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The self-switching of unidirectional coupled shear
waves was discovered in 1982 [1, 2], mathematically
described in [3—6], and experimentally obtained first
in[7, 8] and thenin[9]. This phenomenon represents a
sharp change in the ratio of the powers of these waves
at the exit of the system, which is induced by a small
change in the input power or phase of at |east one of the
waves[10, 11]. It can be also caused by achangeinthe
power or phase of aweak optical signal at the entry of
the system. In the latter case, optical pumping radiation
of much higher power, along with thesignal, issupplied
to the entry. A new class of fully optical transistors was
proposed on the basis of this phenomenon [1, 2].
Unidirectional coupled shear waves include the whole
class of waves in optics, such as waves in tunnel-
coupled optical waveguides, i.e., two parallel optical
waveguides spaced by a short distance (usually from 1
to 10 um), waves of different polarizationsin an optical
birefringent or magnetically active waveguide, waves
under Bragg diffraction according to the Laue scheme,
various modes in an optical waveguide, and waves of
different frequency in a quadratically nonlinear crystal
or optical waveguide [10, 11].

This phenomenon is of special practical importance
for solitons used as unidirectional-coupled shear
waves, because a soliton has the same phase over the
entire time profile and therefore complete self-switch-
ing of its power is possible. This property is combined
with the known possibility of transmission of solitons
to large distances without distortion of their shape
through fiber communication channels. The possibility
of the switching of fundamental solitons in cubically
nonlinear tunnel-coupled optical waveguides, when all
waves have the same carrier frequency, was shown
in [12]. The switching of orthogonally polarized funda-
mental solitons in a cubicaly nonlinear optical
waveguide was analyzed in [13]. The possibility of the
switching of solitonsin quadratically nonlinear tunnel-
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coupled optical waveguides from one waveguide to
another was demonstrated in [14].

In this work, we show the possibility of the fully
optical switching of fundamental solitons in cubically
nonlinear tunnel-coupled optical waveguides by aweak
signa of a different carrier frequency from one
waveguide to another. Such a different-frequency
switching provides ultrafast, purely optical control by
the flux of solitons (including their appearancein given
time windows), which is very important for ultramod-
ern soliton communication channels. It also alows the
transformation (with high gain) of a weak modulation
of signal pulses to strong modulation of atrain of soli-
tons at different desired carrier frequency. The ampli-
tude of the signal is much lower than the amplitude of
asoliton. Therefore, the modulation and control by the
signal can be easily realized (even by means of elec-
trooptics) with a much higher rate than the rate charac-
teristic for ordinary control of a stream of solitons by
electrooptical methods. Then, this very dense informa-
tion from the signal wave (signal pulses) is automati-
cally introduced to the soliton flux without loss in the
speed of information transfer.

An important advantage of the different-frequency
switching of solitons, which is considered in thiswork,
over the same-frequency switching described previ-
ously in [12] is the elimination of the parasitic jitter
effect and signal-phase drift, i.e., the elimination of the
parasitic effect of both short-range and slow phase
changesin the signal. Moreover, the effect of the input-
soliton phase on the switching processis also excluded
due to insensitivity of this switching to the input phase
difference between the soliton and signal radiation.

If the carrier frequency of the signal differs signifi-
cantly from the carrier frequency of the switched soli-
ton, the group velocity and second-order dispersion of
the signa pulse can differ substantially from the
respective parameters of the switched soliton. For this
reason, there isanatural question: Does optical switch-
ing occur in this case? If it does, is it stable under the
deviation of the indicated signal parameters from the
respective parameters of the soliton? This work gives
positive answers to both questions.
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We emphasize that the carrier frequency of signal
pulses can differ significantly from the carrier fre-
guency of solitons and can even be outside the region of
the formation and propagation of solitons and/or trans-
parency windows of a fiber light guide. This property
enhances the practical value of this switching.

The électric field in a system of two cubically non-
linear tunnel-coupled optical waveguides can be repre-
sented in the form [15]

1 ~
E = é;e]‘kAJk(Z, DE(X, Y)

xexpamjt+l—z—"‘£3é5——%+c.c., (1)

where 3, is the effective index of refraction of the kth

waveguide for the frequency wy, Ajk(z t) isthe slowly
varying amplitude of the wave in the kth waveguide for
thefrequency oy, Ej(x, y) isthetransverse profile of the
field in this waveguide, e, are the unit polarization vec-
tors of the waves, z, is the length-dimension (absolute)
coordinate aong the tunnel-coupled optica
waveguides, k = 0 and 1 is the waveguide number, and
j =1 and 2 isthe frequency number.

Let us substitute Eq. (1) into Maxwell’'s equations
with allowance for cubic polarization, disregard the
second derivatives with respect to the longitudinal
coordinate, and consider transverse field profiles in
waveguides as fixed. Equating coefficients of identical
exponentials, we obtain the set of equationsfor electric
fields corresponding to subscripts j and k. Multiplying

both sides of each equation by Ejk(x y), integrating
them over the cross-section, and going over to running
time, we arrive at the following set of truncated equa-
tionsfor the amplitudes A(z 1), which describein par-
ticular the interaction of the switched soliton at the car-
rier frequency w, (j = 1) with the controlling signal
pulse at the different carrier frequency w, (j =2) intun-
nel-coupled optical waveguides with the numbersk =0
and 1:
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Here, K; is the tunnel-coupling coefficient for the fre-
quency w, coefficients Dy characterize the second-
order dispersion and are inversely proportiona to the
dispersion length for the frequency wy, cubically non-
linear coefficients 6, 0,5, and 6, (proportional to
convolutions of the cubic-nonlinearity tensor) deter-
mine the effect of the intensity of waves in the
waveguide on the index of refraction of this waveguide
and depend both on the nonlinearity of the waveguide
material and on the transverse field profilein it [10, 11,
15], vy, are detunings of the group velocities, and a; v
Bji — Bjo is the differences of the effective indices of
refractions of the waveguides for the frequency .
Equations (2) are generalizations of equations from
[15] to adispersive medium.

The particular form of the coefficients in Egs. (2)
depends on the normalization. Taking into account the
features of the problem under consideration, we take
the soliton normalization of amplitudes for the fre-
guency w, suchthat 0,0=06,,=1,D,p=D;;=0.5,Dy =
0.5 _ o5 Doty

|2 D1kTyp
the tunnel-coupled optical waveguide is normalized by

. To this end, the coordinate along

| for thefrequency w,, i.e.,
p
~ ~ 2
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lag 2 oW, T
isthe normalized running time; T, istheinitial duration
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Uy + Uy

group velocity of pulses (solitons) in waveguides 0 and
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K; x 2l .
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%(910 + 0,,); and the factor f = % presents the differ-
1
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ence between the carrier frequencies of the signal and
solitons. Quantities with tilde are dimensional, i.e
unnormalized. We consider the most extensively used
case of identical tunnel-coupled optical waveguides,
i.e., G] = 0, Ulk= O, eJU = ejl, and 610 = ell = e.

We also assume that 8,5, = 6,; = 8,5 = 05,0 =6, =
8,, = 1. Asarule, these relations can be at |east approx-
imately satisfied. For definiteness, the carrier frequency
of the signal pulse is taken twice as high as the carrier
frequency of thesoliton, i.e., f= 2. Inthiscase, sincethe
field profiles for the signal frequency w, overlap less
with each other, the tunnel-coupling coefficient ismuch
smaller than that for solitons. Specifically, we take the
ratio K, = 0.1K,; between these tunnel-coupling coeffi-
cients. Numerical experiments show that the results
below hold qualitatively for other relations between fre-
quencies of the signal and switched solitons (e.g., for
the frequency ratio f = 1.4/0.98, important in practice),
for different K,/K, ratios, and for different relations
between 6, 65, 6,2, 6,1k

Theinitial (input) conditions have the form

a10€XP (i)

Ap(z=0)= A(t) = ot (3.1

Au(z=0) = Ay(t) = %ﬁ’“), (3.2)
Poo(Z = 0) = A1)

= azoexp(i¢zo)p:f—iza -1 (33)
Aan(2=0) = A1)

= a21exp(i¢21>pj—za -9 (3.4)

where 14 isthe shift of the maximum of the signal pulse
from the maximum of the soliton.

We assume that aﬁk < afk and take various shapes
of the signal pulse p(t — 1), such as

1

pP(T—T4) = m, (3.5.1)
_ (1-15)"
p(T-T4) = eXp[—T] (3.5.2)

For simplicity, we consider signal pulsesand solitons of
the same duration; i.e., T, = Ty, = T,. The results quali-
tatively hold for unequal duratlons All fields at time
infinity vanish; i.e., |Az T — %oo)| - 0.

Figures 14 illustrate the optical switching process.

Figure 1 shows pulses in tunnel-coupled optical
waveguides. the switched soliton supplied to the entry
of the zeroth waveguide and a very weak signal pulse,
which is faintly visible and whose input power is
approximately one hundredth of the input power of the
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soliton (signal pulsesin Fig. 1 aremultiplied by afactor
of 50). Figures 1laand 1b show the switching of the soli-
ton to the exits of the (point M) zeroth and (point M,)
first waveguides, respectively (see [3-8, 10-12] and
Fig. 2). This switching is purely optical, because it is
induced by theweak optical signal pulse supplied to the
entry of either the zeroth (Fig. 1a) or first (Fig. 1b)
waveguide.

According to our analysis, such a switching is
highly stable to the detuning of the group velocities of
the signal pulse and switched soliton (see Fig. 3), to the
shift of the signa pulse maximum from the soliton
maximum at the entry of tunnel-coupled optical
waveguides (see Fig. 2), and to the deviation of the shape
of theinput signal pulsefrom soliton shape (3.5.1). How-
ever, switching proceeds most efficiently for a soliton
shape (3.5.1) of the signa pulse. Figures 1-4 were
obtained for this signal shape.

Moreover, switching is stable to the detuning of the
second-order dispersion coefficients for different fre-
guencies (Fig. 4): D,, and D,, can significantly differ
fromD,, and D,, respectively. Stability of switching to
the deviation of D,, and D,, from D;, = D;; = 05 is
asymmetric as follows. In the region D,, = D,,; > 0.5,
switching holds and its depth decreases only by 5-10%
with an increase in D,, and D,, even for D,, = D,;, =
10D,,=10Dy,. Intheregion D,, = D,, < 0.5, the switch-
ing depth decreases much more strongly with a
decrease in D,, and D,,.

Propagating through tunnel-coupled optical
waveguides, the switched soliton virtually conservesits
shape. Its amplitude even increases, while the signal
pulse is dightly smeared and its amplitude decreases
(Fig. 1). At the same time, most of the signal-pulse
power is “attracted” to the switched soliton and propa-
gates along with it; i.e., most of the energy of the weak
signal pulseis captured by the switched soliton. Even if
the maximum of the signal pulseissignificantly shifted
from the maximum of the introduced soliton by, e.g.,
T4 = 3, the power of the signal pulse“flows’ to the soli-
ton when pulses propagate through waveguides
(Figs. 1c, 1d). Thus, the signal pulseis captured, and its
shape asaresult holds or almost holdsin the waveguide
to whose exit the soliton is switched (Fig. 1). However,
for larger 14, the signal pulse loses its shape, smearing
in time, and the depth of soliton switching decreases.
For 14 = 3, the shape of the signal pulse at the exit of the
first waveguide (under the soliton) becomes dightly
asymmetric (Fig. 1c), while it is symmetric for 14 = 0.
Unfortunately, thefigureillustrating the case t,= 0 can-
not be presented in this short paper.

We think that this capture of the signal pulse is
responsible for the high stability of switching to dis-
crepancy (shift) between the maximaof the signal pulse
and soliton in time, disagreement of group velocities,
and difference in the second-order dispersion for the
frequencies w, and w,. Owing to capture, the signal
pulse conserves sufficiently high power and accompa:
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Fig. 1. Power time profiles |Ajk(r)|2 of switchable soliton-like pulses at the frequency w; (j = 1) and weak pulses of the control signal
at the frequency w, (j = 2) inthe (a) zeroth and (b) first waveguides in cross-sections with various longitudinal coordinates z and
inthe (c) entry (z=0) and exit (d) (z=| = 31.95) cross-sections, where the dashed lines are the power profile of the input soliton at
the entry of the zeroth waveguide for z = 0; power profiles of al signal pulses are multiplied by a factor of 50; (e, f) energy of the
switched solitons vs. the longitudinal coordinate z in the same waveguides. The parameters are a, = (a) 0.12 and (b) 0, ay; =(a) O
and (b) 012, ajp = 115, a = 0, K] = 0236175, K2 = 00236175, Uijp=Uq = 0, Upyp=0Up1 = 02, and Tq= 3.

nies the switched soliton on a sufficiently long path,
which ensuresthe efficient switching even for large detun-
ing indicated above. With an increase in the delay 14, the
signal amplitude a,, necessary for achievement of the
maximum switching depth increases (Fig. 2).

Figures 3 and 4 show the energy-transfer coefficient
for solitons at the point M, of the switching curve

(see[3-8, 10-12] and Fig. 2), when amost al the
energy is switched to the exit of the first waveguide.
Thus, Figs. 3 and 4 in fact characterize the depth of the
optical switching of solitons. It decreases with an
increase in the difference between both the group
velocities of the signal pulse and switched soliton
(Fig. 3) and the second-order dispersions of the signa
2003
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Fig. 2. Energy transfer coefficient T, for solitons vs. the
signal pulse amplitude &, for delay 14=(0, 1) 0and (0, I');
Ugp=Us1 =Vj9=V1; =0,and Dyg=D;; =Dyp=D,; =05.
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Fig. 3. Energy transfer coefficient T, for solitons at the fre-
quency wy vs. the detuning of the group velocities v, =V,
forv;g=vy;=0,14=(0, 1) 0Oand (0', ") 3, and (at the point
Ml) a20 =0and a21 =0.12.
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Fig. 4. Energy transfer coefficient Ty, for solitons at the fre-
quency w vs. the second-order dispersion coefficient D, =
D,; = D, of thesignal pulsefor 14 =3, and (at the point M,)
az() =0and a21 =0.12.
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pulse and soliton (Fig. 4). In this case, the switching
depth remains sufficiently high.

In numerical experiments, we check the conserva-
tion of both the energy integral and the integral

0A 0A
J’[Im%lfvloAan—tlo + anAﬁWﬂ

—co

[

A 2

20 0A
ot

oA
+Vy AZ 21D"'DfDlo 3t

+ VA% St 00
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ot ot

2 2
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+f (O(1|A11|2 + Cx2|A21|2)
f
- 5(910|A10|4 + e11|A11|4 + e20|A20|4 + 0| Ay 4)

—f (9120|'°\2o|2|'°\1o|2 + e121|A21|2|A11| %)
_f Re(zKlAloAfl + 2K2A20A§1)i|dt = Conﬂ, (4)

which is conserved if the equalities 6,,, = 6,,, and
6121 = 6211 al’esaIISfled
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As was mentioned in [1], phenomenological the-
ory [2—4] has been used for along time to calcul ate the
thermodynamic functions of mixing and the stability
limits of solid solutions extended in composition (con-
tinuous). According to this theory, the mixing enthal py
AH_ ;. of solid solutions such as MO-M'O with the
NaCl-type structure can be determined by the formula

-9 AR _ 1 AV
AHmix = A_].XleVKDFD = L_].X:LXZVKDVD . (D

Here, X, and x, are the molar fractions of the compo-
nents; V is the molar volume; K is the compression
modulus, AR=R, - R, and AV =V, - V, are the differ-
ences of the interatomic distances and molar volumes
in the pure-component crystals, respectively; R is the
average interatomic distance additively depending on
the composition according to Vegard’'srule

R=XR, + %R, 2)

and V is the average molar volume satisfying the Ret-
gersrule

V = lel + X2V2. (3)

In recent years, these characteristics have been
intensively simulated on computers. Energy effects of
mixing of high-concentration solid solutions are calcu-
lated both in the semiclassical approximation by mini-
mizing energy found with semiempirical potentials of
interatomic interaction and in various approximations
of ab initio methods (Hartree—-Fock method, density-
functional theory). The first calculations of a semiclas-
sical or atomistic type, along with ab initio calcula-
tions, were made for the intermediate compositions of
solid solutions in the systems MnO-NiO, MgO-MnO,
Ca0O-MnO [5], and CaO-MgO [6, 7]. Recently, we
analyzed thelatter systemin detail [1]. The basic disad-
vantage of calculations of the structure and properties

Moscow Sate University, Vorob’ evy gory, Moscow,
119899 Russia

* e-mail: urusov@geol.msu.ru
** eemail: t_petr@mail.ru
*** eemail: neremin@mail.ru

of oxide solid solutions by quantum mechanical meth-
ods and semiclassical method of interatomic potentials
is the use of too small a cell (subcell) containing from
4 to 32 atoms. This disadvantage was overcome in [6,
7] (see dso [8]).

The random distribution of atoms in the solid solu-
tion structure was simulated in [6] by the method of
variation of clusters. Lavrentiev et al. [7] used the
Exchange Bias Monte Carlo method, which made it
possible to reduce the number of unsuccessful con-
figurationsin a4 x 4 x 4 supercell containing 256 cat-
ions. Nevertheless, the method requires along time for
the computation of the stable configuration after 4 x
107 steps of variation in the atomic coordinates and cell
Sizes.

In[1], weused alarge4 x 4 x 4 supercell containing
256 cations of two types M and M' and estimated the
short-range order degree for various configurations in
the distribution of cations of different types. This
enables us to find the properties of the disordered solid
solution with the statistical distribution of cations over
all structural positions. Here, we apply the same proce-
dure to two other oxide systems with the NaCl-type
structure to simulate the local structure and properties
of mixing of the binary solid solutions CaO-SrO and
SrO-BaO by the method of semiempirical pair poten-
tials. These systems were previously considered in the
phenomenological model [2, 8], studied experimentally
both by calorimetry [9] and by measurement of thelim-
its of the mixability of the components as functions of
temperature [10, 11].

Following the method described in [1], short-range
contributions to pair potentials were taken in the form
of the algebraic sum of the Buckingham V; and Morse
V\ potentials given by Egs. (4) and (5) in [1]. The
energy minimum was sought by varying the atomic
coordinates and lattice constants with using the GULP
software package [13], which alows calculations of
both the structural parameters and optimal interatomic
potentials. The parameters of the Buckingham Vg and
MorseV,, potentialswere obtained by fitting the structure
and properties of pure Ca0O, SrO, and BaO (Tables 1, 2)
for the effective charges of cations and anions zf =
*1.7¢, which corresponds to the ionic bond character
f=0.85. Asin[1], thisf value was found to provide the
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Table 1. Parametersfor interatomic interaction potentialsin
Ca0, SrO, and BaO crystals

URUSOV et al.

Table 2. Lattice constant a, unit-cell volume V, compres-
sion modulus K, and VK product for the pure CaO, SrO, and

Potential é’, 2\\? BF,) ’AA—l C’R‘:/ AAB
Vg (Ca-0) 775.00 0.3437 0.000
Vy (Ca-O) 0.0515 2.27 25
Vg (S-O) 1002.20 0.3484 0.000
Vi (S—0) 0.014 2.87 26
Vg (Ba-O) | 1477.39 0.3500 0.000
Vy (Ba-O) 0.0207 2.86 28

BaO crystals

Ca0 SrO BaO
Parameter
exp. |theor.| exp. |theor.| exp. |theor.
a A 4.810 | 4.810 | 5.114 | 5.114 | 5.522 | 5.522
K, GPa 115 | 115 | 87 88 71 74
V, cm¥mol | 16.76 | 16.75 | 20.45 | 20.45 | 25.35 | 25.35
VK, kJ/'mal 1927 | 1927 | 1779 | 1800 | 1800 | 1876

best fit to the experimental data and testifies to a high
ionic bond character in the oxides under consideration.
We note that the potential for CaO was dightly modi-
fied compared to[1] to ensurevirtually complete agree-
ment with the experiment (Table 2).

According to our numerous computer experiments,
itisvirtually impossible to adequately approximate the
statistical distribution of atoms replacing each other,
which characterizesanideal or regular solid solution, in
1x1x1,2x2x2,and3 x3 x3 cellswith small num-
bers of cation positions (4, 32, and 108, respectively).
For this reason, asin [1], the structures and energy of
solid solutions were cal culated with the 4 x 4 x 4 super-
cell with quadruple parameters of the NaCl-type struc-
ture, which consists of 512 atoms (256 cation posi-
tions). Restrictions due to symmetry were removed,
because the formation of the solid solution accompa-
nies by atomic displacements and corresponding distor-
tion of thelattice constants. The properties of these dis-
placements will be separately analyzed in this work.

The mixing enthalpy [AH,,;,] is determined as
AHmix = Uss(x) - XU] - (1 - X)UZ’ (4)

where x isthe molar fraction of the pure second compo-
nent (CaO and SrO for the cases under consideration),
and U, and U, arethe structure energies of the pure first
and second components of the mixture, respectively.
The AH,,;, values were obtained for three compositions
x=0.25, 0.5, and 0.75 by extrapolating AH,,,,.(0) calcu-
lated for several tens of atomic configurations to the
zero Bragg—Williams short-range order parameter

o = 9 —Qmin _ 5)
Omax — Amin

Here, g istheratio of the number of the second neigh-
bors of different types M—M' to the total number of cat-
ion pairsin the second coordination sphere as averaged
for all 256 cations of the structure, g,,;, corresponds to
the disordered solid sol ution with the minimum number
of such pairs and is proportional to the double product
of the concentrations of pure components 2x(1 — x), and
0.« 1S the maximally ordered solid solution correspond-
ing to the hypothetical superstructuresfor x/(1—x) = 1.0,

0.25, and 0.75 (compositions 1:1, 1:3, and 3:1, respec-
tively). Superstructures are chosen and the g,,,,, valueis
estimated similarly to [1].

The energies AH_ ., of the formation of the solid
solution depend almost linearly on the short-range
order degree o for al three compositions. Therefore,
AH (o) valuescan belinearly extrapolated to o = 0 by
the least squares method. These linear dependences for
the two systems under consideration are not shown
here, because similar dependences of the CaO-MgO
system were presented in Fig. 1in[1].

Moreover, AH,;, values can be found by seeking an
almost random distribution of cations with the use of a
random-number generator. Both the above approaches
give close results. However, we preferred the latter
method.

Figure 1 shows the AH, ;. values obtained in our
work and values calculated by Eq. (1) with the average
value VK,, = 1900(40) kJ/mol (see Table 2). In addi-
tion, Fig. 1 shows calorimetric data [9], which, within
thelarge standard deviations presented in [9], agree sat-
isfactorily with theoretical models.

Simulated AH,;, values exhibit asymmetry with
respect to the axis of the compositions and can be rep-
resented analytically in the two-parameter form

AH_;,(Ca0-SrO) = x(1 — X)[XW, + (1 —x)W;]
=X(1 —x)[29.3x + 20.2(1 — X)],

AH_, (STO-Ba0) = X(1 — X)[XW, + (1 — X)W,]
= X(1 — x)[45.8x + 23.6(1 — X)].

Here, W, and W, are the Margules parameters for the
mixing enthalpy (measured in kJ mol') and x is the
molar fraction of the first component in both systems.

These equations can be compared with empirical
data obtained from measurements of the stability
(decay) regions of the same solutionsin [10, 11]:

AH_.(Ca0-Sr0O) = x(1 — X)[27.0x + 25.0(1 — X)],
AH,,;(StO-Ba0) = x(1 — X)[33.4x + 29.3(1 — X)].
Comparison of the respective Margules parameters
shows that the computer simulation leads to a higher
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AH ., kImol
12

10F

N A~ N
T

| | | | | | | | |
0 01 0203 04 05 06 07 08 09 1.0

XCa0O
Xsro

Fig. 1. Enthalpy of the formation of the CaO-SrO and SrO—
BaO solid solutions vs. the composition. Thick and thin
lines are computer simulation and calculation by Eq. (1),
respectively. The upper and lower lines correspond to the
(closed rhombs) SrO-BaO and (closed squares) CaO-SrO
systems, respectively. The open circles and sgquares with
estimated error bars are experimental datafor the CaO-SrO
and SrO-Ba0 systems, respectively.

asymmetry in mixing enthalpy, particularly for the
SrO-Ba0 system.

In[1], computer simulation was applied for the first
time to find the properties of a nonideal solid solution
such as the deviation of the volume from Retgers
rule (3) and compression modulus K from additivity for
the CaO-MgO system taken as an example. Figures 2
and 3 show the functions AV, (X) and AK(x) for the
two new systems CaO-SrO and SrO-BaO. Asisseenin
Fig. 2, the calculated AV, (x) values exhibit signifi-
cantly smaller positive deviations from additivity than
those obtained in phenomenological theory [Eq. (10)
from [1]]. Measurements of the |attice constants for the
Ca0-SrO system [10] with an accuracy of 0.0001 A
correspond to alinear dependence on the composition;
i.e., they satisfy Vegard'srule (2). This correspondsto a
small negative deviation of the unit-cell volume from
additivity, i.e., from Retgersrule (3):

AV, (CaO-Sr0) = x(1 — x)(a + a, + a,)(Aa)?,

where, a = xa, + (1 — X)a, and Aa=a, — a,. Thisfor-
mulayields—0.35 A3 for the maximum AV, valuefor
x=0.5.

The lattice constants measured for the SrO-BaO
system [11] with the same accuracy exhibit small positive
deviation from Vegard's rule. Jacob and Varghese [11]
considered that this deviation corresponds to Retgers
rule (3) within experimental errors.

Figure 3 shows negative deviations of the compres-
sion modulus AK(x) from additivity for both systemsin
gualitative agreement with predictions of phenomeno-
logical model [Egs. (11), (12) in [1]]. However, com-
puter simulation implies that deviations can be much
larger, particularly for compositions where the smaller
component of the system prevails.
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Fig. 2. Deviation of the unit-cell volume V from additivity.
Lines 7 and 2 are computer simulation, while lines 3 and 4
are phenomenologica calculation for a positive deviation
form Vegard'srule (2) for the CaO-SrO and SrO-BaO sys-
tems, respectively.

Information about the local structure of solid solu-
tions can be obtained by calculating their various
atomic configurations and compositions. Figure 4
shows the distributions of the M—O and M'-O dis-
tances, as well as the distances between oxygen atoms
in linear O—-M(M")-O chains and between metal atoms
inlinear M(M"—-O-M(M") chainsin the CaO-SrO sys-
tem for the composition x = 0.5 and order degree o =
0.03, i.e., in the amost fully disordered solid solution
of the middle composition. It is seen that there are three
most probable M—O distances corresponding to half the
distancesin Ca—O—Calinear chains with amaximum at
2425 A, in S—O-Sr chains with a maximum at
2.540 A, and in mixed Sr—O—Ca configurations with a
double maximum around 2.48 A. Thelast valueisclose
to an average interatomic distance of 2.481 A in the

XCa0
Xsro
0 0.2 0.4 0.6 0.8 1.0

-0.5

-1.0

-1.5

-2.0

254

AK, GPa

Fig. 3. Deviation of the compression modulus K from addi-
tivity. Lines 7 and 2 are computer simulation, while lines 3
and 4 are phenomenological calculation for the CaO-SrO
and SrO-Ba0 systems, respectively.
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Fig. 4. Distribution of the (1) M-O, (2) M—M', and (3) O-O distances in the linear bond chains for the stoichiometric composition
of the CaO-SrO system with an almost random distribution of cations over the sites of the solid solution structure.

Ca,sSr,sO solid solution. The Ca-O distance in
Ca—O—Caatomic triplesislonger than the correspond-
ing distance in pure CaO (2.405 A) by 0.02 A. The
Sr—0O distance in the S—O-Sr atomic triples is shorter
than the corresponding distancein pure SrCaO (2.557 A)
by about the same value. These differences are most
simply attributed to the superposition of neighboring
peaks in the frequency diagram (line 7 in Fig. 4). How-
ever, they probably also indicate the general relaxation
of the cation sublattice, which shortens all different dis-
tances.

The double middle peak in thisdiagram ismost inter-
esting. The maximum at the shortest distance 2.475 A
obviously corresponds to Ca—O distances in mixed
atomic triples. The maximum at a distance of 2.495 A
corresponds to Sr—O distances in such linear chains.
The first distance is longer than the distance in pure
Ca0 by 0.07 A, while the second distance is shorter
than the distance in pure SrO by 0.06 A. The phenom-
enological model [2—4] and Distance Least Squares
method (fitting of distances by the least squares
method) [14] predict that the bond lengths in the NaCl-
like structure change by +AR/2, where AR is the differ-
ence between interatomic distances in the pure compo-
nents. This behavior correspondsto the structure-relax-
ation degree A = 0.5 or, interms of [14], the compliance
factor c;= 1 — A = 0.5. For the system under consider-
ation, the corresponding distances must change by
+0.076 A, which is slightly larger than the change in
both distances. This discrepancy can be partially attrib-
uted to the shift of maxima due to the superposition of
all four peaks. Moreover, this discrepancy can testify to

alower relaxation degree of the solid solution than that
expected in simpler models. These results can be com-
pared with the EXAFS experimental data for acid—
halide solid solutionswith the NaCl-type structure[15],
which also provide dightly smaller changesin the bond
lengthsin mixed configurations than those predicted in
simple models. In particular, the changes measured in
distances for (K, Rb)Br correspond to A = 0.45.

Lines 2 and 3 in Fig. 4 are the distributions of the
interatomic distances in the M—O-M" and O-M(M"-O
linear chains. As is seen, the distribution in the metal
sublattice contains three peaks. The highest middle
peak iscloseto 4.97 A, i.e., to the average cubic lattice
constant. It is reasonable to attribute it to distances in
mixed chains Ca—O-Sr (and Sr—O—Ca). Two lower side
peaks are spaced from the middle peak by 0.02-0.03 A to
the right and left and can be attributed to the CA—-O-Ca
and Sr—O-Sr distances, respectively. The distribution
of distancesin the metal sublattice is generally charac-
terized by arelatively low standard deviation (0.04 A at
half maximum).

In contrast, the distribution of the O-M—O distances
inthe oxygen sublattice (line3 in Fig. 4) has at least tri-
ple standard deviation and complex structure. Thisdis-
tribution involves at least ten peaks, which can beiden-
tified with high probability by comparing with the geo-
metric model of the displacement of the general atom
from its standard position in solid solutions of the
NaCl-like structure [2—4]. In this model, oxygen atoms
displace from their standard positions at the centers of

octahedrons by 0 (0.125), AR/2 (0.375), ﬁ%
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(0.375), and ﬁE]A—ZF‘E (0.125) for various configura-

tions of their mixed cation environment. The numbers
in the parentheses are the probabilities of the respective
displacementsfor the average composition of the disor-
dered mixture.

Distribution 3 in Fig. 4 demonstrates that many dis-
tances between O atoms are close to the average lattice
constant of the solid solution. Such distances aways
appear when either O atoms common to neighboring
cation octahedrons do not displace from their standard
positions or their displacements caused by neighboring
cations have the same signs. Thetotal probability of the
appearance of such distances is equal to 2(0.125)* +
2(0.375)> = 0.312. On the other hand, short and long
O-M-0O distances appear when both displacements

Jéé—zl—? are opposite and directed toward and outward

the intermediate cation M, respectively. The probabili-
tiesof such displacementsin the disordered mixture are
proportional to (0.125)? = 0.015, and the full width of
the distribution of the O—O distances must be close to

4A/§A7R. For the CaO-SrO system, this quantity must

be equal to about 0.53 A. The computer experiment
yieldsavalue of about 0.43 A for the distribution width.
Thus, the full width of the distribution of O-O dis-
tances is not apparently manifested in the diagram due
to a low probability of the maximum displacements.
The displacements in opposite directions with magni-

tudes 4J§A7R =043 A, 2&%‘? + 2A7R =0.37 A, and

AR
4 > =
of (0.375)*> = 0.141. They areresponsible for thevisible
width of the interatomic-distance distribution band in
the oxygen sublattice and principal three peaks in the
diagram. Other peaks within the band have lower prob-
abilities (from 0.015 to 0.047) and are not pronounced.
Thus, models agree quite well with each other, while
the computer simulation provides much more detailed
pattern of the atomic-displacement distribution.

0.30 A have amuch higher identical probability
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The phenomenon of evaporation and growth of lig-
uid dropsin a gaseous phase is important for processes
occurring in nature and for vital human activities.
Therefore, it has been extensively studied [1-3]. Aswas
noted in [1], this phenomenon is very complex under
real conditions, and its theory is complicated. For this
reason, Fuks [1] suggested constructing this theory
with a number of simplifying assumptions: one should
start with an extremely idealized model and then cor-
rect the corresponding equations by taking into account
different factors that have not been considered. In addi-
tion, he proposed considering the quasi steady regime of
both evaporation of drops and heat transfer to them asa
basis. Some papers published after review [1] (see,
e.g., [4-6]) show the drawbacks of quasisteady solu-
tions. Unfortunately, the inclusion of unsteady pro-
cesses is not sufficiently advanced in this field of
research, and there is adeficiency of experimental data
concerning this problem (as was pointed out in [1]).

Both the evaporation and condensation-caused
growth of a sufficiently large stationary drop occur
mainly due to two oppositely directed transfer pro-
cesses. These are vapor diffusion and heat conduction
initiated by latent heat of vaporization or condensation.
Therefore, only simultaneous consideration of the two
mentioned unsteady processes provides more accurate
description of the phenomenon under investigation
(see [6-8]). These two transfer processes are coupled
through boundary conditions. Therefore, the boundary
conditions on the drop—environment interface must be
correctly formulated; i.e., the effect of the Knudsen
layer must be properly taken into account. The last
problem has been investigated rather intensively during
the last 30 years, but only for the quasisteady regime
(see[2, 3] and references therein).

In this paper, simultaneously considering time-
dependent equations of diffusion and heat conduction,
we specify the gas-kinetic boundary conditions that are
obtained by using mathematical methods of the kinetic

Moscow State Regional University, ul. Radio 10a,
Moscow, 105007 Russia

theory of gases and include the jJumps of concentration
and temperature in the Knudsen layer [2]. We derive
both the general expression for the concentration distri-
bution and equations for temperature fields on the drop
surface and in the surrounding medium. In addition, an
expression for the rate of change in the drop radius at
any time is derived and the ranges of applicability of
some of the results obtained in the preceding theories
are established.

In the case under consideration, the distribution of
the relative concentration ¢, and the temperature T of
the vapor—gas mixture are described by the system of
equations (1) and (2) with initial and boundary condi-
tions (3)—«(7):

2
ac
o, _ D@—%+g—&|], (1)
t 0ar r al‘D
oT _ 9T, 20T
T At 2)

Cl(rlt)ltzo = ClOOl Cl(rit)lr_,+oo = Cloo! (3)

Tz = Tar T 4o = Too, 4
_ 0,9 (19T
[er O -cud| e = (KEGEARTEFE O
_ 0,moT | - 9C
[T(r!t)_TR]lr:R - g(T E-{-KT Tooa:Dr:I; (6)
Lnm,D%&| = 0T| %)
or r=R or r=R

Here, D is the coefficient of the diffusion of the vapor
in a gas not condensing into the liquid phase; a and K
are the thermal diffusivity and the thermal conductivity
of the vapor—gas mixture, respectively;

Ny (Tg)
Cir = C(TR) = %;

n,(TR) isthe concentration of the saturated vapor of the
drop substance at the temperature T = Tr(t) on the

1028-3358/03/4809-0474%$24.00 © 2003 MAIK “Nauka/ Interperiodica’
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drop surface; n = n; + n,, where n, and n, are the con-
centrations of molecules of thefirst and second compo-
nents, respectively; L isthe heat of the phase transition;
m, is the molecular mass of the volatile (first) compo-
nent; R isthe drop radius; r is the radial coordinate in
the spherical coordinate system with the origin at the

drop center; t is the time; and K, K", K", and
K are the gas-kinetic coefficients of the jumps of

concentration and temperature.

To solvethe problem, we use the Laplace transforms
[9] and introduce the notation

S(rp) = [, t)e dt, (8)
0

00

a(r, p) = J'T(r, t)e dt. )

Using initial conditions (3) and (4), we arrive at thefol-
lowing transforms of Egs. (1) and (2):

DS +QS‘ pS+cy,, = 0,

ag" +2—""e pO+T, = 0.

These are ordinary differentia equations for the
unknown functions Sr, p) and 6(r, p), where r is the
independent variable and p is the parameter. Solving
these linear equations with variable coefficients with
allowance for boundary conditions (3) and (4), we

obtain
_ S A ] [P
S(rp) = ==+ Tep i[5

PO
aly

(10)

Too
o(r,p) = e ean (11)

where A and B are the integration constants. To write
the Laplace transforms of the boundary conditions
specified by Egs. (5)—7), we introduce the notation

[

B:(p) = ITR(t)e““dt. (12)
0

This leads to the following system of algebraic equa-
tions for the unknowns A, B, and C:

(M
K
(14K p)aiA+==p,G,B = ¢1R

(c) (M) _ (13)
KC TooplqlA+(l+ KT pz)qu—RC - 0,

Ip0;A+Kp,Q,B = 0,
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where

C = Br(p) - —,

= WPE—JEF%. 0 = eXpE—JEF%, | = LnmD

Using the solution of system (13), we obtain the fol-
lowing expressions for functions (10), (11), and (12):

—ac./p

S, p) = & (ClR Cloo)R/\/B a4

Xef p(/p+p)

JD

o o TeynRa__PTR s

(r,p) = —+ , (15)
P X p(p+b1@+b2)

0(p) = + MXr p+a./p+a, (16)

X p(p+by/p+by)’
respectively. Here,

0(C:r—R’ B:(R+XC)«/5, O(T:r—R,
D XcR Ja
_ (Cro —CyR)!
K 1
a XT’\/[_)+(R+XT)’\/5~ a (R+XT)'\/_a
' XrR ’ xR
(R+xc)ﬁ>+xcﬁi b, (R+xc)J_a
Xc Xc
while
@ 1 m m_ KT
Xe = Kel=fq Koo Xr = K=y

are the nonnegative composite coefficients of the jumps
in concentration and temperature, respectively.

The inverse transforms are represented with the use
of the functions

o(a,B,t) = eBzHaBerfCEéiﬁ + B«/%

¢(B.1) = ¢(0,B.1),

d(a, B, t) = erfCDZJtD ¢(a,B,t),

®(B, 1) = @(0,B,1).
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Then, in view of Eq. (8), the inverse transform of
Eq. (14) yields the distribution of the relative concen-
tration in the drop environment in the form

(C1r—C1w) R’
(R+Xo)r

Calculating the inverse transforms of Egs. (15) and
(16), one should take into account that the roots z, and
z, of thesquaretrinomial Z2 + b,z+ b, arereal and differ
from each other when

c,(r,t) = C t+

e(a, B.t). (A7)

Ab = (R+XC)’\/B_XC'\/5¢ 01

or coincide with each other when A, = 0. If A, £ 0, then,
in view of Egs. (9) and (12), the inverse transforms of
Egs. (15) and (16) are the functions

T(r,t) = TﬂnRﬁz BJ¢(aT, B.1), (18

nx
” T{1+ z BJcD(BJ,t)} (19)

describing temperature fields in the environment of the
drop and on its surface, respectively. Here,

B1:—Z1:%, [32=—22:€;
5 = RD 5 _ X(/D-a)
1T, P2 T A, )

[Xr(R+Xc) /D —X(R+X7)/a] JB
XCXTAb

XC(’\/B - '\/5-)/\/5-

X780

C, =

C, =

For A, = 0, we use the notation 3, = -z, = —z,. Then,
temperature fields in the environment of the drop and
on its surface take the form

To(r,t) = T., +NR/aBq
Xl Bo

| F: + (e Bo ) + (2Bot + ar)(orr, Bo. )

GTD
-2 [tepd 3] 20)

YALAMOV, KUZ’MIN

Xt . Ca
c [] BO

®(Bo, 1)

COZ

- G0+ 20 -2 L5 @

respectively. Here,

C _ XT’\/B _Xc'\/a
(01 ’
XeXT

o UB-ff
XTR

We note that expressions (17)—21) are linear func-
tions of the concentration difference c,,, — C\g. Rela-
tions (17), (18), and (20) do not contain the composite
coefficient of the temperature jump, while expres-
sions (19) and (21) depend strongly on the ratio
between the composite coefficients of the jumps of
temperature and concentration.

According to[1], therate of changein the drop radius
is obtained from concentration distribution (17) as

drR _ ¢ R
D(Cy, —Cir)NMYy

where § = and y isthe density of the

drop substance. Expression (22) is valid for any time
instant. Using asymptotic expansions of the function
erfc(X) for small and large values of its argument, one
can find individual expressionsfor the rate of changein
the drop radius for small and large values of time t,
respectively. In the latter case,

dR_ & O
@ RExeo
R i mlx3... x(2m-1)
+ 1+ ¥ (1) } (23)
XCBJT_ﬁ[ mzl (2p%)" O

Retaining only the term free of t and then, in addition,

the term containing —} on the right-hand side of for-
t

mula(23), we arrive at the following approximations of

thisformula:

d_R = E' @ = E + R2
dt R+Xc, dt R+Xe (R+XC)A/T[Dt .
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For x. =0, they go over to the known expressions|[1, 4]
dR _ ¢ d

dR dR_ &0, RO
dt = R dt R%J’Jn—mﬂ 9

for the rate of changein the drop radius.

We note that relations (24) were derived in the pre-
ceding theories from the solution of only one diffusion
equation for steady or unsteady regimes, respectively,
disregarding the concentration jump and were used at
any time instant. In our more general approach, these
formulas are the particular cases (x. = 0) of approxi-
mate expressions (24) applicable only for large timest.
Therefore, these expressions can lead to errorsfor small
time values.

The second of formulas (24) yields 1im 9% = w0, At
t-o0,

dt
the sametime, our formula (22), applicable at any time,
provides the finite limit lim 8% = &
t-o,dt  Xc

Thus, the principal difference of our formula (22)
from the one derived earlier for an unsteady rate of
growth and evaporation [see the second of formulas (24)]
is that formula (22) provides a finite limit at t - 0,,
while the previous expression tends to infinity.
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The Langevin eguation is one of the most general
approximations for the evolution of a dynamic system
in afluctuating environment. It arises when describing
amagnet in the presence of magnetic-field fluctuations,
hydrodynamic turbulence, stochastic quantization,
interface growth, and many other problems [1-4].

In the most general form, the Langevin equation is
represented as

20060 = ureex, ] +n (x,),
Eh(X)n(x')D= D(x, X).

where U[¢] is the nonlinear interaction potential and
n(t, x) is Gaussian random noise describing fluctuations
of the environment. The Minkowski-like (d + 1)-dimen-
sional notation x = (x, t), k = (k, w) is used hereafter.
Langevin equation (1) is usually solved by introducing
the small parameter A in the interaction potential U and
then solving the system by iterations in each order of
the perturbative expansion. The averaging over the
Gaussian random force n reduces to calculation of the
pair correlation functions [N The procedure is sim-
plified by assuming the Gaussian statistics of random
noise. In this case, only even-order correlation func-
tions of random noise are nonzero, while al terms con-
taining odd numbers of n vanish. The diagram tech-
niquefor theiterative solution of the Langevin equation
is often called the Wyld diagram technique [5]. Simi-
larly to quantum field theory, loop divergences must be
eliminated by renormalization group methods 2, 3].

The structure of divergences arising in the perturba-
tive solution of the Langevin equation depends on a
particular type of the correlation function of the random
force. Most approximations use the é-correlated ran-
dom force of the form

M(k)n(k)D = (2m)* " '8(ky +k)D(K).  (2)
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The spatial part of the correlation function D(k) is
assumed to be either a constant or a power function
(D) ~ [k[P).

A random force acting in alimited range of scalesis
often physically desirable. For instance, forces induc-
ing hydrodynamic turbulence, as well as a stochastic
action on a growing interface, belong to such type of
forces. In this paper, we propose a novel method of
describing limited-band stochastic actions. It is shown
that, for narrow-band noise, an appropriate choice of
the correlation functions of the random force yields a
theory free of loop divergences. The proposed method
preservesthe whole structure of the perturbation expan-
sion, and only the space of functions changes. In the
limiting case of random force (2), al ordinary results
are reproduced.

To study the dynamic system separately at each
scale, following [6], we turn from the usual space of
random functions f(x, -) O (Q, A, P), where f(x) O
L%(RY) for each given realization of the random process,
to the multiscale representation of these functions by
the continuous wavelet transform

_9
Wy(ab, ) = fla “$ESHr 9% O

The wavelet transform is performed here only in the
gpatial part, but not in the time part of the argument X,
because the structure of divergences and other impor-
tant properties of the processes under consideration are
determined by their spatial localization.

The existence and uniqueness of the inverse wavelet
transform

dadb
d +1 (4)

f(x) = C/flal’ et —2w, (a,b, ) B
is ensured by the admissibility condition imposed on
the basic wavelet

de|¢<k)l _ I@_%i)_l_da<oo, (5)

Ik
The area §; of a unit sphere in d dimensions arises due

to the simplifying assumption of the isotropic basis
wavelet Y(x) = Y(lx)).

1028-3358/03/4809-0478%24.00 © 2003 MAIK “Nauka/ Interperiodica’
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The use of thewavel et imagesinstead of the original
stochastic processes provides extra analytical opportu-
nities. For the case under consideration, the possibility
of construction of more than one set of random func-
tionsW(a, b, -), whose images have coinciding correla-
tion functions in the space of f(x, -), isimportant.

It iseasy to check that the correlation function of the
image of the processes

[W(ay, ky)W(ay, k,)O
= Cy(2m) 3" (k; + kp)ay  *3(ay —a,) Dy
coincides with that of white noise
CF (k,) T (ko)O = (210) Dd" (K, + ky),
[W(ay, ky)W(ay,, k,)O
= (21 Dd" (K, + Ky)(a,8,) P (aky) P(ayks).

Therefore, simulating the random force in the space of
wavelet coefficients, we can provide a narrow-band
pumping keeping all required propertiesin the ordinary
space.

Asan example, let us consider the well-known Kar-
dar—Parisi—Zhang model of interface growth [3]:

Z-VAZ = )—2\(DZ)2+r]. (6)

Substituting the wavelet transform in the spatial argu-
ment

d
Z(x) = c;lfexp(i(kx-kot))a2¢(ak)2(a, k)

d°*'k da
(2T[)d+1ad+l
into Eqg. (6), using the random force of the form
[ (8, k)i (8 ko) = Cy(2m)"
x 87" (ky +kp)al '8(a —a,)D(ay ky), B
M (a k)OI = 0,

and making straightforward calculations, we arrive at
the integral equation

X

)

(-iw+vk*)Z(a, k) = A(a k)
d d
A 2= ~ 3 A -
-3 D(@K)Cy (a12,) Blank) B(ay(k —ky)
xky(k - kl)z(all kl)z(aZv k—Kkj)
d’*'k, da, da,
(zn)d+1ag+1aczj+l'
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From this equation, we obtain the following expression
for the Green'sfunction in the one-loop approximation:

G(K) = Go(k) —A\’Gg(K)

d+1k
kK k) Gk ks
x Go(k—ky) + O(\Y), ©)

where Ggl (K) = —iw + \k? is the zeroth-order approxi-
mation for the Green’s function and

8 = G, [ L1(ak) *D(a. k) (10)

is the scale-averaged correlation function of the effec-
tive force. The Green's function obtained with random

force(8) isindependent of thescale Z (a, k) = G(K)f (a, K).

Similarly, for the pair correlation function, we
obtain the formula

Cla k) = 351G D@k b-ak)

dd+1kl ) )
XIW—JGO(M)' |Go(k—ky)|

X [ky(k =k )] *A(k) Ak —ky). (11)

For the scale-independent correlation function of
theforce, after theintegrationin Eq. (10), expressions(9)
and (11) reduce to the known result [3].

Let us consider the single-band stirring

D(a, k) = d(a—ay)D(k) (12)

and the basic wavelet in the form of the “Mexican hat”

2
(k) = (202 (=ik)expR KD
B(k) = (2m™(-ik) expE7 03
C, = (2m".

Substituting Egs. (12) and (13) into Eqg. (9) and inte-
grating with respect to the frequency, in the leading

K|

order inthe small parameter x = m we obtain the con-
1
tribution to the Green’s function (d > 2):
Si ak’d—2

G(K) = Gy(k) +A\’G(K)

(211)d v: 8

XJ'D(q)e_(a"q) q°**dg + O Y. (14)
0

For constant D(q) = D,, this contribution to the Green’s
functionisfinite and does not require any further renor-
malization. In the limit w, k - 0, the one-loop contri-
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bution to the surface tension v, which follows from
Eqg. (14), isequa to

AN d-2 S at~d a7
Veif = V 1——— Dol /L + 3
f f |: \)3k 16 d(2 ) 0 % 2]

+ 0()\4)] (15)

We note that Egs. (14) and (15) were derived from one-

loop integral (9) after substitution k; = q + g and per-

turbation expansion in the small parameter x = la( [7].

For particular correlation functions, the direct numeri-

cal estimate of integral (9) is more adequate. Similar

calculations can be performed for other interaction

potentials. For instance, for the quadratic interaction
2

)\E Z?, the counterparts of Egs. (9) and (11) differ from

that obtained above only by the absence of the scalar
products of the wave vectorsin each vertex.

Concerning the contribution of higher orders of the
perturbation expansion, we should say that, for the
basic wavelets (J(k) localized in the k space and lim-
ited-band noise D(a, k), the effective coupling constant

A, which is the actual parameter of the perturbation
expansion [8], can be made small by decreasing the
noise amplitude. For instance, for the basic wavelets

ALTAISKY

from the family

a _ A2, iy N0 Dkzg
(9 = (2" (=K expF5. n>0,

and the noise correlation function D(a, k) = D,0(a— &),
the effective coupling constant is equal to

52 = Do

-2,

v' &
ACKNOWLEDGMENTS

| am grateful to Profs. N. Antonov and V. Priezzhev
for stimulating discussions.

REFERENCES
1. P C. Martin, E. D. Sigia, and H. A. Rose, Phys. Rev. A
8, 423 (1973).
2. L. Ts. Adzhemyan, A. N. Vasil’ev, and Yu. M. Pis' mak,
Teor. Mat. Fiz. 57, 268 (1983).

M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett.
56, 889 (1986).

J. Zinn-Justin, Nucl. Phys. B 275, 135 (1986).

H. W. Wyld, Ann. Phys. 14, 143 (1961).

M. V. Altaisky, Eur. J. Phys. B 8, 613 (1999).

E. Medina, M. Kardar, G. Parisi, andY.-C. Zhang, Phys.
Rev. A 39 (6), 3053 (1989).

D. Forster, D. R. Nelson, and M. J. Stephen, Phys. Rev.
A 16, 732 (1977).

w

No ok

©

Trandated by M. Altaisky

DOKLADY PHYSICS Vol.48 No.9 2003



Doklady Physics, \ol. 48, No. 9, 2003, pp. 481-486. Translated from Doklady Akademii Nauk, Vol. 392, No. 3, 2003, pp. 322-327.

Original Russian Text Copyright © 2003 by Alexandrov.

PHYSICS

On the Theory of the Formation of the Two-Phase
Concentration-Super cooling Region

D. V. Alexandrov
Presented by Academician N.A. Vatolin March 19, 2003

Received March 31, 2003

Mathematical simulation of crystalization pro-
cesses is extensively used in practice when obtaining
castings and ingots with given properties [1, 2]. Prob-
lems with one or several |abile interfaces of the solidi-
fication of meltsin limited domains belong to the most
difficult problems for analytical solutions by current
methods of mathematical physics. Contrary to many
other problems that are often of purely mathematical
interest, such problems are inevitably interesting for
practical predictions based on theoretical simulation. In
addition, they are characterized by mathematical mod-
els of corresponding phenomena that are maximally
close to redlity. It is much very difficult to solve such
problems analytically. For thisreason, many researches
works often anayze these problems numerically.
Unfortunately, such a numerical analysis does not
present the compl ete pattern of the process and does not
cover al parametric dependences of the quantities in
guestion.

The Stefan problem of the frontal crystallization of
meltsis one of the classical problems of this type (see,
e.g., [3]). However, the front after the onset of the crys-
tallization process is not necessarily an ideal plane. In
particular, this idealized pattern is broken under the
condition of concentration supercooling ahead of the
plane solidification front [4]. This condition implies
that the concentration gradient is higher than its tem-
perature analogue at the solidification front, i.e.,

_ma_o->(ﬁ E:

0§ o0&’

and is responsible for the formation of a supercooled-
melt region ahead of the plane front, where solid-phase
crystals can grow and which promotes the appearance
of the conditions of the dominate growth of random
protrusions on the plane front. Here, g is the impurity
concentration, 6, isthe temperature of the melt, misthe
liquidus-line dope, € isthe spatial coordinate along the

2(1) ey
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motion of the crystallization front, T istime, and 2(1) is
the position of the solidification front. In other words, a
two-phase concentration-supercooling region isformed
ahead of the phase front [5]. The description of the
solidification process in the standard thermal diffusion
model with the phase front is obviously inadequate to
the physical conditions of crystallization. Therefore,
for times exceeding the time tof the formation of the
two-phase region, it is appropriate to use one of asolid-
ification models that takes into account the two-phase
region (see, e.g., [6-9]). The directiona crystallization
including the formation of the two-phase region in a
domain of length L was previously simulated numeri-
cally for the following two cooling regimesonits§ =0
wall (heat flux was specified on the second wall & = L):
first, active regime smooth in time and, second, passive
regime according to the Newton’slaw of heat exchange
with the environment [10-13]. The further discussionis
devoted to analytical calculation of both the time of the
formation of the two-phase region and accompanying
parameters describing the crystallization process with
the active cooling regime on the & = 0 wall.

We consider the crystallization process in a domain
of length L. In the melt, where 2(1) < &< L, and in the
solid phase, where 0 < & < 3(1), we have the heat con-
duction equations

00 0°0
50 = a3 I(D<E<L, @)
a—es—a 2 0<&<3(1) 3)
ot Syz?’

and impurity diffusion equation

00 _ 0°c

T e (1) <&<L, 4)
where 6, is the temperature of the solid phase; a and a
are the thermal diffusivities of the liquid and solid
phases, respectively; and D is the diffusion coefficient

1028-3358/03/4809-0481$24.00 © 2003 MAIK “Nauka/ Interperiodica’
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of the impurity (the diffusion of the impurity in the
solid phase is traditionally disregarded).

At the phase-transition interface, crystallization
front, the temperatures of both phases are equal to the
phase transition temperature, and the balance condi-
tions for heat and impurity mass are satisfied; i.e.,

eI = 95! E = Z(T)v (5)
8, = 6,—mo, & = (1), (6)

00, . 06, dz(1) _
)\Saz )\Iaa I-V dT ’ E - Z(T)1 (7)
(1-k)o dz(rr) DaE 0, £E=3(1). @

Here, 8isthe phase transition temperature for the pure

melt; A, and A, are the thermal conductivities of the
solid and liquid phases, respectively; L, is the latent
heat of solidification; k is the impurity distribution
coefficient equal to the ratio of the impurity concentra-
tion o, in the solid phase to the impurity concentration
in the melt at the crystallization front, i.e.,

Os

k = El E = Z(T) (9)

Since diffusion of the impurity inthe solid phaseisdis-
regarded, formula (9) provides the impurity concentra-
tion absorbed by the plane solidification front at every
time and thereby enables one to determine the concen-
tration profile in the solid phase.

We consider that the right boundary & = L isimpen-
etrable for the impurity, i.e.,

Jdo

% =0, &=L (10)
and specify the heat flux as

08, _ _

aE gll E - L1 (11)

where g, is the fixed temperature gradient.

We consider that the left boundary & = 0 is smoothly
cooledintime, i.e.,

A== A = \g, +aT,

I £ =0,

(12)
where a isthe cooling coefficient.

Astheinitial conditions, we specify the position of
the crystallization front and the temperature and con-

ALEXANDROV

centration profiles of the form
2(0) = eL; (13)
8 = 8, —mo,, +g,(£ —Z(0)),

T=0, %(0)<&c<L;

(14)

9i(€ —2(0)),
1T=0 0<&<X(0);

0, = 6, —mo,, + )ﬂ
As (15)

c=0, T1T=0, Z(0)<¢<L, (16)

where g, isthe initial impurity concentration.

Thus, the crystallization front at the initial time is
assumed to exist at acertain small distance (e < 1 isthe
small parameter) from the left boundary of the domain
under consideration. We specify a linear temperature
profile with individual slopes on both sides from the
crystallization front so that the difference between heat
fluxes at the front is equal to zero at theinitia timet=0

and, therefore, the front velocity 3 is also equal to

zero according to boundary condition (7).

The time 1 of the formation of the two-phase
region is determined from the condition for concentra-
tion supercooling:

60 6&

GE ~ 08’

The model specified by Egs. (1)—(17) was numeri-
caly analyzed in[10-12], where, for the case of concen-
tration supercooling, when inequality (1) is valid at the
crystallization front, condition (17) corresponding to the
approximation of the narrow quasi-equilibrium two-
phase region [10, 14] was used instead of condition (8).

Figure 1 shows the calculation results for the iron—
nickel alloy whose thermal physical characteristics are
givenin Table1for1=360s.

Calculations show that condition (17) is satisfied at
timet = 1= 221.9 s. Moreover, this correspondsto the

maximum in the concentration profilein the solid phase
[for times T > 1 calculation was carried out with the

replacement of condition (8) with condition (17), which
correspondsto the model of anarrow quasi-equilibrium
two-phase region]. Calculations also show that, even
when the two-phase region between the solid phase and
melt is quite short, its presence is responsible for cer-
tain differences in the impurity distribution in the solid
phase compared to the standard formulation of the
problem of solidification with the plane crystallization
front, where the formation of the two-phase region is
disregarded (in this case, the impurity concentration in
the solid phase increases monotonically with the spatial

& = 3(1). (17)
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coordinate, as is shown in Fig. 2). A dlightly pro-
nounced maximum appearing under solidification
when the narrow quasi-equilibrium two-phase region
ahead of the crystallization front is taken into account
isexplained asfollows. Solidification proceeds through
the frontal mechanism before the formation of the two-
phase region. The solidification front penetrating
through the melt removes the impurity (k < 1); i.e., the
impurity concentration in theliquid phase near the front
is higher than that deep in the melt. After the formation
of the two-phase region ahead of the front (time of
switching of the boundary condition), solid-phase ele-
mentsin the two-phase region grow under the condition
that the impurity concentration in the surrounding melt
is lower than the concentration in the melt near the
interface between the solid phase and two-phase
region. Therefore, when such elements of the solid
phase are absorbed by the solidified melt, the impurity
concentration in the solid phase decreases compared to
the concentration before the formation of the two-phase
region. Such a behavior of the impurity concentration
in the solid phase was previously observed in [15] for
the Al-Cu and Sn—Pb aloys.

Calculations aso show that the temperature profiles
in both phases during crystallization remain almost lin-
ear functions of the spatial coordinate, asisclearly seen
in Fig. 1. This occurs because the relaxation times of
the temperature fields in both phases are shorter than
the relaxation time for the diffusion field by several
orders of magnitude.

One more conclusion obtained in [10-12] isthat the

crystallization rate 3—?

time when the formation of the two-phase region is
taken into account for all calculation times of the pro-
cesses (both for times T < 15 when crystallization pro-

ceeds with the phase front, and for times T > 13 when

crystallization proceeds in the presence of the two-
phase concentration-supercooling region). In this case,
the proportionality coefficient © remains unchanged
both before and after the formation of the two-phase
region.

We emphasize one more circumstance. As follows
from [10, 11], at the time of the formation of the two-
phase region, the impurity concentration reaches its
maximum not only at the crystallization front but at any
melt point spaced by a certain fixed distance h either
from the solid phase-melt interface before the forma-
tion of the two-phase region or from two-phase region—
melt after that time but with allowance for the thickness
0 of the two-phase region, i.e., at the distance h + d.
This occurs because the crystallization front removes
the impurity before the formation of the two-phase
region and thereby increasestheimpurity concentration
inthe melt at afixed distance h from the front. After the
formation of the two-phase region, the distance h must
be measured from the two-phase region—melt interface

= MT increases linearly with
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Fig. 1. (Dashed lines) Concentration and (solid lines) tem-
perature profiles, (horizontal straight line) phase transition
temperature, and the position Z(t) of the crystallization
front for the solidification of the iron—nickel melt for T =
360 s. The position of the crystallization front for T =15 as
well as the corresponding maximum x = &/L of the impurity
concentration in the solid phase, isindicated.

0, °C o
=0.8
1530 : 0.6
Solid phase : Melt i
A 10.4
1520 __ AL S
d 10.2
D
1510 Il il (T) Il Il 0
0 0.2 0.4 0.6 0.8

Fig. 2. Same as Fig. 1, but for calculations disregarding the
formation of the two-phase region at time 1 = 1= 221.9s.

(shift by the thickness of the two-phase region), which
corresponds to a lower concentration than that before
the formation time because this quantity is shifted by o
and h is replaced by the distance h + & measured from
the melt—+two-phase region interface. The two-phase
region itself is smulated by the discontinuity surface,
wherecondition (8) isreplaced by condition (17) [10, 11].
Considering the impurity concentration in the melt and
taking into account the above discussion, we conclude
that, at any melt point spaced either by afixed distance
h from the melt-solid phase interface for T < t;or by

distance h + & from the melt—two-phaseregion interface
for T > 13 the impurity concentration is lower than the

impurity concentration at T =T

Sincetemperature profilesarelinear at any time (see
Figs. 1, 2), Egs. (2) and (3) can be approximated by
their time-independent analogues

%8, 0’0
— =0, 3(1)<&<L; >=0, 0<&<Z(1),
5 (1) 2 (1)

2 2
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a, cal/(s? cm?)
Fig. 3. Time tof the formation of the two-phase region as
afunction of the cooling parameter a as calculated by for-
mula(27) for the temperature gradient g, = (1) 5, (2) 10, and

(3) 15°C/cm. The points are the results of the numerical
solution according to [12].

whose solutions have the form

0i(T,8) = A(T) + Ay(T)8,
05(1, &) = By(T) + By(1)¢.
Substituting solutions (18) into conditions (11), (12),

and (5), we determine the coefficients A, and B, and the
linear combination of the coefficients A, and B;:

(18)

A a
A, =g, By(T) = )Tlg| "‘}TT, (19)

Al(r)-Bl(r)ﬂgl o+ Sz Qo

Then, substituting distributions (18) into boundary
condition (7) and taking into account relations (19),

Thermal physical properties of the Fe-Ni alloy and parame-
tersused in calculations

k 0.68

0. 1529.5°C

m 2.65°C/wt %
Ly 3398.5 cal/cm?®
D 5x10° cm?/s
A 0.1 cal/(scm °C)
Ag 0.177 cal/(scm °C)
a 0.14 cm?/s
ag 0.25 cm?/s
O 0.3wt %

o] 10°C/cm

a 0.02 cal/(s? cn?)
€ 0.01

L lcm

ALEXANDROV

we obtain

dz _ a
it LvT MT. 2D
This condition, which isthe linear law for the crystalli-
zation rate, agrees well with the numerical calculations
madein [10, 11]. The second relation between the coef-
ficients A, and B, can be obtained by constructing the
solution of the concentration problem specified by
Egs. (4), (8), (10), and (16) and then substituting it into
boundary condition (6). The resulting relation, together
with expression (20), enables one to determine both A,
and B,.

We now pass to the determination of the time T;of

the formation of the two-phase region. Going over to
the reference frame n = § — 2(1) moving with velocity
UT [see Eq. (21)], disregarding the effect of thefirst wall
on the impurity distribution (tending the coordinate n
on this wall to infinity), and introducing the new vari-
able q(1, n) = o(t, n) — 0., we arrive at the following
formulation of the problem:

a9 _ .99, 9%
ot - Man +Dan 2 0=, 22
0q _ _
(l—k)uTq+(1—k)uwm+Dﬁ =0, n=0,(023
g-g = 01 r] 4»001
d (24)
qg=0, 1t=0. (25)

Further, taking into account that the impurity con-
centration at any point (any coordinate ) of the liquid
phase is maximal at time 1 we equate the left-hand

side of Eq. (22) to zero and integrate the result with
respect to n form 0 to c. Using conditions (24) and the
limit g — 0 for n — oo, which represents the condi-
tion of the constant impurity concentration at the right
boundary formally shifted to infinity, we obtain

_ Dg _
9= MUT, n="0

T = Ts. (26)

Here, we also take into account that gg _9 forn=0

and T = tjaccording to Egs. (17)<19). Combini ng
Egs. (23) and (26), we determine both the time of the
formation of the two-phase region and impurity con-
centration at the crystallization front on the melt side at
thistime:

kD
9 0’:0-—00 r]:O,

Y = T umo. K’ 15T (27)
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- . . . O,
It is interesting that the resulting concentration m

coincides with the impurity concentration at the crys-
tallization front under the frontal solidification of the
melt with the constant rate.

Taking into account that L = Lg [see Eqg. (21)], we
\%

show (see Fig. 3) the formation time of the two-phase
region that is calculated by formula (27) as a function
of the cooling parameter a. As is easily seen, expres-
sion (27) agrees well with the numerical solution [12]
of the problem (to avoid overcrowdingloading of the
figure, formula (27) compares with numerical calcula-
tions [12] only for line /; other lines exhibit virtually
the same complete agreement between theory under
development and numerical solution of the problem).

We now construct the solution of the concentration
problem specified by Egs. (22)—(25) for quite small
times after the onset of the crystallization process.
Since the impurity concentration profile at initial times
isan amost linear function over the entire liquid phase,

the derivative g—(g presenting the slope of this function

to the coordinate axis is small. Moreover, the concen-
tration deviates dlightly from the o, value for these
times. The above circumstances allow the linearization
of the concentration problem with the perturbative
inclusion of terms omitted in the zeroth approximation.

Substituting the concentration q in the form of the
expansion
g=0o+tq+ Q2 * (28)
where each subsequent term is assumed much less than
the preceding term. Taking into account the above dis-
cussion and expansion terms up to the first order, we
represent the problem specified by Egs. (22)—25) inthe
form of a problem split into the following two subprob-
lemsfor g, and qg;:

2
%’ = Da—qzo, 0<n <oo;
on (29)
(1-K)po, +Da?]° =0, n=0
2
%_Cll: Ta_qzo aql, 0<n <o;
on ar] (30)
0
(1—K)utq, + Da%l =0, n=0.
In this case, Egs. (24) and (25) take the form
g, _ . _ _
E—O,naoo, g =0 1=0 (3D
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Fig. 4. Impurity distribution in the solid and liquid phases at
time T = 10 s for the test aloy for a = 0.2 cal/(s* cm?)
according to formula (28). Zero-approximation lines g, and
numerical solution of the problem almost completely lie on
the displayed graphs. The vertical dotted straight lines are
the positions of the crystallization front. The impurity con-
centrationsin theliquid and solid phase at the front at atime
of 10 sare equa to 0.319 and 0.217, respectively, and the
position of the crystalization front is equal to 0.013 cm.
According to Eq. (27), the two-phase region nucleatesat T =
=22.7s.

validforall g, i =0, 1, .... Solving the problems spec-
ified by Egs. (29)—«(31) and substituting the solutions
into Eq. (28), one can determine the impurity concen-
tration at the initial stages of melt solidification in an
ingot mould.

Each of subproblems (29)—31) can be solved by the
Laplace transform. Omitting simple but cumbersome
mani pul ations, we represent write the result

_ —K)u 2
Qo(T.N) = == I [4_DJ7 .

ULKWS 4y 9o
e

.[ eXp[ 4DJ(T ﬁ) a

_0u(1-Kn* (1-1)’
192D%./m .c[ex'o[ 4DJ Jt dt

The above successive approximation procedure can
be continued and always allows the refinement of the
solution of the problem. Figure 4 shows the calcula
tions of the impurity concentration in the liquid and
solid phases by Eg. (28) for the iron—nickel aloy
[impurity concentration in the solid phase at each time
is determined by Eq. (9)]. We emphasize that the found
solution makes it possible to completely determine
and the temperature field according to boundary con-
dition (6) and Egs. (18)—(20).
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Thus, if the solidification process proceeds with
large cooling coefficients (which correspond to small
times 1[; according to Fig. 3), the resulting solution
completely determines the solution of the frontal prob-
lem up to the time of the formation of the two-phase
region, which generally determinesthe application lim-
its of the phase front model.

ACKNOWLEDGMENTS

Thiswork was supported by the Russian Foundation
for Basic Research (project nos. 01-02-96430Ural and
02-03-96437Urd), the Ministry of Education of the
Russian Federation (project no. E02-4.0-86), and the
US Civilian Research and Devel opment Foundation for
the Independent States of the Former Soviet Union
(grant no. REC-005).

REFERENCES

1. M. Hemings, Solidification Processing (McGraw-Hill,
New York, 1974, Mir, Moscow, 1977).

2. B. Chamers, Principles of Solidification (Wiley, New
York, 1964; Metallurgiya, Moscow, 1968).

3. N. A. Avdonin, Mathematical Description of Crystalli-
zation Processes (Zinatne, Riga, 1980).

4. G. P. lvantsov, Dokl. Akad. Nauk SSSR 81 (2), 179
(1951).

5.

6.

10.

11

12.

13.

14.

15.

ALEXANDROV

V. T. Borisov, Theory of the Two-Phase Region of a
Metallic Ingot (Metallurgiya, Moscow, 1987).

R. N. Hills, D. E. Loper, and P. H. Roberts, Q. J. Mech.
Appl. Math. 36, Part 4, 505 (1983).

Yu. A. Buevich, L. Yu. Iskakova, and V. V. Mansurov,
Prikl. Mekh. Tekh. Fiz., No. 4, 46 (1990).

D. V. Aleksandrov, Dokl. Akad. Nauk 375, 172 (2000)
[Dokl. Phys. 45, 569 (2000)].

D. V. Alexandrov, Acta Mater. 49, 759 (2001).

Yu. A. Buyevich, D. V. Alexandrov, and V. V. Mansurov,
Macrokinetics of Crystallization (Begell House, New
York, 2001).

D.V.Alexandrov, A. G. Churbanov, and P. N. Vabishche-
vich, Int. J. Fluid Mech. 26 (2), 248 (1999).

D. V. Aleksandrov and M. E. Komarovskii, in Proceed-
ings of 19th Russian Conference on Structure and Prop-
erties of Metallic and Sag Méelts (Yuzhno-Ural. Gos.
Univ., Chelyabinsk, 2001), Vol. 4, p. 98.

P. N. Vabishchevich, V. V. Mansurov, and A. G. Chur-
banov, Khim. Prom., No. 10, 39 (1994).

Yu. A. Buevich, L. Yu. Iskakova, and V. V. Mansurov,
Teplofiz. Vys. Temp. 29 (2), 286 (1991).

A.L.Maplesand D. R. Poirier, Metall. Trans. B 15, 163
(1984).

Trandated by R. Tyapaev

DOKLADY PHYSICS Vol.48 No.9 2003



Doklady Physics, \ol. 48, No. 9, 2003, pp. 487-489. Translated from Doklady Akademii Nauk, Vol. 392, No. 3, 2003, pp. 328-331.

Original Russian Text Copyright © 2003 by Babich, I’ kaev, Loiko, Paviovskaya.

PHYSICS

Structure of Electron and lon Beams
Generated by High-Voltage Nanosecond Discharge
In Deuterium and Air
L. P. Babich, Academician R. |. II'kaev, T. V. Loiko, and N. G. Pavlovskaya

Received April 15, 2003

In[1, 2], acomplicated spatial structure of electron
beams generated by high-voltage discharges in high
vacuum was discovered. The beam patterns beyond the
anode, which had been produced by the high-energy
part of the electron spectrum, consisted of ordered
bands. Thisfact testifies to the existence of self-organi-
zation in beam formation processes. The regular beam
structure was with the formation of an ordered distri-
bution of centers of explosive electron emission
(ectons [3]) on the cathode due to the Rayleigh-Taylor
instability of explosive plasmaon the cathode surface [1]
or suppression of emission in a certain vicinity of the
existing ecton [2]. In the present study, we observed the
same ordered structure of € ectron beams generated by
high-voltage nanosecond discharges in rather dense
gases at high overvoltages. We have performed direct
registration of accelerated-ion beams generated by
high-voltage nanosecond discharges. This has aso
demonstrated the existence of the same characteristic
ordered structure.

In the case of multiple overvoltages, the high-volt-
age nanosecond discharges in dense gases develop in
the mode of generation of intense flows of runaway
electrons [4]. The high-voltage nanosecond discharges
in deuterium at pressures P = 0.01-20 Torr generate
nanosecond neutron pulses in a tritium-containing tar-
get located on the cathode [5, 6]. A maximum yield of
10° neutrons per pulse was observed at P = 0.3 Torr [6].

The production of neutrons indicates that D* and D,

ions are accelerated up to energies providing a notice-
able efficiency of nuclear fusion reactions. For exam-
ple, the maximum of the cross section for the
H3(,d?, ;n"),He* reaction is attained at the deuteron
energy 109 keV. Asfar asthe dependence of the neutron
yield on the deuterium pressure has a pronounced
maximum, the generation of accelerated ion beamsis
a gas-discharge effect [5]. Nuclear fusion is a process

Russian Federal Nuclear Center All-Russia Research
Institute of Experimental Physics, pr. Mira 37, Sarov,
Nizhegorodskaya oblast, 607188 Russia

of the second kind of smallnesswith respect to both for-
mation of gas plasma and acceleration of ions. There-
fore, ion acceleration up to lower energies, where
nuclear fusion isinefficient, is realized in the region of
much higher pressures [5].

In the present study, we investigated the structure of
charged-particle beams generated in adiodein which a
hollow cylinder 7 mm in diameter and made of 50-pum
tantalum foil played the role of a high-voltage elec-
trode. The cylinder axiswas orthogonal to the grounded
plane electrode. The interelectrode spacing d was var-
ied within the limits of 2 to 5 mm. High-voltage pulses
having an amplitude of about 800 kV, front duration of
1 ns, and total duration of 30 ns were applied to the
diode[7]. At P = 0.05-0.5 Torr, voltage pulses with an
amplitude of 400-800 kV arise in the diode. These
pulses correspond to multiple overvoltages, since the
static breakdown voltage does not exceed 20 kV in the
Pd region under investigation. Currents with the ampli-
tude of 2—4 kA and duration of 15-20 ns flow in the
diode. The beams were recorded by the TsVID-0.1-1
dosimetric films with the mass thickness of 10 mg cm?,
which were placed outside of the diode on the plane
electrode.

The electron-beam structure was studied in a diode
with a plane anode made of aluminum foil of the thick-
ness A = 15 um. Figure 1 exhibits single-pulse beam
patterns for discharges in deuterium. A stack of four
films was placed beyond the anode. After passing the
beam through the stack, the beam intensity decreased
so that in each next film a portion consisting of elec-
trons of higher energies was recorded. Filtration by the
films allowed us to reveal afine space-energy structure
of the beam, which appeared to be extremely inhomo-
geneous. We observed bands directed perpendicularly
to the edge of the cylindrical cathode. The bands con-
verged to the cathode center, where the beam density
was so high that the film locally melted. In the case of
the weak filtration, the diameter of the beam pattern
exceedsthe cathode diameter by approximately afactor
of two. The beam structure was observed most clearly
inthefourth film after filtration of low-energy electrons
by preceding films. These electrons are subjected to

1028-3358/03/4809-0487$24.00 © 2003 MAIK “Nauka/ Interperiodica’
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Fig. 1. Patterns of electron beams generated by dischargesin deuterium at P = 0.3 Torr and d = 2.5 mm. The anodeis a hollow thin-

wall cylinder.

strong scattering and to the action of the space charge
field. Owing to these factors, the initial structure in the
low-energy region is eroded. The fourth film is avail-
able only for electrons of energies exceeding 150 keV.
The size beam patterns for electrons of such energies
negligibly exceeds the cathode diameter.

The structure of ion beams was investigated in the
diode whose high-voltage el ectrode (cylinder) was used
as an anode. A nickel mesh 4 um thick and with a cell
size of 18 x 18 um served as a cathode. The patterns
formed by ion beams generated by dischargesin deute-
rium also demonstrate bands directed perpendicularly
to the anode edge. (Fig. 2). The ion-beam structure is
similar to that of electron beams observed strong filtra-
tion. Thisis natural, since ions appear along the ioniza-
tion tracks of electronsin gas.

Theion energy measured with awedge consisting of
micron-size Mylar filmsis close to 300 keV. In accor-
dance with the data of [8] on the neutron yield from a
tritium target as a function of the energy of accelerated
deuterons, an electric current of accelerated deuterium
ions of the order of 10 A corresponds to the neutron
yield of 10° neutrons and of 2.5-ns pulse duration. This
intensity of the electric-current is much lower than the
total discharge current, which attains 2.5 kA. Direct
measurements of deuterium ion-beam electric-current
intensity were performed with a collector located at
1.7 cm from the mesh cathode. The 3-um Mylar film
decreasing the ion-beam intensity by a factor of five
isolated the evacuated collector chamber from the
diode gas gap. We recorded an ion-beam electric-cur-
rent pulse having an amplitude of ~1.5 A and duration
of 3 ns. With allowance for the beam absorption in the
cathode and in the Mylar film, we can expect that the
ion-beam current does not exceed 10 A. The delay time
of theion arrival at the collector compared to the time
corresponding to the voltage pulse maximum attains
6-7 ns. This is caused by both the delay of the dis-
charge devel opment with respect to the moment of the
voltage application and passage by ions of the distance
between the anode and the collector. The measured
delay time agrees with the estimate of the deuterium-
ion energy of 300 keV corresponding to a velocity of

~4 x 108 cm s and the 4-nstime of flight between the
cathode and collector.

The structure of electron and ion beams and time
characteristics of ion beamsin the case of dischargesin
air turned out similar to those in deuterium. The pat-
terns of electron beams produced by dischargesin air at
P = 0.04-1 Torr were obtained for a single pulse. The
only exclusion correspondstod=5mmand P =1 Torr.
It took 10 pulsesin order to obtain thispattern, sincethe
voltage on the diode and, hence, the electron energy
decrease with therise of Pd. The diameter D of patterns
formed by the beam considerably exceeds the cathode
diameter of 7 mm. D increases with d and decreases
with P. For example, at P=0.04 Torrandd=5mm, D =
25 mm, whereas for d = 9 mm, D =45 mm. The clear
radiant structure is observed up to P = 0.3 Torr. At P >
1 Torr, this structure is eroded due to scattering of elec-
trons on gas molecules.

The characteristic feature of high-voltage el ectrodes
used in the present study andin[1, 2] isthe presence of
asharp emitting edge. In order to reveal the correlation
of the band structure formed by charged-particle beams
with this feature, we performed experiments with the
diode, in which asmooth massive steel hemisphere was
used as a high-voltage electrode (cathode). The diame-
ter of the hemisphere was 28 mm, and its edges were
rounded off (the rounding radius was 3 mm). The pat-

Fig. 2. Patterns of ion beams generated as a result of dis-
charges in deuterium at P = 0.3 Torr and (left) d = 2.5 mm
(20 pulses) and (right) d =5 mm (35 pulses). The anode is
ahollow thin-wall cylinder.

DOKLADY PHYSICS Vol.48 No.9 2003
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Fig. 3. Patterns of electron beamsin the case of a cathode with the developed emitting surface (hemisphere 28 mm in diameter) for
P = (from |eft to right) 0.04, 0.04, 0.3, and 1 Torr and A = (from left to right) 15, 30, 30, and 15 um. The interelectrode spacing is

d=5mm.

terns formed by electron beams for two values of alu-
minum-anode thickness A are shown in Fig. 3. In the
case of A =15 and 30 um, the film can be penetrated by
electrons with an energy exceeding 50 and 80 keV,
respectively. Several ectons spaced from each other
arise on the spherical surface of the cathode, which are
separated from each other by a certain distance. At P =
0.04 Torr, the diameter of the pattern formed by the
electron beam emitted by one ecton is 56 mm, the
beam angular divergence being close to 60°. With
increasing P, this diameter decreases, which is caused
by the gas focusing and attains 1-2 mm at P = 1 Torr.
The pattern observed for the electron beam emitted
from the rounded cathode edge exhibits a pronounced
band structure. The electron energy in the beam does
not exceed 80 keV, sincethis beam is absent beyond the
anode with thethickness of 30 um. It ispossiblethat the
pattern under discussion correspondsto the distribution
of aset of ectons at the cathode edge. A similar distri-
bution of ectonswas observed for dischargesin vacuum
in the presence of an external magnetic field [3].

We can estimate the characteristic size r of plasma
for the instant when the magnetic pressure of the explo-
sive-emission electric current is equa to the gas

TPm,AC’
Here, M, = 10! g isthe mass of metal evaporated from
a single microscopic asperity [3] for the pulse duration
~10 ns [3]; tyy ~ 1-10 ns is the explosion delay time;
k is Boltzmann’s constant; T = 10* K isthe plasmatem-
perature; W, isthe magnetic permittivity of vacuum; m,
is the nucleon mass; A = 181 is the tantalum atomic
mass; and C = 4 x 10'7 A4 s m™ [3]. The quantity r
depends weakly on the empirical quantities M, tyy, T
and is close to the characteristic size of about 1 um of a
single microscopic asperity. This implies the impossi-
bility of the confluence of the explosive plasma into a
unified layer at the cathode edge.

High-voltage nanosecond gas discharges at high
overvoltages generate beams of accelerated electrons
and ions. These beams have the same complicated
ordered space—energy distribution as discovered previ-

dynamic pressure of metal vapor: r° =

DOKLADY PHYSICS Vol.48 No.9 2003

ously for electron beams generated in high vacuum. It
is possible that, in accordance with [1, 2], the spatial
structure of the electron beams originates from ordered
distribution of ectons along the emitting cathode edge.
However, according to the above estimate, a mecha-
nismthat implies[1] the confluence of plumes of explo-
sive plasma into a unified layer, which then breaks,
seems to be nonphysical. The discovery of the ion-
beam structure casts doubts on mechanisms of elec-
tron-beam formation, which are based on aregular dis-
tribution of ectons[1, 2]. Since the gasionized by elec-
trons is an ion source, the ion-beam structure is a con-
sequence of the structure of the electron beams.
However, the formation of an ordered distribution of
ectons on the mesh cathode possessing high geometric
transparency seems to be improbable. Most likely, the
regular structure of charged-particle beamsisaresult of
the filamentation of electron beams themselves. In
addition, this filamentation is accompanied by the
transformation of filamentsinto plane layers because of
electrostatic expansion.
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The thermodynamic properties of rarefied, low-den-
sity, and (in part) moderately dense gases are frequently
described by the equations of stateintheviria form[1-3]

Z = pP?uT = 1+B(Mp+C(M)p%+.... (1)

Here, Z isthe compressibility factor; T is the tempera
ture; P isthe pressure; p = \1/ isthe density, where V is

the specific volume; Risthe universal gasconstant; L is
the molar mass of the substance; and B(T), C(T), €tc.,
are the virial coefficients depending only on tempera-
ture. In principle, the virial coefficients can be calcu-
lated by the methods of statistical physics when the
potentials of intermolecular interaction are known.
However, since the actual interaction potentials are
unknown (moreover, mathematical difficulties appear
when realizing this approach), the exact eguation of
state with areasonable number of virial coefficients can
hardly be obtained. Purely empirical approaches with-
out physical and theoretical concepts (seg, e.g., [3-5])
also provide limited possibilities for obtaining the
exact equations of state with asmall number of param-
eters, because the described thermodynamic surfaceis
intricate.

We prefer the approach where the functional form
and structure of the equation of state can be obtained
from physical concepts, while the particular form of
analytical expressions and the numerical values of the
parameters entering into these equations can be estab-
lished from experimental data.

In this study, using the relationships and depen-
dencesfound earlier in [6-8], we derive the equation of
state that describes the thermal and caloric properties of
rarefied, moderately dense, and dense gases of many
“normal” substances within the experimental accuracy.

Institute of Thermal Physics, Sberian Division,

Russian Academy of Sciences, pr. Akademika Lavrent’eva 1,
Novosibirsk, 630090 Russia

e-mail: kaplun@itp.nsc.ru

In [7], using a spherically symmetric step potential
of intermolecular interaction, we derived the equation
for the second viria coefficient B(T) of nonpolar sub-
stances. Within the experimental accuracy, this equa-
tion reproduces the experimental data for numerous
substances over the entire temperature interval under
study [6, 7]. Therefore, one can hope that the use of
such apotential to obtain the equation of state for gases
in awide interval of the state parameters can be suc-
cessful.

This potential has the form (Fig. 1)

%1+oo for

’

O<r<a,

, for

u(r) = G-, for
O

0c
D—r—s, for
O

0,<r<o
o<r<d (2)

d<r,

where r isthe intermolecular distance. An interparticle
interaction potential similar in form was previously

Uik, K
400 g
0
B
300 k
200 - - :
<—L>
100 :
|
0 Il
d . c
€ ! =
—-100+ R = Tc ..... d
1 1 1 1
0 2 4 6 8

Fig. 1. Schematic representation of a combined model
potentia of the interparticle interaction.
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proposed by Kreglewski [9]. Potential (2) can be repre-
sented as the sum of simple potentials:
U(r) = U (r) + Uy(r) + Us(r) + Uy(n), (3)

where

[(ttoo, for 0<r<ag,

U,(r) =
(1) Ep for r>a0,,

%D, for
Uy(r) = O#B, for
, for

r<a,
0,<r<o

r>a,
“4)
(D, for
Us(r) = E—s, for
, for

r<o
o<r<d
r>d,
, for r<d
[
r,6

Uy(r) =

, for r>d.

I:Jql:ng

Of course, the equation of state could be found by
the direct calculation of the partition function of the
thermodynamic system, where the intermol ecul ar inter-
action is described by potential (2), and subsequent
passage to the thermodynamic quantities by using the
known equations of statistical physics[1]. However, the
realization of such an approach is rather complicated,
requires a number of additional assumptions about the
spatial distribution of particles, can hardly provide
accurate results, and, for these reasons, is beyond the
scope of thiswork.

In [7], using potential (3) and the known relation-
ship

1Dr2dr, 5)

h U
B(T) = —21N, J’%xp% k(Tr)E
0

where N, is the Avogadro constant and k is Boltz-
mann’s constant, we obtained the equation

B(T) = b— cz%xpm—ﬁ]—lg

cl%\xpDSD —= (6)

for the second viria coefficients. Thus, asfollowsfrom
Egs. (5) and (6), the compressibility factor for low
DOKLADY PHYSICS Vol. 48
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densities (p — 0) as calculated by Egs. (3) and (5) is
equal to

4

Zg = 1+B(T)p = 1+ zBi(T)p
= 1+ Y [z(U)-1]. )

Similarly to Eq. (7), the compressibility factor of agas
in awide density range can be written as

4
Z =1+ [(U)~1] +2Z(V). (8)

i=1

Theterm AZ(U) can appear in the equation of state (8)
after the determination of the partition function, which,
after the calculation of the irreducible higher order
(above second) integrals[1, 2] and subsequent calcula-
tions of the virial coefficients, can contain “crossed
terms’ from theinteraction potentials U, (r) specified by
Egs. (4).

When calculating the compressibility factor by
Eqg. (8), one can assign a certain conventional thermo-
dynamic subsystem to each Z;(U;). Our calculation of
the compressibility factor in a wide density range was
based on the following concepts.

(i) A conventional thermodynamic subsystem where
intermolecular interaction is represented by the poten-
tial U,(r) specified by thefirst of Egs. (4) isasystem of
hard spheres where the compressibility factor isafunc-
tion only of density p: Z, = Z,(p). The explicit expres-
sion for Z,(p) was given, e.g., in [5]. However, taking
into account that molecules in the first approximation
can represent hard (“impermeable’) but nonspherical
particles, one can generally write Z, = f(p). As was
shown in [8], the presence of such aterm in the equa-
tion of state agrees with the preferred form of the equa-
tion of state resulting from the rigorous equations of
thermodynamics.

(if) When cal culating the compressibility factor Z, =
Z,(U,), we took into account that the repulsive branch
in the actual potential is very steep so that the width of
an approximating step in Eq. (4) can be considered very
small. In addition, one can assume that, in the range of
distances 0, < r < ¢ for moderate densities, no more
than one or two particles can be simultaneously present
near a chosen particle. This assumption makes it possi-
ble to calculate only the second and third virial coeffi-
cients when evauating the compressibility factor
Z, = Z,(U,). The explicit expressions for these viria
coefficients with the interaction potential U,(r) speci-
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fied by the second of Egs. (4) weregivenin[1, 2]. Thus,
Z, = Z,(U,) can be represented in the form

-a, %@(p D_ﬁ] - : ©)

(iii) To calculate the compressibility factor resulting
from the intermolecular attraction forces Z; = Z;(U5)
and Z, = Z,(U,), which are specified by the square-well
potential and the dispersion London forcesin the inter-
action potential (2), for densities at which it isimpossi-
ble to neglect multiple collisions, we use the concept
proposed in [3, 10]. According to this concept, the com-
pressibility factor, according to generalization of the
virial equation of state (1), is representable in terms of
“elementary functions’:

Z(T,p) = Ao(p) +

+ Ag(P)P(T) + ...

AlB) 4 a(pyw(m)

(10)

Such a representation of the compressibility factor
means that the temperature functions are independent
of the spatial (density) functions and vice versa. When
describing the third and fourth conventional thermody-
namic subsystems, one can try to identify the tempera
turefunctions W(T), ®(T), etc., in Eq. (10) with the sec-
ond, third, etc., viria coefficients, respectively. Then,
retaining only the term with the second viria coeffi-
cient in the equation of state, one can represent the
compressibility factor in the form

Z,(Us) = 1-as Pt -Hpo(e). (1)

On the basis of the same argumentation, the compress-
ibility factor Z, iswritten as

Z,(U,) = 1-Z(1-bw(p))p

T P
=1-Fp+FPY(p). (12)

The representation of Z; = Z,(U;) and Z, = Z,(U,) in the
form of Egs. (11) and (12) providesthe passageto the equa
tion of state for ararefied gas with the second viria coeffi-

cientif lim(1im (¢ (p)) =1 andlim(lim (w(p)) =1
p- p-

Thus, in view of Egs. (8), (9), (11), and (12), the
equation of state of areal gas where the intermolecular
interaction is described by potential (2) hasthe form [it

KAPLUN, MESHALKIN

istakenthat AZ=0in Eq. (8)]

Z=1+ f(p)—alaexpg—k%%—lgp

—az%xpm—ﬁ]—lm p* - a;Hp = - Hoo(p)

4 95
TP+ TPY(p). (13)

The detailed analysis of the equation of state (13)
using the experimental P-V-T data for numerous sub-
stances (in our caculations, we used the data from the
series of monographs on the thermodynamic properties
of materias published by GSSSD, Publishing House of
Standards, Moscow) provide the following conclusions.

(i) In the temperature-dependent terms in Eqg. (13),
the optimum description of the experimental data is
reached for

B =k, B - =T, (14)

(i) The function f(p) has the form

f(p) = aspe™; (15)

(i) The functions ¢(p) and Y(p) are equal to each
other, i.e.,, ¢(p) = Y(p); the function ¢(p) in the dimen-
sionless form can be represented as a function of the

reduced density w = pR

C

and the compressibility factor

HP 1
RTCpC (PC’ TC’ and pC Vc are
the parameters of a material at the critical point) and
has one fitting parameter c,:

at the critical point Z, =

P(w) = 1-2w+ 351‘—2%002

+ 4%c - % — 780 — e’

g (16)

Then, taking into account the above discussion, the
equation of state (13) can be written in terms of the

reduced variables w =P andt = I as
pC TC
Z(w, 1) = 1_01%)@%_%
2
~ ¢, Fop8- 1 o - e Fpxp - Hooo(o)

C, C
—?“w+ f’w¢(w)+c6wec7w, (17)

where ¢(w) is determined by Eq. (16).
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Detailed analysis shows that Eq. (17) describes the
thermal properties of many normal materialsin the den-
sity range p = 0—1.5p¢ (w = 0-1.5) within the accuracy
of experimental (reference) data except the critica
domain. In these calculations, we considered pressures
from 1to 500 bar and temperatures from the triple point
to 500K (for carbon dioxide and water, the upper limits
were 1000 bar and 1000 K, respectively), because
experimental data are either absent or not quitereliable
beyond these intervals. It is interesting that Eq. (17)
describes the thermal properties of water vapor (as is
known, water is an anomalous substance) within the
accuracy presented in the skeleton tables [11].

As an example, the critical parameters of some
materials and the coefficients of Eq. (17) obtained by
the processing of tabular (averaged) experimental data
on thethermal properties of these materialsarelistedin
Table 1. Thistable also presentsthe standard deviations
0, of the calculated values of the compressibility factor
Z from the tabular values. In addition, Table 1 contains
the standard deviations calculated by the eight-parame-

ter Benedict-Webb-Rubin equation (65" ) [1, 3]. This
equation is considered as one of the best equations of
state with a small number of parameters and is often
used to describe the thermal properties of many materi-
als[12]. Asisseenin Table 1, Eq. (17) reproduces the
thermal properties of materials better than the Bene-

dict—-Webb—Rubin equation of state.

It is evident that the equation of state (17) for low
densities goes over to the equation of state with the sec-
ond viria coefficient [EQ. (6), seeaso[6, 7]]. Asisseen
in Fig. 2, Eq. (17) with the coefficients evaluated from
the tabular data in the wide range of the state parame-
ters reproduces the experimental data concerning the
second virial coefficient of gases much better than the
Benedi ct—Webb—Rubin equation.
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Fig. 2. Deviations 0B = B4 — B, Of the calculated values
of the second virial coefficient from the experimental values
for argon [13]. The coefficients of equations are found from
the thermal data for a dense gas [14] by (squares) Eq. (17)
and (crosses) the Benedict—Webb—Rubin equation.

Using the known thermodynamic equations (see,
e.g., [15]), one can obtain the equations describing the
caloric properties of materials from the thermal equa-
tion of state if the properties in the ideal-gas state are
known. Analysis shows that enthalpy and entropy cal-
culated with the coefficients of EqQ. (17) that are listed
in Table 1 agree with the tabular data within the refer-
ence accuracies except the critical range (see Table 2).
We emphasize again that enthalpy and entropy were
calculated without data concerning the caloric proper-
ties of dense gases.

We think that the above approach has significant
potentia for further development and will possibly be

Table1. Critical constants and parameters of Eq. (17) for some materials

0,%100
Material | T¢, K kg/%g Zc Co Cy C C3 Cy Cs Cs c; by GEWRX 100
Eq. (17)
Argon 150.86 |531.0 |0.2938|0.0473|1.0481|0 0.5022 | 2.0731| 0.7089 | 0.4095 | 0.4718| 0.126 0.216
Nitrogen |126.20 |313.1 [0.2899|0.0352|1.1590| 0 0.5230|2.1896| 0.7498 | 0.4409 | 0.4648| 0.180 0.283
Oxygen |154.581|436.2 |0.2878|0.0355|1.0287|0 0.5542|2.1159| 0.7908 | 0.4449|0.4620| 0.128 0.183
Methane |190.77 |163.5 [0.2862|0.0438|1.0309|0 0.5712|2.1103| 0.7973 | 0.4381 | 0.4570| 0.197 0.229
Carbon  |304.20 |467.99 |0.2745|0.0472|1.6868| 0.4410 | 0.9068 | 2.4576 | 1.2203 | 0.4377|0.5467 | 0.156 0.208
dioxide
Tetrafluo- | 227.5 [629.7 |0.2767|0.0471|1.0932| 0.3319 | 0.7737| 2.2728 | 1.0844 | 0.5774|0.4688| 0.137 0.133
romethane
Water 647.27 |317.763|0.2330| 0.0367 | 1.539%4| 0 1.7296 | 2.6066 | 2.4723| 0.5591 |0.3291| 0.314 0.329
DOKLADY PHYSICS Vol.48 No.9 2003
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Table 2. Calculated and tabular values of enthalpy and entropy for carbon dioxide

H, kJkg S, kJ/(kg K)
T, K
10bar | 30bar | 70bar | 100 bar | 200 bar | 400 bar | 10 bar | 30bar | 70 bar | 100 bar | 200 bar | 400 bar
280 783.0 | 754.7 - - - - 7.344 | 4.061 - - - -
7825 | 754.2 - - - - 4337 | 4.055 - - - -
305 805.9 | 7849 | 706.4 - - - 4422 | 4165 | 3.791 - - -
805.5 | 7839 | 709.6 - - - 4417 | 1.158 | 3.797 - - -
350 8475 | 833.0 | 799.1 | 767.3 | 670.3 - 4548 | 4310 | 4.077 | 3.937 | 3.589 -
847.2 | 8322 | 797.7 | 766.1 | 669.5 - 4547 | 4308 | 4.074 | 3.935 | 3.588 -
400 895.1 | 884.4 | 861.8 | 8438 | 7843 | 729.6 | 4674 | 4.446 | 4244 | 4142 | 3.894 | 3.664
894.8 | 8839 | 860.9 | 8427 | 7829 | 7283 | 4676 | 4.448 | 4244 | 4142 | 3.894 | 3.664
600 1100.4 | 1096.2 | 1087.9 | 1081.9 | 1063.4 | 1036.1 | 5.091 | 4.877 | 4705 | 4629 | 4.470 | 4.294
1100.3 | 1096.0 | 1087.8 | 1081.7 | 1063.0 | 1035.4 | 5.086 | 4.872 | 4.699 | 4.623 | 4.464 | 4.288
1000 1567.8 | 1567.0 | 1565.4 | 1564.2 | 1560.8 | 1556.3 | 5.682 | 5.473 | 5.310 | 5240 | 5.102 | 4.957
1568.0 | 1567.2 | 1565.7 | 1564.6 | 1561.5 | 1557.8 | 5.684 | 5.474 | 5311 | 5.103 | 5.103 | 4.960

Note: Reference values[15] and calculation results are given above and under the horizontal bars, respectively.
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ableto considerably extend the described range of state 8.
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Ultrafast transformations and solid-state reactions
are attracting constant current interest. In particular,
shock-induced solid-state synthesis is responsible for
the formation of reaction products with sizesd = 10—
100 umint=107-10"s[1-4]. Thiscorrespondsto the
extremely overestimated effective diffusion coefficient

2
Dt ~ g—T =10"'-10~> m%s and contradicts the slow dif-
fusion mechanism, which is the single explanation of
mass transfer in the solid state. Various conceptsin the
framework of the diffusion mechanism were proposed
to explain a high mobility of atomsin ultrafast synthe-
sis. Disregarding the structure mechanism, Thadhani
et al. [4] assumed for the first time that diffusionless
cooperative processes must dominate in synthesis dur-
ing the action of ashock wave. Thisassumptionimplies
that mutual mass transfer responsible for the mixing of
reagent atoms proceeds with velocity V, ~ 1-1000 m/s.

Ultrafast (explosive) reactions also accompany
solid-state synthesis in thin films [5-7]. The explosive
behavior of the reaction in Ni/Si and Rh/Si substrate-
free films was first thought to be determined by the
explosive crystallization of Si amorphous layers. These
reactions are initiated by local heating (due to mechan-
ical impact, spark, or laser pulse) at room temperature.
They propagate on the film surface as self-propagating
self-similar waves. However, explosive reactions also
proceed in fully polycrystalline Ni/Al films, which
indicates that explosive reactions result from synthesis
of Al and Ni layers. The front velocity in Ni/Al film
samplesis estimated as V, ~ 4 m/s [7]. Ultrafast solid-
state reactions include reactions initiated by nanosec-
ond (T ~ 10 ng) laser annealing of thin films on sub-
strates [8]. In this case, areaction proceeds only in the
irradiated area and does not propagate on the film sur-
face. Thetypical thickness of filmsused in experiments

Kirenskir Institute of Physics, Sberian Division,
Russian Academy of Sciences, Akademgorodok,
Krasnoyarsk, 660036 Russia

e-mail: miagkov@iph.krasn.ru

isd = 10-100 nm. The effective diffusion coefficient is
2

equal to Dy; ~ % = 10%-10"° m?/s for these reactions

and is much higher than the diffusion coefficient in the
solid phase. The velocity of reagents must be V, ~ 1—
10 m/s under the assumption of their diffusionless
directed motion.

Since the mechanisms of solid-state synthesis are
not clearly understood, it is impossible to predict the
phase composition of reaction products and reagent
pairs with which ultrafast synthesis can be realized.

The following two propertieswere found in [10-12].

(i) The first phase formed at the film interface is a
phase with the minimum temperature T, of the struc-
tural phase transition in the phase diagram.

(ii) The initiation temperature T, of a solid-phase
reaction in thin films coincides with the minimum tem-
perature of the solid-state structural phase transition of
the first phase (T, = Ty).

In particular, asolid-state reaction in an S/Fe bilayer
film starts at the temperature of the metal—dielectric
phase transition in iron monosulphide (FeS), i.e.,
To(S/Fe) = T (FeS) [9]. For the Au—Cu system, which
is classical in ordering, the initiation temperature in
bilayer Cu/Au thin films was shown to be equal to the
temperature of the order—disorder transition in a CuAu
dloy, i.e., Tj(Au/Cu) = Tc(AuCu) [10].

Contrary to other solid-state transformations, mar-
tensitic transformations proceed through the diffusion-
less cooperative displacement of the high-symmetry
austenite phase to the low-symmetry martensite phase.
For this reason, it was surprising that martensitic trans-
formations can determine solid-state reactions in thin
films. In particular, NiTi and AuCd martensitic phases
are formed by solid-state synthesis in Ni/Ti [11] and
Cd/Au [12] bilayer films, respectively. The initiation
temperature T, in these systems coincides with the mar-
tensitic transformation temperature T, in NiTi and
AuCd alloys, respectively, i.e., To(Ni/Ti) = T((NiTi) =
400 K and T,(Cd/Au) = Tx(AuCd) = 340 K. However,
up to a heating rate of 20 K/s, solid-state synthesis pro-
ceeds in Ni/Ti bilayer films and Cd/Au samplesin the

1028-3358/03/4809-0495%$24.00 © 2003 MAIK “Nauka/Interperiodica’
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reaction-diffusion mode and in the mode of self-propa-
gating high-temperature synthesis (SHS), respectively.
The above argumentation and analysis, made in [12],
imply that solid-state reactions determined by marten-
sitic transformations have common chemical and struc-
tural mechanisms with the diffusionless cooperative
character of martensitic transformations. It is well
known that martensitic transformations can be initiated
at low temperatures, induced by external stresses, and
proceed with high rates. These features suggest that
solid-state reactions determined by martensitic trans-
formations can change kinetics under the action of
mechanical stresses, have the explosive mode, and pro-
ceed at cryogenic temperatures. As was shown in [12],
solid-state reactions in Cd/Au layers proceed in the
SHS mode and are determined by martensitic transfor-
mationsin an AuCd aloy. Therefore, these samples are
candidates for the initiation of ultrafast reactions.

In this paper, analyzing nanosecond (T ~ 10 ns) laser
synthesis in Cd/Au(111) films, we show that the mar-
tensitic mechanism of atom transfer must dominate in
ultrafast solid-state reactionsin thin films.

The experiments were carried out with Cu/Au
bilayer film samples obtained by sequential vacuum
deposition on afreshly spalled MgO(001) surface. The
typical thicknesses of Au and Cd layers were in the
ranges 50—-100 and 200-300 nm, respectively. To create
good adhesion and form oriented layers on the
MgO(001) surface, the first Au layer was deposited at
500-520 K in 10 Pa vacuum. To prevent a reaction,
the upper Cd layer was deposited at room temperature.
Figure 1a shows the diffraction pattern of the original
Cd(200 nm)/Au(80 nm)/MgO(001) bilayer film sam-
ples. It exhibits reflections from the predominant
Au(111) orientation and polycrystalline Cd layer. A
sample can also contain negligible amounts of the
Au(311) and Au(200) orientations. The original sample
was heated at a rate of no less than 10 K/s until the
appearance of an SHS wave, which was visualy
observed. Then, the sample was cooled at a rate of
about 5 K/s. Figure 1b shows the diffraction pattern of
Cd(200 nm)/Au(80 nm)/MgO(001) after the passage of
the SHS wave. Reflections from the Cd layer disappear,
and strong reflections corresponding to interplane spac-

ings d; = 0.229 nm and dj = 0.1145 nm appear. Study
of SHS in polycrystalline Cd/Au film samples [14]
shows that these reflections can be attributed to the
V> (111) and y5(222) martensitic peaks with the inter-
plane spacings d, = 0.2314 nm and d, = 0.11562 nm
(JCPDS card 26-0256), respectively. The difference
between interplane spacings and tabulated values pre-
sents the dependence of the lattice constants of the v,
martensite on the nonequilibrium synthesis conditions.

Samples of this set were al so subjected to laser treat-
ment in 10 Pavacuum. Gaussian pulses with duration
T =10nsand an energy of 0.15 Jfrom an LTI-207 laser
with A = 1.06 um, energy density E, =5 Jcm?, and an
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irradiation spot diameter of 1.7 mm were used. To ana-
lyze X-ray diffraction, the 8 x 8-mm film surface was
scanned by alaser beam. The partial ablation and sepa-
ration of thefilm from the substrate were observed after
irradiation. Figure 2a shows the diffraction reflections
after asingle-pulse (n = 1) laser action. The diffraction
pattern after n = 4 does not change. However, the inten-
sities of reflections increase due to the growth of the
layer of reaction products (Fig. 2b). Diffraction reflec-
tions from the reaction products after laser synthesis
include only two peaksfrom (111) and (222) belonging

to the y, martensite with interplane spacings di =

0.233 nm and d3 = 0.1165 nm, respectively. The iden-

tity of diffraction patterns after the passage of the SHS
wave (Fig. 1b) and after laser treatment (Fig. 2b)
impliesthe same structural scenariosof atom transfer in
both synthesis modes. The same conclusion was
obtained when studying the formation of the TiSi,
phase in Ti/Si(100) samples subjected to thermal
annealing and nanosecond laser pulses[8]. The diffrac-
tion patterns from reacted samples (Figs. 1b, 2b)
exhibit epitaxial relations y; (111) ||Au(111) of the v,
martensite with the Au(111) film surface. The nonequi-
librium synthesis process and epitaxial growth imply
directional atom transfer during the reaction. Study of
solid-state synthesis in polycrystalline Cd/Au samples
shows that synthesis proceeds in the solid state [12].
Thisimpliesthat synthesis on the oriented Au(111) sur-
face isaso solid-state synthesis. Either the shock wave
or high temperature, which areinduced by alaser pulse,
caninitiate synthesisin aCd/Au(111) sample. The pen-
etration depth &, of the thermal front can be estimated
as Or ~ 2(x1)*3, where X(Cd) = 0.5 x 10* m?/s is the
thermal conductivity of cadmium. This estimate yields
O = 140 nm, which is comparabl e with the thickness of
the Cd layer in the origina film. Under the assumption
that the shock wave velocity isno lessthan the speed of
sound, the depth of the shock wave action is estimated
as 0 > 10 um. The thickness of the reacted layer under
the action of the temperature factor must be indepen-
dent of the number of laser pulses. Therefore, the reac-
tion initiation by the shock wave is more probable.

Itisknown (see, e.g., [13]) that the loss of the stabil-
ity of the austenite 3 phase with a decrease in the sam-
ple temperature Tg to the start temperature Mg of the
martensitic transformation is attributed to a decrease in

the shear modulus G = %(C” ~C,,) - 0, which deter-

mines the stability of the structure under the
{110} 0 10Ushear. The original interface of the Cd/Au

sampleis atwo-dimensional reaction product (y, mar-

tensite). With an increase in temperature above the tem-
perature Ag of the inverse martensitic transformation or

under the action of a shock wave, the y, martensite
transits to the 3 phase. Strong stresses cause reagent

DOKLADY PHYSICS Vol.48 No.9 2003
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Fig. 1. Diffraction patterns of the Cd(200 nm)/Au(80 nm)/MgO(001) bilayer film system (a) before the reaction and (b) after the

passage of the SHS wave through the original sample.
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Fig. 2. Sameasin Fig. 1 but after (a) single-pulse nanosecond (10 ns) laser action and (b) quadruple laser irradiation.

atoms to approach each other, reduce the activation
energy, and promote theinitiation of the reaction. Mass
transfer in solid-state synthesis must proceed so that
atoms cooperatively displace perpendicularly to the
film plane in the nearest { 110} O 100direction of the 3

DOKLADY PHYSICS Vol. 48

No. 9 2003

phase. Since the shear modulus G' is extremely low, the
synthesis activation energy must be low, and the reac-
tion must proceed in the ultrafast mode.

Since the classical works by Bridgman, it has been
known that, under the simultaneous action of static
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pressure and shear deformation, chemical reactions can
proceed in the explosive mode. In this case, the activa
tion energy E, is close to zero, the effective diffusion
coefficient exceeds the diffusion coefficient in the solid
state by a factor of 10°-10%?, and temperature in the
reaction zone does not considerably increase. The ter-
mination of the action of shear deformations gives rise
to the sharp termination of many reactions [14]. This
suggests that shear deformations are important in
micromechanisms of reactions and their initiation. The
determining role of shear deformationsin the transition
of reactions to the explosive mode was attributed by
Teller [15] to low shear stresses compared to the com-
pressive stresses, which is manifested as the smallness
of shear modulus G compared to the elastic modulus E.
Allowing G - 0 at the martensitic point, our results
strengthen the assumption made in [15] and justify the
martensitic mechanism of ultrafast reactions.

In conclusion, we note that the proposed martensitic
mechanism of synthesis suggests a method of predic-
tion of ultrafast solid-state reactions. Shock-induced
synthesis must first be realized with powder systems
that have martensitic phases with a low martensitic
point in the phase diagram. Therefore, shock synthesis
in Ni—Al powder mixtures, which was observed in [3],
must be determined by the martensitic transformation
inthe NiAl alloy (Mg~ 500 K). In particular, synthesis
under shock compression can be expected in powder
systems Cd-Au (Mg ~ 340 K), Cd-Ag (Mg ~ 300 K),
Ni-Ti (Mg~ 360 K), etc.
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Investigation of the magnetoelastic interaction in
perovskite structures is of both fundamental and
applied interest. In these investigations, the effect of
exchange enhancement of magnetoelastic coupling is
particularly important. The essence of this effect con-
sistsin the fact that the relativistic magnetoelastic cou-
pling in ferromagnets with a certain magnetocrystalline
symmetry can be enhanced for some branches of
phonon and spin excitations by the exchange interac-
tion parameter and can considerably exceed the spin—
phonon coupling in ferromagnets [1]. In addition, the
study of the exchange enhancement due to the magne-
toelastic interaction is of crucial importance for signal
transformations.

In this study, we investigate a LaMnO; perovskite
crystal (Pnma symmetry group). In the absence of an
external magnetic field, the ground state of an antifer-
romagnetic subsystem of the crystal under consideration
is determined by four magnetic sublattices (Fig. 1).

The magnetic moments of the crystal do not liein
the basal plane, because LaMnO; has a distorted per-
ovskite structure [2—7]. The rotation of the magnetic
moments because of the lattice distortion is shown in
Fig. 2.

Let us consider the interaction between spin and
elastic waves in a LaMnO; orthorhombic crystal with
long-range antiferromagnetic order and find the condi-
tions under which the magnetoelastic coupling can be
enhanced due to the exchange interaction of magnetic
moments in sublattices. We take a phenomenological
Hamiltonian representing a sum of the energies of the
magnetic and elastic parts of the system, as well asthe
energy of their interaction [8, 9]:

H=H,+Hs+H.. (1)

Here, the uniform exchange interaction, anisotropy,
nonuniform exchange interaction, and magnetostric-
tion are taken into account.
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The secondary quantization method and Bogoli-
ubov canonical transformations [10] reduce Hamilto-
nian (1) to the diagonal form

_ M _+ U, .+
H M Z 8kyckycky + Z sksbksbks
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where g, and g are the energies of the spin and
sound waves, respectively, and W, is the magnetoel as-
tic interaction parameter (y=1, 2, 3,and4ands=1,1t,,
and t,). It isseen in Fig. 3 (dashed lines) that the spin
and sound waves have four and three branches, respec-
tively.

Investigations of the magnetoelastic interaction
show that the parameters W11, Wiin, Yot Pon, Pl
Y., and Wy, for a wave propagating in the z-axis
direction are equa to zero. The coupling W,.;, between
thethird and fourth spin branches, aswell asthe coupling
W, between thefirst and second transverse branches, is
enhanced by the exchange interaction [11, 12].

For k [ Y, the coupling parameters Wy, Wior1, Wions
Wiazs Wial, W, and W, are equal to zero. In this case,
the coupling between the first spin branch and the sec-
ond transverse sound branch W,,,, is enhanced by the
exchange interaction.

For k || X,, the coupling parameters Wy, Yo,
Yo, Yiau, Wil Wi, Wiaw, and Wy, areequal to zero.

X X

Fig. 1. Direction of the magnetic moments.
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Fig. 3. Spectrum of the coupled magnetoel astic waves.

In this case, the coupling between the first spin branch
and the first transverse sound branch W,;, is enhanced
by the exchange interaction.

To find the natural frequencies (coupled magne-
toelastic waves), we use the equations of motion for the
secondary quantization operators. Retaining the terms
up to the second power in the coupling coefficients, we
arrive at the dispersion relation
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The spectrum of coupled magnetoelastic waves
propagating along the x axis is shown in Fig. 3, where

k = 106 mr' and gy, = 1057

Our calculations indicate that the variations in the
spectral gap that are attributed to the distortion of the
perovskite structure are equal to
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i.e., the distortion of the perovskite structure consider-
ably affects the gap in the spin-wave spectrum.

Thus, we have developed the theory of the magne-
toelastic interaction in perovskite structures with
orthorhombic symmetry. The dispersion relation for
determining the spectrum of coupled magnetoelastic
waves has been derived. The magnetoel astic interaction
has been analyzed as a function of the wave-propaga
tion direction. The effect of structure distortion on the
parameters of the magnetoel astic interaction was con-
sidered. It was shown that the dynamic magnetoel astic
interaction between low-lying magnhon modes and
some phonon modes can be enhanced under certain
conditions by the exchange-interaction parameter,
which isimportant for signal transformations.
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High-contrast wave filters are urgently required for
solving many problems of optics, radio engineering,
acoustics, and X-ray spectral analysis. These filters
must strongly suppressincident radiation beyond a cer-
tain given frequency band and, vice versa, possess a
maximum radiation transmission within this band.

Nowadays, methods of spectral selection, which are
based on the phenomenon of wave diffraction in media
with spatially periodic variation of their properties, are
widely used. Problems rel ated to wave propagation and
diffraction on periodic structures have been thoroughly
investigated in the literature for acoustic waves (see
monograph [1]) and visible light [2, 3]. In the latter
publications, various types of optical filters based on
such periodic structures were also considered. The sim-
plest acoustic medium is realized just in acousto-opti-
cal filters. The acoustic wave causes modulation of the
medium permittivity €(x, t). The modulation period is
determined by the wave vector g of the sound wave, and
the Fourier expansion of £(x) contains only one compo-
nent [2]:

e(x, t) = g5+ Ag(x)cos(Qt —gx), €))

where Q is the sound-wave frequency. The correction
factor Ag(x) is determined in terms of photo-elasticity
coefficients and is proportional to the sound-wave
amplitude. At the same time, if Q = 0 and q # 0, then
formula (1) describes ausual static stratified structure.

Diffraction filters make it possible to realize a high
reflection factor on the order of unity in an extremely
narrow spectral region (Fig. 1), which forms a base for
their wide application. However, alongside the evident
advantages of these spectrometers, there exist anumber
of undesirable properties whose elimination could
qualitatively improve the characteristics of diffraction
filters. First of al, thereisthe presence of far-propagat-
ing oscillations on the reflection curve tails, in which a
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noticeable portion of incident radiation energy is con-
tained. Asis easy to understand, this hampers analysis
of weak spectral lines.

In the present paper, we demonstrate that it turns out
to be possible to substantially improve the situation at
the expense of smooth variation of the quantity Ae(x) as
afunction of x (apodization). In this case, we manage
not only to avoid the oscillations but to suppress to a
great extent the tails of the diffraction reflection curves,
ahigh reflection coefficient in the central part of the fil-
ter being preserved. In other words, the requirements
on the function Ag(x) are formulated, which allows fil-
tersfor acoustic and visible-light waves, which have an
almost M-shaped characteristic, to be realized.

Substituting expression (1) for &(x, t) into Max-
well’s equations and taking into account the synchro-
nism conditions, we arrive at the well-known system of
shortened equations for amplitudes of the incident (E,)
and diffracted backward (E,) waves (see, e.g., [2]):

dE, . r

d—xl = ik, Ag(x) €M E,,

dE _ (2)
d—xz = —ik,Ag(x)€E,.

Here, E;(X) and E,(x) are the amplitudes of incident

DAk
1.0r ﬁ
0.5F
0 1
5 0 -5

Ak

Fig. 1. Reflection coefficient for an ideal periodic structure
of afinitesize (N =0.5 cm™"; L = 10 cm).
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and diffracted waves, respectively; k, is the radiation
wave humber for which the condition of the exact syn-
chronismisvalid; and Ak determinesthe deviation from
the Bragg synchronism condition. If Ag(X) is indepen-
dent of x, then system of equations (2) hasthefollowing
solution:

o(ak) = |E0)?
E4(0) (3)
sinh%%n/l—z%

(1—EZ)COSI1%%‘A/1—E%+iEsinhg%A/l—E%

[ = ke, €= A?k. )

Here, E;(0) and E,(0) are, respectively, the amplitudes
of incident and diffracted waves on the input surface of
acrystal, and L is the interaction length. In Fig. 1, the
function ®(AK) is presented for afilter with a constant
Ag(x) and with parameters =0.5cm™! and L = 10 cm
in accordance with formula (3).

In [4-6], indications were obtained that the exist-
ence of the dependence of polarizability Ag(x) on the x
coordinate resulted in a decrease in the magnitude of
subsidiary maxima. However, al these cases were
restricted by a dependence Ag(x) such that analytical
solutions to Egs. (2) could be found. In these cases,
noticeable suppression of undesirable oscillations was
possible. Nevertheless, rather extended tails remained
on the reflection curve, so it is still unclear whether
methods of their efficient elimination do exist.

As is easy to immediately obtain from Egs. (2) for
the tails of the reflection curves, in the case that

Akl > T, T = komax(Ag(x)), (5)
there exists the following simple expression for the
amplitude R(AK) = E4(0) of the reflected wave:

E.(0)

L

R(BK) = ko[ Ae(x)exp(iakddx. (6)
0

Integral (6) can betaken by parts. Asaresult of thispro-
cedure, we have

ko(Ae(L)exp(iAKL) —Ag(0))
iAk

R(Ak) =
dAe(x) @
|A dx

0

Continuing the procedure of integrating by parts, we

exp(iAkx)dx.

AFANAS’EV, PUSTOVOIT

easily obtain

R(AK) = F(L)exp(iAkL) —F(0), (8)
where

_ Ae™(x) A d"Ag(x)

Ko ,
F(X) = z( g AeT00=T R O

Formulas (7)—9) make it possible to formulate the
necessary conditionsfor suppressing influencefunction
wings, as well as for eliminating the oscillations. As
follows from formula (7), first of al, it is necessary to
form the profile of the function Ag(x) in such a manner
that

Ag(0) = 0, Ag(L) = 0. (10)

If even one of conditions (10) is invalid, then, at high
values of |Ak|, the reflection amplitude drops according
to the law

r
R(AK) O T (11)

In this case, the reflection coefficient decreases as

r2
(D(Ak) 0 (Ak)z (12)

Asimmediately follows from formulas (8) and (9),
inthe casethat conditions (10) are valid, aconsiderably
sharper decrease of the reflection coefficient occurs. In
this case, instead of formula (12), we arrive at

i 1
(AK)?(AKL)?

If, alongside the validity of conditions (12), we pro-
vide that the first derivatives of Ag(X) vanish, then
1

d(AK) O (13)

1
k)%

derivatives leads to the dependence ®(Ak) [ (

Thus, choosing the profile of the function Ag(x), we can
suppress the reflection coefficient wings as strongly as
is wished.

Formula (6) describes the reflection amplitude only
a high values of |Ak|. Therefore, for calculating the
main peak, i.e., for |Ak| < T, we should return to theini-
tial set of equations (2). In the case of Ak =0, thereisa
simple solution for an arbitrary dependence of Ag(X):

®(0) = %‘L—'eil-%

o (14)
where
1L
r= FEJ’Ae(x)dx. (15)
DOKLADY PHYSICS Vol. 48 No.9 2003
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As follows from relationship (15), choosing the
interaction length L and the averaged (with respect to
L) value of Ag(x), we can provide relatively large val-

ues of the product " L. Thereby, in accordance with
formula (14), we can have the reflection coefficient
d(0) as close to unity asiswished. Large values of the

product T L by no means contradict conditions (10).
Hence, we can obtain the function ®(Ak), whose values
are close to unity at the center of the curve, and the
wings are strongly suppressed.

For an arbitrary function Ag(x), set of equations (2)
has no analytical solution; therefore, it is necessary to
use numerical methods for calculating ®(Ak). In the
case under consideration, it is convenient to employ the
so-called recurrence method, widely used in the phys-
ics of X-ray diffraction (see, eg., [7] and references
therein). According to this method, the crystal is
divided into N layers (Fig. 2), and, in accordance with
Egs. (2), the amplitude R of the reflection from first k
layers is associated with the amplitude R~ of the
reflection from preceding k — 1 layers:

Rk-1

(k) _
R = r +————.
1-rrR*Y

(16)

Here,

—i AKX,

r, = —iAg(x)e AX, X, =

k
N- (17)

k=01,...,N,
is the amplitude of reflection by the separate kth layer,
and Ax = ﬁ . Thisisthe amplitude R™ that corresponds

to the desired quantity determining the reflection coef-
ficient

o(ak) = [RM?, (18)
In Fig. 3, the reflection curve calculated according to

recurrence formulas (16), (17) is presented. This curve
is calculated for the case

Ag(x) = 2Assin2¥.

(19)

Function (19) satisfies conditions (10) and also con-
ditions

Ag'(0) = Ag'(L). (20)

Therefore, for this dependence, we can expect a strong
suppression of the reflection curve wings. Asisseenin
Fig. 3, these expectations are fully confirmed by direct
calculations. The response function ®(Ak) has an
almost I -shaped form.
2003
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Fig. 2. Scheme clarifying the derivation of recurrence rela-
tionships.

P(Ak)
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0.5

0 1 J
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Fig. 3. Reflection curvesfor periodically apodizied structures

with the function Ae(x) = 2Ae sinz% ;F=0.7;L=10cm.

D(Ak)
1.0

0.5}F

-5 0 5
Ak

)
Fig. 4. Reflection curvesfor the functions Ag(x) = Eﬁ—;‘)% ;

[=09;L=10cm.

Figure 4 exhibitsthe results of cal culations of ®(AK)
for another case when

: 2
Ag(x) = %m, y = 21%— 1)

(ula)



504

For such a dependence of Ag(x), conditions (10) and
(18) are aso valid, and suppression of the reflection
curvewingsis also observed. However, the comparison
of curvesin Figs. 3 and 4 shows that the wing suppres-
sion is not so strong in the latter case.

We can be simply convinced that the functions
described by formulas (19) and (21) differ negligibly
within the interval from O to L. However, we reveal the
significant difference between them by turning to the
series generated by these functions (9). Ascan be easily
shown for function (19), the series F(X) converges as
|AK|L > 21T At the same time, the series F(X) generated
by function (21) diverges at an arbitrary Ak, and we
should understand formula (9) only as an asymptotic
series, i.e.,

1 nilnp
+0 .
—ink)" LU

Thus, for strong suppression of thewings, alongside
the validity of conditions (10) and (18), it is desirable
to choose the function Ag(x) in such a manner that
series (9) convergesin acertain region |Ak| > Ak,.

In the present paper, we gave the basic attention to
optical filters, for which the permittivity has the sim-
plest form (1). However, there are argumentsin favor of
the possibility of applying the results obtained to other
types of radiation, which include radio waves in the

F(x) = kOZAe(”)(x)( (22)

AFANAS’EV, PUSTOVOIT

microwave region, acoustic waves, and X-rays, as well
as visible light propagating in optical waveguides. The
last case is of special interest from the standpoint of
application in practice.
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The coefficients of the strain-rate sensitivity of plas-
tic characteristics (including microhardness) carry use-
ful information concerning the nature of elementary
carriers of plastic deformation and their mobility in a
solid. In macrotests of various ductile materials (see,
e.g., [1]), awide range of strain rates € (between 108
and 10° s') was investigated. However, fracture of
many brittle materials (in particular, single crystals
with covalent bonds, ceramics, glasses, etc.) begins
before noticeable plastic strain. The plastic properties of
such materials are usualy studied by the methods of
local deformation or microindentation. In recent years,
the method of nanoindentation has a so been extensively
used in thisfield [2-4]. Famous firms (MTS, Microma:
terials, CSEM, Hysitron, etc.) produce commercia nan-
otesters only for small € vaues (103-10" s!). At the
same time, very high rates of local deformation in sub-
micron areas (>10"' s7!) are characteristic for many
processes, including dry friction between rough sur-
faces, abrasive and erosive wear, atomic-force micros-
copy, nanolithography by the methods of imprinting
and scribing, and fine grinding [5]. Thus, the area of the
mechanical properties of materialsthat is characterized
by both short loading time intervals and small deforma-
tion zones is little studied. Under these conditions, the
ordinary mechanisms (in particular, dislocation mecha-
nisms) of plastic flow can be strongly impeded or sup-
pressed.

Some authors (see, e.g., [6, 7]) attempted to find the
strain-rate dependences of dynamic hardness, fracture
toughness, and the coefficient of recovery of someionic
crystals (NaCl, LiF, and MgO), glasses, and ceramicsin

therange € ~ 10*~10° s~! by the method of shock load-

* Tambov State University, ul. Internatsional’ naya 33,
Tambov, 392622 Russia
e-mail: golovin@tsu.tmb.ru
** | nditute of Solid State Physics, Russian Academy of Sciences,
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ing. Thus, arather narrow € range (about one order of
magnitude) was covered. In addition, one of two
parameters (force and indentation size) needed for
determining hardness, as well as the actual shape and
duration of a loading pulse, was only estimated (from
indirect data) rather than measured. The strain-rate
range 10! s! < &€ < 10* s7!, which is of great impor-
tance in practice, still remains poorly studied. More-
over, it should be noted that the strain-rate depen-
dences of the mechanical properties of the same mate-

rial can be different in different € ranges. Therefore, it

is advisable to investigate them in aswide arange of €
as possible.

The aim of this study isto find the strain-rate sensi-
tivity of microhardness H for a number of both ionic

and covalent crystals for € values from 3 x 107 to

10? s7! that covers approximately five orders of magni-
tude (for an indentation depth of about 1 um). To this
end, using a device designed at the Laboratory of
Nanoindentation, Tambov State University [8], we car-
ried out the indentation of the sample surface by adia
mond Berkovich pyramid under the action of atriangu-
lar force pulse with the same amplitude P,,,,, = 0.42 N
and various durations T = 10 ms— 300 s of the loading-
pulse front. A force pulse was formed by an electrody-
namic computer-controlled drive. Its shape P(t), aswell
as the time dependence of the indentation depth h(t),
was recorded with atime resolution of 50 ps and stored
by the computer. Next, using these data, we constructed
the P-h diagram of the complete |oading—unloading
cycle (Fig. 1). Thisensured fully controlled and identi-
cal test conditions for various average strain rates € =
%‘% ~ % . Theratio of P,,,, to the corresponding inden-
tation area S= 24.5h? was taken to be dynamic hardness

_ Pmax
Hy= S -

The main results are summarized in Fig. 2, which

shows the relative variation of Hy asafunction of € on

1028-3358/03/4809-0505%$24.00 © 2003 MAIK “Nauka/ Interperiodica’
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Fig. 1. Typical P-h diagram obtained under theindentation of the LiF crystals. Theinsert showsthe P(t) and h(t) time dependences.
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Fig. 2. Relative change in dynamic hardness, Hy/Hg, vs. the average strain rate € under the indenter for the materials under inves-

tigation.

the log-og scale. It is seen that the strain-rate sensitiv-
ity isvirtually absent in the Si, Ge, and GaAs covalent
crystals. At the same time, Hy for soft ionic crystals
such as KCI, LiF, and y-irradiated LiF (at a dose of
about 10° Gy) and metals (Al) increases noticeably
with €. The strain-rate sensitivity of Hy for MgO crys-
talsisvery weak inthe € range under investigation. An

interesting feature in the behavior of Hy(€) was
observed in LiF. The slope for low strain rates was less
than the slope in the € range between 10! and 10% s
by afactor of 2.5.

Thus, the materials under investigation can be
divided into two groups (Fig. 3). The strain-rate sensi-

tivity of Hy for crystals with a high ratio of the quasi-
static hardness Hg to the Young modulus E

s

UE

range under investigation. At the same time, crystals
Hy

with = <0.015 exhibit a strong dependence of Hy on

> O.OAE was either absent or very low in the €

€.
Now, we briefly discuss the results. In the frame-
work of a simple phenomenological model, indentation
can be considered as a relaxation process where exter-
nal forces cause the formation and motion of structural
defects (didocations, interstitial sites, twins, nucleation
DOKLADY PHYSICS  Vol. 48
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centers of anew phase, etc.) tending to reduce the con-
tact stresses. Under static conditions, the hardness Hy
of a material is determined from the balance between
applied forces and forces resisting the motion of
defects—carriers of plastic deformation. If an applied
force pulseis short, thefinite rate of the generation and
motion of defects can limit the rel axation depth of con-
tact stresses so that the dynamic value H, appearsto be
larger than H. Inthe general case, the dependenceH, =

f(€) in the presence of a number of competing mecha-
nisms can have the form schematically shownin Fig. 4.
The horizontal sections correspond to the case where
therate of stressrel axation through the dominant mech-
anism in this € range is higher than the loading rate.
The inclined sections appear when the characteristic
times of relaxation processes are comparable with a
loading duration. This behavior is equivalent to the
appearance of internal-friction peaks under these con-
ditions. This circumstance (in combination with the
sizes of the deformed zone) provides information
about the nature and mobility of major carriers of
plastic deformation. A changein the slope of the func-
tionHy(€) (particularly, for LiF at € ~ 107" s7!) likely
corresponds to the transition from one dominant
mechanism of stress relaxation to another. The
absence of the strain-rate dependence of Hy in a cer-

tain € range meansthat the dominant stress-rel axation
mechanism in this range is so efficient under these
conditions that it ensures quasistatic conditions even
for the highest strain rate in this range. However, this
behavior does not exclude the existence and manifes-

tation of the strain-rate dependences of H, in other €
ranges.

Thus, plastic strain under theindenter ishigh, Hy for
Si, Ge, and GaAs is independent of the strain rate, the
number of formed didocations is small, and their
mobility at room temperature is extremely low. In our
opinion, al these circumstances means that plastic
relaxation in these materials is provided by processes
that do not involve dislocations. In these processes,
nonequilibrium point defects or nucleation centers of
new phases induced by high contact pressures are
formed and move from under the indenter. Numerical
simulation by the methods of multiparticle molecular
dynamicsindicates that, under indentation, the activa-
tion energy of motion of interstitial atoms and small-
atomic clusters can be much lower than that of motion
of dislocations. Accordingly, the mobility of these
atoms at low temperatures is higher than the mobility
of dislocations[9, 10]. A number of independent data
also testify to a significant role of nonequilibrium
point defects in the mass transfer in the process of
microindentation [11-15]. Thermoactivation analysis
of the strain-rate dependences of Hy obtained for var-
ious testing temperatures will possibly determine
more exactly what particular mechanisms are respon-
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Fig. 4. Schematic plot of the function Hy=f(€ ) inthe pres-
ence of several competing deformation mechanisms.

sible for a certain type of stress relaxation under the
indenter.
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The statically definable states of plastic solids are
considered as the states corresponding to the limiting
values of the bearing strength and fracture.

1. We consider an elastoplastic beam that isfixed at
both ends and |oaded by atransverse force P (Fig. 14).
Figure 1b showsthe schematic force diagram, where R,
and R, are the reactions at the supports, M, and M, are
the bending moments in the fixations, and M; is the
bending moment in the section where the force P acts.
The equilibrium equations have the form

R+R, =P, M;+M;—Ryl; =0,

(1.1)
M, +My—R,l, = 0.

From Egs. (1.1), it follows that

Myl, + Mol + Mg(l, +1,) = Plyl,. (1.2)

We consider the orthogonal space of generalized
stresses M, M,, and M, and denote the limiting values
of bending moments as m;, m,, and m, respectively.
The planes M; = m; are called yield surfaces and form
the yield surface restricting variations in M;. Let us
assume that M; = 0. In this case, the bending moments
vary within the limits

0<M;<m;, m —congt, (1.3)

where m isthe constant.

Figure 2 showsthe rectangular parallel epiped corre-
sponding to inequalities (1.3) determining variationsin
the vector

M = Myi + M,j + Mgk, (1.4)

Relationship (1.2) determines a plane tranglating in
the space M; with variation of the force P. The part of
plane (1.2) inside the parallelepiped in Fig. 2 corre-
spondsto the statically possible states of the beam. The
real values of M; for agiven force P are determined by

T Deceased.

Chuvash State University, Moskovskii pr. 15, Cheboksary,
428015 Russia

the relationships between stressed and strained states,
beam shape, and boundary conditions.

When loading the beam, i.e., dP > 0, the process of
modifying its state can be represented asfollows. First,
when 0 < M, < m, elastic deformation proceeds; further,
one of the bending moments, e.g., M,, attains the limit-
ing value M, = m;, a plastic hinge is formed, and the
beam retains the bearing strength. With further loading,
the second bending moment, e.g., M,, reaches the lim-
iting value M, = m,, the second plastic hingeisformed,
and the beam also retains the bearing strength. The
beam loses the bearing strength when the third plastic
hinge is formed for M; = m, the stressed state of the
beam becomes statically definable, and, according to
Egs. (1.2) and (1.3), theforce P attainsthe limiting value

Pim = ier(mllz +myly +mg(ly +1)). (1.5)

In this case, the beam acquires the kinematic freedom
for deformation (Fig. 1c).

(@ |p

/ \

Fig. 1.

1028-3358/03/4809-0509%$24.00 © 2003 MAIK “Nauka/Interperiodica’



510

ny
A
/\B
e C
m3 M;
/ my
M,
Fig. 2.

In the M; space, loading corresponds to the attain-
ment of the smooth yield surface M, = m, (the point A
in Fig. 2) by the vector M. Further, the vector M moves
in the yield surface M, = m; until singular points of the
yield surface, i.e., the edge of intersection between two
smooth yield surfaces M, =m, and M, =m, (the point B
inFig. 2). The bearing strength islost when the vector M
attainsthelimiting singular point M, = m;, M, =m,, and
M, = m, that lies on the yield surface and corresponds
to the intersection between three smooth yield surfaces
(the point C in Fig. 2).

Aslong as the construction retains the state of static
indefinability when the material properties (either elas-
tic or others providing the coupling between stressed
and strained states) play arolein deformation, the con-
struction retains the bearing strength. The construction
loses the bearing strength when it reaches the limit of
retaining the statically indefinabl e state.

It should be noted that the limiting surfaces can gen-
erally be modified during loading depending on the
variation in plastic strains, the history of loading, etc.
This circumstance determines the singularity position
corresponding to the state of static definability in the
stress space (the point Cin Fig. 2).

The above consideration can be extended to the
behavior of an elastoplastic continuum.

2. We consider the relationships of perfect-plasticity
theory. A 2D problem is described by the two equilib-
rium equations

do, 01, _ 01,, 00, _
6x+6y_’ 6x+6y_0 @D
and the limiting-state condition
f(0, 0, Ty) =0, (2.2)

where o,, 0y, and 1, are the stress components in the
Cartesian coordinate system xy.

The set of Egs. (2.1) and (2.2) for the 2D problemis
statically definable.

IVLEV, ISHLINSKII

An axisymmetric problem is described by the two
equilibrium equations

ag, N 01y, . 9 =06

dp 0z p
anZ + a_o-z + T_pz = 0,
op 0z p

= O’
(2.3)

where Oy, O, O, and T, are the stress constants in the
cyllndrlcal coordinate sys:em poz.

With the single limiting relationship

f(o-pl O-Gi O-Z! sz) = 0’ (24)
three relationships (2.3) and (2.4) are statically indefin-
able with respect to the four stress components a,,, G,
0, and T,,.

The axisymmetric problem is statically definable in
perfect-plasticity theory if two limiting relationships
are specified:
f1(0p 06,0, T,,) =0, f,(0, 06,0,T,,) =0.(2.5)
The properties of equations in staticaly definable

relationships for the axisymmetric problem were inves-
tigated in [2].

A 3D problem is described by the three equilibrium
equations

60X+6rxy+6rxz -0

ox o0y 0z

dt,, 00, 0T, _
-5;+-a-)7+—a—z——0, (2.6)
arx2+ar 00, _

ox ady o0z

The relationships of elasticity theory represent a
statically indefinable set of equations. The stress field
satisfying equilibrium Egs. (2.6) is statically possible.

If the stressed state meets the plasticity condition

fi(gy) =0 2.7
according to [3], Egs. (2.6) and (2.7) determine the
plastic state of a material, and the set of four Egs. (2.6)
and (2.7) is statically indefinable.

If the stressed state meets two relationships

fi(oy) =0, fy(oy) =0, (2.8)
according to [3], the relationships determine a devel-
oped plastic state, and set of Egs. (2.6) and (2.8) isalso
statically indefinable.

DOKLADY PHYSICS Vol. 48
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Therdationships of perfect-plasticity theory are stat-
icaly definableif three plagticity conditions are met:

fi(oy) =0, fy(oy) =0, fs(oy) =0. (29

For an isotropic material, three independent condi-
tions

f1(01,0,03) =0, fy(05,0,0;) =0,

(2.10)
f3(0.,05,0;5) =0
|ead to the stress field
o, = const, 0, = const, Oy = const (2.11)

and static definability exists under the full-plasticity
condition [4]

0, = 0, 03=0;+2k, (2.12)

where k is the constant.

If conditions (2.12) are met, the following relation-
shipsare valid [3]:

o, = 0+§k+2kni, T,, = 2kn;n,,
_ 2 2 _
0, = 0+ zk+2kn;, Ty, = 2kn,n,,

Y 3 (2.13)

o+ %k + 2kn§, T,, = 2kngn,,
nf + ng + ng =1,
where n,, n,, and n; are the direction cosines for the
third principal stress g; in the space of principal
stresses 6, 0,, and 0.
Expressions (2.13) lead to the following three plas-

ticity conditions determining the static definability of
the relationships:

%’x_o‘%‘%%y—ﬁ—gg =1y (v2) (2.14)

Q
1

or

2
BJX—G—:;I%TVZ = Ty Ty (Xy2). (2.15)

The relationships for the statically definable prob-
lem in perfect-plasticity theory are generally repre-
sented in the form [4]

Oy, = V+0,(0,MNyNg), T,y = ¢4(0, NiNyN5),
Tyz = ¢5(0! n1n2n3)1
T, = 9(0, NyNyN5), (2.16)

0, = Vv +¢,(0, nnyng),

= Vv +¢3(0, nnyng),

Q
|

1 2 )
o= §(0X+0y+oz), n;+n,+n;=1

Relationships (2.16) generally set the statically
definable state for an anisotropic perfectly plastic solid.
The properties of the statically definable set of
Egs. (2.6) and (2.16) in perfect-plasticity theory are
DOKLADY PHYSICS Vol. 48
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investigated for three independent functions ¢; [4] for

2 2
6, = Ni: d, = Ny, 63 = Nj,
ds = NiNp,  §5 = N,Ns,

(2.17)
b = NiN;

or
¢, = Nzcoszel, ¢, = Nzcoszez,
¢; = N2005263, o, = Nzcoszelcosez,
®s = N°cosB,c0s0;, ¢ = N°cosf,cos0,, (2.18)
N* = Ni+ N2+ N3 = 1+ do+ s,
003291 + 003292 + c03293 = 1.

The statically definable set of Egs. (2.6), (2.16), and
(2.18) is hyperbolic [4].

It should be noted that Egs. (2.16)—2.18) determine
the equality between two principal stresses.

A loaded perfectly elastoplastic solid passes the
stages of elastic and elastoplastic deformations and
finally loses the bearing strength and fails.

An elastic solid is statically indefinable, stressesin it
vary with modification of the strained state, and the equa-
tions describing the deformation process are dlliptic.

For states characterized by plasticity conditions (2.7)
and (2.8), static indefinability is retained, the equations
of the elastoplastic state are elliptic [5, 6], and stresses
vary due to varying strain.

A perfectly elastoplastic solid loses the bearing
strength and fails if it reaches the statically definable
state and acquires kinematic freedom for flow in afixed
stressed state determined by the limiting load. The
equations describing the statically definable state of a
perfectly plastic medium are hyperbolic. Therefore, the
range of aplastic flow and fracture can be separated and
aplastic materia flows by dliding.
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The generalized factorization method introduced
in [1] isapplied to boundary value problemsin multiply
connected domains with boundaries allowing the
change of sign of the surface curvature. In[2], we used
the classical, or projection, factorization method [3, 4],
which is effective only for simply connected convex
domains, where only areas of boundary flattening are
possible. This method is based on the application of the
exponential representation of the group of plane—paral-
lel trandations of two- or three-dimensional space.
Generalized factorization is based on that representa-
tion of the group of arbitrary motions, which leads to
Bessdl or spherical functions |5, 6]. Inthis case, projec-
tions are carried out not on a plane and half-space asin
classical factorization but on more complex domains
such ascircles, cylinders, and balls, which considerably
extends the geometry of boundary value problems.

The properties of generalized factorization make it
possible to overcome difficulties concerning a complex
geometry of domains of boundary value problems,
which, in particular, are multiply connected and have
relief boundaries.

The method opens new possibilities of studying a
number of multidimensional problems in complex
domains in the presence of lines of change in the
boundary conditions, i.e., mixed problems. It is spe-
cialy adapted to the study of processes in complex-
structure objects, in particular, physicomechanical,
chemical, and seismological processes in lithospheric
plates of the block structure, ecological problems in
extended domains with relief boundaries, and bed
streams on broken ground.

New relations describing the solutions of boundary
value problems in the integral form admitting discreti-
zation, as well as normally solvable sets of integral
equations for determining necessary auxiliary func-
tions.

We consider a bounded, multiply connected,
domain Q with a composite, twice continuously differ-

Kuban State University, ul. Karla Libknekhta 149,
Krasnodar, 350640 Russia
e-mail: babeshko@kubsu.ru

entiable, boundary I' consisting of outer I', and inner I,
parts. The outer part I, isthe set of pointsthat can bein
contact with a plane under all possible rolling motions
of the body on this plane, which does not crossthe body
at other points. Possible flattening areas of the bound-
ary surface also belong to this set when the touching
plane does not cross the boundary in other areas, while
contact is alowable. The inner part I, includes all
remaining set of the body boundary, including bound-
aries of internal cavities, boundaries of tunnels and
holes piercing the body even if they have convexities,
and boundary areas having at |east one negative princi-
pal curvature. It is assumed that each point of I, can
touch a sphere of a finite radius, which does not cross
the body but can only touch it at other points. The mul-
tiply connected domain Q is topologically homeomor-
phic (allows the deformation without beaks) to athree-
dimensional ball with handles and internal ball cavities
and is oriented manifold with the boundary.

Crack cavities with a zero gap between shores,
which form vibration strength viruses [7], are disre-
garded in this case. Sets composing I, can be discon-
nected and multiply connected.

In the specified domain, we consider the boundary
value problem for the system of partial differential
equations with constant coefficients:

Q(0xy 0x)¢ = 0,
R(Ox)¢ = f,

x 0Q(R’), (1)
xOF =0Q . Q)
The operator Q is represented as the matrix

Q(0%n, 0%X) = ||@mrnk0%n0X + B @X%, + Cone -

Here,
3 3

amrnkfnfk = Zamrnkfnfkl

n=1k=1
R(axk) = "hmrkaxk+ pmr"1 6x =

hmrk = hmrk(r)a

9
ox’

1028-3358/03/4809-0512%$24.00 © 2003 MAIK “Nauka/Interperiodica’
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o={¢6}, r=12..,M m=12.,M,
f={f}, () = 0(x, Xz Xs),

Q(a) =Q(-a,, —iay),
nk=1273, Q = detQ(a),

where the summation over repeated subscripts is
implied. For real a,

det|| a0y # 0.

In contrast to [2], there is no restriction on the oper-
ator R, and the boundary conditions need not be natu-
ral. They must only satisfy the complimentarity condi-
tion for liptic systems[8].

A boundary value problem is analyzed in spaces of
slowly increasing generalized functions H(Q), includ-
ing classical ones, which areintroduced in terms of the
norms

105 = 3 10 102 = [[ [IF*(2+la)da,

r=12,..,M,

2

2 2 2
la|” = aj+03;+a;, do = da,da,das,

dx = dx;dx,dxs,
Fo = [ H¢r(x>e““'“dx, 3)

1 - i [, 0
(I)r - (Zﬂ)s-fj]-l:q)re dG,

—o0

Lo, XU = o 1 X + A5X, + O5Xs,
fOH, ('), A>s+05.

To analyze the boundary value problem, we intro-
duce an exterior vector form w(a, X) whose compo-
nents have the form

Wy(a, X) = Rydx, Ldx, + Q,dx, Lldx,
+ P,,dx,ldxs,

Pn= S & Tanu(0x, ~ia,0,)

_amrlzia2¢r + amr13ax3"1)r + bmr1¢r]’

i : “)
Qn = =) € aw(0%0, —iaz0,)
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_amr23ia3¢r + amrlZaxlq)r + bmr2¢r]v
Ro = 3 € Tans(0%:0, ~iosp,)
r

_amrlsialq)r _amr23ia2¢r + bmr3¢r] .

Introducing topology generated by the Euclidean
space, we consider the domain Q as an oriented chain
with the aboundary whose orientation isinduced by the
orientation of the domain [9].

Using the Stokes theorem in the domain Q and
assuming that the vector function ¢ satisfies the set of
differential equations (1), we arrive at the expression

o(x) = 8%3; [[Q " (@)D(@)
x.Ue‘iE“'@m(a, &)da, da,das,

Q(a) = Q(a)D(a), D(a) = D(ay, 0y, 03),
OJ(O(, E-) = (")(allGZ!a&E)f E = {El! EZ!E& .

We recall that, similar to [2], the exterior form con-
tains relations describing the specified boundary condi-
tions and functions that must be determined or their
normal derivatives with boundary values. When the
combination of derivatives and functions in boundary
conditions (2) differs from the natural combinations
appearing in Egs. (4), they are formed in Egs. (4) by
addition and subtraction of the necessary termsto obtain
the left-hand sides of Egs. (2) without changein w.

In view of the specific character of the boundary I
and taking into account the boundary parts I";, where
curvature is nonnegative, and I,, where at least one
principal curvature is negative, we denote areas swept

by normal vectorsto ", and I, beyond Q by ©,and ©,,
respectively. Thus, areas ©, adjoin Q along the surfaces
", and have nonzero thickness.

According to the factorization method [2], it is nec-
essary to require that the right-hand side of the men-
tioned relation isequal to zero beyond thedomain Q; i.e.,

d(x) =0, xORYQ.

First, we consider the boundary part I',. In this case,
we obtain the condition

_ 1 1
d(x) = 8—H3I£J'Q (a)D(a)

| (5)
xHe-'E"'%(a, &)da, Lda,da, = 0,
:

xo;.
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Using transformations made in [2] when factorizing
with respect to the tangent plane to the boundary I, and
calculating two-dimensional Leray residues, we arrive
at therelations

341

[o, X

D(a)e (o, ap o, E)

2 da, [da, =0,
00;Q(ay, Oy, O3)

(6)

x00,, Imaz(a,a,)<0,

+
Lo, X0 = 0gXq + 05Xy + 05X,

Here, , aretwo-dimensional cycles not homologousto
zero and we assume, as in [2], that the zero set a; =

a3, (04, o) of the function Q(ar) has a codimension of

1 and the same multiplicity. For other characteristics of
the zero set, it is necessary to analyze more complex
multidimensional residues, which requires study of
homology groups on multidimensional complex mani-
folds[9, 10].

Following [2], from the |ast relations, the first set of
equations is constructed in the form

J.J.D(Gl, GZ! a;r)w(al! GZ! G;rva) = 01
r
r =

)

1,2,....M, —oo<d,0,<o,

The derivation of this set, aswell astransformations
made for itsregularization, is described in detail in [2].
We only remind note that the relation is satisfied on the
elements of a decomposition of unity for each local
coordinate system induced at the boundary ', by the
coordinate systems of the inner neighborhoods of the
topological structure of the domain Q with the conser-
vation of the orientation.

We now consider the area ©,, which is the area
swept by outer norma vectors to the boundary I,
beyond Q. Let us apply generalized factorization [1] to

separate classes of functions with a support in Q.
Using notation from [1], and omitting cumbersome
manipulations, we can represent Egs. (5) in the form

[Pk Var Var e 1S
.

X(A)O(yl, YZ!ygr!n) = 01
r=1,2,....,M, k=0,1,2,...,

Vs = Var(Yu Y2),  Imys(Ys, V2) >0,

0 0 0 <8)
Dak(Y1: Y2, Y3) = D (Y1, Y2, Y3)Q (Y1, V2o —Y3)

V. A. BABESHKO, O. M. BABESHKO

+ Do(ylv Y2, —Y3) QO(Vl- Y2:Ya)
ng+ 1(Yn Y2r Y3) = DO(VL Yo, V3)Q0(V11 Y2, —Y3)
—D (Y1, Y2, —Y3)Q (Y1, V2. Va);

where y; = g, (Y, Vo) and y; = Y3, (Y;, Y») are the zero
sets of the function Q°(y;, Yz, Y3) Q%Y. Y», —Ys) in the
new coordinates

Y={YuYavad, & =28&Mn),

n ={nunxng

a =a(y),

subscript O refers to the functions of these new coordi-
nates, and

0 +i0

(gemimy; o gL €T gy
%—mﬂo Ya—Vs 0. ©
Imy; >0

according to the application procedure of generalized
factorization [1].

Depending on the representation of the space-
transformation group determined by the geometry of
the local area of the boundary I, of the domain Q,
relation (9) generates special functions that are com-
ponents of the group representation [5, 6]. The sub-
script is the number of that component of the repre-
sentation vector of the taken transformation group
which that isretained after factorization. In particular,
for the rotation group of a sphere in the three-dimen-
sional space,

a; = Y3Siny;C0SYy,, 0O, = ysSiny;siny,,
a3 = Y3C0SY;.

(10)

Bessdl functions of half-integer orders and spherical
functions arise. For the rotation of acircle on a plane,
which corresponds to problems on a plane or problems
for cylindrical domains,

Oy = Y3C0SY,, O, = YaSiny,, O3 =Y;.
Bessdl functions of integer orders and trigonometric
functions arise.

Exterior forms under coordinate transformations are
multiplied by the corresponding Jacobian.

We emphasize that the origins of old and new coor-
dinates need not coincide with each other.

Note 1. Classical factorization isaparticular case of
generalized factorization. Classical factorization pro-
vides projectors onto half-spaces separated by a plane.
Thisfactorization is generated by the additive group of
the space trandation parallel to the factorization plane.
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Its representations are specified by exponentials. As
was mentioned above, generalized factorization pro-
vides projectors on complex-geometry domains differ-
ent from half-spaces. These domains can be separated
by complex surfaces. Coordinate surfaces formed by
transformation groups can be the representations of
these domains. For motion groups of the three-dimen-
sional space, in particular, for the rotation group, these
are spheres, cylinders, and disks.

In the limit of infinite radii y; in the boundary area
I, in the representation of the last groups, demarcating
surfaces degenerate to the plane corresponding to clas-
sical factorization. In addition, Bessel and spherical
functions go over to exponentials with an increase in
arguments.

This note explains why generalized factorization
provides more possibilities for analysis of boundary
value problems in domains with a complex boundary.
Indeed, if classical factorization is applicable to a
domain, generalized factorization is also applicable.
The counter statement is not always true.

If the boundary value problem that is analyzed by
applying generalized factorization is formulated more
generally thanin [2], one can prove that the sets of inte-
gral equations (7) and (8) reduce generally to normally
solvable sets of second-kind integral equations rather
than to Fredholm (zero index) equations. They can be
regularized by the procedures applied in [2] with addi-
tional determination of the kernel and cokernel of the
operator, which have a definite physical meaning.

Thus, the sets of integral equations (7) and (8)
reduce to the set of integral equations of the form

(I +A)g = Bf. (11)

The vector function g is sought in the same spaces
asin[2].

According to the above discussion, the number of

independent equationsin set (11) can be equal to, lower
than, or larger than the number of unknowns.

As will be proved below, boundary conditions in
Eqgs. (1) are satisfied under relations (11).

Note 2. As follows from the above discussion, the
method is applicable to the set of differential equa-
tions (1) of any finite order.

Some phenomena, such as an increase in seismicity,
multicomponent pollution of the environment with
impurities chemically reacting in the atmosphere, and
pollutions caused by inundations flushing surface
ground layers, are multifactor and are described by
many coupled partial differential equations and cou-
pled boundary conditions [11-15].

The normal solvability of the operator on the left-
hand side of Egs. (11) and appearance of the defect
numbers, kernel, and cokernel of this operator are the
manifestations of specific physical effects, such as
localizations, resonances, and inconsistencies of differ-
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ent-type boundary conditions of different types, which
are determined by physical processes. In view of this
circumstance, the method proposed above is also a
convenient tool for the analytical analysis of such
problems.

Note 3. The choice of local coordinate systems for
an approximate solution of the boundary value problem
is determined by the requirement of a higher -order
contact of the approximating surface with the boundary
I". In particular, for the boundary part I, with nonnega
tive curvature, a Cartesian local coordinate system is
appropriate at flattening points asin [2]. It can be also
used at positive-curvature points. However, a local
coordinate system whose coordinate surface touches
the convex element of the surface I', is more appropri-
ate at these points. For the boundary part I, with nega-
tive curvature, it is appropriate to select transformation
groups such that their representations provide coordi-
nate surfaces touching the negative-curvature surface
element. This can be sometimes be achieved by a
change of the coordinate origin of the transformations
of the same group.
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Internal Waves Generated by Turbulent Wakes
in a Stably Stratified Medium
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Turbulent wakes are known to generate internal
waves in stratified media [1-5]. For a relatively weak
stratification, aturbulent wake first evolves aimost sim-
ilarly to that in ahomogeneous fluid and expands sym-
metrically. However, buoyancy forces hinder the verti-
cal turbulent diffusion; therefore, the wake flattens at
large distances from the body and ceasesto grow in the
vertical direction. Since the fluid density is distributed
more uniformly within the wake than outside it due to
the turbulent mixing, the buoyancy forces tend to
reconstruct the previous state of the stable stratification.
Asaresult, convective flowsintensely generating inter-
nal waves arise in the plane perpendicular to the wake
axis [2]. Investigations of turbulent wakes and internal
waves induced by them are reviewed in [6-8].

Analysis of numerical simulations of the dynamics
of internal waves generated by turbulent wakes shows
that waves induced by turbulent wakes behind self-pro-
pelled bodies were considered in detail both for alin-
early stratified fluid [2, 7, 8] and for pycnocline [6]. At
the same time, internal waves in wakes behind towed
bodies have not been adequately studied [9, 10].

In this study, we describe our numerical model of
internal waves generated by turbulent wakesin a stably
stratified medium and compare the parameters of the
internal waves induced by turbulent wakes behind
towed bodies and self-propelled bodies.

1. FORMULATION OF THE PROBLEM

To describe the flow in the far turbulent wake behind
a body of revolution in a stably stratified medium, we
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use the following parabolized set of averaged equations
of motion, incompressibility, and continuity in the
Oberbeck—Boussinesq approximation:

oUy . ,0Uy oUy, _ 0 0

U + Vgt +w = Lavoe Zarwd )
UdY + v‘;—\; weY
ploa g?/lm aay -2 v ©
Uo + v%\;v we
- _ploaéi;m_(% w2 - Q%D NG
0 ?)a(lm 2 ?;/15+ W 521D+ de_p;s
aay et 2 wpt) @)
g0

Here, U, is the velocity of the unperturbed fluid; Uy =
U, — U isthe defect of the averaged longitudinal com-
ponent of the velocity; U =U,, V=U,, and W= U, are,
respectively, thex, y, and zcomponents of the averaged
velacity; p, isthe deviation of pressure from the hydro-
static pressure induced by the stratification pg; g isthe
acceleration of gravity; [p,0is the averaged defect of

density, where p,; = p — ps Ps = P42 is the density of
unperturbed fluid: E%S < 0 (stable stratification); p, =

p40); the prime denotes pulsation components; and the
angle brackets mean averaging. The coordinate system
is connected with the moving body so that the velocity
of the body is egqual to —-U,, and the z axis is directed
upwards opposite to gravity. The fluid density is con-

1028-3358/03/4809-0517$24.00 © 2003 MAIK “Nauka/ Interperiodica’



518

sidered as a linear function of temperature, and strati-
fication is assumed to be weak. The terms with molec-
ular viscosity and diffusionin Egs. (1)—(4) and avalue

of ou
0Xx

in[6-9].

The set of Egs. (1)—(5) is unclosed. To close it, we
use the modified e-€ model of turbulence, where

unknown Reynolds stresses m;ZD (i=1,273), I VvLE

[y vy and ' w= [W;uy] the turbulent fluxes, and

the variance of fluctuations of the density field are
determined from the algebraic relationships [11]

in Eqg. (5) are assumed small and rejected as

DJ'UID_ 26 1_C2|:P|J 2 B:l

e 3" c, Ug 371ed
1 C3§” 2. G
& O 3% (6)
O U, uo
P, = —Cruur e + rwiur2es, ;
J E K an j X E ( )
1, .. Vo S
Gij = E)(mipl:gi-l- mjp[gl)v I!J!k - 11 2, 3,
g =1(91,9209) =(0,0,-9), 2P =Py,
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O/'Ted 0 LpD)
Cir € Oy’

_e 20 [pl] _ 9 2
< [ow 2 ez 2 ], 10)

-O'pO = ®)

—wpd= c

0 = ——-w\r [LD

From now on, summation over repeating subscripts is
implied. Theturbulence energy e, dissipationratee, and
Reynolds shear stress V'ware determined from the
differential equations

ae de oe
Yoax Vay Va2

_ 0, de 0, oOe

—a—y eya—y 37 Keza +P+G-g,

(11)

(12)

Uogs + vg—)s/ W%E

0., 0 0., Ot £ g
= a_stya_y"-a_ZKsza_Z"'Cslé(P"'G)_CsZEa (13)

UOOE\/V\/D+V6D/VV'D+W6D/W'D

0x oy 0z

=QK d v'wl aK ov/'wi
ay ¥ ay az # 0z

2G = G, +(1-C)Pps+ (1-C)Cp—Ci VWl (14)
9 p0) [L The turbulent viscosity coefficients are determined
—-pl = E[UJW +(1-cyr) WP } from Eq. (6) by taking into account the features of the
Cr (8) wake under consideration:
1-c,eli K
Key - Cy e’ Key - ?"
1-c5)(1-c 2
[(1—cz)e@v‘2D—( 3)( 2T)_§l§_ DN'p'D}
_ Cit Po€ _ Ke
Ke = 2 v K = —.
el (=) g €op o
! C1Ci7 Pog? 0z U
In this case, 1.9, ¢, = 0.22, and o = 1.3. The above mathematical
model is used because it is simply realizable, while it
U U includes the anisotropy of the characteristics of turbu-
—-vhO= Keya_y’ —w'wl = KQZE. lenceinthewakein astably stratified fluid. In addition,

Theempirical constantsweretakenas[11] ¢, =2.2,¢, =
c;=0.55,¢7=32,c7r=05,¢cr=1.25,¢c,=145,¢c, =

contrary to the model used in [9, 10], this model satis-
factorily describes the turbulent flow in the wake
behind a self-propelled body not only in the linearly
stratified medium [7], but also in pycnocline [6].
DOKLADY PHYSICS Vol. 48
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Themarching variablexin Egs. (1)—(4) and (12)—<14)
plays the role of time: t = x/U,. At the distance x, from
the body, we set the initial conditions consistent with
the experimental data on the evolution of turbulent
wakes in a homogeneous fluid [12, 13]. We set the
unperturbed-flow conditions as the boundary condi-
tions at large distances from the wake axis (in the plane
orthogonal to the direction of the body motion).

The variables in the problem reduce to the dimen-
sionlessform with the body diameter D and free-stream
velocity U, as the scales of length and vel ocity, respec-
tively (asterisk denotes dimensionless values). In this
case, the characteristic parameters of the wake in a
stratified fluid—the density Froude number F, and
Véaisd&Brunt period T—are determined as follows:

_UOT - 2T[. 1dps —
Fo=p T=72 -4 10

The finite difference calculation algorithm is based on
the method of splitting in terms of spatia variables; the
detailed description of thisalgorithm was givenin[6, 7].

The mathematical model was tested in the series of
numerical calculations, whose results were compared
with the experimental data[12, 13] on the degeneration
of wakes behind self-propelled bodies and towed
bodies in homogeneous and linearly stratified media
(Fp = 31). The axial values obtained for both the defect
of the averaged-velocity longitudinal component and
the turbulence energy agree with experimental data. As
an example, we compare (Fig. 1) the calculated and
Up Uy(x,0,0) for

*
measured values of UY = 0. - U,

a

momentuml ess wake.

2. RESULTS OF CALCULATION

To analyzetheinternal waves generated by turbulent
wakes in a stably stratified medium, we performed the
numerical experiments with the Froude number Fy =
565 corresponding to the conditions of one of the labo-
ratory experimentsin [12].

The pattern of internal waves obtained in the calcu-
lations is illustrated by the time evolution of density
profiles (Figs. 2, 3). In Fig. 2, we compare interna
waves induced by turbulent wakes behind self-pro-
pelled bodies and towed bodiesin thelinearly stratified
medium. Since similarity in the density Froude num-
ber [7] takes placefor the linear stratification, the result
obtained is valid for an arbitrary sufficiently large
Froude number. It is seen that the amplitude of internal
waves generated in the wake behind the towed body is
much higher than that for the wavesin the wake behind
a self-propelled body.

A similar behavior is also observed in the medium
with nonlinear stratification. As an example, we con-
sider the evolution of a turbulent wake in the pycno-

DOKLADY PHYSICS Vol. 48

No. 9 2003

519
Up
[ ]
0.15F a
A
A
0.10F o
[ ]
0.051
A
“ﬁ_@ﬁ- A= —A A
! ! ! ! ]
0 20 40 60 80 100
¥

Fig. 1. Defect of thelongitudinal averaged-velocity compo-
nent vs. the distance from the body in the homogeneouslig-
uid (open circles are the experimental data, open triangles
are the calculations from [13], and the dashed lines are our
calculations) and in the linearly stratified fluid (closed cir-
cles are the experimental data, closed triangles are the cal-
culations [13], and the solid lines are our calculations for
FD = 31)

Z*
0.20

Fig. 2. Density profiles py— [BC= py — ps (0.1D); ps=po(l —
a2y = % ,and 7+ = é for thetimet/T= (1) 1, (2) 2, (3) 3,

(4) 4, and (5) 5. The solid and dashed lines correspond to the
self-propelled body and a towed body, respectively.

cline when turbulent wakes induce solitary internal
waves, whose amplitudes are much larger than those for
the linear stratification [4, 6]. Figure 3 shows the den-
sity profiles calculated for the pycnocline for various
times (we chose the same level asin Fig. 2). It is seen
that the difference in internal-wave amplitudes behind
self-propelled bodies and towed bodies is also very
largein this case. Theratio of internal-wave amplitudes
for Fp = 280, as well as the ratio obtained in the calcu-
lations with other nonlinear density distributionsin an
unperturbed fluid, is aso close to that shown in Fig. 3.
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Fig. 3. Density profiles pg— [P pg — ps (0.1D) inthe pyc-
nocline { ps = Py (1 — afBtanh % B =0.15D} for thetime

UT=(1)1(223)3 44 (55 (6)6,(7) 7,and (8) 8.
The solid and dashed lines correspond to the self-propelled
body and towed body, respectively.

Thus, the calculations show that the turbulent wake
behind a towed body generates internal waves of a
much larger amplitude than that for the case of a self-
propelled body. This fact can be explained by substan-
tial distinctionsin the evolution of axisymmetric turbu-
lent wakes behind towed bodies and self-propelled bod-
iesin a homogeneous fluid (see, e.g., [14]). In particu-
lar, the self-similar wake behind a towed body is
characterized by the degeneration laws:

e(X) =€e(X,0,0) ~x 3, Uyx,0,0)~x23,  [(x)~x!7,

where |(x) is the characteristic wake size. For the self-

similar wake behind a self-propelled body, we have
€(X) ~ X713, Uy, 0,0) ~x13,  [(x) ~ x4

Such different behaviors of the characteristics of
these wakes are caused by their significantly different
structures. In the wake behind the towed body, the gen-
eration of the turbulence energy due to gradientsin the
averaged flow is substantial. In the momentumless
wake, thevirtually shear-freeflow mode[15] isrealized
at distances as short as about 10D. Since the turbulent
wakein astratified medium at the initial stageis devel-
oped asin ahomogeneous fluid, turbulencein the wake
behind the towed body mixes alarge fluid mass. In this
case, gravity initiates the generation of internal waves
of alarger amplitude than that in the wake behind the
self-propelled body. This statement is illustrated in
Fig. 4, where we show the time dependence of the

VOROPAYEVA et al.
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Fig. 4. Time dependence of the (1-4) total turbulence
energy Ef and (5-8) total internal-wave energy P} .
Curves 1, 3,5, and 7 correspond to linear stratification, and

curves 2, 4, 6, and 8 corresponds to pycnocline. The solid
and dashed lines are for the self-propelled body and towed

body, respectively.

dimensionless total turbulence energy Ef(t) and total
internal-wave energy Py (t):

00

Ef(t) = J’J’e* dy* dz*,
0

*2 * 2 O
Pr(t) = J'J’E}/"'—W + 4%[2 Cp,* Z*0idy* dz* .
J0 2 F 0
The principal results of thisstudy are asfollows. We
developed the numerical model of internal waves gen-
erated by turbulent wakesin a stably stratified medium.
The turbulent wake behind a towed body was shown to
generate internal waves of a substantially larger ampli-
tude than that behind a self-propelled body.
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It is found that stability equations derived in [1, 2]
and used in [3] contain only minor parametric termsfor
description and determination of shear forms of stabil-
ity loss. The principal cause responsiblefor theseforms
of stability loss in the absence of subcritical shear
stressesin afiller isthe appearance of subcritical trans-
verse compressive stresses. In view of this circum-
stance, refined geometrically nonlinear equations are
constructed for thin three-layer shells with a transver-
sally soft filler. These equations are based on the use of
the classical theory of the average bending for outer
layers and the linear approximation of transverse dis-
placements for the filler. In contrast to all known vari-
ants of the theory of layered shellsthat are based on the
models mentioned above, the derived equations allow
the finiteness of the shear strainsin thefiller, which are
caused by possible large mutual tangential displace-
ments of outer layers under their average bending.

Disregarding deformation parametric terms, we
derivethelinearized stability equations, which are used
to obtain the refined solution of the problem of the shear
form of stability loss of athree-layered ring at externa
pressure. It is shown that this form of stability loss can
also be realized in the presence of internal pressure.
Moreover, it is shown that the shear form of stability loss
isredlized in the axial direction of the three-layer cylin-
der shell under the corresponding conditions at the ends
in the presence of external or internal pressure.

1. REFINED GEOMETRICALLY NONLINEAR
THEORY OF THIN THREE-LAYER SHELLS
WITH A TRANSVERSALLY SOFT FILLER

Let the middle surface o of thefiller be attributed to

arbitrary curvilinear coordinatesx and r; = g-r—l be the
X
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basis vectors on 0. In what follows, we take

o™ _ 9
rf=="—= —[r =9y (h+Hy)m] =r;,

ax'  ox

where 2h, are the thicknesses of the (k = 1) lower and
(k=2) upper carrier layers, 2h isthefiller thickness, the
unit vector m normal to g, together with the vectorsr;,
formsthe right-hand basis, and &, = — 8, = 1. Similar
to [4], the mechanics of the deformation of carrier lay-
ers are described in the classical nonlinear theory of
average bending, where displacements and shear
strains are determined by the formulas

U = u® 4 2@ = U+ w

Ny = 24y < g,

z2k) _ (k) (k)
Es' = &5 T ZyyXis

®m — 7y r',

(1.1

(1.2)

where

26 = )+ )+ el

(k) (k) (k) (1.3)
2Xis = _Diws _Dswi ’

&9 = DUl —b ™, o = DwWY+ U, (1.4)

Here, [J, is the covariant derivative with respect to the
metric a;s= r;r ; and b are the covariant components of
the second metric tensor on o.

In the Timoshenko model with allowance for trans-
verse compression, the displacement vector at an arbi-

trary filler point that was spaced from o by z before
deformation is represented in the form

U = u+zy = (U—zy)r' +(w+zy)m,
—-h<z<h,

(1.5)

which is widely used in the mechanics of three- and
multilayer shells [4]. In the framework of these repre-
sentations, transverse compressive strains €5, and trans-
verse shear strains 2¢;;, which are constant over thick-
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ness, for arbitrary displacements are determined by the
formulas [5]

2g3 = W (1+Y) +Y (35 + ), (16)
2e5 = 2y + Yy +Y,

where wy = 0w + bl ug, e, = Cug— b w.

Then, we consider that the filler of the three-layer
shell undergoes transverse strains limited by the esti-
mates 2¢;; = /¢ and €;; = €, where € is much less than
unity, for small strains of the middle surface o of the
filler under medium bending, i.e., for e;= € and W =
Je . Such a form of the strain state of the three-layer
shell is possible under its medium bending and when
carrier layers can be mutually displaced in the tangen-
tial directionsunder therestrictions2¢;; = /€ . The esti-

mates 2¢;; = /e and €,; = € can be satisfied if y. and y
entering into the formula

1
28i3= W +Y;, Ex=y+ SYiv (L.7)

satisfy the inequalitiesy <& and y; < /& under which
Egs. (1.7) have the above simple form.

In the framework of models used for the filler and
carrier layers, it is sufficient to satisfy the conditions of
layer-displacement matching

K
VR )(Z(k) duohy) = U (Z = —Qyh).

Substituting Egs. (1.1) and (1.5) into these conditions

and taking u(k) and w® as desired unknown functions,
we arrive at the relations

(W(l) +W(2)),
(1.8)
(u(l) (2) h(l)(l)(l) + h(z)w(z))
_ 1. @ w®
Y = SpwT-w, o
= L@ _u® by w® + hye? '
Yi = 2h(u (1)00 207).

Using Eq. (1.9), we represent Egs. (1.6) in the form

2g;3 = C(l)(*)(l) + C:(2)00(2) + h(ui(Z)_ui(l))’
. . (1.10)
€x = E(W(Z)—W(Z)) + EViVl,
_1 heo
where Ec(k) =5 %l + T 00
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To derive the equilibrium equations and boundary
conditions, we take the Lagrange variational equation

2

8A-8U = BA-8Up— § 8Ug = 0,  (L.11)
k=1

where dA is the variation of the work of the external
forcesand dU,5, and dU , are the variationsin the defor-
mation potential energleﬁof thefiller and carrier layers,
respectively. Assuming that the filler is transversally
soft [4], we consider that only carrier layers are sub-
jected to external forces and introduce the vectors of
given forces and moments

o® = on+ oz + o¥m
[ = L%+ L0r,

applied to the boundary lines of the middle surfaces of
external layers g, We also introduce the vectors of
given surfaceforces and moments

k
XY = X1+ Xom, Mgy = Miry,
applied to the points of the surfaces o,. Here, the unit
normal n and tangential t vectors to the contour C of

the surface o are decomposed into basis vectorsr; and
riasn=nr,=nr', T =tr, =1,r' . The variation of the
work of the indicated external forces along the corre-

sponding displacements, as well as the expression for
dU,, Was presented in [1], and

h
8U ) = III(20i3si3+ 0°8¢,,)dodz

g -h

for the transversally soft filler. Substituting Egs. (1.7)
into the last relation and using Egs. (1.8) and (1.9), we
obtain

8Uq = H[T”(év. +3w) + T2(dy + Y8y)] do

2

- J-J- Z [_%(Ta + T33y')5u(k)

G k=1

+ E}risc(k) + r;(;)T33V'D5Q(k) 6(k)-|-335w(k)}60 (1.12)

where T3 = 2hg'® and T33 = 2ho?3.

When using Eq. (1.12) and corresponding results
from [1], variational equation (1.11) after traditional
transformationswith the use of Egs. (1.3) and (1.4) pro-
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vides the set of six nonlinear differential equilibrium
equations

fao = OsTig —Swb;
-I-i3 + -|-33yl

+ 8y~ + Xy = 0, (1.13)

f(gk) = Dig(k) + Tl(i)bis

S T
(k) 3 _
=g+ X = 0, (1.14)
where
St = HsMigy + o5
Ti3 Ti3 + T33yi i
+—2‘+h(k)—-éT_]——+M(k), (115)

aswell asthe static boundary conditionsin the contour
lines of carrier layers.

We note that the shear form of stability lossis deter-

i3 33, i
mined in Eq. (1.13) by the terms % =0° +
a3y, wheretheterms a3y, which appear dueto retain-
ing of terms \% in Eq. (1.7), are important.

Using the old notation for increments of introduced
functions, we linearize the composed nonlinear equilib-

rium equations near a certain solution u®°, wy,,

Tioo> Migo» To» and To- . Assuming that the shell is
stressed but unstrained until the loss of stability, we
arrive at the following set of linearized stability equa-
tions:

j3
i is i is s w. T
fio = DTy — b HIM Gy + Tlows * >0

Ti3+TC3)3vi
+5(k)T =0, (1.16)
3 i is T33
g = Dis(k)+T(k)bis+6(k)% =0, (1.17)
where
S-(k) = DsMi(i)—Ti(i)owgk)
i3 1% 4 T8y _
+T7+h(k) oY + Mgy (1.18)

2h
in contrast to Eq. (1.15).

PAIMUSHIN, SHALASHILIN

2. SHEAR FORM OF STABILITY LOSS
IN A THREE-LAYER RING IN THE CIRCLE
DIRECTION

We consider athree-layer ring that has a symmetric
thickness structure and is in an axisymmetric stress—
strain state. Let 2t be the thickness of the outer layers,
R is the radius of the middle surface of the filler as
related to the circle coordinate x*> = 6, G,; is the trans-
verse shear shift modulus of thefiller, and B = 2Et and
b 2LE

-3
notation and in terms of the physical components of the
corresponding vectors and tensors, neutral-equilibrium
equations (1.16) and (1.17) are represented in the form

B d rduy’
Rd6Lde

are the stiffnesses of carrier layers. In this

* W(kH +9yyR(d, + 023\/2) + §2k) =0,2.1

dgk) ngu(zk)+ (k]

6 RO W DO

+6(k)E3R(W(2)—W(l)) - O, (22)
2h
O3 =02
- élest[u(gz)—u(zl)+(t+ h)(wg’ + )], (23)
d’w
& = DI o o
R® d6
+(t +h)q, + to%Ys, (2.4)
(K)
0 _ lrdw k0
(A)z - _D _u2 |:|1
RU d6 (2.5)
1
Vo = gl o () + o)

because the undistorted stress—strain stete is axisym-
metric.

2.1. External Pressure Effect
In Egs. (2.1) and (2.4), subcritical forces in carrier

layers T%® and transverse normal stress a3, in the
filler at the external pressure X{¥ = —p, when X{" =0,
are determined by formulas [3, 6]
@wo _ _XRp @0 _ (1+x)Rp
T22 - 1 + 2X’ T22 - 1 + 2X ’ (2'6)
o _ _XP
O3 = T+2y’ (2.7)
DOKLADY PHYSICS Vol. 48 No.9 2003
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within the accepted accuracy of the constructed equa-

2
3

2Bh
determining the transverse compression.

We represent the unknown functions appearing in
Egs. (2.1)«2.5) intheform

(k) (k)
{w™, uy’, q

= {W¥, v Q3 {sinn®, cosns, cosné} ",

tions. Here, x =

is the dimensionless parameter

(2.8)

wheren =0, 1, 2, ... are the numbers of half-wave-
lengths of stability loss. Each number correspondsto a
certain branching point of solutions of the original set
of constructed nonlinear equations from its linear solu-
tion (2.6) and (2.7).

Here we consider the solution for n = 0, which
describes, aswas shown in [3], the shear form of stabil-
ity loss of the ring for uniform external pressure. Such
forms of stability loss, aswell as the forms of free and
natural oscillations of the three-layer elements of con-
structions, are accompanied by zero change in the
parameters of their stress-strain state. Therefore, set-

ting d% = 0in all equations and relations (2.1)—«2.5),

we arrive at the equations

W+ 5 x (w? —w?) = 0, (2.9)
dwyRas + T(zg)ow(zk) +hq, + ta;
= 84gRas + T% w)? + ha, = 0, (2.10)
where
)
u 1
0 = —F 0= 5 Gu(us -ug)), (21D

* _ 0
0> = 0, + 0a3Y>

(2)

_ 0 (1) o, @
= Qpt+Ogpfuy —Uy  +1(w; " +w;7)]

1
= 55(Gos + 0%) (us” ~ U5")

with the accuracy 1 + %‘ =~land1l+ lR =1.

The set of Egs. (2.9) has only trivial solution w® =
0, and, using Egs. (2.11) and introducing the notation

GxR
2 b

a = %Rz(ezgmgg), B = 2.12)

Egs. (2.10) reduce to the form
(0 -B-TZ")ug) + (- +p)uy” = 0,
(-o+B)uz’ + (a+p-T)u” = 0.
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The condition that these equations have nontrivial solu-
tions provides the formula

L TeTe
T TS
Substituting Egs. (2.6) and (2.12) into this formula
and taking into account Eq. (2.7), we obtain
_ Gys(1+2x)
* X

(2.13)

(2.14)

withtheaccuracy 1=hy=1+ % = 1.Wecdl it thefor-

mula for determining the critical external pressure at
which shear stability loss occursin the three-layer ring,
which was described and analyzed (incorrectly, as will
be noted below) in [3].

2.2. Internal-Pressure Effect
When the three-layer ring is subjected to internal
pressure X = pand X§ = 0, subcritical ring forces

incarrier layersare easily shown to betensile and deter-
mined by the formulas

@0 _ XRp ;o _ (1+X)Rp

while thefiller is under compression and the stress 033
in it is also described by Eg. (2.7). Substituting
Egs. (2.12) and (2.15) into Eg. (2.13) and using
Eq. (2.7), we arrive at formula (2.14) for pry Thus, the
shear form of stability loss of thethree-layer ringisalso
possible at internal pressure when the compressive
stressinthefillerisequal to G,;; i.e., 0% =—Gys. Inthis
case, the bending form of stability loss, which was stud-
ied in detail in [6] in the presence of external pressure,
is however impossible.

2.3. Analysis of the Shear Form of Stability Loss

In the framework of the representation of the dis-
placement vector in the filler in form (1.6) with accu-

racy &, — zb; = &;, the basis vectors in the strain state
of thefiller are equal to

« - 0(r+zm+u+zy) _ P

Pi +zvy;,
X'

p} = o(r+zm+u+zy) _ m+y,
0z

where
_ oy *_ar*_a(r+u)
Y= 5 N =-5= P
0X 0x 0X
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Thestressvector ¢ acti ng on az= const area of the
filler in its strain state can be written in the form ¢ =

i3 %
o pi

i3 %

o’ r’ + o¥@m +y) in view of the accepted model.

Since r{ = r; + wm for the middle bending of the
shell [5], we have

+ 0%p%, which can be simplified as ¢° =

0’ = o°(r;+wm) + ¥ (m+y'r)

(2.16)

_ (0i3+033yi)ri +(0i3+033(.0i)m.

From Eg. (2.16), the tangential components oy of
the vector o2 in the unstrained basis r;, m are deter-
mined by the formula

oy = a’+0%y. (2.17)
These stresses normalized to the forces TP + T3y enter
both into the equilibrium equations for all forces
applied to carrier layersin the projections on the basis
vectors r; [Egs. (1.13)] and into Egs. (1.15), which
present the equations of moment equilibrium for com-
posite elements of carrier layers consisting of the ele-
ments of carrier layers with thicknesses 2h,,, and filler
of thethickness h. Expression (2.17) for the three-layer

ring after linearization near the solution given by
Egs. (2.6) and (2.7) takes the form

1
O3 =0 = %(Gza + 023)(U(22) - U(zl))-

Here, it is seen that, if 0% = —G,;, then @& = 0 and

u? — u? isindefinite; i.e., the set of adjoining equi-

librium states appears. In other words, the filler loses
stability, and carrier layers can turn with respect to each
other asrigid bodies; i.e., shear stahility lossfor thering
occurs. Inthis case, thefiller acts on carrier layers with

zeroforces g5 both before and at thetime of stability loss.

Thus, the three-layer ring becomes unstable against
shear in the case under consideration at transverse com-

pression when the stress 033 isequa to-G,;.

3. NECESSARY ACCURACY OF CONSTRUCTION
OF NONLINEARAND LINEARIZED EQUATIONS
OF THE THEORY OF THREE-LAYER SHELLS
FOR ANALY SIS OF SHEAR FORMS
OF STABILITY LOSS

If all strain components of thefiller aresmall, i.e., if
2e;=cand gy; = ¢, Egs. (1.7) can bewrittenintheform

PAIMUSHIN, SHALASHILIN

@ _ D
2e5=wW+Yyand e =y= . Using them, we

again arrive at Egs. (1.13) and (1.14), where

w ' —-w

o A .
St = OsMigy + T 005

contrary to Eq. (1.15).

In application to three-layer shells, the equations
thus derived are fully equivalent both to equations
from [1] and to similar equations of the theory of lay-
ered shells, which are constructed under the assumption
of smallnessof strains2¢;;= € and €,; = £inthe majority
of other works. These equations lead to the equations

K K 1
SuRap + T53” @ +hay =0, 6 = 5 Gos(uy” — U

) i3 i
+ChyT7+ My

for analysis of the shear form of stability loss of the
three-layer ring. Contrary to Egs. (2.10), the latter

equations do not contain the terms 0% Y,. Under the
accepted accuracy 1 + hy = 1 and in view of Eq. (2.6),
these equations lead to the formula[3]

2.0, 1
PO= h, o2 g nn

which overestimates the critical load of the shear form
of stability loss of thethree-layer ring by afactor of 1/4,
as compared to Eq. (2.14).

Thus, analysis of the above results and results
obtained in [3] shows that, to construct two-dimen-
sional geometrically nonlinear equations for descrip-
tion of shear forms of stability loss in the theory of
three-layer (generally multilayer) elements of construc-
tions, one must consider finite transverse shear strains
of the filler, finite rotation angles of fibers, which are
normal to its middle surface before deformation. In the
variant proposed in thiswork, this requirement reduces
to theretaining of underlined termsin Egs. (1.7), which
leads to the appearance of terms T3y in Egs. (1.13) and
expressions (1.15).

4. SHEAR FORM OF STABILITY LOSS
OF A THREE-LAYER CYLINDER SHELL
IN THE AXIAL DIRECTION

Aswas shown in [7], among all forms of free oscil-
lations in three-layer shells, two uncoupled forms that
are possible in the absence of restrictions on mutual
tangential displacements on the shell contour, i.e.,

when u? — ul? #0, stand out. They arerealized in the
shell under zero variability of the parameters of the
stress-strain state in directions x' only due to mutual
displacements of outer layers as rigid bodies. By anal-
ogy with the forms of oscillations in the cylinder shell
under external or internal pressure and above condi-
tions at boundary cuts, the shear form of stability loss
must be realized not only in the circular direction,
whichisstudied in Section 2, but asoin theaxial direc-
tion. Indeed, taking zero variability of al functions
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appearing in the equations for the perturbed state of the

cylinder shell in the directions 6 and x' = x, we arrive

not only at the problem analyzed in Section 2 but also

at the equation T3 + T2y = 0. In view of formulas
13 33

T 33 0 TO . . .
13_ 1 — — 9
o h and 0, = 0y >h and kinematic relations
u(12) _ (11) u(12) _ (11)
_ -1 -1 1y — & 71 ; ;
2€3 = >n andy' =y, >n , this equation
reduces to the form

1
ﬁ(Gls + 023)(U(22) - U(zl)) = 0.

This equation, along with Eq. (2.7), provides the for-
mula

_ Gi(1+X)
X

Comparison of this formulawith formula (2.15) shows
that, for theisotropic filler (G5 = G,; = G;), thecritical
pressures (external or internal) at which the three-layer
cylinder shell loses stability through shear in circular
and axial directions coincide with each other with
accepted accuracy 1 + h, = 1.

*
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The presence of a finite number of determining
parameters of the problem indicates that the turbulent
shear stressisauniversal function of the average-veloc-
ity gradient and the turbulent heat flux is a universal
function of the average-velocity gradient and average-
temperature gradient in the wall region of a turbulent
boundary layer. This circumstance, along with dimen-
sionality reasons, makes it possible to reduce the equa-
tions of momentum and heat transfer to first-order ordi-
nary differential equationsfor velocity and temperature
profiles, which can be easily analyzed in general form.
As aresult, similarity laws for velocity and tempera-
ture, which generalize the known logarithmic distribu-
tions to the case of injection and suction, are obtained.

The approach proposed in this work has consider-
able advantages over the classical method [1], where
dynamic equations are not used, and extends the set of
wall-turbulence problems, whose similarity laws can be
obtained without the formulation of specia closing
hypothesis.

1. We consider a flow of an incompressible heat-
conducting fluid in the wall region of a turbulent
boundary layer on a smooth permeable surface. The
velocity of injection or suction is considered to be
directed along the normal to the wall. In the thin wall
region, the transverse gradients of average parameters
are much larger than the longitudinal gradients. There-
fore, the transfer of momentum and heat in the first
approximation is described by the known equations

du _ T,

—'v'a+v @ = —+v,u,

—w'v'm+x‘j—3 =+ Va(0—8,).

(1.1

(1.2)

Here, u is the longitudinal component of the average
velacity, 0 is the average temperature, y is the distance
from the wall, v is the kinematic viscosity, X is the

Central Institute of Aviation Motors,
ul. Aviamotornaya 2, Moscow, 111116 Russia

molecular diffusivity, and v,,, 6, 1,,, and j,, arethewall
values of the transverse velocity, temperature, shear
stress, and temperature flux, respectively.

Temperature is considered as a passive parameter
that does not affect flow dynamics. Therefore, EqQ. (1.2)
in the corresponding notation is the transfer equation
for a passive parameter.

Equations (1.1) and (1.2) describe a turbulent flow
along an infinite plane, where the transverse velocity
and pressure are constant, and other parameters depend
only on the distance from the plane. For this flow,

du _ Tu[]
& Fidv, vy, = (1.3)

pt
wvo= K5, vw,%% (1.4)
% = Fado Vo Xo Vi = fu (1.5)
Bv= F4S/,v,x,vw,%”,jmg, (1.6)

where F, ..., F, are certain universal functions. Thus,
we assumethat the quantities under considerationin the
wall region are independent of external parameters of
the boundary layer and are completely determined by
the conditions on the wall and physical constants of the
fluid.

Expressing t,,/p from Eq. (1.3) and j,, from Eq. (1.5)
and substituting them into Egs. (1.4) and (1.6), we
arrive a the relations

N dug
WvQd= Gl%,V,VW,wj,
du de (1.7)
1 1 — _LJ
B'vlO= GZ%”V’X’VW’dy’_d)E'

Applying the dimensiona analysis to functional
relations (1.7) and taking into account that a special
dimension can be used for temperature as a passive
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parameter, we obtain

2
v = —gx‘;—y‘% SR, B),

= _y2d8du
B'vd= -y dydyT(R, Pe, B), (1.8)
Rz Ydu oo Yduo g Vady
v dy’ x dy’ Rydu’

Here, thelocal Reynolds number R isthe characteristic
turbulent-to-molecular viscosity ratio and the local
Péclet number Pe is the turbulent-to-molecular diffu-
sivity ratio. Let us assume that functions Sand T are
continuous in their domain of definition, have partial
derivativeswith respect to all arguments, and satisfy the
conditions (o, 0) # 0, T(eo, o0, 0) Z 0.
Inthe wall variables

=Y [w
y+ - v p1 ’
Vi = Vy '31 e+ = Qﬂ—— ’T_W
Tw Jw p

Egs. (1.1) and (1.2) in view of Eq. (1.8) take the form

u, = u B
Ty
-6

2
%ﬁ%g (R, B) + 3;+ =1+v.u, u(0)=0,(19)
,d8,du, 1d6, _
y+d_y+dy+T(R, PrR, B) + Erdy_,, =1+ V+9+, (110)
where
08.(0) = 0,
R = yzdu+ _ vV, dy+

‘dy. P~ Ry.du,

and Pr = § is the molecular Prandtl number.

Thus, the problem reduces to analysis of ordinary
differential equation (1.9) for the velocity profile.
According to Eq. (1.10), the temperature profile is
specified by the integral

Prv.dy,

Vs
In(1+v,8,) = I1+ PrRT(R, PrR, B)’
0

(1.11)

2. For an impermeable wall (v, = 0), Eq. (1.9) has
the solution in the closed form

R
drR R

u, = _ 1
{JRZS(R,OHR JRPS(R,0)+R  (2.1)

y, = JR°S(R,0)+R, 0<R<w,

DOKLADY PHYSICS Vol.48 No.9 2003
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and integral (1.11) takesthe form

R
0. = (Frd R°S(R, 0) +R
* _[1+PrRT(R,PrR,0)'
0

(2.2)

It follows from Egs. (2.1) and (2.2) and from condi-
tionsfor the functions Sand T that vel ocity and temper-
ature have logarithmic asymptotic behavior in the outer
part of the wall region:

U, = 2(Iny, + Co) + Oy, 23)
Pr, _q
6. = —lIny,+B(P] +O(y.), a>0,
S(e0.0) (2.4)
K = ’\/S(oo1 O), Pr, = T(OO,;0,0)’ Y .

The values of von Karman’'s constant K, the constant
C,, and turbulent Prandtl number Pr; in the logarithmic
region must be determined from experiments.

The asymptotic behavior of the function B(Pr)
appearing in Eq. (2.4) for smal and large molecular
Prandtl number can be obtained from integral represen-
tation (2.2). In the first case,

B(Pr) = InPr+b+..., Pro,
where
1
_ T(oo,oo,O)dPe
b, = I1+ PeT (e, Pe, 0) @
0
oo[1 + Pe(T (o0, Pe, 0) — T (o, o0, 0))] dPe_ InK.

1
Assuming asin [2] that the turbulent diffusivity isinde-

pendent of x (function T is independent of the Péclet
number), the calculation of integrals (2.5) yields b, =

Pe[1+ PeT (o, Pe, 0)]

In Epirg ,which islessthan the value proposed in [2] by
t

one unit.
To analyze the other limiting case, we take T(R,

PrR, 0) = k(Pr) /R + ... for R — 0 according to the

known estimate B'v'= O(y’) for y —= 0. Then, the
leading term of the asymptotic expansion for B(Pr) has
the form

B(Pr) = b,Pr**+ ..., Pr—o,

[

b = K dx _ 211/3K
’ Pn.([1+k(oo)x3 9Pr,k*3(c0)

An approximate formula yielding close values for the
coefficient b, was proposed in [2].
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w 1%
401 V,= — —U—W . Thus, v, for the asymptotic boundary
C
layer is small. This condition is also valid for the gen-

-20

Quialitative pattern of the integral curves of Eg. (3.2) inthe
upper half-plane.

3. Inthe general case of nonzero transverse velocity
on the wall, introducing the new variables

YV

y = T Ve WS v, l1+v,u, (3.1
we obtain the equation
dw 2dw _ 2
FROSRB+IT =L WO) =5, ()
where
Ywdw _ 2 dy
R=—Zav B = RYwdw’

Variables are taken (3.1) so that Eq. (3.2) does not con-
tain the parameter v,.

Theintegral curves of Eq. (3.2) are symmetric with
respect to the abscissa axis. Therefore, it is sufficient to
analyze their behavior in the upper half-plane. The fig-
ure shows the qualitative pattern of integral curves
[solutions of Eq. (3.2) are constructed for S= k?]. Neg-
ative and positive Y values correspond to suction and
injection, respectively. Along each curve, w increases
from O to +oo.

The second-quadrant parts of integral curves along
which the variable Y varies from —co to zero correspond
to thetotal velocity profilesin the asymptotic boundary
layer with suction. This one-dimensional flow, where
all average parameters depend only on the distance
from the wall, is exactly described by Eq. (1.1) when
the boundary condition u = U, for velocity is imposed
in the inflow at y = . For this flow, it is obvious that

eral suction case, because velocity u, is high at the
external boundary of the wall region and the right-hand
sideof EQ. (1.9) ispositive. Therefore, according to ini-
tial condition (3.2), only integral curves crossing the
ordinate axis at sufficiently large w values are physi-
cally meaningful (physically meaningless parts of inte-
gra curves are shown in the figure by dashed lines).
The velocity profile in the wall region of the boundary
layer with suction is generally described by parts of
integral curves corresponding to large w val ues.

All integral curves are physicaly meaningful in the
first quadrant. Small w(0) values correspond to strong
injection, i.e., to large v, values.

The asymptotic representation of the vel ocity profile
in the outer part of the wall region, where the viscous
term and 1/R-order quantities in Eq. (1.9) can be
ignored, has the form

VE(./l tv,u,-1) =

a>0, y, - .

1 —a
E['”Y++C(V+)] + O(Y+ )! (33)

Here, C(v,) is a certain universal function. For the
injection and suction cases, Eq. (3.3) presents the
asymptotic behavior of the solution of Eqg. (1.9) for
y, — oo and the intermediate asymptotic function cor-
responding to the outer part the wall region, respec-
tively. Relation (3.3) is ageneralization of the logarith-
mic law for the vel ocity profileto the injection and suc-
tion case and must coincide with Eq. (2.3) for v, = 0;
therefore, C(0) = C,,.

The asymptotic representation (3.3) was first found
in [3, 4] on the basis of the Prandtl mixing-length
formula.

Thecalculation of integral (1.11) for largey, inview
of Eq. (3.3) yields

1
2Pr‘

1
—1} + %D(v+, Pr)(1+v,0,)""

[(1 +v.,0,)
(3.4)

1 —a
= E[Iny+ +C(v,)] +0O(Y, ), Yi— &,
where D(v,, Pr) isacertain function. Relation (3.4) for

. = 0 must coincide with Eqg. (2.4). Therefore,
D(0, Pr) = C, — B(Pr).

Relation (3.3) well describes the experimental
velocity profiles with injection and suction (see, e.g.,
[5]). Itisdifficult to test similarity law (3.4) by analyz-
ing the temperature profile, because experimental data
on the temperature profile in the boundary layer on a
permeable surface are virtually absent.

Accordingto Eq. (1.8), the turbulent Prandtl number
in the logarithmic region is independent of the trans-
DOKLADY PHYSICS Vol. 48
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verse velocity on the wall, which is corroborated by
experimental observations [6].

4. Applying the method of matched asymptotic
expansions[7] to Eg. (3.2), we now analyze the asymp-
totic structure of the velocity and temperature profiles
for large v, values. In this case, four characteristic sub-
regions are formed in the wall region.

Subregion |, where Y = O(1), adjoinsthewall. Here,
the turbulent shear stress can be disregarded in
Eg. (3.2), and theleading term of the solution coincides
with that for the pure laminar flow:

Y
w= 2e+0o(vy,
v, 4.1)
In(1+v.6,) = PrY+0(vy).

The solution in subregion |1 lying aboveis sought in
the form

Y=M+Y, w= Wol¥a)
M 4.2)
Y, = O(1), M—w.

The substitution of Eq. (4.2) into Eq. (3.2) and the pas-
sagetothelimit M — o and Y, = O(1) provide

WWEZ 2 dWZ Wde2

(R, ) + — Wav, =1, R= A (4.3)
Thus, the turbulent and laminar components of shear
stressin this subregion are of the same order of magni-
tude. Asymptotically matching expansions (4.1) and
(4.2), we determine the initial condition for Eq. (4.3)
and the parameter M:

Y M
W, —2e?, Me®

Y, ——0; =V, 4.4)

From Eqg. (4.3) and with account of initial condition (4.4),
we obtain the solution in the parametric form

R

Y; = INR+RS(R, @) + [S(R, «)dR,
) (4.5)

W, = 2JR’S(R, ®) +R, 0<R<w.
The temperature profilein subregion Il iswritten as
In(1+v.0,)

YZ
Prdy,

= * 4+
PY*+ [ ITART(R PR %)’
Y*-M

(4.6)

Y* = O(1).
Substituting Eq. (4.5) into integral (4.6) and passing to
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thelimit M — oo, we arrive at the relation
In(1+v,0,)
_ RdS(R ) + 25(R, »)dR
= PrM+ PrI 1+PrRT(R, PrR, »)
" dR
* PrIR[1+ PrRT(R, PIR, ©)]
1
2 T(R,PrR, o)dR
1+PrRT(R, PrR, ©)’
0
Therefore, letting R go to oo, we obtain
In(1+v.,0,) = 2binY, +PrM +a,(Pr) +... (4.7)

for the outer boundary of subregion II, where

(e, )

T(c0, 0, )’

b =

Y2 —00

and the function a,(Pr) can be expressed in terms of
integralsof Sand T.

In subregion 111,

Wy(Ys) |
JM ’

Y;0(1).

Y=M+.J/MY,;, w=

1 _
v, © O(1),

1
Y_3 =0(1), and

Y; = O(1), only the turbulent component of the shear
stressretainsin Eq. (3.2):

After the passage to the limit M — oo,

d
E%\QV%S( B)=1 B= ENdeE (4.8)

The solution that satisfies Eq. (4.8) and matches the
solution in subregion Il has the form

_S(°° B) S(e0, B)dB
2 s

W, = 2 ,§(;%,__[3_), 0<p <.

In subregion 111, the integral

4.9)

Ya

_JBdY;

= | Tl w B
Y,/ M

isadded to Eq. (4.6) for the temperature profile. Substi-
tuting Eq. (4.9) into thisintegral and passing to the limit
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M - o, we arrive at the relation
I3 = b[INM =2InY, + 2In(2F(0, ©))]

1 o

S, B)dB _ - d(=, )
e en]

BT(c0, 00, B)  JT(c0, 0, B)

4 (LS(, B) =bT(w, », B)]dB
| — N
Summing this expression with asymptotic function (4.7)
and passing to the limit B — 0, we arrive at the
relation
In(1+v,0,) = 2PrInY;+ PrM + bInM

+a,(Pr)+as+ ...,

Y3—>00,

(4.10)

for the outer boundary of subregion I11. Here, the con-
stant a; is aso expressed in terms of integrals of func-
tionsSand T.

In outer subregion 1V,

1 _
7 0(1),

(4.11)

Y = MY, w=W,(Y)+...,

ﬂdInYﬁS( 0) =1

The solution that satisfies EQ. (4.11) and matches the
solution in subregion 11 has the form

1
W4 = EInY4

(4.12)

Comparing Egs. (4.12) and (3.3), we obtain the asymp-
totic representation

C(v+):%+..., V,—o, M+2InM = 2Inv,

of the function C(v,).

To determine the temperature profile in outer subre-
gion IV, asymptatic representation (4.10) must be com-
plemented by the integral

Ya

=

1+Yy/ /M

2PrdY,
YiIny,

VIGDOROVICH

As aresult, we obtain the expression
In(1+v,6,) = 2PrninY,+PrM
+(b+Pr)InM + a,(Pr) + a,.

Comparing this expression with Eq. (3.4), we arrive at
the asymptotic representation

D(v.,, Pr)

[l |
= exps[PrM + (Pr, + b) InM + a,(Pr) + 2]

Therefore, this function tends to zero for large v,
values.

Thus, we consider the problem formulation based
on dynamic equations, the usual assumption that the
flow in the wall region is independent of the external
parameters of the boundary layer, and the requirement
of the continuity of functions Sand T specifying the tur-
bulent shear stress and temperature flux. Without any
hypothesis about the particular mechanisms of turbu-
lent exchange, we obtain similarity laws for the veloc-
ity and temperature profiles and asymptotic representa-
tions of the universal functions C and D appearing in
these laws.
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Using a special &-variable procedure, two exact
solutions of the problem of vibrations of an elastic bar
with atriangular cross-section under plane deformation
were obtained in the closed form. In the first case, the
normal displacement and the shear stresswere set at the
bar boundary. In the second case, the tangential dis-
placement and the normal stress were given. The reso-
nance frequencies were found, and the displacement
field, aswell asvolume and shear strains, was analyzed.

At present, only several exact solutions have been
obtained for 2D dynamic problems of the theory of
elasticity for unlimited regions. For limited regions, the
number of exact solutions are even fewer. Here, we
point to the solutions obtained in [1, 2]. Functionally
invariant solutions were considered in [3], where the
Smirnov—Sobolev procedure was used. The Laplace
transform and the multiple Fourier coordinate trans-
form, as well as the Kupradze fundamental solution,
were used in [4]. Below, the exact solutions were
obtained using specia & variables, which were previ-
ously used in the dynamic problem of the motion of a
viscous fluid in atriangular pipe[5].

For plane deformation, we write the equations of
motion for elastic-medium pointsin the Lagrange vari-
ables[1]:

()\+2H)Uxx+()\+H)ny+HUyy+él = PU, (1
()\ + Zu)vyy'l' ()\ + H)ny+ MV + éZ = PUy-

We consider the problem of harmonic vibrations
without initial conditions when the boundary condi-
tions at the bar boundary I', whose cross section Q isa
regular triangle with the height h, are set in the form

Up| = UgCOSWE, Ty = ToCOSWL, 2)
where u,, isthe normal displacement and T1,, is the shear
stress at the bar boundary. The solution of the problem

\oronezh Sate Technological Academy,
\oronezh, 394000 Russia

is sought in the form
u = U(x, y)coswt,

Substituting Egs. (3) into Egs. (1) and (2), we arrive
at the following problem for the amplitudes U and V:

v = V(X, y)coswt. 3)

@+2WUM+@+HﬂMﬁMUW+me=O,m)
(A + 21 Vyy + (A + Uy + UV + po’V = 0,
_ _ T
(Unx+vny)r - an ynlr - Z'l, (5)

where (n,, n,) istheinward unit normal to the boundary
I andy,is the shear strain for points of this boundary.
Hereafter, the quantities U and V are called displace-
ments, although the true displacements can be obtained
by multiplying them by cos wt. The sasmetermsare used
for strains and stresses. In this formulation, it is possi-
ble to find exact solutions. To this end, we consider an
auxiliary problem. Let U and V depend only on the
coordinate . In this case, the partial solutions of set (4)
have the form

U, = cosax, U, = snax,
V, = cosbx, V, = sinbx,
, , (6)
az - pPw 2 _ pw
A+2u T
We introduce the three variables
& = (r=rpn;, i =123 @)

Here, n; are the inward unit normals to the sides of the
triangle Q, r; arethe radius vectors of itsvertices, and r
istheradius vector of an arbitrary pointintheregion Q.
The variables &; and the normals n; have the following
properties, which will be often used:

1
n+n,+n; =0, NN, = NNz = Nyng = _é; (8)
_ _ _ 3.
nlxnz—nzxns—nsxnl——z—v 9)

1028-3358/03/4809-0533%24.00 © 2003 MAIK “Nauka/Interperiodica’
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&, +&,+& = h.
For F = F(§;), F, = F'(&)n,,
Fy, = F'(&)niy, (10)

Fxx = F"(Ei)nizw ny = F"(Ei)nixniyl
Fyy = I:"(E.i)nizy-

We denote n, = cos6; and n;, = sin8;. In this case,
0, isthe angle between the normal n; to the straight line
&, = const and the x axis. Taking into account that the
vector components (U, V) transform according to the
known law under rotation and using Egs. (6), we can
write the following partial solution of set (4):

U = (Acosa&, + Bsina&,)n,,
+ (Acosaé, + Bsinag,)n,,
+ (Acosag; + Bsinags)ng,
—(Ccosbg, + Dsinb&;)n,,
—(Ccosbg, + Dsinb,)n,,
—(Ccosbé; + Dsinbg;)ns,,

V = (Acosag, + Bsinag;)n,,
+ (Acosag, + Bsinag,)n,,
+ (Acosa; + Bsinags)n,,
+ (Ccosbé, + Dsinb&,)n,,
+ (Ccosbé, + DsinbE,)n,,
+(Ccosb& + Dsinbés)ns,.

(11)

Indeed, the substitution of Egs. (11) into Egs. (4)
yieldsthe identities. The variables &; enter equivalently
into the expressions for U and V, while the constants A,
B, C, and D can be found from the two boundary con-
ditions specified by Egs. (5). Since solution (11)
dependsidentically on thevariables§,, &,, and &, con-
ditions (5) on any side of the triangle lead to the same
result. For definiteness, we apply the first boundary
condition from (5) to the side &; = 0. In this case, we
replace §, =h—¢&, in view of properties (10):

Up = (Ung + Vn3y)23:0
= (Acosag, + Bsina&,)n,,ns,
+[Acosa(h—¢,) + Bsina(h—¢&;)] nynsy,
+ Anj, — Cnz,ng, — (CcosbE, + DSINbE )Ny Ny,
—[Ccosb(h—¢&,) + Dsinb(h—&;)] n,nsy

+ (Acosa; + Bsinag;)n; n,,

. 12)
+[Acosa(h—-¢&,) + Bsina(h—¢&;)] nyng,

CHERNYSHOV

+ Anj, + Cng, Ny, + (CcosbE; + DsinbE; )N, g,
+[Ccosb(h—¢&;) + Dsinb(h—¢&;)] nyn,,.

The left-hand side of this equality isindependent of &;
therefore, the coefficients of cosines and sines on the
right-hand side must be equal to zero:

Ang,ng, + (Acosah + Bsinah)n,,n,, + Angyng,
+ (Acosah + Bsinah)n,yns, = 0,
Bn,ng, + (Asinah — Becosah)ny,ng, + Bngyng,
+ (Asinah — Bcosah)n,,ns, = 0, 13)
—Cny g, — (Ccosbh + Dsinbh)n,, N,
+ Cny,ng, + (Ccosbh + Dsinbh)n,n,, = 0,
—(Csinbh — D cosbh)n,yng, + DNy g,
—Dnyyng, + (Csinbh — Dcosbh)nyng, = 0.

In view of properties (8) and (9), set (13) issimplified as

A(1+ cosah) + Bsinah = 0,
B(1-cosah) + Asinah = 0,
C(1-cosbh) — Dsinbh = 0,
D(1 + cosbh) — Csinbh = 0

Therefore, we find

A= Aosinag, B = —Aocosag,
h h (14)
C= Cocosbé, D = Cosmbz.
Now, from Egs. (12) and (14) we obtain
: ™ h
A, = uo%ma% . A=U, B = -Uootas. (15)

Another unknown constant C, is determined using
the second boundary condition from Egs. (5) for the
shear strain. On the sides of thetriangle, the normal dis-
placement component u,, = U, is constant. Therefore,

the shear y is determined from the expression

— |j)uT3 + aunaD

_ ou,
2Vl =0 = Lon, * 0t5lk, -0

= . (16)
0N e, =0

We specify the unit tangential vectorst; on the sides
of the triangle in terms of the components of nhormals
ni: T = (Niy, —N;y). Inthis case, the tangential displace-
ment U, isdetermined as

Uy, = UTg, + V15 = =Vng, +Ung,.

DOKLADY PHYSICS Vol.48 No.9 2003
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Substituting Uy,
—1
Co = ~toibsinb}]

After simplifications by means of Egs. (14) and (15),
solution (11) of the problem reduces to the form

U= Ao[nlxsina%—ﬁlg + nZXsina% —E%

into Eq. (16), wefind

(17)

+ nSXQna% - E%} - Co[nlycosbEh £
+ nzycosb% - E% + n3ycosb + — E%]}
VvV = Ao[nlysina%—alg+ nzysinag EZE
(18)

+ n3ysina% —E%} +C [nlxcosb% —E%

+ nZXcosb% - E% + ngxcosb% - E%}

~1
uo%inag% A O

1 -1
uo%inag% , Co —TOHJbSinbg% :

The resonance freguencies w* can be found from

the conditions sin%] =0and sin%1 = 0, under which

Ao

1
—TOBibsinbg% ,

Ao

solution (18) does not exist:

TA+20 o _ EJE -
-2khl > (A)2-2kh p,k 12, ....(19

Using the found displacements, we calculate strains
and stresses:

e =U, = —aAO[nixcosa% —EE + ngxcosa% - %

+n3Xcosa[h EED] bCo[nlxnlyslnb[h

&g
+ n2xn2ysinb% - EE{% + n3xn3ysinb% - E%}

e, =V,= —aAO[nfycosa% - EE + niycosa% - Eg

+ ngycosa% - E%} + bco[nlxnlysinb% - EE
No. 9
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+ annzysnb% - EED + ng,xng,ysmb[h

&g

_1 _ h
&y = z(uy+vx) = —aAO[nlxnlycosa[E—E

(20)

(o[

+ n2xn2ycosa% - E% + n3xn3ycosa% - E%}
" %bco[(nix _ niy)sjnbiD &l

* (ngx—ngy)sinbEh EZD +(N3e— nay)smbdj _EE}

O, = 21e

xyr Ox = ()\+2p-)ex+)\ey’

o, = (A+2u)e, + Ae,.

In particular, it follows from Egs. (18) and (20) that
the vertices of the triangle displace along the respective
heights by 2u,, and the displacements are equal to zero,
i.e, U=V=0, at the triangle center. The volume com-
pression (e, + &) takes the characteristic magnitudes

_ h
(ex+e) = —3aAocosa2

at the vertices of the triangle,

_ h
(ex+e) = 3aAocosa6

at its center, and

= —aAO% + cosatD

(e+e) 1

at the middles of its sides.

Problem (1) of vibrations of an elastic triangular bar
has one more exact solution for the boundary condi-
tions

Ur|r = UgoCOSWE, Op|p = 0,oCOSWL. (21)

Making the same manipulations as when obtaining
solution (18), we arrive at the exact solutionin theform

U= Ao[nlxcosa% - EE + nZXcosa% - E%

g cosa D - & | - Col nyysinb [P - £ ]
+ nzysinb%—zq%+ mpinb%—&%],
(22)
V = Ao[nlycosa% - EE + nzycosa% - Eg
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+ n3ycosa% — E%} + Co[nlxsinb% —EE

+ ansinb%—E%+ naxgnb%—ag}.

The constants A, and C,, are determined from boundary
conditions (21):

Ay = ono[a()\ + Zu)sinar—z]}_l,

—1
Co = uw%sinbg% .

The resonance frequencies w* found from Egs. (23)
have form (19), as in the preceding problem. Using
Egs. (22), we calculate the strain-tensor components:

(23)

e, = aAO[nfxsina% —EE + ngxsina% —Eg

+ ngxsina% —Z D] + bco[nlxnlycosb% - E%

+ nzxnzycosb% — E% + n3xn3ycosb% — E%}

e = aAo[nfysina% - Eg + ngysina% - Eg

+ ngysina% - E%] - bCo[nlxnlycosb% - EE (24)

CHERNYSHOV

+ nZanycosb% - E% + nSXnSyCOSb% _ E%},
Cxy = aAO[nlxnlySina% - EE + Ny, Ny, S na% - Eg
* n3xn3ysina%— E%} + %bco[(niy— ns,) cosb%— 35

+ (N, —nN3,) cosb% —E%+ () cosb%—&%]

In this problem, the vertices of the triangle displace
in parallel to the opposite sides by 2u,, and the dis-
placements are equal to zero, i.e, U=V =0, at itscen-
ter. The three-dimensional compression at the vertices
and at the sides of the triangle isidentical and equal to

(es+eg) = aAosinag,

whileitisthreetimes aslarge at its center.
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