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Nowadays, the basic direction in the devel opment of
semiconductor materials science is the study of elec-
tron processes at interfaces. For the vast class of low-
resistivity amorphous polymeric materials with a sys-
tem of conjugate bonds of the net structure, the contact
phenomena are weakly investigated. For certain poly-
crystalline inorganic semiconductors, surface layers of
crystallitesform natural double heterostructuresin their
contact zones[1, 2]. A possibility of similar behavior of
asystem of intergranular barriersin pressed samples of
polymeric semiconductors is indicated by an unusual
capacity—voltage characteristic of polyacenequinone
(PAQ) [3]. Methods of synthesis and properties of PAQ
obtained on the basis of pyrene and pyromellitic dian-
hydride are described in [4].

Based on analysis of current—voltage characteristics
and capacity—voltage characteristics, in the present
paper we consider features of screening weak external
electric fields at the point of metal—PAQ contact.

A typical capacity—voltage characteristic of the Al—
PAQ-Ag structure at different frequenciesis shown in
Fig. 1 in C-V coordinates. Key to this characteristic is
the symmetry of C-V curves with respect to the direc-
tion of a constant external electric field. Thisfact deter-
mines the principal difference of this characteristic
from the capacity—voltage characteristics intrinsic to
rectifying metal—semiconductor contacts with the
Schottky barrier. This is explained by the fact that for
these contacts, the barrier capacitance corresponds only
toreverse-biased diodes[5]. Silver isused asarear con-
tact because the current—voltage characteristics of PAQ
with silver and platinum electrodes obey the Ohm law
up to the region 1 of the prebreakdown nonlinearity
(Fig. 2, curve 1). This alows us to associate the sym-
metry of the capacity—voltage characteristic (Fig. 1)
with only the AI-PAQ contact. The comparison of
curves 2 and 3in Fig. 3 testifies to the fact that the cur-
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rent—voltage characteristics of the S—PAQ-Ag- and
Al-PAQ-Ag-structures differ in only the magnitude
of the contact resistance at low-voltage ohmic seg-
ments 1. In contrast to the AI-PAQ contact [3], the
capacity—voltage characteristic of the Sn—PAQ contact
has no clearly pronounced linear segment in C2>-V
coordinates and therefore is not discussed in this paper.
All current-voltage characteristics demonstrated in
Fig. 3 are symmetric as capacity—voltage characteris-
tics. In the case of changing the polarity, only dight dif-
ferences in the dope of power segments of the current—
voltage characteristics are observed. The generd view of
the current—voltage characteristics (Fig. 2, curve 2) corre-
sponds to the injection-contact phenomena concept [6].
Thisisimplied by the existence of the initial resitivity
segment |1 at low voltages and quadratic dependencein
thesegment I11, which is characteristic of regimesof cur-
rents limited by the space charge (SC) [6, 7]. However,
for V = 2V, the current—voltage characteristic is inde-
pendent of the electrode material (including Ag form-
ing the electric contact with PAQ (Fig. 3, curves 1-3)).

C, pF
10000+
50004
7
' 1
ZvM"W._HZ
3 L 1 I 1 I 13
—-15 -10 -5 0 5 10 15

V.,V

Fig. 1. Capacity—voltage characteristics of the AI-PAQ-Ag
system a 20°C for the frequencies. (1 and 1) 0.4,
(2and 2') 1, and (3 and 3') 4 kHz. The PAQ synthesis dura-
tion is 24 h; the sample thickness is 540 pum; and the diam-
eter of electrodesis1cm.
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Fig. 2. Current—voltage characteristicsfor two PAQ samples
with different electrodes at 20°C: (1) Pt—-PAQ-Pt, the sam-
ple thickness is 298 um and the diameter of electrodes is
4.5 mm; (2) AI-PAQ-Pt, the sample thickness is 180 um,
and the diameter of electrodesis9 mm.

Thisimplies that the current—voltage characteristic for
the AI-PAQ contact in the segment IV (Fig. 3, curve 3)
depends upon processes in the bulk of a pressed sam-
ple, whereasthe regime of currentslimited by the space
charge is realized not in the polymeric material but in
theintermediate high-resistivity layer separating Al and
PAQ. The allowance for such intermediate (transition)
layers represents an obligatory element in modern
models of injection-contact phenomena [6]. However,
the nature of these layersisdifferent. They can be asso-
ciated, in particular, with oxide films on the surface of
ametal or asemiconductor [6]. In the experimental sit-
uation under discussion (Fig. 3, curves 2, 3), the pres-
ence of auminum oxide or tin oxide is probably
revealed. Thisis confirmed by the results of special test
experiments. The current—voltage characteristics
shown in Fig. 3 demonstrate the practical realization of
the so-called “dirty contacts” method. This method was
recommended in [7] for checking formation conditions
for the case of ohmic contact with organic semicon-
ductors.

However, the reaction of this “dirty contact” to the
aternating electric field in conditions of bias voltageis
similar to the behavior of certain specially produced
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Fig. 3. Effect of the electrode material on the PAQ cur-
rent—voltage characteristics at 20°C. The sample is the
same asin Fig. 1: (1) Ag-PAQ-Ag; (2) Sn—PAQ-Ag; and
(3) AI-PAQ-Ag.

chemically and technologically complicated inorganic
heterostructures|[5, 8, 9]. At present, properties of these
objects are insufficiently understood. Nevertheless,
their investigation opens new possibilities in both fun-
damental science and the application of fundamentally
new instrumentation [9, 10].

Indeed, in an equivalent scheme, the symmetric
capacity—voltage characteristic (Fig. 1) corresponds not
to the usual Schottky barrier characteristic of metal—
semiconductor contacts [5] but to two Schottky diodes
switched in towards one another [5, 8, 9]. Thisindicates
a specific structure of the potential relief at the PAQ—
aluminum-oxide heteroboundary intrinsic to isotypical
heterostructures with the double depletion [5, 8, 9].
However, in these structures, depleted layers are local-
ized at both sides of the heteroboundary [5, 8, 10]. In
this case, the slope of the linear (in the C-V coordi-
nates) dependence, as arule, is different. In the frame-
work of the well-known model of barrier capacitance
[11], thisfact isunambiguously determined by the level
of the doping of contacting semiconductors [8]. At the
sametime, asis seenin Fig. 4 for the case of PAQ, the
slope of the capacity—voltage characteristic in the C2—
V coordinates is the same for both polarities of the bias
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Fig. 4. Current-voltage characteristic for the AI-PAQ-Ag

system in C~2-V coordinates at 20°C of PAQ temperature.
The synthesis duration is 5 h; the frequency is 0.4 kHz; the
sample thickness is 570 um, the diameter of electrodes is

9mm; and N, = 1.1 x 1074 em™3,

voltage. In other words, this slopeisindependent of the
fact of which bias (direct or reverse) is applied to each
of the two Schottky diodes in the double-depletion
model.

According to our datafor PAQ[3], the concentration
Nion Of i0nized centers in the space charge region at a
synthesis duration of 24 h turned out close to the value
N = 2 x 10'® cm2 of the Hall concentration of charge
carriers. (The PAQ samples under study purposefully
were not doped.) As far as we know from [12], there
exist no commonly used methods for analysis of capac-
itive measurements in disordered semiconductors. The
results of measurements of the Hall constant in condi-
tions of the hopping conduction [13] and in granular
media[14] also deserve aparticular analysis. Neverthe-
less, the observed equality Ni,, = N is apparently non-
random and reveals the general nature of processes
determining the Hall emf and screening the electric
field in PAQ. Moreover, a decrease in the value of Nig,
by two orders of magnitude, while reducing the synthe-
sis duration from 24 [3] to 5 h (Fig. 4), indicates the
probable sensitivity of the capacity—voltage character-
istic method to conditions of the PAQ synthesis.

We can explain the totality of these experimental
facts only under the assumption that the system of deep
energy levels, which functionally is equivalent to the
double Schottky diode, is associated with states local-
ized only at one side of the Al,O;—PAQ heterobound-
ary, i.e., in the space charge region of the polymer. In
this case, for PAQ pressed samples, the contribution of
the variation in the occupancy of these deep layers to
the barrier capacitance of the AI-PAQ contact must rep-
resent the collective response of the system of elemen-
tary double Schottky diodes to the action of the alter-
nating electric field. These diodes are kinetically stable
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isotypical heterostructures with local double depletion
spontaneously arising in the PAQ granule contact
zones. Evidently, thisis possible only under the condi-
tion of the existence of acorrelation in surface layers of
the polymer. This is expected from the results of the
theoretical study [15] if we take into account the lay-
ered structure of graphite-like fragments of the overmo-
lecular PAQ structure [4]. It seems that for PAQ the
near-el ectrode space charge zone represents a strongly
correlated system of double self-consistent potential
wells connected to intergranular barriers.
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The problem of polymorphism [1] is one of the cen-
tral problems in physics of condensed matter. In most
cases, the polymorphism of achemical element, in par-
ticular of thermal and baric origin, is predominantly
determined by its crystal-lattice dynamics (see [1-4]).

In the present paper, which is based on the atomic
statistical theory, we quantitatively analyze conditions
related to the polymorphism of the chemical elements
Caand S for the first time. A method is proposed for
determining the atomic screening coefficient for an
atom that forms bonds with another atom of a given
coordination sphere using atoms of preceding coordi-
nation spheres. The calculated values for both equilib-
rium temperatures of polymorphic transitions and ther-
modynamic characteristics of polymorphic modifica
tions turn out to be consistent with available
experimental data.

While considering polymorphism of Caand Sr, we
use harmonic approximation and restrict our analysis
by clarifying an effect of the temperature polymor-
phism on the coupling energy U(d) and phonon spectra
of Ca and Sr using Helmholtz free energy F and its
derivatives.

Table 1 shows the €electron structures of atoms and
basic thermodynamic properties of corresponding
chemical e ements.

The energy U,, of interatomic bonds at temperature
T = 0 for quiescent atoms is mainly determined by the
distribution function of electron density p of externa
bonding electronsin the crystal lattice. We now use the
approximation of the simplified variant of the Thomas—
Fermi—Dirac—Gambds atomic statistical theory for a
spherical atom [5-8]. In this approximation, the energy
u(d) of asingle bond between quiescent atoms situated
at the distance 6 one from the other is determined by the
difference between the exchange energy u, and a half of

the kinetic energy % u, of bonding electrons as well as

Moscow Sate University of Environmental Engineering,
ul. Pryanishnikova 9, Moscow, 127550 Russia

by the correlation energies u,, and Coulomb interaction
energy Uc. For condensed phases formed by atoms of
the same kind, the estimate of the coupling energy can
be restricted to sufficient accuracy if we alow for only
Uy, Uy, and, partly, for u,,. All these components are depen-
dent on the distribution of the eectron density p [5]. In
the accepted approximation, we omit the electrostatic
component of the interaction energy, which is inherent
in systems composed of the same atoms. We also omit
the variation of the electron density in the process of
crystal formation compared to an isolated atom. The
kinetic energy of bonding electrons is proportional to
p*3, whereas according to Dirac, the exchange energy
is proportional to p*.

At the distance equal to half of the bond length &/2
between atoms A and B of the same kind, the contribu-

tions of their electron densities p, , and pg , ae
equal, i.e, pa, = Ps,, = P. Correspondingly, the dif-
ference in volume densities of a half of the kinetic

energy 2%f3vD and of the exchange energy Egv% aa

given point of the plane normal to the line connecting
the atomsiis (at the midpoint of this length)

10Uy Pug
50Bv,, ~ BV,

1
= oKl (Pa+Pe) ™~ P2~ p3]

4/3 4/3

_Ka[(pA+pB) —Pa —pB ]
or
@U@ Eaudj - 5/3_ 43
200, ~Covh,, ~ 078K —0.52k.p ™ (1)

Here, K, = 2.871€%a, and Kk, = 0.7386€” are constants of
the atomic statistical theory.
The density distribution of electron gas for external

bonding electrons in a spherical atom can be approxi-
mated as usual by the first term of expansion in the
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Table 1. Atomic mass, €lectron structure of an atom, atomization energy, type of the crystal structure, characteristic temper-
ature 6, entropy S, and temperatures of polymorphic transitions T, for chemical elements Caand Sr

| ==5 Atomization
S| B2 3 o5 | 2 energy [14] | _o_ o
8¢ .gg .EE 55 |90 |5 | 8B ’ﬁ?%% sEo | B s | 532
- = ] © o - O D
55|82 | 58 | 85 g2E|&| gEo |BEE WM™ | R g | ¢ |gBe| &4
Ow|0Oe | <k Oy |X66|F | aad |OLED 3 T (a4 e
Ca | 20 |40.078 |[Ar] 45| 1.690 | A, |5.5884 7.4688 | 178.2 | 0.1355 573 220 41.63 | 216.6
A, |4.48 7.3540 703
A, |3.97,6.49 | 7.5047
Sr | 38 [55.847 |[Kr] 55| 1.836 A, |6.0849 8.132 1644 | 0.125 506 129 52.3 1425
A,|4.32,7.06 | 8.185 813
A, |4.85 7.94

Gauss function p=Ae" , where r is the distance
counted off from the center of the atom and v is the
semiempiric multiplier connected to the reciprocal
value of the averaged radius squared of external-elec-
tron orbitals.

The normalization condition for the number N of
electrons forming the bonds, the magnitude of the pre-
exponential multiplier Ais

N

A= = 0.1796y"°N.

s (2)
arifrie dr
I

We now write out the volume energy density for the
difference of the kinetic and exchange energies of the
electron gas at acertain point of the plane normal to the
line connecting the atoms A and B. At the midpoint of
the line, this energy density iswritten out as

Pug _ 1ug _Pug
oV, ~ 20V, Cavily,

= 4
= 0.587KkA5’3exp E—éyr% - O.52KaA4/3exp %—éyr%.
3)

In the case of an axisymmetric shape of the bonding
electron cloud, the distance squared r? from the center
of the atom to the given point of the plane normal to the
bond line at the midpoint of itslengthis

2
r’= % +Y,

where y is the distance from the bonding line to the
given point. The passage from the volume energy den-
sity to the linear energy density u along the bond at its
No. 11
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midpoint can be written out in the form

LN
(63,

[

5
= 0.587k, A’ exp E—éy%%

5 4
x 2mfyexp E—éyy%dy —0.52k A" exp E—éy %2%
0

(=)

1]

X ZHJ' yexp %—gyy Hdy. “4)
0

Assuming the bonding electron cloud to be spindle-
shaped and approximating the linear bonding-energy
density by afunction of the form proposed in [9], after
integrating along the bond line, we find the energy u(d)
of the pair bond. In this case, the role of the correlation
component u,, is taken into account by the coefficient

. K .
K, = 0.8349¢?, =2 = 1.065. Thus, we obtain

a

4
u(d) = —0.152yN**exp E—éy%zg

v 12 11 B0
X [1 —1.982N"y “exp D_3yEﬂ] D}'
The quantitiesy and N may be considered asvariational
parameters.

Summing the pair coupling energy for an atom
placed into the origin of coordinateswith all interacting
atoms of all coordination spheresi taken into account,
we arrive at the total coupling energy corresponding to
one atom:

)

u() = Izzeffiu(éi)’ (6)

wherel is a correcting coefficient.
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2
Table 2. Vauesof coefficients Ki2 = ELLE takeninthecal-
1

culations for various types of structure and for the coordina-
tion spheresi = 1-VII

K2
Type of [
structure
I 1] 1" v Y, VI | VI
A, 1|2 3 |4 |5 |6 7
A, 1 |133|266|366|4 5.33 | 6.33
Aj 1 |2 266 | 3 366 |4 5

Table 3. DeLaunay force constants a;/(3; taken in the calcu-

lations, coefficients y, and numbers N of bonding electrons
for chemical elements Caand Sr

a;
- l
E% 85 | Il 11 \Y;
0T B8
1.064 | 0.154 |-0.219|-0.271
Cal AL | =5~ | 0130 | 0105 | 00856 | 2%2| 24818
1.311 | 0.429 | -0.12 |-0.283
A2 | =5~ | o113 | 0127 | 0076 | 220|251
1.147 | 0.057 |-0.215| 0.269
As | =5~ | 0.136 | 0.106 | 0.086 | 212|20672
0.913 | 0.055 |-0.278|-0.225
S| AL | =0 | 0133 | 0.08L | 0035 | 20| 25%82
1.078 | 0.018 |-0.245| —0.28
A2 | =5~ | 0.132 | 0.097 | 0.076 0.226/2.4949
0.961 | 0.522 |-0.258|-0.245
As | =0 | 0.0o8 |0.005 | 0041 | -216|0-8286

The effective coordination number z4 of the ith

coordination sphere is smaller than the true coordina
tion number z since a portion of the atoms of this
sphere are screened by atoms of preceding spheres:

Zgr, = Z&;. (7

Here, §; is the coefficient for screening of atoms of the
ith coordination sphere by atoms of al preceding
(i = Dth, (i — 2)th, ..., (i — k)th spheres.

The value of the screening coefficient &; is taken to
be equal to theratio of the portion of the surface area of
the ith sphere unoccupied by the summary surface of
projections of atoms from preceding spheresto thetotal
surface area F; of theith sphere. The area of projections
of atoms of preceding (i — Dth, (i — 2)th, ..., (i — K)th
spheres onto theith surface is determined by the sum of

SIROTA

products of the coordination number z _, by the surface
area § _, of the atom projection:

F. — . :
=228k g ogiah

F VA

The summation is performed over al preceding i — k
spheres. We assume in this case that the area of the pro-
jection of an atom of the (i — k)th sphere onto the ith
sphereis

=
S % OF
where o is the area of the principal cross section of an

S = i . The ratio of the surface area
S -k l:i -k

F; _, of the (i — K)th sphere to the surface area F, of the
first sphere corresponds to the ratio of the radii squared
of these spheres:

atom and

_Fi_k = r'z__k = KZ
Fi r2 -k
Then,
5= 1-nSY =5k, ©
Ki—k

where ) determines both the rate of a decrease in the
contribution of coordination spheres with increasing
their number and the probability of covering the projec-

tions of atoms of preceding spheres. The ratio FE isa

1
constant lying between 0.025 and 0.0625 for various
structures. In what follows, we conventionally setng, =
0.025 taking into account seven spheres.

The interatomic interaction energy U(d) as a func-
tion of the interatomic distance & between atoms at rest
is calculated by formula (6) for structuresA;, A,, and
Aj. These calculations are based on the low-tempera-
ture modification for which y and N corresponding to
known atomization energy U,(d) and interatomic dis-
tance , are calculated. For high-temperature modifica-
tions, y and N are determined with inclusion of the
polymorphic transition temperatures T,. Tables 1-3
present the input data for calculations.

Figure 1 shows U(d) curves for various modifica
tions of Ca and Sr. The atomization energies of atoms
a rest are determined from minima of Uy(d). Using
functions U(d), the de Launay force constants[10, 11]

_ °Ug _ 19Uy
Gy = 5= P = = 5a (10)
. o 52Di ki < % Hoal ki
for modificationsk = 1, 2, and 3 are calculated at points
corresponding to the radii of four coordination spheres
DOKLADY PHYSICS Vol. 48
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Fig. 1. Energy U(d) of interatomic bonds as a function of
the distance & between closest atoms in modifications of
chemical elementswith theindicated types of structure. Ca:
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i of the jth element. These constants used for calcula
tions of phonon spectra are presented in Table 3.

Phonon spectra are calculated by the Born—Kar-
man-Blackman method based on solving the secular
equation with the Born—Karman dynamical matrix

ID(q) —w’m = 0. (11)

Sampling of calculated points from 1/48 of the
Brillouin zone is carried out by the Monte Carlo
method [12]. Figure 2 shows the phonon spectra calcu-
lated for modifications of Ca and Sr by the computer
program developed by T.D. Sokolovskii with intro-
duced correcting coefficients.

Using the calculated phonon spectra with the fre-
guency density distribution g(v), we have derived the
temperature dependences for the internal energy

Vm

0
heat capacity
o g v hy
CV - Ig(V)aTdV’ €= h\)/kT_l 2 ’

DOKLADY PHYSICS Vol. 48 No.11 2003

605

gv)
1.0}

0.8

0.6

0.4

0.2F

1.0F
0.8

0.4

0.2

Fig. 2. Phonon spectra for modifications of chemical ele-
ments: Ca (1) Ag; (2) Az (3) Ag. St (1) A; () Ag (3) Ay

and free energy
U
Fr = -F-U, = -T[—dT.
T 0 '([)'Tz

The characteristic temperatures were determined

according to the values of C, for the ratios _?_ corre-

sponding to the Debye values, as well as according to
the value of the entropy at T = 300 K.

Figure 3 shows curves of temperature dependences
Cy/(T) for polymorphic modifications of theA, A,, and
Aj structures for Caand Sr.

The temperatures T, ; and Ty of polymorphic
transitions for the modifications| and Il and |1 and |11,
respectively, werefound asintersection pointsF,— Fj; =
0 and Fp; - Fy; = 0 of free-energy curves for these mod-
ifications (Fig. 4). The differences in the temperature-
dependent parts of the free energies F+ for the low-tem-
perature and high-temperature modifications at T = T,
correspond to the difference in the atomization energies
for these modifications at T = 0. In this case, the differ-
ence in zero energies of atomic oscillations is negligi-
bly low.

The chemical elements Caand Sr have similar elec-
tron structures of their atoms with filled-in 4S? and 5S?
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Fig. 3. Temperature dependence of the heat capacity for Fig. 4. Temperature dependence of the free energies F(T)
modifications of chemical elements: Ca: (1) Aq; (2) Ay for modifications of chemical elements: Ca: (1) Aq; (2) Ay;
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orbitals, respectively. The cores of these orbitals have  sequence of the modification structures as functions of
structures of Ar and Kr, respectively. Inspiteof thesim-  temperatures: A; - A, « AsforCaand A; o A; o
ilarity of external orbitalsof Caand Sr, they differinthe A, for Sr. In this case, there exists adlight differencein

Table4. Calculated atomization energies U, corresponding to the closest interatomic distances &, internal energy U+ and
entropy Sy at T = T,; temperatures of polymorphic transitions; Debye characteristic temperatures 8 calculated according to
C, at 100, 200, and 300 K and according to the value Sy = 300 K for modifications of chemical elements Caand Sr

U-at St J(mol K) 6, K
@ B | 4= e Uo, 60, _T
g T o8 Ry au =Ty, T K according
55|88 | k¥mol | T=T, |[T=300K a 100K | a 200K | at 300K | %0
0T |5 00
Ca | A; | -01355 | 747 12.1896 0.0565 0.0408 222 225 225 225
568
12.2230 0.0572
A, | -01352 | 7.19 161651 | 00633 0.0415 707 220 2235 224 219
A; [ -01350 | 81 16.1257 | 0.0650 0.0419 2275 2325 235 216
Sr A; | -0.1250 | 8.03 10.9915 0.0608 0.0481 1715 174 175 168
501
11.2315 0.0665
A, | -0.1230| 81 18.8022 0.0784 0.0538 809 147 149 150.5 135
A; | -0.1220 | 8.17 19.0030 0.0802 0.0555 1335 135.5 141 125

Note: For modifications A, (Ca) and A3 (Sr) two values of Ut and Sy are given. For Ca, the values above and under the lines correspond
to the temperatures of theA; « A, andA, ~ Ajtrangtions, respectively. For Sr, the values above and under the lines correspond
to the temperatures of theA; « Azand Az « A, transitions, respectively.
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the ratio g for the A; modification. This fact can be

associated with a difference in the polarizability of the
atoms and sizes of their cores.

In Table 4, the values of anumber of parameters cal-
culated in the present paper are listed. They are atomi-
zation energies U, for polymorphic modifications of Ca
and Sr, the closest interatomic distances §, in crystal
lattices, temperatures T,, and energies AU of transi-
tions, as well as characteristic temperatures 6(T).

The temperatures of polymorphic transitions and
thermodynamic characteristics of modifications of
these elements, which were obtained in the calcula
tions, are consistent with available experimental data.
Questions associated with estimating the quantity y and
its comparison with the radii of orbitals corresponding
to external atomic electrons deserve detailed separate
studies.

The methods of estimating screening coefficients
for atomic electrons, while forming interatomic bonds
in crystalsturned out rather efficient, neverthel ess, they
need refinement. Analysis of the polymorphism of
chemical elements (with Caand Sr as examples), with
application of the methods based on the statistical
atomic theory, testifies to their high efficiency and, at
the same time, to the expediency of their further devel-
opment.
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In this paper, we show that allowance for properties
of the Hubbard operator algebraleadsto the appearance
of asingular (at w = 0) component in the total spectral
intensity of the anomalous correlation function of
superconductors that possess the electron pairing
mechanism. In this case, the spectral theorem acquires
the form of a singular integral equation. Taking these
features into account, we can eliminate previously
claimed forbidding of realization of the superconduct-
ing phase with the Stype symmetry of the order para-
meter.

1. While constructing a theory of high-temperature
superconductors which is based on the electron pairing
mechanism, the two following methods are most
widely employed. The first approach uses the diagram
technique for Hubbard operators[1, 2]. The second one
is based on the formalism of irreversible retarded two-
time Green's functions [3]. Previoudy, the scattering
amplitude calculated for the Hubbard model [4] in the
regime of strong electron correlations [1] was analyzed
in the paramagnetic phase. It was shown that in the
Cooper channel, this amplitude has a singularity corre-
sponding to the transition into the superconducting
phase (Zaitsev mechanism) [2]. While analyzing this
phase on the basis of retarded Green’s functions, the
spectral theorem [5] was used, which made it possible
to obtain self-consistency equationsfor calculating nor-
mal and anomal ous average values. It turned out that at

f = g, the anomalous average values [Xg°X{°0), (X’
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660036 Russia
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** Krasnoyarsk State Technological University,
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*** Krasnoyarsk Sate University,
Krasnoyarsk, 660075 Russia
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and X?6 are Hubbard operators [6]) cal culated accord-

ing to this rule for the superconducting phase with the
Stype symmetry of the order parameter do not satisfy

the evident requirement XX °0 = 0[3]. Thisviola-

tion of the sum rule has constituted the statement on
forbidding the superconducting state of the S-type.

We now show that the origin of this forbidding is
exclusively associated with ignoring the singular (at
w = 0) component of the spectral intensity of the anom-

alous correlation function DXg°(t)X{°(t)C. With this

statement taken into account, we can satisfy necessary
requirements for anomalous correlators in limiting
cases without any variation of the form of the previ-
ously obtained self-consistency equationsfor the super-
conducting phase. The approach developed allows usto
overcome problems that arise when describing the
superconducting phase with the Sitype symmetry of the
order parameter.

2. Before analyzing features of spectral representa-

tions for the correlation functions [X° () X{° (t)0J we

pay attention to the fundamental distinction between
the anomalous Green's function in the BCS theory and
the anomalous Green's function in the theory of high-
temperature superconductivity based on the electron
pairing mechanism. The anomalous Green’s function
constructed on usual Fermi operators of secondary
guantization

Foo(ft; gt) = —i8(t—t') d ags(t), ag(t) O

iszerowhent=t + &, & — +0. Thisis associated with
the anti-commutativity of Fermi production operators
at coinciding times. At the same time, the time-average

values [y, (t) ag, (HCand [ag, (t) &g, (H)Cin the supercon-
ducting phase can be nonzero in their own right (and
oppositein their signs) even at f = g:

[B,a,0=n0) X0 BaL0=-n(0) XD
n(o) = 2o.

1028-3358/03/4811-0608%24.00 © 2003 MAIK “Nauka/ Interperiodica’
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Another situation takes place for the anomalous
Green's function constructed on Hubbard operators,

CIX (1) Xg (1)
= —0(t—t) O X7°(t), Xty O 1)

Inthiscase, fort — t' +0, the average values OX{°X{ 1

and [X{°X{°0 entering into the definition of the
Green's function identically vanish as long as the site
indices turn out to be equal. It is important that such a
situation occurs not by virtue of features of a physical
system but as a result of the algebra of the Hubbard
operator multiplication. The independence of this fact
of particular physical conditions makes it possible to
explicitly takeit into account at the spectral -representa-
tion level.

Keeping in mind this feature, we can write out the
spectral intensity Jgt () in the spectral representation

GO0 = [ebo exp{ it~} i (), (2)
as

Jo (w) = 3 -5(@)5fgjdlegF(ml)exp(—iwlé),m
o - +0.

Thisform ensuresthe elimination of theright-hand side
inexpression (2) att=t'+9,d - +0 asfarasf=gand
provides the basic distinction of the introduced spectral
representation form that usually is applied in the theory
of two-time temperature Green's functions [5].

We now on the basis of representation (2) are able
construct the spectral representation of the anomalous

correlation function IX{° (t), X3° (t)In thiscase, using

the property of cyclic transpositivity of operators under
the trace sign, we obtain from representation (2)

X7 (1) Xgo(t)0 = J’ch) exp{ —i w(t —t')}

x { Jgr (00) exp(Bw) — 8(w) 81y Sry? . @
§go = Idlegfa(wl) exp(Bw,;) exp(—iw,;d),
(5)
B = % 5 +0.

It isseen that dso inthiscase, forf=gandt - t' +0,
as it must, the right-hand side vanishes, and

XX = 0.

Applying spectral representations (2) and (4), we
find the expression for the average value of the anti-
DOKLADY PHYSICS Vol. 48
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commutator entering into the definition of the anoma-
lous Green's function:

O X70(t), X§o(t) .0 = [ exp{-ico(t~t)}
x{ 357 () [ exp(Bw) + 1] —8(w)di,Z},  (6)
where
Sof = jdle;’Rwl)[exp(Bwl) +1]
3 - +0. @)

From definition (1) with alowance for (6), we find
the Fourier transform of the anomalous Green's func-
tion

x exp(—iw,0),

60| ,0 dw,
(X7 | X3, = Im
x {357 (W) (exp(Bw) + 1) —8(w)&gZert . (8)

Hencein this case, the spectral theorem [5] acquiresthe
form of theintegral equation with respect to Jg; (w)

_ymED(?O|XSODD»+i5 ()3,
T exp(Bw)+1 exp(Bw) +1

x jdlegfa(wl)[exp(Bwl) +1] exp(-iw;d). (9

= Jgf (w) —

It is easy to seethat the solution to this equation can be
written out in the form

(oJ9)

oo (efe) A
357 (@) = R (@) +8(@)8ygmm 52 (10)

where

1M X,

) = B L

(11)

and A7’ is an arbitrary constant. When deriving (10),
we took into account that the equality

Idwexp(—iwé)lmDJ(?°|X3°D]1m6 =0, (12
which is apart of more generally evident relation
X7 (0] X5 (), - ¢
= Idwexp(—i(oé) DX °| X5, , 15 = O
o +0

(13)

takes place.
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The ambiguity of the quantity A’ is inessential

becausethetotal spectral intensity 33? (w) turnsout to be

independent of A7’ . Indeed, substituting solution (10)
into definition (3), we arrive at

Jot ()
= Ry (w)—5((A))5fgI0|001F<§f6 (0,)exp(—iw,8). (14)

In view of this property and also of the fact that accord-
ing to its form written in (3), Jgf’ () must not contain
asingular component at w = 0, we obtain that the con-

stant A?f’ can be taken to be zero. Thus, it is seen that

the analytically continued Fourier transform of the
anomalous Green's function determines only the regu-

lar part RSY (w) of thetotal spectral intensity Jgf (w). In
turn, the singular (at w= 0) component of thetotal spec-

tral intensity 33? (w) is unambiguously expressed in

terms of Rgf (w), thereby ensuring true values of corre-
latorsin limiting cases.

The following fact is of fundamental importance.
The singular (at w = 0) component of the total spectral
intensity cannot be determined only from the knowl-
edge of the Fourier transform of the anomalous Green's
function, which is analytically continued to the upper
complex half-plane. Thisfact, in essence, isone further
example that illustrates the well-known problem of
ambiguously reconstructing the spectral intensity of the
correlation function according to the spectral theorem.
A discussion of particularly relevant examples can be
found, e.g., in the review by Rudoi, which has entered
into the collection of papers [7], as well as in original
papers[8, 9]. Practically, the allowance for singular (at
w = 0) components turns out to be necessary in order to
obtain true limiting correlator values.

The analysis performed shows that the origin of
above-mentioned forbidding for the existence of the
superconducting phase with Stype symmetry of the
order parameter is exclusively caused by the loss of the
singular (at w = 0) component of the correlation func-
tion but not by a principle having a certain actual phys-
ical content. Conseguently, introducing asingular addi-
tion overcomesthe indicated forbidding without chang-
ing the forms of al previously derived equationsin the
theory of the superconducting state for strongly corre-
lated systems.

Aimed at confirming the statement on the invariabil-
ity of the self-consistent equations, we note that repre-

VAL’KOV et al.

sentation (2) leads to the following expression for
simultaneous correlators:

XX 0= S5~ 81gSyf

Nzexp{lq(f s)) DSE ——ZSk
k

(15)

O |_:|°|i|

This implies that in the quasi-momentum representa-
tion, we have

KeoXgod= Y exp{-iq(f-g)} 0% T
(f-9)

SRR
k

Hence, it follows that the equation
t t
k NZEQt +5 (Jk+q+Jk q)+4%|~ er

(16)

for the superconducting order parameter t — J* of the
model (with due regard to three-center interactions)
[10, 11] does not vary with allowance for the singular
component of the spectral intensity of the correlation
function because

NZ@Zt +2 (Jk+q+Jk q)+4%l rDtk
-4 Zsﬁ}ﬂ-
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Strong deviation from the Hooke's law (conditional
yield limit g,) in macrotests for tension/compression,
torsion, bending, etc., is usually attributed to the mass
nucleation and further motion of dislocations. In certain
rare cases (e.g., in single crystals of silicon and other
semiconductorsin the absence of stress concentrators),
this process is hindered. In these cases, the overstress
region, or yield tooth, appears on the o—¢ loading dia
gram (Fig. 1) detected by an Instron hard testing
machine at the initial loading stages. In contrast to the
deformation of macrospecimens, the transition from
elastic local deformation to elastoplastic deformation
during nanoindentation tests is usually stepwise [1-7].
Since all available nanoindentometers are soft testing
machines (i.e., they specify force P, while hard testing
machines specify strain Al), the strain jump in them is
equivalent to the dip of the stressin ahard machine near
the yield tooth. The volume of the locally deformed
region at the initial indentation stagesis very small (1—
100 nm?). This substantial circumstance can strongly
change the physicochemical properties of the material
and deformation mechanisms [8-11].

In thiswork, the features of the elastoplastic transi-
tion are studied under the local deformation of nanore-
gions of the material by ultralow loadings (P varies
from 0.1 uN to 1 mN). It isshown that even very plastic
crystals (KCI, NaCl, etc.) are elastically deformed up to
contact stress magnitudes on the order of the theoretical
ultimate stress. The nucleation of dislocation loops is
hindered at the initial indentation stage because the
local deformed region is too small to contain disloca
tion-loop nuclei of supercritical sizes.

* Tambov Sate University,
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e-mail: golovin@tsu.tmb.ru
** Bakul Institute for Superhard Materials,
National Academy of Sciences of Ukraine,
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e-mail: sergey_dub@ukrpost.net

The experimental data were obtained by an MTS
Nanoindenter |1. Figure 2 shows the typical P-h dia
grams, where P is the indentation force and h is the
depth. As arule, jumps were observed on the surfaces
of spall or growth, which were not mechanicaly pro-
cessed or were chemically etched after polishing.

It is generally clear that certain elastic deformation
precedes any plastic deformation. A triangular diamond
Berkovich pyramid is ordinarily used for nanoindenta-
tion. However, an actual indenter always has a certain
vertex dulling, which can be taken into account by
introducing the equivalent curvature radius R. We used
anindenter with R = 220 nm, which was determined by
several independent methods. For h < R, indentation of
the indenter in the material can be considered in the
model of the elastic interaction of a ball with a half-

o 2 /
H
O'y ———————
| |
| |
| |
| ] |
| |
| |
| |
| |
| |
L | |
0-}’___ -0 |
| |
| |
| |
| |
| |
| |
| |
| |
0 Al Y Al Al
1 3l 2

Fig. 1. Plots of the formation of jumpsin (1) stressc in a
hard testing machine and (2) strain Al in a soft testing
machine in the transition from elastic to el astopl astic defor-
mation near the yield point; oyH and 0; are the upper and
lower yield points, respectively, and &l = Al, — Al is the
strain jump in the soft machine.
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space. According to the Hertz contact theory, for this

model,
P= gE* JRR®,
where

E* = Eﬂ'_vm_l_ViD_l
] E. E, [l

is the reduced elastic modulus. Here, E,, and v,, are,
respectively, the elastic modulus and Poisson’s ratio of
the material and E; and v; are respective quantities for
the indenter.

According to Fig. 2, P-h dependences at the initial
deformation stage (until the first jump in h) coincide
with the Hertz law P ~ h¥2, Unloading at this stage
leads to the compl ete el astic recovery of theimpression
without any traces of plastic deformation, which is cor-
roborated by atomic force microscopy and by the
absence of hysteresisin the P(h) curve (Fig. 2b). When
the critical force P, corresponding to h, from 5 to
65 nm in various materials is reached, the strain under-
goes ajump. Then, the slope of the P(h) curve returns
to the Hertz behavior in certain materials and decreases
strongly in other materials. A substantial difference
from macrotests is that strain jumps at the yield limit
are observed not only in hard materials (cBN, W, Mo)
but also in many othersincluding soft ionic crystalsand
fcc metals (Cu, Al, Au, etc.) [1-4]. This fact implies
that a cause of this behavior is common.

The nucleation and motion of dislocations are the
most probable causes for the formation of jumps. We
consider in detail the conditions of the nucleation of
dislocation loops under theindenter at theinitial inden-
tation stage. In various planes where dislocation loops
can nucleate under the indenter, shear stresses act.
Their maximum is equa to

Tmax = 0.31Pracs
where
_ E* 2 I:1]1/3
pmax - ] T[3R2 0

is the maximum contact pressure in theimpression. We
note that the Meier hardnessis equal to H= %pmax. We

emphasize that maximum shear stresses are reached at
the point spaced by 0.48 of the contact region radius

1R [BE* 2 H]l/S

2E* DT[3R2 O

rather than at the center of the impression or at any
other point on its surface.
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Fig. 2. Typical stress-strain curves at the initial stages of
nanoindentation: (1) loading stage and (2) unloading stage;
the dashed lineis the Hertz law P ~ h*/2,

Asisknown [12], for adislocation loop with radius
r to nucleatein the uniform stressfield t, it is necessary
to have the excess free energy

_2-vGb° KN
AUy = S r[InDOD—Z},

where G is the shear modulus, b is the Burgers vector,
and r, = b. In this case, the elastic energy AU, = Trr?bt
is released. For r ~ 10b, AU, = Gb’r. Homogeneous
nucleation of a dislocation loop nucleus is possible for

U,2U,;i.e, theconditionT > %—l—) isone (force) of the

cr
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Fig. 3. Critical force P, before the strain jump vs. the fun-
damental parameter E*b%/2,

necessary conditions of the flow onset. Therefore,
_§_b_DT[3R2 |:|1/3 (1)
0.31 % Ex2 |ﬂ] '

At the sametime, the“geometric” condition must be
satisfied in the field of strongly nonuniform stresses:
the size r' of the region, where stresses are strong
enough for a stress loop to nucleate, must be no less
than the critical loop radiusr. Taking r' = Ka (where
K= 1), weaobtain

.= KIRrBE*” 1 @
or 2E* Dr[ng 0o -

Equating expressions (1) and (2), we determine the
critical value

o _ [2E*2h33’2n3R2
o~ OKnRO 6E*2

Figure 3 showsthe P, values measured asafunction

of the parameter E*b¥? for a number of materials being
investigated. It is seen that the results qualitatively agree
with expression (3), i.e., with the model of the homoge-
neous nucleation of didocationsin nanovolumes.

The Ah jump value provides the reasonabl e estimate

N = %‘ =10-50 for the number of formed loops. It is

M 2

3/2
- 2.56E*E% R, (3)

obvious that stress concentrators that can reduce P,
alwaysexist in an actual crystal whose imperfectly pla-
nar surface is indented by an imperfect sphere. How-
ever, for ananometer loading region, the probability of
the existence of such concentrator islow, which is cor-
roborated, first, by the qualitative agreement of the

GOLOVIN, DUB

results with the model of homogeneous nucleation and,
second, by the fact that extremely fine mechanical pol-
ishing eliminates jumps and smoothens the deforma-
tion curve. Small irreversible deformations observed in
certain materials before the appearance of thefirst jump
can be attributed to the manifestation of nondislocation
modes of plasticity (e.g., due to the formation of inter-
dtitial atoms and crowdions [10, 11, 13, 14]).

Thus, the initial stage of nanoindentation is purely
elastic even in plastic materials. As a result, contact
stresses before the stepwise transition to plastic flow
reach T, = 0.05-0.1G, which is comparable with the
theoretical ultimate stress. Since many current ele-
ments of nanotechnological devices operate under the
conditions of dynamic nanocontact interaction (i.e.,
probes of scanning atomic force microscopes), itisnec-
essary to take into account the possibility of aconsider-
able increase in the load carrying capability of the
material under these conditions.
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Fluctuation power spectra (flicker noise spectra) S~
1/f, varying in inverse proportion to the frequency f, are
specific for various physical, chemical, mechanical,
and biological systems [1, 2]. The 1/f dependence
remainsvalid over awiderange (severa orders of mag-
nitude of the fluctuation power). In astrophysical obser-
vations, 1/f pulsations of the radiation intensity of qua-
sars and sunspots are well known. In geophysics, 1/f
spectra are used for describing earthquakes and floods.
Spectra of 1/f are aso observed in variations of the
insulin content in the blood of diabetics and in cardiac
and muscular rhythms specific for certain illnesses.
Financial variations and rates of exchange also obey the
1/f spectral dependence. Moreover, flicker fluctuations
are manifested in the number of cars on the roads and
even in music and speech [3].

Intheliterature, stochastic processes with spectra of
the 1/f® form, where the exponent a can vary within a
certain range, are sometimes considered as 1/f noise. A
spectrum varying exactly in inverse proportion to the
frequency (a = 1) is observed for voltage fluctuations
formed by an electric current flowing in resistors[2, 4]
and in the case of nonequilibrium phase transitions,
e.g., in boiling crisis regimes, under explosive boiling
of superheated-liquid jets, in vibratory regimes of com-
bustion, and in arc discharge [5-10].

The dynamical scaling, which is observed at critical
points of equilibrium, is a well-known feature of 1/f
fluctuations. There have been numerous attempts to
elucidate the mechanism of generation of scale-invari-
ant fluctuations. The concept of self-organized critical-
ity is a striking example [11]. It is evident that not al
systems exhibiting 1/ fluctuations are acceptable for
analysisin terms of this scheme. Moreover, in the mod-
elsof the self-organized criticality, the fluctuation spec-
trum hasthe form 1/f% (with a > 1), and the fluctuation
distributions are not Gaussian [12, 13].

Ingtitute of Thermal Physics, Ural Division,
Russian Academy of Sciences,
ul. Amundsena 106, Yekaterinburg, 620016 Russia

e-mail: vnskokov@itp.uran.ru

In this paper, we present numerical results for the
distribution functions under scale transformations of 1/f
fluctuations in nonequilibrium phase transitions.
According to theory of 1/f- fluctuations under nonequi-
librium phase transitions, which was proposed in [5],
the spectral density of the fluctuation power is strictly
proportional to 1/f, and the corresponding distribution
function is Gaussian.

The simplest stochastic equations describing fluctu-
ationsin a concentrated system have the form

d

TS W w1,

dy 2 )
Tt © W20+ (D).

Here, ¢ and Y are dynamical variables, and I',(t) and
I,(t) are Gaussian o-correlated noises with the same
variances. Because of the multiplier 2 in the second
equation, the equations of system (1) are nonequiva-
lent. System (1) experiences a noise-induced transition

with respect to the probability density P(J@°y?). If
the white-noise intensity corresponds to the criticality
condition for the noise-induced transition, then the
solutions @(t) and Yi(t) of system (1) represent stationary
stochastic processes with the power spectra of the
forms 1/f and 1/f 2, respectively.

When integrating system (1) numerically, it is
rewritten in the form [5, 14]

@+ = (@+PAY(L+ l]JizAt)_l + EiAtO'S,

(2)
-1
Wier = (W +20A0)(1+ @AY + At

where & and n; are sequences of Gaussian random
numbers with zero means and standard deviations o. If
the integration step is chosen within the interval 0.05 <
At < 0.3, the criticality condition for the noise-induced
transition has the form o, = 0.8. Therefore, under the
condition 0.7 < 0 < 0.9, the fluctuation power spectra
for @ and ; correspond to the dependences 1/f and

1/f2, respectively. In our calculations, we took integra-
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Fig. 1. Fluctuation power spectra for the processes @ and x;. Dashed line represents the ~1/f dependence. Initial (¢ and x;) and

roughened ((pI(T)

tion steps of 10* to 10° and performed averaging over
several tens of realizations.

Each calculated realization of arandom processwas
characterized by both the mean value and variance. For
zero initial conditions (@, = 0 and Y, = 0), the random
processes attained the steady-state regime in a certain
time. Thistransient period can be estimated by compar-
ing the above case with the redlization of a stochastic
process for the same sample of random numbers but
under initial conditions corresponding to the mean val-

ues @ = J('TZ and ), = JJZ For the parameters taken
within the above-indicated range, the transient period
did not exceed 5% of the sample volume. The initial
conditions corresponding to the standard deviation,
which result in adecrease in the transient period, allow
us to reduce the integration step and, thereby, to retain
the 1/f dependence of the fluctuation power spectrum.

and )(i(r) for T = 32) redlizations are shown in the upper and lower inserts, respectively.

The system of equations (2) remains applicable not
only in the vicinity of the critical point of the noise-
induced transition but within afairly wide range of the
distribution parameters. This property follows from the
self-consistency of the variables @ and Y, of system (1).
As was pointed out in [5], the approximate equality

@; =1 for the mean product remains valid for a con-

centrated system regardless of the sampling volume
and other relevant parameters. Because of this, we con-

W,
g+l

close to the function 1/;. Introducing the parameter €
eliminates the divergence of the function ¥; at zeros of
the function ;. This divergence of the function 1/
can be removed by various methods but the basic result
is unaffected: the spectral density of X; isinversely pro-
portional to the frequency S, ~ 1/f, and coincides
numerically with that of the function ¢. The identical

sider a new function x; = which for small € is

DOKLADY PHYSICS Vol. 48 No.11 2003
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spectral densities of the variables @ and x; are shownin
Fig. 1. The parameter € was chosen within the range
0.01 to 0.02. Even though the power spectrum of y; is
inversely proportional to the frequency squared, i.e.,
Sy ~ 1/f 2, the power spectrum of the variable x; is pro-
portional to 1/f. Thus, the second equation of system (1)
or (2) after the change of the variable Yi(t) by x(t), as
well asthefirst equation, resultsin the 1/f spectrum.

The distribution functions for the variables ¢, and ;
are different. The distribution function for the variable
@ isshownin Fig. 2. Thisfunction is close to the Gaus-
sian distribution but has along tail of large fluctuations
especially well pronounced in semilogarithmic coordi-
nates. As follows from numerical calculations, the dis-
tribution function can be approximated by the expres-
sion

2
P(@) = Asp L0+ Bopd D )
] ]

where A and B are constant and o, = 20t% is the stan-
dard deviation of the random process ((t). In contrast to
P(x), the distribution function P(¢) has a minimum at
the zero value of the argument (Fig. 2).

We now analyze changes of the distribution func-
tions under a scale transformation of the realizations.
For this purpose, we introduce a sequence of roughened
realizations {y™™} formed by averaging the initial real-
ization {X;, X, ..., Xy} Over a certain time scale t
referred to as a scale-transformation coefficient (scal-
ing factor) according to the equation

T(jN) -1 N
z X, O0<js<—. 4)

i=Tj

-1
Y =2

Here, x; is a stochastic variable (@, X;, €tc.). The first

realization {y} coincideswith theinitial one. Thevol-
ume of each subsequent roughened realization

decreases by afactor of 1, i.e., consists of ? numbers.

It is worth noting that the given scale transformation
does not affect the spectrum. The spectra of (pf” and
xf” vary ininverse proportion to the frequency: S~ 1/f.
In order to numerically characterize distribution
changes caused by the scale transformation, we define
the quantity

H(x) = —Z p(x;)logp(x), (5)

which has asense of informational entropy. In[14], this
method was referred to as a multiscaling entropic anal-
ysis of realizations. We now consider the entropy H(x)
as a function of the scaling factor 1. The calculated
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Fig. 2. Distribution functions for the stochastic variables:

(D) P@); () POy and (3) P = POx(™ ) with =32,
The same functions are shown in the insert in semilogarith-
mic coordinates.
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Fig. 3. Entropy of the random processes as functions of the
scaling factor T (1) (pl(r) , (2 )(i(r) , and (3) white noise.

entropy of roughened realizations and that of white
noise are shown in Fig. 3 asfunctions of the scaling fac-
tor 1. Asis seen from Fig. 3, in contrast to the Gaussian
o-correlated process (white noise) whose entropy
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decreaseswith increasing the scaling factor, the entropy

of the random process X"’ does not vary. Thisindicates

the self-similarity of the latter process. The entropy of

the random process @) decreases (but much slower

than that of the white noise) and tends to the constant
entropy H of the process %" .
The redlizations of roughened random processes

@ and x” for T = 32 are shown in the upper insert in

Fig. 1. They evidently differ dlightly. The Pearson cor-
relation coefficient for T =32 isequal to 0.9. With afur-
ther increase in the scaling factor, the difference of the
realizations tends to zero.

In the case of T = 32, the distribution functions for

o and X\ practically coincide and are approximated

by the formula

_ ov2en X0
P(x) = CX €XP o
The exponential factor in (6) describes|ong-wave fluc-
tuations of the random process with the 1/f power spec-
trum. Thisis consistent with the results of [ 15], namely,
the scaling function for the roughened distribution of
certain periodic signalswith the 1/f spectrum isadistri-
bution of extreme fluctuations. Our resultstestify to the
fact that under the scaling transformation, the Gaussian
distribution of a stochastic process with the 1/f spec-
trum also turns into the exponential distribution.

(6)
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Traveling pulses are one of the basic varieties of
autowaves [1-3]. Complex regimes (rotating spirals,
circular waves diverging from aleading center, etc.) can
be constructed from these pulses. In the present paper,
aregime is analyzed. This regime differs from a com-
bustion wave in the fact that theinitial content of amix-
ture isrecovered beyond the reaction zone due to trans-
verse (with respect to the wave propagation direction)
flow through the system. The temperature and concen-
tration profiles make it possible to isolate four zonesin
the pulse structure, namely, the heating zone, reaction
zone, cooling zone, and recovery zone. An estimate for
the parameters of these zones is given. A limit for the
pulse propagation is determined. At high Damcoler
numbers, the magnitude of this limit tends to the com-
bustion limit.

1. A system composed of two diffusion equations
with nonlinear sources is often used as the mathemati-
ca model of a pulse. The source intensity increases
with the concentration of one of the components (i.e.,
the activator) and decreases with the concentration of
the other component (i.e., the inhibitor). In the case of
an exothermic reaction, heat plays the role of the acti-
vator. The exponential dependence of the reaction rate
on temperature results in the appearance of a certain
large parameter, namely, the Zel’dovich number

T,-T
Z = Bt )
To

Here, E isthe activation energy;
T, = T+ % )

T, isthe thermostat temperature; Q isthe reaction heat;
and c is the specific heat. Thus, we may apply the
asymptotic method developed for the first time in [4].
The considered effects exhibited here contrast greatly
when compared to autowaves produced by power non-
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Chernogolovka, Moscow oblast, 142432 Russia
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linearity. At the sametime, in the qualitative sense these
phenomena are intrinsic to waves generated by power
sources.

We write out the set of relevant equations in the
form;

on_,9°n _ n
at Laxz - q)(r]ve) D’ (3)
2
0+Z
P29 - z0-22L, @
0X
® = (1-n)exp 0 (5)
1+A06°

Here, the reaction time 1 a atemperature T, isa scale

of time t; the quantity ./XTg; serves as a scale for the

coordinate x; ¥ is the thermal diffusivity; n is the con-
centration of a reaction product (for definiteness, the
first-order reaction is considered); 6 is temperature

. T, .
counted off from T, in the AT, scae; A = Eb is the

Arrhenius number; D isthe Damcoler number, i.e., the
ratio of the flow-through timeto tx; L isthe Lewis num-
ber, i.e., theratio of diffusivity to thermal conductivity;
and Sisthe Semenov number, i.e., the ratio of the heat
removal time to Tz. An object being described by
Egs. (3), (4) can berepresented asachain of small reac-
tors of instantaneous mixing. Adjacent chain elements
are linked to one another by both diffusion and heat
conduction.

The solutions in the form of solitary waves corre-
spond to the boundary conditions

on _ 08 _
’ ax_o’ ax

For a system close to that described by Egs. (3)—(6),
switching waves between high-temperature and low-
temperature states have been studied [5]. The switch-
ing-wave velocity is low compared to that of combus-
tion waves. In the latter, the reaction reprocesses the
substance located in the path of the wave. The higher
the reaction rate, the higher the wave velocity. In the
case of switching waves, the substance is reprocessed

X - *oo

0. ©6)
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in the hot reactor zone, which is carried by the trans-
verseflow so that thereaction rateislimited by the flow

intensity. The quantity jl_é serves as a wave velocity
scale. In the dimensional form, the scale corresponds to

the quantity J% , wheret isthetime of the heat removal

into a thermostat. In this case, the condition T > 1x is
always valid. If this condition is not fulfilled then the
temperaturein thereactor is practically equal to T, and
the reaction being studied can be ignored.

2. In the system under consideration, the traveling
pulseisawave. Both ahead of and behind thiswave, the
reactor state is low-temperature, and the content of a
mixture that flows through these sections is almost
invariable. The pulse forepart weakly differs from the
combustion wave. In the reaction zone, the substance
residing at the given point of the reactor at the moment
the pulse passes through it is reprocessed. The trans-
verse flow through the reaction zone can beignored: the

increase brought by this flow is proportional to [—1) At

the same time, as we will see, the pulse can propagate
only in the case of sufficiently large Damcoler num-
bers. Thus, the pulse velocity is ailmost independent
of D and is close to the combustion rate at given L, S
and Z. Beyond the reaction zone, the temperature is
high. All the substance brought by the flow isimmedi-
ately reprocessed so that the intensity of a thermal

source in Eq. (4) iscloseto [—Z) However, thisisinsuf-

ficient to compensate for the heat loss. Indeed, the
guantity S cannot exceed D because other channels of
the heat removal are possible along with the flow.
Therefore, behind the reaction zone, the temperature
drops (the cooling zone). At e® > D, the reaction does
not manage to reprocess the incoming mixture. The
guantity n decreases from the value close to unity to
almost zero (the recovery zone).

The structure described exists in the case of

§<1—Z_1D InD [

D (1 + AInDLY 0

In the opposite case, a fast wave switching the regime
from low-temperature to high-temperature propagates
in the system under consideration. The velocity of this
wave is high compared to that found in [5]. The fast
wave differsfrom that described in [5] by atemperature
maximum in its forepart, which ensures ahigh vel ocity.
The condition of the passage from the slow inflamma-
tion wave to the fast one, which is accompanied by a
velocity jump, is obtained in [6]. The second term in
condition (7) is only acorrection. When this correction
is not small, the difference between the high-tempera-
ture state and low-temperature state of the reactor and

RUMANOV

between the cooling zone and the recovery zone degen-
erates.

The heating zone and the reaction zone have widths
on the order of that of a combustion wave. For estimat-
ing the width of both the cooling zone and the recovery
zone, we make use of an approximation proposed
in [4]. Thereaction zoneis considered to be asurface at
which a heat flux jump Zu occurs, while the pulse
velocity is determined by the condition

@ = uie ®)

Here, u, isthe combustion wave velocity asS — o, and
8,, is the temperature in the reaction zone. We now
assume that at the boundary between the cooling and
recovery zones,

0, 1
1+ A8, o
and intherecovery zone, the quantity ® can beignored,
1
D

6 =06, exp

©))

whereas in the cooling zone, ® = = . Evidently, the

widths of the heating and recovery zones are ~$ and

~Du (excluding the unreal case of L > Du?), respec-
tively. In the coordinate system moving at a velocity u,
we place the reaction zone at the point x = 0, while at
the boundary between the cooling and recovery zones,
X =X;. Inthis case, we have at the point x = 0O,

SZ

Z+8,= T +C.+C, (10)

k.(Z+8,)-k.C,—kC_ = Zu,
(11)

k, = dy u—+1.
= 2 N4 S
At the same time, we have at the point x = X,

ZiceMicd™ = z+0,

S (12)

k.C,e +k Ce™ = k (Z+8,). (13)
Equations (8)—«13) alow us to find six quantities,
namely, u, 6,, X, 8,, C,, and C.. Excluding C,, and
C+ek*xl from (10)—«(13), we find (in the limit 2 > 1)
the width of the cooling zone,

(14)

Vanishing the denominator in the right-hand side of
expression (14) corresponds to the condition (7): the
pulse transforms into afast inflammation wave, and the
recovery zoneis absent.
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According to conditions (12)—14), the quantity |C, |

must be exponentially small. Then, it followsfromrela
tionships (10), (11) that

(15)

Asisseen from formulas (8), (15), at S> S;,, where

Sh = 2[;—i+%]_l, (16)

there are two solutions (the slow wave is unstable). At

D>D,= Zeug2 , the quantity S, tends to the combus-

tionlimit (see[4]). It followsfrom expressions (7), (16)
that traveling pulses can exist at

D>D,= D0[1+ %InDO}.

3. In the coordinate system moving with the com-
bustion wave, the heating zone for this wave can be
considered (see [3]) as a plane flow-type reactor. At
L <1, theenthal py excessin the reactor resultsin relax-
ation oscillations [7, 8]. In the laboratory coordinate
system, the oscillations look like alternating events of
deceleration and acceleration of awave, i.e., asequence
of short flares and long depressions. Pulses traveling
over the disk reactor produce a rotating spiral, which
corresponds to the spin regime.

Numerically modeling the spin combustion in the
three-dimensional setting of the problem (see [9])
makes it possible to compare the data obtained with
predictions about traveling pulses in this reactor. The
profiles of temperature and concentration in the direc-
tion of the moving combustion center, which are calcu-
lated in [9], correspond to the four-zone structure. The
guantity n rapidly rises up to one near the temperature
maximum, and thisvalueis preserved within a segment
of a finite length. The temperature at this segment
drops. Furthermore, the quantity n begins to decrease
and the temperature curve has no singularities at the
point at which this decrease starts to occur. The com-
bustion center does not penetrate the axial part of a
cylindrical sample. Thisis consistent with the fact that
the circle length along which the pulse runs cannot be
shorter than the pulse size. The distance between the
loops, which was found in [9], is on the order of the
heating-zone width (see[10]), although, numerically, it
islonger by an approximate factor of two.

The effective value of Z =7 isdetermined according
to the magnitude of the temperature maximum. We can
estimate the effective value of the Damcoler number
according to the width of the recovery zone: D ~ 100 =

1 . . . . .
= (U,isthevelocity of motion along the cylinder axis).

a
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In other words, in the units employed in this paper, this
is the content renewal time in the heating zone (in a
reactor). Using plots for n and 6, which are presented
in[9], wefind x, = 60 and 8, =-3.5, whereas from (9),
we obtain 8, = —-3.7 (with alowance for A = 0.06).
Finally, substituting the obtained numerical valuesinto

expression (14), we find S = % ~ 50. The relation

between the quantities S and D can be clarified if we
remember that the mass exchange in a disk reactor pro-
ceeds only in the axial direction, whereas the heat
removal occurs in both axial and radial directions.
Meanwhile, the value of S obtained is lower than the
guantity S;, determined from formula (16). Thisimplies
that the model of a disk reactor, as applied to the spin
combustion, needs to be modified. To do this, it is nec-
essary to take into account the stabilizing action of
heated condensed products (see[11]). The thermal res-
ervoir adjoining the disk must decrease the threshold
for propagating the pulses.
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In this paper, amodel is constructed explaining dif-
fusion of metalloid atoms in amorphous bodies of a
metal-metalloid systems under mechanical and low-
temperature actions. The model is based on previous
experimental results related to nonequilibrium segrega-
tions in amorphous alloys in low-temperature condi-
tions (room and lower temperatures). While devel oping
the model, the theory of motion of macroscopic inclu-
sions which has been proposed by Geguzin and
Krivoglaz was used. The limits of applicability of the
model are determined.

In spite of the fact that diffusion in amorphous
aloys has aready been studied for three decades, the
problem cannot be considered closed. The low-temper-
ature region (in the order of room temperatures and
lower) remains the least understood. The investigation
of the problem is hampered by the fact that diffusionis
suppressed at low temperatures. Therefore, it isimpos-
sible to use direct methods to obtain quantitative char-
acteristics of the process. However, it seems to be pos-
sible to study quantitative characteristics of diffusionin
amorphous alloys by indirect methods, namely, by ana-
lyzing results of experiments in which nonequilibrium
segregations were studied in conditions of external
actions.

1. THE RESULTS
OF ORIGINAL EXPERIMENTS

In this study, we analyze two experimental results
testifying to the redistribution of chemical components
in surface layers of amorphous aloys of the metal—met-
aloid typein the presence of external actions (nonequi-
librium segregations). These experimental results can-
not be explained on the basis of classica diffusion
models[1, 2].

Physicotechnical Institute, Ural Division,
Russian Academy of Sciences,
ul. Kirova 132, 1zhevsk, 426000 Russia

In [3], deformation of a rapidly hardened FegB,g
amorphous 10-pum thick band was realized. The hard-
ening was performed by the method of simple bending
on a holder whose diameter was commensurable with
the band thickness. The calculated degree of deforma-
tion of band surface layers attained 100%. The analysis
was carried out by local Auger electron spectroscopy
using a JAMP/10s probe accompanied by a layer-by-
layer analysis based on etching the sample with argon
ions. The etching rate was ~1.0 nm min. In al mea-
surements, therelative error of the quantitative analysis
did not exceed 15%. The atomic structure of both the
original and processed samples was verified by X-ray
radiography methods. According to the results of X-ray
radiography, after mechanical processing the samples
conserved their amorphous structure. As is seen from
Fig. 1, thetensile deformation raised theiron atom con-
tent in near-surface layers by 16 at.% and lowered the
boron atom content by 13 at.% with respect to theinitial
concentration. In contrast, for the case of compression
of the amorphous band, an excess of 3% boron atomic
content was found. It isworth noting once more that the
amorphous band was bent at room temperature when
the diffusion of the components was suppressed. In
order to describe similar processes, the classical for-
mula (see [4])

D
' = 3naq e 0
and the formuladescribing the average vel ocity of adif-
fusing particle

v = Dw

3fkT
are commonly used. Here, | is the flow intensity for a
diffusing chemical element, D is diffusivity, w is the
atomic volume, T is the absolute temperature, k is the

Boltzmann constant, f is the correlation factor, and (&
isthe stress gradient.

Data on metalloid diffusion in amorphous aloys at
room temperature are practically nonexistent. Assum-
ing that no Arrhenius-like dependence for light atoms

Uo )
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Fig. 1. Distribution of chemical elements in the surface
layer of the amorphous FegyB,q sample: (@) initial distribu-
tion; (b) post-deformation distribution.

within the given temperature interval is observed [1,

2], the maximal diffusion coefficient of boron atoms

can be estimated as D ~ 102> m? s, With allowance
oV

for T~ 102K, and w~ 10 m3,0=KV, K ~ 165.5 x
10°Jm 3, 50 _1 K§—\—/ ~101-10% Jm, wearrive at
L, V ox

vV ~105-10" m s, or v ~ 10°-10® nm s. The
value of the diffusion rate found by this method is
smaller by several orders of magnitude than experimen-
tal values. This implies that at least from the classical
standpoint, an explanation of this phenomenon is not
evident.

An even more surprising experimental fact concerns
the migration of boron atoms while freezing amor-
phous samples. In [5], redistribution of chemical ele-
ments in an amorphous magneticaly soft
Cos;Ni,oFe;S B, aloy was studied in low-tempera-
ture conditions (77 K). Samples in the form of amor-
phous bands~20 um thick and ~ 10 mmwide were held
inliquid nitrogen for 10, 60, and 120 s. Furthermore, at
room temperature, the layer-by-layer elemental analy-
sis using Auger electron spectroscopy was performed.
Asin the first experiment, the atomic structure of both
the original and processed samples was verified using
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Fig. 2. Distribution of chemical elementsin the case of low-
temperature processing of amorphous CoszNijgFesSi11B17
aloy: (a) surface concentration as a function of processing
time; (b) depth variation of the concentration in the case of
holding in liquid nitrogen for 10 min.

the X-ray radiography method. It was revealed that
low-temperature processing did not lead to noticeable
changesin the alloy structure: according to X-ray radi-
ography, the samples remained amorphous. The surface
redistribution of the components was estimated during
the 30 sionic cleaning of the samples. After this clean-
ing of the surface (~0.5 nm), impurities and adsorbed
admixtures were practically absent. As follows from
Fig. 2, the low-temperature processing stimulated
concentration changes in the surface layers of the
alloy. These changes correlate with variations of
mechanical and corrosion properties of the material.
00

L, Ka,, OT
10100 Jm4, T ~ 102 K, we arrive at v ~ 10—
102 m s (where K isYoung's modulus, and o, isthe
coefficient of volume expansion). In the case under
consideration, the classical approach predicts an even
lower valuefor the diffusion rate. The given experimen-
tal data are not unique. In recent years, similar system-
atized data appeared [6, 7].

We can attempt to explain these experimental results
under the assumption that boron atoms move together

Using formula (2), and the value of
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with metal-metalloid clusters. The existence of such
clusters, or at least of strong bonds between atoms of
metalloid and metal, is confirmed by the experimenta
dataof [8] and theoretical conclusionsof [9], aswell asby
the results of molecular-dynamic modeling in[10, 11].

In spite of these results, the most well-known mod-
els describing motion of metalloids in amorphous aloy
either do not take into account the aforementioned fact
or exploit assumptions that make it possible to easily
ignoreit [3, 6, 7].

One of the most adequate theories describing the
motion of such clusters seems to be the theory of
motion of macroscopic inclusions in solids which was
proposed by Geguzin and Krivoglaz [4]. In the first
turn, this theory was developed for the description of
the behavior of microscopic poresfilled with gasinside
crystalline solids. However, we may state that there are
no constraints prohibiting the application of thistheory
in describing the motion of microscopic-size metal—
metalloid clustersin amorphous bodies. This statement
is based on the following facts.

(1) Thetheory of Geguzin and Krivoglaz is phenom-
enological and does not describe the microscopic
mechanism of migrating inclusions. For successful
application of the theory, only the appearance of certain
conditions on the inclusion—matrix interface is neces-
sary. In our casg, this is the assumption on the feasibil-
ity of near-boundary (surface) diffusion of amorphous-
alloy atoms aong the cluster-amorphous-alloy inter-
face. In the same study [4], awide list of experimental
data was presented confirming the possibility of apply-
ing the theory describing motion of macroscopic inclu-
sions that reside in different aggregate states (gas, lig-
uid, solid) in solids.

(2) A possibility of using the theory of Geguzin and
Krivogaz to describe microscopic-size objects is also
proved in [4]. It is theoreticaly shown there that
decreasing inclusion size does not restrict the applica-
bility range of the theory. In this case, the inclusions
acquire an ability of migrating not only in the presence
of a gradient of a certain (temperature, elastic-stress,
vacancy concentration) field but owing to their inde-
pendent Brownian motion. In that study, the experi-
mental confirmation of this concept is given, as an
example, for Brownian motion of gas-filled cavitiesin
UO, plates (with aminimal cavity size of ~ 33A).

As one more argument favoring the validity of this
theory, we can present the results of molecul ar-dynam-
ical modeling performed in [10, 11]. In these studies,
the possibility of migrations of boron atoms incorpo-
rated into FeB clustersis shown for an FegB,, System,
as an example, for conditions simulating experimental
ones in the case of mechanical and low-temperature
loading amorphous bands. The direction of cluster
motion corresponded to that in the experiments. The
migration of boron incorporated into clusters was con-
firmed visually according both to dynamics of cluster

BARANOV et al.

images in numerical experiments and to the results of
analysis of the radial distribution function.

Here, it isworth emphasizing that for more success-
ful application of the given theory, we should introduce
an important assumption on the existence of aboundary
layer (planar formations) around the clusters. Below,
we analyze the results of employing the theoretical
approach proposed in [4] to the explanation of our
experimental results described above.

2. APPLICATION OF THE MODEL
FOR DESCRIBING THE EXPERIMENT
ON BENDING A Fe,,B,, AMORPHOUS BAND

In accordance with the data obtained in [4], the
inclusion velocity of motion in the stress field caused
by surface diffusion flows is determined by the formula

10wDs a
T3 fkTRS 3)

Here, v isthe macroscopic-inclusion velocity of motion

VvV =

Gnn
Ly
dient; L, isthe mean cluster size; D, isthe boundary dif-
fusivity of matrix atoms (Fe, in our case); w is the
atomic volume; T istemperature; f, isthe surface corre-
lation factor; e, is the unit vector co-directed with the
stress gradient; R is the distance on the order of the
inclusion radius; and a is the thickness of the localiza-
tion layer for boundary flow.

We try to apply formula (3) to describe the experi-
ment with mechanical action on the amorphousalloy. If

60-nn 1,0V 15 16 4, a 1
we take L NVKéx ~ 10P-10' J m™, = ~101-
108, T~102K, v ~10°m s?, w~ 10%® m3, then we
can calculate Dy~ 107''-10"'* m s2,

We now analyze, whether this value of the boundary
diffusion coefficient is reliable. It is well known [12]
that in crystals, the activation energy of boundary diffu-
sion is smaller by afactor of two to three than the acti-
vation energy of the bulk diffusion. At the sametime, in
most cases the value of the pre-exponential factor lies
within the range 10°-10° m? s*. Assuming that this
situationis preserved in amorphousalloys(i.e., the acti-
vation energy for boundary diffusion is smaller by a
factor of two to three than that of bulk diffusion in
amorphous aloys), the value D, at 300 K can attain
10“m?s!, which is consistent with the required
value. Undoubtedly, this analysis is not a rigorous
proof. However, the assumed existence of a high
boundary diffusion coefficient is plainer than that of a
high bulk diffusion coefficient because it follows from
classical premises.

Asfallowsfrom formula(3), the direction of motion
for clusters containing boron coincides with the direc-
tion observed in experiments. Moreover, if we consider

with respect to the surface; o, ~ isthe stress gra-
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that the stress gradient in the displacement region is
constant, then the boron concentration at an arbitrary
moment of time is determined by the parallel transfer
formula c(x, t) = cy(x + vt), which is actually observed
in experiments, Fig. 1.

3. APPLICATION OF THE MODEL
FOR DESCRIBING THE EXPERIMEMT
OF COOLING
THE Cos,Ni,oFesSi;,B,; AMORPHOUS BAND

In the experiment associated with the influence of
low temperature on an amorphous alloy, the quantity

?_—G is determined by the formula
k

o0

T = Ka,|OT], 4)
k

where K is the bulk Young modulus, a, is the coeffi-

cient of volume expansion, and 0T is the temperature
gradient that arises while cooling samples. It follows
from the aforementioned that, in the framework of the
model proposed, the displacement of atomsin the near-
surface layers of the amorphous band occurs only dur-
ing its cooling.

We now make an attempt to estimate the diffusion
coefficient for which the indicated mechanism is feasi-
ble. To do this, we first evaluate the cooling rate for
amorphous samples placed into liquid nitrogen. In
accordance with the results of [13] and when the Biot
criterion is Bi < 0.01, the formula

2
X Bie® ™ )

2r
istrue, where Bi isthe Biot criterion [13] and Fo isthe
Fourier criterion (Fourier number) [13]; r is the half-
width of the plate being cooled (in this case, of the
amorphous band); x is the coordinate of the point at
which the temperature is calculated; and © is the
dimensionless temperature determined by the formula

CT-Tam
© ==

In formula (6), T is the current temperature of the plate
and T,,, isthe temperature of the ambient medium. Here,
we understand (smilarly to the approach of [6, 7]) that
when immersing the sample in liquid nitrogen, its sur-
face does not instantaneously acquire the temperature
of theliquid nitrogen. Formula(5) is obtained under the
assumption that a temporal layer is formed around the
sample. This layer consists of nitrogen vapor and pre-
vents intense heat loss. Thus, the boundary conditions
proposed are more rigid for constructing the model
compared to those proposed in [6, 7], because these
conditions lead to appearance of considerably weaker
thermodynamic forces.

e =

(6)

DOKLADY PHYSICS Vol. 48 No.11 2003

625

In our case, Bi ~ 10* and Fo ~ 10%, where 1 is the
temperature relaxation time. Hence, the characteristic
time of plate (amorphous band) cooling is on the order
of 1 s. For this time, the temperature gradient on the
order of 10° K m exists on the plate surface. During
thistime, metalloid atoms must shift by adistance onthe
order of 1 nm, i.e., the cluster motion velocity must be
about 1 nm s?or 10° m s In addition, w ~ 102° m?,
k~102JK? f,~1,a~10""m, R~ 10°-10%m, and

?_—0 ~10°-10'° Jm. As aresult, we find the value for

k
the coefficient of the boundary diffusion: Dg ~ 10-%—

1073 m? s, which corresponds to the range obtained
from the experiment of bending the amorphous band.

DISCUSSION

The advantage of the proposed mechanism of the
migration of metalloid atoms incorporated into metal—
metalloid clusters is that it brings the possibility of
jointly explaining three experimental results at once:

The existence of nonequilibrium segregations
caused by mechanical action on an amorphous alloy;

The presence of nonequilibrium segregations
caused by low-temperature action on an amorphous
aloy;

A possibility of diffusion of metalloid atoms in the
case of simultaneous existence of metal-metalloid
clusters in amorphous alloys.

In addition, in the framework of the mechanism pro-
posed, we have managed to explain the deviation of the
diffusion coefficient from the Arrhenius dependence,
which was observed in anumber of experiments[1, 2].
It iswell known that the behavior of the diffusion coef-
ficient for light atoms in amorphous alloys does not
obey the Arrheniuslaw, and the value of this coefficient
at temperatures of 250-300 K lies within the interval
1001024 K. As was noted previously, according to
the theory of the motion of macroscopic inclusions, it
was shown [4] that macroscopic inclusions are capable
of Brownian motion. In this case, the diffusion coeffi-
cient D, for amacroscopic inclusions (in our casefor a
metal—-metalloid cluster) and the coefficient of bound-
ary diffusion are linked by the relationship

4

80
R s

Thus, the value of D, is on the order of 107°—
102 m? s, whichisvery consistent with experimental
data (provided that the cluster diffusion coefficient cor-
responds to the boron diffusion coefficient measured in
the experiments).

Analysis of nonequilibrium segregations in amor-
phous alloys made it possible to propose a mechanism
of migration of metalloid atoms in amorphous alloys,
which are incorporated into metal-metalloid clusters.

DC|:
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The model proposed is based on the theory of the
motion of macroscopic inclusions developed by
Geguzin and Krivoglaz [4]. For successful application
of the given theory, it is assumed that boundaries (planar
formations) exist around the clusters. The adequacy of

the

model proposed is stipulated by the possibility of

exhaustive explanation of four independent experimental
results and the results of molecular-dynamic modeling.
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Results presented in [1-4] point to the universal
properties of the behavior of metals dynamicaly
destroyed under the action of intense radiation pulses.
These properties are attributed to the self-organization
of the failure centers and instabilities in dissipative
structures (failure center cascades) providing the basis
of the resistance of a body to an external action. The
amplitude of the pulse pressure can be in the area of a
few to a few hundred kilobars for longevity ranges
t~10°-10"'° s. In this case, the evolution under
dynamic failure of micro- and mesoscopic defects and
of failure center cascades constitutes the general prop-
erties of the invariant behavior of solids subjected to a
thermal shock induced by intense radiation pulses
(initial temperature T, ~ 4K — 0.8T,,, energy-insertion

dE

rate Pl 10°-10'2 K/s, and absorbed energy density

10-10* J/g) [1~4].

It is known that metals under failure exhibit plastic
deformation in both quasistatic (t > 103 s) and dynamic
(t < 10 s) longevity ranges [5]. For small plastic
strains, this processis attributed to the evolution of var-
ious crystal defects, which, interacting with each other
and subjected to an externa action, remain individual
structural units with inherent properties. Plastic defor-
mation is attributed to the ergodic behavior [6] of the
set of defects whose trgjectories gradualy fill al the
phase space. The thermodynamic potential of the set of
defects has the form of a*“regular” distribution of min-
ima, the lowest of which corresponds to the stable state
of the set of defects and others to metastable states. In
this case, hierarchical subordination in the behavior of
defects of the crystal lattice is also absent. For small

Russian Federal Nuclear Center All-Russia Research
Institute of Experimental Physics,

pr. Mira 37, Sarov, Nizhegorodskaya oblast,

607188 Russia

* e-mail: uchaev@expd.vniief.ru

plastic strains, the evolution of the set of crystal lattice
defects under plastic deformation is represented as a
chain of thermal fluctuation Debye processes for over-
coming energy barriers[6, 7].

For large plastic strains, the density of various crys-
tal-structure defects can reach critical values. Collec-
tive effects are manifested in the behavior of defects, or
the appearance of certain bonds in the ensemble of
defects. A coupling in an ensemble of one structura
level of defects stimulates the self-similar formation of
another structural level of defects, which serves as the
initial structural level for the higher level [8]. Nonequi-
librium hierarchical coordination systems, where the
upper state can be achieved only when lower states are
achieved, are usually nonergodic [6, 9]. In a hierarchi-
cal system where arelaxation time spectrum exists, fast
processes responsi ble for overcoming the lowest poten-
tial barriers proceed at the start. Thisbehavior givesrise
to the nonergodic behavior of hierarchical systems,
such as a broken solid with dynamic longevity.

Asan example, we consider the self-organi zation of
various dissipative structures that occurs on three levels
in the bulk of the destroyed solid in the dynamic lon-
gevity range. Aswas shown in [1-4], the crystal lattice
loses the long-range order near the formed failure cen-
ters. The structure of shear bands in metals was studied
for various types of pulsed loads. Figure 1 shows the
hierarchy of shear bands around failure centersin tita-
nium after the shock wave load [10]. Data presented in
Fig. 1 shows that the cascade of shear bands around
failure centers is a fractal cluster. Fractal systems are
hierarchical. Therefore, the adequate description of
dynamic failure by classical kinetic methods is ques-
tionable.

Aswas shown previously [1-4, 11, 12], the cascade
of failure centers, which determines the dynamic fail-
ure of metals, is a fractal cluster. Represented in the
universal coordinates, the distribution of failure centers
for various materialsis obtained by the similarity trans-
formation. Thisindicatesthat dynamic failure proceeds
in metals through one predominant process—accumu-

1028-3358/03/4811-0627$24.00 © 2003 MAIK “Nauka/ Interperiodica’
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Fig. 1. Results of the treatment of the Ti metallographic specimen (T = —196°C, magnification of 300) as obtained by the software
package of the interactive system of image analysis[4, 9]: (a) angular and (b) size distributions of shear bands, (¢) metallographic

specimen pattern, and (d) fractal dimension of shear bands.
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lation and growth of failure centers—ensuring the prin-
cipal part of longevity. The spectral size distribution of
failure centersin loaded metall ographic specimens par-
alel and perpendicular to the failure surface has the
form N(D) ~ D, where N and D are the number and
size of failure centers, respectively, and a > 1. Investi-
gations revealed the correlated behavior and appear-
ance of the self-organization of the cascade of failure
centers in the destroyed-specimen scale [1-4, 11].

The size of failure centers and their density in a
destroyed solid at the final stage of the dynamic failure
are controlled by the concentration criterion [1, 2]. The
results shown in Fig. 2 testify to the collective behavior
of the ensembl e of failure centers, which isattributed to
the nonequilibrium state of the solid (absorbed energy
density is commensurate with the energy parameters of
thecrystal lattice) [1-4]. The self-maintaining behavior
of the cascade of failure centerswhen the concentration
criterion is satisfied is caused by the loss of ergodicity
in the behavior of the ensemble of failure centers,
whichis, in turn, associated with hierarchica coordina-
tion [6].

Aswas previously shownin [4], the thermodynamic
potential, enthalpy, determines the dynamic failure in
the dynamic longevity range. Theratio of the absorbed
energy density to the energy parameters of the crysta
lattice (enthal py and phase-transition heat) is an invari-
ant of the metal behavior with respect to externa
actions. In this case, the limiting deformation energy
density of the local volume of the broken body (near
failure centers) can be taken as (see, e.g., [13])

T

Q™ = J'c(pT’dT + L.
4
Here, L, isthe latent melting temperature of the crystal
T

m

lattice, H = J’deT is enthalpy, C, is the heat capacity

T
at constant pressure, T' is the temperature below which
the contribution of thermal atomic oscillations to the
internal energy density isnegligible, and T,,,isthe melt-
ing point.

The potential energy of an n-level system iswritten
in the form

U, =U, (p;, Uy,

U; = U; (pp, Uy),

U,=U, (Pn-1> Un_ 1),
where p, is the density of structural units at the nth
level. Thetota energy is expressed as

Uit = Zuipi'
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Fig. 2. Average distance (= N~'/3 between failure centers
as afunction of the failure-center size D for (triangles) cop-
per, 0.37 mm; (circles) bronze, 0.3 mm, and (squares) iron,
0.5 mm.

Since the maximum energy density that can be accumu-
lated in the unstable zones of the crystal lattice [4] with-
out change in the aggregation state is equal to E =
H+L,,

T

ZUipi = IdeT + L. (1)
i To

This expression considerably simplifies the description

of adynamically loaded solid in the dynamic longevity
range.

Figure 3a shows systematized data [14] for the
charge-number z dependence of the binding energy E,,
lattice constant a, elastic modulus E, and enthalpy and
phase-transition heat H + L,,. These data testify to the
absence of correlation in these parameters. Figure 3b
shows the charge-number dependence of the critical
energy E., leading to the failure of indicated metalsin
the dynamic longevity range under the action of the
thermal shock induced by intense radiation pulses [4].

Generalizing and analyzing the results taken
from [1-4] with the use of expression (1), we arrive at
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Fig. 3. Atomic-number dependence of (a) (close triangles) binding energy E,, (circles) lattice constant a, (squares) elastic mod-
ulus E, (open triangles) enthalpy and phase-transition heat H + L, and (b) critical pressure E, leading to the failure of indicated

metals for alongevity of about 108,

the failure surface shown in Fig. 4 in the coordinates
_ Pa()

Fp(H+Lny)’
atomic number z of the element, and longevity t. The
dashed lines on the failure surface are experimental
datafor Al, Ti, Fe, Ni, Cu, Cd, Sn, Ta, W, and Pb [1-4].
To adequately describe dynamic failure induced by a
thermal shock, it is necessary to know the dynamic

including the dynamic invariant I(t) =

E(t)
H+L,
absorbed energy leading to macroscopic failure chang-
ing the connectivity of the body for certain longevity t.
This dynamic invariant takes values in the range | ~
0.3—1 (dynamic longevity range ist ~ 10°-10"10 s).
With anincreasein |, when | > 1 (milling, dispersing),
it is not necessary to consider the process at different
scalelevels.

invariant I(t) = , Where E(t) is the critical

DOKLADY PHYSICS Vol. 48 No. 11 2003
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Fig. 4. Schematic representation of the failure surface in the coordinates including the dynamic invariant I (t) = ————— , atomic

number z of the element, and longevity t.

The potential energy U corresponding to each hier-
archic level of the dissipative structures, which is char-
acterized by itsorder parameter n;, distribution function
f,, and relaxation time t;, entersinto quantity I(t) in the
integral form. For the dynamic invariant I(t) < 0.3-1,
the absorbed energy E islower than the energy E, lead-
ing to macroscopic failure. To predict the resource of
various-geometry materialsunder multipleloading, itis
necessary to study severa structural levels of the
loaded solid.

Real fractal structures such as the cascade of micro-
cracks, failure centers, and shear bands attract attention
after the introduction of the concept of structural levels
of deformation and failure [11, 12]. A characteristic
feature of such dissipative structuresisthat their fractal
structure is manifested at the simultaneous realization
of severa structural levelswhose scales are so different
that it isdifficult to represent a graphic geometric (frac-
tal) image in a given scale level. The observation and
identification of multiscale structures are hindered.
They can be consistently described in the framework of
the fractal concept, because such nonequilibrium sys-
tems are large ensembles consisting of hierarchically
coordinated statistical ensembles that, in turn, consist
of a set of subensembiles, etc.

Interest in fractals has increased substantially after
numerous phenomena and problems had been
described where the fractal structure (dimension) was
the fundamental characteristic of asystem. In[11], we
successfully applied such an approach to determine the
guantitative characteristics of dissipative structures
arising in the process of the dynamic failure of metals
and explosives, as well asin the process of the modifi-
cation of the structure of metals and alloys subjected to
pulsed high-current beams of relativistic electrons in
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frp(H+L)’

the dynamic longevity range (t ~ 10°°-10-1° s). Accord-
ing to the available data, systemsformed under strongly
noneguilibrium conditions arefractal systemsand char-
acterized by the fractal dimension.

Dynamic failure in specific temperature-time

ranges (t ~ 10°-10""" s, T, ~ 4 K-0.8T,,, %—Itz ~ 108~
102 K/s) [1-4, 11] is hierarchic and proceeds through
one mechanism—appearance, growth, and accumula-
tion of failure centers—where the bulk of the body near
failure centersthat are appearing and growing serves as
athermostat.

The reported investigations reveal the hierarchy of
the structural levels of dissipative structures determin-
ing the dynamic failure of metalsin the longevity range
t< 10 s. Theformation of dissipative structuresis pos-
sible only when several structural levels are simulta-
neously realized. The fractal dimension of the struc-
tural levelsisaquantitative characteristic of dissipative
structures. Dissipative structures at the macroscopic
failure threshold have the total potential energy E =
H + L. The proposed method of estimating the total
energy of an n-level hierarchic system enables one to
introduce a particular mathematical formalism for each
structural level of aloaded solid without detailed anal-
ysis of each structural level.

The above method determines the possibility of pre-
dicting the behavior of unstudied metals under extreme
conditions and alows computer “construction” of
materials stable to certain test conditions.
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It is common practice to describe propagation of
one-dimensional acoustic waves in media possessing
guadratic elastic nonlinearity and relaxation properties
by the integro-differential equation [1]

oV avav_ m 0
6x c; ot

6V(T ) T-Tq]
I L —rdts. 1)

Here, V is the velocity of particles in the medium; C,
and C, are low-frequency (w < T°') and high-fre-
quency (w > T-!) limits of the wave phase velocity; T
CZ _ 2
istherelaxationtime T=¢— — ,m= —=—— < 1: and
CO Co
o isthe parameter of quadratic nonlinearity. Equation (1)
isderived on the basis of the following relaxation equa
tion of state for amedium [1]:

Lop (Tl)

p(p) = Cop' +mCoJ’

_T ,
< e s + X0, @

where p' and p' are perturbations of pressure and den-
2

C
sity, respectively, X = const, and p' < 7(9

Equation of state (2) corresponds to a homogeneous
medium. Its rheological model consists of a chain of
equal links. Each of theselinksisaparallel connection

Institute of Applied Physics, Russian Academy of Sciences,
ul. UlI'yanova 46, Nizhni Novgorod, 603600 Russia

e-mail: nazar @hydro.appl.sci-nnov.ru

of a standard linear viscous-elastic body and a nonlin-
ear spring [2] (Fig. 1a). In this case, the equation of
state for the entire chain coincides with the equation of
state for one link of the chain.

Equation (1) describes propagation of steady-state
waves of the symmetric-jump type, as well as forma-
tion of shock waves or solitons, while exciting periodic
perturbationsin the medium [1, 3]. Asis seen from the
rheological model (Fig. 1a) and from Egs. (1), (2), ina
homogeneous medium, only linear relaxation takes
place, its nonlinearity being inertialess and frequency-
independent.

In [4, 5], the rheological model of a nonlinear
microinhomogeneous medium with relaxation proper-
ties and containing various microdefects (cracks, dislo-
cations, etc.) was proposed. In these papers, the nonlin-
ear equations were obtained, notably the equation of
state and the wave equation for one-dimensional acous-
tic waves. This model represents a chain of rigid linear
springs connected in series and a small number (per
unit length of the chain) of soft nonlinear viscous-elas-
tic defects (Fig. 1b). In the case of a microinhomoge-
neous medium containing identical defects and exhibit-

(a)

1
] ]
2
(b)
1
3

Fig. 1. Rheologica models of (a) homogeneous and
(b) microinhomogeneous nonlinear media possessing
relaxation properties: (1) spring; (2) linear damper; (3) non-
linear element.

1028-3358/03/4811-0633%24.00 © 2003 MAIK “Nauka/ Interperiodica’
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ing quadratic elastic nonlinearity, these equations have
the form

o(e) = E[e-VR(e) —vyIRIR(e)]], 3)
ov, 6 v o vyla
5% ac RV "L RIR(V =0, ()

where o and € are the stress and strain; E and C are the
Young modulus and the wave velocity for a medium
free of defects (the value of C also corresponds to the
high-frequency limit of the wave velocity in a medium
with defects); v, ¢, Q, and y are the concentration
(v < 1), relative eadticity (¢ < 1), relaxation fre-
guency, and the parameter of the quadratic nonlinearity

of defects respectively, 1=t — é

—Q(1-1,)

R(V) = ZIV( 1)e dry,

V(R = S8R+ R, VIRIR(e)] <IR(e)])

or
Y82y <
SRA(V)<|VI.

In such a medium, the small dispersion parameter
m<< 1 is determined by the expression m = \Z) In the

model, it is assumed that the linear defect size is much
smaller than both the acoustic wavelength and dis-
tances between defects. In addition, it is supposed that
alot of defects correspond to the wavelength distance,
and their distribution in the chain is statistically uni-
form [6].

Comparison of rheological models (Fig. 1), of equa-
tions of state (2), (3), and of wave equations (1), (4) for
above-described media demonstrates certain differ-
ences. The basic difference consists in the fact that in
addition to the linear relaxation, a microinhomoge-
neous medium also possesses nonlinear relaxation.
This results in a dependence of nonlinearity of a
medium on frequencies of interacting acoustic waves,
i.e., indispersion of nonlinearity [4, 5]. Inturn, thedis-
persion of nonlinearity can qualitatively change the
character of nonlinear wave propagation in a microin-
homogeneous medium (compared to a homogenous
medium).

In this paper, we analyzein the framework of Eq. (4)
nonlinear wave processes in microinhomogeneous
media possessing relaxation properties. Weimply prop-
agation of steady-state waves of the asymmetric-jump
type and distortion of low-frequency (LF) and high-fre-
guency (HF) initially harmonic waves.

NAZAROV,

RADOSTIN

From cumbersome integro-differential equation (4)
with respect to the variable V, after simple transforma-
tions anal ogousto those performed in [1] we can obtain
the following simpler evolution equation with respect
toVand R(V):

d DlOV

bt 0 20105/ R(V%‘O

(6)

Furthermore, similarly to [1], we seek the steady-state
solution to Eq. (6) intheform R=R(n), wheren =1 -

V
bx, and b = const. Assuming y >0, R(®) = R, = ?0 >0,
R(-e0) = 0 (and in both cases, dR = 0), we obtain

dn
from (6) the equation for the nonlinear oscillator in the

caseof Q= R . Thisoscillator determines the profile of

Ry
a steady-state wave, namely, of asymmetric jump 1 -
0, which moves at a velacity Cl1) with respect to the
immobile coordinate system:

d*Q dQ _
w+(1—u)@—HQ(1—Q) =0, ™
—1
CW) = CHL+ 57y © ®)
where
b - V — yVO/ZC 1
2(C(1+p)’ 1-yVo/LC™
YVo _
Z_C <1, 6=Qn.

We failed to solve Eq. (7) in the analytical form,
therefore we analyze it furthermore numerically. How-
ever, we may note at once one of the important proper-
ties of this equation: in contrast to the solution to
Eq. (1), its solution is continuous and unambiguous.
Mathematically, this property is explained by the fact
that Eq. (7) is linear with respect to the derivatives Qg
and Qg. The physical reason for the continuity and
uniqueness of the profilefor thejump 1 - 0 isthe non-
linear relaxation. Thisrelaxation dampsthe elastic non-
linearity of a microinhomogeneous medium in the HF
region (w < Q) [4, 5]. This prevents an increase in the
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wave front steepness and appearance of ambiguity of
the profile V = V(0), its maximal steepness being equal

_ K
to Qemax - 4(1 _ u) '

The results of numerically calculating profiles of
steady-state waves for W(0) = \_/\%@

0
values of the dimensionless parameter p are plotted in
Fig. 2. It follows from this figure and from the analysis
of linearized equation (7) near the equilibrium states

Q,=1landQ,=0thatinthecaseof p<(3-2./2), the
wave profile represents the monotonous drop (the same
as in a homogeneous medium [1]). In the case of p >

(3 - 2A/§), in the profile (near the equilibrium state
Q, = 1), oscillations occur. Their amplitude and fre-
guency increase with U, whereas the front duration
decreases.

We now consider the propagation of aninitially har-
monic wave (V(x= 0, T) = V,sinwT) in such a medium.
Assuming in Eqg. (4) that

and for different

W,z = Y82 5oy, g2 WYX
Vo {®
- _C _w
D= 5wy =5
we arrive at
oW, D3S_ 199S] _ ©
0z dod pq® 09

where §W(8, 2)] = I W(3,, 2) exp%—’%%dﬁl.

In the low-frequency limit (d < 1), we havefrom (9),
we abtain an equation similar to the Korteweg—de
Vries-Burgers equation [1]. The equation obtained dif-
fers from the latter one by a small nonlinear term

W, L [0°WP oW .
M_WM+ ZdLW2
0z 09" 209
’w  0°
s D[—z—ol—3 9=9-Dz.  (10)
09’ 09’

*W?
The solution to Eg. (10) (without the term 2d 357 )
was thoroughly studied in [1]. In particular, this solu-
tion describes the asymmetric distortion of a harmonic
wave and formation of weak pulsations near its vertex.
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Fig. 2. Profiles of steady-state waves of the asymmetric-
jump type in a microinhomogeneous medium for different
values of the parameter p: (1) p = 0.15; (2) 0.25; (3) 0.35;
(4)0.6.

Apparently, it should be expected that the existence of
thisterm does not qualitatively change the general evo-
[ution pattern for the LF wave.

In the other (HF) limit when d > 1, we obtain from
Ea. (9)

laS+ 92§_.§Z_ = 0.
499 o

9°S

3502 doz (D

Asis seen from Eq. (11), in this case, the nonlinearity
of the medium is strongly suppressed. Thus, the HF
wave propagating at avelocity C undergoes only linear
attenuation whose decrement is determined by the
expression 6, = vQ

Presson® = ante’

More detailed and exact pattern of evolution of har-
monic waves (particularly for w = Q) can be obtained
by numerically solving Egs. (9)—(11).

The authors hope that the results of the performed
study could be useful in the development of nonlinear
acoustic (and seismoacoustic) methods of diagnostics
of microinhomogeneous media. These media contain
various viscous-elastic defects that have more compli-
cated (compared to that analyzed in this study) distribu-
tion over parameters Q and ¢ and possess not only qua-
dratic (or cubic) elastic nonlinearity but a nonlinearity
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of another type (e.g., hysteresis, or dissipative nonlin- 2. R. M. Davies, Appl. Mech. Rev. 6, 1 (1953); Stress

earity). These nonlinear relaxation propertiesareintrin- Waves in Solids (Inostrannaya Literatura, Moscow,
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Pulses of transverse electromagnetic waves (TEM)
propagating from coaxial lines, where they are formed,
toirregular waveguides with simply connected sections
are transformed into pulses with the structure of longi-
tudinal waves (TM waves). These processes determine
the operation efficiency of certain devices such as
pulsed radiation antennas. The fast development of
equipment for ultrawideband electromagnetic pulses
[1, 2] has recently increased the interest in these pro-
cesses. Nevertheless, they remain poorly studied due
primarily to difficulties in the mathematical simulation
of pulsed operation modesfor irregular channels. These
difficulties are aggravated by the presence of topologi-
cally discontinuous connections between transmission
lines with doubly connected sections and waveguides
with simply connected sections. As is shown in this
study, the corresponding generalization of the model of
connected strings for irregular waveguides with a con-
served topology of sections [3, 4] makes it possible to
perform such calculationswith ahigh level of accuracy.

Figure 1 exemplifies such a channel with Z-axial
symmetry. The boundariesr = a(z) and r = b(2) of the
inner and outer ideal conductors, respectively, as well
as the characteristics (¢ and W) of the medium, are
assumed to be independent of the azimuth angle ¢. The
boundaries are chosen in the form of cylinders a(z) =
a, = const and b(z) = by = const for z < 0 (regularity
region) that are transformed to the ellipsoid of revolu-
tion

and to the one-sheeted hyperboloid of revolution

2 _1/2

b(2) = bo + =

respectively, for z> 0.

Institute of Strategic Stability, Moscow, Russia
* e-mail: iss@niiit.ru

The set of time-dependent waveguide equations has
the matrix form [3, Eq. (7)]

aiz[e(z)%fz +Q(2)f |
, ()
v, Of of _
Q@ -P@I-T@ =0,

where the z coordinate and time t are independent vari-
ables. The components fi(z, t) of the unknown column
vector f(z, t) are the amplitudes of the reference-
waveguide modes in the expansion of the azimuthal
magnetic-field component, which is the only nonzero
component in the case under consideration:

H(rg, zt) = Zej(rm,z)fj(z,t). )

The dimensions [N] of the column vector f(z t) and of
the [N x N] square matrix functions G(z) and Q(2),
together with the transposed matrix functions Q'(2),
P(2), and T(2) in set (1), are determined by the number N
of thetermstaken into account in sum (2). These matrix

I
o0
T

a(2) 7

=
™
T

b(2)

-04

-0.8

~12 '
6 -4

Fig. 1.
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functions are given by their matrix elements

Gu(2) = [ js‘lesends. T(d = [ [nee,ds

S(2) S(2)

Qu(2) = [ js*(es)Zends, 3)

S(2)

Pu(?) = [ js‘l{ (e),(e), +r(rey),(re)} ds,

S(z)

where S(2) are the plane sections of the channel that are
orthogonal to the Z axis and the subscripts zand r stand
for the differentiation with respect to these variables.

In what follows, dimensionless variables and
parameters will be used. The dimensionless variables
are aobtained by dividing al quantities that have a
dimension of length (space coordinates, functions a(z)
and b(2), etc.) by a certain convenient linear scale L,

while timet is divided by IE_ (cisthe speed of light in

vacuum). The dimensionless values are denoted by the
same symbols. Inthiscase, c= 1.

Thefield distribution functionsin the corresponding
reference waveguides are used as a set {g(rp, 2)} in
expansion (2).

(i) For doubly connected S(z) intherangez< a*, we
take

1 r
€ = F; €+1 = NO(AXk)Jl%(ka%

—JO()\xk)Nl%k%, k=12 ... )

KOROZA, GOLIKOV

Here A = g; and X, (0 < X; < X, < X< ...) are the roots

of the equation
No(AX) Jo(Xi) = Jo(AX)No(X) = 0.

Since A = A(2), X = X(2). In this case, the amplitude
f,(z, t) corresponds to the magnetic field of the TEM
mode, whereas the remaining amplitudes f, , ,(z 1)
(k= 1) correspond to the magnetic fields of the TM,
modes (E-type waves).

(i) For z> a*, when S(2) are simply connected, to
provide the continuity of the functions in the set
{g(ry, 2} withidentical numbersj on either side of the
section Sa*), we supplement the basis set {g(rp, 2)}

with the surplusfunction e, = % and simultaneously set

f,(z t) to zero. As aresult, we have

1 r
€= F; €+1 = No(Vk)Jlg’kB%, k=12...(

Here, v, aretheroots of the equation J,(v,) =0 (0<v, <
V, < V; <...). The normalization coefficients Ny(v,) are
involved in (5) to provide the continuity of the set
{g(rp, 2} for z=a*. We emphasize that TEy modes
(H-type waves) are assumed to be absent for t = 0; they
also do not arise for t > 0 and, therefore, are ignored
here.

Set (1) for the pulse with the TEM initia (t = 0)
structure (Fig. 1, trapezoidal curve I with the base in
therange-1.5<z<-0.5,topintherange-1.3 < z<
-0.7, and smoothed lateral sides against the back-
ground of the channel configuration) was numerically
solved by using an explicit finite difference scheme
with mesh sizes of hz=0.01 and ht = 0.002. In this case,
solutions to set (1) were joined at z= a* in correspon-
dence with the continuity conditions for the transverse
components of magnetic and el ectric fields. For specific
calculations, wetook a,=0.1,a* =1.5,b,=0.3,b* =2,
e=p=1 and N=7. Inaddition, Fig. 1 shows the cal-
culations of the magnetic field for the TEM component
of the pulse [function f,(z t)] in the times: t = (2) 2;
(3) 2.25; (4) 2.5; (5) 2.75; (6) 3; and (7) 5.

The curves show the characteristic behavior features
for the magnetic-field TEM component of the pulse
near the Sa*) section. First, the width of the pulse
decreases (curves 2 and 3), because the trailing edge
approachesthe leading edge that stopswhen it achieves
the Sa*) section and cannot overcome it. Then, the
magnetic-field pul se changes polarity (curve4); i.e., the
propagation direction changes. Finally, the pulse width
isrestored (curves 5-7).

In the time interval 2 <t < 3, the transformation of
transverse waves into TM-type longitudinal waves is
intensified simultaneously with the formation of the
reflected pulse. Thiscan bedirectly seenin Fig. 2 show-
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ing the time dependence of the electric field directed
along the Z axis at this point.

The calculation error was estimated from the rela-
tive spread of the total electromagnetic energy accumu-
lated in the pulse and calculated when solving set (1).
This value was no more than 0.1% for various timest.

Thus, we showed that the fast qualitative reorgani-
zation of ultrawideband short electromagnetic pulses
passing through the topologically discontinuous con-
nections of coaxial-type waveguides and irregular
waveguides with simply connected sections can be effi-
ciently simulated and calculated with a high accuracy.
The structure of pulses, which are initialy transverse
waves and are partially reflected aswell as transformed
into forward-propagating longitudinal waves, changes
in the vicinity of the topologically discontinuous sec-
tions during the short time that pulses pass through.

DOKLADY PHYSICS Vol. 48 No.11 2003
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Introduction of a small fraction of large particles
often embrittles a polymer, and the rupture of the poly-
mer occurs at small relative elongation. The sharp loss
of the deformability of the composite is caused by the
appearance of so-called diamond-shaped pores [1]
observed previoudy in[2, 3]. It was shown that the size
of particlesresponsible for the appearance of diamond-
shaped pores is determined by the critical crack open-
ing and, therefore, by the breakdown viscosity of the
matrix polymer.

Rupture of particles or their separation from the
matrix under tension givesrise to the formation of pores
whose shape is determined by the size of particles [1].
Small and large particlesform oval poresand diamond-
shaped pores, respectively. With further tension, the
two types of pores that appear behave differently. An
oval pore develops only along the material-elongation
direction. A diamond-shaped pore growsin three direc-
tions, parallel and perpendicular to the sample tension
axis, in particular, along the sample thickness, which
leads to early failure. In polymers deformed by the
propagation of a neck, the problem is compounded,
because the growth of pores is often localized in the
narrow formed neck. As a result, the material breaks
down at small macroscopic strain. Although the frac-
ture process (growth of diamond-shaped pores) is typi-
cally plastic at the mesoscale, the material behavesasa
brittle material at the macroscale. This work aims to
determine the dependence of the critical size of parti-
cles at which diamond-shaped cracks appear on the
properties of the polymer matrix.

Lukoten F 3802 medium-density polyethylene,
Lipol A4-70 polypropylene, and 168030-070 low-den-
sity polyethylene are used for composites. Polymers
were filled with powdered-rubber particles with sizes
from 50 to 600 pm. A monodisperse filler was obtained
by grading the polymersinto grain sizeswith astandard
set of sieves. Each polymer was mixed with rubber par-
ticles in a single-screw laboratory extruder. The filler

Ingtitute of Synthetic Polymeric Materials,
Russian Academy of Sciences,
ul. Profsoyuznaya 70, Moscow, 117393 Russia

concentration was equal to 1-2 vol %. Plates with a
thickness of 2 mm were pressed from obtained mix-
tures.

In addition, isotactic polypropylenewith M, = 6.3 x
10 E,'VIW" = 3.% was mixed with monodisperse Al(OH),

particles with sizes 8, 25, and 55 um in a Brabender
mixer. The conditions of the production of the mixture
and its pressing were presented in [4]. The filler con-
centration was equal to 5 vol %.

Pure-polymer 0.5-mm-thick films were pressed in
the same regime as mixtures. Unfilled isotactic
polypropylene was treated in the Brabender mixer in
the regime of composite formation and was then
pressed.

Specimens in the form of double-sided blades with
5 x 35-mm working parts were cut out of the plates.
Mechanical tests of composites were carried out on a
Shimadzu Autograph AGS—10kNG universal testing
machine with atension rate of 20 mm/min. The surface
of broken specimens was analyzed by both a Hitachi
S-520 scanning electron microscopeand aQ x 3 optical
microscope. The particle sizes in the composite were
estimated when analyzing the material by a micro-
scope.

Specimens with a notch were tested on a testing
minidevice, where aspecimen is stretched with arate of
2 mm/min in the field of vision of the Q x 3 optical
microscope. The specimen was periodicaly photo-
graphed in the tension process. The notch was made by
ablade. Thelength of the crack was equal to 0.8-1 mm.

Figure 1 shows a diamond-shaped pore that appears
in the neck region due to the breakdown of alarge par-
ticle under the tension of afilled polymer. The tension
direction isindicated by the arrow. The poreis strongly
elongated along the tension direction, and its length
reaches 1.5 mm. The sides of the diamond-shaped pore
are curved. The pore opening angles are equal to 25°-
30° and 140°-160°. Small remainders of the rubber
particles, whose main mass is often separated and
rejected from the pore, are seen in acute angles. Analy-
sis of the pore with large magnification shows that the
pore is much shallower near two acute angles than at
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Fig. 1. (Upper) Image of adiamond-shaped pore in a medium-density polyethylene with 2 vol % rubber particles as obtained by a

scanning electron microscope and (lower) scheme of the pore.

the center. Therefore, the pore grows not only in the
width (perpendicularly to the arrow shown in Fig. 1)
but also in the depth (thickness) of the specimen. More-
over, with larger magnification, traces of tearing apart
of polyethylene are seen on the line joining two neigh-
boring vertices of the pore, which indicates that the
pore grows in depth. Several oval pores are aso
observed in the neighborhood. Figure 2 shows the typ-
ica form of an oval pore. This pore is much smaller
than the diamond-shaped pore and has alength of about
100 um. Remainders of the destroyed particle pressed
out of the matrix are seen at the vertices of the pore.

The table presents the minimum size of filler parti-
cles near which diamond-shaped pores are formed. The
critical size of a particle depends on the type of matrix
polymer.

Pores that are formed under the rupture of large par-
ticles grow microcracks. Half of the diamond-shaped
poreissimilar to the tip of a notch in the unfilled poly-
mer [5]. Optical microphotographs shown in Fig. 3
demonstrate the development of a crack under the ten-
sion of unfilled medium-density polyethylene. For

DOKLADY PHYSICS Vol. 48
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small strains of the specimen, the crack edge becomes
smooth, and its tip has a round shape similar to the
shape of the oval pore (Fig. 33). Further tension leadsto
a gradua opening of the crack. At a certain time, the
geometry of the crack tip changesfrom round to wedge,
and the crack begins to grow. Further opening of the
crack givesriseto an increase in the size of the wedge,

Minimum size of particles near which diamond-shaped pores
are formed and critical crack opening in 168030-070 low-
density polyethylene (LDPE), Lukoten F 3802 medium-den-
sity polyethylene (MDPE), Lipol A4-70 polypropylene
(PP1), and isotactic polypropylene (PP2)

Poiymer | Filler | e | o
LDPE Rubber 400 1150
MDPE Rubber 100 680
PPL Rubber 80 550
PP2 Al(OH), 25 143
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Fig. 2. Same asin the upper panel of Fig. 1, but for an oval
pore.

whose angle remains unchanged. In this case, thetip of
the crack is similar to half the diamond-shaped pore
whose angle is virtually equal to the angle of the tip of
the crack (Fig. 1 and right panel in Fig. 3). A similar
behavior was observed in al polymers under investiga:
tion with both hard inorganic and elastic fillers.

The table presents the critical opening of the crack
for which the formation of an edge begins at the tip of
the crack for various polymers. The critical size of par-

@ (b)

BAZHENOV et al.

ticles near which diamond-shaped pores are formed
correlates with the critical opening of the crack o.. The
critical size of filler particles near which diamond-
shaped pores are formed increases with the critical
opening of the crack d,.

Breakdown of a filler particle leads to the appear-
ance of a pore. Rubber particles usually break down,
but they can also be separated from the matrix. Particles
of themineral filler did not break down, and poreswere
formed through the separation of filler particles.
According to linear fracture mechanics, a crack begins
to grow when its opening at the tip reaches the critical
value o, which isindependent of the crack length [5, 6].
Knowing the critical size of filler particles for which
diamond-shaped pores appear, one can determine the
critical opening of a pore for which the devel opment of
the pore as a crack begins.

We consider a spherical particle with diameter D.
Stressin thefiller due to its breakdown isignored. The
opening of aformed pore along the tension axisisequal
to the distance between the fragments of the particle
(Fig. 1),i.e,

o = (A-1)D, ey

where A isthe elongation degree of the matrix polymer.

We assume that pores behave as microcracks; i.e.,
the formation of a diamond-shaped pore from an oval
pore begins when the opening of the latter pore o
reaches the critical opening of the crack &.. In other
words, the equality & = &, isacriterion of the beginning
of the growth of the micropore transversely to the elon-
gation direction (formation of the diamond-shaped

Fig. 3. Development of a notch in a medium-density polyethylene: (a) oval geometry of the crack tip and (b) edge formation.
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pore). In this case, the critical size of particlesis deter-
mined as

0 5
o1 ()

In this work, we studied only composites based on
polymers deformed with the formation of aneck, where
A isequal to the natural elongation degree of the matrix
polymer A,. The appearance of diamond-shaped pores
was observed both in the process of the propagation of
the neck and at the reinforcement stage, when A
exceeds A4 However, data presented below refer only
to the neck region. Figure 4 shows a correlation

D, =

C
Ag—1
determined critical sizes of particles whose breakdown
(separation) is accompanied by the formation of dia
mond-shaped pores. The dependence can be approxi-
mated by a straight line whose slope is close to unity.
Thismeansthat thetransition of oval poresto diamond-
shaped poresisreally caused by the achievement of the
critical opening d.. The behaviors of composites filled
with the hard mineral filler and rubber particlesare sim-
ilar to each other. We emphasize that &, characterizes
the material cracking resistance, which is described by
one of three parameters. breakdown viscosity G, crit-
ical intensity coefficient K, or .. Thus, thecritical size
of particlesin the filled composite is determined by the
cracking resistance of the matrix polymer.

Using the well-known relation between the break-
down viscosity G, and critical opening of acrack G, =
0,9 [6], where o, isthe yield stress of the matrix poly-
mer, we represent Eq. (2) in theform

between the quantity and the experimentally

_ Gy
DC - O.y()\_l) (3)
This formula can be written in the form
GIc
= +
A O'yD 1, (@)

which describes the elongation degree for which dia-
mond-shaped pores are formed as afunction of the size
of particles.

The above experimental data are given only for
polymers deformed by neck propagation. However,
they are probably general and are similar for materias
deformed through uniform plastic flow. Thus, the
breakdown or separation of large particles is responsi-
ble for the appearance of defects that first grow as oval
pores under tension and then are transformed to dia

DOKLADY PHYSICS Vol. 48 No. 11 2003
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Fig. 4. Calculated vs. measured critical sizes of particlesin
(m) 168030-070 low-density polyethylene, (o) Lukoten F
3802 medium-density polyethylene, (a) Lipol A4-70
polypropylene, and (v) isotactic polypropylene (PP2).

mond-shaped pores. The latter pores are microcracks
growing transversely to the tension direction. A dia-
mond-shaped pore is formed when the opening (elon-
gation) of the pore reaches the critical opening of a
crack in the unfilled polymer with a notch. The size of
particles for which diamond-shaped pores appear is
limited by the breakdown viscosity of the matrix poly-
mer. A filler particle can be caled large if its size is
closeto or larger than D...
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The thermal gas-dynamic model of self-excited
oscillations of a Helmholtz resonator is analyzed. We
introduce dimensionless variables and parameters that
provide an adequate description of periodic motions by
a third-order quasilinear system. The conditions of
existence, uniqueness, and stability of the limiting
cycles are ascertained. By the methods of local integral
manifolds, averaging, and the Lyapunov—Poincaré
method, a first-approximation solution is constructed
and basic qualitative and quantitative characteristics of
self-excited oscillations of the Helmholtz resonator are
established. This thermal—mechanical system has not
yet been satisfactorily studied.

1. The Helmholtz resonator was used as a simple
acoustic device for both the efficient determination of
the frequencies of acoustic oscillations and their
absorption [1]. At present, devices and coatings based
on the properties of the resonator are widely used in
both architecture and technical acoustics [2]. The
Helmholtz resonator includes a closed vessel that has
volume V and a hole with area S. The hole is tightly
connected with a tube open at both ends. This tube has
length | and an inner cross section corresponding to the
hole. The vessel and tubeisfilled with agas, e.g., air. It
was shown [1] that, under certain conditions, this
deviceis alumped linear oscillatory system, where the
gas column in the tube and the gasin the vessel charac-
terize lag and el asticity, respectively. The frequency w,
of small free oscillations disregarding dissipation is

equal to
S P
@ = o, G = V3 (1)

where ¢, is the speed of sound in the gas, yisthe adia-
batic index, P, isthe pressure, and p, isthe gas density.
According to Eg. (1), the frequency wy, is independent
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of the shapes of the vessel V and hole S. For conven-
tional atmospheric conditions and V ~ 10> cm?, S ~

W
1 cm?, and | = 10 cm, we have wy, ~ 10° 52, i.e, -2-T9[ -
10? Hz, which corresponds to the frequency of audible

acoustic oscillationsfor ¢, = 3.4 x 10* cm s™.

Free oscillations of the gasin the resonator tube rap-
idly damp due to dissipation. However, by heating the
gasin the vessel, one can realize positive feedback and
sustain oscillations of the gas column for a long time,
i.e., realize self-excited oscillations of the thermal gas-
dynamic system with the frequency w closeto wy, given
by Eg. (1). This mechanism and simple mathematical
model were proposed by Teodorchik [3]. He empha
sized that similar thermomechanical oscillations were
often observed both in technical devices and in nature:
acoustic oscillations of air in tubes under glass-blowing
operations, “singing” of vapor in long pores of a thick
layer of deposits before liquid boiling, self-excited
oscillations of agasin boiler tubes, geysers as an oscil-
lation geothermal phenomenon, Cepheid variable stars
as an astrophysical phenomenon, etc.

A simplified model provides not only qualitative but
also satisfactorily quantitative determination of the
conditions of appearance and basic characteristics of
self-excited oscillations for various parameters of the
thermomechanical system. Following [3], we represent
the relations describing the dynamics of the system. A
substantial condition is that the steady-state tempera-
ture T, of the resonator walls has significant gradient
near the point x = 0 of the connection between the ves-
sel and tube. The x dependence of T, is usually approx-
imated as [3]

T, = To+tkXx—kex’, [X<d <], Q)

wherek, ; > 0 are constants and T, is the average tem-
perature for x = 0.

Further, the thermal balance condition
med = K(kx—ksx*=8), T=T,+0 (3)

is applied to the gas element with mass m, which isin
interval (2) near x = 0. Here, T is the current tempera-

1028-3358/03/4811-0644%$24.00 © 2003 MAIK “Nauka/Interperiodica’



QUASILINEAR SELF-EXCITED OSCILLATIONS OF A HELMHOLTZ RESONATOR

ture, 6 isthe deviation from the average temperature T,,,
c isthe heat capacity at aconstant gasvolume, andK is
the thermal conductivity.

Under the assumption that the displacement x of a
gas column with the massm, = p,Sl inthetubeissmall,
the equation of motion (after division by m,) has the
form

X+20%+wox+PBO =0, [X<d<| 4)

in the approximation of linear dissipation and thermal
expansion. Here, 29 is the dissipation coefficient and 3
isthe coefficient of thermal expansion relating the ther-
mal variable 0 to mechanical variablesx and x . We note

that the point 8 = x = x = 0 isthe steady state of the set
of Egs. (3) and (4), whichisfurther analyzed by asymp-
totic methods. It is of interest to analyze both the stabil-
ity conditions for the rest point and the possibility of
self-excited oscillations of the Helmholtz resonator in
the quasilinear model. There are attempts of analytical
analysis of the system. However, a satisfactory solution
to the problem of undamped periodic motion is absent.
In this work, self-excited regimes are constructed and
analyzed for various resonator parameters under the
assumption that the dimensionless coefficients of self-
excitation and dissipation are small.

2. The dimensional set of Egs. (3) and (4) involves
four variables 6, x, x, and t and eight parameters wy, 9,
B, m, ¢, K, k;, and k; in certain combinations. To obtain
completely dimensionless equations, it is convenient to
remove the variable 6, which has no mechanical mean-
ing, and pass to the third-order equation in the variable
X. This operation is performed through, first, the differ-
entiation of EQ. (4) with respect to t and, second, the

expression of 6 and 0 intermsof X, X, and X. Then, the
resulting eguation reduces to the third-order equation
involving only three dimensionless parameters €, K,
and o:

£+ (K+eo)E+ (L+e0K)E + (K +&)E—€E° = 0,

_ _X z_k_1 _ K
T = Wt E—d, d _k3’ K_mccoo’ K 01, (5)
k
€ = Kle, £<1, €0 = 25
Wy W

Here, the dot represents the derivative with respect to
the dimensionless variable T and the length unit d isthe
interval characterizing the temperature gradient accord-
ing to Eq. (2). The dimensionless quantity € is consid-
ered asasmall parameter in the problem of oscillations
of the quasilinear system specified by Egs. (5), which

has the rest state £ = & = § = 0. We analyze the
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Lyapunov stability of this solution. According to the
Routh—Hurwitz criterion, the conditions of asymptotic
stability have the form

K+€0>0, €0(l+k’+€e0K)—g>0,
K+¢€>0.

(6)

The first and third conditions are automaticaly satis-
fied. The second inequality is arelation implied on the
parameters of the system after the transition to dimen-
sional variables according to Eq. (5). According to con-
ditions (6), this relation can be violated if the dissipa-
tion coefficient o is quite small, in particular, for o ~
€ < 1. In this case, the inverse inequality is satisfied,
and the rest point is exponentially unstable. Indeed, the
roots of the characteristic linearized equation (5) for
quite small € > 0 are represented as

A= Ai,a(e), AE) = A+ent+el,

0 _ .
Ao = i,

' 10 1
AM,=xi L 40 2 (7
S e o e

1 -4

A=k, Al=—
3 3 1+K2

For o < (1 + k?)7!, thereal parts of the complex con-
jugate roots A, , (7) are positive, which corresponds to
the violation of the second of conditions (6) for small .
Thus, indicated o values are of interest for analysis of
motion of the system near the stationary point, as well
as for determination of the possibility of self-excited
oscillations and Lyapunov stability.

The problem of existence and approximate con-
struction of the stationary periodic motions (self-
excited oscillations) can be solved by the Lyapunov—
Poincaré method. Their stability is analyzed by the
Andronov-Witt theorem [5]. However, this approach is
very cumbersome. Moreover, the behavior of the sys-
tem near the periodic motion is of applied interest.
These investigations require effective asymptotic meth-
ods of nonlinear mechanics such as the method of local
integral manifolds [6, 7] and averaging [8, 9]. To apply
these methods, it is necessary to reduce Eqg. (5) to the

standard system by changing the variables g, &, and &
tothevariablesa, Y, z

& = asnp+z, & = acosy—Kz, ®

£ = —asny +K’z

Here, a is the amplitude, | is the phase, and z is the
variable determining the asymptotically stable local
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integral manifold. In view of Eq. (5), the differentiation
of Egs. (8) provides the standard system [6, 7]

a=¢Aay,z), A=(kcosp—-snyp)f, a>0,
P=1+eW(a P,2z), W=-a (ksiny + cosy)f,

z+Kz = £Z(a, P, 2), )
Z=f = (1+K°) (E°-& —oKE —0¥).

Expressions (8) for &, &, and & are substituted into the
function f. Theright-hand sideisa2m periodic function
of . For € =0, the general solution of system (9) iseas-
ily constructed. The periodic solution for & corresponds
toz=0.

3. Estimating the solution of set (9), one can show
that, after arelatively short time interval

At=k"In(|fet) <€, Z70) = 2, (10)

motionisbounded inthee vicinity of z=0. It wasfound
[6, 7] that, for T > AT, the system movesin the € vicinity
of the stable local integral manifold

z=c¢h(a,P,g), h(a,P+2me)=h(a P,e). (1)

The unknown function h is determined as the solution
of the partial differential equation

hy+kh = H(a, g, e[h]), H=Z—-eh,W —ehA,

Ih| < ho. (12)

O<a <as<a' <o, |g<g,

which is2mperiodic with respect to . Since Eq. (12) is
an analytic function of h, €, and a, the desired function
h can be constructed by the recurrence procedure

hG+n(@ W, €)

W
= J’ exp[—(p - ) H(a, ¢,e[h;)])do,

oo (13)
hiy(a, W)

v

= IeXp[—(lIJ—¢)]Z(a-¢,0)d¢. i=12..

with a given accuracy for sufficiently small €,. The

function h{;, can be represented at each step of the pro-

cedure not only in operator form (13) but also in the
form of atrigonometric polynomial of order N = N(j).

AKULENKO, NESTEROV

Since the function hyj, is representable as a power

series of €, expression (13) can be recurrently repre-
sented as

h*(a, @, €) = hfy(a W, €) + O(e')

= hy(a, @) +ehy(a, @) + ... + € hy(a, g) + O(€’),

v (14)
h@w) = [ep-w-0H @ 0)d,

H=2Z(@ y,0) +eH,+... +& 'H; + O)),

where the operator function H has form (12) and the
coefficients h; are trigonometric polynomials of g with
the period 21t The procedure specified by Egs. (13)
or (14) provides the desired solution h*(a, ), €) with
the required accuracy in €.

The substitution of the expression z = gh* into
Eq. (9) for a, Y on the local integral manifold leads to
the following standard set with the rotating phase:

a=¢eA*(a, ,g), A*=A(a y,eh*(a U, ¥)),

P =1+eW*(a U, ¢), (15)

W* = Y(a, P, eh*(a, Y, €)).

Set (15) is much simpler for analysis than set (9).
The solution a*(t, €), P*(t, €) of set (15) for certain
input data and a similar solution a(t, €), Y(T, €), (T, €)
of set (9) have the properties[6]

|z(t, €) —eh* (a* (1, €), Y*(1,€), €)| < Cexp(—K4T),
|E(T,€) —a*(1,€)sinP*(T1,€)| < Cexp(—K,T), (16)

C, kK, >0.

Therefore, self-excited oscillations of system (5)
equivalent to Egs. (9) are on the stable local manifold
z=¢eh* gpecified by Egs. (11)—(14) and are described by
Egs. (15). These oscillations can be approximately con-
structed and analyzed by the Lyapunov—Poincaré meth-
ods[5, 7].

4. The evolution of the osculating variables a and s
according to Egs. (15) is analyzed by the averaging
method [6-9]. The recurrence procedure separating a
and | is very cumbersome and requires symbolic com-
puter calculations. However, the first-approximation

DOKLADY PHYSICS Vol. 48

No. 11 2003



QUASILINEAR SELF-EXCITED OSCILLATIONS OF A HELMHOLTZ RESONATOR

solution is easily constructed and reduces to the inte-
gration of the system

a=¢tA(a), A =0A*(a y,0)0,

—ag 1
20 4+ g2

P = 1+e¥ (a),

~ - 30 & | 0
0780 4 T

W, = OV* (a, g, ),

(17)

- __K Be I
1428 A

where the angular brackets mean the averaging over (.
Equations (17) are integrated for given initial condi-
tions, in particular,

—@) e = Ba-e™), yzo
a?-(@)7 =ext, y=0; (18)

_ 2.1 _ 3 2.1

y = (1+K%) -0, X—Z(1+K) .

When dissipation is large, i.e., y <0, the oscillation
amplitudea - 0 vanishesinthelimitt — ; i.e, self-
excited oscillations do not arise. When dissipation is
small, i.e., y> 0, theamplitude a(eTt, a°) tendsto the sta-
ble limiting value

_ 4 24\ 112
—/\/é(l—(f(l+K)) ,

independently of a° > 0.
Value ar(19) is the asymptotically (exponentially)

stable stationary point of Eq. (17) for a. Thepointa=0
is unstable. According to the Lyapunov—Poincaré
method [5, 7], the desired periodic solution of sys-
tems (5), (9), and (15) exists, is unique for sufficiently
small g, values, and isan analytic function of €, and the
value apis the first approximation of the amplitude of

self-excited oscillations with respect to «.

In the first approximation, the frequency v(a, €) of
nonstationary oscillations is determined by the equa
tion for Y in set (17), and the phase is represented in
guadrature for the function a(et) known according to
Eqgs. (18). For steady self-excited oscillations,

a, 01 (19)

v(ay, €) = l+§GK, P = %I.+§0K%T+L|JO. (20)

We represent the resulting expressions in the origi-
nal dimensiona variables according to Egs. (3)—(5).
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The condition of existence y > 0 and limiting cyclein
the variables x, X, and 6 are described by the relations

25 < Bk,meK (K2 + mPc?wd)
X = da,sny, X = dwya,cosy,
3.2
1—4a*

0 = dkk,a,| ——(ksiny — cosy)
K

1)

N a2 (K sin3y — 3cos3y)
4(9+«k)® ’

_ |4 20 2 2 202
o = [ i

d= d(ﬂm K = K
k[ mcwy’

Using formulas (5), (17), and (20), we obtain the
dimensional frequency w and time C of reaching the
limit cyclein the form

k,K
=R+ KD 7= L ea, = DRl
mc(,oo €qwW, mcw,
(22)
_omcwy, 25
K2+ micPwR €%

Formulas (21) and (22) determinethe characteristics
of self-excited oscillations of the Helmholtz resonator
specified by Egs. (3) and (4) in the original thermal and
gasdynamic variables. These formulas are considerably
simplified if the dissipation coefficient d can beignored
in calculations; i.e., if 0 ~ €. In this case, in the first

kg 112
(Bk{J

stant, and the constant { decreases.

approximation, daj= , thefrequency wiscon-

Analysis of self-excited oscillations for moderate
parameterse defined in Egs. (5) isof considerableinter-
est. This analysis requires the development of numeri-
cal—analytical methods [10].
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1. Study of the behavior of defects in the internal
structure of a solid is of fundamental importance for
simulation of its behavior under externa action. The
problem of the behavior of a spherical cavity isaclas-
sical problem for point defects. As early as in 1917,
Rayleigh [1] showed that the absolute value of the
velocity of the cavity boundary in an ideal incompress-
ible fluid increases as R with a decease in the cavity
radius Rto zero. The compression of the cavity inavis-
cous medium with surface tension can lead to severa
collapse regimes [2—4]. The basic properties of cavity-
collapse regimes under such conditions were studied by
methods of the qualitative theory of differential equa
tionsin[5].

In thiswork, we analyze motion of a cavity at nega-
tive external pressure, i.e., when liquid is subjected to
tension. It is shown that exact solutions of the dynamic
equation for the cavity boundary in the viscous incom-
pressible fluid exist for certain pressure values. These
solutions correspond to the separatrix of the equation
under consideration and makeit possible to analyze the
effect of pressure on the formation of the regimes of the
collapse and growth of the cavity.

2. It is known [3] that the motion of the cavity
boundary in the viscous incompressible fluid is

described by the Rayleigh equation
3,2 rydY 20 4V _ P
2V T RVER pR+ PR~ p’ )
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drR
Here, v = It

surface tension, p is the medium density, Y is the
dynamic viscosity, and P,, is the external pressure. We
assume that the cavity isfree of gasand P, < 0; i.e, the
applied pressure is tensile. In terms of the dimension-
lessvariables u, r, and P introduced as

is the velocity of the boundary, o isthe

o _ 48“2r pao’

v =—u, R P, = P, 2
6 po 24p° @
Eq. (1) isrepresented in the form
2 2 du, 1 u _
U+§YUE+F+§—P. 3)

Equation (3) describes motion of the dissipative
dynamic system, which generally has no integral of
motion. However, EQ. (3) isintegrablefor certain P val-
ues. Direct calculation shows that

uzuzl—% at P=1and u=-3 at P=9 (4)

satisfy Eq. (3) for P =1 and 9, respectively. Although
solutions are constructed only for two P values, they
make it possible to separate trajectories corresponding
to different types of motion of the cavity boundary.

3. For further analysis, we consider integral curves
of Eg. (3) onthe (u, r) phase plane. Solution (4) for P =
1 corresponds to separatrix / in Fig. 1la. It includes the
point A, whereu =0 and r, = 1. Theradiusr, = 1is
determined only by the properties of the continuum and
has the sense of the critica radius separating the
regimes of collapse and extension of the cavity, e.g., in
dimensional variables (2) R, = 0.67 x 10 mand -P,, =
2.2 atm for water.

For P =1, the second separatrix 2 passesthrough the
point A. The point A is a singular saddle point for
Eq. (3). Thispoint is absent for apositive external pres-
sure. Separatrices 1 and 2 separate the phase plane into
the regions with different regimes of motion of the cav-

1028-3358/03/4811-0649%$24.00 © 2003 MAIK “Nauka/ Interperiodica’
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0 0.2 0.4

Fig. 1. Integral curves of Eq. (3) on the (u, r) phase planefor P = (a) 1, (b) 4.5, and (c) 9.
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ity boundary. The direction of motion of the boundary
isindicated by the arrow. Along integral curveslocated
in region |, the absolute value of the velocity increases
forr - 0. All integral curveslocated in region 11, i.e.,
between the axisr = 0 and separatrices, enter the point
B = (=3, 0) with the same slope. The point B has a sad-
dlenode singularity and has one node sector in the
physical regionr > 0. Thispoint isalso absent for apos-
itive pressure [5]. In region |11, curves have a turning
point, where the velocity u = 0. Inregion 1V, the cavity
boundary grows monotonically along integral curves.

We consider the case P # 1. The coordinates of the
crossing point A of the separatrices can be found from

Eq. (3) by settingu =0. Inthiscase, r, = I% . Thesingu-

larity type of this point coincides with the type for the
case P = 1. Since the solution u on the separatrix has a
zeroatr =r,, it should be represented in the form

u=Fp-Hr, 5)

wheref isacertain function. We analyze the asymptotic
behavior of separatrices / and 2 in the leading order in
r for r > r,. We consider the function f as a function of
. r - . .
the variable x = TO . Substituting expression (3) into

Eq. (5), we arrive at the equation

f2(3—x)—2x(1—x)f%§(+fx= F§> (6)

for f. Substituting f = z x"f,, into this equation and

n=0
equating terms with the same x powers, we obtain f, =

ijl_ls in the leading (zeroth) order in x < 1. Therefore,

according to Eq. (5), the solution u on separatrices /

and 2 hasthe form u ~ +./P in the leading order in x.
Thus, separatrices / and 2 in the asymptotic regionr >
r, are symmetric with respect to the axisu = 0.

Numerical analysis shows that separatrix / has a
minimum for P > 1 and is a monotonic function for
P<1.ForP<1andr <r,, EQ. (6) reducesto the equa
tion

2,n,2 2 df _3t2
f7(3t°=1) +t(t _1)fdt+f =5

for the function f(t) in the new variablet = ﬁ = J;
0
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Substituting f = Z t"f,, into thisequation and equating
n=0
terms with the same t powers, we obtainf, =1 or 0 in
theleading order int < 1. Since the solution on the sep-
aratrix issingular forr <<ry,u~P— % .

We consider collapsing trajectories neighboring the
separatrix and analyze the asymptotic behavior of the
velocity of the cavity boundary for small r values. We
take P = 1 because exact solution (4) is known for the
velocity on the separatrix in this case. Substituting

1 r
S

u(r) = U(r)-%f} =1-7-2

into Eqg. (3), we obtain the equation

2 1209, 32 vz _

3r ar(r r g)+rg=20

for the function g = g(r). For certainr =r, the velocity
U(r,) = u, <0, and u(r,) = u, for neighboring trajecto-
rieswithr,=r, + €, where0< ¢ < 1. Therefore, g(r,) =

T
1

asymptotic behavior of the function u for small r and €,
we take r,; = €%, where 0 < 2y < 1. Then, replacing

according to Eqg. (7). Since we seek the

g(r) — g(r,) ~ —= =¢'-vinEq. (7) intheleading order
N
ine!-Y, we obtain

1 ¢
u(ryo1-=-&—. ®)
rr
Therefore, the Rayleigh law of cavity collapse, i.e.,

lu| ~ r-32, is observed when ./r < g!-V. At the same
time, the contribution on the separatrix dominates in

Eq. (8) whene!-Y< ./r < ./e. Indeed, relation (8) can
be represented in the form

e P ©)

1-—s 1
u(r) Ay '

where z = re2(-Y), The contribution on the separatrix
dominates when ./z > 1, i.e, Jr > €'-V. The latter
condition is consistent with the condition /r < ./e,

becausey < %.When z~1,i.e, Jr ~€' -V, thetermsin
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the parentheses in relation (9) are of the same order of
smallness.

The appearance of a minimum on separatrix / for
P > 1 changes the behavior of integral curveslocated in
region| forr — 0. These curves, aswell asthe separa-
trix, enter the point B with the same slope 3(P - 9). The
curvesin region |l have the same slope. The singularity
type of the point B issimilar to the case P = 1, but there
aretwo node sectorsfor P > 1. Figure 1b showsintegral
curves for P = 4.5. The distance between any two
curves entering the point B is exponentially small for
r - 0. Indeed, any two solutions u, and u, of Eq. (3)
satisfy the relation

au@ u_

‘E—r—D 3r =0

u_(up+uy) +3 rB’ll ar

where the function u_ = u, — u, determines the differ-
ence between the trgjectories. Since u,, u, - -3 and

ou L .

rd_r2 - 0 for r -~ 0, u_ satisfies the equation
Qg+ 10 o0 i

U 6 + 30 = 2r 3 whose general solution has the

form

Y 010

u. = r3eXpD 6

Forr - oo, trgjectoriesthat lieinregions il and IV
and correspond to the growth of the cavity asymptoti-

cally approach separatrix /, i.e, u - «/P. It can be
shown (similarly to the consideration for the point B)
that the distance between any two trajectories decreases

as +

r3

Let us analyze the asymptotic behavior of separa-
trix 2 and trgjectoriesin region |l forr — 0 and u> 0.
Sincethe solutions of Eq. (3) that correspond to the sep-

aratrix and trajectories vanish for certainr = a, u can be

represented asu = ED f. The parameter a specifies
trajectories, in partlcular, a = 1 for the separatrix.
Taking

1
f= —d(x),
ﬁ(d)(x)

X ==,

GUZEV et al.

we arrive at the equation

207K(x~1) + 2x(x~ 1’3 + Z(x~ 1) Jxo

= —ix 3 =3
Pa Pa

for ¢. The formal asymptotic expansion of the function

¢ for x — 0 must be written in terms of ./x powers
beginning with zeroth power, i.e.,

¢ = ¢ot X",

The leading asymptotic term ¢, is determined by the
parameters of a trgjectory in region Il, and the other
expansion terms ¢,, are calculated in terms of ¢,,.
Therefore, trgjectories in region |1 for u > 0 have the
velocity asymptotic behavior u~ r=32forr - 0.

For P =9, the minimum of the separatrix coincides
with the point B (Fig. 1c), and corresponding solution (4)
appears. To revea the physica meaning of this solu-
tion, we consider trgjectories in region | that have

extremawhere g—Lrj = 0. From Eq. (3), the second deriv-

ative of the velocity at the extremum rjis calculated as

Pu_ u,+3
2 3!
dr 2U, T,

where upy= u(rp). Therefore, ris the point of maxi-
mum and minimum if u> -3 and U< -3, respectively.

For solution (4), the second derivative of the velocity is
equal to zero. Thus, the solution u = =3 is the line of
inflection for trajectoriesin region |.

The qualitative behavior of trajectoriesinregions|||
and IV does not change with P.

4. The above analysis of motion of the cavity bound-
ary at a negative external pressure shows that both
regimes of growth and collapse can be realized by
choosing initial data. The phase plane is separated by
two separatrices into four regions of different types of
motion. The behavior of the separatrix corresponding to
the collapse regime depends on the external pressure P.
For P =1, exact solution (4) whose singular behavior in
thelimitr — 0 doesnot changefor P < 1isconstructed
for this trgjectory. The asymptotic behavior of a col-
lapsing trajectory neighboring the separatrix for small r
values and P = 1 depends on the rel ation between r and
the parameter characterizing the initial distance
between this trajectory and the separatrix. For P > 1,
collapsing trgjectories, as well as the separatrix, have a
finite velocity at the instant of closure, and the distance
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The naotions of both asymptotic stability and expo-
nential stability for a solution to an ordinary multidi-
mensiona differential equation were introduced by
Lyapunov [1] (see also [2—4]). The question on the
most natural generality of these notions was treated
in[5, 6].

In this paper, we prove the reversibility of the
Lyapunov theorem about asymptotic stability (of expo-
nential type) of the solution x = 0 of the nonlinear dif-
ferential equation

% = Ax+g(t, x),

provided that the constant n x n matrix A of the linear
approximation

xOR", (1)

dx _
-dTr—AX,

is stable, and the vector function g(t, x) continuous on
theset R* x {|x| < h} satisfies the condition

ot )l 0 as x-0,

x|

xOR" (2)

Ch>0, [X| <h,
uniformly with respect tot O R*, where|-|isan arbitrary
norm of the vector function.

Werecall that amatrix isreferred to as stable (semi-
stable) matrix if al its eigenvalues have negative (non-
positive) real parts.

Definition 1 [1]. The solution x = 0 of Eq. (1) is
referred to as an exponentially asymptatically stable (or
exponentially stable) solution if there exist (ast — +o)
numbersc> 0, r, > 0, and w > 0 such that each solution
X(t) of Eg. (1) under the initial condition [x(0)| < r,
meets the inequality

x(t)] < c[x(0)| exp(—oot). 3

Russian Open State Technical University of Railway
Transport, ul. Chasovaya 22/2,
Moscow, 125993 Russia

The exponential asymptotic stability of the solution
x = 0 of Eq. (1) with a stable matrix A was proved by
Lyapunov [1] for the case of an anaytica right-hand
side and by Cotton [7], Perron [8], and Petrowsky [9]
for the case of nonanalytical right-hand sides.

We now represent the Lyapunov theorem on the
asymptotic stability in the first approximation.

Theorem 1[8]. Let (1) A be a constant stablen x n
matrix and (2) a continuous function g(t, x) of (t, x) sat-
isfy the condition

g(t,x) = o(|x) as x - 0, [x <h, )

uniformly with respect to t [J R*, where o(|x|) is a func-
tion infinitesmal asx — 0.

In this case, the solution x = 0 of Eqg. (1) is exponen-
tially stableast — +o0 in the sense of Definition 1.

The proof of Theorem 1 can be found, eg.,
in[10, 11].

Remark 1. Hypothesis(3) in Theorem 1 can be sub-
stituted by one of the following conditions [10, 11].
(1) Theinequality

Ok>0 g(t,x)| <klx Ot>t, (5)1

is satisfied for all sufficiently small |x(t)|; and for any
arbitrary number € > O there exist numbers 6 > 0 and
T > 0 such that

lg(t,x)| <glx Ot=zt OX D . (5),
(2) Theinequality
Ok>0 gt X)| <kX + X" Ot>t, (6),

is satisfied for certain numbersa> 0 and b > 0 and for
all x| sufficiently small in norm, and for every number
€ > 0, there exist numbers 6 > 0 and t > 0 such that

(6).

l1+a.b
t

lg(t, x)| <€l + [ Ot>1

for al [x| < .

Remark 2. Theorem 1 remainsvalid if the matrix A
in Eq. (1) issubstituted by aperiodic matrix A(t). Inthis
case, eigenvalues of A are substituted by characteristic
indices of the linear equation y = A(t)y. Indeed, Eq. (1)

1028-3358/03/4811-0654%$24.00 © 2003 MAIK “Nauka/Interperiodica’
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can be transformed into an equation with a constant
matrix by the change of variables x = By, where Bisa
periodic matrix with the determinant satisfying the ine-
qualities |detB| < c and |[detB!| < ¢ [11].

Theorem 1 cannot be generalized for the case when
the constant matrix A and its eigenval ues are substituted
by acontinuous matrix A(t) bounded on R, and its char-
acteristic indices, respectively. We now consider an
example.

Example [8]. The linear approximation to the non-
linear equations

X, = —ax;, X%, = (sinInt+ cosInt—2a)%, +X; (7)
has the form
X, = —aX;, X, = (sinlnt+ cosIint—2a)x,. (8)

The characteristic indices—a and 1 — 2a of Egs. (8)

are negative for a > l. Hence, for a > 1 the zero solu-

2 ' 2’
tion x, = x, = 0to Egs. (8) are exponentially stable as

t — +oo, However, for ald i1 4= e the zero solu-

(p2 4° I
tion x, = %, = 0 of nonlinear equations (7) is unstable as
t — 400 in the Lyapunov sense.

The following theorem isvalid.

Theorem 2. Let (1) an x n matrix C be nonsingular
and a continuous vector function f(t, y) of (t, y) satisfy
the condition

ft,yy=o(y) asy - 0
uniformly with respect to t [0 R, C)

and let (2) the solution y = O of the nonlinear differen-
tial equation

oyt y) (10)

dt

be exponentially stable ast — +c in the Lyapunov
sense. In this case, the matrix C is semistable.

Proof by contradiction. We assume that one of
eigenvalues of the matrix C has a positive rea part.
Since the perturbation f(t, y) satisfies condition (9),
then, according to the Lyapunov theorem on the insta-
bility in the first linear approximation, the solution y =
0 of Eg. (10) isunstable ast — +o in the Lyapunov
sense. Thus, we arrive at the contradiction, and Theo-
rem 2 is proved.

We now prove the following theorem, which is
inverse to Theorem 1, on exponentia stability ast —
+00 in the linear approximation.

Theorem 3. Let (1) an x n matrix A be nonsingular
and a continuous vector function g(t, x) of (t, X) satisfy
condition (3), and let (2) the solution x = 0 to nonlinear
differential equation (1) be exponentially stableast -
+00. In this case, the solution x = 0 to linear differential
equation (2) is exponentially stableast — +oo.
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Proof. Let the assumptions of Theorem 3 be ful-
filled. To prove Theorem 3, we must argue that the
matrix A is stable and, hence, the solution x = O of
Eqg. (2) is exponentially stable ast — +. Since the
solution x = 0 to nonlinear equation (1) is exponentialy
stableast — +oo, there exists a number w > 0 and, for
each € > 0, there is a number r, = r,(€) such that the
solution x(t) of Eq. (1) under the initial conditions
[X(ty)] < r, satisfies the inequality

[X(t)| < exp{—-w(t—ty)} Ot=0. (11)

Performing the change of variables x = yexp(-wt),
we reduce Eq. (1) to the form

dy = (A—@E)y +lylu(t, y)exp(-w,t),  (12)

where E is the unit matrix, and the function p(t, x):: =
IV g(t, y), continuousin (t, y), satisfies the condition

Mt y) - 0,asy -0
uniformly with respect to t O R*. (13)

We now verify that the solutiony = 0to Eq. (12) is
stable ast — +o0 in the Lyapunov sense. Indeed, let
€ > 0 beagiven number. By virtue of the assumption (2)
of Theorem 3, for an arbitrary t, = 0, there existsanum-
ber ry = ry(t,, € such that an arbitrary solution x(t) of
Eq. (1) under theinitial condition [X(t,)| < r, satisfiesthe
inequality

[X(t)| < eexp(—wty) exp{—w(t—ty,)} Dt=0. (14)
Hence,
[X(t)| < eexp(—wt) Ot >t,. (15)

Let y(t) be a solution to Eq. (12) under the initial
condition satisfying the inequality |y(t))| < r,. In this
case,

x(t)l exp(wto) <rg (16)
and
[X(to)| <To. (17)
It follows from (16) and (17) that
IX(t)| < eexp(—wt) Ot >t,. (18)
Hence,

ly(t)exp(-ot) < eexp(—wt)

ly(t) <e 0Ot>t,.

Relationship (19) implies that the solution y = 0 to
Eq. (12) isstableast — +oo in the Lyapunov sense.

We set
C, = A-wE, f(ty) = |ylu(t, y)exp(-wt). (20)
In this case, Eq. (12) takes the form

tt>t,, or
(19)

- cy+fty),

dt @D
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where the continuous function f(t, y) of (t, y) satisfies
condition (3). Since the solutiony = 0 of Eq. (20) is sta-
bleinthe Lyapunov senseast — +oo, according to The-
orem 2, the matrix C, is semistable and, hence, the real
parts of eigenvalues of the matrix A are smaller than or
equal to —w i.e., they are negative. Therefore, linear
equation (2) is exponentially stable ast — +oo. Thus,
Theorem 3 is proved.

It isimportant to note that the reversibility of Theo-
rem 1 on the exponentia stability in the first approxi-
mation is applicable only to Eq. (1) with a constant
matrix A. Let us consider the vector equation

a{ = F(X),
defined in the neighborhood of a point x, ] R, where

F(x) is asmooth function (of the C' type) on the differ-
entiable manifold V,,.

The exponential stability of the solution x = 0 of the

first approximation

dx .
ot F'(x(1))x
along the solution x(t) of Eq. (22) does not ensure the
stability ast — +oo for this solution in the Lyapunov
sense.

It wasprovedin[12, 13] that the exponential asymp-
totic stability of the solution x = 0 to Eqg. (22) does not
remain valid, and all exponentialy stable solutions
form adense set.

We refer to the property P of solutions to nonlinear
equation (22) as: (1) atypical property in the C' topol-
ogy if al mappings F O C/(R", R") having this property
form a dense set in the space C/(R", R"); (2) a C!-pre-
serving property if there exists a neighborhood U of an
element F in the C' topology, such that for all elements
G O U the equilibrium state x = O for the equation X =
G(x) has this property; and (3) a C!-nonpreserving
property if it is not the C'-preserving property.

The exponential stability under consideration is a
typical property in the C! topology. Namely, the fol-
lowing propositions are consequences of the results
of [12, 13].

Proposition 1. Let all nonlinear differential equa-
tions (22) form a set & having the C! topology, and let
a F, (¥,) be a subset of the set & formed by Egs. (22)
for which the equilibrium state x = 0 is asymptotically
(exponentially) stable. Inthiscase, the subset %, istyp-

F(0) = 0, (22)

(23)

DRUZHININA

ical inthe subset &, i.e., [F,] = &, where [%F,] isthe
closure of the subset %, in the C! topology.

Proposition 2. The asymptotic stability of the equi-
librium state x = 0 of Eq. (22) is a C'-nonpreserving
property if F O % \%,.

Proposition 2 is a complement to the results of [4,
14] concerning the robustness of the asymptotic stabil-
ity of the hyperbolic equilibrium state of Eq. (22) inthe
case of the C° topology of its right-hand side.
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