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Low-frequency noise is an important parameter
allowing one to reveal and predict the quality and reli-
ability of semiconductor electronic devices [1-3]. In
recent years, many publications have been devoted to
the problems of noise spectroscopy and the physical
enigmas arising therein, corresponding international
conferences being regularly arranged [1].

It is possible to note a similarity in the approaches
used in the field of noise spectroscopy and conven-
tional optical spectroscopy that has existed for along
time [4, 5]. This similarity is surprising, despite the
sharp distinction in both the technical means used and
frequency and wavelength ranges inherent in optical
and noise spectra. Electric-current and voltage fluctua-
tions observed at radio frequencies, and even in the
infralow-frequency range (10°~1 Hz and lower down
to 10° Hz), are peculiar analogs of emission optical
Spectra.

One feature of noise-emission spectrais their very
low intensity as compared to optical spectra. It is
important to understand whether it is possible to reduce
the difficulties associated with investigations of low-
intensity noise?

It isknown that absorption analysis based on studies
of absorption spectra[5] is commonly used in the opti-
cal wavelength range alongside the emission spectral
analysis that replaces and supplements the former.
However, until now, the problem of the use of certain
frequency characteristics, which are similar in a physi-
cal sense to the absorption spectra, has not been posed
for the same purposes in the low-frequency range.

As we show below, the low-level low-frequency
electric impedance measured on the input terminals of
an object is such a frequency characteristic replacing
the direct noi se measurements.

Itisreasonableto analyzeall types of low-frequency
spectrain radio-electronic devices in terms of classical
single-mode e ectric circuits with lumped parameters.
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In the simplest case, the object under study is a linear
electric two-termina network. In terms of emission
spectroscopy, it is alumped noise-voltage or noise-cur-
rent generator. In terms of absorption spectroscopy, the
same object is a passive absorber, the impedance in the
series representation of which can be written as Z(f) =
R(f) + iX,(f). To revea this impedance, it suffices to
use a harmonic probing signa generated in the continu-
ous mode by an independent generator with frequency f,
which is scanned or discretely varied within the range
of interest. Thus, the probing generator plays the role
similar to that of an optical monochromator. The
absorption-spectrum analyzer can be a bridge or other
electric circuit measuring the values of R(f) and X,(f)
on the basis of Ohm’s law, taken in its complex form.

Amplitudes U, of the probing signal should be rea-
sonably low so as to exclude nonlinear effects leading
to modifications in the electric and thermodynamic
parameters of the object. It is desirable that the value of
U, belower than the thermal potential U = KT/e, which
attains about 26 mV at the temperature T = 300 K.
(Here, kisthe Boltzmann constant and e is the elemen-
tary electric charge.) Nevertheless, the test-signal
amplitude can exceed by several orders of magnitude
the mean-square value of the intrinsic-noise voltage of
the object in the frequency range being analyzed. By
virtue of this fact, the conditions of realization of
impedance absorption measurements are essentially
facilitated compared to measurements of the generated
noise.

The real part of the low-level (differential) imped-
ance Z(f) determined by the indicated method is phe-
nomenologically caused by a joint action of all the
types of dissipative processes that occur if a probing
signa is imposed on the object. It is necessary to
attribute to these processes those depending not only on
the electrical conduction of a material (with allowance
made for the concentration and mobility of all types of
charge carriers), but also on all macroscopic and micro-
scopic relaxation phenomenain the bulk and on the sur-
faces of the object.

We denote the spectral-density function of voltage
fluctuations at the open poles of atwo-terminal network
under consideration as §,(f) (expressed in units
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Fig. 1. Low-frequency impedance spectral characteristics
R,(f) and C(f) for sample 2 (2D213A diode) measured by
(1) E7-14 and E7-12 devices and (2) ICP RAS device.

of V2/Hz). Then, according to the Nyquist theorem [6],
we assumethat the ratio between the quantity §,(f) and
the resistance R(f) under the condition of thermody-
namic equilibrium of the object isindependent of both
the frequency and the physical-body structure and
equal to 4KT, where T is the absolute temperature:

w = const = 4KkT. )

Ry(f)

Equation (1) can be considered a similarity relation
between the impedance-frequency spectra and noise
spectra. Thereis a clear similarity between this depen-
dence and Kirchhoff’s law, which is well-known in
thermodynamics and electrodynamics. This similarity
implies the constancy of the ratio between the radiating
and absorptive capacities of physical bodies irrespec-
tive of their nature under the given conditions in an
arbitrarily wide wavelength range [7].

As was noted above, the resistance Ry(f) entering
into Eq. (1) phenomenologically describes al types of
the dissipative processes proceeding in the two-termi-
nal network under consideration. For this reason, in
conditions of thermodynamic equilibrium, the thermal-
fluctuation emission spectrum S;(f), being essentialy
similar to the spectrum R,(f), includes al rea acting
dissipative factorsirrespective of their origin (including
deep levels, surface states, etc.) to the same degree.

Thus, the measurement of the frequency depen-
dence for the seriesresistance R(f) at afixed tempera-
ture T can serve as an alternative to direct measure-
ments of the noise emission spectrum S,(f). Modern
measuring electronic equipment opens up reasonably
ample opportunities for such investigations.

Below, we give a brief description of the experi-
ments aimed at the direct verification of these concepts.

LEBEDEYV et al.

Objects for the investigations are two-electrode
structures differing in type of semiconductor material,
in level and profile of doping, and in type of junctions.
The impedance spectra were investigated mainly with
E7-12 and E7-14 low-level immittance meters and a
PC-based impedance meter—analyzer developed in the
Institute of Control Problems (ICP), Russian Academy
of Sciences (RAS) [8]. The sine-wave-signal genera-
tors and electronic units involved in the E7-14 and
E7-12 devices make it possible to measure the imped-
ance and admittance at discrete frequencies of 10, 103,
10%, and 108 Hz with probing-signal amplitudes of 40
and 25 mV. The use of a measurement device of the
ICP, RAS, considerably extended the potentialities of
the experiment, owing to a step variation of the fre-
quency within the limits of 10-2 x 10° Hz (the probing-
generator frequency is determined from the expression
2 x 105/N Hz, where N is an integer).

The major part of the measurements was performed
at a temperature close to 300 K, although, in certain
cases, we used liquid nitrogen (T = 77 K) for cooling
the structures. No direct-current bias voltage was usu-
aly fed to the structures, but comparative experiments
were also carried out with feeding direct and back bias.

The results of the impedance measurements using
the measuring setup described in [9] were compared
with the emission noise spectra for the same semicon-
ductor structures. The setup involved a nanovoltmeter
of the Unipan-273 type operating in the broadband
mode with a preamplifier (having the input resistance
of 108 Q and the input capacitance of 2 pF). The nano-
voltmeter was connected to aU7-1 broadband amplifier
having a built-in low-frequency filter with discretely
varied cut-off frequenciesequal to 10, 107, 103, 104, and
10° Hz. The noise spectrum was processed and
recorded by a computer with the use of a frequency—
time Fourier series calculated by the algorithm of the
fast Fourier transform. The spectral density of the
noise-signal voltage represented in V2/Hz units was
detected within the frequency range 1-10° Hz.

In Fig. 1, we show the typical results of measuring
thelow-level resistance for a2D213A silicon rectifying
diode. The direct-current bias voltage is equal to zero.
Attention isdrawn to the plateau and the abrupt rise (by
more than five decimal orders of magnitude) of the
resistance R, with decreasing the frequency within the
range between 1 MHz and 100 Hz. The capacitance C,
also increases not less sharply, the rise region of the
characteristic C(f) being shifted with respect to the
characteristic R( f) toward lower frequencies.

The extremely abrupt increase in the resistance R,
and capacitance C, of the diode structure at low fre-
guencies is of principal importance for the subsequent
analysis. The indicated behavior of C(f) and R(f)
curvesis associated with neither an increase in the bar-
rier capacitance within the low-frequency range nor
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Fig. 2. Low-frequency noise spectrum Sy( ).y, for sample 2 (2D213A diode) measured by the setup described in [9] and the cali-
bration noise spectrain (1) open-circuit and (2) short-circuit modes.

other physical anomalies. As shown in [10], these are
frequency dependences that are predicted with allow-
ance made for the existence of two discrete spatial
regions in a solid-state structure: the space-charge
region and quasi-neutral base region. The same imped-
ance spectra are generaly intrinsic not only to semi-
conductor diodes, but also to other two-terminal net-
works with macroscopic electrical or technological
lamination.

The results of measurements of the noise spectrum
SU(f)eyp for the same Si-diode sample are shown in
Fig. 2. To illustrate the features of the used measuring
setup [9] and the effect of external factors, the cali-
brated noise spectra are presented in the same figure.
These spectra were detected in the case of open (no-
load) and short-circuited terminals to which the object
under study was connected. It isseenthat the fluctuation-
voltage spectrum of the diode has a pronounced ascend-
ing portion within the frequency region 100-10° Hz,
which is similar to the rise in the impedance spectrum
R,(f) shownin Fig. 1.

The quantitative comparison between the measured
spectra shown in Figs. 1 and 2 seems to be the most
interesting. For improving the accuracy of this compar-
ison, it is necessary to consider the inevitable distinc-
tions in the measurement conditions for the §,(f) and
R,(f) spectrain the case of the same object under inves-
tigation and identical temperatures. The equipment
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used in the impedance measurements detects the true
values of the resistance and capacitance with a small
relative error (usually lower than 0.5-1%) and is virtu-
ally free of effects of externa fields. Therefore, the val-
ues of §,(f) [determined from Eq. (1) on the basis of
the measured spectrum R(f) after its multiplication by
the factor 4KT] correspond to the noise spectrum of the
object under consideration for the ideal disconnection
of its poles. At the same time, the experimentally
observed spectrum §( f).,, is affected by both extrane-
ous electric and magnetic fields and the intrinsic noise
of the measuring setup, as well as by its finite input
resistance. At certain frequencies, thelatter can be com-
parable to the object resistance R,. It should also alow
for the effects of the input shunting capacitance and the
connecting cable. The latter capacitance can attain
100 pF at a cable length of about 1 m. These factors
should be taken into account by adding the frequency-
dependent term F(f) into Eq. (1). The calculation of this
term was performed using the spectra §(f) obtained in
the open-circuit (no-load) and short-circuit regimes of
the object (see Fig. 2) on the basis of the principle of
superposition of mean-square values for noise voltages
and currents [11].

In Fig. 3, open circles and rhombuses repeatedly
show the results of the above measurements of the
impedance spectrum R(f) (Fig. 1) multiplied by the
factor of 4kT. The plot obtained in such a manner satis-
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Fig. 3. Comparison of the measured noise spectrum shown in Fig. 2 with the noise spectrum of the same diode sample, which was
obtained on the basis of the impedance-measurement results (Fig. 1) using similarity relation (1). Closed points are plotted with
alowance made for the effect of both the intrinsic noise of the measuring setup and the connecting-cable capacitance. For 1 and 2

seeFig. 2.

fies similarity relation (1) and represents the voltage-
fluctuation spectrum that would be observed on the
open poles of the diode under consideration, provided
that an ideal voltmeter was used. Closed circles in
Fig. 3 show the calculated adjustment using the correc-
tion factor F(f). An effect of external circuits and the
intrinsic noise of the measuring setup in the case under
consideration manifests itself at frequencies above
10 kHz. Here, thisrenders it impossible to measure the
noise with a spectral density below, approximately,
10717 V?/Hz, athough the spectrum S,(f) of the given

diode attains at least about 102 V/2/Hz, the factor F(f)
becoming distinct from unity.

We impose on this plot the measured noise spectrum
SU(f)ey, from the same diode sample as shown in
Fig. 2. It is seen that, except for the portion close to the
industrial frequency of 50 Hz, this spectrum virtualy
coincides with the spectrum S(f) recalculated from
the impedance spectrum R(f). Our attention is
engaged by the fact that, for f < 10* Hz, the coincidence
of the spectra exists even without the use of the calcu-
lated correction. In the region f > 10* Hz, the experi-
mental spectrum is distorted more and more strongly
and approaches the plot for the short-circuit noise.

The same close quantitative correspondence of
impedance and noise spectra has been established in

experiments with other types of silicon structures and
cooled InSh-based photoresistances without an exter-
nal bias. Alongside investigations of single structure
samples, we performed measurements with sets of
devices, each being up to 30 units. The results have
shown that the sensitivity of impedance measurements
to the parameter spread is not worse than the sensitivity
of noise tests.

Thus, the experiments carried out in the framework
of the present study confirm the qualitative similarity
and numerical correspondence of the independently
measured noise spectra S (f) and low-level impedance
spectraR () determined from Eq. (1) without an exter-
nal bias and under conditions of thermodynamic equi-
librium. This conformity manifests itself on plateau
segments that resemble white noise and in regions of
excess noise in which the fluctuation density S;(f)
increases by five to six orders of magnitude with
decreasing frequency.

The spread of parametersfrom sampleto samplefor
the same type of solid-state structures, which is effi-
ciently revealed according to distinctions in levels of
intrinsic low-frequency noise [1-3], is unambiguously
described by a variance of the resistances R(f). For
thisreason, theimpedance |ow-level measurements can
be considered as a source of information that is compa:
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rable to—and, for a number of attributes, even sur-
passes—the noise measurements.
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Iron-silicon alloys with high iron contents are the
basis for the production of electrical-sheet steels. An
improvement in their magnetic propertiesis attained by
thermomagnetic or thermomechanical treatment. As a
result, a uniaxial magnetic anisotropy appears that has
an axis coinciding with an easy-magnetization axis. In
this direction, a decrease in the coercive force occurs,
the remanent induction increases, and the hysteresis
loop becomes more rectangular [1]. To explain the
induced uniaxial anisotropy in substitutional solid solu-
tions as a result of thermomagnetic treatment, the the-
ory of directed ordering of atoms was devel oped about
50 years ago [2—4].

According to this theory, the axial orientation of
local properties in substitutional solid solutions with a
cubic lattice can be caused by uniaxial defects repre-
senting pairs of identical atoms predominantly oriented
along one of crystallographic direction. At tempera-
tures sufficient for diffusion, but lower than the Curie
point T, the atomic pairs occupy the lattice sites, pro-
viding a minimal angle between the pair axis and the
magnetization vector of a sample. The directional
ordering after cooling to room temperature is frozen by
virtue of the low diffusion mobility of the atoms.
Uniaxial anisotropy appears with an axis coinciding
with the direction of the external magnetic field acting
in the process of annealing.

This theory excellently explained the occurrence
and temperature stability of uniaxial magnetic anisot-
ropy. In addition, it has a number of consequences that
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have been repeatedly confirmed in experiments, for
example, that no pair ordering occurs in pure metals
and alloys with an isotropic long-range order and that
the treatment temperature should be lower than T but
sufficient for diffusion of atoms. Quenching from tem-
perature higher than T or annealing in arotating mag-
netic field must suppress the directional ordering.

The atomic structure and properties of soft magnetic
aloys based on iron were intensely investigated for
many years [5-10]. However, there were no experimen-
tal studiesthat would either prove or rule out the theory
of directed ordering. Therefore, we have formulated the
task of confirming or ruling out by direct structural
investigations the existence of uniaxial anisotropic
defects in bee single crystals of a soft magnetic iron—
silicon alloy having, asaresult of treatment, an induced
magnetic anisotropy.

Single-crystalline samples in the form of thin disks
with the (100) plane cubic orientation were cut from a
single crystal grown by the Bridgman method. Samples
with the (110) Goss' orientation were cut from grains of
sheet industrial steel.

The samples were treated to induce or suppress
magnetic anisotropy in the entire volume. Under
annealing and cooling in a permanent magnetic field,
i.e., under thermomagnetic treatment (TMT), one of the
easy-magnetization axes lying in the sample plane
(namely, the [001] axis) was isolated in a sample with
cubic orientation, and a magneticaly isotropic state
was obtained by quenching at a temperature of 800°C.
Thermomechanical treatment (TMechT) with loading
applied along the easy-magnetization direction
increased the magnetic anisotropy in the [001] direc-
tion, while transverse loading maximally destroyed the
anisotropy. The efficiency of the treatment performed
was estimated according to both the domain structure
and the shape of the hysteresis loops [11]. In samples
with a cubic orientation, both magnetic anisotropy
along one of the [001] easy-magnetization axes and an
isotropic state were obtained after quenching. In sam-
ples with Goss' orientation, maximal anisotropy after
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TMT and TMechT was observed along the [001] easy-
magnetization direction, whereas minimal anisotropy
was detected after application of a transverse alternat-
ing magnetic field or mechanical loading.

X-ray diffraction structure measurements were car-
ried out with alaboratory diffractometer equipped with
a four-circle goniometer. The long-range-order struc-
ture and the quality of single-crystal samples were
determined from analysis of Bragg-reflection profiles,
and the local atomic structure was identified from a
weak diffusive scattering measured between the princi-
pal reflections. To separate static and dynamic struc-
tural features, measurements were performed at room
temperature and at a temperature of 190 K. It was
shown that diffusive planes and rods that occur due to
phonon scattering become several times less intense at
low temperatures.

The profiles of the basic reflections have hal f-widths
close to the instrumental width. This fact indicates that
the bcc lattice is virtually close to an ideal one. No
dependence on the type of the action or direction of its
application was observed. The weak superstructural
diffuse peaks testify to the presence of B2-type order-
ings. The absence of peaks with semi-integer indices
points to the absence of the DO; phase. The analysis of
the profile of superstructural reflections showed that its
half-width was narrower in the magnetic-anisotropy
direction and broader in the transverse direction.
Hence, the average ordering-region size[12] islarger in
the anisotropy direction and smaller acrossit; i.e., the
size distribution of clusters with the B2-type order has
an anisotropic shape (Table 1). Most likely, in asample
with magnetic anisotropy, the longitudinal extension of
clustersisformed by pairs of B2 cells oriented predom-
inantly along the [001] axis. In a sample with isotropic
magnetic properties, we observed equiprobable distri-
bution of pairs of cells after quenching, at least, along
the [100] and [001] directions lying in the disk plane.

In samples with the Goss' arientation of axes, both
the magnetic anisotropy and the extension of clusters
along the[001] axisincrease along the easy-magnetiza-
tion axis after TMT or TmechT, accompanied by the
application of a permanent magnetic field or loading
(Table 2). The extension of clustersis likely associated
with both reorientation of B2-cell pairs and chain for-
mation.

Thus, we were pioneers in discovering a stable
correlation of the magnetic-anisotropy direction and
the anisotropy of the size distribution for regions with
B2 short-range order.

The superstructural peaks are shifted from calcu-
lated positions toward smaller diffraction angles. h =
2.84 and | = 2.87 instead of 3 for the (300) and (003)
coordinates, and | =0.94-0.96 instead of 1 for the (001)
coordinate. This implies that the interatomic distances
are increased compared to the distances in the remain-
ing lattice, which can be explained by the local exten-
sion of the lattice around cells containing silicon atoms
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Tablel. Sizes of clusters with B2 ordering in Fe-4.8%Si
single crystals with cubic orientation

Thermal treatment | Direction | Size,nm | Error, nm
In a permanent (100) 0.53 +0.05
magnetic

field || (003) (001) 0.69 +0.06
Rapid guenching (100) 0.72 +0.09
at400°Cs* (001) 0.70 +0.07

Table 2. Sizes of clusters along the [001] direction with B2
ordering in Fe-5.9%Si single crystals with Goss' orientation

Thermal treatment Size, nm Error, nm
In a permanent field || (001) 1.02 +0.04
In an alternating field O (001) 0.72 +0.02
Under loading || (001) 0.91 +0.10
Under loading [ (001) 0.58 +0.06

(the B2-cell size is 34% smaller than that in the
remaining bcc lattice).

In [13], we qualitatively substantiated for the first
time shifts of superstructural peaks on the basis of esti-
mates of various contributions to the structural factor.
Later, using model calculations, we showed that the
clusters represented a chain of predominantly two B2
cells oriented along one of the easy-magnetization axes
and the lattice-extension region around them. As a
result of thermal treatment, they are distributed pre-
dominantly along the direction of the applied field or
load, thereby forming and stabilizing anisotropic mag-
netic properties. In other cases (without load and field,
or after quenching), the clusters are equiprobably dis-
tributed along the directions of the (100Ltype.

Axia anisotropy of a short-range order in samples
with magnetic anisotropy induced along one of the
easy-magneti zation axes, which was observed using the
X-ray diffraction method, is experimental confirmation
of the validity of the directed-ordering theory.
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1. INTRODUCTION

Further development of methods of plasma polar-
ization spectroscopy [1, 2] isone of the urgent trendsin
current investigations in plasma physics. Indeed, the
polarization properties of bright-line and continuous
radiation carry information on both the anisotropy of
the velocity distribution function of charged particles
and electric and magnetic fields in a plasma [1-3].
When there is a separate direction in the plasma, the
degree and sign of polarization depend primarily on the
type of observed atomic transition and, e.g., on thetype
of the anisotropy of the velocity distribution function of
charged particles and energy.

In particular, polarization of radiation arises when
spectral lines are excited by an electron impact [1-4].
In this case, the observed polarization depends non-
monotonically on thevelocity of beam electrons, reach-
ing a maximum for an energy of only several electron
volts above the excitation threshold [4]. Since the sim-
plest first Born approximation is inapplicable in this
energy range and does not provide satisfactory results
[2, 4-6], fairly accurate calculation methods are neces-
sary to describe this mechanism of causing the polar-
ization of spectral lines, which is important for the
plasma.

Various schemes of strong coupling methods in the
theory of electron—atom collisions have been proposed
and devel oped to describe this energy range. However,
their realization often requires laborious computations
[2, 3, 5-12]. At the same time, to provide a theoretical
basis for plasma polarization spectroscopy, it is neces-
sary to develop algorithms that do not require long
computation time and provide rapid analysis of vast
amounts of experimental data[1, 2].

In this paper, we propose a strong coupling scheme
that is based on the variable-phase method [13] and
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provides a fast and effective algorithm for calculating
near-threshold cross sections for the electron-impact
excitation of atoms [2, 3, 5-12]. To illustrate this
approach, we consider the problem of the electron-
impact excitation of ahydrogen atom to thefirst excited
level. Asis known, the first formulations of the strong-
coupling method [5] were tested by solving in particu-
lar this problem. Although neutral hydrogen isthe sim-
plest atomic target, this problem hasimportant physical
features associated with the presence of the constant
dipole moment of the exited states of the hydrogen
atom. This property of the excited states of the hydro-
gen atom is responsible for the linear Stark effect in
electric fields [14]. As has been mentioned previously
[7, 8], this gives rise to a peculiar momentum depen-
dence of near-threshold excitation cross sections. In
thiswork, it was shown that the existence of the dipole
moment of an excited state of the hydrogen atom leads
to the orientation of the atom in the electric field of the
scattered electron near the excitation threshold.

2. STRONG COUPLING EQUATIONS

The Schrodinger equation for the el ectron scattering
on the hydrogen atom in the c.m.s. in atomic units has
the form [1-15]

+ AL +K— 2+g+——i} = 0.
[A, Bt ko= Mg+ 2+ 5~ Zg [ WL R) = 0.)

Here, r and R are the radius vectors of the atomic and

incident electrons, respectively; A, and Ay are the

Laplacianswith respect to the coordinates of the atomic
2

- . Ao .
and incident electrons, respectively; EO isthe energy of

2

the bound state of the atomic electron; k—2° isthekinetic

energy of the incident electron; and W(r, R) is the total
wave function of the two-electron system. Equation (1)
does not include relativistic corrections [14].
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Disregarding exchange, one can represent the total
wave function of the system as the atomic-state expan-
sion[5]

W(r,R) = z¢p(r)lIJp(R), (@)
p

where Y,(R) is the wave function of the incident elec-
tron, and the wave function ¢(r) of the atomic electron
2

A
with energy — p satisfies the equation

[A A2+ 2 }pp(r) = 0. 3)

Expanding W,(R) in the spherical functions

qu(R) = Z%Xplimi(R)YI,mi%a (4)

I, my

wherel; and m arethe orbital angular momentum of the
incident electron and its projection, respectively, one
obtains the following set of strong-coupling equations
for the radial wave functions X, n (R) (see, 4., [5]):

[aQ'RiZ (Rzl) }‘"m(R)
&)

Y Usim (RXaim (R):

qvlfvmf

In the representation of the conserving total angular
momentum L of the system of the atomic and incident
electrons, this set takes the form [5]

I(l; +1)

&
[c—i—R— R2 +k} anpI,(R)

(6)
= z ) :pllpll‘(R) anl( R),

ng |

g lgp 1t

where n,, |,, and m, are the principal quantum number,
orbital angular momentum, and projection of the orbital
angular momentum of the atomic electron, respectively.

Thus, to solve the problem under consideration, one
should solve the set of strong-coupling equations with
given boundary conditions at infinity and determine the
Smatrix and, then, the cross sections [5].

3. VARIABLE-PHASE METHOD

It is convenient to solve the strong-coupling equa-
tions by the variable-phase method, which enables one
to transform equations for radial wave functions to
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equations for the Smatrix [13]. Indeed, the asymptotic
behavior of the solution of system (6) at infinity is
related to the real elements of the reactance matrix K as

Xa(R) = 3 %o(R1Bo -3 2(RKasp: (D)
b b

Here, y,(R) and z,(R) are the linearly independent solu-
tions of set (6) in the absence of the interaction poten-
tial U2(R) and indices a and b denote the set of quan-

tum numbers determining a certain scattering channel
in Egs. (6). The reactance matrix K can be expressed in
terms of the Smatrix by the known transformation [13].

Then, the reactance matrix and S matrix are deter-
mined in the variable-phase method from the equa-
tions [13]

dK (R)
dR
= {y(R)-K(R)z(R)]U(R)[Y(R) —z(R)K(R)],
K(0) = 0;

(8)

@ =_ {[y(R) i(R] + S(RIY(R) +iz(R} UR)

% {[y(R) —iz(R)] +[y(R) +iz(R] SR} ,
S(0) = 1.

Here, y(R) and z(R) are the diagonal matrices of thelin-
early independent solutions of Egs. (6) in the absence

of the interaction potential Ug(R) and the matrices

K(R) and S(R) are the reactance matrix and S matrix,
respectively, for the truncated potential UR)B(R- R).
Thus, the basic advantage of the variable-phase method
is the transition from the cal culation of wave functions
to the calculation of the reactance matrix and Smatrix,
which are directly related to physical observables.

4. NUMERICAL CALCULATIONS

By the variable-phase method, the Smatrix was cal-
culated in the basis of the atomic states 1s-2s-2p. The
differential cross sections for electron scattering are
expressed as [5]

[
i AT
- 2
do ko (10
kK CK .11 nglgmgl m 2
* _d] (El f n m
X z Ylim‘ EkaYIfmf[k ] Tnplpmpllm

lmg, 1, my

in terms of the transition probability matrix T, which is
related to the Smatrix by the known expression

NglgMgl ¢ My [gmgl ¢ my

Tnlmlm Snnqlmlm_ (11)

pppl pp

DOKLADY PHYSICS Vol. 49 No. 11 2004



ORIENTATION OF A HYDROGEN ATOM EXCITED BY AN ELECTRON IMPACT 627
Table
ko L totor, 1525 Yottt 1s2p Yoot 1s2p
0.9 0 0.222 0.220917 0.157 0.157356 -
1 0.080 0.0789325 0.029 0.0285163 0.366 0.367683
2 0.321 0.322354 0.055 0.0558210 0.573 0.571146
3 0.007 0.00720635 0.0006 0.000609303 0.024 0.0238816
4 0.0003 0.000259319 0.00001 1.32063(-5) 0.001 0.00133054
1.0 0 0.168 0.168277 0.100 0.100026 -
1 0.145 0.142817 0.145 0.144492 0.142 0.145180
2 0.157 0.157611 0.051 0.0519812 0.755 0.753796
3 0.048 0.048530 0.005 0.00524181 0.212 0.211887
4 0.008 0.008266 0.0005 0.000479245 0.048 0.047540
15 0 0.025 0.025004 0.037 0.0373480 -
1 0.086 0.085876 0.018 0.0186089 0.014 0.014688
2 0.020 0.020010 0.003 0.00300071 0.163 0.163139
3 0.007 0.006701 0.007 0.0074267 0.247 0.247739
4 0.011 0.011207 0.007 0.00707383 0.221 0.221109
5 0.011 0.010597 0.004 0.00424686 0.163 0.163174
6 0.007 0.007474 0.002 0.0021752 0.113 0.112280
2.0 0 0.010 0.010168 0.010 0.010537 -
1 0.038 0.037741 0.004 0.003646 0.003 0.003194
2 0.025 0.025426 0.0003 0.000322 0.038 0.038412
3 0.011 0.010711 0.0025 0.002473 0.080 0.080418
4 0.005 0.004591 0.005 0.005019 0.104 0.104203
5 0.003 0.003357 0.006 0.005697 0.108 0.108234
6 0.003 0.003308 0.005 0.004987 0.100 0.100079

Here, indices p and q specify theinitial and final states
of the atomic electron, respectively, and indicesi and f
specify theinitial and final states of the scattered elec-
tron, respectively.

Theintegrated partial cross section isdetermined by
integrating over the scattering angles do, summing over
the projections of the angular momentum of final states,
and averaging over theinitial states:

2

L nglgle _ TU2L + 1|Lnglgl (12)

nlli — E2|p+1 npll;
p

L _Nglq L_Nglgls
o = o .
nplp z Nplpli

li1s

13)

Thetable shows partial cross sections calculated for
various orbital angular momenta L of the system and
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various electron velocities k, in comparison with (left
columns) data taken from [15]. As is seen, the results
differ by lessthan 10%. Orbital angular momenta equal
to and | ess than two make the dominant contribution to
the inelastic scattering cross section near the threshold.
Indeed, the contributions from higher orbital angular
momenta are immaterial, because the strong dipole
attraction of the hydrogen atom is compensated by the
centrifugal potential:

maxg’n(nl— n,) = §n(n— 1)< leax(Lmax +1). (14)
ny N, 2 2 2

Therefore, L,,,,, = 2 for n = 2. Figure 1 shows the inte-
grated partial cross sectionsfor 1s-2sand 1s-2p excita-
tionsfor L = 0-6.
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Fig. 1. Partial cross sections for the (a) 1s-2s and (b) 1s-2p electron-impact excitations of the hydrogen atom.

Let us consider the parabolic quantization of the
atom along the momentum of the outgoing electron. In
this case, the total cross section takes the form

2
DDA TR

Lom| 1y

NigN2qMg  _
F NypNopM,

s (15)
p

where the subscript F means quantization along the
momentum of the outgoing electron. Figure 2 shows
the calculated total cross section for excitation to states
ng = 2 for the indicated quantization of the atom.

Asisseen, the cross section for the excitation of the
parabolic atomic statewith n;,= 1 and n,, = m, = 0 dom-
inates in the near-threshold region due to the presence

1gM24g™M,
FOn lznzqmq >
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Fig. 2. Partial cross sections for the electron-impact excita-
tion of the hydrogen atom from the ground state with n, =1
to the parabolic state with ng = 2 and quantization along the
final electron momentum.

of the attractive potential in this state. The cross sec-
tion for the atomic state with a repulsive potentia is
minimal.

5. CONCLUSIONS

A new agorithm for solving strong coupling equa-
tions, which is based on the variable-phase method [13],
has been proposed and realized for calculating cross
sections for electron-impact excitation of a hydrogen
atom. The advantage of this algorithm is that it deals
directly with the S matrix and significantly simplifies
the numerical procedure and its analysis. It has been
shown that orbital angular momenta equal to and less
than two make the dominant contribution to the inelas-
tic scattering cross section near the excitation threshold
for n = 2. Cross sections tend toward a constant when
approaching threshold k; — 0. This anomalous
behavior of the cross section is associated with the lin-
ear Stark effect [7]. The dipole moment of the atom is
oriented a ong the momentum of the outgoing electron,
because the states with attractive and repulsive interac-
tions of the outgoing electron with the atom make the
maximum and minimum contributions, respectively, to
the total excitation cross section near the threshold.

ACKNOWLEDGMENTS

We are grateful to H.E. Saraph for support and to
S.Ya Umanskii for useful advice and discussions.

REFERENCES

1. T. Fujimoto and S. A. Kazantsev, Plasma Phys. Con-
trolled Fusion 39, 1267 (1997).

2. N. Andersen and K. Bartschat, Polarization, Alignment
and Orientation in Atomic Collisions (Springer, New
York, 2001).

DOKLADY PHYSICS Vol. 49 No. 11 2004



3,
4,

5.

ORIENTATION OF A HYDROGEN ATOM EXCITED BY AN ELECTRON IMPACT

E. Haug, Sol. Phys. 71, 77 (1981).

J. K. James, J. A. Slevin, D. Dziczek, et al., Phys. Rev. A
57, 1787 (1998).

I. C. Percival and M. J. Seaton, Proc. Cambridge Philos.
Soc. 53, 654 (1957).

M. J. Seaton, Proc. Roy. Soc. 77, 174 (1961).

M. Gailitis and R. Damburg, Zh. Eksp. Teor. Fiz. 44,
1644 (1963) [Sov. Phys. JETP 17, 869 (1963)].

M. Gailitis and R. Damburg, Proc. Phys. Soc. 82, 192
(1963).

P. G. Burke and M. J. Seaton, in Methods in Computa-
tional Physics, Ed. by B. Adler, S. Fernbach, and
M. Rotenburg (Academic, New York, 1971), Vol. 10,
Chap. 1, pp. 9-81.

DOKLADY PHYSICS Vol.49 No. 11 2004

10
11

12.

13.

14.

15.

629

M. J. Seaton, Comput. Phys. Commun. 6, 247 (1973).

M. K. Gdllitis, Usp. Fiz. Nauk 116, 665 (1975) [Sov.
Phys. Usp. 18, 665 (1975)].

M. A. Crees, M. J. Seaton, and P. M. H. Wilson, Compui.
Phys. Commun. 15, 23 (1978).

V. V. Babikov, Variable-Phase Method in Quantum
Mechanics (Nauka, Moscow, 1988).

H. A. Bethe and E. E. Salpeter, Quantum Mechanics of

One- and Two-Electron Atoms (Academic, New York,
1957; Fizmatgiz, Moscow, 1960).

R. V. Damburg, Atomic Collisions (Akad. Nauk Latv.
SSR, Riga, 1963).

Tranglated by R. Tyapaev



Doklady Physics, Vol. 49, No. 11, 2004, pp. 630-633. Trandated from Doklady Akademii Nauk, \Vol. 399, No. 3, 2004, pp. 330-333.

Original Russian Text Copyright © 2004 by Denisov, Denisova, Krivchenkov, Vshivtseva.

PHYSICS

Nonlinear Electromagnetic Delay of Electromagnetic Signals
in the Magnetic Field of a Neutron Star

V. |. Denisov*, |. P. Denisova, |. V. Krivchenkov, and P. A. Vshivtseva
Presented by Academician A.A. Logunov June 1, 2004

Received June 1, 2004

Interest in the nonlinear el ectrodynamics of vacuum
has been recently renewed [1, 2], because the sensitiv-
ity of current measuring instruments has closely
approached the level that is required for detecting its
effects [3, 4]. Therefore, after the first nonlinear elec-
trodynamic experiment [5] recently carried out in Stan-
ford, other experiments should follow in the near future
that will make it possible to study the basic properties
of the nonlinear interaction of electromagnetic fieldsin
vacuum.

I'n our opinion, the measurement of the delay time of
electromagnetic signals that have mutually orthogonal
polarizations and have passed through the strong mag-
netic field of a pulsar or a magnetar is one of the most
promising experiments for such astudy. Let us analyze
this problem more comprehensively.

Let us consider a neutron star (pulsar or magnetar)
that has a strong magnetic field, radius R, and gravita-
tional radiusr,. We take a coordinate system such that
itsorigin is at the center of the star and a source and a
receiver of electromagnetic radiation lie in the XOZ
plane. Let the source and receiver be at the points (x= b,
y=0,z=-a)and (x=b, y=0, z= a) symmetric with
respect to the XOY plane. Since the magnetosphere of
most neutron starsis filled with matter, we assume that
the source (e.g., a Seyfert galaxy) emits in the X and
gamma bands. The magnetosphere of pulsars and mag-
netars is transparent in the latter band.

According to the parameterized post-Maxwellian
electrodynamics of vacuum [6], electromagnetic radia-
tion propagates along the geodesics of a certain effec-
tive spacetime, the metric tensor g; of which depends
on the polarization of thisradiation dueto birefringence
of vacuum in strong electromagnetic fields. Therefore,
an arbitrarily polarized electromagnetic signal in an
external electromagnetic field splits into two signals
carried by normal waves with mutualy orthogonal
polarizations along different rays. The metric tensor of

Moscow State University,
\orob’ evy gory, Moscow, 119992 Russia
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the effective spacetime for these normal waves in the
parameterized post-Maxwellian approximation has the
form

12 _

(0)
Oik

= Oik —4ﬂ1,2EFipF-’)k1 (D
where g'Y is the metric tensor of the background
spacetime, n, and n, are the post-Maxwellian parame-
ters [6] of the nonlinear electrodynamics of vacuum,

&= Biz ~ 10?7 G2, and the subscripts of the € ectromag-

q
netic field tensor F, are lifted by the metric tensor g'(‘g) :

Since neutron stars have a sufficiently strong gravi-
tational field, the Schwarzschild solution should be

taken asthe metric tensor gi(,?) of the background space-

time for the problem under consideration. In theisotro-
pic spherical coordinates, this solution with post-New-
tonian accuracy has the form

0) _ ,.2.(0) 0) _ (042
O» =0y, O = 0 SN,

2 2
©_4 Tg. "9 @ _ rg_ 3rg
O = 1-—=+—, oy = —-1+=+—1

rooor? rogr?

Assuming that the magnetic dipole moment of the
neutron star generally has the components m, =
msinacosf3, m, = msinasinB, and m, = mcosa, we
write the tensor F in the spherical coordinate system
in the form

[m|

Fi, = Fig = —sinasin(¢ —B),
r

2

2|m|sin6
Fa = Foo = %

x { cosBcosa + sinBsinacos(¢ —P)} ,
_ |m|sin®

Fis = Fry = 2

x { sinBcosa — cosbsina cos(¢ —B)} .
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The motion of photons in the pseudo-Riemannian
spacetime with metric tensor (1) proceeds along the
geodesics of this space and is described by the equa-
tions

dk™
T Fonk’k™ = 0, )
where k™ = % and o isthe affine parameter.

For m=0, Eq. (2) takes the form

dk

gkk =
dG r =0

and issimply integrated as

2
r

0 _ r
K —1+?9’+2—r92. 3)

The remaining equations of system (2) take the form

.. ) 2.2 i i ED
r—r[0 +¢°sin e]+2r2_2r2 T
12r]Em

x [F?—r (9 +%sn’9)] + =15

x {[F2 +r}(®° + $2sin’0)] [sind sina cos(® —P)
+ cosBcosa]?—i2 +r3(0° + p°sin‘a)
+2r1B[(2sin°6 — 1) sina cosa cos(® —P)
+ sinecose(cosza— sin‘a cosz(q) -BN1]
+2ripsinBsinasin(¢ —B)
x [sinBsinacos(¢ —B) + cosBcosa]} = 0O,

re r
+= - _e -0 d)
0 [2r9 r*sindcos] = a0

[(2sin°8 —1)sin2a cos(d —B)

L 12ng m2%r2—2r2('92
8 [ 2
+sin20(cos’ o —sin‘a cos (¢ —B))]
—2rr6[sm asin (¢ —B) +4(sinBsinacos(¢ — B)
+ cosBcosa)’] —2r°Bd sinBsinasin(d —B)

x (cosBcosa + sinBsinacos(¢p —f3))
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+2ripsinBsinasin(¢p —B)(sinBcosa

—cosBsinacos(¢ —B)) % =0,
0

) 20 .. . . _ﬂ s
<|'>+rsme[rsm6+r9cose] rzg’l a0

12r|Em
r’sin®

=28 (1372 = 2r%%sin’ 6]
x (cosBcosa + sinBsinacos(¢p —B)) sinasin(® —B)

+2rf@sinasin(¢ —B)(sindcosa
—cosBsinacos(p —B) —2ri$psinB[3(sinBsina

xcos(d —B) + cosecosoo2 + dnfa cosz(¢ -B) + coszcx]

—2r?0d SinB[(2sin°0 — 1) sina cosa cos@® —P)

+ sinecose(cosza —dn’a cosz(q) -BN]} =0,
where a dot over a symbol means it is derivative with
respect to o.

One more eguation follows from the fact that the

four-vector k™ must satisfy the condition g*>knk™ = 0,

which isthefirst integral of the system of Egs. (2). We
solve these equations by successive approximations
with respect to small parameters of the problem,
assuming that a signal is emitted for o = 0 from the
point (x=h, y =0, z=-a) and passes through the point
(x=Dh,y=0, z=a). The substitution of the expressions

1:gr(o-) + fel(c)! rcose = Zgr(o) + Ze|(0),

¢ = ¢a(0)
into Egs. (4) yields

2
r =

fo(0) = (0—a)’+b’

+2r [Ja?+ 07— J(o-a)’ + b7 —rj[?)—‘;’ _2

_3@o+2a) . a, 2 a’+b’

8b b /(G_a)z .
3(c—a)
BT

o—a
arctan }

r2
Zgr(o) =0- a'+ 16b

+ arctana} - SOD

0
9| arctn 52 bl b

O
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For the nonlinear electrodynamic part, we obtain

b2
2[(o-a)*+b?°
15 75

+ 2+ 2 2 2
8[(0—a)2+b2] 16b°[(oc—a)” + b

O
fo(0) = m,zEmZ%Co +C0+ {

_225(c-3) - 2) arotanZ=2 |sinfa cosB
16b b

_{9(0—&) arctan® =2 _ b
5 b 2 23
16b 2[(c-a)" + b]

- ! >~ 3 }sinza
8[(c—a)’+b?” 16b’[(c—a)’+b’]
+[ 39(c —a) + 13(og-a)
16b°[(c—a)’+b?] 8b[(c—a)?+b?’

4 —(0-3)b -+ 394arctano—_a}sin2acosﬁ
2[(c—-a)’+b7° 16b b
b 135(0 —a) o-a
- 5 e z arCtanT
2[(c—a)"+ b7 16b
+ 9 2 + 2 45 2 2 E
8[(c—a)’+b]" 16b°[(c-a)’+b’ O
zy(0) = 1, 2Em2Epz+ 5(0-a)
g 64b’[(0 —a)’ + b’]
+ 25(c —a) 5(c-a)

20 (o-a)’+ b3’ 8[(c—a)’+b3’

2
So-ap” | 75 arctanc—_a}sinza cos’B

+
4l(c-a)’+b]" 64b° b

2
+[i5arctan0_a+ 9b (cz—a)24
4[(c—-a)” +b7]

64b b

B 3(c—a) o-a
8[(c—-a)®+b?7° 32b’[(c—a)’+b]’

3(c-a) }Si G_[ o’
64b"[ (0 —a)% + b] 4l(o-a)?+b7"

+

b . 45 o-—-a
—m sm2cxcosB+EbsarctanT
___9b*(o-a) 3(c-a)
4(o-a)+bT" 8[(o-a)+b]°
N 15(c —a) 45(0 —a) g
2 2 2.2 4 2 2 0
32b[(o-a) +b7 " 64b’[(c—a)"+Db’] O

_ g 3 o-a
da(0) = n1,2§%ﬁ3+c40+[32b6arctan -

+ 5(g—a) (o0—a)
4b[(c—a)?+b7° 16b°[(0—a)®+b]°
3(c—a)
' 32b°[(0—a)’+ bz]} >
_[75(0—a) arceot E=2 5
32’ b 4[(c-a)*+ b7’
.\ 5 .\ 25 }
16bY(c—a)?+b?° 32b'[(c—a)’+b

. 0. .
x sinacosP [shasing,
O

where the integration constants have the form

a(39a’ + 104a’p* + 73b%)
16b%(a? + b?)°

C, = sin2a cosP

~ [45@12 +108a’p’ +55b* | 3a’+20a’b” + 25b°
16b%(a* + b?)° 16b%(a’* + b?)°

5 75a%+180a°h*+113b" . 2
xsn o+ > 53 sin"acos 3
16b“(a” + b?)
+ 9;a5[sin20( + 255in°o coszﬁ + 15] arctan
16b b
+ 3?)4sin20(cos[3,
39 a
C,=— arctanc-
' [16ab4 b
4 2,2 4
439t 1304";‘ b :ZSb }sinZacosB,
16b°(a” + b?)
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_ 3a(15a° + 55a’b’ + 73a°b* — 15h°) 3[15(a°—b®) + 55a%0? + 73a%b"] | O
C, = 4,2, 24 + O
64b*(a” +b") (a2 + b2)4 0
N 4ib5[258ir120( cos?B + 15 + sinza} arctan% Integrating Eq. (3), we obtain
ct(o) = o—a+r InE[ Gl a) +b+o- a]D
-V g
ra [75a + 275a'b” + 365a°b" + 309b° cop 0 [Jo*+a’—a 0
64b*(a” + b’ )
Ty DZa L 2(0- a)Ja’+b
4 _2
, 3a°+11a"’—11b’a +125b} 2, “2pED /7(cy )2+ b
64b*(a” + b’ )
- O
—3[arctan0 a arctang} 0
MSnZG 003B b b OJ
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4 202 4 = ————=——[25sin"acos 3 +sina +15].
+ ob(5a : 122a b2 3 b )sina COSB} 64ch’
32b’(a”+b’) This quantity for typical pulsars and magnetars may
reach a measurable value of 0.2 us.
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In this study, a differential equation describing the
dynamics of the crystal-surface development in a vis-
cous vitreous substance is derived from the solution of
the variational problem with a mobile boundary. It is
shown that, in this case, the heterogeneity of viscosity
isavery important factor.

The transversality equation is analyzed, and its
physical solution describing the development of acrys-
tal in both time and space is found.

Previoudly [1, 2], we have proposed a genera
approach for the mathematical description of the crys-
tallization-dynamics development. This approach was
based on the assumption of the stochastic variation of a
solid-phase nucleus and its subsegquent growth from the
standpoint of linear-size crystal evolution [1]. Later,
in[2], atechniquefor analysis of the dynamic evolution
of the nucleus was proposed that used a synergetic
approach based on the general expression for the dissi-
pative function. In this connection, we would like to
note that the equation of mation obtained in [2] gener-
ally describes only atragjectory of motion for a certain
abstract point on the surface of a future crystal. How-
ever, the equation determining the surface z(x, v, t)
(xand y are the coordinates, and t is time) was not pre-
sented in an explicit form. This disadvantage is elimi-
nated in this study devoted to the derivation of the evo-
lution equations of a solid-phase nucleus, which allows
us to describe arbitrary (including rather complicated)
surfaces of growing crystals.

We write the general expression for the dissipative
function, whichissimilar tothat in[2], as

Bikln 3
2nOJ/'vkar] MM, d"x, (1)

Q=

where By, is the dimensionless tensor of the fourth
rank; the subscriptsi, k, |, and n take the valuesx, y, and
z, and the repeated subscripts imply summation, with

Moscow State Regional University,
ul. Radio 10a, Moscow, 105005 Russia

e-mail: Sglad@newmail.ru

the summation sign being omitted; and v; are the veloc-
ity components of very small particles (we call them
crystallons) adhering to afluctuation formed nucleus of
the future solid phase. The angular momentum of these
particlesisM =m[v xr], where misthe particle’ smass,
n istheviscosity, and n, isthe constant with the dimen-
sion of viscosity.

We introduce the total energy loss as an integral of
expression (1) over time;

Bikln
5, v,0MM,dQ, ©)

Q:

where the volume element is dQ = dx dy dzdt.

We now requirethat, in astationary caseast — oo,
the dissipation will be minimal and represent the sta-
tionary equation of motion in the form

oQ

6]’ z=X(x Y, t)

= 0. 3"

Thus, the problem consists in calculating the varia-
tional derivative for expression (2).

In order to demonstrate the calculation technique
and the approach in itself, we choose the tensor By, in
a smplified form—namely, we assume that B, =
B6lk6|n'

As aresult, we obtain, from expression (2),

t
Q= o> [[(vii )MZdQ. 3)
]

Next, we transform the integrand in (3) using integra-
tion by partsin the following manner. We represent it as

(v )M? = 0§ vM)*—n0 QvM?).

By definition, the angular momentum isM = m[v xr].
Therefore, it is easy to show that the latter term O -
(vM?) identically vanishes. As a result, using the
Gauss-Ostrogradskii formula, we can transform the

1028-3358/04/4911-0634%$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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volume integral to the integral over the surface of a wefind the transversality equation for our problem:

growing () solid nucleus.

In so far as the volume changes with time and its
boundary (the surface Z) moves while varying func-
tiona (3), it isnecessary to solvethe problem involving
amobile boundary. Thisimpliesthat the expression for
the variation of the functional dQ should be represented
as asum of two integrals,

V+8viy ]
5Q = B (v Y)M?dQ + BA[[O(vnM?)dQ. @)
[ i nn-p

Taking into account the above comments, we obtain

3Q = BI[(VE] )M2|25V+2I(vn)q(|v| 6M)do}dt 5)

0

ThevolumevariationisdV =|[n x &]|o, where g is
the surface area. From this, it follows that

OV = |[nxdr]lo

= 5.J3Xsn’a + By’sin’p + dZsin’y
= J2cos’yZ + 2, + ZZ,0 B, (6)
where 81% = dx* + dy? + d2* and the direction cosines of

the vector of the surface normal are conventionally
given by the relations

cosa = —z,Cosy,
cosP = —z,cosy,

1
J1+Z+Z

The angular-momentum variation is
OM = m[dv xr] + m[v + dr],

cosy =

odor
where dv = T3

parts with respect to time results in a doubled value of
OM: M — 2m[v x r]. For the scalar product M oM,
we have

. The integration of relationship (5) by

M&M = m’3l [ v2(xcosa + ycos3 + zcosy)
—(vr)(vcosa + v,cosf + v,cosy)]. (7
Assuming that
J’(vn)r](M oM)do = n(vn)(M3dM)|s0,
z

and taking into account expressions (6) and (7) and the
above statement following from the condition dQ = 0,
DOKLADY PHYSICS  Vol. 49
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J2(viy )[v xr]%cos’y[z; + 25 + zfzﬂZ

+4n(vn)[ vz(xcosa + ycosf3 + zcosy) (8)
—(vr)(vcosa + v cosB + v,cosy)]|; = 0

Thus, we have obtained the evolution equation for the
surface 2. This equation makes it possible to describe
not only the shape of the surface, but also its further
evolution with time. Below, we consider a simple case.

Let the viscosity gradient be directed along the
zaxis;i.e, @ = B) 0, aﬂD , and the crystal growth-

rate vector have one component and be aso directed

along the z axis H/ = E) 0, a—ZED. As aresult (after

ot
reducing by vf), we obtain from (8) the following con-
siderably simpler equation:

2 2_2

2
22+ Z,+ 2,7, _ 2
2 = 8(xz+yz), (9)

1+z,+7Z

a’(x*+y?)

wherea= % %g . It should be noted that, here, we used

explicit expressions for direction cosines of the normal
to the surface.

In Eq. (9), it is convenient to pass to the polar coor-
dinatesx =rcos¢ and y = rsing. Asaresult, we obtain

97

L1zt
2log]
(10)

1 0
+r—4%cos¢ _qu)acbD %an) oz, COS¢a¢D }

8197 [1 B

gz +1[¢34]} . {BPE

Assuming that, near the crystallization temperature T,
the latter term in the right-hand side of Eqg. (10) can be
ignored and provided that the function zis independent
of the angular variable ¢, we arrive at the quite ssmple
equation,

<= -5}

Upon separating the variables and integrating, we find
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the solution,

(11)
——“/:InDr—-— + -—-——11] +2C(1),
a [Qﬁ 8
where C(t) is a certain function of time, and the factor 2
isintroduced for the sake of convenience.

Since the crystal viscosity at surface temperature T
follows the Fogelulcher law [3], n = ne g
(where i isaconstant with the dimension of viscosity,
A isthe activation energy or, in other words, the barrier
through which atoms of liquid tunnel into the solid
phase; we assume that the Boltzmann constant kg is
unity). Further, by virtue of alarge value of n and also
considering the parameter a to be large (a > 1), from
Eg. (11), we find the following simpler approximate
equation:

2

" 1on
[naz

Integrating this equation over the variable z, we arrive
at

+2C(t). (12)

2
7 = = Inn +2zC(t) + A(t),

2.2

where A(t) is one more function of time. Furthermore,
resolving Eq. (13) with respect to z, we have

(13)

A
[T

For finding C(t) and A(t), it is necessary to use an
additional equation that, according to [2], can be rep-

9Q
oM
Using Eg. (3), we obtain, as a result, the equation for
extremals,

z= C(t)iJC (1) + — +A(t). (14)

resented in the phenomenological form M =

M = E(vm M. (15)
No
Itssolutioniis
B 0
M = Moexth Za—gd% = Moexpasnﬂﬁ.

From here, we find, for the x component,

(16)

Vyz_yvz = MOxeXp%nﬂ(E

GLADKOV

We now choose the simplest variation law for the coor-
dinates; x = vVt and y = Vt. Then, we can write the
equation for the coordinate z,

) M
tz—z = —%‘exp o (17)

nd

Assuming the constant B to be small (whichis, in fact,

true), it is possible to take ex LIPS 1 and to write
), itisp PBAT

the solution of Eq. (17) as

M
z= —%+Dt, (18)
v

where D isthe integration constant.
We choose the solution to Eq. (14) in the form

P A
2 2T-T

z=C(t) + JC (1) — + A(t) (19)

and assume that A(t) = 0.

Solution (19) is valid for surface boundary points.
Therefore, to satisfy both solution (19) and (18), we
choose D = v,,, where v, is the growth rate of the coor-
dinatezatt =0, and z(0) = z,. Asaresult of sewing both
solutions, we arrive at the function C(t),

1 vi?
C(t) = E(Zo +tvet) +a ETEA (20)
: A
where the parameter o isa = ————.
2’\/E(T_Tcr)

By virtue of a > 1, solution (19) can be approxi-
mately written as

Gr
2C(1)’

Using Eq. (20), wefinally obtain

Z(t,r)=2C(t) -

Z(t,r) = zg+ vt
21
v ar? @D

+ vVt 32
Vo zo+v0t+2a———-t——-
Zy+ vt

Asis seen from the simple analysis of the solution,
the nucleus is a needle (this is provided by the large
value of the parameter a), which begins to grow at the
instant of time t = 0 at the point z, for r = 0. Then, it
attainsacertain size L along the zaxis converging to the
point r = 0. The time required for the growth is deter-
mined from Eq. (21), and it turns out to be

to= m. (22)

2
Ve+av’
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Substrate

\

Schematic representation of a developing crystal with the
shape of a double-edged needle. The number of needlesis
large due to the stochastic nature of nuclestion of the crys-
tallization areas chaotically scattered over the substrate sur-
face. For a chosen needle, the directions of the z axis and
temperature gradient are shown.

;vT

It is necessary to emphasize that, due to the chaotic
appearance of future solid-phase nuclei, their localiza-
tion over the substrate areais characterized by determi-
nate chaos (see, for example, [4, 5], where the syner-
getic theory is developed for homogeneous and inho-
mogeneous fluctuations of the density and temperature
in the bulk of liquid). In each of thesei areas, a solid
needle starts to be formed and dynamically developed
(irrespective of the other needles). Thus, the similar
process has a multivariate character, but, due to the sta-

DOKLADY PHYSICS Vol.49 No. 11 2004
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tistical independence of each needle, can be described
individually using the approach mentioned above. (By
the way, the formation of such needles over a substrate
was also observed in experiments.)

To conclude, once again, we pay attention to three
important points.

The generd transversality condition isfound, which
enables us to describe virtualy arbitrary growth
dynamics and the surface shape of crystals being
formed inside a certain vitreous substance. The com-
plete set of Egs. (8) and (12) of the variational problem
is solved. Dependence (21) of the surface shape on the
coordinates and time (see figure) is analytically deter-
mined. An estimate (22) of needle formation time is
presented.
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Analysis of the Majorana properties of neutrino [1]
is one of the key problems of the physics of weak pro-
cesses. Mgjorana neutrino models have been devel oped
intwo variants: (i) inavariant initiated by Pontecorvo[2]
with left and right (sterile) neutrinos and (ii) in avariant
involving neutrinos of different generations[3, 4]. In the
former variant, the neutrino Lagrangian includes Dirac
(mp) and Majorana (m_ g) mass terms of the form [5-9]

“2L(%) = MpWa(IWL(¥) + WEEIWE()

+ PROYMRP(X) + WEHIM P (X) + hec.

— )]
= n(X)Mn,(x) + h.c,,

wXo . O 0
neg =0, 0 M=0™"™g
[, (x)J Omp mg [

which is determined by the general symmetry proper-
ties. This procedure for the introduction of the Majo-
rana properties of particles is quite general. However,
physical foundations for the joint description of Majo-
rana and Dirac properties and choice of n (X) in
form (1) remain unclear. A modernization of this vari-
ant of Mgorana models, which is based on specia
Pauli transformations providing such a foundation, is
proposed in this paper (see also [10]).

Aswas shown by Pauli [11], for fermion fields with
zero mass, there are the transformations

W) = e (@aw(x) + bysy.y.0"(3),
lal® +|b? = 1,

2)

Russian Research Centre Kurchatov Institute,
pl. Akademika Kurchatova 1, Moscow, 123182 Russia
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that conserve the commutators of a field and include
chira transformations (type Il according to Pauli) and
pure Pauli transformations (type ). The latter transfor-
mations for a = €%2 and b = 0 correspond to phase
transformations. In terms of the generalized two-com-
ponent function W(x) and operators K; , i = X, y, z, intro-
duced as

O vX O 0 O
W(x) = 0 . 0 -go +1D,
[VsY2Y. P (X0 O+1 00O
(3)
~ O 0 O O
KY=DO. ID’ KZ:D+10D1
O+ 00O 0o -10

relations (2) for a= e‘wzcosg andb = g4 ‘psing have

the form

, iYsX/2 ik, 0/2 i(-sin@k, + cospk,)0/2

= X)SP) e W),
S ORS'(9,8) = R,

K = cosBK,+ cosQsinbk, + singsin 8k,,

Y

“)

where
K = c0sBK,+ cos@sinBk, + singsin 6Kk,.

Chira transformations Sx) form the group U(1),
and Pauli transformations compose the group SU(Q2).
The latter group includes rotations S¢) about the x,
axis and rotations S, 6) of vectors k of the Pauli iso-
space, which are specified by Euler angles 6 and ¢,
toward the x, direction. Two-component function W(x)
can be also taken in another form. In this case, theform
of Pauli transformations (4) must be modified.

The conservation of the form of Pauli transforma-
tions under the CPT transformation [12, 13] isanatural

1028-3358/04/4911-0638%$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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physical condition. This condition leads to the follow-
ing relation between the phases np and n of the P and
T transformations, respectively:

0 2, 2
pa+ 1 =0, Moo g s)
0 nd Nr

whereb # 0 isarbitrary. Thisrelation is consistent with

the condition N3 =—1and n? = 1 for the phases of dis-

crete transformations that is usually accepted for phys-
ical particles [12]. Fermions satisfying the condition
Ne = i are called particles of inverse A-B classes[15].
However, another choice of inversion phases (which
was first mentioned by Racah [14]) with np = %1 is not
excluded for Mgjoranaparticles. They arereferred to as

particles of inverse C-D classes [15], and r],zg =1 and

rﬁ = —1 for them. Inverse classes are important for
analysis of Majorana properties. Indeed, let us consider

the most general Mgjorana-type conditions

W(x, Q) = Ne(x, ), (62)

W% ) = Aeysui(x, ), (6b)

where (Y°(x, {) = y2y4(|JT (X, Q) according to [12], A isa
real number, and ¢ are quantum numbers. Condition (6a)
is a generaization of the Majorana condition, and
condition (6b) isits analogue studied below along with
the Mgjorana condition. It is easy to show that condi-
tion (6a) isrealized for particles of inverse A—B classes
(see, e.g., [8]) and condition (6b) is realized for parti-
cles of C-D classes. Combinations i(x) p¢(x) and

P°(X) Y(x) are scalar for A—B classes and pseudoscalar
for C-D classes, whereas combinations i (X)ysWe(x)

and Q° (x)ysW(x) arescalar for C-D classes and pseudo-
scalar for A—B classes. The combinations of the former
type or condition (6a) (for A = 1) are used in Majorana
models[7-9] so that they implicitly imply that particles
belong to A—B classes. In what follows, this restriction
is removed and Majorana schemes are developed for
particles of inverse A—B and C-D classes. For latter
classes, the Majorana condition isimplied in form (6b).

Let us find the conserving charges associated with
transformations (2) for a massless fermion field with
the Lagrangian

Y(x) = D ok ) )

Lo = 5109y, 3,94, o

where the wave functions are secondarily quantized. In
contrast to the form usually used in Mg orana models,
DOKLADY PHYSICS  Vol. 49
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the generalized function W(x) includes ys in the lower
component. The invariance of Lagrangian (7) under
chiral and phase (subgroup of Pauli) transformations
gives rise to the existence of the conserved chiral and
lepton charges

H

Q™" = 5[d PxW (%) YsW(X),
(8)

Q" = Qf = 5[V RN,

which specify the characteristics of the generalized
function W(x). They include chirality p (ys¥,(y) =

pW,(y)) and eigenvalues of K,[K,W, (Y) = K, W, ()].
We introduce the following set of eigenfunctions
dependingon p and k, [p = 1 (L, R), Kk, = x1] for the

basic operators Q°H and QF:

_ d.pop( h a D 0 D
(Wo)p, :1(¥) = o (Wo)p,4(¥) = qJ()p( )D
(LPO)KZ(X) = zpl'pp, KZ(X)’ (9)

= 3V (ORAWo), (9.

Asisseen, the operator Q. represented in terms of gen-

eralized functions is related to the z component of the
vector  of the Pauli isospace.

We now consider the group SU(2) of arbitrary pure
Pauli transformations (x = 0) (4), including S(¢) and
S, 8). Lagrangian (7) isinvariant under them, and the
following general form of a conserved charge is
obtained by applying rotation S (¢, 6) to Eqg. (8):

Q° = %[dgxw+(x)RW(x) = c0s8Q"

+ sinBcosgQ; + SinBsineQ;

1,3 + e+ ¢ (19)
= EJ'd x{ cosB[ Y (X)W(X) — YT )P

+sinB[e W YsW () + e "W (Y Ysw(N] } -

This charge, which includes vector k (4), serves as the
generalized lepton charge QF (below also called Pauli
charge) in the Pauli scheme and includes not only QZP :
but dso terms with Q; and Q. Its eigenvalues are
obtained from Eq. (9) by thetransformation St = S(¢, )



640

transforming K, to k and Wy(x) to the eigenfunctions of
the operator K: W(X) = S"Wy(X) [K W (X) = KW, (X)].
Quantum numbers p do not change, and k, are trans-
formed to the quantum numbersk of the eigenfunctions
Y. (X), conserving their values. For the eigenfunctions
W, «(X) for fixed kK = £1, we obtain

0 cos® O
0 cosztpop(x) 0

l'l')p,+il.(x) = D 9 Ev
RACTEENE
D—pe“”sinQLpgp(x)H

W, () = O u (1)

H pcoss %p(x)

Q) = %{dgxw:(x)m(x) = (k=)

According to the form of these eigenfunctions, the
upper and lower components of the eigenfunctions of
the charge QP for definite k are related as

D Wo(X) D
Wo(¥) =
D/Slppk(x):'

W50 = tan2e Yoy, (9

(k = +1),

U509 = —cot Ve (k=-1),

W(X) = ZoWo(X),

Wi = ke Seyaw,(9).

The last relation for Kk = 1 coincides with the general-
ized Mgjorana condition given by Eqg. (6b) for particles
of inverse C-D classesfor A = tang, so that solutions
K = 1 are eguivalent to Majorana solutions with corre-
sponding A(8). The solutions associated with the possi-
ble alternative choice of Eq. (12) for k =—1 correspond

to Eq. (6b) with A’ =—cotg =—)—1\ and complement solu-

tions with A = tang to the complete set. Therefore,

Magjorana conditions (6b) for particles of C-D classes
are projection conditions separating solutionsin form (3)

GAPONOV

with the generalized charge k = £1 for fixed 6 and cor-
responding A(6).

Let us consider particles of inverse A—B classes. In
this case, one should take another form of the two-com-
ponent generalized function ®(x) constructed from
charge-even/odd (n = 1) combinations of the L and R
components P(x) and Yx). In this case, the form of
Pauli transformations (2), as well as the form of the

charge Qf , changes. For a case similar to Eq. (8), the
new generalized function and charge have the form

o) = EUJL(X) +m|JR(X)]

EiIJR(X) + rNJL(X’]
Q" = Qf = 5[ WRYsOM,

(13)

and Pauli transformations (4) take the form:
CD'(x) - eiv.r,xlzem(cosapk'y—simpk'xys)e/zeik'zyswzw(x)

= SXS(@, 9S(H) K (1

(K; differs from K;). Functions ®(x) are characterized
by charge parity n and lepton charge Qf , which
includes the product K, s, so that, along with it thereis
the quantum number k., alternative to the lepton
charge. If (®,),. (x) are the eigenfunctions of the oper-
ator K, which are constructed in terms of y,,(X) and
ngp (X) as combinations of form (13), then, using Pauli

transformations S*(¢, 0) transforming K, toK', one can
obtain the general form of the generalized lepton
charge of the A-B type and eigenfunctions ®,. (X)
with quantum numbersk' = 1, n = +1:

3 cosg(Wa () + NEa(¥) T
(D+1,n(x) =—=0 0,
V20" 5o, (0 + N9 ]
| gne &"**sin7 5(Wor(¥) + WG 1
D (x) = ‘j—ég 0, (15)

5 cos3(Wee(®) + NUE() [

= % J’ XD (X)R'YsD(X),

| z
K' = cosBkK,+ nsinék, N
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In this case, the generalized lepton charge vanishes for
stateswith fixed k'. Connections between the upper and
lower components of eigenfunctions for fixed k' pro-
vide the relations

€'Wpc(x) (K= +1);

pe AL (16)

Woe() = —cot’ €W, () (K =-1),

p= ¢1(|_, R).

Solutions k' = 1 satisfy Majorana conditions (6a) with

A(O) = tang and cotg
pectively, and solutionsk' = —1 satisfy M aj oranacondi-
tions (62) with (@) = (t) For 6= 7 and ¢ = 0, a
K'= %1 this is the Mgjoranacondition ljJC(X) =xP(x) [1

for L and R components, res-

Let us describe Mg orana massive neutral particl €s.
For particles of inverse C-D classes with generalized
function (3), the mass term of the Lagrangian and the
equation for the Dirac case have the form

LIJD(X) D

_ Mg e
Lro(¥) = —5 [Po(RWo(x)], D o

Wp(X) =

(yuau + MRZ)LPD(X) = O, (17)

1 A
= éIonqJD(x)KZLIJD(x).

The mass term includes kK, and breaks invariance under
chiral and total Pauli groups. However, it is invariant

under phase subgroup (2) so that the charge Qf iscon-
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served. In this case, the Dirac mass is associated with
the z axis of the Pauli space.

Let us assume that the Magorana mass terms are
generally associated with directions that are separated
in the chiral and Pauli subspaces and specified by the
chiral angle x and the Euler angles ¢ and 6. Applying
general transformation (4) to Eq. (17), we obtain the
mass part of the Lagrangian and generalized lepton
chargein theform

LX) = ——w(x)‘ (),
(18)
Q= 5 Idsxqf(x)kw(x).

For particles of C-D classes, the mass term and charge
include the common operator K . To compare Egs. (18)
with current Mgjorana models, we introduce the L and
R components of functions and generalized GC conju-
gation of charge (10), which conserves this Lagrangian
but changes the sign of QF:

) = e %Y,

) = " (x).

Then, in convenient notation, mass Lagrangian (18)
and general equations for any inverse class of particles
take the form

LX) = ~2{ c050(" T (9
+ €M PLOOWER) + SNO(T) W)

ROQUL(¥) +hc.}; (19)

Y,0,W,(X) + Mcosee *P_(x) —MpsinByi(x) = 0

Y0, We(x) + McosBe” *y(x) + MpsinBw_,(x) = 0

where p = £1. ThisLagrangian in the general Majorana
scheme [8, 9] is equivalent to the special case of parti-
cles with opposite Mgjorana masses Mg = -M, =
Msin 8 and Dirac mass |[Mp| = M cosB. In this case, the
charge C conjugation changesto the generalized charge
GC conjugation.
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For particles of inverse A—B classes with general-
ized function (13), the mass term of the Dirac
Lagrangian, equation, and change have the form

Luo() = ~S[PoRPo(X)],
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D) = W09 NWor(X)0 " = S[AXPTOR NP
HIJDR(X) + HLIJDL(X)D (20)
(Vu0, + MR)®Dp(x) = 0, Values k, = +1 distinguish solutions that satisfy the

1 + Al
= éfd&%(x)vsxz%(x).

The choice of the operator y; K, asbasic fixesthelepton
charge, so that pk;, = 1 describes|eft and right particles
and pk, = —1 describes right and left antiparticles. In

this case, k, has the meaning of the product of this
charge and chirality. However, the lepton charge and
mass term are specified by different operators sk, and
K, and cannot be diagonalized jointly. Choosing

charge as the basic characteristic, by analogy with
Eq. (17), one arrives at the Dirac description (Dirac
neutrino). The following general form of the mass term
and generalized lepton charge are obtained for such
choice in terms of GC conjugated functions from
Eq. (20) by the general transformation of form (14):

L) = -] cosoiie™ — SndRI > (),

(9 + NGO
DuR(x)+nw (N
EwL(x)+ne'<X+“” (x)m
ﬂuR<x)+ne' *=Oy (x)D

D(x) =
1)

= %J'dsxdf(x)[cose R+ nsinBRLe Xy D(X).
However, for particles of A—B classes, it is possible to
diagonalize the mass term rather than the charge.

Indeed, transforming Eq. (20) by rotation sﬂe =

nn ,p= 0Y, in the Dirac case, we obtain

Lo =~ PHRIRPH(X),

D) = i% Wp(X) + nWp(X) E

20y (Wo(x) - nWEE))T
(Yud, + MR Dp(3) = 0,

(22)

Dirac equation with the condition g (x) = nYp and
were first obtained by Majorana[1] and solutions with

the condition g (X) = —nWp, that supplement the above

solutions. States with fixed values K, = +1 have zero

generalized lepton charge. Deviation from zero arises
due to their mixing. The most general case can be
obtained from Eq. (21) by introducing an analogue of

the parameter 6,4 of Mgjoranamodelsas 6,4 = g +n6
(in the operator and wave functions). In this case, the
Lagrangian takes the general form that was described
in[8, 9] and corresponds to the case Mg = —M, . In the
traditional scheme, the Lagrangian is diagonalized by
certain unitary transformations. In the case under con-
sideration, these are Pauli transformations (14) reduc-
ing the Lagrangian to form (22). Therefore, unitary
transformations of Majorana models have the sense of
Pauli transformations in the scheme under consider-
ation. Thus, for A-B classes, there are two types of
solutions—when either the generalized lepton charge
operator or mass operator is diagonalized—so that
states of a certain charge are superpositions of Mgjo-
rana-type states with a fixed mass and vice versa.

In this paper, a Majorana-theory variant that
includes left and right states has been analyzed. An
alternative scheme for states of different flavors [3, 4]
will be presented elsewhere.
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INTRODUCTION

In the present paper, we formulate theorems on the
stability in the Lyapunov sense and the rigidity in the
Joukowski sense for trajectories of conservative
mechanical systems with many degrees of freedom.
The systems are modeled by the ordinary autonomous
multidimensional differential equation of class C?

dx

T = X(X), X = (XpXo ..., X,) RS, n=2, (1)
having the first integral
S(x) =0, (2)

where gradS(x) # 0 Ox O {S(x) = 0}. Mechanical sys-
tems modeled by Eq. (1) with property (2) are referred
to as conservative systems.

Relationship S(x) = 0 defines an (n — 1)-dimensional
invariant set (integral manifold) for Eq. (1) in space R;.

It is shown that, at certain constraints, autonomous
n-dimensional differential equation (1) of class C? is
equivalent to the autonomous (n — 1)-dimensional dif-
ferential equation of class C!

dz
dt

in a sense such that the solutions of one of these equa-
tions are in one-to-one correspondence to the solutions
of the other equation. A positively stable in the
Lyapunov sense w-periodic solution 1(t) to Eq. (3) cor-
responds to a positively stable [with respect to condi-
tion (2)] w-periodic solution Y(t) to Eq. (1) and vice
versa.

The aforementioned results were applied to study
rigidity inthe Joukowski sensefor closed geodetic lines

=22, Z=(242,....2,_.)) OR", (3

Russian Sate Open Technical University
for Railway Transportation,
Chasovaya ul. 22/2, Moscow, 125993 Russia

in the Riemann space. These lines are defined by the set
of the second-order differential equations,

dy dydy

g Teardr T 9

1,2,...,n. @

By the change of variables yk = X, V" = X, k= 1,
2, ..., n, theabove set of equationsisreduced to thefol-
lowing set:

dx dx . -
d_tk = Xn+ko 0tk = zrlj(mxnﬂ n+ms 5)
j,m
k=12 ..,n,
with the first integral in the form
F(x) = 0,
n (2)1
F(x) = zgik(xla Xos «vvy Xn) X+ iXn+i— 1.
i,k

Here, g, and I"J-m are the components of the metric ten-
sor and of the Cristoffel symbol, respectively, for coor-
dinatesy = (y', y?, ..., y") inthe n-dimensional differen-
tiable manifold M with a positive definite Riemann
metric.

The properties of stability and rigidity for the trgjec-
tories of multidimensional autonomous eguations hav-
ing the first integral were studied in [1-6], etc. The
rigidity in the Joukowski sense for trajectories of gen-
eral dynamical systemswas considered, e.g., in[7-13].

THE CONSERVATION OF THE STABILITY
IN THE LYAPUNOV SENSE
UNDER COORDINATE TRANSFORMATIONS

Let G be adomain (open and connected set) in the
R}, space and X(x) be avector function belonging to the

C2classindomain G.

We denote as Yi(t) a reference (unperturbed) solu-
tion to Eq. (1) specified for the entire positive semiaxis

1028-3358/04/4911-0644%$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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R* = [0, +) such that {(0) = y°, Y(t) DG Ot O R* and
also denote as x(t, X) an arbitrary solution to Eq. (1)
meeting the initial condition x(0, X°) = x°.

Then, werepresent equation S(x) = 0inthe paramet-
ric form

X = Xi(z4, 2, ..

v Zn_1)s

where D isadomain of z-space Rg_l . We also assume
that vector function x(z) in domain G belongs to the C?
class and, in addition,

0X
Rang||Z2
9 0z

(2,2, ...,2,_,) =z0OD, (6)

= n-1,

S(x(2)) =0,

where Rang|||| denotes the rank of matrix |||].

Theorem 1. Under the above assumptions, we con-
sider the mapping

0:z- x(2), o(D):=GOG.
Let x(t, x°) denote the solution to Eq. (1) such that
X06, o'(x’) =20D, x°) =o0.
Then, there exists a unique solution z(t), t O (-, t,),

t, > 0 to autonomous (n — 1)-dimensional equation (3)
derived from the set of ordinary equations with respect

dz,
th,k—l,Z,...,n—l,
n—laxdz
k _
kzlazk dt - X(X(Z))! z[ D1 (7)

where x(t, X0) = x(z(t)), Ot O (-t,, t,), 20) = 2. And,
inversely, if z(t) is a solution to (n — 1)-dimensional
equation (3), then x(z) at z = z(t) is a solution to
n-dimensional equation (1).

Concept for the proof. For definiteness, we assume
0(Xqy Xgy oovy Xn_1)
0021, 2, .1 2Z4_1)
of equations x(t, X°) = x(z,, 2, ..., Z,_1),i=1,2,...,n
with respecttoz= (7, 2, ..., z,_,). Fromthefirst n -1
equations, we can unambiguously determine z,, z,, ...,
z, , ascontinuously differentiable functions of x(t, x),

i=1,2, ..., n—1inthevicinity of point (X, X5, ...,

that

# 0, x 0 D. We consider the set

xg_l) and as functions of t at t 0 (-, t;) belonging to

class C!, wheret, > 0. It is easy to understand that the
last nth equation of the set identically holds true. Func-
tion z(t) = (z,(t), (1), ..., Z, (1)) meetsthe set of equa-
tions (7) and Eq. (3). Following thisline of reasoning in
inverse order, we prove the second statement of the
theorem.
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Next, we define the modulus [x| of vector x by the
relationship x| = max|x|,i=1,2, ..., n.

Definition 1. Solution Yi(t) of Eq. (1) withtheinitial
condition Y° = Y(0) isreferred to as positively stablein
the Lyapunov sense with respect to integral set (2) if
(1) there exists h > 0 such that each solution x(t, X°) to
Eq. (1) for which [X*— y° < h and SX°) = 0 is defined
on the entire semiaxis R*; and (2) for a given number
€ > 0, there exists anumber & (0, h) such that

X~y <308(x°) = 0
O |xt, x) —w()l<e OtOR.

Theorem 2. Let the hypothesis of Theorem 1 be met.
Let z=1t), t OR* bean w-periodic solutionto (n—1)-
dimensional equation (3) positively stable in the
Lyapunov sense and embedded into domainD 0 R} ™*.
Then, the w-periodic solution Yi(t) = x(T1t)) to n-dimen-
sional equation (1) is positively stable in the Lyapunov
sense with respect to integral set (2).

Proof. We denote the solution to Eq. (3) as zt, 2),

2(0, %) = 2. Let number € > 0 be specified and x° be
such that

h>0 [x°-y%<h, Sx° =o. 8)

We now provethat there exists anumber & [1(0, h) such
that, from inequality [xX’— 1| < 9, it follows that

Ix(t, %) —w(®)] = [x(z(t, D) -x(n(t) <e ()

under the condition

|lz(t, %) -m(t)l <n OtOR'. (10)

Since(t) is positively stablein the Lyapunov sense,
there existsanumber p > 0 such that, at |2 — °| < 4, the
solution z(t, 2°) to Eq. (3) is specified on the entire R
semiaxis. We choose a bounded domain I such that
mt) 01 Ot OR*, M O D, where the bar above a sym-
bol denotes the closure. We choose number g > 0 in a
manner such that the following implication is met:

|2-m<pd z(t,)0N OtOR.

Let x(t, xX°) beasolution to Eq. (1) belonging to inte-
gral set (2). Then, according to Theorem 1, there exists
asolution z(t, 2°) to Eqg. (3) such that
= x(z(t, 2%)),

x(t, X°) = x(2)| (11)

z=2(t, zO)

att O (-t, t), t, > 0. Hence, we have

X = x(0, xO) = x(z(0, zo)) = x(zo). (12)

It is easy to understand that, by virtue of Eq. (12),
2 is a continuous function of X’ in the vicinity of
and there exists h > 0 such that |2 — @°] < p when
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X0 = @l < h, SX°) = 0. Therefore, solution z(t, 2°) enter-
ing into Eq. (11) can be extended to the entire semiaxis
R, and sincein z(t, %) (I O D, function x(z(t, 2%)) is
also defined on R and is a solution to Eg. (1) on R".
Hence, if conditions (8) are met, solution x(t, X°) is
defined on R*. Let xX° meet conditions (8) and € > 0 be
an arbitrary number. Then, there existsanumber n >0
suchthat Eq. (9) isvalid if condition (10) ismet. Owing
to the positive stability of solution 1xt), condition (10)
isvalid for arbitrary n > 0 if inequality [ - | <A <
ismet for sufficiently small A > 0. The described situa-
tion takes place if

X’ -yl <3 <h, (13)
where number & > 0 is sufficiently small. Therefore, it
is possible to find a number & [J(0, h) such that Eq. (9)
follows from Eq. (13). This implies that solution Yi(t)
to Eq. (1) is stable with respect to set (2). Thus, Theo-
rem 2 is proved.

CRITERION OF THE CONDITIONAL STABILITY
IN THE LYAPUNOV SENSE
FOR A PERIODIC SOLUTION TO Eqg. (1)

Let Y(t) and Tu(t) be w-periodic solutionsto Egs. (1)
and (3), respectively. Let ®(t) be the fundamental
matrix for the solution of the equation in variationswith
respect to solution 1i(t) to EQ. (3). The eigenvalues p,,
i=1,2,...,n=1, of matrix C = ®(w) arereferred to as
multiplicators of the w-periodic solution Tqt) to Eq. (3).

It is well known [14] that vector Z(2) in the right-
hand side of Eq. (3) is an eigenvector of the mono-
dromy matrix for the periodic solution 11(t) correspond-
ing to the eigenvalue equal to +1.

Theorem 3. Let 1, p,, Ps, ..., Pn_; beMuUItiplicators
of the w-periodic solution 11(t) to (n — 1)-dimensional
equation (3). In absolute value, the multiplicators p,,
P, ..., Pn_; aresmaller than unity. Then, an w-periodic
solution Y(t) to n-dimensional equation (1) corre-
sponding to the w-periodic solution Tt) is positively
stable in the Lyapunov sense with respect to invariant
set (2).

Theorem 3 isacorollary of Theorem 2.

Theorem 4. Let n = 3. We consider the two-dimen-
dz

4t =22.20= 2.
Z,(2)). Then, an w-periodic solution Y(t) to three-
dimensional equation (1) is positively stable in the
Lyapunov sense with respect to integral set (2) if the
functions Z,(2) and Z,(z) meet the condition

sional equation (3) of theform

w

J’[Z'lzl(ﬂ(t)) + Z5,,(T(1))] dt <O, (14)
0

DRUZHININA

where Zi'zj, i =] =1, 2, are partial derivatives of func-
tions Z(z;, z,) with respect to z and Tu(t) is an w-peri-

. . . . dz
odic motion of the two-dimensional system vl
Zi(zl’ 22)’ I = 17 2

Indeed, if condition (14) is met, then the w-periodic
solution T(t) to Eq. (3) (in view of the Poincaré crite-
rion [14]) is positively stable in the Lyapunov sense
and, by virtue of Theorem 3, an w-periodic solution
Y(t) to Eq. (1) ispositively stablein the Lyapunov sense
with respect to invariant set (2).

CRITERION OF RIGIDITY
IN THE JOUKOWSKI SENSE
FOR A CLOSED GEODETIC LINE
OF SET OF EQUATIONS (4)

Let M be an n-dimensional differentiable manifold
with positively defined Riemann metrics and N be a
natural coordinate neighborhood of manifold M with
metric tensor g, and the Cristoffel symbols I, in the
coordinate systemy = (Y, Vs, ---» Yn)-

We consider the equation y = y(s), s O R* for the
closed geodetic line corresponding to the natura
parameterization, where sisthe arc length. The natural
parameterization is characterized by the condition that

the norm of the tangent vector y" (s) isidentically equal
to unity, i.e.,

(Y ()Y ()Y (s) = 1. (15)

Suppose that the geodetic line
Fa={y=y%9: 0ss<o}, y¥s+w) =y%9), (16)

is contained within the coordinate neighborhood N, i.e.
I ON.Lety=V(s y°, y°) bethe equation of an arbitrary
geodetic line also corresponding to the natural parame-
terization, where y(0, y°, y°)=y°, y (0, ", y°) = y°, and
sisthearc length.

Definition 2. A closed geodetic line I isreferred to
asrigid in the Joukowski sense if the following condi-

tions are met: (1) it is possible to find a number p > 0
such that, frominequalities

Y’ -y°0)l <p, [¥°-y°0)l<p, (17)

it follows that y° is specified for all values of s0R" and
vo(s, y°, ¥°) O N and (2) for an arbitrary chosen num-

DOKLADY PHYSICS Vol. 49 No. 11 2004
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ber € >0, it ispossibleto find numbersd> 0, d < p such
that

Y’ —y°0)l <8 0ly°-y°(0)| <&
0yl (s %) -Y°(s)l <,

V(s ¥ ¥) -V%(s)l <& OsO[0, ).

From Definition 2, it followsthat if the geodetic line
I is rigid in the Joukowski sense in one admissible
coordinate system, then it also is rigid in the other
admissible coordinate system.

Itiswell known [7, 9] that closed geodetic lines meet
aset of equations of form (4). Let x= (X, %, %) beavec-

tor defined by the relationships X, = yX, X, = V<, k=1,
2, ..., N. Then, the normal Cauchy form of set (4) takes
the form corresponding to Eq. (5).

A solution to set (4) or to set (5) corresponds to the
geodetic linel", but it is not necessarily specified in the
form corresponding to the natural parameterization.
Parameter t involved in Eq. (4) is the arc length if and
only if, along with the solution y to Eg. (4), the identity

YD)V ()Y () =1 (19)

ismet, i.e, if and only if along with the corresponding
solution to set (5), we have

(18)

n
Z Oik(Xs X2, o3 Xa) Xn 41 Xn 4 = 1. (20)
k=1
If the geodetic line " meets the set of equations (5),
the tangent vector has the constant length, but it should

not necessarily be the unit vector: giky'yk = const. This
implies that Eq. (2), is the first integral of the set of
equations (5), and equality F(x) = O determines an
invariant manifold.

If the geodetic line T is specified by means of natu-
ra parameterization, its trajectory lies in the invariant
manifold F(x) = 0, and the rigidity of this geodetic line
is equivalent to stability in the Lyapunov sense with
respect to the solutions with the trgjectories lying
within this manifold.

Therefore, the following theorem holds.
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Theorem 5. A closed geodetic line I' of the set of
second-order equations (4) is rigid in the Joukowski
sense if and only if the corresponding w-periodic solu-
tion to normal set of equations (5) ispositively stablein
the Lyapunov sense with respect to the integral set
F(x)=0.
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In this paper, the Navier—Stokes eguations are
reduced to an integro-differential form, which allows
the method of discrete vortices to be generalized for
viscous two-dimensional incompressible flows. It is
shown that, in the case when infinite vortex refinement
occurs, the equations describing the evolution of the
vorticity field as a result of vortex motion tend to the
Navier—Stokes equations. The expressions that relate
aerodynamic forces (including friction) to characteris-
tics of moving vortices are derived. Testing the method
with the consideration of flows around both a longitu-
dinal thin plate and atransverse circular cylinder at dif-
ferent Reynolds numbers is consistent with the known
results.

In its origina form, the Lagrangian method of
describing a continuum is intended to trace displace-
ments of particles marked with a certain set of parame-
ters, i.e., with Lagrangian variables [1-3]. These vari-
ables can be presented, for example, by the initia coor-
dinates of the particles. The Lagrangian representation
of hydrodynamic equations is commonly used for
investigating a perfect fluid, where vortex tubes can be
considered to be frozen into the fluid flow [4-10].

In aviscous fluid, the velocity circulation along an
arbitrary contour moving with afluid, as arule, is not
conserved. However, in the case of two-dimensional
viscous incompressible flows, the hydrodynamic equa-
tions can be reduced to a form that admits the usage of
Lagrangian coordinates. For these flows, the term vAV
entering into the Navier—Stokes equation can be pre-
sented as[11]

VAV:deg’ dew’

Q2

wherev isthe kinematic viscosity, V isthe fluid veloc-
ity, and = curl V.

Institute of Mechanics, Moscow State University,
Michurinskii pr. 1, Moscow, 117234 Russia

For a plane-parallel flow, the vector V4 can be pre-
sented as[12]

Vg = _%gvg. (1)

The action of the curl operator on the Navier—Stokes
equation transformsiit into the form

%‘_tz = aurl((V + V) x Q) = —div((V + V) Q)eq,

which describes the evolution of vorticity field Q.

The circulation along a contour with each of its
points moving at a velocity V + V4 remains constant.
This fact allows the application of the Lagrangian
approach while considering the motion of elementary
contours with the conserved velocity circulation.

In contrast to a perfect fluid, these contours are not
frozen into the flow and move with respect to the fluid
under consideration at avelocity V4, whichiscalled the
diffusion velocity in [12]. The Eulerian coordinates of
the observed elementary contours can be considered as
functions of the Lagrangian coordinates and time and
as satisfying the equations

or(L;,t)
ot

=V +V,

The Lagrangian variables L; can be presented by
either vortex coordinates R, at the zero time or coordi-
nates and times of the vortex origination on the surface.
In the first case, the circulation element is dI' =
Qdx,dy,, while in the second case, dI' = JdI dt, where
J isthe vorticity flow per unit area of the surface at the
contour point I.

Vorticity-flow density J(I, t) is determined by
boundary conditions imposed on the fluid velocity at
the surface. If the coordinate system is immobile with
respect to a certain infinite point, fluid velocity V(R, t)
can be expressed by the Biot—Savart formulain terms of

1028-3358/04/4911-0648%$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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both the spatial vorticity distribution and velocity dif-
ference V,—V_ occurring on the discontinuity surfaces

V(R.1) = [Kxdl+[K xdy, K _%tlrr_Rl
r | (2)
dy = (V,—=V_)xndl.

Here, n is a normal to the surface, | is the coordinate
measured along the surface, and r isthe radius vector of
either the vortex element dI” or dy.

The boundary condition relating flow density J to
both the spatia vorticity distribution and surface veloc-
ity V(, t) is determined by impermeability and adher-
ence (or dip) conditions. The adherence condition
requiresthat y = 0. Then, under the assumption that the
surface is impermeable at the zero time, the imperme-
ability condition takes the form

d

6t‘ V(1) h, = Ia‘n|D<xdr+n|[foJd|

In the framework of the Lagrangian approach, the cal-
culation of the diffusion velocity expressed in terms of
derivatives with respect to the Eulerian coordinates is
rather difficult. To calculate the functions Q(R, t) and
VQ, we use here the following integral approxima-
tions:

Q(R) = :—;+ O(g),

VQ(R) = ——'Ill

I
0 0

+ O(g);
1(R) = J’Q(r)expD le O

o) = forit R=Bgs, G

1(R) = IIR Q(r)exleRsrlmds

_ _(R-r D|R
S

(the formally small parameter € is discussed below).
Expanding thefunction Q(r) into aseriesat point R, we
can show that Eqgs. (3) are satisfied for an arbitrary

r ||:st
€
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smooth function Q(r). Using these equations, we can
express diffusion velocity V4 by the formula

l, |
Vg = —vE+v2, 4)

AsQ(R, t)ds=dr, integration in the expressionsfor
I, and I, can be performed in terms of the Lagrangian
coordinates. In the course of numerical solution, we
substitute integration by summation over vortex ele-
mentsAl’; . Theerror caused by this substitution hasthe

. Ar, . -
order of magnitude ?' , Where Ar; is the characteristic

linear size of regions As in space S Therefore, while
choosing the parameter €, we should simultaneously
satisfy the following two conditions: € > Ar; and ¢
being much smaller than the characteristic scale of the
region where both the function Q and its gradient vary
by the order of their magnitude, respectively. The infi-
nite refinement of vortex regionsallows both conditions
to be satisfied with arequired accuracy.

The integrals |, and I, are dependent only on the

flow-region configuration and coordinates R. If the
distance between point R and the surface significantly

2 tendsto zero. Theintegral I,
0

can be transformed into the contour integral

= flud.

where n is the normal to the contour surface, which is
directed from the fluid to the body. The vector I, dl can
beinterpreted as a contribution of contour element dl to
the diffusion velocity. This contribution is directed
along the normal to the contour and describes repulsion
from it. The first term in (4) can be considered as a
result of interaction of vortex elements. Here, a contri-
bution of the element dI'; situated at point r, to the dif-
fusion velacity of the element dI, situated at pointr, is
described by the expression I ,(r |, r,) dI',, where

5
exceeds g, then theterm = I

OIR-rg

(R, (1) = Vs e

ro—ry

0lr2—rig
|r2—rl|loaexIOD g ol )

According to (5), the vector L, is directed along the
line connecting vortex elements and describes repul-
sion and attraction for vortices having identical and
opposite directions, respectively.

The integral representation of the diffusion velocity
that is proposed in this study is not unique—e.g.,
in [12], another expression for V4 was suggested. How-
ever, as is shown in [13] by considering the Rankine
vortex diffusion, the representation of [12] results in
vortex “adhesion” due to a nonmonotone character of
mutual vortex repulsion (therepulsion ratetendsto zero

Iint =V
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Fig. 2. Flow around a circular cylinder at Re = 26 with afragment of the photograph taken in [14], which shows the experimental
pattern of flow around a cylinder at the same value of the Reynolds number Re.

as the vortices approach each other). Moreover, in[12],
the correct allowance for the effect of a surface with a
flow around it on the diffusion velocity is absent.

Asis shown in [10], in the absence of other forces
acting on a body in the case of flow around it, force F
applied to the body is related to hydrodynamic
impulse I by the formula

- _d_.d
F = . pdter(Vxn)dI,

where the hydrodynamic impulse is represented by the
expression

| = pJ’rXSst. 6)
S

For trandlational uniform motion of the body and the
adherence condition being satisfied, differentiating
expression (6) and using formulas (2)—(4), we arrive at
No. 11
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Fig. 3. Flow around acircular cylinder for the Reynolds number Re = 1000.

the following relation:

F = _pfr x JdI —p-!dedr’

where the first and the second terms are the resultants
of pressure forces and of friction forces, respectively.
Friction stress t,, is expressed by the formula

w(l) = —pj’l wh (1), r(T)) xdr.
r

Figures 1-4 present some results of calculations
performed with the use of the proposed method. Fig-
ure 1 shows positions of observed Lagrangian particles
(of vortex elements) and the distribution of the friction
stress along a thin plate directed along the flow. The
light and dark circles correspond to vortices with posi-
tive and negative signs of circulation, respectively. The
Reynolds number calculated by using the platelengthis
equal to 1000. Thethickness of the plateis equal to 2%
of itslength. The leading edge has the shape of a semi-
circle. Thefriction stress calculated by the Prandtl the-
ory (Fig. 1, thick solid line) agrees well with the results
obtained in our study. The small discrepancies occur-
ring near the leading and trailing edges are associated,
it appears, with afinite plate thickness.

Figures 2 and 3 present streamlines and positions of
vortex elements in flows around a circular cylinder at
Re = 26 and 1000. In addition, Fig. 2 contains a frag-
ment of a photograph (taken from [14]) that shows the
experimental flow pattern around acylinder at Re = 26.

Figure 4 presents a drag coefficient for a cylinder at
different values of Re according to both this calculation
and data of other authors, which were taken from [15].
No. 11
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Thus, the Navier—Stokes eguations are reduced to a
form that alows application of the Lagrangian
approach to the calculation of plane time-dependent
viscous incompressible-fluid flows. The diffusion
velocity of vorticeswith respect to fluid particlesisrep-
resented asan integral taken over al vortices, wherethe
contribution of a single vortex element to the diffusion
velocity of another element has the character of repul-

c,
3.6
- A Weiselberger (1921)
. OW Braza (1981)
® Jordan & Fromm (1972)
2.8+
o, e Roshko (1954)
* + Persilon & Braza 3D (1998)
+* XProposed method
2.0F ' "
O
1} LS A
[ | 1 1 TR B | 1 ||A||A|AI
5 10 40 100 400 1000
Re

Fig. 4. Drag coefficient for a circular cylinder as afunction
of the Reynolds number.
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sion (or attraction) for vortices of identical (or oppo-
site) directions. In the vicinity of the body’s surface, the
contribution of the surface to the diffusion velocity has
the form of repulsion from the surface. The expressions
for hydrodynamic forces, including friction, are derived
for abody with aflow around it. The method devel oped
does not require constructing calculation grids, and,
thereby, it considerably simplifies the calculation pro-
cedure. Therefore, this method can be successfully used
for solving problems involving time-dependent flow
geometry.
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INTRODUCTION

In formulation of the problem of shooting from a
sports bow, the basic and most complicated stageisthe
analysis of the arrow acceleration process in which the
arrow is set in motion by the force of bowstring tension
andisaccelerated until departing from the bow (take off
from the string). The arrow departure velocity depends
on the string tension force, on the material and shape
(geometry) of the staff, on the angle of the string devi-
ation when the bow is stretched for shooting, and onthe
method of string fixing.

In this study, eguations for both the bow-staff
dynamics and bowstring dynamics are obtained. In the
caseof largeinitial staff displacementsand large string-
deviation angles, we are dealing with a complicated
nonlinear problem. In this connection, methods of sim-
plifying the problem are anayzed. Solutions are
obtained that can be atest characteristic for numerical
calculations in both the nonlinear case and the case of
complicated bow geometry.

We study features of tension as a function of geom-
etry and physical problem parameters in the nonlinear
formulation and for the case of large displacements and
bends. It is found that, for small angles of the string
deviation from the equilibrium state, the string tension
weakly depends on the deviation angle, and the tension
for the speed-up time can be considered as constant.
For a usua bow, the arrow departure velocity lies
within the range 50-60 m s™.The propagation velocity
of transverse wavesin the string (~300—400 ms™) turns
out to be much higher than the arrow vel ocity of motion
(especially inthe accelerated onset). Asisshowninthis
paper, 2040 transverse-wave reflections occur in the
segment ranging from the arrow—string contact point to
the string fixing point. In the case of strong tension, the
string deviations are small in this segment. Thus, in the
first approximation, we can consider it as a flexible
nonstretchable line. This allows us to analyze string
motion as a quasi-static process.

Moscow State Timber University,
ul. Lenina 4/17, Khot' kovo, Moscow oblast, Russia

e-mail: malashin@mgul.ac.ru

For certain bow shapes and features of string ten-
sion, it is possibleto perform analysis and find the solu-
tion to the problem in its linear formulation.

EQUATIONS OF MOTION
FOR A BOW STAFF AND STRING

We represent the staff as a flexible homogeneousrod
that isrectilinear in its nondeformed state. This make it
possible to simulate the position of the staff using its
middle fiber [1].

We introduce the following basic characteristics of
the rod: Sisthe Lagrangian coordinate; D is the cross-
section area; E and G are the Young's modulus and
shear modulus, respectively; py, isthe density; p = p,D
istherod linear density; Q and M are, respectively, the
vectors of forces and moments acting onto the cross-
section area; V and W are the vectors of the velocity
and acceleration; y isthe vector of the angular acceler-
ation for the rotation of the given cross section; J, isthe
rotation moment for an element with respect to an
instantaneous rotation axis;  isthe angular velocity of
across section; g and p arethelinear densities of exter-
nal forces and moments; R, and R are the initial and
current radii vectores of the middlefiber; and, finally, 1,
n, and P are unit vectors of the tangent, normal, and
binormal to the middle fiber.

Anayzing the equilibrium of forces and moments
acting on a separated rod element of length dS, we
obtain the equations of motion for the rod in the form

0Q

aS + ql
Equations (1) are complemented by the kinematic
equation

W = Jw = S +txQep. (D

°R  4°R

3S3t ~ 210S )
and by equations of the elastic bond of the moments
with the variation of the curvature and rotation of the
middle fiber,

MB = E‘]B(XB_XBO)’ Mn = E‘Jn(Xn_XnO)!

3
MT = G‘JT(XT_XTO)' ( )
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(a)

\]
A

Fig. 1. () Stretched bow and (b) bow at the instant of shoot-
ing. T and g are the string tension and the force acting on the
bow staff during a shot.

Here, X, and X; are the fiber-curvature projections onto
the plane orthogonal to the main normal and binormal.
X: isthefiber torsion (X, and X, correspond to the not
deformed state). In the case of anonstretchable rod, we
have

Q. = Ee. “

We consider the staff to be nonstretchable (¢ = 0) and
motion to occur in the xy plane. We now introduce the
angle 0 of the middle-fiber inclination with respect to
the ox axis. Furthermore, we project the equations onto
the mobile axes t© = (cosB, snB), n = (—sinb, cosB). We
also write out the decompositions of the velocity vec-
tors and internal-force vectors in the form

Q =Tt +Nn.
The equation can be written as

V = ut+vn,

p(U—vB) = T'—=N@'+q,, M = EJE;

p(Vv+ub) = N+TO +q,, uU-vO =0; (5

pée =M+N+u, v'+ub =86.

Here, dots and primes correspond to the derivatives
with respect to time and to the S coordinate, respec-
tively.

Further, we represent the bow string as a perfect
nonstretchable line. The equations for thisline are sim-
ilar to Egs. (5) [2], in which only the projection of the
force onto the tangent to the lineis nonzero, whereas all
other internal forces and moments vanish. Let p, be the
string linear density. T is tension, and ¢ is the tangent
inclination angle to the ox axis. Under these assump-
tions, we arrive at the following equations:

po(U-Vo) =T', U'-Vo' = 0;
po(V+UD) = TP', V' +U¢' = ¢,

where V = UT + Vn istheline velocity.

(6)

ZVYAGIN, MALASHIN

FORMULATION OF THE PROBLEM

Let 2L and 21 are the lengths of the staff and string;
0, is the string deviation angle at the shot instant
(Fig. 1b). Formulation of the initial conditions of the
given problem requires preliminarily solving the prob-
lem on the rod equilibrium under string tension forces
acting from the source side of a hand holding the bow.
We model this force as a concentrated one applied in
the middle of the staff. The point C is the interaction
(contact) point of the string and the arrow of mass m.
The equation of motion for the arrow plays the role of
the boundary condition for the string at the point s= 0,
i.e,

mVy(0,t) = —2T(0, t)sinB(0, t)
with theinitial conditions
Vy(O, 0) =0, T(0,0) =T, 6(0,0) = 6,.

At the boundaries s = I, the line velocity coincides
with that of the rod ends.

For the rod ends S = %L, the force T is specified,
whereas the moment M must be zero. The concentrated
force q(t) = 2T, t)sinB(, t) is also determined in the
course of solving the problem from the condition that
the velocity of therod point S=0iszero. Let theox axis
be parallel to the bow string (Fig, 1a) and the oy axis be
the symmetry axis of the problem. The origin of the
coordinate axis, we make coincident with theimmobile
bow-staff point, i.e., the force-application point. We
now determine the torsion force at the shot instant as a
function of the angle 6,. We solve the problem of staff
equilibrium under the action of the forces T and g.

Initially, we consider the problem of the determina-
tion of tension in the absence of force (= 0) (Fig. 1a).
In conditions of static equilibrium, Egs. (5) take the
form

T(S)—N(96'(S) =0, M(S+N =0,

N'(S)+T(90'(S) = 0, M(S)+EJIO(T). @
The boundary conditions are
S=0, x=0, 6=0, N=0;
S=1L, x=I, T=-Ty(tcosb+nsinB), M =0.
We now introduce the dimensionless variables
c=f el wed
kzz_l_E_J_ M*z_M_ |=|_ ®
L2 LT, ° L

To simplify the written form of the variablesin (8), we
below omit the asterisks. Thus, the last equation in (7)
can be represented as

M(s) = K0'(s). )

DOKLADY PHYSICS Vol. 49 No. 11 2004
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The first two equations are being integrated and, with
regard to the boundary conditions for s = 0, we obtain
the following expressions for the forces:

T = —cosp, N =sinp, ¢ = 6. (10)

After multiplying by €', the equation for the determina-
tion of the staff shape k?6"(s) = —sin6(s) is solved and
yields

K> 2
=(®) (11

Theintegration constant in (11) is defined by the condi-
tion that, at the point s = 0, the moment is zero, the
angle at this point being denoted as 6, . Thus, the deter-
mination of the bow shape is reduced to finding the
integral

= cosB + const = cosO — cos6;.

ﬁs

(12)

I /cose cose1

In expression (12), the guantity 8, is unknown and is
determined by the string length. At

dx cos6 dx _ d—scose =K o8
ds ' do dé J2./cosb — cos6,

we find

cos0do
-[ /cosO — cose1

Thus, the determlnatlon of the staff shape for the
stretched bow is reduced to integrals (12) and (13). As
aresult, we arrive at two equations with two unknowns
0, and k:

ﬁx

(13)

6,

k I ose ,/cosb — cos8;

o (14)

&) :I cosBdo
k3. [cosB - cosb,

In addition, we introduce the dliptic integrals of the
first and second kinds, namely, F(d, A) and E(d, A) [5].
Then, Egs. (12), (13) take the form

ﬁs ﬁng sm—

ﬁx ﬁ[ZEBp sm—— —ng sm }

sing
¢ = arcsin 5
1
sin—=
2
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Equations (14) are expressed in terms of complete
eliptic integrals

J2 ot ...00
? = /\/EFEQ, SiN—

2L
(15)
&’ = ﬁ[ZEDT sme—1D FIr sneﬂ}
k [~ 20 "~ 20

This makes it possible to reduce the determination of
the angle 6, to solving the following algebraic equation

with respect to A = sin%l:

Ot \O = It 0
26200 = @ +1)FE (16)

after which the quantity

1_Fo [
k AN EJ _FEQAD

is determined. Retaining terms up to A* in the asymp-
totic expressions for the complete elliptic integrals, we
reduce problem (17) to solving the biquadratic equation
16(3 + IO))\Z 64(1-1,)

15+9l, 15+9l,

(17)

A+ = 0.

Theroot of the equation existsfor arbitrary |, within the
interval 0<1,< 1

0, J24-812-3—1,
E = 2,\/2 .

15+ 9,

A = 9n

We can approximate the dependence A? by the linear
function

. 20
n°-=

A= 1-l, = s’ = %(1—c0561),

whence it follows that

0, = arccos(2l,—1). (18)

In this case, the dependence of tension on | is deter-
mined by the analytical expression

T,L?
EJ

The solution to the problem of determining the bow
tension at the shot instant (Fig. 1b) is obtained by asim-
ilar manner. Here, the force q is present and must be
balanced by the normal force N at the point s= 0. The
expression for the forcesis of the form

T = —-cos(8+6,), N = sn(6+8,),
X; = 15c0s8,.

= g(l +0.25(1 — 1) + 0.140625(1 —15)%). (19)

(20)
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Fig. 2. String tension as a function of the string-deviation
angle 0 at the instant of shooting: (1) %l = 0.6, (2) 0.7,

(3) 0.8, (4) 0.9.

Asinthe case considered before, the line shapeis deter-
mined by integrals of the types (12) and (13):

2] 8o

2w ¢
k {Jcosd)—cosd)l ‘!JCOS¢—COS¢1’
¢y = 6+ 0y
J21,cos8,
k

8o

cos(¢ —B8o)dd . cos($ —6,)dd

¢y
- J;./cosq) - cos¢1_'!A/COS¢ — cosf,

Asaresult, we arrive at the algebraic equations for the
determination of T, and 6,:

E_FEE'Sm 5 D—FBpl,sm

+91[J
2

1-cos6,

01 = arcsnjl— c0s(6, + 6;)’

ﬁ|OCOSGO _ ET[ . 90+91D
= ﬁcoseo[Z%[E,sn >0

21)

. 6,+0
_ZEBpl,sm 02 %}

_ﬁcoseo[F[E,sn 5 D—ngl,sm 5 D}

+25sin6,,/cosB, — cos(6, + 6;).

The solution to Egs. (21) allows us to find (for a
given string-deviation angle 6,) the values of tension

ZVYAGIN, MALASHIN

and of the angle 0, redlized at the staff end. This pre-
sents an opportunity to determine the staff shape at the
initial instant of time, i.e., to complete the formulation
of boundary and initial values in the problem of shoot-
ing from a bow. The calculation results for tension as a
function of the string-deviation angle are shown in
Fig. 2. Analysis of these results testifies to the fact that
tension weakly decreases with increasing string-devia-
tion angles to 20° and, then, beginsto rapidly increase.

SOLVING THE PROBLEM OF BOW DYNAMICS
IN THE LINEAR FORMULATION

For certain bow types (admitting a string deviation
of not morethan 20°, tension is constant and equal s 40—
50 kg), the dynamic problem can be solved in the linear
approximation. In this case, the equation of staff
motion can be written in the form of the equation for
compressed-beam dynamics[3, 4]:

o’y

0° L, 0%y
| =2 =2
ot

o’y
9 +T XY = o
a2 o) 'p<? P

The set of dynamics equations for the bow staff and
string iswritten as

4 2 2
Js 0s ot

y(s==L) = Y(S=#I),

ToY

3’y . _ _ _ TOY,e_
s=5L) = F() = g3g(S=4.0, @)

y(s, 0) = yo(9),
ay _ A
5{(3! 0) - 01

R
0S8  ot?
Y(S=#l) = y(S=+L),

Y(S0) = Yu(9), (23)

oY _
E(S‘ 0) =0,

d°Y(0,1) _ .-dY(0,1)
m—atz —2T—aS .

Here, y(s, t) and Y(S t) are the transverse displacements

. El T

2= — 2 = —
of the staff and string, & = oD’ and k oD
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FORMULATION AND SOLUTION OF THE PROBLEM OF BOW DYNAMICS

The solution to the set of equations (23) is sought
using the method of characteristics. Since, at the instant
of time prior to the first reflected wave has arrived, the
relations

Y50 _¥(S0)

are vaI|d, the last equation in the set of Egs. (23) takes
the form

(o t) = b t(o,t),

@Y(S0) Vo
at = 2Ta 5 ds

b’
where V isthe string velocity at the point of contacting
the arrow. The arrow velocity before thefirst transverse
wave has arrived is

Vo) = bBy(1 — exp(-2Tt/mb)).

Attheinstant T = %I of thearrival of thereflected wave,

the angle of string deviation at the arrow contact point
changes abruptly. The relation between the velocities
and deformations before and after the arrival of the next
transverse wave,

dY(0,t) _ dY(0,t=21) V(t—21) V(1)
S aS b b

makes it possible to construct recurrence differential
equations for the determination of the arrow velocity at
each stage in terms of the velocity at the preceding
stage. For example, immediately after the arrival of the
first reflected wave, we have

20 _ o1ty

Here, V, is the velocity of the arrow and of the string
prior to the arrival of the second reflected wave.

With the initial conditions taken into account, the
solution to this equation is

V,(t) = bB,e™[(1+At—AT)2e" —1] — b6,

1(t) _ Vo(t—21)
b O

- 2T
A= s
The dependence
oY(,t) _ oY(0,t—1) V(t-1)
0S 0S b
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Fig. 3. Time dependence of the arrow velocity V (k =
0.0001).

makes it possible to find the string deviation angles at
fixation points and to determine the force F.(t) acting
on the staff from the string. Thereby, we additionally
define the set of Egs. (22) to which the solution is
sought by, e.g., the method of separation of variables.
The calculation results obtained in the linear

approximation for the time dependence of the arrow
velocity at the speed-up period are presented in Fig. 3.
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INTRODUCTION

In recent years, the model of point vortices has dem-
onstrated its fundamental importance in studies of vor-
ticesin liquid helium and electron columns in plasma
physics. Theresults obtained are stimulating new appli-
cations and additional studies of the model in different
fields of research (experiment, theory, and numerical
simulations) [1-3]. This has already led to the solution
of several old problems. Recently, the efforts of many
researchers were completed in a mathematicaly rigor-
ous solution of the Kelvin problem (formulated in
1878) on the stability of steady-state rotation in a sys-
tem of n identical point vortices located in a plane at
apexes of aregular n-gon [4, 5]: the rotation is stable
only if n< 7, whereas, at n = 8, thismotion is unstable.
In the case of n# 7, linear analysis turns out to be suf-
ficient to arrive at a conclusion concerning nonlinear
stability. At the same time, for n =7, it is necessary to
involve nonlinear terms in the analysis.

The Kelvin problem, generalized for the spherical
case, was also solved in its exact nonlinear formulation
(see [6-9] and also review article [3, pp. 17-178]). It
was proved that the curvature is not able to stabilize a
vortex polygon, and, in particular, it makes a heptagon
unstable.

The present paper dealswith the Kelvin problem for
the case in which the vortex n-gon of radius R, is
located within circular domain R with acommon center
of symmetry. Havelock [11] was the first to study this
problem using mathematical methods in the linear for-
mulation. As was shown in [11], the corresponding lin-
earized system has exponentially growing solutions at
n=7 and also in cases (2 < n < 6) in which the param-

2
eterp= —I;Riz) exceedsacertain critical value, prp<p<1.
In al other cases, the linear system exhibits only a
power-law instability, which is usua—and inevita-

ble—for systems of such akind.

Rostov Sate University,
ul. Zorge 5, Rostov-on-Don, 344090 Russia

According to the well-known Lyapunov theorem,
the equilibrium of a complete system is unstable when
a linearized system is exponentially unstable. The
power-law instability isinsufficient to draw thisconclu-
sion; therefore, nonlinear terms should be involved in
the analysis.

The substantiation of all the conditionsfor nonlinear
stability on a plane and spherein the Kelvin problem is
based on the fact that, in the trgjectory of steady-state
motion for the vortex n-gon, the relative Hamiltonian
(see, for example, [4, 5]) attains its maximum value. In
this case, the stability of steady-state motion is treated
as stability in the Routh sense.

In the present paper, such an approach allows us to
provethe stability of steady-state rotation of the regular
vortex n-gon within a circle. The proof is obtained in
the exact nonlinear formulation of the problem in the
cases(a) O<p<prpforevenn(n=2,4,6),(b)0<p<
Py for threevortices, and () 0<p< pys whenn=5.The
values of py, and pr;, are specified in Table 1.

The numerical analysis performed in [10] reveaed
the aternating-sign behavior of the relative Hamil-
tonian under conditions (d) n = 3, py; < p < p3 oOr

(e) n=5, pys < p < prs, dthough, in these cases, thelin-

Table 1. Critical values pr, and pg,, Which are the roots of
the polynomials P, and Q,,, respectively

pe, = 0.2137403629
pe3 = 03212811546
Pos = 0.3040641646
pes = 0.3298399891
pes = 0.3461008645

P,=7p3-3p*>+5p-1
P3=10p%+3p°+6p* + 10p° + 6p° + 3p—2
Qy = 5p°+9p° + 5p° + 9p? —1
Py=7p° +p*+9p”-1

P = 18p™° + 10p® + 15p” + 34p° + 15p°
+10p? -2

Qs = 27p*2 + 81p™! + 132p'° + 135p°
+90p® + 96p’ + 153p° + 196p°
+165p* + 60p% + 2p° —9p—3

Pg(X) = 23p° + 13p5 + 37p3 — 1

Pos = 0.3410383818

p-g = 0.2091212951

1028-3358/04/4911-0658%$26.00 © 2004 MAIK “Nauka/ Interperiodica’



STABILITY, RESONANCES, AND INSTABILITY OF REGULAR VORTEX POLYGONS

earized system is characterized only by the power-law
instability. Such asituation is analyzed below using the
methods of the Kolmogorov—Arnold-Mozer theory. In
addition, we list and analyze al resonances up to the
fourth-order ones available in the system. Thisanalysis
is based on the results of Markeev and Sokol’skit
(see[12)]). It turned out that two of these resonancesled
toinstability: (f)n=3, p=py; and (g) N=5, p=prys =
0.3443792197.

As aresult, we present in this paper both the neces-
sary and sufficient conditionsfor the stability and insta-
bility of aregular n-gon of point vortices (n # 5) located
within a circle. For avortex pentagon, the answer to the
question concerning the instability has remained unclear
for the null set when the parameter p meets conditions p
O [a, b] O (pys, pr3) and there exist resonances higher

than four (a=0.3412172781 and b = 0.3429140261).

EQUATIONS OF MOTION

The basic results on the motion of point vortices
inside and outside the circular domain were system-
atized by Kilin et al. [3, pp. 414-440].

Motion of the system of n point vortices at the plane
inside acircle of radius R is described by the equations

n n

- Lo X 1 ¢ K

% om _lek—z,- 271 _lek—zj’ (1)
J: ]:

k=12..,n.

Here, z =% + iy, k=1,2, ..., narecomplex variables;
X Yi are the Cartesian coordinates of the kth vortex; K
2
isitsintensity; and z, = zB*- is the reflection of the kth

k

vortex from the circle boundary. The prime denotes the
omission of theterm with j = k, and the asterisk implies
complex conjugation. The phase space Z for the set of
Egs. (1) is(C\{0})" with cuts along all the hyperplanes
z=2%,j#k

The set of Egs. (1) isthe Hamiltonian set character-
ized by the Hamiltonian

1 * *
H = I z KiKeIn[(z—2)(F —%)]
1<j<ksn (2)
1 n n ) )
+§TZ z KijIn[(Rz—zjzk)(Rz—zj z)].
j=1k=1

It has two integrals: energy H and the total moment of
inertia,

M= 3 Kz 3
k=1
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This set is invariant with respect to the group G, with
the group generators being the mirror reflection j:
z+— 7* and rotation g°: z+— €% z, a O R. The action
g+—> L, of the group G on the phase space Z is deter-
mined by the relationship Lyz= (92, 92, ..., 9z, for an
arbitrary point z=(z, 2, ..., Z,) 1 Zand arbitrary motion
gUG.

It isworth recalling that the motion isreferred to as
steady-state motioniif it isgenerated by transformations
corresponding to a certain one-parameter subgroup of
the symmetry group characterizing the eguation under
study.

We seek the steady-state motion corresponding to
the subgroup of rotations g in the form z, = €“1,.
Then, the equation determining the steady-state
motions is written as the following set of equations:

n n
U = -Z%ﬁ 'u K—lu- _-2_11ﬁZu K—IU-’
St & )
k=12,..,n,
with respect to the unknowns u,, U,, ..., u, O C and
w OR.
In the case of equa intensitiesk; =K,=... = K,=K,

the exact solution to the set under consideration is well
known:

U = Roezni(k—1)/n Kk =
K +1 n
==ty ©)
1-p

1,2, ..,n, 4)

w =
4nr2H 2

|,

where we have introduced the notation p = and R,

2

py|

meets the inequality 0< R, < R.

The corresponding steady-state mode is determined
by the relationships

z(1) = Ryg“u,

Thus, the configuration of identical vortices located
at the circumference of radius R, at the apexes of areg-
ular n-gon rotates at a constant angular velocity
w=0Xp).

k=1,2,...,n. )

THE STABILITY
OF A REGULAR VORTEX n-GON

We now assume all vortices to have the same inten-
sty K and analyzethe stability of stead-state solution (7).
For convenience of calculation, we consider that R, = 1.

The change of variables

z(t) = v ()
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in set (1) results in the following equation describing
the relative motion:

n
1
- = +IO0V,
jo2m Z ' (®)

k=12 ..

. 1 K
V* = —
k 2T[|zlvk—v-
J:
H nl
with the relative Hamiltonian

n

S v’ ©

k=1

E(v) = H(v)+wM(v), M =K

wherev = (v, v,, ..., v, OC".

In each plane of variables v, we introduce new
coordinates and write v, in the form

D?ﬂ ]
(k—1)+6[I
{2ER0+ rlﬂe .

rn) andez(e], 62, e

(10)

Invariablesr =(ry, 1y, ...,
Eqg. (8) takesthe form

D) en)1

f = g—gkw,e», (11)

5 = _OE
Bk = —ark(v(r, 0)). (12)

Steady-state motion (7) is put in correspondence
with the continuous family of equilibrium states of the
set of Egs. (11), (12) located in the straight line ' =
{r,® OR"r=0,6,=06,=...=6,}.

The expansion of function E(v(p)), p (r 0) into

the Taylor series hasthe same form in the neighborhood
of each equilibrium state belonging to family I":

2
E(v(p)) = Z—H(Eo+ Eo(v(p)) + Es(v(p))
+E(v(p)) *...).

Here, dots denote terms of the power higher than four.
The quadratic form E, can be represented as

(13)

E2:(Sp!p)1
O O 14
0 F, %GOD (14
S=1 5 p=(10),
0-1lc. O
02° 20

and the linearization matrix for the set of Egs. (11), (12)

KURAKIN

has the following form for the zeroth equilibrium state:

O O
L=p % 2Fpq (15)
0—2F, -G,

Here, F, and F, are symmetric matrices and G, is a
skew-symmetric matrix. Their matrix elements and

eigenvalues Ay, Ay, andirg, k=1,2, ..., n, werewrit-
ten out by Havelock in [11]:
2 n-k
7\1k=—:—Lk(n—k)—(n+1) &
2 2(1-p")’
16
_nk(pk_pn—k)+ on ( )
2(1-p") 1-p"
nk( k_ n k)
Ay = zk(n—k) PP
2(1-p)
. a7
(1- IO)
2(1—p)
k 2. n-k 2k
>\0k = nk(p +F:| ) n p (1 p ) (18)
1-p (1-p")°

The eigenvalues of matrix S can be found using the
roots of the polynomials,

1
N =i+ M)A+ Ao =7 (o),
k=12 ..,n.

For the linearization matrix L, the eigenvalues are
determined by the formulas [11]

O = =it 2 Ay k=1,2,...,n

The following theorem validates the linearization
method in the stability problem for avortex n-gon. The
stability in the Routh sense for steady-state solution (7)
implies the stability of family I of equilibrium states
for Eq. (8) corresponding to the relative motion. The
instability is understood here in the strongest sense: the
invariant set of steady-state rotationsis (transversaly)
unstable. The values of py, and pr; are specified in

Table 1.

Theorem 1. Steady-state rotation (7) of the regular
vortex n-gon is stable in the Routh sense in the cases

(1) 0<p < prpand for even values of n (n =2, 4, 6),
(2) 0<p<py; forn=3, and
(3 0<p<pys whenn=5,
aswell asat n= 1. It isunstable whenn>7 or pj <
p<1atanarbitrary n = 2-6.
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Table2. Critical values of parameter p corresponding to
resonances:. pog is the double diagonalizable zero and py . 1 is

thek : mresonance; p denotes a nondiagonalizable case

n=2 Poo =Pp
Poo = Poz: P1 : 3= 0.3168967611

P1:2 = 0.3193266263, ;.1 =Prp

n

1
[S2 I N

Poo =Pp

Poo = Pos

P13 = 0.3434991204, p; . 5 = 0.3448097395
Py = 03443792197, p; . , = 0.3455248914
Py, = 0.3459139152, Py .5 =prs

n==6 Poo = Pp

The proof repeats the substantiation of the validity
of linearization in the problem of stability for aregular
vortex n-gon in aplane (see Theorem 1in[4, 5]).

The following theorem requires for its proof taking
into account the nonlinear terms present in the system.
Formal stability in the Routh sense implies that there
exists a power series—possibly diverging—that is for-
mally anintegral of the equation with respect to relative
motion (8). Thisintegral attains the minimum value on
thefamily I of equilibrium statesfor thismotion. Inthe
case of formal stability inthe Routh sense, instability in
the Lyapunov sense for family I' (if it exists) does not
manifest itself in the system even if, in the expansion,
we take into account terms of an arbitrarily high (but
finite) order. Below, we use the values py3 =
0.3443792197, a= 0.3412172781, b = 0.3429140261,
and an arbitrary nonzero vector (n,, n,, n;, n,) with inte-
ger nonnegative components.

Theorem 2. Steady-state rotation (7) of a regular
vortex n-gon is stable in the Routh sense in the cases

(4) p=prp atanarbitraryn=2, 3, 4, 6 and also at
p=py forn=5;

(5) pps <p<prp for n=3; and

O<p<pgwhenn=5,
or formally stable in the Routh sense if

) n=5, p O (Pos: @ O (b, por3) U (Por3, Pr3] O if
p O [a, b] under the conditionsn,0; + n,05 + N0, #
n,o,.

It is unstable in the following resonance cases:

(1) n=3,p=pos
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(8) n:51 n=5’ p=p0|:5'

Proof. First of al, owing to the existence of the
cyclic variable, we reduce by one the number of
degrees of freedom for the Hamiltonian system under
study. Then, in the resonance caseslisted in Table 2, we
apply the appropriate theorems of Markeev and
Sokol’skit [12]. If the resonances are absent and ine-
qualities (5) are met, stability is substantiated by veri-
fying the validity of the conditions imposed by the
Alnold-Mozer theorem [13, 14], while, in case (6), we
use the theorems of Birkhoff, Glimm, and Brunot.
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Investigation of helical vortices is of fundamental
importance for fluid mechanics, as they determine one
of the basic states of swirling flows. A wide variety of
examples of helical vortices are described in the litera
ture. Theseincludetip vorticesin the wakes behind pro-
pellers, screws, and wind turbines; concentric vortices
in rotating reservoirs; tornados; swirlsin afluid escap-
ing from a vessdl; vortex structures arising after vortex
breakdown behind a delta-shaped wing and in pipes;
longitudinal vortex structures in a boundary layer; vor-
tex filaments in a flow of superfluid helium; paraxial
vorticesin vortex facilities, etc. In just the same way as
point vortices and infinitely thin vortex rings are funda-
mental objects in the vortex dynamics of ideal incom-
pressible fluids, infinitely thin helical filaments are ele-
mentary models of the above structures. However, there
aredifficultiesin describing them because, for ahelical
filament, the Biot—Savart integral cannot be evaluated
in closed form. For the uniform distribution of the
intensity of the pole-type vorticity along a helical fila-
ment, an alternative representation of the solution was
found in [1] as a trigonometric series with coefficients
in the form of products of modified Bessel functions.
For cal culating these coefficients, an efficient algorithm
was proposed in [2, 3] with the singularity separationin
the solution. In the present study, we investigate a flow
induced by aninfinitely thin helical filament with auni-
form distribution of the dipole-type vorticity. This ele-
mentary vortex structure is a fundamental object of
helical-vortex dynamics, which is second in the order
of importance, just like a point dipole in the plane the-
ory of vortices.

In an unbounded space, we consider a helical fila-
ment characterized by a helical pitch h = 21 and
winded round a cylinder of radius a. In terms of cylin-

Ingtitute of Thermophysics, Sberian Division,

Russian Academy of Sciences,

pr. Lavrent’eva 1, Novosibirsk, 630090 Russia

e-mail: vokulov@mail.ru

Graduate School of Mathematics and Space Environment
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drical coordinates (r, @, ), the helical filament is deter-
mined by the equations

X = acos@, Yy = asng, Z =Ilg. €))

Its arc element is ds = d(pA/a2+ 17, and the triplet of
basis vectorsis

a
/a2+ |2

n = [—cos, —sing, 0],

t = [—sin(p, coscplﬂ,

a

b = [sin(p, —Ccos @ I}

[
/a2 + |2
The curvature and torsion of the filament are Kk =

[
andtT=——
2 21
a +1

respectively.
a’+1° =P Y

The vector potential of the induced flow can be rep-
resented in the form

d(s) x [x =X'(s)|

A =0xD = ds, 2)
|
_ ¢ d(s)ds : , .
where D = ,f__lx—x'(s)l , the dipole-moment intensity

being d = |[d(s)|. Without loss of generality, we align the
dipole-moment vector with the direction of the binor-
mal b to the helical filament:

d(s)ds = d [bds = d[lsinB, —I cos6, a] db.
In this case, vector D can be rewritten in the form
D = d(-Re[ie ™ ?1(1)], -lIm[ie ()], al (0)), 3)

where

00

I(a) = exp(iaB)de
I(rz +a’ —2arcos(q— 6) + (z—10)?)

—00

1/2°
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In accordance with [1], we have

O O
DH%OE[I_@)ED
20 _Inad 4 0O g 2
O =T BT BT
- r
DHO,O[E.’_, O
O O
io|0z0
JaQ
070
0 0O
N O 0 J
EDHéyl[[,@,XED ZDHS'OU-,"E‘,XBUJ
_4ReEl] i D+LD O M
%H“@E@E raEH“@f@%
g Cordg gt e,
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0O0pgd, 2,80 Opyed 2,000
) O O’ | o o1g 4’| il
+4|Im§5 0+;0 %
O o r g0 20 osrar
DgR g g g od
where

H () = 5 mi (mx)K (my) 2™
m=1

o ' 4
= z hi (%Y, 1,Jd,M) ™
m=1

are series of the Kapteyn's type; X = ¢ — TZ; () and
K(*) are modified Bessel functions on the order of m;
the conditions |, J = 0 determine the functions, while
the conditions |, J = 1 determine their derivatives; the
indeterminate constant C,, does not depend ona and r;
and the upper and lower rows in braces correspond to
r<aandr = a, respectively.

If wesubstitute 1(1) and 1(0) into (3) and apply to the
result the curl operator in accordance with definition (2),
the components of the vector potentia for the flow
No. 11
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induced by a dipole vortex helical filament are written
in the form

O O
O gXED
4d. |0 Y O 1’00
Arz—TImD 0
O s1i@ar 0
DHly RN ]
o H IXED
OJ O
) ZDHO’(’[[@XHD
a’+1°0 't O 1'N20
* ra E E
oo[@r
DHl BRE Il
o M IXHD
0g O
308, D A
A, = ZI—aDaD—4dRe%-LD o )
0-0 gDHl")B—a[xED
o0 DE Lo E
O oQd
O pntod é‘xgmﬂ
a+120 't O 1’ 0o0
* al® E E%
oi@r
OH: /7. X700
g H IXEDD
O O
04,0 O ol é‘XHD
O_=0 4d_ 0 ' O 1’Ado
A, =2d[ ag+—|—Reg 0.
U U] U ,o@r U
00g OH = X300
o H IXED

Employing the dependence of vector potentia (5)
only on two helical variables r and X and taking into
account the obvious relation

O [curlA) = (%[r(curIA)r]

0 r
+0—X%curIA)¢—|-(curlA)g =0,

wherethe curlA(r, X) = (A, A, A) isgiven by therela-
tions

=100, ,TAD
(curlA), = o ,+ IA ,
10A, O0A
- - fr___z 6
(curlA), 1oy o (6)
_ 10A,  10(rA,)
(curlA), = o ax +r ar
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we can introduce an analog of the stream function for
the flow under consideration,

O O
J-1h
r 2d

Y= A+3A =0 20

Oa0

N

O |

(7
| |
a

4dra + 12 BH}O%’T’X‘%E
- Re[ 0.
al |2 | o1[@ r Xg[l
OH 7 7. %90
o =~ Bridg

According to relation (6), the components of the
velocity field u = (u;, Uy, U,) can be obtained by directly
differentiating the vector potential in (5). As a resullt,
we arrive at

| 0

Ontod a. . fp

RO DO S

u, = (curlA), = 4d——=5-Img 0,
a O oi@r g

3R

l 0

DHO'Og_gxlaD

a2+1?_ 0 2 017Ad0
U, = (curlA), = B Re 0, 8)

O oo r U

3]

0 |

O oo @X%D

a2+12_ 0 2 0 1"do

u, = (curlA), = —4d B Re[ 0.
a O, oo@Tr 0

S e

A direct verification proves that the projection of the
velocity onto the unit vector tangential to helical lines
collinear to the filament given by (1) vanishes (that is,

ru .
U = u, + I—‘p = 0) and that the velocity component

orthogonal to u, and u, has the form

O O

DHO’OHQXED

L=yl 4d +rZDReE 20y E
x T YeT T T 2 12 :
rl I O oo[@ r 0

DHZ 'ERE 0

o M IXED

OKULOV, FUKUMOTO

We note that both nonzero orthogonal velocity compo-
nents, u, and u,, can be obtained with the aid of stream

function (7) asu, = Q_lli anduX 6lp . Thisyields
| |2 17 oy
U, = —U, = =
oo r’+1 r2+120r’
u= Ty =—L[u _ 1”7 row
z | e FENTE e +|2|ar

The above relations between the velocity components
U, and u, make it possible to analyze below only one of
them, e.g., component u,.

In order to complete the investigation of the prob-
lem, it only remains to indicate a smple and efficient
procedure for calculating Kapteyn's type series (4). As
is shown in Fig. 1a, the coefficients hi,, in the trigono-
metric series (4) increase with m. Naturaly, this ham-
pers numerical summation of these seriesin calculating
the kinematic features of the flow, especially in the
vicinity of the circle r = a. In order to caculate the
velocity field induced by a dipole helical vortex fila-
ment in the entire space, we generalize the method used
in[3, 4] to separate the leading part of the seriesin (4).
This method was used to calculate the kinematic fea-
tures of monopole helica filaments at the points lying
on the circumferencer = a. With this goal, we represent
series (4) intheform

1,3 ol €T
Hu (% Yy, X) = A bM,OE—.z
(e —€%)
1,3 e —EHix
+b|\}|,1ﬁ+b|\n2|n(l e )
e —e

F bl Lin (e ) 4 bl Lig(e “'X)} R (% Y, X),
C))

z Z—k (|2 < 1) are polylogarithms,
m

m=1

= XEP(L+X)(1+ V1+y)
yeX|o(J1+y2>(1+ 1453

Iy\] 1( /1+)() (1 y J 1/2

2 X(y)

whereLi(2) =

00 1 GI,J BI,J yI,J
01 Gl J BI J y
1 GI,J BI,J y

bI,J —
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Fig. 1. Coefficientsin the trigonometric (a) Kapteyn's series and (b) residual series after the separation of a singularity for the first

four terms of the series; m=(1) 1, (2) 2, (3) 3, and (4) 4.

The coefficients b'-J, which are used to calculate the

velocity over the entire space, are given by

a"l(xy) = (1=1)94(x)
—(1=3)94(y) +1u(x) = Juy(y),

B" (X y) = (1=1)9,(x) + (1-J)9,(y)
+10,5(X) + Juy(y) = (L= 1) (1= 3)1(X)94(y)

=J(1-1)3:(x)u(y) = 1(1-J)31(y)v1(X)
—1Ju(x)uy(y),

YY) = (1=1)95(X) — (1= 3)95(y) + [05(X)
—Jus(y) + @ = 1) L= [ ,(X)9(y) = 92(X)91(y)]

+J(1=D[3:(x)v2(y) =9 2(x)va(Y)]
—1(1=9)[92(y)v1(X) =9 1(y)u2(X)]

+1J[01(X)U2(Y) —VL(X)V1(Y)] .

The functions appearing in the definitions of a9,
B9, andy'J are polynomiasintermsof t = (1 + x?)'2,

9, = 2i4(3t—5t3), v, = 214(—9t+7t3),

9, = ———(81t*—462t" + 385t°),

1152

v, = ——(—135t" + 594t" — 455t%),

1152
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9s = 23 4720(30375t

—369603t” + 765765t — 425425t9),

U5 = 27 4720( —42525t°

+ 451737t — 883575t + 47547t%),
while asmall regular residue is determined by therela

tion

= Z ri(xy,1,J,M) E™

= 5 Ml (MK (my) (10)
—mA ()" %“_ ”l];+yl :%}eimx_

Figure 1b shows the behavior of the coefficientsri,, in
residual trigonometric series (10). In contrast to what
we havefor the seriesin (4), these coefficients are small
and rapidly decrease with increasing m. By virtue of
thisfact, the representation in (9) is more convenient in
performing calculations.

In accordance with (9), the exact solution to the
problem, where the singularities are separated, can be
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rewritten for the stream function in the form

0 0
SN A
_2d07all_adra’+ 1%, o &
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O Rl'OU_ a O
4dra®+1°_ 0O * O 1’00
—? > R .
I U Ro,ltgr E
Oy 0

The corresponding representation for the vel ocity com-
ponents u, and u, takes the form

2 2 FEHIiYX
u = 4g@El\rod Eyl e
al 0 10 (e+ _eIX)2
Lol a] eiX Lol a7 £ +iY
+a EI’IDeFf_eiXiB 0 10 Ain(1-e>"7)
O 0
R
+y1,0E[ @le(e+§+|x)i|+4d +1 |m|:| I 0,
o al® ERO 1@ r )%
2 IR
ahaE N
) (12)
2 FEHIYX
u, = a2 )00l e _
al 0 d (e+E e'X)

ool g1__ € 00T ED £E+iX

s e s
O J

Orood &

2 2 2 l ]
T Byt s T T

The solution given by (11) and (12) is exact. How-
ever, for a number of practical problems in which an
accuracy of up to 5% is sufficient [3, 4], one canretain
only thefirst two termsin (9). Upon specifying the val-

OKULOV, FUKUMOTO

ues of the coefficients A and a, the approximate for-
mula for the stream function can be rewritten as

O O
341
25 ap 242, 4y I+rRe[ e }
O a al® et —¢
070
O O
+a2)%*)12 + 2 (13)
12 2all
O021°-3a>  or’+2° +i
o 3/%Re[ln(1 CREO
QiZ+a’)™" 1%+

The corresponding reduced representation of the veloc-
ity field takes the form

+E+|x

u = 2417+ 2747 im| EE—

arl (e*E—e'X)
L O217—3a°> or?+21°0 ¢

}

24qI +3 )3/2 (I oy )Slﬁeﬂ
(14)
2d(| +3 )3/4R

FE+IYX
U, = -
al s+ ) Le

|D3r —21> 3a’-2°0 ¢
24q| +r )3/2 (| +3 )3/2‘ﬁe+£ e |

In Fig. 2, the variation in the structure of the flow
induced by a helical vortex filament is shown for vari-
ousvalues of the helical pitch (h=1, 2, 8) and the same
radius (a = 1.5). The filament is characterized by auni-
form distribution of dipoleshaving theintensity d=0.1.
Isolines of the stream function are constructed with a
uniform step equal to two. Theflow patternsdiffer quite
significantly. At alarge pitch (h = 8), the stream func-
tion resembles that for a point dipole, but there is a
modest asymmetric distortion of the stream lines with
respect to the dipole axis. As the pitch decreases, the
flow pattern exhibits noticeable changes associated
with the concentration of the flow aong the cylinder
(a=1.5). In order to describe the structure of the flow
more exactly, we consider the velocity field. In Fig. 3,
we compare the velocity profilesfor the samethree vor-
tex filaments. At alarge helical pitch of afilament, there
are no significant distinctions from the vel ocity profiles
of the flow induced by a point dipole. However, a
decrease in the filament pitch results in a significant
rearrangement of the flow: there arises intense motion
of the fluid along the surface of the cylinder (a = 1.5).

Thus, the solution for a flow induced by a helical
vortex filament having a uniform dipole distribution of

DOKLADY PHYSICS Vol. 49 No. 11 2004
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j
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h=2
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Fig. 3. Velocity-component profiles along the x axis, which are induced by a helical vortex filament having dipole-type vorticity
distribution and various values of the helical pitch: h=(3) 1, (2) 2, and (1) 8. The results are given for the velocity component along
the symmetry axis (u,) and for the azimuth velocity component (ug). In Fig. 3b uy, = ug for x>0 and u, = —u, for x < 0.

vorticity has been obtained. A simple analytical form of
the solution makes it possible to efficiently analyze the
flow structure and to use the solution in constructing
more advanced hydrodynamic models.
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The spherically symmetric collapse of abubblein a
continuum under pressure at infinity is one of the clas-
sical problems of continuum mechanics and can be
integrated in many cases [1-12]. The problem of the
beginning of the deformation and completefilling (col-
lapse) of a bubble filled with a barotropic gas in an
inhomogeneous viscoplastic medium with radius-
dependent yield stressis analytically analyzed. Certain
asymptotic formulas for such a system are derived, and
qualitative features of its behavior are revealed.

1. We consider the evolution of radius R(t) of a
spherical gas bubble in an incompressible viscoplastic
medium under pressure p,, a infinity. Let the gas be
barotropic and the process for r < R(t) be closeto adia-
batic, so that pressure pyisidentical at al pointsr < R(t)
up to the boundary r = R(t) and is related to gas density
Pg by the adiabatic law,

y>0. ey

Therefore, pressureis related to the bubble radius as

_C
Py = pcd (2
where the constant C characterizes the total mass of the
gas inside the bubble.

We assume that the center O of the bubbleis at rest
and the yield stress 1, of the surrounding medium
depends on the distance from the point O, which is
taken as the center of the spherical coordinate system
(r, 6, ¢), where 6 is the polar angle. Density p and
dynamic viscosity 1 doesnot vary for r > R(t). A partic-
ular case, where T isastep function of r such that 1=0
beginning with a certain r, was studied in [6, 11]. The
dependences of the coefficients under investigation

Moscow State University,
\orab’ evy gory, Moscow, 119992 Russia

e-mail: georgiev@mech.math.msu.su

simulate, in particular, the collapse of the bubblein the
large volume of aviscoplastic or ideally plastic material
(the characteristic size of this volume is much larger
than the initial radius of the bubble) that is surrounded
by either a viscous medium with the same viscosity or
anideal liquid.

To construct dimensionless parameters, we use ini-
tial radius R(0), density p, and pressure p,.. In addition
to the adiabatic index y, the problem involves three
dimensionless governing parameters,

Re = ROWPP. C

H ~ (R0)"p..
Vo = R(0) &
and one function T(r) = @ . All further relations are

0

written in adimensionless form.

We assume that the motion of the bubble-surround-
ing medium is radia (v = v, = 0). In this case, the
incompressibility condition provides the following
relations for the radial velocity component v, = v(r, t)
and components V,,, Vg, and Vi Of the strain rate ten-

sor v (r, t):

V(1)

2V(t
= # Vg = Voo = JNC €)

r

rr

where V(1) is an unknown function. The only equation
of motion,

do,, 1 _o0v ov
a_r”"'F(ZUrr—Gee—Gq;cp) = E"‘ VE “4)

is complemented by the boundary conditions

o (R, = —=  (5)

0'”(00’ t) = _11 ng

1028-3358/04/4911-0668%$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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and initial conditions

R(0) = 1, R(0) = v,. (6)

Taking into account Eq. (3) and relation V(t) = —-R(t) R (t)
following from Eq. (3) for r = R(t), weintegrate Eq. (4)
with respect to r from R to infinity and use boundary

conditions (5). Since agg = Gy, for the spherically sym-
metric case, we obtain

——1 2.[ i 99ol = RR+§R2 7

For the viscoplastic medium (Shvedov—Bingham
model),

-

+ 10
R ®)

h{
:‘
3

where | is the identity tensor under kinematic con-

straints (3), and the tensor constitutive relationships
have the form

2V 2V
p+ 2 sgnV + éj
v )
Ogg = — nv +
% DJéSg rPRe

The substitution of Eq. (9) into Eqg. (7) and certain
manipulations yield (sgnV =—sgnR)

3

RR+ SR ——--——T(R)sgnR+———1 (10)
RY

2 RRe

T(R) = 2J§J’@dr. (11)

Since Eq. (10) is free of the independent variable t,
the order of this equation can be reduced. The Cauchy
problem given by Egs. (10) and (6) is equivalent to the
first-order differential equation

_4Q T(R)SgnQ+——1 (12)

VL 32
RQQU'+35Q" = ~RRe

for the function Q(R) = R with theinitial condition

Q(1) = v,.

We note that the first terms on the right-hand sides
of Egs. (10) and (12) are proportional to the medium

(13)
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viscosity (these terms are absent for an ideal liquid or
anideally plastic body). The second terms arerelated to
the yield stress 1(r) and the third terms are due to the
fact that the bubble is filled with a gas. Therefore, the
effect of these parameters on the evolution of theradius
R(t) can be studied independently or additively in vari-
ous combinations.

The medium cannot be homogeneousin terms of the
yield stress, because integral (11) diverges at infinity
for T = const. This means that infinite external or inter-
nal pressure must be applied for the beginning of com-
pression or expansion. The convergence of integral (11)
at infinity is a necessary and sufficient condition for
choosing the function T(r).

2. Equations (10) and (12) can be integrated in
guadraturesfor Re= oo, i.e,, for aninviscid medium sur-
rounding the bubble. In this case, multiplying Eq. (12)
by the factor 2R? and integrating, we obtain

2 _2 ,2
Q(R) = +53IR T(R)dR

(14)

O
O—Elr, y21,
XE 3(y-1)R _2.k
3 R
%ZCIQR, v =1 R
D R

where the constant k is determined from condition (13).
The upper and lower signs in Eq. (14) correspond to
Q > 0 (expansion) and Q < 0 (compression). It isa pri-
ori unknown which of these two processes proceeds at
any giventime. Thisisafeature of—and traditional dif-
ficulty in—problems of the flow of mediawith theyield

point [6, 7].

Owing to the existence of viscosity, analysisis com-
plicated, and the evolution of radius R(t) depends on
one more parameter, Reynolds number Re. Even for the
classical Zababakhin problem [3] onthefilling of avac-
uum bubble in a Newtonian viscous fluid with zero ini-
tial velocity, two substantialy different regimes are
known. Inregime Afor Re = 8.4, aswell asin the Ray-
leigh problem, the bubble is filled in a finite time and
Q~-R¥forR— 0[R~ (t* —t)*’ fort — t*]. Infi-
nite velocity at the collapse time and large increments
of local pressures are among causes of cavitation [13].
Similarity between the behavior of solutionsin the vis-
cous case for large Reynolds numbers and the behavior
for an ideal liquid is corroborated by the regularity of
the perturbation of Egs. (10) and (12) by the parameter
V/Refor Re> 1.InregimeB for Re < 8.4, filling occurs
exponentialy ininfinite time, the cumulation of energy
is completely eliminated due to viscosity, and Q ~ -R
for R » 0 (R~ exp(-t) for t —» oo]. These two regimes
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is separated by regime C for Re = 8.4, in which filling

occurs in a finite time, but Q ~ —1 fo-r R— 0 (R~

R
JtE =t fort — t¥).

For an ideal viscous medium, Eq. (12) has no inte-
gralssimilar to Eq. (14). The plots of Q(R) and R(t) for
viscous and viscoplastic media can be drawn numeri-
cally. We seek power asymptotic formulasfor solutions
of the problem given by Egs. (12) and (13) near the

point R = 0 by taking, for definiteness, 1(r) = lB B>0
r
in Eq. (112),i.e,
T(R) = Z—ﬁ’; (15)
BR
Let

Q(R) = quR"+,R"+ ..., o <a,<.... (16)

Substituting Eg. (14) into Egs. (12) and making some
transformations, we obtain

a,+0a,

81 qul "+ (a;+0a,+3)q,0;R ..
= —%(qu°1_1+q2Ru2_1+... 2“/§BT+%/—1.
BR™ R a7

We denote b = max{[3, 3y} > 0. For compensation of
low powers of R in each of the series entering into
Eq. (17), the leading term of asymptotic formula (16)
can be taken several ways for various b (Fig. 1):

GEORGIEVSKII, ZHDANOVA

()0<b=2, af ——g a? =1-b,al¥ =—1;
(ii)2<b<3,al! = g’ 0((14)——g:and

(iii) b= 3, in this case, the bubble does not collapse
and power expansion (16) isinvalid.

Points A, B, and C in Fig. 1 correspond to the three
respective asymptotic regimesin the Zababakhin prob-
lem. The velocity at the collapsetimeisequal to zeroin
interval BD, to a negative constant at point D, and to
minusinfinity at al other points of branches (1)—4). As
in the Zababakhin problem, branch (1) is realized for
Re values larger than a certain critical value and
branches (2) and (4) are redized for Re values lower
than this critical value.

3. We note that, if vp=0and c=1 % T(1), rest
R(t) = 1 isasolution of the problem given by Egs. (10)
and (16). Motion isabsent intherange 1 — T(1) < c <
1 + T(1), because the pressure drop between infinity
and inside the bubbl e isinsufficient for the beginning of
deformation. The beginning of deformation and motion
toward and out from the center occur whenc< 1 -T(1)
and c> 1 + T(1), respectively. We analyze the behavior
of the system near therest statein two cases, taking first
voandthenc—1 F T (1) asasymptotically small param-
eters.

LetO<g =v,<<1,c=1+T(). Then, the bubble

begins to expand immediately for t > 0, and sgnR =1
should be taken in Eq. (10):

5. 352 _ 4R LLHT)
RR+ SR mre " T(R)+ = s
R>0,
R(0) = 1, R(0) = ¢,. (19)

Seeking asolution of the problem given by Eqgs. (18)
and (19) in the form of the power seriesin g;:

R(t) = 1+ Ry(t) +R,(1) + ... (20)

we arrive at the following linear problem with constant
coefficients for function R, (t):

B+ R+ BR, =0, R >0, (21)

Re
R,(0) = 0, Ry(0) = 1, (22)
where B=T'(1) + 3y(1 + T(1)). For example,
_ 2./317
B = 3ydl+ : H-2./3t
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for Eq. (15); i.e., coefficient B can be both positive and
negative.

We indicate five possible ranges with qualitatively
different behaviors of the system.

(i) B< 0. The solution

g 2 4
R, = ——— A, = —=— /-——B, 23
1 )\1_)\2 1,2 Re Rez ( )

of the problem given by Egs. (21) and (22) increases
monotonically and unboundedly for t —» oo, because
A, > 0. This means that a small initial-velocity pertur-
bation of the equilibrium position R =1 leads to finite
deviation from this position; i.e., this equilibrium posi-
tion is unstable. Asymptotic formula (20) is valid only
for afinitetimeinterval.

(i) B=0. Inthiscase, A, = 0 and \, = —Rie. There-
fore,
R,(1) = Bf(l-e*“”“’). (24)

Thissolutionisvalid intheentiretimeinterval, because

. . €,Re
R, >0. Moreover, limR(t)=1 + 1T +O(€2).
t o5

(i) 0<B < Riz. Solution (23) exists from t = 0
e

only to

ty = ———In= (25)

when Ry (tp) = 0. Reaching radius Rpj= R(tp) = 1 —

At
€.e

A,
change.

+ O(g}) to t = ty= 0, the bubble ceases to

. 4 ,
(iv) B= — . Inthiscase,
Re”

Re

Ry(t) = te®'™, t, = > (26)

(V) B> iz Inthis case,
Re

Ry(t) = xe*™sn(At), A = /B—-FE“E—Z,

t, = LarctanRe
* T 2

27)
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Asymptotic formulas for the case v, < 0, |v,| < 1,
and c=1-T(1) > 0 are derived similarly. One should

take sgnR = —1in Eq. (10) in this case.

We briefly discuss the other asymptotic case, v, =0,
O0<g=c-1-T(1) < 1; i.e, the bubble expands

(sgnR = 1) for times close to the initial time. Seeking
asolution of the Cauchy problem

= 3.2 4R 1+T(1) +e,
RR+SR = — o2 ~T(R) + = 1, o8)
R>0,
R(0) = 1, R(0) = 0, (29)

which follows from Egs. (10) and (6), in the form of
series (20), we arrive at the following problem, which
is similar to the problem given by Egs. (21) and (22):

.4 .
R1+R—eR1+ BRl =1, R:>0, (30)

R,(0) = 0, Ry(0) = 0. (31)

For this problem, one can anayze the above five
cases for parameter B and represent the corresponding
solutions of the linear problem given by Egs. (30) and
(31) inthe explicit form.

Thus, it has been shown that the number and form of
asymptotic expansions for both the time of the begin-
ning of the bubble deformation and the time of its col-
lapse depend significantly on dimensionless parameters
of the medium Re, 1(r), filling gasc, and initial velocity
v,. Qualitatively different expansions correspond to
different behaviors upon collapse (cavitation collapse
or dow filling in infinite time) and the beginning of
deformation (instability of the initial position, mono-
tonic motion over an infinite time interval, and motion
over a finite time interval up to complete stop of
motion).
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INTRODUCTION

The problems discussed in this paper are related to
ageneral question of aerohydrodynamics, which can be
formulated in the following manner: what maximum
lift can be attained by an isolated airfoil, and what
should be the shape of the airfoil ? The exact solution to
the lift-optimization problem for an infinitely thin air-
foil with agiven length and limited curvature for aflow
of anideal incompressiblefluid (I1F) isobtained in [1].
It is proved that the extremal airfoil shapeisacircular
segment. A review of methods and results related to the
design of high-lift airfoilsis availablein [2]. A humer-
ical approach to lift maximization for airfoils with
sharp trailing edge and a specified contour perimeter
under the condition of flow continuity is proposed
in[3]. Itisstated (without proof) that, for asmooth air-
foil contour, the maximum lift is attained for acircle. A
particular case of thisis proved in [4]. Under additional
conditions (e.g., the condition of viscous flow continu-
ity on the airfoil contour, the allowance for flow com-
pressibility, etc.), the optimized solutions significantly
differ from acircle and the airfoil shape can be obtained
only by numerical calculation (see, e.g., [5-7]). Never-
theless, the circle is an extremal analytical solution
obtained under a minimum number of constraints stip-
ulated by amathematical flow model. Correspondingly,
this solution yieldsthe exact upper estimate of the max-
imum lift coefficient for the model based on an I1F.

The problems investigated in [4—7] (see dso [8])
relate to the class of variational inverse boundary value
problems of aerohydrodynamics (IBVPA). Formula
tions and methods of solving these types of problemsin
the framework of the classical models of fluid mechan-
ics and gas mechanics under isoperimetric constraints
are discussed in [9]. There are also estimates of the

1 This article was submitted by the authorsin English.

Chebotarev I nstitute of Mathematics and Mechanics,
Kazan Sate University, Kazan, Russia
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maximum lift coefficient for the class of airfoils with
smooth closed contours in continuous of |IF flows
without separation. Special cases are distinguished
when the extremal solution is a circle or not a circle.
Redlization of the exact solution of the lift-maximiza-
tion problem in the case when the optimal solution is
not acircleremainsstill opened. The present study isan
attempt to answer this question.

PRINCIPAL VARIATIONAL IBVPA

Among the possible formulations of the variational
IBVPA, we distinguish a problem with a solution that
directly answers the question formulated in the Intro-
duction. The exact solution to this problem obtained in
the framework of the IIF model yields an extremal
value of the lift coefficient and its upper estimate, pro-
vided that additional conditions are taken into account.
Thisiswhy we call this problem the principal problem.
We now formulate it for the case of an IIF.

PHYSICAL FORMULATION
OF THE PROBLEM

We consider a steady-state |1F flow without separa-
tion around an isolated impermeable airfoil in the phys-
ical planez= x+ iy. The contour of theairfoil is smooth
everywhere except the sharp trailing edge B (z = 0)
(Fig. 1) with the external angleert(1 < €< 2). In partic-
ular, for € = 1, the contour has a perimeter of | = 2 and
it is smooth everywhere. The flow at infinity isuniform
and directed horizontally, the flow velocity and incom-

2 E- ©

}\v

—

Fig. 1. Class of optimized contours.
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pressible-fluid density being v,, = 1 and p = 1, respec-
tively. The trailing point correspondstoz=0 (for e # 1,
in accordance with Zhukovskii’s hypothesis, thisis the
sharp edge B). As a reference length, we choose the
contour semiperimeter (for actua airfoils, it does not
differ too much from the airfoil’s chord length). It is
required to determine the airfoil shape that providesthe
maximum lift coefficient C, under the condition that the
maximum velocity on the contour does not exceed a
givenvaue v, ., Vi > 1.

THE MATHEMATICAL MODEL
AND THE CLASS
OF CONTOURS BEING OPTIMIZED

Following [9], we write out the basic equation cor-
responding to the mathematical model that describes
the problem.

The flow around an airfoil in a physical plane is
completely determined by the following pair of quanti-
ties: (1) 2re-periodic function P(y) O L,[0, 21 (L,[0, 217
is the space of functions (the function sgquared is inte-
grable within the segment [0, 211)) that satisfy certain
additional conditions discussed below, and (2) the

parameter 3 [ [—1—; g} (so-called theoretical angle of

attack). We determine adomain E- = {{: |{|> 1} inan
auxiliary plane ¢ (Fig. 1) and consider an IIF flow
around a unit circle with flow velocity u directed hori-
zontally. Critical points B = e? and A=—€P of the flow
(at which the flow velocity is zero) are symmetric with
respect to the vertical axis.

We specify aclass of closed, piecewise smooth, and
impermeable contours L with a fixed perimeter | = 2
(Fig. 1) and, possibly, one sharp edge B with the exter-
nal angle eTtas a set of images of aunit circle at confor-
mal mappings z = zx({), { O E~. The mappings are nor-
malized in accordance with the conditions z(e) = oo,
z-(e"'®) = 0 and are determined by the control function
P(y), y O [0, 21 and by the theoretical angle of attack

Bm[o, g} The ideal incompressible fluid flows

around the airfoil contour at avelocity v,, directed hor-
izontally.

Then, the following representation is valid:

_ip_e-1
Q) = ueplX@QIF-55 - M

Moreover, by virtue of the normalization of the map-
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ping function and closure of the contours, the equalities
2n

AO(P)EJ'P(T)dT =B,, By=0, 2)
0

2m

Al(P)+iA2(P)EIP(T)e”dI = B, +iB,, )
0

B, +iB, = —(e—1)exp(-ip)

hold.

The coordinates x, y of the airfoil contour are deter-
mined from (1) in the parametric form x(y) + i y(y) =
z+(€") as afunction of the parameter y [0, 271:

Yy
. -1
z-(e’) UI‘ sin—-=
B

y . T+B+md
exp%D(T) + |[Q(T) +(e-1)5 H}Edr.

Here, the singular integral is

2n
1

Q(y) = _Eﬁj P(1) cotr%ydr.
0

To provide the existence of thisintegral, we require that
the function P(y) be aHdlder continuous function with
fixed coefficient and exponent. These functions form
acompact set U in the L,[0, 211 space.

Finally, the class L of the contours under consider-
ation is determined by the conformal mappings z =
Z({), abtained from (1), where the control function
P(y) satisfies the conditions described above, including
additional conditions (2) and (3).

The distribution of the flow velocity over the airfoil
contour can be presented in the parametric form

v(y) = Zcos\%B‘ZSin\%B‘z_eexpP(y).

For convenience, we take these value as being positive
and negative on the upper y O [, T+ B] and lower y O
[Tt+ B, 21t— B] airfoil surfaces, respectively. The limi-
tation of the maximum velocity on the airfoil contour
by agivenvalue v, isexpressed with the aid of acon-
trol function P(y) and of the parameter 3 in the form

— Vmax
P(Y) < Holy, B) = In| = |
+(s-1)|n‘2sjn\-/—;—§‘,
M(y, B) = [2(siny + Snp).
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EXACT SOLUTIONS

In this case,
C = 167sin __2
Y lo(P) lo(P)’
2n aje-1 (5)
_ P(1) T+p|*-
lo(P) = J‘e 2sin—+ > dr.

Thus, the maximization of the lift coefficient C, corre-
sponds to the minimization of the functiona Jy(P, B) =

l,(P) cosec3 under constraints (2)—(4).

THE EXISTENCE AND UNIQUENESS
OF THE SOLUTION

The following theorems are valid.

Theorem 1[9]. Let Cj and 3* be correspondingly
the absolute maximum of G and extremal value of [3;
Vi = exp(sinB), vk, =2(1 +sinP). Then, the prin-
cipal variational IBVPA has a solution and sinf3* <
InV,,, Cy < 2Inv,,,. Inaddition,

(1) for v, = 4, theonly extremal solutionisacircle
and Cj =8,B*:—;
(2)for 1< v, <4, theextremal solutionisnot acir-

cleand Cj 2 v,,, —2and p* 2 arcst/max IE for

<4:and

max —

2<y,
(3) for a given value 3 = 3,, the inequality v, 2
Vi IS the nece%ry condition of solvability. More-
over, if v

max _

v s then the circle is again the only
<v

extremal solution. If v}, € Vi <
mal solution is not a circle.

Note that, if the value of 3 = 3, is given, then we
have principal variational IBVPA with an additional
constraint. The latter statement is equivalent to finding
a2re-periodic Holder continuous function P(y) that sat-
isfies conditions (2)—(4), which provides the minimum
of the functional I(P) for agiven 3 = [3,.

then the extre-

max’

The following theorem is aso valid.

Theorem 2. If the subset U, O U of the Holder con-
tinuous functions P(y) satisfying conditions (2)—(4) is
not empty and sinf3, < Inv,,,,, then, for B = 3,, the prin-
cipal variational IBVPA has a unique solution.

The validity of Theorem 2 is proved by the strict
convexity of functional (5) in Theorem 1, by the com-
pactness of the set U, (if it is not empty) in the space
L,[0, 211, and by the linearity of constraints (2)—4).
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THE EXACT SOLUTION TO THE PROBLEM

The form of the extremal function P*(y) is given by
the Kuhn—Tucker theorem (see, e.g., [10, Sect. 1.1.2)]).
We now construct the extended functional.

2n

W(P) = J’F(P- T)dt = 1(P) + o[ Ag(P) — Byl
0

+ Ui [A(P) =By +H,[Ax(P) - B

2n

+ J'H(T)[P(T) —Ho(T, B)] ar..
0

The parameters |, |, and |, should be chosen in such
a manner that conditions (2) and (3) will be fulfilled.
The quantity p(y) is a nonnegative function (Kuhn—
Tucker multiplier) that allows condition (4) to be satis-
fied. By virtue of the necessary extremum condition,
the function P*(y) is determined from the equation
oF o

opP

Pr(y) = (- 1)|n\29n B\ NG b 4V,
9(Mo» M1, M2, K, Y) = Ho + K4 COSY + [pSiny + ().

The parameters [, ,, 1, and function p(y) are chosen
in a manner such that g(y, K, Ko, s Y) = 0. In accor-
dance with the Kuhn-Tucker method, the function
K(y) = 0 should be found from the condition of the
so-called complementary stackness. As a result, we
arrive at

W= p*(y) = max{ 0, Vo M(Y, B) = Ko
—H,cosy — [osiny }.

The velocity distribution that corresponds to P*(y)
isfound as

V() = MmNV e MY B B )
0 "™ |ie + pyCoSy + ppSiny|T

The minimal value of the functional is

21

= 14(P*) = 2Tt|JO+J’u*(T)dT>O.
0

We rewrite conditions (2) and (3) for the extremal
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function P*(y) in the form

2n

_[Ing(uo, My, M, U*;y)dy = 0, ®)
0

2n

J’Ing(uo, My, Ko, H*;y) cosydy = O,
° ©)

2mn

jlng(uo, My, Mo, L*;Y) SINYdy
0

I
©

The value I*, the functions p*(y), v*(y), and Egs. (8)
and (9) do not contain the quantity € that determinesthe
profile opening angleintheairfoil trailing edge. Hence,
the extremal solution obtained is the same for all air-
foils with a sharp (¢ > 1) and smooth (¢ = 1) trailing
edges. From (6), it follows that, in the first case, the
function P*(y) has asingularity at y=— 3. Thisimplies
that the sol ution obtained does not bel ong to the chosen
class of functions and yields only the upper estimate of
the maximal lift coefficient. For the smooth trailing
edge, it is possible to construct an airfoil for which the
maximum is attained.

SYMMETRY OF THE OPTIMUM SOLUTION
AND MONOTONICITY
OF THE CORRESPONDING VELOCITY
DISTRIBUTION

First, we provethat, from the uniqueness of the solu-
tion to the problem under study, (see Theorem 2) it fol-
lowsp, =0.

Suppose that we have managed to find a set of
parameters |, 1, > 0, W,, which satisfy conditions (8)
and (9), and to construct both the corresponding func-
tion p*(y) and the velocity distribution v*(y). Replacing
the variables T =11—Yyin (8) and (9), we can see that the
solvability conditions are also satisfied for the new set
of the parameters |, —H, < 0, W, and for the new func-
tion

Wi(y) = p*(m—y) = max{0, vy M(y, B)
— Mo + My COSY — oSiny }.

Furthermore, the velocity v’ (y) that corresponds to
the new set of parameters satisfies the condition of lim-
itation of the maximal velocity. Finally, substituting |,
— M1, M» and corresponding function p,(y) into the nec-
essary extremum condition, we find that this set of
parameters provides the global minimum of the func-
tiona 1,. Thus, the set of parameters j,, — 14, <0, W, iS
also asolution of the extremal problem under consider-
ation, which contradicts the unigueness of the solution.

ELIZAROV, FOKIN

Therefore, y;, = 0. This also implies that p*(y) =
M*(Tt—y), and it is sufficient to consider the interval

yO [—g , g} . For therest of thecircle, the solution can

be obtained from symmetry considerations. The other
important consequence of symmetry is that the first
condition in (9) isfulfilled automatically. Note that, for
€ =1, theequation y, = O provides symmetry of the cor-
responding contour with respect to the vertical axisand
the monotonic increase in the velocity distribution

v*(y) [see (7)] withintheinterval y O [—g g] .Inthis
case, if 2(1 + sin) > V,...(y + L), then, for [t, g} ,

- DJOVmax_ZS”]ﬁ] “ 77
t= NnE——————-+, we h roof-t
arcs 0 PV ik € nave a roor-top

velocity distributionv=v,,,.

Numerical experiments have shown that, for opti-
mal airfoils corresponding to velocity distributions (7)
at 3 > 0, the ssmultaneous presence of the vel ocity “ roof
tops’ on the lower and upper airfoil surfacesisnot pos-
sible. However, this requires an exact proof, which has
not been obtained so far. If this hypothesis is correct,
then we always have

*(y) = v*(y)= 2SNy +snf)
1% = v = 7t
(V) = Vi) == Lsny

VD[—’—ZT,t} VE(Y) = V3(Y) = Vi vD[t,g,

n
2
set of nonlinear equations for seeking two unknown
parameters p, and W, with allowance made for symme-
try of the optimal-velocity distribution takes the form

wheret = - for 2(1 + sinf3) < V(Mo + Ko)- Thus, the

2

[ Inlv=(vldy =0,

-T2
2 (10)
I In|v*(y)|sinydy = msin.
-T2

If congtraint (4) isignored, then (y) =0, and 1, =0,
Mo = 1isthe solution of set (10). Then, g(l, 1, Ko, K55

y) =1, P¥(y) = (€ — DIn 2sin\%5‘ , I# = 211, and the
optimal solution is again a circle determined by a con-

formal mapping z«(y) = Z—;I (cf. [4]).

DOKLADY PHYSICS Vol. 49 No. 11 2004



EXACT SOLUTIONS

ON SOLVABILITY OF THE SET
OF EQUATIONS (10)

We now schematically describe the proof of the
solvability of set (10).

Itisrigorously proved that the case 1, = 0 ispossible
onlyif v,,,, = 2(1 + sin3). Thisoptimal solutionisagain
acircle (see Theorem 1). We consider the case p, # 0

and denote g = uzlg—a—x ,m= Ho Thus,
2

T2
F.(t,m) = IlnM
t

siny + sinf3

8

w2

F,(t, m) = Iln

_Sny+m |gnydy,
siny + sin

where m> —sint < —sin 3. We assume that the “ roof-top”
vel ocity distribution can exist only for the upper surface
of the optimized airfoil. Then, we have an explicit rep-
resentation of gintermsof t and m:

Fo(t,m)+ nlnvmax}

T2 +t (b

w=aq

and the equation for finding mat agiventis
m = ®y(t, m),

~1

Dy(t, m) = E’ETJ' %

x cost[F,(t, m) + TtInv ] + F,(t, m).

Theorem 3. Lett = 0. If ®y(t, —sint) < —Tsint, then,

for an arbitrary t, Eq. (12) has ho more than two roots.
If

(12)

@, (t, —sint) = —tsint, (13)

then Eq. (12) has a unique solution.

Numerical calculations have shown that, for arbi-
trary t (not only positive), inequality (13) holds and
solution m* = m*(t) to Eq. (12) is unique and continu-
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Fig. 2. Exact solutionsfor e =1, $ =90°, and different v, .

ously depends on t. From (11), we determine g = g*(t)
as afunction of t and obtain the equation for finding t:

* (t)m* (t)—sinp
1-g*(t)

Equation (14) can be solved numerically. Calculations
have shown that the equation can be resolved uniquely.
Now, when al the parameters are known, it is possible
to find the shapes of the optimal airfoils.

Figure 2 shows the exact shapes of the optimal air-
foilsand corresponding velocity distributionsat 3 = 90°

and different v,,,. In this case, v, = 1.15, v} =

2.28. In Figs. 3, 4, the corresponding contours are
marked by number 2, and corresponding chord dia-
grams—by number 1. Small black circles on the con-
tours indicate the branching and trailing points (in the
given case, these points coincide). Asis seen, the exact
solutions have only the vertical symmetry axis. Other
characteristics of the optimal solutions are presented in
the left part of Table 1.

By virtue of Theorem 1 for agiven value 3 = 3,, the
problem has a unique “noncircular” extremal solution
only if Vi € Vi < Ve (for v, ..> vir | the extre-

mum is again a circle). For a given v,,,,, the unique

sint = R(t), R(t)=3

(14)

Table 1. Characteristics of exact solutionsin the case of € = 1: for 35 = 90° and different v 4. for v, = 1.4 and different

B = By, and for By = 8° and different v,z

By = 90° Vinex = 1.4 B=8°
Vmax tmax CV B tmax CV Vmax tmax CV
4 1.0 8.0 8° 0.2717 1.0025 1.3 0.0903 0.9358
3.4 1.0 7.9528 10° 0.1456 1.2062 15 0.3565 1.0478
3.0 0.6317 7.3921 14° 0.008 1.5086 1.8 0.728 1.1036
2.9 0.2176 6.6228 2.28 1.0 11134
DOKLADY PHYSICS Vol.49 No. 11 2004
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Fig. 3. Exact solutions for € = 1, v,,,, = 1.4, and different

B=Bo-

¥ vl
25 [(Viax =13 [Vapax=1.5 [V =1.8
2.0 - -
1.5r 7
)
1.0} -
0.5 [
P 2
0
_OSI 1 I 1 LI 1 1
-1.0 -05 O -05 O -05 0

Fig. 4. Exact solutionsfor e = 1, B, = 8°, and different v, .

noncircular solution is provided if B < B =
arcsin(Inv ). Thus, there exists an admissible
region of the parameter variation, which correspondsto
“noncircular” solutions. This region is bounded from
above and from below by the curves v, = 2(1 + sinf3)
and v, = exp(sin[3), respectively. Figures 3 and 4 and

Table 2. Characteristics of optimized numerical solutions
(for € =2), exact andyticd solutions (for e = 1), and for v, = 1.8
and different 3

e=2 e=1
B
tmax Cy tmax Cy
8° 0.6752 1.0874 0.7279 1.1043
10° 0.6231 1.3507 0.6633 1.3715
15° 0.4501 1.9728 0.4884 2.0029
20° 0.2817 2.4882 0.302 2.535

ELIZAROV, FOKIN

Tables 1 and 2 demonstrate the tendencies of variation
of the optimal shapes and characteristics for these two

cases. Notethat v, =efor = g Therefore, the last

example presented in Fig. 2 isthe ultimate case.

Figure 3 and the middle part of Table 1 show exact
solutionsfore =1, v,,,, = 1.4, and different = 3,. We
seethat, asthe value of 3 increases, the airfoil thickness
decreases and approaches a circular arc (e.g., 3 = 14°).
A further increase in 3 results in a multivalent solution
(self-crossing contours). Note that, in the given case,
Brax = 19.65°.

Figure 4 and the right-hand side of Table 1 demon-
strate the exact solutions for 3 =8°, € = 1, and different

valuesof v,,,,. For thegivencase, v}, =1.15, vii =
2.28.

In addition, numerical optimization was also per-
formed for severa values of v, in the N-parametric
class of functions

N+1

Py(y) = z (acosky + b,sinky).

k=2

In this case, the coefficients a, and b, were varied with
conditions (2)—(4) taken into account in order to obtain
an airfoil with a maximum lift. Dependences of the
maximum value of « on v, for several (3, were
obtained. It has been found that, for decreasing values
Of Vy, the values of C, ., also decrease. In addition,
according to Theorem 1, for each value of 3y, there

existsaminima value v}, = exp(sinf3,) of the maxi-
mum velocity on the airfoil contour, the values of C, .«
decreasing by no more than 8%. Note that the solution
in a narrowed class of functions Py(y) yields a lower
estimate for the dependence C, ., = C, max(Vinax)-

Actual arfoils usually have a sharp trailing edge.
Numerical optimization of an airfoil with the sharp
trailing edge (¢ O (1, 2]) for severa values of v,,,, and
[3, obtained by A.N. Ikhsanova have shown that charac-
teristics of the numerically optimized airfoils are close
to the exact values abtained analytically. Moreover, in
the close vicinity of the exact solutions, there are many
approximate solutions (i.e., realistic airfoils with sharp
or smooth trailing edges). They provide the values of
the minimized functional, which are close to the mini-
mum obtained analytically. However, the shapes of the
airfoils corresponding to these approximate solutions
may be strongly distinguished from the analytical opti-
mal contours. For example, Table 2 presents character-
istics of solutions obtained as aresult of numerical cal-
culations (for € = 2, left-hand part of the table) and
exact analytical (for € = 1, right-hand part of the table).
Theseairfoils are optimized for v,,,, = 1.8 and different
Bo (here, t,,. isthemaximal airfoil thickness). Note that
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both numerical and analytical optimal solutions have
“roof-top” velocity distributions.
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The study of the behavior of solids in supersonic
flows is of interest in various branches of mechanics,
e.g., motion of multiphase media, meteoritic astron-
omy, and applied mechanics. In this paper, we describe
the results of numerical experiments with supersonic
flows around certain regular configurations containing
asmall number of spheres.

The goal of our calculations is the determination of
aerodynamic coefficients for the spheres and investiga-
tion of the variation of the shock wave structure as a
function of the distance between solids. These data, in
particular, promote the understanding of mechanics of
dispersing fragments after a solid has been fractured in
supersonic flow.

In this study, we have chosen the four configurations
shown in Fig. 1. The sphere centers and the velocity
vector of incident flow lie in the same plane. The mea-
sure of the configuration size is the quantity h equal to
the half-distance between the two closest points of two
neighboring spheres, which is normalized to sphere
radius R. Throughout the paper, for the sake of conve-
nience, we use the sphere numbering shown in Fig. 1.
Comparison of aerodynamic properties of the configu-
rations a—d apparently makesit possible to draw agen-
eral conclusion on flows around systems of solids in
more complicated cases. We are implying cases of
irregular configurations of systems composed of sev-
eral solidsaswell as cases of certain variationsin their
shapes. In this study, all the calculations are carried out
for systems of solids placed in perfect-gas flows with
the adiabatic index and Mach number equal toy = 1.4
and M = 6, respectively.

Configuration b was analyzed in detail in aprevious
study [1] in which drag coefficient ¢, and transverse-
force coefficient ¢, were determined. It was al'so proved

that the largest distance between the spheres, when the
transverse-force coefficient becomes small, corre-
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sponds to the tangency of the sphere and the reflected
shock wave.

Flows of the type a are known in the literature as
flows around a solid in the wake of another solid [2].
Previoudly, the problem was solved mainly for rela
tively small distances between solids and for solid
shapes corresponding to various applied purposes (e.g.,
separation of rocket stages, release of protector caps,
etc.). Here, we consider flows around two spheres with
the centerline directed along the flow.

Asour calculations have shown, the drag coefficient
for the front sphere initially dlightly increases with h
but, from h = 2, it takes values corresponding to flow
around asingle sphere. Thisdistanceis closeto two cal-
ibers of the solid and, approximately, corresponds to
the lower downstream boundary of the near wake
beyond the front sphere [3]. With further increasing of
h, drag coefficients ¢, remain virtualy constant. In
other words, the flow around the front sphere is no
longer dependent on the presence of another solid inits
wake. At the same time, the drag coefficient ¢, for the
second (rear) sphere rises very slowly nonmonotoni-
caly from a certain rather small value (~0.1c,) at
h = 0. For example, at h = 10, we have c,, = 0.115. For
configuration a, the calculated values c,; and ¢, as
functions of h are shownin Fig. 2.

We should note that, in the downstream-boundary
region of the near wake beyond the front sphere (h = 2),
significant oscillations of the calculated c,, values are
observed. Figure 2 shows the average values of ¢, for a
random sampling, the deviations from the average val-
ues being marked by vertical segments. The values of
c, aso fluctuate, but with a considerably smaller

a b c
o 0O
o O

d
®
@—»@g@
O

Fig. 1. Disposition of spheres in configurations a, b, c,
and d.

—0 ©®
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amplitude. The possibility of a hysteresisin the pattern
for the flow around the rear sphere under the specified
conditions was indicated in [2]. For h< 2 and h > 2,
oscillations of the coefficients ¢, are virtually absent.

Aerodynamics of system ¢ (Fig. 1) was compared to
theresults of studies of flowsaround system b [1]. Drag
coefficient c,, and transverse-force coefficient ¢, of
sphere 2, aswell asdrag coefficient ¢ 5, for sphere 3 are
plotted in Fig. 3 by solid lines. For comparison, values
of ¢, and ¢, in configuration b are shown in thisfigure
by dashed lines. As is seen, the presence of the third
sphere only negligibly changes the conditions for the
flow around the front spheres. This small variation is
manifested as acertain decreasein both ¢, and ¢, for the
front sphere due to the increase in the bottom pressure,
which is associated with the existence of the third
sphere. The shape of the leading shock wave in front of
the two front spheresis amost invariable in this case.

We now discuss the flow near sphere 3. When dis-
tances h are small, a shock wave is formed in front of
sphere 3. This wave is limited in its amplitude due to
the inhomogeneity of the incident flow. The amplitude
of the shock wave increases with h, and the drag coeffi-
cient ¢; monotonically rises. The situation remains
constant up to distances for which the interaction of the
front spheres ceases, i.e., for h> 0.5. With increasing h,
the reflected shock wave hits the front part of sphere 3
so that the coefficient ¢,; continues to rise. With further
increasing h, the reflection point and, furthermore, the
lateral part of the leading shock waves of spheres 1 and
2 turn out to be on the leading shock wave of sphere 3.
During the entire period of the interaction with sphere 3
of the shock waves from the front spheres, drag coeffi-
cient c,; exceeds that of a single sphere. Thisis illus-
trated by Fig. 3, where, starting from2h = 1.0, thelinear
scaleaongthex axisisreplaced by alogarithmic scale.
Here, we note anew aspect of theinteractioninthe sys-
tem under consideration of supersonic flows around
solids, namely, that the interaction of reflected shock
waves with solids results not only in the appearance of
a transverse force but also of a significant increase in
the drag.

The pattern of flows around configuration d (Fig. 1)
repeats the tendencies considered above. For example,
the flow around the set of spheres 1, 2, and 3 issimilar
to the flow around system c. This fact justifies employ-
ing the term characterigtic lements. The drag coeffi-
cients and the transverse-force coefficients for spheres 2
and 3 and the drag coefficients for spheres 1 and 4 are
represented in Fig. 3 by symbols. Here, we observe a
more noticeable drag reduction for sphere 1 rather than
for sphere 2, for which this reduction virtually repeats
the decreasein c,, for system c. Thisoccurs by virtue of
alarge elevation of the bottom pressure on sphere 1 due
to the existence of athird layer composed by sphere 4
entering into configuration d. At the sametime, thedrag
related to sphere 4 increases with h more slowly than the
resistance of sphere 3 (in both systems d and c).
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Fig. 2. Drag coefficient for spheresin configuration a.
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Fig. 3. Drag coefficients and transverse-force coefficientsin
configurations: (b) dashed lines; (c) solid lines; and
(d) [symbols: (o) €y, (X) €, Gy (©) 3, Cy3; and (T) Cyy.

The shape of the leading shock wave varies with h
practically in the same manner as for configurations b
and c. The transformation of a common shock wave in
front of the system into individual shock wavesin front
of each sphere occurs in the head part of the system. It
is evident that the above-mentioned aspect of the inter-
action of reflected shock waves with leading shocksin
front of the spheres of rear rows also exists and results
in a noticeable increase in the drag for these spheres.

The pattern of flows around system d for h=0.5is
shown in Fig. 4. The principal features of the flow
repeat the preceding cases.

The basic conclusion of thisstudy isthat, in the case
of asupersonic flow around a system of solids, the flow
distortions stipulated by the collective nature of an
obstacle drift, asit were, downstream. A slight decrease
in the drag of head spheresis caused by increasing bot-
tom pressure. However, thisvirtually does not affect the
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S

Fig. 4. Pattern of flow around solids in configuration d (h = 0.5).

reconstruction of the leading shock wave, which mono-
tonically decays into individual shock waves with an
increase in the distance between the spheres. The char-
acteristic distance between solids, which corresponds
to this decay, also remains invariable and entirely cor-
responds to the simple case of flow around a pair of
spheres with their centerline aligned across the flow.
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In this paper, results of experimental studies of wave
generation in a contact melted layer under axial colli-
sions of metalic plateswith metallic bodiesmadein the
form of truncated right circular cones are presented. In
this case, aclosed regular structure of the contact layer
was formed for the first time as a series (train) of long
waves on the exterior surfaces of copper and aluminum
cones. It is found that the dependence of the measured
wavelength on the group velocity corresponds to the
rising branch of the wave dispersion law.

The phenomenon of wave generation on contact lay-
ersin high-speed collisions of metallic bodiesisstudied
for along time. (We imply both fundamental studies,
e.g., analysis of hydrodynamic instability of viscoplas-
tic flows in contact melted layers in the collision zone
and industrial applications, e.g., the plating and weld-
ing explosion technologies [1-4].) Investigation of
waves generated on the contact surface of metallic
screens under high-speed collision with a body is
important for the development of methods for efficient
protection of objects in space against meteorite
impacts. In alarge degree, the interest in the process of
wave generation is also caused by the possibility to
study wave phenomena from the standpoint of general
wave theory, as the contact layer is a medium in which
the effects of dispersion and nonlinearity manifest
themselves in full measure. These waves can be
observed during and after a collision, and their shapes
store information on the evolutionary stages of contact
layers.

Up to now, wave generation has been studied only
for oblique incidence of flat plates when the collision
angles are acute and strongly limited (y < 20°), whereas
the wavel engths of the waves being produced are small
(A <1 mm) and are determined by the capillary tension
of the contact surface. In this case, asis known from[5],
the dispersion law for the phase v(A) and group v,(A)
velacities of capillary waves are determined by dimin-
ishing branches of the dependences v,(A) and v,(A).

Russian Federal Nuclear Centre,
Institute of Experimental Physics,
Sarov, Nizhni Novgorod oblast, Russia

One more feature of colliding flat platesis the sig-
nificant effect of their edges, which complicates the
wave pattern.

In this connection, it is of interest an advance into
the region of large (even obtuse) collision angles and
long wavelengths (A = 1 mm). Then, wave generationis
developed along the rising branch of the dependence
v,(A), and boundary distortions of the wave pattern by
virtue of the formation of waves with a closed wave
front are excluded. The latter requirement can be pro-
vided in the case of collisions with a body of special
geometric shape, in particular, with arod [1].

In the present paper, we describe the results of our
experimental studies of wave generation in a contact
melted layer. We consider axia collisions of metallic
plates with metallic bodies in the form of truncated
right circular cones. In this case, a closed regular struc-
ture in the form of a series (train) of long waves was
formed for thefirst time on the exterior surfaces of cop-
per and aluminum cones.

Scheme of the experiment. As shown in Fig. 1,
between two square metallic plates 1, acharge of ahigh
explosive 2 based on plasticized RDX was placed.
Truncated metallic cones 3 wereinstalled outside of the
plates so that the smaller-diameter bases of each of the
cones closely adjoined the corresponding plate in its
center. The cone axes coincided and were normal to the
plate planes. Special trapsfilled with sand provided the
preservation of the cones after the experiment (the traps
are nor shownin Fig. 1).

Flat metallic plates of a size from 150 to 180 mm
and 1 mm thick were used in the experiment. The
explosive charges possessed sizes coinciding with
those of the plates and thicknesses of 2, 4, and 6 mm.
The truncated cones had the smaller diameter d; = 30—
60 mm and larger diameter d, = 80-120 mm. To
exclude the edge effects associated with plate bound-
aries and with explosion-product unloading at the plate
edges, cone diameters d, always were smaller than the
sizes of metallic plates and explosive charges. In the
experiments, the angle a (Fig. 1) between the directrix
of the smooth surface of the cone 3 and the plate / was
45°, 50°, 55°, 60°, and 65°. In this case, the collision
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Fig. 1. Devicefor investigation of wavesarisingin collision
of plates with two cones: (1) metallic platesin their initial
positions (prior to the explosion); (2) explosive charge;
(3) truncated metallic cones (d; and d, are the smaller and
the larger base diameters, respectively); (4) plate boundary
in theintermediate stage after explosion; (5) plate boundary
after the experiment; (6) contact point of the plate and the
cone: yisthe collision angle, a istheinitial angle between
the plate and the cone, 3 isthe plate rotation angle under the
action of explosion products v is the velocity of the deto-
nation moving along the explosive, v is the plate velocity
under the action of explosion-product pressure, v (A) =
V(M) is the contact-point velocity.

angle of the plate and the cone turned out to be obtuse
and attained a value of y=a + 3, where 3 = arctan‘—/v—

d
is the angle of the plate rotation under the action of
explosion products, v is the velocity of plate motion

BOIKO et al.

(the velocity value depends on the ratio between the
masses of the plate and of the explosive), and v, isthe
detonation velocity. In our experiments, plate velocity
v can vary within limits of 1-4 km s™. Displacement
velocity v, for the contact point can be calculated

according to theformula v, = si_\r/m( .Asplate materials,

we employed copper—copper (Cu—Cu) and aluminum-—
aluminum (Al-Al) pairs, etc. The explosive charge was
placed in the center of the device.

In order to record collision dynamics and wave gen-
eration in our experiments, we used pulsed X-ray pho-
tography and ultrahigh-speed photography methods.
After the experimental loading had been over, the
states of the interface metal layers were studied in flat
plates cut from the cones (Fig. 2) that were preserved
in the trap. In order to investigate the contact-layer
structure, the plates were grinded and polished up to
the mirror luster. After etching, the microstructure of
metal in the contact zone of the metall ographic section
was studied with a microscope. These studies made it
possible to determine the depth of metal melting and
reveal the nonlinear character of the wave (rise of crest
steepness).

We measured amplitude a and wavelength A in the
longitudinal direction with respect to the contact-point
motion and investigated the profile of the leading and
trailing fronts of longitudinal waves. Wavelength A was
determined as the average distance between crests at a
basdline of ten periods. In discussions of strain wave-
length, we should take into account the flow evolution
along the cone-directrix length. Similarly to in the case
of flows in channels, we separated the initial segment
and that of hydrodynamic stabilization. The stabiliza-
tion segment was determined according to integral
parameters such as the mean wavelength or mean wave
amplitude. To increase the statistics of the experiment,
a significant part of the experimental runs were per-
formed under the same initial parameters at both sides
of the explosive charges: identical material and identi-
cal angles of the cones and identical material and iden-
tical angles 3 of the plates, aswell asidentical material
of the plates and cones. It should be noted that attaining
a stabilized wave regime was independent of the plate
thickness but depended on another linear scale (appar-
ently, on the wave-flow thickness). Thisiswhy the sta-
bilization of wave regimes occurred at short distances
(A=3A) from the smaller cone base. Thus, in analyzing
the wave regime, the evolutionary nature of the wave
flow was noted and actual cone sizes were taken into
account.

About one hundred experiments were performed.
The accumul ated experimental data made it possible to
plot the dependence v (A) = v, () (Fig. 3). In particular,
it follows from this dependence that, in our experi-
ments, wave generation is realized that develops along
therising branch of the dependence v,(A). The obtained
regimes admit both the possibility of advancing into the
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(a) (b)

Fig. 2. Cone after ultrahigh-speed collision with plates: (a) aluminum cone; (b) copper cone.
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Fig. 3. Rising branch of dispersion law for the group velocity [V.(A) = v4(A)] as afunction of the wavelength A: (A) Al-Al and
(V) Cu—-Cu.
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1. INTRODUCTION

Recently, experimental investigations of the motion
of an initially almost plane layer made of an easily
deformable materia (in particular, around copper plate
with a correspondingly sized triangular-net pattern
deposited onto it) that is thrown under the action of a
large pressure drop were carried out [1]. These experi-
ments resulted in an understanding of the fact that,
under these conditions, a steadily, reproducible growth
of perturbations with a certain wavelength on the order
of several layer thicknesses occurred.

It wastypical for the experiments performed that the
pressure drop much exceeded the elasticity limit of a
materia but is lower than the Young's modulus. In the
present study, for describing the behavior of a shell
under these conditions, we propose amodel of aweakly
elastic material. This model generalizes the pure iner-
tial model of [1] and well describesthetotality of avail-
able experimental data. Without touching upon the
physical essence of proceeding elastoplastic processes,
we assume that, at the initial acceleration stage, the
shell acquires an efficient longitudinal elasticity, with
the modulus proportional to the acting pressure (weak
elasticity). Such aweak elasticity prevents only expan-
sion of the shell and is similar to the model of three-
dimensional Treloar medium found as aresult of statis-
tically substantiated observations of the structure of
rubber, which were described in [2].

In the model of aweakly elastic shell asin theiner-
tial-motion mode [1, 3], the plane problem is reduced
to a set of linear equations and, thus, can be efficiently
investigated. In particular, for ahomogeneous shell, the
gualitative behavior of solutionsis specified by the cor-
responding dispersion equation. From this equation, it
follows that the process of the development of short
waves occurs in an oscillatory mode. It should be

* Mechanical and Mathematical Faculty,
Moscow State University, Vorob’ evy gory,
Moscow, 119192 Russia
e-mail: golubiat@mech.mat.msu.su

** |ngtitute of Mechanics, Moscow State University,
Michurinskii pr. 1, Moscow, 119192 Russia

remembered that the theory can be applied when the
actual wavelength greatly exceeds the characteristic
shell thickness, which constrains the wavelength spec-
trum from below. Furthermore, there exists a critica
wavel ength for which the vibration frequency vanishes,
whereas perturbations with awavel ength exceeding the
critical one increase. In turn, the wavelength range
involves a (resonance) wavelength equal to the double
critical wavelength with the largest growth increment.
With further increase in the wavelength, the increment
decreases to zero.

In the spatial case, the set of equations is quadrati-
cally nonlinear. The experimentally observed effect [1]
when six depressions appear on an obstacle and are reg-
ularly located with respect to its center corresponds to
the three-wave resonance characteristic of the quadratic
nonlinearity. A decrease by half in the thickness of a
round plate (and, correspondingly, in the step of the
deposited net) under the same other parameters results
in the appearance of the second row of 18 depressions
with correspondingly smaller depths and half the dis-
tance between their centers.

Itis characteristic that depositing a pattern adequate
to the critical or somewhat smaller wavelength pro-
motes a more stable plate speed up, which resultsin a
singlewide depression with a plane bottom on an obsta-
cle. Moreover, for a plate thickness comparable to the
obstacle diameter, this results in spallation from the
plate’'s opposite side.

Correct understanding of the dynamic processes
that proceed in the case of motion of easily deformed
shells makes it possible to improve the reproducibility
and to increase the efficiency of various explosive
devices that often operate in an unstable way [4].

2. EQUATIONS OF MOTION FOR A SHELL
The equations of motion for a weakly elastic shell
have the form
or, = pn+ Da(oczaSBrB), (1)

where r is the radius vector of the shell particles with
Cartesian Eulerian components X' and n is the vector of
aunit normal directed toward the reduced pressure. The
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subscript t implies the derivative with respect to time
for the constant Lagrangian coordinates&®, a =1, 2, and
the subscript B denotes a derivative with respect to &P,
The symbol 0 corresponds to the covariant derivative
over asurface, and o isthe surface density.

Below, pressure p is considered as constant and
equal to the initial pressure p,; in the general case, we
can assume it to be a function of t as well. We also
assume the square of the effective velocity of sound in

ashell material tobec? = K?po , Where p(§) isthe den-

sity of a shell material (considered as incompressible),
K is the dimensionless factor (for metallic shells, it is
close to unity). It is also useful to introduce the shell

thickness by the formulah = g :

L et a,5 be the components of the metric tensor of the
shell surface,

_ox
9&"’

_ (| i
Aup = O0jjXaXps o

)

xia represent the components of the vectors r, tangen-

My xXr,

tial to the surface so that n =

[det(ayg) = Ja.

Symbols aSB denate the initial contravariant com-
ponents of the surface metric tensor, which are used
with the factor ¢? asthe components of the specific elas-
tic-constant tensor. It should be noted that, here, we
consequently take into account all the elements of the
shell finite-deformation theory without linearization,
although the elastic term finally turns out to be linear.

Indeed, by virtue of the law of conservation of mass,
the Lagrange formula

G = 00«/% 3)

is valid. As above, zero subscripts denote the corre-
sponding initial values of the functions &“. Using for-
mulas (1) and (3), we obtain the vector equation

cand r; X r,| =
|r1><r2| |1 2|

00«/50"tt = pPo(ryxry) + (ﬁococzagﬁrﬁ)a, “4)

In the case of the shell with an edge, to get rid of the
possibility of gasleaking onto the forward shell surface
and of analysis of the edge rarefaction waves arising in
this case, we consider the shell as being placed into a
channel of the corresponding shape. Thus, the shell is
considered as a deformable piston. In the case of inter-
section of trgectories of shell particles, we make use of
amode of perfectly inelastic impact corresponding to
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summing the vector momenta of colliding materia
points. In this case, depending on the collision configu-
ration, both new surfaces and rods, or even individual
material points can be formed.

3. SPHERICALLY SYMMETRIC SOLUTIONS

Ignoring the pressure drop of pushing gas, we study
the acceleration of ashell with zero initial velocity. We
consider focusing on a homogeneous shell correspond-
ing to the external surface of a spherical segment of
mass M into a point under the action of an external con-
stant pressure p,. Let r, > h, betheinitia radius. Then,
Eq. (4), with allowance made for the spherical radial
coordinate r(t), yields

2
0=— &)

with theinitial data f (0) =0and r(0) = r,. Equation (5)
has the energy integral

-2 2

Sr e r S0t =0, ©
300, ro

which can be used for representing the solution in the

quadrature form, t(r).

It should be noted that, by virtue of the assumption

h - . .

= 599—9, the term containing c¢? in Eq. (5) is small.
0

In addition, the incompressibility of the shell material

renders it impossible to approach the center r = 0, and

it is necessary to be constrained by the radii r > h ~

(horg ).
The collapse time is determined by the relation

1
t, = /3"0“’]' dx 5=
2P0 ) /1 53+ 5(1-x0) o

After the collapse, according to the model of perfectly
inelastic impact, lumped mass M moves along astraight
line. In addition, in the absence of a pressure force due
to the zero surface area, the motion occurs at a constant
velocity.

Thus, by virtue of the inequality r, > h,, introduc-
tion of elasticity plays a negligible role and makes it
possible to use the results of [3]. In particular, the
results of optimization of the collapsing-segment
momentum with respect to the segment opening angle,
generally speaking, remain unchanged.

Based on the Hugoniot solution for the accel eration
of aplane piston, which is accompanied by the forma-
tion of a rarefaction wave, we present the estimate of
applicability of the p,-steadiness condition up to the
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Fig. 1. Dispersion curve.

instant of shell collapse. From Eq. (7), we obtain the

condition P > To

Pg ho
sity, which is quite feasible for a reasonably dense
material and a not-too-thin shell.

We also consider the problem of the motion of a
spherical segment in a perfectly rigid pipe. In this case,
it is necessary only to change the sign in Eq. (5) ahead
of the pressure term p,. We will show that an unlimited
energy accumulation takes place under the expansion.

, Where py is the throwing-gas den-

Let a hemisphere of radius r, be enclosed in a pipe
of the same radius at the initial instant of timet = 0.
Then, the hemisphere starts to accelerate under the
action of the pressure p, (weignore the shell elasticity).
A fraction of the shell material is pressed onto the pipe

, ro
surface, so that only asegment of radiusr(t) oD’
where 0 is the segment half-opening angle, remains
free at the current instant of time. Furthermore, motion
of acylindrical layer along the wall is not considered;
this motion depends on the conditions of the layer—wall

interaction. The segment areais S= 4T1T2sinzg .

The calculation of the mass and energy of the seg-
ment under consideration yields, respectively,

M = oS = 4n00r§sinzg,
.2 3 (8)
= ml = AMRofory 1 O 20

E—M2— 3 Dsin39 1DS'n2'

Thus, we have 8 — 0, M — 0, and E —

L easr oS- r3). It should be noted

M

that the segment axial momentum tends to zero: P =

N2ME ~ M — (.

GOLUBYATNIKOV et al.

Asr —» o, the asymptotic law of motion has the
N 600r§ 1

form
Oof
. t., = 3.013 [=>2°. )
Po (t—t,)° Po

The spherically symmetric solutions and their
asymptotic behavior also play an important role in
studying internal resonances. In addition, these solu-
tions can serve as tests for the approbation of various
approximate methods.

4. THE PLANE PROBLEM

In the case of a plane problem, we have x* = &3, all
other variables being functions of &' and t. We intro-
duce the complex Eulerian variable z= x' + ix* and also

use the mass variable p = [o,./a,d€!p," as the
Lagrangian coordinate to simplify the equations. Thus,
Po

A
of 2.
Then, the equations of mation take the form

o= . Thedimension of thevariable p isequal to that

~2 Kphg

zy = iz, + (E(W)z), € = (10)

0

It should be noted that material density p and initial
thickness h, can vary.

Complex Eq. (10) represents a set of two hyperbolic
equations. However, even for a constant value of ¢, it
has a strong dispersion, which in many respects charac-
terizes the unusual behavior of solutions with different
initial data.

We consider an elementary solution in the case € =
const, which locally corresponds to the cylinder expan-
sion. Let z= Ajexp(At — ikp), where A and A are com-
plex constants, and k > 0O is a real number. Then, we
arrive at the following dispersion equation:

A = k—EKe, (11)
which shows that, in particular, there is a critical wave
number K., = ~—12 corresponding to the equilibrium state

c
A=0(Fig.1).
For the wave numbers k < k, the quantity A isreal.

This corresponds to either the growth or attenuation
with time of wave amplitude Ajexp(At), therewith only

. Kk
one maximum for |A| at k= 7” takes place. Thus, there

is a wave with the mass length 4mic? (which we, here-
inafter, will call the resonance length) and the most rap-
idly growing amplitude. This resonance length charac-
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terizes the maximal instability of the process. In con-
ventional variables, thisyields the relation

res

Icoﬁodﬁl = 4mKaogh, = const, (12)
0

which approximately (because, generally speaking,

0,./a, is not constant) corresponds to the wavelength
| = 411KN,. The amplitude growth rate decreases down
to zero ask — 0. For example, at the constant o, and

asmall initial perturbation of the plane, quantity g, ,/a,

differsfrom aconstant by avalue of the second order of
smallness.

In the case of k > kg, the parameter A becomes
purely imaginary, A = iw, where w is the vibration fre-
guency of the amplitude being time periodic.

Evidently, each of the solutions of theindicated type
has a cylindrical symmetry and can describe a mono-
tonic expansion or compression, aswell asthe vibration
or equilibrium of a cylindrical shell. By virtue of the
linearity and uniformity of Egs. (10), it isalso possible
to complement their solution with a solution adequate
to the solid-state motion. Then, it is possible to speak
about the more complicated motion of a corrugated
shell (this solution was indicated in [1]). In this case,
deviations of the shell shape from a plane, even if they
are initially small, grow exponentially near the reso-
nance wavel ength, anticipating the average motion with
a constant acceleration.

5. THE THREE-WAVE RESONANCE

Asthe example of spherically symmetric solution (9)
shows, a shell speed up even more rapid than the expo-

perturbations of a plane lead to such a growth? In par-
ticular, the experiment with a thrown round plate sym-
metrically divided into six sectors indicates the forma-
tion of six depressions on an obstacle [1]. This fact, as
can be assumed, qualitatively correspondsto the wave-
length of avibration with an extremely rapidly increas-
ing amplitude. This implies the presence of a three-
wave internal resonance characteristic of quadratic
nonlinearity [5]. We now show that this resonance
resultsin a shell acceleration of the same order of mag-
nitude as in the spherical solution.

We assume that the initial perturbations are reason-
ably small, so the coefficientsin Eqg. (4) can be consid-
ered as constant. Thus, we have

My = go(rlxrz)"'czéaﬁras, o = gﬁ- (13)

We consider the problem of throwing a plane on
which a symmetric pattern of three standing waves is
DOKLADY PHYSICS  Vol. 49
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realized. The perturbed part of the solution is expanded
in terms of the three-periodic functions adequate to a
triangular lattice in sites on which, for example, the
maximaof vertical (along e;) perturbations are located.
Thus, thereis a group of the sixth-order rotations leav-
ing the given site at rest, along with a group of the cor-
responding translations.

The solution has the form

2
€0t
fo = 6,8% + 3920 1

r="ro+r +ry,

I\)II—\

3
z (A(t)e;—iB(t)k,)E"(E") +cc., (14)

EP = exp(ikk,”g"),
where the c.c. implies complex conjugation.

Here, it is accepted everywhere that k=K = 29—02 =
c

ﬁ , Which corresponds to plane waves with the most
0

rapidly increasing amplitude. The vectors k;, = e, kf’p)
(the sum of which is zero) are

Itisclear that the term r; isinvariant with respect to
permutations of vectors k,. The component ry; corre-
sponds to the sum of higher nonresonance harmonics
that increase more slowly. They appear as a result of
guadratic interaction between plane waves. In the case

of asinglewave, A=B=A,coshAtand A = gg

After substituting these formulas into Eq. (13) and
reducing similar terms in the expressions for the func-
tions EP, we abtain two equations for the complex func-
tions A and B,

A = gokEB——A+ kBZD

B—gok%A— B+= k@

where the bar symbol implies complex conjugation.
Theinitial conditions are

A(0) = B(0) = A,, A(0) = B(0) = 0,

which corresponds to symmetric interaction between
originally three plane waves of a small amplitude A,.

(15)
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Fig. 2. Schematic arrangement of lines of extrema compos-
ing the shell heights.

Itisclear that the best case of organizing shell accel-
eration is, in particular, area positive A,. In this case,
the solution to Egs. (15) is also both real and positive.
For complex A, = |A)|€°, the effect of the argument a,
generally speaking, results in the absence of an inter-
section between three lines of maxima of the functions
cos(kkgp) &P + ). For areal negative A,, we obviously
have the threefold minimum at the point &° = 0.

Equations (15) have the energy integral

142102 9Kbx . s 1,a2 2
SUA"+|B) —=-BA+ AB-5(IA" +1B")
3k 2 21 _

+ 35 (AB®+ AB’) g = Eq

and can be solved numerically.

Leta =0. Then, itisalso possible to propose asim-
ple approximation of the solution by elementary func-
tions with allowance made for asymptotic behaviors as
t — 0, . In the dimensionless form, we have a = kA,

b=kB, and T = ./gokt,

2
- agt
as=a+ [ﬁdjm 2!
?-tho
_ a2t a(2-1r°
b=a+ Us 2 4 :
20 O

GOLUBYATNIKOV et al.

The dimensionless time of attaining infinity is 1, =
5 DEDJM

Lo

The analysis of the solution shows that, at the points
corresponding to the lines of minima of the functions

coskk” €8 in which there is a backward convexity in

the initia profile, the collapse takes place, and the
materia plane strips lagging from the basic surface are
formed. In Fig. 2, the solid lines are the lines for the

maximum of the functions coskk{’ &8 and the dashed

lines represent those for the minimum of coskkép) &b,

These formations carry a momentum acting on an
obstacle. Comparison with the breakdown data
obtained in the above experiment enables usto find the
quantity |, = 41tkh, and, hence, to determine the con-
stant k for copper, which, in this experiment, attained
thevaluek = 1.03.
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INTRODUCTION

We propose to investigate nonlinear oscillations of a
swinging spring by the Poincaré-Birkhoff normal-form
method. Asiswell known, the system Hamiltonian can
be represented using this method [1, 2] as a quadratic
(unperturbed) part and a sum of terms with a power
higher than two. Using the canonical transformations,
the Hamiltonian system can be simplified in a manner
such that it becomes integrable up to the fourth-order
terms and higher. Thus, we obtain an asymptotic solu-
tion to the nonlinear problem. Conventional normaliza-
tion methods for a system with two degrees of freedom
are very cumbersome and require time-consuming cal-
culations [2—-6]. The change of variables is performed
either with the help of generating functions or using a
generating Hamiltonian.

In this study, we use the definition of the invariant
normal form given by Zhuravlev [7, 8], which requires
no separation into autonomous—NoNautonomous or res-
onant—nonresonant cases and is realized in the frame-
work of aunified approach. The asymptotic behavior of
the normal form is obtained by consecutive calculation
of quadratures. In contrast to the Zhuravlev method, we
employ a parameterized generating function [9, 10]
instead of the generator method and the generating
Hamiltonian.

DESCRIPTION OF THE INVARIANT-
NORMALIZATION ALGORITHM

First, we give definitions necessary for the desired
algorithm. The function f (t), representable as a finite
sum of harmonics,

f(t) = fo+ Z(aicosmit+ bsinwt),
i

is called the quasiperiodic function.

Ingtitute for Problemsin Mechanics,
Russian Academy of Sciences,
pr. Vernadskogo 101, Moscow, 119526 Russia

e-mail: mikezmn@mail.ru

We introduce two linear operators L(f) and L,(f)
defined on the set of quasi-periodic functionsf(t),

LEW) = fo, L(E@) = Y2

L et the Hamiltonian be given as:
H(qv p’ 8) = HO(q! p) + F(q! p! 8)1

F(a, p,€) = €F4(t, q, p) + €°F5(q, p) + ...,

which needs to be reduced to the norma form. Then,
for determining the normal form,

H(Q’ P) = HO(Q! P) + IE(Q! P, 8)1

F(Q,P,g) = eF1(Q, P) +£°F2(Q, P) + ...

and the canonical change of variables, it is required to
perform the following operations.

(1) To solvethe Cauchy problem for the unperturbed
Hamiltonian H,, and to present it as

q=q(X,Y), p=pXY),
q(0,X,Y) = X, p(0,X,Y) =Y.

(2) To find the expansion coefficients for the normal

form F; and for the function W;:

IEi(Q! P) = L(Rl(q(t! Qv P)! p(tv Qi P))!
l'I_Ji((?v P) = Ll(Rl(q(t! Qv P)! p(t1 Q! P))1
i=12,...,

where the values of R, are calculated for theith approx-
imation from the functions found in previous approxi-
mations. The formulas for the first two approximations
arethefollowing:

Ri(Q,P) = Fi(Q,P),

@)

Ri(Q,P) = Fo(Q, P)+5{Fy+Fi, W)

(3) We present the formulas for constructing the
solution after the first two approximations of the nor-

1028-3358/04/4911-0691$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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mg

X

Fig. 1. Formulation of the problem. A pendulum with two
degrees of freedom: aheavy point mass swinging in averti-
cal plane on aweightless spring.

mal form W = eW, = e2W, and the function F=¢F, =
€2F, have been found.

Let X =X(t,Qy, Py) and Y = Y(t, Q,, P,) bethe solu-
tion to the set of equations with the Hamiltonian

FXX,Y),

_OF o _ OF

X = 3y ¥ = 5x X(0) =Qo Yo(0) = Po

Then, according to the Zhuravlev theorem and using
the substitution of this solution into solution (2) with
the unperturbed Hamiltonian, we obtain the solution to

the set with the Hamiltonian H (Q, P):
Q = q(t! X(t! QOv PO)! Y(tv QO! PO))a

P = p(t, X(t, QO’ Po), Y(tv QO! PO))

The solution in terms of the initia variables is
obtained after the canonical change of the variables Q,
P — q, and p in the parametric form

1 1
q=x-3%, Q=x+3¥,
(3)

_ .1 _ 1
p _y+2L|JX’ P _y 2L|JX

Excluding parametersx and y, wefind the explicit form
of the transformation of variables on the order of small-
ness g3:

MQP)=Q—WAQPHéﬂuwgﬁ”,
@)
P(Q,P) = P+Wq(Q, P)—%{LP, Wb +... .

ZARIPOV, PETROV

FORMULATION OF THE PROBLEM
ON A SWINGING SPRING

We consider a pendulum with two degrees of free-
dom: a heavy point mass swinging in the vertical plane
on aspring (Fig. 1), the spring being weightless.

The formulation of this problem is presented, for
example, in[11, 12], in which methods of investigation
of the problem and certain results are described.
Because of the extreme complexity of the methods, itis
difficult to make a complete analysis. We here propose
a solution to this problem based on the method of
invariant normalization using the parametric change of
variables.

We apply the following notation: k is the spring
rigidity, | is the spring length in the rest position of the
load, and mis the load mass. We also assume that w =

ﬁ is the frequency of small oscillations for a mathe-
matical pendulum of length | and

Weintroduce a Cartesian coordinate system with the
origin at the point O (the load rest position) and with the
axes directed along vertica and horizontal lines (see
Fig. 4), Ixand ly being the load coordinates. The spring
length isIR, where

R = J(1+X)°+VY°.

ThespringtensionisT= kEI—ER—k,Whefelo isthe
length of the unloaded spring. On the other hand,
kEI—E — k = mg, because | is the rest-position length.

Substituting |, = kEII—D =k + mg into expression for T,
we have T = (k + mg)R — k. Therefore, it is clear that

A/k J;nr|ng is the frequency of load oscillations for the

undeflected spring, and [ is the ratio of this frequency
to w.

The components of the force acting on the load can
be written as

F, = mg—-—r%g—l(—), F, = _%/'
The Newton equations of motion are
mix = F,, mly = F,.
DOKLADY PHYSICS Vol. 49 No. 11 2004
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We also introduce dimensionless time T,

T = wt, m:ﬁ.

Then, the equations are written in the form

d’x
= = —pix— (W2 -3 -9 axD’

2y=

2 2 oR
o -y +(u —1)ay

. dx dy
Assuming u = It and v = It

first-order equations, which turns out to be the Hamil-
tonian set,

dx _o0H du_ OH

we pass to the set of

dy _9H v _ oH

dt ~ ou’ dt ~ 9x’ dt _ av’ at oy
with the Hamiltonian

2
= 2+ V) + (R -1) - (- D(R-1) -

The constant in H is chosen in such a manner that
H(0, 0, 0) = 0.

We study spring motion near the rest position at
large timest.

After replacement of X, y, u, and v by €x, gy, €u, and
ev and H by €2H, the Hamiltonian set remains in the
previous form, whereas H is transformed into

H = Hy+eF, +€°F, + O(e%),

Ho = 50+ v+ +y), = S(0°- DXy,

_1 2 Df_ 2.4
5(H 1)D4 St

THE NORMAL FORM

According to the algorithm described, we find the
general solution to the unperturbed set with the Hamil-
tonian H,

y(t) = Ycost + Vsint,

®)
v(t) = Vcost-Ysint.

X(t) = Xcosut+%sinut,

u(t) = Ucospt —puXsinut,

First approximation. We substitute the solution to
the unperturbed set into the function R, = F, =
2
“ —
2
(with respect to time) function R(t, X, Y, U, V). Then,

1 xy>. As a result, we obtain the quasiperiodic

DOKLADY PHYSICS Vol.49 No. 11 2004
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using the operators L and L,, we find the normal form
and the function W in afirst approximation:

F1 = L(Ry(t, X,Y,U,V)) =0,

W, = Li(Ru(t, X, Y,U,V)) (6)

_ (p. —1)(-2UV*— 2VXYp +UY (U -2))
20%(u* - 4)

Second approximation. We find the function R, =

F, + %{Fl, Y, }, where the braces correspond to the
Poisson brackets {f, q} = f,g, + f,9, — f,.0, -

result, we arrive at

f,9,.Asa

Ro(X, y U, v) _ 1y’ 2 +

2
iy p -1
ol ~* YD

8(p*—4u’)
x[—y*u® + 2y%v2 + 2y" + AxPy’p® + Bxyuv].

u-1

Instead of the argumentsx, y, u, and v, we substitute the
solution of unperturbed set (5). Then, we obtain the
quasiperiodic (with respect to time) function Ry(t, X, Y,
U, V). The values of the operators L(R,) and L,(R,)
determine the next approximation of the normal form,

Fa = L(Ry(t, X, Y,U,V))
_ 30— A+ UA (Y + V)
sp’(u’ -4)

@ —1)(8+u)(Y +V)
64p*(u*-4)

-1
64u° (W -4) (7
x (8UV’X + 16U°VY —8VY + 40UXY?

W, = Ly(Ry(t, X, Y,U,V)) =

—8VY? + 16UV XY —40UVYp® + 7V3Yp®

+32VX2YP® - B4AUXY P + VY3 p?
+V3ypt—sv Xyt + 7vy3ut).

AN INTEGRAL FOR THE SET OF EQUATIONS
OF THE NORMAL FORM
We integrate the set in new variables X, Y, U, and V

with the Hamiltonian Hy(X, Y, U, V) + F XY, U, V). It
follows from the Zhuravlev theorem that it is sufficient
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to find the integral of the set with the Hamiltonian F =
€2F,(X, Y, U, V). The set of equationsfor it hastheform

. w .
X = Flu, U = —pw, X,
Y = w,V,
V = _().)zY,
Y +V2 = A, uPX*+U% = B,

2 2
. = A3(u —1)e

A -4)’
- _p3W-De’ WD+ 8)e’
W, 2, 2 2, 2 :
4p (p°-4) 16p°(p° —-4)

It is easy to verify that this set has two integrals, Y? +
V2 =Aand pu>X, + U? = B. Therefore, we obtain alinear
set with constant coefficients (to be more precise, with
time-independent coefficients):

X+wiX =0, Y+wyY =0.

Its solution has the form

Ug .

X = X,Ccosw;t + —sinw;t,
0,

U = —X,w;SiNw;t + u,cosw;t,

Vo .

Y = Y,C0SW,t + —sinw,t,
W,

V = —y,w,Sinw,t + v,CoSw,t.

To obtain the complete solution, it is sufficient to sub-
stitute the found functions into solution (5) of the
unperturbed set. Thus, the solution is constructed with
an accuracy to O(e’). We write the final solution with
the transformed variables X and Y with the initial con-

ditions X(0) = X,, X(0) =0, Y(0) =Y,, and Y(0) =0 as
X=X %:osoo tcosut—glsinw tsinu%
0 1 l—l 1 ’

Y = Yy(cosw,tcost —w,sinw,tsint).

In the initial variables x and y, the law of motion is
obtained by transforming the formulasfor X, Y —= X, y
into parametric form (3) or explicit form (4), in which
the function W is determined from the expansion W =

ZARIPOV, PETROV

W, + &Y, + ...
by (6) and (7).

with expansion coefficients given

THE RESONANCE CASE

We assume that p?> = 4. Then, the expansion for the
Hamiltonian of theinitial setis

H = Hq+eF, +O(e%),

Ho = %(u2 +vi+aC+y?), Fy = gxy2 +2x°.

Here, the above algorithm is used. First, we find the
general solution to the unperturbed set with the Hamil-
tonian H,

X(t) = XcosZt+%sin2t, y(t) = Ycost + Vsint,
()

u(t) = Ucos2t-2Xsin2t, v(t) = Vcost-Ysint.

First approximation. We substitute the solution to
the unperturbed set into the function R, = F, =

g X(Dy(t)? + 2x(t)>. As aresult, we obtain the quasi peri-

odic (with respect to time) function R(t, X, Y, U, V) and,
using the operators L and L,, find the normal form and
the function W in the first approximation:

Fi=L(R(t X, Y,U,V)) = g(—vzx +UVY + XY?),
W, = Ly(R,(t, X, Y,U,V)) )

= 3(4xvv +3UV%+5Y°U).
64

Theintegral of the set. It is convenient to integrate
the set in the Birkhoff variables,

Lu+.aix,

2

These relations are the canonical change with the
valence 2i. The normal form of the first approximation

isH = Ho + F,

z, = z, = V+iY. (10)

3.2

16 (2122 - 2125) .

|:|O = i(22121+2222), IE = —€

The set of equationsfor the perturbed part of the Hamil-
tonianis

9F _ €3_ﬁ2122_ (11)

_OF _ 3.2
€56 % 3z, °8

2, = — = Z, =
17 oz, 1 2

DOKLADY PHYSICS Vol. 49 No. 11 2004
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Thisset hastwo integralsH, = const and F =const. The
first integral corresponds to the law of conservation of
energy,

2z)*+|z)* = C?,

(12)
where 2|z, ? is the energy of the first mode (horizontal
oscillations) and |z[? is the energy of the second mode
(vertical oscillations).

To obtain the equation for the second-mode energy,
we differentiate it twice and substitute the derivatives
z, and z, from Egs. (11):

d|z)* 3.2

e _ 2, 2, .2
el 2,2, + 207, = —8—8 (2,2, + 2,25),

d?|zy|? 3J2,,. :
d|t§| = _‘%/—_(22123 +42,2,7,)

9¢
= 55 (12" + 4z 2.

With the help of the law of conservation of energy, we
obtain the eguation for the second-mode energy,

d’lz)® _ 9¢?
—O|It§| = 35 (=317 + 2C7z]).

This equation can be interpreted as the motion of a
point mass under the action of aforce with the potential
-M(|z,P) (motion in a potential well).

The equation has the integral of energy

_ _ 9¢? 6 2(_ 4

At |zf = §C2, the potential energy attains a minimum

A o2 For 4 oo )
equal to —> Co¢2. For > Coe?2 < E < 0, the second

mode energy slowly periodically oscillates. For asmall
difference between E and its minimal value, the fre-

quency @ of these oscillationsis

= In2c? =3
= [M"5C” = ZeC.

The first-mode energy varies with the same frequency,
and, by virtue of thelaw of conservation of energy (12),
the energy is alternately pumped from one mode to the
other.

el
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Fig. 3. Numerical solution to the normal-form equations for
X(t) and Y(t).

In Fig. 2, we show the plot of the normalized poten-

tial energy %gl—;l- for C = 1. Along the abscissa axis, we
€

plot |z,. The dashed line presents an example of atyp-

ical value of the normalized energy :;LE =-0.02. Val-
€

ues |z, of the second-mode energy are limited by two
points of the intersection of solid and dashed lines. Cal-
culating the coordinates of two extreme points, we find
the energy-variation interval 0.154 < [z]> < 0.979 for
the second mode. According to the law of conservation
of energy (12), the energy-variation interval for thefirst
mode is 0.021 < 2|z > < 0.846.
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Fig. 4. Amplitudes A; and A, as functions of time.

In Fig. 3, we show the solution to the set of equa-
tions of the normal form for X(t) and Y(t) at € = 0.2 with
theinitial data

X(0) = 0.46, Y(0) = 0.392,
Y(0) = 0.

These values correspond to the above values of con-
stants C and E.

In Fig. 4, we show the dependences of amplitudes

A =27 = /x2+%1u2 and A, = 2| = Y2+ V2 for

the same example. According to the law of conserva-
tion of energy, the amplitudes are linked by the relation

X(0) = 0,

ZARIPOV, PETROV

472 + AL = C2. The amplitudes vary within the range
0.07 <A, <0.46 and 0.392 < A, < 0.989.

Figures 1-4 show how the energy of oscillationsis
pumped from one degree of freedom X to the other Y at
the resonance of frequencies.
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