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The self-switching of unidirectional coupled shear
waves was discovered in 1982 [1, 2], mathematically
described in [3–6], and experimentally obtained first
in [7, 8] and then in [9]. This phenomenon represents a
sharp change in the ratio of the powers of these waves
at the exit of the system, which is induced by a small
change in the input power or phase of at least one of the
waves [10, 11]. It can be also caused by a change in the
power or phase of a weak optical signal at the entry of
the system. In the latter case, optical pumping radiation
of much higher power, along with the signal, is supplied
to the entry. A new class of fully optical transistors was
proposed on the basis of this phenomenon [1, 2].
Unidirectional coupled shear waves include the whole
class of waves in optics, such as waves in tunnel-
coupled optical waveguides, i.e., two parallel optical
waveguides spaced by a short distance (usually from 1
to 10 µm), waves of different polarizations in an optical
birefringent or magnetically active waveguide, waves
under Bragg diffraction according to the Laue scheme,
various modes in an optical waveguide, and waves of
different frequency in a quadratically nonlinear crystal
or optical waveguide [10, 11].

This phenomenon is of special practical importance
for solitons used as unidirectional-coupled shear
waves, because a soliton has the same phase over the
entire time profile and therefore complete self-switch-
ing of its power is possible. This property is combined
with the known possibility of transmission of solitons
to large distances without distortion of their shape
through fiber communication channels. The possibility
of the switching of fundamental solitons in cubically
nonlinear tunnel-coupled optical waveguides, when all
waves have the same carrier frequency, was shown
in [12]. The switching of orthogonally polarized funda-
mental solitons in a cubically nonlinear optical
waveguide was analyzed in [13]. The possibility of the
switching of solitons in quadratically nonlinear tunnel-
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coupled optical waveguides from one waveguide to
another was demonstrated in [14].

In this work, we show the possibility of the fully
optical switching of fundamental solitons in cubically
nonlinear tunnel-coupled optical waveguides by a weak
signal of a different carrier frequency from one
waveguide to another. Such a different-frequency
switching provides ultrafast, purely optical control by
the flux of solitons (including their appearance in given
time windows), which is very important for ultramod-
ern soliton communication channels. It also allows the
transformation (with high gain) of a weak modulation
of signal pulses to strong modulation of a train of soli-
tons at different desired carrier frequency. The ampli-
tude of the signal is much lower than the amplitude of
a soliton. Therefore, the modulation and control by the
signal can be easily realized (even by means of elec-
trooptics) with a much higher rate than the rate charac-
teristic for ordinary control of a stream of solitons by
electrooptical methods. Then, this very dense informa-
tion from the signal wave (signal pulses) is automati-
cally introduced to the soliton flux without loss in the
speed of information transfer.

An important advantage of the different-frequency
switching of solitons, which is considered in this work,
over the same-frequency switching described previ-
ously in [12] is the elimination of the parasitic jitter
effect and signal-phase drift, i.e., the elimination of the
parasitic effect of both short-range and slow phase
changes in the signal. Moreover, the effect of the input-
soliton phase on the switching process is also excluded
due to insensitivity of this switching to the input phase
difference between the soliton and signal radiation.

If the carrier frequency of the signal differs signifi-
cantly from the carrier frequency of the switched soli-
ton, the group velocity and second-order dispersion of
the signal pulse can differ substantially from the
respective parameters of the switched soliton. For this
reason, there is a natural question: Does optical switch-
ing occur in this case? If it does, is it stable under the
deviation of the indicated signal parameters from the
respective parameters of the soliton? This work gives
positive answers to both questions.
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We emphasize that the carrier frequency of signal
pulses can differ significantly from the carrier fre-
quency of solitons and can even be outside the region of
the formation and propagation of solitons and/or trans-
parency windows of a fiber light guide. This property
enhances the practical value of this switching.

The electric field in a system of two cubically non-
linear tunnel-coupled optical waveguides can be repre-
sented in the form [15]

(1)

where βjk is the effective index of refraction of the kth

waveguide for the frequency ωj , (z, t) is the slowly
varying amplitude of the wave in the kth waveguide for
the frequency ωj , Ejk(x, y) is the transverse profile of the
field in this waveguide, ejk are the unit polarization vec-
tors of the waves, za is the length-dimension (absolute)
coordinate along the tunnel-coupled optical
waveguides, k = 0 and 1 is the waveguide number, and
j = 1 and 2 is the frequency number.

Let us substitute Eq. (1) into Maxwell’s equations
with allowance for cubic polarization, disregard the
second derivatives with respect to the longitudinal
coordinate, and consider transverse field profiles in
waveguides as fixed. Equating coefficients of identical
exponentials, we obtain the set of equations for electric
fields corresponding to subscripts j and k. Multiplying

both sides of each equation by (x, y), integrating
them over the cross-section, and going over to running
time, we arrive at the following set of truncated equa-
tions for the amplitudes Ajk(z, τ), which describe in par-
ticular the interaction of the switched soliton at the car-
rier frequency ω1 ( j = 1) with the controlling signal
pulse at the different carrier frequency ω2 ( j = 2) in tun-
nel-coupled optical waveguides with the numbers k = 0
and 1:
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Here, Kj is the tunnel-coupling coefficient for the fre-
quency ωj , coefficients Djk characterize the second-
order dispersion and are inversely proportional to the
dispersion length for the frequency ωj , cubically non-
linear coefficients θjk, θ12k, and θ21k (proportional to
convolutions of the cubic-nonlinearity tensor) deter-
mine the effect of the intensity of waves in the
waveguide on the index of refraction of this waveguide
and depend both on the nonlinearity of the waveguide
material and on the transverse field profile in it [10, 11,
15], υjk are detunings of the group velocities, and αj 
βj1 – βj0 is the differences of the effective indices of
refractions of the waveguides for the frequency ωj .
Equations (2) are generalizations of equations from
[15] to a dispersive medium.

The particular form of the coefficients in Eqs. (2)
depends on the normalization. Taking into account the
features of the problem under consideration, we take
the soliton normalization of amplitudes for the fre-
quency ω1 such that θ10 = θ11 = 1, D10 = D11 = 0.5, D2k =

0.5  = 0.5 . To this end, the coordinate along

the tunnel-coupled optical waveguide is normalized by

the dispersion length ld1 =  for the frequency ω1, i.e.,

z = ; D = ,  = ; τ = 

is the normalized running time; τp is the initial duration

of the input pulse (soliton); u =  is the average
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ence between the carrier frequencies of the signal and
solitons. Quantities with tilde are dimensional, i.e.,
unnormalized. We consider the most extensively used
case of identical tunnel-coupled optical waveguides,
i.e., αj = 0, υ1k = 0, θj0 = θj1, and θ10 = θ11 = θ.

We also assume that θ120 = θ11 = θ121 = θ210 = θ20 =
θ21 = 1. As a rule, these relations can be at least approx-
imately satisfied. For definiteness, the carrier frequency
of the signal pulse is taken twice as high as the carrier
frequency of the soliton, i.e., f = 2. In this case, since the
field profiles for the signal frequency ω2 overlap less
with each other, the tunnel-coupling coefficient is much
smaller than that for solitons. Specifically, we take the
ratio K2 = 0.1K1 between these tunnel-coupling coeffi-
cients. Numerical experiments show that the results
below hold qualitatively for other relations between fre-
quencies of the signal and switched solitons (e.g., for
the frequency ratio f = 1.4/0.98, important in practice),
for different K2/K1 ratios, and for different relations
between θ1k, θ2k, θ12k, θ21k.

The initial (input) conditions have the form

(3.1)

(3.2)

(3.3)

(3.4)

where τd is the shift of the maximum of the signal pulse
from the maximum of the soliton.

We assume that  !  and take various shapes
of the signal pulse ρ(τ – τd), such as

(3.5.1)

(3.5.2)

For simplicity, we consider signal pulses and solitons of
the same duration; i.e., τ1p = τ2p = τp. The results quali-
tatively hold for unequal durations. All fields at time
infinity vanish; i.e., |Ajk(z, τ → ±∞)| → 0.

Figures 1–4 illustrate the optical switching process.
Figure 1 shows pulses in tunnel-coupled optical

waveguides: the switched soliton supplied to the entry
of the zeroth waveguide and a very weak signal pulse,
which is faintly visible and whose input power is
approximately one hundredth of the input power of the
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soliton (signal pulses in Fig. 1 are multiplied by a factor
of 50). Figures 1a and 1b show the switching of the soli-
ton to the exits of the (point M0) zeroth and (point M1)
first waveguides, respectively (see [3–8, 10–12] and
Fig. 2). This switching is purely optical, because it is
induced by the weak optical signal pulse supplied to the
entry of either the zeroth (Fig. 1a) or first (Fig. 1b)
waveguide.

According to our analysis, such a switching is
highly stable to the detuning of the group velocities of
the signal pulse and switched soliton (see Fig. 3), to the
shift of the signal pulse maximum from the soliton
maximum at the entry of tunnel-coupled optical
waveguides (see Fig. 2), and to the deviation of the shape
of the input signal pulse from soliton shape (3.5.1). How-
ever, switching proceeds most efficiently for a soliton
shape (3.5.1) of the signal pulse. Figures 1–4 were
obtained for this signal shape.

Moreover, switching is stable to the detuning of the
second-order dispersion coefficients for different fre-
quencies (Fig. 4): D20 and D21 can significantly differ
from D10 and D11, respectively. Stability of switching to
the deviation of D20 and D21 from D10 = D11 = 0.5 is
asymmetric as follows. In the region D20 = D21 > 0.5,
switching holds and its depth decreases only by 5–10%
with an increase in D20 and D21 even for D20 = D21 =
10D10 = 10D11. In the region D20 = D21 < 0.5, the switch-
ing depth decreases much more strongly with a
decrease in D20 and D21.

Propagating through tunnel-coupled optical
waveguides, the switched soliton virtually conserves its
shape. Its amplitude even increases, while the signal
pulse is slightly smeared and its amplitude decreases
(Fig. 1). At the same time, most of the signal-pulse
power is “attracted” to the switched soliton and propa-
gates along with it; i.e., most of the energy of the weak
signal pulse is captured by the switched soliton. Even if
the maximum of the signal pulse is significantly shifted
from the maximum of the introduced soliton by, e.g.,
τd  = 3, the power of the signal pulse “flows” to the soli-
ton when pulses propagate through waveguides
(Figs. 1c, 1d). Thus, the signal pulse is captured, and its
shape as a result holds or almost holds in the waveguide
to whose exit the soliton is switched (Fig. 1). However,
for larger τd, the signal pulse loses its shape, smearing
in time, and the depth of soliton switching decreases.
For τd = 3, the shape of the signal pulse at the exit of the
first waveguide (under the soliton) becomes slightly
asymmetric (Fig. 1c), while it is symmetric for τd = 0.
Unfortunately, the figure illustrating the case τd = 0 can-
not be presented in this short paper.

We think that this capture of the signal pulse is
responsible for the high stability of switching to dis-
crepancy (shift) between the maxima of the signal pulse
and soliton in time, disagreement of group velocities,
and difference in the second-order dispersion for the
frequencies ω1 and ω2. Owing to capture, the signal
pulse conserves sufficiently high power and accompa-
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Fig. 1. Power time profiles |Ajk(τ)|2 of switchable soliton-like pulses at the frequency ω1 ( j = 1) and weak pulses of the control signal
at the frequency ω2 ( j = 2) in the (a) zeroth and (b) first waveguides in cross-sections with various longitudinal coordinates z and
in the (c) entry (z = 0) and exit (d) (z = l = 31.95) cross-sections, where the dashed lines are the power profile of the input soliton at
the entry of the zeroth waveguide for z = 0; power profiles of all signal pulses are multiplied by a factor of 50; (e, f) energy of the
switched solitons vs. the longitudinal coordinate z in the same waveguides. The parameters are a20 = (a) 0.12 and (b) 0, a21 = (a) 0
and (b) 0.12, a10 = 1.15, a11 = 0, K1 = 0.236175, K2 = 0.0236175, υ10 = υ11 = 0, υ20 = υ21 = 0.2, and τd = 3.
nies the switched soliton on a sufficiently long path,
which ensures the efficient switching even for large detun-
ing indicated above. With an increase in the delay τd, the
signal amplitude a21 necessary for achievement of the
maximum switching depth increases (Fig. 2).

Figures 3 and 4 show the energy-transfer coefficient
for solitons at the point M1 of the switching curve
(see [3–8, 10–12] and Fig. 2), when almost all the
energy is switched to the exit of the first waveguide.
Thus, Figs. 3 and 4 in fact characterize the depth of the
optical switching of solitons. It decreases with an
increase in the difference between both the group
velocities of the signal pulse and switched soliton
(Fig. 3) and the second-order dispersions of the signal
DOKLADY PHYSICS      Vol. 48      No. 9      2003
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Fig. 2. Energy transfer coefficient T1k for solitons vs. the
signal pulse amplitude a21 for delay τd = (0, 1) 0 and (0', 1');
υ20 = υ21 = υ10 = υ11 = 0, and D10 = D11 = D20 = D21 = 0.5.
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Fig. 3. Energy transfer coefficient T1k for solitons at the fre-
quency ω1 vs. the detuning of the group velocities υ20 = υ21
for υ10 = υ11 = 0, τd = (0, 1) 0 and (0', 1') 3, and (at the point
M1) a20 = 0 and a21 = 0.12.
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Fig. 4. Energy transfer coefficient T1k for solitons at the fre-
quency ω1 vs. the second-order dispersion coefficient D20 =
D21 = D2 of the signal pulse for τd = 3, and (at the point M1)
a20 = 0 and a21 = 0.12.
pulse and soliton (Fig. 4). In this case, the switching
depth remains sufficiently high.

In numerical experiments, we check the conserva-
tion of both the energy integral and the integral

(4)

which is conserved if the equalities θ120 = θ210 and
θ121 = θ211 are satisfied.
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As was mentioned in [1], phenomenological the-
ory [2–4] has been used for a long time to calculate the
thermodynamic functions of mixing and the stability
limits of solid solutions extended in composition (con-
tinuous). According to this theory, the mixing enthalpy
∆Hmix of solid solutions such as åé–å'O with the
NaCl-type structure can be determined by the formula

(1)

Here, x1 and x2 are the molar fractions of the compo-
nents; V is the molar volume; K is the compression
modulus; ∆R = R2 – R1 and ∆V = V2 – V1 are the differ-
ences of the interatomic distances and molar volumes
in the pure-component crystals, respectively; R is the
average interatomic distance additively depending on
the composition according to Vegard’s rule

R = x1R1 + x2R2, (2)

and V is the average molar volume satisfying the Ret-
gers rule

V = x1V1 + x2V2. (3)

In recent years, these characteristics have been
intensively simulated on computers. Energy effects of
mixing of high-concentration solid solutions are calcu-
lated both in the semiclassical approximation by mini-
mizing energy found with semiempirical potentials of
interatomic interaction and in various approximations
of ab initio methods (Hartree–Fock method, density-
functional theory). The first calculations of a semiclas-
sical or atomistic type, along with ab initio calcula-
tions, were made for the intermediate compositions of
solid solutions in the systems MnO–NiO, MgO–MnO,
CaO–MnO [5], and CaO–MgO [6, 7]. Recently, we
analyzed the latter system in detail [1]. The basic disad-
vantage of calculations of the structure and properties
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of oxide solid solutions by quantum mechanical meth-
ods and semiclassical method of interatomic potentials
is the use of too small a cell (subcell) containing from
4 to 32 atoms. This disadvantage was overcome in [6,
7] (see also [8]). 

The random distribution of atoms in the solid solu-
tion structure was simulated in [6] by the method of
variation of clusters. Lavrentiev et al. [7] used the
Exchange Bias Monte Carlo method, which made it
possible to reduce the number of unsuccessful con-
figurations in a 4 × 4 × 4 supercell containing 256 cat-
ions. Nevertheless, the method requires a long time for
the computation of the stable configuration after 4 ×
107 steps of variation in the atomic coordinates and cell
sizes.

In [1], we used a large 4 × 4 × 4 supercell containing
256 cations of two types M and M' and estimated the
short-range order degree for various configurations in
the distribution of cations of different types. This
enables us to find the properties of the disordered solid
solution with the statistical distribution of cations over
all structural positions. Here, we apply the same proce-
dure to two other oxide systems with the NaCl-type
structure to simulate the local structure and properties
of mixing of the binary solid solutions CaO–SrO and
SrO–BaO by the method of semiempirical pair poten-
tials. These systems were previously considered in the
phenomenological model [2, 8], studied experimentally
both by calorimetry [9] and by measurement of the lim-
its of the mixability of the components as functions of
temperature [10, 11].

Following the method described in [1], short-range
contributions to pair potentials were taken in the form
of the algebraic sum of the Buckingham VB and Morse
VM potentials given by Eqs. (4) and (5) in [1]. The
energy minimum was sought by varying the atomic
coordinates and lattice constants with using the GULP
software package [13], which allows calculations of
both the structural parameters and optimal interatomic
potentials. The parameters of the Buckingham VB and
Morse VM potentials were obtained by fitting the structure
and properties of pure CaO, SrO, and BaO (Tables 1, 2)
for the effective charges of cations and anions zf =
±1.7Â, which corresponds to the ionic bond character
f = 0.85. As in [1], this f value was found to provide the
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best fit to the experimental data and testifies to a high
ionic bond character in the oxides under consideration.
We note that the potential for CaO was slightly modi-
fied compared to [1] to ensure virtually complete agree-
ment with the experiment (Table 2).

According to our numerous computer experiments,
it is virtually impossible to adequately approximate the
statistical distribution of atoms replacing each other,
which characterizes an ideal or regular solid solution, in
1 × 1 × 1, 2 × 2 × 2, and 3 × 3 × 3 cells with small num-
bers of cation positions (4, 32, and 108, respectively).
For this reason, as in [1], the structures and energy of
solid solutions were calculated with the 4 × 4 × 4 super-
cell with quadruple parameters of the NaCl-type struc-
ture, which consists of 512 atoms (256 cation posi-
tions). Restrictions due to symmetry were removed,
because the formation of the solid solution accompa-
nies by atomic displacements and corresponding distor-
tion of the lattice constants. The properties of these dis-
placements will be separately analyzed in this work.

The mixing enthalpy [∆Hmix] is determined as

∆Hmix = Uss(x) – xU1 – (1 – x)U2, (4)

where x is the molar fraction of the pure second compo-
nent (CaO and SrO for the cases under consideration),
and U1 and U2 are the structure energies of the pure first
and second components of the mixture, respectively.
The ∆Hmix values were obtained for three compositions
x = 0.25, 0.5, and 0.75 by extrapolating ∆Hmix(σ) calcu-
lated for several tens of atomic configurations to the
zero Bragg–Williams short-range order parameter

(5)

Here,  is the ratio of the number of the second neigh-
bors of different types M–M' to the total number of cat-
ion pairs in the second coordination sphere as averaged
for all 256 cations of the structure, qmin corresponds to
the disordered solid solution with the minimum number
of such pairs and is proportional to the double product
of the concentrations of pure components 2x(1 – x), and
qmax is the maximally ordered solid solution correspond-
ing to the hypothetical superstructures for x/(1 – x) = 1.0,

σ
q qmin–

qmax qmin–
------------------------.=

q

Table 1.  Parameters for interatomic interaction potentials in
CaO, SrO, and BaO crystals

Potential λ, eV
D, eV

ρ, Å
β, Å–1

C, eV Å6

R0, Å 

VB (Ca–O) 775.00 0.3437 0.000

VM (Ca–O) 0.0515 2.27 2.5

VB (Sr–O) 1002.20 0.3484 0.000

VM (Sr–O) 0.014 2.87 2.6

VB (Ba–O) 1477.39 0.3500 0.000

VM (Ba–O) 0.0207 2.86 2.8
0.25, and 0.75 (compositions 1:1, 1:3, and 3:1, respec-
tively). Superstructures are chosen and the qmax value is
estimated similarly to [1].

The energies ∆Hmix of the formation of the solid
solution depend almost linearly on the short-range
order degree σ for all three compositions. Therefore,
∆Hmix(σ) values can be linearly extrapolated to σ = 0 by
the least squares method. These linear dependences for
the two systems under consideration are not shown
here, because similar dependences of the CaO–MgO
system were presented in Fig. 1 in [1].

Moreover, ∆Hmix values can be found by seeking an
almost random distribution of cations with the use of a
random-number generator. Both the above approaches
give close results. However, we preferred the latter
method.

Figure 1 shows the ∆Hmix values obtained in our
work and values calculated by Eq. (1) with the average
value VKav = 1900(40) kJ/mol (see Table 2). In addi-
tion, Fig. 1 shows calorimetric data [9], which, within
the large standard deviations presented in [9], agree sat-
isfactorily with theoretical models.

Simulated ∆Hmix values exhibit asymmetry with
respect to the axis of the compositions and can be rep-
resented analytically in the two-parameter form

∆Hmix(CaO–SrO) = x(1 – x)[xW1 + (1 – x)W2] 

= x(1 – x)[29.3x + 20.2(1 – x)],

∆Hmix(SrO–BaO) = x(1 – x)[xW1 + (1 – x)W2] 

= x(1 – x)[45.8x + 23.6(1 – x)].

Here, W1 and W2 are the Margules parameters for the
mixing enthalpy (measured in kJ mol–1) and x is the
molar fraction of the first component in both systems.

These equations can be compared with empirical
data obtained from measurements of the stability
(decay) regions of the same solutions in [10, 11]:

∆Hmix(CaO–SrO) = x(1 – x)[27.0x + 25.0(1 – x)],

∆Hmix(SrO–BaO) = x(1 – x)[33.4x + 29.3(1 – x)].

Comparison of the respective Margules parameters
shows that the computer simulation leads to a higher

Table 2.  Lattice constant a, unit-cell volume V, compres-
sion modulus K, and VK product for the pure CaO, SrO, and
BaO crystals

Parameter
CaO SrO BaO

exp. theor. exp. theor. exp. theor.

a, Å 4.810 4.810 5.114 5.114 5.522 5.522

K, GPa 115 115 87 88 71 74

V, cm3/mol 16.76 16.75 20.45 20.45 25.35 25.35

VK, kJ/mol 1927 1927 1779 1800 1800 1876
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asymmetry in mixing enthalpy, particularly for the
SrO–BaO system.

In [1], computer simulation was applied for the first
time to find the properties of a nonideal solid solution
such as the deviation of the volume from Retgers
rule (3) and compression modulus K from additivity for
the CaO–MgO system taken as an example. Figures 2
and 3 show the functions ∆Vmix(x) and ∆K(x) for the
two new systems CaO–SrO and SrO–BaO. As is seen in
Fig. 2, the calculated ∆Vmix(x) values exhibit signifi-
cantly smaller positive deviations from additivity than
those obtained in phenomenological theory [Eq. (10)
from [1]]. Measurements of the lattice constants for the
CaO–SrO system [10] with an accuracy of 0.0001 Å
correspond to a linear dependence on the composition;
i.e., they satisfy Vegard’s rule (2). This corresponds to a
small negative deviation of the unit-cell volume from
additivity, i.e., from Retgers rule (3):

∆Vmix(CaO–SrO) = –x(1 – x)(a + a1 + a2)(∆a)2,

where, a = xa1 + (1 – x)a2 and ∆a = a2 – a1. This for-
mula yields –0.35 A3 for the maximum ∆Vmix value for
x = 0.5.

The lattice constants measured for the SrO–BaO
system [11] with the same accuracy exhibit small positive
deviation from Vegard’s rule. Jacob and Varghese [11]
considered that this deviation corresponds to Retgers
rule (3) within experimental errors.

Figure 3 shows negative deviations of the compres-
sion modulus ∆K(x) from additivity for both systems in
qualitative agreement with predictions of phenomeno-
logical model [Eqs. (11), (12) in [1]]. However, com-
puter simulation implies that deviations can be much
larger, particularly for compositions where the smaller
component of the system prevails.

0.90.80.70.60.50.40.30.20.1 1.00

2

4

6

8

10

12

1

23

4

xCaO
xSrO

∆Hmix, kJ/mol

Fig. 1. Enthalpy of the formation of the CaO–SrO and SrO–
BaO solid solutions vs. the composition. Thick and thin
lines are computer simulation and calculation by Eq. (1),
respectively. The upper and lower lines correspond to the
(closed rhombs) SrO–BaO and (closed squares) CaO–SrO
systems, respectively. The open circles and squares with
estimated error bars are experimental data for the CaO–SrO
and SrO–BaO systems, respectively.
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Information about the local structure of solid solu-
tions can be obtained by calculating their various
atomic configurations and compositions. Figure 4
shows the distributions of the M–O and M'–O dis-
tances, as well as the distances between oxygen atoms
in linear O–M(M')–O chains and between metal atoms
in linear M(M')–O–M(M') chains in the CaO–SrO sys-
tem for the composition x = 0.5 and order degree σ =
0.03, i.e., in the almost fully disordered solid solution
of the middle composition. It is seen that there are three
most probable M–O distances corresponding to half the
distances in Ca–O–Ca linear chains with a maximum at
2.425 Å, in Sr–O–Sr chains with a maximum at
2.540 Å, and in mixed Sr–O–Ca configurations with a
double maximum around 2.48 Å. The last value is close
to an average interatomic distance of 2.481 Å in the

1

2

3

4
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1.4
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0.8

0.6

0.4

0.2

0

∆V, Å3

xCaO
xSrO

Fig. 2. Deviation of the unit-cell volume V from additivity.
Lines 1 and 2 are computer simulation, while lines 3 and 4
are phenomenological calculation for a positive deviation
form Vegard’s rule (2) for the CaO–SrO and SrO–BaO sys-
tems, respectively.
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1
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4

Fig. 3. Deviation of the compression modulus K from addi-
tivity. Lines 1 and 2 are computer simulation, while lines 3
and 4 are phenomenological calculation for the CaO–SrO
and SrO–BaO systems, respectively.
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Fig. 4. Distribution of the (1) M–O, (2) M–M', and (3) O–O distances in the linear bond chains for the stoichiometric composition
of the CaO–SrO system with an almost random distribution of cations over the sites of the solid solution structure.
ë‡0.5Sr0.5é solid solution. The Ca–O distance in
Ca−O–Ca atomic triples is longer than the correspond-
ing distance in pure CaO (2.405 Å) by 0.02 Å. The
Sr−O distance in the Sr–O–Sr atomic triples is shorter
than the corresponding distance in pure SrCaO (2.557 Å)
by about the same value. These differences are most
simply attributed to the superposition of neighboring
peaks in the frequency diagram (line 1 in Fig. 4). How-
ever, they probably also indicate the general relaxation
of the cation sublattice, which shortens all different dis-
tances.

The double middle peak in this diagram is most inter-
esting. The maximum at the shortest distance 2.475 Å
obviously corresponds to Ca–O distances in mixed
atomic triples. The maximum at a distance of 2.495 Å
corresponds to Sr–O distances in such linear chains.
The first distance is longer than the distance in pure
CaO by 0.07 Å, while the second distance is shorter
than the distance in pure SrO by 0.06 Å. The phenom-
enological model [2–4] and Distance Least Squares
method (fitting of distances by the least squares
method) [14] predict that the bond lengths in the NaCl-
like structure change by ±∆R/2, where ∆R is the differ-
ence between interatomic distances in the pure compo-
nents. This behavior corresponds to the structure-relax-
ation degree λ = 0.5 or, in terms of [14], the compliance
factor cs = 1 – λ = 0.5. For the system under consider-
ation, the corresponding distances must change by
±0.076 Å, which is slightly larger than the change in
both distances. This discrepancy can be partially attrib-
uted to the shift of maxima due to the superposition of
all four peaks. Moreover, this discrepancy can testify to
a lower relaxation degree of the solid solution than that
expected in simpler models. These results can be com-
pared with the EXAFS experimental data for acid–
halide solid solutions with the NaCl-type structure [15],
which also provide slightly smaller changes in the bond
lengths in mixed configurations than those predicted in
simple models. In particular, the changes measured in
distances for (K, Rb)Br correspond to λ = 0.45.

Lines 2 and 3 in Fig. 4 are the distributions of the
interatomic distances in the M–O–M' and O–M(M')–O
linear chains. As is seen, the distribution in the metal
sublattice contains three peaks. The highest middle
peak is close to 4.97 Å, i.e., to the average cubic lattice
constant. It is reasonable to attribute it to distances in
mixed chains Ca–O–Sr (and Sr–O–Ca). Two lower side
peaks are spaced from the middle peak by 0.02–0.03 Å to
the right and left and can be attributed to the CA–O–Ca
and Sr–O–Sr distances, respectively. The distribution
of distances in the metal sublattice is generally charac-
terized by a relatively low standard deviation (0.04 Å at
half maximum).

In contrast, the distribution of the O–M–O distances
in the oxygen sublattice (line 3 in Fig. 4) has at least tri-
ple standard deviation and complex structure. This dis-
tribution involves at least ten peaks, which can be iden-
tified with high probability by comparing with the geo-
metric model of the displacement of the general atom
from its standard position in solid solutions of the
NaCl-like structure [2–4]. In this model, oxygen atoms
displace from their standard positions at the centers of

octahedrons by 0 (0.125), ∆R/2 (0.375), 2
∆R
2

------- 
 
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(0.375), and  (0.125) for various configura-

tions of their mixed cation environment. The numbers
in the parentheses are the probabilities of the respective
displacements for the average composition of the disor-
dered mixture.

Distribution 3 in Fig. 4 demonstrates that many dis-
tances between O atoms are close to the average lattice
constant of the solid solution. Such distances always
appear when either O atoms common to neighboring
cation octahedrons do not displace from their standard
positions or their displacements caused by neighboring
cations have the same signs. The total probability of the
appearance of such distances is equal to 2(0.125)2 +
2(0.375)2 = 0.312. On the other hand, short and long
O−M–O distances appear when both displacements

 are opposite and directed toward and outward

the intermediate cation M, respectively. The probabili-
ties of such displacements in the disordered mixture are
proportional to (0.125)2 = 0.015, and the full width of
the distribution of the O–O distances must be close to

. For the CaO–SrO system, this quantity must

be equal to about 0.53 Å. The computer experiment
yields a value of about 0.43 Å for the distribution width.
Thus, the full width of the distribution of O–O dis-
tances is not apparently manifested in the diagram due
to a low probability of the maximum displacements.
The displacements in opposite directions with magni-

tudes  = 0.43 Å,  +  = 0.37 Å, and

 = 0.30 Å have a much higher identical probability

of (0.375)2 = 0.141. They are responsible for the visible
width of the interatomic-distance distribution band in
the oxygen sublattice and principal three peaks in the
diagram. Other peaks within the band have lower prob-
abilities (from 0.015 to 0.047) and are not pronounced.
Thus, models agree quite well with each other, while
the computer simulation provides much more detailed
pattern of the atomic-displacement distribution.

3
∆R
2

------- 
 

3
∆R
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The phenomenon of evaporation and growth of liq-
uid drops in a gaseous phase is important for processes
occurring in nature and for vital human activities.
Therefore, it has been extensively studied [1–3]. As was
noted in [1], this phenomenon is very complex under
real conditions, and its theory is complicated. For this
reason, Fuks [1] suggested constructing this theory
with a number of simplifying assumptions: one should
start with an extremely idealized model and then cor-
rect the corresponding equations by taking into account
different factors that have not been considered. In addi-
tion, he proposed considering the quasisteady regime of
both evaporation of drops and heat transfer to them as a
basis. Some papers published after review [1] (see,
e.g., [4–6]) show the drawbacks of quasisteady solu-
tions. Unfortunately, the inclusion of unsteady pro-
cesses is not sufficiently advanced in this field of
research, and there is a deficiency of experimental data
concerning this problem (as was pointed out in [1]).

Both the evaporation and condensation-caused
growth of a sufficiently large stationary drop occur
mainly due to two oppositely directed transfer pro-
cesses. These are vapor diffusion and heat conduction
initiated by latent heat of vaporization or condensation.
Therefore, only simultaneous consideration of the two
mentioned unsteady processes provides more accurate
description of the phenomenon under investigation
(see [6–8]). These two transfer processes are coupled
through boundary conditions. Therefore, the boundary
conditions on the drop–environment interface must be
correctly formulated; i.e., the effect of the Knudsen
layer must be properly taken into account. The last
problem has been investigated rather intensively during
the last 30 years, but only for the quasisteady regime
(see [2, 3] and references therein).

In this paper, simultaneously considering time-
dependent equations of diffusion and heat conduction,
we specify the gas-kinetic boundary conditions that are
obtained by using mathematical methods of the kinetic

Moscow State Regional University, ul. Radio 10a, 
Moscow, 105007 Russia
1028-3358/03/4809- $24.00 © 20474
theory of gases and include the jumps of concentration
and temperature in the Knudsen layer [2]. We derive
both the general expression for the concentration distri-
bution and equations for temperature fields on the drop
surface and in the surrounding medium. In addition, an
expression for the rate of change in the drop radius at
any time is derived and the ranges of applicability of
some of the results obtained in the preceding theories
are established.

In the case under consideration, the distribution of
the relative concentration c1 and the temperature T of
the vapor–gas mixture are described by the system of
equations (1) and (2) with initial and boundary condi-
tions (3)–(7):

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Here, D is the coefficient of the diffusion of the vapor
in a gas not condensing into the liquid phase; ‡ and κ
are the thermal diffusivity and the thermal conductivity
of the vapor–gas mixture, respectively;

n1(TR) is the concentration of the saturated vapor of the
drop substance at the temperature TR = TR(t) on the
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drop surface; n = n1 + n2, where n1 and n2 are the con-
centrations of molecules of the first and second compo-
nents, respectively; L is the heat of the phase transition;
m1 is the molecular mass of the volatile (first) compo-
nent; R is the drop radius; r is the radial coordinate in
the spherical coordinate system with the origin at the

drop center; t is the time; and , , , and

 are the gas-kinetic coefficients of the jumps of
concentration and temperature.

To solve the problem, we use the Laplace transforms
[9] and introduce the notation

(8)

(9)

Using initial conditions (3) and (4), we arrive at the fol-
lowing transforms of Eqs. (1) and (2):

These are ordinary differential equations for the
unknown functions S(r, p) and θ(r, p), where r is the
independent variable and p is the parameter. Solving
these linear equations with variable coefficients with
allowance for boundary conditions (3) and (4), we
obtain

(10)

(11)

where A and B are the integration constants. To write
the Laplace transforms of the boundary conditions
specified by Eqs. (5)–(7), we introduce the notation

(12)

This leads to the following system of algebraic equa-
tions for the unknowns A, B, and C:

(13)
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where

Using the solution of system (13), we obtain the fol-
lowing expressions for functions (10), (11), and (12):

(14)

(15)

(16)

respectively. Here,

while

are the nonnegative composite coefficients of the jumps
in concentration and temperature, respectively.

The inverse transforms are represented with the use
of the functions
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erfc α

2 t
--------- β t+ 

  ,=

ϕ β t,( ) ϕ 0 β t, ,( ),=

Φ α β t, ,( ) erfc
α

2 t
--------- 

  ϕ α β t, ,( ),–=

Φ β t,( ) Φ 0 β t, ,( ).=
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Then, in view of Eq. (8), the inverse transform of
Eq. (14) yields the distribution of the relative concen-
tration in the drop environment in the form

(17)

Calculating the inverse transforms of Eqs. (15) and
(16), one should take into account that the roots z1 and
z2 of the square trinomial z2 + b1z + b2 are real and differ
from each other when

or coincide with each other when ∆b = 0. If ∆b ≠ 0, then,
in view of Eqs. (9) and (12), the inverse transforms of
Eqs. (15) and (16) are the functions

(18)

(19)

describing temperature fields in the environment of the
drop and on its surface, respectively. Here,

For ∆b = 0, we use the notation β0 = –z1 = –z2. Then,
temperature fields in the environment of the drop and
on its surface take the form

(20)

c1 r t,( ) c1∞
c1R c1∞–( )R

2

R χc+( )r
--------------------------------Φ αc β t, ,( ).+=

∆b R χc+( ) D χc a– 0,≠=

T r t,( ) T∞
ηR a

χcr
---------------

B j

β j

-----Φ αT β j t, ,( ),
j 1=

2

∑+=

T R t( ) T∞
ηχ T

χc

--------- 1
C j

β j

-----Φ βj t,( )
j 1=

2

∑+ ,+=

β1 z1–
R χc+( ) D

χcR
-----------------------------, β2 z2–

a
R

-------;= = = =

B1
R D

∆b

------------, B2

χc D a–( )
∆b

--------------------------------,= =

C1

χT R χc+( ) D χc R χT+( ) a–[ ] D
χcχT∆b

-----------------------------------------------------------------------------------------,–=

C2

χc D a–( ) a
χT∆b

---------------------------------------.=

T0 r t,( ) T∞
ηR a

χcr
---------------

B0

β0
-----+=

× 1
B0
----- 1

β0
-----+ 

  Φ αT β0 t, ,( ) 2β0t αT+( )ϕ α T β0 t, ,( )+

– 2 t
π
---

αT
2

4t
------– 

 exp ,
(21)

respectively. Here,

We note that expressions (17)–(21) are linear func-
tions of the concentration difference c1∞ – c1R. Rela-
tions (17), (18), and (20) do not contain the composite
coefficient of the temperature jump, while expres-
sions (19) and (21) depend strongly on the ratio
between the composite coefficients of the jumps of
temperature and concentration.

According to [1], the rate of change in the drop radius
is obtained from concentration distribution (17) as

(22)

where ξ =  and γ is the density of the

drop substance. Expression (22) is valid for any time
instant. Using asymptotic expansions of the function
erfc(x) for small and large values of its argument, one
can find individual expressions for the rate of change in
the drop radius for small and large values of time t,
respectively. In the latter case,

(23)

Retaining only the term free of t and then, in addition,

the term containing  on the right-hand side of for-

mula (23), we arrive at the following approximations of
this formula:

T0R t( ) T∞
ηχ T

χc

--------- 1
C01

β0
--------Φ β0 t,( )+





+=

+
C02

β0
-------- 1

β0
-----Φ β0 t,( ) 2β0tϕ β0 t,( ) 2 t

π
---–+





,

B0
D a–

R
---------------------, C01

χT D χc a–
χcχT

---------------------------------,–= =

C02
D a–( ) a

χT R
----------------------------------.=

dR
dt
-------

ξ
R χc+
--------------- 1

R
χc

-----ϕ β t,( )+ ,=

D c1∞ c1R–( )nm1

γ
-----------------------------------------

dR
dt
-------

ξ
R χc+
--------------- 1 ---





=

+
R

χcβ πt
------------------ 1 1–( )m1 3× … 2m 1–( )×

2β2
t( )

m
----------------------------------------------

m 1=

∞

∑+




.

1

t
-----

dR
dt
-------

ξ
R χc+
---------------,

dR
dt
------- ξ

R χc+
--------------- 1 R

2

R χc+( ) πDt
----------------------------------+ .= =
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For χc = 0, they go over to the known expressions [1, 4]

(24)

for the rate of change in the drop radius.
We note that relations (24) were derived in the pre-

ceding theories from the solution of only one diffusion
equation for steady or unsteady regimes, respectively,
disregarding the concentration jump and were used at
any time instant. In our more general approach, these
formulas are the particular cases (χc = 0) of approxi-
mate expressions (24) applicable only for large times t.
Therefore, these expressions can lead to errors for small
time values.

The second of formulas (24) yields  = ∞. At

the same time, our formula (22), applicable at any time,

provides the finite limit  = .

Thus, the principal difference of our formula (22)
from the one derived earlier for an unsteady rate of
growth and evaporation [see the second of formulas (24)]
is that formula (22) provides a finite limit at t → 0+ ,
while the previous expression tends to infinity.

dR
dt
-------

ξ
R
---,

dR
dt
------- ξ

R
--- 1 R

πDt
--------------+ 

 = =

dR
dt
-------

t 0+→
lim

dR
dt
-------

t 0+→
lim

ξ
χc

-----
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The Langevin equation is one of the most general
approximations for the evolution of a dynamic system
in a fluctuating environment. It arises when describing
a magnet in the presence of magnetic-field fluctuations,
hydrodynamic turbulence, stochastic quantization,
interface growth, and many other problems [1–4].

In the most general form, the Langevin equation is
represented as

(1)

where U[ϕ] is the nonlinear interaction potential and
η(t, x) is Gaussian random noise describing fluctuations
of the environment. The Minkowski-like (d + 1)-dimen-
sional notation x ≡ (x, t),  k ≡ (k, ω) is used hereafter.
Langevin equation (1) is usually solved by introducing
the small parameter λ in the interaction potential U and
then solving the system by iterations in each order of
the perturbative expansion. The averaging over the
Gaussian random force η reduces to calculation of the
pair correlation functions 〈ηη〉 . The procedure is sim-
plified by assuming the Gaussian statistics of random
noise. In this case, only even-order correlation func-
tions of random noise are nonzero, while all terms con-
taining odd numbers of η vanish. The diagram tech-
nique for the iterative solution of the Langevin equation
is often called the Wyld diagram technique [5]. Simi-
larly to quantum field theory, loop divergences must be
eliminated by renormalization group methods [2, 3].

The structure of divergences arising in the perturba-
tive solution of the Langevin equation depends on a
particular type of the correlation function of the random
force. Most approximations use the δ-correlated ran-
dom force of the form

(2)

∂ϕ x t,( )
∂t

------------------- U ϕ x t,( )[ ] η x t,( ),+=

η x( )η x'( )〈 〉 D x x',( ),=

η k1( )η k2( )〈 〉 2π( )d 1+ δ k1 k2+( )D k2( ).=
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The spatial part of the correlation function D(k) is
assumed to be either a constant or a power function
(D(k) ~ |k|–β).

A random force acting in a limited range of scales is
often physically desirable. For instance, forces induc-
ing hydrodynamic turbulence, as well as a stochastic
action on a growing interface, belong to such type of
forces. In this paper, we propose a novel method of
describing limited-band stochastic actions. It is shown
that, for narrow-band noise, an appropriate choice of
the correlation functions of the random force yields a
theory free of loop divergences. The proposed method
preserves the whole structure of the perturbation expan-
sion, and only the space of functions changes. In the
limiting case of random force (2), all ordinary results
are reproduced.

To study the dynamic system separately at each
scale, following [6], we turn from the usual space of
random functions f(x, ·) ∈ (Ω, !, P), where f(x) ∈
L2(Rd) for each given realization of the random process,
to the multiscale representation of these functions by
the continuous wavelet transform

(3)

The wavelet transform is performed here only in the
spatial part, but not in the time part of the argument x,
because the structure of divergences and other impor-
tant properties of the processes under consideration are
determined by their spatial localization.

The existence and uniqueness of the inverse wavelet
transform

(4)

is ensured by the admissibility condition imposed on
the basic wavelet

(5)

The area Sd of a unit sphere in d dimensions arises due
to the simplifying assumption of the isotropic basis
wavelet ψ(x) = ψ(|x|).

Wψ a b ·, ,( ) a
d
2
---–

ψ x b–
a

------------ 
  f x ·,( )ddx.∫=

f x ·,( ) Cψ
1– a

d
2
---–

ψ x b–
a

------------ 
  Wψ a b ·, ,( ) a bdd

ad 1+
------------∫=

Cψ Sd
1– ψ̂ k( ) 2

k d
-----------------ddk∫ ψ̂ k( ) 2

a
-----------------da∫ ∞.<= =
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The use of the wavelet images instead of the original
stochastic processes provides extra analytical opportu-
nities. For the case under consideration, the possibility
of construction of more than one set of random func-
tions W(a, b, ·), whose images have coinciding correla-
tion functions in the space of f(x, ·), is important.

It is easy to check that the correlation function of the
image of the processes

coincides with that of white noise

Therefore, simulating the random force in the space of
wavelet coefficients, we can provide a narrow-band
pumping keeping all required properties in the ordinary
space.

As an example, let us consider the well-known Kar-
dar–Parisi–Zhang model of interface growth [3]:

(6)

Substituting the wavelet transform in the spatial argu-
ment

(7)

into Eq. (6), using the random force of the form

(8)

and making straightforward calculations, we arrive at
the integral equation

Ŵ a1 k1,( )Ŵ a2 k2,( )〈 〉

=  Cψ 2π( )dδd k1 k2+( )a1
d 1+ δ a1 a2–( )D0

f̂ k1( ) f̂ k2( )〈 〉 2π( )dD0δ
d k1 k2+( ),=

Ŵ a1 k1,( )Ŵ a2 k2,( )〈 〉

=  2π( )dD0δ
d k1 k2+( ) a1a2( )d /2ψ̂ a1k1( )ψ̂ a2k2( ).

Ż ν∆Z–
λ
2
--- ∇ Z( )2 η .+=

Z x( ) Cψ
1– i kx k0t–( )( )a

d
2
---

ψ̂ ak( )Ẑ a k,( )exp∫=

× dd 1+ k

2π( )d 1+
------------------- da

ad 1+
-----------

η̂ a1 k1,( )η̂ a2 k2,( )〈 〉 Cψ 2π( )d 1+=

× δd 1+ k1 k2+( )a1
d 1+ δ a1 a2–( )D a2 k2,( ),

η̂ a k,( )〈 〉 0,=

–iω νk2+( )Ẑ a k,( ) η̂ a k,( )=

–
λ
2
---a

d
2
---

ψ̂ ak( )Cψ
2– a1a2( )

d
2
---

ψ̂ a1k1( )ψ̂ a2 k k1–( )( )∫
× k1 k k1–( )Ẑ a1 k1,( )Ẑ a2 k k1–,( )

×
dd 1+ k1

2π( )d 1+
-------------------

da1

a1
d 1+

-----------
da2

a2
d 1+

-----------.
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From this equation, we obtain the following expression
for the Green’s function in the one-loop approximation:

(9)

where (k) = –iω + νk2 is the zeroth-order approxi-
mation for the Green’s function and

(10)

is the scale-averaged correlation function of the effec-
tive force. The Green’s function obtained with random

force (8) is independent of the scale (a, k) = G(k) (a, k).
Similarly, for the pair correlation function, we

obtain the formula

(11)

For the scale-independent correlation function of
the force, after the integration in Eq. (10), expressions (9)
and (11) reduce to the known result [3].

Let us consider the single-band stirring

(12)

and the basic wavelet in the form of the “Mexican hat”

(13)

Substituting Eqs. (12) and (13) into Eq. (9) and inte-
grating with respect to the frequency, in the leading

order in the small parameter x =  , we obtain the con-

tribution to the Green’s function (d > 2):

(14)

For constant D(q) = D0, this contribution to the Green’s
function is finite and does not require any further renor-
malization. In the limit ω, k → 0, the one-loop contri-

G k( ) G0 k( ) λ2G0
2

k( )–=

×
dd 1+ k1

2π( )d 1+
-------------------∆ k1( )k1 k k1–( ) G0 k1( ) 2kk1∫

× G0 k k1–( ) O λ4( ),+

G0
1–

∆ k( ) Gψ
1– da

a
------ ψ̂ ak( ) 2D a k,( )∫≡

Ẑ η̂

C ai a f k, ,( ) λ2

2
----- G0 k( ) 2ψ̂ aik( )ψ̂ a f k–( )=

×
dd 1+ k1

2π( )d 1+
------------------- G0 k1( ) 2 G0 k k1–( ) 2∫

× k1 k k1–( )[ ] 2∆ k1( )∆ k k1–( ).

D a k,( ) δ a a0–( )D k( )=

ψ̂ k( ) 2π( )d /2 ik–( )2 k2

2
-----– 

  ,exp=

Cψ 2π( )d.=

k
k1
--------

G k( ) G0 k( ) λ2G0
2 k( )

Sd

2π( )d
-------------

a0
3k2

ν2
----------d 2–

8d
------------+=

× D q( )e
a0q( )2–

qd 1+ dq O λ4( ).+

0

∞

∫
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bution to the surface tension ν, which follows from
Eq. (14), is equal to

(15)

We note that Eqs. (14) and (15) were derived from one-

loop integral (9) after substitution k1 = q +  and per-

turbation expansion in the small parameter x =  [7].

For particular correlation functions, the direct numeri-
cal estimate of integral (9) is more adequate. Similar
calculations can be performed for other interaction
potentials. For instance, for the quadratic interaction

Z2, the counterparts of Eqs. (9) and (11) differ from

that obtained above only by the absence of the scalar
products of the wave vectors in each vertex.

Concerning the contribution of higher orders of the
perturbation expansion, we should say that, for the
basic wavelets (k) localized in the k space and lim-
ited-band noise D(a, k), the effective coupling constant

, which is the actual parameter of the perturbation
expansion [8], can be made small by decreasing the
noise amplitude. For instance, for the basic wavelets

νeff ν 1
λ2

ν3k2
----------d 2–

16d
------------

Sd

2π( )d
-------------a0

1 d– D0Γ 1 d
2
---+ 

 –=

---+ O λ4( ) .

k
2
---

k
q
---

λ2

2
-----

ψ̂

λ

from the family 

, n > 0,

and the noise correlation function D(a, k) = D0δ(a – a0),
the effective coupling constant is equal to
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Mathematical simulation of crystallization pro-
cesses is extensively used in practice when obtaining
castings and ingots with given properties [1, 2]. Prob-
lems with one or several labile interfaces of the solidi-
fication of melts in limited domains belong to the most
difficult problems for analytical solutions by current
methods of mathematical physics. Contrary to many
other problems that are often of purely mathematical
interest, such problems are inevitably interesting for
practical predictions based on theoretical simulation. In
addition, they are characterized by mathematical mod-
els of corresponding phenomena that are maximally
close to reality. It is much very difficult to solve such
problems analytically. For this reason, many researches
works often analyze these problems numerically.
Unfortunately, such a numerical analysis does not
present the complete pattern of the process and does not
cover all parametric dependences of the quantities in
question.

The Stefan problem of the frontal crystallization of
melts is one of the classical problems of this type (see,
e.g., [3]). However, the front after the onset of the crys-
tallization process is not necessarily an ideal plane. In
particular, this idealized pattern is broken under the
condition of concentration supercooling ahead of the
plane solidification front [4]. This condition implies
that the concentration gradient is higher than its tem-
perature analogue at the solidification front, i.e.,

(1)

and is responsible for the formation of a supercooled-
melt region ahead of the plane front, where solid-phase
crystals can grow and which promotes the appearance
of the conditions of the dominate growth of random
protrusions on the plane front. Here, σ is the impurity
concentration, θl is the temperature of the melt, m is the
liquidus-line slope, ξ is the spatial coordinate along the

m
∂σ
∂ξ
------

∂θl

∂ξ
-------, ξ>– Σ τ( )=
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motion of the crystallization front, τ is time, and Σ(τ) is
the position of the solidification front. In other words, a
two-phase concentration-supercooling region is formed
ahead of the phase front [5]. The description of the
solidification process in the standard thermal diffusion
model with the phase front is obviously inadequate to
the physical conditions of crystallization. Therefore,
for times exceeding the time τ∗  of the formation of the
two-phase region, it is appropriate to use one of a solid-
ification models that takes into account the two-phase
region (see, e.g., [6–9]). The directional crystallization
including the formation of the two-phase region in a
domain of length L was previously simulated numeri-
cally for the following two cooling regimes on its ξ = 0
wall (heat flux was specified on the second wall ξ = L):
first, active regime smooth in time and, second, passive
regime according to the Newton’s law of heat exchange
with the environment [10–13]. The further discussion is
devoted to analytical calculation of both the time of the
formation of the two-phase region and accompanying
parameters describing the crystallization process with
the active cooling regime on the ξ = 0 wall.

We consider the crystallization process in a domain
of length L. In the melt, where Σ(τ) < ξ< L, and in the
solid phase, where 0 < ξ < Σ(τ), we have the heat con-
duction equations

(2)

(3)

and impurity diffusion equation

(4)

where θs is the temperature of the solid phase; al and as
are the thermal diffusivities of the liquid and solid
phases, respectively; and D is the diffusion coefficient

∂θl

∂τ
------- al

∂2θl

∂ξ2
---------, Σ τ( ) ξ L,< <=

∂θs

∂τ
-------- as

∂2θs

∂ξ2
----------, 0 ξ Σ τ( )< <=

∂σ
∂τ
------ D

∂2σ
∂ξ2
---------, Σ τ( ) ξ L,< <=
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of the impurity (the diffusion of the impurity in the
solid phase is traditionally disregarded).

At the phase-transition interface, crystallization
front, the temperatures of both phases are equal to the
phase transition temperature, and the balance condi-
tions for heat and impurity mass are satisfied; i.e.,

(5)

(6)

(7)

(8)

Here, θ∗  is the phase transition temperature for the pure
melt; λs and λl are the thermal conductivities of the
solid and liquid phases, respectively; LV is the latent
heat of solidification; k is the impurity distribution
coefficient equal to the ratio of the impurity concentra-
tion σs in the solid phase to the impurity concentration
in the melt at the crystallization front, i.e.,

(9)

Since diffusion of the impurity in the solid phase is dis-
regarded, formula (9) provides the impurity concentra-
tion absorbed by the plane solidification front at every
time and thereby enables one to determine the concen-
tration profile in the solid phase.

We consider that the right boundary ξ = L is impen-
etrable for the impurity, i.e.,

(10)

and specify the heat flux as

(11)

where gl is the fixed temperature gradient.

We consider that the left boundary ξ = 0 is smoothly
cooled in time, i.e.,

(12)

where α is the cooling coefficient.

As the initial conditions, we specify the position of
the crystallization front and the temperature and con-

θl θs, ξ Σ τ( ),= =

θl θ* mσ, ξ– Σ τ( ),= =

λ s

∂θs

∂ξ
-------- λ l

∂θl

∂ξ
-------– LV

dΣ τ( )
dτ

--------------, ξ Σ τ( ),= =

1 k–( )σdΣ τ( )
∂τ

-------------- D
∂σ
∂ξ
------+ 0, ξ Σ τ( ).= =

k
σs

σ
-----, ξ Σ τ( ).= =

∂σ
∂ξ
------ 0, ξ L= =

∂θl

∂ξ
------- gl, ξ L,= =

λ s

∂θs

∂ξ
-------- λ lgl ατ , ξ+ 0,= =
centration profiles of the form

(13)

(14)

(15)

(16)

where σ∞ is the initial impurity concentration.
Thus, the crystallization front at the initial time is

assumed to exist at a certain small distance (ε ! 1 is the
small parameter) from the left boundary of the domain
under consideration. We specify a linear temperature
profile with individual slopes on both sides from the
crystallization front so that the difference between heat
fluxes at the front is equal to zero at the initial time τ = 0

and, therefore, the front velocity  is also equal to

zero according to boundary condition (7).
The time τ∗  of the formation of the two-phase

region is determined from the condition for concentra-
tion supercooling:

(17)

The model specified by Eqs. (1)–(17) was numeri-
cally analyzed in [10–12], where, for the case of concen-
tration supercooling, when inequality (1) is valid at the
crystallization front, condition (17) corresponding to the
approximation of the narrow quasi-equilibrium two-
phase region [10, 14] was used instead of condition (8).

Figure 1 shows the calculation results for the iron–
nickel alloy whose thermal physical characteristics are
given in Table 1 for τ = 360 s.

Calculations show that condition (17) is satisfied at
time τ = τ∗  = 221.9 s. Moreover, this corresponds to the
maximum in the concentration profile in the solid phase
[for times τ > τ∗ , calculation was carried out with the
replacement of condition (8) with condition (17), which
corresponds to the model of a narrow quasi-equilibrium
two-phase region]. Calculations also show that, even
when the two-phase region between the solid phase and
melt is quite short, its presence is responsible for cer-
tain differences in the impurity distribution in the solid
phase compared to the standard formulation of the
problem of solidification with the plane crystallization
front, where the formation of the two-phase region is
disregarded (in this case, the impurity concentration in
the solid phase increases monotonically with the spatial

Σ 0( ) εL;=

θl θ* mσ∞– gl ξ Σ 0( )–( ),+=

τ 0, Σ 0( ) ξ L;< <=

θs θ* mσ∞–
λ l

λ s
-----gl ξ Σ 0( )–( ),+=

τ 0, 0 ξ Σ 0( );< <=

σ σ∞, τ 0, Σ 0( ) ξ L,< <= =

dΣ
dτ
------

m
∂σ
∂ξ
------

∂θl

∂ξ
-------, ξ=– Σ τ( ).=
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coordinate, as is shown in Fig. 2). A slightly pro-
nounced maximum appearing under solidification
when the narrow quasi-equilibrium two-phase region
ahead of the crystallization front is taken into account
is explained as follows. Solidification proceeds through
the frontal mechanism before the formation of the two-
phase region. The solidification front penetrating
through the melt removes the impurity (k < 1); i.e., the
impurity concentration in the liquid phase near the front
is higher than that deep in the melt. After the formation
of the two-phase region ahead of the front (time of
switching of the boundary condition), solid-phase ele-
ments in the two-phase region grow under the condition
that the impurity concentration in the surrounding melt
is lower than the concentration in the melt near the
interface between the solid phase and two-phase
region. Therefore, when such elements of the solid
phase are absorbed by the solidified melt, the impurity
concentration in the solid phase decreases compared to
the concentration before the formation of the two-phase
region. Such a behavior of the impurity concentration
in the solid phase was previously observed in [15] for
the Al–Cu and Sn–Pb alloys.

Calculations also show that the temperature profiles
in both phases during crystallization remain almost lin-
ear functions of the spatial coordinate, as is clearly seen
in Fig. 1. This occurs because the relaxation times of
the temperature fields in both phases are shorter than
the relaxation time for the diffusion field by several
orders of magnitude.

One more conclusion obtained in [10–12] is that the

crystallization rate  = µτ increases linearly with

time when the formation of the two-phase region is
taken into account for all calculation times of the pro-
cesses (both for times τ < τ∗ , when crystallization pro-
ceeds with the phase front, and for times τ > τ∗ , when
crystallization proceeds in the presence of the two-
phase concentration-supercooling region). In this case,
the proportionality coefficient µ remains unchanged
both before and after the formation of the two-phase
region.

We emphasize one more circumstance. As follows
from [10, 11], at the time of the formation of the two-
phase region, the impurity concentration reaches its
maximum not only at the crystallization front but at any
melt point spaced by a certain fixed distance h either
from the solid phase–melt interface before the forma-
tion of the two-phase region or from two-phase region–
melt after that time but with allowance for the thickness
δ of the two-phase region, i.e., at the distance h + δ.
This occurs because the crystallization front removes
the impurity before the formation of the two-phase
region and thereby increases the impurity concentration
in the melt at a fixed distance h from the front. After the
formation of the two-phase region, the distance h must
be measured from the two-phase region–melt interface

dΣ
dτ
------
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(shift by the thickness of the two-phase region), which
corresponds to a lower concentration than that before
the formation time because this quantity is shifted by δ
and h is replaced by the distance h + δ measured from
the melt–two-phase region interface. The two-phase
region itself is simulated by the discontinuity surface,
where condition (8) is replaced by condition (17) [10, 11].
Considering the impurity concentration in the melt and
taking into account the above discussion, we conclude
that, at any melt point spaced either by a fixed distance
h from the melt–solid phase interface for τ < τ∗  or by
distance h + δ from the melt–two-phase region interface
for τ > τ∗ , the impurity concentration is lower than the
impurity concentration at τ = τ∗ .

Since temperature profiles are linear at any time (see
Figs. 1, 2), Eqs. (2) and (3) can be approximated by
their time-independent analogues

∂2θl

∂ξ2
--------- = 0, Σ τ( ) ξ L;

∂2θs

∂ξ2
----------< <  = 0, 0 ξ Σ τ( ),< <
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Fig. 1. (Dashed lines) Concentration and (solid lines) tem-
perature profiles, (horizontal straight line) phase transition
temperature, and the position Σ(τ) of the crystallization
front for the solidification of the iron–nickel melt for τ =
360 s. The position of the crystallization front for τ = τ∗ , as
well as the corresponding maximum x = ξ/L of the impurity
concentration in the solid phase, is indicated.
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Fig. 2. Same as Fig. 1, but for calculations disregarding the
formation of the two-phase region at time τ = τ∗  = 221.9 s.
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whose solutions have the form

(18)

Substituting solutions (18) into conditions (11), (12),
and (5), we determine the coefficients A2 and B2 and the
linear combination of the coefficients A1 and B1:

(19)

(20)

Then, substituting distributions (18) into boundary
condition (7) and taking into account relations (19),

θl τ ξ,( ) A1 τ( ) A2 τ( )ξ ,+=

θs τ ξ,( ) B1 τ( ) B2 τ( )ξ .+=

A2 gl, B2 τ( )
λ l

λ s
-----gl

α
λ s
-----τ ,+= =

A1 τ( ) B1 τ( )
λ l

λ s
-----gl gl–

α
λ s
-----τ+ 

  Σ τ( ).+=

Thermal physical properties of the Fe–Ni alloy and parame-
ters used in calculations

k 0.68

θ* 1529.5°C

m 2.65°C/wt %

LV 3398.5 cal/cm3

D 5 × 10–5 cm2/s

λl 0.1 cal/(s cm °C)

λs 0.177 cal/(s cm °C) 

al 0.14 cm2/s

as 0.25 cm2/s

σ∞ 0.3 wt %

gl 10°C/cm

α 0.02 cal/(s2 cm2)

ε 0.01

L 1 cm

0.02 0.04 0.06 0.08
α, cal/(s2 cm2)

0

500

1000

1500

τ*, s

1
2

3

Fig. 3. Time τ∗  of the formation of the two-phase region as
a function of the cooling parameter α as calculated by for-
mula (27) for the temperature gradient gl = (1) 5, (2) 10, and
(3) 15°C/cm. The points are the results of the numerical
solution according to [12]. 
we obtain

(21)

This condition, which is the linear law for the crystalli-
zation rate, agrees well with the numerical calculations
made in [10, 11]. The second relation between the coef-
ficients A1 and B1 can be obtained by constructing the
solution of the concentration problem specified by
Eqs. (4), (8), (10), and (16) and then substituting it into
boundary condition (6). The resulting relation, together
with expression (20), enables one to determine both A1
and B1.

We now pass to the determination of the time τ∗  of
the formation of the two-phase region. Going over to
the reference frame η = ξ – Σ(τ) moving with velocity
µτ [see Eq. (21)], disregarding the effect of the first wall
on the impurity distribution (tending the coordinate η
on this wall to infinity), and introducing the new vari-
able q(τ, η) = σ(τ, η) – σ∞, we arrive at the following
formulation of the problem:

(22)

(23)

(24)

(25)

Further, taking into account that the impurity con-
centration at any point (any coordinate η) of the liquid
phase is maximal at time τ∗ , we equate the left-hand
side of Eq. (22) to zero and integrate the result with
respect to η form 0 to ∞. Using conditions (24) and the
limit q  0 for η  ∞, which represents the condi-
tion of the constant impurity concentration at the right
boundary formally shifted to infinity, we obtain

(26)

Here, we also take into account that  = –  for η = 0

and τ = τ∗  according to Eqs. (17)–(19). Combining
Eqs. (23) and (26), we determine both the time of the
formation of the two-phase region and impurity con-
centration at the crystallization front on the melt side at
this time:

(27)
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It is interesting that the resulting concentration 

coincides with the impurity concentration at the crys-
tallization front under the frontal solidification of the
melt with the constant rate.

Taking into account that µ =  [see Eq. (21)], we

show (see Fig. 3) the formation time of the two-phase
region that is calculated by formula (27) as a function
of the cooling parameter α. As is easily seen, expres-
sion (27) agrees well with the numerical solution [12]
of the problem (to avoid overcrowdingloading of the
figure, formula (27) compares with numerical calcula-
tions [12] only for line 1; other lines exhibit virtually
the same complete agreement between theory under
development and numerical solution of the problem).

We now construct the solution of the concentration
problem specified by Eqs. (22)–(25) for quite small
times after the onset of the crystallization process.
Since the impurity concentration profile at initial times
is an almost linear function over the entire liquid phase,

the derivative  presenting the slope of this function

to the coordinate axis is small. Moreover, the concen-
tration deviates slightly from the σ∞ value for these
times. The above circumstances allow the linearization
of the concentration problem with the perturbative
inclusion of terms omitted in the zeroth approximation.

Substituting the concentration q in the form of the
expansion

(28)

where each subsequent term is assumed much less than
the preceding term. Taking into account the above dis-
cussion and expansion terms up to the first order, we
represent the problem specified by Eqs. (22)–(25) in the
form of a problem split into the following two subprob-
lems for q0 and q1:

(29)

(30)

In this case, Eqs. (24) and (25) take the form

(31)
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valid for all qi, i = 0, 1, …. Solving the problems spec-
ified by Eqs. (29)–(31) and substituting the solutions
into Eq. (28), one can determine the impurity concen-
tration at the initial stages of melt solidification in an
ingot mould.

Each of subproblems (29)–(31) can be solved by the
Laplace transform. Omitting simple but cumbersome
manipulations, we represent write the result

The above successive approximation procedure can
be continued and always allows the refinement of the
solution of the problem. Figure 4 shows the calcula-
tions of the impurity concentration in the liquid and
solid phases by Eq. (28) for the iron–nickel alloy
[impurity concentration in the solid phase at each time
is determined by Eq. (9)]. We emphasize that the found
solution makes it possible to completely determine
and the temperature field according to boundary con-
dition (6) and Eqs. (18)–(20).
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2
--- 1 k–( ) 9

8
---– 9η

8 D
------------– 

 =

× η2

4Dt
---------–

τ t–( )2

t
-----------------exp td

0

τ

∫

–
σ∞ 1 k–( )µ2η2

192D2 π
----------------------------------- η2

4Dt
---------–

τ t–( )4

t
-----------------exp t.d

0

τ

∫

0.04 0.08 0.12 ξ, cm0
0.20

0.23

0.26

0.29

σ

Σ(
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Fig. 4. Impurity distribution in the solid and liquid phases at
time τ = 10 s for the test alloy for α = 0.2 cal/(s2 cm2)
according to formula (28). Zero-approximation lines q0 and
numerical solution of the problem almost completely lie on
the displayed graphs. The vertical dotted straight lines are
the positions of the crystallization front. The impurity con-
centrations in the liquid and solid phase at the front at a time
of 10 s are equal to 0.319 and 0.217, respectively, and the
position of the crystallization front is equal to 0.013 cm.
According to Eq. (27), the two-phase region nucleates at τ =
τ∗  = 22.7 s.
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Thus, if the solidification process proceeds with
large cooling coefficients (which correspond to small
times τ∗  according to Fig. 3), the resulting solution
completely determines the solution of the frontal prob-
lem up to the time of the formation of the two-phase
region, which generally determines the application lim-
its of the phase front model.
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In [1, 2], a complicated spatial structure of electron
beams generated by high-voltage discharges in high
vacuum was discovered. The beam patterns beyond the
anode, which had been produced by the high-energy
part of the electron spectrum, consisted of ordered
bands. This fact testifies to the existence of self-organi-
zation in beam formation processes. The regular beam
structure was with the formation of an ordered distri-
bution of centers of explosive electron emission
(ectons [3]) on the cathode due to the Rayleigh–Taylor
instability of explosive plasma on the cathode surface [1]
or suppression of emission in a certain vicinity of the
existing ecton [2]. In the present study, we observed the
same ordered structure of electron beams generated by
high-voltage nanosecond discharges in rather dense
gases at high overvoltages. We have performed direct
registration of accelerated-ion beams generated by
high-voltage nanosecond discharges. This has also
demonstrated the existence of the same characteristic
ordered structure.

In the case of multiple overvoltages, the high-volt-
age nanosecond discharges in dense gases develop in
the mode of generation of intense flows of runaway
electrons [4]. The high-voltage nanosecond discharges
in deuterium at pressures P = 0.01–20 Torr generate
nanosecond neutron pulses in a tritium-containing tar-
get located on the cathode [5, 6]. A maximum yield of
106 neutrons per pulse was observed at P = 0.3 Torr [6].

The production of neutrons indicates that D+ and 
ions are accelerated up to energies providing a notice-
able efficiency of nuclear fusion reactions. For exam-
ple, the maximum of the cross section for the
1H3(1d2, 0n1)2He4 reaction is attained at the deuteron
energy 109 keV. As far as the dependence of the neutron
yield on the deuterium pressure has a pronounced
maximum, the generation of accelerated ion beams is
a gas-discharge effect [5]. Nuclear fusion is a process
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of the second kind of smallness with respect to both for-
mation of gas plasma and acceleration of ions. There-
fore, ion acceleration up to lower energies, where
nuclear fusion is inefficient, is realized in the region of
much higher pressures [5].

In the present study, we investigated the structure of
charged-particle beams generated in a diode in which a
hollow cylinder 7 mm in diameter and made of 50-µm
tantalum foil played the role of a high-voltage elec-
trode. The cylinder axis was orthogonal to the grounded
plane electrode. The interelectrode spacing d was var-
ied within the limits of 2 to 5 mm. High-voltage pulses
having an amplitude of about 800 kV, front duration of
1 ns, and total duration of 30 ns were applied to the
diode [7]. At P = 0.05–0.5 Torr, voltage pulses with an
amplitude of 400–800 kV arise in the diode. These
pulses correspond to multiple overvoltages, since the
static breakdown voltage does not exceed 20 kV in the
Pd region under investigation. Currents with the ampli-
tude of 2–4 kA and duration of 15–20 ns flow in the
diode. The beams were recorded by the TsVID-0.1-1
dosimetric films with the mass thickness of 10 mg cm–2,
which were placed outside of the diode on the plane
electrode.

The electron-beam structure was studied in a diode
with a plane anode made of aluminum foil of the thick-
ness ∆ = 15 µm. Figure 1 exhibits single-pulse beam
patterns for discharges in deuterium. A stack of four
films was placed beyond the anode. After passing the
beam through the stack, the beam intensity decreased
so that in each next film a portion consisting of elec-
trons of higher energies was recorded. Filtration by the
films allowed us to reveal a fine space–energy structure
of the beam, which appeared to be extremely inhomo-
geneous. We observed bands directed perpendicularly
to the edge of the cylindrical cathode. The bands con-
verged to the cathode center, where the beam density
was so high that the film locally melted. In the case of
the weak filtration, the diameter of the beam pattern
exceeds the cathode diameter by approximately a factor
of two. The beam structure was observed most clearly
in the fourth film after filtration of low-energy electrons
by preceding films. These electrons are subjected to
003 MAIK “Nauka/Interperiodica”
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Fig. 1. Patterns of electron beams generated by discharges in deuterium at P = 0.3 Torr and d = 2.5 mm. The anode is a hollow thin-
wall cylinder.
strong scattering and to the action of the space charge
field. Owing to these factors, the initial structure in the
low-energy region is eroded. The fourth film is avail-
able only for electrons of energies exceeding 150 keV.
The size beam patterns for electrons of such energies
negligibly exceeds the cathode diameter.

The structure of ion beams was investigated in the
diode whose high-voltage electrode (cylinder) was used
as an anode. A nickel mesh 4 µm thick and with a cell
size of 18 × 18 µm served as a cathode. The patterns
formed by ion beams generated by discharges in deute-
rium also demonstrate bands directed perpendicularly
to the anode edge. (Fig. 2). The ion-beam structure is
similar to that of electron beams observed strong filtra-
tion. This is natural, since ions appear along the ioniza-
tion tracks of electrons in gas.

The ion energy measured with a wedge consisting of
micron-size Mylar films is close to 300 keV. In accor-
dance with the data of [8] on the neutron yield from a
tritium target as a function of the energy of accelerated
deuterons, an electric current of accelerated deuterium
ions of the order of 10 A corresponds to the neutron
yield of 106 neutrons and of 2.5-ns pulse duration. This
intensity of the electric-current is much lower than the
total discharge current, which attains 2.5 kA. Direct
measurements of deuterium ion-beam electric-current
intensity were performed with a collector located at
1.7 cm from the mesh cathode. The 3-µm Mylar film
decreasing the ion-beam intensity by a factor of five
isolated the evacuated collector chamber from the
diode gas gap. We recorded an ion-beam electric-cur-
rent pulse having an amplitude of ~1.5 A and duration
of 3 ns. With allowance for the beam absorption in the
cathode and in the Mylar film, we can expect that the
ion-beam current does not exceed 10 A. The delay time
of the ion arrival at the collector compared to the time
corresponding to the voltage pulse maximum attains
6−7 ns. This is caused by both the delay of the dis-
charge development with respect to the moment of the
voltage application and passage by ions of the distance
between the anode and the collector. The measured
delay time agrees with the estimate of the deuterium-
ion energy of 300 keV corresponding to a velocity of
~4 × 108 cm s–1 and the 4-ns time of flight between the
cathode and collector.

The structure of electron and ion beams and time
characteristics of ion beams in the case of discharges in
air turned out similar to those in deuterium. The pat-
terns of electron beams produced by discharges in air at
P = 0.04–1 Torr were obtained for a single pulse. The
only exclusion corresponds to d = 5 mm and P = 1 Torr.
It took 10 pulses in order to obtain this pattern, since the
voltage on the diode and, hence, the electron energy
decrease with the rise of Pd. The diameter D of patterns
formed by the beam considerably exceeds the cathode
diameter of 7 mm. D increases with d and decreases
with P. For example, at P = 0.04 Torr and d = 5 mm, D ≈
25 mm, whereas for d = 9 mm, D ≈ 45 mm. The clear
radiant structure is observed up to P = 0.3 Torr. At P >
1 Torr, this structure is eroded due to scattering of elec-
trons on gas molecules.

The characteristic feature of high-voltage electrodes
used in the present study and in [1, 2] is the presence of
a sharp emitting edge. In order to reveal the correlation
of the band structure formed by charged-particle beams
with this feature, we performed experiments with the
diode, in which a smooth massive steel hemisphere was
used as a high-voltage electrode (cathode). The diame-
ter of the hemisphere was 28 mm, and its edges were
rounded off (the rounding radius was 3 mm). The pat-

Fig. 2. Patterns of ion beams generated as a result of dis-
charges in deuterium at P = 0.3 Torr and (left) d = 2.5 mm
(20 pulses) and (right) d = 5 mm (35 pulses). The anode is
a hollow thin-wall cylinder.
DOKLADY PHYSICS      Vol. 48      No. 9      2003
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Fig. 3. Patterns of electron beams in the case of a cathode with the developed emitting surface (hemisphere 28 mm in diameter) for
P = (from left to right) 0.04, 0.04, 0.3, and 1 Torr and ∆ = (from left to right) 15, 30, 30, and 15 µm. The interelectrode spacing is
d = 5 mm.
terns formed by electron beams for two values of alu-
minum-anode thickness ∆ are shown in Fig. 3. In the
case of ∆ = 15 and 30 µm, the film can be penetrated by
electrons with an energy exceeding 50 and 80 keV,
respectively. Several ectons spaced from each other
arise on the spherical surface of the cathode, which are
separated from each other by a certain distance. At P =
0.04 Torr, the diameter of the pattern formed by the
electron beam emitted by one ecton is 5–6 mm, the
beam angular divergence being close to 60°. With
increasing P, this diameter decreases, which is caused
by the gas focusing and attains 1–2 mm at P = 1 Torr.
The pattern observed for the electron beam emitted
from the rounded cathode edge exhibits a pronounced
band structure. The electron energy in the beam does
not exceed 80 keV, since this beam is absent beyond the
anode with the thickness of 30 µm. It is possible that the
pattern under discussion corresponds to the distribution
of a set of ectons at the cathode edge. A similar distri-
bution of ectons was observed for discharges in vacuum
in the presence of an external magnetic field [3].

We can estimate the characteristic size r of plasma
for the instant when the magnetic pressure of the explo-
sive-emission electric current is equal to the gas-

dynamic pressure of metal vapor: r5 ≈ .

Here, M1 ≈ 10–11 g is the mass of metal evaporated from
a single microscopic asperity [3] for the pulse duration
~10 ns [3]; tdel ~ 1–10 ns is the explosion delay time;
k is Boltzmann’s constant; T ≈ 104 K is the plasma tem-
perature; µ0 is the magnetic permittivity of vacuum; mn
is the nucleon mass; A = 181 is the tantalum atomic
mass; and C ≈ 4 × 1017 A4 s m–4 [3]. The quantity r
depends weakly on the empirical quantities M1, tdel, T
and is close to the characteristic size of about 1 µm of a
single microscopic asperity. This implies the impossi-
bility of the confluence of the explosive plasma into a
unified layer at the cathode edge.

High-voltage nanosecond gas discharges at high
overvoltages generate beams of accelerated electrons
and ions. These beams have the same complicated
ordered space–energy distribution as discovered previ-

6M1tdelkT
πµ0mnAC
------------------------
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ously for electron beams generated in high vacuum. It
is possible that, in accordance with [1, 2], the spatial
structure of the electron beams originates from ordered
distribution of ectons along the emitting cathode edge.
However, according to the above estimate, a mecha-
nism that implies [1] the confluence of plumes of explo-
sive plasma into a unified layer, which then breaks,
seems to be nonphysical. The discovery of the ion-
beam structure casts doubts on mechanisms of elec-
tron-beam formation, which are based on a regular dis-
tribution of ectons [1, 2]. Since the gas ionized by elec-
trons is an ion source, the ion-beam structure is a con-
sequence of the structure of the electron beams.
However, the formation of an ordered distribution of
ectons on the mesh cathode possessing high geometric
transparency seems to be improbable. Most likely, the
regular structure of charged-particle beams is a result of
the filamentation of electron beams themselves. In
addition, this filamentation is accompanied by the
transformation of filaments into plane layers because of
electrostatic expansion.
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The thermodynamic properties of rarefied, low-den-
sity, and (in part) moderately dense gases are frequently
described by the equations of state in the virial form [1–3]

. (1)

Here, Z is the compressibility factor; T is the tempera-

ture; P is the pressure; ρ =  is the density, where V is

the specific volume; R is the universal gas constant; µ is
the molar mass of the substance; and B(T), C(T), etc.,
are the virial coefficients depending only on tempera-
ture. In principle, the virial coefficients can be calcu-
lated by the methods of statistical physics when the
potentials of intermolecular interaction are known.
However, since the actual interaction potentials are
unknown (moreover, mathematical difficulties appear
when realizing this approach), the exact equation of
state with a reasonable number of virial coefficients can
hardly be obtained. Purely empirical approaches with-
out physical and theoretical concepts (see, e.g., [3–5])
also provide limited possibilities for obtaining the
exact equations of state with a small number of param-
eters, because the described thermodynamic surface is
intricate.

We prefer the approach where the functional form
and structure of the equation of state can be obtained
from physical concepts, while the particular form of
analytical expressions and the numerical values of the
parameters entering into these equations can be estab-
lished from experimental data.

In this study, using the relationships and depen-
dences found earlier in [6–8], we derive the equation of
state that describes the thermal and caloric properties of
rarefied, moderately dense, and dense gases of many
“normal” substances within the experimental accuracy.

Z
Pµ

ρRT
----------- 1 B T( )ρ C T( )ρ2 …++ += =

1
V
---
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In [7], using a spherically symmetric step potential
of intermolecular interaction, we derived the equation
for the second virial coefficient B(T) of nonpolar sub-
stances. Within the experimental accuracy, this equa-
tion reproduces the experimental data for numerous
substances over the entire temperature interval under
study [6, 7]. Therefore, one can hope that the use of
such a potential to obtain the equation of state for gases
in a wide interval of the state parameters can be suc-
cessful.

This potential has the form (Fig. 1)

(2)

where r is the intermolecular distance. An interparticle
interaction potential similar in form was previously

U r( )

+∞, for 0 r σ0< <
β, for σ0 r σ< <
ε, for σ r d< <–
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Fig. 1. Schematic representation of a combined model
potential of the interparticle interaction.
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proposed by Kreglewski [9]. Potential (2) can be repre-
sented as the sum of simple potentials:

U(r) = U1(r) + U2(r) + U3(r) + U4(r), (3)

where

(4)

Of course, the equation of state could be found by
the direct calculation of the partition function of the
thermodynamic system, where the intermolecular inter-
action is described by potential (2), and subsequent
passage to the thermodynamic quantities by using the
known equations of statistical physics [1]. However, the
realization of such an approach is rather complicated,
requires a number of additional assumptions about the
spatial distribution of particles, can hardly provide
accurate results, and, for these reasons, is beyond the
scope of this work.

In [7], using potential (3) and the known relation-
ship

(5)

where NÄ is the Avogadro constant and k is Boltz-
mann’s constant, we obtained the equation

(6)

for the second virial coefficients. Thus, as follows from
Eqs. (5) and (6), the compressibility factor for low

U1 r( )
+∞, for 0 r σ0< <
0, for r σ0,>




=

U2 r( )
0, for r σ0<
+β, for σ0 r σ< <
0, for r σ,>




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=

U3 r( )
0, for r σ<
ε, for σ r d< <–

0, for r d ,>

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=

U4 r( )
0, for r d<

c
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densities (ρ → 0) as calculated by Eqs. (3) and (5) is
equal to

(7)

Similarly to Eq. (7), the compressibility factor of a gas
in a wide density range can be written as

(8)

The term ∆Z(U) can appear in the equation of state (8)
after the determination of the partition function, which,
after the calculation of the irreducible higher order
(above second) integrals [1, 2] and subsequent calcula-
tions of the virial coefficients, can contain “crossed
terms” from the interaction potentials Ui(r) specified by
Eqs. (4).

When calculating the compressibility factor by
Eq. (8), one can assign a certain conventional thermo-
dynamic subsystem to each Zi(Ui). Our calculation of
the compressibility factor in a wide density range was
based on the following concepts.

(i) A conventional thermodynamic subsystem where
intermolecular interaction is represented by the poten-
tial U1(r) specified by the first of Eqs. (4) is a system of
hard spheres where the compressibility factor is a func-
tion only of density ρ: Z1 = Zhs(ρ). The explicit expres-
sion for Zhs(ρ) was given, e.g., in [5]. However, taking
into account that molecules in the first approximation
can represent hard (“impermeable”) but nonspherical
particles, one can generally write Z1 = f(ρ). As was
shown in [8], the presence of such a term in the equa-
tion of state agrees with the preferred form of the equa-
tion of state resulting from the rigorous equations of
thermodynamics.

(ii) When calculating the compressibility factor Z2 =
Z2(U2), we took into account that the repulsive branch
in the actual potential is very steep so that the width of
an approximating step in Eq. (4) can be considered very
small. In addition, one can assume that, in the range of
distances σ0 < r < σ for moderate densities, no more
than one or two particles can be simultaneously present
near a chosen particle. This assumption makes it possi-
ble to calculate only the second and third virial coeffi-
cients when evaluating the compressibility factor
Z2 = Z2(U2). The explicit expressions for these virial
coefficients with the interaction potential U2(r) speci-

ZB 1 B T( )ρ+ 1 Bi T( )ρ
i 1=

4

∑+= =

=  1 Zi Ui( ) 1–[ ] .
i 1=

4

∑+

Z 1 Zi Ui( ) 1–[ ]
i 1=

4

∑ ∆Z U( ).+ +=
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fied by the second of Eqs. (4) were given in [1, 2]. Thus,
Z2 = Z2(U2) can be represented in the form

(9)

(iii) To calculate the compressibility factor resulting
from the intermolecular attraction forces Z3 = Z3(U3)
and Z4 = Z4(U4), which are specified by the square-well
potential and the dispersion London forces in the inter-
action potential (2), for densities at which it is impossi-
ble to neglect multiple collisions, we use the concept
proposed in [3, 10]. According to this concept, the com-
pressibility factor, according to generalization of the
virial equation of state (1), is representable in terms of
“elementary functions”:

(10)

Such a representation of the compressibility factor
means that the temperature functions are independent
of the spatial (density) functions and vice versa. When
describing the third and fourth conventional thermody-
namic subsystems, one can try to identify the tempera-
ture functions Ψ(T), Φ(T), etc., in Eq. (10) with the sec-
ond, third, etc., virial coefficients, respectively. Then,
retaining only the term with the second virial coeffi-
cient in the equation of state, one can represent the
compressibility factor in the form

(11)

On the basis of the same argumentation, the compress-
ibility factor Z4 is written as

(12)

The representation of Z3 = Z3(U3) and Z4 = Z4(U4) in the
form of Eqs. (11) and (12) provides the passage to the equa-
tion of state for a rarefied gas with the second virial coeffi-
cient if lim(  = 1 and lim(  = 1.

Thus, in view of Eqs. (8), (9), (11), and (12), the
equation of state of a real gas where the intermolecular
interaction is described by potential (2) has the form [it
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T
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lim ψ ρ( )( )

ρ 0→
lim
is taken that ∆Z = 0 in Eq. (8)]

(13)

The detailed analysis of the equation of state (13)
using the experimental P–V–T data for numerous sub-
stances (in our calculations, we used the data from the
series of monographs on the thermodynamic properties
of materials published by GSSSD, Publishing House of
Standards, Moscow) provide the following conclusions.

(i) In the temperature-dependent terms in Eq. (13),
the optimum description of the experimental data is
reached for

(14)

(ii) The function f(ρ) has the form

(15)

(iii) The functions ϕ(ρ) and ψ(ρ) are equal to each
other, i.e., ϕ(ρ) = ψ(ρ); the function ϕ(ρ) in the dimen-
sionless form can be represented as a function of the

reduced density ω =  and the compressibility factor

at the critical point Zc =  (Pc, Tc, and ρc =  are

the parameters of a material at the critical point) and
has one fitting parameter c0:

(16)

Then, taking into account the above discussion, the
equation of state (13) can be written in terms of the

reduced variables ω =  and τ =  as

(17)

where ϕ(ω) is determined by Eq. (16).
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Detailed analysis shows that Eq. (17) describes the
thermal properties of many normal materials in the den-
sity range ρ = 0–1.5ρC (ω = 0–1.5) within the accuracy
of experimental (reference) data except the critical
domain. In these calculations, we considered pressures
from 1 to 500 bar and temperatures from the triple point
to 500 K (for carbon dioxide and water, the upper limits
were 1000 bar and 1000 K, respectively), because
experimental data are either absent or not quite reliable
beyond these intervals. It is interesting that Eq. (17)
describes the thermal properties of water vapor (as is
known, water is an anomalous substance) within the
accuracy presented in the skeleton tables [11].

As an example, the critical parameters of some
materials and the coefficients of Eq. (17) obtained by
the processing of tabular (averaged) experimental data
on the thermal properties of these materials are listed in
Table 1. This table also presents the standard deviations
σZ of the calculated values of the compressibility factor
Z from the tabular values. In addition, Table 1 contains
the standard deviations calculated by the eight-parame-

ter Benedict–Webb–Rubin equation ( ) [1, 3]. This
equation is considered as one of the best equations of
state with a small number of parameters and is often
used to describe the thermal properties of many materi-
als [12]. As is seen in Table 1, Eq. (17) reproduces the
thermal properties of materials better than the Bene-
dict–Webb–Rubin equation of state.

It is evident that the equation of state (17) for low
densities goes over to the equation of state with the sec-
ond virial coefficient [Eq. (6), see also [6, 7]]. As is seen
in Fig. 2, Eq. (17) with the coefficients evaluated from
the tabular data in the wide range of the state parame-
ters reproduces the experimental data concerning the
second virial coefficient of gases much better than the
Benedict–Webb–Rubin equation.

σZ
BWR
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Using the known thermodynamic equations (see,
e.g., [15]), one can obtain the equations describing the
caloric properties of materials from the thermal equa-
tion of state if the properties in the ideal-gas state are
known. Analysis shows that enthalpy and entropy cal-
culated with the coefficients of Eq. (17) that are listed
in Table 1 agree with the tabular data within the refer-
ence accuracies except the critical range (see Table 2).
We emphasize again that enthalpy and entropy were
calculated without data concerning the caloric proper-
ties of dense gases.

We think that the above approach has significant
potential for further development and will possibly be

5
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Fig. 2. Deviations δB = Bcalcd – Bexp of the calculated values
of the second virial coefficient from the experimental values
for argon [13]. The coefficients of equations are found from
the thermal data for a dense gas [14] by (squares) Eq. (17)
and (crosses) the Benedict–Webb–Rubin equation.
Table 1.  Critical constants and parameters of Eq. (17) for some materials

Material TC, K ρC, 
kg/m3 ZC c0 c1 c2 c3 c4 c5 c6 c7

σZ × 100 
by 

Eq. (17)

Argon 150.86 531.0 0.2938 0.0473 1.0481 0 0.5022 2.0731 0.7089 0.4095 0.4718 0.126 0.216

Nitrogen 126.20 313.1 0.2899 0.0352 1.1590 0 0.5230 2.1896 0.7498 0.4409 0.4648 0.180 0.283

Oxygen 154.581 436.2 0.2878 0.0355 1.0287 0 0.5542 2.1159 0.7908 0.4449 0.4620 0.128 0.183

Methane 190.77 163.5 0.2862 0.0438 1.0309 0 0.5712 2.1103 0.7973 0.4381 0.4570 0.197 0.229

Carbon
dioxide

304.20 467.99 0.2745 0.0472 1.6868 0.4410 0.9068 2.4576 1.2203 0.4377 0.5467 0.156 0.208

Tetrafluo-
romethane

227.5 629.7 0.2767 0.0471 1.0932 0.3319 0.7737 2.2728 1.0844 0.5774 0.4688 0.137 0.133

Water 647.27 317.763 0.2330 0.0367 1.5394 0 1.7296 2.6066 2.4723 0.5591 0.3291 0.314 0.329

σZ
BWR 100×
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Table 2.  Calculated and tabular values of enthalpy and entropy for carbon dioxide

T, K
H, kJ/kg S, kJ/(kg K)

10 bar 30 bar 70 bar 100 bar 200 bar 400 bar 10 bar 30 bar 70 bar 100 bar 200 bar 400 bar

280
–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

305
–
–

–
–

–
–

–
–

–
–

–
–

350
–
–

–
–

400

600

1000

Note: Reference values [15] and calculation results are given above and under the horizontal bars, respectively.

783.0
782.5
------------- 754.7

754.2
------------- 7.344

4.337
------------- 4.061

4.055
-------------

805.9
805.5
------------- 784.9

783.9
------------- 706.4

709.6
------------- 4.422

4.417
------------- 4.165

1.158
------------- 3.791

3.797
-------------

847.5
847.2
------------- 833.0

832.2
------------- 799.1

797.7
------------- 767.3

766.1
------------- 670.3

669.5
------------- 4.548

4.547
------------- 4.310

4.308
------------- 4.077

4.074
------------- 3.937

3.935
------------- 3.589

3.588
-------------

895.1
894.8
------------- 884.4

883.9
------------- 861.8

860.9
------------- 843.8

842.7
------------- 784.3

782.9
------------- 729.6

728.3
------------- 4.674

4.676
------------- 4.446

4.448
------------- 4.244

4.244
------------- 4.142

4.142
------------- 3.894

3.894
------------- 3.664

3.664
-------------

1100.4
1100.3
---------------- 1096.2

1096.0
---------------- 1087.9

1087.8
---------------- 1081.9

1081.7
---------------- 1063.4

1063.0
---------------- 1036.1

1035.4
---------------- 5.091

5.086
------------- 4.877

4.872
------------- 4.705

4.699
------------- 4.629

4.623
------------- 4.470

4.464
------------- 4.294

4.288
-------------

1567.8
1568.0
---------------- 1567.0

1567.2
---------------- 1565.4

1565.7
---------------- 1564.2

1564.6
---------------- 1560.8

1561.5
---------------- 1556.3

1557.8
---------------- 5.682

5.684
------------- 5.473

5.474
------------- 5.310

5.311
------------- 5.240

5.103
------------- 5.102

5.103
------------- 4.957

4.960
-------------
able to considerably extend the described range of state
parameters of one-component materials.
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Ultrafast transformations and solid-state reactions
are attracting constant current interest. In particular,
shock-induced solid-state synthesis is responsible for
the formation of reaction products with sizes d = 10–
100 µm in τ = 10–5–10–7 s [1–4]. This corresponds to the
extremely overestimated effective diffusion coefficient

Deff ~  = 10–1–10–5 m2/s and contradicts the slow dif-

fusion mechanism, which is the single explanation of
mass transfer in the solid state. Various concepts in the
framework of the diffusion mechanism were proposed
to explain a high mobility of atoms in ultrafast synthe-
sis. Disregarding the structure mechanism, Thadhani
et al. [4] assumed for the first time that diffusionless
cooperative processes must dominate in synthesis dur-
ing the action of a shock wave. This assumption implies
that mutual mass transfer responsible for the mixing of
reagent atoms proceeds with velocity Vr ~ 1–1000 m/s.

Ultrafast (explosive) reactions also accompany
solid-state synthesis in thin films [5–7]. The explosive
behavior of the reaction in Ni/Si and Rh/Si substrate-
free films was first thought to be determined by the
explosive crystallization of Si amorphous layers. These
reactions are initiated by local heating (due to mechan-
ical impact, spark, or laser pulse) at room temperature.
They propagate on the film surface as self-propagating
self-similar waves. However, explosive reactions also
proceed in fully polycrystalline Ni/Al films, which
indicates that explosive reactions result from synthesis
of Al and Ni layers. The front velocity in Ni/Al film
samples is estimated as Vr ~ 4 m/s [7]. Ultrafast solid-
state reactions include reactions initiated by nanosec-
ond (τ ~ 10 ns) laser annealing of thin films on sub-
strates [8]. In this case, a reaction proceeds only in the
irradiated area and does not propagate on the film sur-
face. The typical thickness of films used in experiments

d2

4τ
-----
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is d = 10–100 nm. The effective diffusion coefficient is

equal to Deff ~  = 10–8–10–6 m2/s for these reactions

and is much higher than the diffusion coefficient in the
solid phase. The velocity of reagents must be Vr ~ 1–
10 m/s under the assumption of their diffusionless
directed motion.

Since the mechanisms of solid-state synthesis are
not clearly understood, it is impossible to predict the
phase composition of reaction products and reagent
pairs with which ultrafast synthesis can be realized.

The following two properties were found in [10–12].
(i) The first phase formed at the film interface is a

phase with the minimum temperature TK of the struc-
tural phase transition in the phase diagram.

(ii) The initiation temperature T0 of a solid-phase
reaction in thin films coincides with the minimum tem-
perature of the solid-state structural phase transition of
the first phase (T0 = TK).

In particular, a solid-state reaction in an S/Fe bilayer
film starts at the temperature of the metal–dielectric
phase transition in iron monosulphide (FeS), i.e.,
T0(S/Fe) = TK(FeS) [9]. For the Au–Cu system, which
is classical in ordering, the initiation temperature in
bilayer Cu/Au thin films was shown to be equal to the
temperature of the order–disorder transition in a CuAu
alloy, i.e., T0(Au/Cu) = TK(AuCu) [10].

Contrary to other solid-state transformations, mar-
tensitic transformations proceed through the diffusion-
less cooperative displacement of the high-symmetry
austenite phase to the low-symmetry martensite phase.
For this reason, it was surprising that martensitic trans-
formations can determine solid-state reactions in thin
films. In particular, NiTi and AuCd martensitic phases
are formed by solid-state synthesis in Ni/Ti [11] and
Cd/Au [12] bilayer films, respectively. The initiation
temperature T0 in these systems coincides with the mar-
tensitic transformation temperature TK in NiTi and
AuCd alloys, respectively, i.e., T0(Ni/Ti) = TK(NiTi) =
400 K and T0(Cd/Au) = TK(AuCd) = 340 K. However,
up to a heating rate of 20 K/s, solid-state synthesis pro-
ceeds in Ni/Ti bilayer films and Cd/Au samples in the

d2

4τ
-----
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reaction-diffusion mode and in the mode of self-propa-
gating high-temperature synthesis (SHS), respectively.
The above argumentation and analysis, made in [12],
imply that solid-state reactions determined by marten-
sitic transformations have common chemical and struc-
tural mechanisms with the diffusionless cooperative
character of martensitic transformations. It is well
known that martensitic transformations can be initiated
at low temperatures, induced by external stresses, and
proceed with high rates. These features suggest that
solid-state reactions determined by martensitic trans-
formations can change kinetics under the action of
mechanical stresses, have the explosive mode, and pro-
ceed at cryogenic temperatures. As was shown in [12],
solid-state reactions in Cd/Au layers proceed in the
SHS mode and are determined by martensitic transfor-
mations in an AuCd alloy. Therefore, these samples are
candidates for the initiation of ultrafast reactions.

In this paper, analyzing nanosecond (τ ~ 10 ns) laser
synthesis in Cd/Au(111) films, we show that the mar-
tensitic mechanism of atom transfer must dominate in
ultrafast solid-state reactions in thin films.

The experiments were carried out with Cu/Au
bilayer film samples obtained by sequential vacuum
deposition on a freshly spalled MgO(001) surface. The
typical thicknesses of Au and Cd layers were in the
ranges 50–100 and 200–300 nm, respectively. To create
good adhesion and form oriented layers on the
MgO(001) surface, the first Au layer was deposited at
500–520 K in 10–4 Pa vacuum. To prevent a reaction,
the upper Cd layer was deposited at room temperature.
Figure 1a shows the diffraction pattern of the original
Cd(200 nm)/Au(80 nm)/MgO(001) bilayer film sam-
ples. It exhibits reflections from the predominant
Au(111) orientation and polycrystalline Cd layer. A
sample can also contain negligible amounts of the
Au(311) and Au(200) orientations. The original sample
was heated at a rate of no less than 10 K/s until the
appearance of an SHS wave, which was visually
observed. Then, the sample was cooled at a rate of
about 5 K/s. Figure 1b shows the diffraction pattern of
Cd(200 nm)/Au(80 nm)/MgO(001) after the passage of
the SHS wave. Reflections from the Cd layer disappear,
and strong reflections corresponding to interplane spac-

ings  = 0.229 nm and  = 0.1145 nm appear. Study
of SHS in polycrystalline Cd/Au film samples [14]
shows that these reflections can be attributed to the

(111) and (222) martensitic peaks with the inter-
plane spacings d1 = 0.2314 nm and d2 = 0.11562 nm
(JCPDS card 26-0256), respectively. The difference
between interplane spacings and tabulated values pre-
sents the dependence of the lattice constants of the 
martensite on the nonequilibrium synthesis conditions.

Samples of this set were also subjected to laser treat-
ment in 10–4 Pa vacuum. Gaussian pulses with duration
τ = 10 ns and an energy of 0.15 J from an LTI-207 laser
with λ = 1.06 µm, energy density Ö0 = 5 J/cm2, and an

d1
1 d2

1

γ2' γ2'

γ2'
irradiation spot diameter of 1.7 mm were used. To ana-
lyze X-ray diffraction, the 8 × 8-mm film surface was
scanned by a laser beam. The partial ablation and sepa-
ration of the film from the substrate were observed after
irradiation. Figure 2a shows the diffraction reflections
after a single-pulse (n = 1) laser action. The diffraction
pattern after n = 4 does not change. However, the inten-
sities of reflections increase due to the growth of the
layer of reaction products (Fig. 2b). Diffraction reflec-
tions from the reaction products after laser synthesis
include only two peaks from (111) and (222) belonging

to the  martensite with interplane spacings  =

0.233 nm and  = 0.1165 nm, respectively. The iden-
tity of diffraction patterns after the passage of the SHS
wave (Fig. 1b) and after laser treatment (Fig. 2b)
implies the same structural scenarios of atom transfer in
both synthesis modes. The same conclusion was
obtained when studying the formation of the TiSi2
phase in Ti/Si(100) samples subjected to thermal
annealing and nanosecond laser pulses [8]. The diffrac-
tion patterns from reacted samples (Figs. 1b, 2b)
exhibit epitaxial relations (111) || Au(111) of the 
martensite with the Au(111) film surface. The nonequi-
librium synthesis process and epitaxial growth imply
directional atom transfer during the reaction. Study of
solid-state synthesis in polycrystalline Cd/Au samples
shows that synthesis proceeds in the solid state [12].
This implies that synthesis on the oriented Au(111) sur-
face is also solid-state synthesis. Either the shock wave
or high temperature, which are induced by a laser pulse,
can initiate synthesis in a Cd/Au(111) sample. The pen-
etration depth δT of the thermal front can be estimated
as δT ~ 2(χτ)0.5, where χ(Cd) = 0.5 × 10–4 m2/s is the
thermal conductivity of cadmium. This estimate yields
δT ≈ 140 nm, which is comparable with the thickness of
the Cd layer in the original film. Under the assumption
that the shock wave velocity is no less than the speed of
sound, the depth of the shock wave action is estimated
as δ > 10 µm. The thickness of the reacted layer under
the action of the temperature factor must be indepen-
dent of the number of laser pulses. Therefore, the reac-
tion initiation by the shock wave is more probable.

It is known (see, e.g., [13]) that the loss of the stabil-
ity of the austenite β phase with a decrease in the sam-
ple temperature TS to the start temperature MS of the
martensitic transformation is attributed to a decrease in

the shear modulus G' = (C11 – C12) → 0, which deter-

mines the stability of the structure under the
{110}〈110〉  shear. The original interface of the Cd/Au
sample is a two-dimensional reaction product (  mar-
tensite). With an increase in temperature above the tem-
perature AS of the inverse martensitic transformation or
under the action of a shock wave, the  martensite
transits to the β phase. Strong stresses cause reagent

γ2' d1
2

d2
2

γ2' γ2'

1
2
---

γ2'

γ2'
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Fig. 1. Diffraction patterns of the Cd(200 nm)/Au(80 nm)/MgO(001) bilayer film system (a) before the reaction and (b) after the
passage of the SHS wave through the original sample.
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Fig. 2. Same as in Fig. 1 but after (a) single-pulse nanosecond (10 ns) laser action and (b) quadruple laser irradiation.
atoms to approach each other, reduce the activation
energy, and promote the initiation of the reaction. Mass
transfer in solid-state synthesis must proceed so that
atoms cooperatively displace perpendicularly to the
film plane in the nearest {110}〈110〉  direction of the β
DOKLADY PHYSICS      Vol. 48      No. 9      2003
phase. Since the shear modulus G' is extremely low, the
synthesis activation energy must be low, and the reac-
tion must proceed in the ultrafast mode.

Since the classical works by Bridgman, it has been
known that, under the simultaneous action of static
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pressure and shear deformation, chemical reactions can
proceed in the explosive mode. In this case, the activa-
tion energy Ea is close to zero, the effective diffusion
coefficient exceeds the diffusion coefficient in the solid
state by a factor of 1010–1012, and temperature in the
reaction zone does not considerably increase. The ter-
mination of the action of shear deformations gives rise
to the sharp termination of many reactions [14]. This
suggests that shear deformations are important in
micromechanisms of reactions and their initiation. The
determining role of shear deformations in the transition
of reactions to the explosive mode was attributed by
Teller [15] to low shear stresses compared to the com-
pressive stresses, which is manifested as the smallness
of shear modulus G compared to the elastic modulus E.
Allowing G → 0 at the martensitic point, our results
strengthen the assumption made in [15] and justify the
martensitic mechanism of ultrafast reactions.

In conclusion, we note that the proposed martensitic
mechanism of synthesis suggests a method of predic-
tion of ultrafast solid-state reactions. Shock-induced
synthesis must first be realized with powder systems
that have martensitic phases with a low martensitic
point in the phase diagram. Therefore, shock synthesis
in Ni–Al powder mixtures, which was observed in [3],
must be determined by the martensitic transformation
in the NiAl alloy (MS ~ 500 K). In particular, synthesis
under shock compression can be expected in powder
systems Cd–Au (MS ~ 340 K), Cd–Ag (MS ~ 300 K),
Ni–Ti (MS ~ 360 K), etc.
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Investigation of the magnetoelastic interaction in
perovskite structures is of both fundamental and
applied interest. In these investigations, the effect of
exchange enhancement of magnetoelastic coupling is
particularly important. The essence of this effect con-
sists in the fact that the relativistic magnetoelastic cou-
pling in ferromagnets with a certain magnetocrystalline
symmetry can be enhanced for some branches of
phonon and spin excitations by the exchange interac-
tion parameter and can considerably exceed the spin–
phonon coupling in ferromagnets [1]. In addition, the
study of the exchange enhancement due to the magne-
toelastic interaction is of crucial importance for signal
transformations.

In this study, we investigate a LaMnO3 perovskite
crystal (Pnma symmetry group). In the absence of an
external magnetic field, the ground state of an antifer-
romagnetic subsystem of the crystal under consideration
is determined by four magnetic sublattices (Fig. 1).

The magnetic moments of the crystal do not lie in
the basal plane, because LaMnO3 has a distorted per-
ovskite structure [2–7]. The rotation of the magnetic
moments because of the lattice distortion is shown in
Fig. 2.

Let us consider the interaction between spin and
elastic waves in a LaMnO3 orthorhombic crystal with
long-range antiferromagnetic order and find the condi-
tions under which the magnetoelastic coupling can be
enhanced due to the exchange interaction of magnetic
moments in sublattices. We take a phenomenological
Hamiltonian representing a sum of the energies of the
magnetic and elastic parts of the system, as well as the
energy of their interaction [8, 9]:

(1)

Here, the uniform exchange interaction, anisotropy,
nonuniform exchange interaction, and magnetostric-
tion are taken into account.

H Hm He Hme.+ +=
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The secondary quantization method and Bogoli-
ubov canonical transformations [10] reduce Hamilto-
nian (1) to the diagonal form

(2)

where  and  are the energies of the spin and
sound waves, respectively, and Ψkγs is the magnetoelas-
tic interaction parameter (γ = 1, 2, 3, and 4 and s = l, t1,
and t2). It is seen in Fig. 3 (dashed lines) that the spin
and sound waves have four and three branches, respec-
tively.

Investigations of the magnetoelastic interaction
show that the parameters Ψk1t1, Ψk1t2, Ψk2t1, Ψk2t2, Ψk3l,
Ψk4t1, and Ψk4l for a wave propagating in the z-axis
direction are equal to zero. The coupling Ψk3t1 between
the third and fourth spin branches, as well as the coupling
Ψk4t2 between the first and second transverse branches, is
enhanced by the exchange interaction [11, 12].

For k || Y0, the coupling parameters Ψk1t1, Ψk2t1, Ψk2t2,
Ψk3t2, Ψk3l, Ψk4t2, and Ψk4l are equal to zero. In this case,
the coupling between the first spin branch and the sec-
ond transverse sound branch Ψk1t2 is enhanced by the
exchange interaction.

For k || X0, the coupling parameters Ψk1t2, Ψk2t1,
Ψk2t2, Ψk3t1, Ψk3l, Ψk4t1, Ψk4t2, and Ψk4l are equal to zero.
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Fig. 1. Direction of the magnetic moments.
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In this case, the coupling between the first spin branch
and the first transverse sound branch Ψk1t1 is enhanced
by the exchange interaction.

To find the natural frequencies (coupled magne-
toelastic waves), we use the equations of motion for the
secondary quantization operators. Retaining the terms
up to the second power in the coupling coefficients, we
arrive at the dispersion relation

The spectrum of coupled magnetoelastic waves
propagating along the x axis is shown in Fig. 3, where

ki . 106 m–1 and  . 1012 s–1.

Our calculations indicate that the variations in the
spectral gap that are attributed to the distortion of the
perovskite structure are equal to
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U
 i.e., the distortion of the perovskite structure consider-
ably affects the gap in the spin-wave spectrum.

Thus, we have developed the theory of the magne-
toelastic interaction in perovskite structures with
orthorhombic symmetry. The dispersion relation for
determining the spectrum of coupled magnetoelastic
waves has been derived. The magnetoelastic interaction
has been analyzed as a function of the wave-propaga-
tion direction. The effect of structure distortion on the
parameters of the magnetoelastic interaction was con-
sidered. It was shown that the dynamic magnetoelastic
interaction between low-lying magnon modes and
some phonon modes can be enhanced under certain
conditions by the exchange-interaction parameter,
which is important for signal transformations.
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High-contrast wave filters are urgently required for
solving many problems of optics, radio engineering,
acoustics, and X-ray spectral analysis. These filters
must strongly suppress incident radiation beyond a cer-
tain given frequency band and, vice versa, possess a
maximum radiation transmission within this band.

Nowadays, methods of spectral selection, which are
based on the phenomenon of wave diffraction in media
with spatially periodic variation of their properties, are
widely used. Problems related to wave propagation and
diffraction on periodic structures have been thoroughly
investigated in the literature for acoustic waves (see
monograph [1]) and visible light [2, 3]. In the latter
publications, various types of optical filters based on
such periodic structures were also considered. The sim-
plest acoustic medium is realized just in acousto-opti-
cal filters. The acoustic wave causes modulation of the
medium permittivity ε(x, t). The modulation period is
determined by the wave vector q of the sound wave, and
the Fourier expansion of ε(x) contains only one compo-
nent [2]:

(1)

where Ω is the sound-wave frequency. The correction
factor ∆ε(x) is determined in terms of photo-elasticity
coefficients and is proportional to the sound-wave
amplitude. At the same time, if Ω = 0 and q ≠ 0, then
formula (1) describes a usual static stratified structure.

Diffraction filters make it possible to realize a high
reflection factor on the order of unity in an extremely
narrow spectral region (Fig. 1), which forms a base for
their wide application. However, alongside the evident
advantages of these spectrometers, there exist a number
of undesirable properties whose elimination could
qualitatively improve the characteristics of diffraction
filters. First of all, there is the presence of far-propagat-
ing oscillations on the reflection curve tails, in which a

ε x t,( ) ε0 ∆ε x( ) Ωt qx–( ),cos+=
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noticeable portion of incident radiation energy is con-
tained. As is easy to understand, this hampers analysis
of weak spectral lines.

In the present paper, we demonstrate that it turns out
to be possible to substantially improve the situation at
the expense of smooth variation of the quantity ∆ε(x) as
a function of x (apodization). In this case, we manage
not only to avoid the oscillations but to suppress to a
great extent the tails of the diffraction reflection curves,
a high reflection coefficient in the central part of the fil-
ter being preserved. In other words, the requirements
on the function ∆ε(x) are formulated, which allows fil-
ters for acoustic and visible-light waves, which have an
almost Π-shaped characteristic, to be realized.

Substituting expression (1) for ε(x, t) into Max-
well’s equations and taking into account the synchro-
nism conditions, we arrive at the well-known system of
shortened equations for amplitudes of the incident (E1)
and diffracted backward (E2) waves (see, e.g., [2]):

(2)

Here, E1(x) and E2(x) are the amplitudes of incident

dE1

dx
--------- ik0∆ε x( )e i∆kx– E2,=

dE2

dx
--------- –ik0∆ε x( )ei∆kxE1.=

1.0

0.5

0
5 0 –5

Φ(∆k)

∆k

Fig. 1. Reflection coefficient for an ideal periodic structure
of a finite size (Γ = 0.5 cm–1; L = 10 cm).
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and diffracted waves, respectively; k0 is the radiation
wave number for which the condition of the exact syn-
chronism is valid; and ∆k determines the deviation from
the Bragg synchronism condition. If ∆ε(x) is indepen-
dent of x, then system of equations (2) has the following
solution:

(3)

(4)

Here, E1(0) and E2(0) are, respectively, the amplitudes
of incident and diffracted waves on the input surface of
a crystal, and L is the interaction length. In Fig. 1, the
function Φ(∆k) is presented for a filter with a constant
∆ε(x) and with parameters Γ = 0.5 cm–1 and L = 10 cm
in accordance with formula (3).

In [4–6], indications were obtained that the exist-
ence of the dependence of polarizability ∆ε(x) on the x
coordinate resulted in a decrease in the magnitude of
subsidiary maxima. However, all these cases were
restricted by a dependence ∆ε(x) such that analytical
solutions to Eqs. (2) could be found. In these cases,
noticeable suppression of undesirable oscillations was
possible. Nevertheless, rather extended tails remained
on the reflection curve, so it is still unclear whether
methods of their efficient elimination do exist.

As is easy to immediately obtain from Eqs. (2) for
the tails of the reflection curves, in the case that

(5)

there exists the following simple expression for the

amplitude R(∆k) =  of the reflected wave:

(6)

Integral (6) can be taken by parts. As a result of this pro-
cedure, we have 

(7)

Continuing the procedure of integrating by parts, we
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2
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i∆k
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L

∫

easily obtain

(8)

where

(9)

Formulas (7)–(9) make it possible to formulate the
necessary conditions for suppressing influence function
wings, as well as for eliminating the oscillations. As
follows from formula (7), first of all, it is necessary to
form the profile of the function ∆ε(x) in such a manner
that

(10)

If even one of conditions (10) is invalid, then, at high
values of |∆k |, the reflection amplitude drops according
to the law

(11)

In this case, the reflection coefficient decreases as

(12)

As immediately follows from formulas (8) and (9),
in the case that conditions (10) are valid, a considerably
sharper decrease of the reflection coefficient occurs. In
this case, instead of formula (12), we arrive at

(13)

If, alongside the validity of conditions (12), we pro-
vide that the first derivatives of ∆ε(x) vanish, then

Φ(∆k) . Additional vanishing of the second

derivatives leads to the dependence Φ(∆k) .

Thus, choosing the profile of the function ∆ε(x), we can
suppress the reflection coefficient wings as strongly as
is wished.

Formula (6) describes the reflection amplitude only
at high values of |∆k |. Therefore, for calculating the
main peak, i.e., for |∆k | ≤ Γ, we should return to the ini-
tial set of equations (2). In the case of ∆k = 0, there is a
simple solution for an arbitrary dependence of ∆ε(x):

(14)

where

(15)

R ∆k( ) F L( ) i∆kL( )exp F 0( ),–=

F x( ) k0
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As follows from relationship (15), choosing the
interaction length L and the averaged (with respect to
L) value of ∆ε(x ), we can provide relatively large val-
ues of the product L. Thereby, in accordance with
formula (14), we can have the reflection coefficient
Φ(0) as close to unity as is wished. Large values of the
product L by no means contradict conditions (10).
Hence, we can obtain the function Φ(∆k), whose values
are close to unity at the center of the curve, and the
wings are strongly suppressed.

For an arbitrary function ∆ε(x), set of equations (2)
has no analytical solution; therefore, it is necessary to
use numerical methods for calculating Φ(∆k). In the
case under consideration, it is convenient to employ the
so-called recurrence method, widely used in the phys-
ics of X-ray diffraction (see, e.g., [7] and references
therein). According to this method, the crystal is
divided into N layers (Fig. 2), and, in accordance with
Eqs. (2), the amplitude R(k) of the reflection from first k
layers is associated with the amplitude R(k – 1) of the
reflection from preceding k – 1 layers:

(16)

Here,

(17)

is the amplitude of reflection by the separate kth layer,

and ∆x = . This is the amplitude R(N) that corresponds

to the desired quantity determining the reflection coef-
ficient

(18)

In Fig. 3, the reflection curve calculated according to
recurrence formulas (16), (17) is presented. This curve
is calculated for the case

(19)

Function (19) satisfies conditions (10) and also con-
ditions

(20)

Therefore, for this dependence, we can expect a strong
suppression of the reflection curve wings. As is seen in
Fig. 3, these expectations are fully confirmed by direct
calculations. The response function Φ(∆k) has an
almost Π -shaped form.
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Figure 4 exhibits the results of calculations of Φ(∆k)
for another case when

(21)∆ε x( ) ysin
y

---------- 
 

2

, y 2π x
L
--- 1

2
---– 

  .= =

Fig. 2. Scheme clarifying the derivation of recurrence rela-
tionships.
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For such a dependence of ∆ε(x), conditions (10) and
(18) are also valid, and suppression of the reflection
curve wings is also observed. However, the comparison
of curves in Figs. 3 and 4 shows that the wing suppres-
sion is not so strong in the latter case.

We can be simply convinced that the functions
described by formulas (19) and (21) differ negligibly
within the interval from 0 to L. However, we reveal the
significant difference between them by turning to the
series generated by these functions (9). As can be easily
shown for function (19), the series F(x) converges as
|∆k |L > 2π. At the same time, the series F(x) generated
by function (21) diverges at an arbitrary ∆k, and we
should understand formula (9) only as an asymptotic
series, i.e.,

(22)

Thus, for strong suppression of the wings, alongside
the validity of conditions (10) and (18), it is desirable
to choose the function ∆ε(x ) in such a manner that
series (9) converges in a certain region |∆k | > ∆k0.

In the present paper, we gave the basic attention to
optical filters, for which the permittivity has the sim-
plest form (1). However, there are arguments in favor of
the possibility of applying the results obtained to other
types of radiation, which include radio waves in the

F x( ) k0 ∆ε n( ) x( ) 1

i∆k–( )n
------------------ O

1

kn 1+
---------- 

  .+
0

n

∑=
microwave region, acoustic waves, and X-rays, as well
as visible light propagating in optical waveguides. The
last case is of special interest from the standpoint of
application in practice.
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The coefficients of the strain-rate sensitivity of plas-
tic characteristics (including microhardness) carry use-
ful information concerning the nature of elementary
carriers of plastic deformation and their mobility in a
solid. In macrotests of various ductile materials (see,
e.g., [1]), a wide range of strain rates  (between 10–8

and 106 s–1) was investigated. However, fracture of
many brittle materials (in particular, single crystals
with covalent bonds, ceramics, glasses, etc.) begins
before noticeable plastic strain. The plastic properties of
such materials are usually studied by the methods of
local deformation or microindentation. In recent years,
the method of nanoindentation has also been extensively
used in this field [2–4]. Famous firms (MTS, Microma-
terials, CSEM, Hysitron, etc.) produce commercial nan-
otesters only for small  values (10–3–10–1 s–1). At the
same time, very high rates of local deformation in sub-
micron areas (@10–1 s–1) are characteristic for many
processes, including dry friction between rough sur-
faces, abrasive and erosive wear, atomic-force micros-
copy, nanolithography by the methods of imprinting
and scribing, and fine grinding [5]. Thus, the area of the
mechanical properties of materials that is characterized
by both short loading time intervals and small deforma-
tion zones is little studied. Under these conditions, the
ordinary mechanisms (in particular, dislocation mecha-
nisms) of plastic flow can be strongly impeded or sup-
pressed.

Some authors (see, e.g., [6, 7]) attempted to find the
strain-rate dependences of dynamic hardness, fracture
toughness, and the coefficient of recovery of some ionic
crystals (NaCl, LiF, and MgO), glasses, and ceramics in
the range  ~ 104–105 s–1 by the method of shock load-
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ing. Thus, a rather narrow  range (about one order of
magnitude) was covered. In addition, one of two
parameters (force and indentation size) needed for
determining hardness, as well as the actual shape and
duration of a loading pulse, was only estimated (from
indirect data) rather than measured. The strain-rate
range 10–1 s–1 <  < 104 s–1, which is of great impor-
tance in practice, still remains poorly studied. More-
over, it should be noted that the strain-rate depen-
dences of the mechanical properties of the same mate-
rial can be different in different  ranges. Therefore, it
is advisable to investigate them in as wide a range of 
as possible.

The aim of this study is to find the strain-rate sensi-
tivity of microhardness H for a number of both ionic
and covalent crystals for  values from 3 × 10–3 to
102 s−1 that covers approximately five orders of magni-
tude (for an indentation depth of about 1 µm). To this
end, using a device designed at the Laboratory of
Nanoindentation, Tambov State University [8], we car-
ried out the indentation of the sample surface by a dia-
mond Berkovich pyramid under the action of a triangu-
lar force pulse with the same amplitude Pmax = 0.42 N
and various durations τ = 10 ms – 300 s of the loading-
pulse front. A force pulse was formed by an electrody-
namic computer-controlled drive. Its shape P(t), as well
as the time dependence of the indentation depth h(t),
was recorded with a time resolution of 50 µs and stored
by the computer. Next, using these data, we constructed
the P–h diagram of the complete loading–unloading
cycle (Fig. 1). This ensured fully controlled and identi-
cal test conditions for various average strain rates  ≈

 ~ . The ratio of Pmax to the corresponding inden-

tation area S = 24.5h2 was taken to be dynamic hardness

Hd = .

The main results are summarized in Fig. 2, which
shows the relative variation of Hd as a function of  on
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Fig. 1. Typical P–h diagram obtained under the indentation of the LiF crystals. The insert shows the P(t) and h(t) time dependences.
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Fig. 2. Relative change in dynamic hardness, Hd/Hst, vs. the average strain rate  under the indenter for the materials under inves-
tigation.
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the log–log scale. It is seen that the strain-rate sensitiv-
ity is virtually absent in the Si, Ge, and GaAs covalent
crystals. At the same time, Hd for soft ionic crystals
such as KCl, LiF, and γ-irradiated LiF (at a dose of
about 106 Gy) and metals (Al) increases noticeably
with . The strain-rate sensitivity of Hd for MgO crys-
tals is very weak in the  range under investigation. An
interesting feature in the behavior of Hd( ) was
observed in LiF. The slope for low strain rates was less
than the slope in the  range between 10–1 and 102 s–1

by a factor of 2.5.
Thus, the materials under investigation can be

divided into two groups (Fig. 3). The strain-rate sensi-

ε̇
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tivity of Hd for crystals with a high ratio of the quasi-
static hardness Hst to the Young modulus E

 was either absent or very low in the 

range under investigation. At the same time, crystals

with  ≤ 0.015 exhibit a strong dependence of Hd on

.

Now, we briefly discuss the results. In the frame-
work of a simple phenomenological model, indentation
can be considered as a relaxation process where exter-
nal forces cause the formation and motion of structural
defects (dislocations, interstitial sites, twins, nucleation
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centers of a new phase, etc.) tending to reduce the con-
tact stresses. Under static conditions, the hardness Hst

of a material is determined from the balance between
applied forces and forces resisting the motion of
defects—carriers of plastic deformation. If an applied
force pulse is short, the finite rate of the generation and
motion of defects can limit the relaxation depth of con-
tact stresses so that the dynamic value Hd appears to be
larger than Hst. In the general case, the dependence Hd =
f( ) in the presence of a number of competing mecha-
nisms can have the form schematically shown in Fig. 4.
The horizontal sections correspond to the case where
the rate of stress relaxation through the dominant mech-
anism in this  range is higher than the loading rate.
The inclined sections appear when the characteristic
times of relaxation processes are comparable with a
loading duration. This behavior is equivalent to the
appearance of internal-friction peaks under these con-
ditions. This circumstance (in combination with the
sizes of the deformed zone) provides information
about the nature and mobility of major carriers of
plastic deformation. A change in the slope of the func-
tion Hd( ) (particularly, for LiF at  ~ 10−1 s–1) likely
corresponds to the transition from one dominant
mechanism of stress relaxation to another. The
absence of the strain-rate dependence of Hd in a cer-
tain  range means that the dominant stress-relaxation
mechanism in this range is so efficient under these
conditions that it ensures quasistatic conditions even
for the highest strain rate in this range. However, this
behavior does not exclude the existence and manifes-
tation of the strain-rate dependences of Hd in other 
ranges.

Thus, plastic strain under the indenter is high, Hd for
Si, Ge, and GaAs is independent of the strain rate, the
number of formed dislocations is small, and their
mobility at room temperature is extremely low. In our
opinion, all these circumstances means that plastic
relaxation in these materials is provided by processes
that do not involve dislocations. In these processes,
nonequilibrium point defects or nucleation centers of
new phases induced by high contact pressures are
formed and move from under the indenter. Numerical
simulation by the methods of multiparticle molecular
dynamics indicates that, under indentation, the activa-
tion energy of motion of interstitial atoms and small-
atomic clusters can be much lower than that of motion
of dislocations. Accordingly, the mobility of these
atoms at low temperatures is higher than the mobility
of dislocations [9, 10]. A number of independent data
also testify to a significant role of nonequilibrium
point defects in the mass transfer in the process of
microindentation [11–15]. Thermoactivation analysis
of the strain-rate dependences of Hd obtained for var-
ious testing temperatures will possibly determine
more exactly what particular mechanisms are respon-
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ε̇
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sible for a certain type of stress relaxation under the
indenter.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation
for Basic Research (project nos. 01-02-16573 and
01-02-97006), the Ministry of Education of the Russian
Federation (project no. E02-3.4-263), and the UK
Royal Society.

We are grateful to M.M. Chaudhri and I. Lim (Cav-
endish Laboratory, Cambridge, UK) for their support,
great interest, and stimulating discussions and to
V.I. Ivolgin and V.V. Korenkov for assistance in the
preparation of the instrumentation.

This work was performed at Tambov State Univer-
sity and Cavendish Laboratory, Cambridge, UK.

REFERENCES

1. M. A. Shtremel’, Strength of Alloys (Mosk. Inst. Stali i
Splavov, Moscow, 1997).

2. W. C. Oliver and G. M. Pharr, J. Mater. Res. 7 (6), 1564
(1992).

1

10 2 3 4 5 6 7

Hst/E × 10–2

2

3

4

5

6
α × 10–2

LiF-2

LiF-γ

LiF-1

KCl

MgO

GaAs Si Ge

Fig. 3. Coefficient of the strain-rate sensitivity α =

 vs.  for the materials under consideration.

Hd

Hst
-------- 

 log

ε̇log
----------------------

Hst

E
--------

1

0

2
Hd, arb. units

ε•

Fig. 4. Schematic plot of the function Hd = f( ) in the pres-
ence of several competing deformation mechanisms.

ε̇



508 GOLOVIN et al.
3. C. M. Li, Mater. Sci. Eng. A 322, 23 (2002).
4. Yu. I. Golovin, A. I. Tyurin, and B. Ya. Farber, Philos.

Mag. A 82 (10), 1857 (2002).
5. G. V. Dedkov, Usp. Fiz. Nauk 170 (6), 585 (2000) [Phys.

Usp. 43, 541 (2000)].
6. M. M. Chaudhri, J. K. Wells, and A. Stephens, Philos.

Mag. A 43 (3), 643 (1981).
7. R. J. Anton and G. Subhash, Wear 239, 27 (2000).
8. Yu. I. Golovin, A. I. Tyurin, and B. Ya. Farber, J. Mater.

Sci. 37, 895 (2002).
9. P. Zhao and Y. Shimomura, Comput. Mater. Sci. 14 (1),

84 (1999).
10. M. Koyanagi, T. Tsutsumi, K. Ohsawa, and E. Kura-

moto, Comput. Mater. Sci. 14, 103 (1999).
11. M. Sh. Akchurin and V. R. Regel, Chem. Rev. 23, Part 2,
59 (1998).

12. Yu. I. Golovin and A. I. Tyurin, Pis’ma Zh. Éksp. Teor.
Fiz. 60 (3), 722 (1994) [JETP Lett. 60, 742 (1994)].

13. B. Ya. Farber, V. I. Orlov, V. I. Nikitenko, and A. N. Heuer,
Philos. Mag. A 78 (3), 671 (1998).

14. V. N. Rozhanskii and M. A. Velednitskaya, Phys. Status
Solidi A 8 (2), 551 (1971).

15. V. L. Indenbom, Pis’ma Zh. Éksp. Teor. Fiz. 12 (12), 526
(1970) [JETP Lett. 12, 369 (1970)].

Translated by Yu. Vishnyakov
DOKLADY PHYSICS      Vol. 48      No. 9      2003



  

Doklady Physics, Vol. 48, No. 9, 2003, pp. 509–511. Translated from Doklady Akademii Nauk, Vol. 392, No. 1, 2003, pp. 59–62.
Original Russian Text Copyright © 2003 by Ivlev, Ishlinski

 

œ

 

.

                                                                                                                       

MECHANICS

                    
On the Theory of Statically Definable Relationships 
and the Limiting State for Plastic Solids

D. D. Ivlev and Academician A. Yu. Ishlinskiœ†

Received March 13, 2003
The statically definable states of plastic solids are
considered as the states corresponding to the limiting
values of the bearing strength and fracture.

1. We consider an elastoplastic beam that is fixed at
both ends and loaded by a transverse force P (Fig. 1a).
Figure 1b shows the schematic force diagram, where R1
and R2 are the reactions at the supports, M1 and M2 are
the bending moments in the fixations, and M3 is the
bending moment in the section where the force P acts.
The equilibrium equations have the form

(1.1)

From Eqs. (1.1), it follows that

(1.2)

We consider the orthogonal space of generalized
stresses M1, M2, and M3 and denote the limiting values
of bending moments as m1, m2, and m3, respectively.
The planes Mi = mi are called yield surfaces and form
the yield surface restricting variations in Mi. Let us
assume that Mi ≥ 0. In this case, the bending moments
vary within the limits

(1.3)

where mi is the constant.
Figure 2 shows the rectangular parallelepiped corre-

sponding to inequalities (1.3) determining variations in
the vector

(1.4)

Relationship (1.2) determines a plane translating in
the space Mi with variation of the force P. The part of
plane (1.2) inside the parallelepiped in Fig. 2 corre-
sponds to the statically possible states of the beam. The
real values of Mi for a given force P are determined by

R1 R2+ P, M1 M3 R1l1–+ 0,= =

M2 M3 R2l2–+ 0.=

M1l2 M2l1 M3 l1 l2+( )+ + Pl1l2.=

0 Mi mi, mi const,–≤ ≤

M M1i M2j M3k.+ +=

Chuvash State University, Moskovskiœ pr. 15, Cheboksary,
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the relationships between stressed and strained states,
beam shape, and boundary conditions.

When loading the beam, i.e., dP > 0, the process of
modifying its state can be represented as follows. First,
when 0 ≤ Mi < mi, elastic deformation proceeds; further,
one of the bending moments, e.g., M1, attains the limit-
ing value M1 = m1, a plastic hinge is formed, and the
beam retains the bearing strength. With further loading,
the second bending moment, e.g., M2, reaches the lim-
iting value M2 = m2, the second plastic hinge is formed,
and the beam also retains the bearing strength. The
beam loses the bearing strength when the third plastic
hinge is formed for M3 = m3, the stressed state of the
beam becomes statically definable, and, according to
Eqs. (1.2) and (1.3), the force P attains the limiting value

(1.5)

In this case, the beam acquires the kinematic freedom
for deformation (Fig. 1c).

Plim
1

l1l2
------- m1l2 m2l1 m3 l1 l2+( )+ +( ).=

l1 l2

l1 l2

M3 M3

M2M1

R2

R1

P

P(a)

(b)

P
(c)

Fig. 1. 
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In the Mi space, loading corresponds to the attain-
ment of the smooth yield surface M1 = m1 (the point A
in Fig. 2) by the vector M. Further, the vector M moves
in the yield surface M1 = m1 until singular points of the
yield surface, i.e., the edge of intersection between two
smooth yield surfaces M1 = m1 and M2 = m2 (the point B
in Fig. 2). The bearing strength is lost when the vector M
attains the limiting singular point M1 = m1, M2 = m2, and
M3 = m3 that lies on the yield surface and corresponds
to the intersection between three smooth yield surfaces
(the point ë in Fig. 2).

As long as the construction retains the state of static
indefinability when the material properties (either elas-
tic or others providing the coupling between stressed
and strained states) play a role in deformation, the con-
struction retains the bearing strength. The construction
loses the bearing strength when it reaches the limit of
retaining the statically indefinable state.

It should be noted that the limiting surfaces can gen-
erally be modified during loading depending on the
variation in plastic strains, the history of loading, etc.
This circumstance determines the singularity position
corresponding to the state of static definability in the
stress space (the point C in Fig. 2).

The above consideration can be extended to the
behavior of an elastoplastic continuum.

2. We consider the relationships of perfect-plasticity
theory. A 2D problem is described by the two equilib-
rium equations

(2.1)

and the limiting-state condition

(2.2)

where σx, σy, and τxy are the stress components in the
Cartesian coordinate system xy.

The set of Eqs. (2.1) and (2.2) for the 2D problem is
statically definable.

∂σx

∂x
--------

∂τ xy

∂y
---------+ 0,

∂τ xy

∂x
---------

∂σy

∂y
--------+ 0= =

f σx σy τ xy, ,( ) 0,=

m1

m2

M2

M1

m3 M3

A
B

C

Fig. 2. 
An axisymmetric problem is described by the two
equilibrium equations

(2.3)

where σρ, σθ, σz, and τρz are the stress constants in the
cylindrical coordinate system ρθz.

With the single limiting relationship

(2.4)

three relationships (2.3) and (2.4) are statically indefin-
able with respect to the four stress components σρ, σθ,
σz, and τρz.

The axisymmetric problem is statically definable in
perfect-plasticity theory if two limiting relationships
are specified:

(2.5)

The properties of equations in statically definable
relationships for the axisymmetric problem were inves-
tigated in [2].

A 3D problem is described by the three equilibrium
equations

(2.6)

The relationships of elasticity theory represent a
statically indefinable set of equations. The stress field
satisfying equilibrium Eqs. (2.6) is statically possible.

If the stressed state meets the plasticity condition

(2.7)

according to [3], Eqs. (2.6) and (2.7) determine the
plastic state of a material, and the set of four Eqs. (2.6)
and (2.7) is statically indefinable.

If the stressed state meets two relationships

(2.8)

according to [3], the relationships determine a devel-
oped plastic state, and set of Eqs. (2.6) and (2.8) is also
statically indefinable.

∂σρ

∂ρ
---------

∂τρz

∂z
----------

σρ σθ–
ρ

-----------------+ + 0,=

∂τρz

∂ρ
----------

∂σz

∂z
--------

τρz

ρ
------+ + 0,=

f σρ σθ σz τρz, , ,( ) 0,=

f 1 σρ σθ σz τρz, , ,( ) = 0, f 2 σρ σθ σz τρz, , ,( ) = 0.

∂σx

∂x
--------

∂τ xy

∂y
---------

∂τ xz

∂z
---------+ + 0,=

∂τ xy

∂x
---------

∂σy

∂y
--------

∂τ yz

∂z
---------+ + 0,=

∂τ xz

∂x
---------

∂τ yz

∂y
---------

∂σz

∂z
--------+ + 0.=

f 1 σij( ) 0,=

f 1 σij( ) 0, f 2 σij( ) 0,= =
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The relationships of perfect-plasticity theory are stat-
ically definable if three plasticity conditions are met:

(2.9)

For an isotropic material, three independent condi-
tions

(2.10)

lead to the stress field

(2.11)

and static definability exists under the full-plasticity
condition [4]

(2.12)

where k is the constant.
If conditions (2.12) are met, the following relation-

ships are valid [3]:

(2.13)

where n1, n2, and n3 are the direction cosines for the
third principal stress σ3 in the space of principal
stresses σ1, σ2, and σ3.

Expressions (2.13) lead to the following three plas-
ticity conditions determining the static definability of
the relationships:

(2.14)

or

(2.15)

The relationships for the statically definable prob-
lem in perfect-plasticity theory are generally repre-
sented in the form [4]

(2.16)

Relationships (2.16) generally set the statically
definable state for an anisotropic perfectly plastic solid.

The properties of the statically definable set of
Eqs. (2.6) and (2.16) in perfect-plasticity theory are

f 1 σij( ) 0, f 2 σij( ) 0, f 3 σij( ) 0.= = =

f 1 σ1 σ2 σ3, ,( ) 0, f 2 σ1 σ2 σ3, ,( ) 0,= =

f 3 σ1 σ2 σ3, ,( ) 0=

σ1 const, σ2 const, σ3 const= = =

σ1 σ2, σ3 σ1 2k,+= =

σx σ 2
3
---k 2kn1

2, τ xy+ + 2kn1n2,= =

σy σ 2
3
---k 2kn2

2, τ yz+ + 2kn2n3,= =

σz σ 2
3
---k 2kn3

2, τ xz+ + 2kn3n1,= =

n1
2 n2

2 n3
2+ + 1,=

σx σ–
2
3
---k– 

  σy σ–
2
3
---k– 

  τ xy
2 xyz( )=

σx σ–
2
3
---k– 

  τ yz τ xyτ xz xyz( ).=

σx ν ϕ 1 σ n1n2n3,( ), τ xy ϕ4 σ n1n2n3,( ),=+=

σy ν ϕ 2 σ n1n2n3,( ), τ yz ϕ5 σ n1n2n3,( ),=+=

σz ν ϕ 3 σ n1n2n3,( ), τ xz ϕ6 σ n1n2n3,( ),=+=

σ 1
3
--- σx σy σz+ +( ), n1

2 n2
2

n3
2+ + 1.==
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investigated for three independent functions ϕi [4] for

(2.17)

or

(2.18)

The statically definable set of Eqs. (2.6), (2.16), and
(2.18) is hyperbolic [4].

It should be noted that Eqs. (2.16)–(2.18) determine
the equality between two principal stresses.

A loaded perfectly elastoplastic solid passes the
stages of elastic and elastoplastic deformations and
finally loses the bearing strength and fails.

An elastic solid is statically indefinable, stresses in it
vary with modification of the strained state, and the equa-
tions describing the deformation process are elliptic.

For states characterized by plasticity conditions (2.7)
and (2.8), static indefinability is retained, the equations
of the elastoplastic state are elliptic [5, 6], and stresses
vary due to varying strain.

A perfectly elastoplastic solid loses the bearing
strength and fails if it reaches the statically definable
state and acquires kinematic freedom for flow in a fixed
stressed state determined by the limiting load. The
equations describing the statically definable state of a
perfectly plastic medium are hyperbolic. Therefore, the
range of a plastic flow and fracture can be separated and
a plastic material flows by sliding.
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The generalized factorization method introduced
in [1] is applied to boundary value problems in multiply
connected domains with boundaries allowing the
change of sign of the surface curvature. In [2], we used
the classical, or projection, factorization method [3, 4],
which is effective only for simply connected convex
domains, where only areas of boundary flattening are
possible. This method is based on the application of the
exponential representation of the group of plane–paral-
lel translations of two- or three-dimensional space.
Generalized factorization is based on that representa-
tion of the group of arbitrary motions, which leads to
Bessel or spherical functions [5, 6]. In this case, projec-
tions are carried out not on a plane and half-space as in
classical factorization but on more complex domains
such as circles, cylinders, and balls, which considerably
extends the geometry of boundary value problems.

The properties of generalized factorization make it
possible to overcome difficulties concerning a complex
geometry of domains of boundary value problems,
which, in particular, are multiply connected and have
relief boundaries.

The method opens new possibilities of studying a
number of multidimensional problems in complex
domains in the presence of lines of change in the
boundary conditions, i.e., mixed problems. It is spe-
cially adapted to the study of processes in complex-
structure objects, in particular, physicomechanical,
chemical, and seismological processes in lithospheric
plates of the block structure, ecological problems in
extended domains with relief boundaries, and bed
streams on broken ground.

New relations describing the solutions of boundary
value problems in the integral form admitting discreti-
zation, as well as normally solvable sets of integral
equations for determining necessary auxiliary func-
tions.

We consider a bounded, multiply connected,
domain Ω with a composite, twice continuously differ-

Kuban State University, ul. Karla Libknekhta 149,
Krasnodar, 350640 Russia
e-mail: babeshko@kubsu.ru
1028-3358/03/4809- $24.00 © 20512
entiable, boundary Γ consisting of outer Γ1 and inner Γ2
parts. The outer part Γ1 is the set of points that can be in
contact with a plane under all possible rolling motions
of the body on this plane, which does not cross the body
at other points. Possible flattening areas of the bound-
ary surface also belong to this set when the touching
plane does not cross the boundary in other areas, while
contact is allowable. The inner part Γ2 includes all
remaining set of the body boundary, including bound-
aries of internal cavities, boundaries of tunnels and
holes piercing the body even if they have convexities,
and boundary areas having at least one negative princi-
pal curvature. It is assumed that each point of Γ2 can
touch a sphere of a finite radius, which does not cross
the body but can only touch it at other points. The mul-
tiply connected domain Ω is topologically homeomor-
phic (allows the deformation without beaks) to a three-
dimensional ball with handles and internal ball cavities
and is oriented manifold with the boundary.

Crack cavities with a zero gap between shores,
which form vibration strength viruses [7], are disre-
garded in this case. Sets composing Γk can be discon-
nected and multiply connected.

In the specified domain, we consider the boundary
value problem for the system of partial differential
equations with constant coefficients:

(1)

(2)

The operator Q is represented as the matrix

Here,

Q ∂xn ∂xk,( )ϕ 0, x Ω R3( ),∈=

R ∂xk( )ϕ f, x Γ∈ ∂Ω .= =

Q ∂xn ∂xk,( ) amrnk∂xn∂xk bmrk∂xk cmr+ + .=

amrnk f n f k amrnk f n f k,
k 1=

3

∑
n 1=

3

∑=

R ∂xk( ) hmrk∂xk pmr+ , ∂x
∂
∂x
------,= =

hmrk hmrk Γ( ),=
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where the summation over repeated subscripts is
implied. For real αk,

In contrast to [2], there is no restriction on the oper-
ator R, and the boundary conditions need not be natu-
ral. They must only satisfy the complimentarity condi-
tion for elliptic systems [8].

A boundary value problem is analyzed in spaces of
slowly increasing generalized functions Hs(Ω), includ-
ing classical ones, which are introduced in terms of the
norms

(3)

To analyze the boundary value problem, we intro-
duce an exterior vector form ω(α, x) whose compo-
nents have the form

(4)

ϕ ϕ r{ } , r 1 2 … M, m, , , 1 2 … M,, , ,= = =

f f r{ } , ϕ x( ) ϕ x1 x2 x3, ,( ),= =

Q α( ) Q iαn– iα k–,( ),≡
n k, 1 2 3, Q, , detQ α( ),= =

det amrnkαnα k 0.≠

ϕ s
2 = ϕ r s

2, ϕ r s
2∑  = Fϕ r

2 1 α+( )2s α ,d

∞–

∞

∫∫∫
r 1 2 … M,, , ,=

α 2 α1
2 α2

2 a3
2
, dα+ + dα1dα2dα3,= =

dx dx1dx2dx3,=

Fϕ r = ϕ r x( )ei α x,〈 〉 x,d∫∫
∞–

∞

∫

ϕ r = 
1

2π( )3
------------- Fϕ re

i α x,〈 〉– α ,d∫∫
∞–

∞

∫

α x,〈 〉 α 1x1 α2x2 α3x3,+ +=

f Hλ Γ( ), λ s 0.5.+>∈

ωm α x,( ) Rmdx1∧ dx2 Qmdx1∧ dx3+=

+ Pmdx2∧ dx3,

Pm ei α x,〈 〉 amr11 ∂x1ϕ r iα1ϕ r–( )[
r

∑=

– amr12iα2ϕ r amr13∂x3ϕ r bmr1ϕ r ] ,+ +

Qm – ei α x,〈 〉 amr22 ∂x2ϕ r iα2ϕ r–( )[
r

∑=
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Introducing topology generated by the Euclidean
space, we consider the domain Ω as an oriented chain
with the a boundary whose orientation is induced by the
orientation of the domain [9].

Using the Stokes theorem in the domain Ω and
assuming that the vector function ϕ satisfies the set of
differential equations (1), we arrive at the expression

We recall that, similar to [2], the exterior form con-
tains relations describing the specified boundary condi-
tions and functions that must be determined or their
normal derivatives with boundary values. When the
combination of derivatives and functions in boundary
conditions (2) differs from the natural combinations
appearing in Eqs. (4), they are formed in Eqs. (4) by
addition and subtraction of the necessary terms to obtain
the left-hand sides of Eqs. (2) without change in ω.

In view of the specific character of the boundary Γ
and taking into account the boundary parts Γ1, where
curvature is nonnegative, and Γ2, where at least one
principal curvature is negative, we denote areas swept
by normal vectors to Γ1 and Γ2 beyond  by Θ1and Θ2,
respectively. Thus, areas Θk adjoin Ω along the surfaces
Γk and have nonzero thickness.

According to the factorization method [2], it is nec-
essary to require that the right-hand side of the men-
tioned relation is equal to zero beyond the domain Ω; i.e.,

First, we consider the boundary part Γ1. In this case,
we obtain the condition

(5)

– amr23iα3ϕ r amr12∂x1ϕ r bmr2ϕ r ] ,+ +

Rm ei α x,〈 〉 am33 ∂x3ϕ r iα3ϕ r–( )[
r

∑=

– amr13iα1ϕ r amr23iα2ϕ r– bmr3ϕ r ] .+

ϕ x( ) 1

8π3
--------   Q 

1– α( ) D α( ) ∫∫  

σ

 ∫  =  

×

 

e

 

–

 

i

 

α

 

x

 

,〈 〉

 

ω α ξ,( ) α

 

1

 

∧

 

d

 

α

 

2

 

∧

 

d

 

α

 

3

 

,

 

d

 

∫

 

Γ

 

∫

Q 1– α( ) Q 1– α( )D α( ), D α( ) D α1 α2 α3, ,( ),= =

ω α ξ,( ) ω α1 α2 α3 ξ, , ,( ), ξ ξ 1 ξ2 ξ3, ,{ } .= =

Ω

ϕ x( ) 0, x R3/Ω.∈=

ϕ x( ) 1

8π3
-------- Q 1– α( )D α( )∫∫

σ
∫=

× e–i α x,〈 〉 ω α ξ,( ) α1∧d α2∧d α3d∫
Γ
∫ 0,=

x Θ1.⊂
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Using transformations made in [2] when factorizing
with respect to the tangent plane to the boundary Γ1 and
calculating two-dimensional Leray residues, we arrive
at the relations

(6)

Here, δr are two-dimensional cycles not homologous to
zero and we assume, as in [2], that the zero set α3 =

(α1, α2) of the function Q(α) has a codimension of
1 and the same multiplicity. For other characteristics of
the zero set, it is necessary to analyze more complex
multidimensional residues, which requires study of
homology groups on multidimensional complex mani-
folds [9, 10].

Following [2], from the last relations, the first set of
equations is constructed in the form

(7)

The derivation of this set, as well as transformations
made for its regularization, is described in detail in [2].
We only remind note that the relation is satisfied on the
elements of a decomposition of unity for each local
coordinate system induced at the boundary Γ1 by the
coordinate systems of the inner neighborhoods of the
topological structure of the domain Ω with the conser-
vation of the orientation.

We now consider the area Θ2, which is the area
swept by outer normal vectors to the boundary Γ2

beyond Ω . Let us apply generalized factorization [1] to

separate classes of functions with a support in .
Using notation from [1], and omitting cumbersome
manipulations, we can represent Eqs. (5) in the form

(8)

D α( )e
–i α x,〈 〉 –ω α1 α2 α3r

– ξ, , ,( )
∂α3Q α1 α2 α3r

–, ,( )
------------------------------------------------------------------------ α1∧ α2dd∫

Γ
∫∫

δr

∫
r 1=

M

∑ 0,≡

x Θ1, Imα3r
– α1 α2,( ) 0,<⊂

α x,〈 〉 ± α1x1 α2x2 α3
±x3.+ +=

α3r
±

D α1 α2 α3r
–, ,( )ω α1 α2 α3r

– ξ, , ,( )∫
Γ
∫ 0,=

r 1 2 … M, ∞ α1 α2 ∞.<,<–, , ,=

Ω

Dk
0 γ1 γ2 γ3r ·

+·, ,( ) e
i α γ( ) ξ η( ),〈 〉 +{ } k

+

∫
Γ
∫

× ω0 γ1 γ2 γ3r
+ η, , ,( ) 0,=

r 1 2 … M, k, , , 0 1 2 …,, , ,= =

γ3 γ3r
+ γ1 γ2,( ), Im γ3r

+ γ1 γ2,( ) 0,>=

D2k
0 γ1 γ2 γ3, ,( ) D0 γ1 γ2 γ3, ,( )Q0 γ1 γ2 –γ3, ,( )=
where γ3 = (γ1, γ2) and γ3 = (γ1, γ2) are the zero
sets of the function Q0(γ1, γ2, γ3) Q0(γ1, γ2, –γ3) in the
new coordinates

subscript 0 refers to the functions of these new coordi-
nates, and

(9)

according to the application procedure of generalized
factorization [1].

Depending on the representation of the space-
transformation group determined by the geometry of
the local area of the boundary Γ2 of the domain Ω ,
relation (9) generates special functions that are com-
ponents of the group representation [5, 6]. The sub-
script is the number of that component of the repre-
sentation vector of the taken transformation group
which that is retained after factorization. In particular,
for the rotation group of a sphere in the three-dimen-
sional space,

(10)

Bessel functions of half-integer orders and spherical
functions arise. For the rotation of a circle on a plane,
which corresponds to problems on a plane or problems
for cylindrical domains,

Bessel functions of integer orders and trigonometric
functions arise.

Exterior forms under coordinate transformations are
multiplied by the corresponding Jacobian.

We emphasize that the origins of old and new coor-
dinates need not coincide with each other.

Note 1. Classical factorization is a particular case of
generalized factorization. Classical factorization pro-
vides projectors onto half-spaces separated by a plane.
This factorization is generated by the additive group of
the space translation parallel to the factorization plane.

+ D0 γ1 γ2 –γ3, ,( )Q0 γ1 γ2 γ3, ,( ),

D2k 1+
0 γ1 γ2 γ3, ,( ) D0 γ1 γ2 γ3, ,( )Q0 γ1 γ2 –γ3, ,( )=

– D0 γ1 γ2 –γ3, ,( )Q0 γ1 γ2 γ3, ,( );

γ3r ·
+ γ3r

–

α α γ( ), γ γ1 γ2 γ3, ,{ } , ξ ξ η( ),= = =

η η 1 η2 η3, ,{ }=

ei α γ( ) ξ η( ),〈 〉{ } k
+ 1

2πi
-------- ei α γ( ) ξ η( ),〈 〉

γ3 γ3
+–

------------------------- γ3d

∞– i0+

∞ i0+

∫ 
 
 

k

,=

Im γ3
+ 0>

α1 γ3 γ1 γ2, α2cossin γ3 γ1 γ2,sinsin= =

α3 γ3 γ1.cos=

α1 γ3 γ2, α2cos γ3 γ2, α3sin γ1.= = =
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Its representations are specified by exponentials. As
was mentioned above, generalized factorization pro-
vides projectors on complex-geometry domains differ-
ent from half-spaces. These domains can be separated
by complex surfaces. Coordinate surfaces formed by
transformation groups can be the representations of
these domains. For motion groups of the three-dimen-
sional space, in particular, for the rotation group, these
are spheres, cylinders, and disks.

In the limit of infinite radii γ3 in the boundary area
Γ1 in the representation of the last groups, demarcating
surfaces degenerate to the plane corresponding to clas-
sical factorization. In addition, Bessel and spherical
functions go over to exponentials with an increase in
arguments.

This note explains why generalized factorization
provides more possibilities for analysis of boundary
value problems in domains with a complex boundary.
Indeed, if classical factorization is applicable to a
domain, generalized factorization is also applicable.
The counter statement is not always true.

If the boundary value problem that is analyzed by
applying generalized factorization is formulated more
generally than in [2], one can prove that the sets of inte-
gral equations (7) and (8) reduce generally to normally
solvable sets of second-kind integral equations rather
than to Fredholm (zero index) equations. They can be
regularized by the procedures applied in [2] with addi-
tional determination of the kernel and cokernel of the
operator, which have a definite physical meaning.

Thus, the sets of integral equations (7) and (8)
reduce to the set of integral equations of the form

(11)

The vector function g is sought in the same spaces
as in [2].

According to the above discussion, the number of
independent equations in set (11) can be equal to, lower
than, or larger than the number of unknowns.

As will be proved below, boundary conditions in
Eqs. (1) are satisfied under relations (11).

Note 2. As follows from the above discussion, the
method is applicable to the set of differential equa-
tions (1) of any finite order.

Some phenomena, such as an increase in seismicity,
multicomponent pollution of the environment with
impurities chemically reacting in the atmosphere, and
pollutions caused by inundations flushing surface
ground layers, are multifactor and are described by
many coupled partial differential equations and cou-
pled boundary conditions [11–15].

The normal solvability of the operator on the left-
hand side of Eqs. (11) and appearance of the defect
numbers, kernel, and cokernel of this operator are the
manifestations of specific physical effects, such as
localizations, resonances, and inconsistencies of differ-

I A+( )g Bf.=
DOKLADY PHYSICS      Vol. 48      No. 9      2003
ent-type boundary conditions of different types, which
are determined by physical processes. In view of this
circumstance, the method proposed above is also a
convenient tool for the analytical analysis of such
problems.

Note 3. The choice of local coordinate systems for
an approximate solution of the boundary value problem
is determined by the requirement of a higher -order
contact of the approximating surface with the boundary
Γ. In particular, for the boundary part Γ1 with nonnega-
tive curvature, a Cartesian local coordinate system is
appropriate at flattening points as in [2]. It can be also
used at positive-curvature points. However, a local
coordinate system whose coordinate surface touches
the convex element of the surface Γ1 is more appropri-
ate at these points. For the boundary part Γ2 with nega-
tive curvature, it is appropriate to select transformation
groups such that their representations provide coordi-
nate surfaces touching the negative-curvature surface
element. This can be sometimes be achieved by a
change of the coordinate origin of the transformations
of the same group.
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Turbulent wakes are known to generate internal
waves in stratified media [1–5]. For a relatively weak
stratification, a turbulent wake first evolves almost sim-
ilarly to that in a homogeneous fluid and expands sym-
metrically. However, buoyancy forces hinder the verti-
cal turbulent diffusion; therefore, the wake flattens at
large distances from the body and ceases to grow in the
vertical direction. Since the fluid density is distributed
more uniformly within the wake than outside it due to
the turbulent mixing, the buoyancy forces tend to
reconstruct the previous state of the stable stratification.
As a result, convective flows intensely generating inter-
nal waves arise in the plane perpendicular to the wake
axis [2]. Investigations of turbulent wakes and internal
waves induced by them are reviewed in [6–8].

Analysis of numerical simulations of the dynamics
of internal waves generated by turbulent wakes shows
that waves induced by turbulent wakes behind self-pro-
pelled bodies were considered in detail both for a lin-
early stratified fluid [2, 7, 8] and for pycnocline [6]. At
the same time, internal waves in wakes behind towed
bodies have not been adequately studied [9, 10].

In this study, we describe our numerical model of
internal waves generated by turbulent wakes in a stably
stratified medium and compare the parameters of the
internal waves induced by turbulent wakes behind
towed bodies and self-propelled bodies.

1. FORMULATION OF THE PROBLEM

To describe the flow in the far turbulent wake behind
a body of revolution in a stably stratified medium, we
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use the following parabolized set of averaged equations
of motion, incompressibility, and continuity in the
Oberbeck–Boussinesq approximation:

(1)

(2)

(3)

(4)

(5)

Here, U0 is the velocity of the unperturbed fluid; Ud =
U0 – U is the defect of the averaged longitudinal com-
ponent of the velocity; U = U1, V = U2, and W = U3 are,
respectively, the x, y, and z components of the averaged
velocity; p1 is the deviation of pressure from the hydro-
static pressure induced by the stratification ρs; g is the
acceleration of gravity; 〈ρ1〉  is the averaged defect of
density, where ρ1 = ρ – ρs; ρs = ρs(z) is the density of

unperturbed fluid:  ≤ 0 (stable stratification); ρ0 =

ρs(0); the prime denotes pulsation components; and the
angle brackets mean averaging. The coordinate system
is connected with the moving body so that the velocity
of the body is equal to –U0, and the z axis is directed
upwards opposite to gravity. The fluid density is con-
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sidered as a linear function of temperature, and strati-
fication is assumed to be weak. The terms with molec-
ular viscosity and diffusion in Eqs. (1)–(4) and a value

of  in Eq. (5) are assumed small and rejected as

in [6–8].

The set of Eqs. (1)–(5) is unclosed. To close it, we
use the modified e–ε model of turbulence, where

unknown Reynolds stresses  (i = 1, 2, 3), 〈u' v '〉 =
, and 〈u' w'〉 = , the turbulent fluxes, and

the variance of fluctuations of the density field are
determined from the algebraic relationships [11]

(6)

(7)

(8)

∂U
∂x
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(9)

(10)

(11)

From now on, summation over repeating subscripts is
implied. The turbulence energy e, dissipation rate ε, and
Reynolds shear stress 〈v 'w'〉 are determined from the
differential equations

(12)

(13)

(14)

The turbulent viscosity coefficients are determined
from Eq. (6) by taking into account the features of the
wake under consideration:
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In this case,

The empirical constants were taken as [11] c1 = 2.2, c2 =
c3 = 0.55, c1T = 3.2, c2T = 0.5, cT = 1.25, cε1 = 1.45, cε2 =

u'v '〈 〉– Key
∂U
∂y
-------, u'w'〈 〉– Kez

∂U
∂z
-------.= =
1.9, cs = 0.22, and σ = 1.3. The above mathematical
model is used because it is simply realizable, while it
includes the anisotropy of the characteristics of turbu-
lence in the wake in a stably stratified fluid. In addition,
contrary to the model used in [9, 10], this model satis-
factorily describes the turbulent flow in the wake
behind a self-propelled body not only in the linearly
stratified medium [7], but also in pycnocline [6].
DOKLADY PHYSICS      Vol. 48      No. 9      2003
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The marching variable x in Eqs. (1)–(4) and (12)–(14)
plays the role of time: t = x/U0. At the distance x0 from
the body, we set the initial conditions consistent with
the experimental data on the evolution of turbulent
wakes in a homogeneous fluid [12, 13]. We set the
unperturbed-flow conditions as the boundary condi-
tions at large distances from the wake axis (in the plane
orthogonal to the direction of the body motion).

The variables in the problem reduce to the dimen-
sionless form with the body diameter D and free-stream
velocity U0 as the scales of length and velocity, respec-
tively (asterisk denotes dimensionless values). In this
case, the characteristic parameters of the wake in a
stratified fluid—the density Froude number FD and
Väisälä–Brunt period T—are determined as follows:

The finite difference calculation algorithm is based on
the method of splitting in terms of spatial variables; the
detailed description of this algorithm was given in [6, 7].

The mathematical model was tested in the series of
numerical calculations, whose results were compared
with the experimental data [12, 13] on the degeneration
of wakes behind self-propelled bodies and towed
bodies in homogeneous and linearly stratified media
(FD = 31). The axial values obtained for both the defect
of the averaged-velocity longitudinal component and
the turbulence energy agree with experimental data. As
an example, we compare (Fig. 1) the calculated and

measured values of  =  =  for a

momentumless wake.

2. RESULTS OF CALCULATION

To analyze the internal waves generated by turbulent
wakes in a stably stratified medium, we performed the
numerical experiments with the Froude number FD =
565 corresponding to the conditions of one of the labo-
ratory experiments in [12].

The pattern of internal waves obtained in the calcu-
lations is illustrated by the time evolution of density
profiles (Figs. 2, 3). In Fig. 2, we compare internal
waves induced by turbulent wakes behind self-pro-
pelled bodies and towed bodies in the linearly stratified
medium. Since similarity in the density Froude num-
ber [7] takes place for the linear stratification, the result
obtained is valid for an arbitrary sufficiently large
Froude number. It is seen that the amplitude of internal
waves generated in the wake behind the towed body is
much higher than that for the waves in the wake behind
a self-propelled body.

A similar behavior is also observed in the medium
with nonlinear stratification. As an example, we con-
sider the evolution of a turbulent wake in the pycno-

FD

U0T
D

----------, T
2π
ag

----------; a
1
ρ0
-----

dρs

dz
--------, z– 0.= = = =

UD*
UD

U0
-------

Ud x 0 0, ,( )
U0

--------------------------
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cline when turbulent wakes induce solitary internal
waves, whose amplitudes are much larger than those for
the linear stratification [4, 6]. Figure 3 shows the den-
sity profiles calculated for the pycnocline for various
times (we chose the same level as in Fig. 2). It is seen
that the difference in internal-wave amplitudes behind
self-propelled bodies and towed bodies is also very
large in this case. The ratio of internal-wave amplitudes
for FD = 280, as well as the ratio obtained in the calcu-
lations with other nonlinear density distributions in an
unperturbed fluid, is also close to that shown in Fig. 3.

0.15

0.10

0.05

U*D

0 20 40 60 80 100
x*

Fig. 1. Defect of the longitudinal averaged-velocity compo-
nent vs. the distance from the body in the homogeneous liq-
uid (open circles are the experimental data, open triangles
are the calculations from [13], and the dashed lines are our
calculations) and in the linearly stratified fluid (closed cir-
cles are the experimental data, closed triangles are the cal-
culations [13], and the solid lines are our calculations for
FD = 31).

0.20

0.15

0.10
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0 5 10 15 20
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1

Fig. 2. Density profiles ρ0 – 〈ρ〉 = ρ0 – ρs (0.1D); ρs = ρ0(1 –

az); y* = , and z* =  for the time t/T = (1) 1, (2) 2, (3) 3,

(4) 4, and (5) 5. The solid and dashed lines correspond to the
self-propelled body and a towed body, respectively.

y
D
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Thus, the calculations show that the turbulent wake
behind a towed body generates internal waves of a
much larger amplitude than that for the case of a self-
propelled body. This fact can be explained by substan-
tial distinctions in the evolution of axisymmetric turbu-
lent wakes behind towed bodies and self-propelled bod-
ies in a homogeneous fluid (see, e.g., [14]). In particu-
lar, the self-similar wake behind a towed body is
characterized by the degeneration laws:

e0(x) = e(x, 0, 0) ~ x–4/3, Ud(x, 0, 0) ~ x–2/3, l(x) ~ x1/3,

where l(x) is the characteristic wake size. For the self-
similar wake behind a self-propelled body, we have

e0(x) ~ x–1.5, Ud(x, 0, 0) ~ x–1.5, l(x) ~ x1/4. 

Such different behaviors of the characteristics of
these wakes are caused by their significantly different
structures. In the wake behind the towed body, the gen-
eration of the turbulence energy due to gradients in the
averaged flow is substantial. In the momentumless
wake, the virtually shear-free flow mode [15] is realized
at distances as short as about 10D. Since the turbulent
wake in a stratified medium at the initial stage is devel-
oped as in a homogeneous fluid, turbulence in the wake
behind the towed body mixes a large fluid mass. In this
case, gravity initiates the generation of internal waves
of a larger amplitude than that in the wake behind the
self-propelled body. This statement is illustrated in
Fig. 4, where we show the time dependence of the

1.0

0.4

0.2

z*

0 5 10 15 20
y*

543
2

1

0.6

0.8

6 7
8

Fig. 3. Density profiles ρ0 – 〈ρ〉 = ρ0 – ρs (0.1D) in the pyc-

nocline {ρs = ρ0 (1 – aβtanh , β = 0.15D} for the time

t/T = (1) 1, (2) 2, (3) 3, (4) 4, (5) 5, (6) 6, (7) 7, and (8) 8.
The solid and dashed lines correspond to the self-propelled
body and towed body, respectively.

z
β
--- 

 
dimensionless total turbulence energy (t) and total

internal-wave energy (t):

The principal results of this study are as follows. We
developed the numerical model of internal waves gen-
erated by turbulent wakes in a stably stratified medium.
The turbulent wake behind a towed body was shown to
generate internal waves of a substantially larger ampli-
tude than that behind a self-propelled body.
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It is found that stability equations derived in [1, 2]
and used in [3] contain only minor parametric terms for
description and determination of shear forms of stabil-
ity loss. The principal cause responsible for these forms
of stability loss in the absence of subcritical shear
stresses in a filler is the appearance of subcritical trans-
verse compressive stresses. In view of this circum-
stance, refined geometrically nonlinear equations are
constructed for thin three-layer shells with a transver-
sally soft filler. These equations are based on the use of
the classical theory of the average bending for outer
layers and the linear approximation of transverse dis-
placements for the filler. In contrast to all known vari-
ants of the theory of layered shells that are based on the
models mentioned above, the derived equations allow
the finiteness of the shear strains in the filler, which are
caused by possible large mutual tangential displace-
ments of outer layers under their average bending.

Disregarding deformation parametric terms, we
derive the linearized stability equations, which are used
to obtain the refined solution of the problem of the shear
form of stability loss of a three-layered ring at external
pressure. It is shown that this form of stability loss can
also be realized in the presence of internal pressure.
Moreover, it is shown that the shear form of stability loss
is realized in the axial direction of the three-layer cylin-
der shell under the corresponding conditions at the ends
in the presence of external or internal pressure.

1. REFINED GEOMETRICALLY NONLINEAR 
THEORY OF THIN THREE-LAYER SHELLS 
WITH A TRANSVERSALLY SOFT FILLER

Let the middle surface σ of the filler be attributed to

arbitrary curvilinear coordinates xi and  =  be theri
∂r

∂xi
-------
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basis vectors on σ. In what follows, we take

where 2h(k) are the thicknesses of the (k = 1) lower and
(k = 2) upper carrier layers, 2h is the filler thickness, the
unit vector m normal to σ, together with the vectors ri,
forms the right-hand basis, and δ(1) = – δ(2) = 1. Similar
to [4], the mechanics of the deformation of carrier lay-
ers are described in the classical nonlinear theory of
average bending, where displacements and shear
strains are determined by the formulas

(1.1)

(1.2)

where

(1.3)

(1.4)

Here, ∇ i is the covariant derivative with respect to the
metric ais =  and bis are the covariant components of
the second metric tensor on σ.

In the Timoshenko model with allowance for trans-
verse compression, the displacement vector at an arbi-
trary filler point that was spaced from σ by z before
deformation is represented in the form

(1.5)

which is widely used in the mechanics of three- and
multilayer shells [4]. In the framework of these repre-
sentations, transverse compressive strains ε33 and trans-
verse shear strains 2εi3, which are constant over thick-

ri
k( ) ∂r k( )

∂xi
-----------

∂
∂xi
------- r δ k( ) h H k( )+( )m–[ ] ri,≈= =

Uz k( ) u k( ) z k( )W k( )+ ui
k( )ri w k( )m z k( )ωi

k( )ri,–+= =

h k( ) z k( ) h k( ),≤ ≤–

εis
z k( ) εis

k( ) z k( )χ is
k( ),+=

2εis
k( ) eis

k( ) esi
k( ) ωi

k( )ωs
k( ),+ +=

2χ is
k( ) –∇ iωs

k( ) ∇ sωi
k( ),–=

eis
k( ) ∇ ius

k( ) bisw
k( ), ωi

k( )– ∇ iw
k( ) bi

sus
k( ).+= =

rirs

Uz u zg+ ui zγi–( )ri w zγ+( )m,+= =

h z h,≤ ≤–
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ness, for arbitrary displacements are determined by the
formulas [5]

(1.6)

where ωi = ∇ iw + us, eis = ∇ ius – bisw.

Then, we consider that the filler of the three-layer
shell undergoes transverse strains limited by the esti-

mates 2εi3 ≈  and ε33 ≈ ε, where ε is much less than
unity, for small strains of the middle surface σ of the
filler under medium bending, i.e., for eis ≈ ε and ωi ≈

. Such a form of the strain state of the three-layer
shell is possible under its medium bending and when
carrier layers can be mutually displaced in the tangen-

tial directions under the restrictions 2εi3 ≈ . The esti-

mates 2εi3 ≈  and ε33 ≈ ε can be satisfied if γi and γ
entering into the formula

(1.7)

satisfy the inequalities γ ≤ ε and γi ≤  under which
Eqs. (1.7) have the above simple form.

In the framework of models used for the filler and
carrier layers, it is sufficient to satisfy the conditions of
layer-displacement matching

Substituting Eqs. (1.1) and (1.5) into these conditions

and taking  and w(k) as desired unknown functions,
we arrive at the relations

(1.8)

(1.9)

Using Eq. (1.9), we represent Eqs. (1.6) in the form

(1.10)

where C(k) = .

2εi3 ωi 1 γ+( ) γs δis eis+( ),+=

2ε33 2γ γiγ
i γ2,++=

bi
s

ε

ε

ε
ε

2εi3 ωi γi, ε33 γ 1
2
---γiγ

i,+≈+≈

ε

U
z k( )

z k( ) δ k( )h k( )=( ) U
z

z δ k( )h–=( ).=

ui
k( )

w
1
2
--- w 1( ) w 2( )+( ),=

ui
1
2
--- ui

1( ) ui
2( ) h 1( )ωi

1( )– h 2( )ωi
2( )+ +( ),=

γ 1
2h
------ w 2( ) w 1( )–( ),=

γi
1

2h
------ ui

2( ) ui
1( )– h 1( )ωi

1( ) h 2( )ωi
2( )+ +( ).=

2εi3 C 1( )ωi
1( ) C 2( )ωi

2( ) 1
2h
------ ui

2( ) ui
1( )–( ),+ +=

ε33
1
2
--- w 2( ) w 2( )–( ) + 

1
2
---γiγ

i,=


 1

2
--- 1

h k( )

h
--------+ 

 


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To derive the equilibrium equations and boundary
conditions, we take the Lagrange variational equation

(1.11)

where δA is the variation of the work of the external
forces and δU(3) and δU(k) are the variations in the defor-
mation potential energies of the filler and carrier layers,
respectively. Assuming that the filler is transversally
soft [4], we consider that only carrier layers are sub-
jected to external forces and introduce the vectors of
given forces and moments

applied to the boundary lines of the middle surfaces of
external layers σ(k). We also introduce the vectors of
given surface forces and moments

applied to the points of the surfaces σ(k). Here, the unit
normal n and tangential t vectors to the contour C of
the surface σ are decomposed into basis vectors ri and

ri as n = niri = ni ,  = ti  = τi . The variation of the
work of the indicated external forces along the corre-
sponding displacements, as well as the expression for
δU(k), was presented in [1], and

for the transversally soft filler. Substituting Eqs. (1.7)
into the last relation and using Eqs. (1.8) and (1.9), we
obtain

(1.12)

where Ti3 = 2hσi3 and T33 = 2hσ33.

When using Eq. (1.12) and corresponding results
from [1], variational equation (1.11) after traditional
transformations with the use of Eqs. (1.3) and (1.4) pro-

δA δU– δA δU 3( ) δU k( )

k 1=

2

∑–– 0,= =

F k( ) Φn
k( )n Φnτ

k( )t Φm
k( )m,+ +=

L
k( )

Lnτ
k( )n Ln

k( )t,+=

X k( ) X k( )
i ri X k( )

3 m, M k( )+ M k( )
i ri,= =

ri t ri ri

δU 3( ) 2σi3εi3 σ33δε33+( ) σ zdd

h–

h

∫∫
σ
∫=

δU 3( ) Ti3 δγi δωi+( ) T33 δγ γiδγi+( )+[ ] σd

σ
∫∫=

=  
δ k( )

2h
--------– Ti3 T33γi+( )δui

k( )

k 1=

2

∑
σ
∫∫

+ Ti3C k( )
h k( )

2h
--------T33γi+ 

  δωi
k( ) δ k( )

2h
--------T33δω k( )– δσ,
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vides the set of six nonlinear differential equilibrium
equations

(1.13)

(1.14)

where

(1.15)

as well as the static boundary conditions in the contour
lines of carrier layers.

We note that the shear form of stability loss is deter-

mined in Eq. (1.13) by the terms  = σi3 +

σ33γi, where the terms σ33γi, which appear due to retain-

ing of terms  in Eq. (1.7), are important.

Using the old notation for increments of introduced
functions, we linearize the composed nonlinear equilib-

rium equations near a certain solution , ,

, , , and . Assuming that the shell is
stressed but unstrained until the loss of stability, we
arrive at the following set of linearized stability equa-
tions:

(1.16)

(1.17)

where

(1.18)

in contrast to Eq. (1.15).

f k( )
i ∇ sT k( )

is S k( )
i b j

i–=

+ δ k( )
Ti3 T33γi+

2h
------------------------- X k( )

i+ 0,=
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i T k( )
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+
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33
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3+ 0,=

S k( )
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is T k( )
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k( )+=

+
Ti3

2
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Ti3 T33γi+
2h
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Ti3 T33γi+
2h
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γiγ
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2
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ui
k( )0 w k( )

0

T k( )0
ij M k( )0

ij T0
i3 T0

33

f k( )
i ∇ sT k( )

is b j
i ∇ sM k( )

js T k( )0
js ωs

k( ) T j3

2
-------+ + 

 –=

+ δ k( )
Ti3 T0

33γi+
2h

------------------------- 0,=

f k( )
3 ∇ iS k( )

i T k( )
is bis δ k( )

T33

2h
-------+ + 0,= =

S k( )
i ∇ sM k( )

is T k( )0
is ωs

k( )–=

+ Ti3

2
------- h k( )

Ti3 T0
33γi+

2h
------------------------- M k( )

i+ +
2. SHEAR FORM OF STABILITY LOSS 
IN A THREE-LAYER RING IN THE CIRCLE 

DIRECTION

We consider a three-layer ring that has a symmetric
thickness structure and is in an axisymmetric stress–
strain state. Let 2t be the thickness of the outer layers,
R is the radius of the middle surface of the filler as
related to the circle coordinate x2 = θ, G23 is the trans-
verse shear shift modulus of the filler, and B = 2Et and

D =  are the stiffnesses of carrier layers. In this

notation and in terms of the physical components of the
corresponding vectors and tensors, neutral-equilibrium
equations (1.16) and (1.17) are represented in the form

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

because the undistorted stress–strain state is axisym-
metric.

2.1. External Pressure Effect

In Eqs. (2.1) and (2.4), subcritical forces in carrier

layers  and transverse normal stress  in the

filler at the external pressure  = –p, when  = 0,
are determined by formulas [3, 6]

(2.6)

(2.7)

2t3E
3

-----------

B
R
--- d

dθ
------

du2
k( )

dθ
----------- w k( )+ 

  δ k( )R q2 σ33
0 γ2+( ) S2

k( )+ +  = 0,

dS2
k( )

dθ
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R
---–

du2
k( )

dθ
----------- w k( )+ 

 

+
δ k( )E3R

2h
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σ23 q2=

=  
1
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S2
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D

R2
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d2ω2
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dθ2
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k( )0ω2
k( )+=

+ t h+( )q2 tσ33
0 γ2,+

ω2
k( ) 1

R
--- dw k( )

dθ
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k( )– 
  ,=
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1

2h
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1( )– t ω2

1( ) ω2
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T22
k( )0 σ33

0

X3
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T22
1( )0 χRp

1 2χ+
---------------, T22
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within the accepted accuracy of the constructed equa-

tions. Here, χ =  is the dimensionless parameter

determining the transverse compression.
We represent the unknown functions appearing in

Eqs. (2.1)–(2.5) in the form

(2.8)

where n = 0, 1, 2, … are the numbers of half-wave-
lengths of stability loss. Each number corresponds to a
certain branching point of solutions of the original set
of constructed nonlinear equations from its linear solu-
tion (2.6) and (2.7).

Here we consider the solution for n = 0, which
describes, as was shown in [3], the shear form of stabil-
ity loss of the ring for uniform external pressure. Such
forms of stability loss, as well as the forms of free and
natural oscillations of the three-layer elements of con-
structions, are accompanied by zero change in the
parameters of their stress–strain state. Therefore, set-

ting  = 0 in all equations and relations (2.1)–(2.5),

we arrive at the equations

(2.9)

(2.10)

where

(2.11)

with the accuracy 1 +  ≈ 1 and 1 +  ≈ 1.

The set of Eqs. (2.9) has only trivial solution w(k) ≡
0, and, using Eqs. (2.11) and introducing the notation

, (2.12)

Eqs. (2.10) reduce to the form

E3R2

2Bh
------------

w k( ) u2
k( ) q2, ,{ }

=  Wn
k( ) Vn

k( ) Qn, ,{ } nθ nθ nθcos,cos,sin{ } T ,

d
dθ
------

–w k( ) δ k( )χ w 2( ) w 1( )–( )+ 0,=

δ k( )Rq2* T22
k( )0ω2

k( ) hq2 tq2*+ + +

≈ δ k( )Rq2* T22
k( )0ω2

k( ) hq2+ + 0,=

ω2
k( ) u2

k( )

R
--------– , q2

1
2h
------G23 u2

2( ) u2
1( )–( )= = ,

q2* q2 σ33
0 γ2+=

q2 σ33
0 u2

2( ) u2
1( ) t ω2

1( ) ω2
2( )+( )+–[ ]+=

≈ 1
2h
------ G23 σ33

0+( ) u2
2( ) u2

1( )–( )

t h+
R

----------- t
R
---

α 1
2h
------R2 G23 σ33

0+( ), β
G23R

2
------------= =

α β– T22
1( )0–( )u2

1( ) –α β+( )u2
2( )+ 0,=

–α β+( )u2
1( ) α β T22

2( )–+( )u2
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The condition that these equations have nontrivial solu-
tions provides the formula

(2.13)

Substituting Eqs. (2.6) and (2.12) into this formula
and taking into account Eq. (2.7), we obtain

(2.14)

with the accuracy 1 = h0 = 1 +  ≈ 1. We call it the for-

mula for determining the critical external pressure at
which shear stability loss occurs in the three-layer ring,
which was described and analyzed (incorrectly, as will
be noted below) in [3].

2.2. Internal-Pressure Effect

When the three-layer ring is subjected to internal

pressure  = p and  = 0, subcritical ring forces
in carrier layers are easily shown to be tensile and deter-
mined by the formulas

(2.15)

while the filler is under compression and the stress 
in it is also described by Eq. (2.7). Substituting
Eqs. (2.12) and (2.15) into Eq. (2.13) and using
Eq. (2.7), we arrive at formula (2.14) for p∗ . Thus, the
shear form of stability loss of the three-layer ring is also
possible at internal pressure when the compressive

stress in the filler is equal to G23; i.e.,  = –G23. In this
case, the bending form of stability loss, which was stud-
ied in detail in [6] in the presence of external pressure,
is however impossible.

2.3. Analysis of the Shear Form of Stability Loss

In the framework of the representation of the dis-
placement vector in the filler in form (1.6) with accu-

racy  –  ≈ , the basis vectors in the strain state
of the filler are equal to

where

α β
T22

1( )0 T22
2( )0–

T22
1( )0 T22

2( )0+
----------------------------.–=

p
*

G23 1 2χ+( )
χ

-----------------------------=

h
R
---

X3
1( ) X3

2( )

T22
2( )0 χRp

1 2χ+
---------------, T22

1( )0 1 χ+( )Rp
1 2χ+

------------------------,= =

σ33
0

σ33
0

δi
s zbi

s δi
s

ri*
∂ r zm u zg+ + +( )

∂xi
---------------------------------------------- ri* zgi,+= =

r3*
∂ r zm u zg+ + +( )

∂z
---------------------------------------------- m g,+= =

gi
∂g
∂xi
-------, ri*

∂r*

∂xi
---------

∂ r u+( )
∂xi

--------------------.= = =
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The stress vector  acting on a z = const area of the

filler in its strain state can be written in the form  =

 + σ33 , which can be simplified as  ≈

 + σ33(m + ) in view of the accepted model.

Since  =  + ωim for the middle bending of the
shell [5], we have

(2.16)

From Eq. (2.16), the tangential components  of
the vector s3 in the unstrained basis ri, m are deter-
mined by the formula

(2.17)

These stresses normalized to the forces Ti3 + T33γi enter
both into the equilibrium equations for all forces
applied to carrier layers in the projections on the basis
vectors ri [Eqs. (1.13)] and into Eqs. (1.15), which
present the equations of moment equilibrium for com-
posite elements of carrier layers consisting of the ele-
ments of carrier layers with thicknesses 2h(k) and filler
of the thickness h. Expression (2.17) for the three-layer
ring after linearization near the solution given by
Eqs. (2.6) and (2.7) takes the form

Here, it is seen that, if  = –G23, then  = 0 and

 –  is indefinite; i.e., the set of adjoining equi-
librium states appears. In other words, the filler loses
stability, and carrier layers can turn with respect to each
other as rigid bodies; i.e., shear stability loss for the ring
occurs. In this case, the filler acts on carrier layers with
zero forces  both before and at the time of stability loss.

Thus, the three-layer ring becomes unstable against
shear in the case under consideration at transverse com-

pression when the stress  is equal to –G23.

3. NECESSARY ACCURACY OF CONSTRUCTION 
OF NONLINEAR AND LINEARIZED EQUATIONS 

OF THE THEORY OF THREE-LAYER SHELLS 
FOR ANALYSIS OF SHEAR FORMS 

OF STABILITY LOSS

If all strain components of the filler are small, i.e., if
2εi3 ≈ ε and ε33 ≈ ε, Eqs. (1.7) can be written in the form

s3

s3

σi3 ri* r3* s3

σi3 ri* g
ri* ri

s3 σi3 ri ωim+( ) σ33 m γiri+( )+=

=  σi3 σ33γi+( )ri σi3 σ33ωi+( )m.+

σ*
i3

σ*
i3 σi3 σ33γi.+=

σ23* q2*
1

2h
------ G23 σ33

0+( ) u2
2( ) u2

1( )–( ).≈=

σ33
0 q2*

u2
2( ) u2

1( )

q2*

σ33
0

2εi3 = ωi + γi and ε33 = γ = . Using them, we

again arrive at Eqs. (1.13) and (1.14), where

contrary to Eq. (1.15).
In application to three-layer shells, the equations

thus derived are fully equivalent both to equations
from [1] and to similar equations of the theory of lay-
ered shells, which are constructed under the assumption
of smallness of strains 2εi3 ≈ ε and ε33 ≈ ε in the majority
of other works. These equations lead to the equations

δ(k)Rq2 +  + hq2 = 0, q2 ≈ G23(  – )

for analysis of the shear form of stability loss of the
three-layer ring. Contrary to Eqs. (2.10), the latter

equations do not contain the terms γ2. Under the
accepted accuracy 1 + h0 ≈ 1 and in view of Eq. (2.6),
these equations lead to the formula [3]

p∗  = G23 ,

which overestimates the critical load of the shear form
of stability loss of the three-layer ring by a factor of 1/h0
as compared to Eq. (2.14).

Thus, analysis of the above results and results
obtained in [3] shows that, to construct two-dimen-
sional geometrically nonlinear equations for descrip-
tion of shear forms of stability loss in the theory of
three-layer (generally multilayer) elements of construc-
tions, one must consider finite transverse shear strains
of the filler, finite rotation angles of fibers, which are
normal to its middle surface before deformation. In the
variant proposed in this work, this requirement reduces
to the retaining of underlined terms in Eqs. (1.7), which
leads to the appearance of terms T33γi in Eqs. (1.13) and
expressions (1.15).

4. SHEAR FORM OF STABILITY LOSS 
OF A THREE-LAYER CYLINDER SHELL 

IN THE AXIAL DIRECTION

As was shown in [7], among all forms of free oscil-
lations in three-layer shells, two uncoupled forms that
are possible in the absence of restrictions on mutual
tangential displacements on the shell contour, i.e.,

when  –  ≠ 0, stand out. They are realized in the
shell under zero variability of the parameters of the
stress–strain state in directions xi only due to mutual
displacements of outer layers as rigid bodies. By anal-
ogy with the forms of oscillations in the cylinder shell
under external or internal pressure and above condi-
tions at boundary cuts, the shear form of stability loss
must be realized not only in the circular direction,
which is studied in Section 2, but also in the axial direc-
tion. Indeed, taking zero variability of all functions

w 2( ) w 1( )–
2h

------------------------

S k( )
i ∇ sM k( )

is T k( )
is ωs

k( ) C k( )T
i3 M k( )

i+ + +=

T22
k( )0 ω2

k( ) 1
2h
------ u2

2( ) u2
1( )

σ33
0

2
h0
----- 1 1

4χ 1 χ+( )
------------------------+

 
 
 

u2
2( ) u2

1( )
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appearing in the equations for the perturbed state of the
cylinder shell in the directions θ and x1 = x, we arrive
not only at the problem analyzed in Section 2 but also

at the equation T13 + γ i = 0. In view of formulas

σ13 =  and  =  =  and kinematic relations

2ε13 =  and γ1 = γ1 = , this equation

reduces to the form

This equation, along with Eq. (2.7), provides the for-
mula

Comparison of this formula with formula (2.15) shows
that, for the isotropic filler (G13 = G23 = G3), the critical
pressures (external or internal) at which the three-layer
cylinder shell loses stability through shear in circular
and axial directions coincide with each other with
accepted accuracy 1 + h0 ≈ 1.

T0
33

T13

2h
------- σ0

33 σ33
0 T0

33

2h
-------

u1
2( ) u1

1( )–
2h

----------------------
u1

2( ) u1
1( )–

2h
----------------------

1
2h
------ G13 σ33

0+( ) u2
2( ) u2

1( )–( ) 0.=

p*
G13 1 χ+( )

χ
--------------------------= .
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The presence of a finite number of determining
parameters of the problem indicates that the turbulent
shear stress is a universal function of the average-veloc-
ity gradient and the turbulent heat flux is a universal
function of the average-velocity gradient and average-
temperature gradient in the wall region of a turbulent
boundary layer. This circumstance, along with dimen-
sionality reasons, makes it possible to reduce the equa-
tions of momentum and heat transfer to first-order ordi-
nary differential equations for velocity and temperature
profiles, which can be easily analyzed in general form.
As a result, similarity laws for velocity and tempera-
ture, which generalize the known logarithmic distribu-
tions to the case of injection and suction, are obtained.

The approach proposed in this work has consider-
able advantages over the classical method [1], where
dynamic equations are not used, and extends the set of
wall-turbulence problems, whose similarity laws can be
obtained without the formulation of special closing
hypothesis.

1. We consider a flow of an incompressible heat-
conducting fluid in the wall region of a turbulent
boundary layer on a smooth permeable surface. The
velocity of injection or suction is considered to be
directed along the normal to the wall. In the thin wall
region, the transverse gradients of average parameters
are much larger than the longitudinal gradients. There-
fore, the transfer of momentum and heat in the first
approximation is described by the known equations

(1.1)

(1.2)

Here, u is the longitudinal component of the average
velocity, θ is the average temperature, y is the distance
from the wall, ν is the kinematic viscosity, χ is the

– u'v '〈 〉 ν du
dy
------+

τw

ρ
----- v wu,+=

– θ'v '〈 〉 χ dθ
dy
------+ – jw v w θ θw–( ).+=
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molecular diffusivity, and vw, θw, τw, and jw are the wall
values of the transverse velocity, temperature, shear
stress, and temperature flux, respectively.

Temperature is considered as a passive parameter
that does not affect flow dynamics. Therefore, Eq. (1.2)
in the corresponding notation is the transfer equation
for a passive parameter.

Equations (1.1) and (1.2) describe a turbulent flow
along an infinite plane, where the transverse velocity
and pressure are constant, and other parameters depend
only on the distance from the plane. For this flow,

(1.3)

(1.4)

(1.5)

(1.6)

where F1, …, F4 are certain universal functions. Thus,
we assume that the quantities under consideration in the
wall region are independent of external parameters of
the boundary layer and are completely determined by
the conditions on the wall and physical constants of the
fluid.

Expressing τw/ρ from Eq. (1.3) and jw from Eq. (1.5)
and substituting them into Eqs. (1.4) and (1.6), we
arrive at the relations

(1.7)

Applying the dimensional analysis to functional
relations (1.7) and taking into account that a special
dimension can be used for temperature as a passive

du
dy
------ F1 y ν v w

τw

ρ
-----, , , 

  ,=

u'v '〈 〉 F2 y ν v w

τw

ρ
-----, , , 

  ,=

dθ
dy
------ F3 y ν χ v w

τw

ρ
----- jw, , , , , 

  ,=

θ'v '〈 〉 F4 y ν χ v w

τw

ρ
----- jw, , , , , 

  ,=

u'v '〈 〉 G1 y ν v w
du
dy
------, , , 

  ,=

θ'v '〈 〉 G2 y ν χ v w
du
dy
------ dθ

dy
------, , , , , 

  .=
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parameter, we obtain

(1.8)

Here, the local Reynolds number R is the characteristic
turbulent-to-molecular viscosity ratio and the local
Péclet number Pe is the turbulent-to-molecular diffu-
sivity ratio. Let us assume that functions S and T are
continuous in their domain of definition, have partial
derivatives with respect to all arguments, and satisfy the
conditions S(∞, 0) ≠ 0, T(∞, ∞, 0) ≠ 0.

In the wall variables

Eqs. (1.1) and (1.2) in view of Eq. (1.8) take the form

(1.9)

(1.10)

where 

and Pr =  is the molecular Prandtl number.

Thus, the problem reduces to analysis of ordinary
differential equation (1.9) for the velocity profile.
According to Eq. (1.10), the temperature profile is
specified by the integral

(1.11)

2. For an impermeable wall (v+ = 0), Eq. (1.9) has
the solution in the closed form

(2.1)

u'v '〈 〉 y
du
dy
------ 

 
2

S R β,( ),–=

θ'v '〈 〉 y2dθ
dy
------du

dy
------T R Pe β, ,( ),–=

R
y2

ν
----du

dy
------, Pe

y2

χ
----du

dy
------, β

v w

Ry
-------dy

du
------.= = =

y+
y
ν
---

τw

ρ
-----, u+ u

ρ
τw
-----,= =

v + v w
ρ
τw
-----, θ+

θw θ–
jw

---------------
τw

ρ
-----= =

y+

du+

dy+
-------- 

 
2

S R β,( )
du+

dy+
--------+  = 1 v +u+, u+ 0( )+  = 0,

y+
2 dθ+

dy+
--------

du+

dy+
--------T R PrR β, ,( ) 1

Pr
-----

dθ+

dy+
--------+ 1 v +θ+,+=

θ+ 0( ) 0,=

R y+
2 du+

dy+
--------, β

v +

Ry+
---------

dy+

du+
--------,= =

ν
χ
---

1 v +θ++( )ln
Pr v + y+d

1 PrRT R PrR β, ,( )+
---------------------------------------------------.

0

y+

∫=

u+
Rd

R2S R 0,( ) R+
---------------------------------------

0

R

∫ R

R2S R 0,( ) R+
---------------------------------------,–=

y+ R2S R 0,( ) R+ , 0 R ∞,<≤=
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and integral (1.11) takes the form

(2.2)

It follows from Eqs. (2.1) and (2.2) and from condi-
tions for the functions S and T that velocity and temper-
ature have logarithmic asymptotic behavior in the outer
part of the wall region:

(2.3)

(2.4)

The values of von Karman’s constant κ, the constant
C0, and turbulent Prandtl number Prt in the logarithmic
region must be determined from experiments.

The asymptotic behavior of the function B(Pr)
appearing in Eq. (2.4) for small and large molecular
Prandtl number can be obtained from integral represen-
tation (2.2). In the first case,

where

(2.5)

Assuming as in [2] that the turbulent diffusivity is inde-
pendent of χ (function T is independent of the Péclet
number), the calculation of integrals (2.5) yields b1 =

ln , which is less than the value proposed in [2] by

one unit.
To analyze the other limiting case, we take T(R,

PrR, 0) = k(Pr)  + … for R  0 according to the
known estimate 〈θ'v '〉  = O(y3) for y  0. Then, the
leading term of the asymptotic expansion for B(Pr) has
the form

An approximate formula yielding close values for the
coefficient b2 was proposed in [2].

θ+
Prd R2S R 0,( ) R+

1 PrR T R PrR 0, ,( )+
---------------------------------------------------.

0

R

∫=

u+
1
κ
--- y+ln C0+( ) O y+

α–( ),+=

θ+

Prt

κ
------ y+ln B Pr( )+[ ] O y+

α–( ), α 0,>+=

κ S ∞ 0,( ), Prt
S ∞ 0,( )

T ∞ ∞ 0, ,( )
--------------------------, y+        ∞ .= =

B Pr( ) Prln b1 …, Pr 0,→+ +=

b1
T ∞ ∞ 0, ,( )dPe

1 Pe T ∞ Pe 0, ,( )+
--------------------------------------------

0

1

∫=

– 1 Pe T ∞ Pe 0, ,( ) T ∞ ∞ 0, ,( )–( )+[ ] dPe
Pe 1 Pe T ∞ Pe 0, ,( )+[ ]

-----------------------------------------------------------------------------------------------

1

∞

∫ κ .ln–

κ
Prt
------ 

 

R

B Pr( ) b2Pr2/3 …, Pr        ∞ ,+=

b2
κ

Prt
------ xd

1 k ∞( )x3+
--------------------------

0

∞

∫ 2π 3κ
9Prtk

1/3 ∞( )
---------------------------.= =
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3. In the general case of nonzero transverse velocity
on the wall, introducing the new variables

(3.1)

we obtain the equation

(3.2)

where

Variables are taken (3.1) so that Eq. (3.2) does not con-
tain the parameter v+.

The integral curves of Eq. (3.2) are symmetric with
respect to the abscissa axis. Therefore, it is sufficient to
analyze their behavior in the upper half-plane. The fig-
ure shows the qualitative pattern of integral curves
[solutions of Eq. (3.2) are constructed for S = κ2]. Neg-
ative and positive Y values correspond to suction and
injection, respectively. Along each curve, w increases
from 0 to +∞.

The second-quadrant parts of integral curves along
which the variable Y varies from –∞ to zero correspond
to the total velocity profiles in the asymptotic boundary
layer with suction. This one-dimensional flow, where
all average parameters depend only on the distance
from the wall, is exactly described by Eq. (1.1) when
the boundary condition u = Uc for velocity is imposed
in the inflow at y = ∞. For this flow, it is obvious that

y
yv w

ν
---------- v +y+, w

2
v +
------ 1 v +u++ ,= = =

Y
dw
dY
------- 

 
2

S R β,( ) 2
w
----dw

dY
-------+ 1, w 0( ) 2

v +
------,= =

R
Y2w

2
----------dw

dY
-------, β 2

RYw
------------ dY

dw
-------.= =

–20 –10 0 10 20
Y

40
w

Qualitative pattern of the integral curves of Eq. (3.2) in the
upper half-plane. 
v+ = . Thus, v+ for the asymptotic boundary

layer is small. This condition is also valid for the gen-
eral suction case, because velocity u+ is high at the
external boundary of the wall region and the right-hand
side of Eq. (1.9) is positive. Therefore, according to ini-
tial condition (3.2), only integral curves crossing the
ordinate axis at sufficiently large w values are physi-
cally meaningful (physically meaningless parts of inte-
gral curves are shown in the figure by dashed lines).
The velocity profile in the wall region of the boundary
layer with suction is generally described by parts of
integral curves corresponding to large w values.

All integral curves are physically meaningful in the
first quadrant. Small w(0) values correspond to strong
injection, i.e., to large v+ values.

The asymptotic representation of the velocity profile
in the outer part of the wall region, where the viscous
term and 1/R-order quantities in Eq. (1.9) can be
ignored, has the form

(3.3)

Here, C(v+) is a certain universal function. For the
injection and suction cases, Eq. (3.3) presents the
asymptotic behavior of the solution of Eq. (1.9) for
y+  ∞ and the intermediate asymptotic function cor-
responding to the outer part the wall region, respec-
tively. Relation (3.3) is a generalization of the logarith-
mic law for the velocity profile to the injection and suc-
tion case and must coincide with Eq. (2.3) for v+ = 0;
therefore, C(0) = C0.

The asymptotic representation (3.3) was first found
in [3, 4] on the basis of the Prandtl mixing-length
formula.

The calculation of integral (1.11) for large y+ in view
of Eq. (3.3) yields

(3.4)

where D(v+, Pr) is a certain function. Relation (3.4) for
v+ = 0 must coincide with Eq. (2.4). Therefore,
D(0, Pr) = C0 – B(Pr).

Relation (3.3) well describes the experimental
velocity profiles with injection and suction (see, e.g.,
[5]). It is difficult to test similarity law (3.4) by analyz-
ing the temperature profile, because experimental data
on the temperature profile in the boundary layer on a
permeable surface are virtually absent.

According to Eq. (1.8), the turbulent Prandtl number
in the logarithmic region is independent of the trans-

v w

Uc
-------––

2
v +
------ 1 v +u++ 1–( ) = 

1
κ
--- y+ln C v +( )+[ ] O y+

α–( ),+

α 0,>     y + ∞ . →

2
v +
------ 1 v +θ++( )

1
2Prt
----------

1–
1
κ
---D v + Pr,( ) 1 v +θ++( )

1
2Prt
----------

+

=  
1
κ
--- y+ln C v +( )+[ ] O y+

α–( ), y+        ∞ ,+      
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verse velocity on the wall, which is corroborated by
experimental observations [6].

4. Applying the method of matched asymptotic
expansions [7] to Eq. (3.2), we now analyze the asymp-
totic structure of the velocity and temperature profiles
for large v+ values. In this case, four characteristic sub-
regions are formed in the wall region.

Subregion I, where Y = O(1), adjoins the wall. Here,
the turbulent shear stress can be disregarded in
Eq. (3.2), and the leading term of the solution coincides
with that for the pure laminar flow:

(4.1)

The solution in subregion II lying above is sought in
the form

(4.2)

The substitution of Eq. (4.2) into Eq. (3.2) and the pas-
sage to the limit M  ∞ and Y2 = O(1) provide

(4.3)

Thus, the turbulent and laminar components of shear
stress in this subregion are of the same order of magni-
tude. Asymptotically matching expansions (4.1) and
(4.2), we determine the initial condition for Eq. (4.3)
and the parameter M:

(4.4)

From Eq. (4.3) and with account of initial condition (4.4),
we obtain the solution in the parametric form

(4.5)

The temperature profile in subregion II is written as

(4.6)

Substituting Eq. (4.5) into integral (4.6) and passing to

w
2

v +
------e

Y
2
---

O v +
4–( ),+=

1 v +θ++( )ln Pr Y O v +
3–( ).+=

Y M Y2, w+
W2 Y2( )

M
------------------ …,+= =

Y2 O 1( ), M        ∞ .=

dW2

dY2
---------- 

 
2

S R ∞,( ) 2
W2
-------

dW2

dY2
----------+ 1, R

W2

2
-------

dW2

dY2
----------.= =

W2        2 e 

Y

 

2

 
2
-----

 , Y 2        ∞ ; Me 

M

 
2
-----

 –  v + .=

Y2 Rln RS R ∞,( ) S R ∞,( ) R,d

0

R

∫+ +=

W2 2 R2S R ∞,( ) R+ , 0 R ∞.< <=

1 v +θ++( )ln

=  PrY*
Pr dY2

1 PrR T R PrR ∞, ,( )+
----------------------------------------------------,

Y* M–

Y2

∫+

Y* O 1( ).=
DOKLADY PHYSICS      Vol. 48      No. 9      2003
             

 

the limit 
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 ∞

 

, we arrive at the relation

Therefore, letting 

 

R

 

 go to 

 

∞

 

, we obtain

 

(4.7)

 

for the outer boundary of subregion II, where

and the function 

 

a

 

2

 

(Pr)

 

 can be expressed in terms of
integrals of 

 

S

 

 and 

 

T

 

.
In subregion III,

After the passage to the limit 

 

M

 

  ∞

 

,  = 

 

O

 

(1),

 

 and

 

Y

 

3

 

 = 

 

O

 

(1)

 

, only the turbulent component of the shear
stress retains in Eq. (3.2):

 
(4.8)

 

The solution that satisfies Eq. (4.8) and matches the
solution in subregion II has the form

 

(4.9)

 

In subregion III, the integral

is added to Eq. (4.6) for the temperature profile. Substi-
tuting Eq. (4.9) into this integral and passing to the limit

1 v +θ++( )ln

=  PrM Pr
RdS R ∞,( ) 2S R ∞,( )dR+

1 PrR T R PrR ∞, ,( )+
---------------------------------------------------------------

0

R

∫+

+ Pr
dR

R 1 PrR T R PrR ∞, ,( )+[ ]
--------------------------------------------------------------

1

R

∫

– Pr2 T R PrR ∞, ,( )dR
1 PrR T R PrR ∞, ,( )+
----------------------------------------------------.

0

1

∫

1 v +θ++( )ln 2b Y2ln PrM a2 Pr( ) …+ + +=

b
S ∞ ∞,( )

T ∞ ∞ ∞, ,( )
---------------------------, Y2         ∞ =

Y M MY3, w+
W3 Y3( )

M
------------------ …,+= =

1
Y3
----- O 1( ), Y3O 1( ).=

1
Y3
-----

dW3

dY3
---------- 

 
2

S ∞ β,( ) 1, β 2
W3
-------

dY3

dW3
---------- 

 
2

.= =

Y3
S ∞ β,( )

β
------------------

S ∞ β,( )dβ
2β3/2

-------------------------,

β

∞

∫+=

W3 2 S ∞ β,( )
β

------------------, 0 β ∞.< <=

I3
βdY3

T ∞ ∞ β, ,( )
--------------------------

Y2/ M
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M → ∞, we arrive at the relation

Summing this expression with asymptotic function (4.7)
and passing to the limit β  0, we arrive at the
relation

(4.10)

for the outer boundary of subregion III. Here, the con-
stant a3 is also expressed in terms of integrals of func-
tions S and T.

In outer subregion IV,

(4.11)

The solution that satisfies Eq. (4.11) and matches the
solution in subregion III has the form

(4.12)

Comparing Eqs. (4.12) and (3.3), we obtain the asymp-
totic representation

of the function C(v+).
To determine the temperature profile in outer subre-

gion IV, asymptotic representation (4.10) must be com-
plemented by the integral

I3 b Mln 2 Y2ln– 2 2S ∞ ∞,( )( )ln+[ ]=

+ S ∞ β,( )dβ
βT ∞ ∞ β, ,( )
------------------------------

β

1

∫ S ∞ β,( )d
T ∞ ∞ β, ,( )
--------------------------

β

∞

∫–

+
S ∞ β,( ) bT ∞ ∞ β, ,( )–[ ] dβ

βT ∞ ∞ β, ,( )
------------------------------------------------------------------.

1

∞

∫

1 v +θ++( )ln 2Prt Y3ln PrM b Mln+ +=

+ a2 Pr( ) a3 …, Y3        ∞ ,+ +

Y MY4, w W4 Y4( ) …,
1
Y4
-----+ O 1( ),= = =

dW4

d Y4ln
-------------- 

 
2

S ∞ 0,( ) 1.=

W4
1
κ
--- Y4.ln=

C v +( ) = M
2
----- …, v +        ∞ , M 2 M ln++ 2 v + ln=

I4

2PrtdY4

Y4
2 Y4ln

-------------------.

1 Y3/ M+

Y4

∫=
As a result, we obtain the expression

Comparing this expression with Eq. (3.4), we arrive at
the asymptotic representation

Therefore, this function tends to zero for large v+
values.

Thus, we consider the problem formulation based
on dynamic equations, the usual assumption that the
flow in the wall region is independent of the external
parameters of the boundary layer, and the requirement
of the continuity of functions S and T specifying the tur-
bulent shear stress and temperature flux. Without any
hypothesis about the particular mechanisms of turbu-
lent exchange, we obtain similarity laws for the veloc-
ity and temperature profiles and asymptotic representa-
tions of the universal functions C and D appearing in
these laws.

REFERENCES
1. C. B. Millikan, in Proceedings of 5th International Con-

gress on Applied Mechanics (Wiley, New York, 1939),
p. 386.

2. B. A. Kader and A. M. Yaglom, Itogi Nauki Tekh., Ser.
Mekh. Zhidk. Gaza 15, 81 (1980).

3. T. N. Stevenson, CoA Rep. Aero., No. 166 (1963);
R. J. Aeronaut. Soc. 68 (642), 431 (1964).

4. T. N. Stevenson, AIAA J. 6 (3), 533 (1968).
5. I. I. Vigdorovich, Izv. Akad. Nauk, Ser. Mekh. Zhidk.

Gaza, No. 4, 78 (2002).
6. R. L. Simpson, R. J. Moffat, and D. G. Whitten, Int. J.

Heat Mass Transf. 13 (1), 125 (1970).
7. M. D. Van Dyke, Perturbation Methods in Fluid

Mechanics (Academic, New York, 1964; Mir, Moscow,
1967).

Translated by R. Tyapaev

1 v +θ++( )ln 2Prt Y4lnln PrM+=

+ b Prt+( ) Mln a2 Pr( )+ a3.+

D v + Pr,( )

=  
1

2Prt

---------- PrM Prt b+( ) Mln a2 Pr( ) a3+ + +[ ]–
 
 
 

exp

–
2κ
M
------e

M
2
-----–

…, v +         ∞ .+
DOKLADY PHYSICS      Vol. 48      No. 9      2003



  

Doklady Physics, Vol. 48, No. 9, 2003, pp. 533–536. Translated from Doklady Akademii Nauk, Vol. 392, No. 3, 2003, pp. 346–349.
Original Russian Text Copyright © 2003 by Chernyshov.

                                                                              

MECHANICS
Dynamic Problems for an Elastic Triangular Bar 
under Plane Deformation

A. D. Chernyshov
Presented by Academician E.I. Shemyakin June 4, 2003

Received June 5, 2003
Using a special ξ-variable procedure, two exact
solutions of the problem of vibrations of an elastic bar
with a triangular cross-section under plane deformation
were obtained in the closed form. In the first case, the
normal displacement and the shear stress were set at the
bar boundary. In the second case, the tangential dis-
placement and the normal stress were given. The reso-
nance frequencies were found, and the displacement
field, as well as volume and shear strains, was analyzed.

At present, only several exact solutions have been
obtained for 2D dynamic problems of the theory of
elasticity for unlimited regions. For limited regions, the
number of exact solutions are even fewer. Here, we
point to the solutions obtained in [1, 2]. Functionally
invariant solutions were considered in [3], where the
Smirnov–Sobolev procedure was used. The Laplace
transform and the multiple Fourier coordinate trans-
form, as well as the Kupradze fundamental solution,
were used in [4]. Below, the exact solutions were
obtained using special ξ variables, which were previ-
ously used in the dynamic problem of the motion of a
viscous fluid in a triangular pipe [5].

For plane deformation, we write the equations of
motion for elastic-medium points in the Lagrange vari-
ables [1]:

(1)

We consider the problem of harmonic vibrations
without initial conditions when the boundary condi-
tions at the bar boundary Γ, whose cross section Ω is a
regular triangle with the height h, are set in the form

(2)

where un is the normal displacement and τn is the shear
stress at the bar boundary. The solution of the problem

λ 2µ+( )uxx λ µ+( )v xy µuyy G̃1+ + + ρutt,=

λ 2µ+( )v yy λ µ+( )uxy µv xx G̃2+ + + ρutt.=

un Γ u0 ωt, τn Γcos τ0 ωt,cos= =

Voronezh State Technological Academy,
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is sought in the form

(3)

Substituting Eqs. (3) into Eqs. (1) and (2), we arrive
at the following problem for the amplitudes U and V:

(4)

(5)

where (nx , ny) is the inward unit normal to the boundary
Γ and γn is the shear strain for points of this boundary.
Hereafter, the quantities U and V are called displace-
ments, although the true displacements can be obtained
by multiplying them by cosωt. The same terms are used
for strains and stresses. In this formulation, it is possi-
ble to find exact solutions. To this end, we consider an
auxiliary problem. Let U and V depend only on the
coordinate x. In this case, the partial solutions of set (4)
have the form

(6)

We introduce the three variables

(7)

Here, ni are the inward unit normals to the sides of the
triangle Ω, ri are the radius vectors of its vertices, and r
is the radius vector of an arbitrary point in the region Ω .
The variables ξi and the normals ni have the following
properties, which will be often used:

(8)

(9)

u U x y,( ) ωt, vcos V x y,( ) ωt.cos= =

λ 2µ+( )Uxx λ µ+( )V xy µUyy ρω2U+ + + 0,=

λ 2µ+( )Vyy λ µ+( )Uxy µV xx ρω2V+ + + 0,=

Unx Vny+( )Γ u0, γn Γ
τ0

2µ
------,= =

U1 ax, U2cos ax,sin= =

V1 bx, V2cos bx,sin= =

a2 ρω2

λ 2µ+
----------------, b2 ρω2

µ
---------.= =

ξ i r ri–( )ni, i 1 2 3., ,= =

n1 n2 n3+ + 0, n1n2 n1n3 n2n3
1
2
---;–= = = =

n1 n2× n2 n3× n3 n1× 3
2

-------;= = =
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(10)

We denote nix = cosθi and niy = sinθi. In this case,
θi is the angle between the normal ni to the straight line
ξi = const and the x axis. Taking into account that the
vector components (U, V) transform according to the
known law under rotation and using Eqs. (6), we can
write the following partial solution of set (4):

(11)

Indeed, the substitution of Eqs. (11) into Eqs. (4)
yields the identities. The variables ξi enter equivalently
into the expressions for U and V, while the constants A,
B, C, and D can be found from the two boundary con-
ditions specified by Eqs. (5). Since solution (11)
depends identically on the variables ξ1, ξ2, and ξ3, con-
ditions (5) on any side of the triangle lead to the same
result. For definiteness, we apply the first boundary
condition from (5) to the side ξ3 = 0. In this case, we
replace ξ2 = h – ξ1 in view of properties (10):

(12)

ξ1 ξ2 ξ3+ + h.=

For F F ξ i( ), Fx F ' ξ i( )nix,= =

Fy F ' ξ i( )niy,=

Fxx F= '' ξ i( )nix
2 , Fxy F '' ξ i( )nixniy,=

Fyy F '' ξ i( )niy
2 .=

U  = A aξ1cos B aξ1sin+( )n1x

+ A aξ2cos B aξ2sin+( )n2x

+ A aξ3cos B aξ3sin+( )n3x

– C bξ1cos D bξ1sin+( )n1y

– C bξ2cos D bξ2sin+( )n2y

– C bξ3cos D bξ3sin+( )n3y,

V  = A aξ1cos B aξ1sin+( )n1y

+ A aξ2cos B aξ2sin+( )n2y

+ A aξ3cos B aξ3sin+( )n3y

+ C bξ1cos D bξ1sin+( )n1x

+ C bξ2cos D bξ2sin+( )n2x

+ C bξ3cos D bξ3sin+( )n3x.

u0 Un3x Vn3y+( )ξ3 0==

=  A aξ1cos B aξ1sin+( )n1xn3x

+ A a h ξ1–( )cos B a h ξ1–( )sin+[ ] n2xn3x

+ An3x
2 Cn3xn3y– C bξ1cos D bξ1sin+( )n1yn3x–

– C b h ξ1–( )cos D b h ξ1–( )sin+[ ] n2xn3x

+ A aξ1cos B aξ1sin+( )n1yn3y

+ A a h ξ1–( )cos B a h ξ1–( )sin+[ ] n2xn3y
The left-hand side of this equality is independent of ξ1;
therefore, the coefficients of cosines and sines on the
right-hand side must be equal to zero:

(13)

In view of properties (8) and (9), set (13) is simplified as

Therefore, we find

(14)

Now, from Eqs. (12) and (14) we obtain

(15)

Another unknown constant C0 is determined using
the second boundary condition from Eqs. (5) for the
shear strain. On the sides of the triangle, the normal dis-
placement component  = u0 is constant. Therefore,
the shear γ is determined from the expression

(16)

We specify the unit tangential vectors ti on the sides
of the triangle in terms of the components of normals
ni: ti = (niy, –nix). In this case, the tangential displace-
ment  is determined as

+ An3y
2 Cn3xn3y C bξ1cos D bξ1sin+( )n1xn3y+ +

+ C b h ξ1–( )cos D b h ξ1–( )sin+[ ] n2xn3y.

An1xn3x A ahcos B ahsin+( )n2xn3x An1yn3y+ +

+ A ahcos B ahsin+( )n2yn3y 0,=

Bn1xn3x A asin h – B acos h( )n2xn3x Bn1yn3y+ +

+ A asin h – B acos h( )n2yn3y 0,=

–Cn1yn3x – C bhcos D bhsin+( )n2yn3x

+ Cn1xn3y C bhcos D bhsin+( )n2xn3y+ 0,=

– C bsin h – D bcos h( )n2yn3x Dn1xn3y+

– Dn1yn3x C bsin h – D bcos h( )n2xn3y+ 0.=

A 1 ahcos+( ) B ahsin+ 0,=

B 1 ahcos–( ) A ahsin+ 0,=

C 1 bhcos–( ) – D bhsin 0,=

D 1 bhcos+( ) – C bhsin 0.=

A A0 a
h
2
---, Bsin A0 a

h
2
---,cos–= =

C C0 b
h
2
---, Dcos C0 b

h
2
---.sin= =

A0 u0 a
h
2
---sin 

 
1–

, A u0, B u0 a
h
2
---.cot–= = =

un3

2γ ξ3 0=

∂uτ3

∂n3
---------

∂un3

∂τ3
---------+ 

 
ξ3 0=

∂uτ3

∂n3
---------

ξ3 0=

.= =

uτ3

uτ3
Uτ3x Vτ3y+ –Vn3x Un3y.+= =
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Substituting  into Eq. (16), we find

(17)

After simplifications by means of Eqs. (14) and (15),
solution (11) of the problem reduces to the form

(18)

The resonance frequencies ω* can be found from

the conditions  = 0 and  = 0, under which

solution (18) does not exist:

(19)

Using the found displacements, we calculate strains
and stresses:

uτ3

C0 τ0 µb b
h
2
---sin 

 
1–

.–=

U A0 n1x a
h
2
--- ξ1– 

 sin n2x a
h
2
--- ξ2– 

 sin+=

+ n3x a
h
2
--- ξ3– 

 sin C0 n1y b
h
2
--- ξ1– 

 cos–

+ n2y b
h
2
--- ξ2– 

 cos n3y b
h
2
--- ξ3– 

  ,cos+

V A0 n1y a
h
2
--- ξ1– 

 sin n2y a
h
2
--- ξ2– 

 sin+=

+ n3y a
h
2
--- ξ3– 

 sin C0 n1x b
h
2
--- ξ1– 

 cos+

+ n2x b
h
2
--- ξ2– 

 cos n3x b
h
2
--- ξ3– 

  ,cos+

A0 u0 a
h
2
---sin 

 
1–

, C0 τ0 µb b
h
2
---sin 

 
1–

,–= =

A0 u0 a
h
2
---sin 

 
1–

, C0 τ0 µb b
h
2
---sin 

 
1–

.–= =

ah
2

------sin bh
2

------sin

ω1* = 2k
π
h
--- λ 2µ+

ρ
----------------, ω2* = 2k

π
h
--- µ

ρ
---, k = 1 2 …., ,

ex = Ux = aA0 n1x
2 a

h
2
--- ξ1– 

 cos n2x
2 a

h
2
--- ξ2– 

 cos+–

+ n3x
2 a

h
2
--- ξ3– 

 cos bC0 n1xn1y b
h
2
--- ξ1– 

 sin–

+ n2xn2y b
h
2
--- ξ2– 

 sin n3xn3y b
h
2
--- ξ3– 

  ,sin+

ey = Vy = aA0 n1y
2 a

h
2
--- ξ1– 

 cos n2y
2 a

h
2
--- ξ2– 

 cos+–

+ n3y
2 a

h
2
--- ξ3– 

 cos bC0 n1xn1y b
h
2
--- ξ1– 

 sin+
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In particular, it follows from Eqs. (18) and (20) that
the vertices of the triangle displace along the respective
heights by 2u0, and the displacements are equal to zero,
i.e., U = V = 0, at the triangle center. The volume com-
pression (ex + ey) takes the characteristic magnitudes

at the vertices of the triangle,

at its center, and

at the middles of its sides.
Problem (1) of vibrations of an elastic triangular bar

has one more exact solution for the boundary condi-
tions

(21)

Making the same manipulations as when obtaining
solution (18), we arrive at the exact solution in the form

(22)

+ n2xn2y b
h
2
--- ξ2– 

 sin n3xn3y b
h
2
--- ξ3– 

  ,sin+

exy
1
2
--- Uy V x+( ) aA0 n1xn1y a

h
2
--- ξ1– 

 cos–= =

+ n2xn2y a
h
2
--- ξ2– 

 cos n3xn3y a
h
2
--- ξ3– 

 cos+

+
1
2
---bC0 n1x

2 n1y
2–( ) b

h
2
--- ξ1– 

 sin

+ n2x
2 n2y

2–( ) b
h
2
--- ξ2– 

  n3x
2 n3y

2–( ) b
h
2
--- ξ3– 

  ,sin+sin

σxy 2µexy, σx λ 2µ+( )ex λey,+= =

σy λ 2µ+( )ey λex.+=

ex ey+( ) 3aA0 a
h
2
---cos–=

ex ey+( ) 3aA0 a
h
6
---cos–=

ex ey+( ) aA0 2 a
h
2
---cos+ 

 –=

uτ Γ uτ0 ωt, σn Γcos σn0 ωt.cos= =

U A0 n1x acos h
2
--- ξ1– 

  n2x acos h
2
--- ξ2– 

 +=

+ n3x a
h
2
--- ξ3– 

 cos C0 n1y bsin h
2
--- ξ1– 

 –

+ n2y bsin h
2
--- ξ2– 

  n3y bsin h
2
--- ξ3– 

  ,+

V A0 n1y acos h
2
--- ξ1– 

  n2y acos h
2
--- ξ2– 

 +=
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The constants A0 and C0 are determined from boundary
conditions (21):

(23)

The resonance frequencies ω* found from Eqs. (23)
have form (19), as in the preceding problem. Using
Eqs. (22), we calculate the strain-tensor components:

(24)

+ n3y a
h
2
--- ξ3– 

 cos C0 n1x bsin h
2
--- ξ1– 

 +

+ n2x bsin h
2
--- ξ2– 

  n3x bsin h
2
--- ξ3– 

  .+

A0 σn0 a λ 2µ+( ) a
h
2
---sin

1–

,=

C0 uτ0 b
h
2
---sin 

 
1–

.=

ex = aA0 n1x
2 asin h

2
--- ξ1– 

  n2x
2 asin h

2
--- ξ2– 

 +

+ n3x
2 asin h

2
--- ξ3– 

  bC0 n1xn1y bcos h
2
--- ξ1– 

 +

+ n2xn2y bcos h
2
--- ξ2– 

  n3xn3y bcos h
2
--- ξ3– 

  ,+

ey = aA0 n1y
2 asin h

2
--- ξ1– 

  n2y
2 asin h

2
--- ξ2– 

 +

+ n3y
2 asin h

2
--- ξ3– 

   – bC0 n1xn1y bcos h
2
--- ξ1– 

 
In this problem, the vertices of the triangle displace
in parallel to the opposite sides by 2uτ0, and the dis-
placements are equal to zero, i.e., U = V = 0, at its cen-
ter. The three-dimensional compression at the vertices
and at the sides of the triangle is identical and equal to

while it is three times as large at its center.
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+ n2xn2y bcos h
2
--- ξ2– 

  n3xn3y bcos h
2
--- ξ3– 

  ,+

exy = aA0 n1xn1y a
h
2
--- ξ1– 

  n2xn2y a
h
2
--- ξ2– 

 sin+sin

+ n3xn3y a
h
2
--- ξ3– 

   + 
1
2
---bC0 n1y

2 n1x
2–( ) b

h
2
--- ξ1– 

 cossin

+ n2x
2 n2y

2–( ) b
h
2
--- ξ2– 

  n3y
2 n3x

2–( ) bcos h
2
--- ξ3– 

  .+cos

ex ey+( ) aA0 a
h
2
---,sin=
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