Ak

[ hy-o(akydak

Ak

(11)
where Ak, and Ak, are, respectively, the minimum
and maximum wavenumbers determined by both the
spectral range of radiation and the position of the near-
est maximum to the wavenumber satisfying the syn-
chronism conditions, i.e., k = 2q For simplicity, we

take Ak, = and Ak, = 2F X

of the nearest minimum to the phase-synchronism point
k = 2g. In this case, integrals are calculated nume-
rically and the ratio of the second integral to the first
oneisequal to 1.75 for the periodic-structure parame-
ters shown in Fig. 2.1 This means that the reflected-
energy fraction in all side maxima, or beyond the fun-
damental band, for the apodized periodic structure is
smaller than that for the unapodized structure by afac-
tor of 1.75.

4. Further, we discuss possible applications of such
periodically apodized structures and some concepts of
technology for their manufacture. Amplitude apodiza-
tion was shown to strongly suppress side maximain the
transmission function of the filter and to conserve
strong suppression of the wave-transmission amplitude
near the synchronism conditions. This is physically
attributed to the fact that the amplitude of a wave dif-
fracted by such astructure is determined by anew char-
acteristic scaley! [see Eq. (6)] rather than by the inter-
action length or characteristic size of the system. The
application of these filters to suppression of an intense
laser-radiation line, as well to ensuring the absence of
side maxima, provides the possibility of measuring
rather weak Raman scattering near the intense laser-
radiation line. Therefore, the set of substances that can
be studied by Raman spectroscopy can be considerably
extended. We note that the apodization of a periodic
structure iswidely used in so-called opposing-pin con-
verters for surface acoustic waves [12]. Apodization
provides filters with almost ideal selective properties,
which are extensively used in various fields of science
and engineering.

Such periodically apodized structures can find inter-
esting applications for the radio band, where wave-
lengths are significantly longer than in optics and tech-
nological requirements for the production of such
structures are weaker. In particular, such structures can
provide the production of parabolic mirror antennas for
a certain wavelength range with a very high gain. The
selective properties of these antennas are determined

, which is the position

L All calculations were carried out by using the Mathematica 4.2
software package.
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Ak, cm!
-5 10

Fig. 3. Reflectance R(Ak, —3 cm™Y) vs. the wave detuning Ak
near the maximum at Ak = 0. In particular, R(0, -3 cm‘l) =

0.9999880813 and R(5 cm %, -3 cm™) = 0.9999702333.
Therefore, such structures can have very high reflectance.

= o |:> o
=> A N
—

> >

Fig. 4. Schematic representation of a selective antenna. The
incident radiation passes through the parabolic periodically
apodized structure, which reflects and focuses radiation
near a certain wavelength A;. The remaining radiation
passes further and can be focused by the following para-
bolic structure with a different periodic scale.

not only by sizes of a mirror but also by the period of
the structure. Since, as was shown above, media with
periodically varying properties can provide very high
reflectance in a certain wavelength range, such anten-
nas can apparently be applied in the submillimeter
wavelength range, where it is difficult to find materials
with large reflectance. We note that radiation beyond
this wavelength range, where diffraction is small, is
transmitted unchanged through such an antenna, and
radiation in a different wavelength range can be sepa-
rated form this flux. This antenna is schematically
shownin Fig. 4.

5. In conclusion, we emphasi ze that the amplitude of
variation in optical properties or parameter a in Eq. (1)
can be complex. This means that a periodicaly
apodized structure can be formed dueto variation of the
conductivity of the medium, which opens new possibil-
itiesfor the technology of the production of such struc-
tures. In this case, the above mathematical analysisis
valid with the replacement of a? with |o?| in the result-
ing formulas.
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The goal of thiswork isto determine the asymptotic
behavior of the power spectrum of % noise attributed to
continuous large-scale fluctuations of a measured-
parameter field. Estimates [1, 2] of the effect of fluctu-

ationson the% spectrum in the theory of % processes

testify to the existence of this asymptotic behavior.
However, the asymptotic behavior itself was not stud-
ied in these works, because they were devoted to find-
ing the mathematical form of the physical field that can
turn into a random process with the w™ spectrum in
the course of measurements. As follows from the solu-
tion of an inverse statistical problem[1, 2], the desired
form is specified by atrain of Poisson pulse processes
S(x, t) and R(x, t) substantially depending on the coor-
dinates. The processes are formed by K pulses
as(x — x)o(t —t) and ar(x — x,, t — t;), where g; are the
amplitudes; x, 00 (0, L) and t; 00 (0, T) are, respectively,
the position and time of theith fluctuation; and r(x — x;,
t—t;) isthe solution of the diffusion equationr, = Vr, +
Kr under the initial condition r(x — x,, 0) = S(X — X))
and homogeneous boundary conditions. In this case,
theflux J(x, t) = —KRx(x, t) formed by the contributions
Ji =j(X=X, t—1t) = —Kr(X—X;, t—t;) representsthe mea-
sured field that turns into %
only weighted sums of the random number of singular-
ities (x—x) P or (x —x)® can serve as processes S(x, t)
that have the spectrum F(w) ~ w™ and are consistent

noise. According to [1, 2],

with experiments. Here, B = 3_ a, B O(0, 1), and

2
o 0 (0.5, 1.5). If the basic parameter of the theory is
1/2
i - MK <
smal, i.e, h = [ ) < 1, then the spectrum

F(w) hasthe form
F(w) = 2v T (x—x, t— ), ,

= L Eazﬁkzz DA +0?)  Ow®. (1)

n=1

Here, b, are the Fourier components for the spatial

dependence of thefunctionr(x — x,, t—t,), k, = %1 JAp=

(KO
Kkﬁ,and\): ﬁ

Itisclear that the singular form of the process S(x, t)
1
f
presentedin[1, 2] isamodel assumption. Noiseisactu-
aly formed in the field of continuous fluctuations of a
parameter being measured and is accompanied by these
fluctuations[3]. For thisreason, we generalize the form
of S(x, t) as a sequence of power singularities over a
continuous functional background. As will be shown
below, a nontrivial consequence of such a generaliza-
tion is the appearance of the universal asymptotic

behavior of the model %

independent of the form of pulsesin the process S(x, t)

describing physical sources of = noise in the theory

spectrum. This behavior is

responsible for % noi se.

We now estimate the spectrum F(w) in the general-
ized model with [KO= 1, when the process Sx, t) has
only one singularity (x — x,)~. With a given accuracy &,
the continuous function s(x — X)(X — X)P is approxi-
mated by a polynomial as

M
S(X—X;) = Z Cmi(x_xi)m_B: M = M(g), (2
m=0

1028-3358/03/4808-0427$24.00 © 2003 MAIK “Nauka/ Interperiodica’
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M
bn = Cmibnm’
2,
L (3
— 20 \MBg :
bnm - LI(X XI) Sln(an)dX,
0
M M
Ebﬁlj: Cmm' |:bnmbnm'lzl Cmm' = [Cmi Cm‘iD
mZO mZO (4)

Changing thevariablesin Eqg. (3) asy=k(x—xX), {; =

L0 =0, = M, Y = Yy = m(l - ), and

|

2 .
Ay = W,Weobtaln

bnm = anm[Sin(I)ni I cm(l-IJni) + COS"’I)ni I sm(l-l"ni)] ' (5)

where
t
L) = J' y" P cosydy
0
and
t
lon(t) = J'ym_Bsinydy.
0
: tmP .
We substitute v = a-P). and u = sint or u = cost

into the general formula
m-1
m g — k (k) (m-k-1)
uvdt = (-1)'u™v
J- kZO
+ (—1)mIV u™dt. (6)

Using the identities u® = sinB(gﬂg, uo =

cos E(g + % , and Eq. (6), we abtain

[Psintat = ki(—l)ktk‘ﬁ(l—B);lcos%g+ H

+(=1)"(1 = B)m SulBs X),

BUDARIN

J’t'Bcostdt = —i (—1)ktk“‘(1_g);1sin8<g+%

k=1

+(=1)"(1—B)mCulB, X),
s(B, X) = J'tm_BsinBﬂg+%dt,

CrlB, X) = J’tm‘BcosE'ng+ %dt.

For m=2l, we have s(B, X) = (=1)'4(X) and ¢(B, X) =
“D'lgy®); for m = 21 + 1, we have sy(B, X) =
D) and c(B, X) = (=1)" * Ug(X). As follows
from these formulas and Eg. (5),

bam = (<1) "2 $ (1) UnB) WP costkH
2, iz

+(-1)'v (B)b, for m = 2!,

bnm = (_l)l +nanm Z (_1)kumk(B)qu_BSinB(IZH
k=1

+(-1)'v (B)b,o, for m = 21 +1,

U}
bro = anojy‘ﬁs'n(cb +y)dy,
0
U}
bho = ano jy‘BCOS(tb +y)dy,
0
1- -m
where ()= =332 and Vo(B) = (1 - Bk

For m=2l and m' = 2I', we obtain
Dymbnmd = €40+ €41+ €41 + En2,
where
_ I+
enO - (_1) anmanm'

X 33 D T B ume B O
k=2k=2

DOKLADY PHYSICS Vol.48 No.8 2003
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I+1'+n+1
€1 = (_1) " Aym

xS (=) umdB) v (®) T Pbig]
k=2

l+I'+n+1
nl - ( 1) " Ay

X 5 (1) (B v o B) (" "0
k=2

ez = (1) V(B V i(B) Dyl

The average quantities entering into these formulas

areestimated ase,, —e,,: P* 0= mn)*" %P (k+
K+ 1= 2. D - o - dreisE
D.'Jk_Bblr;oD — ano(m)k+1—2|3p’

where

- — 7)< B n-Bg
P ﬂ(l ¢)" " nPsin[rm( + n)]dZdn.

0<l+n<1

Changing thevariables{ =st,n =s(1 -t),andpu=r +
2 — 3, we reduce the integral P to the form

11

- — o)< BBl _ 1) Py
P_IJ’(l st)” s "(1-t) "sin(mns)dsdt

1

= (1- B)‘lfsl‘ﬁsin(nns)zFl(B —k 1; 2—B; 9)ds
= z(B—k»(l—B>r+1js’”‘ﬁsin<nns>ds

= (2I)‘lZ(B K):(1=PB)%s

P p+1,-immn)] . (7)

Substituting the asymptotic behavior of the hypergeo-
metric function ;F, (4, L + 1, 2) ~ uz 'expzinto Eq. (7),
we obtain

X W4y, 1+ 1, i) —

P O(-1)""'[(rm)(k+1-2B)] 7,

" PbhgI0ane(-1)" " "(k+ 1-2B) ()™,
Similarly, form=2l + 1 and m = 2I' + 1, the quan-
DOKLADY PHYSICS Vol. 48
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tities b, b,are given by the formulas
|:bnmbnm'D = Ono + Onl + 0;11 + 0n21

where

_ I+1'+1
Ono = (_1) AnmAnm
m

> DY P undB) ume(®)
k=1k =1

l+I'+n+1
O = (_l) Am

xS (D" undB) V(B i
k=1

[+I'+n+1
nl - ( l) a-nm'

xS (D) PumB)v o) b
k=1

Oz = (<1)"""V o (B)V (B) Dby 11

The estimates of the average quantities entering into

these expressions have the form Dqu_Bb}]OD =
any(TN)<+ 1= 2PQ, where

0= ﬂ(l—&)k‘B x nPeos[T(Z + n)1dLdn.

0<{+n<1

Changing the variables similarly to the above case
for P, we write out the integral Q in aform similar to

Eq. (7):
Q= 2Z(B K)e(1=PB)rsab™
x[1Fi(H e+ 1, Inn) +F (1 u+1,-imm)]. (8

Therefore, Q ~ (-1)"*!(/2m)2 and W* b, O ~

a%o (_1)n+ l(m)kf 1 72[5.

Form=2land m =2I' + 1, we obtain

(bpmbymld = Wig + Wyg + Wiy + Wy,
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where Womm|m=2i+1m=2r+1
I+ mom
Wno = (-1) " @nm@nm = —zv z' (_1)(k+k')/2Amm'kk'qh- m+m —k—-K),
L (ke kD2 k+k—2p k=1k=1
Z (-1) Ui (B) Unie(B) L1 0 Wi -
k=2k=1 Immim=2l+1,m=2I'+1
m
1 - !
Wy, = (-1) " e - ézl(—l)‘k V2B eSh, m+m + 1K),
m
xS (1) umdB) v (B) "0} Wam|m=21+1,m=2r+1
= 37°(1-B)BrunooSh, m+ i — 2),
Wiy = (1) gy Womn |m=21,m =21 +1
ml' (k-1)12 K=Bpn o m-' '
x z (-1) Unrie(B) v m(B) Q™ bl = Z z (~1)* 2 S, m+m —k—kK),
k=1 k=2k =1
+ "K' Wimm m=2l,m=2I'+
Wz = ()" Vo (B)V,(B) Db Wit amear s
1 ki2 \
Substituting the expressions for [,,b,0 into Qz —1)" BrumioSh, m+ m' + 1K),

Eq. (4), wefind b2 for al 0 < mand m' < M. Substi-

. . . . . Wommi| - o
tuting [b7J into Eq. (1), we arrive at the following esti- omnt| =21+, = 2

m m
mate of the % spectrum F(w) inthepresenceof thecon- = Z Z"(—l)‘“ K2 A e S, m+ m —k—K),

tinuous field of fluctuations:
Wlmm'|m =2l+1,m=2I'

K m

F(w) U4VL = '
“ - - z (_1)(k_l)/2Amm'k0ah’ m+m —k),

M M 2 k=1

_ I+ ‘ m+m-2-2p o 9
8 z z( D Crml ZWJmm' © Wommt|m=21,m = 2041 D Wommi [ m= 2141, m = 20
m=0m =0 j=0
DO(V\/me'lmzzl,m':2I)’
Here,

Bmm'kk‘ = umk(B)um'k'(B)’
Womm‘|m:2|,m':2|' Amm‘kk‘ = Bmm'kk'(k"‘k"" 1_28)_11
mo, e h,q) = lim Sy(h, q),
= 3 D A S, M -k k), S a) = Jim Su(h @
k=2k =2

Suhoa) = 3 L)L+ (hn))] ™

Wlmm'|m: 2l,m=2I'

L The primes and double primes stand for summations
-1 ApmoSth, m+ m' — k), over odd and even indices, respectively.
k=2 1/2
Forh= E%E < 1, the asymptotic estimates of the
Wormmt | m= 21, m = 2r sums for g = —2p and q = O give Sh, —2pB) ~
= 5T°(1=B)BrumcoSh, m-+ 1 —28), Chsndr S < (o <9 and s, 0) ~ 227, respec-
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tively. For other g, Eg. (9) provides the estimate

Sh,q) _
Sh.0) < 1. Indeed, this estimate is valid for g = 1,

because

Sh1) - Sh D) e o InN
sh O)DSu(h O)D N Z(Trn) DW< 1

for N > 1.

For g > 1, the same estimate holds, because
S(h, ) ~ const. For m= m' = 0, we obtain the spectrum

F(w) Oz r B}—— cosec%ramvcé(,g%

(10)
from the model [1, 2] of the field formed by power sin-
gularities. For g = 0, we obtain the new component

3/2
F(oo) O./2vDEE

e an

associated with the generalization of the model [1, 2].

-m-m-2p3

m+1-23’
form=m =0.A similar result can be obtained for the
Fourier basis { coskX)}.

The estimate of spectrum (11) remains valid for
arbitrary homogeneous boundary conditions and for
arbitrary (K[ This estimate is universal due to the fol-

Here, D isthe sum of theterms , except

lowing reasons. Forh<< 1 a.e., forwl< )\11 and | ¢ ~

Bng O

QTD <L il the f
ji originating in small neighborhoods &, = {l ¢, w™}; of
thepoints(x, t,). Asfollowsfrom the analysisof the dif-
fusion equation for small §, [6], the fluxes are indepen-
dent of boundary conditions and of each other. Thefirst
property leads to the insensitivity of the spectrum of
fluxes J(x, t) to the type of boundary conditions. The
second property, along with the condition of indepen-

spectrum is formed by the fluxes

DOKLADY PHYSICS Vol.48 No.8 2003
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dence of the points (x;, t), results in additivity of the

contributions of the fluxes j; to the %

estimate (10) istherefore valid for arbitrary KL

spectrum, and

Thus, based on the mathematical theory of % noise

[1, 2], we show that continuous large-scal e fluctuations

affect the %

ing the universal asymptotic behavior w32 independent
of the form of the fluctuations appears.

It is worth noting that the physical cause of asymp-
totic behavior (11) differs fundamentally from that of
the asymptotic forms ~w2® for a < 1 and ~w™2 for
o > 1, which were considered in [4] and were attributed
to time correlationsin the diffusion flux J(x, t). Asymp-
totic behavior (11) exists in the case under consider-
ation, because the field of the measured-parameter sin-
gularities is modulated by a continuous random back-
ground. Thus, the asymptotic forms found in [4] and
those considered here are due to different and indepen-
dent mechanisms. However, both these mechanismsare
manifested only if the mechanism considered in [4] acts
effectively. Otherwise, spectrum (10) will be observed.
With an increase in the frequency w, asymptotic behav-
ior that approaches zero more slowly must be mani-
fested. Hence, the dependence w2 should be expected
fora =1.

spectrum so that aspectral component hav-
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Pulses radiated by ultrashort-pulse antennas [1, 2]
are significantly distorted compared to an input signal
produced by an ultrashort-pulse generator and applied
to the antennainput. In particular, the radiated signal is
more prolonged. To suppressthisresidual radiation, we
suggested in [3] application of an extracorrective pulse
(corrective action) to the antenna input after the input
pulse. This corrective pulse is calculated so that radia-
tion is completely suppressed to a given time. The sec-
ond problem of the correction of the output signal isthe
best fit of its time diagram to a given shape. This prob-
lem was solved in [4] also by using extra corrective
pulses applied to the antennainput simultaneously with
the input signal of the ultrashort-pulse generator.

We emphasize that only separate pulses were con-
sidered in [3, 4]. At the same time, ultrashort-pulse
antennas operate most frequently in packet mode; i.e.,
they radiate finite sequences of repetitive pulses. In this
case, the problem of correction of signals becomes
much more complicated because of the overlap of dis-
torted repetitive pulses.

When the procedures described in [3, 4] completely
suppresstheresidua radiation following an input pulse
before arrival of the next input pulse, the problem of
correcting a sequence of repetitive pulsesisidentical to
that for asingle pulse. However, it is difficult to ensure
such suppression, becauseit requiresacorrective signa
of a very high power, especially in the case of a short
time interval between pulses.

In this paper, we present methods of determining
limited-power corrective signals for ultrashort-pulse
antennas operating in the packet mode. The methods
solve the first problem of correction of output signals,
namely, the problem of the suppression of residual radi-
ation with allowance for the overlap of repetitive radi-
ated signals.

* Moscow Research Institute of Instrument Engineering,
Kutuzovskii prospect 34, Moscow, 121170 Russia
** Blagonravov | nstitute of Mechanical Engineering,
Russian Academy of Sciences,
ul. Bardina 4, Moscow, 117334 Russia

1. ANALY SIS OF THE TIME PROFILES
OF DISTORTED RADIATED SIGNALS

The dynamic response of an antenna [which repre-
sentstherelation of aninput signal x,(t) produced by an
ultrashort-pulse generator to the corresponding signal
yo(t) radiated by the antenna] is assumed to be
described by a pulse transfer function. For a single
pulse,

t

Yo(t) = Ih(t—T)Xo(T)dT. t0(0; T,],
. (M
Yo(t) = Ih(t—r)xo(r)dr, t>T,,
0

where T, is the duration of the input signal x,(t). For a

sequence of n pulses repeated with the period T, the
radiated signal has the form

|_1(i—1)T+T1 t
Yo(t) = z I h(t — 1) x(T)dt +Ih(t—T)xo(r)dr,
i=1 (i-1T IT
tO(T; IT+T,],
| (i=D)T+T,
Yolt) = Z J’ h(t — 1) %(T)dr, 2)
i=1 (i-1)T

toOdT+T, (I1+21)T],

| =23, ..,n-1,
n (=DT+T,
Yo(t) = z I h(t—=T)x,(t)dt, t0O(NT; o).
i=1 (i-nT

Aswas shown in [5], by introducing new variables
T,=T—(i—DTandinview of the T periodicity of x,(t),

1028-3358/03/4808-0432%$24.00 © 2003 MAIK “Nauka/ Interperiodica’
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expressions (2) can be transformed to the form
Ty t—IT

Yolt) = [G-a(t=Dx(DdT + [ h(t-T-IT)x,(T)dT,
0 0

tOT; IT+T,], A3)
Tl

Yolt) = Igl(t_T)XO(T)dT’ tO0T+Ty, (1+1)T],
0

T

Yol) = [Gult—D)xo(DdT, tO[(N=1)T+Ty, o),

where
-1

9(t-1) = Y h(t—1=iT).

This representation of the time profile of the radi-
ated signal is convenient, because it allows us to esti-
mate the residual radiation intensity for an arbitrary
input signal X(T1).

2. GENERAL CASE OF THE SUPPRESSION
OF RESIDUAL RADIATION

In order to suppress residual radiation described by
expressions (3), a corrective pulse should be applied to
the antenna input for the time interval from the end of
an input pulse to the beginning of the next pulse:

u@®), tOdT+T,; A+D)T).

In this case, the total radiation of the antenna is given
by the expressions

t

y(t) = yO(t)_Ih(t_T)ul(T)dTa ta(Ty T1,

-1 iT
y(®) = yolt) - Z I h(t —T)u;(t)dr,
i=1(i-1)T+T,
tOdT; IT+T,],
-1 iT 4
YO =y~ [ he-vu@a O
I=1(i-1)T+T,

t
- J’ h(t —1)u,(1)dr,
IT+T,
tOT+T,; (1+D)T], | =2,3,...,n
For the most complete suppression of the residual
radiation of a sequence of pulses, the overlap of these
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pulses should be minimized. Hence, it is advisable to
minimizetheresidua radiationintensity at thetimest =
IT,I=1,2, ... just before the beginnings of subsequent
pulses. Asfollows from Egs. (4), the radiation intensity
at thesetimesis

IT

|
yam) =yl =% I h(IT-tu®dt, (5)

i=1(-1)T+T,
where, according to Egs. (3),
Tl

yo(IT) = I9|_1(|T — ) Xp(D)dt.

It should be noted that the radiation intensity y(IT)
g|ven by Egs. (5) depends on the corrective signalsu(t),
i=1,2,...,1, which affect the antennainput after both
the current input pulse X, (), t O (1= DT; (I - DT+ T,]
and all preceding corrective pulses. Therefore, these
corrective pulses cannot be determined separately for
each repetitive pulse (when the residual radiation of the
pulseis not completely suppressed before the arrival of
the next pulse).

In view of this circumstance, the optimization crite-
rion for the corrective action istaken in the form of the
magnitude of the total residual radiation:

= T = 3y
=1 =1

n |
—zz I h(IT —t)u,(t)dt

I=1i=1(- 1)T+Tl

—zmm z

i= l(|

J’ Zh(IT—t)u(t)dt (0)

HT+T, =i

The power of each correctivesignal ui(t),i=1,2, ...,
n is assumed to be limited by the same value

iT
= u’dt < W. (7)
(i-1)T+T,

For functional vy, (6) to be minimal, its second term
must be maximal. It can be written in the form

n iT
=y [ HOuod ®)
I=1i-1)T+T,

where

H() = S h(T-t).
2
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The problem of maximizing functional | (8) under
restrictions (7) reduces to n independent identical
problems:

iT

max|,(u) = J’ H,(t)u;(t)dt,
(i-1)T+T,
L iT ®)
2
ﬁ I udt<W.
(i-1)T+T,

For each of these problems, the Euler—Lagrange equa:
tion has the form

2A, .
—_If_ll_lul"'Hl(t) =O, I = 1,2,...,”,
where A; are the Lagrange multipliers introduced for
restrictions (7) to be met. It follows from Egs. (10) that

T-T
ui(t) = 2\ :

(10)

Hi@®), 1 =122 ..,n

Substituting u;(t) into the corresponding restriction, we
find A; and then the following final expressions for the
corrective actions:

) = L EH 0
tO((i—)T+TyiT),

(1)

where

iT %
IHi| = [ i H?(t)dt} :
(i—

HNT+T,

The corresponding minimum value of residua radia-
tion intensities (6) is given by the expression

Ya = Y %)= [HIAT-TYwW.  (12)
=1 =1

In this case, we assume that the quantity y} given by
Eg. (12) is nonnegative and the partial sums

Ym = z)’o(lT)_ Z”Hi"'\/(T_Tl)W
=1 =1

of the residual radiation intensities are positive. This
assumptionisvalid when the duration T — T, of the cor-
rective signal is sufficiently short.

3. SUPPRESSION OF RESIDUAL RADIATION
BY A PERIODIC CORRECTIVE ACTION

Correctiveactions uf* (t) (11) ensuring the minimum
intensity of residual radiation have different time pro-

BAKHRAKH, IZRAILOVICH

files in time intervals between pulses, which results in
some engineering problems. In order to simplify them,
it may be advisable to use a periodic corrective signal
that hasaperiod T equal to the input-pul se duration and
actsonly inthetimeintervalst O [(I - DT+ T IT], | =
1, 2, ..., n between pulses. In this case, total residual
radiation (6) is also used as the minimized criterion.
Since the corrective action u(t) — T is a periodic func-
tion, residual radiation at thetimest=IT,1=1,2,...,n
is determined by the expressions

T

y(T) = yO(IT)—Jg|_1(IT—t)u(t)dt, 13)

| =1,2,...,n.

According to Egs. (13), total residual radiationy,, (6) is
given by the expression

Yo = zy(lT)
=1

: (14)
= 3 YN~ [ Y o107 -huet.
=1 T,l=1

We assumethat restriction (7) isimposed on the correc-
tive-pulse power at eachtimeinterval [(I - 1)T+ T,; IT],
I=1,2,...,n Sinceuyt) =uy_,(t-T), restriction (7)
reduces to the form
1 T
2
<

T TlJ'u dt<W.

T1

(15)

It is required to find a function u*(t) such that the
functional

| = J’Izlg(lT —t)u(t)dt

isminimal under restriction (15). The Euler—Lagrange
equation for this problem has the form

2)
T-T,

Here, A isthe Lagrange multiplier introduced to satisfy
restriction (15) and

- u+G,t) = 0. (16)

G = ¥ 9T -0,
=1

Asfollows from Eqg. (16),

T-T
u(t) = 5 !

We substitute this expression into inequality (15),

G, (1).
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determine A, and then find

_JOT=TH)W
ult) = WGn(t)s

)
IG| = [ jGﬁ(t)dt}
Ty

According to Egs. (14) and (17), the minimum of the
total residual radiation intensity is given by the expres-
sion

(17)

1
2

(18)

Ya = 3 YD =[G /T -T)W.
=1

If the power
Tl
_ 1,
0

of theinput pulse X,(t) is given, the upper bound of y}
isfound by applying the Cauchy—Schwarz inequality to
the first term of Eq. (18):

Vo = " Gg" NTIWo =[Gl J(T =T)W,
where

T 1

([exe { jeﬁ(t)dt} .
0

4. CONTINUOUS PERIODIC CORRECTIVE
ACTIONS

Corrective actions u; (t) (11) and u*(t) (17) are con-
tinuous functions of timeinside the domain of their def-
inition, i.e,, inthetimeintervalst O ((i — DT+ T,, iT).
They take nonzero values at the boundary points:
uf(iT+ T, #0and uf(( + 1)T) # 0 for function (11)
and u*(T,) # 0 and u*(T) # 0 for periodic function (17).
This feature leads to some difficulties, because actual
corrective signals must take zero values outside these
time intervals. Therefore, the realization of the correc-
tive actions described above requires their step change,
which inevitably causes dynamic distortions. Hence, it
is advisable to define corrective signals such that they
satisfy the boundary conditions u((i — DT + T,) =
u(iT) = 0. To thisend, in addition to the quadratic inte-
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gral restriction corresponding to the limiting power, a
guantity characterizing the derivative u(t) should be
used as a measure of the intensity of the function u(t).
The introduction of the corresponding integral qua-
dratic term in the functional to be optimized isthe most
simpleway to satisfy these boundary conditionsfor u(t)
[6]. In what follows, we consider the case of T-periodic
corrective action.

Since the functional to be minimized is the second
term on the right-hand side of Eq. (14), we introduce
the generalized functional

T

(u, i) = J’[—AGn(t)u+1u2+1au2}dt,

5 5 (19)

T1
where A isthe Lagrange multiplier and a is the weight
factor characterizing therate of change of the corrective

signal u(t). The Euler—Lagrange equation correspond-
ing to functional (19) hasthe form

al—u = AGL(1). (20)

The function u(t) should satisfy the boundary condi-
tions u(T,) = u(T) = 0 and restriction (15). The solution
of Eg. (20) with the condition u(T,) = 0 hasthe form

ut) = %snhv(t—n)um)

1 21)
+ =\, [sinhy(t—-1)G,(T)drT,
y 1Tj y(t—T)Gy(T)

wherey = L and A, = %.

Ja
The quantity u(T) entering into Eq. (21) is found
from the condition u(T) = 0:

.

u(T,) = —[sinhy(T-T,)] ’1)\1}sinhy(T—t)Gn(t)dt.
T, (22)

Substituting u (T,) given by Eqg. (22) into Eq. (21) and

then determining A, from condition (15) (considered as
an equality), we arrive at the final expression

t

utlt) = nE{sinhy(T—Tl)J'sinhy(t—T)Gn(T)dT

Ty

T

—sinhy(t —Tl)Isinhy(T —T)Gn(r)dT},
i
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where
|:|T t
nt= EJUsinhy(T—Tl)sinhy(t—T)Gn(r)dr
1 Tl

1

—J’sinhy(t—T)sinhy(t—r)Gn(T)dr} dt%z,/(T—Tl)
T, u
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The properties of staticaly definable relationships
in ideal-plasticity theory [1-5] are discussed.

1. We consider the dissipative function
D =¢&d;,+eb,+¢€,05
+28,,0,+ 28,05 + 2¢,,05,
where ¢; = ¢;(n;, Ny, Ny).
Let us assume that

(1.1

ni+n§+n§ =1 (1.2)
We consider the functional
J =0;;-D-v(e+g +¢,)
+p(ng+nz+n3-1), (1.3)
wherev and | are the Lagrange multipliers.

The extremum conditions for functional (1.3) have
the form

3 _ . ) _
%, 0, o~ 0. (1.4)

From extremum conditions (1.4) for functional (1.3)
with dissipative function (1.1), it follows that

Oy = V+1(Ng, N N3), Ty = du(Ny, Ny, N),

Oy = V+05(Ny, Ny, N3), Ty, = Gs(Ny, N, Ng), (1.5)
0, = V+03(Ny, Ny N3), Ty, = PNy, Nz, Ny),
1
v = 0—§(¢1+¢2+¢3), (1.6)
0¢,  _0¢, 005
Sxanl * eyan1 ¥ z':Zc')nl
0¢, 0¢s 0¢s _
+ 2*“:xyanl + 2“‘:yzanl + ngzanl = 2uny,
Chuvash Sate University,

Moskovskii pr. 15, Cheboksary, 428015 Russia

%, 0,

*on, Yon,

99, 995
Y3, + 2£yZan2 +2¢

09, 09,

8Xan3 " Eyan3
904, e 905, 5. 996
¥on, 20N, *0ng

Associated flow rule (1.7) should be complemented
by the incompressibility condition

093
zon,
006
*0n,

095

+g,—
zon,

€

+2¢ = 2un,, 1.7)

+2¢ +2¢ +2¢ = 2un;.

exte,te, =0 (1.8)

The equilibrium equations
do, 01, 0Ty,
— Dy e

ox o0y 0z

dt,, 00, O0T1,,
+ Y+
ox o0y 0z

Jt,, Odt,, 0d0,
+ —

vz 27z -
ox dy 0z
along with relationships (1.2), (1.5), and (1.6), deter-
mine the statically definable set of equations in ideal-
plasticity theory.
In the general case of static definability (1.5), there
are six independent functions ¢; .

We consider the case where relationships (1.5) can
be represented in the form

:0’

=0, 1.9)

01 = Ni, 04 = NiNy,
b, = N3, 05 = N,N,, (1.10)
b3 = N5, ds = N;N,.

Relations (1.10) can be written in the form

Ny = Jo., N, = /b, Ng=.05 (11D

by = JO1bs b5 = Jbobs, bs = JOi05. (1.12)

1028-3358/03/4808-0437$24.00 © 2003 MAIK “Nauka/ Interperiodica’
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According to Egs. (1.12) under assumptions (1.10),
only three of the six ¢; functions are independent.

The functions ¢, ¢5, and ¢, can be chosen asinde-

pendent. In this case, it follows from Egs. (1.12) that
9496 9495 9596
= s = y = . 1.13
¢l ¢5 ¢2 ¢6 ¢3 ¢4 ( )

According to Egs. (1.10), relationships (1.5) and
(1.6) take the form

o, = V+N:, T, = NiN,
o, = V+N3, T, = NN, (1.14)
02 =Vv+ Ng, sz = N1N3!
_ 1
Relations (1.10) provide the expressions
n; = Fi(Ng, Ny, Ng),  n, = Fu(Ny, Ny, N3),
1 1( 1 2 3) 2 2( 1 2 3) (1.16)

Ny = F3(Ny, Ny, N3).
According to Egs. (1.2) and (1.16), we have

Fi+Fo+F;= 1. (1.17)

From equilibrium equations (1.9) and relation-
ships (1.14), we obtain

ov ON, ON,
a_x+2N1 ax N ay

ON, N,

oN
+N1—67+N3-5—Z_+N1 3

FIE

ov ON,
— + N,— 1=
oy 0X oy

ON ON ON
+ 2N26_y2 + N3a—z2 + Nza_Za =0,

N,
(1.18)

ov ON,;

0N,
9z T Na g

X
N,
0z

+N;

Complementing Egs. (1.18) with the differential
relationship

F.dF; + F,dF, + F,dF; = 0, (1.19)

following from Eqg. (1.17), we obtain four equations—

Egs. (1.18) and Eq. (1.19)—for the four unknowns v,
N, N,, and N.

IVLEV

Relationship (1.19) is represented as
adN; + bdN, + cdN; = 0, (1.20)
where
_ _0F; oF, oF; _ _ dF;
2= FiaN, " Fean, T Fan, = Fiany

9%
iasz

oF,
c=F—

b=F N

and
Let us introduce the characteristic surface
W(x, Y, 2) = 0 and denote
grad¥ = W,i+Wj+Wk,
N = Nji + Nyj + Nk, (1.21)
A = ai +bj +ck.

The characteristic determinant of the set of
Egs. (1.18) and (1.20) hasthe form

® = [200
—(Wi+ Wi+ W) (aN; + by +cNy)] = 0, (1.22)
® = NJW, + N,W, + NW,
= (N grad¥) = |N||gradW|cosB,, (1.23)
® = a¥W, + bW, +c¥,
= (A Cograd¥) = |Al|gradW|cos6,, (1.24)
aN; + bN, +cN; = |A||N|cosa. (1.25)

It follows from relationships (1.22)—(1.25) that

2cos6,cosB, = cosa. (1.26)

The angle a between the vectors A and N is deter-
mined according to Egs. (1.10), (1.16), (1.21), and
(2.25) by the assumptions about the properties of the
limiting behavior of a material. According to
Eqg. (1.23), the angle between the normal gradW¥ to the
characteristic surface and the vector N is 6, . According
to Eqg. (1.24), the angle between the vectors grad¥ and
A is 8,. Relationship (1.26) determines the totality of
gradW¥ vectors and, thus, the totality of elements of
characteristic surfaces.

We assume that relationships (1.10) have the form

2

2
¢, = An; = Nj, ¢, = Fnin, = N;N,,
¢, = By = N3, 5 = Gnyng = N,Ng,  (1.27)
03 = Cnj = N3, ¢g = Hnng = N3N,
where A, B, C, F, G, and H are constants.
DOKLADY PHYSICS Vol.48 No.8 2003
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From Egs. (1.27), we obtain

F=.AB, G=.BC, H=.AC,
FH FG GH

(1.28)

A= E, B = W, C= ?, (1.29)
N, N, N3
n=—, n,=—=, ng=—, (1.30)
AT BT e
N, = JAn;, N, =.Bn, N;=.Cns (131)

According to Egs. (1.21) and (1.31), we have

N = J/An,i + /Bnyj + ./Cngk
and, according to Egs. (1.20), (1.30), and (1.31),

(1.32)

a-= ﬂ b = & c = & (1 33)
JA B’ JC '

n,. n, Ny
A= —i+—=j+—=k. (1.34)

A BT
From Egs. (1.25), (1.32), and (1.34), it follows that

1
cosa = ——, 1.35
NITA] (13
where

2 2 2
nS n5 n
IN| = A/Anf+ Bn;+Cn3, |A| = Zl+§2+63'

For the case of idedl plasticity, 0, = 0,, 0; = 0, — 2Kk,
cosa =1 and 6,= 6, = 0 in relationships (1.26)
and (1.35).

We consider the case of ideal plasticity [3] for an
anisotropic plastic solid:

o = k(nyg, ny, ng).

According to Egs. (1.14) and (1.36), we have

= Sk, Ny = Jkny, Ny = Jkng (1.37)

According to Egs. (1.37), the vector N coincides in
direction with the vector n specifying the direction of
the third principal stress o; for ideal-plasticity condi-
tion (1.36).

From Egs. (1.2) and (1.37), we write

(1.36)

NZ+ N5+ N3—k = 0. (1.38)
From Eqg. (1.38), it follows that
N,dN, + N,dN, + N3dN3—%< =0,  (1.39)
| S
dk = anldnl+an2d”2+an3d”3 (1.40)
DOKLADY PHYSICS Vol. 48 No.8 2003
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From relationships (1.37) and (1.40), we obtain
n, akD
dN, = s/k+ —

b Ok, N ok
Ny 0k
fanl
akD Ny ok
fkang] 2[6n3

Ny 0k
dN, = ——dn,

2./kon,
N3 0k 0 n3 ak|:|
+ —=—=—dn, + 5/k+
2./k0n, 2 Df &6n§j

From the set of Egs. (1.41), it follows that

dn,,

dN, = —=22qn,

(1.41)
d 3,

* gk

dn, = %(anle +a5,dN, +a;3dN;),

dn, = %(azldN1+a22dN2+a23dN3), (1.42)

dn; = %(aﬁlle +ag,dN, + a53dN;),

where A isthe determinant of the set of Egs. (1.41) and
g; are determined in terms of coefficients (1.41).

From Egs. (1.20), (1.37), (1.39), (1.40), and (1.41),
we find

a = fkn, - LK ok . 9k [

2800, 21 " gn, 22 " gn, B

1ok, ok ok
b = kN, = 3R (e * 5B+ 5 e, (143)
_ 1 ok ok ok . [
¢ = Jkns - ZAQ 13+6n A on, on, L

2. If relationships (1.14) are met for an incompress-
ible medium satisfying condition (1.8), the dissipative
function has the form

D = oyg; = &Ni+g,N;+¢,N3
+2€,,N;N, +2€,,N,N; + 2€,,N; N3,
Let us consider the functional
D-v(eg+e, +¢,)

2.1

+(Fi+Fy+F3-1), 2.2)

similar to functional (1.3) under conditions (1.8) and
(1.17). Here, the quantity D is determined according to
Eq. (2.1).
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From the extremum conditions

03 _ o 03 _
Ei =0, N - 0
for functional (2.2) follow relationships (1.14) and the
expressions

(2.3)

oF,
Ele""c'xyNZ"'szN3 = p'Fia_Nll = Ha,
e 9F
sxyN1+£yN2+£yzN3 - p-Fla_Nz - |J.b, (2.4
oF,
ssz1+EyzN2+szN3 = UFua_NI = Hc
3

for the associated-flow rule. Eliminating the quantity p
from Egs. (2.4), we have

C(&xNy + &, N, + €,,N3)
—a(g,,N; +¢&,N,+¢,N;) = 0,
C(&4N; + € N, +€,,N3)
—-b(g,,N; +¢&,,N, +€,N;) = 0.

2.5)

IVLEV

Complementing Egs. (2.5) with incompressibility
condition (1.8) and passing to displacement-velocity
components, we obtain a set of three eguations—
Eqg. (1.8) and Egs. (2.5)—for thethreevariablesu, v, w.
Equations (1.8) and (2.5) are a hyperbolic system,
whose characteristic varieties are determined according
to Egs. (1.22)—(1.26).
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In this work, we derive the evolution equations for
spectrally narrow, resonantly interacting wave packets
weakly unstable in terms of linear theory. We consider
the following two cases. In the first case, the system is
linearly unstable due to the weak coupling of two
modes whose energies have opposite signs. As an
example of such a system, we analyze the model of a
three-layer two-dimensional shear flow, where both the
density and vorticity of the undistorted flow have jumps
at thelayer interfaces and are uniform inside the layers.
In the second case, we consider the linear instability of
anindividual mode. Theinstability of capillary—gravity
waves in a weakly supercritical flow described by the
Kelvin-Helmholtz model is an example of thisinstabil-
ity. The evolution equations are different for these two
cases. The equations are derived in the Hamiltonian for-
malism, which allows us to consider wave processes
disregarding the features of a particular problem. We
prove that bounded solutions of the evolution equations
exist in both cases. In other words, waves unstable in
terms of the linear theory can be stabilized due to their
interaction with neutral waves.

1. EVOLUTION EQUATIONS
FOR A RESONANT TRIPLET INVOLVING
AN UNSTABLE MODE IN THE MODEL
OF A THREE-LAYER SHEAR FLOW

As was shown in [1], the dynamic equations
describing wave disturbances in stratified shear flows
have the form

9. . 3 B&H 5H
w0 = s T Visewy Y

* Shirshov Institute of Oceanology,

Russian Academy of Sciences,
ul. Krasikova 23, Moscow, 117218 Russia
e-mail: serge@wave.sio.rssi.ru

** Obukhov Institute of Atmospheric Physics,
Russian Academy of Sciences,
Pyzhevskit per. 3, Moscow, 109017 Russia
e-mail; nata@omega.ifran.ru, romnatal @mtu-net.ru

oH
d@(x, 1)

Here, n;(x, t) are the disturbances of the interfaces and
@(x, t) isthe dynamic variable serving as the potential
difference of the disturbances in neighboring layers.
We consider the two-layer case, i.e., j = 1, 2. In order to
simplify the calculation of the interaction coefficients,
we solve the problem in the Boussinesg approximation.
This simplification does not restrict the results obtained
below. In terms of Fourier transforms, Egs. (1) and (2)
can be written out in the vector form

F09dk. D = 552

ni(xt) = )

whered = (@, ¢, N;, N,) isthe vector of the dependent
variables. The matrix $(k) has the following (not
canonical) form:

Thefirst term in the expansion of the Hamiltonian is

H, = % [(dCk. 9, Ak, 1)k,

where

2 K el =
o2 = O
E > ikV, 0 E

R elkl |k .
_ g K - O
h(k) = E > 5 0 ikV, E
Eikv1 0 Ni-=Vv,v;, O E
O 0 ikv, 0  N3=V,v,[

1028-3358/03/4808-0441$24.00 © 2003 MAIK “Nauka/Interperiodica’
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The matrices h (k) and $(k) satisfy the conditions

FHK) = $(-K), SHK) = -9'(K),

AHKk) = h(=k), AHK) = AK).
Inthiscase, the dispersion relation hastheform D,D, =
‘% where

Q; [k
D, =—--=, Q =w-kv,
I bj 2 J J

Here, w is the frequency, € = exp(-2[k|h), and Ap; and
v; are the jumps in the unperturbed density and vortic-
ity, respectively. The parameter €, serving as the weak
coupling constant of the modes, isassumed to be small,
of about nonlinearity. As follows from the condition
(Z*, $2) = —i, the normalized eigenvector is given by
the expression

J/D; iJD, /DO
‘= ég JL by L bzflﬁ

3)

whereL = D},D, + D5, D,.

For wavenumbers corresponding to the stability
region, the transformation to the usual canonical vari-
ables a, , hastheform

2

dk ) = 3 Z,(0ayk )+ Z(Raf(k 1, @)

where Z;(k) is eigenvector (3) corresponding to the
eigenfrequency w (k). The dynamic system written out
in terms of these variablesiswell known [2, 3]:

oH

k. t) = -z 0

&)

Thefirst term H, of the expansion of the Hamiltonian in
terms of the small nonlinearity parameter is

H, = IZ w;a;af dk.

This transformation is inapplicable in the instability
region, where the quantity L is small. In this case, the

ANNENKOV, ROMANOVA

eigenvector Z;(k) in Eq. (4) must be replaced by the
eigenvector

_ 0/b, Jﬁz 0

(6)
_ 8 =/0: , /D8
@) = D ﬁh

corresponding to the case of zero intermode coupling
constant €. The dynamic system also has form (5), but
the quadratic term of the expansion of the Hamiltonian
involves additional components [5]:

D 2
H, = Iazleaj(k)aj*(k)

™
+ (s(K)ay(K)ay(—K) + k) (ka3 (K) + c.c.)Euk,
where
sl = —28 g = —__
/B.(0DAK) /DD

Itis easy to prove that resonant interactions of the type
under consideration exist in thismodel. In this case, the
following two synchronism conditions are satisfied:

ko + oz + Kog = 0, wy(Koy) + 0y(Ko2) + Wy(kgg) = O;
Roz = —Roz; ®
Koy =Ko + Koz = O,
03 (Ko1) — Wa(Kpp) + Wy(Kpg) = 0.

The spectral width of the interacting wave packets
under consideration is taken as small. Under condi-
tions (8) and (9), thevariables a, ,(k) can bewritten out
in the form

®)

ay(K) = a;(Koy + K) + ay(koz + ),
ay(K) = ay(koy + K) + ay(kez + K).

We now consider the cubic term H; of the expansion,
retaining only the terms that cannot be eliminated by a
suitable canonical transformation. In the case of weak
intermode coupling, the cubic term associated with
interactions (8) of the “burst” type can be omitted,
because it is of a higher order in the small parameter €.
As aresult, we arrive at the following equation for the
cubic term H; of the Hamiltonian:

B (Kor, Koz, Koa)
/\/_

x a3 (Kog + K)O(K; — K, + K3)[dK; + c.C.

H; = J.al (Koz *+ K)ay(Kgy + K)
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Expanding the eigenfrequencies in the vicinity of the
wavenumbers Ky, Ky, koz, and ko3, we obtain

dw
Wy (Kos +K) = y(Kog) + VK, V= dklkOl’
A A . . dw, ~
Wy (ko2 +K) = wy(ko2) + VK, V, = ak —— Koz,
dw
Wy(Kop +K) = y(Kgp) + VoK, V, = dkzkoz,
doo2
Wy(Koz + K) = y(Kgg) + VK, V3= ak —— Ko

We then introduce the variables A(k, €t) serving as
amplitudes slowly varying in time:

a (kg + K, 1) = exp(—iwy(ky)t)As(k, T),
a(Kpp + K, t) = exp(—iw,(Kg)t)Ax(K, T),
(kg + K, 1) = exp(—iw,(kyg)t) As(k, T),
ai (—kp—K, 1) = exp(iw,(—Kg)t)Au(K, T).

Using Eq. (5), where only the two first dominant terms
are retained in the expansion of the Hamiltonian, we
obtain a system of equations in the variables A(k, T)
and then perform the inverse Fourier transform
1 .
C(X,T) = —[A(K, T)exp(ikX)dK.
I /\/EJ ]
As aresult, we arrive at the following evolution equa-

tions for the slowly varying amplitudes of the reso-
nantly interacting wave packets:

dC,(X, T) s 0C,(X, T)
oT oax

+iBC,(X, T)CE(X, T) = 0,

dC,(X, T) . 0Cy(X, T)
oT )

+i%C’{(X, T)C,(X, T) = 0,
0o 0 goo (19
BTt Vet V2—><DC2(X T) —=S°Cy(X, T)

+B2(Cy (X, T) +C4 (X, T))CHX, T)
0C4(X, T)

oX

0Cy(X, T)7 _
— } = 0.

+i9]3[(\72—v1)c1(x, )

+(V,—v3)Cy(X, T)
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For threeinteracting harmonic waves and amplitudes C;
independent of X, Egs. (10) reduce to the ordinary dif-
ferential equations

C1+iBC,CE = 0,

Cs+iBC,CF = 0,

Co—S°C, + | BI*(|Cy* + |C4H)C, = O

A similar system of equations was obtained in [6] and
analyzed analyticaly in [7] for the case of resonant
interaction between Rossby baroclinic waves and a
marginal mode. Analytical and numerical studies show
that resonant interactions with neutral waves can stabi-
lize awave unstable in terms of linear theory.

The method used above is universal and indepen-
dent of the physical nature of the weakly coupling
waves under consideration. All characteristics of a par-
ticular physical problem appear only inthe coefficients.
Thus, the resulting equations describe the resonant
interactions of arbitrary waves.

2. EVOLUTION EQUATIONS
FOR THE RESONANT WAVE INTERACTION
INVOLVING A WEAKLY UNSTABLE
WAVE PACKET
IN THE KELVIN-HELMHOLTZ MODEL

If instability takes place in asingle mode, the evolu-
tion equations describing the resonant interaction
involving aweakly nonlinear wave packet have adiffer-
ent form. As an example, we consider the Kelvin—
Helmholtz model. In order to simplify the calculation
of the interaction coefficients, we here solve the prob-
lem in the Boussinesq approximation, but thefinal con-
clusions are general. As is known, the equations
describing disturbancesin thismodel can bewritten out
in the canonical form [8]:

B .. . BH
WY = zxn Y= s

Here, n(x, t) is the disturbance of the interface and
@, t) is the velocity potential difference at the inter-
face. In terms of Fourier transforms, Egs. (11) can be
rewritten in the vector form

(11)

oH

Jd(k, t) = ST

(12)

Here,

d(k, 1) = (@k, 1), n(k, 1))

is the vector of the dependent variables and the matrix
J has the canonical form

o

11
[
[
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The Hamiltonian H, is given by the quadratic form

1
= éI(dE(k, t), h(k)d(k, t))dk, (13)

where
D
h(k) = DA(k) —ikv
Oikv C(K) D
Here,
CK) = ﬁp 9 2V, AK) = “"
WhereAp=pl—p2,V=V1%V2,p= %pz,andois

the surface tension coefficient. The eigenfrequencies
areequal to

W, = kv+sgnkA/gAp|k| + p| K2-VKE.  (14)
The system becomes unstable when the frequencies
corresponding to the upper and lower branches of the
mode (i.e., to waves with energies of mutually opposite

signs) coincide. In this case, the radicand in (14) is
equal to zero at the point k, = 19%3 . Inthevicinity of

thispoaint,i.e., fork=k,+ K and kﬁ < 1, thefrequencies
0
are given by the expressions
Wy, = W+ VK * sgnk,8,

where

5 = JA(K, + K)C(Ky + K) = Voi/k>—bk:.

Here, bisasmall dimensionless parameter serving asa
supercritical parameter of the problem. Positive b val-
ues correspond to the unstable case.

We change variables from d(k, t) to a(k, t):
dk, t) = Z(Ka(k, t) + ZH-K)ald-k, t). (15)
If kisinside the stability region, then % is an eigenvec-
tor of the linear system and it follows from (15) that

@k, t) = i E(a(k, t) —al{-k, 1)),

nkt) = J;%(a(k, t) +all—k, 1)).
Interms of the variables a(k), the dynamic equation has
the known form
oH
dallk, t)’

alk, t) = —i

ANNENKOV,
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For small or zero values of o, we take
e( K), VAB(K
3= f

in Eq. (15), where 8(k) is the Heaviside step function.
This vector can be rewritten in the different form

¥ =

[#e, k>0
F(k) = %e <O
a ]
where
z,+27, _ 17
%e a 2 ’ gza - wl_wz.

Here, z, and z, are eigenvectors of the linear problem.
For & = 0, vectors %, and &, become an eigenvector
and an associated eigenvector, respectively.

Inthiscase, transformation (15) yieldsthefollowing
canonical form of Egs. (12) in terms of the variable
ak, t) [5]:

oH
da(—k,t)’
In the vicinity of the points k,, and —k,, the quadratic
term in the Hamiltonian is

a(k, t) = isgnk (16)

H, = B_(—*)z-osgnka(k, Ha(-k, 1)

+c.c. + Qa(k, t)ak, t)%jk, (17)

w; + W,

2and

where wy, =

k>0
k<O0.

~ [,
"5

In this case, the quantities a(k) and a(-k) are a canoni-
cally conjugate pair.

If the resonant interaction under consideration is
possible (this is the case in the Kelvin—Helmholtz
model), the following two synchronism conditions
must be satisfied:

Koo + Koz =Koz = 0, 0(Kop) + 0(Kgp) —(Kog) = O,
ko —koo —kog = 0, 6(Koy) — 6(kaz) — 6(keg) = O,
koo = ko» koo = —Kop.

We now consider the resonant interaction of two stable,
spectrally narrow wave packets with the characteristic
DOKLADY PHYSICS Voal. 48

No. 8 2003



THREE-WAVE RESONANT INTERACTION INVOLVING UNSTABLE WAVE PACKETS

wavenumbers k,,; and k,; and one unstable wave packet
with the characteristic wavenumbers k;, and —k;,. We
represent a(k) as a sum of finite functions defined near
these wavenumbers:

a(k) = a(ky +K) + a(Kg, + K)

+a(koz + K) + a(Kgs + K). (18)
Omitting immaterial terms and retaining the term of the
leading order in the nonlinearity parameter, we obtain
the cubic Hamiltonian in the form

[K(Ko1 Koas Kog)a(Kos + K1)

1
Hy = ——
3 ,\/Z'[J’
x a(Kgp + Kp)akes + K3) + C.C.]

x O(k; + Kk, —Kg)dK ,dK,dK 5. (19)
Inwhat follows, we also use the next expansionterm H,

describing the four-wave interactions of the unstable
mode:

W
4 = Z_TJa(koz + Kp)a(Ke + Kp)a{kg, + Ka)

When deriving the evolution equations, we use Eqg. (5)
for the two stable wave packets with the characteristic
wavenumbers k;, and ky; and Eg. (16) for the unstable
wave packet with the characteristic wavenumbers k,
and —ky,. The Hamiltonian is given by the sum H =
H, + H; + H,, whereH,, H;, and H, are determined by
Egs. (17), (19), and (20), respectively.
We now introduce slowly varying amplitudes Q;:

exp(—i (ko)1) Q(k, T),
i =123,

a(koj + K, 1) =

al{—kp, — K, 1) = exp(—iwy(Ke)t) Qq(k, T),
T = et.

The inverse Fourier transform of Q; with respect to the
variable Kk has the form

WX, T) = %TJQJ(K,T)EXp(iKX)dK,

where X = ex. Herelnafter, we assume that the functions
; are of the following orders in the small nonlinearity
parameter €:

P, Oy ¥ P, Uk, LIJ4D€2-

Retaining only terms of leading order in €, we arrive at
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Fig. 1. Time dependence of |,| found by numerically solv-
ing Egs. (21), under the initial conditions Y(0) = Y3(0) =
0.1, §»(0)=1.0,and P, (0) =i for 5=0and W=0: (a) linear
regimes with K = 0 and (b) nonlinear regime with K = 1.

the following system of equations:

0 0 . *
%TT*' VlngE%HKEUszz =0,

E';—T"‘ ngr_)<DL|J3+IKlIJ1lIJ2 =0,

Mo DY,

DT"‘ V29r_xD qu Vol— D(‘)X + bkowﬂ

+ KO s + 2W[) "y, = 0.
In the case of three harmonic waves, we obtain

Py +iKOpws = 0,

Ps +iKyP, = 0, 21)

P, - I'2L|—'2 + KOpT g, + 2W|L|J2|2L|J2 =0,

wherer? = bk3 V3.

This system of equations differs significantly from a
similar system in the case of weak wave coupling and,
in a sense, is more unstable. Indeed, if the resonant
interaction with neutral waves is absent and the super-
critical parameter b is equa to zero, the amplitude Y,
increases linearly with time; i.e., in this case the insta-
bility isalgebraic. The cubic term serves as either asta
bilizing or adestabilizing factor, depending on the sign
of the four-wave interaction coefficient W. It isinterest-
ing to ascertain whether the interaction with neutral
waves can stabilize the algebraic instability in the case
of W=0, i.e., for zero cubic nonlinearity. We solved this
system of equations numerically for the case where the
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initial amplitude of the unstable harmonic is signifi-
cantly larger than the amplitude of the stable harmon-
ics. Asisshown in Fig. 1, the resonant interaction with
the stable waves stabilizes the growth of the unstable
wave. The solution has a quasiperiodic form, with
a parabolic time dependence of the unstable-wave
amplitude.

ACKNOWLEDGMENTS

Thiswork was supported by the Russian Foundation
for Basic Research, project nos. 01-05-64466 and
01-05-65140.

REFERENCES

1. V. P. Goncharov, lzv. Akad. Nauk SSSR, Fiz. Atm.
Okeana 22 (4), 468 (1986).

2

3.

~

V. E. Zakharov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 17
(4), 431 (1974).

V. E. Zakharov and E. A. Kuznetsov, Usp. Fiz. Nauk 167
(12), 1137 (1997) [Phys. Usp. 40, 1087 (1997)].

V. P. Goncharov and V. |. Pavlov, Problems of Hydrody-
namics in Hamiltonian Description (Mosk. Gos. Univ.,
Moscow, 1993).

N. N. Romanova, Nonlinear Processes Geophys. 5, 241
(1999).

A. Z. Loesch, J. Atmos. Sci. 31, 1137 (1974).
J. Pedlosky, J. Phys. Oceanogr. 5, 608 (1975).

T.B. Benjaminand T. J. Bridges, J. Fluid Mech. 333, 301
(1997).

Trandated by V. Chechin

DOKLADY PHYSICS Vol.48 No.8 2003



Doklady Physics, \ol. 48, No. 8, 2003, pp. 447-450. Translated from Doklady Akademii Nauk, Vol. 391, No. 5, 2003, pp. 634—637.

Original Russian Text Copyright © 2003 by Iviev, Mikhailova.

MECHANICS
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The properties of staticaly definable relationships
generalizing theideal-plasticity condition in ideal-plas-
ticity theory are considered.

1. Statically definable relationships exist in ideal-
plasticity theory if, in addition to the equilibrium equ-
ations

do, 01, 0Ty,
+
ox o0y 0z
%’ + %’ + aLyz = O,
ox dy 0z
Oy , 9y, 90, _
ox ody 0z
three finite relationships are defined:

:01

(1.1)

f1(0y Oy, 0, T4y, Tyrs Ty) = 0,
f2(0y Oy, 0, Ty, Tyrs Ty) = 0, (1.2)
f3(0y 0y, 0, Ty, Tyru Ty) = 0,

where gj; are the stress components.
Relationships (1.2) can be written in the form

f,(04, 0,5, 05,1, m;,n;) = 0,

fo(0y, 05,05, 1;,m;,n) =0, (1.3)

fy(04, 05, 05,1, m,n) = 0,

where gj; are the principal stressesand |;, m, and n; are
the direction cosines specifying the orientation of the
principal stressesin the xyz coordinate system.

For an isotropic body, relationships (1.3) are inde-
pendent of the |;, m, and n, directions, and the condi-

tions take the form
f,(0,,0,,0,) =0, fx0,0,05 =0,
l( 1 2 3) 2( 1 2 3) (14)
fy(o,, 0,05 = 0.

Chuvash Sate University,
Moskovskii pr. 15, Cheboksary, 428015 Russia

Generaly speaking, three finite relationships (1.4)
determine afixed stressed state. The statically definable
stressed state of theisotropic body is possible under the
ideal-plasticity condition. The volume stressed state of
the isotropic ideal plastic body under the ideal-plastic-
ity condition was considered in [1, 2].

Thus, statically definable relationships (1.2) and
(1.3) describe the behavior of an anisotropic idea plas-
tic body under conditions different from the ideal-plas-
ticity condition.

According to Egs. (1.2), three of six stress compo-
nents o;; are independent. We can put

Oy = Ox(Txy1TXZ1 Tyz)l O-y = O-y(Txya Tz Tyz)1
0, = 0-z(Txyf Tz Tyz)-

The following parametric notation can be used:

(1.5)

0;; = 0;(&,Nn,Q), (1.6)

where &, n, and ¢ are the independent variables.

Statically definable relationships in ideal-plasticity
theory can be written in the form

0 = X(0,+0,+0,), (17)

° 3

i = 0'”(0, nly n21n3)7

nS+n,+n; = 1. (1.8)

When statically definable relationships (1.7) and
(1.8) for the components of the stressdeviator arevalid,
relation (1.7) can be represented as

v+ fi(n, Ny, ng), Ty = fu(ng, Ny ng),
o, = v+ fy(n,ny,ng), T, = fg(ng, nyng), (1.9)
v+ fa(ng, Ny ng), Ty, = fe(ng, Ny, ny).

Ox

0,
It follows from Egs. (1.9) that

v = G—%(fl+ f,+f,). (1.10)

1028-3358/03/4808-0447$24.00 © 2003 MAIK “Nauka/ Interperiodica’
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We also present statically definable relationshipsin
the form

Ty = G4(Ng, Ny, NYNN,,

d5(ny, Ny, NZNyNG,

2
v+ 4(nyg, Ny, NNT,

— 2 —
y = V+o,(ng, Ny ngn;, T, =

Oy

o

0, =V +b5(ny, Ny, ns)ng, (1.11)
Tz = $e(Ny, Nz, NIN;NG;
1
V= 0= 3(0:0; + 05+ 93n3). (1.12)

For ided pladticity, al functionsin relationships (1.11)
and (1.12) areidentical, i.e.,

di(ng, Ny, Ng) = §(ny, Ny, Ny).

2. We consider the functional

(1.13)

® = oyg; - (Ag,n; + Beyns + Ce,nj + 2Feg, Ny,

+2Hg, NNy + 2Ge,,N3N,) —V(E, + €, +E)
2 2 2

+H(ny+n;+n3), (2.1)

where A, B, C, F, G, and H are constants and v and
are the unknown Lagrange multipliers.

From the functional -extremum conditions
0 @ _

2.2
68 (2.2)
we obtain

O, = V+AN;, T, = Fnin,,

o, = V+Bns, T, = Gn,n,,

G, = V+An; T, = Hnn,, (2.3)

v = 0—%(Anf +Bn5+Cn3).

Relationships (2.3) must be complemented by con-
dition (1.8).

From Egs. (2.3), it follows that

H Txy yz

2 _ Erxy-[xz n2 _
FG 1,

n, = ’
Y7 FH 1, 2

n2 _ F Tszxz
3 =
GH T1,,

Equations (2.4) and (1.8) yield

2.4)

Erxysz_'_iTxyTyz_'_ F Tszxz
FH 1, FG T1,, GH 1,

According to Egs. (1.8), (2.3), and (2.4), statically
definable relationships in ideal-plasticity theory can be

=1 (25)

IVLEV, MIKHAILOVA

written in the form
A__GTxysz
FH T,

CF Tszxﬂ
GH Ty U

3(o,—0) = 2

_BHTT,
FG 1y,

BHTy Ty,
FG 1,

AGTy Ty
*FH 1, O

3(0,—0) = 2=x

[pF TyZTXZ (2.6)
“GH Ty

CF Tszxz
GH Tyy

BHTxyTyﬂ
FG 1,,

3(02 - 0') =

_[(AGTyTe,
(FH 1,

or
HT,yT
3(0,—0) + EH Lol ,
[( Ot g Ty
- 2A\_(3Txyrxz
FH T,

[CF Ty x
+ +
[3(O'y o) G T,

= oBHTy Ty,
FG 14, '

DA\GTxysz
[3(0 cy)+EFH Ty, "

CF Tszxz
GH Ty

ETVZTXE}
GH 1, O

&T_vaxﬂ}
FH 1, U
Q2.7)

%Txyryﬂ}
FG 1,, U

or

(BHTyTy,
[3(0 0)+EFG T,,

AGTTug]
FH 1, U

ETszxﬂ}
GH 1, O

AB_»

T
2 Xy
F

xy

[E_F_Tyzrxz +
[GH 1,,

DETxysz +
LFH 1,

_ AGTy T
[B(Gy o)+ FH 1, D}

(2.8)
%Txy.[yﬂ} — 4BC 2

F6 1, 0] - Yg v

X [3(0Z -0)+

DA\_GTxysz_'_
LFH 1

HT
* |:3(GX - 0) ¥ gG >.([yxzyz

[3(02 ~0)+ BHT,T yﬂ}

FG 1,, U

yz

EETVZTXE}
GH 1,, U

AC_ >

- 4— Tyzs

DOKLADY PHYSICS Vol.48 No.8 2003



STATICALLY DEFINABLE RELATIONSHIPS IN IDEAL-PLASTICITY THEORY

or

T,[(2C + A)G’1, + (2C + B)H12]

= FGH(2C-3(0,-0))1,,T,

T1,,[(2A+ B)H™ 1, + (2A+ C)F’12]

(2.9)
= FGH(2A-3(0,—0))T,, T,

T,.[(2B+ C)F?1;, + (2B + A)G'15)]
= FGH(2B-3(0,—0))T1,1,,.
From the extremum conditions for functional (2.1)

Q_q_):()

an (2.10)

we obtain the following relationships for the associated
flow rule:

Agng + Fe,n, + HeNg = Ny,
KN,
pN.

According to Egs. (2.3), relationships (2.11) can be
written as

Feyn, + Beyn, + Ge,ng (2.11)

He,,n, + Gg,n, + Ce,ng =

FH, Tz FH Ty

G, G

Ag, + —
x 1, G xzp

FG_ T
= —¢,— +Beg, + —¢,—
H ™1, Y H

Xy
HG T HG T
= —sXZT—Xy+—s =2+ C¢,.

(2.12)
F v: F V1

The two relationships (2.12) should be comple-
mented by the incompressibility condition

ete,te, =0 (2.13)

3. We consider the statically definable set of rela
tionships (2.3) inthe cylindrical coordinate system p6z:

o, = 0+Anf—%(Anf+ Bny+Cn3), T, = Fnyny,

Oy = O+ Bnﬁ—%(Anf+ Bn;+Cn3), Tg, = GN,Ns,
3.1

o, = 0+Cn§—%(Anf+ Bn5+Cn3), T,, = Hnyn,,

p

ni + ng + ng = 1L
For an axisymmetric problem, we have

Oij = 0ij(p, D), Tpe = Ty, = 0. (3.2)
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From Egs. (3.1) and (3.2), we obtain

n,=0, ni+n;=1 (3.3)

Condition (3.3) is satisfied by setting

n, = cosd, ng; = sind. (3.4)

According to Egs. (3.1)—3.4), we abtain
0, =0+ é((ZA—C) + (2A+ C)cos2a),

g, = 0—%((A+C)+(A—C)c0320(),
(3.5)
g, = 0+(—13((ZC—A)—(2C+A)005201),

= -H—sin20(.

Toz 2

From Egs. (3.5), it follows that

H*2(0,-0,) —(A-C))* + 4(A+C)*12,

= H’(A+C)> (3.6)

From the equilibrium equations

99, , 9Tpz , 9p— T

dp 0z p
aO-z+aLpZ+T_pZ

dz odp p

= O’
3.7)
=0

and relationships (3.5), we obtain

do 2A+C._. oo Ja
%— 3 sm20(%+Hc0520(E

= —A(1+ cos2a),
2p
(3.8)
00 da  2C+A . oa

37 + HcosZagﬁ + 3 sm20(b—z-

_ _H.
= 2pS|n20(.

Equations (3.8) are a hyperbolic system and have
the orthogonal characteristics

[dz7
Copd, ,

_ (A+C)tan2a = J(A+ C)*tan’2a + 4H?
B 2H '

3.9
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Relationships along characteristics (3.9) have the
form

2A+C dz
3 S'deD

dz{2A+C)(2C+A)
dpD 3 3

dog% cos2a +

+da sin“2a + HZCOSZZGE

dp dz
+ 2pdp[A(1 + cos20a)

%COSZ az n2ao D}

+Hsm20(a—|00520(+sm20(dd]} = 0,

2C+A

(3.10)

where gEZ) is determined from Eqg. (3.9).

The strain-rate components can be determined from
Eqg. (3.6) according to the associated flow rule and the
incompressibility condition

Ae,—Ce,—2Hcot(20a)g,, =

(3.11)
g, tet+eE, =0,

IVLEV, MIKHAILOVA

where
E. = Ql;l €4 = 9 1[@[.] aV\D
P 9p’ 0T p 50z " apl

Equations (3.11) are hyperbolic, the characteristics
coincide with the characteristics of the set of equations
for stress components (3.9), and the following relation-
ships are met along the characteristics:

d;+ud(lnp)dzmz Ctan(ZQ)H =0,

d Ldp (3.12)

_ ow
=57 T

du + dw—

where 3_; is determined from Eqg. (3.9).
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Construction elements of power plants operate at
high temperaturesinducing intense diffusion processes.
These processes are sensitive to the intensity and distri-
bution of stresses of various physical origins: tempera
ture stresses, residual stresses, and stresses near struc-
tural defects. In the internal -stressfield, a solid solution
separates and regions of a new phase are formed. The
formation of the inhomogeneous structure in the pres-
ence of residual stressesin acylindrical shell was ana-
lyzed in [1, 2]. Stresses in construction elements also
arise under mechanical loading such as bending, ten-
sion, compression, and shear. In particular, the concav-
ities of tube guides or shells of fuel elements are bent
under internal pressure. The section of a tube-guide
wall or shell near a concavity is subjected to a bending
moment. Pure bending of curved bars can be consid-
ered as an elastic model of such systems|[3].

The diffusion of alloying elements depends on the
first invariant of the stress tensor. This invariant can be
easily determined, because the stress state for the
accepted eastic model is known [3]. In this work, we
analyze the kinetics of the formation of an inhomoge-
neous structure under bending of a curved bar. In the
accepted model, the structure inhomogeneity is mani-
fested as the separation of a solid solution or the forma-
tion of new-phase regions. The latter process occurs
when the concentration of impurity atoms exceeds the
solvability limit at a given temperature.

A constant-section curved bar isbent by momentsin
the curvature plane. The components of the stress ten-
sor (plane stressed state) have the form [3]

_ AM@ED, b2 1 2 A
O, = —WD? na+b In6+a InFD,
_ 4MDa2b2 b,.2.r, 2.a,.2 0
Ogg = _WD__2|n5+b In5+a InF+b —ap,

r
g, = 0.

NPO Luch Research Institute,
ul. Zheleznodorozhnaya 24, Podol sk,
Moscow oblast, 142100 Russia

* e-mail: iifedik@podolsk.ru

Here, a and b are the inner and outer radii of the bar,
respectively; M is the bending moment; and

_ 2 b’
N = (b®-a’) —4a2b2ana].

Thefirst invariant of the stress tensor depends logarith-
mically on the radial coordinate:

0 = Oy + Oge

__4M 2_a?+20%Ink —2a%In1E. (2)

N b al

This dependence all ows the exact analytical solution of
the diffusion equation in the force field. Relation (2)
shows that the outer and inner regions of the curved bar
under bending are in the compressed and extended
states, respectively. The nonuniform stressfield induces
the diffusion migration of impurity atoms of various
kinds (Gorsky effect). Substitutional impurities of large
and small atomic radii (compared to the basic metal)
migrate to the tension and compression regions, respec-
tively. The inhomogeneous structure thereby forms
through the separation of the solid solution of aloying
elements of different kinds. With an increasein the con-
centration of impurity atoms, new-phase regions are
formed. Thisis aqualitative pattern of the formation of
the inhomogeneous structure when the bar is bent. A
mathematical model of this process will be developed
below.

The interaction of an impurity atom with a stress
field associated with bending of a bar is described by
the potential

= —9dv, 3)

where dv is the variation in the crystal volume when
introducing an impurity atom. If the aloying impurity
increases (decreases) the crystal-lattice constant, dv is
positive (negative). For positive (tensile stress) and neg-
ative o, values and dv > 0, the potential V is negative
and positive, respectively. Alloying elements of alarge
atomic radius are attracted to the tension region. Impu-
rities of asmall atomic radius are attracted to the com-
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pression region and are displaced from the tension
region. This process finally results in the separation of
the solid solution of aloying elements of different
kinds.

The diffusion migration of impurity atoms under
bending of the bar is described by the time-dependent
diffusion equation in the potentia V with the corre-
sponding initial and boundary conditions (in the polar
coordinate system)

19C _ O(cov)
_—— = AC+—, a<r<b,
D ot kT %)
C(r,0) = C,, C(at)=C; C(bt) = Cp.

Here, D is the diffusion coefficient of impurity atoms,
C, isthe average concentration of impurity atoms, k is
the Boltzmann constant, T is the absolute temperature,

and C, and C3 are the equilibrium concentration of
impurity atoms at the region’s boundary. The physical
meaning of the initial and boundary conditions for
problem (4) is obvious. At the initial time, the concen-
tration of impurity atoms is constant over the entire
region and is equal to the average concentration. The
boundary conditions mean that the equilibrium concen-
tration of impurity atomsisinstantaneously established
at the boundary and further remains constant in the dif-
fusion process.

Diffusion equation (4) shows that the migration of
impurity atoms is proportional to the gradient of the
potential V. This meansthat the constantsin the relation
for 0, do not affect the diffusion process. The equilib-
rium concentrations of impurity atoms at the bound-
aries depend on the constants entering into relation (2).
Simpletransformationswith the use of the expression for
0, lead to the following simpler variant of problem (4):

2
1(3_C:6_C+_1+0(6_C a<r<b,
Dot 3?2 ror

or’ 5)
C(at) = C

C(r,0) = C,, o, C(bt) = C2.
The dimensionless parameter a of the problem deter-
mines the ratio of the binding energy of an impurity
atom in the stress field of the crystal to the thermal-
motion energy:
_ _8M(b*-a%)dv
T3 Nk ©

The notation corresponds to the notation introduced
above. When deriving Egs. (4), we took into account
that Ao, = 0, because g, is a harmonic function. The
parameter a is dimensionless, because the moment per
unit length is considered in the accepted elastic model;
i.e., [M] = N the applied moment per unit bar length is
measured in units of force. This note also appliesto the
dimension of the components of the stress tensor.

VLASOV, FEDIK

The parameter a determines the contribution of the
stress field to the development of the diffusion process.
If o] < 1, the stress field in the accepted elastic model
isaweak perturbation of the diffusion flux of impurity
atoms. For |a| > 1, the stressfield associated with bend-
ing of the crystal makes the basic contribution to the
diffusion process. For |a|= 1, the diffusion fluxes of
impurity atoms due to gradients of the concentration
and potential V are comparable with each other. Let us
estimate the parameter a for the Zr-Sn aloy. Zirco-
nium alloys are used as materials for the shells of fuel
elements in nuclear reactors because of the successful
combination of physico-mechanical properties and
small cross section for the absorption of thermal neu-
trons. In the process of operation, the solid solution can
separate, which is accompanied by a change in the
propertiesof thematerial. Fora=1cm,b=15cm,M =
0.5x 103N, N=0.57 cm?*, dv =5.57 x 102 cm3, and
KT = 1.38 x 102 J, we have o = —1.16. These charac-
teristics are of course conditional. They are used to
illustrate the effect of the stress field associated with
bending of the bar on the kinetics of the separation of
the solid solution. The value M = 0.5 x 10° N for the
taken geometry of the bar provides the stress ggg =
20 MPaforr = a, i.e., at theinner boundary. Thisvalue
is quite reasonable.

In what follows, we take the dimensionless parame-
ter a = —1, for which problem (5) reduces to the more
simple form

10C _ 9°C

=— = —, a<r<b,

Dot o2 (7)
C(r,0) = C,, C(at) =C,, C(bt) = C:.

The stress field for the accepted dimensionless param-
eter changes the symmetry of the diffusion eguation.
The diffusion process in the curved bar (polar coordi-
nate system) is plane symmetric. The transformation of
the coordinate dependence increases the rate of varia-
tion in the concentration of impurity atoms. This con-
clusion follows mathematically from the form of the

diffusion equation. Indeed, for %—(r: <0, therate of vari-

ation in the impurity concentration %_(t: in Eq. (7) is

higher than that in Eq. (5). The process is accelerated
due to stresses associated with bending of the bar. In
this case, tensile stresses displace impurities of alarge
atomic radius, and compressive stresses accel erate their
migration to the boundary of their maximum value. For
the accepted elastic model, this process finally results
in the establishment of the equilibrium concentration of
alloying elements over the bar radius. The time depen-
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dence of the concentration field is found by solving
problem (7) and has the form

_ b(C; — Co) —a(Ch—C,) +1(C5—Cy)
b-a

C_CO

+ T%Zl%[(—l)“(c:f,—co) —(Cp—Co)l

mn(r—a) ] T°n°Dt[]

el (b—a)ﬂ (8)

X 9n

Thisrelation involves the equilibrium concentrations at
the inner and outer boundaries of the curved bar. Their
values are usually determined by the relation

C = CoepB 28V, ©
where g, takes the value

_ 4dMp2 2 2, ]
——WB) —a +2b°In-

II|r=a

tﬂ’
(10)
4M
Oul, -y~ N P_al+ 2a2|n%

at the respective region boundaries. Asis seen, the equi-
librium concentration of impurity atoms at the inner
boundary of the bar exceeds the average concentration
of impurity atoms due to tensile stresses. The equilib-
rium concentration of impurity atoms at the outer
boundary of the bar is lower than the average concen-
tration of impurity atoms due to compressive stresses.

Thus, relation (8) describes the separation of asolid
solution of substitutional impurities of a large atomic
radius. For such impurities of asmall atomic radius, the
mathematical formulation of the diffusion problem is
the same. The differenceisthat these impurities diffuse
in the opposite direction, i.e., from the tensile region to
the compressive region. When the solid solution sepa-
rates, the total concentration of impurity atomsis con-
served; i.e, they are only redistributed. If the concen-
tration of impurity atoms exceeds the solubility limit at
agiven temperature, regions of anew phase are formed.
Some impurity atoms leave the solution. In this case,
the solid solution is depleted. The concentration of
impurity atoms is maximal at the boundaries of the
region under consideration. Therefore, regions of the
new phase are also formed near the boundaries of the
material.

The characteristic size of a new-phase nucleus is
usually much smaller than the radial dimension of the
bar. For this reason, the diffusion processes are
described in the unbounded matrix when describing the
growth kinetics of the new phase. At the moving inter-
face of the new-phase region, the concentrations of
impurity atoms change stepwise: C = C, for the new
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phase and C = C, in the surrounding matrix. In this
case, theinequalitiesC, > C, and C, < C,, where C, is
the average concentration of impurity atoms, are valid.
The stepwise change in the impurity concentration at
the interface means that this interface instantaneously
capturesimpurities from the solid solution and supplies
them to the new phase with higher concentration. Inthe
accepted model, the new phase is formed on the inner
surface of the bar. Thisis caused by tensile stresses and
impurities of alarge atomic radius. Asan example, itis
sufficient to mention the formation of hydride phasesin
zirconium alloys. Hydrogen isformed in the parazirco-
nium reaction and migrates rapidly to the shell of afuel
element. At temperatures below 350°C, hydrogenisin
the solid-solution form. When temperature decreases,
hydride nuclel are formed. Their further growth occurs
due to the diffusion of hydrogen atoms. Hydrogenisan
interstitial impurity; i.e., it increases the lattice para-
meter.

The kinetics of the diffusion growth of the new
phase (after the formation of a nucleus) near the inner
surface of the bar is mathematically formulated as

19C _ 0'C, 1+adC
D ot or’

o> T
C(Rt) =C,, C(r,0) =C, r=Ry

11
C(oo,t) = C,, o
[
D il

r=R

Ca

(c,-C)SF = 02+
dt -

or

where R, > aistheradius of the new-phase nucleus and
Risthe current radius of the new phase. For thea = -1
case under consideration, problem (11) takes the more
simple form

19c _d'C
D ot arz,
C(Rt) =C,, C(r,0) =C, r=Ry
Cle1) = Gy, 12
_c,)9R - pC ., &
(C-Cagqt = Pogr bR

Further, we consider the case where the growth of
the new phase is limited by the diffusion supply of
impurity atoms. The radius of the new-phase region

varies as R(t) = B./Dt, where B is the dimensionless

parameter of the problem and is determined from the
mass-balance equation at the interface. For clarity, we
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use the fixed-interface approximation. We obtain the
quadratic equation

. 2B
-

for the calculation of the parameter 3.

C.-Go
Cl_CO

2C,
C.-C;

- =0 (13)

For a = 0, problem (11) takes the form

19c _o°Cc, 1aC

Dot ~ g2 ror’
C(Rt) =C,, C(r,0) =C, r=Ry; (14)
C(oo,t) = C,,
dR _ 0]
C,-C,)— = D=— .
( 1 Z)dt [BrDr:R

The stress field of the bar is disregarded in this formu-
lation of the problem. Writing the time dependence of
the radius of the new-phase region in the form R =

B,./Dt, wearrive at the following transcendental equa-
tion for the dimensionless parameter 3, [1]:

<5

2
Ko

Jm

C-Go

B = c ¢

(15)

where Ky,(x) and K,(x) are the modified Bessel func-
tions of the second kind of the zeroth and first orders,
respectively. The solution of Egs. (13) and (15) for arbi-
trary concentrations reveals the contribution of stresses
under bending of the bar to the kinetics of the growth of
the new phase.

Without lossin generality, weset C,=2 x 10~ atom,
C, = 10* atom, and C, = 3 x 10~* atom and, for these

VLASOV, FEDIK

concentrations, we obtain [1]

K, 3,
Bz—%_l =0 B, = % i 1j_D (16)
Tt "Kogh ZTH

Numericaly solving Egs. (16), we obtain 3 = 1.3 and
B, = 0.8. Therefore, the stress field associated with
bending of the bar accelerates the growth of a nucleus
of the new phase. The use of different concentrations
only changes the values of the parameters 3 and f3,.
With an increase in the characteristic size of the new
phase, the solid solution is depleted. The growth of the
new-phase region decelerates. Moreover, variations in
the new-phase volume are accompanied by the appear-
ance of stresses at the interface. These stresses change
the kinetics of the diffusion process. However, this
effect can be disregarded for small volume variationsin
the new phase and at early stages of the process.

Thus, bending of the curved bar induces stresses.
The self-equilibrium system of stresses givesriseto the
separation of the solid solution. Alloying elements of
large and small atomic radii (compared to the basic
metal) migrate to the tension and compression regions,
respectively. In other words, impurity atoms are redis-
tributed, while their total concentration is conserved. |If
the concentration of impurity atoms near the bar bound-
ary reaches the solubility limit at a given temperature,
nuclei of the new phase are formed. Their diffusion
growth is accompanied by the depletion of the solid
solution.
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In recent years, in addition to theinvestigation of the
electronic and optical properties of nanostructures [1],
the study of their mechanical properties has become
particularly important. Many works have been devoted
to the production of nanotubes and investigation of
their properties [2-8]. According to the data obtained
in[4], nanotubes can retain their elastic properties
under significant strains. The stress—strain state of nan-
otubes is usually calculated in the theory of elastic
shells [9]. In this case, the elastic moduli are deter-
mined in discrete models, where only the force interac-
tion between atoms forming a nanotube is taken into
account. However, the existence of monolayer nano-
tubes [5-8] makes it necessary to consider also the
moment interaction between atoms. Otherwise, the
atomic layer forming the nanotube would have zero
flexural rigidity, so that such a nanotube would be
unstable.

The am of this study is the development of a
method of determining the flexural rigidity of nano-
structures with alowance for the moment interaction
on the nanolevel. First, we obtain general formulas for
the moment interaction between atoms or molecules.
Then, we apply these formulas to the discrete model
[10, 11] to obtain the corrections associated with the
moment interaction. These corrections make it possible
to describe the mechanical properties of monolayer
nanostructures.
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We consider a crystal consisting of particles (atoms
or molecules) whose interaction depends not only on
their mutual arrangement in space but also on their
mutual orientation. This interaction is characterized by
the force vector and moment vector. The force and
moment of the interaction between crystal particles are
defined according to the theory of shells and rods [12,
13]. We consider two interacting particles (Fig. 1). In
the actual configuration, the positions and orientations
of the particles are specified by the radius-vectors r,
and r, and rotation vectors ¢, and @,, respectively. In
the equilibrium position, r, —r, =r,, @, =0, and @, =
0. Let us introduce the following notation: F, and M,
are the force and moment, respectively, acting on parti-
cle1lby particle 2; F, and M, aretheforce and moment,

respectively, acting on particle 2 by particle 1; and F

and M? are the external forces and moments, respec-
tively, acting on the ith particle. The moments M; and

M? are calculated with respect to the ith particle. Fol-
lowing the moment theory of elasticity [14], we write
the equations of motion for particle 1, particle 2, and
the system including both particlesin the form

mv, = F;+F;, (8;w,)" = M, +Mj,
myV, = F,+F5,  (6,[w,)" = M,+ M5,
(myvy +myvy)" = F+F3, 0

(ryxmyv,;+86; [, +r, xmyv, + 06, [w,)’
=1 XFi+MS+r,xFo+ M5,

Here, m; and m, are the masses of the particles, 6, and
0, are their inertia tensors, v, and v, are the velocities
of the particles, and ®, and ®, are their angular veloc-
ities. We emphasize that the moment balance equation
inasystem of bodies, in contrast to asystem of material
points, does not result from the force balance equation.
These equations are independent laws. Newton's third
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@ (b)

Fig. 2. Two interacting particles: (a) reference (equilibrium)
position and (b) actua position.

law for forces and its analogue for moments follow
from Egs. (2):
Fi+F, =0, rixF;+M;+r,xF,+M, = 0. (2)
The energy balance equation for the two-particle sys-
tem iswritten in the form

%[mlvl v, + o, [0, [,

+myV, [V, + @, [0, [w,] +UE

= F; v, + M} [, + F5 0, + M5 [, (3)

where U istheinternal energy of the system (the energy
of interaction between particles 1 and 2). For small dis-
placements from the equilibrium position in view of
Egs. (1) and (2), energy balance equation (3) reducesto
the form

U:F[j-;+|\/||j(, FZFl:—FZ,

M = Ml+%(r1_r2)xFl
1
= _Mz—é(rz—rl) xF,, @

1
€= r—ro"'érox((Pl"'(Pz)v

K = 0;—0,,

Here, M isthe moment acting on particle 1 by particle 2
about the middle of the segment connecting these par-
ticles. The vectors € and « on which the force and
moment, respectively, do work [see formulas (4)] are

r=r,—r,.

IVANOVA et al.

referred to as deformation vectors. In what follows, we
discuss the elastic deformation of the system. We
assume that the internal energy, force, and moment
depend only on the deformation vectors and are inde-
pendent of the velocities. Then,

LUy
oe’ ok’

We assume that the internal energy is a quadratic form
of the deformation vectors

U=%£DAE{3+£EBD(+%KECD(. (6)

F &)

The coefficients of quadratic form (6) are called the
elagticity tensors. In the linear theory of elagticity, the
elagticity tensors are constants such that the tensors A
and C are symmetric, while the tensor B is arbitrary.
According to formulas (5) and (6), the force and
moment have the form

F=AE+BO, M=gB+Clk. (7

For illustration, we consider the simplest model of
the moment interaction, where any particleis simulated
by two rigidly bound material points (Fig. 2). The fol-
lowing notation is used: a is the vector connecting two
material points within one particle and r,, is the vector
specifying the equilibrium distance between different
particles. Both vectors correspond to the reference
(equilibrium) configuration for the two-particle system
(Fig. 28). The actua configuration of the system is
shown in Fig. 2b. The interaction between material
points belonging to different particles is described by
the pure force interaction (the rigidities of the corre-
sponding bonds are denoted as ¢ and ¢'). However, the
total interaction between particles has both force and
moment components. In Fig. 2, the quantity a charac-
terizes the arm of the moment interaction. Whena —»
0, the moment interaction transforms to the pure force
interaction. Calculation of the force and moment acting
on particle 1 by particle 2 showed that these quantities
have form (7), where

A =Clii+Cjjj, B=0, C = Cxkk,
. lo a .
i = —, ==, k =ix ,
T a | ‘
, ®)
C, = 2(c+ccosa),
2
CI = 2c¢'sin’a, C, = E, tana = 2.
2 ro

As arule, atoms in a nanocrystal are simulated by
material points. The simulation of nanocrystal atoms by
particles with rotational degrees of freedom compli-
cates the theory of the interaction between particles.
However, this complication is justified, because it
enables one to describe a number of physical effects
that can be described only by multiparticle interaction
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potentials in a system of material points[8, 15]. In par-
ticular, the class of stable crystal latticesis extended. At
the same time, formulations of problems in the theory
of moment interactions are much simpler than those in
the approach using multiparticle potentials. As is
shown below, the inclusion of the moment interactions
makesit possibleto find an analytical expression for the
flexural rigidity of a nanocrystal that does not vanish
when the crystal consists of a single atomic layer.

As an example, we apply moment theory to the
model problem of the bending of a nanocrystalline
strip [10, 11]. We consider a two-dimensional single
crystal composed of N and K layersin they and x direc-
tions, respectively, so that K > N (Fig. 3). For theforce
and moment characterizing the interaction between
particles, wewill use expressions (7), where the elastic-
ity tensors are represented in the form

X X
A= c oo, crk XTIk xTo

Ird Ird Q)

B=0, C=C,kk.

Here, k is the unit vector perpendicular to the strip
plane. The coefficients C;, C; , and C, depend on the

structure and sizes of interacting particles. Formulas (9)
present the general form of the tensors A, B, and C in
the plane problem provided that the system consisting
of two interacting particles has two mutually perpen-
dicular symmetry axes. This conclusion can be easily
proved by using the symmetry theory of tensors[12].

In thisstudy, we consider only atriangular crystal lat-
tice. The particles that are described by relationships (9)
and satisfy the symmetry of a triangular lattice can be
simulated by a set of six material points situated at the
vertices of aregular hexagon. However, below, we will
use genera relationship (9) disregarding the internal
structure of a particle. For clarity, particleswill be rep-
resented as ovals, which makesit possible to show their
relative rotations (Fig. 3).

The particleslocated at crystal sides are subjected to
the forces Q; (Fig. 3) varying linearly when going from
one layer to another such that the total load is purely
moment:

N N
Q=0 YRQ =M. (10)
i=1 i=1

It is assumed that particles on the crystal sides cannot
rotate about each other; i.e., the crystal sidesrotate asa
rigid body. Only interactions between an atom and its
nearest neighbors in the crystal lattice are taken into
account (Fig. 3). The strain state of the crystal is deter-
mined by the distances a; ; between neighboring atoms
in each layer, the distances b ; between the nearest
atomsin the neighboring layers, and the rotation angles
¢; ; of the atoms. The indices i and j correspond to the
numbers of layersinthe x and y directions, respectively
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Fig. 3. Bending of the nanocrystalline strip.

(Fig. 3). The distances between the neighboring layers
a
T
In the undeformed state, the crystal lattice consists of
equilateral triangleswiththesidea=b=a,; therotation
angles ¢, ; of the atoms are assumed to be equal to zero.
It is easy to check that, in the undeformed state, the

are determined from the relationship hf; = b} -

= @,and Rj:(j—l)ho,wherea

is the distance between the jth and first atomic layers,
are valid. Writing the equilibrium equations for the
atoms, we arrive at the system of equations whose solu-
tion has the form

relationships h

4./3M5(2j —N=1)

Ab ;=0 83 = E e IN—DN(NT D)’
pay Ba, (D
. 2 2
L= -1 , = —
(I)I,j (I )a a ho(N—l)

It is seen from relationships (11) that, under the defor-
mation of the crystal, the layers of atomsin they direc-
tion remain rectilinear, the angles between any neigh-
boring atomic layers are identical, and the rotation
angles of the atoms coincide with those of the corre-
sponding layers. Since the problem of pure bending is
considered, the shear strain is equal to zero. Thus, the
coefficient C] characterizing the shear rigidity is
absent in the solution of the problem and cannot there-
fore affect the flexural rigidity.

To determine the flexural rigidity of asingle crystal
strip, we mentally cut the crystal by a vertical straight
line AB (Fig. 3). According to formulas (11), the total
normal force acting from one part of the crystal to
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another is equal to zero, and the total bending moment
M* has the form

M* = My + C,a(3N—=1). (12)

The flexura rigidity is defined as the ratio of the
moment M* to the curvature 3

st M* 2d

DE —, B==.

B P

The substitution of formulas (11) and (12) into Eg. (13)
gives

(13)

3
D = %O(N—l)N(N+1)+9-"’23°(3N—1). (14)

Thefirst termin (14) coincides with the formulafor the
flexural rigidity obtained in [11], where asimilar prob-
lem was considered disregarding moment interactions
between crystal particles. The second term is the cor-
rection caused by the moment interaction between the
particles. The first term in formula (14) for N = 1 van-
ishes so that the flexural rigidity is completely deter-
mined by the quantity C, characterizing the moment
interactions between crystal atoms

N=1: D =C,a, (15)

When N — oo, the second term in Eq. (14) becomes
negligibly small compared to thefirst term, and thefirst
term tends to the value taken in the macroscopic theory
of plates

E_H?
12

e - 2

/\/é 1
where E,, is the Young modulus of the infinite crystal

and H % Nh, is the macroscopic thickness of the
strip.

Thus, in this study, we found the general formulas
describing the moment interaction between atoms or
molecules under linear elastic deformation. These for-
mulas are illustrated in application to the simplified
problem of the bending of atwo-dimensiona nanocrys-
talline strip. However, these formulas can be similarly
used in the general three-dimensional formulation. In
addition, it is shown that, by including the moment
interaction on the nanolevel, the elastic deformation of
mono- and multilayer nanostructures can be commonly

N_ow DoD,= (16)
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described, and the correction to the flexural rigidity that
is honzero for monolayer nanoobjects can be calcu-
lated.
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On Linearized Equations of Statically Definable Relationships
in Ideal-Plasticity Theory
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Linearized equationswere consideredin[1, 2, 5] for
the 2D ideal-plasticity problem and in [3, 4] for the 3D
problem under the full-plasticity condition. Below, we
consider linearized equations of ideal-plasticity theory
with statically definabl e relationships different from the
full-plasticity conditions. Thelinearized equationswith
statically definable relationships are shown to be of the
hyperbolic type.

1. Let statically definablerelationshipsinideal -plas-
ticity theory be written as

f4(Ny, Nz, NININ,,

_ 2
v+ fi(ng, Ny ngng, Ty

Q
x
|

— 2 —
oy = v+ fy(ng, Ny, ngn;, Ty, = 5Ny, Ny, Ng)NyNg,

0, = v+ fsn,ny, ns)ni T,, = fg(ny, Ny, ng)ngng.
(1.1)
_ 1 2 2 2
V - 0_§(f1n1+ f2n2+ f3n3),
(1.2)

1
o= §(0X+0y+02),
nf+n§+n§= 1

The full-plasticity condition [3] follows from
Egs. (1.1) for
f.o= f. (1.3)
The initial-state values are denoted by the super-
script 0, and primed quantities refer to the excited-state
components. Let us set

o = oy + 0. (1.4)
It is assumed that
n=ns=0 ny=1 (1.5)
Chuvash Sate University,
Moskovskii pr. 15, Cheboksary,

428015 Russia

According to Egs. (1.1) and (1.5), we have

oy =0y =V, 0, =v+f3 13 =0 (16
From Egs. (1.2) and (1.4), it follows that
ny = 0. (1.7
According to Egs. (1.1) and (1.4)—1.7), we obtain
, of; . of;
=V =y ''= —n! + —n.
O-X v, oy v, z anlnl anznZ’ (18)
L v g0 v 0
Ty =0, 1, = fgny, T,, = f5ny, (1.9)

where derivatives and functions (1.8) and (1.9) with the
superscript zero are taken for values (1.5).

From Egs. (1.8) and (1.9), it follows that

_0fs

L . _9f3 /.0 0
o, = At,,+ Bt A=—/fg, = — [fg.
o2l "1 10)

e on,

From the equilibrium equations

00, 0Ty 0Ty _ o
ox 9y 0z
dt,, , 00, 01,
—+ L = 1.11
ox ¥ oy ¥ 0z 0. (1.11)
Oty , 0 00, _
ox o0y 0z
and relationships (1.8)—(1.10), we obtain
ov' 0T, _
X oz 0.
ov' , 01y, _
3y +=2 =0, (1.12)
aLXZ+ aLyZ+ oV + AaTXZ+ |3aTyZ =0.

ox o9y o0z 0z 0z
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Introducing the function W such that

Tl :a_\lv T‘ :a_\lv V':_a_\lv
*oo9x P oy’ 0z

and using Egs. (1.12) and (1.13), we arrive at the wave
equation

2 2 2
W, W _ o'W,

(1.13)

°W  _0°W

o af o7 aXay+ Byaz = 0. (1.14)
It isevident that, for
n(f:l, ngzngzo; ngzl, n2=ng=0 (1.15)

we obtain wave equationsthat can be derived according
to Egs. (1.5)—1.15) by the corresponding permutation
of subscripts.

2. To define the relationships for the associated flow
rule, we compose the functional

- 2 2 2
® = o;g;—(ecfny+€,fon; +€,f5n;5

+2¢,,f,nn, + 2¢,,fsn g + 2¢,,f5N3N,) @1
—V(E &+ €) + (NG + N3+ 1),

fi = fi(ng, Ny, ny),

where g;; are the components of the plastic-strain rate.
Relationships (1.1) follow from the extremum condi-
tions

00 _
% - 0 (2.2)
for functional (2.1).
The extremum conditions
b _
a_m = (2.3)

for functional (2.1) provide the following relationships
of the associated plastic-flow rule:

a(f ) of, » 0f3 2 6(f4n1)
& an, T Svan, 2t gy Mt 285 N,
a(fsn,) ofs
+ 28xza—nl ng + zeyza_nl NaNg = 2Ny,

0fy o, 0(fam)  9fs o, 9(fany)
&gn, & g, T Egn, et 28T M
afs d(fgny) -
+25xzan ning + 2€, 6;22 N3 = 2Un,,
af, » 0f, , 9(fzn5) of,
s><a_nznl+€ya_n3 2t E; an3 +2€xya n1"\2
a(f5ns) A(fgNs)
+28X2ﬁn1+28y2 6233 N, = 2unN,.

IVLEV, MIKHAILOVA

Relationships (2.4) must be complemented by the
incompressibility condition

exte +e, =0 (2.5)

Setting

g = £ +€| (2.6)

ij

and using relationships (1.5) and (1.7), we reduce
Egs. (2.4) for theinitial state to the form

Oa_fg 0 a_fg =0

on,  “ong ’

0fs  o0fq

23 5 = 2.7
3, + T 0, 2.7

e 3+2f:ﬂ = 2’

According to Egs. (1.5), (1.7), and (2.4)—(2.6), the
perturbation components satisfy the relations

ofy S, o°fy

ID 1 0 — (VN
Szé—n'—l'i'szg ni 1+anlan2n%+28xzf5 = 2p7ng,
2.8)
A% O | 8%f0 [ ol
eZanz £, E@nlanz nz ng+28 = 2UNy,
@fa} (D Da f3 ' a f3 'D
€2Chn, T 2" O € ot aman, i = 2K
gxte,+e, = 0. (2.9)
Passing to the velocity components
S TR T
*ox' Y o9y’ P 0z’
(2.10)
¢ 1[@u oW _1lpv GV\D
= 50z x> BT 2057 ' ot
and setting
u=w+u, v=vl+v, w=wl+w (2.11)
in Egs. (2.8)«2.10), we obtain
ou' , ow aw 00W _
oz Tox "o Mk TR0
ov', oW  oow , 0dW (12
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where

2.0 2.0
T, o

1

20 aw , 01w
‘0ON0Nn; 0x - gn3 Oy
From Egs. (2.9) and (2.12), wefind
2 2 2 2 2
oW oW _ow 6vv’+Bavv’
x> ay* 97 0xdz  0yoz

2 2
W, 9°Wh
—ZHOEQ-— + —
Dax2 ayZD

H =

_ o fotw  , °f3 o'w | °fatwd
‘Oon? ax®  OMON0Xdy  gn? ay*[

DOKLADY PHYSICS Vol.48 No.8 2003

where L° is defined according to Egs. (2.7).

The equationsfor perturbed stress components (1.14)
and those for the velocity w' have coinciding character-
istics.
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