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Times of signal propagation between given sources
and receivers contain valuable information on the prop-
erties of the medium. In particular, important methods of
investigating the Earth, such as seismic tomography [1],
acoustic tomography [2, 3], and thermometry of the
ocean [4], are based on precisely measuring signal
propagation times. In these and numerous other appli-
cations, large-scale inhomogeneities of a medium (and,
in the case of investigating the ocean, their variations
with time) are of interest. At the same time, an effect of
small-scale random inhomogeneities that are not
resolved by data inversion represents noise. In order to
suppress fluctuations associated with small-scale inho-
mogeneities, the method of averaging with respect to
either the radiation time or positions of corresponding
points is employed. Apart from fluctuations, random
inhomogeneities generate systematic distortions of the
arrival time, i.e., differences between the signal aver-
age velocities in deterministic and fluctuating media.
These differences were studied by numerical methods
for a number of specific cases and turned out to be
rather substantial in the acoustical tomography of the
ocean [5–7] and seismology [8]. The analytical studies
[9–11] are limited to the case of statistically homoge-
neous media without regular refraction. This excludes
application of the results obtained in [9–11] to prob-
lems of propagating seismic waves, sound in the
ocean, and radio waves in the ionosphere for long dis-
tances.

In the present study, we develop a theory that allows
us to calculate statistical moments of signal arrival
times from known fluctuation moments of a medium
that, along with small-scale fluctuations, has a large-
scale structure. The wave frequency is assumed to be
sufficiently high in order to allow the application of the
ray theory to small-scale inhomogeneities. For simplic-
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ity, the medium is assumed to be isotropic and free of
dispersion.

Let a source and a receiver be located at the points
rS = (xS , 0, zS), rR = (xR, 0, zR), and the wave velocity
C(r) be represented in the form

where ||cz || @ ||cx || and the parameter ε (0 ≤ ε ! 1) char-
acterizes the smallness of deviations of C from the
unperturbed velocity c. Such a choice of the model of
the medium is dictated by the three following reasons.
First, after averaging over small spatial scales, in geo-
physical applications, the medium becomes close to a
vertically stratified one. Second, propagation times are
much more sensitive to horizontal gradients of C in the
vertical plane that contains the source and the receiver
than along the normal to this plane [12]. Third, numer-
ical realizations of the ray theory in a two-dimensional
inhomogeneous medium turn out to be rather efficient
and are widely used. Below, we consider as known all
quantities related to a ray in an unperturbed medium,
including the trajectory r0 = (x, 0, z0(x)), the sliding
angle χ formed with the plane z = const, and the deriv-

ative p =  with respect to the angle χS of the ray

exit from the source. All these quantities, including the
derivative p used for expressing the field amplitude in
the ray [13], are calculated with the help of standard
ray-geometry codes adapted to a two-dimensional
inhomogeneous medium. We also assume for definite-

ness that xS < xR and |χ| < , i.e., the wave propagates

towards increasing values of x.

In order to calculate the terms Tj (j ≥ 1) caused by
fluctuations and entering into the expression T = T0 +
εT1 + ε2T2 + … that describes the signal propagation
time along the ray, we employ perturbation theory for
an eikonal (PTE) [14]. This theory solves ordinary dif-
ferential equations for Tj, which follow from the
eikonal equation (∇ T)2 = c–2. The theory leads to the

C r( ) c x z,( ) εc1 r( ) ε2c2 r( ) …,+ + +=
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following linear (T1) and quadratic (T2 = T21 + T22 + T23)
corrections:

(1)

Hereinafter, except as otherwise noted, the integration
occurs along the unperturbed ray, i.e., for y = 0, z =
z0(x). The contributions of terms T1 and T21 to the arrival
time are due to fluctuations of the wave velocity along
the unperturbed ray, whereas the contributions of terms
T22 and T23 are due to the variation of the ray trajectory.
In this case, T22 and T23 describe the so-called horizon-
tal refraction effect, i.e., escaping of the ray from the
plane xz, and the effect of ray deformation in this plane,
respectively. To calculate T23 , we apply the method
used in [12] for analyzing the horizontal refraction.
Thus, we can derive from formula (1) the explicit for-
mulas for quadratic corrections in terms of the fluctua-
tions ∇ C:

(2)

It follows from formulas (1) and (2) that, in accordance
with the Fermat principle, the corrections to the propa-
gation time, which are associated with small ray defor-
mations, are negative and quadratic with respect to per-
turbations.

On the caustic, p = 0 [13], which results in diverging
values of T23 if the ray turns out to be tangent to the
caustic on the way from the source to the receiver. The
divergence testifies to the inapplicability of the PTE in
the case of the existence of caustics. To find results that
are applicable in the case of long-range propagation, we
use the perturbation theory for rays (PTR), in which
perturbations of the ray trajectory are expanded in pow-
ers of a small parameter:

For a ray connecting the source and the receiver,
zj(xS, R) = 0 as j ≥ 1. In the PTR, the number of contacts
of the ray with the caustic is unlimited. However, it is
assumed in this case that the receiver does not lie on the

Tα
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caustic of the rays outgoing from the source. Other-
wise, the perturbations are singular, and the PTR is
inapplicable for the family of the rays forming the
caustic.

Now, neglecting the terms O(ε3) and allowing for
additivity of the contributions of the horizontal refrac-
tion and perturbations in the xz plane to the signal prop-
agation time, we may apply the PTR to the two-dimen-
sional inhomogeneous medium. The differential equa-
tions of a ray [13, 14] can be represented in the form of
a closed nonlinear equation of the second order with
respect to z(x):

(3)

From Eq. (3), it follows the equation for trajectory per-
turbation

(4)

where the coefficients are calculated in the unperturbed
ray. Here,

(5)

If the unperturbed trajectory depends on a certain
parameter b, e.g., on the coordinate of the source or on
the ray emission angle, then, for the derivative f(x) =

, differentiating Eq. (3) with respect to b yields

the equation

(6)

One of the solutions to Eq. (6) is the quantity p intro-
duced above. By virtue of the reversibility of rays,
which follows from the reciprocity principle (see [13]),

the derivative q(x) =  with respect to the sliding

angle χR at the point rR is also the solution to Eq. (6) for
rays outgoing from this point towards decreasing val-
ues of x. The solutions q(x) and p(x) are linearly inde-
pendent. Indeed, p(xS) = q(xR) = 0 and p(xR) ≠ 0, since
the receiver does not lie on the caustic. For the Wron-
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skian of the two solutions, we obtain from Eqs. (5)
and (6)

(7)

The solutions to inhomogeneous equation (4) can be
simply expressed in terms of the solution to the homo-
geneous equation (6). Taking into account the boundary
conditions for the values of z1 in the source and
receiver, we find for the perturbation of the ray tra-
jectory

(8)

It follows from formulas (7) and (8) that z1 is certainly
limited along the entire ray and has no singularities or
caustics. It is worth noting that the choice of linearly
independent solutions to Eq. (6), which enter into the
Green’s function G of Eq. (8), is arbitrary. We use the
solutions p and q, since they have a clear physical sense
and can be calculated using standard ray codes.

The signal propagation time along a ray having the
trajectory r = (x, y(x), z(x)) is

(9)

Here, the integration is performed along this ray. We
now expand the trajectory in powers of the perturba-
tion. After a number of transformations based on
Eq. (4) and on the identities

(10)

valid for arbitrary smooth vector functions F(r) such
that F(rS) = F(rR) = 0, we again arrive at the relationship

Here, T1, T21, and T22 are given by the same formulas (1)
(for Tα, A1, and A21) and by formulas (2) (for A22),
which we deal with in the case of PTE). For the contri-
bution T23 to the signal propagation time perturbation
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(which corresponds to the ray deformation in the xz
plane), we obtain

(11)

Thus, the PTR reduces finding fluctuations of signal
propagation times in a three-dimensional inhomoge-
neous medium to calculating integrals along an unper-
turbed ray. The practical advantage of formulas (1), (2),
(8), and (11) compared to the results obtained by other
methods (see [3, Appendix 2; 15]) consists in the fact
that calculating the integrands does not require solving
any supplementary differential equations.

The condition of applicability of the PTR consists in
the smallness of the ray deformation z1 being calculated
by formula (8) compared to the characteristic spatial
scale of inhomogeneities in the medium along the z
coordinate. Furthermore, the maximum distance of the
perturbed ray from the xz plane must be small com-
pared to the characteristic spatial scale of inhomogene-
ities in the medium along the y coordinate. The latter
condition has been thoroughly discussed in [12]. We
can show that, for rays having no caustics, when both
the PTR and the PTE are applicable, formulas (1) and
(2) for T23 are equivalent to formulas (8) and (11).
Therefore, the results of the two different perturbation
theories are identical in this case.

We now assume that the quantity C is a random
function. We consider that the wave velocity fluctua-
tions arise as a result of small (proportional to ε) fluctu-
ations with a zero average value of medium parameters
(e.g., temperature, pressure, or composition). In this
case, 〈c1〉  = 0. The higher terms in the expansion of C in
powers of ε are stipulated by the nonlinear dependence
of the velocity on parameters of the medium so that, in
the general case, 〈c2〉  ≠ 0. We consider the fluctuations
to be locally statistically homogeneous and small-scale
in the sense that the variation of c can be ignored at
distances where strong variations of the correlation
function

(12)

with respect to its first argument r1 – r2 take place. Vari-
ations in the space of one-point moments such as 〈c2〉
and also of the correlation function K with respect to its

second argument  are assumed to be large-scale.

No constraints are imposed on the relative variation of
the fluctuation intensity.

The formulas obtained above predict fluctuations of
the signal arrival time for each realization of C and
make it possible to calculate different statistical

T23
1
2
--- c 1– z1a x.d
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r1 r2+

2
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moments of T using the known moments of C. Here, we
restrict our consideration to both the average value 〈T 〉
and the dispersion  of the signal propagation time to
distances much longer than the fluctuation correlation
radius. Under the above assumptions, the signal arrival
time perturbations linear in ε and quadratic corrections
introduce basic contributions to the dispersion and into
the deviation of the arrival time from the unperturbed
signal, respectively:

(13)

Thus, we obtain from formulas (1) and (2)

(14)

Passing in (14) to integration over difference and sum-

mary coordinates x – x' and  and taking into

account that the fluctuations in the medium are small-
scale, we find in the principal order with respect to ε

(15)

When calculating the integral characteristic D1 for fluc-
tuations in the medium, the integration is performed
along a straight line. The last of expressions for D1
in (15) refers to the special case of isotropic fluctua-
tions in the medium, when K(R; r) = KI(|R |; r). Below,
we need two further integral characteristics of fluctu-
ations

(16)
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In the isotropic case, the terms D1, 2, 3 do not depend on
the direction of the tangent to the ray, so that D2 = D3 .
In a statistically homogeneous medium, D1, 2, 3 are inde-
pendent of coordinates.

Formulas (1), (2), (8), and (11) for T21, T22 , and T23
are averaged similarly to the derivation of formula (15).
As a result, we have

(17)

When the PTE is applicable, the last term in square
brackets of (17) can be replaced by

(18)

It is worth noting that M1, 2 < 0. Formula (17) describes
[with an accuracy to the terms O(ε3)] the deviation of
the average signal propagation time in a random
medium from the propagation time in the absence of
fluctuations. If we eliminate the term containing Ò〈c2〉
on the right-hand side of (17), then the expression
obtained represents (with the same accuracy) the differ-
ence between the average arrival time and the arrival
time in the averaged medium. We would like to empha-
size that due to random deformations of a ray, the aver-
age propagation time differs from the propagation time
in an unperturbed and averaged media, even when wave
velocity fluctuations vanish along an unperturbed ray. If
the fluctuations in the medium are caused by several
uncorrelated random processes, then, by virtue of for-
mulas (15)–(18), the contributions of these processes to
both the dispersion of arrival times and the deviation of
the average arrival time from the unperturbed arrival
time are additive.

In the absence of regular refraction (c = const), for-
mulas (15) and (17) are transformed into the results
of [9] (in the isotropic case) and of [11] (in the special
case of anisotropy considered there). In the general
case, formulas (15) and (17) reduce the problem of
determining dispersion and the systematic shift (bias)
in signal travel time, which are caused by fluctuations
in environment parameters, to that of calculating cer-
tain definite integrals. Here, we imply integrals of
quantities that characterize three-dimensional random
inhomogeneities in a two-dimensional inhomogeneous
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medium. These integrals are calculated along an unper-
turbed deterministic eigenray.
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According to current concepts, Fe1 – xO wustite
enters into the composition of the Earth’s mantle both
as one of the components of (Mg, Fe)O magnowustite
and, perhaps, as an individual phase. Therefore, knowl-
edge of its properties at high pressures and tempera-
tures is of great importance not only for solving prob-
lems of materials science but also for geophysics and
geochemistry when interpreting data on the composi-
tion and structure of deep geospheres. In addition, the
study of interactions between wustite and metallic iron
is important for explanation of the formation and com-
position of the Earth’s core, where iron–nickel alloy
must contain “light” elements, e.g., oxygen as impuri-
ties [1]. For these reasons, wustite is extensively stud-
ied both experimentally and theoretically.

Since Fe is a transition element, the properties of
wustite result from the magnetic and chemical interac-
tions between unpaired 3d electrons in iron atoms.
These interactions are responsible for the polymorphic
transformations in wustite with increasing pressure,
which are absent in compounds such as MgO periclase.
Under normal conditions, wustite has the cubic NaCl-
type structure (hereafter, the structural type B1). Below
the Néel point (198 K), the FeO structure is no longer
strictly cubical, because it acquires rhombohedral sym-
metry that is not associated with the displacements of
atoms from the regular sites in the cubic lattice [2]. This
symmetry appears due to the ordering of magnetic
moments along one of the third-order crystallographic
axes. With an increase in pressure, rhombohedral dis-
tortion of the cubic structure in wustite is observed.
Such a distortion is associated with the extension of a
cubic cell along one of the three axes (structural type
rB1) [2–4]. The main indicator of the distortion degree
of the structure is the rhombohedral angle α, which is
equal to 60° in the undistorted cubic structure and less
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Moscow, 119899 Russia

* e-mail: kesha_kantor@aport.ru
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than 60° in the rB1 structure. This transition is attrib-
uted neither to the discontinuity in density nor to essen-
tial transformations in the structure and belongs to sec-
ond-order polymorphic transitions. At room tempera-
ture, the rhombohedral distortion appears at about
15 GPa [2, 4]. At pressures 100–150 GPa (the available
data are widely spread), FeO transforms to a new phase.
At present, there is no commonly accepted opinion on
the structural type of this phase. The structural type
NiAs (B8), anti-NiAs (aB8, where the Fe and O atoms
are replaced by the As and Ni atoms, respectively), or
even complex polytypes consisting of alternating layers
of the B8, aB8, and B1 structures are usually consid-
ered [5]. The very recent experimental data indicate in
favor of the B8 structure [2]. The summary phase dia-
gram of FeO is available in [3].

Under normal conditions, wustite is not entirely sto-
ichiometric. The iron deficit in it is equal to 0.03–0.10.
However, when pressure and temperature increase, the
stoichiometry of wustite improves. Therefore, under
high pressures, deviation in the FeO composition can
be neglected when calculating the FeO properties. In
addition, at the Earth’s mantle–core interface (in equi-
librium with metallic iron), wustite must exist in the
strictly stoichiometric form.

In order to simulate the Fe–O system, various meth-
ods and approaches are applied. In this study, computer
simulation of the structure and properties of wustite are
carried out by the atomistic method. In this method, in
accordance with the classical crystal-chemistry
approach, atoms are characterized by some effective
properties (charges, radii, etc.). The interaction
between such atoms determines the structural energy
Estr that is the sum of Coulomb forces and the energy of
short-range repulsive and attractive potentials defined
in an explicit form. Among available programs, the
GULF software package for Linux [6] is the most elab-
orate for these calculations in terms of both capabilities
and operation speed.

The parameters of interatomic interaction potentials
were chosen by fitting the calculated crystal properties
(elastic constants C11, C12 , and C44 and the lattice
003 MAIK “Nauka/Interperiodica”
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parameters) to the experimentally determined proper-
ties of FeO at 298 K [7] by minimizing the atomization
energy [8]

Eat = Estr + Etr, (1)

where Etr = ∆E(O) + ∆E(Fe) is the energy of the charge
transfer from a cation to an anion. To evaluate Etr, the
ionization energy was approximated by both the fourth
power function [9]

and the parabola 

To estimate ∆E(Fe1+), we used the following data about
the ionization potentials IV of valence sd states [10]:

IV(Fe+) = 7.13 eV and (Fe) = 24.09 eV.

The structural energy of the B1 and rB1 phases was
calculated with the pair Buckingham potential VB for
interactions of O ions with each others and with Fe
ions, pair Morse potential VM for partially covalent
interaction between Fe and O ions, and three-particle
potential Vθ for interaction in O–Fe–O triples of atoms.
These potentials have the form

, (2)

where rij is the distance between the ith and jth atoms
and the optimum parameters are AO–O = 22764 eV,
ρO−O = 0.149 Å, CO–O = 22.88 eV Å6, AFe–O = 342.98 eV,
ρFe–O = 0.389 Å, and CFe–O = 0;

(3)

where DFe–O = 0.097 eV, aFe–O = 0.247 Å–1, and r0 =
2.07 Å; and

(4)

where JO–Fe–O = –16.07 × 105 eV, LO–Fe–O = –0.105 Å–1,
MO–Fe–O = 12.81 × 105 eV,  is the average Fe–O dis-
tance in a given triple of atoms, and θ is the O–Fe–O
angle (θ0 = 90° is the equilibrium angle).

The three-particle potential is applied in form (4) for
the first time and enables us both to reproduce the devi-
ation from the Cauchy relation (C12 = C44) and to take
into account the interatomic-distance dependence of
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the potential in addition to the dependence on the angle
between the bonds. This makes it possible to describe
both the experimentally observed decrease in C44 with
increasing pressure and the rhombohedral distortion of
the cubic lattice, i.e., the B1–rB1 phase transition.

For the B8 and B1 phases, the minimum in the atom-
ization energy Eat(FeO) corresponds to the ion charges
±1.41e0 and ±1.80e0 , respectively. The atomization
energy obtained for the B1 phase of FeO is equal to
11.96 eV (its experimental value is 9.67 eV).

In the B8 structure, as well as in the B1 structure, Fe
ions have octahedral coordination. However, octahe-
drons have not only common edges, but also common
faces, forming columns along the hexagonal axis. This
indicates that the Fe–Fe interactions in the B8 phase are
much stronger than those in the B1 phase. In addition,
since iron can transit from the high-spin state to the
low-spin state at high pressures, the effective charges of
ions in the B8 phase are expected to be much smaller
than those in the B1 phase. Therefore, in order to
describe the B8 phase in FeO, we used another set of
interatomic potentials, which were found using the
minimum experimental data concerning the B8 phase
in FeO. At present, it is only reliably known that, at the
point of the B1–B8 transition (~100–120 GPa), volume

decreases by about 2% and the  ratio for the hexago-

nal cell is equal to 1.985 [4]. Based on these data, we
found the following set of the interatomic potentials for
the B8 phase in FeO: (i) Buckingham potentials (2)
with the same parameters of the O–O interaction,
AFe−O = 317.39 eV, ρFe–O = 0.389 Å, and CFe–O = 0;
(ii) Morse potentials (3) of the partially covalent Fe–O
interaction and the Fe–Fe interaction with the parame-
ters DFe–O = 0.245 eV, aFe–O = 0.675 Å, r0 = 2.07 Å,
DFe−Fe = 1.14 eV, aFe–Fe = 1.11 Å, and r0 = 2.48 Å.

To compare the enthalpies of the B1 and B8 phases
in FeO, a difference of 11.17 eV between the energies
of the charge transfer from Fe to O must be subtracted
from the structural energy of the B8 phase. The atomi-
zation energies of both phases as functions of the effec-
tive charges on ions are shown in Fig. 1.

Using the above sets of interatomic potentials, it is
possible to calculate the P–V diagram for FeO (Fig. 2).
To this end, one often uses the Birch–Murnagham
equation (it is generally a fourth-order equation) [13].
For most compounds, it is sufficient to apply the third-
order equation:

(5)

where , V0 is the volume at zero

pressure, and V is the volume at pressure P.

c
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If we take K' = 4, then Eq. (5) transforms to the sec-
ond-order equation 

(6)

The parameters of the equation of state from the
known P–V data can be found by the EoSFit program
[13]. Some experimental and theoretical parameters of
the equation of state of FeO are listed in the table. The
recent experiments show [11, 12] that K' is not equal to
4 at normal temperatures; i.e., it is necessary to apply
the third-order equation of state (5). This conclusion is
corroborated by our calculations. However, the experi-
ment for 1500 K [4] demonstrates that the second-order

P 3K0 f E 1 2 f E+( )
5
2
---

.=

∆Ö, eV

P, GPa
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0
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B1 phase
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q, e0

Fig. 1. Atomization energies of the B1 and B8 phases in
FeO vs. the effective charge of the ions. The insert shows
the energy diagram of the polymorphic transitions in FeO:
the difference in enthalpies (solid thick line) between the B1
and rB1 phases and (dashed line) between the rB1 and B8
phases.
equation of state (6) quite accurately describes the P–V
diagram of the B1 phase for high temperatures.

The calculated pressure dependence of the elastic
constants of wustite (Fig. 3) reproduces experimental
data well, including the “softening” of C44 with an
increase in pressure. At a pressure of about 39 GPa, the
transition of wustite from the cubic phase to the rhom-
bohedral phase is accompanied by a steplike change in
the elastic constants and a continuous change in the vol-

ume and bulk modulus K = (C11 + 2C12). In the static

approximation (at T = 0), the points of polymorphic
transitions are found from the condition that the enthal-
pies of both phases are equal to each other. The insert in
Fig. 1 shows the differences in enthalpies between the
B1 and rB1 phases, as well as between the rB1 and B8
phases. It is seen that the slopes of these curves are con-
siderably different, because the B1–rB1 and rB1–B8
transitions are second- and first-order transitions,
respectively. In this case, the enthalpy of the rB1 phase
is the enthalpy of the relaxed structure with α ≤ 60°
(Fig. 4). Comparing the insert in Fig. 1 with the insert
in Fig. 4, one can note the following interesting feature.
Although the rhombohedral distortion of the B1 phase
starts at a pressure of 39 GPa, the enthalpies of the B1
and rB1 phases virtually coincide with each other up to
a pressure of 60 GPa. However, this cannot be treated
as the coexistence of the two phases, because almost
zero difference between enthalpies is characteristic for
second-kind phase transitions.

Thus, the calculations demonstrate that the atomis-
tic computer simulation of crystal properties has rather
high prediction ability even in static calculations.

1
3
---
14

13

12

11

10

9

8

7
0 20 40 60 80 100 120 140

V, cm3 mol–1

ê, GPa

Fig. 2. P–V diagram in FeO. Solid line is our results (the point of discontinuity at 100 GPa corresponds to the polymorphic rB1–B8
transition); crosses and circles are experimental data for Fe0.946O (T = 298 K) [11] and s, Fe0.94O (T = 300 K) [12], respectively;
and squares and triangles are experimental data for the B1 and B8 phases in Fe0.91O (T = 1500 K) [4], respectively.
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Calculated and experimental parameters of the Birch–Murnagham equations of state given by Eqs. (5) and (6) for FeO

Parameter

B1 phase
B8 phase,

our calculationour calculation
Fe0.946O,

298 K [11]
Fe0.94O,

300 K [12]
Fe0.95O,

1500 K [4]
FeO, 0 K

(theory) [2]

V0, cm3/mol 12.172 12.03 12.04 12.04 11.99 12.045

K0 158.92 153.0 125.41 128.39 193 130.84

K' 3.32 5.55 3.32 (4.0) 3.72 (4.0)
Moreover, the use of the methods of molecular dynam-
ics in the future will make it possible to find the com-
plete and rather reliable P–V–T state diagram of FeO.

ë44

ë12

ë11

K

600

500

400

300

200

100

0 10 20 30 40 50 60 70 80 90 100

P, GPa

Elastic constants, GPa

Fig. 3. Pressure dependence of the elastic constants C11,
C12 , and C44 and the bulk modulus K. Discontinuity of the
elastic constants at 39 GPa for the continuous variation in
the bulk modulus corresponds to the second-order polymor-
phic B1–rB1 transition. Triangles, circles, and squares are
the experimental data under normal conditions [7], X-ray
diffraction data [12], and ultrasonic measurements [14],
respectively.

60

59
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Fig. 4. Pressure dependence of the rhombohedral angle α
for the rB1 phase, where α = 60° corresponds to the undis-
torted cubic structure.
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INTRODUCTION

The application of resonance radiation to intensify
combustion processes has been studied for a long time
[1–6]. At present, three possible methods of initiating
combustion by laser radiation are discussed. First, the
local heating of a gas due to radiation absorption by
molecules (SF6, NH3, etc.) specially introduced into a
mixture [1, 2]. Second, the photodissociation of mole-
cules by resonance laser radiation, which leads to the
formation of free radicals [4]. Third, the generation of
a plasma in the field of a narrow intense laser beam
(~1010 W cm–2) [5, 6]. However, all these methods have
considerable restrictions and low efficiency [5].

In this work, we discuss another method of initiating
combustion, which is based on the intensification of
chain reactions when exciting electron degrees of free-
dom of O2 molecules by laser radiation.

FORMULATION OF THE PROBLEM
AND FEATURES OF EXCITATION OF O2 

MOLECULES TO THE a1∆g AND b1  STATES

We consider an H2/O2 homogeneous gas mixture
subjected to a radiation pulse whose frequency is in res-
onance with the center of the line of the electronic–
vibrational transition in the O2 molecule 

where e' = X3 , e'' = a1∆g or b1 , v ' and v '' vibra-
tional quantum numbers, and j' and K' and j'' and K'' are

rotational quantum numbers in the ground X3  and

excited a1∆g (b1 ) states, respectively. The

Σg
+

m e ′ v ′ j ′ K ′, , ,( ) n e″ v ″ j″ K″, , ,( ),→

Σg
– Σg

+

Σg
–

Σg
+
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X3   a1∆g(b1 ) transition is allowed only in the
magnetic-dipole approximation. Rotational levels are
manifested only beginning with j'' ≥ K'' ≥ 2. Every rota-

tional level in the X3  state with the quantum number
K' involves three components with j' = K' + 1, K', and
K' – 1 [7].

We analyze transitions of the QP(9) branch with v ' =
v '' = 0, j' = 10, and j'' = K' = K'' = 9. In this case, the spec-

tral-line center for the X3   a1∆g and X3  

b1  transitions corresponds to the wavelength λI =
1268 and 762 nm, respectively. The Einstein coeffi-
cients Amn for these transitions are equal to 2.58 × 10–4

and 8.5 × 10−2 s–1, respectively. Variation in the concen-

tration of excited O2(a1∆g) and O2(b1 ) molecules is
determined by the rate of induced transitions

Here, I and νI are the intensity and frequency of acting
radiation, respectively; h is Planck’s constant; λmn is the
wavelength of the center of the m  n transition line;
bD is the Doppler FWHM; and H(x, a) is the Voight
function. In the absence of chemical reactions, the con-

centration of O2(a1∆g) and O2(b1 ) molecules
decreases due to electronic translational relaxation

and

because the radiative lifetimes of these states are anom-
alously long. Under the typical experimental conditions
(initial temperature T0 = 300–700 K and P0 = 103–
104 Pa), the time of electronic transitional relaxation of
excited O2 molecules is equal to τQ ~ 0.1–3 s, and the
induced-transition time is equal to τI = 10–3–10–5 s for

Σg
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Σg
–
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+

Σg
+
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I = 1–10 kW/cm2 . Thus, high excitation efficiency (τI !
τQ) can be ensured even for low intensities of acting
radiation. At the same time, for these I values, we have
τI @ τR and τV, where τR and τV are the characteristic
times of rotational and vibrational relaxation, respec-
tively. Therefore, one can think that translational, rota-
tional, and vibrational degrees of freedom are in ther-
modynamic equilibrium.

Variation of the hydrodynamic parameters in the
irradiation zone is determined by the hierarchy of the
characteristic times of various macro- and microtrans-
port processes. For a nonreacting inviscid gas, these
times are the time τa of propagating acoustic perturba-

tions across the interaction region; the times  and τTi

of multicomponent and thermal diffusion of the ith
component, respectively; the thermal-conductivity time
τλ; the induced-transition time τI; the relaxation time τQ

of the excited O2(a1∆g) and O2(b1 ) states; the pulse
duration τP of acting radiation; and the time τF of
change in the medium state due to the striction force
[8]. For a reacting gas, it is necessary to additionally

introduce the time  of a chemical reaction leading to
the appearance (destruction) of the component respon-
sible for the chain mechanism of the reaction. The

quantity  determines the ignition delay time or
induction period τin .

We consider the ignition of the H2/O2 (2/1) mixture
in a laser beam with a Gaussian radial distribution of
intensity

where Ra is the characteristic beam radius and I0(t) = I0

and 0 for 0 < t ≤ τP and t > τP, respectively. For I0 =
1−10 kW/cm2, Ra = 10 cm, P0 = 103–104 Pa, and T0 =

300–700 K, we have τa = 2 × 10–4 s,  ~ τTi ~ τλ =
0.3−10 s, and τF = 0.5–10 s. We consider regimes where
τa ! τP ~ τI ≤ τin ! τD, τF. Under these conditions, the
absorptivity kν of 762-nm radiation varies from 8 × 10−5

to 2 × 10–3 cm–1 and therefore  @ Ra . In this case, the
approximation of a thin optical layer is applicable, vari-
ation in the parameters in the reacting mixture can be
considered only across the beam, and macrotransport
processes can be disregarded in the [0, τin] interval. In
this case, the equations describing the state of the
medium in the central irradiation zone (r ! Ra) can be

τD
i

Σg
+

τ iq
ch

τ iq
ch

I r t,( ) I0 t( ) –
r2
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2
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 
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,exp=
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i

kν
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represented in the form

Here, ρ and T are the density and temperature of the
mixture, respectively; Ni and µi are, respectively, the
density and molecular mass of molecules (or atoms) of

the ith kind [i = 1, 2, and 3 correspond to O2(X3 ),

O2(a1∆g), and O2(b1 ) molecules, respectively, while
i = 4–11 correspond to the other components of the
reacting mixture H2, H2O, OH, HO2, H2O2, O3, O, H];
h0i is the enthalpy of the formation of the ith compo-
nent; M is the total number of components in the mix-

ture;  = 1 and 1.5 for components involving linear
and nonlinear molecules, respectively; θij is the charac-
teristic vibrational temperature of the jth mode of the
ith component (j = 1, 2, …, Li); Mi is the number of
reactions leading to the formation (destruction) of the

ith component;  and  are the stoichiometric coef-

ficients of the qth reaction;  and  are the numbers
of components involved into the direct and inverse
reactions, respectively; k+ and k– are the rates of the
respective reactions; R is the universal gas constant; lIi

is the number of quanta acquired by the ith component
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(i = 1, 2, 3) in induced transitions; Nm and Nn are the
densities of O2 molecules in the lower and upper states
involved into the m  n transition, respectively; and
gm and gn are the degrees of degeneracy of the respec-
tive states.

KINETIC MODEL

As is known, to describe the ignition of H2/O2 mix-
tures in a wide range of P0 and T0 , it is necessary to use
a quite complete kinetic scheme, including 29 revers-
ible reactions even in the absence of excited O2 mole-
cules [9]. The excitation of O2 molecules to the a1∆g

and b1  states initiates new reactions, the most impor-
tant of which are presented in Table 1. Below, we will
refer to reactions according to their numbering in
Table 1.

The rates of reactions involving unexcited O2 mole-
cules in the reacting H2/O2 system are known quite
well. At the same time, information for processes

involving O2(a1∆g) and O2(b1 ) molecules is sparse.
Experimental data are available only for certain reac-

Σg
+

Σg
+

tions (nos. 3, 9, 29–33) [10]. Two types can be sepa-
rated among the processes under consideration: first,
endothermic reactions with activation barrier (reac-
tions 1–6, 9–24) and, second, barrierless reactions
(nos. 7, 8, 25–28). The rates of reactions of the first type
were calculated by using the procedure of decreasing
the activation barrier. This procedure is based on the

assumption that the potential surfaces u1 and  of
direct reactions involving unexcited and excited mole-
cules, respectively, are equidistant [11]:

Taking into account that the potential-energy surface
for the inverse reaction is expressed as

and using the ordinary relation r1 ≈ r2 [11], one can rep-

u1
e

u1 r( ) ∆H Ea
0 r

r1
----,exp+=

u1
e r( ) ∆H Ee Ea

0 r
r1
----.exp+ +=

u2 r( ) ∆H Ea
0+( ) –

r
r2
---- 

 exp=
Table 1

No. Reaction No. Reaction

1 O2(a1∆g) + M = O + O + M 17 H2O + O2(a1∆g) = H2O2 + O

2 O2(b1 ) + M = O + O + M 18 H2O + O2(b1 ) = H2O2 + O

3 O2(a1∆g) + H = OH + O 19 O3 + M = O + O2(a1∆g) + M

4 O2(b1 ) + H = OH + O 20 O3 + M = O + O2(b1 ) + M

5 H2 + O2(a1∆g) = 2OH 21 O3 + H = OH + O2(a1∆g)

6 H2 + O2(b1 ) = 2OH 22 O3 + H = OH + O2(b1 )

7 HO2 + M = O2(a1∆g) + H + M 23 O3 + O = O2(X3 ) + O2(a1∆g)

8 HO2 + M = O2(b1 ) + H + M 24 O3 + O = O2(X3 ) + O2(b1 )

9 H2 + O2(a1∆g) = H + HO2 25 O3 + OH = HO2 + O2(a1∆g)

10 H2 + O2(b1 ) = H + HO2 26 O3 + OH = HO2 + O2(b1 )

11 H2O + O2(a1∆g) = OH + HO2 27 O3 + HO2 = OH + O2(X3 ) + O2(a1∆g)

12 H2O + O2(b1 ) = OH + HO2 28 O3 + HO2 = OH + O2(X3 ) + O2(b1 )

13 OH + O2(a1∆g) = O + HO2 29 O3 + O2(a1∆g) = 2O2(X3 ) + O

14 OH + O2(b1 ) = O + HO2 30 O3 + O2(b1 ) = 2O2(X3 ) + O

15 2HO2 = H2O2 + O2(a1∆g) 31 2O2(a1∆g) = O2(b1 ) + O2(X3 )

16 2HO2 = H2O2 + O2(b1 ) 32 O2(a1∆g) + M = O2(X3 ) + M

33 O2(b1 ) + M = O2(a1∆g) + M
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resent the activation barrier for the reaction involving
an excited molecule in the form

Here, ∆H is the thermal effect of the reaction;  is the
activation energy of the reaction in the absence of the
excitation of reacting molecules; Ee is the energy of an
excited molecule; and r1 and r2 are the radii of exchange
forces for reagents and products, respectively. The rate
of such a reaction has the Arrhenius form

where A and n are the parameters of the corresponding
dependence for the reaction involving an unexcited
molecule.

Similar to [10], the probability of the formation of

the O2 molecule in the X3 , a1∆g, and b1  electronic

states in reactions of the second type with  ≈ 0 is pro-
portional to the degree of degeneracy of these states,
i.e., gX = 0.5, ga = 0.33, and gb = 0.17. The rates of the
inverse processes for the two types of reactions under
consideration were calculated based on the principle of
detailed balance.

IGNITION DYNAMICS 
FOR A MIXTURE UNDER RADIATION

Combustible mixtures are ignited by chain reac-
tions. For the H2/O2 mixture, these are reactions involv-
ing O and H atoms and OH radicals. For ignition, the
rate of the formation of O, H, and OH must exceed the
rate of their destruction in chain-break reactions or the
rate of leaving of these components from the reaction
zone due to diffusion processes (their characteristic

time is determined by the diffusion time H,  of light
carriers, H atoms, of the chain mechanism). Since τin ~

, the ignition condition has the form τin ≤ .

Figure 1 shows τin(T0) and (T0) for radiation with
the parameters λI = 1268 and 762 nm, τP = 10–3 s, and
various I0 values. It is seen that 762-nm radiation
reduces τin stronger than 1268-nm radiation does and
correspondingly reduces the self-ignition temperature
Tign, which can be determined in the first approximation
from the relation

For a supplied energy of Ein = I0τP = 5 J/cm2, 762-nm
radiation reduces the temperature Tign to 300 K. We

Ea
e 1

2
--- ∆H Ee+( )2 4Ea

0 ∆H Ea
0+( )+ ∆H Ee+( )–( ).=

Ea
0

kex ATn Ea
e
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-----– 
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emphasize that this Ein value corresponds to 0.082-eV
energy spent on the excitation of one O2 molecule to the

b1  state. At the same time, the photodissociation of
the O2 molecule from the ground state (this process ini-
tiates the chain mechanism of the ignition of the H2/O2

mixture due to the formation of O atoms) requires
5.8 eV. Moreover, the recombination of O atoms for
low gas temperatures (T0 ≤ 600 K) proceeds at a very
high rate. This additionally reduces the efficiency of the
photochemical method of ignition based on the photo-
dissociation of molecules by laser radiation [12].

Figure 2 shows the time variation in the mole frac-
tions γi of the components of the reacting H2/O2 mix-
ture in the absence of irradiation and under radiation
with the parameters λI = 1268 and 762 nm, I0 =
10 kW/cm2, and τP = 10–3 s. As is seen, the γi(t) behav-
ior, as well as the τin value, changes when O2 molecules

are excited to the a1∆g and b1  states. We emphasize

that the concentration of both O2(b1 ) and O2(a1∆g)
molecules increases under 762-nm radiation in the
[0, τin] interval. This effect is caused by the quenching

of the b1  state (reaction no. 33). In this case, the con-

centration of O2(a1∆g) molecules at t = τP is much
higher (by a factor of about 40) than that produced by
the excitation of O2 molecules to the a1∆g state by
1268-nm radiation. This difference is attributed to the

fact that the rate of the induced X3   b1  transi-
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Fig. 1. (Dotted line) (T0) and τin(T0) for the H2/O2 = 2/1

mixture at P0 = 103 Pa under (dashed lines) 1268- and
(solid lines) 762-nm radiation with I0 = (1) 1, (2) 5, and

(3) 10 kW/cm2 and τP = 10–3 s. The dash–dotted line is
τin(T0) for I0 = 0.

τD
H
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Fig. 2. Time variation in the concentrations of the components of the H2/O2 = 2/1 mixture for T0 = 600 K and P0 = 103 Pa (a) in the

absence of irradiation and under (b) 1268- and (c) 762-nm radiation with I0 = 10 kW/cm2 and τP = 10–3 s.
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Fig. 3. Processes responsible for the formation of O and H atoms and OH radicals (a) in the absence of irradiation and under
(b) 762-nm radiation.
tion is higher than the rate of the X3   a1∆g transi-
tion by a factor of 75 for the same I0 value.

Collisional quenching of the b1  state slightly
increases T in the [0, τP] interval. In particular, for I0 =
10 kW/cm2 and τP = 10–3 s, temperature increases from
600 K at t = 0 to 688 K at t = τP. However, τin decreases
in this case due not to an increase in T but to the appear-
ance of new channels of the formation of O and H
atoms and OH radicals. Indeed, an increase in T0 from
600 to 688 K reduces τin to 0.14 s. This value is larger
than the value of 4.6 × 10–3 s, which is achieved when

Σg
–

Σg
+
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the radical mechanism, along with thermal one, is taken
into account, by a factor of 30. Figure 3 shows the pro-
cesses responsible for the formation of O and H atoms
and OH radicals in the absence of radiation and under
762-nm radiation. In the absence of excited O2 mole-
cules, the H2 + O2 = 2OH reaction is the basic chain-ini-
tiation reaction for T0 < 1000 K. The reaction of OH
radicals with H2 molecules yields H atoms, which are
involved in the chain-branching reaction H + O2 =
OH + O. The H2 + O = OH + H process is the second
reaction of chain propagation.



404 STARIK, TITOVA
When O2 molecules are excited to the b1  state
with the emission of 762-nm radiation, the basic chain-
initiation reactions are reaction nos. 6 and 10 yielding
OH radicals and H atoms, respectively. Under 762-nm

radiation, O2(a1∆g) molecules, along with O2(b1 )
molecules, arise in the mixture. Therefore, at the initial
stage of the process, O atoms are predominantly
formed in chain-branching reaction nos. 3 and 4. For
low T0 temperatures (<600 K), reaction nos. 29 and 30
also considerably contribute to the formation of
O atoms. The appearance of these new intense channels
of the formation of chain-mechanism carriers acceler-
ates chain reactions and reduces τin .

The method based on the excitation of O2 molecules
by laser radiation is much more efficient for the initia-
tion of combustion than the method of direct heating of
the reacting mixture by laser radiation (all radiation
energy absorbed by the gas is spent on the heating of
the medium), which is now extensively discussed. This
is illustrated in Fig. 4, where τin is shown as a function
of the initial pressure of the H2/O2 mixture for various
Ein values in these two cases. As is seen, the τin value for
the excitation of O2 molecules by 762-nm radiation can
be equal to one-seventieth to one-tenth of that for the
pure thermal action of laser radiation. It is also seen
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+
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2
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102 103 104 105 P0, Pa

Fig. 4. Initial-pressure dependences of τin(P0) for the
H2/O2 = 2/1 mixture at T0 = 600 K (solid lines) when O2

molecules are excited to the b1  state by 762-nm radiation

and (dotted lines) when all the absorbed energy is spent on
gas heating for Ein = (1) 1, (2) 5, and (3) 10 J/cm2. The
dashed line is τin(P0) for Ein = 0.

Σg
+

that, for every Ein value, when a certain boundary value
P0b is exceeded, radiation does not reduce τin compared
to the case I0 = 0. The P0b value increases with Ein or I0 .
In particular, P0b = 2 × 104 and 2 × 105 Pa for the exci-
tation of O2 molecules with τP = 10–3 s and Ein = 1 and
10 J/cm2, respectively. The boundary value P0b exists
due both to the intense formation of chemically inert
hydrogen peroxide (Fig. 3) for quite low T0 at P0 > P0b
and to a decrease in the concentration of H atoms and
OH radicals.

Thus, the excitation of O2 molecules to the b1

state by 762-nm laser radiation opens new channels of
the formation of active O and H atoms and OH radicals.
This considerably reduces both the induction period
and ignition temperature of hydrogen–oxygen mix-
tures. These components are carriers of the chain mech-
anism for the oxidation of other gases. Therefore, this
method of intensifying combustion is expected to be
very efficient for hydrocarbon fuels.
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The properties of melts were apparently first inves-
tigated by Fogel [1] and Fulcher [2]. In these pioneer-
ing studies, they measured the viscosity of substances η
in the vicinity of the crystallization temperature Tcr. It
was shown empirically that viscosity must obey the law

where η0 and ∆ are certain constants and T is a param-
eter equivalent to the thermostat temperature. More
recently, Ya.I. Frenkel (see collected articles [3]) stud-
ied crystallization in liquids and melting in solid-phase
structures using the free-volume model. This model
was later applied in a modified form to study the non-
equilibrium properties of glassy materials [4–9]. In
addition to the above investigations, some aspects of
crystallization theory were considered in [10, 11],
where an analytical explanation of the empirical Fogel–
Fulcher law was proposed. A rigorous mathematical
model of melting was described in detail in [12], where
a theory of melting of solid crystal structures was con-
structed on the basis of the gradual breaking of the
long-range crystal order.

In this study, I propose an alternative model of crys-
tallization, which provides rigorous calculation of the
growth of the crystallization region as a function of the
deviation of the current temperature T from the crystal-
lization temperature Tcr.

Let us consider a melted substance that is slowly
cooled to the crystallization temperature Tcr. We
describe the growth of locally formed crystallization
regions with allowance for heat transfer. To mathemat-
ically describe an increase in the average size of a
nucleus of the crystalline phase, we use the Smolu-
chowski equation modified for the case under consider-
ation. The evolution of the crystallization regions is

η η 0
∆

T Tcr–
----------------,exp=

Moscow State Regional University, 
ul. Radio 10a, Moscow, 105005 Russia
e-mail: sglad@newmail.ru
1028-3358/03/4808- $24.00 © 20405
assumed to be similar to that of a nuclear chain reac-
tion. The process is schematically shown in Fig. 1,
which illustrates an increase in randomly nucleated
crystallization regions {A} = A, A', A'', … in a geomet-
ric sequence with the multiplier q = 2. The regions {A}
are numbered by the superscript ν. Let the temperature
of the region A be T0 = Tcr and the temperatures of the
adjacent regions A1, A2, A3, …, Ak be T1 < T2 < T3 < … <
Tk , respectively. The regions Ai are uncrystallized
regions in the liquid melt rather than solid phases. The
last, kth, region is determined by the condition that
(k + 1)-th region is absent and that the regions with a
linear size ρ, into which the entire conditional area L2

of the melt is uniformly divided, overlap.

The size ρ can be estimated from the step d in the
radial direction of the nucleus growth of the crystalline
phase (Fig. 2). We have ρ ≈ kmaxd, where kmax is intro-
duced below [formula (3)].

For each of the regions I, II, III, …, the heat conduc-
tion equation should be introduced. The most complete
system of equations that takes into account both the
latent heat of crystallization (as is known, it is propor-
tional to the crystallization rate vcr) and the purely
hydrodynamic flow of a very viscous liquid to the
nucleus itself can be represented in the following finite-

Melt regions

Substrate (thermostat)

A1
A2

A
A1

A2

A2

A2

Fig. 1. Schematic representation of crystallization as the
growth of regions in a geometric sequence with the multi-
plier q = 2.
003 MAIK “Nauka/Interperiodica”
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difference form:

(1a)

(1b)

Here, αi =  is the heat-transfer coefficient, where κ

is the thermal conductivity, δ is the size of the heat-
exchange area (the liquid-to-crystal transition region),
and si is the contact area between the ith and (i + 1)-th
regions; i = 1, …, k; ν = I, II, III, …; cv is the heat capac-

ity per unit volume of the crystal;  is the latent heat

of crystallization; the Boltzmann constant kB is hereaf-
ter taken to be equal to unity; and ∇ P is the pressure
gradient between the crystalline phase and the sur-
rounding liquid melt. Strictly speaking, ∇ P would also
be written in the finite-difference form, i.e., as ∇ P =

. However, this is not necessary for the fol-

lowing reason. Since the crystallization rate is low, the
nonlinear term in Eq. (1b) can be omitted. The remain-
ing linear equation shows that, when the second term
with the dynamic viscosity η on the right-hand side of
Eq. (1b) is disregarded, the crystallization rate is pro-
portional to the pressure gradient. Therefore, the penul-
timate term on the right-hand side of Eq. (1a) is propor-
tional to (∇ P)2 . We ignore this term of second-order
smallness and consider that the crystallization heat
depends implicitly on time and is virtually independent
of coordinates. Then, it can be introduced on the left-
hand side of Eq. (1a). Introducing the new renormal-
ized temperature (retaining the earlier notation T), we
finally arrive at the following approximate linear finite-

∂Ti
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∂t
------------ α i T i 1+

ν( ) Ti
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cv

------ ∇ P qcr,+ +=
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Fig. 2. Simplified model of the growth of the crystallization
region shown schematically in Fig. 1. The regions {A} = Ä,
A', Ä'', … are the attractors specified by the superscript ν in
Eq. (4). Thermal flows along the temperature gradients to
the corresponding attractor are conventionally shown by
arrows.
difference equation:

Equations (1a) and (1b) represent a complete closed
system of linear differential equations written for indi-
vidual regions I, II, III, …. This is physically clear: each
region of the initial crystalline phase A, A', A'', … is an
attractor to which temperature gradients are directed. In
our case, the heat-transfer coefficient in Eq. (1) has the
quite unconventional dimension [s–1], whereas the ordi-
nary dimension of this coefficient is [W/m2 K]. How-
ever, since [W/m2 K] = [J/s m2 K] = [kg/s3 K] =
103 (g/s3)(1016/1.38 Erg) ≈ 8 × 1018 (1/s cm2) = α*, the
relation between α and α* is evident: αi = si .

It should be noted that, in our model, we do not take
into account the effect of the (i – 1)-th region on tem-
perature in the ith region, because the (i – 1)-th region
in our model is treated as already crystallized and con-
sidered thereby as the ith region.

The temperature hierarchy for each of the given
regions ν is as follows:

T < T0 = Tcr < T1 < T2 < T3 < … < Tk, (2)

where T is the thermostat temperature (or the super-
cooling temperature kept constant).
The simplest approximation of variation in temperature
can, for example, have the form

 = T0 + k e–γkδT, (3)

where δT = T0 – T and the exponential factor is the cut-
off factor limiting the growth of the number of the

attachment zones. Hence, it is seen that kmax = . The

coefficient γ is assumed to be small (γ ! 1).
Next, it is necessary to modify the Smoluchowski

equation for our particular case and to write it in conve-
nient terms. Let us introduce a time-continuous varia-
tion of the ith size li , which is related to the probabilistic
pattern of the growth of the crystallization region {A}.
Then, in accordance with our scheme (Fig. 1), the evo-
lution of the νth region must obey the phenomenologi-
cal equation

(4)

Here, W(T) = ωe–∆/T, where ω is the characteristic fre-
quency of the tunneling transition from the liquid to
crystal region through the potential barrier; ∆ = U2 – U1
is the barrier height, where U1 and U2 are the energies
per particle in the liquid and solid phases, respectively;
and the subscript i varies from 0 to k. The term propor-

tional to W( ) on the right-hand side of Eq. (4) cor-

∂Ti
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∂t
------------ α i T i 1–

ν( ) Ti
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α i*
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γ
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responds to the possibility of the ith crystallization
region drifting to another crystal i '. It is easy to see that
temperature hierarchy (2) leads to the following evi-
dent, easily verifiable hierarchy for the transition fre-
quencies:

W0 < W1 < W2 < … < Wk. (5)

The physical meaning of inequality (5) is quite
clear. Thermal fluctuations in the liquid phase (melt)
increase with temperature. This means that the thermal
barrier decreases and the tunneling probability (accord-
ing to the Arrhenius law of tunneling transition)
increases. This behavior is expressed as hierarchy (5) of
the frequency probabilities.

Finally, it is necessary to set the phase size li as a
function of the number i. It is quite reasonable to
assume that

li = l0 + (6)

As a result, Eqs. (1), (3), (4), and (6) can be com-
bined into the unified system

(7a)

(7b)

Tk = T0 + ke–γkδT, (7c)

lk = l0 + , (7d)

where the superscript ν is omitted and the heat-transfer
coefficient is assumed to be constant in the ith region.

To solve this system of equations and to find the
relation between the size l0 and Tcr, we divide Eq. (7a)
by Eq. (7b) and take into account Eqs. (7c) and (7d). As
a result, we arrive at the rather awkward equation

(8)
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where 

(9)

Here, k* = ke–γk.

It is seen that the solution of Eq. (8) for small δT can
be found by omitting the terms proportional to δT in

curly brackets. As a result, for k* @ 1, we have f1 ≈ ,

f2 ≈ 4k*, f3 ≈ 2, and

(10)

From this simple differential equation, the size of
the crystallization region can be determined as a func-
tion of the deviation of T0 = Tcr from T. Actually, it fol-
lows from Eq. (10) that

, (11)

where β = , l* is an integration constant having

the dimension of length, and s* is a certain average con-
tact area.

Formula (11) is the solution of the problem.

Using the above analysis and calculating the expo-
nent β, one can compare its value with the numerical
calculation based on percolation theory. According to
this theory, the exponent is independent of any physical
parameter of a substance and introduced as a geometric
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factor inherent in all structures independent of their
nature.
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The Landau–Lifshitz equation

(1)

describes the dynamics of the macroscopic dissipation-
free motion of the magnetization vector of a ferromag-
net in a magnetic field. Here, M(r, t) is the magnetiza-
tion per unit volume of the ferromagnet and g is the
gyromagnetic ratio. When only the exchange interac-
tion and the magnetic-anisotropy energy are taken into
account, the effective magnetic field Heff can be written
in the form

(2)

where the first, second, and third terms are the
exchange-interaction contribution, anisotropic-energy
contribution, and external magnetic field, respectively.
We allow both uniform and nonuniform spin distribu-
tions over the ferromagnet, as well as the existence of
magnetic clusters, domain walls, etc. The dimension of
the above formations is taken to be topological. How-
ever, memory (both time memory and memory about
past trajectories) in certain physical systems can vary
both in time and in space. Available experimental data
show that the fractal dimension of physical objects
depends on the parameters of the surrounding (temper-
ature, pressure, etc.) and internal parameters character-
izing a system (elasticity, strength, etc.).

t∂
∂

M g MHeff[ ]–=
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Fractal structures are observed in many physical
phenomena, including those in solids. This indicates
that the momentum and coordinate distributions of
magnetically ordered systems (or magnetic clusters) of
the electron magnetic moments can be quite well
described in terms of fractal representations (in partic-
ular, Levi-type distributions for magnetic glasses). In
this case, the distribution over a system of such clusters
will have a fractal or multifractal dimension. The latter
implies the existence of time or spatial memory
(including that varying in time or with spatial distribu-
tion, e.g., with motion of domain walls, temperature,
etc.) in the magnetic-moment system (consisting of
magnetic clusters). To describe such magnetic systems,
the Landau–Lifshitz phenomenological equations must
be extended to fractal or multifractal sets involving ion,
atomic, molecular, or electron clusters; i.e., they must
be expressed in terms of fractional derivatives. In any
case, this must be done when magnetic moments
undergo anomalous diffusion caused by the fractal
structure of the surroundings.

Anomalous diffusion, i.e., diffusion for which the
mean squared displacement of a particle is proportional
to a fractional power of time (〈x2〉  ~ tβ, where β is a frac-
tional number), has been actively studied in recent
years. It is observed in aerosols, gels, spin glasses, cer-
tain disordered systems, aperiodic crystals, electron–
ion plasma, in systems described by the statistical phys-
ics of open systems [1], and apparently in magnetically
ordered systems under certain conditions. Anomalous
diffusion (or fractal relaxation) was described theo-
retically by using fractal geometry [2] in numerous
works (see [3]). Diffusion equations in fractional
derivatives [4, 5] are usually used in these works.
Experiments [6–8] show that the fractal dimension
depends on physical parameters, and anomalous diffu-
sion is important in this case.

In this work, we study magnetically ordered systems
(by an example of a ferromagnet) with fractal or multi-
fractal properties. These systems are apparently quite
common, because the fractal structure of ion or atomic
clusters plays an important role in polycrystalline sol-
ids [8]. To take into account the effect of fractal struc-
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tures on the magnetic properties of the system, the Lan-
dau–Lifshitz equations and equations for spin waves
are written in the fractal space with constant and vari-
able memory, and the corresponding spectra of spin
waves are found. We analyze the effect of the fractal
force found in [9, 10] on the behavior of magnetic
moments, spin-wave spectrum, and the behavior of the
magnetic system as a whole. This force was studied for
anomalous diffusion in [11], is proportional to the coor-
dinate gradient of the multifractal dimension, and is
induced by the multifractal medium.

FRACTIONAL VARIABLE-ORDER DERIVATIVES 
AND INTEGRALS

Equations with fractional derivatives describe non-
Markovian processes with constant memory. Dynamic
processes in systems with time- and coordinate-depen-
dent memory cannot be described in terms of Rie-
mann–Liouville fractional derivatives that do not repro-
duce variations in the fractal dimension of the variable-
memory physical system under consideration. For this
reason, it is necessary to use variable-order fractional
derivatives generalizing fractional Riemann–Liouville
derivatives and integrals for the dynamics of multifrac-
tal objects (i.e., objects whose fractal dimension
depends on time and coordinates). One of us (L.Ya.K.)
introduced such a technique in [9–12].

To describe the behavior of magnetic moments in a
medium with coordinate- and time-dependent multi-
fractal dimension (or in a physical system with such
fractal properties), one must use the generalized Rie-
mann–Liouville fractional derivatives that were intro-
duced in [9] and used in a number of works (see,
e.g., [12]). These derivatives are defined as (for left-
side derivatives; for more detail, see [9])

(3)

Here, Γ is the Euler gamma function; n = {d} + 1,
where {d} is the integer part of d for d ≥ 0 (i.e., (n – 1) ≤
d < n) and n = 0 for d < n; dt = 1 + ε(t); and dx = 1 + ε(x).
The integral operators defined above for fractional
orders dt and dx depending on coordinates and time can

∂
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----------------------------------------------------------------------.d

a

x

∫

be expressed in terms of ordinary derivatives and inte-
grals [9, 12] for |ε| ! 1. In this case, generalized Rie-
mann–Liouville fractional derivatives satisfy the
approximate relations (we present here only relations
for derivatives)

(4)

These relations make it possible to describe the
dynamics of a system including the effect of changes in
the fractal dimension (if they are much smaller than
unity) on the behavior of the physical system by means
of ordinary differential and integral equations.

LANDAU–LIFSHITZ EQUATION
FOR MAGNETIC MEDIA

WITH VARIABLE MEMORY

Variable memory can be taken into account by
replacing the derivatives in Eqs. (1) and (2) with gener-
alized fractional derivatives (3). This replacement leads
to the following integro-differential equations for the
magnetic moment:

(5)

(6)

Hereafter, we use the scale for which dimensional fac-
tors arising due to the presence of fractional derivatives
are equal to unity. Time fractal dimension dt and spatial
fractal dimension dr characterizing time and spatial
memory, respectively, do not generally coincide with
each other, i.e., dt ≠ dr . These dimensions can also be
different in different directions of crystallographic or
magnetic structures, but this fact is disregarded. The
Landau–Lifshitz equations for magnetic systems with
constant or partially constant memory are a particular
case of these equations for constant fractal dimensions
or one of these fractal dimensions. The following cases
must be distinguished: (i) dt = const and dr is variable
and (ii) dr = const and dt is variable. Completely con-
stant memory corresponds to constant dt and dr values,
which, as was mentioned above, can differ from each
other, in any case for different directions of the crystal-
lographic axes.
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SPIN-WAVE EQUATIONS 
IN A FRACTAL MEDIUM WITH CONSTANT

AND VARIABLE MEMORY

Phenomenological equations for spin waves in a
nonfractal medium follow from the Landau–Lifshitz
equations when determining the effective magnetic
field and linearizing magnetic moments and magnetic
field near their equilibrium values [13]. Since this work
aims to illustrate the application of the new mathemat-
ical technique (variable-order fractional derivatives) to
magnetically ordered systems, we analyze the effect of
the fractal properties of the system on spin waves only
for a uniaxial ferromagnet. Let 

and

Equations for spin waves in a fractal magnetic
medium can be derived from Eqs. (5) and (6). They
can also be derived from equations for spin waves [13]
by replacing ordinary derivatives with generalized
fractional derivatives. This method is simplest and,
carefully applied, yields correct equations (although
they, as well as the Landau–Lifshitz phenomenologi-
cal equations, can be derived from first principles).
The linearized equation of motion for the magnetic
moment density m in a variable-memory fractal
medium (the equation for spin waves in a variable-
memory magnetic medium described by fractal
dimensions dt and dr) for a uniaxial ferromagnet has
the form

(7)

The linearized spin-wave equations for “easy axis” or
“easy plane” magnetic anisotropy are written as

(8)
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The boundary conditions in a magnetic medium with
memory have the form

(10)

in the absence of dissipative processes,

(11)

or in the presence of a symmetry center of the crystal
lattice,

(12)

The above equations, together with the boundary con-
ditions, describe the propagation of spin waves in a
variable-memory magnetic medium. Below, we con-
sider a more simple case of constant memory in an iso-
tropic ferromagnet.

SPIN-WAVE EQUATIONS
FOR A CONSTANT-MEMORY 
UNIAXIAL FERROMAGNET

In this case, and with allowance for only exchange-
energy contribution for the uniaxial ferromagnet (βx =
βy = βz = β), the spin-wave equation has the form (dt =
α = const, dr = βr = const)

(13)

It is easy to obtain the following relation between the
energy and wavenumber of spin-wave spectra:

(14)
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SPIN-WAVE EQUATIONS
IN THE APPROXIMATION 

OF WEAK VARIABLE MEMORY

In the approximation of weak variable memory,
fractional derivatives can be replaced with ordinary
derivatives by using Eqs. (4) and writing Eq. (7) in the
form

(15)

This equation is similar to the equation for anomalous
diffusion with variable memory, which is analyzed
in [11]. After reduction to the form

(16)

typical for diffusion equations, where [for Dik(r, t) =
const]

(17)

similar to [11], the spin-wave equation involves two
new terms: (i) a force (which will be referred to as the
“fractal force”) proportional to the gradients of fractal
coordinate dimensions and (ii) terms proportional to m
corresponding to the appearance of a gap in the spin-
wave spectrum for certain types of the coordinate
dependence of the fractal dimension. We emphasize
that fractal structures of this type can in principle be
formed technologically. We will seek the solution in the
form m = m0 + εm1 for |ε < 1|. In this case, m1 satisfies
a diffusion-type equation with variable coefficients of
the term proportional to m1 , and m0 has the ordinary
spin-wave spectrum.

FRACTAL-FORCE EFFECT
ON THE BEHAVIOR OF SPIN WAVES

We consider the fractal-force effect on the behavior
of the magnetic moment in more detail. As follows

from Eq. (17), the fractal force has the form F ~ .

For constant ε, this force vanishes. Depending on sign
(which is always opposite to the sign of forces that act
on magnetic moments and are proportional to ε), this
force can lead both to dissipation of the ordering of
magnetic moments and to an increase in this ordering.
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Its magnitude depends on the type of the coordinate
dependence of the fractal dimension. In particular, for
εx = ε0x, this force, as well as the energy gap, is con-
stant, i.e., E0F ~ ε0 and E0 ~ ε0 . The last quantities are
proportional to the derivative with respect to ε. For the
fractal structure approximated by εx ~ a1x + a2x3 , dis-
crete frequencies appear in the spin-wave spectrum. If
ε depends periodically on time and coordinates with
frequencies ωt and ωx , respectively, and can be approx-
imated by sinωtt and sinωxxi , then the equation for spin
waves involves terms with variable coefficients respon-
sible for interesting properties of spin waves.

CONCLUSIONS

The new results following from the existence of
variable memory in magnetic systems are as follows.

First, there is the appearance of the fractal force,
which disappears in the absence of memory or in the
presence of constant memory (in essence, it is a new-
type magnetic hysteresis) and is proportional to the
coordinate gradient of fractal dimension. Can a fractal
medium with constant or variable memory (in the latter
case, determined by time and coordinate variations in
the fractal dimension) be used to write information?
Can the fractal dimension be used to control variation
in information? Since the behavior of the multifractal
dimension can be controlled by varying external forces,
this is apparently possible. The fractal dimension can
apparently be used as memory. There is only a question
of whether this use is economically and technically
appropriate.

Second, a gap appears in the spin-wave spectrum
due to variable memory (it disappears for constant
memory). The spin-wave spectrum in a magnetic sys-
tem is more complex and can vary in time in certain
cases. The latter property is caused by the fact that vari-
able-memory systems are open and therefore always
lose (or acquire) energy on dissipation processes.
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Photonic crystal (PC) light guides represent are a 2D
periodic set of close-packed hollow glass fibers; i.e.,
they actually have a 2D photonic-crystal structure.
They exhibit a number of remarkable properties, such
as the presence of photonic gaps, which are character-
istic only for periodic structures, and the possibility of
both realizinge the single-mode regime and forming
dispersion in a wide spectral range. These fibers are
exceptionally efficient for solution of actual problems
of nonlinear optics, physics of photonic crystals, quan-
tum electrodynamics, and many other problems. The
field of their use is continuously being extended. The
fabrication technology, properties, and application
prospects of PC fibers weare reviewed in detail in [1, 2].

Available methods of numerically solving the prob-
lem of eigenfunctions and eigenvalues for light guides
with an intricate section shape such as hole light guides
was briefly reviewed in [2], where PC fibers were
treated as a particular case of hole light guides, for
which the periodic-structure requirement is optional.
These methods applied to PC fibers either provide only
a general representation about their properties, as the
approximate method of replacing the index of refraction
of a hole shell by an effective index of refraction [3], or
requires significant computational resources, as in the
case of numerical integration of the Maxwell equations
by the finite-difference technique, because these meth-
ods ignore the features of the PC-fiber mode structure.

In this study, we describe a rigorous method of solv-
ing the problem of natural waves in a general-type PC
fiber with the inclusion of the feature of its mode struc-
ture. For all guided modes of this fiber, exact expres-
sions for the field components, as well as the dispersion
relations, which are simple compared to the general
case of a fiber with an intricate section [4], and the
equations for critical wavelengths are obtained. The
dispersion relations and the equations for critical wave-
lengths are represented as the equality to zero for a
determinant, whose order is minimal and depends only
on the mode structure of the PC fiber under consider-
ation for a given accuracy.

Moscow State Academy of Instrumentation Engineering
and Informatics, ul. Stromynka 20, 
Moscow, 107846 Russia
1028-3358/03/4808- $24.00 © 20414
As a generalized PC-fiber model, we consider an
infinite, transversely periodic, dielectric structure that
is homogeneous along a certain z axis and includes a
core and an infinitely thick shell (r ≥ a) with a constant
permittivity ε00 < maxε(r, ϕ). Without loss of general-
ity, the core permittivity ε(r, ϕ), as well as ε–1(r, ϕ), in
the cylindrical coordinate system r, ϕ, z can be repre-
sented in the form

Here, N ∈ {1, 2, …} is the parameter specifying the
structure periodicity, a is the core radius, and

are generally the piecewise continuous functions,
which can be represented as [5]

after determining the discontinuity points r1, r2, …,

rL − 1 . Here,  = 0, k = 0, 1, …; n = 1, 2, …; i = 0, ±1;
r0 = 0, rL = a.

The dependence of the electric field E = (Er, Eϕ, Ez)
and magnetic field H = (Hr, Hϕ, Hz) for the guided mode
in the fiber under consideration on time t and longitudi-
nal coordinate z is specified in the form exp[j(ωt – βz)]
(it will be omitted below), where ω and β are the circu-
lar frequency and the longitudinal-propagation con-
stant for the mode. In this case, from the Maxwell equa-
tions for a nonmagnetic dielectric medium, we obtain
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the following set of first-order partial differential equa-
tions:

where

γ = , k0 = ω , ε0 and µ0 are the permittivity and

permeability of free space, respectively.

By using the substitution

where

which corresponding to even modes eHEmn and eEHmn

for µ = 0 and to odd modes οHEmn and oEHmn for µ = 1
with the azimuth subscript m = |kN + ν|, k = 0, ±1, …,
this set of equations can be transformed into the infinite
set of first-order ordinary differential equations
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where

We represent the continuous solution to of the last
set of equations, which decreases faster than r–1 for
r  ∞, in the form
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Here, Km(x) is the modified Bessel function of the sec-

ond kind and the constants , , i = 0, 1; n =
(±1)1 − δ(M)(0, 1, …) are the nontrivial solution of the
homogeneous linear set of equations

where

Equating the determinant of this set of equations to
zero, after simple transformations, we obtain the equa-
tion with respect to an unknown phase constant γ:
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which is the dispersion relation for either even modes
eHEmn and eEHmn for µ = 0 or odd modes oHEmn and
oEHmn for µ = 1 with the azimuth subscript m = |kN + ν|,
k = 0, ±1, ….

In the limiting case of γ  , we obtain the

equation for the unknown wavelength λ = :

where

µ 0 1,{ } , ν 0 1 …, N 1–, ,{ } ,∈∈
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which is the equation for the critical wavelengths for
either even modes eHEmn and eEHmn for µ = 0 and odd
modes οHEmn and oEHmn for µ = 1 with the azimuth sub-
script m = |kN + ν|, k = 0, ±1, ….

The order of the determinants on the left-hand side
of the resulting equations is actually equal to twice the
number of terms in the Fourier expansion for the mode-
field components. It is evident that the number of these
terms is minimal for the given accuracy due to the
inclusion of the feature of the mode structure of the PC
fiber under consideration.
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After first investigations [1], a kinetic model of ion-
izing monatomic gases in shock waves has been devel-
oped [2]. However, this model only partially describes
the actual process of ionization relaxation: certain
experimental results, e.g., [3–6], are not explained in
this model. Tumakaev [3] revealed an energy imbal-
ance for electrons in monatomic gases (mercury
vapors, argon): energy spent on the ionization and radi-
ative losses in the greater part of the relaxation zone are
not compensated by the heating of electrons due to Cou-
lomb (electron–ion) collisions. Schneider and Park [4]
showed that variation in electron temperature behind
the shock front at the initial stage of an avalanche is
undetermined. Under the same initial conditions in
argon, this temperature was both considerably below
atomic temperature and close to atomic temperature,
which contradicts the energy balance equation for elec-
trons. Moreover, the activation energy determined
using the known temperature dependence of the rate of
avalanche ionization was almost one-tenth the expected
value. The electron temperature determined in [5] by
using this temperature dependence for electrons in the
relaxation zone coincides with the atomic temperature
immediately behind the shock front even in the ava-
lanche region. At the same time, according to the energy
balance equation for electrons, this parameter must
decrease due to increasing energy losses of electrons
inelastically colliding with atoms. McIntyre et al. [6]
revealed anomalies in the distribution of excited states
of neon and argon atoms behind the shock front.

These facts enable one to assume (as in [3]) the pos-
sibility of the existence of additional (compared to the
commonly accepted model) channels of energy
exchange between particles in the relaxation zone. The
structure of a shock wave was calculated with allow-
ance for additional kinetic mechanisms (involving
metastable particles, molecular ions, and radiative pro-
cesses), because the conditions of irregular variation in
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the flow parameters behind ionizing shock waves in
monatomic (and even molecular) gases were observed
in certain ranges [7, 8]. These calculations and the
approaches used in them were reviewed in [9, 10]. Con-
clusive experimental evidence of the determining role
of these processes has not been obtained. For this rea-
son, other mechanisms of the formation of unstable
flow regimes were also proposed (see, e.g., [9–11]).
In this case, the general analysis [9] of the flow struc-
ture behind the shock front, as well as the detailed anal-
ysis [11] of the ionization relaxation zone based on the
traditional model, is used. The role of radiation was
analyzed in [10]. We emphasize that, although the
available hypotheses are considerably different, some
authors consider that instability is fundamentally asso-
ciated with the presence of the nonequilibrium (relax-
ation) zone behind the shock front (see, e.g., [9, 11]).
Therefore, in spite of numerous available results, inves-
tigation of the flow structure and the physics of pro-
cesses in ionizing shock waves is of current interest.

In this work, we analyze the flow structure for a
monatomic gas (argon) behind the front of ionizing
shock waves for Mach numbers 10.5–12.5, which cor-
respond to stable flow regimes. Irregular variation in
detected signals (interference and plasma glow) was
observed for M < 10.5–10.7. For an initial argon pres-
sure of 400 and 666.5 Pa (3 and 5 Torr), the equilibrium
parameters of the plasma varied in the following
ranges: electron density Ne ≈ (1–3) × 1016 cm–3, ioniza-
tion degree α ≈ (1–5) × 10–2, and temperature T ≈
0.9−1.2 eV.

In contrast to the frequently applied approach based
on comparison between measurements and calculations
of the electron density profiles and length (duration) of
the relaxation zone, the method [12] that we used is
based on comparison between measured and calculated
distributions of the rate of avalanche ionization (source
of electrons Se in terms and notation proposed in [2])
behind the shock front. The only ionization mechanism
(electron–atom collisions) dominates in the avalanche
region. Therefore, justified analysis of mechanisms of
energy exchange between particles is possible, because
the rate of avalanche ionization is determined by the
rate of energy exchange between electrons and heavy
003 MAIK “Nauka/Interperiodica”
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particles according to the energy balance equation [1, 2].
Thus, the novelty of the method is in the possibility
of experimentally testing the adequacy of the model
used for the kinetics of electron heating and the actual
process.

Measurements of the ionization rate behind the front
are used as a method of investigation in, e.g., [4] only
when analyzing the initial stage of the relaxation zone,
where initial ionization depends on several factors
(impurities, radiation, atom–atom collisions) and only
slightly affects the gasdynamic parameters of the flow.
In [12], it was shown that the application of conserva-
tion laws and the measured time dependence of the
electron density Ne(t) makes it possible to determine the
distributions of gasdynamic parameters and the rate of
avalanche ionization behind the front in the approxima-
tion of a one-dimensional or quasi-one-dimensional
(with allowance for the boundary layer) flow. For the
quasi-one-dimensional case, Se is related to the rate

 of variation in the electron density as

or

where EI is the atom ionization energy, k is Boltzmann’s
constant, u is the flow velocity with respect to the shock
front moving with the velocity u1, and T1 is the gas tem-

perature before the front. The second term  repre-
sents the geometry of the shock-tube channel and
boundary-layer character and is less than 10% of the
first term under the experimental conditions. The factor
Ks varied in the range 0.8–1.0 because α ! 1. The dom-
inant effect of the boundary layer is in a decrease in the

relative velocity  (to 30% compared to the one-

dimensional solution) and in the corresponding
decrease in Se .

The application of IR interferometry with a wave-
length of 10.6 µm [13] and a sensitivity of 2.8 ×
1014 cm–3 (one tenth of the interference band) enabled
us to measure the electron density distribution behind
the shock front with a high accuracy. Figure 1 shows
typical measured distributions Ne(t) (t is the time from
the passage of the shock front), which were used to
determine the experimental ionization rates. As is seen
in Fig. 1, the measured rates Se of argon ionization
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exceed the calculated results  by a factor of 2–3 at
the maximum.

Calculations were based on the known relation [2]

or

where β(Te), α*(Te), and K(Te) are the ionization rate,
recombination rate, and ionization-equilibrium con-
stant, respectively. In the instantaneous-ionization

Se
cal

Se
cal β Te( )NeNa α∗ Te( )Ne

3–=
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cal β Te( )NeNa 1

Ne
2
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------K Te( )– ,=
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Se, 1020 cm–3 s–1

Fig. 1. (a) Electron density measured for M = (closed
squares) 11.94 and (open squares) 12.47 and (b) ionization
rate distribution that is measured for M = (closed squares)
11.94 and (open squares) 12.47 and is calculated for M =
(closed circles) 11.94 and (open circles) 12.47 in the ava-
lanche region behind the shock front in argon for an initial
pressure of 3 Torr.

(a)

(b)
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approximation (single-level model of the atom), we
have

where ∆E is the difference between the ionization
energy and the energy of the first excited atomic level
and Ce is the constant determining the cross section for
atom excitation by an electron impact. According
to [1, 8], the values Ce = (4.7–7.0) × 10–18 cm2/eV are
used. Calculation of β(Te) with allowance for multilevel
atomic structure in the modified diffusion approxima-
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Fig. 2. Experimental results in argon vs. the Mach number
when pressure before the shock front is equal to (1, 2) 3 and
(3) 5 Torr and the impurity level is equal to (1, 3) 10–4 and
(2) 10–3.
tion [2] indicates that the effective value is equal to Ce ≈
9 × 10–18 cm2/eV in the parameter range under consid-
eration. Temperature Te is calculated by using a proce-
dure developed in [12, 15] from the equation of local
energy balance for electrons [2]:

1.5kTÂ  = Qel – Qin

or

where the parameters β(Te), Qel (rate of electron heating
under elastic collisions), and Qin (rate of energy loss
under inelastic collisions) are known functions of elec-
tron temperature and parameters of the plasma state.
For conditions under consideration (α ! 1), the effect
of the energies of radiation and excited states is disre-
garded, because their contributions to the total energy
balance are relatively small.

Figure 2a shows the ratio S =  of the measured

and calculated rates of avalanche ionization for argon
near the Se maximum as a function of the Mach number
of the shock wave for various initial conditions such as
gas pressure and gas purity. For most experiments, S >
1; i.e., the maximum measured rates of avalanche ion-
ization exceed the calculated rates. It was found that the
electron temperature is equal to and higher than the
atomic temperature for S ≈ 1.8–2 and higher S values,
respectively. However, these states, as well as states
with S = 1, are rarely observed.

Since the result is novel, additional analysis of data
was carried out to determine S values more precisely by

increasing the accuracy of the calculation of . This
accuracy is primarily determined by the accuracy of the
calculation of the integral temperature parameter [12]
from the energy conservation law by using measured
velocity (or Mach number M with a relative error of
about 0.8%). The parameter S can be calculated more
accurately due to measurements of the electron density
distribution both in the relaxation zone and in the equi-
librium state (with an accuracy of 3%). This parameter
is the most sensitive indicator of the equilibrium state
of the ionized gas behind the shock front, because it
depends most strongly on temperature (according to the
Saha equation) and correspondingly on the Mach num-
ber of the shock wave. Figure 2b shows the measured-
to-calculated ratio of the electron density N as a func-
tion of the Mach number for various experimental con-
ditions. As was shown in [13], N = 1 ± δ (δ ! 1) for
most experiments; i.e., measured and calculated elec-
tron density coincide with each other in the equilibrium
state. Assuming that the spread δ in experimental data
is primarily attributed to the error in measurements of
the Mach number, its new value in correction is chosen
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from the condition that δ = 0, i.e., that the measured and
calculated electron densities are equal to each other.
The refined M values (except two of them) agree with
the measured values within the indicated error (0.8%)
of the velocity measurement. Figure 2c shows the
results of such a correction of data. Virtually the same
effect is observed: the desired parameter varies within
the range S = 1–2.3 and often exceeds unity. Since the
range of M variation is narrow and the number of
experiments is small, the dependence of S on the Mach
number (and other parameters) is not definitely deter-
mined. We emphasize that the results are analyzed with
the maximum constant Ce ≈ 9 × 10–18 cm2/eV, which is
larger than the values used in other similar investiga-
tions by a factor of 1.3–1.5. The use of its commonly
accepted values leads to a more pronounced effect
(increase in S by an additional factor of 1.5–2).

Thus, complex analysis of data (including measure-
ments of the electron density in the ionization equilibrium
region) corroborates the preliminary conclusion [12] that
the rate of avalanche ionization of argon (and krypton)
exceeds that calculated in the traditional model. The basic
result obtained for the first time is that the relative excess
in the rate in this case is not fixed and varies in the range
S = 1–3. Various phases of the dynamic structure of ion-
ization relaxation are possibly detected in experiments;
i.e., indications of the oscillation development of this pro-
cess are manifested even in the stable flow regime. This
conclusion is indirectly corroborated in [14], where the
auto-oscillating variation in plasma radiation behind the
front and the length of the relaxation zone were studied
for developed instability of shock waves.

It is difficult to observe the revealed effect by the
frequently used method of comparing measurements
and calculations of the variation in the electron density
behind the shock front, because one tries to fit (by vary-
ing kinetic parameters) an integral parameter, the
length of the relaxation zone, which depends strongly
on processes proceeding at the initial stage. Indeed,
similar analysis of the data of previous experiments [5,
8] showed that they also exhibit a high rate of avalanche
ionization of argon with S = 1.8 (M = 11.5) for data
from [5] and S = 2.9, 3.5, and 1 (M = 16.5, 16.2, and 13)
for data from [8].

In [15], we attempted to attribute the observed high
rate of avalanche ionization to the existence of an addi-
tional channel of energy exchange between particles
due to the associative ionization of excited atoms in col-
lisions with unexcited particles. The general form of the
energy balance equation for electrons was found with
allowance for the multilevel structure of the atomic
energy terms. In this equation, additional energy fluxes
due to associative ionization (and the inverse process)
of excited levels are taken into account in addition to
the energy fluxes in electron–atom collisions. The
structure of the equation shows that energy fluxes of
electrons can in principle be redistributed when elec-
trons transit from bound states to continuum. Estimates
DOKLADY PHYSICS      Vol. 48      No. 8      2003
made in [15] for the flow region, where ionization dom-
inates (until the Se maximum), indicate that the energy
expenses of electrons decrease and are primarily attrib-
uted to the transition to the first excited level. Moreover,
the energy fluxes in transitions between excited states
and to continuum (the latter and former are of the same
order) are ensured by avalanche ionization of excited
atoms. As a result, the electron temperature increases
(by no more than 10% under the experimental condi-
tions), which noticeably increases the rate of avalanche
ionization due to its strong temperature dependence.
The causes of the variation in the rate of the process must
be determined by further analysis of the connection
between mechanisms of ionization and energy exchange
between particles in the refined model (equations) of ion-
ization relaxation kinetics behind the shock front.
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On the Diffraction of Waves
by an Apodized Periodic Structure
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1. The engineering of selective reflecting setups
with a high reflectance or separation of narrow-band
radiation from wide-band radiation is always a problem
of current interest for both electromagnetic and acous-
tic waves. Various spectral-selection methods based on
interference and diffraction of waves [1, 2] and on para-
metric interaction of waves in media with parameters
periodically varying in space [3–6] are extensively used
in practice. The creation of high-contrast optical and
acoustic filters, where a signal beyond the transmission
band is suppressed by 6–8 orders of magnitude and,
what is particularly important, side (parasitic) transmis-
sion windows are absent, is a rather difficult problem,
which is not necessarily solvable in practice. This prob-
lem is particularly pressing in Raman spectroscopy,
when intense laser radiation must be suppressed to
measure rather weak Raman scattering, which is
weaker than the exciting laser radiation by 7–10 orders
of magnitude and is spaced from the laser-radiation line
by only 50–100 cm–1 for certain substances (the so-
called notch-filter problem).

Contrary to most approaches to this problem, which
are based on the diffraction of waves by the periodic
structure of varying medium properties, we will con-
sider the diffraction of waves by an apodized periodic
structure, where variation in the medium properties
depends exponentially on coordinates. The propagation
and diffraction of waves by unapodized periodic struc-
tures were analyzed in detail for acoustic waves in [7],
for light waves in [8, 9], where various types of optical
filters on this basis were considered, and for X-rays in
[10]. Extensively used in acoustoelectronic devices
based on surface acoustic waves [11], various spatial-
apodization methods [12] enabled one, in particular, to
design electromagnetic-radiation filters with ideal
selective properties (see, e.g., [12, Ch. 3]).
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Contrary to [13, 14], where spatially periodic media
with sharp boundaries were considered and the prob-
lem of the propagation of waves in such media was
solved by matching solutions for various homogeneous
layers (i.e., by using boundary conditions), we will con-
sider a medium with smoothly varying parameters,
which vary negligibly at wavelength distances. We
emphasize that the concepts and approaches considered
below are applicable to both acoustic and electromag-
netic waves.

2. We consider the problem of the collinear diffrac-
tion of a wave by an apodized spatially periodic struc-
ture of variation in the permittivity of a medium. For
simplicity, we analyze the electrodynamic problem of
the propagation of a plane electromagnetic wave in an
isotropic medium, whose permittivity varies as

(1)

where ε0 is unperturbed permittivity, α is the amplitude
of variation in permittivity, γ–1 is the characteristic spa-
tial scale of this variation, and q is the “wave vector” of

the spatial structure and satisfies the condition .

Substituting permittivity (1) into the Maxwell equa-
tions, we arrive at the following set of equations for two
interacting electromagnetic waves:

propagating in opposite directions:

(2)

Here, Γ = , ∆k = k1 + k2 – q is the wave detuning,

which is equal to ∆k = 2k – q, because ω1 = ω2 and k1 =

ε x( ) ε0 αe γx– qx( ),cos+=

γ
q
---  ! 1

E+ x t,( ) 1
2
---E1e

iω1t ik1x–
= c.c.,+

E– x t,( ) 1
2
---E2e

iω2t ik2x+
c.c.,+=

dE1

xd
--------- iΓe i∆k γ–( )xE2,=

dE2

xd
--------- iΓe i∆k γ–( )xE1.–=

kα
ε0

--------
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k2 ≡ k. The set of Eqs. (2) was derived using the condi-
tions

These are ordinary requirements of slow variation in
wave amplitudes near the synchronism conditions,
which are usually used when deriving the set of Eqs. (2)
from the Maxwell equations. The only difference of the
set of Eqs. (2) from the sets of equations for nonlinear
or parametric interacting waves is the presence of the
exponential factor e–γx describing the “apodization” of
the periodic structure. The condition

(3)

meaning the conservation of the total flux of wave ener-
gies at every point x follows from the set of Eqs. (2). We
emphasize that relation (3), in contrast to a similar rela-
tion for a spatially periodic medium without apodiza-
tion, i.e., for γ = 0, follows from Eqs. (2) also for γ ≠ 0.

Near the Bragg conditions, i.e., for ∆k = 0, two
waves, rather than one wave, propagate with slightly
different velocities in each direction in a homogeneous
periodic medium. It is easy to show that the wavenum-
ber k and frequency ω of these waves are related as

We note that the relation between ω and k for

k1 ! k ! k2

is complex. Therefore, waves propagating in this direc-
tion are attenuated and a so-called gap in eigenvalues ω
arises. This attenuation value and width of the gap
depend strongly on the amplitude of variation in the
medium properties. Since we consider variations in the

∆k ! k, d2E1 2,

x2d
---------------  ! k

dE1 2,

xd
------------- .

d
dx
------ E1

2 E2
2–{ } 0,=

k1 2, ω ε0 1
α
ε0
----±  . ω ε0 1

α
2ε0
--------± 

  .=
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medium properties such that |αe–γx| ! ε0, the above
effects will be disregarded.

From Eqs. (2), we derive the equation for one of the
waves, for example, for the reflected wave E2:

(4)

The boundary conditions for the reflected wave obvi-
ously have the form

(5)

where L is the length of interaction between waves or
the characteristic scale of the periodic structure.

To solve Eq. (4), it is necessary to change the vari-
able as u = e–γx. In this case, the solution of Eq. (4) with
boundary conditions (5) is obtained in the general form

d2E2

dx2
----------- i∆k γ+( )

dE2

dx
--------- Γ2e 2γx– E2–+ 0.=

E2 L( ) 0, dE2

dx
---------

x 0=

iΓ E1 0( ),–= =

–50

1.0

0

50

–100

0.5

0

100

∆k, cm –1

R
(∆

k,
 γ)

γ, c
m

–1

–3

–2

–1

Fig. 1. General form of the function R(∆k, γ) for γ < 0.
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-----------------------------------------------------------------------------------------------------------------------------------------,
where Iν(x) is the modified Bessel function.

Solution (6) describes the amplitude of the dif-
fracted wave propagating towards the incident wave.
This expression enables one to determine the intensity
of the reflected wave at the point x = 0 and then to cal-

culate reflectance R(∆k) =  for the apodized

periodic structure:

E2 0( )
E1 0( )
--------------

2
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The intensity of the transmitted wave is obviously
determined by the quantity

(8)

which is the ratio of the intensity of the transmitted
wave at the point x = L to the intensity of the incident
wave at the point x = 0. Expression (8) determines the
efficiency of the suppression of radiation at the exit

T ∆k γ,( ) 1 R ∆k γ,( ),–=
from the apodized periodic structure and is a direct con-
sequence of condition (3).

It is very difficult to determine the asymptotic
behavior of solution (6) for γ  0, because initial
equation (4) is solved by changing the variable x to u,
which is meaningless for γ  0. Fortunately, Eq. (4)
is easily solved for γ = 0. According to this solution,
reflectance has the form
(9)Rγ 0= ∆k( ) sinh LΓ 1 ξ2–( )

i 1 ξ2– cosh LΓ 1 ξ2–( ) ξsinh LΓ 1 ξ2–( )–
------------------------------------------------------------------------------------------------------------------

2

,=
where ξ = . Formula (9) gives the wave transmit-

tance for the sinusoidal periodic structure without
apodization.

3. Thus, we obtain exact solutions of the problem of
the diffraction of incident radiation by a periodic struc-
ture with exponential apodization. These solutions
make it possible to determine the reflectance and trans-
mittance of the wave by such a structure. We emphasize
that the reflectance R(∆k) and transmittance T(∆k) of
the apodized structure under consideration are indepen-
dent of the sign of γ and have the necessary symmetry;

∆k
2Γ
-------

1.0

0.8

0.6

0.4

0.2

–3 –2 –1 1 2 3∆k, cm–1

R(∆k)

γ = 0

γ = 0.1 cm–1

Fig. 2. Reflectance R(∆k) of the apodized periodic medium
vs. the wave detuning ∆k as calculated by Eqs. (7) and (8)
for interaction length L = 15 cm–1, coupling constant Γ =
0.1 cm–1, and γ values indicated in the figure. The plot for
the transmittance T(∆k) = 1 – R(∆k) of this structure is
obvious.
i.e., they are the same for waves incident on this period-
ically apodized structure both from the left and from the
right. Indeed, expression (7) is invariant under the for-
mal replacement

(10)

where the latter condition arises due to the necessity of
satisfying boundary conditions (5).

Further analysis can be only numerical. To this end,
we plot function R(∆k, γ) (7) (see Fig. 1). As is seen,
apodization strongly changes the character of the
reflection and transmission of the wave by such struc-
ture. Figure 2 shows two lines for different γ values and
demonstrates that apodization strongly reduces the
amplitude of side maxima.

To use periodic structures as cutoff filters in Raman
spectroscopy, it is very important to estimate the possi-
ble degree of the suppression of radiation. Figure 3
shows reflectance R(∆k, –3 cm–1) as a function of detun-
ing ∆k near the maximum at the point ∆k = 0. In particu-
lar, R(0, –3 cm–1) = 0.9999880813 and R(5 cm–1,
−3 cm−1) = 0.9999702333. Therefore, suppression can
easily achieve 10–5 and can be considerably stronger for
larger interaction scales L.

For the practical quality of a cutoff filter, the light-
energy fraction that infiltrates through all side maxima
and leads to the parasitic exposure of a photoreceiver is
very important. This energy obviously depends on the
spectrum of incident radiation. We estimate this energy
for apodized and unapodized periodic structures and
for uniform-spectrum incident radiation. For the

γ γ Γ Γe γL– ,,–→ →
DOKLADY PHYSICS      Vol. 48      No. 8      2003



ON THE DIFFRACTION OF WAVES BY AN APODIZED PERIODIC STRUCTURE 425
reflecting fraction of radiation, the problem reduces to
the calculation of the ratio of the integrals

(11)

where ∆kmin and ∆kmax are, respectively, the minimum
and maximum wavenumbers determined by both the
spectral range of radiation and the position of the near-
est maximum to the wavenumber satisfying the syn-
chronism conditions, i.e., k = 2q. For simplicity, we

take ∆kmax = ∞ and ∆kmin = , which is the position

of the nearest minimum to the phase-synchronism point
k = 2q. In this case, integrals are calculated nume-
rically and the ratio of the second integral to the first
one is equal to 1.75 for the periodic-structure parame-
ters shown in Fig. 2.1 This means that the reflected-
energy fraction in all side maxima, or beyond the fun-
damental band, for the apodized periodic structure is
smaller than that for the unapodized structure by a fac-
tor of 1.75.

4. Further, we discuss possible applications of such
periodically apodized structures and some concepts of
technology for their manufacture. Amplitude apodiza-
tion was shown to strongly suppress side maxima in the
transmission function of the filter and to conserve
strong suppression of the wave-transmission amplitude
near the synchronism conditions. This is physically
attributed to the fact that the amplitude of a wave dif-
fracted by such a structure is determined by a new char-
acteristic scale γ–1 [see Eq. (6)] rather than by the inter-
action length or characteristic size of the system. The
application of these filters to suppression of an intense
laser-radiation line, as well to ensuring the absence of
side maxima, provides the possibility of measuring
rather weak Raman scattering near the intense laser-
radiation line. Therefore, the set of substances that can
be studied by Raman spectroscopy can be considerably
extended. We note that the apodization of a periodic
structure is widely used in so-called opposing-pin con-
verters for surface acoustic waves [12]. Apodization
provides filters with almost ideal selective properties,
which are extensively used in various fields of science
and engineering.

Such periodically apodized structures can find inter-
esting applications for the radio band, where wave-
lengths are significantly longer than in optics and tech-
nological requirements for the production of such
structures are weaker. In particular, such structures can
provide the production of parabolic mirror antennas for
a certain wavelength range with a very high gain. The
selective properties of these antennas are determined

1 All calculations were carried out by using the Mathematica 4.2
software package.

R ∆k( ) ∆k hγ 0= ∆k( ) ∆k,d

∆kmin

∆kmax

∫,d

∆kmin

∆kmax

∫

π
2ΓL
----------
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not only by sizes of a mirror but also by the period of
the structure. Since, as was shown above, media with
periodically varying properties can provide very high
reflectance in a certain wavelength range, such anten-
nas can apparently be applied in the submillimeter
wavelength range, where it is difficult to find materials
with large reflectance. We note that radiation beyond
this wavelength range, where diffraction is small, is
transmitted unchanged through such an antenna, and
radiation in a different wavelength range can be sepa-
rated form this flux. This antenna is schematically
shown in Fig. 4.

5. In conclusion, we emphasize that the amplitude of
variation in optical properties or parameter α in Eq. (1)
can be complex. This means that a periodically
apodized structure can be formed due to variation of the
conductivity of the medium, which opens new possibil-
ities for the technology of the production of such struc-
tures. In this case, the above mathematical analysis is
valid with the replacement of α2 with |α2| in the result-
ing formulas.

0.9999

0.9998

0.9997

0.9996

10–10 5 –5
∆k, cm–1

Fig. 3. Reflectance R(∆k, –3 cm–1) vs. the wave detuning ∆k
near the maximum at ∆k = 0. In particular, R(0, –3 cm–1) =
0.9999880813 and R(5 cm–1, –3 cm–1) = 0.9999702333.
Therefore, such structures can have very high reflectance.

λ1 λ2

Fig. 4. Schematic representation of a selective antenna. The
incident radiation passes through the parabolic periodically
apodized structure, which reflects and focuses radiation
near a certain wavelength λ1. The remaining radiation
passes further and can be focused by the following para-
bolic structure with a different periodic scale.
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1
f
---
The goal of this work is to determine the asymptotic

behavior of the power spectrum of  noise attributed to

continuous large-scale fluctuations of a measured-
parameter field. Estimates [1, 2] of the effect of fluctu-

ations on the  spectrum in the theory of  processes

testify to the existence of this asymptotic behavior.
However, the asymptotic behavior itself was not stud-
ied in these works, because they were devoted to find-
ing the mathematical form of the physical field that can
turn into a random process with the ω−α spectrum in
the course of measurements. As follows from the solu-
tion of an inverse statistical problem [1, 2], the desired
form is specified by a train of Poisson pulse processes
S(x, t) and R(x, t) substantially depending on the coor-
dinates. The processes are formed by K pulses
ais(x − xi)δ(t – ti) and air(x – xi, t – ti), where ai are the
amplitudes; xi ∈ (0, L) and ti ∈ (0, T) are, respectively,
the position and time of the ith fluctuation; and r(x – xi,
t – ti) is the solution of the diffusion equation rt = Vrx +
κrxx under the initial condition r(x – xi, 0) = s(x – xi)
and homogeneous boundary conditions. In this case,
the flux J(x, t) = −κRx(x, t) formed by the contributions
ji = j(x – xi, t – ti) = –κrx(x – xi, t – ti) represents the mea-

sured field that turns into  noise. According to [1, 2],

only weighted sums of the random number of singular-
ities (x – xi)−β or (xi − x)−β can serve as processes S(x, t)
that have the spectrum F(ω) ~ ω−α and are consistent

with experiments. Here, β =  – α, β ∈  (0, 1), and

α ∈  (0.5, 1.5). If the basic parameter of the theory is

small, i.e., h =  ! 1, then the spectrum

1
f
---

1
f
--- 1

f
---

1
f
---

3
2
---

π
L
--- κ

ω
---- 

 
1/2
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F(ω) has the form

(1)

Here, bn are the Fourier components for the spatial

dependence of the function r(x – xi, t – ti), kn = , λn =

κ , and ν = .

It is clear that the singular form of the process S(x, t)

describing physical sources of  noise in the theory

presented in [1, 2] is a model assumption. Noise is actu-
ally formed in the field of continuous fluctuations of a
parameter being measured and is accompanied by these
fluctuations [3]. For this reason, we generalize the form
of S(x, t) as a sequence of power singularities over a
continuous functional background. As will be shown
below, a nontrivial consequence of such a generaliza-
tion is the appearance of the universal asymptotic

behavior of the model  spectrum. This behavior is

independent of the form of pulses in the process S(x, t)

responsible for  noise.

We now estimate the spectrum F(ω) in the general-
ized model with 〈K〉  = 1, when the process S(x, t) has
only one singularity (x – xi)−β. With a given accuracy ε,
the continuous function s(x – xi)(x – xi)β is approxi-
mated by a polynomial as

(2)

F ω( ) 2ν a2〈 〉 j x xi– t ti–,( )〈 〉〈 〉 x xi,=

=  νL a2〈 〉 κ 2 bn
2〈 〉 kn

2 λn
2 ω2+( ) 1–

n 1=

∞

∑ ω α– .∼

πn
L

------

kn
2 K〈 〉

TL
---------

1
f
---

1
f
---

1
f
---

s x xi–( ) Cmi x xi–( )m β–

m 0=

M

∑ , M M ε( );= =
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(3)

(4)

Changing the variables in Eq. (3) as y = kn(x – xi), ζi =

, ϕ = ϕni = πnζi, ψ = ψni = πn(1 – ζi), and

anm = , we obtain

(5)

where

and

We substitute v  =  and u = sint or u = cost

into the general formula

(6)

Using the identities u(k) = sin , u(k) =

cos , and Eq. (6), we obtain

bn Cmibnm,
m 0=

M

∑=

bnm
2
L
--- x xi–( )m β– knx( )sin x;d

0

L
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bn
2〈 〉  =   C mm ' b nm b nm ' 〈 〉 , C mm ' 

m

 

' 0=

 

M

 ∑  

m

 

0=

 

M

 ∑   =  C mi C m ' i 〈 〉 .

xi

L
----

2

Lkn
m 1 β–+

---------------------

bnm anm ϕniIcm ψni( )sin ϕniIsm ψni( )cos+[ ] ,=

Icm t( ) ym β– ycos yd

0

t

∫=

Ism t( ) ym β– ysin y.d

0

t

∫=

tm β–

1 β–( )m

--------------------

uv m( ) td∫ 1–( )ku k( )v m k– 1–( )

k 0=

m 1–

∑=

+ 1–( )m v u m( ) t.d∫

k
π
2
--- t+ 

 

k
π
2
--- t+ 

 

t β– tsin td∫ 1–( )ktk β– 1 β–( )k
1– k

π
2
--- x+ 

 cos
k 1=

m

∑=

+ 1–( )m 1 β–( )m
1– sm β x,( ),
For m = 2l, we have sm(β, x) = (–1)lIsm(x) and cm(β, x) =
(–1)lIcm(x); for m = 2l + 1, we have sm(β, x) =
(−1)lIcm(x) and cm(β, x) = (−1)l + 1Ism(x). As follows
from these formulas and Eq. (5),

where umk(β) =  and vm(β) = (1 – β)m .

For m = 2l and m' = 2l', we obtain

where

t β– tcos td∫ – 1–( )ktk β– 1 β–( )k
1– k

π
2
--- x+ 

 sin
k 1=

m

∑=

+ 1–( )m 1 β–( )m
1– cm β x,( ),

sm β x,( ) tm β– m
π
2
--- t+ 

 sin t,d∫=

cm β x,( ) tm β– m
π
2
--- t+ 

 cos t.d∫=

bnm 1–( )l n 1+ + anm 1–( )kumk β( )ψk β– k
π
2
--- 

 cos
k 1=

m

∑=

+ 1–( )lv m β( )bn0'' ,   for   m 2 l ,=

bnm 1–( )l n+ anm 1–( )kumk β( )ψk β– k
π
2
--- 

 sin
k 1=

m

∑=

+ 1–( )lv m β( )bn0' ,   for   m 2 l 1+ ,=

bn0'' an0 y β– ϕ y+( )sin y,d

0

ψ

∫=

bn0' an0 y β– ϕ y+( )cos y,d

0

ψ

∫=

1 β–( )m

1 β–( )k

-------------------- kn
m–

bnmbnm'〈 〉 en0 en1 en1' en2,+ + +=

en0 1–( )l l'+ anmanm'=

× 1–( ) k k'+( )/2umk β( )um'k' β( ) ψk k' 2β–+〈 〉 ,
k' 2=

m'

∑
k 2=

m

∑'' ''
DOKLADY PHYSICS      Vol. 48      No. 8      2003



UNIVERSAL ASYMPTOTIC BEHAVIOR OF THE POWER SPECTRUM 429
The average quantities entering into these formulas

are estimated as en0 – en2:  = (k +

k' + 1 – 2β)–1,  ~  ~ Γ2 ,

 = an0(πn)k + 1 – 2βP,

where

P = η–βsin[πn(ζ + η)]dζdη. 

Changing the variables ζ = st, η = s(1 – t), and µ = r +
2 – β, we reduce the integral P to the form

(7)

Substituting the asymptotic behavior of the hypergeo-
metric function 1F1(µ, µ + 1, z) ~ µz−1expz into Eq. (7),
we obtain

Similarly, for m = 2l + 1 and m' = 2l' + 1, the quan-

en1 1–( )l l' n 1+ + + anm=

× 1–( )k /2umk β( )v m' β( ) ψk β– bn0''〈 〉 ,
k 2=

m

∑''

en1' 1–( )l l' n 1+ + + anm'=

× 1–( )k' /2um'k' β( )v m β( ) ψk' β– bn0''〈 〉 ,
k' 2=

m'

∑''

en2 1–( )l l'+ v m β( )v m' β( ) bn0''2〈 〉 .=

ψk k' 2β–+〈 〉 πn( )k k' 2β–+

bn0''2〈 〉 bn0'2〈 〉 an0
2 1 β–

2
------------

ψk β– bn0''〈 〉

1 ζ–( )k β–∫
0 ζ η+ 1≤ ≤

∫

P 1 st–( )k β– s1 β– 1 t–( ) β– πns( )sin sd td

0

1

∫
0

1

∫=

=  1 β–( ) 1– s1 β– πns( ) F2 1 β k 1; 2 β; s–,–( )sin sd

0

1

∫

=  β k–( )r 1 β–( )r 1+ sr 1 β–+ πns( )sin sd

0

1

∫
r 0=

∞

∑

=  2i( ) 1– β k–( )r 1 β–( )r 1+
1–

r 0=

∞

∑
× µ 1– F1 1 µ µ 1+ iπn, ,( ) F1 1 µ µ 1+ –iπn, ,( )–[ ] .

P 1–( )n 1+ πn( ) k 1 2β–+( )[ ] 1– ,∼

ψk β– bn0''〈 〉 an0 1–( )n 1+ k 1 2β–+( ) 1– πn( )k 2β– .∼
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tities 〈bnmbnm'〉  are given by the formulas

where

The estimates of the average quantities entering into

these expressions have the form  =
an0(πn)k + 1 – 2βQ, where

Q =  × η−βcos[πn(ζ + η)]dζdη.

Changing the variables similarly to the above case
for P, we write out the integral Q in a form similar to
Eq. (7):

(8)

Therefore, Q ~ (–1)n + 1( πn)–2 and  ~

(–1)n + 1(πn)k – 1 – 2β.

For m = 2l and m' = 2l' + 1, we obtain

bnmbnm'〈 〉 on0 on1 on1' on2,+ + +=

on0 1–( )l l' 1+ + anmanm'=

× 1–( ) k k'+( )/2umk β( )um'k' β( ) ψk k' 2β–+〈 〉
k' 1=

m'

∑
k 1=

m

∑ ,' '

on1 1–( )l l' n 1+ + + anm=

× 1–( ) k 1–( )/2umk β( )v m' β( ) ψk β– bn0'〈 〉 ,
k 1=

m

∑'

on1' 1–( )l l' n 1+ + + anm'=

× 1–( ) k' 1–( )/2um'k' β( )v m β( ) ψk' β– bn0'〈 〉 ,
k' 1=

m'

∑

on2 1–( )l l'+ v m β( )v m' β( ) bn0' 2〈 〉 .=

ψk β– bn0'〈 〉

1 ζ–( )k β–∫
0 ζ η+ 1≤ ≤

∫

Q
1
2
--- β k–( )r 1 β–( )r 1+

1– µ 1–

r 0=

∞

∑=

× F1 1 µ µ 1+ iπn, ,( ) F1 1 µ µ 1+ –iπn, ,( )+[ ] .

2 ψk β– bn0'〈 〉
an0

2
-------

bnmbnm'〈 〉 wn0 wn1 wn1' wn2,+ + +=
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where

Substituting the expressions for 〈bnmbnm'〉  into

Eq. (4), we find  for all 0 ≤ m and m' ≤ M. Substi-

tuting  into Eq. (1), we arrive at the following esti-

mate of the  spectrum F(ω) in the presence of the con-

tinuous field of fluctuations:

(9)

Here,

wn0 1–( )l l'+ anmanm'=

× 1–( ) k k' 1+ +( )/2umk β( )um'k' β( ) ψk k' 2β–+〈 〉 ,
k' 1=

m'

∑
k 2=

m

∑'' '

wn1 1–( )l l' n 1+ + + anm=

× 1–( )k /2umk β( )v m' β( ) ψk β– bn0'〈 〉 ,
k 2=

m

∑''

wn1' 1–( )l l' n 1+ + + anm'=

× 1–( ) k' 1–( )/2um'k' β( )v m β( ) ψk' β– bn0''〈 〉 ,
k' 1=

m'

∑'

wn2 1–( )l l'+ v m β( )v m' β( ) bn0'' bn0'〈 〉 .=

bn
2〈 〉

bn
2〈 〉

1
f
---

F ω( ) 4νL
κ
ω
---- 

 
2

∼

× 1–( )l l'+ Cmm'L
m m' 2– 2β–+ W jmm'

j 0=

2

∑
m' 0=

M

∑
m 0=

M

∑ .

W0mm' m 2l= m' 2l'=,

=  1–( ) k k'+( )/2Amm'kk'S h m m' k– k'–+,( ),
k' 2=

m'

∑
k 2=

m

∑'' ''

W1mm' m 2l= m' 2l'=,

=  1–( )k /2Amm'k0S h m m' k–+,( ),
k 2=

m

∑''

W2mm' m 2l= m' 2l'=,

=  
1
2
---Γ2 1 β–( )Bmm'00S h m m' 2β–+,( ),
The primes and double primes stand for summations
over odd and even indices, respectively.

For h =  ! 1, the asymptotic estimates of the

sums for q = –2β and q = 0 give S(h, –2β) ~

 × (π/h)1 + 2β and S(h, 0) ~ , respec-

W0mm' m 2l 1+= m' 2l' 1+=,

=  – 1–( ) k k'+( )/2Amm'kk'S h m m' k– k'–+,( ),
k' 1=

m'

∑
k 1=

m

∑' '

W1mm' m 2l 1+= m' 2l' 1+=,

=  
1
2
--- 1–( ) k 1–( )/2Bmm'k0S h m m' 1 k–+ +,( ),

k 1=

m

∑'

W2mm' m 2l 1+= m' 2l' 1+=,

=  
1
2
---Γ2 1 β–( )Bmm'00S h m m' 2β–+,( ),

W0mm' m 2l= m' 2l' 1+=,

=  1–( ) k k' 1–+( )/2Amm'kk'S h m m' k– k'–+,( ),
k' 1=

m'

∑
k 2=

m

∑'' '

W1mm' m 2l= m' 2l' 1+=,

=  
1
2
--- 1–( )k /2Bmm'k0S h m m' 1 k–+ +,( ),

k 2=

m

∑ ''

W0mm' m 2l 1+= m' 2l'=,

=  1–( ) k k' 1–+( )/2Amm'kk'S h m m' k– k'–+,( ),
k' 2=

m'

∑
k 1=

m

∑' ''

W1mm' m 2l 1+= m' 2l'=,

=  1–( ) k 1–( )/2Amm'k0S h m m' k–+,( ),
k 1=

m

∑'

W2mm' m 2l= m' 2l' 1+=, W2mm' m 2l 1+= m' 2l'=,∼

∼ o W2mm' m 2l= m' 2l=,( ),

Bmm'kk' umk β( )um'k' β( )= ,

Amm'kk' Bmm'kk' k k' 1 – 2β+ +( )–1,=

S h q,( ) SN h q,( ),
N ∞→
lim=

SN h q,( ) πn( )q 1 hn( )4+( )[ ] 1–
.

n 1=

N

∑=

λ1

ω
----- 

 
1/2

4 πα
2
--- 

 sin 
 

1– 2π
4h

----------
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tively. For other q, Eq. (9) provides the estimate

 ! 1. Indeed, this estimate is valid for q = 1,

because

for N @ 1.

For q > 1, the same estimate holds, because
S(h, q) ~ const. For m = m' = 0, we obtain the spectrum

(10)

from the model [1, 2] of the field formed by power sin-
gularities. For q = 0, we obtain the new component

, (11)

associated with the generalization of the model [1, 2].

Here, D is the sum of the terms , except

for m = m' = 0. A similar result can be obtained for the
Fourier basis {cos(knx)}.

The estimate of spectrum (11) remains valid for
arbitrary homogeneous boundary conditions and for
arbitrary 〈K〉 . This estimate is universal due to the fol-

lowing reasons. For h ! 1 i.e., for ω−1 !  and ldiff ~

 ! L , the  spectrum is formed by the fluxes

ji originating in small neighborhoods δi = {ldiff, ω−1}i of
the points (xi, ti). As follows from the analysis of the dif-
fusion equation for small δi [6], the fluxes are indepen-
dent of boundary conditions and of each other. The first
property leads to the insensitivity of the spectrum of
fluxes J(x, t) to the type of boundary conditions. The
second property, along with the condition of indepen-

S h q,( )
S h 0,( )
---------------

S h 1,( )
S h 0,( )
---------------

SN h 1,( )
SN h 0,( )
------------------- N 1– πn( ) 1– Nln

N
---------- ! 1∼

n 1=

N

∑∼ ∼

F ω( )
1
2
---Γ2 α 1

2
---– 

  πα
2
--- 

  νC00
2 κ

ω
---- 

 
α

cosec∼

F ω( ) 2νD
κ
ω
---- 

 
3/2

∼

Cmm'L
m– m'– 2β–

m m' 1 2β–+ +
-------------------------------------


 λ1

1–

κ
ω
---- 

 
1/2


 1

f
---
DOKLADY PHYSICS      Vol. 48      No. 8      2003
dence of the points (xi, ti), results in additivity of the

contributions of the fluxes ji to the  spectrum, and

estimate (10) is therefore valid for arbitrary 〈K〉 .

Thus, based on the mathematical theory of  noise

[1, 2], we show that continuous large-scale fluctuations

affect the  spectrum so that a spectral component hav-

ing the universal asymptotic behavior ω–3/2 independent
of the form of the fluctuations appears.

It is worth noting that the physical cause of asymp-
totic behavior (11) differs fundamentally from that of
the asymptotic forms ~ω−2α for α ≤ 1 and ~ω−2 for
α > 1, which were considered in [4] and were attributed
to time correlations in the diffusion flux J(x, t). Asymp-
totic behavior (11) exists in the case under consider-
ation, because the field of the measured-parameter sin-
gularities is modulated by a continuous random back-
ground. Thus, the asymptotic forms found in [4] and
those considered here are due to different and indepen-
dent mechanisms. However, both these mechanisms are
manifested only if the mechanism considered in [4] acts
effectively. Otherwise, spectrum (10) will be observed.
With an increase in the frequency ω, asymptotic behav-
ior that approaches zero more slowly must be mani-
fested. Hence, the dependence ω–3/2 should be expected
for α = 1.
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Pulses radiated by ultrashort-pulse antennas [1, 2]
are significantly distorted compared to an input signal
produced by an ultrashort-pulse generator and applied
to the antenna input. In particular, the radiated signal is
more prolonged. To suppress this residual radiation, we
suggested in [3] application of an extra corrective pulse
(corrective action) to the antenna input after the input
pulse. This corrective pulse is calculated so that radia-
tion is completely suppressed to a given time. The sec-
ond problem of the correction of the output signal is the
best fit of its time diagram to a given shape. This prob-
lem was solved in [4] also by using extra corrective
pulses applied to the antenna input simultaneously with
the input signal of the ultrashort-pulse generator.

We emphasize that only separate pulses were con-
sidered in [3, 4]. At the same time, ultrashort-pulse
antennas operate most frequently in packet mode; i.e.,
they radiate finite sequences of repetitive pulses. In this
case, the problem of correction of signals becomes
much more complicated because of the overlap of dis-
torted repetitive pulses.

When the procedures described in [3, 4] completely
suppress the residual radiation following an input pulse
before arrival of the next input pulse, the problem of
correcting a sequence of repetitive pulses is identical to
that for a single pulse. However, it is difficult to ensure
such suppression, because it requires a corrective signal
of a very high power, especially in the case of a short
time interval between pulses.

In this paper, we present methods of determining
limited-power corrective signals for ultrashort-pulse
antennas operating in the packet mode. The methods
solve the first problem of correction of output signals,
namely, the problem of the suppression of residual radi-
ation with allowance for the overlap of repetitive radi-
ated signals.
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1. ANALYSIS OF THE TIME PROFILES
OF DISTORTED RADIATED SIGNALS

The dynamic response of an antenna [which repre-
sents the relation of an input signal x0(t) produced by an
ultrashort-pulse generator to the corresponding signal
y0(t) radiated by the antenna] is assumed to be
described by a pulse transfer function. For a single
pulse,

(1)

where T1 is the duration of the input signal x0(t). For a
sequence of n pulses repeated with the period T, the
radiated signal has the form

(2)

As was shown in [5], by introducing new variables
τi = τ – (i – 1)T and in view of the T periodicity of x0(t),

y0 t( ) h t τ–( )x0 τ( ) τ , t 0; T1 ] ,(∈d

0

t

∫=

y0 t( ) h t τ–( )x0 τ( ) τ , t T1,>d

0

T1

∫=

y0 t( ) h t τ–( )x0 τ( ) τd

i 1–( )T

i 1–( )T T1+

∫
i 1=

l 1–

∑= h t τ–( )x0 τ( ) τ ,d

lT

t

∫+

t lT ; lT T1 ] ,+(∈

y0 t( ) h t τ–( )x0 τ( ) τ ,d

i 1–( )T

i 1–( )T T1+

∫
i 1=

l

∑=

t lT T1+ l 1+( )T ] ,,(∈

l 2 3 … n 1,–, , ,=

y0 t( ) h t τ–( )x0 τ( ) τ , t nT ; ∞).(∈d

i 1–( )T

i 1–( )T T1+

∫
i 1=

n

∑=
003 MAIK “Nauka/Interperiodica”
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expressions (2) can be transformed to the form

(3)

where

This representation of the time profile of the radi-
ated signal is convenient, because it allows us to esti-
mate the residual radiation intensity for an arbitrary
input signal x0(τ).

2. GENERAL CASE OF THE SUPPRESSION 
OF RESIDUAL RADIATION

In order to suppress residual radiation described by
expressions (3), a corrective pulse should be applied to
the antenna input for the time interval from the end of
an input pulse to the beginning of the next pulse:

In this case, the total radiation of the antenna is given
by the expressions

(4)

For the most complete suppression of the residual
radiation of a sequence of pulses, the overlap of these

y0 t( ) gl 1– t τ–( )x0 τ( ) τd

0

T1

∫= h t τ– lT–( )x0 τ( ) τ ,d

0

t lT–

∫+

t lT ; lT T1 ] ,+(∈

y0 t( ) gl t τ–( )x0 τ( ) τ , t lT T1+ l 1+( )T,[ ] ,∈d

0

T1

∫=

y0 t( ) gn t τ–( )x0 τ( ) τ , t n 1–( )T T1+ ∞, )[ ,∈d

0

T1

∫=

gl t τ–( ) h t τ– iT–( ).
i 0=

l 1–

∑=

ul t( ), t lT T1; l 1+( )T+( ).∈

y t( ) y0 t( ) h t τ–( )u1 τ( ) τ , t T1; T ] ,(∈d

T1

t

∫–=

y t( ) y0 t( ) h t τ–( )ui τ( ) τ ,d

i 1–( )T T1+

iT

∫
i 1=

l 1–

∑–=

t lT ; lT T1 ] ,+(∈

y t( ) y0 t( ) h t τ–( )ui τ( ) τd

i 1–( )T T1+

iT

∫
i 1=

l 1–

∑–=

– h t τ–( )ul τ( ) τ ,d

lT T1+

t

∫
t lT T1; l 1+( )T ] , l+(∈ 2 3 … n., , ,=
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pulses should be minimized. Hence, it is advisable to
minimize the residual radiation intensity at the times t =
lT, l = 1, 2, … just before the beginnings of subsequent
pulses. As follows from Eqs. (4), the radiation intensity
at these times is

(5)

where, according to Eqs. (3),

It should be noted that the radiation intensity y(lT)
given by Eqs. (5) depends on the corrective signals ui(t),
i = 1, 2, …, l, which affect the antenna input after both
the current input pulse x0(t), t ∈  ((l – 1)T; (l – 1)T + T1]
and all preceding corrective pulses. Therefore, these
corrective pulses cannot be determined separately for
each repetitive pulse (when the residual radiation of the
pulse is not completely suppressed before the arrival of
the next pulse).

In view of this circumstance, the optimization crite-
rion for the corrective action is taken in the form of the
magnitude of the total residual radiation:

(6)

The power of each corrective signal ui(t), i = 1, 2, …,
n is assumed to be limited by the same value

(7)

For functional yn (6) to be minimal, its second term
must be maximal. It can be written in the form

(8)

where
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lT

∫
i 1=

l

∑–=

y0 lT( ) gl 1– lT t–( )x0 t( ) t.d
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n

∑ y0 lT( )
l 1=

n
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∫
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n

∑
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n
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n
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∫
i 1=

n

∑–

1
T T1–
--------------- ui

2 td
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The problem of maximizing functional I (8) under
restrictions (7) reduces to n independent identical
problems:

(9)

For each of these problems, the Euler–Lagrange equa-
tion has the form

(10)

where λi are the Lagrange multipliers introduced for
restrictions (7) to be met. It follows from Eqs. (10) that

Substituting ui(t) into the corresponding restriction, we
find λi and then the following final expressions for the
corrective actions:

(11)

where

The corresponding minimum value of residual radia-
tion intensities (6) is given by the expression

(12)

In this case, we assume that the quantity  given by
Eq. (12) is nonnegative and the partial sums

of the residual radiation intensities are positive. This
assumption is valid when the duration T – T1 of the cor-
rective signal is sufficiently short.

3. SUPPRESSION OF RESIDUAL RADIATION
BY A PERIODIC CORRECTIVE ACTION

Corrective actions (t) (11) ensuring the minimum
intensity of residual radiation have different time pro-

maxIi ui( ) Hi t( )ui t( ) t,d

i 1–( )T T1+

iT

∫=

1
T T1–
--------------- ui

2 td

i 1–( )T T1+

iT

∫ W .≤

2λ i

T T1–
---------------ui– Hi t( )+ 0, i 1 2 … n,, , ,= =

ui t( )
T T1–

2λ i

---------------Hi t( ), i 1 2 … n., , ,= =

ui* t( )
T T1–( )W

Hi

-----------------------------Hi t( ),=

t i 1–( )T T1; iT+( ),∈

Hi Hi
2 t( ) td

i 1–( )T T1+

iT

∫
1
2
---

.=

yn* y0 lT( )
l 1=

n

∑ Hi T T1–( )W .
l 1=

n

∑–=

yn*

ym* y0 lT( )
l 1=

m

∑ Hi T T1–( )W
l 1=

m

∑–=

ui*
files in time intervals between pulses, which results in
some engineering problems. In order to simplify them,
it may be advisable to use a periodic corrective signal
that has a period T equal to the input-pulse duration and
acts only in the time intervals t ∈  [(l – 1)T + T1; lT], l =
1, 2, …, n between pulses. In this case, total residual
radiation (6) is also used as the minimized criterion.
Since the corrective action u(t) – T is a periodic func-
tion, residual radiation at the times t = lT, l = 1, 2, …, n
is determined by the expressions

(13)

According to Eqs. (13), total residual radiation yn (6) is
given by the expression

(14)

We assume that restriction (7) is imposed on the correc-
tive-pulse power at each time interval [(l – 1)T + T1; lT],
l = 1, 2, …, n. Since ul(t) = ul – 1(t – T), restriction (7)
reduces to the form

(15)

It is required to find a function u*(t) such that the
functional 

is minimal under restriction (15). The Euler–Lagrange
equation for this problem has the form

(16)

Here, λ is the Lagrange multiplier introduced to satisfy
restriction (15) and

As follows from Eq. (16),

We substitute this expression into inequality (15),

y lT( ) y0 lT( ) gl 1– lT t–( )u t( ) t,d

T1

T

∫–=

l 1 2 … n., , ,=

yn y lT( )
l 1=

n

∑=

=  y0 lT( )
l 1=

n

∑ gl 1– lT t–( )u t( )
l 1=

n

∑ t.d

T1

T

∫–

1
T T1–
--------------- u2 td

T1

T

∫ W .≤

I g lT t–( )u t( )
l 1=

n

∑ td

T1

T

∫=

2λ
T T1–
---------------u– Gn t( )+ 0.=

Gn t( ) gl 1– lT t–( ).
l 1=

n

∑=

u t( )
T T1–

2λ
---------------Gn t( ).=
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determine λ, and then find

(17)

According to Eqs. (14) and (17), the minimum of the
total residual radiation intensity is given by the expres-
sion

(18)

If the power

of the input pulse x0(t) is given, the upper bound of 
is found by applying the Cauchy–Schwarz inequality to
the first term of Eq. (18):

where

4. CONTINUOUS PERIODIC CORRECTIVE 
ACTIONS

Corrective actions (t) (11) and u*(t) (17) are con-
tinuous functions of time inside the domain of their def-
inition, i.e., in the time intervals t ∈ ((i – 1)T + T1, iT).
They take nonzero values at the boundary points:

(iT + T1) ≠ 0 and ((i + 1)T) ≠ 0 for function (11)
and u*(T1) ≠ 0 and u*(T) ≠ 0 for periodic function (17).
This feature leads to some difficulties, because actual
corrective signals must take zero values outside these
time intervals. Therefore, the realization of the correc-
tive actions described above requires their step change,
which inevitably causes dynamic distortions. Hence, it
is advisable to define corrective signals such that they
satisfy the boundary conditions u((i – 1)T + T1) =
u(iT) = 0. To this end, in addition to the quadratic inte-

u∗ t( )
T T1–( )W

Gn

-----------------------------Gn t( ),=

Gn Gn
2 t( ) td

T1

T

∫
1
2
---

.=

yn* y0 lT( )
l 1=

n

∑ Gn T T1–( )W .–=

W0
1
T1
----- x0

2 td

0

T1

∫=

yn*

yn* Gn
0 T1W0 Gn T T1–( )W ,–=

Gn
0 Gn

2 t( ) td

0

T1

∫
1
2
---

.=

ui*

ui* ui*
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gral restriction corresponding to the limiting power, a
quantity characterizing the derivative (t) should be
used as a measure of the intensity of the function u(t).
The introduction of the corresponding integral qua-
dratic term in the functional to be optimized is the most
simple way to satisfy these boundary conditions for u(t)
[6]. In what follows, we consider the case of T-periodic
corrective action.

Since the functional to be minimized is the second
term on the right-hand side of Eq. (14), we introduce
the generalized functional

(19)

where λ is the Lagrange multiplier and α is the weight
factor characterizing the rate of change of the corrective
signal u(t). The Euler–Lagrange equation correspond-
ing to functional (19) has the form

(20)

The function u(t) should satisfy the boundary condi-
tions u(T1) = u(T) = 0 and restriction (15). The solution
of Eq. (20) with the condition u(T1) = 0 has the form

(21)

where γ =  and λ1 = .

The quantity (T) entering into Eq. (21) is found
from the condition u(T) = 0:

(22)

Substituting (T1) given by Eq. (22) into Eq. (21) and
then determining λ1 from condition (15) (considered as
an equality), we arrive at the final expression

u̇

I u u̇,( ) –λGn t( )u
1
2
---u2 1

2
---α u̇2+ + t,d

T1

T

∫=

α u̇̇ u– λGn t( ).=

u t( )
1
γ
--- γ t T1–( )u̇ T1( )sinh=

+
1
γ
---λ1 γ t τ–( )Gn τ( )sinh τ ,d

T1

t

∫

1

α
------- λ

α
---

u̇

u̇ T1( ) γ T T1–( )sinh[ ] 1– λ1 γ T t–( )Gn t( )sinh t.d

T1

T

∫–=

u̇

u∗ t( ) η∗ γ T T1–( ) γ t τ–( )Gn τ( )sinh τd

T1

t

∫sinh=

– γ t T1–( ) γ T τ–( )Gn τ( )sinh τd

T1

T

∫sinh ,
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where
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The properties of statically definable relationships
in ideal-plasticity theory [1–5] are discussed.

1. We consider the dissipative function

(1.1)

where ϕi = ϕi(n1, n2, n3).

Let us assume that

(1.2)

We consider the functional

(1.3)

where ν and µ are the Lagrange multipliers.
The extremum conditions for functional (1.3) have

the form

(1.4)

From extremum conditions (1.4) for functional (1.3)
with dissipative function (1.1), it follows that

(1.5)

(1.6)

D εxϕ1 εyϕ2 εzϕ3+ +=

+ 2εxyϕ4 2εyzϕ5 2εxzϕ6,+ +

n1
2 n2

2 n3
2+ + 1.=

J σij D– ν εx εy εz+ +( )–=

+ µ n1
2 n2

2 n3
2 1–+ +( ),

∂J
∂εij

-------- 0,
∂J
∂ni

------- 0.= =

σx ν ϕ 1 n1 n2 n3, ,( ), τ xy+ ϕ4 n1 n2 n3, ,( ),= =

σy ν ϕ 2 n1 n2 n3, ,( ), τ yz+ ϕ5 n1 n2 n3, ,( ),= =

σz ν ϕ 3 n1 n2 n3, ,( ), τ xz+ ϕ6 n1 n2 n3, ,( ),= =

ν σ 1
3
--- ϕ1 ϕ2 ϕ3+ +( ),–=

εx

∂ϕ1

∂n1
--------- εy

∂ϕ2

∂n1
--------- εz

∂ϕ3

∂n1
---------+ +

+ 2εxy

∂ϕ4

∂n1
--------- 2εyz

∂ϕ5

∂n1
--------- 2εxz

∂ϕ6

∂n1
---------+ + 2µn1,=

Chuvash State University, 
Moskovskiœ pr. 15, Cheboksary, 428015 Russia
1028-3358/03/4808- $24.00 © 20437
(1.7)

Associated flow rule (1.7) should be complemented
by the incompressibility condition

(1.8)

The equilibrium equations

(1.9)

along with relationships (1.2), (1.5), and (1.6), deter-
mine the statically definable set of equations in ideal-
plasticity theory.

In the general case of static definability (1.5), there
are six independent functions ϕi .

We consider the case where relationships (1.5) can
be represented in the form

(1.10)

Relations (1.10) can be written in the form

(1.11)

(1.12)

εx

∂ϕ1

∂n2
--------- εy

∂ϕ2

∂n2
--------- εz

∂ϕ3

∂n2
---------+ +

+ 2εxy

∂ϕ4

∂n2
--------- 2εyz

∂ϕ5

∂n2
--------- 2εxz

∂ϕ6

∂n2
---------+ + 2µn2,=

εx

∂ϕ1

∂n3
--------- εy

∂ϕ2

∂n3
--------- εz

∂ϕ3

∂n3
---------+ +

+ 2εxy

∂ϕ4

∂n3
--------- 2εyz

∂ϕ5

∂n3
--------- 2εxz

∂ϕ6

∂n3
---------+ + 2µn3.=

εx εy εz+ + 0.=

∂σx

∂x
--------

∂τ xy

∂y
---------

∂τ xz

∂z
---------+ + 0,=

∂τ xy

∂x
---------

∂σy

∂y
--------

∂τ xz

∂z
---------+ + 0,=

∂τ xz

∂x
---------

∂τ yz

∂y
---------

∂σz

∂z
--------+ + 0=

ϕ1 N1
2, ϕ4 N1N2,= =

ϕ2 N2
2, ϕ5 N2N3,= =

ϕ3 N3
2, ϕ6 N1N3.= =

N1 ϕ1, N2 ϕ2, N3 ϕ3,= = =

ϕ4 ϕ1ϕ2, ϕ5 ϕ2ϕ3, ϕ6 ϕ1ϕ3.= = =
003 MAIK “Nauka/Interperiodica”
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According to Eqs. (1.12) under assumptions (1.10),
only three of the six ϕi functions are independent.

The functions ϕ4, ϕ5, and ϕ6 can be chosen as inde-
pendent. In this case, it follows from Eqs. (1.12) that

(1.13)

According to Eqs. (1.10), relationships (1.5) and
(1.6) take the form

(1.14)

(1.15)

Relations (1.10) provide the expressions

(1.16)

According to Eqs. (1.2) and (1.16), we have

(1.17)

From equilibrium equations (1.9) and relation-
ships (1.14), we obtain

(1.18)

Complementing Eqs. (1.18) with the differential
relationship

(1.19)

following from Eq. (1.17), we obtain four equations—
Eqs. (1.18) and Eq. (1.19)—for the four unknowns ν,
N1, N2, and N3 .

ϕ1

ϕ4ϕ6

ϕ5
-----------, ϕ2

ϕ4ϕ5

ϕ6
-----------, ϕ3

ϕ5ϕ6

ϕ4
-----------.= = =

σx ν N1
2, τ xy+ N1N2,= =

σy ν N2
2, τ yz+ N2N3,= =

σz ν N3
2, τ xz+ N1N3,= =

ν σ 1
2
--- N1 N2 N3+ +( ).–=

n1 F1 N1 N2 N3, ,( ), n2 F2 N1 N2 N3, ,( ),= =

n3 F3 N1 N2 N3, ,( ).=

F1
2 F2

2 F3
2+ + 1.=

∂ν
∂x
------ 2N1

∂N1

∂x
--------- N2

∂N1

∂y
---------+ +

+ N1

∂N2

∂y
--------- N3

∂N1

∂z
--------- N1

∂N3

∂z
---------+ + 0,=

∂ν
∂y
------ N2

∂N1

∂x
--------- N1

∂N2

∂y
---------+ +

+ 2N2

∂N2

∂y
--------- N3

∂N2

∂z
--------- N2

∂N3

∂z
---------+ + 0,=

∂ν
∂z
------ N3

∂N1

∂x
--------- N1

∂N3

∂x
---------+ +

+ N3

∂N2

∂y
--------- N2

∂N3

∂z
--------- 2N3

∂N3

∂z
---------+ + 0.=

F1dF1 F2dF2 F3dF3+ + 0,=
Relationship (1.19) is represented as

(1.20)

where

Let us introduce the characteristic surface
Ψ(x, y, z) = 0 and denote

(1.21)

The characteristic determinant of the set of
Eqs. (1.18) and (1.20) has the form

(1.22)

(1.23)

(1.24)

(1.25)

It follows from relationships (1.22)–(1.25) that

(1.26)

The angle α between the vectors A and N is deter-
mined according to Eqs. (1.10), (1.16), (1.21), and
(1.25) by the assumptions about the properties of the
limiting behavior of a material. According to
Eq. (1.23), the angle between the normal gradΨ to the
characteristic surface and the vector N is θ1 . According
to Eq. (1.24), the angle between the vectors gradΨ and
A is θ2 . Relationship (1.26) determines the totality of
gradΨ vectors and, thus, the totality of elements of
characteristic surfaces.

We assume that relationships (1.10) have the form

(1.27)

where A, B, C, F, G, and H are constants.

adN1 bdN2 cdN3+ + 0,=

a F1

∂F1

∂N1
--------- F2

∂F2

∂N1
--------- F3

∂F3

∂N1
---------+ + Fi

∂Fi

∂N1
---------,= =

b Fi

∂Fi

∂N2
---------,   and   c F i 

∂
 

F
 

i ∂ 
N

 
3

 ---------.= =

gradΨ Ψxi Ψy j Ψzk,+ +=

N N1i N2 j N3k,+ +=

A ai bj ck.+ +=

Φ 2ΦΦ[=

– Ψx
2 Ψy

2 Ψz
2+ +( ) aN1 bN2

cN3+ +( ) ] 0,=

Φ N1Ψx N2Ψy N3Ψz+ +=

=  N gradΨ⋅( ) N gradΨ θ1,cos=

Φ aΨx bΨy cΨz+ +=

=  A gradΨ⋅( ) A gradΨ θ2,cos=

aN1 bN2 cN3+ + A N α .cos=

2 θ1 θ2coscos α .cos=

ϕ1 An1
2 N1

2, ϕ4 Fn1n2 N1N2,= = = =

ϕ2 Bn2
2 N2

2, ϕ5 Gn2n3 N2N3,= = = =

ϕ3 Cn3
2 N3

2, ϕ6 Hn1n3 N1N3,= = = =
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From Eqs. (1.27), we obtain

(1.28)

(1.29)

(1.30)

(1.31)

According to Eqs. (1.21) and (1.31), we have

(1.32)

and, according to Eqs. (1.20), (1.30), and (1.31),

(1.33)

(1.34)

From Eqs. (1.25), (1.32), and (1.34), it follows that

(1.35)

where

For the case of ideal plasticity, σ1 = σ2, σ3 = σ1 – 2k,
cosα = 1 and θ1 = θ2 = 0 in relationships (1.26)
and (1.35).

We consider the case of ideal plasticity [3] for an
anisotropic plastic solid:

(1.36)

According to Eqs. (1.14) and (1.36), we have

(1.37)

According to Eqs. (1.37), the vector N coincides in
direction with the vector n specifying the direction of
the third principal stress σ3 for ideal-plasticity condi-
tion (1.36).

From Eqs. (1.2) and (1.37), we write

(1.38)

From Eq. (1.38), it follows that

(1.39)

(1.40)

F AB, G BC, H AC,= = =

A
FH
G

--------, B
FG
H

--------, C
GH
F

---------,= = =

n1

N1

A
--------, n2

N2

B
--------, n3

N3

C
--------,= = =

N1 An1, N2 Bn2, N3 Cn3.= = =

N An1i Bn2 j Cn3k+ +=

a
n1

A
--------, b

n2

B
--------, c

n3

C
--------,= = =

A
n1

A
--------i

n2

B
-------- j

n3

C
--------k.+ +=

αcos
1

N A
--------------,=

N An1
2 Bn2

2 Cn3
2+ + , A

n1
2

A
-----

n2
2

B
-----

n3
2

C
-----+ + .= =

ϕ i k n1 n2 n3, ,( ).=

N1 kn1, N2 kn2, N3 kn3.= = =

N1
2 N2

2 N3
2 k–+ + 0.=

N1dN1 N2dN2 N3dN3
dk
2

------–+ + 0,=

dk
∂k
∂n1
--------dn1

∂k
∂n2
--------dn2

∂k
∂n3
--------dn3.+ +=
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From relationships (1.37) and (1.40), we obtain

(1.41)

From the set of Eqs. (1.41), it follows that

(1.42)

where ∆ is the determinant of the set of Eqs. (1.41) and
aij are determined in terms of coefficients (1.41).

From Eqs. (1.20), (1.37), (1.39), (1.40), and (1.41),
we find

(1.43)

2. If relationships (1.14) are met for an incompress-
ible medium satisfying condition (1.8), the dissipative
function has the form

(2.1)

Let us consider the functional

(2.2)

similar to functional (1.3) under conditions (1.8) and
(1.17). Here, the quantity D is determined according to
Eq. (2.1).

dN1 k
n1

2 k
---------- ∂k

∂n1
--------+ 

  dn1=

+
n1

2 k
---------- ∂k

∂n2
--------dn2

n1

2 k
---------- ∂k

∂n3
--------dn3,+

dN2

n2

2 k
---------- ∂k

∂n1
--------dn1=

+ k
n2

2 k
---------- ∂k

∂n2
--------+ 

  dn2

n2

2 k
---------- ∂k

∂n3
--------dn3,+

dN3

n3

2 k
---------- ∂k

∂n1
--------dn1=

+
n31

2 k
---------- ∂k

∂n2
--------dn2 k

n3

2 k
---------- ∂k

∂n3
--------+ 

  dn3.+

dn1
1
∆
--- a11dN1 a12dN2 a13dN3+ +( ),=

dn2
1
∆
--- a21dN1 a22dN2 a23dN3+ +( ),=

dn3
1
∆
--- a31dN1 a32dN2 a33dN3+ +( ),=

a kn1
1

2∆
------- ∂k

∂n1
--------a11

∂k
∂n2
--------a21

∂k
∂n3
--------a31+ + 

  ,–=

b kn2
1

2∆
------- ∂k

∂n1
--------a12

∂k
∂n2
--------a22

∂k
∂n3
--------a32+ + 

  ,–=

c kn3
1

2∆
------- ∂k

∂n1
--------a13

∂k
∂n2
--------a23

∂k
∂n3
--------a33+ + 

  .–=

D σijεij εxN1
2 εyN2

2 εzN3
2+ += =

+ 2εxyN1N2 2εyzN2N3 2εxzN1N3.+ +

J σijεij D– ν εx εy εz+ +( )–=

+ µ F1
2 F2

2 F3
2 1–+ +( ),
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From the extremum conditions

(2.3)

for functional (2.2) follow relationships (1.14) and the
expressions

(2.4)

for the associated-flow rule. Eliminating the quantity µ
from Eqs. (2.4), we have

(2.5)

∂J
∂εij

-------- 0,
∂J
∂Ni

--------- 0= =

εxN1 εxyN2 εxzN3+ + µFi

∂Fi

∂N1
--------- µa,= =

εxyN1 εyN2 εyzN3+ + µFi

∂Fi

∂N2
--------- µb,= =

εxzN1 εyzN2 εzN3+ + µFi

∂Fi

∂N3
--------- µc= =

c εxN1 εxyN2 εxzN3+ +( )
– a εxzN1 εyzN2 εzN3+ +( ) 0,=

c εxyN1 εyN2 εyzN3+ +( )
– b εxzN1 εyzN2 εzN3+ +( ) 0.=
Complementing Eqs. (2.5) with incompressibility
condition (1.8) and passing to displacement-velocity
components, we obtain a set of three equations—
Eq. (1.8) and Eqs. (2.5)—for the three variables u, v , w.
Equations (1.8) and (2.5) are a hyperbolic system,
whose characteristic varieties are determined according
to Eqs. (1.22)–(1.26).
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In this work, we derive the evolution equations for
spectrally narrow, resonantly interacting wave packets
weakly unstable in terms of linear theory. We consider
the following two cases. In the first case, the system is
linearly unstable due to the weak coupling of two
modes whose energies have opposite signs. As an
example of such a system, we analyze the model of a
three-layer two-dimensional shear flow, where both the
density and vorticity of the undistorted flow have jumps
at the layer interfaces and are uniform inside the layers.
In the second case, we consider the linear instability of
an individual mode. The instability of capillary–gravity
waves in a weakly supercritical flow described by the
Kelvin–Helmholtz model is an example of this instabil-
ity. The evolution equations are different for these two
cases. The equations are derived in the Hamiltonian for-
malism, which allows us to consider wave processes
disregarding the features of a particular problem. We
prove that bounded solutions of the evolution equations
exist in both cases. In other words, waves unstable in
terms of the linear theory can be stabilized due to their
interaction with neutral waves.

1. EVOLUTION EQUATIONS
FOR A RESONANT TRIPLET INVOLVING
AN UNSTABLE MODE IN THE MODEL

OF A THREE-LAYER SHEAR FLOW

As was shown in [1], the dynamic equations
describing wave disturbances in stratified shear flows
have the form

(1)
x∂

∂ φ̇j x t,( ) –
x∂

∂ δH
δη j x t,( )
-------------------- ν j

δH
δφj x t,( )
-------------------,+=
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(2)

Here, ηj(x, t) are the disturbances of the interfaces and
φj(x, t) is the dynamic variable serving as the potential
difference of the disturbances in neighboring layers.
We consider the two-layer case, i.e., j = 1, 2. In order to
simplify the calculation of the interaction coefficients,
we solve the problem in the Boussinesq approximation.
This simplification does not restrict the results obtained
below. In terms of Fourier transforms, Eqs. (1) and (2)
can be written out in the vector form

where d = (φ1, φ2, η1, η2) is the vector of the dependent
variables. The matrix )(k) has the following (not
canonical) form:

The first term in the expansion of the Hamiltonian is

where

η̇ j x t,( )
δH

δφj x t,( )
-------------------.=

) k( )ḋ k t,( )
δH

δd k t,–( )
---------------------,–=

) k( )

0 0 1– 0

0 0 0 1–

1 0
iν1

k
------- 0

0 1 0
iν2

k
------- 

 
 
 
 
 
 
 
 

.=

H2
1
2
--- d∗ k t,( ) ĥ k( )d k t,( ),( ) k,d∫=

ĥ k( )

k
2
----- ε k

2
-------- ikV1– 0

ε k
2

-------- k
2
----- 0 ikV2–

ikV1 0 N1
2 V1ν1– 0

0 ikV2 0 N2
2 V2ν2– 

 
 
 
 
 
 
 
 
 

.=
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The matrices (k) and )(k) satisfy the conditions

In this case, the dispersion relation has the form D1D2 =

, where

Here, ω is the frequency, ε = exp(–2|k |h), and ∆ρj and
νj are the jumps in the unperturbed density and vortic-
ity, respectively. The parameter ε, serving as the weak
coupling constant of the modes, is assumed to be small,
of about nonlinearity. As follows from the condition
(Z*, (Z) = −i, the normalized eigenvector is given by
the expression

(3)

where L = D2 + D1.

For wavenumbers corresponding to the stability
region, the transformation to the usual canonical vari-
ables a1, 2 has the form

(4)

where Zj(k) is eigenvector (3) corresponding to the
eigenfrequency ωj(k). The dynamic system written out
in terms of these variables is well known [2, 3]:

(5)

The first term H2 of the expansion of the Hamiltonian in
terms of the small nonlinearity parameter is

This transformation is inapplicable in the instability
region, where the quantity L is small. In this case, the

ĥ

)∗ k( ) ( k–( ), (∗ k( ) (' k( ),–= =

ĥ∗ k( ) ĥ k–( ), ĥ∗ k( ) h'ˆ k( ).= =

ε2k2

4
----------

D j

Ω j

b j

------
k
2
-----, Ω j– ω kV j,–= =

b j

N j
2

Ω j

------
ν j

k
----, N j

2+
g∆ρ j

ρ
------------.= =

Z
D2

L
----------

D1

L
----------–

i D2

b1 L
-------------

i D1

b2 L
-------------–, , ,

 
 
 

,=

D1ω' D2ω'

d k t,( ) Z j k( )a j k t,( )
j 1=

2

∑ Z j* k–( )a j* k– t,( ),+=

ȧ j k t,( ) i
δH

δa j* k t,( )
--------------------.–=

H2 ωja ja j*
j 1=

2

∑ k.d∫=
eigenvector Zj(k) in Eq. (4) must be replaced by the
eigenvector

(6)

corresponding to the case of zero intermode coupling
constant ε. The dynamic system also has form (5), but
the quadratic term of the expansion of the Hamiltonian
involves additional components [5]:

(7)

where

It is easy to prove that resonant interactions of the type
under consideration exist in this model. In this case, the
following two synchronism conditions are satisfied:

(8)

(9)

The spectral width of the interacting wave packets
under consideration is taken as small. Under condi-
tions (8) and (9), the variables a1, 2(k) can be written out
in the form

We now consider the cubic term H3 of the expansion,
retaining only the terms that cannot be eliminated by a
suitable canonical transformation. In the case of weak
intermode coupling, the cubic term associated with
interactions (8) of the “burst” type can be omitted,
because it is of a higher order in the small parameter ε.
As a result, we arrive at the following equation for the
cubic term H3 of the Hamiltonian:

Z ω1( )
D2

L
---------- 0 i

D2

b1 L
------------- 0, , ,

 
 
 

,=

Z ω2( ) 0
– D1

L
-------------- 0

i D1–

b2 L
----------------, , ,

 
 
 

,=

H2 ωja j k( )a j* k( )
j 1=

2

∑



∫=

+ s k( )a1 k( )a2 k–( ) q k( )a1 k( )a2* k( ) c.c.+ +( )




dk,

s k( )
ε k( )

D1 k( )D2 k–( )
----------------------------------, q k( )

ε k( )

D1 k( )D2 k( )
-------------------------------.= =

k01 k̂02 k03+ + 0, ω1 k01( ) ω1 k̂02( ) ω2 k03( )+ + 0;= =

k̂02 k̂02;–=

k01 k02 k03+– 0,=

ω1 k01( ) ω2 k02( )– ω2 k03( )+ 0.=

a1 k( ) a1 k01 κ+( ) a1 k̂02 κ+( ),+=

a2 k( ) a2 k02 κ+( ) a2 k03 κ+( ).+=

H3

@ k01 k02 k03, ,( )

2π
----------------------------------- a1* k01 κ+( )a2 k02 κ+( )∫=

× a2* k03 κ+( )δ κ1 κ2– κ3+( )Πdκ j c.c.+
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Expanding the eigenfrequencies in the vicinity of the

wavenumbers k01, k02, , and k03 , we obtain

We then introduce the variables Aj(κ, εt) serving as
amplitudes slowly varying in time:

Using Eq. (5), where only the two first dominant terms
are retained in the expansion of the Hamiltonian, we
obtain a system of equations in the variables Aj(κ, T)
and then perform the inverse Fourier transform

As a result, we arrive at the following evolution equa-
tions for the slowly varying amplitudes of the reso-
nantly interacting wave packets:

(10)

k̂02

ω1 k01 κ+( ) ω1 k01( ) v 1grκ , v 1+
dω1

dk
---------k01,= =

ω1 k̂02 κ+( ) ω1 k̂02( ) v̂ 2grκ , v̂ 2+
dω1

dk
--------- k̂02,= =

ω2 k02 κ+( ) ω2 k02( ) v 2grκ , v 2+
dω2

dk
---------k02,= =

ω2 k03 κ+( ) ω2 k03( ) v 3grκ , v 3+
dω2

dk
---------k03.= =

a1 k01 κ+ t,( ) iω1 k01( )t–( )A1 κ T,( ),exp=

a2 k02 κ+ t,( ) iω2 k02( )t–( )A2 κ T,( ),exp=

a2 k03 κ+ t,( ) iω2 k03( )t–( )A3 κ T,( ),exp=

a1* k02– κ– t,( ) iω1 k02–( )t( )A4 κ T,( ).exp=

C j X T,( ) 1

2π
---------- A j κ T,( ) iκX( )exp κ .d∫=

∂C1 X T,( )
∂T

------------------------ v 1

∂C1 X T,( )
∂X

------------------------+

+ i@C2 X T,( )C3* X T,( ) 0,=

∂C3 X T,( )
∂T

------------------------ v 3

∂C3 X T,( )
∂X

------------------------+

+ i@C1* X T,( )C2 X T,( ) 0,=

T∂
∂

v 2 X∂
∂

+ 
 

T∂
∂

v̂ 2 X∂
∂

+ 
  C2 X T,( ) s2C2 X T,( )–

+ @2
C1

2 X T,( ) C3
2 X T,( )+( )C2 X T,( )

+ i@ v̂ 2 v 1–( )C1 X T,( )
∂C3 X T,( )

∂X
------------------------

+ v̂ 2 v 3–( )C3 X T,( )
∂C1 X T,( )

∂X
------------------------ 0.=
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For three interacting harmonic waves and amplitudes Cj

independent of X, Eqs. (10) reduce to the ordinary dif-
ferential equations

A similar system of equations was obtained in [6] and
analyzed analytically in [7] for the case of resonant
interaction between Rossby baroclinic waves and a
marginal mode. Analytical and numerical studies show
that resonant interactions with neutral waves can stabi-
lize a wave unstable in terms of linear theory.

The method used above is universal and indepen-
dent of the physical nature of the weakly coupling
waves under consideration. All characteristics of a par-
ticular physical problem appear only in the coefficients.
Thus, the resulting equations describe the resonant
interactions of arbitrary waves.

2. EVOLUTION EQUATIONS
FOR THE RESONANT WAVE INTERACTION 

INVOLVING A WEAKLY UNSTABLE 
WAVE PACKET

IN THE KELVIN–HELMHOLTZ MODEL

If instability takes place in a single mode, the evolu-
tion equations describing the resonant interaction
involving a weakly nonlinear wave packet have a differ-
ent form. As an example, we consider the Kelvin–
Helmholtz model. In order to simplify the calculation
of the interaction coefficients, we here solve the prob-
lem in the Boussinesq approximation, but the final con-
clusions are general. As is known, the equations
describing disturbances in this model can be written out
in the canonical form [8]:

(11)

Here, η(x, t) is the disturbance of the interface and
φ(x, t) is the velocity potential difference at the inter-
face. In terms of Fourier transforms, Eqs. (11) can be
rewritten in the vector form

(12)

Here,

is the vector of the dependent variables and the matrix
J has the canonical form

Ċ1 i@C2C3*+ 0,=

Ċ3 i@C2C1*+ 0,=

Ċ̇2 s2C2– @ 2
C1

2 C3
2+( )C2+ 0.=

φ̇ x t,( )
δH

δη x t,( )
------------------, η̇ x t,( )–

δH
δφ x t,( )
------------------.= =

J ḋ k t,( )
δH

δd k– t,( )
---------------------.–=

d k t,( ) φ k t,( ) η k t,( ),( )=

J 0 1–

1 0 
 
 

.=
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The Hamiltonian H2 is given by the quadratic form

(13)

where

Here,

where ∆ρ = ρ1 – ρ2, V = , ρ = , and σ is

the surface tension coefficient. The eigenfrequencies
are equal to

(14)

The system becomes unstable when the frequencies
corresponding to the upper and lower branches of the
mode (i.e., to waves with energies of mutually opposite
signs) coincide. In this case, the radicand in (14) is

equal to zero at the point k0 = . In the vicinity of

this point, i.e., for k = k0 + κ and  ! 1, the frequencies

are given by the expressions

where

Here, b is a small dimensionless parameter serving as a
supercritical parameter of the problem. Positive b val-
ues correspond to the unstable case.

We change variables from d(k, t) to a(k, t):

(15)

If k is inside the stability region, then ] is an eigenvec-
tor of the linear system and it follows from (15) that

In terms of the variables a(k), the dynamic equation has
the known form

H2
1
2
--- d∗ k t,( ) h k( )d k t,( ),( ) k,d∫=

h k( ) A k( ) ikv–

ikv C k( ) 
 
 

.=

C k( ) g∆ρ
ρ

---------- σ
ρk2
-------- 2V2 k , A k( )–+

k
2
-----,= =

V1 V2–
2

------------------
ρ1 ρ2+

2
-----------------

ω1 2, kv k g
∆ρ
2ρ
------- k

σ
2ρ
------ k 3 V2k2–+ .sgn±=

g∆ρ
σ

----------

κ
k0
----

ω1 2, ω̂0 v κ k0δ,sgn±+=

δ A k0 κ+( )C k0 κ+( ) V0 κ2 bk0
2– .= =

d k t,( ) ] k( )a k t,( ) ]∗ k–( )a∗ k– t,( ).+=

φ k t,( ) i
δ

2A
------- a k t,( ) a∗ k t,–( )–( ),–=

η k t,( ) A
2δ
------ a k t,( ) a∗ k t,–( )+( ).=

a k t,( ) i
δH

δa∗ k t,( )
--------------------.–=
For small or zero values of δ, we take

in Eq. (15), where θ(k) is the Heaviside step function.
This vector can be rewritten in the different form

where

Here, z1 and z2 are eigenvectors of the linear problem.
For δ = 0, vectors  and  become an eigenvector
and an associated eigenvector, respectively.

In this case, transformation (15) yields the following
canonical form of Eqs. (12) in terms of the variable
a(k, t) [5]:

(16)

In the vicinity of the points k0, and –k0 , the quadratic
term in the Hamiltonian is

(17)

where ω0 =  and

In this case, the quantities a(k) and a(–k) are a canoni-
cally conjugate pair.

If the resonant interaction under consideration is
possible (this is the case in the Kelvin–Helmholtz
model), the following two synchronism conditions
must be satisfied:

We now consider the resonant interaction of two stable,
spectrally narrow wave packets with the characteristic

]
i

A
--------θ k–( )– Aθ k( ), 

 =

] k( )
]e, k 0>

]a, k 0,<



=

]e
z1 z2+

2
---------------, ]a

z1 z2–
ω1 ω2–
------------------.= =

]e ]a

ȧ k t,( ) i k
δH

δa k– t,( )
----------------------.sgn=

H2

ω0

2
------ ka k t,( )a k t,–( )sgn–

∫=

---+ c.c. Ω̃a k t,( )a∗ k t,( )+ 
 dk,

ω1 ω2+
2

------------------

Ω̃ k( )
1, k 0>

δ2, k 0.<



=

k01 k02 k03–+ 0, ω k01( ) ω k02( ) ω k03( )–+ 0,= =

k01 k̂02 k03–– 0, ω k01( ) ω k̂02( )– ω k03( )– 0,= =

k02 k0, k̂02 k02.–= =
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wavenumbers k01 and k03 and one unstable wave packet
with the characteristic wavenumbers k02 and –k02 . We
represent a(k) as a sum of finite functions defined near
these wavenumbers:

(18)

Omitting immaterial terms and retaining the term of the
leading order in the nonlinearity parameter, we obtain
the cubic Hamiltonian in the form

(19)

In what follows, we also use the next expansion term H4
describing the four-wave interactions of the unstable
mode:

(20)

When deriving the evolution equations, we use Eq. (5)
for the two stable wave packets with the characteristic
wavenumbers k01 and k03 and Eq. (16) for the unstable
wave packet with the characteristic wavenumbers k02
and –k02 . The Hamiltonian is given by the sum H =
H2 + H3 + H4 , where H2 , H3 , and H4 are determined by
Eqs. (17), (19), and (20), respectively.

We now introduce slowly varying amplitudes Qj:

The inverse Fourier transform of Qj with respect to the
variable κ has the form

where X = εx. Hereinafter, we assume that the functions
ψj are of the following orders in the small nonlinearity
parameter ε:

Retaining only terms of leading order in ε, we arrive at

a k( ) a k01 κ+( ) a k02 κ+( )+=

+ a k̂02 κ+( ) a k03 κ+( ).+

H3
1

2π
---------- K k01 k02 k03, ,( )a k01 κ1+( )[∫=

× a k02 κ2+( )a∗ k03 κ3+( ) c.c.+ ]
δ k1 k2 k3–+( )dκ1dκ2dκ3.×

H4
W
2π
------ a k02 κ1+( )a k02 κ2+( )a∗ k02 κ3+( )∫=

× a∗ k02 κ4+( )δ κ1 κ2 κ3– κ4–+( )Π k j.d

a k0 j κ+ t,( ) iω k0 j( )t–( )Q j κ T,( ),exp=

j 1 2 3,, ,=

a∗ –k02 κ– t,( ) iω0 k02( )t–( )Q4 κ T,( ),exp=

T εt.=

ψ j X T,( )
1

2π
---------- Q j κ T,( ) iκX( )exp κ ,d∫=

ψ1 ψ3 ε3/2, ψ2 ε, ψ4 ε2.∼∼∼ ∼
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the following system of equations:

In the case of three harmonic waves, we obtain

(21)

where r2 = b .

This system of equations differs significantly from a
similar system in the case of weak wave coupling and,
in a sense, is more unstable. Indeed, if the resonant
interaction with neutral waves is absent and the super-
critical parameter b is equal to zero, the amplitude ψ2
increases linearly with time; i.e., in this case the insta-
bility is algebraic. The cubic term serves as either a sta-
bilizing or a destabilizing factor, depending on the sign
of the four-wave interaction coefficient W. It is interest-
ing to ascertain whether the interaction with neutral
waves can stabilize the algebraic instability in the case
of W = 0, i.e., for zero cubic nonlinearity. We solved this
system of equations numerically for the case where the

T∂
∂

v 1gr X∂
∂

+ 
  ψ1 iK∗ ψ3ψ2*+ 0,=

T∂
∂

v 3gr X∂
∂

+ 
  ψ3 iKψ1ψ2+ 0,=

T∂
∂

v 2gr X∂
∂

+ 
 

2

ψ2 V0
2 ∂2ψ2

∂X2
----------- bk0

2ψ2+
 
 
 

–

+ K∗ ψ1*ψ3 2W ψ2
2ψ2+ 0.=

ψ̇1 iK∗ ψ3ψ2*+ 0,=

ψ̇3 iKψ2ψ1+ 0,=

ψ̇̇2 r2ψ2– K∗ ψ1*ψ3 2W ψ2
2ψ2+ + 0,=

k0
2 V0

2

100

200

|ψ2|

t

40
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80

0

(a)
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Fig. 1. Time dependence of |ψ2| found by numerically solv-
ing Eqs. (21), under the initial conditions ψ1(0) = ψ3(0) =

0.1, ψ2(0) = 1.0, and (0) = i for δ = 0 and W = 0: (a) linear

regimes with K = 0 and (b) nonlinear regime with K = 1.

ψ̇2



446 ANNENKOV, ROMANOVA
initial amplitude of the unstable harmonic is signifi-
cantly larger than the amplitude of the stable harmon-
ics. As is shown in Fig. 1, the resonant interaction with
the stable waves stabilizes the growth of the unstable
wave. The solution has a quasiperiodic form, with
a  parabolic time dependence of the unstable-wave
amplitude.
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The properties of statically definable relationships
generalizing the ideal-plasticity condition in ideal-plas-
ticity theory are considered.

1. Statically definable relationships exist in ideal-
plasticity theory if, in addition to the equilibrium equ-
ations

(1.1)

three finite relationships are defined:

(1.2)

where σij are the stress components.

Relationships (1.2) can be written in the form

(1.3)

where σij are the principal stresses and li, mi, and ni are
the direction cosines specifying the orientation of the
principal stresses in the xyz coordinate system.

For an isotropic body, relationships (1.3) are inde-
pendent of the li, mi, and ni directions, and the condi-
tions take the form

(1.4)

∂σx

∂x
--------

∂τ xy

∂y
---------

∂τ xz

∂z
---------+ + 0,=

∂τ xy

∂x
---------

∂σy

∂y
--------

∂τ yz

∂z
---------+ + 0,=

∂τ xz

∂x
---------

∂τ yz

∂y
---------

∂σz

∂z
--------+ + 0=

f 1 σx σy σz τ xy τ xz τ yz, , , , ,( ) 0,=

f 2 σx σy σz τ xy τ xz τ yz, , , , ,( ) 0,=

f 3 σx σy σz τ xy τ xz τ yz, , , , ,( ) 0,=

f 1 σ1 σ2 σ3 li mi ni, , , , ,( ) 0,=

f 2 σ1 σ2 σ3 li mi ni, , , , ,( ) 0,=

f 3 σ1 σ2 σ3 li mi ni, , , , ,( ) 0,=

f 1 σ1 σ2 σ3, ,( ) 0, f 2 σ1 σ2 σ3, ,( ) 0,= =

f 3 σ1 σ2 σ3, ,( ) 0.=
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Generally speaking, three finite relationships (1.4)
determine a fixed stressed state. The statically definable
stressed state of the isotropic body is possible under the
ideal-plasticity condition. The volume stressed state of
the isotropic ideal plastic body under the ideal-plastic-
ity condition was considered in [1, 2].

Thus, statically definable relationships (1.2) and
(1.3) describe the behavior of an anisotropic ideal plas-
tic body under conditions different from the ideal-plas-
ticity condition.

According to Eqs. (1.2), three of six stress compo-
nents σij are independent. We can put

(1.5)

The following parametric notation can be used:

(1.6)

where ξ, η, and ς are the independent variables.

Statically definable relationships in ideal-plasticity
theory can be written in the form

(1.7)

(1.8)

When statically definable relationships (1.7) and
(1.8) for the components of the stress deviator are valid,
relation (1.7) can be represented as

(1.9)

It follows from Eqs. (1.9) that

(1.10)

σx σx τ xy τ xz τ yz, ,( ), σy σy τ xy τ xz τ yz, ,( ),= =

σz σz τ xy τ xz τ yz, ,( ).=

σij σij ξ η ς, ,( ),=

σij σij σ n1 n2 n3, , ,( ), σ 1
3
--- σx σy σz+ +( ),= =

n1
2 n2

2 n3
2+ + 1.=

σx ν f 1 n1 n2 n3, ,( ), τ xy+ f 4 n1 n2 n3, ,( ),= =

σy ν f 2 n1 n2 n3, ,( ), τ yz+ f 5 n1 n2 n3, ,( ),= =

σz ν f 3 n1 n2 n3, ,( ), τ xz+ f 6 n1 n2 n3, ,( ).= =

ν σ 1
3
--- f 1 f 2 f 3+ +( ).–=
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We also present statically definable relationships in
the form

(1.11)

(1.12)

For ideal plasticity, all functions in relationships (1.11)
and (1.12) are identical, i.e.,

(1.13)

2. We consider the functional

(2.1)

where A, B, C, F, G, and H are constants and ν and µ
are the unknown Lagrange multipliers.

From the functional-extremum conditions

(2.2)

we obtain

(2.3)

Relationships (2.3) must be complemented by con-
dition (1.8).

From Eqs. (2.3), it follows that

(2.4)

Equations (2.4) and (1.8) yield

(2.5)

According to Eqs. (1.8), (2.3), and (2.4), statically
definable relationships in ideal-plasticity theory can be

σx ν ϕ 1 n1 n2 n3, ,( )n1
2, τ xy+ ϕ4 n1 n2 n3, ,( )n1n2,= =

σy ν ϕ 2 n1 n2 n3, ,( )n2
2, τ yz+ ϕ5 n1 n2 n3, ,( )n2n3,= =

σz ν ϕ 3 n1 n2 n3, ,( )n3
2,+=

τ xz ϕ6 n1 n2 n3, ,( )n1n3;=

ν σ 1
3
--- ϕ1n1

2 ϕ2n2
2 ϕ3n3

2+ +( ).–=

ϕ i n1 n2 n3, ,( ) ϕ n1 n2 n3, ,( ).=

Φ σijεij Aεxn1
2 Bεyn2

2 Cεzn3
2 2Fεxyn1n2+ + +(–=

+ 2Hεxzn1n3 2Gεyzn3n2+ ) ν εx εy εz+ +( )–

+ µ n1
2 n2

2 n3
2+ +( ),

∂Φ
∂εij

-------- 0=

σx ν An1
2, τ xy+ Fn1n2,= =

σy ν Bn2
2, τ yz+ Gn2n3,= =

σz ν An3
2, τ xz+ Hn1n3,= =

ν σ 1
3
--- An1

2 Bn2
2 Cn3

2+ +( ).–=

n1
2 G

FH
--------

τ xyτ xz

τ yz

-------------, n2
2 H

FG
--------

τ xyτ yz

τ xz

-------------,= =

n3
2 F

GH
---------

τ yzτ xz

τ xy

-------------.=

G
FH
--------

τ xyτ xz

τ yz

------------- H
FG
--------

τ xyτ yz

τ xz

------------- F
GH
---------

τ yzτ xz

τ xy

-------------+ + 1.=
written in the form

(2.6)

or

(2.7)

or

(2.8)

3 σx σ–( ) 2
AG
FH
--------

τ xyτ xz

τ yz

-------------=

–
BH
FG
--------

τ xyτ yz

τ xz

------------- CF
GH
---------

τ yzτ xz

τ xy

-------------+ 
  ,

3 σy σ–( ) 2
BH
FG
--------

τ xyτ yz

τ xz

-------------=

–
CF
GH
---------

τ yzτ xz

τ xy

------------- AG
FH
--------

τ xyτ xz

τ yz

-------------+ 
  ,

3 σz σ–( ) 2
CF
GH
---------

τ yzτ xz

τ xy

-------------=

–
AG
FH
--------

τ xyτ xz

τ yz

------------- BH
FG
--------

τ xyτ yz

τ xz

-------------+ 
  ,

3 σx σ–( )
BH
FG
--------

τ xyτ yz

τ xz

------------- CF
GH
---------

τ yzτ xz

τ xy

-------------+ 
 +

=  2
AG
FH
--------

τ xyτ xz

τ yz

-------------,

3 σy σ–( )
CF
GH
---------

τ yzτ xz

τ xy

------------- AG
FH
--------

τ xyτ xz

τ yz

-------------+ 
 +

=  2
BH
FG
--------

τ xyτ yz

τ xz

-------------,

3 σz σ–( )
AG
FH
--------

τ xyτ xz

τ yz

------------- BH
FG
--------

τ xyτ yz

τ xz

-------------+ 
 +

=  2
CF
GH
---------

τ yzτ xz

τ xy

-------------,

3 σx σ–( )
BH
FG
--------

τ xyτ yz

τ xz

------------- CF
GH
---------

τ yzτ xz

τ xy

-------------+ 
 +

× 3 σy σ–( )
CF
GH
---------

τ yzτ xz

τ xy

------------- AG
FH
--------

τ xyτ xz

τ yz

-------------+ 
 + 4

AB

F2
-------τ xy

2 ,=

3 σy σ–( )
CF
GH
---------

τ yzτ xz

τ xy

------------- AG
FH
--------

τ xyτ xz

τ yz

-------------+ 
 +

× 3 σz σ–( )
AG
FH
--------

τ xyτ xz

τ yz

------------- BH
FG
--------

τ xyτ yz

τ xz

-------------+ 
 + 4

BC

G2
--------τ yz

2 ,=

3 σz σ–( )
AG
FH
--------

τ xyτ xz

τ yz

------------- BH
FG
--------

τ xyτ yz

τ xz

-------------+ 
 +

× 3 σx σ–( )
BH
FG
--------

τ xyτ yz

τ xz

------------- CF
GH
---------

τ yzτ xz

τ xy

-------------+ 
 + 4

AC

H2
--------τ xz

2 ,=
DOKLADY PHYSICS      Vol. 48      No. 8      2003



STATICALLY DEFINABLE RELATIONSHIPS IN IDEAL-PLASTICITY THEORY 449
or

(2.9)

From the extremum conditions for functional (2.1)

(2.10)

we obtain the following relationships for the associated
flow rule:

(2.11)

According to Eqs. (2.3), relationships (2.11) can be
written as

(2.12)

The two relationships (2.12) should be comple-
mented by the incompressibility condition

(2.13)

3. We consider the statically definable set of rela-
tionships (2.3) in the cylindrical coordinate system ρθz:

(3.1)

For an axisymmetric problem, we have

(3.2)

τ xy 2C A+( )G2τ xz
2 2C B+( )H2τ yz

2+[ ]
=  FGH 2C 3 σz σ–( )–( )τ xzτ yz,

τ yz 2A B+( )H2τ xy
2 2A C+( )F2τ xz

2+[ ]
=  FGH 2A 3 σx σ–( )–( )τ xyτ xz,

τ xz 2B C+( )F2τ yz
2 2B A+( )G2τ xy

2+[ ]
=  FGH 2B 3 σy σ–( )–( )τ yzτ xy.

∂Φ
∂ni

------- 0=

Aεxn1 Fεxyn2 Hεxzn3+ + µn1,=

Fεxyn1 Bεyn2 Gεyzn3+ + µn2,=

Hεxzn1 Gεyzn2 Cεzn3+ + µn3.=

Aεx
FH
G

--------εxy

τ yz

τ xz

------ FH
G

--------εxz

τ yz

τ xy

------+ +

=  
FG
H

--------εxy

τ xz

τ yz

------ Bεy
FG
H

--------εyz

τ xz

τ xy

------+ +

=  
HG
F

---------εxz

τ xy

τ yz

------ HG
F

---------εyz

τ xy

τ xz

------ Cεz.+ +

εx εy εz+ + 0.=

σρ σ An1
2 1

3
--- An1

2 Bn2
2 Cn3

2+ +( ), τρθ–+ Fn1n2,= =

σθ σ Bn2
2 1

3
--- An1

2 Bn2
2 Cn3

2+ +( ), τθz–+ Gn2n3,= =

σz σ Cn3
2 1

3
--- An1

2 Bn2
2 Cn3

2+ +( ), τρz–+ Hn1n3,= =

n1
2 n2

2 n3
2+ + 1.=

σij σij ρ z,( ), τρθ τθz 0.= = =
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From Eqs. (3.1) and (3.2), we obtain

(3.3)

Condition (3.3) is satisfied by setting

(3.4)

According to Eqs. (3.1)–(3.4), we obtain

(3.5)

From Eqs. (3.5), it follows that

(3.6)

From the equilibrium equations

(3.7)

and relationships (3.5), we obtain

(3.8)

Equations (3.8) are a hyperbolic system and have
the orthogonal characteristics

(3.9)

n2 0, n1
2 n3

2+ 1.= =

n1 α , n3cos α .sin= =

σρ σ 1
6
--- 2A C–( ) 2A C+( ) 2αcos+( ),+=

σθ σ 1
6
--- A C+( ) A C–( ) 2αcos+( ),–=

σz σ 1
6
--- 2C A–( ) 2C A+( ) 2αcos–( ),+=

τρz
H
2
---- 2α .sin=

H2 2 σρ σz–( ) A C–( )–( )
2

4 A C+( )2τρz
2+

=  H2 A C+( )2.

∂σρ

∂ρ
---------

∂τρz

∂z
----------

σρ σθ–
ρ

-----------------+ + 0,=

∂σz

∂z
--------

∂τρz

∂ρ
----------

τρz

ρ
------+ + 0=

∂σ
∂ρ
------

2A C+
3

----------------- 2α∂α
∂ρ
-------sin– H 2α∂α

∂z
-------cos+

=  
A

2ρ
------ 1 2αcos+( ),–

∂σ
∂z
------ H 2α∂α

∂ρ
-------cos

2C A+
3

----------------- 2α∂α
∂z
-------sin+ +

=  
H
2ρ
------ 2α .sin–

dz
dρ
------ 

 
1 2,

=  
A C+( ) 2αtan A C+( )2 2αtan

2
4H2+±

2H
----------------------------------------------------------------------------------------------------.
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Relationships along characteristics (3.9) have the
form

(3.10)

where  is determined from Eq. (3.9).

The strain-rate components can be determined from
Eq. (3.6) according to the associated flow rule and the
incompressibility condition

(3.11)

σ H 2αcos
2A C+

3
----------------- 2α dz

dρ
------sin+ 

 d

+ dα dz
dρ
------ 2A C+( )

3
---------------------- 2C A+( )

3
---------------------- 2αsin

2
H2 2αcos

2
+ 

 

+
ρd

2ρ
------ zd

ρd
------ A 1 2αcos+( ) ---

× H 2α zd
ρd

------cos
2C A+

3
----------------- 2αsin– 

 

+ H 2α H 2αcos 2αsin
dz
dρ
------+ 

 sin 0,=

dz
dρ
------

Aερ Cεz– 2H 2α( )ερzcot– 0,=

ερ εθ εz+ + 0,=
where

Equations (3.11) are hyperbolic, the characteristics
coincide with the characteristics of the set of equations
for stress components (3.9), and the following relation-
ships are met along the characteristics:

(3.12)

where  is determined from Eq. (3.9).
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Mass Transfer in a Stress Field Associated 
with Bending of a Bar
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Construction elements of power plants operate at
high temperatures inducing intense diffusion processes.
These processes are sensitive to the intensity and distri-
bution of stresses of various physical origins: tempera-
ture stresses, residual stresses, and stresses near struc-
tural defects. In the internal-stress field, a solid solution
separates and regions of a new phase are formed. The
formation of the inhomogeneous structure in the pres-
ence of residual stresses in a cylindrical shell was ana-
lyzed in [1, 2]. Stresses in construction elements also
arise under mechanical loading such as bending, ten-
sion, compression, and shear. In particular, the concav-
ities of tube guides or shells of fuel elements are bent
under internal pressure. The section of a tube-guide
wall or shell near a concavity is subjected to a bending
moment. Pure bending of curved bars can be consid-
ered as an elastic model of such systems [3].

The diffusion of alloying elements depends on the
first invariant of the stress tensor. This invariant can be
easily determined, because the stress state for the
accepted elastic model is known [3]. In this work, we
analyze the kinetics of the formation of an inhomoge-
neous structure under bending of a curved bar. In the
accepted model, the structure inhomogeneity is mani-
fested as the separation of a solid solution or the forma-
tion of new-phase regions. The latter process occurs
when the concentration of impurity atoms exceeds the
solvability limit at a given temperature.

A constant-section curved bar is bent by moments in
the curvature plane. The components of the stress ten-
sor (plane stressed state) have the form [3]

(1)

σrr
4M
N

-------- a2b2

r2
---------- b

a
--- b2 r

b
--- a2 a

r
---ln+ln+ln 

  ,–=

σθθ
4M
N

-------- a2b2

r2
----------– b

a
--- b2 r

b
--- a2 a

r
--- b2 a2–+ln+ln+ln 

  ,–=

σrθ 0.=
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Here, a and b are the inner and outer radii of the bar,
respectively; M is the bending moment; and

The first invariant of the stress tensor depends logarith-
mically on the radial coordinate:

(2)

This dependence allows the exact analytical solution of
the diffusion equation in the force field. Relation (2)
shows that the outer and inner regions of the curved bar
under bending are in the compressed and extended
states, respectively. The nonuniform stress field induces
the diffusion migration of impurity atoms of various
kinds (Gorsky effect). Substitutional impurities of large
and small atomic radii (compared to the basic metal)
migrate to the tension and compression regions, respec-
tively. The inhomogeneous structure thereby forms
through the separation of the solid solution of alloying
elements of different kinds. With an increase in the con-
centration of impurity atoms, new-phase regions are
formed. This is a qualitative pattern of the formation of
the inhomogeneous structure when the bar is bent. A
mathematical model of this process will be developed
below.

The interaction of an impurity atom with a stress
field associated with bending of a bar is described by
the potential

(3)

where δv  is the variation in the crystal volume when
introducing an impurity atom. If the alloying impurity
increases (decreases) the crystal-lattice constant, δv  is
positive (negative). For positive (tensile stress) and neg-
ative σll values and δv  > 0, the potential V is negative
and positive, respectively. Alloying elements of a large
atomic radius are attracted to the tension region. Impu-
rities of a small atomic radius are attracted to the com-

N b2 a2–( )2
4a2b2 b

a
---ln 

  2

.–=

σll σrr σθθ+=

=  
4M
N

-------- b2 a2– 2b2 r
b
--- 2a2 r

a
---ln–ln+ 

  .–

V
σll

3
------δv ,–=
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pression region and are displaced from the tension
region. This process finally results in the separation of
the solid solution of alloying elements of different
kinds.

The diffusion migration of impurity atoms under
bending of the bar is described by the time-dependent
diffusion equation in the potential V with the corre-
sponding initial and boundary conditions (in the polar
coordinate system)

(4)

Here, D is the diffusion coefficient of impurity atoms,
C0 is the average concentration of impurity atoms, k is
the Boltzmann constant, T is the absolute temperature,

and  and  are the equilibrium concentration of
impurity atoms at the region’s boundary. The physical
meaning of the initial and boundary conditions for
problem (4) is obvious. At the initial time, the concen-
tration of impurity atoms is constant over the entire
region and is equal to the average concentration. The
boundary conditions mean that the equilibrium concen-
tration of impurity atoms is instantaneously established
at the boundary and further remains constant in the dif-
fusion process.

Diffusion equation (4) shows that the migration of
impurity atoms is proportional to the gradient of the
potential V. This means that the constants in the relation
for σll do not affect the diffusion process. The equilib-
rium concentrations of impurity atoms at the bound-
aries depend on the constants entering into relation (2).
Simple transformations with the use of the expression for
σll lead to the following simpler variant of problem (4):

(5)

The dimensionless parameter α of the problem deter-
mines the ratio of the binding energy of an impurity
atom in the stress field of the crystal to the thermal-
motion energy:

(6)

The notation corresponds to the notation introduced
above. When deriving Eqs. (4), we took into account
that ∆σll = 0, because σll is a harmonic function. The
parameter α is dimensionless, because the moment per
unit length is considered in the accepted elastic model;
i.e., [M] = N the applied moment per unit bar length is
measured in units of force. This note also applies to the
dimension of the components of the stress tensor.

1
D
---- C∂

t∂
------ ∆C

C V∇( )∇
kT

---------------------, a r b,< <+=

C r 0,( ) C0, C a t,( ) Cp
1 , C b t,( )= Cp

2 .= =

Cp
1 Cp

2

1
D
---- C∂

t∂
------ C2∂

r2∂
--------

1 α+
r

------------- C∂
r∂

------, a r b,< <+=

C r 0,( ) C0, C a t,( ) Cp
1 , C b t,( ) Cp

2 .= = =

α 8
3
---M b2 a2–( )δv

NkT
----------------------------------.–=
The parameter α determines the contribution of the
stress field to the development of the diffusion process.
If |α| ! 1, the stress field in the accepted elastic model
is a weak perturbation of the diffusion flux of impurity
atoms. For |α| @ 1, the stress field associated with bend-
ing of the crystal makes the basic contribution to the
diffusion process. For |α| ≈ 1, the diffusion fluxes of
impurity atoms due to gradients of the concentration
and potential V are comparable with each other. Let us
estimate the parameter α for the Zr–Sn alloy. Zirco-
nium alloys are used as materials for the shells of fuel
elements in nuclear reactors because of the successful
combination of physico-mechanical properties and
small cross section for the absorption of thermal neu-
trons. In the process of operation, the solid solution can
separate, which is accompanied by a change in the
properties of the material. For a = 1 cm, b = 1.5 cm, M =
0.5 × 10–3 N, N = 0.57 cm4, δv  = 5.57 × 10–24 cm3, and
kT = 1.38 × 10–20 J, we have α = –1.16. These charac-
teristics are of course conditional. They are used to
illustrate the effect of the stress field associated with
bending of the bar on the kinetics of the separation of
the solid solution. The value M = 0.5 × 103 N for the
taken geometry of the bar provides the stress σθθ =
20 MPa for r = a, i.e., at the inner boundary. This value
is quite reasonable.

In what follows, we take the dimensionless parame-
ter α = –1, for which problem (5) reduces to the more
simple form

(7)

The stress field for the accepted dimensionless param-
eter changes the symmetry of the diffusion equation.
The diffusion process in the curved bar (polar coordi-
nate system) is plane symmetric. The transformation of
the coordinate dependence increases the rate of varia-
tion in the concentration of impurity atoms. This con-
clusion follows mathematically from the form of the

diffusion equation. Indeed, for  < 0, the rate of vari-

ation in the impurity concentration  in Eq. (7) is

higher than that in Eq. (5). The process is accelerated
due to stresses associated with bending of the bar. In
this case, tensile stresses displace impurities of a large
atomic radius, and compressive stresses accelerate their
migration to the boundary of their maximum value. For
the accepted elastic model, this process finally results
in the establishment of the equilibrium concentration of
alloying elements over the bar radius. The time depen-

1
D
---- C∂

t∂
------ C2∂

r2∂
--------, a r b,< <=

C r 0,( ) C0, C a t,( ) Cp
1 , C b t,( ) Cp

2 .= = =

C∂
r∂

------

C∂
t∂

------
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dence of the concentration field is found by solving
problem (7) and has the form

(8)

This relation involves the equilibrium concentrations at
the inner and outer boundaries of the curved bar. Their
values are usually determined by the relation

(9)

where σll takes the value

(10)

at the respective region boundaries. As is seen, the equi-
librium concentration of impurity atoms at the inner
boundary of the bar exceeds the average concentration
of impurity atoms due to tensile stresses. The equilib-
rium concentration of impurity atoms at the outer
boundary of the bar is lower than the average concen-
tration of impurity atoms due to compressive stresses.

Thus, relation (8) describes the separation of a solid
solution of substitutional impurities of a large atomic
radius. For such impurities of a small atomic radius, the
mathematical formulation of the diffusion problem is
the same. The difference is that these impurities diffuse
in the opposite direction, i.e., from the tensile region to
the compressive region. When the solid solution sepa-
rates, the total concentration of impurity atoms is con-
served; i.e., they are only redistributed. If the concen-
tration of impurity atoms exceeds the solubility limit at
a given temperature, regions of a new phase are formed.
Some impurity atoms leave the solution. In this case,
the solid solution is depleted. The concentration of
impurity atoms is maximal at the boundaries of the
region under consideration. Therefore, regions of the
new phase are also formed near the boundaries of the
material.

The characteristic size of a new-phase nucleus is
usually much smaller than the radial dimension of the
bar. For this reason, the diffusion processes are
described in the unbounded matrix when describing the
growth kinetics of the new phase. At the moving inter-
face of the new-phase region, the concentrations of
impurity atoms change stepwise: C = C1 for the new

C C0–
b Cp

1' C0–( ) a Cp
2 C0–( )– r Cp

2 Cp
1–( )+

b a–
--------------------------------------------------------------------------------------------=

+
2
π
--- 1

n
--- 1–( )n Cp

2 C0–( ) Cp
1 C0–( )–[ ]

n 1=

∞

∑

× πn r a–( )
b a–
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phase and C = C2 in the surrounding matrix. In this
case, the inequalities C1 > C2 and C2 < C0 , where C0 is
the average concentration of impurity atoms, are valid.
The stepwise change in the impurity concentration at
the interface means that this interface instantaneously
captures impurities from the solid solution and supplies
them to the new phase with higher concentration. In the
accepted model, the new phase is formed on the inner
surface of the bar. This is caused by tensile stresses and
impurities of a large atomic radius. As an example, it is
sufficient to mention the formation of hydride phases in
zirconium alloys. Hydrogen is formed in the parazirco-
nium reaction and migrates rapidly to the shell of a fuel
element. At temperatures below 350°C, hydrogen is in
the solid-solution form. When temperature decreases,
hydride nuclei are formed. Their further growth occurs
due to the diffusion of hydrogen atoms. Hydrogen is an
interstitial impurity; i.e., it increases the lattice para-
meter.

The kinetics of the diffusion growth of the new
phase (after the formation of a nucleus) near the inner
surface of the bar is mathematically formulated as

(11)

where R0 > a is the radius of the new-phase nucleus and
R is the current radius of the new phase. For the α = –1
case under consideration, problem (11) takes the more
simple form

(12)

Further, we consider the case where the growth of
the new phase is limited by the diffusion supply of
impurity atoms. The radius of the new-phase region

varies as R(t) = , where β is the dimensionless
parameter of the problem and is determined from the
mass-balance equation at the interface. For clarity, we

1
D
---- C∂

t∂
------ C2∂

r2∂
--------

1 α+
r

------------- C∂
r∂

------,+=

C R t,( ) C2, C r 0,( ) C0, r R0;≥= =

C ∞ t,( ) C0,=

C1 C2–( )dR
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------- D C∂

r∂
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r
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 
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,=

1
D
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t∂
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--------,=
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r
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r R=
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β Dt
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use the fixed-interface approximation. We obtain the
quadratic equation

(13)

for the calculation of the parameter β.

For α = 0, problem (11) takes the form

(14)

The stress field of the bar is disregarded in this formu-
lation of the problem. Writing the time dependence of
the radius of the new-phase region in the form R =

, we arrive at the following transcendental equa-
tion for the dimensionless parameter β1 [1]:

(15)

where K0(x) and K1(x) are the modified Bessel func-
tions of the second kind of the zeroth and first orders,
respectively. The solution of Eqs. (13) and (15) for arbi-
trary concentrations reveals the contribution of stresses
under bending of the bar to the kinetics of the growth of
the new phase.

Without loss in generality, we set C0 = 2 × 10–4 atom,
C2 = 10–4 atom, and C1 = 3 × 10–4 atom and, for these

β2 2β
π
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C1 C0–
------------------– 2C2

C1 C2–
------------------– 0=

1
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r2∂
--------

1
r
--- C∂
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------,+=

C R t,( ) C2, C r 0,( ) C0, r R0;≥= =

C ∞ t,( ) C0, =

C1 C2–( )dR
dt
------- D

C∂
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 

r R=

.=

β1 Dt

β1
2

π
------- C2 C0–

C1 C0–
------------------

K1 β1
π

2
------- 

 

K0 β1
π

2
------- 

 
-------------------------,=
concentrations, we obtain [1]

(16)

Numerically solving Eqs. (16), we obtain β = 1.3 and
β1 = 0.8. Therefore, the stress field associated with
bending of the bar accelerates the growth of a nucleus
of the new phase. The use of different concentrations
only changes the values of the parameters β and β1 .
With an increase in the characteristic size of the new
phase, the solid solution is depleted. The growth of the
new-phase region decelerates. Moreover, variations in
the new-phase volume are accompanied by the appear-
ance of stresses at the interface. These stresses change
the kinetics of the diffusion process. However, this
effect can be disregarded for small volume variations in
the new phase and at early stages of the process.

Thus, bending of the curved bar induces stresses.
The self-equilibrium system of stresses gives rise to the
separation of the solid solution. Alloying elements of
large and small atomic radii (compared to the basic
metal) migrate to the tension and compression regions,
respectively. In other words, impurity atoms are redis-
tributed, while their total concentration is conserved. If
the concentration of impurity atoms near the bar bound-
ary reaches the solubility limit at a given temperature,
nuclei of the new phase are formed. Their diffusion
growth is accompanied by the depletion of the solid
solution.
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In recent years, in addition to the investigation of the
electronic and optical properties of nanostructures [1],
the study of their mechanical properties has become
particularly important. Many works have been devoted
to the production of nanotubes and investigation of
their properties [2–8]. According to the data obtained
in [4], nanotubes can retain their elastic properties
under significant strains. The stress–strain state of nan-
otubes is usually calculated in the theory of elastic
shells [9]. In this case, the elastic moduli are deter-
mined in discrete models, where only the force interac-
tion between atoms forming a nanotube is taken into
account. However, the existence of monolayer nano-
tubes [5–8] makes it necessary to consider also the
moment interaction between atoms. Otherwise, the
atomic layer forming the nanotube would have zero
flexural rigidity, so that such a nanotube would be
unstable.

The aim of this study is the development of a
method of determining the flexural rigidity of nano-
structures with allowance for the moment interaction
on the nanolevel. First, we obtain general formulas for
the moment interaction between atoms or molecules.
Then, we apply these formulas to the discrete model
[10, 11] to obtain the corrections associated with the
moment interaction. These corrections make it possible
to describe the mechanical properties of monolayer
nanostructures.
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We consider a crystal consisting of particles (atoms
or molecules) whose interaction depends not only on
their mutual arrangement in space but also on their
mutual orientation. This interaction is characterized by
the force vector and moment vector. The force and
moment of the interaction between crystal particles are
defined according to the theory of shells and rods [12,
13]. We consider two interacting particles (Fig. 1). In
the actual configuration, the positions and orientations
of the particles are specified by the radius-vectors r1
and r2 and rotation vectors j1 and j2 , respectively. In
the equilibrium position, r2 – r1 = r0, j1 = 0, and j2 =
0. Let us introduce the following notation: F1 and M1
are the force and moment, respectively, acting on parti-
cle 1 by particle 2; F2 and M2 are the force and moment,

respectively, acting on particle 2 by particle 1; and 

and  are the external forces and moments, respec-
tively, acting on the ith particle. The moments Mi and

 are calculated with respect to the ith particle. Fol-
lowing the moment theory of elasticity [14], we write
the equations of motion for particle 1, particle 2, and
the system including both particles in the form

(1)

Here, m1 and m2 are the masses of the particles, θ1 and
θ2 are their inertia tensors, v1 and v2 are the velocities
of the particles, and w1 and w2 are their angular veloc-
ities. We emphasize that the moment balance equation
in a system of bodies, in contrast to a system of material
points, does not result from the force balance equation.
These equations are independent laws. Newton’s third

Fi
e

Mi
e

Mi
e

m1v̇1 F1 F1
e , θ1 w1⋅( ).+ M1 M1

e ,+= =

m2v̇2 F2 F2
e , θ2 w2⋅( ).+ M2 M2

e ,+= =

m1v1 m2v2+( ). F1
e F2

e ,+=

r1 m1v1 θ1 w1 r2 m2v2 θ2 w2⋅+×+⋅+×( ).

=  r1 F1
e M1

e r2+ +× F2
e× M2

e .+
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law for forces and its analogue for moments follow
from Eqs. (1):

(2)

The energy balance equation for the two-particle sys-
tem is written in the form

(3)

where U is the internal energy of the system (the energy
of interaction between particles 1 and 2). For small dis-
placements from the equilibrium position in view of
Eqs. (1) and (2), energy balance equation (3) reduces to
the form

(4)

Here, M is the moment acting on particle 1 by particle 2
about the middle of the segment connecting these par-
ticles. The vectors e and k on which the force and
moment, respectively, do work [see formulas (4)] are

F1 F2+ 0, r1 F1 M1 r2+ +× F2 M2+× 0.= =

1
2
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
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 .
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U̇ F ė M k̇ F,⋅+⋅ F1 F2,–= = =

M M1
1
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--- r1 r2–( ) F1×+=

=  –M2
1
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--- r2 r1–( ) F2,×–
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---r0 j1 j2+( )× ,+=

k j2 j1 r,– r2 r1.–= =
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c

(a) (b)

r0

a

Fig. 2. Two interacting particles: (a) reference (equilibrium)
position and (b) actual position.

r1

r2

ϕ2

ϕ1

Fig. 1. Moment interaction between two particles.
referred to as deformation vectors. In what follows, we
discuss the elastic deformation of the system. We
assume that the internal energy, force, and moment
depend only on the deformation vectors and are inde-
pendent of the velocities. Then,

(5)

We assume that the internal energy is a quadratic form
of the deformation vectors

(6)

The coefficients of quadratic form (6) are called the
elasticity tensors. In the linear theory of elasticity, the
elasticity tensors are constants such that the tensors A
and C are symmetric, while the tensor B is arbitrary.
According to formulas (5) and (6), the force and
moment have the form

(7)

For illustration, we consider the simplest model of
the moment interaction, where any particle is simulated
by two rigidly bound material points (Fig. 2). The fol-
lowing notation is used: ‡ is the vector connecting two
material points within one particle and r0 is the vector
specifying the equilibrium distance between different
particles. Both vectors correspond to the reference
(equilibrium) configuration for the two-particle system
(Fig. 2a). The actual configuration of the system is
shown in Fig. 2b. The interaction between material
points belonging to different particles is described by
the pure force interaction (the rigidities of the corre-
sponding bonds are denoted as c and c'). However, the
total interaction between particles has both force and
moment components. In Fig. 2, the quantity a charac-
terizes the arm of the moment interaction. When a 
0, the moment interaction transforms to the pure force
interaction. Calculation of the force and moment acting
on particle 1 by particle 2 showed that these quantities
have form (7), where

(8)

As a rule, atoms in a nanocrystal are simulated by
material points. The simulation of nanocrystal atoms by
particles with rotational degrees of freedom compli-
cates the theory of the interaction between particles.
However, this complication is justified, because it
enables one to describe a number of physical effects
that can be described only by multiparticle interaction

F
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potentials in a system of material points [8, 15]. In par-
ticular, the class of stable crystal lattices is extended. At
the same time, formulations of problems in the theory
of moment interactions are much simpler than those in
the approach using multiparticle potentials. As is
shown below, the inclusion of the moment interactions
makes it possible to find an analytical expression for the
flexural rigidity of a nanocrystal that does not vanish
when the crystal consists of a single atomic layer.

As an example, we apply moment theory to the
model problem of the bending of a nanocrystalline
strip [10, 11]. We consider a two-dimensional single
crystal composed of N and K layers in the y and x direc-
tions, respectively, so that K @ N (Fig. 3). For the force
and moment characterizing the interaction between
particles, we will use expressions (7), where the elastic-
ity tensors are represented in the form

(9)

Here, k is the unit vector perpendicular to the strip
plane. The coefficients C1, , and C2 depend on the
structure and sizes of interacting particles. Formulas (9)
present the general form of the tensors A, B, and C in
the plane problem provided that the system consisting
of two interacting particles has two mutually perpen-
dicular symmetry axes. This conclusion can be easily
proved by using the symmetry theory of tensors [12].

In this study, we consider only a triangular crystal lat-
tice. The particles that are described by relationships (9)
and satisfy the symmetry of a triangular lattice can be
simulated by a set of six material points situated at the
vertices of a regular hexagon. However, below, we will
use general relationship (9) disregarding the internal
structure of a particle. For clarity, particles will be rep-
resented as ovals, which makes it possible to show their
relative rotations (Fig. 3).

The particles located at crystal sides are subjected to
the forces Qj (Fig. 3) varying linearly when going from
one layer to another such that the total load is purely
moment:

(10)

It is assumed that particles on the crystal sides cannot
rotate about each other; i.e., the crystal sides rotate as a
rigid body. Only interactions between an atom and its
nearest neighbors in the crystal lattice are taken into
account (Fig. 3). The strain state of the crystal is deter-
mined by the distances ai, j between neighboring atoms
in each layer, the distances bi, j between the nearest
atoms in the neighboring layers, and the rotation angles
ϕi, j of the atoms. The indices i and j correspond to the
numbers of layers in the x and y directions, respectively

A C1
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*k r0k r0××
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(Fig. 3). The distances between the neighboring layers

are determined from the relationship .

In the undeformed state, the crystal lattice consists of
equilateral triangles with the side a = b = a0; the rotation
angles ϕi, j of the atoms are assumed to be equal to zero.
It is easy to check that, in the undeformed state, the

relationships , and Rj = (j – 1)h0 , where Rj

is the distance between the jth and first atomic layers,
are valid. Writing the equilibrium equations for the
atoms, we arrive at the system of equations whose solu-
tion has the form

(11)

It is seen from relationships (11) that, under the defor-
mation of the crystal, the layers of atoms in the y direc-
tion remain rectilinear, the angles between any neigh-
boring atomic layers are identical, and the rotation
angles of the atoms coincide with those of the corre-
sponding layers. Since the problem of pure bending is
considered, the shear strain is equal to zero. Thus, the
coefficient  characterizing the shear rigidity is
absent in the solution of the problem and cannot there-
fore affect the flexural rigidity.

To determine the flexural rigidity of a single crystal
strip, we mentally cut the crystal by a vertical straight
line AB (Fig. 3). According to formulas (11), the total
normal force acting from one part of the crystal to
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Fig. 3. Bending of the nanocrystalline strip.



458 IVANOVA et al.
another is equal to zero, and the total bending moment
M* has the form

(12)

The flexural rigidity is defined as the ratio of the
moment M* to the curvature β:

(13)

The substitution of formulas (11) and (12) into Eq. (13)
gives

(14)

The first term in (14) coincides with the formula for the
flexural rigidity obtained in [11], where a similar prob-
lem was considered disregarding moment interactions
between crystal particles. The second term is the cor-
rection caused by the moment interaction between the
particles. The first term in formula (14) for N = 1 van-
ishes so that the flexural rigidity is completely deter-
mined by the quantity C2 characterizing the moment
interactions between crystal atoms

(15)

When N  ∞, the second term in Eq. (14) becomes
negligibly small compared to the first term, and the first
term tends to the value taken in the macroscopic theory
of plates

(16)

where E∞ is the Young modulus of the infinite crystal

and  is the macroscopic thickness of the
strip.

Thus, in this study, we found the general formulas
describing the moment interaction between atoms or
molecules under linear elastic deformation. These for-
mulas are illustrated in application to the simplified
problem of the bending of a two-dimensional nanocrys-
talline strip. However, these formulas can be similarly
used in the general three-dimensional formulation. In
addition, it is shown that, by including the moment
interaction on the nanolevel, the elastic deformation of
mono- and multilayer nanostructures can be commonly

M* MΣ C2α 3N 1–( ).+=

D
M*

β
--------, β 2α

a0
-------.= =

def

D
C1a0

3

16
----------- N 1–( )N N 1+( )

C2a0

2
----------- 3N 1–( ).+=

N 1: D C2a0.= =

N ∞: D D∞→→
E∞H3

12
-------------, E∞

2C1

3
---------,= =

H Nh0=def
described, and the correction to the flexural rigidity that
is nonzero for monolayer nanoobjects can be calcu-
lated.
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Linearized equations were considered in [1, 2, 5] for
the 2D ideal-plasticity problem and in [3, 4] for the 3D
problem under the full-plasticity condition. Below, we
consider linearized equations of ideal-plasticity theory
with statically definable relationships different from the
full-plasticity conditions. The linearized equations with
statically definable relationships are shown to be of the
hyperbolic type.

1. Let statically definable relationships in ideal-plas-
ticity theory be written as

(1.1)

(1.2)

The full-plasticity condition [3] follows from
Eqs. (1.1) for

(1.3)

The initial-state values are denoted by the super-
script 0, and primed quantities refer to the excited-state
components. Let us set

(1.4)

It is assumed that
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According to Eqs. (1.1) and (1.5), we have

(1.6)

From Eqs. (1.2) and (1.4), it follows that

(1.7)

According to Eqs. (1.1) and (1.4)–(1.7), we obtain

(1.8)

(1.9)

where derivatives and functions (1.8) and (1.9) with the
superscript zero are taken for values (1.5).

From Eqs. (1.8) and (1.9), it follows that

(1.10)

From the equilibrium equations

(1.11)

and relationships (1.8)–(1.10), we obtain

(1.12)
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0 ν0 f 3

0, τ ij
0+ 0.= = = =

n3' 0.=

σx' ν', σy' ν', σz'
∂ f 3

0

∂n1
--------n1'

∂ f 3
0

∂n2
--------n2' ,+= = =

τ xy' 0, τ yz' f 6
0n2' , τ xz' f 5

0n1' ,= = =

σz'  = Aτ xz' Bτ yz' , A+  = 
∂ f 3

0

∂n1
--------    f 5

0 , B  =  
∂

 
f

 
3
0

 
∂

 
n

 
2

 --------   f 6
0 .

∂σx

∂x
--------

∂τ xy

∂y
---------

∂τ xz

∂z
---------+ + 0,=

∂τ xy

∂x
---------

∂σy

∂y
--------

∂τ yz

∂z
---------+ + 0,=

∂τ xz

∂x
---------

∂τ yz

∂y
---------

∂σz

∂z
--------+ + 0,=

∂ν'
∂x
-------

∂τ xz'

∂z
---------+ 0,=

∂ν'
∂y
-------

∂τ yz'

∂z
---------+ 0,=

∂τ xz'

∂x
---------

∂τ yz'

∂y
--------- ∂ν'

∂z
------- A

∂τ xz'

∂z
--------- B

∂τ yz'

∂z
---------+ + + + 0.=
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Introducing the function W such that

(1.13)

and using Eqs. (1.12) and (1.13), we arrive at the wave
equation

(1.14)

It is evident that, for

(1.15)

we obtain wave equations that can be derived according
to Eqs. (1.5)–(1.15) by the corresponding permutation
of subscripts.

2. To define the relationships for the associated flow
rule, we compose the functional

(2.1)

where εij are the components of the plastic-strain rate.
Relationships (1.1) follow from the extremum condi-
tions

(2.2)

for functional (2.1).
The extremum conditions

(2.3)

for functional (2.1) provide the following relationships
of the associated plastic-flow rule:

(2.4)

τ xz'
∂W
∂x
--------, τ yz'

∂W
∂y
--------, ν' ∂W

∂z
--------–= = =

∂2W

∂x2
---------- ∂2W

∂y2
---------- ∂2W

∂z2
----------– A

∂2W
∂x∂y
------------ B

∂2W
y∂z
----------+ + + 0.=

n1
0 = 1, n3

0 = n2
0 = 0; n2

0 = 1, n1
0 = n3

0 = 0

Φ σijεij εx f 1n1
2 εy f 2n2

2 εz f 3n3
2+ +(–=

+ 2εxy f 4n1n2 2εxz f 5n1n3 2εyz f 6n3n2+ + )

– ν εx εy εz+ +( ) µ n1
2 n2

2 n3
2+ +( ),+

f i f i n1 n2 n3, ,( ),=

∂Φ
∂εij

-------- 0=

∂Φ
∂ni

------- 0=

εx

∂ f 1n1
2( )

∂n1
------------------- εy

∂ f 2

∂n1
--------n2

2 εz

∂ f 3

∂n1
--------n3

2 2εxy

∂ f 4n1( )
∂n1

-------------------n2+ + +

+ 2εxz

∂ f 5n1( )
∂n1

-------------------n3 2εyz

∂ f 6

∂n1
--------n2n3+ 2µn1,=

εx

∂ f 1

∂n2
--------n1

2 εy

∂ f 2n2
2( )

∂n2
------------------- εz

∂ f 3

∂n2
--------n3

2 2εxy

∂ f 4n2( )
∂n2

-------------------n1+ + +

+ 2εxz

∂ f 5

∂n2
--------n1n3 2εyz

∂ f 6n2( )
∂n2

-------------------n3+ 2µn2,=

εx

∂ f 1

∂n2
--------n1

2 εy

∂ f 2

∂n3
--------n2

2 εz

∂ f 3n3
2( )

∂n3
------------------- 2εxy

∂ f 4

∂n3
--------n1n2+ + +

+ 2εxz

∂ f 5n3( )
∂n3

-------------------n1 2εyz

∂ f 6n3( )
∂n3

-------------------n2+ 2µn3.=
Relationships (2.4) must be complemented by the
incompressibility condition

(2.5)

Setting

(2.6)

and using relationships (1.5) and (1.7), we reduce
Eqs. (2.4) for the initial state to the form

(2.7)

According to Eqs. (1.5), (1.7), and (2.4)–(2.6), the
perturbation components satisfy the relations

(2.8)

(2.9)

Passing to the velocity components

(2.10)

and setting

(2.11)

in Eqs. (2.8)–(2.10), we obtain

(2.12)

εx εy εz+ + 0.=

εij εij
0 εij'+=

εz
0∂ f 3

0

∂n1
-------- εxz

0 ∂ f 5
0

∂n1
--------+ 0,=

εz
0∂ f 3

0

∂n2
-------- εyz

0 ∂ f 6
0

∂n2
--------+ 0,=

εz
0 ∂ f 3

0

∂n3
-------- 2 f 3

0+ 
  2µ0.=

εz'
∂ f 3

0

∂n1
-------- εz

0 ∂2 f 3
0

∂n1
2

----------n1'
∂2 f 3

0

∂n1∂n2
-----------------n2'+

 
 
 

2εxz' f 5
0+ + 2µ0n1' ,=

εz'
∂ f 3

0

∂n2
-------- εz

0 ∂2 f 3
0

∂n1∂n2
-----------------n1'

∂2 f 3
0

∂n2
2

----------n2'+
 
 
 

2εyz' f 6
0+ + 2µ0n2' ,=

εz'
∂ f 3

0

∂n3
-------- 2 f 3

0+ 
  εz

0 ∂2 f 3
0

∂n1∂n3
-----------------n1'

∂2 f 3
0

∂n2∂n3
-----------------n2'+ 

 + 2µ',=

εx' εy' εz'+ + 0.=

εx
∂u
∂x
------, εy

∂v
∂y
-------, εz

∂w
∂z
-------,= = =

εxz
1
2
--- ∂u

∂z
------ ∂w

∂x
-------+ 

  , εyz
1
2
--- ∂v

∂z
------- ∂w

∂t
-------+ 

 = =

u u0 u', v+ v 0 v ', w+ w0 w'+= = =

∂u'
∂z
------- ∂w'

∂x
-------- A

∂w'
∂z
-------- 2µ0∂W

∂x
--------– F+ + + 0,=

∂v '
∂z
-------- ∂w'

∂y
-------- B

∂w'
∂z
-------- 2µ0∂W

∂y
--------– H+ + + 0,=
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where

From Eqs. (2.9) and (2.12), we find

(2.13)

F εz
0 ∂2 f 3

0

∂n1
2

----------∂W
∂x
--------

∂2 f 3
0

∂n1∂n2
-----------------∂W

∂y
--------+

 
 
 

,=

H εz
0 ∂2 f 3

0

∂n1∂n2
-----------------∂W

∂x
--------

∂2 f 3
0

∂n2
2

----------∂W
∂y
--------+

 
 
 

.=

∂2w'

∂x2
---------- ∂2w'

∂y2
---------- ∂2w'

∂z2
----------– A

∂2w'
∂x∂z
----------- B

∂2w'
∂y∂z
-----------+ + +

– 2µ0 ∂2W

∂x2
---------- ∂2W

∂y2
----------+ 

 

– εz
0 ∂2 f 3

0

∂n1
2

----------∂2W

∂x2
---------- 2

∂2 f 3
0

∂n1∂n2
----------------- ∂2W

∂x∂y
------------

∂2 f 3
0

∂n2
2

----------∂2W

∂y2
----------+ +

 
 
 

0,=
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where µ0 is defined according to Eqs. (2.7).
The equations for perturbed stress components (1.14)

and those for the velocity w' have coinciding character-
istics.
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