
  

Doklady Physics, Vol. 49, No. 8, 2004, pp. 441–446. Translated from Doklady Akademii Nauk, Vol. 397, No. 4, 2004, pp. 467–473.
Original Russian Text Copyright © 2004 by Savel’ev, Starik, Titova, Favorski

 

œ

 

.

                                                                  

PHYSICS

       
Mechanism of the Electric Charging of Soot Particles
upon the Combustion of Hydrocarbon Fuels

A. M. Savel’ev, A. M. Starik*, N. S. Titova, and Academician O. N. Favorskiœ

Received March 18, 2004
INTRODUCTION

Mechanisms of the formation of various nanoparti-
cles, as well as their structure and properties, have
attracted considerable attention in recent years. Soot
particles formed upon the combustion or pyrolysis of
various hydrocarbon fuels are typical representatives of
such particles. Their emission into the atmosphere
changes both the radiation balance and climate of the
Earth [1]. They are very important for the formation of
vapor trails behind aircrafts [2].

The adsorption properties, capability to form cloud
condensation nuclei, and clusterization of nanoparti-
cles, as well as their optical properties and morphology
of aggregates formed due to the coagulation of these
particles, considerably depend on the presence of
charge on them [3–6]. However, it was thought until
recently that soot particles formed upon the combustion
or pyrolysis of hydrocarbons are neutral, which follows
from the commonly accepted hypothesis of the forma-
tion of soot particles in flames from neutral polyene
molecules or polyaromatic hydrocarbons [7].

Calcote and Keil [8] hypothesized that positively
charged soot particles are formed by clustering heavy
hydrocarbon ions. However, recent experimental data
obtained in propane diffusion flame show that the com-
bustion of hydrocarbons in air is accompanied by the
formation of particles charged both positively and neg-
atively up to ten elementary charges, as well as neutral
particles [5]. Neither the ion hypothesis of the forma-
tion of soot particles nor the polyaromatic or polyene
model of their formation can explain this fact. As will
be shown below, this fact is explained by the interaction
of ions, which are formed in the high-temperature
flame zone, with soot particles.

KINETICS OF THE INTERACTION 
BETWEEN IONS AND SOOT PARTICLES

Recent measurements [6] showed that soot pro-
duced in the combustion chambers of jet engines has
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large conductivity close to the conductivity of semicon-
ductors and even metals. Conducting particles are
polarized in an electric field created by an ion. In this
case, polarization interaction must be taken into
account in addition to Coulomb interaction [9]. Since
ions produced upon the combustion of hydrocarbon
fuels have unit charge [10], the potential of the interac-
tion between the ion and a soot particle has the form

(1)

Here, P is the product of the charges of the ion and par-
ticle, r is the distance between the ion and soot particle,
e is the elementary charge, and a is the radius of the
soot particle. The fundamental difference of the interac-
tion described by potential (1) from Coulomb interac-
tion is that the soot particle can capture the ion at dis-
tances r∆ > a. This distance is usually called the capture
sphere radius. If the ion approaches the soot particle at
a distance smaller than r∆ , its trajectory has the spiral
form.

In flames and the combustion chambers of various
power devices with temperature Tc ≤ 2000 K and pres-

sure Pc ≤ 0.1 MPa, the parameters are usually  ≈ NS

and a < λ, where nl and NS are the densities of lth-type
ions and soot particles, respectively, and λ is the mean
free path of the ion. In this case, lth-type ions interact
with the soot particle in the kinetic regime [9]. In this
case, the coefficient of the attachment of the ion to the

particle, , is expressed in terms of the interaction

cross section (V) through the usual relation

(2)

where fM(V) is the Maxwell distribution function of
ions over velocities.
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The shortest distance ra between the ion with mass
m and velocity V and the soot particle is related to the
impact parameter b as

(3)

In terms of the new variables B∆ = , ∆ = , and Y =

, relation (3) for potential (1) takes the form

(4)

The capture sphere radius r∆ is defined as the point of

the minimum of the function (∆) for ∆ > 1 and deter-
mined from the equation

(5)

Determining the solution of Eq. (5) as ∆P =  = f(a, P,

m, V), we find the cross section for the ion–particle
interaction as

Figure 1 shows the attachment coefficient for the
NO+ ion, which is present in the products of the com-
bustion of any hydrocarbon fuels in air, as a function of
the particle radius for various values of the parameter P
and Tc = 1600 K. It is seen that β(P) value is large even
for the similarly charged ion and particle and P = 5,
especially for large particles (a > 50 nm); i.e., a rather
large charge can be accumulated on soot particles. This
effect is attributed to the appearance of the induced
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Fig. 1. Attachment coefficients β(P) for the NO+ ion vs. the
soot particle radius a for various P values and Tc = 1600 K.
charge on a conducting particle due to its polarization.
For pure Coulomb interaction, the maximum charge on
the particle is obviously equal to |q| = e.

The characteristic charging time for the neutral par-
ticle with a = 20 nm to charge q = ±e is equal to τch =

(β(0) Nt)–1 = 10–2 s for the total ion density Nt =  =

109 cm–3 and Tc = 1600 K. This time approximately
corresponds to the time of the residence of a gas in the
combustion chambers of jet engines. Let us estimate the
coagulation time for charged soot particles of various
polarities when an increase in the coagulation constant
due to electrostatic forces is maximal. The coagulation

coefficient  for particles that have radii a1 and a2

and opposite charges L and Q (particles attract each
other) is determined by the expression [11]

where k is Boltzmann’s constant. For a1 = a2 = 20 nm

and |L| = |Q| = 5, the correction factor ( )–1 does not
exceed 10 in the range Tc = 1500–2200 K. Since the
Brownian coagulation constant for uncharged particles
with a = 20 nm is equal to K1, 2 ≈ 5 × 10–9 cm3 s–1 and
the soot particle density is equal to NS = 107 cm–3, the
characteristic coagulation time for particles with |L| =
|Q| = 5 is equal to τc = ( NS)–1 ≈ 2 s. We consider
cases, where the time of the residence of the gas in a
reactor is τres ≤ 0.1 s, i.e., τch ≤ τres < τc. For this reason,
the coagulation effect on the formation of the charge
distribution function of particles is ignored.

FORMULATION OF THE PROBLEM 
AND A MATHEMATICAL MODEL

The diffusion combustion regime is characteristic
for flames and the combustion chambers of power
devices. In this case, soot particles are formed in the
fuel-enriched zone (equivalent fuel/air ratio φ ≈ 3 and
Tc = 1500–1800 K). Downstream of this zone, there is
a zone with higher temperature Tc ≈ 2100–2400 K,
where φ ≈ 1.2–1.5. Further downstream, the tempera-
ture of the gas decreases to 1800 or 1300 K due to the
mixing of combustion products with atmospheric air.
The density of soot particles in various systems varies
in the range NS = 7 × 106–2 × 108 cm–3, and their distri-
bution over the radius satisfies the lognormal law
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The usual values for flames and combustion chambers
are σ = 1.56 and  = 25 nm [7].

To simulate the processes of the formation of soot
and ions and their interaction in diffusion flames or
combustion chambers, it is necessary to jointly solve
hydrodynamic equations (usually, in the Navier–Stokes
approximation), chemical kinetic equations, and equa-
tions describing the formation of soot particles and
their interaction with ions. However, it is impossible to
solve this problem even by using supercomputers.
Therefore, considerable simplifications are required.
We will consider only the formation of ions in various
chemical and plasma-chemical reactions [12] and their
interaction with a polydisperse ensemble of soot parti-
cles that are formed by the initial time in the closed adi-
abatic reactor.

Since soot particles with a given radius a can differ
in the accumulated charge q, the description of the evo-
lution of the soot-particle ensemble requires the intro-
duction of the countable distribution function f(a, q),
which is conveniently represented as

.

Here, ϕj(a) = Nj f , Nj is the density of particles
with charge qj, Q is the number of possible values of the
charge accumulated on soot particles (Q = 2|P| + 1),
and f  is the conditional probability that a particle
with charge qj has radius a.

Let us represent the continuous function ϕj(a) by the
superposition of the δ functions

where Njγ is the density of particles with radius aγ and
charge qj. In this case, the kinetic equation that
describes change in the density of jγth-fraction particles
(j = 1, 2, …, Q, γ = 1, 2, …, Γ) due to the interaction with
ions in the adiabatic reactor with ideal mixing can be
represented in the form

(6)
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where

and M is the number of components including ions and
electrons.

Equations (6) (their number is equal to Q × Γ) must
be supplemented by balance equations for time varia-
tions of the density of various ions and neutral compo-
nents that represent plasma-chemical reactions and the
attachment of ions to soot particles. It is convenient to
represent these equations in the form

(7)

(8)

where

Here, ni is the density of the ith neural component of a

mixture in the gas phase (i = 1, 2, …, M1),  and 
are the stoichiometric coefficients of the qth reaction,

 is the number of components involved in the (+)
direct and (–) inverse reactions, and k+(–)q are the rates
of these reactions.

Equations (6)–(8) are numerically solved jointly
with the energy equation including the enthalpies of
neutral and charged gas components by using an
implicit second-order finite difference scheme. Analy-
sis shows that the convergence of the solution of
Eqs. (6) in integral characteristics such as the total par-
ticle number with charge qj and the average radius of
particles with charge qj is achieved for the fraction
number Γ = 40. At the same time, to ensure conver-
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Fig. 2. Time dependence of the mole fractions of various ions and electrons upon the volume reaction in the mixture of destruction
products i-C8H18 + air + H2S with T0c = 1250 K, P0c = 0.1 MPa, φ = 0.5, and [S] = 0.04% in the absence of soot particles.
gence in the number of particles with charge qj and radii
smaller than aγ, discretization with Γ = 80 is necessary.

FORMATION OF THE ENSEMBLE 
OF CHARGED PARTICLES

As an example, we analyze the oxidation of the
products of the destruction of i-C8H18 with a small H2S
admixture in air in the adiabatic reactor of ideal mixing
with T0c = 1250 K and P0c = 0.1 MPa. This mixture sim-
ulates fuels containing a small amount of sulfur quite
well [12].

Figure 2 shows the calculated time variation in the
densities of various ions and electrons in a volume reac-
tion in the mixture with φ = 0.5 for a sulfur content of
[S] = 0.04% in a fuel in the absence of soot particles. It
is seen that the maximum density of ions and electrons
is reached at the time t = 2 × 10–3 s, which corresponds
to the maximum temperature of the gas after ignition
(Tmax = 2258 K). In this case, the maximum density is
realized for ions H3O+ and electrons (ne =  ≈ 2 ×

1012 cm–3). With an increase in t, the density of these
particles decreases sharply due to the nonresonant
charge-exchange reaction, dissociation ionization, and
binary ion (electron)–molecule reactions. The NO+ and

 ions dominate in the gas. Their density is equal to
2 × 108 cm–3 at t = 0.1 s. Thus, initially neutral soot par-
ticles in the gas are charged due to the interaction first

N
H3O+

SO3
–

with electrons and H3O+ ions and then (for t > 10–2 s)

with NO+ and  ions. Since the electron is much
lighter than any ion, the coefficient of the attachment of
electrons to soot particles is much larger than for ions.
Therefore, most soot particles are negatively charged
immediately after reaching Tmax (t = 2 × 10–3 s). In this
case, rather large negative charge q ≈ 30Â can be accu-
mulated even on moderate-size particles (a ≈ 20 nm).
The average charge of the entire ensemble of soot par-
ticles is also negative. Further, negatively charged par-
ticles, particularly with large charge q, are neutralized
due to the interaction with positive ions H3O+ and NO+.
In addition, a noticeable number of positively charged
soot particles appear.

Figure 3 shows the charge distribution of soot parti-
cles with radii smaller than a certain value at time t =
0.1 s upon the volume reaction in the mixture with φ =
0.5, [S] = 0.04%, and NS = 8 × 106 cm–3. In this case,
the gas temperature at the exit from the reactor reaches
2100 K and the maximum densities of positive N+ and
negative N– ions are equal to 8 × 107 and 5 × 107 cm–3,
respectively. At any time, the plasma in the reactor is
quasi-neutral; i.e.,

where (qp) and (qp) are the densities of positively
and negatively charged soot particles with charge qp,
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Fig. 3. Charge distribution of soot particles with radii smaller than a certain fixed value at time t = 0.1 s upon the volume reaction
in the mixture of destruction products i-C8H18 + air + H2S with T0c = 1250 K, P0c = 0.1 MPa, φ = 0.5, [S] = 0.04%, and NS = 8 ×
106 cm–3.
respectively. It is seen that small particles with a <
10 nm can accumulate negative charge q ≤ 5e and pos-
itive charge q ≤ 3e. At the same time, negative charge
on relatively large particles can reach even 17e. Under
these conditions, the number of negatively charged par-
ticles (~85%) is much larger than the number of posi-
tively charged particles (~5%). This asymmetry arises
because the mass of negatively charged electrons is
lower than the mass of positive ions NO+ and H3O+ and,
therefore, the attachment coefficient of these ions is
smaller.

When φ decreases to 0.25, the electron density in the
plasma decreases, which reduces the asymmetry of the
charge distribution function of particles (the number of
positively charged particles increases significantly).
This tendency also remains for the larger density of
soot particles (NS = 8 × 107 cm–3). However, since the
total rate

of the withdrawal of ions of a given type (electrons)
from the gas phase on the surface of soot particles is
higher in this case, a significant difference between the
time profiles of N+ and N– arises. The density of posi-
tive ions becomes much higher than the density of neg-
ative ions (by a factor of 60 at t = 0.1 s). The interaction
of ions with particles reduces the ion density with time.
The degree of this decrease increases with NS. This
behavior is illustrated in Fig. 4, which shows N+(–)(t) for
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the total density of soot particles NS = 0, 8 × 106, and
8 × 107 cm–3. Since soot particles are virtually always
produced in flames and the combustion chambers of jet
engines, the comparison of the results of numerical
simulation with measurements of the densities of posi-
tive and negative ions in such objects requires the inclu-
sion of the interaction of ions with soot particles.
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Fig. 4. Time dependence of the densities of (dotted lines)
positive N+ and (solid lines) negative N– ions (electrons)
upon the volume reaction in the mixture of destruction
products i-C8H18 + air + H2S with T0c = 1250 K, P0c =

0.1 MPa, φ = 0.5, [S] = 0.04%, and NS = (1) 0, (2) 8 × 106,

and (3) 8 × 107 cm–3.
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Thus, the above analysis shows that the interaction
of ions and electrons with soot particles produced upon
the combustion of hydrocarbon fuels leads to the accu-
mulation of both positive and negative charges on par-
ticles. Relatively large particles with radii a ≥ 40 nm
can acquire charge q = 10–12e, and small particles with
a ≤ 10 nm can be charged only to q = (3–5)e. The
charge distribution function of particles and the relative
fraction of positively and negatively charged particles
depend on the combustion conditions (they determine
the densities of ions, electrons, and soot particles). The
interaction of soot particles with ions, as well as
plasma-chemical reactions, is an effective mechanism
of decreasing the ion density in flames and the combus-
tion chambers of power devices.
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Advantages of photochemistry are associated with
the production of new materials and primarily with the
possibility of optical control of proceeding chemical
reactions. Despite all the achievements of photochem-
istry and accumulated experimental data, there exists a
critical area significantly hampering progress in this
field. All spectral methods of investigating substances
are indirect. Therefore, the determination of an unam-
biguous physical correlation between the parameters of
molecular models and directly measured spectral repre-
sentations is urgent. This determination is based on
solving direct and inverse spectral problems. These
problems have been thoroughly studied in normal spec-
troscopy. However, not only the excitation method and
the time dependence of the spectral pattern but also the
transformation of the initial object should be addition-
ally considered in photochemistry. It is evident that
both the interpretation and prediction of proceeding
photochemical reactions are impossible without
numerical simulation.

In this study, we develop the theory of the process
under consideration, calculation algorithms, and com-
puter codes, which makes it possible to perform com-
puter experiments aimed at the interpretation of
dynamic processes at the level of the comprehensive
description of molecular models under various photo-
excitation conditions. Previously, we developed a data-
base for simulating molecular spectra with the time
resolution corresponding to short-pulse photoexcitation
[1, 2]. In the present study, we consider the possibility
of light-induced isomer–isomer transformations
including multistage photochemical processes. It was
shown in [3] that the isomer–isomer transition state can
be adequately described by the model where a single
common level with the stationary energy Eeν is intro-
duced for a pair of resonating isomer levels with ener-
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ul. Kosygina 19, GSP-1 Moscow, 119991 Russia
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gies  =  = Eeν and wave functions ψ1 and ψ2 .
The square of the modulus of the wave function of this
common level is

Here, ω = Eeν  is the quantum-beat frequency

and  is the overlap integral of the functions ψ1 and
ψ2 . The entire process of dissipating the electromag-
netic energy introduced into the system can be
described by a set of first-order linear differential equa-
tions. In these equations, the ordinary probabilities of
vibronic transitions, which are multiplied by factors
oscillating with time (for transitions involving isomer–
isomer levels), stand as the coefficients of level popula-
tions.

The algorithm and program package were devel-
oped with allowance for the high dimensionality of the
problem (≥104 equations). The most efficient method
for solving this set of equations, especially with time-
dependent coefficients, is numerical integration [4].
Compared to the program package developed for the
case of a single molecule [1, 2], the algorithm for the
multi-isomeric case was significantly revised to per-
form calculations within realistic time intervals. The
most important improvement was the generalization of
the calculation procedure for the multi-isomeric case,
since the problem under solution is complicated not
only quantitatively (increase in the time consumption
by several orders of magnitude) but also qualitatively
(more complicated interrelation of the equations and
the wide spread of time parameters). Based on the
developed theory, an efficient algorithm was realized
for automatically constructing and analyzing the set of
equations, as well as rejecting those of them that do not
affect the process dynamics or the final result due to the
physical features of the specific molecular model (low-
probable and forbidden transitions, inactive levels,
etc.). In addition, an algorithm of automatically choos-
ing the integration step for solving the set of equations
was developed with due regard to all time characteris-
tics of the specific molecular model. The choice of the
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Fig. 1. Fluorescence dynamic spectra of heptadienyl benzene isomers in the case of the broadband excitation of isomer 1. The fre-
quencies are given with respect to the 0–0 transitions for isomers (a) 1, (b) 2, (c) 3, and (d) 4.
integration step is complicated because significantly
different (by a factor of 10 or higher) exponential times
of state relaxations and quantum-beat periods are pos-
sible (and, as a rule, realized) in the problem under con-
sideration. The resulting code allows us to simulate the
dynamic vibronic spectra of complex molecules in the
real-time scale (minutes) for various excitation condi-
tions with isomeric transitions taken into account. The
numbers of isomeric forms and resonating levels are
not limited.

When the quantum-beat period is an order of mag-
nitude shorter than the spectrum decay time, the prob-
lem becomes much more difficult, so that the time of
calculations on a personal computer becomes unaccept-
ably long for the large number (>10) of isomeric transi-
tions. Therefore, a program package for an MBC-1000
supercomputer was developed. This required solving
new problems associated with parallel calculations and
storage of intermediate data in the computer memory.
An algorithm based on parallel solutions of subprob-
lems for each isomeric form on its own processor
turned out to be the most efficient and optimal with
respect to the time spent. By virtue of the features of
both the problem and molecular model, this allowed us
to minimize the expectation time required by the pro-
cessors for necessary information exchange between
them (isomers). During the calculation process, special
data structures that are stored in the memory of the mul-
tiprocessor computer and then transmitted as a com-
mon packet from the random-access memory to the
fixed storage were used. Thereby, a long-time proce-
dure of data storage in the external memory of the
supercomputer was excluded, and the time of the data
transmission process was optimized. The calculation
time is independent of the isomer number and, e.g., for
large molecules (more than 50 atoms), is shorter than
60 minutes.

The program package was tested in several model
calculations, e.g., for isomer–isomer transformation
of heptadienyl benzene such as hepta-1,6-dienyl ben-
zene  hepta-1,5-dienyl benzene  hepta-
1,4-dienyl benzene  hepta-1,3-dienyl benzene (iso-
mers 1, 2, 3, and 4, respectively). The kinetics of iso-
meric transformations and its spectral manifestations as
a function of initial conditions (excitation character,
initial isomeric form, its excited state, etc.) were stud-
ied. The goal of this study was, first, to verify the code
in the case of actual objects and, second, to elucidate a
number of general rules. We wished to clarify the fol-
lowing questions. What is the ratio of the total probabil-
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Fig. 2. Time dependences of level populations for heptadienyl benzene isomers (a) 1, (b) 2, (c) 3, and (d) 4 in the case of broadband
excitation of isomer 1: (1) first excited purely electron state of isomer 1; (2) ground state of the isomers; resonance levels of isomers
(3) 1 and 2, (4) 2 and 3, and (5) 3 and 4. Populations are normalized to their maximum values for the corresponding resonance levels.
                   
ity of isomeric transitions to the frequency of quantum
beats for which observations of isomer fluorescence
spectra of the intensity comparable with that of isomer 1
are possible? Under what conditions are quantum beats
in the spectrum vibration structure observed and what
are their features? What are the time and quantitative
characteristics of isomer formation? The features of
chain isomer–isomer rearrangement processes were of
special interest.

Some results of the computer experiments for hep-
tadienyl benzene are presented below. Based on the
analysis of vibronic states, the corresponding vibra-
tional sublevels of the first excited electron state were
chosen as isomeric resonating states. For the isomer-1
broadband excitation model, the initial populations of
the vibrational sublevels of the first excited state were
taken to be proportional to the corresponding probabil-
ities of electron-vibrational transitions in the case of
absorption of the incident radiation.

The calculated intensities for the isomer spectra are
presented in Fig. 1, and the dynamics of the isomeric-
level population is shown in Fig. 2. The results of the
model calculations, in particular, indicate the following
properties.
DOKLADY PHYSICS      Vol. 49      No. 8      2004
             

For vibronic spectra, the time dependence of the
vibrational-structure intensity depends substantially on
the relation between the probabilities of vibronic and
isomeric (i.e., characterized by the parameter ω) transi-
tions. The prediction of these properties and features is
impossible without model calculations due to the com-
plicated hierarchy of transitions and couplings between
level sets. The luminescence spectrum maximum is
shifted in time due to the gradual production of new
(with respect to the initial ones) isomeric molecular
forms. The beating effect in both the luminescence
spectra and changes in level populations is observed.
Therefore, their time dependence is no longer of a sim-
ple exponential character. The fine time dependence
(oscillations) of both the spectra and level populations
becomes significantly more complicated in the isomer
series. For example, isomer 1 manifests only oscilla-
tions at a frequency ω1 (Fig. 1a), whereas isomer 4
exhibits those at frequencies ω1, ω2, and ω3 (see
Fig. 1d). The level population plots (Fig. 2) demon-
strate the dynamics of molecular transitions into iso-
meric forms 2, 3, and 4. Because of isomeric transi-
tions, the processes occurring not only immediately in
a particular isomeric form but also in all other forms of
the isomeric chain under consideration noticeably
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affect the form of the time dependence of the popula-
tion level for the given isomer. This effect is most pro-
nounced for isomers far from the initial one. For exam-
ple, the population dynamics of isomer 4 (Fig. 2d) is
determined by the probabilities of all isomeric transi-
tions, which leads, in particular, to the appearance of
several maxima in the resonating-level population
curve.

The final total populations and maximum intensities
in isomer spectra are significantly different for different
isomers. Their relative values for the specific model cal-
culation are (intensities) 1, 10–1, 8 × 10–4, and 2 × 10−7

and (populations, where the fraction of molecules that
were not initially excited is ignored) 1, 10–1, 7 × 10−4, and
1 × 10–7 for isomers 1, 2, 3, and 4, respectively. In the
case of overlapping bands, the spectra of final isomeric
forms (3, 4) can be so weak that they become unobserv-
able. For the high probabilities of optical transitions,
the state populations for isomeric forms 3 and 4
decrease dramatically in isomer series; i.e., isomeriza-
tion decreases rapidly in the isomeric series. The
noticeable concentrations of the final isomeric form
and its spectral manifestations are possible at the low
probabilities (oscillator strengths of electron transi-
tions) of excited-level luminescence of intermediate
forms. In this case, smallness is of critical importance
with respect to quantum-beat frequencies rather than to
the absolute value. This property can be realized for
highly allowed transitions. Nevertheless, in the prop-
erly organized spectral experiments (choice of excita-
tion and observation conditions, etc.), the isomerization
effect and its dynamics can be detected even for the
aforementioned cases difficult for observation.

The developed program package provides for the
simulation of intramolecular-transformation kinetics
and corresponding dynamic spectra on a personal com-
puter and supercomputer in real time. This ensures con-
ditions for the comprehensive study and prediction of
the physicochemical laws of fast processes involving
the transformation and transmission of energy and
information inside the intramolecular space by com-
plex systems with allowance for isomer–isomer trans-
formations. In addition, the optimal setting of a full-
scale experiment can be chosen by using model calcu-
lations, which is extremely important, e.g., in designing
the molecular elements of nanotechnology devices for
information processing.
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The Chapman–Enskog projection is analyzed on
examples of nonlinear diffusion and the so-called sec-
ond sound [4–9, 13].

HYDRODYNAMIC APPROXIMATION

It is well known that systems of Grad’s moments [1, 2]
can be treated not only as approximations of kinetic
equations but also as extensions or smoothing of limit-
ing systems and their first approximations obtained
phenomenologically (e.g., systems of Euler gas-
dynamic equations and systems of Navier–Stokes or
Navier–Stokes–Fourier hydrodynamic equations). 

The derivation of hydrodynamic equations from
microscopic description (inclusion of hydrodynamic
equations into the hierarchy of moment systems) is a
classical problem of physical kinetics. The famous
Chapman–Enskog method [3] provides solutions of the
Boltzmann kinetic equation as formal power series in a
small parameter ε = Kn–1, where Kn is the Knudsen
number. This parameter presents the ratio of the mean
free path of a particle to the variation scale of hydrody-
namic quantities—density, mean velocity, and temper-
ature. The truncation of the Chapman–Enskog series on
the ε0-order terms leads to Euler hydrodynamics.
Navier–Stokes hydrodynamics is obtained as the first
correction ε1 . So-called Barnet and super-Barnet
hydrodynamics correspond to ε2 and ε3 , respectively.

Post-Navier–Stokes terms are introduced to extend
hydrodynamic description beyond the scope of the
strict hydrodynamic limit ε ! 1. However, even in the
simplest regime of one-dimensional linear deviation
from the global-equilibrium state [14], the system of
Barnet hydrodynamic equations breaks the basic phys-
ical conditions of the derivation of the Boltzmann equa-
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tion. Indeed, rather short acoustic waves are unstable
(so-called ultraviolet catastrophe) and increase rather
than decrease with time, which contradicts the H theo-
rem, according to which any quite small perturbation
must decay. Moreover, this situation is not improved in
the next, super-Barnet, approximation. The ultraviolet
catastrophe, which is manifested in low-order trunca-
tions of the Chapman–Enskog expansion, leads to very
serious difficulties in the problem of the extension of
hydrodynamic description to far nonequilibrium
domains (see [1, 3]).

The Euler and Navier–Stokes approximations
remain basic approximations of hydrodynamic descrip-
tion. Therefore, the problem of their extension is one of
the central open problems of kinetic theory. What hap-
pens in the Chapman–Enskog approximation of kinetic
equations? The reference to the asymptotic character of
this method is unconvincing. Any divergences of rea-
sonable asymptotic methods usually reflect deeper
characteristic properties of models and their structures
described by these methods.

NONEQUILIBRIUM VARIABLES

The aim of this work is to analyze the properties of
the Chapman–Enskog projection [3] for the moment
approximations of kinetic equations [1, 2], primarily
the so-called diffusion mode [4–9, 13] of the Boltz-
mann–Peierls kinetic equation. One of the basic prob-
lems of the moment theory of nonequilibrium thermo-
dynamic processes is associated with the specific diffi-
culties of mixed problems for moment systems. Some
unknowns of a problem—nonequilibrium variables
(higher order moments)—have no intuitive physical
meaning. Such variables cannot be determined from
experimental data [1, 15]. What do Cauchy data and,
the more so, boundary data mean for these variables?
This circumstance should be taken into account when
formulating a mixed problem in the structure of bound-
ary conditions. What are physically correct boundary
conditions in this case?
004 MAIK “Nauka/Interperiodica”
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Comparative analysis of exact solutions of the
Cauchy problem of kinetic equations and their moment
approximations shows that a rather large number of
nonequilibrium variables are required for a reasonably
small discrepancy. In particular, no less than the 40-
moment approximation of the Boltzmann–Peierls
kinetic equation is required to adequately describe ther-
mal processes in crystals [9]. The number of boundary
conditions presenting the behavior of nonequilibrium
variables near the boundary is small. The temperature
jump on a wall and slipping velocity are possible for a
rarefied gas. Boundary conditions describing these phe-
nomena were first proposed in [15]. However, these
conditions are insufficient for the formulation of full-
scale boundary value problems. The problems arising
when simulating processes near the boundary are pri-
marily associated with both the behavior of nonequilib-
rium variables in this domain and the role of nonequi-
librium variables in the stability of processes at large
times. In addition, these problems are associated with
analysis of the conditions of the stability of the passage
from the mixed problem of the moment approximation
of the Boltzmann kinetic equation to the mixed prob-
lem for the system of Euler gas-dynamic equations in
the limit Kn  ∞ or t  ∞.

As was noted above, it is impossible to experimen-
tally control the initial and boundary values for higher
moments, which we called nonequilibrium, in contrast
to the basic conservative quantities (hydrodynamic
quantities) having physical interpretation. An approach
proposed by Chapman and Enskog (see [3]) enables
one to remain in the framework of the initial and bound-
ary conditions only for conservative variables, because
the concept of the approach is to find the operator
dependence of nonequilibrium variables on the basic
conservative quantities, i.e., to find the projection from
the phase space of moment approximations onto the
phase space of conservative variables. The initial and
boundary conditions in the phase space of the basic
variables are required for the Chapman–Enskog projec-
tion of the moment system.

BOLTZMANN–PEIERLS EQUATION

The phonon-gas model [1] makes it possible to
describe heat transfer in a crystal. This transfer can be
treated as the transfer of particles (phonons) similar to
the transfer process in an ordinary gas but with some
differences. The most important differences from the
ordinary gas are as follows.

(i) Phonons can appear and disappear upon interac-
tion. The phonon-number distribution in time and space
is determined by the local temperature at a point (x, t).

(ii) In the interaction of phonons, energy is con-
served, whereas momentum is not generally conserved.
For this reason, phonons are called quasiparticles.

The following three mechanisms of energy transfer
exist in the phonon gas.
(i) Energy is transferred by ballistic phonons, which
do not interact when moving in the crystal, and energy
is conserved.

(ii) Energy is transferred by the so-called second
sound if there is the interaction of phonons upon which
the quasimomentum is conserved. This mechanism is
similar to a sound wave in the ordinary gas, which prop-
agates with the conservation of the energy and momen-
tum of colliding particles (due to this similarity, this
transfer mechanism is called the second sound).

(iii) Energy is transferred by diffusion upon scatter-
ing on lattice defects and impurities in the crystal,
where the quasimomenta of phonons are not conserved
upon interaction in most cases (it is an analogue of ordi-
nary heat transfer, which is damped in a very short
time).

MOMENT APPROXIMATION

As was mentioned above, Chapman and Enskog
proposed an approach, the so-called Chapman–Enskog
projection, enabling one to remain in the framework of
the initial and boundary conditions only for basic vari-
ables. The concept of the approach is to find the opera-
tor dependence of nonequilibrium variables on the
basic variables. In particular, for the Cauchy problem
for the one-dimensional three-moment system of the
phonon gas

(1)

(2)

, (3)

with one basic (thermodynamic) variable e, the condi-
tions of the representation

are analyzed. Here and in Eqs. (1)–(3), τR > 0 and τN > 0
are the relaxation times of the R and N normal pro-

cesses, respectively [8]; α1 = ; α2 = ; c is the

Debye velocity [8]; and µ and q are pseudodifferential
operators whose orders are no more than zero.

CHAPMAN–ENSKOG PROJECTION

Let us determine the classical Chapman–Enskog
projection for system (1)–(3). To this end, we consider

∂t ẽ ∂x p+ 0, ẽ
e

c2
----,= =

∂t p α1∂xe ∂xN
1
τR

----- p+ + + 0,=

∂tN α2∂x p
1
τ
---N+ + 0,

1
τ
--- 1

τN

----- 1
τR

-----+= =

p q ∂x( )e, N µ ∂x( )e= =

c2

3
---- 4c2

15
--------
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the system at large times; i.e., a small parameter ε > 0
is introduced as

(4)

(5)

(6)

The Chapman–Enskog expansion is sought in the form

(7)

Substituting Eq. (7) into (4)–(6) and equating terms
containing the same ε powers to zero, we arrive at the
first operator relations

From these relations, the so-called Navier–Stokes and
post-Navier–Stokes approximations of the Boltzmann–
Peierls equation follow in the form

respectively. The first approximation is stable, and the
second and higher approximations are unstable,
whereas moment system (1)–(3) is stable. Indeed, its
dispersion equation

(8)

where

satisfies the following conditions of the stability of
hyperbolic bundles [8, 9]: first, the polynomials P0, P1,
and P2 of the bundle are hyperbolic and, second, the
roots of the neighboring polynomials of the bundle
strictly separate each other. Such a situation often
occurs in quantum and statistical physics. For the
approximation to be stable, many expansion terms must
usually be taken. The question is how many terms must
be taken?
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REGULAR EXPANSION. QUANTIZATION

We analyze the regular expansion of the form

We substitute these sums into Eqs. (4)–(6). The first 20
terms of the expansion are grouped into the expressions

(9)

where qN and µN are the Taylor series of the pseudodif-

ferential operators q(– ) and µ(– ) of orders –2 and
0, respectively. Thus, quantization is seen in the explicit
form: the order of the moment corresponds to the order
of the Chapman–Enskog projection operator. Let us
show that relations (9) are realized.

CHAPMAN–ENSKOG PROJECTION
OF THE DIFFUSION TYPE

We now consider the following Chapman–Enskog
projection for system (1)–(3):

which is called the diffusion projection. We set M(ξ2) =
ξ2µ(ξ2) and Q(ξ2) = ξ2q(ξ2). Then, the following equa-
tions for the projection operators are obtained from the
Fourier transforms of Eqs. (2) and (3):

(10)

Substitution Q = iω obviously converts Eq. (10) to dis-
persion polynomial (8). The condition of existence of a
real solution of the equation for the diffusion generat-
ing function Q [Q(0) = 0] is very simple:

(11)

Here, we took into account that τR > τ due to physical
reasons. Condition (11) determines the window of
admissible parameters τR and τ for which the diffusion
projection exists. Then, the Cauchy problem for the
projection of system (1)–(3) (factor system for the dif-
fusion Chapman–Enskog projection) can be written as

(12)

The stability of this equation follows from the proper-
ties of the generating function Q.
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DIFFUSION MODE

Now, the general results for the diffusion mode can
be formulated.

Lemma (on the factorization of the dispersion
polynomial). The dispersion polynomial of the multidi-
mensional (d = 2 and 3) system of moments to the order
2M + 1 ≥ 3 inclusively has a dispersion polynomial of
the one-dimensional system of moments of the same
order as a multiplier. 

For example, for the following two-dimensional
system of moments up to the third order inclusively

the polynomial of the dispersion equation (d = 3)

has dispersion polynomial (8) of system (1)–(3) as a
multiplier.

Theorem (on the existence of the diffusion mode).
For a multidimensional (d = 2 and 3) system of
moments up to the order 2M + 1 ≥ 3 inclusively, the nec-
essary and sufficient condition of the existence of the
Chapman–Enskog projection of the form

(13)

with smooth symbols (ξ), where ξ ∈ Rd, of the
order M – k, where k = 1, 2, …, M, is the existence of
the root branch Q(|ξ|2) of the dispersion equation for
the one-dimensional diffusion system of moments of the
same order M; i.e., Q(λ) is a function that is bounded
and negative on the semiaxis λ > 0 [Q < 0 is the condi-
tion of the dissipation of projection equation (12)] and
is such that Q(0) = 0 and Q'(0) < 0. In addition,
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The system of generating functions (ξ) =

(ξ) satisfies an analogue of system (10)

having the only smooth solution for ∀|ξ|  ≥ 0. 

STRUCTURE
OF THE CHAPMAN–ENSKOG PROJECTION 

FOR THE BOLTZMANN–PEIERLS EQUATION

Our investigations show that there are only two irre-
ducible Chapman–Enskog projections: the diffusion
projection of  onto the phase space and the projection
of the second sound onto the phase space of  and p. An
open question is whether the solutions of the Cauchy
problem that are determined by the irreducible Chap-
man–Enskog projections, for example, in the one-
dimensional case for the diffusion mode

and the second sound mode

are solutions of the Cauchy problem for the moment
approximation of the general kinetic equation. This is a
problem for future investigation. We think that this pro-
vide the ground for interesting mathematical formula-
tions of new, undoubtedly urgent, problems. 

What conclusions can be made for other kinetic
equations, e.g., the Boltzmann and Fokker–Planck
equations?

(i) The proposed approach is universal. Indeed, the
regular asymptotic behavior implies a quantization of
the moment hierarchy that enables one to formulate the
operator ansatz of the Chapman–Enskog projection.
The basic problems are as follows. The first problem is
to describe the class of irreducible projections and,
thereby, to separate the corresponding solutions of the
hierarchy of moment systems that describe the basic
processes of the moment approximation of the kinetic
equation. The second problem is to determine to what
extent the class of irreducible projections separates
general solutions.

(ii) From the construction of the Chapman–Enskog
projection, the cause of the instability of post-Navier–
Stokes approximations (so-called ultraviolet catastro-
phe) is clear. Generating functions as solutions of poly-
nomial bundles are kink functions that are poorly
approximated for high frequencies by their Taylor
expansion at zero.

(iii) The projection of mixed problems for moment
systems onto the phase space of conservative quantities
provides a mixed problem for first-order pseudodiffer-
ential hyperbolic systems with relaxation depending on
conservative quantities. For such problems, correct

Qi1 i2 … ik, , ,

ξ is

2

s 1=

k

∏ qi1 i2 … ik, , ,

ẽ
ẽ

ẽ p, p ẽ( ), N N ẽ( ) …,= =
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boundary conditions are physically meaningful, because
they are expressed in terms of only conservative vari-
ables that can be determined from experimental data.
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INTRODUCTION

A new method of designing two-dimensional multi-
band antenna arrays with the application of fractal
geometry is proposed. The method is based on the ideas
and results presented in [1–5]. The feature of this
approach is the synthesis of tunable two-dimensional
multiband arrays that have the properties of the self-
similarity of fractal radiation patterns with the required
width of the main lobe and the preset level of side lobes
in the absence of diffraction maxima in a given fre-
quency band. The two-dimensional directional radia-
tion pattern of self-similar fractal multiband arrays is
constructed on the basis of a new class of atomic fractal
functions (windows) [2]. The basic properties of vari-
ants of such windows and their efficiency are analyzed.
The physical characteristics of the proposed windows
are compared with those of known Blackman, Black-
man–Harris, Kaiser–Bessel, and Chebyshev windows
[2, 6–8].

PLANE FRACTAL ARRAYS

Let us consider an equidistant square plane fractal
array. Its factor is written in the form [2, 6]

(1)

where

F u ν,( ) Imne
jmkd u u0–( )

e
jnkd ν ν0–( )

,
n N–=

N

∑
m N–=

M

∑=

u = θ ϕ, νcossin  = θ ϕ, u0sinsin  = θ0 ϕ0,cossin

ν0 = θ0 ϕ0.sinsin
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If Imn = ImIn , expression (1) for this plane array factor
can be reduced to the following product of two of its
linear factors:

where

For a symmetric fractal array, I−m = Im and I–n = In .
Expressions for the directivity factor can be written as

(2)

(3)

Thus, the sequence of self-similar plane fractal arrays is
formed as was done in [6] for linear fractal arrays. The
resulting directional pattern formed by this set of
sequentially defined plane arrays has the form

(4)

where

(5)

This synthesis procedure provides inequidistant
plane arrays that have two-dimensional fractal direc-

F u ν,( ) Fx u( )Fy ν( ),=

Fx u( ) = Ime
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, Fy u( )
m N–=

N

∑  = Ine
jnkd ν ν0–( )

.
n N–=

N

∑

Fx u( ) εmIm mkd u u0–( )[ ] ,cos
m 0=

N

∑=

Fy ν( ) εnIn nkd ν ν0–( )[ ] .cos
n 0=

N

∑=

FP u ν,( ) εmεnI pmn

n 0=

N

∑
m 0=

N

∑
p 1=

P

∑=

× mkdsp 1– u u0–( )[ ] nkdsp 1– ν ν0–( )[ ] ,coscos

I pmn
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Table 1.  Fourier transforms of atomic functions

Atomic function Fourier transform

up(ω) Iq = 

upm(ω) Iq(upm) =  or a fast recursive algorithm of calculation of 

Iq =  values

fupN(ω) Iq = 

Ξn(ω) Iq = 
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tional radiation patterns and are based on the construc-
tion of generator functions f(ω).

SYNTHESIS OF FRACTAL ARRAYS
WITH NEW WEIGHT FUNCTIONS (WINDOWS)

We consider the method of synthesizing fractal
directional radiation patterns with weight functions
(windows) whose proper choice can provide multiband
sparse arrays of minimal physical size. The following
requirements are imposed on window functions: the
low level of side lobes and fast spectral transform. The
DOKLADY PHYSICS      Vol. 49      No. 8      2004
        

advantage of such functions is that, when they are used
to synthesize the directional patterns of antennas, the
further currents of elements decrease rapidly with the
distance from the center. Due to this property, effective
rarefaction methods can be developed, which can be
applied to significantly reduce the number of elements
and the physical size of resulting arrays. A wide class
of weight functions (windows, see Table 1) proposed
and justified in [2] satisfies these criteria. We analyze
the following types of weight functions (windows, see
Tables 2 and 3): square, Blackman, Blackman–Harris,
Kaiser–Bessel, Chebyshev, Kravchenko, Kravchenko–
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Table 2.  Basic physical parameters of new Kravchenko windows and classical windows

Weight functions (windows)
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Classical window functions

Square 1.0000 50.0000 3.9210 3.9210 –13.2660 2.4064 1.0000

Blackman 1.7620 8.0396 1.0550 3.5151 –58.1156 4.6123 0.4116

Four-term Blackman–Harris 2.0044 3.7602 0.8256 3.8453 –98.7893 5.2139 0.3588

Chebyshev 1.6572 11.0562 1.1978 3.3916 –70.0002 4.2112 0.4375

Kaiser–Bessel a = 3, ∆ = 1.8385 16.4114 0.9751 3.6198 –70.0117 4.8128 0.3930

Kravchenko windows

Kravchenko g4(x)up(x), ∆ = 1.1 1.8718 4.1630 0.9194 3.6421 –17.1507 4.8128 0.3916

Kravchenko h2.5(x), ∆ = 1.1 2.1378 0.6894 0.6883 3.9879 –19.0105 5.4145 0.5000

Kravchenko g2.9(x), ∆ = 1 1.6919 9.1688 1.1055 3.3893 –22.6008 4.4118 0.500

Kravchenko g2.5(x), ∆ = 1.1 1.7404 7.8201 1.0462 3.4527 –25.5553 4.4118 0.5000

Kravchenko g2(x), ∆ = 1 1.7939 6.6272 0.9896 3.5276 –29.8546 4.6123 0.5000

Kravchenko (x), ∆ = 1 2.1839 1.2173 0.6689 4.0612 –29.9830 5.6150 0.4351

Kravchenko Ξ2, ∆ = 1 1.8947 4.9477 0.9005 3.6759 –34.0299 4.8128 0.5000

Kravchenko–Bernstein fup2(x)Br2(x), ∆ = 1 1.7393 8.5152 1.0775 3.4812 –45.7415 4.4118 0.4203

Kravchenko–Gauss (fup2(x)G(2, x)) 1.5327 15.6455 1.4128 3.2673 –46.2344 2.0213 0.4675

Kravchenko (x), ∆ = 0.86 1.9861 4.2488 0.8517 3.8318 –51.5653 5.0134 0.3610

Kravchenko Ξ4, ∆ = 1 2.3517 0.9064 0.5972 4.3111 –57.9777 6.0161 0.5000

Kravchenko–Chebyshev fup4(x)Cheb(3, x) 1.6932 10.1129 1.1569 3.4441 –65.4653 2.2234 0.4248

Kravchenko–Gauss (fup2(x)G(3, x), ∆ = 1 1.9643 4.7297 0.8781 3.8101 –68.8390 2.6276 0.3614

Kravchenko Ξ7(x), ∆ = 1 2.9010 0.0754 0.3974 5.0228 –96.0956 7.4198 0.5000

2
3
---

g2.8
2

fup2
4

Gauss, Kravchenko–Kaiser, and Kravchenko–Cheby-
shev. According to [2], the Fourier transforms of atomic
functions are known in an explicit form. Excitation cur-
rents Ipmn for a plane array can be easily calculated by
expressions given in Table 1. Analysis of the physical
results (Tables 2 and 3) shows that weight functions
(windows) differ from each other in the main-lobe
width and level of side lobes. It is worth noting that cor-
relation between overlapping sections, as well as max-
imum transformation losses, strongly affects the syn-
thesis of a fractal directional pattern. The quality of the
separation of bands depends on the rate of decreasing
side lobes. In contrast to classical windows (Blackman,
Blackman–Harris, Kaiser–Bessel, Chebyshev), Krav-
chenko weight functions (windows) have an infinite
decreasing rate due to the properties of atomic func-
tions [2]. This behavior makes it possible to weaken
side lobes at the edges of the fractal antenna and to
reduce the mutual effect of neighboring frequencies.

NUMERICAL EXPERIMENT

Effect of the Level of Side Lobes
on the Directional Radiation Pattern 

Figure 1 exemplifies a synthesized directional radi-
ation pattern for the Kravchenko window [based on the
convolution Ξ3(ω) · Ξ3(ω)] with a side-lobe level of
−91 dB for a plane four-band fractal array (s = 3). Fig-
ure 1 shows the directional radiation pattern for the
upper frequency band. For comparison, we present
another Kravchenko window (g2.5) with a side-lobe
DOKLADY PHYSICS      Vol. 49      No. 8      2004
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level of –25.5 dB (Tables 2 and 3). The experimental
parameters—N = 45, s = 3, P = 4, ∆ = 1, and γ = 4—
were identical for both cases.

According to Fig. 1 and Tables 2 and 3, when a win-
dow with the high relative level of side lobes is used,
the radiation of elements from high-level subarrays
(P = 3 and 4) is disguised by the side lobes of low-level
subarrays (P = 1 and 2). In this case, the self-similar
structure of the radiation characteristic is distorted.
This effect prevents the synthesis of multiband fractal
arrays with numerous bands. Analysis of the applica-
tion of other weight functions with various levels of
side lobes, various widths of the mean beam, and vari-
ous correlation levels of overlapping sections shows
that Kravchenko windows having an infinite rate of
decreasing side lobes are preferable. They provide
arrays with numerous bands (Fig. 1). The unique prop-
erties of new windows make it possible to widely vary
the parameter ∆, which simplifies the synthesis of the
fractal directional pattern.

Band Switching Scheme 

Let us analyze an algorithm developed according
to [6] and atomic function theory [2], where a band-
switching scheme for fractal arrays is important.
According to [6], the problem of multiband arrays is
that the switch from the highest band to the lowest one
significantly worsens their physical parameters. This is
associated with the fact that the relative intervals
between array elements are different for different
bands. In particular, Werner et al. [6] analyzed a fractal
array with four bands and Lamé coefficient s = 3. Let
DOKLADY PHYSICS      Vol. 49      No. 8      2004
the minimum distance between its elements be d0 = 

for the highest frequency band (f = f0). For the next

band f = f1 = , the minimum distance between

elements d1 = . Similarly, for the third f = f2 = 

and fourth f = f3 =  bands, d2 =  and d3 = ,

respectively. As is seen (in practice), significant corre-
lation due to the closeness of elements, particularly in

λ0

2
-----

-
 f 0

3
-----



λ1

6
----- -

 f 0

9
-----



-
 f 0

27
------

 λ2

18
------

λ3

54
------

–1.0
–1.0 –0.5 0 0.5 1.0

–0.8
–0.6
–0.4
–0.2

0
0.2
0.4
0.6
0.8
1.0

x

y

Fig. 1. Directional pattern (contour map) of a fractal
antenna array for the Kravchenko window Ξ3(ω) · Ξ3(ω).
Table 3.  New convolution-based Kravchenko windows

Weight functions (windows)
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Kravchenko g3, h = 5(x) · kaiser(x), ∆ = 1 1.6054 12.2874 1.2346 3.2904 –24.0945 4.4118 0.4923

Kravchenko g4(x) · kaiser(x), ∆ = 1.15 2.2129 1.3960 0.6637 4.1133 –36.0898 6.0161 0.3353

Kravchenko–Chebyshev fup4(x) · Cheb(3, x) 1.7621 7.6239 1.0367 3.5131 –36.0002 4.6122 0.419

Kravchenko g3, h = 1(x) · Ξ2(x), ∆ = 1 2.3681 0.7595 0.5846 4.3286 –49.3037 6.4171 0.3068

Kravchenko–Kaiser g4, h = 6(x) · k(x), ∆ = 1 1.9432 4.7094 0.8813 3.7664 –53.3040 5.2139 0.3706

Kravchenko–Kaiser g2(x) · k(x), ∆ = 1.15 2.4348 0.6683 0.5596 4.4242 –62.8746 6.6177 0.2965

Kravchenko–Kaiser h2.5(x) · k(x), ∆ = 1.15 2.6448 0.2193 0.4725 4.6965 –60.6313 7.2193 0.2737

Kravchenko Ξ3(x) · Ξ3(x) 2.8294 0.1073 0.4172 4.9342 –91.4690 7.6203 0.2528

Kravchenko–Kaiser Ξ4(x) · k(x), ∆ = 1.15 2.7361 0.1870 0.4472 4.8184 –104.5104 7.4198 0.2623
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Fig. 2. Contour map of the directional pattern of a four-band fractal antenna array for the Kravchenko window Ξ7(ω).
the lowest frequency band, is inherent in such fractal
arrays. To overcome this problem, a band switching
scheme implying the step-by-step turning off of higher
frequency subbeams is introduced in [6] and in this
work. The unique properties of the self-similarity of
fractal arrays under study are used to physically realize
such an approach. In this case, it is necessary to use the
minimum number of elements that are turned on or off
when bands are switched. Therefore, the method of
designing a multiband array begins with the choice of
the corresponding coefficient s and the necessary num-
ber P of frequency bands. The centers of individual
bands of the fractal array are located at 

For the highest frequency band (f = f0), all subarrays are
excited. When the array is switched to the second band

f = , the first subarray (P = 1) is turned off. When

the array is switched to the third band f = , the first

and second subarrays (P = 1 and 2) are turned off. This

process is repeated to the lowest frequency band f =

. In this case, all subarrays, except the last chan-

nel, are turned off. Let us apply the method of synthe-
sizing a multiband directional radiation pattern based

f 0

f 0

s
-----
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s2
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f 0

sP 1–
----------., , , ,
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 f 0
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

-
 f 0
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

-


f 0

sP 1–
----------



on Kravchenko weight functions [2] to particular exam-
ples. Let it be required to synthesize a multiband fractal

array with band central frequencies f0, , , and .

In this case, the Lamé coefficient Ξ7(ω), and the num-
ber of given bands is equal to P = 4. The chosen
Kravchenko window based on the function Ξ7(ω)
ensures a side-lobe level of –96 dB. For this window
and ∆ = 1, the width of the beam for one cascade is no
more than 11.8° at a level of –3 dB. The width of the
beam depends on the number of bands and band num-
ber. However, for γs > 6–10, further cascades introduce
insignificant changes into the characteristics of the
main lobe. For all further calculations, we take γ = 4, for
which the level of the main lobe of the next cascade
with respect to the preceding one is equal to –21.6 dB.
In practice, due to the effect of side lobes and the finite
number of elements of the fractal antenna array, the
value is rather lower and lies from –16 to –20 dB. The
taken value γ = 4 is convenient for analysis, because the
side-lobe level of the last cascade with respect to the
first one is equal to –80 dB for P = 4. The interval
between elements in highest frequency band of the

array (f = f0) is equal to d0 = . Figure 2 shows the

contours of the directional pattern for each band. Such
switching scheme provides the half-wavelength inter-
val between the active elements of the fractal array.

f 0
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9
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f 0

27
------

λ0

2
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Array Rarefaction Algorithm 

The properties of weight functions used to synthe-
size self-similar fractal directional radiation patterns
can be used to construct rarefaction algorithms. Such a
procedure includes the minimization of the size of the
antenna array and reduction of the number of its ele-
ments. We consider the stages of a rarefaction algo-
rithm used for multiband fractal arrays of the types
under consideration. It follows from Eq. (4) that inequi-
distant fractal arrays can be aligned in a string consist-
ing of P equidistant subarrays with equivalent current
distributions. The rarefaction algorithm is applicable to
each subarray. In this case, the self-similarity properties
of subarrays remain. This is a feature of the method.
The algorithm is organized as follows. Currents of ele-
ments on each of P subarrays are normalized such that
their values smaller than the preset value ε vanish.
Then, the constructed subarrays are summarized to
obtain a sparse fractal multiband array. The choice of
the parameter ε for each particular case is individually
determined by a compromise between the accuracy of
the synthesized directional radiation pattern and physi-
cal sizes (number of elements) of the array. Typical ε
values considered in [6] and in this work lie in the range
0–20%. For ε  20%, fractal arrays with fewer ele-
ments are obtained. In this case, synthesized arrays
have maximum errors.

As an example, we consider the synthesis of the
directional pattern of the fractal antenna array with the
use of the Kravchenko window Ξ7(ω). The synthesized
fractal array consists of four 91 × 91 subarrays (N = 45).
The resulting fractal multiband plane array has
26272 elements. Applying the rarefaction procedure
when choosing different ε values, the number of ele-
ments can be considerably reduced to 2176 with some
distortions. The number of elements can be reduced to
662 with a loss of the accuracy of the directional pat-
tern. Figure 3 shows the diagonal section of the direc-

–0.5
x

F(x = y), dB

0 0.5 1.0–1.0

–60

–40

–20

0

–80

Fig. 3. Section of the directional pattern over the x = y
straight line in the xy plane for a sparse array based on the
Kravchenko window Ξ7(ω) for D = 816 and ε = 10%.
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tional pattern (over the x = y straight line in the xy plane)
of the sparse array (N = 816 and ε = 10%) with four
bands. The rarefaction procedure makes it possible to
synthesize arrays with large numbers of side lobes and
noticeable distortions in subarrays for the maximum
band. However, the characteristics of the main beam, as
well as the maximum level of side lobes, change
slightly.

CONCLUSIONS

A new method of designing multiband arrays based
on the synthesis of fractal directional patterns has been
proposed and justified. New synthesized Kravchenko
windows constructed on the basis of the theory of
atomic functions whose Fourier transforms can be
obtained in an explicit form and that have a low level of
side lobes upon insignificant losses of the transform was
shown to be preferable over the known transforms. This
approach can be applied to the development of a new
type of multiband fractal antenna arrays. The results
were reported in part in the 4th International Conference
on Theory and Engineering of Antennas [10].
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INTRODUCTION

Problems of implementing space synthetic aperture
radars (SARs) for remote sounding of the Earth’s sur-
face that operate in frequency bands unused so far in
space radar have been discussed in the last few years.
These SARs operate in the upper part of the decimeter
band and in meter (i.e., P, UHF, and VHF) bands. The
necessity of installing such SARs aboard spacecrafts is
currently due to diversified practical needs associated
with radar cartography and geodesy, subsurface sound-
ing, and various business applications of sounding of
the Earth’s surface.

However, a number of factors prevent the space
installation of SARs operating in the P band and, espe-
cially, in the VHF band [1–6]. One of the basic factors
is significant distortions of a SAR sounding signal in
the atmosphere due to the altitude dependence of the
refraction index in the troposphere and ionosphere, as
well as to polarization dispersion [1, 2].

One of the most promising methods of overcoming
the consequences of these effects is the compensation
of distortions in the process of autofocusing radar
images [5]. However, well-known autofocusing algo-
rithms stably operate only with radar-image fragments
containing bright point targets. In this study, a method
for the self-compensation of radar-image distortions in
SARs is proposed. The method is based on the direct
extraction of the SAR sounding signal, which is dis-
torted by the effect of the propagation medium or pro-
cessing channel, from a radio hologram. Furthermore,
the extracted signal is used in the processing procedure
for determining the distance to the signal source. In this
case, the quality of the algorithm is independent of the
radar-image content.
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A MODEL OF A REFLECTED SIGNAL
OF THE SPACE SAR

The reflected signal of the space SAR can be written
as

(1)

Here,

(θ, σ) is the reflection coefficient of the underlying

surface; ( jω) is the complex envelope of the sounding

signal; (jω) describes the refraction of the sounding

signal in the regular atmosphere; ( jω) is the transfer
characteristic of the processing channel; ∆t(kT – θ, σ) is
the regular part of the signal time delay in the atmo-
sphere; δ(kT, θ, σ) is the fluctuation component of the
signal time delay in the turbulent atmosphere; t and kT
are coordinates (the time delay and sounding-signal
number); θ and σ are the time coordinates of an under-
lying-surface element (its azimuth and distance); and
gA and gR are the real functions describing signal mod-
ulation due to the antenna directivity pattern of the
SAR. This model includes all major effects resulting in
distortions of a radar signal propagating through the
Earth’s atmosphere. In particular, distortions arising in
the process of the propagation of broadband signals
through the Earth’s atmosphere are described by the

transfer function (jω). Problems associated with
both this effect and the transfer-function model were
discussed in [1, 2]. Due to the effect of dispersion dis-
tortions in the propagation medium on the distance res-

Ṡ t kT,( ) K̇A kT θ σ, ,( )K̇R t ∆t kT θ σ,–( )–( )∫∫=

× ξ̇ θ σ,( )gR σ( )gA kT θ σ,–( ) θdσ v̇ t kT,( ).+d

K̇R t( ) 1
2π
------ ḣ jω( )K̇a jω( )K̇h jω( ) jωt( ) ω,dexp

∞–

∞

∫=

K̇A kT θ σ, ,( ) = jω0 ∆t kT θ σ,–( ) δ kT θ σ, ,( )+( )( ),exp

ξ̇
ḣ

K̇a

K̇h

K̇a
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olution of SARs using broadband signals, the shape of
the reflected pulse differs from the expected one.
Therefore, in the case of the optimal reception of such
a signal, the duration of the convolution defining the
distance resolution increases at the output of a matched
filter. Since τ = ∆t(kT – θ, σ) is a monotonic function of
the variable σ within the existence interval, employing
formula (1) and the corresponding substitution of vari-
ables, we obtain the model of the SAR signal in the
form

(2)

where

Since (θ, σ) is usually described by the model of
complex white noise, the quantity (τ, k) describes a
complex unsteady random Gaussian process with the
zero expectation and correlation function Bη(τ1, τ2, k1, k2).
The function τ = ∆t(kT – θ, σ) is monotonic, and the
observed signal is steady in the azimuth cross section,
which is typical of a normal SAR. Using these proper-
ties, one can show that, if k = 0, 1, …, N – 1 and N ! Ns

(where Ns is the interval of the aperture synthesis in
readings), (τ, k) may be considered as independent
realizations of a random complex Gaussian process
with unsteady dispersion.

AN ALGORITHM 
FOR COMPENSATING DISTORTIONS 

OF AN SAR SOUNDING PULSE

The problem of compensating distortions of an SAR
sounding pulse should be considered in the following
sequence. At the first stage, the SAR radio hologram is

used to estimate the pulse characteristic (t) of the
distant channel. At the second stage, the function

(τ, k) is reconstructed. Depending on the type of dis-
tortions, the latter problem can be treated as the ill-
posed problem of inverting integral convolution opera-
tor (2) and may be solved by choosing a certain regular-
ization strategy. If there exist sounding-pulse distor-
tions caused by the frequency dependence of the atmo-
sphere refraction index, i.e., phase distortions, then the
second-stage problem can be more correctly considered
either as the problem of the resolution of reflected

Ṡ t k,( ) K̇R t τ–( )η̇ τ k,( ) τ v̇ t k,( ),+d∫=

η̇ τ k,( ) K̇A kT θ ∆t 1– kT θ τ,–( ), ,( )∫=

× ξ̇ θ ∆t 1– kT θ τ,–( ),( )

× gA kT θ ∆t 1– kT θ τ,–( ),–( )

× gR ∆t 1– kT θ τ,–( )( ) ∂
∂τ
-----∆t 1– kT θ τ,–( ) θ.d

ξ̇
η̇

η̇

K̇R

η̇
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pulses in pulse delay or as the problem of pulse com-
pression. In this case, the optimal processing algorithm
is the correlated filtration algorithm, where the first-
stage estimate of the sounding pulse is used as a refer-

ence signal. Then, denoting (t) = (t), one can write

the observed realizations of a random process (t, k) in
the form of the stochastic integral

Here, (τ) = d (τ) is standard complex white noise
with zero mathematical expectation and unit dispersion
and (τ) = gR(τ) (τ) is the random process with
unsteady dispersion. In this case, the correlation func-

tion of the random process (t) is of the form

The two-dimensional Fourier transform BS(ω1, ω2)
of the correlation function BS(t1, t2) satisfies the equality

(3)

where (ω1) is the transfer function of the SAR distant
channel, which is described by Eq. (2). Let us write
Eq. (3) in the form of the separate equalities for the
modulus and phase of the function BS(ω1, ω2):

Fixing the difference ω1 – ω2 , we arrive at the equa-
tions for the modulus and phase of the transfer function

ḣ K̇R

Ṡ

Ṡ t( ) ḣ t τ–( )gR τ( ) ς̇ τ( ) v̇ t( ).+d
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Ṡ
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Fig. 1. Example of the reconstruction of a sounding pulse by using reflected SAR signals of the X band: (a) digital readings of an
SAR signal reflected from the Earth’s surface and (b) digital readings of an SAR sounding pulse reconstructed by using reflected
signals.

(a)

(b)
for the SAR distant channel. These equations determine
this function except for a complex factor and a certain
constant time shift. For finite-length discrete
sequences, the estimation algorithm for the transfer
function of the SAR distant channel can be written as

(4)

Here, m = 0, 1, …, M – 1; M is the length of the discrete
Fourier transform; T is the repetition period of sound-

ing pulses; and (ω1, ω2) is the sample estimate of the
covariance function, which is based on N reflected
pulses. As a whole, the algorithm demonstrates good
noise stability, but it requires a rather high degree of
unsteadiness. For a space SAR, this implies that it is
necessary to take into account an additional constraint
for the capture band when realizing the algorithm. This
disadvantage can be compensated by increasing the
number of processed realizations. A significant advan-
tage of the algorithm (e.g., in contrast to [5]) is the inde-
pendence of radar-image features (in particular, the
existence of bright points in the focusing zone). In addi-
tion, the algorithm does not require a priori knowledge
of the function gR . To overcome the sensitivity of the
algorithm to nonlinear distortions in the SAR circuit,
which are caused by the low-digital signal quantization,
the following correlation between the covariance func-

Ĥ̇
m
T
---- 

  B̂S
m
T
---- m–

T
-------, 

  N0

2
------–=

× j B̂S
i
T
--- i 1+

T
----------, 

 
 
 arg

i 0=

m

∑ 
 
 

 
 
 

.exp

B̂S
tion of a signal passed through an ideal limiter and that
of the initial signal can be used:

Here, rxx, ryy, rxy, and ryx are the correlation factors of the
sign sequence for the initial hologram; Ω(t) is the aver-
aged (over the realizations) amplitude of the reflected
signal in the time region under consideration; and
BS(t1, t2) is the desired covariance function. In order to
decrease the side-lobe level, novel time windows syn-
thesized in [7] can be applied. The experimental verifi-
cation of the possibility of using the algorithm to cor-
rect distortions of the SAR distant channel by utilizing
information obtained with an aviation SAR operating in
the X band yielded promising results. An example of
reconstructing a linear frequency-modulated SAR
sounding pulse by processing 1000 reflected signals is
shown in Fig. 1.

Thus, the proposed method for estimating an SAR
sounding signal distorted in the ionosphere reliably
compensates the given effect independently of SAR
image features. The application of the method provides
for the realization of high-resolution radar space sys-

BS t1 t2,( ) Ω t1( )Ω t2( ) π
2
---rxx t1 t2,( ) 

 sin



=

+
π
2
---ryy t1 t2,( ) 

 

sin

+ j
π
2
---rxy t1 t2,( ) 

 sin
π
2
---ryx t1 t2,( ) 

 sin– 
 


 .
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tems of the Earth’s distant sounding in the P–VHF
bands.
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1. Search for and creation of new plasma-forming
fuels for MHD energy converters are aimed at improv-
ing their characteristics and extending their functional
capabilities and application domains [1, 2]. Among
them is the hydrogen–oxygen fuel, treated as the basic
product of hydrogen power industry [3]. In view of
these circumstances and due to their features, this fuel
is attracting increased attention in power generation
and plasma aerospace applications [3–5]. However,
when creating technical devices, the basic problem is
the achievement of electric conductivity σ close to the
ideal calculated value. This problem is associated with
its strong dependence on temperature, composition,
and other factors.

The properties of the combustion products of the
hydrogen–oxygen fuel are numerically examined in the
thermodynamic equilibrium approximation by a
method and a software package presented in [6]. The
oxidant excess coefficient α varied from 0.6 to 1.1; the
mass fraction of alkali metal addition g in hydrogen,
from 0.3 to 0.9; its molar fraction in the fuel, from 0.7
to 5%; the pressure pc in the combustion chamber of the
plasma generator, from 2 to 10 MPa; the expansion
degree in a nozzle was up to a Mach number of 3.2; and
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the hydrogen temperature Th at the entry of the plasma
generator varied from 300 to 1200 K.

This investigation showed that the temperature in
the combustion chamber is equal to Tc ≈ 3600 K for pc =
4.5 MPa and Th = 300 K and optimum α ≈ 0.9. In this
case, the maximum value σv 2 (v  is the velocity)
reaches (for Cs) 170 and (for K) 95 S/m (km/s)2 when
the flow expands to M ≈ 2.5, the respective σ values are
equal to 20 and 12 S/m, and the electron mobility val-
ues µe are equal to 0.1 and 0.09 T–1, respectively. An
increase in pressure in the combustion chamber from 1
to 7 MPa in the range M ≈ 2.5 reduces σ and σv 2 by
one-third. The optimum g value depends on the type of
addition and is equal to about 0.8 and 0.5 for cesium
and potassium, respectively. Deviations from the opti-
mum g values by ±10% change σ and σv 2 by 20%. An
increase in the hydrogen temperature at the entry of the
combustion chamber from 300 to 1200 K increases σ
and σv2 by a factor of 1.8.

2. At the first stage, the conductivity of the combus-
tion products of the hydrogen–oxygen fuel with Cs and
KNa-eutectic additions was experimentally studied on
a model device (Fig. 1). The 390-mm-long gas-
dynamic section of the device includes a water-cooled
plasma generator with a 150-mm-long cylindrical com-
bustion chamber (3) 65 mm in diameter on whose
atomizer head (2) 18 three-component atomizers are
placed. The addition was supplied in liquid form. A
supersonic nozzle (4) 100 mm in length had a critical
cross section with a diameter of 17.4 mm, which
ensured the rate  = 0.3–0.9 kg/s of combustion prod-
ucts and heat power up to 7 MW for pc = 2–6 MPa, as
well as the acceleration of the flow up to the Mach num-
ber M ≈ 2.4 for an outlet cross-section diameter of
30 mm.

The σ values were primarily measured by a passage-
type inductive sensor (6) (measurement error ≤12%) [7]
with a 140-mm-long measuring channel (5) with a
diameter of 31 mm at the entry and 32 mm at the exit.

ṁ
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Fig. 1. Layout of the model device.
The probe technique (measurement error ≤15%) was
used in some experiments.

Figure 2 shows experimental and calculated results
for σ values of the combustion products of the hydro-
gen–oxygen fuel with cesium addition for pc =
4.5 MPa. Table 1 presents the electrophysical proper-
ties for other pressures and Cs and KNa additions. The
parameters presented in Table 1 are averaged over sev-
eral tests with close pc, α, and g values.

The parameters of the flow in the pass-flow channel
were calculated in the quasi-one-dimensional approxi-
mation by using experimental pc, α, and g values and
the real properties, implying the plane boundary layer
[8, 9]. The effect of boundary layers on the calculated
σ∞ value in the flow core was no more than 3% and was
ignored.

Measurements of σ for the case of cesium addition
corroborated the existence of optima in α (α0 ≈ 0.9) and
g (g0 ≈ 0.8) determined by calculations (Fig. 2). How-
ever, the best agreement between calculations and mea-
surements is achieved for α ≈ 0.7–0.8 (Fig. 2). In this
case, the experimental data differ from calculations by
about 10% for the basic set of experiments for g = 0.7–
0.8 and 20–30% for g ≈ 0.9. An increase in the spread
of conductivity values in the latter case is associated
with the worsening of mixture formation in the plasma
generator when the addition rate is high. Although tem-
perature in the plasma generator increased as the opti-
mum α0 value was approached, σ did not increase in
experiments, because heat losses increased in this
region.

The maximum experimental values σ for Cs addi-
tion were obtained for pc = 2.5–4.8 MPa and g ≈ 0.8 in
the range σ ≈ 0.8–1.0 and were equal to 17–19 S/m; the
calculated values are σv 2 = 45–170 S/m (km/s)2 and µe

is from 0.18 to 0.11 T–1.
DY PHYSICS      Vol. 49      No. 8      2004
Experimental and calculated parameters of the com-
bustion products of the hydrogen–oxygen fuel with
KNa-eutectic addition are given in Table 1 and Fig. 3.
Measurements of σ also corroborated the existence of
maxima in α (α0 ≈ 0.9) and g (g0 ≈ 0.45) (Fig. 3). The
maximum values σ = 7–8 S/m were obtained for pc =
2−4 MPa, g = 0.4–0.5, and α = 0.75–0.95. For these
conditions, µe is from 0.18 to 0.14 T–1 and σv2 =
70−82 S/m (km/s)2. The difference between the mea-
sured conductivity values and calculations for the basic

5
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Fig. 2. Conductivity σ of the combustion products of the
hydrogen–oxygen fuel with cesium addition vs. the oxi-
dant-excess coefficient α for pc = 4.5 MPa and M = 2.4; the
circles and triangles are the experimental data for g = 0.7
and 0.78, respectively, and the lines are the calculations.



468 VELIKHOV et al.
Fig. 3. Conductivity σ of the combustion products of the hydrogen–oxygen fuel with Kna-eutectic addition vs. the oxidant-excess
coefficient α for pc = 4.0 MPa and M = 2.5; the circles, triangles, and asterisks are the experimental data for g = 0.3, 0.4, and 0.5,
respectively; the squares, rhombuses, and crosses are the experimental data for α = 0.8, 0.9, and 1.0, respectively; and the lines are
the calculations.
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set of experiments was equal to 15–20%, and their best
agreement is achieved for α = 0.7–0.8. A decrease in
the experimental σ value in the range α = 0.9–1.0 is
also associated with an increase in the negative effect of
heat losses.

3. Further investigations were carried out on a large-
scale model device (rate up to 12 kg/s and power up to
150 MW) where the pass-flow channel has a character-
istic size of 1950 mm. It consisted of a plasma genera-
tor, a supersonic nozzle, and a linear MHD channel,
which was made in three modifications: full-scale
uncooled and cooled MHD channels and the cooled
diagnostic section of the MHD channel (Fig. 4). The
plasma generator has a 90-mm-long cylindrical com-
bustion chamber with a diameter of 200 mm on whose
atomizer head 60 three-component atomizers are
placed. A supersonic nozzle 470 mm in length had an
axisymmetric subsonic part and a critical cross section
with a diameter of 92.3 mm. For pc = 2–4 MPa, the rate
of combustion products was equal to 6–12 kg/s and the
heat power was equal to 75–150 MW. The round cross
section was smoothly transformed into a square cross
section with an outlet size of 140 × 140 mm in the sub-
sonic part of the nozzle. This transformation ensured
the acceleration of the flow up to the Mach number M
≈ 2.4. The units of the plasma generator are cooled by
the regenerative flow cooling by hydrogen.
Table 1.  Characteristic experimental and calculated parameters for the model device

Parameter Cs addition KNa addition

pc, MPa 6.0 4.9 4.3 2.5 3.8 2.7 2.1

α 0.92 0.89 0.85 0.9 0.89 0.84 0.88

g 0.82 0.76 0.75 0.85 0.43 0.39 0.5

Tc, K 3650 3610 3600 3520 3650 3490 3470

F/Fcr 3.16 3.21 3.25 3.19 3.21 3.17 3.19

p, MPa 0.418 0.334 0.319 0.173 0.273 0.194 0.138

T, K 2890 2860 2830 2810 2810 2760 2750

v , m/s 2470 2520 2650 2370 2940 2990 2890

σ, S/m 22.3 21 20.5 36.5 8.75 9.09 11.6

σexp, S/m 10.2 12.2 16.2 17.5 7.27 7.2 7.4

µe, T–1 0.079 0.099 0.104 0.175 0.094 0.135 0.166

σexpv
2, S/m(km/s)2 62.2 96.3 114 98.1 63.2 64.3 67
DOKLADY PHYSICS      Vol. 49      No. 8      2004
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Fig. 4. General view of the large-scale model MHD device with the diagnostic section of the MHD channel.
The construction of a full-scale uncooled MHD
channel is similar to that of the Pamir-1 MHD generator
on solid (powder) plasma-forming fuel [1, 2], and its
working zone with graphite electrodes has a length of
1000 mm. The length of the block of the full-scale
cooled MHD channel was equal to 1480 mm, the length
of its electrode zone was equal to 1000 mm, and its out-
let cross sizes were 160 × 162 mm. The interelectrode
spacing increased linearly to 260 mm at the exit. The
electrode wall consisted of 20 sectioned steel electrodes
50 mm in length, which could be connected by external
commutation in the Faraday or diagonal scheme. Each
electrode was cooled by hydrogen flow–screen cooling.
Crimped refractory-metal elements were welded to the
“fire” surface of electrodes. The insulation wall was
composed of 40 × 40-mm ceramic modules in whose
central part a porous penetrable element of the wall
with a diameter of 26 mm (relative blowing area of
0.35) was placed for screen cooling with the relative

channel-average blowing rate jw =  = 0.002.

To experimentally develop the construction of the
basic units of cooled MHD channels, several diagnostic
MHD channels with the electrode zone shortened to
200 mm were manufactured. All basic elements and
units of electrode and insulation walls were identical
for the full-scale and diagnostic MHD channels. The
developed construction and technological solutions
ensured the satisfaction state of the channels after three
or four 100-s runs. Twenty-four probes were mounted
on one of the insulation walls of uncooled MHD chan-
nels, and 20 probes were assembled in the cooled diag-
nostic channel to measure the longitudinal and trans-
verse distributions of potentials.

Conductivity was measured in experiments with
KNa eutectic in an applied electric field with 50–100 V
voltage on electrodes and 100–400 A total current.
Near-electrode voltage drop was determined by using

ρv( )w

ρv( )∞
---------------
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measured current, voltage, and potentials of probes.
When determining the conductivity in the flow core,
behind-electrode current spread was taken into account.
It was assumed that equipotential surfaces were parallel
to the electrode surfaces, the real distribution of con-
ductivity over the channel length was similar to the cal-
culated one, and the inhomogeneities of conductivity in
the cross section of the MHD channel were determined
by boundary layers. The development and structure of
the dynamic and thermal boundary layers, as well as the
thicknesses of conductivity losses, were calculated for
the electrode and insulation walls of the nozzle and
MHD channel with the inclusion of the temperature of
walls and their roughness and penetrability (equally
distributed blowing) [9]. Figure 3 (symbols in the cir-
cles) and Table 2 present the σ values obtained by the
above method for the combustion products of the
hydrogen–oxygen fuel with KNa addition on the model
device. The parameters in Table 2 are averaged over
several tests with close values of pc, α, and g, whereas
other quantities, except for Tc, refer to the cross section
in the middle of the channel.

When using uncooled channels, experimental val-
ues σ obtained on the model and large-scale model
devices agree with each other. The maximum conduc-
tivity σ∞ in the flow core under the optimum conditions
reaches 9 S/m, σ∞v 2 ≈ 70 S/m (km/s)2, and µe ≈
0.16 T−1. In the flow-cooling section of the plasma gen-
erator, hydrogen is heated from 300 to 570 K, which
ensures an increase in conductivity in experiments by a
factor of about 1.3.

4. Thus, our investigations corroborated the possi-
bility of creating supersonic flows of combustion prod-
ucts of the hydrogen–oxygen fuel with alkali-metal
additions with the parameters σ = 10–20 S/m, µe =
0.1−0.2 T–1, and σv2 = 60–120 S/m (km/s)2 acceptable
for engineering applications. To reach σ values maxi-
mally close to the calculated values (conductivity coef-
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ficient kσ =  > 0.8), it is necessary to further study

and optimize volume and surface processes in the
plasma generator and pass-flow channel of the MHD
generator.

The large-scale model device and combustion
chamber can be considered as prototypes for the cre-
ation of full-scale multimegawatt MHD energy con-
verters and high-temperature vapor generators, respec-
tively.

Estimates and calculations show that MHD genera-
tors with electric powers 10–100 MW and linear Fara-
day, diagonal, and disk Hall channels on the combus-
tion products of the hydrogen–oxygen fuel with cryore-
sistive or superconducting magnets with induction
4−7 T can ensure the energy transformation coefficient

σexp

σideal
-----------

Table 2.  Characteristic experimental and calculated param-
eters for the large-scale model device

Parameter Uncooled MHD, 
kcal

Cooled MHD,
kcal

pc, MPa 4.05 2.08 3.95 2.1

α 0.96 0.89 0.88 0.95

g 0.33 0.30 0.30 0.33

Tc, K 3580 3410 3510 3420

F/Fcr 4.47 4.48 3.68 3.69

p, MPa 0.176 0.091 0.225 0.119

T, K 2750 2580 2680 2670

v , m/s 3110 2910 2820 2760

σexp, S/m 10.2 7.6 8.6 7.0

µe , T–1 0.158 0.174 0.075 0.145

σexpv
2, S/m(km/s)2 98.7 64.4 68.4 53.3
7–12% and specific energy yield 1.5–2 MJ/kg for the
specific mass of the MHD device from 0.3 to
0.1 ton/MW [4, 10].
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INTRODUCTION

The problem of designing a longitudinally stable
airfoil is considered in the framework of the model of
an ideal incompressible fluid. A solution is constructed
by the method of inverse boundary value problems of
aero- and hydrodynamics. The fulfillment of the condi-
tions of the solvability of a problem and the longitudi-
nal stability of the airfoil is achieved by the quasisolu-
tion method for incorrect problems of mathematical
physics. Such an approach involving the velocity distri-
bution over the desired airfoil contour as input data
makes it possible to find the shape of stable airfoils with
quite good aerodynamic characteristics.

One of the effective methods of designing airfoils is
the method based on solving an inverse boundary value
problem of aero- and hydrodynamics, where the veloc-
ity distribution over the desired airfoil contour is taken
as basic input data. It is difficult to solve this problem
due to the presence of solvability conditions—condi-
tions of the closeness of the desired contour and the
coincidence of the velocity specified at infinity with the
velocity determined by solving. Progress in overcom-
ing these difficulties is associated with the development
of the theory of quasisolutions for inverse boundary
value problems of aero- and hydrodynamics [1].

When designing flying-wing airfoils, the problem of
the stability of such a wing is of primary importance. In
this case, the stability condition can be treated as one
more solvability condition.

FORMULATION OF THE PROBLEM

In the physical z = x + iy plane, the desired airfoil Lz

with an infinitely thin edge is streamlined at flow trail-
ing point B by a plane steady flow of an ideal incom-
pressible fluid with the velocity v∞ at infinity. We
denote the flow domain as Gz (Fig. 1). The perimeter l
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of the airfoil contour is specified. Flow trailing point B
is taken as the coordinate origin. The distribution of
velocity v  is specified as a function of arc abscissa s
measured clockwise from point B,

(1)

At point A (s = sa) of flow splitting, the velocity van-
ishes, v(sa) = 0. The sign of v(s) is determined by the
bypass direction. Therefore, v(s) < 0 for s ∈  [0, sa] and
v(s) > 0 for s ∈  (sa, l].

It is known (see, e.g., [2]) that the stability of an air-
craft is determined by the mutual location of the center
of mass xm and aerodynamic focus xf. The criterion of
the stability of the aircraft has the form

(2)

To find the center of mass, it is necessary to know
the configuration of the aircraft as a whole. In particu-
lar, the center of mass of a tailless or flying-wing air-
craft coincides with the wing pressure center xp. For
this reason, we consider xm as either being specified or
coinciding with xp.

It is necessary to determine the shape Lz of an airfoil

whose focus xf is at a given point  > xm and velocity
distribution over its surface differs minimally from
given distribution (1).

v v s( ), s 0 l,[ ] .∈=

xf xm 0.>–

xf*

(z)Gz

xp

y

B
A

s

v∞

Lz

xf

x

cy

cm

β

Fig. 1. Physical plane.
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SOLUTION

Let us introduce the canonical domain Gζ that is the
exterior of the unit circle |ζ| > 1 in the ζ plane. The one-
to-one conformal mapping of the domain Gz onto the
domain Gζ implies the correspondence between infi-
nitely far points, as well as the transformation of the
point z = 0 into the point ζ = 1 (point B).

The complex conjugate velocity  of the stream

around the unit disk has the form

(3)

where u∞ and β are the absolute value and argument,
respectively, of the velocity at infinity in the ζ plane and
ζa = ei(π + 2β) is the coordinate of point A on the circle.
Passing on the boundary ζ = eiγ, we find from Eq. (3)
that

The velocity potential on the airfoil contour has the
form

Comparing ϕ(s) and ϕ(γ), we obtain u∞, β, and function
s = s(γ) for γ ∈  [0, 2π].

Let us consider the function

(4)

which is analytic in Gζ and is the Michel–Joukowski

function ln  with the excluded singularity at point A.

The real part of this function S(γ) = Reχ(eiγ) at the disk
boundary ζ = eiγ is determined by the formula

(5)

Knowing S(γ) on the circle, we obtain the function
χ(ζ) in the domain Gζ by the Schwartz formula. This
function is determined up to an imaginary constant cor-
responding to the airfoil rotation (and, correspondingly,

dw
dζ
-------

dw
dζ
------- u∞e iβ– 1

ζa

ζ
-----– 

  1 1
ζ
---– 

  ,=

u γ( ) 4u∞
γ
2
--- γ 2β–

2
---------------,cossin=

ϕ γ( ) u γ( ) γ, γ 0 2π,[ ] .∈d

γa

γ

∫=

ϕ s( ) v s( ) s, s 0 l,[ ] .∈d

sa

s

∫=

χ ζ( ) eiβ

v ∞
-------dw

dz
------- 

 ln 1
ζa

ζ
-----– 

 ln– S iT ,+= =

dw
dz
-------

S γ( ) v s γ( )[ ]
2 γ/2 β–( )cos
----------------------------------, γ 0 2π,[ ] .∈ln=
the argument of the incident flow velocity) in the phys-
ical z plane. Setting Imχ(∞) = 0, we obtain

i.e., the velocity argument at infinity in the z plane is
also equal to β. The coordinates of the airfoil contour
are determined by the formula

for ζ = eiγ, where γ ∈  [0, 2π].

To obtain the conditions of the closeness of the
desired airfoil contour and coincidence of velocities at
infinity, we expand the 2π-periodic function S(γ) [see
Eq. (5)] into the Fourier series

(6)

In this case, the expansion of the function χ(ζ) into the
Laurent series in Gζ has the form

The complex conjugate velocity is expressed from
Eq. (4) as

(7)

At infinity,  = v∞e–iβ and, therefore, χ(∞) = 0 or

(8)

From Eqs. (3) and (7), we obtain

The closeness condition for the obtained airfoil contour

has the form  = 0, from which it follows that

χ ζ( ) 1
2π
------ S γ( )ζ eiγ+

ζ eiγ–
--------------- γ,d

0

2π

∫=

z ζ( )
u∞

v ∞
------- e χ ζ( )– 1 1

ζ
---– 

  ζd

1

ζ

∫=

S γ( )
a0

2
----- ak kγcos bk kγsin+( ).

k 1=

∞

∑+=

χ ζ( )
a0

2
----- ak ibk+( )ζ k– .

k 1=

∞

∑+=

dw
dz
------- v ∞e iβ– eχ ζ( ) 1

ζa

ζ
-----– 

  .=

dw
dz
-------

a0
1
π
--- S γ( ) γd

0

2π

∫ 0.= =

dz
dζ
------

u∞

v ∞
-------e χ ζ( )– 1 1

ζ
---– 

  .=

dz
dζ
------

ζ ∞=
?÷res?res
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a1 + ib1 = –1. Thus, the contour closeness conditions

(9)

and condition (8) are determined by the first three coef-
ficients of expansion (6).

The simplest method of satisfying these conditions
is the substitution of necessary coefficients given by
Eqs. (8) and (9) into Eq. (6). As was shown in [1], this
substitution into input data provides the smallest differ-
ence between the initial and modified functions S(γ).

To ensure the longitudinal stability of the airfoil, the
above conditions of the solvability of the problem must
be supplemented by the stability condition. In contrast
to the solvability conditions, stability condition (2) is
determined by the function S(γ) as a whole rather than
by a finite number of its expansion coefficients in
series (6).

The aerodynamic force and moment acting on the
airfoil are calculated by the Chaplygin formulas

(10)

where the bar over a symbol stands for complex conju-
gation. Since the flow is free of singularities, it is pos-
sible to pass from the integration over the airfoil con-
tour to the infinite-radius circle contour LR . In this case,
in view of Eqs. (10), the dimensionless coefficients of
the force and moment are written in the form

(11)

respectively. Substituting Eqs. (3) and (7) into
Eqs. (11), we arrive at the following expression for the
aerodynamic force coefficient:

a1
1
π
--- S γ( ) γcos γd

0

2π

∫ 1,–= =

b1
1
π
--- S γ( ) γsin γd

0

2π

∫ 0= =

R
ρi
2
----- dw

dz
-------dw

dζ
-------dζ ,

Lz
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ρ
2
---Re

dw
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-------z ζ( )dζ ,
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∫°=
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In view of the equality cr = e
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The moment coefficient (with respect to the rear
edge 

 

B

 

) is expressed as

 

(13)

 

Here,

is a complex constant depending on the shape of the
resulting airfoil.

The pressure center and aerodynamic focus is usu-
ally measured from the front edge. They are expressed
in terms of the coefficients 

 

c

 

y

 

 and 

 

c

 

m

 

 as

Here,  and  are obtained by differentiating
Eqs. (12) and (13) with respect to 
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 and have the form

Then, the problem of designing the stable airfoil can
be formulated as follows. In the set
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Fig. 2. Results of calculations.
to find a function S*(γ) ∈ K such that

This problem is difficult because the relations of
S(γ) to C and, correspondingly, to xf are nonlinear. For
this reason, the problem is further solved numerically
by using minimizing sequences. For a term Sn(γ) of this
sequence, the problem of seeking a minimum of a func-
tion of 2n variables—the coefficients ak and bk, k = 2, 3,
…, n + 2, of expansion (6)—is solved.

PARTICULAR CALCULATIONS

Figure 2a exemplifies the design of the airfoil with
the stability condition. The initial velocity distribution
(line 1) is taken such that it satisfies conditions (8) and
(9). The position of the aerodynamic focus for this air-
foil is xf = 0.2461. It is necessary to design an airfoil
whose aerodynamic focus is located at the point  =
0.27. Lines 2–4 in Fig. 2 are obtained by solving this
problem with variation of two, four, and six coefficients
of the Fourier series, respectively. With an increase in
the number of varying coefficients, the minimizing
sequence converges.

Figure 2b shows the change in the velocity distribu-
tion and airfoil shape with an increase in . With an
increase in the difference between the initial xf and
desired  values, the difference between the initial
and obtained velocity distributions increases and air-

S* γ( ) S γ( )– L2 0 2π,[ ] F γ( ) S γ( )– L2 0 2π,[ ] .
F K∈
inf=

xf*

xf*

xf*
foils gradually take the S-like shape characteristic for
stable airfoils. Lines 1–4 correspond to the rightward
shift of the focus by 1–4% of the chord, respectively.

In the next example, to satisfy the stability condi-
tion, the velocity distribution is varied only on the lower
surface. The initial airfoil (line 1 in Fig. 3) is designed
by using a given continuous velocity distribution. At the
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Fig. 3. Modification of velocity on the lower surface.
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attack angle α = 5.6°, the designed airfoil has cy = 1.01,
and the aerodynamic focus and pressure center are
located at the points xf = 0.2461 and xp = 0.3040,
respectively. Then, the problem of the minimum correc-
tion of the velocity distribution on the lower surface
with the condition xf > xp is solved numerically. The
result is shown by line 2 in Fig. 3. The velocity distri-
bution on the upper surface also changes slightly,
because, to satisfy conditions (8) and (9), the velocity
distribution is varied over the entire airfoil, but the flow
remains continuous. For α = 5.4°, the obtained airfoil
has cy = 0.74, aerodynamic focus xf = 0.2625, and pres-
sure center xp = 0.2556.
DOKLADY PHYSICS      Vol. 49      No. 8      2004
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INTRODUCTION

The possibility of preventing a collision with a
celestial body approaching the Earth (near-Earth
object, NEO) such as an asteroid or comet by using
laser action on the body is analyzed. It is assumed that
a laser is placed on a space station or on a base near the
Earth, e.g., on the Moon (or near Earth’s orbit), where
astronomical and power stations are also present. The
power station converts solar energy into electrical
energy for the astronomical and laser stations. The tele-
scopes of the observatory search for the NEO in order
to detect a dangerous object that can collide with the
Earth [1]. In this case, the laser acts on this object to
deflect it from the Earth or to destroy it. A concept of
such a station was proposed and supported in the Inter-
national Symposium on Deep Space Exploration Tech-
nology and Application, Qingdao, People’s Republic of
China, in 2002, which initiated this work, where the
problem of laser action is analyzed. Velocity impulse,
energy, power, time, action distance, and the size of
solar batteries are estimated.

MODEL OF LASER ACTION 
ON THE BODY

We assume that the body subjected to intense laser
radiation is destroyed or its substance is transformed to
a plasma. Due to reactive acceleration jB induced by a
plasma jet from the body, the body deflects from the
Earth (see Fig. 1) [2].

MODEL OF MOTION 
OF THE DANGEROUS CELESTIAL BODY

We analyze two possible cases of motion of the
celestial body under the external action [3, 4]. In the
first case, the body flies near the station (at a distance of
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ρmin ~ 106 km) and collides with the Earth on one of the
next revolutions of the heliocentric orbit. In this case,
we consider action on the body for its deflection from
the Earth. Figure 2 shows the scheme of flying the NEO
near the Earth and station based on the Moon and action
on it on the arc B1B2B3 of NEO’s orbit and the arc
M1M2M3 of Moon’s orbit. To estimate laser action, let
us reduce it to a pulse change δVB of the heliocentric
body velocity VB . This change is given by the expres-
sion [5]

(1)

where the deflection δd of the body with respect to the
Earth is perpendicular to the geocentric body velocity
V∞, aB (in astronomical units) is the semimajor axis of
the body’s orbit, TB is the orbital period of the body, and
nC is the number of revolutions before the collision. We
estimate δVB for nC = 1, δd = (for asteroids) 2R* and
(for comets) 5R*, where R* is the critical deflection
leading to the contact of the body’s orbit with Earth’s
surface. A group of 25 asteroids approaching the Earth
in the 21st century and a group of five comets [5], as
well as model asteroids Athos and Aramis of the inter-
national scenario of the NEO problem [6], were ana-
lyzed. According to Eq. (1), δVB ≈ 0.01–0.19 m/s for
26 bodies, δVB ≈ 0.24–0.39 m/s for 5 bodies, and δVB ≈
0.73 m/s for 1 body. In what follows, we analyze the
case δVB = 0.2 m/s.

In the second case, the body collides with the Earth
already on the current revolution. In this case, the time
to collision is small and the body must be destroyed.

CHARACTERISTICS
OF LASER ACTION

We assume that the body is a spherical asteroid with
radius RB = 0.1–0.5 km and density ρB = 3 g/cm3. When
a body with mass MB is deflected from the Earth with

δV B δd 3 2aB 1–( )nCTB αsin[ ] 1– ,≈

αcos
VB V∞,
V BV∞

-----------------,=
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jB

Fig. 1. Model of laser action on a celestial body.
   
velocity change δVB, it acquires momentum δQB =

MBδVB. The coefficient cm =  of the transformation

of laser-radiation energy to momentum transferred to
the body is equal to 2.1–4.8 din s/J for the radiation
wavelength λ from 4 to 0.248 µm, respectively [2]. We
assume that the axis of the laser beam passes through
the center of the body, the cross section of the beam on
the body is a disk with radius Rf = γRB , and a plasma jet
flows from the body along its radius. Then, the deflec-
tion energy transferred to the body is determined as

(2)

To estimate this energy, we consider the 3-µm infrared
radiation of a deuterium fluoride (DF) laser. We take
cm = 2.5 din s/J. In this case, aE ~ 1017 J/km3. The table
presents the body’s mass åB and deflection energy EQ

given by Eq. (2). The action energy is sufficiently high
and reaches several megatons of TNT.

Energy EF necessary for the fragmentation of the
body is estimated by analyzing the kinetic collision of
bodies. According to [7], the critical specific energy of

the fragmentation of the rock body is equal to  =

 ~ 107–9 × 108 erg/g if the relative mass  = 

of the largest fragment after fragmentation lies from
0.5   to 0.001, respectively. The energy for the frag-
mentation of an asteroid with a radius of 500 m upon
impact action is equal to EF ~ 1.6 × 1015–1.4 × 1017 J
(0.4–33.7 megatons of TNT). For the model comet

Porthos [6] with radius RB ~ 2.5 km,  ~ 7 × 107 erg/g

and EF ~ 120 megatons of TNT for  = 0.001. Then,
we analyze the deflection of the body from the Earth.

dQB

dEQ

----------

EQ

kδQB

cm

------------- aERB
3 , k

2 1 c c2+ +( )
3 1 c+( )

-------------------------------,= = =

c 1 γ2–( )1/2
.=

EF
'

EF

MB

------- MF
' MF

MB

-------

EF
'

MF
'
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Let us consider the deflection of the body by a
pulsed laser with the radiation pulse intensity If =
0.5 GW/cm2, pulse duration τ = 50 ns, and pulsation
frequency ν = 10 Hz [2]. In this case, one-pulse energy
EI and average radiation power PL are determined as

(3)

This parameters determine the action time and path
covered by the body (in the approximation of motion
with constant velocity V∞):

(4)

For estimates, we take γ = 0.3–0.4 (γ = 0.4 only for RB =
100 m and λ = 3 µm) and V∞ = 20 km/s. The table pre-
sents the characteristics EI and PL given by Eq. (3), as
well as ∆ta and ∆sa given by Eq. (4) and accepted max-
imum distances ρL to the target.

To estimate the geometric characteristics of action,
the Gaussian beam model is taken (Fig. 3) [8]. The ini-

EI I f πR f
2τ ,   P L E I ν πτν I f ( ) R f 

2
 a P R f 

2
 .= = = =

∆ta

EQ

PL

------
aE

aP

-----
RB

3

R f
2

------
aE

aP

-----
RB

γ2
------, ∆sa V∞∆ta.= = = =
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D1
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Body
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D0
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ρ0

ρL

Fig. 3. Geometric model of a laser beam.
                
tial and minimum beam diameters D1 and D0 are deter-
mined in Kogelnik–Li theory [8, 2, 4] by the formulas

(5)

where the beam-quality factor µ = 3 is taken [2]. The
table presents the values calculated for the initial beam

radius R1 =  by Eqs. (5). As is seen, the initial radius

of the infrared beam is quite large, 50 m. Current opti-
cal telescopes have much smaller apertures. However,
several large telescopes are now being designed. In par-
ticular, a project of a 100-m telescope is discussed in
European states. It is possible to produce several
smaller lasers with the necessary total radiation cross
sections. If λ = 0.25 µm (ultraviolet laser), the beam
diameter is much smaller (~10–20 m), and it is easier to

D1
2– a 1 1 2

c2
----– 

  1/2
+ , a

c
b
---, c 1

4R f
2

b
---------,+= = =

b
8µλρL

π
----------------, D0

2 D1
2

2
------,= =

D1

2
------
realize this laser. However, the initial radiation flux
density is very high in this case.

CHARACTERISTICS
OF THE POWER STATION

The laser-beam power PL requires a certain electric
power PE . Let us consider a DF laser. In this case, its

electrical efficiency is quite high, ηE =  ≈ 1–10, due

to using chemical energy [2]. If PS is the necessary

power of solar radiation and ηS =  is the efficiency of

solar batteries converting solar energy into electrical

energy, then PE =  and PS =  = . The neces-

sary area FSP and size aSP of solar batteries are esti-
mated as FSP = PS/IS0, where IS0 ~ 1370 W/m2, and

aSP = . The table presents electric power PE , solar-
radiation power PS , and the area FSP and size aSP of
solar batteries for ηE = 1 and ηS = 0.1. If the station is

PL

PE

------

PE

PS

------

PL

ηE

------
PE

ηS

------
PL

ηEηS

------------

FSP
1/2
Characteristics of the laser and power stations (λ = 3 µm)

Parameter RB = 100 m RB = 300 m RB = 500 m

MB, kg 1.26 × 1010 3.39 × 1011 1.57 × 1012

EQ, J (megatons of TNT) 1 × 1014 (0.024) 2.7 × 1015 (0.63) 1.23 × 1016 (2.9)

Rf, m 40 90 150

EI, GJ 1.3 6.4 17.7

PL, PE, GW 13 64 177

∆ta, s (h) 7700 (2) 41700 (12) 69500 (19)

∆sa, km 0.15 × 106 0.83 × 106 1.39 × 106

ρL, km 0.65 × 106 1.5 × 106 2 × 106

R1, m 49 51 45

PS, GW 126 636 1770

FSP, km2 (aSP, km) 92 (10) 464 (22) 1290 (36)
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constructed on the Moon, lunar regolith can be used for
its operation [9].

CONCLUSIONS
Analysis of the laser-action system applying a

velocity change of 0.2 m/s to asteroids with radii 0.1–
0.5 km shows that the energy necessary for the deflec-
tion of the body is estimated as (0.1–12.3) × 1015 J ≈
0.02–3 megatons of TNT. In this case, the average
power of laser radiation and the electric power of the
power station are equal to 13–180 GW, the action time
is equal to (8–70) × 103 s, and the maximum action dis-
tance is equal to (0.6–2) × 106 km. The initial and final
beam diameters are estimated as 10–100 and
60−300 m, respectively. The area of solar batteries is
equal to 90–1300 km2. These parameters can be opti-
mized, or weakened, by, e.g., earlier action and
decreasing velocity change. Nevertheless, it is seen that
the realization of such a system is a difficult scientific
and engineering problem, in particular because an
intense beam, large emitting aperture, and accurate
beam aiming are required. Analysis of the physical
foundations of this laser-action method including the
process of the formation and stable maintenance of a
plasma jet (during about a day) also seems to be impor-
tant. When such a system can be constructed, it will
quickly prevent the collision of the Earth with not only
small but also rather large celestial bodies with the
acceptable forestalling time of action.
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MECHANICS
Harmonic Vibrations of a Layer with a Hollow
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In this paper, the problem of the harmonic excitation
of a layer weakened by a tunnel hollow of an arbitrary
cross section is considered. Mixed dynamic problems
of the theory of elasticity for the layer were investigated
previously in [1]. The features of the eigenmode spec-
trum for a transversely isotropic disk plate near the
edge resonance were studied in [2]. In the case of mixed
conditions imposed on layer bases (the sliding fit of the
ends or ends covered by a diaphragm rigid in its plane
and flexible in the perpendicular direction), the arising
boundary-value problem is simpler than the problems
analyzed in [1].

The procedure for solving mixed problems of elas-
ticity theory for steady-state vibrations of the layer with
tunnel inhomogeneities was proposed in [3], where this
procedure was used to represent mechanical quantities
in the symmetric case. Below, similarly to [3], we con-
sider the problem of longitudinal vibrations of a layer
that has a through hollow and whose ends are covered
by a diaphragm rigid in its plane and flexible in the per-
pendicular direction.

We analyze the elastic layer –h ≤ x3 ≤ h, –∞ < x1,
x2 < ∞, which is weakened by tunnel (along the Ox3
axis) through hollows (holes) whose cross sections are
rather smooth nonintersecting contours Lj, j = 1, 2, …, k.
We assume that a pulsed load Re{(P, T, Z)exp(–iωt)}
acts at the boundaries of the hollows. We also assume
that mechanical quantities have the form

(1)

Let the amplitudes of the components of the given load
be expanded into Fourier series in the thickness coordi-
nate x3 within the segment [–h, h] and the conditions

(2)

ui Re Uiexp –iωt( )( ),=

σij Re σij〈 〉 exp –iωt( )( ).=

u1 x1 x2 h t,±, ,( ) u2 x1 x2 h t,±, ,( )=

=  σ33 x1 x2 h t,±, ,( ) 0=
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hold true on the layer bases. We write the components
of the displacement-vector amplitudes in the form

(3)

Expressions (3) automatically satisfy boundary condi-
tions (2) on the layer bases. The steady-state wave pro-
cess in an isotropic cylinder is described by the equa-
tions of motion

(4)

where λ and µ are the Lame coefficients for the layer
material.

Substituting Eqs. (3) into Eqs. (1) and then the latter
into Eqs. (4), we exclude time and coordinate x3 from
the set of Eqs. (4) and arrive at the following equations
for the Fourier coefficients ujk:

(5)

From the set of Eqs. (5), we immediately find

(6)

We introduce the function ψk by the relationship

θk = ψk . It follows from expressions (6) that

Ui uik x1 x2,( ) γkx3, icos
k 0=

∞

∑ 1 2,,= =

U3 u3k x1 x2,( ) γkx3, γksin
k 0=

∞

∑ 2k 1+( )π
2h

-----------------------.= =

σgradθ ∆u+
ρ
µ
---∂2u

∂t2
--------,=

θ ∂kuk, σ λ µ+
µ

-------------
1

1 2ν–
---------------,= = =

κ k
2
uik σ∂iθk+  = 0, i = 1 2, κ k

2( )u3k σγkθk–,  = 0,

κ k
2( ) ∇ 2 βk

2
, βk

2– γk
2 α2

2, α2–
ω
c2
----,= = =

∇ 2 = ∂1
2 ∂2

2, θk+  = ∂1u1k ∂2u2k γku3k, ∂i = 
∂

∂xi

-------.+ +

κ k
1( )θk 0, κ k

1( ) ∇ 2 λ k
2,–= =

λ k
2 γk

2 α1
2
, α1–

ω
c1
----.= =

κ k
2( )
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ψk = 0. With allowance for the relation between
the quantities θk and ψk , the integration of system (5)
yields

(7)

Furthermore, in view of the relationship θk = ψk ,
we arrive at the equalities

(8)

where Ωk is an arbitrary solution of the equation

Ωk = 0.

By virtue of Eqs. (7) and (8), we finally obtain

(9)

Here,  is an arbitrary solution of the equation

ϕ = 0. The functions Ωk define the rotation of an
element with respect to the Ox3 axis.

Formulas (9) represent the homogeneous solutions
of the formulated boundary-value problem for the
layer. Based on the structure of these homogeneous
solutions, we write the integral representation of field
quantities. To do this, we take the metaharmonic func-
tions entering into Eqs. (9) in the form of the simple-
layer potentials

(10)

where K0(γr) is the zeroth-order modified Bessel function
of the second kind; ds is an element of the contour L; and

(ζ), (ζ), and (ζ) are the densities to be
determined.

κ k
2( ) κ k

1( )

uik σ∂1ψk ωik,+–=

u3k σγkψk ω3k, κ k
2( )ωik– 0, i 1 2.,= = =

κ k
2( )

ω1k σ∂2Ωk, ω2k σ∂1Ωk,–= =

ω3k
1
γk

---- 1 σ–( )κ k
1( )ψk,–=

κ k
2( )

uik iu2k– 2σ ∂
∂z
----- iΩk Ωk

1( )– Ωk
2( )–( ),=

θk α2
2 α1

2–( )Ωk
1( ),=

u3k σγkΩk
1( ) σ γk

1 σ+
σγk

------------ α1
2 α2

2–( )+ Ωk
2( )

.+=

Ωk
i( )

κ k
i( )

Ωk
1( ) pk

1( )K0 λ kr( ) s, Ωk
2d

L

∫ pk
2( )K0 βkr( ) s,d

L

∫= =

Ωk pk
3( )K0 βkr( ) s,d

L

∫=

r = ζ z– , ζ  = ξ1 iξ2 L∈+  = ∪ L1, z = x1 ix2,+

pk
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pk
2( )
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Using Hooke’s law and formula (9), we can write
the boundary conditions in the contour L as

(11)

where ψ is the angle between the outer normal to the
contour L and the Ox1 axis. A usual procedure reduces
boundary value problem (11) with allowance for repre-
sentations (10) to a set containing three singular inte-
gro-differential equations (for each fixed k), which is
not presented here because of its cumbersome form.

As an example, we consider the layer weakened by
the hollow with the elliptic cross section

In order to characterize the stress concentration in the
layer with the hollow, we calculate the amplitude of the
quantity

(12)

1
µ
--- Nk iTk–( ) Λ σ 1–( ) σλk

2–[ ]Ω k
1( )=

– σβk
2Ωk

2 4σe2iψ∂zz
2 iΩk Ωk

1( )
– Ωk

2( )
–( ),+

1
µ
--- Nk iTk+( ) Λ σ 1–( ) σλk

2
–[ ]Ω k

1( ) σβk
2Ωk

2( )–=

+ 4σe 2iψ– ∂zz
2 iΩk– Ωk

1( ) Ωk
2( )––( ),

1
µ
---Zk = eiψ∂z bk

0Ωk
2( )

ick
0Ωk+( ) e iψ– ∂z bk

0Ωk
2( ) ick
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Λ α 2
2 α1

2, bk
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1 σ+
σγk

------------Λ , ck
0– σγk,= = =

ξ1 R1 ϕ , ξ2cos R2 ϕ , 0 ϕ 2π.≤ ≤sin= =

σθθ σ11 θ σ22 θ 2σ12 θ θsincos–cos
2

+sin
2

=
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40 α1a
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Fig. 1.
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at the contour point ϕ = , x3 = 0 for the pulsed pres-

sure Re(exp(–iωt)P), where P = const, that is constant
along the contour. In the numerical realization of the
algorithm, the set of integral equations is reduced to a
linear set of algebraic equations by the mechanical-
quadrature method [4]. The sequence of the calcula-
tions is the following. Initially, the set of integral equa-
tions is numerically solved. Afterwards, we determine

the Fourier coefficients  of the stress tensor and

π
2
---

σij
k( )

20

40 α1a

σ1

Fig. 2.

10

40 α1a

σ1

Fig. 4.
stresses themselves. Then, using formula (12), we
determine the desired quantities on the hollow surface.

Figures 1 and 2 show the quantity σ1 =  as a

function of the variation of the dimensionless wave
number α1a (a = 1 is the characteristic linear size) for

the circular hollow (R1 = R2 = 1) for  = 1 and  = 4,

respectively. In Figs. 3 and 4, similar results are shown

for the elliptic hollow (R1 = 1, R2 = 1.5) with  = 1

and 4, respectively. The calculations were performed
for Poisson’s ratio ν = 0.28.

Thus, the developed analytical and numerical proce-
dures make it possible to efficiently study both the
dynamic stress of thick plates with holes under the con-
ditions of longitudinal vibrations and spectra of eigen-
frequencies for various excitations.
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† In this paper, we propose a mixed algorithm of solv-
ing uncoupled poroelasticity problems with double per-
meability and double porosity. An uncoupled poroelas-
ticity problem breaks down into two different problems
solved sequentially. The first one is a filtration problem
with double permeability, which should be solved for
an irregular-shaped collector. Then, an elasticity prob-
lem is considered, with the pore pressure gradient serv-
ing as a force source. Such a filtration problem is solved
by the support-operator method on a curvilinear grid
conforming to the medium structure. For solving the
corresponding elasticity problem, we develop here an
averaging method on grids nonconforming to disconti-
nuity surfaces. As a result of the averaging of an isotro-
pic medium, its elements having irregular internal
structure can be described by an anisotropic model. In
other words, the effective elastic modulus tensor is
defined in such a way that the energy functional is exact
for a certain class of functions. In order to define the
elastic modulus tensor, we use specific basis functions
describing medium properties. As a result, we succeed
in constructing finite difference schemes whose condi-
tionality on rectangular grids is better than that for
schemes on grids conforming to the medium structure.
We also present our test calculation results.

1. All natural layers are known to be fairly fractured
media. Therefore, such fractured porous media are
described by the filtration equation with double poros-
ity and double permeability. Because the permeability
of fractures is very high, pressure in them comes to a
stable state more quickly than that in pores and, there-
fore, can be described by a quasistationary equation.
Moreover, because the volume of fractures can be
assumed to be negligible, the fluid content in fractures
can be ignored. As a result, we come to a model that dif-
fers from the Biot model for porous media only by an
equation for pressure in fractures if the generalization
of Hooke’s law in the Biot model remains valid. In what
follows, we use the uncoupled version of the model
proposed by Nikolaevskiœ [3].

† Deceased.
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In the case of media with piecewise constant charac-
teristics, projective methods (e.g., the finite element
method and superelement method [4–7]) ensure the
strong convergence of solutions of such problems and,
hence, are most widespread.

However, both these methods use grids conforming
to the medium structure. The poroelasticity problem is
characterized by a number of scales, and the sizes of the
porous collector are much smaller than the actual
dimensions of the medium. Therefore, when solving
the poroelasticity problem, one should use grids with
cells larger than the characteristic sizes of the collector,
with some cells having a fairly irregular structure.
Therefore, it is necessary to evaluate average coeffi-
cients in such a cell so that the resulting mathematical
model includes the properties of the original medium.
In [1], we proposed an algorithm of averaging the elas-
tic modulus tensor for stationary elasticity problems.
The averaging algorithm is of particular interest for
poroelasticity problems with sources caused by filtra-
tion processes.

In this paper, the averaging algorithm is constructed
for the above problem and the convergence rate is esti-
mated. We prove that the filtration problem is strongly
convergent even in the case of piecewise constant coef-
ficients and the corresponding elasticity problem is
weakly convergent.

2. The mathematical model of a poroelasticity prob-
lem for fractured media describes the evolution of a
stress–strain state and change in the pressures p1 and p2
in fractures and pores, respectively. In this case, perme-
ability k1 in fractures is assumed to be much greater
than permeability k2 in pores. The equations of the
uncoupled model in a two-dimensional square domain
Ω has the form

(1)

(2)

(3)

k1

µ
---- p1 i, 

 –
,i

α
µ
--- p1 p2–( )+ 0,=

β
∂p2

∂t
--------

k2

µ
---- p2 i, 

 
,i

–
α
µ
--- p2 p1–( )+ 0,=

σi j j, 0,=
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(4)

(5)

The kinematic boundary condition u|Γ ' = 0 is
imposed at the lower boundary Γ', and the free surface
condition σijnj|Γ '' = 0 is imposed at the upper and lateral
boundaries Γ''. The medium is assumed isotropic but
inhomogeneous:

We assume that the Lamé coefficients are positive:
µ > 0 and λ > 0. In this case, filtration occurs in a fairly
narrow domain Ω', and boundary conditions are
imposed at its boundary.

We employ the support-operator method with
adapted grids only in the domain Ω'. In the domain Ω,
we use the averaging algorithm on a uniform rectangu-
lar grid. As was shown in [1], change in the description
of the medium is a characteristic property of the aver-
aging method. Indeed, small elements that include
structural irregularities become anisotropic in this
method.

In contrast to [1], we consider here elasticity equa-
tions with sources produced by pore pressure gradients
having singularities at the boundaries between the col-
lector and surrounding medium. Therefore, the basis
functions described in [1] are insufficient to construct
the averaging algorithms. It is necessary to find an
approximate solution of the corresponding inhomoge-
neous problem whose singularities coincide with those
of the exact solution.

3. In order to approximate the operator div(k∇ p),

where k is either  or  and p is either p1 or p2 , we

employ the support-operator method. In this method,
the finite difference divergence and gradient operators

σij Λ ijklekl ζ p2δij,–=

ekl
1
2
--- uk l, ul k,+( ).=

Λ ijkl λδijδkl µ δikδjl δilδjk+( ).+=

k1

µ
----

k2

µ
----

B
C

E 
O

A

a

H

D

b

Fig. 1. Cells of a curvilinear grid.
are defined by using the finite-difference analogue of
the well-known integral identity

(6)

This equality must be valid for arbitrary functions r,
i.e., on explicitly defining one of these operators
(referred to as a support operator), another operator is
found as the operator conjugate to the former.

We assign the unknowns to the nodes of a rectangu-
lar grid M given in the domain Ω'. It is assumed that a
positive direction on its edges is fixed and the coeffi-
cient k is constant in each cell. In this case, it is natural
to take the gradient as the support operator. We approx-
imate the first integral on the left-hand side of Eq. (6)
by the sum QaSb over all cells of the grid M. The

summation is performed over all edges a and b of the
grid. For the edges shown in Fig. 1,

Qa = –p(B) + p(A), Sb = r(C) + r(D). 

For simplicity, we impose the zero-flux condition

 = 0 (i = 1, 2) at the boundary of the domain Ω'.

Approximating the second integral on the left-hand side
of Eq. (6) by the expression

(div(k∇ p))h, i ri , 

where the sum is taken over all nodes of the grid M,
we find the difference operator div at the ith node:

(div(k∇ p))h, i = , where the summation is extended

over the edges with one end coinciding with the ith
node. Here, σa = 1 for the edges from the node i; other-
wise, σa = – 1 and Qa = gabQb, where the summation is
taken over the edges of all cells containing the edge a.

Let la be the vector directed along the positive direc-
tion on the edge a and its length be equal to the length
of the edge. We then define

for each cell of the grid M. Here, the summation is
extended over all nodes φ of the cell, ( ; )φ is the
Euclidean inner product of the vectors conjugate to the
vectors la and lb with the common node φ, and Sφ is an
area associated with the node φ. For the cell ABCD
shown in Fig. 1, SA is half the area of triangle ABD, SB

is half the area of triangle ABC, and so on.
Finally, we define area Vi associated with the ith

node. To do this, each node φ of each cell of the grid M

k∇ p∇ r rdivk∇ p

Ω'

∫+

Ω'

∫ k
∂p
∂n
------r.

∂Ω'

∫=

gab

M

∑

∂pi

∂n
--------

Vi

i

∑

σaQa

Vi

------------

gab k Sφ la' ; lb'( )φ

φ
∑=

la' lb'
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is attributed by area . In particular,  is the area of
the rectangular AEOH shown in Fig. 1, where E and H
are the midpoints of the edges AB and AD, respectively,
and O is the center of mass of the cell. Then, Vi is the
sum of  taken over all cells with the common node i.

The further approximation of the spatial operators
of the filtration problem is evident. Because the prob-
lem under consideration involves both parabolic and
elliptic equations, we employ implicit difference
schemes.

4. An algorithm of solving elasticity problems with-
out singular volume sources was presented in [1]. How-
ever, elasticity equations (3)–(5) include volume forces
∇ (ζp2) having δ-function singularities. Indeed, the
quantity ζp2 vanishes outside the collector but can be
nonzero inside it. Such a problem is solved on a uni-

form rectangular grid S = {(ih1; . The
unknowns are referred to nodes.

We assume that discontinuity lines are smooth
enough to be approximated inside each cell H by a
straight line and that the Lamé coefficients vary locally
along only one direction: λ = λ(nr) and µ = µ(nr). For
elasticity problems that could involve fractures without
their opening, the quantities σij nj and ui, j mj are contin-
uous functions. Here, n and m are the unit normal and
unit tangent vectors of a discontinuity line, respec-
tively. Therefore, the displacements, as well as forces
applied to an area tangent to the discontinuity line, are
continuous functions. As a consequence, the corre-
sponding distortion tensor components are also contin-
uous functions. We will require that these quantities be
smooth enough to be locally approximated by constants
in a certain norm.

As is known, solutions obtained in the collector can
be locally approximated by constants if k1 and k2 are
piecewise continuous functions and ζ is constant in the
collector. Therefore, the quantity ζp2 inside each cell
varies only along n.

For each cell H, we define the linear span

Due to the above assumptions, an exact solution of
the inhomogeneous elasticity problem can be approxi-

Vφ' V A'

Vi'

jh2 ) } i j, 1=
N

L H( ) span U1 m
sd

µ
----- U2 n

sd
λ 2µ+
----------------,

0

nr

∫=,
0

nr

∫=




=

U3 m mr( ) n
λ sd

λ 2µ+
----------------,

0

nr

∫–=

U4 m nr( ) n mr( ), U5+– m, U6 n= = =




.
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mated inside the cell H by a vector of the manifold
M(H) = L(H) + f, where the vector

is defined by the source entering into Eqs. (3)–(5).

Our goal is to approximate the integrals
(U)eij(V) for each cell H. Indeed, using an equality

similar to Eq. (6), we can find an approximation of σij,j.
Let us approximate this integral by the expression

σh, ij, φ(U)eh, ij, φ(V). Here, the sum is taken over all

nodes of the cell H and eh, ij, φ(V) is a strain-tensor
approximation that depends on two finite differences at
the node φ of the cell H:

where  is the effective elastic modulus tensor and

 is the effective pressure tensor. Pressure is
described by a tensor, because the Pascal law is not
valid for anisotropic media.

In order to determine the six components of the

effective elastic modulus tensor , we equate the
continuous energy to the discrete energy for the vectors
of L(H) at the node φ of the cell H. Because U5 and U6

define the motion of the body as a whole and U4

describes its rotation about the z axis, they correspond
to zero strains. Therefore, we arrive at the six equations

for the six components :

(7)

The left-hand side of Eqs. (7) is the symmetric 3 × 3
matrix

f n
ξ p2 sd
λ 2µ+
----------------

0

nr

∫=

σij

H

∫

Vφ

φ
∑

σh i j φ,, H( ) Σijkl
H φ,

eh kl φ,, U( ) Mij
H φ, ,–=

Σijkl
H φ,

Mij
H φ,

Σijkl
H φ,

Σijkl
H φ,

Λ ijkleij Uα( )ekl Uβ( ) Vd

H

∫
=  H Σijkl

H ϕ,
eh i j φ,, Uα( )eh kl φ,, Uβ( ),

α β, 1 2 3., ,=

Vd
µ

------

H

∫ 0 0

0 Vd
λ 2µ+
----------------

H

∫ 0

0 0 4µ λ µ+( ) Vd
λ 2µ+

--------------------------------

H

∫
 
 
 
 
 
 
 
 
 
 
 
 
 

.



486 MYASNIKOV et al.
The effective pressure tensor is found from the
equations

The further procedure of calculating the approxima-
tion of the divergence of the stress tensor is evident.

5. We now analyze the convergence of the above
algorithm. Let

at arbitrary time, where

These spaces are equipped with the norms

where

It is assumed that a curvilinear coordinate system
with unit vectors m and n tangent to its coordinate lines
is specified in the whole domain, with discontinuities
directed along the coordinate line orthogonal to n.

Let h1 and h be characteristic scales of the grids in
Ω' and Ω , respectively, and τ be a time step in the time
interval [0, T], where the problem is considered. We
introduce the following finite difference analogues of

ζ p2eii Uα( ) Λ ijkleij f( )ekl Uα( )–( )
H

∫

=  H Mij
H φ,

eh i j φ,, Uα( ) Σijkl
H φ,

eh i j φ,, f( )eh kl φ,, Uα( )–( ).

pi HL 1, ki

µ
---- Ω', 

  , U; p2( )∈  = u1 u2; p2,( ) HL 2, Ω( )∈

HL 1, k Ω',( )

=  p: p H1 Ω'( )∈ k p, jn j H1 Ω'( )∈ p, jm j H1 Ω'( )∈, ,{ } ,

HL 2, Ω( )

=  U; p2( ): ui H1 Ω( )∈ σ ijnj H1 Ω( )∈ ui j, mj H1 Ω( )∈, ,{ } .

p
H

L 1,
k Ω,( )

2 p
H

1 Ω'( )
2

p
H

L 1,
k Ω',( )

2 ,+=

U; p2( )
H

L 2, Ω( )
2 U

H
1 Ω( )

2 U; p2( )
H

L Ω( )
2+ ,=

p
H

1 Ω'( )
2 p2 ∂p

∂x
------ 

 
2 ∂p

∂y
------ 

 
2

,+ +

Ω'

∫=

p
H

L 1,
k Ω',( )

2 p, jm j H
1 Ω'( )

2 k p, jn j H
1 Ω'( )

2 ,+=

U
H

1 Ω( )
2 u1 H

1 Ω( )
2 u2 H

1 Ω( )
2 ,+=

U; p2( )
H

L 2, Ω( )
2 ui j, m j H

1 Ω( )
2 σijn j H

1 Ω( )
2 .+=
the norm in L2(Ω'), the energy norm, and the energy
inner product in Ω:

Using these assumptions and notation, we can prove
that the filtration problem is strongly convergent and
the elasticity problem is weakly convergent.

Theorem. Let pi and U = (u1; u2) be an exact solu-
tion of Eqs. (1)–(5), with p2, tt ∈ L2(Ω') ∩ C[0; T] and for

arbitrary t pi(t) ∈ HL, 1 ,  and U(t) ∈ HL, 2 (Ω). Let

 and Uh be a solution of the finite difference prob-
lem under consideration. Then, there exists a constant
C such that, for all (V; p2) ∈ HL, 2(Ω), the following esti-
mates are valid: 

6. The above algorithm was extended to the three-
dimensional case. The following problem was analyzed
as a test. We considered a 10-km cube domain contain-
ing a τ-shaped collector with 6.25-km height and
0.25-km characteristic transverse dimension. The per-
meability coefficients in fractures and pores were 1.0
and 0.1 darcy, respectively. We take the following val-
ues of the parameters: compressibility β = 2.5 ×
10−6 atm–1, Lamé coefficients for the collector λ1 =
3.4 × 1010 Pa and µ1 = 1.33 × 109 Pa, those for the sur-
rounding medium λ2 = 3.678 × 1010 Pa and µ2 = 1.292 ×

pi L2 h1 Ω'( ),
2 Vi p

2 i( ),
i

∑=

pi Eh1
Ω'( )

2 gab ∇ pi( )h1 a, ∇ pi
( )h1 b, ,

M

∑=

U V,( )Σ VφΣijkl
H φ,

eh kl φ,, V( )eh i j φ,, U( ).
φ
∑

H

∑=

ki

µ
----

 Ω'


ph1 i,

U Uh– δV,( )Σ Ch U; p2 H
L 2, Ω( )

(
t

max≤
t

max

+ ζ ph1 2, t 0=( )
Hh1

1 Ω'( )
(δV ; 0 )

H
L 2, Ω( )

,

p1 ph1 1,– L2 h1, Ω'( )
t

max Ch1 p1
H

L 1, k1

µ
----- Ω', 

 t
max

≤

+ p2
H

L 1, k2

µ
----- Ω', 

 t
max 

 Cτ p2 tt, L2 h1, Ω'( ),
t

max+

p2 ph1 2,– L2 h1, Ω'( )
t

max Ch1 p1
H

L 1, k1

µ
----- Ω', 

 t
max

≤

+ p2
H

L 1, k2

µ
----- Ω', 

 t
max 

 Cτ p2 tt, L2 h1, Ω'( ).
t

max+
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Ω'

Ω

Fig. 2. Distributions of (left panel) p2 and (right panel) ux .
1010 Pa, coefficient α = 10–18 m2, and viscosity µ =
0.0004 Pa s. We imposed the geostatic initial conditions
p1 = p2 = 0 and the zero-flux condition for p1 and p2 at
the entire boundary, except for the upper section of the
collector, where the flux for p2 is given by the expres-
sion

 and vanishes other-

wise. Here, a kilometer and 106 seconds are taken as the
units of distance and time, respectively.

The solution at z = 5 km and t = 2 months is illus-
trated in Fig. 2, where the distributions of (left panel)
pressure in pores and (right panel) displacements along
the x axis are shown.

Our calculations indicate that the flow along the
descending branch of the collector is essentially one-
dimensional and represents diffusion along the break.
As was to be expected, displacements reach their max-
imum values near the boundaries and along the break.
It is the interpolation by vectors from M(H) inside cells
that allows us to describe the break so precisely.
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The problem of determining a stress–strain state in
creep media with allowance for damaging and corro-
sion is attracting increasing attention of researchers.
First, this is due to high requirements to the quality and
reliability of metallic constructions or their individual
elements under the conditions of long-term high-tem-
perature loading and in aggressive environment [1, 2].
However, it is very difficult and sometimes even impos-
sible to obtain analytical solutions due to mathematical
problems associated with the need to solve nonlinear
boundary value problems. Therefore, it is necessary to
develop effective approximate methods of solution,
including variational methods, and to apply them to
such problems.

The viewpoint on variational methods in the
mechanics of deformable solids has changed consider-
ably in recent years. The possibilities of developing dif-
ferent variational principles, i.e., finding functionals for
which the equations of a problem are Euler differential
equations, turned out to be much wider than it previ-
ously seemed. The possibility of a rather free choice of
independent functional arguments was revealed [3].

In this work, a mixed-type variational principle is
formulated for creeping with simultaneous allowance
for corrosion and damaging.

1. We assume that instantaneous elastoplastic strain

 and creep strain pij simultaneously arise in a mate-
rial such that the total strain is given by the formula

In the three-dimensional Euclidean space with coor-
dinates xk, we consider an elastoplastic anisotropic

εij
M

εij εij
M pij or ε̇ij+ ε̇ij

M
ṗij.+= =

* Azerbaijan Technical University, 
Hussein Javid av. 25, Baku, 370073 Azerbaijan

** Baku State University, 
Z. Khalilov st. 23, Baku, 370148 Azerbaijan
1028-3358/04/4908- $26.00 © 20488
medium that satisfies the flow-theory equations of
state1 

where  is the strain rate tensor,  is the stress rate
tensor, and Hijkl are mechanical characteristics indepen-
dent of strain and stress rates. Thus, the total strain rate
tensor is written as

There are many variants for simulating processes of
unsteady corrosion, long-term strength, and their corre-
lations. Following Rabotnov [4], we have the relation

the diffusion kinetic equation

and the damage kinetic equation

Here, ω is the damaging parameter, c is the parameter
characterizing the concentration of an aggressive
medium, and D = D(σαβ, ω, c) is the corrosion coeffi-
cient. We now consider the equilibrium of the described
body (dynamic effects are assumed to be negligible)
with volume V bounded by a rather smooth surface S.
In geometrically linear theory, this body is described by
the boundary value problem

(1)

(2)

(3)

(4)

(5)

(6)

1 Hereinafter, the common accepted notation is used.

ε̇ij
M

Hijklσ̇
kl,=

ε̇ij σ̇kl

ε̇ij
M

Hijklσ̇
kl

ṗij.+=

ṗij ṗij εαβ σαβ ω c, , ,( ),=

ċ div D∇ c( )=

ω̇ ϕ σαβ ω c, ,( ).=

∇ jσ
ij 0,=

ε̇ij Hijklσ̇
kl

ṗij,+=

2εij ∇ iu j ∇ jui,+=

T
i σijn j, xk Sσ,∈∀=

ui ui, xk Su,∈∀=

ċ div D∇ c( ),=
004 MAIK “Nauka/Interperiodica”
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(7)

where S = Sσ ∪  Su . In terms of variational theorem, the
problem under consideration is formulated as follows.
The stationary value of the functional (δJ = 0)

(8)

under conditions (2) and (3) as Euler differential equa-
tions leads to equilibrium condition (1), boundary con-
ditions (4) and (5), and kinetic equations (6) and (7).

Here, , , , and  are independent varying quan-
tities and λω = λω(σαβ, εαβ) and λc = λc(σαβ, εαβ) are
weight functions selecting in dependence of the form of
interpolation functions for the refinement of approxi-
mations. Functional (8) is based on both the variational
principle by Sanders, McComb, and Schlechte in creep
theory [4] and the variational theorem in creep theory
including damaging [5]. Then, taking into account that
the variation operator δ acts on the rates of the quanti-
ties and in view of Eq. (3) and equalities

we determine the first variation of the functional J in the
form

(9)

Applying the divergence theorem, we represent the first
term in the volume integral as

(10)

ω̇ ϕ σαβ ω c, ,( ),=

J σ̇ijε̇ij
1
2
--- ε̇ij

M 2 ṗij+( )σ̇ij– λω
1
2
---ω̇2 ω̇ϕ– 

 +




V

∫=

+ λ c
1
2
--- ċ2 ċdiv D∇ c( )–





Vd

– Ṫ
i
u̇i S Ṫ

i
u̇i u̇i–( ) Sd

Su

∫–d

Sσ

∫

σ̇ij
u̇i ω̇ ċ

Hijklσ̇
klδσ̇ij

Hijkl= σ̇ijδσ̇kl,

σ̇ij∇ iδu̇ j σ̇ij∇ jδu̇i=

δJ σ̇ij∇ jδu̇i ε̇ijδσ̇ij
Hijklσ̇

kl
ṗij+( )δσ̇ij–+{

V

∫=

+ λω ω̇ ϕ–( )δω̇ λ c ċ div D∇ c( )–[ ]δ ċ } dV+

– Ṫ
i
δu̇i S u̇i u̇i–( )δṪ

i
Ṫ

iδu̇i+[ ] S.d

Su

∫–d

Sσ

∫

σ̇ij∇ jδu̇i Vd

V

∫ σ̇ij
n jδu̇i S ∇ jσ̇

ijδu̇i V .d

V

∫–d

S

∫=
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Substituting Eq. (10) into Eq. (9) and making certain
manipulations, we rewrite the expression for δJ in the
form

Then, in view of boundary conditions (4) and (5), i.e.,

δ  = 0 for xk ∈  Sσ and δ  = 0 for xk ∈ Su , the first vari-
ation takes the final form

(11)

To find the stationary value of functional (8), varia-
tion (11) is equated to zero. Then, due to the fundamen-
tal lemma of variational calculus, we obtain Euler dif-
ferential equations in the form

(12)

(13)

(14)

(15)

(16)

(17)

After the partial integration of Eqs. (12) with boundary
conditions (16) and (17) with respect to t, we write

The above statement follows from these relations. For
the case of the chemically active medium, diffusion
equation (15) takes the form

where k = const is the characteristic rate of a chemical
reaction and kc is the rate of the breaking of chemical
bonds in the aggressive chemical medium. It is seen

δJ ε̇ij Hijklσ̇
kl

ṗij+( )–[ ]δσ̇ ij ∇ jσ̇
ijδu̇i–{

V

∫=

+ λω ω̇ ϕ–( )δω̇ λ c ċ div D∇ c( )–[ ]δ ċ } Vd+

+ σ̇ij
n jδu̇i S Ṫ

i
δu̇i S Ṫ

iδu̇i u̇i u̇i–( )δṪ
i

+[ ] S.d

Su

∫–d

Sσ

∫–d

S

∫

Ṫ
i

u̇i

δJ ε̇ij Hijklσ̇
kl

ṗij+( )–[ ]δσ̇ ij ∇ jσ̇
ijδu̇i–{

V

∫=

+ λω ω̇ ϕ–( )δω̇ λ c ċ div D∇ c( )–[ ]δ ċ+ } Vd

– Ṫ
i

Ṫ
i

–( )δu̇i S u̇i u̇i–( )δṪ
i

S.d

Su

∫–d

Sσ

∫

∇ jσ̇
ij 0,=

ε̇ij Hijklσ̇
kl

ṗij,+=

ω̇ ϕ ,=

ċ div D∇ c( ),=

Ṫ
i

Ṫ
i
, xk Sσ,∈∀=

u̇i u̇i, xk Su.∈∀=

∇ jσ
ij 0, ε̇ij Hijklσ̇

kl
ṗij,+= =

ω̇ ϕ , ċ div D∇ c( ),= =

xk∀ V ;∈

T
i

Ti, xk Sσ; ui∈∀ ui, xk Su.∈∀= =

ċ div Dc( ) kc,–=
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that the last term of volume integral (8) in this varia-
tional formulation must be replaced by

We note that, to solve particular problems by, e.g.,
the Rayleigh–Ritz method, it is necessary to specify the
initial condition for ω and the initial and corresponding
boundary conditions with respect to c.

2. The mixed variational principle was proposed
above in the geometrically linear formulation. How-
ever, in the problems of stability and swelling, it is
insufficient to consider derivatives with respect to dis-
placements to be small and to retain only linear terms
in expressions for the strain tensor components in terms
of displacements. It is necessary to take into account
the finite strain tensor components given by the for-
mulas

In this case, derivatives with respect to time are calcu-
lated as

and we arrive at the nonlinear equilibrium equations

(18)

and the nonlinear boundary conditions

(19)

In the above notation, the functional for geometrically
nonlinear problems has the form

(20)

The proof that the condition of the zero variation of
functional (20) is equivalent to the satisfaction of equi-
librium equations (18), boundary conditions (19), con-
straints (2), and kinetic equations (6) and (7) is the same
as the above proof. Additional terms in Eq. (20) do not

λ c
1
2
--- ċ2 ċdiv Dc( )– kcċ– .

2εij ∇ iu j ∇ jui ∇ iu
k∇ juk+ +( ).=

2ε̇ij ∇ iu̇ j ∇ ju̇i ∇ iu̇
k∇ juk ∇ iu

k∇ ju̇k+ + +( ),=

∇ jS
jk ∇ j σij δi

k ∇ iu
k+( )[ ] 0= =

T
k σijn j δi

k ∇ iu
k+( ) S jkn j.= =

J σ̇ijε̇ij
1
2
---σij∇ iu̇

k∇ ju̇k
1
2
--- ε̇ij

M 2 ṗij+( )–+




V

∫=

+ λω
1
2
---ω̇2 ω̇ϕ– 

  λ c
1
2
--- ċ2 ċdiv Dc( )– kcċ–





Vd+

– Ṫ
i
ui S Ṫ

i
u̇i u̇i–( ) S.d

Su

∫–d

Sσ

∫

involve stress change rates. Therefore, a difference is
present only in the δJ part that corresponds to change in
the velocity field. This part has the form

Transforming volume integrals according to the
divergence theorem, from the condition δJ1 = 0, we
obtain

(21)

or

The latter equations are obtained by integrating
Eqs. (21) with respect to time.

When mass forces Fi are taken into account, the vol-
ume integral in functional (18) and (20) must be supple-

mented by  terms. In conclusion, we note that the
proposed variational method can also be applied in the
nonlinear theory of elasticity [6].
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