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In photosensitive crystals, quasiparticles, i.e., exci-
tons and phonons, are excited states of a solid, and their
existence in vacuum seems to be impossible.

Quasiparticles are produced as a result of photo-
chemical reactions, thermal deformations, and interac-
tions of electrons and holes with defect lattice sites at
the crystal surface. Furthermore, in halide crystals an
exciton can annihilate with a subsequent transforma-
tion into a halogen ion. Thus, an exciton is an elemen-
tary electrical excitation in semiconductors and dielec-
trics that can propagate over the crystal. It is produced
as a result of the appearance of an electron–hole pair
moving across the crystal. The exciton energy is lower
than that of the forbidden-zone width. Interactions of
an exciton and a phonon result in a variation of the
energy (frequency) of the photon being formed. This
variation is equal to the difference (or the sum) of the
energies of the exciton and the phonon, which is observed
in luminescence or absorption spectra of crystals under
study. In the luminescence spectra of silver halides,
phonon repetitions of certain lines were observed. For
example, in AgBr, phonons are produced [1] with a fre-
quency

ν0 = 

where ε0 is the static dielectric constant of the crystal,
ε∞ is the dynamic permittivity of the crystal in the lumi-

nescence observation region, νe =  (µ = 260 cm–1,

µ is the exciton reduced mass, β is the distance between
the components in an electron–hole pair, and the energy
is 0.323 ϑβ, see [1]).

The following lines (whose frequencies are
expressed in cm–1) exhibit phonon repetitions, which
were observed experimentally [2]: 21404 – 21142 =
262; 20513 – 20251 = 260; 20773 – 20513 = 260; and
20062 – 19802 = 260.

Optical phonons are produced in a crystal elemen-
tary cell in the course of motion of opposite-sign ions
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excited by the alternating electric field of a light wave.
It is remarkable that, for different lines, the energy of
phonons being formed are only slightly distinguished
from each other.

If the excitation energy exceeds the forbidden-zone
width, then it is assumed that the electron and hole
diverge in the crystal lattice for a distance at which their
interaction is absent.

In AgCl crystals, phonon repetitions of spectral
lines, which differed by phonon frequency, were also
observed [3]:

At a temperature of T = 4.2 K, the probability that
quasiparticle annihilations accompanied by an energy
transfer in the form of luminescence will occur is
higher than at higher temperatures. Therefore, after
subtracting the phonon energy, some of the spectral
lines are repeated, which can be seen from the experi-
mental results of [2, 3] (line frequencies are expressed
in units of cm–1):

24131 – 23901 = 230;
24067 – 23832 = 235;
23832 – 23364 = 2 × 234;
23832 – 23602 = 230;
23753 – 23529 = 224;
22810 – 22341 = 2 × 234;
22331 – 22099 = 232;
22222 – 21988 = 234.
These data also do not exclude a possibility of

obtaining other results [4, 5] in the case of a variation
of the experimental conditions. For example, a small
number of the lines observed in certain series of the
experiments can be explained by the relatively weak
intensity of these lines, which prevents their observa-
tion. We may assume that the variation of experimental
conditions also will make it possible to distinguish
other lines with their phonon repetitions in addition to
those given above.

Special attention should be given to the fact that the
ratio of phonon frequencies in AgBr and AgCl is
260/232 = 1.12, which almost coincides with the ratio
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of the forbidden-zone energy widths for the above-indi-
cated crystals, as well as with the ratios of their high-
frequency permittivities squared, Rydberg constants for
excitons, and other physical parameters of alkali–halide
crystals of the KBr and KCl types [6].

It is natural to assume that the ratio of 1.12 obtained
for the indicated quantities can also be observed in
halides of other metals, e.g., in crystals of the PbBr2 and
PbCl2 types. We can also assume that this ratio for the
frequencies of optical phonons for AgBr and AgCl is a
consequence of the same ratio for the following quanti-
ties [6]:

where ν1, 2 are phonon frequencies in AgBr and AgCl.
We did not take into account here the presence of
phonons corresponding to elastic oscillations in the
crystal lattice for which the frequency is lower than that
of optical phonons. The optical-phonon frequency is
almost two orders of magnitude lower than that of pho-
tons producing the exciton absorption lines or crystal
luminescence lines.
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As a result of the interaction of excitons and
phonons, the frequency of exciton emission lines can
increase or decrease by the value of the phonon fre-
quency both one time of many times. The phonon fre-
quency is determined by the same features of the emis-
sion and absorption of light in crystals, i.e., by oscilla-
tions of lattice ions, which depend on the temperature
and size of ions forming the crystal lattice [6].
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INTRODUCTION

Presently, there are reliable theoretical and experi-
mental proofs in favor of the fact that unusual electron
and electron-transport properties of single-wall carbon
nanotubes (SWNT) are associated with the effects of
electron–electron interactions in these one-dimensional
quantum systems [1, 2]. Femtosecond spectroscopy is a
unique and efficient method for the study of the elec-
tron dynamics and electron–electron interactions in
nanosize systems. This method makes it possible to
thoroughly analyze the evolution of elementary excita-
tions (excitons, electron–hole (e–h) pairs, plasmons,
etc. [3]). Recently, publications have appeared [4–9] in
which femtosecond-spectroscopy methods were
employed in studies of excitation dynamics in SWNT.
In these studies, for probing excited SWNT, spectrally
narrow probe pulses were used. On the other hand, the
investigation of the dynamics of excited states in a wide
spectral range allows us to simultaneously obtain
experimental data on different excited states, which
yields more detailed information on electron–electron
interactions and nonlinear optical properties of SWNT.
In the present study, the femtosecond dynamics of
SWNT is investigated in water-micellar suspensions.
A distinctive feature of our experiments compared to
previous ones [4–9] is the use of probe pulses of the
broadband femtosecond white continuum as well as the
excitation of a sample by light pulses containing pho-
tons of completely different energies of 2, 2.5, and 4 eV.

EXPERIMENTAL PROCEDURE

SWNT manufactured by Carbon Nanotechnologies,
Inc. were used, which had been obtained by the method
of carbon oxide catalytic decomposition on iron at a
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high pressure of 30–50 atm and at a temperature of
900–1100°C. The suspension of SWNT in a 1-wt %
water-micellar solution of sodium dodecylsulfate was
prepared by the following method. A nanotube sample
(2.5 mg) was poured over by 20 ml of a 1-wt % water-
micellar solution of sodium dodecylsulfate and then
dispergated by ultrasound at a UZDN-1 setup (35 kHz,
500 W) for a time of 2 h. Further, the solution was cen-
trifuged for 5 h at an acceleration of 8000g, and the cen-
trifugate was decanted. The sediment was filtered
through a 2-µm track membrane and weighted. The
nanotube concentration in the centrifugate, which was
determined by the weight difference of initial nano-
tubes and the sediment, was 22 µg/ml at pH = 6.

We used two femtosecond laser devices, namely:
(1) a ring dye laser with mode synchronization and

the wavelength λ = 616 nm. The pulse duration and the
energy upon amplification were 50 fs and 1 mJ, respec-
tively. A white-supercontinuum pulse (λ = 390–1000 nm)
was obtained by the nonlinear optical transformation of
a femtosecond pulse (λ = 616 nm) in water (this part of
the work was fulfilled at the Institute of Chemical Phys-
ics, Russian Academy of Sciences, Moscow);

(2) a Clark MX 100 femtosecond laser with a subse-
quent nonlinear optical transformation of light into a
50-fs pulse with a wavelength of 485 nm in a CaF2 crys-
tal (Humboldt University, Berlin).

Plane-polarized pulses were aligned with a magic
angle. The experiments were performed in a 1-mm and
0.5-mm flow-type cell at room temperature in aerobic
conditions. Spectra were registered with the help of two
diode assemblies after the spectral decomposition of a
white-continuum pulse in the optical spectrometer was
performed. Details concerning the experimental setup
and the method of processing the data obtained were
presented elsewhere [10].

RESULTS AND THEIR DISCUSSION

Figure 1 presents differential spectra ∆D(ε, t) after
the excitation of SWNT by femtosecond pulses. The
 2005 Pleiades Publishing, Inc.
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differential spectra are the difference between the
absorption spectra D*(ε, t) and D(ε) of an excited and
unexcited sample, respectively, i.e., ∆D(ε, t) = D*(ε, t) –
D(ε). In the ∆D(ε, t) spectra presented in Fig. 1, bleach-
ing peaks corresponding to ∆D(ε, t) < 0 are found when
the SWNT excitation has a lesser absorption compared
to an unexcited nanotube, as well as absorption peaks
when ∆D(ε, t) > 0. In addition, at short delay times, a
broad bleaching band was discovered in the form of a
pedestal for peaks in the ∆D(ε, t) spectrum. For short
delay times, the bleaching dominates in the ∆D(ε, t)
spectrum.

The SWNT absorption spectra in different spectral
regions were thoroughly investigated previously in a
number of studies (see, e.g., [11, 12]). It was assumed
in these studies that separate peaks in the D(ε) nanotube
absorption spectra in water-micellar suspensions could
be attributed to transitions in individual nanotubes with a
certain diameter and a chiral angle (angle of twisting the
graphen plane into a tube). Based on the data of [11, 12],
we can assume that, in a sample under investigation,
peaks in the absorption spectrum (Fig. 2) in the photon-
energy region higher than 2 eV correspond to metallic
tubes, whereas absorption peaks within the range of
1.45–2.1 eV correspond to transitions of the E22 type
for tubes with semiconductor properties, and absorp-
tion peaks in the region lower than 1.45 eV correspond
to transitions of the E11 type for semiconductor nano-
tubes [6]. Furthermore, in the SWNT absorption spec-
trum, a broad plasma peak with a maximum at about
4.8 eV is observed. Nanotubes of different chirality and
of various diameters also are present in the sample under
investigation, and, as follows from Raman-scattering
data, the values of the diameters lie within the range
0.7−1.1 nm. In analogy with conclusions of [11, 12], we
can assume that the bleaching peaks observed in the
∆D(ε, t) spectrum correspond to individual nanotubes.
The peaks observed in the D(ε) absorption spectrum
and in the ∆D(ε, t) differential spectra are associated
with the Van Hove singularity for the single-electron
state density of SWNT [1].

The important result obtained in our experiments
using broadband-light probe pulses was the discovery
of spectral shifts and broadening of the excited spec-
trum of SWNT compared to unexcited ones (Fig. 2).
We now discuss the reasons for peak shifts in the
∆D(ε, t) spectra with respect to the D(ε) spectra.

The spectrum of excited SWNT is determined by
two components, namely, by optical transitions of qua-
siparticles, i.e., excitons, electron–hole pairs, and plas-
mons, as well as by optical transitions of the residual
unexcited electron system that can be considered as a
Fermi liquid. The formation of a substantial concentra-
tion of nonequilibrium excited states (quasiparticles) in
SWNT, which occurs under the action of femtosecond
pulses, can result in a noticeable perturbation of the
electron Fermi liquid by virtue of correlation effects of
the electron–electron interaction. This perturbation
DOKLADY PHYSICS      Vol. 50      No. 1      2005
manifests itself as a shift or broadening of bands of the
absorption spectrum D*(ε, t) [3]. As a result, peaks
must be observed in the differential spectrum ∆D(ε, t) =
D*(ε, t) – D(ε). The contribution of the absorption of
quasiparticles into the ∆D(ε, t) spectra will be analyzed
by us in future publications.

Figure 2 clarifies the problem concerning shifts and
broadening of the D(ε) spectrum after exciting a sample
at time delays shorter than 1 ps. For the photon-energy
region lower than 1.8 eV (the region of semiconductor
SWNT), bleaching peaks in the ∆D(ε, t) spectrum are
shifted by 26–46 meV towards the higher energy region
with respect to peaks in the D(ε) spectrum. In this case,
the shape of the absorption spectrum of an unexcited

sample in the form of the second derivative  in

the region lower than 1.8 eV qualitatively repeats the
shape of the differential spectra ∆D(ε, t) at time delays
shorter than 1 ps. However, the ∆D(ε, t) spectra are
shifted towards the high-energy region with respect to

. At short delay times, in the region higher than

2 eV (the region of metallic SWNT), the differential
spectrum ∆D(ε, t) repeats with a rather high accuracy

the shape of the  spectrum. For the interval

higher than 2 eV, the shift of the bleaching peaks in the
∆D(ε, t) spectrum with respect to the peaks in the D(ε)
absorption spectra is insignificant. The similarity of the
shapes for the ∆D(ε, t) spectrum and for that of an unex-

cited sample in the form of  indicates the

broadening of the absorption peaks in the excited-sam-
ple spectrum D*(ε, t). If the Gauss absorption band is
broadened under the conservation of the transition
oscillator strength, then the differential spectrum
∆D(ε, t) is equal (with an accuracy to a numerical factor)
to the second derivative of the absorption band [13]. An
analogous effect of similarity for the shapes of both the
second derivative of the absorption spectrum and the
differential spectrum was observed previously in C60

films [13]. For C60, the cause of the broadening was
considered to be the appearance of random local elec-
tric fields ∆Ei in the case of optical excitation of charge
carriers. The experimental results concerning photo-
electron emission [14] also testify to the broadening of
Van Hove peaks. In our study, this effect is revealed by
the absorption femtosecond-spectroscopy method. An
additional qualitative proof of the appearance of peaks
in the ∆D(ε, t) spectrum due to shifts and broadening is
the fact that their positions slightly depend on the exci-
tation-photon energy when it varies from 2 to 4 eV. The
initial energy and momentum distributions of quasipar-
ticles significantly depends on the excitation-photon
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Fig. 1. Differential spectra of single-wall carbon nanotubes after excitation by a 2.5-eV photon pulse. The spectra shown correspond
to the time windows of 80−500 and 500–1000 fs with the intervals of 20 and 50 fs, respectively. In the figure, the excitation-energy
density is also indicated.
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Fig. 2. Comparison of differential absorption spectra ∆D(ε, t) for different delay times of probe pulses with the absorption spectrum

D(ε) (line 0) and absorption spectrum in the form of the first derivative  (line 1) and the second derivative  (line 2).

The energy of an exciting photon is 4 eV.

dD ε( )
dε

--------------- d
2
D ε( )

dε2
------------------
energy. Therefore, we can expect differences in the
spectra of optical transitions of quasiparticles. How-
ever, a weak dependence of the differential spectrum
∆D(ε, t) on the initial distribution of quasiparticles is
revealed. This implies that the number of excitations
rather than their distribution plays the more essential
role. This conclusion is consistent with the above sug-
gestion concerning the predominate contribution of
optical transitions of Fermi-liquid electrons perturbed
by electron–electron interactions. 

The excitation of SWNT by photons of energies 2,
2.5, and 4 eV occurs far from the interzone-transition
edge. This results in the creation of primary quasiparti-
cles such as electron–hole pairs with a nonzero kinetic
energy. The electrons and holes pass through several
relaxation stages as a result of scattering due to the
Coulomb interaction with each other and scattering by
phonons. The electron–electron scattering and elec-
tron–hole scattering result in the establishment of a
quasi-equilibrium over states inside zones and is con-
sidered as an intra-zone relaxation. The relaxation
between the zones is associated with electron–phonon
interactions. The time scale of electron–phonon scatter-
ing usually lies in the picosecond region [15]. In our
experiments, we observed relaxation processes on a
time scale considerably shorter than 1 ps and on the
DOKLADY PHYSICS      Vol. 50      No. 1      2005
scale of tens of picoseconds. Here, we analyze only the
rapid component of the bleaching relaxation kinetics on
a time scale down to 1 ps. Figure 3 illustrates this kinet-
ics for different wavelengths of a probe pulse. The
bleaching relaxation curve ∆D(ε, t) is approximated by

an exponential law y0 + Aexp . A dependence of the

relaxation-rate constants  on the probe-pulse light

energy ε is observed (Fig. 4). A broadband probe pulse

has allowed us to find that the dependence  exhib-

its peaks against the background of the monotonic rise

of the relaxation constant  with an increase in the

probe-pulse photon energy. The position of the peaks in

the dependence  repeats that of the peaks in the

∆D(ε, t) spectrum (Fig. 4). Peaks in the bleaching spec-
trum ∆D(ε, t) are close to the absorption at subzone
edges and are associated with Van Hove singularities in
the SWNT state density. Thus, the minima in the depen-
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Fig. 3. Relaxation kinetics for different wavelengths of a probe light pulse.

–10

1.5 2.0 2.5 3.0 3.5 Energy, eV

–8

–6

–4

–2

2

0

2

10
9
8
7
6
5

4

3

2

1

, 1/ps

80 fs

500 fs

1000 fs
∆D × 10–3

Fig. 4. Differential absorption spectra ∆D(ε, t) and constants of the bleaching relaxation rate . The excitation energy density

is 4.6 mJ/cm2. The exciting photon energy is 2.5 eV.

1
τ ε( )
----------

τ(ε)
1

DOKLADY PHYSICS      Vol. 50      No. 1      2005



FEMTOSECOND DYNAMICS OF EXCITATIONS 17
dence  correspond to subzone edges. The depen-

dence  should be associated with two effects,

namely, a trivial nonuniform broadening due to the
existence of various SWNT in a sample (different nan-
otubes are characterized by different constants) and a
nontrivial behavior of cross sections of electron–elec-
tron and electron–hole scattering processes as a func-
tion of the energy and angular momentum k [1, 3]. In
the scattering processes, electron–hole pairs must be
generated that take the energy and angular momentum
of relaxing charge carriers. The probability of this pro-
cess depends not only on the final state of relaxing car-
riers but also on the number of possible electron–hole
pairs capable of accommodating the corresponding
energy and angular-momentum variations (Pauli prin-
ciple). Previously, only photoemission-spectroscopy
experiments served as experimental evidence of the dis-
persion effect for the relaxation constants of charge car-

riers in SWNT [1, 14]. The observed dependence 

shown in Fig. 4 now demonstrates the manifestation of
this effect in the femtosecond absorption-spectroscopy

experiments. In these experiments, peaks in the 

dependence are expressed much more clearly than in
photoemission-spectroscopy experiments.
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Simultaneous inclusion of the long- and short-range
orders in ordering systems is an unsolved problem of
the statistical theory of atomic ordering. There are two
groups of methods for solving the ordering problem.
Cluster methods include the most-developed cluster-
variation method [1], where interactions between parti-
cles within a cluster, i.e., the short-range order, and
multiparticle correlations are exactly taken into
account, but the interaction of the cluster with the envi-
ronment is disregarded. For this reason, the cluster-
variation method is poorly applicable to systems where
the long-range order is formed stepwise as the first-kind
transition. The other group of methods belongs to the
mean-field approximation, among which the method of
static concentration waves [2] is the most developed
and applicable to the structural order–disorder phase
transitions in systems with substitution. However, the
theoretical determination of equilibrium superstruc-
tures by this method has not yet been realized for real
systems. To describe the structural order–disorder
phase transitions in systems with atomic substitution,
the order parameter functional method is sufficiently
efficient [3–5]. This method exactly takes into account
the lattice symmetry and interaction between particles
within a cluster. The ordered phases arising due to
ordering in strongly nonstoichiometric compounds
MXyh1 – y (M is Ti, Zr, Hf, V, or Nb, Ta; X is C or N;
and h is a vacancy) and AyB1 – y solid solutions were
theoretically determined for the first time using the
order parameter functional method [4–6]. However,
near the order–disorder transition temperature Ttrans , the
ordered-phase boundaries on the calculated phase dia-
grams are shifted toward the AB (or MX0.5h0.5) com-
pound, which contradicts the experimental data. This
demerit is attributed to the fact that the available variant
of the order parameter functional method takes into
account only the long-range order and the correspond-
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ing correlations. However, in ordered phases, in addi-
tion to long-range correlations, there are short-range
correlations, which do not disappear at the order–disor-
der transition temperature but remain in the disordered
phase, gradually decreasing with an increase in temper-
ature.

Thus, the problem of the simultaneous inclusion of
the short- and long-range orders in the thermodynamic
potential of an ordering system has not yet been solved.
The first step in the solution is the representation of the
probabilities of multiparticle figures in terms of corre-
lations or the short-range order parameters. However,
even this partial problem has not yet been solved in the
general form. At present, such problems are solved pri-
marily by computer simulation, i.e., in numerical form
(see, e.g., [7]).

For the analytical inclusion of correlations in the
probabilities of multiparticle figures, conditional prob-
ability was used [8, 9]. In the simplest variant of this
approach, the probabilities of two-particle figures are
treated as known values specified with the inclusion of
pair correlations. If the probability of occupying an
arbitrarily chosen initial site is equal to the statistical
value, the probability of occupying the neighboring site
by an atom of a certain type can be found using the
known probability of the two-particle figure. Sequen-
tially continuing this procedure along the chain of sites
forming the multiparticle figure, the conditional proba-
bilities of occupying all sites can be determined and the
probability of the multiparticle figure can be found
using the pair correlation. However, the change of inde-
pendent single-particle probabilities to conditional
probabilities is incorrect, because indefiniteness arises
in the choice of the initial site of the figure, the proba-
bility, corresponding to this site, and movement direc-
tion on the figure sites.

To analytically calculate the probabilities of multi-
particle figures, Sidorenko et al. [10, 11] proposed
using correlation moments (correlations) ε. In the gen-

eral case, the probability  of the ith configuration of
the cluster figure s including R(s) lattice sites occupied
by R(s) – p atoms A and p atoms B in the two-component

Pi
s( )
 © 2005 Pleiades Publishing, Inc.
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crystal AyB1 – y can be calculated by averaging over the
entire crystal

(1)

where σj(β) = 1 or 0 is the occupation number of the jth
site by an atom of type β. Each configuration of the fig-
ure s can have one or several equivalent configurations;

i.e., it has multiplicity . The multiplicity  equal

to the index of the point symmetry group  of the
figure s with the ith configuration with respect to the

point group  of the figure s, all sites of which are

occupied by atoms of one type; i.e.,  = ,

where n(G) is the order of the group G [12]. According
to [13, 14], the correlation moment εs of the order s is
calculated as

(2)

In view of Eq. (2), the probability  for the solid
solution AyB1 – y is represented as [10, 11]

(3)

Here,  is the number of equivalent nth subfigures in
the figure s, which has the ith configuration; the nth
subfigure contains n sites and q sites are occupied by
atoms A and r sites are occupied by atoms B (q + r = n);
p is the number of sites of the figure s that are occupied
by atoms B; and εn, q, r is the correlation of the order n.
Since a pair of two neighboring sites is the minimum
subfigure, the summation in Eq. (3) is performed from
q = 2 – r to q = n – r, where r = 0, 1, or 2. If the crystal
is characterized only by the pair correlations ε2, q, r ≡ ε
between atoms located in nearest neighboring sites,
Eq. (3) takes the form

(4)

In the absence of long-range order, the means of the
occupation numbers are equal to the concentrations of

Pi
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j 1=
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∑
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Pi
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∑
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components; i.e., 〈σj(A)〉  = y and 〈σ j(B)〉  = 1 – y for the
disordered solution AyB1 – y. Therefore,

(5)

From the definitions of the probability  and mul-

tiplicity , the probability normalization condition is

(6)

If  is the fraction of sites occupied by atoms A in the
ith configuration of the figure s, the normalization con-
dition for the composition of the solid solution AyB1 – y
is written as

(7)

In the general case, the cluster figure can include sites

of several coordination spheres. If , , and

 are the relative numbers of the A–A, A–B, and
B–B pairs, respectively, among all pairs of the kth coor-
dination sphere of the ith configuration of the figure s,
the normalization condition for the cluster probabilities
to the probability of a certain pair bond in the kth sphere
is written as

(8)

The multiplicities of the A–A, A–B, and B–B pairs are

equal to  = 1,  = 2, and  = 1, respectively,
for any k.

The cluster probabilities written with allowance for
correlations must obviously satisfy normalization con-

ditions (6)–(8). In addition, the probabilities  can-
not be negative. It is easy to verify that Eq. (5) satisfies
all normalization conditions. To verify the satisfaction
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of the condition that the probabilities are nonnegative,
we first find the interval of variation in correlation as a
function of the solid-solution content. 

We consider the solid solution AyB1 − y (  = y and

 = 1 – y) whose atoms are distributed over the sites
of an arbitrary lattice with the pair correlation ε (εAA =
εBB ≡ ε and εAB ≡ –ε) in the first coordination sphere. In
this case, the probabilities of nonequivalent A–A, A–B,
and B–B pairs are equal to

(9)

respectively. According to Eqs. (9), the mathematically
allowable region of variation in the pair correlation is

(10)

Note that region (10) is the widest region of allowable
values of the pair correlation ε. It coincides with the
physically allowable regions of variation in ε for solid
solutions AyB1 – y with the square and bcc lattices. How-
ever, in many cases, the geometry of a particular lattice
imposes restrictions on the mathematically allowable
region of variation in ε and contracts it. In particular, for
the solid solution AyB1 – y with the regular triangular lat-
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b( ) y2 ε+ 0, P1
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0 P(a)
1

P(b)
0 P(b)

1 P(b)
2

A B

P(c)
0 P(c)

1 P(c)
2 P(c)

3

Fig. 1. Nonequivalent configurations and probabilities P of
the figures a (site), b (pair bond), and c (triangular cluster)
of the sequence {s} used for describing the disordered solu-
tion AyB1 – y, whose atoms (closed circle) A and (open cir-
cle) B are located in the sites of the regular triangular lattice.
tice, the physically allowable region of variation in ε
has the form

(11)

Let the atoms of the solid solution AyB1 – y be
located in the sites of the regular triangular lattice. To
describe the triangular lattice, we use an equilateral-tri-
angle cluster (R(s) = 3), which has four nonequivalent

configurations (Fig. 1):  (three atoms A),  (two

atoms A and atom B), and  (one atom A and two

atoms B), and  (three atoms B) with the multiplici-

ties  = 1,  = 3,  = 3, and  = 1, respec-
tively. The overlapping figures of the triangular clusters
are bonds A–A, A–B, and B–B with the probabilities

, and the overlapping figures of the bonds are sites
that are occupied by atoms A or B with the probability

. The triangular cluster and overlapping figures
form the sequence {s} of the figures that uniquely
describe the lattice under consideration.

According to Eq. (5),

(12)

Therefore,  ≥ 0 only if the correlation ε varies in the
interval

(13)

Interval (13) defines the region of the allowable values
of the correlation ε for the disordered solution AyB1 – y
with the triangular lattice when formula (5) or (12) is
used (Fig. 2). As seen in Fig. 2, this region is narrower
than the mathematically allowable interval given by
Eq. (10) and the physically allowable interval for the
triangular lattice given by Eq. (11), and it cannot cor-
rectly include all allowable values of the pair correla-
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tion ε. For this reason, for certain values of the correla-

tion that lie in interval (11), some probabilities 
calculated by formula (5) or (12) are negative, which
is forbidden. This means that the application of for-
mulas (5) and (12) and more general formulas (3) and
(4) proposed in [10, 11] yields a physically incorrect
solution.

Thus, the use of conditional probability [8, 9] or
decomposition in correlation moments [10, 11] for cal-
culating the probabilities of multiparticle figures pro-
vides incorrect results, particularly for large correlation
magnitudes. However, the problem can be solved by
taking into account the maximum of the configurational
entropy. 

Indeed, in the high-temperature limit T  ∞ or

low cluster energies   0, the free energy F of the
solid solution is proportional to entropy with the nega-
tive sign; i.e., F ~ –S. Thus, the minimum of the free
energy corresponds to the maximum of entropy. If only
the pair correlation is specified and higher order corre-
lations are equal to zero, then this is identical to the dis-
ordered distribution of pairs in the crystal for which the
configurational entropy is maximal.

We again consider the solid solution AyB1 – y whose
atoms are distributed over the sites of the regular trian-
gular lattice (Fig. 1) with the pair correlation ε in the

first coordination sphere. The probabilities  of pairs
are described by formulas (9). Let us determine the

probabilities  of three-particle figures (triangular
clusters). These probabilities must satisfy normaliza-
tion conditions (6)–(8), which have the form

(14)

Following the cluster variation method [1, 5], we
represent the configurational entropy Sc of a certain
macroscopic state of the solid solution AyB1 – y as

(15)

For a chosen sequence of figures (site a, pair bond b,
and triangular cluster c consisting of the nearest three
sites) that describe the triangular lattice, the overesti-
mate coefficients are equal to y(a) = 1, y(b) = –3, and
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y(c) = 2 according to [5, 15]. Using these values and

multiplicities , we write Eq. (15) as

(16)

Solving system of equations (14), we express the prob-

abilities , , and  in terms of y, ε, and the

probability  of the complete triangular cluster and
substitute the expressions into Eq. (16). In the maxi-
mum of the configurational entropy,

(17)

Differentiating Eq. (16) and explicitly solving Eq. (17)
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Fig. 2. Region of the mathematically allowable values of the
pair correlation ε given by Eq. (10) in the disordered solu-
tion AyB1 – y and the region of the allowable values of the
correlation ε given by Eq. (11) for the triangular lattice. The
shaded interval is given by Eq. (13) for ε' values, which fol-

lows from Eqs. (3)–(5) [10, 11] and (12), and εmin ∆ = –  +

y(1 – y) is the minimum allowable pair correlation ε in the
solid solution AyB1 – y with the triangular lattice in the com-

position interval  ≤ y ≤ .
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with respect to , we obtain

(18)

where

(19)

The resulting solution is general for all y and ε values
satisfying boundary conditions (11) (see Fig. 2). Actu-
ally, it is the solution for the case where the probability
of any configuration of the triangular cluster is not

equal to zero. Figure 3 shows the probabilities 

as functions of the correlation ε for y =  and . For a
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particular case where ε = –(1 – y)2 and y > , B–B bonds

are absent and the lattice is free of the configurations

 and ; i.e.,  =  = 0. For this reason, only

the configurations  and  are involved in the nor-
malization conditions. Therefore, the solution has the

form  = 3y – 2 and  = 1 – y. If ε = –y2 and y < ;

i.e., A–A bonds are absent, a similar solution has the

form  = 0,  = 0,  = y, and  = 1 – 3y.

Maximalizing the configurational entropy, we
obtain particular solutions for the solid solution AyB1 − y

with the square and fcc lattices. If ε = –(1 – y)2 and y >
0.5, B–B bonds are absent in these lattices and there
are only three configurations of the basis cluster. For
the square lattice, these are a square consisting of four

atoms A (  = 1), a square consisting of three

atoms A and one atom B (  = 4), and a square con-
sisting of two nonadjacent atoms A and two nonadja-

cent atoms B (  = 2); and y(a) = y(c) = 1 and y(b) = −2.
In the fcc lattice, these configurations are the complete

octahedral cluster (  = 1), an octahedron with one

atom of the other type (  = 6), and an octahedron
with two atoms of the other type that are located diag-

onally to each other (  = 3), and y(a) = 7, y(b) = –6,

and y(c) = 1.
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The solution for the square lattice when ε = –(1 – y)2

and y > 0.5 has the form

(20)

The solution for the fcc lattice when ε = –(1 – y)2

and y > 0.5 has the form

(21)

Similar solutions for the solid solution AyB1 – y with the
square and fcc lattices, when ε = –y2 and y < 0.5 (in this
case, A–A bonds are absent in these lattices) are
obtained from Eqs. (20) and (21), respectively, by
changing y2 to (1 – y)2 .

All the sites of the triangular cluster of the regular
triangular lattice are located in the first coordination
sphere with respect to each other. Hence, using solu-
tion (18), one cannot determine whether the presence
of correlation in the first coordination sphere leads to
the appearance of correlations in the second and subse-
quent coordination spheres. The square and octahedral
clusters include sites located in the first and second
coordination spheres with respect to each other. Using
formula (8), probabilities (20) and (21), and known

coefficients , one can calculate the probabilities
of pair bonds in the second coordination sphere and,
correspondingly, the pair correlation in the second
coordination sphere. For the square cluster in the square

lattice,  =  = 0 and  = . For the

octahedral cluster in the fcc lattice,  =  = 0

and  = . The above calculation shows that, for

the square lattice, when ε = –(1 – y)2 and y > 0.5, the
probability of the A–B bond in the second coordination
sphere differs from the binomial law:

(22)
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and  ≡  (22) for the square lattice when ε =

−(1 – y)2 < 0 and y > 0.5, the correlation ε2 ≡  in the
second coordination sphere is calculated as

(23)

Similarly, for the fcc lattice when ε = –(1 – y)2 < 0

and y > 0.5, the probability  ≡  of the A–B pair

and the pair correlation ε2 ≡  in the second coordi-
nation sphere have the form

(24)

(25)

Thus, the presence of pair correlation, i.e., short-
range order, in the first coordination sphere of the
square and fcc lattices gives rise to at least the appear-
ance of the opposite correlation in the second coordina-
tion spheres of these lattices. This conclusion is consis-
tent with the computer simulation of the short-range
order [7] in the carbon fcc sublattices of the titanium
carbide TiCyh1 – y. As was shown in [7], the existence of
short-range order in the first coordination sphere of the
fcc lattice is accompanied by the appearance of the
short-range order with the opposite sign in the second,
third, and fourth coordination spheres.

On a whole, the method proposed for determining
the probabilities of the multiparticle figures with the
inclusion of correlation is applicable to the analytical
description of not only 2D lattices but also a particular
case of 3D lattices. The development of the method will
provide the solution of a more complex problem of the
simultaneous inclusion of the short- and long-range
orders in ordering systems.
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The magnetohydrodynamic equations are usually
used for the simulation of plasma in the hydrodynamic
approximation. This system of equations comprises the
equations of motion of plasma, the electromagnetic
field equations, the equations describing the heating of
electronic and ionic components, and the equations for
the external electric circuit. Numerical methods of
combining the first two sets of equations with the artifi-
cial inclusion of the Hall effect have already been
developed [1, 2]. In this paper, we present an effective
method for solving the complete system of magnetohy-
drodynamic equations with allowance for the Hall
effect. We implement the method to simulate a single-
fluid two-temperature plasma on a two-dimensional
Euler mesh in the cylindrical coordinates (r, z).

BASIC EQUATIONS
OF THE NUMERICAL MODEL

We simulate a plasma composed of ions with the
density Ni and average charge Zi and of electrons with
the density Ne = ZiNi . The density ρ and hydrodynamic
velocity U of the plasma are taken as the density and
mass velocity of ions, respectively. The plasma dynam-
ics is described by the continuity equation and the equa-
tion of motion subject to the electromagnetic force

Fem = . The specific internal energies εi(ρ, Ti)

and εe(ρ, Te) and the pressures Pi = Pi(ρ, Ti) and Pe =
Pe(ρ, Te) correspond to the temperatures Ti and Te of the
plasma components, respectively. The energy balance
involves the intercomponent energy transfer Qei = β(P,
T, B)(Te – Ti) and the Joule heating QJ. In addition to the
magnetic-field transport due to both macroscopic
motion and diffusion, which is taken into account as
usual, we allow for the transfer owing to the Hall effect.

j B×[ ]
c

------------------
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In this case, the magnetohydrodynamic equations take
the form

Here, c is the speed of light; j is the current density; B
is the magnetic field strength; E is the electric field
strength; σ(P, T, B) and κ(P, T, B) are the electrical and

thermal conductivities, respectively; and Ve = U – 

is the velocity of the electron liquid. The disregard of
displacement currents negligibly influences the simula-
tion results.

For axisymmetric flows, U = (Ur, 0, Uz), B = (0, Bϕ, 0),
j = ( jr, 0, jz), and E = (Er, 0, Ez). In this case, all the
quantities depend only on r ∈ [Rmin, Rmax] and z ∈
[Zmin, Zmax]. We impose the following initial and bound-
ary conditions.

For the equations of motion: Sz(r, z) = Sr(r, z) = 0, ρ =
ρ0(r, z), and Sz(r, Zmin) = Sz(r, Zmax) = Sr(Rmin, z) =
Sr(Rmax, z) = 0, where Sr = ρUr and Sz = ρUz are the
radial and axial momentum densities, respectively.

∂ρ
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∂ρU
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For electromagnetic field equations: Bϕ(r, z) = 0,

Bϕ(r, Zmin) = , Rmin ≤ r ≤ rk; Er(r, Zmin) =

Er(r, Zmax) = Ez(Rmin, z) = Ez(Rmax, z) = 0.
For heat transfer equations: Ti = T0i(r, z), Te = T0e(r, z),

Ti(r, Zmin) = ϕ1(r), Ti(r, Zmax) = ϕ2(r), Ti(Rmin, z) = ϕ3(z),
Ti(Rmax, z) = ϕ4(z), Te(r, Zmin) = φ1(r), Te(r, Zmax) = φ2(r),
Te(Rmin, z) = φ3(z), and Te(Rmax, z) = ϕ4(z).

Basic difficulties of the simulation are due to the
nonlinear terms in the electromagnetic field equations:

These equations include the transfer terms proportional

2I2 t( )
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Fig. 1. Current through the plasma opening switch.
to the radial Cr and axial Cz velocities, which are usu-
ally assumed to be zero. The velocities Cr and Cz are
proportional to the spatial derivatives of B and inversely
proportional to the plasma density. The corresponding
terms are pronounced in low-density regions; i.e., an
analog of the Kingsepp–Mokhov–Chukbar effect takes
place [3]. The method proposed here allows us to over-
come this difficulty. For an arbitrary numerically stable
algorithm for solving the time-dependent equation, all
quantities for the computational discrete mesh and for
all grid functions should be approximated with mini-
mum errors. We developed and analyzed a multipoint
iteration approximation of the quantities Cz and Cr,
which allowed us to find smooth solutions up to sec-
ond-order accuracy.

RESULTS AND DISCUSSION

We tested the method and code by the numerical
simulation of the experiments reported in [4, 5]. As is
seen in Fig. 1, the calculation results are in close agree-
ment with the current measurements [4] with a plasma
opening switch. A change in the cathode radius Rmin by
0.5 cm results in a change in the current switching
moment by 30 ns. The plasma opening switch is simi-
larly sensitive to the parameters of both the plasma and
the electric circuit. The calculation results are in accor-
dance with the measurements of generator current and
load current [5].

The potentialities of the method and code were dem-
onstrated by simulating the operation of the plasma
opening switch constructed at the Russian Federal
Nuclear Center VNIIEF (see Fig. 2) [6]. A capacitor
bank or a magnetic explosion generator can serve as an
energy source S1 for such an interrupter. The operation
of the plasma opening switch was simulated with vari-
ous input data; namely, we varied the dimensions of the
chamber, the characteristics of the plasma, and the
parameters of the electric circuit. We here present the
calculation results for the case of the capacitor bank,
taking the following parameters: bank capacitance C1 =
S1

I1

R1 R2L1 L2

R3

L3
I3

I2

Up

B(r, z)

Zmin Zp Zmax Z

Rmin

Rk

Rp

Rmax

r

Fig. 2. Electrical circuit and layout of the plasma opening switch constructed at the Russian Federal Nuclear Center VNIIEF [6]:
Zmin, Zmax, Rmin, Rmax , and Rk are the linear dimensions of the chamber; and Zp and rp are the initial sizes of the plasma sheath.
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32 µF, initial voltage  = 100 kV, R1 = 4 mΩ, L1 =
70 nH, R2 = 0, L2 = L3 = 0, R3 = ∞, cathode radius
Rmin = 6 cm, anode radius Rmax = 12 cm, chamber radius
Rmax = 12 cm, high-voltage input radius Rk = 6 cm,
Zmin = 0, Zmax = 40 cm, the initial length of the plasma
sheath Zp = 4 cm, initial plasma (nitrogen) density
ρ0(r, z) = 0.1 µg cm–3, and initial plasma temperature
ϕi = φi = 1 eV. The electric circuit was described by the
Kirchhoff equations. We studied the space–time devel-
opment of the magnetic field and plasma density in the
plasma opening switch chamber. We observed the
plasma ejection from the cathode to the anode and the
subsequent penetration of the magnetic field into the
gap along the cathode. Figure 3 shows the current I2
through the plasma opening switch and its input volt-
age, which was evaluated from the equations

UC1

Up
d
dt
----- B S, Sd

S( )
∫ Zp Zmin–( ) Rmax Rmin–( ).= =

1200
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I2, kA Up, kV

Time, µs

Fig. 3. Time dependences of the total current I2 and voltage
Up at the input of the plasma opening switch chamber devel-
oped at VNIIEF [6].
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It is seen that the electrical resistance of the chamber
increases stepwise because of the current breakdown in
the plasma opening switch, i.e., the current flip-over
into load.

Thus, we developed a two-dimensional method for
solving the magnetohydrodynamic equations in single-
fluid two-temperature approximation with allowance
for the Hall effect. The method was tested by the
numerical simulation of actual plasma opening
switches. The time dependences of the current evalu-
ated are in close agreement with published experimen-
tal data. The potentialities of the method and code are
demonstrated by the detailed simulation of the plasma
opening switch constructed at the Russian Federal
Nuclear Center VNIIEF. We are going to develop the
method in order to allow for the measurement of more
delicate effects.
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The physical properties of solids change signifi-
cantly upon creating a nanocrystalline structure in them
by the method of severe plastic deformation, i.e., by
grinding crystals to sizes of 10–100 nm under high
pressure without a change in density [1]. The remark-
able combination of high strength and plasticity is
observed in nanocrystalline materials thus obtained.
This phenomenon, called superplasticity, is associated
with an increase in the threshold of formation of dislo-
cations in the nanocrystalline structure and with an
increase in the role of quasi-morphized atoms, which
form the boundaries of nanosize crystallites. The obser-
vation of the strong effect of the nanocrystalline struc-
ture on the magnetic properties of ferromagnetic metals
Ni and Dy is also of interest [2, 3]. Attention should be
paid to the recent works [4, 5] devoted to nonferromag-
netic nanocrystalline NiTi-based alloys exhibiting the
shape-memory effect. In those works, the possibility of
both the complete amorphization of alloys and the
smooth formation of the nanocrystalline structure in
them by means of annealing was demonstrated. In an
amorphized nanocrystalline alloy, the disappearance of
property jumps, which are characteristic of a ther-
moelastic martensitic transformation, can be observed.
The subsequent annealing allows the smooth recovery
of both the structure, by gradually increasing the size of
crystallites, and thereby the martensitic transformation.
It was convincingly shown that annealing not only
recovers the martensitic transformation with the inher-
ent thermomechanical memory effects and increases
plasticity and strength but also qualitatively affects
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thermomechanical memory effects (contracts the tem-
perature hysteresis loop of the martensitic transforma-
tion and increases the restoring strain).

Heusler alloys of the Ni2MnGa family are character-
ized by the rare combination of physical properties
such as the thermoelastic structural transition and ferro-
magnetic order. As a result, the structural transition in
them is sensitive to a magnetic field; the reversible
structural transition with respect to the field at constant
temperature, as well as the shape memory effect con-
trolled by the magnetic field, can be observed [6–8]. In
single crystals of this alloy, giant (up to 10%) mag-
netically induced strains are found. They are attributed
to the effect of the magnetic field on the twinning
structure of the low-temperature martensitic phase of
the alloy [9]. The aim of this work is to obtain and ana-
lyze the nanocrystalline ferromagnetic alloy
Ni2.14Mn0.81Fe0.05Ga exhibiting the shape memory
effect, to search for the effects of severe plastic defor-
mation on the structural transition and magnetic order
in this material, and to study the effect of subsequent
annealing on both the magnetic order and the structural
martensitic transformation.

Nanocrystalline samples were fabricated from the
initial polycrystalline plates of the Ni2.14Mn0.81Fe0.05Ga
alloy by the method of severe plastic deformation—tor-
sion by 5–10 turns in Bridgman anvils under a pressure
of 6 GPa at room temperature. 

The microstructure of the initial coarse-crystalline
sample was studied by an AXIOVERT 100A metallo-
graphic optical microscope equipped with a digital
video camera and a computer. As is seen on the image
of the microstructure (Fig. 1) obtained at a temperature
of 283 K (low-temperature phase), the coarse-crystal-
line sample is a polycrystal with a mean grain size of
0.5 mm. Characteristic martensitic plates are observed
in grains. Cracks, which are obviously responsible for
the brittleness of the sample, are clearly seen at the
boundary of the grains. 

The microstructure of the nanocrystalline state of
this alloy was studied by a JEM-2000EX transmission
electron microscope. As is seen in the image of the
microstructure (Fig. 2), the sample subjected to plastic
deformation consists of very small crystallites without
 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Microstructure of the Ni2.14Mn0.81Fe0.05Ga alloy in the coarse-crystalline state.

100 nm

Fig. 2. Microstructure and (inset) the electron-diffraction pattern of the Ni2.14Mn0.81Fe0.05Ga alloy in the nanocrystalline state.
distinct boundaries between them. The azimuthal
spread of reflections on the electron-diffraction pattern
indicates that the crystallographic axes of crystallites in
the nanocrystalline structure are disoriented by large
angles. The mean grain size determined from the dark-
field image is equal to 40 nm.

The temperature dependences of the magnetization
σ(T) of the alloy samples under investigation were
recorded on an automatic magnetometer [10]. This
dependence was studied because it is very informative
DOKLADY PHYSICS      Vol. 50      No. 1      2005
and distinctly presents both magnetic and structural
transitions. Figure 3 shows the set of the temperature
dependences of the magnetization σ(T) measured upon
heating for a sample with the coarse-crystalline struc-
ture for various magnitudes of the external magnetic
field H. As is seen, the dependences σ(T) are complex
and differ from σ(T) for typical ferromagnetic materi-
als. In particular, a dip is seen in line 1, obtained in a
field of H = 80 kA/m at a temperature of 270 K. At the
bottom of the dip, magnetization is almost constant
when the temperature increases to 293 K. Then, σ
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increases abruptly and becomes maximal at a tempera-
ture of about 300 K. We emphasize that the magnetiza-
tion before the dip is much lower than the value at the
maximum. The heating of the sample above 300 K
leads to a decrease in σ to zero, which is characteristic
of ferromagnetic materials, with a Curie point of 357 K.
For H = 160 kA/m (line 2), the dip becomes deeper. In
this case, the difference of the magnetizations at the
boundaries of the dip decreases. In line 3, obtained for
H = 220 kA/m, the magnetizations at the boundaries of
the dip become equal to each other. For H = 400 kA/m
(line 4), σ decreases abruptly at 270 K, as in the first
three lines. The maximum that exists in weaker mag-
netic fields is absent in this line, and it degenerates to
the point of inflection. The further increase in H to
720 kA/m (line 5) leads to smoothing of the σ(T) plot.

The formation of the dip in the σ(T) plot for certain
Ni–Mn–Ga alloys is also observed in other works [11,
12]. A sharp decrease in σ at T = 270 K in relatively
weak magnetic fields can likely be attributed to the fact
that a different magnetic order is formed at this temper-
ature due to a change in the interatomic distance,
because the exchange interaction responsible for the
magnetic order is a function of the interatomic distance.
The magnetic moments of Ni, Mn, and Fe atoms, which
are involved in the formation of the sample magnetiza-
tion, can form the corresponding magnetic order in
dependence on the magnitude and sign of the exchange
integral. The disappearance of the dip with the subse-
quent maximum at H = 720 kA/m can be attributed to
the fact that a strong field returns the orientation of the
atomic magnetic moments to the parallel orientation
along the field and any spin-reorientation phase transi-
tion is absent in this case. The change in the interatomic

σ, A m2/kg

Fig. 3. Temperature dependence of magnetization in the
coarse-crystalline state as measured in magnetic fields of
(1) 80, (2) 160, (3) 220, (4) 400, and (5) 720 kA/m.
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distance that leads to the formation of the different
magnetic order at 270 K is apparently induced by the
transition of the unmodulated T martensite to the mod-
ulated M martensite [12], which is transformed to the
high-temperature cubic phase (austenite) when the tem-
perature increases to 293 K.

The alloy under consideration in the nanocrystalline
state does not exhibit ferromagnetic properties. This
fact can apparently be explained by both disordering of
atoms of the alloy upon severe plastic deformation [13]
and the effect of the sizes of crystallites on the forma-
tion of the magnetic order. This is corroborated by the
appearance of a noticeable magnetization after anneal-
ing. Figure 4 shows the σ(T) plots recorded in a mag-
netic field of H = 80 kA/m for states obtained by the
recrystallization of the nanocrystalline sample in a vac-
uum of 1.33 × 10–2 Pa at temperatures (1) 623 and
(2) 673 K for 2 h and at a temperature of (3) 773 K for
30 min. As is seen, the dip observed in the sample with
the coarse-crystalline structure is absent in line 1. This
absence indicates that structural phase transitions are
absent in this state. However, the existence of magneti-
zation shows that the formation of the ferromagnetic
order begins in this state. We emphasize that the anneal-
ing of the nanocrystalline sample at temperatures lower
than 623 K does not lead to the appearance of ferro-
magnetic properties. Line 2 exhibits an increase in
magnetization with temperature and a maximum at a
temperature of 278 K, which is observed near the dip
bottom for the coarse-crystalline sample. A decrease in
magnetization to zero, which is typical for the given
samples, is observed above 278 K. This maximum
becomes more pronounced in line 3, and it is observed
at a temperature of 283 K. The temperatures of maxima
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Fig. 4. Temperature dependence of magnetization measured
in a magnetic field of 80 kA/m for the states obtained by the
annealing of the nanocrystalline sample at temperatures
(1) 623, (2) 673, and (3) 773 K.
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approximately correspond to the finish temperature of
the martensite–austenite structural transformations.
The above discussion provides the conclusion that,
upon annealing above 673 K, the size of crystallites
increases and their structure is improved so that the for-
mation of the martensitic phase in them becomes possi-
ble. The conclusion that the appearance of the maxi-
mum in lines 2 and 3 is associated with the beginning
of the recovery of the martensite–austenite transforma-
tion is indirectly corroborated by the fact that maxima
are not observed in measurements of σ(T) in stronger
magnetic fields (above 200 kA/m). An increase in the
temperatures of the structural transitions with an
increase in the annealing temperature can be explained
by the effect of the sizes of crystallites. As is known, the
interface between martensite and austenite phases upon
transition moves due to the motion of transformation
dislocations, which are atomic-size martensitic steps at
interfaces. The temperature of the martensitic transfor-
mation must depend on the size of grains, because the
grain boundaries are obstacles for the motion of the dis-
locations and restrict their free path [14]. We note that,
even after annealing at 773 K, the modulation structural
transition does not return, which is likely due to an
insufficient degree of ordering of the compound under
investigation upon this thermal treatment.

Thus, it has been shown that the dependence σ(T) in
the Ni2.14Mn0.81Fe0.05Ga alloy in the coarse-crystalline
state is complex, which is attributed to the magnetic and
structural transitions occurring in it. This alloy
becomes nonferromagnetic in the nanocrystalline state.
This effect indicates that the structural order is of spe-
cial importance upon the formation of the ferromag-
netic order in it. In particular, the saturation magnetiza-
tion in the nanocrystalline nickel is lower than that in
the coarse-crystalline state by 30% [3]. In addition, the
structural phase transitions (martensitic and modula-
tion) in the Ni2.14Mn0.81Fe0.05Ga nanocrystalline alloy
are not observed in the temperature range under consid-
eration.

It is also found that the annealing of the nanocrystal-
line sample of the Ni2.14Mn0.81Fe0.05Ga alloy at a tem-
perature of 623 K recovers its ferromagnetic properties.
The recovery of the martensitic phase transformation
begins only after the annealing of the nanocrystalline
sample at a temperature of 673 K. After annealing at
773 K, this transformation is more pronounced. The
fact that the magnetic order occurs earlier upon anneal-
ing can be explained as follows. The magnetic order in
the Ni2MnGa alloys is associated with the exchange
interaction between ions responsible for magnetism. It
is known that Mn ions make the largest contribution to
the magnetic moment of this compound, whereas the
contribution from Ni ions is smaller by at least one
order of magnitude. It can be assumed that only a cer-
tain degree of ordering of only these ions is enough for
DOKLADY PHYSICS      Vol. 50      No. 1      2005
recovering the ferromagnetic order. The recovery of the
structural transition requires a higher degree of order-
ing of all types of atoms in the crystal cell and, there-
fore, more effective annealing.

In conclusion, the results of this work show that it is
promising to search for processes in which the structure
of a material is modified and its strength and plasticity
increase simultaneously with the conservation and
improvement of its functional capabilities associated
with the martensitic and thermoelastic transformations.
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Investigations of the interaction of an oblique shock
wave with a boundary layer began in the late 1950s,
although this phenomenon had been discovered much
earlier. For a long time (until the 1980s), attention was
focused on 2D flows [1–8]. The interference of a
boundary layer with an oblique shock wave incident
from outside, as well as with shock waves formed in the
compression angle and upstream of a step, has been
studied. The basic features and properties of a flow at
the separation point formed under the action of a strong
shock wave have been revealed. In particular, it has
been shown that, for “free” interaction, the characteris-
tics of the flow upstream of the separation region and at
its beginning are independent of the type of perturba-
tions initiating separation. The relation of the pressures
at the separation point and in the plateau region to the
Mach and Reynolds numbers has been found experi-
mentally and theoretically. Investigations of heat trans-
fer under 2D interaction (see, e.g., the review in [9])
show that the heat-transfer coefficient increases
abruptly at the end of the separation region induced by
the shock wave and the “peak” of the heat flux is
formed. The correlation formulas obtained describe the
maximum heat-transfer coefficient for laminar and tur-
bulent flows as a function of the flow parameters and
shock-wave intensity. Beginning with the 1990s,
researchers focused their attention on experimental and
numerical studies of simple three-dimensional flows,
e.g., near sharp wedges placed on a plate. Both free and
forced interactions are taken into account.

In almost all of the above works, the interaction of
the shock wave with the boundary layer of the sharp
body was considered. On the one hand, the leading
edges of the construction elements of a hypersonic air-
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craft (e.g., air-inlet cowl) must have a certain blunting
for the reduction of both the heat flow to the leading
edge and its maximum temperature. On the other hand,
the blunting radius of the leading edge should be lim-
ited in order to avoid worsening of the aerodynamic
characteristics of the aircraft.

In this work, the flow in the region of the incidence
of the shock wave on sharp and blunted plates is ana-
lyzed experimentally and numerically on the basis of
2D equations of motion of a viscous gas for Mach num-
bers M = 6, 8, and 10 and Reynolds numbers ReL =
(0.2–1.3) × 106. An undisturbed boundary layer is in the
laminar state, and the flow becomes turbulent in the
interference region. It has been found that the formation
of a high-entropy layer with decreased gas density
downstream of the blunted edge leads to a considerable
reduction of the maximum heat transfer in the interfer-
ence region. This heat entropy effect is enhanced as the
Mach number increases. At the same time, it has been
shown that the blunting value virtually does not affect
the discovered effect if the blunting radius is larger than
the displacement thickness of the undisturbed boundary
layer.

The model under consideration (Fig. 1) is a plate
120 mm long and 150 mm in width. An oblique shock
wave generated by a sharp wedge is incident on the
plate. In experiments, variable parameters were the
blunting radius of the leading edge (r = 1, 2, 4, and
10 mm), the apex angle of the shock-wave generator
wedge (θ = 10°, 15°, and 20°), and the distance of the
incident shock wave from the leading edge of the
plate XI . Experiments were carried out in a UT-1M
TsAGI setup, which is a short-term Ludwieg-type wind
tunnel (steady-flow duration is 40 ms). The heat flow
was measured by the thin-wall method with the use of
thermocouple sensors with a sufficiently high spatial
resolution.

The laminar flow is numerically simulated by solv-
ing the 2D system of Navier–Stokes equations. The
laminar–turbulent flow is analyzed by applying Rey-
nolds equations with the use of the Boussinesq hypo-
thesis on the Reynolds stresses and the differential
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Layout of the model (S is the separation point and R is the reattachment point) and the effect of the blunting radius on the

Stanton-number distribution over the plate length  for a Mach number of M = 6 and a Reynolds number of ReL = 1.26 ×

106 [with a shock wave, θ = 15°, r = (1) 0, (2) 1, (3) 2, (4) 4, and (5) 10 mm; without a shock wave, r = (6) 0].
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q−ω model of turbulence [10]. The steady-flow solu-
tion was obtained as a limiting case for t  ∞ (time-
dependent method). The differential equations were
approximated by an algebraic system of finite differ-
ence equations of the second order of accuracy. The
system of the nonlinear finite difference equations was
solved by the modified Newton method. The numeri-
cal-analysis technique for the 2D Navier–Stokes and
Reynolds equations in application to supersonic flows
of a perfect gas was developed in [11] and in more
recent works by the same authors.

Heat transfer on the isolated plate, i.e., in the
absence of the incident shock wave, is analyzed first.
Measurements of the heat flow on the sharp plate for a
Mach number of M = 6 and large Reynolds numbers
nearly coincide (standard deviation is 6%) with calcu-
lations in the framework of the theory of the laminar
boundary layer. Therefore, the accuracy of measure-
ments is satisfactory. For the Mach numbers M = 8 and
10, the measured heat flow considerably exceeds the
calculated values due to the viscous–inviscid hypersonic
interaction. Investigation shows that, for weak and mod-
erate interactions limited by the hypersonic-interaction
parameter  ≤ 4, an increase in the Stanton number
(dimensionless heat-transfer coefficient) on the sharp
plate is satisfactorily described by the empirical relation

where

q is the measured heat flow, ρ∞ and u∞ are the gas den-
sity and undisturbed-flow velocity, cp is the specific

χ

St
St0
-------

P
P∞
------ 

  0.5

,=

St
q

ρ∞u∞cp T0 Tw–( )
-----------------------------------------,=
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heat at constant pressure, T0 is the stagnation tempera-
ture, Tw is the wall temperature, St0 is the Stanton num-
ber calculated using boundary layer theory disregard-

ing the viscous–inviscid interaction, and  is the

pressure increase factor calculated for weak hypersonic
interaction [12].

The blunting of the plate leads to an increase in pres-
sure near the leading edge [13]. At the same time, the
gas density downstream of the blunted edge decreases
due to an increase in temperature, which approaches
the stagnation temperature as the Mach number
increases unboundedly. As a result, the blunting of the
plate enhances heat transfer near the leading edge [14].
Experiments and numerical simulation show that the
blunting of the plate increases the heat-transfer coeffi-
cient by a factor of 2 for the flow parameters under
investigation. This factor increases when the blunting
value, as well as the Mach number, increases and the
Reynolds number decreases.

The interaction of the shock wave with the plate sur-
face was studied under the same conditions as a flow
around the isolated plate. We investigated free interac-
tion when the flow region undisturbed by the incident
shock wave holds near the leading edge of the plate. In
all cases under investigation, the shock wave initiated
the separation of the laminar boundary layer. At the end
of the separation region (near the attachment point), the
heat-transfer coefficient is higher than the value in the
absence of the incident shock wave by a factor of sev-
eral tens. The enhancement of heat transfer is caused by
an increase in pressure downstream of the incident and
reflected shock waves, as well as by the formation of
the divergence point and the thinning of the boundary
layer near it. Moreover, the comparison of experimental
data with numerical-simulation results (Fig. 2) shows
that the significant enhancement of heat transfer is
caused by the transition of the flow at the end of the sep-
aration region from the laminar state to the turbulent
one. With allowance for the turbulence of the flow, the
numerical-simulation results for the interference flow
over the sharp plate satisfactorily agree with the exper-
imental data.

The blunting of the plate significantly reduces the
maximum Stanton number Stm in the interference
region (by about 35% for M = 6) in contrast to the
behavior observed for the flow around the isolated
plate. Change in the blunting radius over the wide range
barely affects the Stm value (Fig. 1). This result is

obtained for large relative blunting radii (for  ≥ 1.1,

where δ* is the displacement thickness of the undis-
turbed boundary layer on the sharp plate at the inci-
dence point of the shock wave; δ* . 0.9 mm in the
example under consideration), when the high-entropy
layer is weakly mixed with the boundary layer. Accord-
ing to [15], the thickness of the high-entropy layer is

P
P∞
------

r
δ*
------
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much larger than the blunting radius due to the low den-
sity of the gas in this layer. Therefore, one can suppose
that much smaller blunting values of the leading edge
of the plate than those studied in this work will give rise
to a decrease in the maximum heat-transfer coefficient
in the interference region.

The above effect of the blunting on heat transfer in
the interference region is also observed for different
Mach numbers. With an increase in the Mach number,
the observed effect is enhanced and all features of the
flow are more pronounced. As seen in Fig. 3, the blunt-
ing of the plate enhances heat transfer upstream of the
separation point, as well as on the isolated plate. At the
beginning of the separation region, the heat-transfer
coefficient on the blunted plate is higher than that on the
sharp plate (Fig. 3, M = 10), which is due to an increase
in pressure downstream of the bow shock wave gener-
ated by blunting. However, blunting reduces the heat-
transfer coefficient in the flow-reattachment region.
This effect is likely due to the thickening of the mixing
layer at the outer boundary of the separation region that
is caused by the inclusion of the high-entropy layer into
it. In turn, this reduces the velocity gradient and thick-
ening of the boundary layer in the reattachment region.
Analysis of the numerical-simulation results corrobo-
rates this assumption. Indeed, according to the calcula-
tion results, blunting barely affects the pressure in the
reattachment region, and it simultaneously increases
the mixing-layer thickness in this region.
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0.20 0.4 0.6 0.8 1.0 1.2
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Fig. 2. Stanton-number distribution over the sharp-plate
length for a Mach number of M = 6 and a Reynolds number
of ReL = 1.3 × 106, θ = 15°: experiment (1) with and
(4) without an incident shock wave and computational fluid
dynamics (2) including turbulence, (3) disregarding turbu-
lence, and (5) without a shock wave.
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Figure 4 shows the maximum Stanton number Stm as
a function of the Mach number. With an increase in the

Mach number, the ratio  increases for the sharp

plate (line 1) and decreases for the blunted plate (line 2).
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Fig. 3. Stanton-number distribution over the length of the
sharp and blunted plates for (1) M = 8 and ReL = 0.8 × 106

and (2) M = 10 and ReL = 0.47 × 106 and r = (open points) 0
and (closed points) 4 mm.

5 6 7 8 9 10 11
M

10 0.2

20 0.4

30 0.6

40 0.8
1

3

2

Fig. 4. Mach-number effect on the degree of the maximum
enhancement of heat transfer.

Stm

St0
--------

Stmb

Stms
----------
As a result, the ratio of the maximum Stanton number
in the interference region for the blunted plate (Stmb) to
this value for the sharp plate (Stms) decreases from
about 0.65 for M = 6 to 0.4 for M = 10 (line 3). The
enhancement of the blunting effect is caused by an
increase in the losses in the total pressure in the bow
shock wave with increasing Mach number.
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In a number of cases, the cross-sectional profiles of
watercourses (rivers, canals, water-storage reservoirs,
river-bed settlers, etc.) have broken curved shapes
formed in the course of the natural evolution of river
beds [1] or as a result of a purposeful design approach
to natural relief [2]. The water filtration from such
watercourses (in the case of deep subsoil waters or the
presence of a highly permeable drainage interlayer in
the bulk of bottom soil, etc.) is considered to be free. In
addition, if the watercourses are rather long, the filtra-
tion becomes plane-parallel. As applied to water-
courses with smooth curved profiles, this problem was
solved previously by the hydromechanical method with
the use of the half-inverse technique [3–5]. It should be
noted that, in the studies of Vedernikov [4] and Pav-
lovskiœ [5], a circular profile shape of a watercourse in
the domain of the Joukowski complex was analyzed:

(1)

where z = x + iy is the complex filtration domain with
the running coordinates x and y (Fig. 1) and W = ϕ + iψ
is the domain of the reduced complex potential with the
coordinates of the pressure-head function ϕ and the
stream function ψ with the specific filtration flow rate Q
from a watercourse (Fig. 2g). The values of these func-

tions are taken to be W = , ϕ = , ψ = , and

Q = , where the values marked by the subscript n are

real, k is the filtration coefficient of the bottom soil, and

(2)

are the coordinates of the Joukowski complex domain
(Fig. 2a).

The above solution makes it possible to find the
shape of the smooth curved profile of a watercourse and
the values of required parameters for its filtration flow,

θ z iW– x ψ+( ) i y ϕ–( )+ θ1 iθ2,+= = =

Wn

k
-------

ϕn

k
-----

ψn

k
------

Qn

k
------

θ1 x ψ, θ2+ y ϕ–= =
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provided that the width B and the depth H of the water-
course are known.

To evaluate the free filtration from a watercourse
with a broken curved profile, we make use of the fol-
lowing conditions in the filtration domain z = x + iy
(Fig. 1): (i) the water depth along the watercourse axis
(at the point A) is H = 1 (in arbitrary units); (ii) the

stream function ψ increases from ψ = –  at the point 1

to ψ = +  at the point 2, and its zero value corresponds

to the point A of the watercourse profile, meaning that
ψA = 0; (iii) lines 1–4 and 2–3 correspond to the left and
right depression surfaces of the filtration domain,
respectively, whose positions are initially unknown and
are found in the course of solving the problem; (iv) the
width of the filtration flow between points 3 and 4 (as
y  ∞) is B∞ = Q, since, in this case, the pressure-
head gradient tends to unity; (v) points C and D, which
are symmetric with respect to the watercourse axis, are
the break points of the watercourse curved profile.

Then, a half-circle with the vertical cut C–A–D in
the lower half-plane of the Joukowski complex domain
corresponds to the above-described filtration domain
1–C–A–D–2–3–4 (hereinafter, domain 1–4) (Fig. 1). The
value S of the cut determines the watercourse profile
shape (Fig. 2a). In this case, the points of the domain 1–4
correspond to the following parameter values:

(3)

Q
2
----

Q
2
----

1 and 2: x
B
2
---, y± 0, ψ Q

2
----, ϕ+− 0,= = = =

θ1
Q B–( )

2
------------------, θ2+− 0;= =

C and D: x xC D( ), y± H S+ 1 S,+= = =

ψ ψC D( ), ϕ+− 0, θ1 0, θ2 1 S;+= = = =

        A :  x 0,  y H 1, ψ A 0, ϕ 0,= = = = =

θ1 0, θ2 1;= =

3 and 4: x
B∞

2
------+− , y ∞, ψ Q

2
----± , ϕ ∞ ,= = = =

θ1 0, θ2 0= =
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Free filtration from a watercourse with a broken (smooth) curved profile (  = 6; 
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(the upper and lower signs (plus or minus) relate to the
points (1, C, and 3) and (2, D, and 4), respectively).
Within the segments C–A and D–A, the values of the
stream function ψ are equal to the negative values of the
x coordinates of the points under consideration; i.e.,
ψ = –x.

From the analysis of Fig. 2 and relations (3), it is
possible to find the value of the filtration flow rate

(4)

which equals the maximum width of the filtration
domain B∞ .

Using the function

(5)

we now conformally map the domain θ = θ1 + iθ2 onto
the similar unit half-circle with the cut C−A–D within
the domain ε = ε1 + iε2 (Fig. 2b). In this case, for the
points 1–4, the following correspondence takes place:
for the points 1 and 2, ε = ; for the points C and D,

ε = i; for the point A, ε = i ; and for the points 3

and 4, ε = 0. The upper and lower signs (plus or minus)
relate to the points 1 and 2, respectively.

Furthermore, using the negative-inversion operation

, (6)

we map the domain ε = ε1 + iε2 onto the upper half-
plane t = t1 + it2 with the eliminated unit half-circle and
cut C–A–D (Fig. 2c). Then, the values of parameters in
the domain 1–4 are t = ±1 for the points 1 and 2; t = i for

the points C and D; t = i  = i(1 + S) for the point A;

and t = ∞ for the points 3 and 4. The upper and lower
signs (plus or minus) correspond to points (1, 3) and
(2, 4), respectively.

Using the Joukowski function

(7)

and ignoring (see [6]) the cut C–A–D, we conformally
map the half-plane t = t1 + it2 with the eliminated unit
half-circle onto the upper half-plane ς1 = ξ1 + iη1
(Fig. 2d). Next, returning to the cut C–A–D, we find its
position, which, by virtue of symmetry of the problem,
coincides with the axis Oη1 . As a result, we have the
following results for the points 1–4: ς1 = ±1 at the

Q B 2H 1 S+( ),+=

ε 2θ
Q B–
--------------,=

1+−
2

Q B–
--------------

t
1
ε
---–=

Q B–
2

--------------

+−

ς1 0.5 t
1
t
---+ 

 =
points 1 and 2; ς1 = 0 at the points C and D; and ς1 = ∞
at the points 3 and 4. At the point A,

. (8)

The upper and lower signs (plus and minus) relate to the
points (1, 3) and (2, 4), respectively.

Using the function [5]

, (9)

we map the obtained domain ς1 = ξ1 + iη1 (the upper
half-plane with the vertical cut C–A–D and with the
value λ determined by formula (8)) onto the upper half-
plane ς0 = ξ0 + iη0 (Fig. 2e).

Then, the parameters of the domain 1–4 take the fol-

lowing values: ς0 = ±  at the points 1 and 2;
ς0 = ±λ at the points C and D; ς0 = 0 at the point A; and
ς0 = ∞ at the points 3 and 4. The upper and lower signs
(plus or minus) relate to the points (1, C, and 3) and
(2, D, and 4), respectively.

Next, using the linear-fractional transformation

, (10)

we map the domain ς0 = ξ0 + iη0 onto the similar upper
half-plane ς = ξ + iη (Fig. 2f) in order to obtain corre-
spondence to the domain 1–4: ς = ±1 for the points 1

and 2; ς = ±  for the points C and D; ς = 0 for

the point A; and ς = ∞ for the points 3 and 4 (the upper
and lower signs (plus and minus) relate to the points (1,
C, 3) and (2, D, 4), respectively).

Using the function

, (11)

we map the obtained domain ς = ξ + iη onto the hori-
zontal half-strip in the domain of the complex potential
W = ϕ + iψ (Fig. 2g). Then, we have the following val-

ues of parameters in the domain 1–4: W =  at the

points 1 and 2; W = iψC(D) at the points C and D;

W = 0 at the point A; and W = ∞ ±  at the points 3

and 4 (the upper and lower signs (plus or minus) relate
to the points (1, C, and 3) and (2, D, and 4), respec-
tively).

Substituting the values of ς, ς0, ς1, t, and ε from
expressions (5)–(10) into Eq. (11), we find the interre-

+−

ς1 i
Q B–( )2 4–
4 Q B–( )

----------------------------- i
S 2 S+( )
2 1 S+( )
-------------------- iλ= = =

ς0 λ2 ς1
2+=

1 λ2+

+−

ς
ς0

1 λ2+
------------------=

λ

1 λ2+
------------------

+−

W ϕ iψ+ i
Q
π
---- ςarcsin–= =

iQ
2

------+−

+−
iQ
2

------
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lation between the domains of the Joukowski complex
θ = θ1 + iθ2 and the complex potential W = ϕ + iψ. Sep-
arating the real and imaginary parts, we finally arrive at
the following relationships:

(12)

where

(13)

(the upper and lower signs relate to S ≥ 0 and S < 0,
respectively).

From relations (13), it follows that, for η = 0, the
quantity å and other parameters take the following val-
ues:

M = 2, ψ = – , ϕ = 0 for |ξ| ≤ 1;

M = 2|ξ|, ψ = , ϕ =  for |ξ| > 1

(the upper and lower signs relate to ξ > 0 and ξ < 0,
respectively).

For the given values of B, H, and S, the hydrody-
namic solution thus obtained makes it possible to calcu-
late the shape of the broken curved profile of a water-
course and to find the basic parameters of its free filtra-
tion flow. In particular, the coordinates of the
watercourse profile are found by the following for-
mulas.

Within the segment 1–C (2–D),

(14)

ϕ Q
π
---- M

2
-----, ψarccosh

Q
π
---- 2ξ

M
------,arcsin–= =

M 1 ξ+( )2 η2+ 1 ξ–( )2 η2+ ,+=

ξ
ξ0

1 λ2+
------------------, η

η0

1 λ2+
------------------± ,= =

ξ0
ξ1

2 η1
2– λ2+( )2

4ξ1
2η1

2+ ξ1
2 η1

2– λ2+( )+
2

----------------------------------------------------------------------------------------------------,=

η0
ξ1

2 η1
2– λ2+( )2

4ξ1
2η1

2+ ξ1
2 η1

2– λ2+( )–
2

---------------------------------------------------------------------------------------------------,=

ξ1

t1 ε1–
2

--------------, η1

t2 ε2–
2

--------------, t1 –
ε1

ε1
2 ε2

2+
---------------,= = =

t2

ε2

ε1
2 ε2

2+
---------------,=

ε1

θ1

1 S+
------------, ε2

θ2

1 S+
------------, λ 0.5S

2 S+
1 S+
------------= = =

Q
ψ
---- ξarcsin

Q
2
----+−

Q
π
---- ξarccosh

x 1 S+( ) 1 λ2+( ) –
πψ
Q

------- 
 sin

2 λ2– ψ,––=

y 1 S+( ) 1 λ2+( ) πψ
Q

-------.cos=
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For the points C and D,

Here, the flow-rate values at the points C and D are

(15)

(the upper and lower signs relate to the points C and D,
respectively).

Within the segment C–A (D–A),

(16)

(the upper and lower signs relate to S ≥ 0 and S < 0,
respectively), where the stream function is

(17)

and where

(18)

In Eq. (17), the signs (minus and plus) are used for
the sections C–A and D–A, respectively.

Derived analytical dependences (12)–(18) for the
values S > 0 (internal vertical cut C–A–D, Fig. 2a) pro-
vide the solution to the broken curved profile of a
watercourse with a concave central part (Fig. 1, S = 0.2
and Fig. 3, S = 0.3). For S < 0 (external vertical
slit C−A–D, Fig. 3h), we deal with the solution to the
watercourse with a convex central part (Fig. 1, S = –0.4
and Fig. 3, S = –0.4). In the case when S = 0, the above
dependences correspond to a watercourse with a
smooth curved profile. In particular, the formulas for
constructing the profile of such a watercourse take the
form

(19)

which coincides with the results of the solution
obtained by Vedernikov [4] and Pavlovskiœ [5] for
watercourses with a smooth curved profile (Fig. 1,
S = 0 and Fig. 3, S = 0).

It should be noted that, while calculating the broken
curved profile of a watercourse, two-sheeted domains
in the neighborhoods of points C and D appear, but in
much less significant measure than the domains that
appear in the course of solving the problem on the

xC D( ) ψC D( )    and   y C D ( ) +−  1 S .+= =

ψC D( )
Q
π
---- λ

1 λ2+
------------------arcsin+−=

x –ψ,=

y 1 S+( ) 1 λ2+( ) πψ
Q

-------cos=

−+ λ2 1 λ2+( ) πψ
Q

-------sin
2

–

ψ Q
π
---- ξ ,arcsin+−=

ξ
λ2 η1

2–

1 λ2+
-----------------,=

η1
1 ε2

2–
2ε2

-------------
1

2θ2
-------- 1 S

θ2
2

1 S+
------------–+ .= =

x
πψ
Q

-------sin ψ, y–
πψ
Q

-------,cos= =
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Fig. 3. Profile shapes and filtration from a watercourse with a broken (smooth) curved profile:  = 10; S = –0.4, 0, and 0.3. Only

the right-hand part of the cross-sectional cut is shown.
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smooth curved profile by the iterative Gersevanov
method [7].

The depression surfaces 1–4 and 2–3 are calculated

for the values ψ = , θ2 = 0, and θ1 = ±x , which

are based on the dependence

(20)

where

(the upper and lower signs relate to sections 1–4 at

x ≥  and 2–3 at x ≤ – , respectively).

At S = 0, formula (20) enables one to find the posi-
tions of the depression surfaces in the particular case of
a watercourse with a smooth curved profile (Fig. 1, S = 0
and Fig. 3, S = 0), which completely coincides with the
results of exact solutions obtained in [4, 5].

Figures 1 and 3 show the cross-sectional profiles for
broken (smooth) curved watercourses with the corre-
sponding positions of the depression surfaces 1–4 and
2–3. The profiles were constructed using the above
dependences for H = 1, B = 6 (S = –0.4, 0, and 0.2), and

Q
2
----+−  

Q
2
----+−

y ϕ Q
π
---- ξ ,arccosh= =

ξ
ξ1

2 λ2+

1 λ2+
----------------, ξ1

1 ε1
2+

2ε1
--------------,–= =

ε1
θ1

1 S+
------------ x± Q/2+−

1 S+
-----------------------= =

B
2
--- B

2
---
B = 10 (S = –0.4, 0, and 0.3 for the right-hand part of
the watercourse). In the latter case, the streamlines
forming flow-rate tapes with equal values of filtration

flow rates ∆ψ = –  are also shown.

The results obtained in this study can be used to cal-
culate filtration from watercourses of different configu-
rations, including the determination of parameters of
filtered contaminations from storages of industrial
enterprises, etc.
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We consider the problem on the motion of a heavy
dynamically symmetric rigid body bounded by a con-
tour in the form of a surface of revolution. The body
moves without slipping over a fixed horizontal plane.
As is well-known, in addition to the energy integral, the
equations of motion of a body admit two first integrals
that are linear with respect to the quasi-velocities. How-
ever, these integrals are obtained in explicit form only
for several particular cases [1–3]. In this paper, we
present the explicit forms of these integrals for the case
when the moving body is a paraboloid of revolution.

MOTION OF A BODY OF REVOLUTION 
OVER A ROUGH PLANE: FORMULATION

OF THE PROBLEM

Let a rigid body symmetric in both its shape and
mass distribution with respect to the Gζ axis that passes
through the body’s center of gravity G be at rest at a
point M on a fixed horizontal plane Oxy. We below use
the following notation: θ is an angle between the body’s
symmetry axis and the vertical; β is an angle between
the meridian Mζ and an arbitrary fixed meridional
plane; α is an angle between the horizontal tangent MQ
to the meridian Mζ and the Ox axis. The position of the
body is completely determined by the angles α, β, and
θ and by the coordinates x and y of the point å.

In addition, we introduce the coordinate system
Gξηζ  moving in both the space and the body so that the
Gξ axis permanently lies in the plane of the vertical
meridian, whereas the Gη axis is perpendicular to this
plane (see figure). Let the vectors of the velocity v of
the center of mass G, of the body’s angular velocity w,
of the angular velocity W of the trihedron Gξηζ , and the
vector R of the plane reaction be specified in the coor-
dinate system Gξηζ  by their components v ξ, vη, v ζ; p,
q, r; Ωξ, Ωη, Ωζ , and Rξ, Rη, Rζ , respectively. Let the
mass of the body be m, the moment of inertia with

Moscow State University, 
Vorob’evy gory, Moscow, 119899 Russia
1028-3358/05/5001- $26.00 0037
respect to the Gξ and Gη axes be A1 , and the moment
of inertia with respect to the symmetry axis be A3 .

We note (see [1–3]) that the distance GQ from the
center of gravity of the body to the Oxy plane is a func-
tion of angle θ; i.e., GQ = f(θ). In the coordinate system
Gξηζ , the coordinates ξ, η, and ζ of the point å of
body–plane contact are also functions only of angle θ,
with η = 0, and

(1)

Since in the body the Gζ axis is fixed, we have Ωξ =
p and Ωη = q. The Gξζ  plane is always vertical; there-
fore, Ωζ – Ωξ  = 0. The velocity of the point of con-
tact å is zero; hence,

After simple transformations, the momentum varia-
tion law in the projection onto the Gη axis and the

ξ f θ( ) θsin– f ' θ( ) θ,cos–=

ζ f θ( )– θcos f ' θ( ) θ.sin+=

θcot

v ξ qζ+ 0, v η rξ pζ–+ 0, v ζ qξ– 0.= = =

ζ

G

x

y

z ξ

η

θ

α

O

M Q

Figure.
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38 KULESHOV
angular-momentum variation law for the Gξ and Gζ
axes yields the following:

(2)

Ignoring further a particular case θ = const and

excluding Rη from Eqs. (2), by virtue of q = – , we

arrive at

(3)

Thus, set (3) allows us to determine two first inte-
grals that are linear with respect to p and r. At present,
the explicit form of these integrals is known only in the
case when a moving body is a nonhomogeneous
dynamically symmetric ball. In the case of the motion
of a circular disk over a plane, the solution of set (3)
yields expressions for the quantities p and r in terms of
hypergeometric functions. Below, we present the
explicit form of the first integrals linear in p and r for
the case of the motion of a paraboloid of revolution over
a plane.

FIRST INTEGRALS IN THE CASE
OF A PARABOLOID

We now replace the variables p and r in Eqs. (3) by

the new variables  and . These variables are
linked to the variables p and r by the relations

Set (3) written in terms of the new variables  and

 has the form

d pζ rξ–( )
dt

-------------------------- pq ζ θcot ξ+( )–
Rη

m
------,=

A1
dp
dt
------ A3r A1 p θcot–( )q+ ζ Rη ,–=

A3
dr
dt
----- ξ Rη .=

dθ
dt
------

A1
dp
dθ
------ A3

ζ
ξ
-- dr

dθ
------+ A1 p θcot– A3r,+=

ζ dp
dθ
------

A3 mξ2+( )
mξ

-------------------------- dr
dθ
------– ζ θcot ξ ζ '+ +( )– p ξ'r.+=

Kγ
∆ Kz

∆

Kγ
∆ = A1 p θsin A3r θcos+( ) A1A3 A1mξ2 A3mζ2+ + ,

Kz
∆ A3r A1A3 A1mξ2 A3mζ2+ + .=

Kγ
∆

Kz
∆

dKγ
∆

dθ
----------

m A3 ξ ζ '+( ) θcos A3ζ A1ξ'–( ) θsin–( )
A1A3 A1mξ2 A3mζ2+ +( ) θsin

----------------------------------------------------------------------------------------------=
(4)

We now assume that the body of revolution moving
without slipping over a horizontal plane is a paraboloid.
Then,

With the expressions for ξ and ζ taken into account,
we can obtain from Eqs. (4) the following second-order

equation for :

(5)

Here,

Instead of the function , we now introduce the
other function P(θ) linked to the former by the relation

For the function P(θ), we may write out second-
order linear differential equation (5) in the form

(6)

where the function S = S(θ) can be represented as the
indefinite integral

× ξKγ
∆ ζ θsin ξ θcos–( )Kz

∆+[ ] ,

dKz
∆

dθ
----------

mA3 ξ ζ '+( )
A1A3 A1mξ2 A3mζ2+ +( ) θsin

-------------------------------------------------------------------------=

× ξKγ
∆ ζ θsin ξ θcos–( )Kz

∆+[ ] .

f θ( ) λ
θcos

------------, ξ 2λ θsin
θcos

------------------, ζ– λ θsin
2

θcos
2

---------------- λ ,–= = =

ξ2 4λ ζ λ+( ).=

Kγ
∆

d2Kγ
∆

dθ2
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2mλ2 θ 2 A3 A1–( ) θcos
2

A3–( )sin
Φ θ( ) θcos

----------------------------------------------------------------------------------
dKγ
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dθ
----------–

–
1 3 θsin

2
+

θ θcossin
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dKγ
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dθ
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-----------------------------------------------------Kγ
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4
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– 4mλ2 A3 A1–( ) θcos
2

A3mλ2.+

Kγ
∆

Kγ
∆

= 
A1A3 4mλ2 A3 A1–( )+( ) θcos

2
2mλ2 2A1 A3–( )+

θcos
------------------------------------------------------------------------------------------------------------------P θ( ).
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d2S

dθ2
--------

dS
dθ
------
--------dP

dθ
-------–
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dθ
------ 

 
2

P+ 0,=
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S θ( )
mλ2 2A1A3 2A1 A3–( ) A3 4mλ2+( ) ϕ ϕdsin

A1A3 4mλ2 A3 A1–( )+( ) ϕcos
2

2mλ2 2A1 A3–( )+( ) Φ ϕ( )
------------------------------------------------------------------------------------------------------------------------------------------------.

0

θ

∫–=

Solving Eq. (6), we find

P θ( ) C1 S θ( )cos C2 S θ( ),sin+=

where C1 and C2 are arbitrary constants. Therefore, for

the functions , the following relationship is valid:Kγ
∆

DOKL
(7)Kγ
∆ A1A3 4mλ2 A3 A1–( )+( ) θcos

2
2mλ2 2A1 A3–( )+

θcos
----------------------------------------------------------------------------------------------------------------------------- C1 S θ( )cos C2 S θ( )sin+( ).=
After the expressions for the function  depending
on the variable θ and arbitrary constants have been

Kγ
∆
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derived, we can obtain on the basis of set (4) the expres-
sions for the function :Kz

∆

(8)

Kz
∆ 2mλ2A3 2θ θcos

2( )
1–

cos

A( 1A3 4mλ2 A3 A1–( )+ ) ϕcos
2

2mλ2 2A1 A3–( )+
------------------------------------------------------------------------------------------------------------------------------ C1 S θ( )cos C2 S θ( )sin+( )=

+
2A1A3 A3 4mλ2+( ) 2A1 A3–( ) 1– Φ θ( )

θ A1A3 4mλ2 A3 A1–( )+( ) θcos
2

2mλ2 2A1 A3–( )+cos
----------------------------------------------------------------------------------------------------------------------------------------- C2 S θ( ) C1 S θ( )sin–cos( ).
It is worth noting that, for A3 = 2A1 , it follows from

Eq. (5) that  = const. This is the case that was previ-
ously analyzed in [2].

Thus, the first integrals (linear with respect to quasi-
velocities) of the equations of motion for a heavy parab-
oloid of revolution that is rolling over a perfectly rough
plane can be derived from relationships (7) and (8). In
this case, no additional constraints were imposed on the
moments of inertia A1 and A3. The results of this study
are consistent with those obtained in [2] for the partic-
ular case A3 = 2A1.
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The breakup of jets and rupture of liquid films are
two typical examples from a wide class of flows, where
the topology of the domain occupied by a fluid changes
in a finite time. In the case of an axisymmetric liquid
thread, the known solutions [1, 2] aimed at describing
its breakup are singular and predict unbounded pres-
sures and velocities as breakup is approached. Experi-
mental investigations carried out to verify predictions
made on the basis of these solutions, in particular, for
the evolution of the thread immediately after its
breakup, point out qualitative and quantitative discrep-
ancies between theory and experiment [3, 4]. This situ-
ation indicates that, as the topological transition is
approached, additional physical effects appear that are
not included in the standard formulation of the problem
and, to remove the singularities, one has to identify
these effects and make a corresponding generalization
of the model.

The missing physics can be identified by analyzing
the known singular solutions [1, 2] from the viewpoint
of their limits of applicability. This analysis shows that,
according to these solutions, the local relative rate at
which the free-surface area is created tends to infinity
as the diameter of the liquid thread goes to zero: to lead-
ing order, these solutions describe a plug flow corre-
sponding to the stretching of a liquid cylinder. Since the
rate at which the free surface acquires its specific “sur-
face” properties (such as the surface tension) is physi-
cally finite, the singular solutions, where the surface
tension is assumed to be constant, fall outside their lim-
its of applicability when the characteristic time associ-
ated with the creation of fresh free-surface area
becomes comparable with the surface-tension-relax-
ation time. Thus, the breakup of a jet is actually a par-
ticular case of a more general physical phenomenon,
namely, flows with the formation (and/or disappear-
ance) of interfaces, and to describe it adequately, one
can apply, without any ad hoc alterations, a theory of
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such flows developed earlier [5, 6]. This theory was for-
mulated using methods of irreversible thermodynamics
and was originally used to simulate processes of
dynamic wetting [5–8]. To study a free-surface flow
with a topological transition of the flow domain in the
framework of this theory, one has to consider those
solutions of the Navier–Stokes equations

(1)

that satisfy the boundary conditions

(2)

(3)

(4)

(5)

at the a priori unknown free surface f(r, t) = 0 with the

inward normal n = , together with some conditions

in the far field specifying a particular flow and initial
conditions. In addition to the known kinematic condi-
tion given by Eq. (2) and conditions on the normal and
tangential stress (Eq. (3)), where I is the metric tensor,
the model takes into account the mass exchange
between the bulk and surface phases [Eq. (4)] that is
associated with the relaxation of the interface towards
its equilibrium state as the surface density ρs tends to its

equilibrium value  (τ is the relaxation time and u and
vs are the bulk and the surface-phase velocity, respec-

∇ u⋅ 0, ρ ∂u
∂t
------ u ∇ u⋅+ 

  ∇ p– µ∇ 2u,+= =

∂f
∂t
----- vs ∇ f⋅+ 0,=

p– µn ∇ u ∇ u( )*+[ ] n⋅ ⋅+ σ∇ n,⋅=

µn ∇ u ∇ u( )*+[ ] I nn–( ) ∇σ+⋅ ⋅ 0,=

ρ u vs–( ) n⋅ ρs ρe
s–( )τ 1– ,=

∂ρs

∂t
-------- ∇ ρ svs( )⋅+ ρs ρe

s–( )τ 1– ,–=

1 4αβ+( )∇σ 4β vs u–( ) I nn–( ),⋅=

σ aρs b ρs( )2
–=

∇ f
∇ f
---------

ρe
s

© 2005 Pleiades Publishing, Inc.



        

FLUID DYNAMICS WITH TRANSITIONS IN THE TOPOLOGY OF THE FLOW DOMAIN 41

                                          

 

tively). For spatially nonuniform flows, such as the
breakup of a jet, the appearing gradient of the surface
tension σ first, influences the flow via the tangential-
stress condition (the Marangoni effect, the second of
Eqs. (3)) and, second, by forming a torque with the tan-
gential stress, leads to the deviation of the tangent to the
interface components of the surface velocity vs from the
corresponding component of the bulk velocity u evalu-
ated at the interface (the first of Eqs. (5)). The equation
of state in the surface phase (the second of Eqs. (5)) is
taken in a simple “barotropic” form, which takes into
account that the surface tension decreases from its equi-

librium value σe = σ( ) if the surface phase becomes

compressed or extremely rarefied;  ≥  for all liq-

uid–gas interfaces studied so far. The dependence of the
phenomenological material constants α, β, and τ on
viscosity and their estimates for particular fluids have
been obtained by analyzing experiments on dynamic
wetting [7, 8].

The breakup problem can be considerably simpli-
fied by using the slender-jet approximation, where the
ratio ε of characteristic length scales in the radial and
axial directions is used as a small parameter. If the free-
surface shape in the suitably chosen cylindrical coordi-
nates is given by r = h(z, t), and u, us, w, and ws denote
the radial and axial components of the bulk and surface
velocities, respectively, then the slender-jet approxima-
tion can be obtained by using the following asymptotic
expansions:

where L = µ2(ρσe)–1, T = µ3ρ–1 , U = σeµ–1, and P =

ρ µ–2. The equations following from the standard
asymptotic analysis can be further simplified for
medium- and high-viscosity fluids by using the esti-
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mates for material constants of the model obtained
from experiments on dynamic wetting [8]. These esti-

mates show that a

 

µ

 

(

 

ρσ

 

e

 

τ

 

b

 

)

 

–1

 

 

 

!

 

 1 

 

and 

 

βµρ

 

–1

 

(1 +
4

 

αβ

 

)

 

–1

 

 

 

@

 

 1

 

 for such fluids and, hence, to the leading
order in 

 

ε

 

 and in these parameters, one can neglect the
difference between the components of the surface-

phase velocity (

 

, 

 

) and the corresponding compo-
nents of the bulk velocity (

 

u

 

0

 

, 

 

w

 

0

 

). 

Then, one arrives at an initial-value problem for the
following set of equations:

 

(6)

(7)

 

(Hereinafter, for brevity, we omit the superscript * and
the subscript 0, which mark the dimensionless indepen-
dent variables and the zeroth approximation of the
functions, respectively.) The first term on the right-hand
side of Eq. (6) describes the combined action of the fol-

lowing two factors: the capillary pressure, 

 

–

 

,

and the Marangoni effect due to the surface-tension

gradient, . If one sets 

 

σ

 

 = 1 in Eq. (6), this equa-

tion, together with Eq. (7) for 

 

F

 

 = 

 

h

 

, forms a closed sys-
tem studied earlier [1], which leads to singular solu-
tions.

The evolution equations for 

 

h

 

 and 

 

ρ

 

s

 

 turn out to be
identical (but initial conditions in the general case are,
of course, different), because, with an increase in the
rate at which the fresh free-surface area is produced, it
eventually becomes much larger than the finite rate
(

 

~

 

τ

 

−

 

1

 

) at which the interface acquires its surface prop-
erties, and the relaxation mechanisms become too slow
to restore the equilibrium state of the interface. As a
result, in the regime considered here, the surface den-
sity evolves entirely due to the change in the geometry
of the free surface and, as the radius of the minimum
cross-section decreases and the surface area corre-
spondingly increases, the surface density also
decreases. According to Eqs. (7), this eventually leads
to a decrease in the surface tension, so that the capillary
pressure (  σ∇   ·  n  ) in the minimum cross section remains
finite. At the same time, since the surface density
decreases proportionally to the radius and, hence, spa-
tially nonuniformly, there appears a surface tension
gradient directed away from the plane of the minimum
cross section. This gradient tends to pinch off the thread
by pulling the fluid out of the minimum cross section
due to the Marangoni effect. Thus, in the present model,
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the breakup of a jet appears as a result of the combined
action of a finite capillary pressure and a finite surface-
tension gradient, unlike the scenario proposed by the
singular solutions [1, 2], where the capillary pressure,
pressure in the liquid, and the axial velocity tend to
infinity.

The breakup mechanism described above is illus-
trated in Figs. 1 and 2 obtained by numerically solving
Eqs. (6) and (7) for a model disturbance of the free sur-

face (Fig. 1, curve 1) and ρs(z, 0) ≡  (the dimension-

less value of  is set to be 0.6). As the breakup is
approached, one can see the formation of a distinct
structure consisting of a recoiling tip of the main thread
and a vanishing “residual” filament. In the latter, the
surface tension decreases to zero proportionally to its
radius. As shown in Fig. 2, the formation of this struc-
ture corresponds to a characteristic phase in the evolu-
tion of the pressure in the minimum cross section,
where the pressure passes through a local minimum.
Then, the pressure increases again but its limiting value
is finite, as one can demonstrate analytically by exam-

ρe
s

ρe
s

2

1

0 1 2 3 4 5

1

2
3 4 5 6

h

z

Fig. 1. Free-surface profiles for t = (1) 0, (2) 10, (3) 11,
(4) 12, (5) 13, and (6) 14.
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Fig. 2. Time dependence of the pressure in the minimum
cross section as obtained using (solid line) the present the-
ory and (dashed line) the standard model (σ = 1).
ining a locally self-similar solution for Eqs. (6) and (7)
in the following variables:

This limit is considered within the short-time limit
ε  0 (εδ–3  0 as ε  0, δ  0), so that, phys-
ically, the breakup takes place on a time scale that is
small compared with τ. The locally self-similar solu-
tion also gives that, to leading order, the recoiling ends
of the macroscopic thread no longer affect each other
and behave as if the breakup has already taken place
(though it takes some time after the formation of the
“residual” thread before it finally disappears).

Since, according to independent experiments [7, 8],
the surface-tension-relaxation time is proportional to
the viscosity of the fluid, τ  µ, one can explain why,
for chemically similar fluids with viscosities varying in
a wide range, the minimum diameter of a liquid thread
observed in experiments before the breakup is viscos-
ity-independent [3]. Indeed, the breakup mechanism
described above is triggered when the relative rate of
change in the free-surface area obtained using the stan-
dard model becomes comparable with τ–1. By consider-
ing the dimensional form of the singular solution [1],
one can show that this corresponds to the thread thick-
ness in the minimum cross section independent of vis-
cosity.

The developed approach allows one to unify the
mathematical description of different fluid motions
with topological changes of the flow domain without
introducing any ad hoc alterations of the model. This
can be demonstrated by considering, as an example, the
rupture of free films or films on a solid substrate. Since
the capillary pressure is always a restoring force in this
case, in the approaches known in the literature
(e.g., [9]), the topological transition is ensured by
explicitly incorporating (singular) intermolecular
forces into a model formulated in the framework of
continuum mechanics. The corresponding terms added
to the Navier–Stokes equations play the same role as
the capillary pressure does in the case of a cylindrical
jet: they increase the amplitude of initial disturbances
of the free surface, bringing together the opposite
boundaries.

The present model given by Eqs. (1)–(5) and applied
to the free-film rupture problem can be analyzed,
asymptotically in the thin-film approximation and/or
numerically, in the same way as that described above.
The results show that, in the thin-film approximation, to
leading order, the capillary pressure does not appear, so
that the film rupture is driven entirely by the Marangoni
effect. This effect is triggered by external disturbances

t' = δ2t, z' = δ2z, h ρs σ, ,( ) = δn 1+ hn ρn
s σn, ,( ),

n 0=

∞

∑

w δnwn for δ         0. 

n
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 ∑=

∞
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of the free surface when the relative rate of creation of
a fresh free-surface area becomes comparable with τ–1.
Then, the film ruptures if it is thin enough, so that the
Marangoni stresses can break it before the relaxation
mechanisms driving the free surface back to its equilib-
rium state eliminate these stresses. Otherwise, the sur-
face tension relaxes to its equilibrium value and the
capillary pressure, becoming the only driving force,
restores the initial shape of the free surface. As a result,
the magnitude and speed of external disturbances cor-
relate with the maximum thickness of the film that can
be ruptured by these disturbances. This situation is
qualitatively different from the case of a cylindrical
thread, which, due to capillary effects, is linearly unsta-
ble to long-wave disturbances [10].
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We present a method of studying coupled boundary
value problems for systems of linear partial differential
equations of arbitrary finite order with constant coeffi-
cients in arbitrary convex domains. New relations for
solutions of such boundary value problems are derived.
These relations enable one to separate and analyze the
effect of the parameters of boundary value problems on
the behavior of solutions. The approach represents a
fragment of a mathematical technique for studying
stresses in lithospheric plates in seismology, when it is
necessary to simultaneously take into account how a
solution is affected by numerous physical parameters of
fields described by boundary value problems, as well as
the geometric parameters of the definition domains of
boundary value problems.

In [1–4], the method was demonstrated for most fre-
quently applied systems of boundary value problems
for second-order partial differential equations. The
topological approach used for these aims makes it pos-
sible to derive exact relations for describing solutions in
terms of convenient formulations of boundary value
problems. In contrast to numerous variants of the
boundary-element method, fundamental solutions,
variational numerical methods, and methods of finite
difference approximations, the method proposed in this
work has several undeniable advantages, conceding,
perhaps, in simplicity. Among these advantages are

(i) the absence of the requirement of a priori solv-
ability of a problem,

(ii) independence from the type (bounded, semi-
bounded, or unbounded) of domain,

(iii) explicit expansion of the solution in terms of the
basis elements, where the parameters of the expansion
are determined by the solutions of pseudodifferential
equations.

In view of these circumstances, the method is the
same research method in arbitrary multidimensional
domains as that of systems of ordinary differential
equations on a segment. It has numerous applications in
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ul. Karla Libknekhta 149, Krasnodar, 350640 Russia
e-mail: babeshko@kubsu.ru
1028-3358/05/5001- $26.00 0044
boundary value problems for continuum media in vari-
ous fields.

1. Any system of linear partial differential equations
with constant coefficients or one partial differential
equation with constant coefficients of an arbitrary finite
order can be reduced to the system of first-order linear
partial differential equations. This reduction is achieved
by introducing new variables that are the derivatives of
the initial variables, which leads to the reduction of the
differentiation order in equations with a simultaneous
increase in the number of unknowns. Supposing that
the described transformations are made, we consider a
boundary value problem for the following system of
first-order partial differential equations with constant
coefficients in a convex domain Ω with the smooth
boundary ∂Ω:

(1)

After transformations, the number of boundary con-
ditions, whose order is not higher than the first,
increases. We assume that they have the form (deriva-
tives appearing in the boundary conditions are replaced
by new unknowns)

(2)

The solution j = {ϕm} and specified functions are
assumed to belong to certain spaces Hp introduced
in [1–4]. The notation accepted in those works will be
used below. As in those works, it is assumed that the
topology introduced is induced by the Euclidean metric
of the initial coordinate system.

The above relations can be treated as a differentiable
mapping of the vector field j specified on the orient-

αnmp
∂

∂xp
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  ϕm x( )

p 1=
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∑
m 1=

N

∑ gn x( ), x Ω,∈=

j ϕm{ } , ϕ x( ) ϕ x1 x2 x3, ,( ), n 1 2 … N ,, , ,= = =

x x1 x2 x3, ,{ } .=

bsmp
∂

∂xp

-------- bsm+ 
  ϕm x( )

p 1=

3

∑
m 1=

M

∑ g0 s, x( ), x= ∂Ω,∈
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s 1 2 … M, M N , g≤, , , gn{ } , g0 g0 n,{ } .= = =
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able manifold with the boundary M3 ≡ (Ω ∪ ∂Ω ) to the
vector field specified by the right-hand side of Eq. (1)
and considered on the same manifold M3. The mapping
is realized by a differential expression described by the
left-hand sides of the above relations. 

Thus, the linear differential mapping specifies the
transformation of the vector field j given on M3 to the
vector field g + g0 on M3 , i.e., the automorphism of M3

into itself. It is necessary to reconstruct the vector
field j. The mapping is associated with a certain, gen-
erally irreducible, three-parametric group of transfor-
mations of M3 into itself. Subjecting the transformation
to the above automorphism, we obtain necessary rela-
tions for a local representation of the indicated group of
transformations. When the domain Ω is simple—e.g., a
layer, a sphere, a cylinder—the global representation of
the group can be constructed.

We introduce a vector w whose components are the
external forms

(3)

Here, x0 = x3 and x4 = x1 . 

Using the transformations presented in [1–4], rela-
tion (1) can be represented in the equivalent form

Thus, this system can be written in the vector form

(4)

w ωm{ } , n 1 2 … N ,, , ,= =

ωn anmpϕmei ax〈 〉 dxp 1– dxp 1+ ,∧
p 1=

3

∑
m 1=

N

∑–=

j ϕn{ } , F Φn{ } , a α1 α2 α3, ,{ } ,= = =

Gn a( ) gn x( )ei ax〈 〉 xd∫
Ω
∫∫ Fgn, Φm≡ Fϕm.= =

knm a( )Φm a( )
m 1=

N

∑ Gn a( )– ωn a( ),

Ω
∫

∂
∫+=

K a( ) knm a( ) ,=

ωn ϕmei ax〈 〉 αnm1dx2 dx3∧(
m 1=

N

∑=

– αnm2dx1 dx3 αnm3dx1+ dx2 ),∧ ∧

knm α( ) anmp iα p⋅ anm–( ).
p 1=

3

∑=

KF G α( )– ω.

Ω
∫

∂
∫+=
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2. We will assume below that the parameters α1 and
α2 are on the real axis and α3 varies in the complex
plane. We suppose that the matrix function K(α) is not
triangular or diagonal, and it is not reduced to such
matrices by a matrix with constant coefficients. Other-
wise, such matrix functions are simply factorized by the
known formulas.

Let us factorize the matrix functions K(α) with
respect to the parameter α3 by the factorization formu-
las [5] in the form

Here, λ+ and λ– are the upper and lower half-planes,
respectively. 

However, in contrast to [5], we first construct the
elements of the matrix function K+(α) rather than the
elements of the matrix function K–(α). Using the
approach proposed in [5], we obtain the matrix function
inverse to the matrix function K+(α) in the form

Only the diagonal elements and elements of the mth
row of this matrix function are nonzero. All other ele-
ments are identically equal to zero:

Here, (z)Qps(m, z) are the elements of the (N – 1)-
order matrix function inverse to the matrix function
obtained from the matrix conjugate to the matrix K,
where the mth row and column are removed. It is
assumed that the determinant of this matrix Qm(z) has
no common zeros with the function K+(z).

We use the unity decomposition in the integrals
entering into the right-hand side of Eq. (3); i.e., we rep-
resent

Applying the method developed in [4, 5], we pass in
Eq. (3) to the tangent bundle on ∂Ω . Taking certain
fixed points of the decomposition-projection domains
on ∂Ω with allowance for the orientability of surfaces
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as the base of the tangent bundle, we construct the coor-
dinate system with any two linearly independent
(orthogonal) vectors of the tangent bundle and outer-
normal vector as the coordinate axes. It is supposed that
the coordinate system introduced matches the coordi-
nate system induced on ∂Ω by the orientation of the
domain Ω .

In this work, we apply a method of deriving systems
of equations that differs from the method used in [1–4]
and is valid for convex domains. We sequentially con-
sider system (3) in thus constructed coordinate systems

xσ = { , , } with all σ values. Then, the system of

equations (3) in the coordinate system xν = { , , }
for arbitrary σ = ν with the Fourier-transform parame-

ters αν = { , , } is represented in the form

(5)

Here,

Φ(αν) = Φ( , , ),

and the minus sign means that the functions of the

parameter  that enter into Eq. (5) are regular in the

domain λ– for the real parameters  and . As men-
tioned above, we pass from the original coordinate sys-
tem x to the local system xν that is described in [1–4]
and will be called the initial system.

Multiplying Eq. (5) by ( ), we obtain

(6)

where all components of the vector function on the left-
hand side are regular in the domain λ–. We require that
the vector function on the right-hand side has the same
property. Then, the projection of the right-hand side of

the analytic functions of the parameter  onto the
domain λ+ is equated to zero, and we arrive at the
expressions

(7)
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We note that the elements of the mth row of the matrix

function ( ) are representable as

where the functions in the numerator of the right-hand

side have no singularities in the domain λ–. Let  be

zeros of the determinant K+( ) that lie in the lower

half-plane and depend on , k = 1, 2, …. For simplic-
ity, we suppose that zeros are simple with unit codi-
mension. In this case, the Leray form residual is deter-
mined by simple formulas.

Closing the integration contour Γ in Eq. (7) in the
lower half-plane, we arrive at the relations

(8)

The number of equations is equal to the number T of the

zeros of the function K+( , , ) as a function of

 = ( , ) that lie in the domain λ–. 

Using the properties of exterior forms in the chosen

coordinate system, we represent the element εν ( ,

, ) as

We now consider an element with an index σ ≠ ν,

i.e., εσ ( , , , , , ), which includes
three terms in parentheses in its representation. Passing
in it to the local coordinate system corresponding to the
decomposition element εσ and remaining the Fourier-
transform parameters aν unchanged, we arrive at the
representation
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Here, xν(xσ) is the linear transformation from the initial

system xν to the new system xσ, R( , ) is the Jaco-
bian of the transition from the initial system to the new
one, and

(9)

3. Let us treat the vectors ϕσ = {ϕmσ( , , 0)} as
the elements of a certain Banach space, e.g., Lp, p > 1,
specified in domains ∂Ωσ, which are the supports of the
projectors εσ. 

Expressing one of the functions in terms of others
from boundary conditions (1), substituting these func-
tions into Eqs. (8), and taking the introduced Banach
space into account, we obtain the pseudodifferential
equation

(10)

Here, it is necessary to replace M linearly independent

functions ϕqσ( , , 0) that are obtained by solving
system (2) by N – M dependent functions, which
become unknown for the system of pseudodifferential
equations.

For the decomposition element σ = ν, kernel (10)

takes a form where (xν) = 0 should be assumed with
allowance for this replacement. Moreover, the follow-
ing inequalities are valid:

(11)

Then, for the assumed decomposition element, we
obtain the representation
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Thus, the resulting pseudodifferential equation
belongs to the equations of the theory of vibration-
strength viruses [6], and the mathematical technique
developed in that work can be applied for its inversion.

Inverting the pseudodifferential operator with ker-
nel (12), we represent system (10) in the form of the
system of integral equations of the second kind [1–4].
In view of properties (11), this system is normally solv-

able in Lp, p > 1. For sufficiently large |Im (ξσ)|, σ ≠ ν,
the operator of the second kind is a contraction. Various
methods of discretization of the system are applicable
in the general case.

Solving the system of pseudodifferential equa-
tions (10) and substituting the component of the
desired vector function j into Eq. (6), we represent the
solution in the form

The derived representation of solutions of the sys-
tem of coupled boundary value problems is similarly
generalized for spaces of higher dimensions. It ensures
determination of the effect of the parameters of various
fields [7–10] on the characteristics of the individual
components of coupled fields. Solutions in certain non-
convex and multiply connected domains can be
described by similar formulas with the use of a method
simply modified for domains of a more complex struc-
ture constructed from convex domains of type Ω. 

The representation allows a number of simplifica-
tions that make it possible to analyze the basic proper-
ties of solutions.
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Oscillatory regimes of a viscous incompressible
flow around a pair of plates set transverse to the flow in
the same plane are investigated and the regime-stability
boundaries are determined. The conditions under which
the flow around long plates of width d is plane and
unsteady are considered; they correspond to the Rey-

nolds numbers 30 < Re =  ≤ 80, where V is the

freestream velocity and ν is the kinematic viscosity.
The second parameter of the problem, namely, the
width G of the gap between the plates, is not greater
than 3 (the variables are normalized on the length d,

time , and pressure V2 scales).

1. The transverse flow around a pair of plates is sim-
ilar to the flow around a pair of circular cylinders of
diameter d, which is studied in more detail in [1, 2]. The
visually determined flow patterns may be either oscilla-
tory (regular) or aperiodic. Regular oscillations can
occur both in phase and in opposite phase. The period-
averaged parameters of the flow downstream of the
bodies can be either equal (E-type regime) or different
(D-type regime, in which the gap flow is on average
diverted toward one of the bodies).

The boundaries of the realization domains for differ-
ent flow regimes in the (Re, G) plane were determined
in the numerical experiments in [2]; they are different
from the sought flow-regime-stability boundaries (see,
e.g., [3]).

2. We will place the origin in the middle of the gap
between the plates and align the x axis with the flow.
Then, the y axis passes through both plates.

The numerical experiments were carried out using
the FlowVision code [4]. The velocity and pressure
fields are determined by integrating the Navier–Stokes
equations on a staggered Cartesian grid by an explicit

Vd
ν

-------

d
V
---
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finite-volume projection-type method. Conventional
boundary conditions [5] are imposed on the boundaries
of the rectangular computation domain –20 ≤ x ≤ 70,
|y| ≤ 20 and on the plates. The computation grid steps
∆x and ∆y are nonuniform; the cells are minimum (∆x =
∆y = 0.05) in the vicinities of the plates and in the near
wake (|y| ≤ 3, –0.2 ≤ x ≤ 4) and increase up to ∆x = ∆y =
0.5 in the periphery.

We define the flow-regime-stability boundaries in
the (Re, G) plane as curves on which the dependence of
the flow regime on the problem parameters Re and G
becomes discontinuous [5, 6]. In determining the sta-
bility boundary for a certain regime R, the flow is cal-
culated for a set of points. For each new point (Re1, G1),
the solution at the neighboring point (Re2, G2), which
belongs to the regime-R stability domain, is taken for
the initial approximation. If the type of the flow thus
obtained at the point (Re1, G1) is different from R, then
the regime-R stability boundary is let pass between
these points.

3. In classifying the oscillatory regimes of the flow
around the plates, we proceed from the assumption that
the flow regime with a vortex street downstream of a
plate is a hydrodynamic oscillator (self-oscillation sys-
tem), while the flow behind a set of plates is a result of
the nonlinear interaction between oscillators. Both an
individual oscillator and several interacting oscillators
are characterized by the time (t) dependence of the drag
coefficients of the plates CD, i(t), i = 1, 2. These depen-
dences are the integral characteristics of the vortex flow
in the near wake downstream of the plate.

In the interaction of hydrodynamic oscillators, long-
wavelength modes are excited with frequencies that are
multiples of the frequency of the vortex shedding
downstream of one plate. In regular flow regimes, the

function CD, i(t) – , where  is the mean value of
CD, i(t), can be presented as a superposition of N oscilla-
tion modes (N = 1, 2, or 3) with multiple frequencies
f (k), k = 1, 2, …, N, such that f (k) = nk + 1f (k + 1), where nk + 1
are integers (5 ≤ n2 ≤ 27 and 5 ≤ n3 ≤ 9 under the con-
ditions considered above). For the ith plate, the kth

mode is characterized by an amplitude , a phase

CD i,
0( ) CD i,

0( )

Bi
k( )
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 (0 ≤  < 1), and the form of a periodic function

(t) (the mean value of (t) over the period τ(k) =

 is equal to zero).

The flow may be of either the E type, if  =

, or the D type, if  ≠ . In the D flow

regime, both the functions (t) and (t) and the

amplitudes  and  are different, whereas in the
E regime they coincide. 

Four base types of oscillations of the kth mode were

found, namely, S (in-phase oscillations, ∆ϕ(k) =  –

 = 0); A (antiphase oscillations, ∆ϕ(k) = const > 0);
δ (oscillations with a fundamental mode phase differ-
ence, ∆ϕ(1) = δ(t) varying during an oscillation period);
and C (degenerate oscillations with f (k) = 0). Moreover,
for the second mode (k = 2), a µ oscillation type is

observable, in which (t) has more than two extrema
in a period.

We will use a set of N + 1 symbols for indicating the
flow regime. The first symbol indicates the type of the

ϕ i
k( ) ϕ i

k( )

Fi
k( ) Fi

k( )

1

f k( )--------

CD 1,
0( )

CD 2,
0( ) CD 1,

0( ) CD 2,
0( )

F1
k( ) F2

k( )

B1
k( ) B2

k( )

ϕ1
k( )

ϕ2
k( )

Fi
2( )

Fig. 1. CD, i(t) dependences for i = (thin lines) 1 and (thick
lines) 2 at Re = 28.46 and G = 2.3 in the (1) DS, (2) EA, and
(3) ESδ regimes.
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flow regime, E or D, while the (k + 1)th symbol indi-
cates the type of the kth-mode oscillation.

Figure 1 presents an example of the CD, i(t), i = 1, 2,
dependence for the DS, EA, and ESδ regimes obtained
for Re = 38.46 and G = 2.3.
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Fig. 2. Stability boundaries for the (a) E-type regimes:
(1) EA, (2) ES, (3) EC, (4) EA2, (5) EAA, (6) EAA and
EAAA, (7) EAAS, (8) EAδ, and (9) ESδ; and (b) D-type
regimes: (10) DA, (11) DS, (12) DC, (13) DA2, (14) DS2,
(15) DSA, (16) DSµ, (17) DAδ, (18) DSδ, and (19) D*.
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4. In the (Re, G) plane, the stability boundaries were
determined for the following regimes of the flow
around the pair of plates: type-E flow regimes (EA, ES,
EC, EAA, EAδ, ESδ, EAAA, and EAAS) and type-D
regimes (DA, DS, DC, DSA, DSµ, DAδ, and DSδ), for
which the fundamental mode frequency f (1) is equal to
the frequency of the vortex shedding behind one plate
of width d, as well as EA2, DA2, and DS2 regimes, for
which f (1) is equal to the frequency of oscillations
behind a plate of width 2d. Moreover, the stability
boundary of the flow regime with aperiodic oscillations
is determined. This regime, which is designated as D*,
belongs to the type-D flows.

In Fig. 2, the regime-stability boundaries are
grouped according to the type of the regime: the solid
lines in Figs. 2a and 2b show the stability boundaries
for the E and D regimes, respectively. The dashed lines
in Fig. 2 indicate the boundaries of the regimes of the
opposite type.

A particular group is formed by the “resonance”
regimes DA, ESδ, DSA, EAAA, and EAAS. For these
regimes, the stability domains in the (Re, G) plane are

narrow bands. In Fig. 3, curves G  = 1, where

Re1 and γ are some constants, are plotted on the stabil-
ity-domain boundaries (dashed lines). It is seen that
these curves pass along the bands of all the “resonance”
regimes and certain stability boundaries, as well as in
the vicinities of singular points at which the stability
boundaries of regimes of different types intersect each
other (in Fig. 3, they are shown as circles).

Many stability regions for regimes of the same type
do not overlap with each other. For this reason, regime-
to-regime transitions are continuous. An exception is
the overlapping stability domains EA and ES and the
resonance-regime domains, overlapping partially the
domains of “conventional” regimes (thus, ESδ and
EAAS overlap with EA, DSA and EAA with DC, and
DA with DAδ).

The boundaries of transitions between flow regimes
of different types do not usually coincide, so that tran-
sitions between regimes are accompanied by hysteresis.
Exceptions are the EAδ  DAδ, ESδ ↔ DSδ, and,
partially, EA2  DA2 (for small Re) transitions.

Varying the parameters Re and G (see Fig. 2), we
can go from single-mode regimes (EA, DC, DS, DA2,
DS2) to the aperiodic D* regime via multimode regimes
(EAA, EAAA, DSA, and DSµ). The D* regime occurs

Re
Re1
-------- 

  γ
DOKLADY PHYSICS      Vol. 50      No. 1      2005
due to long-wave instability of the multimode flow
regimes.
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Mathematically modeling hydrodynamic processes
of penetration of drilling-mud filtrate into strata satu-
rated with oil and water is the basis for a new method
of probabilistic convolutions [1]. This method is devel-
oped for interpreting the data of electromagnetic
sounding in boreholes. The much more complicated
problem is the description of the process of penetration
into strata containing three combined immiscible
phases: oil, gas, and mineralized connate water bound
with the stratum skeleton. In this case, we have to seek
the solution to a system of two quasi-linear equations,
which is impossible to represent in an analytical form.
In addition, the character of the interaction of the fresh
mud filtrate with stratum water depends on the mutual
position of two fronts, namely, the displacement of gas
by water and oil by water.

In this study, we propose both a new formulation
and a method for solving the problem concerning the
interpretation of electromagnetic-logging data for
strata containing a combination of oil, gas, and native
water. We have found a noticeable dependence for
shapes of the curves corresponding to sounding-device
data on the degree of the stratum saturation with free
gas.

As long as the gas dynamic viscosity is small com-
pared to that of liquid fluids, the process of the filtrate
penetrating into a gas-bearing layer [2] is similar to that
of piston-like displacement. This fact makes it possible
to substantiate the partial linearization of three-phase
filtration equations.

While drilling a borehole, the action of capillary
forces in penetration processes is small compared to
that of hydrodynamic forces. In the axisymmetric case,
the three-phase immiscible filtration in the near-bore-
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hole zone can be described by the set of Bucley–Lever-
ett equations [3]

(1)

Here, r, t, and m are, respectively, the coordinate, time,
and porosity. The quantities without subscripts corre-
spond to the oil phase, whereas the subscripts i = 0, 1
refer to the gas and water phases, respectively. The first
three equations in set (1) describe the mass-conserva-
tion law for moving phases. The following three equa-
tions correspond to the generalized Darcy law that links
the radial velocities of motion v i with the gradient of
head h identical for all the phases. The filtration coeffi-
cients ki are inversely proportional to the dynamic vis-
cosities µi of the phases and are directly proportional to
the collector permeability. The relative phase perme-
abilities fi are usually expressed in the form of power-

law functions depending on the effective saturations ,

where the exponent n is n ≈ 3.5. Since  = 1, set of

equations (1) has the first integral

(2)

where rw is the borehole radius and V(t) is the total vol-
ume velocity for the phases. We now introduce the gen-
eralized Leverett functions

From the law of phase motion and relationship (2), we
obtain the expression for the phase filtration velocity:

(3)

1
r
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Set of equations (1) is transformed into the simple form

(4)

where τ = (t)dt and x =  are new indepen-

dent variables. The variable τ is associated with the

conditional radius rn = rw  of the volume penetra-

tion of the filtrate into a stratum. Let s0, ,  = 1 –

(s0 + ) be the initial values of the stratum saturation
for oil, water, and gas phases, respectively. The mobili-
ties of each phase basically depend on the products αifi .
The gas phase is the most mobile (α0 ≈ 50). Therefore,
its displacement by liquids is similar to the piston-like
displacement. At the fronts r = rfi of the displacement of
oil or gas (i = 0) by water, kinematic conditions

(5)

must be fulfilled. These conditions follow from the
integral laws of mass conservation [3]. Two cases are
possible, depending on the relation between the stratum

saturation with oil s0 and with gas , namely, either the
gas displacement front advances the oil displacement
front; i.e., rf 0 > rf , or the stratum saturation with gas is
as low that the front of its displacement delays with
respect to the oil displacement front; i.e., rf 0 < rf . In the
first case, from Eq. (5) and relationship (3) for i = 0,
with allowance for the initial condition rf 0 = rw we
obtain

(6)

In the case of the piston-like displacement, the gas-sat-
uration distribution in the stratum near-borehole zone
has the form of a step function: s0 ≡ 0 for rw < r < rf 0(τ)

and s0 ≡  for r > rf 0(τ). This distribution corresponds
to the transport equation

This equation is obtained from the first equation of
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set (4) if we assume  =  = 0 and

Then, the second equation of set (4) takes the form

(7)

The function F(s, 0) coincides with the Leverett func-
tion for two-phase filtration. In this case, features of the
behavior of the solutions to Eq. (7), which were found
previously (see [1, 2]), are conserved. In particular, the
following properties turn out to be the most important.
If the initial stratum oil saturation s0 is higher than the
point of the maximum s = smax at which (smax, 0) = 0,
then the solution s = s(x, τ) has discontinuities. The sat-
uration at the displacement front sf < s0 is determined by
the root of the transcendental equation

(8)

that follows from kinematic condition (5). For s0 ≤ smax,
the solution s = s(x, τ) is continuous, and sf = s0. The
position of the oil displacement front is determined by
the formula

(9)

The average (with respect to the displacement area) oil
saturation 〈s〉  is time-independent and is determined to
be in the form

(10)

We now consider the case of small  when rf 0 < rf . In
accordance with the piston-like displacement pattern,

s0 = 0 for r < rf 0 and s0 =  for rf 0 < r < rf . For all r

except the point r = rf 0 , we have  = 0. Therefore, in

this case, the equation for the desired function s(x, τ)
also is analogous to Eq. (7). The difference consists in
the fact that the generalized Leverett function F(s, s0)
does not coincide with the function F(s, 0) for all values

of r. F(s, s0) = F(s, ) within the interval rf 0 < r < rf.

However, since the value of  is low compared to the
initial oil saturation s0, we can ignore this difference in
our calculations and use approximations (8)–(10). The
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position of the gas displacement front can be calculated
with a reasonable accuracy by the formula

This is obtained from kinematic condition (5) under the
assumption that the value s of the oil saturation can be
replaced by the average value 〈s〉  independent of the
front position rf .

As follows from the Archi law [4], at all other things
being the same, the resistivity of a stratum with a given
content is inversely proportional to the electrolyte satu-
ration squared of the stratum porous space. The pene-
tration of the mud water filtrate characterized by a cer-
tain salt concentration cp into a reservoir containing oil,
gas, and relatively immobile mineralized water with an
unknown salt concentration c0 is accompanied by pro-
cesses of rapid salt exchange between these solutions.
For the sake of simplicity, we assume that, in the region
r ∈ (rw, rf ), the function s(x, τ) can be replaced by the
average value 〈s〉 of the oil saturation. It is determined
only by the initial value s0. In the case of rf 0 > rf, the
equation for the salt-mass balance

must be fulfilled. It follows from here that the position
(r = r0z) of the boundary separating fresh and salt water
is determined by the expression

(11)

Based on the Archi law and taking into account the
distribution of the saturation of the stratum porous
space with solutions of different mineralizations, we
obtain four values of the resistivity:

(12)

Here, R0 and  are the resistivities of a stratum com-
pletely saturated with native water and with mud fil-
trate, respectively.

When the initial gas content  in a stratum
decreases, the front of its displacement rf 0 approaches
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that of oil rf . The length of the interval (rf, rf 0) tends to
zero. Thus, in accordance with the convolution equa-
tion [1], the contribution of the specific resistance Rf to

the calculation result for seeming resistances 

becomes small. In the case of small  when rf 0 < rf ,
we can see that the mass-balance equation for salts in
the solution with salt concentration cp is of the form

Hence, we arrive at the formula for the determination of
the radius r0z of the bordering zone:

(13)

The distribution of the resistivity in a stratum can be
represented by a step function

(14)

As  = 0, formulas (11) and (13) coincide with each
other and with the expression previously obtained
in [2], which was used for the calculation of the border-
ing-zone radius r0z in an oil-saturated stratum.

We now consider the centers ri of probe sensitivities
as current coordinates. Then, with due regard for
Eqs. (12) and (14), from the representations of seeming
resistances in the form of integral convolutions [1], for
an arbitrary number of probes with identical isoparam-
eters [5] and dispersion σ, we obtain the expressions
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for rf 0 < rf ,

for rf 0 > rf ,
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As our calculations show, even a small amount of gas
in a stratum significantly affects the shape of the electro-

magnetic-logging curve. In particular, for small , the
curves of seeming resistances, along with a minimum
characteristic of oil-bearing strata, possess a local max-
imum attainable in the zone of sensitivity centers of the
first probes in the devices being employed.
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Presently, in engine combustors, turbulent burning
is used. However, an alternative method, namely, deto-
nation burning, is well-known. In the case of reliable
control, it is possible to significantly intensify and to
more profitably (from a thermodynamic standpoint [1])
realize the fuel combustion. The regime of continuous
spin detonation combustion of an acetylene–oxygen
mixture in a radial circular channel was employed for
the first time in [2]. Under these conditions, the wave
velocities of the reaction products were close to the
sonic velocity. In the case of a separate supply of oxy-
gen and a fuel to a combustor with the circular cylindri-
cal geometry, the regimes of stationary burning of gas-
eous and liquid fuels in transverse detonation waves,
which are similar to the regimes of spin detonation in
circular tubes [3], were realized in [4–6]. The physico-
mathematical models of flows under conditions of the
existence of transverse detonation waves are presented
in [5, 7]. The detonation combustion of fuel–air mix-
tures in combustors of the liquid-fuel jet-engine type
with the plane-radial geometry was investigated in [8].
A specific interest for practical investigation is the con-
tinuous detonation of fuel–air mixtures in conditions
characteristic of scramjets. In this paper, we describe
the realization of the steady-state regime of the detona-
tion combustion of an acetylene–oxygen mixture in a
ducted cylindrical combustor (a variant of a scramjet).

The detonation combustion chamber used by us was
a coaxial channel of diameter dc = 30.6 cm, length Lc =
65.5 cm, and width ∆ = 2.3 cm (Fig. 1). Air was deliv-
ered into the chamber from a circular collector with an
axial cross section of 29.6 cm2 through a circular slit
with a gap of width δ = 0.1, 0.2, 0.3, or 1.0 cm. At the
same time, acetylene was delivered into the chamber
through a spray nozzle supplied with in-pair counter-
flow channels with the total cross-sectional area Sδf =
2 cm2, situated at a distance Lf = 0.1 cm downstream of
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the air-supply slit, and inclined at an angle of 45°. The
channels are uniformly distributed over the chamber
circumference. The gases were delivered from a sepa-
rate receivers with volumes VrÄ = 79.8 l for air and
Vrf = 13.3 l for acetylene through electrically driven fast
valves. Detonation products flew out directly into the
atmosphere. The duration of the process was set within
the time range τd ∈  (0.3–0.55) s by a control system.
The flow rate of the components varied within the lim-
its GÄ0 = 5.3–2.12 kg s–1 and Gf0 = 0.3–0.21 kg s–1. The
fuel-excess factor was Φ = 0.44–1.37 (here, the sub-
scripts A, f, and 0 denote air, acetylene, and the initial
state, respectively). The detonation was initiated by an
electrical detonator with an explosive mass of 0.5 g.

The entire process was photographed through the
longitudinal windows of the detonation chamber on
photographic film by a photochronograph with a falling
drum [9]. In order to illuminate the wave structure and
detonation products, a small acetylene jet was injected
into the chamber beginning oppositely to the corre-
sponding window. Using illuminated trajectories, we
determined the axial component of the flow velocity
v  = k v pf. Here, k = 37.8 is the image-diminution
factor, α is the inclination angle of a trajectory with
respect the horizontal line, and v pf = 50 m s–1 is the
speed of photographic-film motion. Pressure-sensor
signals from the gas receivers, collectors, and from the
detonation chamber were registered by a computer
system.

We have realized processes characterized by one
rotating wave (n = 1). Instantaneous patterns of the pro-

αtan

B

δ
C2H2 ∆

dc
Lf

Lc

Fig. 1. Sketch of a cylindrical detonation chamber for inves-
tigating continuous spin detonation of fuel–air mixtures.
© 2005 Pleiades Publishing, Inc.
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Fig. 2. Transverse detonation waves in an acetylene–air mixture: (a) GA = 2.96 kg s–1, Gf = 0.3 kg s–1, Φ = 1.35, D = 1.5 km s–1;

and (b) GA = 2.12 kg s–1, Gf = 0.207 kg s–1, Pc = 1.2 × 105 Pa, Φ = 1.3, D = 1.1 km s–1.
cess featuring a transverse detonation wave (δ =
0.1 cm) moving from left to right are presented in
Fig. 2. The patterns were obtained by the velocity-com-
pensation method [10]. The flow in the vicinity of a det-
onation wave corresponds to the flow in the coordinate
system associated with the detonation wave. In each
revolution over the chamber circumference, the trans-
verse detonation wave passes the path of 4.5 cm by the
longitudinal windows of the chamber (the distance
between the windows is 1.5 cm). The absence of
counter-flow transverse detonation waves was found.
The detonation front BC (Fig. 2) is illuminated suffi-
ciently well due to a purposefully targeted small acety-
lene jet. Downstream of the detonation front, the small
jet is entrained by the flow beyond the wave in the tan-
gential direction and escapes from the window region.
Therefore, we observe a weak glow of both detonation
products and other pressure shocks that accompany the
detonation.

Two characteristic types of the transverse detona-
tion wave have been observed. The first has a chemical-
reaction (combustion) front adjoining the leading
shock-wave front Çë (type I, Fig. 2a). The second is the
retarded pulsating combustion front Ç'ë' (type II,
Fig. 2b). As a rule, the latter structure corresponds to a
lowered pressure in the chamber, to the case when the
ratio between the components is close to the ultimate
ratio (Φ = 0.7), and to the case when the transverse det-
onation wave strongly affects the state of air in the col-
lector (δ = 1.0 cm). For waves of type II, in spite of the
unsteadiness of the flow beyond the leading shock
front, the average wave velocity is stable and has no
deviations exceeding 1% for adjacent revolutions.

The size of the type-I transverse detonation wave at
the average pressure in the chamber PÒ = (1–2.5) ×
105 Pa attains the value h ≈ 23 cm ≈ (25–60)‡, where ‡
is the size of a self-oscillating cell of the multifront gas
detonation [11] at a pressure PÒ . The constant value of
the quantity h is explained, apparently, by the readiness
of the mixture to detonate, i.e., by the mixing processes
of the components, which slightly depends on the value
of PÒ . The glow zone beyond the front BC of the type-I
detonation wave attains about 1.0 cm (see Fig. 2a), i.e.,
about two cells each of size ‡, at PÒ = 2.2 × 105 Pa. For
DOKLADY PHYSICS      Vol. 50      No. 1      2005
waves of type II, the size of the transverse detonation
wave is larger than h ≈ 35 cm ≈ (35–45)‡ and varies
negligibly within the pressure range PÒ = (1–1.3) ×

105 Pa. In the case of good mixing, the ratio  for fuel–

air mixtures turns out to be higher by three- to fivefold
than for gas fuel–oxygen mixtures. The ratio of the
transverse detonation wave size to the distance between

the waves is  =  –  (l = πdc for n = 1). For fuel–oxy-

gen mixtures, the ratio is  =  –  [5]. The differ-

ence in the relative width of the detonation front for the
fuel–air mixtures is attributed to several causes. These
are the absence (or undeveloped nature) of the combus-
tion front from the product side, as well as the super-
sonic velocity of the mixture ahead of the transverse
detonation wave front. The measured axial velocity of
the mixture passing through the lower part of the front
attains about 600 m s–1 and approaches the maximum

possible velocity vmax = c0, where γ and c0 are

the adiabatic index and sonic velocity for air in the
receiver, respectively.

For input pressures of air and acetylene PÄ0 = 15 ×
105 Pa and Pf0 = 10.9 × 105 Pa, respectively, and for the
corresponding flow rates GA0 = 2.12 kg s–1 and Gf0 =
0.214 kg s–1, the basic parameters of the detonation
regimes are presented in the table for varied values of
the parameter δ and within the range of the current flow
rates GA = (1.98–1.03) kg s–1, Gf = (0.187–0.1) kg s–1,
and for Φ = 1.26–1.29.

As is seen from the table, stronger transverse deto-
nation waves (possessing a higher detonation velocity)
arise in the case of air inflow to the chamber through the
slits with width δ = 0.2 and 0.3 cm. The characteristics
of the waves are virtually not violated even for subsonic
air inflow. The air supply through narrow (δ = 0.1 cm)
and broad (δ = 1.0 cm) slits, apparently, does not ensure
a sufficient degree of mixing. The air inflow through the
gap of width δ = 1.0 cm is subsonic over the entire dura-
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tion of the process. The comparison of detonation
velocities for this regime and for the regime corre-
sponding to δ = 0.3 cm, for which the subsonic inflow
also mainly dominates, directly indicates insufficient
mixing of the components in the zone of the rotation of
the transverse detonation wave front for δ = 1.0 cm.

The increase in the flow rate of the mixture compo-
nents with respect to the data presented above propor-
tionally elevated the pressure in the detonation chamber
and extended the region of existence of waves of the
first structure (Fig. 2a). In this case, the transverse det-
onation wave velocity, as a rule, also increased; its max-
imum corresponded to 1.58 km s–1.

Thus, in the case of a separate supply of fuel–air
mixture components into a ducted cylindrical combus-
tion chamber, we managed to realize for the first time a
controlled regime of continuous spin detonation
accompanied by the appearance of transverse detona-
tion waves.

Table

δ,
cm

D,
km s–1 Pm, 105 Pa Pc, 105 Pa

0.1 1.1–1.27–1.23 6.67–3.4 1.2–1.0 5.66–3.4

0.2 1.48–1.43 3.6–1.82 1.27–1.0 2.83–1.82

0.3 1.35–1.27 2.7–1.34 1.3–1.0 2.03–1.34

1 0.89–0.7 Unstable 1.53–1.12 1.22–1.06 1.25–1.06

Note: Pm corresponds to pressure in the air collector.

Pm

Pc
-------
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As is shown in experiments on dynamic fracture, the
defining factor of this process is the incubation time tinc
required for preparing a macroscopic break of a mate-
rial. The conception of the incubation time was pro-
posed in [1, 2], and the corresponding criterion was
called there the minimum-time criterion.

In [3], a dynamic criterion of fracture was proposed
for which the basic parameter is the structural time τ.
Various methods for the interpretation of this character-
istic were also presented that depended on the class of
problems under consideration. In particular, it was
shown that, under the conditions of the experiments in
[1, 2], the structural time τ can be interpreted as the
incubation time tinc .

In this paper, we offer one more interpretation of the
incubation (structural) time τ, which is based on the
asymptotic solution to the dynamical problem of a
semi-infinite crack in an elastic medium loaded by a
wave pulse, whose time shape is the Dirac delta-func-
tion δ(t). This shape of a load is traditionally used in
dynamical problems of elasticity theory. In our case,
using the structural-time criterion, we can estimate a
jump at the displacement-wave front, i.e., answer the
question concerning the possibility of violating the
integrity of a medium.

Let a semi-infinite crack be located in an unbounded
elastic plane. A uniformly distributed load

σy = I δ(t), I =  (1)

acts at the crack faces (x ≤ 0, y = ±0). Here, λ and µ are
Lamé constants, c1 is the longitudinal-wave velocity,
and U is the load amplitude having the dimension of
length. Then, on the continuation of the crack, the

λ 2µ+( )U
c1

--------------------------,
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asymptotic expression for the maximum tensile stress is
valid [4]:

σy =  + O(1), x  0, y = 0, (2)

where KI(t) is the stress-intensity factor

KI(t) = Φ(c1, c2) =  (3)

and c2 is the velocity of transverse waves.

We now estimate the threshold fracturing ampli-
tude I of a force pulse. To this aim, we apply the struc-
tural-time criterion of [3] in the form

(s)ds ≤ KIsτ, (4)

where KIs is the static fracture toughness.

We consider the threshold (i.e., minimal) fracturing
pulse amplitude I∗  as the least value of I for which the
equality holds in relationship (4). After substituting the
value of the stress-intensity factor KI(t) from formula (3)
into criterial relationship (4), we arrive at the relation

I∗  =  (5)

Criterion (4) makes it also possible to determine the
time to fracture t∗ . To do this, we do not need to calculate
the maximum with respect to time in expression (4), and
can take the lower integration limit (within the given
problem) to be equal to zero. Upon integration, we
arrive at

t∗  = (6)

Next, instead of the product KIsτ, we substitute into
Eq. (6) the value of this expression taken from Eq. (5).

K I t( )
2πx
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Thus, we obtain the ultimate relation between the time
to fracture t∗  and the incubation time τ:

t∗  =  (7)

Thus, in dynamical problems related to cracks, the
incubation (structural) time has a simple explanation.
Indeed, if the amplitude I of the applied load pulse
equals the threshold amplitude I∗  characterizing the
given material, then the incubation time τ coincides
with the time to fracture t∗ .

A relationship similar to Eq. (7) can be obtained for
an antiplane crack. In this case, the following relations
are valid:

(8)

(9)

Now, the interrelation between the time to fracture t∗
and the incubation time τ can be immediately presented
in terms of the amplitude U, which has the sense of the
displacement jump at the wave front. Performing the
same transformations as in the case of a plane crack, we
find

t∗  =  (10)

Acting in a similar manner, we can show that, if
instead of the asymptotic solution to the problem on an
antiplane crack, we use the exact solution, then the
exponent in equality (10) is equal not to two but to
unity.

As was indicated above, the boundary condition for
a crack is given in a manner such that the quantity U has
the physical sense of the displacement jump at the wave
front, namely,

w(y, t) = UH(c1t + y), 

where w is the displacement of points of the medium in
the corresponding (plane or antiplane) problem and H
is the Heaviside step function. In this case, the stress on
the crack faces is of form (1) and (8). Thus, it is evident
that the numerical estimate of the value of the jump U
allows us to answer the question concerning a possible
violation of the integrity of the medium at the load-
wave front.
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Using the other form of criterion (4) proposed in [3],
we find the ultimate intensity of the load amplitude U:

(11)

Here, σ1 is the principal normal stress, σs is the static
strength of the material, d

 

 is the characteristic structural
fracture parameter that can be determined in terms of 
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s
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. Here, as a particular case,
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. In the general case, the parame-
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 should be considered to be independent.
We analyze three possible variants of loading the

medium: (i) the load of the form of Eqs. (1), (8) is
applied to the crack faces; (ii) an elastic wave of the
form of Eqs. (1), (8) propagates inside an uncracked
medium; and (iii) a wave of the form of Eqs. (1), (8)
impinges onto the crack (the wave front moves in the
direction parallel to the plane of the crack location). For
the problems under consideration in this study, the
stresses 
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 are principal. Therefore, the thresh-
old amplitude 
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 can be determined by directly inte-
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 and 
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 in accor-
dance with Eq. (11). For the first variant of loading,
while substituting into Eq. (11), we use the values of 
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 from Eqs. (1) and (8). For the second variant,
we take them from Eqs. (2) and (9). The solution for the
third variant is a superposition of the solutions corre-
sponding to two first variants. The estimates of the
threshold amplitude 

 

U

 

∗

 

 for all three variants of loading
are given in Table 1, in which 

 

E

 

 and 

 

ν

 

 correspond to the
elasticity modulus and Poisson’s ratio, respectively.

If we assume that, for a statistical-average material,
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(depending on the Poisson’s ratio) the threshold ampli-
tude 
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 of the jump, in the general case, can be directly
expressed in terms of the structure parameter 

 

d

 

. The
results for all three variants are presented in Table 2.

As is seen from Table 2, for all methods of loading
an antiplane crack, the ultimate amplitude of the dis-
placement jump 

 

U

 

∗

 

 at the wave front is always lower
than the structural element 

 

d

 

. In accordance with the
structure–time approach to the fracture process, we
assume that, at the given scale level, this process pro-
ceeds discretely and involves elementary cells with the
side sizes multiples of the quantity 

 

d

 

. Thus, we consider
that, in the problem concerning an antiplane crack, the
integrity of the medium is not violated at the wave
front. Here, from the standpoint of the material
strength, the most unfavorable loading variant is the

ds
1
d
--- σ1 x s,( ) x σs.≤d

0

d

∫
t d/c1–

t

∫t
max

2K Is
2

πσs
2

----------

d
c1
----

E
2π
------
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Table 1

Variant 
number Case under consideration

Threshold jump amplitude U*

plane crack antiplane crack

1 A load is applied to the crack face

2 A wave propagates in an uncracked medium

3 Diffraction on a crack (the wave front is parallel to the 
crack)

π 1 ν+( )σsd

2E 2 1 2ν–( )
-----------------------------------

π 1 ν+( )σsd

E
------------------------------

1 ν+( ) 1 2ν–( )σsd

1 ν–( )E
-----------------------------------------------

2 1 ν+( )σsd

E
-----------------------------

π 1 ν+( ) 1 2ν–( )σsd

E π 1 ν–( ) 2 1 2ν–( )+[ ]
--------------------------------------------------------------- π

π 2+
------------

2 1 ν+( )σsd

E
-----------------------------

Table 2

Variant 
number Case under consideration

Threshold jump amplitude U*

plane crack antiplane crack

1 A load is applied to the crack face (0.18–∞)d (0.50–0.75)d

2 A wave propagates in an uncracked medium (0.16–0)d (0.32–0.48)d

3 Diffraction on a crack (the wave front is parallel to a crack) (0.11–0)d (0.20–0.29)d

Note: The lower and upper limits correspond to the minimum (ν = 0) and maximum (ν = 0.5) values of Poisson’s ratio, respectively.
third one, since in this case, the threshold amplitude is
the least.

For a plane crack, the principal difference is
observed only for the first variant, when a load is
applied to crack faces in a medium consisting of an
incompressible material (ν = 0.5). However, as was
shown in [6], the asymptotic solution is inapplicable to
these materials.
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It is well known that, when electromagnetic oscilla-
tions propagate in waveguide structures that include
alternating sections of lines with different characteristic
impedance but with the same electric length, transpar-
ency windows (frequency bands where the damping of
passed waves is minimal) are observed, and they are
separated by bands of almost total reflection (stop-
bands) [1]. Such irregular structures are used to design
UHF devices. In particular, these structures are utilized
as a basis for constructing characteristic impedance
transformers, phase shifters, and bandpass filters. The
effect of the almost complete reflection of electromag-
netic waves from periodic structures is used not only in
the UHF band but also in optics for creating high-qual-
ity mirrors. The simplest mirror is a multilayer thin-film
system of alternating dielectric layers with different
refraction indices. In this case, the thickness of each
layer in the structure is close to a quarter of the wave-
length at the central frequency of the reflection band [2].
The film coatings of alternating dielectric layers with a
thickness close to half the wavelength serve as band-
pass filters, which are used, e.g., in switching devices of
fiber optic communication lines [3]. In this case, a coat-
ing is a system of coupled half-wavelength resonators.

The current status of micro- and nanotechnologies,
including graphoepitaxy [4], provides the production of
not only 1D but also 2D and 3D structures, where the
characteristic sizes of periodic irregularities are about
the light wavelength. Such structures, called photonic
crystals, also have transparency windows and gaps in
the optical range of electromagnetic waves [5]. Owing
to their unique properties and the possibility of effec-
tively controlling the light propagation in photonic
crystals, they are promising for developing various
optoelectronic devices. However, the production of
even 1D photonic crystals (multilayer structures
including superlattices) is an expensive process requir-
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ing unique equipment. At the stage of development of a
device based on photonic crystals, the process of opti-
mizing the design can be significantly cheapened by
replacing it with a bulk (nonfilm) analog operating in
the UHF band. The most successful analog of a dielec-
tric superlattice is a microstrip structure [6, 7] that is
technologically simple. Moreover, it is closer to an
actual layered structure than waveguide analogies,
because the basic oscillation modes propagating in
microstrip transmission lines are quasi-T-waves whose
microwave-field structure is close to the structure of
transverse waves propagating in superlattices.

The principle of designing microstrip models of 1D
photonic crystals consisting of dielectric layers with
different refractive indices is based on the strong
dependence of the effective dielectric constant εeff of a
microstrip transmission line on the strip-conductor
width w and substrate thickness h. The propagation
velocity and, correspondingly, the electromagnetic
wavelength in the line are determined by εeff, which can
be expressed in terms of the relative dielectric constant
ε of the substrate and basic constructive parameters of
the line [8] as

(1)

where

It is worth noting that formula (1) is valid for the strip
conductor of zero thickness and only in the quasi-static
frequency band when the transverse sizes w and h of the
microstrip line are much smaller than the wavelength of
the electromagnetic wave propagating in it. According
to formula (1), a decrease in w at a fixed substrate thick-

εeff
ε 1+

2
-----------

ε 1–
2

-----------P,+=
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1 12h
w

---------+
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h
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ness leads to a monotonic decrease in the effective
dielectric constant. Therefore, segments of regular
microstrip lines that differ in their conductor widths can
serve as a good UHF model of dielectric layers differ-
ing in refraction index in the multilayer structure [6, 7].

Studies of UHF models of devices based on photo-
nic crystals make it possible not only to cheapen the
development stage but also to considerably shorten the
development time, as well as to obtain important rec-
ommendations for achieving the extreme characteris-
tics of the construction under investigation. In particu-
lar, microstrip simulation [7] shows that a number of
conditions are necessary for manufacturing a high-
quality bandpass filter based on the superlattice. First,
the necessary jump must be ensured between the char-
acteristic impedances of outer layers of the superlattice
and the characteristic impedances of the input and out-
put, which is determined by a given passband of the
device. Second, it is necessary to select the dielectric
constants of the layers of the superlattice such that cou-
plings between them are in balance, which must also
correspond to the given passband of the filter. Third, the
electric lengths of resonator layers should be selected
such that their natural frequencies coincide with the
central frequency of the passband.

We note that, in the microstrip models of superlat-
tice-based filters [7], the central frequencies of all pass-
bands are equidistant and the stopbands between them
are much narrower than an octave. This property is
caused by the fact that a regular half-wave microstrip
resonator, as well as any dielectric layer in the superlat-
tice, has the equidistant spectrum of natural frequen-

2

0.20 0.4 0.6 0.8 1.0 1.2
1

3

4

f1

1

2

4

3ε1 ε2 ε1

θ1 θ1θ2

Fig. 1. Relative frequency of the second resonance of the
microstrip structure vs. the ratio of the dielectric constants
of the outer and middle sections of its hybrid substrate for
q = (1) 0, (2) 0.1, (3) 0.33, and (4) 0.66.

f2

ε2

ε1log
cies. However, filters with wide stopbands are often
required; i.e., the nearest spurious passband should be
spaced by more than an octave. This problem is solved
in this work, where we analyze constructions of micros-
trip models of filters based on 1D photonic crystals that
have a nonequidistant spectrum of natural frequencies.

It is known that jumps in the width of the strip con-
ductor or other irregularities in a microstrip resonator
make its natural-frequency spectrum nonequidistant.
Owing to this property, the frequencies of the first and
second resonances of the microstrip resonator can be
approached and removed from each other [9]. A similar
approach can be used to design bandpass filters based
on 1D photonic crystals in order to expand the high-fre-
quency stopband of the device. To this end, it is neces-
sary to create the corresponding jump of the character-
istic impedance in the middle of each layer resonator.
This jump can be obviously obtained using materials
with different dielectric constants ε. In other words,
each resonator in a filter of such a construction must
consist of three alternating dielectric layers.

Figure 1 shows the microstrip model of the resona-

tor and the ratio  of the frequencies of its first two

resonances as a function of the dielectric constant jump
of the composite substrate, for which ε1 = 16 and ε2
varies from 16 to 1. The calculation was performed in
the quasi-static approximation using the 1D model of
the resonator [9]. The lines are plotted for several ratios

q =  of the electric length of the middle section

to the total electric length. Investigations show that the
difference between the frequencies f1 and f2 increases
with the difference between the dielectric constants of

the sections. However, for any ratio , the increase in

the second-resonance frequency with respect to the
first-resonance frequency is maximal when the electric
lengths of all three sections of the microstrip resonator
are equal to each other. Thus, for a certain jump in the
characteristic impedances of the regular sections of
microstrip lines composing the irregular microstrip res-
onator, the frequencies of the first and second modes
can be shifted by almost two octaves. Moreover, the res-
onance frequencies of almost any oscillation modes in
such irregular resonators can be purposely changed by
varying the number, positions, and values of jumps [10].

Figure 2 shows several models of microstrip con-
structions of bandpass filters based on 1D photonic
crystals and their schemes. Their frequency responses
calculated numerically in the quasi-static approxima-
tion are given in the same figure. For simplicity, each
device contains only three resonators. They are tuned so
that the central frequency of the first passband is equal
to f0 = 3 GHz, the relative width of this band as mea-

f 2

f 1
-----

θ2

2θ1 θ2+
--------------------

ε1

ε2
----
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b

Fig. 2. Microstrip constructions of bandpass filters under investigation and their frequency responses. The dotted line is the fre-
quency dependence of inverse losses for construction b.
sured at a level of –3 dB from the maximum-loss level

is equal to  = 40%, and the maxima of inverse

losses in the passband are equal to –14 dB. Model a
corresponds to a usual three-layer structure, where the
layer with a low refraction index is sandwiched
between two identical layers with a high refraction
index [6, 7]. For this reason, the frequency response of
this model involves equidistantly alternating passbands
and stopbands. The filter is manufactured on a 1-mm-
thick substrate with ε = 16. Note that the antinodes of
the microwave electric field E and microwave magnetic
field H are at the edges and centers of the outer resona-
tors, respectively. In contrast, for the middle resonator,
the antinodes of H and E are at the edges and center,
respectively.

In model b shown in Fig. 2, all three resonators are
irregular, because they are manufactured on composite
substrates. In this case, the dielectric constant of the
substrates is high (ε = 16) and low (ε = 1) in the antin-

∆ f 3

f 0
---------
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odes of the electric and magnetic fields, respectively. As
should be expected for such a construction, the micro-
wave stopband is expanded by several times due to an
increase in the frequency of the second (spurious) pass-
band. Moreover, the stop level in the stopband increases
significantly due to an increase in reflection losses. This
means that this comparatively simple construction of
the 1D photonic crystal can simultaneously serve as
both a bandpass filter with an increased stopband and a
good mirror with the reflection index close to unity in a
wide frequency band. Note that the necessary jumps of
the characteristic impedance in the irregular resonators
of the microstrip model can be ensured by a stepwise
change in the strip-conductor width for the structure
manufactured on a common substrate (see Fig. 2,
model c). In this case, however, the jump of the effec-
tive dielectric constants in wide and narrow sections of
the microstrip structure is lower than that on a compos-
ite substrate. For this reason, the width of the stopband,
as well as the stop level in it, decreases.
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An experimental test of several microstrip construc-
tions of filters manufactured by engraving a lacquer [11]
showed good agreement with the numerical calcula-
tions. As an example, Fig. 3 shows (points) measure-
ments of inversion and return losses for the filter of
model b in comparison with (lines) the corresponding
calculations. The hybrid substrate of the filter consisted
of TBNS ceramic plates (ε = 80) and flan (ε = 2.8) with
a thickness of 2 mm. The topological sizes of the con-
ductors of the device were previously obtained by para-
metrically synthesizing the filter with a central fre-
quency of f0 = 1 GHz and a relative passband width of

 = 60%. However, the experiment was compared

with theoretical calculations using the actual construc-
tive parameters of the microstrip structure that were
measured after its manufacture.

∆ f 3

f 0
---------

–60

10 2 3 4 f, GHz
–80

–40

–20

0
L, dB

Fig. 3. Frequency dependences of inversion and return
losses in the filter of construction b in Fig. 2. Lines are cal-
culations and points are experimental data.

20 4 6 8 f, GHz
–60

–40

–20

0
L, dB
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11
N = 3

Fig. 4. Frequency responses for the various numbers of res-
onators in the microstrip model of the bandpass filter based
on a 1D photonic crystal.
The parametric synthesis of the filter model based
on the 1D photonic crystal, as well as the tuning of any
multilink bandpass filter, requires the satisfaction of
three conditions. First, the necessary coupling must be
ensured between the outer resonators and the input and
output transmission lines in accordance with a given
passband of the device. Second, it is necessary to
ensure balance between the couplings of all resonators
(three in the case under consideration) with each other.
Third, the resonance frequencies of the resonators must
coincide with the central frequency of the passband.
The coupling between the adjacent resonators is
undoubtedly determined primarily by the difference
between the characteristic impedances of the regular
segments of the lines at the junction between the reso-
nators. In the quasi-static frequency band, these charac-
teristic impedances are calculated by the formulas [8]

(2)

The coupling between the outer resonators with the
external tract is determined by the difference between
the characteristic impedances of the input transmission
lines, Z0 = 50 Ω, and the corresponding segments of
microstrip lines, which form the edge sections of the
outer resonators in the model under consideration.

Investigations show that, with an increase in the
number of irregular resonators in the microstrip model
of the photonic-crystal-based filter, the gain slope
increases and damping in the stopbands increases
almost exponentially. This is corroborated in Fig. 4,
where the frequency responses are shown for the filters
containing 3–11 resonators on hybrid substrates (Fig. 2,

model b). The passband of the filters is  = 40%, and

the hybrid substrates consist of two materials with
dielectric constants ε1 = 16 and ε2 = 1. It is seen that
each addition of two resonators to the construction
under consideration is accompanied by an increase in
damping in the low-frequency and high-frequency
stopbands by more than 10 and 20 dB, respectively. We
emphasize that damping in the stopband increases sig-
nificantly with the narrowing of the passband of the
device.

It is worth noting that the coupling between resona-
tors in the microstrip structure is determined not only
by jumps in the characteristic impedances but also by
the loaded Q factor on which the amplitudes of micro-
wave fields in microstrip resonator depend. As is
known, this Q factor is higher for the inner resonators.
As a result, to ensure the given coupling between inner

Z
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resonators, the jump between the characteristic imped-
ances of the outer sections of the corresponding regular
segments of the lines must be larger than that for the
outer resonators. This relation is illustrated by the con-
structive parameters presented in the table for 11-reso-
nator filters whose frequency response is shown in
Fig. 4.

Thus, we have proposed a construction of bandpass
filters based on 1D photonic crystals, where each reso-
nator consists of three alternating layers with different
dielectric constants, which ensures a significant broad-
ening of the high-frequency stopband. Good agreement
between the quasi-static numerical analysis of micros-
trip models of such filters with the corresponding
experiments enables one to obtain the constructive
parameters of a device with given characteristics. Anal-
ysis shows that this construction, even with a few lay-

Parameters of microstrip segments for an 11-resonator filter
with a relative passband width of 40%

Microstrip 
resonator no. w, mm l1, mm l2, mm

1 (11) 3.36 2.86 9.92

2 (10) 0.28 11.63 3.75

3 (9) 4.11 3.11 10.92

4 (8) 0.18 11.53 3.76

5 (7) 4.40 3.08 11.51

6 0.16 11.51 3.76
DOKLADY PHYSICS      Vol. 50      No. 1      2005
ers, can serve as not only a good bandpass filter but also
as a good mirror with a high reflection index in a wide
frequency band.
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