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The property of a material medium to provide dif-
ferent conditions for light propagation in the opposite
directions is usually called optical nonreciprocity. This
nonreciprocity can be related to the phase (propagation
velocity), amplitude, and polarization of an electro-
magnetic wave. This work is focused on the optical
nonreciprocity in phase, which is caused by different
propagation velocities of the electromagnetic wave in
the opposite directions.

The optical nonreciprocity of a substance is usually
manifested only when it is exposed to various external
fields. However, from the general theoretical stand-
point, the natural optical nonreciprocity in certain crys-
tals may exist in the absence of any external fields. In
my opinion, the existence of an intracrystalline electro-
magnetic field is one of the causes responsible for the
natural optical nonreciprocity of a crystal. In this case,
the preferential direction along which the optical non-
reciprocity is maximal is determined by the vector
product of intracrystalline electric and magnetic fields
averaged over physically infinitesimal volumes. If the
average value of this product in a crystal is nonzero,
then the optical nonreciprocity can arise due to the non-
linearity of vacuum electrodynamics.

As is well known [1], recent experiments at the
Stanford accelerator confirmed that vacuum electrody-
namics is nonlinear theory. Therefore, the propagation
of electromagnetic waves in external electromagnetic
fields differs from that in vacuum. In particular, as was
shown in [2, 3], the propagation velocity of electromag-
netic waves in the direction of the vector product of the
external electric and magnetic fields differs from that in
the opposite direction.

It is worth noting that, in addition to the intracrystal-
line electromagnetic field, other causes can be respon-
sible for the natural optical nonreciprocity in crystals.
Therefore, one of the urgent problems of crystal optics
is the theoretical study of various mechanisms respon-
sible for the optical nonreciprocity and investigation of
laws governing the propagation of electromagnetic
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waves in nonreciprocal crystals. The search for experi-
mental methods for studying this phenomenon and
experimental verification of its various possible mech-
anisms are also very important.

Below, ignoring the details of various mechanisms
that provide the natural optical nonreciprocity in crys-
tals, we analyze basic laws governing the propagation
of electromagnetic waves in them.

In order to solve the posed problem, it is convenient
to write the coupling equations in the form D = D(B, E),
H = H(B, E). This study is focused on the analysis of
phenomena in anisotropic media in the presence of rel-
atively weak electromagnetic fields, when nonlinear
effects can be neglected. In this case, the coupling
equations can be written as

(1)

where Eαβ is a tensor, Tαβ is the tensor reciprocal to the
magnetic susceptibility tensor µαν , and ξαβ and Ψαβ are
axial tensors.

In the absence of free charges and currents, the vec-
tors D and E, as well the axial vectors B and H, satisfy
the equations of macroscopic electrodynamics:

(2)

The propagation of electromagnetic waves is usually
studied for frequencies corresponding to the transpar-
ency band of a substance when absorption is negligibly
small (see [4, 5]). As is well known, the time-averaged
divergence of the Poynting vector must vanish in this
case. Using macroscopic Maxwell equations (2), it is
easy to show that absorption is absent under the condi-
tions

(3)

It follows from these conditions that the real parts of the
tensors Eαβ and Tαβ are symmetric with respect to the
permutation of the subscripts, whereas their imaginary
parts are antisymmetric. An arbitrary tensor of the sec-

Dα EαβEβ ξαβBβ, Hα+ ΨαβEβ TαβBβ,+= =

curlH
1
c
---∂D

∂t
-------, divD 0,= =

curlE 1
c
---–

∂B
∂t
-------, divB 0.= =

Eαβ* Eβα, Tαβ* Tβα, ξαβ* Ψβα.–= = =
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ond rank can invariantly be represented as the sum of a
symmetric tensor and an antisymmetric tensor, and an
antisymmetric tensor in the three-dimensional space
is dual to an axial vector. Therefore, according condi-
tions (3), we have

(4)

where eαβν is the absolutely antisymmetric Levi–Civita
three-dimensional axial tensor and e123 = 1.

To simplify analysis of effects caused by the natural
optical nonreciprocity, we neglect both the frequency
dispersion and spatial dispersion and consider a weakly
anisotropic crystal for which

We assume that the vectors u and w, as well as the
axial vectors a and f, are small quantities of the same
order of smallness.

We now assume that a plane electromagnetic wave
propagates in a crystal obeying coupling equations (1).
The magnetic and electric fields of this wave are speci-
fied as

where ω and k are the frequency and the wave vector,
respectively. In this case, Eqs. (2) take the form

(5)

We now multiply the second of these equations by 

and substitute expressions (1) and (4) into it. As a
result, taking into account the first of Eqs. (5), we arrive
at the homogeneous set of three linear algebraic equa-
tions for the three components of the vector Eβ = (E)β:

(6)

where the three-dimensional tensor Παβ is of the form

Substituting relationships (4) into this expression and
using the formula

Eαβ εαβ ieαβνaν, Tαβ+ ταβ ieαβν f ν,+= =

ξαβ = Ψβα* ,  Ψαβ–  = Ψαβ' eαβνwν i Ψαβ'' eαβνuν+[ ] ,+ +

Ψαβ' Ψαβ'' 0, εαβ εδαβ, ταβ
δαβ

µ
-------.= = = =

B = B0 i ωt kr–( )–[ ] , Eexp  = E0 i ωt kr–( )–[ ] ,exp

ω
c
----Bα eασνkσEν,

ω
c
----Dα eασνkσHν+ 0.= =

ω
c
----

ΠαβEβ 0,=

Παβ
ω2

c2
------Eαβ

ω
c
---- eασνΨνβ eβσνΨνα

*
+[ ] kσ+=

+ eασνeδρβkσkρTνδ.

eαµνeστβ δασ δµτδνβ δντδµβ–[ ]=

– δατ δµσδνβ δνβδµσ–[ ] δαβ δµσδντ δµτδνσ–[ ] ,+
we reduce the tensor Παβ to the more convenient form

(7)

For the existence of nontrivial solutions of the set of
Eqs. (6), its determinant must be equal to zero:
det||Παβ|| = 0. Using tensor algebra [6], we write this
equation as

(8)

Composing invariants of powers of tensor (7), taking
relationships (5) into account, and neglecting all terms
higher than squares of the small quantities u, w, a, and
f, we reduce expression (8) to the form

where, as usual, n = .

The last relationship is the dispersion equation.
Solving this equation, we can find the frequency of the
plane electromagnetic wave as a function of its wave
vector.

Retaining only terms linear in the small quantities a,
f, u, and w, we have

(9)

where the radicand is the square of the axial scalar and
the plus and minus signs correspond to the electromag-
netic wave of the first and second normal modes,
respectively.

It follows from expression (9) that the phase and
group velocities of the electromagnetic wave in crystals
with coupling equations (1) depend on the propagation

Παβ
ω2

c2
------ εαβ ieαβνaν+[ ] ω

c
---- 2 kw( )δαβ{+=

+ i kαuβ kβuα–[ ] kαwβ– kβwα– } i k2eαβν f ν{–

+ eασν f σkνkβ eβσν f νkσkα+ } 1
µ
--- kαkβ k2δαβ–[ ] .+

2Π 3( ) 3Π 1( )Π 2( )– Π 1( )
3+ 0.=

ω4

c
4

------n2 n4 µ2a2–{ } 2
ω3

c3
------µn2 2n2 kw( ) µ k ua[ ]( )–{ }+

+
ω2

c2
------ µ2k2 a2 n2u2– n2w2–[ ]{ µ 2n2 5 kw( )2[+

+ 2 ka( ) kf( ) ku( )2+ ] µ2 ka( )2– 2n4k2– }

+
2ω
c

-------µk2 µ k ua[ ]( ) 2n2 kw( )–{ } k2 µ2k2 w2 u2+[ ]{+

– µ2 ku( )2 kw( )2 n2 kf( )2+ +[ ] k2n2+ } 0,=

εµ

ω = 
c
n
--- k

µ
2n2
-------- 2 kw( )n– kf( )n2 ka( )–[ ] 2±+

 
 
 

,
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direction. In particular, in the forward direction (k =
kN, where N2 = 1), we have

where η is the axial scalar equal to –1 and +1 in the left-
hand and right-hand coordinate systems, respectively.
In the backward direction (k = –kN), we obtain

Since (n − 1) ≥ 10–1 in the transparency region of crys-
tals, and the magnitudes of u, w, a, and f are assumed
to be much smaller than unity, we can conclude that

 < c and  < c.

Vph
1 2,  = 

c
n
--- 1

µ
2n2
-------- 2 Nw( )n– Nf( )n2 Na( )–[ ] 2±+

 
 
 

,

Vgr
1 2, c

n
--- N

µ
n
---w

µη
2n2
-------- n2f a–[ ]±–

 
 
 

,=

Vph
1 2, c

n
--- 1

µ
2n2
-------- 2 Nw( )n Na( ) Nf( )n2–[ ] 2±+

 
 
 

,=

Vgr
1 2, c

n
--- N–

µ
n
---w

µη
2n2
-------- n2f a–[ ]±–

 
 
 

.=

Vph
1 2, Vgr

1 2,
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Thus, the natural optical nonreciprocity in the prop-
agation velocity of electromagnetic waves can be man-
ifested along several directions in crystals.
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INTRODUCTION

Spherical tokamaks provide promising prospects for
the solution of the problem of controlled thermonuclear
fusion. At these setups, the toroidal geometry of a
plasma has a large inverse aspect ratio. A configuration
close to spherical makes it possible to develop the
projects of relatively compact and cheap thermonuclear
power stations.

The behavior of a plasma in spherical tokamaks is
actively studied both theoretically and experimentally
in the last decade. Two large spherical tokamaks—
MAST (UK) and NSTX (USA)—were commissioned
several years ago. Successful experiments were carried
out, and a plasma with record parameters was obtained.

The problem of the electrical conductivity of a
plasma is a key problem of the controlled thermonu-
clear fusion. The so-called neoclassical transport theory
provided an answer to this problem in the late 1960s.
The plasma properties in toroidal geometry were shown
to differ strongly from those in cylindrical geometry.
Electrical conductivity is lower in toroidal geometry.
Moreover, additional electric current, so-called boot-
strap current, arises, and radial energy transport
increases.

Since that time, the electrical conductivity of a tor-
oidal plasma and bootstrap current were theoretically
calculated in detail in numerous works. The basic
results were reviewed in [1]. However, the most general
formulas were obtained only recently [2, 3].

It is of natural interest to compare theoretical results
for the electrical conductivity of the plasma with exper-
imental data. Such a comparison has not yet been made
for spherical tokamaks.
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This work is devoted to the study of the electrical con-
ductivity of the plasma in discharges at the MAST setup
by the mathematical simulation method and a compari-
son of theoretical results with experimental data.

The basic difficulty of the study of conductivity is
that the parameters are not measured inside the plasma,
and the accuracy of solving the inverse problem of
reconstructing the internal properties is insufficient for
reliable conclusion. We develop a new approach for
determining the plasma conductivity in a real experi-
ment by using accurately measured characteristics and
known parameters of the setup.

MATHEMATICAL MODEL

The model of the evolution of a toroidal plasma was
described in detail in [4]. Here, we give only the brief math-
ematical formulation of the problem. In the framework of
the usual tokamak approximation, the Maxwell equations,
force-balance equation, and Ohm’s law are reduced to the
set of the following two strongly nonlinear equations for
two unknown functions ψ(t, R, Z) and F(t, ψ):

(1)

(2)

R
∂

∂R
------ 1

R
---∂ψ

∂R
------- 

  ∂2ψ
∂Z2
---------+ µ0R jη ,–=

jη R ψ,( )

R
∂p t ψ,( )

∂ψ
-------------------- 1

2µ0R
-------------∂F2 t ψ,( )

∂ψ
-----------------------+

within Γ p t( )

Ji t( )δ R Ri–( )δZ Zi–
i 1=

L

∑
beyond Γ p t( ),












=

∂
∂t
----- F̃ Zd

0

Z

∫ 
 
  ∂ψ

∂Z
-------

∂ψ
∂t
------- F̃–

1
µ0σ||
----------- ∂F̃

∂R
-------∂ψ

∂R
------- ∂F̃

∂Z
-------∂ψ

∂Z
-------+ 

 =

–
1

µ0σ||
-----------F̃ R

∂
∂R
------ 1

R
---∂ψ

∂R
------- 

  ∂2ψ
∂Z2
---------+ 

  R2

σ||
-----jadd B⋅–

within Γ p t( ),
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(3)

(4)

Here, Γp(t) is the plasma boundary defined as a
closed surface ψ = const of the maximum width; B =

Btoriη + Bpoliξ , where Btor =  and Bpol are the toroidal

and poloidal components of the magnetic field, respec-

tively, iη and iξ =  are the unit vectors in the

toroidal and poloidal directions, respectively; σ|| is the
electrical conductivity of the plasma along the mag-
netic field B; p(t, ψ) is the kinetic pressure of the
plasma; Ji(t) are the current in the solenoid, poloidal-

field coils, and chamber walls; and the term 

presents currents induced by external nonelectric forces
such as bootstrap current, Pfirsch–Schluter current, dia-
magnetic current, current generated by rf waves,
injection of neutrals, varying magnetic field, etc. Equa-
tion (1) is the well-known Grad–Shafranov equation
obtained from the Ampere law and force balance for an
axisymmetric magnetic field. Equation (2) is the pro-
jection of Ohm’s law on the magnetic field B. Both
equations are written in the cylindrical coordinates
(R, η, Z). The toroidal angle η does not enter into the set
due to the axial symmetry.

Averaging (4) is performed by integrating over the
intersection line of the magnetic surface ψ = const and
plane η = const. Such an averaging simulates relatively
fast processes transforming the plasma to the equilib-
rium state at each time, where F must be a function of

ψ (see, e.g., [1]). The factor  ensures the equality of
integral (4) to the average value with respect to the
angle ξ in the coordinate system (γ, ξ, η), where γ is the
label of the surface ψ = const. The integration with
respect to ξ has a clear interpretation: it yields an aver-
age value over the angle.

Equations (1)–(4) are supplemented by the initial
and boundary conditions

(5)

Here, Irod(t) is the electric current through the central
core of the setup that is responsible for the toroidal

F t ψ,( ) F̃ t R Z, ,( )〈 〉 ψ within   Γ p t ( ) ,=

·〈 〉 ψ

 · Bpol
1– dl

ψ = const

∫°
Bpol

1– dl

ψ const≡

∫°
-----------------------------------.≡

F
R
---

∇ψ iη×( )
∇ψ

------------------------

jadd B⋅
σ||

----------------

Bpol
1–

ψ 0 R Z, ,( ) ψ0 R Z,( ), F 0 ψ,( ) F0 ψ( ),= =

ψ t R Z, ,( )
R 0→
lim ψ t R Z, ,( )

R ∞→
Z ∞→

lim 0,= =

F̃ t R Z, ,( ) Γ p t( )

µ0

2π
------ Irod t( ).=
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 magnetic field and  ψ
 0  (  R  ,  Z  )   is the solution of equilib-

rium equation (1) with given initial conditions 
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ψ
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and 

 

F

 

0
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ψ

 

)

 

.
The problem specified by Eqs. (1)–(5) is a two-

dimensional problem with a free boundary 

 

Γ

 

p

 

(

 

t

 

)

 

, which
is determined during solution.

PENETRATION 
OF AN INDUCED MAGNETIC FIELD

INTO THE PLASMA

The electromagnetic induction effect is extensively
used in spherical tokamaks to maintain current in a
plasma. Electric voltage inducing current is primarily
generated by a solenoid located at the center of a toka-
mak. Poloidal-field coils controlling the shape and
position of the plasma can noticeably contribute to the
induced current.

The induced current is often simulated under the
steady-state assumption that the solenoid and other
coils instantaneously induce current at any point of the
plasma. Such an assumption is valid for stationary
induced voltage applied to the plasma for a long time.
However, the real situation in current experiments is
usually far from the stationary case.

It is known that the penetration of the magnetic field
into the plasma takes a certain characteristic time, esti-
mated in [5] as 

 

 = 

 

µ

 

0

 

L

 

2

 

σ

 

, where 

 

L

 

 is the character-
istic scale of the spatial variation in the magnetic field

 

B

 

ind

 

 and 

 

σ

 

 is the plasma conductivity. For a typical dis-
charge at the MAST setup, 

 

 ~ 0.5

 

 s. Therefore, in a
discharge with a duration of about 0.5 s, the induced
voltage is expected to reach a stationary regime only at
the final stage. Therefore, an accurate calculation of the
distribution of the induced voltage 

 

U

 

ind

 

 inside the
plasma is of fundamental importance for the adequate
description of the experiment.

Within the boundary 

 

Γp(t), Uind(t, R, Z) satisfies the
diffusion equation

(6)

At the plasma boundary (R, Z) ∈ Γ p(t), we have

(7)

where G is the Green’s function of the pointlike ring
current at the point (Rc, i, Zc, i) and the summation is per-
formed over all ring currents for which the point (R, Z)

τBind

τBind

∂U ind

∂t
------------

1
µ0σ||
----------- R

∂
∂R
------ 1

R
---

∂U ind

∂R
------------ 

  ∂2U ind

∂Z2
---------------+

 
 
 

=

–
1
σ||
-----

∂σ||

∂t
--------U ind.

U ind t R Z, ,( )

=  2πµ0

dJc i, t( )
dt

------------------G R Z Rc i, Zc i,, , ,( ),
i 1=

Nc

∑–
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is directly or almost directly visible from the point (Rc, i,
Z c, i), i.e., is not strongly shielded by the plasma.

Knowing Uind , one can calculate the induction com-
ponent of the source in Eq. (2) as

Calculation of Uind is complicated by the large inverse
aspect ratio (when R can be close to zero), the sharp
dependence of the plasma conductivity on (R, Z), the
plasma shielding effect of remote sections from ring
coils, the complicated shape of the plasma boundary,
and the necessity of including events at the discharge-
formation stage.

COMPUTATIONAL EXPERIMENT

The computational experiment was carried out by
means of the SCoPE code, whose capabilities, details
of numerical algorithms realized in it, and structure of
software were described in detail in [4].

To obtain the most adequate model, the initial
parameters are specified as close as possible to the
experimental conditions. The following input data were
used in the model: the position of the setup walls; cur-
rent Irod(t) in the toroidal-field coils; the coordinates of
the solenoid windings and current in them; experimen-
tally determined position of the plasma boundary (cur-
rents in the control coils of the poloidal field are chosen
in calculations such that the calculated plasma bound-
ary is close to the given boundary); mass mβ and charge
eβ of plasma particles of kind β; and measured density

nβ(t, ψ), temperature Tβ(t, ψ), pressure p = Tβ of

particles, and effective charge Zeff(t, ψ) per ion.
The evolution of equilibrium begins with the same

condition for neoclassical and Spitzer models of
plasma conductivity. Conductivity and bootstrap cur-

jadd ind,

σ||
-------------- Eindiη≡

U indiη

2πR
--------------.=

nβ

β
∑

0.05

t, s

Itor, 105 A

0.10 0.15 0.20 0.250.05

5.6

5.2

6.0

4.8

Toroidal current Itor(t) in the plasma. The solid, dashed, and
dash–dotted lines correspond to neoclassical conductivity,
Spitzer conductivity, and measurement, respectively.
rent are calculated by formulas taken from [2, 3]. The
total toroidal current Itor(t) in the plasma for t = 0 is
taken to be equal to the experimental value. The quan-
tity F(0, ψ) was calculated in terms of pressure p(0, ψ)
and plasma current density jη(0, R, Z) reconstructed by
the EFIT code from magnetic measurements at t = 0.
Further, the evolution of Itor(t) and F(t, ψ) is determined
by Ohm’s law (2). Quantities calculated in the model
are compared with experimental data. Only undoubt-
edly reliable data were analyzed, including the total
current in the plasma Itor(t) and currents in the poloidal-
field coils.

Figure 1 shows the evolution of the current Itor(t) in
the MAST setup for discharge 9037, magnetic axis
Rmag ~ 0.8 m, small radius ~0.5 m, elongation ~1.5,
B(Rmag) ~ 0.52 T, ne, d ~ 4 × 1019 m–3, and Te, d ~ 0.4 keV.

It is seen that current for neoclassical conductivity is
closer to the experimental data than that for Spitzer
conductivity. The rate of change in current in the
Spitzer case is about twice as high as in the neoclassical
case, which corresponds to the difference in the con-
ductivity value. This fact has a clear physical interpre-
tation: larger current is generated in a plasma with
higher conductivity.

Comparison of the calculated and measured currents
in control coils shows that the dominating difference is
observed for the P5 coils, where current in the neoclas-
sical case is about twice as close to the experimental
value as in the Spitzer case. The absolute value of cur-
rent in the neoclassical case is higher than in the Spitzer
case. The physical explanation of the difference in cur-
rents is simple. Neoclassical conductivity has a steeper
profile, which is responsible for a larger current con-
centration at the plasma center and its closer location to
the chamber wall. Current in the coils P5 repulses the
plasma from the wall. Therefore, the absolute value of
current in the neoclassical case must be larger, which is
consistent with calculations.

The above results, as well as numerous calculations
with different variations of the mathematical model and
plasma parameters, show that conductivity at the
MAST setup is neoclassical.

CONCLUSIONS

Plasma conductivity at the MAST spherical toka-
mak was analyzed by the mathematical simulation
method. An extensive computational experiment was
carried out for various models of conductivity. The
basic characteristics of the plasma were calculated and
compared with measurements in the natural experi-
ment. The closeness of experimental and numerical
data, as well as the physical interpretation of observed
effects, reliably shows that plasma conductivity at the
MAST setup corresponds to neoclassical theory. Since
the mathematical model is universal, the result can be
extrapolated to other spherical tokamaks.
DOKLADY PHYSICS      Vol. 49      No. 6      2004
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The neoclassical theoretical results were compared
with experiments at tokamaks with relatively small
inverse aspect ratio in [4]. According to that work, the
electrical conductivity of the plasma and bootstrap cur-
rent correspond to neoclassical theory.

In this work, the conclusion about the neoclassical
conductivity of the toroidal plasma was generalized to
the case of a large inverse aspect ratio. Moreover, we
developed a new approach fundamentally different
from [6]. The conclusion made in [6] is based on anal-
ysis of electric voltage on the plasma surface. The accu-
racy of measuring and calculating this voltage may be
low due to the displacement of the plasma boundary
and necessity of taking the derivative of an approxi-
mately specified function. The conclusion made in this
work is based on reliable measurements of the total cur-
rent in the plasma and accurate data on currents in
poloidal-field coils.
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The so-called blind problem has attracted great
attention in recent years [1, 2]. This problem is the
problem of reconstructing unknown signals passing
through a linear channel or medium with unknown
characteristics over additive background noise. Blind
identification, i.e., the estimation of the pulse character-
istic of the channel by using only observed signals, is a
key element of this problem. Blind identification is
opposite to problems of the classical identification of
systems, where an observed signal is used and input
signals are known. The blind problem often arises in
various applications of digital processing of signals and
images: in radio technical systems including radioloca-
tion, radio navigation, radio astronomy, digital televi-
sion, radio communication, etc. [1, 2].

For channels with one entry and one exit, the identi-
fiability conditions are formulated in the statistical-
identification context that implies a certain set of out-
put-signal realizations formed with the constant pulse
characteristic of the channel.

The moment method implying the change of equa-
tions relating input and output signals to equations
relating the corresponding moment functions is the
basic approach used for blind statistical identification.
For example, it is well known that the covariance func-
tions of a stationary process at the exit of a linear sys-
tem do not involve information on the phase of its trans-
mission function, and identification is possible only for
systems with the minimum phase. For this reason, iden-
tification is performed by using high-order statistics
and, correspondingly, non-Gaussian models of input
1028-3358/04/4906- $26.00 © 20354
signals [3]. Second-order statistics can be used for
blind identification of the channel for a nonstationary
model of an input or output signal, including a cyclo-
stationary signal [1]. Nevertheless, the statistics of
input signals are assumed to be known a priori in all
these cases. However, this assumption is often inappli-
cable. In particular, the statistic of the backscattering
coefficient in radiolocation problems depends on the
properties of a target, and the statistic of a signal in radi-
ocommunication systems is determined by transmitted
information.

In this work, a new approach for solving the prob-
lem of statistical blind identification is proposed on the
basis of the polynomial representation of the moments
of random sequences [2]. This approach transfers the
problem of blind identification from the linear space to
the ring of multivariate polynomials and involves a
mathematical technique that was successfully devel-
oped in recent years and is based on algebraic geometry
and commutative algebra. This approach makes it pos-
sible to solve the problem of blind identification for
various degrees of prior uncertainty in the statistic of
information signals including absolute prior uncer-
tainty.

POLYNOMIAL STATISTICS

A polynomial cumulant of the order k + m, where
k = k1 + k2 + … + kr and m = m1 + m2 + … + mr, of a
random vector x is defined as a polynomial of r vari-
ables that belongs to the ring C[z1, z2, …, zr]:
Kk1 k2 … kr m1 m2 … mr, , , , , , ,
x z1 z2 … zr, , ,( )

=  cum x z1( )
k1x z2( )

k2…x zr( )
krx* z1( )

m1x* z2( )
m2…x* zr( )

mr{ } .

In the space Cr, the set of points at which a polyno-
mial cumulant (z1, z2, …, zr) isKk1 k2 … kr m1 m2 … mr, , , , , , ,

x
equal to zero,

Ξk1 k2 … kr m1 m2 …, mr, , , , , ,
x t( )

=  z Cr: Kk1 k2 … kr m1 m2 … mr, , , , , , ,
x z1 z2 … zr, , ,( )∈ t={ }
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is an affine variety in the space Cr and is called the
given-correlation variety [2].

POSSIBILITIES 
OF STATISTICAL BLIND IDENTIFICATION

If an input sequence is finite and the number of real-
izations available for processing is sufficient for statis-
tical identification, the signal at the exit of a linear sta-
tionary system is representable in the form of the prod-
uct of polynomials over the complex number field C[z]:

(1)

Here, y(z), h(z), x(z), and v(z) ∈  C[z] are the polyno-
mials corresponding to an observed discrete signal,
finite discrete pulse characteristic of the channel, infor-
mation sequence at the channel entry, and noise counts,
respectively. Algorithms of blind identification are usu-

y z( ) h z( )x z( ) v z( ).+=
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ally constructed under the assumption that the pulse

characteristic (z1, z2, …, zr) of the
information signal is known. However, only very gen-
eral assumptions, if any, exist for the case of the statistic
information sequence under consideration.

Let us show that the structure of zero-correlation
varieties of the observed signal can be used for blind
identification in this case. Since the noise statistic is
usually known, the zero-correlation variety of the
received signal is expressed according to Eq. (1) as

(2)

where

Kk1 k2 … kr m1 m2 … mr, , , , , , ,
x

Ξk1 k2 … kr m1 m2 …mr, , , , , ,
y v– 0( )

=  Ξk1 k2 … kr m1 m2 …, mr, , , , , ,
h 0( ) Ξk1 k2 … kr m1 m2 …, mr, , , , , ,

x 0( ),∪
Ξk1 k2 … kr m1 m2 …, mr, , , , , ,
h 0( ) z Cr:  h z1( )( )

k1 h z2( )( )
k2… h zr( )( )

kr h* z1( )( )
m1 h* z2( )( )

m2… h* zr( )( )
mr = 0∈{ } ,=

Ξk1 k2 … kr m1 m2 …, mr, , , , , ,
y v– 0( ) z C r:  Kk1 k2 … kr m1 m2 … mr, , , , , , ,

y z1 z2 … zr, , ,( )∈{=

– Kk1 k2 … kr m1 m2 … mr, , , , , , ,
v z1 z2 … zr, , ,( ) 0= } .
Since a complex univariate polynomial always has a

complete set of roots, the variety (0)
is zero-dimensional, i.e., consists of a finite number of
points corresponding to the zeros of the channel poly-
nomial. This variety can be factorized into a combina-
tion of no more than (L – 1)2r of simplest varieties
describing points in Cr, where L is the length of the
pulse characteristic of the channel. At the same time,
the zero correlation variety generated by the informa-
tion sequence polynomial can either also be factorized
into a combination of irreducible varieties or remain
irreducible. The irreducibility of the variety cannot gen-
erally be the determining factor of the separation of the
channel parameters from the information sequence.
However, the dimension of the variety can be the sepa-
ration factor. If the variety generated by the channel
polynomial is always zero-dimensional, the zero-corre-
lation variety generated by a random information signal
has a dimension of no less than one. Therefore, the
zeros of the channel and information sequence can be
separated by a certain procedure of selecting varieties
according their dimension.

As an example, let us consider identification accord-
ing to second-order polynomial statistics and indepen-
dent equally distributed readings of an information
sequence. In this case, the zero-correlation variety of an
observed signal in C 2 disregarding noise has the form

(3)

Ξk1 k2 … kr m1 m2 …, mr, , , , , ,
h

Ξ1 0 0 1, , ,
y 0( ) Ξ1 0 0 1, , ,

h 0( ) Ξ1 0 0 1, , ,
x 0( ).∪=
The one-dimensional variety (0) is the bun-

dle of curves in C2 , and, as was mentioned above,

(0) is zero-dimensional. Analyzing expansion (3)
by taking into account the dimension of simplest vari-

Ξ1 0 0 1, , ,
x

Ξ1 0 0 1, , ,
h
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Separation of the zeros of the system characteristic of a
channel according to sections of zero-correlation varieties
for L = 7, information-sequence length N = 7, and 1000 real-
izations of the signal. The crosses and points are the zeros
of the system characteristic and information sequence,
respectively, upon variation in c from 1 to 2.5.
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eties, a priori unknown varieties of the channel and
information sequence can be separated by taking differ-

ent sections (0). Let

(4)

be the vector of the complex roots of a univariate poly-
nomial of the variable z. Here, c is the constant deter-
mining the section of the affine variety and root(·) is the
operation of calculating the roots of a univariate poly-
nomial with allowance for their multiplicities. Then,
the principle of separating roots of the pulse character-
istic from roots induced by the information sequence is
as follows. Change in c leads to the displacement of
roots associated with the information sequence over the

variety (0), whereas roots induced by an
unknown channel are not displaced. This property
allows their definite separation. In particular, the figure
shows the displacement of roots induced by the infor-
mation sequence on the complex plane with variation in

Ξ1 0 0 1, , ,
y

W c( ) roots K1 0 0 1, , ,
y z c,( )( )=

Ξ1 0 0 1, , ,
x

c in Eq. (4). For c = 1, the corresponding zeros coincide
and the channel identification is impossible.

The use of polynomial statistics in problems of the
blind identification of signal propagation channels
allows a definite estimate of the pulse characteristic of
the channel in the absence of prior information on the
statistical characteristics of an input signal. The separa-
tion factor is the difference between the dimensions of
the zero-correlation affine varieties generated by the
determinate pulse characteristic of the channel and a
random input signal.

REFERENCES
1. L. Tong and S. Perreau, Proc. IEEE 86, 1951 (1998).
2. O. V. Goryachkin, Methods of Blind Processing of Sig-

nals and Their Applications in Systems of Radio Engi-
neering and Communications (Radio i Svyaz’, Moscow,
2003).

3. C. L. Nikias and M. R. Raghuveer, Proc. IEEE 75, 869
(1987).

Translated by R. Tyapaev
DOKLADY PHYSICS      Vol. 49      No. 6      2004



  

Doklady Physics, Vol. 49, No. 6, 2004, pp. 357–360. Translated from Doklady Akademii Nauk, Vol. 396, No. 5, 2004, pp. 611–614.
Original Russian Text Copyright © 2004 by Volosyuk, Kravchenko, Ksendzuk, Pustovo

 

œ

 

t.

                                                                                                                                 

TECHNICAL 
PHYSICS
Modified Method of Antenna Aperture Synthesis
V. K. Volosyuk*, V. F. Kravchenko**, 

A. V. Ksendzuk*, and Corresponding Member of the RAS V. I. Pustovoœt***

Received January 22, 2004
In this study, we propose a new aperture-synthesis
method realizing the ideas developed in [1, 2]. This
method is based on solving the inverse optimization
problem of reconstructing the specific effective scatter-
ing area, which is a statistical characteristic of a spa-
tially nonstationary (inhomogeneous) random process,
instead of the problem of reconstructing an image as a
regular function of two variables. This approach
implies both the operations inherent in the traditional
aperture-synthesis method and the new operations of
the adaptive decorrelation of received signals as ran-
dom nonstationary processes, which make it possible to
considerably increase (by a factor of 2–4) the resolu-
tion of the reconstruction of coherent images of sur-
faces. To understand the physical essence of the
method, we consider the solutions of optimization
problems of reconstructing the images of surfaces in
two formulations.

1. The observation equation representing the model
of oscillations taken from the antenna output of a syn-
thetic-aperture radar (SAR) has the form [1–3]

(1)

Here, s(t, (r) = Re (r) (t, r)dr is the desired sig-

nal scattered by surface D and n(t) is white noise with
the correlation function

where δ(t1 – t2) is the Dirac delta function. The complex

u t( ) = s t Ḟ r( ),( ) n t( ), r+ D, t 0 1 … T ., , ,∈ ∈

Ḟ Ḟ

D

∫ ṡun

R t1 t2–( )
N0

2
------δ t1 t2–( ),=
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scattering coefficient (r) can be estimated by solving
the integral equation

(2)

where (t, r) = senv(t, r)  is the complex unit sig-

nal scattered by an element dr for (r) = 1 and (t)
is the complex envelope of the received oscillation

u(t) = (t) . The problem of reconstructing the

complex function (r) is incorrect, and its solution
requires a certain regularization, for example, the statis-
tical one by introducing a priori data on its behavior.
However, this is of no use, because, even at the
achieved SAR resolutions, the width of their ambiguity
functions

(3)

considerably exceeds the characteristic correlation

range of the process (r). For this reason, as a primary
image of the surface, we have to take either the real and

imaginary parts of the SAR output effect (r), | (r)|,
or | (r)|2. The integral on the left-hand side of Eq. (2)
is representative of the essence of the aperture-synthe-
sis method in the SAR with the focused processing of
signals [4]. However, the indicated primary images
have a pronounced spotty structure (speckle structure),
and it is unclear what should be considered as the image
and noise upon their reconstruction. To eliminate the
speckle structure, averaging and window smoothing of

the function | (r)| or | (r)|2 are performed. However,
these operations reduce the resolution. Moreover, the

smoothed function | (r)|2 is essentially an estimate of
the effective backscattering cross section σ0(r) (the spe-
cific effective scattering area), and this estimate is far

Ḟ

Ẏ r( ) U̇envṡenv* t r,( ) td

0

T

∫ Ḟ r1( )Ψ̇ r r1,( ) r1,d

D

∫= =

ṡun e
jω0t

Ḟ U̇env

U̇env e
jω0t

Ḟ

Ψ̇ r r1,( ) ṡenv t r,( )ṡenv* t r,( ) td

0

T

∫=

Ḟ

Ẏ Ẏ

Ḟ

Ẏ Ẏ

Ẏ
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from optimal. Therefore, it is worthwhile to estimate
the function σ0(r) by solving the corresponding optimi-

zation problem that is inverse not relative to (r) but to
σ0(r) as to the statistical characteristic of a nonstation-
ary random process.

2. To obtain the best consistent estimate of the func-
tion σ0(r), the Bayesian quality criteria, as well as a pri-
ori data regularizing the inverse-problem solution,
must be used. However, the primary principal opera-
tions necessary for estimating this function can also be
obtained by the maximum likelihood method. This esti-
mate will be inconsistent. It can be smoothed at the
stage of the secondary processing by all known meth-
ods of window averaging (median filters, sigma filters,
Lee and Frost filters, atomic functions [7], etc.). We

assume that the signal s(t, (r)) in Eq. (1) is stochastic
due to the random nature of the scattering coefficient

(r). Thus, the correlation function for the entire
observation equation has the form [5, 6]

(4)

where

If the random process u(t) is assumed to be Gaussian
with the zero mathematical expectation, the likeli-
hood functional can be written relative to the param-
eter σ0(r) as

(5)

Here, the inverse correlation function is found from the
integral equation

The desired parameter σ0(r) is a function of coordinates
r. Therefore, the problem of seeking the maximum of

Ḟ

Ḟ

Ḟ

Ru t1 t2,( ) u t1( )u t2( )〈 〉=

=  
1
2
---Re σ0 r( )ṡenv t1 r,( )ṡenv* t2 r,( ) rd

D

∫
N0

2
------δ t1 t2–( ),+

σu
0 r( ) Ḟ r( )Ḟ* r+∆r( )〈 〉 e

jq⊥ ∆r–
∆r.d

D

∫=

p u t( ) σ0 r( )[ ] k σ0 r( )[ ]=

× 1
2
--- u t1( )W t1 t2 σ0 r( ), ,[ ] u t2( ) t1d t2d

0

T

∫
0

T

∫–
 
 
 

.exp

W t1 t2 σ0 r( ), ,( )R t1 t3 σ0 r( ), ,[ ] t2d

0

T

∫ δ t1 t3–( ).=
functional (5) is variational. Solving it, we obtain the
integral equation

(6)

It is appropriate to write the variational (functional)
derivative of the inverse correlation function as follows:

Substituting this equality and the obvious identity

into Eq. (6) and calculating the corresponding varia-
tional derivatives, we obtain the integral equation for
estimating the specific effective scattering area:

(7)

Here,

(8)

is the complex output effect of the optimal processing
system for received oscillations,

is the reference signal, and

is the reference-signal energy.

δR t1 t2 σ0 r( ), ,[ ]
δσ0 r( )

---------------------------------------W t1 t2 σ0 r( ), ,[ ] t1d t2d

0

T

∫
0

T

∫

=  u t1( )
δW t1 t2 σ0 r( ), ,[ ]

δσ0 r( )
----------------------------------------u t2( ) t1d t2.d

0

T

∫
0

T

∫

δW t1 t2 σ0 r( ), ,[ ]
δσ0 r( )

---------------------------------------- W t1 t2 σ0 r( ), ,[ ]
0

T

∫
0

T

∫=

×
δR t3 t4 σ0 r( ), ,[ ]

δσ0 r( )
---------------------------------------W t4 t2 σ0 r( ), ,[ ] dt3dt4.

W t1 t2 σ0 r( ), ,[ ] W t1 t3 σ0 r( ), ,[ ]
0

T

∫
0

T

∫=

× R t3 t4 σ0 r( ), ,[ ] W t4 t2 σ0 r( ), ,[ ] dt3dt4

Ẏout r( )2 1
4
--- σ0 r1( ) Ψ̇w r1 r,( ) 2

r1

N0

2
------Ew r( ).+d

D

∫=

Ẏout r( ) = 
1
2
--- U̇env t1 r,( )W t1 t2 σ0 r( ), ,[ ] senv* t2 r,( ) t1d t2d

0

T

∫
0

T

∫

=  
1
2
--- U̇env t1( )sw* t1 r,( ) t1d

0

T

∫

ṡw t r,( ) W t1 t2 σ0 r( ), ,[ ] ṡenv* t2 r,( ) t2d

0

T

∫=

Ew r( ) ṡw t r,( ) 2 td

0

T

∫=
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Fig. 1. Section of the absolute value of normalized spatial ambiguity functions (1) for matched filtering and for the decorrelation of
a received signal for a signal-to-noise ratio of (2) 10, (3) 20, (4) 50, (5) 75, and (6) 100.
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Fig. 2. Results of radar-image processing (for an average signal-to-noise ratio of 50): 1 is the initial (test) radar image, 2 is the radar
image after initial processing by the matched-filtering technique with subsequent smoothing by the Lee filter, and 3 is the radar
image after initial processing with decorrelation and subsequent smoothing by the Lee filter.
3. Expression (8) represents the essence of the mod-
ified method of aperture synthesis. Contrary to the clas-
sical aperture-synthesis method by the matched filter-
ing of a received signal with a reference unit signal, the
DOKLADY PHYSICS      Vol. 49      No. 6      2004
modified method implies the decorrelation of the sig-
nals reflected from the ground by integrating them with
a weight W[t1, t2, σ0(r)]. Due to this decorrelation, the
characteristic speckle ranges (sizes of spots) are much



360 VOLOSYUK et al.
smaller than those for matched filtering. Therefore,
they can then be smoothed with the same efficiency by
narrower windows, which finally enables us to increase
the SAR resolution. The ambiguity function

(9)

of this SAR is much narrower. Figure 1 exemplifies the
ambiguity functions for matched filtering and decorre-
lation. It is noteworthy that the type of the reference
signal depends on the signal-to-noise ratio. It is expedi-
ent to introduce the reference signal in algorithm (8) for
a certain average signal-to-noise ratio. Otherwise, the
reference signal should vary following variation of
σ0(r)]. Figure 2 shows the results of the formation and
processing of radar images by the algorithms corre-
sponding to the classical aperture-synthesis method and
to the modified method with decorrelation.

Thus, the antenna-aperture synthesis method pro-
posed and justified above provides an increase in the
resolution of promising aerospace systems of remote
sounding of natural environments by a factor of 2–4 due

Ψ̇w r1 r2,( ) ṡenv t1 r,( )W t1 t2 σ0 r( ), ,[ ]
0

T

∫
0

T

∫=

× ṡenv* t2 r,( ) t1dt2d
to the adaptive decorrelation of received signals as ran-
dom processes.
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The evolution of steady flows of a viscous incom-
pressible fluid in a plane diffuser is analyzed for the clas-
sical formulation of the Jeffery–Hamel problem [1–3].
The complete solution of the problem is given depend-
ing on the determining parameters. For a fixed expan-
sion angle, the behavior of solutions is found upon
varying the Reynolds number of the basic single-mode
flow. We determine the critical values at which the
bifurcation of the pattern occurs and a single-mode
steady flow is impossible. The revealed mechanism of
bifurcation and a constructed bifurcation diagram are
not available in the previously published papers on the
Jeffery–Hamel problem. The critical Reynolds number
at which bifurcation occurs is found as a function of the
expansion angle of the diffuser. Results may be inter-
esting for engineering and geophysical applications.

1. We consider the classical Jeffery–Hamel problem
for a diffuser flow [1–3]. A fluid with density ρ and
dynamic viscosity µ flows in the plane domain Ω = {(r,
θ) : r > 0, |θ| < β}, where r and θ are the polar coordi-
nates and β is the half-expansion angle (0 < β ≤ π). On
the diffuser walls, r > 0 and θ = ±β, no-slip conditions
are valid, and the flow at r = 0 has a singularity of a con-
stant-power source Q < 0. The system has two dimen-
sionless parameters—expansion angle 2β and Rey-

nolds number Re =  < 0—which are insufficient for

making the equations of motion completely dimension-
less [3–5].

There is a self-similar solution for which the veloc-
ity field is radial,

, (1)

and automatically satisfies the incompressibility condi-
tion for an arbitrary smooth function V(θ). The compo-

ρQ
µ

-------

v r
Q
r
----V θ( ), v θ 0≡–=
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nents of the strain v  and stress σ rate tensors are given
by the expressions

(2)

Quantities (1) and (2) are expressed in terms of
unknown functions of the velocity V and pressure p
profiles, which satisfy the relations (following from the
Navier–Stokes equations [3])

(3)

(4)

The local no-slip boundary condition for the fluid
and the integral condition of the constant rate (outflow)
impose the following additional conditions on the
dimensionless function V(θ):

(5)

To calculate quantities (1), (2), (4), etc., unknown func-
tion V(θ) and constant C = V''(±β) must be determined
from Eqs. (3) and (5) for arbitrary values Re < 0 and
0 < β ≤ π, which is a very difficult analytical and com-
putational problem. An implicit solution of the multidi-
mensional nonlinear boundary value problem in terms
of elliptic functions by using the first integral of Eq. (3)
is inapplicable for efficient accurate calculations in a
rather wide region of the parameters. In the available
approaches (see, e.g., [6, 7]), integral condition (5) is
usually ignored and the value V(0) = V0 is fixed. These
assumptions strongly distort the sense and formulation
of the classical Jeffery–Hamel problem [1–5]. The
implicit analytical solution leads to the set of three tran-
scendental equations for unknown integration con-
stants. A solution of this problem is associated with
fundamental computational difficulties due to insuffi-

v rr v θθ–
Q

r2
----V θ( ), v rθ

Q

2r2
-------V' θ( );–= = =

σrr; θθ p–
2ρQ2

r2Re
-------------V θ( ), σrθ± ρQ2

r2Re
-----------V' θ( ).–= =

V'' 4V ReV2–+ C const;= =

p
ρQ2

2r2Re
-------------- C 4V–( ).=

V β±( ) 0, V θ( ) θd

β–

β

∫ 1.= =
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cient accuracy of tabulating elliptic functions and inte-
grals.

2. The nonlinear boundary value problem given by
Eqs. (3) and (5) is efficiently solved with high accuracy
by our numerical–analytical method [8] based on the
modified Newton algorithm and continuation in the
parameters. For convenience, the original boundary
value problem is written in terms of the normalized
velocity profile y, argument x, and unknown parameters
γ and λ, as well as substantial known parameters a
and b:

(6)

Integral condition (5) is taken into account by means of
an unknown function z(x) characterizing outflow. As a
result, we arrive at the Cauchy problem for y and z with
unknown parameters γ and λ, which are found by
including the boundary conditions

(7)

The parameters γ and λ must be determined as func-
tions of the known parameters a and b. First, it is easy
to determine γ and λ by continuing in the parameter b ≤
0 for a parameter a fixed in the range 0 < a ≤ 2π, i.e.,

angle β in the range 0 < β ≤ , because a solution of

problem (7) is found in an explicit analytical form for
b = 0 (Re = 0). Then, after the substitution of resulting
parameters γ(b) and λ(b) (for fixed a), the desired func-
tion y is obtained by numerically integrating Cauchy
problem (7).

Thus, for b = 0, we obtain

(8)

A solution regularly continuable in the Reynolds
number Re < 0, i.e., in the parameter b < 0, exists if a ≠
a* = (a), i.e., β ≠ β* ≡ 2.2467047 [5]. The critical
expansion angle 2β* . 257° exceeds the straight angle
and is close to 270°, corresponding to the right angle
between the outer sides of the diffuser walls. For a ≠ a*,
the solutions of problem (7) are found by the recursive

y x( ) 2βV θ( ), x
1
2
--- θ

β
--- 1+ 

  , 0 x 1,≤ ≤= =

a 4β, b 2βRe, λ 8β3C, γ y' 0( ).= = = =

y'' a2y by2–+ λ , y 0( ) 0, y' 0( ) γ,= = =

z' y 1, z 0( )– 0,= =

y 1( ) z 1( ) 0.= =

π
2
---

y0 x( ) a
2D
------- ax

a
2
---– 

 cos a
2
---cos– ,=

γ0
a2

2D
------- a

2
---, λ0sin

a3

2D
------- a

2
---,cos–= =

D
a
2
---

a
2
--- a

2
--- 0.≠cos–sin=

Darg
refinement procedure for γ(b) and λ(b) for the sequence
of decreasing values b = bk , where k = 0, 1, …, k*:

(9)

.

Here, yn(x) and zn(x) are the solutions of Cauchy prob-
lem (7) for values γn(b) and λn(b) known at the preced-
ing step. The sensitivity functions gn and wn , as well as
hn and sn, of the solutions yn, as well as zn , to the param-
eters γ and λ, respectively, are calculated by integrating
the linear Cauchy problems with known functions
yn(x), as well as zn(x) (or jointly):

    (10)

The initial approximation for n = 0 is given by
Eqs. (8) for b = b1 < b0 = 0. Sufficiently accurate result-
ing values γn(b1) and λn(b1) are used as the initial
approximations for b = b2 < b1 , etc. Accuracy can be
characterized by the absolute values of residuals in the
ordinates yn(1) and zn(1) or abscissas εn = 1 – ξn and
µn = 1 – ηn , where ξn and ηn are the zeros of the func-
tions yn(x) and zn(x), respectively, that are closest to the
point x = 1. The algorithm given by Eqs. (9) and (10)
has fast (square) convergence [4, 5, 8] and provides
accurate (with relative and absolute errors of about
10−5–10–8) operative mass calculations and the con-
struction of the desired dependences of y and y', as well
as γ and λ, necessary for determining the kinematic and
dynamic characteristics of flows of the viscous fluid in
the plane diffuser. The numerical–analytical investiga-
tions testify to a complicated pattern of flows in the dif-
fuser for various values of the parameters a and b (i.e.,
β and Re), which was previously analyzed either
incompletely [1–3] or distortedly [6, 7].

3. Below, we present the results for comparatively

small expansion angles 2β of the diffuser  < β ≤ .

The limiting cases β = 0 and  correspond to the Poi-

seuille flow and flow in a half-plane, respectively.
Attention is focused on calculations and analysis of the

γn 1+ γn δγn, λn 1++ λn δλn,+= =

δγn yn 1( )sn 1( ) zn 1( )hn 1( )–[ ]∆ n
1– 1( ),–=

δλn yn 1( )wn 1( ) zn 1( )gn 1( )–[ ]∆ n
1– 1( ),=

∆n x( ) yn x( )sn x( ) hn x( )wn x( ),–=

∆n 1( ) 0, n≠ 0 1 …, ,=

g'' a2g 2byg–+  = 0, w' = g;

g 0( ) = w 0( ) = 0, g' 0( ) 1;=

h'' a2h 2byh–+  = 1, s' = h; h 0( ) = h' 0( ) = s 0( ) = 0.

0
 π

2
---



π
2
---
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pattern of flows for small angle β = 10°, which may be
of interest for engineering, hydromechanical, and geo-
physical applications. Figure 1 shows γ(b) and λ(b) for
0 ≥ b ≥ –25 obtained by the above method of continuing
in parameter (9) on the basis of generating solution (8).

It is found that the function γ = γ(1)(b) decreases
from a certain positive value to zero when b decreases
from zero to the critical value b∗  ≈ –18.8 corresponding
to the degeneration of the basic single-mode flow, i.e.,
a “purely diverging flow” according to [6]. With a fur-
ther decrease in b < b∗ , a decrease in γ < 0 continues,
and the flow becomes triple-mode, i.e., includes inflow
and outflow sections. The outflow of the fluid (y > 0) is

near the bisector  = , i.e., θ = . The inflow of the

fluid occurs symmetrically along the walls of the dif-
fuser (y < 0), i.e., near the points x = 0 (x > 0) and x = 1
(x < 1) corresponding to the angles θ =  (θ > –β and
θ < β), respectively. The triple-modality of these flows
is enhanced when the parameter b decreases from b∗  to
the critical value b = b* ≈ –21.7. For b < b*, solutions of
this type are impossible, because the curves γ(3)(b) and
λ(3)(b) at this point have vertical tangents, which corre-
sponds to the turning point (Fig. 1).

The existence of the second branch of triple-mode
flows for b* < b < 0 is revealed by continuing in the
parameter b to the right by means of the above
approach. In this case, γ(3) decreases rapidly to –∞, and
λ(3) increases to +∞ when b → 0. For example, γ(3) ~
−103 and λ(3) ~ 104 for b ≈ –1. As a result, it is found that
no less than two types of triple-mode flows with
strongly different characteristics, i.e., values of γ and λ,
exist for b* < b < b∗ . Lines 1 and 2 in Fig. 2 are the tri-
ple-mode velocity profiles y(x) for b = –20. They are
symmetric about the bisector. Stability and practical
realization must be discussed separately.

Analysis of the vicinity of the critical point b∗ ,
where γ = 0, reveals the possibility of the existence of
two types of double-mode asymmetric flows when b
increases in the range b∗  < b < 0. The inflow (y > 0) and
outflow (y < 0) of the fluid occur near the first and sec-
ond walls, respectively. Since both cases (x = 0, 1 or
θ = ) are equivalent, the curve γ(2)(b) consists of two

branches  symmetric about the abscissa axis, and its
tangent at b = b∗  is vertical. An increase in the parame-

ter b leads to the unlimited increase in | | similar to
the above case of triple-mode flows. The curve λ(2)(b)
exists for b∗  ≤ b < 0 and increases very rapidly to infin-
ity when b → 0, as does the curve λ(3)(b).

Thus, for b∗  < b < 0, the existence of (γ(1) > 0, λ(1) 

0) basic single-, (   0 0, λ(2) > 0) double-, and
(γ(3) < 0, λ(3) > 0) triple-mode flows is revealed (see

x
 1

2
--- --0



β+−

β+−

γ 2( )
±

γ 2( )
±

><
γ 2( )

± ><
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γ(3)

γ(2)
–

γ(2)
+

b

γ(1)γ(3)

Fig. 1. Distributions γ(b) and λ(b), as well as the bifurcation
points b∗  and b*, corresponding to (γ(1), λ(1)) the basic sin-

gle-, ( , λ(2)) double-, and (γ(3), λ(3)) triple-mode flows

for β = 10° .
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±
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Fig. 2. Velocity profiles for triple-mode flows for b = (1
and 2) –21, (3) b∗ , and (4) b*, as well as for (5) degenerate
single-mode flow for b = b∗ .
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Fig. 1) and transitions between them are determined.
The corresponding velocity profiles y(x) for b = –10 are
shown by lines 1–3, respectively, in Fig. 3. The velocity
profiles y(x) have interesting properties for the critical
values b = b∗  and b* (Fig. 2, lines 3–5).

The above calculations provides the first analysis of
a complicated pattern of the bifurcation of flows in a
comparatively narrow range 0 ≥ b ≥ –25 (0 ≥ Re ≥ –72
for β = 10°). This analysis reveals the mechanism of the
rearrangement of flows upon varying the parameter b,
i.e., the Reynolds number Re, in the unlimited half-
interval b < 0 and for arbitrary expansion angle 0 <
2β ≤ 2π.

4. The above pattern of the bifurcation of flows
remains virtually unchanged when the parameter a, i.e.,
the diffuser expansion angle 2β (0 < β ≤ 10°),
decreases. In particular, the value b∗  → –6π for β → 0
differs only slightly from b∗  = –18.8 for β = 10°. The
other characteristics (b*, γ0 = 6, λ0 = –12, etc.) also
change slightly.

An increase in the half-expansion angle β from +0

to  monotonically reduces γ0 from 6 to 0 and increases

λ0 from –12 to 4π2 ≈ 39.6. The critical point b∗  is also
monotonically shifted to the right. Indeed, b∗  = –6π for
β = +0, the numerical value b∗  ≈ –18.8 > –6π is found

for β =  . 0.175 (10°) in Section 3, and constructions

similar to Fig. 1 yield b∗  . –14.2 for β = (45°).

π
2
---

π
18
------

π
4
---

0.5
x

y

10

1

2 3

4

1.00

20

0

–10

Fig. 3. Velocity profiles for (1) single-, (2 and 3) two dou-
ble-, and (4) triple-mode flows for b = –10.
Below, for the limiting value β = (90°), we show both

numerically and analytically that b∗  = 0; i.e., a single-
mode (purely diverging) flow does not exist. For b < 0,
there are two triple-mode regularly continuable flows
similar to those considered above. Double-mode flows

also do not exist for β = . The critical value b* can be

numerically found as a function of β: b* . –22 for β &

10° and b∗  ≈ –18.5 and –9 for β =  and , respec-

tively.

The function b∗ (β) for 0 < β <  that determines the

boundary of the existence of the single-mode flow is
found in an implicit analytical form by using the first
integral of the first of Eqs. (7) and quadratures:

(11)

According to Eqs. (11), b∗  = –6π and 0 for β = +0

and , respectively. Figure 4 shows b∗  for 0 < β < .

The maximum value of y(x) and parameter λ are

π
2
---

π
2
---

π
4
--- π

2
---

π
2
---

b*– 6ξK ξ( )L ξ( ), β K ξ( )
2

------------, 0 ξ ∞ ;<≤= =

K ξ( ) qd

f q ξ,( )
---------------------, L ξ( )

0

1

∫ q qd

f q ξ,( )
---------------------,

0

1

∫= =

f q ξ,( ) q 1 q–( ) 2 ξ 1 q+( )+[ ] .=

π
2
--- π

2
---

–4π

–2π

0

–6π
b*

Fig. 4. Critical value b∗  vs. the half-expansion angle β of
the diffuser.

π
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π
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expressed in terms of the values ξ∗  = ξ(β) and b∗ (β) for

a given angle β as

Critical values b*(β) determining the boundary of
the existence of the triple-mode flows [see γ(3)(b*) and
λ(3)(b*) in Fig. 1] correspond to singularities of the

derivatives  and . They are determined by

the above numerical–analytical procedure with fast
convergence.

5. The kinematic and hydrodynamic characteristics
of diffuser flows are obtained by means of the resulting
expressions for y(x, b), γ(b), and λ(b) for a fixed angle
β. According to Eqs. (6),

(12)

Strain v  and stress σ rate tensors are found by sub-
stituting expressions (12) for V, λ, and V' = (2β)−2y' into
Eqs. (2). The stress vector components are determined
in terms of σrr and σrθ [5]. The total force density com-
ponents F = (Fr, Fθ) at the distance r are given by

(13)

Similarly to Eqs. (13), the force power density N

ym y
1
2
--- 

  12β2ξ*
b*
------, λ*– 48β4ξ*

b*
------ 2 ξ*+( ).–= = =

∂γ 3( )

∂b
-----------

∂λ 3( )

∂b
-----------

V θ Re,( ) 1
2β
------y

θ/β 1+
2

------------------ 2βRe, 
  ,=

v r θ r Re, ,( ) Q
r
----V θ Re,( ),–=

p θ r Re, ,( ) ρQ2

2r2Re
-------------- λ

2β( )3
------------- 4V θ Re,( )– 

  ,=

λ λ 2βRe( ).=

Fr rσrr θd

β–

β

∫ ρQ2

rRe
---------- 4 λ

8β2
--------– 

  , Fθ 0.≡= =
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induced by stress σrr and σrθ is calculated as

(14)

By means of Eqs. (12)–(14), the desired parameters
of the steady flow of the viscous fluid in the plane dif-
fuser are expressed in terms of the initial dimensional
and dimensionless physical parameters. For Q = const,
the force characteristics are singular for Re → 0, or
µ → ∞. The local and integral properties of radial flows
in the diffuser are analyzed by using Eqs. (12)–(14).
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The problem of moving a massive rigid body on a
smooth horizontal plane is considered. We formulate
the existence conditions for the first integrals, which are
satisfied in the free flight of the body, as well as upon
its contact with the plane.

The existence of the first integrals of the problem of
continuously moving a massive rigid body on smooth
horizontal rigid [1, 2] and deformable [3] planes has
been analyzed. Powerful methods of studying the exist-
ence conditions for the first integrals in the dynamics of
rigid bodies under unilateral constraints have been pro-
posed in [5, 6].

FORMULATION OF THE PROBLEM

We consider a massive rigid body moving on a
smooth horizontal plane π. Let 2XαXβXγ be an absolute
coordinate system whose 2Xα and 2Xβ axes lie in the
plane, 2Xγ axis is directed upward, and 2 ∈ π . The axes
of the moving coordinate system #x1x2x3 coincide with
the principal central axes of inertia of the body.

Since the plane π is assumed smooth, there are no
forces acting on the body along the plane and the
momentum projection on the plane is conserved.
Hence, without loss of generality, we assume that the
body’s center of mass moves vertically. In this case, the
kinetic and potential energies of the system are given by
the expressions

T TV Tω+
1
2
---mVγ

2 1
2
--- Iw w,( ),+= =

U mgXγ, Xγ r g,( ).= =

* Computer Center, Russian Academy of Sciences,
ul. Vavilova 40, GSP-1, Moscow, 117967 Russia

** Ecole Nationale des Ponts et Chaussées, 
6 et 8 avenue Blaise Pascal, Cité Descartes, 
Champs-sur-Marne, F-77455 Marne-la-Vallee cedex 2, 
France
1028-3358/04/4906- $26.00 © 20366
Here, m is the body’s mass, I = diag(I1, I2, I3) is the prin-
cipal central tensor of inertia, Vγ is the vertical compo-
nent of the center-of-mass velocity, w = (ω1, ω2, ω3) is

the angular velocity vector, r = (r1, r2, r3) is the 
vector, g is the gravitational acceleration, g = (γ1, γ2, γ3)
is the upward unit vector, and Xγ is the distance from the
body’s center of mass to the plane π.

EQUATIONS OF MOTION ABOVE THE PLANE 
AND THEIR FIRST INTEGRALS

The free flight of the body is described by the
dynamical equations for its angular momentum and
momentum,

(1)

and by the kinematic relations

(2)

In this case, the translational and rotational variables of
the problem are completely separated, and these equa-
tions are completely integrable. The conserved inte-
grals

represent the kinetic rotational energy and total transla-
tional energy, respectively.

The angular momentum vector of the body’s free
flight remains constant in the absolute coordinate sys-
tem. Hence, the vertical component )γ = (Iw, g) and
magnitude squared ) = (Iw, Iw) of the angular momen-
tum are also constant. Since the vector g is a unit vector,
)e = (g, g) – 1 = 0.

EQUATIONS OF THE BODY’S CONTACT 
WITH THE PLANE

We now assume that the body comes in contact with

the plane π at a point -. Let x be the vector . If the

2#

Iẇ Iw w, V̇γ× g,–= =

Ẋγ Vγ, ġ g w.×= =

)ω Tω and )V TV U+= =

#-
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equation f(x) = 0 describes the body surface in the mov-
ing coordinate system, then the dependence x = x(g)
can be found from the expression

for the vector g collinear to the normal to the body’s
surface at the point X [7, 8]. In this case, as is known,

We assume that the body’s interaction with the plane
is lossless. According to [8], the coordinates of the body
do not change upon its contact with the plane, while the
transformation (Vγ, w) → ( , w') of its center-of-
mass velocity and its angular velocity at this time are
determined by the equations

(3)

Statement 1. The quantities

(4)

are conserved upon the impact. 
The proof reduces to the scalar multiplication of the

left and right sides of the first equality of Eqs. (3) by the
vectors x and g, respectively.

Therefore, the vertical component of the angular
momentum is conserved upon the impact, as well as in
the course of continuous motion, i.e., for the total time
of motion.

DETERMINATION OF THE REACTIONS

Since the potential energy depends only on the body
position, which does not change at the impact time, the
quantity R can be found from the condition of kinetic-
energy conservation:

(5)

Performing the scalar multiplication of Eqs. (3) by
w' + w and Eq. (5) by  + Vγ, summing the results,
and taking Eq. (5) into account, we arrive at the equa-
tion

(6)

The quantities w' and  are found from Eqs. (3):

(7)

Substituting expressions (7) into Eq. (5), we arrive at
the equality

g ∂f
∂x
------ ∂f

∂x
------

1–
–=

∂ x g( ) g,( )
∂g

------------------------- x g( ).=

Vω'

I w' w–( ) Rx g, m Vγ' Vγ–( )× R.= =

)x Iw x,( ), )γ Iw g,( )= =

Iw' w',( ) mVγ'
2

+ Iw w,( ) mVγ
2
.+=

Vγ'

Iw' w',( ) mVγ'
2

Iw w,( )– mVγ
2–+

=  R w' w+ x g×,( ) Vγ' Vγ+( )+[ ] 0.=

Vγ'

w' w R I 1– x g×( ), Vγ'⋅+ Vγ R.+= =

2w R I 1– x γ×( ) x g×,( )⋅+( ) 2Vγ m 1– R+ + 0=
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from which the nonzero root of Eqs. (5) is found in the
form

(8)

DYNAMICALLY SYMMETRIC CASE
We consider an axisymmetric body whose symme-

try axis coincides with the #x3 axis. In this case, the
surface is described by the equation

(9)

The differentiation of Eq. (9) with respect to x1 and x2
yields

We also assume that the condition I1 = I2 is satisfied. In
this case, by virtue of relation (3), we have

Therefore, all first integrals are conserved even if a uni-
lateral constraint is imposed.

AN ANALOGUE
OF THE HESS–APPELROT CASE

Let I1 > I2 > I3. As is known, if

   

then the equations of free motion have the particular
integrals (invariant relations)

(10)

According to Eqs. (3), these relations hold for the
body–plane contact if the conditions

(11)

are satisfied (see [1]). Treating relations (11) as linear
partial differential equations, we find their solution in
the form

(12)

Remark. A similar solution holds in the case of a
body moving between two parallel horizontal planes π1
and π2 .

R 2
Vγ w x g×,( )+

m 1– I 1– x g×( ) x g×,( )+
-----------------------------------------------------------.–=

f ρ x3,( ) 0, ρ x1
2

x2
2

+( )
1/2

.= =

γi
∂f
∂ρ
------

xi

ρ
----

∂f
∂x
------

1–

, i– 1 2.,= =

ω3' ω3.=

a a1 a2 a3, ,( ):=

a1 I2
1– I1

1–– ,= a2 0,   and   a 3 I 3
1– I 2

1– – ,= =

^ε a1I1ω1 εa3I3ω3+ 0, ε 1.±= = =

a1 x3
∂f
∂x2
-------- x2

∂f
∂x3
--------– 

  εa3 x2
∂f
∂x1
-------- x1

∂f
∂x2
--------– 

 + 0=

^ F u v,( ) 0, u b1x1 εb3x3,+= = =

v εb3x1– b1x3+( )2 x2
2
,+=

b1
I2

1– I1
1––

I3
1– I1

1––
------------------, b2 0, b3

I3
1– I2

1––

I3
1– I1

1––
------------------.= = =
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MASSIVE GYROSCOPE

The results obtained above for the integrals of
motion of a massive rigid body jumping on a plane can
be extended for a massive gyroscope. In this case,
instead of Eqs. (2), we consider the equations

(13)

where k = (k1, k2, k3) is the constant gyroscopic moment
of the body. In this case, the variables are also sepa-
rated, the energy integrals and the geometrical integral
have the above form, while the vertical component of
the angular momentum takes the form

(14)

The relations describing the impact and the expres-
sion for the quantity R obtained above remain valid.

Statement 2. The quantities

(15)

are conserved upon the impact. 

To prove the statement, we rewrite relation (3) in the
form

(16)

and multiply the left and right sides of equality (16) by
the vectors x and g, respectively.

Therefore, the vertical component of the angular
momentum is conserved upon the impact as well as in
the course of continuous motion, i.e., for the total time
of motion.

Using arguments similar to those presented above,
one can prove that this mapping in the dynamically
symmetric case conserves one more integral  = ω3

Iẇ Iw k+( ) w, ġ× g w,×= =

)γ Iw k+ g,( ).=

)x Iw k+ x,( ), )γ Iw k+ g,( )= =

Iw' k+( ) Iw k+( )– Rx g×=

ω3'
under the additional condition k = (0, 0, k3). If the con-
ditions

and  

supplementing conditions (12) are satisfied, then map-
ping (5) conserves the Sretenskiœ integral [9]

(17)

which similar to the Hess–Appelrot integral.
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The generalization of the classical Bulgakov prob-
lem to the case of steady periodic regimes was first
given in [1] for a one-dimensional linear stationary sys-
tem. For linear stationary systems of arbitrary structure,
the solution was presented in [2] on the basis of the con-
struction of Green’s functions (pulse-frequency charac-
teristics) for steady periodic regimes. In the case of
periodically nonstationary systems, the corresponding
generalization was given in [3]. At the same time, for
both stationary and periodically nonstationary systems,
it is important to estimate the limiting oscillation inten-
sity not only in a steady regime but also in the process
of its establishment, because the oscillation intensity is
maximal in this process (with the exception of the
exact-resonance case). For linear stationary systems,
such solutions were obtained on the basis of the con-
struction of a sequence of Green’s functions character-
izing the establishment process [4, 5]. The correspond-
ing generalization for systems with periodically
unsteady piecewise-constant parameters was given in
[6]. It should be noted that the derivation of the esti-
mates for periodically nonstationary systems requires
very cumbersome calculations both for steady regimes
and, the more so, for the process of their establishment.
At the same time, the efficiency of approximate meth-
ods for analyzing periodic nonstationary systems is
well known [7].

In this paper, the problem of disturbance accumula-
tion in a one-dimensional periodically nonstationary
quasi-harmonic system is approximately solved under
the conditions of the main parametric resonance. The
solution is obtained in the closed form for both the
steady regime and the process of its establishment.

STEADY REGIME

We will consider a one-dimensional system with
periodically varying stiffness

(1)ẋ̇ ε · 2k ẋ ω0
2 1 εh 2tcos–( )x++ εu t( ),=

Institute of Mechanical Engineering, 
Russian Academy of Sciences, 
ul. Bardina 4, Moscow, 117334 Russia
1028-3358/04/4906- $26.00 © 20369
where ε is a small parameter, u(t) = u(t + 2π) is an exter-
nal periodic disturbing force limited in amplitude |u| ≤
U, and h > 0. It is assumed that the quantity 1 –  is

of the order of ε. Equation (1) is transformed to the
form

(2)

where µ = 

It is necessary to estimate the maximum amplitude
 of steady oscillations. Since system (2) is quasi-har-

monic, the first approximation of the asymptotic
method [7] (with an accuracy to ε2) is determined in the
form

(3)

Substituting (3) in Eq. (2) and averaging with
respect to explicitly entering time, we obtain the fol-
lowing equations for the slowly varying functions a(t)
and b(t):

(4)

The steady regime is associated with  = 0 and  =
0. As a result, Eqs. (4) are reduced to a system of two
linear algebraic equations for a and b. Under the condi-
tion that

ω0
2

ẋ̇ x+ ε 2k ẋ– ω0
2h 2tx µx+cos+( ),=

1 ω0
2–

ε
---------------.

x

x t( ) a t( ) tcos b t( ) t.sin+=

ȧ ε ka–
ω0

2h
2

---------
1
2
---µ– 

  b
1

2π
------ τu τ( )sin τd

0

2π

∫–+ ,=

ḃ ε
ω0

2h
2

---------
1
2
---µ+ 

  a kb–
1

2π
------ τu τ( )cos τd

0

2π

∫+ .=

ȧ ḃ

∆ k2 1
4
---µ2 ω0

2
h

4
--------- 

 
2

0,≠–+=
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its solution takes the form

(5)

where

From Eqs. (3) and (5), we determine the stationary
solution in the form

(6)

where

(7)

(8)

From Eq. (6), the maximum steady oscillation ampli-
tude is directly estimated as

(9)

Since

a
1

2π∆
---------- α τ ks τsin+cos( )u τ( ) τ ,d

0

2π

∫–=

b
1

2π∆
---------- k τ β τcos–sin( )u τ( ) τ ,d

0

2π

∫=

α 1
2
---µ

ω0
2h
4

---------, β–
1
2
---µ

ω0
2
h

4
---------.+= =

x t( ) 1
2π∆
---------- k t α tcos–sin( ) τcos[

0

2π

∫=

– k t β tsin+cos( ) τsin ]u τ( )dτ

=  
1

2π∆
----------A0 t( ) τ ψ0 t( )+[ ]cos u τ( ) τ ,d

0

2π

∫

A0 t( ) 1
4
---µ2 k2 ω0

2h
4

--------- 
 

2

+ +=

+ k
ω0

2h
2

--------- 2t
1
4
---ω0

2hµ 2tcos–sin

1
2
---

,

ψ0 t( ) k tsin α tcos–
A0 t( )

--------------------------------- .arccos=

x
A0 t( )U

2π∆
-----------------  τ ψ 0 t ( ) + [ ] cos τ . d 

0

2

 

π

 ∫  
t

 
0; 2

 
π

 
)[∈

 max=

τ ψ0 t( )+[ ]cos τd

0

2π

∫ 4=

                     
for each ψ0(t), the maximum value of the function A0(t)
is

(10)

According to Eqs. (9) and (10),

(11)

for 

.

PROCESS OF ESTABLISHMENT
OF THE PERIODIC REGIME

For the process of establishment of the periodic
regime, the functions a(t

 

)

 

 and 

 

b

 

(

 

t

 

)

 

 are determined from
the system of linear differential equations (4). For zero
initial conditions, the solution of this system takes the
form

 

(12)

 

where 

 

γ

 

 = 

 

.
Substituting Eqs. (12) into expression (3), we deter-

mine the following law 

 

x

 

(

 

t

 

)

 

 of establishment of the peri-
odic regime:

A0 t( )
t 0; 2π)[∈

max
1
4
---µ2 k2 ω0

2h
4

--------- 
 

2

+ +=

+ 2
ω0

2h
4

--------- 1
4
---µ2 k2+

1
2
---

1
4
---µ2 k2+

ω0
2h
4

---------.+=

x
1
π
--- U

µ2 4k2+
ω0

2h
2

---------–

----------------------------------------=

ω0
2h
2

--------- µ2 4k2+<

a t( ) 1
2π∆
---------- k e εkt– γ εγt k εγtcos–sin( )+[ ]





–=

× τu τ( )sin τ α
β
--- γ e εkt– k εγt γ εγtcos+sin( )–[ ]+d

0

2π

∫

× τu τ( )cos τd

0

2π

∫ 



,

b t( ) 1
2π∆
---------- k e εkt– γ εγt k εγtcos–sin( )+[ ] ∫




=

× τu τ( )cos τ β
α
--- γ e εkt– k εγt γ εγtcos+sin( )–[ ]–d

0

2π

∫

× τsin u τ( ) τd

0

2π

∫ 



,

αβ
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(13)

Similar to the case of the steady periodic regime,
expression (13) is transformed to the form

(14)

where

(15)

(16)

x t( ) 1
2π∆
---------- k e εkt– γ εγt – k εγtcossin( )–[ ] tsin





=

– α
β
--- γ e εkt– k εγt γ εγtcos+sin( )–[ ] tcos





× τu τ( )cos τd

0

2π

∫

–
1

2π∆
---------- k e εkt– γ εγt – k εγtcossin( )+[ ] tcos  ---





α
β
--- γ e εkt– k εγt γ εγtcos+sin( )–[ ] tsin+





× τu τ( )sin τ .d

0

2π

∫

x t( ) 1
2π∆
----------A t( ) τ ψ t( )+[ ] u τ( )cos τ ,d

0

2π

∫=

A t( ) k e εkt– γ εγt k εγtcos–sin( )+[ ] 2
-





=

+
1
2
---β α–

γ
------------- k e εkt– γ εγt k εγtcos–sin( )+[ ]

× γ e εkt– k εγt γ εγtcos+( )sin( )–[ ] 2tsin

+ γ e εkt– k εγt γ εγtcos+sin( )–[ ] 2 β
α
--- t

α
β
--- tcos

2
+sin

2

 
 





1
2
---

,

ψ t( ) = A 1– t( ) k + e εkt– γ εγt k εγtcos–sin( )[ ]




arccos

× t A 1– t( ) α
β
---–sin

1--× γ e εkt– k εγt γ εγtcos+sin( )–[ ]




.
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Since

|cos[τ + ψ(t)]|dτ = 4,

Eq. (14) yields the following solution of the problem of
disturbance accumulation in the process of establish-
ment of the periodic regime:

(17)

THE CASE OF A STATIONARY SYSTEM

The solutions obtained above can also be used in the
case of the absence of parametric excitation, because
the corresponding exact formulas have a considerably
more cumbersome structure. In the case of a steady
regime, Eq. (11) yields

(18)

The exact estimate for system (1) at ε = 1 and h = 0
is determined from the formula [5]

(19)

where

.

Figure 1 shows the ω0 dependences of  given

by (18) and  given by (19) for ε = 1.

0

2π

∫

x t( ) 2A t( )
π∆

--------------U .=

x
4
π
--- U

µ2 4k2+
------------------------.=

x*
Ã

ω0
2

------ k ψ̃sin ω ψ̃cos 2e
k
ψ̃
ω
----

ω 1 e
k

π
ω
----–

– 
 

1–

+ +




=

× e
k

π
ω
----–

e
k

π
ω
---- n 1+( )–

– 1–( )n 1+ e 2kπ– k 2πω ψ̃+( )sin[+

1---+ ω 2πω ψ̃+( )]cos




U ,

ω n
2
--- – 

ψ̃
2π
------; 

n 1+
2

------------ ψ̃
2π
------– 

  , n∈ 1 2 …,, ,=

Ã ω 1 e 4kπ– 2e 2kπ– 2πωcos–+( )[ ] 1–
,=

ψ̃ ωA 1 e 2kπ– 2πωcos–( )[ ]arccos ,=

ω ω0
2 k2–=

x
U
----

x*
U
------
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For the course of establishment of the periodic
regime, expression (17) at h = 0 takes the form

(20)

According to Eq. (20), the upper and lower enve-
lopes of the oscillating curve (t) have the form

(21)

The corresponding lines are given in Fig. 2.

x t( ) 4
π
--- 1 2e εkt– εγtcos e 2εkt–+–( )

1
2
---

µ2 4k2+
----------------------------------------------------------------U .=

x

x± t( ) 4
π
--- 1 e εkt–±

µ2 4k2+
------------------------U .=

12

10

8

6

4

2

0.9 1.0 1.1 1.20.8
ω0

x

k = 0.025

k = 0.1

Fig. 1. (Lines) Approximate and (points) exact estimates of
the maximum amplitude of steady oscillations vs. the natu-
ral frequency ω0 for a stationary system at U = 1.

t

x t( )

+(t)

x

x

–(t)x

Fig. 2. Estimates of the maximum oscillation amplitude for
a linear stationary system for the process of establishment
of the periodic regime.
The exact expression for the estimate (t) for the
process of establishment of the periodic regime, which
is derived in the closed form by constructing a sequence
of Green’s functions [5, 6], has a very cumbersome
structure. It can be simplified only in the case of the
“exact resonance” ω0 = 1. In this case,

(22)

Approximate solution (20) for this case takes the
form

(23)

The disturbance accumulation curves given by
Eqs. (22) and (23) are monotonically increasing and
correspond to the classical Bulgakov problem on the
disturbance accumulation [in the absence of the period-
icity condition imposed on u(t)]. Figure 3 shows the
curves (t) (for ε = 1) and (t).

x*

x* t( ) 1
ω
---- e kτ– ωτsin τ Ud

0

t

∫=

=  
1
ω
---- ω 2ω 1 e

k
π
ω
----–

– 
 

1–

e
k

π
ω
----

e
k

π
ω
---- n 1+( )–

– 
 +

1---+ e kt– 1–( )n 1+ k ωtsin ω ωtcos+( ) U , ω = 1 k2– ,

t
nπ
ω
------ n 1+( )π

ω
--------------------, 

 ∈     n ,  1 2 …  . , ,  =

x t( ) 2
πk
------ 1 e εkt––( )U .=

x x*

 

7

8

6

4

2

2π 4π 6π0 t

1

3

5

x t( )

Fig. 3. (Points) Exact and (line) approximate estimates of
the disturbance accumulation for a linear stationary system
at ω0 = 1, k = 0, and U = 1.
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The complete (see, e.g., [1]) and incomplete (see,
e.g., [2, 3]) variants of the nonlinear theory of contin-
uum deformations are analyzed in the quadratic
approximation. It is shown that the complete-variant
relationships determining tensile strains and incom-
plete-variant relationships determining shear strains are
incorrect, because they yield spurious bifurcation
points in particular problems. For small tensile strains
and intermediate shear strains, a consistent variant of
kinematic relationships in the quadratic approximation
is constructed as a combination of the relationships of
the complete and incomplete variants.

1. QUADRATIC-APPROXIMATION 
RELATIONSHIPS OF DEFORMATION THEORY

Let (x, y, z) be rectangular Cartesian coordinates of
a body in its initial (undeformed) state and (u, v , w) be
the displacement components. Then, for arbitrary dis-
placements, the tensile strains Ex, Ey, and Ez and shear
strains sinγxy, sinγxz, and sinγyz obey the formulas

(1.1)

(1.2)

These formulas, along with six strain components

(1.3)

(1.4)

describe an arbitrary deformed state of the body. For-
mulas (1.1)–(1.4) were derived and analyzed in detail in
[1]. At present, they are used in almost any paper con-
cerning nonlinear elasticity theory.

Ex 1 2εxx+ 1 …,,–=

γxysin 1 2εxx+( ) 1/2– 1 2εyy+( ) 1/2– εxy ….,=

εxx u, x
1
2
--- u, x

2 v , x
2 w, x

2+ +( ) …,,+=

εxy u, y v , x u, xu, y v , xv , y w, xw, y …,,+ + + +=
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When tensile strains are small, i.e., Ex ≈ ε ! 1,
Eqs. (1.1) in the approximation 2 + Ex ≈ 2 yield the rela-
tionships

(1.5)

and Eqs. (1.2) in the approximation (1 + 2Ex)–1/2 ≈ 1
yield

(1.6)

For small shear angles γxy, γxz, and γyz , Eqs. (1.6) can be
written in the form

(1.7)

Formulas (1.5) and (1.7) were derived in [1] and used
as the kinematic relationships in the quadratic approxi-
mation.

Another incomplete quadratic variant of the kine-
matic relationships was derived in [2], where Ex, … and
sinγxy, … were calculated up to the squares and pair-
wise products of derivatives with respect to displace-
ments by the formulas

(1.8)

(1.9)

A simpler variant of relations (1.9),

(1.10)

was considered in [3].
The necessity of evaluating the quality of the above

three variants of the kinematic relationships in the qua-
dratic approximation arose due to the appearance of
spurious bifurcation points when solving the particular
problems formulated in [4] on the basis of Eq. (1.5).
The applicability of these variants to elementary stress–
strain states, i.e., for uniaxial tension–compression and
simple shear, can be an evaluation criterion.

Ex εxx≈ u, x
1
2
--- u, x

2 v , x
2 w, x

2+ +( ) …,,+=

γxysin εxy≈ u, y v , x u, xu, y v , xv , y w, xw, y … .,+ + + +=

γxy εxy≈ u, y v , x u, xu, y v , xv , y w, xw, y ….,+ + + +=

Ex u, x
1
2
--- v , x

2 w, x
2+( ) …,,+=

γxysin u, y v , x u, xv , x– u, yv , y– w, xw, y … .,+ +=

γxy u, y v , x w, xw, y …,+ +=
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2. UNIAXIAL TENSION–COMPRESSION

For uniaxial tension–compression of a rod by a
force P applied to its ends, formulas (1.8) are better
than formulas (1.5). Moreover, formulas (1.8) in this
case are applicable for any elastic strains. This can be
justified as follows.

According to the Novozhilov approach, the varia-
tion of work done by the forces applied to an elemen-
tary parallelepiped, whose dimensions before deforma-
tion were dx, dy, and dz and which was deformed after
loading along the x axis, has the form

(2.1)

where

(2.2)

Then,

(2.3)

Here, dPx is the normal force applied to the dy dz face
of the element.

Expression δdA = dPxδ(Exdx) can be written imme-
diately from the virtual work principle for the deformed
element, because (1 + Ex)dx is its deformed length. On
the other hand, the deformed length of the element has
the form

Comparing, we see that

(2.4)

Expression (1.8) leads to formula (2.4). Since v x =
wx ; 0 in the case under consideration, Eq. (2.4) is
obtained also by the substitution of Eq. (1.3) into
Eq. (1.1):

At the same time, approximation (1.5) provides the
expression

(2.5)

the use of which in the problem of the compression of
a rod by a force P results in the spurious bifurcation

δdA σxx* δεxxdxdydz,=

σxx*
Sx*

Sx

------
σxx

1 2εxx+
-----------------------, Sx dydz.= =

δdA = σxxSx*( )δ 1 2εxx+ 1–( )dx = dPxδ Exdx( ).

dx
du
dx
------dx+ 1 du

dx
------+ 

  dx.=

Ex
du
dx
------.=

Ex 1 2εxx+ 1– 1 2u, x u, x
2+ + 1–

du
dx
------.= = =

Ex εxx≈ du
dx
------

1
2
--- du

dx
------ 

 
2

,+=
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value of P = EF (F is the cross-sectional area) of
“absurd” loss of the rod stability [4].

3. SIMPLE SHEAR

According to the Novozhilov approach, the work
variation for simple shear in the xy plane has the form

(3.1)

where

(3.2)

The figure shows one of the possible positions of the
element with respect to the coordinate axes. The other
positions are obtained from that shown in the figure by
the rotation of the rigid body. For the shown variant, u =
u(x) and v  = v (x). In this case, the displacements must
be such that Ex = Ey = 0. They can be easily found in the
form

(3.3)

According to Eqs. (3.3), Ex = Ey = 0 and  = Sx. In

addition, for simple shear, σxx = σyy = 0 and  = σxy .
As a result, we obtain

(3.4)

Writing δ(dA) according to the virtual work princi-
ple and taking into account that σxx = 0 for simple shear,
we obtain τxy = σxy and

(3.5)

Expression (3.5) coincides with Eq. (3.4) when for-
mula (1.6) is used for εxy. In this case, εxy = sinγ for
any γ.

δdA σxy*= δεxydxdydz,

σxy*
Sx*

Sx

------
σxy

1 Ey+
---------------, 1 Ey+ 1 2εyy+ .= =

v x γ, usin x γ 1–cos( ).= =

Sx*

σxy*

δdA σxyδ εxy( )dxdydz.=

δdA τ xydydz δ ∆( )⋅ σxyδ dx γsin( )dydz.= =

y

x

γdx ∆

dy

σxy

σyx

σxy

Figure.
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If relations (1.9) are used, then

(3.6)

This case is similar to the case of compression,
where the use of approximation (1.5) leads to the
appearance of the spurious bifurcation point in the solu-
tion [4].

Thus, the best approximation for elementary states
is provided by the combined variant of the kinematic
relationships in the quadratic approximation, where
tensile and shear strains are calculated by Eqs. (1.8)
(according to the Donnell approach) and Eqs. (1.6)
(according to the Novozhilov approach), respectively.

Finally, it should be noted that (as is seen in figure)
energetically consistent generalized displacement for
τxy is sinγ = sinγxy rather than γ = γxy; i.e., the measure
of shear strain is sinγ rather than γ. However, this note
is related only to the form of representation of Hooke’s
law for shear strains and to the processing of corre-
sponding experimental data for large shear strains. In
other words, for the linearly elastic behavior of a mate-
rial under considerable shear strains, Hooke’s law must
be represented in the form τ = Gsinγ (where G is the
shear modulus) rather than τ = Gγ, as is universally
used.

With allowance for this note, Eq. (1.10) should be
written in the form

. (3.7)

Then, the combined variant of Eqs. (1.8) and (3.7) is
also consistent.

4. ANALYSIS OF THE KINEMATIC 
RELATIONSHIPS IN ORTHOGONAL 

CURVILINEAR COORDINATES

The undeformed body is considered in an orthogo-
nal curvilinear coordinate system xα (α = 1, 2, 3), where
the Lamé parameters Hα and unit vectors lα are defined.
Let the displacement vector U of an arbitrary point
M(xα) be represented by a decomposition U = Uαlα .
Then, the unit vectors , as well as tensile Eα and
shear γαβ strains in a deformed state (without any limi-
tations on their values) are given by the following for-
mulas similar to those presented in Section 1 (the nota-
tion and summation rules are universally accepted):

(4.1)

(4.2)

(4.3)

γxysin  = γsin γcos 1–( ) γ γ 1
2
--- γsin( )3.+sin≈sin–

γxysin u, y v , x w, xw, y …,+ +=

lα*

lα*
δαβ eαβ+( )lβ

hα*
-------------------------------= , hα* 1 2εαα+( )1/2,=

Eα 1 2εαα+ 1,–=

γαβsin  = 2εαβ 1 2εαα+( ) 1/2– 1 2εββ+( )
1/2–

, α β ,≠
where

(4.4)

(4.5)

The formulas

(4.6)

simplified for small tensile strains, which are analogues
of Eqs. (1.5) and follow from Eqs. (4.2) in the approxi-
mation 2 + Eα ≈ 2, are commonly accepted. The
approximate formulas

(4.7)

follow from Eqs. (4.3) in the approximation (1 +
2εαα)−1/2 ≈ 1 and sinγαβ ≈ γαβ .

Let the xα axes be the principal deformation axes at
each point of the deformed body. In this coordinate sys-
tem,

(4.8)

These formulas are obtained only if eαβ = 0 for α ≠ β.
Then, Eqs. (4.4) yield the formulas

(4.9)

Substituting these formulas into Eqs. (4.2), we derive
the exact formulas

(4.10)

which are similar to formulas (2.4). At the same time,
using approximate formulas (4.6), we arrive at the
result

(4.11)

5. CONSISTENT KINEMATIC RELATIONSHIPS 
IN THE QUADRATIC APPROXIMATION

FOR SMALL TENSILE STRAINS
AND INTERMEDIATE SHEAR STRAINS

According to the above results for small tensile
strains (Eα ≈ ε) in orthogonal curvilinear coordinates,

2εαβ eαβ eβα eαδeβδ+ + δβπeαπ δαπeβπ+= =

+ eαπeβπ = δαπ
eαπ

2
-------+ 

  eβπ δβπ
eβπ

2
-------+ 

  eαπ,+

e11 = 
1
H
----

∂u1

∂x
1

-------- 1
H1H2
-------------

∂H1

∂x2
----------u2

1
H1H3
-------------

∂H1

∂x3
----------u3,+ +

e12
1

H1
------

∂u2

∂x1
-------- 1

H1H2
-------------

∂H1

∂x2
----------u1,–=

e13
1

H1
------

∂u3

∂x1
-------- 1

H1H3
-------------

∂H1

∂x3
----------u1 1 2 3, ,( ).–=

Eα εαα ,≈

γαβ 2εαβ, α β≠≈

γαβ 2εαβ 0 for α β .≠= =

2εαα 2eαα eαα
2 .+=

Eα 1 2eαα eαα
2+ + 1– eαα ,= =

Eα εαα≈ eαα
eαα

2

2
--------.+=
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the relationships

(5.1)

which are similar to relations (1.8), are more correct
than commonly accepted relations. In contrast to
Eq. (4.11), Eq. (5.1) admits the limiting transition to
formulas (4.10). In this case, to find shear strains, it is
necessary to use the relations

(5.2)

similar to relations (1.6).
It is necessary to note that relations (5.1) result from

Eqs. (4.4) and (4.6) only when the estimates

(5.3)

along with the estimates Eα ≈ ε [i.e., when approxima-
tions (4.6) are applicable], are valid.

In other words, tensile strains can be small only if
eαα are small and eαβ (α ≠ β) are intermediate. For  ≠
1, the geometrical meaning of the latter quantities is
obvious from Eqs. (4.1). For example, e12 = cos( , ),
etc. Quantities eαβ (α ≠ β) determine shear strains that

are intermediate (i.e., of the order of ) in accordance
with Eq. (5.2) if estimates (5.3) are valid. Therefore,
relations (5.2) with allowance for approximations (5.1)
admit the further simplification to the form

. (5.4)

Finally, for small tensile strains and intermediate
shear strains, the kinematic relationships given by
Eqs. (5.1) and (5.4) in the quadratic approximation are
correct and well defined. Geometrically nonlinear
equations of elasticity theory that are formulated on
their basis make it possible to find only the physically
realizable forms of stability loss.

E1 e11≈
e12

2 e13
2+

2
------------------- …,,+

γ12 2ε12≈sin

=  e12 1 e22+( ) e21 1 e11+( ) e13e23 …,,++

eαα ε, eαβ ε, α β≠≈≈

hα*

l1* l2*

ε

γ12 γ12 2ε12 e12 e21 e13e23 …,+ +≈ ≈sin≈
DOKLADY PHYSICS      Vol. 49      No. 6      2004
For the deformed state under consideration, expres-
sions (4.1) take the form

These expressions, along with the representations sα =
σαβ  = lβ, provide the relations

(5.5)

These expressions are correct and do not lead to
“absurd” force boundary conditions.
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1. Experience shows that geothermal systems can be
in thermodynamic states such that a water layer exists
over a vapor layer [1]. In the framework of classical
hydrodynamics, the existence of a heavy fluid over the
lighter one always leads to instability known as the
Rayleigh–Taylor instability [2]. Schubert and Straus [3]
investigated the stability of a water layer over a vapor
layer; described a geothermal system, where the phases
in an unperturbed state were at rest; and, by means of
numerical analysis of the dispersion relation, showed
the stability of the system for permeability values k <
4 × 10–17 m2. The stabilizing factor for the interface was
heat transfer caused by the temperature gradient in the
entrails. Other physical mechanisms (e.g., the magnetic
field [2]) responsible for the stable existence of a heavy
fluid over the lighter one are also known in hydrody-
namics.

In [4, 5], we considered a more general geothermal
system, where the phase motion and phase transition in
an unperturbed state were allowed. Calculations
showed that there exist regimes of motion with phase
transitions, where the water layer over the vapor layer
in the geothermal system is stable even for permeability
values exceeding the value obtained in [3] by an order
of magnitude. The new threshold permeability explains
the stability of a number of natural geothermal systems.
The character of the arising secondary flows depends
on the type of instability. Therefore, it is important to
investigate in detail the possible types of transition to
instability.

In this paper, we present the results of the analytical
investigation of the stability of a flow in the geothermal
system described in [4, 5]. The explicit criteria of the
nonoscillatory transition to instability are obtained. It is
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established that the transition to the instability of the
interface under the variation of physical parameters
occurs through one of the following four mechanisms.
First, it occurs spontaneously for all wave numbers of
perturbations (degenerate case). Second, an unstable
wave number arises at infinity. Third, the threshold of
instability is determined by the double zero wave num-
ber. Fourth, the threshold of instability is determined by
a pair of multiple nonzero wave numbers. In the last
two cases, the transition to instability is accompa-
nied by the bifurcations of the simple resonance and
1 : 1 resonance, respectively. These bifurcations lead to
the branching of the basic regime describing horizontally
homogeneous vertical phase flows and the appearance of
secondary regimes depending on the horizontal coordi-
nate. We note that the results of numerical investigation
presented in [3] describe only one, 1 : 1 resonance, type
of transition to an unstable flow.

2. We consider a high-temperature geothermal res-
ervoir consisting of two high-permeability horizontal
strata separated by a low-permeability, sufficiently long
horizontal layer. The low-permeability layer represents
a strip y ∈ (–∞, ∞) × [0, L] { x. Let us assume that ther-
modynamic conditions in the upper (x < 0) and lower
(x > L) strata allow the existence of water and vapor,
respectively. Then, the phase-transition interface x = h
separating domains occupied by water and vapor exists
in the low-permeability layer. For certain boundary
conditions and parameters of the process, the flow of
phases from the upper stratum to the lower one, as well
as the opposite flow, is possible.

In domains occupied by water and vapor, the equa-
tions of nonisothermal filtration are valid [6]. Follow-
ing [2, 3], water and vapor are treated as incompress-
ible. Then, the basic system of equations has the form

(1)

divv j 0, v j
k
µ j

----- gradP ρ jgex–( ),–= =

ρC( )1 2,
∂T
∂t
------ ρ jC jv j gradT⋅+ div λ1 2, gradT( ),=

λ1 2, mλ j 1 m–( )λ s,+=
004 MAIK “Nauka/Interperiodica”
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Here, v  is the filtration rate, m is porosity, k is perme-
ability, µ is viscosity, P is pressure, g is the gravitational
acceleration, ρ is density, C is the specific heat at con-
stant pressure, T is temperature, and λ is heat conduc-
tivity. The subscripts w, v , and s correspond to water,
vapor, and skeleton of the porous medium, respectively,
and the subscripts 1 and 2 correspond to the vapor and
water domains, respectively.

At the interface, the following relations take place:

(2)

Here, V is the speed of the interface and q is the specific
heat of the phase transition. The subscript n denotes the
normal and the subscripts plus, minus, and asterisk cor-
respond to quantities in vapor, water, and at the inter-
face, respectively.

Boundary conditions for the pressure and tempera-
ture in the high-permeability strata are given by

Considering the class of flows, where convective
energy transfer is considerably less than conductive
transfer, we neglect the nonlinear term in the heat con-
duction equation [4, 5].

If the pressures and temperatures are constant in the
high-permeability strata, then the flow is steady and
characterized by the linear distribution of temperature
and pressure in domains saturated by water and vapor.
Substituting these distributions into the system of
boundary conditions (2), we determine the unknown
location of the interface x = h, as well as the pressure P∗
and temperature T∗  on this surface [4, 5].

3. For investigation of the normal stability of the
flow with the phase-transition interface, we linearize

ρC( )1 2, mρ jC j 1 m–( )ρsCs, j+ v w.,= =

m 1
ρv

ρw
------– 

  Vn
k
µv
-----

ρv

ρw
------ gradP( )n+

k
µw
------ gradP( )n––=

+
k

µw
------ρwg 1

µw

µv
------

ρv
2

ρw
2

------–
 
 
 

,

mqρwVn = λ– gradT( )n– λ+ gradT( )n+–

–
kqρw

µw
------------ gradP( )n– ρwg–( ), T+ T– T*,= =

P+ P– P*, P*
Pa

------ln A
B

T*
------+ ,= = =

A 12.512, B 4611.73, Pa– 105 Pa.= = =

x = 0: P = P0, T  = T0;

x = L: P = P0, T  = T0.
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the basic equations. The perturbations of the pressure
and temperature satisfy the equations

For the sake of simplicity, we assume that the specific
heat and heat conductivity depend only on the corre-
sponding parameters of the skeleton: a = a1 = a2 .

The boundary conditions for perturbations read

where x = h + η(t, y) is the interface equation, Tf = ,

T1 = , and Pf = , where P1 = .

Assuming that the unknown functions can be repre-
sented as

and using the condition of the existence of a nontrivial

∆P 0,
∂T
∂t
------ a1 2, ∆T , ∆ ∂2

∂x2
--------

∂2

∂y2
--------,+= = =

a1 2,
λ1 2,

ρC( )1 2,
------------------, 0 x h h x L.< <∪< <=

P 0, T 0 at x 0 L,,= = =

P– = P+

P0

L
-----Γ1η , Γ1+  = 1

H
----

P1H P f–
H 1 H–( )
----------------------- at x+  = h,

T– = T+

T0

L
-----Γ2η , Γ2+  = 1

H
----

T1H T f–
H 1 H–( )
----------------------- at x+  = h,

P– = 
∂f T( )

∂T
-------------- 

 
T T*=

T–

+
∂f T( )

∂T
-------------- 

 
T T*=

∂T
∂x
------ 

 
–

∂P
∂x
------ 

 
–

– η

=  
P0B

T0
2

----------ΓT––
P0

L
-----Γ0η , Γ–

P f

T f
2

------,=

Γ0
B
T0
-----Γ

T f 1–
H

--------------
P f 1–

H
--------------- at x+ h,= =

m 1 R–( )∂η
∂t
------ k

µv
-----R

∂P
∂x
------ 

 
+

k
µw
------ ∂P

∂x
------ 

 
–

,–=

R
ρv

ρw
------ at x h,= =

mqρw
∂η
∂t
------ λ–

∂T
∂x
------ 

 
–

λ+
∂T
∂x
------ 

 
+

–
kqρw

µw
------------ ∂P

∂x
------ 

 
–

–=

at x h;=

T*
T0
------

T0

T0
----- P*

P0
------ P0

P0
-----

P x y t, ,( ) T x y t, ,( ) η y t,( ), ,{ }

=  P̂ x( ) T̂ x( ) η̂, ,{ } σ̂ t iκ̂ y+( ),exp
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solution, we obtain the dispersion equation

(3)

Here,

From Eq. (3), one obtains the asymptotic value σ =
σ0|κ|, κ → ±∞,

(4)

In [4, 5], we presented examples of the stable con-
figurations of the geothermal system in question at per-
meabilities exceeding the critical permeability found in
[3] by more than an order of magnitude.

4. Let us consider the nonoscillatory transition to the
instability of the regime that is characterized by the

interface location at x = h =  and is stable at some val-

ues of the parameters. The necessary condition of sta-

F σ κ,( ) α α 1 H–( )[ ]
ωw

a
-------Γ3κ κ H( )cothcoth≡

– 1 R–( )σ
ωv

a
------Γ4Rκ κ 1 H–( )[ ]coth+

+ α α H( )
ωv

a
------Γ5Rκ κ 1 H–( )[ ]cothcoth

+
ωw

a
-------Γ0κ κ H( ) 1 R–( )σ–coth

+
ωvB
T0

----------
mqρwR

λT0
------------------Γκ σ κ 1 H–( )[ ] σ

µv

µw
------ κH( )coth+coth

+ Γ1κ
ωw

a
------- κH( ) κ 1 H–( )[ ]cothcoth 0.=

Γ3
B
T0
-----Γ

T1 T f–
1 H–

-----------------
P f 1–

H
---------------,+=

Γ4
B
T0
-----Γ

T1 T f–
1 H–

-----------------
P1 P f–
1 H–

-----------------,+=

Γ5
B
T0
-----Γ

T f 1–
H

--------------
P1 P f–
1 H–

-----------------, α+ κ2 σ+ ,= =

κ κ̂
L
---, σ aσ̂

L2
------, ωw

P0k
mµw
-----------, ωv

P0k
mµv
----------.= = = =

σ0

ωv

a
------R Γ4 Γ5+( )

ωw

a
------- Γ0 Γ3+( )+=

+
ωwωv

a
------------- B

T0
-----

mqρwR
λT0

------------------ΓΓ 1

× 2 1 R–( )
ωv

a
------ B

T0
-----

mqρwR
λT0

------------------ 1
µv

µw
------+ 

  Γ–
1–

.

L
2
---
bility (σ < 0 for all κ) is evidently the negativity of σ0 in
Eq. (4), or, equivalently, the negativity of its numerator

(5)

because its denominator is always positive.
Instability occurs when a value κ0 > 0 such that

σ(κ0) = 0 arises upon the variation of the parameters.
Substituting σ = 0 into dispersion equation (3) and tak-

ing into account the condition h =  (H = ), we obtain

the equality σ1 = 0 for all κ. Then, it follows that, for
σ1 > 0, the quantity σ is positive simultaneously for all
κ and the completely unstable regime (for all κ) is sep-
arated from the completely stable one by the hypersur-
face σ1 = 0 in the space of the parameters. Therefore,
the equality σ1 = 0 is a criterion of the nonoscillatory
transition to instability. This transition in the case under
consideration occurs such that all perturbations become
unstable.

5. Let us consider the case of the nondegenerate

location of the interface h ≠  (H ≠ ).

Setting σ = 0 in dispersion relation (3) and dividing

both of its sides by the positive function κ2 (1 –
H)κ, we arrive at the equation

(6)

where

It follows from Eq. (6) that

(7)

where

The left-hand side of Eq. (7) is an even and mono-

tonic function of κ for κ > 0, and min  ≤

Z(κ) ≤ max . The values Z(κ) given by

σ1 ωvR Γ4 Γ5+( )= ωw Γ0 Γ3+( )+

+ ωwωv
B
T0
-----

mqρwR
λT0

------------------ΓΓ 1,

L
2
--- 1

2
---

L
2
--- 1

2
---

coth
2

Γ0ωwZ2 κ( )

+ ωwΓ3 ωvΓ5R
ωvωwBmqρwR

λT0
2

------------------------------------ΓΓ 1+ + 
  Z κ( )

+ ωvΓ4R 0,=

Z κ( )
Hκcoth

1 H–( )κcoth
---------------------------------.=

Z κ( ) Z1 2, d d2 b– ,±= =

d  = 
1

2Γ0
--------- Γ3

ωv

ωw
-------Γ5R

ωvBmqρwR

λT0
2

-----------------------------ΓΓ 1+ + 
  ,–

b
ωv

ωw
-------

Γ4

Γ0
-----R.=

1 H–
H

------------- 1,

1 H–
H

------------- 1,
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Z

0 κ

Z = Z(κ)

Z = Z1

Z = Z2

1

Z = Z(κ)

Z = d

1

Z

0 κ

(a) (b)

Fig. 1. Transition to instability in cases (a) (i) and (ii) and (b) (iii) for H > . In case (i), the threshold of instability at κ = ±∞ is

reached upon variation of the physical parameters when the line Z = Z2 moving downward reaches the asymptote of the curve Z =
Z(κ). In case (ii), the threshold of instability is reached when the line Z = Z1 moving upward touches the curve Z = Z(κ) at the point
κ = 0. In case (iii), for D = 0, the straight line Z = d arises and, upon developing instability, splits into two lines moving in opposite
directions.

1
2
---
Eq. (7) are real if the radicand is nonnegative. Instabil-
ity takes place if Eq. (7) has finite simple real roots
(their number is even, because the function Z(κ) is sym-
metric), and the threshold of instability is reached when
the real roots of this equation disappear (or appear).
The appearance of the real roots of the first equation
in (7) upon varying the physical parameters is possible
only in the following cases.

(i) For D = d2 – b > 0, H < , d < 1, Z1 = 1 or H > ,

d > 1, and Z2 = 1. These equalities occur at κ = ±∞, and
the infinite wave number corresponds to the threshold
of instability. As follows from Eq. (7), the conditions of
transition to instability in this case are equivalent to the
condition σ1 = 0, where σ1 is determined by Eq. (5).
The parameter domains σ1 < 0 and σ1 > 0 correspond to
the stable and unstable regimes, respectively. The tran-

sition to instability in the case H >  is illustrated in

Fig. 1a.

(ii) For D > 0, H > , d < , Z1 =  or H <

, d > , and Z2 = . These equalities occur

at κ = 0. As follows from Eq. (7), the conditions of tran-
sition to instability in this case are equivalent to the
condition

(8)

This equality is satisfied at zero wave number κ, which
is a double root of Eq. (7). The parameter domains σ2 <
0 and σ2 > 0 correspond to the stable and unstable
regimes, respectively. When the threshold of instability
is not yet reached, i.e., at σ2 = µ < 0, µ ! 1, Eq. (7) has
no real roots. At µ = 0, the threshold of instability is
reached, and the branch of the dispersion relation

1
2
--- 1

2
---

1
2
---

1
2
--- 1 H–

H
------------- 1 H–

H
-------------

1
2
--- 1 H–

H
------------- 1 H–

H
-------------

σ2 σ1
1 2H–

H
----------------

ωvH
1 H–
-------------Γ4R ωwΓ0– 

 – 0.= =
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touches the axis σ = 0 at the point κ = 0 corresponding
to the double root of Eq. (7). When, with further varia-
tion of parameters, the quantity σ2 becomes positive,
σ2 = µ > 0, µ ! 1, there are exactly two real (positive
and negative) values κ satisfying Eq. (7) because the
function Z(κ) is monotonic. The transition to instability

in the case H >  is illustrated in Fig. 1a.

(iii) For D = 0, min  < d <

max . The equality D = 0 is satisfied at two

nonzero values κ symmetric about zero. Each of these
values is a double root of Eq. (7). Crossing the hyper-
surface determined in the space of the parameters by
this equality, the system loses its stability: for σ1 < 0,
the parameter domains D < 0 and D > 0 correspond to
the stable and unstable regimes, respectively. For D = µ,
where µ < 0, Eq. (7) has no real roots. At µ = 0, the tran-
sition to instability takes place and the roots of Eq. (7)
reach the real axis from the complex plane. In this case,
the branch of the dispersion relation touches the axis
σ = 0 at the points corresponding to a pair of nonzero
wave numbers. When, with further variation of the
parameters, D (µ > 0) becomes positive, and there are
two wave number segments that lie on the real axis, are
symmetric about the origin, and bounded by the roots
of Eq. (7). These wave numbers are associated with
unstable normal modes. The transition to instability in

the case H >  is illustrated in Fig. 1b.

The system of equations (1) in the absence of the
time dependence of its solutions may be written in the
form of an infinite-dimensional dynamical system,
where the unbounded horizontal variable y plays the
role of time. Bifurcation takes place when eigenvalues
ν of the operator that is associated with the right-hand

1
2
---

1 H–
H

------------- 1,

1 H–
H

------------- 1,

1
2
---
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side of this dynamical system and is defined in a
domain including the relations obtained by the linear-
ization of boundary conditions (2) reach the imaginary
axis. According to the correspondence κ = iν, it occurs
in cases (ii) and (iii) of the transition to instability when
dispersion equation (7) has either a double zero root or
a pair of nonzero double roots at σ = 0. Bifurcations
lead to the formation of horizontally inhomogeneous
secondary regimes separating from the vertical flow
losing its stability.

Because the function F(0, κ) in Eq. (3) is even due to
the reversibility of Eqs. (1) and boundary conditions (2)

for  = 0, the eigenvalues ν reach the imaginary axis

in pairs. The motion of the eigenvalues when µ crosses

∂
∂t
-----

(a) (b)
Imν

Reν

Imν

Reν

Fig. 2. Motion of the eigenvalues ν on the imaginary axis
and those reaching the imaginary axis upon varying the
parameter µ from negative to positive values for cases
(a) (ii) and (b) (iii) of the transition to instability.
the origin in the direction of the positive real semiaxis
is shown in Figs. 2a and 2b for cases (ii) and (iii),
respectively.

The type of bifurcations that corresponds to such a
motion is well known and refers to the simple reso-
nance and 1 : 1 resonance, respectively (see, e.g., [7]).
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The fracture criterion

(1)

proposed by Novozhilov [1] for finding the equilibrium
state of cracks was adapted in [2–4] and in other studies
to the determination of critical loads in the case of arbi-
trary stress concentrators. As is shown in the present
study, this criterion makes it possible to establish both
the direction of crack propagation and the possibility of
branching in the case of crack formation from the ver-
tex 2 of an angular cut in a homogeneous elastic brittle
solid. In formula (1), the integration is performed along
a segment I of length d initiated at the point 2, where
(r, ϕ) are the polar coordinates with the center at the
point 2 and |ϕ| < α. Since the material is not assumed
to be isotropic, its characteristics d = d(θ) and σc =
σc(θ), as well as the characteristic size of the medium
(e.g., grain diameter [3]) and the critical stress (theoret-
ical strength [5]), are considered to be smoothly depen-
dent on the direction θ ∈ (–α, α) of the segment I = I(θ).
We emphasize that the aforementioned functions may
have jumps or removable singularities that determine
the preferable direction of the crack propagation
(cf. [6]). This relates, e.g., to the case of reinforcement
by high-strength fibers. However, such situations are
beyond the scope of this work. In addition, the analysis
deals only with the quasi-static development of cracks.
The criterion of the incubation time [4] that generalizes
criterion (1) for dynamic fracture was applied in [7] for
the determination of the crack sprout deviation angle.

Let an external load p(x, τ) be applied to the surface
of a plane solid in the absence of volume forces. The
load is dependent on the dimensionless timelike param-
eter τ, which is a strictly monotonic function of the

1
d
--- σϕϕ r ϕ,( ) ϕ θ= rd

0

d

∫ σc,=
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actual time t. The variation rate of this parameter is
assumed to be much lower than the elastic-wave prop-
agation velocity normalized to the characteristic size l
of the body (e.g., to the crack length, but not to the
parameter d ! l). We also ignore inertial forces and deal
with the quasi-static fracture process. In a complex
stress state, no crack directions are preferable. There-
fore, the problem of fracture mechanics is formulated
as follows. One has to determine the time τ = τ∗  for
which equality (1) is satisfied for a certain angle θ but
the left-hand side of Eq. (1) for τ < τ∗  is strictly smaller
than σc(θ) for an arbitrary θ value. The corresponding
load p(x, τ∗ ) is just critical. In other words, the function

where

(2)

reaches the global maximum (equal to zero) at one or
several points, but F(τ, θ) – σc(θ) < 0 for τ < τ∗  at all θ.
This formulation is adequate for many fracture criteria.
Generally speaking, it can be derived on the basis of the
dynamic-fracture criterion [7] in the case of slow sim-
ple loading by setting τ = v t, where v  > 0 is the relative

loading rate, and replacing σc by 1 – v t0 σc,

where t0 > 0 is the incubation time (see, e.g., [4]). Since
v  is low, inertial terms can be disregarded and the addi-
tional coefficient of σc can be eliminated. It is worth
mentioning a new conclusion that, if the equation
F(τ∗ ; θ) = σc(θ) has several roots θi ∈  (–α, α), the for-
mation of several cracks can be expected (if α = π, then
the main crack branches).

We fix the angle θ and introduce Cartesian coordi-
nates (s, n) with the s axis along the segment I(θ). Using
the equilibrium equation

(3)

α α,–( ) { θ F τ*; θ( ) σc θ( ),–→

F τ*; θ( ) 1
d θ( )
----------- σϕϕ τ*; r θ,( ) rd

0

θ( )d

∫=


 1

2
--- 


1–

∂
∂s
-----σss

∂
∂n
------σsn+ 0,

∂
∂s
-----σns

∂
∂n
------σnn+ 0,= =
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we represent the derivative F ' of the function F with
respect to the variable θ in the form

As a result, we arrive at the relationship

(4)

Here, N corresponds to the direction tangential to the
plot of the function r = d(ϕ) at the point ϕ = θ.

Thus, when a crack is formed from the vertex 2 in
the direction θ, expression (4) for the time τ = τ∗  coin-

cides with the derivative (θ). If the strength proper-
ties are isotropic (the elastic properties of the solid
under consideration may keep anisotropy), the condi-
tion obtained above is simplified to the form

(5)

In other words, the tangential stress at the end of the
segment I(θ) coincides with the mean value of this
stress over the segment. In the case of a simple loading,
p(x; τ) = τp0(x), the angle θ is independent of the instant
of fracture, so that the argument τ∗  can be omitted in
Eq. (5).

We note that Eq. (5) is only a necessary condition.
For example, if the surface of the angular cut is free
of stresses, then σcϕ(r, ±α) = 0, and, consequently,
equality (5) is satisfied for θ = ±α. At the same time,
σϕϕ(r, ±α) = 0 and requirement (1) is certainly violated.

If the length d is negligibly small, the stress σrϕ(τ∗ ,
r, ϕ) can be replaced in some cases by the leading term
rΛ – 1Σrϕ(τ∗ ; ϕ) of its asymptotic expansion (for details,
see [2], where, in particular, it is explained when this

F ' τ ; θ( ) d ' θ( )
d θ( )
------------F τ ; θ( )–=

+ d ' θ( )σnn τ ; d θ( ) θ,( ) 1
d θ( )
-----------J τ ; θ( ),+

J
∂

∂θ
------σnn rd

0

d

∫ s
∂

∂n
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0

d

∫= =

=  s
∂
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0

d

∫– σns s σns n 0 s, d= =
.d–d

0

d
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F ' τ ; θ( ) = 1
d ' θ( )
d θ( )
------------

2

+ 
 

1/2

× 1
d θ( )
----------- σnN τ ; r θ,( ) rd

0

d θ( )

∫ σnN τ ; d θ( ) θ,( )–
 
 
 

.

σc'

σrϕ τ*; d θ,( ) 1
d
--- σrϕ τ*; r θ,( ) r.d

0

d

∫=
replacement is impossible). As a result, Eq. (5) for
Λ ≠ 1 provides the rather simple condition

(6)

Thus, the crack propagates in the direction of the
absence of tangential stresses. This conclusion is simi-
lar to the well-known criterion KII = 0. However, it is
known that this criterion in its a posteriori formulation
(the coefficient KII of the stress intensity vanishes in the
vertex of the small crack branch) for isotropic solids
(see [8, 9]) indicates a direction differing from that
found by means of formula (6).

After the replacement σϕϕ → rΛ – 1Σϕϕ, Novozhilov
criterion (1) transforms into the criterion of the maxi-
mum tensile stress; the calculations show the necessity
of condition (6) for this stress. We emphasize that, ana-
lyzing the crack propagation direction in an orthotropic
material, Petrov and Ponikarov [10] used the above
asymptotic version rather than criterion (1) itself. In
this case, the parameter d was considered to be con-
stant, and the quantity σc(θ) was taken to be equal to
σcx(sinθ)2 + σcy(cosθ)2. The deviation of the crack from
the rectilinear path that was found in [10] is caused only
by the variability of the strength characteristic σc .

A rather interesting conclusion follows from for-
mula (6). Since the angular part Σϕϕ(τ, ϕ) of tensile
stresses vanishes at ϕ = ±α, it takes the maximum (or
minimum) value at the point ϕ• within the interval
(−α, α). In this case, Σϕr(τ; ϕ•) = 0, and, consequently,
the angular part of shear stress must change its sign
within the interval (–α, α) for an arbitrary anisotropic
material and opening angle.

We now discuss the nucleation of an edge crack ini-
tiated at the point 2 of the rectilinear segment Γ ∈
{(x, y): y = 0} of the boundary free of external actions.
Since the stresses σxy and σyy vanish in Γ, we have

(7)

Let σxx(2) > 0, the material be homogeneous, and its
strength properties be isotropic (the last requirement
does not relate to elastic properties). We note that rela-
tionship (6) for Λ = 1 does not formally follow from
Eq. (5). However, it remains valid in any case. Accord-
ing to the leading terms of expansions (7), the crack
nucleates perpendicularly to the boundary. Further, we
take into account the lower terms of the expansions:

(8)

Σrϕ τ*; θ( ) 0.=

σϕϕ r ϕ,( ) σxx 2( ) ϕ O r( ),+cos
2

=

σrϕ r ϕ,( ) σxx 2( ) ϕ ϕ O r( ).+sincos–=

σxx x y,( ) = s0 s1x s2y s11x2+ + +

+ 2s12xy s22y2 O r3( ),+ +

σxy x y,( ) = s1y– 2s11xy– s12y2– O r3( ),+

σyy x y,( ) s11y2 O r3( ).+=
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We emphasize that only two of the coefficients sjk are
free, and the complementary relation generally
includes elastic constants (in the isotropic case, 2s11 +
s22 = 0 due to the Mitchell equation). It is reasonable to
assume that tensile forces are maximal at the nucleation
point of the edge crack, i.e.,

(9)

In the framework of the Novozhilov criterion, the vari-
ability of stress field (8) causes a deviation of the crack
direction from the perpendicular by a (small) angle θ.
Indeed, the substitution of Taylor formulas (8) into rela-
tionship (5) yields

(10)

If s1 = 0 and s12 = 0, then the symmetry of field (8) with
respect to the y axis holds in principal, and, according
to Eq. (10), the direction of the edge crack coincides
with a perpendicular to the boundary within high accu-
racy.

We now analyze the problem of crack branching. In
the absence of volume forces on free crack sides for an

isotropic material, we have Λ =  and

(11)

where KI and KII are the stress intensity coefficients. As
was mentioned above, Eqs. (2) and (4)–(6) show that
crack branching requires that the angular part of
Eq. (11) vanish at least twice within the interval (–π, π)
and change its sign from plus to minus in this case. This
statement implies that the function Σrϕ must have no

s0 = σxx 2( ) 0, s1 = ∂xσxx 2( ) = ∂yσxy 2( ) = 0,–>

s2 = ∂yσxx 2( ) 0, 2s12 = ∂x∂yσxx 2( ) = ∂y
2σxy 2( ).–>

θ 2
3
---d2s12

s0
------ O d3( ).+=

1
2
---

Σrϕ ϕ( ) 1

2π
----------1

4
--- K I

3
2
---ϕ 1

2
---ϕsin+sin
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+ K II 3
3
2
---ϕ 1

2
---ϕcos+cos





,
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less than five roots within the segment [–π, π]. A third-

order harmonic polynomial of the variable  obviously

does not have this property. The absence of this number
of roots is immediately shown by taking into account
that the derivative of the factor after KI with respect to
ϕ coincides with half the factor after KII (cf. [11]).

Thus, in the framework of the Novozhilov criterion,
the crack does not branch when the parameter d is neg-
ligibly small. This conclusion is consistent with the
well-known experimental fact that quasi-static crack
branching (free of dynamic effects) is not observed in a
homogeneous isotropic brittle material.
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The key feature of a flow around axisymmetric bod-
ies at large angles of attack is the formation of a conic
vortex flow, where a pair of primary vortices dominates
(Fig. 1). With an increase in the ratio of the angle of
attack α to the half-apex angle θ of the model vertex,
the initial attached flow is transformed to a detached
flow with the formation of a pair of symmetric station-
ary vortices. With a further increase in the parameter

, the flow is abruptly rearranged with the formation of

an asymmetric pair of vortices. This process is associ-
ated with the loss of the stability of the vortex flow

above the critical parameter  [1–3]. Small asymmetry

of the forward part, roughness, and irregularity of the
outer flow may serve as initial perturbations. In addi-
tion, this process depends on the presence or absence of
the transition from a laminar flow to a turbulent one in
the preseparation region of the flow [4]. The change of
a symmetric flow to an asymmetric one is not very
predictable and generally undesirable, because it gen-
erates uncontrollable lateral loading on the stream-
lined body [3].

It is known that the initial asymmetry of a vortex
flow arises near the model vertex and holds down-
stream. The characteristic feature of large-scale vorti-
ces arising in the separation region is their high sensi-
tivity to external perturbations, which enables one to
control the flow by creating artificial perturbations at
the place of their origin. Attempts to control a vortex
flow around axisymmetric bodies were successfully
realized by action on the flow near the vertex [5, 6].
Traditional methods such as change in the vertex shape,

α
θ
---

α
θ
---
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use of various vortex generators, and injection–suction
of the gas are usually considered.

In this work, we analyze the possibility of using an
electric discharge for controlling the symmetry of the
vortex flow around a cone at the angle of attack. The
possibility of fast change in both the discharge fre-
quency and its power provides flexible control over the
intensity of action and its application in feedback con-
trol systems for flows. A spark gap is a set of electrodes
placed on the surface along generatrices of the cone.
Various pairs or groups of electrodes can be used,
depending on the velocity of the incident flow and the
angle of attack.

Despite numerous studies in this direction, the basic
physical processes accompanying the separation of the
flow on bodies of revolution are poorly understood. The
possibilities of controlling the asymmetry of the flow
were theoretically analyzed in [7], where the basic idea
was the plasma action on hydrodynamic stability at the
key singular points of the flow. Flow control strategy
implies that the position of flow separation lines on
both sides of the cone can be changed by an electric dis-
charge. In this case, the discharge can be treated as a
source of artificial periodic oscillations, as a local heat
source, or as a stationary bulge on the cone surface. In
any case, the discharge introduces additional perturba-
tion into the initial flow and finally shifts the separation

ϕ ϕ

Primary
vortex

Separation line

α α
U U

Fig. 1. Scheme of the flow around an axisymmetric cone at
a large angle of attack for the (a) symmetric and (b) asym-
metric configurations of vortices.

(a) (b)
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point upstream from the saddle point of the transverse
flow. As a result, vortices are displaced from the sur-
face, and the distance between their centers increases.
The saddle point of the transverse flow is shifted
towards the surface of the model, and a more stable
state preventing the appearance of asymmetry is
achieved. According to estimates made in [7], the heat-
ing of a gas by 50–100 K by a thin cylindrical (1 mm in
diameter) volume heat source placed along the initial
flow-separation line is enough for the necessary dis-
placement of the separation line. The lower boundary
of the required power is estimated as 200 W for a dis-
charge length of 1 m with a specific power of 2 W/cm.

Experiments were carried out in a small-turbulent
aerodynamic tube T-324 at the Institute of Theoretical
and Applied Mechanics, Siberian Division, Russian
Academy of Sciences, in the flow velocity range U = 5–
20 m/s. The turbulence level of the free flow in the setup
was less than 0.04% for the cross section 1 × 1 m of the
closed working section. The average velocities and
velocity pulsations in the boundary layer and flow sep-
aration regions were measured by a hot-wire anemom-
eter, static pressure distributions over the model surface
were determined, and the vortex structure of the flow
was visualized by the laser knife method.

A 1-m-long cone model with a half-angle of 5° was
used in experiments. The model was placed in the
working section of the aerodynamic tube at the angle of
attack α = 0°–40° and had a set of changeable heads
with various shapes and a dielectric insertion, where
electric spark gaps were placed. Pressure on the model
surface was measured at ten points uniformly distrib-
uted over a circle in the cross section at distance x =
576 mm. Investigations were carried out for the separa-
tion of both laminar and turbulent boundary layers. In
the latter case, abrasive-paper turbulizers were stuck on
the model to ensure the transition of the preseparation
boundary layer to the turbulent state.

Initial experiments were carried out without electric
spark gaps and aimed to analyze the structure of an
unperturbed flow and to determine cone-surface
domains, where the discharge action would be applied
most efficiently. These domains were sought by means
of bulges 3–5 mm in height and 20–100 mm in length
that were mounted symmetrically with two sides of the
model before the flow separation lines at various dis-
tances from the cone vertex.

Experiments show that, for flow velocities from 10
to 15 m/s, vortices over the model without bulges are
located symmetrically if the angle of attack α does not
exceed 15° (Fig. 1). With an increase in α to 20°, the
vortex pattern is transformed to an asymmetric one, and
the directions of asymmetry are different for different
angles of attack. This behavior is caused by small trans-
verse changes in the position of the model and testifies
to the high sensitivity of the flow to small inhomogene-
ities of the flow. It was found that the symmetric vortex
pattern of the flow could be reached by the installation
DOKLADY PHYSICS      Vol. 49      No. 6      2004
of bulges. The placing of bulges near the vertex of the
model is most efficient. Bulges may be shorter if they
are placed closer to the vertex. This result is consistent
with the data obtained in [5], where it was experimen-
tally shown that small action near the vertex could
change the pattern of the entire flow.

According to the above results, electric spark gaps
are placed on the both sides of the model as close as
possible to the vertex. Electrodes were mounted such
that the plasma channel was upstream from the separa-
tion line and oriented along a generatrix of the cone.
Both arc and spark discharges were used in experi-
ments. An arc discharge was ignited between two elec-
trodes that were mounted flush on the cone surface and
spaced by 10 mm. The discharge runs off a high voltage
source with industrial frequency (50 Hz) through a bal-
last resistor. The discharge current was equal to about
100 mA for 1200-V voltage on the arc. The spark dis-
charge was generated on the array of electrodes, which
were mounted flush on the cone surface, by the method
described in [8]. The distance between the outer elec-
trodes was equal to 20 mm. The discharge runs off a
pulsed generator with a voltage up to 20 kV. The dis-
charge duration was equal to about 10 µs, and the repe-
tition frequency was equal to 400 Hz.

The effect of the arc discharge on the flow pattern
was studied on the cone model with both sharp and
hemispherical heads with a radius of 10 mm. The dis-
tance from the model vertex to the first electrode was
equal to 150 and 55 mm, respectively. The discharge
power was insufficient for controlling the flow structure
in the sharp-vertex configuration. The blunted configu-
ration ensures the location of the electric spark gaps
closer to the model vertex, which must increase the effi-
ciency of the action. The use of the hemispherical head
for the same discharge power allows the efficient con-
trol over the flow and a symmetric vortex pattern.

The effect of the simultaneous action of two sym-
metric arc discharges from both right and left sides of
the model was analyzed. In these experiments, the total
electric power of two discharges was constant and
equal to about 120 W. The discharge was initially
ignited only on the first (right) electric spark gap. After
3–5 s, the second discharge was ignited and power was
about equally distributed between the discharges (about
60 W per channel). This procedure made it possible to
obtain data corresponding to the symmetric and asym-
metric actions on the flow in the same experiment.

Figure 2 shows the distribution of the pressure coef-
ficient Cp over the model surface. The pressure coeffi-
cient is defined as the difference between static pres-
sure at a given point and static pressure in the incident
flow as divided by the velocity head. It is seen that the
initially symmetric state is distorted by the discharge
from the right and was partially restored by two sym-
metric discharges.

For experiments with a spark discharge, a head with
a radius of 2.5 mm was mounted on the model. The flow
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Fig. 2. Distribution of the pressure coefficient over the
model surface in the cross section x = 576 mm in the pres-
ence of an arc discharge: (1) without discharge, (2) dis-
charge on the right is turned on, and (3) discharge on both
sides is turned on.

Fig. 3. Initial asymmetric pattern obtained by smoking visu-
alization by the laser-knife method for a flow without a spark
discharge for the parameters U = 15 m/s and α = 17.5°.

Fig. 4. Symmetric pattern obtained by smoking visualiza-
tion by the laser-knife method for a flow with a spark dis-
charge for the parameters U = 15 m/s and α = 17.5°.
velocity varied from 9.2 to 15 m/s, and the angle of
attack, from 17.5° to 20°. The discharge was ignited
from the right, left, or from the both sides of the model
simultaneously. In the flow around the model without
the discharge, right asymmetry was observed; i.e., the
vortex on the right side was further from the model than
the vortex on the left side (see Fig. 3). In this case, the
symmetric state was obtained by the ignition of the dis-
charge on the left side of the model (Fig. 4). When both
discharges were used simultaneously, the flow was also
symmetrized. When the discharge appeared, the vortex
trace was transformed to the symmetric state and
remained symmetric when the discharge was turned on.
When the discharge was turned off, the flow returned to
the asymmetric state. For various flow velocities and
discharge powers, various vortex configurations with
different degrees of asymmetry were obtained. With an
increase in the flow velocity, the effect of the spark dis-
charge was weakened due to insufficient discharge
power.

Thus, the use of an electric discharge near the vertex
of an axisymmetric body streamlined at the angle of
attack was experimentally shown to be an efficient
mechanism of controlling the flow. We achieved both
the symmetrization of an initially asymmetric flow and
control over the direction of artificially created asym-
metry and, therefore, over the aerodynamic force.
Moreover, the effect of proportional control, when the
aerodynamic force monotonically depends on the
action intensity, was obtained. The results enable one to
consider an electric discharge as an active element of
control systems for promising aircraft.
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INTRODUCTION

At present, the nonlinear evolution of random wave
fields, including the field of wind-generated waves on
the ocean surface, is statistically described in a general
nonlinear wave physical approach, where the evolution
of the second-order statistical moments is described by
a kinetic equation (Boltzmann equation) [1]. This
approach is based on the hypothesis that a statistically
uniform wave field is quasi-Gaussian or on equivalent
hypotheses: odd-order statistical moments are set to
zero, and higher even-order moments are expressed in
terms of the second-order moments. Although the
kinetic equation is successfully applied to a number of
various important physical problems [1], its justifica-
tion, requiring independent verification of the above
hypotheses, remains an open problem. Moreover,
observations of waves on water often reveal the pres-
ence of long-lived coherent structures in the wave field,
which contradicts, at first glance, the above hypotheses.

It is most important to determine the applicability
limits of the approach based on the kinetic equation by
verifying its base hypotheses, including the quasi-
Gaussian hypothesis. The applicability conditions for
models based on the kinetic equation, as well as factors
violating these conditions, can be determined only by
direct numerical simulation including the integration of
the primitive equations of motion in continuum. In this
work, we propose a verification method based on direct
numerical simulation for a nonlinear wave field on the
surface of a fluid.

Since numerical simulation of hydrodynamic equa-
tions must be performed for numerous interacting
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waves at large time scales much longer than the charac-
teristic times of developed turbulence, the choice of an
appropriate numerical method is important. Such a sim-
ulation directly for the basic hydrodynamic equations
(e.g., Navier–Stokes equations) is beyond the capabili-
ties of current computers. Spectral methods based on
the weak-nonlinearity assumption, where a field is rep-
resented in terms of a discrete set of interacting Fourier
harmonics, are much more appropriate for solving the
problem. To efficiently simulate the statistical evolution
of the continuous wave field, numerical integration
must be performed for a large number of discrete har-
monics. In this case, the problems of discretization and
role of resonant and nonresonant interactions require
special attention. A regular grid in the wave-vector
space k is usually used in spectral methods, which gives
rise to undesirable artifacts of integer discretization [2].
A new approach that is proposed in this work and based
on the truncated Hamiltonian equations (Zakharov
equation) enables one to overcome these difficulties. In
particular, it does not require discretization on regular
grids and makes it possible to efficiently simulate any
number of interacting waves.

The first attempts to apply spectral methods to direct
numerical simulation of the results predicted by the
kinetic equation were reported in recent works [3, 4],
where it was shown that the final stage of the evolution
of wave ensembles obtained with the kinetic equation
was close to direct numerical simulation. However,
quantitative comparison of evolution itself was not per-
formed.

In this work, we develop a method of direct numer-
ical simulation of random wave fields. This method is
applied to reproduce solutions of the kinetic equation,
when the latter is applicable, in order to provide the
possibility of applying this method for a wider class of
problems. It is necessary to answer the following
important questions.

(i) Is it fundamentally possible to develop an effi-
cient numerical scheme for a quite accurate simulation
of the evolution of statistical characteristics of wave
ensembles with the conservation of the fundamental
properties of a continuous wave field?
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(ii) What is the role of resonant, approximately res-
onant, and nonresonant interactions?

(iii) What is the form of evolution at the initial stage,
whose duration is about the characteristic time of phase
mixing?

(iv) How can the above effects modify the initial
conditions of the kinetic equation?

In this work, for simplicity, answers to most of these
questions are given for a relatively particular case,
where the wave field consists of a finite number of
localized, spectrally narrow, wave packets that are in
exact resonance.

BASIC EQUATIONS AND AN ALGORITHM

Let us consider potential gravity waves with low
(about ε) steepness on the surface of a deep incom-
pressible fluid. Following [5], we write the equations of
motion in the Hamiltonian form

(1)

where the Hamiltonian H is represented as the integral
power series in b(k) and b*(k):

(2)

The dispersion relation has the form ω(k) = (gk)1/2,
where g is the gravitational acceleration, integration is
hereinafter performed over the entire k plane, and the
asterisk stands for complex conjugation. The complex
canonical variable b(k) in the Fourier space is
expressed in terms of the physical variables ϕ(k, t) and
η(k, t) (potential on the free surface and free-space ele-
vation) through the integral power series

(3)
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Fig. 1. Wave vectors in the k space corresponding to the
four-cluster case.
Then, the evolution equation for b(k) including the lead-
ing (four-wave) interactions is written in the form [6]

(4)

where the compact notation is used with the replace-
ment of arguments by subscripts, e.g., b0 = b(k0). Equa-
tion (4) is called the Zakharov equation. Its detailed
derivation and expression for V0123 were given in [6].

An algorithm for numerically solving Eq. (4) was
developed in [7] and successfully applied to integrate
dynamic equations in a number of problems. In this
work, it is used for the first time to analyze the evolu-
tion of the statistical characteristics of wave ensembles.
An important feature of the algorithm is a free choice of
the position of harmonics in the k space. This advan-
tage enables one to remove restrictions imposed by a
regular grid, control the presence of exact and approxi-
mate resonances in a system, and identify narrow reso-
nant regions for higher order resonances already with a
few harmonics.

EVOLUTION 
OF THE STATISTICAL CHARACTERISTICS 

OF A WAVE ENSEMBLE

We consider a gravity-wave ensemble consisting of
a finite number of quasi-monochromatic wave packets.
Let us represent each packet as a cluster of random-
phase harmonics such that the sum of their amplitudes
squared is equal to the total intensity of a packet and
perform phase averaging. The simplest example of such
an approach corresponds to four packets in exact res-
onance (Fig. 1). The kinetic equation for this case can
be obtained by discretizing the general kinetic equa-
tion [1, 8] or derived directly by using the random
phase approximation [9] and has the form

(5)

where Nj = , j = 1–4, is the intensity of the jth wave
packet. Each wave packet is represented as a cluster of
five harmonics kj, kj ± dx , kj ± dy, where dx = ∆κx, dy =
∆κy, and κx = (1, 0) and κy = (0, 1) are the unit wave vec-
tors. The quantity ∆ is called the cluster size in the k
space. Such a procedure of constructing clusters
includes the parallel translation of the original resonant
quartet by dx and dy with the appearance of numerous
quartets that are in approximate resonance and simulate
the modulation instability of the original wave packets.
In the taken configuration, the sole resonant quartet in
the kinetic equation corresponds to the interaction of
180 coupled quartets in the Zakharov equation.

Figure 2 shows the evolution of packet intensities
for a time of about 7000 characteristic periods of waves
as obtained by numerically solving the kinetic and
Zakharov equations (with averaging over an ensemble
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of 1000 realizations each corresponding to a random
choice of the initial phases of the harmonics). Both
approaches show that the system tends to the thermody-
namic equilibrium state, which does not generally cor-
respond to the Rayleigh–Jeans spectrum due to the
presence of additional integrals relating the amplitudes
of interacting packets (Manley–Rowe integrals).

To illustrate the role of interactions that are not exact
resonant interactions, the points in Fig. 2 show numer-
ical solutions of the Zakharov equation for the initial
resonant quartet without the introduction of clusters
and with averaging over an ensemble of 10 000 realiza-
tions. In this case, the harmonic amplitudes evolve with
a much shorter time scale and fast, gradually damping,
oscillations. Such a numerical solution obtained disre-
garding approximate resonances differs strongly from
the corresponding solution of the kinetic equation and
cannot be used to simulate it.

To analyze the dependence of the results on the clus-
ter size ∆, we calculate the ratio of the evolution time
scale obtained by direct numerical simulation to that
obtained by numerically solving the kinetic equation.
This ratio is close to unity in a wide range of ∆, when
the cluster size is much smaller than the characteristic
size of the system. A moderate increase in the number
of elements in each cluster does not noticeably change
evolution. In the initial interval [with the characteristic
time O(ε–2)], evolution obtained by direct numerical
simulation in most cases proceeds faster than it follows
from the numerical solution of the kinetic equation.

Similar properties are also obtained for much more
complex systems consisting of numerous (up to 1000)
localized wave packets. As an illustrative example, we
present the evolution of the system of 24 wave packets.
Figure 3 shows the numerical solution for this system.
As is seen, the system tends to the thermodynamic
equilibrium state, and direct numerical simulation
beyond the initial stage of evolution virtually coincides
with the solution of the kinetic equation. Direct calcu-
lation of the fourth moments also corroborates that they
can be represented in the form of the product of the sec-
ond moments. This representation is of key importance
for the derivation of the kinetic equation.

DISCUSSION

In this work, a new approach based on the integra-
tion of the Zakharov equation and representation of
packets by clusters is proposed and tested for direct
numerical simulation of wave fields. Analysis of the
evolution of systems consisting of a finite number of
localized interacting wave packets shows that this
approach predicts a field evolution quite close to the
solution of the kinetic equation when the latter is appli-
cable. Interactions close to resonant interactions play a
key role. We emphasize that the inclusion of only exact
resonant interactions gives physically meaningless
results. Analysis of the test problems also indepen-
DOKLADY PHYSICS      Vol. 49      No. 6      2004
1.0

10000 2000 3000 4000 5000 6000 7000

1.5

1.5

T

N j 10×
3

Fig. 2. (Solid lines) Evolution of the intensity of clusters as
obtained by numerically solving the Zakharov equation
with averaging over an ensemble of 1000 realizations,
(dashed lines) numerical solutions of the kinetic equation,
and (dotted lines) solutions of the Zakharov equation that
are averaged over an ensemble of 10 000 realizations for
four harmonics with the same initial conditions for the
amplitudes.
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dently corroborates the quantitative adequacy of the
kinetic equation at least for the cases being considered.

The above method is supposed to be applied to
much more complex cases of the evolution of a contin-
uous wave field, where the kinetic equation is inappli-
cable and/or higher order resonant interactions must be
taken into account. The advantage of the method using
arbitrary-form grids becomes substantial already for
five-wave interactions for which resonant regions are
narrow and cannot be identified by using a regular grid.
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Under normal conditions, the density of water is
maximal at a temperature of about 4°C (the exact value
depends on both pressure and the impurity content).
This fact leads to a number of effects, including hydro-
dynamic ones. When water masses whose temperatures
are higher or lower than 4°C come into contact, a max-
imum-density front surrounded by water of lower den-
sity is formed in the contact zone. Conditions for the
formation of a horizontal maximum-density front arise
in fresh water reservoirs. Another effect is the appear-
ance of a seasonal thermal bar in lakes and water reser-
voirs [1] with a more complicated orientation of this
front. In Lake Baikal, processes associated with the
anomalous dependence of the water density on temper-
ature significantly affect the oxygen enrichment of deep
water layers and the transportation of nutrients into sur-
face layers [2, 3].

In the gravitational field, water particles of the max-
imum density are subjected to the action of the force
directed downward (the difference between the gravity
force and buoyancy force). In this case, the develop-
ment of instability is possible. In essence, this instabil-
ity is similar to the well-known Rayleigh–Taylor insta-
bility [4, 5], although it has a substantial intrinsic fea-
ture. The instability of initially immovable
unboundedly thick layers with the horizontal interface
is usually considered for the case, where the upper layer
has a higher density. Under actual conditions, the max-
imum-density layer is thin and can be arbitrarily ori-
ented.

In this paper, we present brief information on the
results of laboratory experiments in which the orienta-
tion of the front of the maximum water density contin-
uously varied from the vertical orientation to the hori-
zontal one. The experiments were carried out in a 6-cm-
wide ill-drained Plexiglas channel 2.5 m in length. The
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channel was filled with a 7.6-cm-deep water layer with
temperature T1 . A water jet of temperature T2 and vol-
ume flow rate of 66.7 cm3 s–1 was injected into this ini-
tially quiescent water layer over a plate inclined at an
angle of 13.4° to the channel bottom. In the simplified
form, such a statement of the problem allows us to
study processes governing the propagation of water of
the Selenga River in Lake Baikal in the spring thermal
bar period. The injection occurred for a limited time
interval. During the experiment, the water depth in the
channel increases by 5 cm.

Figures 1 and 2 present photographs obtained in two
experiments for different combinations of T1 and T2 .
All other conditions in both experiments were the same,
including a density difference of 0.00034 g cm–3

(b)

(a)

Fig. 1. Leading part of a jet at t = 165 s in experiments (a) 1
and (b) 2.
04 MAIK “Nauka/Interperiodica”



 

394

        

BUKREEV

                                                           
between the quiescent layer and jet. In experiment 1,
the temperatures were T1 = (0.5 ± 0.2)°ë and T2 =
(11.7 ± 0.1)°ë, so that the maximum-density tempera-
ture was between these values. In experiment 2, T1 =
(11.5 ± 0.1)°ë and T2 = (14.2 ± 0.1)°ë; i.e., both values
were higher than the maximum-density temperature.
Due to the existence of the density difference, the
warmer liquid propagated near the free surface in both
experiments. However, when warm water came into
contact with cold water in experiment 1, an unstable
front of the maximum density was formed, whereas in
experiment 2, conditions for the development of the
instability under discussion were absent.

Figures 1 and 2 show flow patterns recorded in
experiments (a) 1 and (b) 2 at the same time t from the
onset of the jet injection. The photographs were taken
through the side channel wall. Preliminary experiments
have revealed an optimal method of visualizing effects
caused by the anomalous temperature dependence of
the density. For example, in experiment 1, the most
suitable method implied the use of uncolored water
with temperature T2 , whereas small suspended particles
of aluminum powder reflecting incident light were
added into water of temperature T1 . In this case, a ver-
tical light “knife” with a thickness of about 1.5 cm was
used to illuminate a flow region near the longitudinal
symmetry plane of the channel. In experiment 2, water
of temperature T1 was not colored, whereas water of
temperature T2 was colored with ink. The entire bulk of
the liquid was illuminated. For both visualization meth-
ods, water of temperature T2 was darker in the photo-
graphs.

In experiment 1, the instability of the maximum-
density front led to the continuous variation of the flow

(a)

(b)

Fig. 2. Stratification pattern at t = 350 s in experiments (a) 1
and (b) 2.
pattern from the instant of the jet injection to the com-
plete equalization of temperature. In experiment 2,
instability was observed only in the initial time interval
with a duration of about 20 s. This instability was
caused by only the velocity shift between the different-
density layers. Afterwards, due to the stabilizing effect
of the buoyancy force directed upward in this case, the
flow in this experiment became stable even in the zone
of the jet injection.

The photographs were obtained (Fig. 1) at the
instant the water supply was ceased and (Fig. 2) when
the velocity shift between the two layers virtually van-
ished. The photographs show that the instability caused
by the anomalous temperature dependence of density
qualitatively changes the shape and internal structure of
the leading part of the surface jet (Fig. 1). For long
times, isolated jets of warmer water descend into cold
water (Fig. 2a). In the case of thick unstable layers, a
similar pattern usually exists only at the initial stage of
the development of the Rayleigh–Taylor instability.
Thereupon, instability is enhanced due to the excess
potential energy of the entire upper layer, and the mix-
ing process becomes chaotic.

Instability seen in Fig. 2a is caused by the excess
potential energy of only the thin layer near the maxi-
mum density, whereas the density difference between
this layer and the surrounding liquid is small. Under
these conditions, the molecular thermal diffusion and
viscosity of the liquid can efficiently counteract the
development of the chaotic motion. In this experiment,
the chaotic stage of the instability was not observed.
Temperature over the channel depth was equalized
slower than upon chaotic mixing but much faster than
in experiment 2. In the experiment with the lower-layer
temperature T1 = 2.8°ë, the excess potential energy was
so low that the molecular diffusion suppressed the
instability even at the initial stage. In this case, the flow
pattern with concentrated jets shown in Fig. 2a was not
observed.

The experiment for T1 = 14.1°ë and T2 = 0.4°ë was
carried out such that the cold water propagated over the
channel bottom. At long times after ceasing the water
flow supply, the characteristic distance between the
concentrated jets in the stratification pattern was con-
siderably smaller than in the pattern given in Fig. 2a. In
this case, the concentrated jets of the warm liquid
descended into the cold liquid, and the cold liquid
ascended into the warm liquid.

It is worthwhile to compare the given illustrations
with photographs from [7, 8]. In [7], the process of the
jet propagation along the interface between two liquids
of different densities was analyzed in the absence of
anomalous effects. Under these conditions, only the
shear instability was manifested. In [8], the Rayleigh–
Taylor instability of a liquid heated from the bottom
was investigated.

In experiments with other flow rates and initial
depths, two more effects caused by the anomalous tem-
DOKLADY PHYSICS      Vol. 49      No. 6      2004
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perature dependence of the water density were found.
Under certain conditions, warmer water with the maxi-
mum-density front like a piston can displace the cold
water in the entire depth of the channel. In this case,
after ceasing the water flow supply, the similarity with
the processes near a thermal bar becomes particularly
close. For larger values of both the initial depth and the
flow rate, shear instability was developed. In the
absence of the maximum-density front, it is similar to
the well-known Kelvin–Helmholtz instability [6]. In
the presence of the maximum-density front, the region
of the existence of shear instability and the character of
its development changed significantly. The maximum-
density front counteracted the development of the shear
instability and, at the same time, was unstable itself.
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The turbulent regime attracts constant interest,
because it often occurs in flows of fluids and gases
under both natural and artificial conditions. Interest in
the turbulence problem in motion of bodies in gases and
fluids is primarily associated with the laminar–turbu-
lent transition that occurs in the boundary layer and
whose mechanism depends sometimes on the place
(conditions) of its origin. In particular, when the bound-
ary layer is developed on a swept wing, the transition
can occur, first, on the attachment line, second, near the
front edge in the domain of secondary-flow instability,
and, third, downstream due to the instability of Toll-
man–Schlichting waves.

The laminar–turbulence transition on the attach-
ment line leads to the turbulization of the entire bound-
ary layer on the wing. For this reason, study of the fea-
tures of this transition is of particular interest. The basic
aim of this work is to experimentally investigate the
features of the development of the boundary layer along
the attachment line of a forward swept wing narrowed
to the end. The boundary layer is developed from the
region of large perturbations that is located at the place
of connection of the front model end and the wall of the
working section of an aerodynamic tube with a turbu-
lent layer on it (see Fig. 1). Detailed results are obtained
for the statistical and pulsation characteristics of the
laminar–turbulence transition region and previous
relaxation zone. Experimental investigations of the
boundary layer on the attachment line were previously
carried out under the conditions of its development
either from the region of uncontrollable large perturba-
tions (attachment of a wing with the fuselage of an air-
plane and a model with the wall of the aerodynamic
tube Z = 0) known as the contamination regime or from
the region of artificially induced perturbations. In the
latter case, the turbulization of the layer is realized pri-
marily by mounting wires of various diameters d on the
surface of the front edge perpendicularly to the attach-
ment line. Investigations were primarily focused on the
determination of the Reynolds numbers of the begin-
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ning Reθ b and end Reθ e of the transition region as func-
tions of the distance Z from a turbulizer:

Reθ = F , ,

where η = 2.47θ is the length scale proportional to the
momentum-loss thickness θ. The Reynolds number is
calculated by the formula [3]

where U0 is the velocity of the free flow, r is the radius
of the front edge in the cross section orthogonal to the
front edge, χ is the swept angle, and ν is the kinematic
viscosity. The applicability of this formula to individual
cases is verified experimentally. The effect of turbu-
lence ε in an incompressible flow is disregarded.

According to [1–5], the first turbulent bursts appear
in an incompressible boundary layer quite far from the
region of large perturbations at the minimum Reynolds
number Reθcr = 90–105. For Reθ < Reθcr , all perturba-
tions are damped downstream. For Reθ > Reθcr , the lam-
inar–turbulence transition occurs, leading to the com-
plete turbulization of the layer for Reθ > 120.

Virtually all basic experimental results on the devel-
opment of the boundary layer were obtained by hot
wire anemometers. The beginning of the transition was
identified by the appearance of the first turbulent bursts,
and the end of the transition was detected by the com-
plete disappearance of laminar regions. Because of the
considerable uncertainty, the end of the transition
region was not determined [5]. Information on any
characteristics of the laminar–turbulence transition
region and on the effect of incident-flow turbulence on
the development of the boundary layer along the attach-
ment line is absent, although its importance is widely
recognized. It is difficult to identify the beginning of the
transition even under the comparatively simple condi-
tions of the two-dimensional boundary layer. Different
criteria used for this identification yield considerably
different results [6, 7]. In particular, the determination
of the transition by a hot wire anemometer yields τb =
600 and 500 mm when using the criteria of the mini-
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mum local surface friction τw and intermittence coeffi-
cient γ = 1%, respectively [7].

This work is primarily focused on the determination
of the boundaries of the laminar–turbulence transition
region and its statistical and pulsation characteristics,
which are possibly obtained for the first time in such
detailed and thorough experiments.

The model is a truncated cone with a wedge tail
cowl (Fig. 1). It was horizontally mounted at χ = 51.4°
in the middle plane of the 1 × 1 × 4-m working section
of a T-124 aerodynamic tube at the Zhukovsky Central
Institute of Aerohydrodynamics. At the upper point of
connection of the attachment line with the lateral wall
(Z = 0), the model has curvature radius r = 61.2 mm and
dr/dz = 0.0205. The chord of the model along the nor-
mal to the attachment line was b = 4r, and the roughness
of the surface near the front edge was Ra ≈ 1.64 µm.

Incident-flow turbulence

increases linearly from 0.02% for the flow velocity
U0 ≤ 20 m/s to 0.055% for U0 = 35 m/s, then remains
virtually constant to U0 ≈ 60 m/s, and again increases
linearly to 0.08% for U0 =100 m/s. For U0 ≤ 20 m/s,
ε ≈ 0.02% and all components of the pulsation velocity

are equal to each other, εu =  = εv = εw . For U0 ≥

20 m/s, εu ≈ 0.6εv = 0.6εw .

ε u'2 v '2 w'2+ +

3U0
2

---------------------------------=

u'
2

U0
----------
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Turbulence varied slightly along the working sec-
tion and decreased slightly downstream. The mounting
of the model did not noticeably change the turbulence
of the free flow. Measurements of the frequency distri-
bution of pulsation intensity εu = F( f ) showed that most
of the energy is concentrated in the range U0 ≤ 30 Hz
for velocities U0 ≤ 30 m/s. With an increase in velocity
U0 , intensity εu increased primarily in the low-fre-
quency band of the spectrum, and the spectrum had
pronounced peaks, e.g., at f ≈ 10, 20, 48, 56, 60 Hz for
U0 ≈ 70 m/s.

The turbulence of the flow was increased by mount-
ing a turbulizing grid at the end of the tube collector.
Measurements yielded  = 1.32, 1.15, and 0.88% in
three cross sections at distances X ≈ 0.5, 1.0, and 1.8 m,
respectively, from the entry of the working section.
Deviations of εu from the above average values  were

about ±0.1%  in the working velocity range. Mea-
surements in the cross section X = 1.8 m were carried
out in the empty tube.

The characteristics of the boundary layer were mea-
sured by a hot wire anemometer with constant resis-
tance and copper-coated tungsten-filament sensors
4.5 µm in diameter. The outer copper coating was
removed from a sensitive tungsten element by chemical
etching in a film of water solution of nitric acid [8] in a
special setup [9].

Work was performed in two stages. At the first stage,
a superimposed sensor based on a 40-µm-thick polya-
mide film was used. A sensitive element was placed at
the beginning of the film parallel to its front cut. The

ε u

εu

εu
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Fig. 2. Variation of the pulsation intensity η' along the attachment line moving away from the connection point (Z = 0) with the wall
for Re1 (in 106 m–1) = (s) 1.35, (m) 1.45, (×) 1.57, (n) 1.72, (d) 1.80, (r) 1.88, (j) 2.02, ( ) 2.22, (d) 2.36, and (m) 2.59 and for

Reθ = 0.2824  × . Crossed points are obtained in the reverse motion (decrease in velocity U0).Re1 0.0205Z 0.0612+
sensor was mounted at a chosen place of the stream-
lined surface by vacuum grease. After the relocation of
the sensor to a new place, grease residues were
removed by a kerosene-moistened tampon without
changing the roughness of the surface. At the second
stage, the characteristics of the boundary layer were
measured by a specially designed coordinate system
ensuring the displacement of the sensor along the
attachment line with an accuracy of 1 mm at a distance
of  ≈ 0.2 mm from the streamlined surface. The sys-
tematic measurements of the distance Y0 over all the
length Z by the noncontact thermal method showed that
deviation from the average value  were no more than
20 µm.

The constant component E ~ F(U) of the signal and

its rms component  ~ F( ) with sufficient aver-

Y0

Y0

l12 u12
aging time were measured in experiments. Instanta-
neous pulsations l ' were observed on an electron oscil-
lograph, detected on oscillograms by a train oscillo-
graph, and used to determine the intermittence
coefficient γ and frequency n of changing flow regimes.
To determine the flow parameters, pressure and temper-
ature were measured simultaneously. At the first and
second stages, the temperature of the flow varied from
about 5 to 15°C and from about 20 to 30°C, respec-
tively.

Figure 1 shows the typical characteristics measured
for the boundary layer in the laminar–turbulence transi-
tion region. As is seen, the accuracy and reliability of
the results are comparatively high. At the second stage,
measurements in the cross section Z = 975 mm were
performed in two experiments with an interval of six

days. Only E and  were measured in the first exper-l12
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iment, and l' = F(t) was additionally recorded in the sec-
ond experiment. These results enabled us to obtain data
on the intermittence coefficient γ and frequency n of
changing flow regimes. The results of the first two
experiments were identical. The differences between

 values at the maxima of functions η' = F(Reθ),
N = F(Reθ), and γ|0.5 = (Reθ) were equal to about 1%.
The solid line of dependence γ = f(Reθ) corresponding
to the normal distribution of a random value with the

parameters  = 115 and σ = 5 agrees satisfactorily
with experimental points.

The transition-region beginning, which was associ-
ated with the detection of the first turbulent bursts (cen-
ters of turbulent spots), as well as the corresponding
change in the rate of increasing pulsations η' and inter-
mittence coefficient γ, occurred at Reθb ≈ 102. The tran-
sition-region end, which was associated with the com-
plete disappearance of laminar regions (N = 0 and
γ = 1), occurred at Reθe = 132, where a decrease in the
pulsation intensity η' = f(Reθ) was virtually completed.
Analysis of measurements of these characteristic points
of the transition region in experiments at the first stage
in five cross sections Z > 0.3 m showed that their devi-
ations from the average values were less than 1%. The
measurements of dependence E = F(Reθ) did not pro-
vide such a high accuracy of determining the bound-
aries of the transition region and overestimated the
beginning of the transition region and underestimated
its end. It was found that measurements of the depen-
dence η' = F(Reθ) provided most simple and suffi-
ciently accurate investigations of the boundary layer.

Although oscillographic records of pulsations l ' =
F(t) extend information on the properties of the lami-
nar–turbulence transition, they strongly increase the
laboriousness of experiments and data processing.

Figure 2 shows the results of detailed measurements
of the dependence η' = F(Reθ) for ten Re1 values from
1.35 × 106 to 2.59 × 106 m–1. Analysis of data and sim-
ilar results for some of the above Re1 values in the form
γ = F(Reθ) and N = F(Reθ) made it possible to recon-
struct the following scenario of boundary-layer devel-
opment along the attachment line from the high-turbu-
lence (contamination) zone toward higher Reθ values
(radius of the front edge of the wing).

First, for Reθ < 100 and moving away from the con-
tamination zone, the intensity of pulsations decreases in
the boundary layer on the attachment line, which gives
rise to the intermittent flow regime with γ ≠ 1 at a cer-
tain distance Z. For Re1 < 1.75 × 106 m–1, the intermit-
tent flow regime is completed at a certain distance Zl

with the formation of a pure laminar boundary layer
with γ = 0, which extends to the end of the model. With
an increase in Re1, turbulence relaxes in a region of
higher Reθ values that increases its length due to a

Reθ

Reθ
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decrease in the laminar section of the layer, which vir-
tually disappears for Re1 ≈ 1.8 × 106 m–1.

A further increase in Re1 transforms the incomplete
relaxation regime to the turbulization regime, whose
position is shifted upstream along the attachment line.
In particular, for Re1 = 1.88 × 106 m–1, relaxation is
completed in the cross section Z = 0.5 m (Reθ = 104,
η' = 0.7, γ = 0.25, and n = 150 Hz), and then the inter-
mittence coefficient and pulsation intensity remain
approximately constant up to Z = 0.95 m (Reθ = 110).
For Re1 = 2.02 × 106 m–1, relaxation is completed in the
cross section Z = 0.3 m (Reθ = 104 and γ = 0.6), and the
transition (increase in pulsation intensity) begins in the
cross section Z = 0.6 m (Reθ = 109).

Figure 3 shows the number Reθ of the disappearance
of the last turbulent bursts as a function of the distance

 from the source of large perturbations along with the

data taken from [3] for a cylinder and numbers  and
Reθe obtained in this work. The dash–dotted line is cal-
culated under the assumption that
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The line is obtained by Eq. (1), and data are taken from
Fig. 8 in [3] for a cylinder with sliding and a turbulizer plate
along the flow for χ = (h) 55°, (o) 60°, and (j) 65°.
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Fig. 4. Effect of the Gaster-bump turbulizer and flow turbulence on the laminar–turbulence transition for Z = 975 mm (1) without
the Gaster bump, (2) with the Gaster bump, (3) with the lacquer-coated Gaster bump, (4) after the polishing of the lacquer coating
of the Gaster bump, and (5) similar to the fourth case but with the turbulizing grid.
where const corresponds to the average value for Re1 ≤
1.72 × 106 m–1 (Fig. 2).

The coordinates of the points for the second stage
were obtained from the dependences η' = F(Reθ) mea-
sured in the cross sections Z = 275, 475, 675, 975, 1275,
and 1400 mm. As is seen, with an increase in the dis-
tance Z, the number Reθb increases and the number
Reθ e remains virtually a constant of about 132. An
increase in the flow turbulence somewhat shifts the
laminar–turbulence transition region towards smaller
numbers Reθ.

More extensive results on the effect of the turbu-
lence of the free flow on the laminar–turbulence transi-
tion in the boundary layer on the attachment line were
obtained under the strong weakening of the contamina-
tion effect by mounting a special Gaster bump in the
path of large perturbations propagating from the con-
necting domain of the model with the walls of the work-
ing section (Fig. 4).

The plots in Fig. 4 in the form of the dependence
η' = F(Reθ) clearly illustrate the effect of the Gaster
bump and turbulence εu on the position of the laminar–
turbulence transition region. In particular, the weaken-

ing of contamination increases  from 115 to 148,
and the transition-region end Reθe is shifted from 133 to
163. At the same time, the effect of the surface rough-
ness of the bump on the efficiency of its action on the
flow in the boundary layer is observed.

Due to the increase in flow turbulence, the numbers

 and Reθe decreased from 144 to 125 and from 158
to 140, respectively. At the second stage, experiments
were carried out in the cross section Z = 975 mm in the

Reθ

Reθ
following sequence: first, without a turbulizing grid and
Gaster bump; second, without the turbulizing grid and
with the Gaster bump; third, without the turbulizing
grid and with the lacquer-coated Gaster bump; fourth,
similar to the third case after the polishing of the Gaster
bump; and, fifth, similar to the fourth case with the tur-
bulizing grid.
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