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Low-frequency noise is an important parameter
allowing one to reveal and predict the quality and reli-
ability of semiconductor electronic devices [1–3]. In
recent years, many publications have been devoted to
the problems of noise spectroscopy and the physical
enigmas arising therein, corresponding international
conferences being regularly arranged [1].

It is possible to note a similarity in the approaches
used in the field of noise spectroscopy and conven-
tional optical spectroscopy that has existed for a long
time [4, 5]. This similarity is surprising, despite the
sharp distinction in both the technical means used and
frequency and wavelength ranges inherent in optical
and noise spectra. Electric-current and voltage fluctua-
tions observed at radio frequencies, and even in the
infralow-frequency range (106–1 Hz and lower down
to 10–5 Hz), are peculiar analogs of emission optical
spectra.

One feature of noise-emission spectra is their very
low intensity as compared to optical spectra. It is
important to understand whether it is possible to reduce
the difficulties associated with investigations of low-
intensity noise?

It is known that absorption analysis based on studies
of absorption spectra [5] is commonly used in the opti-
cal wavelength range alongside the emission spectral
analysis that replaces and supplements the former.
However, until now, the problem of the use of certain
frequency characteristics, which are similar in a physi-
cal sense to the absorption spectra, has not been posed
for the same purposes in the low-frequency range.

As we show below, the low-level low-frequency
electric impedance measured on the input terminals of
an object is such a frequency characteristic replacing
the direct noise measurements.

It is reasonable to analyze all types of low-frequency
spectra in radio-electronic devices in terms of classical
single-mode electric circuits with lumped parameters.
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In the simplest case, the object under study is a linear
electric two-terminal network. In terms of emission
spectroscopy, it is a lumped noise-voltage or noise-cur-
rent generator. In terms of absorption spectroscopy, the
same object is a passive absorber, the impedance in the
series representation of which can be written as Z( f ) =
Rs( f ) + iXs( f ). To reveal this impedance, it suffices to
use a harmonic probing signal generated in the continu-
ous mode by an independent generator with frequency f,
which is scanned or discretely varied within the range
of interest. Thus, the probing generator plays the role
similar to that of an optical monochromator. The
absorption-spectrum analyzer can be a bridge or other
electric circuit measuring the values of Rs( f ) and Xs( f )
on the basis of Ohm’s law, taken in its complex form.

Amplitudes Um of the probing signal should be rea-
sonably low so as to exclude nonlinear effects leading
to modifications in the electric and thermodynamic
parameters of the object. It is desirable that the value of
Um be lower than the thermal potential UT = kT/e, which
attains about 26 mV at the temperature T = 300 K.
(Here, k is the Boltzmann constant and e is the elemen-
tary electric charge.) Nevertheless, the test-signal
amplitude can exceed by several orders of magnitude
the mean-square value of the intrinsic-noise voltage of
the object in the frequency range being analyzed. By
virtue of this fact, the conditions of realization of
impedance absorption measurements are essentially
facilitated compared to measurements of the generated
noise.

The real part of the low-level (differential) imped-
ance Z( f) determined by the indicated method is phe-
nomenologically caused by a joint action of all the
types of dissipative processes that occur if a probing
signal is imposed on the object. It is necessary to
attribute to these processes those depending not only on
the electrical conduction of a material (with allowance
made for the concentration and mobility of all types of
charge carriers), but also on all macroscopic and micro-
scopic relaxation phenomena in the bulk and on the sur-
faces of the object.

We denote the spectral-density function of voltage
fluctuations at the open poles of a two-terminal network
under consideration as SU( f ) (expressed in units
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of V2/Hz). Then, according to the Nyquist theorem [6],
we assume that the ratio between the quantity SU( f ) and
the resistance Rs( f ) under the condition of thermody-
namic equilibrium of the object is independent of both
the frequency and the physical-body structure and
equal to 4kT, where T is the absolute temperature:

(1)

Equation (1) can be considered a similarity relation
between the impedance-frequency spectra and noise
spectra. There is a clear similarity between this depen-
dence and Kirchhoff’s law, which is well-known in
thermodynamics and electrodynamics. This similarity
implies the constancy of the ratio between the radiating
and absorptive capacities of physical bodies irrespec-
tive of their nature under the given conditions in an
arbitrarily wide wavelength range [7].

As was noted above, the resistance Rs( f ) entering
into Eq. (1) phenomenologically describes all types of
the dissipative processes proceeding in the two-termi-
nal network under consideration. For this reason, in
conditions of thermodynamic equilibrium, the thermal-
fluctuation emission spectrum SU( f ), being essentially
similar to the spectrum Rs( f ), includes all real acting
dissipative factors irrespective of their origin (including
deep levels, surface states, etc.) to the same degree.

Thus, the measurement of the frequency depen-
dence for the series resistance Rs( f ) at a fixed tempera-
ture T can serve as an alternative to direct measure-
ments of the noise emission spectrum SU( f ). Modern
measuring electronic equipment opens up reasonably
ample opportunities for such investigations.

Below, we give a brief description of the experi-
ments aimed at the direct verification of these concepts.
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Fig. 1. Low-frequency impedance spectral characteristics
Rs( f ) and Cs( f ) for sample 2 (2D213A diode) measured by
(1) E7-14 and E7-12 devices and (2) ICP RAS device.
Objects for the investigations are two-electrode
structures differing in type of semiconductor material,
in level and profile of doping, and in type of junctions.
The impedance spectra were investigated mainly with
E7-12 and E7-14 low-level immittance meters and a
PC-based impedance meter–analyzer developed in the
Institute of Control Problems (ICP), Russian Academy
of Sciences (RAS) [8]. The sine-wave-signal genera-
tors and electronic units involved in the E7-14 and
E7-12 devices make it possible to measure the imped-
ance and admittance at discrete frequencies of 102, 103,
104, and 106 Hz with probing-signal amplitudes of 40
and 25 mV. The use of a measurement device of the
ICP, RAS, considerably extended the potentialities of
the experiment, owing to a step variation of the fre-
quency within the limits of 10–2 × 105 Hz (the probing-
generator frequency is determined from the expression
2 × 106/N Hz, where N is an integer).

The major part of the measurements was performed
at a temperature close to 300 K, although, in certain
cases, we used liquid nitrogen (T = 77 K) for cooling
the structures. No direct-current bias voltage was usu-
ally fed to the structures, but comparative experiments
were also carried out with feeding direct and back bias.

The results of the impedance measurements using
the measuring setup described in [9] were compared
with the emission noise spectra for the same semicon-
ductor structures. The setup involved a nanovoltmeter
of the Unipan-273 type operating in the broadband
mode with a preamplifier (having the input resistance
of 108 Ω and the input capacitance of 2 pF). The nano-
voltmeter was connected to a U7-1 broadband amplifier
having a built-in low-frequency filter with discretely
varied cut-off frequencies equal to 10, 102, 103, 104, and
105 Hz. The noise spectrum was processed and
recorded by a computer with the use of a frequency–
time Fourier series calculated by the algorithm of the
fast Fourier transform. The spectral density of the
noise-signal voltage represented in V2/Hz units was
detected within the frequency range 1–105 Hz.

In Fig. 1, we show the typical results of measuring
the low-level resistance for a 2D213A silicon rectifying
diode. The direct-current bias voltage is equal to zero.
Attention is drawn to the plateau and the abrupt rise (by
more than five decimal orders of magnitude) of the
resistance Rs with decreasing the frequency within the
range between 1 MHz and 100 Hz. The capacitance Cs
also increases not less sharply, the rise region of the
characteristic Cs( f ) being shifted with respect to the
characteristic Rs( f ) toward lower frequencies.

The extremely abrupt increase in the resistance Rs
and capacitance Cs of the diode structure at low fre-
quencies is of principal importance for the subsequent
analysis. The indicated behavior of Cs( f ) and Rs( f )
curves is associated with neither an increase in the bar-
rier capacitance within the low-frequency range nor
DOKLADY PHYSICS      Vol. 49      No. 11      2004
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Fig. 2. Low-frequency noise spectrum SU( f )exp for sample 2 (2D213A diode) measured by the setup described in [9] and the cali-
bration noise spectra in (1) open-circuit and (2) short-circuit modes.
other physical anomalies. As shown in [10], these are
frequency dependences that are predicted with allow-
ance made for the existence of two discrete spatial
regions in a solid-state structure: the space-charge
region and quasi-neutral base region. The same imped-
ance spectra are generally intrinsic not only to semi-
conductor diodes, but also to other two-terminal net-
works with macroscopic electrical or technological
lamination.

The results of measurements of the noise spectrum
SU( f )exp for the same Si-diode sample are shown in
Fig. 2. To illustrate the features of the used measuring
setup [9] and the effect of external factors, the cali-
brated noise spectra are presented in the same figure.
These spectra were detected in the case of open (no-
load) and short-circuited terminals to which the object
under study was connected. It is seen that the fluctuation-
voltage spectrum of the diode has a pronounced ascend-
ing portion within the frequency region 100−105 Hz,
which is similar to the rise in the impedance spectrum
Rs( f ) shown in Fig. 1.

The quantitative comparison between the measured
spectra shown in Figs. 1 and 2 seems to be the most
interesting. For improving the accuracy of this compar-
ison, it is necessary to consider the inevitable distinc-
tions in the measurement conditions for the SU( f ) and
Rs( f ) spectra in the case of the same object under inves-
tigation and identical temperatures. The equipment
DOKLADY PHYSICS      Vol. 49      No. 11      2004
used in the impedance measurements detects the true
values of the resistance and capacitance with a small
relative error (usually lower than 0.5–1%) and is virtu-
ally free of effects of external fields. Therefore, the val-
ues of SU( f ) [determined from Eq. (1) on the basis of
the measured spectrum Rs( f ) after its multiplication by
the factor 4kT] correspond to the noise spectrum of the
object under consideration for the ideal disconnection
of its poles. At the same time, the experimentally
observed spectrum SU( f )exp is affected by both extrane-
ous electric and magnetic fields and the intrinsic noise
of the measuring setup, as well as by its finite input
resistance. At certain frequencies, the latter can be com-
parable to the object resistance Rs . It should also allow
for the effects of the input shunting capacitance and the
connecting cable. The latter capacitance can attain
100 pF at a cable length of about 1 m. These factors
should be taken into account by adding the frequency-
dependent term F( f) into Eq. (1). The calculation of this
term was performed using the spectra SU( f) obtained in
the open-circuit (no-load) and short-circuit regimes of
the object (see Fig. 2) on the basis of the principle of
superposition of mean-square values for noise voltages
and currents [11].

In Fig. 3, open circles and rhombuses repeatedly
show the results of the above measurements of the
impedance spectrum Rs( f ) (Fig. 1) multiplied by the
factor of 4kT. The plot obtained in such a manner satis-
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Fig. 3. Comparison of the measured noise spectrum shown in Fig. 2 with the noise spectrum of the same diode sample, which was
obtained on the basis of the impedance-measurement results (Fig. 1) using similarity relation (1). Closed points are plotted with
allowance made for the effect of both the intrinsic noise of the measuring setup and the connecting-cable capacitance. For 1 and 2
see Fig. 2.
fies similarity relation (1) and represents the voltage-
fluctuation spectrum that would be observed on the
open poles of the diode under consideration, provided
that an ideal voltmeter was used. Closed circles in
Fig. 3 show the calculated adjustment using the correc-
tion factor F( f ). An effect of external circuits and the
intrinsic noise of the measuring setup in the case under
consideration manifests itself at frequencies above
10 kHz. Here, this renders it impossible to measure the
noise with a spectral density below, approximately,
10−17 V2/Hz, although the spectrum SU( f ) of the given
diode attains at least about 10–20 V2/Hz, the factor F( f )
becoming distinct from unity.

We impose on this plot the measured noise spectrum
SU( f )exp from the same diode sample as shown in
Fig. 2. It is seen that, except for the portion close to the
industrial frequency of 50 Hz, this spectrum virtually
coincides with the spectrum SU( f ) recalculated from
the impedance spectrum Rs( f ). Our attention is
engaged by the fact that, for f < 104 Hz, the coincidence
of the spectra exists even without the use of the calcu-
lated correction. In the region f > 104 Hz, the experi-
mental spectrum is distorted more and more strongly
and approaches the plot for the short-circuit noise.

The same close quantitative correspondence of
impedance and noise spectra has been established in
experiments with other types of silicon structures and
cooled InSb-based photoresistances without an exter-
nal bias. Alongside investigations of single structure
samples, we performed measurements with sets of
devices, each being up to 30 units. The results have
shown that the sensitivity of impedance measurements
to the parameter spread is not worse than the sensitivity
of noise tests.

Thus, the experiments carried out in the framework
of the present study confirm the qualitative similarity
and numerical correspondence of the independently
measured noise spectra SU( f ) and low-level impedance
spectra Rs( f ) determined from Eq. (1) without an exter-
nal bias and under conditions of thermodynamic equi-
librium. This conformity manifests itself on plateau
segments that resemble white noise and in regions of
excess noise in which the fluctuation density SU( f )
increases by five to six orders of magnitude with
decreasing frequency.

The spread of parameters from sample to sample for
the same type of solid-state structures, which is effi-
ciently revealed according to distinctions in levels of
intrinsic low-frequency noise [1–3], is unambiguously
described by a variance of the resistances Rs( f ). For
this reason, the impedance low-level measurements can
be considered as a source of information that is compa-
DOKLADY PHYSICS      Vol. 49      No. 11      2004
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rable to—and, for a number of attributes, even sur-
passes—the noise measurements.
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Iron–silicon alloys with high iron contents are the
basis for the production of electrical-sheet steels. An
improvement in their magnetic properties is attained by
thermomagnetic or thermomechanical treatment. As a
result, a uniaxial magnetic anisotropy appears that has
an axis coinciding with an easy-magnetization axis. In
this direction, a decrease in the coercive force occurs,
the remanent induction increases, and the hysteresis
loop becomes more rectangular [1]. To explain the
induced uniaxial anisotropy in substitutional solid solu-
tions as a result of thermomagnetic treatment, the the-
ory of directed ordering of atoms was developed about
50 years ago [2–4].

According to this theory, the axial orientation of
local properties in substitutional solid solutions with a
cubic lattice can be caused by uniaxial defects repre-
senting pairs of identical atoms predominantly oriented
along one of crystallographic direction. At tempera-
tures sufficient for diffusion, but lower than the Curie
point TC, the atomic pairs occupy the lattice sites, pro-
viding a minimal angle between the pair axis and the
magnetization vector of a sample. The directional
ordering after cooling to room temperature is frozen by
virtue of the low diffusion mobility of the atoms.
Uniaxial anisotropy appears with an axis coinciding
with the direction of the external magnetic field acting
in the process of annealing.

This theory excellently explained the occurrence
and temperature stability of uniaxial magnetic anisot-
ropy. In addition, it has a number of consequences that
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have been repeatedly confirmed in experiments, for
example, that no pair ordering occurs in pure metals
and alloys with an isotropic long-range order and that
the treatment temperature should be lower than TC but
sufficient for diffusion of atoms. Quenching from tem-
perature higher than TC or annealing in a rotating mag-
netic field must suppress the directional ordering.

The atomic structure and properties of soft magnetic
alloys based on iron were intensely investigated for
many years [5–10]. However, there were no experimen-
tal studies that would either prove or rule out the theory
of directed ordering. Therefore, we have formulated the
task of confirming or ruling out by direct structural
investigations the existence of uniaxial anisotropic
defects in bcc single crystals of a soft magnetic iron–
silicon alloy having, as a result of treatment, an induced
magnetic anisotropy.

Single-crystalline samples in the form of thin disks
with the (100) plane cubic orientation were cut from a
single crystal grown by the Bridgman method. Samples
with the (110) Goss’ orientation were cut from grains of
sheet industrial steel.

The samples were treated to induce or suppress
magnetic anisotropy in the entire volume. Under
annealing and cooling in a permanent magnetic field,
i.e., under thermomagnetic treatment (TMT), one of the
easy-magnetization axes lying in the sample plane
(namely, the [001] axis) was isolated in a sample with
cubic orientation, and a magnetically isotropic state
was obtained by quenching at a temperature of 800°C.
Thermomechanical treatment (TMechT) with loading
applied along the easy-magnetization direction
increased the magnetic anisotropy in the [001] direc-
tion, while transverse loading maximally destroyed the
anisotropy. The efficiency of the treatment performed
was estimated according to both the domain structure
and the shape of the hysteresis loops [11]. In samples
with a cubic orientation, both magnetic anisotropy
along one of the [001] easy-magnetization axes and an
isotropic state were obtained after quenching. In sam-
ples with Goss’ orientation, maximal anisotropy after
004 MAIK “Nauka/Interperiodica”
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TMT and TMechT was observed along the [001] easy-
magnetization direction, whereas minimal anisotropy
was detected after application of a transverse alternat-
ing magnetic field or mechanical loading.

X-ray diffraction structure measurements were car-
ried out with a laboratory diffractometer equipped with
a four-circle goniometer. The long-range-order struc-
ture and the quality of single-crystal samples were
determined from analysis of Bragg-reflection profiles,
and the local atomic structure was identified from a
weak diffusive scattering measured between the princi-
pal reflections. To separate static and dynamic struc-
tural features, measurements were performed at room
temperature and at a temperature of 190 K. It was
shown that diffusive planes and rods that occur due to
phonon scattering become several times less intense at
low temperatures.

The profiles of the basic reflections have half-widths
close to the instrumental width. This fact indicates that
the bcc lattice is virtually close to an ideal one. No
dependence on the type of the action or direction of its
application was observed. The weak superstructural
diffuse peaks testify to the presence of B2-type order-
ings. The absence of peaks with semi-integer indices
points to the absence of the DO3 phase. The analysis of
the profile of superstructural reflections showed that its
half-width was narrower in the magnetic-anisotropy
direction and broader in the transverse direction.
Hence, the average ordering-region size [12] is larger in
the anisotropy direction and smaller across it; i.e., the
size distribution of clusters with the B2-type order has
an anisotropic shape (Table 1). Most likely, in a sample
with magnetic anisotropy, the longitudinal extension of
clusters is formed by pairs of B2 cells oriented predom-
inantly along the [001] axis. In a sample with isotropic
magnetic properties, we observed equiprobable distri-
bution of pairs of cells after quenching, at least, along
the [100] and [001] directions lying in the disk plane.

In samples with the Goss’ orientation of axes, both
the magnetic anisotropy and the extension of clusters
along the [001] axis increase along the easy-magnetiza-
tion axis after TMT or TmechT, accompanied by the
application of a permanent magnetic field or loading
(Table 2). The extension of clusters is likely associated
with both reorientation of B2-cell pairs and chain for-
mation.

Thus, we were pioneers in discovering a stable
correlation of the magnetic-anisotropy direction and
the anisotropy of the size distribution for regions with
B2 short-range order.

The superstructural peaks are shifted from calcu-
lated positions toward smaller diffraction angles: h =
2.84 and l = 2.87 instead of 3 for the (300) and (003)
coordinates, and l = 0.94–0.96 instead of 1 for the (001)
coordinate. This implies that the interatomic distances
are increased compared to the distances in the remain-
ing lattice, which can be explained by the local exten-
sion of the lattice around cells containing silicon atoms
DOKLADY PHYSICS      Vol. 49      No. 11      2004
(the B2-cell size is 3–4% smaller than that in the
remaining bcc lattice).

In [13], we qualitatively substantiated for the first
time shifts of superstructural peaks on the basis of esti-
mates of various contributions to the structural factor.
Later, using model calculations, we showed that the
clusters represented a chain of predominantly two B2
cells oriented along one of the easy-magnetization axes
and the lattice-extension region around them. As a
result of thermal treatment, they are distributed pre-
dominantly along the direction of the applied field or
load, thereby forming and stabilizing anisotropic mag-
netic properties. In other cases (without load and field,
or after quenching), the clusters are equiprobably dis-
tributed along the directions of the 〈100〉  type.

Axial anisotropy of a short-range order in samples
with magnetic anisotropy induced along one of the
easy-magnetization axes, which was observed using the
X-ray diffraction method, is experimental confirmation
of the validity of the directed-ordering theory.
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1. INTRODUCTION

Further development of methods of plasma polar-
ization spectroscopy [1, 2] is one of the urgent trends in
current investigations in plasma physics. Indeed, the
polarization properties of bright-line and continuous
radiation carry information on both the anisotropy of
the velocity distribution function of charged particles
and electric and magnetic fields in a plasma [1–3].
When there is a separate direction in the plasma, the
degree and sign of polarization depend primarily on the
type of observed atomic transition and, e.g., on the type
of the anisotropy of the velocity distribution function of
charged particles and energy.

In particular, polarization of radiation arises when
spectral lines are excited by an electron impact [1–4].
In this case, the observed polarization depends non-
monotonically on the velocity of beam electrons, reach-
ing a maximum for an energy of only several electron
volts above the excitation threshold [4]. Since the sim-
plest first Born approximation is inapplicable in this
energy range and does not provide satisfactory results
[2, 4–6], fairly accurate calculation methods are neces-
sary to describe this mechanism of causing the polar-
ization of spectral lines, which is important for the
plasma.

Various schemes of strong coupling methods in the
theory of electron–atom collisions have been proposed
and developed to describe this energy range. However,
their realization often requires laborious computations
[2, 3, 5–12]. At the same time, to provide a theoretical
basis for plasma polarization spectroscopy, it is neces-
sary to develop algorithms that do not require long
computation time and provide rapid analysis of vast
amounts of experimental data [1, 2].

In this paper, we propose a strong coupling scheme
that is based on the variable-phase method [13] and
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provides a fast and effective algorithm for calculating
near-threshold cross sections for the electron-impact
excitation of atoms [2, 3, 5–12]. To illustrate this
approach, we consider the problem of the electron-
impact excitation of a hydrogen atom to the first excited
level. As is known, the first formulations of the strong-
coupling method [5] were tested by solving in particu-
lar this problem. Although neutral hydrogen is the sim-
plest atomic target, this problem has important physical
features associated with the presence of the constant
dipole moment of the exited states of the hydrogen
atom. This property of the excited states of the hydro-
gen atom is responsible for the linear Stark effect in
electric fields [14]. As has been mentioned previously
[7, 8], this gives rise to a peculiar momentum depen-
dence of near-threshold excitation cross sections. In
this work, it was shown that the existence of the dipole
moment of an excited state of the hydrogen atom leads
to the orientation of the atom in the electric field of the
scattered electron near the excitation threshold.

2. STRONG COUPLING EQUATIONS

The Schrödinger equation for the electron scattering
on the hydrogen atom in the c.m.s. in atomic units has
the form [1–15]

(1)

Here, r and R are the radius vectors of the atomic and
incident electrons, respectively; ∆r and ∆R are the
Laplacians with respect to the coordinates of the atomic

and incident electrons, respectively;  is the energy of

the bound state of the atomic electron;  is the kinetic

energy of the incident electron; and Ψ(r, R) is the total
wave function of the two-electron system. Equation (1)
does not include relativistic corrections [14].

∆r ∆R k0
2 λ0

2– 2
r
--- 2

R
--- 2

r R–
---------------–+ + + + Ψ r R,( ) 0.=

λ0
2

2
-----

k0
2

2
----
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Disregarding exchange, one can represent the total
wave function of the system as the atomic-state expan-
sion [5]

(2)

where ψp(R) is the wave function of the incident elec-
tron, and the wave function ϕp(r) of the atomic electron

with energy –  satisfies the equation

(3)

Expanding ψp(R) in the spherical functions

(4)

where li and mi are the orbital angular momentum of the
incident electron and its projection, respectively, one
obtains the following set of strong-coupling equations
for the radial wave functions (R) (see, e.g., [5]):

(5)

In the representation of the conserving total angular
momentum L of the system of the atomic and incident
electrons, this set takes the form [5]

(6)

where np, lp , and mp are the principal quantum number,
orbital angular momentum, and projection of the orbital
angular momentum of the atomic electron, respectively.

Thus, to solve the problem under consideration, one
should solve the set of strong-coupling equations with
given boundary conditions at infinity and determine the
S matrix and, then, the cross sections [5].

3. VARIABLE-PHASE METHOD
It is convenient to solve the strong-coupling equa-

tions by the variable-phase method, which enables one
to transform equations for radial wave functions to

Ψ r R,( ) ϕ p r( )ψp R( ),
p

∑=

λ p
2

2
-----

∆r λ p
2– 2

r
---+ ϕ p r( ) 0.=

ψp R( ) 1
R
---χ plimi

R( )Ylimi

R
R
---- 

  ,
li mi,
∑=

χ plimi

d2

dR2
---------

li li 1+( )
R2

--------------------– kp
2+ χ plimi

R( )

=  U plimi

ql f m f R( )χql f m f
R( ).

q l f m f, ,
∑

d2

dR2
---------

li li 1+( )
R2

--------------------– kp
2+ χL

nplpli
R( )

=  UL nplpli

nqlql f
R( ) χL

nqlql f
R( ),

nq lq l f, ,
∑

equations for the S matrix [13]. Indeed, the asymptotic
behavior of the solution of system (6) at infinity is
related to the real elements of the reactance matrix K as

(7)

Here, yb(R) and zb(R) are the linearly independent solu-
tions of set (6) in the absence of the interaction poten-

tial (R) and indices a and b denote the set of quan-
tum numbers determining a certain scattering channel
in Eqs. (6). The reactance matrix K can be expressed in
terms of the S matrix by the known transformation [13].

Then, the reactance matrix and S matrix are deter-
mined in the variable-phase method from the equa-
tions [13]

(8)

(9)

Here, y(R) and z(R) are the diagonal matrices of the lin-
early independent solutions of Eqs. (6) in the absence

of the interaction potential (R) and the matrices
K(R) and S(R) are the reactance matrix and S matrix,
respectively, for the truncated potential U(R')θ(R – R').
Thus, the basic advantage of the variable-phase method
is the transition from the calculation of wave functions
to the calculation of the reactance matrix and S matrix,
which are directly related to physical observables.

4. NUMERICAL CALCULATIONS

By the variable-phase method, the S matrix was cal-
culated in the basis of the atomic states 1s–2s–2p. The
differential cross sections for electron scattering are
expressed as [5]

(10)

in terms of the transition probability matrix T, which is
related to the S matrix by the known expression

(11)

χa R( ) yb R( )δab

b

∑ zb R( )Kab.
b

∑–→

Ua
b

dK R( )
dR

-----------------

=  y R( ) K R( )z R( )–[ ] U R( ) y R( ) z R( )K R( )–[ ] ,–

K 0( ) 0;=

dS R( )
dR

-------------- = 
i
2
--- y R( ) iz R( )–[ ] S R( ) y R( ) iz R( )+[ ]+{ } U R( )–

× y R( ) iz R( )–[ ] y R( ) iz R( )+[ ] S R( )+{ } ,

S 0( ) 1.=

Ua
b

dσnplpmp

nqlqmq

do
------------------

4π2

kp
2

--------=

× Ylimi
*

kp

kp

----- 
  Yl f m f

kq

kq

----- 
  i

li l f–
Tnplpmplimi

nqlqmql f m f

li mi l f m f, , ,
∑

2

Tnplpmplimi

nqlqmql f m f Snplpmplimi

nqlqmql f m f 1.–=
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Table 

kp L , 1s–2s , 1s–2p , 1s–2p

0.9 0 0.222 0.220917 0.157 0.157356 –

1 0.080 0.0789325 0.029 0.0285163 0.366 0.367683

2 0.321 0.322354 0.055 0.0558210 0.573 0.571146

3 0.007 0.00720635 0.0006 0.000609303 0.024 0.0238816

4 0.0003 0.000259319 0.00001 1.32063(–5) 0.001 0.00133054

1.0 0 0.168 0.168277 0.100 0.100026 –

1 0.145 0.142817 0.145 0.144492 0.142 0.145180

2 0.157 0.157611 0.051 0.0519812 0.755 0.753796

3 0.048 0.048530 0.005 0.00524181 0.212 0.211887

4 0.008 0.008266 0.0005 0.000479245 0.048 0.047540

1.5 0 0.025 0.025004 0.037 0.0373480 –

1 0.086 0.085876 0.018 0.0186089 0.014 0.014688

2 0.020 0.020010 0.003 0.00300071 0.163 0.163139

3 0.007 0.006701 0.007 0.0074267 0.247 0.247739

4 0.011 0.011207 0.007 0.00707383 0.221 0.221109

5 0.011 0.010597 0.004 0.00424686 0.163 0.163174

6 0.007 0.007474 0.002 0.0021752 0.113 0.112280

2.0 0 0.010 0.010168 0.010 0.010537 –

1 0.038 0.037741 0.004 0.003646 0.003 0.003194

2 0.025 0.025426 0.0003 0.000322 0.038 0.038412

3 0.011 0.010711 0.0025 0.002473 0.080 0.080418

4 0.005 0.004591 0.005 0.005019 0.104 0.104203

5 0.003 0.003357 0.006 0.005697 0.108 0.108234

6 0.003 0.003308 0.005 0.004987 0.100 0.100079

σL 20L
10L σL 21L 1+

10L σL 21L 1–
10L
Here, indices p and q specify the initial and final states
of the atomic electron, respectively, and indices i and f
specify the initial and final states of the scattered elec-
tron, respectively.

The integrated partial cross section is determined by
integrating over the scattering angles dο, summing over
the projections of the angular momentum of final states,
and averaging over the initial states:

(12)

(13)

The table shows partial cross sections calculated for
various orbital angular momenta L of the system and

σL nqlql f

nplpli

π
kp

2
----- 2L 1+

2lp 1+
---------------- TL nqlql f

nplpli

2
,=

σL nqlq

nplp
σL nqlql f

nplpli
.

li l f,
∑=
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various electron velocities kp in comparison with (left
columns) data taken from [15]. As is seen, the results
differ by less than 10%. Orbital angular momenta equal
to and less than two make the dominant contribution to
the inelastic scattering cross section near the threshold.
Indeed, the contributions from higher orbital angular
momenta are immaterial, because the strong dipole
attraction of the hydrogen atom is compensated by the
centrifugal potential:

(14)

Therefore, Lmax = 2 for n = 2. Figure 1 shows the inte-
grated partial cross sections for 1s–2s and 1s–2p excita-
tions for L = 0–6.

3
2
---n n1 n2–( )

n1 n2,
max

3
2
---n n 1–( ) 1

2
---Lmax Lmax 1+( ).≤=
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Fig. 1. Partial cross sections for the (a) 1s–2s and (b) 1s–2p electron-impact excitations of the hydrogen atom.
Let us consider the parabolic quantization of the
atom along the momentum of the outgoing electron. In
this case, the total cross section takes the form

(15)

where the subscript F means quantization along the
momentum of the outgoing electron. Figure 2 shows
the calculated total cross section for excitation to states
nq = 2 for the indicated quantization of the atom. 

As is seen, the cross section for the excitation of the
parabolic atomic state with n1q = 1 and n2q = mq = 0 dom-
inates in the near-threshold region due to the presence

σ
n1qn2qmq

F n1 pn2 pmp

π
kp

2
----- i

l f–
2l f 1+ Tn1 pn2 pmplimi

n1 pn2 pmql f 0

l f

∑
2

,
li mi,
∑=

0.4
Ep
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0

Fig. 2. Partial cross sections for the electron-impact excita-
tion of the hydrogen atom from the ground state with np = 1
to the parabolic state with nq = 2 and quantization along the
final electron momentum.
of the attractive potential in this state. The cross sec-
tion for the atomic state with a repulsive potential is
minimal.

5. CONCLUSIONS

A new algorithm for solving strong coupling equa-
tions, which is based on the variable-phase method [13],
has been proposed and realized for calculating cross
sections for electron-impact excitation of a hydrogen
atom. The advantage of this algorithm is that it deals
directly with the S matrix and significantly simplifies
the numerical procedure and its analysis. It has been
shown that orbital angular momenta equal to and less
than two make the dominant contribution to the inelas-
tic scattering cross section near the excitation threshold
for n = 2. Cross sections tend toward a constant when
approaching threshold kq  0. This anomalous
behavior of the cross section is associated with the lin-
ear Stark effect [7]. The dipole moment of the atom is
oriented along the momentum of the outgoing electron,
because the states with attractive and repulsive interac-
tions of the outgoing electron with the atom make the
maximum and minimum contributions, respectively, to
the total excitation cross section near the threshold.
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Interest in the nonlinear electrodynamics of vacuum
has been recently renewed [1, 2], because the sensitiv-
ity of current measuring instruments has closely
approached the level that is required for detecting its
effects [3, 4]. Therefore, after the first nonlinear elec-
trodynamic experiment [5] recently carried out in Stan-
ford, other experiments should follow in the near future
that will make it possible to study the basic properties
of the nonlinear interaction of electromagnetic fields in
vacuum.

In our opinion, the measurement of the delay time of
electromagnetic signals that have mutually orthogonal
polarizations and have passed through the strong mag-
netic field of a pulsar or a magnetar is one of the most
promising experiments for such a study. Let us analyze
this problem more comprehensively.

Let us consider a neutron star (pulsar or magnetar)
that has a strong magnetic field, radius Rs, and gravita-
tional radius rg. We take a coordinate system such that
its origin is at the center of the star and a source and a
receiver of electromagnetic radiation lie in the XOZ
plane. Let the source and receiver be at the points (x = b,
y = 0, z = –a) and (x = b, y = 0, z = a) symmetric with
respect to the XOY plane. Since the magnetosphere of
most neutron stars is filled with matter, we assume that
the source (e.g., a Seyfert galaxy) emits in the X and
gamma bands. The magnetosphere of pulsars and mag-
netars is transparent in the latter band.

According to the parameterized post-Maxwellian
electrodynamics of vacuum [6], electromagnetic radia-
tion propagates along the geodesics of a certain effec-
tive spacetime, the metric tensor gik of which depends
on the polarization of this radiation due to birefringence
of vacuum in strong electromagnetic fields. Therefore,
an arbitrarily polarized electromagnetic signal in an
external electromagnetic field splits into two signals
carried by normal waves with mutually orthogonal
polarizations along different rays. The metric tensor of
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the effective spacetime for these normal waves in the
parameterized post-Maxwellian approximation has the
form

(1)

where  is the metric tensor of the background
spacetime, η1 and η2 are the post-Maxwellian parame-
ters [6] of the nonlinear electrodynamics of vacuum,

ξ =  ~ 10–27 G–2, and the subscripts of the electromag-

netic field tensor Fnk are lifted by the metric tensor .

Since neutron stars have a sufficiently strong gravi-
tational field, the Schwarzschild solution should be

taken as the metric tensor  of the background space-
time for the problem under consideration. In the isotro-
pic spherical coordinates, this solution with post-New-
tonian accuracy has the form

Assuming that the magnetic dipole moment of the
neutron star generally has the components mx =
msinα cosβ, my = msinα sinβ, and mz = mcosα, we
write the tensor Fpk in the spherical coordinate system
in the form

gik
1 2,( ) gik

0( ) 4η1 2, ξFipF·k
p·,–=

gik
0( )

1

Bq
2

-----

g 0( )
kn

gik
0( )

g22
0( ) r2g11

0( ), g33
0( ) g22

0( ) θ,sin
2

= =

g00
0( ) 1

rg

r
----–

rg
2

2r2
-------, g11

0( )+ 1
rg

r
----

3rg
2

8r2
-------+ + .–= =

F12 Frθ
m

r2
------- α ϕ β–( ),sinsin–= =

F32 Fϕθ
2 m θsin

r
----------------------= =

× θ αcoscos θ α ϕ β–( )cossinsin+{ } ,

F13 Frϕ
m θsin

r2
-------------------= =

× θsin α θcos α ϕ β–( )cossin–cos{ } .
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The motion of photons in the pseudo-Riemannian
spacetime with metric tensor (1) proceeds along the
geodesics of this space and is described by the equa-
tions

(2)

where km =  and σ is the affine parameter.

For m = 0, Eq. (2) takes the form

and is simply integrated as

(3)

The remaining equations of system (2) take the form

(4)

dkm

dσ
--------- Γ pn

m kpkn+ 0,=

dxm

dσ
---------

dk0

dσ
--------

rg

r2
----k0k1+ 0=

k0 1
rg

r
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rg
2

2r2
-------.+ +=

ṙ̇ r θ̇2 ϕ̇2 θsin
2

+[ ]–
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2r2
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2r2
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+ θ α ]coscos 2 ṙ2– r2 θ̇2 ϕ̇2 αsin
2

+( )+
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where a dot over a symbol means it is derivative with
respect to σ.

One more equation follows from the fact that the

four-vector kn must satisfy the condition knkm = 0,
which is the first integral of the system of Eqs. (2). We
solve these equations by successive approximations
with respect to small parameters of the problem,
assuming that a signal is emitted for σ = 0 from the
point (x = b, y = 0, z = –a) and passes through the point
(x = b, y = 0, z = a). The substitution of the expressions

into Eqs. (4) yields
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w

For the nonlinear electrodynamic part, we obtain
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Electromagnetic signals arrive at the receiver for the σ
value,
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Integrating Eq. (3), we obtain

Assuming that a @ b > Rs, we obtain the time of non-
linear electrodynamic delay in the form

This quantity for typical pulsars and magnetars may
reach a measurable value of 0.2 µs.
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In this study, a differential equation describing the
dynamics of the crystal-surface development in a vis-
cous vitreous substance is derived from the solution of
the variational problem with a mobile boundary. It is
shown that, in this case, the heterogeneity of viscosity
is a very important factor.

The transversality equation is analyzed, and its
physical solution describing the development of a crys-
tal in both time and space is found.

Previously [1, 2], we have proposed a general
approach for the mathematical description of the crys-
tallization-dynamics development. This approach was
based on the assumption of the stochastic variation of a
solid-phase nucleus and its subsequent growth from the
standpoint of linear-size crystal evolution [1]. Later,
in [2], a technique for analysis of the dynamic evolution
of the nucleus was proposed that used a synergetic
approach based on the general expression for the dissi-
pative function. In this connection, we would like to
note that the equation of motion obtained in [2] gener-
ally describes only a trajectory of motion for a certain
abstract point on the surface of a future crystal. How-
ever, the equation determining the surface z(x, y, t)
(x and y are the coordinates, and t is time) was not pre-
sented in an explicit form. This disadvantage is elimi-
nated in this study devoted to the derivation of the evo-
lution equations of a solid-phase nucleus, which allows
us to describe arbitrary (including rather complicated)
surfaces of growing crystals. 

We write the general expression for the dissipative
function, which is similar to that in [2], as

(1)

where Bikln is the dimensionless tensor of the fourth
rank; the subscripts i, k, l, and n take the values x, y, and
z, and the repeated subscripts imply summation, with

Q̇
Bikln

2η0
---------- v i∇ kηMlMnd3x,

V

∫=
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the summation sign being omitted; and v i are the veloc-
ity components of very small particles (we call them
crystallons) adhering to a fluctuation formed nucleus of
the future solid phase. The angular momentum of these
particles is M = m[v × r], where m is the particle’s mass,
η is the viscosity, and η0 is the constant with the dimen-
sion of viscosity.

We introduce the total energy loss as an integral of
expression (1) over time:

(2)

where the volume element is dΩ = dx dy dz dt.
We now require that, in a stationary case as t  ∞,

the dissipation will be minimal and represent the sta-
tionary equation of motion in the form

(3')

Thus, the problem consists in calculating the varia-
tional derivative for expression (2).

In order to demonstrate the calculation technique
and the approach in itself, we choose the tensor Bikln in
a simplified form—namely, we assume that Bikln =
Bδikδln . 

As a result, we obtain, from expression (2),

(3)

Next, we transform the integrand in (3) using integra-
tion by parts in the following manner. We represent it as

By definition, the angular momentum is M = m[v × r].
Therefore, it is easy to show that the latter term ∇ ·
(vM2) identically vanishes. As a result, using the
Gauss–Ostrogradskiœ formula, we can transform the

Q = 
Bikln

2η0
---------- v i∇ kMlMn Ω,d∫

δQ
δr
-------

z x x y t, ,( )=

0.=

Q = 
B

2η0
--------- v∇η( )M2 Ω.d

t0

t1

∫
V

∫

v∇η( )M2 ∇ η vM( )2 η∇ vM2( )⋅ .–=
004 MAIK “Nauka/Interperiodica”
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volume integral to the integral over the surface of a
growing (!) solid nucleus.

In so far as the volume changes with time and its
boundary (the surface Σ) moves while varying func-
tional (3), it is necessary to solve the problem involving
a mobile boundary. This implies that the expression for
the variation of the functional δQ should be represented
as a sum of two integrals,

(4)

Taking into account the above comments, we obtain

(5)

The volume variation is δV = |[n × δr]|σ, where σ is
the surface area. From this, it follows that

(6)

where δl2 = δx2 + δy2 + δz2 and the direction cosines of
the vector of the surface normal are conventionally
given by the relations

The angular-momentum variation is

where δv = . The integration of relationship (5) by

parts with respect to time results in a doubled value of
δM: δM  2m[v × r]. For the scalar product MδM,
we have

(7)

Assuming that

and taking into account expressions (6) and (7) and the
above statement following from the condition δQ = 0,

δQ B v∇η( )M2 Ω B ∇ vηM2( ) Ω.d

t0
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∫
V

∫d+d

t0
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V δV+

∫=
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we find the transversality equation for our problem:

(8)

Thus, we have obtained the evolution equation for the
surface Σ. This equation makes it possible to describe
not only the shape of the surface, but also its further
evolution with time. Below, we consider a simple case.

Let the viscosity gradient be directed along the

z axis; i.e., ∇η  = , 0, , and the crystal growth-

rate vector have one component and be also directed

along the z axis  = , 0, . As a result (after

reducing by ), we obtain from (8) the following con-
siderably simpler equation:

(9)

where a = . It should be noted that, here, we used

explicit expressions for direction cosines of the normal
to the surface.

In Eq. (9), it is convenient to pass to the polar coor-
dinates x = rcosϕ and y = rsinϕ. As a result, we obtain

(10)

Assuming that, near the crystallization temperature Tcr ,
the latter term in the right-hand side of Eq. (10) can be
ignored and provided that the function z is independent
of the angular variable ϕ, we arrive at the quite simple
equation,

Upon separating the variables and integrating, we find
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the solution,

(11)

where C(t) is a certain function of time, and the factor 2
is introduced for the sake of convenience.

Since the crystal viscosity at surface temperature T

follows the Fogel–Fulcher law [3], η = 
(where  is a constant with the dimension of viscosity,
∆ is the activation energy or, in other words, the barrier
through which atoms of liquid tunnel into the solid
phase; we assume that the Boltzmann constant kB is
unity). Further, by virtue of a large value of η and also
considering the parameter a to be large (a @ 1), from
Eq. (11), we find the following simpler approximate
equation:

(12)

Integrating this equation over the variable z, we arrive
at

(13)

where A(t) is one more function of time. Furthermore,
resolving Eq. (13) with respect to z, we have

(14)

For finding C(t) and A(t), it is necessary to use an
additional equation that, according to [2], can be rep-

resented in the phenomenological form M = .

Using Eq. (3), we obtain, as a result, the equation for
extremals,

(15)

Its solution is

(16)

From here, we find, for the x component,
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We now choose the simplest variation law for the coor-
dinates: x = t and y = t. Then, we can write the
equation for the coordinate z,

(17)

Assuming the constant B to be small (which is, in fact,

true), it is possible to take exp  ≈ 1 and to write

the solution of Eq. (17) as

(18)

where D is the integration constant.
We choose the solution to Eq. (14) in the form

(19)

and assume that A(t) = 0.
Solution (19) is valid for surface boundary points.

Therefore, to satisfy both solution (19) and (18), we
choose D = v 0 , where v 0 is the growth rate of the coor-
dinate z at t = 0, and z(0) = z0 . As a result of sewing both
solutions, we arrive at the function C(t),

(20)

where the parameter α is α = .

By virtue of α @ 1, solution (19) can be approxi-
mately written as

Using Eq. (20), we finally obtain

(21)

As is seen from the simple analysis of the solution,
the nucleus is a needle (this is provided by the large
value of the parameter α), which begins to grow at the
instant of time t = 0 at the point z0 for r = 0. Then, it
attains a certain size L along the z axis converging to the
point r = 0. The time required for the growth is deter-
mined from Eq. (21), and it turns out to be

(22)
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It is necessary to emphasize that, due to the chaotic
appearance of future solid-phase nuclei, their localiza-
tion over the substrate area is characterized by determi-
nate chaos (see, for example, [4, 5], where the syner-
getic theory is developed for homogeneous and inho-
mogeneous fluctuations of the density and temperature
in the bulk of liquid). In each of these i areas, a solid
needle starts to be formed and dynamically developed
(irrespective of the other needles). Thus, the similar
process has a multivariate character, but, due to the sta-

Substrate

T

L1

∆

L2

Schematic representation of a developing crystal with the
shape of a double-edged needle. The number of needles is
large due to the stochastic nature of nucleation of the crys-
tallization areas chaotically scattered over the substrate sur-
face. For a chosen needle, the directions of the z axis and
temperature gradient are shown.
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tistical independence of each needle, can be described
individually using the approach mentioned above. (By
the way, the formation of such needles over a substrate
was also observed in experiments.)

To conclude, once again, we pay attention to three
important points.

The general transversality condition is found, which
enables us to describe virtually arbitrary growth
dynamics and the surface shape of crystals being
formed inside a certain vitreous substance. The com-
plete set of Eqs. (8) and (12) of the variational problem
is solved. Dependence (21) of the surface shape on the
coordinates and time (see figure) is analytically deter-
mined. An estimate (22) of needle formation time is
presented.
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Analysis of the Majorana properties of neutrino [1]
is one of the key problems of the physics of weak pro-
cesses. Majorana neutrino models have been developed
in two variants: (i) in a variant initiated by Pontecorvo [2]
with left and right (sterile) neutrinos and (ii) in a variant
involving neutrinos of different generations [3, 4]. In the
former variant, the neutrino Lagrangian includes Dirac
(mD) and Majorana (mL, R) mass terms of the form [5–9]

(1)

which is determined by the general symmetry proper-
ties. This procedure for the introduction of the Majo-
rana properties of particles is quite general. However,
physical foundations for the joint description of Majo-
rana and Dirac properties and choice of nL(x) in
form (1) remain unclear. A modernization of this vari-
ant of Majorana models, which is based on special
Pauli transformations providing such a foundation, is
proposed in this paper (see also [10]).

As was shown by Pauli [11], for fermion fields with
zero mass, there are the transformations

(2)

–2Lm x( ) mD ψR x( )ψL x( ) ψR
c x( )ψL

c x( )+( )=

+ ψR x( )mRψL
c x( ) ψR

c x( )mLψL x( ) h.c.+ +

=  nL
c x( )M̂nL x( ) h.c.,+

nL x( )
ψL x( )

ψL
c x( ) 

 
 

, M̂
mL mD

mD mR 
 
 

,= =

ψ' x( ) e
iγ5χ /2

aψ x( ) bγ5γ2γ4ψ
T x( )+( )= ,

a 2 b 2+ 1,=
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that conserve the commutators of a field and include
chiral transformations (type II according to Pauli) and
pure Pauli transformations (type I). The latter transfor-
mations for a = eiϕ/2 and b = 0 correspond to phase
transformations. In terms of the generalized two-com-
ponent function Ψ(x) and operators , i = x, y, z, intro-
duced as

(3)

relations (2) for a = eiϕ/2cos  and b = eiϕ/2e–iφsin  have

the form

(4)

where

Chiral transformations S(χ) form the group U(1),
and Pauli transformations compose the group SU(2).
The latter group includes rotations S(ϕ) about the kz

axis and rotations S(φ, θ) of vectors k of the Pauli iso-
space, which are specified by Euler angles θ and ϕ,
toward the kz direction. Two-component function Ψ(x)
can be also taken in another form. In this case, the form
of Pauli transformations (4) must be modified.

The conservation of the form of Pauli transforma-
tions under the CPT transformation [12, 13] is a natural

κ̂ i

Ψ x( )
ψ x( )

γ5γ2γ4ψ
T x( ) 

 
 

, κ̂ x
0 +1

+1 0 
 
 

,==

κ̂ y
0 i–

+i 0 
 
 

, κ̂ z
+1 0

0 1– 
 
 

,==

θ
2
--- θ

2
---

Ψ' x( ) e
iγ5χ /2

e
iκ̂ zϕ /2

e
i φκ̂xsin– φκ̂ycos+( )θ/2Ψ x( )=

=  S χ( )S ϕ( )S φ θ,( )Ψ x( ),

S φ θ,( )κ̂S+ ϕ θ,( ) κ̂ z,=

κ̂ θκ̂zcos φcos θκ̂xsin φ θκ̂y,sinsin+ +=

κ̂ θκ̂zcos φcos θκ̂xsin φ θκ̂y.sinsin+ +=
004 MAIK “Nauka/Interperiodica”
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physical condition. This condition leads to the follow-
ing relation between the phases ηP and ηT of the P and
T transformations, respectively:

(5)

where b ≠ 0 is arbitrary. This relation is consistent with

the condition  = –1 and  = 1 for the phases of dis-
crete transformations that is usually accepted for phys-
ical particles [12]. Fermions satisfying the condition
ηP = ±i are called particles of inverse A–B classes [15].
However, another choice of inversion phases (which
was first mentioned by Racah [14]) with ηP = ±1 is not
excluded for Majorana particles. They are referred to as

particles of inverse C–D classes [15], and  = 1 and

 = –1 for them. Inverse classes are important for
analysis of Majorana properties. Indeed, let us consider
the most general Majorana-type conditions 

(6a)

(6b)

where (ψc(x, ζ) = γ2γ4 (x, ζ) according to [12], λ is a
real number, and ζ are quantum numbers. Condition (6a)
is a generalization of the Majorana condition, and
condition (6b) is its analogue studied below along with
the Majorana condition. It is easy to show that condi-
tion (6a) is realized for particles of inverse A–B classes
(see, e.g., [8]) and condition (6b) is realized for parti-
cles of C–D classes. Combinations ψc(x) and

ψ(x) are scalar for A–B classes and pseudoscalar
for C–D classes, whereas combinations (x)γ5ψc(x)

and (x)γ5ψ(x) are scalar for C–D classes and pseudo-
scalar for A–B classes. The combinations of the former
type or condition (6a) (for λ = 1) are used in Majorana
models [7–9] so that they implicitly imply that particles
belong to A–B classes. In what follows, this restriction
is removed and Majorana schemes are developed for
particles of inverse A–B and C–D classes. For latter
classes, the Majorana condition is implied in form (6b).

Let us find the conserving charges associated with
transformations (2) for a massless fermion field with
the Lagrangian

(7)

where the wave functions are secondarily quantized. In
contrast to the form usually used in Majorana models,

b 1
ηP

2

ηT
2

------+
 
 
 

0,
ηP

2

ηT
2

------ 1,–= =

ηP
2 ηT

2

ηP
2

ηT
2

ψc x ζ,( ) λeiφψ x ζ,( ),=

ψc x ζ,( ) λeiφγ5ψ x ζ,( ),=

ψT

ψ x( )

ψc x( )
ψ

ψc

L0 x( )
1
2
--- Ψ x( )γµ Ψ x( )µ∂[ ] ,   Ψ x ( )–  

ψ
 

x
 

( )
 

γ
 

5

 
ψ

 
c

 
x

 
( )

 
 
 
 

 ,= =                               
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the generalized function Ψ(x) includes γ5 in the lower
component. The invariance of Lagrangian (7) under
chiral and phase (subgroup of Pauli) transformations
gives rise to the existence of the conserved chiral and
lepton charges

(8)

which specify the characteristics of the generalized
function Ψ(x). They include chirality ρ (γ5Ψρ(y) =
ρΨρ(y))

 

 and eigenvalues of 

 

[ (

 

y

 

) =

 

 

 

κ

 

z

 

(

 

y

 

)]

 

.
We introduce the following set of eigenfunctions
depending on 

 

ρ

 

 and 

 

κ

 

z

 

 [

 

ρ 

 

= 

 

±

 

1 (

 

L

 

, 

 

R

 

), 

 

κ

 

z

 

 = 

 

±

 

1

 

] for the

basic operators 

 

Q

 

CH

 

 and :

 

, (9)

 

As is seen, the operator  represented in terms of gen-
eralized functions is related to the 

 

z

 

 component of the
vector 

 

k

 

 of the Pauli isospace.
We now consider the group 

 

SU

 

(2)

 

 of arbitrary pure
Pauli transformations (

 

χ

 

 = 0) (4), including 

 

S

 

(

 

ϕ

 

)

 

 and

 

S

 

(

 

φ

 

, 

 

θ

 

)

 

. Lagrangian (7) is invariant under them, and the
following general form of a conserved charge is
obtained by applying rotation 

 

S

 

+

 

(

 

φ

 

, 

 

θ

 

)

 

 to Eq. (8):

 

(10)

 
This charge, which includes vector 

 
k

 
 (4), serves as the

generalized lepton charge  Q  
P   (below also called Pauli

charge) in the Pauli scheme and includes not only ,

but also terms with  and . Its eigenvalues are
obtained from Eq. (9) by the transformation 

 

S

 

+

 

 = 

 

S

 

+

 

(

 

φ

 

, 

 

θ

 

)

QCH 1
2
--- x3d Ψ+ x( )γ5Ψ x( ),∫=

QL Qz
P 1

2
--- x3d Ψ+ x( )κ̂ zΨ x( ),∫= =

κ̂ z κ̂ zΨκ z
Ψκ z

Qz
P

Ψ0( )ρ +1, x( )
ψ0ρ x( )

0 
  , Ψ0( )ρ –1, x( )

0

ρψ0ρ
c x( ) 

 
 

,==

Ψ0( )κ z
x( ) ΣρΨρ κz, x( )=

Qz
P 1

2
--- x3d Ψ0( )κ z

+ x( )κ̂ z Ψ0( )κ z
x( ).∫=

Qz
P

QP 1
2
--- x3d Ψ+ x( )κ̂Ψ x( )∫ θQz

Pcos= =

+ θ φQx
Pcossin θ φQy

Psinsin+

=  
1
2
--- x3d θ ψ+ x( )ψ x( ) ψc+ x( )ψc x( )–[ ]cos{∫

+ θ e iφ– ψ+ x( )γ5ψ
c x( ) e+iφψc+ x( )γ5ψ x( )+[ ]sin } .

Qz
P

Qx
P Qy

P
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transforming κz to κ and Ψ0(x) to the eigenfunctions of
the operator : Ψ(x) = S+Ψ0(x) [ Ψκ(x) = κΨκ(x)].
Quantum numbers ρ do not change, and κz are trans-
formed to the quantum numbers κ of the eigenfunctions
Ψκ(x), conserving their values. For the eigenfunctions
Ψρ, κ(x) for fixed κ = ±1, we obtain

(11)

According to the form of these eigenfunctions, the
upper and lower components of the eigenfunctions of
the charge QP for definite κ are related as

(12)

The last relation for κ = 1 coincides with the general-
ized Majorana condition given by Eq. (6b) for particles

of inverse C–D classes for λ = , so that solutions

κ = 1 are equivalent to Majorana solutions with corre-
sponding λ(θ). The solutions associated with the possi-
ble alternative choice of Eq. (12) for κ = –1 correspond

to Eq. (6b) with λ' = –  = –  and complement solu-

tions with λ =  to the complete set. Therefore,

Majorana conditions (6b) for particles of C–D classes
are projection conditions separating solutions in form (3)

κ̂ κ̂

Ψρ +1, x( )

θ
2
---ψ0ρ x( )cos

eiφ θ
2
---ψ0ρ x( )sin 

 
 
 
 

,=

Ψρ –1, x( )
ρe– iφ θ

2
---ψ0ρ

c x( )sin

ρ θ
2
---ψ0ρ

c x( )cos 
 
 
 
 

,=

QP κ( )
1
2
--- x3d Ψκ

+ x( )κ̂Ψκ x( )∫ Qz
P κ z κ=( ).= =

Ψρκ x( )
ψρκ x( )

γ5ψρκ
c x( ) 

 
 

,=

ψρκ
c x( )

θ
2
---eiφγ5ψρκ x( )tan=

κ +1=( ),

ψρκ
c x( )

θ
2
---eiφγ5ψρκ x( ) κ –1=( ),cot–=

ψκ x( ) Σρψρκ x( ),=

ψκ
c x( ) κ θ

2
---tan

κ
eiφγ5ψκ x( ).=

θ
2
---tan

θ
2
---cot

1
λ
---

θ
2
---tan
with the generalized charge κ = ±1 for fixed θ and cor-
responding λ(θ).

Let us consider particles of inverse A–B classes. In
this case, one should take another form of the two-com-
ponent generalized function Φ(x) constructed from
charge-even/odd (η = ±1) combinations of the L and R
components ψ(x) and ψc(x). In this case, the form of
Pauli transformations (2), as well as the form of the

charge , changes. For a case similar to Eq. (8), the
new generalized function and charge have the form

(13)

and Pauli transformations (4) take the form:

(14)

(  differs from ). Functions Φ(x) are characterized

by charge parity η and lepton charge , which

includes the product γ5 , so that, along with it there is

the quantum number  alternative to the lepton

charge. If (x) are the eigenfunctions of the oper-

ator , which are constructed in terms of ψ0ρ(x) and

(x) as combinations of form (13), then, using Pauli

transformations S '+(φ, θ) transforming  to κ', one can
obtain the general form of the generalized lepton
charge of the A–B type and eigenfunctions Φκ', η(x)
with quantum numbers κ' = ±1, η = ±1:

(15)

Qz
P

Φ x( )
ψL x( ) ηψR

c x( )+

ψR x( ) ηψL
c x( )+ 

 
 

,=

QL Qz
P 1

2
--- x3d Φ+ x( )κ̂ z'γ5Φ x( ),∫= =

Φ' x( ) e
iγ5χ /2

e
iη φκ̂y'cos φκ̂x'sin γ5–( )θ/2

e
iκ̂ z' γ5ϕ /2

Ψ x( )=

=  S χ( )S' φ θ,( )S' ϕ( )Φ x( )

κ̂ i' κ̂ i

Qz
P

κ̂ z'

κ z'

Φ0( )κ z'

κ z'

ψ0ρ
c

κ z'

Φ+1 η, x( )
1

2
-------

θ
2
--- ψ0L x( ) ηψ0R

c x( )+( )cos

ηe
iγ5φ θ

2
--- ψ0L x( ) ηψ0R

c x( )+( )sin 
 
 
 
 

,=

Φ–1 η, x( ) = 
1

2
-------

η– e
i– γ5φ θ

2
--- ψ0R x( ) ηψ0L

c x( )+( )sin

θ
2
--- ψ0R x( ) ηψ0L

c x( )+( )cos 
 
 
 
 

,

QP 1
2
--- x3d Φ+ x( )κ 'ˆ γ5Φ x( ),∫=

κ 'ˆ θκ̂z'cos η θκ̂ x' e
iγ5κ̂ z' φ.sin+=
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In this case, the generalized lepton charge vanishes for
states with fixed κ'. Connections between the upper and
lower components of eigenfunctions for fixed κ' pro-
vide the relations

(16)

Solutions κ' = 1 satisfy Majorana conditions (6a) with

λ(θ) =  and  for L and R components, res-

pectively, and solutions κ' = –1 satisfy Majorana condi-

tions (6a) with λ'(θ) = – . For θ =  and ϕ = 0, at

κ' = ±1 this is the Majorana condition ψc(x) = ±ψ(x) [1].

Let us describe Majorana massive neutral particles.
For particles of inverse C–D classes with generalized
function (3), the mass term of the Lagrangian and the
equation for the Dirac case have the form

(17)

The mass term includes κz and breaks invariance under
chiral and total Pauli groups. However, it is invariant

under phase subgroup (2) so that the charge  is con-

ψρκ'
c x( ) θ

2
---tan

ρ
eiφψρκ' x( ) κ ' +1=( );=

ψρκ'
c x( )

θ
2
---eiφψρκ' x( ) κ ' –1=( ),cot

ρ
–=

ρ 1 L R,( ).±=

θ
2
---tan θ

2
---cot

1
λ θ( )
---------- π

2
---

LmD x( )
M
2
----- ΨD x( )κ̂ zΨD x( )[ ] , ΨD x( )–  = 

ψD x( )

γ5ψD
c x( ) 

 
 

,=

γµ∂µ Mκ̂ z+( )ΨD x( ) 0,=

Qz
P 1

2
--- x3d ΨD

+ x( )κ̂ zΨD x( ).∫=

Qz
P
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served. In this case, the Dirac mass is associated with
the z axis of the Pauli space. 

Let us assume that the Majorana mass terms are
generally associated with directions that are separated
in the chiral and Pauli subspaces and specified by the
chiral angle χ and the Euler angles φ and θ. Applying
general transformation (4) to Eq. (17), we obtain the
mass part of the Lagrangian and generalized lepton
charge in the form

(18)

For particles of C–D classes, the mass term and charge
include the common operator . To compare Eqs. (18)
with current Majorana models, we introduce the L and
R components of functions and generalized GC conju-
gation of charge (10), which conserves this Lagrangian
but changes the sign of QP:

Then, in convenient notation, mass Lagrangian (18)
and general equations for any inverse class of particles
take the form

(19)

Lm x( )
M
2
-----Ψ x( )κ̂e

iγ5χ
Ψ x( ),–=

QP 1
2
--- x3d Ψ+ x( )κ̂Ψ x( ).∫=

κ̂

ψR
gc x( ) e i χ φ+( )– ψR

c x( ),=

ψL
gc x( ) e+i χ φ–( )ψL

c x( ).=

Lm x( )
M
2
----- θ e+iχψR x( )ψL x( )(cos{–=

+ e iχ– ψR
gc x( )ψL

gc x( ) ) θ ψR x( )( ψL
gc x( )sin+

– ψR
gc x( )ψL x( ) ) h.c.+ } ;
γµ∂µψρ x( ) M θe iρχ–cos ψ ρ– x( ) Mρ θψ ρ–
gc x( )sin–+  = 0,

γµ∂µψρ
gc x( ) M θe+iρχcos ψ ρ–

gc x( ) Mρ θψ ρ– x( )sin+ +  = 0,
where ρ = ±1. This Lagrangian in the general Majorana
scheme [8, 9] is equivalent to the special case of parti-
cles with opposite Majorana masses MR = –ML =
Msinθ and Dirac mass |MD| = Mcosθ. In this case, the
charge C conjugation changes to the generalized charge
GC conjugation.
For particles of inverse A–B classes with general-
ized function (13), the mass term of the Dirac
Lagrangian, equation, and change have the form

LmD x( )
M
2
----- ΦD x( )κ̂ x' ΦD x( )[ ] ,–=
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(20)

The choice of the operator γ5  as basic fixes the lepton

charge, so that ρ  = 1 describes left and right particles

and ρ  = –1 describes right and left antiparticles. In

this case,  has the meaning of the product of this
charge and chirality. However, the lepton charge and
mass term are specified by different operators γ5  and

 and cannot be diagonalized jointly. Choosing
charge as the basic characteristic, by analogy with
Eq. (17), one arrives at the Dirac description (Dirac
neutrino). The following general form of the mass term
and generalized lepton charge are obtained for such
choice in terms of GC conjugated functions from
Eq. (20) by the general transformation of form (14):

(21)

However, for particles of A–B classes, it is possible to
diagonalize the mass term rather than the charge.

Indeed, transforming Eq. (20) by rotation S '+ θ =

− , φ = 0 , in the Dirac case, we obtain

(22)

ΦD x( )
ψDL x( ) ηψDR

c x( )+

ψDR x( ) ηψDL
c x( )+ 

 
 

,=

γµ∂µ Mκ̂ x'+( )ΦD x( ) 0,=

Qz
P 1

2
--- x3d ΦD

+ x( )γ5κ̂ z'ΦD x( ).∫=

κ̂ z'

κ z'

κ z'

κ z'

κ̂ z'

κ̂ x'

Lm x( )
M
2
-----Φ x( ) θκ̂x' e

iκ̂ z' χcos η θκ̂ z'sin–[ ]Φ x( ),–=

Φ x( )
ψL x( ) ηψR

gc x( )+

ψR x( ) ηψL
gc x( )+ 

 
 

=

=  
ψL x( ) ηe i χ φ+( )– ψR

c x( )+

ψR x( ) ηei+ χ  – φ( )ψL
c

x( )+ 
 
 

,

QP 1
2
--- x3d Φ+ x( ) θκ̂z'cos η θκ̂ x'sin e

iκ̂ z' χ+[ ]γ 5Φ x( ).∫=




ηπ
2

------- 


LmD x( )
M
2
-----ΦD' x( )κ̂ z'ΦD' x( ),–=

ΦD' x( )
1

2
-------

ψD x( ) ηψD
c x( )+

γ5 ψD x( ) ηψD
c x( )–( )– 

 
 

,=

γµ∂µ Mκ̂ z'+( )ΦD' x( ) 0,=
Values  = ±1 distinguish solutions that satisfy the

Dirac equation with the condition (x) = ηψD and
were first obtained by Majorana [1] and solutions with

the condition (x) = –ηψD that supplement the above

solutions. States with fixed values  = ±1 have zero
generalized lepton charge. Deviation from zero arises
due to their mixing. The most general case can be
obtained from Eq. (21) by introducing an analogue of

the parameter θmd of Majorana models as θmd =  + ηθ

(in the operator and wave functions). In this case, the
Lagrangian takes the general form that was described
in [8, 9] and corresponds to the case MR = –ML. In the
traditional scheme, the Lagrangian is diagonalized by
certain unitary transformations. In the case under con-
sideration, these are Pauli transformations (14) reduc-
ing the Lagrangian to form (22). Therefore, unitary
transformations of Majorana models have the sense of
Pauli transformations in the scheme under consider-
ation. Thus, for A–B classes, there are two types of
solutions—when either the generalized lepton charge
operator or mass operator is diagonalized—so that
states of a certain charge are superpositions of Majo-
rana-type states with a fixed mass and vice versa.

In this paper, a Majorana-theory variant that
includes left and right states has been analyzed. An
alternative scheme for states of different flavors [3, 4]
will be presented elsewhere.
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INTRODUCTION 

In the present paper, we formulate theorems on the
stability in the Lyapunov sense and the rigidity in the
Joukowski sense for trajectories of conservative
mechanical systems with many degrees of freedom.
The systems are modeled by the ordinary autonomous
multidimensional differential equation of class C 2

(1)

having the first integral

(2)

where gradS(x) ≠ 0 ∀ x ∈ {S(x) = 0}. Mechanical sys-
tems modeled by Eq. (1) with property (2) are referred
to as conservative systems.

Relationship S(x) = 0 defines an (n – 1)-dimensional

invariant set (integral manifold) for Eq. (1) in space .

It is shown that, at certain constraints, autonomous
n-dimensional differential equation (1) of class C 2 is
equivalent to the autonomous (n – 1)-dimensional dif-
ferential equation of class C1

(3)

in a sense such that the solutions of one of these equa-
tions are in one-to-one correspondence to the solutions
of the other equation. A positively stable in the
Lyapunov sense ω-periodic solution π(t) to Eq. (3) cor-
responds to a positively stable [with respect to condi-
tion (2)] ω-periodic solution ψ(t) to Eq. (1) and vice
versa.

The aforementioned results were applied to study
rigidity in the Joukowski sense for closed geodetic lines

dx
dt
------ X x( ), x x1 x2 … xn, , ,( ) Rx

n, n 2,≥∈= =

S x( ) 0,=

Rx
n

dz
dt
----- Z z( ), Z z1 z2 … zn 1–, , ,( ) Rz

n 1– ,∈= =
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in the Riemann space. These lines are defined by the set
of the second-order differential equations,

(4)

By the change of variables y k = xk,  = xn + k, k = 1,
2, …, n, the above set of equations is reduced to the fol-
lowing set:

(5)

with the first integral in the form

Here, gik and  are the components of the metric ten-
sor and of the Cristoffel symbol, respectively, for coor-
dinates y = (y1, y2, …, yn) in the n-dimensional differen-
tiable manifold M with a positive definite Riemann
metric.

The properties of stability and rigidity for the trajec-
tories of multidimensional autonomous equations hav-
ing the first integral were studied in [1–6], etc. The
rigidity in the Joukowski sense for trajectories of gen-
eral dynamical systems was considered, e.g., in [7–13].

THE CONSERVATION OF THE STABILITY 
IN THE LYAPUNOV SENSE 

UNDER COORDINATE TRANSFORMATIONS
Let G be a domain (open and connected set) in the

 space and X(x) be a vector function belonging to the
C 2 class in domain G.

We denote as ψ(t) a reference (unperturbed) solu-
tion to Eq. (1) specified for the entire positive semiaxis

d2yi

dt2
--------- Γ jk

dy j

dt
--------dyk

dt
--------+ 0, i 1 2 … n., , ,= =

ẏk

dxk

dt
-------- xn k+ ,

dxn k+

dt
-------------- Γ jm

k xn j+ xn m+ ,
j m,

n

∑–= =

k 1 2 … n,, , ,=

F x( ) 0,=

F x( ) ::= gik x1 x2 … xn, , ,( )xn i+ xn k+ 1.–
i k,

n

∑
2( )1

Γ jm
i

Rx
n
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R+ = [0, +∞) such that ψ(0) = ψ0, ψ(t) ∈ G ∀ t ∈ R+ and
also denote as x(t, x0) an arbitrary solution to Eq. (1)
meeting the initial condition x(0, x0) = x0 .

Then, we represent equation S(x) = 0 in the paramet-
ric form

(6)

where D is a domain of z-space . We also assume
that vector function x(z) in domain G belongs to the C2

class and, in addition,

where Rang||·|| denotes the rank of matrix ||·||.
Theorem 1. Under the above assumptions, we con-

sider the mapping

Let x(t, x0) denote the solution to Eq. (1) such that

Then, there exists a unique solution z(t), t ∈ (–t1, t1),
t1 > 0 to autonomous (n – 1)-dimensional equation (3)
derived from the set of ordinary equations with respect

to , k = 1, 2, …, n – 1,

(7)

where x(t, x0) = x(z(t)), ∀ t ∈  (–t1, t1), z(0) = z0 . And,
inversely, if z(t) is a solution to (n – 1)-dimensional
equation (3), then x(z) at z = z(t) is a solution to
n-dimensional equation (1).

Concept for the proof. For definiteness, we assume

that  ≠ 0, x ∈ D. We consider the set

of equations xi(t, x0) = xi(z1, z2, …, zn – 1), i = 1, 2, …, n
with respect to z = (z1, z2, …, zn – 1). From the first n –1
equations, we can unambiguously determine z1, z2, …,
zn – 1 as continuously differentiable functions of xi(t, x0),

i = 1, 2, …, n – 1 in the vicinity of point ( , , …,

) and as functions of t at t ∈ (–t1, t1) belonging to
class C1 , where t1 > 0. It is easy to understand that the
last nth equation of the set identically holds true. Func-
tion z(t) = (z1(t), z2(t), …, zn − 1(t)) meets the set of equa-
tions (7) and Eq. (3). Following this line of reasoning in
inverse order, we prove the second statement of the
theorem.

xi = xi z1 z2 … zn 1–, , ,( ), z1 z2 … zn 1–, , ,( ) = z D,∈

Rz
n 1–

Rang ∂x
∂z
------ n 1, S x z( )( ) 0,≡–=

σ : z x→ z( ), σ D( ) ::= Ĝ G.⊂

x0 Ĝ, σ 1– x0( )∈ z0 D, S x0( )∈ 0.= =

dzk

dt
-------

∂x
∂zk

-------
zkd

dt
-------

k 1=

n 1–

∑ X x z( )( ), z D,∈=

∂ x1 x2 … xn 1–, , ,( )
∂ z1 z2 … zn 1–, , ,( )
-------------------------------------------

x1
0 x2

0

xn 1–
0
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Next, we define the modulus |x| of vector x by the
relationship |x | = max|xi|, i = 1, 2, …, n.

Definition 1. Solution ψ(t) of Eq. (1) with the initial
condition ψ0 = ψ(0) is referred to as positively stable in
the Lyapunov sense with respect to integral set (2) if
(1) there exists h > 0 such that each solution x(t, x0) to
Eq. (1) for which |x0 – ψ0| < h and S(x0) = 0 is defined
on the entire semiaxis R+; and (2) for a given number
ε > 0, there exists a number δ ∈ (0, h) such that

Theorem 2. Let the hypothesis of Theorem 1 be met.
Let z = π(t), t ∈  R+ be an ω-periodic solution to (n – 1)-
dimensional equation (3) positively stable in the

Lyapunov sense and embedded into domain D ⊂ .
Then, the ω-periodic solution ψ(t) = x(π(t)) to n-dimen-
sional equation (1) is positively stable in the Lyapunov
sense with respect to integral set (2).

Proof. We denote the solution to Eq. (3) as z(t, z0),
z(0, z0) = z0 . Let number ε > 0 be specified and x0 be
such that

(8)

We now prove that there exists a number δ ∈ (0, h) such
that, from inequality |x0 – π0| < δ, it follows that

(9)

under the condition

(10)

Since π(t) is positively stable in the Lyapunov sense,
there exists a number µ > 0 such that, at |z0 – π0| < µ, the
solution z(t, z0) to Eq. (3) is specified on the entire R+

semiaxis. We choose a bounded domain Π such that
π(t) ∈ Π  ∀ t ∈ R+,  ⊂ D, where the bar above a sym-
bol denotes the closure. We choose number µ > 0 in a
manner such that the following implication is met:

Let x(t, x0) be a solution to Eq. (1) belonging to inte-
gral set (2). Then, according to Theorem 1, there exists
a solution z(t, z0) to Eq. (3) such that

(11)

at t ∈ (–t1, t1), t1 > 0. Hence, we have

(12)

It is easy to understand that, by virtue of Eq. (12),
z0 is a continuous function of x0 in the vicinity of ψ0

and there exists h > 0 such that |z0 – ψ0| < µ when

x0 ψ0– δ S x0( )∧< 0=

x t x0,( ) ψ t( )– ε t R+.∈∀<⇒

Rz
n 1–

h 0 x0 ψ0– h, S x0( )<>∃ 0.=

x t x0,( ) ψ t( )– x z t z0,( )( ) x π t( )( )– ε<=

z t z0,( ) π t( )– η t R+.∈∀<

Π

z0 π– µ z t z0,( ) Π t R+.∈∀∈⇒<

x t x0,( ) x z( )
z z t z

0,( )=
x z t z0,( )( ),= =

x0 x 0 x0,( ) x z 0 z0,( )( ) x z0( ).= = =
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|x0 − ψ0| < h, S(x0) = 0. Therefore, solution z(t, z0) enter-
ing into Eq. (11) can be extended to the entire semiaxis
R+, and since in z(t, z0) ∈ Π ⊂ D, function x(z(t, z0)) is
also defined on R+ and is a solution to Eq. (1) on R+.
Hence, if conditions (8) are met, solution x(t, x0) is
defined on R+. Let x0 meet conditions (8) and ε > 0 be
an arbitrary number. Then, there exists a number η > 0
such that Eq. (9) is valid if condition (10) is met. Owing
to the positive stability of solution π(t), condition (10)
is valid for arbitrary η > 0 if inequality |z0 – π0| < λ < µ
is met for sufficiently small λ > 0. The described situa-
tion takes place if

(13)

where number δ > 0 is sufficiently small. Therefore, it
is possible to find a number δ ∈ (0, h) such that Eq. (9)
follows from Eq. (13). This implies that solution ψ(t)
to Eq. (1) is stable with respect to set (2). Thus, Theo-
rem 2 is proved.

CRITERION OF THE CONDITIONAL STABILITY 
IN THE LYAPUNOV SENSE

FOR A PERIODIC SOLUTION TO Eq. (1)

Let ψ(t) and π(t) be ω-periodic solutions to Eqs. (1)
and (3), respectively. Let Φ(t) be the fundamental
matrix for the solution of the equation in variations with
respect to solution π(t) to Eq. (3). The eigenvalues ρi,
i = 1, 2, …, n –1, of matrix C = Φ(ω) are referred to as
multiplicators of the ω-periodic solution π(t) to Eq. (3).

It is well known [14] that vector Z(z) in the right-
hand side of Eq. (3) is an eigenvector of the mono-
dromy matrix for the periodic solution π(t) correspond-
ing to the eigenvalue equal to +1.

Theorem 3. Let 1, ρ2, ρ3, …, ρn – 1 be multiplicators
of the ω-periodic solution π(t) to (n – 1)-dimensional
equation (3). In absolute value, the multiplicators ρ2,
ρ3, …, ρn – 1 are smaller than unity. Then, an ω-periodic
solution ψ(t) to n-dimensional equation (1) corre-
sponding to the ω-periodic solution π(t) is positively
stable in the Lyapunov sense with respect to invariant
set (2).

Theorem 3 is a corollary of Theorem 2.

Theorem 4. Let n = 3. We consider the two-dimen-

sional equation (3) of the form  = Z(z), Z(z) = (Z1(z),

Z2(z)). Then, an ω-periodic solution ψ(t) to three-
dimensional equation (1) is positively stable in the
Lyapunov sense with respect to integral set (2) if the
functions Z1(z) and Z2(z) meet the condition

(14)

x0 ψ0– δ h,< <

dz
dt
-----

Z1z1
' π t( )( ) Z2z2

' π t( )( )+[ ] t 0,<d

0

ω

∫

where , i = j = 1, 2, are partial derivatives of func-
tions Zi(z1, z2) with respect to zj and π(t) is an ω-peri-

odic motion of the two-dimensional system  =

Zi(z1, z2), i = 1, 2.

Indeed, if condition (14) is met, then the ω-periodic
solution π(t) to Eq. (3) (in view of the Poincaré crite-
rion [14]) is positively stable in the Lyapunov sense
and, by virtue of Theorem 3, an ω-periodic solution
ψ(t) to Eq. (1) is positively stable in the Lyapunov sense
with respect to invariant set (2).

CRITERION OF RIGIDITY
IN THE JOUKOWSKI SENSE 

FOR A CLOSED GEODETIC LINE 
OF SET OF EQUATIONS (4)

Let M be an n-dimensional differentiable manifold
with positively defined Riemann metrics and N be a
natural coordinate neighborhood of manifold M with

metric tensor gik and the Cristoffel symbols  in the
coordinate system y = (y1, y2, …, yn).

We consider the equation y = γ0(s), s ∈ R+ for the
closed geodetic line corresponding to the natural
parameterization, where s is the arc length. The natural
parameterization is characterized by the condition that

the norm of the tangent vector (s) is identically equal
to unity, i.e.,

(15)

Suppose that the geodetic line

(16)

is contained within the coordinate neighborhood N, i.e.

Γ ⊂ N. Let y = γ(s, y0, ) be the equation of an arbitrary
geodetic line also corresponding to the natural parame-

terization, where γ(0, y0, ) = y0, (0, y0, ) = , and
s is the arc length.

Definition 2. A closed geodetic line Γ is referred to
as rigid in the Joukowski sense if the following condi-
tions are met: (1) it is possible to find a number ρ > 0
such that, from inequalities

, (17)

it follows that γ0 is specified for all values of s ∈ R+ and

γ0(s, y0, ) ∈ N and (2) for an arbitrary chosen num-

Ziz j
'

dzi

dt
-------

Γ ik
i

γ̇0

gik γ0 s( )( )γ̇0i
s( )γ̇0k

s( ) 1.≡

Γ  ::= y = γ0 s( ): 0 s ∞<≤{ } , γ0 s ω+( ) = γ0 s( ),

ẏ0

ẏ0 γ̇ ẏ0 ẏ0

y0 γ0 0( )– ρ, ẏ0 γ̇0 0( )– ρ<<

ẏ0
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ber ε > 0, it is possible to find numbers δ > 0, δ < ρ such
that 

(18)

From Definition 2, it follows that if the geodetic line
Γ is rigid in the Joukowski sense in one admissible
coordinate system, then it also is rigid in the other
admissible coordinate system.

It is well known [7, 9] that closed geodetic lines meet
a set of equations of form (4). Let x = (x1, x2, x2n) be a vec-

tor defined by the relationships xk = yk, xn + k = , k = 1,
2, …, n. Then, the normal Cauchy form of set (4) takes
the form corresponding to Eq. (5).

A solution to set (4) or to set (5) corresponds to the
geodetic line Γ, but it is not necessarily specified in the
form corresponding to the natural parameterization.
Parameter t involved in Eq. (4) is the arc length if and
only if, along with the solution γ to Eq. (4), the identity

(19)

is met, i.e., if and only if along with the corresponding
solution to set (5), we have

(20)

If the geodetic line Γ meets the set of equations (5),
the tangent vector has the constant length, but it should

not necessarily be the unit vector: gik  = const. This
implies that Eq. (2)1 is the first integral of the set of
equations (5), and equality F(x) = 0 determines an
invariant manifold.

If the geodetic line Γ is specified by means of natu-
ral parameterization, its trajectory lies in the invariant
manifold F(x) = 0, and the rigidity of this geodetic line
is equivalent to stability in the Lyapunov sense with
respect to the solutions with the trajectories lying
within this manifold.

Therefore, the following theorem holds.

y0 γ0 0( )– δ ẏ0 γ̇0 0( )– δ<∧<

⇒ γ s y0 ẏ0, ,( ) γ0 s( )– ε,<

γ̇ s y0 ẏ0, ,( ) γ̇0
s( )– ε< s [0 ∞).,∈∀

ẏk

gik γ t( )( )γ̇i
t( )γ̇k

t( ) 1≡

gik x1 x2 … xn, , ,( )xn i+ xn k+ 1.≡
i k, 1=

n

∑

ẏi ẏk
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Theorem 5. A closed geodetic line Γ of the set of
second-order equations (4) is rigid in the Joukowski
sense if and only if the corresponding ω-periodic solu-
tion to normal set of equations (5) is positively stable in
the Lyapunov sense with respect to the integral set
F(x) = 0. 
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In this paper, the Navier–Stokes equations are
reduced to an integro-differential form, which allows
the method of discrete vortices to be generalized for
viscous two-dimensional incompressible flows. It is
shown that, in the case when infinite vortex refinement
occurs, the equations describing the evolution of the
vorticity field as a result of vortex motion tend to the
Navier–Stokes equations. The expressions that relate
aerodynamic forces (including friction) to characteris-
tics of moving vortices are derived. Testing the method
with the consideration of flows around both a longitu-
dinal thin plate and a transverse circular cylinder at dif-
ferent Reynolds numbers is consistent with the known
results.

In its original form, the Lagrangian method of
describing a continuum is intended to trace displace-
ments of particles marked with a certain set of parame-
ters, i.e., with Lagrangian variables [1–3]. These vari-
ables can be presented, for example, by the initial coor-
dinates of the particles. The Lagrangian representation
of hydrodynamic equations is commonly used for
investigating a perfect fluid, where vortex tubes can be
considered to be frozen into the fluid flow [4–10].

In a viscous fluid, the velocity circulation along an
arbitrary contour moving with a fluid, as a rule, is not
conserved. However, in the case of two-dimensional
viscous incompressible flows, the hydrodynamic equa-
tions can be reduced to a form that admits the usage of
Lagrangian coordinates. For these flows, the term ν∆V
entering into the Navier–Stokes equation can be pre-
sented as [11]

where ν is the kinematic viscosity, V is the fluid veloc-
ity, and W = curlV.

ν∆V Vd W, Vd× νcurlW W×
Ω2

-----------------------------,= =
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For a plane-parallel flow, the vector Vd can be pre-
sented as [12]

(1)

The action of the curl operator on the Navier–Stokes
equation transforms it into the form

which describes the evolution of vorticity field Ω .

The circulation along a contour with each of its
points moving at a velocity V + Vd remains constant.
This fact allows the application of the Lagrangian
approach while considering the motion of elementary
contours with the conserved velocity circulation.

In contrast to a perfect fluid, these contours are not
frozen into the flow and move with respect to the fluid
under consideration at a velocity Vd, which is called the
diffusion velocity in [12]. The Eulerian coordinates of
the observed elementary contours can be considered as
functions of the Lagrangian coordinates and time and
as satisfying the equations

The Lagrangian variables Li can be presented by
either vortex coordinates R0 at the zero time or coordi-
nates and times of the vortex origination on the surface.
In the first case, the circulation element is dÉ =
Wdx0dy0 , while in the second case, dÉ = Jdl dt, where
J is the vorticity flow per unit area of the surface at the
contour point l.

Vorticity-flow density J(l, t) is determined by
boundary conditions imposed on the fluid velocity at
the surface. If the coordinate system is immobile with
respect to a certain infinite point, fluid velocity V(R, t)
can be expressed by the Biot–Savart formula in terms of

Vd
ν
Ω
---- 

  —Ω.–=

∂W
∂t

-------- curl V Vd+( ) W×( ) –div V Vd+( )Ω( )eΩ,= =

∂r Li t,( )
∂t

-------------------- V Vd.+=
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both the spatial vorticity distribution and velocity dif-
ference V+–V– occurring on the discontinuity surfaces

(2)

Here, n is a normal to the surface, l is the coordinate
measured along the surface, and r is the radius vector of
either the vortex element dÉ or dg .

The boundary condition relating flow density J to
both the spatial vorticity distribution and surface veloc-
ity Vs(l, t) is determined by impermeability and adher-
ence (or slip) conditions. The adherence condition
requires that g = 0. Then, under the assumption that the
surface is impermeable at the zero time, the imperme-
ability condition takes the form

In the framework of the Lagrangian approach, the cal-
culation of the diffusion velocity expressed in terms of
derivatives with respect to the Eulerian coordinates is
rather difficult. To calculate the functions Ω(R, t) and
—Ω , we use here the following integral approxima-
tions:

(3)

(the formally small parameter ε is discussed below).
Expanding the function Ω(r) into a series at point R, we
can show that Eqs. (3) are satisfied for an arbitrary

V R t,( ) K
Γ
∫ dG× K

l

∫ dg, K×+
1

2π
------ r R–

r R– 2
-----------------,= =

dg V+ V––( ) ndl.×=

∂
∂t
-----

l

Vs l t,( ) nl⋅ ∂
∂t
-----

l

nl K Gd× nl K J×
l

∫°⋅+⋅ l.d

Γ
∫=

Ω R( )
I1

I0
---- O ε( ),+=

—Ω R( )
I2

I0
----

I3I1

I0
2

---------– O ε( );+=

I1 R( ) Ω r( ) R r–
ε

---------------– 
 exp s,d

S

∫=

I0 R( ) R r–
ε

---------------– 
 exp s,d

S

∫=

I2 R( ) R r–
R r– ε
------------------Ω r( ) R r–

ε
---------------– 

  s,dexp

S

∫–=

I3 R( ) R r–
R r– ε
------------------ R r–

ε
---------------– 

  sdexp

S

∫–=
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smooth function Ω(r). Using these equations, we can
express diffusion velocity Vd by the formula

(4)

As Ω(R, t)ds = dΓ, integration in the expressions for
I1 and I2 can be performed in terms of the Lagrangian
coordinates. In the course of numerical solution, we
substitute integration by summation over vortex ele-
ments ∆Γi . The error caused by this substitution has the

order of magnitude , where ∆ri is the characteristic

linear size of regions ∆si in space S. Therefore, while
choosing the parameter ε, we should simultaneously
satisfy the following two conditions: ε @ ∆ri and ε
being much smaller than the characteristic scale of the
region where both the function Ω and its gradient vary
by the order of their magnitude, respectively. The infi-
nite refinement of vortex regions allows both conditions
to be satisfied with a required accuracy.

The integrals I0 and I3 are dependent only on the
flow-region configuration and coordinates R. If the
distance between point R and the surface significantly

exceeds ε, then the term  tends to zero. The integral I3

can be transformed into the contour integral

where n is the normal to the contour surface, which is
directed from the fluid to the body. The vector Iwdl can
be interpreted as a contribution of contour element dl to
the diffusion velocity. This contribution is directed
along the normal to the contour and describes repulsion
from it. The first term in (4) can be considered as a
result of interaction of vortex elements. Here, a contri-
bution of the element dÉ1 situated at point r1 to the dif-
fusion velocity of the element dÉ2 situated at point r2 is
described by the expression Iint(r1, r2) dÉ1, where

(5)

According to (5), the vector Iint is directed along the
line connecting vortex elements and describes repul-
sion and attraction for vortices having identical and
opposite directions, respectively.

The integral representation of the diffusion velocity
that is proposed in this study is not unique—e.g.,
in [12], another expression for Vd was suggested. How-
ever, as is shown in [13] by considering the Rankine
vortex diffusion, the representation of [12] results in
vortex “adhesion” due to a nonmonotone character of
mutual vortex repulsion (the repulsion rate tends to zero

Vd ν
I2

I1
----– ν

I3

I0
----.+=

∆ri

ε
-------

I3

I0
----

ν
I3

I0
---- = Iwdl, Iw R r l( ),( )∫°  = ν n

I0 R( )
------------- R r–

ε
---------------– 

  ,exp–

Iint ν
r2 r1–

r2 r1– I0ε
--------------------------

r2 r1–
ε

------------------– 
  dG1.exp=
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Fig. 1. Positions of vortex elements and friction-stress distribution for a flow around a thin plate.

Fig. 2. Flow around a circular cylinder at Re = 26 with a fragment of the photograph taken in [14], which shows the experimental
pattern of flow around a cylinder at the same value of the Reynolds number Re.
as the vortices approach each other). Moreover, in [12],
the correct allowance for the effect of a surface with a
flow around it on the diffusion velocity is absent.

As is shown in [10], in the absence of other forces
acting on a body in the case of flow around it, force F
applied to the body is related to hydrodynamic
impulse I by the formula

F dI
dt
-----– ρ d

dt
----- r V n×( ) dl,×∫°–=
where the hydrodynamic impulse is represented by the
expression

(6)

For translational uniform motion of the body and the
adherence condition being satisfied, differentiating
expression (6) and using formulas (2)–(4), we arrive at

I ρ r W× s.d

S

∫=
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Fig. 3. Flow around a circular cylinder for the Reynolds number Re = 1000.
the following relation:

where the first and the second terms are the resultants
of pressure forces and of friction forces, respectively.
Friction stress tw is expressed by the formula

Figures 1–4 present some results of calculations
performed with the use of the proposed method. Fig-
ure 1 shows positions of observed Lagrangian particles
(of vortex elements) and the distribution of the friction
stress along a thin plate directed along the flow. The
light and dark circles correspond to vortices with posi-
tive and negative signs of circulation, respectively. The
Reynolds number calculated by using the plate length is
equal to 1000. The thickness of the plate is equal to 2%
of its length. The leading edge has the shape of a semi-
circle. The friction stress calculated by the Prandtl the-
ory (Fig. 1, thick solid line) agrees well with the results
obtained in our study. The small discrepancies occur-
ring near the leading and trailing edges are associated,
it appears, with a finite plate thickness.

Figures 2 and 3 present streamlines and positions of
vortex elements in flows around a circular cylinder at
Re = 26 and 1000. In addition, Fig. 2 contains a frag-
ment of a photograph (taken from [14]) that shows the
experimental flow pattern around a cylinder at Re = 26.

Figure 4 presents a drag coefficient for a cylinder at
different values of Re according to both this calculation
and data of other authors, which were taken from [15].

F ρ r Jdl ρ Vd G,d×
Γ
∫–×

l

∫°–=

tw l( ) ρ Iwr l( ) r Γ( ),( ) Gd× .

Γ
∫–=
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Thus, the Navier–Stokes equations are reduced to a
form that allows application of the Lagrangian
approach to the calculation of plane time-dependent
viscous incompressible-fluid flows. The diffusion
velocity of vortices with respect to fluid particles is rep-
resented as an integral taken over all vortices, where the
contribution of a single vortex element to the diffusion
velocity of another element has the character of repul-

Fig. 4. Drag coefficient for a circular cylinder as a function
of the Reynolds number. 
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sion (or attraction) for vortices of identical (or oppo-
site) directions. In the vicinity of the body’s surface, the
contribution of the surface to the diffusion velocity has
the form of repulsion from the surface. The expressions
for hydrodynamic forces, including friction, are derived
for a body with a flow around it. The method developed
does not require constructing calculation grids, and,
thereby, it considerably simplifies the calculation pro-
cedure. Therefore, this method can be successfully used
for solving problems involving time-dependent flow
geometry.
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INTRODUCTION

In formulation of the problem of shooting from a
sports bow, the basic and most complicated stage is the
analysis of the arrow acceleration process in which the
arrow is set in motion by the force of bowstring tension
and is accelerated until departing from the bow (take off
from the string). The arrow departure velocity depends
on the string tension force, on the material and shape
(geometry) of the staff, on the angle of the string devi-
ation when the bow is stretched for shooting, and on the
method of string fixing.

In this study, equations for both the bow-staff
dynamics and bowstring dynamics are obtained. In the
case of large initial staff displacements and large string-
deviation angles, we are dealing with a complicated
nonlinear problem. In this connection, methods of sim-
plifying the problem are analyzed. Solutions are
obtained that can be a test characteristic for numerical
calculations in both the nonlinear case and the case of
complicated bow geometry.

We study features of tension as a function of geom-
etry and physical problem parameters in the nonlinear
formulation and for the case of large displacements and
bends. It is found that, for small angles of the string
deviation from the equilibrium state, the string tension
weakly depends on the deviation angle, and the tension
for the speed-up time can be considered as constant.
For a usual bow, the arrow departure velocity lies
within the range 50–60 m s–1.The propagation velocity
of transverse waves in the string (~300–400 m s–1) turns
out to be much higher than the arrow velocity of motion
(especially in the accelerated onset). As is shown in this
paper, 20–40 transverse-wave reflections occur in the
segment ranging from the arrow–string contact point to
the string fixing point. In the case of strong tension, the
string deviations are small in this segment. Thus, in the
first approximation, we can consider it as a flexible
nonstretchable line. This allows us to analyze string
motion as a quasi-static process.

Moscow State Timber University, 
ul. Lenina 4/17, Khot’kovo, Moscow oblast, Russia
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For certain bow shapes and features of string ten-
sion, it is possible to perform analysis and find the solu-
tion to the problem in its linear formulation.

EQUATIONS OF MOTION 
FOR A BOW STAFF AND STRING

We represent the staff as a flexible homogeneous rod
that is rectilinear in its nondeformed state. This make it
possible to simulate the position of the staff using its
middle fiber [1].

We introduce the following basic characteristics of
the rod: S is the Lagrangian coordinate; D is the cross-
section area; E and G are the Young’s modulus and
shear modulus, respectively; ρb is the density; ρ = ρbD
is the rod linear density; Q and M are, respectively, the
vectors of forces and moments acting onto the cross-
section area; V and W are the vectors of the velocity
and acceleration; y is the vector of the angular acceler-
ation for the rotation of the given cross section; Jb is the
rotation moment for an element with respect to an
instantaneous rotation axis; w is the angular velocity of
a cross section; q and m are the linear densities of exter-
nal forces and moments; R0 and R are the initial and
current radii vectores of the middle fiber; and, finally, t,
n, and b are unit vectors of the tangent, normal, and
binormal to the middle fiber.

Analyzing the equilibrium of forces and moments
acting on a separated rod element of length dS, we
obtain the equations of motion for the rod in the form

(1)

Equations (1) are complemented by the kinematic
equation

 = (2)

and by equations of the elastic bond of the moments
with the variation of the curvature and rotation of the
middle fiber,

(3)

ρW ∂Q
∂S
------- q, Jby+ ∂M

∂S
-------- t Q m.+×+= =

∂2R
∂S∂t
----------- ∂2R

∂t∂S
-----------

Mβ EJβ χβ χβ0–( ), Mn EJn χn χn0–( ),= =

Mτ GJτ χτ χτ0–( ).=
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Here, χn and χβ are the fiber-curvature projections onto
the plane orthogonal to the main normal and binormal.
χτ is the fiber torsion (χn0 and χβ0 correspond to the not
deformed state). In the case of a nonstretchable rod, we
have

(4)

We consider the staff to be nonstretchable (ε = 0) and
motion to occur in the xy plane. We now introduce the
angle θ of the middle-fiber inclination with respect to
the ox axis. Furthermore, we project the equations onto
the mobile axes t = (cosθ, sinθ), n = (–sinθ, cosθ). We
also write out the decompositions of the velocity vec-
tors and internal-force vectors in the form

The equation can be written as

(5)

Here, dots and primes correspond to the derivatives
with respect to time and to the S coordinate, respec-
tively.

Further, we represent the bow string as a perfect
nonstretchable line. The equations for this line are sim-
ilar to Eqs. (5) [2], in which only the projection of the
force onto the tangent to the line is nonzero, whereas all
other internal forces and moments vanish. Let ρ0 be the
string linear density. T is tension, and ϕ is the tangent
inclination angle to the ox axis. Under these assump-
tions, we arrive at the following equations:

(6)

where  = U  + V  is the line velocity.

Qτ Eε.=

V ut v n, Q+ Tt Nn.+= =

ρ u̇ v θ̇–( ) T ' Nθ'– qτ , M+ EJθ';= =

ρ v̇ uθ̇+( ) N' Tθ' qn, u' v θ'–+ + 0;= =

ρ J
F
--- θ̇̇ M' N µ, v ' uθ'++ + θ̇.= =

ρ0 U̇ V ϕ̇–( ) T ', U' Vϕ'– 0;= =

ρ0 V̇ Uϕ̇+( ) Tϕ', V' Uϕ'+ ϕ̇ ,= =

V τ n

T

C (S = 0)

q

(a)

T
T

(b)

θ0

T

Fig. 1. (a) Stretched bow and (b) bow at the instant of shoot-
ing. T and q are the string tension and the force acting on the
bow staff during a shot.
FORMULATION OF THE PROBLEM

Let 2L and 2I are the lengths of the staff and string;
θ0 is the string deviation angle at the shot instant
(Fig. 1b). Formulation of the initial conditions of the
given problem requires preliminarily solving the prob-
lem on the rod equilibrium under string tension forces
acting from the source side of a hand holding the bow.
We model this force as a concentrated one applied in
the middle of the staff. The point ë is the interaction
(contact) point of the string and the arrow of mass m.
The equation of motion for the arrow plays the role of
the boundary condition for the string at the point s = 0,
i.e.,

with the initial conditions

At the boundaries s = ±l, the line velocity coincides
with that of the rod ends.

For the rod ends S = ±L, the force T is specified,
whereas the moment M must be zero. The concentrated
force q(t) = 2T(l, t)sinθ(l, t) is also determined in the
course of solving the problem from the condition that
the velocity of the rod point S = 0 is zero. Let the ox axis
be parallel to the bow string (Fig, 1a) and the oy axis be
the symmetry axis of the problem. The origin of the
coordinate axis, we make coincident with the immobile
bow-staff point, i.e., the force-application point. We
now determine the torsion force at the shot instant as a
function of the angle θ0 . We solve the problem of staff
equilibrium under the action of the forces T and q.

Initially, we consider the problem of the determina-
tion of tension in the absence of force (q = 0) (Fig. 1a).
In conditions of static equilibrium, Eqs. (5) take the
form

(7)

The boundary conditions are

We now introduce the dimensionless variables

(8)

To simplify the written form of the variables in (8), we
below omit the asterisks. Thus, the last equation in (7)
can be represented as

(9)

mV̇y 0 t,( ) 2T 0 t,( ) θ 0 t,( )sin–=

Vy 0 0,( ) 0, T 0 0,( ) T0, θ 0 0,( ) θ0.= = =

T' S( ) N S( )θ' S( )– 0, M' S( ) N+ 0,= =

N' S( ) T S( )θ' S( )+ 0, M S( ) EJθ' S( ).+=

S 0, x 0, θ 0, N 0;= = = =

S = L, x = l, T = T0 τ θ n θsin+cos( ), M–  = 0.

s*
S
L
---, T*

T
T0
-----, N*

N
T0
-----,= = =

k2 EJ

T0L2
-----------, M*

M
LT0
---------, l0

l
L
---.= = =

M s( ) k2θ' s( ).=
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The first two equations are being integrated and, with
regard to the boundary conditions for s = 0, we obtain
the following expressions for the forces:

(10)

After multiplying by θ', the equation for the determina-
tion of the staff shape k2θ''(s) = –sinθ(s) is solved and
yields

(11)

The integration constant in (11) is defined by the condi-
tion that, at the point s = 0, the moment is zero, the
angle at this point being denoted as θ1 . Thus, the deter-
mination of the bow shape is reduced to finding the
integral

(12)

In expression (12), the quantity θ1 is unknown and is
determined by the string length. At

we find

(13)

Thus, the determination of the staff shape for the
stretched bow is reduced to integrals (12) and (13). As
a result, we arrive at two equations with two unknowns
θ1 and k:

(14)

In addition, we introduce the elliptic integrals of the
first and second kinds, namely, F(ϕ, λ) and E(ϕ, λ) [5].
Then, Eqs. (12), (13) take the form 

T ϕ , Ncos– ϕ , ϕsin θ.= = =

k2

2
---- θ'( )2 θ const+cos θ θ1.cos–cos= =

2s
k

---------
θd

θ θ1cos–cos
------------------------------------.

0

θ

∫=

dx
ds
------ θ,

dx
dθ
------cos

ds
dθ
------ θcos

k

2
------- θcos

θ θ1cos–cos
------------------------------------= = =

2x
k

----------
θ θdcos

θ θ1cos–cos
------------------------------------.

0

θ

∫=

2
k

-------
θd

θ θ1cos–cos
------------------------------------,

0

θ1

∫=

2l0

k
----------- θ θdcos

θ θ1cos–cos
------------------------------------

0

θ1

∫ .=

2s
k

--------- 2F ϕ
θ1

2
-----sin, 

  ,=

2x
k

---------- 2 2E ϕ
θ1

2
-----sin, 

  F ϕ
θ1

2
-----sin, 

 – ,=

ϕ

θ
2
---sin

θ1

2
-----sin

-------------.arcsin=
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Equations (14) are expressed in terms of complete
elliptic integrals

(15)

This makes it possible to reduce the determination of
the angle θ1 to solving the following algebraic equation

with respect to λ = sin :

(16)

after which the quantity

(17)

is determined. Retaining terms up to λ4 in the asymp-
totic expressions for the complete elliptic integrals, we
reduce problem (17) to solving the biquadratic equation

The root of the equation exists for arbitrary l0 within the
interval 0 < l0 < 1:

We can approximate the dependence λ2 by the linear
function

whence it follows that

(18)

In this case, the dependence of tension on l0 is deter-
mined by the analytical expression

(19)

The solution to the problem of determining the bow
tension at the shot instant (Fig. 1b) is obtained by a sim-
ilar manner. Here, the force q is present and must be
balanced by the normal force N at the point s = 0. The
expression for the forces is of the form

(20)

2
k

------- 2F
π
2
---

θ1

2
-----sin, 

  ,=

2l0

k
----------- 2 2E

π
2
---

θ1

2
-----sin, 

  F
π
2
---

θ1

2
-----sin, 

 – .=

θ1

2
-----

2E
π
2
--- λ, 

  1 l0+( )= F
π
2
--- λ, 

  ,

1
k
---

T0L2

EJ
----------- F

π
2
--- λ, 

 = =

λ4 16 3 l0+( )
15 9l0+

------------------------λ2 64 1 l0–( )
15 9l0+

-----------------------–+ 0.=

λ
θ1

2
-----sin 2 2

24 8l0
2

– 3 l0––
15 9l0+

------------------------------------------.= =

λ2 1 l0–
θ1

2
-----sin

2 1
2
--- 1 θ1cos–( ),= = =

θ1 2l0 1–( ).arccos=

T0L2

EJ
-----------

π
2
--- 1 0.25 1 l0–( ) 0.140625 1 l0–( )2+ +( ).=

T θ θ0+( ), Ncos– θ θ0+( ),sin= =

x1 l0 θ0.cos=
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As in the case considered before, the line shape is deter-
mined by integrals of the types (12) and (13):

As a result, we arrive at the algebraic equations for the
determination of T0 and θ1:

(21)

The solution to Eqs. (21) allows us to find (for a
given string-deviation angle θ0) the values of tension

2
k

------- ϕd

ϕcos ϕ1cos–
-------------------------------------

ϕd

ϕ ϕ 1cos–cos
-------------------------------------,

0

θ0

∫–

0

ϕ1

∫=

ϕ1 θ0 θ1;+=

2l0 θ0cos
k

-------------------------

=  
ϕ θ0–( ) ϕdcos

ϕ ϕ 1cos–cos
-------------------------------------

0

ϕ1

∫
ϕ θ0–( ) ϕdcos

ϕcos ϕ1cos–
-------------------------------------.

0

θ0

∫–

1
k
--- F

π
2
---

θ0 θ1+
2

----------------sin, 
 = F ϕ1

θ0 θ1+
2

----------------sin, 
  ,–

ϕ1
1 θ0cos–

1 θ0 θ1+( )cos–
---------------------------------------arcsin ,=

2l0 θ0cos
k

------------------------- 2 θ0 2 E
π
2
---

θ0 θ1+
2

----------------sin, 
 


cos=

– 2E ϕ1
θ0 θ1+

2
----------------sin, 

 

– 2 θ0 F
π
2
---

θ0 θ1+
2

----------------sin, 
  F ϕ1

θ0 θ1+
2

----------------sin, 
 –cos

+ 2 θ0 θ0cos θ0 θ1+( )cos– .sin

7
6
5

4
3

2
1
0

10° 20° 30° 40° 50° θ

1
2
3
4

Fig. 2. String tension as a function of the string-deviation

angle θ at the instant of shooting: (1)  = 0.6, (2) 0.7,

(3) 0.8, (4) 0.9.

I
L
---



T*L*L
EJ

------------------

and of the angle θ1 realized at the staff end. This pre-
sents an opportunity to determine the staff shape at the
initial instant of time, i.e., to complete the formulation
of boundary and initial values in the problem of shoot-
ing from a bow. The calculation results for tension as a
function of the string-deviation angle are shown in
Fig. 2. Analysis of these results testifies to the fact that
tension weakly decreases with increasing string-devia-
tion angles to 20° and, then, begins to rapidly increase.

SOLVING THE PROBLEM OF BOW DYNAMICS 
IN THE LINEAR FORMULATION

For certain bow types (admitting a string deviation
of not more than 20°, tension is constant and equals 40–
50 kg), the dynamic problem can be solved in the linear
approximation. In this case, the equation of staff
motion can be written in the form of the equation for
compressed-beam dynamics [3, 4]:

The set of dynamics equations for the bow staff and
string is written as

(22)

(23)

Here, y(s, t) and Y(S, t) are the transverse displacements

of the staff and string, a2 = , and k2 = .

∂2

∂s2
------- EI

∂2y

∂s2
-------- 

  Tl
∂2y

∂s2
--------+ ρD

∂2y

∂t2
--------.=

a2∂4y

∂s4
-------- k2∂2y

∂s2
--------+

∂2y

∂t2
--------,=

y s L±=( ) Y S l±=( ),=

∂3y

∂s3
-------- s L t,±=( ) F± t( ) T

EI
------∂Y

∂S
------ S l t,±=( ),= =

y s 0,( ) y0 s( ),=

∂y
∂t
----- s 0,( ) 0;=

b2∂2Y

∂S2
--------- ∂2Y

∂t2
---------,=

Y S l±=( ) y S L±=( ),=

Y S 0,( ) Y0 S( ),=

∂Y
∂t
------ S 0,( ) 0,=

m
∂2Y 0 t,( )

∂t2
--------------------- 2T

∂Y 0 t,( )
∂S

-------------------.=

EI
ρD
------- T

ρD
-------
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The solution to the set of equations (23) is sought
using the method of characteristics. Since, at the instant
of time prior to the first reflected wave has arrived, the
relations

are valid, the last equation in the set of Eqs. (23) takes
the form

where V is the string velocity at the point of contacting
the arrow. The arrow velocity before the first transverse
wave has arrived is

V0(t) = bθ0(1 – exp(–2Tt/mb)).

At the instant τ =  of the arrival of the reflected wave,

the angle of string deviation at the arrow contact point
changes abruptly. The relation between the velocities
and deformations before and after the arrival of the next
transverse wave,

makes it possible to construct recurrence differential
equations for the determination of the arrow velocity at
each stage in terms of the velocity at the preceding
stage. For example, immediately after the arrival of the
first reflected wave, we have

Here, V1 is the velocity of the arrow and of the string
prior to the arrival of the second reflected wave. 

With the initial conditions taken into account, the
solution to this equation is

The dependence

b
∂Y
∂S
------ 0 t,( ) b

∂Y
∂S
------ S 0,( ) ∂Y

∂t
------ 0 t,( ), θ0–

∂Y S 0,( )
∂S

---------------------,= =

m
∂V
∂t
------- 2T

∂Y S 0,( )
∂s

--------------------- V
b
---– 

  ,=

2l
b
-----

∂Y 0 t,( )
∂S

------------------- ∂Y 0 t 2τ–,( )
∂S

-------------------------------= V t 2τ–( )
b

----------------------– V t( )
b

----------–

m
∂V1 t( )

∂t
---------------- 2T θ0

V1 t( )
b

------------–
V0 t 2τ–( )

b
------------------------– 

  .=

V1 t( ) bθ0e λ t– 1 λ t λτ–+( )2eλτ 1–[ ] bθ0,–=

λ 2T
mb
-------.=

∂Y l t,( )
∂S

------------------ ∂Y 0 t τ–,( )
∂S

---------------------------- V t τ–( )
b

-------------------–=
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makes it possible to find the string deviation angles at
fixation points and to determine the force F±(t) acting
on the staff from the string. Thereby, we additionally
define the set of Eqs. (22) to which the solution is
sought by, e.g., the method of separation of variables.

The calculation results obtained in the linear
approximation for the time dependence of the arrow
velocity at the speed-up period are presented in Fig. 3.
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INTRODUCTION

In recent years, the model of point vortices has dem-
onstrated its fundamental importance in studies of vor-
tices in liquid helium and electron columns in plasma
physics. The results obtained are stimulating new appli-
cations and additional studies of the model in different
fields of research (experiment, theory, and numerical
simulations) [1–3]. This has already led to the solution
of several old problems. Recently, the efforts of many
researchers were completed in a mathematically rigor-
ous solution of the Kelvin problem (formulated in
1878) on the stability of steady-state rotation in a sys-
tem of n identical point vortices located in a plane at
apexes of a regular n-gon [4, 5]: the rotation is stable
only if n ≤ 7, whereas, at n ≥ 8, this motion is unstable.
In the case of n ≠ 7, linear analysis turns out to be suf-
ficient to arrive at a conclusion concerning nonlinear
stability. At the same time, for n = 7, it is necessary to
involve nonlinear terms in the analysis.

The Kelvin problem, generalized for the spherical
case, was also solved in its exact nonlinear formulation
(see [6–9] and also review article [3, pp. 17–178]). It
was proved that the curvature is not able to stabilize a
vortex polygon, and, in particular, it makes a heptagon
unstable.

The present paper deals with the Kelvin problem for
the case in which the vortex n-gon of radius R0 is
located within circular domain R with a common center
of symmetry. Havelock [11] was the first to study this
problem using mathematical methods in the linear for-
mulation. As was shown in [11], the corresponding lin-
earized system has exponentially growing solutions at
n ≥ 7 and also in cases (2 ≤ n ≤ 6) in which the param-

eter p =  exceeds a certain critical value, p∗ n < p < 1.

In all other cases, the linear system exhibits only a
power-law instability, which is usual—and inevita-
ble—for systems of such a kind.

R0
2

R2
-----
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According to the well-known Lyapunov theorem,
the equilibrium of a complete system is unstable when
a linearized system is exponentially unstable. The
power-law instability is insufficient to draw this conclu-
sion; therefore, nonlinear terms should be involved in
the analysis.

The substantiation of all the conditions for nonlinear
stability on a plane and sphere in the Kelvin problem is
based on the fact that, in the trajectory of steady-state
motion for the vortex n-gon, the relative Hamiltonian
(see, for example, [4, 5]) attains its maximum value. In
this case, the stability of steady-state motion is treated
as stability in the Routh sense.

In the present paper, such an approach allows us to
prove the stability of steady-state rotation of the regular
vortex n-gon within a circle. The proof is obtained in
the exact nonlinear formulation of the problem in the
cases (a) 0 < p ≤ p∗ n for even n (n = 2, 4, 6), (b) 0 < p <
p03 for three vortices, and (c) 0 < p ≤ p05 when n = 5. The
values of p0k and p∗ n are specified in Table 1.

The numerical analysis performed in [10] revealed
the alternating-sign behavior of the relative Hamil-
tonian under conditions (d) n = 3, p03 < p < p∗ 3 or
(e) n = 5, p05 < p < p∗ 5, although, in these cases, the lin-

Table 1.  Critical values p∗ n and p0n, which are the roots of
the polynomials Pn and Qn, respectively

P2 = 7p3 – 3p2 + 5p – 1 p*2 ≈ 0.2137403629

P3 = 10p6 + 3p5 + 6p4 + 10p3 + 6p2 + 3p – 2 p*3 ≈ 0.3212811546

Q3 = 5p6 + 9p5 + 5p3 + 9p2 – 1 p03 ≈ 0.3040641646

P4 = 7p6 + p4 + 9p2 – 1 p*4 ≈ 0.3298399891

P5 = 18p10 + 10p8 + 15p7 + 34p5 + 15p3 
+ 10p2 – 2

p*5 ≈ 0.3461008645

Q5 = 27p12 + 81p11 + 132p10 + 135p9 
+ 90p8 + 96p7 + 153p6 + 196p5 
+ 165p4 + 60p3 + 2p2 – 9p – 3

p05 ≈ 0.3410383818

P6(x) = 23p9 + 13p6 + 37p3 – 1 p*6 ≈ 0.2991212951
004 MAIK “Nauka/Interperiodica”



STABILITY, RESONANCES, AND INSTABILITY OF REGULAR VORTEX POLYGONS 659
earized system is characterized only by the power-law
instability. Such a situation is analyzed below using the
methods of the Kolmogorov–Arnold–Mozer theory. In
addition, we list and analyze all resonances up to the
fourth-order ones available in the system. This analysis
is based on the results of Markeev and Sokol’skiœ
(see [12]). It turned out that two of these resonances led
to instability: (f) n = 3, p = p03 and (g) n = 5, p = p∗ 05 ≈
0.3443792197.

As a result, we present in this paper both the neces-
sary and sufficient conditions for the stability and insta-
bility of a regular n-gon of point vortices (n ≠ 5) located
within a circle. For a vortex pentagon, the answer to the
question concerning the instability has remained unclear
for the null set when the parameter p meets conditions p
∈ [a, b] ⊂  (p05, p∗ 5) and there exist resonances higher
than four (a ≈ 0.3412172781 and b ≈ 0.3429140261).

EQUATIONS OF MOTION

The basic results on the motion of point vortices
inside and outside the circular domain were system-
atized by Kilin et al. [3, pp. 414–440].

Motion of the system of n point vortices at the plane
inside a circle of radius R is described by the equations

(1)

Here, zk = xk + iyk, k = 1, 2, …, n are complex variables;
xk, yk are the Cartesian coordinates of the kth vortex; κk

is its intensity; and  =  is the reflection of the kth

vortex from the circle boundary. The prime denotes the
omission of the term with j = k, and the asterisk implies
complex conjugation. The phase space Z for the set of
Eqs. (1) is (C\{0})n with cuts along all the hyperplanes
zj = zk, j ≠ k.

The set of Eqs. (1) is the Hamiltonian set character-
ized by the Hamiltonian

(2)

It has two integrals: energy H and the total moment of
inertia,

(3)

żk*
1

2πi
--------=

κ' j

zk z j–
-------------- – 

1
2πi
--------

κ j

zk ẑ j–
--------------,

j 1=

n

∑
j 1=

n

∑
k 1 2,… n.,,=

ẑk
R2

zk*
-----

H
1

4π
------ κ jκ k z j zk–( ) z j* zk*–( )[ ]ln

1 j k n≤<≤
∑–=

+
1

8π
------ κ jκ k R2 z jzk*–( ) R2 z j*zk–( )[ ] .ln

k 1=

n

∑
j 1=

n

∑

M κ k zk
2.

k 1=

n

∑=
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This set is invariant with respect to the group G, with
the group generators being the mirror reflection j:
z ° z* and rotation grot: z ° eiα z, α ∈ R. The action
g ° Lg of the group G on the phase space Z is deter-
mined by the relationship Lgz = (gz1, gz2, …, gzn) for an
arbitrary point z = (z1, z2, …, zn) ∈  Z and arbitrary motion
g ∈ G.

It is worth recalling that the motion is referred to as
steady-state motion if it is generated by transformations
corresponding to a certain one-parameter subgroup of
the symmetry group characterizing the equation under
study.

We seek the steady-state motion corresponding to
the subgroup of rotations grot in the form zk = eiωtuk.
Then, the equation determining the steady-state
motions is written as the following set of equations:

(4)

with respect to the unknowns u1, u2, …, un ∈ C and
ω ∈ R.

In the case of equal intensities κ1 = κ2 = … = κn = κ,
the exact solution to the set under consideration is well
known:

(5)

(6)

where we have introduced the notation p =  and R0

meets the inequality 0 < R0 < R.
The corresponding steady-state mode is determined

by the relationships

zk(t) = R0eiωtuk, k = 1, 2, …, n. (7)

Thus, the configuration of identical vortices located
at the circumference of radius R0 at the apexes of a reg-
ular n-gon rotates at a constant angular velocity
ω = ω(p).

THE STABILITY
OF A REGULAR VORTEX n-GON

We now assume all vortices to have the same inten-
sity κ and analyze the stability of stead-state solution (7).
For convenience of calculation, we consider that R0 = 1.

The change of variables

zk(t) = eiωtv k(t)

iωuk*–
1

2πi
--------

κ j

uk u j–
--------------- – 

1
2πi
--------

κ j

uk û j–
---------------,

j 1=

n

∑
j 1=

n

∑=

k 1 2,… n,,,=

'

uk R0e2πi k 1–( )/n, k 1 2 … n,, , ,= =

ω κ
4πR0

2
------------ n 1+

2
------------ n

1 pn–
--------------– 

  ,=

R0
2

R2
-----
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in set (1) results in the following equation describing
the relative motion:

(8)

with the relative Hamiltonian

(9)

where v  = (v 1, v 2, …, v n) ∈  Cn.

In each plane of variables v k , we introduce new
coordinates and write v k in the form

(10)

In variables r = (r1, r2, …, rn) and θ = (θ1, θ2, …, θn),
Eq. (8) takes the form

(11)

(12)

Steady-state motion (7) is put in correspondence
with the continuous family of equilibrium states of the
set of Eqs. (11), (12) located in the straight line Γ =
{(r, θ) ∈ R2n: r = 0, θ1 = θ2 = … = θn}.

The expansion of function E(v(ρ)), ρ  (r, θ) into
the Taylor series has the same form in the neighborhood
of each equilibrium state belonging to family Γ:

(13)

Here, dots denote terms of the power higher than four.
The quadratic form E2 can be represented as

(14)

and the linearization matrix for the set of Eqs. (11), (12)

v̇ k* = 
1

2πi
-------- κ

v k v j–
----------------- – 

1
2πi
-------- κ

v k v̂ j–
----------------- iωv k*,+

j 1=

n

∑
j 1=

n

∑
k 1 2, …, n,,=

'

E v( ) H v( ) ωM v( ), M+ κ v k
2,

k 1=

n

∑= =

v k 2
R0

2

2
----- rk+ 

  e
i

2π
n

------ k 1–( ) θk+ 
 

.=

ṙk
∂E
∂θk

-------- v r θ,( )( ),=

θ̇k
∂E
∂rk

------- v r θ,( )( ).–=

=def

E v ρ( )( ) κ2

4π
------ E0 E2 v ρ( )( ) E3(v ρ( )+ +( )=

+ E4 v ρ( )( ) …).+

E2 Sρ ρ,( ),=

S
F1

1
2
---G0

1
2
---G0– F2 

 
 
 
 
 

, ρ r θ,( ),= =
has the following form for the zeroth equilibrium state:

(15)

Here, F1 and F2 are symmetric matrices and G0 is a
skew-symmetric matrix. Their matrix elements and
eigenvalues λ1k, λ2k, and iλ0k, k = 1, 2, …, n, were writ-
ten out by Havelock in [11]:

(16)

(17)

(18)

The eigenvalues of matrix S can be found using the
roots of the polynomials,

For the linearization matrix L, the eigenvalues are
determined by the formulas [11]

The following theorem validates the linearization
method in the stability problem for a vortex n-gon. The
stability in the Routh sense for steady-state solution (7)
implies the stability of family Γ of equilibrium states
for Eq. (8) corresponding to the relative motion. The
instability is understood here in the strongest sense: the
invariant set of steady-state rotations is (transversally)
unstable. The values of p0k and p∗ n are specified in
Table 1.

Theorem 1. Steady-state rotation (7) of the regular
vortex n-gon is stable in the Routh sense in the cases

(1) 0 < p < p∗ n and for even values of n (n = 2, 4, 6),

(2) 0 < p < p03 for n = 3, and

(3) 0 < p < p05 when n = 5,

as well as at n = 1. It is unstable when n ≥ 7 or p∗ n <
p < 1 at an arbitrary n = 2–6.

L
G0 2F2

2F1– G0– 
 
 

.=

λ1k
1
2
---k n k–( )– n 1+( )– n2 pn k– 1 pk+( )2

2 1 pn–( )2
--------------------------------------–=

–
nk pk pn k––( )

2 1 pn–( )
--------------------------------- 2n

1 pn–
--------------,+

λ2k
1
2
---k n k–( ) nk pk pn k––( )

2 1 pn–( )
---------------------------------–=

–
n2 pn k– 1 pk–( )2

2 1 pn–( )2
--------------------------------------,

λ0k
nk pk pn k–+( )

1 pn–
----------------------------------

n2 pn k– 1 p2k–( )
1 pn–( )2

--------------------------------------.–=

Λ2 λ1k λ2k+( )Λ– λ1kλ2k
1
4
--- λ0k( )2,–+

k 1 2, …, n.,=

σk
± iλ0k– 2 λ1kλ2k– , k± 1 2 … n., , ,= =
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The proof repeats the substantiation of the validity
of linearization in the problem of stability for a regular
vortex n-gon in a plane (see Theorem 1 in [4, 5]).

The following theorem requires for its proof taking
into account the nonlinear terms present in the system.
Formal stability in the Routh sense implies that there
exists a power series—possibly diverging—that is for-
mally an integral of the equation with respect to relative
motion (8). This integral attains the minimum value on
the family Γ of equilibrium states for this motion. In the
case of formal stability in the Routh sense, instability in
the Lyapunov sense for family Γ (if it exists) does not
manifest itself in the system even if, in the expansion,
we take into account terms of an arbitrarily high (but
finite) order. Below, we use the values p0∗ 5 ≈
0.3443792197, a ≈ 0.3412172781, b ≈ 0.3429140261,
and an arbitrary nonzero vector (n1, n2, n3, n4) with inte-
ger nonnegative components.

Theorem 2. Steady-state rotation (7) of a regular
vortex n-gon is stable in the Routh sense in the cases

(4) p = p∗ n at an arbitrary n = 2, 3, 4, 6 and also at
p = p05  for n = 5;

(5) p03 < p < p∗ 3 for n = 3; and

0 < p < p05 when n = 5,
or formally stable in the Routh sense if

(6) n = 5, p ∈ (p05, a) ∪ (b, p0∗ 5) ∪ (p0∗ 5, p∗ 5] or if

p ∈ [a, b] under the conditions n1  + n3  + n4  ≠

n2 .

It is unstable in the following resonance cases:
(7) n = 3, p = p03,

σ1
+ σ3

+ σ4
+

σ2
–

Table 2.  Critical values of parameter p corresponding to
resonances: p00 is the double diagonalizable zero and pk : m is
the k : m resonance;  denotes a nondiagonalizable case

n = 2  = p∗ 2

n = 3 p00 = p03, p1 : 3 ≈ 0.3168967611

p1 : 2 ≈ 0.3193266263,  = p∗ 3

n = 4  = p∗ 4

n = 5 p00 = p05

p1 : 3 ≈ 0.3434991204, p1 : 3 ≈ 0.3448097395

p1 : 2 ≈ 0.3443792197, p1 : 2 ≈ 0.3455248914

p1 : 1 ≈ 0.3459139152,  : 1 = p∗ 5

n = 6  = p∗ 6

p̂

p̂00

p̂1 :1

p̂00

p̂1

p̂00
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(8) n = 5, n = 5, p = p0∗ 5.

Proof. First of all, owing to the existence of the
cyclic variable, we reduce by one the number of
degrees of freedom for the Hamiltonian system under
study. Then, in the resonance cases listed in Table 2, we
apply the appropriate theorems of Markeev and
Sokol’skiœ [12]. If the resonances are absent and ine-
qualities (5) are met, stability is substantiated by veri-
fying the validity of the conditions imposed by the
Alnold–Mozer theorem [13, 14], while, in case (6), we
use the theorems of Birkhoff, Glimm, and Brunot.
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Investigation of helical vortices is of fundamental
importance for fluid mechanics, as they determine one
of the basic states of swirling flows. A wide variety of
examples of helical vortices are described in the litera-
ture. These include tip vortices in the wakes behind pro-
pellers, screws, and wind turbines; concentric vortices
in rotating reservoirs; tornados; swirls in a fluid escap-
ing from a vessel; vortex structures arising after vortex
breakdown behind a delta-shaped wing and in pipes;
longitudinal vortex structures in a boundary layer; vor-
tex filaments in a flow of superfluid helium; paraxial
vortices in vortex facilities, etc. In just the same way as
point vortices and infinitely thin vortex rings are funda-
mental objects in the vortex dynamics of ideal incom-
pressible fluids, infinitely thin helical filaments are ele-
mentary models of the above structures. However, there
are difficulties in describing them because, for a helical
filament, the Biot–Savart integral cannot be evaluated
in closed form. For the uniform distribution of the
intensity of the pole-type vorticity along a helical fila-
ment, an alternative representation of the solution was
found in [1] as a trigonometric series with coefficients
in the form of products of modified Bessel functions.
For calculating these coefficients, an efficient algorithm
was proposed in [2, 3] with the singularity separation in
the solution. In the present study, we investigate a flow
induced by an infinitely thin helical filament with a uni-
form distribution of the dipole-type vorticity. This ele-
mentary vortex structure is a fundamental object of
helical-vortex dynamics, which is second in the order
of importance, just like a point dipole in the plane the-
ory of vortices.

In an unbounded space, we consider a helical fila-
ment characterized by a helical pitch h = 2πl and
winded round a cylinder of radius a. In terms of cylin-
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drical coordinates (r, φ, z), the helical filament is deter-
mined by the equations

. (1)

Its arc element is ds = dφ , and the triplet of
basis vectors is

The curvature and torsion of the filament are κ =

 and τ = , respectively.

The vector potential of the induced flow can be rep-
resented in the form

(2)

where D = , the dipole-moment intensity

being d = |d(s)|. Without loss of generality, we align the
dipole-moment vector with the direction of the binor-
mal b to the helical filament:

In this case, vector D can be rewritten in the form

, (3)

where

x' a φ, y'cos a φ, z'sin lφ= = =

a
2

l2+

t
a

a2 l2+
------------------- φ φ l

a
---,cos,sin– ,=

n φcos– φ 0,sin–,[ ] ,=

b
l

a2 l2+
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l
---,cos–,sin .=

a

a2 l2+
--------------- l

a2 l2+
---------------

A ∇ D× d s( ) x x' s( )–×
x x' s( )– 3
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d s( ) sd
x x' s( )–
-----------------------∫°

d s( )ds d bds⋅ d l θ l θ a,cos–,sin[ ] dθ.= =

D d lRe ie iφ– I 1( )[ ]– lIm ie iφ– I 1( )[ ]– aI 0( ), ,( )=

I α( ) iαθ( ) θdexp

r2 a2 2ar φ θ–( )cos– z lθ–( )2+ +( )1/2
----------------------------------------------------------------------------------------------.

∞–

∞
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In accordance with [1], we have

where

(4)

are series of the Kapteyn’s type; χ = φ – ; Im(·) and

Km(·) are modified Bessel functions on the order of m;
the conditions I, J = 0 determine the functions, while
the conditions I, J = 1 determine their derivatives; the
indeterminate constant C∞ does not depend on a and r;
and the upper and lower rows in braces correspond to
r < a and r ≥ a, respectively.

If we substitute I(1) and I(0) into (3) and apply to the
result the curl operator in accordance with definition (2),
the components of the vector potential for the flow
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induced by a dipole vortex helical filament are written
in the form

(5)

Employing the dependence of vector potential (5)
only on two helical variables r and χ and taking into
account the obvious relation

where the curlA(r, χ) = (Ar, Aφ, Az) is given by the rela-
tions

(6)
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we can introduce an analog of the stream function for
the flow under consideration,

(7)

According to relation (6), the components of the
velocity field u = (ur, uφ, uz) can be obtained by directly
differentiating the vector potential in (5). As a result,
we arrive at

(8)

A direct verification proves that the projection of the
velocity onto the unit vector tangential to helical lines
collinear to the filament given by (1) vanishes (that is,

uτ = uz +  = 0) and that the velocity component

orthogonal to ur and uτ has the form

ψ Az
r
l
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 

= =
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 
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l
-------

uχ uφ
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l
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4d
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----+ 
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l
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 
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.= =
We note that both nonzero orthogonal velocity compo-
nents, ur and uχ, can be obtained with the aid of stream

function (7) as ur =  and uχ = – . This yields

The above relations between the velocity components
uφ and uz make it possible to analyze below only one of
them, e.g., component uz .

In order to complete the investigation of the prob-
lem, it only remains to indicate a simple and efficient
procedure for calculating Kapteyn’s type series (4). As
is shown in Fig. 1a, the coefficients him in the trigono-
metric series (4) increase with m. Naturally, this ham-
pers numerical summation of these series in calculating
the kinematic features of the flow, especially in the
vicinity of the circle r = a. In order to calculate the
velocity field induced by a dipole helical vortex fila-
ment in the entire space, we generalize the method used
in [3, 4] to separate the leading part of the series in (4).
This method was used to calculate the kinematic fea-
tures of monopole helical filaments at the points lying
on the circumference r = a. With this goal, we represent
series (4) in the form

(9)

where Lik(z) =  (|z| < 1) are polylogarithms,

eξ = ,

∂ψ
r∂χ
--------- ∂ψ

∂r
-------

uφ
l
r
--uz–

l2

r2 l2+
--------------uχ

l2

r2 l2+
--------------∂ψ

∂r
-------,–= = =
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r
l
--uφ–

l2

r2 l2+
--------------r

l
--uχ–

l2

r2 l2+
--------------r

l
--∂ψ

∂r
-------.= = =

HM
I J, x y χ, ,( ) λ I J, bM 0,

I J, eξ iχ+

eξ eiχ–( )
2

------------------------=

+ bM 1,
I J, eiχ

eξ eiχ–
----------------- bM 2,

I J, 1 e ξ– iχ+–( )ln+

+ bM 3,
I J, Li2 e ξ– iχ+( ) bM 4,

I J, Li3 e ξ– iχ+( )+ RM
I J, x y χ, ,( ),+

zm

mk
------

m 1=

∞

∑

x
y
--

1 x2+( )exp 1 1 y2++( )

1 y2+( ) 1 1 x2++( )exp
-----------------------------------------------------------------

λ I J, 1
2
---

1 x2+( )
I 1/2–

1 y2+( )
J 1/2–

xI y–( )J
---------------------------------------------------------------------,=

bI J,
0 0 1 α I J, βI J, γI J,

0 1 α I J, βI J, γI J, 0
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Fig. 1. Coefficients in the trigonometric (a) Kapteyn’s series and (b) residual series after the separation of a singularity for the first
four terms of the series; m = (1) 1, (2) 2, (3) 3, and (4) 4.
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The coefficients bI, J, which are used to calculate the
velocity over the entire space, are given by

The functions appearing in the definitions of αI, J,
βI, J, and γ I, J are polynomials in terms of t = (1 + x2)–1/2,

α I J, x y,( ) 1 I–( )ϑ 1 x( )=

– 1 J–( )ϑ 1 y( ) Iυ1 x( ) Jυ1 y( ),–+

βI J, x y,( ) 1 I–( )ϑ 2 x( ) 1 J–( )ϑ 2 y( )+=

+ Iυ2 x( ) J+ υ2 y( ) 1 I–( ) 1 J–( )ϑ 1 x( )ϑ 1 y( )–

– J 1 I–( )ϑ 1 x( )υ1 y( ) I 1 J–( )ϑ 1 y( )υ1 x( )–

– IJυ1 x( )υ1 y( ),

γI J, x y,( ) 1 I–( )ϑ 3 x( ) 1 J–( )ϑ 3 y( )– Iυ3 x( )+=

– Jυ3 y( ) 1 I–( ) 1 J–( ) ϑ 1 x( )ϑ 2 y( ) ϑ 2 x( )ϑ 1 y( )–[ ]+

+ J 1 I–( ) ϑ 1 x( )υ2 y( ) ϑ 2 x( )υ1 y( )–[ ]
– I 1 J–( ) ϑ 2 y( )υ1 x( ) ϑ 1 y( )υ2 x( )–[ ]

+ IJ υ1 x( )υ2 y( ) υ2 x( )υ1 y( )–[ ] .

ϑ 1
1
24
------ 3t 5t3–( ), υ1

1
24
------ 9t– 7t3+( ),= =

ϑ 2
1

1152
------------ 81t2 462t4– 385t6+( ),=

υ2
1

1152
------------ –135t2 594t4 455t6–+( ),=
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while a small regular residue is determined by the rela-
tion

(10)

Figure 1b shows the behavior of the coefficients rim in
residual trigonometric series (10). In contrast to what
we have for the series in (4), these coefficients are small
and rapidly decrease with increasing m. By virtue of
this fact, the representation in (9) is more convenient in
performing calculations.

In accordance with (9), the exact solution to the
problem, where the singularities are separated, can be

ϑ 3
1

414720
------------------ 30375t3(=

– 369603t5 765765t7 425425t9–+ ),

υ3
1

414720
------------------ 42525– t3(=

+ 451737t5 883575t7 47547t9+– ),

RM
I J, rim x y I J M, , , ,( ) eimχ⋅

m 1=

∞

∑=

=  mMIm
I〈 〉 mx( )Km

J〈 〉 my( )[
m 1=

∞

∑

– mMλ I J, eξ( )m
1 α I J,

m
--------- βI J,

m2
-------- γI J,

m3
--------+ + + 

  eimχ.
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rewritten for the stream function in the form

(11)

The corresponding representation for the velocity com-
ponents ur and uz takes the form

(12)

The solution given by (11) and (12) is exact. How-
ever, for a number of practical problems in which an
accuracy of up to 5% is sufficient [3, 4], one can retain
only the first two terms in (9). Upon specifying the val-
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l
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+ α0 0, r
l
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l
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  eiχ
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l
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l
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l
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 
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l
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l
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 
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.–
ues of the coefficients λ and α, the approximate for-
mula for the stream function can be rewritten as

(13)

The corresponding reduced representation of the veloc-
ity field takes the form

(14)

In Fig. 2, the variation in the structure of the flow
induced by a helical vortex filament is shown for vari-
ous values of the helical pitch (h = 1, 2, 8) and the same
radius (a = 1.5). The filament is characterized by a uni-
form distribution of dipoles having the intensity d = 0.1.
Isolines of the stream function are constructed with a
uniform step equal to two. The flow patterns differ quite
significantly. At a large pitch (h = 8), the stream func-
tion resembles that for a point dipole, but there is a
modest asymmetric distortion of the stream lines with
respect to the dipole axis. As the pitch decreases, the
flow pattern exhibits noticeable changes associated
with the concentration of the flow along the cylinder
(a = 1.5). In order to describe the structure of the flow
more exactly, we consider the velocity field. In Fig. 3,
we compare the velocity profiles for the same three vor-
tex filaments. At a large helical pitch of a filament, there
are no significant distinctions from the velocity profiles
of the flow induced by a point dipole. However, a
decrease in the filament pitch results in a significant
rearrangement of the flow: there arises intense motion
of the fluid along the surface of the cylinder (a = 1.5).

Thus, the solution for a flow induced by a helical
vortex filament having a uniform dipole distribution of

ψ . 
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 

2d

al2
------- l2 a2+( )

3/4
l2 r2+4 Re

eiχ±
e ξ+− eiχ–
-------------------–

–
d
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Fig. 2. Stream-function isolines for a vortex filament having dipole-type vorticity distribution and various values of the helical pitch:
h = 1, 2, and 8.
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Fig. 3. Velocity-component profiles along the x axis, which are induced by a helical vortex filament having dipole-type vorticity
distribution and various values of the helical pitch: h = (3) 1, (2) 2, and (1) 8. The results are given for the velocity component along
the symmetry axis (uz) and for the azimuth velocity component (uφ). In Fig. 3b uy = uφ for x > 0 and uy = –uφ for x < 0.
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vorticity has been obtained. A simple analytical form of
the solution makes it possible to efficiently analyze the
flow structure and to use the solution in constructing
more advanced hydrodynamic models.
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The spherically symmetric collapse of a bubble in a
continuum under pressure at infinity is one of the clas-
sical problems of continuum mechanics and can be
integrated in many cases [1–12]. The problem of the
beginning of the deformation and complete filling (col-
lapse) of a bubble filled with a barotropic gas in an
inhomogeneous viscoplastic medium with radius-
dependent yield stress is analytically analyzed. Certain
asymptotic formulas for such a system are derived, and
qualitative features of its behavior are revealed.

1. We consider the evolution of radius R(t) of a
spherical gas bubble in an incompressible viscoplastic
medium under pressure p∞ at infinity. Let the gas be
barotropic and the process for r < R(t) be close to adia-
batic, so that pressure pg is identical at all points r < R(t)
up to the boundary r = R(t) and is related to gas density
ρg by the adiabatic law,

(1)

Therefore, pressure is related to the bubble radius as

(2)

where the constant C characterizes the total mass of the
gas inside the bubble.

We assume that the center O of the bubble is at rest
and the yield stress τs of the surrounding medium
depends on the distance from the point O, which is
taken as the center of the spherical coordinate system
(r, θ, ϕ), where θ is the polar angle. Density ρ and
dynamic viscosity µ does not vary for r > R(t). A partic-
ular case, where τ is a step function of r such that τ ≡ 0
beginning with a certain r, was studied in [6, 11]. The
dependences of the coefficients under investigation

pg pg
0 ρg

ρg
0

----- 
  γ

, γ 0.>=

pg
C

R3γ--------,=
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simulate, in particular, the collapse of the bubble in the
large volume of a viscoplastic or ideally plastic material
(the characteristic size of this volume is much larger
than the initial radius of the bubble) that is surrounded
by either a viscous medium with the same viscosity or
an ideal liquid.

To construct dimensionless parameters, we use ini-
tial radius R(0), density ρ, and pressure p∞. In addition
to the adiabatic index γ, the problem involves three
dimensionless governing parameters,

and one function τ(r) = . All further relations are

written in a dimensionless form.

We assume that the motion of the bubble-surround-
ing medium is radial (vθ = vϕ ≡ 0). In this case, the
incompressibility condition provides the following
relations for the radial velocity component v r ≡ v(r, t)
and components v rr, vθθ, and vϕϕ of the strain rate ten-
sor (r, t):

(3)

where V(t) is an unknown function. The only equation
of motion,

(4)

is complemented by the boundary conditions

(5)

Re
R 0( ) ρp∞

µ
--------------------------, c

C

R 0( )( )3γ p∞

---------------------------,= =

v 0 Ṙ 0( ) ρ
p∞
------=

τ s r( )
p∞

-----------

v
˜

v  = 
V t( )

r2
----------, v rr–  = 

2V t( )
r3

--------------, v θθ = v ϕϕ  = 
V t( )

r3
----------,–

∂σrr

∂r
----------

1
r
--- 2σrr σθθ– σϕϕ–( )+ ∂v

∂t
------- v

∂v
∂r
-------+=

σrr ∞ t,( ) 1, σrr R t( ) t,( )– c

R3γ--------–= =
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and initial conditions

(6)

Taking into account Eq. (3) and relation V(t) = –R2(t) (t)
following from Eq. (3) for r = R(t), we integrate Eq. (4)
with respect to r from R to infinity and use boundary
conditions (5). Since σθθ = σϕϕ for the spherically sym-
metric case, we obtain

(7)

For the viscoplastic medium (Shvedov–Bingham
model),

(8)

where  is the identity tensor under kinematic con-
straints (3), and the tensor constitutive relationships
have the form

(9)

The substitution of Eq. (9) into Eq. (7) and certain

manipulations yield (  = – )

(10)

(11)

Since Eq. (10) is free of the independent variable t,
the order of this equation can be reduced. The Cauchy
problem given by Eqs. (10) and (6) is equivalent to the
first-order differential equation

(12)

for the function Q(R) =  with the initial condition

(13)

We note that the first terms on the right-hand sides
of Eqs. (10) and (12) are proportional to the medium

R 0( ) 1, Ṙ 0( ) v 0.= =

Ṙ

c

R3γ-------- 1– 2
σrr σθθ–

r
--------------------- rd

r

∞

∫+ RṘ̇
3
2
--- Ṙ

2
.+=

σ
˜

pI
˜

– 2 τ
2v

˜
 : v

˜

--------------------- 1
Re
------+ 

  v
˜

,+=

I
˜

σrr p– 2
τ
3

-------sgnV
2V

r3Re
-----------+ 

  ,+=

σθθ p–
τ
3

-------sgnV
2V

r3Re
-----------+ 

 – .=

sgnV sgnṘ

RṘ̇
3
2
--- Ṙ

2
+ 4Ṙ

RRe
----------– T R( )sgnṘ

c

R3γ-------- 1,–+–=

T R( ) 2 3
τ r( )

r
---------- r.d

R

∞

∫=

RQQ'
3
2
---Q2+ 4Q

RRe
----------– T R( )sgnQ

c

R3γ-------- 1–+–=

Ṙ

Q 1( ) v 0.=
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viscosity (these terms are absent for an ideal liquid or
an ideally plastic body). The second terms are related to
the yield stress τ(r) and the third terms are due to the
fact that the bubble is filled with a gas. Therefore, the
effect of these parameters on the evolution of the radius
R(t) can be studied independently or additively in vari-
ous combinations.

The medium cannot be homogeneous in terms of the
yield stress, because integral (11) diverges at infinity
for τ = const. This means that infinite external or inter-
nal pressure must be applied for the beginning of com-
pression or expansion. The convergence of integral (11)
at infinity is a necessary and sufficient condition for
choosing the function τ(r).

2. Equations (10) and (12) can be integrated in
quadratures for Re = ∞, i.e., for an inviscid medium sur-
rounding the bubble. In this case, multiplying Eq. (12)
by the factor 2R2 and integrating, we obtain

(14)

where the constant k is determined from condition (13).
The upper and lower signs in Eq. (14) correspond to
Q > 0 (expansion) and Q < 0 (compression). It is a pri-
ori unknown which of these two processes proceeds at
any given time. This is a feature of—and traditional dif-
ficulty in—problems of the flow of media with the yield
point [6, 7].

Owing to the existence of viscosity, analysis is com-
plicated, and the evolution of radius R(t) depends on
one more parameter, Reynolds number Re. Even for the
classical Zababakhin problem [3] on the filling of a vac-
uum bubble in a Newtonian viscous fluid with zero ini-
tial velocity, two substantially different regimes are
known. In regime A for Re * 8.4, as well as in the Ray-
leigh problem, the bubble is filled in a finite time and
Q ~ –R–3/2 for R  0 [R ~ (t* – t)2/5 for t  t*]. Infi-
nite velocity at the collapse time and large increments
of local pressures are among causes of cavitation [13].
Similarity between the behavior of solutions in the vis-
cous case for large Reynolds numbers and the behavior
for an ideal liquid is corroborated by the regularity of
the perturbation of Eqs. (10) and (12) by the parameter
1/Re for Re @ 1. In regime B for Re & 8.4, filling occurs
exponentially in infinite time, the cumulation of energy
is completely eliminated due to viscosity, and Q ~ –R
for R → 0 (R ~ exp(–t) for t  ∞]. These two regimes

Q2 R( ) 2

R3
----- R2T R( ) Rd∫+−=

×

2c

3 γ 1–( )R3γ----------------------------, γ 1,≠–

+
2c Rln

R3
---------------, γ 1,=









2
3
---–

k

R3
-----,+



670 GEORGIEVSKIŒ, ZHDANOVA
is separated by regime C for Re ≈ 8.4, in which filling

occurs in a finite time, but Q ~ –  for R  0 (R ~

 for t  t*).

For an ideal viscous medium, Eq. (12) has no inte-
grals similar to Eq. (14). The plots of Q(R) and R(t) for
viscous and viscoplastic media can be drawn numeri-
cally. We seek power asymptotic formulas for solutions
of the problem given by Eqs. (12) and (13) near the

point R = 0 by taking, for definiteness, τ(r) = , β > 0

in Eq. (11), i.e.,

(15)

Let

. (16)

Substituting Eq. (14) into Eqs. (12) and making some
transformations, we obtain

(17)

We denote b = max{β, 3γ} > 0. For compensation of
low powers of R in each of the series entering into
Eq. (17), the leading term of asymptotic formula (16)
can be taken several ways for various b (Fig. 1):

1
R
---

t* t–

τ
rβ----

T R( ) 2 3τ
βRβ-------------.=

Q R( ) q1R
α1 q2R

α2 …, α1 α2 …< <+ +=

α1
3
2
---+ 

  q1
2R

2α1 α1 α2 3+ +( )q1q2R
α1 α2+

…++

=  
4

Re
------ q1R

α1 1–
q2R

α2 1–
…+ +( )– 2 3τ

βRβ------------- c

R3γ-------- 1.–+ +

2
D

(2)

3

(3)

(1)

(4)

B

C

A

1
0

1

–1

b

α1

Figure.
(i) 0 < b ≤ 2,  = – ,  = 1 – b,  = –1;

(ii) 2 < b < 3,  = – ,  = – ; and

(iii) b ≥ 3, in this case, the bubble does not collapse
and power expansion (16) is invalid.

Points A, B, and C in Fig. 1 correspond to the three
respective asymptotic regimes in the Zababakhin prob-
lem. The velocity at the collapse time is equal to zero in
interval BD, to a negative constant at point D, and to
minus infinity at all other points of branches (1)–(4). As
in the Zababakhin problem, branch (1) is realized for
Re values larger than a certain critical value and
branches (2) and (4) are realized for Re values lower
than this critical value.

3. We note that, if v 0 = 0 and c = 1 ± T(1), rest
R(t) ≡ 1 is a solution of the problem given by Eqs. (10)
and (16). Motion is absent in the range 1 – T(1) < c <
1 + T(1), because the pressure drop between infinity
and inside the bubble is insufficient for the beginning of
deformation. The beginning of deformation and motion
toward and out from the center occur when c < 1 – T(1)
and c > 1 + T(1), respectively. We analyze the behavior
of the system near the rest state in two cases, taking first
v0 and then c – 1 (1) as asymptotically small param-
eters.

Let 0 < ε1 = v 0 ! 1, c = 1 + T(1). Then, the bubble

begins to expand immediately for t > 0, and  = 1
should be taken in Eq. (10):

(18)

(19)

Seeking a solution of the problem given by Eqs. (18)
and (19) in the form of the power series in ε1:

(20)

we arrive at the following linear problem with constant
coefficients for function R1(t):

(21)

(22)

where B = T '(1) + 3γ(1 + T(1)). For example, 

α1
1( ) 3

2
--- α1

2( ) α1
3( )

α1
1( ) 3

2
--- α1
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for Eq. (15); i.e., coefficient B can be both positive and
negative.

We indicate five possible ranges with qualitatively
different behaviors of the system.

(i) B < 0. The solution

(23)

of the problem given by Eqs. (21) and (22) increases
monotonically and unboundedly for t  ∞, because
λ1 > 0. This means that a small initial-velocity pertur-
bation of the equilibrium position R ≡ 1 leads to finite
deviation from this position; i.e., this equilibrium posi-
tion is unstable. Asymptotic formula (20) is valid only
for a finite time interval.

(ii) B = 0. In this case, λ1 = 0 and λ2 = – . There-

fore,

(24)

This solution is valid in the entire time interval, because

 > 0. Moreover, (t) = 1 +  + O( ).

(iii) 0 < B < . Solution (23) exists from t = 0

only to

(25)

when (t∗ ) = 0. Reaching radius R∗  = R(t∗ ) = 1 –

 + O( ) to t = t∗  = 0, the bubble ceases to

change.

(iv) B = . In this case,

(26)

(v) B > . In this case,

(27)
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Asymptotic formulas for the case v0 < 0, |v0| ! 1,
and c = 1 – T(1) > 0 are derived similarly. One should

take  = –1 in Eq. (10) in this case.

We briefly discuss the other asymptotic case, v0 = 0,
0 < ε2 = c – 1 – T(1) ! 1; i.e., the bubble expands

(  = 1) for times close to the initial time. Seeking
a solution of the Cauchy problem

(28)

(29)

which follows from Eqs. (10) and (6), in the form of
series (20), we arrive at the following problem, which
is similar to the problem given by Eqs. (21) and (22):

(30)

(31)

For this problem, one can analyze the above five
cases for parameter B and represent the corresponding
solutions of the linear problem given by Eqs. (30) and
(31) in the explicit form.

Thus, it has been shown that the number and form of
asymptotic expansions for both the time of the begin-
ning of the bubble deformation and the time of its col-
lapse depend significantly on dimensionless parameters
of the medium Re, τ(r), filling gas c, and initial velocity
v0 . Qualitatively different expansions correspond to
different behaviors upon collapse (cavitation collapse
or slow filling in infinite time) and the beginning of
deformation (instability of the initial position, mono-
tonic motion over an infinite time interval, and motion
over a finite time interval up to complete stop of
motion).

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation
for Basic Research, project nos. 02-01-00780 and
02-01-00567.

REFERENCES

1. H. Lamb, Lehrbuch der Hydrodynamik (Teubner,
Leipzig, 1931).

2. H. Poritsky, in Proceedings of the 1st US National Con-
gress on Applied Mechanics (Ann Arbor. Mich., 1951),
pp. 812–821.

sgnṘ
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1 INTRODUCTION

The problems discussed in this paper are related to
a general question of aerohydrodynamics, which can be
formulated in the following manner: what maximum
lift can be attained by an isolated airfoil, and what
should be the shape of the airfoil? The exact solution to
the lift-optimization problem for an infinitely thin air-
foil with a given length and limited curvature for a flow
of an ideal incompressible fluid (IIF) is obtained in [1].
It is proved that the extremal airfoil shape is a circular
segment. A review of methods and results related to the
design of high-lift airfoils is available in [2]. A numer-
ical approach to lift maximization for airfoils with
sharp trailing edge and a specified contour perimeter
under the condition of flow continuity is proposed
in [3]. It is stated (without proof) that, for a smooth air-
foil contour, the maximum lift is attained for a circle. A
particular case of this is proved in [4]. Under additional
conditions (e.g., the condition of viscous flow continu-
ity on the airfoil contour, the allowance for flow com-
pressibility, etc.), the optimized solutions significantly
differ from a circle and the airfoil shape can be obtained
only by numerical calculation (see, e.g., [5–7]). Never-
theless, the circle is an extremal analytical solution
obtained under a minimum number of constraints stip-
ulated by a mathematical flow model. Correspondingly,
this solution yields the exact upper estimate of the max-
imum lift coefficient for the model based on an IIF.

The problems investigated in [4–7] (see also [8])
relate to the class of variational inverse boundary value
problems of aerohydrodynamics (IBVPA). Formula-
tions and methods of solving these types of problems in
the framework of the classical models of fluid mechan-
ics and gas mechanics under isoperimetric constraints
are discussed in [9]. There are also estimates of the

1 This article was submitted by the authors in English.
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Kazan State University, Kazan, Russia
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1028-3358/04/4911- $26.00 © 20673
maximum lift coefficient for the class of airfoils with
smooth closed contours in continuous of IIF flows
without separation. Special cases are distinguished
when the extremal solution is a circle or not a circle.
Realization of the exact solution of the lift-maximiza-
tion problem in the case when the optimal solution is
not a circle remains still opened. The present study is an
attempt to answer this question.

PRINCIPAL VARIATIONAL IBVPA

Among the possible formulations of the variational
IBVPA, we distinguish a problem with a solution that
directly answers the question formulated in the Intro-
duction. The exact solution to this problem obtained in
the framework of the IIF model yields an extremal
value of the lift coefficient and its upper estimate, pro-
vided that additional conditions are taken into account.
This is why we call this problem the principal problem.
We now formulate it for the case of an IIF.

PHYSICAL FORMULATION
OF THE PROBLEM

We consider a steady-state IIF flow without separa-
tion around an isolated impermeable airfoil in the phys-
ical plane z = x + iy. The contour of the airfoil is smooth
everywhere except the sharp trailing edge B (z = 0)
(Fig. 1) with the external angle επ (1 ≤ ε ≤ 2). In partic-
ular, for ε = 1, the contour has a perimeter of l = 2 and
it is smooth everywhere. The flow at infinity is uniform
and directed horizontally, the flow velocity and incom-

(z)

A

Bv∞

(ζ)

επ A B
β

γ
E–

u

β

Fig. 1. Class of optimized contours.
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pressible-fluid density being v∞ = 1 and ρ = 1, respec-
tively. The trailing point corresponds to z = 0 (for ε ≠ 1,
in accordance with Zhukovskiœ’s hypothesis, this is the
sharp edge B). As a reference length, we choose the
contour semiperimeter (for actual airfoils, it does not
differ too much from the airfoil’s chord length). It is
required to determine the airfoil shape that provides the
maximum lift coefficient Cy under the condition that the
maximum velocity on the contour does not exceed a
given value vmax, vmax > 1.

THE MATHEMATICAL MODEL
AND THE CLASS

OF CONTOURS BEING OPTIMIZED

Following [9], we write out the basic equation cor-
responding to the mathematical model that describes
the problem.

The flow around an airfoil in a physical plane is
completely determined by the following pair of quanti-
ties: (1) 2π-periodic function P(γ) ∈ L2[0, 2π](L2[0, 2π]
is the space of functions (the function squared is inte-
grable within the segment [0, 2π])) that satisfy certain
additional conditions discussed below, and (2) the

parameter β ∈ ,  (so-called theoretical angle of

attack). We determine a domain E– = {ζ: |ζ| > 1} in an
auxiliary plane ζ (Fig. 1) and consider an IIF flow
around a unit circle with flow velocity u directed hori-
zontally. Critical points B = e–iβ and A = –eiβ of the flow
(at which the flow velocity is zero) are symmetric with
respect to the vertical axis.

We specify a class of closed, piecewise smooth, and
impermeable contours L with a fixed perimeter l = 2
(Fig. 1) and, possibly, one sharp edge B with the exter-
nal angle επ as a set of images of a unit circle at confor-
mal mappings z = zP(ζ), ζ ∈  E–. The mappings are nor-
malized in accordance with the conditions zP(∞) = ∞,
zP(e–iβ) = 0 and are determined by the control function
P(γ), γ ∈  [0, 2π] and by the theoretical angle of attack

β ∈  0, . The ideal incompressible fluid flows

around the airfoil contour at a velocity v∞ directed hor-
izontally.

Then, the following representation is valid:

(1)

Moreover, by virtue of the normalization of the map-

π
2
---–

π
2
---

- π
2
---

zP' ζ( ) u χ ζ( )–[ ] 1 e iβ–

ζ
--------– 

 
ε 1–

.exp=
ping function and closure of the contours, the equalities

(2)

(3)

hold.
The coordinates x, y of the airfoil contour are deter-

mined from (1) in the parametric form x(γ) + i y(γ) =
zP(eiγ) as a function of the parameter γ ∈  [0, 2π]:

Here, the singular integral is

To provide the existence of this integral, we require that
the function P(γ) be a Hölder continuous function with
fixed coefficient and exponent. These functions form
a compact set U in the L2[0, 2π] space.

Finally, the class L of the contours under consider-
ation is determined by the conformal mappings z =
zP(ζ), obtained from (1), where the control function
P(γ) satisfies the conditions described above, including
additional conditions (2) and (3).

The distribution of the flow velocity over the airfoil
contour can be presented in the parametric form

For convenience, we take these value as being positive
and negative on the upper γ ∈  [–β, π + β] and lower γ ∈
[π + β, 2π – β] airfoil surfaces, respectively. The limi-
tation of the maximum velocity on the airfoil contour
by a given value vmax is expressed with the aid of a con-
trol function P(γ) and of the parameter β in the form

(4)
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In this case,

(5)

Thus, the maximization of the lift coefficient Cy corre-
sponds to the minimization of the functional J0(P, β) =
I0(P)  under constraints (2)–(4).

THE EXISTENCE AND UNIQUENESS 
OF THE SOLUTION

The following theorems are valid.

Theorem 1 [9]. Let  and β* be correspondingly
the absolute maximum of Cy and extremal value of β;

 = ,  = 2(1 + sinβ). Then, the prin-
cipal variational IBVPA has a solution and sinβ* <
lnvmax,  < 2lnvmax . In addition,

(1) for vmax ≥ 4, the only extremal solution is a circle

and  = 8, β* = ;

(2) for 1 < vmax< 4, the extremal solution is not a cir-

cle and  ≥ vmax – 2 and β* ≥  for

2 < vmax ≤ 4; and

(3) for a given value β = β0, the inequality vmax ≥
 is the necessary condition of solvability. More-

over, if vmax ≥ , then the circle is again the only

extremal solution. If  ≤ vmax < , then the extre-
mal solution is not a circle.

Note that, if the value of β = β0 is given, then we
have principal variational IBVPA with an additional
constraint. The latter statement is equivalent to finding
a 2π-periodic Hölder continuous function P(γ) that sat-
isfies conditions (2)–(4), which provides the minimum
of the functional I0(P) for a given β = β0.

The following theorem is also valid.

Theorem 2. If the subset U0 ⊂  U of the Hölder con-
tinuous functions P(γ) satisfying conditions (2)–(4) is
not empty and sinβ0 < lnvmax , then, for β = β0 , the prin-
cipal variational IBVPA has a unique solution.

The validity of Theorem 2 is proved by the strict
convexity of functional (5) in Theorem 1, by the com-
pactness of the set U0 (if it is not empty) in the space
L2[0, 2π], and by the linearity of constraints (2)–(4).

Cy
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THE EXACT SOLUTION TO THE PROBLEM

The form of the extremal function P*(γ) is given by
the Kuhn–Tucker theorem (see, e.g., [10, Sect. 1.1.2]).
We now construct the extended functional.

The parameters µ0, µ1, and µ2 should be chosen in such
a manner that conditions (2) and (3) will be fulfilled.
The quantity µ(γ) is a nonnegative function (Kuhn–
Tucker multiplier) that allows condition (4) to be satis-
fied. By virtue of the necessary extremum condition,
the function P*(γ) is determined from the equation

 = 0:

(6)

The parameters µ0, µ1, µ2 and function µ(γ) are chosen
in a manner such that g(µ0, µ1, µ2, µ; γ) ≥ 0. In accor-
dance with the Kuhn–Tucker method, the function
µ(γ) ≥ 0 should be found from the condition of the
so-called complementary stackness. As a result, we
arrive at

The velocity distribution that corresponds to P*(γ)
is found as

(7)

The minimal value of the functional is

We rewrite conditions (2) and (3) for the extremal

Ψ P( ) F P τ,( ) τ I0 P( ) µ0 A0 P( ) B0–[ ]+≡d

0

2π

∫=

+ µ1 A1 P( ) B1–[ ] µ 2 A2 P( ) B2–[ ]+

+ µ τ( ) P τ( ) H0 τ β,( )–[ ] τ .d

0

2π

∫

∂F
∂P
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P* γ( ) = ε 1–( ) 2 γ β+
2

------------sin g µ0 µ1 µ2 µ γ, , , ,( ),ln–ln
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function P*(γ) in the form

(8)

(9)

The value I*, the functions µ*(γ), v*(γ), and Eqs. (8)
and (9) do not contain the quantity ε that determines the
profile opening angle in the airfoil trailing edge. Hence,
the extremal solution obtained is the same for all air-
foils with a sharp (ε > 1) and smooth (ε = 1) trailing
edges. From (6), it follows that, in the first case, the
function P*(γ) has a singularity at γ = – β. This implies
that the solution obtained does not belong to the chosen
class of functions and yields only the upper estimate of
the maximal lift coefficient. For the smooth trailing
edge, it is possible to construct an airfoil for which the
maximum is attained.

SYMMETRY OF THE OPTIMUM SOLUTION 
AND MONOTONICITY 

OF THE CORRESPONDING VELOCITY 
DISTRIBUTION

First, we prove that, from the uniqueness of the solu-
tion to the problem under study, (see Theorem 2) it fol-
lows µ1 = 0.

Suppose that we have managed to find a set of
parameters µ0, µ1 > 0, µ2, which satisfy conditions (8)
and (9), and to construct both the corresponding func-
tion µ*(γ) and the velocity distribution v*(γ). Replacing
the variables τ = π – γ in (8) and (9), we can see that the
solvability conditions are also satisfied for the new set
of the parameters µ0, –µ1 < 0, µ2 and for the new func-
tion

Furthermore, the velocity  that corresponds to
the new set of parameters satisfies the condition of lim-
itation of the maximal velocity. Finally, substituting µ0,
– µ1, µ2 and corresponding function µ1(γ) into the nec-
essary extremum condition, we find that this set of
parameters provides the global minimum of the func-
tional I0 . Thus, the set of parameters µ0, – µ1 < 0, µ2 is
also a solution of the extremal problem under consider-
ation, which contradicts the uniqueness of the solution.

g µ0 µ1 µ2 µ*;γ, , ,( )ln γd

0

2π

∫ 0,=

g µ0 µ1 µ2 µ*;γ, , ,( ) γcosln γd

0

2π

∫ 0,=
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2π

∫ 0.=

µ1 γ( ) µ* π γ–( ) max 0{ v max
1– M γ β,( ),= =

– µ0 µ1 γ µ2 γ } .sin–cos+

v 1* γ( )
Therefore, µ1 = 0. This also implies that µ*(γ) =
µ*(π – γ), and it is sufficient to consider the interval

γ ∈  , . For the rest of the circle, the solution can

be obtained from symmetry considerations. The other
important consequence of symmetry is that the first
condition in (9) is fulfilled automatically. Note that, for
ε = 1, the equation µ1 = 0 provides symmetry of the cor-
responding contour with respect to the vertical axis and
the monotonic increase in the velocity distribution

v*(γ) [see (7)] within the interval γ ∈  , . In this

case, if 2(1 + sinβ) > vmax(µ0 + µ2), then, for t, ,

t = , we have a “roof-top”

velocity distribution v  = vmax .
Numerical experiments have shown that, for opti-

mal airfoils corresponding to velocity distributions (7)
at β > 0, the simultaneous presence of the velocity “roof
tops” on the lower and upper airfoil surfaces is not pos-
sible. However, this requires an exact proof, which has
not been obtained so far. If this hypothesis is correct,
then we always have

where t =  for 2(1 + sinβ) < vmax(µ0 + µ2). Thus, the

set of nonlinear equations for seeking two unknown
parameters µ0 and µ2 with allowance made for symme-
try of the optimal-velocity distribution takes the form

(10)

If constraint (4) is ignored, then µ(γ) ≡ 0, and µ2 = 0,
µ0 = 1 is the solution of set (10). Then, g(µ0, µ1, µ2, µ*;

γ) ≡ 1, P*(γ) = (ε – 1)ln , I* = 2π, and the

optimal solution is again a circle determined by a con-

formal mapping zP*(γ) =  (cf. [4]).
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ON SOLVABILITY OF THE SET 
OF EQUATIONS (10)

We now schematically describe the proof of the
solvability of set (10).

It is rigorously proved that the case µ2 = 0 is possible
only if vmax = 2(1 + sinβ). This optimal solution is again
a circle (see Theorem 1). We consider the case µ2 ≠ 0

and denote q = , m = . Thus,

where m > –sint ≤ –sinβ. We assume that the “roof-top”
velocity distribution can exist only for the upper surface
of the optimized airfoil. Then, we have an explicit rep-
resentation of q in terms of t and m:

(11)

and the equation for finding m at a given t is

(12)

Theorem 3. Let t ≥ 0. If Φ0(t, –sint) < −πsint, then,
for an arbitrary t, Eq. (12) has no more than two roots.
If

(13)

then Eq. (12) has a unique solution.
Numerical calculations have shown that, for arbi-

trary t (not only positive), inequality (13) holds and
solution m* = m*(t) to Eq. (12) is unique and continu-
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ously depends on t. From (11), we determine q = q*(t)
as a function of t and obtain the equation for finding t:

(14)

Equation (14) can be solved numerically. Calculations
have shown that the equation can be resolved uniquely.
Now, when all the parameters are known, it is possible
to find the shapes of the optimal airfoils.

Figure 2 shows the exact shapes of the optimal air-
foils and corresponding velocity distributions at β = 90°
and different vmax . In this case, vmax = 1.15,  =
2.28. In Figs. 3, 4, the corresponding contours are
marked by number 2, and corresponding chord dia-
grams—by number 1. Small black circles on the con-
tours indicate the branching and trailing points (in the
given case, these points coincide). As is seen, the exact
solutions have only the vertical symmetry axis. Other
characteristics of the optimal solutions are presented in
the left part of Table 1.

By virtue of Theorem 1 for a given value β = β0, the
problem has a unique “noncircular” extremal solution
only if  ≤ vmax <  (for vmax > , the extre-
mum is again a circle). For a given vmax, the unique

tsin R t( ), R t( ) q* t( )m* t( ) βsin–
1 q* t( )–

------------------------------------------.≡=

v max**

v max* v max** v max**

vmax = 4 vmax = 3.4 vmax = 3.0 vmax = 2.9

0–1 1 0–1 1 0–1 1 0–1 1

0

1

2

3

4

x

y, |v |

1

2 2
2

2

1
1 1

Fig. 2. Exact solutions for ε = 1, β = 90°, and different vmax .
Table 1.  Characteristics of exact solutions in the case of ε = 1: for β0 = 90° and different vmax, for vmax = 1.4 and different
β = β0, and for β0 = 8° and different vmax

β0 = 90° vmax = 1.4 β = 8° 

vmax tmax Cv β tmax Cv vmax tmax Cv

 4 1.0 8.0  8° 0.2717 1.0025  1.3 0.0903 0.9358

 3.4 1.0 7.9528 10° 0.1456 1.2062  1.5 0.3565 1.0478

 3.0 0.6317 7.3921 14° 0.008 1.5086  1.8 0.728 1.1036

 2.9 0.2176 6.6228  2.28 1.0 1.1134
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noncircular solution is provided if β ≤ βmax =

. Thus, there exists an admissible
region of the parameter variation, which corresponds to
“noncircular” solutions. This region is bounded from
above and from below by the curves vmax = 2(1 + sinβ)
and vmax = exp(sinβ), respectively. Figures 3 and 4 and

v maxln( )arcsin

β = 8° β = 10° β = 14°

0–1.0

y, |v |

x

1

2

–0.5

0

0.5

1.0

1.5

0–1.0 –0.5 0–1.0 –0.5

1 1

2 2

Fig. 3. Exact solutions for ε = 1, vmax = 1.4, and different
β = β0 . 

y, |v |

0–0.5

vmax = 1.3

–1.0

vmax = 1.5 vmax = 1.8 vmax = 2.28

0

0.5

1.0

1.5

2.0

2.5

–0.5
0–0.5 0–0.5 0–0.5

1

2 2
2

2

1 1
1

x

Fig. 4. Exact solutions for ε = 1, β0 = 8°, and different vmax .

Table 2.  Characteristics of optimized numerical solutions
(for ε = 2), exact analytical solutions (for ε = 1), and for vmax = 1.8
and different β

β
ε = 2 ε = 1

tmax Cy tmax Cy

8° 0.6752 1.0874 0.7279 1.1043

10° 0.6231 1.3507 0.6633 1.3715 

15° 0.4501 1.9728 0.4884 2.0029 

20° 0.2817 2.4882 0.302 2.535 
Tables 1 and 2 demonstrate the tendencies of variation
of the optimal shapes and characteristics for these two

cases. Note that  = e for β = . Therefore, the last

example presented in Fig. 2 is the ultimate case.
Figure 3 and the middle part of Table 1 show exact

solutions for ε = 1, vmax = 1.4, and different β = β0. We
see that, as the value of β increases, the airfoil thickness
decreases and approaches a circular arc (e.g., β = 14°).
A further increase in β results in a multivalent solution
(self-crossing contours). Note that, in the given case,
βmax = 19.65°.

Figure 4 and the right-hand side of Table 1 demon-
strate the exact solutions for β = 8°, ε = 1, and different
values of vmax. For the given case,  = 1.15,  =
2.28.

In addition, numerical optimization was also per-
formed for several values of vmax in the N-parametric
class of functions

.

In this case, the coefficients ak and bk were varied with
conditions (2)–(4) taken into account in order to obtain
an airfoil with a maximum lift. Dependences of the
maximum value of Cymax on vmax for several β0 were
obtained. It has been found that, for decreasing values
of vmax , the values of Cy max also decrease. In addition,
according to Theorem 1, for each value of β0, there
exists a minimal value  = exp(sinβ0) of the maxi-
mum velocity on the airfoil contour, the values of Cy max
decreasing by no more than 8%. Note that the solution
in a narrowed class of functions PN(γ) yields a lower
estimate for the dependence Cy max = Cy max(vmax).

Actual airfoils usually have a sharp trailing edge.
Numerical optimization of an airfoil with the sharp
trailing edge (ε ∈  (1, 2]) for several values of vmax and
β0 obtained by A.N. Ikhsanova have shown that charac-
teristics of the numerically optimized airfoils are close
to the exact values obtained analytically. Moreover, in
the close vicinity of the exact solutions, there are many
approximate solutions (i.e., realistic airfoils with sharp
or smooth trailing edges). They provide the values of
the minimized functional, which are close to the mini-
mum obtained analytically. However, the shapes of the
airfoils corresponding to these approximate solutions
may be strongly distinguished from the analytical opti-
mal contours. For example, Table 2 presents character-
istics of solutions obtained as a result of numerical cal-
culations (for ε = 2, left-hand part of the table) and
exact analytical (for ε = 1, right-hand part of the table).
These airfoils are optimized for vmax = 1.8 and different
β0 (here, tmax is the maximal airfoil thickness). Note that

v max* π
2
---

v max* v max**

PN γ( ) ak kγ bk kγsin+cos( )
k 2=

N 1+

∑=

v max*
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both numerical and analytical optimal solutions have
“roof-top” velocity distributions.
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The study of the behavior of solids in supersonic
flows is of interest in various branches of mechanics,
e.g., motion of multiphase media, meteoritic astron-
omy, and applied mechanics. In this paper, we describe
the results of numerical experiments with supersonic
flows around certain regular configurations containing
a small number of spheres.

The goal of our calculations is the determination of
aerodynamic coefficients for the spheres and investiga-
tion of the variation of the shock wave structure as a
function of the distance between solids. These data, in
particular, promote the understanding of mechanics of
dispersing fragments after a solid has been fractured in
supersonic flow.

In this study, we have chosen the four configurations
shown in Fig. 1. The sphere centers and the velocity
vector of incident flow lie in the same plane. The mea-
sure of the configuration size is the quantity h equal to
the half-distance between the two closest points of two
neighboring spheres, which is normalized to sphere
radius R. Throughout the paper, for the sake of conve-
nience, we use the sphere numbering shown in Fig. 1.
Comparison of aerodynamic properties of the configu-
rations a–d apparently makes it possible to draw a gen-
eral conclusion on flows around systems of solids in
more complicated cases. We are implying cases of
irregular configurations of systems composed of sev-
eral solids as well as cases of certain variations in their
shapes. In this study, all the calculations are carried out
for systems of solids placed in perfect-gas flows with
the adiabatic index and Mach number equal to γ = 1.4
and M = 6, respectively.

Configuration b was analyzed in detail in a previous
study [1] in which drag coefficient cx and transverse-
force coefficient cy were determined. It was also proved
that the largest distance between the spheres, when the
transverse-force coefficient becomes small, corre-

Research Institute of Mechanics, Moscow State University, 
Vorob’evy gory, Moscow, 119899 Russia
e-mail: djo@access.izba.ru; stulov@imec.msu.ru; 
pstulov@imec.msu.ru
1028-3358/04/4911- $26.00 © 200680
sponds to the tangency of the sphere and the reflected
shock wave.

Flows of the type a are known in the literature as
flows around a solid in the wake of another solid [2].
Previously, the problem was solved mainly for rela-
tively small distances between solids and for solid
shapes corresponding to various applied purposes (e.g.,
separation of rocket stages, release of protector caps,
etc.). Here, we consider flows around two spheres with
the centerline directed along the flow.

As our calculations have shown, the drag coefficient
for the front sphere initially slightly increases with h
but, from h ≈ 2, it takes values corresponding to flow
around a single sphere. This distance is close to two cal-
ibers of the solid and, approximately, corresponds to
the lower downstream boundary of the near wake
beyond the front sphere [3]. With further increasing of
h, drag coefficients cx remain virtually constant. In
other words, the flow around the front sphere is no
longer dependent on the presence of another solid in its
wake. At the same time, the drag coefficient cx for the
second (rear) sphere rises very slowly nonmonotoni-
cally from a certain rather small value (~0.1cx1) at
h = 0. For example, at h = 10, we have cx4 = 0.115. For
configuration a, the calculated values cx1 and cx4 as
functions of h are shown in Fig. 2.

We should note that, in the downstream-boundary
region of the near wake beyond the front sphere (h ≈ 2),
significant oscillations of the calculated cx4 values are
observed. Figure 2 shows the average values of cx for a
random sampling, the deviations from the average val-
ues being marked by vertical segments. The values of
cx1 also fluctuate, but with a considerably smaller

1 4 3 1

2
3

4

22

a b c d

Fig. 1. Disposition of spheres in configurations a, b, c,
and d.
04 MAIK “Nauka/Interperiodica”
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amplitude. The possibility of a hysteresis in the pattern
for the flow around the rear sphere under the specified
conditions was indicated in [2]. For h < 2 and h > 2,
oscillations of the coefficients cx are virtually absent.

Aerodynamics of system c (Fig. 1) was compared to
the results of studies of flows around system b [1]. Drag
coefficient cx2 and transverse-force coefficient cy2 of
sphere 2, as well as drag coefficient cx3, for sphere 3 are
plotted in Fig. 3 by solid lines. For comparison, values
of cx2 and cy2 in configuration b are shown in this figure
by dashed lines. As is seen, the presence of the third
sphere only negligibly changes the conditions for the
flow around the front spheres. This small variation is
manifested as a certain decrease in both cx and cy for the
front sphere due to the increase in the bottom pressure,
which is associated with the existence of the third
sphere. The shape of the leading shock wave in front of
the two front spheres is almost invariable in this case.

We now discuss the flow near sphere 3. When dis-
tances h are small, a shock wave is formed in front of
sphere 3. This wave is limited in its amplitude due to
the inhomogeneity of the incident flow. The amplitude
of the shock wave increases with h, and the drag coeffi-
cient cx3 monotonically rises. The situation remains
constant up to distances for which the interaction of the
front spheres ceases, i.e., for h > 0.5. With increasing h,
the reflected shock wave hits the front part of sphere 3
so that the coefficient cx3 continues to rise. With further
increasing h, the reflection point and, furthermore, the
lateral part of the leading shock waves of spheres 1 and
2 turn out to be on the leading shock wave of sphere 3.
During the entire period of the interaction with sphere 3
of the shock waves from the front spheres, drag coeffi-
cient cx3 exceeds that of a single sphere. This is illus-
trated by Fig. 3, where, starting from 2h ≥ 1.0, the linear
scale along the x axis is replaced by a logarithmic scale.
Here, we note a new aspect of the interaction in the sys-
tem under consideration of supersonic flows around
solids, namely, that the interaction of reflected shock
waves with solids results not only in the appearance of
a transverse force but also of a significant increase in
the drag. 

The pattern of flows around configuration d (Fig. 1)
repeats the tendencies considered above. For example,
the flow around the set of spheres 1, 2, and 3 is similar
to the flow around system c. This fact justifies employ-
ing the term characteristic elements. The drag coeffi-
cients and the transverse-force coefficients for spheres 2
and 3 and the drag coefficients for spheres 1 and 4 are
represented in Fig. 3 by symbols. Here, we observe a
more noticeable drag reduction for sphere 1 rather than
for sphere 2, for which this reduction virtually repeats
the decrease in cx2 for system c. This occurs by virtue of
a large elevation of the bottom pressure on sphere 1 due
to the existence of a third layer composed by sphere 4
entering into configuration d. At the same time, the drag
related to sphere 4 increases with h more slowly than the
resistance of sphere 3 (in both systems d and c).
DOKLADY PHYSICS      Vol. 49      No. 11      2004
The shape of the leading shock wave varies with h
practically in the same manner as for configurations b
and c. The transformation of a common shock wave in
front of the system into individual shock waves in front
of each sphere occurs in the head part of the system. It
is evident that the above-mentioned aspect of the inter-
action of reflected shock waves with leading shocks in
front of the spheres of rear rows also exists and results
in a noticeable increase in the drag for these spheres.

The pattern of flows around system d for h = 0.5 is
shown in Fig. 4. The principal features of the flow
repeat the preceding cases.

The basic conclusion of this study is that, in the case
of a supersonic flow around a system of solids, the flow
distortions stipulated by the collective nature of an
obstacle drift, as it were, downstream. A slight decrease
in the drag of head spheres is caused by increasing bot-
tom pressure. However, this virtually does not affect the

~~

5

0.2

cx

h10

0.8

0

Fig. 2. Drag coefficient for spheres in configuration a.

0.5

cx, cy

1 2 4 6 8 2h0

0.5

1.0

cx2
cx3

cy2

Fig. 3. Drag coefficients and transverse-force coefficients in
configurations: (b) dashed lines; (c) solid lines; and
(d) [symbols: (s) cx1, (×) cx2, cy2; (e) cx3, cy3; and (h) cx4].
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Fig. 4. Pattern of flow around solids in configuration d (h = 0.5).
reconstruction of the leading shock wave, which mono-
tonically decays into individual shock waves with an
increase in the distance between the spheres. The char-
acteristic distance between solids, which corresponds
to this decay, also remains invariable and entirely cor-
responds to the simple case of flow around a pair of
spheres with their centerline aligned across the flow.
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In this paper, results of experimental studies of wave
generation in a contact melted layer under axial colli-
sions of metallic plates with metallic bodies made in the
form of truncated right circular cones are presented. In
this case, a closed regular structure of the contact layer
was formed for the first time as a series (train) of long
waves on the exterior surfaces of copper and aluminum
cones. It is found that the dependence of the measured
wavelength on the group velocity corresponds to the
rising branch of the wave dispersion law.

The phenomenon of wave generation on contact lay-
ers in high-speed collisions of metallic bodies is studied
for a long time. (We imply both fundamental studies,
e.g., analysis of hydrodynamic instability of viscoplas-
tic flows in contact melted layers in the collision zone
and industrial applications, e.g., the plating and weld-
ing explosion technologies [1–4].) Investigation of
waves generated on the contact surface of metallic
screens under high-speed collision with a body is
important for the development of methods for efficient
protection of objects in space against meteorite
impacts. In a large degree, the interest in the process of
wave generation is also caused by the possibility to
study wave phenomena from the standpoint of general
wave theory, as the contact layer is a medium in which
the effects of dispersion and nonlinearity manifest
themselves in full measure. These waves can be
observed during and after a collision, and their shapes
store information on the evolutionary stages of contact
layers.

Up to now, wave generation has been studied only
for oblique incidence of flat plates when the collision
angles are acute and strongly limited (γ ≤ 20°), whereas
the wavelengths of the waves being produced are small
(λ ≤ 1 mm) and are determined by the capillary tension
of the contact surface. In this case, as is known from [5],
the dispersion law for the phase v p(λ) and group v g(λ)
velocities of capillary waves are determined by dimin-
ishing branches of the dependences v p(λ) and v g(λ).

Russian Federal Nuclear Centre, 
Institute of Experimental Physics, 
Sarov, Nizhni Novgorod oblast, Russia
1028-3358/04/4911- $26.00 © 20683
One more feature of colliding flat plates is the sig-
nificant effect of their edges, which complicates the
wave pattern.

In this connection, it is of interest an advance into
the region of large (even obtuse) collision angles and
long wavelengths (λ ≥ 1 mm). Then, wave generation is
developed along the rising branch of the dependence
v g(λ), and boundary distortions of the wave pattern by
virtue of the formation of waves with a closed wave
front are excluded. The latter requirement can be pro-
vided in the case of collisions with a body of special
geometric shape, in particular, with a rod [1].

In the present paper, we describe the results of our
experimental studies of wave generation in a contact
melted layer. We consider axial collisions of metallic
plates with metallic bodies in the form of truncated
right circular cones. In this case, a closed regular struc-
ture in the form of a series (train) of long waves was
formed for the first time on the exterior surfaces of cop-
per and aluminum cones.

Scheme of the experiment. As shown in Fig. 1,
between two square metallic plates 1, a charge of a high
explosive 2 based on plasticized RDX was placed.
Truncated metallic cones 3 were installed outside of the
plates so that the smaller-diameter bases of each of the
cones closely adjoined the corresponding plate in its
center. The cone axes coincided and were normal to the
plate planes. Special traps filled with sand provided the
preservation of the cones after the experiment (the traps
are nor shown in Fig. 1).

Flat metallic plates of a size from 150 to 180 mm
and 1 mm thick were used in the experiment. The
explosive charges possessed sizes coinciding with
those of the plates and thicknesses of 2, 4, and 6 mm.
The truncated cones had the smaller diameter d1 = 30–
60 mm and larger diameter d2 = 80–120 mm. To
exclude the edge effects associated with plate bound-
aries and with explosion-product unloading at the plate
edges, cone diameters d2 always were smaller than the
sizes of metallic plates and explosive charges. In the
experiments, the angle α (Fig. 1) between the directrix
of the smooth surface of the cone 3 and the plate 1 was
45°, 50°, 55°, 60°, and 65°. In this case, the collision
004 MAIK “Nauka/Interperiodica”
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angle of the plate and the cone turned out to be obtuse

and attained a value of γ = α + β, where β = 

is the angle of the plate rotation under the action of
explosion products, v  is the velocity of plate motion

v
v d
------arctan

1

v

v cv c

v c

v

vd

vd

2

α
γ

3

4

5
6

vv

β

Fig. 1. Device for investigation of waves arising in collision
of plates with two cones: (1) metallic plates in their initial
positions (prior to the explosion); (2) explosive charge;
(3) truncated metallic cones (d1 and d2 are the smaller and
the larger base diameters, respectively); (4) plate boundary
in the intermediate stage after explosion; (5) plate boundary
after the experiment; (6) contact point of the plate and the
cone: γ is the collision angle, α is the initial angle between
the plate and the cone, β is the plate rotation angle under the
action of explosion products vd is the velocity of the deto-
nation moving along the explosive, v  is the plate velocity
under the action of explosion-product pressure, vc(λ) ≈
vg(λ) is the contact-point velocity.
(the velocity value depends on the ratio between the
masses of the plate and of the explosive), and vd is the
detonation velocity. In our experiments, plate velocity
v  can vary within limits of 1–4 km s–1. Displacement
velocity v c for the contact point can be calculated

according to the formula v c = . As plate materials,

we employed copper–copper (Cu–Cu) and aluminum–
aluminum (Al–Al) pairs, etc. The explosive charge was
placed in the center of the device.

In order to record collision dynamics and wave gen-
eration in our experiments, we used pulsed X-ray pho-
tography and ultrahigh-speed photography methods.
After the experimental loading had been over, the
states of the interface metal layers were studied in flat
plates cut from the cones (Fig. 2) that were preserved
in the trap. In order to investigate the contact-layer
structure, the plates were grinded and polished up to
the mirror luster. After etching, the microstructure of
metal in the contact zone of the metallographic section
was studied with a microscope. These studies made it
possible to determine the depth of metal melting and
reveal the nonlinear character of the wave (rise of crest
steepness).

We measured amplitude a and wavelength λ in the
longitudinal direction with respect to the contact-point
motion and investigated the profile of the leading and
trailing fronts of longitudinal waves. Wavelength λ was
determined as the average distance between crests at a
baseline of ten periods. In discussions of strain wave-
length, we should take into account the flow evolution
along the cone-directrix length. Similarly to in the case
of flows in channels, we separated the initial segment
and that of hydrodynamic stabilization. The stabiliza-
tion segment was determined according to integral
parameters such as the mean wavelength or mean wave
amplitude. To increase the statistics of the experiment,
a significant part of the experimental runs were per-
formed under the same initial parameters at both sides
of the explosive charges: identical material and identi-
cal angles of the cones and identical material and iden-
tical angles β of the plates, as well as identical material
of the plates and cones. It should be noted that attaining
a stabilized wave regime was independent of the plate
thickness but depended on another linear scale (appar-
ently, on the wave-flow thickness). This is why the sta-
bilization of wave regimes occurred at short distances
(λ–3λ) from the smaller cone base. Thus, in analyzing
the wave regime, the evolutionary nature of the wave
flow was noted and actual cone sizes were taken into
account.

About one hundred experiments were performed.
The accumulated experimental data made it possible to
plot the dependence v c(λ) ≈ v g(λ) (Fig. 3). In particular,
it follows from this dependence that, in our experi-
ments, wave generation is realized that develops along
the rising branch of the dependence v g(λ). The obtained
regimes admit both the possibility of advancing into the

v
αsin

-----------
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(a) (b)

Fig. 2. Cone after ultrahigh-speed collision with plates: (a) aluminum cone; (b) copper cone.
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Fig. 3. Rising branch of dispersion law for the group velocity [vc(λ) ≈ vg(λ)] as a function of the wavelength λ: (m) Al–Al and
(.) Cu–Cu.
region of large angles γ (obtuse angles) and of exclud-
ing edge effects on the wave pattern. These facts allow
us to conclude that, in the present study, a new method
of investigating wave phenomena inherent in high-
intensity pulsed processes has been developed.
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1. INTRODUCTION

Recently, experimental investigations of the motion
of an initially almost plane layer made of an easily
deformable material (in particular, a round copper plate
with a correspondingly sized triangular-net pattern
deposited onto it) that is thrown under the action of a
large pressure drop were carried out [1]. These experi-
ments resulted in an understanding of the fact that,
under these conditions, a steadily, reproducible growth
of perturbations with a certain wavelength on the order
of several layer thicknesses occurred.

It was typical for the experiments performed that the
pressure drop much exceeded the elasticity limit of a
material but is lower than the Young’s modulus. In the
present study, for describing the behavior of a shell
under these conditions, we propose a model of a weakly
elastic material. This model generalizes the pure iner-
tial model of [1] and well describes the totality of avail-
able experimental data. Without touching upon the
physical essence of proceeding elastoplastic processes,
we assume that, at the initial acceleration stage, the
shell acquires an efficient longitudinal elasticity, with
the modulus proportional to the acting pressure (weak
elasticity). Such a weak elasticity prevents only expan-
sion of the shell and is similar to the model of three-
dimensional Treloar medium found as a result of statis-
tically substantiated observations of the structure of
rubber, which were described in [2].

In the model of a weakly elastic shell as in the iner-
tial-motion model [1, 3], the plane problem is reduced
to a set of linear equations and, thus, can be efficiently
investigated. In particular, for a homogeneous shell, the
qualitative behavior of solutions is specified by the cor-
responding dispersion equation. From this equation, it
follows that the process of the development of short
waves occurs in an oscillatory mode. It should be
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remembered that the theory can be applied when the
actual wavelength greatly exceeds the characteristic
shell thickness, which constrains the wavelength spec-
trum from below. Furthermore, there exists a critical
wavelength for which the vibration frequency vanishes,
whereas perturbations with a wavelength exceeding the
critical one increase. In turn, the wavelength range
involves a (resonance) wavelength equal to the double
critical wavelength with the largest growth increment.
With further increase in the wavelength, the increment
decreases to zero.

In the spatial case, the set of equations is quadrati-
cally nonlinear. The experimentally observed effect [1]
when six depressions appear on an obstacle and are reg-
ularly located with respect to its center corresponds to
the three-wave resonance characteristic of the quadratic
nonlinearity. A decrease by half in the thickness of a
round plate (and, correspondingly, in the step of the
deposited net) under the same other parameters results
in the appearance of the second row of 18 depressions
with correspondingly smaller depths and half the dis-
tance between their centers.

It is characteristic that depositing a pattern adequate
to the critical or somewhat smaller wavelength pro-
motes a more stable plate speed up, which results in a
single wide depression with a plane bottom on an obsta-
cle. Moreover, for a plate thickness comparable to the
obstacle diameter, this results in spallation from the
plate’s opposite side.

Correct understanding of the dynamic processes
that proceed in the case of motion of easily deformed
shells makes it possible to improve the reproducibility
and to increase the efficiency of various explosive
devices that often operate in an unstable way [4].

2. EQUATIONS OF MOTION FOR A SHELL

The equations of motion for a weakly elastic shell
have the form

(1)

where r is the radius vector of the shell particles with
Cartesian Eulerian components xi and n is the vector of
a unit normal directed toward the reduced pressure. The

σrtt pn ∇ α σc2a0
αβrβ( ),+=
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subscript t implies the derivative with respect to time
for the constant Lagrangian coordinates ξα, α = l, 2, and
the subscript β denotes a derivative with respect to ξβ.
The symbol ∇  corresponds to the covariant derivative
over a surface, and σ is the surface density.

Below, pressure p is considered as constant and
equal to the initial pressure p0; in the general case, we
can assume it to be a function of t as well. We also
assume the square of the effective velocity of sound in

a shell material to be c2 = , where ρ(ξα) is the den-

sity of a shell material (considered as incompressible),
κ is the dimensionless factor (for metallic shells, it is
close to unity). It is also useful to introduce the shell

thickness by the formula h = .

Let aαβ be the components of the metric tensor of the
shell surface,

(2)

 represent the components of the vectors rα tangen-

tial to the surface so that n = ; and |r1 × r2| =

 ≡ .

Symbols  denote the initial contravariant com-
ponents of the surface metric tensor, which are used
with the factor c2 as the components of the specific elas-
tic-constant tensor. It should be noted that, here, we
consequently take into account all the elements of the
shell finite-deformation theory without linearization,
although the elastic term finally turns out to be linear.

Indeed, by virtue of the law of conservation of mass,
the Lagrange formula

(3)

is valid. As above, zero subscripts denote the corre-
sponding initial values of the functions ξα. Using for-
mulas (1) and (3), we obtain the vector equation

(4)

In the case of the shell with an edge, to get rid of the
possibility of gas leaking onto the forward shell surface
and of analysis of the edge rarefaction waves arising in
this case, we consider the shell as being placed into a
channel of the corresponding shape. Thus, the shell is
considered as a deformable piston. In the case of inter-
section of trajectories of shell particles, we make use of
a model of perfectly inelastic impact corresponding to

κ p0

ρ
---------

σ
ρ
---

aαβ δij xα
i xβ

j , xα
i ∂xi

∂ξα--------,= =

xα
i

r1 r2×
r1 r2×
------------------

det aαβ( ) a

a0
αβ

σ σ0
a0

a
-----=

σ0 a0rtt p0 r1 r2×( ) a0σ0c2a0
αβrβ( )α .+=
DOKLADY PHYSICS      Vol. 49      No. 11      2004
summing the vector momenta of colliding material
points. In this case, depending on the collision configu-
ration, both new surfaces and rods, or even individual
material points can be formed.

3. SPHERICALLY SYMMETRIC SOLUTIONS
Ignoring the pressure drop of pushing gas, we study

the acceleration of a shell with zero initial velocity. We
consider focusing on a homogeneous shell correspond-
ing to the external surface of a spherical segment of
mass M into a point under the action of an external con-
stant pressure p0. Let r0 @ h0 be the initial radius. Then,
Eq. (4), with allowance made for the spherical radial
coordinate r(t), yields

(5)

with the initial data (0) = 0 and r(0) = r0 . Equation (5)
has the energy integral

(6)

which can be used for representing the solution in the
quadrature form, t(r).

It should be noted that, by virtue of the assumption

c2 = , the term containing c2 in Eq. (5) is small.

In addition, the incompressibility of the shell material
renders it impossible to approach the center r = 0, and
it is necessary to be constrained by the radii r > h ~

(h0 )1/3.

The collapse time is determined by the relation

(7)

After the collapse, according to the model of perfectly
inelastic impact, lumped mass M moves along a straight
line. In addition, in the absence of a pressure force due
to the zero surface area, the motion occurs at a constant
velocity.

Thus, by virtue of the inequality r0 @ h0 , introduc-
tion of elasticity plays a negligible role and makes it
possible to use the results of [3]. In particular, the
results of optimization of the collapsing-segment
momentum with respect to the segment opening angle,
generally speaking, remain unchanged.

Based on the Hugoniot solution for the acceleration
of a plane piston, which is accompanied by the forma-
tion of a rarefaction wave, we present the estimate of
applicability of the p0-steadiness condition up to the
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instant of shell collapse. From Eq. (7), we obtain the

condition  @ , where ρg is the throwing-gas den-

sity, which is quite feasible for a reasonably dense
material and a not-too-thin shell.

We also consider the problem of the motion of a
spherical segment in a perfectly rigid pipe. In this case,
it is necessary only to change the sign in Eq. (5) ahead
of the pressure term p0 . We will show that an unlimited
energy accumulation takes place under the expansion.

Let a hemisphere of radius r0 be enclosed in a pipe
of the same radius at the initial instant of time t = 0.
Then, the hemisphere starts to accelerate under the
action of the pressure p0 (we ignore the shell elasticity).
A fraction of the shell material is pressed onto the pipe

surface, so that only a segment of radius r(t) = ,

where θ is the segment half-opening angle, remains
free at the current instant of time. Furthermore, motion
of a cylindrical layer along the wall is not considered;
this motion depends on the conditions of the layer–wall

interaction. The segment area is S = 4πr2sin2 .

The calculation of the mass and energy of the seg-
ment under consideration yields, respectively,

(8)

Thus, we have θ  0, M  0, and E 

  ∞ as r  ∞ (S  π ). It should be noted

that the segment axial momentum tends to zero: P =

 ~ M1/4  0.
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Fig. 1. Dispersion curve.
As r  ∞, the asymptotic law of motion has the
form

(9)

The spherically symmetric solutions and their
asymptotic behavior also play an important role in
studying internal resonances. In addition, these solu-
tions can serve as tests for the approbation of various
approximate methods.

4. THE PLANE PROBLEM

In the case of a plane problem, we have x3 = ξ3 , all
other variables being functions of ξ1 and t. We intro-
duce the complex Eulerian variable z = x1 + ix2 and also

use the mass variable µ = dξ1  as the

Lagrangian coordinate to simplify the equations. Thus,

σ = . The dimension of the variable µ is equal to that

of t2 .
Then, the equations of motion take the form

(10)

It should be noted that material density ρ and initial
thickness h0 can vary.

Complex Eq. (10) represents a set of two hyperbolic
equations. However, even for a constant value of , it
has a strong dispersion, which in many respects charac-
terizes the unusual behavior of solutions with different
initial data.

We consider an elementary solution in the case  =
const, which locally corresponds to the cylinder expan-
sion. Let z = A0exp(λt – ikµ), where A and λ are com-
plex constants, and k > 0 is a real number. Then, we
arrive at the following dispersion equation:

(11)

which shows that, in particular, there is a critical wave

number kcr =  corresponding to the equilibrium state

λ = 0 (Fig. 1).
For the wave numbers k < kcr, the quantity λ is real.

This corresponds to either the growth or attenuation
with time of wave amplitude A0exp(λt), therewith only

one maximum for |λ| at k =  takes place. Thus, there

is a wave with the mass length 4π  (which we, here-
inafter, will call the resonance length) and the most rap-
idly growing amplitude. This resonance length charac-

r
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terizes the maximal instability of the process. In con-
ventional variables, this yields the relation

(12)

which approximately (because, generally speaking,

σ0  is not constant) corresponds to the wavelength
lres ≈ 4πκh0. The amplitude growth rate decreases down
to zero as k  0. For example, at the constant σ0 and

a small initial perturbation of the plane, quantity σ0

differs from a constant by a value of the second order of
smallness.

In the case of k > kcr, the parameter λ becomes
purely imaginary, λ = iω, where ω is the vibration fre-
quency of the amplitude being time periodic.

Evidently, each of the solutions of the indicated type
has a cylindrical symmetry and can describe a mono-
tonic expansion or compression, as well as the vibration
or equilibrium of a cylindrical shell. By virtue of the
linearity and uniformity of Eqs. (10), it is also possible
to complement their solution with a solution adequate
to the solid-state motion. Then, it is possible to speak
about the more complicated motion of a corrugated
shell (this solution was indicated in [1]). In this case,
deviations of the shell shape from a plane, even if they
are initially small, grow exponentially near the reso-
nance wavelength, anticipating the average motion with
a constant acceleration.

5. THE THREE-WAVE RESONANCE

As the example of spherically symmetric solution (9)
shows, a shell speed up even more rapid than the expo-

nential one [about )2] is possible. Could small

perturbations of a plane lead to such a growth? In par-
ticular, the experiment with a thrown round plate sym-
metrically divided into six sectors indicates the forma-
tion of six depressions on an obstacle [1]. This fact, as
can be assumed, qualitatively corresponds to the wave-
length of a vibration with an extremely rapidly increas-
ing amplitude. This implies the presence of a three-
wave internal resonance characteristic of quadratic
nonlinearity [5]. We now show that this resonance
results in a shell acceleration of the same order of mag-
nitude as in the spherical solution.

We assume that the initial perturbations are reason-
ably small, so the coefficients in Eq. (4) can be consid-
ered as constant. Thus, we have

(13)

We consider the problem of throwing a plane on
which a symmetric pattern of three standing waves is

σ0 a0 ξ1d
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realized. The perturbed part of the solution is expanded
in terms of the three-periodic functions adequate to a
triangular lattice in sites on which, for example, the
maxima of vertical (along e3) perturbations are located.
Thus, there is a group of the sixth-order rotations leav-
ing the given site at rest, along with a group of the cor-
responding translations.

The solution has the form

(14)

where the c.c. implies complex conjugation.

Here, it is accepted everywhere that k = kres =  =

, which corresponds to plane waves with the most

rapidly increasing amplitude. The vectors kp = eα
(the sum of which is zero) are

It is clear that the term rI is invariant with respect to
permutations of vectors kp. The component rII corre-
sponds to the sum of higher nonresonance harmonics
that increase more slowly. They appear as a result of
quadratic interaction between plane waves. In the case

of a single wave, A = B = A0 t and λ = .

After substituting these formulas into Eq. (13) and
reducing similar terms in the expressions for the func-
tions Ep, we obtain two equations for the complex func-
tions A and B,

(15)

where the bar symbol implies complex conjugation.
The initial conditions are

which corresponds to symmetric interaction between
originally three plane waves of a small amplitude A0 .
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It is clear that the best case of organizing shell accel-
eration is, in particular, a real positive A0 . In this case,
the solution to Eqs. (15) is also both real and positive.
For complex A0 = |A0|eiα, the effect of the argument α,
generally speaking, results in the absence of an inter-
section between three lines of maxima of the functions

cos(k ξβ + α). For a real negative A0 , we obviously
have the threefold minimum at the point ξβ = 0.

Equations (15) have the energy integral

and can be solved numerically.
Let α = 0. Then, it is also possible to propose a sim-

ple approximation of the solution by elementary func-
tions with allowance made for asymptotic behaviors as
t  0, ∞. In the dimensionless form, we have a = kA,

b = kB, and τ = t,

kβ
p( )

1
2
--- Ȧ

2
Ḃ

2
+( )

g0k
2

-------- BA AB
1
2
--- A

2
B 2+( )–+

–

+
3k
8

------ AB2 AB2+( )
 E0=

g0k

a a0
a0τ

2

2
a0

2
----- 

 
1/4

τ– 
 

2
-----------------------------------+ ,=

b a0
a0 2τ2

2
a0

2
----- 

 
1/4

τ– 
 

2
-----------------------------------

a0 2 1–( )τ2

4
-------------------------------.–+=

Fig. 2. Schematic arrangement of lines of extrema compos-
ing the shell heights.
The dimensionless time of attaining infinity is τ∞ =

2 .

The analysis of the solution shows that, at the points
corresponding to the lines of minima of the functions

cosk ξβ in which there is a backward convexity in
the initial profile, the collapse takes place, and the
material plane strips lagging from the basic surface are
formed. In Fig. 2, the solid lines are the lines for the

maximum of the functions cosk ξβ and the dashed

lines represent those for the minimum of cosk ξβ.
These formations carry a momentum acting on an
obstacle. Comparison with the breakdown data
obtained in the above experiment enables us to find the
quantity lres = 4πκh0 and, hence, to determine the con-
stant κ for copper, which, in this experiment, attained
the value κ ≈ 1.03.
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INTRODUCTION

We propose to investigate nonlinear oscillations of a
swinging spring by the Poincàré–Birkhoff normal-form
method. As is well known, the system Hamiltonian can
be represented using this method [1, 2] as a quadratic
(unperturbed) part and a sum of terms with a power
higher than two. Using the canonical transformations,
the Hamiltonian system can be simplified in a manner
such that it becomes integrable up to the fourth-order
terms and higher. Thus, we obtain an asymptotic solu-
tion to the nonlinear problem. Conventional normaliza-
tion methods for a system with two degrees of freedom
are very cumbersome and require time-consuming cal-
culations [2–6]. The change of variables is performed
either with the help of generating functions or using a
generating Hamiltonian.

In this study, we use the definition of the invariant
normal form given by Zhuravlev [7, 8], which requires
no separation into autonomous–nonautonomous or res-
onant–nonresonant cases and is realized in the frame-
work of a unified approach. The asymptotic behavior of
the normal form is obtained by consecutive calculation
of quadratures. In contrast to the Zhuravlev method, we
employ a parameterized generating function [9, 10]
instead of the generator method and the generating
Hamiltonian.

DESCRIPTION OF THE INVARIANT-
NORMALIZATION ALGORITHM

First, we give definitions necessary for the desired
algorithm. The function f (t), representable as a finite
sum of harmonics,

is called the quasiperiodic function.

f t( ) f 0 ai ωitcos bi ωitsin+( ),
i

∑+=
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We introduce two linear operators L( f ) and L1( f )
defined on the set of quasi-periodic functions f(t),

(1)

Let the Hamiltonian be given as: 

which needs to be reduced to the normal form. Then,
for determining the normal form,

and the canonical change of variables, it is required to
perform the following operations.

(1) To solve the Cauchy problem for the unperturbed
Hamiltonian H0 and to present it as

(2)

(2) To find the expansion coefficients for the normal
form  and for the function Ψi:

where the values of Ri are calculated for the ith approx-
imation from the functions found in previous approxi-
mations. The formulas for the first two approximations
are the following:

(3) We present the formulas for constructing the
solution after the first two approximations of the nor-

L f t( )( ) f 0, L1 f t( )( )
bi

ωi

-----.
i

∑= =

H q p ε, ,( ) H0 q p,( ) F q p ε, ,( ),+=

F q p ε, ,( ) εF1 t q p,,( ) ε2F2 q p,( ) …,+ +=

H Q P,( ) H0 Q P,( ) F Q P ε, ,( ),+=

F Q P ε, ,( ) εF1 Q P,( ) ε2F2 Q P,( ) …+ +=

q q t X Y, ,( ), p p t X Y, ,( ),= =

q 0 X Y, ,( ) X, p 0 X Y, ,( ) Y.= =

Fi

Fi Q P,( ) L Ri q t Q P, ,( ) p t Q P, ,( ),( ),(=

Ψi Q P,( ) = L1 Ri q t Q P, ,( ) p t Q P, ,( ),( ),(
i = 1 2 …,, ,

R1 Q P,( ) F1 Q P,( ),=

R1 Q P,( ) F2 Q P,( ) 1
2
--- F1 F1+ Ψ1,{ } .+=
004 MAIK “Nauka/Interperiodica”
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mal form Ψ = εΨ1 = ε2Ψ2 and the function = εF1 =

ε2  have been found.

Let X = X(t, Q0, P0) and Y = Y(t, Q0, P0) be the solu-
tion to the set of equations with the Hamiltonian

(X, Y),

Then, according to the Zhuravlev theorem and using
the substitution of this solution into solution (2) with
the unperturbed Hamiltonian, we obtain the solution to
the set with the Hamiltonian (Q, P):

The solution in terms of the initial variables is
obtained after the canonical change of the variables Q,
P  q, and p in the parametric form

(3)

Excluding parameters x and y, we find the explicit form
of the transformation of variables on the order of small-
ness ε3:

(4)

F

F2

F

Ẋ
∂F
∂Y
-------, Ẏ

∂F
∂X
-------, X 0( )– Q0, Y0 0( ) P0.= = = =

H

Q q t X t Q0 P0, ,( ) Y t Q0 P0, ,( ), ,( ),=

P p t X t Q0 P0, ,( ) Y t Q0 P0, ,( ), ,( ).=

q x
1
2
---Ψy, Q– x

1
2
---Ψy,+= =

p y
1
2
---Ψx, P+ y

1
2
---Ψx.–= =

q Q P,( ) Q ΨP Q P,( )–
1
2
--- Ψ ΨP,{ } … ,+ +=

p Q P,( ) P ΨQ Q P,( ) 1
2
--- Ψ ΨQ,{ } … .+–+=

0

l

y

x

mg

Fig. 1. Formulation of the problem. A pendulum with two
degrees of freedom: a heavy point mass swinging in a verti-
cal plane on a weightless spring.
FORMULATION OF THE PROBLEM
ON A SWINGING SPRING 

We consider a pendulum with two degrees of free-
dom: a heavy point mass swinging in the vertical plane
on a spring (Fig. 1), the spring being weightless.

The formulation of this problem is presented, for
example, in [11, 12], in which methods of investigation
of the problem and certain results are described.
Because of the extreme complexity of the methods, it is
difficult to make a complete analysis. We here propose
a solution to this problem based on the method of
invariant normalization using the parametric change of
variables.

We apply the following notation: k is the spring
rigidity, l is the spring length in the rest position of the
load, and m is the load mass. We also assume that ω =

 is the frequency of small oscillations for a mathe-

matical pendulum of length l and

We introduce a Cartesian coordinate system with the
origin at the point O (the load rest position) and with the
axes directed along vertical and horizontal lines (see
Fig. 4), lx and ly being the load coordinates. The spring
length is lR, where

The spring tension is T = , where l0 is the

length of the unloaded spring. On the other hand,

 – k = mg, because l is the rest-position length.

Substituting l0 =  = k + mg into expression for T,

we have T = (k + mg)R – k. Therefore, it is clear that

 is the frequency of load oscillations for the

undeflected spring, and µ is the ratio of this frequency
to ω.

The components of the force acting on the load can
be written as 

The Newton equations of motion are

g
l
---

µ k
mg
------- 1+ .=

R 1 x+( )2 y2+ .=

k
l
l0
--- 

  R k–

k
l
l0
--- 

 

k
l
l0
--- 

 

k mg+
ml

----------------

Fx mg
T 1 x+( )

R
--------------------, Fy– Ty

R
------– .= =

mlẋ̇ Fx, mlẏ̇ Fy.= =
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We also introduce dimensionless time τ,

Then, the equations are written in the form

Assuming u =  and v  = , we pass to the set of

first-order equations, which turns out to be the Hamil-
tonian set,

with the Hamiltonian

The constant in H is chosen in such a manner that
H(0, 0, 0) = 0.

We study spring motion near the rest position at
large times τ.

After replacement of x, y, u, and v  by εx, εy, εu, and
εv  and H by ε2H, the Hamiltonian set remains in the
previous form, whereas H is transformed into

THE NORMAL FORM

According to the algorithm described, we find the
general solution to the unperturbed set with the Hamil-
tonian H0,

(5)

First approximation. We substitute the solution to
the unperturbed set into the function R1 = F1 =

xy2. As a result, we obtain the quasiperiodic

(with respect to time) function R1(t, X, Y, U, V). Then,

τ ωt, ω g
l
---.= =

d2x

dτ2
-------- µ2x– µ2 1–( ) 1 ∂R

∂x
------– 

  ,–=

d2y

dτ2
-------- µ2y– µ2 1–( )∂R

∂y
------.+=

dx
dτ
------ dy

dτ
------

dx
dτ
------

∂H
∂u
-------,

du
dτ
------ ∂H

∂x
-------,

dy
dτ
------–

∂H
∂v
-------,

∂v
∂τ
------- ∂H

∂y
-------–= = = =

H
1
2
--- u2 v 2+( ) µ2

2
----- R2 1–( ) µ2 1–( ) R 1–( ) x.––+=

H H0 εF1 ε2F2 O ε3( ),+ + +=

H0
1
2
--- u2 v 2 µ2x2 y2+ + +( ), F1

1
2
--- µ2 1–( )xy2,= =

F2
1
2
--- µ2 1–( ) y4

4
---- x2y2– 

  .=

x t( ) X µtcos
U
µ
---- µt, y t( )sin+ Y tcos V t,sin+= =

u t( ) U µt µX µt, v t( )sin–cos V t Y t.sin–cos= =

µ2 1–
2

--------------
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using the operators L and L1 , we find the normal form
and the function Ψ in a first approximation:

(6)

Second approximation. We find the function R2 =

F2 + {F1, Ψ1}, where the braces correspond to the

Poisson brackets {f, q} = fugx + fvgy – fxgu – fygv . As a
result, we arrive at

Instead of the arguments x, y, u, and v, we substitute the
solution of unperturbed set (5). Then, we obtain the
quasiperiodic (with respect to time) function R2(t, X, Y,
U, V). The values of the operators L(R2) and L1(R2)
determine the next approximation of the normal form,

(7)

AN INTEGRAL FOR THE SET OF EQUATIONS
OF THE NORMAL FORM

We integrate the set in new variables X, Y, U, and V
with the Hamiltonian H0(X, Y, U, V) + (X, Y, U, V). It
follows from the Zhuravlev theorem that it is sufficient

F1 L R1 t X Y U V, , , ,( )( ) 0,= =

Ψ1 L1 R1 t X Y U V, , , ,( )( )=

=  
µ2

1–( ) 2UV2– 2VXYµ2– UY2 µ2 2–( )+( )
2µ2 µ2 4–( )

----------------------------------------------------------------------------------------------------------.

1
2
---

R2 x y u v, , ,( )
µ2 1–

--------------------------------
1
2
--- y4

4
---- x2y2– 

  µ2 1–

8 µ4 4µ2–( )
----------------------------+=

× y4µ2– 2y2v 2 2y4 4x2y2µ2 8xyuv+ + + +[ ] .

F2 L R2 t X Y U V, , , ,( )( )=

=  
3 µ2 1–( ) µ2X2 U2+( ) Y2 V2+( )

8µ2 µ2 4–( )
----------------------------------------------------------------------------

–
µ2 1–( ) 8 µ2+( ) Y2 V2+( )2

64µ2 µ2 4–( )
----------------------------------------------------------------,

Ψ2 L1 R2 t X Y U V, , , ,( )( ) 1–

64µ2 µ2 4–( )
-------------------------------= =

× 8UV2X 16U2VY 8V3Y– 40UXY2+ +(

– 8VY3 16UV2Xµ2 40U2VYµ2– 7V3Yµ2+ +

+ 32V X2Yµ2 64UXY2µ2– VY3µ2+

+ V3Yµ4 8V X2Yµ4– 7VY3µ4 ).+

F
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to find the integral of the set with the Hamiltonian  =
ε2F2(X, Y, U, V). The set of equations for it has the form

It is easy to verify that this set has two integrals, Y 2 +
V 2 = A and µ2X2 + U2 = B. Therefore, we obtain a linear
set with constant coefficients (to be more precise, with
time-independent coefficients):

Its solution has the form

To obtain the complete solution, it is sufficient to sub-
stitute the found functions into solution (5) of the
unperturbed set. Thus, the solution is constructed with
an accuracy to O(ε3) . We write the final solution with
the transformed variables X and Y with the initial con-

ditions X(0) = X0, (0) = 0, Y(0) = Y0 , and (0) = 0 as

In the initial variables x and y, the law of motion is
obtained by transforming the formulas for X, Y  x, y
into parametric form (3) or explicit form (4), in which
the function Ψ is determined from the expansion Ψ =

F

Ẋ
ω1

µ
------U , U̇ µω1X ,–= =

Ẏ ω2V ,=

V̇ –ω2Y ,=

Y2 V2+ A, µ2X2 U2+ B,= =

ω1 A
3 µ2 1–( )ε2

4µ µ2 4–( )
---------------------------,=

ω2 B
3 µ2 1–( )ε2

4µ2 µ2 4–( )
----------------------------– A

µ2 1–( ) µ2 8+( )ε2

16µ2 µ2 4–( )
--------------------------------------------.+=

Ẋ̇ ω1
2X+ 0, Ẏ̇ ω2

2Y+ 0.= =

X x0 ω1tcos
u0

ω1
------ ω1t,sin+=

U x0ω1 ω1tsin– u0 ω1t,cos+=

Y y0 ω2tcos
v 0

ω2
------ ω2t,sin+=

V y0ω2 ω2tsin– v 0 ω2t.cos+=

Ẋ Ẏ

X X0 ω1tcos µtcos
ω1

µ
------ ω1t µtsinsin– 

  ,=

Y Y0 ω2tcos tcos ω2 ω2t tsinsin–( ).=
εΨ1 + ε2Ψ2 + … with expansion coefficients given
by (6) and (7).

THE RESONANCE CASE

We assume that µ2 = 4. Then, the expansion for the
Hamiltonian of the initial set is

Here, the above algorithm is used. First, we find the
general solution to the unperturbed set with the Hamil-
tonian H0,

(8)

First approximation. We substitute the solution to
the unperturbed set into the function R1 = F1 =

x(t)y(t)2 + 2x(t)2. As a result, we obtain the quasiperi-

odic (with respect to time) function R1(t, X, Y, U, V) and,
using the operators L and L1, find the normal form and
the function Ψ in the first approximation:

(9)

The integral of the set. It is convenient to integrate
the set in the Birkhoff variables,

(10)

These relations are the canonical change with the
valence 2i. The normal form of the first approximation

is  =  + ,

The set of equations for the perturbed part of the Hamil-
tonian is

(11)

H H0 εF1 O ε2( ),+ +=

H0
1
2
--- u2 v 2 4x2 y2+ + +( ), F1

3
2
---xy2 2x2.+= =

x t( ) X 2tcos
U
2
---- 2t, y t( )sin+ Y tcos V t,sin+= =

u t( ) U 2t 2X 2t, v t( )sin–cos V t Y t.sin–cos= =

3
2
---

F1 = L R1 t X Y U V, , , ,( )( ) = 
3
8
--- V2X– UVY XY2+ +( ),

Ψ1 L1 R1 t X Y U V, , , ,( )( )=

=  
3
64
------ 4XYV 3UV2 5Y2U+ +( ).

z1
1

2
-------U 2iX , z2+ V iY .+= =

H̃ H̃0 F̃

H̃0 i 2z1z1 z2z2+( ), F̃ ε3 2
16

---------- z1z2
2 z1z2

2–( ).–= =

ż1
∂F̃
∂z1
------- ε3 2

16
----------z2

2, ż2
∂F̃
∂z2
-------– ε3 2

8
----------z1z2.= = = =
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This set has two integrals H0 = const and  = const. The
first integral corresponds to the law of conservation of
energy,

(12)

where 2|z1|2 is the energy of the first mode (horizontal
oscillations) and |z2|2 is the energy of the second mode
(vertical oscillations). 

To obtain the equation for the second-mode energy,
we differentiate it twice and substitute the derivatives

 and  from Eqs. (11):

With the help of the law of conservation of energy, we
obtain the equation for the second-mode energy,

This equation can be interpreted as the motion of a
point mass under the action of a force with the potential
−Π(|z2|2) (motion in a potential well).

The equation has the integral of energy

At |z2|2 = C2, the potential energy attains a minimum

equal to – C6ε2. For – C6ε2 < E < 0, the second-

mode energy slowly periodically oscillates. For a small
difference between E and its minimal value, the fre-
quency  of these oscillations is

The first-mode energy varies with the same frequency,
and, by virtue of the law of conservation of energy (12),
the energy is alternately pumped from one mode to the
other.

F̃

2 z1
2 z2

2+ C2,=

ż1 ż2

d z2
2

dt
------------ ż2z2 ż2z2+ ε3 2

8
---------- z1z2

2 z1z2
2+( ),–= =

d2 z2
2

dt2
---------------

3 2
8

---------- 2ż1z2
2 4ż2z1z2+( )–=

=  
9ε2

32
-------- z2

4– 4 z1
2 z2

2+( ).

d2 z2
2

dt2
---------------

9ε2

32
-------- 3 z2

4– 2C2 z2
2+( ).=

1
2
--- d

dt
----- z2

2

 
 

2

Π+ E, Π 9ε2

32
-------- z2

6 C2 z2
4–( ).= =

2
3
---

4
27
------ 4

27
------

ω̃

ω̃
ω
---- Π''

2
3
---C2 3

4
---εC.= =
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In Fig. 2, we show the plot of the normalized poten-

tial energy  for C = 1. Along the abscissa axis, we

plot |z2|2. The dashed line presents an example of a typ-

ical value of the normalized energy  = –0.02. Val-

ues |z2|2 of the second-mode energy are limited by two
points of the intersection of solid and dashed lines. Cal-
culating the coordinates of two extreme points, we find
the energy-variation interval 0.154 < |z2|2 < 0.979 for
the second mode. According to the law of conservation
of energy (12), the energy-variation interval for the first
mode is 0.021 < 2|z1|2 < 0.846.

32Π
9ε2
----------

32E

9ε2
----------

0.2

1.0

–0.1

0.1

–0.2

Fig. 2. Normalized potential energy for C = 1.

1

80

–1

t

y

0.5

80

–0.5

t

x

Fig. 3. Numerical solution to the normal-form equations for
X(t) and Y(t).
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In Fig. 3, we show the solution to the set of equa-
tions of the normal form for X(t) and Y(t) at ε = 0.2 with
the initial data

These values correspond to the above values of con-
stants C and E.

In Fig. 4, we show the dependences of amplitudes

A1 = z1 =  and A2 = |z2| =  for

the same example. According to the law of conserva-
tion of energy, the amplitudes are linked by the relation

X 0( ) 0.46, Y 0( ) 0.392, Ẋ 0( ) 0,= = =

Ẏ 0( ) 0.=

2 X2 1
4
---U2+ Y2 V2+

0.2

500 100 150 200
t

0.4

0.6

0.8

1.0
A2

0.1

0.2

0.3

0.4
A1

Fig. 4. Amplitudes A1 and A2 as functions of time.
4  +  = C2. The amplitudes vary within the range
0.07 < A1 < 0.46 and 0.392 < A2 < 0.989.

Figures 1–4 show how the energy of oscillations is
pumped from one degree of freedom X to the other Y at
the resonance of frequencies.
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