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This paper presents the X-ray crystallography of
various carbon materials produced by pyrolysis of light
hydrocarbons under nonequilibrium conditions in dif-
ferent regimes in supersonic flows, which makes it pos-
sible to synthesize various metastable carbonic struc-
tures.

The materials were obtained by Yu.A. Moiseev
(Institute of Chemistry of Oil and Natural Resources,
Academy of Sciences of Kazakhstan, Gur’ev, Kazakh-
stan) who specially designed a 10-kW dc plasmatron
with the supersonic Laval nozzle for the quenching of
reaction products with a rate of 108 K/s [1, 2]. Ethylene
(~99.99%) and argon (~99.99%) were used as a hydro-
carbon material and plasma-producing gas, respec-
tively. Their flow rates varied in the experiments. The
average temperature in the plasma jet ranged between
1000 and 4500 K.

The X-ray crystallography of 15 specimens of syn-
thesized carbonic materials were carried out on a
DRON-1.5 diffractometer with modernized collimation
(CuKα radiation). The spectra were handled and identi-
fied by the PowTool software package. Test specimens
prepared on mica plates were studied with an ÉVM-100
electron microscope.

The diffraction spectra of all test specimens include
reflections from two X-ray amorphous phases: graph-
ite-like (Gph) with d002 = 3.55–3.42 Å and polynaph-
thenic (Nph) with d = 4.7 Å (γ line). As is known [3],
such phases exist in many natural and artificial carbonic
materials (Figs. 1a, 1b, Table 1). The size Lcsr of coher-
ent-scattering regions for these phases lies in the range
30–120 Å.

It was found that the main feature of most specimens
under study is the presence of sharp pronounced reflec-
tions from crystalline structures with different sets of
interplanar spacings d.

The systematic analysis of the quantity d for all
crystalline components showed that most specimens
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contain a common phase with the fcc cell. It was estab-
lished that this crystalline phase in the pure form, along
with the amorphous Gph and Nph components, exists
in specimen nos. 5 and 7 (Fig. 1b, Table 1). The values
of θ, d, and hkl for this phase are listed in Table 2.

Reflections typical of structures with a lower
(monoclinic) symmetry were identified in the diffrac-
tion spectra of some specimens (Table 1, Fig. 1a). The
X-ray parameters of these structures are listed in
Tables 1 and 2.

We emphasize that the time τ of the presence of a
hydrocarbon in the reactor, as well as the quenching
rate, has a significant effect on the phase composition of
the products. In the first series of experiments (104 < τ <
105 s and quenching rate < 105 K/s), only the Gph, Nph,
and fcc phases were usually formed. In the second
series of experiments (103 < τ < 104 s and quenching
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Fig. 1. X-ray diffraction spectra from the specimens pro-
duced by the plasma chemical synthesis: (a) specimen 3,
(b) specimens 5 and 7, and (c) point electron diffraction pat-
tern from specimen 3; Nph is the polynaphthenic phase,
Gph is the graphite-like phase; ä are reflections from the
fcc cell, and å are reflections from the phase with a mono-
clinic cell.
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rate >106 K/s), crystalline carbon components charac-
terized by a monoclinic cell, i.e., by a lower symmetry,
appeared in the products along with the above phases.

Fig. 2. Electron microscope photograph of specimen 3 with
a magnification of 250000.
The analysis of the morphology of carbon particles
with an electron microscope provided interesting
results. As a rule, the products obtained with low
quenching rates contain irregular-shaped particles with
diffuse edges. At high quenching rates, particles with
surprisingly regular crystallographic shapes—squares,
hexagons, polygons, etc.—are formed (see Fig. 2).

Particles with a similar morphology were described
in [4, 5]. In addition, it was shown in [5] that the con-
densation of carbon plasma flows in vacuum was
accompanied by the formation of a phase characterized
by the bcc cell with the lattice parameter that I esti-
mated as a = 4.28 Å (k = 30.1). Heating transforms this
phase to hexagonal graphite.

The X-ray diffraction spectra of the PAN-C60 crys-
talline composite (after its heating by IR radiation up to
1073 K) exhibit three pronounced reflections [6]. Car-
bon vapors formed from C60 fullerene at 773 K are
probably crystallized into new crystalline forms.

Thus, one can conclude that a disperse crystalline
carbonic material is formed in the supersonic recon-
densation of carbon-containing high-temperature
flows. The analysis of the experimental data indicates
that the structure of the electron shell of carbon is
highly variable. This property is responsible for the
variety of crystalline forms of carbon formed in a plas-
matron during the pyrolysis of hydrocarbons due to
structural modification and dehydrogenization. These
carbon forms have unique structural parameters and
morphology.
Table 1.  X-ray diffraction characteristics of the carbon products obtained by plasma pyrolysis

Speci-
men no.

Phase composition
Cell parameters K*

Nph Gph fcc monoclinic 
structures

3 + + + + a = 4.045 Å; b = 5.61 Å; c = 8.40 Å; β = 104.7°; V = 184.3 Å3 55.9
5 + + + a** = 4.257 Å, V = 77.2 Å3 43.3
7 + + +
8 + + + a = 6.11 Å; b = 5.60 Å; c = 3.44 Å; β = 102.4°; V = 111.0 Å3 58.4

10 + + +
12 +
13 +
14 + + +
16 + +
17 + + +
18 + + +
22 + + +
23 + + + a = 7.35 Å; b = 3.03 Å; c = 4.97 Å; β = 94.0°; V = 110.5 Å3 49.8
24 + + + a = 7.69 Å; b = 4.03 Å; c = 6.08 Å; β = 95.2°; V = 187.4 Å3 45.5
26 + + + a = 8.84 Å; b = 3.34 Å; c = 3.03 Å; β = 110.7°; V = 83.7 Å3 68.7

 * “Reliability” criterion of the structure.
 ** The fcc cell parameters are stable in all specimens.
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Table 2.  X-ray diffraction characteristics of the crystalline structures

θ, deg d, Å hkl θ, deg d, Å hkl

Specimen 5, cubical Specimen 23, monoclinic

16.28 2.458 111 6.02 7.35 100

21.22 2.130 200 8.94 4.96 001

30.77 1.507 220 10.46 4.26 –101

36.90 1.284 311 14.64 3.050 –201

38.81 1.230 222 15.64 2.855 201

46.37 1.065 400 15.97 2.802 110

Specimen 3, monoclinic 18.11 2.480 002

13.90 3.210 110 19.52 2.300 102

15.95 2.805 020 23.68 1.920 012

16.19 2.652 021 24.20 1.881 –112

17.84 2.516 102 30.56 1.516 020

19.51 2.308 022 Specimen 24, monoclinic

24.35 1.870 030 12.62 3.830 200

26.73 1.714 211 13.30 3.351 011

27.19 1.687 130 14.75 3.028 002

27.76 1.657 –105 15.39 2.905 –102

28.61 1.610 202 17.33 2.588 –211

34.16 1.373 –231 18.25 2.462 211

Specimen 8, monoclinic 23.80 1.910 103

14.98 2.982 200 30.51 1.517 –501

16.64 2.693 101 Specimen 26, monoclinic

17.70 2.535 120 10.75 4.135 200

20.99 2.152 021 13.35 3.34 010

22.19 2.041 220 14.74 3.030 –101

26.68 1.717 –102 15.67 2.854 –201

27.30 1.681 002 18.28 2.457 –301

28.47 1.617 –131 26.17 1.748 –411

30.95 1.499 –231 26.97 1.700 301

31.39 1.480 112 31.20 1.488 –102

43.84 1.113 030

44.29 1.105 –801
Thus, the crystalline forms of carbon discussed in
this study are new and have not yet been described. The
investigation shows that a developing technology based
on a dc plasmatron with a supersonic Laval nozzle will
DOKLADY PHYSICS      Vol. 49      No. 1      2004
make it possible to obtain numerous disperse crystal-
line carbon materials from hydrocarbons of virtually
any series. This will be a great advance in the physics,
chemistry, and crystal chemistry of carbon.
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The model of an ideal associated solution is widely
used in current practice for calculating the thermody-
namic characteristics of liquid multicomponent sys-
tems [1–3]. Over the course of many years, we devel-
oped a version of the associated-solution model allow-
ing us to take into account the existence of associates of
various compositions, sizes, and shapes [4–7]. It was
shown that the model parameters could be estimated
from the melting points of individual substances by cal-
culating the energy of an associate in the pair nearest
neighbor approximation under the assumption that the
infinite associate was a crystal. In addition, such an
approach enables us to calculate not only the thermody-
namic mixing characteristics, but also the phase dia-
grams for solutions. It turned out that a quite realistic
hierarchy of phase diagrams can be obtained for sys-
tems that are mutually soluble only in the liquid phase
and are not soluble in the solid phase. This pertains to
eutectic systems and to systems that form a stable solid
compound. We established the determining role of
associates composed of identical atoms (self-associ-
ates) for the properties of simple eutectics. Further
development of the model enabled us to include into
investigation associates with arbitrary stoichiometry
[8]. In this case, the problem is solved with a single fit-
ting parameter such as the exchange energy for a regu-
lar solution [9]. Inclusion of associates arbitrary sto-
ichiometry into investigation makes it possible to
describe various concentration dependences of the ther-
modynamic mixing characteristics for liquid alloys and
to expand the range of systems to which this model is
applicable. This primarily pertains to alloys with
unlimited solubility near the melting point in the solid
and liquid phases.

We consider the AcB1– c binary system, whose com-
ponents form a solution with full mutual dissolution in
both the liquid and solid phases. Let the solution in the
liquid phase be the ideal solution of the An(i), Bn( j),
and AnBm(i, j, q) associates. Here, n and m are the num-
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ber of the corresponding atoms in the complex and i, j,
and q are the numbers of the nearest neighbor pairs AA,
BB, and AB, respectively. If the energy of the complex
is determined by the sum of energies of the nearest
neighbor pairs and only configurational contributions
to the entropy are taken into account, the mole fractions
of the complexes are interrelated as [4, 5, 8]

(1)

Here, , , and  are the mole fractions of

the , and AnBm complexes, respectively;  and 
are the mole fractions of A1 and B1 solitary atoms,
respectively; αA, αB, and αAB are the binding energies
for the AA, BB, and AB nearest neighbor pairs taken
with the opposite sign, respectively; and , ,

and  are the constants of the corresponding equi-
libria.

The set of the material balance equations for deter-
mination of solitary-atom concentrations in solution
has the form

(2)

Here, cA is the mole fraction of the A component. Solv-
ing the set of Eqs. (2) and taking into account Eqs. (1),
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one can find the mole fractions of solitary atoms in the
solution in terms of which the thermodynamic charac-
teristics of the system are expressed [10].

To perform these calculations, it is necessary to
know the αA, αB, and αAB energy parameters, as well as
the number of various nearest neighbor pairs in the
associates. The αA and αB energy parameters can be
estimated from the melting points of the pure compo-
nents [4, 5]. In this case, only the αAB parameter is vari-
able. The total number of pairs in an associate can be
calculated under the assumption that the local structure
of the corresponding crystal is conserved in the liquid
phase [4, 5]. However, this is insufficient for perform-
ing summation in Eqs. (2) because it is also necessary
to know the distribution of these pairs over the types
(AA, BB, and AB). This difficulty can be resolved by
assuming that the associate has the shape of a closed
linear chain. In this case, the summation in Eqs. (2) can
be performed analytically and the set of Eqs. (2) takes
the form

(3)

where
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tAxA1
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We emphasize that the linear chain structure of asso-
ciates is not our idea of the possible structure of associ-
ates and is only an approximation for simplifying the
calculations. Such a simplification enables us to easily
perform the summation in Eqs. (2) and to derive the set
of balance equations in the form of Eqs. (3). This set
can be readily solved numerically. In this case, accord-
ing to the analysis carried out, for instance, in [11], the
loss in accuracy of the calculated properties is no more
than 10%. The behavior of the thermodynamic charac-
teristics for mixing binary liquid solutions was ana-
 

lyzed in this model in [8]. This study is devoted to
investigating the possibility of calculating phase dia-
grams.

In [5], we showed that the equilibrium conditions

(4)

at the melting points of the components made it possi-
ble to calculate the αA and αB energy parameters (TA

α– Az
2

------------ RTA xA10
,

α– Bz
2

------------ln RTB xB10
ln= =
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and TB are the melting points of the A and B compo-
nents, respectively, and  and  are the mole frac-
tions of solitary atoms in the melts of the corresponding
components).

We consider only the case where a solid solution is
regular and assume that the exchange energy does not
change in the process of melting. In this case, it turns
out to be the only parameter of the model. We denote

W = 2αAB – αA – αB . (5)

The chemical potentials of mixing the regular-solution
components [9] are as follows:

(6)

where z is the coordination number. The equality of
chemical potentials of the components in the solid and
liquid phases is represented in the form of the set of
equations

(7)

where cA and CA are the mole fractions of the A com-
ponent on the liquidus and solidus lines at the tempera-
ture under consideration. Solving this set together with
balance equations (3), one can calculate the position of
the liquidus and solidus lines for a given parameter W
and temperature T.

Figure 1 shows the possible types of phase diagrams
for various exchange energies. The components were
assumed to have the melting points equal to 700 and
1000 K and to form the fcc solid solution. It is seen that
the model with only one parameter makes it possible to
obtain various phase diagrams including the eutectic
and “cigar-type” diagrams and the diagrams with the
upper and lower azeotropic points. All these types of
diagrams can be realized when the exchange-energy
sign provides positive mixing heat in both the solid and
liquid phases. When deviations of mixing heat from the
ideal value are negative, only the diagrams with the
upper azeotropic point are realized. Such a situation is
often met in practice. Eutectic systems usually have
positive deviations of thermodynamic mixing charac-
teristics from the ideal values [12]. Systems with the
lower azeotropic point (e.g., K–Rb and Cs–K), as well
as systems with the cigar-type diagram (Bi–Sb), can
also exhibit positive deviations from ideal systems [12].
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Certainly, the real relationship between a phase-dia-
gram type and concentration dependences of the ther-
modynamic mixing characteristics is much more diver-
sified. We note that the analysis performed by
D.S. Kamenetskaya (see [13]) for phase diagrams of
solutions that are regular in both the solid and liquid
phases and have different exchange energies reveals a
much poorer picture. In this case, the four variable
parameters provide only the cigar-type diagram and the
diagram with the azeotropic point.
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The conventional nucleation theory describes evolu-
tion of incipient-phase fragments as a random sequence
of events characterized by the association and conse-
quent dissociation of separate molecules [1, 2]. This
conception of the nucleation mechanism, known as the
Szilard scheme, was introduced by Farkas [3]. The
Szilard scheme was first used to describe the condensa-
tion of supersaturated vapor. In this case, it seems evi-
dent that the nucleation is the result of elementary acts
of evaporation and condensation. Such a nucleation
mechanism seems to be adequate for superheated liq-
uids in a weak-metastability region at temperatures not
far from the critical temperature. However, for both
cavitation in liquids under large tension and tensile
fracture of crystals, this mechanism is less evident. In
this case, the originating cavities serve as critical nuclei
and use of the conventional scheme requires introduc-
ing the concept of a virtual particle–hole pair.

Together with the Gibbs thermodynamic consider-
ations [4], the Szilard scheme leads to the conception of
homogeneous nucleation as a diffusion process of
growing an incipient-phase nucleus in the field of ther-
modynamic forces. The characteristic size of incipient-
phase nuclei serves as a diffusion (the most slowly
relaxing) variable. In this case, the nucleus size distri-
bution function f(R, t) satisfies the equation [2]

(1)

where D(R) is the diffusion coefficient for incipient-
phase nuclei, and W(R) is the potential nucleation
barrier.

In order to adequately describe the nucleation by
Eq. (1), it is necessary and sufficient that the character-
istic time τ∗  of passage through the nucleation barrier

∂f R t,( )
∂t

-------------------
∂

∂R
------ D R( ) ∂

∂R
------

1
kT
------dW

dR
--------+

 
 
 

f R t,( ),=
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for incipient-phase fragments be much greater than the
relaxation time τγ related to the fragment–medium
interaction dynamics, i.e., τ∗  @ τγ (in the regime of
large friction forces). Such a regime is equivalent to
ignoring the inertia of a nucleus. The growth rate of
fragments relaxes very fast, and their diffusion
through the potential barrier ensures the equilibrium
of the fragments whose radii are smaller than the crit-
ical radius R∗ .

The traditional scenario for the formation of an
incipient-phase nucleus is most evident but not the sole
possibility. If a system is so strongly supersaturated to
be in the vicinity of a spinodal (strong-metastability
region), then no sequence of events of molecular asso-
ciation and dissociation can precede the origination of
a nucleus. In this case, nucleation can arise as a result
of cooperative processes. The possibility of such a
mechanism was first pointed out by Skripov [5], who
supposed that “if a local extension due to density fluc-
tuations in a liquid attains a value sufficiently large for
the volume element to overcome the stability boundary
(spinodal), then, at the next moment of time, liquid dis-
integration will take place and a bubble will originate.”

In the present paper, we consider this aspect of
nucleation on the basis of our computer simulation of
nucleation in a liquid under tension in the vicinity of the
spinodal. The principal characteristics of the model and
the results obtained were discussed in [6]. The system
under investigation contains 2048 Lennard-Jones parti-
cles. The calculations were performed by the molecu-
lar-dynamics methods for the reduced temperature T* =
0.70. Hereinafter, the intermolecular-interaction
parameters, the Boltzmann constant, and the particle
mass are taken as scale parameters. The region of states
in which the disintegration of a homogeneous liquid
under tension proceeds via stages of nucleation and
nucleus growth was determined in [7]. The system
under consideration was brought to the equilibrium
state close to the spontaneous-cavitation region bound-
ary so that the metastable-phase lifetime significantly
exceeded the characteristic computer-simulation time.
Then, we scaled all particle coordinates and cell sizes
in order to diminish the particle density in the system
004 MAIK “Nauka/Interperiodica”
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down to the value ρ* = 0.7275. Next, by registering the
pressure jump, we fixed the time for the origination of
a stable incipient-phase nucleus. Simultaneously, a spe-
cial program analyzed the configuration of the particles
in the system and registered the presence of incipient-
phase fragments and their characteristic sizes. The
pressure averaged over time intervals of 1 ps is shown
as a function of time in Fig. 1 for a state close to the
spinodal. The left section of the curve characterized by
lower pressures corresponds to a homogeneous meta-
stable state. Both the number of particles and their sizes
are bounded, and the model system is closed. There-
fore, after a critical nucleus has originated, the system
passes to an equilibrium two-phase state with the liquid
containing a stable vapor cavity with the characteristic
size R0 (Fig. 2). The cavity formation is accompanied
by a rise of the effective pressure in the system. After
averaging 72 realizations of the nucleation process, we
have found that the characteristic time of the cavity size
to pass through the critical value R∗  and to attain the
value R0 is equal to τr . 25 ps. This time greatly
exceeds the time τ∗  of passage of incipient-phase
fragments through the critical region of the potential
barrier; the latter time cannot be found by the com-
puter simulation. The time τr was taken as an upper
bound for the value of τ∗ .

The characteristic time τγ can be estimated accord-
ing to the correlation time of the random process in an
early stage of nucleation. The pressure correlation
function is shown in Fig. 2; whence it is seen that τγ .
τc . 20 ps and, therefore, τr . τγ. This testifies to the fact
that nuclei are formed in the regime of intermediate or
even weak friction forces (τ∗  @ τγ) rather than in the
strong-friction regime (τ∗  ! τγ), as is postulated in the
conventional nucleation theory. Visualization of the

–1.0

2000 1000 1500

~~

t, ps

–0.8

–0.6

–0.4
p*

τr > τ*

Fig. 1. Instantaneous pressure in a metastable Lennard-
Jones system for T* = 0.7 and ρ* = 0.7275.
origination and growth of incipient-phase fragments on
the computer display screen has shown no processes
that could be associated with the Szilard scheme. The
simulations most likely prove that the nucleation is a
result of collective molecular rearrangements.

We now estimate the characteristic times of the pro-
cesses under consideration assuming that the nucle-
ation is initiated by the decay of labile pieces formed as
a result of chaotic thermal motion. Following from
Zel’dovich and Todes [8], we assume that in a one-com-
ponent system the decay rate of a labile piece is deter-
mined only by the heat exchange between expanding
and contracting volume elements. In this case, the dec-
rement of rise of density inhomogeneities (the quantity
inversely proportional to τγ) is determined by the ther-
mal diffusivity α of the medium. A perturbation is
unstable if its wavelength is longer than a certain criti-
cal value λc. The value of λc is related to the isothermal
compressibility: λc ~ |βT|1/2 [9]. When a labile piece
decays, the origination of a nucleus is possible provided

that λc ≥ R∗ . In the linear approximation, τγ ~ . Near

the spinodal, βT ~ (ρ – ρsp)–1. If the thermal conductivity
is finite on the spinodal, then a ~ (ρ – ρsp) and τγ ~
(ρ − ρsp)–2. For a quadratic potential barrier, the time τ∗
can be expressed in terms of the effective mass of a
nucleus and the surface tension. In this case, it weakly
depends on the distance to the spinodal. Therefore, in
the vicinity of the spinodal, the condition τγ @ τ∗  can
be satisfied and corresponds to the nucleation in the
weak-friction regime. In this case, the energy of an
incipient-phase fragment, which is the most slowly
varying variable, serves as the diffusion variable rather
than the fragment size [10]. If the energy released in the
decay of a labile piece is insufficient for a viable incip-

λ c
2

a
-----

W

W*

W0

τ*

~kBT

R* R0 R

Fig. 2. Work of incipient phase formation in a system with
a constant particle number, volume, and energy.
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ient-phase fragment to be formed, then the inhomoge-
neity that has originated disperses. During the subse-
quent fluctuation origination of a labile piece and its
decay, the system attempts to overcome the barrier with
its new energy content. Thus, under weak friction the
kinetics of the process is governed by the energy diffu-
sion from the potential well up to the value W∗  equal to
the barrier height. In this case, the heat equilibrium for
subcritical fragments is absent, and the kinetic equation
describing the nucleation as energy diffusion follows
from the Fokker–Planck equation. This equation should
be transformed to pass from the variables correspond-

ing to the coordinate R and velocity  to the total
energy

(2)

or the action

(3)

Here, meff is the effective mass of an incipient-phase
fragment. The kinetic equation in the action has the
form [10]

(4)

where D(I) is the diffusion coefficient for the coordi-
nate I, and f(I, t) is the action distribution function for
incipient-phase fragments.

In the steady-state case, the flux J of nuclei is inde-
pendent of I and determines the number of viable nuclei
formed within a unit volume of the metastable phase
per unit time, i.e., the nucleation rate. We then integrate
Eq. (4) between the points I0 (at which the excess
energy of the system does not exceed kT) and I∗ (W∗ ).
We also assume that the nucleus leaves the well freely
provided that its energy attains the value W∗ . As a
result, we arrive at

(5)

where C is the normalization constant. For  @ 1 and
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I0 ! I∗ , the asymptotic estimation of integral (5) yields

(6)

In the conventional theory of homogeneous nucle-
ation, the expression for the steady-state nucleation rate
has a form similar to Eq. (6). Differences concern the
magnitude of the preexponential factor and its temper-
ature dependence. The problem of determining the dif-
fusion coefficient D(I∗ ) in the weak-friction regime is
more complicated because the distribution of subcriti-
cal fragments is nonequilibrium. This does not allow us
to use the method developed by Zel’dovich [2] in the
conventional nucleation theory.

In contrast to the Szilard scheme of separate events,
cooperative nucleation processes can involve no labile
phase. Local inhomogeneities having properties of a
competing phase originate as fluctuations in the process
of chaotic thermal motion. This process can also occur
in the weak-metastability region in an early stage of
nucleation. The further growth of near-critical nuclei
follows the conventional scheme. In this case, nuclei
pass slowly through the critical region of the potential
barrier, Eq. (1) is applicable, and the experiments are
closely consistent with the conventional nucleation the-
ory [11].

J
C
kT
------ dE

dI
------- 

 
0

D I*( ) W*
kT
--------– 

  .exp=

τc

0 10 20 30 40 t, ps

Pressure autocorrelation function

Fig. 3. Pressure autocorrelation function in a metastable
system for T* = 0.7 and ρ* = 0.7275.
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1. A promising scheme of sources of broad gaseous-
ion beams is a two-stage electrode system involving a
plasma cathode, which has a long service life, and a
plasma generator with desired ion-emission character-
istics such as plasma-emitter size and shape, emission-
current density, and an acceptable level of emission
nonuniformity. Nowadays, there are ion sources with
plasma cathodes based on microwave and rf discharges,
where a chamber placed in a multipole magnetic field is
used in the second stage [1, 2]. Cold-cathode ion
sources, where ions are extracted from the anode
plasma of a glow discharge in a magnetic field, have
also been designed [3]. A feature of the glow-discharge
ion source described in [4] is the use of a grid separat-
ing the cathode and anode stages and the absence of a
magnetic field in the second stage consisting of a hol-
low cathode and a thin-rod anode. Between these elec-
trodes, gas ionization induced by injected electrons
gives rise to a non-self-sustained glow discharge under
low gas pressures (as low as 3 × 10–3 Pa). However,
since the ion current is distributed over the whole sur-
face of the second-stage cathode, the current of ions
extracted from the plasma amounts to approximately
4% of the injected-electron current.

The purpose of this study is to improve the charac-
teristics of glow-discharge ion sources by combining a
plasma cathode with a grid fixation of an emitting
plasma surface and an anode chamber with a peripheral
multipole magnetic field. Such a system ensures inde-
pendent control of the current and energy of primary
electrons, their confinement, the energy relaxation and
generation of the uniform emitting plasma, and the
extraction of most of the created ions from the plasma.
In this study, we investigate how the current and energy
of injected electrons, as well as the working-gas pres-
sure, affect the ion current. The conditions providing an
increase in the ion current up to values comparable with
the plasma-cathode electron current were determined
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and, for the first time, realized in a cold-cathode ion
source.

2. To create the plasma cathode, we used a high-cur-
rent vacuum mode of a hollow-cathode glow discharge

with an anode-to-cathode area ratio of  ~ ,

which provided a low rate of fast-electron losses [5].
Here, me and Mi are the electron and ion masses, respec-
tively. The plasma-cathode electrode system (Fig. 1) is
similar to that used in [4]. The glow-discharge grid
anode (or the plasma-cathode emitter grid) facing the
output aperture of the hollow cathode is electrically
connected with the screen grid of a beam-forming sys-
tem. The emitter and screen grids are installed on the
ends of the second-stage hollow anode. Linear rows of
permanent magnets with alternating polarity that are
arranged on the anode surface form the multipole mag-

Sa

Sc
----

me

M i
------ 

 
1/2

+

–
U

+

–
∆ϕ

R1
2

R2

1

3

8

4 5 6 7

Fig. 1. Layout of the ion source: (1) hollow cathode,
(2) ignition electrode, (3) emitter grid, (4) anode, (5) screen
and (6) accelerating ion-optical electrodes, (7) beam collec-
tor, (8) permanent magnets, U is the output voltage of the
glow-discharge power supply, and ∆ϕ is the potential differ-
ence between the grids and the anode.
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netic field [6] with an induction of 0.09 T at the poles.
The glow-discharge ignition results in the appearance
of an electron current in the circuits of the emitter and
screen grids. The application of a potential difference
∆ϕ between the grids and the anode has no effect on the
current–voltage characteristic of the glow discharge,
whose maintaining voltage amounted to 360–480 V
depending on the discharge current (0.2–1 A) and argon
flow (10–50 cm3/s) leaked in the cathode hollow. An
increase in ∆ϕ changes the current polarity in the
screen-grid circuit, reduces the electron current to the
anode grid down to several percent of the hollow-cath-
ode current, and increases the anode current up to about
the sum of the hollow-cathode and ion currents to the
screen grid. The voltage ∆ϕ is predominantly localized
across the space-charge layer near the grids, and the volt-
age drop across the layer and the plasma-cathode current
can be independently controlled over a wide range.

The voltage drop across the space-charge layer,
which determines the injected-electron energy, may
greatly exceed the voltage across the double electric
layer in constricted discharges [7], which is determined
by both the gas conditions in the constriction and the
discharge current and usually amounts to 20–50 V. This
fact increases the ionizing effect of fast electrons but
also increases the grid sputtering rate due to an increase
in ion energy. For the content of metal ions in the
plasma to be less than 1%, the potential difference ∆ϕ
in the experiments was lower than 300 V.

Figure 2 shows the 3-keV ion current vs. the poten-
tial difference ∆ϕ. We used a two-electrode ion-optical

100 200 3000

10

30

50

70
Ii, mA

∆ϕ, V

1

2

3

4

Fig. 2. Ion-beam current vs. the potential difference
between the anode and the grids. The plasma-cathode cur-
rent Ie = 200 mA. The argon pressure p = (1) 1.5 × 10–2,

(2) 1.9 × 10–2, (3) 4.9 × 10–2, and (4) 6.8 × 10–2 Pa.
system with an area of 50 cm2 and an identical aperture
diameter of 5 mm in the screen and accelerating grids.
For low plasma-cathode currents, an increase in the ion
current up to 25–30% of the plasma-cathode current is
reached by increasing both the gas pressure and poten-
tial difference ∆ϕ. These dependences change with
increasing electron current. To exclude ion-optical
effects and to expand the variation range of the plasma-
cathode current, we measured the ion current from the
plasma to a plate installed instead of the screen grid
(Fig. 3). The measurement of the radial profiles of the
ion-current density in the plate plane showed that a
nearly homogeneous (10%) plasma is generated in all
discharge modes in the region free of the magnetic field
(~80 mm). An increase in the hollow-cathode output
aperture from 5 to 20 mm approximately doubles the
ion current and negligibly increases the discharge volt-
age (~50 V).

When discharge glows to the anode through the
cathode aperture without the emitter grid, the current of
ions extracted from the anode plasma of the contracted
discharge turned out to be one eighth to half of the ion
current extracted from the system with the plasma-cath-
ode surface fixed by a grid for the same glow-discharge
currents. The ion current increased with decreasing gas
pressure.

3. If the plasma is generated only as a result of col-
lisions of fast electrons with neutrals and neutral spe-
cies, the number of ions generated by a fast electron
depends on its initial energy and lifetime in the plasma.
According to the model considered in [8–10], the elec-
tron-to-ion current ratio is described in this case by the
expression

(1)

where α is the ratio of the total current of ions gener-
ated in the plasma to the current of extracted ions, l is
the total electron path in the plasma before its escape to
the anode, λi = (n0σi)–1 is the mean ionization path of
fast electrons, n0 is the neutral-particle concentration,
and σi is the electron-impact ionization cross section.
The constant W is determined by the ratio of the total
energy losses of an electron in inelastic collisions to the
energy spent on gas ionization.

Thus, the ratio , which is inversely proportional to

the efficiency of ion extraction from the plasma, as a
function of inverse gas pressure must be a straight line,
whose slope is inversely proportional to the total path or
to the electron-confinement time in the plasma, while
the point of intersection between the straight line and
the ordinate axis determines the ionization efficiency
under infinitely high gas pressures.

Contrary to Eq. (1), the plots shown in Fig. 3 are
nearly linear only for low currents and pressures. With
an increase in the current, the slope of tangents to the
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l
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DOKLADY PHYSICS      Vol. 49      No. 1      2004



        

ION-EMISSION PROPERTIES OF A PLASMA IN A GASEOUS-ION SOURCE 21

                                                        
curves decreases (Fig. 3a), while the minimum in the
plots is displaced towards lower pressures (Fig. 3b).
The slope is maximal for the minimum aperture size.

The results obtained can be explained if one takes
into consideration the high density and the directivity
of the injected-electron flow, which reduces the plasma
potential ϕp relative to the anode potential ϕa in the
region free of the magnetic field. When the gas pressure
increases, the positive anode drop (ϕa – ϕp) decreases,
and the plasma potential changes sign at a certain gas
pressure. A negative plasma potential rules out the pos-
sibility for ions to escape to the anode and, therefore,
provides a high efficiency of ion extraction from the
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Fig. 3. Ratio of the plasma-cathode current Ie to the current
Ii of ions extracted from the plasma vs. the inverse gas
(argon) pressure in the ion source for the hollow-cathode
output aperture with a diameter of (a) 5 and (b) 20 mm. The
potential difference between the anode and the grids ∆ϕ =
(1, 2) 100 and (3, 4) 300 V. The plasma-cathode current Ie =
(1, 3) 600 and (2, 4) 200 mA.
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plasma. However, the significant negative plasma
potential reduces the energy of injected electrons,
which reduces their ionizing effect, and increases the
effective width of return lines of the magnetic field on
the anode [8], which increases the electron-loss rate.

A positive plasma potential is beneficial to electron
confinement. However, it allows the diffusion of
plasma ions across the magnetic field to the anode due
to collisions of ions with neutral particles under
increased gas pressures, which abruptly reduces the
current of extracted ions.

Thus, the investigations determined the conditions
of the effective emission of ions from the plasma cre-
ated by electrons injected from a glow discharge and
showed that the current density of injected electrons
substantially affects the efficiency of ion extraction
from the plasma. The extracted-ion current and ion-
beam current are increased up to ~0.6 and ~0.3 of the
plasma-cathode current, respectively. The cold cathode
has a service life of ~103 h. The small cathode-aperture
size rules out the arrival of sputtered cathode-material
atoms in the second stage, and the small potential dif-
ference between the second-stage electrodes reduces
the cathode-sputtering rate. Both these circumstances
provide a minimum contamination of the plasma by
metal ions.
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INTRODUCTION

Tracer transport processes in highly disordered
media often cannot be described by the classical diffu-
sion equation [1]. Most alternative models (see [2–4])
reduce to fractional differential equations, whose solu-
tions have two distinctive features. These are anoma-
lous behavior of the tracer cloud size at fairly long

times (R ~ tγ with γ ≠ ) and a slow decrease (power

rather than classical Gaussian) in concentration at large
distances (r @ R).

We note that, because the difference between the
power and Gaussian decreases is immense, the problem
of “heavy tails” in the tracer concentration distribution
is of exceptional practical importance, for example, for
estimating the reliability of radioactive waste reposito-
ries, from which even insignificant leakage of a con-
taminant to vital areas is impermissible. At the same
time, we emphasize that the approach based on frac-
tional differential equations is, generally speaking, for-
mally mathematical. For this reason, its conclusions
should be checked against particular physical models.
One such model is the problem of stochastic advection
in a fractal medium with long-range correlations of spa-
tially fluctuating parameters. It has been already stud-
ied, under some simplifying assumptions, in [5, 6],
where γ was determined and the problem of the concen-
tration profile was considered.

In this study, we analyze this model in general form,
including the solution of the problem of tails. The anal-
ysis is based on the diagram technique using notions of
the scale invariance of a medium.
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2
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FORMULATION OF THE PROBLEM
AND METHOD OF SOLUTION

The stochastic advection model is based on the fol-
lowing equation for the tracer concentration c(r, t):

(1)

including advection and molecular diffusion processes.
For definitiveness, we will consider the problem with
an initial tracer distribution (at t = 0) in the absence of
a source. In the above equation, v = v(r) is the velocity
of the advective flow and D(r) is the diffusivity. Both
quantities are random functions of the coordinates.
Assuming the medium to be statistically homogeneous,
we represent v and D in the form of the sums

(2)

where u = 〈v(r)〉  and  = 〈D(r)〉  are the mean values
over the realization ensemble, while v'(r) and D'(r) are
the fluctuating parts; i.e., 〈v'(r)〉  = 0 and 〈D'(r)〉  = 0. The
velocity field satisfies the continuity equation divv =
divv' = 0.

We assume that the medium has fractal properties,
so that correlation functions of random values v' and D'
decrease at large distances as power functions. In par-
ticular, the binary correlation function of velocities

(r1 – r2) ≡ 〈 (r1) (r2)〉 at |r1 – r2| @ a is such that 

(3)

where h > 0, a is the length parameter of short-range
correlations, and V is the velocity fluctuation scale.
Similarly, at |ri – rj| @ a (for all pairs ri , rj), the n-point
correlation function defined by the formula

∂c
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satisfies the equation

(4)

By analogy with the theory of critical phenomena [7],
the parameter h will be called the scaling dimension of
the velocity fluctuation v'. Relations similar to Eqs. (3)
and (4) are also valid for the correlation functions of
diffusivity fluctuations.

Of practical importance is the concentration distri-
bution averaged over the medium realization ensemble

(r, t) ≡ 〈c(r, t)〉 . It can be related with the initial con-
centration distribution c(r, 0) by the formula

(5)

Here, (r – r', t) ≡ 〈G(r, r'; t)〉 , where G(r, r'; t) is the
Green’s function satisfying Eq. (1) with the initial con-
dition G(r, r'; 0) = δ(r – r'). The averaged Green’s func-
tion (r – r', t) is conveniently calculated by the meth-
ods of quantum field theory on the basis of the “cross”
diagram technique, which was developed in [8] and
further used in the theory of transport in disordered
media [9].

In the spatial Fourier and temporal Laplace repre-
sentations, the function (r – r', t), in view of Eqs. (1)
and (2) and the initial condition G(r – r'; 0) = δ(r – r'),
takes the form

(6)

where k and p are the Fourier and Laplace variables and
M(k, p) is the polarization operator representing the
sum of the irreducible skeleton diagrams [8]

(7)

Here, horizontal lines correspond to the function ,
crosses represent the perturbation operator –v'∇  + ∇ D'∇ ,
and dashed lines connect the crosses that pertain to one
of the cumulants, the expansion in which constitutes the
essence of averaging over the realization ensemble.
Substitution of Eq. (6) into diagram expansion (7)
transforms the latter to an integral equation for the
function M(k, p).

An analysis of this equation on the basis of the struc-
ture of expansion (7) and taking scaling relations (3)
and (4) into account made it possible to establish the
main properties of tracer transport in the stochastic
advection model in general form.
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RESULTS OF THE ANALYSIS

1. Fluctuations of both the advection rate at a scaling
dimension h > 1 and the diffusivity at an arbitrary
dimension do not change the classical diffusion law and
change only the mean value of the diffusivity. The
results of the analysis for parameters with a dimension
h ≤ 1 depend on whether the mean advection rate u is
nonzero.

2. At u = 0 and h < 1, the inequality k2 ! M(k, p)
holds. The polarization operator satisfies the scaling
relation M(λk, λ1 + hp) = λ1 + hM(k, p) and, therefore,
can be represented in the form

(8)

where ϕ(ξ) is a dimensionless function of the dimen-

sionless self-similar variable ξ =  with the fol-

lowing limiting expressions:

(9)

In view of Eq. (6), properties (8) and (9) allow us to
write the averaged Green’s function in the form

(10)

Here, the function Φ(x) is such that Φ(0) ~ 1 and

Φ(x)|x @ 1 ~ exp(–B ), where B ~ 1. From Eq. (10),
it follows that the size of the tracer localization region
at long times is of the order

(11)

and, at large distances (r @ R), the tracer concentration
decreases exponentially:

(12)

3. At u = 0 and h = 1, the tracer localization region
at long times has the size

(13)

and, as at h < 1, the expansion of the tracer concentra-
tion distribution at large distances does not involve
power terms.

D

M k p,( ) Vahk1 h+ ϕ ξ( ),=

p

Vahk1 h+
--------------------

ϕ 0( ) const 1;∼=

ϕ ξ( ) ξ bnξ
2n

1 h+
------------–

for ξ  @ 1.
n 1=

∞

∑=

G r t,( ) Vaht( )
3

1 h+
------------–

Φ r1 h+

Vaht
----------- 

  .=

x
1

1 h+
------------

R Vaht( )
1

1 h+
------------

∼

c r t,( ) B–
r

Vaht( )
1

1 h+
------------

------------------------
 
 
 
 

.exp∝

R Vat( )
1
2
--- Vt

a
----- 

 
1
4
---

ln∼



24 DRANIKOV et al.
4. At u ≠ 0, under the assumption that u ! V, at times

t ! t∗  ≡ , the transport process occurs similarly

to the case u = 0. At long times (t @ t∗ ), the transport
features are fundamentally different for the scaling

dimensions h > , h < , and h = .

For  < h < 1, the tracer transport obeys the classical

diffusion laws, with the effective diffusivity Deff ~ u2t∗ .

For h < , an anomalous diffusive transport regime

takes place. The averaged Green’s function takes the
form

(14)

where r' = r – ut, Ψ(0) ~ 1, Ψ(x)|x @ 1 ~ exp(–Cx1 – h), and
C ~ 1. Correspondingly, the size of the tracer localiza-
tion region at long times is of the order

(15)

while the concentration decreases at r @ R as

(16)

At the scaling dimension h = , the size of the tracer

localization region at times t @ t∗  is given by the
expression

(17)

CONCLUSIONS

In this study, some fundamental results pertaining to
transport processes in highly disordered media are
obtained in the stochastic advection model.

The type of the laws governing the process depends
appreciably on the scaling dimension of the spatial fluc-
tuations of the advection rate, which is determined by
the exponents in the correlation functions. Velocity
fluctuations with scaling dimensions h > 1, as well as
diffusivity fluctuations of any dimension, do not violate
the classical diffusion regime.

In a medium where the velocity fluctuation dimen-
sion is h < 1, at a zero mean advection rate (u = 0), a
superdiffusion transport regime with the time depen-

a
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 ln
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dence R(t) ∝  t γ, where γ ≠ , is realized, as in fractional

diffusion models [2]. However, in contrast to the power
decrease inherent in those models, in the stochastic
advection model the tracer concentration at r @ R(t)
decreases exponentially; i.e., heavy tails are absent.

In our opinion, this difference is not accidental.
Being a physical model, the stochastic advection model
takes into account that the tracer advection velocity is
bounded from above. Therefore, a slow power decrease
in concentration at large distances is impossible.
Being purely mathematical, the fractional diffusion
model disregards the above physical principle (see
also [4]).

The conclusions made in this study for the case of a
nonzero mean advection rate are qualitatively similar to
those obtained for u = 0, though the ranges of transport
regimes, as well as the exponents in temporal and spa-
tial functions, are different in this case and the system
behaves differently before and after an additional char-
acteristic time.

For both u = 0 and u ≠ 0, the boundaries between the
transport regimes with respect to the parameter h (h = 1

for u = 0 and h =  for u ≠ 0) are peculiar. In these

cases, the governing laws are modified by logarithmic
factors.
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In this paper, the analytical expression for the
empirical Kapitza law is obtained. The Kohler rule is
shown to be a particular case of it. The analysis is per-
formed as applied to quasi-isotropic metals without
allowance for quantum and dimensional effects. In the
case of equal transverse magnetic-field components,
the magnitude of the magnetoresistive effect is shown
to be proportional to the longitudinal field component,
the proportionality coefficient η depending on the mag-
netic-field intensity.

A method of production of strong magnetic fields
was proposed by Kapitza, who had performed system-
atic studies of the variation of magnetoresistance of
metals as a function of the magnetic-field intensity. The
measurements were carried out for both weak and
strong (30 T) fields. Based on studying 35 different
chemical elements of the periodic system, a general
regularity was established for the field dependence of
the specific electric resistance of metals, which was
called the Kapitza law [1–5].

According to this law, the relative specific electrical

resistance  (subscripts H and 0 correspond to the

presence and absence of magnetic field, respectively) in
weak fields varies proportionally to its intensity
squared. In strong magnetic fields, a gradual transition
from a quadratic to a linear dependence is observed.

This law has been theoretically and, on the whole,
qualitatively substantiated based on the fact that, in the
case of a magnetic field imposed on a sample through
which an electric current flows, the complication and
elongation of trajectories of charge carriers (electrons)
take place due to the action of the Lorentz force. This is
accompanied by an increase in the resistivity of metal
samples [6–10]. However, no definite quantitative con-
firmation of this empirical law has been obtained.

In 1938, Kohler [11] formulated a rule linking the
magnetoresistance with the initial specific resistance.

ρH

ρ0
------
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In accordance with this rule, the variation of ρH is a

function of the ratio , i.e., the ratio of the magnetic

induction B and the initial specific resistance, the func-

tion f  being identical for different metals.

In this paper, we derive an exact quantitative expres-
sion for the Kapitza law under certain initial conditions,
which shows that the Kohler rule is a particular case of
this law.

We now restrict our analysis to consideration of
quasi-isotropic metals with a closed, e.g., spherical
Fermi surface that is not deformed by the action of
magnetic field. We also assume that the distribution
density for centers of scattering conduction electrons is
independent of the external magnetic field. Under these
conditions, electrons in metals move chaotically with
both thermal velocities and a velocity determined by
zero oscillations of the medium. We suggest that, in the
case of parallel directions of magnetic field and electric
current, the majority of electrons move for a time t in
the direction normal to the magnetic field. The fraction
of these electrons with respect to all conduction elec-
trons is determined by the quantity β dependent on the
magnetic-field intensity. Under the action of both the
Lorentz force FH and the Coulomb force Fe , the elec-
trons form spiral-shaped trajectories with the averaged
length L around the magnetic-field lines shifting along
the electric-current lines with a certain translational
velocity. The Lorentz force FH and the Coulomb force
Fe are normal to each other. The resulting force F acting
on conduction electrons and the angle between the vec-
tors F and FH are determined by the relationships

F2 =  + ,

The ratio of the length L of an averaged spiral-
shaped trajectory in the presence of a magnetic field to

B
ρ0
-----

B
ρ0
----- 

 

Fe
2 FH

2

ϕsin
Fe

Fe
2 FH

2+
-----------------------.=
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the sample length l0 that is the length of the trajectory
in the absence of the magnetic field corresponds to the
ratio of the forces F and Fe:

(1)

Furthermore, we assume β = 1.

The ratio  for averaged trajectory lengths corre-

lates with the ratio  of the resistances RH and R0 cor-

responding to the existence of the imposed magnetic
field H and to its absence, respectively. In this case, we
also assume that the number of scattering centers per
unit length of the trajectories with the lengths l0 and L
is the same, and their density distribution in metal is
uniform and independent of the magnetic field. Since

 =  and, accordingly,  = , then, relating the

resistances RH and R0 to the length l0 and the cross sec-

tion S0 of the sample, we find that the ratio  is equal

to the ratio of specific resistances , which corre-

spond to nonzero and zero magnetic fields, respec-
tively.

(2)

The Lorentz force can be expressed in terms of the
electric-current intensity i, the electric-current density
j, and the magnetic induction B in the form FH = iBl.
The Coulomb force is expressed in terms of the elec-
tric-current intensity i and the electric-field strength E:
Fe = itE, where t is the time of the electron displacement
along the sample of the length l0 .

In this case, the ratio of the Lorentz and Coulomb
forces is

With allowance for Ohm’s law for the electric-cur-
rent density j = nev, where v  is the averaged transla-

L
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itE
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tional velocity of the charge carriers (electrons), the last
relationship takes the form

The quantity γ =  corresponds to the Hall con-

stant, and γ ≈ RH.

Expressing  in terms of CB and substituting this

ratio into expression (2), we obtain

(3)

Under the conditions accepted above, this relati-
onship is the exact analytical expression of the
Kapitza law.

Substituting the value of C into relationship (3), we
obtain

(3a)

As is seen from formula (3a), the Kohler rule is, in fact,
a particular case of the Kapitza law. In strong magnetic
fields, when CB @ 1, the last expression can be repre-
sented in the form

(4)

which corresponds to the Kohler rule in the strong-field
region.

In the transverse magnetic field, a spiral-shaped tra-
jectory is normal to the direction of the electric current.
Being deformed, the trajectory is shifted at a transla-
tional velocity along this direction. In this case, the tra-
jectory length L' becomes greater than L. We can
assume that L' is proportional to L, while the propor-

tionality factor η =  is dependent on the magnetic-

field intensity.
Since in the absence of magnetic field (B = 0),

 = 1 and, respectively,  = 1 and  = 1, then con-

sequently, η = 1 as B = 0. The value of η depends on B
and has a finite value with large B:

(5)

where k ≈ 10–2.
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The expression for the transverse effect of the mag-
netoresistance can be written out in the form

(6)

where C = . Furthermore, we suppose β ≈ 1.

Expression (6) for the transverse effect of the mag-
netoresistance can be considered as a generalized for-
mulation of the Kapitza law.

The coefficient α is determined from the ratio of the

quantities  for the transverse and longitudinal

effects, respectively. According to the experimental
data, the coefficient α lies in the range 0.25–0.5.

In Fig. 1, the calculated curve for the ratio  in the

case of the longitudinal magnetic-field direction is
shown for a sample of Cu4. In the same figure, experi-
mental points taken from [2] are plotted. It is clearly
seen that, at low values of the magnetic induction B, the

ρH

ρ0
------ 

 
⊥

η 1 C2B2+ ,=

βγ
ρ0
------

ρH

ρ0
------

ρH

ρ0
------
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ρ0
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B, T

Fig. 1. Ratio  for a Cu4 sample as a function of the inten-

sity of the longitudinal magnetic field. Calculated curves are
compared with the experimental points taken from [2].

ρH
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variation of the ratio  as a function of B has a qua-

dratic character, while at B > 10 T, it has almost linear
dependence. The calculated curve well describes the
experimental points (for β = 1, η = 1).

The variation of the ratio  is shown in Fig. 2 as a

function of the transverse magnetic induction B for the
elements Ag(1), Au(1), Cu(1), and Al(1) . The experimental
points borrowed from [2] are compared with the calcu-
lated curves. The values of C2 and α taken in the calcu-
lations are given in the table. As is seen in Fig. 2, the
calculated curves are well consistent with the experi-
mental points.

The variation of the specific electrical resistance ρH

as a function of B for C =  can be represented in the

form

(7)

In accordance with the extended Matissen rule,

ρH

ρ0
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ρH

ρ0
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γ
ρ0
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ρH ρ0
2 γ2B2+ .=
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Fig. 2. Ratio  in transverse magnetic field for Cu(1),

Ag(1), Au(1), and Al(1) samples. Calculated curves are plot-
ted together with the experimental points taken from [2].
The subscripts at the chemical elements correspond to the
numbers of curves in figures of [2].
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Ratios  for B = 30 T and certain values of α, C2, specific electrical resistance ρ, and Hall constants for Cu, Ag, Au, and Al

Chemical 
element  [2] α C2, 

10–4 SI

ρ, 10–8 Ω m RH, 
10–11 Ω A–1 s–1 

[14][13] [13] [12]

Cu 1.47 0.082 9.41 0.5 at 73 K 1.7 at 293 K 1.67 at 293 K –5.3

Ag 1.38 0.082 6.97 0.5 at 53 K 1.62 at 273 K 1.59 at 293 K –8.98

Au 1.28 0.082 4.444 0.6 at 73 K 2.3 at 293 K 2.35 at 293 K –7.3

Al 1.73 0.2 12.0 0.33 at 80 K 2.62 at 273 K 2.6545 at 293 K –2.9

ρH

ρ0
------

ρH

ρ0
------
two  components, namely non-thermal ρa (virtually
independent of temperature) and temperature-depen-
dent ρT contribute to the specific resistance ρ0 = ρa + ρT .

B, T

ρH, 10–8 Ω m
0.7

0.6

0.5

0.4

0.2
20 40 600

1

2

3

4

0.3

Fig. 3. Variation of the specific electrical resistance ρH as a
function of the magnetic-field intensity for different initial
specific resistances and γ = 9 × 10–11 m3 A–1 s–1, η = 1,
β = 1; (1) ρ01 = 0.30 × 10–8 Ω m–1; (2) ρ02 = 0.31 × 10–8;

(3) ρ03 = 0.32 × 10–8; and (4) ρ04 = 0.33 × 10–8.
Thus,

(7a)

Figure 3 presents the variation of ρH at different val-
ues of ρa . At low temperatures, the value of ρT can be
ignored, and, in this case, the defining quantity is the
non-thermal component ρa . As ρa (and hence, ρ0)
increases, the curve ρH(B) at higher values of B
approaches the tangent to the curve describing the lin-
ear Kapitza law. This completely corresponds to the
observation results presented by Kapitza. The purer a
metal sample, the lower values of the magnetic induc-
tion B for which the curves ρH approach the tangent cor-
responding to the linear dependence of ρH(B).

We should note that, in contrast to the widely held
opinion, the specific resistance of a perfectly pure
defect-free metal is nonzero (ρ0, T → 0 ≠ 0) as T → 0,
since there exists a scattering of charge carriers on zero
atomic oscillations in a solid (to say nothing of the fact
that a perfectly pure and defect-free solid cannot exist).
As T → 0, a perfectly pure defect-free metal is not a
superconductor. The transition to the superconducting
state as T → 0 is possible as a result of an electron phase
transition. As T → 0, the magnetoresistance ρH of a per-
fect metal also is a function of B and increases with the
magnetic-field intensity, which does not contradict the
third law of thermodynamics.

In its quantitative formulation, the Kapitza law can
undoubtedly serve as a basis for understanding the
nature of anomalous magnetoresistive effects, includ-
ing giant ones.
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1. Excited atoms can be formed in single collisions
of electrons with atoms and molecules through direct
excitation

A + e → A* + e' (1)

and dissociative excitation

AB + e → A* + B(*) + e', (2)

respectively. Here, A is an atom, A* is the excited atom,
B is either an atom coupled with atom A in the molecule
or a more complex heavy particle consisting of several
atoms, B(*) can be either an atom in the ground or
excited state or an unexcited or excited radical, and e
and e' are incident and scattered electrons, respectively.

More complex processes of dissociative excitation
of atom A in which particle B is ionized are also possible:

AB + e → A* + B+ + e' + e'', (3)

where e'' is an electron knocked out of particle B during
its ionization. When the energy of the incident electron
is sufficiently high, a single collision can be accompa-
nied by the formation of doubly charged B++ or multi-
ply charged BN+ ions, where N is the ion charge number.
In turn, these ions can be either in the ground or in an
excited state. Thus, the number of competitive channels
of dissociative excitation can be very large even for
comparatively low electron energies in electron–mole-
cule collisions.

The probability of realizing each competitive reac-
tion is characterized by the cross section for dissocia-
tive excitation. The presence of a chemical bond
between atom A and particle B in molecule AB must
undoubtedly give rise to a certain difference of the cross
sections for dissociative excitation from the cross sec-
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tions for direct excitation. Moreover, the dependences
of cross sections on the energy of incident electrons
(optical excitation function, OEF) can also be consider-
ably different for dissociative and direct excitations,
which is one more manifestation of the chemical bond
of atom A in molecule AB.

It is hardly reasonable to doubt that the behavior of
the cross sections for dissociative excitation is related
to the structure of the electron shell of atom A, structure
of molecule AB, and type of the chemical bond
between particles A and B in the molecule. At the same
time, the behavior of the cross sections for dissociative
excitation is almost unstudied experimentally. More-
over, I could not find any theoretical work devoted to
the behavior of the cross sections for dissociative exci-
tation.

At present, certain empirical properties have been
established only for molecules of alkali metal halides
[1–4]. In addition, individual data for a number of
halide molecules (other than fluorides) which contain
atoms of other metals (Groups II, IV, VII, and VIII)
have been reported. However, they have not yet been
systematized and are not analyzed for revealing the
empirical properties of cross sections. At the same time,
the cross sections for dissociative excitation of Cd
atoms were measured in collisions of electrons with
CdCl2, CdBr2, and CdI2 molecules [5–7]. Analysis of
these results in this work makes it possible to reveal the
basic features of dissociative excitation of the Cd atom
in comparison with its direct excitation.

2. All experimental results on the cross sections for
dissociative excitation of atoms in collisions of elec-
trons with molecules of metal halides were obtained by
the method of extended crossing beams. Since the foun-
dations of this method and its engineering realization
were previously discussed in detail [8], only the basic
conditions of experiments with molecules of cadmium
dihalides will be presented.

Beams of cadmium dihalides were obtained by
evaporation of the substances under investigation from
a tantalum crucible heated by an electron beam. The
evaporation temperature for CdCl2, CdBr2, and CdI2
004 MAIK “Nauka/Interperiodica”
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Table 1.  Ratios of dissociative-to-direct excitation cross sections Q30 and Qmax for CdI and CdII at an incident-electron en-
ergy of 30 eV and the maximum of the optical excitation functions, respectively, in e–CdX2 (X = Cl, Br, I) and e–Cd collisions

Upper level λ, nm

Q30 Qmax

I 9s1S0 398.193 0.291 0.258 0.654

8s1S0 430.667 0.158 0.229 0.475 0.229

7s1S0 515.466 0.0813 0.154 0.251 0.155 0.209

5p1 228.802 0.0555 0.0977 0.167

6d1D2 466.235 0.0994 0.209 0.157 0.144 0.264 0.187

5d1D2 643.847 0.0330 0.192 0.158 0.212

7s3S1 325.252 1.98 2.70 0.838

6s3S1 467.815 0.500 2.46 3.60 0.141 0.633 0.763

6s3S1 479.991 0.499 2.71 3.44 0.141 0.698 0.732

6s3S1 508.582 0.478 2.44 3.18 0.135 0.632 0.677

5p3 326.105 0.753 1.37 2.16 0.278 0.445 0.566

7d3D1, 2 267.759/75 3.04

7d3D2, 3 276.3/4 2.95

6d3D1, 2 288.0/1 0.783 0.647 3.01

6d3D2, 3 298.0/1 0.732 0.665 2.84

5d3D1 340.365 0.569 0.663 2.74 0.333 1.19

5d3D1, 2 346.6/7 0.364 0.712 2.71 0.267 0.438 1.35

5d3D2, 3 361.0/2 0.324 0.587 2.49 0.169 0.283 0.997

II 5p2 226.502 0.143 0.294 0.813

6s2S1/2 274.858 0.205

a2D3/2 325.033 0.0930 0.127 0.199 0.204

a2D3/2 353.569 0.0946 0.107 0.199 0.217

a2D5/2 441.563 0.0975 0.159 0.195 0.205 0.407 0.370

CdCl2

Cd
---------------

CdBr2

Cd
---------------

CdI2

Cd
-----------

CdCl2

Cd
---------------

CdBr2

Cd
---------------

CdI2

Cd
-----------

P1°

P1°

P1/2°
was equal to 850, 700, and 600 K, respectively, and the
density of molecules in the beam crossing area was
equal to 1.7 × 1010, 7.4 × 109, and 3.1 × 1010 cm–3,
respectively. All three molecules have the same point
symmetry group D∞h, and the distances between Cd and
halogen atoms rCd–Cl = (2.21 ± 0.02) × 1010 m, rCd–Br =
(2.37 ± 0.02) × 1010 m, and rCd–I = (2.55 ± 0.02) ×
1010 m are accordingly close [9]. The normal vibrations
with the hardest bond ν3 have fundamental frequencies
409, 315, and 265 cm–1 [9, p. 89], respectively, and cor-

respond to the same symmetry  for all three mole-

cules. Under the conditions of this work, the ratios 

Σu
+

hν
kT
------
DOKLADY PHYSICS      Vol. 49      No. 1      2004
for these vibrations differ by less than 8% for three mol-
ecules. Thus, the structure of these molecules and con-
ditions of experiments studying their dissociative exci-
tation can be considered identical.

3. The dissociative excitation of intense spectral
lines of the Cd atom and singly charged ion is studied
for three molecules under investigation. Atomic lines
are excited in processes (1) and (2), and the spectral
lines of the singly charged ion are excited in the similar
processes

A + e → A+* + e' + e'', (4)

AB + e → A+* + B(*) + e' + e''. (5)
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Fig. 1. Optical excitation functions of (solid lines) dissociative and (dashed lines) direct excitation for transitions from the following

Cd atomic levels: (a) 5d1D2 , (b) 5d3D2, 3, (c) 6s3S1 , and (d) 5p3 .P1°
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The magnitudes of the cross sections for dissociative
excitation were measured for an electron energy of
30 eV. In addition, OEFs for most spectral lines under
study were measured in the electron-energy range
0−100 eV.

The measured cross sections for dissociative excita-
tion of the same spectral line can be compared both
between three molecules and between each molecule
and Cd atom (for its direct excitation in e–Cd colli-
sions). The dissociative excitation of the Cd atom by an
electron impact has been studied in a number of works.
The most complete uniform data were reported in [10].
However, different experimental groups clearly obtain
different results for the same object even when apply-
ing similar procedures. Therefore, comparison is more
correct for data obtained by the same experimental
group on the same setup with maximum maintenance
of the procedure and experimental conditions. For this
reason, the dissociative excitation of the Cd atom was
studied in this cycle of works. Comparison of the cor-
responding results with data from [10] shows that the
magnitudes of cross sections measured in [10] are sys-
tematically several times smaller than those obtained in
this work. The corresponding ratio is equal to 8.85 in
average over all data and is equal to 5.86 when four
extreme values are excluded (this point was discussed
in more detail in [6]). Moreover, OEFs were measured
in [10] up to electron energy 14–17 eV, and their extrap-
olation to an energy of 30 eV can be responsible for
considerable errors.

Table 1 presents the ratios of dissociative-to-direct
excitation cross sections Q30 and Qmax for the spectral
lines of the Cd atom and singly charged ion for an inci-
dent-electron energy of 30 eV and in the maximum of
the OEF, respectively. The upper levels and wave-
lengths of the transitions under investigation are also
given in Table 1. It should be noted that, according to
current concepts, the branching ratios for free atoms are
independent of the excitation method. This means that
the ratio of intensities of competitive spontaneous tran-
sitions from a certain level is determined by the ratio of
the Einstein transition probabilities rather than by a par-
ticular mechanism of the population of this level.

All spectral lines of the Cd atom in Table 1 are asso-
ciated with allowed transitions without a change in the
multipole order. The only exclusion is the 326.105-nm

resonance line from the 5s2 1S0 – 5p3  intercombina-
tion transition. The upper level of this transition is
metastable. Therefore, the correct excitation cross sec-

P1°
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Table 2.  Ratios of cross sections Q30 and Qmax for dissociative excitation of CdI and CdII for an incident-electron energy of
30 eV and the maximum of the optical excitation functions, respectively, in e–CdX2 (X = Cl, Br, I) and e–Cd collisions

Upper level λ, nm

Q30 Qmax

I 9s1S0 398.193 0.887 2.24 2.52

8s1S0 430.667 1.45 3.01 2.08

7s1S0 515.466 1.89 3.08 1.63 1.34

5p1 228.802 1.76 3.07 1.75

6d1D2 466.235 2.10 1.57 0.747 1.84 1.30 0.707

5d1D2 643.847 5.81 4.79 0.823

7s3S1 325.252 1.37

6s3S1 467.815 4.93 7.21 1.46 4.49 5.41 1.20

6s3S1 479.991 5.41 6.87 1.27 4.96 5.20 1.05

6s3S1 508.582 5.08 6.62 1.30 4.66 4.99 1.07

5p3 326.105 1.81 2.86 1.58 1.60 2.04 1.27

6d3D1, 2 288.0/1 0.825 3.85 4.66

6d3D2, 3 298.0/1 0.907 3.87 4.27

5d3D1 340.365 1.17 4.81 4.13 3.56

5d3D1, 2 346.6/7 1.96 7.41 3.79 1.64 5.05 3.08

5d3D2, 3 361.0/2 1.81 7.67 4.23 1.67 5.89 3.52

II 5p2 226.502 2.05 5.68 2.76

a2D3/2 325.033 1.37 2.14 1.56

a2D3/2 353.569 1.13 2.09 1.85

a2D5/2 441.563 1.63 2.00 1.23 1.99 1.81 0.913

CdBr2

CdCl2
---------------

CdI2

CdCl2
---------------

CdI2

CdBr2
---------------

CdBr2

CdCl2
---------------

CdI2

CdCl2
---------------

CdI2

CdBr2
---------------

P1°

P1°

P1/2°
tion of this transition must be determined with a correc-
tion for the possibility that excited atoms leave from the
field of view of the optical system [11]. However,

according to [12], the lifetime of the 5p3  metastable
level of the Cd atom is as short as 2.4 µs, which is
almost an order of magnitude smaller than the time-of-
flight of excited atoms through the collision area under
the conditions of this work. This correction is equal to
about 5 and 3% for the Cd atom and three molecules
under consideration, respectively. Thus, it is negligibly
small and is ignored in Table 1.

As is seen in Table 1, the cross sections for dissocia-
tive excitation of transitions from singlet levels are sev-
eral times smaller than the cross sections for direct
excitation both at an electron energy of 30 eV and at the
maximum of the OEF for all three molecules under
study. The corresponding ratio for Q30 is less than one-
tenth for four low-lying levels of CdI for the CdCl2

molecule as well as for the a2D3/2, 5/2 levels of the singly

P1°
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charged Cd ion. In contrast, the cross sections Q30 for
dissociative excitation of transitions from triplet levels
are less than the cross sections for direct excitation only
for the CdCl2 molecule, as well as for 3D levels of CdI
for the CdBr2 molecule. All cross sections Q30 for the
dissociative excitation of triplet levels in collisions of
electrons with CdI2 molecules are larger than the cross
sections for direct excitation by factors 2.16–3.60. The
same is true for 3S and 3P° levels of CdI for the CdBr2

molecule.

However, this is not the case for cross sections Qmax

for dissociative excitation, which are usually smaller
than those for direct excitation. Exclusion is presented
by 5d3D levels for the case of the CdI2 molecule, where
the cross sections Qmax for dissociative and direct exci-
tations virtually coincide with each other. The differ-
ence in the behaviors of the ratios for Q30 and Qmax is
attributed to the substantially different shapes of the
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OEFs for singlet and triplet transitions for both disso-
ciative and direct excitations. These differences are
seen in Fig. 1, where the OEFs for dissociative and
direct excitations are shown for transitions from four
low-lying levels of the Cd atom (OEFs for dissociative
excitation are shown for the CdBr2 molecule; however,
their variations for the three molecules under investiga-
tion are small). As is seen, the difference between Qmax
and Q30 for the singlet transition in direct excitation is
much less than that for triplet transitions. With an
increase in the electron energy, the OEFs for triplet
transitions decrease rapidly after the maximum by
almost an order of magnitude at an energy of 30 eV.

Table 2 presents the ratios of the cross sections for
dissociative excitations for three molecules under
investigation. As is seen both at an energy of 30 eV and
the maximum of the OEFs, the maximum and mini-
mum cross sections correspond in most cases to e–CdI2
and e–CdCl2 collisions, respectively. Exclusions are pre-
sented by the 5,6d1D2 and 6d3DJ levels. More detailed
analysis of the revealed properties and determination of
their causes are impossible without fundamental theoret-
ical consideration of dissociative excitation.

4. Empirical properties of the cross sections for the
dissociative excitation of the Cd atom and singly
charged ion are analyzed for collisions of slow
monoenergetic electrons with Cd halide molecules.
Comparison shows that the cross sections for dissocia-
tive excitation at an electron energy of 30 eV are much
larger than those for direct excitation for all transitions
in CdI and CdII for the CdCl2 molecule. For the CdI2
molecule, the same behavior is observed for the cross
sections for singlet and ionic transitions and the cross
sections for dissociative excitation of triplet transitions
are larger than those for direct excitation by factors
2.16–3.60. At the maximum of the OEFs for the mole-
cules under consideration, almost all cross sections for
dissociative excitation are less than those for direct
excitation.
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1. The process of generating relativistic runaway
electron avalanches (RREAs) is fundamental in the
mechanism underlying upward atmospheric dischar-
ges [1–6]. A basic characteristic of any avalanche pro-
cess is the time te required for amplifying the particle
number by a factor of e. This time was calculated for

three chosen overvoltage values δ = P = 2, 5, and

8 relative to the relativistic minimum of the friction
force Fmin = 2.18 keV cm–1 atm–1 [7–9]. The results
obtained by solving the master equation and by direct
Monte Carlo simulation turned out to be very consistent
with each other, except the Monte Carlo simulation by
the ELISA code. This code most completely includes
processes of interactions of electrons, positrons, and
photons with atomic particles [7–9]. The subsequent
analysis demonstrated that the divergence is caused by
the incorrect inclusion of the electric field in the ELISA
code. For numerical simulation of upward atmospheric
discharges, it is necessary to know the dependence te(δ)
in a wide range of δ values, realized in the process of
the development of upward atmospheric discharges, as
well as the energy and angular distributions of ava-
lanche electrons as functions of the overvoltage δ.

In this study, the most important results of corre-
sponding calculations are presented. These calculations
are performed by the ELISA code with correct inclu-
sion of an electric field.

2. The calculations were fulfilled for air at atmo-
spheric pressure. We assumed that at the initial time
t = 0, a monoenergetic beam containing N(0) electrons
with kinetic energy ε0 was injected in the direction of
the electric force –eE. The calculations were carried out

eE
Fmin
---------
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for two strongly different values ε0 = 2 and 10 MeV.
The statistical error of the calculations did not exceed
1–2%. The electron trajectories were traced down to an
energy of ε = 1 keV. Although a large number of elec-
trons with energies lower than the runaway threshold
εth , which is defined as the second root of the equation
F(ε) = eE [10], are generated, these electrons rapidly
relax to thermal energies and negligibly contribute to
the RREA. As a result, we calculated the number N(t)
of runaway electrons as a function of time, as well as
the energy and angular distributions of electrons for dif-
ferent δ values. The scale quantity te was determined by

the linear segment of the function .

3. In the table, te values calculated for three different
δ values are given in comparison with previously pub-
lished results [7–9, 11]. As is seen, the strong diver-
gence of the results obtained by the ELISA code and
other codes that either realize the Monte Carlo method
or are based on solving the master equation is elimi-
nated. Figure 1 exhibits the dependence te(δ) calculated
for the interval δ ∈  [1.3; 14], which is of practical inter-
est. We remind that for δ ≈ 14, the usual breakdown by
electrons having energies close to the ionization thresh-
old of air molecules develops. The sharp increase in te

up to 8905 ns at δ = 1.3 testifies to approaching a certain
critical value of δ below which electrons cannot be
involved in the runaway mode. By virtue of this fact,
this value of te can be rather uncertain. Within an accu-
racy of 5%, the dependence te(δ) plotted in Fig. 1 can
be approximated by the expression

(1)

We also studied the effect of varying ε0 on the
dynamics of RREAs. For the values of ε0 under consid-
eration, differences are manifested at δ ≤ 2. In this case,
the time required for attaining the exponential mode of
the RREA decreases with increasing ε0 . In the region
δ < 2, this time increases with decreasing δ, and only
electrons with high values of ε0 can be involved in the
runaway mode.

N t( )
N 0( )
------------ln

te ns( ) 7.11

δ0.441
----------- 

  δ 2 10,[ ] .∈,exp=
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The time for settling the steady-state energy distri-
bution of the RREA does not coincide with that
required for the avalanche to attain the exponential
mode of development. This fact is indirectly confirmed
by the calculation results for the time dependence of the
mean electron energy 〈ε(t)〉 shown in Fig. 2. The mean
energy in the steady-state mode weakly varies in the
range δ = 2–14, the steady-state mode being attained in
~(4–6)te. The mean energy monotonically depends on
δ and weakly decreases with δ, which is caused by
involving electrons of progressively lower energies in
the runaway mode.

The weak dependence of 〈ε〉  on δ in a wide range of
its values can be explained using the expression

(2)

In accordance with this formula, the quantity 〈ε〉  is esti-
mated as the energy accumulated by a runaway electron
in the path length cte(δ) in which it produces another
runaway electron. The weak dependence of 〈ε〉  on δ is
explained by the dynamic equilibrium of the processes
of energy accumulation in the electric field [the multi-
plier (δ – 1)] and of the generation of secondary elec-

ε〈 〉 approx δ 1–( )Fmincte δ( ).≈

10

20 4 6 8 10 12 14

100

1000

1

te, ns

δ

This calculation
Lehtinen et al. [11]
Symbalisty [5]
MigDesk code [7–9]
SMC code [7–9]

Fig. 1. Time of avalanche amplification by a factor of e as a
function of the overvoltage. Air, P = 1 atm.
trons [the multiplier te(δ)] overwhelming majority of
which have the energy much lower than 〈ε〉 .

In the range δ = 2–8, the stead-state electron energy
distributions (normalized to an energy of 1 MeV) in the
RREA differ weakly from one another. The maximum
difference realized in the energy interval 0.01–40 MeV
does not exceed 15%. This universal distribution can be
approximated by the function

(3)

where u = lnε (1 MeV).

After integrating over all the energies, we arrive at
the angular distributions of electrons, which can be
approximated by the function

(4)

where b = 0.91 for δ = 2 and b = 0.97 for δ = 8. Here, µ
is the cosine of the angle between the electron momen-
tum and electric field force –eE and the usual normal-
ization 

is accepted. The maximum error of approximation (4)
is attained at µ values close to unity and is equal to 12
and 34% for δ = 2 and 8, respectively. In contrast to the
energy distributions, the steady-state angular distribu-
tions essentially depend on the quantity δ becoming
prolated with increasing δ. In other words, the progres-
sively larger part of electrons is carried away by the
field as its intensity increases.

f1 ε( ) = –0.00108u6 – 0.004235u5 0.009757u4+( )exp

× 0.012652u3 0.056372u2– 0.43325u– 2.1185–( ),exp

g µ b,( ) 1 b2–

2π 1 bµ–( )2
-----------------------------= ,

2π g µ b,( ) µd

0

1

∫ 1=
Characteristic amplification time te, ns, for an avalanche in air at atmospheric pressure

δ = 

Master equation Monte Carlo calculations

[5] MigDesk
code [7–9] [11] SMC code [7–9]

ELISA code

[7–9] new results

2 161 197 174.4 200 440 189.7

5 34.4 39.9 33.2 35.6 54 34.3

8 18.9 21.2 17.3 18.6 27.5 17.8

E

2.18 kV m 1–
------------------------------
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Fig. 2. Mean electron energy as a function of time for different values of the initial electron energy ε0 and overvoltages δ. Air,
P = 1 atm.

t
te(δ)
The normalized steady-state angular and energy dis-
tributions of runaway electrons can be represented in
the form

where f1(ε) is the steady-state electron energy distribu-
tion approximated by formula (3) and f2(µ|ε) is the nor-
malized steady-state angular distribution of electrons
with energy ε. The latter may be approximated by the
expression

Here,

and

f ε µ,( ) f 1 ε( ) f 2 µ ε( ),=

f 2 µ ε( )ln
y1 ε( ) k1 ε( ) 1 µ–( ), µ 0≥–

y2 ε( ) k2 ε( ) µ 1+( ), µ 0.<+



=

y1 ε( ) 0.5756 0.9ε( )ln 0.46– ,=

k1 ε( ) 1.24 14ε( )0.5 0.92,–=

y2 ε( ) 2.76 2.3ε( )0.48– 2.53,–=

k2 ε( ) 0.557 ε( )ln 2.91 for δ+ 2.= =

y1 ε( ) 0.6178 ε( )ln 0.4145+ ,=

k1 ε( ) 3.224 5ε 0.07–( )0.57,=

y2 ε( ) 7.6 4ε( )0.31– 0.6,–=

k2 ε( ) 0.8858 ε( )ln 5.142 for δ+ 8.= =
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4. The basic result of the present study is the depen-
dence of the characteristic RREA amplification time te

on the electric field intensity. This time determines the
relativistic analog of the Townsend ionization coeffi-

cient . The passage from the time values at atmo-

spheric pressure to those at the pressure P is executed
according to the formula

In the range of overvoltages δ = 2–8, a universal
energy distribution of runaway electrons is virtually
independent of δ. An analytical approximation of this
distribution has been proposed. For δ = 2 and 8, the
angular distributions of runaway electrons of all ener-
gies, as well as angular distributions in separate energy
groups, have been calculated, for which approximating
formulas have also been obtained. As should be
expected, with increasing δ and electron energy, the
runaway-electron beam becomes more highly directed
along the electric force –eE. The results obtained are
recommended for use in modeling upward atmospheric
discharges above thunderstorm clouds.
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Various oscillating systems with both stochastic and
regular dynamical regimes have attracted wide atten-
tion in recent years [1]. Among the most studied of such
systems are magnetically ordered structures whose
dynamics is associated with the precession motion of
magnetization and is generally described by the Lan-
dau–Lifshitz nonlinear equations [2, 3]. Of great inter-
est today are multilayer exchange-coupled structures,
where giant magnetoresistive and magnetooptical
effects have been discovered [4–6]. The existence of
static and dynamical bistable states characteristic of a
magnetic subsystem is substantial for the practical use
of such structures [7, 8]. The behavior of the magnetic
subsystem near these states determines the features of
the self-organization of magnetization, which proceeds
in external magnetic fields [9]. In this work, we analyze
dynamical regimes of the magnetization of a multilayer
nanostructure with an antiferromagnetic interlayer
exchange coupling that permits the realization of vari-
ous equilibrium states [10]. We show that there are nar-
row frequency bands where self-sustained oscillations
transform to stochastic oscillations of magnetization.

1. We consider a structure consisting of a large num-
ber (n @ 1) of identical layers of magnetic metal that
are separated by nonmagnetic layers, ensuring antifer-
romagnetic ordering of the magnetic moments of
neighboring layers in the initial state. In this case, the
entire set of magnetic layers is divided into two sub-
systems (j = 1, 2), where the magnetic moments of lay-
ers behave identically in each subsystem. For such
structures, magnetic anisotropy includes induced easy-
axis anisotropy and cubic crystallographic anisotropy.
In this case, the [100] and [010] crystallographic axes
lie in the layer plane, and the easy-magnetization axis
of induced anisotropy is perpendicular to the layers.

Ul’yanovsk State University, ul. L’va Tolstogo 42, 
Ul’yanovsk, 432700 Russia

* e-mail: sementsovdi@ulsu.ru
** e-mail: shuty@mail.ru
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The free energy of the system per unit area is deter-
mined by the expression

(1)

where d is the thickness of magnetic layers, åj is the
magnetization of the layers of the jth subsystem, J is the
bilinear exchange coupling constant of the magnetic
moments of the nearest layers, K1 and Ku are the con-
stants of cubic and growth anisotropy, H is the static
magnetizing field, ϕj is the azimuth angle that is mea-
sured from the [100] axis and determines the plane ori-
entation of the magnetic moment, and ψj is the exit
angle of the vector åj from the film plane.

In the spherical coordinate system, the equations of
motion of the magnetization vectors of each layer are
represented in the form

(2)

where γ is the gyromagnetic ratio and λ is the damping
parameter. The parameters corresponding to the real
(Fe/Cr)n structure are used in numerical analysis. We
take M = 1620 G, K1 = 4.6 × 105 erg/cm3, Ku = 2.06 ×
106 erg/cm3, λ = 5 × 107 s–1, γ = 1.76 × 107 (Oe s)–1, and
d = 21.2 × 10–8 cm for iron layers. The parameters of
chromium layers do not enter into Eq. (1), but they
determine the coupling constant J [11].

2. Since demagnetizing fields are strong (4πM @
2Ku/M, JM) for an in-plane magnetizing field, magnetic
moments also lie in the layer plane; i.e., equilibrium
angles are equal to zero (ψ0j = 0). The equilibrium azi-

E = d
n
2
--- HM j–

K1

4
----- 2ψ jsin

2 ψ j 2ϕ jsin
2

cos
4

+( )+
j 1 2,=

∑

---+ Ku 2πM2–( ) ψ jcos
2

Jn
M1M2

M2
---------------,+

ϕ̇ jMd ψ jcos γ ∂E
∂ψ j

--------- λ
M
----- 1

ψ jcos
-------------- ∂E

∂ϕ j

--------,+=

ψ̇ jMd
λ
M
----- ∂E

∂ψ j

--------- γ 1
ψ jcos

-------------- ∂E
∂ϕ j

--------,–=
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muth angles ϕ0j(H) are determined by the relations

 = 0 and  > 0. Analysis of these conditions

shows that, when the coupling constant J in the systems
under consideration is sufficiently small, change in the
magnetizing field intensity is accompanied by the
appearance of orientational hysteresis loops and corre-
sponding bistability states. Therefore, for the initial ori-

entation of magnetic moments ϕ0j = ±  and magnetiz-

ing-field orientation ϕH = 0, i.e., for M0j ⊥ H, noncol-
linear symmetric orientation (ϕ02 = –ϕ01) of the
magnetic moments of neighboring layers has an equi-
librium in the interval 0 < H ≤ Ha . The angle between
the magnetic moments of neighboring films ∆ϕ0 = ϕ01 –
ϕ02 decreases with an increase in the field in this inter-
val. When the field reaches the critical value Ha , the
angle ∆ϕ0 reaches a minimum (which decreases with an
increase in the coupling constant). Then a phase transi-
tion occurs and the collinear field-aligned orientation of
the magnetic moments is established. When the magne-
tizing field decreases from H > Ha, the state with the
field-aligned orientation of the magnetic moments of
films retains the field intensity Hb. For H = Hb < Ha, the
inverse phase transition occurs with an orientational
divergence of the vectors M1 and M2 that instanta-
neously reach the angles ±ϕ0(Hb). With a further
decrease in the magnetizing field, ∆ϕ0 increases and
∆ϕ0 = π for H = 0. The critical fields that are edges of
the orientational hysteresis loop are given by the
expressions

(3)

With an increase in the coupling constant, the hystere-
sis loop is contracted and disappears for J ≥ Jab , where
Jab is determined from the equality Hb = Ha .

Systems with narrow hysteresis loops are of partic-
ular interest for implementation of various dynamical
regimes. For H values corresponding to the middle of
the hysteresis loop, a longitudinal microwave field
(h || H) with an amplitude close to the loop width (h ≥
Ha – Hb) induces various large-amplitude self-sustained
oscillations and stochastic regimes in the system of
magnetic moments. In addition to wide frequency
bands corresponding to stochastic oscillations, there
are narrow frequency bands (∆ω ~ 107 s–1) where sto-
chastic regimes exist and beyond which regular large-
amplitude regimes are realized.

∂E
∂ϕ j

-------- ∂2E

∂ϕ j
2

---------

π
2
---

Hb
2
M
----- 2J

d
------ K1– 

  ,=

Ha
4

3M
-------- J

3dK1
------------- 1

6
---+ 2J

d
------ K1+ 

  .=
3. Figure 1 shows the phase trajectories (ϕ1) of
the magnetic moments of the first subsystem of layers
for various frequencies of the alternating field. Fre-
quencies ω = (7.9, 8.7) × 108 and (9.9, 10.2) × 108 s–1

(Figs. 1a, 1c, dashed and solid lines) correspond to reg-
ular regimes, whereas frequencies ω = (8.0, 9.95) ×
108 s–1 (Figs. 1b, 1d) correspond to stochastic oscilla-
tions. The inserts show the corresponding time depen-
dences ϕ1(t). Calculations were carried out with the
exchange coupling constant J = 0.24 erg/cm2 close to
Jab ≈ 0.244 erg/cm2; the magnetizing field H =
2227.4 Oe, for which the collinear equilibrium state
with the angles ϕ0j = 0 is realized; and alternating-field
amplitude h = 0.2 Oe exceeding Ha – Hb ≈ 0.144 Oe.
Oscillations of the magnetic moments of the second
subsystem are always in opposite phase with the first
system. In this case, the equality ϕ2(t) = –ϕ1(t) is quite
accurately satisfied for both regular and stochastic
regimes. For films under investigation, the amplitude of
polar-angle oscillations is always much smaller than
the amplitude for the azimuth angle, i.e., ψj ! ϕj. Anal-
ysis of the dynamics of the magnetization of each sub-
system of layers shows that with a decrease in fre-
quency stochastic regimes are established after a bifur-
cation cascade of period doubling. At the same time,
self-sustained oscillations with the alternating-field
period are again realized after one bifurcation. Regular
regimes at a frequency above the stochastic-dynamics
interval, i.e., at a larger frequency (solid lines), and at a
frequency below the indicated interval (dashed lines)
can both be very close (Fig. 1c) and very different in
phase trajectories (Fig. 1a). However, oscillations have
high amplitudes in both cases. The amplitude of sto-
chastic oscillations differs slightly from the amplitude
of self-sustained oscillations. Stochasticity is primarily
manifested in smearing of the boundary of the phase
trajectory of the limit cycle.

Strange attractors (Figs. 1b, 1d) corresponding to
stochastic dynamics have sections of strong compres-
sion or folds and sections of extension. This shape is
responsible for sensitivity of phase trajectories to the
initial conditions. The distance between two close
phase trajectories first increases exponentially as δ =
δ0exp(ζt), where ζ is the maximum Lyapunov coeffi-
cient (which is equal to the slope of the straight line
approximating the divergence of phase transitions). For
the cases under consideration, ζ ≈ 1.1 × 108 and 4.1 ×
107 s–1 for ω = 8 × 108 and 9.95 × 108 s–1, respectively.
After divergence to the attractor scale, the distance
between phase trajectories oscillates around the value
determined by the attractor size.

The regimes discussed above are sensitive to the
magnetizing field. Figure 2 shows the bifurcation dia-
gram for the parameters indicated above and alternat-
ing-field frequency ω = 8 × 108 s–1 corresponding to
stochastic oscillations of magnetization for H =

ϕ̇1
DOKLADY PHYSICS      Vol. 49      No. 1      2004
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Fig. 1. Phase trajectories of (a, c) regular and (b, d) stochastic oscillations of the magnetizations of layers. The inserts show ϕ1(t).
2227.4 Oe (Fig. 1b). In this diagram, the maximum and
minimum angles of the magnetic moment of the first
subsystem of layers are shown for the given interval of
the magnetizing field. For a given H value, a single
point with zero angle ϕ1m corresponds to the absence of
oscillations, two points correspond to the oscillation
regime with one maximum ϕ1max and one minimum
ϕ1min, a larger countable set of points corresponds to
more complex oscillations, and a set of close points
corresponds to the stochastic dynamics of magnetic
moments. It is seen that a decrease in H by only 0.01 Oe
from the earlier accepted value converts the system
from the stochastic regime to one of self-sustained
oscillations. However, this regime is realized only in a
very narrow interval of the magnetizing field (∆H ≈
0.02 Oe), and then stochasticity is again developed and
covers the entire range of oscillations of the magnetic
moment. When the magnetizing field approaches the
boundary value of the hysteresis loop, small-amplitude
DOKLADY PHYSICS      Vol. 49      No. 1      2004
regular oscillations corresponding to the noncollinear
equilibrium orientation of the magnetic moments of the
system settle. With an increase in H, stochasticity first
increases, then the system becomes insensitive to per-
turbation by the alternating field, because the alternat-
ing field goes beyond the hysteresis loop and corre-
sponds to the collinear field-aligned orientation of the
magnetic moments. For other frequencies close to that
which is chosen, the bifurcation diagram has similar
basic features.

Analysis shows that oscillation regimes of a multi-
layer structure with an antiferromagnetic exchange
coupling are characterized by quite narrow frequency
bands, where the longitudinal alternating magnetic
field excites stochastic oscillations of the magnetic
moments of the system. Large-amplitude self-sustained
oscillations are realized at frequencies adjacent to these
bands. Such structures are also characterized by a high
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sensitivity of these dynamical regimes to variation in
the magnetizing field.
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INTRODUCTION

In the case of irradiating an object to be identified by
ultrashort-pulse antennas, the goal of the most efficient
reception of reflected signals arises. In this case, it is
necessary to provide the most consistent time diagrams
for both the signal being reflected from the object and
the signal at the input of a receiver. It is well known that
the characteristics of a receiver can be described in
terms of a linear stationary dynamic transformation
linking input and output signals. Therefore, we need to
find the functional description of the corresponding
pulsed transition function that ensures the minimal
divergence of the signal being reflected from that at the
receiver output. In addition, it is desirable to provide
operation conditions for the receiver that correspond to
the minimization of residual radiation. This radiation
arises by virtue of both a certain time stretching of a
signal emitted by the antenna and dynamic distortions
occurring while the signal propagates through the
medium prior to reaching the object, as well as after the
reflection. To this aim, it is rather reasonable to apply a
supplementary correcting signal to the input of the
receiver along with the signal reflected from the object
under study. This correcting signal provides partially or
complete quenching of a signal at the receiver output at
a prescribed moment of time.

In this paper, we describe procedures for the solu-
tion of the aforementioned problem on the basis of
employing variational methods.

CONSTRUCTING THE OPTIMAL PULSED 
TRANSITION FUNCTION OF A RECCEIVER

The functional diagram of a signal-emitting and sig-
nal-receiving system based on an ultrashort-pulse
antenna is presented in the figure.

* Moscow Scientific Research Institute
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It is assumed that each element of the system trans-
forms a signal x(t) applied to the input of the ultrashort-
pulse antenna into a consequent signal. This occurs by
means of a linear dynamic transformation determined
by the corresponding pulsed transition function. By vir-
tue of this fact, a signal at the antenna’s output can be
written in the form

(1)

In the general case, the input signal x(t) of the
antenna consists of both the signal x0(t) produced by an
ultrashort-pulse generator and a correcting signal [1] or
a dynamically transformed signal together with a sup-
plementary correcting signal [2, 3]. It is worth noting
that such a correction of the signal y0(t) emitted by the
antenna has the following goals:

(i) the correspondence to a certain perfect (desir-
able) shape y∗ (t) (in particular, a triangular or trapezoi-
dal shape) of the time diagram for the signal y0(t);

(ii) lowering the intensity of the residual radiation at
a certain specified moment of time or the complete
elimination of this radiation.

Both these goals can be attained only in part because
the true signal x0(t) has a short duration and a high
intensity, whereas the correcting action is more
strongly stretched in time and has a lower peak inten-
sity.

While passing through the medium, the signal y0(t)
emitted by the antenna is subject to the linear dynamic
transformation

(2)

after which the signal is reflected from the object in the

y0 t( ) h0 t τ–( )x τ( ) τ .d

0

t

∫=

y1 t( ) h1 t τ–( )y0 τ( ) τ ,d

0

t

∫=
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transformed form

(3)

Here, h1(t – τ) and q(t – τ) are pulsed transition func-
tions describing dynamic properties of the medium and
the object, respectively. A signal reflected from the
object and, furthermore, passing through the medium
arrives at the input of the object in the form

(4)

The receiver also realizes dynamic transformation of
the signal y3(t) arriving at its input. As a result, the
signal

(5)

is formed at the receiver output, where v(t – τ) is the
receiver pulsed transition function to be determined.

The perfect situation would correspond to the exact
reproduction of the signal y2(t) reflected from the
object. In this case, in accordance with expressions (3),
(5), the function v(t) must satisfy the equation

(6)

However, according to [4], the problem of solving
Eq. (6) belonging to Volterra integral equations of the
first kind is related to ill-posed problems.

In accordance with [4], in order to regularize this
problem it is necessary to minimize the functional

(7)

where γ1 is the regularization parameter and T is a cer-
tain fixed time corresponding to the end of the signal
reception.

y2 t( ) g t τ–( )y1 τ( ) τ .d

0

t

∫=

y3 t( ) h t τ–( )y2 τ( ) τ .d

0

t

∫=

z t( ) v t τ–( )y3 τ( ) τd

0

t

∫ y3 t τ–( )v τ( ) τd

0

t

∫= =

z t( ) y3 t τ–( )v τ( ) τd

0

t

∫ y2 t( ).= =

J v( ) z t( ) y2 t( )–[ ] 2 γ1v
2 t( )+{ } t,d

0

T

∫=
The first term of functional (7) is an integral qua-
dratic deviation of the signals z(t) and y2(t). The second
term is the integral intensity squared of the desired
function v(t).

The most efficient method for solving the problem
of the minimization of functional (7) is the use of a vari-
ational method based on abstract linear operators acting
in the L2(0; T) space [5]. In this case, expression (5) and
functional (7) are written out as z = Y3v and

(8)

respectively.

Furthermore, in accordance with [5], the derivative
of the Gateaux functional J(v) (8) is calculated. From
the condition requiring this derivative to be zero, the
condition of the stationary behavior

(9)

is determined. Here,  is an arbitrary function (the
increment of the function v ). It follows from condi-
tion (9) that

(10)

where  is an operator conjugate to the operator Y3 .

As long as the function  is an arbitrary function, we
can determine from Eq. (10) the equation with respect
to the quantity v :

(11)

It follows from Eq. (11) that

(12)

where ( Y3 + γ)–1 is the operator inverse to the oper-

ator Y3 + γ1.

J v( ) Y3v y2, Y3v– y2–( ) γ1 v , v( ),+=

Y3v y2, Y3ṽ–( ) γ1 v ; ṽ( )+ 0=

ṽ

Y3*Y3 Y3*y2, ṽ–( ) γ1 v , ṽ( )+ 0,=

Y3*

ṽ

Y3*Y3 γ1+( )v Y3*y2.=

v * Y3*Y3 γ+( ) 1–
Y3*y2,=

Y3*

Y3*
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According to relationship (5), the operator  con-
jugate to the operator Y3 is determined by the following
relationship:

Therefore, Eq. (11) in the nonabstract form can be writ-
ten out as

(13)

Equation (13) is a Volterra integral equation of the sec-
ond kind. Hence, it follows that the operator ( Y3 +
γ)–1 entering into the expression of the function v ∗  (12)
is the resolvent of Eq. (13).

CONSTRUCTION
OF AN ADDITIVE CORRECTING SIGNAL
After determination of the optimal pulsed transition

function v ∗ (t) of the receiver, the problem of an addi-
tive correcting signal applied to the input of this device
is solved in accordance with definition (12) by the fol-
lowing method.

Since the function v ∗ (t – τ) is now known, the signal
at the receiver output in the case of adding a supple-
mentary signal u(t) to the signal y3(t) is determined in
the form1 

(14)

As was indicated above, the main goal of introduc-
ing the correcting signal u(t) is to minimize the inten-
sity of the residual radiation caused by the additional
dynamic distortion of the reflected signal y2(t) while it
is passing through the medium from the object to the
receiver. However, the signal u(t) can also be employed
to solve the problem of improving the similarity of the
signals z(t) and y2(t). Acting in this direction, we can
attain a smaller divergence of the signals z(t) and y2(t)
than that obtained by the optimization of the pulsed
transition function of the receiver. In this case, we

1 It should be noted that the signal u(t) can be switched on only in
cases where the existence of the basic signal y3(t) is fixed. In
other words, in real situations the signal u(t) begins to act with a
certain delay. Here, we assume this delay to be short so that it can
be ignored.

Y3*

Y3* f y3 s t–( ) f s( ) s.d

t

T

∫=

y3 s t–( ) y3 s τ–( )v τ( ) τd s γv+d

0

s

∫
t

T

∫

=  y3 s t–( )y2 s( ) s.d
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∫

Y3*

z t( ) v * t τ–( ) y3 τ( ) u τ( )+[ ] τ .d

0

t

∫=
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should take into account the fact that the intensity of the
signal u(t) must be limited. In accordance with the
aforementioned arguments, the determination of the
optimal variation law for the signal u∗ (t) is associated
with solving the problem of minimization of the func-
tional

(15)

where γ2 is the weight coefficient and λ is the Lagrange
multiplier being introduced to provide the given (mini-
mal) amplitude of the signal z(t) at a finite moment of
time.

With allowance for expression (14), the functional (15)
can be written out in the abstract form

(16)

Here, V∗  corresponds to the operator determined in
accordance with relationship (14), whereas V∗ (T) is the
same operator for the moment of time t = T.

As a result of applying the procedure described
in [5] to functional (16) and in accordance with the
scheme discussed above, the operator equation

(17)

is defined, where  is the operator conjugate to the
operator V* and V*(T) = v*(T – t).

It follows from Eq. (17) that

(18)

where ( V∗  + γ2)–1 is the operator inverse to the oper-

ator V∗  + γ2. As long as operator equation (17) writ-
ten out in the nonabstract form represents the Volterra
integral equation of the second kind, namely,

(19)

the operator ( V∗  + γ2)–1 is the resolvent of Eq. (19).
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Let z(T) = z' be a given and reasonably small inten-
sity of the output signal of the receiver at the moment
of time t = T (in particular, z' = 0). In this case, as a
result of substituting expression (18) into the condition
z(T) = z', we arrive at the linear algebraic equation with
respect to λ:

(20)

Here, u1(t) = y2 – y3.
Equation (20) makes it possible to determine λ:

(21)

where

v * T t–( )y3 t( ) td

0

T

∫

+ v * T t–( ) V*
*V* γ2+( ) 1–

u1 t( ) t z'–d

0

T

∫

=  λ V*
*V* γ2+( ) 1–

v 2 T t–( ) t.d

0

T

∫
V*

* V*
* V*

λ α z'–
β

-------------,=

α v * T t–( )y3 t( ) td

0

T

∫=

+ v * T t–( ) V*
*V* γ2+( ) 1–

u1 t( ) t,d

0

T

∫

After substituting λ obtained from relationship (21)
into formula (18), we arrive at the final expression for
the optimal signal u∗ (t):
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Shape Memory Effects
in FeNiCoTi Single Crystals 

Undergoing g ´ a' Thermoelastic Martensitic Transformations
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Corresponding Member of the RAS S. P. Efimenko2, and H. Sehitoglu3

Received July 9, 2003
In Fe–Ni alloys undergoing γ ↔ α' martensitic
transformations (MTs), where γ is the high-temperature
fcc phase (austenite) and α' is the low-temperature bcc
phase (martensite), temperature hysteresis ∆T ~ 300–
350 K is observed and such transformations are not
thermoelastic [1–9]. A γ ↔ α' MT is nonthermoelastic
due to large volume changes ∆Vγ − α' responsible for the
generation of crystal-structure defects, namely, disloca-
tions arising during MTs [2–4, 9]. Precipitation of
γ'-disperse (CoNi)3Ti particles in FeNiCoTi alloys,
first, strengthens the γ phase and, consequently, sup-
presses plastic-flow processes during γ ↔ α' MTs. Sec-
ond, γ'-disperse particles do not undergo MTs, they
favor the accumulation of the elastic energy in marten-
site crystals, and modify the degree of tetragonality in
α' martensite, and volume changes ∆Vγ − α' become
≤1% [1–7].

As a result, γ ↔ α' MTs become thermoelastic, the
shape memory effect and superelasticity are observed,
and temperature hysteresis decreases down to 30–50 K
[1–7, 9].

The aim of this study is to investigate the shape
memory effect, superelasticity and the mechanical
properties of Fe–Ni(29%)–Co(18%)–Ti(4%) (wt %)
single crystals. First, it was expected that experiments
with single crystals make it possible to avoid the influ-
ence of grains on γ → α' → γ MTs. Discontinuous
decomposition processes at the final aging stages can
be suppressed in single crystals. Therefore, MTs can be
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1028-3358/04/4901- $26.00 © 20047
investigated in the absence of structural inhomogene-
ities associated with continuous decomposition inside
the grain body and discontinuous decomposition at the
grain boundaries [1–4]. Second, experiments with sin-
gle crystals make it possible to check theoretical esti-
mates of deformation during γ → α' MTs [5, 7].

The investigations were performed with single crys-
tals with a [–111] tension axis and polycrystals with a
grain size d = 200 µm in the Fe–Ni(29%)–Co(18%)–
Ti(4%) (wt %) alloys. The crystals were grown in a
helium atmosphere by the Bridgman method in MgO
crucibles with the use of seeds. For tension experi-
ments, the samples with a given orientation and 18 ×
3 × 1.5-mm working parts were cut out using an elec-
trospark machine. After cutting, the damaged layer was
removed by mechanical grinding and chemical etching
in aqua regia. The dendritic structure of the samples
was destroyed by homogenization at í = 1473 K for
24 h. The single-phase state was obtained by water
quenching from 1423 K for one hour. All thermal treat-
ments were performed in the helium atmosphere. The
experimental details were described in [5, 7].

Figure 1a shows σcr as a function of aging time at
í = 823–973 K for the single crystals with the [–111]
tension axis under testing at room temperature. The
start temperature Ms of the MT as a function of aging
time in the range í = 823–973 K is presented in Fig. 1b.
This temperature was determined by the method of dif-
ferential scanning calorimetry (DSC) and from the tem-
perature dependence of electrical resistivity ρ(T). Fig-
ure 2 shows σcr(í) for the single crystals and σ0.1(í) for
the polycrystals of the Fe–Ni(29%)–Co(18%)–Ti(4%)
alloy for three structural states. In Fig. 3, the results of
investigating the shape memory effect in the single
crystals are presented. As is seen in Fig. 1, the precipi-
tation of disperse (CoNi)3Ti particles gives rise to an
increase in σcr with aging time t. At T = 823 K, σcr

increases considerably when 0 < t < 4 h and, then,
increases slowly when t > 4 h. At í = 923–973 K, σcr(t)
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has a maximum. For slip deformation, the stage of
increase in σcr(t) is usually caused by the precipitation
and growth of coherent particles that are cut out by slip
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Fig. 1. (a) σcr and (b) ås as functions of aging time for the
[–111] Fe–Ni(29%)–Co(18%)–Ti(4%) (wt %) single crys-
tals that were aged at temperatures (1) 823, (2) 923, and
(3) 973 K and were deformed at T = 300 K.
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Fig. 2. Plots σcr(í) for the single crystals and σ0.1(í) for the
Fe–Ni(29%)–Co(18%)–Ti(4%) (wt %) polycrystals: (1) [−111]
single crystals after annealing at 873 K for 4 h, (2) polycrys-
tals after annealing at 873 K for 2 h, and (3) polycrystals
after annealing at 823 K for 3 h.
dislocations. A decrease in σcr(t) is associated with
overaging [8] and is usually explained by changing the
deformation mechanism: instead of cutting disperse
particles, dislocations begin to pass over them accord-
ing to the Orowan mechanism.

In the FeNiCoTi single crystals undergoing MTs
under loading, the dependence σcr(t) at T = 300 K is
determined by the development of the γ → α' MT
under loading rather than by the strength properties of
austenite. Actually, it is seen in Figs. 1 and 2 that Ttest =
300 K is below Md for all structural states investigated
in this study.

The temperature dependences of σcr and σ0.1 consist
of three physically different sections (Fig. 2). Of great-
est interest is the section with the anomalous tempera-
ture dependence of deforming stresses, where σcr and
σ0.1 increase with Ttest and which is associated with
developing the γ → α' MT under loading [9].

The minimum deforming stresses correspond to Ms
found by the DSC method and from the ρ(T) depen-
dence (Fig. 2), while the maximum values are attained
at the temperature Md . At T = Md , the stresses required
to form martensite under loads σcr and σ0.1 (γ → α')

are equal to the respective plastic-flow stresses 

and . Consequently, at í > Md , the temperature

dependences (T) and (T) of the onset of plastic
flow are determined by the temperature dependence of

σcr
γ

σ0.1
γ
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γ
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Fig. 3. (1) The shape memory effect in the [–111] crystals
of the Fe–Ni(29%)–Co(18%)–Ti(4%) (wt %) alloy; aging at
873 K for 4 h, deformation at T = 233 K, and annealing at
573 K for 0.5 h. (2) The shape memory effect εsme as a func-
tion of a given strain εdef at 233 K; annealing at 573 K
for 0.5 h.
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dislocation motion in a structurally inhomogeneous
alloy containing disperse particles of the γ' phase
[1, 9]. Finally, under loading at í < Ms, cooling mar-
tensite is reoriented due to the motion of interfaces
between α ' martensite and twins in α '-martensite crys-
tals [9].

From the aforesaid, it follows that the yield stress at
í = 300 K cannot be used as a measure of the strength
properties of the γ phase after aging, because the onset
of plastic flow at such temperatures is associated with
the formation of α'martensite rather than with the plas-
tic deformation of the γ phase.

The yield stresses at í = Md for polycrystals and sin-
gle crystals are shown in Fig. 2. Figure 1b shows ås as
a function of temperature and aging time. It is seen that,
with an increase in aging time, ås(t) varies nonmono-
tonically at í = 823–873 K and increases at í = 973 K.
The most considerable variations in ås(t), which are a
decrease at 823–873 K and an increase at T = 973 K, are
observed for t ≤ 3 when σcr(T = 300 K) and σcr(åd)
increase significantly.

Such peculiar behavior of ås(t) and (t) was pre-
viously observed in the experiments with polycrystals
and single crystals of Ti–51 at. % Ni and in the poly-
crystals of aged Fe alloys [1–4, 9]. This behavior is
associated with the influence of disperse particles on
MTs in structurally inhomogeneous alloys. First, when
(CoNi)3Ti particles precipitate, the concentrations of Ni
and Co in the matrix decrease, which must give rise to
an increase in ås [1–4].

If only this fact determined the ås(t) dependence,
ås would always increase with t. Such behavior of
ås(t) is observed only at T = 923 K and, consequently,
the role of disperse particles at this temperature is
reduced to decreasing the Ni and Co concentrations in
the matrix. Second, the precipitation of disperse parti-
cles improves the strength properties of the matrix due
to the effects of dispersion hardening (Figs. 1 and 2).
This must provide additional resistance not only to the
motion of slip dislocations but also to the motion of
martensite–matrix interfaces, as well as to twinning
dislocations in α '-martensite crystals [3]. Therefore, at
the early aging stages for í = 823–923 K, ås
decreases because of significant dispersion hardening
effects. The complex ås(t) dependence at í = 823–
923 K is determined by competition between these
two factors [1–4, 9].

Another important effect of disperse particles on
MTs is the modification of temperature hysteresis H =
ås – Af and creation of the conditions for the ther-
moelastic MT. For example, in the single-phase state,
when the crystal contains no disperse particles after
hardening from T = 1373 K, ç is equal to 300–400 K
[1, 9]. Aging at 823–923 K for t ≤ 5 h decreases hyster-
esis H to 80 K. The investigations indicate that, in hard-

σcr
γ
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ened crystals, the γ ↔ α' transformation is nonther-
moelastic and the shape memory effects are not
observed. On the contrary, crystals aged at 823–923 K
for 2 h undergo thermoelastic γ ↔ α' MTs [5, 7] asso-
ciated with the shape memory effect (Fig. 3). In [–111]
crystals, the maximum shape memory effect is equal to
2.5%, which is close to strains calculated theoretically
for γ ↔ α' MTs [5, 7].

When analyzing the conditions for superelasticity, it
is necessary to take into account the following circum-
stances. First, the dependences σcr(í) and ås(t) show
that, for all structural states being investigated, the tem-
perature Md is less than Af [5, 7]. Therefore, α ' marten-
site thermodynamically unstable under unloading
cannot be obtained in these alloys under loading. Sec-
ond, stresses needed for the formation of martensite
under loading for Ms < T < Md , as well as stresses
needed for reorientation of martensite–martensite
interfaces for 77 < T < Ms, appear to be high (Fig. 2).
Consequently, the conditions for superelasticity asso-
ciated with arising γ ↔ α' MTs under loading are not
created. The experimental investigation corroborates
these suggestions, and superelasticity in these alloys
was not found.

To create the conditions for arising superelasticity
associated with γ ↔ α' MTs under loading, it is neces-
sary to decrease Af below Md due to decreasing temper-
ature hysteresis H. In addition, the stresses required for
the formation of martensite at í = Ms should be
decreased, and the phenomenological condition for

superelasticity  ≥ 5–7 must be fulfilled [9].

This means that plastic flow in the γ phase is absent
when martensite is formed under loading. Experimen-
tally, such conditions can be reached by both increasing
the volume fraction of the γ' phase and replacing nickel
with cobalt [1–7].

Thus, precipitation of disperse particles in Fe–
Ni(29%)–Co(18%)–Ti(4%) (wt %) single crystals
modifies the kinetics of the γ ↔ α' MT from nonther-
moelastic in the single phase state to thermoelastic in
the aged state. The temperatures of the MT, as well as
thermal hysteresis, are controlled by varying aging
regimes.

Experimentally, it is shown that the dependences
σcr(T) and σ0.1(T) in the FeNiCoTi single crystals and
polycrystals of the alloy are similar to those for alloys
undergoing martensitic transformations under load-
ing. The shape memory effects measured for the
[−111] aged single crystals are close to those calcu-
lated theoretically.

σcr Md( )
σcr Ms( )
-------------------
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The quality of focusing a field by a plane-parallel
slab made of a material with permittivity and perme-
ability ε = µ ≈ –1 is analyzed. Fields produced by one
or two current filaments that are located near the slab
are considered. Causes limiting the available resolution
of the system are determined.

The unique properties of materials with simulta-
neously negative real parts of ε and µ (including the
possibility of focusing radiation from point-like
sources by a plane-parallel slab) were predicted by
Veselago as early as the late 1960s [1]. Various variants
of the practical realization of composites (so-called
metamaterials) with such effective parameters have
recently been proposed [2–5], and potential fields of
their application are discussed. Focusing electromag-
netic field energy fluxes in the presence of left-handed
materials (LHMs) is also discussed. This problem is of
particular importance in view of the outstanding idea
by Pendry [6] that a plane-parallel slab of an LHM
under certain conditions (ε = µ = –1) can serve as a
superlens with unique focusing properties such that its
resolution is not limited by the well-known diffraction
limit involving wavelength. According to [6], for ε =
µ = –1 the “perfect” image of a point-like source can be
obtained due to both multiple reflections of the wave
between surfaces of the LHM slab and the assumed
enhancement of those components (evanescent modes)
of the electromagnetic radiation spectrum which
decrease exponentially with the distance from the
source in a convenient medium. Opponents of this
statement pointed out that transmittance and reflectance
for evanescent modes for ε = µ = –1 are divergent,
“which excludes the possibility of the transmission of a
evanescent wave into such a semi-infinite LHM” [7].
Instead of evanescent oscillation, Garcia and Nieto-
Vesperinas [7] analyzed the possibility of a solution in
the form of a wave increasing exponentially in the
LHM with the distance from a source or an interface.
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For such a wave, the reflectivity and penetrability are
equal to 0 and 1, respectively. However, this electro-
magnetic process is energetically possible only in a
medium (slab) of limited thickness. As was pointed out
in [7], “although evanescent waves become amplifying
in an ideal lossless dispersionless LHM slab, the width
of this slab is limited and the recovery of these waves is
physically meaningless because it requires infinite
energy.” Thus, this and other conclusions of [7] call into
question the results obtained in [6]. A brief review of
recent works [8] shows that the possibility of overcom-
ing the diffraction limit remains an open problem.

This work aims to determine conditions under
which the resolution can be increased (as compared to
traditional systems) by focusing with an LHM slab.
Such focusing is achieved due to the negative index of
refraction of a plane wave at the interface between con-
venient and LHM substances.

Our results show that the image (focusing) quality
can in principle be improved in the presence of a LHM
slab. Overcoming the diffraction limit in the LHM is
not associated with enhancement of usually evanescent
spatial harmonics as the distance from a source
increases (as is commonly accepted). This effect is
associated with both the accumulation of reactive
energy and an increase in the field amplitude near the
interface between the exterior space and LHM. From a
solution to a model problem, it is easily seen that
energy is also accumulated near the interface when a
current filament excites the infinite planar interface
between half-spaces. This effect is responsible for the
divergence of expressions for the reflection and
penetration coefficients of evanescent oscillations for
ε = µ→ –1.

We consider excitation of an infinite plane-parallel
slab (Fig. 1) by an in-phase filament with a current of
amplitude I0. As usual, the field inside the slab is repre-
sented as the set of harmonics that propagate or
decrease exponentially with the distance from sources,
which are equivalent surface currents at interfaces. Tak-
ing into account boundary conditions, we obtain analyt-
ical expressions for the vector potential, which is pro-
portional to the electric field amplitude. For x > a (i.e.,
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in the half-space containing the focusing point), these
expressions are written in the form

where

k0 and k = k0  are the propagation coefficients of
the exterior space and slab material, respectively; x0 is
the filament coordinate; 2a is the slab thickness; time-
dependence is taken in the form exp(iωt); and principal
values of radicals are used (the correct choice of
branches of multivalued functions was discussed
in [9]). Perfect focusing obviously means that the func-

A
I0

4π
------ iξy–( )F ξ( )exp ξ ,d

∞–

+∞

∫=

F ξ( ) = 
4µq q0 x0 x–( )( ) 2aq0( )expexp–

µq0 q–( )2 2aq–( ) µq0 q+( )2 2aq( )exp–exp
------------------------------------------------------------------------------------------------------------,

q0

i k0
2 ξ2–( )1/2

, ξ Re k0( )≤

ξ2 k0
2–( )1/2

, ξ Re k0( ),>



=

q
i k2 ξ2–( )1/2

,    ξ Re k( )≤

ξ2 k2–( )1/2
, ξ Re k( ),>




=

ε µ

Y

X

I0

x0

x = x0 + 4a

2a

|ξ|

Re F(ξ),
Re f(ξ)

Im f(ξ)
Im F(ξ),

1

0

2

2 3 4

–1

–2

1

1

2

3

Fig. 1. Geometry of the problem of excitation of an infinite
LHM slab and the spectral density of the field vector poten-
tial in the cross section passing through the focusing point.

k

tion F(ξ) in the above Fourier integral must be equal to
the spectral density of the vector potential of the linear

source f(ξ) =  in a certain vicinity of the focusing

point (at least within the resolution area of traditional
systems).

Let the source be located at the point x0 = –2a
(Fig. 1). We compare the function F(ξ) in the assumed

focusing plane x = 2a with f(ξ) =  (line 1 in Fig. 1).

Calculations show that F(ξ) can truly be close to f(ξ).
Moreover, if losses in the slab are negligibly small
(vanish), the direct substitution ε = µ → –1 yields
F(ξ) → f(ξ), which means that a perfect image is
obtained in the plane under consideration. However,
further analysis shows that in the presence of even very
small losses in the dielectric (ε'' = –Im(ε) > 0, µ'' =
−Im(µ) > 0) only the approximate equality F(ξ) ≈ f(ξ)
can be achieved, which is valid in a limited interval of
the infinite integration range in ξ. The function F(ξ)
decreases rapidly with increasing |ξ| above a certain
value. In particular, for µ = –1 and ε = –1 – iα, where
α ! 1, we obtain the asymptotic representation F(ξ) ≈
f(ξ)(1 + ∆)–1, where ∆ = α2(2q0)–4 exp(4aq0). Therefore,
the spectral density F(ξ) → 0 vanishes exponentially for
large ξ values at any α > 0. With an increase in the slab
thickness a entering into the exponent, the ξ value at
which F(ξ) ≈ 0 obviously decreases (parameters x0 =
−2a and x = 2a change with varying slab thickness).

Taking the closeness criterion of F(ξ) to f(ξ) (e.g.,
limiting relative error), one can determine the value ξ0
such that F(ξ) ≈ f(ξ) for |ξ| < ξ0  for given parameters of
the problem. Since the spectral density F(ξ) decreases
rapidly for |ξ| > ξ0 , the values –ξ0 and +ξ0 are the limits
of the spectrum of spatial harmonics forming the
image. The detailing of the image is associated with the
completeness of the spectrum of modes taken into
account—in particular, the size of the focal spot is

inversely proportional to  = . Therefore, the limit-

ing resolution of the system is determined by the

achieved  value. To obtain the perfect image of a
point-like source, all evanescent modes obviously must

be included, which can be done only at  → ∞. For
 = 1, convenient quality focusing is achieved. In this

case, evanescent harmonics are lost and the image is
formed only by propagating oscillation modes for

which –1 <  < 1. The common feature of all interme-

diate variants for 1 <  < ∞ is the improvement of
focusing properties and resolution compared to the dif-

fraction limit. These  values are realized in a system
with a plane-parallel LHM slab with small losses.

1
q0
-----

1
q0
-----

ξ̃0
ξ0

k
-----

ξ̃0

ξ̃0

ξ̃0

ξ
k
--

ξ̃0

ξ̃0
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However, calculations show that requirements on
LHM quality are very high for slab thickness compara-
ble with the wavelength. In particular, for ε'' = µ'' = 0.01
and thickness 2k0a = 3.0 (about half the wavelength),

 is equal to 1.5 (line 2 in Fig. 1). To achieve  ≈ 3
for the same geometry of the problem, losses must be
reduced to ε'' = µ'' = 0.00005 (line 3 in Fig. 1), which is

hardly achievable. For a thicker slab,  are smaller
(e.g., for figures discussed below, where 2k0a = 13.2

and  ≈ 1). We note that small losses in the dielectric
do not catastrophically affect the amplitudes of propa-

gating harmonics (Fig. 1,  < 1). Therefore, it is easier

to detect normal quality focusing for the slab thickness
under consideration. At the same time, the application
of thin LHM slabs (with a thickness of several hun-
dredths of the wavelength) strongly reduces require-
ments on losses and enables one to hope that the super-
resolution effect can be practically used after the corre-
sponding advance in the technology of thin
metamaterials.

The conclusions on the physical pattern and the
focusing quality of the image of a point-like source
were also verified by other methods. In particular, exci-
tation of a finite-thickness slab by two parallel fila-
ments of in-phase current was considered. The slab
parameters ε = µ ≈ –1 are taken into account in expres-
sions of polarization currents in the slab bulk. Then, the
system of volume integral equations for field compo-
nents in a dielectric is obtained by using the Green’s

ξ̃0 ξ̃0

ξ̃0

ξ̃0

ξ
k
-----
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function of the free space. This system is solved numer-
ically. Thus, focusing, field concentration near the slab
surfaces, and estimates of resolution are corroborated
without the concept of the propagation coefficient of
the LHM and exponentially evanescent or increasing
oscillation modes (the primary field of sources was
directly expressed in terms of Hankel functions). More-
over, the problem of choosing the correct sheet of the
Riemann surface was overcome, because calculations
of multivalued functions whose arguments involve neg-
ative ε and µ values were not necessary. Finally, the
model of a finite-thickness slab is more realistic and
provides an insight into the edge effects on the results.

Figures 2 and 3 show the results for the structure
whose cross-section in the z = 0 plane is shown in the
left panel of Fig. 2 (2k0a = 13.2, 2k0b = 21.6, k0c =
−14.0, where k0 is the propagation coefficient of the
free space). Excitation is provided by one or two cur-
rent filaments that are located symmetrically at distance
d from each other and are parallel to the slab at the same
distance |c – a| from it. The right panel of Fig. 2 shows
the relief of the absolute value of the real part of the
Poynting vector inside the slab and its distribution
when exciting by one current filament. It is seen that the
lines of the Poynting vector are primarily directed
along rays shown in the geometric optical approxi-
mation.

Figure 3 shows the relief of the absolute value of the
electric field Ez inside and near the slab for various dis-
tances between two filament sources (k0d = 0, 4, 5). It
can be seen that the regions of the local field concentra-
tion are quite smeared and images of two spaced
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Fig. 3. Relief of the absolute value of the electric field inside and near the slab for various distances between sources.
sources are manifested separately from each other only
when the distance between them slightly exceeds half
the wavelength. We note that an increase in the slab
length along the Y axis (Fig. 1) only slightly affects the
results. We point out the previously mentioned feature
of the diffraction pattern such as the appearance of high
electromagnetic field values that are located near the
interface between media traditional and LHMs and are
associated with the accumulation of the energy of eva-
nescent modes. In Fig. 3, this feature is manifested in
the series of peaks with maxima on the slab surface
(which are particularly pronounced for x = const = –a).
These peaks also arise when an infinite LHM slab or
plane interface between half-spaces is excited. Thus,
areas of local concentration of electromagnetic energy
arise inside the plane-parallel slab and near it in the
vicinity of the crossing points of refracted rays. The
energy transfer direction generally corresponds to the
ray representation. However, the sizes of these areas
and resolution of the system (smallest distance
between sources, at which their images are distin-
guishable) are no better than the properties of the con-
venient focusing systems in the presence of such a
small loss (ε'' = µ'' = 0.01).
DOKLADY PHYSICS      Vol. 49      No. 1      2004
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As was mentioned above, a system based on a thin
LHM slab has much better properties. In particular,
even for comparatively large losses in an LHM when
ε'' = µ'' = 0.1, distinct separate images of sources spaced
by about one tenth (!) of the wavelength can be
obtained. This conclusion is supported by calculations
by the method of volume integral equations (Fig. 4) for
2k0a = 0.2, 2k0b = 2.4, k0c = –0.2, and k0d = 0.6. Peaks
corresponding to the maximum field amplitude on the
front and back surfaces of the slab are clearly visible in
the figures.

Separate images of linear sources spaced by 20 or
30 mm (the radiation wavelength was equal to 175 mm)
were obtained in our experiments with a 7-mm-thick
slab of a composite material with the effective proper-
ties of an LHM. Thus, the above conclusions are exper-
imentally corroborated.

In conclusion, we point out one more circumstance.
The condition F(ξ) ≈ f(ξ) provides high resolution only
when an image is detected as a cross section in an x =
const plane parallel to the slab. Similar results can be
obtained in an orthogonal y = const plane only when the
DY PHYSICS      Vol. 49      No. 1      2004
spectral density of the vector potential depends corre-
spondingly on x; i.e., at least a local maximum of the
spectral density of evanescent harmonics must be
located at the focusing point. However, for x > a the
spectral density of evanescent harmonics decreases
monotonically with increasing x, which excludes per-
fect focusing behind the LHM slab [6]. Thus, a super-
lens cannot reproduce a finite-depth scene with super-
resolution. However, when a source (filament) is
located at the point x0 = 3a, its image arises directly on
the unilluminated surface of the slab and special condi-
tions for focusing appear. In this case, a sharp peak of
the field-amplitude distribution along both x and y coor-
dinates can be obtained, because, first, a local maxi-
mum of the spectral density of evanescent harmonics is
achieved and, second, the phase velocity of propagating
waves is directed from the focusing point over the
entire angular sector. This conclusion is supported by
calculations of the field near and inside the slab.

Thus, the enhancement of nonpropagating harmon-
ics should not be treated as an increase in the amplitude
of these harmonics with the distance from a source,
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which seemed to be inherent in an LHM. Nevertheless,
the amplitudes of evanescent modes can be high
enough to overcome the diffraction limit due to accu-
mulation of their energy near the interface between the
outer space and LHM. Practical application of the
effect requires LHM with small losses. Focusing is
close to perfect if the focal plane coincides with the slab
surface.
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Investigation of heliosphere, i.e., the sphere of man-
ifestation of solar activity, is one of the most important
areas of research in modern space physics. A remark-
able feature of the solar activity is its cyclicity, i.e., the
quasi-periodic appearance and development of active
regions. The most obvious example of manifestation of
the solar cycle is a variation in the number Ri of sun-
spots with the average period of ~11 years (Fig. 1). A
striking example of the effect of the solar activity on
processes occurring in the heliosphere is the modula-
tion of galactic cosmic rays (GCRs) by the solar wind
in the vicinity of the Earth: the intensity of GCRs can
decrease by an order of magnitude, remaining in anti-
correlation with the solar activity (see the results of
long-term probing of the stratosphere [1] presented in
Fig. 1). In standard models describing the modulation
of GCRs crossing the solar wind, their flux is affected
by the action of various processes. These are transport
processes of diffusion through turbulent magnetic
fields, convective processes associated with magnetic
fields frozen into the solar wind, and the cooling caused
by the expansion of the solar wind volume with dis-
tance from the Sun [2, 3]. It is natural to expect that the
boundary of the GCR modulation region corresponds to
the dynamic boundary between the solar wind and the
interstellar gas. The position of this boundary can be
estimated provided that the GCR intensity gradients in
the heliosphere are known. In order to separate, wher-
ever possible, the galactic component of cosmic rays
from the solar component, spacecraft, in most cases,
were launched in years of minimal solar activity, when
the intensity level of GCRs in the heliosphere was the
highest. The results obtained invariably led to small [on
the order of ~2–4% per astronomical unit (AU)] gradi-
ents of GCRs with an energy of E ≥ 100 MeV. Under
the assumption that the modulating properties of the
heliosphere are practically the same at different dis-
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tances from the Sun, this testifies to vast (>100 AU)
sizes of the modulation region [4]. Indeed, by virtue of
overlapping temporal and spatial variations of GCR,
measurements of their intensity by the Pioneer 10 and
Voyager 1 and 2 spacecrafts in remote parts of the
heliosphere (~20–50 AU) resulted in small values of
gradients even in years of maximum solar activity [5].
Moreover, measurements performed near the ecliptic
plane in the interior heliosphere (≤5 AU) did not yield
reliable information on the existence of latitudinal gra-
dients of the GCR intensity.

A fundamentally new stage in studies of the helio-
sphere is associated with the launch in October 1990 of
the Ulysses spacecraft in a polar orbit. It was found [6]
that the radial gradients of protons with an energy E >
2 GeV in the interior heliosphere increase by at least
several times with the growth of solar activity. By con-
trast, the latitude gradients turned out to be significant
in the years of the minimum of the 22th solar cycle and
decreased to practically zero in the southern latitudes
with the development of the 23rd cycle in 1998–2001.
However, in this case, the heliocentric distance of the
Ulysses spacecraft also decreased from 3 to 1.5 AU [7].
Are these regularities transient or do they have a gen-
eral character? The answer to this question is crucial for
many conclusions concerning features of the distribu-
tion and variations of GCRs in the heliosphere, in par-
ticular, regarding properties and sizes of the modulation
region. At present, the necessary information on the
character of these processes in the three-dimensional
heliosphere over four solar cycles can be obtained only
from meteorite data.

The method of using meteorites with different incli-
nation and extent of their orbits as probes of cosmic ray
variations in the heliosphere was proposed and devel-
oped in [8]. Indeed, cosmogenic nuclides produced in
meteorites and having different decay half-periods T1/2
are natural detectors of cosmic rays along the meteorite
orbits for a time of about 1.5T1/2 for a radioactive
nuclide prior to the fall of the meteorite to Earth. Mea-
suring the activity of the radioactive nuclide at the
moment of the meteorite landing, we can evaluate the
average intensity Ir of cosmic rays, which corresponds
to the production of radioactive nuclides at the average
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Fig. 1. Distribution and variation of radial gradients Gr (R ≥ 0.5 GV) for GCRs in the heliosphere in 1955–2000 according to mete-
orite data and variations in the sunspot number Ri [12] and intensity I (arbitrary units) of GCRs in the stratosphere (probing mea-

surements of [1]). The values of GCR gradients were obtained in accordance with data on the radioactivity of 54Mn (circles), 22Na
(triangles), and 26Al (dashed horizontal lines at 20–30%/AU) in 33 chondrites that fell to Earth in 1959–2000.
heliocentric distance r of the meteorite during the time
~1.5T1/2. Furthermore, comparing the quantity Ir with
the measured average intensity I1 at the distance of
1 AU in the same period of time (according to the data
of [1] for the stratosphere), we can evaluate the radial
gradients Gr (in percent per astronomical unit) using
the formula

Gr(R > R0) =  × 100%,

where R is the rigidity (expressed in GV) of cosmic ray
particles. In the Earth’s atmosphere, the ablation of
meteorites takes place. Therefore, on the average, in
stone meteorites (chondrites), only layers of radionu-
clides with a screening of ≥10 cm are available for mea-
surements, which corresponds to the particle rigidity

Ir

I1
---- 1–

r 1–
-------------
R ≥ 0.5 GV. Studying radionuclides with various decay
half-periods T1/2 in chondrites with different fall dates,
as well as different extent and inclination of their orbits,
we can obtain a continuous set of data related to the dis-
tribution and variations of GCRs having rigidities R ≥
0.5 GV in the three-dimensional heliosphere. The radi-
onuclides most efficient for realizing this goal are
54Mn (T1/2 = 300 days), 22Na (T1/2 = 2.6 years), and
26Al (T1/2 = 7.4 × 105 years). They contain information
on the average intensity of GCRs along the chondrite
orbits (aphelion q' ~ 2–4 AU [8]) over ~450 days,
~4 years, and 1 million years, respectively, prior to the
fall of the chondrites to Earth.

Figure 1 shows the data we obtained on the radial
gradients of GCRs having R > 0.5 GV along the orbits
of the following chondrites (the dates of meteorite falls
to Earth and the aphelion q' expressed in astronomical
DOKLADY PHYSICS      Vol. 49      No. 1      2004
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is the point of the spring equinox; the dashes in the orbits mark average heliocentric distances of the chondrites.
units are indicated in parentheses): Pribram (Apr. 7,
1959; 4.05); Bruderheim (Mar. 4, 1960; 4.06); Harleton
(May 30, 1961; 1.90); Peace River (Mar. 31, 1963;
2.04); St. Severin (June 27, 1966; 1.97); Denver (July 15,
1967; 2.10); Lost City (Jan. 3, 1970; 2.35); Malakal
(Aug. 15, 1970; ≥4); Kabo (Apr. 25, 1971; 2.60);
Guibga (Feb. 26, 1972; 2.10); Gorlovka (July 17, 1974;
~1.9); Dhajala (Jan. 28, 1976; 2.25); Jilin (Mar. 8,
1976; 2.17); Innisfree (Feb. 5, 1977; 2.76); Kutais
(Nov. 28, 1977; 1.98); Gujargaon (Sept. 4, 1982; ≤1.9);
Wethersfield (Nov. 8, 1982; 2.37); Tomiya (Aug. 22,
1984; 2.09); Binningup (Sept. 30, 1984; 1.81);
Kokubunji (July 29, 1986; 1.93); Trebbin (Mar. 1,
DOKLADY PHYSICS      Vol. 49      No. 1      2004
1988; 1.97); Torino (May 18, 1988; 2.17); Tahara
(Mar. 26, 1991; 1.92); Noblesville (Aug. 31, 1991;
1.92); Mbale (Aug. 14, 1992; 2.51); Peekskill (Oct. 9,
1992; 2.10); Mihonoseki (Dec. 10, 1992; 1.95); Cole-
man (Oct. 20, 1994; 3.12); Fermo (Sept. 25, 1996;
1.97); El Hammami (Aug. 10, 1997; ≥4); Kunya-
Urgench (June 20, 1998; ~4); Hassilabyade (June 15,
1999; 1.90); and Moravka (May 6, 2000; 1.95). The
curve in Fig. 1 is a result of smoothing the experimental
data by the first-power polynomial over five points [9].
Comparing these results with the variation curve for
sunspot numbers, we can clearly see that the values of
the gradients strongly depend on the phase of the solar
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cycle. They change from small and even negative val-
ues in the years of minimal solar activity (which is con-
sistent with direct observations in the interplanetary
space [4]) to values exceeding 100% per astronomical
unit in the years of maximal activity. The average gra-
dients (~20–30% per astronomical unit) for modern
solar cycles coincide with those for the last million
years, which follows from the analysis of 26Al content
in chondrites with known orbits [8]. This testifies to
steadiness of the mechanism of the solar modulation of
GCRs for at least ~1 million years.

It should be noted that gradients of GCRs, which
follow from meteorite data, are related to different
heliocentric distances (1.5–3.3 AU [10]) and to various
heliographic latitudes (from 23° S to 16° N [8]). There-
fore, the integral values of the gradients can, to a great
extent, depend on the values of their latitudinal compo-
nents. The latitudinal gradients of GCRs in the helio-
sphere were found from meteorite data for the mini-
mum of the 20th solar cycle [8, 11]. This period is of
special interest because it differs from the time of the
Ulysses flight at the minimum of the 22nd solar cycle
by exactly one complete 22-year magnetic cycle.
Within this cycle, as a result of two magnetic reversals
of the general solar magnetic field, the heliosphere
magnetic structure was expected to return to the initial
state and to be similar in both minima. The values of the
latitudinal gradients of GCRs with an energy E >
100 MeV obtained in 1973–1976 according to the data
of the Dhajala chondrite attained Gθ ~ 3–5% deg–1 for the
southern latitudes. With allowance for a noticeable dif-
ference in the threshold rigidity of particles, this result
correlates with the value Gθ ~ 0.19 ± 0.025% deg–1 deter-
mined in 1994–1996 for GCRs with E > 2 GeV [6]. The
different orbit inclinations of the Dhajala and Innisfree
chondrites to the ecliptic plane (the Dhajala orbit, basi-
cally, lies in southern latitudes, while the Innisfree orbit
is located in northern ones; Fig. 2) made it possible to
estimate the N–S asymmetry of the GCR distribution at
the minimum of the 20th solar cycle. The values of Gθ
in 1973–1976 for northern latitudes turned out to be
small and even negative, changing from ~0.8 to
−1.5% deg–1. This effect of the northern–southern
asymmetry at the minimum of the 20th solar cycle is
explained by the more rapid penetration of GCRs into
the southern heliosphere. In this part of the heliosphere,
the reconstruction of solar magnetic fields as a result of
the inversion of polarity of the general magnetic field of
the Sun began earlier than in the northern part. GCR
particles could enter into it earlier not only from the
poles but also from the near-equatorial zone at latitudes
≤40° S [11]. Still, apparently, this effect is not of gen-
eral character, since, at the minimum of the 22nd solar
cycle, it was not manifested either according to meteor-
ite data (Fig. 1) or in the Ulysses measurements.
Along with the well-known regularity that the even
cycles are not as high as the odd ones, the meteorite
data in Fig. 1 testify to the fact that the radial gradients
of GCRs increase especially strongly immediately prior
to the change of the complete magnetic cycle near the
maxima of even solar cycles. The lateral inclination to
the ecliptic plane of the orbit of the Peekskill chondrite,
which fell on October 9, 1992 (Fig. 2), allows us to con-
sider the distribution of high radial gradients of GCRs
in this period to be symmetric with respect to southern
and northern latitudes. Indeed, the aphelion and perihe-
lion of the Peekskill orbit lie near the line of solar
nodes. Therefore, the average heliocentric distances of
this chondrite in northern and southern latitudes are
practically symmetric. Correspondingly, the high val-
ues of GCR radial gradients, which follow from the
content of cosmogenic 22Na in this chondrite, are aver-
age ones for northern and southern latitudes.
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We consider isentropic irrotational gas flows with a
special “one-dimensional” velocity potential. The con-
dition of possible continuous adjacency to a rest region
leads to the uniqueness theorem for such flows.

The problem of continuing the solution to the gas
dynamics equations through acoustical characteristics
was investigated by a number of authors [1–3]. It is well
known that this continuation conserves entropy and
vorticity. If the rest region Ω0, where a velocity u = 0
and speed of sound c = 1, exists on one side of the char-
acteristics Γ specified by the equation

, (1)

where t is the time and x = (x, y, z) are the Cartesian
coordinates, then the function q has to satisfy the equa-
tion

(2)

On the other side of Γ (in the region Ω1), the gas
dynamics equations

(3)

(4)

where D = ∂t + u · ∇  and β = , must be fulfilled.

We consider a polytropic gas with the equation of state
p = Sργ (γ > 1) and entropy S = const. However, the
final result is valid for any “normal” gas. The necessary
and sufficient conditions of the continuity of the com-
bined solution of the set of Eqs. (3) and (4) in the region
Ω0 ∪ Γ ∪ Ω 1 on Γ have the form

(5)

There is also the local theorem of existence of an
analytic solution to the system of Eqs. (3)–(5) in a
(small) neighborhood of the surface Γ with the initial
conditions

(6)

t = q x( )

∇ q 1.=

Du βc∇ c+ 0, βDc cdivu+ 0;= =

curlu 0,=

2
γ 1–
-----------

u Γ 0, c Γ 1.= =

u t0 x,( ) u0 x0( ), c t0 x,( ) c0 x( )= =
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(see, e.g., [4]), which are fitted with the values of
unknown quantities (u, c) and their first derivatives on
Γ. However, this theorem is insufficient to investigate
the solution in the region Ω1 “as a whole,” in particular,
to satisfy some additional boundary conditions on a
surface far from Γ. Therefore, the problem of construct-
ing proper partial, but analytically simpler, solutions to
the system of Eqs. (3) and (4) (e.g., by using its group
property) still remains topical. This report is devoted to
describing one class of such solutions leading to a pecu-
liar uniqueness theorem.

1. CLASS OF SOLUTIONS

The idea is to find a one-dimensional velocity poten-
tial Φ depending only on time t and a certain function
α = α(x) i.e., Φ = Φ(t, α), where Φα ≠ 0 and ∇α  ≠ 0.
However, from the condition of continuous adjacency
to the rest region through the characteristics Γ (1), it
follows that Φα(q, α) = 0. Hence, it is necessary that
α = α(q) and the one-dimensional potential must have
the form Φ = Φ(t, q). Then, u = ∇Φ  = Φq∇ q and it fol-
lows from the first of Eqs. (3) that, in view of Eq. (2),
the speed of sound c = C(t, q). Therefore, the solution
of this class can be represented in the form

(7)

Since divu = Uq + U∆q (where ∆q is the Laplacian),
substitution into the second of Eqs. (3) shows that there
is a certain function f such that ∆q = f (q).

Consequently, the class of solutions in the form
under consideration is described by the system of equa-
tions for the function q(x)

(8)

and the system of gas dynamics equations

(9)

2. POSSIBLE FORMS OF f(q)

A solution of overdetermined system (8) exists only
for certain functions f(q). It is evident that system (8)
admits an eight-dimensional group of transformations

u U t q,( )∇ q, c C t q,( ).= =

∇ q 1, ∆q f q( )= =

Ut UUq βCCq+ + 0,=

β Ct UCq+( ) CUq CUf q( )+ + 0.=
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G8 of the R5(w) space, where w = (x, y, z, q, f). The
transformations act according to the formula

(10)

The G8 group is generated by translations along the
coordinates x, rotations in R3(x), extension with the
parameter σ (x' = σx, q' = σq, f ' = σ –1f), and translation
along the coordinate q with the parameter τ [q' = q + τ,
f '(q') = f(q + τ)]. Such transformations will be called
equivalence transformations of the solutions to sys-
tem (8). The problem of seeking possible solutions to
system (8) can be considered including equivalence
transformations.

In what follows, we briefly outline one of the possi-
ble methods of solving system (8). To construct the
general solution to the first of Eqs. (8) rewritten in the
form

(11)

we use the method of the “complete integral” in the
form

(12)

When a, b and ϕ are constant, formula (12) gives a
three-parametric solution to Eq. (11). The position ϕ =
ϕ(a, b) with any smooth function ϕ defines a two-para-
metric family, and the general solution is constructed as
its envelope. The envelope is found by equating the
derivatives with respect to the parameters a and b in
equality (12) to zero:

(13)

The substitution of functions a = a(x, y, z) and b =
b(x, y, z), which are obtained from system (13), into
formula (12) gives the desired general solution. Indeed,
in view of Eqs. (13), the relations

(14)

are valid. With allowance for (11), differentiating
Eqs. (14), we arrive at the equation

(15)

Here, the derivatives of the functions a and b are calcu-
lated from system (13) if the Jacobian δ of the left-hand
sides of Eqs. (13) with respect to the variables (a, b) is
not equal to zero. Calculating δ with allowance for (12),
we obtain

w' g w( ), g G8.∈=

qx
2 qy

2 qz
2+ + 1,=

q2 x a+( )2 y b+( )2 z ϕ+( )2.+ +=

qqa x a z ϕ+( )+ + ϕa≡ 0,=

qqb y b z ϕ+( )+ + ϕb≡ 0.=

qqx x a, qqy+ y b, qqz+ z ϕ+= = =

q∆q 2 ax by ϕaaz ϕb+ bz.+ + +=

δ m2 1 2qH q2K+ +( ), m 1 ϕa
2 ϕb

2+ + ,= =
where H is the mean curvature of the surface ϕ =
ϕ(a, b),

and K is the Gaussian curvature of this surface,

Since the quantities q, a, and b are functionally inde-
pendent of each other in view of Eqs. (13), and the cur-
vatures H and K depend only on (a, b), then δ ≠ 0.
Finally, calculating the derivatives entering into
Eq. (15), we arrive at the formula

(16)

The second of Eqs. (13) means that the right-hand
side of Eq. (16) must depend only on q. This is possible
only when both curvatures H and K of the surface ϕ =
ϕ(a, b) are constants. As is known from differential
geometry [5], the set of such surfaces consists only of

planes (H = K = 0), circular cylinders of radius R  =

1/2R, K = , and spheres of radius R  = ,

K = .

Substitution of the above curvatures shows that, up
to equivalence transformations, the function f can take
only the form

(17)

where ν = 0, 1, and 2 for a plane, cylinder, and sphere,
respectively.

3. RESULTS

It remains to find the function q(x). For this purpose,
the functions a and b are calculated from system (13)
for each of the above cases. This stage is facilitated,
because any equivalence transformation described in
Section 2 (G8 group) is continued to the corresponding
transformations of the R3(a, b, ϕ) space. This makes it
possible to reduce the equation of each surface under
consideration to the canonical form. Using relations (13)
and (14), it is easy to find that, up to equivalence trans-
formations, q = r, where either r = x (plane), or r =

2H m 3– 1 ϕa
2+( )ϕbb 2ϕaϕbϕab– 1 ϕb

2+( )ϕaa+[ ] ,=

K m 4– ϕaaϕbb ϕab
2–( ).=

∆q
2 H qK+( )

1 2qH q2K+ +
------------------------------------= .

H


−0
 H

 1
R
---

1

R2
-----



f q( ) ν
q
---= ,
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 (cylinder), or r =  (sphere).
Thus, the following theorem is valid.

Uniqueness theorem. The class of isentropic irro-
tational gas flows with a one-dimensional velocity
potential, where continuous adjacency to the rest
region is possible, consists, up to equivalence transfor-
mations, of flows with plane, cylindrical, and spherical
waves. 

Nevertheless, the problem of adjacency to the rest
region remains nontrivial in the above cases, except for
the case ν = 0, where the simple wave is inevitably
present in the region Ω1 . Sufficient conditions on initial
data (6) that would ensure the existence of a continuous
solution as a whole remain unknown. The solutions that
are invariant with respect to one-parametric subgroups
of the group admitted by system (9) in the cases ν = 1
and 2, where the factor system reduces to a quite trans-
parent system of ordinary differential equations, were
described in [6, 7].

x2 y2+ x2 y2 z2+ +
DOKLADY PHYSICS      Vol. 49      No. 1      2004
ACKNOWLEDGMENTS
This work was supported by the Russian Foundation

for Basic Research (project no. 02-01-00550).

REFERENCES
1. A. F. Sidorov, Prikl. Mat. Mekh. 30, 164 (1966).
2. A. F. Sidorov, Prikl. Mat. Mekh. 32, 369 (1968).
3. V. M. Teshukov, Dynamics of Continuous Medium: Col-

lection of Works (Inst. Gidrodin. Sib. Otd. Akad. Nauk
SSSR, Novosibirsk, 1977), Issue 32, pp. 82–94.

4. S. P. Bautin, Mathematical Theory of Non-Shock Strong
Compression of Ideal Gas (Nauka, Novosibirsk, 1997).

5. T. Levi-Civita, Atti Accad. Naz. Lincei, Cl. Sci. Fis.,
Mat. Nat., Rend. 26, 355 (1937).

6. N. N. Kochina, Prikl. Mat. Mekh. 21, 449 (1957).
7. L. I. Sedov, Similarity and Dimensional Methods in

Mechanics, 10th ed. (Nauka, Moscow, 1987; Academic,
New York, 1959).

Translated by Yu. Vishnyakov



  

Doklady Physics, Vol. 49, No. 1, 2004, pp. 58–63. Translated from Doklady Akademii Nauk, Vol. 394, No. 3, 2004, pp. 332–337.
Original Russian Text Copyright © 2004 by Myasnikov, Zaslavsky, Pergament.

                                     

MECHANICS
Averaging Algorithms for Problems of the Theory
of Elasticity on Rectangular Grids 

Nonconforming to the Structure of a Medium
Academician V. P. Myasnikov, M. Yu. Zaslavsky*, and A. Kh. Pergament**

Received October 3, 2003
In this work, a method of averaging coefficients was
developed for two-dimensional problems of the theory
of elasticity. After averaging, an element of an initially
isotropic medium that has a complex internal structure
can be described by an anisotropic model. This means
that the effective elastic modulus tensor is defined for
each such element to obtain the exact energy functional
for a certain class of functions. The tensor is defined by
means of special basis functions presenting the features
of the medium. As a result, using rectangular grids, we
develop finite difference schemes that are better posed
than schemes on grids adapted to the medium structure.
Test calculations are presented.

1. The most extensively used method of solving
two-dimensional problems of the theory of elasticity
for media with piecewise constant coefficients is the
finite element method [3, 4]. This method has obvious
advantages for static problems. The primary advantage
of the algorithm is its generality and convenient imple-
mentation. Fedorenko et al. [5, 6] proposed the gener-
alization of the algorithm that is called the superele-
ment method and that makes it possible to efficiently
solve problems for media including regions that are
structurally very different. The feature of projection
methods including the superelement method is that they
ensure strong convergence.

Attempts to apply the finite element method to prob-
lems of the theory of elasticity are also of interest.
Algorithms for homogeneous media were constructed
in [7]. The features of realization of the support opera-
tor method for inhomogeneous media on grids adapted
to the medium structure were discussed in [8, 9]. The
fundamental feature of these algorithms is the construc-
tion of the strain tensor. By analogy with the gradient
operator, it is natural to define the distortion tensor.
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However, to construct the difference scheme for the
equations of the theory of elasticity, it is necessary to
construct the strain tensor and use the tensor variant of
the divergence theorem. The convergence of the
method for the constant coefficients was proved both
for the L2 metric and for the uniform metric. If the coef-
ficients are piecewise continuous functions, conver-
gence in Lp norms can be obtained at least with the
same order as convergence in flow norms due to the dif-
ference analogues of the embedding theorems. How-
ever, the use of this method for applied problems is
quite difficult. It is primarily important to have an alter-
native to approximation methods on curvilinear grids in
the presence of narrow zones with contrast parameters.

In this work, we develop an averaging algorithm for
problems of the theory of elasticity that is similar to that
developed by Moskow, Druskin, et al. [1] for a scalar
elliptic equation.

2. We consider the following problem of the theory
of elasticity:

(1)

(2)

(3)

in the two-dimensional domain Ω = [0; 1]2 with the
kinematical boundary conditions u|∂Ω = 0 in an isotro-
pic inhomogeneous medium

We assume that µ > 0 and λ > 0.
In this case, the fundamental feature of the averag-

ing method is a change in the character of the medium.
Indeed, the medium in each cell is isotropic, whereas a
small finite element of the medium contains structural
singularities and is not isotropic. In application to sca-
lar problems, King et al. [2] proposed a method of cal-
culating the effective conductivity tensor for each cell
(upscaling). They applied this algorithm for the case
where the two-dimensional domain consists of structur-

σi j j, f i+ 0,=

σij Λ ijklekl,=

ekl
1
2
--- uk l, ul k,+( )=

Λ ijkl λδijδkl µ δikδjl δilδjk+( ).+=
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ally different rectangles. The algorithm developed by
Moskow, Druskin, et al. seems to be more efficient for
problems where lines separating domains with contrast
coefficients are arbitrarily oriented with respect to the
interfaces.

3. An algorithm for solving this problem is realized
on a Lebedev grid. We consider the Cartesian uniform

grid S = {(ih1; . A subset of S with an even
sum i + j is called the Lebedev P grid. In what follows,
we will also consider the R grid consisting of nodes of
S that are not included in the P grid. We aim to general-
ize the approach proposed in [1] for averaging the
Lamé coefficients λ and µ. We note that the cells of the
P and R grids have the same structure for averaging on
rectangles and are shown in Fig. 1.

We consider that lines of coefficient discontinuities
are so smooth that they can be approximated by a
straight line in each R cell and that the Lamé coeffi-
cients change only along one direction λ = λ(nr), µ =
µ(nr). If the opening of cracks is absent in problems of
the theory of elasticity, σijnj and ui, j mj , where n and m
are the normal and tangent to the interface, are contin-
uous functions. Thus, forces applied to an area tangent
to the interface, as well as displacements, are continu-
ous. Therefore, the corresponding distortion tensor
components are continuous. In what follows, we con-
sider that these quantities are smooth enough to be
approximated by constants.

Numerous investigations show that the order of con-
vergence of the method is determined by the order of
approximating flows in a problem due to the embed-
ding theorems. Derivatives and flows can be approxi-
mated by linear functions. However, linear functions do
not have the necessary properties near interfaces. For
this reason, the representation of a solution of a bound-
ary value problem for the simplest elliptic equation in

the form of the linear shell of vectors 1, mr,  was

proposed in [1]. Consequently, we consider functions
belonging to the linear shell of vectors

jh2 ) } i j, 1=
N

sd
k
-----

0

nr

∫

U1 m
sd

µ
-----, U2

0

nr

∫ n sd
λ 2µ+
----------------

0

nr

∫ ,= =

U3 = m mr( ) n
λ sd

λ 2µ+
----------------, U4

0

nr

∫–  = m nr( )– n mr( ),+

U5 m, U6 n,= =

u L H( )∈ span U1 m
sd

µ
-----, U2

0

nr

∫=




n
sd

λ 2µ+
----------------,

0

nr

∫= =
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We determine six components of the effective elastic

modulus tensor  by equating the continuous and
discrete energies in each cell for vectors from L(H).
Since U5 and U6 represent motion of a body as a whole
and U4 represents its rotation about the z axis, they cor-
respond to zero strain. Thus, we obtain six equations for

six components :

(4)

The left-hand side of Eq. (4) for different α and β has
the form of the symmetric 3 × 3 matrix

and  in Eq. (4) are the simplest approximations
of expressions (3) by the central differences for the vec-

U3 m mr( ) n
λ sd

λ 2µ+
----------------,

0

nr

∫–=

U4 m nr( )– n mr( ), U5+ m, U6 n= = =




.

Σijkl
H

Σijkl
H

Λ ijkleij
α
ekl

β Vd

H

∫ H Σijkl
H

eh ij,
α

eh kl,
β ,=

α β, 1 2 3., ,=

Vd
µ

------

H

∫ 0 0

0 Vd
λ 2µ+
----------------

H

∫ 0

0 0 4µ λ µ+( ) Vd
λ 2µ+

--------------------------------

H

∫
 
 
 
 
 
 
 
 
 
 
 
 
 

,

eh ij,
α

1

2

3

4

5

6

7

8

µ = 0
µ ≠ 0

Fig. 1. Solid lines are the interface and P cell; dashed and
dash–dotted lines are rectangular and rhombic R cells,
respectively.
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tor Uα in the cell H. For example,

Thus, the stress tensor is approximated as

(5)

The stress-tensor divergence in a cell of the P grid is
also approximated by the central differences:

(6)

Thus, the finite-difference problem has the form

(7)

where  = .

A difference analogue of the energy norm for tensor
quantities can be defined on the basis of relation (4).
Then, divergence in relation (7) can be constructed by
a method similar to the support operator method, i.e.,
on the basis of the difference analogue of the diver-
gence theorem, in vector form:

(8)

where

In this case, the strain tensor serves as a gradient.
Let the difference approximation of the first and sec-

ond terms of Eq. (8) have the form

,

respectively. Then, divergence (6) satisfies the identity

(9)

eh 12,
α 0.5 Uα 2( ) Uα 4( )–

h1
------------------------------------ Uα 1( ) Uα 3( )–

h2
------------------------------------+ 

  .=

σh ij,
H Σijkl

H
eh kl,

H .=

divhσh ij,  = 
σh i1, 6( ) σh i1, 8( )–

h1
--------------------------------------------

σh i2, 5( ) σh i2, 7( )–
h2

--------------------------------------------.+

divhσh ij, f i
P+ 0,=

f i
P 1

H
------- f i

H

∫

U V,( )Λ divσ U( ) V,( )0+ 0,=

U V,( )Λ σij U( )eij V( ),

Ω
∫=

divσ U( ) V,( )0 σi j j, U( )v i.

Ω
∫=

U V,( )Σ
1
2
--- H σh ij,

H U( )eh ij,
H V( ),

H R∈
∑=

divσ U( ) V,( )P
1
2
--- H divhσh ij,

H U( )v i

H P∈
∑=

U V,( )Σ divσ U( ) V,( )P+ 0.=
The resulting expression for the flow has the
approximation order O(1) near a discontinuity and O(h)
in all other cells; i.e., it has the standard properties of
such schemes. However, the advantage of this scheme
is that it exactly approximates the energy integral for
functions from L(H), which can be substantial for esti-
mation of the accuracy and convergence rate in the
energy norm.

4. The method of coefficient averaging over rectan-
gles discussed above has one substantial demerit. The

elements of the resulting tensor  can tend to infinity
if µ tends to zero in a certain corner cell of the R grid
such that each of the central differences “does not
include” the small µ value (Fig. 1). Thus, when µ tends
to zero, the condition number of the resulting matrix of
the system increases. Therefore, its inversion requires
large CPU time.

If µ = 0 in a certain subdomain of Ω , i.e., the domain
is partially filled with water, the general problem loses
uniqueness and can be solved under additional assump-
tions. In this case, the above algorithm has a number of
difficulties for µ tending to zero.

One of the possible methods of solving this problem
is to add a rectangular domain to each node of the P
grid and a rhombus to each R node (Fig. 1). In this case,
intersection of the interface with a cell affects at least
one central difference in the R cell.

Let the interface intersect the line 2–4. If µ tends to
zero, expressions on the left-hand side of Eqs. (4) tend
to infinity. We note that a solution of problem (1)–(3)
remains limited when µ tends to zero; i.e., this is only a
feature of the behavior of the basis functions. Displace-
ments in the problem remain finite. The system must be

normalized to obtain the tensor . It is appropriate
first to divide both sides of Eq. (4) for α = β = 1 by

 and then to divide both sides of Eq. (4) for

α = 1, β = 2 and α = 1, β = 3 by .

We note that this normalization in the method under
consideration allows averaging of coefficients in a cell
partially filled with water (µ = 0). Any similar normal-
ization is absent for the method of coefficient averaging
on rectangles.

Similarly to the method of coefficient averaging on
rectangles, the stress tensor divergence is approximated
according to the difference analogue of the integral

Σijkl
H

Σijkl
H

Vd
µ

------

2

4

∫ 
 
 

2

Vd
µ

------

2

4

∫
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Fig. 2. Parameters (upper numbers) λ and (lower numbers) µ in the (from left to right) first, second, and third tests.
identity, where its two terms are approximated as

5. We consider the convergence of the resulting
algorithm. Let

U = (u1, u2) ∈ HL, 

where

HL = {U: ui ∈ H1(Ω), σijnj ∈ H1(Ω), ui, jmj ∈ H1 (Ω)}

with the norm

.

The space H1(Ω) is a vector space, and the norm in this
space is the sum of the norms of all components:

The seminorm in the space HL is defined as

U V,( )Σ H σh ij,
H

eh ij,
H ,

H R∈
∑=

divσ U( ) V,( )P
1
2
--- H divhσh ij,

H ui.
H P∈
∑=

U
H

L
2 U

H
L

2 U
H

L
2+=

U
H

L
2 u1

2 u2
2 ∂u1

∂x
-------- 

 
2 ∂u1

∂y
-------- 

 
2

+ + +

Ω
∫=

+
∂u2

∂x
-------- 

 
2 ∂u2

∂y
-------- 

 
2

.+

U
2

H
L σijn j( )2 ui j, m j( )2+

i

∑
Ω
∫=

+ σijn j( ), k
2 ui j, m j( ), k

2 ,+
i k,
∑
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where m and n are tangents to the coordinate lines of
the vector (vector n is perpendicular to discontinuities).
Interfaces are implied to coincide with coordinate lines
in the common curvilinear coordinates for the entire
domain.

The following lemma will be necessary.

Lemma 1. For w ∈ H1(H), where H is a cell of the
R grid, there is a constant C1 such that 

This lemma follows from the standard properties of
approximation of functions from H1 .

Using this lemma, one can easily prove the approx-
imation theorem. We recall that interfaces are approxi-
mated by straight lines in each R cell.

Theorem 1. For each cell of the R grid H and vector
U ∈ HL(H), there is a vector dHU ∈  L(H) such that

(10)

(11)

Then, similarly to [1], one can prove first-order
weak convergence of the constructed algorithm.

Theorem 2. For solution U ∈ HL(Ω) of the problem
specified by Eqs. (1)–(3) and solution Uh of the differ-
ence problem specified by Eqs. (5)–(7), there is a con-
stant C such that

for all V ∈ HL(Ω).
6. The constructed algorithm was tested on several

problems. The distribution of the Lamé coefficients for
them is shown in Fig. 2. The distribution of mass forces
for all tests was symmetric with respect to the y = x
straight line. Tables 1–3 show errors in various norms
for both components of displacement in three tests. Fig-

w C1–
L

2
H( )

Ch w
H

1
H( )

.≤

U dHU–
H

1
H( )

Ch U
H

L
H( )

,≤

U dHU–
L

2
H( )

Ch2 U
H

L
H( )

.≤

U Uh– V,( )Σ Ch U
H

L Ω( )
F

L
2 Ω( )

+( ) V
H

L Ω( )
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Fig. 3. Distribution of ux and uy in the third test.
ure 3 shows the distribution of the displacement com-
ponents ux and uy for the third test.

According to theoretical notions, the averaging
algorithm is expected to have accuracies O(h) and O(h2)
in the energy norm and L2 norm, respectively. Calcula-
tions show that moderately fine grids provide conver-
gence of the order higher than the first order both in the
C norm and in L2 norm. Second-order convergence is
obtained in the second test.
Table 1.  Errors for the method of coefficient averaging on rectangles in the first test

N 10 20 40 80

||u1 – uh, 1||C 0.00617955 0.00097876 0.000389107 0.000145658

||u2 – uh, 2||C 0.00617955 0.00097876 0.000389107 0.000145658

||u1 – uh, 1 0.00185951 0.000326695 0.000105144 3.3037 × 10–5

||u2 – uh, 2 0.00185951 0.000326695 0.000105144 3.3037 × 10–5

||L2

||L2

Table 2.  The same as in Table 1 but for the second test

N 10 20 40 80

||u1 – uh, 1||C 0.00492401 0.000404645 0.000162193 6.76203 × 10–5

||u2 – uh, 2||C 0.00194423 0.000404349 0.000245959 6.80619 × 10–5

||u1 – uh, 1 0.000942086 0.000115963 3.34685 × 10–5 8.17713 × 10–6

||u2 – uh, 2 0.000532591 0.000110067 3.3949 × 10–5 7.85302 × 10–6

||L2

||L2

Table 3.  Errors for the method of coefficient averaging on rhombuses in the third test

N 20 40 80 160 320

||u1 – uh, 1||C 0.0345951 0.00417366 0.00224269 0.00125584 0.00078656

||u2 – uh, 2||C 0.0345951 0.00417366 0.00224269 0.00125584 0.00078656

||u1 – uh, 1 0.0061631 0.00090232 0.000437141 0.000206399 9.50053 × 10–5

||u2 – uh, 2 0.0061631 0.00090232 0.000437141 0.000206399 9.50053 × 10–5

||L2

||L2
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The support operator method on adapted grids theo-
retically has the same accuracy. However, when the
grid is considerably deformed, the maximum principle
for a difference problem can be violated for the support
operator method, and, therefore, the scheme is not
monotonic. This difficulty can be overcome by using
rectangular grids in the averaging method. The averag-
ing method is primarily preferable over both the sup-
port operator method and finite element method for
problems where the Lamé coefficients considerably
differ from each other in a narrow domain (crack).
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The swing problem is undoubtedly among the clas-
sical problems of mechanics. Practice has shown that,
to set a swing into motion, one should squat when the
swing is in the limit positions and stand erect in the
middle vertical position, i.e., execute oscillations with
double the natural frequency of the swing. To sustain
the oscillations of the swing, the frequency of squatting
can be halved. Nevertheless, a clear and complete,
qualitative and quantitative, analysis of setting the
swing into motion is absent in papers on oscillations
and stability.

The simplest model of the swing [1–4] is described
by oscillations of a massless rod with a concentrated
mass periodically sliding without friction along the rod
axis. This model also describes oscillations of a pendu-
lum whose length varies periodically with time (Fig. 1).
The mass displacement amplitude or variation in pen-
dulum length is assumed to be small. Moreover, small
viscous friction due to air resistance is taken into
account in this study. The periodic excitation function
may be arbitrary. Asymptotic formulas for domains of
instability (parametric resonance) in the three-dimen-
sional parameter space that correspond to setting the
swing into motion are derived and analyzed. The
method of solving the problem is rigorous, because it is
directly based on an analysis of the behavior of Floquet
multiplicators. Some examples are presented.

1. The equation of motion of a swing (variable-
length pendulum) [1, 2] with allowance for viscous
friction has the form

(1)

where m is the mass, l is the length, θ is the angle of the
pendulum deflection from the vertical, γ is the coeffi-
cient of viscous friction due to air resistance, and g is
the gravitational acceleration. The dot refers to the
derivative with respect to time t. It is assumed that the

ml2θ̇( )
.

γl
2θ̇ mgl θsin+ + 0,=
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pendulum length varies as

(2)

where l0 is the mean length of the pendulum; a and
Ω are the excitation amplitude and frequency, respec-
tively; and ϕ(τ) is an arbitrary smooth periodic function
with a period of 2π and zero mean value, i.e.,

(τ)dτ = 0. The amplitude a and the friction coeffi-

cient γ are assumed to be small. It is necessary to deter-
mine the parameters at which the trivial equilibrium
position θ = 0 of the system becomes unstable, which
leads to setting the swing into motion.

We introduce the dimensionless variables and
parameters

(3)

Then, Eq. (1) can be written in the form of the system

l l0 aϕ Ω t( ),+=

ϕ
0

2π

∫

τ Ω t, ε a
l0
---, β γ

m
----

l0

g
---, ω 1

Ω
---- g

l0
---,= = = =

x1 θ, x2
l2θ̇
l0
2Ω

--------.= =

l

m

Fig. 1. Swing.
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of first-order equations

(4)

(5)

In these variables, the requirement of smoothness of the
periodic function ϕ(τ) can be weakened and the func-
tion can be piecewise continuous.

The right-hand sides of Eqs. (4) are nonlinear func-
tions of the vector x = (x1, x2) and periodic functions of
τ with a period of 2π. Equations (4) and (5) depend
explicitly on three independent parameters ω, ε, and β.
The last two parameters are assumed to be small:

(6)

We will determine the domains of instability of the triv-
ial solution x = 0 (parametric resonance domains) in the
three-dimensional space of the parameters p = (ε, β, ω).

2. In accordance with the Lyapunov theorem, the
stability and instability of the nonlinear system of
Eqs. (4) and (5) can be determined from the linear
approximation [5]. Linearization of system (4) results
in the equations

(7)

(8)

The fundamental, or evolution, matrix X(t) of sys-
tem (7) is determined from the differential matrix equa-
tion with the initial condition

(9)

where I is the identity matrix. The monodromy (Flo-
quet) matrix is defined by the equality F = X(T) [5, 6].
To study the stability of the linear system of Eqs. (7)
and (8), we will use the Floquet theorem, which states
that a linear system with periodic coefficients is stable
if the absolute values of all eigenvalues ρ (multiplica-
tors) of the monodromy matrix F are less than unity,
and it is unstable if at least one multiplicator is greater
than unity in absolute value.

Let the monodromy matrix F0 = F(p0) be known for
a certain n-dimensional parameter vector p0. If the

dx1

dτ
--------

l0

l
--- 

 
2

x2,=

dx2

dτ
-------- ω2 l

l0
--- 

  x1 βωx2,–sin–=

l
l0
--- 1 εϕ τ( ).+=

ε a
l0
---  ! 1, β γ

m
----

l0

g
---  ! 1.= =

ẋ Gx,=

G 0 1 εϕ τ( )+[ ] 2–

ω2 1 εϕ τ( )+[ ]– βω–
.=

Ẋ GX, X 0( ) I,= =
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parameter vector changes as p = p0 + Dp, the matrix G
and, therefore, X(t) gain increments. Correspondingly,
the monodromy matrix F changes. In [7, 8], the first and
second derivatives of the monodromy matrix with
respect to the parameters were represented in terms of
integrals over the period:

(10)

(11)

here the subscript 0 implies that the corresponding
quantity is taken as p = p0. We note that, for calculating
derivatives (10) and (11), only the evolution matrix
X0(t) and the derivatives of the matrix G with respect to
the parameters calculated at p = p0 must be known. The
monodromy matrix increment can be written in terms
of derivatives (10) and (11):

(12)

Knowing the derivatives of the monodromy matrix, one
can calculate this matrix in the vicinity of the point p0
and, hence, estimate the behavior of the multiplicators
(eigenvalues of the monodromy matrix F) responsible
for the stability of system (7) when the parameters are
varied.

Setting ε = 0 and β = 0 in Eqs. (7) and (8), we can
easily obtain the evolution matrix and its inverse matrix
from Eqs. (9):

(13)

Thus, at ε = 0 and β = 0, the monodromy matrix

∂F
∂pk

-------- F0 X0
1– ∂G
∂pk

--------X0 τ , kd

0

T

∫ 1 2 … n;, , ,= =

∂2F
∂pi∂ p j

---------------- F0 X0
1– ∂2G
∂pi∂ p j

----------------X0 τd

0

T

∫=

+ X0
1– ∂G
∂ pi

--------X0 X0
1– ∂G
∂ p j

--------X0 ζd

0

T

∫ 
 
 

τd

0

T

∫

+ X0
1– ∂G
∂p j

--------X0 X0
1– ∂G
∂pi

--------X0 ζd

0

T

∫ 
 
 

τd , i j, 1 2 … n,, , ,=

0

T

∫

F p0 ∆p+( ) F0
∂F
∂pk

--------∆ pk

k 1=

n

∑+=

+
1
2
--- ∂2F

∂ pi∂p j

----------------∆ pi∆ p j

i j, 1=

n

∑ … .+

X0 t( ) ωtcos ω 1– ωtsin

ω ωtsin– ωtcos
,=

X0
1– t( ) ωtcos ω– 1– ωtsin

ω ωtsin ωtcos
.=
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takes the form

(14)

The eigenvalues (multiplicators) of the matrix are as
follows:

(15)

For all values ω ≠ , k = 1, 2, …, the multiplicators are

complex conjugate and lie on the unit circle (stability).
Since TrG = 0 for the system of Eqs. (7) and (8) for
β = 0, the corresponding characteristic equation is
reciprocal [4–6]. For this reason, under small variations
of the parameters ω and ε, simple multiplicators cannot
leave the unit circle. We will show that the presence of
friction (β > 0) results in the asymptotic stability of the
system in this case.

Using Eqs. (8), (10), and (12)–(14), we obtain the
following approximate expression for the monodromy
matrix F including the terms of the order β:

(16)

where F0 is determined in Eq. (14) and

(17)

From Eqs. (16) and (17), we obtain

(18)

Since the monodromy matrix determinant is equal to
the product of two complex-conjugate multiplicators,
|ρ1, 2| < 1 follows from Eq. (18) at fairly small values of
β > 0, which implies asymptotic stability.

Therefore, instability (parametric resonance) can
occur only near the points

(19)

where the multiplicators are doubled.
For determining the parametric resonance domains,

the monodromy matrix F near the points p0 is expanded

in a Taylor series in the parameters ε, β, and ∆ω = ω – :

. (20)

F0 X0 2π( ) 2πωcos ω 1– 2πωsin

ω 2πωsin– 2πωcos
.= =

ρ1 2, 2πωcos i 2πω.sin±=

k
2
---

F F0 I Aβ+( ),=

A

4πωsin
4

------------------- πω–
2πωsin

2

2ω
--------------------

ω 2πωsin
2

2
------------------------- 4πωsin

4
------------------- πω––

= .

detF detF0det I Aβ+( ) 1 βTrA o β( )+ += =

=  1 2πβω– o β( ).+

p0: ε 0, β 0, ω k
2
---, k 1 2 …,, ,= = = =

k
2
---

F p( ) F p0( ) ∂F
∂ε
------ε ∂F

∂β
------β ∂F

∂ω
-------∆ω …+ + + +=
Using Eqs. (8), (13), and (14), we calculate the deriva-

tives , , and  at p = p0 from formulas (10). As

a result, the expression

(21)

correct to first-order terms is obtained from Eq. (12).
Here,

(22)

are the Fourier coefficients of the function ϕ(τ).
Approximate expressions for the multiplicators of

matrix (21) are determined in the form

(23)

(24)

The system is unstable if at least one of the multiplica-
tors is less than unity in absolute value [5, 6]. For β < 0,
this condition is fulfilled and the system is unstable. For

β ≥ 0, this condition is fulfilled only when  > βk.

Thence, in view of Eq. (24), the domain of instability
(parametric resonance) lies inside the half-cone

(25)

joining with the β < 0 half-space (Fig. 2). This inequal-
ity can also be represented in the more convenient form

(26)

Hence, in particular, the kth resonance domain depends
only on the kth Fourier coefficients of the periodic exci-
tation function. We note that formulas (25) and (26) are
the first-order approximations for the instability
domains. For ak = 0 and bk = 0, rk = 0, and the first-order

∂F
∂ε
------ ∂F

∂β
------ ∂F

∂ω
-------

F p( )

= πk
1

3
4
---kπbkε

1
2
---kπβ–+

4
k
---π∆ω 3

2
---πakε–

kπ∆ω–
3
8
---k2πakε– 1

3
4
---kπbkε–

1
2
---kπβ–

cos

ak
1
π
--- ϕ τ( ) kτ τ ,dcos

0

2π

∫=

bk
1
π
--- ϕ τ( ) kτ τ , kdsin

0

2π

∫ 1 2 …, ,= =

ρ1 2, 1–( )k 1
1
2
---kπβ– 

  π D,±=

D k2rk
2ε2 2∆ω( )2, rk–

3
4
--- ak

2 bk
2

+ .= =

D
1
2
---

k2β2

4
---------- 4 ω k

2
---– 

 
2

k2rk
2ε2, β 0,≥<+

β
2
--- 

 
2

2ω
k

------- 1– 
  2

rk
2ε2, β 0.≥<+
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approximations degenerate to the straight line β = 0 and

ω = . In this case, to determine the resonance domain

more accurately, higher order approximations should
be used. This can also mean that the corresponding res-
onance domain is empty.

Setting β = 0 in Eq. (25), we obtain the parametric
resonance domains in the absence of friction:

(27)

The section of cone (25) by the plane β = const,
β ≥ 0 gives a parametric resonance domain bounded by
a hyperbola (Fig. 3). The asymptotes of the hyperbola
are determined from inequalities (27). In the presence
of friction (β > 0), the minimum amplitude of reso-

nance excitation is equal to εmin =  according to

Eq. (25).
The section of domain (25) by the plane ε = const

represents a semiellipse with the semiaxes  =

 and β = 2rkε (Fig. 4). We note that the resonance

domain in the frequency ω shrinks with an increase in
the friction coefficient β and disappears at β > 2rkε.

We will analyze the behavior of the resonance
domains with an increase in the resonance number k. It
is known that, if a periodic function ϕ(τ), together with
its sth-order derivatives, is continuous, the Fourier
coefficients ak and bk behave as akks + 1 → 0 and
bkks + 1 → 0 for k → ∞. Therefore, for continuously dif-
ferentiable functions, the quantities krk tend to zero for
k → ∞. This means that cone (25) shrinks when k
increases. Moreover, the minimum amplitude εmin =

 of resonance excitation increases without bound

when k increases at a fixed β value. Owing to this
behavior, it is easier to set a swing into motion at the
lower resonances k = 1 and 2, whereas large excitation
amplitudes and forces must be applied to achieve reso-
nance for higher k values.

From Eqs. (3) and (19), we obtain that setting a
swing into motion occurs at the excitation frequencies
Ω near to the critical values

. (28)

We note that the quantity  is the natural frequency

of a pendulum with the mean length l0 . According to

k
2
---

krk

2
-------–

ω k/2–
ε

------------------
krk

2
-------.< <

β
2rk

-------

ω k
2
---–

krkε
2

----------

β
2rk

-------

Ωk
2
k
--- g

l0
---, k 1 2 …, ,= =

g
l0
---
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Eq. (26), the corresponding resonance domains are
described by the expressions

(29)

This formula is similar to the expression obtained in [9]
for the instability domains of a pendulum with a verti-
cally oscillating suspension point and differs from the
latter by the dependence of the right-hand sides of the
inequalities on the resonance number k. This difference
can apparently be attributed to the fact that the equation
of oscillations of the pendulum with the oscillating sus-
pension point involves an acceleration proportional to
the square of the excitation frequency.

3. As an example, we will consider oscillations
excited by the periodic piecewise constant function

(30)

γ2l0

4gm2
------------- Ω

Ωk

------ 1– 
  2 rk

2a
2

l0
2

----------.<+

ϕ τ( )
1, 0 τ π≤ ≤

1, π τ 2π.≤<–



=

ε

ω
β

0 k/2

Fig. 2. Domains of instability (parametric resonance).

Fig. 3. Section of the instability domain by the β = const
plane.

Fig. 4. Section of the instability domain by the ε = const
plane.

ε

ω

β

0 k/2

2rk

ω

2rkε

0 k/2

β
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For this function, we have

(31)

Thus, all even resonance domains are degenerate in
the first approximation, while odd domains are
described by formula (29). Substituting γ = 0, k = 1, and

rk =  into Eq. (29), we obtain the following formula

for the first resonance domain of the frictionless system
with the piecewise constant excitation function (30):

(32)

This result coincides with that obtained in [1] [for-
mulas (4.74)–(4.76) in that study] if Ω = 2ω0 + ∆Ω is
substituted into Eq. (4.74) from [1] and the approxi-
mate equality

is used. This also coincides with the result obtained
in [3] in a more complicated form.

For ϕ(τ) = cosτ – sin2τ, we obtain a1 = 1, b2 = –1,

a2 = b1 = 0, and r1 = r2 =  and ak = bk = rk = 0, k = 3,

4, …. Thus, all resonance domains are degenerate,
except for the first and second ones.

In accordance with Eqs. (28) and (29), we obtain the
following inequality for the first resonance domain:

(33)

a2k 1– 0, b2k 1–
4

π 2k 1–( )
-----------------------,= =

r2k 1–
3

π 2k 1–( )
-----------------------,=

a2k 0, b2k 0, r2k 0,= = =

k 1 2 … ., ,=

3
π
---

2 g
l0
--- 1 3a

πl0
-------– 

  Ω 2 g
l0
--- 1 3a

πl0
-------+ 

  .< <

πω0

2Ω
---------tan 1 π∆Ω

4ω0
------------+≈

3
4
---

γ2l0

4gm
2

------------- Ω
2 g/l0

---------------- 1– 
  2 9a

2

16l0
2

----------.<+
In the absence of air resistance (γ = 0), hence follows
the relation

(34)

for the first resonance domain. Similar expressions can
be obtained for the second resonance.
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