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Construction of analytical solutions of a self-consis-
tent problem is one of the methods of studying the
properties of a nonlinear system such as a gas of
charged particles. In this study, it is shown that, under
certain conditions, it is possible to obtain the solution of
the Vlasov equation for a spatially limited distribution
of charged particles. This equation describes both the
pulsations of a uniform bunch of particles in a Penning
trap and the initial stage of pulsations of a nonuniform
bunch.

The external magnetic field used in the Penning trap
is the superposition of the uniform magnetic field B =
Bez and the nonuniform electric field whose potential in
a cylindrical coordinate system has the form

Φ0 = A(ρ2 – 2z2).

Such an electric field can be produced by hyperbolic
electrodes consisting of two surfaces 2z2 = ρ2 + 2d2

with potential –V and surface ρ2 = 2z2 + 2d2 with poten-

tial V. In this case, A = .

Before proceeding to the construction of the solu-
tion of the Vlasov equation, let us discuss the condi-
tions under which a function g(Pθ, Pϕ) = δ(Pθ)δ(Pϕ) of
dynamical variables can be an integral of motion for a
spherically symmetric distribution of a gas of charged
particles in a Penning trap. Here, Pθ and Pϕ are the com-
ponents of the generalized momentum in the spherical
coordinate system. To this end, we write the Hamilto-
nian of a particle in the combination of the external and
collective fields:

where Ω =  and Φ is the potential of the self-elec-

tric field. The Poisson brackets of the function g and
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this Hamiltonian has the form

Hence, the function g is an integral of motion if A =

− . In what follows, this condition is assumed to be

satisfied.
Let the initial state of the bunch of particles be

described by the distribution function

(1)

This function corresponds to a spherical bunch that
rotates as a whole with the Larmor frequency and has a
nonuniform distribution of the particle density and
radial velocity. This follows from the following expres-
sions for the particle density and the components of
gasdynamic velocity:

Here, pr, pθ, and pϕ are the components of the kinetic
momentum in the spherical coordinate system.

Since the function g(Pθ, Pϕ) is an integral of motion
(under the condition mentioned above), the distribution
function of the pulsating bunch can be sought in the
form

(2)

Substituting expression (2) into the Vlasov equation
written in the spherical coordinate system, we find that

Hg{ } 1
2
---r2 2θ mΩ2 6eA+( )δ Pϕ( ) ∂

∂Pθ
---------δ Pθ( ).sin–=

mΩ2

6e
-----------

F0 f 0 r pr,( )g Pθ Pϕ,( ),=

f 0

n0

4π
------r2w r( )δ pr mv r( )–( ).=

n F0d3 p∫ n0w r( ),= =

Vr
1

mn
------- prF0d3 p∫ v r( ),= =

Vθ
1

mn
------- pθF0d3 p∫ 0,= =

Vϕ
1

mn
------- pϕF0d3 p∫ Ωr θ.sin–= =

F f r pr t, ,( )g Pθ Pϕ,( ).=
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the function f(r, pr, t) obeys the equation

(3)

where U = eΦ + mΩ2r2/2.
The solution of Eq. (3) can be constructed by the

method of a singular solution that plays the role of the
Green’s function of the operator L [1]. This is possible
because the time-dependent self-consistent problem in
this case virtually reduces to calculation of the radial
motion of the cold gas of charged particles in the exter-
nal and collective fields. For the problem under consid-
eration, this method is formulated as follows:

Here, H(t) is the Heaviside step function; r(t; X0) and
pr(t; X0) present the radial motion law for an individual
particle (in a field with the potential energy U) that
meets the initial conditions 

r(0; X0) = r0 and pr(0; X0) = pr0,

and X denotes the set of the variables r and pr .

When layers of particles sequentially (without over-
taking one another) move in the radial direction, the
potential of the collective field acting on a particle is
determined by both the initial position of the particle r0
and the given initial particle-density distribution
n(r, 0) = n0w(r):

Finally, the distribution function of the bunch of
charged particles has the form

(4)

Here, the function ξ(r, t) is the solution of the transcen-
dental equation s(t, ξ) = r, where the function s is
defined as s(t, r0) = r[t; r0, mv(r0)];

Hereafter, the dot over a symbol means the time
derivative.
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Distribution function (4) describes the pulsations of
the rotating nonuniform bunch of particles in the Pen-
ning trap. The result is considerably simplified for the
uniform bunch and for the initial velocity proportional
to the distance from the center of symmetry: v (r) = kr,

where k is a constant. For w(r) = H , the radial

motion law of a particle has the form s(t, r0) = r0R(t).
Here, a0 is the initial radius of the bunch and the func-
tion R is the solution of the equation

(5)

where ω2 = . The initial conditions for Eq. (5)

have the form R0 = 1 and  = k. 

In this case, ξ(r, 

 

t

 

) =  

 

and distribution function (4)

reduces to the form

Thus, if the initial gas velocity is proportional to the
distance from the bunch center, this distribution
remains in the uniform bunch during its pulsations.

For the nonuniform bunch, it is more convenient to
use the Lagrangian description of gas motion. It is easy
to understand that the function 
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represents the Lagrangian variable characterizing the
position of the gas layer that was at distance 
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 from the
bunch center at the initial time. As was mentioned
above, this function satisfies the equation
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The condition of layer-mass conservation in gas
motion has the form

Hence, the density of particles is determined as
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Eq. (6) should be differentiated with respect to 
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Ṙ̇ ω2w r0( )
r0

2

s2
---- 2

1
3
---Ω2 W r0( )ω

2

r3
------+ R.–=
DOKLADY PHYSICS      Vol. 48      No. 10      2003



ON THE SOLUTION OF THE SELF-CONSISTENT PROBLEM FOR THE BUNCH 539
It is evident that the initial conditions for Eq. (8)
have the form

Unfortunately, the solution of Eqs. (6) and (8) pro-
vides the gasdynamic characteristics of the nonuniform
bunch only up to a certain time tk . The domain of appli-
cability of the results is limited, because the initial
assumption that particle layers move without overtak-
ing one another can be violated in bunch pulsations.
Overtaking means that R(tk, r0) = 0 for a certain layer.
As a result, the particle density at the time t = tk of over-
taking tends to infinity (the so-called gradient catastro-
phe [2, 3]).

The formation of the peak in the particle density is
illustrated in the figure, which shows the particle-den-
sity distribution in the bunch calculated by Eqs. (6)–(8)
for τ = (2) 0.6, (3) 1.2, and (4) τ = 1.38. Here, τ = Ωt
and curve 1 corresponds to the initial particle-density
distribution:

The calculations were performed for v (r) = 0 and
ω2 = 2Ω2 .

Thus, under the above conditions, calculation of
pulsations of a uniform bunch of charged particles in a
Penning trap reduces to the solution of an ordinary dif-
ferential equation. Calculation of the initial stage of
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pulsations in a nonuniform bunch reduces to the solu-
tion of two such equations.
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The classical problem of the scattering of a high-fre-
quency acoustic wave emitted by a point source is ana-
lyzed. The scattering occurs on an arbitrary smooth sur-
face S of an obstacle. Below, we consider the time
dependence of pressure to be monochromatic, i.e.,

and the boundary S of the obstacle to be acoustically
solid:

In the case of single reflection, the solution to this
problem in the two-dimensional case was obtained by
various asymptotic methods in [1–3]. In [3], explicit
asymptotic formulas were derived in the two-dimen-
sional case for pressure in a reflected wave undergoing
an arbitrary number of secondary reflections from the
curvilinear boundary. In the three-dimensional case [4],
the short-wave approximation was developed to deter-
mine pressure in the single-reflection case. In the
present paper, we develop a method of investigating
short-wave diffraction on obstacles with a complicated
shape, which have an arbitrary smooth surface. This
method is based on the estimate of Kirchhoff diffrac-
tion integrals, which uses the approach of many-dimen-
sional stationary phase. The developed method makes it
possible to determine for the first time and in closed
form the amplitude of a multiply reflected high-fre-
quency acoustic wave.

1. Let a spherical high-frequency monochromatic
wave emitted from point x0 of an acoustic medium
impinge upon the surface S of an obstacle. For interac-
tion of the wave with convex parts of the surface S,
there exist only points of simple mirror reflection. On
concave parts of the surface S, the diffraction pattern is
more complicated than in the previous case and is stip-
ulated by possible secondary reflections of the incident

p x y z t, ,,( ) Re p x y z, ,( ) iωt–( )exp[ ] ,=

∂p
∂n
------

S

0.=
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wave [2]. It is well known that the pressure in the
reflected high-frequency wave at the point x is deter-
mined by the direction of wave incidence and by the
small vicinity of the mirror-reflection point y* of sur-
face S. Therefore, with increasing frequency, the ampli-
tude of the reflected signal can be determined in the
framework of the beam representation using the sta-
tionary-phase method.

If a beam of the form x0 – y – x is reflected from the
surface S (y ∈  S) only once, then, in accordance with the
Kirchhoff diffraction theory, pressure p(x) in the “illu-
minated” zone for an acoustically solid surface is deter-
mined by the following integral [5]:

(1)

Here, pinc(y) is the pressure in the incident wave at the
boundary S; Φ is the potential of the fundamental solu-
tion (Green function); ny is the external normal to the
surface S at the point y in the small vicinity of the point
y* of the beam mirror reflection; k is the wave number;
γ is the angle between the normal ny and direction of
incidence of the x0 – y beam; and

(2)

As k → ∞,

(3)

With allowance for the fact that the incident x0 – y* and
reflected y* – x beams lie in the same plane with the
normal to the surface at the mirror reflection point y*,
we can obtain from expressions (1)–(3) the following
basic relationship (after the nonoscillating functions
have been taken out from the integral in the short-wave
approximation):

(4)
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-------- ik γ 4π( ) 1– x y– 1– eik x y– 1 O k 1–( )+[ ] .cos=
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2π
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∫∫=
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Here,

(5)

The beam representation can be obtained from for-
mula (4) on the basis of the stationary-phase method
of [6].

We now associate the surface S with a local Carte-
sian coordinate system determined by both the normal
n and surface curvature lines at the point y* ∈  S. In this
case, an arbitrary point y ∈  S has coordinates

where ∆s1 and ∆s2 are arc increments along the curva-

ture lines; k1 =  and k2 =  are the principal cur-
vatures; R1 and R2 are the principal curvature radii at the
point y*; and k1(∆s1)2 + k2(∆s2)2 is the second quadratic
form of the surface.

Employing the cosine theorem for the triangles
x0y*y and xy*y and ignoring quantities small compared
to (∆s1)2, ∆s1∆s2, and (∆s2)2 , we arrive at the following
representations for distances |x0 – y| and |x – y|:

(6)

(7)

ϕ x0 y– y x– ,+=

x0 y*– L0, y* x– L.= =

y ∆s1 ∆s2 0.5 k1 ∆s1( )2 k2 ∆s2( )2+( )–, ,( ),

R1
1– R2

1–

x0 y– L0 ∆s1 α ∆s2 βcos–cos–=

+ 0.5 L 1– αsin
2

k1 γcos+( ) ∆s1( )2

– L0
1– α β∆s1∆s2coscos

+ 0.5 L0
1– βsin

2
k2 γcos+( ) ∆s2( )2,

x y– L ∆s1 α ∆s2 βcos+cos+=

+ 0.5 L0
1– αsin

2
k1 γcos+( ) ∆s1( )2

– L 1– α β∆s1∆s2coscos

+ 0.5 L 1– βsin
2

k2 γcos+( ) ∆s2( )2.
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Substituting expressions (6) and (7) into formula (5),
we obtain

(8)

The absence of the first powers of ∆s1 and ∆s2 in
relationships (8) testifies to the fact that the point y* of
direct beam reflection corresponds to a stationary value
of the phase ϕ. Thus, as k → ∞, the principal term in the
asymptotic form of integral (4) is determined by the
coefficients of the terms (∆s1)2, ∆s1∆s2, and (∆s2)2 ,
which can be found from expression (4) using the
method of [6] for the two-dimensional stationary
phase:

(9)

where D2 is the Hessian of the symmetric structure
(dij = dji, i, j, = 1, 2) with elements (8). In order to ana-
lyze the pressure in the case of single reflection, we rep-
resent formula (9) in the explicit form

ϕ L0 L 0.5d11 ∆s1( )2+ +=

+ d12∆s1∆s2 0.5d22 ∆s2( )2,+

d11 L0
1– L 1–+( ) αsin

2
2k1 γ,cos+=

d12 L0
1– L 1–+( ) α β ,coscos–=

d22 L0
1– L 1–+( ) βsin

2
2k2 γ.cos+=

p x( )

i k L0 L+( ) π
4
--- δ2 2+( )+

 
 
 

exp

L0L det D2( )
----------------------------------------------------------------------------,=
(10)p x( )

i k L0 L+( ) π
4
--- δ2 2+( )+

 
 
 

exp

L0 L+( )2 2L0L L0 L+( ) k2 αsin
2

k1 βsin
2

+( ) γcos
1–

4L0
2L2K+ +

----------------------------------------------------------------------------------------------------------------------------------------------------------------.=
Here, K = k1k2 is the Gaussian curvature; {–cosα,
−cosβ, –cosγ} is the vector determining the direction of
the incidence of the x0 – y* beam in the chosen coordi-
nate system; δ2 is the difference between the number of
positive and negative eigenvalues of the matrix of the
Hessian D2 .

Formula (10) is derived for the case when the high-
frequency wave impinges upon a convex surface. If the
wave impinges upon a concave surface, then the princi-
pal curvatures k1 and k2 are taken to be negative.

We define two limiting cases of formula (10). If k1 =
k2 = 0, then from (10) follows the well-known result for
pressure in a wave reflected from a plane:

p x( ) L0 L+( ) 1– ik L0 L+( )[ ] .exp–=
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In the case of inverse far-field scattering, formula (10)
coincides with the representation of [5]:

2. In the case of reiterated reflection of the x0 −  –

 – x3 beam emitted from the point x0 and received at
the point x3, the pressure p(x3) at the reception point is
given by the formula

Here, p(y2) is the pressure in the incident wave, which
is determined after the first reflection in the vicinity of
S1 . With allowance for (2) and (3), we arrive at the fol-
lowing basic representation:

(11)

where

(12)

Here, y1 and y2 are arbitrary points of the surface in the
vicinities S1 and S2 of the mirror reflection points 

and .

We associate the vicinities S1 and S2 of the mirror
reflection points  and  with right-hand Cartesian
coordinate systems determined by the normals n1 and
n2 and by surface curvature lines at the points  and

. Arc lengths ∆  and ∆  are counted off from the

points  (i = 1, 2) along the curvature lines.

The first |x0 – y1| and the last |y2 – x3| terms entering
into the expression (12) for the phase ϕ have the same
structure as terms in formulas (6) and (7). The second
term in expression (12) has the form
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(13)

In the formula given above,  and  are principal

curvatures at the points ; i = 1, 2; {–cosα1, −cosβ1,
–cosγ1} is the direction of the beam incident from the
point x0 with respect to the coordinate system with its
origin at the point ; {–cosα2, –cosβ2, –cosγ2} is the

direction of the beam reflected at the point  with
respect to the coordinate system with its origin at the
point . The structures of the terms entering into
expression (12) for the phase ϕ show that, in this

expression, terms ∆ , (i, j = 1, 2) containing the first

powers are absent. This proves that points  and 
of the direct beam reflection correspond to the station-
ary phase ϕ (12). The final result can be obtained from
expression (11) by application of the four-dimensional
stationary phase given in [6]:

(14)
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δ4 is the difference between the numbers of positive and
negative eigenvalues of D4 .

3. If the number N of secondary reflections is arbi-
trary, then the general result for this case can be found
on the basis of the same method. Thus, we arrive at the
estimate of the following integral:

(16)

where

(17)

Here, L0 is the distance between an emitter x0 and the

first point  of the mirror reflection; LN is the distance

between the reception point xN + 1 and the last point 
of the mirror reflection; Li, (i = 1, 2, 3, …, N – 1) is the

distance between the mirror-reflection points 

and .

The first |x0 – y1| and the last |yN – xN + 1| terms enter-
ing into expression (17) for the phase ϕ have the same
structure as the terms in formulas (6) and (7), whereas
the structure of the other terms is analogous to that of
terms in (13). Using the method of the many-dimen-
sional (2N-dimensional) stationary phase given in [6]
for estimating a 2N-multiple Kirchhoff integral as k →
∞, we can find the amplitude of the wave reflected N
times:

(18)

Here, δ2N is the difference between the numbers with
the positive and negative eigenvalues of the matrix of
the Hessian D2N = (dij), i, j = 1, 2, …, 2N, which is band-
shaped (with the bandwidth equal to 7) and symmetric,
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i.e., dij = dji , and has the following elements dij, i ≤ j [the
values of d11 and d22 are written out in formulas (15)]:

(19)

Here, {–cosαn, –cosβn, –cosγn} is the direction of the
incident beam with respect to the coordinate system

with its origin at the point ,  and  (n = 1, 2,
3, …, N) being the principal curvatures of the surface at
the point .

It is worth noting that the estimate of many-dimen-
sional diffraction integral (16) is not reduced to the
sequential asymptotic analysis of double integrals,
since the structure of the phase function is represented
by a rather complicated combination depending on all
points in the vicinities S1, S2, …, SN that take part in the
beam reflection.

4. The explicit expressions (10), (14), and (18)
obtained above show that the pressure p(x) in the
reflected wave is determined by the principal curva-
tures, by the Gaussian curvature of the surface at the
points of mirror reflection, by distances between the
mirror-reflection points, by their removal from both the
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wave source and the point of reception of the reflected
wave, as well as by the directions of incident waves.

The theoretical significance of formula (18) consists
in the following. The pressure in a reflected acoustic
wave for an arbitrary number of its repeated reflections
is obtained in the closed form. The practical importance
of formula (18) consists in the fact that estimation of
pressure in the repeatedly (N times) reflected wave is
reduced to calculation of the determinant of the sym-
metric band-shaped matrix on the order of N and with
the bandwidth equal to 7. This determinant can be cal-
culated using modern computers in the real-time scale
mode.

The developed method is also applicable in the case
of acoustic waves repeatedly reflected on systems of
obstacles of a complicated shape.
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It is known [1–4] that thin ferrite–garnet films with
perpendicular anisotropy and original maze domain
structure can transit to a certain excited state, or anger
state, in varying spatially uniform magnetic fields of
low frequencies (102–104 Hz). In this state, processes of
self-organization occur in an ensemble of chaotically
moving interacting domains; i.e., ordered stable
dynamic domain structures of various geometry (spiral,
ring, etc.) arise. It is specific to the anger state that a spi-
ral domain formed in the observed section of the film
exists during the time íl and then disappears. After a
certain time (waiting time íw), one or several new spi-
ral domains arise in this section. Spiral dynamic
domains can have different forms in different films [1].

In this work, we analyze the “life” of individual spiral
domains in a thin highly anisotropic ferrite–garnet film
with the focus on both the first stage in the life of spiral
domains, i.e., origin and formation of a multiturn spiral
domain, and the last stage, i.e., aging and destruction.

We studied a (111) ferrite–garnet film with induced
uniaxial perpendicular anisotropy, (YLuBi)3(FeGa)5O12
composition, thickness L = 9.5 µm, and 4 × 4 mm in
section at a temperature of 25°C. A sample in the initial
demagnetized state had the ordinary maze structure
with the period ê0 = 33 µm of the strip domains. The
static saturation field determined by the collapse of cyl-
inder domains was equal to 50 Oe. The quality factor of

the film was equal to Q =  = 96, where ä is the

constant of induced uniaxial anisotropy and Js is the
saturation magnetization. The spatially uniform, con-
tinuously acting magnetic field H = ç0sin2πft was ori-
ented along the normal to the sample. Dynamic domain
structures were observed through a microscope by the
Faraday magneto-optic effect. Microvideography of
dynamic domain structures was carried out with an
exposure time of 10–4 s. The time between two sequen-
tial frames (gate time) was equal to 4 × 10–2 s.
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In the above regimes of videography, various life
stages of a spiral domain from its appearance to disap-
pearance can rarely be fixed. In this case, other spiral
domains do not arise in the vicinity (it is a random pro-
cess), and spirals do not interact with each other, which
can strongly change the behavior and parameters of the
observed spiral domain. Figure 1 shows such a success-
ful series of video frames obtained with the frequency
f = 2.56 kHz and amplitude ç0 = 45.7 Oe. These field
parameters correspond to the amplitude–frequency
domain AC, where large, multiturn, spiral domains are
formed [5].

Let us analyze the patterns of the dynamic domain
structure in more detail. Only disordered dynamic
domain structure is seen on the frame in Fig. 1a. This
structure consists of complexly bent strip domains,
where kinks are more or less noticeable. The ends of the
strip domains curling clockwise and counterclockwise
form half, one, and one-and-a-half turn spirals. They
disappear, new spirals appear, and so forth. The entire
domain system is in continuous motion, and the veloc-
ities of domain boundaries are different. This conclu-
sion is corroborated by indistinct contours of domains
and the presence of three contrasts in the image of the
dynamic domain structure [4]. We also emphasize that
a certain average scale parameter λ ≈ 100–200 µm that
approximately characterizes this inhomogeneity can be
seen in Fig. 1a. The state of the multidomain medium
presented in Fig. 1a is called magnetic, dynamic,
space–time domain chaos or chaos for short.

In the following frame after chaos, which was taken
after 0.04 s (Fig. 1b), a contrasting, clearly outlined,
two-turn spiral domain is seen. From this spiral
domain, a multiturn spiral domain with ten turns (for
definiteness, it is the number of “black” turns) is
formed after 0.04 s (Fig. 1c).

The time between frames 1a, 1b, and 1c is equal to
0.04 s, which corresponds to 100 periods of the oscil-
lating magnetic field ç = ç0sin2ft. What are the mech-
anisms of the appearance of the two-turn spiral domain
in Fig. 1b and the ten-turn spiral domain in Fig. 1c?
Direct experimental data are absent. Only plausible
scenarios can be proposed. According to [6], a dynamic
spiral domain arises at a place where favorable condi-
003 MAIK “Nauka/Interperiodica”
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Fig. 1. (a–c) Appearance and formation, as well as (d–f) destruction of the dynamic spiral domain for a varying-field frequency of
2.56 kHz and a field amplitude of 45.7 Oe. Magnetization in domains is perpendicular to the plane of the figure.
tions—the minimum local density of a dynamic
domain structure and a very high speed of the end of the
strip domain curling to a spiral by the gyrotropic
force—are formed in the disordered dynamic domain
structure.

Detailed analysis of the shape and behavior of the
spiral domain in a static field [7] showed that the behav-
ior of the spiral domain depends on which end of the
spiral, inner or outer, is attached. The behavior of
dynamic spiral domains is expected to be no less
diverse. In the film under investigation, the growth of
one of the retained “rigid” cylinder domains to an
S-shaped strip domain with a decrease in the static field
from the saturation value and further dominant advance
DOKLADY PHYSICS      Vol. 48      No. 10      2003
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of one of the ends of the domain and its curling to a sin-
gle-arm multiturn spiral was observed [6]. We can think
that such a mechanism is also realized for dynamic spi-
ral domains (see Figs. 1b, 1c), the more so as the curl-
ing–uncurling mechanism of spiral domains through
motion of the end of the outer turn of the spiral domain
was theoretically justified in [8]. Estimating the speed
of this motion by the value V = 12 m/s given in [9] for
the translation of a cylindrical domain in a ferrite–gar-
net film of similar composition, we find that the number
of turns increases from two to ten in 0.01 s, i.e., in
25 field periods. This estimate remarkably coincides
with the value obtained from the time dependence of
the outer radius of the dynamic spiral domain given
in [8]. As an example, it was shown in [8] that, for cer-
tain parameters of the film and varying field, the spiral
domain with a size less than the dynamically equilib-
rium size relaxes to the equilibrium state in 20–30 field
periods.

In actual conditions, few-turn spiral domains
(Fig. 1b) are possibly formed through curling of the
free end of an extended strip domain bonded to the sur-
rounding disordered dynamic domain structure by the
other end. Further, this bond breaks, the outer end of the
spiral domain is formed, and the number of turns
increases according to the above scheme.

After the frame shown in Fig. 1c, the microvideo
film presents all the life of the spiral domain under con-
sideration. During íl = 1.12 s (29 frames of the video
film, i.e., 3000 field periods), the spiral domain ran-
domly moves in domain chaos as a Brownian particle
[5] and increases or decreases its sizes due to an
increase or decrease in the number of turns N. This
behavior is clearly seen in Fig. 2. The basic lifetime
TL ≈ 0.8 s, when N = 17–21 (i.e., it deviates from the
average value N ≈ 19 by approximately 10%) can be
conventionally identified in the N(t) curve. This N value
is reasonably considered as the corresponding dynami-
cally equilibrium state of this spiral domain [8].

During all the time íl, the spiral domain has a con-
trast form and holds an unchanged topological charge
(the direction of turn curling), the period P ≈ 40 µm of
the structure in turns is virtually constant, the size of the
nucleus of the spiral domain and the diameter of the
first turn vary only slightly, and ê is almost independent
of the turn number ν in the spiral domain. The situation
changes fundamentally at the final stage of the life of
the spiral domain. Frames 1d–1f show sequential stages
of the aging and destruction of the spiral domain. This
process begins with an increase in ê at the center of the
spiral domain (Fig. 1d). Further, “loosening” covers the
entire spiral domain, particularly the region of the
nucleus. The number of turns in the spiral domain
decreases sharply (Figs. 1e, 2). 0.04 s after the frame
shown in Fig. 1e, the spiral domain almost completely
breaks down (Fig. 1f). Only a two-turn spiral domain
with a large nucleus, inside which the same chaotic
dynamic domain structure as around the spiral domain
DOKLADY PHYSICS      Vol. 48      No. 10      2003
is observed, remains. In the next frame after the frame
shown in Fig. 1f, the spiral domain is not observed, and
only domain chaos is observed. The described mecha-
nism of the destruction of the spiral domain both from
the inside and from the outside is observed for many
spiral domains. Therefore, it is likely general.

The series of the dynamic domain structure patters
in Fig. 1 provides the unique possibility of comparing
the configuration of the spiral domain with an approxi-
mately identical number of turns at the beginning and
end of its “life”: Figs. 1b and 1f show two-turn spiral
domains, while Figs. 1c and 1e show spirals with 10
and 11 turns, respectively. As is seen, the patterns of the
comparable structures are qualitatively different for the
development of the spiral domain and its destruction.
At the stage of the formation of the spiral domain, turns
are closely packed and weakly distorted, so that the spi-
ral domain is an Archimedes spiral in the first approxi-
mation (Fig. 1c). It is possible that domain boundaries
in such a spiral domain undergo similar in-phase oscil-
lations with the acting field.

At the stage of the aging and destruction of the spiral
domain (Figs. 1e, 1f), turns are strongly deformed and
bent. The entire structure of the spiral domain loses
compactness and is loosened, particularly the center of
the spiral. In Fig. 1c, the period of the strip domains in
turns of the spiral domain is equal to ê ≈ 40 µm and is
almost independent of the turn number. In Fig. 1e, the
period ê increases from about 50 µm at the periphery
to about 70 µm at the center of the spiral domain.

Previously [4, 10], three-contrast patterns of
strongly distorted spiral domains showed that the speed
of the oscillations of boundaries in the sections of spiral
domains with the maximum period P can be higher than
the speed of boundaries in the region of densely packed
turns (minimum P) by more than one order of magni-
tude. Therefore, the case of deformed spiral domains
(Figs. 1d–1f) can also have complex dynamics of
boundaries in different sections of the spiral domain.

0.4 0.8 1.2
t, s

0
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20

N
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0

Fig. 2. Time dependence of the number of turns in the
dynamic spiral domain.



 

548

        

KANDAUROVA 

 

et al

 

.

            
We point to kinks in turns of the spiral domain.
Lines 1–3 in Fig. 3 show the relation between the num-
ber of kinks ν and turn number n for spiral domains in
Figs. 1c–1e, respectively. As is seen, the number of
kinks in all cases increases with the number, i.e., when
approaching the outer turn of the spiral domain. The
average distance between kinks in the outer turn is
equal to 100–200 µm; i.e., it is of the same order of
magnitude as the inhomogeneity scale λ introduced
above for the surrounding domain chaos. Turns of the
spiral domain are apparently deformed due both to the
continuous interaction of the spiral domain with the
disordered dynamic domain structure and to the
appearance of various defects, such as Bloch loops,
lines, and points in the micromagnetic structure of the
domain boundaries of the spiral domain. The number of
defects, as well as the number of kinks in turns,
increases with time (cf. lines 1 and 3 in Fig. 3). With the
accumulation of defects in walls and, accordingly, with
an increase in the boundary energy, with a change in the
configuration of the spiral domain and complication of
the dynamics of oscillations of boundaries in turns of
the spiral domain, the conditions of the dynamic equi-
librium of the spiral domain [8] are violated, and the
spiral domain breaks and transforms to the chaotic
dynamic domain structure.

Experimental results similar to the above results
were also obtained in the analysis of the behavior of
dynamic spiral domains in the anger state of the ferrite–
garnet film being studied.

The results of this work are as follows.

(i) By the example of a single spiral domain, it has
been shown that the spiral domain passes through sev-
eral significant stages: appearance of a stable two-turn
domain; formation of a multiturn spiral domain; the
basic period of the existence of the spiral domain, dur-
ing which the state of the spiral domain can be consid-

4 8 12 16 20
n

0
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16

24

ν

1

2

3

0

Fig. 3. Number of kinks ν in the turns of the spiral domain
vs. the turn number n. Lines 1–3 correspond to spiral
domains in Figs. 1c–1e, respectively.
ered as a dynamically equilibrium state; and the aging
and destruction of the spiral domain.

(ii) It has been found that the parameters of the spi-
ral domain at the first stage differ from those at the last
stage both qualitatively and quantitatively.

(iii) It has been shown that the spiral domain breaks
down through an increase in the bending of turns and
loosening of the spiral domain, as well as through the
transformation of the inner and outer turns to a disorder
structure.

(iv) The aging and destruction of the spiral domain
have been assumed to be associated with the accumula-
tion of defects in the internal structure of domain walls
and complication of their nonlinear local dynamics due
to the continuous interaction of the spiral domain with
the surrounding space–time domain chaos.
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INTRODUCTION

It is known that ablation (i.e., removal or discharge
of a substance) occurs when condensed matter interacts
with concentrated energy fluxes that can be carried by
flows of various particles (including photons). The
physical mechanism of this phenomenon remains
unclear in many aspects and has not yet received an
unambiguous interpretation.

The ablation process can be conventionally divided
into two stages. The first stage is characterized by the
formation of a plasma plume that expands to the free
(of the substance) space. This stage is primarily gov-
erned by the interaction of the substance with incident
radiation, because “secondary” processes (such as the
absorption of radiation energy by plasma and the inter-
action of dense plasma with the substance) can be
ignored. With an increase in the concentration and lin-
ear dimensions of the plasma plume (the next stage of
ablation), the secondary processes cannot be ignored in
the overall energy balance. In particular, recombination
processes proceeding in plasma at this (second) stage
produce clusters and droplet fractions of the substance.

The quantitative description of processes occurring
at the second stage of ablation is a very difficult prob-
lem. For this reason, only the first stage of ablation is
analyzed in this work. The model of processes proceed-
ing at this stage includes the interaction of intense elec-
tron beams with metals. These carriers of the concen-
trated energy flux, as well as this “object” of energy
action, are considered because a number of laws have
been reliably established for this case [1].

(i) Electron ablation has a threshold; i.e., it appears
only when the beam intensity or the power density P of
the electron flux exceeds the threshold value Pl charac-
teristic for a given substance. Experiments show that
Pl ~ 50 MW/cm2 for many condensed media.
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Rizhskiœ pr. 26, St. Petersburg, 198103 Russia
e-mail: ptitsin@iai.rssi.ru
1028-3358/03/4810- $24.00 © 200549
(ii) The onset of the exposure of the substance to a
concentrated energy flux and the moment of the phase
transition of the substance to the plasma are separated
by a finite time ∆t, which depends strongly on P and
can vary from ~10–8 s (at P ~ Pl (P ≥ Pl)) to ~10–13 s (at
P @ P1).

(iii) The charge content during electron ablation in
the dense plasma also depends substantially on P. At the
initial stage of plasma formation (at P close to Pl (P >
Pl)), most excited atoms (molecules) of the substance
remain neutral when transiting from bound to free
states. At high levels of P (P @ Pl), the average charge
number of plasma ions can be Z @ 1.

In view of the above laws, ablation is treated here as
a fast phase transition from bound to free ionized states
of structural elements (atoms, molecules) of condensed
matter (metal) exposed to intense electron fluxes. This
work aims to study the physical mechanism of ablation
and to develop a phenomenological model of electron
ablation in metals at the initial stage of the process.

HEAT CONDUCTION AS A LIMITING FACTOR 
FOR THE RATE OF ENERGY ABSORPTION

BY CONDENSED MATTER

In accordance with the formulation of the problem,
to calculate the rate of the absorption of incident radia-
tion energy by a condensed substance (measured
in W/m2), the condensed substance (e.g., metal) is con-
sidered as a set of two interconnected subsystems of
electrons and phonons.

It is known [2] that, when the substance’s surface is
exposed to electromagnetic radiation or electron flux,
the incident flux energy is mainly absorbed by the elec-
tron subsystem and then, due to electron–phonon inter-
action, is transferred to the phonon subsystem. The
energy absorbed in the phonon subsystem propagates in
the substance through the phonon–phonon interaction,
i.e., due to the heat conduction mechanism.

Based on the above scheme of the absorption of the
radiation energy by the substance, one can estimate the
power density Θ of the heat flux in the substance. In the
one-dimensional approximation, for heat flux propagat-
03 MAIK “Nauka/Interperiodica”
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ing from the surface into the bulk of the substance, Θ
can be expressed as [3]

(1)

where nph is the phonon concentration, Vs is the velocity
of sound, and ε is the average energy transferred by a
phonon when it transits from the area with a local tem-
perature T + ∆T to the area with the temperature T. In
the Debye approximation, the average phonon energy is
determined by the expression [3]

ε . (2)

where N is the concentration of atoms in the substance,
k is Boltzmann’s constant, θ is the Debye temperature,

and  Integration of Eq. (2) in view of Eq. (1)

yields

Θ . (3)

where Bn are Bernoulli numbers. The series in Eq. (3)
converges rapidly, so, if ξ ≥ 1, Eq. (3) reduces to

Θ ≈ γNkθVs, (4)
where γ = γ(ξ) is a dimensionless parameter close to
γ ≈ 0.5 at ξ ≈1. Equation (4) shows that Θ depends only
weakly on the nature of the substance, because the sub-
stance’s characteristics appearing in Eq. (4) are close
for different substances. Substitution of the parameter
values into Eq. (4) gives Θ ≈ (50 ± 20) MW/cm2, which
is close to experimental values of the electron ablation
threshold Pl .

Thus, the estimates of Θ suggest that the threshold
of electron ablation exists because the dissipation rate
of the radiation energy absorbed by the substance is
finite in the phonon subsystem. According to Eq. (4)
and the law of energy conservation, if the rate of the
supply of the incident-radiation energy to a condensed
substance exceeds Θ, the energy of the incident radia-
tion (or electron flux) is somehow “reflected” by the
substance. A flow of excited neutrals and ions of con-
densed matter is evidently the physical “carrier” of the
reflected energy flux during ablation.

Below, expressions for the ablation threshold Pl and

delay time  will be derived by the exam-

ple of the interaction of an intense electron flux with
metals. It will also be shown that, for P > Pl , the “reflec-
tion” of the concentrated energy flux by the substance
can be attributed to the fast phase transition of atoms
(molecules) from bound to free excited and ionized
states in the condensed substance.
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3
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-------------,d
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8ξ
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∞
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∆t ∆t
P1( )
P

----------=
SIMULATION OF ABLATION
IN A METAL EXPOSED TO A CONCENTRATED 

ENERGY FLUX CARRIED 
BY A HIGH-POWER ELECTRON BEAM

To develop a model of ablation, it is natural to
assume that the phase transition of surface atoms of the
metal from bound to free excited (or ionized) states is
caused by a significant decrease in the binding (or cohe-
sion) energy of the atoms due to the excitation of the
electron subsystem in the metal surface layer by exter-
nal radiation or a high-intensity corpuscular flux. To
describe the mechanism of processes occurring in the
substance when the beam power density exceeds Θ, we
consider the interaction of an intense electron flux with
the metal surface.

The interaction between the electron and phonon
subsystems is described in the well-known relaxation
time approximation [3, 4].

The absolute value of the binding energy for the
excitation of the electron subsystem in a metal (Λ*) can
be defined as [3–5]

(5)

where Λ is the absolute value of the binding energy of
a surface atom in the absence of the excitation of the
electron subsystem, r ≈ 0.6–0.7 is a dimensionless coef-
ficient equal (in the absence of the excitation of the
electron subsystem) to the ratio of the average binding
energy of a surface atom to the cohesion energy, µ is the
average kinetic energy of the conduction electron, and
EF is the Fermi energy.

In the model of free electrons in metals, the balance
equation for the kinetic energy µ of a conduction elec-
tron in the metal exposed to an electron flux in the one-
dimensional approximation can be written as [6, 7]

(6)

Here, η is a dimensionless coefficient characterizing
both the elastic reflection of electrons from the metal
surface and nonzero probability of emissive recombina-
tion of excited electrons (according to [2], η < 0.1), E
is the energy of electrons incident on the metal surface,
ϕ(E) is the specific loss function of an electron injected
into the metal surface layer [ϕ(E) for metal “surface”
points should be calculated from the known Bethe for-
mula for inelastic energy losses; moreover, since the
Bethe formula is approximate, in quantitative calcula-
tions, the theoretical value of this function must be cor-
rected by using available experimental data], n is the
electron concentration in the metal conduction band, P
is the power density of the electron flux, τ is the char-
acteristic time of the electron–phonon interaction, and
Te and T are the absolute temperatures of electrons and
lattice, respectively.

Λ* Λ r µ 3
5
---EF– 

  ,–≈

dµ
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------ 1 η–( )Pϕ E( )

nE
----------------------------------=
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2τ
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Generally, to integrate Eq. (6), it is necessary to
specify (or to determine) the function Tp = Tp(t). How-
ever, as was shown in [1], when a metal is exposed to
intense electron fluxes, the lattice temperature increases
only slightly during the delay time (about ~10 ns) and,
e.g., for Cu, it does not exceed ~800 K. In view of this
circumstance and taking into account that the heat
capacity of the lattice of the metal is much greater than
that of the electron gas, Eq. (6) can be integrated under
the assumption that Te @ Tp = const. The relationship
between Te and µ has the form [5]

(7)

Using the approximation

(8)

(with a maximum error of 20% in the interval EF ≤

µ ≤ EF) for Eq. (7) and Eqs. (5)–(8) with the initial con-

dition µ(0) = EF, we obtain

(9)

Equating expression (9) to zero in the limit t @ τ,
one can obtain an expression for the minimum (or
threshold) value Pl of the power density of the electron
flux at which the excitation of the metal electron sub-
system begins and, as a result, the binding energy of
surface atoms decreases (down to zero). In other words,
the conditions Λ*(P, t) = 0, t @ τ physically mean that,
for P ≥ Pl , after a certain time interval (delay time),
“pumping” of the electron subsystem leads the transi-
tion of excited and (or) ionized atoms of the metal sur-
face from bound to free states.

According to Eq. (9), the threshold power density
can be expressed as

(10)

Numerical estimates of Pl by Eq. (10) for Cu provide

P1 ≈ Θ. (11)

The delay time ∆t (for P > Pl) can also be calculated
from Eq. (9). After some rearrangements, Eq. (9) pro-
vides

(12)

Calculations by Eq. (12) show that, in agreement
with the experimental data [1], ∆t depends strongly on
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P and (for currently realized P values) can vary from
~(10–7–10–8) s to ~10–13 s.

Finally, we estimate the velocity ν of the condensed
substance–plasma interface at the initial stage of abla-
tion. In the framework of the proposed model of abla-
tion, the activation energy for the transition of an atom
from the bound to free state can be assumed zero. Based
on the known Arrhenius–Frenkel concepts about the
probabilistic character of thermally activated bound–
free transitions of surface atoms, the interface velocity
during ablation can be expressed in the form

(13)

where a is the lattice parameter and  is the

oscillation frequency of a surface atom. For example,
for Cu, it is easy to find from Eq. (13) that ν ~ Vs even
at temperature Tp close to ≈600 K. The estimates of ν
and T are in quite satisfactory quantitative agreement
with the data from [1]. Equation (13) also shows that
the phonon subsystem of the substance cannot be sub-
stantially heated at the initial stage of ablation, because
the thermal front velocity in the Debye approximation
does not exceed Vs. Moreover, since ν is proportional to
Tp and the thermal front velocity is finite, the velocities
ν and Vs must be consistent with each other and, hence,
equalize to each other during ablation.

The above conclusion that the temperature of the
phonon subsystem is relatively low in this case does not
contradict the known fact that ablation results in ero-
sion markings and surface-scarred craters formed at the
substance surface [1].

According to the proposed ablation model, consid-
erable heating and melting of the substance can occur
when ν < Vs and, hence, the power density of the con-
centrated energy flux at the substance surface is less
than Pl . First, such a decrease in the power density
always happens at the trailing edge of the energy pulse
because relatively short (down to 10 ns or less) high-
power pulses are usually bell-shaped. Second, if the
energy pulse is relatively long, the power density
absorbed by the substance can decrease to P < Pl in a
substantially shorter time than the pulse duration due to
an increase in the plasma plume thickness and density
with time and, hence, in the efficiency of energy
absorption in the plasma.

Finally, the termination of the energy pulse (inde-
pendently of the pulse shape and width) and a decrease
in P to P < Pl are always accompanied by the increase
in the temperature of the phonon subsystem as com-
pared to that at the initial stage of ablation. This is
because the phonon subsystem of the surface layer at
P < P1 is additionally heated due to both subsurface
recombination of the plume and inertial absorption of

ν af
Λ*
kT
-------- 

 exp
Λ* 0→
lim≈ a

kT

h
--------,=

f
kT

h
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the electron excitation energy by the phonon subsystem
of the substance.

CONCLUSIONS
A phenomenological model for the initial stage of

electron ablation in metals has been proposed. It has
been shown that the interaction of intense electron
fluxes with metals leads to the phase transition of con-
densed matter (metal) to a dense plasma if the rate of
injection of the electron flux energy is P > Θ. The ana-
lytical expressions agreeing with the experimental data
are obtained for (i) threshold power density of the elec-
tron flux; (ii) time delay between the onset of the expo-
sure of the metal surface to the electron flux and the
moment when the binding energy of surface atoms
becomes close to zero; and (iii) interface velocity at the
initial stage of election ablation.
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Shock-Wave Compression of Solid Deuterium 
at a Pressure of 120 GPa
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In [1], a sharp increase in the density of shock-wave-
compressed deuterium was observed at pressures
exceeding 50 GPa. The shock waves were generated by
intense laser radiation at the NOVA facility. For a num-
ber of investigators, the reliability of the results
obtained in [1] seemed to be doubtful, which stimulated
the studies described below.

Verification of the data of [1] was begun in [2, 3]. A
facility was employed that was capable of generating
shock waves to produce the required pressures in the
deuterium samples under study. These shock waves
arose as a result of the detonation of an explosive
charge having a hemispheric shape. In contrast to [1],
we used deuterium in a solid, not liquid, initial state. In
our opinion, this difference is not decisive, since an
anomaly in the deuterium compression, if it exists,
must be equally manifested in the adiabats of the both
initial states.

The results of [2, 3] did not exhibit a sharp increase
in the density of shock-wave-compressed deuterium at
P = 60 GPa. However, the pressures used in these
experiments only slightly exceeded those for which a
sharp density increase was observed in [1]. In addition,
there were different initial states in [1] and in [2, 3].
Thus, there remained a possibility of qualitative change
in the behavior of compressed deuterium at higher pres-
sures (see [3]). Therefore, it seemed to be both reason-
able and necessary to study compression of solid deute-
rium at pressures twice as large as those attained in [2, 3].

In order to prepare solid deuterium samples, we
employed a cryogenic setup developed in [2, 3] in
which condensation of solid deuterium from the initial
gas phase took place. The transformation into the solid
phase proceeded via two stages. At the first stage, the
smooth transformation of gas state into the liquid state
occurred. Deuterium was held in this state for

Russian Federal Nuclear Center—All-Russia Research 
Institute of Experimental Physics, 
pr. Mira 37, Sarov, Nizhegorodskaya oblast,
607200 Russia
e-mail: root@gdd.vnief.ru
1028-3358/03/4810- $24.00 © 20553
5−10 min. Furthermore, the deuterium temperature was
lowered to 10–15 K (deuterium solid state), and in
15−30 min, the explosive was detonated. The deute-
rium temperature was measured by two precision ther-
mal sensors. A hemispherical explosive charge more
intense than that used in [2, 3] (with a weight higher by
a factor of 2.5) was employed to produce gigabar pres-
sures. The schematic diagram for the measuring unit of
the experimental device is shown in Fig. 1. A steel shell
3 mm thick is accelerated by the explosion products of
the converging detonation wave up to a velocity of
20 km s–1. At the radius r = 0.07Rexpl, the shell strikes

Contact pins

Teflon

Deuterium

Al sample
Screen

r = 0.07rexpl

Striker

Al

D2

Fig. 1. Schematic diagram of the measuring device and dis-
position of samples under investigation and of electrocon-
tact sensors. At the upper and lower parts of the figure, the
vertical cut and positions of the sensors and samples are
indicated. (d) and (s) correspond to the sensors of the lower
and upper levels, respectively.
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an aluminum screen producing in it a shock wave with
an amplitude of 720 GPa. This shock wave is transmit-
ted to the deuterium sample under investigation, in
which required states are realized. The thicknesses of
the screen and sample are chosen to be 6.5 and 4 mm,
respectively. We note that in [1], the sample thickness
corresponded to tenths of a millimeter. If we admit that
nonequilibrium states are realized at the interface, then
measurements under the conditions of these small
thicknesses can result in noticeable errors while inter-
preting the results. In addition, at such sample sizes, the
mutual tuning of the incident laser beam producing the
shock wave and an X-ray beam allowing the shock
wave velocity to be measured becomes extremely
important. Any deviation from the rigorous geometry
of the experiment can result in measurement errors.
These problems do not arise in our experiment.

As is seen from Fig. 1, we used the standard dispo-
sition of plug-shaped samples, which was the same as
in [2, 3]. In the experiments, the number of aluminum
and deuterium samples alternated but was not less than
three in each run. The time of penetration of the sam-
ples by the shock wave was registered using electrocon-
tact sensors. To that end, insulated copper wires 150 µm
in diameter were used. To ensure their stability, the
wires were installed in thin-walled nickel tubes. The
first (over the wave motion) sensors located at the alu-
minum–deuterium interface were not screened
(because their screen is aluminum in itself). The other
sensors were covered by thin screening aluminum foils
that ensured reliable closure. A voltage of 300 V was
applied to the sensors. The schematic diagram of sensor
positioning is shown in the lower part of Fig. 1. Regis-
tration of wave processes was performed by HP54645

150

100

50

P, GPa

0 0.5 0.6 0.7 0.8 0.9 1.0

ρ, g/cm3

Fig. 2. P–ρ diagrams for the shock-wave compression of
deuterium. Experimental points w and (m, j, r) correspond
to this experiment and to the results of [1, 4, 5], respectively.
Solid and dashed lines are the Hugoniot curve for solid (in
the initial state) and liquid deuterium.
and TDS 784A recorders providing a time measure-
ment error at the level of 2.5 and 1.0 ns, respectively.

The measured time of the shock-wave passage
through the sample and its known thickness determine
the average wave velocity for the given measurement
base. It is worth noting that the process being registered
is unsteady. Therefore, in the interpretation of the
results obtained, we should allow for a number of cor-
rections to the measured velocities. These corrections
are introduced on the basis of numerical calculations of
parameters of converging spherical shock waves in
both deuterium and aluminum for the particular design
of the explosion device.

(i) A correction associated with the passage from

experimental velocities  =  to instantaneous

velocities Din, which correspond to average radii of
sample positioning.

(ii) A correction associated with the fictitious shift-
ing of the aluminum–deuterium interface to the average
measurement radius. This correction is stipulated by
the fact that the comparison of parameters in the screen
and in the substance under investigation must necessar-
ily be performed at the interface, since the pressures
and mass rates for both substances are equal there. In
our experimental conditions, the initial position of this
interface differs by 2 mm from the average radius of the
samples. Shifting the interface to the average radius
results in a small decrease in the parameters of the deu-
terium sample under study.

(iii) A correction for the difference in wave veloci-
ties in deuterium and in the protective aluminum foil
screen standing near the upper contacts in deuterium.

(iv) A correction associated with the difference in
aluminum properties at normal temperature and for
cold aluminum at T = 10–15 K. The correction is deter-
mined by the accepted equation of state and is taken
into account in constructing the Hugoniot curve for
cold aluminum and, correspondingly, the isentrope of
its expansion, while calculating the mass rate in deute-
rium by the reflection method.

All the corrections listed above (although their total
value did not exceed 1–1.5%) were taken into account
in determination of deuterium compression parameters.

After averaging the data obtained in independent
experiments (7 measurements in deuterium and 7 in
aluminum), we have arrived at the following conclu-
sions.

According to the equation of state for aluminum,
which was used by us, the average shock-wave velocity
for aluminum is D = 21.2 ± 0.3 km s–1. This corresponds
to the mass rate U = 12.50 km s–1 (ρ0 = 2.737 g cm–3).

For deuterium, D = 28.2 ± 0.6 km s–1 (ρ0 =
0.199 g cm–3), U = 21.6 km s–1, P = 121 GPa, ρ0 =
0.85 g cm–3).

∆r
∆t
------ Dav
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The new experimental point is shown in Fig. 2. The
point is compared to the data related to the shock-wave
compression of liquid deuterium, which were obtained
by American investigators using a light-gas gun [4] of
the NOVA laser facility [1] and in the case of accelera-
tion of a striker by superstrong magnetic field [5]. This
figure also demonstrates our experimental point taken
from [2, 3] for solid deuterium (P = 60 GPa). As is seen,
there is satisfactory mutual consistency in the positions
of two of our experimental points and in the data
obtained in [4]. For all the experiments, the anomalous
density increase found in [1] was not observed.

Possible errors in interpreting the measurement
results of [1] were indicated previously. The data
obtained by investigators from Sunday’s National Lab-
oratory [5] also testify to this fact. However, the general
character of disposition of the points obtained does not
allow us to make a definite conclusion due to spreading
of the experimental data.

Thus, in the present study, experimental data are
obtained on the shock-wave compression of solid deu-
DOKLADY PHYSICS      Vol. 48      No. 10      2003
terium in the region of gigabar pressures. These data
show the erroneous character of the measurement
results of [1] obtained at the NOVA facility.
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On the Motion of Solids in a Chemically Active Gas
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In this paper, equations of motion for a solid moving
in a chemically active medium are developed and ana-
lyzed by kinetic-theory methods [1–3]. The solutions
obtained exhibit spiral-shaped trajectories, which is
confirmed by the experimental data of [4, 5].

Here we describe gas by the distribution function f =
f(r, p) depending on spatial coordinates r and momenta
p. We describe the state of the solid by the following
variables: radius vector R of the body’s center of mass,
momentum Q, angular momentum K, and the unit vec-
tor S directed from the center of mass to the center of
the active zone. The portion of gas molecules is
assumed to be elastically reflected from the surface of
the solid, while the other portion adheres to the surface
(in this case, the adherence models chemical interac-
tion). The momenta transferred by an adhering mole-
cule and by an elastically reflected molecule are differ-
ent. In the case of inhomogeneous adherence, a force
arises causing motion called chemoreactive motion [4].
Here we analyze the simplest case of a spherical body
(ball). We assume that the fraction of adhering particles
at a point of the ball with the internal normal n is β =
β(n), 0 ≤ β ≤ 1. The vector S is determined by the rela-
tionship

When the active zone is axisymmetric, the function β
may be represented in the form

The force and the moment that act on the body can
be described by the following integrals taken over the

S
A
A
-------,–= A nβ n( ) n.d

S2

∫=

β β ζ( ),= ζ n S,( ).=
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entire surface and for all collisions:

Here, dΩ is the differential frequency for collisions of
molecules with an element of the surface:

In this formula, u =  is the relative velocity;

(u, n) is the scalar product of the relative velocity u and
the normal n; ρ is the ball radius; and θ((u, n)) is the
Heaviside function. This function is either 0 or 1 for
positive and negative values of its argument, respec-
tively. The appearance of the Heaviside function is asso-
ciated with the fact that the ball’s surface undergoes
impacts of only those particles for which (u, n) > 0.

Furthermore, ∆Qelast, ∆Kelast are the variations of
both the ball’s momentum and moment in elastic colli-
sions:

Here, µ =  is the reduced mass of the system

consisting of the ball and a molecule. In the case of the
sorption of the molecule, we have

Below, we use the following assumptions.
1. The distribution function for gas molecules is

Maxwellian:

where n0 is the gas density, m is the mass of a molecule,
T is gas temperature, and k is the Boltzmann constant
(the proportionality factor between the temperature and
energy).

2. In the course of the process under study, the vari-
ation of the ball’s mass is negligibly small. This can be
admitted since the ratio of the masses of a molecule and

^ ∆Qsorpβ Ω ∆Qelast 1 β–( ) Ω,d∫+d∫=

} ∆Ksorpβ Ω ∆Kelast 1 β–( ) Ω.d∫+d∫=

dΩ u n,( )θ u n,( )( ) f R ρn p,–( )dndp.=

p
m
---- Q

M
-----–

∆Qelast µ u n,( )n,= ∆Kelast 0.=

2mM
M m+
---------------

∆Qsorp p,= ∆Ksorp
µ
2
--- r R u,–[ ] .=

f t r p, ,( ) n0 2πmkT( ) 3/2– p 2

2mkT
--------------– 

  ,exp=
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the body in the experiments of [4, 5], as well as in
numerous chemical reactions, is much lower than

unity:  ! 1.

3. The ratio of the ball velocity and the mean square
velocity of gas molecules is small:

In the experiments of [3, 4], as well as in numerous
other reactions, this is true because the average thermal

velocity of molecules is  ≈ 200 m s–1, whereas the

body velocity is on the order of 1–10 m s–1.
Under the assumptions indicated above, upon calcu-

lating the integrals for the forces and the moment, we
arrive at the following set of equations:

(1)

Here, the first equation corresponds to the definition of
the velocity. The second equation corresponds to New-
ton’s second law, in which the term on the right-hand
side is the force. The third equation is an analogue of
the Euler equation for a solid: the body rotates at an

angular velocity , where J is the ball’s moment of

inertia. (for a ball, all three principal moments of inertia
coincide). Finally, the fourth equation corresponds to
the angular-moment variation.

For the coefficients, we have the following expres-
sions:
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These coefficients correspond to the case of an axisym-
metric active zone.

We now analyze the situation when the characteris-
tic time for the variation of the angular momentum K
substantially exceeds the corresponding times for both
the momentum Q and orientation vector S. Then, we
can consider the moment K to be approximately con-

stant and can replace the last equation by  = 0. After

this replacement, we are able to solve the penultimate
equation: S(t) = exp(Ωt)S(0), where

Performing the substitution Q(t) = exp(Ωt)P(t) in the
second equation of the set (which implies the passage
to a rotating coordinate system), we arrive at a linear set
of equations with constant coefficients:

(2)

Each solution to this set of three equations tends to a
limiting point P(t) → P∞ unambiguous for each initial
K(0) and S(0) but independent of the initial value of the
momentum Q(0).

Thus, we arrive at the knowledge of the asymptotic
behavior for the set of equations (1) under the above-
mentioned assumptions. The solution for vector Q
tends to the uniform circular rotation about the same
axis about which the orientation vector S rotates at the

same frequency ω =  but with a phase delay depend-

ing on magnitudes of the quantities λ and |ω|. There-
fore, the coordinate trajectory becomes a cylindrical
spiral with a constant step L and diameter D:

We can conclude that, in the present study, the equa-
tions of motion for a solid moving in an active medium
are derived in the simplest case of a spherical body. In
finding an analytical solution, we arrive at spiral-
shaped trajectories. Qualitatively, this result corre-
sponds to the experimental data of [5], in which such
spirals were observed with a very sensitive photo-
graphic camera. In order to arrive at quantitative consis-

dK
dt
--------

Ω
0 ω3 ω2–

ω3– 0 ω1

ω2 ω1– 0 
 
 
 
 

.=

dP
dt
------- λP ΩP χ1 P S 0( ),( )S 0( ) x0S 0( ).++––=

K
J
----

L
2π P∞ ω,( )

Mω2
-------------------------,= D

2 P∞
2 ω2 P∞ ω,( )2–

Mω2
-----------------------------------------------.=
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tencies, we should apparently reject certain simplifica-
tions, in particular, the assumption that the solid under
consideration is a ball.
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High-Temperature Thermal Front in a Medium 
with Nonlinear Thermal Conductivity
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Media with constant (or piecewise constant) thermal
conductivity are traditionally considered in the classi-
cal theory of thermal waves. In this case, the developed
technique of mathematical physics can be applied, and
the temperature field can be analytically represented in
the exponential description. The structure of a high-
temperature field in a medium with a power tempera-
ture dependence of thermal conductivity was first deter-
mined in [1]. As was shown, there is a distinct boundary
separating the heated area from the cold area, where
thermal perturbation has not yet penetrated. This
boundary propagates with a finite velocity, in contrast
to the case of linear thermal conductivity, where heat
propagates instantaneously over the entire space. Non-
linear thermal conductivity is characteristic for high-
power processes with the radiative mechanism of heat
exchange.

In this work, problems of the stability of a nonlinear
high-energy thermal front in the presence of a chemical
power source are analyzed for the first time. The stabil-
ity of the propagation of such a front is determined both
by the macrokinetics of chemical heat release and by
the enthalpy excess in the heated area of the thermal
front. In turn, this excess depends on the mechanism of
nonlinear heat conduction.

MATHEMATICAL MODEL

We consider the propagation of a thermal front in a
chemically active medium with thermal conductivity
nonlinear depending on temperature. This process is
sustained by high-energy exothermal chemical interac-
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tion and is described by the equations

(1)

(2)

Here, T is the temperature, η is the transformation
depth, c is the heat capacity of the medium, ρ is its den-
sity, Q is the latent heat, k is the pre-exponential factor,
E is the activation energy, R is the universal gas con-
stant, t is time, and x is the spatial coordinate. The ther-
mal conductivity λ(T), which is a complex function of
temperature, is usually approximated by either the
effective constant λcom or an empirical function.

The mathematical model specified by Eqs. (1) and
(2) is substantially nonlinear and cannot be solved ana-
lytically. For this reason, we simplify it by taking into
account the physical and chemical properties of the

process. First, we approximate λ(T) as  = ,

where  =  is the combustion temperature,

T0 is the initial temperature, λcom is the effective thermal
conductivity for the combustion temperature, and n is
the exponent of the temperature dependence. The

power function  presents a decrease in the ther-

mal conductivity with a decrease in temperature. Sec-
ond, we assume that (i) the chemical interaction is

strongly activated β =  ! 1  and (ii) the exo-

thermal transformation proceeds with high energy

release  ! 1 . Under these assumptions, approx-

imate analytical solutions characterizing the structure
and dynamics of the thermal front can be obtained.

cρ∂T
∂t
------ ∂

∂x
------ λ T( )∂T

∂x
------ 

  ρQ
∂η
∂t
------,+=

∂η
∂t
------ 1 η–( )k

E
RT
-------– 

  .exp=

λ com
T
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---------- 

 
n

Tcom T0
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STRUCTURE OF THE STATIONARY FRONT

The stationary combustion front is described by the
traveling wave solution

of the model specified by Eqs. (1) and (2). Here, u is the
velocity of the front with respect to the fixed original
medium. The rate of the chemical transformation is
negligibly low near the initial temperature, where it is
taken zero. Using asymptotic methods of combustion
theory [2] and taking into account that the parameters β

and  are small, we pass to the (T, p) phase plane,

where p = , and construct an approximate ana-

lytical solution of Eqs. (1) and (2). We separate two
qualitatively different subareas of the front: the heated
area, where chemical heat release is immaterial, and the
temperature-narrow reaction area, where

Then, in the reaction area,

(3)

Solving this equation using the Frank–Kamenetskiœ
expansion of the exponential near the combustion tem-
perature and satisfying the requirements of continuity
of temperature and heat flux at the boundaries of the
areas, we arrive at the following expression for the
squared front velocity in the zero approximation:

(4)

which is well known in combustion theory. It is seen
that, although the thermal conductivity depends on
temperature, the front velocity continues to depend
exponentially on combustion temperature and is deter-
mined by the effective value of the coefficient λcom. The
front structure described in the phase space almost
completely corresponds to the case λ(T) ≈ λcom. Sub-
stantial changes arise when determining the spatial
front structure expressed as

(5)

in terms of the front structure p(T) in the phase space.
In the heated area, p(T) = cρuT. Therefore, for the

T x t,( ) T x ut+( ), η x t,( ) η x ut+( )= =

T0

Tcom
----------

λ T( )dT
dx
------

λ T( ) λ com, 1 η– λ T( ) c
Qu
-------dT

dx
------.≈ ≈

p
λ com
----------

Tcom

T
---------- 

 
n
dp
dT
------ ρcpk

E
RT
-------– 

 exp+ 0.≈

u
2 λ com

ρ
----------

RTcom
2

QE
--------------k

E
RTcom
--------------– 

  ,exp≈

λ T( )dT
dx
------ p T( )=
power dependence λ(Τ) = , we obtain (for

n > 0) the temperature distribution

(6)

which was described by Zel’dovich and Kompaneets
for temperature waves [1]. We emphasize that a self-
similar solution such as a traveling wave is determined
up to a shift. According to combustion theory, the posi-
tion of the relatively narrow reaction area (more pre-
cisely, the maximum of the chemical interaction rate) is
taken as the origin of the moving (connected with the
front) coordinate system.

For the adiabatic case, temperature in the reaction
area and in products can be taken as Tcom. Therefore,
the width of the heated area beyond which thermal per-
turbation does not penetrate is equal to

(7)

The temperature distribution in the heated area for con-
stant thermal conductivity (n = 0, Michelson profile)

(8)

has the infinite area of the thermal action. According to
combustion theory, the characteristic width of heated
area (8) corresponds to formula (7) with n = 1. In the
first approximation, the sizes of the relatively narrow
area of the effective chemical interaction (reaction
area hr) are independent of the temperature-dependence
exponent n. The width of the reaction area is equal to
the combustion rate multiplied by the characteristic
time of the chemical process:

(9)

According to combustion theory, the reaction area is
strongly narrowed due to the strong activation of the
chemical interaction (β ! 1). Enthalpy excess at the
front

(10)

decreases considerably with an increase in n, because it
is accumulated in the heated area. For n = 0, ∆H(0) ≈

, while ∆H(n) =  for a nonlinear tem-

perature dependence of λ. It is theoretically known [3]
that the stability of the combustion front depends on the
enthalpy excess at the front.

λ com
T

Tcom
---------- 

 
n

T x( )
Tcom
----------- 

 
n

ncρu
λ com
------------- x xfr+( ) for 0 x –xfr,≥>=
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xfr

λ com
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-------------.=

T Tcom
cρux
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------------exp=

hr u/k E
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--------------– 

 exp
λ com

cρu
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E
--------------.≈=

∆H n( ) ρ c T T0–( ) Qη–[ ] xd
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λ comTcom
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n 1+
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Assuming that  ! 1 and  ≈ o(1) for

n > 0, the temperature distribution T0(x) in the station-
ary self-similar thermal front with a narrow reaction
area has the form

in the original-composition area (x < –xfr), area I,

(11)

in the heated area (–xfr ≤ x ≤ 0), area II,

in the product area (x > 0), area III.
Using approaches developed in [4, 5], we specify

perturbations of the temperature of the stationary front
in the form

(12)

Here, X(x) are small perturbations of the tempera-
ture of the stationary front and the complex quantity ω
characterizes both the damping factor of perturbations
and the frequency of arising oscillations. Substituting
Eq. (12) into Eq. (11), we obtain

(13)

(14)

(15)

for regions III, II, and I, respectively.
Further, it is necessary to obtain the general solution

for perturbation in all three areas. Satisfying the match-
ing conditions (heat balance, temperature continuity,
and conditions of the complete expenditure of the sub-
stance in the reaction area), we arrive at the condition
of nontrivial solvability of the arising homogeneous
system with respect to undetermined coefficients. It is
the dispersion relation that determines the region of
determining parameters, where the damping factor is
positive and perturbations increase exponentially in
time (the region of instability of the front with respect
to this class of perturbations). It is easy to obtain the

RTcom

E
--------------

T0

Tcom
----------

T
0

x( )
Tcom

------------- 0≈

T
0

x( )
Tcom

------------- ncρu
λ com
------------- x xfr+( )

1 n/

≈

T
0

x( )
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------------- 1≈

T x t,( ) T
0

x( ) X x( ) ωt( ).exp+=

–
cρω

λ
----------X

cρ
λ

------uXx' Xxx''+– 0;=

–
ω
un
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n
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  Xx' x xfr+( )Xxx''+ + 0;=

ω
u
----X Xx'+ 0=
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analytical expression for the general solution of
Eqs. (13) and (15) with constant coefficients. The ana-
lytical description is restricted to Eq. (14) with variable
coefficients. According to [6], an analytical solution is
possible only for n = 1 and 2. For n = 2, it has the form

For n = 1, Eq. (14) reduces to the Bessel differential
equation, whose solution has the form

where C1 and C2 are undetermined coefficients of the
general solution in the second area. Omitting cumber-
some intermediate manipulations, we immediately
present the dispersion equation characterizing the non-
trivial solvability of the homogeneous system with
respect to undetermined coefficients:

(16)

where  = ,  =  is the Zel’dovich

number, and Js is the complex function. For n = 1, Js =

 is the ratio of the modified Bessel function of

the first kind. For n = 2, Js = .
We take Ω = iΨ and find the boundary of the “oscil-

lation” stability by substituting the corresponding
expressions into Eq. (16). Separating the real and imag-
inary parts of Eq. (16), we arrive at the set of the two
transcendental equations

(17)

By numerical analysis, we determine the frequency Ψ
at the stability boundary and the critical Ze value char-
acterizing the stability boundary of the stationary com-
bustion front. The following table presents the critical
parameter values for three n values (the Ψ and Ze val-
ues for n = 0 are taken from [5], where they were
obtained when analyzing gasless combustion).

It is seen that, with an increase in n, the instability
region with respect to one-dimensional perturbations is

X C1
d
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------ 2
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2u
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 cosh=

+  C 2 2 ω
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Fig. 1. Steady structure of the stationary combustion front and enthalpy excess ∆H for different n values for a heterogeneous system

with the parameters θ0 = –7.180, γ = 0.139, β = 0.121,  = .θ*
θ0 θ–

θ0
--------------
   
shifted to large Ze values, the oscillation frequency at
the stability boundary increases, and, therefore, the
wavelength decreases. According to the Stefan–Boltz-
mann law, the flux density of equilibrium radiation is
S ~ T4 . For the model with nonlinear thermal conduc-
tivity specified by Eqs. (1) and (2), this law corresponds
to n = 3. Extrapolating the results of analysis of the sta-
bility of the stationary thermal front, one can expect
that, with an increase in n, the boundary of stability
with respect to the Ze parameter expands, and the wave-
length of the pulsing mode arising in the stationary
front region decreases. It is seen that a decrease in
enthalpy at the front with an increase in n stabilizes the
thermal front and affects the frequency characteristics
of periodic regimes of the front propagation.

The stability of the stationary front is analyzed by
taking into account the features of its structure. Accord-
ing to Eqs. (7) and (9), the ratio of the reaction-area
width to the heated-area width (the latter is considered
as small due to strong activation, E → ∞) is equal to

(18)

Since the process has large energy release and the
temperature in the products behind the thermal front is
high, we have

According to the above data, Ze ~ 5 in the region of
the existence of the stable stationary front. Therefore,
the ratio of the widths of the reaction area and heated

hr

xfr
-----

nRTcom

E
-----------------.=

RTcom

E
--------------

1
2Ze
---------.=
                                  

area is equal to 0.1–0.3 for real n values. The reaction
area becomes narrower with an increase in the activa-
tion energy. However, the stationary thermal front loses
stability for high energies. Information that is more reli-
able is acquired by numerically analyzing the total non-
linear problem specified by Eqs. (1) and (2).

NUMERICAL ANALYSIS OF THE DYNAMICS 
OF THE PROPAGATION 

OF THE THERMAL FRONT

The steady mode of the thermal-front propagation,
which is sustained by the energy of the exothermal
chemical transformation, is an intermediate asymptotic
mode, where the process has already “forgotten” the
substantially unsteady stage of its initiation, but chem-
ical-interaction processes in the original low-tempera-
ture medium are frozen. The front structure, as well as
the dynamics of its motion, is determined by the deter-
mining parameters of the medium. If the stationary
front is unstable, the stable self-oscillating frontal
regime is realized. The structure and velocity of such a
front are periodic functions of time. We consider the
steady mode of the propagation of the thermal front ini-
tiated by a high-temperature source with constant tem-
perature. The process is analyzed by numerically solv-
ing the problem specified by Eqs. (1) and (2) in the
dimensionless form. Scale quantities and dimension-
less parameters are as follows: 

is the time scale; the length scale  is determined by

t* RT*
2

k
1– E

RT*
-----------exp 

  c
QE
--------=

x*
2

DOKLADY PHYSICS      Vol. 48      No. 10      2003



HIGH-TEMPERATURE THERMAL FRONT IN A MEDIUM 563
–7

500 100 150 200 250 300 350

–6

–5

–4

–3

–2

–1

0

1
n = 1.15

1000 200 300 400 500 600 700

0.10

0.15

0.20

0.25

0.30

0.35

0.40 n = 1.15, l = 25.62

0.05

ξ

–7

–6

–5

–4

–3

–2

–1

0

2
n = 0.5

1

–7

–6

–5

–4

–3

–2

–1

0

2 n = 0

1

θ

0.10

0.15

0.20

0.25

0.30

0.35

0.40 n = 0.5, l = 32.10

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 n = 0, l = 78.25

0.05

V(a)

(b)

(c)
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the relation 

 = ,  =  are the dimensionless temperature,

time, and length, respectively; and  =  is the

characteristic temperature. The dimensionless set of
Eqs. (1) and (2) is complemented by the initial data

and the conditions of initiation

Nonlinear thermal conductivity corresponds to the
sum of the small conductive mechanism of heat con-
duction and the dominant temperature-nonlinear power
mechanism. For brevity, we here present only the
results of mathematical simulation that refer to the
above approximate analysis.

Figure 1 shows the numerical results for the steady
structure of the stationary combustion front near the
stability boundary for different n values. For constant
thermal conductivity (n = 0), the front structure is clas-
sical with an exponential temperature distribution in the
heated area. The high-temperature reaction area is nar-
row. According to the approximate analytical analysis,
the front velocity and reaction-area width change
slightly with variation in n. At the same time, the width
of the heated area decreases with an increase in n. Tem-
perature in the heated area is close to a linear function

for n = 1 and behaves as  for large n values.
The area between the curves of the normalized dimen-
sionless temperature and transformation depth (dimen-
sionless enthalpy excess at the front) decreases with an
increase in n (upper right part of Fig. 1).

Figure 2 shows the numerical results for the dynam-
ics of establishing the temperature field and front veloc-
ity for different n values when parameters are near the
boundary of the stability of the stationary front. Fig-
ure 2a corresponds to the constant effective thermal
conductivity (n = 0). In this case, the stationary front is
unstable, and the stable “two-frequency” periodic mode
of front propagation is realized. With a change in ther-

x*
2 λ comt*

cρ
---------------;=

θ T T*–( )E

RT*
2

-------------------------,=

τ t
t*
---- ξ x

x*
------

T* T0
Q
c
----+

τ 0, ξ 0, θ> θ0, η 0= = =

τ 0, ξ> 0, θ θin 0.= = =

ξ ξ fr+( )1 n/
mal conductivity (increase in n, Figs. 2b, 2c), the fron-
tal process is stabilized, the oscillations of the front
velocity first become single-frequency, then the oscilla-
tion amplitude decreases, and finally, for n = 2, the front
propagates in the stable stationary regime. The wave-
length of oscillations l decreases with an increase in n.
Thus, the approximate analytical analysis of stability is
consistent with the numerical analysis of the dynamics
of front propagation.

CONCLUSIONS

A wide temperature range at the front for high-
energy compositions requires a more adequate descrip-
tion of the heat transfer. Since thermal conductivity
depends nonlinearly on temperature and since the prop-
erties and chemical composition of the medium vary,
the spatial structure of the front differs from that
accepted in combustion theory. The relation between
the spatially wide heated area and reaction area that is
characteristic for combustion changes. This change is
responsible both for the change in enthalpy excess at
the front and for the change in the boundary of the sta-
bility of the stationary front with respect to small per-
turbations. The stationary mode that became unstable
changes to the periodic dynamic propagation regime.
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The origin of cosmic rays (CRs) is a key problem in
astrophysics. As follows from the wide list of literature
devoted to CR (see, e.g., reviews and monographs [1–3]
and references to original studies therein), considerable
progress has been achieved in understanding CR phys-
ics, although at present the process of CR generation is
not completely understood. Therefore, constructing a
model in which available experimental data are consis-
tent with a reasonable theoretical substantiation of
basic CR characteristics is rather urgent.

Presently, a model of CR origin based on the Fermi
acceleration mechanism of the first kind is widely used.
The principles of this model are described in [4, 5],
where a mechanism was proposed for acceleration of
particles in the vicinity of fronts of collisionless shock
waves. This model is associated with the concept that
the main fraction of observed CRs is generated in
supernovas. The concept was developed by Berezhko
et al. in [6], in which the process of CR acceleration in
supernova remnants was thoroughly analyzed.

In the present paper, after performing a theoretical
analysis of the problem of CR origin in the Galaxy, we
make an attempt to construct a new alternative model.
In order to be consistent, the model must explain at
least the following important problems of CR physics:
CR sources, particle acceleration mechanisms, injec-
tion problems, and energy loss during the traversal of
space by CR particles. In the development of the model,
these problems are analyzed especially thoroughly.

To a great extent, the model proposed is a result of
detailed analysis of CR acceleration in the solar and
galactic plasma, which was performed by the author
in [7–10]. Allowing for the concept of feeding the total
CR energy in the Galaxy by supernova explosions, we
discuss one of the basic aspects of the problem of CR
origin, namely, the mechanism of acceleration of the
charged particles composing CRs. As is well known,
the most efficient acceleration occurs in electric fields
whose origin is associated with either variations of
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Siberian Division, Russian Academy of Sciences, 
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magnetic field or plasma motion in magnetic field. Par-
ticle acceleration by statistical mechanisms or particle
acceleration by turbulent motion are less efficient. In
our opinion, the most promising is the so-called surfa-
tron mechanism (surfing) [9–12]. Even first estimates
of the energy that can be acquired by particles in large-
amplitude longitudinal waves propagating in galactic
plasma have shown the high efficiency of this accelera-
tion mechanism. In particular, if this mechanism acts on
the galactic scale, atomic nuclei can accumulate maxi-
mum energies up to 1020 eV [13]. The most detailed
analysis of the surfatron mechanism of CR acceleration
in the Galaxy was performed in [10]. This is the basis
employed below for constructing the model under con-
sideration.

The surfatron acceleration mechanism used in the
proposed model exists in weakly magnetized plasmas.
In this mechanism, charged particles are captured in a
potential wave propagating in a plasma with a weak
transverse magnetic field. Under certain conditions,
these particles can be confined by the wave for a rather
long time and can be accelerated at the wave front. The
moving positive and negative potential jumps are capa-
ble of accelerating ions and electrons, respectively. We
analyze the two most widely propagated types of wave
perturbations of the potential in the collisionless
plasma: a longitudinal plasma wave [14, 15] and a qua-
sitransverse magnetoacoustic shock wave [11]. Since a
periodic plasma wave contains positive and negative
potential jumps, it is capable of accelerating both ions
and electrons. The magnetoacoustic shock wave is
characterized by the positive potential jump. Therefore,
only ions can be accelerated at the front of this wave.

It is worth noting that the longitudinal plasma waves
and quasitransverse magnetoacoustic shock wave are
the most propagated in collisionless space plasma. This
is because these waves are both easily excited in the
case of sharp variations in parameters of weakly mag-
netized plasma and attenuate relatively weakly. We now
discuss possible variants of excitation of waves of the
types under consideration with the solar plasma taken
as an example. In the magnetosphere plasma, steady-
state magnetoacoustic shock waves are produced as a
result of interaction of the solar wind with planetary
magnetic fields. Take for example the near-terrestrial
shock wave. The dominant fraction of the waves are
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excited in the solar atmosphere (photosphere, chromo-
sphere, solar corona). These waves propagate away
from the Sun. In this case, the most intense waves, such
as plasma waves and magnetoacoustic shock waves
(e.g., interplanetary shock waves), arise in chromo-
sphere flares and other similar explosive processes on
the Sun. Large-amplitude plasma waves can be gener-
ated in various nonlinear plasma processes. However,
basically, they are produced by means of either trans-
formation of strong electromagnetic waves into plasma
waves or as a result of the development of plasma insta-
bilities while fast charged-particle beams move in the
galactic plasma.

In the case of surfing, the acceleration takes place in
a regular electric field Ey (in the wave reference frame)
always present at the wave front. If we assume that, in
the laboratory reference frame, a wave propagates in
the direction opposite to the x axis at a velocity u trans-
verse to the magnetic field with the induction B0 ,which
is directed along the z axis, then in the wave reference
frame the field Ey is directed along the y axis and is
equal to

where c is the speed of light.
In the case of surfing, in order to provide long-term

(perpetual) acceleration of particles captured by a
wave, the validity of the condition R > 1 is necessary for

the parameter R = . (Here, E0 is the maximum value

(amplitude) of longitudinal (i.e., directed along the x
axis) components of the wave electric field, and B = γB0
is the magnetic field in the wave reference system at a
point at which the electric field is maximal [9–10, 12].
In space plasma, this condition for waves of the type
under consideration is valid in the majority of cases.

It is assumed in our model that epithermal particles
corresponding to the tail of the plasma particle distribu-
tion function are captured into a wave. In this method
of involving particles in the acceleration process, their
number is sufficient to ensure the observed CR concen-
tration in the Galaxy. In the case of surfing, the acceler-
ation rate determined by the relationship W = γuB0 per
charge unit is so high that we can ignore both the
energy loss due to interaction of CRs with the medium
and the basic processes of radiation of the particles
being accelerated. Thus, at low particle energies, i.e., at
the initial stage of acceleration, when ionization energy
loss and collision loss play the constitutive role, the so-
called injection problem is absent [1]. The energy loss
of ultrarelativistic particles turns out to be negligibly
low compared to W for the most dangerous radiation
types, namely, in the cases of particle acceleration in
the wave electric field Ey, of CR interaction with
charged plasma particles, and of CR collisions with
photons (Compton energy loss). The energy loss is also

Ey

γuB0

c
------------, γ 1 u2

c2
-----– 

 
1/2–

,= =

E0

B
-----
low in the case of allowance for the process of wave
attenuation due to the wave energy consumed for the
acceleration of captured particles. However, the princi-
pal fact is that, in the case of surfing, when a particle is
captured by a wave, synchrotron radiation (magnetic
bremsstrahlung) is absent. In other words, this most
intense channel of CR radiation loss, which is espe-
cially dangerous for electrons, does not exist.

The maximum energies that can be obtained by CRs
in the Galaxy turn out to be determined by the maxi-
mum size of galactic domains having quasihomoge-
neous magnetic fields in which nonlinear waves can
propagate. The following scenario of sequentially
increasing particle energies is intrinsic to the model
proposed. Initially, particles are captured from plasma
into nonrelativistic shock waves and into nonlinear
plasma waves. In this case, the maximum possible
energy attains values on the order of 1015 eV nucleon–1

provided that the particle acceleration is considered in
atmospheres (chromosphere, corona, and vicinities
(heliosphere)) of stars, as well as in the interstellar
medium. Furthermore, ultrarelativistic particles con-
fined by the magnetic field within the Galaxy can con-
tinue the acceleration process in relativistic plasma
waves. Over distances comparable with the galactic-
disk thickness (~100 pc), they can acquire an energy on
the order of 1020 eV.

Nonlinear waves in the galaxy may be assumed to
arise without interruption, and, apparently, their propa-
gation directions are isotropic, their velocity distribu-
tion being rather wide. In this case, particles escaping
capture by one wave can be subjected to resonance cap-
ture by another nonlinear wave that moves in the neces-
sary direction and possesses a velocity corresponding
to the capture condition. Then, the acceleration process
for the given particles can be repeated many times, as in
a relay race. It is worth noting that, in escaping capture
by a wave, particles are confined in the galactic mag-
netic field in a certain domain bounded by their Larmor
radius. Furthermore, they either are captured by a
proper relativistic plasma wave and continue accumula-
tion of energy or lose, for various reasons, the energy
acquired at the first stage. It is clear that, in pauses
between the acceleration stages, relativistic and
ultrarelativistic electrons lose their energy relatively
rapidly. These are electrons whose energy in the pro-
cess of their motion through the galactic magnetic field
intensely decreases due to the loss of synchrotron radi-
ation.

The results of studies of the surfatron-acceleration
mechanism as applied to charged particles in the Gal-
axy testify to the indisputable advantages of the given
acceleration method. We may state without doubt that
the solution of the majority of problems related to CR
acceleration in the Galaxy is possible within the frame-
work of the surfatron mechanism. First, particles are
captured into waves directly from the galactic plasma,
so that their number is sufficient to ensure the observed
DOKLADY PHYSICS      Vol. 48      No. 10      2003
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CR concentration in the Galaxy. Second, within the
framework of the same injection-free mechanism, par-
ticles are accelerated to high energies from those close
to thermal energies in plasma. Third, there is no differ-
ence in the acceleration of various types of particles:
electrons and atomic nuclei are accelerated by the same
manner and up to the same maximum energies (per unit
charge). Finally, since in the case of surfing the capture
of particles occurs in a resonance manner and the accel-
eration rate is constant, there is no danger of nuclear
decomposition in the process of their acceleration. It is
worth mentioning the conclusion obtained in [13]: the
CR differential power energy spectrum obtained as a
result of surfing turns out to be close to the observed
spectrum (the exponent is close to 3).

We now formulate the most significant conclusions
following from the model proposed.

1. The main source of CRs is space plasma. In other
words, either near-stellar or interstellar plasma is a res-
ervoir from which particles composing CRs originate.
In particular, this conclusion testifies to the fact that the
problem of primary or secondary origin of the CR elec-
tron component [1, 2] is solved within the framework of
our model in favor of the primary origin of electrons.

2. The formation of the high-energy part of the CR
spectrum proceeds in two stages. At the first stage, a
small fraction of the epithermal part of the energy dis-
tribution for charged particles from galactic plasma is
captured into nonrelativistic nonlinear waves and is
accelerated by the surfatron mechanism up to an energy
of 1013 eV nucleon–1 in stellar atmospheres and up to an
energy of 1015 eV nucleon–1 in the galactic disk. At the
second stage, these particles can acquire energies of
1016–1020 eV nucleon–1 by the surfatron mechanism in
relativistic plasma waves propagating in the magne-
tized galactic plasma.

It is of interest to note that the energy demarcating
these two stages lies in the break region of the CR spec-
trum curve [2].

3. The ultimate particle energy obtained according
to the surfatron mechanism in nonlinear waves is
bounded mainly by the dimensions of a wave’s propa-
gation domain. It is established that, in the case of the
surfatron mechanism, the energy loss of relativistic par-
ticles, which is associated with well-known types of
radiation and with the attenuation of nonlinear waves
due to their energy loss for particle acceleration, may
be ignored in the first approximation.

4. It is necessary to note that, for surfatron accelera-
tion, the most dangerous channel of energy loss by rel-
ativistic particles, namely, synchrotron radiation, is
absent. In particular, owing to this fact, electrons and
DOKLADY PHYSICS      Vol. 48      No. 10      2003
atomic nuclei can be accelerated in the Galaxy by the
surfing mechanism up to energies of 1020 eV.

Thus, the model proposed has a number of signifi-
cant advantages. They are the anomalously high parti-
cle-acceleration rate; the CR acceleration up to maxi-
mum energies on the order of 1020 eV (only up to
1015 eV in the existing model); the possibility of accel-
erating electrons interchangeably with ions (in the
existing model, the acceleration of electrons is doubt-
ful); and the absence of the most dangerous channel of
radiation energy loss, namely, of the synchrotron radia-
tion channel.
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The viscoelastic properties of composites with a
highly elastic matrix and hard particles of a filler (rub-
ber) depend strongly on temperature. The temperature
effect on the mechanical properties of such a material is
similar to the time factor of the deformation effect.

A quite complete set of the mechanical properties of
a composite can be obtained in mechanical tests either
for long times or in wide frequency bands under cyclic
variations of strain or stress. Such tests are associated
with difficult technical problems. However, the vis-
coelastic behavior of polymers corresponds to large
times or low frequencies for high temperatures and to
short times or high frequencies for low temperatures.
This fact shows that the effects of time and temperature
are equivalent to each other. Therefore, the same
mechanical characteristics of a sample can be obtained
by varying the temperature and time regimes of action
on the sample. Thus, this property provides a unique
possibility of carrying out tests in limited time or fre-
quency ranges for various temperatures with recalcula-
tion of the results to wide time or frequency ranges for
a given temperature. This approach is called the princi-
ple of temperature–time reduction and is based on the
principle of the temperature–time superposition, which
was first formulated by Aleksandrov and Lazurkin [1,
10] and then was experimentally checked in [2, 3].

The method of temperature–time reduction was
developed earlier than theories where it was justified.
Simple phenomenological methods of viscoelastic bod-
ies (Maxwell, Voigt) are often used to theoretically jus-
tify this method [4, 5]. However, we consider works
based on molecular approaches [6] as most interesting,
because they can not only justify the physical essence
of the phenomenon but also provide the molecular
interpretation of a number of the material constants of
the reduction. Molecular approaches and theories can
also predict and describe a number of new effects and
relations.
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In this work, the applicability of the principle of
temperature–time superposition for composites with a
highly elastic matrix and hard filler particles (rubber,
polymer matrix composites, etc.) is justified on the
basis of the molecular model in the framework of the
scaling concept.

We consider the composite as identical spherical
particles that are uniformly distributed in space and are
located between polymer chains [7–9]. The segments
of these chains are adsorbed on the surfaces of the par-
ticles (Fig. 1). For quantitative estimates, we consider a
model element consisting of two particles that have
diameter D and are coupled through a macromolecule
having N segments of size a. The surface layer of each
particle contains n segments.

We consider that both N and n are the same for all
macromolecules. The distance between the surfaces of
neighboring particles is equal to l0 . Each particle is sur-
rounded with a potential well with thickness δ ~ a. A
macromolecule unit falling into this well has negative
energy –ε. Each particle is surrounded by an adsorption
layer of thickness ∆ ! D. The fraction δ∆–1 of n seg-
ments in the adsorption layer is in the potential well.

In [7–9] based on scaling theory, the free energy F
of the model element was represented as a sum of the
energy of segments in potential wells, the energy of n
segments in the adsorption layer, the energy of the vol-
ume interaction between segments in the adsorption
layer, and the energy of N – 2n segments of the polymer
chain with the distance l0 between the ends.

Expressions for n and ∆ were obtained in [7] by
minimizing the free energy of the model element via
variation in n and ∆ for given l0 and T (temperature in
energy units) and for the following ranges of molecular
and structure parameters: N > n, D ≤ 30 nm, N ≥ 5000,
a ~ δ ~ 1 nm, ε ~ 1 kcal/mol, and the volume fraction of
the filler in the interval 0.1 ≤ ϕ ≤ 0.5. This provided an
expression for the free energy of the deformed sample
as a function of the molecular and structural parameters
of the composite. By using the expression for the free
energy density, the high-elasticity properties of the
composite were described in dependence on the above-
listed molecular and structure parameters of the model.
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Model of a composite with a highly elastic matrix.
The comparison of the results with the experimental
data corroborated that the theoretical approach pro-
posed in [7] is justified.

With further development of this approach [8], the
mechanical relaxation properties of such a composite
were described. Three components of the internal vis-
cosity of the composite, which are associated with dif-
ferent mechanisms of molecular motions, are taken into
account [8, 9]. The first component η1 is associated
with the displacement of the chain section in the surface
layer due to migration of chain segments in the poten-
tial wells of active centers of the surface of filler parti-
cles. This component is described in the Frenkel–Air-
ing theory. The second component η2 is associated with
motion of segments of the chain section in the surface
layer as in a tube. This component is calculated in the
scaling approach for the dynamics of the macromole-
cule in the medium with spatial boundaries. The third
component η3 is the viscosity of the chain section con-
taining N – 2n segments connecting the surfaces of two
neighboring particles.

The relations obtained in [8, 9] provide the follow-
ing expression for the relaxation time of the composite
in the above-listed ranges of the molecular and struc-
ture parameters (where η3 < η2):

(1)

where ηs is the solvent viscosity.

For the case η3 > η2, which can be achieved due
either to an increase in N or to a decrease in D, we obtain

(2)
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In this case, as was shown in [9], the deformation
behavior of the composite can be approximated in the
Kelvin–Voigt–Meir model. For stepwise loading (σ =
σ0 for t = 0), the time dependence of strain has the form

(3)

where

(4)

T0 is the temperature at which potential wells on the
surface of each particle (see model) are completely
filled with segments of macromolecules [7–9].

When loading changes exponentially as σ = σ0eiωt,
strain varies as

(5)

The relaxation time ξ in Eqs. (3) and (5) is specified by
Eqs. (1) and (2). As follows from Eqs. (3) and (5), the
relaxation time appears in combination either with cur-
rent time [Eq. (3)] or with frequency [Eq. (5)]. The
relaxation time ξ and shear modulus G are functions of
the current temperature (temperature of the experi-
ment). Therefore, the same mechanical reaction of the
material to an external action can be obtained by vary-
ing the temperature of the experiment or correspond-
ingly selecting the test time in Eq. (3) or frequency in
Eq. (5). This corresponds to the principle of tempera-
ture–time superposition.
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Contrary to the known relations predicting tempera-
ture–time superposition for polymer media on the basis
of phenomenological models, the explicit functional
expressions of ξ and G in this case are obtained as func-
tions of not only temperature but also the molecular and
microstructure parameters of the composite medium.
The latter dependence makes it possible to point out a
number of interesting features of the mechanical behav-
ior of such composites.

We analyze the frequency dependence of the strain-
to-stress ratio CT(ω) with cyclic variations of stress
(compliance) for a certain temperature under periodic
small-amplitude deformation (dynamic tests). Accord-
ing to Eq. (5),

(6)

for T = T1, where f(X) is the given function. For T = T2 ,
we have

(7)

Let us obtain the common logarithm of expression (7)
as a function of the common logarithm of the argument
of the function f:
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Comparison of Eqs. (8) and (6) provides easy rules
for recalculation of test results obtained for certain tem-
perature to different temperature. The curve of

C2(ω) as a function of ωξ(T2) is obtained by
shifting the curve of C1(ω) as a function of

ωξ(T1) by  and  along the

abscissa and ordinate axes, respectively. Thus, the stan-
dard reduction principle has been obtained. Explicit
expressions (2) and (4) for ξ and G as functions of the
molecular and microstructure parameters of the model
provide predictions of a number of the features of the
mechanical behavior of such materials. In particular,
for the case η2 > η3 (the viscosity of the composite is
primarily determined by motion of sections of polymer
chains connecting the surfaces of two neighboring par-
ticles of the filler), using Eq. (1), we arrive at the
expression

(9)

for the frequency shift factor under the assumption of a
weak temperature dependence of the segment size. In
this case, expression (9) coincides with the known
result obtained in the molecular approach for unfilled
polymer media [2]. The difference is in the displace-
ment along the ordinate axis, where, according to
Eqs. (4) and (8), the different coefficients of thermal
expansion of particles of the filler and matrix must be
taken into account, and temperature change in D and
Ψ(ϕ) must be estimated. For the case η3 > η2 (the vis-
cosity of the composite is determined by outflow of sec-
tions of chains from the surface layer), the frequency
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shift factor depends more strongly on T according to
Eq. (2):

(10)

We emphasize that expressions (1) and (2) representing
the relaxation time of the composite as a function of the
molecular and microstructure parameters can provide
estimates of change in the shift factor with the size of
particles of the filler and molecular mass of the polymer
(sizes of macromolecules). According to Eqs. (1) and
(2), the frequency shift factor varies as

(11)

and

(12)

with the particle size D and molecular mass of the poly-
mer (or polymerization degree of macromolecules),
respectively.

The shift factor along the ordinate axis for these two
cases is easily calculated by using Eq. (4). A thorough
experimental test of the relations obtained above will
provide both more clear representations about the vis-
coelastic properties of composites (e.g., rubber) and a
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number of useful practical procedures for control of the
mechanical properties of such materials.
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Wide application of various long-rod projectiles in
ballistics supports continuous interest in investigation
of the features of their interaction with targets in high-
velocity impacts [1–4]. Although there are many exper-
imental and theoretical works in this field, the problem
is far from a complete solution. In this paper, we report
experimental and numerical investigations of the inter-
action of a tungsten-alloy long-rod projectile with a
three-layer target consisting of the front and rear steel
layers and middle elastomer layer. An impact occurs at
an angle of 60° with a velocity of 1600 m/s.

Figure 1 shows the sequential X-ray patterns of the
penetration of the long-rod projectile with diameter d0

and length l0 = 20d0 through the three-layer target with
front, middle, and rear layers of thicknesses 0.34d0 ,
1.82d0, and 0.34d0 , respectively. Figure 1a shows the
failure of the projectile part immediately after the pro-
jectile penetrates though the target and reaches its rear
surface. The characteristic feature of the asymmetric
high-velocity impact of the long-rod projectile with the
finite-thickness target is the formation of two bulges on
the rear surface of the target. The first of them arises
opposite the point where the projectile touches the front
layer of the target and is due to the arrival of the shock
wave at the rear surface of the target. The second bulge
is due to the deformation factor and arises in the pro-
cess of the projectile’s penetration. The projectile per-
forates the target in this region. Further, these two
regions are united, forming a fragment debris behind
the target. Analysis of the experimental data shows that,
when the projectile moves behind the target at later
stages of the process, its front part bends (Fig. 1b) and
fails (Fig. 1c), which is accompanied by the separation
of the projectile part from the basic reminder.
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Numerical investigations were carried out to ana-
lyze in detail the features of the interaction of long-rod
projectiles with the three-layer target with various
thicknesses of the layers. The set of equations for
describing unsteady adiabatic motions of an elastoplas-
tic medium, including nucleation and accumulation of
microdamages and temperature effects, consists of the
equations of continuity, motion, and energy [5]. To
numerically simulate the failure of the material in high-
velocity impact, we applied the active-type kinetic
model determining the growth of microdamages, which
continuously change the properties of the material and
induce the relaxation of stresses [6]. The strength char-
acteristics of the medium (shear modulus and dynamic
yield strength) depended on temperature and the cur-
rent level of damages [7]. The critical specific energy of
shear deformations was used as a criterion of the ero-
sion failure of the material that occurs in the region of
intense interaction and deformation of contacting
bodies [8]. The constants for the elastomer were taken
from [9]. Calculations were carried out by the finite-
element method [10]. Moreover, sliding conditions
were realized between the projectile and target, as well
as between the layers of the target.

Calculations were carried out for thicknesses 0.34d0
and 0.68d0 of the front layer, thicknesses 0.34d0,
0.68d0, and 1.02d0 of the rear layer, and various materi-
als of the middle layer whose thickness was equal to
2.05d0 . The table presents the parameters of six calcu-
lation variants.

Figure 2 shows the calculated chronograms of the
process for basic variant ‡. Figure 2a illustrates the
onset of the interaction of the projectile with the rear
layer of the three-layer target, while Fig. 2b corre-
sponds to the motion of the projectile reminder behind
the target, which is accompanied by the bending of the
front part of the projectile.

Calculations for the basic variant show that, despite
a considerable impact angle of 60°, the ricocheting
fragment of the front projectile part formed at the initial
interaction stage is small due to the geometric parame-
ters of the problem and characteristics of the materials
of interacting bodies.
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(a) (b) (c)

Fig. 1. X-ray patterns for interacting bodies at times (a) 90, (b) 160, and (c) 200 µs.
At the main stage of the interaction process, i.e., at
the penetration stage, the shape of contacting bodies
changes under the continuous effect of the erosion fail-
ure processes (wear) accompanied by the separation of
the failed material. We list several characteristic stages
of the process. When the shock wave reaches the rear
surface of the target, the rear bulge is formed. The front
cavity is simultaneously formed with the failure of the
front layer of the target and front part of the projectile.
With the further penetration of the projectile into the
target, the additional rear bulge is formed (Fig. 2a).
When the projectile reaches the rear layer of the target,
the projectile begins to destroy this layer and a hole is
formed through the target. Further, the rear layer of the
target near the impact region fails into fragments.

Calculations show that the projectile directly inter-
acts with a region of the rear layer of the target with low
mobility (particularly in the horizontal direction). After
interaction with this region, the front part of the projec-
OKLADY PHYSICS      Vol. 48      No. 10      2003
tile begins to bend towards the normal to the target sur-
face, which is observed at a time of 120 µs (Fig. 2b).

For the cases under consideration, Fig. 3 shows the
configurations of projectile fragments moving behind
the target after the penetration through the target (t =
300 µs). Common features are the bending of the front
part of the projectile for thicknesses 0.34d0 and 0.68d0

of the rear layer of the target (variants a, b, d) and pre-
vailing failure of the front part in other cases. A certain
bending of the front part is also observed for variants c
and f, which is additionally caused by the effect of the
free rear surface on the oblique motion of the projectile
in the target.

Analysis of calculations shows that the result of
interaction depends qualitatively on the thickness of the
rear plate. With an increase in the thickness of the rear
layer to a value close to d0 (Fig. 3, variant c), the failure
Parameters of calculation variants

Variant Thickness of the front 
steel layer

Thickness of the rear 
steel layer

Thickness of the middle 
layer

Material of the middle 
layer

a 0.34d0 0.34d0 2.05d0 Elastomer

b 0.34d0 0.68d0 Same "

c 0.34d0 1.02d0 " "

d 0.68d0 0.34d0 " "

e 0.34d0 0.34d0 " Air

f 0.34d0 0.34d0 " Steel
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(a)

(b)

Fig. 2. Calculated configurations of the projectile and three-
layer target at times (a) 60 and (b) 120 µs.
(erosion) of the front part of the projectile, as well as
the reduction of its length, becomes prevailing.

The middle layer also noticeably affects the interac-
tion character. Calculations for the separated target
(without the middle layer) show that the bending of the
projectile is virtually unobserved for the thickness of
the layers 0.34d0 (Fig. 3, variant e). In fact, the projec-
tile sequentially interacts with two quite thin targets. As
a result, the front part of the projectile deforms and par-
tially fails. For comparison, we consider the case of a
steel layer instead of the elastomer (variant f). Calcula-
tions show that the ricochet effect at the initial stage of
the process becomes stronger, and plastic deformations
at the penetration stage increase, which is accompanied
by the erosion of the material of the interacting bodies.
In this case, the final length of the projectile is minimal
among all variants of the target composition, but the
bending of the front part of the projectile, as well as the
further fracture and separation of a part of the projec-
tile, is not observed.

When the thickness of the front layer is doubled
(variant d), the mass of the ricocheting part, as well as
the duration of the phenomenon, increases. However,
this does not qualitatively affect the dynamics of the
penetration process.

Thus, complex experimental–theoretical investiga-
tions of the interaction of the long-rod projectile with
the three-layer target containing the middle elastomer
layer reveal the dynamics of the penetration, erosion,
–140–180 –100 –240 –200 –160 –120 –140–180 –100

–200 –160 –120 –200 –160 –120 –200 –160 –120

a b c

d e f

Fig. 3. Projectile shape after interaction with the target for target variants a–f from the table.
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bending, and further failure of the projectile. The char-
acter of the failure of the front part of the projectile was
found to depend significantly on the thickness of the
rear layer of the target. The protective properties of
such a target can be improved by properly choosing the
material of the middle layer and the thicknesses of mid-
dle and rear layers with a fixed thickness of the front
layer of the three-layer construction.
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The Rayleigh–Taylor instability is studied in appli-
cations to astrophysics, inertial confinement fusion,
etc. [1, 2]. The problem of bubbles arises in combustion
(flames in channels [3]), the power industry (hydraulics
of heat-transfer systems [4, 5]), geophysics (intrusion
of salt flows along a bottom, “gravity flows” [6, 7]), and
in analysis of the pipeline transport of energy carriers
(motion of gas–oil flows [4, 5, 8–12]). A solution with
bubbles is important for insight into the physics of slug
regimes [4–6, 8–12] of a two-phase flow in pipelines
and wells. In addition to the applied aspect, there is a
fundamental aspect associated with nonlinear boundary
value problems of hydrodynamics (dynamics of a
heavy fluid, gravitational waves on water, etc. [1, 2]).

1. FORMULATION OF THE PROBLEM

Figure 1a shows a gas bubble floating in a fluid in a
pipe inclined to the horizon at angle α. The bubble
moves near the upper wall of the pipe, and the fluid
forms a jet j running down under the gravitational
acceleration g along the lower wall. Let the density of
the gas, viscosity of the fluid, and surface tension be
small. The bubble vertex is at the point B, and BT is the
tangent to the free boundary G at the vertex. In the
steady state, the angle θc (Fig. 1a) between the x axis
and tangent BT in 2D geometry is equal to 120°. In the
laboratory coordinate system associated with the pipe
walls, the fluid is at rest at infinity x = +∞ (the pipe is
closed on top), because the fluid is supported by gas
pressure. During the motion, the gas ascends and the
fluid descends (opposing flows). Vorticity is localized
at the boundary G. The flow is potential in the bulk of

* Landau Institute for Theoretical Physics, 
Russian Academy of Sciences, Chernogolovka, 
Moscow oblast, 142432 Russia
e-mail: nail@landau.ac.ru

** Institute for Computer Aided Design, 
Russian Academy of Sciences, 
Vtoraya Brestskaya ul. 19/18, Moscow, 123056 Russia
e-mail: a.oparin@icad.org.tu
1028-3358/03/4810- $24.00 © 200576
the fluid and gas. The gas is at rest near the vertex in the
coordinate system associated with the bubble vertex B.
In this case, the fluid arrives from infinity with the
velocity U(α). The velocity of the fluid in the jet j either
increases infinitely (α > 0) or tends to a constant Uj >
U(0) (α = 0, horizontal pipe).

The angle θc between the wall and boundary G is
independent of the slope α. Therefore, a solution with a
wedge θc = 120° also exists for α = 90° (Fig. 1b). A
bubble with a round vertex θc = 90° (Fig. 1c) has been
analyzed in connection with the Rayleigh–Taylor insta-
bility [1, 2, 12–14]. Thus, the problem of the Rayleigh–
Taylor instability has two steady solutions with θc = 90°
and θc = 120° (2D). The solution with the right angle
θc = 90° is possible only for α = 90°; i.e., only the solu-
tion with the wedge θc = 120° exists for α < 90°.

2. CONFORMAL MAPPING 
AND VELOCITY HODOGRAPH

We derive an approximate analytical formula for the
velocity of bubbles with an edge (Fig. 1a) by the
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Fig. 1. Bubbles with (a, b) wedge θc = 120° and (c) round
θc = 90° vertices.
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hodograph method. We write

(1)

where ζ =  = u + iv  is the velocity hodograph, z = x +

iy, f = ϕ + iψ is the complex potential, and u = ϕx and
v  = ϕy are the velocity components. The logarithm in
Eq. (1) represents the source (–U, 0) on the plane ζ. The
power terms substantial near the vertex (z = 0, ζ = 0) are
chosen specifically. First, the deceleration (stagnation)
point must be at the center ζ = 0. Second, the expansion
must begin with the cubic term (compensation of the
quadratic term), because the zero flow line ψ(Reζ,
Imζ) = 0 must leave the center ζ = 0 at an angle of
−120° to the Reζ axis.

Let us calculate U in Eq. (1). We take the first non-
vanishing term in the expansion of the logarithm. Using

the formula ζ = , we obtain dz = dζ. Therefore,

z =  or ζ =  = – U . Integrating the last

equation, we obtain the complex potential in terms of

the physical variables near the vertex f = – z3/2.

Separating the imaginary part ψ(x, y) = Imf = 0, we
arrive at the equation for the zero flow line y|ψ = 0 =

− x near the z = 0 point (kinematic condition). The
squared velocity modulus is equal to ζζ* =

2U2 . On the zero flow line ψ0 , we obtain

(2)

We now use the dynamical boundary condition.
From the Bernoulli integral at the boundary G (on ψ0),
we have

(3)

Substituting y(x)|ψ = 0 ≈ − x into Eq. (3) and trans-
forming Eqs. (2) and (3), we obtain

(4)

This expression is the desired approximate analytical
expression describing the rise of wedge bubbles in
inclined pipes for arbitrary angles α. For α = 90°, we

obtain  = . As is seen, a wedge bubble floats
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U
----+ 

 ln ζ–
ζ2

2U
------- ζ3

3U2
---------,≈+=

df
dz
-----

df
dz
----- ζ

U2
------

ζ2

2U2
--------- df

dz
----- 2 z

2 2U
3

---------------

3

x2 y2+

ζζ *( ) ψ 0= 2U2 x2 y x( ) ψ 0=[ ]+
2

4U2 x–( ).= =

v 2

2
------ ζζ *

2
--------- g r⋅( ) g y α x αsin–cos( ).= = =

3

U α( ) π/6 α–( )cos
π

-------------------------------- gD.=

U

gD
----------- 1

2π
----------
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faster than a round bubble by a factor of  ≈ 1.225,

because  ≈  for the round bubble [2, 3, 12–14].

3. CONIC SINGULARITY

A singularity at the free boundary appears due to the
stop of the flow at the singularity point and the linear
coordinate dependence of the gravitational potential.
As a result, a 120° wedge is formed in 2D geometry.
For the 3D case, the equation ∆ϕ = 0 has the form

where , in the spherical coordinates r and θ.
Let us consider the vicinity of the deceleration point
r = 0. In view of the homogeneity of gravity and the

Bernoulli integral, we have v  ∝  . Therefore, ϕ =
r3/2Φ(θ). The equation for Φ has the form

which is a 3/2-degree Legendre equation [15]. Its solu-
tion regular on the vertical polar axis θ = 0 is the 3/2-
degree Legendre function P3/2(C) (C ≡ cosθ).

We now determine the angle θc . The polar compo-
nent of the velocity is equal to

It vanishes at the polar axis θ = 0 due to symmetry.
Moreover, the v (θ) component vanishes on the surface
of the θc cone. The generatrices of the cone compose
the angle θc with the polar axis. The quantity Cc = cosθc

is the root of the equation  = 0. Numerically

solving this equation, we obtain

(5)

4. CONSERVATION LAWS

Let us determine the velocity of conic bubbles in a
vertical circular pipe. The solution is symmetric about
its axis. Let us write the law of conservation of the
momentum of the fluid between sections xj and xb

(Fig. 1a) and the laws of conservation of mass and
energy (Bernoulli integral). We approximate the bound-
ary η by the formula

(6)

where the angle θc is given by Eq. (5). Approximation (6)
involves the shape of the boundary G near the vertex. It
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includes one unknown parameter r, which is deter-
mined from the laws of conservation of mass, momen-
tum, and energy. Solving the corresponding set of alge-
braic equations, we determine the following expression
for the velocity of the conic bubble in the vertical pipe

of the radius R = :

(7)

A similar calculation in plane geometry (in this case,
θc = 120°) provides

(8)

where  = D, see Fig. 1b.

The method is generalized for an arbitrary slope α.
The solution in an inclined circular pipe is not axisym-

D
2
----

U 0.54 gR 0.38 gD.≈ ≈

U 0.42 g
λ
2
--- 

  0.3 gλ ,≈ ≈

λ
2
---

Fig. 2. Bubble–jet flow for the angles α = 0°, 30°, 60°, and
90°. The arrow is the g vector. The vertical straight line is
the boundary η for t = 0.
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Fig. 3. Bubble velocity U vs. the pipe slope α.
metric, because the bubble moves in the upper part of
the pipe. The joining angle θc of the boundary of the
bubble to the wall is unknown (θc ~ 120°). For this rea-
son, it is chosen so that results in the model with con-
servation laws agree with experiment. In this respect,
the 3D solution in the inclined pipe differs from the axi-
symmetric (in fact, 2D) solution in the vertical circular
pipe, when the vertex moves along the axis. The angle
θc in Eq. (6) is a varying parameter and definite number
given by Eq. (5) in the former and latter cases, respec-
tively.

5. CONCLUSIONS CONCERNING SIMULATION 
AND EXPERIMENT

We now compare analytical results with direct
numerical simulation and experiment. Although simu-
lation is extensively used in analysis of the Rayleigh–
Taylor instability [1, 2, 14], it has been generalized for
the first time to the case of inclined pipes, which is
important for technology and close in physical meaning.
This generalization opens new prospects for investiga-
tions of two-phase flows in such pipes as compared to the
traditional purely experimental approach [4, 5, 8, 9].

We describe the basic results. Figure 2 illustrates the
role of the slope of the 2D pipe. The arrow is the direc-
tion of the gravitational acceleration g. The thin vertical
straight line is the initial position of the free boundary
η(x, t = 0) separating the gas and fluid. The gas-to-fluid
density ratio is equal to 1 : 20 (gas inertia is small). The
gas and fluid are in the white and black regions in
Fig. 2, respectively. The position of the boundary η in
Fig. 2 is shown for the time t = 5. The units D = π (width
of the 2D channel, Fig. 1) and g = 1 were used. Calcu-
lations were carried out up to the time t = 10. The pipe
is long (15D) so that the end effects are absent. The
mushroom-shaped structure at the ends of the jets
increases with α. Comparison of frames in Fig. 2 shows
that the velocity U(α) is maximal for angles intermedi-
ate between horizontal and vertical. This is also valid
for jets. Figure 3 shows the function U(α) for bubbles.

Solid lines 5 (3D model) and 3 (2D model) in Fig. 3
are calculated from the conservation laws (Section 4).
The numbers 125, 115, and 110 near the lines are the
values of the angle θc in Eq. (6) for the 3D case
(θc  = 120° in the 2D case). According to the experi-
ment [9], it is considered that the boundary of the bub-
ble adjoins the upper wall at the angle θc ≠ 90°. In this
connection, our calculations based on approximation (6)
differ from works [11], where η was replaced with a
quarter ellipsis (in this case, θc = 90°), which is incon-
sistent with the experiment [9] for low surface tensions.
The dashed line is calculated by formula (4). For large
slopes (α = 80°–90°), 3D data [9] (rhombi) are below
the 2D velocity! Thus, the commonly accepted repre-
sentation that 3D bubbles move much faster than 2D
bubbles is invalid for almost vertical pipes.
DOKLADY PHYSICS      Vol. 48      No. 10      2003
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For the horizontal case (α = 0), the exact values 0.5
and 0.54213 of the velocity U follow from the conser-
vation laws for the 2D and 3D cases, respectively. In
this case, the shape of η vanishes and calculation is
similar to the calculation of the shock adiabatic curve
from the conservation laws. The α = 0 case was
described in [6]. The calculation made in [3] noticeably
underestimates the velocity U (0.5/0.43) (our calcula-
tions are much more accurate). Circles in Fig. 3 are the
2D simulation (sample in Fig. 2). All 2D lines U(α)
obtained by formula (4), calculation by conservation
laws (Section 4), and direct numerical simulation (Sec-
tion 5) are in good agreement. Arrows to the points
CONE and ROUND in Fig. 3 correspond to conic (7)
and round axisymmetric bubbles, respectively, in the
circular vertical pipe.
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Based on the Melnikov criterion, the explicit analyt-
ical form of external parametric perturbations leading
to stabilization of the chaotic and/or unstable behavior
of dissipative dynamical systems is obtained. As an
example, analytical results are complemented by
numerical analysis of the Duffing–Holmes system.

Stabilization of the unstable or chaotic behavior of a
dynamical system is usually meant as the artificial cre-
ation in the system of stable (as a rule, periodic) oscil-
lations on the basis of external multiplicative or addi-
tive perturbations [1–4]. In other words, in order to
realize stabilization, it is necessary to find external per-
turbations capable of leading the system from the cha-
otic regime to a regular one. Although the formulation
of the problem seems rather simple, its solution for a
number of dynamical systems turns out to be a rather
complicated task.

We consider the stabilization problem on the basis
of analysis of systems with a separatrix loop. As is well-
known, in the majority of cases, chaos arises by means
of the homoclynic-structure destruction [5]. We per-
form our analysis for two-dimensional autonomous
systems with a single hyperbolic point, which are sub-
ject to the action of a periodic perturbation

The basic tool for the analysis of similar systems is the
Melnikov method. This method makes it possible to
determine the size of the gap D(t, t0) between stable and
unstable branches of the separatrix as (see [6–8])

where the integral is calculated along the unperturbed
separatrix Γ(0)(τ). If D(t, t0) is an alternating function,

ẋ f 0 x( ) ε f 1 x t,( ).+=

D t t0,( ) t f 0 f 1×( )d

∞–

∞

∫
Γ 0( )

t t0–( )

,–=
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then the separatrices intersect each other, and the
dynamics in this domain becomes chaotic.

Let the initial set of equations be of the form

(1)

Here, f (ω, t) is a periodic perturbation; P(x, y), Q(x, y),
and F(x, y) are smooth functions; and α is dissipation.

Let x0(t) be the solution on the separatrix. For sys-
tem (1), in the presence of a perturbation, the Melnikov
distance D(t, t0) can be written as

(2)

where y0(t) = (t). We assume that, for system (1),
quantity (2) is alternating, i.e., that the separatrices
intersect each other. We now find an external perturba-
tion f*(ω, t) whose application to the system results in
a situation such that the separatrices cannot intersect,
i.e., such that the system dynamics is stabilized:1 

(3)

It is worth noting that, since system (1) depends on the
parameter α, such a stabilization must be performed for
each fixed value of this parameter.

We denote the segment in which the function D(t, t0)
changes its sign as [s1, s2]. After the external perturba-
tion f*(ω, t) has been applied, two variants are possible:
D*(t, t0) > s2 or D*(t, t0) < s1 , where D*(t, t0) is the
Melnikov distance for system (3). We analyze the first
variant. The second one can be studied in the same
manner. In this case,

(4)

1 We conditionally call this perturbation f * “regularizing,” or stabi-
lizing.

ẋ P x y,( ),=

ẏ Q x y,( ) ε f ω t,( ) αF x y,( )+[ ] .+=

D t t0,( ) y0 t t0–( ) f ω t,( ) αF x0 y0,( )+[ ] td

∞–

∞

∫–=

≡ I g ω α,( )[ ] ,

ẋ0

ẋ P x y,( ),=

ẏ Q x y,( ) ε f ω t,( ) αF x y,( ) f * ω t,( )+ +[ ] .+=

I g ω( )[ ] I g* ω( )[ ] s2,>+
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where

Expression (4) is true for all values of the left-hand
side of the inequality, which exceed s2 . Therefore, we
can always find χ such that

I[g(ω)] + I[g*(ω)] = s2 + χ = const,

where χ, s2 ∈ R+. Hence,

I[g*(ω)] = const – I[g(ω)].

On the other hand,

We choose f *(ω, t) from the class of functions abso-
lutely integrable within an infinite segment and expand-
able into a Fourier series. We write f *(ω, t) in the form

f*(ω, t) = Re{A(t)e–iωt}.

Therefore,

The inverse Fourier transformation yields

Hence,

The quantity A(t) may be interpreted as the amplitude
of the regularizing perturbation.

Thus, for systems representable in form (1), the
external stabilizing perturbation is

In systems for which a displacement from the critical
value of the Melnikov function D(t, t0) is possible by
the additive shift, we can obtain the stabilizing pertur-
bation in the explicit form:

(5)

I g* ω( )[ ] y0 t t0–( ) f * ω t,( ) t.d

∞–

+∞

∫–=

I g* ω( )[ ] y0 t t0–( ) f * ω t,( ) t.d

∞–

∞

∫–=

– e iωt– A t( )y0 t t0–( ) td

∞–

∞

∫ const I g ω( )[ ] .–=

A t( )y0 t t0–( ) I g ω( )[ ] const–( )eiωt ω.d

∞–

∞

∫=

A t( ) 1
y0 t t0–( )
--------------------- I g ω( )[ ] const–( )eiωt ω.d

∞–

∞

∫=

f * ω t,( )

=  Re
e iωt–

y0 t t0–( )
--------------------- I g ω( )[ ] const–( )eiωt ωd

∞–

∞

∫ .

f * ω t,( ) 4πaδ t( )
y0 t t0–( )
--------------------- ωt( ).cos–=
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We now employ this method for the Duffing–
Holmes equation. This equation with the parametric
perturbation of the cubic term is of the form [8, 9]

(6)

where η ! 1 (η and Ω are the amplitude and frequency
of the parametric perturbation).

Using the above analysis, it is easy to obtain the
explicit form for the external stabilizing perturbation
f *(ω, t) for system (6). In accordance with relation-
ship (5), we have

(7)

ẋ̇ x– β 1 η Ω t( )cos+[ ] x3+

=  ε γ ωt( )cos α ẋ–[ ] ,

f * Ω t,( ) 2π 2β
t t0–( )cosh

2

t t0–( )sinh
------------------------------aδ t( ) Ωt( ).cos=
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Fig. 1. Phase portrait of Duffing–Holmes system (6) for α =
0.145, β = 8, η = 0.01, γ = 0.14, and Ω = ω = 1.1 (chaotic
regime).
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Fig. 2. Phase portrait of Duffing–Holmes system (8) for α =
0.145, β = 8, η = 0.01, γ = 0.14, Ω = ω = 1.1; and a = 2 (sta-
bilized behavior).



582 LOSKUTOV, DZHANOEV
Next, we perform the numerical analysis of the sys-
tem of Duffing–Holmes equations (6). In this system,
chaos is developed by means of decomposing of the
separatrix contour of the eight-shaped type. The typical
structure of a chaotic set is shown in Fig. 1. When
perturbation (7) is added to this system, Eq. (6) is writ-
ten as

(8)

The numerical solution to this equation is shown in
Fig. 2. As is clearly seen, the dynamics of the system
becomes completely periodic with time, and the phase
curve rapidly tends to a stabilized periodic regime
(Fig. 2).

Thus, the numerical analysis is consistent with the
analytical calculations.
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The presence of dispersed solid particles in a contin-
uum radically changes its properties, including viscos-
ity. The viscosity of suspensions for a low particle vol-
ume fraction is usually calculated by formulas based on
the Einstein phenomenological theory and its generali-
zations [1–3]. For rarefied gas suspensions (the carrier
gas is rarefied), such approaches are absent. In [4–6],
we showed that the dynamics of even rarefied gas sus-
pensions are generally described by a set of master
equations involving multiparticle collision integrals.
However, the set of Boltzmann master equations can be
used to describe rarefied ultra-grained gas suspensions
and, in certain cases, even fine-grained gas suspensions.

Study of the transport of nanoparticles in gases and
fluids has long been of interest due to the development
of nanotechnologies. The sizes of nanoparticles vary
from ten to hundreds of Ångströms. Clusters,
fullerenes, and large organic molecules can also be usu-
ally considered as such particles. Under ordinary con-
ditions, the mean free path of carrier-gas molecules is
much larger than the sizes of nanoparticles. Therefore,
collisions between gas molecules and a nanoparticle
can be adequately described in terms of pair collisions
for a wide range of the parameters of rarefied gas sus-
pensions. However, even in this case, the interaction of
a gas molecule with a nanoparticle is collective,
because it is necessary to take into account its simulta-
neous interaction with all atoms (molecules) of the par-
ticle. This can be done by using a specially constructed
potential of the molecule–particle interaction [7–9].
This potential was used to study the diffusion of nano-
particles in rarefied gases in terms of the Boltzmann
kinetic theory [9–11]. In particular, it was shown that
the properties of the transport of nanoparticles differ
radically from those of ordinary Brownian particles,
and the Einstein theory, as well as the Cunningham–
Millikan–Davies experimental correlation found on its
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basis, cannot be used to describe their diffusion. At the
same time, kinetic theory with the potential proposed
in [7–9] agrees well with available and specially
obtained experimental data [11].

Since this theory with the potential from [7–9] is
successfully used to calculate the diffusion of nanopar-
ticles, one can be sure that it is also applicable to calcu-
lation and to analysis of the coefficients of viscosity for
ultra-grained rarefied gas suspensions. Gas suspensions
with nanoparticles as the dispersed component will be
called gas nanosuspensions.

This study aims to analyze the coefficient of viscos-
ity of rarefied gas suspensions by kinetic theoretical
methods. The molecule–particle interaction is
described by the potential taken from [7–9]. At present,
there is no reliable

potential of the interaction between dispersed parti-
cles (including certain models of the interaction). For
this reason, we describe the particle–particle interac-
tion by the hard-sphere potential. We analyzed the
dependence of the viscosity coefficient on the radius of
particles, their concentration, and the temperature of
the carrier medium. It was shown that, depending on
the concentration of nanoparticles and their sizes, the
effective viscosity of gas nanosuspensions can be both
larger and smaller than that of a pure carrier gas. Since
the mass concentration of nanoparticles can be equal to
about unity even for low particle number densities, the
addition of nanoparticles with a certain size and com-
position to a gas can be used, in particular, to decrease
the viscosity of the carrier gas. Thus, the addition of
nanoparticles to a gas flow can be used to reduce the
drag for bodies moving in the gas.

We consider a rarefied gas nanosuspension as a
binary mixture of carrier-gas molecules and nanoparti-
cles. As has been mentioned, the molecule–particle
interaction is described by the potential [7–9]

(1)

Φ r( ) Φ9 r( ) Φ3 r( ),–=

Φi r( ) Ci r R–( ) i– r R+( ) i––[ ]{=

– ai r R–( ) i 1–( )– r R+( ) i 1–( )––[ ] } .
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Here, C9 = , C3 = , a9 = , a3 = ,

V is the effective volume per molecule of a dispersed
particle, and εij and σij are the parameters of the Len-
nard–Jones potential describing the interaction
between molecules of the incident gas and each mole-
cule (atom) of the nanoparticle with radius R. Particles
interact with each other as hard spheres. The dynamics
of such a disperse binary system is described by the
conventional Boltzmann set of equations. As a result, in
the first approximation of the expansion in Sonin poly-
nomials, the coefficient of viscosity of the rarefied gas
nanosuspension under consideration is described by the
formula [12]

(2)

where

Here, x1 and x2 are the molar fractions of respective
components (hereafter, subscript 2 refers to nanoparti-

cles unless otherwise specified); µ = , where m1 and

m2 are the masses of molecules of the carrier gas and
particle, respectively; T is the temperature;  =

, where  are the reduced Ω integrals; and

σ2 = 2R.

Thus, similar to the case of molecular gas mixtures,
calculation of the transport coefficients for gas nano-
suspensions reduces to calculation of the corresponding
Ω integrals with potential (1). Since the atoms (mole-
cules) of nanoparticles are generally not identical to
carrier-gas molecules, it is necessary to use combina-
tion relationships (2) for determining the parameters of
the interaction potential for the binary mixture from the
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parameters of potential (1) for pure gases. In this study,
we used the relationships

The calculations for a number of binary mixtures
(Cd–Ne, Zn–Ne, Cu2O–Ne, Zn–Ar, Cu2O–Ar, Ne–Xe,
and Ne–UF6) showed that all Ω integrals for potential (1)
(contrary to the corresponding values for a rarefied gas)
depend only weakly on both various combination rela-
tionships and very different data about the parameters
of the intermolecular potentials.

The Ω-integral values are very sensitive to variation
of radii of nanoparticles and differ only slightly from
unity (by less than 5%) for almost all investigated pairs
of molecules beginning with particle radii exceeding
100 Å. On the other hand, the Ω-integral values varies
monotonically in the range 1.5–3.5 for particles with a
radius of about 10 Å and increase with the constants C3
and C9 .

The coefficient of viscosity (2) of the gas nanosus-
pension is a multiparameter function and varies sub-
stantially with the sizes of nanoparticles, their concen-
tration, and the temperature of the gas suspension.
However, the Boltzmann kinetic theory is applicable
for describing gas nanosuspensions only when the
number densities of dispersed particles are sufficiently
low, more exactly, when the corresponding van der
Waals parameter is small: n2R3 ! 1 (R is the nanoparti-
cle radius). For this reason, it is useful to study the
behavior of the coefficient of viscosity (2) for small
molar fractions of the dispersed phase: x2 ! 1. It is easy
to show that, in the first approximation in x2 , coeffi-
cient (2) takes the form

(3)

Function (3) depends strongly on the mass ratio µ,
nanoparticle radius, temperature, and parameters of
potential (1). In particular, function (3) can change sign
for certain values of these quantities. This means that
the addition of small volume fractions of dispersed
solid particles to a gas can both increase and decrease
the effective viscosity of the medium. As an example,
Fig. 1 shows the R dependence of the derivative of func-
tion (3) with respect to the volume fraction ϕ of dis-
persed particles:

(4)

for the H2–U gas nanosuspension (uranium particles of
radius R in hydrogen). An analysis of Fig. 1 shows that

σij σiiσ jj, εij εiiε jj.= =

η η 1 ∆η+ η1 1
x2

1 0.6A12* µ+
----------------------------+



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= =

× 0.3A12*
1 µ+( )2

µ
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η12
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------- 2 12A12*– 2
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η12
-------–+
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derivative (4) actually changes sign near R . 360 Å.
Thus, the effective viscosity of this H2–U gas nanosus-
pension with particles of a sufficiently large radius is
lower than that of the carrier gas. On the other hand, the
viscosity of the gas nanosuspension with fine particles
is higher than that of the carrier gas. Finally, it should
be stressed that derivative (4) is largest for particles of
small radii (R < 20 Å) and varies noticeably for small R
values. This means that even low concentrations of
ultra-grained particles can noticeably modify the vis-
cosity of the carrier gas. As an example, Fig. 2 shows
the dependence of viscosity (2) for the H2–U gas nano-
suspension on a volume fraction of particles with radius
R = 5 Å for temperatures T = (1) 200, (2) 300, (3) 400,
(4) 500, (5) 600, (6) 800, and (7) 1000 K. For concen-
trations of about 2 × 10–4 and room temperatures, the
viscosity of the gas nanosuspension exceeds that of the
carrier gas by 90%. This effect depends strongly on

temperature, and  ~ 2.3 at T = 1000 K for the same

concentrations.

As was noted above, the addition of dispersed parti-
cles to a gas, depending on their size, can generally
both decrease and increase the effective viscosity of the
gas suspension. This circumstance is illustrated in
Fig. 3, where the viscosity of the H2–U gas suspension
with uranium particles of radius R = 700 Å (T = 300 ä)
is shown as a function of the volume fraction of parti-
cles. The viscosity of the gas suspension actually
decreases with increasing volume fraction of dispersed
particles, and this effect increases with temperature.

The effect of dispersed particles on the behavior of
the effective viscosity of the gas suspension is deter-
mined by its composition [ratio µ, parameters of poten-
tial (1), etc.], and the addition of small particles can
both increase (Fig. 2) and strongly reduce the effective
viscosity. Figure 4 shows effective viscosity (2) calcu-
lated for the Ne–Zn gas nanosuspension as a function of
the volume fraction of particles with radius R = 5 Å for
various temperatures. Curves 1–7 correspond to the
same temperatures as respective lines in Fig. 2. The
effective viscosity is lower than the viscosity of the car-
rier gas at room temperature and ϕ = 2 × 10–4 by
approximately 15%, and this effect also increases with
temperature.

In conclusion, it is necessary to note two circum-
stances. In this study, we used the hard-sphere potential
for the calculation of particle interaction. This potential
is generally inadequate for dispersed particles. First,
these are van der Waals forces substantial at small dis-
tances. Second, the hard-sphere potential is known to
give an improper temperature dependence of transport
coefficients. However, the results and conclusions of
this study are virtually independent of these circum-
stances, because the contribution of the particle–parti-
cle interaction to the effective coefficient of viscosity is
negligible for small volume concentrations of the dis-

η
η1
-----
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persed phase. This contribution is absent in formula (3),
while the exact calculations show that the inclusion of
these interactions modifies the result for small volume
fractions of the dispersed phase (up to 10–3) by fractions
of a percent, and it is in practice negligible.

5 × 103

1001 10 R, Å

0

η'

Fig. 1. Derivative of the viscosity of the gas suspension with
respect to the volume fraction of uranium particles in H2 vs.
the radius (R = 5–1000 Å) for T = 300 K.
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Fig. 2. Viscosity of the gas suspension of uranium particles
(R = 5 Å) in H2 vs. the volume fraction of dispersed parti-
cles for temperatures T = (1) 200, (2) 300, (3) 400, (4) 500,
(5) 600, (6) 800, and (7) 1000 K.
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20 4 6 8 ϕ, 10–38.80
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Fig. 3. Same as in Fig. 2, but for R = 700 Å and T = 300 K.
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We noted above that the behavior of the effective
viscosity of a gas suspension is determined by its com-
position and parameters of components. Knowing these
parameters, one can predict the behavior of the effec-
tive viscosity. For low particle number densities, for-
mula (3) can be used for calculations. For the gas sus-
pension, it involves small parameters, because usually

(5)

Parameters (5) are generally related to each other so
that µα = s3 , where α is the ratio between the densities
of the dispersed-particle material and carrier-gas mole-
cules. In view of the smallness of parameters (5), for-
mula (3) provides one more useful estimate in the form

(6)

When the sizes of molecules of the carrier gas differ
strongly from the sizes of nanoparticles, the last term in
formula (6) can dominate, and a reduction in the effec-
tive viscosity as compared with the gas viscosity should
be expected. Of course, it is necessary to take into
account the parameter α and the values of the Ω inte-
grals, which can vary by a factor of 2–3.
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Fig. 4. Same as in Fig. 2, but for the gas suspension of zinc
particles (R = 5 Å) in Ne.
Finally, it should be noted that, as a rule, σ1 ~ σ2 for
a gas mixture, and, for µ ! 1, it follows from Eq. (3)
that

Thus, a small addition of a heavier gas to a lighter
gas increases the viscosity of the mixture as compared
to that of the lighter component. However, such an
increase depends nonmonotonically on the heavier-
component concentration and substantially varies with
temperature.
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In this study, dynamic equations for a rigid body that
moves in a gas [1] and reacts with it nonuniformly over
the surface [2] are derived in the kinetic approach. The
approach proposed makes it possible to take into
account changes in the mass, inertia tensor, and geo-
metrical shape of the body.

Let us consider the motion of a rigid body in the gas
that is accompanied by nonuniform surface reactions [3].
The rigid body is characterized by its mass M, radius

vector R of the center of mass, inertia tensor ,
momentum Q, and angular momentum K.

The total force ^ with which the gas acts on the
body is the sum of microscopic changes of the momen-
tum in individual collisions. In order to find this force,
it is necessary to evaluate these microscopic changes
for each collision and to integrate over the entire sur-
face for all collisions. If there are several different kinds
of interactions between the body and gas molecules
(e.g., mirror reflection and absorption occurring with
the corresponding probabilities), then local fluxes
obtained for each kind of interaction should be added
together with their weights and integrated over the sur-
face. The same procedure must be performed for other
flux quantities (fluxes of the angular momentum, mass,
moment of inertia, and displacements of the center of
masses).

The above approach is applicable to the calculation
of flux quantities (forces, moments, mass, etc.) only if
the frequency of collisions of gas molecules with the
body surface is so high that the passage from summa-
tion over individual collisions to integration is justified.
This condition means that the number of collisions dur-
ing the minimum characteristic time must be equal to
several orders of magnitude. The characteristic times
are the rotation period, time taken to cover a single turn
in motion along a spiral, relaxation times, i.e., the quan-

Ĵ
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tities inverse to the coefficients of the first terms of the
expansion of dissipative forces and moments, and, per-
haps, the times determined by the features of a particu-
lar problem.

The three main kinds of interaction between gas
molecules and the surface—mirror, or elastic, reflec-
tion; diffuse reflection [5, 6]; and sorption—will be
taken into account. The respective terms will be
denoted by subscripts e, d, and s. The weighting func-
tions βi (i = e, d, and s) characterizing the relative num-
ber of collisions of each kind of interaction must meet
the conditions

The weighting functions βi can be functions of the sur-
face coordinate r with respect to the center of mass, rel-
ative velocity v, and normal n to the surface at the point
where a gas molecule falls on the surface, i.e., βi =
βi(r, v, n).

The differential frequency of collisions of gas mol-
ecules with the body is the number of molecules in an
elementary phase-space volume that fall externally on
the body per unit time. It is defined by the expression

(1)

where n is the inward normal at the point r on the body

surface, ds is the surface element, v =  –  – 

is the relative velocity, m is the mass of a molecule, and
ω is the angular velocity.

A change in the shape of a body with a smooth sur-
face can be taken into account analytically. If

(2)

is the flux of a sorbed substance per unit area, so that the
layer with thickness 6δt is precipitated on the surface

βi 0,≥ i e d s   and   , ,  =  β i

i e d s

 

, ,

 

=

 ∑ 1.=

dΩ v n,( ) θ v n,( )( ) f r p,( )dpds,⋅⋅=

p
m
---- Q

M
----- ω r,[ ]

6 mρ 1– βs v n,( )θ v n,( )( ) f r p,( ) pd∫=
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Table 1

Parameter of the body Elastic, or mirror, reflection Diffuse (Maxwell) reflection

Momentum ∆eQ = 2(M–1 + m–1 + ([r, n], [r, n]))–1 · (v, n)n ∆dQ = mv + n

Angular momentum ∆eK = 2(M–1 + m–1 + ([r, n], [r, n]))–1 · (v, n)[r, n] ∆dK = m[r, v] + [r, n]

Ĵ
–1 1

2
---πmkTW

Ĵ
–1 1

2
---πmkTW
during the time δt, then the change in the function
defining the surface by the formula ϕ(r) = 0 is
described in the body reference frame by the equation

(3)

Now, let us find the increments of the dynamic
quantities for each kind of interaction.

The mirror, or ideally elastic, interaction satisfies all
conservation laws of mechanics; i.e., the momentum,
energy, and angular momentum are conserved. The
dynamics of elastic collision of two bodies has already
been studied by Maxwell [4]. Acting similarly to [4–6],
we derive the formulas listed in the first column of
Table 1.

Diffuse reflection, which was also considered by
Maxwell for the first time, can be represented in the
form of a successive sorption–desorption process with
the Maxwellian distribution corresponding to the sur-
face temperature. In this case, the velocities of mole-
cules leaving the surface are assumed to be independent
of their velocities before collision with the surface and
to be distributed with the probability density [5, 6]

(4)

Here, vr =  + [ω, r] is the velocity of the surface at

the collision point r. The data obtained for the diffuse
reflection are listed in the second column of Table 1.

Without going into particular physical and chemical
mechanisms, sorption is treated as a collision in which
a gas molecule is adsorbed and moves with the body as
a whole. Since this interaction is inelastic, the mechan-
ical energy is not conserved, while the momentum,
angular momentum, and mass are conserved. In this
case, the results are presented in Table 2.

ϕ∂
t∂

------ 6 ϕ∇– 0.=

3 p( )
p mvr n,–( ) θ p mvr n,–( )–( )⋅–

2πm kTW( )2
-------------------------------------------------------------------------------=

×
p mvr––( )2

2mkTW

---------------------------- 
  .exp

Q
M
-----
Now the features of the dynamic of a solid body
with variable mass geometry are considered. When
mass geometry changes due to the absorption of gas
molecules, the basis of the principal axes can rotate
stepwise by considerable angles [7] even for an arbi-
trarily low ratio of masses. Therefore, it is reasonable to
describe the orientation of the body in terms of the iner-

tia tensor  rather than in terms of the Eulerian angles
or principal axes used in the traditional description [8].

The corresponding equation can be written in the
form

Here, the cycling frequency tensor ω is related to the
angular velocity as

(5)

Its commutator with the inertia moment  describes the
rotation of the body, and the integral term describes the
variation of the inertia tensor due to mass absorption.

Its microscopic variation ∆s  is presented in Table 2.

Ĵ

d Ĵ
dt
------ ω̂Ĵ Ĵω̂– βs∆s Ĵ Ω.d∫+=

ω̂
0 ω3 ω2–

ω3– 0 ω1

ω2 ω1– 0

.=

Ĵ

Ĵ

Table 2

Parameter of the body Sorption

Momentum ∆sQ = p = m(v + vr)

Angular momentum ∆sK = [r, v + [ω, r]]

Mass ∆sM = m

Radius-vector of the
center of masses ∆sR = 

Inertia tensor ∆s  = (r2  – r ⊗  )

Mm
M m+
---------------

mr
M m+
---------------

Ĵ
Mm

M m+
--------------- Ê rT
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The final system of equations generally has the form

(6)

where  and dΩ are given by formulas (5) and (1),
respectively, and microscopic variations in the quanti-
ties are listed in Tables 1 and 2. The system of equations
is closed by Eqs. (1)–(3) describing the variation in the
frequency of collisions along with the geometrical
shape of the body.

Equations (1)–(3) and (6) describe the dynamics of
a rigid body in a gas medium with allowance for varia-
tion in mass, mass geometry, and the surface geometry
during the process.

dR
dt
------- Q

M
----- βs∆sR Ω,d∫+=

dM
dt

-------- βs∆sM Ω,d∫=

dQ
dt
-------- βi∆iQ Ω ^external,+d∫

i e d s, ,=
∑=

dK
dt
-------- βi∆iK Ω }external,+d∫

i e d s, ,=
∑=

d Ĵ
dt
------ ω̂Ĵ Ĵω̂– βs∆s Ĵ Ω,d∫+=

ω̂
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The linearization of constitutive relationships,
which is necessary when formulating the problems of
stability with respect to small perturbations in contin-
uum mechanics, implies the determination of a linear
physical relationship between the increments δ  and

δ  of the stress deviator  = sijei ⊗ ej and the strain-rate

tensor  = v ijei ⊗  ej coinciding with its deviator due to
medium incompressibility. Here, e1, e2, and e3 are the
unit vectors of the Cartesian coordinate system. For all
media except viscous and perfect fluids, the linearized
constitutive relationships involve the unperturbed-pro-
cess parameters, marked hereafter by the symbol “°.”

1. We consider a quite general class of continua that
have the shear yield stress τs and hardening and satisfy
the tensor (vector) linear constitutive relationships [1]

(1)

The hardening function F(U) > 0 meets the conditions

i.e., near zero this function can be represented by its lin-
ear part

(2)

Here, µ is the dynamic viscosity at the onset of defor-
mation (starting) (figure, curve 1). The class under con-
sideration also includes the case of µ = 0, where the
material behaves as a perfectly plastic body at the start-
ing time (figure, curve 2) [2–5].

s
˜

v
˜

s
˜

v
˜

sij
2
U
---- τ s F U( )+( )v ij, U 2v ijv ij.==

F U( )
U 0+→
lim 0   and   

F U ( )
 

U
 ------------- 

U
 
0

 
+

 
→

 lim  ∞ , < =

F U( ) µU o U( ), 0 µ ∞.<≤+=
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After linearization, the constitutive relationships
have the form [6]

(3)

where ∆ijkl are the components of the fourth-rank unit
tensor.

Multiplying tensor equality (1) by itself, we obtain
the scalar constitutive relationship

(4)

between the maximum shear stress T and the highest
slip velocity U. If the medium has no hardening (F ≡ 0),

δsij
2

U°
------- τ s F U°( )+( )δv ij=

+
4

U°
-------v ij°v kl°

d
dU
-------

τ s F U( )+
U

------------------------ 
 

U U°=
δv kl

=  
2

U°
------- τ s F U°( )+( )∆ijkl ---

+ 2v ij°v kl°
d

dU
-------

τ s F U( )+
U

------------------------ 
 

U U°=
δv kl,

T U( ) 1

2
------- sijsij≡ τs F U( ),+=

T U( )
U 0+→
lim τ s=

U0
A

F

1

2

3

Types of the hardening functions F(U).
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relationship (4) represents the von Mises–Hencky plas-
ticity condition.

It is necessary to substitute relationship (3) into the
linearized equations of motion (mass forces do not
change)

(5)

We also take into account the incompressibility condi-
tion

(6)

and the Stokes relationship

(7)

In this case, the set of four equations (5) and (6) for
three velocity perturbations δv i(x, t) and the pressure
perturbation δp(x, t) is closed for the region Ωf occu-
pied by the flow. Generally speaking, this region is not
known in advance, and the boundary separating it from
the rigid region Ωr , where U ≡ 0, is one of the desired
objects of the boundary value problem [7].

A particular case of the field v° can be a one-dimen-
sional plane-parallel shear  = v°(x2, t),  =  ≡
0 with the profile v ° [8] preset from certain reasons.

The relation between increments (3) exists only for
U°(x, t) ≠ 0. If U° ≡ 0, i.e., if  ≡ 0, which corresponds
to the undeformed initial state (rest or motion as an
absolutely rigid body), according to Eq. (2), it is neces-
sary to replace Eq. (3) with the relations

(8)

(9)

Relationships (8) are nonlinear for τs > 0, and lineariza-
tion (1) is no longer possible.

The ratios  in Eq. (8) are about unity, which is

corroborated by the following continuum-mechanics
parametrizations of space kinematics and spatial stress

δp,i δsi j j,+– ρ
∂δv i

∂t
------------ v i j,° δv j v j°δv i j,+ + 

  .=

δv i i, 0=

δv ij
1
2
--- δv i j, δv j i,+( ).=

v 1° v 2° v 3°

v ij°

δsij
2

δU
------- τ s F 0( ) F ' 0( )δU+ +( )δv ij=

=  
2τ s

δU
-------δv ij 2µδv ij,+

δU( )2 2δv ijδv ij=

≡ 2
3
--- δv 11 δv 22–( )2 δv 22 δv 33–( )2+(

+ δv 33 δv 11–( )2 6 δv 12( )2+

+ 6 δv 23( )2 6 δv 31( )2 ).+

δv ij

δU
----------
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state in terms of δU and four angles 0 ≤ ϕ, θ1, θ2, θ3 <
2π [1–5, 9]:

(10)

(11)

According to Eqs. (8) and (11), the shear yield stress is
of the same order of smallness as variations δsij . Thus,
the development of small perturbations near the unde-
formed state (U° ≡ 0) can be studied only for a material
with a low yield stress τs. Its degree of smallness in each
problem is evidently determined by comparison with
the corresponding combinations of other dimensional
quantities.

Substituting Eq. (8) into Eq. (5), we obtain the equa-
tions of motion

(12)

which are nonlinear with respect to the variations and,
together with Eq. (6), form the closed set in the region
Ωf . The two last terms on the right-hand side of Eq. (12)
can be nonzero (even if  ≡ 0) when the unperturbed
process is the motion of a perfect plastic medium as a
perfectly rigid body.

2. Substituting θ1 = θ2 = θ3 ≡ 0 into Eq. (11), we
obtain the following standard continuum-mechanics
parameterization of the stress state for the plane defor-
mation [in the (x1x2) plane]:

(13)

δv 11  22;
δU
2

------- ϕ ± θ3cos
1

3
------- θ3sin+ 

  ,cos=

δv 33
δU

3
------- ϕ θ3,sincos–=

δv 12
δU
2

------- ϕ θ1cossin θ2,cos=

δv 23
δU
2

------- ϕ θ1cossin θ2,sin=

δv 13
δU
2

------- ϕsin θ1;sin=

δs11  22; τ s µδU+( ) ϕ θ3
1

3
------- θ3sin+cos± 

  ,cos=

δs33
2

3
------- τ s µδU+( ) ϕ θ3,sincos–=

δs12 τ s µδU+( ) ϕ θ1 θ2,coscossin=

δs23 τ s µδU+( ) ϕ θ1 θ2,sincossin=

δs13 τ s µδU+( ) ϕ θ1.sinsin=

δp i, 2τ s

δv ij

δU
---------- δv( ) 

 
, j

µ∆δv ij+ +–

=  ρ
∂δv i

∂t
------------ v i j,° δv j v j°δv i j,+ + 

  ,

v ij°

δσ11  22; –δp τ s µδU+( ) ϕ ,cos±=

δσ12 τ s µδU+( ) ϕ .sin=



592 GEORGIEVSKIŒ
The set closed in the region Ωf with respect to v 1, v 2, p,
and ϕ consists of four equations (hereafter, the signs of
variations are omitted for brevity):

(14)

The capital roman subscripts take the values 1 and 2.

Set (14) can be easily reduced to the following sin-
gle nonlinear equation for the perturbation of the
stream function ψ(x1, x2, t) (v 1 = ψ,2, v 2 = – ψ,1,  =

,  = ):

(15)

where eJL is the Levi-Civita two-dimensional symbol
and

(16)

In more detail, we discuss the case where the basic state
of a medium is rest (  ≡ 0) in a gravitational field with
a hydrostatic distribution of stresses. In this case, the
right-hand side of Eq. (15) is simplified. We rewrite this
equation in the dimensionless form assuming that τs =

 (g is the gravitational acceleration and h is the

characteristic linear size) is a small parameter:

(17)

Equations similar to Eq. (17) arise in the theory of
hydrodynamic stability when investigating inviscid

p 1, τ sϕ 1, ϕ τ sϕ 2, ϕ µ∆v 1+cos+sin––

=  ρ
∂v 1

∂t
--------- v 1 J,° v J v J°v 1 J,+ + 

  ,

p 2, τ sϕ 1, ϕ τ sϕ 2, ϕ µ∆v 2+sin+sin––

=  ρ
∂v 2

∂t
--------- v 2 J,° v J v J°v 2 J,+ + 

  ,

v 1 1, v 2 2,+ 0,=

ϕcos
2v 1 1,

4v 1 1,
2 v 1 2, v 2 1,+( )2+

---------------------------------------------------------.=

v 1°
ψ 2,° v 2° ψ 1,°

τ s L
Lψ
Kψ
-------- M

Mψ
Kψ
---------+ 

  µ∆∆ψ+ ρ∂∆ψ
∂t

-----------=

+ ρeJL ∆ψ J,° ψ L, ∆ψ J, ψ L,° ψ J, M° ψ L, M ψ J, Mψ L, M°+ + +( ),

L
∂2

∂x2
2

--------
∂2

∂x1
2

--------, M–
2∂2

∂x1∂x2
-----------------,= =

Kψ Lψ( )2 Mψ( )2+ .=

v I°

τ
ρgh
---------

τ L
Lψ
Kψ
-------- M

Mψ
Kψ
---------+ 

  ν∆∆ψ+
∂∆ψ
∂t

-----------,=

ν µ

ρ gh3
----------------.=
flows (τ = 0 and ν = 0), where

(18)

or the flows of Newtonian viscous fluid [10], where

(19)

In this paper, we consider only small perturbations of
kinematics near the point A in the figure, where the
curve T(U) specified by Eq. (4) is discontinuous. There-
fore, Eqs. (17)–(19) have only local meaning near the
undeformed state.

The question arises as to the character of perturba-
tions in a pair of parameters τ and ν in terms with the
higher derivatives in Eq. (17) with respect to Eq. (18)
and perturbation of τ in Eq. (17) with respect to
Eq. (19). It is known that Eq. (19) is a singularly per-
turbed biparabolic equation [11, 12] in the inviscid
limit ν → 0. In particular, since the small parameter ν
appears in the term with the higher derivative, two of
four branches of the solutions of Eq. (19) do not tend to
solutions of Eq. (18) for ν → 0 [13, 14]. In this case, the
numbers of boundary conditions necessary for the for-
mulation of the corresponding spectral problems differ
from each other by two. The mechanical meaning is
that only a single quantity (normal component of either
the velocity or stress vector) can be set at every point of
the boundary in a perfect fluid. At the same time, all
components of any of these vectors can be set in a vis-
cous fluid (in the plane case, these are two conditions at
each point of the boundary).

Similar to the case of a perfect fluid, in a medium
behaving at the initial time of flow (U → 0+) as a per-
fectly plastic body (ν = 0), the tangential components of
neither the velocity nor stress vector can be set. There-
fore, the number of boundary conditions for Eq. (18) is
equal to that for Eq. (17), where it is necessary to put
ν = 0. If ν > 0, the number of boundary conditions is the
same for Eqs. (19) and (17).

Therefore, it is natural to assume that the depen-
dence of solutions of Eq. (17) on τ is regular:

(20)

where ψ0 is the solution of Eq. (18) or Eq. (19) if ν = 0
or ν > 0, respectively. Substituting asymptotic expan-
sion (20) into Eq. (17) and equating the coefficients of

∂∆ψ
∂t

----------- 0=

ν∆∆ψ ∂∆ψ
∂t

-----------.=

ψ ψ0 τψ1 τ2ψ2 …,+ + +=
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τ powers, we obtain the sequence of inhomogeneous
linear equations for ψ1, ψ2, …

3. We consider separately the case where the function
F(U) near U = 0 cannot be represented as Eq. (2); i.e.,

(figure, curve 3) so that the hardening function has, for
example, the form

(20)

It is necessary to replace relation (8) between the incre-
ments δ  and δ  with the relation

(21)

and to replace the factor τs + µδU with τs + η(δU)γ

everywhere in parameterizations (11) and (13) of the
stress state.

Substituting Eq. (21) into Eq. (5), we obtain the fol-
lowing equations of motion in variations instead of
Eq. (12):

which, together with Eq. (6), close the set in the
region Ωf .

∂∆ψ1

∂t
------------- ν∆∆ψ1– L

Lψ0

Kψ0
----------- M

Mψ0

Kψ0
-----------,+=

∂∆ψ2

∂t
------------- ν∆∆ψ2–

=  L
Lψ1

Kψ0
-----------

Lψ0

Kψ0( )3
----------------- Lψ0Lψ1 Mψ0Mψ1+( )–

+ M
Mψ1

Kψ0
-----------

Mψ0

Kψ0( )3
----------------- Lψ0Lψ1 Mψ0Mψ1+( )– .

F U( )
U 0+→
lim 0, F U( )

U
-------------

U 0+→
lim ∞= =

F U( ) ηUγ, 0 γ 1, η 0.>< <=

s
˜

v
˜

δsij

2τ s

δU
-------δv ij

2η
δU( )1 γ–

--------------------δv ij+=

δp i, 2τ s

δv ij

δU
---------- δv( ) 

 
j,

2η
δv ij

δU( )1 γ–
-------------------- δv( ) 

 
j,

++–

=  ρ
∂δv i

∂t
------------ v i j,° δv j v j°δv i j,+ + 

  ,
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The inclusion of the hardening function in the form
of Eq. (20) in the plane problem does not lead to a sin-
gle compact operator equation of the type of Eq. (15)
with respect to the perturbation in the stream function.
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Factorization Method for Boundary Value Problems 
in Unbounded Domains
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The factorization method described in [1, 2] for
investigating boundary value problems for partial dif-
ferential equations is applied to boundary value prob-
lems in unbounded multiply connected domains.
Unbounded domains traditionally complicate analysis
of boundary value problems and are specified by the
conditions for the behavior of solutions at infinity. In
this work, we demonstrate that the factorization method
is applicable in such domains and, therefore, is univer-
sal. It is important that the factorization method pro-
vides the construction of regularized sets of integral
equations for boundary value problems for partial dif-
ferential equations with piecewise varying coefficients
in arbitrary domains with relief boundaries. Moreover,
the approach has the standard form independent of the
domain of the boundary value problem.

The selection of a single solution in an unbounded
domain that is determined by the requirement of radia-
tion or decrease in the solution, depending on the type
of the problem, is particularly simple in the factoriza-
tion method. Basic information concerning the applica-
tion of the factorization method in unbounded domains
is given and illustrated by an example. It has been
shown that particular cases of the boundary value prob-
lem under consideration, which were solved by other
methods, follow from the factorization method.

Numerous boundary value problems of the mechan-
ics of deformable solids, hydromechanics, mathemati-
cal physics, seismology, ecology, and other fields con-
sidered in layered domains with flat boundaries can be
investigated in domains with relief boundaries and arbi-
trary internal cavities and inclusions by the factoriza-
tion method.

We note that other, predominantly numerical, meth-
ods of analysis of boundary value problems in complex
domains only integrally take into account the effect of
certain parameters specifying the boundary value prob-
lem under consideration on the solution, in particular,
the effect of the form of the boundary of the domain of

Kuban State University, 
ul. Karla Libknekhta 149, Krasnodar, 350640 Russia
e-mail: babeshko@kubsu.ru
1028-3358/03/4810- $24.00 © 20594
the problem or certain coefficients of differential equa-
tions. In contrast, the factorization method can sepa-
rately trace their effects. In this respect, the factoriza-
tion method is not only a computational method, but
also a method for analysis in arbitrary domains, and is
similar to the method of the set of ordinary differential
equations with constant coefficients in the one-dimen-
sional case.

In this work, formulas for construction of solutions
of boundary value problems in both unbounded and
semibounded domains with arbitrary internal cavities
and relief boundaries are presented, and the problems
of selection of physically justified solutions are dis-
cussed.

1. We consider two types of unbounded domains
with smooth boundaries. The first type is the entire
space with excluded bounded cavities with smooth
boundaries. These domains are called unbounded. The
second type of domain with the relief boundary
includes sets that are embedded in any type of hyperbo-
loids, cylinder, cone, layer, or half-space. At least one
boundary of such domains generally extends unbound-
edly, while the internal zones can contain the cavities
described above. Such domains are called semi-
bounded. Thus, similar to [2], the unbounded multiply
connected domain Ω has the composite smooth bound-
ary Γ consisting of parts Γ1 with nonnegative curvature
and parts Γ2 with at least one negative principal curva-
ture.

In these domains, we formulate the boundary value
problem for a set of partial differential equations with
constant coefficients, which is specified by Eqs. (1)
and (2) in [2] with the same notation, but with addi-
tional conditions at infinity, which will be presented
below. Boundary conditions satisfy the complementar-
ity condition for elliptic systems [3]. The boundary
value problem is analyzed in spaces of slowly increas-
ing generalized functions Hs(Ω) described in [1].

To apply the approach that was developed in [1, 2]
and is based on the methods of manifold geometry to
the case of an unbounded domain, it is necessary to
compactify this domain. This can be achieved by
known procedures using either the homeomorphism of
the 3D space to a 3D sphere complemented by an infi-
003 MAIK “Nauka/Interperiodica”
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nitely distant point or the introduction of the vicinity of
the infinitely distant point. The second variant is prefer-
able for practical applications, and we introduce the
vicinity of the infinitely distant point that is described
by the exterior of spheres whose radii tend to infinity.
The infinitely distant point is internal and is the bound-
ary for the first and second types of domains, respec-
tively.

In this case, introducing topology generated by the
Euclidean space, we consider the domain as an oriented
chain with an oriented boundary.

Since the domain of the boundary value problem is
unbounded, it is necessary to comment on the applica-
tion of the factorization method in such domains. First,
we consider the class of problems where the determi-
nant Q(α) of all possible unitary transformations of

space has only complex zeros  in the notation
from [2]. For simplicity, we assume that the number of

zeros  of Q(α) in the upper and lower half-planes
are equal to each other. We seek the solution of this
problem that belongs to Hs(Ω) and decreases at infinity.

The case where there are real zeros among ,
which is characteristic for problems of steady oscilla-
tions in unbounded media, will be discussed separately.
To analyze the boundary value problem in a first-type
domain, we introduce an exterior vector form ω(α, x)
whose components are specified as

(1)

According to the above discussion, the vicinities of
the infinitely distant point are introduced as the parts of
the domain Ω that are extended to infinity and are cut
by the large-radius sphere. In the constructed bounded
domain, we apply the Stokes formula and then let the
radius of the sphere go to infinity. Solutions decrease on
the parts of this sphere, and this boundary disappears.
We recall that, similar to [1, 2], the exterior form con-
tains the relations describing the specified boundary
conditions, as well as the functions that must be deter-
mined or their normal derivatives with boundary val-

α3ν
±

α3ν
±

α3
±

ωm α x,( ) Rmdx1 dx2∧=

+ Qmdx1 dx3 Pmdx2 dx3,∧+∧

Pm e
i α x,〈 〉

amr11 ∂x1ϕ r iα1ϕ r )–([
r

∑=

– amr12iα2ϕ r amr13∂x3ϕ r bmr1ϕ r ] ,+ +

Qm e
i α x,〈 〉

[amr22 ∂x2ϕ r iα2ϕ r–( )
r

∑–=

– amr23iα3ϕ r amr12∂x1ϕ r bmr2ϕ r ] ,+ +

Rm e
i α x,〈 〉

[am33 ∂x3ϕ r iα3ϕ r–( )
r

∑=

– amr13iα1ϕ r amr23iα2ϕ r bmr3ϕ r ] .+–
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ues. Assuming that the vector function ϕ satisfies the
set of differential equations (1) from [2], we arrive at
the expression

(2)

2. Taking into account that Ω is exterior with respect
to the closed surface Γ, we apply generalized factoriza-
tion to separate classes of functions with the support in

. Using notation from [1, 2] and omitting the manip-
ulations presented in those works, we can represent
Eqs. (5) in the form

(3)

where γ3 = (γ1, γ2) [Im (γ1, γ2) > 0] and γ3 =

(γ1, γ2) are the zero sets of the function Q0(γ1, γ2, γ3)
Q0(γ1, γ2, –γ3) in the new coordinates

and

(4)

according to the application procedure of generalized
factorization [2]. Further investigations of the set of
integral equations (3) repeat the approach developed
in [1, 2], because the surface Γ is bounded, i.e., compact.

We now analyze the case of steady harmonic oscil-
lations of an unbounded medium. It is known that, for
the solution to be single, it must satisfy the radiation
condition in a certain form. Among these forms are

ϕ x( ) 1
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(i) the Sommerfeld condition that the solution satisfies
the limiting differential relation at infinity, (ii) the Igna-
tovskiœ principle of limiting absorption that presents the
transition to the system without absorption through the
system with artificial internal friction, (iii) the limiting-
amplitude principle, i.e., the consideration of steady
oscillations as the time-limiting solution of the Cauchy
problem, and (iv) the Mandelstam energy-emission
principle. For an example of dynamic mixed problems
for an inhomogeneous strip, all these conditions were
analyzed in detail in [4–6], where it was found that the
Ignatovskiœ and Mandelstam principles are equivalent
to each other for all anomalous cases associated with
the propagation of waves in complex media and
domains. Therefore, the factorization method allows
extremely simple selection of single solutions similarly
to the one-dimensional case. Indeed, in this case, the
zeros of the determinant Q(α) also lie on the real axis [4].

Attributing these zeros  and  to the upper and
lower half-planes if

respectively, and using Eqs. (8) and (9) form [2], we
automatically satisfy the required emission conditions.
For many-valued functions, the calculation of zeros of
the dispersion (characteristic) equation requires the
choice of necessary branches. Since some problems
include physically justified anomalous situations,
where real and imaginary parts have opposite signs, it
is necessary to perturb the original set of differential
equations by setting the terms responsible for internal

friction to zero. As a result, all zeros  will be in the
necessary half-planes. Therefore, the sets of integral
equations will be correctly derived by the factorization
method, and radiation conditions at infinity will be sat-
isfied in the limiting case.

The construction of the set of integral equations (8)
from [2] is specific for semibounded domains. Separat-
ing the vicinity of the infinitely distant point as
described above, we repeat the manipulations preced-
ing the derivation of the set. We arrive at boundaries
extended to infinity. At these boundaries, we separate
parts cut by large-radius spheres and give them local
coordinate systems. Repeating manipulations from the
work indicated above, including those in the vicinities
of the infinitely distant point, we conclude that the
methods of classical or generalized factorization lead-
ing to the mentioned sets are applicable.

3. Example. We consider a boundary value problem
for the differential equation

(A11∂2x1 + A22∂2x2 + Α33∂2x3 + Α0)ϕ0 = 0,

α3k
+ α3k

–

Reα2K
+

0, Imα3K
+

0,≥≥
∞– α1 α2 ∞,≤,≤

Reα3 K
–

0, Imα3 K
–

0,≤≤

α3K
±

specified in the Cartesian coordinate system in a cylin-
drical domain with unbounded wedge-shaped section

|x1| ≤ ∞, Γ0(x2) ≤ x3 ≤ 0, Γ0(–c) = 0.

Here, the smooth curve

that lies in the upper half-plane is concave and
approaches the asymptotic function

from below. For simplicity, we consider that one of the
natural boundary conditions for the function or its
derivative is specified at the boundary.

This boundary value problem corresponds to out-of-
plane vibrations of an anisotropic body. The curve Γ0
forms the lower relief base of the domain, which trans-
forms to the straight line L0 under upward deformation.
After the application of the Fourier transform in x1 , the
boundary value problem becomes two-dimensional,

(5)

and the corresponding exterior form is specified by the
relations

in the original coordinate system. The absence of zeros
in Eq. (5) is associated with renaming in the Fourier
transform.

Performing manipulations described in [1, 2] and
decomposing unity with local, identically oriented,
Cartesian coordinate systems with the ordinate normal
to the boundary of the domain, we arrive at the set of
integral equations

(6)

x3 Γ0 x2( ) x2 c+( )– σ, x2 c, σ 0,>–≥tan≤=

L0: x3 x2 c+( ) σtan+ 0, x2 ∞→=
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x2 A33∂

2
x3 A+ +( )ϕ 0=
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R A33e
α x,〈 〉 ∂x3 iα3–( )ϕ ,=
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R x2d
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∞
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k
∑
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∫+

+ α2A22Sψ ) }ϕ ψ i x2ψ α3Sψ α2Cψ–( ){exp

– Hψα3 hψα2– } dx2ψ 0,=

A33 ∂x3 i α3ψCψ α2ψSψ–( )+[ ]ϕ i Hψ α2ψSψ({exp

c–

∞

∫
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Here,  are acute angles between the angle ox2 and
tangents that are constructed at the origins of the local
coordinate systems to the elements of the unity decom-
position of the curve Γ0 and σ is the acute angle
between the asymptotic line L0 and ox2 . The most right-
handed element of the decomposition of this curve is
semi-infinite and is the vicinity of the semi-infinite
point. Relations show that the ray (–c, ∞) is one of the
decomposition elements. It is one more vicinity of the
infinitely distant point for which the original coordinate
system is taken as the local coordinate system. Here,
x2ψoψx3ψ are local right-hand Cartesian coordinate sys-
tems with the origin at oψ(hψ, Hψ) (in the x2ox3 system)
and outer normal oψx3ψ. As was mentioned above,
boundary values of either functions or normal deriva-
tives are unknown in the set of integral equations. As
was described in [1], the set is regularized by sequen-
tially inverting the Fourier transforms of unknown
functions with respect to the parameters α2 or α2ψ in the
local coordinate systems. Deforming Γ0 to L0, σψ → σ,
we arrive at the problem in the wedge-shaped domain,
for which set (6) was derived by other methods.

Taking hψ → 0, Hψ → –c( ) = const, σ → 0, and
c → ∞ in this set, we obtain the problem of the out-of-
plane vibration of an anisotropic layer. Setting hψ = 0,
Hψ = 0, c = 0, and σ → π in this system, we arrive at this
problem for a half-space. This example, where classical
factorization was applied, illustrates the above conclu-
sion that it is convenient to deform the boundary con-
tour and to simultaneously trace the role of each zero of
the characteristic (or dispersion for oscillation prob-
lems in unbounded domains) equation, which directly
presents the properties of the coefficients of the original
differential equation of the boundary value problem.

However, we emphasize that contours must be
deformed carefully in this particular case in view of the
application of classical factorization rather than gener-

– hψ α2ψCψ α3ψSψ+( ) } dx2ψ 0,=

Cψ σψcos , Sψ σψ,sin= =

σψ σ, σψ> π ψ– ek∑, 1.= =

σψ

σtan
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alized factorization. Indeed, the entire contour can be
deformed to a parabola, branch of a hyperbola, or sim-
ilar infinitely expanded curve (with the corresponding
transformations of exterior forms, vicinities, and zeros

 under deformation) with the condition that contour
points with negative curvature must not arise. Other-
wise, the form of the equations somewhat changes (see
Note 2 in [1]).
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