
  

Doklady Physics, Vol. 49, No. 10, 2004, pp. 549–552. Translated from Doklady Akademii Nauk, Vol. 398, No. 5, 2004, pp. 611–614.
Original Russian Text Copyright © 2004 by Alekseev, Gubanov, Orlovski

 

œ

 

, Skakun, Tarasenko.

                                                                     

PHYSICS
A New Method 
of Producing Subnanosecond High-Current Electron Beams

S. B. Alekseev, V. P. Gubanov, V. M. Orlovskiœ, V. S. Skakun, and V. F. Tarasenko
Presented by Academician S.D. Korovin March 30, 2004

Received April 8, 2004
The traditional method of producing subnanosecond
electron beams is based on the formation of subnano-
second voltage pulses by means of vacuum diodes [1].
This method makes it possible to produce high-current
electron beams with a duration of tenths of a nanosec-
ond. However, it requires the creation of comparatively
complex facilities with several transmission lines and
high-pressure dischargers. In the late 1960s, in studies
of pulse discharges at atmospheric pressure in air [2]
and in helium [3], the appearance of X-ray radiation
was discovered that was related to the deceleration of
runaway electrons at the discharger anode. However,
the amplitudes of current pulses of runaway electrons
under atmospheric pressure in air attained only frac-
tions of an ampere (see review [4]). These parameters
were much smaller than those obtained by the tradi-
tional method of producing subnanosecond electron
beams [1] and were of no interest for practical applica-
tions.

In 2002–2003, at the Institute of High-Current Elec-
tronics, Siberian Division, Russian Academy of Sci-
ences, a series of experimental studies [5–10] was per-
formed devoted to the formation of electron beams in
gas diodes filled with molecular and atomic gases, as
well as with mixtures thereof. In the course of these
experiments, a significant current amplitude in the
beam beyond the discharger output-window foil was
registered (~70 and ~200 A in air and helium, respec-
tively). The full width at the half-maximum (fwhm) of
the current-pulse duration was ~0.3 ns. In [8], it was
proposed to refer to a subnanosecond electron beam in
air with an amplitude of several tens of amperes as a
SAEB (subnanosecond avalanche electron) beam. The
value of the parameter E/p = U/dp averaged over the
diode gap was ~0.1 kV cm–1 torr–1, where U is the volt-
age across the gap, d is the length of the interelectrode
gap, and p is the gas pressure. This parameter was much
smaller than the critical value Ecr/p required to form
runaway electrons [11]. In order to explain these
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results, it was assumed in [5, 7, 8] that the critical field
is attained in the near-anode region upon expanding the
plasma cloud from the cathode to the anode. However,
the potentialities of this method of forming subnano-
second electron beams in gas diodes remained unclear.
Therefore, additional investigations were needed,
including those with a recording-system time resolu-
tions on the order of ~0.1 ns.

In this study, we demonstrate the promising potenti-
alities of a new method for producing subnanosecond
electron beams. We also investigate the possibility of
forming an electron beam at gas-diode pressures
exceeding atmospheric pressure and clarify conditions
under which the beam amplitude becomes maximal.

In carrying out our investigations, we used three
pulse generators forming voltage pulses with a duration
of several nanoseconds and with a 0.5-ns (or less) front
duration, as well as gas diodes of different designs. The
gas diodes had a flat anode and a small-size cathode that
provided additional enhancement of the electric field
near the cathode. The SINUS pulse generator 1 [12] had
an additional built-in transmission line with a wave
resistance of 40 Ohms. The possibility of increasing the
pressure in the gas diode up to 6 atm also existed. At
the 40-Ohm matched load, this modernized generator
formed pulses with an amplitude of ~180 kV and
a fwhm duration of ~1.5 ns with a ~0.5-ns pulse-front.
The first cathode consisted of three cylinders embedded
into each other. Cylinders 12, 22, and 30 mm in diame-
ter were made of 50-µm Ti foil [7].

The RADAN-220 generator (2) [13] had a wave
resistance of 20 Ohms and produced (in the discharge
gap) pulses of an amplitude up to 220 kV and of ~2-ns
fwhm duration (with a pulse front of ~0.3 ns). The sec-
ond cathode was made of a steel tube 6 mm in diameter
and the wall thickness of 50 µm. The third cathode was
made of steel, ball-shaped, and had a diameter of
9.5 mm.

Generator 3 was similar to generator 2 but had a
smaller pulse duration of ~1 ns and, under the given
conditions, its gas diode had minimal sizes (Fig. 1). The
experiments with generator 3 were performed with the
second cathode. The anode for all three generators was
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made of 40-µm AlBe foil. The length of the gas gap var-
ied from 4 to 28 mm.

Signals from the capacitive voltage divider, T col-
lectors, and shunts were recorded by a TDS-7405 oscil-
loscope (4-GHz band) having 20 GS/s (20 dots per ns)
or by a TDS-334 oscilloscope (0.3-GHz band) having
2.5 GS/s (2.5 dots per ns). The discharge glow was pho-
tographed by a digital photographic camera.

As has been shown in [5–10], in an inhomogeneous
electric field with a small-size cathode (in the case of a
short front of the voltage across the gap in different
gases), an electron beam with an amplitude of several
tens or hundreds of amperes is formed. In this case, vol-
ume discharge in the form of a cone or several cone-
shaped streams with bright spots on the cathode is
observed in the gap.

In this study, the beam-current amplitude in air was
elevated by a factor of three and the range of pressures
under which the electron beam had been formed was
considerably extended. In particular, for the first time,
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Fig. 1. Block diagram of an electron accelerator with a gas
diode: (1) high-voltage pulse generator, (2) mainframe,
(3) spark gap, (4) high-voltage output, (5) insulator,
(6) cathode, and (7) anode.
an electron beam was obtained at a pressure exceeding
atmospheric pressure. Figure 2 shows the pressure
dependences of the voltage-pulse amplitude across the
gap, the beam-current density, and the fwhm duration
of the beam-current pulse obtained for helium and
nitrogen. As is seen, the amplitude of the beam-current
pulse and its fwhm duration remain virtually
unchanged with the rise of helium pressure up to 6 atm.
A decrease in the beam current in nitrogen at a pressure
of 2–4 atm is related to the decrease in the region occu-
pied by the volume discharge and to the onset of the
discharge contraction at a pressure of ~4 atm. The
fwhm durations of the beam-current pulse, which were
measured with a resolution down to 0.1 ns M in both
helium and nitrogen, differ insignificantly and were
~0.2 ns (Figs. 2 and 3, respectively). It is established
that the measured duration of the beam-current pulse
depends on the collector diameter and is at its smallest
if the collector has a small size. It seems likely that the
plasma expanding from the cathode approaches the
anode at different points at different times. Accord-
ingly, the time needed to reach the critical field has a
spread T and the pulse duration of the total beam cur-
rent from the entire anode area is greater than that from
a portion of the anode area. In the optimal regime, the
beam electrons have an average energy of ~60% of the
energy corresponding to the maximum voltage across
the gap. All these data confirm the assumption made
in [5, 7, 8] that the formation of the electron beam
occurs between the front of the plasma expanding from
the cathode and the anode after the critical field has
been attained.

It was found that the beam-current amplitude
beyond the foil sharply depends on the gas-diode size
(to be more precise, on its inductance). For generator 2
with the third cathode, the beam-current amplitude was
~170 A. The experiments were performed in air at
atmospheric pressure and for the minimum foil–insula-
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Fig. 2. Pressure dependences of (1) voltage-pulse amplitude, (2) electron-beam current density, and (3) fwhm duration of beam cur-
rent for (a) helium and (b) nitrogen (curves are obtained with generator 1).
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Fig. 3. Oscillograms of beam-current pulses recorded from a collector 1 cm2 in area: (1) and (2) nitrogen at a pressure of 1 atm;
(3) and (4) helium at pressures of 1 and 3 atm, respectively. Scale in the horizontal direction: (1), (3), and (4) 0.1 ns per division and
(2) 0.5 ns per division. Scale in the vertical direction: (1) 1 A per division; (2) 14 A; (3) 3.7 A; (4) 7.8 A; (1), (3), and (4) generator 1
and (2) generator 3.
tor distance. The design of the gas diode is described in
detail in [10]. After moving off the foil from the isolator
by 15 mm with the help of an additional metallic cylin-
der and correspondingly increasing the length of the
cathode holder (providing the retained cathode–anode
distance), the current amplitude in the electron beam
decreased by a factor of two. With further increasing
the size (inductance) of the gas diode, the amplitude of
the beam current continued to rapidly decrease.

In the case of generator 3 (Fig. 1), which had mini-
mum inductance of the discharge circuit, gas diode, and
sharpening discharger, the beam-current amplitude
beyond the foil and the fwhm pulse duration were
240 A and ~0.2 ns, respectively (Fig. 3, oscillogram 2).
The spot of the beam on the external surface of the foil
was ~4 cm in diameter. At the central part of the spot
(1.5 cm in diameter), the beam-current density was
~40 A cm–2. It depended on the cathode design and the
diameter of the volume-discharge region near the
anode. For generator 1, the average electron energy in
the beam was on the order of 70 keV at a helium pres-
sure of 1–6 atm.

We believe that very small pulse amplitudes of the
beam current, have been obtained before (see [4]), are
stipulated by a nonoptimal design of the gas diodes
used. In the present study, the amplitude of the beam
current beyond the foil was increased by several orders
of magnitude compared to the amplitudes in previous
investigations [4]. By comparing current amplitudes
in subnanosecond beams produced by both the tradi-
tional [1] and proposed methods, we can see that, at a
similar initial voltage, they differ insignificantly. How-
ever, the accelerators with gas diodes are much more
simpler and form subnanosecond beams in diverse gas-
eous media at various pressures.
DOKLADY PHYSICS      Vol. 49      No. 10      2004
We may interpret the results obtained in the follow-
ing manner. On applying a voltage pulse with a front-
duration of 1 ns or less to a discharge gap, the electric
field on a cathode with a small curvature radius
increases. Initially, this occurs because the field
increases by the mechanism of cold emission, which
can be amplified by a positive ion charge, and, later, the
delivery of electrons into the gap occurs by explosive
electron emission. In this case, the field enhancement
near the cathode is sufficient to form fast electrons.
They provide preionization of the gap, formation of
volume discharge, and expansion of plasma to the
anode at a rate of ~109 cm s–1 and higher. In this case,
some of the electrons at the boundary of expanding
plasma are accelerated because of both positive voltage
on the anode and pushing of electrons from the electron
cloud. This mechanism leads to the formation of a sub-
nanosecond electron beam. The leading front of the
current pulse is determined by that of the voltage pulse
with a subnanosecond duration. Furthermore, due to
decreasing the plasma–anode distance and additionally
increasing the electric field at the voltage-pulse front
between the plasma and anode, the duration of the lead-
ing front of the beam-current pulse turns out to be
shorter than that of the voltage pulse. The subnanosec-
ond duration of the trailing front of the beam-current
pulse is specified by two factors: a high rate of plasma
propagation after attaining the critical field near the
anode and equalizing the electric field in the gap after
plasma has arrived at the anode.

Thus, the investigations performed have demon-
strated that the new method of the formation of sub-
nanosecond electron beams in gas diodes (SAEB
beams) has attractive potentialities. In realizing this
method, it is sufficient to use a single fast switch con-
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nected to a cathode under the condition of a small
inductance. To obtain the maximum beam current, we
need to provide volume discharge in a gas diode and
have a smooth anode surface. In addition, the voltage
rise in the spark gap must be terminated before the
maximum beam current has been attained. It is also
very important to minimize the size of the gas diode. If
helium or nitrogen pressures increase to 6 and 3 atm,
respectively, the conditions under which the subnano-
second electron beams are formed are retained and the
above pressures are not ultimate. This is stipulated by
the formation of an electron beam on attaining the crit-
ical field between the anode and plasma expanding
from the cathode. By optimizing the design of both the
gas diode and high-voltage pulse generator, an ampli-
tude of the subnanosecond beam current exceeding
240 A (with a beam current density of ~40 A cm–2) was
obtained at atmospheric pressure in air.

We assume that subnanosecond high-current elec-
tron beams produced in gas diodes will be widely
applied in various fields of science and technology. In
particular, we used the SAEB beam to form volume dis-
charge in CO2 lasers [14].
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In optical media, particularly in gases, there exist
several types of quadratic optical nonlinearity. This
phenomenon is manifested in a nonlinear (quadratic)
dependence of the refractive index n of the optical
medium on the light wave amplitude. The best known
is the Kerr optical nonlinearity, for which the increase
in the refractive index is associated with orienting mol-
ecules in the light wave field. The other example is the
phenomenon of electrostriction, in which the light wave
compresses the medium and elevates its density,
thereby increasing n [1]. It turns out that, in gas mix-
tures, there exists one more mechanism of manifesting
optical nonlinearity. We are implying the fact that the
molecules of a gas with the highest n are attracted to the
region of the most intense light. As a result, the refrac-
tive index of the mixture is higher compared to the
equilibrium mixture in the absence of optical radiation.
Thus, quantity n inside the radiation field is dependent
on the radiation intensity. In the case of increasing n,
the work spent to separate molecules in a gas mixture
can be smaller than that spent for the same increase in
n by means of compression of the same gas mixture by
the electrostriction mechanism. Therefore, the effect
observed can be even stronger than in the case of elec-
trostriction.

As is well known, the separation of a mixture is
associated with an energy consumption determined by
the expression W = T∆S, where T is the temperature of
the gas mixture and ∆S is the rise of the entropy when
the gases are mixed [2]. If this process is adiabatic, the
increment of entropy is zero. Therefore, when the heat
inflow to the system under consideration is negligible,
the work needed for separation of the gas mixture is
close to zero, and the nonlinearity coefficient of the gas
mixture can be rather high. However, the time of occur-
ring transition processes accompanied by the suction of
molecules of a gas with the highest n is also relatively
long, because it is associated with transport phenom-
ena. Therefore, in the case of instantaneous appearance
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of radiation, e.g., in a gas discharge, there is no domain
from which molecules can be sucked, since the radia-
tion is present in the entire volume of the mixture.
However, this does not imply that the effect of the indi-
cated mechanism is not manifested.

In the same manner as the condensation of saturated
vapor can be accompanied by the appearance of a fog
consisting of small droplets of liquid, the molecules of
a gas with the highest n are concentrated by intense
radiation in a local domain. In contrast to droplets of
liquid—where molecules occupy the entire droplet vol-
ume—in a gas mixture, molecules are concentrated in a
thin spherical layer (TSL) having an increased refrac-
tive index. The TSL plays the role of a bent planar light
guide directing the light that circulates in it over all pos-
sible paths. Intense light, in turn, provides the concen-
tration in the TSL of molecules with the highest n.
Thus, in a gas mixture, intense light condenses as
though into light fog consisting of a set of different-size
TSLs.

Figure 1 illustrates the stages of the appearance of
these formations. We assume that, in a certain domain,
a fluctuation of the density and/or of the concentration
has occurred. In this case, the boundary of the domain
with an elevated refractive index is convex. Then, in
accordance with the eikonal equation, a beam propagat-
ing along the tangent to the boundary is bent toward the
maximum refractive index. The radius of curvature is
determined by the expression R–1 = dn/dr, where r is the
distance along the straight line perpendicular to the
beam. For example, if n varies by 0.25 × 10–4, at the dis-
tance of 1 µm, then R = 4 cm. In this case, the bent beam
shown in Fig. 1a propagates in the boundary domain for
a longer time and for a grater distance compared to the
rectilinear beam. Thereby, the conditions needed for
separating a gas mixture are more favorable than in
other spatial domains. This results in the fact that, at the

boundary, the quantity  increases, which, in turn,

leads to a further rise of the beam rotation angle as is
shown in Fig. 1b. As long as this process is continued,
the beam rotation angle increases and reaches 360°. For
performing further analysis, it is reasonable to pass

dn
dr
------
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Fig. 1. Trajectory of light beams at different stages of the formation of a thin spherical layer: (a) initial stage, (b) intermediate stage.
The onset and the end of the same beam are denoted by equal numbers.
from a beam approach to a wave one. In so doing, we
may state that a TSL has been formed in which a wave
of the whispering-gallery type circulates [3]. The insuf-
ficiently large difference in refractive index n between
the TSL and the environment results in a large radiation
loss in the TSL. However, as follows from the reciproc-
ity principle, here, we are dealing with a reasonably
high coupling factor between plane waves in the envi-
ronment and the whispering-gallery wave in the TSL.
In other words, light omnidirectionally propagating in
a gas mixture excites whispering-gallery waves in the
TSL rather efficiently. When, as a result of the excita-
tion, the light intensity in the TSL increases, the differ-
ence in n between the TSL and the environment
enhances. In this case, the radiation loss and the cou-
pling factor between the whispering-gallery waves and
the environment decrease. Ultimately, omnidirection-
ally circulating radiation is established in the TSL. The
intensity of this radiation is equal to the intensity of
light in the environment. (It should be noted that the
TSL remains transparent for beams incident on its sur-
face at arbitrary angles apart from those tangent to the
surface.) At a reasonably high intensity of light circulat-
ing in the TSL, self-compression of the TSL thickness
is possible [4]. This effect is similar to the well-known
effect of spatial-soliton formation in a nonlinear optical
medium [5] and results in a noticeable increase in pres-
sure and refractive index n inside the TSL. As was
shown in [6], in this case, the light scattering decreases
while the light lifetime increases, the latter attaining
dozens of seconds. In the case of the disappearance of
light in the environment (e.g., in the case of ceasing the
electric current in a gas discharge), light presenting in the
gas mixture leaves it at the light velocity. However, light
accumulated in the TSL continues to circulate in it.
There is no need to perform specified additional
experiments to confirm the above-presented pattern of
manifesting the nonlinear effect under consideration.
The more than two-year history of studies of unusual
autonomous objects arising as a result of electric dis-
charge in gases presents a large number of experimental
data that, unfortunately, cannot be comprehensively dis-
cussed in the framework of a single paper. A sufficiently
complete review of these studies is given in [7, 8]. Here,
we comment only on results of some recent investiga-
tions, which testify to the correctness of the presented
pattern.

The spectral composition of autonomous objects
obtained as a result of high-frequency discharge in dif-
ferent gases at atmospheric pressure is given in [9]. The
following features of the spectra are noted. In all the
gases, the visible spectrum of the discharge was emitted
by admixtures and did not correspond to the spectrum
of the gas in which autonomous objects had arisen. The
spectrum of visible light basically corresponded to the
CO2-spectrum and involved several spectral lines of the
electrode metal. The discharge color also indicated the
formation of nitrogen dioxide; however, it was impos-
sible to distinguish its spectrum against the CO2-spec-
trum background. It is worth noting that  =

1.0004197 and  = 1.000515, whereas the refractive
indices of air, nitrogen, and oxygen for which the inves-
tigations were performed lay within the range 1.00025–
1.00028. Thus, radiation of the components possessing
higher refractive indices n was present in the spectrum.

The explanation of properties of the so-called
power-consuming plasma formations presented in [10]
is rather simple. These objects are formed in a gas dis-
charge. They have a density close to that of the sur-

nCO2

nNO2
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rounding air, low gas temperature, weak radiation
intensity, and high energy density and are distinguished
by selective action on materials (they are capable of
burning through metallic foil, but do not act on paper).
They also strive to preserve their integrity upon meet-
ing an obstacle, and their lifetime is anomalously long
compared to ideal plasma. In fact, these power-consum-
ing plasma formations are instances of miniature ball
lightning, the parameters and behavior in the inhomoge-
neous atmosphere of which are considered in [4, 6],
where the hypothesis is substantiated that the ball light-
ning is a TSL in which intense light circulates. The sim-
ilarity in the behavior of the power-consuming plasma
formations and of ball lightning is also noted in [10].
However, the assumption that these formations are to a
certain extent associated with long-living plasma did
not allow the authors of [10] to explain the characteris-
tic features of these objects.

The experiments carried out in [11] on interaction of
anomalous objects with liquid nitrogen turned out to be
rather impressive. The anomalous objects arising as a
result of electric discharge move toward the liquid-
nitrogen surface. Upon finishing the discharge, blue
luminescence of the entire volume of liquid nitrogen
was observed over 5 s. Anomalous sphere-shaped
sharp-boundary objects 0.5–4 mm in diameter were
found on the vessel bottom, on the surface of the liquid
nitrogen, and in the entire volume of the liquid nitro-
gen. The brightness of these objects considerably
exceeded the total light background of the liquid nitro-
gen. The luminescence of the autonomous objects had
a spectrum lying within the range 400–500 nm and
lasted for 10–30 s, until smooth quenching occurred.

The penetration of anomalous objects into liquid
nitrogen can be explained by the following reasons.
TSLs move in the direction of the refractive-index gra-
dient of the environment. The refractive index of gas-
eous nitrogen is n1 = 1.000277 and practically coincides
with that of air. Refractive index n2 of cold gaseous
nitrogen in the vicinity of the liquid-nitrogen surface is
much higher: n2 ≈ 1.000800. Therefore, TSLs move
toward the liquid-nitrogen surface. Approaching this
surface, the TSLs evaporate nitrogen. In this case, the
temperature of the interlayer between an anomalous
object and liquid nitrogen is close to that of liquid nitro-
gen, and the refractive index of evaporated nitrogen
considerably exceeds that of air at normal conditions.
As a result, anomalous objects, tending to move into a
DOKLADY PHYSICS      Vol. 49      No. 10      2004
domain with the maximum refractive index, i.e., into
the coldest domain, form a depression on the liquid-
nitrogen surface with a gradually increasing depression
depth. Eventually, an anomalous object completely
penetrates deep into the liquid nitrogen and forms a
gaseous-nitrogen layer around itself. Apparently, the
luminescence of the entire nitrogen is explained by the
luminescence of a set of anomalous objects of rather
small diameters. Such small anomalous objects have a
large radiation loss (the loss increases with decreasing
the sphere diameter) and, hence, a shorter lifetime (5 s)
compared to large ones (30 s).

Thus, in numerous experiments, instances of ball
lightning were actually obtained. Their short lifetime is
explained by the short lifetime of the light circulating
inside them. In order to increase the lifetime, it is nec-
essary to elevate the radiation intensity in a gas mixture
at the last instant prior to cutting off the radiation. The
radiation duration should be sufficient to considerably
change the mixture composition in a thin spherical
layer during this time.
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Previous dynamic-strength investigations of AMg6M
aluminum alloy [1–5] showed that the spallation phe-
nomenon [6, 7] can occur with various regimes of
dynamic stress. They can be conditionally called
(i) dynamic, (ii) quasi-stationary [4], and (iii) interme-
diate-type stress regimes.

These regimes can be classified by using the param-

eter ξ = . Here, tsp and tm are the times when the ten-

sile stress σ reaches the spall value σsp and the peak
value, respectively (Fig. 1). In the first case, the mate-
rial breaks down at ξ ≤ 1 for stress increasing linearly
with time. In the second case, the material is rapidly
stretched and breaks down at almost constant stress and
ξ ≥ 2. The third, intermediate, case is a combination of
two stress stages lasting comparable times. At the first
stage, stress increases linearly with time, and at the sec-
ond stage, stress is almost constant up to the time of the
separation of a spall layer from the target at 1 < ξ < 2.
A regime in which spallation occurs earlier under given
conditions of the shock-wave loading of a sample is
realized in an experiment.

In this paper, we present the new results of process-
ing measurements of the characteristics of the
dynamic-stress regime at ξ ≤ 1. These results were
obtained by numerical simulation using the experimen-
tal data taken from [1–4]. In order to find the stress form
in the spall section, the numerical hydrodynamic code
[8, 9] including the actual wide-range equation of state
for aluminum was applied. The initial density of the
substance was assumed to be 2.61 g cm–3, i.e., equal to
that of AMg6M aluminum alloy under normal condi-
tions. A more comprehensive description of applying
the numerical code to the given problem can be found
in [5].

tsp

tm
-----
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Using the numerical code, the mean duration ∆t of
stress σ(t) acting in the spall plane was calculated from
experimental data according to the formula

Figure 2 shows the calculated mean duration ∆t of

stress as a function of the volume-strain rate  =

− . Here, V =  and ρ are the specific volume and

material density, respectively. The results indicate that
the dependence of the mean duration of stress on the
volume-strain rate is nonmonotonic and complicated.
For volume-strain rates (0.1–1.1) × 107 s–1, the stress
duration decreases from 11.6 to 1.6 ns in accordance
with the empirical expression

Then, the stress duration increases sharply up to
10.5 ns. Within the strain-rate range (1.5–5.7) × 107 s–1,
where the spall strength of the material under study
reaches the maximum value of 80 kbar and remains

∆t
1

σsp
------- σ t( ) td

0

tsp

∫ .=

V̇
V0
------

1
ρ0
-----dρ

dt
------ 1

ρ
---

∆t ns, 2
V̇
V0
------ 107 1/s, 

 
0.85–

.=

0

σ

σsp

tm tsp t

Fig. 1. Time dependence of the tensile stress in the spall
plane.
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Fig. 2. Open squares: duration of the stress resulting in spal-
lation as a function of the volume-strain rate in the dynamic
regime for ξ ≤ 1. The curves represent experimental data
smoothed by the least-squares method. The numbers corre-
spond to pressure amplitudes in the spall plane at the points
indicated by the arrows.
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Fig. 3. Spall surface: the upper part corresponds to the
coarse-grained structure observed at a volume-strain rate of
about 106 s–1, and the lower part corresponds to a fine-
grained spall structure close to a mirror surface, which is
observed at volume-strain rates higher than 107 s–1.
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almost constant (see also [3–5]), the stress duration
decreases again down to 2.5 ns in accordance with the
empirical expression

Thus, we have established the dependence of the
duration of fracture stress on the volume-strain rate.
This dependence characterizes the features of the kinet-
ics of the growth and development of defects in the
material under study. One of the possible causes of this
dependence may be a phenomenon previously
observed in [1–4]. This phenomenon is the hardening
of the material under study in the region where the
duration of fracture stress increases sharply and the
material acquires new strength properties compared to
the initial one. The material hardening is associated
with the specific features of the dynamic method used
to investigate strength properties. Indeed, tensile
stresses responsible for the fracture of the material
under study appear after the action of intense compress-
ing loading. Therefore, we can expect variation of the
number of initial defects in the material and their effect
on the kinetics of the fracture process. The pressure
amplitudes in the spall region, which were obtained by
the numerical method with allowance for experimental
conditions, are given in Fig. 2 for the corresponding
points of the plot. These data show that pulsed pressure
increases from 80 to 200 kbar in the volume-strain rate
range (1–1.5) × 107 s–1.

Metallographic investigations using an electron
microscope showed that the material structure in the
spall plane depends on the material volume-strain rate.
For volume-strain rates lower than 107 s–1, the material
has a granular structure in the fracture zone with spe-
cific grain sizes of 5–30 µm (upper part of Fig. 3). For
volume-strain rates exceeding 1.5 × 107 s–1, when the
spall strength is close to the maximum value of 80 kbar,
the view of the spallation zone is close to a mirror sur-
face without any apparent structure (lower part of
Fig. 3). In this case, the process of material fracture
depends mainly on the intrinsic properties of the mate-
rial rather than on its structure and various initial
defects existing in it.

The above results indicate that the mechanism
responsible for the fracture of the material for high vol-
ume-strain rates is complicated, which, in particular,
should be taken into account in developing and refining
theoretical models of dynamic fracture of materials.
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INTRODUCTION

In the case when radio signals emitted by super-
broadband antennas pass through a medium, noticeable
pulse-shape distortions are often observed. Therefore,
determination of the time stricture of initial signals,
which requires the minimization of the distortions, i.e.,
provides the best filtration, is extremely urgent. At the
same time, the problem of a sufficiently high intensity
of pulses both emitted by an antenna and exiting the
medium should be solved.

In this paper, we describe methods of pulse-shape
synthesis for signals emitted by super-broadband
antennas in both the single-pulse emission and packet-
operation regimes. In the latter case, we deal with the
emission of sequences of periodically repeated pulses.
These methods must provide optimal pulse filtration at
a sufficiently high intensity level when the radiation
passes through a medium. In this case, the dynamic
properties of the medium can be adequately simulated
in the form of time-independent linear dynamical
systems.

A SINGLE-PULSE EMISSION REGIME

We assume that the shape of a super-broadband sin-
gle pulse is described by the function x(t). In addition,
we can assume that, with sufficient accuracy, x(t) = 0 as
t > T1 . In other words, we practically ignore any resid-
ual radiation as t > T1. In order to reduce the time T1 ,
we employ the methods described in [1, 2]. In the pro-
cess of passing signals through a medium, the pulse
shape x(t) is subjected to a certain dynamic transforma-
tion. As a result, at the output of the medium, the signal
y(t) appears. For a wide class of linear media with prop-
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ul. Bardina 4, Moscow, 117334 Russia

** Moscow Research Institute of Instrument Building, 
Kutuzovskiœ pr. 34, Moscow, 121170 Russia
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erties independent of time, the aforementioned
dynamic transformation can be represented as

(1)

Here, h(t – τ) corresponds to the pulsed transition func-
tion of a medium.

In order to solve the problem of optimal filtration,
i.e., of minimization of dynamic distortions arising in
the process of passage of a signal through a medium,
we introduce the functional I(y – x) depending on the
difference between the initial and transformed signals.
The simplest form of this functional is the integral qua-
dratic functional

where T is the time of observation of the signal y(t)
(T > T1). However, in solving the formulated problem,
i.e., finding the optimum law x∗ (t), the use of this func-
tional turns out to be insufficient. Indeed, the functional
satisfies only one requirement, namely, minimization of
the divergence between y(t) and x(t). In this case, no
conditions concerning the signal-intensity level are
imposed. By virtue of this fact, the absolute minimum
of the functional, which is equal to zero, is attained for
the trivial solution x(t) ≡ y(t) ≡ 0. Therefore, to ensure a
reasonably high intensity level for signals x(t) and y(t),
we should introduce the extended functional

(2)

where x0(t) is the given time-dependent function that
characterizes the necessary intensity of the signal x(t).
In a particular case, x0(t) = x, t ∈ (0; T1), x0(t) = 0, t ∈
[T1; ∞), where X is a sufficiently large constant, γ is a
weight factor determining the relation between require-

y t( ) h t τ–( )x τ( ) τ , t 0; T1( ),∈d

0

t

∫=

y t( ) h t τ–( )x τ( ) τ , t [T1; ∞).∈d

0

T1

∫=

I x t( ) y t( )–[ ] 2 t,d

0

T

∫=

I x γ,( ) y t( ) x t( )–[ ] γ x0 t( ) x t( )–[ ] 2+

0

T

∫ 
 
 

dt,=
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ments to the minimum distortion of the signal x(t) and
to its sufficiently high intensity.

Theorem 1. The function x∗ (t, γ) corresponding to
the solution of the problem on the absolute level of the
functional I(x, γ) (2) exhibits the following properties:
(a) x∗ (t, 0) = 0 and (b) limx∗ (t, γ) = x0(t) as γ  ∞.

The most efficient procedure for the determination
of the function x∗ (t, γ) is based on the employment of

the abstract theory of linear operators in the L2(0; T)
space and on the search for conditions determining the
time-independent behavior of the functional, which uses
the method of calculating its Gateaux derivative [3]. In
this case, the operator y(x) (1) and the function (2) can
be written in the form

y = Ax, (3)

and

(4)

respectively.
As a result of determining conditions for the time-

independent behavior of the functional I(x, γ) (4) (in
correspondence with the procedure described in [3]),
we arrive at the following operator equation with
respect to the desired function:

(5)

where A* is a linear operator conjugate to the operator A.
Equation (5) is a linear operator equation with the

solution

(6)

where

Since Eq. (5), being written in a nonabstract form,
belongs to the class of Volterra integral equations of the
second kind, the operator R(γ) entering into Eq. (6) is its
resolvent.

A PACKET-EMISSION REGIME
We now consider the emission by super-broadband

antennas of a packet of signals, i.e., a sequence of n
periodically repeated (with a period T) signals, each
having an identical pulse shape (with allowance for the
delay by the time of the period T: xi(t) = xi – 1(t – T), i = 2,
3, …, n). In this case, the problem of the determination
of the optimum pulse shape xi∗ (t) becomes consider-
ably more complicated. This is caused by the fact that
the response of a medium to a sequence of periodically
repeated signals is not a periodic function of time. (The
only exclusion is the case in which the number n is suf-
ficiently large and the process of attaining a periodic

I x γ,( ) Ax x– Ax x–,( ) γ x0 x– x0 x–,( ),+=

A*Ax A*x– γx+ γx0,=

x∗ t γ,( ) R γ( )γx0,=

R γ( ) A*A A* γ+–( ) 1– .=
regime can be ignored.) By virtue of this fact, solving
the problem of the determination of the pulse shape
x∗ (t), which is based on the best-filtration criterion, is
reduced to finding a T-periodic function x∗ (t), i.e., a
function defined for t ∈ [0; T], whereas the functional
I(x, γ) is defined for t ∈ [0; nT]. In this case, according
to the concept described above, functional (2) to be
minimized takes the form

(7)

where x(t) is a T-periodic function, y(t) is an aperiodic
function, and x0(t) is given in the same form as the
T-periodic function (in a particular case, it is constant).

When the desired function x∗ (t) is T-periodic, the
problem of minimizing functional In(x, γ) (7) cannot be
solved immediately in the analytical form on the basis
of the method developed in [3] using the above-
described procedure for the case of the single-pulse
emission. The problem can also be solved on the basis
of other methods neither well known in the modern cal-
culus of variations nor in the optimum-control theory.

In order to solve this problem, we should prelimi-
nary apply procedures and transformations similar to
those presented in [4]. They relate to the construction of
periodic correcting input signals in the case of antennas
operating in the packet regime of the signal emission. 

With this aim, we initially find a sequence of
Green’s functions describing the response of a medium
to periodically repeated emission signals and then use
the transformations given in [5, 6].

By analogy with transformations (1), the response
of a medium at the time of the action of the first signal
is determined by the formulas

(8)

In accordance with [4], the response of a medium is
determined by summing the responses to each of the
sequentially repeated signals. As a result of transform-
ing integration variables, we can write out the function
y(t) in the form

(9)

where the sequence of the Green’s functions ϕl(t, τ, T1, T)
is realized in the following manner:

In x γ,( ) y t( ) x t( )–[ ] 2 γ x0 t( ) x t( )–[ ] 2+

0

nT

∫ 
 
 

dt,=

y t( ) h t τ–( )x τ( ) τ , t 0( ; T1 ] ,∈d

0

t

∫=

y t( ) h t τ–( )x τ( ) τ , t T1( ; T ] .∈d

0

T1

∫=

y t( ) ϕ l(t τ, , T1, T )x τ( ) τ ,d

0

T1

∫=
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(10)

ϕ0 t τ T1, T, ,( )
h t τ–( ),

τ 0; t( ), t 0( ; T1 ] ,∈ ∈
τ 0( ; T1 ] , t T1( ; T ] ,∈ ∈




0, τ t( ; T1 ] , t 0( ; T ] ,∈ ∈





=

ϕ l t τ T1, T, ,( )
gl t τ–( ),

τ 0( ; t lT– ] , t lT( ; lT T1+ ] ,∈ ∈
τ 0; T1( ] , t lT T1+( ; l 1+( )T ] ,∈ ∈




gl 1– t τ–( ), τ t( lT ; T1– ] , t lT( ; lT T1+ ] ,∈ ∈





=

l 1 2 … n 2,–, , ,=

ϕn 1– t τ T1, T, ,( ) gn 1– t τ–( ), τ 0( ; T1 ] , t n 1–( )T ; ∞( ),∈ ∈=

gl t τ–( ) h t τ– iT–( ).
i 0=

l

∑=
As was indicated above, we had assumed that the
signal x(t) emitted by an antenna on passing through a
medium is subjected to a linear time-independent
dynamic transformation. In the sufficiently general case
of such a transformation, this results in the fact that the
signal y(t) at the output of a medium and the input sig-
nal are connected with each other by the linear differ-
ential equation

(11)

where d(p) and b(p) are constant-coefficient polynomi-
als in terms of the differentiation operator. The polyno-
mials have the degrees m and s, respectively. We
assume in this case that, first, m > s, and, second, the
equation d(p) =0 has m simple roots pk, k = 1, 2, …, m,
the real-valued parts of which are negative. By virtue of
this fact, the expressions for the functions h(t – τ),
gi(t − τ) entering into formulas (1) and (10) can be
rewritten as

(12)

The function y(t) (9) determines the response of a
medium to a sequence of periodically repeated signals,
which is expressed in terms of the pulse shape x(t) of a
single signal for t ∈ (0, T1).

d p( )y b p( )x,=

h t τ–( )
b pk( )
d ' pk( )
---------------e

pk t τ–( )
,

k 1=

m

∑=

gl t τ–( )
b pk( )
d ' pk( )
---------------e

pk t τ– iT–( )

i 0=

l

∑
k 1=

m

∑=

=  
b pk( )
d ' pk( )
---------------e

pk t τ–( )
1 e

pkT
–( )

1–
e

pklT–
e

pkT
–( ).

k 1=

m

∑
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Furthermore, similarly to (4), the functional In(x, γ) (7)
transforms into the form

(13)

Here, yl(t) denotes values of the function y(t), which it
takes within the semisegments t ∈ [lT; (l + 1)T], l = 0,
1, …, (n – 1). As a result, the functional In(x, γ) (13)
takes the form

(14)

As far as in each of the integration terms, the integration
variables tl vary within the same limits [0; T]; further-
more, instead of tl , we introduce the integration vari-
ables θ identical for each term. As a result, relation (14)
transforms into the form

(15)

It should be noted that the function yl(θ) in functional (15)
is determined by replacing the argument t – lT by θ in
the Green’s functions ϕl(t, τ, T1, T) entering into
formulas (10).

As a result, the functional yl(θ) can be written as

(16)

In x γ,( )

=  yl t( ) x t( )–[ ] 2 γ x0 t( ) x t( )–[ ]+
2{ } t.d

lT

l 1+( )T

∫
l 0=

n 1–

∑

In x γ,( ) { yl tl( ) x tl( )–[ ] 2

0

T

∫
l 0=

n 1–

∑=

+ γ x0 tl( ) x tl( )–[ ] 2 } dtl.

In x γ,( ) { yl θ( ) x θ( )–[ ] 2

0

T

∫
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n 1–
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+ γ x0 θ( ) x θ( )–[ ] 2 } dt.

yl θ( ) ϕ l θ τ T1 T, , ,( )x θ( ) θ,d

0
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where, upon the above-indicated replacement, the
sequence of the Green’s functions ϕl(θ, τ, T1, T) with
allowance made for (10) can be determined in the
form
(17)

ϕ0 θ τ T1, T, ,( )
h θ τ–( ),

τ (0; θ], θ 0( ; T1 ] ,∈ ∈
τ 0( ; T1 ] , θ T1( ; T ] ,∈ ∈




0, τ θ( ; T1 ] , θ 0( ; T1 ] ,∈ ∈





=

ϕ l θ τ T1, T, ,( )
gl θ lT τ–+( ),

τ (0; θ], θ 0( ; T1 ] ,∈ ∈
τ 0( ; T1 ] , θ T1( ; T ] ,∈ ∈




gl 1– θ lT τ–+( ), τ θ( ; T1 ] , θ 0( ; T1 ] ,∈ ∈





=

l 1 2 … n 1.–, , ,=
With due regard to expression for gl(t – τ) (12), the
function gl(θ + lT – τ) entering into relationships (17) is
represented as

(18)

To minimize the functional In(x, γ) (13), we apply a
modified procedure based on that described in [3]. In
this case, expression (16) is written in the abstract form

yl = Alx, (19)

where the linear operators Al and functional (15) with
expression (19) taken into account are determined by
Green’s functions (17) and by the formula

(20)

respectively. In accordance with [3], the condition of
the time-independent behavior of functional (15) is of
the form

(21)

where operators conjugate to operators Al (19) are
denoted as .

Similarly to the case of a single pulse, Eq. (21) is a
linear operator equation with respect to the desired
function x(t, γ). The solution to this equation is

where

gl θ lT τ–+( )
b pk( )
d ' pk( )
--------------- 1 e

pkT
–( )

1–

k 1=

m
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× e
pk θ τ–( )

e
pk θ τ– l 1+( )T+( )

–[ ] .

In x γ,( )

=  Alx x– Alx x–,( ) γn x0 x x0 x–,–( ),+
l 0=

n 1–

∑

Al*Al

l 0=

n 1–

∑ Al* γn+
l 0=

n

∑–
 
 
 

x γnx0,=

Al*

x∗ t γ n, ,( ) R γ n,( )γnx0,=
is the resolvent of the Volterra integral equation of the
second kind.

A STABLE PERIODIC REGIME

In the case in which the number of pulses n is suffi-
ciently large, it seems reasonable to consider a periodic
stable-emission regime. In this case, we assume that,
like the signal x(t) emitted by an antenna, the signal y(t)
at the output of a medium is also a T-periodic function
of time.

It is worth noting that the description of stable sys-
tem response (11) to an arbitrary periodic input signal
x(t) is possible on the basis of the formalism of pulse–
frequency characteristics, which was developed in [7].
However, a specific feature of the problem is that
x(t) = 0 as t ∈ (T1, T]. This makes it possible to employ
a simpler method to find the corresponding Green’s
function, provided that we use expression (12) for
gl(t − τ) and the sequence of the Green’s functions for
transient regime (10). It should be remembered that
lT  ∞ as t  ∞. At the same time, the difference
t – lT remains finite and corresponds to the current time
of a stable periodic regime.

With allowance made for this fact, as was indicated
above, Repk < 0, and we obtain from (12)

(22)

R γ n,( ) Al*Al

l 0=
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In a similar manner, we can prove that

(23)

Based on formulas (22) and (23), we can find from (10)
the stable response at the output of a medium as t  ∞,
n  ∞:

(24)

where

In the case of a stable periodic regime, the functional to
be minimized is

(25)

gl 1– t τ–( )
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lim
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--------------- 1 e

pkT
–( )

1–
e
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0
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ϕ θ τ– T1 T, ,( )
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

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I x γ,( ) y θ( ) x θ( )–[ ] 2

0

T

∫ γ x0 θ( ) x θ( )–[ ] dθ.+=
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In the abstract form, operator y (24) and functional (25)
have a form similar to (3) and (4), respectively. The
minimizing function x∗ (θ, γ) is determined in form (6)
in which the operator A and the conjugate operator A*
are determined from (24).

The theorem given above for the case of a single
pulse also remains valid for unstable and periodic
regimes of a packet emission.
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Orientation Dependence of g–e–a' Martensitic Transformations
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Austenitic stainless steels are important structural
materials that are widely applied in practice [1–3].
Depending on the concentration of Cr, Ni, Mn, and N,
as well as on test temperatures, these steels are
deformed by slipping and mechanical twinning and
undergo martensitic transformations from a high-tem-
perature γ phase to a face-centered close-packed ε
phase and body-centered tetragonal α' martensite [2, 3].
Deformation mechanisms in metastable Fe–Cr(18%)–
Ni(8–14%) steels have been experimentally studied for
polycrystals [2, 4, 5]. It was shown that types of the
arising dislocation structure are planar and cellular and
that the deformation mechanisms are translational slip-
ping and mechanical twinning. The ordering of γ–ε–α'
and γ–α' martensitic transformations turns out to be
dependent on both the crystallographic orientation of
grains with respect to an applied load and the character
of deformation (by tension or compression) [2, 4, 6].

In order to develop the theory of γ–ε–α' martensitic
transformations and to elucidate the physical mecha-
nisms underlying formation of ε and α' phases under
plastic deformation, it is necessary to systematically
investigate single crystals of these steels, which makes
it possible to directly examine an effect of the crystal
orientation on the transformations.

In studies of Fe–Cr(17%)–Ni(12%)–Mn(2%)–
Si(0.75%) (wt %) steels containing single crystals, we
investigated an effect of crystal orientation on the γ–ε–α'
martensitic transformation.

Single crystals of austenitic stainless steel chosen
for the experiments are characterized by low stacking-
fault energies γ0 equal to 0.025 and 0.015 J m–2 at T =
300 K and 77 K, respectively [6]. The low values of γ0 ,
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in combination with a high level of deforming stresses
caused by deformation at T = 77 K, promote loss of sta-

bility of the perfect 〈110〉  dislocation with respect to

its splitting into partial 〈211〉  Shockley dislocations

[3, 6]. The ultimate case of such a splitting results in the
appearance of an intrinsic stacking fault in the slip
plane. This stacking fault can be considered as a
nucleus of the ε phase [5, 7]. In the process of motion

of the partial 〈211〉 dislocations through a single

close-packed (111) plane, ε martensite forms, whereas
a mechanical twin in the face-centered cubic lattice is

produced by shifting the 〈211〉  dislocations in each

(111) plane [7].

Analysis of the forces that act on a perfect [–110]

dislocation split into two b1 = [–211] and b2 =

[−12–1] partial Shockley dislocations makes it possi-

ble to calculate splitting d as a function of applied-
stresses σ, of their orientation, of their sign (ten-
sion/compression), and of stacking-fault energy γ0:

(1)

(2)

Here, γ0 is the stacking-fault energy, which depends on
both the alloy composition and the deformation tem-
perature [6, 8]; σ corresponds to axial stresses applied

to the crystal; b1 is the Bürgers vector of the 〈211〉
partial Shockley dislocation; m1 and m2 are the Schmid
factors for the leading twinning Shockley dislocation b1
(which produces an intrinsic stacking fault in the pro-
cess of its motion in the slip plane) and for trailing dis-
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Fig. 1. Curves for flow and precession of crystal axes under deformation by tension of single crystals in Fe–Cr(17%)–Ni(12%)–

Mn(2%)–Si(0.75%) steel: (1, 1'), (2, 2'), (3, 3'), (4, 4'), and (5, 5') are the axes of [ 11], [011], [ 23], [012], and [001] crystals,
respectively.

1 1

(2')
location b2 (which regains a regular atomic packing in
the slip plane), respectively; and the “plus” and
“minus” signs correspond to deformations by tension
or compression, respectively [3, 6, 9]. Equations (1),
(2) and the table show that varying the crystal orienta-
tion by tension, it is possible to control the value of
splitting d and, thereby, the ability to develop the γ–ε
martensitic transformation.

The single crystals of Fe–Cr(17%)–Ni(12%)–
Mn(2%)–Si(0.75%) austenitic stainless steel were
grown by the Bridgman method using seeds placed into
alundum crucibles in ambient helium. The method of
preparing test samples is described in [6]. To determine
the deformation mechanism acting in crystals oriented
for a single shift, we investigated a variation in the ori-
entation of the crystal axis under deformation [10]. The
phase composition of deformed crystals was examined
by both the electron-microscopy and X-ray diffraction
methods using techniques described in [11, 12].

In single crystals of steel taken at T ≥ 77 K, a mar-
tensite phase formed by cooling is absent. At T =
300 K, plastic deformation occurs because of slipping
up to fracturing of the crystals. The γ–ε–α' martensitic
transformation occurs only after deformation by slip-
ping at T = 77–177 K. In this study, we present the
results of investigations at T = 77 K.

It is found that the values of plastic deformation εsl,
preceding the γ–ε–α' martensitic transformation, and

critical cleavage stresses  and  (for the γ–ε andτcr
γ–ε τcr

ε–α'
DOKLADY PHYSICS      Vol. 49      No. 10      2004
ε−α' martensitic transformations, respectively) depend
on crystal orientations (see the table and Fig. 1).

In [011] crystals, the γ–ε martensitic transformation
occurs after a small deformation by slipping, εsl = 3%
(Fig. 1, curve 2). The plastic flow in the initial and con-
jugate systems is realized at ε < 3%, whereas, at ε > 3%,
a γ–ε martensitic transformation develops via the

Lüders band in only the [ 11](111) system. This con-
clusion is based on investigation of the crystal-axis pre-
cession in the γ–ε martensitic transformation (Fig. 1,
curve 2'). Using the electron-microscopy method, we

2

500 nm

γ

γε
ε

002g
000

1011e
220g

111g
0002e

Fig. 2. Dislocation structure of [011] single crystals in Fe–
Cr(17%)–Ni(12%)–Mn(2%)–Si(0.75%) steel under defor-
mation by tension at 77 K (ε = 24%). The foil plane is 110γ.
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Basic characteristics of γ–ε–α' martensitic transformations in single crystals of Fe–Cr(17%)–Ni(12%)–Mn(2%)–Si(0.75%) steel under
deformation by tension at 77 K

Parameters
Crystal orientations under tension

[001] [011] [ 11] [ 23] [012]

msl 0.41 0.41 0.27 0.45 0.5

m1 0.236 0.471 0.314 0.45 0.4

m2 0.47 0.24 0.16 0.35 0.4

Q = 0.12 –0.12 –0.08 –0.05 0

εsl before the onset of the γ–ε
martensitic transformation, %

15 3 5 18 70

σcr for the onset of the γ–ε
martensitic transformation, MPa

900 480 770 640 1120

τcr for the γ–ε martensitic
transformation, MPa

212 230 240 290 450

γeff, J m–2 0.021 0.0078 0.0097 0.012 0.015

ε before the onset of the ε–α'
martensitic transformation, %

20 28 10 18 80

σcr for the onset of the ε–α'
martensitic transformation, MPa

1000 1080 980 640 1280

τcr for the ε–α' martensitic
transformation, MPa

300 460 280 280 570

 [4] 0.0597 0.0237 0.05 0.0665 0.0609

20 60 40 60 14

10.2 12 3.4

Note: msl is the Schmid factor for slipping in the initial slipping [ 01](111) system, m1 is the Schmid factor of the leading [ 11] Shockley

dislocation, m2 is the Schmid factor of the trailing [ 2] Shockley dislocation in the [ 11](111) system, and Q is the orientation

factor [9]. The quantities τcr of the γ–α' martensitic transformations were calculated for the [ 01]( 21) system [4].

1 1
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1 1 2

1 1
observed plates of the ε phase in the same [ 11](111)
system in combination with a high density of intrinsic
stacking faults in the initial (111) slipping plane. The
stage characterized by a linear hardening at ε > 12% is
associated with the simultaneous development of the
γ−ε martensitic transformations in both systems
(Fig. 2). The precession of the crystal axis occurs

toward the [ 11] pole, Therefore, the linear-hardening
stage at 12% < ε < 24% is associated with developing
the ε phase, preferably in the initial slipping system. At
ε > 24%, α' martensite is detected by both the electron-
microscopy and X-ray diffraction methods.

In [ 11] crystals, the γ–ε–α' martensitic transforma-
tion is observed for ε > 5% (see Fig. 1, curve 1; Fig. 3;

2

2

1

and the table). At the instant of time when the ε marten-
site appears, the dislocation structure is characterized
by a high density of intrinsic stacking faults and the

〈110〉  perfect dislocations split into 〈211〉  partial

Shockley dislocations. The ε martensite develops in
several systems simultaneously, and α' martensite is
observed in areas in which ε-martensite plates intersect
each other.

Thus, in [011] and [ 11] crystals, conditions for the
γ–ε martensitic transformation are attained at minor
plastic deformations by slipping (ε < 3–5%); the
values of τcr for these transformations are equal to

230–240 MPa. γ–α' martensitic transformations in [ 11]

a
2
--- a

6
---

1

1
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crystals are observed for ε = 10% and τcr = 280 MPa and,
in [011] crystals, for ε = 28% and τcr = 460 MPa (see
the table). A high work-hardening coefficient ΘII at the

linear stage of hardening in [011] and [ 11] crystals is
associated with the interaction between ε and α' mar-

tensites. The ratio  (G is the shear modulus for steel,

which equals 85 × 103 MPa at 77 K) exceeds by a factor
of three to five those usually observed for slipping in

1

ΘII

G
-------

002g

ε

γ

300 nm

α

1010e
110a

111g
–

000

112a
– –

224a
– –

Fig. 3. Dislocation structure of [–111] single crystals in Fe–
Cr(17%)–Ni(12%)–Mn(2%)–Si(0.75%) steel under defor-
mation by tension at T = 77 K (ε = 10%). The face-centered
close-packed phase, the body-centered tetragonal phase,
and the face-centered cubic phase are ε martensite, α' mar-
tensite, and the γ phase, respectively. The foil plane is 110γ.
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pure face-centered cubic metals and in their substitu-
tion alloys with close values of γ0 (see the table) [10].

In [ 23] and [012] crystals, γ–ε martensitic trans-
formations take place after plastic deformations of 18
and 70% by slipping, respectively; i.e., when the crystal
axis in the process of plastic flow attains the [001]–

[ 11] symmetral (a symmetral is a perpendicular
passing through the midpoint of a segment) upon pre-

cession of the crystal axis toward the [ 01] pole (Fig. 1,
curves 3, 3', 4, and 4'). The critical cleavage stresses τcr
for the γ–ε martensitic transformations in [012] and

[ 23] crystals are equal to 440 and 290 MPa, respec-
tively. We should note that the γ–α' and γ–ε martensitic

transformations in both [ 23] and [012] crystals start
virtually simultaneously. This is confirmed by both
investigation of the dislocation structure and phase
analysis (Fig. 4). The stresses τcr for γ–ε and γ−α' mar-

tensitic transformations in [ 23] single crystals lie
within the range 280–290 MPa. For [012] single crys-
tals, the critical cleavage stresses τcr for γ–ε and γ−α'
martensitic transformations are equal to 450 and
570 MPa, respectively.

In [001] crystals, no ε and α' phases are observed by
the X-ray diffraction method (Fig. 4). At ε > 15%, the
electron-microscopy method makes it possible to
observe ε martensite, twins, and extrinsic stacking
faults. The volume fraction of α' martensite turns out to
be close to 2%. The formation of α martensite occurs at
ε > 20%, and its volume fraction does not exceed 1%.
Thus, at 77 K, the basic mechanism of deformation in
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1
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004ε

220α
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ε = 70%

ε = 10%

ε = 18%

ε = 10%

ε = 20%

[012] [123] [001]

Fig. 4. Phase composition of single crystals in Fe–Cr(17%)–Ni(12%)–Mn(2%)–Si(0.75%) steel as a function of the degree of plastic
deformation by tension at T = 77 K.
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[001] crystals is slipping. The ratio  is proved to be

close to that usually observed in pure face-centered
cubic crystals oriented for multiple slipping (see the
table) [10].

The physical reason for a high orientation depen-
dence of developing the γ–ε martensitic transformation
under plastic deformation of single crystals in Fe–
Cr(17%)–Ni(12%)–Mn(2%)–Si(0.75%) steel is associ-
ated with the effect of the external-stress field σ on the
splitting value d according to relations (1) and (2).

Under deformation by tension of [011] and [ 11]
crystals, the Schmid factors for the partial Shockley
dislocations b1 turn out to be larger than those (msl) for
deformation by slipping. The orientation factor is Q < 0
and attains the maximum values in these orientations
(see the table). In combination, both these factors pro-
mote nucleation and growth of the intrinsic stacking
faults, i.e., the development of γ–ε martensitic transfor-
mations under minor deformations by slipping. Nucle-
ation of ε martensite can be caused by the action of a so-

called slipping source when a perfect 〈110〉 disloca-

tion is split in its slipping plane as γeff  0 (see rela-
tions (1) and (2) and the table), forming a nucleus of the
ε phase [13].

In the [012] and [ 23] orientations, the stresses in
the slipping and twinning systems turn out to be the
same—m1 ≈ msl—and the modulus of the Q factor

decreases compared to that in [011] and [ 11] crystals
(see the table). Therefore, in these orientations, the con-
ditions under which the mechanism of deformation by
slipping is replaced by the γ–ε martensitic transforma-
tion are attained at the final stages of plastic flow. It
should be noted that the change of these mechanisms
takes place at the moment the crystal axis attains the

[001]–[ 11] symmetral. There, the values of the
Schmid factors for the initial and conjugate slipping
systems are equal to each other. Hence, interaction
between the two slipping systems can result in the for-
mation of steps on the dislocations, which can act as
pole sources of ε martensite [14].

In [001] crystals, where m1 < msl, the orientation fac-
tor Q becomes positive. As a result, γeff increases,
whereas d decreases, and formation of intrinsic stack-
ing faults and of the γ–ε martensitic transformation
does not occur.

The orientation dependence of the ε–α' martensitic
transformation of single crystals in steel is specified by
two reasons. Firstly, α' martensite in austenitic stainless
steels with low γ0 is formed in the lamellas of the ε phase.
Therefore, the ε phase is considered to be an intermedi-
ate phase for the γ–α' martensitic transformation [2, 4].

In [ 23] and [012] crystals, α' martensite is formed
after strong deformation by slipping due to hampering
of the γ–ε martensitic transformation. In [001] crystals,

ΘII

G
-------

1

a
2
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1

1

1

1

α' martensite is absent because of suppression of the

formation of ε martensite. Finally, in [ 11] and [011]
crystals, the γ–ε martensitic transformation occurs in

the case of ε ≥ 3–5%. However, in [ 11] and [011]
crystals, α'martensite is observed even for deforma-
tions ε ≥ 5%, and ε ≥ 26%, respectively. Secondly, to
explain the differences between the ε−α' martensitic

transformations in [ 11] and [011] crystals, it is neces-
sary to take into account a factor describing the orien-
tation dependence of the work U required to form
α'-martensite crystals [4]:

(3)

Here, ω0 = 0.192 is the shear component of the shape
variation and ε0 = 0.089 is the shape-variation compo-
nent normal to the habit plane (dilatation component)
of the 〈110〉  (112) shift system, both of which lead to
the formation of α' martensite; λ is the angle between
the shear direction and the crystal axis; and Θ is the
angle between the normal to the habit plane and the
crystal axis [2, 4].

As is seen from the table, the ratio  attains maxi-

mum values for the [ 11], [ 23], and [012] orienta-
tions. These are orientations in which α' martensite
nuclei appear in plates of the ε phase immediately after
the γ–ε martensitic transformation. In [011] crystals,

the ratio  has its minimal value. Therefore, the

required level of stresses needed for nucleation and
growth of α' martensite is attained by cold hardening in
the process of the development of the γ–ε martensitic
transformation in two intersecting systems and in the
process of the crystal-axis reorientation under preces-
sion [2, 4, 5].

Thus, in single crystals of austenitic stainless steels,
we have found experimentally the orientation depen-
dence for the development of the γ–ε–α' martensitic
transformation under plastic deformation. It is shown
that the field of external stresses promotes the appear-
ance of a nucleus of the ε phase, which is caused by

splitting the perfect 〈110〉  dislocations into partial

〈211〉  Shockley dislocations. These results can be

used for developing models describing γ–ε–α' marten-
sitic transformations in polycrystals.
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The evolution of the structure and properties, as well
as the possibility of the formation of nanostructural
states in metals and alloys under severe plastic defor-
mations, have been investigated by numerous authors
[1–7]. Analysis of the data available in the literature
shows the existence of a wide spectrum of structural
states formed at different deformation stages and sig-
nificant discrepancies in both the characteristics of the
observed structural states and the description of possi-
ble paths of structural evolution with an increasing
degree of deformations.

In [1], the conception of an ultimate deformation
structure was proposed. According to this conception,
upon attaining a certain degree of plastic deformation,
mutual misorientation of mesoscopic-scale domains
and formation of boundaries of microscopic-scale
grains occur. The fundamental role of rotational plastic-
ity modes at the stage of developed plastic deformation
was shown and a quantitative description of mesode-
fects arising at grain boundaries was given. It was indi-
cated that, in this case, fragment sizes cannot be lower
than 0.2 µm [1]. Therefore, the formation of a nano-
structural state under severe deformation remains out-
side the framework of this approach. Electron-micros-
copy studies have proven that the evolution of the metal
structure in the plastic-deformation process exhibits a
clearly pronounced stage character [8]. At initial defor-
mation stages, formation of a dislocation cellular struc-
ture occurs. In the deformation process, further passage
to the fragmentation structure, as a rule, occurs via an
intermediate state, namely, via formation of a band
structure, i.e., a set of almost parallel reorientation
bands [4, 7, 8].

On the basis of experimental data obtained, theoret-
ical analysis was performed of different scenarios on
the formation of the fragmented structure [1–8]. How-
ever, by now, there have been no clear physical concep-
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tions why different materials demonstrate the unequal
character of the evolving defect structure and how to
explain the transformations of some of them into the
nanocrystalline and even amorphous states with
increasing degree of deformation.

In the present study, we show the possibility of real-
izing several variants of cyclic development of the
defect structure at the stage of developed plastic defor-
mation at a low and moderate homological tempera-
ture, T/Tmelt < 0.3.

At an arbitrary stage of plastic deformation of a
material, both processes resulting in the elevation of the
accumulated elastic energy and relaxation processes
leading to its lowering are simultaneously realized.
Macroscopically nonequilibrium systems exist in the
state of local equilibrium provided that the rate of vari-
ation of their macroscopic state is considerably lower
than the rate of each elementary process determining
this microscopic state. The assumption that, in the
deformation process, a structure appears that corre-
sponds to the energy minimum represents the facts if
characteristic times of accommodation processes pro-
ceed much faster than the formation of this structure. In
order to realize these accommodation structural pro-
cesses, dislocations must possess sufficiently high
mobility.

In analyzing deformation structures, an approach
based on the concepts on low-energy dislocation struc-
tures (LEDSs) [9] has been successfully applied. One
of the authors of the present study (V.A. Pozdnyakov)
has extended this approach in [4] to dislocation-discli-
nation structures. In this case, the formation of band
structures and fragmented structures is considered as a
relaxation process of the division of the system into so-
called plastic domains. This process lowers the elastic
deformation energy as much as the division of ferro-
plastics or martensite crystals into elastic domains [10].

With increasing misorientation angle θ and decreas-
ing band thickness d in the process of plastic deforma-
004 MAIK “Nauka/Interperiodica”
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tion, the band structure becomes less stable. However,
under validity of the condition [4]

(1)

where γ is the specific energy of band boundaries, and
em is elastic deformation, the fragmented structure
becomes more profitable from the energy standpoint:
the passage to misoriented approximately equilibrium
domains takes place, i.e., the fragmentation occurs [1].

Thus, in the process of evolution of the defect struc-
ture in the course of plastic deformation, new basis
structural states appear that are characterized by the
minimum free energy. The lower the dislocation mobil-
ity is, the lower the ability to relax arising stresses, the
higher the degree of nonequilibrium of the defect struc-
ture, and the stronger the differences between the actual
and basis quasi-equilibrium structures.

Different variants of the further evolution of frag-
mented structure are possible. In the case of a suffi-
ciently high dislocation mobility and of realization of
various mechanisms of dynamic recovery, the average
sizes and misorientations of fragments of the regular
structure being formed attain a saturation level. If the
dislocation mobility is low, the process of the deforma-
tion-structure development can be unstable. In [3], as a
result of studies of the copper substructure after severe
deformation by torsion (up to 4000%), processes of
dynamic recrystallization are observed. These pro-
cesses occur at room temperature and exhibit a collec-
tive character of reorientation (by means of a certain
structural explosion). Under further deformation, the
fragmentation arises again but, in this case, the size of
the fragments being formed is considerably smaller
than that of the initial ones. In the course of subsequent
deformation, reduction of internal elastic stresses
occurs due to the development of recovery processes.
The nucleation of fresh grains is possible at low tem-
peratures in local strongly cold-hardened domains.

In [11], an effect of periodic variation of the defect
structure and microhardness of a material being
deformed with ε = 0.3–0.6 and with the characteristic
deformation period δε has been discovered and investi-
gated (nonthermal softening phenomenon). In [12], a
model of periodic variation of the dislocation structure
and deformation behavior has been proposed. The
model is based on the concepts of rotational instability
of plastic deformation. Nonmonotonic deformation
behavior under severe plastic deformation is, appar-
ently, of a more general nature. This behavior can be
associated with variation of the type of the regular
defect structure, e.g., with the realization of local low-
temperature recrystallization processes. It can also be
associated with the activation of a new structure-scale
level of plastic deformation, namely, fundamental
relaxation phenomena in the process of severe plastic
deformation. As a result of the relaxation of high local

d* dcr*< 2γ
em

------,=
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stresses and their moments, nanocrystals can be

formed. If the relaxation rate  of internal

stresses in a fundamental relaxation process exceeds

the deformation-hardening rate , i.e.,

(2)

then softening of the material and nonmonotonic defor-
mation behavior at super-high levels of plastic defor-
mation with a certain deformation period ∆ε @ ∆ε are
possible (Fig. 1).

At higher temperatures, continuous recrystallization
can proceed [13]. If the free energy of a defect crystal
is higher than that of the corresponding amorphous
state, then amorphization of the crystal in the deforma-
tion process is probable [14].

Various variants of further development of the frag-
mented structure in the course of continuing deforma-
tion are possible, depending on the material’s nature, as
well as on the temperature, rate, and character of the
active deformation under condition of suppressing frac-
ture processes (Fig. 2).

(1) The average sizes and misorientation of frag-
ments attain the saturation level. In this case, the size of
fragments free of dislocations does not noticeably
change with increasing the degree of deformation.

(2) Cyclic variations of the size and morphology of
structural elements take place under the appearance of
low-temperature recrystallization. In this case, forma-
tion of fresh defect-free grains occurs in the process of
fragmented-structure deformation as a result of low-

dσ
dε
------ 

 
rr

dσ
dε
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 
dhr

dσ
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 
dhr

,≥

Fig 1. Schematic deformation curves for high degrees of
deformation in materials with different degrees of disloca-
tion mobility (with yield stresses σs1 > σs2 > σs3) at temper-
atures T1 and T2, T2 @ T1 ≈ 300 K.
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Fig 2. Variants of developing deformation structure under continuing severe deformation of materials with different dislocation
mobilities.
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temperature recrystallization. Furthermore, the second
cycle of sequential variation of structural states is real-
ized up to the next stage of low-temperature recrystalli-
zation.

(3) A continuous decrease in the fragment sizes and
formation of nanostructures with a possible further
transition into the amorphous structural state occur.

As a rule, these processes proceed nonuniformly
over the volume of the deformed material. It is evident
that with decreasing the dislocation mobility and/or
with lowering the deformation temperature, the proba-
bility of realizing a certain sequence of events increases
in the direction from the first variant toward the third
one (Fig. 2) Thus, the variety of structural states
observed in various experiments on severe plastic
deformations is stipulated, first, by different above-con-
sidered variants of defect-structure evolution and, sec-
ond, by different stages of realizing the structural state
in each of these variants, which have managed to pro-
ceed under the given deformation conditions. Thus, the
wide spectrum of observed structures, including frag-
mented, nanocrystalline, and amorphous ones, satisfies
the conception developed in this study.
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On the night of September 25, 2002, the inhabitants
of the Mama–Chuœsk and Bodaœbo districts of Irkutsk
oblast observed the flight of a bright fireball accompa-
nied by light and sound effects along with an intense
airwave that extended to great distances. Weather con-
ditions were unfavorable for observation of the meteor-
oid. Nevertheless, many eyewitnesses of this event
noted the gradual appearance of a uniform white bright
luminescence to the southwest that occupied the entire
sky and, then, shifted from the Vitim River valley in a
northeastern direction. According to the testimony of
some eyewitnesses, the color of this luminescence
changed from white to blue and reddish-claret. Local
inhabitants who observed the flight stated that it had
been accompanied by a dummy boom and finished with
an impact and shaking of the earth.

The Vitim meteoroid caused a great deal of acoustic
effects. The eyewitnesses noted that acoustic phenom-
ena preceded and accompanied the luminescence (a
rustle, crackling, and boom as if from an aircraft).
These effects may be associated with the production of
an electromagnetic wave in the atmosphere.

The appearance of an alternating electric field
explains the fact that at this time, incandescent lamps in
houses in the settlement of Mama became slightly
luminescent, although, at that time, there was no elec-
tric power in the area. These phenomena allow classifi-
cation of the Vitim meteoroid as an electrophone event.

There was almost no objective recording of seismic
phenomena associated with the fall of the Vitim mete-
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oroid. According to data of the Institute of Geosphere
Dynamics, Siberian Division, Russian Academy of Sci-
ences, obtained by O.N. Popova, the records of the
Chara, Nelyaty, and Peleduœ seismic stations, located in
the northern part of Irkutsk oblast, exhibited a weak
signal that corresponded to a local event occurring at
that time. The flight of the meteoroid was detected by
the surveillance system of a US satellite. Bright lumi-
nescence was recorded by the satellite at an altitude of
62 km at a point with coordinates of 57.21° N and
112.90° E and was traced further to a point with an
altitude of 30 km and coordinates of 58.21° N and
113.46° E. Based on these data, the trajectory of the
meteoroid fall was reconstructed. This allowed its incli-
nation angle (approximately 34°) with respect to the
horizon to be estimated.

Three expeditions with the participation of scientists
from the Institute of Solar and Terrestrial Physics (Sibe-
rian Division, RAS), Institute of Geochemistry (IGC,
Siberian Division, RAS), and Institute of the Earth’s
Crust (IEC, Siberian Division, RAS) conducted work in
the region of the probable meteoroid fall over 2002–
2003. In one of these expeditions, scientists from the
Meteoritic Committee of the RAS also took part. At the
same time, groups of scientists and students from Yeka-
terinburg and Krasnoyarsk participated in the search for
the meteoritic substance. None of the groups managed
to find craters or meteoroid fragments. However, multi-
ple instances of damage to forests were observed near
the meteoroid flight route (Fig. 1). Numerous broken-
off tops of foliate and coniferous trees were observed,
as well as broken branches and fallen trunks 30–40 cm
in base diameter, sometimes along with roots. Accord-
ing to the testimony of local inhabitants, that date of
this forest damage, which had been based on a number
of apparent attributes, corresponded to the autumn of
2002. Data of the Weather Forecast Service indicate the
absence of hurricane winds in this region during the
time period under consideration.

In spite of certain confusion, the fact of mechanical
action on the ambient nature of the shockwave caused
by the meteoroid flying through the lower atmosphere
cannot be doubted. However, the amplitude of the wave
incident from an altitude of 20–30 km must have been
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Map of the region of the expedition studies and snow-blanket analysis near the point of fracture and supposed fall of the
Vitim meteoroid. The following conventional denotations are used: (1) region of expedition studies of 2002–2003, (2) winter sta-
tions of the expedition of 2003 [(1) Bol’shoœ Severnyœ settlement, (2) mouth of the Berezovyœ stream], (3) summer stations of the
expedition of 2003 [(1) upper part of the Mara river left tributary, (2) mouth of the Mustag stream, (3) mouth of the Upornyœ stream,
(4) right bank of the Mara River upper flow], (4) projection of the calculated part of the meteoroid-flight trajectory, (5) projection
of the flash point recorded by a US satellite, (6) suggested point of the meteoroid fall, (7) region of the observed forest damage and
inrush, (8) points of sampling of the blanket of snow, (9) points of sampling snow on the Vitim River ice, and (10) points of finding
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insignificant, which contradicts the pattern of numer-
ous fallen and damaged trees.

The basic goal of the second Vitim expedition in
April 2003 was the selection of snow samples from
bald-peak parts of the mountain ridge along the mete-
oroid flight trajectory and at the probable fall point of
the meteoroid. According to the Weather Forecast Ser-
vice, 2–5 cm of snow already lay at that time on the
mountain peaks. Therefore, particles of a material of
cosmic origin might be retained in the lowest snow
layer. At the moment of sampling, the blanket-of-snow
thickness exceeded 1.5 m. The lowest snow layer (10–
15 cm), covering the frozen ground and taken from
cleaned areas each of 1–2 m2, was chosen for samples.
In total, 13 snow samples at the tops of cone-shaped
hills with altitudes of 1000 m and higher (including a
background snow sample taken from ice of the Vitim
River) were selected for analysis.

The projection of the Vitim meteoroid route falls
within the territory of the Mama–Chuœsk district, where
rocks of carbonate-terrigenous strata of the Mama series
are scattered over a recent erosion cut. These rock com-
plexes were metamorphosed in conditions of the
amphibole phase. Then, they underwent recrystallization
and anatexis, accompanied by the formation of numer-
ous granite cores and mica-bearing pegmatites [1, 2].
DOKLADY PHYSICS      Vol. 49      No. 10      2004
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Then, diagnostics and investigation of mineral par-
ticles extracted as a result of filtration of thawed water
from the snow samples were carried out. Among frag-
ments of mineral granules found in rocks of the given
region, hollow spherules with a size usually not exceed-
ing 100–200 µm were found on some filters. The frag-
ments of these brittle spherical formations have brown
or dark-brown color tints. X-ray diffraction analysis
performed by Z.F. Uschapovskaya (IEC) made it possi-
ble to identify oxide (spinel, cristobalite) and silicate
(enstatite, nepheline) minerals in the material of the
spherules. All these mineral phases are encountered in
meteorites—in particular, in chondrites [3].

The composition of particles found in the blanket of
snow were analyzed by L.A. Pavlova (IGC) and
N.S. Karmanov (Institute of Geology), having used,
respectively, a Joel Superprobe-733 electronic
microanalyzer and an LEO 1430VP electron micro-
scope (manufactured by the LEO Company) that had
been equipped with an Inca Energy 300 energy-disper-
sion analyzer manufactured by Oxford Instruments
Company (see Table 1). The data obtained testify to the
existence of both sulfide and metallic phases among the
microparticles.

A grain of Ni-contained pyrite and particles of fer-
rous compounds, i.e., oxidized and metallic iron, as
well as nickelous iron, were identified. A pyrite particle
3–4 µm in size is associated with a particle of metallic
Mn-contained iron among sooty material. A nickelous-
iron particle 6 µm × 8 µm in size is associated with a
quartz microparticle (Fig. 2a). The particle is inhomo-
geneous and contains inclusions of metallic iron with
admixtures of Ni and nickelous iron. The found sulfide
and metallic phases are usual for meteorites; however,
they are also found in terrestrial rocks of various origin.
At the same time, the ratio of Ni and Fe in the nickel-
ous-iron particle corresponds to taenite and kamacite
minerals characteristic of meteoritic substance [4]. The
comparison of the data obtained with those for iron and
nickel in the metallic particles of some meteorites
(Table 2) shows the consistency of the concentrations
observed.

Thus, spherules having the characteristic porous
structure are present in the material under study, which
was obtained from the blanket of snow within the
region damaged by the Vitim meteoroid. The fact, in
itself, of their presence and similarity to micrometeor-
ites from other regions of the world [5, 6] (Fig. 2d) tes-
tifies to the possible meteoritic nature of these forma-
tions. The shapes of the spherules and their structural
features do not contradict the version of their possible
origin in the meteoroid ablation trail. This conclusion is
also confirmed by the analysis of mineral associations
found in the spherule compositions but not characteris-
tic of basic rocks in the Mama–Chuœsk district.

Prismatic-shape compositions of Fe–Ti-minerals
(up to 4 µm × 7 µm) were observed in the porous-struc-
ture spherule (Fig. 2c). The calculation of crystal-
DOKLADY PHYSICS      Vol. 49      No. 10      2004
chemistry formulas for these minerals with high con-
centrations of Mn, Fe, and Ti and low concentrations of
Si and Al shows the stoichiometric noncorrespondence
to oxide phases such as ilmenite or spinel. At the same
time, this mineral exhibits the stoichiometry in the case
of calculation by the formula X3O5 characteristic of
minerals of the pseudobrookite–armalcolite group. The
material composition of the spherule matrix is calcu-
lated on the basis of formulas for clay minerals and
hydromicas. This material can be a mixture of illite and
montmorillonite components. The matrix of a fragment

Table 1.  Representative compositions of mineral particles
in the ablation trail of the Vitim meteoroid (blanket of snow)

Component
Fe–Mn Pyrite Taenite Kamacite

1 2 3 4

Fe 77.85 31.52 28.3–75.0 91.0–96.5

Ni nf    1.21 21.5–70.6 2.5–8.4

Mn   0.40 nf nf nf

S nf 50.90 nf nf

Sum 78.25 83.63 100.00 100.00

Component
Illite Ti–Fe Amph Fe–Ti

5 6 7 8

SiO2 32.60 3.67 36.83 3.46

TiO2 1.41 46.31 5.18 20.31

Al2O3 26.90 3.10 10.56 2.41

Fe2O3 21.89 18.63 17.2 17.15

FeO 8.88 4.54 2.73 44.68

MnO nf 11.85 nf 0.37

MgO 1.85 0.67 1.59 1.90

CaO 0.54 nf 8.03 0.64

Na2O 0.55 nf 5.28 0.67

K2O 2.70 nf 1.80 0.28

P2O5 nf nf 2.45 nf

Sum 97.32 88.77 91.65 91.88

Σ K* 14 3 15 3

Σ A* 20 5 22 4

Balance (±) –4 0 –2 0

Note: Mineral phases: 1. Mn-containing iron; 2. Ni-containing
pyrite; 3. Taenite; 4. Kamacite (the metal concentration range
is indicated for compositions normalized to 100%); 5. Spher-
ule matrix with a porous structure (illite?); 6. Ti–Fe mineral
inclusions in the illite matrix (stoichiometry of minerals of
the pseudobrookite–armalcolite group); 7. Matrix of the
amphibole-composition spherule; 8. Inclusions in the Fe–Ti
mineral matrix (stoichiometry of spinellides). The ratio
Fe2O3/FeO is calculated according to stoichiometry. ΣK* is
the sum of cations; ΣA* is the sum of anions. Balance (±)
implies anion balance. The abbreviation nf indicates that this
component has not been found.
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Fig. 2. Particles extracted out of the blanket of snow in the region of the Vitim meteoroid flight route. Particle images are obtained
by the method of electron backscattering: (a) particle of nickelous iron (Fe–Ni) and of quartz (Qtz), (b) spherule fragment with the
matrix of the amphibole composition (Amph) and inclusions of Fe–Ti minerals (spinellides), (c) spherule with the illite matrix and
inclusions of Fe–Ti minerals with the pseudobrookite stoichiometry, and (d) micrometeorite found in the Antarctic blanket of snow [5].

Illite?
of another spherule with the size exceeding 100 µm ×
100 µm (Fig. 2b) is represented by a rather homoge-
nous mineral compound containing very fine crystal-
line precipitations of Fe–Ti minerals (spinellides) and
concretion of needle-shaped crystallites of Ba-con-
tained silicates (up to 15% of Ba). In the edge zones of
the spherule fragment under study, which has reaction-
character contacts, plagioclase crystals with a signifi-
cant iron content were found. The observed silicate
composition of the second-spherule matrix and the
results of the calculation for this composition on the
basis of the amphibole crystal-chemistry formula show
that the substance can correspond to a mineral mixture
of titanous amphibole (kaersutite) and Na–Ca amphib-
oles. As is well known, alkaline amphiboles—i.e.,
arfvedsonites [7] and kaersutites [8]—have been found
before in meteoric material, as well as in regolith brec-
cias. In some cases, Ba-containing glasses were also
found in meteorites [9].

Thus, the diagnostics carried out of particles found
in snow samples and studies of their mineral and chem-
Table 2.  Composition (wt %) of nickelous iron in samples of some meteorites [4] and in particles found in the blanket of
snow within the area of the Vitim meteoroid fracture

Meteorite
Kamacite Taenite

Fe Ni Fe Ni

Kaali 91.6–92.7 6.1–6.5 64.6–71.4 27.5–35.5

Chinge 95.1 4.9 79.3 20.0

Pilistvere 92.2–93.0 6.9–7.8 80.1–89.2 9.6–19.5

Bakhmut 91.7–93.3 5.9–6.0 64.2–72.3 27.6–35.9

Krymka 92.5–94.9 3.9–6.0 48.8–58.4 40.3–49.4

Zhigalovka 92.0–92.5 5.5–6.5 47.7–71.1 28.4–51.1

Aleksandovskiœ farm 92.2–92.6 7.4–7.5 46.1–67.6 31.7–52.5

Vitim meteoroid* 91.0–96.5 2.5–8.4 28.3–75.0 21.5–70.6

* Compositions of particles found in the blanket of snow are normalized to 100%.
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ical composition showed that the particles contain a
material that occurs in meteorites and is unlikely to be
classifiable as rock from the Mama–Chuœsk district. In
the absence of fragments of the Vitim meteoroid, which
have not yet been found, the data reported in this paper
are, today, the only weighty evidence of the composi-
tion of the meteoroid material.

The problem concerning the rather intense shock-
wave that accompanied the meteoroid fall, which was
responsible for a number of physical phenomena,
including damage to trees, is of no less importance.

It is also worth noting that the accuracy of the satel-
lite determination of the meteoroid fall coordinates
should not be overestimated (e.g., the Moravka meteor-
ite was found 20 km to one side of the projection of its
fall trajectory as determined from satellite data). It is
not improbable that the basic mass of Vitim meteoroid
fragments fell out farther along the trajectory or in a
sideways direction from the calculated trajectory (in the
case of erroneous determination of the altitudes of two
points of the fall route or their coordinates, respec-
tively).

ACKNOWLEDGMENTS

The authors are grateful to the heads of the Mama–
Chuœsk district of Irkutsk oblast, as well as to the expe-
dition guides and reliable friends V.G. Andreev,
A.P. Petruchenko, and A.I. Skibitskiœ for their assis-
DOKLADY PHYSICS      Vol. 49      No. 10      2004
tance and inestimable help in performing fieldwork in
the north of Irkutsk oblast.

These studies were supported by the Siberian Divi-
sion of the Russian Academy of Sciences.

REFERENCES
1. A. N. Neelov, in Muscovite Pegmatites of the USSR

(Nauka, Leningrad, 1975), pp. 168–174.
2. V. M. Makagon, Pegmatite Granites in Zones of

Regional High-Pressure Metamorphism (Nauka,
Novosibirsk, 1972).

3. R. T. Dood, Meteorites. A Petrologic-Geochemical Syn-
theses (Cambridge Univ. Press, Cambridge, 1981; Mir,
Moscow, 1986).

4. É. V. Sobotovich and V. P. Semenenko, Meteoritic Sub-
stance (Naukova Dumka, Kiev, 1984).

5. S. Taylor, D. E. Brownlee, R. P. Harvey, et al., US Army
Cold Regions Res. Eng. Lab. Rep. 97 (1), 37 (1997).

6. S. Taylor and D. E. Brownlee, Meteoritics 26, 203
(1991).

7. A. Ivanov and M. Zolensky, Lunar and Planet. Sci. 32
(2001), CD-ROM, Abstr. No. 1386.

8. A. Treiman, Amphibole in Martian Meteorite EET
79001LX Annual Meteoritic Society Meeting, Hawai, 1997;
www.lpi.usra.edu/meetings/metsopc97/pdf/5134.pdf.

9. A. Taylor, K. C. Misra, S. I. Demidova, et al., Meteorit-
ics and Planet. Sci. 38 (4), 485 (2003).

Translated by G. Merzon



  

Doklady Physics, Vol. 49, No. 10, 2004, pp. 578–582. Translated from Doklady Akademii Nauk, Vol. 398, No. 6, 2004, pp. 759–763.
Original Russian Text Copyright © 2004 by Ivanov, Ryzhanski

 

œ

 

.

                                                                                          

ASTRONOMY, ASTROPHYSICS,
COSMOLOGY
A Model for Scattering of Small-Size Cosmic-Body Fragments
in the Planetary Atmosphere

A. G. Ivanov and V. A. Ryzhanskiœ
Presented by Academician V.M. Titov February 18, 2004

Received April 6, 2004
In the present paper, we analyze disintegration of a
small-size cosmic body (SSCB) in interactions with the
planetary atmosphere in the framework of the concept
of a two-stage process. The first and second stages of
this process are, respectively, the fragmentation of an
SSCB and the scattering of the fragments produced.
The theoretical model of fragmentation has been pre-
sented by the authors previously (see [1]) and attracted
the attention of a number of investigators [2, 3]. In the
present paper, we analyze the disintegration of an
SSCB and consider the stage of scattering of its frag-
ments accompanied by the formation of the primary
crater field on a planet’s surface.

The model developed in [1] used the integral
approach in the energy concept of modern fracture
mechanics [4]. This resulted in the description of SSCB
fragmentation as a discrete process in which the events
of sequential refinement of the SSCB are separated in
space and time. In this case, the fracture of both an
SSCB and its fragments occurs as the result of separa-
tion by a brittle crack into two equal parts geometrically
similar to the parent body. It is of importance to note
that, in [5], for a spherical SSCB or a rectangular paral-
lelepiped, it was shown that, even in these extreme
cases, the body’s shape only slightly affects the results
of fragmentation calculations.

In accordance with the two-stage representation of
the SSCB disintegration, its analysis is divided into two
steps. In the first step, the fragmentation is calculated
and the results obtained are used as the initial data at the
second step. The latter consists in calculating the frag-
ment scattering after each fragmentation event and
ceasing the fragmentation prior to the fall of fragments
onto the ground.

In order to calculate the fragmentation, the proce-
dure developed in [5] is employed. According to this
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procedure, an SSCB is considered to be brittle1 and has
the shape of a rectangular parallelepiped with a mass
M0 and a ratio of edges equal to 2–1/3L0 : L0 : 21/3L0,
where L0 is the basis size. Penetrating into the atmo-
sphere with cosmic velocity V0 at angle α to the hori-
zon, an SSCB overcomes the atmosphere drag by virtue
of inertia, with the drag maximum corresponding to the
center of the frontal surface. The SSCB center of mass
(point C0) moves along the trajectory ξ axis at velocity

V =  =  and acceleration  = – . Center of mass

C0 is associated with the origin of the mobile orthogonal
coordinate system ξ'–η–ζ, the ξ and ξ' axes being col-
linear. Under the action of both aerodynamic drag2

and inertial forces, a tension domain arises,3 from
which a brittle crack originates. As a result, the SSCB
breaks up into two parts. It is considered that the frac-
ture occurs when the frontal surface attains its maxi-

mum area (21/3 ), whereas the crack surface has the

minimum value (2–1/3 ). Such an orientation is more
favorable for fracturing and more stable, because the
center of mass maximally approaches the frontal
(basis) surface undergoing the action of the aerody-
namic pressure, which is consistent with the principle
of minimum expenditures of energy. Thus, for the indi-
cated ratios of SSCB size, the fragments obtained are
geometrically similar to the initial SSCB and break up
again, but each time in deeper layers of the atmosphere.
Indeed, by virtue of the effect of the scaling factor [4],
the fragments become much stronger. The basis size of
a fragment formed as a result of the kth fracture act is
Lk = 2–k/3 L0, its mass is Mk with the center at the point

1 The brittleness is provided not only by the properties of the
SSCB, but also by the rather low (cosmic) temperature. It is sug-
gested to be virtually invariable due to the short time of penetra-
tion and ablation.

2 The aerodynamic-drag coefficient for the given SSCB shape is
taken as equal to Cξ = 1.5.

3 As was shown in [6], a similar domain also arises in a spherical
SSCB.

dξ
dt
------ ξ̇ ξ̇̇ d2ξ

dt2
--------

L0
2

L0
2
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Ck, and the fracture-surface area is 2–1/3  (1 ≤ k ≤ n,
n being the ordering number of the last break-up event).
As a result of the calculation, quantity Lk , altitude zk

above the planet’s surface, trajectory velocity Vk , and

the trajectory-segment length ξk =  between

the fragmentation acts are determined. After fragmen-
tation has finished, the quantities n, zn, and Vn; the tra-

jectory segment length ξn =  between the last frag-

mentation point and the ground, and the velocity of
motion in this segment,

(1)

are calculated. Here, A =  (with allow-

ance made for the body’s rotation), ρ0 is the atmosphere
density at the altitude z = 0, ρb is the body’s density, H

is the thickness of the standard atmosphere, and x = .

The scattering of the fragments proceeds from the
instant (t = 0) of the SSCB disintegration. For each
fragment, the process occurs according to the same
scheme. For example, kth fragments are formed by a
(k – 1)th fragment (Fig. 1). In this case, as in [1, 5],
ablation is not taken into account.4 The process of frag-
ment scattering seems to have two phases. The first
phase corresponds to the rotation of fragments about
their centers of mass Ck by angle ϕ at angular velocity

 =  and at angular acceleration  =  under

preservation of the mutual contact along the line of
edge tangency on the frontal surface. The second phase
is the transverse expansion of fragments as independent
bodies from the symmetry plane ξ'–ζ after the contact
has ceased (the ζ axis is perpendicular to the plane of
the plot). In this case, fragments perform complicated
motions symmetric with respect to the trajectory Ck – 1

of motion, translational motion by virtue of inertia, and
rotation about their centers Ck of mass.

In the first phase, the basic cause of fragment rota-
tion is the aerodynamic-drag force. This force is
assumed to be applied at the center-of-mass point Ck – 1

(since the total fragment middle area remains constant)
and equals

4 It is shown in sections 2 of [7, 8] that the effect of this phenome-
non is not defining.

Lk 1–
2

zk 1– zk–
αsin

--------------------

zn

αsin
-----------

V x( ) Vn 2n/3A x–( )exp xn–( )exp–[ ]–{ } ,exp=

0.509Cξρ0H
ρbL0 αsin

------------------------------

z
H
----

ϕ̇ dϕ
dt
------ ϕ̇̇ d2ϕ

dt2
---------

Fk 1– 0.5Cξρak ξ̇
2
Sm

ξ αsin
H

---------------,exp=
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where ρak = ρ0exp  is the atmospheric density at

the altitude zk, Sm = 4rkLk – 1sin(ϕ0 + ϕ) is the middle-sec-

tion area of the fragments, rk = 2–4/3 Lk – 1, and
ϕ0 ≈0.671 rad (~38°26′) is the initial inclination angle
of the vector rk to the ξ axis. The inertia force applied
to the fragment center of mass (in Fig. 1, it is shown in
projections onto the ξ' and η axes) and reaction force Qk

of a neighboring fragment are stipulated by the action
of force Fk – 1 . In this case, the point Ck shifts along the
η axis from the position Ck – 1 by the distance ηCk =
rksin(ϕ0 + ϕ) at the velocity  = rk cos(ϕ0 + ϕ)

and  at the acceleration  = rk[ cos(ϕ0 + ϕ) –
ϕ2sin(ϕ0 + ϕ)].

The kinetostatic equations for a kth fragment are of
the form

Mk  = 0.5Fk – 1, Mk  = Qk,

ICk  = 0.5Fk – 1ηCk – Qkrkcos(ϕ0 + ϕ).

With allowance made for what has been said above,
these equations are reduced to the set of equations

(2)

Qk = Mkrk[ cos(ϕ0 + ϕ) – sin(ϕ0 + ϕ)], (3)

(4)

zk

H
----– 

 

1 2 2/3–+

η̇Ck ϕ̇
η̇̇Ck ϕ̇̇

ξ̇̇k η̇̇Ck

ϕ̇̇

ξ̇̇k ark
1– ρak

ρb

------- ϕ0 ϕ+( ) ξ αsin
H

--------------- 
  ξ̇

2
,expsin=

ϕ̇̇ ϕ̇2

5
ICk

Mkrk
2

------------ 2 ϕ0 ϕ+( )cos+ ϕ̇̇ ϕ̇2 2 ϕ0 ϕ+( )sin–

=  2ark
2– ρak

ρb

------- 
  ξ

H
---- αsin 

  ξ̇
2

ϕ0 ϕ+( ).sin
2

exp

Fig. 1. Diagram of the first scattering phase for a (k – 1)th
fragment of a small-size cosmic body (SSCB).
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Here, a = 2–5/3(1 + 2–2/3)Cξ ≈ 0.77 and ICk =  is the

fragment moment of inertia with respect to Ck . The ini-
tial conditions (for t = 0) are ϕ = 0,  = 0, ξ = 0, and

 = Vk .

In the general case, solving the set of Eqs. (2)–(4) in
quadratures is impossible, because the variables ξ and
ϕ are not separated. For their separation, we can use,
e.g., the approximation

 

where ψ(ϕ) is an empiric function determined numeri-
cally. In particular, for ψ(ϕ) = 1,

(5)

and the solution to the set of Eqs. (2)–(4) is of the form

(6)

With due regard to this expression, Eq. (4) yields the

Mkrk
2

3
------------

ϕ̇
ξ̇

ξ̇ ξ ϕ,( ) Vk
ξ αsin

2H
---------------– ψ ϕ( ),exp=

ξ̇ Vk
ξ αsin

2H
---------------–exp=

ϕ̇k a
Vk

rk

-----
ρak

ρb

-------=

×
2 ϕ0 ϕ+( ) 2 ϕ0 ϕ+( )sin– 2ϕ0 2ϕ0sin–( )–

5ICk

Mkrk
2

------------ 2 ϕ0 ϕ+( )cos+
--------------------------------------------------------------------------------------------------------.

0.5

0 0.5
ϕ /ϕ*

1.5

1.0

1.0

1

2

3

Fig. 2. Typical interrelation between the reaction of a neigh-
boring fragment and the angular and transverse velocities of
a kth fragment (according to the calculation data for the first

scattering phase): (1) ; (2) ; (3) .
Qk ϕ( )
Qk 0( )
---------------

ϕ̇k ϕ( )
ϕ̇k*

--------------
η̇k ϕ( )

η̇k*
--------------
following formula for angular acceleration:

(7)

As follows from (3), with allowance made for (6)
and (7), with the rotation of a fragment, the quantity

Qk(ϕ) rises from Qk(0) ≈  to its

maximum value, after which, at a certain critical instant
at t =  and ϕ = ϕ*, it vanishes (Fig. 2). This implies
cessation of the contact between the fragments. For an
arbitrary k, ϕ* = const and depends only on the shape
of the fragment, the basis parameter of which is rk (in
the given case, rk ≈ 0.507Lk – 1, ϕ* ≈ 27°, and ϕ0 + ϕ* ≈
65°20′).5 For 0 ≤ ϕ ≤ ϕ*, the values of  and rise to

 

and

 

(Fig. 2). It is evident that  has a strong inverse
dependence on both the body’s density and size,
whereas  is dependent only on the body’s density.
This implies that fragments of denser and larger bodies,
all other factors being the same, rotate and fly out more
slowly than in the opposite case. Integrating (6) for 0 ≤
ϕ ≤ ϕ* and (5) for 0 ≤ t ≤ , we obtain the fragment
rotation time

and the corresponding displacement Ck – 1 along the tra-
jectory

with the velocity at the end of the displacement, accord-
ing to (5), being

5 In the case of a sphere, rk ≈ 0.534Dk – 1 and ϕ* ≈ 45°, but ϕ0 +
ϕ* ≈ 65°33′, which is close to the case of a parallelepiped.

ϕ̇̇k = 
ϕ̇2 2 ϕ ϕ 0+( )sin aVk

2rk
2– ρak

ρb

------- 1 2 ϕ ϕ 0+( )cos–[ ]+

5ICk

Mkrk
2

------------ 2 ϕ0 ϕ+( )cos+
--------------------------------------------------------------------------------------------------------------.

3ρakVk
2rk

2 1 2ϕ0cos–( )
5/3 2ϕ0cos+

------------------------------------------------------

tk*

ϕ̇ η̇Ck

ϕ̇k* 0.94
Vk

rk

-----
ρak

ρb

-------,≈

η̇Ck* rkϕ̇k* ϕ0 ϕ*+( ) 0.4Vk

ρak

ρb

-------≈cos=

ϕ̇k*

η̇Ck*

tk*

tk* ϕ̇ 1– ϕd
1.46rk

Vk

---------------
ρb

ρak

-------≈
0

ϕ*

∫=

ξk* ξ̇
1–

ξd

0

tk*

∫ 2H
αsin

----------- 1
Vktk* αsin

2H
-----------------------+ 

 ln= =

Vk* ξ̇ ξk*( ) Vk

ξk* αsin
2H

------------------– .exp= =
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At t > , the motion of kth fragments corresponds
to the second phase of scattering and divergence with
respect to the trajectory of motion Ck – 1. After each
fragmentation event, reorientation of the fracture sur-
face and, correspondingly, of the vector  takes
place. Therefore, after the first disintegration, the frag-
ment transverse velocity is Vη1 = . However, further
on (for k > 1), the transverse velocity of new fragments

is estimated as Vηk ≈ . This velocity is
considered to be constant until the next fragmentation
event occurs, since, usually, in accordance with the
results of calculations, Vηk ! . In this case, the tra-
jectories Ck deviate from the trajectory Ck – 1 by the

angle , and, prior to the next fragmentation,

they fly apart over new trajectories at the velocity

 

where  = . The time and radius of their scat-

tering are

and 

respectively.
Upon completion of the fragmentation process and

rotation of the fragments by the angle ϕ = ϕ* (for
t = ), the altitudes  = zn – sinα above the
planet’s surface and the length of the final trajectory

segment ξ fin =  preceding the fall onto the ground

are determined. Here, at altitude zexp ≈ Hln(21 + n/3A) [5],
the peak intensity of the fragment-energy release (i.e.,
of the energy transfer to the atmosphere) is attained,
which results in the effect of the SSCB explosion.
Then, using (1), where Vn should be replaced by ,

we can find scattering time tfin = H  of the frag-

ments (here,  = ), and the scattering-spot radius at

the point of crossing the ground by the trajectory is
Rimp ≈ Rηn + Vηn tfin. In this case, the fragments fly apart
in the space of the frustum of a cone with its axis coin-

tk*

η̇Ck*

η̇C1*

Vηk 1–
2 η̇Ck*2+

Vk*

Vηk

Vk*
--------arctan

V x( ) Vk*
2 Vηk

2+ 2k /3A–{exp=

× x–( ) xk* xk–( )exp–exp[ ] } ,

xk*
ξk* αsin

H
------------------

t fk H
xd

V x( )
------------,

xk 1+

xk*

∫≈

Rηk Rηk 1– rk ϕ0 ϕ*+( ) Vηk 1– tk* Vηkt fk,+ +sin+≈

tn* zn* ξn*

zn*

αsin
-----------

Vn*

xd
V x( )
------------

0

xn*

∫

xn*
zn*

H
-----
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ciding with the initial trajectory and the elliptic base on
the ground, which is the primary scattering field. The
width (X) and length (Y) of this field are estimated as
X ≈ Ysinα and

As an example, we now demonstrate the given
SSCB-scattering model for the Sikhoté-Alin’ meteor-
oid (iron with nickel additions, ρb = 7800 kg m–3). The
size of the scattering field for the largest craters is
known; it attains ≈0.3 × 0.5 km [9] or ≈0.4 × 0.7 km
[10]. In accordance with [5], the fragmentation stage
for this SSCB is completed after three- or four-fold
fragmentation, which depends on the initial mass and
velocity (300 t and 12 km s–1 or 100 t and 20 km s–1,
respectively). It is worth noting that these data are in
satisfactory agreement with the previously published
conclusions of the Meteoritic Commission of the Acad-
emy of Sciences of the Soviet Union [11]. For these
data, three basic disintegration stages were selected,
which had been proceeded at three different velocities
of meteoroid motion. As the initial data, we took the
results obtained in [5]. In particular, according to these

Y 2Rimp 1 αcos
2

α β+( ) α β–( )sinsin
----------------------------------------------------+ α ,sin≈

β
Rimp Rηn–

ξ fin
-------------------------.arctan=

Calculated parameters of fragmentation and scattering for the
Sikhoté-Alin’ meteoroid (iron, M0 = 100 t, L0 = 2.34 m, V0 =
20 km s–1)

Parameter k = 1 k = 2 k = 3 k = 4

Fragmentation stage

zk, km [3] 17.07 15.90 14.54 12.73

Vk, km s–1 [3] 18.47 18.18 17.70 16.74

Lk, m [3] 1.86 1.47 1.17 0.93

ξk, km – 1.83 2.12 2.81

Scattering stage

, s–1 64.52 86.08 114.99 153.45

, m s–1 31.92 33.81 35.83 37.95

, m s–1 31.92 46.50 58.70 69.90

, 10–2 s 2.12 1.59 1.19 0.89

, km 0.39 0.29 0.21 0.15

, % 21.20 13.60 7.40 0.75

, km s–1 18.19 17.97 17.55 16.64

, km 16.82 15.71 14.40 12.63

tfk, s 0.08 0.10 0.15 1.35

Rηk, m 3.61 9.74 19.88 115.51

ϕ̇k*

η̇Ck*

Vηk*

tk*

ξk*

ξk*

ξk 1+
-----------

Vk*

zk*
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data, the altitude corresponding to the peak intensity of
the energy release (explosion) of the SSCB after its
fragmentation is ≈10 km (M0 = 100 t) and ≈5 km
(M0 = 300 t).

Numerically solving the set of Eqs. (2), (4) has dem-
onstrated the possibility of their analytical solution in
form (6), since the absolute error of the approximation

of (ξ, ϕ) by formula (5) does not exceed 0.6%. In the
table, examples of calculation results for scattering
fragments of the SSCB (M0 = 100 t) are presented. The
calculated sizes of the fragment-scattering ellipsis on
the ground were X × Y ≈ 0.23 × 0.36 km and ≈0.14 ×
0.22 km for the SSCB mass M0 = 100 t and 300 t,
respectively, i.e., ≈1.5 times smaller in the second case.
We should note that similar calculations performed on
the basis of initial data of [5] for scattering the spherical
SSCB yields virtually the same sizes for the scattering
ellipsis (differences do not exceed 6%). If the actual
sizes of the crater field relate to the primary scattering
field, then we can consider their agreement with the cal-
culated results as satisfactory and it is better for M0 =
100 t than for M0 = 300 t. 

It should be noted that the presented model of SSCB

scattering is valid for  < 1, i.e., when the kth frag-

ments manage to rotate by the angle ϕ*. Otherwise,
their scattering does not occur and, prior to the next
fracture event, they move in the mutual contact. In the
case of the Sikhoté-Alin’ meteoroid, this condition is
fulfilled (see table).

The pioneering study [12] belonging to previously
published models of the SSCB scattering is based on
the analysis of different crater fields, which results in a
significant indeterminacy of the final results. In the
model developed in [7, 8], the initial conditions were
given arbitrarily, which has led to loss of the rotational
component of motion for fragments flying apart. How-
ever, in the process of SSCB scattering, this component
can play a noticeable role (see, e.g., [13]).

Thus, the proposed model of SSCB scattering as a
final stage of SSCB disintegration, taken together with
the model of the preceding fragmentation stage, makes

ξ̇

ξk*

ξk 1+
----------
it possible to thoroughly study the process of SSCB
interaction with the atmosphere. In particular, this
model allows us to estimate the altitudes at which the
fragmentation occurs and the explosion effect arises.
The model is also capable of estimating the number and
final sizes of fragments, velocities of their trajectory
motion, rotation, and scattering, as well as the sizes of
the primary crater field. The satisfactory agreement
with the measurement data and the consistency of the
calculation results for the disintegration of a rectangu-
lar and spherical SSCBs also allow us to expect the
same effect for intermediate-shape SSCBs.
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FORMULATION OF THE PROBLEM

In this paper, we analyze the time-dependent equa-
tion of the stream function ψ for plane-parallel flow of
a viscous incompressible fluid in a channel with rigid
walls:

(1)

The equation is characterized by the given period in the
longitudinal x direction,

(2)

and by the conditions of impenetrability and adherence
at the boundary,

(3)

The third equality in (3) determines the zero fluid-flow
rate.

The replacement of given boundary conditions (3)
by the condition of periodicity in the transverse y direc-
tion, i.e., ψ(t, x, y + 2π) = ψ(t, x, y) leads to the well-
known Kolmogorov problem [1], the solution of which 

(4)

is stable for arbitrary Reynolds numbers

(5)

∂
∂t
-----∆ψ– ε∆∆ψ ∂ψ
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-------∂∆ψ
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or is globally stable in a channel with a short period

, i.e., for reasonably large wave numbers α,

(6)

or, which is the same thing, for limited wave numbers

 in the longitudinal direction [2].

We should note that, at the same time, flow (4) is the
exact solution to Eq. (1) in the case of boundary condi-
tions (3).

In the present paper, we prove that Kolmogorov
flow (4) in channel (1), (2) with short period (6) also
remains globally stable in the sense of (5) in the pres-
ence of rigid walls (3).

THEORETICAL ANALYSIS 
OF THE PROBLEM

The constructions being developed are based on the
representation of boundary value problem (1)–(3),
which was proposed in [3] in the form of an abstract
model of an infinite-dimensional dissipative top, the
general equation of which is written as

(7)

In the case under study, the operations of inertia A and
dissipation B, as well as the commutator [ψ, χ] entering
into Eq. (7), are determined as narrowing of the Lapla-
cian, of the biharmonic operator, and of the Poisson
brackets, respectively under the assumption of the
validity of conditions (2) and (3):

(8)

At the same time, steady-state flow (4) is repre-
sented by the principal rotation of the top, i.e., satisfies
the conditions of the following eigenvalue problem:

(9)

The corresponding principal moment of inertia,

, (10)

2π
α
------

2π
α
------ 2π or α 1,≥≤

2π
α
------

d
dt
-----Aψ εBψ ψ Aψ,[ ]+ + εf .=

A ∆, B ∆∆, ψ χ,[ ] ∂ψ
∂y
-------∂χ

dx
------ ∂ψ

∂x
-------∂χ

dy
------.–≡≡–≡

Bψ λAψ.=

λ 1=
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turns out to be the smallest eigenvalue of problem (9)
for short channel (6). Indeed, as is easy to see, in the
case under consideration, the solutions to problem (9)
are represented as harmonics with separated variables

(11)

and with a common amplitude ϕ(y) that satisfies the
conditions

(12)

In this case, eigenvalue (10) turns out to be minimal for
a series of solutions to problem (12), which corre-
sponds to n = 0. This can be easily confirmed by direct
verification.

It is also easy to verify that, in the case of n > 0, the
eigenvalues of (12) are not lower than α2n2. Then, from
condition (6), the desired estimate,

,

immediately follows.

Thus, in the case of validity of condition (6), for all
n in expression (11) and for all eigenvalues λ of prob-
lem (9), we have

. (13)

ANALYTICAL CALCULATIONS

Using the aforementioned minimal value of moment
of inertia (10), we perform necessary calculations with
the goal of obtaining the desired estimates concerning
stability of solution (4).

First of all, we would note that this solution turns out
to be the simple rotation of the top, in so as far as it
simultaneously satisfies two identities:

(14)

In addition, the difference Aψ – λψ turns out to be
orthogonal with respect to the scalar product

(15)

within the range of the top-commutator values

(16)

ψ ϕ y( ) αnx( )cos=

or ψ ϕ y( ) αnx( ), nsin 0 1 …,, ,= =

D2 α2n2–( ) D2 α2n2– λ+( )ϕ 0,=

0 y 2π, D
d
dy
------,≡< <

ϕ 0( ) ϕ' 0( ) ϕ 2π( ) ϕ' 2π( ) 0.= = = =

λ α 2n2 n2 1, n≥ ≥≥ 1 2 …, ,=

λ 1≥

ψ Aψ,[ ] 0 and Bψ f= =

Bψ Aψ and f Aψ= =( ).

ψ χ,( ) ψχ xd yd

0

2π

∫
0

2π/α

∫≡

Aψ λψ– χ ξ,[ ],( ) 0, λ 1.= =
Indeed, it is easy to verify that

because (ψ'' + ψ)' = 0.
We now vary Eq. (7) for the top, namely,

Then, we obtain, as a corollary, the following equation
in variations:

Taking sequentially the scalar products of this equa-
tion by χ and Aχ, with allowance made for both sym-
metry of the operator A and the relations

which can be immediately verified, we arrive at the
identities

(17)

Then, multiplying the first of these relationships by λ
and subtracting the result from the second one, we
obtain

(18)

Further constructions are based on the completeness
and orthogonality of the system of principal rotations (9)
proved in [3] and also the discreteness (or countability)
of the set of their principal moments λ for both the pos-
itive definite operator A (as is the case in the problem
under study) and the fulfilled identity

(19)

We now decompose the perturbation χ into its pro-
jection χλ onto the invariant space of the moment λ and
its orthogonal complement ξ:

(20)

In this case, we can be convinced (at least formally) of
the validity of further identities and inequalities in

Aψ λψ χ ξ,[ ],–( ) ξ Aψ λψ χ,–[ ],( )=

=  ξ ψ'' ψ+( )'χx xd yd

0

2π

∫
0

2π/α

∫– 0,=

d
dt
-----A ψ χ+( ) εB ψ χ+( )+

+ ψ χ A ψ χ+( ),+[ ] ε f h+( ).=

d
dt
-----Aχ εBχ ψ Aχ,[ ] χ Aψ,[ ] χ Aχ,[ ]+ + + + εh.=

χ ψ Aχ,[ ],( ) ψ A χ χ,( )[ ],( ),=

χ χ Aψ,[ ],( ) χ χ Aχ,[ ],( ) 0,= =

Aχ ψ A,[ ],( ) Aχ χ Aχ,[ ],( ) 0,= =

Aχ χ Aψ,[ ],( ) Aψ Aχ χ,[ ],( ),=

1
2
--- d

dt
----- Aχ χ,( ) ε Bχ χ,( ) ψ Aχ χ,[ ],( )+ + ε h χ,( ),=

1
2
--- d

dt
----- Aχ Aχ,( ) ε Bχ Aχ,( ) Aψ Aχ χ,[ ],( )+ +  = ε h Aχ,( ).

1
2
--- d

dt
-----J χ( ) εK χ( )+ ε h Aχ λx–,( ),=

J χ( ) Aχ Aχ λχ–,( ), K χ( ) Bχ Aχ λχ–,( ).≡≡

Bχ χ,( ) Aχ Aχ,( ), Aχ χ,( ) 0, χ χ,( ) 0.>>=

χ χλ ξ , Bχλ⊕ λ Aχλ , χλ Aξ,( ) 0.= = =
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which λ' > λ is the principal moment of problem (9).
This moment follows the minimal moment λ = 1:

(21)

Indeed, using (19) and (20), we find

Furthermore, decomposing ξ into the principal rota-
tions,

we arrive at

which leads to the second identity in (21).

Then, again decomposing ξ into the principal rota-
tions, we have

which completes the proof of the validity of (21).

From (18) and (21), it follows as a corollary that

J χ( ) J ξ( ), K χ( ) K ξ( ),= =

K ξ( ) λJ ξ( ), λ≥ η : Bχ ηAχ={ }
η 0>
min 1,= =

J ξ( ) λ' λ–( ) Aξ ξ,( ),≥
λ' µ: Bξ µAξ={ } λ .>

µ 1>
min=

J χ( ) Aχ Aχ,( ) λ Aχ χ,( )– Bξ λ Aχ χ,–( )= =

=  Bξ λ– Aξ χ,( ) J ξ( ) Bξ λ Aξ χλ,–( )–=

=  J ξ( ) ξ Bχλ,( )– J ξ( ) λ ξ Aχλ,( )– J ξ( ),= =

K χ( ) = Bχ Aχ,( ) λ Aχ Aχ,( ) = Bχ λAχ Aχ,–( )–

= Bξ λ Aξ Aχ,–( ) = K ξ( ) Bξ Aχλ,( ) λ Aξ Aχλ,( ),–+

Aξ Aχλ,( )= ξ Bχλ,( )=λ ξ Aχλ,( ) 0.=

ξ ξ µ, Bξµ

µ
∑ µAξµ,= =

Bξ Aχλ,( ) µ Aξµ Aχλ,( )
µ
∑=

=  λµ ξ µ Aχλ,( )
µ
∑ 0,=

K ξ( ) = Bξ λ Aξ Aξ,–( ) = µ λ–( ) Aξµ Aξη,( )
η
∑

µ
∑

= µ λ–( )µ Aξµ ξη,( ) = µ λ–( )µ Aξµ ξµ,( )
µ
∑

η
∑

µ
∑

≥ λ µ λ–( ) Aξµ ξµ,( )  =  λ J ξ( ) 

µ

 ∑  

≥

 

λ λ

 

'

 

λ

 

–

 

( )

 

A

 

ξ

 

µ

 

ξ

 

µ

 

,( )

 

 = 

 

λ λ

 

'

 

λ

 

–

 

( )

 

A

 

ξ ξ,( )

 

,

 

µ

 

∑

1
2
--- d

dt
-----J ξ( ) ελJ ξ( ) ε h Aχ λχ–,( )≤+
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or, upon multiplying by 

 

2

 

e

 

2

 

ελ

 

t

 

 and integrating over 

 

t

 

, we
obtain

At 

 

h

 

 = 0 (the absence of perturbations of the exterior
moment of force), the inequality obtained, taken
together with the last inequality of (21), results in the
estimate

 

(22)

 

In order to finally estimate the total perturbation 

 

χ

 

,
we employ (17), for which, with the help of (16), we
find

(Here, the additional identity 

 

[

 

χ

 

λ

 

,

 

ψ

 

]

 

 = 0 is used, which,
in the case under consideration, is provided by the
absence of the dependence of both 

 

χ

 

λ

 

 and 

 

ψ

 

 on the vari-
able 

 

x

 

.)

Furthermore, by virtue of boundary conditions (2)
and (3), we find

which, in combination with the estimate

J ξ( ) J ξ0( )e 2ελ t– 2εe 2ελ t– e2ελ t' h Aχ λχ–,( ) t',d

0

t

∫+≤

ξ0 ξ t 0= .=

Aξ ξ,( )
J ξ0( )
λ' λ–
-------------e 2ελ t– .≤

Aψ Aχ χ,[ ],( ) λ ψ Aχ χ,[ ],( ) λ Aχ χ ψ,[ ],( )= =

=  λ Aχ λχ χ ψ,[ ],–( ) λ Aξ λξ χ ψ,[ ],–( )=

=  λ Aξ λξ ξ χ λ ψ,+[ ],–( ) λ Aξ λξ ξ ψ,[ ],–( )=

=  λ Aξ ξ ψ,[ ],( ).

Aξ Aξ ψ,[ ],( ) ξ xx ξ yy+( )ξ xψ' xd yd

0

2π

∫
0

2π/α

∫=

=  ψ' y
ξ x

2

2
----- 

 
x

x x ξ xξ yψ'( )y yd

0

2π

∫d

0

2π/α

∫+d

0

2π/α

∫d

0

2π

∫

– ψ' y
ξ y

2

2
----- 

 
x

x ξ xξ yψ'' xd yd

0

2π/α

∫
0

2π

∫–d

0

2π/α

∫d

0

2π

∫

=  ξ xξ y ysin xd yd

0

2π/α

∫
0

2π

∫

≤ 1
2
--- ξ x

2 ξ y
2+( ) xd yd

0

2π/α

∫
0

2π

∫ 1
2
--- Aξ ξ,( ),=

Bχ Aχ,( ) µ2 Aχµ χµ,( ) λ µ Aχµ χµ,( )
µ
∑≥

µ
∑=

=  λ Bχ χ,( ) λ Aχ χ,( )=
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for h = 0, yields that, in the left-hand side of (17), we
have

(23)

From (22) and (23), we obtain the desired estimate
providing the asymptotic stability of stem stream (4)
under validity of condition (6).

DISCUSSION

As in the case of the Kolmogorov problem, further
analysis of the stability of flow (4) under validity of
conditions (3) is based on the investigation of an alter-
native possibility of the appropriateness of a channel

with a long period  > 2π (or α < 1). This analysis is

also based on theorems on the bifurcation of the given
solution into a new steady-state or self-oscillating flow
regime in the case of increasing Reynolds number (5)
and attaining a certain critical value with it. This value is
similar to that already investigated analytically in [4, 5]
(but locally, i.e., near the critical value of the Reynolds
number) and numerically (but globally, i.e., in the seg-
ment of post-critical values of the Reynolds number) [6]
in the case of conditions periodic with respect to y.

A rather complete review of the corresponding
results is presented in [7]. Related experiments are
described in [8].

The present-day development of the noted classical
topic is characterized by passing to spatial periodic
flows and directly numerically modeling on the basis of
parallel-processing supercomputers capable of involv-
ing up to 80003 harmonics of the Fourier expansion (or,
which is the same thing, points in the 2π3 period) [9].

For a perfect (inviscid and incompressible) fluid, the
model of an infinite-dimensional top was proposed
in [10]. There, in the framework of this model and on
the basis of the above-noted analogy, a theorem on the
stability of plane-parallel flow was proved for the first
time. In [3], this approach was extended to a viscous
medium (passage from the compact Lie groups to
extensions of the corresponding algebras). In this case,
the initial concept of the Euler–Poisson theorem on the
stability of the rotation about the minimal and maximal
inertia axes has remained valid in both [10, 3] and the
present study.

As was already noted, the alternative possibility of
rotation about a middle (not extremal) principal inertia
axis (the case of α < 1) results in the stability loss of the
stem stream and in the appearance of a new regime

1
2
--- d

dt
----- Aχ Aχ,( ) ελ Aχ Aχ,( ) λ

2
--- Aξ ξ,( ).≤+

Aχ Aχ,( ) Aχ0 Aχ0,( ) ---
≤

+
Aξ0 Aξ0,( ) λ Aξ0 Aξ0,( )–

λ' λ–
--------------------------------------------------------------t

 e 2ελ t– .

2π
α
------
(periodic or self-oscillating). It should be emphasized
that this transformation involves a finite number of har-
monics (or is reasonably well described by their limited
number). However, this fact cannot be considered as the
appearance of turbulence the description of which
requires practically the entire Fourier series in order to
provide the necessary statistic.

For two-dimensional flows, similar calculations
were performed in [11], where an actual channel with a
given pressure drop was studied. Then, the averaging of
the arising pulsations yielded characteristic velocity
profiles and correlations that had been experimentally
studied in [12].

It is important that, in this case, the passage to the
turbulence occurred for the entire spectrum in the form
of a soft jump similar to bifurcation. The corresponding
model for such a passage, which is based on schemes of
second-order closure, was proposed and analyzed in
[13, 14], where the above-indicated averaged profiles
and the response curve turned out to be close to the
experimental ones that had been measured in [12, 15].

These facts, certainly, do not reduce the interest in
the aforementioned preturbulent regimes for which the
turbulent statistic increases with the Reynolds number.
However, it seems that the related calculations, inde-
pendently of the rate of their progress [9], will be
doomed to successive failure in understanding the
nature of turbulence. They can be successful only being
maintained by adequate physical concepts and, for the
first turn, by involving the phenomena of compressibil-
ity and thermal conductivity in the Navier-type model
under discussion.

The latter statement becomes evident if we address
the well-known Joule experiments devoted to measure-
ments of the heat mechanical equivalent. We can note
here that, in this case, the transformation of mechanical
work into thermal motion is realized just via turbulent
fluid mixing.

Thus, if we accept the necessity of dealing with a
large number of modes in passing to turbulence, then,
in addition to the arising processes of diffusion, dissi-
pation, and relaxation (directed toward equilibrium) of
a randomly fluctuating medium, we must allow for the
phenomena of compressibility and thermal conductiv-
ity of fluid.
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INTRODUCTION

Starting from the seminal paper [1], the problems of
the stability of motions in dynamical systems have been
treated in numerous publications (see, e.g., [2] and ref-
erences therein). The rigidity of paths in dynamical sys-
tems was discussed in [3–8] and other papers. The sta-
bility of recurrent and nearly periodic paths and the
properties of ultimate motions for these paths were
studied in [9–14].

In the present paper, we study the properties of ulti-
mate motions for rigid and asymptotically rigid paths in
the Joukowski sense and prove theorems concerning
the existence of rigid and asymptotically rigid paths in
the Joukowski sense for dynamical systems. The results
obtained demonstrate that rigid motions for nearly peri-
odic rigid paths are also rigid and nearly periodic.

AUXILIARY PROPOSITIONS

Let a mechanical system be specified with many
degrees of freedom modeled by a vector steady-state
equation in the form

(1)

Here, the n-dimensional vector function g(x) is contin-
uous on the open set G ⊂  Rn. Equation (1) in space Rn

determines mechanical flux ϕ(t, p) in the Birkhoff

sense [9]. We consider a positive semi-path  =
{ϕ(t, p): t ∈ R+} and infinitely growing sequence 0 ≤
t1 < t2 < … < tn < …, tn  +∞ as n  +∞. The lim-
iting point p* of sequence ϕ(t1, p), ϕ(t2, p), …, ϕ(tn, p),
… is referred to as the ω-limiting point of motion
ϕ(t, p). Similarly, each limiting point p* of the negative

semi-path  = {ϕ(t, p): t ∈ R–} is referred to as the
α-limiting point of motion ϕ(t, p). Motion ϕ(t, p*) pass-

dx
dt
------ g x( ), x Rn, n 2.≥∈=

Cϕ
+

Cϕ
–
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ing through the limiting point p* is referred to as the
ultimate motion corresponding to Eq. (1).

We denote as Ωϕ and Aϕ the sets of all ω-limiting
and α-limiting points of motion ϕ(t, p), respectively.

Sets  =  ∪  Ωϕ and  =  ∪  Ωϕ are called pos-
itive and negative semi-shells of motion ϕ(t, p), respec-

tively, whereas set Hϕ ::=  ∪   is referred to as the
shell of motion ϕ(t, p).

Lemma 1 [10]. Sets Ωϕ and Aϕ are closed invariant
sets.

Motion ϕ(t, p) is referred to as L+-stable (or L– -sta-

ble, or L-stable) if set  (or , or Hϕ) is a compact
set. The L-stability is also referred to as stability
according to Lagrange [10, 13]. From this definition, it
follows that the ω-limiting set Ωϕ is not empty for the
L+-stable motion ϕ(t, p) and the α-limiting set Aϕ is not
empty for the L–-stable motion.

Lemma 2 [10]. If motion ϕ(t, p) is L+-stable, then
the Ωϕ set is the connected set and d(ϕ(t, p), Ωϕ) = 0 at
t  +∞, where d(·, ·) is the distance between the point
and the set.

Set M ⊂  Rn is referred to as minimal if it is not
empty, closed, and invariant and has no true subset with
these three properties.

Lemma 3 [10]. An invariant compact closed set
always contains the minimal set.

Motion ϕ(t, p) of Eq. (1) is referred to as recurrent,
if for any ε > 0, we can find number T = T(ε) > 0 such

that an arbitrary arc of the path Cϕ =  ∪  corre-
sponding to the time length T approximates the Cϕ path
with an accuracy equal to ε.

Lemma 4 [10]. Any path belonging to a minimal
compact set is a recurrent path.

Lemma 5 [10]. The L-stable motion for Eq. (1) is
recurrent if the following necessary and sufficient con-
dition is met: for any ε > 0, the set of t values obeying
the inequality ρ(ϕ(t, p), p) < ε should be relatively
dense.

Hϕ
+ Cϕ

+ Hϕ
– Cϕ

–

Hϕ
+ Hϕ

–

Hϕ
+ Hϕ

–

Cϕ
+ Cϕ

–
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Motion ϕ(t, p) of Eq. (1) is referred to as nearly peri-
odic if, for any ε > 0, we can find number L = L(ε) deter-
mining a relatively dense set {τn} such that ρ(ϕ(t, p),
ϕ(t + τn, p)) < ε for t ∈ R. From this definition, it follows
that any nearly periodic motion is recurrent motion.

DEFINITIONS 
FOR THE CONDITIONAL RIGIDITY

OF THE PATH AND CONDITIONAL STABILITY 
OF THE PATH

We now introduce the following notation. Symbols
B(y, r) and B[y, r] denote, respectively, an open and
closed spherical sets of radius r > 0 with the center at
the point y ∈ Rn.

Definition 1. Let t0 ∈ R be an arbitrary but fixed
number. Path Cϕ of motion ϕ(t), ϕ(t0) = p for Eq. (1) is
referred to as

(a) positive (negative, or double-side) rigid in the
Joukowski sense with respect to set Q ⊆  Rn if there
exists a number 7 > 0 such that, for an arbitrary ε > 0,
we have δ = δ(ε) with the following property: if ψ(t) =
ψ(t, q), q ∈ Q, is an inextensible solution to Eq. (1) and,
if there exist numbers τ1, τ2, |τ1 – τ2| ≤ 7 such that for

(2)

we have, for all t ∈ R+ (for all t ∈ R–, or for all t ∈ R),

(3)

where ρ(·, ·) is the distance between two points.
If, in addition to condition (3), the following condi-

tion is met:

(4)

then the path is referred to as positive (negative, or dou-
ble-side) asymptotically rigid in the Joukowski sense
with respect to set Q ⊆  Rn;

(b) the positive (negative, or double-side) rigid in
the Joukowski sense with respect to set Q ⊆  Rn accord-
ing to the measure of set M if for an arbitrary ε > 0, there
exists a number 6 > 0 and the measurable set
M ⊂  B(p, ε) with a measure larger than zero such that,
for q ∈ Q ∩ M and for all t ∈ R+ (for all t ∈ R–, or for all
t ∈ R), we can find a number τ1 such that, for |t – τ1| ≤
7, the following inequality is met:

(5)

(c) the positive (negative, or double-side) rigid in
the Joukowski sense with respect to itself if there exists
a number τ1, τ2, and 7 such that, for ρ(ϕ(τ1), ϕ(τ2)) < δ
and |τ1 – τ2| ≤ 7, we have ρ(ϕ(t + τ1), ϕ(t + τ2)) < ε at
all t ∈ R+ (for all t ∈ R–, or for all t ∈ R).

It is evident that Definition 1a is a particular case of
Definition 1b. To verify this, it is sufficient to set M =
B(p, δ) and 7 = 0. The path double-side rigid with

ρ ψ τ1( ) ϕ τ 2( ),( ) δ,<

ρ ψ t τ1+( ) ϕ t τ2+( ),( ) ε,<

τ3 ρ ψ t( ) ϕ τ 3 t+( ),( )
t +∞→
lim∃ 0,=

ρ ψ t( ) ϕ τ 1( ),( ) ε, ψ t( ) ::= ϕ t q,( );<
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respect to Q (or with respect to itself), we also call rigid
with respect to Q (or with respect to itself).

In [7, 8], the authors proposed a definition for the
rigidity of the path according to which rigidity in the
Joukowski sense corresponds to stability in the
Lyapunov sense at an appropriate reparametrization
τ1 = τ1(t) for the unperturbed path Cϕ and an appropriate
reparametrization τ2 = τ2(t) for each perturbed path.
Here, τ1(t) and τ2(t) belong to set Σ of all one-one and
continuous mappings τ(t): R+  R+ such that τ(0) = 0.
In Definition 1a, mappings τ1(t) and τ2(t) are replaced
by numbers τ1 and τ2 , where |τ1 – τ2| ≤ 7, 7 being a
given number.

Definition 2. Let t0 ∈ R be an arbitrary but fixed
number. Path Cϕ (or motion ϕ(t) = ϕ(t, p), ϕ(t0) = p) is
referred to as

(a) the positive (negative, or double-side) stable in
the Lyapunov sense with respect to set Q ⊆  Rn if for
each spherical set B(p, ε) there exists a spherical set
B(p, δ), δ < ε such that as soon as q ∈ B(p, δ), q ∈ Q,
we have, for all t ≥ 0 (for all t ≤ 0, or for all t ∈  R),

(6)

where ψ(t) = ϕ(t, q), ϕ(t0, q) ≠ p is a solution to Eq. (1);
(b) the positive (negative, or double-side) stable in

the Lyapunov sense according to the measure M  with
respect to set Q ⊆  Rn if for each spherical set B(p, ε)
there exists a measurable set M with a nonzero measure
such that as soon as q ∈ M, q ∈ Q, inequality (4) is met
for all t ≥ 0 (for all t ≤ 0, or for all t ∈ R).

For equilibrium states, the corresponding Defini-
tions 1 and 2 are equivalent, but they are not equivalent
for periodic solutions. In Definition 2, the requirement
that number t0 is an arbitrary fixed number could be
replaced by the requirement that inequality ρ(ϕ(t0, p),
ϕ(t0, p)) < δ should be met only up to a certain value of
t0 . However, in the latter case, we have a stronger defi-
nition of stability in the Lyapunov sense.

From Definitions 1 and 2, as well as from the defini-
tion of orbital stability [15], it follows that the rigidity
in the Joukowski sense is a concept intermediate
between the concepts of orbital stability and stability in
the Lyapunov sense. Note that these concepts are inde-
pendent. The rigidity in the Joukowski sense follows
from stability in the Lyapunov sense, whereas the
orbital stability follows from the rigidity in the
Joukowski sense. Thus, the class of all motions stable
in the Lyapunov sense is a subclass of all motions rigid
in the Joukowski sense, and the class of all motions
rigid in the Joukowski sense is a subclass of all orbital-
stable motions. These subclasses are the proper sub-
classes.

Theorem 1. Path Cϕ of any nearly periodic motion
ϕ(t) = ϕ(t, p) is rigid in the Joukowski sense with
respect to itself: for any ε > 0, we can find δ > 0 such
that ρ(ϕ(τ1 + t), ϕ(τ2 + t, p)) < ε for t ∈ R as soon as

ρ ψ t( ) ϕ t( ),( ) ε,<
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ρ(ϕ(τ1), ϕ(τ2)) < δ becomes to hold. The reverse state-
ment is also true: if path Cϕ of motion ϕ(t) is rigid in the
Joukowski sense, then it is nearly periodic.

Theorem 1 follows from the definitions of nearly
periodicity, recurrence, and rigidity in itself, as well as
from Theorem 1 formulated in [11]. Indeed, it was
demonstrated in [11] that, in order to be nearly periodic,
the L-stable motion of Eq. (1) must meet the following
necessary and sufficient conditions: this motion should
be recurrent and have property (3) for all t ∈ R, if con-
dition (2) is met. In this Franklin theorem, the require-
ment of recurrence is needless, since any L-stable
motion is recurrent if it obeys conditions (2) and (3).

PROPERTIES OF ULTIMATE MOTIONS RIGID
IN THE JOUKOWSKI SENSE

We now discuss characteristic features of ω-limiting
motions for rigid and asymptotically rigid paths of
Eq. (1). A similar problem for the paths stable in the
Lyapunov sense was studied in [12] and [13].

Theorem 2. If path Cϕ of L+-stable motion ϕ(t) of
Eq. (1) is rigid in the Joukowski sense, then all ω-limit-
ing paths Cπ in Ωϕ are also rigid in the Joukowski
sense, i.e., if we have

(7)

then Cπ is rigid in the Joukowski sense.

Proof. Since Cϕ is L+-stable

(8)

and then π(t) is defined for all values of t. Let τ0 ≥ 7,
then it follows from Eq. (7) that there exists a number
τ ≥ 7 such that the following inequality is met:

(9)

Suppose that ψ(t) is a solution to Eq. (1) and there
exist numbers τ1, τ2 ≥ 7, for which

(10)

Since path Cϕ is rigid, it follows from inequality (9)
that, at t ≥ 0,

(11)

Suppose that τ0 = τ2 . Then, relationships (9) and (10)
yield the inequality

(12)

Cπ Ωϕ ,⊂

τ0 r∃∃ 0 ϕ t( ) B 0 r,( ) t∀ τ 0,≥∈>

ρ ϕ τ( ) π τ0( ),( ) 1
2
---δ min

1
2
---δ 1

2
---ε, 

 
 
 
 

.<

ρ ψ τ1( ) π τ2( ),( ) 1
2
---δ 1

2
---ε 

  .<

ρ ϕ t τ+( ) π t τ0+( ),( ) min δ 1
2
---ε 

  1
2
---ε,

 
 
 

.<

ρ ψ τ1( ) ϕ τ( ),( ) δ 1
2
---ε 

  .<
Hence, we have

(13)

From Eqs. (11) and (13), we find

(14)

Since τ0 = τ2 , the rigidity of path Cπ follows from
inequality (14). Theorem 2 is proven.

Theorem 3. Let Cϕ be a L+-stable motion ϕ(t) of
Eq. (1). Then, there exists a recurrent path Cπ embed-
ded into set Ωϕ .

Proof. Theorem 3 is based on the fact that the set of
ultimate solutions is a dynamic flux in the Birkhoff
sense [9, 10].

Theorem 4. Let Cϕ be a recurrent path rigid in the
Joukowski sense and embedded into the spherical set
B(0, r) at all t ∈ R. Then, Cϕ is a nearly periodic path.

Proof. We reparametrize, if necessary, ϕ(t) to obtain
7 = 0. Since Cϕ is rigid in the Joukowski sense, then,

for a given ε > 0, there exists δ = δ . Since ϕ(t) is

recurrent, Lemmas 1 and 5 imply that there exists a rel-
atively dense sequence of numbers {τ} such that

(15)

If τ is specified, then, from the continuous depen-
dence of a solution on the initial conditions, it follows
that there exists a number µ > 0 such that if u(t) is a
solution to Eq. (1) and

(16)

then we have

(17)

If t is a given real number and T1 >0, then, due to
recurrence of ϕ(t), there exists a number τ1 such that we
have

(18)

Therefore, according to the definition of number µ, we
obtain

(19)

From Eqs. (15) and (19), we find

(20)

Since path Cϕ is rigid at 7 = 0, it follows from (18) that,
at t ≥ 0,

(21)

ρ ψ t τ1+( ) ϕ t τ+( ),( ) 1
2
---ε    t ∀  R 

+ . ∈<

ρ ψ t τ1+( ) π t τ0+( ),( ) ε    t ∀  R 
+ . ∈<

ε
2
--- 

 

ρ ϕ 0( ) ϕ τ( ),( ) 1
2
---δ.<

ρ ϕ 0( ) u 0( ),( ) µ,<

ρ ϕ τ( ) u τ( ),( ) 1
2
---δ.<

τ1 T1, τ1 t, ϕ 0( ) ϕ τ 1( )– min µ δ,{ } .< <–<

ρ ϕ τ( ) ϕ τ τ 1+( ),( ) 1
2
---δ.<

ρ ϕ 0( ) ϕ τ τ 1+( ),( ) δ.<

ρ ϕ t( ) ϕ t τ1+( ),( ) 1
2
---ε.<
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From Eqs. (20) and (21), we have that, if t ≥ 0, then

(22)

Since τ1 can be chosen in such a manner that τ1 < −T1,
where T1 > 0 is a given number, Theorem 4 is proven.

Theorem 5. Let (1) Cϕ be an L-stable path for
motion ϕ(t) of Eq. (1) rigid in the Joukowski sense and
(2) there are no equilibrium states of Eq. (1) in the
closed spherical set B[0, r]. Then, there exists a non-
trivial nearly periodic solution π(t) such that

(23)

Indeed, the formulation of Theorem 5 implies that
Ωϕ ⊂  B[0, r] and hence Cπ ⊂  Ωϕ .

Theorem 6. 1) Let Cϕ be a L-stable path for motion
ϕ(t) of Eq. (1) asymptotically rigid in the Joukowski
sense and let path Cv for solution v  = v(t) to Eq. (1) is
such that

(24)

Then, path Cv is asymptotically rigid in the Joukowski
sense.

Proof. Let the conditions of the theorem be met.
Based on Theorem 2 it is sufficient to prove that condi-
tion (4) of Definition 1 is valid at ϕ(t) = v (t). For a given
number ε > 0, let number δ correspond to number δ(ε)
related to motion ϕ(t). We suppose that there exist num-
bers τ1 and τ2 such that

(25)

From Eq. (24), it follows that there exists a number
τ3 ≥ 7 such that

(26)

and, from Eqs. (25) and (26), we find that ρ(ψ(τ1),
ϕ(τ3)) < δ(ε). Since path Cϕ is asymptotically rigid in
the Joukowski sense, there exist numbers τ4 and 
such that

(27.1)

(27.2)

Let us choose τ = t – τ4 + . Then, we have

(28)

or

(29)

ρ ϕ t τ1+( ) ϕ t τ1 τ+ +( ),( ) ε.<

Cπ Ωϕ .⊂

Cv Ωϕ .⊂

ρ ψ τ1( ) v τ2( ),( ) 1
2
---δ ε( ).<

ρ ϕ τ 3( ) v τ2( ),( ) 1
2
---δ ε( ),<

τ4

ρ ψ t( ) ϕ τ 4 t+( ),( )
t ∞→
lim 0,=

ρ v t( ) v τ4 t+( ),( )
t ∞→
lim 0.=

τ4

ρ v τ τ 4 τ4–( )+( ) ϕ τ τ 4 τ4 τ4–( )+ +(,( )
τ ∞→
lim 0,=

ρ v τ τ 4 τ4–( )+( ) ϕ τ τ 4+( ),( )
τ ∞→
lim 0.=
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From Eqs. (27)2 and (29), we arrive at

(30)

Thus, Theorem 6 is proven.

KEY THEOREMS 
AND THEIR COROLLARIES

The following theorems, which are the key theorems
of the present study, are valid.

Theorem 7. Let Cϕ be an L-stable path for motion
ϕ(t) = ϕ(t, p) of Eq. (1). If path Cϕ is rigid in the
Joukowski sense with respect to Q ⊂  Rn, then there
exists a nearly periodic path Cπ of motion π(t) = ϕ(t, q),
q ∈ Q completely embedded into set Ωϕ , that is,
Cπ ⊂  Ωϕ .

Theorem 8. Let Cϕ be an L-stable path for motion
ϕ(t) = ϕ(t, p) of Eq. (1). If path Cϕ is asymptotically
rigid in the Joukowski sense with respect to Q ⊆  Rn,
then there exists a periodic path Cv of motion v(t) =
ϕ(t, q), q ∈ Q coinciding with set Ωϕ , that is, Cv = Ωϕ . 

Theorem 7 is a corollary to Theorems 2, 3, and 4.
Theorem 8 is a corollary to Theorem 7 and Theorems 5
and 6. Indeed, it follows from the formulation of Theo-
rem 7 that there exists a nearly periodic rigid path Cπ
such that Cπ ⊂  Ωϕ . According to Theorem 5, path Cπ is
asymptotically rigid in the Joukowski sense. Due to the
fact that the path is nearly periodic, we have Cπ ⊂  Ωϕ .
Suppose that ψ(t) is a recurrent motion such that Cψ ∩
Cπ =  and, in addition, Cψ ⊂  Ωπ.

According to Theorem 4, motion ψ(t) is nearly peri-
odic, and according to Theorem 5, path Cψ is asymptot-
ically rigid. Owing to the condition Cψ ⊂  Ωπ, there
exists a number τ1 , such that

(31)

Since ψ(t) and π(t) are nearly periodic, ψ(t + τ1) and
π(t) also are nearly periodic. Then, the following rela-
tionship holds at all values of t:

(32)

Therefore, the only recurrent motion ψ(t), for which
the condition Cψ ⊂  Ωπ is met, is either motion π(t), or
motion π(t + c), where c is a constant. Set Ωπ is closed,
invariant, compact and contains a minimal set M, which
is closed and, hence, compact. According to Lemmas 3
and 4, each path of a minimal compact set is recurrent.
Since we proved that π(t) is the only recurrent motion
in Ωπ, we have M = Cπ and hence Ωπ ⊂  Cπ. Thus, π(t)
is a special motion (equilibrium or periodic). Due to the
asymptotic rigidity of path Cπ, the equality Ωπ = Cπ
holds, and Theorem 8 is proven.

These key theorems lead to:
Corollary 1. Let Cϕ be a L+-stable asymptotically

rigid path for Eq. (1). If there are no stable equilibrium

ρ ψ t( ) v t τ4 τ4–( )+(,( )
t ∞→
lim 0.=

ρ ψ t τ1+( ) π t( ),( ) 0 at t +∞.→ →

π t( ) ψ t τ1+( ).=
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states in the spherical set B[0, r], then there exists a
nontrivial periodic solution π(t) to Eq. (1) such that
Cπ = Ωϕ .

Let us consider the following condition, referred to
as Condition Π.

Condition P. Let (1) x(t, p) be a solution to Eq. (1)
such that x(t, p) = p; (2) there exists a bounded open set
K ⊂  G such that if p ∈ ∂ K, then for all t ≥ t0 , for which

solution x(t, p) is defined, we have x(t, p) ∈  , where

∂K is the boundary of set K and  is its closure.

The key theorems yield the following corollary:

Corollary 2. Let (1) condition Π be met; (2) path Cϕ
for Eq. (1) be a rigid (asymptotically rigid) path in the
Joukowski sense. Then, Eq. (1) has a rigid nearly peri-
odic path (asymptotically rigid periodic path). 
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FORMULATION OF THE PROBLEM

We consider motion of a solid about a fixed point O
in a uniform gravity field. The weight of the body is mg,
and the distance from the center of gravity to the fixed
point is l. Let Oxyz be a reference system rigidly
connected to the body and its axes be the principal iner-
tia axes of the body with respect to point O. The sym-
bols A, B, and C denote the corresponding principal
moments of inertia. The reference system OXYZ is
fixed, and its OZ axis is directed upward. The notation
p, q, r and γ1, γ2, γ3 corresponds to the components of
the angular velocity for the body and of the unit vector
of the ascending vertical axis OZ in the mobile refer-
ence system Oxyz.

In the Steklov’s case [1], it is assumed that the center
of gravity lies on the principal inertia axis. Let it be Ox
axis.

The Euler–Poisson equations have the form

(1)

(2)

V.A. Steklov found [1] that, if quantities A, B, and C,
in addition to the conditions

(3)

which are usual for solids, also obey the constraints

(4)

then Eqs. (1) and (2) admit a particular periodic solu-
tion expressed in terms of the Jacobian elliptic func-
tions. According to Eq. (4), the center of gravity for the
body lies at the medium-length axis of the ellipsoid of
inertia. The periodic motion of the solid corresponding
to this Steklov’s solution is orbitally unstable [2].

A ṗ B C–( )qr= , Bq̇ C A–( )rp mglγ3,+=

Cṙ A B–( )pq – mglγ2;=

γ̇1 rγ2 qγ3–= , γ̇2 pγ3 rγ1–= , γ̇3 qγ1 pγ2.–=

A B C, B C A, C A B,>+>+>+

B A 2C,> >
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However, it was shown in [3] that the relationships
found in [1] actually imply the existence of one more
particular periodic solution to Eqs. (1) and (2). For this
particular solution, the center of gravity for the body
lies in the shortest axis of the ellipsoid of inertia. In this
case, the values of moments of inertia should meet [in
addition to conditions (3)] the following inequalities:

(5)

The period of time τ is independent of initial con-
ditions, and its value is calculated according to the
formula

Here and below, we use notation typical of the theory of
elliptic functions and integrals. The symbols θb and θc

denote dimensionless inertia parameters,

In the θb, θc plane, domain (3), (5) of admissible param-
eter values is the interior of the right triangle Q1Q2Q3
with vertices Q1 (1, 0), Q2(0.5, 0.5), and Q3(1, 0.5) (see
Fig. 1).

In this paper, we present the results of solving the
problem on the orbital stability of periodic motion of a
solid, which corresponds to the Steklov’s solution to
Euler–Poisson equations (1) and (2).

SOLUTION EXPRESSED IN TERMS
OF CANONICALLY CONJUGATE VARIABLES

As the generalized coordinates, we take here the
Euler angles ψ, θ, and ϕ introduced in a usual manner.
ψ is a cyclic coordinate, and the momentum pψ corre-
sponding to it is the first integral of equations of
motion. For the Steklov’s solution, the constant enter-
ing into this integral is equal to zero [4]. It is assumed
that, for perturbed motion, we are also dealing with
pψ = 0.

2B A B C, A 2C.> > > >

τ 4kK k( ) A C–
mgl

-------------= , k
2 1 θb–

1 θc–
--------------= , 0 k 1< < .

θb
B
A
---= , θc

C
A
----= .
004 MAIK “Nauka/Interperiodica”
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We put ϕ = q1, θ = q2, pϕ = p1, pθ =

p2 and use a new independent variable,

The Hamiltonian function can be written as

(6)

We can put the Steklov’s solution of the Euler–Pois-
son equations under study in correspondence with a 2π-
periodic solution with respect to w:

(7)

for the differential equations with Hamiltonian (6). In

mglA

mglA

w
2π
τ

------ t t0+( )= , t0 const.=

F
kK k( ) 1 θc–

π
---------------------------------=

× 1
θc

----- q2
1

1
θb

----- q2
1cos+sin 

  q2
2cot+ p1

2





+ 1
θb

----- 1– 
  2q1 q2 p1 p2cotsin

+ q2
1cos

1
θb

----- q2
1sin+ 

  p2
2

2 q1 q2sinsin+




.

qi f i w( )= , pi gi w( )= , i 1 2,= ,

0.5

0
1.0

Q2

θb0.5

θc

Q5

Q4

Q1

Q3

γ2

γ3
(1)

γ4
(2)

γ4
(1)

γ3
(2)

Fig. 1. The domain of admissible values of parameters and
resonance curves.
this case, we have

(8)

For solution (7), the Oz axis cannot pass through the
vertical line; nutation angle q2 periodically changes
(with a period τ) between its minimum and maximum
values lying within the segment [0, π],

Here, µ = , if 0 < k2 ≤  and µ =

, if  ≤ k2 < 1. 

The other property of solution (7) important for the
further discussion is that the angle q1 corresponding to
the self-rotation is a monotonically growing function of
time. Indeed, it follows from Eq. (8) that

(9)

THE HAMILTONIAN 
OF THE PERTURBED MOTION. 
ISOENERGETIC REDUCTION

To study the orbital stability of periodic motion (7),
we introduce new canonically conjugate variables ξi, ηi

f 1 f 2sinsin 1–
1

1 θc–
-------------sn

2
z,+=

f 1 f 2sincos
2θb 1–

1 θc–( ) θb θc–( )
----------------------------------------snzcnz,=

f 2cos
1 2θc–

1 θc–( ) θb θc–( )
----------------------------------------snzdnz,–=

g1 θc

2θb 1–
1 θb–( ) 1 θc–( ) θb θc–( )

-----------------------------------------------------------dnz,=

g2
1 2θc–

1 θc–( ) 1 θb–( )
--------------------------------------=

×
2θb 1–
1 θc–

----------------- f 1snzcos
θb

θb θc–
-------------------- f 1cnzsin– ,

z
2K k( )

π
---------------w.=

µarccos q2 π µ.arccos–< <

1 2θc–
1 θc–

--------------------- 1
2
---

1
2
---

1 2θc–
1 θb–( ) θb θc–( )

----------------------------------------
1
2
---

dq1

dz
--------

2θb 1–
1 θc–( ) θb θc–( )

----------------------------------------
dnz

q2
2sin

--------------=

× cn z2 θc

1 θc–
-------------sn

2
z+ 

  0.>
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(i = 1, 2) in such a manner that unperturbed motion (7)
can be written in the form

and the new Hamiltonian function Γ(ξ1, ξ2, η1, η2) is a
2π-periodic solution with respect to ξ1 . Since (see the

previous section)  ≠ 0, the variables ξi, ηi (i = 1, 2)

could be introduced using the following canonical uni-
valent transformation [5]:

(10)

The problem concerning the orbital stability of the
periodic motion (7) is equivalent to the stability prob-
lem for the system having the Hamiltonian Γ with
respect to perturbations of parameters η1, ξ2, and η2 .
Function Γ can be written in the form of a series expan-
sion

(11)

where we omitted a constant equal to the value of the
Hamiltonian for the unperturbed motion. Γk is a form of
power k with respect to |η1|1/2, ξ2, η2. Here, we have

where χ(ξ1) is a 2π-periodic function with respect to ξ1
and ϕm and ψm are forms of power m with respect to ξ2
and η2 having coefficients 2π-periodic with respect to
ξ1 . The criteria for orbital stability and instability can
be expressed [5–7] in terms of the coefficient in the nor-
mal form of the Hamiltonian for perturbed motion (11).

The necessary calculations can be significantly sim-
plified, if we note that these conditions coincide with
those of stability and instability for the states of equilib-
rium ξ2 = η2 = 0 for a reduced Hamiltonian system with
a single degree of freedom, which describes the per-
turbed motion at the isoenergetic level Γ = 0. Solving
the latter equality with respect to η1 , we find η1 =

ξ1 w( ) w ξ1 0( )+ , η1 ξ2 η2 0,= = = =

d f 1

dw
--------

q1 f 1 ξ1( ), q2 f 2 ξ1( ) ξ2,+= =

p1 g1 ξ1( )
d f 1 ξ1( )

dξ1
------------------- 

 
1–

+=

× η1

dg2 ξ1( )
dξ1

------------------ξ2

d f 2 ξ1( )
dξ1

-------------------η2–+ 
  ,

p2 g2 ξ1( ) η2.+=

Γ Γ 2 Γ3 Γ4 … Γ k …,+ + + + +=

Γ2 η1 ϕ2 ξ2 η2 ξ1, ,( ),+=

Γ3 ψ1 ξ2 η2 ξ1, ,( )η1 ϕ3 ξ2 η2 ξ1, ,( ),+=

Γ4 χ ξ 1( )η1
2 ψ2 ξ2 η2 ξ1, ,( )η1 ϕ4 ξ2 η2 ξ1, ,( ),+ +=
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−H(ξ2, η2, ξ1), where H is the 2π-periodic function with
respect to ξ1 , which can be presented as the series

. (12)

Here, Hk is the form of power k with respect to ξ2 and
η2 , and we have

At the isoenergetic level Γ = 0, the equations for the
perturbed motion have the Hamiltonian form (the Whit-
taker equation) with Hamiltonian (11). The coordinate
ξ1 plays the role of an independent variable. Note that
the actual procedure (10) of changing the variables and
obtaining expansions (11) and (12) leads to rather cum-
bersome calculations. They were performed using com-
puter packages for analytical calculations.

STABILITY IN THE LINEAR APPROXIMATION.
RESONANCE CURVES.

Let X(ξ1) be a fundamental matrix of solutions to
the linear system with the Hamiltonian H2 . Its elements
xij(ξ1) obey the equations

(13)

and initial conditions

(14)

The characteristic equation for matrix X(2π) has the
form

(15)

The calculations have demonstrated that, everywhere
within the domain Q1Q2Q3 of admissible values of the
parameters θb and θc (Fig. 1), the quantity a meets ine-
quality |a| ≤ 1. Therefore, to obtain a rigorous solution
[8] to the stability problem, it is not enough to consider
only the linear approximation (13). Nonlinear analysis
is needed.

Let ρ = exp(iα) and  = exp(–iα) be the roots of
Eq. (15) (multiplicators). Since |a| ≤ 1, α is a real num-
ber and cosα = a. If ρk = 1, we have a resonance of the
kth order. As a rule, for the stability problem, reso-
nances up to the fourth order, inclusive, are the most
important. The calculations demonstrated that there are

H H2 H3 H4 … Hk …+ + + + +=

H2 ϕ2, H3 ϕ3 ϕ2ψ1,–= =

H4 ϕ4 ϕ3ψ1– ϕ2ψ1
2 ϕ2ψ2– χϕ 2

2
+ + .=

dx1 j

dξ1
----------

H2 x1 j x2 j ξ1, ,( )∂
x2 j∂

---------------------------------------,=

dx2 j

dξ1
----------

H2 x1 j x2 j ξ1, ,( )∂
x1 j∂

---------------------------------------, j 1 2,= ,–=

x11 0( ) x22 0( ) 1= = , x12 0( ) x21 0( ) 0.= =

ρ2
2aρ– 1+ 0, a

1
2
--- x11 2π( ) x22 2π( )+( ).= =

ρ
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five curves γ2, , and  (n = 1, 2) corresponding to
these resonances. These curves are shown in Fig. 1.
Each resonance curve begins at the vertex Q1 of the tri-
angle Q1Q2Q3 and terminates at its vertex Q2 . The res-
onance of the second order takes place in the curve γ2 ,

where a = –1. Curves  and  correspond to the

resonance of the third order; for them, a = . In

curves  and , we have the resonance of the

fourth order, and here, a = 0. The curve  consists of
two portions Q1Q4 and Q5Q2 (Q4(0.936868, 0.063132),
Q5(0.821425, 0.178575)). The segment Q1Q4 of this
curve differs only slightly from the segment Q1Q4 of the
straight line Q1Q2 . In Fig. 1, these segments are indis-
tinguishable.

NONLINEAR ANALYSIS OF STABILITY

Algorithm of the study. We solve the nonlinear
problem for stability of the equilibrium position ξ2 =
η2 = 0 of the reduced system by reducing it to the sta-
bility problem for an immobile point of the mapping
conserving the area. This mapping is generated by a set
of equations corresponding to Hamiltonian (12).

Let q0 and p0 be the initial values of variables ξ2 and
η2, whereas q1 and p1 are their values at ξ1 = 2π. If q0
and p0 are sufficiently small, q1 and p1 are analytical
functions of q0 and p0 , and they specify the mapping T
of the neighborhood of the equilibrium position onto
itself. The stability problem for the equilibrium posi-
tion ξ2 = η2 = 0 is equivalent to this problem for the
immobile point q0 = p0 = 0 of mapping T.

To find the mapping, we perform the canonical uni-
valent change of variables,

(16)

The new Hamiltonian G(u, v , ξ1) does not contain
the second-power terms G2 and can be represented as a
series

(17)

where Gk is the form of Hk from expansion (12), where
ξ2 and η2 are expressed in terms of u and v  according to
relationships (16). This change of variables reduces the
problem of finding the mapping T to finding the map-
ping q0, p0  u1, v 1 . Then, we have q0 = u0, p0 = v 0 ,
and

(18)

γ3
n( ) γ4

n( )

γ3
1( ) γ3

2( )

1
2
---–

γ4
1( ) γ4

2( )

γ4
1( )

ξ2 x11 ξ1( )u x12 ξ1( )v ,+=

η2 x21 ξ1( )u x22 ξ1( )v .+=

G G3 G4 … Gk …,+ + + +=

q1 x11 2π( )u1 x12 2π( )v 1+= ,

p1 x21 2π( )u1 x22 2π( )v 1.+=
We implicitly specify the mapping q0, p0  u1, v 1
by equalities

(19)

where S is the function

(20)

calculated at ξ1 = 2π and obeying the Hamilton–Jacobi
equation

(21)

and initial conditions Φk(u1, p0, 0) ≡ 0 (k = 3, 4, …).

Substituting expansions (17) and (20) into the left-
hand side of Eq. (21) and equating to zero the coeffi-
cients at all powers of u1 and p0 , we arrive at a system
of ordinary differential equations for coefficients in the
forms Φk, k = 3, 4, …. At ξ1 = 0, these coefficients
should vanish. Since the forms G3, G4, … depend on
xij(ξ1), this system should be considered simultaneously
with system (13), (14). If mapping T is found with an
accuracy up to terms on the order of m with respect
to q0, p0 , the number of equations in the resulting sys-

tem is equal to  + 1. Integrating this system

from ξ1 = 0 to ξ1 = 2π, we find functions S3, S4, … and,
from Eqs. (19), we determine the explicit form of q0,
p0  u1, v 1:

(22)

Here, Sk = Sk(q0, p0). The symbol O4 denotes all terms
of a power higher than three with respect to q0, p0 . Sub-
stituting the found expressions (22) for u1 and v 1 into
the right-hand sides of Eqs. (18), we obtain the explicit
form of mapping T.

After the mapping T has been found, it is possible
[9] to write out the criteria of stability and instability of
its fixed point q0 = p0 = 0. Thus, we arrive at conclusions
concerning the orbital stability and instability of the
periodic motion (7) in the Steklov’s case. Putting aside
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the details of the calculations, we present below only
the results of the examination of these criteria.

Results. Curve γ2 for the second-order resonance is
divided by point Q6(0.7320, 0.3776) into two segments
Q1Q6 and Q6Q2 . In the first segment, the fixed point
q0 = p0 = 0 of mapping T is unstable, while at the second
segment, it is stable.

In curve  for the third-order resonance, the fixed

point of the mapping is unstable, while in curve  it
is stable.

For both curves,  and  of the fourth-order
resonance, the stability takes place.

For the values of parameters θb and θc lying within
the triangle Q1Q2Q3 but not belonging to the resonance

curves γ2, , and  (n = 1, 2), we verified the non-
degeneracy condition for the normal form of mapping
T in the terms of third power with respect to q0, p0 (the
Arnold–Moser “torsion” condition [6]). It turned out
that there exists a curve σ(θb, θc) = 0, at which this con-
dition is violated. Curve σ = 0 consists of two portions,
σ(1) and σ(2). Portion σ(1) is located near vertex Q2 . It
starts at the point Q7(0.512643, 0.487357) of the seg-

γ3
1( )

γ3
2( )

γ4
1( ) γ4

2( )

γ3
n( ) γ4

n( )

0.5

0
1.0

Q2

θb0.5

θc

Q6

Q7

Q1

Q3

γ2

γ3
(1)

σ(2)

Fig. 2. Domains of orbital stability and instability.
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ment Q1Q2 and at θc  0.5, it approaches arbitrarily
close to the point Q2 remaining between the segment

Q1Q2 and the resonance curve . Portion σ(2) is

located between resonance curves  and γ2 and con-
nects vertices Q1 and Q2 of triangle Q1Q2Q3 . In Fig. 2,
the portion σ(2) is drawn by the dashed line, and the por-
tion σ(1) is not shown in this figure.

In conclusion, we can say that Fig. 2 illustrates the
aforementioned results of the nonlinear analysis of sta-
bility for Steklov’s periodic motions (7). In the curve

 for the third-order resonance and in the segment
Q1Q6 of the γ2 resonance curve marked out by the solid
line, motion is orbitally unstable. In segment σ(2) (as well
as in segment σ(1) not shown in Fig. 2) of curve σ = 0
and at the point Q6 of curve γ2 , the problem of stability
remains still unsolved. For the rest values of parame-
ters θb and θc lying within the triangle Q1Q2Q3 , the
periodic motion of the solid is orbitally stable in the
Steklov’s case.

ACKNOWLEDGMENTS

The work was supported by the Russian Foundation
for Basic Research (project no. 02-01-00831) and by a
Grant of the President of Russian Federation for the
Support of Leading Scientific Schools (project
no. NSh-1477.2003.1).

REFERENCES
1. V. A. Steklov, Tr. Otd. Fiz. Nauk Obshch. Lyubiteleœ Est-

estvoznaniya 10 (1), 1 (1899).
2. E. Yu. Kucher, Mekh. Tverd. Tela, No. 33, 33 (2003).
3. P. A. Kuz’min, Prikl. Mat. Mekh. 16, 243 (1952).
4. A. I. Dokshevich, Solving Euler–Poincaré Equations in

the Finite Form (Naukova Dumka, Kiev, 1992).
5. A. P. Markeev, Prikl. Mat. Mekh. 66, 929 (2002).
6. V. I. Arnol’d, V. V. Kozlov, and A. I. Neœshtadt, Mathe-

matical Aspects of Classical and Celestial Mechanics
(URSS Editorial, Moscow, 2002).

7. A. P. Markeev, Libration Points in Celestial Mechanics
and Space Dynamics (Nauka, Moscow, 1978).

8. I. G. Malkin, Theory of Stability of Motion (Nauka, Mos-
cow, 1966).

9. A. P. Markeev, Izv. Ross. Akad. Nauk: Mekh. Tverd.
Tela, No. 2, 37 (1996).

Translated by K. Kugel

γ4
1( )

γ3
1( )

γ3
1( )



  

Doklady Physics, Vol. 49, No. 10, 2004, pp. 598–602. Translated from Doklady Akademii Nauk, Vol. 398, No. 5, 2004, pp. 625–629.
Original Russian Text Copyright © 2004 by Simonov.

                                                                          

MECHANICS
A Model of an Asymmetric Weakened Zone 
in Problems of Interaction Between Cracklike Defects

in an Elastic Medium
I. V. Simonov

Presented by Academician N.F. Morozov May 17, 2004

Received May 15, 2004
A weakened zone of a deformed solid medium can
be defined as a cut in its volume. In this case, the entire
surface of cut edges is subjected to the action of distrib-
uted adhesive forces, whereas displacements exhibit
discontinuities [1]. This object can be treated as a fore-
runner of a crack. With increasing load on a solid when
the bonds begin to break and traction-free zones appear
on the edges of a cut, the weakened zone transforms
into a crack. The fundamental difference between a
weakened zone and a crack is that the opening of the
weakened zone does not occur immediately, but on
attaining a certain load level sufficient to overcome the
initial adhesive forces. These forces can be of different
physical natures, e.g., of an atomic-molecular or dislo-
cation character. In addition, these forces can arise due
to the presence of porosity, fibers, plastic hinges, etc.
The scale of linear sizes of a weakened zone ranges
from nanometers and micrometers (new materials) to
kilometers (welded cracks in glaciers and faults in the
earth’s crust).

In this study, an attempt is made to construct a
model of an asymmetric weakened zone that would be
suitable for studying the interaction of cracklike
defects, with the physical nature of the adhesive forces
being not concretely specified. The idea is to explicitly
set the opening of this zone in the form of a two-para-
metric family of functions as a special-type dislocation.
In addition, certain physical constraints on the behavior
of a solution at the end zones are a priori taken into
account. One of the goals of this investigation is to test
the validity of the model in solving the problem on
interaction between a crack and a weakened zone of a
small length at the interface of two elastic media. This
is one of stages of a possible scenario of discontinuous
crack motion, when the crack propagation is retarded
by a firm microstructure element (a barrier) and,
beyond the barrier, a weakened zone is formed on the

Institute for Problems in Mechanics, 
Russian Academy of Sciences,
pr. Vernadskogo 101, Moscow, 119526 Russia
1028-3358/04/4910- $26.00 © 20598
extension of a crack. From the solution to this problem,
the ultimate load responsible for transformation of this
weakened zone into a crack and the critical load brak-
ing up the barrier are found. A typical—and the most
interesting from the physical standpoint—situation is
when a different-scale interaction occurs: the crack size
considerably exceeds the length of the weakened zone,
and the barrier width is much less than the length of the
weakened zone. A method for defining the adhesive
forces in measurements of the opening at the sites of an
incomplete fracture is also described.

When constructing the model, we base ourselves on
the investigation of the behavior of the weakened zone
in the case of symmetric loading [1] when the adhesive
forces are set in the form of polynomials of a different
order in coordinates, and the coefficients are found
from additional conditions. In contrast to [1], we con-
sider here an asymmetric opening of a cut w(X), |X| ≤ 1,
which is located on the X axis, in the form

(1)

where w0 and η are, respectively, the amplitude and dis-
placement of the maximum to the left from the center
X = 0 of the zone provided that η > 0. For the unknown
function G(X, η), it is assumed that the conditions of
evenness and normalization are fulfilled, the function
T(X, η) attains its maximum at X = –η, this function is
bounded at the peak value X = 1 for η  1 + 0, and an
inequality denoting that, at η > 0, the larger opening
intensity coefficient corresponds to the edge X = –1:

(2)

The function G(X, η) is sought in the form of a rational
function in variables X, η, which obeys conditions (2).
This leads to a finite recurrence system of equations

w X( ) w0T3/2, T 1 X2–( )G X η,( ),= =

1– X 1,< <

G X η,( ) G X– η–,( ), T η– η,( ) 1,= =

G X 0,( ) 1,=

∂T
∂X
------- η– η,( ) 0, 0 G 1 η,( ) G 1– η,( ), η< < 0.>=
004 MAIK “Nauka/Interperiodica”
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with respect to the coefficients. Unexpectedly, the solu-
tion has a simple form,

(3)

For η = 0, opening (1), (3) corresponds to the solution
for the symmetric case [1] if the adhesive forces are
specified as a quadratic function of a coordinate. In
addition, the asymptotic behavior of the opening in the
neighborhood of the edges of the weakened zone (the
so-called beak) qualitatively coincides with the approx-
imation of the experimental values of this quantity at
the crack end zone [2]. The parameter η is found from
the condition that the adhesive forces at the point of the
maximum opening w(x) are minimal. The amplitude w0
remains a free parameter. This ambiguity is a result of
the general character of the approach, i.e., its arbitrari-
ness in the description of the relation between a force
and an opening. However, the ultimate value w∗  is
assumed to be the known parameter [1]. For w0 > w∗ ,
traction-free regions appear at the edges. Thus, the cri-
terion w0 = w∗  characterizes the onset of transforming
the weakened zone into an imperfect crack, i.e., into a
qualitatively different state. This condition is similar to
the Leonov–Panasyuk criterion known in theory of
cracks: for w0 = w∗ , the adhesive forces disappear at the
point X = –η and this equality is used to find the ulti-
mate load.

It seems likely that the possibility of a mechanism
responsible for the formation of a zone of microdefects
in front of a mobile crack and their subsequent merg-
ing, which causes nonuniform crack motion, was first
proposed in [3]. Later, this hypothesis was confirmed
by experimental observations (see [4]). In [5], a number
of discrete mathematical fracture models were pro-
posed, and it was shown that such a mechanism can
manifest itself only in the presence of a microstructure.
Thus, one possible explanation of the phenomenon of
discontinuous propagation of cracks is the following.
Periodically, the crack front meets a structural ele-
ment—a barrier of enhanced firmness—and stops if
there is not enough energy to overcome the barrier.
Beyond the barrier, in a zone of a weak firmness, micro-
defects (dislocations, microcracks, pores, etc.) are
formed, which requires time. They locally change the
stress field in such a manner that the effect produced on
the barrier is enhanced. As a result, the barrier is
destroyed, and the front moves for the distance of the
lattice period up to the following barrier. In the litera-
ture, there are many variants describing the interaction
of a crack and microdefects. However, it is interesting
to analyze the situation when the weakened zone arises
in front of the crack.

We consider the plane problem of the contact
between two linearly elastic isotropic half-planes y > 0
(medium 1) and y < 0 (medium 2). On the straight line
y = 0, which connects the media, a half-infinite imper-

T X η,( ) 1 X2–

1 η2+( ) 1 αX+( )
------------------------------------------, α 2η

1 η2+
---------------.= =
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fect crack (x < 0) and a weakened zone (0 < a < x < b)
are located. They are opened by normal forces Σ
applied to the crack edges at a unit distance from the
crack tip (Fig. 1). The adhesive forces impede this
opening. In a small zone –l < x < 0 of the fracture pro-
cess, they are distributed according to a quadratic law,

(4)

and, in the region a < x < b, the displacement jump of
form (1), (3) is set, where the coordinate X should be
replaced by

(5)

The weakened zone, when it is located near the crack,
is immersed in an essentially asymmetric stress field.
This was taken into account above in constructing the
weakened-zone model. In the segments 0 < x < a and
x > b, the stresses and displacements are continuous.
Thus, a problem appears for an elastic compound plane
with the boundary conditions for the stresses at the
semiaxis x < 0 and for the jumps of the normal displace-
ments at x > 0.

Expressing the stress fields and derivatives with
respect to x of the displacement vector in terms of the
complex potential satisfying the continuation condi-
tions across the interface [1], we arrive at the coupled
generalized vector Riemann–Hilbert problem [6]. This
problem can be essentially simplified and reduced to
the Keldysh–Sedov problem for a single complex func-
tion [6], provided that terms inessential for the analysis
are ignored. The problems are equivalent if the Dunders
parameter β (|β| ≤ 0.5 [1]), which defines, in essence,
the difference in the elastic properties of materials (in
particular, identical materials), is equal to zero. For
small values of β, the simplified problem provides a
major part of the exact solution with an error of O(β2).
For finite values of β, the solution to this problem qual-
itatively correctly and quantitatively satisfactorily
describes the normal contact forces that are of interest
for us in the case of a “poor” determination of shear
stresses. The available experience in solving various
contact problems confirms this statement.

The formulation of the problem becomes similar to
that of the problem for a uniform plane, and the diver-

σ σ0 1 R2–( ), R
x
l
--,= =

X
x
L
--- D, D–

b a+
b a–
------------ 1, L> b a–

2
-----------.= = =

Σ

–1

y µ1, ν1

x

–Σ µ2, ν2

a b–l

Fig. 1.
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sity of elastic properties is determined only by the
parameter q (for its definition, see below). The solution
to this simplified problem is given by the integrals of
the Cauchy type. We now write out the final expressions
for the normal adhesive forces in front of the crack after
normalizing them to the value of Σ and with allowance
for (4) and (5):

(6)

σ x( ) σ1 x( ) σ2 x( ), x 0,>+=

σ 0( ) 5

8 l
--------- 1 W0I0+( ),=

σ1 x( )
3W0

πL
---------- ξ D+

X D+
--------------

g ξ( ) ξd
ξ X–

-----------------,

1–

1
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w0

qΣ
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1 η2 2ηξ+ +( )5/2
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π x

-----------------
1

π x
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1 x+
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1
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 
3/2 ξd

2 L
-----------,

1–

1

∫=
κj = 3 – 4νj (plane deformation),

(two-dimensional stress state),

where σ1(x) is the weakened-zone contribution, σ2(x) is
the nominal stresses in the absence of the weakened
zone, and the quantity σ(0) is calculated from the
boundedness condition after eliminating the root singu-
larity; µj and νj are the shear moduli and Poisson’s
ratios (j = 1, 2), respectively. The integrals in (6) exist
as x  a + 0 and b – 0, and the function σ(x) is
bounded.

Equating the derivative σ'(x) to zero at the point x =
xm = L(D – η), where the maximum of w(x) is attained,
we arrive at the equation for the determination of the
displacement parameter η:

S
5
4
--- R 1 R2–( ) 1
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--------arctan R
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 
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≈ 1 4
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The uniqueness of the solution is provided by the con-
tinuous and strictly monotonic dependence of the spe-
cial integral J on η and by the fact that it takes all real
values within the interval |η| < 1. In the ultimate case,
we find the relation of W0 = W∗  to other parameters and,
provided that Rm @ 1, Eq. (7) is simplified, becoming
independent of l:

(8)

Length of the crack mouth l can be found from the
Leonov–Panasyuk condition w(l) = wc , where parame-

W*
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ter wc defines the value of the mouth opening to which
the adhesive forces vanish:

(9)
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The solution to the integroalgebraic equation (9) [along
with (7) or (8)], can be efficiently sought by the method
of successive approximations.

To determine the onset of the barrier fracture, it is
appropriate to use the Novozhilov–Neuber criterion,
according to which fracture takes place when the aver-
aged tension stress at the barrier attains the critical
value σc [5]. The critical force can be found after
explicitly eliminating the singularity for stress (6) and
averaging over the segment 0 < x < a:

(10)
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The quantity Σc drops with rising amplitude of opening

w0 and attains the minimum value  for w0 = w∗ .

The ultimate load under which the weakened zone
transforms into a crack is found under the condition of
vanishing the adhesive forces at the point of their min-
imum x = xm:

(11)

The evolution of the system of two defects for continu-
ously increasing the load can be different depending on

the system parameters. For example, if  < Σ∗ , then
criterion (10) is realized first: the crack passes by a bar-
rier and, at the same time, captures the weakened zone.

If  > Σ∗ , first, the weakened zone transforms into a
crack. In this case, a more complex problem appears
with additional unknowns, namely, with the lengths of
the adhesive-force actions near the tips of the formed
crack. As is noted in [1], the above transformation can
be unstable and be accompanied by rapid processes of
vanishing of the adhesion forces and development of
one of the cracks. Thus, the description of this transfor-
mation needs additional hypotheses.

The calculated values of the parameter η, the ratio

, the peak values of stresses σ(0), and the force coef-

ficient f =  = 〈σ〉a (where P is the load breaking the

barrier) for two values of a = 0.01 and 0.1 are presented
in the table as a function of half-length L of the weak-
ened zone.

Σc
m

Σ*
w*

qW*
-----------

3w* 1 xm+( )I1

q L
-----------------------------------, Rm @ 1.≈=

Σc
m

Σc
m

l
L
---

P
Σ
---
a = 0.01 

L 0.005 0.010 0.020 0.050 0.100 0.200 0.500

η 0.95 0.118 0.153 0.177 0.190 0.217 0.288

0.079 0.130 0.197 0.286 0.323 0.323 0.275

σ(0) 31.74 17.93 10.63 5.914 3.965 2.840 2.071

f 0.060 0.056 0.051 0.041 0.033 0.026 0.019

a = 0.10

L 0.005 0.010 0.020 0.050 0.100 0.200 0.500

η 0.0131 0.0251 0.0466 0.0966 0.152 0.217 0.313

 0.0090 0.0171 0.0312 0.0625 0.0959 0.132 0.158

σ(0) 93.198 47.854 25.115 11.322 6.578 4.078 2.468

f 0.228 0.206 0.195 0.185 0.176 0.163 0.139

l
L
---

l
L
---
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It was assumed in this case that w0 = w∗  = wc, i.e.,
the ultimate situation was considered. For small L, the
parameter η < 0.31 sharply increases with L, while it
rises moderately for L > 0.1. With increasing a, the

parameter η noticeably drops. The ratio  is important

as a measure of the accuracy, since approximate equa-
tion (8) was used. According to the estimates, the error
must not exceed 10%. (It is inappropriate to require a
higher accuracy, since the approach used, in itself, is
approximate.) The length is l < 0.14 and strongly
changes: the effect of the weakened zone on the adhe-
sive region –l < x < 0 is significant. The value of nor-
malized stress at the crack tip σ(0) decreases with

increasing the length of the weakened zone: σ(0) ~ 

and  < 0.5. Upon receding of the constant-length

weakened zone from the crack tip, the coefficient of
force increases, and averaged stress 〈σ〉  decreases.
When a = const and the length of the weakened zone
increases, the values of f and 〈σ〉  decrease logarithmi-
cally.

From the solution, it is possible to evaluate the
deformation law for bonds σ = σ(w). This dependence
turned out to be close to linear one, with a small devia-
tion in the neighborhood of the point w = 0. We recall
that all these conclusions are related to the ultimate sit-
uation w0 = w∗ . Therefore, in order to retain the situation
with changing a or L, both the applied force Σ (~L–1/2),
and the quantities σ(0), l, and f, also must vary nonlin-

l
L
---

1

L
-------

a
L
---

10

8

6

4

2

0 0.01 0.02 0.03 0.04 0.05 0.06
x

Stress, arb. units

Fig. 2.
early. Figure 2 shows the distribution of the stresses in
front of the crack for a = 0.01 and L = 0.01, 0.02, and
0.05. In the left tip of the weakened zone, the maximum
of these stresses depends slightly on the length of the
weakened zone and is determined by the barrier width.
In the case of a close weakened zone, the stress pattern
near the barrier 0 < x < a is strongly distorted, and the
distortion becomes local only at a certain distance
(a @ L).

By virtue of the σ–τ dualism well-known in elastic-
ity theory, a weakened-zone model of shear type and
the solution to the corresponding problem associated
with loading a crack–weakened-zone system by a point
shear force, as well as by a oblique force, are automat-
ically derived from the above results.

The theoretical approach being developed provides
the possibility of experimentally determining the con-
stitutive parameters and functions. For example, using
laser techniques, it is possible to determine with a high
degree of accuracy the opening of a weakened zone in
plates [2]. Comparison of the experimental we(x) and
predicted (1) forms of the opening will indicate the
degree of deviation between the ideal and actual pat-
terns. In addition, in solving a problem similar to that
described above and using the measured opening we(x),
we can find the true bond law, which is incapable of
direct measurements. Therein lies the indirect method
of determining the deformation-bond law for incom-
plete fracture.
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Invariant Integrals in Problems of a Crack at the Locus
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The problem of equilibrium of an anisotropic elastic
body containing a crack at the locus of inhomogeneity
is considered in the present study. It is found that, in this
problem, there exist invariant integrals (that is, integrals
that are independent of the integration surface). The
existence of invariant integrals is also established in the
problem of a contact of an elastic body that interacts,
over some part of its surface, with a rigid stamp, in
which case nonlinear boundary conditions of mutual
nonpenetration are imposed at the contact boundaries.

The existence of invariant integrals in the linear the-
ory of cracks—these are usually referred to as
Cherepanov–Rice integrals—has been discussed in a
number of studies (see, for example, [1–3]). The analy-
sis there was confined to linear problems, where linear
boundary conditions were imposed at the edges of a
crack. Here, we consider nonlinear problems in crack
theory (for a survey of such problems, the interested
reader may address the monograph quoted in [4]).
Boundary conditions at the edges of a crack in the form
of a set of equalities and inequalities are peculiar to
nonlinear problems. Previously, invariant integrals for
smooth tensors of elasticity moduli were constructed in
nonlinear problems of crack theory [4–6]. In the
present study, invariant integrals are constructed for an
elastic body containing a crack at the locus of inhomo-
geneity. In this case, the tensor of elasticity moduli is
not smooth over the domain being considered. The
invariant integrals are constructed both for the two- and
the three-dimensional case. The fictitious-domain
method, which was recently developed for problems
involving the Signorini boundary conditions [7, 8], is
used to derive invariant integrals in contact problems.
Here, the problem of equilibrium of a body containing
a crack is included in the family of problems dependent
on a parameter, a contact problem being associated
with the limiting value of this parameter. As a matter of
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Siberian Division, Russian Academy of Sciences, 
pr. Lavrent’eva 15, Novosibirsk, 630090 Russia
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1028-3358/04/4910- $26.00 © 20603
fact, invariant integrals are obtained simultaneously in
the problems being considered. The fundamentals of
the fictitious-domain method as applied to linear
boundary value problems can be found in [9–11]. Con-
currently, use is being made here of a formula for the
derivative of the energy functional with respect to a per-
turbation parameter in elasticity-theory problems
where nonlinear boundary conditions are imposed at
the edges of cracks in solids. The technique of differen-
tiation of energy functionals in the nonlinear problems
of crack theory is given in [4–6, 12]. Applications of
problems of crack theory in mechanics of a deformed
solid can be found in [1, 2].

FORMULATION OF THE PROBLEMS.

Let Ω1 ⊂ R3 be a bounded simply connected domain
having Lipschitzian boundary Γ1. Let Γc ⊂ Γ 1 be a con-
tact boundary—that is, part of the boundary where the
Signorini boundary conditions Γ0 = Γ1\Γc and
measΓ0 > 0 are satisfied. For the sake of simplicity, we
assume that Γc , which is a two-dimensional surface in
R3, can be represented as a graph of the function x3 =

φ(x1, x2), (x1, x2) ∈ , where φ is a rather smooth func-
tion. Here, D ⊂ R2 is a bounded, simply connected
domain with the boundary γ0 of class C 0, 1; being a
curve in R3, γ0 can be represented in the form γ0 = {(r,
ϕ, 0)| r = g(ϕ), ϕ ∈ [0, 2π], g(0) = g(2π), g > 0, g ∈
C 0, 1}. Moreover, there exists δ0 > 0 such that we have

where (r, ϕ, ξ) are cylindrical coordinates in R3 . The
above condition implies that, near the edge γ0 of the
contact boundary Γc , there exists a flat area belonging
to the boundary Γ1 .

The formulation of a contact problem is as fol-
lows [13]. In the domain Ω1 , it is required to find the

D

γ1 Γ1,⊂
γ1 r ϕ 0, ,( ) g ϕ( ) δ0– r g ϕ( )< < δ0+{ }= ,
004 MAIK “Nauka/Interperiodica”
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functions u0 = ( , , ) and σ = {σij} (i, j = 1, 2, 3)
such that

(1)

(2)

(3)

(4)

Here and below, εij(v) = (v i, j + v j, i) are the compo-

nents of the strain tensor, v i, j =  with x = (x1, x2,

x3) ∈ Ω 1,  f = ( f1, f2, f3) ∈ (R2) is a known function;

and C1 = { } is the tensor of elasticity moduli (i, j, k,
l = 1, 2, 3),

,

We note that Eq. (1) is the equation of equilibrium;
Eq. (2) represents Hooke’s law; boundary condition (3)
corresponds to the fastening of an elastic body on Γ0;
and boundary conditions (4), referred to as the Sig-

u1
0 u2

0 u3
0

divσ– f in Ω1,=

σ C1ε u0( ) in Ω1,=

u0 0 on Γ0,=

u0ν 0, σν 0, στ≤≥ 0,=

u0ν σν⋅ 0 on Γ c.=

1
2
---

∂v i

∂x j

--------

Cloc
1

cijkl
1

cijkl
1 cklij

1 c jikl
1 , cijkl

1 const= = =

cijkl
1 ξklξ ij c ξ 2, c 0, ξ∀>≥ ξ ij{ } ,=

σν σijν jν i, στ σν σν– ν ,⋅= =

σν σijν j{ } i 1=
3 .=

Vertical cross section of the domain Ωc .

x3

Ω1

ν

Γc
x1 x2

Ω2

Γ0
norini boundary conditions, describe the contact of
an elastic body with a nondeformable surface at zero
friction.

All of the quantities carrying two subscripts are
assumed to be symmetric with respect to the inter-
change of these subscripts—for example, σij = σji; in
addition, summation over dummy indices is implied.

It is well known that the problem specified by (1)–(4)
admits a variational formulation. To be more specific,

we consider the space of Sobolev functions, (Ω1) =

{v  = (v 1, v 2, v 3) ∈ H1(Ω1)| v  = 0 on Γ0}, and the set of

admissible translations K = {v  ∈ (Ω1)| v ν ≥ 0
almost everywhere on Γc}. The problem specified
by (1)–(4) can then be represented in the form of the
variational inequality

(5)

Here and below, we use the notation σ(v) = C1ε(v ).

Along with the problem formulated in terms of (1)–(4),
we will consider the problem of equilibrium of an elas-
tic body containing a crack at the locus of inhomogene-
ity. For this, a bounded domain Ω2 that has a Lipschit-
zian boundary Γ2 is added to the domain Ω1 in a way
that is indicated in the figure, whereupon the boundary-
value problem involving nonlinear boundary conditions
on Γc is solved in the domain Ωc = Ω1 ∪ Ω 2 ∪ (Σ\Γc)
with Σ = Σ0\∂Σ0, Σ0 = Γ1 ∩ Γ2. As a matter of fact, it is
assumed here that, in R3 , there exists a domain such that
it is divided by a regular surface Σ0 into two subdo-
mains Ω1 and Ω2 and that Γc ⊂ Σ 0 . The resulting prob-
lem describes the equilibrium of an elastic body occu-
pying the domain Ωc and containing the crack Γc , the

boundary conditions at its edges  corresponding to
the absence of penetration. Moreover, we will consider
a family of boundary-value problems dependent on a
parameter λ such that the problem of equilibrium of a
body containing a crack and the problem specified
by (1)–(4) correspond to positive values of λ and λ = 0,
respectively. The existence of invariant integrals will be
established simultaneously for the entire family of
problems associated with positive values of λ. The
existence of invariant integrals for the contact problem
specified by (1)–(4) will be proven by going over to the
limit λ  0. From the standpoint of the contact prob-
lem specified by (1)–(4), the auxiliary domain Ω2 intro-
duced above can be called a fictitious domain. The
geometry of the domains Ω1 and Ω2 is assumed to be
such that the cut Γc does not reach the external bound-

ary Γ; that is, Γc ∩ Γ = , where Γ = ∂Ωc\ (  ∪ ).

HΓ0

1

HΓ0

1

u0 K , σ u0( )ε v u0–( )

Ω1

∫ f v u0–( )   v ∀  K . ∈ 
Ω

 

1

 ∫  ≥∈

Γ c
±

Γ c
+ Γ c

–
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Thus, we introduce the tensor Bλ = { } (λ > 0; i,
j, k, l = 1, 2, 3) as

Here, the tensor C2 = { } possesses the same prop-
erties as the tensor C1 . In the domain Ωc , which con-
tains the crack (cut) Γc , we will solve the following

problem. It is required to find functions uλ = ( , ,

) and σλ = { } (i, j = 1, 2, 3) such that

(6)

(7)

(8)

(9)

Here, [v ] = v + – v – is the discontinuity of the function
v   on Γc , where the plus (minus) sign corresponds to the

positive (negative) direction of the normal ν;  =

νjνi; and  = σλν –  · ν. The equality  = 0 on

Γc implies that  = 0 on .

The problem specified by (6)–(9) has only one solu-
tion at each positive value of λ. Namely, we consider

the space of functions (Ωc) = {v  = (v 1, v 2, v 3) ∈
H1(Ωc)| v  = 0 on Γ} and the set of admissible transla-

tions Kc = {v  ∈ (Ωc)|[v]ν ≥ 0 almost everywhere on
Γc}. The problem specified by (6)–(9) is then equivalent
to that of minimizing the functional

on the set Kc and can be formulated in terms of a varia-
tional inequality; that is,

Here, σλ(v) is determined from an equation of the form
in (7); that is, σλ(v ) = Bλε(v).

We will consider a family of perturbed problems
dependent on the parameter δ that are defined in the

perturbed domain . At each fixed value of λ and a
small value of δ, we will find a solution uλδ to the

bijkl
λ

bijkl
λ cijkl

1 in Ω1,

λ 1– cijkl
2 in Ω2.




=

cijkl
2

u1
λ u2

λ

u3
λ σij

λ

divσλ– f in Ωc,=

σλ Bλε uλ( ) in Ωc,=

uλ 0 on Γ ,=

uλ[ ]ν 0, σν
λ[ ]≥ 0, σν

λ 0, στ
λ≤ 0,= =

uλ[ ]ν σ ν
λ⋅ 0 on Γ c.=

σν
λ

σij
λ στ

λ σν
λ στ

λ

στ
λ Γ c

±

HΓ
1

HΓ
1

Πλ Ωc; v( ) 1
2
--- σλ v( )ε v( )

Ωc

∫ fv

Ωc

∫–=

uλ Kc,∈

σλ uλ( )ε v uλ–( )
Ωc

∫ f v uλ–( )    v ∀  K c . ∈ 
Ω

 

c

 ∫  ≥

Ωc
δ
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respective perturbed problem and the derivative of the

energy functional Πλ( ; uλδ) with respect to the
parameter δ at δ = 0. At an appropriate choice of pertur-
bations, the resulting formula for the above derivative
will provide invariant integrals in the problem specified
by (6)–(9). After that, we will go over to the limit λ 
0

 

 in the formula for this derivative.

Let us consider a perturbation of the domain 
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c

 

 in
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At small values of 

 

δ

 

, this transformation establishes a

one-to-one correspondence between 

 

Ω

 

c

 

 and . We
assume that the vector field 

 

V

 

(

 

x
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 is such that 
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, where 
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δ
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 is the normal to the per-

turbed cut 

 

 = 

 

Ψ

 

δ

 

(

 

Γ

 

c

 

). At each value of δ, we obtain

the perturbed domain  and the boundary value prob-
lem that is perturbed with respect to that specified
by (6)–(9) and formulated as follows. It is required to

find the functions uλδ = ( , , ) and σλδ = { }
(i, j = 1, 2, 3) such that

(10)

(11)

(12)

(13)

We assume that the coefficients  in (11) are defined

in  in such a way that their properties of smoothness
are preserved under the map y = Ψδ(x); that is, they
remain piecewise smooth,

Let uλδ be a solution to the problem specified by (10)–

(13) from the space H1( ). This solution can be found
according to the following scheme. We consider the set
of admissible translations in the problem specified
by (10)–(13):

Ωc
δ

Ωc
δ

W loc
1 ∞,

Ωc
δ

Γ c
δ

Ωc
δ

u1
λδ u2

λδ u3
λδ σij

λδ

divσλδ– f in Ωc
2,=

σλδ Bλδε uλδ( ) in Ωc
δ
,=

uλδ 0 on Γ ,=

uλδ[ ]ν 0, σν
λδ[ ]≥ 0, σν

λδ 0,≤=

στ
λδ 0, uλδ[ ]ν σ ν

λδ⋅ 0 on Γ c
δ.= =

bijkl
λδ

Ωc
δ

bijkl
δ cijkl

1 on Ψδ Ω1( ),

λ 1– cijkl
2 on Ψδ Ω2( ).




=

Ωc
δ

Kc
δ {v HΓ

1 Ωc
δ( ) v[ ]ν∈ 0≥=

almost  everywhere  on  Γ c 
δ }.
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Furthermore, we introduce the notation

and consider the problem of minimizing the functional

Πλ( ; v ) on the set . A solution to this problem
exists and is determined from the variational inequality

This makes it possible to determine the energy func-
tional as

For the derivative of the energy functional with respect
to the parameter δ, we further introduce the notation

Iλ = Πλ( ; uλδ)|δ = 0. According to [6, 12], we then

have

(14)

where Eij(Φ; v ) = (v i, kΦkj + v j, kΦki) with Φ = {Φij}

(i, j = 1, 2, 3). In view of the above assumption concern-
ing the vector field V, it is not necessary to differentiate

the coefficients  with respect to x3, which, in gen-
eral, have a discontinuity along the set Σ. It is well
known (see [7, 8]) that, for λ  0, there are the strong

convergence uλ  0 in H1(Ω2) and the strong con-

vergence uλ  u0 in H1(Ω1), where u0 is a solution to
the problem specified by (1)–(4). From (14), we then

derive I0 = . The result is

(15)

Πλ Ωc
δ; v( ) 1

2
--- σλδ v( )ε v( )

Ωc
δ

∫ fv

Ωc
δ

∫–=

Ωc
δ Kc

δ

uλδ Kc
δ,∈

σλδ uλδ( )ε v uλδ–( )
Ωc

δ

∫ f v uλδ–( )    v ∀  

Ω

 

c

 

δ

 ∫  K c 
δ . ∈≥

Πλ Ωc
δ; uλδ( ) 1

2
--- σλδ uλδ( )ε uλδ( )

Ωc
δ

∫ f uλδ.

Ωc
δ

∫–=

d
dδ
------ Ωc

δ

Iλ 1
2
---div Vbijkl

λ( )εkl uλ( )εij uλ( )




Ωc

∫=

– σij
λ uλ( )Eij

∂V
∂x
-------; uλ

 
 





div V f i( )ui
λ ,

Ωc

∫–

1
2
---

bijkl
λ

1

λ
-------

Iλ

λ 0→
lim

I0 = 
1
2
---divV σij u0( )εij u0( ) σij u0( )Eij

∂V
∂x
-------; u0

 
 –⋅

 
 
 

Ω1

∫

– div V f i( )ui
0.

Ω1

∫

                                    

INVARIANT INTEGRALS

We now consider specific realizations of the vector
field V, which lead to invariant integrals via a transfor-
mation of formulas (14) and (15). Since the compo-
nents of the stress tensor are not defined in general in
the domain Ω2 at λ = 0, the respective invariant inte-
grals for the problem specified by (1)–(4) and the prob-
lem specified by (6)–(9) will be written separately.

In the examples given below, we will have to choose
vicinities S1 and S2 having Lipschitzian boundaries ∂S1

and ∂S2. We assume that the boundaries of the domains
also satisfy the Lipschitzian condition.

Example 1. Let θ(x) be a smooth function equal to
zero off a small vicinity S1 of a curve γ0 and θ = 1 in a
vicinity S2 of the curve γ0, S2 ⊂ S1 . For instance, S1 and
S2 may be tori that contain γ0 and which are so small
that (∂S1) ∩ Γ1 is part of a flat segment of γ1 . We then
choose a perturbation of the domain Ωc in the form

(16)

where x ∈ Ω c, y ∈ , and  +  = 1. In this case,
V(x) = (θ(x)p1, θ(x)p2, 0), while formula (14) takes the
form

(17)

Suppose that f ≡ 0 in S2 ∩ Ωc. It turns out that the
smoothness of the respective solution in H2 up to the
points of γ1\γ0 and the relevant boundary conditions make
it possible to perform integration by parts in (17) and to
obtain thereby, for the problem specified by (6)–(9), an
invariant integral of the form

(18)

where n = (n1, n2, n3) is an inward normal to ∂S2. It

should be noted that, if part of the surface (∂S2) ∩ 
lies on γ1 , integration in (18) can be performed along
any edge of the cut Γc (see figure).

y1 x1 δθ x( )p1, y2+ x2 δθ x( )p2,+= =

y3 x3,=

Ωc
δ p1

2 p2
2

Iλ  = 
1
2
--- θ l, pl( )σij

λ uλ( )εij uλ( ) σij
λ uλ( ) ui l,

λ pl( )θ j,–
 
 
 

Ωc

∫

– θ f i( ) l, plui
λ .

Ωc

∫

Iλ

=  1
2
--- nl pl( )σij

λ uλ( )εij uλ( ) σij
λ uλ( ) ui l,

λ pl( )n j–
 
 
 

,
∂S2( ) Ωc∩

∫

Ωc
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In the case of the contact problem specified by (1)–(4),
similar argument as applied to formula (15) leads to an
invariant integral of the form

(19)

Here, (∂S2) ∩ Ω1 is a surface belonging to the “cap”
type, lying in Ω1 , and covering the curve γ0 .

Example 2. We choose a smooth function θ with a
support lying in a small vicinity S1 of the surface Γc and
assume that θ = 1 in a vicinity S2 of the surface Γc,
S2 ⊂ S1 . The smallness of the vicinity S1 means that the
edge of the surface (∂S1) ∩ Ωc is part of the flat segment
γ1 of the boundary Γ1 . As before, we consider a pertur-
bation of the domain Ωc in form (16). For the problem
specified by (6)–(9) at f ≡ 0 in S2 ∩ Ωc , the form of the
invariant integral coincides with (18) in this case.

From (15), we obtain an invariant integral in the
problem specified by (1)–(4), the form of this integral
being coincident with (19). In this case, (∂S2) ∩ Ω1 is a
surface belonging to the “cap” type, lying in Ω1 , and
covering Γc .

Invariant integrals can also be constructed in the
two-dimensional case and for different geometries of
the domains Ω1 and Ω2 . For the two-dimensional ana-
log of Example 1, in particular, the invariant integral for
the problem specified by (6)–(9) has the form

where (∂S2) ∩  is a closed curve having the inward
normal n = (n1, n2) and surrounding the crack vertex
and where summation is performed over i, j = 1, 2.

In conclusion, it should be noted that the existence
of invariant integrals can be established in some other
cases as well. In the above situations, the value of an
invariant integral coincides numerically with the value
of the derivative of the corresponding energy functional
with respect to the perturbation parameter δ at δ = 0. In

I0

=  1
2
--- nl pl( )σij u0( )εij u0( ) σij u0( ) ui l,

0 pl( )n j–
 
 
 

.
∂S2( ) Ω1∩

∫

Iλ 1
2
---n1σij

λ uλ( )εij uλ( ) σij
λ uλ( )ui 1,

λ n j–
 
 
 

,
∂S2( ) Ωc∩

∫=

Ωc
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particular, invariant integrals can be used in seeking
approximate expressions for energy functionals in per-
turbed problems. For this purpose, one can make use of
the formula

which is valid for all positive values of λ. A similar
expansion holds at λ = 0 as well, but one must replace
Ωc by Ω1 in this case.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation
for Basic Research, project no. 03-01-00124.

REFERENCES
1. G. P. Cherepanov, Mechanics of Brittle Fracture (Nauka,

Moscow, 1974) [in Russian].
2. N. F. Morozov, Mathematical Problems in Crack Theory

(Nauka, Moscow, 1984) [in Russian].
3. S. A. Nazarov, Prikl. Mat. Mekh. 62 (3), 489 (1998).
4. A. M. Khludnev and V. A. Kovtunenko, Analysis of

Cracks in Solids (WIT, Southampton, 2000).
5. J. Sokolowski and A. M. Khludnev, Prikl. Mat. Mekh. 64

(3), 464 (2000).
6. V. A. Kovtunenko, Prikl. Mat. Mekh. 67 (1), 109 (2003).
7. V. D. Stepanov and A. M. Khludnev, Sib. Mat. Zh. 44 (6),

1350 (2003).
8. K.-H. Hoffmann and A. M. Khludnev, SFB Preprint

No. 136 (Bonn, 2004).
9. V. D. Kopchenov, Differ. Uravn. Ikh Primen. 4 (1), 151

(1968).
10. M. B. Brusnikin, Dokl. Akad. Nauk 387, 151 (2002).
11. N. S. Bakhvalov, Preprint No. 191, OVM AN SSSR

(Department of Computational Mathematics, USSR
Acad. Sci., Moscow, 1988) [in Russian].

12. A. M. Khludnev, K. Ohtsuka, and J. Sokolowski,
Q. Appl. Math. 60 (1), 99 (2002).

13. G. Fichera, Boundary Value Problems of Elasticity with
Unilateral Constraints, in Handbuch der Physik,
Bd. 6a/2 (Springer Verlag, Berlin, 1972; Mir, Moscow,
1974).

Translated by A. Isaakyan

Πλ Ωc
δ; uλδ( ) Πλ Ωc; u

λ( ) δIλ o δ( ),+ +=



  

Doklady Physics, Vol. 49, No. 10, 2004, pp. 608–613. Translated from Doklady Akademii Nauk, Vol. 398, No. 6, 2004, pp. 764–770.
Original Russian Text Copyright © 2004 by Glushkov, Glushkova, Shapar.

                                                                                     

MECHANICS

                                                  
Blocking of a Rayleigh Wave by a Subsurface Crack
E. V. Glushkov, N. V. Glushkova, and E. M. Shapar

Presented by Academician V.A. Babeshko April 8, 2004

Received April 20, 2004
1. INTRODUCTION

By now, diffraction of Rayleigh waves (RWs) by
surface and subsurface obstacles has been studied rela-
tively well. Flaw detection using reflected and transmit-
ted signals yields information on zones of exfoliation of
film structures and nanocoatings, on inceptive defects
(fractures) in structural elements, and on surface corro-
sion of pipelines. Sharp screening of surface waves at
certain frequencies is used in acoustoelectronics for
producing frequency filters. In geophysics, surface
waves provide information on the presence and proper-
ties of seismic brakes.

When an RW runs on a crack that does not even
reach the surface, partial reflection of the wave with a
transformation of a fraction of its energy into bulk
waves is also observed. One of the most thorough the-
oretical studies of dependences of the transmission κ+,
reflection κ–, and surface-to-bulk conversion κv coeffi-
cients for the energy of a plane RW on the size, tilt, and
depth of a strip crack was performed by van der Hijden
and Neerhoff [1]. In particular, they have shown that, at
a certain ratio of depth d of a horizontal crack to the
crack half-width a, it is possible to almost completely
screen a surface wave. The minimum value of the trans-
mittance κ+ = 0.0036 was obtained at ω = 3, d/a = 0.46,

and ν =  (hereafter, ω =  is the dimensionless

circular frequency, f is the dimensional frequency, v S is
the S-wave propagation velocity, and ν is the Poisson’s
ratio).

On the other hand, it is known that cracks, as well as
bodies of finite dimensions, have natural frequencies
(scattering resonance frequencies) that coincide with
spectral points of the corresponding boundary value
problem. For a crack in an infinite homogeneous space,
all resonance poles ωk are located strictly in the lower
half-plane Imω < 0 of the complex frequency plane.
Particular values of ωk for circular and elliptic cracks

1
3
--- 2πfa

v S

------------
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are presented in [2, 3], and their location in the complex
plane as a function of the crack shape was studied
in [4]. For a strip crack in an infinite medium (d = ∞),
the obtained sets of values of ωk , which are closest to
the real axis and are localized within a rectangle 0 <
Reω < 12, –4 < Imω < 0, are given in Table 1. (The

poles  and  correspond to the first mode of the
crack opening, i.e., to normal displacement and to shear
displacement of the crack sides, respectively.)

Since the poles are complex, their contribution into
a transient scattered field determined through the resi-

dues in ωk results in signals  exponentially decay-
ing with time and having a damping decrement |Imωk|.

For defects in a finite-thickness waveguide (a layer),
in which waves are repeatedly reflected between the
surfaces, the energy of incoming waves can be trapped,
and then trapped modes can be formed with a localiza-
tion of the wave process (see, e.g., [5]). Here, it is pos-
sible that spectral points may lie on the real axis. As
applied to cracks, this phenomenon was called “vibra-
tion-strength viruses,” which manifest themselves only
under certain conditions [6]. It is evident that, if the
energy is completely trapped at the frequency of the
real-valued ωk , the transmittance κ+ must be zero.

The following problems remained unsolved for a
crack in a half-plane: whether it is possible to com-
pletely block an RW, whether real resonance frequen-

ωk
I ωk

II

e
iωkt–

Table 1

0.940–i × 0.526 1.175–i × 1.091

2.362–i × 0.633 2.322–i × 1.429

3.794–i × 0.692 3.483–i × 1.245

5.209–i × 0.698 5.190–i × 0.976

6.669–i × 0.654 6.870–i × 1.161

8.183–i × 0.636 8.214–i × 1.323

9.680–i × 0.660 9.537–i × 1.216

11.150–i × 0.661 11.122–i × 1.055

ωk
I ωk

II
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cies exist in this case, and how the screening of surface
waves is related to the spectral properties of the crack–
surface system.

A thorough analysis based on an exact integral rep-
resentation of the wave field has shown that the trans-
mission of an RW can be blocked by a subsurface crack
as a result of two different wave effects: (1) the resonant
energy trapping at frequencies close to ωk and (2) the
antiphase overlapping of the initial incident RW and
secondary RWs as a result of the interaction with the
surface waves reflected by the crack.

In this case, although some of the resonance poles
ωk are very close to the real axis, no pure real poles have
been found. Therefore, in the model under consider-
ation, the first (resonance) mechanism does not ensure
complete blocking. Nevertheless, complete blocking
can be attained through the second mechanism of
antiphase suppression for a limited set of fixed input

parameters ω, .

2. GENERAL SCHEME 
OF SOLVING THE PROBLEM

We consider the two-dimensional problem of
steady-state harmonic vibrations u(x)e–iωt of an elastic
half-plane containing a strip crack. In a Cartesian coor-
dinate system x = (x, z), the medium occupies the lower
half-plane z ≤ 0 and a crack (an infinitesimally thin
straight cut of length 2a with stress-free sides) is
assumed to be arbitrarily oriented. Its position is deter-
mined by depth d of the location of its center xc =
(0, −d) and by its tilt angle θ.

Along with the global coordinate system x, we also
introduce a local coordinate system x1 = (x1, z1), in
which the crack occupies an interval |x1| ≤ a, z1 = 0. The
coordinates of points in these systems are interrelated
by formulas x1 = C(x – x1) and x = xc + C1x1; C1 = C–1,
C(θ) is the matrix of rotation by the angle θ.

Let, for the sake of definitiveness, a given load
t|z = 0 = q0(x) applied to the medium surface in a vicinity
of the point x0 be a source of vibrations; t = (τxz, σzz)
(hereinafter, the harmonic factor e–iωt is omitted).

The source wave field u0(x) can be represented as a
convolution over x of the Green’s matrix of the elastic
half-plane k(x, z) and the load q0(x) or, in an alternative
form, through their Fourier transforms K(α, z) = ^[k]
and Q0(α) = ^[q0]:

(1)

Here, ^ and ^1 are the operators of the Fourier trans-
form with respect to x and x1 , respectively. The form of
both K(α, z) components for an isotropic elastic half-

-
 d

a
---



u0 x z,( ) 1
2π
------ K α z,( )Q0 α( )e iαx– α .d

Γ
∫=
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plane and of the interrelation path Γ is well known. The
details of deriving this integral representation of wave
fields can be found, e.g., in [7, 8].

The total wave field u is composed of the source
field u0, the field u1 of waves reflected by the crack, and
the field u2 appearing as a result of a repeated reflection
of u1 from the half-plane surface z = 0: u = u0 + u1 + u2.

For the field u1 , the representation in the local coor-
dinate system through the jump of displacements
across the crack edges: v(x1) =  –  is

known. This representation was also obtained using the
symbols K+ and K– of the Green’s matrix for the upper
(z1 ≥ 0) and lower (z1 ≤ 0) half-planes [9]:

(2)

Here, 

V(α1) = ^1[v(x1)], L1(α1) = [K+(α1, 0) – K−(α1, 0]–1.

The field u2 is introduced for compensating the trac-
tion t1 induced by the field u1 at the stress-free surface
z = 0. Therefore, denoting q2(x) = –t1|z = 0, we obtain for
u2 the same representation (1) as for u0 with Q0

replaced by Q2 = ^[q2]. By virtue of interrelation
between q2 and u1, Q2 can be expressed analytically in
terms of V:

Q2(α) = M(α(α1))V(α1(α)). (3)

Matrix M is expressed through a chain of products of
the matrices of the Fourier transforms K and L, of the
stress operator T and rotations C and C1 .

An unknown jump v  is determined from the condi-
tion of a zero total stress at the crack sides:

(q1 + t2 + t0)  = 0, |x1| ≤ a. (4)

Here, q1 = [LV] is a traction in the line z1 = 0,
which correspond to the field u1 (in the local system x1),
tn = CT1un, n = 0, 2 are stresses corresponding to the
fields u0 and u2, and T1 is the stress operator in the crack
plane.

In view of (1)–(3), condition (4) leads to an integral
equation with respect to v:

(5)

Its matrix kernel is composed of the principal hypersin-

gular part l1(x1) = [L1(α1)], which arises in the pro-
cess of solving the problem of scattering of elastic

u1
z1 0–=

u1
z1 0+=

u1
± x1( ) 1

2π
------ K± α1 z1,( )L1 α1( )V α1( )e

iα1x1–
α1.d

Γ
∫=

z1 0=

^1
1–

+1v +2v l1 x1 ξ1–( ) l2 x1 ξ1,( )+[ ]v ξ1( ) ξ1d

a–

a

∫≡+  = f x1( ),

x1 a,<
f t0 z1 0= .–=

^1
1–
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waves by a crack in an infinite space, and a smooth (at

d > 0) addition l2 = [L2(α(α1))], which takes into
account an effect of all repeated reflections between the
crack and the half-plane surface on the value of the
Fourier symbol L2 is expressed as the product of matri-
ces C, T1, and K and comultipliers entering into Q2
[except for v(x1)]. The smoothness of l2 is ensured by
the exponentially decaying symbol L2(α) ~ O(e–d|α|) as
|α|  ∞. For a crack touching the surface (d = 0), the
kernel l2 also becomes singular.

The solution to integral equation (5) is sought using
the Galerkin scheme in the form of the expansion

with unknown coefficients ck to be determined from the
set of linear algebraic equations

 (6)

Here, round brackets (f, g) =  · g*dx denote a scalar

product in L2(–a, a).
As basis functions ϕk, we used both orthogonal

polynomials with the weight factor  conform-
ing with the behavior of v  as x1  ±a and conven-
tional splines providing a piecewise-linear approxi-
mation.

The zeros of the matrix determinant of the system
ωk , detA(ωk) = 0, approximate spectral points of the
integral operator. For the introduced dimensionless

variable ω, the roots ωk depend only on the ratio  and

on crack tilt angle θ.
The RW u0, R excited in a half-plane by a load q0 is

described by the residue of the integrand in (1) at the
Rayleigh pole –ζ or ζ of matrix K:

(7)

(  and  are waves propagating to the right and
to the left from the source, respectively). Similarly,

 is the RW of the field u2 of form (7), where  is

expressed in terms of Q2( ) of form (3). Field u1 con-
tains only bulk waves.

Thus, the time-averaged (over the vibration period)
energy E0, R of an RW incoming from the left to the

crack is determined by the amplitude  of the field u0 ,

^1
1–

vN x1( ) ckϕk x1( ),
k 1=

N

∑=

a jkck

k 1=

N

∑ f j, j 1 2 … N ,, , ,= =

aij +1 +2+( )ϕk ϕ j,( ), f j f ϕ j,( ).= =

f∫

a
2

x1
2–

d
a
---

u0 R,
± x( ) a0

± z( )e±iζx= , a0
± R±Q0 ζ+−( ),=

R± iresK α ζ+−=+−=

u0 R,
+ u0 R,

–

u2 R,
± a2

±

ζ+−

a0
+

whereas the energies of the reflected and transmitted

waves  and  are determined by the amplitude 

and the sum of the amplitudes  + , respectively.
The RW transmittance and reflectance are determined

by the relationships κ± = , and the surface-to-bulk

conversion coefficient is κv = . Here, Ev is the

energy of bulk waves u1 and a part of u2 without .
It is determined by integrating the power-density over
the lower half-circle x = Rcosψ, y = Rsinψ, –π ≤ ψ ≤ 0
as R  ∞ [7–9].

3. ANALYSIS OF TRANSMITTANCE 
AND SPECTRAL PROPERTIES

Although the numerical analysis was performed at
various tilt angles θ of a crack, in order to simplify our
description, the basic result (i.e., the presence of two
screening mechanisms) is demonstrated for a horizon-
tal crack (θ = 0) as an example. The coincidence of the
dependences of κ± on ω and the ratio d/a for all crack
angles θ presented in [1] along with the verification of

the energy balance E0R =  +  + Ev served as a test
of the reliability of the numerical results.

Figure 1 shows a typical behavior of κ± as a function

of θ at  = 0.2 and 0.3311 and ν = 1/3. At  = 0.2, nar-

row (resonant) dips in the κ+ plot are observed. They
indicate strong screening of the RWs at the correspond-

ing frequencies. At  = 0.3311, wide and deep depres-

sions with minima at ω = 2.3, 3.5, and 4.8 are added to
the dips. To elucidate the relation of the screening effect
to the spectral properties of the model under consider-

ation, Fig. 2 shows the dependences on the ratio  of

the real and imaginary parts of five resonance scattering
frequencies ωk nearest to the real axis. For the values of

 demonstrated in Fig. 1, these poles are listed in

Table 2.

As is seen, with decreasing the ratio , these poles

virtually lie on the real axis, but Imωk still differs from
zero as d > 0. Nevertheless, the closeness of ωk to the
real axis leads, first, to an abrupt increase in |v | at ω ≈
Reωk and, as a consequence, to a resonant increase in
the stress-intensity factors near crack edges, which are

expressed in terms of  = (x)/ . Sec-

ER
– ER

+ a2
–

a0
+ a2

+

ER
±

E0 R,
----------

Ev

E0
------

u2 R,
±

ER
+ ER

–

d
a
--- d

a
---

d
a
---

d
a
---

d
a
---

d
a
---

v 0
± v

x a±→
lim a2 x2–
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Fig. 1. Examples of partial resonant  = 0.2  and complete nonresonant  = 0.3311  screening of a Rayleigh wave by a sub-

surface crack.

d
a
---

 --
 d

a
---

 --


ond, these are the frequencies at which sharp dips of the
function κ+(ω) are observed.

Of course, resonant energy trapping and localization
of the wave process occur in this case. This is also
implied by a sharp (several orders of magnitude)
increase in the surface displacements (u1 + u2)|z = 0
above the crack at ω = Reωk, |Imωk | ! 1. However,

wide minima of κ+ at  = 0.3311 cannot be compared

to a value of ωk lying close to the real axis. The absence
of both a resonant increase in the intensity coefficients
and surface displacements above the crack also indi-
cates that no energy trapping and no localization of the
oscillatory process occur in these cases.

On the other hand, using a numerical minimization

of function κ+ ω,  just in the vicinity of these fre-

quencies, we have discovered discrete points in the

plane ω,  in which the transmission of the RW is

completely blocked (κ+ ≡ 0!). The coordinates of these
points for different Poisson’s ratios ν are listed in
Table 3.

For ω values not too close to zero, ω ≥ ε1 and  ≥ ε2

(ε1 and ε2 are small), the set of complete-blocking

d
a
---

-
 d

a
---



-
 d

a
---



d
a
---
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parameters presented in Table 3 is exhaustive. This is
confirmed by the form of the constructed surfaces y =

κ+ ω, , which does not allow the appearance of

minima κ+ = 0 in other zones. For example, in the case

-
 d

a
---



0
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2
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Fig. 2. Dependences of the poles ωk closest to the real axis

on the crack depth .
d
a
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Table 3

ν
ω, 

1 2 3 4

0.1 2.036, 0.431 – – –

0.2 2.157, 0.398 3.025, 0.439 3.220, 0.359 –

0.3 2.296, 0.371 2.911, 0.463 3.446, 0.336 –

0.3333 2.348, 0.364 2.865, 0.459 3.528, 0.331 –

0.4 2.461, 0.351 2.753, 0.429 3.709, 0.323 5.069, 0.334

d
a
---

Table 2

ω1 ω2 ω3 ω4 ω5

0.2 0.43–i × 0.004 1.07–i × 0.02 1.97–i × 0.04 3.07–i × 0.09 4.24–i × 0.16

0.3311 0.58–i × 0.02 1.27–i × 0.13 2.26–i × 0.27 3.32–i × 0.46 4.45–i × 0.47

d
a
---
of ν = , the surface relief 0 ≤ κ+ ω,  ≤ 1 is shown

in Fig. 3 by level lines. A characteristic feature of the
relief is the presence of a deep valley extending from
northwest to southeast, approximately, from the point

ω,  = (2.4, 0.5) to (7, 0.3). Gray and black colors

indicate zones in which κ+ ≤ 0.01 and κ+ ≤ 0.001,
respectively.

The global minima of the function κ+ were sought in
these zones, since motion from the valley in an arbitrary
direction leads only to an increase in κ+. This increase,

with κ+ tending to unity as   ∞, is obviously asso-

ciated with the fact that, with increasing depth, the RW
interaction with the crack ceases, as also occurs at
ω  ∞ when the depth-to-wavelength ratio becomes
large. A monotonic increase in κ+ is violated only near

the axis  = 0, where the relief becomes very irregular

due to almost real ωk . Therefore, the presence of glo-

bal-minimum points in the band  < ε2 also cannot be

totally excluded.

The complete-blocking mechanism becomes clear if
we analyze the reasons for vanishing of the amplitude

 of the transmitted RW. Let, for simplicity, a vertical
concentrated load q0 = (0, δ(x – x0)) be the source. In

this case, Q0 = (0, ),  = , where r is the
second column of matrix R+ = (sr, r) [see (7)]. The first

1
3
--- -

 d
a
---



-
 d

a
---



d
a
---

d
a
---

d
a
---

uR
+

e
iα x0 a0

+ re
iζ x0
column of R+ is proportional to the second one with a
certain factor s [a linear dependence of the columns of
matrix ∆ · K(α, z), where ∆(α) is the Rayleigh denomi-

nator, exists only for α = ζ]. Correspondingly,  = pr

with an amplitude factor p = s (–ζ) + (–ζ).

Obviously, κ+ ≡ 0 for f(ω) = 1 + p(ω)  ≡ 0.

Analyzing the plots of function f(ω) has shown that,
at points of complete blocking, Ref and Imf simulta-
neously change their signs, smoothly passing through

zero. Thus, at such ω, , the RW  appearing

upon the incidence of u1 on the surface z = 0 becomes

equal in amplitude to  but oscillates in antiphase
to it.

On the contrary, in the vicinity of the resonance fre-
quencies ωk , the plot of f(ω) has typical oppositely
directed spikes indicating the presence of polar factors
(ω – ωk)–1. Within a narrow interval between the spikes,
Ref and Imf also change their signs, but no complete
annihilation is observed here, since Ref and Imf have
different zeros with complex ωk .

Hence, there exist two mechanisms of screening a
Rayleigh wave by a subsurface crack. The first one is
related to a resonance in the crack–surface system, but
it does not ensure complete screening for the model
under study. The second mechanism results from com-
pensation of the initial wave by the secondary RW
excited in antiphase. This mechanism is not related to
the resonant wave localization and, at certain combina-

a2
+

Q2
1( ) Q2

2( )

e
iζ x0–

-
 d

a
---

 u2 R,
+

u0 R,
+
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Fig. 3. Level lines for the transmittance κ+ on the ω,  plane.
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tions of the frequency, with the crack depth and size,
ensures complete screening of a surface wave.
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The action-inversion law and the corresponding dif-
ferential equation have been published by L.A. Vulis [1,
pp. 93–95] and also have been presented by G.N. Abra-
movich in popular textbooks on applied gas dynamics
(see, e.g. [2, pp. 189, 190]). At present, the law and the
equation are well known and used for solving numer-
ous quasi-one-dimensional scientific and applied prob-
lems. Without making allowance for expendable
mechanical action and the effect of friction, the equa-
tion is written in the following simple form:

(1)

where M is the Mach number, w is the flow velocity,
F is the area, Q is the delivered heat (in the case of the
heat removal, dQ < 0), a is the local velocity of sound,
and γ is the adiabatic exponent.

Analyzing this equation in the supersonic region, we
can draw the conclusion that, as far as the case of the
heat removal in the nozzle is concerned, when the right-
hand side of Eq. (1) increases, this must result in an
additional velocity increase with respect to adiabatic
flow. This appears to have been taken in [1, 2] as a deci-
sive argumentation. However, here, a contradiction
appears in the results of direct calculations performed
on the basis of the complete set of equations for quasi-
one-dimensional flows in cooled supersonic nozzles of
liquid-fuel jet engines in which heat removal attains
1−2% of the deceleration enthalpy. These calculations
show that, in fact, due to heat removal from gas moving
in a nozzle, not an increase—but a decrease—of flow
velocity with respect to the adiabatic flow (hereinafter,
this velocity is called the relative velocity) occurs. A
similar pattern is also manifested for high levels of the
heat removal that rises along the nozzle. This effect on

M2 1–( )dw
w

------- dF
F

-------
γ 1–

a2
-----------dQ,–=
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the flow velocity is associated with the intense increase
in the Mach number entering into Eq. (1) that is stipu-
lated by the heat removal. By virtue of a small flow
deceleration caused by the heat removal with respect to
the adiabatic flow, the flow velocity along the nozzle in
any case increases, owing to the more intense geomet-
ric action on the flow.

In order to demonstrate the relative decrease in the
flow velocity due to the heat removal, we perform the
following simple analysis. It is easy to show that, as a
result of heat removal in a supersonic nozzle, the Mach
number becomes larger, whereas the static flow temper-
ature drops.

Equation (1) can be rewritten for a supersonic noz-
zle in the form

The effect of the heat removal on the variation of the
flow velocity w in the nozzle is determined by compar-

ing the derivatives  for flows with the heat

removal (subscript Q) and without it (no subscript) in a
certain current cross section 2 of the nozzle. This cross
section is located at a finite distance downstream of the
initial cross section 1.

First, we consider the case in which heat removal
begins from cross section 1 (Q1 = 0, å1 > 1). The dif-
ference of the derivatives for the velocity with respect
to the logarithm of the cross-section area for flows with
and without heat removal in cross section 2 (the deriv-
ative is zero in the cross section 1) features the effect of
the heat removal on the velocity variation along the
nozzle,

(2)

dw
d Fln
------------ 1

1
cpT
--------- dQ

d Fln
------------– 

  w

M2 1–
----------------.=

dw
d Fln
------------

∆
dwQ 2,

d Fln
--------------

dw2

d Fln
------------–

wQ 2,

MQ 2,
2 1–

---------------------
w2

M2
2 1–

----------------– 
 = =

–
wQ 2,

cpTQ 2, MQ 2,
2 1–( )

------------------------------------------ dQ
d Fln
------------ 

  .
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Since  < 0 always, the second bracket (with the

minus sign in front of it) yields a positive contribution
to the right-hand side of expression (2). We now can
determine the sign standing ahead of the first bracket in
this formula,

(3)

It is evident that A < 0, because, due to the heat removal,
M increases, whereas velocity a of sound decreases.

At the initial point 1 of the calculation, A = 0; origi-
nally, the right-hand side of expression (2) is positive,
and the relative velocity increases in this case. How-
ever, with increasing F and, hence, increasing modulus
of Q, the quantity A, remaining negative, rises in abso-
lute value. As a result, for a certain F, the right-hand
side of (2) vanishes and, furthermore, in the case of heat
removal, the relative flow velocity in the supersonic
nozzle begins to decrease. We should emphasize once
more that the relative-velocity drop caused by the heat
removal in the nozzle is stipulated by the combined
effect on the Mach number of the terms in the right-
hand side of Eq. (1), although, if taken separately, each
of them increases the relative velocity. This fact, appar-
ently, was missed by the authors of [1, 2].

In the general case, when the heat removal begins
prior to cross section 1, MQ.2 > M2, and the parameter A
becomes negative as it follows from (3) (but not zero,
as it took place in the preceding case). The right-hand
side of (2) decreases and can become negative.

Figure 1 presents a variation of the relative differ-
ence in the flow velocities in the supersonic nozzle for
flows with heat removal and adiabatic flow as a func-
tion of the relative radius of the nozzle wall (i.e., the
radius of the nozzle contour is related to the nozzle–
neck radius). The local rise of the relative difference in
the velocities at the onset of the heat removal (bump)
from point 1 is stipulated by the calculation model
according to which the heat removal is absent upstream
to point 1. The variation of relative velocities due to
heat removal in subsonic and supersonic parts of the
nozzle is shown in Fig. 2. The calculations of flow in
the presence of the heat removal were performed by the
inverse method, i.e., initially, the flow velocity was
specified and, then, the flow area of the nozzle cross
section was calculated. This approach ensured an easy
pass by the singular saddle point in the vicinity of the
velocity of sound. As follows from Fig. 2, in the actual
case of heat removal in the nozzle of a liquid-fuel jet
engine (i.e., in the case of existence of heat removal in
the input subsonic nozzle cross section), a decrease in
the relative velocity caused by the heat removal occurs
partly over the narrowing part of the nozzle, as well as
over its entire expanding part, and is monotonous.

The decrease in the relative velocity stipulated by
the existence of heat removal in the supersonic nozzle

dQ
d Fln
------------

A
wQ 2,

MQ 2,
2 1–

---------------------
w2

M2
2 1–

----------------– 
 ≡

MQ 2, aQ 2,

MQ 2,
2 1–

----------------------
M2a2

M2
2 1–

----------------.–=
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was noted in [3, pp. 82–85]. In the conditions under
consideration, a maximum of the relative velocity also

exists. In a cylindrical channel,  = 0, and, for åQ > 1,

the second bracket in formula (2) disappears. There-
fore, the right-hand side of this formula is always posi-
tive and, in the case of the heat removal, the flow veloc-
ity in the cylindrical channel always increases. Flows
subjected to separate actions including friction are ana-
lyzed in [4]. In the case of an intense rise of the heat
removal along the nozzle, which is not characteristic of
liquid-fuel jet engines, a certain increase in the gas veloc-
ity with respect to adiabatic flow in the nozzle is also pos-
sible [3]. The mechanical action on the flow [1, 2] is
equivalent to the delivery (or removal) of the energy to

dF
F

-------

Fig. 1. Variation of the relative difference in the flow veloc-
ities in a nozzle.

Fig. 2. Flow in a nozzle is accompanied by passing the value
of its velocity through that of velocity of sound: (1) nozzle
contour, (2) heat removal, and (3) relative velocity differ-
ence. x is the ratio of the nozzle length to the radius of the
critical cross section, the dot corresponds to the passing
through the velocity of sound. åQ = 1 and T0 is the decel-
eration temperature prior to the nozzle.

–2

2

–1

0

1

–3

3 4 61
r

5

wQ w–

w
----------------- 104×

0

0.02

–0.04

8 12 16
x

0.04

0.06

–0.02

4

1

2

3

wQ w–

w
----------------- Q

cPT0
----------- r 10–2×, ,



616 STERNIN
(from) gas, so we can consider this action as a thermal
one.

Thus, by virtue of heat removal, the velocity along a
supersonic cooled nozzle of a liquid-fuel jet engine
slightly decreases with respect to the adiabatic flow.
The conclusions sometimes made on the basis of the
action-inversion formula predicting the acceleration of
supersonic flow in a nozzle cannot be considered to be
true. Indeed, the analysis of the differential equation
describing the action inversion, which was carried out
in [1, 2], determines only the local character of the solu-
tion. Therefore, it is impossible to find flow parameters
in the entire flow region without using other equations
of the system under consideration.
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