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One of most impressive effects of nonlinear vacuum
electrodynamics, which must manifest themselves in
the strong magnetic fields of pulsars and magnetars, is
the effect of curvature of beams of electromagnetic
waves. However, in the scientific literature, due to the
nonlinearity of the corresponding equations, this effect
is analyzed only in two particular cases [1–3]. These are
the cases when the beam lies in the planes of the mag-
netic-equator or magnetic meridian of the dipole mag-
netic field of a neutron star.

In this paper, we analyze the general case when the
beam of an electromagnetic wave enters the star’s mag-
netic field at an arbitrary angle with respect to the vec-
tor m of its magnetic dipole moment. In this case, as a
result of nonlinear electrodynamic curvature, the beam
is not represented by a planar line. Thus, the complexity
of solving the problem critically depends on the suc-
cessful choice of the coordinate-system orientation and
on the parametrization used for parametric description
of a spatial (twisted) curve. Since the expected values
of the nonlinear electrodynamic and gravitational cur-
vature of beams in the problem under consideration do

not exceed , it is convenient to choose the relevant

coordinate system in the following manner.
Let vector m of the magnetic dipole moment of a

neutron star and its rotation axis have an arbitrary direc-
tion in a certain coordinate system. At the same time,
we always consider the origin of beams of electrody-

namic waves to be at the point r = ∞, ϕ = π, θ =  of a

spherical coordinate system and to have the impact
parameter b. In this case, enumerating various orienta-
tions of vector m and of the rotation axis of a rotating
neutron star is equivalent to enumerating beams inci-
dent onto the neutron star from different directions and
at different initial angles but with the impact parame-
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ter b. In the chosen coordinate system, it is convenient
to take as a parameter the polar angle ϕ. Thus, our first
task is reduced to finding the beam parametric equa-
tions r = r(ϕ) and θ = θ(ϕ).

In the presence of external electromagnetic Fik and

gravitational  fields, by virtue of the equations of
nonlinear vacuum electrodynamics [2], a weak electro-
magnetic wave propagates in a certain pseudo-Rieman-
nian spacetime whose metric tensor for two normal
modes has the form

(1)

Here, subscripts of the electromagnetic-field tensor Fik

ascend with the help of the metric .

In the problem under consideration, it is reasonable
to choose the metric Schwarzschild tensor as the metric

tensor . Denoting the star’s gravitational radius by
rg , we arrive at

We now construct expressions for the components
of the electromagnetic-field tensor Fik for a neutron star
rotating at a frequency of Ω1 about the axis passing
through the center of mass but not coinciding with the
vector m of its magnetic dipole moment. In addition,
the rotation axis performs a regular precession at the
frequency Ω2.

Further, we assume that, in the mobile coordinate
system, the magnetic dipole moment of the neutron star
is tilted at the angle α0 to the x3 axis and that its projec-
tion onto the X1O'X2 plane forms the angle β0 to the pos-
itive direction of the x1 axis. In this case, the vector m
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has the following components in terms of the x, y, and z
coordinates:

(2)

In addition to the spatial rotation, the neutron star,
being part of a double system, participates in preces-
sional motion. Therefore, in accordance with laws of
theoretical mechanics, the angles Φ and ψ entering into
these expressions are time-dependent: Φ = Ω1t + Φ0,
ψ = Ω2t + ψ0 and Ω1 exceeding Ω2 . However, for the
majority of typical neutron stars possessing a strong

magnetic field, the periods T1 =  and T2 =  of this

motion turn out to be considerably longer than the prop-

agation time T ≈  for an electromagnetic signal

within the domain of the presence of strong magnetic
field. Therefore, while solving our problem on the non-
linear electrodynamic and gravitational curvature of
beams in the neutron-star field, we may consider the
angles Φ and ψ to be independent of time. Hence,
expressions (2) should be taken into account only in
final expressions.

We now employ a new intermediate parametrization
of expression (2). We make use of auxiliary angles α
and β in accordance with the relationships

(3)

After the problem has been solved in terms of variables
α and β, using relationships (2) and (3), we come back
to the original angles α0, β0, Θ, ψ, and Φ.

In the spherical coordinates, the nonzero compo-
nents of the tensor Fik describing the dipole magnetic
field of the neutron star have the form

(4)
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We write out the equation of motion for photons in an
arbitrary pseudo-Riemannian spacetime:

where kn =  and σ is an affine parameter.

After the transformations, we reduce these equa-
tions to the form

(5)

Using expressions (1) and (4), we construct nonzero
components of metric tensor (1), as well as the Christ-
offel symbols. We perform all the calculations to within

an accuracy of  ! 1 and  ! 1. As a result,

Eqs. (5) acquire the form

(Here, new auxiliary variables Q1 = θ –  and u =  are

introduced.)
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Because rgu ! 1 and η1, 2ξm2u6 ! 1, we seek the
solution to these equations by the successive approxi-
mation method. Integrating these equations with the

initial conditions u(π) = 0,  = − , θ(π) = ,

, we arrive at

(6)

We now analyze the expressions obtained. First of all,
we find angles δϕ and δθ that characterize the beam
curvature as a result of nonlinear electromagnetic and
gravitational effects. Since the angles δϕ and δθ must

be small, substituting ϕ = δϕ and θ =  + δθ into

expressions (6) and solving the relationships obtained,
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we find within the limits of the required accuracy

(7)

Analysis of expressions (7) shows that the nonlinear
electrodynamic part of δϕ has a fixed sign and is nega-
tive for arbitrary values of the angles α and β. The angle
δθ is not a fixed-sign function of the angles α and β of
the orientation of the neutron star’s magnetic dipole
moment.

If the neutron star rotates at a frequency Ω1 !  and

performs precessional motion, then the time depen-
dence of the curvature angles can be found from
expressions (2), (3) and (7):

where the time-dependent components of the vector m
are given by expressions (2).

Thus, because of the time dependence of the angles
δϕ and δθ, the intensity of electromagnetic radiation
propagating through the magnetic field of a rotating
neutron star and being registered by an observer is also
time-dependent, and this dependence is different for the
two normal modes of the electromagnetic wave. This
property can form the basis for experimental investiga-
tion of regularities of nonlinear vacuum electrodynam-

ics in domains with moderately strong (m2/b6 < )
magnetic fields of neutron stars.
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Interaction of a thermal wave with a combustion
front in liquid nonvolatile condensed systems in the
case of boiling on a surface was studied in [1]. There it
was established that the heating wave propagates in the
forward direction, whereas the domain of liquid, which
is heated up to the boiling temperature, is expanded
(see [1]).

In the present paper, we consider mutual effects
associated with the motion of a thermal wave and of the
thermal-decomposition front. We analyze the depen-
dence of these effects on thermophysical properties of
a substance involved in the decomposition reaction and
on kinetics of this reaction in the case of intensely heat-
ing nonvolatile condensed systems (in particular, dur-
ing heat-shielding coatings and combustion).

In volatile condensed systems, the elevation of the
surface temperature associated with the heat supply is
naturally limited by the boiling temperature Tb. When
intensely heating nonvolatile substances, the tempera-
ture rise is limited by the ultimate temperature Tl (tem-
perature of attainable superheating). At lower tempera-
tures, stability of the substance metastable state pre-
serves [2–4].

Processes of thermal decomposition in nonvolatile
substances are associated with formation of heteroge-
neous and homogeneous nuclei (the latter dominate at
elevated temperatures). This complicates the behavior
of nonvolatile liquids compared to volatile ones. The
velocity of a heating wave, or of the front thermal prop-
agation (thermal wave, in the terminology of Frank-
Kamenetskiœ [5]) is determined by the heat conduction
equation

(1)cρ T∂
t∂

------ λ T2∂
x2∂

-------- F T( ),+=
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having a solution of running-wave type: T = T(z), z =
x + uTt [6]. Here, uT is the thermal-wave propagation
velocity, c is the specific heat, F(T) is the heat-release
function, and other notation is traditional.

As was noted in [1], the amount of heat W = c(Ts –
T0) released in the k-phase, where Ts is the surface tem-
perature, attains only a small portion of the total ther-
mal effect of the completed reaction by virtue of the

dispersion effect, Ts < T0 + . Therefore, following to

from [1], we furthermore ignore the variation in con-
centration of reacting molecules in the k-phase. It is
well known that for volatile substances, the front
motion velocity during heating of their surface is deter-
mined by the evaporation rate (described by the Knud-
sen–Langmuir equation) or by the rate of boiling off a
liquid from the surface. In contrast, for nonvolatile
substances, the propagation velocity of the thermal-
decomposition front is determined by the mass trans-
port equation

(2)

This equation also has a solution of the running-wave
type η = η(y), y = x + ut, where η is the transformation
depth (degree of conversion) and u is the combustion
wave velocity. Hence, as is seen, uT ≠ u. Following [1],
we consider the relation between the indicated veloci-
ties and write out Eqs. (1) and (2) in coordinate systems
moving at constant velocities:

(3)

(4)

Thus, u = uT only in a particular case and in the
steady-state regime. It was found in [1] by means of

Q
c
----

η∂
t∂

------ w T( )– 0.=

λd2T

dx2
--------- cρuT

dT
dt
------– F T( )+ 0,=

u
dη
dx
------– w T( )+ 0.=
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excluding the second term in Eq. (3) that

(5)

where Ts is the surface temperature equal to Tb for vol-
atile condensed systems. According to Zel’dovich [1],
the thermal-wave velocity (6) differs from the front
propagation velocity being measured in experiments
and can be determined by integrating Eq. (5) within the
limits x = 0 and x = ∞ (in the latter case, η = 0):

(6)

Here, ηd is the degree of dispersing the substance (i.e.,
of carrying away particles of the unreacted substance).
For substances (e.g., ammonium perchlorate (APC),
hydroxyl ammonium perchlorate (HAP), trimethyl
ammonium perchlorate, etc. [8]) in which processes
associated with the heat absorption proceed simulta-
neously with the exothermic reaction, the following
expression for velocity is derived in the Zel’dovich
approximation:

(7)

Here, Qs is the sublimation heat, Qd is the decomposi-
tion heat, ηs is the sublimation fraction. In contrast
to [1], many publications including [7, 8] do not distin-
guish the velocities u and uT . We find the interrelation
between the velocities uT and u on the basis of Eq. (3).
As a result of integrating Eq. (3) within the limits from

x = 0 (where q =  is the heat flux through the sur-

face) to x = ∞ (where T = T0), we arrive at

(8)

We determine the velocity uT from Eq. (8):

(9)

In the case of the thermal decomposition of con-
densed systems, F(T) = f0Qw(T), where Q is the ther-
mal effect of the reaction. The coefficient f0 is intro-
duced in order to allow for the incompleteness of the
heat release in the decomposition reaction, since W < Q.
The incompleteness of the heat release arises by virtue
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of a number of reasons. Among them, we can indicate
the inconsistency of the reagent content with the sto-
ichiometric relation of the components presented and
the removal of particles of the unreacted substance
from the reaction zone as a result of gas filtration. All
these reasons decrease the coefficient f0 . After substi-
tuting the obtained value of the velocity into Eq. (9), we
establish the relation between the two velocities in the
form

(10)

It follows from Eq. (10) that the velocities u and uT

are the same only under the following conditions: q = 0
and Qρf = cρ(Ts – T0) f = f0ηd. Equating these velocities
results in the loss of important information on the pro-
cess. The velocity uT exceeds the velocity u if Qρf >
cρ(Ts – T0) and q > 0. The relation between these veloc-
ities determines the stability or instability of combust-
ing condensed systems. For example, a decrease in the
thermal flux q down to zero at Qρf < cρ(Ts – T0) implies
that the thermal wave is delayed with respect to the
thermal-decomposition wave and does not provide suf-
ficient heat supply to the front, which results in the
attenuation of the process. The thermal effect can enter
into Eq. (10) with a plus or minus sign. Therefore,
Eq. (10) is applicable in the case of heating of both
power-consuming and heat-shielding condensed sys-
tems. An effect of the heat flux being supplied on the
combustion stability of condensed systems was deter-
mined experimentally in [7, 8]. At lowering pressure,
the convective heat supply to the surface decreases, and
the combustion of various condensed systems either
becomes unstable or entirely ceases.

We now present a numerical example for compari-
son of velocities of heating waves and combustion
waves in the well-studied substance, namely, APC. The
characteristic parameters of APC, which are necessary
in the calculation, are borrowed from [8]: the density is
ρ = 1.94 g cm–3, the total thermal effect of the reaction
in the combustion front with allowance for sublimation
is Qd – (Qd + Qs)ηs = 120 cal g–1, the specific heat is
c = 0.3 cal g–1, the thermal conductivity is λ =
10−4 cal cm–1 K–1 s–1, and the coefficient f0 is f0 = 0.64.
For a pressure of 0.1 MPa and in the absence of a ther-
mal flux on the surface, we obtain, as a result of substi-
tuting these values into Eq. (10),

Thus, uT < u, and in accordance with the calculation
results, there occurs the retardation of the thermal wave
from the combustion front, and this wave ceases to
maintain combustion. The results of the experiment
described in [8] testify to the fact that APC taken at a
pressure of 0.1 MPa and at the initial temperature T =
300 K is not capable of independently combusting.

uT

q f 0Qρηdu+
cρ T s T0–( )

--------------------------------.=

uT 0 0.64 120× 1.94u×
1.94 0.3 750 300–( )×
-----------------------------------------------------+ 0.569u.= =
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Thereby, the assumption that q = 0 and the conclusion
obtained in the calculation are confirmed. It is worth
noting that Eq. (7) in itself does not allow us to make
the conclusion on the absence of combustion. Indeed,
according to this equation, we can calculate the com-
bustion rate for an arbitrary value of the thermal effect
(even as small as is wished), and the combustion is
stable.

As is indicated in [8], APC is capable of indepen-
dently combusting after it has obtained the additional
heat ∆Q = 100 cal g–1 in the form of radiative energy
with the help of a small addition of combustible or by
preliminarily heating. Furthermore, we analyze an
effect of such an addition on the calculation results in
the case of q = 0. In order to do this, we increase the
thermal effect by ∆Q = 100 cal g–1:

We have uT > u. This indicates that the thermal wave
advances the decomposition front and provides its heat
supply. In this case, the process is stable, which is
observed in the experiments described in [8].

Allowance for the heat flux q enhances the above
statement. At pressures of 0.1 MPa, the temperature
gradients at the APC surface are on the order of 7 ×
105 K cm–1 [8]. In this case, q = 7 × 105 × 10–4 =
7 cal cm–2 s–1. Then,

which ensures additional stabilization of the process.
The calculation on the basis of Eq. (7) at higher

pressures (40 and 100 MPa) was performed in [8]. The
calculated value of the thermal-wave velocity [this is
the thermal-wave velocity that is determined by Eq. (8)]
was shown to exceed by a factor of 5 the experimental
velocity of the front motion. This fact cannot be
explained by simple spreading characteristics of the
substance. Thus, the inequality uT > u testifies to stabil-
ity of the process, which is confirmed by experimental
data: the process turns out to proceed stably at high
pressures.

In accordance with Eq.(10), lowering the initial tem-
perature T0 results in a decrease in the velocity uT.
Hence, the combustion stability also decreases, which
is confirmed by the experimental data of [8].

The limitation of the surface temperature of the APC
combustion by temperature Tl corresponds to the exper-
imental data of [7, 9]. Introducing various polymeric
admixtures into APC resulted in the variation of the
combustion rate by a factor of 7. However, in this case,
the surface temperature did not vary and remained close
to Tl = 495°C at 0.1 MPa [3]. At the same time, accord-
ing to Eq. (6), the variation in the velocity by a factor

uT 0 0.64 120 100+( )1.94u
1.94 0.3 750 300–( )××
-----------------------------------------------------------+ 1.04u.= =

uT 7
0.64 120 100+( )1.94u

1.94 0.3 750 300–( )××
-----------------------------------------------------------+=

=  0.0267 1.04u 1.04u,>+
of 7 corresponds to a change in the thermal effect by a
factor of 49, which was not observed in experiments.
Introducing additions to compositions based on nitro-
cellulose [7] leads to a similar conclusion: the surface
temperature varies negligibly and does not exceed the
ultimate temperature of the nitrocellulose decomposi-
tion, which is Tl = 320°C at 0.1 MPa. Thus, the Zel’dov-
ich formula and Eq. (7) can also be used for determina-
tion of the thermal-wave velocity of nonvolatile con-
densed systems, provided that the boiling temperature
Tb for them is changed by the temperature Tl of the
attainable superheating. An example of the calculation
is given in [6]. However, the Zel’dovich formula and
other solutions to Eq. (9) cannot determine the value of
the velocity u if it is not equal to uT . We now make use
of the heat flux method proposed by Frank-
Kamenetskiœ [5]. This method is based on both deriving
heat flux equations in the reaction surface zone

(here, δT is the thickness of the near-surface layer in
which the heat release takes place) and the equation for
the amount of heat going out of this layer and arriving
at the heating zone:

We now multiply the heat flux equation by the prop-

agation time t =  of the heating wave and equate the

right-hand sides of this and subsequent equations. As a
result, we obtain the approximate expression for the
velocity

(11)

where a is the thermal diffusivity. Taking into account
the fact that the reaction accompanied by the mass loss
proceeds in the narrow layer with a thickness δ, we can
rewrite Eq. (6) in the form

(12)

The interrelation between the quantities δ and δT,
which was called by Frank-Kamenetskiœ “chemical”
interrelation or the “front thermal thickness” (see [5,
p. 366]) was established by him as δ = FδT. Substitut-

ing this value into Eq. (12), we arrive at u = ,

whence it follows

(13)

As was shown in [10], the calculated velocities
determined by the heat flux method satisfactorily corre-

q f 0QρwδT+ λdT
dx
------

x 0=

– cρ T s T0–( )= =

q f 0QρwδT+( )t cρ T s T0–( )a
u
---.=

f 0

w
-----

uT
aw
f 0

-------,=

uηd wδ.=

F f 0

ηd
---------uT

uT

ηd

F f 0
---------u.=
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Filming frames of the process of depositing thin layers of (on the left) polymethyl methacrylate (on the left) and (on the right) poly-
ethylene (on the right) melts on a heated metallic substrate. The velocity of motion for the original sample is 150 m s–1, the residence
times for the sample on the substrate are 0.03 and 0.18 s, respectively.
DOKLADY PHYSICS      Vol. 48      No. 12      2003
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spond to experimental data for a number of condensed
systems. Equating the right-hand sides of Eqs. (13)
and (10), we find the coefficient F:

Hence, it follows that while decreasing the dispersion
intensity, for example, as a result of elevating pressure,
the thermal front thickness increases, which causes the
same phenomenon that was analyzed by Zel’dovich for
volatile condensed systems.

By contrast, lowering pressure causes a decrease in
the convective heat supply of the surface and enhances
the dispersion. In the framework of the model under
consideration, this occurs by virtue of a rise in the
velocity of motion of gaseous decomposition products.
This is a result of reducing the gas density in the case of
a pressure drop so that the coefficient f decreases.
Strong dispersion at lowered pressures facilitates the
decrease in heat release (the fQ product is reduced).
This leads to deceleration of decomposition front
motion, which was observed in the experiments of [7]
not only for APC but also for other condensed systems.

The thickness of the thermal-wave zone was mea-
sured while intensely heating the lateral surfaces of
condensed systems being decomposed. To this aim,
substance layers were deposited onto a metallic substrate
preliminary heated to a high temperature. Figure 1 illus-
trates the results obtained by the frame filming in the
visible spectra of polymethyl methacrylate and poly-
ethylene melt layers at temperatures slightly different
from Tl, namely, 490 and 512°C, respectively. Testing
samples of different thicknesses has demonstrated that
for thicknesses up to 9–10 µm, the heating process was
not accompanied by dispersing the substance. The
decomposition proceeded as a result of homogeneous
nucleation and evaporation of products from the sur-
face. Thus, under the indicated test conditions, we dealt
with δT = 9–10 µm. With increasing the layer thickness,
the decomposition is accompanied by a strong frothing
and dispersing of a sample. The similar results of film-
ing samples in the infrared spectral range were reported
in [10].

Thus, the conclusion made by Zel’dovich on the dif-
ference in the velocities of the thermal and combustion

F2 ηd
2Q

c T s T0–( )
------------------------.=
waves in the case of boiling liquid volatile condensed
systems can be propagated on nonvolatile condensed
systems under the condition of intensely heating their
surfaces.

We can conclude that on the basis of the heat-con-
duction and mass-transport equations, the quantitative
connection is established for the velocities of the ther-
mal wave and decomposition front motion. We also
have presented examples of calculation results obtained
according to the formulas given above and experimen-
tal data related to the determination of the thermal-layer
thickness in the case of intensely heating surfaces of
volatile-substance samples.
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The effect of the heterogeneous structure of the
medium on the formation processes and dynamics of
cavitation clusters must be taken into account when
studying the propagation of acoustic pulses in a liquid
under the cavitation conditions. The corresponding prob-
lems concern both the known problems of the propaga-
tion of acoustic waves in heterogeneous media [1–3] and
active development of investigations of the luminescence
of liquids under cavitation conditions [4, 5].

Cavitation processes are complex because liquids
usually have the potential heterogeneous properties
determined by various cavitation nuclei. Water can
include inhomogeneities such as gas microbubbles with
a radius of about 1.5 µm and a density of 103–104 cm–3

[6], solid particles with gas bubbles [6, 7], and nanobub-
bles (bubstones) with a radius of about 2 nm [8].
Nanobubbles can be jointed into clusters with a density
of about 104 cm–3 [8].

The experiment described in [7] shows that cavita-
tion nuclei are not removed by multiple water purifica-
tions. In a real liquid, nanonuclei coexist with micronu-
clei and can be detected by studying the dynamics of
the formation of cavitation clusters.

In this work, we investigate the early stages of the
formation of a two-fraction cavitation cluster in dis-
tilled water.

Cavitation was induced by a generator of a spheri-
cally focused acoustic pulse (F = 55 mm) with pres-
sures 75 and –42 MPa in the positive and negative
phases, respectively, and with a decrease rate of about
–40 MPa/µs [9]. A rarefaction wave arising due to dif-
fraction at the radiator edges induces cavitation in the
liquid. Cavitation was studied by high-speed (including
microscopic) filming (108 fps, resolution was equal to
5–50 µm/pixel). The pressure field was measured by a
FOPH 300 fiber-optic hydrophone [10] (fiber diameter
was equal to 140 µm). Time was measured from the
arrival of the compression wave front at the observation
point.

Lavrent’ev Institute of Hydrodynamics, Siberian Division, 
Russian Academy of Sciences, 
pr. Akademika Lavrent’eva 15, Novosibirsk, 630090 Russia
1028-3358/03/4812- $24.00 © 20665
Figure 1 shows the typical frames of shadow filming
of the development of hydrodynamic processes when
the acoustic wave is focused far from the liquid bound-
ary, which corresponds to developed cavitation. The
processes are (1) the focusing of the acoustic shock
wave, (2) the formation of a cluster of bubbles at the
rarefaction phase, and (3) the formation of the compres-
sion pulse with the front from expanded bubbles, which
is called the secondary cavitation compression wave
(SCCW) [9, 11]. The distance between the fronts of the
primary and secondary waves was measured to be
3.8 mm, which corresponds to a time interval of 2.5 µs,
and is seen on pressure oscillograms (Fig. 2) [9].

Points in Fig. 3 are the bubble sizes obtained from
the set of enlarged frames. As is seen, for time t from 3
to 4 µs, bubbles are separated into two kinematic frac-
tions of (I) expanded and (II) collapsing bubbles. Fig-
ure 3 indicates that the bubble dynamics depends criti-
cally on the time of their growth up to detectable sizes.
Data demonstrate the existence of two groups of bub-
bles that reach detectable size with the time difference
|tcrI – crII| = 0.5 µs.

It was ascertained that bubbles of (4) the first group
become detectable in ∆tcrI = 1.6 µs after the arrival of
the compression wave front. Bubbles of (5) the second
group become detectable after ∆tcrII = 2.1 µs, when the
pressure in the compression phase is |p–| ≥ 33 MPa
(Fig. 2). The first-pulsation period was more than
100 µs and less than 3 µs for bubbles of the first and
second groups, respectively.

Films show that small bubbles are concentrated at
the center of the cluster. The distribution of small bub-
bles in the cluster over the distance from the radiator
axis is maximal in the axis and has a FWHM of 1.2 mm
(Fig. 4). The width of the small-bubble cloud increases
with the initial pressure on the membrane for the almost
constant FWHM 5.0 ± 0.5 mm of the distribution of the
negative pressure phase. The distribution of larger bub-
bles is approximately uniform over the radius in the
observation region |r| < 1.7 mm. The z distribution of
bubbles in both groups is virtually uniform in the obser-
vation region |∆z| < 2 mm in agreement with the distri-
bution of pressure. The average density of bubbles in
the first and second groups does not exceed nI = 1.6 ×
102 cm–3 and nII = 5.3 × 103 cm–3, respectively.
003 MAIK “Nauka/Interperiodica”
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Fig. 1. Dynamics of the cavitation cloud induced when focusing an acoustic pulse in water for pmax = 9.7 MPa, F is the focus (z =
r = 0).
The collapse of bubbles of the second group is
induced by neighboring larger bubbles. Expanding by
inertia (gained in the initial rarefaction wave), bubbles
of the first group emit spherical compression waves. An
SCCW is formed due to the interference of waves from
individual bubbles. In the compression wave (3 in
Fig. 1) corresponding to the SCCW field, small bubbles
collapse in the time interval 3.5–4.5 µs, emitting the
third series of slightly phased shock waves. The ampli-
tude of shock waves from the collapse of the second
group of bubbles was below the sensitivity threshold of
the FOPH hydrophone of about 1 MPa, which was
much lower than the pressure in the SCCW. Therefore,
the presence of small bubbles only slightly affects the
dynamics of large bubbles.

As is known, the spherical shape of a bubble com-
pressed by an external plane shock wave is distorted. In
the case under consideration, the spherical shape of the
bubble is conserved at early times (t < 4.5 µs) in the pul-
sation period following the first collapse [9].

The experimental data discussed above show that
bubbles of the first and second groups behave differ-
ently when a bipolar acoustic wave passes through a
liquid in the presence of cavitation. To reveal the origin
of this difference, we numerically simulated the effect
of a pulse action on a single bubble with variation in its
initial diameter. The dynamics of a single bubble
including nonstationary pressure in the SCCW was cal-
culated in the Rayleigh–Plesset model with the numer-
ical constants taken from [12]. The calculation was car-
ried out for the measured time dependence of p∞
(Fig. 2) and for the initial bubble radius R0 from 0.01 to
1 µm. The initial time t0 of the nucleation of the bubble
varied from 0 to 2.5 µs.

According to the calculations shown in Fig. 3
(lines a, b, c), bubbles with the initial radius R0 >
2.2 nm collapse later than the SCCW arrival time tÇ
(lines a, b). Bubbles with the initial radius in the inter-
val 1.8–2.2 nm collapse in the positive phase of the
SCCW (line c). Such bubbles grow to a detectable size
of 10 µm in the time interval 2.0–2.2 µs, which agrees
with the measured time τcrII in which bubbles of the sec-
ond group reach the same size (points in Fig. 3). Nuclei
with the initial radius R0 < 1.8 nm did not become
detectable, because pressure in the rarefaction phase
exceeded the critical pressure for these bubble radii. A
similar collapse effect in the compression pulse of the
SCCW was observed for a bubble that had the initial
radius 0.01–1 µm and originated in the time interval
2.0–2.4 µs.

Thus, the use of a spherically focused pulse far from
the liquid boundaries revealed a number of new cavita-
tion properties. The analysis of the time dependence of
the radius of bubbles shows that a two-fraction bubble
cluster is formed. Measurements of the time in which
bubbles became detectable indicate that the mecha-
nisms of the formation of bubbles of different groups
are different.

–20

1–1 20 3 4 5
∆t, µm

–40

0

20

40

60

80
p, MPa

SCCW

Without cavitation

t1 t2 t3

pcrII

τcrII

Fig. 2. Pressure measured by the FOPH 300 hydrophone at
the focus of the radiator (z = r = 0) for the cavitation case
(pmax = 7.7 MPa). Pressure is equal to zero at times t1, t2 ,
and t3 .
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These experimental data imply the two-fraction ini-
tial distribution of cavitation nuclei in the liquid. Sim-
ple estimates by formulas for the homogeneous nucle-
ation rate [13] show that the probability of the forma-
tion of vapor nuclei far from the boiling point of the
liquid is very low. For the appearance of a detectable
nucleus in the rarefaction wave in water, pressure must
be lower than –160 MPa, which is several times lower
than pressure used in the experiment.

Stable micro- and nanonuclei whose size distribu-
tion has two maxima at about 1 µm and 2 nm can serve
as cavitation nuclei. Nuclei whose initial radius
exceeds 0.01 µm can be classified among the first
group, because calculations show that such bubbles
become detectable almost simultaneously.

The critical pressure pcr at which the bubble is
expanded is given by the formula [6]

(1)

where R0 is the initial radius of the nucleus. Formula (1)
with values σ = 0.071 N/m, pv = 0.002 MPa, p0 =
0.1 MPa, and bubstone radius R0II = 3.6 nm [14] yields

 = –45 MPa close to the experimental value. This
implies the presence of nanonuclei with R0II = 2–4 nm
in our experiments.

The two-fraction distribution of detected bubbles in
the cluster can be attributed to the presence of stable
nanobubbles (bubstones). The transition to the two-
threshold cavitation regime occurs when the critical
pressure is exceeded for both types of nuclei with
micro- and nanosizes. This is due to the fact that bub-
bles of the first group are formed from micronuclei,
while bubbles of the second group are formed from
nanonuclei, which became detectable at the rarefac-
tion-phase amplitude |pcrII| = |–33 MPa| that is much
larger than the amplitude at which microbubbles
became detectable (0.07 < |pcrII| < 33 MPa).

Numerical simulation of pulse compression in the
cluster well reproduces both the contraction of the
oscillation period and the enhancement of the collapse
of bubbles of the second group. Pulse compression of
bubbles when the rarefaction wave transforms to the
compression wave occurs at the internal cluster pres-
sure up to 20 MPa. Owing to the internal pressure aris-
ing in the cluster due to the expanded nuclei of the first
group, the collapse of bubbles of the second group
becomes more spherical than the collapse of bubbles in
a plane acoustic wave. Therefore, such polydisperse
bubble systems are promising for practical usage in
sonochemistry due to higher thermodynamic parame-
ters when a bubble collapses in a cluster.

The observed kinetic bimodality of bubble pulsation
in a water cavitation cluster can considerably simplify

pcr pv 2

2σ
R0
------ 

  3

3 p0 pv– 2σ
R0
------+ 

 
----------------------------------------

1/2

,–=

pcrII
theor
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experiments related to sonoluminescence. In such
experiments, the necessity to specially purify the liquid
and initiate bubbles using inaccessible neutron sources
can be excluded [15].
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Fig. 4. Distribution of the number of bubbles of the (1) first
and (2) second groups and (3) amplitude of the negative
pressure phase over the distance from the axis (z = –4.5 mm,
observation region |r| < 1.7 mm).
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Fig. 3. Radius of bubbles at the center of the cluster vs. the
time delay for the pressure pmax = 7.7 MPa above the criti-
cal pressure: (points) experiment and calculations of the
dynamics of the nucleus with the initial radius (a) 1,
(b) 0.01 µm, and (c) 1.99 nm.
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The proposed method can make it possible to
approach higher threshold parameters in investigations
of the strength properties of liquids without applica-
tion of labor-intensive technologies of multistage puri-
fication.

This simple method can be applied in devices for
monitoring the purity of liquids to detect technogenic
nano- and microparticles in drinking and specially puri-
fied water.
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We develop the theory of vibration-strength viruses
(viruses, in what follows) introduced both for ordering
sets of various inhomogeneities—inclusions, cracks,
defects, strip transmission lines, etc.—in continua inde-
pendently of their physical properties and for revealing
their behavior [1]. Media, not necessarily deformable,
can be hydroacoustic, electromagnetic, and thermal,
described by systems of linear partial differential equa-
tions. Viruses localize physical processes and are
responsible for resonances [1, 2].

In this work, we solve the problem for such simple
viruses, which can be particularly realized as the set of
plane-parallel inclusions, cavity cracks, and their com-
binations located on parallel planes in a deformable
medium [3–6]. Such objects often appear in problems
of mechanics, electronics, scattering theory, and ecol-
ogy. In addition, they were observed in lithospheric
plates when American scientists used a Y-3000 heavy
mobile vibration seismic source to study the Earth’s
depths by vibration seismic methods. The first such
observation was likely made by Prof. R. Williams, Uni-
versity of Tennessee.

Seismological interest in such objects is motivated
by two reasons. First, viruses are strong concentrators
of stresses under certain conditions. Their destruction
can give rise to the destruction of a large section of a
lithospheric plate. This circumstance is possibly
responsible for the internal location of earthquake cen-
ters. Second, although proper experimental possibili-
ties are absent, we assume that gradual destruction and
propagation of cracks such as class-2 viruses (cracks)
leads to so-called quiet earthquakes, where high energy
is not released and which are associated with the loss of
the strength of cracked structures even under low
stresses. Thus, invisibly developing under certain
stresses and approaching the ground, these sets of
cracks can accumulate high elastic energy under other
forms of stress and can be manifested as a distinct frac-

Kuban State University,
ul. Karla Libknekhta 149, Krasnodar, 350640 Russia
e-mail: babeshko@kubsu.ru
1028-3358/03/4812- $24.00 © 20669
ture on the ground. At present, these objects can be
observed only by vibration seismic exploration that can
determine changes in the dimensions of fractures. To
calculate stress concentration in a fracture, it is neces-
sary to develop a theory taking into account both a com-
plex structure of domains occupied by cracks and their
location on parallel planes. Analyzing these problems,
one can develop a system for prediction of their behav-
ior and control over them. Problems concerning a sin-
gle inhomogeneity—crack or inclusion—have been
studied in detail. At the same time, problems concern-
ing sets of such inhomogeneities are poorly studied due
primarily to mathematical difficulties. Viruses can be
studied by the factorization method that was consider-
ably modified to this end [7–9].

1. Systems of integral equations for simple viruses
of types 1 (set of rigid inclusions) and 2 (set of cracks,
terminology introduced in [1]) in bounded, semi-
bounded, and unbounded domains of an isotropic elas-
tic medium, where inhomogeneities are located on par-
allel planes, were derived in [3–6]. Reducing the
boundary conditions if necessary, the systems of inte-
gral equations can be represented in the form

(1)

Here, for a type-1 virus,  is the mth component of
an unknown jump of stresses acting on the area Ωnr ,
which is located on the rth level (plane) and has the

number n, and  is the displacement component
specified in accordance with the stress component. For
a type-2 virus, the displacement jumps and stress com-
ponents are replaced with each other.

kspmr
0 x1 ξ1– x2 ξ2–,( )qmnr

0

Ωnr

∫∫
m 1=

3

∑
n 1=

Nr

∑
r 1=

L

∑

× ξ1 ξ2,( )dξ1dξ2 f spl
0 x1 x2,( ),=

x1 x2 Ωpl, s∈, 1 2 3, p, , 1 2 … Nr,, , ,= =

l 1 2 … L., , ,=

qmnr
0

f spl
0
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We introduce the Fourier transform

and the matrix function

(2)

which consists of third-order matrix blocks. The effect
of levels on the coefficients is described by exponen-
tials with real and imaginary arguments (for details,
see [3–6]).

Integral equations (1) are convenient for transparent
description of a virus. For investigation, it is necessary
to represent them in another form. We introduce the
notation leading to the standard representation of matri-
ces and vectors. United numbering is used for functions
on the left- and right-hand sided. For a type-1 virus, we
arrange all stress components in a certain sequence as
the components of one unknown vector by numbering
all levels in succession, regions at levels, and vector
components in them if they exist. Similarly, we intro-
duce united numbering for the vector on the right-hand
side of the system.

As a result, system (1) can be represented in the
form

(3)

or in the operator form

(4)

We note that some functions kmr in this notation can be
identical for different r values.

A similar method is applied for a type-2 virus.
2. System (3) is considered for an arbitrary anisotro-

pic stratified elastic medium in the presence of possible
thermoelectroelastic, magnetostatic, aggressive chemi-
cal actions, and other characteristics, which is a more

V α1 α2,( )k x1 x2,( )

=  k x1 x2,( )ei α x,〈 〉 x1 x2dd

R
2

∫∫ K α1 α2,( ),≡

V 1– x1 x2,( )K α1 α2,( )

=  
1

4π2
-------- K α α 2,( )e i– α x,〈 〉 α1 α2dd

R
2

∫∫ k x1 x2,( ),≡

α x,〈 〉 α 1x1 α2x2+=

K0 α1 α2,( ) V α1 α2,( )kspmr
0 x1 x2,( ){ } ,=

kmr x1 ξ1– x2 ξ2–,( )qr ξ1 ξ2,( ) ξ1 ξ2dd

Ωr

∫∫
r 1=

R

∑
=  f m x1 x2,( ), x1 x2 Ωm,∈,    m 1 2 … R , , , =

Kq K α( )V
σ2

∫
σ1

∫≡ α1 α2,( )q i α x,〈 〉–( )dαexp f ,=

q qr{ } , K Kmr{ } , f f m{ } ,= = =

F α( ) F α1 α2,( ), F x( ) F x1 x2,( ).≡ ≡
 

general case than that considered for systems con-
structed in [3–6].

The elements of the matrix function 
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 are
generally analytic functions. They are described by the
ratio of analytic functions of two complex variables.
For layer blocks, they are ratios of integer functions,
and the elements are meromorphic functions.

We assume that the asymptotic behavior of the
matrix function 
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 values has the form
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which is the case for a type 1 virus.
The elements of the matrix function 
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have a finite number of poles 
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ues. The determinant of this function can have a finite
number of zeros 
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 on the real axis. Integration
contours pass around poles according to certain rules
described in [10, 11]. Functions 

 

q

 

 and 

 

f

 

 belong to a cer-
tain space 
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s

 

.

In what follows, the approximation of functions
with poles on the real axis is treated as the approxima-
tion of functions in 

 

C

 

 that are multiplied by a polyno-
mial having these poles.
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The elements of the matrix func-
tion M
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on the real axis can be approximated by
meromorphic functions with conservation of real poles
and asymptotic behavior

 

 (5). 

 

If system (3) is correctly
solvable in a certain space Hs, the system with the
approximate matrix is also solvable, and the approxi-
mation error depends linearly on the errors of approx-
imations on the integration constants δ1 and δ2 . 

Lemma 2 [12]. The matrix function M(γ1, γ2) on the
real axis can be approximated as 

where the elements of the matrix function M0(γ1 γ2) are
meromorphic functions of the parameter γ2 . The poles
of these elements and zeros of the determinant of this
function lie beyond a certain band η including the real
axis. The elements of the matrix function Π(γ1, γ2) are
rational functions, whose poles coincide with the poles
of the respective elements of the matrix function
M(γ1, γ2) in the band η. The zeros of the determinant of
the matrix function Π(γ1, γ2) coincide with the zeros of
the determinant of the matrix function M0(γ1 γ2) in the
band η. 

Let the polynomials p1(γ1, γ2) and p2(γ1, γ2) have
zeros γ2 = zn(γ1) and γ2 = ξm(γ1), respectively, that can be
expanded into Fourier series in the coordinate γ1 . For
simplicity, we consider the common case where the

M γ1 γ2,( ) M γ1( )γ2
1– 1 O γ2

1–( )+[ ] ,=

0 γ1 2π, γ2 ∞, α1→≤ ≤ γ2 γ1,cos=

α2 γ2 γ1,sin=

M γ1 γ2,( ) K γ2 γ1cos γ2 γ1sin,( ),=

M γ1 γ2,( ) M0 γ1 γ2,( )Π γ1 γ2,( ),=
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polynomials have even orders and zeros are conjugate;
i.e.,

(6)

Lemma 3 [2, 13]. The rational function 

on the real axis can be approximated by the rational
function

,

which is the ratio of polynomials of two complex vari-
ables. The approximating polynomials have at least the
same number of zeros as the polynomials of the original
functions, which merge for S → ∞.

According to the above lemmas, the matrix function
K(α1, α2) can be represented in the form

(7)

We consider the differential equation generating
the characteristic polynomial p1mm(α1, α2, S) of the
order 2M:

(8)

The boundary value problem for this equation in the
Hs(Ωm) space is obtained with the boundary conditions
for derivatives along to the outer normal to the domain
boundary, i.e.,

(9)

Solving the boundary value problem by the factor-
ization method [7–9], we obtain the representation

(10)

Here, θm is the exterior form generated by differential
expression (8) and

zn
± γ1( ) zn 2s 1+, e

i 2s 1+( )γ1

s S–=

S

∑ zn 2s, e
i · 2sγ1,

s S–=

S

∑±=

ξn
± γ1( ) ξn 2s 1+, e

i 2s 1+( )γ1

s S–=

S

∑ ξn 2s, e
i · 2sγ1,

s S–=

S

∑±=

S ∞, 0 γ1 2π.≤ ≤→

p1 γ1 γ2,( )
p2 γ1 γ2,( )
-----------------------

p1 α1 α2 S, ,( )
p2 α1 α2 S, ,( )
-------------------------------

K K0P, K0 K0 pr α1 α2,( ){ } ,= =

P
p1rn α1 α2 S, ,( )
p2rn α1 α2 S, ,( )
-----------------------------------

 
 
 

.=

– p1mm i∂x1 i∂x2 S, ,( )ϕm x1 x2,( ) 0,=

m 1 2 … R, x1 x2, Ωm.∈, , ,=

∂k 1– nϕm x( ) gmk x( ), x ∂Ωm,∈=

k 1 2 … M., , ,=

p1mm α1 α2 S, ,( )Φm α1 α2,( ) θm

∂Ωm

∫ Θm.≡=

Φm α1 α2,( ) ϕm x( ) i α x,〈 〉( ) x.dexp

Ωm

∫∫=
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We emphasize that gmk, k = 1, 2, …, 2M, on the right-
hand side of Eq. (10) are derivatives along to the outer
normal to the boundary ∂Ωm of orders from zeroth to
2M – 1 [7]. Therefore, the solution of the boundary
value problem for given gmk, k = 1, 2, …, M, reduces to
the determination of å functions gmk, k = M + 1, 2, …,
2M in terms of the first group of functions [7–9].

Let the inverse operator  be constructed for the
operator K0 defined as

. (11)

Various methods of construction of these operators
were described, e.g., in [10, 11, 13].

According to the introduced topology, the boundary
value problem specified by Eqs. (8) and (9) are consid-
ered on two-dimensional orientable manifolds Ωm with
the oriented boundaries ∂Ωm [7–9]. Domains Ωm are
located to the left of the boundary ∂Ωm . When factoriz-
ing, they are denoted by the plus sign, while those
located to the right from ∂Ωm , by the minus sign.
Domains Ωm can be bounded, unbounded, and multiply
connected with smooth boundaries including those
extended to infinity. We apply the concept of the factor-
ization of functions with respect to domains, which was
introduced in [7–9], to boundary value problems. We
do not discuss the choice and application of a particular
form of factorization, classical or generalized, which
were discussed in [7–9]. Thus, factorization accompa-
nied by the construction of classes of functions with a
support either in or beyond Ωm will be denoted by

respectively. The vector component with the number m
is denoted as (·)m.

Theorem 1. The exact or approximate solutions of
the system of integral equations (3) for a type 1 virus
have the form 

(12)

K0
1–

K0ϕ K0 α( )V α( )ϕ i α x,〈 〉–( ) αdexp

σ2

∫
σ1

∫≡

f x( ){ } Ωm

± , F α( ){ } Ωm

± ,

qm x( ) pm x( ) ϕm x( ), m+ 1 2 … R,, , ,= =

pm x( ) V 1– Π 1– p1mrΘr

p2mr p1rr

-------------------
r 1=

R

∑
 
 
 

Ωm

+

K0
1– f( )m+

 
 
 

,=

ϕm x( ) V 1– p1mm
1– α1 α2 S, ,( ) θm

∂Ωm

∫ 
 
 

Ωm

+

;=

V 1– p1mm
1– α1 α2 S, ,( ) θm

∂Ωm

∫ 
 
 

Ωm

–

0,=

V 1– Π 1– p1mrΘr

p2mr p1rr

-------------------
r 1=

R

∑
 
 
 

Ωm

+

K0
1– f( )m+

 
 
 

 
 
 

Ωm

–

0.=
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The last two relations are normally solvable systems
of integral equations. They serve for the determination
of unknown boundary functions gkm(x), k = 1, 2, …, 2M
and m = 1, 2, …, R. Their number coincides with the
number of unknowns. They are regularized, i.e., repre-
sented in the form of second-kind integral equations,
such as it was done in [7–9].

Let us consider the case of a type-2 virus, which is
somewhat more difficult than the case of a type-1 virus,
because it has additional conditions. Inhomogeneities
are sets of cracks that have arbitrary shapes in plan view
and are located on parallel planes, i.e., levels. The sys-
tem of integral equations has form (3), where the
asymptotic behavior of coefficients at infinity has the
form

and the unknown vector components must vanish at the
boundaries of their domains; i.e.,

A certain transformation reduces the solution of the
system for a type-2 virus to the case considered above.
To this end, we represent system (4) in the form

where the asymptotic behavior of the elements of the
new matrix function has form (5). The components of
the vector on the right-hand side are solutions of the
boundary value problems

in the domains Ωm . These solutions can be constructed
by the factorization method [7–9]. The function f1 is
any partial solution of this differential equation with the

right-hand side f. The functions  must be deter-
mined.

Theorem 2. The solution of the system of integral
equations for a type-2 virus has the form 

(13)

M γ1 γ2,( ) M γ1( )γ2 1 O γ2
1–( )+[ ] , γ2 ∞,→=

qm x( ) 0, x ∂Ωm, m∈ 1 2 … R., , ,= =

K1q α1
2 α2

2 B2+ +( ) 1–
K α( )V α1 α2,( )q

σ2

∫
σ1

∫≡

× i α x,〈 〉–( )dαexp f 1 g, B 0,>+=

∂2x1 ∂2x2– B2+–( )gm 0,=

gm x( ) gm
0 , x ∂Ωm, g∈ gm{ } Hs∈= =

gm
0

qm x( ) pm x( ) ϕm x( ), m+ 1 2 … R,, , ,= =

pm x( )

=  V 1– Π 1– p1mrΘr

p2mr p1rr

-------------------
r 1=

R

∑
 
 
 

Ωm

+

K10
1– f 1 g+( )( )m+

 
 
 

,

The representation K = K10P is an analogue of rep-
resentation (7) for this problem.

The last system of equations serves for the determi-

nation of the functions  at the boundaries of the
domains Ωm .

The solution for the mixed virus combining inclu-
sions and cracks is constructed similarly.

Systems of one-dimensional integral equations in
theorems 1 and 2 reduce by the tangent fiber bundle at
∂Ωm to second-kind integral equations with a smooth
kernel and admit various discretizations.

Note. We do not discuss numerous methods facili-
tating the study of problems by these methods. We only
note that the factorization method is more general than
the method of fictitious absorption, because it allows, in
contrast to the latter, the investigation of mixed prob-
lems not only for convex domains. In particular, a prob-
lem for a plane with a removed convex domain cannot
be solved by the method of fictitious absorption but can
be solved by the factorization method.
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Fundamental results on the stability of motion and
rigidity of trajectories have been established, respec-
tively, by A.M. Lyapunov [1] and N.E. Joukowski [2].
Russian and foreign scientists contributed greatly to
the development of theories of both stability and rigid-
ity [3–10]. The problem on bundles of rigid and non-
rigid trajectories of a mechanical system with two
degrees of freedom was first analyzed in [11]. In this
paper, we consider rigidity of trajectories of a dynam-
ical system described by a moving Frenet n-hedron in
n-dimensional Euclidean space. We also find condi-
tions for the existence of bundles of asymptotically
rigid and nonrigid trajectories of the dynamical sys-
tem described by the time-independent differential
equation

(1)

In particular, we construct sets M+ and M– of the phase
space such that only asymptotically rigid and nonrigid
semitrajectories pass through all points of M+ and of
M−, respectively.

We consider the positive semitrajectory C+(p0) of
motion x = ϕ(t), ϕ(t0) = p0 of dynamical system (1),
where g is a continuously differentiable function of x =
(x1, x2, …, xn) ∈  Rn. In what follows, the semitrajectory
C+(p0) and the positive semitrajectory C+(q0) passing
through a point q0 ≠ p0 close to the point p0 are referred
to as a base (unperturbed) and roundabout (perturbed)
semitrajectory of Eq. (1), respectively. Motions along
the base and roundabout trajectories are described by
the functions p(t) and q(t), with p(t0) = p0 and q(t0) = q0 .

dx
dt
------ g x( ), x Rn, t I  ::= [t0 +∞).,∈∈=
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ul. Chasovaya 22/2, Moscow, 125808 Russia
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Let (t) be the point at which the base trajectory
intersects the hyperplane perpendicular to it and pass-
ing through a point q(t) of the roundabout trajectory.

The mappings p(t) → q(t) and (t) → q(t), which
are called isochronous and normal (orthogonal) map-
pings, are bases for the definition of stability in the
Lyapunov and Joukowski sense, respectively.

We now introduce notions of rigidity and nonrigid-
ity in the Joukowski sense for the base semitrajectory
C+(p0) of system (1). Let e0 be the vector tangent to the
semitrajectory at the point (t). The distance along the
curve from the point p0 to the point (t) is denoted by
s(t), i.e., s(t) = p0p. The use of the distance s(t) leads to
a reparametrization of the semitrajectory C+(p0). Let
(e1, e2, …, en – 1) be a set of n – 1 linearly independent
normals to the semitrajectory C+(p0) at the point (t).
If the curvatures of this semitrajectory are nonzero
along the normals, the set (e1, e2, …, en – 1) is unambig-
uously defined [7], which is furthermore taken into
account. The set (e0, e1, …, en) and the corresponding
coordinates (s, u1, u2, …, un – 1) are referred to as a mov-
ing Frenet n-hedron and moving Frenet coordinates
along the base semitrajectory C+(p0), respectively.

It is easy to verify that differential equation (1) can
be written out in the moving Frenet coordinates (s, u1,
u2, …, un – 1) as

(2)

(3)

where u = (u1, u2, …, un – 1). The quantities b0j and bij are
functions of the coordinates of the representation point

p

p

p
p

p

ds
dt
----- b ju j

j 0=

n 1–

∑ U0 s u,( ),+=

du
dt
------ Bu U s u,( ), B+ bij ,= =

i j, 1 2 … n 1,–, , ,=
003 MAIK “Nauka/Interperiodica”
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p(t) for the base semitrajectory C+(p0). They are deter-
mined by the formulas

(4)

Here, γij denote the direction cosines between the x1, x2,
…, xn axes and the z0, z1, …, zn axes in the directions of
the unit tangent vector and of the unit vectors e1, e2, …,
en – 1 perpendicular to the semitrajectory C+(p0) of the
motion ϕ(t, p0). The quantity ρi corresponds to the
radius of curvature along the normal ei (i = 1, 2, …,
n − 1). As u1 → 0, u2 → 0, …, un – 1 → 0, the order of
smallness of the functions Uj(s, u1, u2, …, un – 1) is
higher than the first one. In this case,

(5)

In what follows, we assume that the quantities bij

and the terms Uj(s, u1, u2, …, un – 1), j = 0, 1, 2, …, n – 1,
of higher order of smallness are continuous functions of
time t and bounded in modulus within the range of vari-
ables under consideration. Moreover, we assume that
the functions Ui(s, u) tends to zero uniformly with
respect to s ≥ 0: 

(6)

As follows from (6), there exists a continuous scalar
function µ(s, u) such that

(7)

as both u and µ(s, u) tend to zero uniformly with respect
to s ≥ 0.

Definition 1. A base semitrajectory C+(p0) of sys-
tem (1) is referred to as (asymptotically) rigid in the
Joukowski sense if the trivial solution u1 = u2 = … =
un − 1 = 0 of differential equation (3) is (asymptotically)
stable in the Lyapunov sense with respect to the func-

tion  +  + … + .

b00
d g ϕ t p0,( )( )

ds
---------------------------------

1

g ϕ t p0,( )( ) 2
-------------------------------- pijgig ji,= =

b01
g ϕ t p0,( )( )

ρ1
------------------------------

∂ g ϕ t p0,( )( )
∂x j

---------------------------------γ j1,+=

b0s

∂ g ϕ t p0,( )( )
∂x j

---------------------------------γ js, s 2 3 … n 1,–, , ,= =

bms pkjγkmγ js, m 1 2 … n 1,–, , ,= =

s 1 2 … n 1, s m 1, s m 1,+≠–≠–, , ,=

bm m 1–,
g ϕ t p0,( )( )

ρm

------------------------------– pijγimγ j m 1–, ,+=

m 2 3 … n 1,–, , ,=

bm m 1+,
g ϕ t p0,( )( )

ρm

------------------------------– pijγi m 1–, γim,+=

m 1 2 … n 2.–, , ,=

Ui s 0 … 0, , ,( ) 0, i 1 2 … n 1.–, , ,= =

Ui s u,( ) o u( ), i 1 2 … n 1, u 0.→–, , ,= =

Ui s u,( ) u µ s u,( ), i 1 2 … n 1,–, , ,= =

u1
2 u2

2 un 1–
2
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Definition 2. A base semitrajectory C+(p0) of sys-
tem (1) is referred to as nonrigid in the Joukowski sense
if it is not rigid in the Joukowski sense.

Definition 3. A base semitrajectory C+(p0) of sys-
tem (1) is referred to as exponentially rigid in the
Joukowski sense if the solution u = 0 of Eq. (3) is expo-

nentially stable with respect to  +  + … + ,
i.e., if there exists a number ω > 0 such that, for each
ε > 0, a number δ(ε) > 0 can be found such that the solu-
tion u(t) = (u1(t), u2(t), …, un – 1(t)) of Eq. (3) under the
initial condition u(t0)| < δ(ε) satisfies the inequality

Definitions 1–3 are specific cases of those given
in [12–14], applicable to Eq. (3).

According to Definitions 1 and 2, the rigidity in the
Joukowski sense for the semitrajectory C+(p0) of the
solution ϕ(t, p0) follows from the stability in the
Lyapunov sense for this solution, and the instability in
the Lyapunov sense for the solution ϕ(t, p0) follows
from the nonrigidity in the Joukowski sense for the
semitrajectory C+(p0). The rigidity in the Joukowski
sense for the semitrajectory C+(p0) does not guarantee
stability in the Lyapunov sense for the solution ϕ(t, p0).

Definition 4. A base semitrajectory C+(p0) of sys-
tem (1) is referred to as steady-state if all quantities bij

entering into relations (4) are constant along this tra-
jectory.

If none of the radii of curvature is equal to zero
along the normals, then the definition of steady-state
motion is independent of the choice of these normals.

It is worth noting that an arbitrary semitrajectory
steady-state in the Whitteker sense [7] is steady-state in
the sense of Definition 4.

The following theorems are valid.
Theorem 1. Let C+(p0) be a steady-state base semi-

trajectory of dynamical system (1). If the real part of at
least one of roots of the characteristic equation

(8)

[where E is the unit matrix and the quantities a and bij

are defined in Eq. (4)] is positive, then the semitrajec-
tory C+(p0) of dynamical system (1) is not rigid in the
Joukowski sense.

Let the real part of at least one of the roots of Eq. (8)
be positive. In this case, the solution u1 = u2 = … =
un − 1 = 0 of Eq. (3) is unstable in the Lyapunov sense
and, therefore, the semitrajectory C+(p0) is not rigid in
the Joukowski sense.

Theorem 2. Let C+(p0) be a steady-state base semi-
trajectory of dynamical system (1). In this case, the
semitrajectory C+(p0) is exponentially rigid in the

u1
2 u2

2 un 1–
2

u t( ) ε ω t t0–( )–{ } ,  for  t t 0 . > exp  <

det B λE–( ) 0, B bij ,= =

i j, 1 2 … n 1–, , ,=
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Joukowski sense if and only if the real parts of all roots
of characteristic equation (8) are negative.

Proof. Let the real parts of all roots of Eq. (8) be
negative. In this case, the solution u = 0 of Eq. (3) is
exponentially stable in the Lyapunov sense, i.e., there
exist numbers c > 0, δ > 0, and ω > 0 such that any solu-
tion u(t) of Eq. (3) satisfies the inequality

According to Definition 3, the semitrajectory C+(p0) is
exponentially rigid in the Joukowski sense.

Let the solution u = 0 of Eq. (3) be exponentially sta-
ble in the Lyapunov sense. In this case, the semitrajec-
tory C+(p0) of a motion ϕ(t, p0) is exponentially rigid in
the Joukowski sense. Indeed, substituting v  = uexp(ωt)
into Eq. (3), with ω given in Definition 3, we arrive at

(9)

where V(s, v) ::= |v |µ(s, e–ωtv) and µ(s, u) is a scalar
function satisfying Eq. (7). It is evident that the func-
tion V(s, v) meets the condition

V(s, v ) = o(|v |) as v  tends to zero uniformly with 
respect to t ≥ 0. (10)

Let ε > 0 be a given number. Then, for an arbitrary
t0 ≥ 0, there exists the number δ = δ(ε, t0) > 0 such that
the solution u(t) of Eq. (3) under |u(t0)| < δ(ε, t0) satis-
fies the inequality

and, consequently,

We assume that v(t) is the solution of Eq. (9), such
that |v (t0)| < δ. It is evident that

In this case,

i.e.,

Therefore, the solution v  = 0 of Eq. (9) is stable in the
Lyapunov sense. We then use the following statement,
which can easily be proved. Let the function V in
Eq. (9) satisfy condition (10), let A be a constant
matrix, and let the solution v  = 0 of Eq. (9) be stable in
the Lyapunov sense. In this case, the real parts of all
eigenvalues of the matrix A are nonnegative. Indeed, we
assume that the real part of one of the eigenvalues of
matrix A is positive. The perturbation V(s, v ) satisfies
condition (10). Therefore, according to the Lyapunov
theorem on the instability in the first approximation, the
solution v  = 0 of Eq. (9) is unstable as t → +∞, which
is contradictory to the hypothesis of this theorem. In

u t0( ) c u 0( ) ω t t0,( )–{ } t t0.>∀exp≤

dv
dt
------- Av V s v,( ), A  ::= B ωE,–+=

u t0( ) ε ωt0–( ) ω t t0–( )– , t t0,≥∀expexp<

u t0( ) ε ωt–( ), t t0.≥∀exp<

u t0( ) ωt0( ) δ.<exp

u t( ) ε ωt–( ), t t0,≥∀exp<

v t( ) ωt–( )exp ε ωt0–( ), t t0.≥∀exp<
    

this case, the matrix A is semistable, i.e., the real parts
of all its eigenvalues are nonpositive. Therefore, all
eigenvalues of the matrix B are smaller than the nega-
tive number –ω. Thus, Theorem 2 is proved.

We now pass to consideration of conditions under
which the unsteady semitrajectory C+(p0) is not rigid or
is asymptotically rigid in the Joukowski sense.

The following theorems are valid.
Theorem 3. Let there exist the constants ci ≠ 0, i =

1, 2, …, n – 1, such that

(11)

where the quantities ∆i, i = 1, 2, …, n – 1, considered as
functions of time, are determined by the formulas

In this case, the base semitrajectory C+(p0) of dynami-
cal system (1) is not rigid in the Joukowski sense. 

Theorem 4. Let there exist the constants ci ≠ 0, i =
1, 2, …, n – 1 such that

(12)

In this case, the base semitrajectory C+(p0) of dynami-
cal system (1) is asymptotically rigid in the Joukowski
sense. 

Proof. Theorem 3 and 4 are proved by the method

of Lyapunov functions, with V =  +  + … + 
taken as a Lyapunov function.

The asymptotic rigidity in the Joukowski sense for
the semitrajectory C+(p0) of a motion ϕ(t, p0) of dynam-
ical system (1) does not result in the asymptotic stabil-
ity in the Lyapunov sense for the motion ϕ(t, p0). How-
ever, the following theorem holds.

Theorem 5. Let (1) the semitrajectory C+(p0) of a
motion ϕ(t, p0) of dynamical system (1) be asymptoti-
cally rigid in the Joukowski sense and (2) let the zero
solution of Eq. (2) be asymptotically stable in the
Lyapunov sense with respect to the function s2, pro-
vided that u1 = u2 = … = un – 1 = 0. In this case the motion
ϕ(t, p0) of system (1) is asymptotically stable in the
Lyapunov sense. 

As follows from Theorem 5, it is advisable to intro-
duce the notion of the longitudinal rigidity for a semi-
trajectory C+(p0) of system (1).

Definition 5. A semitrajectory C+(p0) of system (1)
is referred to as (asymptotically) longitudinally rigid if
the solution s = 0 of Eq. (2) is (asymptotically) stable in

∆1 c1
2,

∆2

∆1
----- c2

2 …
∆n 1–

∆n 2–
----------- cn 1–

2 t t0,≥∀>, ,>>

∆1 b11, ∆k 1–

b11 b12 … b1 k 1–,

b1 k 1–, bk 1– 2, … bk 1– k 1–,

,=

k 3 … n., ,=

………………………

∆1 c1
2,

∆2

∆1
----- c2

2 …
∆n 1–

∆n 2–
----------- cn 1–

2 t t0.≥∀–<, ,–<–<

u1
2 u2

2 un 1–
2
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the Lyapunov sense with respect to the function s2 , pro-
vided that u1 = u2 = … = un – 1 = 0.

By virtue of Definition 5, the study of the longitudi-
nal rigidity reduces to the analysis of the stability in the
Lyapunov sense for the solution s = 0 of the scalar dif-
ferential equation

Because of this, the asymptotic rigidity in the
Joukowski sense for a semitrajectory is below referred
to as transverse asymptotic rigidity. Therefore, we
reformulate Theorem 5 as follows: if a semitrajectory
of dynamical system (1) is both longitudinally and
transversely asymptotically rigid, then it is asymptoti-
cally stable in the Lyapunov sense. 

If the set of the initial conditions under which a
semitrajectory is longitudinally (transversely) rigid is
empty, this semitrajectory can be referred to as com-
pletely nonrigid. It is evident that if a semitrajectory
C+(p0) of the dynamical system is completely nonrigid,
it is unstable in the Lyapunov sense.

We define sets A1, A2, …, An – 1 in the x-space, with
∆1 > 0, ∆2 > 0, …, ∆n – 1 > 0, and sets B1, B2, …, Bn – 1, with
∆1 < 0, ∆2 < 0, …, ∆n – 1 < 0. We also define the sets

(13)

The following theorems are valid.
Theorem 6. Let a base semitrajectory C+(p0) of

dynamical system (1) belong to M+, i.e., C+(p0) ⊂  M+,
and let

(14)

In this case, the base semitrajectory C+(p0) is not rigid
in the Joukowski sense. 

Theorem 7. Let a base semitrajectory C+(p0) of
dynamical system (1) belong to M–, i.e., C+(p0) ⊂  M+,
and let

(15)

In this case, the base semitrajectory C+(p0) is asymptot-
ically rigid in the Joukowski sense. 

Theorems 6 and 7 are corollaries of Theorems 3 and
4, respectively.

Thus, for all points of M– (M+), the phase bundles of
the trajectories contract (expand) monotonically when
their parameter increases.

ds
dt
----- b00s U0 s 0 0 … 0, , , ,( ).+=

M+ ::= A1 A2 … An 1– ,∩ ∩ ∩

M– ::= B1 B2 … Bn 1– .∩ ∩ ∩

∆1

∆2

∆1
----- …

∆n 1–

∆n

-----------, , , 
 

C
+

p0( )
inf m 0.>=

∆1

∆2

∆1
----- …

∆n 1–

∆n

-----------, , , 
 

C
+

p0( )
sup l 0.<=
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Example. We now consider a dynamical system
described by the linear differential equation in the R2

plane:

(16)

The corresponding determinant has the form

(17)

where

The set M– of all the points (x1, x2) ∈  R2, for which

defines the bundle of asymptotically rigid semitrajecto-
ries of Eq. (16).

The inequalities

(18)

are the necessary and sufficient conditions of negative

definiteness of the quadratic form α  + 2βx1x2 + γ .

Substituting the expressions for α, β, and γ into (18),
we obtain the conditions determining the bundle of
asymptotically rigid semitrajectories of Eq. (16). It is
easy to verify that these conditions have the form
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dx
dt
------ Ax, x x1 x2,( ), A a b

c d
.= = =

∆1

0 ax1 bx2+ cx1 dx2+

ax1 bx2+ a b c+

cx1 dx2+ b c+ d

=

=  α x1
2 2βx1x2 γx2

2,+ +

α a c2 2bc ad–+( ), β 1
2
---d b2 2bc ad–+( ),= =

and   γ 2 bc b c + ( ) .=

∆1 α x1
2 2βx1x2 γx2

2 0,<+ +=

α 0, α γ
γ β

0<>

x1
2 x2

2

a c
2

2abc ad–+( ) 0,>
1
2
---ad c2 2bc ad–+( ) b2 2bc ad–+( ) 
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We analyze the effect of small forces proportional to
the generalized velocity vector on the stability of a lin-
ear autonomous mechanical system with nonconserva-
tive positional forces. It is known that arbitrarily small
dissipation generally destabilizes a nonconservative
system [1–5]. Necessary and sufficient conditions on
the matrix of dissipative and gyroscopic forces under
which the system is asymptotically stable are obtained.
The two-dimensional system is studied in detail. The
problem of the stability of the Ziegler–Herrmann–Jong
pendulum is considered as a mechanical example.

1. We consider a linear mechanical system with non-
conservative positional forces and small forces propor-
tional to the velocity vector:

(1)

where M, D, and A are constant real m × m matrices
determining inertial, dissipative, and gyroscopic along
with nonconservative positional forces, respectively;
ε ≥ 0 is the small parameter, q is the generalized coor-
dinate vector, and the dot denotes the time differentia-
tion. The matrix M is assumed nonsingular.

Substituting q = ueλt, we arrive at the eigenvalue
problem

(2)

Eigenvalues λ1, λ2, …, λ2m are determined from the
characteristic equation

(3)

We now consider system (1) in the absence of forces
proportional to the velocity vector (ε = 0). This system
is called the circulatory system [1, 2]. In this case, as

Mq̇̇ εDq̇ Aq+ + 0,=

Mλ2 εDλ A+ +( )u 0.=

det Mλ2 εDλ A+ +( ) 0.=
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follows from Eq. (3), if λ is an eigenvalue, –λ, , and

–  are also eigenvalues. Therefore, the circulatory sys-
tem is stable (not asymptotically) if and only if all
eigenvalues ±iωj, ωj ≥ 0j are imaginary and semisimple.
This means that the number r of independent eigenvec-
tors corresponding to an eigenvalue is equal to its alge-
braic multiplicity k. When r < k, the general solution of
system (1) contains secular terms proportional to tαeλt,
α ≤ k – 1 (instability). Thus, the system having a pair of
algebraically double eigenvalues ±iω0, ω0 > 0 with one
eigenvector, where other eigenvalues are imaginary and
simple, corresponds to the boundary between the
regions of stability and instability (flutter) [6]. Let us
analyze this case in more detail.

The right (u0, u1) and left (v0, v1) eigenvectors and
adjoint vectors corresponding to the double eigenvalue
λ0 = iω0 are determined from the equations [7, 8]

(4)

(5)

In addition, they are related as

(6)

The vectors u0, u1 , v0, and v1 are defined up to arbitrary

constants. Since the matrix A −  is real, the eigen-
vectors u0 and v0 in Eqs. (4) and (5) can be taken real.
In this case, the adjoint vectors u1 and v1 are imaginary.

In the presence of small dissipative and gyroscopic
forces (ε > 0), the double eigenvalue λ0 = iω0 with one
eigenvector generally splits into two simple eigenval-
ues. This splitting is determined by the expansion

(7)

where the coefficient λ1 is determined from the qua-

λ
λ

A ω0
2M–( )u0 = 0,

A ω0
2M–( )u1 2iω0Mu0,–=

v0
T A ω0

2M–( ) = 0,

v1
T A ω0

2M–( ) 2iω0v0
TM.–=

v0
TMu0 0, v0

TMu1 v1
TMu0 0.≠= =

ω0
2M

λ iω0 ε1/2λ1 ελ2 …,+ ++=
003 MAIK “Nauka/Interperiodica”
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dratic equation [7, 8]

(8)

We note that the quantity d is real, because the vectors
u0 and v0 are real, while the vector u1 is imaginary.
Therefore, in the presence of perturbation εD (ε > 0),
the double eigenvalue λ0 = iω0 splits into two simple
eigenvalues 

For d ≠ 0, these eigenvalues lie on the opposite sides of
the imaginary axis (Fig. 1). This means destabilization
of the circulatory system (ε = 0) by arbitrarily small
forces proportional to the velocity vector.

Therefore, d = 0, i.e.,

(9)

is a necessary condition of stabilization of the system.
Under this condition, splitting of the double eigenvalue
is determined by the expansion λ = iω0 + λ2ε + o(ε),
where the coefficient λ2 is determined from the qua-
dratic equation [7]

(10)

Here, G is the operator inverse to the operator

A − . In particular, this operator can be repre-
sented in the form

The coefficients of Eq. (10) are real. If the circula-
tory system is stabilized by small forces proportional to

λ1
2 id , d

v0
TDu0

2iv0
TMu1

----------------------.–= =

λ iω0 idε O ε( ).+±=

v0
TDu0

2iv0
TMu1

---------------------- 0=

λ2
2 λ2

v1
TDu0 v0

TDu1+

2v0
TMu1

-------------------------------------- iω0

v0
TDG Du0( )
2v0

TMu1

------------------------------–+ 0.=

ω0
2M

G A ω0
2M– 2iω0v0v1

TM+( ) 1–
, detG 0.≠=

0 0
Reλ

ImλImλ

iω0

–iω0

iω0

–iω0

π/4

π/4
d < 0d > 0

Reλ

Fig. 1. Destabilization of the circulatory system by the
small perturbation εD.
the velocity vector, both roots λ2 must satisfy the con-
dition Reλ2 ≤ 0. This condition is equivalent to the weak-
ened Routh–Hurwitz conditions for polynomial (10):

(11)

(12)

Strict inequalities (11) and (12) for sufficiently small
values ε > 0 ensure splitting of the double eigenvalue
λ0 = iω0 into two eigenvalues lying in the left half-plane.

In addition to a double pair ±iω0, the behavior of
simple eigenvalues ±iωj, j = 3, 4, …, m with the right uj

and left vj eigenvectors must be studied. When intro-
ducing small dissipative and gyroscopic forces (ε > 0),
increments of these eigenvalues are determined by the
formula

where

are real. Thus, the conditions

(13)

in the first approximation in ε mean that any simple
eigenvalue λj does not transit to the right half-plane in
the presence of the perturbation εD (ε > 0). Strict
inequalities (13) imply that perturbed eigenvalues λj

belong to the left half-plane for sufficiently small ε > 0.

Conditions (9) and (11)–(13) are the constructive
necessary conditions of stabilization of the circulatory
system by small dissipative and gyroscopic forces. Cor-
respondingly, sufficient conditions of stabilization of
system (1) are derived from conditions (9) and (11)–
(13) by replacing nonstrict inequalities with strict ones.
These conditions impose constraints on the elements of
the matrix D. Conditions (9), (11), and (13) are linear,
and condition (12) is quadratic in the elements of the
matrix D. To calculate the coefficients of linear and
quadratic forms, it is necessary to know the spectrum of
the circulatory system and corresponding right and left
eigenvectors and adjoint vectors. We emphasize that
one constraint specified by equality (9) and m con-

v1
TDu0 v0

TDu1+

2v0
TMu1

-------------------------------------- 0,≥

iω0

v0
TDG Du0( )
2v0

TMu1

------------------------------– 0.≥

λ j iωj µ jε O ε2( ),+ +=

µ j

v j
TDu j

2v j
TMu j

--------------------–=

v j
TDu j

v j
TMu j

----------------- 0, j≥ 3 4 … m, , ,=
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straints specified by inequalities (11)–(13) are imposed
on the m2 elements of the matrix D.

2. We consider system (1) under the assumption that
m = 2 and M = I, where I is the identity matrix. This
assumption does not limit generality, and the results of
this section can be extended to the case of the arbitrary
mass matrix with detM ≠ 0. The spectrum of the two-
dimensional system at the boundary between regions of
stability and flutter consists of only a pair of imaginary
double eigenvalues ±iω0. Since simple eigenvalues are
absent, the stability of the system is determined by the
behavior of this pair.

The necessary and sufficient condition of the exist-
ence of the double eigenvalue λ0 = iω0 of the circulatory
system can be represented as the equation

(14)

equivalent to the equality detA = . In this case,

(15)

In view of conditions (14) and (15), the eigenvectors
and adjoint vectors u0, v0, u1, and v1 corresponding to
the double eigenvalue λ0 = iω0 are found from Eqs. (4)
and (5) in the form

(16)

(17)

Therefore, the denominator of expressions (8) and (10)
is equal to

(18)

In view of Eqs. (18) and (14), necessary condition (9)
takes the form

(19)

This condition can be written in the compact form

4a12a21 a22 a11–( )2+ 0,=

trA
2

-------- 
 

2

λ0
2– ω0

2 a11 a22+
2

-------------------- 0, a12a21 0.≤>= =

u0
2a12

a22 a11–
, v0

2a21

a22 a11–
,= =

u1
0

4iω0–
, v1

0

4iω0–
.= =

2v0
TMu1 8iω0 a22 a11–( ).–=

v0
TDu0

2i v0
ÚMu1( )

---------------------------

=  
d22 d11–( ) a22 a11–( ) 2 d12a21 d21a12+( )+

8ω0
---------------------------------------------------------------------------------------------------- 0.=

2tr AD( ) trAtrD.=
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We now determine the coefficients of quadratic
equation (10). The coefficient of the linear term is
equal to

(20)

To determine the free term of Eq. (10), the vector w
must be determined from the inhomogeneous equation

(21)

where the eigenvector u0 is given in Eqs. (16). Solving
Eq. (21), we obtain

(22)

Then,

(23)

Substituting Eqs. (18), (20), and (23) into quadratic
equation (10), we arrive at the relation

(24)

Thus, necessary conditions (9), (11), and (12) for the
two-dimensional system (m = 2) take the compact form

(25)

(26)

We note that similar conditions and Eq. (24) were
obtained in [5] by analyzing the characteristic polyno-
mial of system (1).

Let us determine the stabilization region that is
specified by strict conditions (25) and (26) in the space
of the elements of the matrix D. Two cases are naturally
distinguished.

In the first case, where a12 ≠ 0, d21 is expressed from
equality (25), and the matrix of dissipative and gyro-
scopic forces is found in the form

(27)

v1
TDu0 v0

TDu1+

=  8iω0 d22 a22 a11–( ) d12a21 d21a12+ +( )–

=  4iω0trD a22 a11–( ).–

A ω0
2I–( )w Du0,=

G Du0( ) w≡ 2d12–

2d11

= .

v0
TDG Du0( ) 2 a22 a11–( )detD.=

λ2
2 λ2

1
2
---trD

1
4
---detD++ 0.=

2tr AD( ) trAtrD,=

trD 0, detD 0.≥ ≥

D
d11     d 12 

d

 

22

 

d

 

11

 

–

 
( )

 

a

 

11

 

a22–( ) 2a21d12–
2a12

--------------------------------------------------------------------------     d 22 
.=
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Using condition (14) that the eigenvalue λ0 is double,
we transform inequalities (26) for matrix (27) to the
form

(28)

(29)

These inequalities are equivalent to the conditions

(30)

Thus, in the three-dimensional space of the parameters
d11, d22, and d12, inequalities (30) define the dihedral
angle that determine the region of stabilization of the
circulatory system by small dissipative and gyroscopic
forces specified by matrix D (27) (Fig. 2).

In the second case, where a21 ≠ 0, the necessary con-
ditions of stability have the form

(31)

which corresponds to the dihedral angle in the three-
dimensional space of the parameters d11, d22, and d21. In
this case, the matrix D has the form

(32)

d11 d22 0,≥+

d11 d12

a11 a22–
2a12

--------------------– 
  d22 d12

a22 a11–
2a12

--------------------– 
  0.≥

d11 d12

a11 a22–
2a12

--------------------, d22 d12

a22 a11–
2a12

--------------------.≥≥

d11 d21

a11 a22–
2a21

--------------------, d22 d21

a22 a11–
2a21

--------------------,≥≥

D d11

d22 d11–( ) a11 a22–( ) 2a12d21–
2a21

--------------------------------------------------------------------------

d21 d22

= .

Asymptotic
stability

d12 (d21)

d22

d11

0

Fig. 2. Stabilization region for the asymmetric matrix D for

 > 0 .
a11 a22–

2a12
--------------------- or   

a
 

11 
a

 
22 

–

2
 
a
 

21
 --------------------- 0 > 

 
                     

When a12 ≠ 0 and a21 ≠ 0, conditions (30) and (31) cor-
responding to matrices (27) and (30), respectively, are
equivalent to each other.

Let us consider the case where a11 = a22. In this case,
a12 = 0 or a21 = 0. These equalities cannot be satisfied
simultaneously. Otherwise, two linearly independent
eigenvectors would correspond to the double eigen-
value λ0 that contradicts the initial assumption. It fol-
lows from condition (25) that d12 = 0 or d21 = 0, res-
pectively. According to strict conditions (30) and (31),
the stabilization region in the three-dimensional space
of the parameters d11, d22, and d12 (or d21) is the right
dihedral angle specified by the inequalities d11 > 0 and
d22 > 0.

We now determine the form of the symmetric matri-
ces D stabilizing the circulatory system. In this case,
gyroscopic forces are absent, and inequalities (26)
mean that the matrix D is nonnegative. We emphasize
that strict inequalities (26) imply total dissipation.
Expressing the coefficient d12 = d21 from Eq. (25), we
obtain

(33)

We note that a12 + a21 ≠ 0, because otherwise two lin-
early independent eigenvectors would correspond to
the double eigenvalue λ0 that contradicts the initial
assumption. Calculating the determinant and trace of
matrix (33) and writing the conditions that they are
nonnegative, we arrive at the following necessary con-
ditions in the space of the two parameters d11 and d22:

(34)

Strict inequalities (34) specify the region of stabiliza-
tion of system (1) by small forces proportional to the
velocity vector. Thus, the region of stabilization of the
circulatory system by symmetric matrices εD of the
form specified by Eqs. (33) and (34) is an angle on the
plane of parameters d11 and d22 (Fig. 3). According to
formula (34), this angle is generally acute and is right
only for a11 = a22.

3. Let us consider the Ziegler–Herrmann–Jong pen-
dulum [1, 9] consisting of two rigid massless bars,
which have the same length l and are connected by a
hinge, and point-like masses m1 = 2m and m2 = m
located at the bar connection point and free end, respec-
tively (Fig. 4). The pendulum is subject to the follower

D = 
d11

a22 a11–( ) d11 d22–( )
2 a12 a21+( )

--------------------------------------------------

a22 a11–( ) d11 d22–( )
2 a12 a21+( )

-------------------------------------------------- d22

.

d11 d22 0,
x 1–

x 1+
----------------d22 d11 d22

x 1+

x 1–
----------------,≤ ≤≥,

x 1
a22 a11–
a12 a21+
-------------------- 

 
2

.+=
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force 

 

Q

 

 applied to the free end. The viscoelastic hinges
of the pendulum have the same rigidity 

 

c

 

 and different
damping coefficients 

 

ε

 

b

 

1

 

 and 

 

ε

 

b

 

2

 

. In terms of the
dimensionless quantities

where 

 

τ

 

 is the time, the equations of small oscillations
of the pendulum have the form

 

(35)

 

where

 

(36)

 

It is known that, in the absence of viscous friction,
when 

 

ε

 

 = 0, the equilibrium position of the pendulum is

stable for 

 

q

 

 < 

 

q

 

0

 

 =  – 

 

 [9]. The critical load 

 

q

 

0

 

 cor-

responds to the boundary between the regions of stabil-
ity and flutter of the circulatory system. At this point,
the spectrum of the system includes a pair of double
imaginary eigenvalues 

 

±

 

i

 

ω

 

0

 

 and 

 

ω

 

0

 

 = 2

 

–1/4

 

 with one
eigenvector.

q
Ql
c

------, k1

b1

cml2
---------------, k2

b2

cml2
---------------,= = =

τ t
c

ml2
--------,=

d2y

dτ2
-------- εD

dy
dτ
------ Ay+ + 0, y

ϕ1

ϕ2

,= =

D
1
2
---

k1 2k2+ 2k2–

k1– 4k2– 4k2

, A
1
2
--- 3 q– q 2–

q 5– 4 q–
.==

7
2
--- 2

Asymptotic
stability

d11

d22

0

Fig. 3. Stabilization region for the symmetric matrix D.
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To determine the damping parameters 

 

k

 

1

 

 and 

 

k

 

2

 

 for
which the perturbed system is asymptotically stable, we
use stabilization conditions (25) and (26). Calculating
the invariants of the matrices 

 

A

 

 and 

 

D

 

 for 

 

q

 

 = 

 

q

 

0

 

(37)

 

and substituting them into relations (25) and (26), we
arrive at the necessary conditions of stabilization

 

(38)

 

Thus, if the damping coefficients in the hinges satisfy
strict conditions (38), the Ziegler–Herrmann–Jong pen-
dulum is asymptotically stable.

We now determine the general form of the matrix 

 

D

 

stabilizing circulatory system (1) without constrains (36).
Substituting the coefficients of the matrix 

 

A

 

 calculated
at the critical point 

 

q

 

 = 

 

q

 

0

 

 into formulas (31) and (32),
we obtain

 

(39)

 

with the constrains

 

(40)

trA 2, trD
1
2
---k1 3k2, detD+

1
2
---k1k2,= = =

tr AD( ) 1
2
---– 2

2
-------+ 

  k1
1
2
---– 3 2+ 

  k2+=

k1 5 2 4+( )k2, k2 0.≥=

D = d11    17 12 2– ( ) d 21 3 2 2– ( ) d 22 d 11 – ( ) + 

d

 

21

 

d

 

22

d22– d21 3 2 2–( ) d11.≤ ≤

 

l

m

Q

2m

l

 

ϕ

 

1

 

ϕ

 

2

 

Fig. 4. 

 

Ziegler–Herrmann–Jong pendulum.
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for the coefficients. It is easy to check that if the
matrix D has form (36), conditions (39) and (40) lead
to relations (38).
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In cylindrical coordinates, steady axisymmetric
flows of a viscous incompressible fluid rotating about
the symmetry axis are described by the equations

(1)

Here, u, v, and w are axial, radial, and azimuthal veloc-
ity components, which correspond to axial (x), radial
(r), and azimuthal (ϑ) cylindrical coordinates, respec-
tively; p is the pressure divided by the constant density;
and R is the Reynolds number.

Here, we consider flows with potential rotation

about the x axis; i.e., w =  and p = P(x, r) – ,

where W is an arbitrary constant and P is the new
unknown function. In this case, the last of Eqs. (1) is
satisfied, and the quantity W does not enter into the
transformed equations.

Introducing the stream function

and the function σ, where 

ux v r
1
r
---v+ + 0,=

uux v ur px+ +
1
R
---- uxx urr

1
r
---ur+ + 

 = ,

uv x vv r
1
r
---w2– pr+ +

1
R
---- v xx v rr

1
r
---v r

1

r2
----v–+ + 

  ,=

uwx v wr
1
r
---v w+ +

1
R
---- wxx wrr

1
r
---wr

1

r2
----w–+ + 

  .=

W
r
----- W2

2r2
-------

dψ ru dr rv  dx–=

σ Lψ, L
x2
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∂
∂
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∂
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∂

–+= =
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and eliminating P, we transform Eqs. (1) into the fol-
lowing system of equations for ψ and σ:

(2)

We consider the special class of solutions to sys-
tem (2) for

(3)

where c is an arbitrary constant. In this case, the second
of Eqs. (2) is satisfied. To find the functions ψ analytic
near the x axis, a solution to the first equation is sought
in the form

(4)

where f2n are the desired functions.

Substituting this expression for ψ into the first of
Eqs. (2) and taking Eq. (3) into account, we arrive at the
relation

where the superscript in parentheses shows the order of
derivative. This equality can be transformed to the form

Therefore,

(5)

In addition,

.

Lψ σ, Lσ Rr

D
σ
r2
---- ψ, 

 

D x r,( )
----------------------.= =

σ cr2,=

ψ f 2n x( )r2n 2+

n 0=

∞

∑= ,

f 2n
2( ) x( )r2n 2+ 4n n 1+( ) f 2n x( )r2n+[ ]

n 0=

∞

∑ cr2,=

f 2n
2( ) 4 n 1+( ) n 2+( ) f 2n 2++[ ] r2n 2+

n 0=

∞

∑ cr2.=

f 0
2( ) 8 f 2+ c or f 2

1
8
--- c f 0

2( )–( ).= =

f 2n
2( ) 4 n 1+( ) n 2+( ) f 2n 2++ 0, n 1 2 …, ,= =
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As a result,

Induction on n yields

(6)

Relations (4)–(6) lead to the equality

(7)

In what follows, arbitrary functions f(x) are assumed
to be infinitely differentiable.

Let us investigate convergence of series (7). If f(x) is
a polynomial, the problem of convergence does not
exist and formula (7) gives an exact solution. For the
series

(8)

where k2n is defined in (6), the ratio of two successive
terms has the limit

at a finite r value. Thus, series (8) is absolutely conver-
gent. At bounded | f (2n)(x)| < M, series (8) multiplied by
M majorizes the series

Therefore, series (7) is absolutely and uniformly con-
vergent if x and r are bounded and the function f(x) is
infinitely differentiable.

It is noteworthy that both sides of the second of
Eqs. (2) are equal to zero for σ = cr2. Consequently, the
solution given by Eqs. (3) and (7) is independent of the
Reynolds number and describes flows of both viscous
and perfect fluids. Certain classes of similar solutions,
which overlap with the

class of solutions found here, were found in [1–4].
However, the possibility of rotating a flow about the x
axis was not pointed out in [1–3]. For example, solu-
tion (7) contains the spherical Hill’s vortex ψ = r2(x2 +
r2 – 1), which was described in [5], while the function
f = cosx leads to an infinite chain of the Hill-type vortex
elements, which can be found in [4].

If f(x) is infinitely differentiable, the series entering
into relation (7) can be differentiated infinitely term by

f 2n 2+
1

4 n 1+( ) n 2+( )
------------------------------------- f 2n

2( ).–=

f 2n k2n f 2n( )= , k2n
1

4–( )n n!( )2
n 1+( )

-------------------------------------------, =

n 2 3 … ., ,=

ψ 1
8
---cr4 1

4–( )n n!( )2 n 1+( )
------------------------------------------ f 2n( )r2n 2+ .

n 0=

∞

∑+=

K k2n r2n 2+ ,
n 2=

∞

∑=

  r
 

2

 
4

 
n
 

1+
 

( )
 

n
 

2+
 

( )
 ------------------------------------- 

n
 

∞→
 lim 0=

k2n f 2n( ) x( )r2n 2+ .
n 2=

∞

∑

                                 
term not only with respect to x but also with respect to r.
Indeed, the series

is uniformly convergent because of the uniform conver-
gence of the series with the terms

The m-fold differentiation of the series entering into
relation (7) with respect to r leads to the relation

The ratio between the terms of the last series with n =
h + 1 and n = h is equal to

at n → ∞. Consequently, the m-fold differentiation of
the series in relation (7) with respect to r yields a uni-
formly convergent series according to the d’Alembert
ratio test, while formulas (3) and (7) represent a solu-
tion to Eqs. (2) if the function f(x) is infinitely differen-
tiable.

Certain steady axisymmetric vortex elements that
rotate about the symmetry axis and satisfy the Navier–
Stokes equations were found in [4, 5]. They are vortex
rings, pairs of such rings, monolithic vortices with the
structure of the spherical Hill’s vortex, etc. Almost all
of them are observed experimentally, but their exist-
ence is always associated with the rotation of a flow
about its symmetry axis. Among vortex elements
obtained experimentally, pairs of the coaxial Hill’s
structures observed in [6, 7] are of particular interest.
The solution specified by Eqs. (3) and (7) with a poly-
nomial function 

 

f

 

(

 

x

 

)

 

 gives exact description of the cor-
responding flows.

Both polynomial and nonpolynomial functions are
used in the examples discussed below. For brevity,
expressions for 

 

ψ

 

(

 

x

 

, 

 

r

 

)

 

 are not presented there. How-
ever, they can be easily derived by substituting the
expressions presented below for 

 

f

 

(

 

x

 

)

 

 and constant 

 

c

 

 into
formula (7).

 

1. 

 

The relations 

 

f

 

 = (

 

x

 

 + 3)(

 

x

 

 + 2)(

 

x

 

 – 1)(

 

x

 

 – 4)

 

 and 

 

c

 

 =
170

 

 determine a pair of disconnected vortex elements.
The corresponding flow pattern in the (

 

x

 

, 

 

r

 

) plane is
shown in Fig. 1. Vortices are bounded by the 

 

ψ

 

 = 0
lines. Flow directions are shown by arrows, while num-

k2n2 n 1+( ) f 2n( )r2n 1+

n 0=

∞

∑

k2n2 n 1+( )r2n 1+ 2

4n n!( )2
-----------------r2n 1+ .=

k2n
2n 2+( )!

2n 2 m–+( )!
-------------------------------- f 2n( )r

2n 2 m–+
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∞

∑

≤ M
2 2n 1+( )!r2n 2 m–+

4n n!( )2
2n 2 m–+( )!

--------------------------------------------------.
n m≥

∞

∑
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---------------------------------------------------------------------------------- 0→
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bers near the lines show ψ values. Vortices symmetric
with respect to the r axis can be obtained by using sym-
metric zeros of the polynomial f(x).

2 The relations f = (x + 1)(x – 1)2(x – 2) and c = 35
give a pair of touching vortex elements. Streamlines of
the corresponding flow are shown in Fig. 2. Two vorti-
ces touch at the point x = 1, r = 0. In Figs. 1–4, the same
notation is used.

3. Three Hill’s vortices touching in pairs in the axis
are obtained for f = (x + 1)2(x2 – 4)(x – 1)2 and c = 250.
The flow pattern is symmetric with respect to the r axis
(Fig. 3). Neighboring pairs of three vortices touch by
their points in the x axis at x = –1 and 1.

In the above examples, polynomial functions f(x) are
used. Therefore, both (3) and sums (7) represent exact
solutions to Eqs. (2). Below, the function f(x) is not a
polynomial.

4. The function f =  (c = 4) describes a chain

of the Hill-type vortices. In this case, ψ represents an

2xcos

1 x2+
---------------

2

r

x–4

ψ = 1000

0 4

0

–2

240

20

0

–60

–20

–0.2

Fig. 1. Two disconnected vortex elements.

0

–1

r

x–2 0 2

ψ = 20

6.4

–0.08

0.8
0

–0.08

Fig. 3. Three vortex elements touching in pairs.
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infinite series. The flow part containing the largest
vortices is shown in Fig. 4. The vortex width in the r
direction decreases with an increase in the absolute
value of x.
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The problem of stability of non-prismatic rods in the
Eulerian setting was intensely studied in the first half of
20th century [1, 2]. The solution to this problem is
attained most easily in cases of piecewise variation of
the rod stiffness or its variation according to a power law.
The buckling of a rod with its stiffness varying according
to a sinusoid law was analyzed by Dinnik [3]. Certain
problems in the theory of rod stability for particular
cases of stiffness variation have exact solutions in terms
of Bessel functions [4].

In the present paper, we analyze stability of a hinged
(at its ends) non-prismatic longitudinally inhomoge-
neous elastic rod for the case of weaker constraints
imposed on the rod stiffness. The mathematically for-
mulated problem is reduced to seeking the approximate
minimal eigenvalue and the corresponding eigenfunc-
tion for the solution of the Sturm–Liouville equation
with homogeneous boundary conditions. It is worth
noting that in this setting of the problem, the well-
known results are obtained as particular cases.

1. We now consider a hinged rod having the rectan-
gular variable cross section F = F(x) = 2ah(x), which is
centrally compressed by force P. Furthermore, we sup-
pose that a = 1. We also assume the Young modulus to
be dependent on the longitudinal coordinate x: E = E(x).
Then, based on the hypothesis of plane cross sections
and supposing the deformation of the rod to occur with-
out its lengthening, we can reduce the problem on the
rod buckling to integration of the differential equation
with non-constant coefficients:

{E(x)I(x)}w'' + Pw = 0 (1)
and with homogeneous boundary conditions

w(0) = w(l) = 0. (2)
Here, w is the flexure, l is the rod length, and

is the moment of inertia of the cross section with the
longitudinal coordinate x.

I x( ) z2 zd

h x( )–

h x( )

∫ 2
3
---h3 x( )= =

Baku State University, 
Baku, 370000 Azerbaijan
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Henceforth, without lack of generality, we write out

E(x) = E0ϕ1(x), I(x) = I0ϕ2(x), (3)

where E0 and I0 are, respectively, the characteristic
Young modulus and the moment of inertia, whereas
ϕ1(x) and ϕ2(x) are the functions describing inhomoge-
neity and variability of the rod cross section.

We now impose on these functions conditions that
do not contradict the physical sense: the functions ϕ1(x)
and ϕ2(x) are measurable and limited from both above
and below, their lower boundaries being positive. It fol-
lows from these conditions that the functions ϕ1(x) and
ϕ2(x) are integrable in the Lebesgue sense:

(4)

The last expression also allows us to consider the case
of piecewise inhomogeneity and the step-like variabil-
ity of the cross section. Thus, introducing the notation

we can rewrite Eq. (1) in the form

w'' + λq(x)w = 0 (5)

for q(x) = [ϕ1(x)ϕ2(x)]–1. It follows from (4)

(6)

Finally, using dimensionless quantities

and omitting, for simplicity, bars above the relevant
quantities, the boundary value problem [formulas (5)
and (2)] can be reduced to

(7)

As is well known, the question related to conditions
for the appearance of flexural forms of equilibrium cor-
responds to the problem on finding eigenvalues. The
determination of the least nonzero critical force is asso-
ciated with seeking the minimal value of λ for which

ϕ1 x( ) x +∞,      ϕ2 x( ) < +∞.

0

l

∫<d

0

l

∫

0 λ< PE0
1– I0

1– ,=

q x( ) x +∞.<d

0

l

∫

x xl, λ l2 λ , w wl= = =

w'' λq x( )w+ 0,=

w 0( ) w 1( ) 0.= =
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problem (7) has a nontrivial solution. In the general
case, the determination of the exact minimal value of λ
is impossible. Therefore, the object of our further study
is constructing the approximate value of this quantity
and the eigenfunction.

2. We consider problem (7) of eigenvalues in the
space L2(0, 1). Since the Green’s function of the prob-
lem

–y''(x) = f(x), y(0) = y(1) = 0

has the form

problem (7) is equivalent to the integral equation

(8)

It follows from the form of the kernel G(x, ξ) and from
properties of the function q(ξ) that

(a) integral operator (8) is quite continuous and
symmetrizable on the left in the case of its multiplying
by the function q(ξ);

(b) the eigenvalues of problem (7) are discrete and
positive;

(c) the first eigenvalue λ1 corresponds to the unique
positive eigenfunction, all eigenfunctions forming a
basis of the weight q(ξ) [6].

Furthermore, denoting by S and D the operators

we obtain from the general theory of linear operators [7]:

Since S is the self-conjugated positive quite continuous
operator having the eigenvalues (π2n2)–1, n = 1, 2, …,
then the norms of S and of D are ||S|| = π–2 and ||D|| =
supxq(x) = b. It follows from the aforementioned that

.

We now calculate the approximate eigenvalue λ1
using the method of successive approximations. To this
aim, we consider the approximations

(9)

G x ξ,( )
x 1 ξ–( ) for x ξ≤
ξ 1 x–( ) for ξ x,≤




=

w x( ) λ G x ξ,( )q ξ( )w ξ( ) ξ .d

0

1

∫=

Sw G x ξ,( )w ξ( ) ξ ,d

0

1

∫=

Dw q x( )w x( ),=

λ1
1– SD S D .⋅≤ ≤

0
π2

b
----- λ1 λ2 λ3 … λn …≤ ≤ ≤ ≤<≤<

e1 0, x( ) 1,≡

e1 k, G x ξ,( )q x( )e1 k 1–, ξ( ) ξ , kd

0

1

∫ 1 2 … ., ,= =
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We denote

and form the following sequence:

(10)

. (11)

Here, we arrive at the estimate

from which by virtue of the rigorous inequality λ1 < λ2 ,
it follows that λ1, k → λ1 as k → ∞. Thus, formulas (10)
and (11), in combination with dependences (9), yield
the constructive representation of the desired value. It
should be noted that after a number of analogous rea-
sonings, the final formula for the approximate calcula-
tion of the first eigenfunction is reduced to the expres-
sion

3. For numerical realization, we consider a number
of examples. Initially, we assume that q(x) ≡ 1. Then,
the critical Eulerian force is determined as λ1 = π2 ≈
9.8696, whereas the three first approximations calcu-
lated on the basis of constructed formulas (10) and (11)
are

λ1, 1 ≈ 10.9544, λ1, 2 ≈ 9.8767, λ1, 3 ≈ 9.8697.

Hence, it follows that even the second approximation
yields a practical result, which is also the case in other
examples given below. Furthermore, we analyze the
stability of a combined rod with a constant cross section
[ϕ2(x) ≡ 1] for which

For two approximations, we have obtained the val-
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ues of the critical force
λ1, 1 ≈ 13.2116, λ1, 2 ≈ 12.3264.

In the third example, we consider the case of a linear
variation of the Young modulus, which can be repre-
sented in the form

ϕ1(x) = 1 + ηx, ϕ2(x) ≡ 1.

We now present the numerical values of the second
approximation for λ1, 2 as functions of η:

In the examples listed above, the integrals were cal-
culated using the Simpson method.

In conclusion, we would like to emphasize that by
constructing an inhomogeneity, we can increase
(decrease) the critical force and thereby, in a certain
sense, optimize the construction.

η –0.4 –0.2 0 1 2

λ1, 2 7.7957 8.8607 9.8767 14.4672 18.6900
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Spectral and spectral correlation methods of pro-
cessing measurements of the Earth’s motion are com-
monly used to develop models of oscillations of the
Earth’s pole [1–3]. Linear and nonlinear analytical sto-
chastic models of the motion of the deformable Earth
were developed in [4–7] on the basis of celestial
mechanics. In this paper, we construct spectral correla-
tion models of fluctuations in the Earth’s rotation and
analyze the spectral correlation characteristics of fluc-
tuations.

1. Under the assumptions considered in [8], the
equations of the rotation of the deformable Earth can be
written in the vector form

(1)

Here,

(2)

Ẏ a Y t,( ) V, Y t0( )+ Y0.= =

Y ptqtδrt[ ] T
, Y0 p0q0δr0[ ] T

,= =

V V1tV2tV3t[ ] T
,=

a a Y t,( ) a1a2a3[ ] T
,= =

a1 –D1 pt N*qt– 310 311 ω*tcos+ +=

+ 312 2ω*t u4 r* δrt+( )2
r*

2
–[ ] ,–cos

a2 –D2qt N* pt 410 411 ω*tcos+ + +=

+ 412 2ω*t u8 r* δrt+( )2
r*

2
–[ ] ,–cos

a3 –D3δrt 510 511 ω*t 512 2ω*t;cos+cos+ +=
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(3)

(4)

(5)

In Eqs. (1)–(5), pt, qt, and rt are the projections of the
instantaneous rotational velocity of the Earth on the
body axes; δrt = rt – r*, where r* is the axial rotational

velocity of the Earth; N* is the Chandler frequency; the

vector u = [u1, …, u15]
T describes variations in the axial

and transverse moments of inertia of the Earth; V1t, V2t,
and V3t are the specific moments of external stochastic
forces, which have the form of uncorrelated Gaussian
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(normal) white noise and intensities νi = ν(t) (i = 1, 2, 3);
and D1, 2, 3 are the specific coefficients of the moments
of dissipative forces. The additive regular moments
with the coefficients 310, …, 512 , as well as the
moments V1t , V2t , and V3t of stochastic forces, are
responsible for perturbations.

2. Equations (1) are linear in pt and qt and quadratic
in δrt . Taking

(6)

we linearize the nonlinear functions u4, 8[(r* + δrt)2 –

]. In this case, Eqs. (1) lead to the following expres-

sions for the mathematical expectations  and the

centered components , , and :

(7)

(8)

Equations (7) are nonlinear in , while Eqs. (8)

are linear in , , and . Equations (7) and (8) rep-
resent a system of stochastic differential equations gov-

erning the mathematical expectations  and cen-

tered stochastic components , , and . Using
numerical methods of statistical simulation [9, 10], we
now estimate both the mathematical expectations and

spectral correlation characteristics of the quantities ,

, and .

r*
2
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2
Dt

δr 2r*mt
δr

2 r* mt
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0
,+ + +≈

r*
2
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p q δr, ,
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0

ṁt
p
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p
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p
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p
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0 p0
0
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q̇t
0 –D2qt

0 N* pt
0 2u8 r* mt
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0 V2t,+ + +=

qt0

0 q0
0
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δṙt
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0 V3t, δrt0

0+ δr0
0
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p q δr, ,
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0 qt
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0

3. Since Eqs. (8) are linear, the covariance matrix Kt

and the matrix  of the covariance functions satisfy
the equations [9, 10]

(9)

(10)

with  for t1 < t2 and  =  for t2 < t1 .
Here, a1 is the matrix of coefficients of Eqs. (8), i.e.,

(11)

Using Eqs. (9)–(11), we arrive at the following equa-
tions for the variances

(12)

covariances

(13)

Kt1t2

K̇t a1Kt Kta1
T ν , Kt0
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------------- Kt1t2
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T
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Ḋt
p

2 D1Dt
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and (for t1 < t2) covariance functions

(14)

The initial conditions are

If the covariance functions for , , and 
depend only on the time difference t2 – t1 = τ, the cova-
riance functions and (mutual) spectral densities are
given by the expressions

(15)

(16)

4. In the linear theory of fluctuations [6, 7], the
terms

are ignored in Eqs. (1). In this case, system (1) splits
into two independent systems of stochastic equations in

 = [ptqt]T and δrt , which describe the motion of the
Earth’s pole. If the terms containing the factors u4 and
u8 are omitted, Eqs. (12)–(14) for the mathematical
expectations and covariance characteristics are simp-
lified.
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According to [9, 10], the linear correlation models
of fluctuations in the Earth’s motion are based on the
analysis of the weighting functions of white noise and
its intensity. In particular, the mathematical expecta-
tions, covariance functions, and spectral densities are
determined by the formulas
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to [9, 10], these quantities are determined by the for-
mulas

(26)

(27)

(28)

(29)

(30)

Here, the components of w(t – τ) are written including
squares and products of the quantities D1, 2 , 1(t – τ)
is the Heaviside step function, and

(31)

If D1, 2  ! 1 and the quantities ν1, ν2, and ν3 are
constants, formulas (15), (16), (21), and (22) take
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where

The system of Eqs. (7) and (12)–(16) provides the
basis for the analytical simulation and the analysis of
the spectral correlation characteristics of fluctuations in
the Earth’s motion.

5. The dynamic spectral correlation and kinetic mod-
els of fluctuations in the Earth’s motion (Sections 2–4)
were used to analyze the measurements for the funda-
mental problem “Statistical Dynamics of the Earth’s
Rotation” [11].

The stationary spectral densities sp, q, δr(ω) found in
the approximate (linear) theory [formulas (17)–(39)]
are shown in the figure for the white-noise intensities
ν1 = ν2 = ν0 and ν3 < ν0 and the specific coefficients of
the moments of dissipative forces D1 = D2 = D0 and
D3 < D0 . In this case, the variances, covariances, cova-
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riance functions, and spectral densities are given by the
approximate expressions

(40)

(41)

(42)

According to [4, 5], the estimates of the relaxation time

 range from 10 to 100 years with the standard devi-

ation  about 0.02'' to 0.04''.

The nonlinear components with the coefficients
u4, 8 ~ 10–8 at the frequency N* were included by analyt-
ical simulation. The corrections found by statistical
simulation for the mathematical expectation, second
moments, and spectral density are equal to 2, 6, and
10%, respectively.

In addition to the analysis of the accuracy, formu-
las (17)–(39) and measurements allow us to identify
the parameters u (which are important when estimating
trends) as well as the basic parameters N* and D1, 2, 3 of
the model.

The statistical analyses show that the spectral corre-
lation models based on the linear theory can ensure a
required accuracy in time intervals from 3 to 5 years.

The dynamic Gaussian linear (and nonlinear) spec-
tral correlation models of fluctuations in the Earth’s
motion can be used to analyze the accuracy and identify
the basic dynamic parameters by processing measure-
ments [1–5]. The models describe the features of fluc-
tuations in the Earth’s motion and ensure the required
accuracy.

The PC software package developed at our institute
in 2000–2003 allows us to perform analytical, statisti-
cal, and combined simulations of both regular and sto-
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chastic motions of the Earth in both nonstationary and
stationary regimes.
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Conditions for minimizing the kinetic energy of a
flow of an ideal incompressible fluid with constant vor-
ticity are obtained by the variational method. On this
basis, the corresponding Kelvin theorem stating that
such an extremum is realized for the linear superposi-
tion of the potential velocity field with the homoge-
neously spiral vortex regime of the Gromeka–Beltrami
type is generalized. It is shown that one of the modifi-
cations of the Helmholtz–Rayleigh theorem, which
also separate Gromeka–Beltrami inertialess flows but
with respect to the minimization of the dissipation rate
of the flow energy, is an analogue of the well-known
theorem on minimization of the energy of a magnetic
field with fixed total vorticity.

1. INTRODUCTION

Exact solutions of the time-independent equations
of the vortex dynamics of an ideal incompressible fluid
in the Gromeka–Beltrami form [1, 2] have been known
for more than a century. In these flows, the velocity v is
collinear to its curl w = curlv; i.e., w = kv, where

 For k = const, the corresponding flow

is a homogeneously spiral vortex flow with nonzero

vorticity  Such flows are convenient for

description of observed tornado-like vortices [3]. The
vorticity of these vortices is much larger than that of
other atmospheric vortices without such a pronounced
three-dimensional structure, such as tornado vortices,
dust devils, and water tornado [4]. The homogeneously
spiral vortex regime is also observed at a sufficient dis-
tance from the underlying surface in experiments on
simulation of tornado-like vortices [5].

k
wcurl w( )

ω2
------------------------.=

H
wv( )
2

------------.=

Obukhov Institute of Atmospheric Physics,
Russian Academy of Sciences, Pyzhevskii per. 3, 
Moscow, 109017 Russia

* e-mail: schefranov@mail.ru
1028-3358/03/4812- $24.00 © 20696
At the same time, such flows are considered in many
works on general and geophysical hydrodynamics as
exotic and rare in nature (see, e.g., [6]). Gromeka–Bel-
trami flows are often not mentioned even when discuss-
ing the corresponding phenomena, such as inertial
waves in a rotating fluid, which are well known and
often discussed in hydrodynamics and particularly in
geophysical hydrodynamics [6]. Indeed, Batchelor [6]
did not even mention that these waves are a realization
of homogeneously curled vortex Gromeka–Beltrami
flows (as can be easily shown). Attitude to Gromeka–
Beltrami solutions began to change in the 1980s, when
numerical simulations showed that a turbulent flow
could contain regions of low energy dissipation, where
the tendency of the alignment of the velocity and vor-
ticity vectors is observed [7]. According to the general-
ization of the Helmholtz–Rayleigh theorem [2], inertia-
less flows, in particular Gromeka–Beltrami flows, are
characterized by the minimum rate of energy dissipa-
tion. However, only inhomogeneously spiral flows,
where k in the relation w = k(x)v is the coordinate func-
tion, were considered in [2].

In this work, we obtain modifications of the Helm-
holtz–Rayleigh theorem that correspond to the mini-
mum dissipation rates of the kinetic energy of a vortex
flow at fixed energy or fixed helicity and separate
homogeneously spiral vortex flows with k = const. In
addition, the Kelvin theorem [2, 6] on the minimization
of the kinetic energy of a potential flow is generalized
for the superposition of potential flows with homoge-
neously spiral vortex flows for the case, where the flow
vorticity is invariant and can be fixed in the correspond-
ing variational problem. Moreover, we revise the
known Arnold theorem [8] on the minimum kinetic
energy for vortex stationary solutions of the Euler equa-
tions. Previously, this theorem ignored the invariance of
vorticity for ideal fluid flows. Comparison with similar
theorems in magnetic hydrodynamics [9] is made. As is
shown, the statement that the energy dissipation rate in
a fluid flow with fixed integral vorticity  is minimal
for the Gromeka–Beltrami homogeneously spiral vor-
tex flows with k = const is similar to the statement that

H
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the energy of a magnetic field with invariant integral
vorticity is minimal for force-free fields.

2. GENERALIZATION 
OF THE KELVIN THEOREM 

ON THE ENERGY MINIMUM

2.1. We consider the variational isoperimetric
problem (more precisely, the more general Boltz prob-
lem [10]) of the minimization of the kinetic energy
functional

 

for an ideal incompressible fluid in the presence of the
differential constraint divv = 0 and the integral con-
straint associated with the total vorticity invariant

where ρ0 = const is the fluid density and V is the region
occupied by the fluid. It is assumed that the hydrody-
namic fields of velocity v and w = curlv are equal to
zero at the boundary of the region V. If these fields are
fixed by boundary conditions, we assume that the vari-
ations of these fields is equal to zero at the integration-
domain boundary S.1 The functional that must be varied
has the form

(1)

where µ1 and µ2 are the Lagrange multipliers.
Substituting v = v0 + v1 , where v1 is the low velocity

variation, into Eq. (1), equating the first variation of the
functional F to zero, and assuming that

,

we arrive at the system

(2)

where the subscript 0 is omitted in v0 and  is the
kinetic energy for gradµ2 = 0 on the surface S and can
parametrically depend on µ1 (see the example in the

1 It is actually sufficient to assume that the corresponding integrals
over the surface bounding the fluid region V—including V → ∞—
are equal to zero.

T ρ0 d3

V
∫ x

v2

2
-----=

H
ρ0

2
----- d3

V

∫ x wv( ),=

F d3

V

∫ x ρ0
v 2

2
------

µ1ρ0

2
----------- v curlv⋅( ) µ2 x( )divv+ + ,=

FS d

S

∫ s j µ2v 1 j µ1

ρ0

2
-----ε jikv 0iv 1k– 0 ):= =

v µ1curlv+ gradµ2, ∆µ2 0, µ1
T̃

H0

------,–= = =

T̃
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next section). This system corresponds to the constraint
equations and corresponding Euler–Ostrogradsky
equations for µ1 = const and  =  = const.

System (2) with µ1 = 0 provides the Kelvin theo-
rem [2, 6] on the minimum of the flow kinetic energy,
which is reached for potential irrotational velocity
fields. In this case, µ2 in Eqs. (2) satisfies the Laplace
equation for a flow of the incompressible fluid in the
region V. At the same time, the inclusion of the invari-
ance of the total vorticity of the flow  for µ1 ≠ 0 mod-
ifies the Kelvin theorem. In this case, the minimum of
the kinetic energy can be reached either for homoge-
neous Gromeka–Beltrami flows (for µ2 = 0 or
gradµ2 = 0) or for any superposition of such flows with
a certain potential flow (for gradµ2 ≠ 0) in the form

 (3)

where  = const because µ1 = const in Eqs. (2).

Explicit expressions for  will be represented in the
next section. The representation of v in the form of the
superposition of potential and vortex fields is truly used
in hydrodynamics [2, 6].

The generalization obtained for the Kelvin theorem
agrees with the Arnold theorem [8] on the minimization
of the kinetic energy of an ideal incompressible fluid
for stationary vortex solutions of the Euler equations.
Moreover, the generalization refines this theorem.
Homogeneous vortex Gromeka–Beltrami flows are
particular solutions of the time-independent hydrody-
namic equations. At the same time, energy minimiza-
tion is realizable for homogeneously spiral vortex flows
of the Gromeka–Beltrami type, when the conditions of
the Arnold theorem must be supplemented by the inev-
itable invariance of the total vorticity of a flow of the
ideal incompressible fluid. According to the reciprocity
principle [10], the generalization of the Kelvin theo-
rem, which is derived on the basis of the above modi-
fied isoperimetric problem, makes it possible to deter-
mine the possibility of reaching the maximum total vor-
ticity at fixed energy for homogeneous vortex flows (3)
satisfying Eqs. (2). This conclusion justifies the corre-
sponding statement presented without proof in [3] and
agrees with the observed properties of turbulent coher-
ent structures, when a fluid flow includes individual
“spots” with maximum vorticity that are surrounded by
regions with relatively high dissipation of turbulence
energy [7, 11].

2.2. The field  corresponding to Eqs. (2) and (3)
can be represented in the cylindrical coordinates as [1]

where J0 and J1 are the zeroth and first-order Bessel
functions, respectively. This solution can describe a tor-

H H0

H

v ∇µ 2 ṽ, curlṽ+ kṽ, divṽ 0,= = =

k
1
µ1
-----–=

ṽ

ṽ

ṽ z BJ0 kr( ), ṽ ϕ BJ1 kr( ), ṽ r 0,= = =



698 A. S. CHEFRANOV, S. G. CHEFRANOV
nado-like spiral vortex localized in the cylindrical

region of radius R for  =  = 0 if kR = γ1n ,

where γ1n, n = 1, 2, … are the zeros of the Bessel func-

tion J1 . For µ2 = 0, the quantity  in Eqs. (2) can be
determined as

if this cylindrical vortex is limited by the vertical scale L.
In this case, the corresponding discrete µ1 values
allowed by the variational principle can be estimated
from Eqs. (2), where  is fixed by the constraint. The
discrete allowable values of the vortex radius R = Rn is
determined by the expression

. (4)

It is the relation between geometric and dynamic
parameters of this cylindrical vortex, which has non-
trivial stable topological structure (particularly for
n > 1) due to the finite vorticity corresponding to the
invariant topological charge. Since L ∼  R for observed
tornado-like vortices [4], expression (4) provides the
following estimate for discrete values of the scale-
invariant similarity criterion corresponding to these
vortices [12]:

(5)

where  and  In [12], the possibil-

ity of discretization of the similarity criterion Π was
also noted for homogeneously spiral flows. However,
this discretization was determined only by the possibil-
ity of an integer ratio of the total height of the vortex to
the height step of the spiral of this vortex [3]. At the
same time, formula (5) yields the sequence Π1 ≈ 3.08,
Π2 ≈ 3.012, Π3 ≈ 0.266, Π4 ≈ 0.323, etc., that is, in con-
trast to [12], nonmonotonic in n. The nontrivial topo-
logical features of the homogeneously spiral cylindrical
tornado-like vortex corresponding to the exact solution
of the hydrodynamic equations are taken into account
in formula (5) more precisely than in [12]. We empha-
size that the value Π ≈ 3 obtained for the similarity cri-
terion agrees well with the criterion value correspond-
ing to the experimental tornado model [13]. According
to the parameters of tornado and tornado-like vortices
observed in nature [4], Π can range from 0.2 to 20.

ṽ ϕ
d ṽ z

dr
---------

r R=

T̃

T̃
πρ0

2
---------LB2R2J0

2 γln( ),=

H0

Rn
2H0

πρ0LB2γ1nJ0
2 γ1n( )

--------------------------------------------, n 1 2 …, ,= =

Π Π n

Hv Rn

B2
-------------, Πn

1
2
---γ1nJ0

2 γ1n( ),= = =

n 1 2 …,, ,=

Hv
H0

ρ0Vn

-----------≡ Vn πRn
3.=
3. EXTREMA 
OF THE ENERGY DISSOCIATION RATE

The time-independent equations of magnetic hydro-
dynamics are mathematically similar to the correspond-
ing equations for an ideal incompressible fluid [11]. It
is of interest to compare the variational principles
determining the limiting steady structure for both mag-
netic and hydrodynamic fields. In particular, the above
generalization of the Kelvin variational principle is for-
mulated similarly to the known magnetohydrodynamic
theorem on the minimum energy

of a magnetic field with allowance for the invariance of
the corresponding integral vorticity

of this field for force-free fields, whose vector h =
curlA is collinear to the current field vector j [9]. In
addition, there is a certain analogue between force-free
fields and Gromeka–Beltrami flows, where the velocity
field v and vortex field w correspond to the h and j
fields, respectively [11].

However, there is a fundamental difference between
this variational principle and the above generalization
of the Kelvin theorem. Indeed, an analogue of the S
invariant is absent in hydrodynamics if correspondence
is established between the v and h fields, as is usually
the case [11]. Only the integral vorticity  rather than

, where v = curla, is invariant in hydrody-

namics. At the same time, if correspondence is estab-
lished between v and vector potential A instead of h,
the energy dissipation integral

rather than the energy of the flow corresponds to the
quantity E. In this case, the integral vorticity

corresponds to the quantity S. However, the integral
vorticity is not an invariant of motion of a viscous fluid
for ν ≠ 0, where ν is the kinematic viscosity. The energy
integral T of motion of the fluid also is not an invariant
for ν ≠ 0. Therefore, the results of the preceding section
for the three-dimensional dynamics of the ideal incom-
pressible fluid are not directly similar to the outwardly
resembling theorem of magnetic hydrodynamics.

At the same time, the variational problem of the
extremum energy dissipation rate for a viscous incom-

E
1

8π
------ d3xh2∫=

S d3x Ah( )∫=

H

ξ d3xva∫=

I νρ0 d3x curlv( )2∫=

H
ρ0

2
----- d3x vcurlv( )∫=
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pressible fluid under some integral constraints can be
considered. Let us consider the problem of the mini-
mum functional I determining the average energy dissi-
pation rate in the fluid among all solenoidal velocity
fields with the same vorticity  and energy T. The
functional corresponding to this problem has the form

(6)

where η = vρ0 is the dynamic viscosity.

In particular, for λ2 = λ3 = 0, the variational problem
for F1 exactly corresponds to the problem of the extre-
mum energy of the magnetic field with fixed vorticity [9].
In this case, the field of the vector potential A in [9] cor-
responds to the v field in Eq. (6). For λ2 ≠ 0 and λ3 ≠ 0,
equating the first variation of functional (6) to zero and
assuming that

we arrive at the relation

(7)

where  (i = 1, 2, 3), the expressions for  and

 are obtained from the constraints T = T1 = const and

 = H1 = const, A = , B = 

if ∇λ 3 = 0 on the surface S. Since ca ≥ b2 and Ba ≥ A2

according to the Cauchy–Schwarz inequality,  = 0.

For = 0, the velocity field in Eqs. (7) satisfies
Eqs. (2) and (3).

In particular, for λ3 = 0, any homogeneously spiral

vortex field w = kv for k =  automatically satisfies

the condition of zero surface integral F1S for any varia-

H

F1 d3x η curlv( )2

2
-------------------

λ1ρ0 vcurlv( )
2

--------------------------------+∫=

+
λ2ρ0v

2

2
----------------- λ3 x( )divv+ ,

F1S dsi λ3v 1i εijkv 1 j ηω0k

λ1ρ0

2
-----------v 0k+ 

 +

S

∫ 0 ):,= =

curlcurlv λ̃1curlv λ̃2v++ gradλ̃3,=

λ̃3∆ 0, λ̃2
ca b2–

Ba A2–
------------------- 

 
1/2

, λ̃1
Aλ̃2 b–

a
------------------,=±= =

λ̃ i
λ i

η
----= λ̃1

λ̃2

H
2H1

ρ0
----------–

2T1

ρ0
---------,

a d3xw2, b∫ d3x w curlw⋅( ),∫= =

and c d3x curlw( )2,∫=

Imλ̃2

λ̃2 λ̃3=

λ1

2ν
------–
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tion v1 , which corresponds to the natural boundary con-
ditions [14]. In this case, λ1 and λ2 have the form

because k = 

(8)

determined from the constraints rather than from
Eqs. (7), where ac = b2 and Ba = A2 for w = kv.

We emphasize that condition (7) at curlv +

v = 0 formally coincides with the criterion of the
minimum energy dissipation rate according to the gen-
eralization presented in [2] for the Helmholtz–Rayleigh
theorem. However, only inhomogeneously spiral vari-
ants of the vortex Gromeka–Beltrami flow can consis-

tently satisfy the condition –∆v = grad  in [2]. There-
fore, the indicated coincidence is not formal only for

 = –k ≠ const. At the same time,  =  = const

according to formulas (8).
Thus, the conclusions for the minimum dissipation

rate of the kinetic energy for steady homogeneously
spiral vortex flows modify the corresponding Helm-
holtz–Rayleigh theorem [2]. Moreover, these conclu-
sions agree with the principle of the minimum entropy
production under given external (boundary) conditions
for nonequilibrium steady states of various natural
objects [14, 15].

The results are obtained only by analyzing the first
variations of the functionals F and F1 . Strictly speak-
ing, these results determine only the necessary condi-
tions of the existence of the corresponding relative
extrema. To determine the type of extrema and stability
of solutions, it is necessary to analyze the signs of the
second variations of the functionals.
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Since the 1930s, especially after the assimilation of
industrial synthesis of a large number of thermoplastics
and rubbers, the scope of the use of polymer mixtures
is steadily expanding. The volume of production of
polymer mixtures increases annually by 7–10%. Poly-
mer mixtures are produced by various methods: by
mixing latices or water dispersions with the subsequent
coagulation and agitation, by mixing solutions of poly-
mers with the subsequent desiccation or precipitation,
by mixing polymers and oligomers with the subsequent
solidification of the oligomers, and by mixing polymers
at a temperature higher than a vitrification temperature
or a melting point. The last method is widely used in
industry.

The properties of polymer compositions are deter-
mined both by the properties of initial components and
by the phase structure of the mixture formed when mix-
ing according to the ratio of components and the disper-
sivity of phase formations.

Mathematical models of mixing two fluids were
proposed in [1–4]. This process was experimentally
studied in [5, 6]. Unfortunately, these models are poorly
detailed and, therefore, cannot be used in practice.

In this study, a mathematical model of the mutual
dispersion of polymers was developed so that it pro-
vides the calculation of the size of formations in the dis-
persion phase as a function of the known parameters of
the system.

FORMULATION OF THE PROBLEM

We consider a system of two immiscible liquids.
The total volume of the system and the volumes of the
components are assumed constant in the dispersive
mixing process. We study comminution of first compo-
nent formations in the dispersion phase. The second
component that is a viscoelastic fluid and serves as the
matrix for the dispersion component is called the dis-
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ul. Sadovnicheskaya 33, Moscow, 113806 Russia

* e-mail: vinokur@narod.ru
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persion medium. An obligatory condition for break-
down of formations is the presence of the velocity gra-
dient in the matrix.

In this study, we use the following designations: r is
the formation radius, N is the number of formations in
the dispersion phase, t is time, V is the volume of the
dispersion phase, V0 is the total volume of the composi-
tion, ϕ = V/V0 is the relative volume of the dispersion
phase, α is the coefficient characterizing the collision of
formations leading to coalescence, β is the dispersion
efficiency, σ is the interphase tension at the interface
between the dispersion formation and the matrix, E is
Young’s modulus of the dispersion phase, h is the
radius of the capture region,  is the shear rate for the
mixing machinery, τ is the shear stress, η is the viscos-
ity, ν is the relative velocity of formations, and κ is the
velocity gradient.

The model is based on the following assumptions:

(i) At every time t, the dispersion phase of the sys-
tem involves N(t) of perfectly spherical formations
with the same radius r(t).

(ii) The volume of the dispersion phase is constant
in the process:

(1)

(iii) Dispersion proceeds by dividing a spherical for-
mation of radius r into two spherical formations of

radius r/ .

(iv) Formations are dispersed due to the mechanical
work executed by the motor of the mixing machinery.
Only a fraction of this work is immediately expended to
dispersion. The energy consumption for dispersion is
determined from the formula Qd = βQf , where β ∈
[0; 1] is the model parameter and Qf  is the power
released in the melt volume due to internal friction. The
power Qf  is determined from the formula [7] Qf =
τ V0 . Therefore,

(2)

γ̇

V N
4
3
---πr3 const.= =

23

γ̇

Qd βτγ̇V0.=
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(v) Simultaneously with dispersion, the coalescence
of formations proceeds. This process is simulated by a
pair coalescence of two colliding formations of the
same radius into a single formation. Coalescence takes
place if the impact parameter h' < h, where h = α · 2r
and α ∈  [0; 1] is the coefficient determining the possi-
bility of formations coalescing in the collision (a sys-
tem parameter).

We consider the proposed model of comminution of
formations in the dispersion phase.

DYNAMICS OF COMMINUTION
OF FORMATIONS

The dispersion rate is estimated in the thermody-
namic approach; i.e., the rate dN/dt of increase in the
number of formations in the dispersion phase is
assumed to be determined by the formula

(3)

where e1 is the energy required for dividing the ball of

radius r into two balls of radius r/ . It is assumed that

(4)

where e1, E is the energy of deformation of a formation
and e1, σ is the energy of creation of a new surface.

Using Hooke’s law, we estimate the energy of defor-
mation of one formation by the expression

(5)

where Θ1 is the tuning coefficient, which is equal to 3/2
in the simplest case. The second term in formula (4) is
associated with the difference in the surface area of a
formation before and after the breakdown:

(6)

where Θ2 = 3(  – 1).
In view of Eqs. (2) and (4)–(6), expression (3) for

the rate of increase in the number of formations takes
the form

(7)

DYNAMICS OF FORMATION COALESCENCE

When the dispersion formations move in the matrix,
they can collide and, when the impact parameter h' < h,

dN
dt
-------

Qd

e1
------,=

23

e1 e1 E,= e1 σ,+ ,

e1 E, Θ1E
4
3
---πr3,⋅=

e1 σ, 2σ 4π r

23
------- 

  2
σ 4πr2⋅–⋅ Θ2σ 4πr2,⋅= =

23

dN
dt
-------

βτγ̇N

ϕ
Θ1

2
------E Θ2

σ
r
---+ 

 
-------------------------------------.=
coalesce. The dynamics of coalescence of dispersion
formations is determined by the regimes of motion of
the medium. In this study, we consider two types of
motion: plane-parallel and disordered flows of the
matrix.

PLANE-PARALLEL FLOW OF THE MATRIX

In the Cartesian coordinate system, each plane layer
z = const of the plane-parallel flow moves with a veloc-
ity ν = κz along the y axis. It is assumed that spherical
formations of the dispersion phase do not change their
shape when moving in the medium. In this case, the cal-
culation shows that the rate of coalescence-induced
decrease in the number of formations is

(8)

where Θ3 = 4α3/π.

DISORDERED FLOW OF THE MATRIX

The number of collisions between formations in the
disordered flow of the dispersion medium is calculated
similarly to the statistical calculation of the number of
collisions between molecules in an ideal gas. Under
these assumptions, the rate of coalescence-induced
decrease in the number of formations is equal to

(9)

where Θ4 = 3α2/2.

DYNAMICS EQUATIONS FOR THE RADIUS
OF DISPERSION FORMATIONS

The dynamics of formation size variation in the dis-
persion phase are described under the assumption that
two opposite processes—dispersion and coalescence—
proceed simultaneously. The overall rate of the process
is determined by the sum of their rates. From this view-
point, we consider two models of the dynamics of for-
mation size variation in the dispersion phase, namely,
plane-parallel and disordered flows of polymer melt.

According to aforementioned formulas (7) and (8),
the rate of change in the number of formations in the
plane-parallel flow is determined by the expression

(10)

where Θ5 = Θ1.

dN
dt
------- Θ3κϕ N ,–=

dN
dt
------- Θ4

ϕνN
r

-----------,–=

dN
dt
------- βτγ̇

ϕ Θ5E Θ2
σ
r
---+ 

 
------------------------------------- Θ3κϕ–

 
 
 
 
 

N ,=

3
2
---
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Combining formulas (7) and (9) for the dynamics of
change in the number of formations in the disordered
flow, we obtain the expression

(11)

According to assumption (1) that the volume of the
dispersion phase is constant, the number of formations
N is a function of the radius:

(12)

Relation (12) makes it possible to pass from differential
equations (10) and (11) to the corresponding differen-
tial equations for the radius r as a time function. After
substitution (12), differential equation (10) reduces to
the differential equation

(13)

where

Thus, we obtain the basic differential equation (13)
describing the dynamics of the radius of formations in
the dispersion phase in the plane-parallel flow.

Using the same substitution, we transform Eq. (11)
for the disordered flow to the form

(14)

where a =  and q = .

Both differential equations (13) and (14) have a sin-
gle stable rest point r = r∞ at the positive semiaxis r > 0.
An arbitrary trajectory is attracted to this point for
t → +∞.

For the plane-parallel flow of the matrix,

(15)

dN
dt
------- βτγ̇

ϕ Θ5E Θ2
σ
r
---+ 

 
------------------------------------- Θ4

ϕν
r

-------–

 
 
 
 
 

N .=

N
3V
4π
------- 1

r3
----.⋅=

dr
dt
----- r

rb1 c1–
rb c+

------------------,–=

b Θ5E, c Θ2σ, b1
1
3
--- βτγ̇

ϕ
--------- Θ3Θ5Eκϕ– 

  ,= = =

and c1
1
3
---Θ2Θ3σκϕ .=

dr
dt
-----

r2a rbq– qc–
rb c+

----------------------------------,–=

βτγ̇
3ϕ
--------- 1

3
---Θ4ϕν

r∞
4α3ϕ2κσ

πβτγ̇ 6α3ϕ2κE–
------------------------------------------.=
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For the disordered flow,

(16)

DISCUSSION

The suitability of the models of calculating the ulti-
mate size of formations in the dispersion phase was
tested by comparing the calculated values with the
measured sizes of formations in the dispersion phase in
the microphotographs of polymer mixtures. The figure
exemplifies the electron microphotograph of a polymer
mixture of plasticized polyvinylchloride and butadiene
acrylonitrile rubber obtained under the following tech-
nological conditions: T = 185°C, ϕ = 0.2, and  =
120 s–1. The size of formations in the dispersion phase
ranges from 1 × 10–6 to 2 × 10–6 m.

For these parameters, formulas (15) and (16) yields
the ultimate formation radius r∞ = 2 × 10–13 and 7.1 ×
10–7 m, respectively. Thus, formula (15) is unsuitable
for estimating the sizes of formations in the dispersion
phase, while formula (16) is in good agreement with the
experimental results.

An advantage of the proposed model over the pre-
ceding ones [1–4] is the concrete analysis of the factors
determining dispersive mixing. This analysis allows
both control over this process and prediction of the for-

r∞
9α2ϕ2νE 9α2ϕ2νE( )2

96α2βϕ2νγ̇σ++
8βτγ̇

------------------------------------------------------------------------------------------------------.=

γ̇

1 µm

Electron microphotograph of the plasticized composition of
polyvinylchloride and butadiene acrylonitrile rubber.
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mation sizes in the dispersion phase, the structure of
this phase, and, thus, the consumption characteristics of
polymer systems.
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Newton’s laws are nonlinearly generalized so that
the “strange” motion of Tolchin’s inertoids, which is
not explained by classical mechanics, can be explained
and predicted.

In the mid-1930s, Tolchin [1] designed a simple
mechanism, which he called an inertoid, which moved
due to a periodic change in its internal momentum.
Since that time, numerous experiments were carried out
with such mechanisms at various laboratories in differ-
ent countries over nearly 70 years. All criticism of these
experiments has been unfounded because all possible
effects of friction, aerodynamics, etc., are weaker than
the observed effect of the motion of an inertoid, by a
factor from the range 0.001–0.1. The motion of these
mechanisms has not yet been explained in the frame-
work of classical (or Einsteinian) mechanics. Tolchin
attempted to intuitively explain this motion by the
action of “tangential inertial forces” [1, p. 87]. How-
ever, this explanation is empty. It is more realistic to
assume that all known theories of motion (Newtonian,
Einsteinian, Shipov’s [2], etc.) are too “linearized” to
take into account the features of the motion of inertoids.
Their motion can be satisfactorily described only in a
substantially nonlinear simple “extended” Newtonian
model [3].

In this work, we extend this model and show that it
can explain center-of-mass motion that is pronounced
in numerous experiments with a Tolchin inertoid
(“four-dimensional” gyroscope) [1] and is due to
proper control over the momentum. Moreover, the
parameters of the inertoid can be optimized in agree-
ment with experimental results. Thus, mechanisms
moving in vacuum and in any medium without both
loss of their mass and any active contact with the envi-
ronment can be designed and optimized.

Proposing the most general available mathematical
model of the world, Shipov [2] attempted to prove that
the center-of-mass motion of an isolated mechanical
system under the action of controllable internal rota-

Moscow State University, 
Vorob’evy gory, Moscow, 119992 Russia
1028-3358/03/4812- $24.00 © 20705
tions could be described by “torsion interaction” the-
ory. Shipov wrote [2, p. 191], “The torsion conservation
law is the practical conclusion that exchange between
the momentum and angular momentum can change the
momentum of the center of mass of an isolated mechan-
ical system.” However, this statement has not been
proven by Shipov and cannot be corroborated in the
framework of his “overly linearized” model.

Shipov’s theory, which undoubtedly provides more
extended representation of both vacuum as an “accumu-
lator” of all existing things and inertial forces, explains
many ununderstandable phenomena. However, the aim
of this theory was the explanation of center-of-mass
motion due to internal forces. This aim has not been
achieved despite the substantial extension (compared to
classical mechanics) of the role of inertial forces. Shipov
wrote about inertial forces [2, pp. 195–196],

“(i) They are generated by the inertial fields  and
enter into both translational

(3.161)

and rotational

(3.162)

equations of motion;

(ii) inertial fields  are determined by the torsion
of absolute parallelism geometry

which characterizes the elastic properties of space and
is local;

(iii) being of vacuum nature, inertial forces can be
treated neither as internal nor as external for any iso-
lated system.”

Shipov wrote [2, p. 197], “new concept of inertial
fields and forces make it possible to go beyond the
scope of some theorems of classical mechanics. In par-
ticular, it is the conservation theorem for the center-of-
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mass momentum of an isolated mechanical system.
According to this theorem, internal forces cannot
change the center-of-mass momentum of an isolated
mechanical system. The theorem was proved under the
following conditions [4]: internal forces satisfy New-
ton’s third law and internal forces are forces that act in
the internal volume bounded by the isolated-system
walls.”

In his attempts to explain the Tolchin effect, Shipov

emphasizes that the inertial field (tensor ) appears in
his equations of torsion mechanics for both transla-
tional and rotational motions. However, the motion of
an inertoid can hardly be explained by taking into
account only the second derivatives. Explanation
should be sought in a certain nonlinear theory of
motion, such as the extended Newton’s law [3] or, in a
more complete form, generalized Newton’s law (1) pro-
posed below. The applicability of this law is corrobo-
rated at least implicitly, because it explains the center-
of-mass motion of Tolchin’s inertoids, which had
remained unexplained for nearly 70 years, and provides
the possibility of optimizing the parameters of this
mechanism.

We consider dynamic systems where only gravita-
tional and inertial forces, as well as forces which we
call forces of the coupling of a body with vacuum, are
manifested. In addition, we assume that the total force
F acting on the body with mass m is expandable in a
Taylor series whose terms are not all equal to zero
simultaneously. Thus, the equation of motion takes the
form

(1)

where r(i) is the ith time derivative of the radius vector
in a certain coordinate system and F0 and Ki are dimen-

T jk
i

F0 Kir
i( )

i 0=

∞

∑+ 0,=

y

x
F'

0

eθ

F

er

m2

G

θ0

E

m1
r

G'

E'

Figure.
sional coefficients, which can depend on the configura-
tion properties of the body and space.

Series (1) extends a similar series from [3] by
including the three following terms: the term F0 deter-
mining the coupling of the body with vacuum, the term
K0r responsible for the gravitational force, and the term

, which is related to the momentum for K1 = m.

Different terms in Eq. (1) are nonzero in dependence on
the shape of the body, the character of the motion of
masses in it, and external (gravitational) fields.

We consider the motion of an inertoid in the polar
coordinate system whose unit vectors are shown in the
figure. In this coordinate system, the position of a mate-
rial point is specified by the radius vector r = rEr and
angle θ measured in the (x, y) plane from the x axis
(0 ≤ θ ≤ 2π). Successive derivatives of the radius vector
are given by the expressions

(2)

(3)

(4)

(5)

The simplest Tolchin’s inertoid [1] is a mechanical
system consisting of two identical masses m1 = m2 = m
that rotate about the O axis in the opposite directions
and are located at the ends of inelastic rods whose
momentum changes periodically for a short time (by
means of an electromotor and a brake) during each rota-
tion period.

The figure illustrates the simplified mathematical
model of an inertoid. According to experiments with
inertoids [1, 2], the pulsed displacement of its center of
mass O along the x axis in the second half-period of
mass rotation is opposite to that in the half-period. The
displacement of the center of mass in one direction is
much larger than that in the opposite direction so that
center-of-mass motion over many periods is transla-
tional. This motion occurs due to the specific control of
its momentum. For convenience of calculations, we
consider masses m1 and m2 as unit masses.

When the first and second masses rotating in oppo-
site directions reach the points E and G (figure) where
they have the same circular velocity |v 0|, these masses
begin to be accelerated with a constant acceleration

|r | = a > 0 until they meet at point F with the identical
velocity |v 1| > |v 0|. Further, moving by inertia along the

K1
dr
dt
------

ṙ ṙer rθ̇eθ,+=

ṙ̇ ṙ̇ rθ̇2
–( )er r θ̇̇ 2ṙθ̇+( )eθ,+=

r 3( ) r 3( ) 3ṙθ̇2
– 3rθ̇θ̇̇–( )er=

+ 3 ṙ̇θ̇ rθ 3( ) rθ̇3
–+( 3ṙ θ̇̇+ )eθ,

r 4( ) rθ̇4
r 4( ) 6 ṙ̇θ̇2

12ṙθ̇θ̇̇ 3r θ̇̇2
–––+(=

– 4rθ̇θ 3( ) )er rθ 4( ) 4r 3( )θ̇ 6 ṙ̇ θ̇̇ 4ṙθ̇3
–+ +(+

+ 4ṙθ 3( ) 6rθ̇2 θ̇̇ )eθ.–

θ̇̇
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arcs GE' and EG', they reach points E' and G', respec-
tively, at a certain time. At this time, the brake is turned
on and provides a constant negative acceleration with
the same absolute value as that under acceleration. Both
masses have the same circular velocity |v 0| when they
meet at the point F'. Then, they move by inertia along
the arcs G'E and E'G with the circular velocity |v 0| to
points E and G, respectively. Afterwards, the described
process repeats anew.

Below, we will show that the center of mass of the
model under consideration cannot move in the frame-
work of classical mechanics, but such motion is
allowed by generalized Newton’s law (1). Moreover,
the parameters of the inertoid can be optimized for any
physical constants of this law, and the conclusions
agree with experimental results.

First, we calculate change in the x projection of the
angular momentum of the rotating masses and check if
it is equal to zero. To calculate the x projection of the

inertia force  = –r 2er + r eθ, we express the unit vec-
tors er and eθ of the polar coordinate system shown in
the figure in terms of the unit vectors ex and ey of the
Cartesian coordinate system:

Therefore, the x projection of the vector  has the

form F2 = –r cosθ – r sinθ, and the x projection of
the momentum changes during time interval (0, t) by
the value

(6)

First, this integral is calculated for the first mass in
its acceleration section EF with the preliminary calcu-
lation of auxiliary quantities. Integrating the constant

acceleration r  > 0 of the first mass in its acceleration
section EF in the time interval (0, t1), i.e., from the
angle θ = –θ0 to the angle θ = 0 reached at t = t1 , we
obtain

(7)

where  > 0 and θ0 < 0 (angle θ0 corresponds to the
point E in the figure). Therefore,

ṙ̇ θ̇ θ̇̇
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ex θ ey θsin+cos( ) r θ̇̇ ex θsin–(+=
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where the first mass rotating counterclockwise has a

velocity v 0 = r at the point E. The circular velocity
of the first mass in the section EF is equal to

where A is introduced for further reduction of notation.
The velocity at point F is equal to

In view of the above relations, integral (6) over the
section EF of the motion of the first mass is obviously
calculated as

(8)

where one of the integrals is calculated by parts. Thus,
change in the x projection of the momentum of the first

mass in the section EF is equal to  = v 0sinθ0, where
θ0 < 0. Since the opposing motion of the second mass
over the section GF is the mirror image of the motion
of the first mass about the x axis, we immediately obtain

 = v 0sinθ0 for the second mass.

We now calculate the deceleration motion of the
second mass over the arc G'F' with the preliminary inte-

gration of the constant acceleration (deceleration) r  =
a, where a > 0 because opposing motion is considered.

We obtain r  = at – v 1, where v 1 > 0 because the veloc-
ity –v 1 corresponds to opposing motion (to the θ angle
direction accepted in the figure). Recall that v 1 is the
velocity of the second mass in the section EG' of its free
motion from point F (where its acceleration to velocity
v 1 finishes) to point G'. In addition, we obtain

where the symbol B is introduced to simplify further
calculations. For convenience of calculations, motion
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over the arc G'F' is considered to occur in the time inter-

val (0, t1), where t1 = (v 1 – ). In view of

the above notation and calculations, the integral  is

calculated similarly to the integral  and is equal to

 = –v 1sinθ0.

Taking into account that the opposing motion of the
first mass over the (deceleration) arc E'F' is the mirror
image of the motion of the first mass about the x axis,

we obtain  = –v1sinθ0 for the first mass. As is easily
calculated and immediately follows from similar calcu-
lations in [3], the free motion of both masses in the sec-
tion E'G and EG' does not change the x projection of the
momentum.

For the free motion of the first mass in the section FG,

and, therefore,

Thus,  = v 1sinθ0. Similar calculations in the section

F'G' of the free motion of the first mass give  =

−v 0sinθ0 and, therefore,  = −v 0sinθ0. Thus, the
total change in the x projection of the momentum of the
inertoid is equal to zero in classical mechanics. There-
fore, according to classical mechanics, the Tolchin’s
inertoid cannot move (without the reactive force).

Now, we carry out calculations by using generalized
Newton’s law (1) and expression (4) for the third deriv-
ative r(3) of the radius vector r: 

For r = const and  = const, Eq. (4) yields

The third derivative determines the rate of varying
the force (acceleration) and can be a “driving force,” the
more so that the dimension of the “momentum” of this
driving force coincides with the force dimension.

The x projection of the vector r(3) is equal to

1
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and integral (6) of this projection is equal to

where A =  + 2ar(θ – θ0).

Taking into account that the opposing motion of the
second mass over the (deceleration) arc E'F' is the mir-
ror image of the motion of the first mass about the

x axis, we obtain  = .

The integral  determining the motion of the
second mass in its deceleration section G'F' is equal to

where B =  + 2ar(θ – π).

In view of the same symmetry with respect to the x

axis,  = .

For the free motion of both the first mass in the sec-
tion FG and the second mass in the section FE,

For the free motion of both the first mass in the section
F'G' and the second mass in the section F'E ',

Since the total value of the integral J for both masses
in the sections GE' and G'E is equal to zero, the total
integral J3 determining the center-of-mass motion of
the inertoid per one period of the rotation of masses is
equal to

(9)
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Therefore, the acceleration |a| has the determining
importance for the velocity of the center of mass of
inertoids (this velocity increases with the acceleration).
In addition, equating the partial derivative to zero, we

arrive at the relation  =  from which the opti-

mum value  = 56.5° is obtained. This value can be
corrected by including higher derivatives of the radius
vector r.

A similar calculation of the “action” of the x projec-
tion of the fourth derivative provides

(10)

Thus, with the inclusion of unknown coefficients K3
and K4 in law (1), we obtain

(11)

Since coefficients in law (1) are unknown (they can
depend on dynamics), the parametric optimization of
expressions (11) is difficult and is not carried out.

Any theory of the motion of inertoids is absent (only
filming of motion has been carried out [2]). Therefore,
the effect of parameters on their motion has not yet
been studied. Comparison of the motion of several vari-
ants of inertoids only showed that their velocity is max-
imal for relatively small angles |θ0| ≈ 30°. Now, iner-
toids and possibly other constructions (e.g., proposed
in [3, 5]) can be purposefully designed to ensure the
maximum velocity of their centers of mass due to inter-
nal forces without any reaction forces. Thus, even with-
out knowledge of its physical parameters, the general-
ized Newton’s law makes it possible not only to explain
the motion of inertoids, which was not explained for
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nearly 70 years, but also to optimize the parameters of
their motion.

In conclusion, we note that the centers of mass of
constructions with asymmetric rotations (such as those
considered in [3, 5]) must move continuously accord-
ing to the generalized Newton’s law (rather than by for-
ward–backward jumps, which are characteristic for
Tolchin’s inertoids). This is their advantage over
Tolchin’s inertoids. Moreover, the center of mass of
conic constructions can be accelerated due not only to
higher derivatives, but also to interaction with vacuum
(through the term F0 in the law of motion given by
Eq. (1)) if these constructions rotate fast enough to
eliminate their coupling with vacuum [5].
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Interest in dissipation in inhomogeneous fluids is
stimulated by the search for mechanisms of formation
of the fine structure of both the ocean and the atmo-
sphere and by the necessity of development of methods
for calculating linear and nonlinear waves as well as
concomitant boundary layer flows. Singular compo-
nents of the complete solutions are of increasing inter-
est due to the use of microscopic electromechanical
systems as well as micro- and nanotechnologies in con-
trol systems of power-intensive devices. The internal
structure of boundary layers depends on the dimension-
ality of the space of the problem. Two different bound-
ary layers can exist in a three-dimensional periodic flow
in a stratified viscous medium [1]. One of them is an
analogue of the periodic Stokes flow [2]. Its thickness
is determined by the wave frequency and kinematic vis-
cosity of the medium. The thickness of the other inner-
boundary layer, which is specific for a stratified
medium, depends on the Stokes scale and the geometry
of the problem (slope of waves and radiating surfaces)
[3]. Since the equations of motion are nonlinear, large-
scale (regular) and small-scale (singular) elements
interact with each other and with other flow compo-
nents. Owing to this circumstance, the number of the
mechanisms of excitation of internal waves increases,
and a range of conditions under which this effect occurs
extends [4].

Inclusion of diffusion increases both the order of the
governing system of equations and the number of forms
of periodic motions, which complicates analysis of the
problem. In this work, the complete solution to the lin-
earized problem of generation of three-dimensional
internal waves with allowance for viscosity and diffu-
sion has been constructed for the first time. A procedure
of constructing solutions to multiscale singularly per-
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turbed equations depends on the ratio between the kine-
matic viscosity ν and the salt diffusion coefficient D.
For this reason, we analyze only the case of large values

of the Schmidt number Sc = , which are typical for

both aqueous solutions of metal salts and seawater.
We consider an exponentially stratified fluid whose

density decreases with the height z as

where Λ is the buoyancy scale, the direction of the z
axis is opposite to the gravitational acceleration g, and

N =  =  is the buoyancy frequency (Tb is the

buoyancy period).
In the Boussinesq approximation that allows for the

diffusion of the stratifying component, the linearized
system of the equations of motion of a viscous incom-
pressible fluid has the form

(1)

Here, P, σ, and u are perturbations of pressure, of
salinity, and of fluid velocity, respectively, which are
assumed to be constant, and ez is the unit vector of the
z axis. In the linearized equation of the state which
relates the density and the stratifying impurity (salin-
ity), the coefficient of saline contraction is included in
the figure of salinity perturbation.

Taking into account the symmetry of three-dimen-
sional internal waves, we chose a part of a vertical cyl-
inder with the height a and radius R as a source of peri-
odic perturbations. It performs either vertical vibrations
or torsional vibrations about the z axis. The time factor

ν
D
----

ρ0 z( ) ρ00
z
Λ
----– 

  ;exp=

g
Λ
----

2π
Tb
------

ρ0
∂u
∂t
------ ∇ P– νρ0∆u σgez,–+=

∂σ
∂t
------

uz

Λ
----– D∆σ, ∇ u⋅ 0.= =
003 MAIK “Nauka/Interperiodica”
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e–iωt will be omitted below. The nonslip and imperme-
ability boundary conditions for the velocity and sub-
stance, respectively, on the radiating surface and the
condition of damping of all perturbations at infinity
have the form

(2)

The equations

(3)

for the components Ψ and Φ of the toroidal–poloidal
representation of the velocity u = ∇ × (ezΨ) + ∇ × ∇ ×
(ezΦ) [5] follow from Eqs. (1). Here, ∆ is the total
Laplacian and

is the horizontal Laplacian. The equation for the salin-
ity perturbation σ coincides with the equation for
the potential Φ, while the condition of zero divergence
∇  · u = 0 is automatically satisfied.

Since source motion is axially symmetric, a solution
to Eqs. (3) is sought in the form of the following expan-
sion in plane waves:

(4)

where  is the Hankel function of the first kind. The
wavenumbers kw, kν, kD, κν, and κD found from the solu-

ur r R=
0, uϕ r R=

Uϕ ϕ z,( ),==

uz r R=
Uz ϕ z,( ), D

∂σ
∂r
------

r R=

0,= =

P ur uϕ uz σ
r ∞ z ∞±→,→ 0.→, , , ,

ω iD∆–( ) ω iν∆–( )∆ N2∆⊥–[ ]Φ 0,=

ω iν∆–( )Ψ 0,=

∆⊥
1
r
--- ∂

∂r
----- r

∂
∂r
----- 

  1

r2
---- ∂2

∂ϕ2
---------+=

Ψ E k( )H0
1( ) κνr( )eikz k,d

∞–

+∞

∫=

Φ A k( )H0
1( ) kwr( ) B k( )H0

1( ) kνr( )+(
∞–

+∞

∫=

+ C k( )H0
1( ) kDr( ) )eikz k,d

σ 1
DΛ
--------

A k( )kw
2

kw
2 κ D

2–
-----------------H0

1( ) kwr( )




∞–

+∞

∫=

+
B k( )kν

2

kν
2 κ D

2–
-----------------H0

1( ) kνr( )
C k( )kD

2

kD
2 κ D

2–
------------------H0

1( ) kDr( )+




eikzdk,

H0
1( )
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tion to the dispersion equation obtained after the substi-
tution of solution (4) into system (3) have the form

(5)

The roots κν and κD are chosen so that perturbations
are damped at infinity (Imκν, ImκD > 0) and waves
exist (i.e., the upper and lower signs are taken in the kν
expression for ω ≤ N and ω ≥ N, respectively). If the
generator frequency ω exceeds the buoyancy fre-
quency N, then

(6)

and waves are not emitted in the linear approximation.
Instead, a region where the wave component of the
periodic motion is exponentially damped is formed
near the source. For a spectral component with the
wavenumber k, the width of this region is equal to δw =

|k|–1 .

The spectral amplitudes A, B, C, and D are found
from the system of algebraic equations obtained after
the substitution of solution (4) into boundary condi-
tions (2). For large Schmidt numbers, the awkward
solution of this system reduces to the simple form

(7)

where

(8)

are the spectral amplitudes of the vibration velocity of
the radiating surface.

kw = k θ i
ν D+

2N θcos
2

---------------------- k 3,+tan

kν = 1 i++−( ) N
Ω
---- θ,cos

kD
1 i+

2
---------- NΩ

Dν
---------, κν

2 iω
ν

------ k2, κ D
2– iω

D
------ k2,–= = =

Ω ν D+( ) θsin ν D–( )2 θsin
2

4νD+ ,+=

θ ω
N
----.arcsin=

kw
k

ω2 N2–
---------------------- iω ν D+

2N ω2 N2–( )2
---------------------------------k2+ 

 =

1 N2

ω2
------–

A k( )
H1

1( ) kνR( )Uz k( )

kνkwH0
1( ) kνR( )H1

1( ) kwR( )
--------------------------------------------------------, B k( )

Uz k( )
kν

2H0
1( ) kνR( )

---------------------------,≈–≈

C k( )
k2kνH1

1( )
kνR( )Uz k( )

Rκνκ D
2 kD

3 H0
1( )kνR( )H1

1( ) kDR( )
---------------------------------------------------------------, D k( )

Uϕ k( )
κνH1

1( ) κνR( )
---------------------------,≈≈

Uz k( ) 1
2π
------ Uz z( )e ikz– k,d

∞–

+∞

∫=

Uϕ k( ) 1
2π
------ Uϕ z( )e ikz– kd

∞–

+∞

∫=
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The term containing the spectral density A(k) in the
solution given by Eqs. (4) and (7) describes outgoing
internal waves, while the terms with B(k), C(k), and D(k)
describe a family of boundary layers on the radiator
surface. The term D(k) determines a viscous wave

boundary layer of thickness δω = , which also

exists in a homogeneous fluid [6], while the expressions
with B(k) and C(k) give inner wave boundary layers of
a mixed type, which have the transverse scales

(9)

Here, the inequality λν ≥ λD is satisfied for any ratio
between the kinematic coefficients ν and D, where
equality is achieved at ν = D. In the case under consid-
eration (ν @ D), the leading terms of expansions of λν

and λD in the small parameter  coincide with the

scales corresponding to the wavenumbers κν and
κD; i.e.,

(10)

and fields of velocity and density split partially.

The vertical cylinder does not violate the condition
of stability of the initial density distribution. Therefore,

relations (4) do not contain the E(k) (κDr) terms
characterizing the diffusion-induced unsteady flow,
where the scales of variations in the density and veloc-
ity are quite different [7]. If the radiating surface is
inclined, a density wave boundary layer of thickness

λs =  =  is also formed and additional terms

appear in integral relations (4).

Salinity, as well as vertical and radial velocity com-
ponents, are unperturbed by the torsional vibrations of
the radiating surface. In this case, the viscous periodic
boundary layer is formed:

(11)

but waves are not radiated in the linear approximation.

If the source radius is much larger than the charac-
teristic scale of the formed boundary layer (|κνR|,

2ν
ω
------

λν = 
λ

θcos
------------, λD = 

2δνδD

λ
--------------, δν = ν

N
----, δD = D

N
----,

λ δν
2 δD

2+( ) θsin δν
2 δD

2–( ) θsin
2

4δν
2δD

2++ .=

D
ν
----

λν
2ν
ω
------, λD

2D
ω

-------≈≈

H0
1( )

1
Imκ D

------------- 2D
ω

-------

uϕ
Uϕ

π
-------

ak
2

------sin

k
--------------

H1
1( ) κνr( )

H1
1( ) κνR( )

------------------------eikz k,d

∞–

+∞

∫–≈
|κνr| @ 1), then, in the low-viscosity approximation

 ! 1 , relation (11) reduces to the form

(12)

where

(13)

According to Eq. (13), the flow intensity in the viscous
wave boundary layer decreases exponentially with the

scale δω = . The factor  characterizes the

geometric attenuation caused by the cylindrical
symmetry of the problem.

The velocity distribution around a thin source of tor-
sional vibrations, which has a radius much smaller than
either the viscous wave scale or the thickness of the vis-
cous boundary layer (|κνR|, |κνr| ! 1), has the form

(14)

Therefore, the flow decays linearly rather than expo-
nentially with distance from the source surface. Conse-
quently, the periodic motions primarily differ near
micro- and macroinhomogeneities.

If vibrations are vertical, two families of inner
boundary layers of viscous and mixed types are formed
on the cylindrical belt of the height a. In the inner

k2ν
ω

--------





uϕ
Uϕ

π
------- R

r
--- I1,–≈

I1

ak
2
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k
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2ν
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  kdexp
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≈ i 1–( ) ω
2ν
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 
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2

------sin

k
--------------eikz

∞–

+∞

∫exp

× 1 i+( )– ω
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  kd ,exp

κ± k4ν2 ω2+ k2ν± , ρ r R.–= =
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π
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R
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1, z
a
2
---<

1
2
---, z

a
2
---=

0, z
a
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---.>









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boundary layer of the first type, perturbations of veloc-
ity and salinity are given by the relations

(15)

Singularities appear in Eq. (15) at the edges of the
cylindrical segment, because calculations performed
under the condition D ! ν are approximate. In the exact
expressions for the radial velocity, infinite discontinui-
ties are smoothed and transformed to narrow zones of
the bounded radial motion near source edges. A
decrease in the vertical velocity component uz is exclu-
sively geometric, and the velocity boundary layer is not
formed. However, the density boundary layer having

the characteristic scale λρ =  is formed
due to the combined action of periodic perturbations
and diffusion.

In the inner wave boundary layer of the second type,
perturbations are described by the expressions

(16)

In the zero approximation with respect to the
Schmidt number, these expressions do not contain
salinity perturbations. In the first approximation, solu-

ur Uz
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a
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2
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a
2
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







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tion (16) describes the boundary layer characterized by

different scales of variation for velocity (δω = ) and

salinity (δS = ). The pattern of the physical fields

is determined by the expressions consisting of the Han-
kel functions and by the integrals on the right-hand
sides of the corresponding expressions.

Inner gravitational waves are generated only by a
vertically vibrating source of the considered type. The
radiated wave field is antisymmetric with respect to the
central horizontal plane. In the upper wave cone, the
velocity components and salinity perturbations are
described by the expressions

(17)

The structure of the wave field is conic in the coor-
dinate system concomitant with the wave beam (p, q),
where the q and p axes are directed along the beam and
phase velocity, respectively (r = R + psinθ + qcosθ, z =

– pcosθ + qsinθ, sinθ = ). The function ([8])

(18)

appears in the integrands in Eqs. (17). It contains the
dissipative wave scale 

(19)

which is similar to the viscous wave scale Lν in the dif-
fusionless medium [9]. The ratio of the size of the
source to the scale Ld (19) determines the modal struc-
ture of the radiated beam.

The table presents the vertical displacements h of
particles in the wave cone that are calculated by for-
mula (17) for three values of the cylinder radius. Here,

Φ(q) =  and a' = acosθ is the projection of the

height of the moving cylinder part onto the p axis.
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Table

Source Displacement in the conic beam |h(p, q) | Displacement in the beam axis |h(0, q) |

|kwR| @ 1, |kνR| @ 1, R @ Ld

|kwR| ! 1, |kνR @ 1|

|kwR| ! 1, |kνR ! 1|

Uztanθ
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----------------- ν D+
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-------------
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2

-------Fdsin kd
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∫
Uza θsin
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ω R q θcos+( )
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N 2πr
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6
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∞

∫
Uza ν D+( )

6N2 kνR/2( )ln
-----------------------------------Φ5/6 q( ) tanθ

2πq
----------Γ 5

6
--- 

 
The first row of the table presents the results for a
radiator radius exceeding the scales of all introduced
perturbations: beam width, wavelength of the internal
waves, thickness of the inner wave boundary layer λν ,
and the dissipative wave scale Ld. The second row
shows the results for the intermediate radius that
exceeds the scales of the boundary flows but is smaller
than the characteristic wavelengths of the internal
waves. The third row presents the results for a radius
much smaller than all scales of the problem. Disregard-
ing the effects of diffusion, our results agree with the
results of [10].
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