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Propagation of shock waves in a bubble liquid has
been investigated in detail both theoretically and exper-
imentally [1–4]. It has been shown that oscillating
shock waves are generated in the bubble liquid, and
both the evolution and structure of these waves have
been studied in detail. The effect of both heterogeneity of
a gas–liquid mixture and liquid compressibility on the
structure of a pressure wave was investigated in [5, 6].
The structure and attenuation of moderate-amplitude
pressure waves both in a liquid containing bubbles of
two different gases and in stratified bubble media were
studied experimentally in [7, 8]. Generation of high-
power pressure pulses by spherical bubble clusters was
investigated numerically in [9]. Interaction of a plane
shock wave with a spherical bubble cluster in a liquid
was studied experimentally in [10].

This paper concerns experimental investigation of
the evolution and structure of a moderate-amplitude
shock wave in a liquid containing spherical bubble
clusters.

The experiments were carried out in a shock tube
[10]. Its working section was a vertical thick-walled
steel tube with an inner diameter of 53 mm and a length
of 1 m. A thin stainless-steel wire (1 mm in diameter)
was stretched along the working-section axis. The
working section was partially filled with a liquid (dis-
tilled water) under vacuum conditions, which prevented
the appearance of bubbles in the liquid. Water in the
working section was saturated with air until equilib-
rium at room temperature and atmospheric static pres-
sure. Five bubble clusters (foam-rubber balls 30 mm in
diameter filled with a bubble liquid) were put on the
wire through their centers. The upper end of the upper
cluster was situated in the liquid at a depth of 10 mm.
The centers of the other clusters were situated exactly
opposite the corresponding pressure sensors D2–D5.
The D1 sensor measured the profile of an air shock
wave entering the medium. The method of preparing
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the bubble clusters was described in [10]. Air bubbles
in the clusters were 0.1–0.5 mm in diameter [10].

Step-shaped pressure waves were generated in air
by breaking a diaphragm, which separated a high-pres-
sure chamber and the working section, and then propa-
gated into the liquid. Pressure-wave profiles were mea-
sured by piezoelectric pressure sensors (D1–D5). Sig-
nals generated by the sensors were transmitted to a
digitizer and then processed on a computer.

Figure 1 shows the time profiles of pressure waves
at different distances X from the entry of the shock
wave into the medium. Here, ∆P0 is the amplitude of
the shock wave entering the medium, which is equal to
the amplitude of the air shock wave reflected from the
liquid surface (Fig. 1, ï < 0). In addition, ∆Pm is the
amplitude of the first pressure-wave oscillation in the
liquid, and P0 is the initial static pressure in the
medium. Amplitudes of the waves and the time scale
are shown above and below the profiles, respectively.
One can see that the initial step-shaped wave has
already been transformed into an oscillating shock
wave at the second bubble cluster (Fig. 1, ï = 0.105 m).
As in a homogeneous bubble mixture [3], the amplitude
of the first oscillation is as large as one and a half times
the mean pressure in a small-amplitude wave. In Fig. 1
(ï = 0.205 and 0.305 m), the shape of the first oscilla-
tion of the shock wave (line 1) is compared with the
shape of the same-amplitude soliton (line 2) calculated
from the Boussinesq equation for the gas–liquid
medium. This soliton is described by the relations [3]

(1)

where ∆tB is the half-width of the calculated soliton,
while β and B are coefficients of dispersion and nonlin-
earity, respectively. If the gas–liquid medium has a
cluster structure and the gas temperature in the bubbles
is constant, these coefficients are expressed as [11]
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Fig. 1. Evolution of a shock wave in a clustered gas–liquid medium according to (1) experimental data and (2) calculations by rela-
tions (1) for P0 = 0.101 MPa, ϕ0 = 7.5%, and ϕc = 9.8%.
Here, ϕc is the volume fraction of the gas bubbles in a
cluster, ϕ0 is the volume fraction of clusters in the
medium, R is the cluster radius, and ρ1 and ρ2 are the
densities of the liquid and gas, respectively.

In contrast to a homogeneous bubble medium, dis-
persion in a clustered gas–liquid medium is determined
by both the cluster radius R and volume fraction ϕ0 of
clusters in the medium [11]. As in homogeneous bubble
media [3], the shape of the first oscillation of a small-
amplitude shock wave is close to the shape of soliton (1).
The difference between the experimental profile and
calculated soliton shape can be attributed to two causes.
First, the formation of the oscillating shock wave is
possibly not completed at the distances under consider-
ation. Second, the long-wave approximation for the
Boussinesq equation describing gas–liquid media is
violated under the experimental conditions. Indeed, this
approximation requires that the wavelength must be
much longer than both the cluster dimension and dis-
tance between the clusters.

The duration of oscillations in the oscillating shock
wave decreases with both a decrease in the initial gas
volume fraction in a cluster and an increase in the
amplitude of a wave entering the medium. At the same
time, the duration of oscillations in a homogeneous
bubble medium is independent of the gas volume frac-
tion and determined only by the bubble dimension and
wave amplitude [3]. The formation of a precursor ahead
of the main signal represents a characteristic feature
of large-amplitude waves. Apparently, the precursor is
formed by high-frequency pulsations, which are gen-
erated by nonlinear cluster vibrations in a liquid and
whose velocities are higher than that of the main
wave.

The velocity of a shock wave in the clustered gas–
liquid medium was measured as a function of the wave
amplitude. This velocity was determined by using
arrival times of the first-oscillation peak at two neigh-
boring sensors (D3 and D4) and the distance between
them. It is shown that the isothermal approximation for
the velocity of a shock wave in a homogeneous bubble
medium [3] agrees well with the experimental data.
Indeed, the duration of the leading edge of an oscillat-
ing shock wave is much longer than the estimate τ0 =

 [4] for the gas thermal relaxation time, where a

is the thermal diffusivity of the gas in bubbles. Conse-
quently, the behavior of the gas in bubbles at the leading
edge of the wave is close to isothermal.

Open circles and crosses in Fig. 2 show the ampli-
tude dependence of the half-width measured for the
first oscillation of the shock wave propagating in a clus-
tered gas–liquid medium for different medium para-
meters.
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Similar to the Boussinesq soliton, this half-width is
determined as the wave duration from 0.42∆Pm to the
first-oscillation pressure maximum ∆Pm . The wave
half-width was measured only by the sensors situated
opposite the third and fourth clusters with respect to
the wave entry into the medium, i.e., when the oscil-
lating shock wave was virtually formed. Curves 2 and
5 show the soliton half-widths calculated by Eqs. (1).

Both for small wave amplitudes  ≤ 1  and for

homogeneous bubble media, calculation by Eqs. (1)
agrees with experimental data obtained for the corre-
sponding parameters of the medium (open circles and
curve 2, crosses and curve 5). As was noted above, the
difference between experimental and calculated data
is attributed to both unsteady wave behavior and vio-
lation of the long-wave approximation in the experi-
ments.

As was shown in [12], the half-width of solitary

waves with an amplitude of  ≥ 5 in a homogeneous

bubble medium is close to 0.5∆tB. The experimental

points for the amplitude  ≥ 5 (open circles in

Fig. 2) also agree well with calculated line 3 (∆t =
0.5∆tB). For comparison, experimental data [10] for the
half-width of a solitary wave formed in a liquid by a
single cluster with the same dimension are shown by
solid circles in Fig. 2. One can see that the duration of
the first oscillation of the shock wave in the clustered
gas–liquid medium (open circles) is equal to the dura-
tion of the solitary wave formed by the single cluster in
the liquid (solid circles) for the same parameters of the
medium and wave.

As is known, in a homogeneous bubble liquid, pres-
sure oscillations in an oscillating shock wave are
damped behind its leading edge [3] due to dissipative
losses in the medium. Figure 3 shows the structure of
the moderate-amplitude oscillating shock wave in a
clustered gas–liquid medium. Instead of damped oscil-
lations, an increase in the amplitude of pressure oscilla-
tions is observed behind the leading edge of this wave.
This effect can be caused by “resonant” cluster vibra-
tions in the liquid. Indeed, at definite parameters of the
medium and wave, three neighboring clusters oscillate,
so that two extreme clusters are in phase with each
other and in antiphase with the middle cluster. As a
result, the amplitude of pulsations of the middle cluster
and, consequently, the amplitude of shock-wave oscil-
lations increase.

Thus, the velocity and structure of moderate-ampli-
tude shock waves in a liquid containing spherical bub-
ble clusters have been measured and compared with the
corresponding theoretical results. The Boussinesq
equation has been shown to adequately describe the

∆Pm

P0 
----------



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∆Pm
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structure of the leading edge of a small-amplitude oscil-
lating shock wave. It has been found that the resonant
interaction between bubble clusters in the shock wave
can increase the amplitude of oscillations.
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Fig. 2. Amplitude dependence of the half-width of the pres-
sure wave: the experimental data for (open circles) ϕ0 =
7.5% and ϕÒ = (8.4–9.8)%, (crosses) ϕ0 = 7.5% and ϕÒ =
0.38%, and (solid circles) a single cluster with ϕÒ = 12%;
the calculations by relations (1) for ϕÒ = (1) 9.1 and
(3) 0.38% and (2) by the formula ∆t = 0.5∆tB .
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Fig. 3. Structure of a moderate-amplitude oscillating shock
wave in a clustered gas–liquid medium for ϕ0 = 11.3%, ϕÒ =
10.8%, and ∆P0 = 0.81 MPa.
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We develop a mathematical model of a detonation
flow of coal particles suspended in oxygen which takes
into account the difference of temperatures and veloci-
ties in different phases, nonequilibrium devolatiliza-
tion, and homogeneous and heterogeneous reactions of
ignition and combustion. The model is verified by
experimental data on both the steady-state detonation
velocity as a function of the concentration of suspended
particles and the delay time of particle ignition as a
function of the Mach number of a passing shock wave.
The ignition of bituminized coal in shock waves is ana-
lyzed in this model. It is shown that the ignition stage
proceeds completely under the conditions of both tem-
perature and velocity nonequilibrium in the mixture.
We reveal the considerable effect of heating of particles
due to deceleration temperature, which determines the
dynamics of devolatilization and, therefore, ignition
delay time. Calculation of flow structures behind shock
and detonation waves is exemplified.

INTRODUCTION

Study of shock wave processes in a gas with sus-
pended coal dust is of both theoretical and practical
interest in connection with the catastrophic conse-
quences of explosion and detonation phenomena in
coal mines. As was experimentally shown in [1], heter-
ogeneous detonation waves can be initiated and propa-
gate in mixtures of coal dust with air and oxygen. The
mechanics of heterogeneous media including devolatil-
ization and oxidation of volatiles and combustion of a
coke residue was theoretically analyzed in [2] in the
one-velocity two-temperature approximation. That
analysis agrees with experimental data [1] on the
dependence of the detonation velocity on the initial
concentration of coal particles in a mixture. Analysis of
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nonequilibrium processes in steady-state detonation
waves reveals a large difference between the character-
istic times of pyrolysis and the combustion of volatiles,
the thermal relaxation of phases, and surface combus-
tion of particles. At the same time, devolatilization
duration is comparable with the characteristic time of
velocity relaxation.

To obtain detonation initiation criteria, it is neces-
sary to correctly take into account ignition conditions
for particles. In high-velocity gas flows behind detona-
tion waves, these conditions differ from both static con-
ditions of slow heating and conditions behind reflected
shock waves. Experimental ignition delay times of coal
dust particles 50–70 µm in size in passing shock waves
[3] show that the ignition delay stage proceeds com-
pletely in the velocity-nonequilibrium mixture. Blow-
ing of a particle by a flow affects the thermal dynamics
of the particle due to both intensification of convective
heat transfer (increase in the Nusselt number) and an
increase in gas temperature in the boundary layer of the
particle when the flow is decelerated. On the other
hand, emitted volatiles under blowing burn beyond a
“reduced” film adjacent to the particle [4]. Therefore,
the heat flux from combustion of volatiles to the parti-
cle decreases, and combustion products are carried
away by the flow and do not impede the inflow of an
oxidant to the particle surface. A strong decrease in
experimental ignition delay times in coal dust clouds
(1–40 µm) in passing shock waves with respect to igni-
tion in reflected shock waves was observed in [5].

To investigate the fine detonation structure of gases
with suspended coal dust, including factors determin-
ing ignition, a semiempirical physical–mathematical
model is developed by using the two-velocity two-tem-
perature approximation of the mechanics of heteroge-
neous media.

CONSISTENT PHYSICAL–MATHEMATICAL 
MODEL OF THE IGNITION AND DETONATION 

OF COAL DUST SUSPENDED IN A GAS

Basic equations describing the flow behind the front
of a stationary shock wave in the comoving coordinate
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system are as follows. The expressions of conservation
laws have the form

(1)

where subscripts 1, 2, and 3 correspond to the gas, solid
volatiles bound in the particle, and coke component of
the particle, respectively; and the constants C1, C2 , and
C3 are determined from the initial state of the mixture
and front velocity u0 , which is specified for the shock
wave or is determined for Chapman–Jouguet detona-
tion by a procedure described in [2]. Master equations
and equation of particle heat transfer have the form

(2)

where J2 and J3 characterizing change in the masses of
components are different at the ignition and combus-
tion stages; QDev, Q2, and Q3 are the heats of pyrolysis,
combustion of volatiles, and coke combustion, respec-
tively; and ϑ1 and ϑ2 are the accommodation coeffi-
cients. The equation of state has the form

(3)

Finally, closing relations have the form

(4)
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These equations represent a generalization of the
model proposed in [2], which involves the minimum
number of chemical reactions, and are written in the
same notation. A more detailed model of the combus-
tion of coal dust in shock and detonation waves was
developed in [6]. Analysis of the data in [7] and conclu-
sions in [2] shows that the presence of combustible vol-
atiles in the gas can be disregarded. In Eqs. (4), Td is the
temperature of flow deceleration in the boundary layer
on the particle surface [8]. The thermodynamic proper-
ties of the gas mixture behind the shock wave are
assumed to be similar to those of the original gas. The
concentration of gaseous volatiles consisting primarily
of combustible hydrocarbons is very low, and determin-
ing components are oxygen, carbon oxide, carbon diox-
ide, and a small amount of water vapor. Since the
molecular weight of the mixture with the content  =

α,  = 0.5(1 – α), ξCO = 0.4(1 – α), and  = 0.1(1 –
α) (0 < α < 1) coincides with the molecular weight of
oxygen, and the specific heats of the components are
close to each other in a wide temperature range, the
thermodynamic properties of this mixture are close to
those of oxygen. In the equation of state of the gas,
change in γ on the shock wave is taken into account in
a form similar to [9]:

(5)

where constants e∗  = 0.7 MJ/kg, γ0 = 1.41, γ∞ = 1.234,
γ∗  = 1.32, α1 = 0.09, α2 = 0.32, and β = 1.5 were deter-
mined for oxygen in [2]. The temperature dependence

of gas thermal conductivity λ1(T) = λ1(300)  is

taken into account.

The initial conditions for the system of Eqs. (1)–(4)
correspond to the state on the frozen shock wave, which
is determined from Eqs. (1) under the conditions

Similarly, the final equilibrium detonation state is
determined from Eqs. (1) under the conditions ρ12 = 0,
ρ2 = 0, ρ3 = ρk, u2 = u1, and T2 = T1 .

Relations for J2 and J3 represent the devolatilization
and combustion of coke residue. At the combustion

stage, we take J2 = (T2), J3 = (T2), θ2 = 1, and θ3 =
0.5. The following master equation of devolatilization

ξO2

ξCO2
ξH2O

γ
γ0 α1

e1

e*
----- 

 
β

, e1 e*≤–

γ∞ γ* γ∞–( ) α2 1
e1

e*
-----– 

 
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  , e1 e*>exp+









=

T
300
--------- 

 
0.5

ρ2 ρ20, ρ12 0, ρ3 ρ30,= = =

u2 u0,   and   T 2 T 0 .= =

J̃2 J̃3
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from dusted bituminized coal (Pittsburgh bed) under

fast heating [10] is used for :

Surface combustion is described by the following

Arrhenius-type equation for  with allowance for
incomplete combustion attributed both to the presence
of incombustible slag (ash) and to deficit in oxidant for
coal dust concentrations exceeding the stoichiometric
limit [2]:

According to the data in [3], ignition delay times for
50-µm coal particles in passing shock waves are com-
parable to the characteristic time of particle heating
even under blowing. Taking into account temperature
inhomogeneity, Sichel et al. [3] attained agreement
between experimental and calculation data on ignition
delay for a single particle. The step temperature distri-
bution over the particle is taken as an approximation in
the two-temperature mechanics of heterogeneous
media. It is accepted that the thin surface layer of the
particle has temperature Tf , whereas the remaining par-
ticle volume has temperature T2 . Then, at the ignition
stage, we have

(6)

where kf is the relative mass of the layer and kpor is the
coefficient representing particle porosity. The coeffi-
cient kf is determined by fitting calculations to experi-
mental data on ignition delay. According to the assump-
tion that heat in carbon oxidation in pores is released in
the particle, and heat in the oxidation of volatiles is
equally divided between the particle and gas, we take
θ2 = 0.5 and θ3 = 0 at the ignition stage.

ANALYSIS OF IGNITION
IN A BITUMINIZED COAL SUSPENDED GAS

Calculations were carried out for 50-µm coal parti-
cles, where the concentrations of volatiles and ash were
equal to 32 and 10%, respectively, according to experi-
ments [1]. Similar particles belonging to bituminized
coals of the Pittsburgh bed both in size (53–74 µm) and
in the content of volatiles were considered in [3]. Reac-
tion constants were taken in accordance with the data
in [11–13] for the given coal type.

Experimental data [3] are represented as the ignition
delay time for coal particles after the passage of the
shock-wave front as a function of the Mach number of

J̃2

J̃2 T( ) ρ2
1

τ21
------
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RT
----------– 

 exp
1

τ22
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Ea22

RT
----------– 

 exp+ 
  ,=

J̃3

J̃3 T( )
ρ3 ρk–

τ3
----------------

Ea3

RT
--------– 

  .exp=

J2 k f J̃2 T f( ) 1 k f–( ) J̃2 T2( ),+=

J3 kpork f J̃3 T f( ) 1 k f–( ) J̃3 T2( ),+=
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the shock wave M0 and gas temperature on the front.
The velocity of the shock-wave front is measured, and
temperature is determined from the known relations on
the shock jump [the same values are obtained from
Eqs. (1), (3) for ρ30 = 0 and γ = 1.4]. Calculation is car-
ried out with the inclusion of Eq. (5) and Tf = Td from
Eqs. (4). The approximation

,

where (M0) is the maximum gas temperature in the

velocity relaxation zone for a given Mach number in the
absence of combustion, provides agreement with
experimental dependence of the ignition delay time on
the Mach number in [3] for ξ30 = 0.2.

The particle-concentration effect on heating dynam-
ics for M0 = 4.58 (u0 = 1.511 km/s) is seen in Fig. 1,
where the solid and dashed lines are the time depen-
dence of the phase temperature and deceleration tem-
perature, respectively. It is seen that an increase in T2

during the first microseconds after the front passage is
attributed to convective heat transfer determined by
high Td value. In the velocity-relaxation process, gas
temperature beyond the boundary layer approaches
deceleration temperature. With an increase in the parti-
cle concentration, an increase in T1 due to heat released
in deceleration of particles in the flow becomes more
pronounced and a decrease in deceleration temperature
becomes less pronounced. It is seen that, in this model,
thermal equilibrium in the particle breaks, which gives
rise to the unlimited increase in temperature.

Figure 2 shows both calculations of ignition delays
for various particle concentration and experimental
data of [3]. We note that the results are well approxi-

k f T1*( ) 1.948 10 8– 19 203
T1*

---------------- 
 exp×=

T1*

5

10 2 3 4 5

t, 10–2 ms
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Td

T1

T2

ξ30 = 0.2
ξ30 = 0.18

ξ30 = 0.16

Fig. 1. Temperature characteristics of the ignition stage.
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mated by straight lines in the semilogarithmic scale,
which presents the Arrhenius character of processes
determining the ignition stage.

Figure 3a shows the time dependences of the param-
eters behind the shock wave (M0 = 4.58) in the mixture
with concentration ξ30 = 0.2, where a considerable dif-
ference between u1 and u2 at the ignition stage is seen.
Variation of the parameter kpor from (solid lines) 1 to
(dashed lines) 3600 [3] shows that porosity only
slightly affects the ignition delay time. Therefore, coke
oxidation plays a minor role in the ignition process.
According to the classification in [14], bituminized coal
is characterized by a mixed (homogeneous–heteroge-
neous) ignition type, where the dynamics of devolatil-
ization and combustion of volatiles determines the
breakdown of thermal equilibrium in the particle.

The determination of the point of breakdown and
onset of ignition is an important problem in the theory
of combustion and detonation. A criterion taken in this

20

4.24.0 4.4 4.6 M0

30

40

50
60
70
80

τign

Experiment

ξ30 = 0.2

ξ30 = 0.22

ξ30 = 0.25

Fig. 2. Ignition delay time for various shock wave ampli-
tudes and particle concentrations. Points with error bars are
experimental data.
model is based on analysis of the dynamics of the
parameters of the two-phase mixture. As is seen in
Fig. 3a, the gas pressure distribution has the maximum
point, after which pressure drop, along with an unlim-
ited increase in temperature, is accompanied by the
acceleration of devolatilization and, correspondingly,
combustion of volatiles. The interval from the maxi-
mum pressure point to the limiting time of the existence
of a solution in the ignition model is small (5% of the
total ignition delay time). In view of this, when describ-
ing the dynamics of coal dust suspended in the gas in
shock and detonation waves, the maximum pressure
point will be conventionally treated as the point of ther-
mal equilibrium breaking or the point of transition from
the ignition stage to the combustion stage.

DETONATION WAVES IN A GAS
WITH SUSPENDED COAL PARTICLES

Propagation of steady-state detonation waves is
characterized by a certain dependence of the detonation
velocity on the mixture composition (initial particle
concentration). For coal dust suspended in oxygen, this
dependence was experimentally obtained in [1]
(including bituminized coal with 32% of volatiles and
53–74-µm size of particles) and was used in [2] to ver-
ify the model. Figure 4 shows the experimental data for
the detonation velocity as a function of the coal concen-
tration and corresponding calculations for (solid line)
50- and (dashed line) 25-µm particles and λ* =

. For the Chapman–Jouguet regime, the final

state is sonic with respect to the equilibrium speed of
sound. The frozen speed of sound (velocity of propaga-
tion of small perturbations in the gas phase) and the
speed of sound that is equilibrium in velocity and fro-
zen in temperature, which is equal to the frozen speed
of sound in the one-velocity model, are also determined
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--------------------
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31.6
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u2p

(a)
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Fig. 3. Flow structure at the ignition stage (a) behind the passing shock wave and (b) at the onset of combustion in the detonation
wave.
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in the mixture. In view of Eqs. (5), they are represented
as

(7)

Expressions (7) for γ = const reduce to known depen-
dences [15]. It is easy to show that the thermodynamic
stability condition ce < cef < cf is satisfied. Figure 3b
shows an example of the Chapman–Jouguet detonation
structure for ξ30 = 0.3 and u0 = 1.45 [2]. The ignition
point is characterized by the bend in the particle tem-
perature distribution, because, in chemical reactions
proceeding in the combustion regime, heat is released
only in the gas phase. The behavior of the mixture
parameters is similar to that for ignition in a passing
shock wave (Fig. 3a). At the next stage of surface com-

ce
2 γe p

ρ
--------, cef

2 γ e1
dγ
de1
--------+ 

  p
ρ
---,= =

ρ ρ1 ρ2 ρ3,+ +=

c f
2 γ e1

dγ
de1
--------+ 

  p
ρ1
-----,=

γe

Rγξ1 γ 1–( )ω ω ξ1R+( )e1
dγ
de1
--------+ +

Rξ1 γ 1–( )ω ωe1
dγ
de1
--------+ +

------------------------------------------------------------------------------------,=

ω ξ2c2 ξ3c3.+=

0.5
10 2 λ*

1.0

1.5

2.0

u0, km/s

Fig. 4. Detonation velocity measured as a function of the
coal concentration for (circles) 54- and (squares) 25-µm
particles. Corresponding calculations for 50- and 25-µm
particles are shown by the solid and dashed lines, respec-
tively.
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bustion of the particle, which is two orders of magni-
tude longer than the ignition delay time, processes pro-
ceed under the conditions of velocity equilibrium
between the phases.
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MECHANICS
On the Equations of Axisymmetric Motion
of a Viscous Incompressible Fluid
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1. In the cylindrical coordinate system (r, θ, z), the
equations of axisymmetric motion of a viscous incom-
pressible fluid in the absence of external forces have the
form

(1)

where u, v, and w are the radial, azimuthal, and axial
velocity components, respectively; p is the fluid pres-
sure; and ν is the kinematical viscosity. Without restric-
tion of generality, the fluid density is taken to be equal
to unity, and the fluid is subjected to potential external
forces. In this case, p is the modified pressure that is
equal to the sum of the original pressure and external-
force potential.

As is known [1], system (1) reduces to two equa-
tions relating the azimuthal velocity v  component to
the current function ψ defined by the expressions

(2)

Below, we will propose another form of the equations
under investigation, which is based on the following
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v 2
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property. The substitution of Eqs. (2) into the third of
Eqs. (1) provides

where

is the Stokes operator. Therefore, there is a function Φ
satisfying the relations

(3)

(4)

The substitution of Eqs. (2) into the second of Eqs. (1)
provides

(5)

where J = rv. Differentiating Eqs. (3) and (4) with
respect to r and z, respectively, and substituting the
resulting expressions into the first of Eqs. (1), where u
and w are expressed in terms of ψ, we obtain

(6)

We will analyze the system of Eqs. (4)–(6).
2. Then, R+ is the r > 0 half-plane of the (r, z) plane,

Ω is the bounded domain in R+, Σ is the boundary of Ω,
QT = Ω × (0, T), and ST = Σ × (0, T). For simplicity, we
assume that the closure Ω of the domain Ω does not
contain points lying on the z axis. For the natural
statement of the initial boundary value problem for sys-
tem (1), the functions u, v , and w are specified on the
lower base of Ω and on the lateral surface ST of the cyl-
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inder QT . It is known that this problem with sufficiently
smooth input data has the unique classical solution for
any T > 0 [2].

Below, we will consider only the case where the
adhesion conditions u = v  = w = 0 are satisfied at the
boundary of the flow domain. In terms of the functions
ψ and J, these conditions are represented in the form

(7)

(8)

where  means differentiation with respect to the nor-

mal to the Σ line. To close the formulation of the prob-
lem for the system of Eqs. (4)–(6), it is necessary to
specify the initial conditions

(9)

(10)

and boundary conditions for the function Φ by using
condition (7), which is redundant for Eq. (4). To this
end, we transform Eq. (6) into a fourth-order equation
by applying the operator E:

(11)

One boundary condition for Eq. (11) follows immedi-
ately from Eqs. (6)–(8):

(12)

Applying the operator  to Eq. (6) and using Eqs. (7)

and (8), we arrive at the second condition

(13)

The problem of determining ψ, J, and Φ is finally for-
mulated as follows: to find those solutions of the system
of Eqs. (4), (5), and (11) which satisfy conditions (8)–
(10), (12), and (13).

Equations (4), (5), and (11) form a weakly coupled
system of two parabolic second-order equations, for
which the first initial boundary value problem is stated,
and one linear elliptic fourth-order equation, for which
a Neumann-type problem is stated. In this respect, it is
similar to the traditional system of equations of axisym-
metric motion that is written in terms of ψ, v, and ω =
r–1Eψ. The advantage of the new form of the equations
is that the boundary conditions for the functions ψ, J,
and Φ are uncoupled, in contrast to the traditional
approach, where the determination of the boundary val-
ues of the function ω is a serious computation problem.

∂ψ
∂n
------- 0, r z t, ,( ) ST ,∈=

ψ 0, J 0, r z t, ,( ) ST ,∈= =

∂
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J J0 r z,( ), r z,( ) Ω, t∈ 0,= =

E2Φ E
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---- J2 ψz

2+( ) 2
r
---ψrEψ+ .=
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---------Eψ, r z t, ,( ) ST .∈=
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Concluding this section, we note that Eq. (7) follows
from Eqs. (6) and (13) under the additional condition

where ϕ is the angle between the z axis and the normal
to the Σ line. If the last condition is valid for t = 0, it is
satisfied at least for small T > 0.

3. The general Navier–Stokes equations, as well as
the equations of axisymmetric motion, have a rich sym-
metry group [3, 4]. Since the transition from Eqs. (1) to
the system of Eqs. (4)–(6) involves nonlocal transfor-
mations, groups admitted by both systems are not iso-
morphic. The widest transformation group admitted by
Eqs. (4)–(6) was found by S.V. Golovin. The basis of
the corresponding Lie algebra is formed by the opera-
tors

where α, β, γ, and δ are arbitrary functions (belonging
to C∞) of t and the dot means differentiation with
respect to t.

Since the symmetry group of the system of Eqs. (4)–
(6) involves transformations depending on arbitrary
functions of time, invariant solutions of this system can
be constructed with a priori functional arbitrariness.
One example of such solutions is as follows. We con-
sider a group generated by the operator X3 + X4 . The
solution invariant under this group has the general form

(14)

The functions f, g, and h satisfy the recurrence system
of the linear equations

Solution (14) generalizes the well-known Burgers
vortex [5]. First, it describes nonstationary motion.
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Second, the velocity field for β ≠ 0 has a singularity that
lies on the symmetry axis and is generated by uniformly

distributed source with linear density  arbitrarily

time-dependent. We emphasize that the classical Burg-
ers solution has a nontrivial group-theoretical origin: it
is not an invariant solution to system (1) but can be
obtained as an invariant solution of a certain partially
invariant submodel of this system. At the same time, the
use of Eqs. (4)–(6) enables one to easily obtain the
Burgers solution and its generalizations.

4. Exact solutions of the system of Eqs. (4)–(6) are
not exhausted by its invariant solutions. One of them
(stationary cylindrical vortex) was constructed in [6]. In
this solution, the velocity components v  and w are pro-
portional to z and the component u is independent of z.
The group-theoretical origin of this solution was
revealed in [7]. Based on Eqs. (4)–(6), it is easy to gen-
eralize solutions found in [6] to the nonstationary case
and for inhomogeneous functions v  and w of z. To this
end, it is sufficient to set

where A, B, C, D, F, G, H are the functions of r and t
and A, C, and F satisfy the closed quasilinear system of
equations

(15)

With known A, C, and F, the functions B, D, G, and H
are determined from the system of linear equations
omitted here. We note that the latter system always has
a solution in which the functions B, D, and G are equal
to zero, and the equation for the function H is solved in
quadratures.

It is important that system (15) inherits some prop-
erties of the generating system of Eqs. (4)–(6). In par-
ticular, it admits the extension operator

The solution of system (15) that is invariant under the
operator X7 corresponds to the new self-similar solution

(16)

to Eqs. (1), where ξ = r(v t)–1/2. Analysis of solution (16)
is beyond the scope of this paper.
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5. We assume that the solution to the system of
Eqs. (4)–(6) is defined in the domain ΠT = R+ × (0, T)

and satisfies the conditions ψ → 0 for ρ =  →
∞ and

(17)

with certain constants 2 < m ≤ 4 and C1 = C1(T) > 0.
Using the results from [8, 9] (see also the references
cited therein) and the axial symmetry of the velocity
field, one can show that inequalities (17) are satisfied in
the domain  for a certain T > 0 if they are valid for
t = 0 with a certain constant C0 > 0.

Owing to estimates (17), the solution Φ to Eq. (6)
that is regular on the z axis and its derivatives can be
represented as

(18)

where C2 = const > 0. Expressions (18) mean that the
solution to inhomogeneous equation (6) with the rap-
idly decreasing right-hand side behaves for large ρ val-
ues as the fundamental solution −r2(4πρ3)–1 to the equa-
tion EΦ = 0 with a singularity at the origin. We apply
inequalities (17) and (18) to obtain integral identities
for the velocity field of axisymmetric motion of the
fluid filling the entire space.

Equation (6) can be represented in the equivalent
form

where the velocity components u and w are expressed
in terms of ψr and ψz by Eqs. (2) and v  = r–1J. Integrat-
ing this equation over the domain R+ and using esti-
mates (17) and (18), we arrive at the identity

(19)

This identity is a particular case of identities obtained
in [10] by means of rather complex manipulations.

Multiplication of Eq. (4) by r and integration of the
result over the disk ρ < N, r > 0 provide one more inter-
esting identity. Under the assumption that the exponent
m in inequalities (17) lies in the range (3, 4], a limit of
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the mentioned identity for N → ∞ exists. The limiting
relation has the form

(20)

Identities (19) and (20) do not involve the “superflu-
ous” function Φ, whose physical sense is unclear. They
are remarkable because they do not explicitly involve
the viscosity ν and are valid in the limit ν → 0.
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For the stream function of the plane-parallel flow
around an airfoil S, a constructive representation is
given involving the Robin potential, which alone deter-
mines circulation. Algorithms for the approximate
solution of, in particular, the exterior Dirichlet problem
are also developed.

Let Q+ = R2 \ , where Q is a bounded, simply con-
nected domain in the Ox1x2 plane, and S = ∂Q. For the
flow around the airfoil in Q+, it is necessary to deter-
mine the velocity field w(x) = {u, v} satisfying the fol-
lowing main conditions:

(a) divw(x) = 0, curlw(x) = 0, x = (x1, x2) ∈ Q+;
(b) w(∞) = {u0, v 0};

(c) S is a streamline of the (x) field.
1. The function f1(z) = u – iv , where z = x1 + ix2,

called the complex velocity, is analytic in Q+ and, in the
vicinity of the point z = ∞, can be expanded as

The function f(z) = ϕ(x) + iψ(x) such that f '(z) = f1(z)
is called the complex potential of the flow w(x),
gradϕ = { ψ, – ψ} = {u, v}, x ∈ Q+,

The function ψ(x) = Imf(z) is harmonic in Q+, con-
stant on the streamlines, because ∇ψ (x) is orthogonal
to w(x),

(1)

and is called the stream function. In the vicinity of an
infinitely distant point, the function ψ(x) has the expan-
sion

(2)

Q

w

f 1 z( ) u0 iv 0–( ) c1z 1– c2z 2– …, z  @ 1.+ + +=

∂x2
∂x1

f z( ) u0 iv 0–( )z B zln b0 b1z 1– b2z 2– …,+ + + + +=

z  @ 1.

ψ x( ) const, x S∈=

ψ x( ) u0x2 v 0x1–( ) b xln ψ0 x( ),    x  @  1,+ +=                     
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where ψ0(x) is a bounded function harmonic in Q+.
Any stream function of the flow under consideration

satisfies conditions (1) and (2). These conditions with
given u0, v 0, and b determine ψ(

 

x

 

)

 

 up to an additive
constant. The constants 

 

u

 

0

 

 and 

 

v

 

0

 

 determine the veloc-
ity at infinity, while 

 

b

 

 determines the field circulation
around the point 

 

z

 

 = 

 

∞

 

 and on the airfoil 

 

S

 

.
We will determine the general form of the stream

function for given 

 

u

 

0

 

, 

 

v

 

0

 

,

 

 and 

 

b

 

. For the contour 

 

S

 

,
which is assumed to be a piecewise Lyapunov contour,
we will consider the Robin potential 

 

ψ

 

R
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x
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where the Robin potential density 

 

g

 

*(
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 is such that the
function 
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 is identically constant in 
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 [1]. We will
denote the scalar product and norm in the 

 

L

 

2

 

(

 

S

 

)

 

 space
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and 
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, respectively, and 
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 is the
fundamental solution of the Laplace equation.

 

Lemma 1. 

 

In the problem of the flow around the
airfoil S

 

,

 

 the stream function 

 

ψ

 

(

 

x

 

)

 

 that satisfies condi-
tions 

 

(a)–(c) 

 

and has the circulation 

 

Γ

 

 

 

can be repre-
sented in the form 

 

,

 

where 

 

ψ

 

R

 

(

 

x) is the Robin potential, C = (g*, 1)–1Γ,

and ψ0(x) is a solution (bounded in Q+) of the Dirichlet
problem 

Indeed, ψ(x) is constant on S and harmonic in Q+ by
design, the vector field w(x) = { ψ, – ψ} is tangent

to the boundary S, and (∞) = {u0, v0}. Thus, the main

ψR x( ) 1
π
--- g* y( ) 1

x y–
--------------ln s,d

S

∫=

ψ x( ) u0x2 v 0x1–( ) ψ0 x( ) CψR x( )+ +=

x Q+,∈

–
1
2
---

∆ψ0 x( ) 0 x Q+∈( ),=

ψ0 x( )   =   u 0 x 2 – v 0 x 1 x S ∈( ) .+

∂x2
∂x1

w
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conditions (a)–(c), together with condition (2), are ful-
filled. The first two terms of the function ψ(x) deter-
mine the velocity field of the irrotational flow around
the airfoil, because the first term determines a constant
vector field, while the gradient of the second term van-
ishes at infinity as |x|–2. The circulation γ of the vector
field { ψR, – ψR} is calculated by the formula

i.e., the circulation of the vector field w(x) on S is equal
to Γ = –2C(g*, 1).

The formulation of Lemma 1, together with condi-
tions (1) and (2), necessarily indicates that the circula-
tion of the velocity field in the incompressible potential
flow around a single airfoil is determined by the Robin
potential CψR(x). Its density g*(x) is the vortex density
at the boundary S. From the electrostatic treatment of
the problem, it follows that g*(x) increases at corner
points.

2. We will now consider algorithms for the approxi-
mate calculation of the functions ψR(x) and ψ0(x). In the
unbounded domain Q+, the solution ψ0(x) to the first
boundary value problem for the Laplace equation is
determined by the methods of potential theory in the
form [1]

Passage to the boundary when x → x' ∈ S results in the
integral equation

for the required density g(y). The unknown constant a
is determined from the condition that the right-hand side
of the equation is orthogonal to the eigenfunction g*(x)
of the conjugate operator K* for the eigenvalue λ = –1
(the eigenfunction g*(x) coincides with the Robin poten-
tial density; it is also known that (g*, 1) ≠ 0) [1].

Let a bounded sequence of points xm, m = 1, 2, …, in
Q be separated from the boundary and satisfy the con-
dition of uniqueness of harmonic functions in R2[2],
L2(S) = {g*} ⊕  , and

Lemma 2. The sequence of functions δm(x), m = 1,

2, …, is complete and linearly independent in  [2]. 

Let hg and h0 be the projections of a certain function

h(x) onto the subspaces {g*} and  and  be the pro-

∂x2
∂x1

γ –2 g* y( ) sd

S

∫ –2 g* 1,( ),= =

ψ0 x( ) g y( )∂n y( )E x y–( ) s a, x Q+.∈+d

S

∫=

I K+( )g
1
2
--- ψ0 x( )

S
a–( )–=

L2
g

δm x( ) E xm 1+ x–( ) E xm x–( ), x S.∈–=

L2
g

L2
g h0

N
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jection onto the subspace {δm(x) , hg ≠ 0. Then,  →
h0 when N → ∞, and the eigenfunction g*(x) and the

constant a satisfy the approximate equalities h –  ≈
Ag*, where A is a constant, and

The function  can be determined as a solution to
the problem of minimizing the function F(c) = F(c1,
c2, …, cN)

} 1
N h0

N

h0
N

a ψ0 h h0
N–,( )/ 1 h h0

N–,( ).≈

h0
N

F c( ) h x( ) cmδm x( )
1

N

∑–
2

.=

0.5

–1–2 0 1 2
–0.5

1.0

0

1.5

Fig. 1. Irrotational flow for C = 0.

Fig. 2. Flow for C = –0.047.

0.5

–1–2 0 1 2
–0.5

1.0
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1.5

Fig. 3. Flow for C = –0.1.



118 LEZHNEV
The approximate solution of the Dirichlet problem
noted in Lemma 1 will be sought in the form

where the last sum for x ∈ S is determined as the
approximation of the function u0x2 – v 0 x1 – a belonging

to  in L2(S). The function (x) is bounded when
x → ∞.

3. In the numerical experiment for the flow around a
semicircle presented in Figs. 1–3, we determined the
Robin potential density as the eigenfunction of the
operator K* on S (for N = 200) for λ = –1, the solution
of the exterior Dirichlet problem (for M = 100), and the
streamline patterns for the flows with zero and nonzero
circulations.

ψ0
M x( ) a bkδk x( ), x Q+,∈

1

M

∑+=

L2
g ψ0

M

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education
of the Russian Federation, project no. TO2-14.1-2492, and
the Russian Foundation for Basic Research, project
no. 03-01-96698.

REFERENCES

1. V. S. Vladimirov, Equations of Mathematical Physics,
2nd ed. (Nauka, Moscow, 1971; Dekker, New York,
1971).

2. V. G. Lezhnev and E. A. Danilov, Two-Dimensional
Hydrodynamic Problems (Kubansk. Gos. Univ., Krasno-
dar, 2000).

Translated by M. Lebedev
DOKLADY PHYSICS      Vol. 49      No. 2      2004



  

Doklady Physics, Vol. 49, No. 2, 2004, pp. 119–121. Translated from Doklady Akademii Nauk, Vol. 394, No. 5, 2004, pp. 618–620.
Original Russian Text Copyright © 2004 by Prikhodko, Chekmarev, V. Yarygin, I. Yarygin.

                                 

MECHANICS
Rise of a Near-Wall Liquid Film over the Outer Surface
of a Nozzle Accompanying Supersonic Gas Flow

into Vacuum
V. G. Prikhodko, S. F. Chekmarev, V. N. Yarygin*, and I. V. Yarygin

Presented by Academician A.K. Rebrov September 1, 2003

Received September 22, 2003
1. INTRODUCTION

This study was initiated by the problem of external
contamination of the surfaces of space vehicles (includ-
ing the International Space Station) by jets of orienta-
tion and control thrusters, where a fuel film is used for
cooling nozzle walls [1]. Although jet gas expansion
into vacuum has been studied in numerous experimen-
tal and theoretical works (see, e.g., recent review [2]),
the problem of joint gas flow with a near-wall liquid
film has not yet been systematically investigated.
Experimental modeling of such a flow [3, 4] shows
that a near-wall liquid film flowing down on an inner
surface of the nozzle not only breaks up into droplets
at the output edge of the nozzle but also emerges onto
the external surface of the nozzle, moving backwards
on it, even opposite to gravity.

2. EXPERIMENT

Experiments were carried out on a VIKING vacuum
gas-dynamic setup of the Kutateladze Institute of Ther-
mal Physics [5]. The large volume of the working
chamber (~150 m3) provided operation in the pulse
mode with high flow rates of a gas and liquid. The
injected liquid was completely evaporated and evacu-
ated by normal vacuum pumps.

The gas and liquid were fed from a gas-dynamic
source, which made it possible to vary their flow rates
and to change output head–nozzles. As such nozzles,
we investigated a cylindrical tube 5 mm in diameter and
a conic supersonic nozzle, which had a semiangle of
α = 7°; radii of critical and output sections of 5 and
10 mm, respectively; and a cylindrical external surface.
In both cases, the thickness of the output section edge
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Siberian Division, Russian Academy of Sciences,
pr. Akademika Lavrent’eva 1, Novosibirsk, 630090 Russia
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was equal to l = 1 mm. The nozzles were arranged ver-
tically with the output section facing downwards.

The liquid entered through a circular gap in the stag-
nation chamber of the nozzle and flew down the nozzle
walls as a film. Simultaneously, a gas was blown
through the nozzle. At the nozzle exit, a supersonic
freely expanding jet of vapor–gas mixture with dis-
persed liquid droplets was formed. We used air as the
working gas and ethanol as the working liquid. The
structure of the formed flow depended on the parame-
ters of gas and liquid in the stagnation chamber and
pressure p∞ in the vacuum chamber. The flow was
recorded by video and photography.

Photographs of the cylindrical nozzle (Fig. 1) show
how the structure of the flow changes with a decrease in
pressure in the vacuum chamber. Figures 1a and 1b
refer to the flows into space with atmospheric and low
(p∞ ≤ 10 Pa) pressure, respectively. It is seen that the
flow into vacuum is accompanied by the appearance of
a 1-mm-thick liquid film on the outer surface of the
nozzle. The same pattern is also observed in the case of
the supersonic nozzle.

Figures 2 and 3 show the film rise height measured
at various pressures in the vacuum chamber for the tube
and supersonic nozzle, respectively. The stagnation
pressure p0 was equal to about 1.3 × 105 and 105 Pa in
the first and second cases, respectively. The stagnation
temperature was equal to 300 K in both cases. The mass
flow rate of the liquid was equal to about 10% of that of
the gas.

3. DISCUSSION OF THE RESULTS

The analysis of the experimental data leads to the
following scheme of the formation of the steady flow.
As the gas and liquid are fed, a liquid film is formed on
the inner wall of the nozzle. Under the action of the gas
stream and gravity (predominantly, due to the first fac-
tor), this film moves to the edge of the nozzle. At this
edge, the film turns around and emerges onto the outer
surface of the nozzle. The turn of the film is caused by
adhesion forces and, possibly, by the Coanda effect,
004 MAIK “Nauka/Interperiodica”
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while the rise of the film is induced by its interaction
with the gas flow. In this case, the maximum height hm
of the film rise depends on the parameters of the gas
flow and the liquid. Correspondingly, there is a certain
critical amount of the liquid that can be contained in the
film. As this amount of the liquid is gained in the film,
the steady flow is formed: the film of a height of hm is
formed on the outer surface of the nozzle, and newly
fed liquid is completely carried away from the bottom
edge of the nozzle by the flow in the form of droplets.
The film is broken into droplets due to the Rayleigh–
Taylor instability of the film under the action of both the
gas flow and gravity.

The real process is certainly much more compli-
cated. The surface of the film inside the nozzle can
undergo perturbations, which result in tearing-off of
droplets and/or disintegration of the film and stimulate
the Rayleigh–Taylor instability of the film at the bottom
edge. When reaching the edge and the outer surface of
the nozzle, the liquid can explosively boil and/or
actively evaporate. Viscosity effects can be significant
for certain liquids, and adhesion forces can be substan-

(a)

(b)

Fig. 1. Effect of ambient pressure on the structure of the
flow into (a) the atmosphere and (b) vacuum.
tial for certain combinations of the liquid and nozzle
material.

Nevertheless, the proposed scheme enables us to
construct a model providing estimates in satisfactory
agreement with experiments.

To fit the experimental conditions (the nozzle is
arranged vertically with the output section facing
downwards), the film rise height can be estimated from
the balance of forces at the film

(1)

Here, ρl is the density of the liquid; g is the gravitational
acceleration; pg1 and pg2 are the pressures in the gas at
the bottom and top edges of the film, respectively; and
pL is the Laplace pressure at the bottom edge of the

film, which is equal to  in this case, where σ is the

surface tension in the liquid and r is the radius of cur-
vature of the film surface. For ethanol, ρl = 0.79 g/cm3

and σ = 0.022 N/m.

Taking into account that the characteristic thickness
of the film inside the nozzle (~0.1 mm) is much less
than the edge thickness l and the thickness of the film at
the outer surface is comparable with l, we can set r = l
for the calculation of the Laplace pressure. This gives
pL = 22 Pa for both cylindrical and conic nozzles.

For the cylindrical nozzle, pg1 can be taken as the
pressure reached at the 90° turn in the Prandtl–Mayer
wave for a gas flow with the Mach number MC = 1 at
the nozzle section and adiabatic index γ = 1.4. In this

ρlghm pg1 pg2 pL.+–=

σ
r
---

2

40 8 12 16

4

6

8

10

Experiment

Theory

Tube

Ambient pressure, kPa

Film rise height, mm

Fig. 2. Film rise height over the outer surface of the tube.
The circle is calculation and crosses are experimental data.
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case,  ≈ 2.9 × 10–4, and we obtain pg1 ≈ 39 Pa for the

conditions of experiments shown in Fig. 2. The same

value of  can also be accepted for the conic nozzle,

taking into account that there is a boundary layer inside
the nozzle, so that the value M = 1 rather than the “geo-
metric” value MC = 3 is characteristic near the nozzle
edge. In this case, we have pg1 ≈ 29 Pa.

Pressure at the top boundary of the film depends on
a number of factors (degree of jet underexpansion, its
rarefaction, etc.) and generally requires numerical cal-

pg1

p0
-------

pg1

p0
-------

3

10
Ambient pressure, kPa

Film rise height, mm

Experiment

Theory

Nozzle, M = 3

2 3

4

5

6

7

2

Fig. 3. Same as in Fig. 2 but for the supersonic nozzle with
M = 3.
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culation of the flow field. However, estimates in two
cases can be made without numerical simulation. The
first case is expansion into virtually vacuum (p∞ ≈ 0),
when pg2 can be neglected. As a result, formula (1) pro-
vides hm ≈ 7.7 and 6.6 mm for cylindrical and conic
nozzles, respectively. The second case is design jet
regime pC = p∞ in experiments for the conic nozzle.
Here, pg1 = pg2, and Eq. (1) gives hm ≈ 2.8 mm. As is
seen in Figs. 2 and 3, the theoretical estimates of hm
shown by circles agree well with the experimental data.
This agreement provides hope that the proposed simple
model takes into account the principal factors determin-
ing the formation of the film on the outer surface of the
nozzle.
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Approximate methods [1] for calculating internal-
wave generation include certain empirical parameters.
These parameters are not universal [2] and have to be
determined experimentally. In this case, approximate
solutions can differ rather considerably from exact ones
when the parameters of model sources and sinks are
found in the framework of the viscous-fluid theory [3]
or of the conventional perfect-fluid theory [1, 4]. In [3],
a more exact method was proposed for constructing a
solution satisfying both the equations and boundary
conditions on a radiating surface. The method allows us
to calculate internal waves and complementary bound-
ary layers. In the case of two-dimensional periodic
internal waves generated by a strip oscillating in its own
plane, calculated results based on the linear radiation
theory are in satisfactory agreement with the experi-
mental data of [5].

Similar calculations for three-dimensional waves
are of practical interest. The linearized problem of gen-
eration of the three-dimensional periodic internal
waves is simplified in the particular case of a wave
source in the form of a vertical cylinder. This is associ-
ated with the correlation of symmetries intrinsic to both
a source and the radiation field [6]. In this paper, we
present an exact solution of a more general problem on
three-dimensional periodic internal waves generated by
a part of a plane inclined at an arbitrary angle ϕ to the
horizon.

We analyze the periodic motion of exponentially
stratified incompressible viscous fluid whose density
decreases as its height increases:

Here, Λ is the buoyancy scale, N =  is the buoyancy

frequency (the z axis is opposite to the gravity acceler-

ρ0 z( ) ρ00
z
Λ
----– 

  .exp=

g
Λ
----
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ation vector g), and ν is the kinematic viscosity
assumed to be constant. We consider steady-state oscil-
lations, with the velocity amplitude of the moving
source being u0 . The time dependence of all the vari-
ables is taken as harmonic, and the common factor
exp(–iωt) below is omitted.

In the case that toroidal-poloidal decomposition [7]
is used and in the Boussinesq approximation, the equa-
tions of motion are reduced to the following equations
for the scalar functions Φ and Ψ related to the three-
dimensional fluid velocity v = ∇ × ezΨ + ∇ × (∇ × ezΦ):

(1)

Here, ez is the unit vector of the z axis and ∆ is the

Laplace operator; i.e., ∆⊥  =  + . In Eqs. (1), addi-
tional solutions and factors corresponding to them are
omitted.

The geometry of the problem and the relevant coor-
dinate systems are shown in the figure. The gravity
direction defines the laboratory (x, y, z) coordinate sys-
tem. The local coordinate system (ξ, η, ζ) associated
with the radiating surface is obtained by rotating the
coordinate system (x, y, z) through the angle ϕ about the
y axis. In this case, the ξ axis and η axis are located in
the source plane, while the ζ axis is perpendicular to
this plane. The comoving (q, p, α) coordinate system is
attached to the wave cone inclined at an angle θ =

 to the horizon, the q axis (p axis) is oriented

along (crosswise) the wave propagation direction, and
α is the angular variable. The auxiliary cylindrical
coordinate system (r, α, z), also attached to the wave
cone, is given by the equations

(2)

ω2∆ N2∆⊥ iων∆2––( )Φ 0,=

ω iν∆–( )Ψ 0.=

∂xx
2 ∂yy

2

ω
N
----arcsin

ξ x ϕ z ϕ , ηsin+cos y,= =

ζ –x ϕ z ϕ ,cos+sin=

x r α , ycos r α , zsin z,= = =

p = r θ z θ, q = r θ z θ.sin+coscos–sin
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The no-slip conditions at the moving and quiescent
parts of the Oξη  plane serve as boundary conditions.
All perturbations in viscous fluid attenuate at infinity.
The unperturbed fluid is assumed to be at rest.

We seek a solution to system (1) in the form of the
Fourier integral

(3)

The components of the wave vector k are found from
the dispersion equation presented here in the multipli-
cative form

(4)

The roots of this dispersion equation are found by
conventional methods with due regard to the small
viscosity and weak stratification [8]. The roots are cho-
sen from the condition of perturbation attenuation at
infinity:

The coefficients A, B, and C are determined from the
linear equations obtained by the substitution of Eq. (3)
into the boundary conditions:

(5)

Here,

where U(kξ, kη) is the Fourier transform of the velocity
u(ξ, η) of the source.

Φ A kξ kη,( ) ik1 kξ kη,( )ζ( ) B kξ kη,( )+exp[
∞–

+ ∞

∫=

× ik2 kξ kη,( )ζ( ) ] ikξξ ikηη+( )dkξdkη ,expexp

Ψ = C kξ kη,( ) ik3 kξ kη,( )ζ(exp

∞–

+ ∞

∫

+ ikξξ ikηη+ )dkξdkη .

ω2 k1 2,
2 kξ

2 kη
2+ +( ) N2 kξ ϕ k1 2, ϕsin–cos( )2[–

+ kη
2 ] iων k1 2,

2 kξ
2 kη

2+ +( )2
+ 0,=

k3
2 ω

iν
-----– kξ

2– kη
2 .–=

Imk1 0, Imk2 0, Imk3 0.>>>

A kη
2 ϕ k1β1+sin( ) B kη

2 ϕ k2β2+sin( )+

+ iCkη ϕcos Uξ , –Akηγ1 Bkηγ2 iCγ3+–=  = Uη ,

A kη
2 ϕ kξβ1–cos( ) B kη

2 ϕ kξβ2–cos( )+

– iCkη ϕsin Uζ .=

U
1

4π2
-------- u ξ η,( ) ikξξ– ikηη–( )exp ξd η ,d

∞–

+ ∞

∫=

βi ki ϕ kξ ϕ , γicos–sin ki ϕ kξ ϕ ,sin+cos= =
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The solution to Eqs. (5) can be presented in the
matrix form

(6)

where the coefficients Dij are given by the expressions 

A

B

C 
 
 
 
 

1
∆
---

D11 D12 D31

D21 D22 D32

D31 D32 D33 
 
 
 
  Uξ

Uη

Uζ 
 
 
 
 

,⋅=

D11 ikη
2 kξ

1
2
--- k2 k3–( ) 2ϕsin+– ikξβ2β3,–=

D12 ikη kη
2 β2

2+( ),–=

D13 ikη
2 k2 k3–( ) ϕ k3+cos

2[ ]– ik2β2β3,–=

D21 ikη
2 kξ

1
2
--- k k3–( ) 2ϕsin+– ikξβ1β3,–=

D22 ikη kη
2 β1

2+( )– ,=

D23 ikη
2 k1 k3–( ) ϕ k3+cos

2[ ]– ik1β1β3,+=

D31 kη
2 ϕ kξ

2+cos
2( ) k1 k2–( )kη ,=

D32 k1 k2–( ) kξβ1β2 kη
2 1

2
--- k1 k2+( ) 2ϕsin

+–=

1--+ kξ 2ϕcos 
 , D33 k1 k2–( )kη ϕsin=

z

r

q

p

x

y, η

ζ

ϕ

ξ

θ

α

Coordinate systems of the problem.
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Solution (6) describes internal waves determined by
the spectral coefficient A(kξ, kη) and periodic boundary
layers of two types.

The internal boundary layer determined by the coef-
ficient B(kξ, kη) is specific for stratified media.

The viscous boundary layer (spectral coefficient
C(kξ, kη)) is isopycnic and has an analogue in the case of
homogeneous fluid, namely, the periodic Stokes flow [9].

The characteristic linear scale δN =  entering

into the expressions for the thicknesses of the two
boundary layers is determined by both the kinematic
viscosity and the buoyancy frequency. The thicknesses
of the viscous boundary layer and of the internal bound-

ary layer depend on the wave slope angle δν = δN

of the wave, with the latter also depending on the slope
angle of the radiating surface:

We have performed asymptotic estimations of inte-
grals (3)–(5) for several wave sources having regular
shapes, namely, an ellipse, circle, rectangle, and two
touching rectangles moving in antiphase. The case of a
frictional wave source corresponds to oscillations in the
source plane (a similar two-dimensional problem was
considered in [3, 9]). If displacements are orthogonal to
the radiating surface, then piston or bipiston sources are
realized that generate waves in perfect fluid.

For simplicity, we present the velocity vector as a
sum of a wave component and a boundary-layer com-
ponent, which are referred to the comoving and local
coordinate systems, respectively: v = vw + vb.

In the case of a small disk oscillating in its plane

along the ξ axis (R ! Lν = , r @ R), the wave

component inside the cone of radiated waves is given
by the expression

× kη
2 ϕ kη k1γ2 kξβ2+( )+cos–[ ] ,

∆ k1 k2–( ) kξβ1β2β3– ikη
4 ϕcos+{=

+ ikη
2 β3 γ1 ϕ β2 ϕcos+sin( ) γ1β1

2 γ2β2
2–+[ ] } .

ν
N
----

2
θsin

-----------

δϕ δN
2 θsin

µ
--------------, µ ϕ θ.sin

2
–sin

2
= =

νΛ
N

------- 
 

1/3

v x
w v y

w v z
w, ,( )

A1
w 2θ α,cossin–(≈ 2 θcos

2 α 2 θsin
2,cos )F1 p q,( ).
Here,

and the exponent n is related to the type of wave source
being used.

In this case, the boundary layers on the oscillating
disk are completely separated. For the viscous bound-
ary layer of the thickness δν, the velocity is given by the
relationships

where

Similarly, for the internal boundary layer of the
thickness δϕ , which depends on all the angular param-
eters of the problem,

A1
w iu0R2δN

4 2π µ
--------------------,=

F1 p q,( ) = ϕ θ π
4
--- α– 

  ϕ θcossinsin–sincos 
 

× G
3
2
--- p q, , 

  , G n p q, ,( ) 1

p θ q θcos+sin
----------------------------------------=

× kpkp
n ikp p

kp
3δN

2 q
2 θcos
---------------– 

  ;expd

0

+∞

∫

v y
b i 1–

2
----------

u0RδN θsin
3/2

µ ϕsin
-------------------------------- iζ

δν
----- ζ

δν
-----– 

  W1,exp–≈

W1

kη kη
2 ϕ kξ

2+cos( )

kξ
2 kη

2+
---------------------------------------J1 R kξ

2 kη
2+( )

∞–

+∞

∫=

× Wν kξ kη,( )dkξdkη ,

Wν kξ kη,( ) = 

kξ R
2

---------
kη R

2
---------sinsin

kη
2 ϕ kξσ–cos

----------------------------------- ikξξ ikηη+( ),exp

σ = 
1
µ
--- kξ ϕ θ θ ϕ kξ

2 θ kη
2 µ–sin

2
sincos+sin

2
cos( ).

v x
b 2u0R ϕ iζ

δϕ
----- ζ

δϕ
-----– 

 expcos≈

×
1
R
---, ξ2 η2+ R≤

0, ξ2 η2+ R.>





v z
b 2u0R ϕ iζ

δϕ
----- ζ

δϕ
-----– 

 expsin≈
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In the case of a disk oscillating in the transverse
direction (piston source), the wave component takes the
form

where

For the viscous boundary layer,

and for the internal boundary layer,

Here,

.

×
1
R
---, ξ2 η2+ R≤

0, ξ2 η2+ R.>





v x
w v y

w v z
w, ,( )

A2
w 2θ α,cossin–(≈ 2 θcos

2 α 2 θsin
2,cos )G

1
2
--- p q, , 

  ,

A2
w 1 i–

4 π
----------

u0R2

θsin
---------------.=

v y
b iu0R

2π
----------- ϕ θsin

2
sin

µ
------------------------ i 1–

δν
----------ζ 

  W2exp–≈

v x
b u0R

2π
---------- ϕ iζ

δϕ
----- ζ

δϕ
-----– 

  W3,expcos–≈

v z
b u0R

2π
---------- ϕ iζ

δϕ
----- ζ

δϕ
-----– 

  W3.expsin–≈

W2

kη k1 0, ϕ kξ ϕcos+sin( )

kξ
2 kη

2+
-------------------------------------------------------J1 R kξ

2 kη
2+( )

∞–

+∞

∫=

× Wν kξ kη,( )dkξdkη ,

W3

kη
2 ϕ k1 0, σ+cos

kξ
2 kη

2+
-------------------------------------J1 R kξ

2 kη
2+( )

∞–

+∞

∫=

× Wδ kξ kη,( )dkξdkη ,

Wδ kξ kη,( ) = 

kξ R
2

---------
kη R

2
---------sinsin

kη
2 ϕ kξσ–cos

----------------------------------- ikξ -




exp

ξ ϕ ϕcossin
µ

------------------------ζ– 
 × ikηη+





,

k1 0,
kξ 2ϕ 2κ θcos+sin

2µ
---------------------------------------------,=

κ kξ
2 θ µkη

2–sin
2

=
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The conditions of validity of the linear approxima-

tion, namely,  ! 1  for the wave components and

 ! 1  for the boundary-layer components, coin-

cide with the smallness condition for the relative thick-

ness of the boundary layers (the quantity δu =  is the

characteristic scale of the Prandtl boundary layer on the
frictional wave source). In the case of a piston wave

source, this condition takes the form  ! 1 for

the wave components and  ! 1 for the boundary-

layer components.

The q dependences calculated for the displacement
amplitude at the axis of a single-mode wave beam are
listed in the table. The transversal scales a and b of the
sources are assumed to be less than the viscous wave

scale Lν =  related to the viscosity.

In all cases, the internal-wave amplitude in the far-

field region depends on the dynamic scale λ0 =  and

on the characteristic scale of the wave source boundary
layers. The piston wave source is the most efficient
among the wave sources under consideration. In order
to take into account the nonlinearity of the problem, we
should allow for the interaction between the boundary
layers and the wave field. In this case, the generation of
internal waves becomes possible even if the oscillation
frequency of the source is higher than the buoyancy fre-
quency [10].

R2

qδu

--------
 --



δN

δu

-----
 --



ν
u0
-----

R2

q2/3δN
1/3δu

----------------------

δN

δu

-----

νΛ
N

------- 
 

1/3

u0

N
-----

Displacements h(0, q) at the beam axis for two- [6] and three-
dimensional sources (a, b ! Lν , q @ a, b)

Source
type

Strip of the 
thickness a

Rectangle of 
size a × b

Disk of radius 
R

Frictional

Piston

Bipiston –

λ0a

δN
1/3

-------- 1

q2/3
--------

λ0ab

δN
2/3

------------ 1

q4/3
--------

λ0R2

δN
2/3

------------ 1

q4/3
--------

λ0a

δN
2/3

-------- 1

q1/3
--------

λ0ab

δN
------------1

q
---

λ0R2

δN
------------1

q
---

λ0a

δN
4/3

-------- a

q2/3
--------

λ0ab

δN
5/3

------------ b

q4/3
--------
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Solving the Navier–Stokes equations with Cauchy
data on a certain line, one can obtain, as in a particular
case [1], systems of vortex structures in a fluid that are
unknown to date. These equations for axisymmetric
flows have singularities on the axis. The Kovalevskaya
theorem for analytic data on the axis is generalized. In
addition, the size of the domain where the solution is
analytic is estimated, and an example is given. Similar
analysis is also made for the plane case, when the Kov-
alevskaya theorem is valid in its original form, and the
size of the domain where the solution is analytic is esti-
mated.

First, we consider axisymmetric flows. The current
function ϕ(x, r) of the cylindrical coordinates (x, r) is
introduced as

where v x and v r are axial and radial velocity compo-
nents multiplied by the Reynolds number, respectively.
In this work, flow curl around the symmetry axis is lim-
ited by the potential dependence, when the azimuthal

velocity component has the form V = , where W is an

arbitrary constant. In terms of the differential operator

and auxiliary function σ(x, r), the Navier–Stokes equa-
tion is represented in the form

(1)

dϕ rv xdr rv rdx,–=

W
r
-----

L
∂2

∂x2
-------- ∂2

∂r2
-------

1
r
--- ∂

∂r
-----–+=

Lϕ σ , Lσ 1
r
--- ∂ϕ

∂r
------∂σ

∂x
------ ∂ϕ

∂x
------∂σ

∂r
------– 

  2σ
r2
------∂ϕ

∂x
------.+= =

Computer Center, Russian Academy of Sciences, 
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A solution to system (1) is sought in the form of the
series

(2)

The substitution of expansions (2) into Eqs. (1)
gives

(3)

where prime means the derivative of a function with
respect to its argument.

For analytic solutions, ϕ =  = 0 on the symmetry

axis, and it is necessary that f0 = f1 ≡ 0. Equating the
sums of coefficients of the same r powers in Eqs. (3),
we arrive at the relations ω0 = 0 and fl = ωl ≡ 0 for l =
2n – 1, n = 1, 2, …. According to Eqs. (3), the coeffi-
cients f2n and ω2n of even r powers in series (2) for n ≥
2 satisfy the chain of equations

(4)

In this case, the functions f2(x) and ω2(x) can be chosen
arbitrarily. System (4) for given f2 and ω2 functions,

ϕ x r,( ) f m x( )rm, σ x r,( ) ωm x( )rm

m 0=

∞

∑= .
m 0=

∞

∑=

f m'' r
m m m 2–( ) f mrm 2–+[ ]

m 0=

∞

∑ ωmrm,
m 0=

∞

∑=

ωm'' r
m m m 2–( )ωmrm 2–+[ ]

m 0=

∞

∑

=  2 l–( ) f k' ωl k f kωl'+[ ] rk l 2–+ ,
k l, 0=

∞

∑

∂ϕ
∂r
------

f 2n
1

4n n 1–( )
----------------------- ω2n 2– f 2n 2–''–( ),=

ω2n
1

2n n 1–( )
----------------------- k 1 n–+( ) f 2k' ω2n 2k–[

k 1=

n 1–

∑=

+ k f 2kω2n 2k–' ] 1
4n n 1–( )
-----------------------ω2n 2–'' .–
004 MAIK “Nauka/Interperiodica”
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which are a part of the Cauchy data for r = 0, enables
one to construct the unique series

(5)

which, as will be shown below, under certain conditions
imposed on f2 and ω2 , provide analytic solutions to
Eq. (1) in a certain region of (x, r).

The functions f2(x) and ω2(x) are assumed to be
defined for x ∈  X, infinitely differentiable, and satisfy
the inequalities

where s is the order of derivatives and 0 < a ≤ 2 and
β ≥ 2 are constants. We will show that the estimates

(6)

are valid for any n ≥ 2.
First, infinite differentiability of the functions f2n(x)

and ω2n(x) follow from Eqs. (4). Relations (6) will be
proved by induction. For n = 2, we have

Using the equality  = 2s for the binomial

coefficients  = , we obtain

Assuming that these estimates are valid for  and

, l ≤ n – 1, and using the equality

ϕ f 2n x( )r2n, σ ω2n x( )r2n,
n 1=

∞

∑=
n 1=

∞

∑=

f 2
s( ) x( ) 1

βa
------    and   ω 2 

s
 

( ) x ( ) 1 
β

 
a

 ------, ≤≤

f 2n
s( ) x( ) ns 1–

βan
----------, ω2n

s( ) x( ) ns 1–

βan
----------, s≤≤ 0 1 …, ,=

f 4
s( ) 1

8
--- f 2

s 2+( ) ω2
s( )+( ) 1

8
--- 1

βa
------ 1

βa
------+ 

 ≤≤

≤ 2s

2
---- 1

βa2
--------a

2
--- 2s 1–

βa2
----------.≤

Cs
p

p 0=

s

∑
Cs

p s!
p! s p–( )!
-------------------------

ω4
s( ) 1

8
--- ω2

s 2+( ) 1
4
--- f 2ω2'( ) s( ) 1

8
--- ω2

s 2+( )≤+≤

+
1
4
--- Cs

p f 2
p( ) ω2

s p– 1+( ) 1
8βa
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2s

4β2a2
--------------+≤

p 0=

s

∑

=  
2s 1–

βa2
---------- a

8 2s 1–⋅
----------------- 1

2β
------+ 

  2s 1–

βa2
----------.<

f 2l
s( )

ω2l
s( )
 = ns, we arrive at the following

estimates for l = 2n:

Thus, estimates (6) have been proved.
Under the above assumptions for the functions f2(x)

and ω2(x), series (5) converge uniformly in the domain

{x ∈ X, 0 ≤ r < }. To prove this statement, we first
consider the series for ϕ. According to estimates (6),

The limit of the ratio of two sequential terms of the last

series for n → ∞ is equal to . Therefore, according to

the D’Alembert ratio test, this series converges if  < 1.

Thus, the original series for ϕ converges absolutely and

uniformly for 0 ≤ r < . The uniform convergence

Cs
pkp n k–( )s p–

p 0=

s

∑

f 2n
s( ) 1

4n n 1–( )
----------------------- f 2n 2–

s 2+( ) ω2n 2–
s( )+( ) 1
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βan 1–
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4
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4n2
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ω2n
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


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n 1–

∑

+ k Cs
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
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∞
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of the series for σ in the range 0 ≤ r <  is proved
similarly.

In the domain {x ∈ X, 0 ≤ r < }, series (5) are
infinitely differentiable with respect to both variables.
This statement is proved by considering the series with
the terms

which is obtained from the series for ϕ by its differen-
tiation with respect to x and r by m and s times, respec-
tively. According to estimates (6),

The limit of the ratio of two sequential terms of the last

series for n → ∞ is equal to . Thus, according to the

D’Alembert ratio test, this series converges if .

Thus, the original series converges uniformly for 0 ≤
r < . Therefore, the series for ϕ is differentiable. A
similar statement is valid for σ.

Thus, it is proved that series (5) provide the unique
analytic solution to Navier–Stokes equations (1) in the

range 0 ≤ r < .
The above procedure of constructing analytic solu-

tions can be used to theoretically analyze viscous flows,
which attract the constant attention of specialists in
hydrodynamics. Hill-type vortex structures are among
these flows and are considered in numerous works. In
particular, infinite chains of Hill vortex structures satis-
fying Navier–Stokes equations and Euler and Stokes
equations were analytically described in [2]. Axisym-
metric structures in the form of a pair of separated vor-
tices, pair of merged vortices, vortex chain, etc., were
exemplified in [1]. These results were obtained on the
basis of the Navier–Stokes equations with the potential
curl of flows around the symmetry axis when σ(x, r) =
cr2, where c is an arbitrary constant. This class of flows
is a particular case of analytic solutions to Eqs. (1),
which are studied in this work. Indeed, the second of
Eqs. (4) for ω2 = c shows that ω2n(x) ≡ 0 for n ≥ 2, and
the functions f2n(x) are expressed in terms of the (2n –
2)-order derivatives of the function f2(x). In this case,
the function f4(x) also depends on c. According to anal-
ysis made in [1], the series for ϕ converges uniformly
over the entire r region. The solutions found above sat-

a

a

2n 2n 1–( ) … 2n s– 1+( ) f 2n
m( )r2n s– ,⋅ ⋅

2n 2n 1–( ) … 2n s– 1+( ) f 2n
m( )r2n s–⋅ ⋅

2n s 0≥–

∑

≤ 2n 2n 1–( ) … 2n s– 1+( )nm 1–

βan
-----------r2n s– .⋅ ⋅

2n s 0≥–

∑

r2

a
----

r2

a
---- 1<

a

a
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isfy not only the Navier–Stokes equations but also the
Stokes equations (as well as the equations for an ideal
fluid). Pairs of separated Hill-type vortex structures
were also obtained experimentally [3, 4].

The results of this work enable one to continue
studying vortex structures satisfying only the Navier–
Stokes equations. We analyze an example with the
functions

in the domain –1.75 ≤ x ≤ 0.75 and 0 ≤ r ≤ 0.3. Conver-
gent series (5) with coefficients obtained from the chain
of Eqs. (4) are replaced by the partial sums, whose con-
vergence rate to the solution is estimated in terms of the
parameter

where sm is the m-term partial sum of expansion for
ϕ(x, r) or σ(x, r). Maxima are determined over the
entire flow range. Partial sums of the series for ϕ are
equal to δ3 = 9.43 × 10–2, δ4 = 7.06 × 10–4, and δ5 =
6.75 × 10–6. The figure shows the current contours for
this flow that correspond to s5 . The first two of the three
vortices touch each other on the r = 0 axis for x = 0, and
the left vortex is isolated.

Then, we analyze plane flows of a viscous incom-
pressible fluid, which are described by the equations

(7)

in the Cartesian coordinates x and y. Here, ψ is the cur-
rent function introduced as dψ = uxdy – uydx , where ux

and uy are the velocity components multiplied by the
Reynolds number, ω is the vortex function, and ∆ is the
Laplacian.

A solution is sought in the form

(8)

f 2
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2
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1
2
---+ 

  x 1+( ) x
3
2
---+ 

  ,=

ω2
1
70
------ –5x4 5x3– 3x2 x– 5+ +( )=
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max sm sm 1––
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-----------------------------------,=

∆ψ ω, ∆ω ∂ψ
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∂x
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-------–= =

ψ ψn x( )yn, ω
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∑ γn x( )yn.
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Substituting Eq. (8) into Eq. (7) and equating coeffi-
cients of the same y powers, we arrive at the chain of
equations for n ≥ 2:

(9)

Functions ψ0, ψ1, γ0, and γ1 are arbitrary. Their specifi-
cation on the x axis is equivalent to the specification of

the functions ψ, , ω, and  for y = 0. Therefore,

the above equalities can be treated as a description of
the Cauchy problem with data on the y = 0 line. Accord-
ing to the Cauchy–Kovalevskaya theorem, this problem
has the unique analytic solution near y = 0. The concept
of solving Navier–Stokes equations (7) by solving the
Cauchy problem was developed, e.g., in [5, 6]. In [5],
Cauchy data were taken from the solutions of Stokes
equations. Only the first few terms are retained in
expansions (8) for the functions ψ and ω. From these
partial sums, boundary conditions at the boundary of
the testing domain are obtained. Under these condi-
tions, the Navier–Stokes equations are numerically
solved, and the results are compared with those pro-
vided by partial sums over the entire domain. This pro-
cedure makes it possible to estimate the convergence of
series in the taken region and the accuracy of both solu-
tions.

The Kovalevskaya theorem does not provide infor-
mation about the convergence radius of series represent-
ing analytic solutions to the Navier–Stokes equations.
Therefore, for practical use of chains of equalities (9) to
construct expansions (8), it is necessary to estimate the
convergence domains.

Let the functions ψ0, ψ1, γ0 , and γ1 be infinitely dif-
ferentiable, so that

where s is the order of derivatives and 0 < a ≤ 1/2 and
β ≥ 4 are constants. Then, for n ≥ 2, we have the ine-
qualities

(10)
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Estimates (10) are proved by induction, and this
proof is similar to that for estimates (6) in the axisym-
metric case. For n = 2,

Under the assumption that inequality (10) is valid to
the index n – 1

 

, we obtained the estimates
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Using the above estimates, one can easily show that
series (8) converge uniformly in the domain {x ∈ X, 0 ≤
r < }. To this end, it is sufficient to reproduce the
corresponding proof for the axisymmetric case. In this
domain, series (8) are infinitely differentiable in terms
of both variables.

Expansions (8) are carried out with respect to the
variable y. Similar results are obtained for expansion
with respect to x.
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In [1], a one-dimensional model for the propagation
of a steady-state combustion wave in an infinite
medium was considered in the continuum approxima-
tion. The model is based on the boundary value prob-
1028-3358/04/4902- $26.00 © 20132
lem for a stationary temperature distribution in the
presence of a source. Within the framework of this
model, the following equation for the dimensionless
mass rate µ of combustion was derived:
                
(1)

Here, τ is the dimensionless reduced ignition temperature and k is the heat-loss factor. Below, Eq. (1) was analyzed
numerically.

In this study, we have managed to derive an exact explicit solution to Eq. (1). This solution has two branches
corresponding to the hysteresis loop of the mass rate of combustion:

(2)
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Here, the subscripts 1 and 2 correspond to the high and
low mass rates of combustion, respectively, and W0(x)
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and W–1(x) are the positive and negative branches of the
Lambert W function [2]. This function is inverse to the
function y = xexpx.

The critical combustion regime parameters, i.e., the
extremum of the function τ(µ), can be found from the

equation  = 0:
dτ
dµ
------
004 MAIK “Nauka/Interperiodica”
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(3)

In [1], this equation was analyzed only qualitatively.
However, it can be solved exactly, and the solution is

(4)

Substituting solution (4) into Eq. (1), we find τcr:

(5)

where

(6)

Relationships (4) and (5) yield the equation for the
extremal in the parametric form. The extremal is shown

in the figure. Since  > 0, the lower branch of the

dependence µ(τ) is unstable and, therefore, the extre-
mal determines the lower bound of stationary-combus-
tion regimes. It follows from the solution found that the
extremal dependence is nonmonotone. Indeed, the
quantity µcr decreases not only with decreasing heat
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losses (k → 0) but also as heat losses tend to infinity
(k → ∞). (Such a behavior of the extremal was not
revealed in [1] under the qualitative analysis.) This fea-
ture suggests that, in the case of large heat losses, the
mass rate of stationary combustion can be rather low.

Thus, the use of the Lambert W function allows us,
using the continuum approximation, to perform a com-
plete and exact analysis of the problem on the propaga-
tion of a stationary combustion wave in an infinite
medium.
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Studies of pulsed evaporation are of interest for var-
ious applications such as ablation of a substance under
the action of a pulse of laser radiation [1, 2] and of ion [3]
or electron [4] beams; pulsed plasma thrusters [5]; and
pulsed thermal sources [6]. When evaporated particles
fly apart, as a result of collisions in the created vapor
cloud, the particles can come back to the evaporation
surface, thereby forming a back flow of the mass,
momentum, and energy. The intensity of the back flow
depends on the amount of an evaporated substance.
This intensity can vary from zero for the collisionless
expansion in the case of desorption (when the amount
of the evaporated substance is much less than one
monolayer) to a value corresponding to the back flow in
the case of the stationary evaporation into vacuum
(16.3% according to the results of numerical calcula-
tion of [7]). In this case, the energy of backscattering
particles can be noticeably lower than that of evapo-
rated particles.

Molecules continue to return to the surface for a
long time upon completion of the pulse, which results
in a significant increase in the back flow. It was demon-
strated in [8] that, in the case of intense evaporation,
from 10 to 43% of particles (depending on the number
of internal degrees of freedom of molecules) can return
to the surface already after pulse termination.

Thus, the intensity of the back flow during the pres-
ence of a pulse and after it has ended can be significant.
In other words, for adequately modeling the evapora-
tion process, it is necessary to allow for the back flow.
We should note that, at the present time, data on the
intensity of the back flow in the entire range of the
evaporation rates are virtually absent.

The problem of determining the back-flow intensity
can be solved by the method of direct Monte Carlo sim-
ulation. This method was widely employed in simulat-
ing both stationary [7, 9] and pulsed [10–14] evapora-
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pr. Akademika Lavrent’eva 1, Novosibirsk, 630090 Russia
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tion into vacuum. However, in these papers, the depen-
dence of the back flow on the evaporation intensity was
not determined.

In the present study, we report the results obtained by
the method of the direct Monte Carlo simulation [15] of
back flows as a function of the Knudsen number in the
course of evaporation and upon its completion within a
wide range of the evaporation intensity when the flow
being formed changes from the collisionless to the con-
tinual one.

We solve the one-dimensional problem on the evap-
oration of particles from a plane surface with the subse-
quent expansion into vacuum. The evaporation occurs
in accordance with the diffusion law at an energy corre-
sponding to the temperature T0 of the surface. For the
pulse duration time τ, the constant particle flux is given.

This flux is equal to Ψ = , where n0 is the satu-

rated-vapor density at the temperature T0, uT = ,

m is the molecular mass, and k is the Boltzmann con-
stant. All particles that have returned to the evaporation
surface are condensed. A monatomic gas is considered.
For describing atomic interactions, the hard sphere

model [15] is used. The Knudsen number Kn =  [12]

is convenient to employ as a criterion uniquely deter-

mining the flow being formed. (Here, λ0 =  is

the molecule mean free path in the saturated vapor and
σ is the collision cross section for molecules.) This
number, in fact, determines the degree of the vapor
cloud rarefaction to the moment of the pulse end.

Particular attention is paid to the determination of
the back-flow intensity at times much exceeding the
pulse action time. The calculation time for which we
traced the cloud expansion dynamics was set equal to
107 τ. The expansion of the cloud in such a long time
interval is characterized by both a large density drop in
the cloud core and significant gradients of parameters at
the cloud front. Therefore, we used an adaptive grid for

n0uT

4
-----------

8kT0

πm
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λ0

uTτ
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1

n0σ 2
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the calculations. For constructing this grid, we have
performed a preliminary calculation with a small num-
ber of particles and a large time step. Based on the
results of this preliminary calculation, we evaluated
spatial density profiles at different moments of time,
which were used furthermore for constructing the adap-
tive grid. It was constructed in such a manner that the
cell size would not exceed 0.25 of the local mean free
path. The time step was chosen according to the condi-
tion that it not exceed the mean local time between col-
lisions. Since the density of the cloud drops by several
orders of magnitude during its expansion, the cell size
and the time step permanently increased by the same
orders of magnitude. The size of the domain being
modeled permanently increased in the process of the
calculation, so that particles could leave the domain
only upon returning to the evaporation surface and
upon being absorbed by it. The number of particles in
the calculation reached 5 × 106.

For testing the program package, calculations of the
stationary and pulsed evaporation into vacuum were
performed for the conditions presented in [7, 12]. The
calculated results are consistent with those obtained
in [7, 12].

The calculations were carried out for Knudsen num-
bers Kn = 10–4–102. The time evolution of the back flow
β for different values of Kn is shown in Fig. 1. At each
moment of time, the back flow β was determined as the
ratio of the total number of particles returned to and
absorbed on the wall to the total number of evaporated
particles. The number of returned particles is directly
proportional to the number of collisions in the cloud
and, correspondingly, to the mass of the evaporated
substance. As the Knudsen number unambiguously
determines the amount of the evaporated substance, we
expected that a single value of the back-flow intensity
exists for each Knudsen number. However, in contrast
to our suggestions, for an arbitrary Kn < 0.1, the value
of β tends to the common limiting value close to
~27.5%.

The maximum value of the back-flow intensity dur-
ing the time of the pulse action corresponds to that of
the back flow for the stationary evaporation and equals
16.3% [7]. After the evaporation has finished, a strong
rise of the back-flow intensity, which is associated with
ceasing evaporation of particles, is observed. We
assume that the stationary evaporation under study with
a constant evaporation rate, which is not typical for
actual conditions, does not affect the intensity of the
back flow at long times. This can be explained by the
fact that, owing to collisions in the vapor cloud, parti-
cles “forget” their initial distribution characteristic of
evaporation [13].

The dependence of the quantity β on the Knudsen
number makes it possible to note certain not evident
results (Fig. 2). This dependence has a weakly pro-
nounced maximum in the vicinity of Kn = 0.02, which
DOKLADY PHYSICS      Vol. 49      No. 2      2004
is different for different moments of time (see insert in
Fig. 2).

In order to explain the results obtained, we consider
basic reasons responsible for the back-flow intensity. A
rise of the evaporation rate results in an increase in the
number of collisions inside the vapor cloud and, corre-
spondingly, to an increase in the number of particles
returning to the surface. In this case, for Kn > 0.1, a
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Fig. 1. Time evolution of the back flow β for the Knudsen
numbers (from top to bottom) Kn = 0.0001, 0.001, 0.01, 0.1,
1, and 10.

Fig. 2. Back flow intensity β as a function of the Knudsen
number Kn at the moments of time t = τ, 10τ, 102τ, 103τ,
105τ, and 107τ.

β, %

10–4

10

10–3 10–2 10–1 100 101

16.3

20

30

0
Kn

107τ
105τ

103τ
102τ
10τ

τ



 

136

        

MOROZOV

                                                             
returning particle can pass through the cloud without
collisions, so that the rise in the collision frequency
leads to an increase in the back flow. However, for
Kn < 0.1, the cloud prevents a particle from passing
through it; therefore, the back flow ceases to increase
further. Collisions transform the thermal energy of par-
ticle chaotic motion into the energy of directed motion,

107τ

Kn

βPOST, %

10–4
0

105τ

103τ
102τ

10τ

10–3 10–2 10–1 100 101

5

10

15

20

Fig. 3. Back flow intensity βPOST upon completion of the
pulse as a function of the Knudsen number Kn at the
moments of time t = 10τ, 102τ, 103τ, 105τ, and 107τ.

Fig. 4. Time evolution of the energy E of returning particles.
The energy is normalized to the energy E0 of evaporated
particles for the Knudsen numbers Kn = 0.0001, 0.001,
0.01, 0.1, 1, and 10.
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which results in a temperature drop in the cloud. This
drop, first, leads to a decrease in the collision frequency
and, second, reduces the probability of the particle turn-
ing towards the target after a collision. Thus, in the case
of a decrease in the Knudsen number, the increase in
the density results in the rise of the quantity β, whereas
the corresponding temperature drop leads to a decrease
in β. The maximum obtained of the back flow intensity
is apparently caused by these two opposite tendencies.

Particular attention was paid to the back-flow inten-
sity upon the completion of the pulse. The fraction of
particles that returned to the surface after pulse termi-
nation was determined as

The dependence of βPOST on the Knudsen number is
nonmonotonic and has a maximum in the vicinity of
Kn = 0.1 (Fig. 3). This maximum is apparently associ-
ated with a low intensity of the back flow at the evapo-
ration stage (β = 3.6%) and a high back flow once the
pulse has ended (β = 25.6%, Fig. 1).

Similar results were obtained in [8] on the basis of
the approximate analytical solution within the frame-
work of the continual description of the cloud decay,
i.e., for Kn = 0. For example, in [8], βPOST(20τ) = 8.9 ±
1.66% and βPOST(∞) = 10.4 ± 1.95%. In the present
paper, for Kn = 10–4, the values βPOST(20τ) = 10.1% and
βPOST(107τ) = 12.9% were obtained.

Account for the back-flow intensity after pulse ter-
mination is especially important for correct comparison
of experimental and calculated data related to the mass
of the evaporated substance, because we can measure
the mass only after the decay of the cloud has com-
pleted. As is seen from Fig. 3, the difference in the mass
of the removed substance, which is caused by the back
flow upon completion of the pulse, can exceed 20%.

The time evolution of the energy of returning parti-
cles is presented in Fig. 4. Independently of the amount
of the evaporated substance, the average energy of
returning particles during the pulse remains the same
and attains about 60% of the energy of the particles at
the moment of their evaporation. These data are consis-
tent with those of [7], in which it is shown that, at the
stationary evaporation, the temperature near the cloud
surface reaches approximately 0.7T0 . Thus, due to the
low-energy back particle flow, an additional cooling of
the evaporating surface and the associated energy
increase in the expanding cloud occur. For example, in
the case of Kn = 10–4 and for the entire calculation time,
the back flows of the mass and energy to the surface
reach 27.1 and 11.4%, respectively. As a result, the
energy of particles presented in the cloud increases for
the expansion time by 21.5%.

The data obtained on the intensity of the back flow
of the mass and energy in the case of pulsed evapora-

βPOST t( ) β t( ) β τ( )–
1 β τ( )–

---------------------------.=
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tion into vacuum can be useful for the more correct set-
ting of boundary conditions when modeling the evapo-
ration process.

ACKNOWLEDGMENTS

The author is grateful to A.K. Rebrov and M.Yu. Plot-
nikov for fruitful discussions and their help in the pro-
cess of this study.

This work was supported by the Russian Foundation
for Basic Research, project no. 03-01-00213, and by
the Program of the President of the Russian Federation
for Support of Leading Scientific Schools, project
no. 910.2003.1.

REFERENCES

1. S. I. Anisimov, Ya. A. Imas, G. S. Romanov, and
Yu. V. Khodyko, Effects of High-Power Radiation on
Metals (Nauka, Moscow, 1970).

2. P. R. Willmott and J. R. Huber, Rev. Mod. Phys. 72, 315
(2000).

3. W. Jiang, K. Ide, S. Kitayama, et al., Jpn. J. Appl. Phys.,
Part 1 40, 1026 (2001).
DOKLADY PHYSICS      Vol. 49      No. 2      2004
4. S. D. Kovaleski, R. M. Gilgenbach, L. K. Ang, and
Y. Y. Lau, J. Appl. Phys. 86, 7129 (1999).

5. R. Burton and P. Turchi, J. Propul. Power 14, 716 (1998).
6. P. Taborek, Phys. Rev. Lett. 48, 1737 (1982).
7. D. Sibold and H. M. Urbassek, Phys. Fluids A 5, 243

(1993).
8. R. Kelly and A. Miotello, Nucl. Instrum. Methods Phys.

Res. B 91, 682 (1994).
9. M. Keidar, J. Fan, I. D. Boyd, and I. I. Beilis, J. Appl.

Phys. 89, 3095 (2001).
10. I. NoorBatcha, R. R. Lucchese, and Y. Zeiri, J. Chem.

Phys. 86, 5816 (1987).
11. D. Sibold and H. M. Urbassek, Phys. Rev. A 43, 6722

(1991).
12. N. M. Bulgakova, M. Yu. Plotnikov, and A. K. Rebrov,

Teplofiz. Aéromekh. 5, 421 (1998) [Thermophys. Aero-
mech. 5, 385 (1998)].

13. O. Ellegaard, J. Schou, and H. M. Urbassek, Appl. Phys.
A 69, S577 (1999).

14. N. Yu. Bykov and G. A. Lukianov, Teplofiz. Aéromekh.
9, 247 (2002) [Thermophys. Aeromech. 9, 235 (2002)].

15. G. A. Bird, Molecular Gas Dynamics and the Direct
Simulation of Gas Flows (Clarendon, Oxford, 1994).

Translated by G. Merzon



  

Doklady Physics, Vol. 49, No. 2, 2004, pp. 69–72. Translated from Doklady Akademii Nauk, Vol. 394, No. 6, 2004, pp. 752–756.
Original Russian Text Copyright © 2004 by Ba

 

œ

 

dakov, Protsenko.

                                                        

PHYSICS

      
Computer Simulation of Nucleation 
in a Liquid under Tension

V. G. Baœdakov and S. P. Protsenko
Presented by Academician V.P. Skripov June 30, 2003

Received July 11, 2003
Recently, the numerical simulation technique
(Monte Carlo and molecular dynamics methods) has
been widely used for studying processes of nucleation
and growth of an incipient phase in liquids, gases, and
crystals [1–6]. This approach makes it possible to rig-
orously solve a problem because it is based on funda-
mental principles of molecular theory. Here, basic
approximations are related to a model interparticle
potential and to the finiteness of the particle number
used in the model. Since the probability of origination
of an incipient-phase nucleus in a metastable system
within a fixed time interval is proportional to the vol-
ume of the system, the fact that the particle number in
the model is small becomes a certain advantage of
numerical simulations when compared to natural
experiments. In particular, this advantage permits both
large supersaturations and nucleation rates currently
unattainable in natural experiments to be realized in
molecular models.

This paper is devoted to a molecular dynamics
model of nucleation in a Lennard-Jones liquid under
negative pressures and tensile stresses close to spinodal
ones. The fact of phase decay under these conditions
has been observed in our studies [7, 8] in which the
equation of state of a metastable Lennard-Jones fluid
was considered. In this paper, we present results of our
analysis of spontaneous-nucleation kinetics and phase
transformations in the framework of a molecular model
of a simple liquid.

The system under investigation contained N =
2048 particles placed in a cube-shaped cell, periodic
conditions being imposed at its boundaries. The inter-
particle interaction was described by the Lennard-Jones
potential

φ r( )
4ε σ

r
--- 

 
12 σ

r
--- 

 
6

– , r rc<

0, r rc.>





=

Institute of Thermal Physics, Ural Division, 
Russian Academy of Sciences,
ul. Amundsena 106, Yekaterinburg, 620016 Russia
1028-3358/04/4902- $26.00 © 20069
Here, ε and σ are parameters of the potential and rc is
the cutoff radius taken as 6.57σ. In what follows, all
quantities will be presented in a reduced form and
marked with asterisks. The Boltzmann constant kB, the
variables ε and σ, and particle mass m are taken as scale
parameters.

In the calculations, we took the energy E, volume V
and particle number N as constant quantities. The states

under investigation at isotherm T* =  = 0.7 are

shown in Fig. 1. We found the density  and pressure
 in the phase equilibrium state using a special model

of a liquid film surrounded by vapor [7], which turned

out to be  = ρsσ3 = 0.8375 and  =  = 0.0013.

The spinodal was determined by the extrapolation of
the data obtained to the region of states, where the
metastable-liquid lifetime was less than the thermody-
namic equilibrium time of the system. The extrapola-
tion was performed with the use of the equation of state
[9]:  = 0.695,  = –0.9635.

In an isolated finite many-particle system, the work
of nucleation of the incipient phase is determined by the
entropy increment ∆S:

(1)

We write out the thermodynamic equations for two
states, namely, for an initial homogeneous liquid and
for a final heterogeneous state involving an incipient-
phase (α) nucleus and a metastable phase (β). In this
case, the entropy decrement is given by the equation

(2)

TkB

ε
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Fig. 1. Isotherm T* = 0.7 for the liquid–gas phase transition.
Here, µ is the chemical potential, γ is the surface ten-
sion, A is the area of the discontinuity surface, V = Vα +
Vβ, N = Nα + Nβ, and E = Eα + Eβ.

Substituting the equilibrium conditions (namely, the

equalities Tα = Tβ = Te, µα = µβ, and pα – pβ = ) into

Eqs. (1) and (2), we find the extreme value of W corre-
sponding to an equilibrium nucleus originating in the
medium:

(3)

2γ
rα
------

W0
1
3
--- T

Te
-----γA

T
Te
----- 1– 

  E–
T
Te
----- pβ p– 

  V–=

+
T
Te
-----µβ µ– 

  N .
The three last terms in Eq. (3) and the factor 

ahead of the first term describe changes in thermal,
mechanical, and material states of the medium in the
course of the nucleation. For an infinite system, the last

terms vanish,  = 1, and Eq. (3) reduces to the Gibbs

formula [10]. If the growth of a nucleus is accompanied
by significant changes in the state of the surrounding
phase then, in addition to the maximum corresponding
to the unstable equilibrium, the function W(rα) could
have a minimum for which the stable equilibrium of the
nucleus in the medium occurs (Fig. 2).

Case 1 (see Figs. 1 and 2) corresponds to a stable,
saturated, and weakly metastable liquid. In this case,

T
Te
-----

T
Te
-----
DOKLADY PHYSICS      Vol. 49      No. 2      2004



COMPUTER SIMULATION OF NUCLEATION IN A LIQUID UNDER TENSION 71
the equilibrium of the liquid and a gas bubble in a finite
system is impossible. For a metastable liquid, the ten-
sion under which such an equilibrium is impossible
depends on sizes of the system. The statistical analysis
of particle configurations in the states mentioned above
testifies to a uniform particle distribution in the cell.

If states corresponding to the labile region are cho-
sen as initial states, the nucleation occurs without any
activation and at a high rate. Since the initial density is
small, a cavity whose shape significantly differs from a
sphere originates in the liquid. The lower the initial
density of the liquid, the greater the characteristic size
of the cavity and the higher the pressure is in the two-
phase system (case 5).

Case 4 corresponds to small values of both the acti-
vation barrier and the metastable-liquid lifetime, the
latter being less than the simulation time scale in the
numerical experiment. In this case, we fixed the process
of nucleation, i.e., the transition of the system into the
equilibrium two-phase state via the formation and
growth of a critical nucleus.

If the density of liquid is greater than or equal to
ρ* = 0.73, the liquid remains uniform during the usual
simulation time of the numerical experiment (cases 2
and 3). The density change from ρ* = 0.73 to 0.7275,
i.e., by only 0.34%, results in the origination of cavita-
tion events. One of the pressure time scans is shown in
the inset of Fig. 1. The time reference point corresponds
to the moment when the density of the system is equal
to ρ* = 0.7275.

We carried out 72 simulations (n0 = 72) of the bub-
ble cavitation. Each of the numerical experiments
started from a new microstate with ρ* = 0.73, which
had a time lag not less than 100 ps with respect to the
previous simulation. This allowed us to consider the
simulations as independent experiments.

In Fig. 3, we present the histogram of the expecta-
tion times for the appearance of a critical nucleus in the
system. This plot verifies the random character of meta-
stable-state decays. For the parameters given above, the
mean lifetime of the liquid under tension in the volume

V = 1.1 × 10–19 cm3 is equal to  =  = 586 ps. In

this case, the nucleation rate is

(4)

According to the Poisson distribution,

(5)

The experimental histogram is in close agreement with
distribution (5). This result is consistent with the direct
experimental data of [11].
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In order to confirm that the metastable-state decays
occurred via nucleation and to determine the character-
istic sizes of incipient-phase nuclei, we developed a
program package capable of looking for and displaying
on the monitor cavities that originated in the system at
various moments of time. The data on coordinates of all

W

r

1 2 3

4

5

Fig. 2. Nucleation work W as a function of the incipient-
phase size for various initial supersaturations in an isolated
system. (The volume of the system and particle number in
it are constant.)

n

t, 102 ps

15

10

5

0 10 20 30

Fig. 3. Histogram of the expectation time for the appearance
of the critical nucleus in a system. The curve is calculated
according to Eq. (5).



72 BAŒDAKOV, PROTSENKO
          

the particles at each moment of time allowed us to dis-
play the model system as a set of balls and to localize
bubble positions by scanning in layers. However, this
method provides only qualitative data on the position
and shape of incipient-phase fragments. A more consis-
tent approach is based on scanning a cell by a tentative
particle [6]. This particle interacts with actual particles
via the potential

The interparticle spacing 

 

r

 

 = 2

 

1/6

 

 corresponds to the
minimum of the Lennard-Jones potential.

When performing the scanning with a step ∆r* =
0.01, we determined the energy of the tentative-particle
interaction with particles of the system within the cut-
off radius  of the interaction potential. For the liquid
phase, the interaction energy ranges from ∆u* = –16 to
∆u* = –6. In the vicinity of the cavity center, the energy
∆u* of the tentative particle is close to zero. At the
boundaries of an incipient-phase fragment, the reduced
energy varies within the range –2.9 to –2.1. Using the
values found, we constructed the outside surface limit-
ing a fragment of the new phase.

In order to determine positions of vapor-phase par-
ticles inside a fragment, we used another method. We
introduced a virtual cube-shaped object into a cell such
that only one particle could be placed into this object.
Then, when displacing the cube in the cell, we registered
the absence or presence of particles in the cube. After the
scanning, we integrated the empty cubes into clusters.

The shape, position, and size of a fragment that were
found using the first and second algorithms were almost
coincident, although the latter gave less exact results.

u r( )
φ r( ), r 21/6>

ε, r 21/6.<–

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=
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Fig. 4. Equilibrium nucleus in a cell.
                 

Using these algorithms, we established that in all
numerical experiments decays of the metastable states
were caused by the formation of local cavities, with their
shapes being significantly varied in the course of growth.
After passing to a local minimum (Fig. 2, curve 

 

4

 

), a cav-
ity takes a shape close to that of a sphere (Fig. 4). In this
case, the characteristic radius of the equilibrium
nucleus is 

 

r

 

0

 

 

 

.

 

 0.6 nm.
In addition to the direct transitions caused by the

origination of a critical nucleus and its growth to the
equilibrium size 

 

r

 

0

 

, we observed random inverse fluctu-
ation passages through the potential barrier 

 

W

 

∗

 

, which
led to decays of nuclei.

Thus, using numerical simulation, we are the first to
have studied stochastic mechanisms of cavitation in
conditions of strong metastability. We have determined
the nucleation rate and have proposed algorithms based
on molecular-dynamics methods for localizing posi-
tions of incipient-phase nuclei. This makes it possible
to perform a detailed verification of the conventional
theory of homogeneous nucleation, namely, the direct
experimental determination of both the nucleation
work and the rate of passage through the critical size.
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In [1, 2], on the basis of experimental investigation
of the critical indices of the coexistence curve β, iso-
thermal compressibility in the one-phase domain γ,
critical isotherm δ, and correlation radius ν, it was
shown that the near-critical-point behavior of real, non-
ideal, systems whose universality class coincides with
that of the Ising model is more complex than it was usu-
ally thought. In addition to the well-known crossover—
transition from the mean-field behavior to the Ising
behavior—whose position is specified by the Ginzburg
criterion [3], one more crossover, which proceeds in the
opposite direction, i.e., from the fluctuation behavior to
the classical one, appeared to be possible near the crit-
ical point of such systems. Thus, the nearest neighbor-
hood of the critical point of real systems, in contrast to
idealized systems, is of the mean-field type.

In this work, a simple physical model based in prin-
ciple only on the first principles of the current theory of
critical phenomena is proposed to explain such a non-
trivial behavior of real systems.

It is well known that the features of the critical
behavior of various systems are determined by fluctua-
tions increasing when approaching a critical point. We
consider a real physical system approaching the critical
point from temperature region I (Fig. 1). Let fluctua-
tions of the order parameter in the system increase
noticeably at temperature T1 and be so developed at
temperature  that their radius (correlation length)
becomes, according to Kadanoff’s idea [4], the only
determining scale characterizing the properties of the
system. As a result, the system falls into fluctuation
region II (Fig. 1), completing the transition from the
mean-field behavior to the Ising-type behavior. This
well-known transition will be called the first cross-
over [1, 2].

As is known, an increase in compressibility (suscep-
tibility) of the system is directly associated with the

T1'
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development of fluctuations (see, e.g., [5]). This means
that an increase in fluctuations is accompanied by the
unlimited increase in the susceptibility of the system,
including susceptibility to various external and internal
perturbations, or “fields,” such as gravitational and
electric fields, surface forces and shear stresses, turbu-
lence, the presence of boundaries, etc. Moreover, the
critical point is a point of decreased stability [6]; i.e.,
fluctuations determining, according to Kadanoff [4]
and Wilson and Kogut [7], the critical behavior are very
unstable formations very sensitive to perturbations of
various physical origins. In view of these circum-
stances, it is natural to assume that, when moving into
the critical region, the system inevitably reaches a point
where fluctuations are first deformed (at temperature

, e.g., Fig. 1) and are then completely suppressed (at
temperature T2) by a certain applied field.1 As a result,
the system finally falling to region III (Fig. 1) under-
goes a new transition in the opposite direction, i.e.,
from the fluctuation behavior to the mean-field behav-
ior. By analogy, this transition will be called the second
crossover [1, 2].

It is possible to determine which of the above tran-
sitions (I  II or II  III) occurs in a certain case
by using, in particular, the combination of the critical
indices that is well known for each of these regions (for
a given universality class of the system). When the fluc-
tuations of the order parameter in the system are only
under development (Fig. 1, T1  section in region II) or
are already deformed (anisotropic) but are not yet com-
pletely suppressed ( T2 section), the behavior must be
transitional with intermediate critical indices. In this
case, the universality of critical phenomena seems to be
also manifested in the absence of the limiting critical
indices other than fluctuation or classical values.

Indeed, the current theory of critical phenomena in
idealized systems (see, e.g., [7]) provides mean-field,
classical, indices for space dimensions d ≥ 4 and fluctu-
ation, Ising, indices for d < 4 (see, e.g., [5]). The renor-
malization-group approach applied to a particular case

1 In the absence of any field, the boundary of the sample can play
role of this field.

T2'
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of the critical behavior of real systems, namely, to the
behavior of a fluid in a flow in the presence of shear
stresses, provided the same two sets in the limiting case
[6]. It is of interest that the experiment carried out in [8]
with the aniline–cyclohexane binary mixture, where it
was easy to vary this type of perturbation (shear
stresses), revealed the entire spectrum of intermediate
values of the critical susceptibility index γ, which actu-
ally lied between the limiting values, Ising (1.24) and
classical (1.0), known for it.

In the framework of the general pattern in the pro-
posed model (Fig. 1), different nonideal systems differ
from each other by different positions of the boundaries
of region II between the crossovers. For some cases,
this region can completely disappear. Although this
model is simple, it allows a detailed elaboration con-
cerning the position of these boundaries. First, if per-
turbing fields ensure the suppression of fluctuations
over the entire temperature range, region II can be
absent. This is the case for systems with long-range
forces (superconductors, ferroelectric materials, etc.),
whose behavior is always classical mean-field [5]. Sec-

iIsing

T2

icl

T2' T1' T1 T

i

IIII II
*cr.p.

Fig. 1. Curve approximating the behavior of the critical
indices i of real systems near the critical temperature (den-
sity) point (cr.p.).
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Fig. 2. Effective critical indices of the coexistence curve βeff
and isothermal compressibility γeff for pure (s [9], ∇  [12],
d [10, 11]) SF6 and (. [13]) CO2 in the second crossover
region. Data for β and γ refer to the ranges τ < 0 and τ > 0,
respectively. The piezometer height was equal to 8 [9–11]
and 30 [12, 13] mm. For convenience, experimental points
are connected by straight lines.
            

ond, the position of the boundaries of the fluctuation
region must be different not only for different nonideal
systems but also for different physical properties of the
same system that behave differently near the critical
point. In other words, curves similar to those shown in
Fig. 1, which present various physical properties, must
have individual positions of regions I, II, and III with
respect to the critical point. In particular, these curves
can be shifted with respect to each other along the hor-
izontal axis (in temperature or density), can have differ-
ent slopes near the first and second crossovers, etc. This
refinement seems to be physically justified, because
different properties that have a common cause of the
anomalous behavior near the critical point are
described by different critical indices, which testifies to
different dependences of these properties on the level of
fluctuations. Indeed, the anomaly of the coexistence
curve of a certain fluid in the presence of, e.g., gravity
needs not to be at the same distance from the critical
point as the anomaly of, e.g., isothermal compressibil-
ity or specific heat of the same fluid under the same
conditions. We note that the Ginzburg criterion, which
is based on the comparison of contributions from the
volume and correlation energies in the application to
the anomaly of the specific heat at constant volume,
does not 

 

a priori 

 

suppose such a possibility [3].
Thus, simple physical reasons lead us to a new, more

complex and detailed pattern of physical phenomena
under real conditions. Any action, even infinitely weak
far from the critical point, becomes predominant near
the critical point, where it determines the growth and
form of critical fluctuations in the system and, there-
fore, changes the type of its critical behavior.

The behavior near the second crossover is of special
interest for experimental corroboration of the above
concepts [1]. For simple fluids, this is the nearest neigh-
borhood of the critical point, where highly sensitive,
stable, and accurate instruments must be used. A few
such experiments are available (see, e.g., [9–13]). 2  

Analyzing data of the 
 

p
 

ρ
 

T
 

 experiments for two sam-
ples of SF

 

6

 

 (purity of 99.9995% [2, 9–11] and
99.9994% [12, 13]) and CO

 

2

 

 (purity of 99.9999% [13]),
which are likely the purest samples that have ever been
studied, we obtain the temperature dependences of the
critical indices 

 

β

 

 and 

 

γ

 

 shown in Fig. 2. These curves
clearly demonstrate the similarity between the critical
behavior of real systems (simple pure fluids) near the
second crossover and predictions of the above model
(Fig. 1) for both 
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Ising

 

 > 
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cl
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γ

 

) and 
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Ising

 

 < 

 

i

 

cl

 

(critical index 
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).
In addition, Fig. 2 directly illustrates one of the dis-

cussed features of the critical behavior of real systems
near the critical point: the second crossover for differ-
ent physical properties of the same system under simi-

2 In these experiments, the errors of measurements of pressure and
density did not exceed 0.001 and 0.02%, respectively, and tem-
perature was kept with an accuracy of no worse than 200 [9–11]
and 20 [12, 13] µK.
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lar conditions is observed at different distances from
the critical point. As is seen in Fig. 2, the second cross-
over for “strong” critical index of isothermal compress-
ibility γ is by almost two orders of magnitude farther

from the temperature critical point τ =  –1, where

Tcr is the critical temperature  than the similar transi-

tion for the “weak” index of the coexistence curve β. It
is very important to consider this circumstance when
testing the validity of the universal relations between
critical indices. It is now clear that the effective values
of all critical indices for such a test in real systems must
be extracted from the corresponding region of the curve
(Fig. 1) for each individual index rather than from the
same temperature (density) range as was usually done.
All desired critical indices (no less than three) must be
determined for the same sample at the same experimen-
tal setup. In particular, according to our data for SF6
(Fig. 2 [1, 2, 10]), an important relation γ = β(δ – 1) for
the static critical indices is satisfied almost exactly for
both the fluctuation region (|τ| ≥ 3 × 10–5 and 10–3 for β
and γ, respectively), where β = 0.3508 ± 0.0013, γ =
1.16 ± 0.03, and δ = 4.30 ± 0.01 [2, 10], and the region
where fluctuations are suppressed, where β ≈ 0.5, γ ≈ 1
(Fig. 2 [1, 2, 10]), and δ ≈ 3 [1, 2, 10]. At the same time,
it is seen that the use of the critical indices from the
same intermediate temperature range, e.g., 3 × 10–5 <
|τ| < 3 × 10–4 (Fig. 2), would be unfounded.

Among other features, we note that the curves for
two critical indices have different slopes near the sec-
ond crossover. In this region, the narrower temperature
range (sharper dependence) is also observed for the γ
index, which is physically natural. We note that the crit-
ical density for τ < 0 falls into the range of labile states,
which reduces maximum fluctuations as compared to
τ > 0 with the same |τ| [14]. The slope of the curve near
the second crossover indicates that the perturbing field
continuously deforms critical fluctuations and, then,
completely suppresses them.

In the opinion of the authors of [1, 2, 9, 10, 12, 13],
the gravitational field of the Earth played the role of
such a field in the experiments described in [9–13]. This
is corroborated by Fig. 2. It is seen that the index β for
the same substance (SF6) in the higher vessel begins to
vary near the second crossover at larger distances from
the critical point. According to the analysis made
in [13] for the behavior of the critical index γ near the
critical points in SF6 and CO2, the relative temperature
distance (τ) of the transition is proportional to the den-
sity of the substance. Both the above conclusions can
inevitably be considered as substantial evidence that, as

-
 T

Tcr
------



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was first pointed out in 1974 [9, 10], gravity is the prin-
cipal cause of changes in the critical indices to its clas-
sical values near the critical point. We emphasize that
the key effect of gravity on the appearance of the sec-
ond crossover in simple pure fluid is not reduced to triv-
ial redistribution of the substance density over the ves-
sel height. It is the internal gravitational effect, which,
according to [15], “changes the local properties of a
fluid modifying thereby the origin of the phase transi-
tion” (for more details, see [1, 2, 9, 10, 12, 13]).
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In the last few years, uranium-containing minerals
and inorganic compounds have attracted increasing
interest in connection both with their important role
in the processes of the transmutation of spent nuclear
fuel [1] and with their possible use as host materials for
the immobilization of transuranium elements (first of
all, weapons-grade plutonium) and radionuclides [2, 3].
Since molybdenum is one of the products of 239U decay,
the study of uranium molybdates is of special interest
[4, 5]. Two polymorphs—trigonal α-UMo2O8 [6] and
orthorhombic β-UMo2O8 [7–9]—of uranium dimolyb-
date containing tetravalent uranium are known at
present. In addition, the UMo2O8 formula was revealed
for sedovite, a mineral found in the oxidation zone of
uranium–molybdenum ores [10]. In the present paper,
we report the results concerning the synthesis and crys-
tal structure of a new UMo2O8 polymorph, which can
be referred to as γ-UMo2O8.

Crystals of γ-UMo2O8 were grown by the hydrother-
mal method. We took 0.078 g of UO2(CH3COO)2 · 2H2O
and 0.072 g of MoO3 and mixed them with 0.15 g of
glycerin, 0.032 g of 40% HCl, and 5 ml of distilled
water. A Teflon capsule with the mixture was placed in
an autoclave and kept for 65 h at 220°ë. After cooling,
we found a coaly amorphous (according to the X-ray
analysis) substance at the bottom of the autoclave. Its
black flakes contained dark goldish yellow γ-UMo2O8
plates.

For the X-ray analysis, we selected a 0.12 × 0.04 ×
0.008-mm single crystal. The intensities of diffraction
peaks were measured at the University of Notre Dame
(Indiana, USA) on a Bruker SMART diffractometer
equipped with a CCD (charge-coupled device) detector.
The unit-cell parameters were calculated by the least
squares fitting based on 1195 intense reflections. The
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unit cell is orthorhombic with lattice constants a =
10.1909(7) Å, b = 9.5857(7) Å, and c = 14.2741(11) Å
and volume V = 1394.4(2) Å3. The extinction character-
istics and the statistics in the distributions of reflections
suggested the space group Pbca. The set of structure
factors was obtained by the SAINT program after intro-
ducing the corresponding corrections. The structure
was determined by direct methods and was refined up
to R1 = 0.034 (wR2 = 0.049) for 1663 reflections with
|Fhkl| ≥ 4σ|Fhkl|. The final model included the positions
and isotropic thermal parameters for all atoms (see
Table 1). The interatomic distances are presented in
Table 2.

The γ-UMo2O8 compound has the same structure as
UW2O8 [11], β-Th(WO4)2 [12], and PuMo2O8 [13]
(note, however, that the structure was determined only
for UW2O8). In the γ-UMo2O8 crystal structure, ura-
nium atoms have an eightfold coordination with oxy-
gen atoms (the Archimedean antiprism or the Thomp-
son cube), whereas molybdenum atoms are in tetrahe-
dral coordination with oxygen. The calculation of local
valence balance with the parameters taken from [14]

Table 1.  Positions and isotropic thermal parameters (in Å2)
of atoms in the crystal structure of γ-UMo2O8

Atom x y z Uiso

U 0.96619(3) 0.22463(3) 0.39029(2) 0.00876(7) 

Mo(1) 0.77565(6) 0.50369(8) 0.56063(5) 0.00937(14)

Mo(2) 0.10523(6) 0.31525(8) 0.15083(5) 0.0103(2) 

O(1) 0.9958(5) 0.2309(6) 0.2300(4) 0.0166(13) 

O(2) 0.6744(5) 0.3896(6) 0.6245(5) 0.0209(15) 

O(3) 0.8911(5) 0.5905(5) 0.6345(4) 0.0136(13) 

O(4) 0.2677(5) 0.2681(6) 0.1808(4) 0.0165(13) 

O(5) 0.0742(5) 0.2568(7) 0.0362(4) 0.021(2) 

O(6) 0.6679(5) 0.6237(6) 0.5078(4) 0.0188(14) 

O(7) 0.8586(5) 0.4131(6) 0.4724(4) 0.0176(14) 

O(8) 0.0815(5) 0.4961(6) 0.1527(5) 0.0215(14) 
004 MAIK “Nauka/Interperiodica”
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demonstrated that the formal valence of U, Mo(1), and
Mo(2) is equal to 4.23, 5.91, and 5.87 valence units,
respectively. The coordination polyhedra UO8 and
MoO4 connected through common vertices form a
three-dimensional frame (see figure). It is interesting
that each oxygen atom forms a chemical bond with only
one uranium atom and one molybdenum atom. For-
mally, the average U4+–O bond valence in U4+O8 poly-
hedron equals about 0.5 valence units, whereas the
average Mo6+–O bond valence in Mo6+O4 polyhedron
equals 1.5 valence units. Therefore, the sum of valences
corresponding to the bonds coming to oxygen atoms is
on average equal to 2; i.e., all valences of oxygen are
totally saturated.

x

z

Crystal structure of γ-UMo2O8 in the (010) projection.
Eight-vertex UO8 polyhedra are marked by crosses and
MoO6 tetrahedra are lined.

Table 2.  Interatomic distances (in Å) in γ-UMo2O8

U–O(4) 2.301(5) Mo(1)–O(7) 1.748(6)

U–O(1) 2.308(6) Mo(1)–O(2) 1.758(6)

U–O(3) 2.319(5) Mo(1)–O(6) 1.760(6)

U–O(8) 2.326(6) Mo(1)–O(3) 1.786(5)

U–O(5) 2.362(6) 〈Mo(1)–O〉 1.763

U–O(6) 2.370(6)

U–O(2) 2.397(5) Mo(2)–O(8) 1.751(6)

U–O(7) 2.416(5) Mo(2)–O(5) 1.759(6)

〈U–O〉 2.35 Mo(2)–O(4) 1.768(5)

Mo(2)–O(1) 1.782(5)

〈Mo(2)–O〉 1.765
DOKLADY PHYSICS      Vol. 49      No. 2      2004
The structure of γ-UMo2O8 is less dense than that of
β-UMo2O8 . The densities of β-UMo2O8 and γ-UMo2O8

are equal to 6.12 and 5.32 g/cm3, respectively. This dif-
ference stems from the structural features of the
β-UMo2O8 phase, where the molybdenum atoms have
octahedral coordination and uranium atoms have sev-
enfold coordination in the form of a pentagonal bipyra-
mid. Higher coordination numbers, as well as the char-
acteristic joining of the coordination polyhedra by
common edges, determine the higher density of the
β-polymorph. The high-temperature α-UMo2O8 phase
is less dense (5.24 g/cm3), but it is also less stable under
normal conditions.

The behavior of plutonium during UMo2O8 crystal-
lization from high-temperature (900°ë) melts was dis-
cussed in [15]. It turned out that plutonium does not
enter into the β-UMo2O8 structure. It remains in the
melt or forms mechanical inclusions in the form of Pu-
containing phases. Since the new polymorph γ-UMo2O8
is isostructural with PuMo2O8, it is quite probable that
this phase could be formed in low-temperature oxida-
tion processes of spent nuclear fuel and serve as an
accumulator of plutonium.
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Due to a number of advantages compared to other
kinds of antennas, phased array antennas (PAAs) and
especially active phased array antennas (APAAs) have
gained wide acceptance in modern communication sys-
tems, radars, radio astronomy, and the latest cellular
communication systems [1]. The APAAs are based on
transceiver antenna modules (Fig. 1).

Nevertheless, even modern APAAs are not capable
of efficiently solving new problems that have appeared
in recent years. The most important of them are the
necessity of reliably detecting objects supplied with
radio-absorbing coatings, underground radio vision
associated with the use of miniature antennas, and pro-
viding adaptation to broadband noise and stability with
respect to the action of electromagnetic pulses.

Rather recently, a new promising direction has
appeared in radar engineering, namely, radiolocation
by ultrashort pulses with a duration of less than 1 ns,
i.e., pulses lying within a superwide frequency band
(from several octaves and higher). Theoretically, the
application of ultrashort pulses makes it possible to
detect various inconspicuous objects, including those
supplied with radio-absorbing coatings since these
coatings are efficient only in a narrow frequency band.
This method also allows the resolution and spatial mea-
surement accuracy to be qualitatively improved and the
underground radiolocation to be realized [2]. Intense
efforts aimed at the research and development of corre-
sponding antennas and ultrashort-pulse generators are
now being undertaken.

However, for constructing an efficient radar based
on an APAA, it is necessary to ensure high-precision
phasing (time shift) of antenna radiators and rapid scan-
ning of the beam (beams) in a wide angular range, as
well as to provide super-broadband transmission chan-
nels between an antenna array and signal processing
equipment and the formation in the real-time scale of
the directivity pattern adapted in a superwide frequency
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band. Due to the high dispersity of conventional com-
ponents employed for constructing an APAA, they in
principle do not allow operations with ultrashort pulses
to be to ensured. This is explained by the fact that usual
radio-frequency transmission lines, delay lines, and
other components of a radio-frequency channel having
a high dispersion strongly limit the operation frequency
bandwidth. In addition, in the case of development of
an APAA, specific problems arise when it is employed
onboard radar stations on aircrafts, spacecrafts, and
other mobile carriers. To provide the required output
power of an APAA at the existing efficiency of its mod-
ules, it is necessary to remove the thermal power
exceeding 50 kW from antenna planes. This results in
the need to apply liquid cooling systems associated
with extended pipelines in which a volatile coolant cir-
culates. In this case, the mass and size parameters of the
system increase, whereas the reliability and viability
considerably decrease and the cost elevates. Thus, the
problem of efficient and reliable cooling has not been
solved to date, since even modern fighter planes are
equipped with liquid-cooled APAA systems having a
number of disadvantages [3].

An increase in the longitudinal size of antenna mod-
ules, which is associated with liquid cooling, results in

1

2

3 4

5

6

7

8
9

Antenna module

Fig. 1. Typical functional diagram of an antenna module in
an APAA: (1) stepped phase shifter; (2) generator with a
digital control system; (3) and (8) switches of the recep-
tion/transmission regimes; (4) power amplifier; (5) low-
noise amplifier of a detected signal; (6) circulator; (7) load;
(9) radiating element of an antenna array.
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Fig. 2. General structure diagram of an ROAM (FOTL is fiber-optic transmission line).

amplifier
the impossibility of installation onboard antenna sys-
tems with a desired aperture and invalidity of the
requirements of both the long-range detection and side-
lobe level.

Due to the small size of APAA modules and their
large number, the use of conventional microwave lines
and connectors becomes difficult. At the same time, the
number of control and signal channels with their corre-
sponding cables becomes much larger than in the case
of a PAA.

There is also the problem of phasing accuracy,
which is caused by the insufficient phase thermal stabil-
ity of waveguides and aging of a dielectric in coaxial
cables.

The necessity of providing the internal and external
electromagnetic compatibility and stability of the
antenna system with respect to electromagnetic pulses
is complicated by the highly dense mounting of its
components and saturation of the entire volume of a
modern aircraft or spacecraft by radio electronic equip-
ment, as well as by the significant total length of the
onboard cable network.

It is possible to solve this and other problems and to
transform the characteristics of radar stations to a qual-
itatively modern level using analog-photonics meth-
ods1 [4]. At present, powerful heterolasers with an out-
put power (in the permanent regime) of more than sev-
eral watts, distributed photodiodes capable of detecting

1 Analog (radio-frequency, microwave) photonics is a set of opti-
cal, radiophysical, and radio-engineering methods for the trans-
formation, processing, transmission, automated regulation, and
synthesis of analog signals, optics playing the principal role. A
symbiosis of analog (nondigital) optoelectron devices and optical
integrated circuits, analog optical processors with a holographic
memory, which are connected by analog fiber-optic transmission
lines, are used as component types in analog photonics.
DOKLADY PHYSICS      Vol. 49      No. 2      2004
a large optical power with a high quantum efficiency,
modulators providing a noise factor smaller than 0.5 dB
up to frequencies exceeding 20 GHz [4], and special
optic fibers for transmitting a large optical power are
being developed. Because of this, a novel approach to
the development of APAA antenna modules of a new
type became possible.

Application of analog photonics to PAAs can yield
the most noticeable effect in the case of employing dis-
tributed radio-optical antenna modules (ROAMs). The
principal difference between ROAM and usual APAA
modules consists in the spatial separation (based on
fiber-optic transmission lines) of the heat-releasing
(active) part of an antenna module from the other (pas-
sive) part, in which the heat release is negligible.2 As a
result, a ratio of 10 : 1 or higher for the thermal power
released in the active and antenna parts of a ROAM can
be attained. New achievements in the field of construct-
ing antenna radiators make it possible to extend the
operation frequency bands of antenna arrays up to sev-
eral octaves. This makes it possible to realize in prac-
tice the high potentialities of optical methods [5].

Photonics-based methods of controlling antenna
directivity patterns allow us to construct antenna arrays
of a new type. A possible structural diagram of an
ROAM without a control unit is presented in Fig. 2.
Here, the active and antenna parts of the ROAM are
connected by three analog optical channels. The first
fiber-optic line serves for transmitting an intense radio-
frequency signal via the antenna radiator. The second
optical channel transmits the optical radiation from a

2 Realization of these modules, which is based on conventional
transmission lines has no practical sense due to a high micro-
wave-energy loss in them and unacceptable size, mass and stiff-
ness intrinsic to the structure.
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low-noise single-mode heterolaser placed in the active
part to a highly sensitive optical modulator. This signal
received by the antenna radiator operating in the recep-
tion mode modulates the optical radiation. It is further
transmitted by the third low-signal optical channel with
the single-mode optical fiber to the active part of the
ROAM. In this part, the radiation is transformed into a
radio-frequency signal or is transmitted for subsequent
processing by optical methods.

The control of the ROAM operation can also be per-
formed via analog or digital fiber-optic communication
lines using optically switched attenuators, phase
shifters, etc.

1
2 3 4 5

6

7

Fig. 3. Possible external view from the side of the antenna
part for a distributed optical module. (1) Optic fiber;
(2) powerful distributed photodiodes; (3) optical wave-
guide; (4) metallization; (5) circulator; (6) integrated radia-
tor; (7) separating screen installed between the transmitting
and receiving parts of the module and the receiving part of
the module.
A diagram illustrating the view of the exterior part
of an ROAM is presented in Fig. 3. The thickness of
this part of the module that, as well as the entire mod-
ule, can be constructed on the basis of integrated-optic
technology reaches approximately 1 mm, and the
length (without a radiator) and mass are several tens of
millimeters and several grams, respectively.

Antenna arrays based on such distributed antenna
modules can be called radio-optical phased array anten-
nas (ROPAAs).

Due to the considerably lower mass and smaller size
of an ROAM, the entire mass of an antenna array
decreases, and the possible number of modules being
installed increases. This fact positively affects the basic
parameters of antennas and extends the possible field of
their application. The main difference of an ROPAA
from a usual passive PAA consists in the fact that an
array can be constructed in accordance with the paral-
lelism principle (i.e., each vibrator has its own module,
as in an APAA). In addition, the part of the antenna
module is presented that performs a substantial bulk of
APAA module functions in the immediate vicinity of
the radiator (Fig. 4). It should be noted that an ROAM
is slightly (by approximately several times) inferior
modern APAA modules with respect to the calculated
output power. However, this disadvantage can be com-
pensated by the installation of a greater number of
ROAMs on the antenna plane because of their consid-
erably lesser thickness. Therefore, the total calculated
energy potentialities of RAPAAs and modern APAAs
can be approximately equal. Owing to the possible
application of new highly efficient modulators, the cal-
culated noise factor of ROAM receiving channels (less
1 2 3

4

5

Fig. 4. Fragment of an RAPAA: (1) RAPAA control unit; (2) optical cable; (3) ROAM active-part unit; (4) multi-fiber mixed (single-
mode and multimode) optical cable; (5) antenna array composed of ROAM antenna parts.
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than 1 dB) can be considerably lower than that of the
corresponding APAA channels (several dB). The rap-
idly increasing power of heterolasers allows us to
assume that the superiority of ROAMs (RAPAAs) with
respect the output power will be also attained in several
years. RAPAAs can possess a number of advantages
compared to conventional PAAs or APAAs. Below, we
compare some advantages of APAA cooling systems in
modern aircrafts with the proposed RAPAA cooling
system.

The advantages of an RAPAA system with respect
to conventional PAA and APAA systems are:

the small size of passive parts of distributed RAPAA
modules, i.e., a decrease in the total mass and volume
of the antenna array;

a decrease in the mass and size of the cooling system
at the expense of combining active heat-releasing parts
of RAPAA modules with the cooling system;

improvement of reliability and viability of the cool-
ing system and in the RAPAA itself owing to the exclu-
sion of pipelines with volatile freon;

a decrease in spreading distances of composing
masses with respect to the system’s center of mass, i.e.,
the elevation in maneuverability;

a decrease in the mass of the power network at the
expense of its shortening.

Owing to the advantages listed above, RAPAAs can
find wide application in both civil and military fields,
including aircrafts and spacecrafts, ground-based
mobile carriers, and smart antennas of stationary base
stations. There are a number of other fields of applica-
tions in which antenna arrays based on RAPAAs can
exhibit significant advantages compared to conven-
tional ones.
DOKLADY PHYSICS      Vol. 49      No. 2      2004
Thus, we can conclude that the proposed application
of ROAMs constructed on the basis of analog photonics
and ROAM-based antenna arrays (RAPAAs) can solve
a number of problems arising while designing and
employing conventional APAAs. In other words, we
can attain a new quality of radar stations (owing to the
operation of equipment in a superwide frequency band
with ultrashort pulses). In this case, we are able to con-
siderably improve a number of other characteristics
(e.g., formation of an improved directivity pattern and
efficient adaptation in the real-time scale). Most meth-
ods necessary for the calculation and optimization of
analog optical-fiber transmission lines as applied to
APAAs have even been constructed [6, 7]. The indus-
trial development of these systems must lead to multi-
ple reduction of the cost and construction cycle for both
antenna modules and antenna arrays in themselves.
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Studies of nonequilibrium crystallization in gels
with inhomogeneous chemical composition are impor-
tant not only from the cognitive and pure theoretical
viewpoints. This physicochemical process, which is
associated with the addition of elementary chemical
“building blocks” to a certain stochastically nucleated
center of the future solid phase, is clearly irreversible.
Indeed, the entropy of a growing crystal (further called
“stalactite”) increases and is maximal at the termina-
tion of the process. At the same time, the energy of
adhesion of each elementary chemical block to the sta-
lactite corresponds to an exothermal process, which is
accompanied by taking heat from the bulk of the gel. As
a result of crystal growth, the gel is cooled. Such cool-
ing was actually observed in experiments.

To obtain a system of dynamic equations describing
the growth of the crystal and its shape, we choose the
dissipative function Q as a generating functional (some
close considerations concerning this choice were given
in [1, 2]). It is necessary to take into account that crystal
growth in a certain substance is clearly irreversible. In
addition, viscosity depends here on the position and
changes within the range δx about equal to or larger
than the size b of an elementary crystallite, which is a
building block for the crystal bulk. This behavior is typ-
ical for any non-Newtonian liquid (in the temperature
range close to the crystallization point). In other words,
as a working model, we assume that these crystallites
adhere, due to diffusion, to a fluctuation-nucleated
domain that has a higher density and lower temperature
and where the future crystal nucleus is formed at non-
zero viscosity gradient ∇η . To take into account the
vector nature of adhesion, we assume that each crystal-
lite is characterized by velocity v(x, t) varying at dis-
tances of about or larger than its linear size b. Let this
motion be characterized by the angular momentum
M(x, t). The description of crystallization dynamics in
terms of vector M is also supported by strong deviation
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from the spatial isotropy in the glasslike bulk and the
anisotropy characterizing the development of crystals.

The inclusion of parameters v, M, and ∇η  in the dis-
sipative function constructed implying that it is not
invariant under time reversal leads to the functional

(1)

where η0 is the constant of viscosity dimension, τ is the
constant of time dimension, and  is the fourth-
rank tensor. Note that Eq. (1) involves only the first
term, which turns out to be sufficient to solve the for-
mulated problem.

Varying this expression with respect to the compo-
nents of the angular momentum and using the phenom-

enological equation  = , where γ is the con-

stant providing the appropriate dimension, we obtain

(2)

where Biknm = γ .

Let us analyze Eq. (2) in the very important particu-
lar case where it can be represented in the form

(3)

where η0 is the constant of viscosity dimension
(g/(cm s)), which is inversely proportional to the square
of the interaction energy between the nucleus (playing
the role of the attracting set) and the elementary build-
ing chemical compound of mass m, M is their angular
momentum, and η is the absolute viscosity of the gel
obeying the Vogel–Fulcher law

Here, ∆ is the energy barrier and η* is the dynamical
viscosity of the crystalline compound, which is equal

Q M{ } 1
2τη 0
------------ Biknm* MiMkv n∇ mη td d3x +  … , ∫  =

Biknm*

dM
dt

--------- γδQ
δM
----------

Ṁi BiknmMkv n∇ m
η
η0
-----,=

Biknm*

Ṁ
1
η0
----- M v∇η[ ][ ] ,=

η η *
∆

T Tcr–
-------------------.exp=
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by the order of magnitude to , where a is the

interatomic distance, " is Planck’s constant, Jex is the
energy of the exchange interaction between atoms, ρ is
the crystal density measured in g/cm3, and Tcr is the
crystallization temperature. The addition of elementary
building chemical compounds to the main nucleus is
responsible for its dynamic growth through the diffuse-
adhesion mechanism. In connection with this, we
emphasize that the diffusion mechanism has a signifi-
cant drawback (namely, a limited applicability range),
which is absent in the synergetic theory of crystal
growth discussed here. Indeed, in contrast to the diffu-
sion approximation, Eq. (3) has no limitations to the
linear sizes of stalactites and, hence, describes the most
general case of crystal development.

According to Eq. (3), the scalar product M  is

identically equal to zero; i.e., the absolute value |M| of
the total angular momentum is conserved.

Since M = m[vr], Eq. (3) can be written in the form

(4)

where g = . Let us consider solutions of this equa-

tion for the case g = (0, 0, g). In this case, we obtain the
set of equations

(5)

Using cylindrical coordinates x = rsinϕ, y = rcosϕ, z =

z, we obtain y – x = –r2 .

From the first two equations of set (5), it follows that

and, hence,

(6)

From the last equation of set (5), we find

(7)

Hence, r2  = C1exp{gv 0t}, where C1 is the integration
constant. Assuming that the angular velocity is con-

stant, i.e.,  = ω = const, we find the solution

r = r0 exp , (8)

where r0 = r (t = 0).

Jexa2ρ
"

----------------

dM
dt

---------

dM
dt

--------- v Mg( ),=

η∇
η0
-------

ẏ̇z ż̇y– gẋ ẋy ẏx–( ),=

ż̇ x ẋ̇z– gẏ ẋy ẏx–( ),=

ẋ̇ y ẏ̇x– gż ẋy ẏx–( ).=

ẋ ẏ ϕ̇

z ẋ̇x ẏ̇y+( ) z ẋ̇2 y2+( )– g ẋy ẏx–( )2=

z ṙ̇ rϕ̇2–( ) ż̇r– r3ϕ̇2
g.=

d r2ϕ̇( )
dt

---------------- gżr2ϕ̇ .=

ϕ̇

dϕ
dt
------

gz
2
-----
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In this case, Eq. (6) is also simplified and becomes
very simple under the assumption that the crystal

growth rate along the z axis is constant:  = v 0 =

const, which physically means the uniform growth of
the independent z component of the surface (directed

along the axis of the stalactite). Therefore,  = 0 and

Eq. (6) gives

(9)

Hence,  – rω2 = 0 at t → ∞ and the corresponding

solution reads

(10)

where C1 and C2 are the integration constants.

It is obvious that only the solution with C2 = 0, i.e.,
r(t) = C1e–|ω|t , can be physically meaningful because the
amount of the substance (in our case, lead) is limited.
Comparing this solution with solution (6), we arrive at
the following linear relationship between the “twisting”
frequency and viscosity gradient:

(11)

Now, let us analyze the solution of Eq. (9) with the
nonlinear right-hand side. By the substitution r =

At1/2u, where A = 0.5  and u(t) is the new

unknown function, we transform Eq. (9) to the equation

(12)

where τ = ωt is the new argument.
For small u (u ! 1), we can transform Eq. (12) to the

Bessel equation

(13)

where x =  and prime means differentiation with

respect to x.
A solution to Eq. (13) is u(x) = c1J1/2(x) + c2J–1/2(x),

or in the old notation,

(14)

where c1 and c2 are the integration constants.

dz
dt
-----

d2z

dt2
-------

ṙ̇ rω2– r3ω2 g
v 0t
--------.=

d2r

dt2
-------

r t( ) C1e ω t– C2e ω t,+=

ω g
v 0

2
------.=

3v 0

g
--------- 

 
1/2

τ2u'' τu' 0.5 τ2 1
2
---– 

  u+ + 0.75τ2u3,=

x2u'' xu' x2 1
4
---– 

  u+ + 0,=

τ
21/2
--------

u τ( ) = c1J1/2
τ
2

------- 
  c2J 1/2–

τ
2

------- 
  ,+
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Since J1/2(ξ) = sinξ and J–1/2 =

cosξ, we find from Eq. (14) that

(15)

2
πξ
------ 

 
1/2

2
πξ
------ 

 
1/2

u τ( ) 2 2
πτ
------ 

 
1/2

c1
τ
2

------- c2
τ
2

-------cos+sin .=

(a)

(b)

(c)

X

X

X

Fig. 1. Nuclear radius r(ϕ) given by Eq. (16) for (a) ωt < 1
and (b) ωt @1 and (c) by Eq. (20) for ωt > 1. These plots
predict three different possibilities for twisting surfaces,
and X is the polar axis.
Therefore, the sought time dependence of the stalac-
tite radius can be written as

(16)

where B and ϕ0 are new constants introduced in place
of c1 and c2 .

Figures 1a and 1b schematically show Eq. (16) as a
function of rotation angle ϕ = |ω|t.

Let us analyze now a solution to Eq. (12) in the case
of large argument τ (τ @1). In this case, we arrive at the
asymptotic equation

(17)

We emphasize that the condition τ @ 1 can easily be
met in actual physical experiment, for example, if fre-
quency ω is high or the time intervals are long. This is
possible when temperature T is close to the crystalliza-
tion temperature Tcr. The first integral of Eq. (17) has
the form

(18)

where C* is the integration constant. Setting it to zero
and integrating Eq. (18), we find

(19)

where D is the new integration constant.
Since we consider large τ (τ @ 1), a solution to

Eq. (19) is a rapidly oscillating function and the time
dependence of the nucleus radius r(t) looks like an
array of sharp needles. According to the definition, r =
At1/2u; hence,

(20)

According to this solution, the radius of the nucleus
is an increasing function with the envelope proportional
to t1/2. Such a development of the nucleus is possible if
the amount of the crystallizing substance in the gel is
sufficient. However, such growth cannot continue infi-
nitely and must stop when the crystallizing component
in the gel disappears.

The behavior of this solution is qualitatively illus-
trated in Fig. 1c for the case ωt > 1.

The solution to Eq. (20) leads us to the conclusion
that the shape of the surface is spiked and twisting. Its
twisting is determined by the direction of angular
velocity ω characterizing the “winding” of chemically
active elementary blocks onto the arising nucleus of the
solid phase.

We also emphasize that the qualitative solution dis-
cussed above supports the validity of the initial assump-

r t( ) At1/2u B
3v 0

π ω g 2
------------------------ 

  1/2

ω t
2
--- ϕ0+ 

  ,sin= =

u'' u+ 1.5u3.=

u' 0.75u4 u2– C*+( )1/2
,=

u τ( ) 2

3 D
τ
2

-------+ 
 cos

----------------------------------------,=

r t( )
v 0t
g

-------- 
 

1/2

D
ω t

2
---------+ 

 cos
1–
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DOKLADY PHYSICS      Vol. 49      No. 2      2004



MODEL DESCRIPTION OF CRYSTAL GROWTH IN INHOMOGENEOUS MEDIA 85
tions, but it is not exact because it was found from the
asymptotic nonlinear equation (17). The exact surface
shape can be determined only by numerical integration
of Eq. (12). Therefore, it is a separate problem to find
the surface shape analytically in the general case.

We discussed above a quite simple case where both

crystal growth rate  and angular velocity ω were

assumed to be constant. Therefore, it is interesting to
analyze the set of Eqs. (3) [or Eqs. (4)] with nonlinear
behavior of z(t) and ω(t).

When the coordinate z and angle ϕ are linear func-
tions of the parameter t, solution (8) at g < 0 determines

the surface of the stalactite as a needle of length L = .

Since |g| = , length L is physically determined by

the square of the interaction between elementary chem-

ical blocks and the attracting set parameter , i.e.,

the domain of the fluctuation-induced nucleation of the
crystal center.

This problem was also considered in, e.g., [2]. The
mathematical description of other strongly disordered
structures was also discussed in [3].

dz
dt
-----

2
g
-----

η∇
η0

----------

-
 1

η0
-----


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In conclusion, we note the following:
(1) a synergetic model of crystal growth in inhomo-

geneous gels was suggested;
(2) a set of nonlinear differential equations was ana-

lyzed and the shape of crystallizing nuclei was
described;

(3) an asymptotic solution to the nonlinear equation
was found and a nontrivial sharp-needle shape of the
surface was predicted for the growing crystal;

(4) a physical mechanism responsible for limitation
of the growth of the stalactite was revealed and the
length of such a stalactite was found.
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It is known that the ultimate tensile strength σu is
proportional to dynamic hardness [1]:

σu = 0.383H.

Correspondence of the model proposed in [1] to real
fracture conditions is determined experimentally. How-
ever, the appropriate mechanical test procedures for ice
are insufficiently developed.

Imperfection of the available tension procedure is
associated with the appearance of the bending moment,
stress concentrations at the fastening points of samples,
and initial slackness of loading systems. These factors
are responsible for the distortion of the tension diagram
even in its initial section [2, 3].

In this work, the scheme and conditions of loading
are taken so as to monitor the processes of deformation
and fracture, because deformation changes in structure
prepare fracture and determine the strength properties.

Dumbbell-shaped ice specimens were tested on an
FM250 tensile machine. For a strain rate of  =
0.005 s–1 and a temperature of –8°C, reproducible ulti-
mate strengths σu =10.0 ± 0.2 MPa were determined for
seven specimens of fine-crystalline congelation ice.
Coaxiality of a specimen and tensile force at the initial
time was ensured by self-centering clamps [4]. In addi-
tion to obligatory control of the initial structure and
check of uniformity of acoustic characteristics, speci-
mens were “annealed.” Despite careful preparation, as
in most experiments carried out by other authors, the
loading diagram begins with a nonzero value and the
fracture of a specimen occurs suddenly with the frac-
ture surface characteristic for bending.

In the next experimental run, a dumbbell-shaped ice
specimen was placed into a cylindrical vessel. The gap
between the lateral surface of the ends of the specimen
and inner surface of the vessel was sealed by introduc-
ing water and its freezing. The specimen was extended
by supplying a viscous liquid under pressure to the nar-
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row central section of the specimen. The pressure of the
liquid caused tensile stress in the specimen. In order to
increase accuracy, the inner surface of the vessel was
made of a material with the minimum coefficient of
friction. In order to avoid the Rebinder effect, the nar-
row section of the specimen was insulated from the liq-
uid by an elastic shell with cuffs. To monitor deforma-
tion processes and accumulation of damage in the spec-
imen in the process of tension, a transmitter and
receiver of ultrasonic vibrations were frozen to the ends
of the specimen [5].

In such a scheme, mechanical clamps are absent,
preliminary loading is not necessary, and acoustic con-
tact remains unchanged in the tension process. Owing
to these circumstances, monitoring is more reliable
than that for compression, particularly for small
stresses [6]. However, the requirements for the geome-
try of the specimen and tolerances remain stringent [4].

Fracture occurs in the working part of the specimen.
If the tension axis coincides with the C axis of crystal-
lites, e.g., in “column” ice, the fracture surface is per-
pendicular to the tension axis and the surface relief is
smooth with a roughness of less than 6.2 × 10–9 m. The
fine structure of the fractogram conserves manifesta-
tions of the mechanism of the growth of the main crack.
In particular, interaction of the crack front with an elas-
tic wave arising when the specimen breaks (Fig. 1) is
manifested as numerous broken straight lines with par-
allel sections.

Figure 2 shows the phases of the main-crack growth
under a constant tensile force in real time. For shooting,
specimens of transparent river ice (A4) with a standard
central circle cut were used. The first frame in Fig. 2
corresponds to the stressed state in the specimen before
the breakdown of continuity. First cracks shown by
arrows (2) arise inside the specimen. The growth of the
main crack begins ∆τ ≤ 0.2 s after internal fracture. This
process is quite slow and continues for almost 4.5 s in
the sequence (2–8).

First, the front propagates along the circle cut (2–4).
Second, it stops and its velocity turns by 90°. After the
turn, the crack grows smoothly in the radial direction (5).
The presence of the primary cracks is manifested only
as the front approaches, when the break and confluence
of cracks occur (5). The mean velocity of the crack over
004 MAIK “Nauka/Interperiodica”
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the cut contour is equal to about 7 mm/s and, after the
turn, 30 mm/s.

The initial internal fracture of continuity and further
nonuniform growth are nontrivial because the circle cut
is quite sharp (D ≤ 0.01 mm), and the crack growth
from it could be expected.

Fig. 1. Fine structure of the ice fracture surface.
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Since the main-crack front first propagates along the
circle cut, the end region can be treated as a peculiar
structure after the formation of which the vector of the
crack front changes its direction to orthogonal. The pro-
cess includes two mechanisms and two characteristic
energy-dissipation rates: the crack propagation rate and
crack-healing rate. Further experiments in a wide range
of temperatures and loading rates will probably reveal
what occurs in this case, how the geometry of cracks
changes, and how they compete with each other.

From the above discussion, it is obvious that the
fracture of ice has specific features which have not yet
been revealed for other materials. Moreover, it is note-
worthy that the circle shape of the outer contour of the
section changes at the stage of the intense growth of the
main crack, which testifies to the pronounced nonuni-
formity of the stress field in the section under consider-
ation. We note that the first sites of breaking continuity,
which are likely caused by the redistribution of the
stress field, are not further manifested as stress concen-
trators, because they are healed.

The new procedure was first applied to test speci-
mens of river congelation ice with density ρ–11°C =

0.89 ± 0.01 g/cm3, crystallite size  = 1.5 mm, speed
of longitudinal-wave propagation V–11°C = 3784 m/s,
and absorptivity α–11°C = 0.22 cm–1 at a frequency of
1 MHz. Stepwise loading was carried out with a step of

D

14: 50: 31 14: 51: 19 14: 51: 21

1 2 3

4 5 6

7 8 9

14: 51: 22.86 14: 51: 22.90 14: 51: 22.97

14: 51: 23.50 14: 51: 24 14: 51: 26

Fig. 2. Phases of main-crack growth.
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Fig. 4. Brinell hardness H as a function of the bedding depth
Z and horizontal displacement X for a transition layer of
river ice (from A9 to A4) with various scales of averaging
experimental data.
1.742 MPa every 10 min at a temperature of –5.3°C.
Under loading, the specimen is ultrasonically tested
along the tension axis.

Figure 3 shows the typical strain dependences of
(1) stress, (2) excessive absorption, and (3) the velocity
of the longitudinal wave with a frequency of 1 MHz.
Line 1 differs substantially from the tension diagram
obtained in [2]. First, line 1 passes through the origin,
and the “input” section is free of the “pulling” charac-
teristic for traditional loading schemes, where it usually
appears likely due to slackness. Our procedure allows
both the measurement of small strains in the initial
loading section and investigation of ice elasticity. Sec-
ond, the shape of stress–strain curve 1 is similar to ice
compression diagrams. The boundaries of traditionally
separated regions of deformation are determined by the
bend points of line 2, which characterize the change in
the mechanisms of deformation and accumulation of
deformation defects. Thus, the determined elastic limit
and yield point are equal to σe =3 ± 0.3 MPa, εe = 3 ×
10−3 and σy = 8.7 ± 0.3 MPa, εy = 4.5 × 10–2, respec-
tively. In addition to reversible displacements of oxy-
gen ions in the crystalline lattice, macroelasticity
includes reversible displacements of microdefects
within a crystallite, i.e., local microplasticity. The yield
point is considered as the spreading of microplastic
deformation to the carrying section of the specimen.

The accumulation of microdamage reduces the elas-
tic characteristic of ice (Fig. 3, line 3). According to
acoustic measurements, the transparent part of river ice
originally includes 10–5-m-long dislocations with a
density of 106 m–2. At the yield point, their length is at
least doubled and their concentration increases by a
factor of several thousand. Deformation changes in the
structure, which prepare fracture, are most clearly man-
ifested before the fracture of the specimen, when the
dissipation of the elastic energy is maximal (line 2).

The yield stress (Fig. 3) σy = 13.9 ± 0.6 MPa and
modulus calculated by secant E ≈ 1 GPa are much
larger than the respective values obtained in the tradi-
tional loading scheme. Therefore, the bending moment
arising in our experiments is negligibly small. Small
bending and constraint are necessary conditions for
experiments with the tension of ice.

The above discussion shows that the value obtained
for the ice strength can be compared with the dynamic
hardness of ice.

Figure 4 shows the preliminary results for the river-
ice hardness measured by means of a spherical
indenter 1 mm in diameter at the static regime. It is
seen that the effect of the microinhomogeneity of ice
on its spatial variability is pronounced and the scale
clearly affects the mechanical and fracture properties
(breakdown viscosity) [7]. The parameters of a load-
ing dynamic machine were chosen by experimentally
varying the indenter diameter, as well as time and
force of indention.
DOKLADY PHYSICS      Vol. 49      No. 2      2004
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The average contact pressure was determined by
means of a spherical indenter whose radius was equal
to R = 40 mm and which was equipped with accelerom-
eter [8]. The initial collision velocity, impact energy,
and amplitude were equal to 2.3 m/s, 0.089 J, and
650 N, respectively. The spread of measurements for
the homogeneous material did not exceed 0.6%. The
loading time and measurement accuracy were equal to
10–4 s and 5%, respectively.

According to measurements, the dynamic hardness
and ultimate tensile strength σu of congelation ice at a
temperature of –5°C are equal to 35.6 MPa and 13.9 ±
0.6 MPa, respectively. Therefore, the strength-to-hard-
ness ratio is equal to 0.39 ± 0.02, which agrees well
with the theoretical value.

Thus, we determine the conditions under which the
theoretical model proposed in [1] adequately repro-
duces real processes of ice fracture. The pattern of the
accumulation of deformation damage at early loading
stages is supplemented by the properties of fracture
under ultimate stresses. The results can be used for
express estimates of the strength properties of natural
ice under the conditions of its bedding.
DOKLADY PHYSICS      Vol. 49      No. 2      2004
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It is established that long-term variations of both the
large-scale and global magnetic fields in the solar atmo-
sphere are nonmonotonic. The existence of periods of
fast global changes on the Sun is found in each 11-year
cycle of solar activity. These variations are accompa-
nied by anomalous manifestations in both the helio-
sphere and the geomagnetic field. These periods are
regularly repeated in each cycle of solar activity. They
are characterized by elevated flaring activity that
reflects fast variations of magnetic structures. The con-
cept of universality of physical processes, which
includes interactions of different-scale magnetic fields
in the solar atmosphere and manifestations of these pro-
cesses in the solar atmosphere, is developed. This con-
cept is confirmed by the comprehensive analysis of
helio-geophysical data.

In accordance with the model of the solar-wind for-
mation [1–3], properties of the heliosphere such as the
space-time distribution of the solar wind velocity, the
particle flux, and the interplanetary magnetic field are
determined by large-scale solar magnetic fields existing
on and by their dynamics. The origin of the large-scale
inhomogeneities in the solar wind are of particular
interest. On the one hand, they are manifestations of the
solar variability in interplanetary space. On the other
hand, they are the principal cause for disturbances of
the geomagnetic field. The basic sources of the inhomo-
geneities are coronal holes, solar flares, and coronal
mass ejections. Studies of these ejections are important
for both understanding the formation mechanisms of
the unsteady solar wind and predicting the space
weather conditions, because the strongest geophysical
disturbances are associated with sporadic phenomena
occurring on the Sun. In [1, 2], periods of fast global
variations of the solar magnetic fields were discovered.
These variations are characteristic of each 11-year
cycle of solar activity and are accompanied by anoma-
lous disturbances of the solar wind, interplanetary mag-
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netic field, cosmic-ray intensity, and geomagnetic
activity.

Analysis of variations of the solar-wind particle flux
based on the data presented in Fig. 1 allows us to reveal
their basic regularities stipulated by global changes in
the solar corona magnetic structure [3]. Alongside the
fluctuations, fast (for 1–2 solar rotations) variations of
solar-wind particle flux, i.e., decreases during the rise
phase of solar activity and increases during the decreas-
ing phase, are observed. Both phenomena are caused by
the global reconfiguration of the magnetic fields in the
solar corona and by the corresponding redistribution of
the solar-wind mass flow over heliographic latitudes.
For the high-velocity solar wind, the variations are
accompanied by significant increases in the interplane-
tary magnetic-field component (Bz) perpendicular to
the ecliptic plane. During these increases, unsteady
processes in the solar corona manifest themselves.
Within the periods indicated, the global reconstruction
of the corona from the minimal to the maximal type
(and vice versa) takes place.

Let us consider how this reconstruction of the
magnetic field occurs. Analysis based on the calcula-
tions [4, 5] of coronal magnetic fields in the potential-
field approximation for the period 1976–2002 shows
that, along with slow variations (for 10–12 solar rota-
tions) of the global structure of the magnetic fields in
the corona, rapid changes occurring for about two solar
rotations also take place. These changes, proceeding
during the rise phase of solar activity, correspond to the
decay of the unified current system on the Sun and are
accompanied by the abrupt decreases of the particle
flux in the low-velocity solar wind in the vicinity of the
Earth’s orbit. They mark the onset of the active interac-
tion of emerging magnetic fields corresponding to the
new cycle with those pre-existing in the solar atmo-
sphere.

In the decreasing phase of solar activity, the oppo-
site process is observed. In this period, a considerable
amount of both the mass and magnetic field is addition-
ally carried away by unsteady solar-wind streams. The
anomalous character of this period is caused by the
interaction of large-scale magnetic fields of the North-
ern and Southern hemispheres and by their merging due
to the reconnection process. In this case, the mecha-
004 MAIK “Nauka/Interperiodica”
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Fig. 2. Example of the variation of the solar-corona magnetic structure in the decreasing phase of solar activity (1717th–1720th
Carrington rotations, January–April, 1982). On the right, C9 indices of the geomagnetic activity are presented (numbers and their
sizes correspond to the index value).
nism of plasma acceleration is similar to that of the for-
mation of transients and magnetic clouds [6].

The data given in Fig. 2 show that, from the 1717th
to the 1719th Carrington rotations, a significant varia-
tion of the corona’s magnetic structure was observed at
a distance of 2.5R( (R( is the solar radius). This varia-
tion is characterized by both the disappearance of
small-scale inhomogeneities and the formation of the
corona structure of the minimal type. The response of
geomagnetic activity to these events also is quite
unique. Strong geomagnetic disturbances were
observed almost continuously from January 30 to
March 2, 1982. According to the Wolf numbers, solar
activity virtually did not change within this period.

Variations of the cosmic-ray intensity is a sensitive
indicator for global changes of heliosphere properties.
Among long-term variations of the cosmic-ray inten-
sity, periods of fast global variations of magnetic fields
on the Sun manifest themselves most clearly in the
decreasing phase of each cycle of solar activity (1982,
1991, 2001, Fig. 1). The recovery of the cosmic-ray
intensity, which started in the phase of solar-activity
decay, is interrupted by an anomalously sharp decrease
characterized by an unusually rigid spectrum of varia-
tions [1]. This implies that changes in global magnetic
structure on the Sun and, correspondingly, in the helio-
sphere are responsible for anomalous cosmic-ray inten-
sity decreases occurring within these periods.

In the period of maximal solar activity, variations of
large-scale magnetic fields also are of a nonmonotone
nature. In the period under consideration (1972–2002),
fast variations of the global magnetic structure in the
solar corona and their manifestations that occurred in
1989, 2000, and 2001 are of particular interest. In 1989,
for two solar rotations, the polarity of the solar mag-
netic field changed practically at all latitudes and longi-
tudes. The fast variation of the global magnetic struc-
ture in the solar corona coincides with the anomalous
phenomenon in cosmic rays that occurred on Septem-
ber 29, 1989, for which not only a high intensity of the
particle flux but also an unusually rigid spectrum and
the large magnitude of the maximum particle energy
(tens of GeV) were observed. According to data of
ground-based observations, this increase was the larg-
est for the last three cycles of solar activity and is com-
parable only with the unique outburst of solar cosmic
rays on February 23, 1956. Apparently, these are fast
variations of strong magnetic fields in the large-scale
DOKLADY PHYSICS      Vol. 49      No. 2      2004
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electromagnetic structure of the solar corona that form
favorable conditions for the efficient acceleration of
intense fluxes of high-energy solar cosmic rays. This
conclusion is confirmed by the analysis of global mag-
netic-structure variations, which was performed using
synoptic maps of the Sun in the Hα line within the
period of solar cosmic-ray flare on February 23, 1956.
Similar variations related to regions of a considerably
smaller scale were also observed in both 2000 and
2001.

The data presented in Fig. 3 show that the stable glo-
bal structure of magnetic fields in the solar corona con-
siderably changed for one solar rotation. The conse-
quence of this phenomenon is a wide range of large-
scale intense ejections of coronal plasma, which were
observed by the SOHO observatory (see Fig. 3, on the
right). Significant ejections of the coronal mass, which
involve noticeable latitudinal zones, have been regis-
tered for various latitudes and longitudes. According to
the flare activity, this period was unique for the entire
DOKLADY PHYSICS      Vol. 49      No. 2      2004
current cycle. From March 20 to April 17, 2001,
57 flares of importance å and 8 flares of importance X
occurred. In addition, an increase of intensity of high-
energy solar cosmic rays and a long-lasting magnetic
storm were observed on April 15, 2001.

Thus, the strongest heliophysical and geophysical
disturbances are caused by fast global variations of
magnetic fields on the Sun. On the basis of the analysis
of observational data, it is possible to formulate a uni-
fied concept, propose a scenario of fast variations, and
reveal basic physical processes for interaction of mag-
netic fields in the solar atmosphere. By virtue of the
strong conduction of solar-atmosphere plasma, a rela-
tively slow mutual deformation of emerging and pre-
existing magnetic fields takes place when the magnetic
field emerges from beneath the convective zone. In
other words, the formation of a new current system
occurs that, on attaining certain conditions, then rapidly
decays, releasing a considerable amount of energy. This
is stipulated by the fact that, when a new magnetic flux
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emerges, the active interaction of magnetic fields in the
solar corona begins only after certain critical parame-
ters depending on the configuration of emerging and
pre-existing magnetic fields have been attained.

The rapid changes of strong magnetic fields, large-
scale magnetic fields, and the global field are accompa-
nied by a solar flare, mass ejection with the acceleration
of solar cosmic rays, and the formation of a new struc-
ture with ejections of the mass and the magnetic field,
respectively. In accordance with this conception, the
regular manifestation of the given scenario occurs in
the course of a solar activity cycle for both different-
scale fields and their totality or sequence. The basic dif-
ference consists in space-time scales of the interaction
process and in the intensity of a magnetic field involved
in the interaction and in features of their manifestation
in the solar atmosphere, heliosphere, and on the
ground. The main physical mechanism resulting in fast
variations of the magnetic fields in the solar atmosphere
is the reconnection process.
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INTRODUCTION

Stokes flows of viscous fluids within a corner, which
are caused by motion of one of the sides forming the
angle, are well known. Tailor has analyzed the flow
within a corner between a solid wall and a solid plate
moving like a scraper along the angle wall [1]. Moffatt
has solved the problem of flow within a corner when
one of its sides is the solid wall and, on the other wall,
instead of a solid plate, there is a plane free boundary
on which the tangential stress is absent [2]. The Tailor–
Moffatt problem belongs to the class of plane problems
for Stokes equations.

In the present paper, the general axisymmetric prob-
lem for fluid flow is analyzed in the case of small Rey-
nolds numbers when the boundary surfaces (the solid’s
surface and free surface) intersect at a certain angle in a
moving line. The contours of these surfaces are curvi-
linear, which also distinguishes the problem under con-
sideration from the Taylor–Moffatt problem. The goal
of the present paper is to find asymptotic regularities in
the behavior of both the stream function and stresses in
a small vicinity of the intersection line (contact line) of
boundary surfaces. It is assumed that in the contact line,
there is no mass sources, and a singularity of the stream
function is absent. The asymptotic analysis makes it
possible to consider an arbitrary axisymmetric Stokes
flow with intersecting boundaries.

This general problem has its applications in studies
of slow flows while wetting solids by viscous liquids.
The solution of the problem can be useful, e.g., for
refined description of such flows in calculation of large-
scale flows with capillary forces taken into account. As
is well known, at a reasonably low velocity of the con-
tact line, the shape of the free surface at large scales can
be approximately described by the capillary-statics
equation. In particular, this surface can be similar to a
sphere provided that mass forces are absent [3]. In this
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case, the contact angle can be determined on the basis
of the hydrodynamic approach at a small scale near the
contact line.

For the small scale, the flow is described by
another problem containing a strong nonlinearity. The
general approximate solution to this problem is well-
known [3–5]. This solution links the shape of the free
surface with dynamics of the liquid. It has also been
known for a long time [3, 4] that in the case of wetting,
flows cannot be described in the framework of tradi-
tional hydrodynamics, and while setting problems of
wetting dynamics, we should allow for the molecular
(i.e., microscopic) scale of the phenomenon. In this set-
ting, an effect of motion of super-thin (precursor) film
that advances a macroscopic liquid mass spreaded over
the dry surface of a solid (see also the reviews by
De Gennes [6] and by the author [7]) also is well
known. In studies of hydrodynamics of wetting solids,
asymptotic solutions are of significant importance, in
particular for perfecting numerical algorithms.

Below, we analyze the problem independently of the
indicated applications.

BASIC EQUATIONS

We introduce Cartesian coordinates x1 and x2 in the
symmetry plane with the origin lying in the contact line
and with the x1 axis tangent to the solid’s surface (see
figure). We assume that the x1 axis is directed towards
the dry portion of the solid’s surface, and that the coor-
dinate system is immobile with respect to the solid.

The fluid velocity is zero at the contour (generatrix)
of the solid’s surface Ssol:

(1)

On the free surface S, the normal component of the
fluid velocity coincides with the normal velocity of the
surface. For calculating the flow characteristics in the
small vicinity of the contact line, it is sufficient to
approximately assign motion of the free surface S. We
allow for translational motion of the contour S at the
velocity v0 of the contact line and the rotation of the
contour. In this case, the kinematic boundary condition

v 0.=
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on the contour S in the limiting case of a small distance
r from the contact line can be written out in the form

(2)

Here, n is the unit vector of the outer normal to the con-
tour S and ω is the rotation angular velocity of the tan-
gent to the contour S at the point of the contact line
(r = 0).

The tangential stress on the contour S is zero:

(3)

where P is the stress tensor of the liquid and t is the
vector of the tangent to the contour S. Our task is to
determine the normal stress on S (Pn = n · P · n).

We now consider the cylindrical coordinate system
x, z, where x is the distance from the symmetry axis and
z is the coordinate along this axis. The points x = x0 and
z = 0 correspond to the contact line.

The components of the fluid flow velocity are
expressed in terms of the stream function ψ:

In the cylindrical coordinates, the equation of the
stream function has the form

(4)

In the limiting case of a small distance from the con-
tact line (r → 0), the calculation can be performed on
the basis of the local representation of the boundary
shapes. We assume that the boundary surfaces are
smooth everywhere including the contact line. In this
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case, the coordinates of their points can be represented
using several terms of the expansion into the Taylor
series.

We denote as α the contact angle formed by inter-
section of the boundary surfaces. With allowance for
the axial symmetry, we need to consider the angle γ
formed by the x1 axis and the radial x axis (see figure).
We take γ > 0 if the outer normal to the surface of the
solid is directed toward the symmetry axis, and γ < 0 if
this normal is directed outward of the symmetry axis.

The values of angles γ within the range [–π, π] cor-
respond to various axisymmetric problems. For exam-

ple, the value γ =  can correspond to the fluid flow

within a circular pipe. The values γ = 0 and γ = –  cor-

respond to the round droplet on a plane wall and flow
outside a round rod, respectively. The value γ =  cor-
responds to the case of a gas bubble contacting with a
solid wall.

We now introduce the polar coordinates r and θ with
the origin at a point in the contact line, the line θ = 0
coinciding with the negative direction of the x1 axis.

We set the shape of the contours of the surfaces S
and Ssol in the small vicinity of the contact line. The
equation of the contour Ssol in the case of small dis-
tances r has the form

(5)

where kS is the curvature of the contour of the surface
Ssol on the contact line.

The contour of the free surface S for small distances
r is close to the tangent line θ = α:

(6)

where kF is the curvature of the contour S at the point of
the contact line (at r = 0).

Thus, the problem of asymptotically calculating the
axisymmetric flow involves five geometric parameters,
namely, the angles α and γ, radius x0 of the contact line

or its curvature k0 = , and the contour curvatures kS

and kF . If we put curvature k0 of the contact line to be
zero, we arrive at the particular case of the plane prob-
lem. This case is characterized by only three geometric
parameters.

The stream function must vanish in the contact line:
ψ → 0 as r → 0.

π
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ASYMPTOTIC BEHAVIOR
OF A STREAM FUNCTION

In the limit of small distances r, the problem is sim-
ilar to that of flow within a corner when the boundaries
are plane and the contact line is straight. Therefore, as
r → 0, the stream function ψ can be described by the
expansion:

(7)

Here, the main term ψ0 corresponds to flow within a
corner, whereas the second term ψ1 is a small perturba-
tion caused by bending boundary surfaces.

The terms in expansion (7) are determined from the
solution to Eq. (4) with boundary conditions (1)–(3) in
the following form:

(8)

(9)

(10)

where Q = 

The rotation angular velocity of the tangent to S,
which enters into expression (10), is linked with the
variation rate of the contact angle α and the curvature
of the solid’s surface by the relationship

(11)

(the dot corresponds to differentiating with respect to
time).

In the limiting case r → 0, the form of the stream
function also depends on the behavior of the solutions

 to the uniform problem, or, to be more precise, of the
solutions to the biharmonic equation ∇ 4ψ = 0 within an
angle under the uniform conditions on the angle sides.
These conditions correspond to immobile plane bound-
aries,  tending to zero in this limiting case. Besides
ψ0 and ψ1 , asymptotic form (7) can involve an addi-
tional term . As r → 0 and if  = o(r2), then  does
not affect the form of the asymptotic behavior and can
contribute only to the residual term in expansion (7). If

ψ ψ0 ψ1 ….+ +=
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 decreases slower than r2 then it can contribute to the
asymptotic solution, which is more noticeable than the
function ψ1 defined by relationships (8), (10). Analysis
of the uniform problem shows that its arbitrary solution

 decreases more rapidly than r2 as r → 0, provided
that the angle α is smaller than the critical angle α∗  =

128.7°. For α > α∗ , there exists the solution  that
decreases slower than r2.

Hence, it follows that solution (7)–(10) is the gen-
eral asymptotic form of the stream function in the prob-
lem under consideration if the contact angle α is
smaller than the critical angle α∗ .

ASYMPTOTIC BEHAVIOR
OF THE NORMAL STRESS ON S

There is a correspondence between expansion (7)
and the expansion of the normal stress on the free sur-
face

.

With allowance for (8)–(10), the normal stress as r → 0
is determined by the formula

(12)

Here, µ is the dynamic viscosity, v0 is the contact-line
velocity, α is the contact angle, γ is the angle dependent
on the axial symmetry, and k0, kF , and kS are curvatures
of the contact line, the contour of the free surface, and
of the contour of the solid’s surface, respectively. The
contact angle can acquire values within the range
(0, α∗ ), where α∗  = 128.7°.

The first term in expression (12) corresponds to the
Moffatt solution [2] for the particular case of flow
within a corner. This term is not limited as r → 0. How-
ever, as is seen from formula (12), this first term Pn0 is
insufficient for describing features of stresses. As
r → 0, in the general case, for the difference Pn – Pn0 ,
the limit is absent. The second term of the asymptotic
expansion also is not bounded in the limiting case of
small distances from the contact line by virtue of the log-
arithm of the distance, which enters into formula (12).
Thus, the axial symmetry and bending contours of
boundary surfaces result in the appearance of an
unbounded term in the expansion of the normal stress.
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Formula (12) represents the general asymptotic
expansion for the normal stress on the free surface. This
formula is valid for an arbitrary axisymmetric fluid flow
with intersecting boundaries, which is described by the
Stokes equations.

ACKNOWLEDGMENTS

I am grateful to Academician G.G. Chernyœ for fruit-
fully discussing the results of this study.

REFERENCES
1. G. I. Taylor, in Aeronautics and Astronautics (Pergamon,

London, 1960), pp. 21–28.
2. H. K. Moffatt, J. Fluid Mech. 18, 1 (1964).

3. O. V. Voinov, Izv. Akad. Nauk SSSR, Mekh. Zhidk.
Gaza, No. 5, 76 (1976) [Fluid Dyn. 11, 714 (1976)].

4. O. V. Voinov, Prikl. Mekh. Tekh. Fiz., No. 2, 92 (1977).

5. O. V. Voinov, Dokl. Akad. Nauk SSSR 243, 1422 (1978)
[Sov. Phys. Dokl. 23, 891 (1978)].

6. P. J. De Gennes, Rev. Mod. Phys. 57, 827 (1985); Usp.
Fiz. Nauk 151, 619 (1987).

7. O. V. Voinov, in Encyclopedia of Surface and Colloid
Science (Marcel Dekker, London, 2002), pp. 1546–
1558.

Translated by G. Merzon
DOKLADY PHYSICS      Vol. 49      No. 2      2004



  

Doklady Physics, Vol. 49, No. 2, 2004, pp. 99–102. Translated from Doklady Akademii Nauk, Vol. 394, No. 4, 2004, pp. 476–479.
Original Russian Text Copyright © 2004 by Grigolyuk, Fil’shtinski

 

œ

 

, Kovalev.

                                                                  

MECHANICS
Spatial Stationary Dynamic Problem of Elasticity Theory
for a Plate with a Through Hole

Corresponding Member of the RAS É. I. Grigolyuk1, L. A. Fil’shtinskiœ2,*, and Yu. D. Kovalev2

Received September 23, 2003
The methods of superposition [1] and homogeneous
solutions [2, 3] are effectively used in the spatial
dynamics of plates. Vorovich and Babeshko [4] consid-
ered dynamic mixed problems of elasticity theory for a
plate under mixed conditions on the parts of similar
sides. Features of the spectrum of natural vibrations for
a transversally isotropic disk near the edge resonance
were investigated in [5]. In the case of mixed conditions
set on the layer surfaces (sliding fit of the ends, or the
plate ends are covered by a membrane that is rigid in its
plane and flexible in the perpendicular direction), the
boundary value problem is much easier than the mixed
problems considered in [4].

In elasticity theory, a procedure for solving mixed
problems of the stationary vibrations of a plate with
tunnel inhomogeneities was proposed in [6]. In that
study, the representations of mechanical quantities
were found for the symmetric case. In this study, the
method of [6] is extended to the skew-symmetric case.

FORMULATION OF THE PROBLEM 
AND THE METHOD OF ITS SOLUTION

We consider an elastic plate, –h ≤ x3 ≤ h and
−∞ < x1, x2 < ∞, weakened by through tunnel holes
directed along the Ox3 axis. The cross sections of the
holes are nonintersecting rather smooth contours Lj (j =
1, 2, …, k). Forces at the hole boundaries are absent,
and a bending pulsating load is applied at infinity:

,σ11
∞ Re σ11

∞〈 〉 e iωt–( ), σ11
∞〈 〉 Px3= =

P const= .
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We assume that the mechanical parameters have the
form

(1)

We suppose that the amplitudes of the components of
the applied load are expanded into Fourier series in the
Ox3 coordinate in the closed interval [–h, h]. On the sur-
faces of the plate, the conditions

(2)

are valid.

Let us write the amplitude components of the dis-
placement vector in the form

(3)

Expressions (3) automatically satisfy boundary condi-
tions (2) on the plate surfaces. To describe the station-
ary wave process in an isotropic cylinder, we use the
equations of motion

(4)

where λ and µ are the Lamé coefficients.

Substituting Eqs. (1) and expansions (3) for the dis-
placement amplitudes into the equations of motion, we

ui Re Uie
iωt–( ), σij Re σij〈 〉 e iωt–( ).= =

u3 x1 x2 h t,±, ,( ) σ13 x1 x2 h t,±, ,( )=

=  σ23 x1 x2 h t,±, ,( ) 0=

Ui uik x1 x2,( ) γkx3, isin
k 0=

∞

∑ 1 2,,= =

U3 u3k x1 x2,( ) γkx3, γkcos
k 0=

∞

∑ 2k 1+( )π
2
---.= =

σgradθ ∆u+
ρ

λ µ+
-------------∂2u

∂t2
--------,=

θ
∂u1

∂x1
--------

∂u2

∂x2
--------

∂u3

∂x3
--------, σ+ + λ µ+

µ
-------------

1
1 2ν–
---------------,= = =
004 MAIK “Nauka/Interperiodica”
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arrive at the system

(5)

From Eqs. (5), we immediately find

(6)

We introduce the function ψk through the relation

θk = ψk . From (6), it follows that ψk = 0.
Taking into account the relation between θk and ψk and
integrating system (5), we obtain

(7)

If the relation θk = ψk is valid, we arrive at the
expressions

(8)

where Ωk is an arbitrary solution to the equation

Ωk = 0.

κ k
2( )uik σ∂iθk+ 0, i 1, 2;= =

κ k
2( )u3k σγkθk+ 0;=

κ k
2( ) ∇ 2 βk

2,    β k 
2 γ k 

2 α 2
2 , α 2 – ω

 
c

 
2

 ----;= =–=  

∇

 

2

 

∂

 

1
2

 

∂

 

2
2

 

,+=

θk ∂1u1k ∂2u2k γku3k, ∂i–+
∂

∂xi

-------.= =

κ k
1( )θk 0, κ k

1( ) ∇ 2 γk
2 α1

2–( ), α1–
ω
c1
----.= = =

κ k
2( ) κ k

2( )κ k
1( )

uik σ∂1ψk– ωik, u3k+ σγkψk– ω3k,+= =

κ k
2( )ωik 0, i 1, 2.= =

κ k
2( )

ω1k σ∂2Ωk, ω2k σ∂1Ωk,–= =

ω3k
1
γk

---- 1 σ+( )κ k
1( )ψk,–=

κ k
2( )

1

40

2

σ1

α1R1

Fig. 1.
 

Finally, in view of Eqs. (7) and (8), we obtain

 

(9)

 

Here, 

 

 

 

is an arbitrary solution to the equation

 

ϕ

 

 = 0, the functions 

 

Ω

 

k

 

 define the rotation of the
element about the 

 

Ox

 

3

 

 axis, and 

 

u

 

ik

 

 are the amplitudes
of the corresponding parameters.

We take the integral representations of the functions
entering into Eqs. (9) in the form

 
(10)

 

where 

 

K0(γr) is the zero-order modified Bessel function
of the second kind; ds is an arc element of the contour;

and the densities (ζ), (ζ), and (ζ) are yet
unknown.

The integral representations of functions (10) are
arbitrary enough to satisfy the boundary conditions on
the hole contours. In addition, they meet the radiation
conditions at infinity.

By using Hooke’s law and Eqs. (9), the boundary
conditions on the contour L are written in the form

(11)

u1k iu2k– 2σ ∂
∂z
----- iΩk Ωk

1( )– Ωk
2( )–( ),=

θk α2
2 α1

2–( )Ωk
1( ),=

u3k σγkΩk
1( )– σ γk

1 σ+
σγk

------------ α1
2 α2

2–( )+ Ωk
2( ).–=

Ωk
i( )

κ k
i( )

Ωk
1( ) pk

1( )K0 λ kr( ) s, Ωk
2( )d

L

∫ pk
2( )K0 βkr( ) s,d

L

∫= =

Ωk pk
3( )K0 βkr( ) s, rd

L

∫ ζ z– ,= =

ζ ξ 1 iξ2 L∈+  = L j, z∪ x1 ix2,+= =

pk
1( ) pk

2( ) pk
3( )

1
µ
--- Nk iTk–( ) Λ 1 σ–( ) σλk

2+[ ]Ω k
1( )– σβk

2Ωk
2( )–=

+ 4σe2iψ∂zz
2 iΩk Ωk

1( )– Ωk
2( )–( ),

1
µ
--- Nk iTk+( )

=  Λ 1 σ–( ) σλk
2+[ ]Ω k

1( )– σβk
2Ωk

2( )– 4σe 2– iψ∂zz
2+

× i– Ωk Ωk
1( )– Ωk

2( )–( ),
1
µ
---Zk eiψ∂z ak*Ωk

1( )(=

+ bk*Ωk
2( ) ick*Ωk+ ) e iψ– ∂z ak*Ωk

2( ) bk*Ωk
2( )+(+

– ick*Ωk ), Λ α 2
2 α1

2, ak*– ak σγk,–= =

bk* bk σγk, ck*– σγk, ak σγk,–= = =

bk σ γk
1 σ+
σγk

------------ α1
2 α2

2–( )+ ,–=
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where ψ is the angle between the outer normal to the
contour L and the Ox1 axis.

Boundary value problem (11) with allowance for
representations (10) is reduced by the conventional pro-
cedure to a system consisting of three singular integro-
differential equations (for each fixed k value). Here, this
awkward system is omitted.

CALCULATIONS AND ANALYSIS
OF THE RESULTS

We consider a plate weakened by an elliptical hole:

To characterize the stress state on the hole surface,
we calculate the amplitude values of the quantity

(12)

at the contour point ϕ =  and x3 = h.

In a numerical algorithm, the system of integral
equations is reduced by the method of mechanical
quadratures [7] to a linear system of algebraic equa-
tions.

The computational procedure is the following. First,
we numerically solve the system of integral equations

and find the Fourier coefficients  of the stress tensor
and the stresses themselves. Next, using formula (12),
we calculate the unknown quantities on the hole sur-
face.

ξ1 R1 ϕ , ξ2cos R2 ϕ , 0 ϕ 2π.≤ ≤sin= =

σθθ σ11 θ σ22 θ 2σ12 θ θsincos–cos
2

+sin
2

=

π
2
---

σij
k( )

10

40 α1R1

σ1

Fig. 2.
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Let a bending pulsating load with amplitude

 = Px3 (P = const) be applied at infinity and forces
on the hole surface be absent.

Figures 1 and 2 show the relative amplitude of cir-

cumferential stress σ1 =  as a function of the

dimensionless wave number α1R1 for the circular hole

σ11
∞〈 〉

σθθ〈 〉
P

-------------

3

40 α1R1

σ1

Fig. 3.

20 α1R1

σ1

4

8

Fig. 4.
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(R1 = R2 = 1) at  = 4. For the elliptical hole (R1 = 1

and R2 = 1.5) at  = 1 and  = 4, similar depen-

dences are shown in Figs. 3 and 4, respectively. 
The numerical results were obtained with Poisson’s

ratio ν = 0.28.
Thus, the analytical and numerical procedures con-

structed above provide the possibility of effectively
investigating dynamic stress in thick plates with holes
under bending vibrations, as well as studying the spec-
tra of natural frequencies under different excitations.
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