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A model describing the effect of neutron irradiation
on metallic uranium compounds is proposed to take
into account two opposite phenomena, namely, effec-
tive expansion (swelling) of the crystal lattice due to an
increase in the volume occupied by radiation-induced
defects and compression caused by the pressure created
on the crystal lattice by these defects. In magnetic ura-
nium compounds such as uranium nitride UN, this
compression results in a significant change in the anti-
ferromagnetic transition temperature, whose measure-
ment makes it possible to estimate the properties of the
crystal lattice in the compound.

The majority of promising types of nuclear fuel
presently being used or developed and similar uranium
compounds exhibit strong magnetic properties. For
example, uranium dioxide UO2, uranium nitride UN,
and uranium phosphate UP are antiferromagnets (their
Néel temperatures are 180, 53, and 23 K, respectively).
Uranium chalcogenide US is a ferromagnet (its Curie
temperature is equal to 18 K) [1]. A strong magnetoelas-
tic coupling is observed in all these compounds [1, 2].
In metallic uranium compounds UN and US, this cou-
pling is gigantic and results in magnetostriction of the
order of 10–3, which is close to that found for invar
alloys Fe–Ni, Fe–Ni–Cr, etc. [3]. Thus, magnetism in
metallic uranium compounds is strongly coupled with
their crystal lattice.

On the other hand, nuclear fuel under reactor condi-
tions is irradiated, which results in its effective expan-
sion (swelling) and burning out. This determines the
service life of fuel in nuclear reactors. Despite numer-
ous investigations, the mechanism of such an expansion
determined by various radiation-induced defects
remains unclear [4, 5]. In our opinion, the properties of
the crystal lattice of fuel after the appearance of radia-
tion-induced defects in it are also poorly known.
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The effect of neutron irradiation on the magnetic
properties of various uranium compounds, including
those used as nuclear fuel, has been studied [6]. Even
small irradiation doses (<1017 decays cm–3) turned out
to lead to strong suppression of magnetism.

In this paper, we propose the following mechanism
of the effect of small neutron irradiation doses and radi-
ation-induced defects on the crystal lattice and magne-
tism of metallic uranium compounds, including nuclear
fuel. First, we assume that radiation-induced defects
(vacancies and gas pores, point defects, etc.) caused by
irradiation of the crystal lattice immediately lead to the
change ∆Vrad in the lattice volume. In turn, this change
results in the appearance of an additional internal pres-
sure Prad in the lattice, which can be accompanied by
the compression of the crystal lattice with a change in
its volume ∆Vint < 0. In this case, the total change in the
crystal-lattice volume under irradiation is the sum of
the intrinsic change in the lattice volume ∆Vint and the
change ∆Vrad caused by radiation defects:

. (1)

Second, we assume that all variations of the mag-
netic properties of uranium compounds exposed to
small doses of neutron irradiation under partial preser-
vation of the magnetic order are entirely caused by the
magnetovolume effect. This effect arises due to the
change in the crystal-lattice volume under the pres-
sure Prad .

It should be noted that, in these compounds irradi-
ated by neutrons, the positive volume change ∆Vrad due
to radiation-induced defects may be compensated by
the compression of the crystal lattice (∆Vint < 0) under
the defect-induced pressure Prad. In certain respects,
such compensation is similar to the invar effect [3],
which arises when the expansion of the crystal lattice
due to the phonon anharmonicity is compensated by the
lattice compression caused by the magnetovolume
effect. It is worth noting that the compensation of the
contributions ∆Vrad and ∆Vint to the total change in the
volume of nuclear fuel can significantly reduce effects
of its swelling and promote the prolongation of its ser-
vice life in nuclear reactors.

∆V eff ∆V rad ∆V int+=
2004 MAIK “Nauka/Interperiodica”



 

206

        

SILIN, SOLONTSOV

                                                                            
As an illustration of the proposed model that
describes the behavior of uranium compounds under
neutron irradiation, we now analyze the properties of
uranium nitride UN. This compound is a relatively
simple antiferromagnetic system with itinerant 5f elec-
trons [6] and is considered as a promising nuclear fuel
for fast-neutron nuclear reactors [7]. The effect of both
external hydrostatic pressure [1, 2, 8] and neutron irra-
diation [9] on the magnetism of UN is investigated
quite well, which allows simple estimates.

In the figure taken from [9], the absolute values of
negative changes ∆TN and ∆TC in, respectively, the Néel
and Curie temperatures of a number of metallic ura-
nium compounds having the NaCl structure are given
as functions of the effective change ∆aeff in the lattice
parameter corresponding to formula (1). As is seen in
the figure, for a relative change of 10–3 in the effective
lattice parameter, the temperature of the magnetic tran-
sition in antiferromagnetic UN decreases by about
10 K. Therefore, the relative variation of the total vol-
ume is equal to

(2)

Here, V and a0 are the volume and parameter of the
crystal lattice prior to irradiation, respectively. It is of
interest that, according to the figure, the decrease ∆TN

in the magnetic-transition temperature of UN due to the
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Absolute changes ∆TN and ∆TC in the magnetic-transition
temperatures as a function of the effective variation of the
crystal-lattice parameter ∆aeff/a0 of antiferromagnetic (UN
and UP) and ferromagnetic (US) uranium compounds irra-
diated by neutrons [9].
total irradiation-induced change in volume can be
described by the empirical formula

(3)

where, e.g., for UN,

(4)

We now take into account the experimental data on the
magnetovolume effect in UN [1, 2]:

(5)

Using these data, we can estimate the relation between
the intrinsic change ∆Vint caused in the crystal-lattice
volume by its compression due to radiation-induced
defects and the total change ∆Veff including the effect of
radiation-induced defects (swelling). For UN, we have

(6)

In this case, the volume change due to radiation-
induced defects is

(7)

As follows from the comparison of formulas (5) and
(7), in uranium nitride, the positive contribution to the
volume change ∆Vrad = 4.3∆Veff > 0, which is caused by
radiation-induced defects and results in expansion
(swelling) of the crystal lattice, is partially compen-
sated by the negative contribution ∆Vint = –3.3∆Veff < 0
caused by the compression of the crystal lattice due to
the pressure Prad of radiation-induced defects.

Finally, we can estimate the pressure that is caused
by radiation-induced defects and results in the com-
pression of the crystal lattice. For UN, we arrive at the
relations

 GPa, (8)

where B0 = 203 GPa is the bulk modulus of UN [10].
For irradiation doses corresponding to total change (2)
in the lattice volume, i.e.,

this pressure reaches 2.0 GPa.
On the basis of the above model for the behavior of

uranium compounds under neutron irradiation, we may
suggest new approaches to the nondestructive control
of nuclear fuel in the case of small irradiation doses.
One of these approaches is associated with both the
determination of the irradiation-induced shift of the
magnetic-transition temperature in nuclear fuel and the
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calculation of the volume variations ∆Vint, ∆Vrad , and
∆Veff , which makes it possible to evaluate the effects of
fuel swelling by using the above model. The measure-
ments can be carried out by various methods, namely,
by measuring kinetic properties (electrical and thermal
conductivity), magnetic susceptibility, specific heat,
etc., which have pronounced anomalies at the mag-
netic-transition point [1].

In addition, the above model is suitable for analyz-
ing the properties of neutron-irradiated construction
materials based on austenitic and ferrite-martensitic
steels, because these steels are basically antiferromag-
netic and have strong magnetic properties.
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To develop the method for analyzing a complicated
dielectric spectrum of a semi-electric, or polymeric
semiconductor formed of conducting macromolecules,
we use the effect of their pseudo-isolation [1] discov-
ered for polyacene quinones as an example. This is nec-
essary for developing methods of synthesis of poly-
meric materials used in molecular electronics [2].

We study 76EHE(5) polyacene quinone obtained by
polycondensation of pyromellite dianhydride with
pyrene for five hours by the procedure presented in [3]
(previously, the reaction was carried out for 24 h).
Reduction of the duration of the polycondensation pro-
cess made it possible to reduce the specific conductivity
at constant current σ0 and to measure not only permit-
tivity ε' [3, 4] but also the loss factor ε''. In [5], due to
these measurements, three dispersion regions for ε' and
ε'' were found in the spectrum of a pressed polymer
sample by the method of circle diagrams. These regions
are numbered in order of increasing frequency νmax of
the ε'' maximum and correspond to different polariza-
tion mechanisms. The first dispersion region is attrib-
uted to interlayer polarization [6] associated with the
Schottky barrier; the second region is attributed to the
surface capacity of grains [7], which is associated with
their surface barriers; and the third region is attributed
to the interlayer polarization of three-dimensional con-
ducting macromolecules [8].

The spectrum structure was qualitatively corrobo-
rated [9], but its parameters were incorrect. In particu-
lar, the frequency νmax3 = 5 MHz [5] of the ε'' maximum
in the third dispersion region must be treated as overes-
timated by more than one order of magnitude on the
basis of the pseudo-isolation effect. This effect is a
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decrease in νmax3 compared to its value  ≈ 200 kHz
[5] in the spectrum of the mixture of 76EHE(5) poly-
acene quinone powder with paraffin isolating grains.

The error was caused by using the rule for plotting
circle diagrams for neighboring dispersion regions in
the complicated spectra of ordinary dielectrics [10],
where barrier polarization mechanisms, as well as
interlayer polarization itself, are not observed in the fre-
quency band available for measurements of ε' and ε''
due to low conductivity. According to this rule, the low-
frequency edge  of the third dispersion region must

coincide with the high-frequency edge  of the sec-
ond region:

 = . (1)

Therefore, the neighboring circle diagrams must touch
rather than intersect each other. To decrease νmax3, it is
necessary to increase  as is shown in Fig. 1a. How-

ever, for a fixed  value, this increase leads to the
intersection of the circle diagrams:

 > . (2)

Equality (1) of ε' limits follows from the principle of
superposition of contributions from uncoupled polar-
ization mechanisms to the complex permittivity ε of a
semi-electric. It is also expected that this equality will
be satisfied in the absence of perturbation of the spec-
trum in the third dispersion region by surface-barrier
polarization. To this end, the dispersion regions must
not be too close to each other in the spectrum. The sec-
ond region is observed in the sonic and ultrasonic
bands, and the third region lies in the rf band. However,
the latter is comparatively small and perturbation is
therefore considerable.

We assume that the unperturbed spectrum in each
dispersion region is a Debye spectrum. In the absence
of the Schottky barrier, the observed spectrum with
allowance for the effect of the surface-barrier polariza-
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Fig. 1. Circle diagrams for 76EHE(5) polyacene quinone in the (a) third and (b) first and second dispersion regions for a frequency
of (1) 0.1, (2) 0.2, (3) 0.4, (4) 0.6, (5) 1, (6) 2, (7) 3, (8) 5, (9) 10, (10) 30, (11) 50 kHz, (12) 0.15, (13) 0.5, (14) 1.5, (15) 5, (16) 12,
and (17) 50 MHz.
tion on the polarization of macromolecules is described
by the equation

(3)

Here, j is the imaginary unit, z = , ∆ε' =  –  is

the ε' increment in the dispersion region, and both the
parameter α of the relaxation-time distribution and
effect factor f lie from 0 to 1.

Since the circle-diagram method is based on the geo-
metric interpretation of the relation between ε' and ε'' on
the complex plane corresponding to Eq. (3), rule (1) for
ordinary dielectrics must be satisfied for f = 0.

For semi-electrics, the effect of barrier polarization is
negligibly small in the absence of perturbation (z2 → ∞).
Therefore, the neighboring circle diagrams must only
touch each other according to equality (1) of limits. To
satisfy this requirement, it is necessary to set f = 0 in
Eq. (3). In this case, the static permittivity  of the
semi-electric, which is measured at low frequencies
(ν ! νmax2), is determined by the sum of increments ∆ε'
of the unperturbed dispersion regions according to
equality (1):

 =  + ∆  + ∆ . (4)

In the presence of perturbation, ∆  decreases due
to the effect of the surface barrier that corresponds to
f > 0. Therefore, the neighboring circle diagrams inter-
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sect each other, and the  value is smaller according to
inequality (2) between limits:

 =  + (1 – fs)∆  + ∆ . (5)

Here, the effect factor can be expressed as

(6)

In this case, according to Fig. 1a, the contribution from
the interlayer polarization of macromolecules to  is
as small as 20% of the unperturbed value, because fs =
0.8 according to formula (6).

In the model of the surface capacity of grains [7], air
gaps between polymer grains are disregarded [9],
because they are bypassed by surface electric conduc-
tivity through electron traps. The surface barrier is
formed between resistance R1 in a grain and its bulk
resistance R2 < R1 , which leads to the redistribution of
the applied voltage to the barrier. This redistribution
reduces the contribution from macromolecules in the
grain bulk to the ε value. Therefore, f in Eq. (3) is pos-
itive for any frequency. For ν ! νmax2 , when surface-
barrier polarization follows the applied electric field,
the grain is virtually nontransparent for this field. In this
case, f = fs ≈ 1, and the contribution from macromole-
cules is negligible. If ν @ νmax2 (z2 → ∞), barrier polar-
ization cannot be established during the half-period of
the applied voltage, the grain becomes transparent for
the field, and the third dispersion region is observed in
the part corresponding to fs = 0.8. However, this part
presents the unperturbed (Debye) spectrum corre-
sponding to f = f∞ = 0 and, therefore, to the unperturbed
∆  value in Eq. (3).
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The above method of overlapping circle diagrams
with allowance for inequality (2) of ε' limits includes
the construction of the circle diagram based only on the
observed part of the third dispersion region. However,
such a construction is not uniquely defined, because
the experimental part of an arc is small. Due to the
noticeable random error in measurement of ε'' near the
high-frequency edge of the third region (Fig. 2, line 4),
it is impossible to apply the logarithmic-asymptote
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Fig. 2. Dispersion patterns for 76EHE(5) polyacene
quinone that are constructed using the data for the third dis-
persion region shown in Fig. 1a: (1) ε1 for ∆ε' = 8 and  =

3.5, (2) ε2 for  = 1.67 and α = 0.5, (3) the active con-

ductivity σ of the sample, (4) the theoretical σ value for the
third dispersion region, and (5) the logarithmic asymptote
of active conductivity.

ε∞'

εmax''
method [11]. This difficulty is overcome by using the
pseudo-isolation-effect method [12], which is applica-
ble for model semi-electrics corresponding to the struc-
ture model of polydispersion. According to this model,
polyacene quinone macromolecules are spherical and
distributed over the size and conductivity in the dielec-
tric matrix with the volume concentration of the con-
ducting phase v  in a pressed sample and v ' ! v  in the
mixture with paraffin. When plotting variants of the cir-
cle diagram (Fig. 1a), the ∆  value is determined by
the formula

∆  = η(µ – 1) (7)

for various pseudo-isolation-effect parameters

 > 1. (8)

The η coefficient is calculated by the formula

(9)

where 0 ≤ N ≤ 1 is the depolarization coefficient of mac-
romolecules, which depends on their shape, and  is

the permittivity of paraffin. Taking N =  for the spher-

ical shape,  = 4 [12],  = 2, and v ' = 0.1, we obtain
η = 0.87.

To choose a variant of the circle diagram, we use the
dispersion-plot method [13], in which values measured

for permittivity ε1 =  and the loss factor ε2 = 

are compared with their theoretical values under the
assumption of the applicability of the generalized
Debye equation for the description of the spectrum in
the third dispersion region. According to Fig. 2, the
chosen value ∆  = 8, which corresponds to the accept-

able value N = 0.37 for νmax = 110 kHz (Fig. 2),  =

225 kHz [5], and  = 3.5 (Fig. 1a), is larger than the

previously obtained value ∆  = 2.5 [5] by a factor of 3.
However, it is equal to one-third of the value obtained
by the logarithmic-asymptote method from indepen-
dent data [11]. This difference can be attributed to the
fact that, due to the inclusion of the surface barrier, the
dimension effect is observed for smaller grains. The
dimension effect was previously assumed only for
grains smaller than the radius of macromolecules [14].

The effect of the Schottky barrier on the surface-bar-
rier polarization is similar. For low frequencies (ν !
νmax1), the sample bulk can be treated as a continuation
of an electrode, because the applied voltage is redistrib-
uted to the thin near-electrode high-ohmic layer. There-
fore, the contribution of grains in the bulk of a pressed
sample to the permittivity ε of the semi-electric is neg-
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ligible. For high frequencies (ν @ νmax1), the sample
bulk becomes transparent to the electric field and the
second dispersion region is observed in the part that is
close to the high-frequency edge and corresponds to the
unperturbed Debye spectrum.

The parameters of the second dispersion region are
determined in a similar approach, i.e., the construction
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Fig. 3. Dispersion patterns for 76EHE(5) polyacene
quinone constructed using the data for the second disper-
sion region shown in Fig. 1b: (1) ε1 for ∆ε' = 60 and  =

5.1, (2) ε2 for  = 18.4, and (3) ∆ for  = 0.75

and α = 0.7.
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of the circle diagram disregarding  according to the
inequality of ε' limits (Fig. 1b). However, a variant of
dispersion plots is chosen by the method of the auxil-
iary maximum  [15] of the loss-angle tangent

 = , which is observed in contrast to the maxi-

mum of ε'' (Fig. 3, lines 2, 3). The correspondence of the
observed spectrum of  to the Debye spectrum is
checked by the method of dispersion ∆ plots, in which
values measured for the relative loss-angle tangent ∆ =

 are compared with the theoretical formula [15]

(10)

Here, y = , where νmaxδ is the frequency of the

maximum of , and b = (χ1/2 + χ–1/2)cosαπ/2,

where χ = . The  value is correct because the

parameters of the second dispersion region satisfy the
formula [15]

 = χ1/2α (11)

within an accuracy of 7%.
The above study shows that the possibility of violat-

ing the superposition principle must be taken into
account when using circle diagrams to analyze the
complicated spectra of polymeric semiconductors.
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Current technologies of the epitaxial growth of thin
films make it possible to produce multilayer structures
consisting of alternating layers of different materials
with a thickness comparable with the crystal lattice
constant. Such structures belong to superlattices and,
due to their unique physical properties, are promising
for the creation of various radio- and optoelectronic
devices. In particular, multilayer structures consisting
of alternating magnetic and nonmagnetic metallic lay-
ers can be used as detectors of magnetic fields, because
they are characterized by the giant magnetoresistive
effect [1]. Superlattices consisting of alternating dielec-
tric layers with different permittivities are used as
polarizers in switching devices in fiber-optic communi-
cation lines [2]. They can serve as filters and mirrors for
electromagnetic waves of the x-ray, as well as optical,
band [3, 4]. In addition, superlattices are used to create
various photonic crystals, which have been intensively
studied in recent years [5, 6].

In view of the difficult technological problems of the
manufacture of high-quality multilayer structures and
their high cost, it is sometimes appropriate to carry out
preliminary experimental investigations of the proper-
ties of superlattices on bulk (non-film) analogues work-
ing at frequencies much lower than optic frequencies.
For example, irregular waveguide structures working in
the UHF band can be used as an analogue of a superlat-
tice consisting of alternating dielectric layers, which
can be used as a filter or mirror in a certain frequency
band. In particular, experimental investigations of the
frequency dependences of passing and reflecting pow-
ers with respect to incident power with variation of the
number and parameters of layers in a structure are usu-
ally carried out by using waveguides containing various
irregularities, such as dielectric or metallic pins, steps,
etc., as well as special corrugated waveguides.

In this work, we proposed a microstrip model for
studying the properties of superlattices. It is simple and
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Krasnoyarsk, 660036 Russia

* e-mail: belyaev@iph.krasn.ru
1028-3358/04/4904- $26.00 © 20213
can be easily manufactured. Its main advantage is that
its properties are closer to the real layered structure of
a superlattice than those of waveguide analogues. This
advantage is due to the fact that the basic oscillation
modes propagating in microstrip transmission lines are
quasi-TEM waves whose rf-field structure virtually
coincides with the structure of the fields of transverse
waves propagating in superlattices. At the same time,
waves propagating in waveguides are either E or H
waves that have either electric or magnetic rf-field com-
ponents along the propagation direction, respectively.

BASIC RESULTS

The effective permittivity determining the propaga-
tion velocity and, correspondingly, the electromagnetic
wavelength in a microstrip transmission line is expressed
in terms of the basic parameters of the line as [7]

where

(1)

h is the substrate thickness, ε is the relative permittivity,
and w is the width of the strip conductor. Formula (1) is
valid for the zero-thickness strip conductor and only in
the quasistatic frequency band, when the width w and
thickness h of the microstrip transmission line are much
shorter than the length of an electromagnetic wave
propagating in the line.

Figure 1 shows the ratio  calculated by Eq. (1) as

a function of the relative width of the strip conductor
for three substrate materials—FLAN, alumina, and
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TBNS ceramic with ε = 2.8, 9.8, and 80, respectively—
widely used in UHF equipment. As is seen, the range of
variation in the effective permittivity with an increase
in w is relatively wide for all substrates. In particular,
εeff ≈ 45 and 67 for a microstrip transmission line on a
1-mm-thick TBNS-ceramic substrate whose width is
w = 0.1 and 10 mm, respectively. These properties
make it possible to develop microstrip models of the
above superlattice that are a series of regular segments
of microstrip lines with different widths of conductors.
Figure 2 shows a construction that is symmetric with
respect to its middle and consists of seven segments of
microstrip lines whose conductors have widths w1 – w4
and lengths l1 – l4 .

Such a construction operates in the UHF band as a
low-frequency filter. However, with the appropriate
adjustment, it can also be used as a band-pass filter. As
an example, Fig. 3 shows the frequency response of the
(solid lines) direct losses of UHF power passed through

0.6

2

h
w

w/h4 6 80

0.7

0.8

0.9
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εeff/ε

ε = 2.8

9.8 80

Fig. 1. Effective permittivity of the microstrip line vs. the
relative width of the strip conductor.

Entry
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l1 l2 l3 l4

w1
w2

w3
w4

Fig. 2. Microstrip model of a seven-layer superlattice.
the microstrip structure and (dashed lines) reflection
losses. Figure 3a is given for a filter that is based on a
1-mm-thick alumina substrate (ε = 9.8) and has a pass
band with central frequency f0 = 3 GHz and relative

width  = 40% measured at a level of –3 dB from the

minimum-loss level. The parametric synthesis of the
seven-segment construction under consideration was
carried out numerically in the quasistatic approxima-
tion. In addition to the central frequency and width of
the pass band, the maximum reflection level in the band
was given as Lr = –14 dB. The adjustment of the filter
was performed by correcting the length and width of
strip conductors in each regular segment.

Regular segments of the lines in the microstrip con-
struction under consideration, which model corre-
sponding dielectric layers of a superlattice, are obvi-
ously resonators. Therefore, the number of the minima
of reflection losses in the pass band of the microstrip
structure is equal to the number of regular segments in
it. It is worth noting that three conditions must be satis-
fied for the adjustment of the superlattice model as well
as for the tuning of any multisegment band-pass filter.
First, outer resonators (segments) must be properly
coupled with the input and output transmission lines.
This coupling is determined by the given pass band of
a device. Second, couplings between all segments must
be balanced. Third, the resonance frequencies of seg-
ments must coincide with the central frequency of the
pass band. Coupling between adjacent resonators is pri-
marily determined by the difference between the wave
resistances of their microstrip lines. In the quasistatic
region, these resistances are calculated by the formulas

(2)

Coupling between resonators with the external section
is determined by the difference in the wave resistances
of the carrying transmission lines Z0 = 50 Ω and the cor-
responding segments of the microstrip transmission
lines in the model under consideration. Coupling
between segments in the microstrip structure is deter-
mined not only by jumps in wave resistances but also
by the loaded Q-factor of the resonators. This factor
affects the amplitudes of rf fields in the resonators and
is higher for inner segments. As a result, to ensure a
given coupling constant between inner resonators, the
jump of the wave resistances of their line segments
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must be larger than that for the outer resonators. This
fact is reflected by the construction parameters
obtained from the parametric synthesis of the micros-
trip model under consideration and presented in the
table in comparison with the construction parameters of
a similar filter whose pass band has a relative width of

 = 60%.

Figure 3b shows the frequency dependences of
(solid line) direct and (dashed line) reflection losses for
the microstrip structure under consideration for l1 = l2 =
l3 = l4 = 17.19 mm. In this case, the width of the conduc-
tors in the regular segments with low wave resistance is
equal to the width of the first segment, w1 = w3 =
3.92 mm, and the width of the conductors with high
wave resistance is equal to the width of the second seg-
ment, w2 = w4 = 0.10 mm. Such a construction corre-
sponds to a superlattice consisting of seven alternating
layers with equal thickness with the permittivities ε1 =
7.58 and ε2 = 5.94 (see table). In this case, the pass band
includes strong reflections, leading to unacceptably
large irregularity of the frequency response. Moreover,
the width of the pass band increases and the stop levels
decrease considerably both to the left and right of this
band. These properties are obviously attributed to the
higher natural frequencies of the layers with low per-
mittivity, which are pronounced in the frequency
response (Fig. 3), as well as to unbalanced couplings
between resonators. Therefore, a superlattice consist-
ing of alternating layers with different permittivities
and identical thicknesses cannot serve as a band-pass
filter.

The experiment with several superlattice models
made by the lacquer engraving method [8] agrees quite
well with the numerical calculation. As an example,
Fig. 4a shows measurements of direct and inverse
losses for a seven-element filter that had a relative

width of the pass band of  = 60% and was obtained

by the parametric synthesis on a 1-mm-thick alumina
substrate. The lines are calculations for the model
where the real construction parameters of the micros-
trip structure are used: w1 = 2.10 mm, l1 = 18.95 mm,
w2 = 0.44 mm, l2 = 19.69 mm, w3 = 3.15 mm, l3 =
18.09 mm, w4 = 0.33 mm, and l4 = 19.88 mm.

As was shown by investigations, increasing the
jump of the wave resistances of the microstrip lines in
models of band-pass superlattice filters, one can reduce

the relative width of their pass band to  = 1%. Nec-

essary large jumps of wave resistances can be obtained
by using composite (hybrid) substrates of different
materials with high and low permittivities for the low-
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and high-ohmic segments of transmission lines, respec-
tively.

Investigations also show that an increase in the num-
ber of segments leads to an almost exponential increase
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Fig. 3. Frequency dependences of (solid lines) losses in the
passed electromagnetic wave and (dashed lines) reflection
losses in the microstrip model of the superlattice with
(a) optimized layer parameters and (b) identical thickness
of alternating layers.

Parameters of microstrip segments for lattice filters whose
first pass bands have relative widths of 40 and 60%

Layer
no. , % w, mm l, mm εeff

1 (7) 40 3.92 17.19 7.58 0.43

60 2.47 17.62 7.22 0.59

2 (6) 40 0.10 20.49 5.94 2.16

60 0.50 19.66 6.32 1.33

3 (5) 40 6.44 17.14 8.00 0.29

60 3.54 17.78 7.50 0.46

4 40 0.05 20.69 5.84 2.52

60 0.36 19.92 6.22 1.49
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Fig. 4. Frequency responses of microstrip models of filters for the (a) seven-layer superlattice (lines are calculations, points are
experimental data) and (b) superlattice with 3–11 layers (points are reflection losses for the 11-layer filter).
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in damping in the stop bands as well as to an increase
in the slops of the frequency response. This statement is
corroborated in Fig. 4b, which shows the frequency
response of alumina substrate filters that have a pass-

band width of  = 60% and consist of 3–11 seg-

ments. It is seen that each addition of two segments to
the construction under consideration leads to an
increase in damping in the stop bands to the left and
right of the pass band by almost 10 dB. It is worth not-
ing that damping in the stop bands increases strongly
with a decrease in the width of the pass band of the
device.

CONCLUSIONS

The proposed microstrip model is a close analogue
of a superlattice consisting of alternating layers with
different permittivities. Due to good agreement of the

∆ f 3

f 0
---------
quasistatic numerical analysis of the model with exper-
iment, the construction parameters of a band-pass filter
on a superlattice with given characteristics can be
obtained. Since microstrip structures are simple to pro-
duce and cheap, a device can be preliminary checked
experimentally in the chosen UHF band.

Investigations show that a superlattice even with a
comparatively small number of layers can serve as a
good band-pass filter under three conditions. First, the
necessary jump must be ensured between the wave
resistances of the outer layers of the superlattice and the
wave resistances of the entry and exit. The jump value
is determined by a given pass band of the device. Sec-
ond, it is necessary to balance couplings between the
layers in the superlattice by choosing their permittivi-
ties. These couplings must also correspond to the given
pass band. Third, the natural frequencies of all layers
serving as resonators must coincide with the central fre-
quency of the pass band. The proposed approach can
DOKLADY PHYSICS      Vol. 49      No. 4      2004
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obviously be used to model optical mirrors and photo-
nic crystals.
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A single loading of construction elements with
stress concentrators is characterized by elastic–plastic
deformation, development of plastic zones, and final
fracture. Data on the kinetics of elastic–plastic defor-
mation and the character of fracture under stress con-
centration can be used to estimate the strength and bear-
ing strength of construction elements with stress con-
centrators. The appearance and development of elastic–
plastic deformations in stress-concentration zones lead
to both the redistribution of stresses and change in the
temperature of a material.

In this work, deformation, stages of the develop-
ment of plastic deformation zones, and fracture of met-
als under stress concentration are studied by the ther-
mal radiation method based on analysis of the change
in the temperature of a specimen.

Virtually all physical processes in loaded materials
(phase transformations, plastic deformation, fracture,
etc.) are accompanied by the release or absorption of
heat. Study of the deformation and fracture of materials
by recording thermograms and measuring temperature
is based on the thermal effect accompanying deforma-
tion processes. Thermal effects accompanying elastic
and plastic deformations have been known since the
1850s. Heating and cooling of elastic bodies under
loading were described and then experimentally stud-
ied by W. Thompson (Lord Kelvin) in 1855. More
recently, variation in temperature under mechanical
loading was experimentally detected by J.P. Joule
(1857), H. Hort et al. (1907), E. Rasch (1908), A. Nadai
(1911), and others. Brief descriptions of these experi-
ments can be found in [1]. Temperature variation
accompanying deformation processes in solids is stud-
ied by thermoelectric, calorimetric, and thermovision
methods.
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Cooling and heating of a metal are observed under
elastic tension and compression, respectively. The tran-
sition to the plastic deformation stage is accompanied
by the appearance of irreversible plastic deformations
as well as by the release and dissipation of energy in the
form of heat [1–15].

Mechanisms responsible for radiation accompany-
ing the deformation and fracture of specimens of metals
and alloys under various loading types were explained
in [5–7]. In addition, the appearance of infrared and vis-
ible radiation under the deformation and fracture of
metals was discovered, and the mechanism of the emis-
sion of these types of radiation was explained.

Methods were developed for (i) obtaining tempera-
ture distribution over a specimen [8, 9], (ii) estimating the
inhomogeneity of stress distribution in the stress-concen-
tration zone [10, 11], (iii) analyzing stress fields [12],
(iv) determining both the specific work of the fracture
of a specimen with a crack and the stress intensity
coefficient [13], and (v) analyzing the kinetics of the
deformation and fracture of materials by the thermal
radiation method [14]. Temperature was measured by
thermocouples and thermovision instruments. Thermo-
vision methods are also applied in practice for nonde-
structive testing of various objects, including large
metallic constructions of lifting machines [11], for the
detection of defects in construction elements [15], etc.

The kinetics of both deformation and limiting state
of construction materials (metals and their alloys) was
experimentally studied in [14] under the conditions of
homogeneous stress–strain state by the thermal radia-
tion method.

As is known, plastic deformations are localized in
the stress-concentration zone arising due to a natural
defect or an artificial stress concentrator. Thermal radi-
ation in the regions of the development of plastic defor-
mations is more intense than radiation in the other part
of the specimen and is maximal at the fracture of the
specimen. This circumstance, along with the time
dependence of the thermal process corresponding to
deformation, stimulates the study of the kinetics of the
elastic–plastic deformation and fracture of construction
2004 MAIK “Nauka/Interperiodica”
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Fig. 1. Thermograms of a plane 10kp5-steel specimen with a circle hole for δ = (a–h) 1–3.1% and (i–k) 6.8–7.3%.
elements with stress concentrators by instruments
detecting thermal radiation.

The kinetics of the deformation and fracture of spec-
imens with geometric stress concentrators was experi-
mentally studied by the TKVr–IFP thermovision sys-
tem developed at the Institute of Semiconductor Phys-
ics, Siberian Division, Russian Academy of Sciences
(Novosibirsk). Its limiting sensitivity is equal to
±0.03 K, measured temperature range is 293–318 K,
spatial resolution is no worse than 0.3–0.4 mm per
pixel, recording rate is equal to 20 fps, and the charac-
teristic working wavelength lies in the range 2.8–
3.05 µm. It provides analysis of thermograms, etc. [15].
The stages of the development of deformations were
analyzed on thermograms and temperature plot along
with the tension diagram. The scheme of thermovision
measurements provided the maximum possible spatial
resolution.

During experiments, static thermograms were
obtained and on-line analysis was carried out with the
representation of the thermal images of specimens on a
computer monitor. Individual thermograms and ther-
mofilms were conserved in the file form. Computer
analysis of thermograms included the following func-
tions: (i) on-line observation of a color or black-and-
white thermal image on the computer monitor, (ii) mea-
surement of temperature at any point of a frame,
OKLADY PHYSICS      Vol. 49      No. 4      2004
(iii) representation of the temperature distribution
along the horizontal and vertical lines of the frame,
(iv) representation of the time dependence of tempera-
ture at a chosen point on the thermogram (in the ther-
mofilm regime), and (v) detection of time variations in
maximum Τmax, minimum Tmin, and average Tav tem-
peratures of the chosen part of the specimen surface.

Uniaxial tensile tests of specimens were carried out
on an Instron-1195 universal testing machine at room
temperature under loading rates ensuring the adiabatic-
ity of the deformation process. To analyze the effect of
the stress concentration on change in the temperature
regime, we tested the following specimens with stress
concentrators: cylindrical metallic (technical copper)
specimens with a ring neck and 10kp5-steel plane spec-
imens with central circle holes. The kinetics of the tem-
perature (plastic-deformation) field at the stage of the
elastic–plastic deformation of a specimen with a stress
concentrator can be described by analyzing the patterns
of infrared radiation (Fig. 1) and variation in its temper-
ature regime (Figs. 2–4).

As an example, Fig. 1 shows a set of thermograms
of a 230 × 100 × 1.6-mm 10kp5-steel specimen with a
hole 22 mm in diameter for δ = (a–h) 1–3.1% and
(i−k) 6.8–7.3%. These thermograms were obtained
under the uniaxial tension of the specimen with a rate
of 0.83 mm/s. As is seen in Fig. 1, thermograms reflect
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the development of plastic deformations. The thermo-
gram in Fig. 1a corresponds to the elastic deformation
stage, and the thermograms in Figs. 1b–1h, to various
degrees of the development of plastic deformations in
the sample. The development of slip bands is seen on
both sides of the stress concentrator. The thermograms
in Figs. 1i–1k were obtained after the appearance of
cracks on both sides of the hole. The development of
plastic deformation zones is seen at the crack apices.

Figure 2 shows the stress–strain curve for a speci-
men with a hole along with variations of the maximum,
average, and minimum temperatures measured in a
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Fig. 2. (1) Stress–strain curve for a plane 10kp5-steel spec-
imen with a circle hole; strain dependence of the (2) maxi-
mum, (3) average, and (4) minimum temperatures in the
working part of the specimen.
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Fig. 3. Three-dimensional plot of the temperature field of
the plane 10kp5-steel specimen with the circle hole for σ =
248 MPa and δ = 7%.
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5

chosen working part of the specimen. The stress–strain
curve plots the normal stress σ in the minimum cross-
section versus the specimen strain (relative elongation)
δ. The processes of deformation and fracture are
reflected most completely and reliably by variation in
the maximum temperature of the specimen. Analyzing
both the strain dependence of the temperature of the
construction element with the hole and changes in the
thermograms, we draw the following conclusions. In
the elastic region, temperature decreases by 0.08 K on
average (Fig. 2). Temperature first begins to increase at
stress σ = 255 MPa, which corresponds to the onset of
the local plastic flow of a material near the hole. The
monotonic increase in temperature up to the point Ä on
the stress–strain curve (σ = 261–327 MPa, δ = 1.1–
3.2%) corresponds to the development of plastic defor-
mations that terminates with the envelopment of the
dangerous cross section by a plastic flow. Thermograms
exhibit Chernov–Luders slip bands that reach the lat-
eral surface of the plate at an angle of 45°. In the AB
interval (δ = 3.2–4.7%), plastic deformations propagate
further through the basic part of a specimen. At this
stage, the relaxation of the nominal stresses is
observed, and temperature decreases due to the unload-
ing of the material along the dangerous cross section.
The further considerable increase in temperature in the
BC interval up to the maximum stress corresponds to
the relative elongation δ = 4.7–6.7%, at which the
intense development of plastic deformations, as well as
the contraction of the material, occurs. Then, when
cracks appear on both sides of the hole, temperature
increases abruptly by ∆T = 21.5 K. Each crack grows
up to 7 mm. A thermal pulse (abrupt temperature
increase) at δ = 6.8%, which was detected at the stage
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Fig. 4. (1) Stress–strain curve for a cylindrical copper spec-
imen with a ring neck; strain dependence of the (2) maxi-
mum, (3) average, and (4) minimum temperatures near the
stress concentrator.
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of the pre-fracture (preceding the complete fracture) of
the 10kp5-steel specimen with the circle hole, charac-
terizes the appearance of a crack on the contour of the
hole. The propagation of the main crack (complete frac-
ture of the specimen) is accompanied by considerable
heat release. The appearance of two thermal pulses is
associated with the viscous fracture of the specimen
with the concentrator.

As an example, Fig. 3 shows the three-dimensional
plot (isometry) of the temperature field over the surface
of the 10kp5-steel specimen with the hole. The plot was
obtained using Microsoft Excel and corresponds to the
stage when cracks are present on both sides of the hole
(Fig. 2, point D in line 1).

The kinetics of the temperature field in the techni-
cal-copper specimen with the neck differs from kinetics
for steel specimens with holes and is determined by the
physical and mechanical properties of copper. The
strain dependence of the temperature of the copper
specimen with the ring neck (88 mm in length, 10.3 mm
in diameter, with a neck radius of 2.5 mm) is shown in
Fig. 4. It reflects the deformation process in a material
with high plasticity and thermal conductivity under the
stress-concentration conditions. The loading rate was
equal to 0.83 mm/s. The thermal process is concen-
trated in the neck region. Due to high thermal conduc-
tivity, temperature decreases slightly at the elastic defor-
mation stage. Under plastic flow conditions and develop-
ment of plastic deformations, temperature increases
monotonically up to the fracture of the specimen.

Thus, experimental procedures based on the detec-
tion of thermograms by a thermovision instrument and
further analysis of thermograms and variation in the
temperature of a specimen under deformation can be
successfully applied to study the kinetics of deforma-
tion in the inhomogeneous stress–strain state. The dif-
ference in the character of the deformation and fracture
of construction elements that include stress concentra-
tors and are made of different materials is manifested
on thermograms and the plot of temperature variation.
Nonmonotonic variation in the temperature of 10kp5-
steel specimens at the deformation stage from the onset
of local plastic flow to the fracture of the material in the
stress concentration zone reflects the dynamics of the
development of plastic deformations over a specimen.
The observed temperature decrease corresponding to
the relaxation of nominal stresses is associated with the
unloading of the material in the dangerous cross section
due to the propagation of plastic deformations over the
basic part of the specimen. A thermal pulse (abrupt
temperature increase) detected at the pre-fracture stage
for steel specimens with stress concentrators corre-
sponds to the appearance of a crack and is determined
by the elastic compression of the material under the
rapid unloading of the specimen due to the formation of
new surfaces. The plastic-flow onset, appearance of the
Chernov–Luders bands, localization of the plastic flow
DOKLADY PHYSICS      Vol. 49      No. 4      2004
in the stress-concentration zone, and the contraction of
the material near the concentrator are identified by
bends, whereas the appearance of a crack and the frac-
ture of the specimen, by sharp peaks in the temperature
curves.

ACKNOWLEDGMENTS

This work was supported in part by the Russian
Foundation for Basic Research (project
no. 03-01-96065r2003arktika) and the Program for
Basic Research, Division of Power and Mechanical
Engineering, Mechanics, and Control Processes, Rus-
sian Academy of Sciences (project no. 3.11.4).

REFERENCES

1. A. Nadai, Theory of Flow and Fracture of Solid
(McGraw-Hill, New York, 1963; Mir, Moscow, 1969),
Vol. 2.

2. J. C. Erdmann and J. A. Jahoda, Appl. Phys. Lett. 4, 204
(1964).

3. Y. Nakada, Philos. Mag. 11, 251 (1965).
4. Ya. B. Fridman, Mechanical Properties of Metals:

Deformation and Destruction (Mashinostroenie, Mos-
cow, 1974), Part 1.

5. A. A. Tupik, N. P. Valuev, and B. V. Manegin, Dokl.
Akad. Nauk 272, 858 (1983) [Sov. Phys. Dokl. 28, 890
(1983)].

6. K. B. Abramova, B. P. Peregud, and I. P. Shcherbakov,
Zh. Tekh. Fiz. 60 (4), 159 (1990) [Sov. Phys. Tech. Phys.
35, 497 (1990)].

7. G. V. Mikhaœlova, B. K. Zuev, N. P. Novikov, et al., Dokl.
Akad. Nauk 295, 1324 (1987) [Sov. Phys. Dokl. 32, 643
(1987)].

8. W. Dahl and P. Belhe, in Static Strength and Mechanics
of Steel Fracture: Collection of Scientific Works (Metal-
lurgiya, Moscow, 1986) (translated from German),
pp. 51–133.

9. M. M. Krishtal, Metalloved. Term. Obrab. Met., No. 4,
27 (2003).

10. V. Ya. Bash, Thermoelectric Studies of Stress and Strain
(Naukova Dumka, Kiev, 1984).

11. V. N. Pustovoœ, Noncontact Method of Studying Stress
Concentration in Metal Constructions of Elevators (VO
Mortekhinformreklama, Moscow, 1991).

12. D. Oliver, in Handbook of Experimental Mechanics, Ed.
by A. S. Kobayashi (Prentice-Hall, Eagle Wood Cliffs,
1987; Mir, Moscow, 1990), Vol. 2, pp. 113–123.

13. V. E. Remorov, Zavod. Lab., No. 5, 27 (1992).
14. A. M. Ivanov, E. S. Lukin, and V. P. Larionov, Dokl.

Akad. Nauk 384, 469 (2002) [Dokl. Phys. 47, 454
(2002)].

15. E. S. Lukin, A. M. Ivanov, and B. G. Vaœner, Defekto-
skopiya, No. 6, 70 (2003).

Translated by R. Tyapaev



  

Doklady Physics, Vol. 49, No. 4, 2004, pp. 222–225. Translated from Doklady Akademii Nauk, Vol. 395, No. 4, 2004, pp. 470–473.
Original Russian Text Copyright © 2004 by Argatov.

                                                                                                                              

MECHANICS
Axisymmetric Hertz Problem with Tangential Displacements 
on the Contact Surface

I. I. Argatov
Presented by Academician N.F. Morozov November 27, 2003

Received December 10, 2003
The Hertz contact problem in a more precise formu-
lation is analyzed and, under certain assumptions,
reduced to a system of two integral equations with
asymmetric kernels. An approximate solution is
obtained in a closed form.

1. HERTZ PROBLEM
IN A MORE PRECISE FORMULATION

Let elastic bodies Ω1 and Ω2 in undeformed states
touch each other at the point O near which the surfaces
in contact are specified by the equations

where Ri is the curvature radius of the surface of the
body Ωi at the point O. Let δ0 be the approach of the
bodies Ω1 and Ω2 compressed by oppositely directed
forces each of magnitude P.

We consider two points, M1 and M2 , on the front sur-
faces of the bodies Ω1 and Ω2 . The point Mi is shifted

under deformation by (ri) and wi(ri) in the radial and
vertical directions, respectively. The conditions of com-
patibility of displacements have the form [1]

(1.1)

These equalities must be satisfied for 0 ≤ ri ≤ ai,
where i = 1 and 2 and a1 and a2 are the radii correspond-
ing to the points M1 and M2 at the edge of the contact
area. In this case, the radius of the contact area ω is
determined from the relation

(1.2)

The displacements of the points of the elastic bodies
near the contact area are expressed in terms of the solu-

zi 2Ri( ) 1– r2, i 1 2,,= =

ur
i

r1 ur
1+ r2 ur

2, z1 w1++ z2 w2+( )– δ0.+= =

a a1 ur
1 a1( )+ a2 ur

2 a2( ).+= =
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tion of the Boussinesq problem as

(1.3)

(1.4)

Here, i = 1 and 2, ωi is a circle with the radius ai (pro-
totype of the contact area for the body Ωi), and pi(ri) is
the density of generalized contact pressures.

According to the static equilibrium equation,

(1.5)

Expressing radii r1 and r2 from the first of Eqs. (1.1)
and using the second of Eqs. (1.1), we arrive at the lin-
earized equations

(1.6)

where R–1 =  +  is the total curvature. To sim-
plify system (1.6), Galanov [2] proposed the assump-
tion

(1.7)

where k is a certain constant. The adequacy of hypoth-
esis (1.7) was numerically checked in [2]. In view of
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relations (1.7), system (1.6) takes the form

(1.8)

Here, Θi = θi + k–1θ3 – i ,  = (–1)i + 1(  – k–1 ),

and Bi and  are integral operators in formulas (1.3)
and (1.4). The contact area is determined from the con-
dition that the contact pressures are positive; i.e.,
pi(ri) > 0 for 0 ≤ ri < ai and pi(ai) = 0.

To determine the contact pressure densities p1(r1)
and p2(r2), radii a1 and a2 , approach δ0 of the elastic
bodies, and auxiliary parameter k under a given contact
force P, Galanov [2] proposed an algorithm based on
the numerical method developed in [3]. In [4], a solu-
tion was obtained by a numerical method where inte-
gral operators were approximated by finite sums. The
two-dimensional contact problem in a more precise for-
mulation was analyzed analytically in [5]. An approach
based on the theory of variational inequalities was
developed in [6, Section 2.3] for models of plates and
shells with contact conditions similar to Eq. (1.8).

Equations (1.6) were derived by disregarding the

term (2R2)–1( (r1) – (r2))2 and retaining the term

(2R2)–1( (r1) – (r2))r1, which provides a correction
to the Hertz theory. Since

(1.9)

we obtain the estimate  < πai pi0 , where pi0 is the
maximum of the density pi(ri). Determining pi0 from the
Hertz theory, we conclude that the tangential displace-

ments (ri) (up to a factor depending on the ratio of the
elastic constants) is less than the approach δ0. Thus, the

correction terms are equal to about R–1/2, because

the radius ai of the contact area is equal to about ,

and the rejected terms are equal to about R–1; i.e., the
relative error of the linearized condition of displace-

ment compatibility is equal to about .
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2. APPROXIMATE SOLUTION 
OF THE REFINED CONTACT PROBLEM

The general solution of the axisymmetric contact
problem has the form [7–9]

(2.1)

where, in view of Eqs. (1.8) and (1.9),

(2.2)

Substituting expression (2.2) into the first of
Eqs. (2.1) for ri = 0, we express the maximum of the
contact pressures as

(2.3)

where i = 1 and 2. According to the Hertz theory [10],
the pressure on the contact area is equal to

(2.4)

where pi0 is the maximum of the contact pressures. Sub-
stituting densities (2.4) into the right-hand side of

Eqs. (2.3) and omitting the terms of the order of ,

we obtain

(2.5)

In view of Eqs. (2.2) and (2.4), the second of
Eqs. (2.1) takes the form

(2.6)

Disregarding quantities of the order of O  and tak-
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ing into account Eq. (2.5), from Eq. (2.6), we obtain

(2.7)

Then, using the Mossakovskiœ theorem [11], from
Eq. (1.8), we derive

(2.8)

Substituting Hertz density (2.4) with pi0 specified by
Eq. (2.5) and ai specified by Eq. (2.7) into Eq. (2.8), we
express the force P in terms of the displacement δ0 as

(2.9)

Equating the right-hand sides of expressions (2.9), we
obtain

(2.10)

Substitution of expression (2.10) into Eq. (2.9)
yields

(2.11)

Let us briefly discuss the problem that concerns the
more accurate determination of the maximum tangen-
tial stresses at the Dinnik point, which is important for
the mechanics of contact fracture [12]. According to the
Huber solution (see, e.g., [12]), stresses in an elastic
half-space whose boundary is subjected to the action of
a ball indenter, which transmits normal pressure (2.4),
are given by the expressions σij = paψij(r, z), where the
dimensionless functions ψij(r, z) of the coordinates
depend parametrically on the Poisson ratio and

(2.12)

is the average normal pressure. Setting θ2 =  = 0, R1 =
∞, and R2 = R in Eqs. (2.7) and (2.11), we obtain

(2.13)
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Substitution of Eqs. (2.13) into Eq. (2.12) yields

(2.14)

Thus, more accurate calculation by using Eq. (2.14)
yields somewhat lower stress in the contact area. This
decrease can be disregarded in most strength calcula-
tions.

3. REFINED THEORY 
OF THE AXISYMMETRIC QUASISTATIC 

COLLISION OF ELASTIC BODIES

We consider the problem of the direct central colli-
sion of two elastic bodies Ω1 and Ω2 with the respective
masses m1 and m2 (see, e.g., [13, Section 1.1]). It is
described by the equation

(3.1)

where v 0 is the initial relative velocity. In this case,
according to Eq. (2.11), we have

(3.2)

Equation (3.1) has the energy integral

(3.3)

Setting  = 0, we arrive at the equation

(3.4)

for maximum approach δ0m. Expressing the relative

velocity  from Eq. (3.3), we determine the collision
time

(3.5)
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Eq. (3.4), we obtain

(3.6)

In view of Eq. (3.6), the maximum contact force is
determined from formula (3.2) as

(3.7)

Approximate calculation of integral (3.5) yields the
collision time in the form

(3.8)

where

Relation (3.3) characterizes the transformation of
the initial kinetic energy of colliding bodies to the
potential energy of deformation. Therefore, the param-
eter κ0 is primarily the relative increment of the poten-

tial energy at the time t = . This increment is due to

the inclusion of tangential displacements. According to

Eq. (3.4), δ0m < (δ0m > ) if the parameter k is
positive (negative). It is easy to show that T < TH (T >
TH), where TH is the collision time according to the
Hertz theory, if κ > 0 (–1 < κ < 0).

An asymptotic model of a quasistatic direct impact
of a rigid ball on the plane boundary of an elastic body
was developed in [14], including the integral correction
for the shape of the body. The refined theory of colli-
sion of elastic balls was given in [13, Chapter 3, Sec-
tion 5] with the approximate inclusion of the global
deformation of the balls, as well as the local deforma-
tion in the contact area. It is worth noting that the lead-
ing terms of equations that were derived in [13, 14] and
determine the contact force as a function of the
approach between bodies are similar to Eqs. (3.2). At
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the same time, according to the theory [15] refining the
shape of the elastic body in the contact area, the contact

force is given by the expression P = K  + k .
Thus, the above effects must be manifested earlier than
those discussed in [15]. At the same time, comparison
with results obtained in [14] shows that, in the problem
of the impact of an absolutely rigid ball on an elastic
layer whose thickness is equal to the ball radius, the
effect of the tangential displacement is weaker than the
effect of finite thickness of the elastic layer by one order
of magnitude and both effects reduce the impact time.
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In this study, an analytical solution of the problem of
the dynamics of an axisymmetric body is presented.
The dynamics of the body is mathematically described
in a spherical coordinate system. The body material is
assumed to be homogeneous, isotropic, and linearly
elastic. Body forces are absent.

A solution is constructed by the method of expan-

sion in a series in the Legendre functions  ≡ Pn and

first associated Legendre functions  forming an
orthogonal basis for the characteristics of the stress–
strain state of the body. The basis is natural, because
both normal and tangent (to the boundary surfaces of
the body) components of stresses and displacements
are expanded in different axes of the basis.

The dynamics of the body is mathematically
described by the equations

(1)

where µ and λ are the Lamé constants; ∇  is the Hamil-
ton operator; u is the particle velocity vector; εij and σij

are the strain and stress tensor components, respec-
tively; δij is the Kronecker delta; ε = ε11 + ε22 + ε33, ρ is

the density; t is time;  = ; and the dot and cross

between the vectors refer to their scalar and vector
products, respectively. We will write Eqs. (1) in a spher-
ical coordinate system {R, θ, ϕ} with allowance for

symmetry about ϕ, i.e., uϕ = εαϕ = σαϕ =  = 0, where

α = R or θ. The functions entering into Eqs. (1) are

Pn
0( )

Pn
1( )

2µ λ+( )∇ ∇ u⋅( ) µ∇ ∇ u××– ρ∂t
2u,=

εij 0.5 ∇ iu j ∇ jui+( ), σij 2µεij λδijε,+= =

i j, 1 2 3,, ,=

∂t
2 ∂2

∂t2
-------

∂
∂ϕ
------
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assumed to be expandable into a series in the products
of the form f(R, t, θ) = f1(R, t) · f2(θ). This constraint is
typical for the method of separation of variables.

We decompose u into the gradient and curl compo-
nents:

(2)

where Φ and Y are the scalar and vector displacement
potentials. In our problem, we have ΦR ≡ Φ and Ψθ ≡ Ψ.
Using Eqs. (1) and (2), we obtain the equations for Φ
and Ψ in the form

(3)

or, by virtue of the symmetry of the problem, in the
form

(4)

where c|| = , c⊥  = , τ = c||t, and ∆ is the

Laplace operator.

The displacements and stresses entering into
Eqs. (1) are expressed in terms of the potentials Φ and
Ψ by Eq. (2) in the form

u ∇Φ ∇ Y,×+=

∇ ∇Φ⋅ ∂τ
2Φ, ∇ ∇ Y×× γ2∂τ

2Y,–= =

γ
c||

c⊥
-----=

∆Φ ∂τ
2Φ, ∆*Ψ γ2∂τ

2Ψ,= =

∆* ∆ R 2– θ,sin
2–

–=

2µ λ+
ρ

---------------- µ
ρ
---

uR = ∂Φ
∂R
-------

1
R θsin
--------------- ∂

∂θ
------ θΨ, uθ = 

1
R
--- ∂Φ

∂θ
-------

∂
∂R
------RΨ– ,sin+

σRR νs∆Φ ∂2Φ
∂R2
----------

1
θsin

----------- ∂
∂θ
------ θ ∂

∂R
------Ψ

R
----sin+ 

  ,+=

σθθ νs∆Φ 1
R
--- ∂

∂θ
------ 1

R
---∂Φ

∂θ
------- 1

R
--- ∂

∂R
------RΨ– 

 +=
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(5)

Here, νs = , where ν is the Poisson ratio;

 = , where α and β may be R and θ; and  =

. Equations (3)–(5), together with the correspond-

ing boundary conditions, make it possible to reduce the
problem to the determination of the potentials Φ and Ψ.

We will present Φ and Ψ as the products Φ =
Φ1(R, τ)Φ2(θ) and Ψ = Ψ1(R, τ)Ψ2(θ), where Φ2(θ) and
Ψ2(θ) are the eigenfunctions dependent on the θ parts
of the operators ∆ and ∆*, which have no singularities

in the interval 0 ≤ θ ≤ . It is known [1] that these func-

tions are the Legendre polynomials Pn and first associ-

ated Legendre polynomials , while the correspond-
ing eigenvalues are given by the expression mn =
−n(n + 1). The potentials Φ and Ψ can be written as the
following series in these polynomials (Φn ≡ Φ1n and
Ψn ≡ Ψ1n):

(6)

In this case, Φn(R, τ) and Ψn(R, τ) satisfy the similar
equations

(7)

These equations for RΦ0(R, τ) and RΨ0(R, τ) take the
form of the well-studied equations for longitudinal and

+
∂Φ
∂R
------- 1

R θsin
--------------- ∂

∂θ
------ θΨsin+ ,

σϕϕ νs∆Φ 1
R
--- ∂Φ

∂R
-------

1
R θsin
--------------- ∂

∂θ
------ θΨsin++=

+
θcot

R
----------- ∂Φ

∂θ
-------

∂
∂R
------RΨ– 

  ,

σRθ
∂

∂R
------ 1

R
---∂Φ

∂θ
------- 

  1
2
---∆*Ψ–=

+
1

R2
----- ∂

∂R
------RΨ ∂

∂θ
------ 1

θsin
----------- ∂

∂θ
------ θΨsin+ 

  .

ν
1 2ν–
---------------

σαβ
σαβ

2µ
-------- σϕϕ

σϕϕ

2µ
--------

π
2
---

Pn
1( )

Φ = Φn R τ,( )Pn θ( )
n 0=

∞

∑ , Ψ = Ψn R τ,( )Pn
1( ) θ( ).

n 0=

∞

∑

∂2

∂R2
---------

mn

R2
------+ RΦn

∂2

∂τ2
--------RΦn,=

∂2

∂R2
---------

mn

R2
------+ RΨn γ2 ∂2

∂τ2
--------RΨn.=
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transverse plane waves. The equation for Φ0 is widely
used in spherically symmetric problems.

In order to obtain the solutions of Eqs. (7) for n ≥ 0,
we take their Laplace transforms with respect to τ. Let
us establish the correspondence between the original
quantities and their transforms:

and 

Under zero initial conditions, the equations for the
transforms  and  take the form

(8)

The solution of Eqs. (8) has the form [2]

(9)

where  = Rn  and Cin , i = 1, 2, 3, 4, are

the constants determined from the boundary condi-
tions.

For the further presentation, it is useful to recall
some information on the functions Pn(cosθ) and

(cosθ) [1]. These functions are orthogonal polyno-
mials. They are orthogonal with respect to the number
n within their families. Moreover, the functions with
the same number that belong to different families are
also orthogonal to each other. The quantities g0n = n +

 and g1n =  are the normalization constants for Pn

and , respectively.

Thus, the sets {Pn} and { } form two indepen-
dent families and can be used to expand functions that
are either continuous or piecewise-continuous and
bounded in the interval [–1, 1].

τ s, Φn R τ,( ) Φn* R s,( )⇔⇔

Ψn R τ,( ) Ψn* R s,( ).⇔

Φn* Ψn*

d2RΦn* R s,( )
dR2

-------------------------------
n n 1+( )Φn* R s,( )

R
------------------------------------------–

– s2RΦn* R s,( ) 0,=

d2RΨn* R s,( )
dR2

--------------------------------
n n 1+( )Ψn* R s,( )

R
-------------------------------------------–

– γ2s
2
RΨn* R s,( ) 0.=

Φn* R s,( ) C1nL̂nesR C2nL̂ne sR– ,+=

Ψn* R s,( ) C3nL̂nesγR C4nL̂ne sγR– ,+=

L̂n R 1– d
dR
------- 

 
n 1+

Pn
1( )

1
2
---

g0n

mn

---------.

Pn
1( )

Pn
1( )
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We use the following relations between Pn and :

(10)

In view of Eqs. (8) and (10), the transforms of the dis-
placement and stress components given by Eqs. (5) are
represented in the form

(11)

Pn
1( )

Pn x( ) 1

2nn!
---------- dn

dxn
-------- x2 1–( )n

, Pn
1( ) x( ) θ

dPn

dx
---------,sin–= =

x θ,cos=

g0n Pn x( )Pm x( ) xd

1–

1

∫ δnm,=

g1n Pn
1( ) x( )Pm

1( ) x( ) xd

1–

1

∫  = δnm,

Pn x( )Pm
1( ) x( ) xd

1–

1

∫  = 0,

1
θsin

----------- d
dθ
------ θPn

1( )sin n n 1+( )Pn,–=

dPn

dθ
--------- Pn

1( ),
dPn

1( )

dθ
------------ n n 1+( )Pn θPn

1( )cot+[ ]– .= =

uR*
dΦn*

dR
-----------

n n 1+( )Ψn*

R
----------------------------– Pn,

n 0=

∞

∑=

uθ*
1
R
--- Φn*

d
dR
-------RΨn*– Pn

1( ),
n 1=

∞

∑=

σRR*
γ2s2Φn*

2
------------------

2
R
---

Φn*

dR
-------–

n 0=

∞

∑=

+ n n 1+( )
Φn*

R2
-------

d
dR
-------

Ψn*

R
--------– 

  Pn,

σRθ* d
dR
-------

Φn*

R
------- 1

2
---γ2s2Ψn*–

n 1=

∞

∑=

+
1

R2
----- d

dR
-------RΨn*

n n 1+( )Ψn*

R2
----------------------------– Pn

1( ),

σθθ* νss
2Φn*

1
R
---

dΦn*

dR
----------- n n 1+( )

R2
--------------------–+

n 0=

∞

∑=
These relations contain complete information on the
dynamics of the body under consideration in the opera-
tor form. Therefore, it is appropriate to consider these
relations in more detail.

Relations (11) were obtained with the only addi-
tional assumption being that the potentials of the prob-
lem can be represented in form (6). The components of
the normal and tangent (to the body boundaries) dis-
placements and stresses are expanded in accordance
with the potentials. This implies that the normal dis-
placement and stress, as well as the “gradient” potential
Φ*, are expanded in terms of the functions Pn , and the
tangent displacement and stress, as well as the “curl”

potential Ψ*, in terms of the functions . The other
stresses are expanded in both components of the dis-

crete basis {Pn, }.

The presence of  in the formulas for  and

 does not result in the occurrence of poles at θ = 0,

because all  polynomials include sinθ as a factor
[see Eq. (10)].

For n = 0, all terms involving the potential Ψ* van-
ish, and Eq. (11) describes the centrosymmetric stress–
strain state of the body, which depends only on the
potential Φ* and is well known from one-dimensional
problems of ball dynamics. For n > 0, all the character-
istics of the stress–strain state involve both potentials,
and the powers of the functions sinθ and cosθ entering

into Pn and  increase with the number n. Thus,
expansion (11) may be considered as a series of succes-
sive deviations of the stress–strain state from the cen-
trosymmetric state.

At the θ = 0 axis for each n = 1, 2, …, we have

 = 0 and, hence,  =  = 0, in agreement with
the symmetry conditions of the problem. The condi-

tions imposed on the boundary θ = , R0 ≤ R ≤ R1 must

be consistent with those imposed on the surfaces R = Ri,

i = 0 and 1, 0 ≤ θ < .

× Φn*
1
R
---dR2Ψn*

dR
-----------------– 

  Pn
θcot

R2
----------- Φn*

d
dR
-------RΨn*– Pn

1( ),
n 1=

∞

∑–

σϕϕ* νss
2Φn*

1
R
---

dΦn*

dR
-----------

n n 1+( )Ψn*

R2
----------------------------–+ Pn

n 0=

∞

∑=

+
θcot

R2
----------- Φn*

d
dR
-------RΨn*– Pn

1( ).
n 1=

∞

∑

Pn
1( )

Pn
1( )

θcot σθθ

σϕϕ

Pn
1( )

Pn
1( )

Pn
1( ) uθ* σRθ*

π
2
---

π
2
---
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In particular, in order for the equilibrium conditions

to be fulfilled, the forces on the surfaces Ri must be cho-

sen so that the numbers n of the functions Pn and 
entering into its θ expansion be odd and, moreover,
n ≥ 3. In this case, the natural condition σθθ = 0 and the

condition uR = 0 are fulfilled on the contour θ = . If

the force is such that the numbers n ≥ 2 of both func-
tions are even, then the conditions σRθ = uθ = 0 are ful-

filled at the boundary θ = . The functions Pn and 

entering into Eqs. (11) cannot have opposite parities,
because system (11) was constructed from Eq. (5)
under condition (6).

Then, analyzing Eqs. (11), we consider the structure
of the expressions in the square brackets. These expres-
sions are linear in Φ* and Ψ* and do not involve deriv-
atives higher than the first order with respect to R.
Moreover, they include only those s-dependent func-
tions that, first, have the form exp(–ζRs), where ζ = ,

, which enter into Φ* and Ψ*; second, have the form
s2 , which were obtained by repeated differentiation
with respect to time; and, third, enter into Cjn, j = 1, 2,
3, 4, n = 0, 1, 2, …, and are determined after the repre-
sentation of the conditions on the boundaries Ri,
i = 0, 1.

In accordance with the Laplace transform formulas
[3], for each piecewise-smooth function F*(Ri, s) ⇔
F(Ri, τ) and the operator  defined in Eq. (9), there is
the correspondence

(12)

Therefore, the functions Φ* and Ψ* and their deriva-
tives with respect to R may be considered as translation
(in time) functions differentiated with respect to R
(with a weight of R–1), which lead to the formation of a
series of waves traveling inward from the boundaries of

Fz 2π σRR τ R θ, ,( ) θcos[
0

π/2

∫
R0

R1

∫=

– σRθ τ R θ, ,( ) θsin ] θR2dθdRsin 0,=

Uz 2π uR τ R θ, ,( ) θcos[
0

π/2

∫
R0

R1

∫=

– uθ τ R θ, ,( ) θsin ] θR2dθdRsin 0=

Pn
1( )

π
2
---

π
2
--- Pn

1( )

1+−
γ+−

L̂n

F* Ri s,( ) L̂ne ζRs– L̂nF Ri τ ζ R–,( ) for   τ ζ R ≥ 
0

 

for

 
τ ζ

 

R

 

.

 
<




⇔             
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the body. The amplitude and shape of these waves are
determined by the boundary conditions.

Therefore, after the determination of Cjn , substitu-
tion of them into Φ* and Ψ*, and the inverse Laplace
transform, Φ*

 

 and 

 

Ψ

 

*

 

 must be expanded in series in
terms of the transforms and the method of characteris-
tics in the (

 

R

 

, 

 

τ

 

) plane must be applied.

Let us determine 
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jn

 

 from the boundary conditions
of the problem. According to Eqs. (11), if the radial dis-
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, or their combinations are spec-

ified, then 
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 = 3, 4, should be expanded in :

 

(14)

 

For more complicated boundary conditions involving
combinations of functions expanded in the different
families of orthogonal Legendre polynomials, the cor-
responding expansion takes the form

 

(15)

 

where, in view of the orthogonality of 

 

P

 

n

 

 and , the
coefficients 

 

a

 

n

 

 and 

 

b

 

n

 

 are determined by formulas (13)
and (14).

We express  and  in terms of the functions  

ϕ

 

1n = exp(sR), ϕ2n = exp(–sR), ψ1n = exp(γsR),

and ψ2n = exp(–γsR) and equate the expressions for
the normal and tangent displacements and stresses at
the boundary points Ri for each number n in Eq. (11) to
the corresponding terms of the expansions of their val-
ues specified on these boundaries.

σRR

f j θ( ) a jnPn,
n 0=

∞
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a jn g0n f j xarccos( )Pn x( ) x.d
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1
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For n = 0, nonzero radial displacements or stresses
can be specified at the boundaries R = Ri, i = 0, 1. In this
case, C10 and C20 are determined from the equations

(16)

For n > 0, the boundary conditions are chosen from the
expressions

(17)

C10

dϕ10

dR
----------- C20

dϕ20

dR
-----------+ a10uR* Ri s,( ), i 0 1,,= =

γ2s2

2
---------

2
R
--- d

dR
-------– C10ϕ10 C20ϕ20+( ) a20σRR* Ri s,( ).=

d
dR
------- C1nϕ1n C2nϕ2n+( ) n n 1+( )+

×
C3nψ1n C4nψ2n+

R
---------------------------------------- a1nuR* Ri s,( ),=

γ2s2

2
---------

2
R
--- d

dR
-------– n n 1+( )

R2
--------------------+ C1nϕ1n C2nϕ2n+( )

– n n 1+( )
d

dR
-------

C3nψ1n C4nψ2n+[ ]
R

--------------------------------------------- = a2nσRR* Ri s,( ),

C1nϕ1n C2nϕ2n
d

dR
-------R C3nψ1n C4nψ2n+[ ]–+

=  b1nRiuθ* Ri s,( ),
Determining Cjn from Eqs. (16) and (17) and substitut-
ing them into Eqs. (9) and (6), we obtain the operator
form of the potentials Φ and Ψ as series in Pn(θ) and

(θ). Finally, taking the inverse Laplace transform
Φ*(s) ⇒ Φ(τ)  and Ψ*(s) ⇒ Ψ(τ)  and using Eq. (5), we
obtain all the original parameters of the stress–strain
state for the problem.
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Here, a catastrophe is treated as an abrupt change in
the state of the system under consideration, and a cata-
strophic event lasting a certain, relatively short, time
interval is a process of transition from one state to
another. The problem of revealing the signs of the
approaching catastrophic stage is the most urgent prob-
lem in studying the evolutionary–catastrophic behavior
of the system. It is particularly important for forecast-
ing earthquakes, rockbursts, and landslides, as well as
for decreasing the damage they cause. A statement
about an obligatory precursor of catastrophes is formu-
lated as follows [1, 2].

If a system with a certain set of critical parameters
has an unstable equilibrium position separating the
parameter regions corresponding to stable and unsta-
ble states of the system, then an external action gener-
ates waves in the stable domain with frequencies that
must vanish when the system approaches the critical
unstable equilibrium position for finite sizes of wave
perturbations. 

According to this principle, any catastrophe must be
preceded by slow wave changes in certain parameters
characterizing the state of the system. The frequency of
these natural wave motions of the instability center
tends to zero upon approaching the instability thresh-
old, or catastrophe. Such a behavior is exemplified by
(i) current vertical and horizontal motions whose direc-
tion reverses prior to orogenesis [2]; (ii) slow motions
of the day surface detected by geodesic methods on the
Garm test site (Tajikistan) before earthquakes; (iii) fail-
ure of slip along a crack [3] simulating earthquakes;
(iv) rock impacts and development of fracture of solids
that are preceded by waves traveling along a crack
(trapped waves [4]); and (v) slow wave motions
detected as seiche oscillations in the Black Sea before
earthquakes in the Black Sea region (the Caucasus, Tur-
key, the Balkans) [5].

The specific wave character of signs preceding a
catastrophe with a continuous decrease in their fre-
quencies was noted when studying the earthquake prep-
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aration process. The observed phenomena of weak seis-
mic splash and its damping immediately before an
earthquake can be associated with the above decrease in
the frequency of the waves when the geophysical
parameters of the future seismic center approach the
catastrophic threshold values. Indeed, seismic instru-
ments in this case begin to detect the precursor waves
when they fall within the detection band. Then, with the
further decrease in frequency upon approaching unsta-
ble equilibrium, seismic lull occurs, i.e., wave phenom-
ena leave the detection band. Moreover, calm associ-
ated with the presence of dissipation in the system is
also possible. In any case, this prognostic sign must
always appear, because it is an inseparable element of
the evolution of the seismic center towards the instabil-
ity threshold. Moreover, this wave deformation process
preceding an earthquake can initiate other previously
noted signs of various physical origins. An increase in
the radon content and change in the water level in wells
as a result of change in the susceptibility of the crust
under its periodic deformation or electric and electro-
magnetic phenomena in the atmosphere and iono-
sphere [6], which can be attributed to the electrohydro-
dynamic and electroelastic mechanisms of the genera-
tion of the electric field and, therefore, electromagnetic
radiation [7], are among these signs. We note that slow
waves preceding earthquakes in Turkey, the Caucasus,
and the Balkans are almost directly detected by detect-
ing seiche oscillations in the Black Sea [5]. In this case,
seiche oscillations are resonantly excited when slow
variable-frequency waves preceding earthquakes fall
within the necessary frequency band.

A similar decrease in the frequency of seismoacous-
tic background is also detected before rockbursts in
mines as well as before the destruction of the continuity
of a solid when a deep crack is formed and developed.

Since the wave precursor of natural and technogenic
catastrophes (first predicted in [8]) seems to be very
important both fundamentally and for applications, we
discuss its physical meaning with simultaneous mathe-
matical justification of the principle formulated above.
Since the wave behavior under consideration is mani-
fested primarily in the linear approximation, we should
deal with linearized stability theory. The physics of the
process is such that randomly generated small perturba-
tions increase when developing the instability of the
004 MAIK “Nauka/Interperiodica”
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ground state and thereby drive the system to a new state
by transferring energy from the ground state to the new
state. In this case, randomly generated perturbation is
not necessarily the single driving force of the transfor-
mation of states during the entire catastrophic interval.
This force can also be a sequence of small perturbations
and catastrophic periods alternating each other, as
occurs, e.g., when turbulence and vorticity are devel-
oped in a continuous medium (ordered chaos) [9].

We have to study the natural wave motions of the
system approaching the unstable equilibrium position,
i.e., the catastrophe threshold. Therefore, we must first
solve the problem of system equilibrium that is speci-
fied by certain partial differential equations in the pres-
ence of spatially periodic, time-independent perturba-
tion under given boundary conditions. This solution
must yield the characteristic equation for the real criti-

cal length λc =  of the perturbation wave at which the

system can be in the unstable equilibrium state:

(1)

Here, k =  is the wave number and q is one or several

dimensionless parameters depending on the elastic den-
sity parameters of the system. The unstable equilibrium
position means that ∆(k, q) as a function of k has oppo-
site signs on different sides of the point kc; i.e., the plot
of ∆(k, q) as a function of k intersects rather than
touches the k axis at the point k = kc . At the same time,
mathematical analysis of the dynamic (time-depen-
dent) problem for the same system with the same
boundary conditions leads to the characteristic equation
relating the frequency ω and wave number k of the
wave perturbation:

(2)

Dispersion equation (2) arises when the wave solution
of the linearized partial differential equations describ-
ing the behavior of the system is sought in the form

The dynamic description obviously reduces to the
static description in the limit of very slow wave pro-
cesses, when the frequency ω is close to zero. This
means that Eq. (2) reduces to Eq. (1) in the static limit;
i.e., f(ω, k, q)  ∆(k, q) for ω  0. Since we analyze
the behavior of the system near the instability thresh-
old, i.e., for low frequencies, f(ω, k, q) can be expanded
as a function of ω near the point ω = 0:

(3)

2π
kc
------

∆ k q,( ) 0.=

2π
λ

------

f ω k q, ,( ) 0.=

u u0 i ωt kx–( ){ } .exp=

f ω k q, ,( ) ∆ k q,( ) ibω–
aω2

2
---------.+≈
Here, the expansion coefficients b =  and

a =  are assumed to be real; i.e., we assume

that the equations do not involve odd derivatives with
respect to xj, and the imaginary unit i appears due to the
dependence u = u0exp{i(ωt – kx)} in the presence of dis-
sipative terms in the equations (with odd time deriva-
tives). According to the theory of linear partial differen-
tial equations, the last property means that either damp-
ing (dissipation) or increase (instability) in the solution
with time is possible.

For a conservative (without dissipation) system, the
second term on the right-hand side of Eq. (3) vanishes,
because characteristic equation (2) in this case involves
only frequency squared. Then, from Eqs. (2) and (3),
we obtain

(4)

This equation shows that there is always an imaginary
frequency ω responsible for an exponentially increas-
ing solution and an oscillating solution on the first and
second sides of the point kc, respectively, due to the
existence of unstable equilibrium. This means that nat-
ural oscillations with decreasing frequency must exist
in the conservative system evolving towards the insta-
bility threshold, and this decrease is proportional to the
decrease in the function ∆(k, q) when k approaches kc.
At the unstable equilibrium point, where ∆(k, q) = 0, the
frequency of the natural oscillations vanishes and then
becomes imaginary according to the reversal of the sign
of ∆(k, q), which means the exponential increase in
small perturbations, i.e., the development of instability.

In the presence of damping in the system, the behav-
ior of the system approaching the instability threshold
is quite different. We first give some preliminary
remarks. According to Eqs. (2) and (3), we arrive at the
square equation for ω in the stable region near the insta-
bility threshold. For simplicity, the coefficient a of the
term ω2 can always be taken to be positive. Since
damped oscillations must occur in the system in the sta-
ble region after an external action, the coefficient b of
the term ω must be taken to be positive. Then, the solu-
tion of the square equation for ω has the form

(5)

It follows from Eq. (5) that ∆ must be negative in the
stable region, where damped oscillations exist by defi-
nition. In this case, for sufficiently large |∆|, i.e., far
enough from the catastrophic threshold, damped oscil-
lations occur (due to an external action). If |∆| decreases
with the evolution of the system, the real part of fre-
quency decreases according to Eq. (5), which means

∂f
∂ω
------- 

 
ω 0=

–

∂2 f

∂ω2
--------- 

 
ω 0=

ω2 2∆ k q,( )
a

--------------------.–=

ω 1
a
--- ib b2– 2a∆–± 

  .=
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slower oscillations of the system, and the phase veloc-

ity c =  of perturbations tends to zero, because k tends

to a finite value . When 2|a∆| = b2 , the radicand in

Eq. (5) vanishes at k = , oscillation frequency van-
ishes, and any perturbation is continuously damped
near k = . This exponential continuous damping

occurs for kc < k < . In this case, the damping of per-
turbations slows down when k approaches kc . When ∆
vanishes at k = kc , the instability threshold is reached.
After that, perturbations in the system with positive ∆
increases exponentially, which corresponds to the ω
branch with the negative sign of the root in Eq. (5).

In summary, the system evolving towards a catastro-
phe behaves as follows. First, natural oscillations are
generated in the system by an external action in the sta-
ble domain. They are damped in the presence of dissi-
pation. Then, with a decrease in |∆| (∆ < 0), any pertur-
bation induced by the external action is damped with-
out the oscillating regime. This means the beginning of
the lull stage before the approaching catastrophe. The
catastrophe begins and is developed for k ≤ kc , when ∆
becomes positive. At k = kc , the ω branch with a nega-
tive imaginary part arises, which gives rise to the con-
tinuous exponential increase in perturbation. This is a
scenario of the system behavior in the stable region
upon approaching the catastrophic threshold.

Therefore, for systems with dissipation, two prog-
nostic stages can be indicated: a decrease in, first, the
frequency of observed wave perturbations and, second,
the damping decrement of aperiodic perturbations.
When dissipation is sufficiently low, the second stage
can be short, and the decrease in the frequency of oscil-
latory perturbations to very low values immediately
changes to the development of instability similar to
conservative systems without real lull.

The above approach is also applicable to any sys-
tems with conservation laws that can be represented by,

ω
k
----

k

k

k

k
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e.g., partial differential equations (bank systems, eco-
nomic and social structures, ethnic groups, etc.). The
above theory of catastrophe is quite general, and its
generality is at the level of conservation laws. The prin-
ciple formulated above clearly determines change in
the governing parameters of a system before the cata-
strophic stage. It is substantial that only the conditions
of unstable equilibrium and the governing parameters
of the system are sufficient.
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in the Far-Field Zone in an Elastic Half-Plane

Yu. D. Kaplunov* and L. Yu. Kossovich**
Presented by Academician I.G. Goryacheva November 11, 2003

Received November 17, 2003
It is common opinion that a Rayleigh wave does not
appear explicitly in the conventional formulations of
dynamical problems in the theory of elasticity for bod-
ies with a free surface. As a rule, this wave can be
revealed only by additional transformations associated
with, e.g., the derivation of the corresponding disper-
sion equation. The lack of the direct mathematical
description (in the form of approximate relationships)
of Rayleigh waves complicates the analysis of dynami-
cal surface phenomena and leads to some methodical
difficulties in the formulation of a general theory of
elastic waves.

In this paper, we formulate an asymptotic model of
Rayleigh waves in the far-field zone in the case of plane
strain. The first step of the model involves the analysis
of hyperbolic equation (12) describing the one-dimen-
sional propagation of a Rayleigh wave along the bound-
ary of a half-plane. Then, the wave attenuation into the
half-plane will be found by solving two Neumann prob-
lems given by Eqs. (13), (14) and by Eqs. (15), (16) for
the Lamé potentials. Our consideration is based on gen-
eral asymptotic principles and employs the symbolic-
integration method.

The equations of motion of an elastic half-plane can
be presented in the form

(1)

Here, x and y are the Cartesian coordinates; t is the
time; ϕ and ψ are the so-called Lamé volume and shear
potentials, respectively; and c1 and c2 are the velocities

∂2ϕ
∂x2
--------- ∂2ϕ

∂y2
--------- c1

2– ∂2ϕ
∂t2
---------–+ 0,=

∂2ψ
∂x2
--------- ∂2ψ

∂y2
--------- c2

2– ∂2ψ
∂t2
---------–+ 0.=
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of dilatational and shear waves, respectively. The dis-
placements v i and stresses σij (i, j = 1, 2) are given by
the expressions

(2)

(3)

where E is Young’s modulus, ν is Poisson’s ratio, and

κ2 =  = .

Below, we consider only the case of an unsteady
normal action on the half-plane boundary y = 0 under
zero initial conditions. Thus,

(4)

where P(x, t) is a given stress. We now find the front-
line asymptotic expression for the Rayleigh wave in the
far-field zone. To this end, we introduce the scaled vari-
ables [1]

(5)

Here, cR = kRc2 is the velocity of the Rayleigh wave,
where kR is the root of the transcendent equation

and L is a characteristic spatial scale. For example, it is
half the length of the spread interval of stress in bound-

v 1
∂ϕ
∂x
------

∂ψ
∂y
-------, v 2+ ∂ϕ

∂y
------

∂ψ
∂x
-------;–= =

σ11 = 
E

2 1 ν+( )κ2
-------------------------- ∂2ϕ

∂x2
--------- 1 2κ2–( )∂

2ϕ
∂y2
--------- 2κ2 ∂2ψ

∂x∂y
------------+ + 

  ,

σ22 = 
E

2 1 ν+( )κ2
-------------------------- 1 2κ2–( )∂

2ϕ
∂x2
--------- ∂2ϕ

∂y2
--------- 2κ2 ∂2ψ

∂x∂y
------------–+ 

  ,

σ12
E

2 1 ν+( )
-------------------- 2

∂2ϕ
∂x∂y
------------ ∂2ψ

∂x2
---------– ∂2ψ

∂y2
---------+ 

  ,=

c2
2

c1
2

----- 1 2ν–
2 2ν–
---------------

σ22 x 0 t, ,( ) P x t,( ), σ12– 0,= =

ξ
x cRt–

εL
----------------, ζ y

εL
------, τ

tcR

L
-------.= = =

2 kR
2–( )2

4 1 kR
2– 1 κ2kR

2–– 0;=
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ary conditions (4) if it is specified in the form

,

where f(t) is a given function of time. In the far-field
zone, the small parameter ε can be taken as the ratio of
the characteristic size L to the path covered by the Ray-
leigh wave in a sufficiently large time interval T, i.e., ε =

 ! 1.

Introducing the operator notation

, (6)

we rewrite Eqs. (1)–(3) in terms of variables (5):

(7)

(8)

(9)

Employing the Lur’e symbolic method [2–4], we write
the Lamé potentials in the form

(10)

where Φ(ξ, τ) and Ψ(ξ, τ) are the desired functions. The
minus sign in the exponents in symbolic formulas (10)
determines the attenuation of the solution with the dis-
tance from the boundary of the half-plane.

Substituting expressions (10) for ϕ and ψ into
Eqs. (9) and omitting asymptotically negligible terms,

P x t,( ) x2

4L2
---------– 

  f t( )
πL

-----------exp=

L
cRT
---------

∂ξ
∂
∂ξ
------, ∂τ

∂
∂τ
-----= =

d2ϕ
dξ2
--------- 1 κ2kR

2–( )∂ξ
2 ε · 2κ2kR∂ξ∂τ ε2κ2∂τ

2–+[ ]ϕ 0,=+

d2ψ
dξ2
--------- 1 kR

2–( )∂ξ
2 ε · 2kR∂ξ∂τ ε2∂τ

2–+[ ]ψ+ 0;=

v 1
1
εL
------ ∂ξϕ

dψ
dξ
-------+ 

  , v 2
1
εL
------ dϕ

dξ
------ ∂ξψ– 

  ;= =

σ11 = 
E

2 1 ν+( )κ2ε2L2
----------------------------------- 1 2κ2–( )d2ϕ

dξ2
--------- ∂ξ

2ϕ  + 2κ2∂ξ
dψ
dξ
-------+ 

  ,

σ22

=  
E

2 1 ν+( )κ2ε2L2
------------------------------------ d2ϕ

dξ2
--------- 1 2κ2–( )∂ξ

2ϕ 2κ2∂ξ
dψ
dξ
-------–+ 

  ,

σ12
E

2 1 ν+( )ε2L2
------------------------------- 2∂ξ

dϕ
dξ
------ d2ψ

dξ2
--------- ∂ξ

2ψ–+ 
  .=

ϕ i 1 κ2kR
2–( )∂ξ

2 ε · 2κ2kR∂ξ∂τ+[–{exp=

– ε2κ2∂τ
2 ]1/2ξ }Φ ,

ψ i 1 kR
2–( )∂ξ

2 ε · 2kR∂ξ∂τ+[–{exp=

– ε2∂τ
2 ]ξ } 1/2Ψ,
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we arrive at the following operator equations under
boundary conditions (4):

(11)

where

 

The transformation of the first equation to the initial
variables yields the boundary hyperbolic equation for

χ(x, t) = :

(12)

Knowing the normal derivative of the shear poten-
tial on the boundary, we can find the principal part of
the potential attenuation into the half-plane by solving
the elliptic equation [see operator form (7)]

(13)

under the boundary condition

(14)

at y = 0. The volume potential is then found from the
similar Neumann problem

(15)

(16)

These relations directly follow from operator for-
mulas (10).

The approximate theory presented above corre-
sponds to an intuitive understanding of a Rayleigh sur-
face wave. Indeed, perturbations now propagate along
the half-plane boundary with a finite velocity cR,
which enters explicitly into one-dimensional wave
operator (12). In this case, the wave attenuation into the
half-plane is described by two-dimensional elliptic
equations (13) and (15), which formally contain no
derivatives with respect to time. As a result, field singu-
larities of the Rayleigh wave do not pass into the inter-
nal region.

iε · 2 1 kR
2– ∂ξ

2∂τΨ
1 ν+( )ε2L

2

E
----------------------------B∂ξP,–=

i 1 κ2kR
2– ∂ξΦ 1

kR
2

2
-----– 

  ∂ξΨ,–=

B 2
kR

1 kR
2

–
--------------

κ2kR

1 κ2kR
2–

--------------------
2kR

1 kR
2 /2–

-------------------–+
 
 
  1–

.=

∂ψ
∂y
-------

y 0=

∂2χ
∂t2
-------- cR

2 ∂2χ
∂x2
--------–

1 ν+( )cR
2

B
EkR

---------------------------∂P
∂x
------.–=

1
cR

2

c2
2

-----–
 
 
  ∂2ψ

∂x2
--------- ∂2ψ

∂y2
---------+ 0=

∂ψ
∂y
------- χ=

1
cR

2

c1
2

-----–
 
 
  ∂2ϕ

∂x2
--------- ∂2ϕ

∂y2
---------+ 0;=

∂ϕ
∂y
------

y 0=

1
cR

2

2c2
2

--------–
 
 
  ∂ψ

∂x
-------

y 0=

.=
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The asymptotic expressions for stresses in the far-
field zone of the Rayleigh wave take the form

(17)

As an example, we now calculate the Rayleigh wave
for the two-dimensional Lamb problem under bound-
ary conditions (4) with P(x, t) = pδ(x)δ(t), where δ is the
Dirac delta function and p is a given constant. Standard
calculations based on the method of integral transfor-
mations for Eqs. (12)–(16) yield the following expres-
sions for the displacements (we consider only x > 0,
η = cRt – x):

(18)

σ11
E

1 ν+
------------ 1

cR
2

2c2
2

--------
cR

2

c1
2

-----–+
 
 
  ∂2ϕ

∂x2
--------- ∂2ψ

∂x∂y
------------+ ,=

σ22
E

1 ν+
------------ 1

cR
2

2c2
2

--------–
 
 
  ∂2ϕ

∂x2
--------- ∂2ψ

∂x∂y
------------+ ,–=

σ12
E

1 ν+
------------ ∂2ϕ

∂x∂y
------------ 1

cR
2

2c2
2

--------–
 
 
  ∂2ψ

∂x2
---------– .=

v 1

1 κ2kR
2

– B 1 ν+( )c2 p

2π 1 kR
2
/2–( )E

-------------------------------------------------------=

× y

1 κ2kR
2–( )y2 η2+

-----------------------------------------
1 kR

2–

1 kR
2
/2–

-------------------–
y

1 kR
2–( )y2 η2+

----------------------------------- ,

v 2

1 κ2kR
2

– B 1 ν+( )c2 p

2π 1 kR
2
/2–( )E

-------------------------------------------------------=

× η
1 κ2kR

2–( )y2 η2+
-----------------------------------------–

1

1 kR
2
/2–

------------------- η
1 kR

2–( )y2 η2+
-----------------------------------+ .
These formulas coincide with the expressions for the
displacement field of the surface wave determined by
an exact solution of the Lamb problem [5].

The model formulated above makes it possible to
study dynamical effects associated with a Rayleigh
wave, e.g., the resonance effect of moving load [6–8].
The above method is applicable not only to an isotropic
elastic half-plane. In particular, it can easily be
extended to bodies with a more complicated shape and
physical–mechanical properties as well as to Stoneley
interface waves.
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In [1–3], the Navier–Stokes equations describing
axisymmetric flows of an incompressible viscous fluid
in cylindrical coordinates with the axial x and radial r
components were reduced to the form

(1)

(2)

Here, ϕ(x, r) is the stream function defined by the for-
mula

where v x and v r are the axial and radial velocity com-
ponents, respectively; R is the Reynolds number;

and σ(x, r) is an auxiliary function.

It was found in [1–3] that both sides of Eq. (2) van-
ish after the substitution of the function

(3)

where c is an arbitrary constant; i.e., this function is a
particular solution of this equation.

In this study, we consider the stream function given by

(4)

Lϕ σ ,=

1
R
---Lσ 1

r
--- ∂ϕ

∂r
------∂σ

∂x
------ ∂ϕ

∂x
------∂σ

∂r
------– 

  2σ
r2
------∂ϕ

∂x
------.+=

dϕ rv xdr rv rdx,–=

L
∂2

∂x2
-------- ∂2

∂r2
-------

1
r
--- ∂

∂r
-----,–+=

σ cr2,=

ϕ c
a5r2

15 x2 r2+( )3/2
-------------------------------- a2r

2

6
----------– x2r2

10
--------- r4

10
------+ + ,=
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where a is an arbitrary positive constant and the con-
stant c is from Eq. (3). It is easy to verify that this func-
tion is a solution of Eq. (1) with right-hand side (3). In
this case,

on the symmetry axis r = 0 for |x| ≥ a and

(5)

on the circle x2 + r2 = a2, where  is the normal deriv-

ative. Thus, functions (3) and (4) describe an axisym-
metric flow of a viscous incompressible fluid around a
sphere with radius a, and equalities (5) are the no-slip
conditions on the surface of the sphere. Since both sides
of Eq. (2) vanish after the substitution of function (3),
the resulting flow is independent of the Reynolds
number.

For the first time, a flow around a sphere was inves-
tigated in the 1850s by Stokes, who solved the equation
for a viscous fluid in the absence of convection [4, 5]
(see also [6, p. 504]). In 1911, Hadamard [7, p. 1311]
solved the problem of the fall of a spherical liquid drop
in a different viscous fluid in the absence of mixing. As
in the studies by Stokes, the convective (nonlinear)
terms in the equations for the viscous fluid were disre-
garded. The continuity of the tangential stress was one
of the conditions imposed on the surface. It is worth
noting that an internal flow was described in [7] by
function (3), while the function ϕ coincides with the
stream function of Hill’s spherical vortex [8], which
satisfies both the Euler and Navier–Stokes equations.
Since convective terms are absent in the original equa-
tions, the solutions obtained in the aforementioned
studies are formally valid only for low Reynolds num-
bers. This study shows that functions (3) and (4),
which represent a particular solution of the Navier–
Stokes equations given by Eqs. (1) and (2), describe a
continuous flow of a viscous fluid around a sphere for

ϕ x 0,( ) ∂ϕ
∂r
------ x 0,( ) 0≡=

ϕ x a2 x2–,( ) ∂ϕ
∂n
------ x a2 x2–,( ) 0≡=

∂
∂n
------
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an arbitrary Reynolds number under one of the possible
boundary conditions at infinity.
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In 1952, analyzing the stability of a two-link pendu-
lum loaded by a follower force, H. Ziegler [1] surpris-
ingly concluded that the critical force at which a non-
conservative system with negligibly low dissipation
lost stability was much weaker than that in a system
where dissipation was absent from the very beginning.
This phenomenon, called the destabilization paradox,
was later found in many mechanical and physical sys-
tems [2–4]. Despite numerous works, problems gener-
ated by the destabilization paradox have not yet been
generally solved, although they are of the most theoret-
ical interest according to Bolotin [2]. In this work, a
theory is developed to both qualitatively and quantita-
tively explain the paradoxical behavior of general non-
conservative systems under the action of weak dissipa-
tive and gyroscopic forces. The problem of the stability
of the Reut–Sugiyama pendulum is analyzed as an
example.

1. Let us consider a linear autonomous nonconser-
vative mechanical system described by the equation

(1)

where M, D, and A are the real m × m matrices specify-
ing the inertial, dissipative along with gyroscopic, and
nonconservative position forces, respectively; y is the
generalized coordinate vector; and the dots stand for
differentiation with respect to time t. The matrix D is a
smooth function of the parameter vector k = (k1, k2, …,
kn – 1), D(0) = 0, the matrix A is a smooth function of the
scalar load parameter q ≥ 0, and the matrix M is para-
metrically independent.

Seeking a solution of Eq. (1) in the form y =
uexp(λt), we arrive at the generalized eigenvalue
problem

(2)

where u is the eigenvector and λ is the eigenvalue. A
nonconservative system without gyroscopic and dissi-
pative forces (k = 0), which is described by the equation

(3)

Mẏ̇ D k( )ẏ A q( )y++ 0,=

λ2M λD k( ) A q( )++( )u 0,=

Mẏ̇ A q( )y+ 0=
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is called the circulatory system [1–4]. The spectrum of
the circulatory system is mirror symmetric; i.e., if λ is
an eigenvalue of the linear operator λ2M + A(q), then

−λ, , and , where the bar stands for complex con-
jugation, are also eigenvalues. Therefore, the circula-
tory system is stable in the Lyapunov sense if all its
eigenvalues λ are imaginary and semisimple [5].

Let the circulatory system be stable for q = 0. When
the load parameter increases and reaches a certain crit-
ical value q = q0 , two simple imaginary eigenvalues can
merge into a double eigenvalue iω0 with the Jordan
chain of a length of 2. With further increase in the load,
the double eigenvalue generally splits into a pair of
complex eigenvalues; one of them has a positive real
part, which means vibration instability (flutter, Fig. 1a).
Thus, the range 0 ≤ q < q0 belongs to the stability region
of the unperturbed system described by Eq. (3) [5].

Perturbation of the circulatory system by weak dissi-
pative and gyroscopic forces (k ≠ 0) breaks the coupling
between the eigenvalues and, when the load parameter
reaches a certain critical value q = qcr(k1, k2, ..., kn – 1),
leads to the displacement of one of the eigenvalues to
the right-hand side of the complex plane without the
formation and further bifurcation of the double eigen-

value (Fig. 1a). Moreover, if k = ε , where  is the
fixed vector and ε  0,

(4)

This inequality expresses the destabilization paradox
first pointed out in [1]: the critical load can abruptly
decrease when infinitely weak gyroscopic and dissipa-
tive forces are taken into account. More recently, for
various mechanical systems, it was shown that the lim-
iting critical load  depends on the choice of the vec-

tor  [2–4]. In particular, changing the relation
between the parameters k1, k2, …, kn – 1, one can avoid a
decrease in the critical load and thereby destabilization
(Bolotin effect [2]). For the two-dimensional Ziegler pen-
dulum with two dissipation parameters, Seyranian [7]
found a region on the parameter plane where a noncon-
servative system perturbed by weak dissipative forces
was asymptotically stable and qcr(k) > q0 .
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Fig. 1. Trajectories of the eigenvalues of the (thin lines) unperturbed circulatory system and (thick lines) system with weak velocity-
dependent forces for (a) d ≠ 0 and (b) d = 0.
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In this work, for the general linear nonconservative
system described by Eq. (1), an explicit approximation
is found for the function qcr(k), which makes it possible
to determine both the jump of the critical load and the
asymptotic-stability region. In addition, explicit
asymptotic expressions are obtained for the description
of the trajectories of eigenvalues and their decomposi-
tion into independent curves under perturbations of the
circulatory system by weak dissipative and gyroscopic
forces.

2. Let us consider the point p0 = (0, …, 0, q0) in the
n-dimensional space of the parameters k1, k2, …, kn – 1,
and q of the system described by Eq. (1). It is assumed
that ±iω0 , where ω0 > 0, are the double eigenvalues of
the operator A(q0) + λ2M with the Jordan chain of a
length of 2 and the remaining eigenvalues ±iω0, s, where
ω0, s > 0 and s = 1, 2, …, m – 2, are imaginary and sim-
ple. The nonconservative system corresponding to
k = 0 and q = q0 is a circulatory system, and the point p0
belongs to the boundary of the stability region.

Eigenvectors u0 and v0 , as well as associated vectors
u1 and v1 , corresponding to the double eigenvalue iω0
satisfy the equations

(5)

(6)

The vectors u0, v0 and u1, v1 are taken to be real and
imaginary, respectively, so that

(7)

A q0( ) ω0
2M–( )u0 0,=

A q0( ) ω0
2M–( )u1 2iω0Mu0,–=

v0
T A q0( ) ω0

2M–( ) 0,=

v1
T A q0( ) ω0

2M–( ) 2iω0v0
TM.–=

2iω0v0
TMu1 1,=

2iω0v1
TMu1 v1

TMu0 v0
TMu1+ + 0.=
Let us analyze the stability of system (1) under the
linear perturbation of the parameter vector p = (k, q):

(8)

where prime means the derivative with respect to ε at
ε = 0. The perturbed double eigenvalue is generally
expanded into the Newton–Puiseux series

, (9)

where the coefficients λ1 and λ2 are determined from
the equations [8]

(10)

Here, angular brackets mean the scalar product of the
vector k' = ( , , ..., ) and real vectors f and h
with the components

(11)

and the real values  and  are given by the expres-
sions

(12)

Thus, from Eqs. (8)–(10), we obtain [8]

(13)

If the radicand is nonzero, this equation describes
the splitting of the double eigenvalue iω0 when varying

p ε( ) *0 εp ', ε 0,≥+=

λ iω0 ε1/2λ1 ελ2 …+ + +=

λ1
2 iω0 f k ',〈 〉– f̃ q ',–=

2λ2 f ω0h k ',–〈 〉– ih̃q '.–=

k1' k2' kn 1–'

f r v0
T∂D
∂kr

-------u0, ihr v1
T∂D
∂kr

-------u0 v0
T∂D
∂kr

-------u1,+= =

r 1 2 … n 1,–, , ,=

f̃ h̃

f̃ v0
T∂A

∂q
-------u0, ih̃ v1

T∂A
∂q
-------u0 v0

T∂A
∂q
-------u1.+= =

λ iω0 iω0 f k,〈 〉– f̃ q q0–( )–±=

–
1
2
--- f ω0h– k,〈 〉 ih̃ q q0–( )+( ) ….+
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the parameters k and q. In this case, iω0 splits generally
into two simple eigenvalues, one of which has a posi-
tive real part (instability). If 〈f, k〉 = 0, the square root in

Eq. (13) is imaginary for (q – q0) > 0, and the condi-
tion 〈h, k〉  < 0 is necessary for asymptotic stability. In
this case, under sufficiently small perturbations (8), the
eigenvalue iω0 (and –iω0) splits into two simple eigen-
values with negative real parts.

In addition, the stability of system (1) is determined
by the behavior of 2m – 4 simple eigenvalues ±iω0, s.
Let us take the real right u0, s and left v0, s eigenvectors
that correspond to the eigenvalues iω0, s and satisfy the
normalization conditions

(14)

The increment of the eigenvalues ±iω0, s under pertur-
bations (8) has the form

(15)

where  and the components of the real vector gs are
given by the expressions

(16)

If 〈gs, k〉  > 0, then Reλ < 0. Thus, under the conditions

(17)

system (1) is asymptotically stable for sufficiently
small linear variations of the parameters k and q.

3. According to relations (17), the set of directions
from the point p0 = (0, q0) to the asymptotic-stability
region has the dimension n – 1 in the n-dimensional
parameter space. It is known that the dimension of the
asymptotic-stability region coincides with the dimen-
sion of the parameter space [9]. This means that the
asymptotic-stability region can be reached only along
the curve touching the plane 〈f, k〉  = 0 at the point p0 .
To gain more precise information about the shape of the
asymptotic-stability region near the point p0 , let us con-
sider smooth variation of the parameter vector

(18)

under the assumption that

(19)

The curve specified by Eqs. (18) and (19) is orthogonal
to the q axis in the parameter space, because q' ≡ 0.

f̃

2ω0 s, v0 s,
T Mu0 s, 1.=

λ iω0 s, ig̃s q q0–( ) ω0 s, gs k,〈 〉– …,++−±=

s 1 2 … m 2,–, , ,=

g̃s

g̃s v0 s,
T ∂A

∂q
-------u0 s, , gs r, v0 s,

T ∂D
∂kr

-------u0 s, ,= =

r 1 2 … n 1.–, , ,=

f k,〈 〉 0, h k,〈 〉 0, f̃ q q0–( ) 0,><=

gs k,〈 〉 0, s> 1 2 … m 2,–, , ,=

p ε( ) 0

q0

ε k '

0

ε2

2
---- k ''

q ''
o ε2( )++ +=

f k ',〈 〉 0.=
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The coefficient λ1 of expansion (9) that is deter-
mined by the first of Eqs. (10) vanishes along the curve
specified by Eqs. (18) and (19). Therefore, the double
eigenvalue splits linearly with respect to ε:

(20)

where the coefficient λ2 is the root of the quadratic
equation [8]

(21)

Here, the vectors f, h and quantities ,  are deter-
mined by Eqs. (11) and (12), respectively; the real
matrix H has the components

(22)

and the real matrix G is determined by the expression

(23)

where S0 is the operator inverse to the operator

A(q0) − M.

In view of Eqs. (18) and (19), which explicitly spec-
ify the curve p(ε), and expansion (20), Eq. (21) is rep-
resented in the form

(24)

where ∆λ = λ – iω0. According to the Bilharz crite-
rion [10], all roots of polynomial (24) with complex
coefficients have negative real parts iff

(25)

(26)

Without loss of generality, we take  < 0. Then, the
critical parameter q above which instability (flutter)
occurs is given by the expression

(27)

λ iω0 λ2ε …,+ +=

2λ2
2 2λ2ω0 h k ',〈 〉– f̃ q '' 2ω0

2 Gk ' k ',〈 〉+( )+

+ iω0 f k '',〈 〉 2 Hk ' k ',〈 〉+( ) 0.=

f̃ h̃
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1
2
---v0

T ∂2D
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---------------u0, r s, 1 2 … n 1,–, , ,= =

Gk ' k ',〈 〉 kr' v0
T∂D
∂kr

-------S0 ks'
∂D
∂ks

-------u0

s 1=

n 1–

∑ 
 
 

,
r 1=

n 1–

∑=

ω0
2

∆λ2 ∆λω0 h k,〈 〉– f̃ q q0–( ) ω0
2 Gk k,〈 〉+ +

+ iω0 f k,〈 〉 Hk k,〈 〉+( ) 0,=

f̃ q q0–( ) f k,〈 〉 Hk k,〈 〉+( )2

h k,〈 〉 2
----------------------------------------------- ω0

2 Gk k,〈 〉 ,–>

h k,〈 〉 0.<

f̃

qcr k( ) q0
f k,〈 〉 Hk k,〈 〉+( )2

f̃ h k,〈 〉 2
-----------------------------------------------

ω0
2

f̃
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Considering the case where

(28)

i.e., all simple eigenvalues ±iω0, s are displaced to the
left-hand side of the complex plane, we conclude that
the surface qcr(k) approximated by Eq. (27) is the
boundary of the asymptotic-stability region. According
to Eq. (27), it is easy to see that the limit of qcr as a func-
tion of k1, k2, …, kn – 1 does not exist at the point k = 0
due to singularity. This conclusion was first drawn
in [6, 7], where the stability of a gyroscope in a gimbal
and Ziegler pendulum was analyzed.

Setting k = ε  in Eq. (27), we find the jump of the

critical load as a function of :

(29)

The limit of qcr along the  direction exists if 〈h, 〉  ≠
0, because the numerator and denominator in Eq. (29)

are homogeneous. When 〈f, 〉  = 0, the jump of the crit-
ical load vanishes. This condition provides the ratio

 = , where i, j = 1 and 2, of the components k1 and

k2 of the two-dimensional vector k = (k1, k2) for which
the circulatory system is not destabilized by weak dis-
sipative and gyroscopic forces. The dependence of the
critical load on the ratio of the dissipation parameters
was first found by Bolotin [2, 3]. For two-dimensional

system (1) with the matrix D(k) = k , where  is a
fixed matrix, expression (29) describing the jump of the
critical load takes the form

where A0 = A(q0), A1 = , and the derivative is taken

at q = q0 .
The isolines of function (27) are the boundaries of

the asymptotic-stability region in the space of the
parameters k = (k1, k2, ..., kn – 1). The isolines qcr = q0 ,
where q0 is the critical parameter q for the unperturbed
circulatory system, are given by the expression

(30)

For the two-dimensional parameter vector k =
(k1, k2), Eq. (27) describes a surface known as the Whit-

k: q qcr k( )<{ } k: h k,〈 〉 0 gs k,〈 〉 0,>,<{⊂
s 1 2 … m 2–, , ,= } ,

k̃

k̃

∆q q0 qcr εk̃( )
ε 0→
lim–≡ 1

f̃
--- f k̃,〈 〉 2

f k̃,〈 〉 2
----------------*–=

k̃ k̃

k̃

ki

k j

----
f j

f i

-----–

D̃ D̃

∆q
2 trA0( )2–

2trA0A1 trA0trA1–
-----------------------------------------------

2trA0D̃ trA0trD̃–

2trA0D̃ 3trA0trD̃–
----------------------------------------------

 
 
 

2

,=

dA
dq
-------

f k,〈 〉 ω 0 h k,〈 〉 Gk k,〈 〉 Hk k,〈 〉 .–±=
ney umbrella [9]. Expressing the parameter k1 in terms
of k2 from Eq. (30) and vice versa, we obtain an approx-
imation of the boundary of the asymptotic-stability
region on the (k1, k2) plane for qcr = q0in the form

(31)

where the matrices H and G with the respective compo-
nents Hrs and Grs, where r, s = 1 and 2, are given by
expressions (22) and (23), respectively. It follows from
Eq. (31) that the asymptotic-stability region has a sin-
gularity—turning point—at the origin. The asymptotic
expression for the stabilization-region boundary in
form (31) was first found in [7] for the Ziegler pendu-
lum with two independent dissipation parameters.

Substituting ∆λ = Reλ + i(Imλ – ω0) into Eq. (24)
and separating the real and imaginary parts, we arrive
at the following equations describing the displacement
of the eigenvalues λ on the complex plane under small
variations of the parameters q and k:

(32)

(33)

(34)

where a = –ω0〈h, k〉 , c = (q – q0) + 〈Gk, k〉 , and
d = ω0(〈f, k〉  + 〈Hk, k〉). According to Eqs. (32)–(34)
for k = 0, when varying the parameter q, two simple
imaginary eigenvalues merge at q = q0 and then split in
the direction perpendicular to the imaginary axis with
the formation of a pair of simple complex eigenvalues
(flutter). Such a behavior of the eigenvalues is known
as strong interaction and is typical for the circulatory
system [5]. The trajectories of the eigenvalues of the
circulatory system when varying the parameter q are

shown in Fig. 1 by the thin lines (for  < 0).
For k ≠ 0 and d ≠ 0, dissipative and gyroscopic

forces destroy strong interaction by displacing and
splitting the trajectories of the eigenvalues of the circu-

ki = 
fj

fi
---kj–

fTH*f ω0 hi fj h j fi–( ) fTG*f±
f i

3
-------------------------------------------------------------------------kj

2– o kj
2( ),+

i j, 1 2,,=

H*
H22 H12–

H21– H11

, G*
G22 G12–

G21– G11

,= =

Im λ ω0– Reλ– a
2
---– 

  2

– Im λ ω0– Reλ a
2
---+ + 

  2

2d ,=

Reλ a
2
---+ 

  4

c
a2

4
-----– 

  Reλ a
2
---+ 

  2

+
d2

4
-----,=

Im λ ω0–( )4
c

a2

4
-----– 

  Im λ ω0–( )2
–

d2

4
-----,=

f̃ ω0
2

f̃
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latory system, as is shown in Fig. 1a. This effect, which
was previously known only qualitatively [2–4], is ana-
lytically described by Eqs. (32)–(34). When varying the
parameter q at a fixed vector k, the eigenvalues are dis-
placed along the branches of hyperbola (32) on the
complex plane. This hyperbola has two asymptotes,

Reλ =  and Imλ = ω0 . If a > 0, one of the two eigen-

values lies on the left-hand side of the complex plane,
and the second eigenvalue is displaced to the right-hand
side at the critical load qcr determined by Eq. (27).

For d = 0, the strong interaction between eigenval-
ues holds despite the introduction of weak velocity-
dependent forces (k ≠ 0). According to Eq. (33), the

complex eigenvalues with Reλ =  are strongly cou-

pled with each other for q equal to

. (35)

When varying the parameter q, the double eigenvalue

λ∗  =  + iω0 splits into two simple complex-conju-

gated eigenvalues, one of which intersects the imagi-
nary axis at the critical value given by Eq. (27), as is
shown in Fig. 1b for a > 0. In this case, weak forces
dependent on the generalized velocities stabilize the
circulatory system when 〈Gk, k〉  > 0.

4. Let us consider the Reut–Sugiyama pendulum [11]
consisting of two rigid rods that have the same length l
and equal unit-length mass m. The rods are joined
together by a hinge. A plane rigid massless plate is fixed
in the free end of one rod perpendicularly to it. The pen-
dulum is subject to the force Q always directed along
the vertical axis that is the equilibrium position of the
pendulum (Fig. 2). This system was realized under lab-
oratory conditions, and the force Q was generated by
the pressure of an air jet [11]. Viscoelastic hinges of the
pendulum are characterized by the same rigidity Ò and
viscosity b. The external damping coefficient due to air
resistance is denoted as e. In the dimensionless quantities

(36)

the equation of small oscillations of the pendulum has
the form [11]

(37)

a
2
---–

a
2
---–

q* q0 ω0
2 h k,〈 〉 2 4 Gk k,〈 〉–

4 f̃
----------------------------------------------+=

a
2
---–

q = 
Ql
c

------, γ = 
b

l cml
---------------, κ  = 

el2

cml
-------------, τ  = 

t
l
- c

ml
------,

ẏ̇ Dẏ Ay+ + 0,=
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where

(38)

In the absence of dissipation (γ = κ = 0), the equilibrium
position of the pendulum is stable if 0 ≤ q < q0 . Under

the load q0 =  . 2.54170 [11], there are a pair

of double eigenvalues ±iω0 , where ω0 = 61/27–1/4, corre-
sponding to one eigenvector.

The Routh–Hurwitz conditions applied to the sys-
tem of Eqs. (37) and (38) provides the equation for the
boundary of the asymptotic-stability region for qcr = q0
in the form

(39)

The asymptotic-stability region with the boundary
given by Eq. (39) is shaded in Fig. 3. It approaches the
origin as a narrow tongue along the vertical axis, which
illustrates the stabilizing and destabilizing effects of low
external κ and internal γ dampings, respectively [3, 4].
Indeed, Fig. 3 shows that, for any infinitely small γ
value, there is a κ value such that the perturbed noncon-
servative system is stable with qcr(γ, κ) > q0 .

Let us use the above results to approximate the
asymptotic-stability region near the origin as well as to
describe the behavior of the eigenvalues. Solving prob-
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Fig. 2. Reut–Sugiyama pendulum.
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lems given by Eqs. (5) and (6) for q0 =  and

ω0 = 61/27–1/4 with the matrices D and A specified by
Eqs. (38), we obtain the Jordan vector chains for the
double eigenvalue iω0:

(40)

The substitution of these vectors into expressions (11),
(12), (22), and (23) yields

(41)

In view of expressions (41), expression (27) for the crit-
ical load takes the form

(42)

Approximation of the stability-region boundary given
by Eq. (39) that follows from Eq. (42) for qcr = q0 is
shown by the dashed line in Fig. 3. According to

18 2 7–
5

----------------------

u0
7

140
---------

5–

11 7–
, v0

11 7–

5
,= =

u1

iω0

120
---------

5–

11 3 7–
, v1

7iω0

3
----------- 1

0
.= =

f = 
3
7
--- 9 7–

0
, f̃  = 

15
14
------, h–  = 

ω0 7
42

------------- 3 9 7+( )
7

,–

H 0, G≡ 1
24
------

0 3

3 7
.=

qcr γ κ,( ) q0
7

30
------- 216 9 7–( )2γ2

9 7+( )3γ 7κ+( )2
-----------------------------------------------–=

+
7

30
------- 6γκ 7κ2+( ).

1.0

0.5

0 0.5

κ

γ

Fig. 3. Asymptotic-stability region is shaded on the plane of
the parameters of internal γ and external κ damping for
qcr = q0 .
Eq. (42), the critical load for γ = 0 increases with exter-

nal damping as qcr = q0 + , which agrees with the

shape of the stability region shown in Fig. 3.

The substitution of Eq. (41) into Eqs. (32) and (33)
provides explicit expressions describing the trajectories
of the eigenvalues on the complex plane as well as the
behavior of their real parts when varying the load
parameter q:

(43)

(44)

For κ = γ = 0, the eigenvalues are strongly coupled
at q = q0 . In the absence of internal damping (γ = 0), the
double eigenvalue is displaced to the left-hand side of
the complex plane due to external damping κ stabiliz-
ing the circulatory system. In this case,  = q0 accord-
ing to Eqs. (29) and (42). In the absence of external
damping (κ = 0), internal damping γ destroys strong
interaction and displaces frequency curves to the left-
hand side of the complex plane. In this case, the Reut–
Sugiyama pendulum is destabilized by internal damp-
ing, and, according to Eqs. (29) and (42), the jump of
the critical load for γ  0 is equal to

(45)

which agrees satisfactorily with the exact value ∆q =

 . 0.89725 [11]. The approximate jump

value ∆q = 0.43733 for  = 1 and γ  0 is quite close

to the exact value ∆q = 0.42198. Thus, the approxima-
tion of the critical-load jump by Eqs. (29) and (42) is

improved with decreasing the ratio  to zero.

7κ2
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14

----------------------------------------+ + 
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----------------------------------------– 
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2
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6 7 9–( )ω0

7
------------------------------,
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 
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–
3
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7
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 
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Experiments on the dynamic fracture of solids, liq-
uids, conductors, and insulators that is caused by fast
intense actions of environment or directed energy
fluxes reveal a number of effects indicating a funda-
mental difference between the fast dynamic rupture
(breakdown) of materials and a similar process under
slow quasistatic actions. For example, one of the basic
problems in testing the dynamic-strength properties of
materials is associated with the dependence of the lim-
iting characteristics on the duration, amplitude, and
growth rate of an external action, as well as on a num-
ber of other factors. Whereas a critical value is a con-
stant for a material in the static case, experimentally
determined critical characteristics in dynamics are
strongly unstable, and as a result, their behavior
becomes unpredictable. The indicated (and some other)
features of the behavior of materials subjected to pulsed
actions are common for a number of seemingly quite
different physical processes, such as dynamic fracture
(starting cracks and splitting), cavitation in liquids, and
electrical breakdown in solids. In this paper, we analyze
examples illustrating typical dynamic effects inherent
in the these processes. We propose a unified interpreta-
tion for the fracture of solids and liquids and electrical
breakdown in insulators using the structural-time
approach [1, 2] based on the concept of the fracture
incubation time.

CRITERION 
OF THE FRACTURE INCUBATION TIME

The basic cause of difficulties in modeling the afore-
mentioned effects of mechanical or electrical strength
is the absence of an adequate limiting condition that
determines the instant of rupture or breakdown. This
problem can be solved by using both the structural mac-
romechanics of fracture and the concept of the fracture
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incubation time, which represents the kinetic processes
of the formation of macroscopic breaks [1, 2]. The
above effects become essential for actions whose peri-
ods are comparable with the scale determined by the
fracture incubation time associated with preparatory
relaxation processes of developing microdefects in the
material structure.

The criterion of the fracture incubation time pro-
posed in [1, 2] makes it possible to calculate effects of
the unstable behavior of dynamic-strength characteris-
tics. These effects are observed in experiments on the
fracture of solids. This criterion can be generalized in
the form of the condition

(1)

Here, F(t) is the intensity of a local force field causing
the fracture of the medium, Fs is the static limit of the
local force field, and τ is the incubation time associated
with the dynamics of a relaxation process preparing the
break. The fracture time is defined as the time at which
condition (1) becomes an equality. The parameter α
characterizes the sensitivity of a material to the inten-
sity of the force field causing fracture.

By example of the mechanical break of a material,
we now consider one of the possible methods of inter-
preting and determining the parameter τ. We assume
that a standard sample made of a given material under
tension is broken into two parts under the stress P aris-
ing at a certain time t = 0: F(t) = PH(t), where H(t) is
the Heaviside step function. In the case of quasi-brittle
fracture, the material is unloaded, and the local stress at
the break point decreases rapidly (but not instanta-
neously) from P to 0. In this case, the corresponding
unloading wave is generated, propagates over the sam-
ple, and can be detected by well-known (e.g., interfero-
metric) methods. The stress variation at the break point
can be conditionally represented by the dependence
σ(t) = P – Pf(t), where the function f(t) varies from 0 to
1 within a certain time interval T. The case f(t) = H(t)
corresponds to the classical theory of strength. In other

1
τ
--- F t'( )

Fs
----------- 

  α
t' 1.≤d

t τ–

t

∫
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words, according to the classical approach, break
occurs instantaneously (T = 0). In practice, the break of
a material (sample) is a process proceeding in time, and
the function f(t) describes the kinetics of the passage
from a conditionally defect-free state [f(0) = 0] to the
completely broken state at the given point [f(T) = 1]
(Fig. 1). Applying fracture criterion (1) to this situation,
we arrive at the relation T = τ for P = Fs. In other words,
the incubation time introduced above is equal to the
duration of the fracture process after the stress in the
material has reached the static breaking strength. This
duration can be measured in experiments on the static
fracture of samples by means of different methods, e.g.,
by measuring the time of the increase in pressure at the
unloading wave front, which is determined by the inter-
ferometric method using the velocity profile of points
on the sample surface. Below, we analyze examples of
the actual realization of criterion (1) in various physico-
mechanical problems.

FRACTURE OF SOLIDS

A typical example illustrating the complicated
behavior of the dynamic strength of solids is the time
dependence of strength observed under splitting condi-
tions [4] (see Fig. 2). This dependence of the fracture
time t∗  on the critical pulse amplitude P∗  for different
pulse durations shows that the dynamic strength is not
a material constant but depends on the time to fracture
(i.e., sample “lifetime”). The criterion of critical stress
σ(t) ≤ σs, where σs is the static strength, describes well
long-term quasistatic fracture caused by long-duration
wave pulses σ(t) = Pϕ(t), where P is the amplitude and
ϕ(t) is the time profile function. However, in the case of
short-duration pulses, the fracture time weakly depends
on the threshold pulse amplitude, and this dependence
has a certain asymptote. This effect is called the phe-
nomenon of the mechanical branch of the strength time
dependence. Neither the conventional theory of strength
nor known time criteria explain this phenomenon.

The total time dependence of strength can be
obtained on the basis of incubation time criterion (1).
For the splitting fracture under consideration, this crite-
rion takes the form of the limiting condition previously
proposed in [3]:

(2)

where σ(t) is the time dependence of the local stress at
the break point. The scheme for the application of cri-
terion (2) to splitting problems is given in [2, 3]. An
example of a calculation using criterion (2) for the time
dependence of the strength of aluminum (τ = 0.75 µs,
σs = 103 MPa) for triangular pulses realized in the
experiments reported in [4] is represented in Fig. 2 by
the solid curve.

1
τ
--- σ t'( ) t' σs,≤d

t τ–

t

∫
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Effects in the behavior of the dynamic fracture
toughness [2] can be analyzed in a similar manner. Rate
dependences KId of the dynamic fracture toughness,
which were observed in experiments, are characterized
by a strong instability and can noticeably change when
varying the duration of the load rise stage, the shape of
the time profile of a loading pulse, sample geometry,
and the method of load application [5–7]. The calcula-
tions based on the concept of the incubation time corre-
sponding to the conditions of a number of experiments
were carried out in [8]. The results show that the
dynamic fracture toughness is not an intrinsic charac-
teristic of a material. Therefore, the employment of
both the criterion of the critical intensity coefficient
KI(t) ≤ KId and the characteristic KId as a material
parameter defining the dynamic fracture (in analogy to
the static parameter KIs) is incorrect.

CAVITATION IN LIQUIDS

Cavitation is the violation of the continuity of a liq-
uid (i.e., the initial stage of fracture) in the field of ten-

0 T t

f(t)

1

Fig. 1. Schematic kinetics of the fracture of a sample at the
break point.
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Fig. 2. Logarithm of the fracture-process duration t∗  vs. the

threshold amplitude P∗  of a stress pulse that causes splitting

in an aluminum sample [4].
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sile stresses. This phenomenon is accompanied by the
growth of vapor bubbles on cavitation nuclei, which are
virtually always present in liquids in the form of micro-
scopic bubbles of free gas, microparticles, or their com-
binations [9, 10]. One of the parameters characterizing
the cavitation strength of water is the cavitation thresh-
old. This threshold is a certain negative pressure above
which cavitation nuclei intensely grow, and as a conse-
quence, the dynamics of the free surface of the liquid,
the intensity of light scattering, etc., change abruptly.

Figure 3 shows the experimental data obtained by
Besov et al. [11] by using the capacity method of
detecting the cavitation threshold through the dynamics
of the free surface of the liquid when a shock wave is
reflected from this surface. According to this procedure,
the shock wave is produced in a shock tube by a pres-
sure of a pulsed magnetic field onto the conducting
membrane transferring the pressure pulse to the liquid.
The pressure pulse that was realized in the experiment
with water and caused the cavitation on the free surface
had the form

T1 = 2.85 × 10–6 s.

The maximum pulse amplitude Pm was reached at

the time t =  and determined by the

formula

In order to analyze the initial stage of the cavitation
fracture, we make use of incubation time criterion (1).
In this case, we take into account that tensile stresses in
mechanics of a deformed body are positive, whereas
tensile pressures in liquids are negative. In addition,

σ t( ) PA
πt
T
----- 

  e

t
T1
-----–

,sin–=

T
π
---

πT1

T
--------- 

 arctan

Pm

πT1

T2 π2T1
2+

--------------------------- T
πT1
---------

πT1

T
--------- 

 arctan 
  .exp=

100

0 T, µs

Pm, atm

50

2 4 6 8

Fig. 3. Mechanical strength measured and calculated for
water as a function of the pulse duration [11].
compressing pressure must be taken into account.
Therefore, condition (1) for a liquid takes the form

(3)

The strength of water, which was calculated in accor-
dance with criterion (3), is shown by the solid curve in
Fig. 3 as a function of the pulse duration T for σs =
1 atm, α = 0.5, and τ = 19 µs [11].

Thus, the experiments show that the cavitation
strength of liquids increases nonlinearly with decreas-
ing loading-pulse duration. Using the incubation time
criterion makes it possible to calculate the experimen-
tally observed increase in the cavitation threshold with
decreasing the pulse duration.

ELECTRICAL BREAKDOWN
IN INSULATORS

The above effects are also observed in pulsed elec-
trical breakdown in insulators, which is an urgent prob-
lem in the development and exploitation of high-volt-
age facilities and other electrical equipment. For exam-
ple, the typical feature of pulsed breakdown is an
increase in the breakdown voltage with reducing pulse
duration. The breakdown channel in alkali-halide crys-
tals, which is produced by a pulsed electric field with a
duration of 10 ns, arises at voltages exceeding quasis-
tatic ones by several times (i.e., with durations of 1 µs
and more) [12]. The same effect is typical of ionic com-
pounds. As an example, the breakdown electric field E*
measured in [13] for ammonium perchlorate single
crystals is presented in Fig. 4 as a function of the dura-
tion t0 of the leading edge of the pulse. This dependence
also characterizes the electrical strength as a function of
the voltage growth rate in a sample and can be called
the time dependence of strength by analogy with the
above examples of splitting, starting cracks, and cavita-
tion. In the experiment reported in [13], thin single-
crystal ammonium perchlorate plates were placed in a
pulsed electric field. The electrical breakdown of sam-
ples resulted in their burning out accompanied by the
appearance of a through channel. The experimental
data shown in Fig. 4 correspond to distances between
electrodes of 0.01 and 0.03 cm. As is seen, for times
t0 ≤ 1.5 µs, the electrical strength of a material increases
with a reduction in the duration of the leading edge of a
voltage pulse (with an increase in the voltage growth
rate in a sample). For t0 > 1.5 µs, the breakdown electric
field becomes virtually independent of t0 .

In the case under consideration, the electrical-break-
down criterion corresponding to relationship (1) can be
written in the form

(4)

1
τ
--- σ t'( )( )sgn abs

σ t'( )
σs

----------- 
 

 
  α

t' 1.≤d

t τ–

t

∫

1
τ
--- E t'( ) t' Es.≤d

t τ–

t

∫
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Here, Es is the static electrical strength of a material,
which can depend on the interelectrode distance, and τ
is the incubation time for the electrical breakdown of
the material, which is determined by the kinetics of the
electron multiplication in the electric discharge. The
curves in Fig. 4 are the time dependences for the elec-
trical strength of ammonium perchlorate calculated
according to criterion (4) with the parameters τ =
0.33 µs and Es = 0.52 × 106 and 0.2 × 106 V cm–1 for L =
0.01 and 0.03 cm, respectively. The onset time of
increasing the breakdown field in the dependences plot-
ted in Fig. 4 is entirely determined by the τ value. As
was shown in [13], this time was virtually independent
of the interelectrode distance. This indicates that the
incubation time in the case under discussion may be
considered as a material characteristic.

Thus, the examples of different physical processes
considered above show the fundamental importance of
investigating incubation processes preparing abrupt
structural changes (fracture and phase transitions) in

0

0.5

1.0
E*, 106 V cm–1

2 4 6 8 10
t0, µs

Fig. 4. Electrical strength E* of ammonium perchlorate vs.
the duration t0 of the leading edge of an electrical pulse for
the interelectrode distance L = (1) 0.1 and (2) 0.03 cm [13].

1

2

DOKLADY PHYSICS      Vol. 49      No. 4      2004
continua under intense pulsed actions. The fracture
incubation time is evidently a universal basic character-
istic of the dynamic strength and must become one of
the main material parameters to be experimentally
determined (measured). The above results show that the
structural-time approach is fundamental and makes it
possible to adequately represent the dynamics of both
the fracture of solids and liquids and electrical break-
down in insulators.

ACKNOWLEDGMENTS
This work was supported by the Russian Foundation

for Basic Research (project nos. 02-01-01035 and
03-01-39010), the Swiss National Science Foundation,
and NATO Scientific Affairs Division.

REFERENCES
1. Yu. V. Petrov, Dokl. Akad. Nauk SSSR 321, 66 (1991)

[Sov. Phys. Dokl. 36, 802 (1991)].
2. N. Morozov and Y. Petrov, Dynamics of Fracture

(Springer, Berlin, 2000).
3. N. F. Morozov, Yu. V. Petrov, and A. A. Utkin, Dokl.

Akad. Nauk SSSR 313, 276 (1990) [Sov. Phys. Dokl. 35,
646 (1990)].

4. N. A. Zlatin, S. M. Mochalov, G. S. Pugachev, and
A. M. Bragov, Fiz. Tverd. Tela (Leningrad) 16, 1752
(1974) [Sov. Phys. Solid State 16, 1137 (1974)].

5. K. Ravi-Chandar and W. G. Knauss, Int. J. Fract. 25, 247
(1984).

6. J. F. Kalthoff, Int. J. Fract. Mech. 23, 289 (1986).
7. J. W. Dally and D. B. Barker, Exp. Mech. 28, 298 (1988).
8. N. F. Morozov and Yu. V. Petrov, Izv. Ross. Akad. Nauk,

Mekh. Tverd. Tela, No. 6, 100 (1993).
9. A. S. Besov, V. K. Kedrinskiœ, Y. Matsumoto, et al., Din.

Sploshnoœ Sredy, No. 104, 16 (1992).
10. M. Kornfel’d, Elasticity and Strength of Liquids (GIIL,

Moscow, 1951).
11. A. S. Besov, V. K. Kedrinskiœ, N. F. Morozov, et al.,

Dokl. Akad. Nauk 378, 333 (2001) [Dokl. Phys. 46, 363
(2001)].

12. A. A. Vorob’ev and G. A. Vorob’ev, Electrical Break-
down and Destruction of Solid Dielectrics (Vysshaya
Shkola, Moscow, 1966).

13. I. G. Khaneft and A. V. Khaneft, Zh. Tekh. Fiz. 70 (4), 42
(2000) [Tech. Phys. 45, 423 (2000)].

Translated by G. Merzon



  

Doklady Physics, Vol. 49, No. 4, 2004, pp. 250–255. Translated from Doklady Akademii Nauk, Vol. 395, No. 6, 2004, pp. 761–766.
Original Russian Text Copyright © 2004 by Anakhaev.

                                                                                                                                                                                            

MECHANICS
Hydromechanical Calculation of Free Filtration
from Watercourses of a Curvilinear Profile 

with the Shifted Thalweg
K. N. Anakhaev

Presented by Academician S.S. Grigoryan November 1, 2003

Received November 18, 2003
Watercourses in the form of channels, storages, res-
ervoirs, etc., often have curvilinear profiles, and filtra-
tion in them under the corresponding conditions can be
characterized as free. This problem in application to
symmetric watercourses with the central thalweg was
considered in the hydromechanical formulation by
using the semi-inverse method in [1–5]. In this case,
Vedernikov and Pavlovskiœ assumed the initial ring base
of the profile of a watercourse in the plane of the
Joukowski complex [2–5]:

(1)

Here, z = x + iy is the complex filtration zone with the
current coordinates x and y (Fig. 1); W = ϕ + iψ is the
region of the reduced complex potential with the coor-

dinates of the pressure head function ϕ =  and stream

function ψ =  with the specific filtration rate from

the watercourse Q =  (Fig. 2e), where quantities

with the subscript n are real values of these parameters
and k is the ground filtration coefficient [5]; and

θ1 = x + ψ, θ2 = y – ϕ (2)

are the coordinates of the Joukowski complex region
(Fig. 2a).

Unfortunately, these solutions enable one to deter-
mine the filtration parameters for a given B/H ratio,
where B and H are the width and depth of the water-
course, only for the symmetric profile of the water-
course. Meanwhile, most real watercourses have asym-
metric profiles with the shifted thalweg (point A). In
view of this circumstance, we consider the initial curvi-
linear profile of a watercourse with the thalweg located
at a depth of H = 1 (in arbitrary units) and is shifted
from the watercourse axis by a varying in the interval

θ z iW– x ψ+( ) i y ϕ–( )+ θ1 iθ2.+= = =

ϕn

k
-----

ψn

k
------

Qn

k
------
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 ≤ a ≤  (Fig. 1). In this case, the stream function

ψ increases from ψ =  at point 1 to ψ =  at point 2,

and ψN = 0 at point N on the watercourse profile. The
width of the filtration flow between points 3 and 4 for
y  ∞ is equal to b∞ = Q, because the head gradient
tends to unity. Thus specified filtration zone 1–A–N–2–
3–4 is represented in the lower half-plane of the
Joukowski complex in the form of a unit semicircle
(Fig. 2a) whose characteristic points are as follows:

points 1 and 2: 

point A: 

x = a, y = H = 1,  ψ = ψA = –a,

ϕ = 0, θ1 = 0, θ2 = H = 1; (3)

point N: 

x = xN, y = yN, ψ = ψN = 0, ϕ = 0;

θ1 = xN, θ2 = yN;

points 3 and 4: 

,

where the upper signs correspond to points 1 and 3, and
the lower signs, to points 2 and 4.

In Eqs. (3), it is taken that the stream function at the
point A is equal to the negative shift of the thalweg from
the axis of the watercourse, ψA = –a, and the shift b of

B
2
---–

B
2
---

Q
2
----–

Q
2
----

x
B
2
---, y± 0, ψ Q

2
----, ϕ+− 0,= = = =

θ1
Q B–

2
--------------, θ2+− 0;= =

x
Q
2
---- b, y+± ∞, ψ Q

2
----,±= = =

ϕ ∞ , θ1 b, θ2 0= = =
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Fig. 1. Free filtration from a watercourse of a curvilinear profile for  = 3 and thalweg shift a = 0.75, 0, –1.0, –1.3.
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the zero streamline (ψN = 0) from the vertical Oy axis is
given by the expression (as will be shown below)

(4)

From relations (3) for points 1, 2, and A in the
region θ, we find the filtration rate

Q = B + 2H, (5)

which is also equal to the maximum width b∞ of the fil-
tration zone.

The semicircle region θ = θ1 + iθ2 is conformally
mapped onto a similar unit semicircle in the complex
half-plane t = t1 + it2 (Fig. 2b) by the linear fractional
transformation

(6)

which transfers points 3 and 4 to the coordinate origin
and point N onto the Ot1 axis. From this condition, we
obtain the images of the point N in the θ and Z regions:

(7)

b
0.5aπ

Q
--------------.tan=

t
b θ–

θb 1–
---------------,=

θN  = zN  = θ1 iθ2+  = xN iyN+  = 
2b

1 b2+
-------------- i

1 b2–

1 b2+
--------------.+
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Points 1 and 2 correspond to t = –1 and 1, respec-
tively; points 3 and 4, to t = 0; the point A, to tA = t1 +

it2 =  + ; and the point N, to tN = i.

Further transformations are performed as follows.
The t = t1 + it2 region is mapped by the inversion

(8)

onto the upper half-plane ς0 = ξ0 + iη0 with a unit semi-
circle hole (Fig. 2c). The ς0 = ξ0 + iη0 region is mapped
by the Joukowski function

(9)

onto the upper half-plane ς = ξ + iη (Fig. 2d). The
region of the complex potential W = ϕ + iψ is mapped
by the function

(10)

onto the half-band W1 = ψ1 + iϕ1 with the width π that

2b

1 b2+
--------------– i

1 b2–

1 b2+
--------------

ς0
1
t
---–=

ς 0.5 ς0
1
ς0
----+ 

 =

W1
iπW

Q
----------=
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Thus, the W and θ regions are related as

(12)

Separating the real and imaginary parts, we obtain

. (13)
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where θ1 and θ2 are given by Eqs. (2). According to

Eqs. (14) for η = 0, M = 2, ψ = , and ϕ = 0

for ξ < 1, whereas and M = 2, ψ = , and ϕ =

 for |ξ| ≥ 1 (the upper and lower signs cor-

respond to positive and negative ξ values, respectively).
The quantity b given by Eq. (4) is determined by the
mutual mapping of the values fixed for the point A in
the regions W and θ.

The hydromechanical method proposed above for
solving the problem of free filtration from watercourses
with the shifted thalweg provides the determination of
all the necessary parameters of a filtration flow. In par-
ticular, for given quantities B, H, and a, the coordinates
of the watercourse profile are determined by the for-
mulas

(15)

where α =  and ψ is the given stream function.

Depression surfaces 1–4 and 2–3 (Fig. 1) are deter-
mined by the relation

(16)

where the upper and lower signs correspond to the 1–4
and 2–3 sections, respectively. Formulas (15) and (16)
for a = b = 0 give solutions for the particular case of a
symmetric watercourse with the central thalweg.

The filtration velocity V at the moistened perimeter
1–A–2 of the watercourse is given by the expression

(17)

where ds is an elementary section of the watercourse
profile. In view of Eqs. (15), formula (17) takes the
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form

(18)

According to Eq. (18) for ψ = , , –a, and 0, the

filtration velocities at points 1, 2, A, and N, respectively,
are given by the expressions

(19)

where the upper and lower signs stand for positive and
negative x values, respectively.

The expressions for the particular case of a symmet-
ric watercourse with the central thalweg are obtained
from Eqs. (18) and (19) with a = b = 0:

(20)

These expressions coincide with the rigorous results
obtained by Vedernikov [4, p. 121] and Pavlovskiœ [5,
p. 457].

The inclination angle β of the filtration velocity
from the horizontal line to the surface of the moistened
perimeter 1–A–2 of the watercourse is determined by
the expression

which is reduced, by using Eqs. (13)–(15), to

(21)
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respectively. The angle β at points 1 and 2 is obtained
from Eq. (21) for y = 0:

, (22)

where the upper and lower signs stand for points 1 and
2, respectively. The solution for the watercourse with
the central thalweg is obtained from Eqs. (21) and (22)
for a = b = 0:

(23)

β1 2,
Q
π
---- 1 b+−( )2
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β Q π 1– αcos–⋅
αsin

----------------------------------arctan
Q π 1– y–⋅

1 y2–+−
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β1 2,
Q
π
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where the upper and lower signs are used for positive
and negative x values, respectively. For this solution,
the velocity is vertical (β = 90°) at the point A (y = 1).

Figure 1 shows the curvilinear profiles of the water-
course that are calculated by the above formulas for
B = 3 and H = 1, as well as the thalweg shift a = 0.75,
−1.0, –1.3, and 0. The corresponding depression sur-
faces 1–4 and 2–3, as well as zero streamlines (ψN = 0)
and streamlines from the thalweg A (ψA = –a), are plot-
ted. For a symmetric watercourse with the central thal-
weg (for a = b = 0), the profile with the depression sur-
faces coincides with the rigorous solutions obtained by
Vedernikov and Pavlovskiœ [2–5]. Comparison shows
that the depression surfaces for asymmetric profiles
deviate from those for the symmetric profile by 40–
45% or more.

Figure 3 shows diagrams of the filtration velocities
for the curvilinear profiles of watercourses for a = 0.75,
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–1.0, –1.3, and 0. These diagrams show that the maxi-
mum inlet filtration velocities for asymmetric water-
courses are much higher (by a factor of 2–3 or more)
than the values for symmetric profiles for the same fil-
tration rates from them. In addition, these maximum fil-
tration velocities are shifted from the watercourse thal-

weg (point A) towards the steeper bank (e.g., for  =

10, this shift can reach 20%). Moreover, the filtration
velocities (and inclination angles β) at points 1 and 2 for
gentle banks are higher than the values for steep banks.

The results obtained in this work may be used when
designing various watercourses, in particular, for the
efficient arrangement of filtration-preventing systems,
determination of the zone of filtration pollutions from
reservoirs, etc.
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H
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The investigation of interaction between aerodis-
persed flows and solid surfaces is of considerable inter-
est due to the numerous engineering applications, such
as the thermal and erosion protection of flying vehicles
moving in the Earth’s atmosphere and in the atmo-
spheres of other planets. When a high-speed flying
vehicle passes through either aerosol or dust clouds,
both local (e.g., local friction coefficient and heat-trans-
fer coefficient) and global flow characteristics can
change [1, 2]. Low-inertia particles are accumulated in
the boundary layer, which significantly increases the
heating of the front surface of the vehicle even for very
low concentrations of particles in the free stream [3].
Spatial inhomogeneities in either concentration or iner-
tial properties (such as size, form, and density) of the
particles in the free stream can give rise to nonstation-
ary effects in the shock layer as well as to the appear-
ance of peak thermal and force loads. The investigation
of this problem was begun in [4, 5], where a number of
model inhomogeneities in the concentration and sizes
of particles were considered in the range of parameters
corresponding to the absence of inertial deposition of
particles (low-inertia particles) on the front surface of a
body immersed in a flow.

Below, we consider the range of parameters corre-
sponding to the regime of inertial deposition of parti-
cles on a sphere in a supersonic dusty flow. It is shown
that the front surface of the sphere can be subjected to
peak thermal loads caused by aerodynamic focusing of
particles with different inertial properties. We demon-
strate that the unlimited cumulation (in the framework
of the collisionless model of particles) of the momen-
tum and energy of the particles in the shock layer of a
blunt body immersed in a flow occurs for certain spatial
distributions of the particles in the inertia parameter in
the free stream.
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FORMULATION OF THE PROBLEM 
AND THE METHOD OF ITS SOLUTION

We consider a flow past a sphere of radius L that
moves with a constant supersonic velocity U and enters
an inhomogeneous dust layer at the time instant t = 0.
In the reference frame fixed to the body, the problem is
time-dependent due to the time-dependent boundary
conditions on the bow shock wave. We use the two-con-
tinuum model of a dusty gas [6] with a low mass con-
centration of particles whose effect on the parameters
of the carrier phase in the shock layer is ignored. A vis-
cous perfect gas with constant heat capacities is consid-
ered as the carrier phase, where spherical particles each
with radius σ and mass m have concentration . In
general, these parameters are different at different
points of the initial dust layer and are treated as known
functions of the initial coordinates.

In what follows, the subscript s denotes the parame-
ters of the dispersed phase, the subscript ∞ refers to the
parameters of the free stream, and the subscript c
denotes the parameters of the adiabatic gas drag that
correspond to the limiting (M  ∞) hypersonic speed
of the flow (M is the Mach number of the gas in the
unperturbed flow). The dimensional parameters are
denoted by asterisks in order to distinguish them from
the dimensionless ones.

The expressions describing the interphase exchange
by momentum and energy (per particle) are taken in the
form [7]

ns*

fs = 6πσµ* V* Vs*–( )G, qs = 4πσλ* T* Ts*–( )D,

G 1
Res

2/3
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Here, V* is the velocity; T* is the temperature; µ* and
λ* are the viscosity and thermal conductivity of the gas,
respectively; a* is the speed of sound in the gas; Pr is
the Prandtl number of the carrier phase; Res and Ms are
the Reynolds and Mach numbers of the flow past the
particles; and the characteristic Reynolds number Res0
of the flow past the particle moving in the shock layer
characterizes the deviation of the drag force from
Stokes’ law. The functions ϕ and Φ2 describe the cor-
rections on the finite Knudsen numbers of the flow past

the particles Kns ≈ 1.255  [8] ; for the continu-

ous flow past the particles, ϕ = Φ2 = 1. The quantities

 and  are square-root functions of .

Let us introduce a curvilinear coordinate system
whose x and y axes are directed along the generatrix and
normal to the surface, respectively, and the dimension-

less variables x = , y = , ρ = , ns = , µ =

, p = , T = , and Ts = . Here, 

is the characteristic particle concentration in the dust
layer and cp is the specific heat of the gas at constant
pressure. The phase velocities are scaled to U, the phase
temperatures are scaled to the limiting drag tempera-
ture for the hypersonic velocity of the free stream  =

, and the remaining parameters of the carrier phase

are scaled to the characteristic values at the given limit-
ing temperature.

Since the effect of the particles on the carrier phase
is disregarded, we first calculate the parameters of the
carrier phase and then the motion of the dispersed phase
in the given velocity and temperature fields of the gas.

The gas parameters near the front surface of the
sphere is numerically calculated by using the complete
Navier–Stokes equations (without separating the shock
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wave) on a nonuniform mesh concentrated to the body
surface. We use an implicit finite-difference scheme
based on the finite-volume method. The inviscid com-
ponents of the flow through the cell boundaries are cal-
culated by exactly solving the Riemann problem of the
decay of an arbitrary discontinuity. This problem is
determined by the boundary values of the parameters in
neighboring cells. These parameters are found by using
a nonoscillating one-dimensional compensation of the
initial physical variables: pressure, temperature, and
Cartesian velocity components inside cells along the
corresponding coordinates. Viscous flows through the
inner boundaries of cells are calculated using the cen-
tered differences, while flows through the boundaries
lying on the body surface are calculated using one-
sided three-point formulas. The difference equations
are solved by using an implicit two-layer iteration
scheme. In the implicit part of the finite-difference
operator, the directed differences are used in accor-
dance with the signs of the eigenvalues of the Jacobi
matrices of the convective terms. The system of the
finite-difference equations is written in the form conve-
nient for the application of the Gauss–Seidel iterative
method for the lines along which the implicit operator
is inversed by three-point runs. The details of the
numerical method were described in [9].

The parameters of the dispersed phase are found by
the complete Lagrangian method [10]. We introduce
Lagrangian coordinates x0, y0, and τ, where x0 and y0 are
the Euler coordinates of points in the dust layer at the

time instant t = 0 and τ =  is the dimensionless

time of motion of a chosen particle along the trajectory.

In these Lagrangian coordinates (for fixed x0 and y0
values), the equations for the momentum and energy of
particles in the dimensionless form are written as

(1)

Here, the inertia parameters of particles β and the char-
acteristic Reynolds numbers of the flow past particles
Res0 (entering into the expressions for G and D) are
considered as known functions of x0 and y0 . These func-
tions are determined by the spatial distribution (in size,
mass, etc.) of particles in the dust layer.
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In the chosen Lagrangian coordinates, the continu-
ity equation for the medium of particles has the form

(2)

Here, J is the Jacobian of the change of variables from
x, y to x0, y0 . According to [10], the differentiation of
Eqs. (1) with respect to the Lagrangian coordinates x0
and y0 yields a closed system of ordinary differential
equations for the components of the Jacobian J. The
numerical integration of this system along with
Eqs. (1)–(2) makes it possible to find all the parameters
of the dispersed phase (including concentration) on a
fixed trajectory of particles. The awkward differential
equations for the components of J are not represented.
The following initial conditions at τ = 0 are set in front
of the shock wave in the inhomogeneous dust layer:

(3)

The described system of the differential equations
along with the boundary conditions specified by
Eqs. (3) is solved numerically by the fourth-order
Runge–Kutta method. In addition, we use the linear
interpolation of the gas parameters obtained by solving
the Navier–Stokes equations at the nodes of the nonuni-
form mesh concentrated to the body surface. The calcu-
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Fig. 1. Distribution of the inertial properties of particles in
dust layers: (1) β(y0), (2) β(x0); Y1 = y0 – ysh, where ysh is
the deviation of the shock wave from the symmetry axis.
lations presented below are performed for the following
parameters of the carrier phase: Re = 106, M = 6,
γ = 1.4, Tw = 0.42, and Pr = 0.7 (here, the Reynolds
number is calculated using the sphere radius and the
parameters at infinity, γ is the adiabatic index, and Tw is
the dimensionless temperature of the surface immersed
in a flow).

EXAMPLES OF INHOMOGENEITIES LEADING 
TO UNLIMITED CUMULATION 

OF THE DISPERSED PHASE

The calculations are performed in the range of the
parameters corresponding to the regime of inertial dep-
osition of particles on the front surface of the body β <
β0 , where β0 corresponds to the boundary of the iner-
tial-deposition regime [3]. Assuming that the entire
momentum and energy fluxes of the precipitating parti-
cles are transmitted to the surface in this regime
(reflected particles are ignored), the contributions of the
particles to the local force Fs and thermal Qs loads on the
body surface (if the particle trajectories do not intersect)
can be evaluated as follows:

.

Here, the subscript w denotes the parameters on the
surface.

According to our calculations, the difference in the
inertial properties of particles can lead to their aerody-
namic focusing in the shock layer of the body immersed
in a flow. In this case, the spatial distribution of the iner-
tial properties [inertia parameter β(x0, y0)] in the initial
dust layer can be such that the peak (infinitely increas-
ing) local fluxes of the momentum and energy of the
particles arise on the body surface.

Figure 1 shows two such distributions of the inertial
properties of particles. These distributions were found
by parametric calculations. In the first example, the
parameter β in the initial dust layer depends only on y0
(curve 1), and in the second example, only on x0
(curve 2). For simplicity, it is assumed that particles are
immersed in the flow in the continuous-medium regime
(Kns = 0) and the quantity Res0 is constant and equal
to 15. The corresponding particle trajectories in the
shock layer are presented in Fig. 2. In these dust layers,
the inertial properties of particles vary monotonically
with the coordinate. In the first case, the inertia of the
“front” particles is lower than the inertia of the “back”
ones. In the second case, the low-inertia particles are
located near the flow axis and the inertia of particles
increases with the distance from the axis. As is seen in
Fig. 2a, the finite-thickness dust layer moving in the
shock layer collapses onto a surface, and all the parti-

Fs* mnsw* Vswv sw,–=

Qs* mnsw* v sw* cs Tsw* Tw*–( )
Vsw*

2
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cles on the symmetry axis of the finite-thickness dust
layer reach the stagnation point of the body at the time
instant τ ≈ 0.99. In the second case, the finite tube of the
particle flow has zero thickness at the side surface of
the body.

For the given dust layers, the model of noninteract-
ing particles gives infinite local momentum and energy
fluxes on the surface (in the first case, they are local in
time), because ns  ∞. The formation of the peak
fluxes is illustrated in Fig. 3, where the calculated
dimensionless (1) momentum and (2) energy fluxes are
presented. The calculations are performed for a piece-
wise step function that has constant β values in five
identical intervals (five fractions of the particles) of the
initial region Y1 and approximates the dependence
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Fig. 2. Trajectories of various kinds of particles in the shock
layer (a) at the symmetry axis for the case of the first inho-
mogeneity and (b) for the case of the second inhomogeneity

for β = (1) 8, (2) 7, (3) 5, (4) 3, and (5) 0 and Y = .
y
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β(Y1) (Fig. 1, curve 1). In this case, it is assumed that
the inhomogeneous layer lies between the homoge-
neous layers corresponding to the most and least iner-
tial particles, all fractions in the inhomogeneous layer
have the identical initial concentrations , and cs = cp .

The dimensionless fluxes were summed over the
number of fractions i = 5 precipitating simultaneously
on the front surface:

The maximum momentum and energy fluxes increase
infinitely with the number of partition intervals (the
number of fractions).

Interparticle collisions in actual flows evidently
limit infinite values of the fluxes. However, the revealed
possibility of sharp peak local loads arising on the body
surface must be taken into account when designing
high-speed flying vehicles.
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