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INTRODUCTION

An analysis of the asymptotic stability of the solu-
tions to the Cauchy problem for the system of the Grad
moments of the Fokker–Planck master equation [1–3],
i.e., the system of partial differential equations with
constant coefficients

leads to the problem of stability of polynomial bundles
of the order (m, N) [4–8] of their dispersion equations

(1)

Here, Pj(τ, ξ) are homogeneous polynomials of the
order m – j with the leading coefficients in τ equal to

unity; x = (x1, x2, …, xn) ∈ Rn,  =

, SG, A(1), A(2), …, A(n) are real m ×

m matrices; I is the identity m × m matrix, and B is a
large parameter.

If a vector function M(t, x) is a solution to the sys-
tem, then its arbitrary component mα(t, x) is a solution
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to the scalar equation

(2)

Thus, analysis of the asymptotic stability of the Cauchy

problem for the system  is reduced to the

analogous problem for the scalar operator

. It is well known that an arbitrary solu-

tion to a scalar equation can be represented in the form
of the Fourier integral

where τ = τ(ξ, B) is a root of dispersion equation (1) of
the form

The polynomial bundle (1) is called stable if all its
roots lie in the open upper half-plane of the complex
plane, i.e.,

(3)

Stability condition (3) is equivalent to the asymptotic
stability of the Cauchy problem for the original system.

POLYNOMIAL BUNDLES 
OF THE GRAD MOMENT SYSTEM

Analysis of polynomial bundles (1) of the disper-
sion equations of the Grad moment systems for the
Boltzmann equation [4–7] and Fokker–Planck master
equations [8] has shown that their structures are
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extremely rigid, namely, the constants γj satisfy the
Routh–Hurwitz conditions [9] and the homogeneous
polynomials Pj(τ, ξ) are hyperbolic in τ, the roots of
successive polynomials not strictly separating each
other.

PROBLEMS

Even in the preliminary analysis of the dispersion
equations for the Grad moment systems, we meet the
following problems.

What is the reason for the reproduction at each step
of the Grad moment method of a sequence of hyper-
bolic homogeneous polynomials of the dispersion
equation with the roots of successive polynomials not
strictly separating each other?

How do the imaginary parts of the roots (ξ) =
Imτj(ξ) vary as N → ∞ and j is fixed? How do the min-
ima of the imaginary parts of the so-called boundary-
layer roots (Imτj(ξ) = O(1) as ξ → 0) responsible for
the rate at which nonequilibrium variables approach the
equilibrium state vary as the number of equations in the
moment system N → ∞?

For an arbitrary N, the following statements are true.

Lemma 1. Let the highest-order polynomial P0 of
bundle (1) have real, constant-multiplicity roots, and

the matrix  of the original system have only

first-degree primary divisors (these are the conditions
of the Petrovskiœ theorem [10] on the reduction of a
matrix to the canonical form). The relaxation matrix
@N = –6N is diagonal; here, 6N is the diagonal repre-
sentation matrix of the collision operator in the basis of
the first N Hermite functions. Its diagonal coefficients
are the following:

Here, Nb is the number of the base equilibrium vari-
ables. Then, we have the following.

The polynomials P0 and P1 of polynomial bundle (1)
of the dispersion equation of the Grad moment system
constitute a regular hyperbolic polynomial pair; i.e.,
they are hyperbolic, have common roots, the multiplic-
ity of which is smaller by one for P1 , and do not strictly
separate each other.

The polynomial PN , where N = m – Nb , is strictly
hyperbolic, the polynomials PN – 1 and PN of polynomial
bundle (1) constitute a strictly hyperbolic polynomial
pair, i.e., they are strictly hyperbolic, and their roots
strictly separate each other.

ωj
N

ξ A j

j 1=

d

∑
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b jj 0, j> Nb 1 … N ., ,+=
If the polynomial PN is not strictly hyperbolic, then
the polynomials PN – 1 and PN form a regular, not
strictly hyperbolic pair. In this case, all the polynomials
Pj, j = 0, 1, …, N, of the sequence have a common real
root.

EXAMPLE

In the two-dimensional case (n = 2), using the Grad
method for the first six moments, we seek the approxi-
mation of the solution to the Fokker–Planck master
equation

over first six Hermite functions in the form

(4)

where Ψα(c) are the Hermite functions [9].
As a result, we obtain a system of six equations with

constant coefficients

(5)

for the first six moments. Here, E is the identity
matrix and

The solution of the plane-wave type

M6 = R6exp(i(tτ + ξ1x1 + ξ2x2)),
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, E := 
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.
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where R6 is a constant eigenvector, leads to the disper-
sion equation

Thus, we have obtained a not strictly hyperbolic bundle
of six polynomials; the polynomials Pj of the bundle are
not strictly hyperbolic, and the roots of successive poly-
nomials do not strictly separate each other:
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ROUTH ALGORITHM
FOR A PARAMETRIC BUNDLE

Definition of the Grad bundle. A polynomial
bundle

(6)

of the homogeneous polynomials Pj on the order of
m − j with real coefficients we call the connected bun-
dle (or Grad bundle) on the order of (m, N) if

(i) the polynomials P2j, j ≥ 0 and P2j + 1, j ≥ 0 are of
the same evenness, i.e.,

and

(ii) the Routh–Hurwitz rule holds for the coeffi-
cients γj;

(iii) the Poisson bracket is

(iv) the Poisson brackets of successive polynomi-
als are

Thus, the polynomials Pj, j = 0, 1, …, N are not strictly
hyperbolic and the roots of the successive polynomials
Pj and Pj + 1 do not strictly separate each other.

We now demonstrate that properties (i)–(iv) of the
Grad bundle make it possible to transfer the classical
Routh procedure [10] to parametric bundles (6).

Lemma 2. For an arbitrary homogeneous, strictly
hyperbolic polynomial
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and such that, at any arbitrary point ξ ∈ Rd, the poly-
nomial p is not a multiple of q, the following represen-
tation holds:

(7)

Here, γp, q(ξ) is a positive homogeneous function of the

second order, the constant µp, q =  is equal to the

ratio of the leading coefficients of the polynomials p

and q, and the function bp, q(τ, ξ) ∈  has the
leading coefficient in τ equal to unity.

Representation (7) is also valid for an arbitrary
homogeneous, strictly hyperbolic polynomial

on the order of m = 2(j + 1) and for an arbitrary homo-
geneous hyperbolic polynomial

on the order of 2j + 1 whose roots do not strictly sepa-
rate the roots of p(τ, ξ) if the polynomial p is a not mul-
tiple of q at an arbitrary point ξ ∈ Rd.

Theorem 1. Grad bundle (6) satisfying the inequality

is stable.

The basic stage in proving the theorem is the follow-
ing lemma.

Lemma 3. For an arbitrary Grad bundle, there
exists an analogue of the Routh algorithm for con-
structing a family of positive continuous functions
ρj(ξ), j = 1, 2, …, m and the polynomials
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CONCLUSIONS

Thus, we have succeeded in distinguishing a class of
stable polynomial bundles that we call the Grad bun-
dles. As was shown by direct calculations, these bun-
dles are reproduced in the hierarchy of the Grad
moment systems for the Boltzmann and Fokker–Planck
master equations.

It was established that the second condition in the
definition of the Grad bundle, namely, the fulfillment of
the Routh–Hurwitz conditions for the leading coeffi-
cients of the bundle polynomials Pj, is a result of the
dissipativity of the representation matrix for the colli-
sion operator in the basis of the Hermite function.

The second result of the dissipativity of the repre-
sentation matrix for the collision operator in the basis of
the Hermite function is the nonnegativity of the Poisson
brackets for the limiting pairs of the successive polyno-
mials of the dispersion equation bundle.

Still unsolved is the problem of reproduction of rea-
sons for the nonnegativity of the Poisson brackets of all
the pairs of successive polynomials in the bundle at
each step of constructing the master equation approxi-
mation by the Grad moment system, which takes place
in all the examples calculated by us.
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With the example of coupled Rössler systems, we
consider the mechanism responsible for the breakdown
of the complete chaotic synchronization of two coupled
chaotic dynamical systems when varying the coupling
parameter. A new method of introducing the phase of a
chaotic signal is proposed on the basis of the continu-
ous wavelet transform.

The phenomenon of synchronization of self-oscilla-
tory systems often occurs in nature [1–3]. In recent
years, researchers have placed particular emphasis on
the chaotic synchronization of dynamical systems,
including complete synchronization [4, 5], lag synchro-
nization [6], global synchronization [7, 8], and phase
synchronization [9, 10]. Complete synchronization
implies that the states of interacting chaotic subsystems
either coincide (r1 = r2) if these systems are identical or
are close to each other (|r1 – r2| ≈ 0) if the control param-
eters of the systems are slightly different. Phase syn-
chronization means that the phase locking of chaotic
signals |mφ1 – nφ2| < const (m, n ∈ R) is observed. The
phase of a chaotic signal can be introduced in various
ways [3, 10] with certain restrictions [3, 11]. The ampli-
tudes of chaotic signals are uncorrelated in the phase
synchronization mode.

In coupled slightly different chaotic oscillators,
phase synchronization is observed even for weak cou-
pling. For strong coupling, complete synchronization is
realized. For intermediate coupling, lag synchroniza-
tion is established when the states of two subsystems
become nearly identical if one of them is shifted by a
certain time lag τ: r1(t) ≈ r2(t – τ). Thus, decreasing the
coupling strength between two different chaotic sys-
tems, we can change complete synchronization to
phase synchronization.

The purpose of this study is to reveal the mechanism
responsible for the transition from one type of synchro-
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nization to another as the coupling strength between the
chaotic subsystems increases (decreases). We investi-
gate two different coupled Rössler systems:

(1)

Here, the control parameters are chosen as a = 0.165,
f = 0.2, and c = 10 by analogy with [6]. The control
parameter ω1, 2 = ω0 ± ∆ specifies the slight difference
between the subsystems under consideration (ω0 = 0.97
and ∆ = 0.02), and ε is the coupling parameter. For ε =
εp . 0.036, phase synchronization is established in the
coupled Rössler systems. For ε = εl . 0.14, the transi-
tion to lag synchronization takes place. If the coupling
parameter ε increases further, the time shift τ tends to
zero, which corresponds to complete synchronization [6].

Chaotic synchronization is usually studied by calcu-
lating the Lyapunov exponents, finding the phases of
chaotic signals for every subsystem and the relation
between them, determining similarity functions [6],
etc. Although all these methods make it possible to
determine the existence of a certain type of chaotic syn-
chronization, they do not reveal the mechanism of its
initiation and the change of one type of synchronization
to another. In this study, we apply the continuous wave-
let transform [12] for this purpose and, on its basis,
introduce the family of chaotic-signal phases.

The continuous wavelet transform is represented by
the convolution

(2)

where the asterisk denotes complex conjugation, f(t) is
the function under analysis, and the two-parameter
wavelet function  is derived from the mother
wavelet ψ0(t)as

(3)
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The width parameter s ∈ R+ is called the time scale of
the wavelet transform, and t0 is the shift parameter deter-
mining the position of the wavelet on the time axis t. We
used the Morlet wavelet

(4)

with the parameter ω0 = 6. For this wavelet parameter,
the time scale s corresponds to the frequency compo-

nent f .  in the Fourier spectrum of the time realiza-

tion under analysis.
The complex function W(s, t0) determined by trans-

form (2) characterizes the dynamics of the system for
the time scale s at the current time t0 . The absolute
value |W(s, t0)| characterizes the contribution of the
given time scale s to the time realization of the system
at the current time t0 . The Morlet wavelet conditionally

represents the spectral components f .  in the Fourier

spectrum at the time t0 and its intensity [12].
Simultaneously, the phase φs(t0) = argW(s, t0) is nat-

urally specified for each time scale s. The set of such
phases forms the family of chaotic-signal phases. This
approach enables us, first, to determine the phase
dynamics of the system for all the time scales and, sec-
ond, to avoid the difficulties [3, 11] arising in conven-
tional methods of determining the phase (based on the
Hilbert transform, the Poincaré section method, etc.).

Now, we consider variations in the wavelet surfaces
W1(s, t) and W2(s, t) [obtained for the time realizations
y1(t) and y2(t), respectively] with a decrease in the cou-
pling parameter ε in system (1).

ψ0 η( ) 1

π4
------- jω0η( ) η2–

2
-------- 

 expexp=

1
s
---

1
s
---

–120

0 200 400 600

–80

–40

0

40

t

φs1 – φs2

s = 4

s = 6
s = 5

s = 3

Time dependence of the phase difference φs1 – φs2 for vari-
ous time scales s. The time scales s = 3 and 4 are desynchro-
nized, while the time scales s = 5 and 6, carrying a consid-
erable part of the energy, are synchronized.
For large coupling parameters, the behaviors of both
systems (1) are virtually identical (r1 ≈ r2), which is evi-
dence of complete synchronization.1 Correspondingly,
the wavelet surfaces for complete synchronization are
also identical {W1(s, t) ≈ W2(s, t)}. It is clear that the
dynamics of phases is the same for all the time scales;
i.e., φs1(t) ≈ φs2(t).

When the coupling parameter ε decreases and lag
synchronization arises in the system, the time realiza-
tions created by dynamical systems (1) are shifted rela-
tive to each other by a time lag τ, which increases with
a decrease in the coupling parameter ε. Since r1(t – τ) ≈
r2(t) and due to the definition of wavelet transform (2),
the wavelet surfaces W1(s, t) and W2(s, t) are related as
W1(s, t – τ) ≈ W2(s, t). Similarly, the phases are shifted
relative to each other for all time scales s; i.e., φs1(t –
τ) ≈ φs2(t). In other words, phase locking takes place for
each time scale in the lag-synchronization mode; i.e.,
all time scales remain synchronized in the coupled sys-
tems.

With the further decrease in the coupling parameter
ε, the system passes from the lag-synchronization mode
to the phase-synchronization mode. In this case, the
scales s, whose role in the dynamics of the system is
significant, are still synchronized; in other words, phase
locking remains for these scales. At the same time, cer-
tain time scales φs go out of synchronization; i.e., the
phase difference for these scales increases with time.

The figure shows the time dependence of the phase
difference φs1 – φs2 for various time scales s. The time
scales s = 5 and 6 carry the greatest share of the wavelet

spectral density |W(s, t)|2dt. As is seen in the figure,

the dynamics of the phases φ1, 2 is synchronous for these
scales; i.e., phase locking is observed. At the same time,
the time scales carrying a small share of the wavelet
spectral density (figure shows the dependences for the
time scales s = 3 and 4) are desynchronized, and the
phase difference for these scales increases with time.

With the subsequent decrease in the coupling
parameter ε, phase synchronization breaks down, and
the systems pass into an asynchronous mode. In this
mode, all time scales s behave asynchronously, and
there is no phase locking for any of them.

Thus, the phenomenon of phase synchronization
can be treated as follows. A certain part of the basic
time (or frequency) scales of vibrations that carry the
greatest share of energy are synchronized, whereas the
remaining time scales (or frequencies) have already left
the synchronization mode. Therefore, the dynamics of
the systems is no longer completely synchronous,
although the most important time scales are still syn-
chronized.

1 The vectors r1, 2 = (x1, 2, y1, 2, z1, 2)T represent the states of first
and second systems (1), respectively.

∫
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The chaotic-signal phase introduced in a certain
way [3, 10] for phase synchronization is properly a
phase corresponding to the fundamental frequency ω0
in the Fourier spectrum of the signal. Therefore, phase
locking and, correspondingly, phase synchronization
are observed until the frequencies of vibrations carry-
ing the greatest share of energy in the spectrum are syn-
chronous. Furthermore, as was shown in [11], inappro-
priate introduction of the chaotic-signal phase for
which the average frequency

(5)

differs from the fundamental frequency ω0 of the Fou-
rier spectrum leads to incorrect results. In this connec-
tion, it is efficient and informative to analyze synchro-
nization by using the wavelet transform and introduc-
ing a family of phases φs corresponding to various time
scales s for a chaotic process.
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INTRODUCTION

The physics of interaction of intense optical radia-
tion with various materials is determined by the contri-
bution and competition of a number of nonlinear
dynamic processes and phenomena (for example, of
thermochemical and hydrodynamic nature), by phase
transitions, etc. These processes and phenomena
sequentially replace each other and are responsible for
the energy and mass transport in a substance under the
action of laser radiation (see e.g., [1]). The real-time
diagnostics of these processes and determination of
dynamic parameters for such an interaction on the basis
of observation of dynamic patterns in the region of the
laser action on a substance are extremely topical. First
of all, this presents a unique possibility of investigating
various fundamental regimes in physics of the con-
densed state of a substance. Second of all, this allows us
to control the process of the appearance of such
regimes.

However, it is necessary to take into account the
presence of the erosion flame immediately above the
interaction region, which screens the observation zone.
By virtue of this fact, we are restricted to the consider-
ation of only initial and final states (localized in time)
of the surface subjected to irradiation. In this case, reg-
istration of dynamics of the surface change in the
course of the melting process remains inaccessible.

In this work, the dynamic scan of the transition
between these states is realized. This makes it possible
to study intermediate states, which, in essence, deter-
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mines the physics of the interaction of optical radiation
with matter. In the case under consideration, the time
and space resolutions attained correspond to character-
istic scales of processes being developed. To this end, a
laser image intensifier (laser monitor) is used in the
detecting unit. The monitor plays the role of a narrow-
band active filter for the probing beam reflected from the
zone of the action of the monitor’s self-radiation [2]. At
the same time, the incoherent radiation of the erosion
flame is virtually not amplified in this filter and does not
manifest itself in the visualization of the interaction
region. This allowed us to experimentally study the
evolution of hydrodynamic instabilities arising in the
melt zone under the action of laser radiation and to
obtain the corresponding oscillation spectra. Based on
the analysis of phase portraits revealed, we managed to
determine factors governing the oscillation stochastiza-
tion and to find scenarios of the development of hydro-
dynamic instabilities.

EXPERIMENTAL PROCEDURE

In this study, we used the radiation of a YAG:Nd3+

laser (with a wavelength of λ = 1.06 µm). The laser
operated in the quasi-continuous mode (with a pulse
duration of τ = 2.5 ms and pulse repetition frequency of
f = 150 Hz). In this case, the radiation power density on
the metal sample surface (steel, lead, titanium, etc.) was
equal to 3 × 105 W cm–2. Such light intensities corre-
sponded to the thermocapillary regime of exciting-
laser-induced instabilities [1]. A copper vapor laser
amplifier (λ = 0.51 µm, τ = 20 ns, f = 16 kHz) was used
as a monitor. The radiation of this laser, which was
reflected from the action zone on the sample surface,
played the role of the probing beam. Arising hydrody-
namic regimes were detected by means of a CCD cam-
era (with a high speed on the order of 20 ms) using the
corresponding projection optics that ensured the spatial
resolution of dynamic patterns at a level no worse than
10 µm. A personal computer further provided the data
processing and pattern recognition in both on-line and
off-line regimes. In the course of the experiment, the
004 MAIK “Nauka/Interperiodica”
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digitized luminance J(t) for certain regions of dynamic
patterns being observed in the reflected monitor light
was measured. The degree of variation of the luminance
(i.e., the magnitude) is proportional to the amplitude of
oscillations of arising hydrodynamic instabilities.
Details of the experimental procedure are given in [2].
DOKLADY PHYSICS      Vol. 49      No. 3      2004
THE EXPERIMENTAL RESULTS

Figures 1 and 2 show typical images of the melt
zone on a metal surface, which were obtained with the
laser monitor during the action of pumping radiation.
These images periodically vary from the pattern corre-
sponding to a regular state with complex wave struc-
100 µm 100 µm

(a) (b)

Fig. 1. Wave process arising under the laser action on the surface of melted metal: (a) lead and (b) titanium.

1 2 3

4 5 6

Fig. 2. Frames illustrating changes in regimes of lead melt flows under the action of laser radiation. As examples, 6 chosen frames
out of a 25-frame episode of the melt dynamics evolution for the metal surface are presented. The 1st to 9th frames (illustrated by
three characteristic images on frames 1–3) correspond to the chaotic state of the lead surface melted by the laser radiation. Frag-
ments of the melting process, which are presented on the 10th to 25th frames (see frames 4–6), correspond to the ordered state with
explicitly expressed surface waves.

1

50

2 3 4 5 6 7 8 t, s

(b)
1

40

2 3 4 5 6 7

(a)

80

J(t)

Fig. 3. Luminance J(t) in the image center as a function of time: (a) steel and (b) lead.
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Table

Experimental-run 
duration, s

Steel Lead Lorentz attractor (model)

DL Dm ε DL Dm ε DL Dm ε

1 2.06 2.14 0.63 2.03 2.15 0.58

4 2.34 2.27 0.77 2.63 2.36 0.87 2.30 2.35 0.85

8 2.40 2.34 0.83 2.68 2.48 0.96
tures to that of their decay when the image has the form
of a chaotic distribution of both light and dark spots
(frame 3 in Fig. 2).

Figure 3 demonstrates the image luminance J(t),
which exhibits noticeable peaks and has the character
of irregular oscillations.

ANALYSIS OF THE EXPERIMENTAL RESULTS 
AND THEIR DISCUSSION

Based on nonlinear-dynamics methods, we ana-
lyzed the time dependences obtained for the image
luminance J(t) in the course of the experiment. In
accordance with these methods and using the one-
dimensional realization of the observed physical quan-
tity (Fig. 3; see, e.g., [3]), we can reconstruct the phase
portrait of the entire system (Takens theorem). To this
end, it is necessary to choose various realizations of the
time process under study, which correspond to different
time delays in the dependence obtained.

On the basis of this approach (the details of which
are presented in [4]), we have analyzed the process
observed of the development of hydrodynamic instabil-
ities on the surface of a substance under the action of
laser radiation. This analysis allows the character of the
Fourier spectrum and phase portraits to be determined.

First of all, we have found that, initially, the oscilla-
tion spectrum is complicated with the development of
an instability and then becomes quasi-continuous. Sec-
ond of all, the phase portraits taken in the space of time-
delay coordinates have the form typical for chaotic
oscillations. Finally, parameters determining the oscil-
latory system being put in correspondence with the
observed function J(t) also acquire values intrinsic to a
stochastic system.

In the latter case, the results of the analysis for three
relevant parameters are given in the table. The first of
them is the dimension (in the Lyapunov sense) DL = 2 +

, where λ+ and λ– are sums of all positive and nega-

tive coefficients, respectively (this parameter makes it
possible to find the general tendency of phase trajecto-
ries to the convergence or divergence). The second

parameter is the mass dimension DM = ,

which characterizes the distribution M(r) of phase-por-

λ+

λ–
-----

M r( )ln
1/r( )ln

------------------
r 0→
lim
trait points as a function of the distance r from the cen-
ter of mass of the phase portrait. This parameter also
allows the existence of anomalous densities in the
phase-portrait structure to be determined, i.e., the
degree of its disordering to be qualified. The third rele-

vant parameter is the Shannon entropy ε = lnpi,

where the probability pi of finding a point in a condi-
tionally selected class of points of the one-dimensional
realization was calculated for the number of classes
N = 16.

Thus, it turns out to be possible to quantitatively
classify the excitation of dynamic stochastic regimes in
the case under consideration of laser initiation of
hydrodynamic instabilities in the melt zone on the
metal surface. Here, nonlinear spatial structures with a
different degree of complexity arise, which appear and
substitute each other with time. These structures can be
aligned into a certain hierarchy of nonlinear transforms
in the framework of fractal-geometry approaches on
the basis of the comparison of topologically equivalent
sets [5]. In this case, the change of a regime corre-
sponds to sharp variation (discontinuity) of the corre-
sponding dimension parameter.

CONCLUSIONS

In this paper, complex studies of nonlinear interac-
tions of optical fields with a substance were carried out.
These studies involve visualization of the laser-radia-
tion action on the surface of a substance, as well as reg-
istration of dynamic spatial structures and instabilities
being developed in this case. The observations were
performed in the real-time mode, which is impossible
in the case of a standard approach. The experimental
method of the laser diagnostics in the real-time mode is
based on the employment of a laser light amplifier for
the optical image luminance. The mechanisms of the
development and chaotization for such structures are
investigated. Their quantitative characteristics and con-
ditions for the appearance of the space-time chaos
within the region of the laser action are determined. The
goal of these studies consists in finding criteria respon-
sible for the degree of ordering of energy- and mass-

1
N
---- pi

i 1=

N

∑
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transport processes and for their control and optimiza-
tion. It was shown that the oscillation spectra, phase
portraits, and controlling parameters of the processes
under investigation are close to the corresponding char-
acteristics of model hydrodynamic experiments aimed
at the observation of stochastic regimes.

The study presented allows us to develop novel
physical principles for controlling fundamental proper-
ties of surfaces of condensed media in the process of
the action of a laser and to optimize this action. This is
of particular importance in the case of the excitation of
space-time instabilities, including those in problems of
quantitative measurements of radiation resistance of
various objects.
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REFERENCES
1. N. V. Karlov and N. A. Kirichenko, Vibrations, Waves,

Structures (Fizmatlit, Moscow, 2001) [in Russian].
2. V. G. Prokoshev, A. F. Galkin, I. I. Klimovskiœ, et al.,

Kvantovaya Élektron. (Moscow) 25, 337 (1998).
3. M. I. Rabinovich and D. I. Trubetskov, Introduction to

Theory of Oscillations and Waves, 2nd ed. (Nauka, Mos-
cow, 1992). [Translated into English under the title:
Oscillations and Waves in Linear and Nonlinear Systems
(Kluwer, Dordrecht, 1989).]

4. P. S. Landa and M. G. Rozenblyum, Zh. Tekh. Fiz. 59
(1), 13 (1989) [Sov. Phys. Tech. Phys. 34, 6 (1989)].

5. V. G. Prokoshev, D. V. Abramov, S. Yu. Danilov, et al.,
Proc. SPIE 4429, 96 (2001).

Translated by G. Merzon



  

Doklady Physics, Vol. 49, No. 3, 2004, pp. 150–153. Translated from Doklady Akademii Nauk, Vol. 395, No. 2, 2004, pp. 187–191.
Original Russian Text Copyright © 2004 by Galimov, Kudin, Skorobogatski

 

œ

 

, Plotnichenko, Bondarev, Zarubin, Strazdovski

 

œ

 

, Aronin, Fisenko, Bykov, Barinov.

                                                                                                   

PHYSICS
Experimental Corroboration of the Synthesis
of Diamond in the Cavitation Process

Academician É. M. Galimov1, A. M. Kudin1, V. N. Skorobogatskiœ2, 
V. G. Plotnichenko3, O. L. Bondarev2, B. G. Zarubin2, V. V. Strazdovskiœ2, 

A. S. Aronin4, A. V. Fisenko1, I. V. Bykov1, and A. Yu. Barinov2

Received December 4, 2003
Thirty years ago, one of us (É.M.G.) theoretically
justified the possibility of synthesizing diamonds in a
cavitating fast fluid flow [1]. In that and more recent
works [2, 3], variants of the cavitation synthesis of dia-
monds in nature were discussed. The essence of the
idea is as follows. When a fluid rises rapidly from the
mantle to the ground through a narrow channel–crack
formed by it, sharp pressure differences arise. Accord-
ing to the Bernoulli equation, pressure in the fluid flow
is inversely proportional to the velocity squared. There-
fore, pressure decreases in a narrow spot, which gives
rise to the appearance of gas bubbles. When the fluid
again enters a wide place, pressure is recovered and
bubbles collapse. Calculation shows that pressure can
increase by several orders of magnitude. As was calcu-
lated in [1], pressure induced when bubbles filled with
a carbon-containing gas collapse is sufficient for dia-
mond synthesis. In [1, 2], it was assumed that the fluid
contained CO2, but a more recent analysis of diffusion
velocities from the collapse medium showed that only
hydrogen has a sufficiently high diffusion velocity.
Therefore, a hydrocarbon substrate such as methane
must be the initial substance.

In this work, we aim to reproduce the cavitation syn-
thesis in experiments.
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Benzene is used as the working substance. The sat-
urated vapor of this low-viscous fluid has high pressure
under normal conditions. In addition, it is characterized
by a high carbon-to-hydrogen ratio (C6H6).

Figure 1 shows the layout of the experimental setup.
It consists of (1, 4) cavities, where a powder charge is
ignited; movable plungers q1 and q2 joined to each other
by a rod with a lock device, which makes it possible to
uncouple the plunger q2 when it reaches the extreme
position; (2, 3) cavities filled with the working sub-
stance (benzene); and a nozzle block in the form of a
Venturi tube. The setup works as follows. The pressure
of powder gases produced in cavity 1 induces motion of
the plunger q1 that displaces the fluid from cavity 2 into
cavity 3 through the nozzle. The tensile stress arising in
the narrowest cross section of the nozzle is responsible
for the formation of vapor bubbles (first cavitation
stage), which enter cavity 3. When the plunger q2
reaches the extreme right position (Fig. 1), the primer is
struck and the powder charge in cavity 4 is ignited.
Powder gases produced in cavity 4 displace the plunger
q2 in the opposite direction. This plunger increases the
pressure in cavity 3 and provides the conditions for fast
collapse of vapor bubbles.

Pressure in experiments was measured by piezo-
electric transducers in cavities and nozzle. In methodi-
cal experiments (when powder in cavity 4 was not
ignited), the velocities of plungers and rarefaction in
cavity 3 were measured. Working pressures were in the
range 120–150 MPa, rarefaction in cavity 3 was equal
to about 0.02–0.04 MPa, and the velocities of the
plungers q1 and q2 were equal to about 2 m/s. Measure-
ment showed that the temperature of the fluid in
cavity 3 virtually does not vary during the process.
Therefore, the fluid can be treated as barotropic and iso-
thermal in the following theoretical study.

The working regime in the experimental setup ade-
quately simulates the second stage of the cavitation
process, i.e., the cavitation collapse of bubbles that
occurs in cavity 3 under the conditions corresponding
004 MAIK “Nauka/Interperiodica”
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1

C

S

2 3 4

d4d3d2 q2q1d1

Fig. 1. Layout of the experimental setup: d1–d4 are pressure transducers, C is the primer, and S is the firing pin.

Fig. 2. Microscopic image of particles obtained in the cavitation experiment by using (a) crossed nicols, (b) reflected light, and
(c) passing light. One scale division is equal to 1 µm.

(a) (b) (c)
to the recovery of pressure after the outflow of bubbles
from the Venturi tube.

After the experiment, the fluid was poured out of the
working cylinder. Suspended particles were precipi-
tated by centrifugation, placed in a Petri dish, and stud-
ied under a microscope. A considerable part of the pre-
cipitated substance is a dark shapeless paste. However,
this paste contained bright micron particles. In crossed
nicols of the analyzer of the optical microscope, many
of these particles provided a pronounced polarographic
pattern in the form of a cross (Fig. 2). In reflected light,
a noticeable brown inclusion was always observed in
the central part of these particles. This inclusion is
clearly seen in the far right particle in Fig. 2.

Sediment after centrifugation was analyzed with a
PU 9804 Philips IR spectrometer. Two 0.75- and 1-mg
samples were milled in a mechanical mill with 40 mg
of KBr and pressed into tablets 10 mm in diameter.
Spectra include frequencies corresponding to func-
tional groups of organic compounds. Carbon in CH2

groups is detected by asymmetric and symmetric valence
vibrations at νas = 2921 cm–1 and νs = 2851 cm–1, respec-
tively, as well as by scission and pendulum vibrations at
1468 and 721 cm–1, respectively. In addition to the
absorption bands of organic compounds, the spectrum
includes the lines ν = 2662, 2510, 2170, and 2077 cm–1,
which can be treated as the bands of overtones and
composite wavenumbers of longitudinal and trans-
verse, optical and acoustic, vibrations of the diamond
lattice. However, certain characteristic wavenumbers in
the spectrum from cavitation-produced diamonds are
DOKLADY PHYSICS      Vol. 49      No. 3      2004
higher than those from synthetic diamonds by several
tens of inverse centimeters.

Organic compounds including polymeric com-
pounds are naturally produced when cavitation is
induced in benzene, and their presence is indirect evi-
dence of the realization of the cavitation regime in the
setup used in this work.

However, we are primarily interested in the nature
of bright particles that are mentioned above and
observed under the microscope. The substance precipi-
tated from benzene was processed in hydrochloric acid
at 80–218°C for ten hours for the removal of the
organic component and was analyzed with a JEM-
100CX scanning electron microscope. Table 1 presents
data calculated from electron diffraction patterns for
the samples under consideration in comparison with
reference data for diamond and graphite. According to
Table 1, the diamond phase is identified with a high
probability in certain sections of particles being stud-
ied. In other sections, carbon is instead in the graphite
phase.

Whole particles are an aggregate of nanocrystal-
lites. The dimension of diamond crystals is equal to
10–30 nm. Figure 3 shows diffraction patterns from
diamond particles, which also include an unidentified
line (see table) that does not refer to the diamond phase.
Certain ring reflections are split due to lattice distortion
caused possibly by impurities. A number of aggregates
provide the diffraction pattern shown in Fig. 3. The
interplanar spacings calculated for this case correspond
to graphite.

Individual particles were mechanically transported
under the microscope to the sample table and analyzed
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Fig. 3. Electron diffraction pattern (negative) of the structure of sections of cavitation-synthesized particles containing (a) the dia-
mond phase and (b) predominantly graphite.
by Raman spectroscopy. Raman scattering spectra were
detected with a T64000 triple spectrograph (Jobin Yvon
firm) on a silicon photoreceiver (CCD matrix) cooled
by liquid nitrogen. The Raman scattering spectrum was
excited by a 5145-Å argon laser. Exciting radiation sup-
plied on a sample through the microscope was focused
on a spot with a diameter of about 2 µm and had a
power of 10 mW. Although the spectrum of particles
extracted from the products of cavitation processing of
benzene included a line close to the characteristic
1330-cm–1 diamond line, this spectrum is more compli-
cated and this line is broader. Figure 4 shows the typical
Raman spectrum for particles synthesized in the exper-
iment. It is known that the broadening of the Raman
spectrum can be caused by both the small size of dia-
mond clusters [4, 5] as was observed, e.g., in the Raman
spectrum of a diamond film [6, 7] and the presence of
nondiamond impurity (graphite, amorphous carbon,
hydrocarbon formations). We note that some particles
exploded when irradiated by a laser beam for a compar-
atively long time (100 s), which is probably associated
with the presence of gas–liquid inclusions.

The Raman spectrum of a particle obtained in the
cavitation experiment was compared to the Raman
spectrum of a new carbon-containing formation synthe-
sized in a high-pressure setup. The spectra were almost
identical. Since a pressure of 70 kbar and a temperature
of 1700°C in the high-pressure setup were in the region
of the thermodynamic stability of diamond, the above
new formation likely contained the diamond phase.
Diffraction data on the composition of particle agglomerates containing the diamond phase that are obtained in the cavitation
experiment

Line no.

Experimental data
Reference data

dhkl

sections with the diamond phase sections without 
the diamond 

phase

diamond graphite

6001995 6601997 6002000 HKL dhkl HKL dhkl

1 2.08 2.08 2.08 3.37 111 2.06 002 3.38

2 1.25 1.25 1.25 2.12 220 1.26 100 2.12

3 1.16 1.16 1.16 1.69 – – 004 1.69

4 1.07 1.07 1.08 1.23 311 1.08 110 1.227

5 – – – 1.12 331 0.82 006 1.12
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Fig. 4. Raman spectrum of the (1) experimental particle, (2) diamond crystal, (3) diamond film, and (4) explosion-produced
microdiamonds. The particle under investigation was a 14-µm aggregate; exposition time is equal to 100 s. The spectra of the dia-
mond film and explosion-produced microdiamonds are taken from [7] and [9], respectively. The excitation wavelength was equal
to 632.8 nm.
However, the authors of [8] did not carry out studies
corroborating this fact.

The conclusions of this work are as follows:
the excitation of cavitation in the working hydrocar-

bon fluid (benzene) is accompanied by the appearance
of new formations that consist primarily of organic
polymers and include solid carbon particles;

particles are aggregates of nanocrystalline struc-
tures;

at least some of such aggregates contain the dia-
mond phase.

Thus, the possibility of synthesizing the diamond
phase when exciting cavitation in a carbon-containing
fluid has been experimentally corroborated.
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The polarization of three-mode Bose systems hav-
ing the Gell-Mann SU(3) symmetry is discussed. The
concept of SU(3) polarization in the Hilbert space is
proposed for a quantum system, and an original SU(3)
interferometer that makes it possible to measure vari-
ous Gell-Mann parameters for a light field is considered
for the first time. Measurements of the signal-to-noise
ratio that are limited only by quantum noise and based
on the use of entangled photon states at the input of an
optical system are analyzed. The possibility of the for-
mation of a new type of quantum (helicity) states of
light, where Hermitian quadratures are fundamentally
correlated with polarization Stokes parameters, is
shown in the classical-field approximation for one of
the modes.

INTRODUCTION

Quantum states of light-field polarization are inten-
sively investigated both theoretically and experimen-
tally by a number of research groups [1–5]. Although
practical applications of nonclassical polarization
states in optics have already been widely discussed in
connection with the problems of teleportation, quantum
processing of information [1, 2], and high-precision
measurements in ellipsometry [3–5], the nature of
physical measurements and features of the formation of
light characterized by a nonclassical polarization are
not completely understood.

Stokes polarization parameters satisfying the SU(2)
algebra are now commonly accepted as a universal
description of quantum polarization states of the light
field. Nonclassical states were described in terms of
these quantities in many works, and the contribution of
Russian researches to this field is decisive [3–7].

In this study, the quantum polarization properties
are analyzed for three-mode light fields in the SU(3)-
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algebra representation, which is a standard approach in
describing quantum phenomena in QCD and elemen-
tary particle physics [8]. A quantum parametric-inter-
action process, where one photon of the pumping wave
decays into two, idler- and signal-wave, photons and
energy transfer between all waves is taken into account,
is an example of a three-mode optical system in nonlin-
ear optics. The universal approach being considered,
which is based on the second-quantization representa-
tion, can also be used to solve problems of atomic
optics. First, we imply the quantum dynamics of three-
level atomic systems [9] as well as the problem of inter-
action of atoms with a quantized external electromag-
netic field [10].

SU(3) POLARIZATION QUANTUM STATES
IN BOSE SYSTEMS

In the Schwinger representation, the quantum three-
mode Bose system can be represented in terms of its
Hermitian Gell-Mann operators of the SU(3) algebra λj,
j = 0, 1, …, 8 (cf. [8]):1 

(1a)

(1b)

(1c)

(1d)

(1e)

where aj( ) with j = 1, 2, and 3 are the photon creation
(annihilation) operators. The operator λ0 specified by
Eq. (1a) determines the total number of photons in
modes and commutes with the remaining operators

1 The introduction of the SU(N) symmetry group determining an
(N2 – 1)-dimensional vector field satisfying the requirements of
invariance under local phase transformations is useful for
describing the corresponding physical interaction.
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specified by Eqs. (1b)–(1e). The noncommuting opera-
tors λ1, 2, 3 in (1b) form an SU(2) subalgebra of the
SU(3) algebra. In quantum optics, this subalgebra is an
analogue of the polarization Stokes parameters S1, 2, 3 of
the light field, where modes 1 and 2 correspond to a lin-
ear (circular) polarization basis. The presence of the
third mode a3 implies, by analogy with elementary par-
ticle physics, the existence of the isospin (isospin polar-
ization) of the light field.

Let us define the unit polarization vector e of the
three-mode system as

(2)

where a is the annihilation operator of the three-mode
field and ej with j = 1, 2, and 3 are orthogonal vectors
satisfying the condition

(3)

Relation (2) is then represented in the form

(4)

where  = e*ej are the projections of the polarization
vector, which, within the SU(3) algebra, are specified
by four phase parameters θ, φ, ψ1, and ψ2 (see [12]) as

(5)

For the light field in a coherent state, we have

(6a)

(6b)

where |α〉 = |α1〉|α2〉|α3〉  is the coherent state of the

three-mode field and α = αj is its eigenvalue; that

is, αj = ejα, j = 1, 2, 3.
Effects of Bose–Einstein condensation in atomic

optics are usually described by introducing atomic-
coherent states, which, in the case of SU(3) symmetry,
have the form

(7)

where |0〉 ≡ |0〉1|0〉2|0〉3 is the vacuum state and N = 〈λ 0〉 is
the total mean number of particles.

Thus, expressions (4) and (5) specify the polariza-
tion state of the three-mode system in the Hilbert space.
The isospin-polarization state corresponds to an “ordi-
nary” polarization of a two-mode field. In this case, the
phase parameters θ, φ, ψ1, and ψ2 can be related to the
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parameters of ellipticity and azimuth of the polariza-
tion, which are parameters measured in ellipsometry
(see, e.g., [7]). However, the direct measurement proce-
dure of the parameters θ, φ, ψ1, and ψ2 , as well as the
polarization degree of the light field, requires special
analysis in the quantum case (see below).

SU(3) INTERFEROMETER
Let us consider the polarization degree P of the

three-mode field and the degree of isospin polarization
PIP . These quantities can be expressed in terms of the
expectation values of the operators λ specified by
Eqs. (1) as

(8a)

(8b)

According to these expressions, P = PIP = 1 for the
field in coherent states (6) or (7).

Measurement of the quantities defined by Eqs. (8a)
and (8b) and the quantum properties of an optical sys-
tem having the SU(3) symmetry requires schemes and
procedures other than those for the polarization charac-
teristics of the SU(2) subalgebra [1–5, 7]. To this end,
we propose the scheme of an SU(3) interferometer for
simultaneous measurement of the Gell-Mann parame-
ters (figure). The modes aj, j = 1, 2, 3, are applied at the
input of the interferometer, and the remaining modes Vj

are vacuum ones. Detection provides measurement of
the differences of the photon numbers at its output:

(9a)

(9b)

(9c)

where Nij = dij (i, j = 1, 2, 3) are the operators of the
detected photon numbers and the normally ordered
operators Vij depend on the annihilation (creation) oper-
ators for the vacuum modes at the input of the interfer-
ometer. The measured Gell-Mann parameters λij

appearing in expressions (9a)–(9c) are represented in
the form

(10a)

(10b)

(10c)
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With the aid of expressions (9a)–(9c), the expectation
values of the differences between photon numbers,

〈 〉 , are expressed as

(11a)

(11b)

(11c)

Thus, for a certain phase difference φj in the interfer-
ometer arms, the Gell-Mann parameters λ1, 2, λ4, 5, and
λ6, 7 [see (1b)–(1d)] can be measured simultaneously.
Such measurements also make it possible to extract
information on the phase parameters θ, φ, and ψ1, 2 sim-
ilarly to measurements of the ellipticity and azimuth of
polarization for the quantum two-mode field (cf. [7]).

For this interferometer, let us consider measure-
ments limited only by quantum noise (figure). We
define the signal-to-noise ratio for the detected differ-
ences of the photon numbers as

(12)

where 〈(∆ )2〉  are the variances of the observed
quantities. Using definition (12) and taking into

Nij
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–( )〈 〉 1

2
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–( )
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d31
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a3
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a1

SU(3) interferometer for simultaneous measurement of the
Gell-Mann parameters in optics. Quantum (aj) and vacuum
(Vj) modes (j = 1, 2, 3) are supplied to the input; φj are phase
shifts in the interferometer arms due to linear optical ele-
ments; and BS are semitransparent beam splitters.
account expressions (9)–(11), we obtain the measured
signal-to-noise ratios in the form

(13)

If radiation at the input of the interferometer is in coher-
ent state (6), relation (13) yields

(14a)

(14b)

(14c)

Expressions (14a)–(14c) specify the standard quan-
tum limit for measurement of the signal-to-noise
parameters for the SU(3) interferometer shown in the
figure. In this case, the quantities Fk, SQL vary within the
range 0 ≤ Fk, SQL ≤ 1.

However, coherent states (6) are not optimal for the
limiting accuracy of the measurements being dis-
cussed. Indeed, the quantities Fk [see (13)] are maximal
if light is supplied to the input of the interferometer in
a nonclassical (squeezed) state. For primary entangled
states (7), in view of the corresponding input values of
the phase parameters θ and φ [SU(3) polarization
states] and under specific phase relations for ψj and φj

in the interferometer arms, the variances of the Gell-
Mann parameters vanish: 〈(∆λij)2〉  = 0. Therefore, the
quantities Fk are given by

(15)

Expression (15) fixes the achievable accuracy (lim-
ited by quantum noise) of measurement of the parame-
ters Fk in the interferometer scheme under consider-
ation. This accuracy is determined by fundamental lim-
itations imposed by quantum fluctuations of the light
fields Vj in vacuum states. All other conditions being
the same, Fk Fk ≥ Fk, SQL, k = 12, 13, 23. In particular,
state (7) is twice as sensitive to the signal-to-noise ratio
as coherent state (6).

Further, we assume that the mode a3 is a classical
pumping mode that is described by a complex-valued
amplitude α3 = |α3|eiϕ, where ϕ is phase. In this case,
the operators λj, j = 4, …, 7, specified by Eqs. (1b)–(1e)
take the form

 (16)
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where 

(17)

are Hermitian quadratures that are the generalized
coordinates of the respective modes. An interesting fea-
ture of this SU(3)-symmetry representation is that
simultaneous and exact measurement of the isospin
parameters λj with j = 1, 2, and 3 and the Hermitian
quadratures Qi and Pi with i = 1 and 2 is impossible,
because the corresponding operators do not commute.

In quantum theory, the spin projection onto the par-
ticle momentum is associated with helicity, which is a
conserved quantity (see, e.g., [13]). Therefore, correla-
tions between the quantities Qi and Pi and the isospin-
polarization (Stokes) parameters λj can be considered
as an analogue of helicity states in quantum optics. The
scheme shown in the figure makes it possible to detect
such states by measuring correlations of photocurrents
at the output of the interferometer (cf. [14]).

CONCLUSIONS

In this study, the polarization of a three-mode light
field has been described on the basis of the SU(3) alge-
bra. The degree of polarization, as well as the condi-
tions of high-precision measurements, has been deter-
mined. The three-channel SU(3) interferometer pro-
posed in this work makes it possible to simultaneously
measure the quantities associated with different subal-
gebras of the SU(3) algebra. The achievable sensitivity
is limited by quantum noise for nonclassical states of
the modes at the input of the interferometer. New helic-
ity states of light, which manifest themselves in corre-
lations between Hermitian quadratures and isospin-
polarization operators, have been predicted.

The quantum properties of SU(3) polarization that
have been considered in this study for three modes of a
light field differ from the previously discussed SU(3)
symmetry of a two-mode (biphoton) field, which can be
in three different quantum states (such states were
referred to as optical quarks [2]). They characterize the
possible manifestations of a posteriori polarization of
light and can be revealed only in the process of its mea-
surement. Such polarization states of an optical system
are analogous to macroscopic polarization states of the
Schrödinger “cat” type that were considered in [15] and

Q j a je
iϕ– a j

+eiϕ , P j+ i a j
+eiϕ a je

iϕ––( ),= =

j 1 2,=
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could also be classified as a posteriori states of light
polarization.

ACKNOWLEDGMENTS
This work was supported in part by the Russian Foun-

dation for Basic Research (project no. 01-02-17478) and
a research program of both the Ministry of Industry,
Science, and Technologies and the Ministry of Higher
Education of the Russian Federation. The work of
A.P.A. was supported by the Foundation Dinastiya and
International Center for Theoretical Physics in
Moscow.

REFERENCES
1. W. P. Bowen, N. Treps, and R. Schnabel, Phys. Rev. Lett.

89, 253601 (2002).
2. A. V. Burlakov and D. N. Klyshko, Pis’ma Zh. Éksp.

Teor. Fiz. 69, 795 (1999) [JETP Lett. 69, 839 (1999)].
3. P. A. Bushev, V. P. Karassiov, and A. V. Masalov, Opt.

Spektrosk. 91, 558 (2001) [Opt. Spectrosc. 91, 526
(2001)].

4. A. S. Chirkin, A. A. Orlov, and D. Yu. Parashchuk, Kvan-
tovaya Élektron. (Moscow) 20, 999 (1993).

5. A. P. Alodzhants and S. M. Arakelyan, Zh. Éksp. Teor.
Fiz. 113, 1235 (1998) [JETP 86, 672 (1998)].

6. D. N. Klyshko, Zh. Éksp. Teor. Fiz. 111, 1955 (1997)
[JETP 84, 1065 (1997)].

7. A. P. Alodjants and S. M. Arakelian, J. Mod. Opt. 46, 475
(1999).

8. J. Elliott and P. Dawber, Symmetry in Physics (Mac-
millan, London, 1981; Mir, Moscow, 1983), Vol. 2.

9. C. K. Law, H. Pu, and N. P. Bigelow, Phys. Rev. Lett. 81,
5257 (1998).

10. A. S. Shumovsky, J. Phys. A 32, 6589 (1999).
11. A. V. Prokhorov, A. P. Alodzhants, and S. M. Arakelyan,

Opt. Spektrosk. 94, 50 (2003) [Opt. Spectrosc. 94, 50
(2003)].

12. G. Khanna, S. Mukhopadhyay, R. Simon, and N. Muku-
nda, Ann. Phys. 253, 55 (1997).

13. V. B. Berestetskiœ and E. M. Lifshitz, Quantum Electro-
dynamics, 2nd ed. (Pergamon Press, Oxford, 1982;
Nauka, Moscow, 2001).

14. S. N. Bagayev, V. I. Baraulia, and A. E. Bonert, Laser
Phys. 11, 1178 (2001).

15. A. P. Alodjants, A. Yu. Leksin, A. V. Prokhorov, and
S. M. Arakelian, Laser Phys. 10, 603 (2000).

Translated by T. Syromyatnikova



  

Doklady Physics, Vol. 49, No. 3, 2004, pp. 158–162. Translated from Doklady Akademii Nauk, Vol. 395, No. 3, 2004, pp. 330–334.
Original Russian Text Copyright © 2004 by Bakhrakh, Izrailovich.

                                           

TECHNICAL 
PHYSICS

       
Optimal Control of Emission
by Ultrashort-Pulse Antennas Operating 

in a Packet Regime
Corresponding Member of the RAS L. D. Bakhrakh and M. Ya. Izrailovich

Received November 24, 2003
INTRODUCTION

In the case of operation of ultrashort-pulse antennas
(UPAs) in a packet regime, i.e., when a beam of period-
ically repeated signals is emitted, a rather significant
deviation of the time structure of actually emitted sig-
nals from the desired (perfect) structure occurs. A sim-
ilar effect also takes place in the case of emission of sin-
gle pulses. In particular, in these cases, the emitted sig-
nal turns out noticeably more stretched in time
compared to both the signal at the antenna input, which
is formed by a UPA generator, and the desired (perfect)
signal.

To avoid these distortions, apart from the basic sig-
nal, an additional correcting signal (control signal) is
applied to the antenna input [1–3]. Problems of the
determination of such control signals can be condition-
ally divided into two classes. The first class corre-
sponds to lowering the level of the residual radiation, in
particular, to providing their total absence at a certain
given instance of time. The second class of problems
consists in the best consistency of an emitted signal to
its desired (perfect) time structure in accordance with a
certain best-approximation criterion. In this case, the
condition of the total (or partial) absence of the radia-
tion at a certain fixed instant of time, which is given in
the form of linear isoparametric conditions, can be
taken into account. As applied to the single-signal emis-
sion regime, these problems were solved in [1, 2].

In the case of emission in packet regimes, problems
of the determination of control signals become consid-
erably more complicated. This is caused by a number of
reasons. First, there exists a build-up effect for the
residual radiation from each emitted pulse, which
noticeably enhances distortions. Second, each of the
control signals applied to the antenna input within the
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Russian Academy of Sciences,
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time range between the onset of the action of the cur-
rent and subsequent working signals affects the time
structure of not only the current signals but also of all
subsequent emitted signals. Third, by virtue of dynamic
distortions, even in the case of periodic basic (working)
and control signals, the signal emitted by the antenna is
precisely a periodic function of time. Therefore, with
the exclusion of the case of a large number of emitted
pulses, the problem cannot be considered in the steady-
state periodic regime.

Heuristic methods of solving the first-class prob-
lems, i.e., those of lowering the total intensity of resid-
ual radiation, were proposed in [3]. In this paper, we
describe regular procedures based on constructing a
sequence of special Green’s functions, on the abstract
theory of linear operators, and on variational methods
in the L2(0; T) space [4]. These procedures are used for
solving the second-class problems, namely, search for
the best consistency with the perfect form of emitted
signals.

THE GREEN’S FUNCTIONS DESCRIBING
THE DYNAMICS OF EMISSION

IN A PACKET REGIME

The dynamics of a unidirectional antenna emission
in the case of a single input pulse formed by a UPA gen-
erator is defined in the form [2]

(1)

Here, x0(t) is the working pulse formed by the UPA gen-
erator, T1 is the pulse duration, h(t – τ) is the antenna
pulsed transition function, and y0(t) is the time diagram
of the emitted signal.

In the case of the action of n periodic working pulses
repeating with a period T (T > T1), it follows from (1)

y0 t( ) h t τ–( )x0 τ( ) τ , t 0; T1 ] ,(∈d

0

t

∫=

y0 t( ) h t τ–( )x0 τ( ) τ , t T1.>d

0

T1

∫=
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that the time diagram of an emitted signal is determined
by the expressions

(2)

As was shown in [5], expressions (2) with allowance
for the T periodicity of the function x0(t) can be trans-
formed to the form

(3)

by means of introducing new integration variables τi =
τ – (i – 1)T. Here,

For y0(t), expression (3) can be written in the more
compact form

(4)

where the sequence of the Green’s functions ϕl(t, τ, T1, T)
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is determined in the form

(5)

Let the perfect (desired) law of a unidirectional
emission y∗ (t) be given. It follows from the physical
sense of the packet pulse emission that the function
y∗ (t) is T-periodic, the starting time of each period
being coincident with the onset of the action of a
sequential working pulse x0(t). In this case, y∗ (iT2) = 0,

where T2 is the given instant of the pulse end (T1 < T2 ≤
T). As in the case of single-pulse emission, the func-
tions y∗ (t) and y0(t) are substantially different. How-
ever, in the given case, their divergence is even more
significant by virtue of the distortion build-up effect.
The periodic correcting action u(t)

 

 applied to the
antenna input should be determined in a manner that
allows the level of these distortions to be decreased.
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 (4) emitted by the
antenna is transformed to the form
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action u(t) is determined similarly to (5) by the expres-
sion

(7)

THE PROCEDURE OF CONSTRUCTING 
THE OPTIMAL CONTROL

As in the case of emission of a single signal [2], for
the best consistency of the time diagram of an emitted
signal y(t) (6) with the perfect diagram y∗ (t), we intro-
duce the functional

(8)

The first term in (8) determines the closeness of the
emitted signal y(t) to its perfect structure y∗ (t), whereas
the second term corresponds to the limited intensity of
the desired control action u(t).

As was indicated above, the functions entering into
the functional, namely, both the given function y∗ (t)
and u(t) to be determined, are T-periodic. At the same
time, the integration variable t is given within the seg-
ment [0, nT]. By virtue of this fact, in order to deter-
mine the function y∗ (t) that minimizes functional (8),
we cannot directly employ the procedure described
in [2] or other variational methods inherent in the the-
ory of optimal control. Indeed, as a result of application
of a certain method, the determined function u∗ (t) is not
T-periodic, because the function y(t) (6) is also not peri-
odic. Therefore, the condition u(t + T) = u(t) imposed
on the function u(t) in the case of the minimization of
the functional J(u) (8) is a specific limitation that can-
not be imposed on the basis of procedures used in the
optima-control theory.

By virtue of this fact, the following approach is
applied to solve the problem formulated above. The
functional J(u) is transformed in the following manner:

(9)
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∑=
Here, the values of the function y(t) (6), which it
acquires within the semisegments t ∈  (lT; (l + 1)T], l =
0, 1, …, n – 1, are denoted as yl . In each n term in (9),
the integration variable t acquires certain values within
the same semisegments. As a result of replacing inte-
gration variables tl = t – lT in each of the terms of (9),
the functional is reduced to the form

(10)

Since, in each term of (10), the integration variable tl

varies within the same limits [0; T], we may introduce
an independent variable θ = tl identical for each term.
Thus,

(11)

In this case, the expressions for yl(θ), l = 0, 1, …, n – 1
are determined in accordance with (6) by the substitution
θ for t – lT in the Green’s functions ϕl(t, τ, T1, T) (5) and
ϕl(t, τ, T) (7).

To minimize the functional J(u) (11), in analogy
with the signal correction in the case of single-pulse
emission [2], the most efficient procedure is based on
both the use of the abstract theory of linear operators in
the space L2(0; T) and calculations of the Gateaux
derivative over the desired function u [4] with the spe-
cifics of the given problem taken into account. In this
case, in accordance with both (6) and the transforma-
tion of the arguments described above, the expressions
for yl(θ) are written out in the form of linear operators

(12)

where Al, Bl are linear operators determined in terms of
the corresponding Green’s functions.

With allowance for (12), the abstract form of the
functional J(u) (11) being minimized is the following:

(13)

As a result of application of the procedure developed for
the determination of the minimization conditions [4] to
the functional J(u) (13), we can determine the follow-
ing linear operator equation with respect to the desired
function u:

(14)

In Eq. (14), operators conjugate to the operators Bl are
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denoted by . Since

the conjugate operators can be written in the form

where f is an arbitrary function.

Operator equation (14) determines the optimal con-
trol function

(15)

Here, R(n, γ) is the linear operator inverse with respect
to the operator 

Since operator equation (14) in its nonabstract form is
the Volterra equation of the second kind, the operator
R(n, γ) is the resolvent to this equation, whereas the
function u*(t) is its solution.

ALLOWANCE FOR QUENCHING
THE RESIDUAL RADIATION

Optimal correcting action u*(t) (15) provides the
best consistency (in the sense of the integral square
metric) with the perfect signal y∗ (t) over the entire
period T corresponding to the emission of each of n
pulses that form a packet. However, as was noted
above, the problem of lowering the total level of resid-
ual radiation also remains urgent. The corresponding
solution is presented in [3] without allowance for the
criterion of the best consistency of the time diagram for
the emitted signal y(t) (6) with the perfect diagram y∗ (t)
as a whole. By virtue of this fact and based on the above
procedure of constructing the function u*(t) (15), it is
also reasonable to take into account the conditions of
quenching the summed residual radiation.

In accordance with (5)–(7), the emission intensity at
the instants of time t = lT, l = 1, 2, …, n – 1 before the
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onset of the emission of each of the subsequent pulses
is determined by the expression

(16)

According to [3], the functional

(17)

is used as the summed intensity of the residual radia-
tion. Here, by virtue of (16), the relationship

is valid. The minimization of the summed residual radi-
ation yn (17) is equivalent to the minimization of the
second term.

By virtue of the aforesaid, for the determination of
u*(t), instead of the functional J(u) (13), we introduce
the extended functional

(18)

where cnu = (t)u(t)dt is the linear operator and λ is

the weight coefficient (Lagrange multiplier).
In the case of functional (18), Eq. (14) can be repre-

sented as

(19)

The solution to Eq. (19) is obtained in the form

(20)

where

If, as in [3], a limitation for the intensity of the con-
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trol action is given,

(21)

then we can determine from (20), (21) the value of λ*
corresponding to the limiting admissible value of W:

(22)

Here,

1
T
--- u2 t W ,≤d

0

T

∫

λ*
1
b
--- c c2 WT a–( )b++[ ] .=

a R2 n γ,( )Dn
2 t,d

0

T

∫=

b R2 n γ,( )Gn
2 t,d

0

T

∫=
The final expression for the optimal control is found by
substitution of λ* (22) into formula (20).
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In this study, we established that the use of a dusty
plasma trap makes it possible to produce a disperse
composite material (DCM) in amounts necessary for
physical and technological experiments. A diamond-
based Ni-coated DCM was investigated in detail. The
coating is a dense 10-nm-thick Ni layer with a charac-
teristic roughness of about 3 nm. It is shown that pow-
ders are virtually free of dendritic coating-material for-
mations with a fractal structure, and a Ni film is
strongly bonded to the diamond surface.

INTRODUCTION

The laboratory study of dusty plasma structures
became possible due to simple inexpensive setups pro-
viding plasma traps, i.e., plasma regions where disperse
particles can be confined for a long time [1]. The appli-
cation of dusty plasma traps is of great practical inter-
est, because they significantly expand the possibilities
of creating new unique materials, which cannot be pro-
duced by in situ methods due to, for example, either
thermodynamic or kinetic limitations. We imply the
usage of dusty plasma traps in the technology of pro-
ducing high-quality DCMs—powders consisting of
coated particles with sizes of 0.1–10 µm. The current
methods of producing such DCMs are characterized by
a number of disadvantages, including discontinuities in
coatings, poor adhesion between the deposited compo-
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nent and the surface of the initial material, and the for-
mation of agglomerates containing several particles of
the initial material coated by a common shell. As a
result, powders produced by these methods are inho-
mogeneous and, eventually, products made from them
have worse strength properties.

By using the features of the state of small particles
in a plasma, it is possible to provide strong adhesion
between a coating and a substrate, control the process
of coating deposition, and preset parameters of the
composition and structure of composite particles. In
this study, we report some results of the investigation of
DCMs produced in dusty plasma by a method similar to
that described in [2, 3].

EXPERIMENTAL PROCEDURE

In this work, we studied DCMs produced on a
plasma setup similar to that described in [4]. In the vac-
uum chamber of the setup, an asymmetric rf capacitive
discharge (up to 30 W in power) was maintained at
pressures between 0.1 and 13.3 Pa. The chamber vol-
ume was equal to 35 l, and the circulation rate of the gas
(argon) in our experiments did not exceed 10 l/s.

The dusty plasma trap is formed by the special dis-
position of electrodes. Using a dispersing device, the
trap can be filled with a dust whose particles have sizes
from 1 to 20 µm. Disperse particles in such a trap have
negative electric charges from 103e to 104e, where e is
the electron charge. Coulomb repulsion sharply retards
the coagulation of particles forming a long-lived quasi-
liquid. The concentration of disperse particles that was
measured by the methods of laser diagnostics [5] was
found to be 106 cm–3.

Levitated particles were coated by an atomic beam
produced by a sputtering magnetron system. This sys-
tem provides a directed sputtering-atom flux of
1016−1017 s–1 cm–2 with an average energy of 2–10 eV
[6]. As a substrate material, we took diamond and
glassy carbon powders with a mean size of particles of
about 3–4 µm and Al2O3 and SiO2 powders whose par-
ticles have a mean size of about 2 µm. As a coating
004 MAIK “Nauka/Interperiodica”
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material, we used copper, nickel, zirconium, stainless
steel, and other metals.

RESULTS AND DISCUSSION

In this study, we report the results of our investiga-
tions of diamond-based Ni-coated DCMs. To determine
the properties of the product, we applied a number of
methods: X-ray analysis, precision chemical analysis,
scanning and transmission electron microscopy, etc.
We also studied X-ray photoelectron spectra of the
DCMs.

Unlike the photographs of initial diamond powder,
the images of the particles after treatment are quite
clear (Fig. 1). This indicates that the electric conductiv-
ity of the coating is relatively high. Within the above
resolution, the coating is rather smooth, follows the

0.500 µm0.
50

0 
µm

12/15/102 20.0 keV 20.0 kX 1.0 µm

Fig. 1. Image of Ni-coated diamond particles in a micropho-
tograph obtained with a scanning electron microscope.
substrate relief, and contains no fractal “cauliflower-
type” structures [3].

The microphotographs of the DCM-particle edges
made with an ÉVM-100B transmission electron micro-
scope operating at an accelerating voltage of 50 kV
showed that the characteristic coating roughness is
about 3 nm (Fig. 2). There are also indications that the
Ni film is separated from the diamond substrate.

The nickel content in a sample was analyzed by the
method of burning the sample in oxygen at 1673 K. The
initial diamond powder was completely burned in this
process. The metal concentration in the DCM sample
under study, which was found from the weight of
unburned residue, is given in the table.

The specific surface was determined by measuring
the low-temperature adsorption of argon (the
Brunauer–Emmet–Teller method). The results of our
investigations are also given in the table. The mean
coating thickness evaluated from the measured nickel
concentration and specific surface was equal to about
10 nm.

In the range of angles under investigation, the X-ray
diffraction patterns for the initial diamond (which were
recorded by using an ADP-1 DRON diffractometer
with monochromatic CrKα radiation) virtually repre-
sent a single peak attributed to the (111) reflection of
the diamond lattice (Fig. 3). In the diffraction pattern of
DCMs, nickel manifests itself in the form of two peaks
corresponding to the (111) and (200) reflections of the
fcc lattice. The lattice parameter calculated using these
peaks equals 0.3529 nm, which slightly exceeds the
value in bulk nickel (0.3524 nm [7]). The size of the
regions of coherent scattering from nickel that corre-
sponds to the coating thickness along the direction per-
pendicular to the (200) plane was evaluated by the for-

mula D200 = cosΘ, where λ is the wavelength of

X-ray radiation and β is the half-width of the (200) dif-
fraction peak. The lower intensity peak was chosen

λ
β
---
Ç

Fig. 2. Image of a Ni-coated diamond particle in a microphotograph obtained with a transmission electron microscope. The height
of the letter is equal to 57 nm.
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because its half-width can be evaluated more accurately
than that of the (111) Ni peak, which overlaps the (111)
peak of diamond. It turns out that D200 = 12.0 nm for the
sample under discussion. This value is in agreement
with the data on the mean coating thickness obtained by
measuring the specific surface and mean nickel content
in the sample.

The magnetic properties of the samples were stud-
ied with an EG&G PARC M4500 vibrating magnetom-
eter. The samples for investigations were placed in a
thin diamagnetic ampoule the signal from which was
taken into account when processing data. The magneti-
zation curve of the DCMs under investigation is repre-
sented in the form of the hysteresis loop with a coercive
force of Hc = 131 Oe. The saturation state (where spe-
cific magnetization M is independent of the magnetic

60° 70° 80° 90°50°
2Θ

1

2

N
i(

11
1)

N
i(

20
0)

CrKα

Fig. 3. X-ray diffraction patterns of the (1) initial diamond
powder and (2) DCM sample under investigation.
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field strength H) is not attained even at H = 104 Oe. Con-
sequently, a sample contains superparamagnetic nickel
particles. Using the M value for H = 104 Oe, it is possi-
ble to evaluate the content of ferromagnetic nickel Cf Ni
in the sample:

where M1 is the M value measured at ç = 104 Oe and
Ms is the saturation magnetization for bulk nickel (Ms =
55 emu/g [8]). As is seen in the table, the Cf Ni value is
much lower than that of CNi found by the above method
of unburned residue. This difference can be attributed
to the fact that, in addition to the superparamagnetic
particles, the sample contains nickel in the form of
nickel oxide NiO, which is an antiferromagnetic mate-
rial [9].

To investigate X-ray photoelectron spectra, the sam-
ples under study (in the form of powders) were pressed
as a continuous layer into indium substrates. The spec-
tra were recorded with a PHI-5500 spectrometer with a
spherical analyzer. The residual pressure in the spec-
trometer chamber did not exceed 7 × 10–8 Pa.

From the general X-ray photoelectron spectra, it fol-
lows that the basic element on the surface of initial dia-
mond is carbon. After the deposition of a coating, the
basic element is nickel. As would be expected, nickel in
the surface layer under investigation is present in the
form of both metal and its oxide on the metal surface.
The Ni 2p line (Fig. 4) is a complex curve consisting of
three peaks. Two of them, corresponding to the binding
energies 861.2 and 855.6 eV, are associated with nickel
oxide, and the third (852.8 eV), with metallic nickel.
Short-term etching (less than 1 min) of the sample by
an Ar+ ion beam in the spectrometer chamber made it
possible to virtually completely remove the NiO film
from the surface (Fig. 4). This testifies to a compara-

Cf Ni

M1

Ms
-------,=
1

890
0

880 870 860 850
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1

2

Ni 2p

Binding energy, eV

Fig. 4. Photoelectron spectra of Ni 2p for the DCM under investigation (1) before and (2) after ion etching.
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Results of the analyses of the samples under investigations

Diamond powder CNi, wt % S, m2/g Hc, Oe M1, emu/g
(H = 104 Oe) Cf Ni, wt %

Initial 0 0.76 0 0 0

Ni-coated 7.5 1.14 131 0.85 1.55
tively high oxidation stability of the coating. The Ni
coating thickness evaluated from the X-ray photoelec-
tron spectra obtained during ion etching was no less
than 10 nm. This value is in good agreement with the
data mentioned above.

CONCLUSIONS

Thus, our investigations demonstrate that the use of
a dusty plasma makes it possible to produce a disperse
composite diamond-based Ni-coated material in
amounts necessary for physical and technological
experiments. The coating is a dense nickel layer with a
thickness of about 10 nm and a characteristic roughness
of about 3 nm. In contrast to [3], our samples are virtu-
ally free of dendritic formations with a fractal structure
in the coating material, and the nickel film is strongly
bonded to the diamond surface.
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The formation of a sharp cube texture in thin metal-
lic tapes became of interest due to the development of
technology for producing high-Tc superconductor
(HTSC) films on flexible tape substrates with a sharp
cube texture [1–4]. Such technology opened new pros-
pects in practical applications of HTSCs. Due to the
epitaxy phenomenon, a texture with low-angle grain
boundaries is formed in HTSC polycrystalline films
deposited onto these substrates, which increases the
critical transport current [1, 2]. High-purity (99.99%)
nickel with high corrosion resistance under heating was
initially used as the substrate material. Under 95–99%
rolling reduction and recrystallization, it is possible to
achieve high sharpness of the cube texture with misori-
entations in the rolling plane up to 5°–10°. The low
mechanical properties of the nickel tape caused a num-
ber of technological difficulties in the manufacture of
superconducting structures. In addition, nickel is a fer-
romagnet at cryogenic temperatures, which prevents
the production of superconductors with the maximum
functionality.

The principal aim of this work is the development of
nickel-based alloys that have a sharp cube texture
resembling a single-crystal texture, enhanced strength
characteristics, and a Curie point below 70 K, that is,
below the working temperature of the superconducting
composite (about 76 K).
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The transition metals of groups Va, VIa, and VIIa of
the periodic table were used as alloying elements. The
phase diagrams of alloys of these metals with nickel
include large regions of the disordered substitutional
solid solution with the fcc structure.

Alloys with the following compositions were manu-
factured (the alloying ranges in at. % are indicated in
brackets): Ni–Cr (2.1–22.0), Ni–Mo (1.6–9.3), Ni–V
(2.5–10.1), Ni–W (1.1–7.4), Ni–Mn (1.9–22.1), Ni–Re
(1.1–4.1), and Ni–Nb (1.9–5.4). The alloys were melted
in alundum crucibles in an argon atmosphere using
99.94% pure nickel and alloying elements with purity
no less than 99.8%. The weight of ingots was equal to
200–500 g. The technology for producing cold-rolled
and recrystallized tapes was described in [3, 4, 6–9]. In
this work, 30–50 runs of cold rolling provided a defor-
mation degree of about 98%.

Due to deformation, the material acquires a crystal-
lographic texture with the main components (S)
{123}〈634〉, (C) {112}〈111〉, and (B) {110}〈112〉. The
alloying of nickel changes the proportions between the
S, C, and B components. As a result, the deformation
texture transforms from the type characteristic of cop-
per to that characteristic of α brass. The experiments
demonstrated that a change in the lattice constant up to
3.540–3.555 Å (Fig. 1) with the alloying of pure nickel
gives rise to significant transformation of the deforma-
tion texture. For larger lattice constants in the alloy, the
texture induced by cold rolling corresponds to that
characteristic of α brass. In fact, the alloying range
is limited by an alloy lattice constant of 3.54 Å, because
the “copper-type” texture is preserved in this case. The
existence of this texture is a necessary condition for the
formation of the sharp cube texture under annealing.
The quantitative analysis of the deformation texture
using three-dimensional orientation functions demon-
strated that the transformation from the copper-type
texture to the α-brass texture occurs when the sum of
the volume fractions of the C and S components
becomes smaller than the doubled volume fraction of
the B component.
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An attempt to attribute the texture transformation to
the stacking fault energy under alloying, which
decreases with an increase in the content of the alloying
element, failed because the γsf value is high (γ/Gb × 10–3

ratio is larger than 4–5). For such γsf values, it is dif-
ficult to observe the splitting of dislocations by elec-
tron microscopy. Vishnyakov [5] concluded that the
texture transformation in fcc copper alloys occurs at
20–30 mJ/m2.

The allowable limits for alloying in nickel alloys
(in at. %) are determined as follows: up to 15.0 in
Ni−Cr, up to 10.1 in Ni–V, 4–5 in Ni–W and Ni–Mo, up
to 5.0 in Ni–Re, and up to 2.0 in Ni–Nb [7–9]. In
Ni−Mn alloys, the copper-type texture remains for a
Mn content as high as 13 at. % (Fig. 1).

The annealing of deformed alloys at 900–1100°C
leads to the formation of the {100}〈001〉 primary
recrystallization texture. In the alloys where the copper-

Nb

W

Mo

Mn

Re V Al Cr

Ni

a, Å

3.56

2 4 6 8 10 12 14 16 18

3.55

3.54

3.53

3.52

Alloys with the α-brass-type
deformation texture

Alloys with the copper-type
deformation texture

Crossover region

Alloying element content, at. %

Fig. 1. Lattice parameter for the fcc nickel alloys vs. the
alloying element content.
type texture is formed under deformation, the sharp
cube texture is the basis for the functional composition
alloy–buffer layer–superconductor. Indeed, due to epit-
axy, the sharp, almost single-crystalline, substrate tex-
ture transfers its perfect characteristics to the buffer
layer and superconductor.

Two problems are solved by alloying. First, alloying
leads to substantial hardening of the tape. This fact is
important when the substrate becomes as thin as 30–
50 µm. The effect of alloying on the hardness of the
alloys within the allowable alloying range is illustrated
in Fig. 2. The efficiency of hardening qualitatively cor-
relates with the variation of the lattice constant under
alloying (Fig. 1). The hardening of the alloy increases
with an increase in the lattice expansion per 1 at. % of
the alloying element. In the region where we observe
the sharp cube texture associated with recrystallization,
it is possible to achieve more than doubled hardening

Alloying element content, at. %

Nb

W Mo

Re

Mn

V

Al

Cr

Ni 2 4 6 8 10 12 14 16 18 20 22 24

1800
1700
1600
1500
1400
1300
1200
1100
1000
900
800
700

600
500

HV, MPa

Fig. 2. Hardening of nickel alloyed with various elements of
the periodic table.
Parameters of the textured tapes made of nickel and nonmagnetic nickel alloys

Alloy
composi-
tion, at. %

Alloy
composi-
tion, wt %

a, Å
Grain size

before
rolling, µm

HV, MPa σT, MPa TC, K

Texture misorientation

along the roll-
ing direction

across the roll-
ing direction

Ni 99.93 3.5240 30 538 74 626 6.3 11

Ni–11.0 Cr 9.9 3.5329 25 924 148 ~0 5.4 8.2

Ni–13.5 Cr 12.2 3.5358 20 1032 187 antiferromagnet 5.9 9.9

Ni–10.1 V 8.9 3.5400 13 1188 272 <50 6.7 13

Note: Texture misorientation is characterized by the half-width of the {200} peak in these directions.
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(HV hardness increases from 500 MPa in pure nickel to
1000–1100 MPa in the alloys).

Second, nonmagnetic alloys can be produced due to
alloying. Alloying only with V and Cr substantially
decreases the Curie temperature within the allowable
alloying range. Such alloys as Ni–10 at. % V and
Ni−10–11 at. % Cr had TC < 50 K. The alloys with the
Cr content exceeding 14 at. % were antiferromagnets.
In Mo-alloyed nickel alloys, it was impossible to attain
TC lower than 70 K, because alloying with 4–5 at. % Mo
leads to changes in the deformation texture preventing
the formation of the cube texture after recrystallization.

In addition, the alloying of nickel with the elements
of groups Va, VIa, and VIIa of the periodic table
allowed us to solve the technological problem of using
less pure nickel (lower than 99.9%) to produce alloys
retaining their sharp cube texture (the misorientation of
the texture in the tape plane was equal to 6°–10°, the
content of the cubic component was as high as 95%)
[6–8].

The onset temperature for the secondary recrystalli-
zation destroying the cube texture in the nickel alloys
under discussion lies in the range 1000–1150°C. There-
fore, industrial operations concerning the sputtering of
buffer and functional layers can be carried out at tem-
peratures up to 800–900°C. The table presents a num-
ber of parameters characterizing the 110- to 120-µm-
thick textured tapes made of nickel and nonmagnetic
nickel alloys by cold rolling (98% deformation degree)
and annealing at 900°C for 1 h. The volume fraction of
the {100}〈001〉  cubic component in the textures of the
nonmagnetic nickel alloys was equal to 90–95%.

The functionality of the nickel-alloy substrates was
tested by the deposition of the bilayer structure consist-
ing of the CeO2 buffer layer and the YBa2Cu3é7 – δ
HTSC film onto the textured tape of the Ni–11 at. % Cr
alloy (annealed at 950°C for 1 h).

The CeO2 buffer layer and superconducting
YBa2Cu3é7 – δ layer were deposited onto the substrate
by the laser sputtering of polycrystalline targets with
the suitable composition. The first layers were depos-
ited in vacuum (9 × 10–6 Torr) on substrates heated up
to 600°C. When the film thickness attained 50 nm, oxy-
gen was let in the chamber (up to a pressure of
10−2 Torr). Then, the deposition of the buffer layer was
continued up to 750 nm. The superconductor layer was
deposited at substrate temperature (version 1) 700 and
(version 2) 720°C. In this case, the oxygen pressure was
equal to 0.28 Torr and the film thickness was equal to
300 nm. After termination of the sputtering process, the
chamber was filled with oxygen up to a pressure of
0.5 atm and the structure was cooled to 200°C at a rate
of 10 K/min.
DOKLADY PHYSICS      Vol. 49      No. 3      2004
According to the x-ray diffraction data, the texture
misorientations in the grown HTSC films are equal to
6.7° and 10° along and across the rolling direction,
respectively (version 2).

Figure 3 shows the temperature dependence of the

ratio , where ρ(T) is the resistivity of the pro-

duced structures at temperature T. The superconducting
transition point is equal to 81 and 83 K for versions 1
and 2, respectively. For these two cases, ρ(T)/ρ(300 K)
is equal to 1.138 and 1.534 and the width of the super-
conducting transition is equal to 4 and 3.24 K, respec-
tively. Such parameters are only slightly worse than
those for heterostructures grown on SrTO3 single-crys-
tal substrates [11].
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Conservation Laws in Vibration Theory
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Conservation laws, or integrals of motion, are
important in mechanics and other sciences, because
they make it possible to analyze the motion of a certain
system without solving the equations of motion. The
laws of conservation of energy, momentum, power flux,
etc., are among these laws [1].

Conservation laws are closely related to the symme-
try properties of the system under consideration. Jacobi
was probably the first to point out this fact [1]. The most
general result in this field was obtained in [2], where
conservation laws were expressed explicitly in terms
of the Lagrangian and symmetry transformations
(Noether’s theorem). Numerous more recent works
were devoted to the expansion of Noether’s group-the-
oretical approach to systems and media for which the
Lagrangian does not exist (see, e.g., [3, 4]). Some
works concerned the creation of artificial procedures
for deriving certain conservation laws directly from
the equations of motion (e.g., [5, 6]). However, the
general theory and method of constructing the com-
plete set of conservation laws have not yet been devel-
oped.

In this work, a new method is proposed for obtain-
ing conservation laws for oscillatory and wave pro-
cesses in linear systems and media including those for
which Noether’s theorem is inapplicable (nonconserva-
tive, gyroscopic). It is assumed that the linear differen-
tial operator describing vibrations of a system is
known. The notion of a Lagrangian adjoint system or
medium is of key importance in the method. In contrast
to available methods, this method enables one to con-
struct the complete set of independent bilinear conser-
vation laws. Below, the method is reported and its
application is exemplified. Some of the presented con-
servation laws are obtained for the first time.

Let us consider a linear discrete or continuous
mechanical system (or medium) whose oscillatory (or
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wave) motion is described by the ordinary differential
operator of the order n:

(1)

Here, x is the coordinate or time varying in the interval
(x1, x2), y(x) is the function characterizing vibrations of
the system (e.g., displacement), and prime and super-
script (k) mean the first and kth derivatives, respec-
tively. Operator (1) describes a wide class of vibration
problems, including vibrations of discrete systems in
the finite element method, wave processes in one-
dimensional media (beams, bars), waves in two- and
three-dimensional elastic wave guides such as shells,
and waves in many other mechanical systems.

According to the theory of linear differential equa-
tions [7], the homogeneous equation

(2)

has n linearly independent partial solutions yj(x) and its
general solution is equal to their linear combination

(3)

where cj are arbitrary constants.

A function P of solution (3) is called the integral of
motion (conservation law) if it is independent of x over
the interval under consideration:

(4)

The number of independent integrals of motion is equal
to the number n of constants cj in general solution (3).
The knowledge of all integrals of motion is equivalent
to the knowledge of all solutions yj(x) of Eq. (2). How-
ever, the determination of integrals of motion and their
analysis are often simpler and more convenient than the
determination and analysis of solutions of the equation.
When only some conservation laws are found, they
facilitate the determination of missing solutions. This is
the important role of conservation laws.

l y( ) a0 x( )y n( ) a1 x( )y n 1–( )  +=

… an 1– x( )y ' an x( )y.+ +

l y( ) 0=

y x( ) c jy j x( ),
j 1=

n

∑=

P y x( )[ ] const x( ).=
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The starting point of the method proposed in this
work for constructing conservation laws is known
Lagrange’s identity [7]

(5)

Here,

(6)

is the differential operator adjoint to Eq. (1), and

(7)

is the bilinear form containing derivatives of y and z up
to the order n – 1. The overbar means complex conju-
gation. Details of the derivation of expressions for the
adjoint operator and bilinear form can be found in [7].
Let y(x) and z(x) be solutions of Eq. (2) and the homo-
geneous adjoint equation

(8)

respectively. Then, it follows from Lagrange identity (5)
that bilinear form (7) is independent of x in the interval
under consideration,

(9a)

and, therefore, is an integral of motion. Equality (9a) is
called the first conservation law. It relates any solution
of Eq. (2) with an arbitrary solution of adjoint equa-
tion (8). If the operator is self-adjoint, i.e., l* = l, the
first law is written as

(9b)

where yj and yk are two solutions of Eq. (2), or

(9c)

where y is any solution of Eq. (2), e.g., general solu-
tion (3).

Then, let us replace the solution y in Lagrange’s
identity by its derivative y'. Differentiating Eq. (2) with
respect to x and substituting l(y') = –l'(y) into Eq. (5),
we obtain the second conservation law in the form

(10)

Here, l'(y) is operator (1), where coefficients ak(x) are
replaced by (x), and the term with the nth derivative
in the bilinear form P(y', z) is expressed in terms of
lower order derivatives by using Eq. (2).

l y( )z yl* z( )– P ' y z,( ).=

l* z( ) 1–( )n a0z( ) n( )=

+ 1–( )n 1– a1z( ) n 1–( ) … anz+ +

P y z,( ) y n 1–( )a0z y n 2–( ) a0z( ) '– a1z+[ ]  +=

… y 1–( )n 1– a0z( ) n 1–( ) … an 1– z+ +[ ]+

l* z( ) 0,=

P1 y z,( ) P y z,( ) const= =

P1 y j yk,( ) const,=

P1 y y,( ) const,=

P2 y z,( ) P y ' z,( ) zl ' y( ) xd

x1

x

∫+ const.= =

ak'
The third conservation law is obtained similarly by
replacing the solution in Lagrange identity (5) by its
derivative y'':

(11)

Here, the derivatives of y whose orders are higher than
n – 1 in P(y'', z) must be expressed from Eq. (2). Repeat-
ing this process, i.e., replacing y by y(k) in Lagrange’s
identity, one can obtain all n independent conservation
laws. The first conservation law given by Eq. (9) is well
known. At the same time, as far as I know, the remain-
ing conservation laws including, Eqs. (10) and (11), are
obtained for the first time.

For systems and media whose vibrations are
described by differential equations with constant coef-
ficients, the conservation laws obtained above are
reduced to a particularly simple form. In this case, all
terms involving integrals are equal to zero, and the sys-
tem of independent laws takes the form

(12)

All other bilinear conservation laws, including those
obtained for k > n, are combinations of relations (12).

One of the disadvantages of the relations obtained
above is the requirement that the coefficients of Eq. (1)
be differentiable. This requirement can be replaced by
the condition of the summability of coefficients. An
arbitrary linear self-adjoint differential operator with
variable coefficients has the form

(13)

where the functions ak(x) are real. Replacing ordinary
derivatives y(k) by so-called quasi-derivatives y[k]

defined as [7]

(14)

and repeating the above procedure, we easily obtain 2n
integrals of motion, which are similar to Eqs. (10) and
(11) and are meaningful for coefficients ak(x) that are
measurable in a given interval and summable in each of
its closed finite subintervals. In particular, they are valid
for discontinuous coefficients corresponding to wave
processes in layered media (see example 3 below).

The proposed method is also applicable to systems
of N linear equations for N unknown functions, i.e., to

P3 y z,( ) P y '' z,( )=

+ z 2l ' y '( ) l '' y( )+[ ] xd

x1

x

∫ const.=

Pk y z,( ) P y k 1–( ) z,( ) const,= =

k 1 2 … n., , ,=

l x( ) 1–( )n a0 x( )y n( )[ ] n( )
1–( )n 1–+=

× a1 x( )y n 1–( )[ ] n 1–( ) … an x( )y,+ +

y 1[ ] y 1( ) ; … ; y n 1–[ ]  = y n 1–( ); y n[ ] a0y n( );= =

y n k+[ ] aky n k–( ) y n k 1–+[ ]( ) '–=
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equations similar to Eq. (1), where y is the N-compo-
nent vector function and ak(x) are N × N matrices. In
this case, it is only necessary to replace complex conju-
gation by Hermitian conjugation and the ordinary prod-
uct by the scalar product of vector functions (see exam-
ple 2).

For illustration, let us apply the above results to
some simple systems.

Example 1. Free vibrations of a linear damping sys-
tem with one degree of freedom are described by the
operator

(15)

where m is the mass, b is the damping coefficient, k is
the elasticity, and the point means the time derivative.
The adjoint operator

(16)

differs from direct operator (15) by the sign of the
damping coefficient and, therefore, describes an active
system with negative losses. Two independent conser-
vation laws (12) for this system have the form

(17)

(18)

The latter relation is the conservation law for the total
cross energy of oscillatory processes in direct and
adjoint systems with one degree of freedom. In the
absence of losses (b = 0), l* = l and relation (18) at z =
y takes the form of the ordinary energy conservation
law in a conservative system. The physical meaning of
relation (17) is not clear. Conservation law (18) was
obtained by many authors, e.g., in [3–5], whereas I have
not seen law (17) in previous works.

Let us show that constants in conservation laws (17)
and (18) are combinations of arbitrary constants A and
B appearing in the general solution of Eq. (15):

where ω2 =  – β2 and β = . Substituting the solu-

tion to adjoint equation (16) in the form z1(t) = eβtcosωt
into Eqs. (17) and (18), we obtain

For the second independent solution z2(t) = eβtsinωt of
the adjoint equation, we obtain

Example 2. The natural vibrations of the linear
damped system with N degrees of freedom with time-
independent parameters are described by the system of
N equations

(19)

l y( ) mẏ̇ bẏ ky++ 0,= =

l* z( ) mż̇ bż kz+–=

P1 m ẏz yż–( ) byz+ const,= =

P2 mẏż kyz+ const.= =

y t( ) e βt– A ωt B ωtsin+cos( ),=

k
m
---- b

2m
-------

P1 mωB, P2 mω ωA βB+( ).= =

P1 mωA, P2– mω ωB βA–( ).= =

l u( ) Mu̇̇ Bu̇ Ku++ 0.= =
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Here, u = [u1, u2, …, uN]T is the displacement vector
function, where the superscript T means transposition,
and M, B, and K are real N × N inertia, damping, and
stiffness matrices, respectively. These matrices are gen-
erally asymmetric, because it is assumed that the sys-
tem under consideration can involve gyroscopic ele-
ments in addition to losses and Coriolis and Lorentz
forces are taken into account [8]. Using the usual defini-
tion v*u = u1  + u2  + … + uN  for the scalar prod-

uct of two vector functions u and v  = [v1, v2, …, vN]T,
where v* is the vector function Hermitian conjugate to
v, we find from Lagrange’s identity that the operator
adjoint to operator (19) has the form

Similar to the system with one degree of freedom
(example 1), the adjoint system with N degrees of free-
dom is active, i.e., has negative damping. In this case,
conservation laws (12) are written as

(20)

(21)

The latter relation is the conservation law for the total
cross energy of vibrations of two, direct and adjoint,
systems. The complete system of conservation laws is
obtained from Eqs. (20) and (21) by substituting some
N independent partial solutions of the adjoint equation
l*(v) = 0.

Example 3. Let us consider a system with one
degree of freedom without losses and with time-depen-
dent mass m(t) and stiffness k(t). Its free vibrations are
described by the self-adjoint differential operator

(22)

which has form (13). In the general case, where m(t)
and k(t) are discontinuous (i.e., changes in mass and
stiffness can be jumplike), the quasi-derivative tech-
nique should be used. Setting

in accordance with Eq. (14), it is easy to obtain the
bilinear form

and two conservation laws

(23)

(24a)

v 1 v 2 v N

l* v( ) M* v̇̇ B*v̇– K*v .+=

P1 v *Mu̇ v̇ *Mu– v *Bu+ const,= =

P2 v̇ *Mu̇ v *Ku+ const.= =

l y( ) d
dt
----- m t( ) ẏ[ ] k t( )y,+=

y 0[ ] y, y 1[ ] mẏ, y 2[ ]– ky
dy 1[ ]

dt
-----------– l y( )= = = =

P y z,( ) yz 1[ ] y 1[ ] z–=

P1 P y z,( ) m t( ) ẏz yż–( ) const,= = =

P2 P y 1[ ] z,( ) l y 1[ ]( )z td

t0

t

∫– const.= =
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Simple transformations reduce the latter law to the
form

(24b)

For example, let mass and stiffness vary linear with
time; i.e., m(t) = m0t and k(t) = k0t. In this case, the gen-
eral solution of the equation l(y) = 0 is written as

(25)

where J0 and N0 are the zeroth order Bessel functions,

ω2 = , and A and B are the vibration amplitudes. It is

easy to check that relations (23) and (24) are integrals
of oscillatory motion (25) for both z = y and z1 = J0 and
z2 = N0 and their right-hand sides are combinations of
the amplitudes A and B.
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The efficiency of technologies related to the laser
processing of materials is closely associated with pro-
cesses of radiation interaction with a substance in the
narrow channel of the laser cut. In this paper, the prob-
lem of describing the shape of a surface formed as a
result of the laser cutting of metals by an intense radia-
tion flux is studied. The effect of the Gaussian beam
polarization on the radiation absorption factor with
allowance for the spatial orientation of the beam inci-
dence plane is analyzed. We show for the first time that
it is most efficient to use the elliptic polarization of the
radiation, which possesses a quite certain ratio of the
ellipse semiaxes and is oriented along the beam direc-
tion. A calculation model for the laser cut surface is pro-
posed. The model takes into account the multiple reflec-
tion of the focused laser radiation in the cut channel.

At present, new technology for the laser cutting of
thick materials (with a thickness of 20–30 mm) has
appeared [1, 2]. This fact is closely related to the devel-
opment of intense industrial lasers (CO2 lasers and
excimer lasers) of permanent and periodic action,
whose power reaches 10 kW. In this connection, more
adequate mathematical methods for describing the
interaction of laser radiation with metals are now nec-
essary. In the available literature [3, 4], problems
related to the effect of the radiation polarization on the
shape and depth of the cut have not been adequately
explored. Mathematical models capable of studying the
cutting process with allowance for the multiple reflec-
tion of radiation, which is extremely important for
modeling the cutting of thick materials, are absent.

The traditional setting of the problem on the motion
of a free surface of a material under the action of laser
radiation is reduced to the equation of kinematic con-
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fomin@itam.nsc.ru; zaitsev@gorodok.net
1028-3358/04/4903- $26.00 © 20175
sistency of surface points [3, 4]:

(1)

(2)

(3)

where z = zm(x, y, t) is the equation for the free surface
of a material, Vc is the cutting speed, and a and b are the
plate dimensions.

The normal component Vn of the displacement
velocity for points of the surface is represented by the
ratio of the radiation power density Q absorbed by the
surface element and of the energy spent for destroying
the material:

(4)

Here, A is the absorption factor; I(x, y, z) is the radiation
intensity density; γ is the angle of incidence of the
beam; x, y, z are the spatial coordinates; ρm is the mate-
rial density corresponding to the melting temperature

Tm; Hm is the melting specific heat; and  and  are
the density and specific heat capacity of the material at
the initial temperature T0.

We consider a constant acting radiation of a CO2
laser with a wavelength of λ0 = 10.6 µm, which is
directed along the OZ axis of the Cartesian coordinate
system. The radiation intensity density is described by
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the Gaussian distribution, which corresponds to the
TEM00 mode [5]:

(5)

where W is the radiation power; zf is the distance
between the focal surface and the plane z = 0; and ω0 is
the beam radius in the focal plane.

We now analyze the effect of the radiation polariza-
tion on the absorption factor. We consider a surface ele-
ment inclined with respect to the OX axis of the Carte-
sian coordinate system (Fig. 1). The incidence plane is
formed by the wave vectors k and kR of the incident and
reflected radiations and by the unit vector of the normal
N to the surface. The vector E of the electric-field inten-
sity is decomposed into two components. The compo-
nents Ep lying in the incidence plane and Es oriented
normally to the incidence plane are put in correspon-
dence to the reflection coefficients Rp and Rs , respec-
tively. Let β be the angle between the vector E and a
normal Nkn to the incidence plane. In accordance with
[6], we write the expression for the absorption factor in
the form

(6)

We consider the case of the elliptic polarization of
the beam when the end of the vector E, which lies in the
(X, Y) plane, describes an ellipse with the semiaxes a
and b directed along the OX and OY axes, respectively.
In this case, the relationship a2 + b2 = 1 is valid. We can

I x y z, ,( ) 2W
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Fig. 1. Scheme of interaction of laser radiation with a mate-
rial surface element.
represent the absorption factor as a sum A = a2Ax +
b2Ay , where Ax, Ay are the absorption factors for the
radiation linearly polarized along the OX and OY axes,
respectively. According to (6), we can write

(7)

where βx and βy are the angles between the normal Nkn

to the incidence plane and OX and OY axes, respec-
tively. For the angles βx and βy, the equalities

(8)

occur. Substituting relationships (8) into formulas (7),
we obtain the expression for the absorption factor A in
the case of elliptic polarization:

(9)

In accordance with expression (9), the radiation
absorption factor is strongly dependent on the spatial
orientation of both the vector of a normal to the surface
and the radiation polarization characterized by the ratio

ξ =  of the semiaxes. For ξ = 0, we deal with the linear

P wave, and for ξ = 1, we have the circular polarization.
For ξ = ∞, we deal with the linear S wave, whereas for
all other values of ξ, we have the elliptic polarization.
Equations (1)–(5), (9) were solved numerically by the
pseudo-transient method using the explicit finite-differ-
ence scheme. In the case of cutting by the S-polariza-
tion beam, when the electric-field vector E is perpen-
dicular to the direction of field motion, the maximum of
the radiation absorption corresponds to the side walls.
In this case, the absorption factor on the cut front is low;
therefore, the ultimate cutting parameters also are
small, and a broad cut with a smooth surface is realized
since the maximal density of the power absorbed corre-
sponds to the beam center. In the case of cutting by the
P-polarization beam with the vector E parallel to the
beam motion, the maximal density of the power being
absorbed corresponds to the cut front, where the radia-
tion is incident at the angle of about 85°–87°. In this
case, a narrow cut is formed because the major part of
the radiation does not penetrate deep into the cut being
reflected from its front.

Figure 2 exhibits the results of a series of numeri-
cal experiments aimed at the determination of the
maximal cut depth L as a function of the parameter ξ.
The values of the beam power W = 600 W, of the speed
Vc = 44 mm s–1, and geometric characteristics of Gaus-
sian beam (5) (ω0 = 100 µm, zf = 0) remained constant
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throughout the calculations. There exists a pronounced
maximum (L = 3.8 mm at ξ = 0.75) in the curve L(ξ).
This maximum corresponds to an elliptically polarized
beam with ellipticity oriented along the beam’s direc-
tion of motion. At present, in the literature and among
specialists in the field of the laser cutting of materials,
there exists the common opinion on the highest effi-
ciency of using radiation with the linear polarization
(ξ = 0) oriented along the cut direction [7]. The results
of our theoretical studies presented in this paper have
shown for the first time that the elliptically polarized

radiation with a certain ratio of the semiaxes  =

0.75  and oriented along the beam direction can pos-

sess the maximum efficiency.
We now analyze the effect of the multiple reflection

of radiation on the cut depth. For the majority of mate-
rials, the absorption factor is small (A = 0.01–0.5). In
this case, the radiation of reflected waves can play an
important role. This is especially true for deep and thin
cuts, when the multiple repeated reflections mainly
contribute to the energy being absorbed. The analysis
of laser cutting performed in [1, 2] shows that the mul-
tiple reflections of radiation occur, while it propagates
inside the cut or a cavity, especially in the case of thick
(on the order of 10 mm and more) materials. Existing
methods of modeling the interaction of laser radiation
with metals are based on approximation (1)–(5), in
which only single radiation absorption is taken into
account. It is well known [5] that focused laser radia-
tion propagating in the form of electromagnetic oscilla-
tions has the shape of Gaussian beam (5), which is a
partial solution to the Maxwell equations. In the case of
reflection of the Gaussian beam from an arbitrary sur-
face, the beam shape can be considerably changed, the
wave properties of the radiation being important in this
case. Correctly setting the problem on the interaction of
electromagnetic radiation with an arbitrary metal sur-
face is rather complicated, since it requires solving
complete electrodynamics equations.

The physical model for calculating the surface
shape which is proposed by the authors and takes into
account the multiple reflection of radiation differs from
the conventional model described by Eqs. (1)–(5). The
difference consists in the fact that the normal compo-
nent Vn of the displacement velocity for points of the
surface is expressed in terms of the sum of the total
multiply absorbed power Q at each point of the surface.
In order to calculate the function Q(x, y, zm(x, y, t)), the
trajectory method is used. This method consists in the
fact that the density distribution of Gaussian beam
intensity (5) is subject to finite-element discretization.
Each of the elements represents a light ray that contains
the radiation energy  = I( , , )dx dy and has

the coordinates , ,  and the velocity  along

b
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the direction of the wave vector ki . After the interaction
with the surface has occurred, the trajectory of each
light ray changes its direction in accordance with the
geometric-optics law (i.e., the angle of incidence equals
the reflection angle). In this case, the radiation energy
decreases by the value of energy absorbed by the metal
surface.

Figure 3 presents the spatial pattern of the laser radi-
ation propagation in the cut channel of a metallic plate.
The horizontal level lines correspond to the contour of
the surface being obtained. As is seen, the light rays are
multiply reflected from the internal channel surface.
Taking into account the moderate absorption factor of
metals (e.g., the maximum value for stainless steel
reaches A ≈ 0.5), the multiple-reflection model pro-
posed makes it possible to describe the process of the
energy transfer deep into the channel and, hence, to
more correctly model its structure, especially in the
case of cutting thick materials.
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Geophysical observations and measurements con-
cerning large-scale motions (Rossby waves) in the
atmosphere and ocean, as well as friction effects in
Earth tides, testify that friction forces are much smaller
than, e.g., Coriolis forces. Nevertheless, friction, as
well as energy dissipation due to numerous friction
effects occurring in the Earth’s crust and ocean, accom-
panying continental drift and convective motion in the
Earth’s mantle, etc., cannot be disregarded [1–3].

Allowance for frictional torques is especially impor-
tant when studying, e.g., vibration dumping in geody-
namic processes. When dealing with such a fine prob-
lem as the effect of frictional torques in geodynamic
processes, one should remember that the age of the
Earth is important in all these processes. It is known
that dissipative processes in the Earth are synchronized
with the cycles in the Earth–Moon–Sun system due to
the billion-year evolution of the solar system.

Continuing works [4–6] devoted to spectral correla-
tion models of the motion of the pole of the deformable
Earth, we take into account parametric dissipative fluc-
tuation forces.

1. The notation and assumptions in this paper are the
same as in [5, 6]. The projection rt of the instantaneous
angular velocity of the Earth on the axis of its rotation
is assumed constant: rt = rn = const. The projections of
the instantaneous angular velocity on the Earth’s axes
are denoted by pt and qt (pt, qt ! r0). We take the follow-
ing model for the specific moments of dissipative fluc-
tuation forces:

(1)

(2)

M1
dfA* 1– V1t D1* D1

0 D1' V1t+ +( )pt–=

– D12* D12
0 D12' V2t+ +( )qt;

M2
dfB* 1– V2t D21* D21

0 D21' V1t+ +( )pt–=

– D2* D2
0 D2' V2t+ +( )qt.
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Here,  and  ( ) are the coefficients deter-
mining the regular and irregular (constant and variable)
components of the specific moments of dissipative

forces, respectively;  and  ( ) are the
corresponding anisotropy parameters for these
moments; and V1t and V2t are Gaussian broadband pro-
cesses similar to white noise.

Following [5, 6], the axial and centrifugal moments
of the deformable Earth are taken into account by intro-
ducing effective daily humps and spikes. Moreover, the
moments of gravitational forces of the Sun are
included. According to [5, 6] and Eqs. (1) and (2), the
equations of motion of the Earth’s pole (in the Stra-
tonovich sense) have the form

(3)

(4)

where
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(9)

(10)

(11)

Here, N∗  = (C* – B*)A*–1ω∗  is the Chandler frequency;
ω∗  corresponds to the annual period (r∗  = 365ω∗ ); the
parameter vector u = [u1 … u15]T is the same as in [5];

b1 ≈ b, 0.4 ≤ b ≤ π–1, $ = { , , , }, i, j  =

1, 2; and V = [V1tV2t]T. Terms involving the squares and
products of u, pt, and qt are omitted in the functions
31, 2 and 41, 2 [5, 6].

Equations (3) and (4) represent a two-dimensional
linear stochastic system involving two parametric ran-
dom processes of the form
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(13)

(14)

(15)

312
9
4
---u4b1

2ω*
2 3

4
---u6b1

2ω*
2 3

4
---u11b1

2ω*
2 ,+ +=

412
3
4
---– u7b1

2ω*
2 9

4
---u8b1

2ω*
2 3

4
---u10b1

2ω*
2 ;+–=

32 32 pt qt $ V, , ,( ) V1t= =

– D1* D1
0 D1' V1t+ +( )pt

– D12* D12
0 D12' V2t+ +( )qt;

42 42 pt qt $ V, , ,( ) V2t= =

– D21* D21
0 D21' V1t+ +( )pt

– D2* D2
0 D2' V2t+ +( )qt.

4
3
--- Di* Di

0 Di' Dij'
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Following [5, 6], we reduce Eq. (12) to the stochastic
differential equation in the Ito sense:

(16)

Here,

(17)

(18)

(19)

2. In the simplest model of stochastic dissipation,

 = 0,  = 0, and  are the independent
Gaussian random variables with zero mathematical
expectation and standard deviations $0 = { , ,

, }. In this case, the conditional expectations
and spectral correlation characteristics for a given
matrix A0,

(20)

are determined by Eqs. (17), (18), and (20) given in [6],
and the transfer and weighting functions are defined by
Eqs. (26) and (29) for α – a and α0 = a0 [see Eqs. (14)
above]. Averaging relations (20) over the matrix A0, we
obtain the unconditional characteristics

(21)

where M and D mean the mathematical expectation and
standard deviation, respectively.

3. We now consider the variable components of the
irregular dissipation factors. According to Eq. (12), the
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equations for the expectation mt, covariance matrix Kt,
and covariance function K(t1, t2) have the form [7, 8]

(22)

(23)

(24)

If intensities are constant, i.e., ν = ν0 , the expecta-
tions 〈mt〉 and covariance matrix 〈Kt〉, which are aver-
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. = 0, satisfy the relations
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1
2
--- D1' D21' ν11 D2' D21' ν12+( );–=
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(32)

Equations (28)–(32) allow us to draw the following
qualitative conclusions concerning the effect of sto-
chastic dissipative forces on the motion of the Earth’s
pole. First, the average values of the dissipation factors

 and gyroscopic moment (  and )
decrease. Second, additional constant components
originate in the trend of the Earth’s pole:

(33)

The corresponding effects are proportional to $ and ν.

5. Equations (23) for the standard deviations k11 and
k22 and covariance k12 have the form

(34)

(35)

(36)

Two important qualitative conclusions follow from
these equations. First, when the moments of parametric
dissipative fluctuation forces are isotropic (ν11 = ν22 =

N1*
e N* D12

e , N2*
e+ N* D21

e ;–= =

31
e 31

1
2
--- D1' ν11 D12' ν22+( ),–=

41
e 41

1
2
--- D2' ν22 D21' ν11+( ).–=

D1 2,
e N1*

e N2*
e

m1〈 〉 1
2
--- D1' ν11 D12' ν22+( ) N1*

e( ) 1–
,–=

m2〈 〉 1
2
--- D2' ν22 D21' ν11+( ) N2*

e( ) 1–
.=

k̇11 2D1
ek11– 2N1*

e k12– c11
e ,+=

c11
e  = 2D1ν11m1 2D12' ν12m2 m1

2 k11+( )D1'
2ν11+ +

+ 2 m1m2 k12+( )D1' D12
' ν12 m2

2 k22+( )D12'
2 ν12;+

k̇12 N2*
e k11 N1*

e k22– k12 D1
e D2

e+( ) c12
e ,+–=

c12
e D1' ν12 D21' ν11+( )m1 D2' ν12 D12' ν22+( )m2+=

+ m1
2 k11+( )D21' D1' ν11

+ m1m2 k12+( ) D21' D12' ν12 D2' D1' ν12+( )

+ m2
2 k22+( )D12' D'2ν22;

k̇22 2N2*
e k12 2D2

ek22– c22
e ,+=

c22
e 2D21' ν12m1 2D2' ν22m2+=

+ m1
2 k11+( )D21' D2' ν11

+ 2 m1m2 k12+( )D21' D2' ν12 m2
2

k22+( )D2'
2ν22.+
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ν0, ν12 = 0,  =  = D*,  =  =  > 0,  =

 = 0), since

(37)

(38)

the standard deviations 〈k11〉  and 〈k22〉  increase due to

. Second, the anisotropy of the parametric dissipa-

tive fluctuation forces (ν12 ≠ 0, ,  ≠ 0) changes
the average covariance 〈k12〉  and increases the standard
deviations 〈k11〉  and 〈k22〉 .

According to [9–11], the relaxation time  aver-
aged over various estimates is equal to 10–100 yr, while
the standard deviations of pt and qt are equal to 0.02''–
0.04''. According to Eqs. (37) and (38), isotropic para-
metric dissipative fluctuations of about D'2ν0 ~ 10–1D*
additionally increase the standard deviations by 0.01''–
0.02''. The anisotropy of parametric dissipative fluctua-
tions increases both dispersions and covariances by no
less than 30% of the respective increases due to isotro-
pic perturbations.

6. Thus, stochastic spectral correlation models have
been developed for fluctuations induced in the motion
of the pole of the deformable Earth by both isotropic
and anisotropic dissipative fluctuations. The perturba-
tion effects are estimated more accurately.

The results can be extended to the three cases where
(i) fluctuations in the angular velocity of the Earth’s
rotation must be taken into account, (ii) additive noise
differs from parametric noise, and (iii) the moments of
rheological dissipative fluctuation forces are taken into
consideration.

D1* D2* D1' D2' D0' D12'

D21'

Di
e D*

D0'
2ν0

2
------------- 0, Ni*

e>– N*,= =

i 1 2;,=

cii
e 2D0' ν0mi mi

2 kii+( )D0'
2ν0,+=

i 1 2, c12
e, 0,= =

cii
e

D12' D21'

D*
1–
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Each physical factor—rotation, stratification, and
compressibility of a fluid—is associated with a charac-
teristic type of waves, which are usually analyzed inde-
pendently [1]. However, elementary waves (acoustic,
internal, gyroscopic) do not completely present the
properties of periodic flows in the bulk of a real fluid,
where all factors act simultaneously and hybrid waves
with a complicated dispersion law exist. When studying
waves, dissipation effects are considered as corrections
ensuring flow attenuation [2]. However, in continua,
dissipation factors determine the order of equations and
the total number of elements of periodic flows, includ-
ing waves and sets of boundary layers on rigid bound-
aries and free surfaces. The consistent inclusion of dis-
sipation effects enables one to find self-consistent solu-
tions of linearized problems of the generation of
internal waves [3] without additional empirical param-
eters (force and mass sources [2]).

In this work, the complete mathematical classifica-
tion of three-dimensional periodic flows in the bulk of
a fluid is given for the first time with allowance for
compressibility, stratification, rotation, and viscous dis-
sipation. Diffusion and heat conduction are disre-
garded. Only general-type propagating waves having
all wave-vector components are analyzed.

Small-amplitude waves in a viscous inhomogeneous
fluid rotating with angular velocity Ω in the gravita-
tional field with acceleration g are studied. The unper-
turbed stable density distribution ρ(z) is determined by

the buoyancy scale Λ = . Oscillations of

stratified incompressible and compressible media are

characterized by the buoyancy frequency N =  and

d ρ z( )ln
dz

-------------------
1–

g
Λ
----
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adiabatic frequency Nc = , respectively, where

c is the speed of sound.

We use the Cartesian coordinate system (x, y, z),
where the z axis is directed to the zenith and the x and y
axes are taken so that the corresponding projections of
the angular velocity are equal to each other. In the linear
approximation, the system of the equations of motion
has the form [1]

(1)

where u = (u, v , w) is the velocity, P and ρ are the pres-
sure minus hydrostatic pressure and medium-density
perturbation normalized to the density at the reference
level z = 0, ϕ is the latitude of the observation point, and
ν and µ are the first and second kinematic viscosities.

System (1) is supplemented by the no-slip boundary
conditions on rigid surfaces and the condition of damp-
ing of perturbations at infinity. The dynamic and kine-

N2 g2

c2
-----–

∂u
∂t
------ ∂P

∂x
------– 2Ω v ϕ 1

2
-------w ϕcos–sin 

  ν∆u+ +=

+ µ ν
3
---+ 

  ∂
∂x
------ ∇ u,⋅

∂v
∂t
------- ∂P

∂y
------– 2Ω 1

2
-------w ϕcos u ϕsin– 

  ν∆v+ +=

+ µ ν
3
---+ 

  ∂
∂y
----- ∇ u,⋅

∂w
∂t
------- ∂P

∂z
------– 2Ω u v–( ) ϕcos ν∆w+ +=

+ µ ν
3
---+ 

  ∂
∂z
----- ∇ u ρg,–⋅

∂ρ
∂t
------ w

Λ
----– ∇ u⋅+ 0= ,

∂P
∂t
------ = wg c2∇ u,⋅–
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matic boundary conditions on the free surface zS =
ζ(x, y) have the form [1]

(2)

where p and p0 are pressures inside and outside the

medium under consideration, respectively;  and

 are the corresponding viscous stress tensors; α is
the surface tension coefficient; and ni is the component
of the unit normal to the surface. Analysis of system (1)
is simplified when the viscosity coefficient and the ratio
of the densities of the media in contact (e.g., liquid and
gas) are small.

When studying periodic flows

ρ = ρ0exp(ikr – iωt) 

with frequency ω and wave vector k = (kx, ky, kz), the
general solution of system (1) is represented as a super-
position of elementary waves [4]

(3)

where A is a velocity component, pressure, or density.
The summation is performed over all roots of the dis-
persion equation that satisfy the boundary conditions of
the problem or the radiation condition in an unbounded
medium (damping of perturbations at infinity). The dis-
persion equation is obtained by substituting the solu-
tion in form (3) into Eqs. (1). For steady periodic
waves, frequency ω is given, and the dispersion equa-
tion describes the relation between the wavenumber
components [e.g., kzj(kx, ky) for given kx and ky values].

System (1) with boundary conditions (2) admits two
types of waves: surface waves whose amplitude
decreases monotonically with the distance from the
boundary and internal waves with maximum displace-
ments in the bulk of the fluid. When the media in con-
tact have considerably different densities, their proper-
ties can be analyzed independently [1].

For flows in the bulk of the fluid, the substitution of
Eq. (3) into Eqs. (1) yields the system of algebraic

p p0–( )ni σik' σik'
0( )

–( )nk– αni∆⊥ ζ
z ζ=+ 0,=

∂ζ
∂t
------ w

z ζ= , ∆⊥
∂2

∂x2
--------

∂2

∂y2
--------,+= =

σik'

σik'
0( )

u u0 ikr iωt–( ), Pexp P0 ikr iωt–( ),exp= =

A a j kx ky,( ) i kzj kx ky,( )z((exp

∞–

+∞

∫
∞–

+∞

∫
j

∑=

+ kxx kyy ωt–+ ) )dkxdky,
equations for the amplitudes u0, v0, w0, P0, and ρ0:

(4)

where k2 =  +  + .

The condition of the existence of a nontrivial solu-
tion provides the dispersion equation for hybrid waves
of the most general type:

(5)

where

Dispersion equation (5) for the wavenumber k is sin-
gularly perturbed, because the leading, k6 , term
involves a small factor ν2 . In the general case, two of
the six roots of Eq. (5) are regular in viscosity and
describe the propagation of wave perturbations and the
remaining four roots characterize the set of coexisting
boundary layers. Single-frequency boundary layers dif-

iω νk2– µ ν
3
---+ 

  kx
2– 

  u0 2Ω ϕ µ ν
3
---+ 

  kxky–sin 
 +

× v 0 2Ω ϕ µ ν
3
---+ 

  kxkz+cos 
  w0– ikxP0– 0,=

2Ω ϕ µ ν
3
---+ 

  kxky+sin 
 – u0 iω νk2–

+

– µ ν
3
---+ 

  ky
2


 v 0 2Ω ϕ  – µ ν

3
---+ 

  kykzcos 
  w0+

– ikyP0 0, 2Ω ϕ µ ν
3
---+ 

  kxkz–cos 
  u0=

– 2Ω ϕ µ ν
3
---+ 

  kykz+cos 
  v 0

+ iω νk2– µ ν
3
---+ 

  kz
2

– 
  w0 ikzP0– gρ0– 0,=

ikxu0– ikyv 0– 1
Λ
---- ikz– 

  w0 iωρ0+ + 0,=

ikxc
2u0– ikyc

2v 0– g ikzc
2–( )w0 iωP0+ + 0,=

kx
2 ky

2 kz
2

ωDν k( ) ωDν k( )D̃ν k( ) 2 2ωΩg ky kx–( ) ϕcos+( )

– ωDν k( )N2 Dν k( ) i µ ν
3
---+ 

  k ⊥
2+ 

 

+ 4ωΩ2 N2 ϕ ω Dν k( ) i µ ν
3
---+ 

  f 2 k( )+ 
 –sin

2

 
 

+ c2 Dν k( ) Nc
2k ⊥

2 ωk2Dν k( )–( ) 4ωΩ2 f 2 k( )+( ) = 0,

f k( ) 1

2
------- 2kz ϕ kx ky+( ) ϕcos+sin( ),=

D̃ν k( ) ω i
4ν
3

------ µ+ 
  k2, Dν k( )+ ω iνk2.+= =
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fer from each other in thickness and other properties.
Their number and behavior generally depend on the
space dimension and are determined by the boundary
conditions.

Solutions of Eq. (5) are further analyzed in the
spherical coordinate system (k, Ψ, Θ) introduced in the
wavenumber space (kx, ky, kz) by the relations

In this analysis, both types of singular solutions, as
well as solutions regular in viscosity, are taken into
account.

The domain of existence of propagating waves that
have real frequency ω and are characterized by disper-
sion relation (5) depends on many factors, such as the
ratio of wave, rotation, and buoyancy frequencies, the
compressibility of the medium, and the geometry of the
problem, and is determined by the inequality

(6)

which is simplified for certain types of waves.

In an unbounded medium on a plane the normal to
which is characterized by angles Ψ and Θ, two bound-
ary layers with the thickness

(7)

where

along with three-dimensional waves, are generally

formed. Since the condition  ! 1 is satisfied for vir-

tually all media, the adiabatic frequency Nc in expres-
sions for ω± in Eqs. (7) can be approximately replaced
by the buoyancy frequency N.

Taking compressibility into account and disregard-
ing rotation effects (Ω = 0), we conclude from Eq. (5)
that propagating three-dimensional acoustic gravity
waves exist in two frequency bands ω ≤ Nc and ω ≥ N,
in agreement with [6]. In the ω ! Nc band, they exhibit
the properties of internal gravity waves, and their char-
acteristics for ω @ N approach the isotropic sound.

kx = k Θ Ψ, kycossin  = k Θ Ψ, kz = k Θ.cossinsin

2ω2Ω2 Θ ϕ Ψ Ψcos–sin( )2cos
2

sin
2

≥ c2 4Ω2 N2 ϕ ω2–sin
2( ) ω2 N2 ω2–( )–( )

g2 Nc
2 Θ ω2– 4Ω2F2+sin

2( )
---------------------------------------------------------------------------------------------,

δb±
2ν

N ω± ω*–
---------------------------, ω*

ω
N
----,= =

ω±
Nc

2ω
------- Θ 1 1 16ω2Ω2F2

Nc
4 Θsin

4
-------------------------+± ,sin

2
=

F
1

2
------- 2 Θ ϕ Θ Ψ Ψcos+sin( ) ϕcossin+sincos( )=

gΛ
c2
-------
DOKLADY PHYSICS      Vol. 49      No. 3      2004
Simultaneously with waves, two types of boundary lay-
ers with the characteristic thicknesses

(8)

where

are formed at rigid boundaries. The first of them is
similar to the periodic Stokes flow in a homogeneous
fluid [1], and the second, whose parameters depend
both on the buoyancy frequency N and on the speed of
sound c, is specific for stratified media. The universal
microscale δN is common for both boundary layers. The
thicknesses of the boundary layers also depend on the
slopes of the waves and bounding surfaces. The charac-
teristics of the boundary layers supplementing internal
waves were analyzed in [5] disregarding compressibil-
ity and rotation.

The frequency band ω– < ω < ω+ of the existence of
inertial gravity waves in stratified rotating incompress-
ible media is limited by the values

,

which depend on the latitude of the observation point.
Simultaneously with three-dimensional inertial gravity
waves, there are two types of boundary layers with the
scales

(9)

Inertial acoustic waves in an unstratified fluid (N =
0) coexist with two separated boundary layers with the
thickness

(10)

where Θω =  is the slope of the propagation

δSt δN
2
Θωsin

---------------= ,

δi δN

2 Θωsin

1 gΛ
c2
-------– 

  Θ Θωsin
2
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2

--------------------------------------------------------------=

≈ δN

2 Θωsin

Θ Θωsin
2

–sin
2

----------------------------------------,

δN
ν
N
----, Θω

ω
N
----arcsin= =

ω±
2  = 

1
2
--- N2 4Ω2+(

± N2 4Ω2 2ϕcos+( )2
16Ω4 2ϕsin

2
+ )

δb± δN
2

ω± ω*–
----------------------,=

ω±
Θsin

2

2ω*
-------------- 1 1 16Ω2ω*2F2

N2 Θsin
4

-----------------------------+± , ω*
ω
N
----.= =

δb±
ν

Ω F Θωcos±
----------------------------------,=

ω
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lines of the inertial acoustic waves to the horizon. One
of these waves with thickness δb+ is an analogue of the
known Ekman layer [9]. Periodic flows have the prop-
erties of inertial and acoustic waves for ω ! Ω and the
opposite case, respectively.

Three-dimensional acoustic waves in a homoge-
neous fluid (N = Ω = 0) are characterized by the disper-

sion ω2 = k2 c2 – iω . In this case, two sets of

boundary layers are joined in the united doubly degen-

erate Stokes layer with the thickness δSt = . Pertur-

bations within this layer are transverse with zero diver-
gence of the velocity; i.e., the fluid within it behaves as
incompressible.

From the form of the dispersion of three-dimen-
sional periodic perturbations in a homogeneous incom-

pressible fluid, k2 (k) = 0, when N = Ω = ∇  · u = 0, it
follows that this medium is free of developed propagat-
ing waves, and a doubly degenerate viscous boundary
layer consisting of two periodic Stokes flows with

thickness δSt =  arises near the rigid oscillating

boundary.
The inclusion of thermal diffusivity and diffusion in

multicomponent media leads to both the appearance of
additional equations in system (1) of the equations of
motion and an increase in the number of types of
boundary layers. Each dissipative factor gives rise to
the appearance of a new pair of boundary layers, which
can be both completely or partially separated [8].

Large-scale wave and fine-structure boundary-layer
elements are inseparable components of the united sys-
tem of periodic flows. All elements of this system
appear and disappear simultaneously, regardless of dif-
ferences in scales.

In the general case, solutions for stratified rotating
media allow the uniform transition to a homogeneous
fluid at rest. In this case, two different boundary layers
are joined in the united degenerate layer. The inverse
analytic extrapolation of solutions is impossible


 4ν

3
------ µ+ 


 
 

2ν
ω
------

Dν
2

2ν
ω
------
because of the insufficient completeness of the original
problem formulation.

In the general case, the dynamics of hydrodynamic
systems is determined by the nonlinear interaction
between all structural elements of flows both regular,
waves, and singular, boundary layers. In particular,
variations in the structure and nonlinear interactions of
boundary layers make it possible to generate internal
waves even in the cases, where direct excitation is for-
bidden in linear theory by the conditions of wave prop-
agation [9, 10]. Owing to large vorticity, interacting
boundary layers are effective generators of vortex
motions. Experimental study of the dynamics of bound-
ary layers and generation of vortices requires substan-
tial improvement of instruments for visualization and
measurement of flows. These instruments must resolve
the fine structure of the smallest elements of flows.
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1. We call attention to the effect of conjugate reso-
nances and bifurcations in nonlinear systems excited by
a biharmonic action with substantially different fre-
quencies. This effect is that resonances and bifurcations
arise in such systems when (i) the low frequency varies
while the high frequency is fixed, (ii) the high fre-
quency varies while the low frequency is fixed, and
(iii) the amplitude of the high-frequency action varies,
whereas the frequencies are fixed. As an example, we
studied both ordinary and parametric resonances in the
classical problem of the behavior of a pendulum with
the vibrating suspension axis. It is clear that the effects
under consideration take place also in other, more com-
plicated, systems, including systems with random exci-
tation. The results make it possible to deterministically
explain the mechanism of the widely discussed phe-
nomenon of stochastic resonance (see also [2]). In con-
clusion, we mention the applications of the results to
the problems of controlling the resonance properties of
systems and preventing any resonant situations.

We use the approach of vibrational mechanics and
the method of the direct separation of motions [1]. In
this approach, the effects under consideration are
explained as follows. A high-frequency vibration sub-
stantially changes the parameters and response of the
system to the low-frequency action. As a result, the
low-frequency action is such as if it was applied to
another system. In the particular case of a pendulum, it
is a system with different effective restoring force,
which essentially depends on the frequency and ampli-
tude of the high-frequency action. Thus, the effects
under consideration are closely associated with the
strong influence of a high-frequency vibration on the
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effective elastic characteristics of bodies. This property
was discussed in detail in [1, 2] and in references cited
therein.

The problem of the biharmonic action on the other
system, the Duffing oscillator, was considered in [3]. It
was shown that the results obtained by the method of
the direct separation of motions agreed well with the
previous numerical investigation [4]. In the last paper,
the shift of resonances under high-frequency excitation
was also discovered and such resonances were called
vibrational.

2. We consider a pendulum whose suspension axis
oscillates in two mutually perpendicular directions
according to the law (Fig. 1)

(1)

where Ω and ω are the frequencies, H and G are the
amplitudes, and θ is the phase shift. The pendulum axis

x HΩ Ωtsin Hω ωt,sin+=

y GΩ Ωt θΩ+( )cos Gω ωt θω+( ),cos+=

y

x

mg

c

m, I l

O

ϕ

HΩsinΩt + HΩsinωt
GΩcos(Ωt + θΩ) + Gωcos(ωt + θω)

Fig. 1. Pendulum with a vibrating suspension axis.
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oscillates with each of the two frequencies along an
elliptic trajectory. The equation of motion of the pendu-
lum has the form

(2)

where ϕ is the angle of deviation of the pendulum from
the lower position; I, m, and l are the moment of inertia,
mass, and distance from the center of gravity C to the
axis of suspension of the pendulum O, respectively; g is
the gravitational acceleration; and h is the viscous resis-
tance coefficient.

3. Let the high frequency Ω be much higher than the
low frequency ω (by a factor of no less than three).
Then, seeking the solution of Eq. (2) in the form

(3)

where α is the slow component and ψ is the fast com-
ponent that is 2π-periodic in Ωt and has a zero average,
we use the method of direct separation of motions [1].
As a result, we arrive at the following equation of slow
motions:

(4)

This equation is obtained under the assumptions

(5)

Here, ε is a small parameter and p =  = ,

where l0 is the equivalent length of the mathematical
pendulum. The moments with the frequency ω are
treated as slow moments.

For one-frequency fast oscillations of the axis of the
pendulum, when Gω = Hω = 0, the main qualitative
result of investigating Eq. (5) is as follows [1]. Due to
vibration, the pendulum seems to be attracted to the
major semiaxes of the elliptic trajectory of the pendu-
lum-axis oscillations. If this attraction is strong enough
(in the case of vertical vibration), then the upper posi-
tion of the pendulum, which is unstable in the absence

I ϕ̇̇ hϕ̇ mgl ϕsin mlΩ2 HΩ ϕ Ω tsincos[+ + +

– GΩ ϕ Ω t θΩ+( )cossin ] mlω2 Hω ϕcos ωtsin[+

– Gω ϕ ωt θω+( ) ]cossin 0,=

ϕ α t( ) ψ t Ωt,( ),+=

I α̇̇ hα̇ mgl αsin
mlΩ( )2

4I
------------------ GΩ

2 HΩ
2–( ) 2αsin[+ + +

+ 2GΩHΩ 2α θωsincos ] mlω2 Hω α ωtsincos[–=

– Gω α ωt θω+( )cossin ] .

p
ω
---- ε,

ml GΩ
2 HΩ

2+
I

--------------------------------∼
GΩ

2 HΩ
2+

l0
-------------------------= ε,∼

h
IΩ
------- ε.∼

mgl
I

--------- g
l0
---
of vibration, becomes stable (the main classical result
[1, 5, 6]).

Let us now analyze more complicated equation (4).
4. First, we consider the case of ordinary resonance.

This case corresponds to the vertical fast and horizon-
tal slow oscillations of the axis (HΩ = 0, GΩ = 0).
Equation (4) takes the form

(6)

The small oscillations of the pendulum near the
lower equilibrium position are described by the equa-
tion

(7)

Hence, the resonance arises when the following equal-
ity is satisfied (disregarding the small damping effect):

(8)

where pv0 is the frequency of free oscillations near the
lower position. This frequency is changed under the
high-frequency vibration.

It follows from relation (8) that the resonance (peak
of the oscillation amplitude A under variation of the
parameter) may arise in this system when both the
slow-oscillation frequency ω of the pendulum axis var-
ies, whereas the fast-oscillation frequency Ω is fixed
(Fig. 2a), and vice versa (if ω > p, see Fig. 2b). It is also
remarkable that the dependence of the oscillation
amplitude of the pendulum is resonant under variation
of the fast oscillation amplitude GΩ to which the param-
eter q is proportional (and also if ω > p, see Fig. 2c). If
ω < p, the dependences in Figs. 2a and 2b are mono-
tonic. The described resonances, i.e., the resonances
whose frequencies are related by the first of Eqs. (8),
are referred to as conjugate resonances.

The plot in Fig. 2c is similar to that given when con-
sidering the phenomenon called the stochastic reso-
nance (see, e.g., [3]). The above discussion shows that
this effect is not associated with noise-induced random
jumps of the system. It occurs because the high-fre-
quency component changes the effective stiffness of the
system with respect to the low-frequency signal. All the
above effects are explained by this change, depending
essentially on both the frequency Ω and amplitude GΩ.

I α̇̇ hα̇ mgl αsin
mlGΩ( )2

4I
---------------------Ω2 2αsin+ + +

=  mlHωω2 ωt.sin–

I α̇̇ hα̇ mgl
mlGΩΩ( )2

2I
--------------------------+ α+ +

=  mlHωω2 ωt.sin–

ω pv 0 p2 q2Ω2+ ,= =

p2 mgl
I

---------
g
l0
---, q2 1

2
---

mlGΩ

I
-------------- 

 
2 1

2
---

GΩ

l0
------- 

 
2

;= = = =
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All above resonances correspond to the forced oscilla-
tions of the pendulum with low frequency ω.

Let us now consider the small oscillations of the
pendulum near the upper position α = π. Equation (6)

easily leads to the classical condition GΩΩ > ,
under which the upper position of the pendulum is sta-
ble [1, 5, 6]. In terms of the above notation, this ine-
quality takes the form

(9)

The resonance takes place if the following equality is
satisfied:

(10)

where pvπ is the frequency of the free oscillation of the
pendulum near the upper equilibrium position.

Similarly to the first of Eqs. (8), equality (10) gener-
ates three kinds of resonances, and we could draw plots
similar to those shown in Fig. 2. The difference is that,
first, the condition ω < p is satisfied automatically in
this case and, second, the bifurcation points are con-
jugate, which corresponds to the change in the stability
character of the upper position of the pendulum at
qΩ = p. These points can be achieved when both the
frequency Ω varies, whereas the amplitude GΩ is con-
stant, and vice versa.

5. Let us now discuss parametric resonance. This case
corresponds to the fast and slow vertical oscillations of
the pendulum axis (HΩ = 0, Hω = 0). Equation (4) for the
small oscillations of the pendulum near the stable equi-
librium position α = 0 takes the form

(11)

where h1 =  and γ = . The condition of the basic

parametric resonance is the equality

(12)

which differs from the first of Eqs. (8) only by a factor
of two. Therefore, all statements made in Section 4 are
completely valid for this case (the same is true for other
parametric resonances).

6. The properties established above for a particular
example are applicable for general nonlinear systems
with positional nonlinearity, such as the system that is
described by the Duffing equation and sometimes
called bistable oscillator [3].

Another generalization refers to the nonlinear sys-
tem under consideration excited by a random action
with the pronounced high- and low-frequency compo-
nents of the spectrum. In this case, the high-frequency

2gl0

qΩ p.>

ω pv π q2Ω2 p2– ,= =

α̇̇ h1α̇ pv 0
2 1 γ ωt θω+( )sin–[ ]α+ + 0,=

h
I
---

Gωω2

l0 pv 0
2

-------------

ω 2 pv 0 2 p2 q2Ω2+ ,= =
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ω2 – p2

Ω2
q2 = q2 1

2
---

mlGΩ

I
-------------- 

 
2

=

component of excitation changes the properties of the
system with respect to the low-frequency component.
As a result, the low-frequency excitation seems to be
acting on another system modified by the high-fre-
quency excitation, and this change depends signifi-
cantly on the intensity of the high-frequency compo-
nent.

The above results make it possible to simply explain
the mechanism of the effect of stochastic resonance—
nonmonotonic (resonance) dependence of the ampli-
tude of the output signal in the nonlinear system on the
level of a random action. The same is true for the corre-
sponding bifurcations.

Two practical consequences are as follows. First, the
resonance states of the system with respect to the low-
frequency action can be controlled by varying the high-
frequency action. Second, it is necessary to take into
account changes induced by the high-frequency action
in the resonance frequencies of the system with respect
to the low-frequency action.

(a)

(b)

(c)

Ω, q, p = constA

ω2p2

pv 0
2  = p2 + q2Ω2

Ω2

ω, q, p = const

ω > p

ω < p

Ω, ω, p = const

ω > p

ω < p

Fig. 2. Ordinary conjugate resonances near the lower posi-
tion of the pendulum under variation of the (a) low fre-
quency, (b) high frequency, and (c) amplitude of the high-
frequency action.

ω2 – p2

q2
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Firestorms are a kind of atmospheric vortices (tor-
nados). As a rule, they accompany city [1] or forest
fires [2]. At present, there are almost no experimental
data on the initiation and development of firestorms,
contrary to the case of tornados [3]. In this paper, we
report the results of laboratory physical modeling on
various setups with different swirls of a convective
column.

As combustible materials, we used crude oil (mod-
eling of firestorms accompanying accidents with oil
reservoirs); combustible forest materials, including
fallen pine and cedar needles and birch foliage (model-
ing of firestorms accompanying forest fires); and frag-
ments of various wooden constructions with sizes of
1 × 3 × 5 cm and 1 × 1 × 3 mm (modeling of firestorms
accompanying fires in cities and other urban areas). The
substrate-surface area was chosen from the condition

 = (1.0–5.0)10
–3, where h is the height of substrate

elements and D = 6–15 cm is the diameter. The mois-

ture content in elements was W =  = 0.007–0.13,

where m is the mass of damp fragments and m0 is the
mass of the fragments dried at a temperature of 373 K;
i.e., it was below the critical moisture content for which
land forest fires were initiated [2]. Combustible materi-
als were placed on special substrates and were ignited
by a hot wire.

During the experiments, the following parameters of
gas and combustible materials were monitored. The gas
temperature Tc was measured by the thermoelectric
method using a chromel–alumel thermocouple with a
junction diameter of 0.2 mm. The heat-flux density q
was measured by the exponential method using a heat-
flux transducer. The gas velocity v l along the y axis (see
Fig. 1) and the tangential velocity v t were measured by
the hot-wire and pneumatic methods as well as by pho-
tographing the trajectories of fine-grained aluminum
particles introduced into the flow in the direction of the
tangential velocity of the vortex. The exposure of the

h
D
----

m m0–
m0

----------------

Tomsk State University,
pr. Lenina 36, Tomsk, 634050 Russia
e-mail: fire@fire.tsu.tomsk.su
1028-3358/04/4903- $26.00 © 20191
camera was equal to τ = 0.008 s. The photographic film
was processed on an MF-2 microphotometer.

The parameters were determined with total errors
δTc ≤ 4.8%; δq ≤ 9.2%; δv  ≤ 9.0% (hot-wire anemom-
eter), 7.9% (tracks of luminous particles), and 6.1%
(Pitot–Prandtl tube); and δm ≤ 2.3%. Using the results
of measurements (three to five experiments), the 0.95
confidence intervals were calculated.

Figures 1 and 2 show the photographs of the flame
front in a firestorm formed when burning oil. Contrary
to the interaction between an atmospheric vortex and a
heavy liquid with a concave free surface, the interaction
between the firestorm and a fire source is accompanied
by the formation of a mushroom-shaped convective
column composed of hot combustion products and air,
where heated particles move along spiral lines. There-
fore, it is appropriate to use the term firestorm to
describe the result of this interaction.

Table 1 presents the heat-flux densities measured by
the transducer, which was introduced into the firestorm
base at the point 0 (see Fig. 1), under various experi-
mental conditions. The analysis of these results shows

x

y

0

Fig. 1. Flame front formed by the oil-combustion products
without the rotation of the column.
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that the heat-flux density depends only slightly on the
fuel type and is higher than that from a free burning sur-
face by 13% due to an increase in the convective com-
ponent of the heat flux when forming the firestorm.
Within an accuracy of 10%, the density of the convec-
tive heat flux in the direction of the vertical z axis at the
flame height z = h is determined by the formula

(1)

where Q = 46 × 106 J/kg is the thermal effect of the oil-

q
AmQ
τbS

-------------,=

Fig. 2. Firestorm, ω = 1.2 rad/s.
combustion reaction, S is the burning-surface area, τb is
the burning time, and A is the matching factor.

The results of calculations are given in Table 2. It is
easily seen that the density of the heat fluxes generated
by the firestorms under laboratory conditions agree
with the calculations.

The measurements of gas velocities show that there
is a firestorm at a height of 8–10 cm, where the tangen-
tial velocity is approximately constant and the vertical
velocity component increases. This fact can be
explained by the inflow of air mass from the vortex
environment, which is corroborated by the measure-
ments of the radial velocity of the gas by the hot-wire
anemometer.

Burning combustible forest materials of the same
mass in vortex-free and vortex flows, we investigated
the effect of flow swirling on the burning rate. The
burning time τb on the free surface was equal to 45.0,
43.0, 44.0, and 37.0 s in the vortex-free flow and 39.0,
42.0, and 38.0 s in the vortex flow (incomplete combus-
tion on the substrate edges, prolonged local combus-
tion). As is seen, the burning time in the vortex flow is
less than that on the free surface by 10%. This can be
explained by an increase in the burning rate due to the
inflow of oxygen from the environment. Hence, air
comes from the environment in the radial direction of
the firestorm, and the burning mode in the firestorm is
diffusive.

The necessary conditions of the physical similarity
of a gas flow in the firestorm under laboratory and real
conditions are identities of certain similarity criteria for
Table 1.  Heat-flux densities

Experimental setup Fuel q, 105 W/m2 Transducer coordinates, cm

Lower rotation Oil 0.19 x = 3 
y = 8 

Oil 2.4 x = 0
y = 0.2 

Large-scale fragments 0.34 x = 3.5 
y = 16.5 

Small-scale fragments 1.91 x = 0
y = 0.2 

Upper rotation Oil 2.3 x = 0
y = 0.2 

Forest fuel 2.1 x = 0
y = 0.2 

Oil 2.0 x = 0
y = 0.2

Substrate in a horizontal air flow Oil 2.0 x = 0
y = 0.2 

Forest fuel x = 0
y = 0.2
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the model and natural events:

(2)

Here, V∗  = ω∗ r∗ , where ω∗  is the characteristic angular
velocity of gas particles, is the characteristic linear
velocity of their rotation; t∗   is the characteristic time;
g is the gravitational acceleration; β is the volumetric
thermal expansion coefficient of the gas; Tc is the com-
bustion temperature; Te is the environmental tempera-
ture; idem means the identity of a similarity criterion
for the model and natural events; r∗  is the characteristic
radius of the firestorm; µ and ρ are the absolute viscos-
ity and the gas-phase density, respectively; H∗  is the
characteristic height of the firestorm; m is the mass of
combustible materials in the natural event; s is the burn-
ing area; h is the flame height; the subscripts 1 and 2
correspond to the natural and model parameters,
respectively; and q1 and q2 are the respective thermal
effects of combustion.

Using data for the firestorms in Hamburg [1], we
obtained Gr = 2.95 and 3.27 and Fr = 0.67 and 0.74 for
the lower (substrate, base) and upper swirling, respec-
tively. The closeness of these values indicates that, first,
the formation of the firestorm is independent of the
method of gas swirling and, second, the chosen para-
meters are similarity criteria for the problem under
solution.

Analysis of the experimental results allows the fol-
lowing conclusions.

V*r*
t*

------------- = Sh = idem1, Gr = 
1
ν
---

gβ Tc Te–( )
H*

3–
----------------------------  = idem2,

2r*
h*
-------- idem3,=

m1s2

s1m2
----------- 1 idem4, Fr µr*v *

ρΓ*
2

----------------- idem5.= = = =
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Under laboratory conditions, firestorms were
obtained by several independent methods. For all types
of combustible substances, a firestorm turned out to
consist of a combustion source, a convective column,
and a mushroom-shaped cloud of gaseous and disperse
combustion products. In addition, combustion in the fir-
estorm was shown to be diffusive.

The characteristic attributes of the initiation of the
firestorm are an abrupt increase in the flame height and
the appearance of the spiral trajectories with a varying
curvature radius along which heated combustion-prod-
uct particles move over the fire source.

The formation of firestorms was shown to be inde-
pendent of the method of their initiation and the type of
combustible materials and to be determined by the
heat-flux density, lift force, and angular momentum of
the external vortex flow.
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Table 2.  Heat-flux density q in the firestorm from burning oil

m, g τb, s q, 105 W/m2 A

18.3 278 1.9 0.67

31.7 473 2.4 0.70

32.0 406 2.3 0.65
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A constructive numerical–analytical method is pro-
posed for the analysis of free transverse vibrations of
substantially nonuniform bars under various boundary
conditions. To determine the frequencies and shapes of
vibrations, an efficient procedure is developed for
obtaining the eigenvalues and eigenfunctions of the
corresponding self-adjoint fourth-order boundary value
problems. New oscillatory properties are found, and
statements equivalent to the oscillation theorem, Sturm
comparison theorems, and their corollaries for second-
order boundary value problems are formulated. The
method is tested on model examples.

1. We analyze a bar with rigidly fastened ends (con-
straint). The self-adjoint boundary value problem for
eigenvalues and eigenfunctions is described in terms of
dimensionless variables by the relations [1–4]

(1)

(2)

The unknown parameter λ > 0 and function u(x) char-
acterize the frequencies and shapes of the natural vibra-
tions of the bar, respectively. The coefficient p(x) is the
bending stiffness, r(x) is the linear density, and q(x) is
the external-medium elasticity. In contrast to the stan-
dard approaches, the bar length l > 0 is treated as a vari-
able parameter when solving the problem specified by
Eqs. (1) and (2).

It is necessary to find eigenvalues λ = λn (frequen-

cies ωn = ) and functions u = un(x) (vibration
shapes). The low vibration modes with n = 1, 2, … are
of primary theoretical and applied interest. The bound-

p x( )u''( )'' λr x( ) q x( )–( )u, 0 x l,≤ ≤=

0 p– p p+ ∞, 0 r– r r+ ∞,<≤ ≤< <≤ ≤<

0 q– q q+ ∞;<≤ ≤ ≤
u 0( ) u' 0( ) u l( ) u' l( ) 0.= = = =

λn
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ary value problem specified by Eqs. (1) and (2) has a
countable set of eigenvalues (discrete spectrum) and
corresponding eigenfunctions (shapes) that form a
basis orthonormal with the weight r(x) [2, 3]:

(3)

where δnm is the Kronecker delta, (·, ·)r is the scalar
product, and ||· ||r is the norm with the weight r(x).

The problem specified by Eqs. (1) and (2) is formu-
lated in terms of the isoperimetric variational problem
[2, 3]

(4)

in the presence of boundary conditions (2). Here, λ is
the double Lagrange multiplier, λ1 is the value corre-
sponding to the (global) minimum of functional (4),
and values λ2, λ3, … correspond to the local minima of
the functional J under the orthogonality condition
(u, uk)r = 0, k = 1, 2, …, n – 1.

The variational treatment is used to develop func-
tional approaches for estimating the λn values and cor-
responding functions un(x) [2, 3]. Computational algo-
rithms make it possible to obtain effective upper

bounds . It is considerably difficult to obtain lower

bounds  with high accuracy: the Weinstein–Aron-
szajn and Fichera’s methods [2] are very algorithmi-
cally cumbersome and have low efficiency.

λ λ n{ } , 0 λ1 λ2 … λn …, λn n4,∼< < < < <∈

un x( ) u x λn,( ), un um,( )r un r
2δnm,= =

n m, 1 2 …,, ,=

J u[ ] 1
2
--- p x( )u''2 q x( )u2+( ) xd min,→

0

l

∫=

I u[ ] u r
2 r x( )u2 xd

0

l

∫ 1= = =

λn
+

λn
–
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From Eqs. (2) and (4), it follows the rough two-
sided bounds of eigenvalues:

(5)

Bounds  (5) are satisfactory if functions p(x), r(x),
and q(x) vary slightly. In this case, the solutions can be
refined by the analytical perturbation method [5]. How-
ever, it is inefficient for numerical calculations. Bounds

 (5) can be generally used to construct the initial
approximation in recursive computational schemes
(shooting method, successive approximations, fast-
convergence methods, etc.) in combination with the
procedures of continuation in the parameters of the sys-
tem (parametric synthesis) or in the parameters artifi-
cially introduced for improving convergence [4]. The
available methods and algorithms are insufficient for
extensive routine calculations with high accuracy.

Equation (1) is inconvenient for numerical–analyti-
cal analysis. It is more natural to introduce the addi-
tional mechanical variables z and µ:

(6)

where z is the moment of the elastic forces and µ is the
cutting force.

Besides the rigid attachment of ends specified by
Eqs. (2) or (6), there are other conditions also leading
to self-adjoint boundary value problems. Hinge attach-
ment, i.e., u = z = 0; free ends, i.e., z = µ = 0; and fixa-
tion of the tangent direction, i.e., θ = µ = 0, are among
such conditions. The general form condition is elastic
attachment with respect to the displacement and rota-
tion of tangent at the bar ends:

(7)

Normalized coefficients κ0, l and σ0, l in Eq. (7)
determine the relative effect of the stiffness of the elas-
tic attachment of the ends with respect to the displace-
ment and rotation, respectively.

λn
– λn λn
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±≤ ≤

γn
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----- 
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u' θ, θ'
z

p x( )
-----------, z'– µ,= = =

µ' λr x( ) q x( )–( )u;–=

u 0( ) θ 0( )  =  u l ( ) θ l ( ) 0,= = =

---u'' z
p x( )
-----------–= , z'' λr x( ) q x( )–( )u–= ,

1 κ x–( )µ κ xu+−[ ] x 0= l, 0,=

1 σx–( )z σxθ+−[ ] x 0= l, 0, 0 κ0 l, , σ0 l, 1.≤ ≤=
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2. 

 

The eigenvalues and eigenfunctions of the prob-
lem specified by Eqs. (1) and (2) or Eqs. (6) and (7) are
ordinarily found by constructing the general solution of
the equations, which depends on the parameter 

 

λ

 

, and
satisfying the boundary conditions at 

 

x

 

 = 0

 

 and 

 

l

 

. The
necessary and sufficient condition for the existence of a
nontrivial solution is that the determinant of the funda-
mental-system matrix is equal to zero. This condition
leads to the secular equation for the calculation of
eigenvalues 

 

λ

 

n

 

. According to general theory [2, 3], the
determinant is an integer function of 

 

λ

 

 that admits a
countable set of roots {

 

λ

 

n

 

} in the real 

 

λ

 

 

 

> 0 region, 

 

λ

 

n

 

 ~

 

n

 

4

 

, and bounds are given by Eqs. (5).

The solution to the problem specified by Eqs. (6) is
determined by the vector function 

 

U

 

 = (

 

u

 

, 

 

θ

 

, 

 

z

 

, 

 

µ

 

)

 

. It is
necessary to construct two sets of solutions (

 

λ

 

 is the
parameter of the set) of the Cauchy problem for the fol-
lowing conditions at 

 

x

 

 = 0:

 

(8)

 

For the general boundary conditions given by
Eqs. (7), it is necessary to construct four sets of solu-
tions 

 

U

 

i

 

:

 

(9)

 

The other components of the solution are set to zero
[similarly to Eqs. (8)]. The summation in Eqs. (9) cov-
ers 

 

i

 

 = 1–4. The use of boundary conditions (7) leads to
the following equations for 

 

λ

 

 and 

 

c

 

i

 

:

 

3. 

 

The secular equation for the eigenvalues 

 

λ

 

 of
problem (6) has the form

 

(10)

 

In the standard approaches, the parameter 

 

l

 

 is fixed
(

 

l

 

 = 1) and function 

 

S

 

 in Eqs. (10) is considered as
dependent only on the unknown argument 

 

λ

 

. Below, we
report the methods and computational algorithms based
on the introduced notion of the sagittary function

 

S

 

(

 

λ

 

, 

 

x

 

)

 

 of two arguments (the Latin word sagitta means
arrow). The basic properties of the eigenvalues and
eigenfunctions of the problem can be analyzed by using
this function.

1) u 0( ) θ 0( ) µ 0( ) 0, z 0( ) 1;= = = =

2 ) u 0( ) θ 0( ) z 0( ) 0, µ 0( ) 1;= = = =

U c1U1 x λ,( ) c2U2 x λ,( ).+=

1) u 0( ) 1, 2) θ 0( ) 1, 3) z 0( ) 1,= = =

4) µ 0( ) 1; U x λ,( ) ΣciUi x λ,( ).= =

1 κ0–( )c4 κ0c1– 0, 1 σ0–( )c3 σ0c2– 0,= =

Σci 1 κ l–( )µi κ lui+[ ] x l= 0,=

Σci 1 σl–( )zi σlθi+[ ] x l= 0.=

S λ l,( ) 0, λ λ n l( ),= =

S λ x,( ) u1 x λ,( )θ2 x λ,( )≡ u2 x λ,( )θ1 x λ,( ),–

0 x l, 0 l ∞, λ 0;>< <≤ ≤
S λ x,( ) 0, 0 x ! l, λ 1.∼<>
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The secular equation and sagittary function for
boundary conditions (7) are determined similarly to
Eqs. (10):

(11)

Representation (11) for the sagittary function S(λ, x) is
considerably simplified by constructing two sets of the
solutions

(12)

Solution (12) with arbitrary λ, c1 , and c2 automatically
satisfies boundary condition (7) at x = 0. The secular
equation and sagittary function have the form

(13)

Any convenient form of a solution may be used in
calculations. In particular, the construction of the fun-
damental system of solutions for the first case specified
by Eqs. (9) is independent of the parameters κ0 and σ0 ,
which are disregarded at the next stages of determining
the sagittary function and secular equation according to
Eqs. (11). In the second case specified by Eqs. (12), the
linearly independent solutions are constructed with
inclusion of κ0 and σ0 . However, the number of integra-
ble Cauchy problems is halved.

Thus, the sagittary function S(λ, x) is considered
below as known. It can be constructed either analyti-
cally (very rarely) or numerically by integrating
Cauchy problems. In this case, it is necessary either to
successively calculate the functions ui , θi , zi , and µi for
fixed λ values with further storage or to jointly integrate
(two or four) Cauchy problems and calculation of
S(λ, x) by finite formulas. The sagittary function S can
be determined as the solution of the aforementioned set

S λ l,( ) 0, λ λ n l( );= =

S λ x,( ) κ0 σ0d34 1 σ0–( )d24+( )≡

– 1 κ0–( ) σ0d13 1 σ0–( )d12+( ),

dij dij λ x,( ) MiZ j M jZi,–= =

Mi 1 κ l–( )µi κ lui,+=

Zi 1 σl–( )zi σlθi; i j,+ 1 … 4., ,= =

1) u 0( ) 1 κ0, θ 0( )– 0, z 0( ) 0,= = =

µ 0( ) κ0, 0 κ0 1;< <=

2) u 0( ) 0, θ 0( ) 1 σ0, z 0( )– σ0,= = =

µ 0( ) 0, 0 σ0 1;< <=

u c1u1 c2u2, θ+ c1θ1 c2θ2,+= =

z c1z1 c2z2, µ+ c1µ1 c2µ2.+= =

S λ l,( ) 0, λ λ n l( );= =

S λ x,( ) 1 κ l–( )µ1 x λ,( ) κ lu1 x λ,( )+( )≡

× 1 σl–( )z2 x λ,( ) σlθ2 x λ,( )+( )

– 1 κ l–( )µ2 x λ,( ) κ lu2 x λ,( )+( )
× 1 σl–( )z1 x λ,( ) σlθ1 x λ,( )+( ).
of Cauchy problems and nonlinear equation. For condi-
tions (6), sagittary function S (10) satisfies the equation

(14)

Relations obtained for the sagittary function under
other boundary conditions indicated above are similar
to Eqs. (14).

4. Analyzing the sagittary function S(λ, x), one can
determine the basic properties of the solution of the ini-
tial problem as well as formulate statements similar to
the Sturm oscillation theorem and Sturm comparison
theorems and their corollaries that have been previ-
ously obtained for second-order equations [2, 3, 7, 8].

Theorem 1. For a fixed value x = l > 0, the sagittary
function S(λ, l) is an oscillating function of λ for λ > 0.
For a sufficiently large value λ = λ(l) > 0, S(λ, x) is an
oscillating function of x in the range 0 ≤ x ≤ l and has
an infinite number of zeros. 

For  ≥ c > 0 and x > 0, the sagittary function S(λ, x)

is an oscillating function of x independently of λ > 0.

This is also the case for  → 0 and x → ∞ if  ~ x–γ,

where γ ≤ 4. We note that both solutions (u1(x, λ),
θ1(x, λ)) and (u2(x, λ), θ2(x, λ)) of the system specified
by Eqs. (6) and (8) are not oscillating in the above
sense.

For a fixed value l > 0, let a value λ > 0 exist such
that S(λ, l) = 0 and the sagittary function S(λ, x) has no
intermediate zeros as a function of x. Then, the corre-
sponding value λ = λ1(l) is the first eigenvalue of prob-
lem (6). If there are n – 1 ≥ 1 intermediate zeros, λ =
λn(l) is the nth eigenvalue such that 0 < λ1 < λ2 < … <
λn . Analyzing the properties of S(λ, x), one arrives at
statements useful for an approximate numerical solu-
tion.

Theorem 2. Let the sagittary function S(λ*, x) have
n intermediate zeros (n = 1, 2, …) in the range 0 < x ≤
l. Then, the sagittary function S(λ**, x), where λ** >
λ*, has no fewer than n zeros in the same range. 

Moreover, the number of zeros in the given range
0 ≤ x ≤ l increases infinitely with an infinite increase in λ.

Theorem 3. Let S(λ*, x) = 0 for x = x1 and x2, where
0 ≤ x1 < x2 ≤ l. Then, for a certain value λ** > λ*, there
is a point x3 such that x1 < x3 < x2 and S(λ**, x3) = 0.

The following statement concerning the position of
the zeros of the sagittary function S(λ, x) for λ = λ* and
λ** is constructive for determining the eigenvalues and
eigenfunctions of problem (6).

Theorem 4. Let x0 be a common zero of the sagittary
functions S(λ*, x) and S(λ**, x) and λ** > λ*. Then,

S'
z1u2 z2u1–

p x( )
-------------------------, S λ 0,( ) 0, 0 x l;≤ ≤≡=

S λ x,( ) O x4( ), S 0, 0 x ! l, λ 1.∼<>=

r
p
---

r
p
--- r

p
---
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the next zeros x1 and x2 of S(λ*, x) and S(λ**, x),
respectively, satisfy the condition x2 < x1 .

Therefore, all zeros xi > 0 of the sagittary function
S(λ, x) are shifted to the left and right when λ increases
and decreases, respectively. This property determining
the local relation between the desired parameter λ and
the interval length l can be used in calculations. It

enables one to obtain upper  and lower  bounds
of eigenvalues λn , which is very important for deter-
mining the real accuracy of approximate solutions.
In  particular, there is the following theorem concern-

ing the bounds  of the first eigenvalue λ1(l) and the

corresponding zeros x =  of the sagittary function

S( , x).

Theorem 5. Let  be an upper bound of the first

eigenvalue; i.e.,  ≥ λ1(l). Then, S( , ξ+) = 0, where

ξ+ ≤ l. Similarly, S( , ξ–) = 0 for the lower bound  ≤
λ1(l), where ξ– ≥ l [for ξ– > l, the functions p(x) and r(x)
are considered as smooth continuations to the interval
(l, ξ–)]. If λ± are close enough to each other, l and ξ± are

also close to each other. In addition, S( , l) < 0 and

S( , l) > 0. 

The property S( , x) > 0 for 0 < x < l follows from

the simple estimates of the functions u1, 2(x, ) and

θ1, 2(x, ) according to Eqs. (8) and (14) [for prob-

lem (6)]. For n ≥ 2, the sagittary function S( , x) can
naturally undergo up to n – 1 changes of sign, whereas

the sagittary function S( , x) undergoes no fewer than
n changes of sign. The general determination of the
sign of the sagittary function S for 0 < x ! l and its
change for 0 < x < l requires cumbersome estimates. It
is more convenient to obtain these estimates by numer-
ically integrating the above Cauchy problems.

It is natural to use the “separating” property of the
sagittary function S in computational methods associ-
ated with the iterative refinement of the desired solution
including the shooting method, method of sequential
approximations, Newton fast-convergence method, etc.
This is why we call the function S a sagittary function.

5. First, we illustrate theory by a model example [4]
that allows the analytical integration of Eq. (1). Let the
ends of the bar be fastened [conditions (2)], q ≡ 0, and

(15)

We arrive at the Euler equation [4, 7, 8] whose solution
is sought in the form of a power function (b + ax)k,
where k is the complex parameter determined from the

λn
+ λn

–

λ1
±

ξ1
±

λ1
±

λ1
+

λ1
+ λ1

+

λ1
– λ1

–

λ1
+

λ1
–

λ1
–

λ1
–

λ1
–

λn
–

λn
+

p x( ) p0 b ax+( )2, r x( ) r0 b ax+( ) 2– ,= =

b ax 0.≠+
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algebraic equation k2(k – 1)2 = , which is solvable in

radicals. The general solution has an unwieldy form
and is expressed in terms of power, trigonometric, and
logarithmic functions. It is difficult to determine the
roots of secular equation (10), but they can be obtained
numerically.

Without loss of generality, two of the three parame-
ters a, b, and l, as well as constants p0 and r0 in
Eqs. (15), can be set to unity. For definiteness, we
assume that ab > 0. In this case, we can set a = b = 1 and

l > 0. Solution (8) for λ >  (u ≡ 0 for λ ≤ ) takes

the form

(16)

The hyperbolic functions are reduced to the power

functions (1 + x . Formulas (16) show that the func-
tions u1, 2 and θ1, 2 are not oscillating. However, the sag-
ittary function S(λ, x) is an oscillating function of both
x and λ. Indeed,

(17)

The secular equation for any x = l > 0 admits the
countable set of roots λn(l), which can be found numer-
ically. In particular, for l = 1, the “exact” λ1 value and
bounds λn have the form

(18)

Then, we calculate λ1 by the shooting numerical
algorithm. The two-coordinate (trigonometric) approx-
imation according to the Rayleigh–Ritz method pro-

vides an upper bound of  = 2338.442, which differs
significantly from the exact value given in Eqs. (18).
The sagittary function method based on Theorem 5 pro-
vides the abscissa ξ+ = 0.9770. Using this value, we
obtain the lower bound λ– = (ξ+)4λ+ = 2131.2312
according to the previously described approach [4].

λ
a4
-----

1
16
------ 1

16
------

u c1u1 c2u2+ 1 x+ c1w1 x λ,( ) c2w2 x λ,( )+( ),= =

θ u',=

w1 f –h( )sin
f –

f +
----- f +h( ), hsinh– 1 x+( ),ln= =

0 x l,≤ ≤

w2 f –h( )cos f +h( ), f ±cosh– λ 1
4
---± 

 
1/2

.= =

) f
±±

S λ x,( ) 2 f – f –h( ) f +h( )coshcos
1
4
--- f + f –( ) 1–

–
=

---× f –h( ) f +h( )sinh 1–sin 
 .

λ1 = 2181.355,

λn = 
π
2ln

-------- 
 

2

n
1
2
---+ 

  2 1
4
---– O

1
n
--- 

  ,+ n @ 1.

λ1
+
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Seven shooting-method iterations provide the
bounds (with a relative accuracy of 10–5)

which is very close to the exact λ1 value given in
Eqs. (18). Approximate expressions for λn with n ≥ 2
and for other l > 0 are similarly calculated with the nec-
essary accuracy.

For the hinge attachment of the bar ends (u = z = 0
at x = 0, 1), we similarly obtain the bounds

The above model example illustrates the basic theo-
retical statements. Moreover, it is shown that numerical
methods are required even in the cases of analytical
integrability (usually in terms of special functions).
Thus, the numerical–analytical method based on the
sagittary function is preferable.

To compare different approaches under the condi-
tion of the hinge attachment, we consider Eq. (1) with
p(x) = 1 + 2sin2πx and r(x) = 1. This problem was solved
approximately with the Weinstein–Aronszajn method
[2] for n = 1 and 3. The values λ1 = 2.36388π4 and λ3 =
149.6520π4 were obtained with a relative accuracy of

~ 10–6. Several iterations in the sagittary-function

algorithm provides the bounds

The sagittary-function method provides the bounds
29.671π4 ≤ λ2 ≤ 29.689π4 for the value λ2 missing in [2].

λ1
+ 2181.4093, λ1

– 2181.3478,= =

λ1 2181.3785,=

λ1
+ 432.3410, λ1

– 432.2820, λ1 432.3150,= = =

∆λ1

λ1
--------- 10 4– .∼

∆λ
λ

-------

2.36387π4 λ1 2.36389π4,≤ ≤

149.6517π4 λ3 149.6531π4.≤ ≤
We emphasize that the Weinstein–Aronszajn
method is very cumbersome and complicated for effi-
cient calculations. The above calculations show that the
sagittary-function method has substantial advantages
for the above class of the problems for eigenvalues and
functions that is described by fourth-order ordinary dif-
ferential equations.
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Cumulative Effect Accompanying Large Deformations
of a Shell under One-Sided Pressure
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The behavior of a perturbed flat layer of a deform-
able material under pressure difference is associated
with the Rayleigh–Taylor instability (see, e.g., [1]). As
was shown in [2], the development of instability can
lead to the formation of regular fingerlike structures,
where the energy and momentum of a thrown layer are
cumulated. This effect can be studied separately as well
as provide a number of applications. It is somewhat sim-
ilar to the appearance or special creation of a cumulative
jet when throwing a thin layer with the shape of an angle
or cone and in other more complicated cases [3].

A model of a thin dust shell which is free of internal
stresses, is subjected to one-sided pressure, and whose
particles undergo inelastic collisions in the case of self-
intersections was used in [2] to effectively describe
cumulation. In this work, this model is used to construct
two exact solutions of the throwing problem that con-
cern the optimization of focusing the shell to one mov-
ing material point or, in the flat case, rod. A number of
general properties of the equations of motion of the
shell, as well as the method for constructing the solu-
tion of the Cauchy problem with zero initial velocity,
are discussed. Two sufficiently wide classes of exact
solutions allowing the separation of variables are pre-
sented.

EQUATIONS OF MOTION
OF THE DUST SHELL

A model of a material surface that is free of stresses
and moves under a given pressure p0 applied to one side
(pressure to the other side is negligibly low) is the sim-
plest model for describing the motion of a thin plate or
shell thrown by a strong explosion [2]. An exact hydro-
dynamic solution of the one-dimensional problem of
the acceleration of a flat piston by one-sided pressure
from an initially stationary uniform gas was found by
Hugoniót. According to this solution, for one to con-
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Moscow State University, 
Vorob’evy gory, Moscow, 119992 Russia

** Institute of Mechanics, Moscow State University, 
Michurinskiœ pr. 1, Moscow, 119192 Russia
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sider p0 as constant neglecting an expansion wave
formed in the gas, it is necessary to satisfy the inequal-
ity 2c0 @ (γ – 1)vn, where c0 is the speed of sound in the
stationary gas, γ is the adiabatic index, and vn is the nor-
mal component of the shell velocity. Thus, pressure p0
can be considered as constant at least at the initial stage
of motion.

The equations of motion of the shell consisting of
noninteracting material particles have the form

(1)

where σ is the surface density of the shell, r is the
radius vector of shell particles with the Eulerian com-
ponents xi, and n is the unit normal vector directed
along the pressure. The subscript t denotes the time
derivative for constant Lagrangian coordinates ξα, α =
1 and 2.

Let aαβ be components of the metric tensor of the
shell surface,

(2)

be the components of the vectors tangential to the sur-

face rα such that n = , where |r1 × r2| =

 ≡ . In view of the mass conservation law,
we have the Lagrange formula

(3)

Zero means the initial quantities—functions ξα. Using
Eqs. (1) and (3), we arrive at the vector equation

(4)

One of the Lagrangian coordinates can always be
taken so that σ0  = p0; i.e., the “mass variable” m =

σrtt p0n,=

aαβ δij= xα
i xβ

j ,   and   x α 
i ∂ x

 

i

 
∂ξ

 
α

 --------=

r1 r2×
r1 r2×
------------------

detaαb a

σ σ0
a0

a
-----.=

σ0 a0rtt p0r1 r2.×=

a0
004 MAIK “Nauka/Interperiodica”
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σ0 dξ1 can be used. This manipulation trans-

forms system (4) to the homogeneous form. If motion
of the shell is flat (in this case, x3 = ξ2), system (4) is lin-
ear and reduced to the homogeneous form by using the
mass variable [2].

Equation (4) can be obtained from the holonomic
variational equation with the Lagrangian

(5)

by varying the law of motion xi(ξα, t). Starting from this
formulation, one can develop approximate numerical
methods for solving problems and deriving conserva-
tion laws.

Contracting Eq. (4) with rα, we obtain the relations

(6)

which lead to the conservation law for vorticity of the
tangential velocity (for general theory, see [4]). Indeed,
taking the exterior derivative with respect to ξβ, we
arrive at the relation

(7)

In particular, if the initial velocity of the shell is equal
to zero, the tangential velocity component is potential
in further motion.

Contracting Eq. (4) with rt , we obtain the following
equation for the kinetic energy of the shell:

(8)

Similarly, Eq. (4) for the angular momentum can
also be represented in divergence form.

For the shell with an edge, to prevent the possibility
of leaking to the leading surface of the shell and thereby
to exclude the necessity of analyzing hydrodynamic
processes accompanying such a leakage, the shell must
be considered as placed into a channel of the corre-
sponding shape, i.e., as a deformable piston.

The model of perfectly inelastic collisions is used to
describe the intersections of the trajectories of shell
particles. This model corresponds to the summation of
the momenta of colliding material points. In this case,
new surfaces, as well as compact elements such as rods
or balls, can be formed depending on the geometry of
collisions.

1
p0
-----∫ a0

Λ σ0 a0

rt
2

2
--------

p0

3
-----r r1 r2×( ),⋅+=

xtt
i xi α, xt

ixi α,( )t

rt
2

2
-------- 

 
α

–≡ 0,=

xt 1,
i xi 2, xt 2,

i xi 1,–( )t 0.=

σ0 a0

rt
2

2
--------

p0

3
-----r r1 r2×( )⋅– 

 
t

–
p0

3
----- r rt r1×( )⋅( )2 r rt r2×( )⋅( )1–[ ] 0.=
FOCUSING TO A POINT

We discuss the problem of focusing of an initially
stationary uniform spherical segment with mass M to a
point by constant external pressure p0 . In this case,
Eq. (4) yields the equation

(9)

for the sphere radius r(t) with the initial conditions
(0) = 0 and r(0) = r0 , where r0 and σ0 are the initial

radius and density of the shell, respectively.

Equation (9) has the energy integral

(10)

which can be used to represent the solution in the
quadrature t(r). Moreover, this integral enables one to
determine the final radial velocity of the shell particles
at r = 0 in the form

(11)

The collapse time is determined by the expression

(12)

Then, according to the model of perfectly inelastic
collisions, one material point of mass M moves rectilin-
early with constant velocity, because the pressure force
is absent due to the zero area of the layer surface. The
initial area of the segment is equal to S0 =

4π sin2  = , where θ0 is the half-angle of the

segment. Due to the axial symmetry, the total momen-
tum is determined by the axial velocity component

cosθ of moving material points, where θ is the angle
between the symmetry axis and radius vector of a given
particle of the shell. The absolute value of the momen-
tum is given by the expression

(13)

ṙ̇
p0r2

σ0r0
2

----------, σ–
σ0t0

2

r2
---------= =

ṙ

ṙ2

2
----

p0

3σ0r0
2

------------- r3 r0
3–( )+ 0,=

ṙ*
2 p0r0

3σ0
------------- 

 
1/2

.–=

t*
3σ0r0

2 p0
------------- 

 
1/2 ρd

1 ρ3–
------------------ 1.717

σ0r0

p0
---------- 

 
1/2

.≈
0

1

∫=

r0
2 θ0

2
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  M
σ0
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ṙ*

P π θ0

2 p0r0
5σ0

3
------------------- 

 
1/2

sin
2

=

=  π
θ0sin

2

θ0/2( )sin
-----------------------

p0r0
3M

6π
---------------- 
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1/2
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For the angle θ0 = 70°32' corresponding to cosθ0 =

, final momentum (13) of the material point formed

from the shell with a given mass has the maximum
value

(14)

It is of interest to calculate the efficiency η associ-
ated with energy expense. It is defined as

(15)

where A = p0V is the work done by the pressure forces
and V is the volume covered by the shell. Using

Eq. (13), we obtain η = cos4 . For the optimum angle,

η =  ≈ 0.444.

The solution of Eq. (9) that is locally spherically
symmetric can be used as a test for the development of
various approximation methods.

For a similar problem of transverse compression of
a homogeneous dust shell in the form of a cylinder seg-
ment with radius r0 and half-angle θ0 , the law of motion
of shell particles has the form

and the total momentum per unit length of the cylinder
generator is given by the expression

where M = 2r0θ0σ0 is the mass per unit length. The den-

sity is determined as σ = σ0 .

The formulation of the optimum problem leads to
the transcendental equation 2θ0 = tanθ0 , whose solu-
tion is θ0 = 66°47' and, correspondingly,

At t = t∗ , a rod (filament) is formed and moves with

velocity  direction perpendicular to its length in the

1
3
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π
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symmetry plane. The efficiency for the compression of

the cylinder segment is equal to η = . For the

optimum angle, η = 0.623.

CONSTRUCTION 
OF THE GENERAL SOLUTION

Let us seek the solution of the Cauchy problem for
Eq. (4) with zero initial velocity rt = 0 and given initial
radius vector r0(ξα) in the form of the Taylor series in
time t. Since Eq. (4) involves only even-order time
derivatives and the initial condition has the above form,
the solution of this problem is expressed in terms of t2

powers. Thus,

(16)

Using a mass variable, e.g., ξ1, for the determination
of coefficients Rn, we arrive at the recurrence relations

(17)

Using Eq. (17), one can easily calculate any term of
the Taylor series by differentiating the initial conditions
with respect to the Lagrangian variables ξ1 and ξ2. We
estimate the convergence rate of this series by making
all its variables dimensionless.

Let all derivatives of r0 be limited by one constant
C = 1. Then, it is easy to show that the coefficients of
the first terms of the series (beginning with R1) do not
exceed the respective numbers

(18)

Beginning with n = 3, these numbers do not exceed

. Then, applying the principle of mathematical

induction, we assume that |Rn – 1| <  for n > 6.

Using Eqs. (17) and (18), we arrive at the estimate

(19)

which is even stronger than the initial estimate (it is
valid beginning with n = 6). Thus, estimate (19) can
characterize the convergence rate of series (16) for a
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fixed value of t. In this case, series (16) converges abso-
lutely better than a geometric sequence with the

denominator , which is sufficient for at least the

local existence of the solution for t < 2.

An example of the expansion of the spherical shell
shows that it is generally impossible to substantially
improve time t for which series (16) converges. When
the shell expands, the derivatives of the function r(t)
entering into Eq. (9) and integral (10) change their
signs. In this case, the solution tends to infinity with the
asymptotic behavior (t – t∞)–2, where

We emphasize that the convergence of special
classes of solutions may be much better. In particular,

series (16) for plane motion converges as  (see

solutions in [2]).

In addition, we consider series (17) for the spheri-
cal-shell compression specified by Eq. (9). In this case,

, (20)

where τ = t is the dimensionless time. It is

clear that series (20) is inconvenient for determining the
focusing time t∗  when r = 0. To this end, we propose a
method for constructing a polynomial approximating
the solution in the segment [0, t∗ ]. Its minor and major
terms are determined by the asymptotic behaviors for
t → 0 and t → t∗ , respectively. We note that derivatives

r(n) of all orders n = 2, 3, 5, 6, 7, 9, …, along with r, van-
ish at t = t∗ .

We consider only the sixth-order polynomial

The relations r = r(2) = r(3) = 0 determine the con-

stants C1 = , C2 = , and τ∗  =  ≈ 1.651,

which differs by less than 4% from the exact value τ∗  =
1.717 (12).
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This method can be applied in the general case if the
thrown shell is initially smooth. Focusing begins when
the equality r1 × r2 = 0 is reached.

We also note that the solution is simplest if the nor-
mal coordinates yi related to the initial position of the

shell as xi = (yα) + (yα)y3, where xi are the Carte-
sian coordinates, are used as the Eulerian coordinates.
In this case, the time dependence of the coordinates y3

and yα begins with t2 and t4 , respectively.

SPECIAL CLASSES OF SOLUTIONS

We present two sufficiently wide classes of solu-
tions of Eq. (4) that allow the separation of the
Lagrangian variables and time as well as describe fun-
damentally three-dimensional flows. We leave aside a
detailed analysis of the general solution of flat (linear)
and axisymmetric problems. Let us use the mass vari-
able.

The first class of solutions has the form

These solutions are not invariant under group transfor-
mations, but they belong to certain tensor representa-
tions of the SL2 group of linear transformations of vari-
ables ξα conserving area. From this viewpoint, the class
of flows of an ideal fluid, where velocity depends lin-
early on the radius vector, is similar [5, 6]. The coeffi-
cients of polynomials (21) satisfy the systems of equa-
tions

The second class, which obviously overlaps with the
first class, consists of solutions in the form

which are generalized the aforementioned solutions
with uniform deformation [5, 6]. In particular, this class
includes spherically symmetric solution (9) having the
ball matrix A. Substitution into Eq. (4) yields

where |A| = det( ). In this case, one must deal more
carefully with the separation of variables taking into
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account the functional dependence of the variables

(ξα).
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