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Nowadays, the basic direction in the development of
semiconductor materials science is the study of elec-
tron processes at interfaces. For the vast class of low-
resistivity amorphous polymeric materials with a sys-
tem of conjugate bonds of the net structure, the contact
phenomena are weakly investigated. For certain poly-
crystalline inorganic semiconductors, surface layers of
crystallites form natural double heterostructures in their
contact zones [1, 2]. A possibility of similar behavior of
a system of intergranular barriers in pressed samples of
polymeric semiconductors is indicated by an unusual
capacity–voltage characteristic of polyacenequinone
(PAQ) [3]. Methods of synthesis and properties of PAQ
obtained on the basis of pyrene and pyromellitic dian-
hydride are described in [4].

Based on analysis of current–voltage characteristics
and capacity–voltage characteristics, in the present
paper we consider features of screening weak external
electric fields at the point of metal–PAQ contact.

A typical capacity–voltage characteristic of the Al–
PAQ–Ag structure at different frequencies is shown in
Fig. 1 in C–V coordinates. Key to this characteristic is
the symmetry of C–V curves with respect to the direc-
tion of a constant external electric field. This fact deter-
mines the principal difference of this characteristic
from the capacity–voltage characteristics intrinsic to
rectifying metal–semiconductor contacts with the
Schottky barrier. This is explained by the fact that for
these contacts, the barrier capacitance corresponds only
to reverse-biased diodes [5]. Silver is used as a rear con-
tact because the current–voltage characteristics of PAQ
with silver and platinum electrodes obey the Ohm law
up to the region 1 of the prebreakdown nonlinearity
(Fig. 2, curve 1). This allows us to associate the sym-
metry of the capacity–voltage characteristic (Fig. 1)
with only the Al–PAQ contact. The comparison of
curves 2 and 3 in Fig. 3 testifies to the fact that the cur-
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rent–voltage characteristics of the Sn–PAQ–Ag- and
Al–PAQ–Ag-structures differ in only the magnitude
of the contact resistance at low-voltage ohmic seg-
ments II. In contrast to the Al–PAQ contact [3], the
capacity–voltage characteristic of the Sn–PAQ contact
has no clearly pronounced linear segment in C–2–V
coordinates and therefore is not discussed in this paper.
All current–voltage characteristics demonstrated in
Fig. 3 are symmetric as capacity–voltage characteris-
tics. In the case of changing the polarity, only slight dif-
ferences in the slope of power segments of the current–
voltage characteristics are observed. The general view of
the current–voltage characteristics (Fig. 2, curve 2) corre-
sponds to the injection-contact phenomena concept [6].
This is implied by the existence of the initial resistivity
segment II at low voltages and quadratic dependence in
the segment III, which is characteristic of regimes of cur-
rents limited by the space charge (SC) [6, 7]. However,
for V ≥ 2 V, the current–voltage characteristic is inde-
pendent of the electrode material (including Ag form-
ing the electric contact with PAQ (Fig. 3, curves 1–3)).
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Fig. 1. Capacity–voltage characteristics of the Al–PAQ–Ag
system at 20°C for the frequencies: (1 and 1') 0.4,
(2 and 2') 1, and (3 and 3') 4 kHz. The PAQ synthesis dura-
tion is 24 h; the sample thickness is 540 µm; and the diam-
eter of electrodes is 1 cm.
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This implies that the current–voltage characteristic for
the Al–PAQ contact in the segment IV (Fig. 3, curve 3)
depends upon processes in the bulk of a pressed sam-
ple, whereas the regime of currents limited by the space
charge is realized not in the polymeric material but in
the intermediate high-resistivity layer separating Al and
PAQ. The allowance for such intermediate (transition)
layers represents an obligatory element in modern
models of injection-contact phenomena [6]. However,
the nature of these layers is different. They can be asso-
ciated, in particular, with oxide films on the surface of
a metal or a semiconductor [6]. In the experimental sit-
uation under discussion (Fig. 3, curves 2, 3), the pres-
ence of aluminum oxide or tin oxide is probably
revealed. This is confirmed by the results of special test
experiments. The current–voltage characteristics
shown in Fig. 3 demonstrate the practical realization of
the so-called “dirty contacts” method. This method was
recommended in [7] for checking formation conditions
for the case of ohmic contact with organic semicon-
ductors.

However, the reaction of this “dirty contact” to the
alternating electric field in conditions of bias voltage is
similar to the behavior of certain specially produced
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Fig. 2. Current–voltage characteristics for two PAQ samples
with different electrodes at 20°C: (1) Pt–PAQ–Pt, the sam-
ple thickness is 298 µm and the diameter of electrodes is
4.5 mm; (2) Al–PAQ–Pt, the sample thickness is 180 µm,
and the diameter of electrodes is 9 mm.
chemically and technologically complicated inorganic
heterostructures [5, 8, 9]. At present, properties of these
objects are insufficiently understood. Nevertheless,
their investigation opens new possibilities in both fun-
damental science and the application of fundamentally
new instrumentation [9, 10].

Indeed, in an equivalent scheme, the symmetric
capacity–voltage characteristic (Fig. 1) corresponds not
to the usual Schottky barrier characteristic of metal–
semiconductor contacts [5] but to two Schottky diodes
switched in towards one another [5, 8, 9]. This indicates
a specific structure of the potential relief at the PAQ–
aluminum-oxide heteroboundary intrinsic to isotypical
heterostructures with the double depletion [5, 8, 9].
However, in these structures, depleted layers are local-
ized at both sides of the heteroboundary [5, 8, 10]. In
this case, the slope of the linear (in the C–2–V coordi-
nates) dependence, as a rule, is different. In the frame-
work of the well-known model of barrier capacitance
[11], this fact is unambiguously determined by the level
of the doping of contacting semiconductors [8]. At the
same time, as is seen in Fig. 4 for the case of PAQ, the
slope of the capacity–voltage characteristic in the C–2–
V coordinates is the same for both polarities of the bias

Fig. 3. Effect of the electrode material on the PAQ cur-
rent–voltage characteristics at 20°C. The sample is the
same as in Fig. 1: (1) Ag–PAQ–Ag; (2) Sn–PAQ–Ag; and
(3) Al–PAQ–Ag.
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voltage. In other words, this slope is independent of the
fact of which bias (direct or reverse) is applied to each
of the two Schottky diodes in the double-depletion
model.

According to our data for PAQ [3], the concentration
Nion of ionized centers in the space charge region at a
synthesis duration of 24 h turned out close to the value

 = 2 × 1016 cm–3 of the Hall concentration of charge
carriers. (The PAQ samples under study purposefully
were not doped.) As far as we know from [12], there
exist no commonly used methods for analysis of capac-
itive measurements in disordered semiconductors. The
results of measurements of the Hall constant in condi-
tions of the hopping conduction [13] and in granular
media [14] also deserve a particular analysis. Neverthe-
less, the observed equality Nion ≈  is apparently non-
random and reveals the general nature of processes
determining the Hall emf and screening the electric
field in PAQ. Moreover, a decrease in the value of Nion
by two orders of magnitude, while reducing the synthe-
sis duration from 24 [3] to 5 h (Fig. 4), indicates the
probable sensitivity of the capacity–voltage character-
istic method to conditions of the PAQ synthesis.

We can explain the totality of these experimental
facts only under the assumption that the system of deep
energy levels, which functionally is equivalent to the
double Schottky diode, is associated with states local-
ized only at one side of the Al2O3–PAQ heterobound-
ary, i.e., in the space charge region of the polymer. In
this case, for PAQ pressed samples, the contribution of
the variation in the occupancy of these deep layers to
the barrier capacitance of the Al–PAQ contact must rep-
resent the collective response of the system of elemen-
tary double Schottky diodes to the action of the alter-
nating electric field. These diodes are kinetically stable
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Fig. 4. Current–voltage characteristic for the Al–PAQ–Ag
system in C–2–V coordinates at 20°C of PAQ temperature.
The synthesis duration is 5 h; the frequency is 0.4 kHz; the
sample thickness is 570 µm, the diameter of electrodes is
9 mm; and Nion = 1.1 × 10–14 cm–3.
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isotypical heterostructures with local double depletion
spontaneously arising in the PAQ granule contact
zones. Evidently, this is possible only under the condi-
tion of the existence of a correlation in surface layers of
the polymer. This is expected from the results of the
theoretical study [15] if we take into account the lay-
ered structure of graphite-like fragments of the overmo-
lecular PAQ structure [4]. It seems that for PAQ the
near-electrode space charge zone represents a strongly
correlated system of double self-consistent potential
wells connected to intergranular barriers.
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The problem of polymorphism [1] is one of the cen-
tral problems in physics of condensed matter. In most
cases, the polymorphism of a chemical element, in par-
ticular of thermal and baric origin, is predominantly
determined by its crystal-lattice dynamics (see [1–4]).

In the present paper, which is based on the atomic
statistical theory, we quantitatively analyze conditions
related to the polymorphism of the chemical elements
Ca and Sr for the first time. A method is proposed for
determining the atomic screening coefficient for an
atom that forms bonds with another atom of a given
coordination sphere using atoms of preceding coordi-
nation spheres. The calculated values for both equilib-
rium temperatures of polymorphic transitions and ther-
modynamic characteristics of polymorphic modifica-
tions turn out to be consistent with available
experimental data.

While considering polymorphism of Ca and Sr, we
use harmonic approximation and restrict our analysis
by clarifying an effect of the temperature polymor-
phism on the coupling energy U(δ) and phonon spectra
of Ca and Sr using Helmholtz free energy F and its
derivatives.

Table 1 shows the electron structures of atoms and
basic thermodynamic properties of corresponding
chemical elements.

The energy U0 of interatomic bonds at temperature
T ≈ 0 for quiescent atoms is mainly determined by the
distribution function of electron density ρ of external
bonding electrons in the crystal lattice. We now use the
approximation of the simplified variant of the Thomas–
Fermi–Dirac–Gambös atomic statistical theory for a
spherical atom [5–8]. In this approximation, the energy
u(δ) of a single bond between quiescent atoms situated
at the distance δ one from the other is determined by the
difference between the exchange energy ua and a half of

the kinetic energy uk of bonding electrons as well as
1
2
---
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by the correlation energies uω and Coulomb interaction
energy uC. For condensed phases formed by atoms of
the same kind, the estimate of the coupling energy can
be restricted to sufficient accuracy if we allow for only
uk, ua, and, partly, for uω. All these components are depen-
dent on the distribution of the electron density ρ [5]. In
the accepted approximation, we omit the electrostatic
component of the interaction energy, which is inherent
in systems composed of the same atoms. We also omit
the variation of the electron density in the process of
crystal formation compared to an isolated atom. The
kinetic energy of bonding electrons is proportional to
ρ5/3, whereas according to Dirac, the exchange energy
is proportional to ρ4/3.

At the distance equal to half of the bond length δ/2
between atoms A and B of the same kind, the contribu-
tions of their electron densities  and  are

equal, i.e.,  =  = ρ. Correspondingly, the dif-
ference in volume densities of a half of the kinetic

energy  and of the exchange energy  at a

given point of the plane normal to the line connecting
the atoms is (at the midpoint of this length)

or

(1)

Here, κk = 2.871e2a0 and κa = 0.7386e2 are constants of
the atomic statistical theory.

The density distribution of electron gas for external
bonding electrons in a spherical atom can be approxi-
mated as usual by the first term of expansion in the
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Table 1.  Atomic mass, electron structure of an atom, atomization energy, type of the crystal structure, characteristic temper-
ature θ, entropy S, and temperatures of polymorphic transitions Tk for chemical elements Ca and Sr
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Ca 20 40.078 [Ar] 4S2 1.690 A1 5.5884 7.4688 178.2 0.1355
573

723

220 41.63 216.6

A2 4.48 7.3540

A3 3.97, 6.49 7.5047

Sr 38 55.847 [Kr] 5S2 1.836 A1 6.0849 8.132 164.4 0.125
506

813

129 52.3 142.5

A2 4.32, 7.06 8.185

A3 4.85 7.94
Gauss function ρ = A , where r is the distance
counted off from the center of the atom and γ is the
semiempiric multiplier connected to the reciprocal
value of the averaged radius squared of external-elec-
tron orbitals.

The normalization condition for the number N of
electrons forming the bonds, the magnitude of the pre-
exponential multiplier A is

(2)

We now write out the volume energy density for the
difference of the kinetic and exchange energies of the
electron gas at a certain point of the plane normal to the
line connecting the atoms A and B. At the midpoint of
the line, this energy density is written out as

(3)

In the case of an axisymmetric shape of the bonding
electron cloud, the distance squared r2 from the center
of the atom to the given point of the plane normal to the
bond line at the midpoint of its length is

r2 =  + y2,

where y is the distance from the bonding line to the
given point. The passage from the volume energy den-
sity to the linear energy density u along the bond at its
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midpoint can be written out in the form

(4)

Assuming the bonding electron cloud to be spindle-
shaped and approximating the linear bonding-energy
density by a function of the form proposed in [9], after
integrating along the bond line, we find the energy u(δ)
of the pair bond. In this case, the role of the correlation
component uω is taken into account by the coefficient

 = 0.8349e2,  = 1.065. Thus, we obtain

(5)

The quantities γ and N may be considered as variational
parameters.

Summing the pair coupling energy for an atom
placed into the origin of coordinates with all interacting
atoms of all coordination spheres i taken into account,
we arrive at the total coupling energy corresponding to
one atom:

(6)

where l is a correcting coefficient.
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The effective coordination number  of the ith
coordination sphere is smaller than the true coordina-
tion number zi  since a portion of the atoms of this
sphere are screened by atoms of preceding spheres:

(7)

Here, ξi is the coefficient for screening of atoms of the
ith coordination sphere by atoms of all preceding
(i − 1)th, (i – 2)th, …, (i – k)th spheres.

The value of the screening coefficient ξi is taken to
be equal to the ratio of the portion of the surface area of
the ith sphere unoccupied by the summary surface of
projections of atoms from preceding spheres to the total
surface area Fi of the ith sphere. The area of projections
of atoms of preceding (i – 1)th, (i – 2)th, …, (i – k)th
spheres onto the ith surface is determined by the sum of

zeffi

zeffi
ziξ i.=

Table 2.  Values of coefficients  =  taken in the cal-

culations for various types of structure and for the coordina-
tion spheres i = I–VII

Type of 
structure

I II III IV V VI VII

A1 1 2 3 4 5 6 7

A2 1 1.33 2.66 3.66 4 5.33 6.33

A3 1 2 2.66 3 3.66 4 5

Ki
2 ri

r1
---- 

  2

Ki
2

Table 3.  De Launay force constants αi/βi taken in the calcu-
lations, coefficients γ, and numbers N of bonding electrons
for chemical elements Ca and Sr
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Ca A1 0.222 2.4818

A2 0.220 2.5153

A3 0.212 2.6672

Sr A1 0.225 2.5582

A2 0.226 2.4949

A3 0.216 0.8286
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products of the coordination number zi – k by the surface
area Si – k of the atom projection:

(8)

The summation is performed over all preceding i – k
spheres. We assume in this case that the area of the pro-
jection of an atom of the (i – k)th sphere onto the ith
sphere is

where σ is the area of the principal cross section of an

atom and  = . The ratio of the surface area

Fi − k of the (i – k)th sphere to the surface area F1 of the
first sphere corresponds to the ratio of the radii squared
of these spheres:

Then,

(9)

where η determines both the rate of a decrease in the
contribution of coordination spheres with increasing
their number and the probability of covering the projec-

tions of atoms of preceding spheres. The ratio  is a

constant lying between 0.025 and 0.0625 for various
structures. In what follows, we conventionally set ηS0 =
0.025 taking into account seven spheres.

The interatomic interaction energy U(δ) as a func-
tion of the interatomic distance δ between atoms at rest
is calculated by formula (6) for structures A1, A2, and
A3. These calculations are based on the low-tempera-
ture modification for which γ and N corresponding to
known atomization energy U0(δ) and interatomic dis-
tance δ0 are calculated. For high-temperature modifica-
tions, γ and N are determined with inclusion of the
polymorphic transition temperatures Tk. Tables 1–3
present the input data for calculations.

Figure 1 shows U(δ) curves for various modifica-
tions of Ca and Sr. The atomization energies of atoms
at rest are determined from minima of U0(δ). Using
functions U(δ), the de Launay force constants [10, 11]
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for modifications k = 1, 2, and 3 are calculated at points
corresponding to the radii of four coordination spheres
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i of the jth element. These constants used for calcula-
tions of phonon spectra are presented in Table 3.

Phonon spectra are calculated by the Born–Kar-
man–Blackman method based on solving the secular
equation with the Born–Karman dynamical matrix

(11)

Sampling of calculated points from 1/48 of the
Brillouin zone is carried out by the Monte Carlo
method [12]. Figure 2 shows the phonon spectra calcu-
lated for modifications of Ca and Sr by the computer
program developed by T.D. Sokolovskiœ with intro-
duced correcting coefficients.

Using the calculated phonon spectra with the fre-
quency density distribution g(ν), we have derived the
temperature dependences for the internal energy

heat capacity

D q( ) ω2m– 0.=

UT U U0– g ν( )ε ν,d

0

νm

∫= =

CV g ν( ) ∂ε
∂T
------ ν , εd∫ hν

ehν /kT 1–
---------------------

hν
2

------,+= =
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Fig. 1. Energy U(δ) of interatomic bonds as a function of
the distance δ between closest atoms in modifications of
chemical elements with the indicated types of structure. Ca:
(1) A1; (2) A2; (3) A3. Sr: (1) A1; (2) A3; (3) A2.
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and free energy

The characteristic temperatures were determined

according to the values of CV for the ratios  corre-

sponding to the Debye values, as well as according to
the value of the entropy at T = 300 K.

Figure 3 shows curves of temperature dependences
CV(T) for polymorphic modifications of the A1, A2, and
A3 structures for Ca and Sr.

The temperatures TI, II and TII, III of polymorphic
transitions for the modifications I and II and II and III,
respectively, were found as intersection points FI – FII =
0 and FII – FIII = 0 of free-energy curves for these mod-
ifications (Fig. 4). The differences in the temperature-
dependent parts of the free energies FT for the low-tem-
perature and high-temperature modifications at T = Tk
correspond to the difference in the atomization energies
for these modifications at T = 0. In this case, the differ-
ence in zero energies of atomic oscillations is negligi-
bly low.

The chemical elements Ca and Sr have similar elec-
tron structures of their atoms with filled-in 4S2 and 5S2
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Fig. 2. Phonon spectra for modifications of chemical ele-
ments: Ca: (1) A1; (2) A2; (3) A3. Sr: (1) A1; (2) A3; (3) A2.
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orbitals, respectively. The cores of these orbitals have
structures of Ar and Kr, respectively. In spite of the sim-
ilarity of external orbitals of Ca and Sr, they differ in the
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Fig. 3. Temperature dependence of the heat capacity for
modifications of chemical elements: Ca: (1) A1; (2) A2;
(3) A3. Sr: (1) A1; (2) A3; (3) A2.
sequence of the modification structures as functions of
temperatures: A1 ↔ A2 ↔ A3 for Ca and A1 ↔ A3 ↔
A2 for Sr. In this case, there exists a slight difference in
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Fig. 4. Temperature dependence of the free energies F(T)
for modifications of chemical elements: Ca: (1) A1; (2) A2;
(3) A3. Sr: (1) A1; (2) A3; (3) A2.
Table 4.  Calculated atomization energies U0 corresponding to the closest interatomic distances δ0; internal energy UT and
entropy ST at T = Tk; temperatures of polymorphic transitions; Debye characteristic temperatures θ calculated according to
Cv at 100, 200, and 300 K and according to the value ST = 300 K for modifications of chemical elements Ca and Sr
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e U0,
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UT at
T = Tk,
kJ/mol

ST, J/(mol K)

Tk, K

θ, K

T = Tk T = 300 K at 100 K at 200 K at 300 K according 
to S300

Ca A1 –0.1355 7.47 12.1896 0.0565 0.0408
568

727

222 225 225 225

A2 –0.1352 7.19 0.0415 220 223.5 224 219

A3 –0.1350 8.1 16.1257 0.0650 0.0419 227.5 232.5 235 216

Sr A1 –0.1250 8.03 10.9915 0.0608 0.0481
501

809

171.5 174 175 168

A2 –0.1230 8.1 0.0538 147 149 150.5 135

A3 –0.1220 8.17 19.0030 0.0802 0.0555 133.5 135.5 141 125

Note: For modifications A2 (Ca) and A3 (Sr) two values of UT and ST are given. For Ca, the values above and under the lines correspond
to the temperatures of the A1 ↔ A2 and A2 ↔ A3 transitions, respectively. For Sr, the values above and under the lines correspond
to the temperatures of the A1 ↔ A3 and A3 ↔ A2 transitions, respectively.
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the ratio  for the A3 modification. This fact can be

associated with a difference in the polarizability of the
atoms and sizes of their cores.

In Table 4, the values of a number of parameters cal-
culated in the present paper are listed. They are atomi-
zation energies U0 for polymorphic modifications of Ca
and Sr, the closest interatomic distances δ0 in crystal
lattices, temperatures Tk, and energies ∆UT of transi-
tions, as well as characteristic temperatures θ(T).

The temperatures of polymorphic transitions and
thermodynamic characteristics of modifications of
these elements, which were obtained in the calcula-
tions, are consistent with available experimental data.
Questions associated with estimating the quantity γ and
its comparison with the radii of orbitals corresponding
to external atomic electrons deserve detailed separate
studies.

The methods of estimating screening coefficients
for atomic electrons, while forming interatomic bonds
in crystals turned out rather efficient, nevertheless, they
need refinement. Analysis of the polymorphism of
chemical elements (with Ca and Sr as examples), with
application of the methods based on the statistical
atomic theory, testifies to their high efficiency and, at
the same time, to the expediency of their further devel-
opment.
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In this paper, we show that allowance for properties
of the Hubbard operator algebra leads to the appearance
of a singular (at ω = 0) component in the total spectral
intensity of the anomalous correlation function of
superconductors that possess the electron pairing
mechanism. In this case, the spectral theorem acquires
the form of a singular integral equation. Taking these
features into account, we can eliminate previously
claimed forbidding of realization of the superconduct-
ing phase with the S-type symmetry of the order para-
meter.

1. While constructing a theory of high-temperature
superconductors which is based on the electron pairing
mechanism, the two following methods are most
widely employed. The first approach uses the diagram
technique for Hubbard operators [1, 2]. The second one
is based on the formalism of irreversible retarded two-
time Green’s functions [3]. Previously, the scattering
amplitude calculated for the Hubbard model [4] in the
regime of strong electron correlations [1] was analyzed
in the paramagnetic phase. It was shown that in the
Cooper channel, this amplitude has a singularity corre-
sponding to the transition into the superconducting
phase (Zaœtsev mechanism) [2]. While analyzing this
phase on the basis of retarded Green’s functions, the
spectral theorem [5] was used, which made it possible
to obtain self-consistency equations for calculating nor-
mal and anomalous average values. It turned out that at

f = g, the anomalous average values , (Xg
0σXf

0σ〈 〉 Xg
0σ
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and  are Hubbard operators [6]) calculated accord-
ing to this rule for the superconducting phase with the
S-type symmetry of the order parameter do not satisfy

the evident requirement  = 0 [3]. This viola-
tion of the sum rule has constituted the statement on
forbidding the superconducting state of the S-type.

We now show that the origin of this forbidding is
exclusively associated with ignoring the singular (at
ω = 0) component of the spectral intensity of the anom-

alous correlation function . With this
statement taken into account, we can satisfy necessary
requirements for anomalous correlators in limiting
cases without any variation of the form of the previ-
ously obtained self-consistency equations for the super-
conducting phase. The approach developed allows us to
overcome problems that arise when describing the
superconducting phase with the S-type symmetry of the
order parameter.

2. Before analyzing features of spectral representa-

tions for the correlation functions , we
pay attention to the fundamental distinction between
the anomalous Green’s function in the BCS theory and
the anomalous Green’s function in the theory of high-
temperature superconductivity based on the electron
pairing mechanism. The anomalous Green’s function
constructed on usual Fermi operators of secondary
quantization

is zero when t = t' + δ, δ → +0. This is associated with
the anti-commutativity of Fermi production operators
at coinciding times. At the same time, the time-average

values 〈 (t) (t)〉 and 〈 (t) (t)〉 in the supercon-
ducting phase can be nonzero in their own right (and
opposite in their signs) even at f = g:

Xf
0σ

Xf
0σXf

0σ〈 〉

Xg
0σ t'( )Xf

0σ t( )〈 〉

Xg
0σ t'( )Xf

0σ t( )〈 〉

Fσσ ft; gt'( ) iθ t t'–( ) afσ
+ t( ) agσ

+ t'( ),{ }〈 〉–=

afσ
+ agσ

+ agσ
+ afσ

+

afσ
+ afσ

+〈 〉 η σ( ) Xf
20〈 〉 , afσ
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20〈 〉 ,==

η σ( ) 2σ.=
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Another situation takes place for the anomalous
Green’s function constructed on Hubbard operators,

(1)

In this case, for t → t' + 0, the average values 

and  entering into the definition of the
Green’s function identically vanish as long as the site
indices turn out to be equal. It is important that such a
situation occurs not by virtue of features of a physical
system but as a result of the algebra of the Hubbard
operator multiplication. The independence of this fact
of particular physical conditions makes it possible to
explicitly take it into account at the spectral-representa-
tion level.

Keeping in mind this feature, we can write out the

spectral intensity (ω) in the spectral representation

(2)

as

(3)

This form ensures the elimination of the right-hand side
in expression (2) at t = t' + δ, δ → +0 as far as f = g and
provides the basic distinction of the introduced spectral
representation form that usually is applied in the theory
of two-time temperature Green’s functions [5].

We now on the basis of representation (2) are able
construct the spectral representation of the anomalous

correlation function 〈 (t), (t')〉. In this case, using
the property of cyclic transpositivity of operators under
the trace sign, we obtain from representation (2)

(4)

(5)

It is seen that also in this case, for f = g and t → t' +0,
as it must, the right-hand side vanishes, and

 = 0.

Applying spectral representations (2) and (4), we
find the expression for the average value of the anti-

Xf
σ0 t( ) Xg
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σσ δ ω( )δfg ω1Jgf
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σ0 Xg
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× Jgf
σσ ω( ) βω( )exp δ ω( )δfgSfg

σσ–{ } ,

Sfg
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σσ ω1( ) βω1( ) iω1δ–( ),expexpd∫=

β 1
T
---, δ +0.→=

Xf
σ0 Xf

σ0〈 〉
DOKLADY PHYSICS      Vol. 48      No. 11      2003
commutator entering into the definition of the anoma-
lous Green’s function:

(6)

where

(7)

From definition (1) with allowance for (6), we find
the Fourier transform of the anomalous Green’s func-
tion

(8)

Hence in this case, the spectral theorem [5] acquires the

form of the integral equation with respect to (ω)

(9)

It is easy to see that the solution to this equation can be
written out in the form

(10)

where

(11)

and  is an arbitrary constant. When deriving (10),
we took into account that the equality

(12)

which is a part of more generally evident relation

(13)

takes place.

Xf
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The ambiguity of the quantity  is inessential

because the total spectral intensity (ω) turns out to be

independent of . Indeed, substituting solution (10)
into definition (3), we arrive at

(14)

In view of this property and also of the fact that accord-

ing to its form written in (3), (ω) must not contain
a singular component at ω = 0, we obtain that the con-

stant  can be taken to be zero. Thus, it is seen that
the analytically continued Fourier transform of the
anomalous Green’s function determines only the regu-

lar part (ω) of the total spectral intensity (ω). In
turn, the singular (at ω = 0) component of the total spec-

tral intensity (ω) is unambiguously expressed in

terms of (ω), thereby ensuring true values of corre-
lators in limiting cases.

The following fact is of fundamental importance.
The singular (at ω = 0) component of the total spectral
intensity cannot be determined only from the knowl-
edge of the Fourier transform of the anomalous Green’s
function, which is analytically continued to the upper
complex half-plane. This fact, in essence, is one further
example that illustrates the well-known problem of
ambiguously reconstructing the spectral intensity of the
correlation function according to the spectral theorem.
A discussion of particularly relevant examples can be
found, e.g., in the review by Rudoœ, which has entered
into the collection of papers [7], as well as in original
papers [8, 9]. Practically, the allowance for singular (at
ω = 0) components turns out to be necessary in order to
obtain true limiting correlator values.

The analysis performed shows that the origin of
above-mentioned forbidding for the existence of the
superconducting phase with S-type symmetry of the
order parameter is exclusively caused by the loss of the
singular (at ω = 0) component of the correlation func-
tion but not by a principle having a certain actual phys-
ical content. Consequently, introducing a singular addi-
tion overcomes the indicated forbidding without chang-
ing the forms of all previously derived equations in the
theory of the superconducting state for strongly corre-
lated systems.

Aimed at confirming the statement on the invariabil-
ity of the self-consistent equations, we note that repre-

Aff
σσ

J̃gf
σσ

Aff
σσ

J̃gf
σσ ω( )

=  Rgf
σσ ω( ) δ ω( )δfg ω1Rgf

σσ ω1( ) iω1δ–( ).expd∫–

Jgf
σσ

Aff
σσ

Rgf
σσ J̃gf

σσ

J̃gf
σσ

Rgf
σσ
sentation (2) leads to the following expression for
simultaneous correlators:

(15)

This implies that in the quasi-momentum representa-
tion, we have

Hence, it follows that the equation

(16)

for the superconducting order parameter t – J* of the
model (with due regard to three-center interactions)
[10, 11] does not vary with allowance for the singular
component of the spectral intensity of the correlation
function because
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Strong deviation from the Hooke’s law (conditional
yield limit σy) in macrotests for tension/compression,
torsion, bending, etc., is usually attributed to the mass
nucleation and further motion of dislocations. In certain
rare cases (e.g., in single crystals of silicon and other
semiconductors in the absence of stress concentrators),
this process is hindered. In these cases, the overstress
region, or yield tooth, appears on the σ–ε loading dia-
gram (Fig. 1) detected by an Instron hard testing
machine at the initial loading stages. In contrast to the
deformation of macrospecimens, the transition from
elastic local deformation to elastoplastic deformation
during nanoindentation tests is usually stepwise [1–7].
Since all available nanoindentometers are soft testing
machines (i.e., they specify force P, while hard testing
machines specify strain ∆l), the strain jump in them is
equivalent to the dip of the stress in a hard machine near
the yield tooth. The volume of the locally deformed
region at the initial indentation stages is very small (1–
100 nm3). This substantial circumstance can strongly
change the physicochemical properties of the material
and deformation mechanisms [8–11].

In this work, the features of the elastoplastic transi-
tion are studied under the local deformation of nanore-
gions of the material by ultralow loadings (P varies
from 0.1 µN to 1 mN). It is shown that even very plastic
crystals (KCl, NaCl, etc.) are elastically deformed up to
contact stress magnitudes on the order of the theoretical
ultimate stress. The nucleation of dislocation loops is
hindered at the initial indentation stage because the
local deformed region is too small to contain disloca-
tion-loop nuclei of supercritical sizes.
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The experimental data were obtained by an MTS
Nanoindenter II. Figure 2 shows the typical P–h dia-
grams, where P is the indentation force and h is the
depth. As a rule, jumps were observed on the surfaces
of spall or growth, which were not mechanically pro-
cessed or were chemically etched after polishing.

It is generally clear that certain elastic deformation
precedes any plastic deformation. A triangular diamond
Berkovich pyramid is ordinarily used for nanoindenta-
tion. However, an actual indenter always has a certain
vertex dulling, which can be taken into account by
introducing the equivalent curvature radius R. We used
an indenter with R = 220 nm, which was determined by
several independent methods. For h ! R, indentation of
the indenter in the material can be considered in the
model of the elastic interaction of a ball with a half-

∆l1 ∆l2 ∆l

2

1

0

σL
y

δl

σH
y

σ

Fig. 1. Plots of the formation of jumps in (1) stress σ in a
hard testing machine and (2) strain ∆l in a soft testing
machine in the transition from elastic to elastoplastic defor-

mation near the yield point;  and  are the upper and

lower yield points, respectively, and δl = ∆l2 – ∆l1 is the
strain jump in the soft machine.

σy
H σy

L
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space. According to the Hertz contact theory, for this
model,

where

is the reduced elastic modulus. Here, Em and νm are,
respectively, the elastic modulus and Poisson’s ratio of
the material and Ei and νi are respective quantities for
the indenter.

According to Fig. 2, P–h dependences at the initial
deformation stage (until the first jump in h) coincide
with the Hertz law P ~ h3/2. Unloading at this stage
leads to the complete elastic recovery of the impression
without any traces of plastic deformation, which is cor-
roborated by atomic force microscopy and by the
absence of hysteresis in the P(h) curve (Fig. 2b). When
the critical force Pcr corresponding to hcr from 5 to
65 nm in various materials is reached, the strain under-
goes a jump. Then, the slope of the P(h) curve returns
to the Hertz behavior in certain materials and decreases
strongly in other materials. A substantial difference
from macrotests is that strain jumps at the yield limit
are observed not only in hard materials (cBN, W, Mo)
but also in many others including soft ionic crystals and
fcc metals (Cu, Al, Au, etc.) [1–4]. This fact implies
that a cause of this behavior is common.

The nucleation and motion of dislocations are the
most probable causes for the formation of jumps. We
consider in detail the conditions of the nucleation of
dislocation loops under the indenter at the initial inden-
tation stage. In various planes where dislocation loops
can nucleate under the indenter, shear stresses act.
Their maximum is equal to

where

is the maximum contact pressure in the impression. We

note that the Meier hardness is equal to H = pmax. We

emphasize that maximum shear stresses are reached at
the point spaced by 0.48 of the contact region radius

rather than at the center of the impression or at any
other point on its surface.

P
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As is known [12], for a dislocation loop with radius
r to nucleate in the uniform stress field τ, it is necessary
to have the excess free energy

where G is the shear modulus, b is the Burgers vector,
and r0 . b. In this case, the elastic energy ∆Ue = πr2bτ
is released. For r ~ 10b, ∆Ud ≈ Gb2r. Homogeneous
nucleation of a dislocation loop nucleus is possible for

Ug ≥ Uc; i.e., the condition τ ≥  is one (force) of the

∆Ud
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------------Gb2
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Fig. 2. Typical stress–strain curves at the initial stages of
nanoindentation: (1) loading stage and (2) unloading stage;
the dashed line is the Hertz law P ~ h3/2 .
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necessary conditions of the flow onset. Therefore,

(1)

At the same time, the “geometric” condition must be
satisfied in the field of strongly nonuniform stresses:
the size r' of the region, where stresses are strong
enough for a stress loop to nucleate, must be no less
than the critical loop radius rcr. Taking r' = Ka (where
K ≈ 1), we obtain

(2)

Equating expressions (1) and (2), we determine the
critical value

(3)

Figure 3 shows the Pcr values measured as a function
of the parameter E*b3/2 for a number of materials being
investigated. It is seen that the results qualitatively agree
with expression (3), i.e., with the model of the homoge-
neous nucleation of dislocations in nanovolumes.

The ∆h jump value provides the reasonable estimate

N ≈  ≈10–50 for the number of formed loops. It is

obvious that stress concentrators that can reduce Pcr
always exist in an actual crystal whose imperfectly pla-
nar surface is indented by an imperfect sphere. How-
ever, for a nanometer loading region, the probability of
the existence of such concentrator is low, which is cor-
roborated, first, by the qualitative agreement of the
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Fig. 3. Critical force Pcr before the strain jump vs. the fun-

damental parameter E*b3/2.
results with the model of homogeneous nucleation and,
second, by the fact that extremely fine mechanical pol-
ishing eliminates jumps and smoothens the deforma-
tion curve. Small irreversible deformations observed in
certain materials before the appearance of the first jump
can be attributed to the manifestation of nondislocation
modes of plasticity (e.g., due to the formation of inter-
stitial atoms and crowdions [10, 11, 13, 14]).

Thus, the initial stage of nanoindentation is purely
elastic even in plastic materials. As a result, contact
stresses before the stepwise transition to plastic flow
reach τmax ≈ 0.05–0.1G, which is comparable with the
theoretical ultimate stress. Since many current ele-
ments of nanotechnological devices operate under the
conditions of dynamic nanocontact interaction (i.e.,
probes of scanning atomic force microscopes), it is nec-
essary to take into account the possibility of a consider-
able increase in the load carrying capability of the
material under these conditions.
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Fluctuation power spectra (flicker noise spectra) S ~
1/f, varying in inverse proportion to the frequency f, are
specific for various physical, chemical, mechanical,
and biological systems [1, 2]. The 1/f dependence
remains valid over a wide range (several orders of mag-
nitude of the fluctuation power). In astrophysical obser-
vations, 1/f pulsations of the radiation intensity of qua-
sars and sunspots are well known. In geophysics, 1/f
spectra are used for describing earthquakes and floods.
Spectra of 1/f are also observed in variations of the
insulin content in the blood of diabetics and in cardiac
and muscular rhythms specific for certain illnesses.
Financial variations and rates of exchange also obey the
1/f spectral dependence. Moreover, flicker fluctuations
are manifested in the number of cars on the roads and
even in music and speech [3].

In the literature, stochastic processes with spectra of
the 1/f α form, where the exponent α can vary within a
certain range, are sometimes considered as 1/f noise. A
spectrum varying exactly in inverse proportion to the
frequency (α = 1) is observed for voltage fluctuations
formed by an electric current flowing in resistors [2, 4]
and in the case of nonequilibrium phase transitions,
e.g., in boiling crisis regimes, under explosive boiling
of superheated-liquid jets, in vibratory regimes of com-
bustion, and in arc discharge [5–10].

The dynamical scaling, which is observed at critical
points of equilibrium, is a well-known feature of 1/f
fluctuations. There have been numerous attempts to
elucidate the mechanism of generation of scale-invari-
ant fluctuations. The concept of self-organized critical-
ity is a striking example [11]. It is evident that not all
systems exhibiting 1/f fluctuations are acceptable for
analysis in terms of this scheme. Moreover, in the mod-
els of the self-organized criticality, the fluctuation spec-
trum has the form 1/f α (with α > 1), and the fluctuation
distributions are not Gaussian [12, 13].
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In this paper, we present numerical results for the
distribution functions under scale transformations of 1/f
fluctuations in nonequilibrium phase transitions.
According to theory of 1/f- fluctuations under nonequi-
librium phase transitions, which was proposed in [5],
the spectral density of the fluctuation power is strictly
proportional to 1/f, and the corresponding distribution
function is Gaussian.

The simplest stochastic equations describing fluctu-
ations in a concentrated system have the form

(1)

Here, φ and ψ are dynamical variables, and Γ1(t) and
Γ2(t) are Gaussian δ-correlated noises with the same
variances. Because of the multiplier 2 in the second
equation, the equations of system (1) are nonequiva-
lent. System (1) experiences a noise-induced transition

with respect to the probability density . If
the white-noise intensity corresponds to the criticality
condition for the noise-induced transition, then the
solutions φ(t) and ψ(t) of system (1) represent stationary
stochastic processes with the power spectra of the
forms 1/f and 1/f 2 , respectively.

When integrating system (1) numerically, it is
rewritten in the form [5, 14]

(2)

where ξi and ηi are sequences of Gaussian random
numbers with zero means and standard deviations σ. If
the integration step is chosen within the interval 0.05 <
∆t < 0.3, the criticality condition for the noise-induced
transition has the form σc = 0.8. Therefore, under the
condition 0.7 < σ < 0.9, the fluctuation power spectra
for φi and ψi correspond to the dependences 1/f and
1/f 2 , respectively. In our calculations, we took integra-

dφ
dt
------ φψ2– ψ Γ1 t( ),+ +=

dψ
dt
------- φ2ψ– 2φ Γ2 t( ).+ +=

P φ2ψ2( )

φi 1+ φi ψi∆t+( ) 1 ψi
2∆t+( ) 1– ξ i∆t0.5,+=

ψi 1+ ψi 2φi∆t+( ) 1 φi
2∆t+( ) 1– η i∆t0.5,+=
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Fig. 1. Fluctuation power spectra for the processes φi and χi. Dashed line represents the ~1/f dependence. Initial (φi and χi) and

roughened (  and  for τ  = 32) realizations are shown in the upper and lower inserts, respectively.φi
τ( ) χ i

τ( )
tion steps of 104 to 105 and performed averaging over
several tens of realizations.

Each calculated realization of a random process was
characterized by both the mean value and variance. For
zero initial conditions (φ0 = 0 and ψ0 = 0), the random
processes attained the steady-state regime in a certain
time. This transient period can be estimated by compar-
ing the above case with the realization of a stochastic
process for the same sample of random numbers but
under initial conditions corresponding to the mean val-

ues φ0 =  and ψ0 = . For the parameters taken
within the above-indicated range, the transient period
did not exceed 5% of the sample volume. The initial
conditions corresponding to the standard deviation,
which result in a decrease in the transient period, allow
us to reduce the integration step and, thereby, to retain
the 1/f dependence of the fluctuation power spectrum.

φ2 ψ2
The system of equations (2) remains applicable not
only in the vicinity of the critical point of the noise-
induced transition but within a fairly wide range of the
distribution parameters. This property follows from the
self-consistency of the variables φi and ψi of system (1).
As was pointed out in [5], the approximate equality

 ≈ 1 for the mean product remains valid for a con-
centrated system regardless of the sampling volume
and other relevant parameters. Because of this, we con-

sider a new function χi = , which for small ε is

close to the function 1/ψi. Introducing the parameter ε
eliminates the divergence of the function χi at zeros of
the function ψi . This divergence of the function 1/ψi

can be removed by various methods but the basic result
is unaffected: the spectral density of χi is inversely pro-
portional to the frequency Sχ ~ 1/f, and coincides
numerically with that of the function φi . The identical

φiψi

ψi

ε ψi
2+

---------------
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spectral densities of the variables φi and χi are shown in
Fig. 1. The parameter ε was chosen within the range
0.01 to 0.02. Even though the power spectrum of ψi is
inversely proportional to the frequency squared, i.e.,
Sψ ~ 1/f 2 , the power spectrum of the variable χi is pro-
portional to 1/f. Thus, the second equation of system (1)
or (2) after the change of the variable ψ(t) by χ(t), as
well as the first equation, results in the 1/f  spectrum.

The distribution functions for the variables φi and χi

are different. The distribution function for the variable
φi is shown in Fig. 2. This function is close to the Gaus-
sian distribution but has a long tail of large fluctuations
especially well pronounced in semilogarithmic coordi-
nates. As follows from numerical calculations, the dis-
tribution function can be approximated by the expres-
sion

(3)

where A and B are constant and σφ = 2σt 0.5 is the stan-
dard deviation of the random process φ(t). In contrast to
P(χ), the distribution function P(φ) has a minimum at
the zero value of the argument (Fig. 2).

We now analyze changes of the distribution func-
tions under a scale transformation of the realizations.
For this purpose, we introduce a sequence of roughened
realizations {y (τ)} formed by averaging the initial real-
ization {x1, x2, …, xN} over a certain time scale τ
referred to as a scale-transformation coefficient (scal-
ing factor) according to the equation

(4)

Here, xi is a stochastic variable (φi, χi, etc.). The first
realization {y(1)} coincides with the initial one. The vol-
ume of each subsequent roughened realization

decreases by a factor of τ, i.e., consists of  numbers.

It is worth noting that the given scale transformation

does not affect the spectrum. The spectra of  and

 vary in inverse proportion to the frequency: S ~ 1/f.
In order to numerically characterize distribution
changes caused by the scale transformation, we define
the quantity

(5)

which has a sense of informational entropy. In [14], this
method was referred to as a multiscaling entropic anal-
ysis of realizations. We now consider the entropy H(x)
as a function of the scaling factor τ. The calculated
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entropy of roughened realizations and that of white
noise are shown in Fig. 3 as functions of the scaling fac-
tor τ. As is seen from Fig. 3, in contrast to the Gaussian
δ-correlated process (white noise) whose entropy
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Fig. 2. Distribution functions for the stochastic variables:
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decreases with increasing the scaling factor, the entropy

of the random process  does not vary. This indicates
the self-similarity of the latter process. The entropy of

the random process  decreases (but much slower
than that of the white noise) and tends to the constant

entropy H of the process .

The realizations of roughened random processes

 and  for τ = 32 are shown in the upper insert in
Fig. 1. They evidently differ slightly. The Pearson cor-
relation coefficient for τ = 32 is equal to 0.9. With a fur-
ther increase in the scaling factor, the difference of the
realizations tends to zero.

In the case of τ = 32, the distribution functions for

 and  practically coincide and are approximated
by the formula

(6)

The exponential factor in (6) describes long-wave fluc-
tuations of the random process with the 1/f power spec-
trum. This is consistent with the results of [15], namely,
the scaling function for the roughened distribution of
certain periodic signals with the 1/f spectrum is a distri-
bution of extreme fluctuations. Our results testify to the
fact that under the scaling transformation, the Gaussian
distribution of a stochastic process with the 1/f spec-
trum also turns into the exponential distribution.
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Traveling pulses are one of the basic varieties of
autowaves [1–3]. Complex regimes (rotating spirals,
circular waves diverging from a leading center, etc.) can
be constructed from these pulses. In the present paper,
a regime is analyzed. This regime differs from a com-
bustion wave in the fact that the initial content of a mix-
ture is recovered beyond the reaction zone due to trans-
verse (with respect to the wave propagation direction)
flow through the system. The temperature and concen-
tration profiles make it possible to isolate four zones in
the pulse structure, namely, the heating zone, reaction
zone, cooling zone, and recovery zone. An estimate for
the parameters of these zones is given. A limit for the
pulse propagation is determined. At high Damcöler
numbers, the magnitude of this limit tends to the com-
bustion limit.

1. A system composed of two diffusion equations
with nonlinear sources is often used as the mathemati-
cal model of a pulse. The source intensity increases
with the concentration of one of the components (i.e.,
the activator) and decreases with the concentration of
the other component (i.e., the inhibitor). In the case of
an exothermic reaction, heat plays the role of the acti-
vator. The exponential dependence of the reaction rate
on temperature results in the appearance of a certain
large parameter, namely, the Zel’dovich number

(1)

Here, E is the activation energy;

(2)

T0 is the thermostat temperature; Q is the reaction heat;
and c is the specific heat. Thus, we may apply the
asymptotic method developed for the first time in [4].
The considered effects exhibited here contrast greatly
when compared to autowaves produced by power non-

Z E
Tb T0–

Tb
2

-----------------.=

Tb T0
Q
c
----,+=
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linearity. At the same time, in the qualitative sense these
phenomena are intrinsic to waves generated by power
sources.

We write out the set of relevant equations in the
form;

(3)

(4)

(5)

Here, the reaction time τR at a temperature Tb is a scale

of time t; the quantity ; serves as a scale for the
coordinate x; χ is the thermal diffusivity; η is the con-
centration of a reaction product (for definiteness, the
first-order reaction is considered); θ is temperature

counted off from Tb in the ATb scale; A =  is the

Arrhenius number; D is the Damcöler number, i.e., the
ratio of the flow-through time to τR; L is the Lewis num-
ber, i.e., the ratio of diffusivity to thermal conductivity;
and S is the Semenov number, i.e., the ratio of the heat
removal time to τR. An object being described by
Eqs. (3), (4) can be represented as a chain of small reac-
tors of instantaneous mixing. Adjacent chain elements
are linked to one another by both diffusion and heat
conduction.

The solutions in the form of solitary waves corre-
spond to the boundary conditions

(6)

For a system close to that described by Eqs. (3)–(6),
switching waves between high-temperature and low-
temperature states have been studied [5]. The switch-
ing-wave velocity is low compared to that of combus-
tion waves. In the latter, the reaction reprocesses the
substance located in the path of the wave. The higher
the reaction rate, the higher the wave velocity. In the
case of switching waves, the substance is reprocessed

∂η
∂t
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∂x2
---------– Φ η θ,( ) η
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in the hot reactor zone, which is carried by the trans-
verse flow so that the reaction rate is limited by the flow

intensity. The quantity  serves as a wave velocity

scale. In the dimensional form, the scale corresponds to

the quantity , where τ is the time of the heat removal

into a thermostat. In this case, the condition τ @ τR is
always valid. If this condition is not fulfilled then the
temperature in the reactor is practically equal to T0, and
the reaction being studied can be ignored.

2. In the system under consideration, the traveling
pulse is a wave. Both ahead of and behind this wave, the
reactor state is low-temperature, and the content of a
mixture that flows through these sections is almost
invariable. The pulse forepart weakly differs from the
combustion wave. In the reaction zone, the substance
residing at the given point of the reactor at the moment
the pulse passes through it is reprocessed. The trans-
verse flow through the reaction zone can be ignored: the

increase brought by this flow is proportional to . At

the same time, as we will see, the pulse can propagate
only in the case of sufficiently large Damcöler num-
bers. Thus, the pulse velocity is almost independent
of D and is close to the combustion rate at given L, S,
and Z. Beyond the reaction zone, the temperature is
high. All the substance brought by the flow is immedi-
ately reprocessed so that the intensity of a thermal

source in Eq. (4) is close to . However, this is insuf-

ficient to compensate for the heat loss. Indeed, the
quantity S cannot exceed D because other channels of
the heat removal are possible along with the flow.
Therefore, behind the reaction zone, the temperature
drops (the cooling zone). At e–θ > D, the reaction does
not manage to reprocess the incoming mixture. The
quantity η decreases from the value close to unity to
almost zero (the recovery zone).

The structure described exists in the case of

(7)

In the opposite case, a fast wave switching the regime
from low-temperature to high-temperature propagates
in the system under consideration. The velocity of this
wave is high compared to that found in [5]. The fast
wave differs from that described in [5] by a temperature
maximum in its forepart, which ensures a high velocity.
The condition of the passage from the slow inflamma-
tion wave to the fast one, which is accompanied by a
velocity jump, is obtained in [6]. The second term in
condition (7) is only a correction. When this correction
is not small, the difference between the high-tempera-
ture state and low-temperature state of the reactor and

1

S
-------

χ
τ
---

1
D
----

Z
D
----

S
D
---- 1 Z 1– Dln

1 A Dln+
----------------------- 

  .–<
between the cooling zone and the recovery zone degen-
erates.

The heating zone and the reaction zone have widths
on the order of that of a combustion wave. For estimat-
ing the width of both the cooling zone and the recovery
zone, we make use of an approximation proposed
in [4]. The reaction zone is considered to be a surface at
which a heat flux jump Zu occurs, while the pulse
velocity is determined by the condition

(8)

Here, u0 is the combustion wave velocity as S → ∞, and
θm is the temperature in the reaction zone. We now
assume that at the boundary between the cooling and
recovery zones,

(9)

and in the recovery zone, the quantity Φ can be ignored,

whereas in the cooling zone, Φ ≈ . Evidently, the

widths of the heating and recovery zones are ~  and

~Du (excluding the unreal case of L @ Du2), respec-
tively. In the coordinate system moving at a velocity u,
we place the reaction zone at the point x = 0, while at
the boundary between the cooling and recovery zones,
x = x1 . In this case, we have at the point x = 0,

(10)

(11)

At the same time, we have at the point x = x1 ,

(12)

(13)

Equations (8)–(13) allow us to find six quantities,
namely, u, θm, x1, θ1, C+, and C–. Excluding C+, and

C+  from (10)–(13), we find (in the limit Su2 @ 1)
the width of the cooling zone,

(14)

Vanishing the denominator in the right-hand side of
expression (14) corresponds to the condition (7): the
pulse transforms into a fast inflammation wave, and the
recovery zone is absent.

u2 u0
2e

θm.=

θ θ1,
θ1

1 Aθ1+
------------------exp

1
D
----,∼=

1
D
----

1
u
---

Z θm+ SZ
D
------ C+ C–,+ +=

k+ Z θm+( ) k+C+– k–C–– Zu,=

k±
u
2
--- u2

4
----- 1

S
---+ .±=

SZ
D
------ C+e

k+x1 C–e
k–x1+ + Z θ1,+=

k+C+e
k+x1 k–C–e

k–x1+ k– Z θ1+( ).=

e
k+x1

x1 Su
1 S

D
----–

1
θ1

Z
----- S

D
----–+

-------------------------.ln≈
DOKLADY PHYSICS      Vol. 48      No. 11      2003



TRAVELING PULSE OF AN EXOTHERMIC REACTION 621
According to conditions (12)–(14), the quantity |C+|
must be exponentially small. Then, it follows from rela-
tionships (10), (11) that

(15)

As is seen from formulas (8), (15), at S > Sth, where

(16)

there are two solutions (the slow wave is unstable). At

D @ D0 = , the quantity Sth tends to the combus-
tion limit (see [4]). It follows from expressions (7), (16)
that traveling pulses can exist at

3. In the coordinate system moving with the com-
bustion wave, the heating zone for this wave can be
considered (see [3]) as a plane flow-type reactor. At
L < 1, the enthalpy excess in the reactor results in relax-
ation oscillations [7, 8]. In the laboratory coordinate
system, the oscillations look like alternating events of
deceleration and acceleration of a wave, i.e., a sequence
of short flares and long depressions. Pulses traveling
over the disk reactor produce a rotating spiral, which
corresponds to the spin regime.

Numerically modeling the spin combustion in the
three-dimensional setting of the problem (see [9])
makes it possible to compare the data obtained with
predictions about traveling pulses in this reactor. The
profiles of temperature and concentration in the direc-
tion of the moving combustion center, which are calcu-
lated in [9], correspond to the four-zone structure. The
quantity η rapidly rises up to one near the temperature
maximum, and this value is preserved within a segment
of a finite length. The temperature at this segment
drops. Furthermore, the quantity η begins to decrease
and the temperature curve has no singularities at the
point at which this decrease starts to occur. The com-
bustion center does not penetrate the axial part of a
cylindrical sample. This is consistent with the fact that
the circle length along which the pulse runs cannot be
shorter than the pulse size. The distance between the
loops, which was found in [9], is on the order of the
heating-zone width (see [10]), although, numerically, it
is longer by an approximate factor of two.

The effective value of Z ≈ 7 is determined according
to the magnitude of the temperature maximum. We can
estimate the effective value of the Damcöler number
according to the width of the recovery zone: D ~ 100 ≈

 (ua is the velocity of motion along the cylinder axis).

θm
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In other words, in the units employed in this paper, this
is the content renewal time in the heating zone (in a
reactor). Using plots for η and θ, which are presented
in [9], we find x1 ≈ 60 and θ1 ≈ –3.5, whereas from (9),
we obtain θ1 ≈ –3.7 (with allowance for A ≈ 0.06).
Finally, substituting the obtained numerical values into

expression (14), we find S ≈  ~ 50. The relation

between the quantities S and D can be clarified if we
remember that the mass exchange in a disk reactor pro-
ceeds only in the axial direction, whereas the heat
removal occurs in both axial and radial directions.
Meanwhile, the value of S obtained is lower than the
quantity Sth determined from formula (16). This implies
that the model of a disk reactor, as applied to the spin
combustion, needs to be modified. To do this, it is nec-
essary to take into account the stabilizing action of
heated condensed products (see [11]). The thermal res-
ervoir adjoining the disk must decrease the threshold
for propagating the pulses.
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In this paper, a model is constructed explaining dif-
fusion of metalloid atoms in amorphous bodies of a
metal–metalloid systems under mechanical and low-
temperature actions. The model is based on previous
experimental results related to nonequilibrium segrega-
tions in amorphous alloys in low-temperature condi-
tions (room and lower temperatures). While developing
the model, the theory of motion of macroscopic inclu-
sions which has been proposed by Geguzin and
Krivoglaz was used. The limits of applicability of the
model are determined.

In spite of the fact that diffusion in amorphous
alloys has already been studied for three decades, the
problem cannot be considered closed. The low-temper-
ature region (in the order of room temperatures and
lower) remains the least understood. The investigation
of the problem is hampered by the fact that diffusion is
suppressed at low temperatures. Therefore, it is impos-
sible to use direct methods to obtain quantitative char-
acteristics of the process. However, it seems to be pos-
sible to study quantitative characteristics of diffusion in
amorphous alloys by indirect methods, namely, by ana-
lyzing results of experiments in which nonequilibrium
segregations were studied in conditions of external
actions.

1. THE RESULTS 
OF ORIGINAL EXPERIMENTS

In this study, we analyze two experimental results
testifying to the redistribution of chemical components
in surface layers of amorphous alloys of the metal–met-
alloid type in the presence of external actions (nonequi-
librium segregations). These experimental results can-
not be explained on the basis of classical diffusion
models [1, 2].
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In [3], deformation of a rapidly hardened Fe80B20
amorphous 10-µm thick band was realized. The hard-
ening was performed by the method of simple bending
on a holder whose diameter was commensurable with
the band thickness. The calculated degree of deforma-
tion of band surface layers attained 100%. The analysis
was carried out by local Auger electron spectroscopy
using a JAMP/10s probe accompanied by a layer-by-
layer analysis based on etching the sample with argon
ions. The etching rate was ~1.0 nm min–1. In all mea-
surements, the relative error of the quantitative analysis
did not exceed 15%. The atomic structure of both the
original and processed samples was verified by X-ray
radiography methods. According to the results of X-ray
radiography, after mechanical processing the samples
conserved their amorphous structure. As is seen from
Fig. 1, the tensile deformation raised the iron atom con-
tent in near-surface layers by 16 at.% and lowered the
boron atom content by 13 at.% with respect to the initial
concentration. In contrast, for the case of compression
of the amorphous band, an excess of 3% boron atomic
content was found. It is worth noting once more that the
amorphous band was bent at room temperature when
the diffusion of the components was suppressed. In
order to describe similar processes, the classical for-
mula (see [4])

(1)

and the formula describing the average velocity of a dif-
fusing particle

(2)

are commonly used. Here, I is the flow intensity for a
diffusing chemical element, D is diffusivity, ω is the
atomic volume, T is the absolute temperature, k is the
Boltzmann constant, f is the correlation factor, and ∇σ
is the stress gradient.

Data on metalloid diffusion in amorphous alloys at
room temperature are practically nonexistent. Assum-
ing that no Arrhenius-like dependence for light atoms
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within the given temperature interval is observed [1,
2], the maximal diffusion coefficient of boron atoms
can be estimated as D ~ 10–22 m2 s–1. With allowance

for T ~ 102 K, and ω ~ 10–29 m3, σ = K , K ~ 165.5 ×

109 J m–3,  = K  ~ 1015–1016 J m–4, we arrive at

v  ~ 10–15–10–17 m s–1, or v  ~ 10–6–10–8 nm s–1. The
value of the diffusion rate found by this method is
smaller by several orders of magnitude than experimen-
tal values. This implies that at least from the classical
standpoint, an explanation of this phenomenon is not
evident.

An even more surprising experimental fact concerns
the migration of boron atoms while freezing amor-
phous samples. In [5], redistribution of chemical ele-
ments in an amorphous magnetically soft
Co57Ni10Fe5Si11B17 alloy was studied in low-tempera-
ture conditions (77 K). Samples in the form of amor-
phous bands ~20 µm thick and ~10 mm wide were held
in liquid nitrogen for 10, 60, and 120 s. Furthermore, at
room temperature, the layer-by-layer elemental analy-
sis using Auger electron spectroscopy was performed.
As in the first experiment, the atomic structure of both
the original and processed samples was verified using
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Fig. 1. Distribution of chemical elements in the surface
layer of the amorphous Fe80B20 sample: (a) initial distribu-
tion; (b) post-deformation distribution.
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the X-ray radiography method. It was revealed that
low-temperature processing did not lead to noticeable
changes in the alloy structure: according to X-ray radi-
ography, the samples remained amorphous. The surface
redistribution of the components was estimated during
the 30 s ionic cleaning of the samples. After this clean-
ing of the surface (~0.5 nm), impurities and adsorbed
admixtures were practically absent. As follows from
Fig. 2, the low-temperature processing stimulated
concentration changes in the surface layers of the
alloy. These changes correlate with variations of
mechanical and corrosion properties of the material.

Using formula (2), and the value of  ~ Kαv , ∇ T ~

109–1010 J m–4, T ~ 102 K, we arrive at v  ~ 10–19–
10−21 m s–1 (where K is Young’s modulus, and αv is the
coefficient of volume expansion). In the case under
consideration, the classical approach predicts an even
lower value for the diffusion rate. The given experimen-
tal data are not unique. In recent years, similar system-
atized data appeared [6, 7].

We can attempt to explain these experimental results
under the assumption that boron atoms move together
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Fig. 2. Distribution of chemical elements in the case of low-
temperature processing of amorphous Co57Ni10Fe5Si11B17
alloy: (a) surface concentration as a function of processing
time; (b) depth variation of the concentration in the case of
holding in liquid nitrogen for 10 min.
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with metal–metalloid clusters. The existence of such
clusters, or at least of strong bonds between atoms of
metalloid and metal, is confirmed by the experimental
data of [8] and theoretical conclusions of [9], as well as by
the results of molecular-dynamic modeling in [10, 11].

In spite of these results, the most well-known mod-
els describing motion of metalloids in amorphous alloy
either do not take into account the aforementioned fact
or exploit assumptions that make it possible to easily
ignore it [3, 6, 7].

One of the most adequate theories describing the
motion of such clusters seems to be the theory of
motion of macroscopic inclusions in solids which was
proposed by Geguzin and Krivoglaz [4]. In the first
turn, this theory was developed for the description of
the behavior of microscopic pores filled with gas inside
crystalline solids. However, we may state that there are
no constraints prohibiting the application of this theory
in describing the motion of microscopic-size metal–
metalloid clusters in amorphous bodies. This statement
is based on the following facts.

(1) The theory of Geguzin and Krivoglaz is phenom-
enological and does not describe the microscopic
mechanism of migrating inclusions. For successful
application of the theory, only the appearance of certain
conditions on the inclusion–matrix interface is neces-
sary. In our case, this is the assumption on the feasibil-
ity of near-boundary (surface) diffusion of amorphous-
alloy atoms along the cluster-amorphous-alloy inter-
face. In the same study [4], a wide list of experimental
data was presented confirming the possibility of apply-
ing the theory describing motion of macroscopic inclu-
sions that reside in different aggregate states (gas, liq-
uid, solid) in solids.

(2) A possibility of using the theory of Geguzin and
Krivogaz to describe microscopic-size objects is also
proved in [4]. It is theoretically shown there that
decreasing inclusion size does not restrict the applica-
bility range of the theory. In this case, the inclusions
acquire an ability of migrating not only in the presence
of a gradient of a certain (temperature, elastic-stress,
vacancy concentration) field but owing to their inde-
pendent Brownian motion. In that study, the experi-
mental confirmation of this concept is given, as an
example, for Brownian motion of gas-filled cavities in
UO2 plates (with a minimal cavity size of ~ 33Å).

As one more argument favoring the validity of this
theory, we can present the results of molecular-dynam-
ical modeling performed in [10, 11]. In these studies,
the possibility of migrations of boron atoms incorpo-
rated into FeB clusters is shown for an Fe80B20 system,
as an example, for conditions simulating experimental
ones in the case of mechanical and low-temperature
loading amorphous bands. The direction of cluster
motion corresponded to that in the experiments. The
migration of boron incorporated into clusters was con-
firmed visually according both to dynamics of cluster
images in numerical experiments and to the results of
analysis of the radial distribution function.

Here, it is worth emphasizing that for more success-
ful application of the given theory, we should introduce
an important assumption on the existence of a boundary
layer (planar formations) around the clusters. Below,
we analyze the results of employing the theoretical
approach proposed in [4] to the explanation of our
experimental results described above.

2. APPLICATION OF THE MODEL
FOR DESCRIBING THE EXPERIMENT

ON BENDING A Fe80B20 AMORPHOUS BAND

In accordance with the data obtained in [4], the
inclusion velocity of motion in the stress field caused
by surface diffusion flows is determined by the formula

(3)

Here, v is the macroscopic-inclusion velocity of motion

with respect to the surface; σ1 ~  is the stress gra-

dient; Lk is the mean cluster size; Ds is the boundary dif-
fusivity of matrix atoms (Fe, in our case); ω is the
atomic volume; T is temperature; fs is the surface corre-
lation factor; ez is the unit vector co-directed with the
stress gradient; R is the distance on the order of the
inclusion radius; and a is the thickness of the localiza-
tion layer for boundary flow.

We try to apply formula (3) to describe the experi-
ment with mechanical action on the amorphous alloy. If

we take  ~ K  ~ 1015–1016 J m–4,  ~10–1–

10−3, T ~102 K, v  ~ 10–9 m s–1, ω ~ 10–29 m3, then we
can calculate Ds ~ 10–11–10–16 m s–2.

We now analyze, whether this value of the boundary
diffusion coefficient is reliable. It is well known [12]
that in crystals, the activation energy of boundary diffu-
sion is smaller by a factor of two to three than the acti-
vation energy of the bulk diffusion. At the same time, in
most cases the value of the pre-exponential factor lies
within the range 10–9–10–6 m2 s–1. Assuming that this
situation is preserved in amorphous alloys (i.e., the acti-
vation energy for boundary diffusion is smaller by a
factor of two to three than that of bulk diffusion in
amorphous alloys), the value Ds at 300 K can attain
10−14 m2 s–1, which is consistent with the required
value. Undoubtedly, this analysis is not a rigorous
proof. However, the assumed existence of a high
boundary diffusion coefficient is plainer than that of a
high bulk diffusion coefficient because it follows from
classical premises.

As follows from formula (3), the direction of motion
for clusters containing boron coincides with the direc-
tion observed in experiments. Moreover, if we consider
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that the stress gradient in the displacement region is
constant, then the boron concentration at an arbitrary
moment of time is determined by the parallel transfer
formula c(x, t) = c0(x + v t), which is actually observed
in experiments, Fig. 1.

3. APPLICATION OF THE MODEL
FOR DESCRIBING THE EXPERIMEMT

OF COOLING
THE Co57Ni10Fe5Si11B17 AMORPHOUS BAND

In the experiment associated with the influence of
low temperature on an amorphous alloy, the quantity

 is determined by the formula

(4)

where K is the bulk Young modulus, αv is the coeffi-
cient of volume expansion, and  is the temperature
gradient that arises while cooling samples. It follows
from the aforementioned that, in the framework of the
model proposed, the displacement of atoms in the near-
surface layers of the amorphous band occurs only dur-
ing its cooling.

We now make an attempt to estimate the diffusion
coefficient for which the indicated mechanism is feasi-
ble. To do this, we first evaluate the cooling rate for
amorphous samples placed into liquid nitrogen. In
accordance with the results of [13] and when the Biot
criterion is Bi ! 0.01, the formula

(5)

is true, where Bi is the Biot criterion [13] and Fo is the
Fourier criterion (Fourier number) [13]; r is the half-
width of the plate being cooled (in this case, of the
amorphous band); x is the coordinate of the point at
which the temperature is calculated; and Θ is the
dimensionless temperature determined by the formula

(6)

In formula (6), T is the current temperature of the plate
and Tam is the temperature of the ambient medium. Here,
we understand (similarly to the approach of [6, 7]) that
when immersing the sample in liquid nitrogen, its sur-
face does not instantaneously acquire the temperature
of the liquid nitrogen. Formula (5) is obtained under the
assumption that a temporal layer is formed around the
sample. This layer consists of nitrogen vapor and pre-
vents intense heat loss. Thus, the boundary conditions
proposed are more rigid for constructing the model
compared to those proposed in [6, 7], because these
conditions lead to appearance of considerably weaker
thermodynamic forces.

δσ
Lk

------

δσ
Lk

------ Kαv T∇ ,=

T∇

Θ x2

2r2
-------Bie Bi Fo⋅–=

Θ
T Tam–
T0 Tam–
--------------------.=
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In our case, Bi ~ 10–4 and Fo ~ 104, where τ is the
temperature relaxation time. Hence, the characteristic
time of plate (amorphous band) cooling is on the order
of 1 s. For this time, the temperature gradient on the
order of 103 K m–1 exists on the plate surface. During
this time, metalloid atoms must shift by a distance on the
order of 1 nm, i.e., the cluster motion velocity must be
about 1 nm s–1 or 10–9 m s–1. In addition, ω ~ 10–29 m3,
k ~ 10−23 J K–1, fs ~ 1, a ~ 10–10 m, R ~ 10–9–10–8 m, and

 ~ 109–1010 J m–4. As a result, we find the value for

the coefficient of the boundary diffusion: Ds ~ 10–8–
10−13 m2 s–1, which corresponds to the range obtained
from the experiment of bending the amorphous band.

DISCUSSION

The advantage of the proposed mechanism of the
migration of metalloid atoms incorporated into metal–
metalloid clusters is that it brings the possibility of
jointly explaining three experimental results at once:

The existence of nonequilibrium segregations
caused by mechanical action on an amorphous alloy;

The presence of nonequilibrium segregations
caused by low-temperature action on an amorphous
alloy;

A possibility of diffusion of metalloid atoms in the
case of simultaneous existence of metal–metalloid
clusters in amorphous alloys.

In addition, in the framework of the mechanism pro-
posed, we have managed to explain the deviation of the
diffusion coefficient from the Arrhenius dependence,
which was observed in a number of experiments [1, 2].
It is well known that the behavior of the diffusion coef-
ficient for light atoms in amorphous alloys does not
obey the Arrhenius law, and the value of this coefficient
at temperatures of 250–300 K lies within the interval
10–20–10–24 K. As was noted previously, according to
the theory of the motion of macroscopic inclusions, it
was shown [4] that macroscopic inclusions are capable
of Brownian motion. In this case, the diffusion coeffi-
cient Dcl for a macroscopic inclusions (in our case for a
metal–metalloid cluster) and the coefficient of bound-
ary diffusion are linked by the relationship

Thus, the value of Dcl is on the order of 10–19–
10−22 m2 s–1, which is very consistent with experimental
data (provided that the cluster diffusion coefficient cor-
responds to the boron diffusion coefficient measured in
the experiments).

Analysis of nonequilibrium segregations in amor-
phous alloys made it possible to propose a mechanism
of migration of metalloid atoms in amorphous alloys,
which are incorporated into metal–metalloid clusters.

δσ
Lk

------

Dcl
a
R
--- 

 
4

Ds.≈
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The model proposed is based on the theory of the
motion of macroscopic inclusions developed by
Geguzin and Krivoglaz [4]. For successful application
of the given theory, it is assumed that boundaries (planar
formations) exist around the clusters. The adequacy of
the model proposed is stipulated by the possibility of
exhaustive explanation of four independent experimental
results and the results of molecular-dynamic modeling.
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Results presented in [1–4] point to the universal
properties of the behavior of metals dynamically
destroyed under the action of intense radiation pulses.
These properties are attributed to the self-organization
of the failure centers and instabilities in dissipative
structures (failure center cascades) providing the basis
of the resistance of a body to an external action. The
amplitude of the pulse pressure can be in the area of a
few to a few hundred kilobars for longevity ranges
t ~ 10–6–10–10 s. In this case, the evolution under
dynamic failure of micro- and mesoscopic defects and
of failure center cascades constitutes the general prop-
erties of the invariant behavior of solids subjected to a
thermal shock induced by intense radiation pulses
(initial temperature T0 ~ 4K – 0.8Tm, energy-insertion

rate  ~ 106–1012 K/s, and absorbed energy density

10–104 J/g) [1–4].

It is known that metals under failure exhibit plastic
deformation in both quasistatic (t > 10–3 s) and dynamic
(t < 10–6 s) longevity ranges [5]. For small plastic
strains, this process is attributed to the evolution of var-
ious crystal defects, which, interacting with each other
and subjected to an external action, remain individual
structural units with inherent properties. Plastic defor-
mation is attributed to the ergodic behavior [6] of the
set of defects whose trajectories gradually fill all the
phase space. The thermodynamic potential of the set of
defects has the form of a “regular” distribution of min-
ima, the lowest of which corresponds to the stable state
of the set of defects and others to metastable states. In
this case, hierarchical subordination in the behavior of
defects of the crystal lattice is also absent. For small
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dt
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plastic strains, the evolution of the set of crystal lattice
defects under plastic deformation is represented as a
chain of thermal fluctuation Debye processes for over-
coming energy barriers [6, 7].

For large plastic strains, the density of various crys-
tal-structure defects can reach critical values. Collec-
tive effects are manifested in the behavior of defects, or
the appearance of certain bonds in the ensemble of
defects. A coupling in an ensemble of one structural
level of defects stimulates the self-similar formation of
another structural level of defects, which serves as the
initial structural level for the higher level [8]. Nonequi-
librium hierarchical coordination systems, where the
upper state can be achieved only when lower states are
achieved, are usually nonergodic [6, 9]. In a hierarchi-
cal system where a relaxation time spectrum exists, fast
processes responsible for overcoming the lowest poten-
tial barriers proceed at the start. This behavior gives rise
to the nonergodic behavior of hierarchical systems,
such as a broken solid with dynamic longevity.

As an example, we consider the self-organization of
various dissipative structures that occurs on three levels
in the bulk of the destroyed solid in the dynamic lon-
gevity range. As was shown in [1–4], the crystal lattice
loses the long-range order near the formed failure cen-
ters. The structure of shear bands in metals was studied
for various types of pulsed loads. Figure 1 shows the
hierarchy of shear bands around failure centers in tita-
nium after the shock wave load [10]. Data presented in
Fig. 1 shows that the cascade of shear bands around
failure centers is a fractal cluster. Fractal systems are
hierarchical. Therefore, the adequate description of
dynamic failure by classical kinetic methods is ques-
tionable.

As was shown previously [1–4, 11, 12], the cascade
of failure centers, which determines the dynamic fail-
ure of metals, is a fractal cluster. Represented in the
universal coordinates, the distribution of failure centers
for various materials is obtained by the similarity trans-
formation. This indicates that dynamic failure proceeds
in metals through one predominant process—accumu-
003 MAIK “Nauka/Interperiodica”



 

628

        

IL’KAEV 

 

et al

 

.

                             
500

0 40 80 120 160

α, deg

0

1000

1500

2000

2500

3000
N(α)

200

0 50 100 150 200

D, pixcel

0

400

1000

1400

1600

2000
N(D)

250 300 350

600

800

1200

1800

–2.0

–0.4

–1.0

0

0.5

1.0

–1.5

–0.5

0 0.4 0.8 1.2

log
D
D〈 〉

----------

(a) (b)

(c) (d)
log

N D( )
N D〈 〉( )
-------------------

Fig. 1. Results of the treatment of the Ti metallographic specimen (T = –196°ë, magnification of 300) as obtained by the software
package of the interactive system of image analysis [4, 9]: (a) angular and (b) size distributions of shear bands, (c) metallographic
specimen pattern, and (d) fractal dimension of shear bands.
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lation and growth of failure centers—ensuring the prin-
cipal part of longevity. The spectral size distribution of
failure centers in loaded metallographic specimens par-
allel and perpendicular to the failure surface has the
form N(D) ~ D–α, where N and D are the number and
size of failure centers, respectively, and α > 1. Investi-
gations revealed the correlated behavior and appear-
ance of the self-organization of the cascade of failure
centers in the destroyed-specimen scale [1–4, 11].

The size of failure centers and their density in a
destroyed solid at the final stage of the dynamic failure
are controlled by the concentration criterion [1, 2]. The
results shown in Fig. 2 testify to the collective behavior
of the ensemble of failure centers, which is attributed to
the nonequilibrium state of the solid (absorbed energy
density is commensurate with the energy parameters of
the crystal lattice) [1–4]. The self-maintaining behavior
of the cascade of failure centers when the concentration
criterion is satisfied is caused by the loss of ergodicity
in the behavior of the ensemble of failure centers,
which is, in turn, associated with hierarchical coordina-
tion [6].

As was previously shown in [4], the thermodynamic
potential, enthalpy, determines the dynamic failure in
the dynamic longevity range. The ratio of the absorbed
energy density to the energy parameters of the crystal
lattice (enthalpy and phase-transition heat) is an invari-
ant of the metal behavior with respect to external
actions. In this case, the limiting deformation energy
density of the local volume of the broken body (near
failure centers) can be taken as (see, e.g., [13])

Here, Lm is the latent melting temperature of the crystal

lattice, H =  is enthalpy, Cp is the heat capacity

at constant pressure, T ' is the temperature below which
the contribution of thermal atomic oscillations to the
internal energy density is negligible, and Tm is the melt-
ing point.

The potential energy of an n-level system is written
in the form

U2 = U2 (ρ1, U1),

U3 = U3 (ρ2, U2),

…

Un = Un (ρn – 1, Un – 1), 

where ρn is the density of structural units at the nth
level. The total energy is expressed as

Utot = 

Qmax Cp
T( ) T Lm.+d

T'

Tm

∫=

Cp Td

T'

Tm

∫

Uiρi.
i

∑
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Since the maximum energy density that can be accumu-
lated in the unstable zones of the crystal lattice [4] with-
out change in the aggregation state is equal to E =
H + Lm,

(1)

This expression considerably simplifies the description
of a dynamically loaded solid in the dynamic longevity
range.

Figure 3a shows systematized data [14] for the
charge-number z dependence of the binding energy Eb,
lattice constant ‡, elastic modulus Ö, and enthalpy and
phase-transition heat H + Lm. These data testify to the
absence of correlation in these parameters. Figure 3b
shows the charge-number dependence of the critical
energy Ecr leading to the failure of indicated metals in
the dynamic longevity range under the action of the
thermal shock induced by intense radiation pulses [4].

Generalizing and analyzing the results taken
from [1–4] with the use of expression (1), we arrive at

Uiρi

i

∑ Cp T Lm.+d

T0

Tm

∫=

–3 –2 –1

–2

–1

0
logN–1/3

logD

Fig. 2. Average distance 〈r〉  = N–1/3 between failure centers
as a function of the failure-center size D for (triangles) cop-
per, 0.37 mm; (circles) bronze, 0.3 mm, and (squares) iron,
0.5 mm.
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the failure surface shown in Fig. 4 in the coordinates

including the dynamic invariant I(t) = ,

atomic number z of the element, and longevity t. The
dashed lines on the failure surface are experimental
data for Al, Ti, Fe, Ni, Cu, Cd, Sn, Ta, W, and Pb [1–4].
To adequately describe dynamic failure induced by a
thermal shock, it is necessary to know the dynamic

Pcr t( )
Γρ H Lm+( )
------------------------------
invariant I(t) = , where E(t) is the critical

absorbed energy leading to macroscopic failure chang-
ing the connectivity of the body for certain longevity t.
This dynamic invariant takes values in the range I ~
0.3–1 (dynamic longevity range is t ~ 10–6–10–10 s).
With an increase in I, when I > 1 (milling, dispersing),
it is not necessary to consider the process at different
scale levels.

E t( )
H Lm+
-----------------
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The potential energy U corresponding to each hier-
archic level of the dissipative structures, which is char-
acterized by its order parameter ni, distribution function
fi , and relaxation time ti , enters into quantity I(t) in the
integral form. For the dynamic invariant I(t) < 0.3–1,
the absorbed energy E is lower than the energy Ecr lead-
ing to macroscopic failure. To predict the resource of
various-geometry materials under multiple loading, it is
necessary to study several structural levels of the
loaded solid.

Real fractal structures such as the cascade of micro-
cracks, failure centers, and shear bands attract attention
after the introduction of the concept of structural levels
of deformation and failure [11, 12]. A characteristic
feature of such dissipative structures is that their fractal
structure is manifested at the simultaneous realization
of several structural levels whose scales are so different
that it is difficult to represent a graphic geometric (frac-
tal) image in a given scale level. The observation and
identification of multiscale structures are hindered.
They can be consistently described in the framework of
the fractal concept, because such nonequilibrium sys-
tems are large ensembles consisting of hierarchically
coordinated statistical ensembles that, in turn, consist
of a set of subensembles, etc.

Interest in fractals has increased substantially after
numerous phenomena and problems had been
described where the fractal structure (dimension) was
the fundamental characteristic of a system. In [11], we
successfully applied such an approach to determine the
quantitative characteristics of dissipative structures
arising in the process of the dynamic failure of metals
and explosives, as well as in the process of the modifi-
cation of the structure of metals and alloys subjected to
pulsed high-current beams of relativistic electrons in
DOKLADY PHYSICS      Vol. 48      No. 11      2003
the dynamic longevity range (t ~ 10–6–10–10 s). Accord-
ing to the available data, systems formed under strongly
nonequilibrium conditions are fractal systems and char-
acterized by the fractal dimension.

Dynamic failure in specific temperature–time

ranges (t ~ 10–6–10–10 s, T0 ~ 4 K–0.8Tm,  ~ 108–

1012 K/s) [1–4, 11] is hierarchic and proceeds through
one mechanism—appearance, growth, and accumula-
tion of failure centers—where the bulk of the body near
failure centers that are appearing and growing serves as
a thermostat.

The reported investigations reveal the hierarchy of
the structural levels of dissipative structures determin-
ing the dynamic failure of metals in the longevity range
t < 10–6 s. The formation of dissipative structures is pos-
sible only when several structural levels are simulta-
neously realized. The fractal dimension of the struc-
tural levels is a quantitative characteristic of dissipative
structures. Dissipative structures at the macroscopic
failure threshold have the total potential energy E =
H + Lm. The proposed method of estimating the total
energy of an n-level hierarchic system enables one to
introduce a particular mathematical formalism for each
structural level of a loaded solid without detailed anal-
ysis of each structural level.

The above method determines the possibility of pre-
dicting the behavior of unstudied metals under extreme
conditions and allows computer “construction” of
materials stable to certain test conditions.
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It is common practice to describe propagation of
one-dimensional acoustic waves in media possessing
quadratic elastic nonlinearity and relaxation properties
by the integro-differential equation [1]

(1)

Here, V is the velocity of particles in the medium; C0

and C∞ are low-frequency (ω ! T–1) and high-fre-
quency (ω @ T–1) limits of the wave phase velocity; T

is the relaxation time; τ = t – , m =  ! 1; and

α is the parameter of quadratic nonlinearity. Equation (1)
is derived on the basis of the following relaxation equa-
tion of state for a medium [1]:

(2)

where p' and ρ' are perturbations of pressure and den-

sity, respectively, χ = const, and ρ' ! .

Equation of state (2) corresponds to a homogeneous
medium. Its rheological model consists of a chain of
equal links. Each of these links is a parallel connection
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of a standard linear viscous-elastic body and a nonlin-
ear spring [2] (Fig. 1a). In this case, the equation of
state for the entire chain coincides with the equation of
state for one link of the chain.

Equation (1) describes propagation of steady-state
waves of the symmetric-jump type, as well as forma-
tion of shock waves or solitons, while exciting periodic
perturbations in the medium [1, 3]. As is seen from the
rheological model (Fig. 1a) and from Eqs. (1), (2), in a
homogeneous medium, only linear relaxation takes
place, its nonlinearity being inertialess and frequency-
independent.

In [4, 5], the rheological model of a nonlinear
microinhomogeneous medium with relaxation proper-
ties and containing various microdefects (cracks, dislo-
cations, etc.) was proposed. In these papers, the nonlin-
ear equations were obtained, notably the equation of
state and the wave equation for one-dimensional acous-
tic waves. This model represents a chain of rigid linear
springs connected in series and a small number (per
unit length of the chain) of soft nonlinear viscous-elas-
tic defects (Fig. 1b). In the case of a microinhomoge-
neous medium containing identical defects and exhibit-

(a)

(b)

2

3

1

1

2

3

...

Fig. 1. Rheological models of (a) homogeneous and
(b) microinhomogeneous nonlinear media possessing
relaxation properties: (1) spring; (2) linear damper; (3) non-
linear element.
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ing quadratic elastic nonlinearity, these equations have
the form

(3)

(4)

where σ and ε are the stress and strain; E and C are the
Young modulus and the wave velocity for a medium
free of defects (the value of C also corresponds to the
high-frequency limit of the wave velocity in a medium
with defects); ν, ζ, Ω , and γ are the concentration
(ν ! 1), relative elasticity (ζ ! 1), relaxation fre-
quency, and the parameter of the quadratic nonlinearity

of defects respectively, τ = ,

 

or

In such a medium, the small dispersion parameter

m ! 1 is determined by the expression m = . In the

model, it is assumed that the linear defect size is much
smaller than both the acoustic wavelength and dis-
tances between defects. In addition, it is supposed that
a lot of defects correspond to the wavelength distance,
and their distribution in the chain is statistically uni-
form [6].

Comparison of rheological models (Fig. 1), of equa-
tions of state (2), (3), and of wave equations (1), (4) for
above-described media demonstrates certain differ-
ences. The basic difference consists in the fact that in
addition to the linear relaxation, a microinhomoge-
neous medium also possesses nonlinear relaxation.
This results in a dependence of nonlinearity of a
medium on frequencies of interacting acoustic waves,
i.e., in dispersion of nonlinearity [4, 5]. In turn, the dis-
persion of nonlinearity can qualitatively change the
character of nonlinear wave propagation in a microin-
homogeneous medium (compared to a homogenous
medium).

In this paper, we analyze in the framework of Eq. (4)
nonlinear wave processes in microinhomogeneous
media possessing relaxation properties. We imply prop-
agation of steady-state waves of the asymmetric-jump
type and distortion of low-frequency (LF) and high-fre-
quency (HF) initially harmonic waves.
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ν
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From cumbersome integro-differential equation (4)
with respect to the variable V, after simple transforma-
tions analogous to those performed in [1] we can obtain
the following simpler evolution equation with respect
to V and R(V):

(5)

(6)

Furthermore, similarly to [1], we seek the steady-state
solution to Eq. (6) in the form R = R(η), where η = τ –

bx, and b = const. Assuming γ > 0, R(∞) = R0 =  > 0,

R(–∞) = 0 (and in both cases,  = 0), we obtain

from (6) the equation for the nonlinear oscillator in the

case of Q = . This oscillator determines the profile of

a steady-state wave, namely, of asymmetric jump 1 →
0, which moves at a velocity CS(µ) with respect to the
immobile coordinate system:

(7)

(8)

where

We failed to solve Eq. (7) in the analytical form,
therefore we analyze it furthermore numerically. How-
ever, we may note at once one of the important proper-
ties of this equation: in contrast to the solution to
Eq. (1), its solution is continuous and unambiguous.
Mathematically, this property is explained by the fact
that Eq. (7) is linear with respect to the derivatives Qθθ
and Qθ. The physical reason for the continuity and
uniqueness of the profile for the jump 1 → 0 is the non-
linear relaxation. This relaxation damps the elastic non-
linearity of a microinhomogeneous medium in the HF
region (ω ! Ω) [4, 5]. This prevents an increase in the
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wave front steepness and appearance of ambiguity of
the profile V = V(θ), its maximal steepness being equal

to Qθmax = .

The results of numerically calculating profiles of

steady-state waves for W(θ) =  and for different

values of the dimensionless parameter µ are plotted in
Fig. 2. It follows from this figure and from the analysis
of linearized equation (7) near the equilibrium states

Q1 = 1 and Q2 = 0 that in the case of µ ≤ (3 – 2 ), the
wave profile represents the monotonous drop (the same
as in a homogeneous medium [1]). In the case of µ >
(3 – 2 ), in the profile (near the equilibrium state
Q1 = 1), oscillations occur. Their amplitude and fre-
quency increase with µ, whereas the front duration
decreases.

We now consider the propagation of an initially har-
monic wave (V(x = 0, τ) = V0sinωτ) in such a medium.
Assuming in Eq. (4) that

we arrive at

(9)

where S[W(ϑ , z)] = .

In the low-frequency limit (d ! 1), we have from (9),
we obtain an equation similar to the Korteweg–de
Vries–Bürgers equation [1]. The equation obtained dif-
fers from the latter one by a small nonlinear term

:

(10)

The solution to Eq. (10) (without the term )

was thoroughly studied in [1]. In particular, this solu-
tion describes the asymmetric distortion of a harmonic
wave and formation of weak pulsations near its vertex.

µ
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Apparently, it should be expected that the existence of
this term does not qualitatively change the general evo-
lution pattern for the LF wave.

In the other (HF) limit when 

 

d

 

 

 

@

 

 1

 

, we obtain from
Eq. (9)

 (11) 

As is seen from Eq. (11), in this case, the nonlinearity
of the medium is strongly suppressed. Thus, the HF
wave propagating at a velocity 

 

C

 

 undergoes only linear
attenuation whose decrement is determined by the

expression 

 

θ

 

0

 

 = 

 

.

 

More detailed and exact pattern of evolution of har-
monic waves (particularly for 

 

ω ≈ Ω

 

) can be obtained
by numerically solving Eqs. (9)–(11). 

 

The authors hope that the results of the performed
study could be useful in the development of nonlinear
acoustic (and seismoacoustic) methods of diagnostics
of microinhomogeneous media. These media contain
various viscous-elastic defects that have more compli-
cated (compared to that analyzed in this study) distribu-
tion over parameters 
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 and 

 

ζ

 

 and possess not only qua-
dratic (or cubic) elastic nonlinearity but a nonlinearity

 
∂

 

2

 
S

 ∂ϑ∂  z  -------------
1

 d  ---  
∂

 
S

 ∂  z  ------  
D
d  ----  

∂
 

S
 ∂ϑ  -------  
S

 

2

 2  d  3 --------–+ + 0.=

νΩ
4πζω
--------------

 

100
0

0.5

1.0

–

 

θ

 

1 2 3 4

W

 

Fig. 2. 

 

Profiles of steady-state waves of the asymmetric-
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of another type (e.g., hysteresis, or dissipative nonlin-
earity). These nonlinear relaxation properties are intrin-
sic to many polycrystalline rocks and a few metals.
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Pulses of transverse electromagnetic waves (TEM)
propagating from coaxial lines, where they are formed,
to irregular waveguides with simply connected sections
are transformed into pulses with the structure of longi-
tudinal waves (TM waves). These processes determine
the operation efficiency of certain devices such as
pulsed radiation antennas. The fast development of
equipment for ultrawideband electromagnetic pulses
[1, 2] has recently increased the interest in these pro-
cesses. Nevertheless, they remain poorly studied due
primarily to difficulties in the mathematical simulation
of pulsed operation modes for irregular channels. These
difficulties are aggravated by the presence of topologi-
cally discontinuous connections between transmission
lines with doubly connected sections and waveguides
with simply connected sections. As is shown in this
study, the corresponding generalization of the model of
connected strings for irregular waveguides with a con-
served topology of sections [3, 4] makes it possible to
perform such calculations with a high level of accuracy.

Figure 1 exemplifies such a channel with Z-axial
symmetry. The boundaries r = a(z) and r = b(z) of the
inner and outer ideal conductors, respectively, as well
as the characteristics (ε and µ) of the medium, are
assumed to be independent of the azimuth angle ϕ. The
boundaries are chosen in the form of cylinders a(z) =
a0 = const and b(z) = b0 = const for z ≤ 0 (regularity
region) that are transformed to the ellipsoid of revolu-
tion

and to the one-sheeted hyperboloid of revolution

respectively, for z > 0.

a z( ) a0 1 z2

a*2
--------– 

 
1/2

=

b z( ) b0 1 z2

b*2
--------+ 

 
1/2

,=
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The set of time-dependent waveguide equations has
the matrix form [3, Eq. (7)]

(1)

where the z coordinate and time t are independent vari-
ables. The components fj(z, t) of the unknown column
vector f(z, t) are the amplitudes of the reference-
waveguide modes in the expansion of the azimuthal
magnetic-field component, which is the only nonzero
component in the case under consideration:

(2)

The dimensions [N] of the column vector f(z, t) and of
the [N × N] square matrix functions G(z) and Q(z),
together with the transposed matrix functions Qτ(z),
P(z), and T(z) in set (1), are determined by the number N
of the terms taken into account in sum (2). These matrix
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functions are given by their matrix elements

(3)

where S(z) are the plane sections of the channel that are
orthogonal to the Z axis and the subscripts z and r stand
for the differentiation with respect to these variables.

In what follows, dimensionless variables and
parameters will be used. The dimensionless variables
are obtained by dividing all quantities that have a
dimension of length (space coordinates, functions a(z)
and b(z), etc.) by a certain convenient linear scale L,

while time t is divided by  (c is the speed of light in

vacuum). The dimensionless values are denoted by the
same symbols. In this case, c = 1.

The field distribution functions in the corresponding
reference waveguides are used as a set {ej(r⊥ , z)} in
expansion (2).

(i) For doubly connected S(z) in the range z < a*, we
take

(4)
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Fig. 2.
Here, λ = ; and xk (0 < x1 < x2 < x3< …) are the roots

of the equation

Since λ = λ(z), xk = xk(z). In this case, the amplitude
f1(z, t) corresponds to the magnetic field of the TEM
mode, whereas the remaining amplitudes fk + 1(z, t)
(k ≥ 1) correspond to the magnetic fields of the íå0k

modes (E-type waves).
(ii) For z > a*, when S(z) are simply connected, to

provide the continuity of the functions in the set
{ej(r⊥ , z)} with identical numbers j on either side of the
section S(a*), we supplement the basis set {ej(r⊥ , z)}

with the surplus function e1 =  and simultaneously set

f1(z, t) to zero. As a result, we have

(5)

Here, νk are the roots of the equation J0(νk) = 0 (0 < ν1 <
ν2 < ν3 < …). The normalization coefficients N0(νk) are
involved in (5) to provide the continuity of the set
{ej(r⊥ , z)} for z = a*. We emphasize that TE0j modes
(H-type waves) are assumed to be absent for t = 0; they
also do not arise for t > 0 and, therefore, are ignored
here.

Set (1) for the pulse with the TEM initial (t = 0)
structure (Fig. 1, trapezoidal curve 1 with the base in
the range –1.5 ≤ z ≤ –0.5, top in the range –1.3 ≤ z ≤
−0.7, and smoothed lateral sides against the back-
ground of the channel configuration) was numerically
solved by using an explicit finite difference scheme
with mesh sizes of hz = 0.01 and ht = 0.002. In this case,
solutions to set (1) were joined at z = a* in correspon-
dence with the continuity conditions for the transverse
components of magnetic and electric fields. For specific
calculations, we took a0 = 0.1, a* = 1.5, b0 = 0.3, b* = 2,
ε = µ = 1, and N = 7. In addition, Fig. 1 shows the cal-
culations of the magnetic field for the TEM component
of the pulse [function f1(z, t)] in the times: t = (2) 2;
(3) 2.25; (4) 2.5; (5) 2.75; (6) 3; and (7) 5.

The curves show the characteristic behavior features
for the magnetic-field TEM component of the pulse
near the S(a*) section. First, the width of the pulse
decreases (curves 2 and 3), because the trailing edge
approaches the leading edge that stops when it achieves
the S(a*) section and cannot overcome it. Then, the
magnetic-field pulse changes polarity (curve 4); i.e., the
propagation direction changes. Finally, the pulse width
is restored (curves 5–7).

In the time interval 2 < t < 3, the transformation of
transverse waves into TM-type longitudinal waves is
intensified simultaneously with the formation of the
reflected pulse. This can be directly seen in Fig. 2 show-

b
a
---

N0 λ xk( )J0 xk( ) J0 λ xk( )N0 xk( )– 0.=

1
r
---

e1
1
r
---;= ek 1+ N0 νk( )J1 νk

r
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  ,= k 1 2 … ., ,=
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ing the time dependence of the electric field directed
along the Z axis at this point.

The calculation error was estimated from the rela-
tive spread of the total electromagnetic energy accumu-
lated in the pulse and calculated when solving set (1).
This value was no more than 0.1% for various times t.

Thus, we showed that the fast qualitative reorgani-
zation of ultrawideband short electromagnetic pulses
passing through the topologically discontinuous con-
nections of coaxial-type waveguides and irregular
waveguides with simply connected sections can be effi-
ciently simulated and calculated with a high accuracy.
The structure of pulses, which are initially transverse
waves and are partially reflected as well as transformed
into forward-propagating longitudinal waves, changes
in the vicinity of the topologically discontinuous sec-
tions during the short time that pulses pass through.
DOKLADY PHYSICS      Vol. 48      No. 11      2003
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Introduction of a small fraction of large particles
often embrittles a polymer, and the rupture of the poly-
mer occurs at small relative elongation. The sharp loss
of the deformability of the composite is caused by the
appearance of so-called diamond-shaped pores [1]
observed previously in [2, 3]. It was shown that the size
of particles responsible for the appearance of diamond-
shaped pores is determined by the critical crack open-
ing and, therefore, by the breakdown viscosity of the
matrix polymer.

Rupture of particles or their separation from the
matrix under tension gives rise to the formation of pores
whose shape is determined by the size of particles [1].
Small and large particles form oval pores and diamond-
shaped pores, respectively. With further tension, the
two types of pores that appear behave differently. An
oval pore develops only along the material-elongation
direction. A diamond-shaped pore grows in three direc-
tions, parallel and perpendicular to the sample tension
axis, in particular, along the sample thickness, which
leads to early failure. In polymers deformed by the
propagation of a neck, the problem is compounded,
because the growth of pores is often localized in the
narrow formed neck. As a result, the material breaks
down at small macroscopic strain. Although the frac-
ture process (growth of diamond-shaped pores) is typi-
cally plastic at the mesoscale, the material behaves as a
brittle material at the macroscale. This work aims to
determine the dependence of the critical size of parti-
cles at which diamond-shaped cracks appear on the
properties of the polymer matrix.

Lukoten F 3802 medium-density polyethylene,
Lipol A4-70 polypropylene, and 168030-070 low-den-
sity polyethylene are used for composites. Polymers
were filled with powdered-rubber particles with sizes
from 50 to 600 µm. A monodisperse filler was obtained
by grading the polymers into grain sizes with a standard
set of sieves. Each polymer was mixed with rubber par-
ticles in a single-screw laboratory extruder. The filler

Institute of Synthetic Polymeric Materials, 
Russian Academy of Sciences, 
ul. Profsoyuznaya 70, Moscow, 117393 Russia
1028-3358/03/4811- $24.00 © 20640
concentration was equal to 1–2 vol %. Plates with a
thickness of 2 mm were pressed from obtained mix-
tures.

In addition, isotactic polypropylene with Mv = 6.3 ×

105  was mixed with monodisperse Al(OH)3

particles with sizes 8, 25, and 55 µm in a Brabender
mixer. The conditions of the production of the mixture
and its pressing were presented in [4]. The filler con-
centration was equal to 5 vol %.

Pure-polymer 0.5-mm-thick films were pressed in
the same regime as mixtures. Unfilled isotactic
polypropylene was treated in the Brabender mixer in
the regime of composite formation and was then
pressed.

Specimens in the form of double-sided blades with
5 × 35-mm working parts were cut out of the plates.
Mechanical tests of composites were carried out on a
Shimadzu Autograph AGS—10kNG universal testing
machine with a tension rate of 20 mm/min. The surface
of broken specimens was analyzed by both a Hitachi
S-520 scanning electron microscope and a Q × 3 optical
microscope. The particle sizes in the composite were
estimated when analyzing the material by a micro-
scope.

Specimens with a notch were tested on a testing
minidevice, where a specimen is stretched with a rate of
2 mm/min in the field of vision of the Q × 3 optical
microscope. The specimen was periodically photo-
graphed in the tension process. The notch was made by
a blade. The length of the crack was equal to 0.8–1 mm.

Figure 1 shows a diamond-shaped pore that appears
in the neck region due to the breakdown of a large par-
ticle under the tension of a filled polymer. The tension
direction is indicated by the arrow. The pore is strongly
elongated along the tension direction, and its length
reaches 1.5 mm. The sides of the diamond-shaped pore
are curved. The pore opening angles are equal to 25°–
30° and 140°–160°. Small remainders of the rubber
particles, whose main mass is often separated and
rejected from the pore, are seen in acute angles. Analy-
sis of the pore with large magnification shows that the
pore is much shallower near two acute angles than at

Mv

Mn

-------- 3.5= 
 
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1 mm

D

δ

Fig. 1. (Upper) Image of a diamond-shaped pore in a medium-density polyethylene with 2 vol % rubber particles as obtained by a
scanning electron microscope and (lower) scheme of the pore.
the center. Therefore, the pore grows not only in the
width (perpendicularly to the arrow shown in Fig. 1)
but also in the depth (thickness) of the specimen. More-
over, with larger magnification, traces of tearing apart
of polyethylene are seen on the line joining two neigh-
boring vertices of the pore, which indicates that the
pore grows in depth. Several oval pores are also
observed in the neighborhood. Figure 2 shows the typ-
ical form of an oval pore. This pore is much smaller
than the diamond-shaped pore and has a length of about
100 µm. Remainders of the destroyed particle pressed
out of the matrix are seen at the vertices of the pore.

The table presents the minimum size of filler parti-
cles near which diamond-shaped pores are formed. The
critical size of a particle depends on the type of matrix
polymer.

Pores that are formed under the rupture of large par-
ticles grow microcracks. Half of the diamond-shaped
pore is similar to the tip of a notch in the unfilled poly-
mer [5]. Optical microphotographs shown in Fig. 3
demonstrate the development of a crack under the ten-
sion of unfilled medium-density polyethylene. For
DOKLADY PHYSICS      Vol. 48      No. 11      2003
small strains of the specimen, the crack edge becomes
smooth, and its tip has a round shape similar to the
shape of the oval pore (Fig. 3a). Further tension leads to
a gradual opening of the crack. At a certain time, the
geometry of the crack tip changes from round to wedge,
and the crack begins to grow. Further opening of the
crack gives rise to an increase in the size of the wedge,

Minimum size of particles near which diamond-shaped pores
are formed and critical crack opening in 168030-070 low-
density polyethylene (LDPE), Lukoten F 3802 medium-den-
sity polyethylene (MDPE), Lipol A4-70 polypropylene
(PP1), and isotactic polypropylene (PP2)

Polymer Filler Minimum size
of particles, µm

Critical crack 
opening, µm

LDPE Rubber 400 1150

MDPE Rubber 100 680

PP1 Rubber 80 550

PP2 Al(OH)3 25 143
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whose angle remains unchanged. In this case, the tip of
the crack is similar to half the diamond-shaped pore
whose angle is virtually equal to the angle of the tip of
the crack (Fig. 1 and right panel in Fig. 3). A similar
behavior was observed in all polymers under investiga-
tion with both hard inorganic and elastic fillers.

The table presents the critical opening of the crack
for which the formation of an edge begins at the tip of
the crack for various polymers. The critical size of par-

100 mm

Fig. 2. Same as in the upper panel of Fig. 1, but for an oval
pore.
ticles near which diamond-shaped pores are formed
correlates with the critical opening of the crack δc. The
critical size of filler particles near which diamond-
shaped pores are formed increases with the critical
opening of the crack δc.

Breakdown of a filler particle leads to the appear-
ance of a pore. Rubber particles usually break down,
but they can also be separated from the matrix. Particles
of the mineral filler did not break down, and pores were
formed through the separation of filler particles.
According to linear fracture mechanics, a crack begins
to grow when its opening at the tip reaches the critical
value δc which is independent of the crack length [5, 6].
Knowing the critical size of filler particles for which
diamond-shaped pores appear, one can determine the
critical opening of a pore for which the development of
the pore as a crack begins.

We consider a spherical particle with diameter D.
Stress in the filler due to its breakdown is ignored. The
opening of a formed pore along the tension axis is equal
to the distance between the fragments of the particle
(Fig. 1), i.e.,

(1)

where λ is the elongation degree of the matrix polymer.

We assume that pores behave as microcracks; i.e.,
the formation of a diamond-shaped pore from an oval
pore begins when the opening of the latter pore δ
reaches the critical opening of the crack δc. In other
words, the equality δ = δc is a criterion of the beginning
of the growth of the micropore transversely to the elon-
gation direction (formation of the diamond-shaped

δ λ 1–( )D,=
δ

Fig. 3. Development of a notch in a medium-density polyethylene: (a) oval geometry of the crack tip and (b) edge formation.

(a) (b)
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pore). In this case, the critical size of particles is deter-
mined as

(2)

In this work, we studied only composites based on
polymers deformed with the formation of a neck, where
λ is equal to the natural elongation degree of the matrix
polymer λd. The appearance of diamond-shaped pores
was observed both in the process of the propagation of
the neck and at the reinforcement stage, when λ
exceeds λd. However, data presented below refer only
to the neck region. Figure 4 shows a correlation

between the quantity  and the experimentally

determined critical sizes of particles whose breakdown
(separation) is accompanied by the formation of dia-
mond-shaped pores. The dependence can be approxi-
mated by a straight line whose slope is close to unity.
This means that the transition of oval pores to diamond-
shaped pores is really caused by the achievement of the
critical opening δc . The behaviors of composites filled
with the hard mineral filler and rubber particles are sim-
ilar to each other. We emphasize that δc characterizes
the material cracking resistance, which is described by
one of three parameters: breakdown viscosity GIc, crit-
ical intensity coefficient KIc, or δc. Thus, the critical size
of particles in the filled composite is determined by the
cracking resistance of the matrix polymer.

Using the well-known relation between the break-
down viscosity GIc and critical opening of a crack GIc ≈
σyδc [6], where σy is the yield stress of the matrix poly-
mer, we represent Eq. (2) in the form

(3)

This formula can be written in the form

(4)

which describes the elongation degree for which dia-
mond-shaped pores are formed as a function of the size
of particles.

The above experimental data are given only for
polymers deformed by neck propagation. However,
they are probably general and are similar for materials
deformed through uniform plastic flow. Thus, the
breakdown or separation of large particles is responsi-
ble for the appearance of defects that first grow as oval
pores under tension and then are transformed to dia-

Dc

δc

λ 1–
------------.=

δc

λd 1–
--------------

Dc

GIc

σy λ 1–( )
-----------------------.=

λ
GIc

σyD
---------- 1,+=
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mond-shaped pores. The latter pores are microcracks
growing transversely to the tension direction. A dia-
mond-shaped pore is formed when the opening (elon-
gation) of the pore reaches the critical opening of a
crack in the unfilled polymer with a notch. The size of
particles for which diamond-shaped pores appear is
limited by the breakdown viscosity of the matrix poly-
mer. A filler particle can be called large if its size is
close to or larger than Dc.
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The thermal gas-dynamic model of self-excited
oscillations of a Helmholtz resonator is analyzed. We
introduce dimensionless variables and parameters that
provide an adequate description of periodic motions by
a third-order quasilinear system. The conditions of
existence, uniqueness, and stability of the limiting
cycles are ascertained. By the methods of local integral
manifolds, averaging, and the Lyapunov–Poincaré
method, a first-approximation solution is constructed
and basic qualitative and quantitative characteristics of
self-excited oscillations of the Helmholtz resonator are
established. This thermal–mechanical system has not
yet been satisfactorily studied.

1. The Helmholtz resonator was used as a simple
acoustic device for both the efficient determination of
the frequencies of acoustic oscillations and their
absorption [1]. At present, devices and coatings based
on the properties of the resonator are widely used in
both architecture and technical acoustics [2]. The
Helmholtz resonator includes a closed vessel that has
volume V and a hole with area S. The hole is tightly
connected with a tube open at both ends. This tube has
length l and an inner cross section corresponding to the
hole. The vessel and tube is filled with a gas, e.g., air. It
was shown [1] that, under certain conditions, this
device is a lumped linear oscillatory system, where the
gas column in the tube and the gas in the vessel charac-
terize lag and elasticity, respectively. The frequency ω0
of small free oscillations disregarding dissipation is
equal to

(1)

where c0 is the speed of sound in the gas, γ is the adia-
batic index, P0 is the pressure, and ρ0 is the gas density.
According to Eq. (1), the frequency ω0 is independent

ω0 c0
S
lV
-----, c0

2 γ
P0

ρ0
-----,= =
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of the shapes of the vessel V and hole S. For conven-
tional atmospheric conditions and V ~ 102 cm3, S ~

1 cm2, and l ≈ 10 cm, we have ω0 ~ 103 s–1, i.e.,  ~

102 Hz, which corresponds to the frequency of audible
acoustic oscillations for c0 = 3.4 × 104 cm s–1.

Free oscillations of the gas in the resonator tube rap-
idly damp due to dissipation. However, by heating the
gas in the vessel, one can realize positive feedback and
sustain oscillations of the gas column for a long time,
i.e., realize self-excited oscillations of the thermal gas-
dynamic system with the frequency ω close to ω0 given
by Eq. (1). This mechanism and simple mathematical
model were proposed by Teodorchik [3]. He empha-
sized that similar thermomechanical oscillations were
often observed both in technical devices and in nature:
acoustic oscillations of air in tubes under glass-blowing
operations, “singing” of vapor in long pores of a thick
layer of deposits before liquid boiling, self-excited
oscillations of a gas in boiler tubes, geysers as an oscil-
lation geothermal phenomenon, Cepheid variable stars
as an astrophysical phenomenon, etc.

A simplified model provides not only qualitative but
also satisfactorily quantitative determination of the
conditions of appearance and basic characteristics of
self-excited oscillations for various parameters of the
thermomechanical system. Following [3], we represent
the relations describing the dynamics of the system. A
substantial condition is that the steady-state tempera-
ture Tx of the resonator walls has significant gradient
near the point x = 0 of the connection between the ves-
sel and tube. The x dependence of Tx is usually approx-
imated as [3]

(2)

where k1, 3 > 0 are constants and T0 is the average tem-
perature for x = 0.

Further, the thermal balance condition

(3)

is applied to the gas element with mass m, which is in
interval (2) near x = 0. Here, T is the current tempera-

ω0

2π
------

T x T0 k1x k3x3, x–+ d  ! l,≤=

mcθ̇ K k1x k3x3– θ–( ), T T0= θ+=
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ture, θ is the deviation from the average temperature T0,
c is the heat capacity at a constant gas volume, and K is
the thermal conductivity.

Under the assumption that the displacement x of a
gas column with the mass m0 = ρ0Sl in the tube is small,
the equation of motion (after division by m0) has the
form

(4)

in the approximation of linear dissipation and thermal
expansion. Here, 2δ is the dissipation coefficient and β
is the coefficient of thermal expansion relating the ther-
mal variable θ to mechanical variables x and . We note
that the point θ = x =  = 0 is the steady state of the set
of Eqs. (3) and (4), which is further analyzed by asymp-
totic methods. It is of interest to analyze both the stabil-
ity conditions for the rest point and the possibility of
self-excited oscillations of the Helmholtz resonator in
the quasilinear model. There are attempts of analytical
analysis of the system. However, a satisfactory solution
to the problem of undamped periodic motion is absent.
In this work, self-excited regimes are constructed and
analyzed for various resonator parameters under the
assumption that the dimensionless coefficients of self-
excitation and dissipation are small.

2. The dimensional set of Eqs. (3) and (4) involves
four variables θ, x, , and t and eight parameters ω0, δ,
β, m, Ò, K, k1, and k3 in certain combinations. To obtain
completely dimensionless equations, it is convenient to
remove the variable θ, which has no mechanical mean-
ing, and pass to the third-order equation in the variable
x. This operation is performed through, first, the differ-
entiation of Eq. (4) with respect to t and, second, the

expression of θ and  in terms of x, , and . Then, the
resulting equation reduces to the third-order equation
involving only three dimensionless parameters ε, κ,
and σ:

(5)

Here, the dot represents the derivative with respect to
the dimensionless variable τ and the length unit d is the
interval characterizing the temperature gradient accord-
ing to Eq. (2). The dimensionless quantity ε is consid-
ered as a small parameter in the problem of oscillations
of the quasilinear system specified by Eqs. (5), which

has the rest state ξ =  =  = 0. We analyze the

ẋ̇ 2δẋ ω0
2x βθ+ + + 0, x d  ! l≤=

ẋ
ẋ

ẋ

θ̇ ẋ ẋ̇

ξ̇̇̇  + κ εσ+( )ξ̇̇ 1 εσκ+( )ξ̇ κ ε+( )ξ εξ 3–+ + 0,=

τ  = ω0t, ξ  = 
x
d
---, d2 = 

k1

k3
----, κ  = 

K
mcω0
-------------, κ 1,∼

ε
κβk1

ω0
2

------------, ε ! 1, εσ 2δ
ω0
------.= =

ξ̇ ξ̇̇
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Lyapunov stability of this solution. According to the
Routh–Hurwitz criterion, the conditions of asymptotic
stability have the form

(6)

The first and third conditions are automatically satis-
fied. The second inequality is a relation implied on the
parameters of the system after the transition to dimen-
sional variables according to Eq. (5). According to con-
ditions (6), this relation can be violated if the dissipa-
tion coefficient σ is quite small, in particular, for σ ~
ε ! 1. In this case, the inverse inequality is satisfied,
and the rest point is exponentially unstable. Indeed, the
roots of the characteristic linearized equation (5) for
quite small ε > 0 are represented as

(7)

For σ ≤ (1 + κ2)–1, the real parts of the complex con-
jugate roots λ1, 2 (7) are positive, which corresponds to
the violation of the second of conditions (6) for small ε.
Thus, indicated σ values are of interest for analysis of
motion of the system near the stationary point, as well
as for determination of the possibility of self-excited
oscillations and Lyapunov stability.

The problem of existence and approximate con-
struction of the stationary periodic motions (self-
excited oscillations) can be solved by the Lyapunov–
Poincaré method. Their stability is analyzed by the
Andronov–Witt theorem [5]. However, this approach is
very cumbersome. Moreover, the behavior of the sys-
tem near the periodic motion is of applied interest.
These investigations require effective asymptotic meth-
ods of nonlinear mechanics such as the method of local
integral manifolds [6, 7] and averaging [8, 9]. To apply
these methods, it is necessary to reduce Eq. (5) to the

standard system by changing the variables ξ, , and 
to the variables a, ψ, z:

(8)

Here, a is the amplitude, ψ is the phase, and z is the
variable determining the asymptotically stable local

κ εσ 0, εσ 1 κ2 εσκ+ +( ) ε– 0,> >+

κ ε 0.>+

λ λ 1 2 3, , ε( ), λ ε( ) λ0 ελ1 ε2…,+ += =

λ1 2,
0 i, λ1 2,

1± i
2
--- κ

1 κ2+
--------------± 1

2
--- 1

1 κ2+
-------------- σ– 

  ,+= =

λ3
0 κ , λ3

1–
1

1 κ2+
--------------, i– 1– .= = =

ξ̇ ξ̇̇

ξ a ψsin z, ξ̇+ a ψcos κz,–= =

ξ̇̇ a ψsin– κ2z.+=
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integral manifold. In view of Eq. (5), the differentiation
of Eqs. (8) provides the standard system [6, 7]

(9)

Expressions (8) for ξ, , and  are substituted into the
function f. The right-hand side is a 2π periodic function
of ψ. For ε = 0, the general solution of system (9) is eas-
ily constructed. The periodic solution for ξ corresponds
to z ≡ 0.

3. Estimating the solution of set (9), one can show
that, after a relatively short time interval

(10)

motion is bounded in the ε vicinity of z = 0. It was found
[6, 7] that, for τ > ∆τ, the system moves in the ε vicinity
of the stable local integral manifold

(11)

The unknown function h is determined as the solution
of the partial differential equation

(12)

which is 2π periodic with respect to ψ. Since Eq. (12) is
an analytic function of h, ε, and a, the desired function
h can be constructed by the recurrence procedure

(13)

with a given accuracy for sufficiently small ε0 . The

function  can be represented at each step of the pro-
cedure not only in operator form (13) but also in the
form of a trigonometric polynomial of order N = N( j ).

ȧ εA a ψ z, ,( ), A κ ψcos ψsin–( ) f , a 0,>≡=

ψ̇ = 1 εΨ a ψ z, ,( ), Ψ a–1 κ ψsin ψcos+( ) f ,–≡+

ż κz+ εZ a ψ z, ,( ),=

Z f≡ 1 κ2+( ) 1– ξ3 ξ– σκξ̇– σξ̇̇–( ).=

ξ̇ ξ̇̇

∆τ κ 1– z0 ε 1–( ) ! ε 1– , z 0( )ln≈ z0,=

z εh a ψ ε, ,( ), h a ψ 2π+ ε, ,( ) h a ψ ε, ,( ).≡=

hψ' κh+ H a ψ ε h[ ], ,( ), H Z εhψ' Ψ– εha' A,–≡=

h h0, 0 a– a a+ ∞, ε ε0,≤<≤ ≤<≤

h j 1+( )* a ψ ε, ,( )

=  ψ ϕ–( )–[ ] H a ϕ ε h j( )[ ], ,( )exp ϕ ,d

∞–

ψ

∫
h 1( )* a ψ,( )

=  ψ ϕ–( )–[ ] Z a ϕ 0, ,( )exp ϕ , jd

∞–

ψ

∫ 1 2 …, ,=

h j( )*
Since the function  is representable as a power
series of ε, expression (13) can be recurrently repre-
sented as

(14)

where the operator function ç has form (12) and the
coefficients hj are trigonometric polynomials of ψ with
the period 2π. The procedure specified by Eqs. (13)
or (14) provides the desired solution h*(a, ψ, ε) with
the required accuracy in ε.

The substitution of the expression z = εh* into
Eq. (9) for a, ψ on the local integral manifold leads to
the following standard set with the rotating phase:

(15)

Set (15) is much simpler for analysis than set (9).
The solution a*(τ, ε), ψ*(τ, ε) of set (15) for certain
input data and a similar solution a(τ, ε), ψ(τ, ε), z(τ, ε)
of set (9) have the properties [6]

(16)

Therefore, self-excited oscillations of system (5)
equivalent to Eqs. (9) are on the stable local manifold
z = εh* specified by Eqs. (11)–(14) and are described by
Eqs. (15). These oscillations can be approximately con-
structed and analyzed by the Lyapunov–Poincaré meth-
ods [5, 7].

4. The evolution of the osculating variables a and ψ
according to Eqs. (15) is analyzed by the averaging
method [6–9]. The recurrence procedure separating a
and ψ is very cumbersome and requires symbolic com-
puter calculations. However, the first-approximation

h j( )*

h* a ψ ε, ,( ) h j( )* a ψ ε, ,( ) O ε j( )+=

=  h1 a ψ,( ) εh2 a ψ,( ) … ε j 1– h j a ψ,( ) O ε j( ),+ + + +

h j a ψ,( ) ψ ϕ–( )–[ ] H j a ϕ,( )exp ϕ ,d

∞–

ψ

∫=

H Z= a ψ 0, ,( ) εH2 … ε j 1– H j O ε j( ),+ + + +

ȧ εA* a ψ ε, ,( ), A* A a ψ εh* a ψ ε, ,( ), ,( ),≡=

ψ̇ 1 εΨ* a ψ ε, ,( ),+=

Ψ* Ψ a ψ εh* a ψ ε, ,( ), ,( ).=

z τ ε,( ) εh* a* τ ε,( ) ψ* τ ε,( ) ε, ,( )– C κ*τ–( ),exp≤

ξ τ ε,( ) a* τ ε,( ) ψ* τ ε,( )sin– C κ*τ–( ),exp≤

C κ*, 0.>
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solution is easily constructed and reduces to the inte-
gration of the system

(17)

where the angular brackets mean the averaging over ψ.
Equations (17) are integrated for given initial condi-
tions, in particular,

(18)

When dissipation is large, i.e., γ ≤ 0, the oscillation
amplitude a → 0 vanishes in the limit τ → ∞; i.e., self-
excited oscillations do not arise. When dissipation is
small, i.e., γ > 0, the amplitude a(ετ, a0) tends to the sta-
ble limiting value

(19)

independently of a0 > 0.
Value a∗  (19) is the asymptotically (exponentially)

stable stationary point of Eq. (17) for a. The point a = 0
is unstable. According to the Lyapunov–Poincaré
method [5, 7], the desired periodic solution of sys-
tems (5), (9), and (15) exists, is unique for sufficiently
small ε0 values, and is an analytic function of ε, and the
value a∗  is the first approximation of the amplitude of
self-excited oscillations with respect to ε.

In the first approximation, the frequency ν(a, ε) of
nonstationary oscillations is determined by the equa-
tion for ψ in set (17), and the phase is represented in
quadrature for the function a(ετ) known according to
Eqs. (18). For steady self-excited oscillations,

(20)

We represent the resulting expressions in the origi-
nal dimensional variables according to Eqs. (3)–(5).

ȧ εA1 a( ), A1 A* a ψ 0, ,( )〈 〉 ψ≡=

=  
a
2
--- 1

1 κ2+
-------------- σ– 

  3
8
--- a3

1 κ2+
-------------- 

  ,–

ψ̇ 1 εΨ1 a( ), Ψ1 Ψ* a ψ 0, ,( )〈 〉 ψ≡+=

=  –
κ

1 κ2+
-------------- 3

8
---a2 1

2
---– 

  ,

a 2– a0( ) 2–
e εγτ––

χ
γ
--- 1 e εγτ––( ), γ 0;≠=

a 2– a0( ) 2–
– εχτ , γ 0;= =

γ 1 κ2+( ) 1– σ, χ–
3
4
--- 1 κ2+( ) 1–

.= =

a*
γ
χ
--- 

 
1/2 4

3
--- 1 σ 1 κ2+( )–( )1/2

, a* 1∼= =

ν a* ε,( ) 1
ε
2
---σκ , ψ+ 1

ε
2
---σκ+ 

  τ ψ0.+= =
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The condition of existence γ > 0 and limiting cycle in
the variables x, , and θ are described by the relations

(21)

Using formulas (5), (17), and (20), we obtain the
dimensional frequency ω and time ζ of reaching the
limit cycle in the form

(22)

Formulas (21) and (22) determine the characteristics
of self-excited oscillations of the Helmholtz resonator
specified by Eqs. (3) and (4) in the original thermal and
gasdynamic variables. These formulas are considerably
simplified if the dissipation coefficient δ can be ignored
in calculations; i.e., if σ ~ ε. In this case, in the first

approximation, da∗  = , the frequency ω is con-

stant, and the constant ζ decreases.

Analysis of self-excited oscillations for moderate
parameters ε defined in Eqs. (5) is of considerable inter-
est. This analysis requires the development of numeri-
cal–analytical methods [10].
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1. Study of the behavior of defects in the internal
structure of a solid is of fundamental importance for
simulation of its behavior under external action. The
problem of the behavior of a spherical cavity is a clas-
sical problem for point defects. As early as in 1917,
Rayleigh [1] showed that the absolute value of the
velocity of the cavity boundary in an ideal incompress-
ible fluid increases as R–3/2 with a decease in the cavity
radius R to zero. The compression of the cavity in a vis-
cous medium with surface tension can lead to several
collapse regimes [2–4]. The basic properties of cavity-
collapse regimes under such conditions were studied by
methods of the qualitative theory of differential equa-
tions in [5].

In this work, we analyze motion of a cavity at nega-
tive external pressure, i.e., when liquid is subjected to
tension. It is shown that exact solutions of the dynamic
equation for the cavity boundary in the viscous incom-
pressible fluid exist for certain pressure values. These
solutions correspond to the separatrix of the equation
under consideration and make it possible to analyze the
effect of pressure on the formation of the regimes of the
collapse and growth of the cavity.

2. It is known [3] that the motion of the cavity
boundary in the viscous incompressible fluid is
described by the Rayleigh equation

(1)
3
2
---v 2 Rv

dv
dR
------- 2σ

ρR
------- 4µv

ρR
-----------+ + +

P∞

ρ
------.–=
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Here, v  =  is the velocity of the boundary, σ is the

surface tension, ρ is the medium density, µ is the
dynamic viscosity, and P∞ is the external pressure. We
assume that the cavity is free of gas and P∞ < 0; i.e., the
applied pressure is tensile. In terms of the dimension-
less variables u, r, and P introduced as

(2)

Eq. (1) is represented in the form

(3)

Equation (3) describes motion of the dissipative
dynamic system, which generally has no integral of
motion. However, Eq. (3) is integrable for certain P val-
ues. Direct calculation shows that

at at P = 9 (4)

satisfy Eq. (3) for P = 1 and 9, respectively. Although
solutions are constructed only for two P values, they
make it possible to separate trajectories corresponding
to different types of motion of the cavity boundary.

3. For further analysis, we consider integral curves
of Eq. (3) on the (u, r) phase plane. Solution (4) for P =
1 corresponds to separatrix 1 in Fig. 1a. It includes the
point A, where u = 0 and r0 = 1. The radius r0 = 1 is
determined only by the properties of the continuum and
has the sense of the critical radius separating the
regimes of collapse and extension of the cavity, e.g., in
dimensional variables (2) R0 = 0.67 × 10–6 m and –P∞ =
2.2 atm for water.

For P = 1, the second separatrix 2 passes through the
point A. The point A is a singular saddle point for
Eq. (3). This point is absent for a positive external pres-
sure. Separatrices 1 and 2 separate the phase plane into
the regions with different regimes of motion of the cav-

dR
dt
-------

v
σ

6µ
------u, R

48µ2

ρσ
-----------r, –P∞

ρσ2

24µ2
-----------P,= = =

u2 2
3
---ru

du
dr
------ 1

r
--- u

3r
-----+ + + P.=

u U≡  = 1 1
r
---– P = 1   and   u  = 3–                
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Fig. 1. Integral curves of Eq. (3) on the (u, r) phase plane for P = (a) 1, (b) 4.5, and (c) 9.
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ity boundary. The direction of motion of the boundary
is indicated by the arrow. Along integral curves located
in region I, the absolute value of the velocity increases
for r → 0. All integral curves located in region II, i.e.,
between the axis r = 0 and separatrices, enter the point
B = (–3, 0) with the same slope. The point B has a sad-
dle–node singularity and has one node sector in the
physical region r > 0. This point is also absent for a pos-
itive pressure [5]. In region III, curves have a turning
point, where the velocity u = 0. In region IV, the cavity
boundary grows monotonically along integral curves.

We consider the case P ≠ 1. The coordinates of the
crossing point A of the separatrices can be found from

Eq. (3) by setting u = 0. In this case, r0 = . The singu-

larity type of this point coincides with the type for the
case P = 1. Since the solution u on the separatrix has a
zero at r = r0 , it should be represented in the form

, (5)

where f is a certain function. We analyze the asymptotic
behavior of separatrices 1 and 2 in the leading order in
r for r @ r0 . We consider the function f as a function of

the variable x = . Substituting expression (3) into

Eq. (5), we arrive at the equation

(6)

for f. Substituting f =  into this equation and

equating terms with the same x powers, we obtain f0 =

±  in the leading (zeroth) order in x ! 1. Therefore,

according to Eq. (5), the solution u on separatrices 1

and 2 has the form u ~ ±  in the leading order in x.
Thus, separatrices 1 and 2 in the asymptotic region r @
r0 are symmetric with respect to the axis u = 0.

Numerical analysis shows that separatrix 1 has a
minimum for P > 1 and is a monotonic function for
P ≤ 1. For P ≤ 1 and r ! r0 , Eq. (6) reduces to the equa-
tion

for the function f(t) in the new variable t =  = . 

1
P
---

u P
1
r
---– 

  f=

r0

r
----

f 2 3 x–( ) 2x 1 x–( ) f
df
dx
------– fx+ 3

P
---=

xn f n

n 0=

∞

∑

1

P
-------

P

f 2 3t2 1–( ) t t2 1–( ) f
df
dt
----- f+ + 3t2

P
-------=

1
x
--- r

r0
----
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Substituting f =  into this equation and equating

terms with the same t powers, we obtain f0 = 1 or 0 in
the leading order in t ! 1. Since the solution on the sep-

aratrix is singular for r ! r0 , u ~ P – .

We consider collapsing trajectories neighboring the
separatrix and analyze the asymptotic behavior of the
velocity of the cavity boundary for small r values. We
take P = 1 because exact solution (4) is known for the
velocity on the separatrix in this case. Substituting

(7)

into Eq. (3), we obtain the equation

for the function g = g(r). For certain r = r1 , the velocity
U(r1) = u1 < 0, and u(r2) = u1 for neighboring trajecto-
ries with r2 = r1 + ε, where 0 < ε ! 1. Therefore, g(r2) =

 according to Eq. (7). Since we seek the

asymptotic behavior of the function u for small r and ε,
we take r1 = ε2γ, where 0 < 2γ < 1. Then, replacing

g(r) → g(r2) ~  = ε1 – γ in Eq. (7) in the leading order

in ε1 – γ, we obtain

(8)

Therefore, the Rayleigh law of cavity collapse, i.e.,

|u | ~ r–3/2, is observed when  ! ε1 – γ. At the same
time, the contribution on the separatrix dominates in

Eq. (8) when ε1 – γ !  ! . Indeed, relation (8) can
be represented in the form

(9)

where z = rε2(1 – γ). The contribution on the separatrix

dominates when  @ 1, i.e.,  @ ε1 – γ. The latter

condition is consistent with the condition  ! ,

because γ < . When z ~ 1, i.e.,  ~ ε1 – γ, the terms in

tn f n

n 0=

∞

∑

1
r
---

u r( ) U r( ) g r( )
r3/2

----------– 1 1
r
---– g r( )

r3/2
----------–= =

2
3
---r1/2∂g

∂r
------ r3/2 r1/2– g–( ) rg+ 0=

ε r1 ε+
r1

--------------------

ε
r1

--------

u r( ) 1 1
r
---–

ε1 γ–

r3/2
----------.–∼

r

r ε

u r( ) 1
1

ε2 1 γ–( )--------------- 1
z
--- 1

z3/2
-------+ 

  ,–∼

z r

r ε
1
2
--- r
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the parentheses in relation (9) are of the same order of
smallness.

The appearance of a minimum on separatrix 1 for
P > 1 changes the behavior of integral curves located in
region I for r → 0. These curves, as well as the separa-
trix, enter the point B with the same slope 3(P – 9). The
curves in region II have the same slope. The singularity
type of the point B is similar to the case P = 1, but there
are two node sectors for P > 1. Figure 1b shows integral
curves for P = 4.5. The distance between any two
curves entering the point B is exponentially small for
r → 0. Indeed, any two solutions u2 and u1 of Eq. (3)
satisfy the relation

where the function u– = u2 – u1 determines the differ-
ence between the trajectories. Since u1, u2 → –3 and

r  → 0 for r → 0, u– satisfies the equation

u−  = 2r  whose general solution has the

form

For r → ∞, trajectories that lie in regions III and IV
and correspond to the growth of the cavity asymptoti-

cally approach separatrix 1, i.e., u → . It can be
shown (similarly to the consideration for the point B)
that the distance between any two trajectories decreases

as .

Let us analyze the asymptotic behavior of separa-
trix 2 and trajectories in region II for r → 0 and u > 0.
Since the solutions of Eq. (3) that correspond to the sep-
aratrix and trajectories vanish for certain r = a, u can be

represented as u = f. The parameter a specifies

trajectories, in particular, a = 1 for the separatrix.
Taking

u– u1 u2+( ) 2
3
---r u1

∂u–

∂r
-------- u–

∂u2

∂r
--------+ 

  u–

3r
-----+ + 0,=

∂u2

dr
--------

–6 1
3r
-----+ 

  ∂u–

∂r
--------

u–

u0

r3
----- 1

6r
-----– 

  .exp=

P

1

r3
----

P
a
r
---– 

 

f
1

x
-------ϕ x( ), x

Pr
a

------,= =
we arrive at the equation

for ϕ. The formal asymptotic expansion of the function

ϕ for x → 0 must be written in terms of  powers
beginning with zeroth power, i.e.,

The leading asymptotic term ϕ0 is determined by the
parameters of a trajectory in region II, and the other
expansion terms ϕn are calculated in terms of ϕ0 .
Therefore, trajectories in region II for u > 0 have the
velocity asymptotic behavior u ~ r–3/2 for r → 0.

For P = 9, the minimum of the separatrix coincides
with the point B (Fig. 1c), and corresponding solution (4)
appears. To reveal the physical meaning of this solu-
tion, we consider trajectories in region I that have

extrema where  = 0. From Eq. (3), the second deriv-

ative of the velocity at the extremum r∗  is calculated as

where u∗  = u(r∗ ). Therefore, r∗  is the point of maxi-
mum and minimum if u∗  > –3 and u∗  < –3, respectively.
For solution (4), the second derivative of the velocity is
equal to zero. Thus, the solution u = –3 is the line of
inflection for trajectories in region I.

The qualitative behavior of trajectories in regions III
and IV does not change with P.

4. The above analysis of motion of the cavity bound-
ary at a negative external pressure shows that both
regimes of growth and collapse can be realized by
choosing initial data. The phase plane is separated by
two separatrices into four regions of different types of
motion. The behavior of the separatrix corresponding to
the collapse regime depends on the external pressure P.
For P = 1, exact solution (4) whose singular behavior in
the limit r → 0 does not change for P < 1 is constructed
for this trajectory. The asymptotic behavior of a col-
lapsing trajectory neighboring the separatrix for small r
values and P = 1 depends on the relation between r and
the parameter characterizing the initial distance
between this trajectory and the separatrix. For P > 1,
collapsing trajectories, as well as the separatrix, have a
finite velocity at the instant of closure, and the distance

2ϕ2x x 1–( ) 2x x 1–( )2dϕ
dx
------ϕ 1

a
--- x 1–( ) xϕ+ +

=  –
3

Pa
-------x2 3

Pa
-------x3+

x

ϕ ϕ 0 xn/2ϕn.
n 1=

∞

∑+=

∂u
∂r
------

d2u

dr2
--------

u* 3+

2u*r*
3

---------------,=
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between any trajectories is exponentially small in r.
Trajectories corresponding to the growth regime have

asymptotic behavior ~ .
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The notions of both asymptotic stability and expo-
nential stability for a solution to an ordinary multidi-
mensional differential equation were introduced by
Lyapunov [1] (see also [2–4]). The question on the
most natural generality of these notions was treated
in [5, 6].

In this paper, we prove the reversibility of the
Lyapunov theorem about asymptotic stability (of expo-
nential type) of the solution x = 0 of the nonlinear dif-
ferential equation

(1)

provided that the constant n × n matrix A of the linear
approximation

(2)

is stable, and the vector function g(t, x) continuous on
the set R+ × {|x| < h} satisfies the condition

uniformly with respect to t ∈ R+, where |·| is an arbitrary
norm of the vector function.

We recall that a matrix is referred to as stable (semi-
stable) matrix if all its eigenvalues have negative (non-
positive) real parts.

Definition 1 [1]. The solution x = 0 of Eq. (1) is
referred to as an exponentially asymptotically stable (or
exponentially stable) solution if there exist (as t → +∞)
numbers c > 0, r0 > 0, and ω > 0 such that each solution
x(t) of Eq. (1) under the initial condition |x(0)| ≤ r0
meets the inequality

(3)

dx
dt
------ Ax g t x,( ), x Rn,∈+=

dx
dr
------ Ax, x Rn∈=

h 0,
g t x,( )

x
------------------ 0 as x 0, x h,<→→>∃

x t( ) c x 0( ) ωt–( ).exp≤
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The exponential asymptotic stability of the solution
x = 0 of Eq. (1) with a stable matrix A was proved by
Lyapunov [1] for the case of an analytical right-hand
side and by Cotton [7], Perron [8], and Petrowsky [9]
for the case of nonanalytical right-hand sides.

We now represent the Lyapunov theorem on the
asymptotic stability in the first approximation.

Theorem 1 [8]. Let (1) A be a constant stable n × n
matrix and (2) a continuous function g(t, x) of (t, x) sat-
isfy the condition

(4)

uniformly with respect to t ∈ R+, where o(|x|) is a func-
tion infinitesimal as x → 0.

In this case, the solution x = 0 of Eq. (1) is exponen-
tially stable as t → +∞ in the sense of Definition 1. 

The proof of Theorem 1 can be found, e.g.,
in [10, 11].

Remark 1. Hypothesis (3) in Theorem 1 can be sub-
stituted by one of the following conditions [10, 11].
(1) The inequality

is satisfied for all sufficiently small |x(t)|; and for any
arbitrary number ε > 0 there exist numbers δ > 0 and
τ > 0 such that

(2) The inequality

is satisfied for certain numbers a > 0 and b > 0 and for
all |x| sufficiently small in norm, and for every number
ε > 0, there exist numbers δ > 0 and τ > 0 such that

for all |x| < δ.
Remark 2. Theorem 1 remains valid if the matrix A

in Eq. (1) is substituted by a periodic matrix A(t). In this
case, eigenvalues of A are substituted by characteristic
indices of the linear equation  = A(t)y. Indeed, Eq. (1)

g t x,( ) o x( ) as x 0, x h,<→=

k 0 g t x,( ) k x t∀ t0><>∀ 5( )1

g t x,( ) ε x t τ x∀ δ .≤≥∀≤ 5( )2

k∀ 0 g t x,( ) k x x 1 a+ ta t t0>∀+<> 6( )1

g t x,( ) ε x x 1 a+ tb t τ≥∀+≤ 6( )2

ẏ
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can be transformed into an equation with a constant
matrix by the change of variables x = By, where B is a
periodic matrix with the determinant satisfying the ine-
qualities |detB| < c and |detB–1| < c [11].

Theorem 1 cannot be generalized for the case when
the constant matrix A and its eigenvalues are substituted
by a continuous matrix A(t) bounded on R+, and its char-
acteristic indices, respectively. We now consider an
example.

Example [8]. The linear approximation to the non-
linear equations

(7)

has the form

(8)

The characteristic indices –a and 1 – 2a of Eqs. (8)

are negative for a > . Hence, for a > , the zero solu-

tion x1 = x2 = 0 to Eqs. (8) are exponentially stable as

t → +∞. However, for a ∈ , the zero solu-

tion x1 = x2 = 0 of nonlinear equations (7) is unstable as
t → +∞ in the Lyapunov sense.

The following theorem is valid.
Theorem 2. Let (1) a n × n matrix C be nonsingular

and a continuous vector function f(t, y) of (t, y) satisfy
the condition

f(t, y) = o(|y|) as y → 0 
uniformly with respect to t ∈ R+, (9)

and let (2) the solution y = 0 of the nonlinear differen-
tial equation

(10)

be exponentially stable as t → +∞ in the Lyapunov
sense. In this case, the matrix C is semistable.

Proof by contradiction. We assume that one of
eigenvalues of the matrix C has a positive real part.
Since the perturbation f(t, y) satisfies condition (9),
then, according to the Lyapunov theorem on the insta-
bility in the first linear approximation, the solution y =
0 of Eq. (10) is unstable as t → +∞ in the Lyapunov
sense. Thus, we arrive at the contradiction, and Theo-
rem 2 is proved.

We now prove the following theorem, which is
inverse to Theorem 1, on exponential stability as t →
+∞ in the linear approximation.

Theorem 3. Let (1) a n × n matrix A be nonsingular
and a continuous vector function g(t, x) of (t, x) satisfy
condition (3), and let (2) the solution x = 0 to nonlinear
differential equation (1) be exponentially stable as t →
+∞. In this case, the solution x = 0 to linear differential
equation (2) is exponentially stable as t → +∞.

ẋ1 ax1, ẋ2– t t 2a–lncos+lnsin( ) ẋ2 x1
2+= =

x1 ax1, ẋ2– t t 2a–lncos+lnsin( ) ẋ2.= =

1
2
--- 1

2
---

1
2
--- 1

2
---, 1

4
---e π–+ 

 

dy
dt
------ Cy f t y,( )+=
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Proof. Let the assumptions of Theorem 3 be ful-
filled. To prove Theorem 3, we must argue that the
matrix A is stable and, hence, the solution x = 0 of
Eq. (2) is exponentially stable as t → +∞. Since the
solution x = 0 to nonlinear equation (1) is exponentially
stable as t → +∞, there exists a number ω > 0 and, for
each ε > 0, there is a number r0 = r0(ε) such that the
solution x(t) of Eq. (1) under the initial conditions
|x(t0)| < r0 satisfies the inequality

(11)

Performing the change of variables x = yexp(–ωt),
we reduce Eq. (1) to the form

(12)

where E is the unit matrix, and the function µ(t, x):: =
|y|–1 g(t, y), continuous in (t, y), satisfies the condition

µ(t, y) → 0, as y → 0
uniformly with respect to t ∈ R+. (13)

We now verify that the solution y = 0 to Eq. (12) is
stable as t → +∞ in the Lyapunov sense. Indeed, let
ε > 0 be a given number. By virtue of the assumption (2)
of Theorem 3, for an arbitrary t0 ≥ 0, there exists a num-
ber r0 = r0(t0, ε) such that an arbitrary solution x(t) of
Eq. (1) under the initial condition |x(t0)| < r0 satisfies the
inequality

(14)

Hence,

(15)

Let y(t) be a solution to Eq. (12) under the initial
condition satisfying the inequality |y(t0)| < r0 . In this
case,

(16)

and

(17)

It follows from (16) and (17) that

(18)

Hence,

(19)

Relationship (19) implies that the solution y = 0 to
Eq. (12) is stable as t → +∞ in the Lyapunov sense.

We set

(20)

In this case, Eq. (12) takes the form

(21)

x t( ) exp ω t t0–( )–{ } t∀ 0.≥<

dy
dt
------ A ωE–( )y y µ t y,( ) ω t,–( ),exp+=

x t( ) ε ωt0–( ) ω t t0–( )–{ } t∀ 0.≥expexp≤

x t( ) ε ωt–( ) t t0.>∀exp<

x t( ) ωt0( ) r0<exp

x t0( ) r0.<

x t( ) ε ωt–( ) t t0.>∀exp<

y t( ) ωt–( )exp ε ωt–( ) t t0,   or >∀  exp  <  

y t

 
( ) ε t∀ t0.><

C1 A ωE, f t y,( )– y µ t y,( ) ωt–( ).exp= =

dy
dt
------ C1y f t y,( ),+=
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where the continuous function f(t, y) of (t, y) satisfies
condition (3). Since the solution y = 0 of Eq. (20) is sta-
ble in the Lyapunov sense as t → +∞, according to The-
orem 2, the matrix C1 is semistable and, hence, the real
parts of eigenvalues of the matrix A are smaller than or
equal to –ω, i.e., they are negative. Therefore, linear
equation (2) is exponentially stable as t → +∞. Thus,
Theorem 3 is proved.

It is important to note that the reversibility of Theo-
rem 1 on the exponential stability in the first approxi-
mation is applicable only to Eq. (1) with a constant
matrix A. Let us consider the vector equation

(22)

defined in the neighborhood of a point x0 ∈ Rn, where
F(x) is a smooth function (of the C1 type) on the differ-
entiable manifold Vn .

The exponential stability of the solution x = 0 of the
first approximation

(23)

along the solution x(t) of Eq. (22) does not ensure the
stability as t → +∞ for this solution in the Lyapunov
sense.

It was proved in [12, 13] that the exponential asymp-
totic stability of the solution x = 0 to Eq. (22) does not
remain valid, and all exponentially stable solutions
form a dense set.

We refer to the property P of solutions to nonlinear
equation (22) as: (1) a typical property in the C1 topol-
ogy if all mappings F ∈  C1(Rn, Rn) having this property
form a dense set in the space C1(Rn, Rn); (2) a C1-pre-
serving property if there exists a neighborhood U of an
element F in the C1 topology, such that for all elements
G ∈  U the equilibrium state x = 0 for the equation  =
G(x) has this property; and (3) a C1-nonpreserving
property if it is not the C1-preserving property.

The exponential stability under consideration is a
typical property in the C1 topology. Namely, the fol-
lowing propositions are consequences of the results
of [12, 13].

Proposition 1. Let all nonlinear differential equa-
tions (22) form a set ^ having the C1 topology, and let
‡ ^1 (^2) be a subset of the set ^ formed by Eqs. (22)
for which the equilibrium state x = 0 is asymptotically
(exponentially) stable. In this case, the subset ̂ 2 is typ-

dx
dt
------ F x( ), F 0( ) 0,= =

dx
dt
------ F' x t( )( )x=

ẋ

ical in the subset ^1 , i.e., [^2] = ^1 , where [^2] is the
closure of the subset ^2 in the C1 topology.

Proposition 2. The asymptotic stability of the equi-
librium state x = 0 of Eq. (22) is a C1-nonpreserving
property if F ∈ ^1\^2 .

Proposition 2 is a complement to the results of [4,
14] concerning the robustness of the asymptotic stabil-
ity of the hyperbolic equilibrium state of Eq. (22) in the
case of the C0 topology of its right-hand side.
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