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The problem of the high-velocity interaction of var-
ious technogenic bodies with targets and constructions
usually consisting of a set of simple targets (layered,
screened, and spaced) made of various materials is of
special importance in the general problem of high-
velocity impact phenomena. It is a scientific basis for
solving practical problems concerning the development
of double-purpose technologies and permanent
advancements in the protection of civil, marine, avia-
tion, and space equipment against penetrating impacts
of various technogenic bodies. Complex experimental
and numerical investigations into the damages caused
to finite-thickness targets by projectiles show that
mechanisms of the destruction of targets change signif-
icantly with variation in the initial conditions of inter-
action (increase in the collision velocity of bodies,
change in the materials of targets and projectiles, their
shape, etc.) [1]. Since a high-velocity impact proceeds
very quickly (over a time period of about 10–4–10–7 s)
and results in destructive action, experimental informa-
tion on the dynamics of the entire impact process is pri-
marily obtained by high-speed optical shooting (ordi-
nary and laser), pulsed multiple radiography [2], and
recording of pressures and velocities by differential
laser interferometry, manganin, capacity, and piezo-
electric and electret sensors [3]. In addition, mathemat-
ical simulation by modern numerical methods is an
important source of information immediately from any
zone of active deformation, prefracture and fracture of
materials of interacting bodies [4].
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Computer simulation of the interaction of projec-
tiles with targets and simple constructions was per-
formed by the numerical finite-element method, which
was efficiently applied to various impact problems [5].
The physical–mathematical model of colliding solids
that is used in this work is generally represented by a
compressible strong medium whose behavior under
extreme impact loads is described by a broadband
semiempirical equation of state [6], elastoplastic
model, dynamic yield stress, shear modulus, and con-
stants of the kinetic fracture model [7]. The last model
describes the local formation, development, and target
evolution of microdamages, which continuously
change the properties of the materials in contact and
induce a relaxation of stresses.

The spall–shear fracture process was simulated based
on the concept of a continuous accumulation of damages
characterized by the specific volume of cracks [7]. The
rate of increase in the specific volume of cracks or pores
was specified as a function of acting pressure and the
volume of damages attained according to relations
obtained in [7, 8]. These relations take into account the
possibility of partial or complete closure of microdam-
ages upon change in the sign of tensile stresses and the
appearance of compressive stresses [9], which is very
important for analysis of the perforation of spaced con-
structions. Step-by-step analysis of contours of the spe-
cific volume of cracks (at different times) at the stage of
prefracture of materials makes it possible to locally
determine the general developmental tendencies of
fracture both qualitatively and quantitatively, as well as
its mechanism, the local damage degree of a material,
and the behavior of the main spall crack and adiabatic
shift due to decrease in the strength of the material that
is caused by its adiabatic heating [10]. In addition, the
formation and evolution of different fracture mecha-
nisms and their interference are revealed. In particular,
analysis of a mechanism of the perforation of plates by
deformable projectiles revealed that the formation of a
separated disc in the upper and lower halves of a plate
occurred through different mechanisms [11].

A high-velocity impact is mathematically simulated
by a system of equations that describes the unsteady
spatial adiabatic motions of a continuum and includes
© 2005 Pleiades Publishing, Inc.
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Fig. 1. (Upper part) Chronograms of the 2500-m/s collision of a steel cylinder 8 mm in both diameter and height with a double-
layer steel target (the thicknesses of the plates is equal to 5 mm and the gap between them was equal to 3 mm) at times 7, 8, and 8.5
µs. (Lower part) The chronograms of the accumulation of damages in the plates at the same times.
equations for continuity, motion, energy, and change in
the specific volume of cracks. 

In this work, we numerically analyze the results of
the perforation of monolithic finite-thickness targets
DOKLADY PHYSICS      Vol. 50      No. 2      2005
and simple constructions consisting of separate plates
of identical thickness that are made of the same mate-
rial as a monolithic target. In the general case, such con-
structions have the same specific weight (weight of a
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construction per unit surface). The numerical scheme
for the realization of the finite element method for sub-
stantially unsteady problems in the mechanics of a
deformable solid is taken from [4]. The velocity at
which a projectile penetrates behind the back surface of
the last target of the construction with a certain velocity
that induces a minimum behind-target shock effect
(velocity of about 50 m/s) is generally taken as the lim-
iting velocity of the perforation of a separate target or
spaced construction. In this work, we analyze the
results from the perforation of spaced targets, because
screened targets were considered in [11] and their effi-
ciency is based on the Whipple shield [12]. It is based
on the use of thin screens that are placed in front of the
basic target and that give rise to the intense fragmenta-
tion of projectiles into smaller fragments upon high-
velocity interaction. This leads to a dispersion of
impact momentum over the larger surface of the basic
target and, finally, to a significantly smaller penetration
(perforation thickness). The protection of spacecrafts
with thin screens was practically implemented in the
Vega international project [13].

For spaced targets for which the distance between
plates does not noticeably affect the perforation process
in contrast to the discontinuity in the denseness of
materials, numerical calculations show and experi-
ments corroborate that a monolithic steel plate is the
most efficient protection against high-strength (unde-
formable) fragments. The latter ensures maximum
resistance to an impressing projectile (maximum
absorption of the kinetic energy of a fragment) com-
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Fig. 2. Time variations in the kinetic energy of the projectile
colliding with an initial velocity of 2500 m/s with the
(line 1) monolithic plate and weight-equivalent double-layer
target with an interlayer gap of (line 2) 1 and (line 3) 3 mm.
Time variations in the kinetic energy of the (line 4) mono-
lithic target and double-layer target with an interlayer gap of
(line 5) 1 and (line 6) 3 mm. Time variations in the kinetic
energy of the (line 7) first and (line 8) second plates of the
double-layer target with a gap of 3 mm.
pared to any weight-equivalent spaced target consisting
of two, three, etc. components with the same physical
and mechanical characteristics. The result is different
for the penetration of compact deformable elements
into such targets [14].

We simulate the interaction of a steel cylinder 8 mm
in both diameter and height with targets consisting of
one, two, three, etc. steel layers with a yield stress of
10.1 × 102 MPa and a shear modulus of 7.9 × 102 MPa.
Figure 1 (the upper part) shows the chronograms calcu-
lated for the process of impressing a fragment in a dou-
ble-layer construction consisting of two plates 5 mm
thick with a gap of 3 mm between them. The initial col-
lision velocity was equal to 2500 m/s. The configura-
tions of the interacting bodies correspond to times 7, 8,
and 8.5 µs. Analysis of the process of the perforation of
both plates, the step-by-step penetration of the
deformed projectile into the first and second plates, and
the accumulation of damages in them shows that the
fracture of the plates occurs via different mechanisms.
Figure 1 (lower part) shows the chronograms of the
accumulation and evolution of damages in the projec-
tile and both plates at the same times 7, 8, and 8.5 µs,
which are discrete (drawn with a certain step) contours
of the specific volume of cracks. More detailed analysis
of the prefracture of both plates shows that the first
plate breaks through the knockout of a disc whose
diameter is only slightly larger than the diameter of the
deformed projectile [9]. The separation of the disc is
completed after the confluence of the fracture nuclei
propagating from the front and back surfaces of the
plate. Parametric calculations show that the knockout
of the disc (adiabatic shift) is accompanied by a consid-
erable release of thermal energy due to intense shear
strains in the upper half of the plate. This release gives
rise to the local heating of the material in this domain,
which is accompanied by a local decrease in the
strength of the medium. The fracture of the second
plate, which is subjected to tension for nearly the entire
interaction process, occurs due to the development of
cracks, which initially arise near the symmetry axis on
the back surface under the action of rarefaction waves.
Therefore, the energy required for the perforation of the
second plate in the construction is higher than that
required for the first plate. This property represents one
of the main reasons why a target consisting of two
plates of the same thickness displays greater efficiency
than a monolithic target or any other spaced target con-
sisting of three or more components. In particular, the
velocity of the deformed projectile behind the target is
equal to 45, 75, and 90 m/s when the above compact
steel projectile with a velocity of 2500 m/s collides with
a double-layer spaced steel target, monolithic target,
and triple-layer spaced target, respectively. 

To analyze mechanisms of the perforation of mono-
lithic and double-layer spaced targets in detail, we draw
a number of parametric dependences characterizing the
development of the penetration process. In particular,
Fig. 2 shows time variations in the kinetic energy of the
DOKLADY PHYSICS      Vol. 50      No. 2      2005
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Fig. 3. Chronograms for the penetration of the extended cylindrical steel projectile with an initial velocity of 2500 m/s into the dou-
ble-layer target at times 1, 3, 5, and 7 µs.
projectile colliding with a velocity of 2500 m/s with the
(line 1) monolithic plate and weight-equivalent dou-
ble-layer target with an interlayer gap of (line 2) 1 and
(line 3) 3 mm. In addition, Fig. 2 shows time variations
in the kinetic energy of the (line 4) monolithic target and
double-layer target with an interlayer gap of (line 5) 1
and (line 6) 3 mm change. Time variations in the kinetic
energy of the (line 7) first and (line 8) second plates of
the double-layer target with a gap of 3 mm are also
shown. The kinetic energy of the projectile is first lost
upon collision with the monolithic plate. However,
after interactions between the plates of the target, the
values of the kinetic energy of the projectile begin to
approach each other. For the double-layer target with a
gap of 1 and 3 mm, approaching occurs to 4 and 7 µs,
respectively. Lines 4–6 show that the kinetic energy
acquired by the double-layer target is larger than that
acquired by the monolithic plate for nearly the entire
DOKLADY PHYSICS      Vol. 50      No. 2      2005
interaction process. Therefore, double-layer targets
generally provide for more efficient protection. The
impact resistance of targets decreases with an increase
in the number of plates in the mass-equivalent construc-
tion, because the spall mechanism of the fracture of
individual plates is nearly absent in this case.

Similar numerical investigations show that a triple-
layer spaced construction provides for the most effi-
cient protection against the penetration of an extended
deformable projectile with an elongation of about 10
(the ratio of the cylinder length to its diameter) as com-
pared to a mass-equivalent continuous monolithic con-
struction or any other spaced construction. In this case,
the gain in limiting penetration velocity reaches 10%.
Figure 3 shows the chronograms for the penetration of
the extended cylindrical steel projectile with an initial
velocity of 2500 m/s into the spaced construction con-
sisting of two plates of the same thickness at times 1, 3,
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Fig. 4. X-ray patterns for the penetration of the projectile (elongation of 10) with an initial velocity of 2016 m/s into the spaced
construction consisting of three steel plates of the same thickness at times 23, 29, and 40 µs.
5, and 7 µs. Theoretical investigations are compared
with basic experiments carried out with various combi-
nations of colliding bodies on special racks including
powder and light-gas ballistic setups, a target setup
with an x-ray pulsed system of detecting the behavior
of colliding bodies, and equipment for the storage of
necessary samples [15]. Figure 4 shows X-ray patterns
for the penetration of the projectile (elongation of 10)
with an initial velocity of 2016 m/s into the spaced con-
struction consisting of three steel plates of the same
thickness at times 23, 29, and 40 µs. They show that the
velocity of the projectile residual behind the target is
minimal as compared to the perforation of the continu-
ous target and target consisting of two plates of the
same thickness (velocities 650, 740, and 710 m/s,
respectively).

Analysis of the problem of the collision of projec-
tiles with various elongations with combined (layered–
DOKLADY PHYSICS      Vol. 50      No. 2      2005
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spaced) constructions for the normal impact and partic-
ularly oblique impact is more complicated. Experimen-
tal and numerical investigations of such phenomena are
complicated and expensive. They will be conducted
step-by-step.
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The perturbed rotational–vibrational motion of the
Earth in the gravitational fields of the Sun and Moon
has been investigated using the linear mechanical
model of a viscoelastic solid. The tidal mechanism of
exciting the oscillations of the poles, i.e., the angular-
velocity vector in the Earth-fixed coordinate system,
has been revealed. It is attributed to the rotational–
translational motion of the Earth–Moon barycenter
around the Sun. It has been found that the basic charac-
teristics of the oscillations do not significantly change
over time intervals much longer than the period of the
precession of the Earth’s axis. A simple mathematical
model involving two frequencies, Chandler and annual,
has been developed by the celestial mechanics meth-
ods. It is adequate to the astronomical measurements of
the International Earth Rotation Service (IERS). The
parameters of the model have been fitted by the least
squares method with the use of spectral analysis of
IERS data. A statistically convincing interpolation of
the process has been obtained over time intervals from
several months to 15–20 yr. A precision forecast for
0.5–1 yr and a reliable forecast for 1–3 yr, which are
corroborated by observations for several recent years,
are presented for the first time. The results are of theo-
retical interest for geodynamics and celestial mechan-
ics, and they are important for applications in astrome-
try, navigation, and geophysics.

1. The very complex process of pole oscillations
includes components with strongly different frequency
and amplitude characteristics [1–6]. In particular, the
small oscillations of the angular-velocity vector in the
Earth-fixed coordinate system (reference system)
involve the main component with an amplitude of
0.20″–0.25″ and a period of about 430–440 sidereal
days (S. Chandler, 1891). It was necessary to explain
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the strong deviation of the Chandler period from the
value predicted by the rigid-body theory (Euler preces-
sion period of 305 days). Such an explanation was par-
tially given using the model of the deformable Earth
[2–6]. A noticeable component with an amplitude of
0.07″–0.08″ and a period of 1 yr (about 365.25 sidereal
days) was found to exist (as noted by Chandler). The
observed oscillations of the pole are beating. The pole
motion trajectory on the ground is a spiral folding and
unfolding with a period close to 6 yr.

The analysis and forecast of the pole trajectory are
of considerable interest in scientific and application
aspects. The development of a precision theoretical
model of the rotation of the deformable Earth, the
determination of its parameters on the basis of IERS
data, and a reliable forecast of pole motion are very
important for navigational purposes over time intervals
sufficiently long for practical goals and for investiga-
tion of astronomical, geodynamical, and geophysical
problems [1–6].

The rotation of the deformable Earth and oscilla-
tions of its pole are described in a simplified mechani-
cal model of a viscoelastic body [7]. To include gravi-
tational-tidal actions, the planet can be treated as an
almost axisymmetric two-layer body consisting of the
rigid core (ball) and viscoelastic mantle. Any complica-
tion of the model of the Earth’s shape is not justified,
because the required geometric and physical character-
istics of the planet cannot be determined by statistically
processing indirect measurement data with the required
accuracy and completeness. The obvious, logically jus-
tified point of view is that the complexity of the model
must strictly correspond to the problem under consider-
ation and measurement accuracy. Comparison with
measurements and further analysis show that the
accepted simplifications are justified.

At the initial stage of investigation of the pole
motion and its evolution under the action of perturbing
moments, a spatial variant of the two-body problem is
considered [7, 8]. The center of mass of the deformable
planet (Earth) and pointlike satellite (Moon) rotate
about the common center of mass (barycenter), which
moves along an elliptic orbit around the Sun.
 2005 Pleiades Publishing, Inc.
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On the basis of asymptotic analysis of equations of
motion in the osculating variables action–angle, the sta-
ble characteristics of the rotational–vibrational motion
of the deformable Earth with respect to the center of
mass are determined in the quasi-static approximation.
The refined periods (frequencies) of the axial rotation
and Chandler oscillation are found and compared with
the spectral-analysis data [1, 2]. The amplitudes of the
natural oscillations of the angular-velocity vector in the
Earth-fixed coordinate system are estimated and com-
pared with observable values.

A first-approximation mathematical Chandler
model and annual oscillations of the pole under the
action of gravitational-tidal forces from the Sun and
Moon is developed on the basis of Euler’s kinematic
equations and Euler–Liouville dynamic equations. The
parameters of motion are numerically determined by
the least squares method with the use of the daily mea-
surement data, and the results are given in conclusion.
Moreover, the trajectories of the Earth’s pole are plot-
ted, and a forecast of this motion is given in comparison
with the IERS astronomical data [1].

2. To develop a mathematical model of the perturbed
rotation of the deformable Earth with respect to the cen-
ter of mass, we represent equations in the form of the
classical Euler–Liouville dynamic equations with the
variable tensor of inertia J [2–6, 8, 9]

(1)

Here, w is the angular velocity in the coordinate system
fixed to the Earth in 1900 (reference system [5]), which
approximately coincides with the principal central axes
of inertia J* of the “frozen” Earth including the “equa-
torial bulge” [1–7]. Additional perturbation terms,
which appear due to the differentiation of the kinetic-
moment vector of the deformable Earth, are assigned to
the perturbing force moment M with a very complex
structure. It is thought that small variations in the tensor
of inertia δJ can involve various harmonic components
associated with the effect of diurnal solar and lunar
gravitational tides and maybe other components
(annual, semiannual, monthly, semidiurnal, etc. [1–5]).
Gravitational-tidal actions with an annual period and a
period close to the Chandler period (see below) are
taken as the basic factors of perturbing external force
moments M inducing nutations. We first discuss a sim-
ple mechanism of generation and support of annual
nutations. Euler kinematic equations specifying the ori-
entation of the Earth-fixed axes with respect to the

Jẇ w+ Jw× M, w p q r, ,( )T ,= =

J J* δJ , J*+ const,= =

J* diag A* B* C*, ,( ),=

δJ δJ t( ), δJ  ! J* .=
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orbital coordinate system have the form [8, 9]

(2)

Here, ν(t) is the true anomaly, e is the orbit eccentricity,
and ω* is the constant determined by the gravitational
and focal parameters. When system of equations (1)
and (2) is studied for the case corresponding to the
motion of the pole, those terms in Eqs. (2) that are pro-
portional to ω0 are much larger than p and q (by a factor

of about 300), and they are determining for  and .
This important property was not mentioned in the pub-
lished works, and the above terms were disregarded
without appropriate justification (orbital and rotational
motions are separated) [1–6].

3. Let us consider the annual component of the
oscillations of the Earth’s pole. The components of the
gravitational-force moment from the Sun have the

structure  ~ sinθcosθ [9]. Analysis of expressions

 shows that there are annual perturbation compo-
nents that are associated with the terms containing
products of the direction cosines. In the first approxi-
mation (for p = q = 0), they are calculated by integrating
Eqs. (2)

(3)

The second and higher harmonics of ν provide val-
ues that are equal to 0.001–0.01 of the main compo-
nents. For this reason, they are disregarded. The quan-
tity B*–A* is also much lower than C*–A* (by a factor
of about 160). Estimating terms of Eqs. (1) for p and q
with allowance for Eqs. (3) after averaging over the fast

θ̇ p ϕ q ϕ ω0 ν( ) ψ,sin–sin–cos=

ν̇ ω0 ν( ) ω* 1 e νcos+( )2,= =

ψ̇ p ϕ q ϕcos+sin
θsin

------------------------------------- ω0 ν( ) θ ψ,coscot–=

e 0.0167,=

ϕ̇ r p ϕsin q ϕcos+( ) θcot ω0 ν( ) ψcos
θsin

-------------.+–=

θ̇ ϕ̇

Mp q,
S

Mp q,
S

r r0, ϕ rt ϕ0, ν ω*t ν0,+≈+≈=

θ ν( )cos a θ0 ψ0,( ) ν ,cos=

θ 0( ) = θ0 = 66°33 ′ , 0.4 a 1, 0 ψ0 2π,≤ ≤≤ ≤

θ θsincos b θ0 ψ0,( ) ν d 3νcos …,+ +cos=

0.4 b
4

3π
------, d  ! 1.≤ ≤



108 AKULENKO et al.
phase ϕ, we arrive at the simplified model

(4)

Here, κp and κq are the average values of  and

, which can be slow-varying functions. The quan-

tities  and  are obtained by ϕ-averaging the coef-
ficients of cosν in the components of the Sun gravita-
tional-force moment.

Moon gravitational-force moments with a monthly
period of 27.55 days are disregarded because their
effect on nutations is relatively small due to significant
difference in frequencies. These effects become impor-
tant only for detailed analysis of the extrema of the pole
deflection in each component. The effect of monthly
perturbations is most pronounced in beating (minimum
oscillation amplitudes).

The right-hand sides of Eq. (4) explicitly involve an
annual-period harmonic action that explains the mech-
anism of nutations detected by the IERS observations.
The sensitivity of the κp, q coefficients is five orders of

magnitude higher than the sensitivity of . This cir-
cumstance is a reason for the geophysical seasonal
treatment of the annual component of oscillations.
However, the explicit regular mechanism of an annual
(force–moment) action with an estimated required
amplitude of Mh ~ 1020 kg m2 s–2 caused by internal
geophysical factors (atmospheric actions, oceanic
flows, seasonal phenomena on the ground, etc.) seems
to be invalid in the mechanical aspect. The spectral
analysis of the annual component of the oscillations
(the sharpness of the peak in the spectral density of time
series), as well as analysis of the phase shifts of various
processes, shows that the geophysical interpretation is
invalid [2].

4. Let us analyze a mechanism of excitation of the
pole oscillations with a frequency close to the Chandler
frequency. The potential of the lunar gravitational-tidal
action involves components with the diurnal period and
six-year modulation [2–6] caused by the precession of
its orbit. Taking into account the annual motion of the
barycenter of the Earth–Moon system, the projections

ṗ N pq+ κqr2 3bω*
2 χ p

S ν ,cos+=

N p q, N≈ 2π
T1
------ 0.84–0.85( )ω*,≈=

q̇ Nq p– κ pr2 3bω*
2 χq

S ν ,cos––=

p 0( ) p0, q 0( ) q0.= =

δJ pr

B*
----------

δJqr

A*
----------

χ p
S χq

S

χ p q,
S

of the force moment onto the Earth-fixed axes can be

represented in the following form similar to :

(5)

Here, ϕ is the angle defined according to Eq. (3), l is the
average longitude of the Moon, and Qp, q are the com-
ponents of the tidal force moment in the barycentric
rotating coordinate system. They are expressed in terms

of unknown gravitational-tidal coefficients  and
the measurable angle ψM of the lunar–solar precession
as

(6)

Here, pM is the average longitude of the perigee of
the Moon’s orbit and ΩM is the longitude of the ascend-
ing node of the Moon. The periods of varying pM and
ΩM are equal to 8.85 and 18.61 yr, respectively. The
angular variable ψM is representable as

(7)

where τ is measured in years.
The substitution of Eqs. (3), (6), and (7) into Eq. (5)

yields the multifrequency expressions for  with
significantly different periods that are close to day,
year, and six years. This circumstance allows both the
application of the asymptotic methods of the separation
of motions and averaging of the corresponding coeffi-

cients cos(ϕ – l) and sin(ϕ – l) with respect
to the fast phase ϕ – l. 

As a result, we obtain the following equations of the
pole oscillations under the action of the force moments
given by Eqs. (5) of form (4)

(8)

The quasi-constant parameters µp, q and β are
expressed in terms of the above average coefficients

. In Eqs. (8), similar terms with a phase of ν +
(ψM + β) are rejected, and dissipative terms with a coef-
ficient of σ are introduced. This is fundamentally
important for the reported procedure of developing the
gravitational-tidal model of oscillations with the Chan-
dler period T1 . According to the spectral-analysis data

Mp q,
S

Mp
M Qp ϕ l–( )cos Qq ϕ l–( )sin–[ ] θ θ ,sincos=

Mq
M Qp ϕ l–( ) Qqcos ϕ l–( )+sin[ ] θ θ .sincos=

X p q,
M

Qp X p
M ψM, X p q,

Mcos X p q,
M ϕ l–( ),= =

Qq Xq
M ψM, ψMcos pM ΩM.+= =

ψM ωMτ ψM
0 , ωM+ 2π

8.85
----------

2π
18.61
-------------  . 

2π
6.00
----------,+= =

ψM
0 const,≈

Mp q,
M

X p q,
M X p q,

M

ṗ Nq σp+ + µp α , αcos ν ψM β+( ),–= =

q̇ Np σq+– µq α , µp q, β, const.≈cos=

X p q,
M
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and calculations, T1 is estimated as T1 = 410–440 d
(average value T1 ≈ 433 ± 2 d); i.e., the coefficient N of
the frequency of the natural nutations is equal to N .
0.89–0.83 (average value N . 0.845–0.850). The fre-
quency N of natural oscillations of system (8) is inde-
pendent of a quite small σ value. It should be taken into
account due to the resonant action of the gravitational-

force moments with a phase of α . τ + α0 and a fre-

quency of γ . 0.833. Terms rejected in Eqs. (8) have the
same amplitude and phase varying with a frequency of

 ≈ 1.17, which is far from eigenvalue N. The ampli-

tudes of steady-state oscillations with the indicated fre-
quencies are significantly different (by two orders of
magnitude).

The desired quasi-stationary solution of system (8)
has the form

(9)

where the coefficients d, ac, s, and bc, s are defined in the
standard manner. The structural properties of the model
given by Eqs. (5)–(8) are manifested approximately for
δ = N – γ and σ values much smaller than N and γ,
respectively. In this case, we obtain the expressions

(10)

The amplitude of the steady-state oscillations have
small modulation with a period of about 0.6 yr corre-
sponding to a frequency of 2γ ≈ 1.7, which is explicitly
observed on the spectral-density line [1]. In the first
approximation in δ and σ, the amplitude Ach of the
oscillations with a frequency of γ close to the Chandler
frequency is estimated as

(11)

According to Eqs. (9)–(11), the components and
amplitude of the oscillations are highly sensitive to
variations in the frequency difference δ and dissipation
factor σ. Structural property (10) of the forced oscilla-
tions is similar to that determined previously for the
model of the free oscillations with the Chandler fre-
quency, as well as for annual nutations. This property is
clearly corroborated [8, 9] by the independent statisti-
cal processing of the measurement data and solution to
the problem of the model identification, i.e., the deter-

mination of unknown coefficients  and  by the

least squares method [10]. Moreover, the amplitude

5
6
---

7
6
---

pch d 1– ac αcos as αsin+( ),=

qch d 1– bc αcos bs αsin+( ),=

ac 2N2 σµp δµq+( ), as 2N2 δµp   σ –  µ q ( ) , ≈≈  

b

 

c

 

a

 

s

 

, bs ac; d  . 4N2 δ2 σ2+( ).≈–≈

Ach pch
2 qch

2+
1
2
--- µp

2 µq
2+( )1/2 δ2 σ2+( ) 1/2–

.≈=

ac s,

d
-------- bc s,

d
--------
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changes in dependence of the composition of used mea-
surements—the length, number of points, and position
of the interval of IERS data on the time axis.

 

5. 

 

We present the results of numerical simulation of
the pole motion on the basis of linear equations with
additive entry of unknown perturbing actions—quasi-
static, annual (4), and Chandler (8). The introduced
parameters are assumed to be constant over short time
intervals (several years). However, the model must be
refined for long time intervals of about 10–20 yr or
longer: interpolation errors of the quasi-stationary
model can be partially compensated by introducing
secular terms. The developed theoretical model has
restrictions in the accuracy of the approximation of the
process and duration of the intervals, which are deter-
mined by numerical simulation using the measurement
data. The duration of the forecast and its accuracy are
significantly determined by the indicated factors.

We present the results of calculations based on a
simplified procedure of the least squares method [10].
It is applied to variables 

 

x

 

(

 

τ

 

)

 

 and 

 

y

 

(

 

τ

 

)

 

 independently in
the form of the 6D approximations

 

(12)

 The 6D vectors  ξ   and  η   must be determined. It is of
interest to analyze the efficiency of interpolation and
forecast of the pole motion in a very simple mathemat-
ical model given by Eqs. (12) with the use of the known
daily IERS data [1].

In 2001, we performed the optimum interpolation of
the 1994–2000 observation data [7]. The following
optimum parameters 

 

ξ

 

*

 

 and 

 

η

 

*

 

 of model (12) and rms
deviations 

 

σ

 

x

 

 and 

 

σ

 

y

 

 are obtained:

 

(13)

 

A biannual forecast of the pole motion (for 2001 and
2002) was given using the interpolation results. The
dashed line in Fig. 1 is the theoretical (

 

x

 

*, 

 

y

 

*

 

) curve,
which for convenience is plotted as two annual seg-
ments (2001 and 2002). The solid lines are parts of the
experimental curve corresponding to the IERS data.
Comparison of the measured trajectory of the pole
motion with the theoretical trajectory given by
Eqs. (12) and (13) shows that the developed model is
consistent with the observation data.

x τ( ) ξ f τ( ),( ), y τ( ) η f τ( ),( ),= =

ξ ξ 1 ξ2 … ξ6, , ,( )T= , η η 1 η2 … η6, , ,( )T ,=

f τ( ) = 1 τ 2πNτcos 2πNτsin 2πτcos 2πτsin, , , , ,( )T ,

N 0.845–0.850.≈

ξ* 0.039 0.0001 0.015 0.161 0.046– 0.076–, , , , ,( )T ,=

σx 0.024;=

η* = 0.334 0.0005 0.162 0.014– 0.068– 0.043, , , , ,( )T ,

σy 0.025.=
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Fig. 1. (Dashed line) Forecast of the Earth’s-pole motion for 2001 and 2002 and (solid line) the IERS data. The points mark the
beginning and end of a year.

Fig. 2. (Line) Interpolation and forecast of the components of the oscillations of the Earth’s pole for 2004 and 2005 as obtained
using (points) 1996–2003 IERS data.
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Using the operative IERS data, the Washington
Naval Observatory forecasts pole motion for 100–
150 days (IERS, EOP Product Center, http://hpi-
ers.obspm.fr/eoppc/eop/eopc04/eopc04-xy.gif). The
model and procedure accepted by IERS provide an
inaccurate and unstable forecast that requires weekly
correction.

Figure 2 shows the interpolation of the observed
process and a biannual forecast (up to the end of 2005)
of pole oscillations. This interpolation and forecast are
based on eight-year IERS data (1996–2003). The fol-
lowing optimum parameters ξ* and η* and rms devia-
tions σx and σy have been obtained:

(14)

Comparison of the components of the vectors ξ*
and η* given by Eqs. (14) shows that the approximate

ξ* (0.0314, 0.0027, –0.1347, –0.0596,=

0.0494, –0.0741)T , σx– 0.0175;=

η* (0.3315, 0.001, –0.0613, 0.1341,=

0.0679, 0.0426)T , σy– 0.0175.=
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equalities characterizing the properties of the model are
valid.
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Analytical solutions to similar problems have been
found in [1, 2] for the case of viscoplastic flows of a
Shvedov–Bingham material. In this paper, we solve the
problem, taking into consideration the elastic proper-
ties of the material under examination.

1. We assume that a deformable material initially
fills in a circular cylindrical die of radius R and length l.
The material is in equilibrium under the boundary con-
ditions

(1)

(2)

Here, σzz is the component of the stress tensor in the
cylindrical coordinates (r, θ, z), with the z axis along the
die axis; u = uz(r) is the only nonzero component of the
displacement vector; and p0(t) is the applied pressure.
The initial time of the forcing process coincides with
the start of the plastic flow at the boundary r = R. Both
the stress and strain distributions, as well as the initial
moment, are determined by the properties of the mate-
rial. The material is treated as incompressible, and its
viscosity is manifested only in the course of the plastic
flow. Following [3, 4], we describe the elastic proper-
ties of the material by the tensors in the rectangular
coordinates:

(3)

σzz r 0=
z u= r 0=

p0 t( ), σzz r 0=
z l u r 0=+=

– 0,= =

u r R= 0.=

dij
1
2
--- ui j, u j i, uk i, uk j,–+( )=

=  eij pij
1
2
---eikekj– eik pkj pikekj– eik pksesj,+–+

σij pδij–
∂W
∂dik

--------- δkj 2dkj–( ) for pij 0,≡+=

σij pδij–
∂W
∂eik

--------- δkj ekj–( ) for pij 0,≠+=
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Here, dij is the Almansi strain tensor with reversible and
irreversible components eij and pij, respectively; σij is
the stress tensor; p is the hydrostatic pressure; and
W(I1, I2) is the elastic potential. The potential W is writ-
ten in Eq. (3) for the case of pij ≡ 0. If pij ≠ 0, the elastic
potential depends on the invariants J1 and J2 of the

reversible strain tensor eij J1 = ekk – estets, J2 = estets –

eskektets + eskektetnens . We choose the invariants J1 and

J2 such that the Murnaghan formula with pij ≠ 0 in the
limit of zero plastic strains reduces to the correspond-
ing correct expression. The form of W(I1, I2) given
above is the Taylor series expansion of this formula in
the neighborhood of the free state under the condition
of antiplane motion [5]. We take the load function in the
form

(4)

as the plastic potential. Here, σi and  are the funda-
mental eigenvalues of the stress tensor and the plastic
strain rate tensor, respectively; η is the coefficient of
viscosity; and k is the yield stress. Expression (4) is a
generalization of the known Treska plastic-flow condi-
tion to viscoplastic flows. According to [3, 4], the plas-

tic strain rate tensor  is defined as a source in the
transport equation for the irreversible strains:

(5)

The skew-symmetric tensor Fij was defined in [3, 4].

W 2µI1– µI2– bI1
2 b µ–( )I1I2 θI1

3,–+ +=

I1 dkk, I2 dikdkj.= =


 1

2
---

1
4
--- 



σi ηε i
p– σ j ηε j

p–( )– 2k=

εi
p

εij
p

d pij

dt
--------- εij

p pisrsj pisεsj
p– rsi psj– εsi

p psj,––=

rij
1
2
--- v i j, v j i,–( ) Fij εst est,( ),+=

εij
1
2
--- v i j, v j i,+( ), v i

∂ui

∂t
------- v jui j, .+= =
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The material remains in elastic equilibrium until the
applied pressure reaches the value p0 = . At this

value, condition (4) with zero  is satisfied at the
boundary r = R. The equilibrium equations are solved
in the cylindrical coordinates under boundary condi-
tions (1) with regard to Eqs. (3) and (4). The parameters
evaluated for the stress–strain state under consideration
take the form

(6)

For the sake of simplicity, only the dominant nonlinear
terms are written in both Eqs. (6) and following expres-
sions.

2. The development of the plastic flow is determined
by load pressure p0(t). At any time, the plastic region is
bounded by cylindrical surfaces r1(t) ≤ r ≤ R. In the
region r ≤ r1(t), the strains remain reversible. The mov-
ing boundary r1(t) serves as an interface between the
elastic and plastic regions. Neglecting inertial forces,
we solve the equilibrium equations in the cylindrical
coordinates in region 0 ≤ r ≤ r1(t) of zero irreversible
strains. As a result, we arrive at the equations

(7)

Here, c1, c2 , and c3 are unknown functions of time and
the point stands for the derivative with respect to time.
These functions will be found from the continuity con-
dition at the boundary r = r1(t) of plastoelastic strains.

It is worth noting that, according to the first of
Eqs. (3), the elastic-strain tensor eij does not coincide
with the Almansi strain tensor even in the case of zero
irreversible strains (pij ≡ 0). The components of the
Almansi tensor satisfy the relations

(8)

The reversible strains err, ezz, and erz describe the defor-
mation field in the plastic region. At the same time, the

p0*

εi
p

u
k

2µ
------ R r2R 1––( ), p0* 2klR 1– ,= =

σrr σθθ 2kR 1– z l–( ) k2µ 1– , σrz– krR 1– ,–= = =

σzz 2kR 1– z l–( ) k2µ 1– r2R 2– 1–( ).+=

p t( ) c1 t( )z
µ b+

8µ2
------------c1

2 t( )r2– c3 t( ),+=

u
c1 t( )r2

4µ
---------------- c2 t( ), v+ v z r( )

ċ1 t( )r2

4µ
---------------- ċ2 t( ).+= = =

drr err
1
2
---erz

2–
1
2
---u r,

2 ,–= =

dzz ezz
1
2
---erz

2– 0, drz erz
1
2
---u r, ,= = = =

err
3
2
---erz

2 , ezz–
1
2
---erz

2 .= =
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stress in this region must satisfy plasticity condition (4),
which can be rewritten in the form

(9)

Therefore,

(10)

Thus, the associated plastic-flow rule  =  is valid

if λ = – (k + η )–1.

For the stress to be continuous at the boundary of
plastoelastic strains, reversible strains must be continu-
ous; therefore, the last two of Eqs. (8) must be satisfied
in the plastic region. In this case, it follows from Mur-
naghan formula (3) for pij ≠ 0 that

(11)

As follows from the kinematics of the motion under

consideration, the component  should be a function
of the only variable r. Therefore, the stress σrz depends
only on r. In this case, it follows from the equilibrium
equations

(12)

that σzz, σrr, and σθθ are linear functions of z. Solving
Eqs. (12), we find

(13)

and, with regard to Eqs. (10) and (13),

(14)

In the case under consideration, it follows from Eqs. (3)
and (5) that

Taking into account the boundary condition v |r = R = 0
and the continuity condition for displacements at the

f σrz εrz
2,( ) σrz

2 k ηε rz
p+( )2

– 0.= =

σrz k– ηε rz
p .–=

εij
p λ∂ f

∂σIj

---------

εrz
p εrz

p

σrr σθθ p1– 2 µ b+( )erz
2 ,–= =

σzz p1– 2 b µ–( )erz
2 ,–=

σrz 2µerz.=

εrz
p

σrz r, σzz z, r 1– σrz+ + 0,=

σrr r, σrz z, r 1– σrr σθθ–( )+ + 0=

σrz
1

2c4 t( )r
-----------------=

εrz
p c4 t( )

2η
-----------r–

k
η
---.–=

d prz

dt
---------- εrz

p , drz erz prz,+= =

v r, 2εrz

du r,

dt
--------- 2

ddrz

dt
---------- 2

derz

dt
--------- εrz

p+ 
  .= = = =
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plastoelastic boundary, we obtain

(15)

Joining the stress, strain, and strain rate tensors at the
boundary r = r1(t), we arrive at the solution

Finally, the functions c1(t) and c3(t) are found from con-
ditions (1):

If the pressure drop tends to a constant, the elastic
region becomes fixed and moves as a whole with a con-
stant velocity.

v
ċ4 t( )
4µ

-----------
c4 t( )
2µ

-----------– 
  r2 R2–( ) 2k

η
------ r R–( ),–=

u
c4 t( )
4µ

-----------
c5 t( )
2η

-----------– 
  r2 R2–( ) 2k

η
------ r R–( )t,–=

c5 t( ) c4 t( ) t.d∫=

c2 t( )
c1 t( )R2

4µ
------------------–

c5 t( )
2η

----------- R2 r1
2–( ) 2k

η
------ r1 R–( )t,–+=

c4 t( ) c1 t( ), r1 t( ) 2ktc5
1– t( ).–= =

c1 t( ) p0 t( )l 1– , c3 t( )– p0 t( ) 1 c2 t( )l 1–+( ).= =
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In this paper, a solution is obtained in complete for-
mulation of the problem on heat-and-mass transfer in a
flowing fluid film. Solutions are presented for both nat-
ural and excited waves. Investigations are carried out
for basic regimes of mass transfer in fluid films, and
optimum regimes corresponding to the mass-transfer
maximum are determined for excited waves.

The investigation of heat-and-mass transfer in fluid
films is an important problem of hydromechanics.
Large contact-surface area along with low specific
fluid-flow rate determine the significant role of fluid
films in studies of interphase heat-and-mass transfer.
An additional intensification in the transfer process
occurs due to wave formation. As follows from the
experimental data of [1, 2], wave regimes are capable of
enhancing mass transfer by 100 to 400%. All theoreti-
cal studies of mass-transfer processes are based on sim-
plified equations for heat-and-mass transfer and on
analysis of both a thin boundary concentration layer
and other limiting cases [3, 4]. However, these simpli-
fications result in the appearance of a singularity that
prevents a solution being obtained for many regimes
that are optimum for the mass transfer.

1. We analyze the problem associated with the
absorption of slightly soluble gas in a thin film of vis-
cous incompressible fluid flowing over a vertical wall.
The film surface is an interface between the liquid and
gas phases. For poorly soluble gases, the basic diffusion
resistance is concentrated in the liquid phase; therefore,
the diffusion process in the gas phase can be ignored.

Under the given assumptions, the diffusion is
described by the equation

Here, (u, v) are the components of the velocity vector;
Pe = Re × Sc is the Peclet number (Re and Sc are the

∂c
∂t
----- u

∂c
∂x
------ v

∂c
∂y
-----+ +

1
Pe
------ ∂2c

∂x2
-------- ∂2c

∂y2
--------+ 

  .=
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Reynolds and Schmidt numbers, respectively); c =

 is the normalized concentration, where cxy is

the concentration at the point (x, y); and c0 and ch are the
initial and surface concentrations, respectively.

The boundary conditions are

The hydrodynamics of the process is described by
the set of Kapitza–Shkadov equations averaged over
the normal to the flow having the semi-parabolic veloc-
ity profile:

The boundary conditions for these equations are

x = 0: h = 1, q = 1 + F(t);

x = L: 

where q =  is the local flow, We is the Weber num-

ber, and F(t) models disturbances at the input. The
velocity-vector components have the form

We used two types of disturbances:
(i) for stimulated oscillations,

F(t) = εcosωt,

where ε and ω are the amplitude and frequency of oscil-
lations, respectively; and

cxy c0–
ch c0–
-----------------

y h x t,( ): c 1, y 0: 
∂c
∂y
----- 0= = = = ,

x 0: c 0, x L: 
∂c
∂x
------ 0= = = = .

∂q
∂t
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6
5
--- ∂

∂x
------q2

h
-----+ Weh

∂3h

∂x3
--------

3
Re
------- h

q

h2
-----– 

  ,+=

∂h
∂t
------ ∂q

∂x
------+ 0.=
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(ii) for natural waves,

Here, the asterisk denotes the complex conjugation,
Fk(ω) = |Fk|eiθ, |Fk| = const, and θ is a random quantity
uniformly distributed within the segment [0, 2π].

The problem was solved numerically using a finite-
difference scheme of second-order accuracy. The Sher-
wood number

was calculated on the basis of the mean-logarithmic
concentration difference, where cL is the concentration
averaged over the flow rate at a distance L from the
input.

2. The mass transfer was calculated for natural
waves that developed as a result of random input noise
for stimulated waves of the first family (i.e., for those
close to sine-shaped waves), and for stimulated waves
of the second family (chains of solitary waves) [5].

The natural waves arose as a result of the develop-
ment of a random noise at the operation segment input.
The degree of consistency with experimental data
obtained was quite high (Fig. 1).

Regular two-dimensional waves were produced by
periodic oscillations of the input fluid-flow rate; Quasi-
stationary periodic waves of a given period were rap-
idly (i.e., at a distance of one wavelength) formed from
these oscillations. The Sherwood number was obtained
as a function of both the wave frequency and oscillation
amplitude. Oscillation amplitude affects the stabiliza-
tion rate of regular waves. An increase in the amplitude

F t( ) Fk ω( )e iωt– ω, Fk ω–( )d

∞–

∞

∫ Fk ω( )*.= =

ShL
Pe
L

------
cs c0–
cs cL–
---------------ln=

100

10–1

101 102

Experimental data

Re

Sh/Sc0.5

Optimum regimes

Calculation, 25 cm

Calculation, 60 cm

Fig. 1. Mass-transfer intensification by natural and excited
waves. Denotations Re, Sh, and Sc correspond to Reynolds,
Sherwood and Schmidt numbers, respectively.
decreases the length of the initial segment, hence, its
effect.

For each Reynolds number, there is a wave fre-
quency for which the maximum mass-transfer factor is
attained; this frequency for all Reynolds numbers is
related to the third family (solitary waves). The flow
regime for waves at this frequency is the optimum
regime for a given Reynolds number (see Fig. 1).

One can identify two basic mass-transfer regimes
(Fig. 2).

(a) For wave velocities exceeding the surface fluid-
flow velocity, gas dissolution is determined both by the
diffusion process and by the velocity component nor-
mal to the fluid surface. The fluid flow carries away the
dissolved substance from wave hollows (in which the
wave velocity attains its minimum) to wave crests in
which the flow rate is ultimately close to the wave
velocity. Here, the accumulation of the dissolved sub-
stance occurs. The maximum and minimum values of
the flow through the surface are attained in wave hol-
lows and wave crests, respectively. The magnitude of
the mass transfer depends on the amplitude and veloc-
ity of the waves.

(b) There are points at the interface for which the
wave velocity is lower than the surface flow velocity. In
this case, there exist points on the wave surface at
which the flow velocity on the surface equals the wave
velocity (rest points). If so, the upper layers saturated
with gas are carried away under the wave crest, which
results in displacement of the saturated solution deep in
the fluid film. Thus, the dissolved substance is not accu-
mulated at the surface, which would prevent dissolu-
tion, but is delivered deep in the flow.

On the reverse side of a wave, there exists a point at
which fluid is drawn from the wave depth to the surface.
In this case, low-concentration zones are formed at the
surface, which sharply increases the mass transfer at
these domains. In contrast to the case (a), where the
flow through the surface rapidly decreases with the rise
in the concentration boundary layer, the decrease in the
flow rate occurs much slower, until the wave crests are
saturated with the dissolved gas.

The larger the amount of saturated solution that
arrives at the domain under the wave crest, the greater
the increase in the mass transfer; i.e., the lower the
points are located at which the flow from the surface
enters deep into the film, the higher the wave ampli-
tude. In the case of displacement of the points to the
wave vertex, the given regime is transformed into
regime (a).

(c) For the regime of solitary waves, there exist in
wave crests vortex motions of the fluid, as observed in
the second regime. Here, the plane region existing
between the solitary waves additionally affects the
mass transfer. The concentration layer is mixed when
waves pass by, and the boundary layer again begins to
form in the film. However, as distinct from the forma-
DOKLADY PHYSICS      Vol. 50      No. 2      2005
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(a)

(b)

(c)

U = c

Fig. 2. Basic mass-transfer regimes.
tion of the boundary layer near the input, the gas con-
centration in the film is now nonzero.

As follows from our calculations, the mass-transfer
intensification factor elevates somewhat with a
decrease in the wave frequency and increase in the size
of the plane region between waves. However, when the
plane-region size is sufficiently high, the overall effect
of the solitary waves on the mass transfer becomes neg-
ligible. In this case, the mass transfer, on average, pro-
ceeds in nearly the same manner as in the case of a
wave-free flow. In other words, the mass-transfer inten-
sification factor tends to unity, as the wave frequency
tends to zero. Hence, a certain optimum wave fre-
quency must exist for which the mass-transfer maxi-
mum is attained, which is confirmed by our calcula-
tions.
 PHYSICS      Vol. 50      No. 2      2005
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It is well known that a large percentage of techno-
logical accidents are caused by fatigue of metallic
structures. At the same time, the allowance for fatigue
in strength calculations is often incorrect. There are a
number of causes why this is so: defects of material,
deviations from standard composition, computational
problems, etc. In this study, we deal with a new phe-
nomenon associated with the strong dependence of
fatigue damages on magnetic-field intensity—an issue
that has previously been ignored. This phenomenon is
of interest from the standpoint of metal physics, is
important in technological applications, and represents
one of the manifestations of magnetoplastic effects
(MPEs).

In recent years, MPEs in crystals have attracted
much attention (see, for example, review [1]). In
numerous studies, phenomena such as macroscopic
plastic-flow rate, creep, yield point, and microhardness
were investigated. It has been found that dislocation
paths in silicon subjected to the action of a magnetic
field with the induction of 1 T were up two times
greater than those in the absence of the magnetic field
[2]. It should be noted that this effect was observed only
in silicon crystals with oxygen impurities that may be
paramagnetic. The basic materials for investigations of
MPEs have been NaCl crystals (often used to visually
observe dislocations), semiconductor crystals, and, far
more infrequently, polycrystals of metals. In [3], it was
established that, in the case of a concentrated load, the
process of twinning is partly suppressed in bismuth
crystals subjected to the action of a magnetic field. The
authors of [3] believe that this fact testifies to a decrease
in the mobility of partial twinning dislocations in the
presence of magnetic field. In this case, the twin length
decreased by 30%, and the microhardness increased by
10%. The basic difficulty in explaining MPEs is the
weak interaction between a point defect possessing a
spin and the magnetic field. For example, in the field of
1 T, the corresponding interaction energy UH equals
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10−4 eV, i.e., it is much lower than the thermal-fluctua-
tion energy (3 × 10–2 eV). Therefore, it is assumed that
MPEs have a dynamic character and that the magnetic
field affects both dislocation motion and dislocation–
stopper interaction.

Based on the above reasoning, we supposed that the
magnetic field also affects other phenomena associated
with dislocation motion. In our opinion, metal fatigue,
of all phenomena, may be the most sensitive to the
magnetic field. Metal fatigue is a phenomenon related
to the generation and motion of dislocations under the
action of mechanical stresses. Dislocations can stop on
stoppers, i.e., on high potential barriers associated with
lattice defects. Being concentrated in a certain region,
the dislocations form clusters that can later transform
into crack nuclei along which metal fatigue failure may
occur. It is clear that, insofar as the dislocation–defect
interaction depends on magnetic field, the entire pattern
of metal fatigue may dramatically change in a magnetic
field.

It seems likely that weakening the interaction
between dislocations and a paramagnetic impurity must
result in a longer dislocation path and a larger concen-
tration of the dislocations at stopping points. As a
result, the fatigue damages under deformation must be
accumulated for a shorter time, and a failure of sample
must also occur more often. However, due to the
unknown structure of paramagnetic defects and the
complex character of dislocation–defect interaction, it
is possible to evaluate neither the magnitude of the
effect nor even its sign. Nevertheless, we may assume
that fatigue phenomena are solely responsible for the
MPE, which must be well pronounced because the dis-
location accumulation process depends on a magnetic
field.

In this study, we investigated the low-cycle fatigue
of a cylindrical wire under bending deformation in both
the presence and absence of magnetic field. We choose
the wire because its uniformity across the diameter
along the entire length of the sample was provided by
the production technology. Cyclic bending was per-
formed through an angle of 180° along a guide 7 mm in
diameter. The magnetic field was produced by two per-
manent magnets with dimensions of 60 × 32 × 17 mm3;
there was a 3-mm gap between the magnets. The mag-
 2005 Pleiades Publishing, Inc.
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Effect of the magnetic field on the number of cycles before failure of a sample

Material of sample Diameter of
sample, mm

Number of cycles before failure

with magnetic field without magnetic field

Unannealed copper 1.5 180, 180, 156, 209, 119, 211 75, 111, 118, 106, 116

2.5 22, 23, 21, 25, 22, 24 33, 24, 24, 23, 30, 39, 23

Unannealed copper in the polyvinyl
chloride insulation

2.5 123, 72, 86, 138, 100 127, 114, 90, 118, 64

Annealed copper* 2.5 35, 29, 40, 29, 28, 31, 36 44, 41, 42, 43, 34, 39

Aluminum 1.5 7, 7, 6, 8, 7, 7 6, 6, 7, 6, 7, 5

Tungsten–rhenium wire 1.5 7, 17, 4, 16, 1 15, 21, 1, 1, 7, 12

Lead** 3.0 × 1 10, 14, 12, 15, 13, 22 20, 18, 27, 27, 29, 20

E110 zirconium 3.0 23, 22, 23 56, 53, 52

Brass 2.0 78, 88, 89, 84, 96 160, 164, 147, 154

  * Annealing: heating to 700°C for 50 min, holding for 30 min followed by cooling to room temperature in a furnace for about 6 h.
** Stripe-shaped samples; the cross-section size is indicated.
netic field attaining 0.79 T was measured by a Sh1-8
magnetometer. In our experiment, we determined the
number of deformation cycles before failure for wires
made of different metals. Furthermore, we performed
experiments in the absence of the magnetic field under
similar conditions (i.e., with the same angle and bend-
ing radius). The results obtained are presented in the
table. As seen there, the effect of the magnetic field on
metal fatigue is noticeable.

For the copper wire, we obtained rather contradic-
tory results. In the first series of our experiments, the
samples failed more rapidly upon cycling without mag-
netic field, whereas in the remaining series, the situa-
tion was reversed. In addition, the results obtained are
characterized by a considerable spread. However,
despite this spread, the effect of the magnetic field is
noticeable. 

To determine the role of the adsorbed oxygen and
dislocation structure appearing over time in copper
samples, the copper wires were subjected to annealing.
After annealing, the spread in the results had slightly
decreased, but the effect also existed.

For aluminum samples, there was no significant dif-
ference between the numbers of cycles before failure in
both the presence and the absence of the magnetic field.

For the tungsten–rhenium wire, in addition to the
high spread of the results, a considerable inhomogene-
ity was observed in the samples. Therefore, the results
obtained cannot confirm or deny the expected effect.

The lead-based samples (in contrast to others, they
had been made stripe-shaped) failed much more rapidly
and with rather high reproducibility in the presence of
magnetic field.
Samples made of E110 zirconium alloy failed much
more rapidly in the magnetic field. In this case, the
number of cycles before failure is smaller by a factor of
two compared to the case in which the field is absent.
The spread of data obtained is low. However, because
the number of the samples was limited, we managed to
perform only three tests. Nevertheless, the results
obtained demonstrate that the magnetic field essentially
affected the fatigue characteristics of the given material.
For brass samples, a significant decrease in the number
of cycles before failure was observed if the samples had
been loaded in the presence of magnetic field. The
number of cycles before failure decreased by a factor of
approximately two. The spread of results obtained for
the brass samples is the lowest among all tested materi-
als (with respect to the number of cycles before failure,
the spread in the results is about 10%).

In addition to tests aimed at low-cycle fatigue, the
brass samples were tested with an Instron 4301 tensile-
testing machine. We measured the tensile diagrams in
both the presence and absence of the magnetic field. As
is seen in the figure, the curve shapes are different for
these cases, i.e., the magnetic field also affects mechan-
ical characteristics of the materials (changes attain
about 10%).

Thus, the rather strong effect of the magnetic field
on fatigue failure in series of metals is experimentally
demonstrated. It is important to note that fatigue is
much more sensitive to the magnetic field than are other
mechanical properties of the materials (see the figure).

We now formulate the conditions under which the
effect of the magnetic field on the mechanical proper-
ties of metals can be observed. First, a sample must be
in a stressed state that stimulates dislocations into
motion. This stress may be caused both by an applied
DOKLADY PHYSICS      Vol. 50      No. 2      2005
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external load and by the residual stresses that appear in
the course of preparing samples. Second, the existence
of paramagnetic impurities is necessary; however, their
amount can be very small, since the path passed by a
dislocation is rather long (hundreds and thousands of
interatomic distances). Therefore, it is sufficient to have
a background impurity concentration (see the experi-
ments with the copper wire). 

Thus, the effect observed may be of interest not only
from the standpoint of metal physics, but also from that
of technical applications. First, we note large-scale
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Stress–strain diagram for brass samples: (1) without mag-
netic field and (2) with magnetic field.
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thermonuclear facilities, in which a large number of
structural elements undergoing cyclic loads are placed
into a magnetic field with the induction exceeding 1 T.
The other line of research in which high magnetic fields
are applied is the use of large-scale detectors in high-
energy physics experiments.

The radiation hardness of materials, which is asso-
ciated with dislocation motions such as creep and
embrittlement, seems also to be dependent on the mag-
netic field. 

The results obtained indicate that it is appropriate to
perform experiments and, probably, to revise the calcu-
lations for materials and structures used in large-scale
facilities (for example, in the ITER thermonuclear reac-
tor and ATLAS detector for the accelerator under con-
struction at CERN) in which magnetic fields of 4–5 T
occupy a large volume so that similar effects can be
much stronger than those in the experiments described
above.
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In [1] various types of tornado-like flows arising
above a heated rotating disk in the quiescent-air atmo-
sphere were studied and an illustrating diagram was
also presented. In what follows, we will refer to one of
these types, namely a sole tornado-like vortex, as a
thermal tornado.

In [2], different methods for physically modeling
fire tornados were proposed. It was shown that forma-
tion of fire tornados depends neither on the method of
their production nor the nature of combustible material.
This phenomenon is determined rather by both the den-
sity of heat flow arising as a result of combustion and
the angular velocity (or frequency ω = 1.1–1.3 Hz) of
rotation of the cylinder into which the combustible sub-
stance is placed.

The goals of the present paper are to present a com-
parative study of thermal and fire tornados, to under-
stand conditions causing the appearance of fire torna-
dos, to identify their types, and to analyze their stability
as a function of both the level of combustible liquid in
the cylinder and gas-flow properties.

In this study, ethyl alcohol was used as a combusti-
ble liquid. Two methods were employed for swirling
combustible liquid and combustion products. We
implemented swirling from below by the rotation of a
substrate (cylindrical vessel) and from above by means
of a fan.

Our setup consisted of an Mi-22 electric heater, a
base, an electric-current voltage regulator, and a circu-
lar steel disk 0.4 m in diameter. The combustible liquid
was placed on a cylindrical steel substrate fixed to the
disk. In different experiments, the diameter and height
of the cylinder were (6, 7, 10, 12, or 20) × 10–2 m and
(2, 6, or 12) × 10–2 m, respectively.
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A thermocouple and a thermal-flux sensor, whose
signals had been registered by a KSP-4 recorder, were
used as measuring tools. The shaft rotation frequency
of an electric motor with the disk was specified by the
voltage regulator and varied within the limits of
0−20 Hz. In addition, as distinct from the experiment
performed in [2], in a number of cases, an immobile
steel circular plate 2 × 10–3 m thick and 0.5 m in diam-
eter was placed at heights of 0.4, 0.45, and 0.5 m above
the rotating substrate. In the experiments, the tempera-
ture of this plate remained almost invariable, which
allowed us to model the action of the inversion layer of
atmosphere temperature on a fire tornado.

According to established methods for studies of
state parameters, which had been applied in [2], we
used in the present work an AGA-780 SW infrared
imager with a registration frequency of 25 frames per
second and a heat-loss anemometer with a platinum-
wire diameter of 2 × 10–5 m and length of 6 × 10–3 m.
The height of the liquid layer in the cylinder varied
within a range of 0.02 m to 0.11 m.

We initially performed experiments in which differ-
ent levels of ethyl alcohol were poured into the metallic
cylinder heated by an electric heater. It was found that
a decrease in the level of combustible liquid made it
possible to vary the rotational velocity from 1.1 to
4.3 Hz, at which a fire tornado arose. This result is
explained by the fact that the process of diffusion com-
bustion proceeds in the cases in which oxygen is suffi-
ciently delivered from the surface of a liquid fuel. It is
well known that with an increase in rotational velocity,
the free convexity of the liquid surface in the cylindrical
vessel is more and more directed downward, therewith
parts of the liquid, which adjoin the vessel surface, are
situated higher than the quiescent-liquid level in the
basic volume. Therefore, diffusion combustion arises in
the vicinity of the substrate walls. Upon formation of a
fire tornado, combustion shifts to the central region of
the vessel, since the delivery of oxygen is provided as a
result of air suction from the environment. This suction
is explained by the fact that the pressure in the vortex
central part is lower than the pressure in the envi-
ronment.
© 2005 Pleiades Publishing, Inc.
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A photograph is shown in Fig. 1 of a free fire tor-
nado that was obtained as a result of burning 0.05 kg of
ethyl alcohol for the edge height (distance from the sur-
face of the liquid to the open upper boundary of the ves-
sel) of 0.08 m and the rotation frequency ω = 4 Hz. The
velocities of gas-flow particles in the tornado, which
had been measured by method of observing lumines-
cent-particle tracks, attained 0.2–0.25 m s–1 at a height
of 0.1 m reckoned from the substrate.

Figure 2 presents a photograph of a tornado devel-
oped in a space bounded from above. As is seen, the fire
tornado takes the mushroom-like shape. 

Variations in the geometric size of the fire tornado
in a space bounded from above at a height of 0.5 m
are shown in the table. Here hi (i = 1, 2, 3) are heights
of fire-tornado cross sections, di are their diameters,

Fig. 1. Fire tornado in free space (swirling from below).
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Fig. 3. Combustion of ethyl alcohol without swirling. Here,
as in Fig. 4, (1) h = 10–1 m and (2) 1.5 × 10–2 m.
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and σih and σid are the corresponding standard devia-
tions.

In Figs. 3 and 4, plots are shown illustrating varia-
tions of gas temperature at the flame axis for ω = 0 and
in the case of gas swirling from below, respectively.
Comparing these plots, we may conclude that swirling
from below results in elevating the temperature, which
can be explained by a rise of the diffusion combustion
rate as a result of an increase in the oxygen inflow rate.

It is of interest to clarify causes for the appearance
and existence of fire tornados. In [3], all examples of

hi , 10–3 m 98.53 96.28 155.75

σih , 10–3 m 9.5 11.7 30.45

di , 10–3 m 60.01 66.36 104.20

σid , 10–3 m 13.3 17.5 20.3

Fig. 2. Fire tornado in the case of the presence of an obstacle
from above at a height H = 4 × 10–1 m (swirling from
below).

T, 102 K

t, s
0–2 2 4 6 8 10 12 14 16

7

8

9

10

11

12

13

14

2

1

Fig. 4. Gas temperature inside a fire tornado in the case of
its swirling from below.
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concentrated tornados known in the literature are given.
The authors of [3] indicate that these tornados corre-
spond to “such vortex motions for which the vorticity is
concentrated in spatially localized domains, exhibiting
the localization in at least one direction.” Twelve types
of such phenomena and their diagrams are given in [3].
Among them a phenomenon described in detail in [1] is
mentioned. However, there is no information on spa-
tially localized structures such as fire tornados. These
structures can undoubtedly be related to a specific class
of concentrated columnar tornados and are reminiscent
of Rankine vortices and one-dimensional columnar tor-
nados [3]. From a physical standpoint, the phenomenon
of fire tornados are like vortex filaments caused by
ascending flows above an evaporating liquid heated
from below [4]. At the same time, a fire tornado is a
more complicated physical phenomenon that includes
(in conditions of a quasi-steady process) the following
features.

Rotation of a liquid fuel and its ignition in the vicin-
ity of cylinder walls.

Evaporation of a liquid fuel under the action of radi-
ant thermal flow from the combustion zone and forma-
tion of vortex filaments.

Air suction by the tornado from the environment to
the combustion zone, since the pressure at the tornado
axis remains lower than air pressure in the environment,
which is, in turn, a result of the convection caused by
pressure difference and diffusion.

Oxidizer inflow to the combustion zone.

Energy release in the combustion zone (the burning
of vortex filaments of the evaporated liquid) and forma-
tion of a fire tornado.

Ascending (turbulent flow) of combustion products
as a result of the buoyancy force.

Afterburning of gaseous-fuel vapors in the tornado
above the combustion zone.

Local mechanical equilibrium of forces acting on
the tornado (the centrifugal force arising by virtue of
the pressure difference between the tornado interior and
the external medium and buoyancy force) in the system
involving the substrate, the combustion zone, the con-
centrated vortex, and the environment.

Thus, the fire tornado, as distinct from the thermal
variety, is a complicated air-thermochemical phenome-
non. For its mathematical modeling, it is appropriate to
apply methods for substituting and solving conjugate
problems of the mechanics of reacting media [5].
Based on the conditions of the local mechanical
equilibrium of a tornado, as well as a rotating platform
and the experimental results obtained in [1], we have
managed to derive a semi-empirical formula for the
critical (equilibrium) platform velocity at which a fire
tornado arises:

(1)

Here ω is the platform rotation velocity; r0 and h are the
radius and height of the columnar fire tornado; T∗  is the
temperature inside the fire tornado; Te is the environ-
mental temperature; and a1 and a2 are empirical con-
stants corresponding to thermal and fire tornados,
respectively.

Expression (1) can be rewritten in the dimensionless
form

(2)

where W is the characteristic floating-up velocity and
Ro is the Rossby criterion number [1].

In accordance with [1], formula (2) represents the
condition for the appearance of thermal tornados. This
expression corresponds to the condition of local equi-
librium and is, at the same time, the necessary condition
of fire-tornado formation.

Analyzing both these formulas and the experimental
data presented in [1], we arrive at the conclusion that
the rotation velocity of a tornado decreases as its radius
increases and rises as its height increases.
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Surface-active substances (SAS) and triblock copol-
ymers are objects composed of structurally compli-
cated molecules that clearly demonstrate the orienta-
tion interaction between themselves and an ambient
solution. This leads to the appearance of both regular and
irregular structures, such as molecular complexes and
associations: micelles, vesicles, liquid crystals, etc. [1].
The properties of these systems near stability points are
determined by the finite sizes of arising structures. In
the vicinity of phase-transition points, the universal
properties of these objects are violated and features
characteristic of objects of each class begin to manifest
themselves.

Structural-association processes are collective and
are characterized by rather long mean lifetimes and
mean reconstruction times of corresponding structures.
The use of low-frequency precision acoustical technol-
ogy makes it possible to investigate self-organization
processes in solutions.

In this paper, we describe results of studies on the
ability of triblock copolymers to form premicellar asso-
ciations in a water solution. The investigations were
performed by a low-frequency acoustical method over
a wide range of temperatures and concentrations. An
advantage of using triblock copolymers is that it pro-
vides the possibility of approaching the critical point of
1028-3358/05/5002- $26.00 ©0069
micelle production over temperature (CMT) and con-
centration (CMC). In order to investigate sound attenu-
ation at low frequencies, a precision ultrasonic resona-
tor was developed intended to register the relaxation in
weakly absorbing copolymer solutions at low frequen-
cies. Water taken at a temperature of 25°C was used as
a reference liquid. The ultrasonic resonator allowed us
to investigate the sound attenuation in weakly absorb-
ing liquids, in which it was previously impossible,
employing known methods, to measure this pheno-
menon.

There is but poor information in the literature on
processes that occur in the cases where SAS concentra-
tions are lower than the CMC [2–4]. This information
is limited to the possibility of description, e.g., of the
relaxation-frequency increase as a result of several pro-
cesses that can occur under given conditions. Unfortu-
nately, the absence of an acceptable theory of premicel-
lar-association processes prevented calculation of the
kinetic parameters and thermodynamic characteristics
of the suggested process. It was assumed that a weak
decrease in relaxation frequency within the region of
strong dilutions was contingent upon a decrease in
monomer concentrations.

The triblock copolymer PLURONIC PE6400
(BASF) with the macroscopic-chain structure
H(CH2–CH2–O)13–(CH2–CH(CH3)–O)30–(CH2–CH2–O)13H
(without additional purification) was chosen for our
experiments aimed at the observation of acoustical
relaxation at concentrations and temperatures of a
copolymer aqueous solution lower and higher than
CMC and CMT. Prior to its use, water was subjected to
thorough purifying and degassing. For any studied con-
centration, the interface between the micellar and free
states of the copolymer monomer was determined in

Thermal-Physics Department, Academy of Sciences, 
Republic of Uzbekistan, Katartal 28, Tashkent, 
700135 Uzbekistan
e-mail: mirzaev@web.de
accordance with the equation

t(CMT) = 31.92(°C) – 8.22(°C) ,

where x (wt %) is the amount of a copolymer [5]. Aque-
ous solutions of the copolymer were studied at concen-
trations of 0.55, 1, 3, 4, 4.3, 4.5, 5.5, 6, 6.2, 6.5, 7, 8, 9,
and 10 wt % within a frequency range of 200 kHz to
500 MHz.

In the figure, experimental results are presented for

the dependence  as a function of the frequency for

two copolymer concentrations at a temperature of 25°C.

xlog

α
f 2
-----
 2005 Pleiades Publishing, Inc.
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At temperatures lower than CMT and CMC, the sound
attenuation divided by the frequency squared has a very
small value. However, it is always larger than for pure
water at the same temperatures and it increases with the
copolymer concentration x. This behavior of the sound
attenuation indicates the existence of processes weakly
contributing to the sound attenuation in cases when
micellar aggregations are absent in the system. Similar
behavior was observed for ionogenic SASs that have
short alkyl chains, and such behavior was attributed to
the formation of premicellar aggregations [2]. The
other process that can contribute to the sound attenua-
tion spectrum is the monomolecular relaxation associ-

3

1072
108106

4

5

6

7

8

9
α/f2, 10–14  s2 m–1

1

2

Frequency, Hz

Sound attenuation (related to the frequency squared) as a
function of frequency for copolymer solutions at concentra-
tions of (1) 4 and (2) 6 wt %.

Parameters τ, A, and B as functions of the concentration in
the low-frequency relaxation region

Copolymer 
concentration, 

wt %

τ,
ns

A,
10–15 s2 m–1

B,
10–15 s2 m–1

2 226 5.2 31

3 237 7.7 37

4 255 9.3 45

4.5 277 10 47

5.5 400 14.3 65

6 253 14 68

6.2 218 16 74

7 189 31 115

8 172 42 128

9 159 50 157

10 153 64 180
ated with variation in the copolymer-chain conforma-
tion, which was observed in the copolymer solution [2].
The measurements performed for the concentrations of
0.55–1 wt % at 22°C have revealed the existence of a
single process only. As is seen from the figure, at a tem-
perature of 25°C, there exist two characteristic bends
corresponding to two different relaxation processes in
the 4-wt % solution. In order to determine the relax-
ation time, the data obtained were treated with the help
of the equation involving two relaxation times:

(1)

Here, Ai is the relaxation-process amplitude; τi is the
relaxation time; and B is the amplitude of the sound
background attenuation, which was obtained for the
frequency of 500 MHz. For the solution with the copol-
ymer content of 6 wt %, an equation with three relax-
ation times was used.

Two relaxation regions are manifested in the acous-
tical spectra obtained: the first one extends up to
1.5 MHz and the second up to 40 MHz. The values of
Ai and τi were obtained by the best-fit method using
experimental data and the calculation results according
to Eq. (1) (see table). Parameters of the experimental
spectra were found on the basis of a computer version
of a nonlinear algorithm. The first relaxation region has
a very low amplitude A1 and linearly increases with the
copolymer concentration. The second region has an
explicitly pronounced characteristic bend, and the
relaxation time for this process lies within the same fre-
quency range for all concentrations studied. As is seen
from the figure, the relaxation time of the process is
independent of the concentration. A similar concentra-
tion–temperature behavior is characteristic of all mono-
molecular relaxation processes [6, 7]. Therefore, we
have attributed this behavior to the conformational
equilibria of a triblock-copolymer macromolecule.

In the concentration dependence of relaxation time,
two regions are manifested. The first one corresponds
to concentrations lower than CMC and is characterized
by a slow monotonic increase in the relaxation time.
The second region is located beyond the CMC and is
observed in the case of a further increase in copolymer
concentration in the solution, which is accompanied by
a monotonic decrease in the relaxation time.

We now consider the first region in the concentra-
tion dependence of the acoustical relaxation time τ1,
which is apparently associated with the reaction of for-
mation and decomposition of dimers and with the cre-
ation from the dimers of aggregations composed of
copolymer molecules whose number exceeds two:

(2)

(3)

α
f 2
-----

Ai

1 2πτi f( )2+
------------------------------ B+ .

i 1=

n

∑=

N1 N1+ N2,=

N1 N2+ N3.=
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Here, N1 and N2 are the numbers of copolymer mono-
mers and dimers, respectively, and N3 is the number of
aggregations in which the number of copolymer mole-
cules exceeds two. For solving reaction equation (3),
we need to know the equilibrium distribution of con-
centrations among different aggregations. Solution of
this as-yet unsolved problem will enable a complete
description of concentration dependences for the
acoustical parameters of premicellar solutions. In [1],
an equation was derived that makes it possible to con-
nect the inverse-reaction rate constant and the relax-

ation time of premicellar aggregations:  ~ 0.5 . In

accordance with this expression, the constant of the
inverse reaction is  ~ 1 × 109 s–1.

We may conclude that the application of new preci-
sion low-frequency acoustical methods has allowed us
to discover relaxation processes with a very small atten-
uation in the regions of lower concentrations compared
to the CMC and CMT in copolymer water solutions and
to determine important kinetic parameters of relaxation
processes. Our investigations have shown that in copol-
ymer solutions, the relaxation time of structure-forma-
tion processes anomalously increases as the CMC and
CMT are approached. It has been found that in contrast
to segregating systems [1], times of relaxation pro-
cesses in micelle-forming triblock copolymers have
finite durations in the vicinity of the critical concentra-
tion of micelle formation.

1
τ1
---- k

k

DOKLADY PHYSICS      Vol. 50      No. 2      2005
ACKNOWLEDGMENTS

The study was supported by the Science-and-Tech-
nology Center Foundation of Republic Uzbekistan and
by the NATO grant no. RIG 981193.

REFERENCES

1. P. K. Khabibullaev and A. A. Saidov, Phase Separation
in Soft Matter Physics. Micellar Solutions, Microemul-
sions, Critical Phenomena (Springer, Heidelberg, 2003),
Part B, p. 180.

2. P. K. Khabibullaev, E. V. Chertkov, and A. A. Saidov,
Colloids Surf. A, Phys. Eng. Asp. 168, 185 (2000).

3. A. W. Adar Douglas, V. C. Reinsborough, H. M. Tren-
holm, et al., Can. J. Chem. 56, 1162 (1976).

4. Z. S. Bakaeva, M. Zaitdinov, S. Z. Mirzaev, et al., in
10th APAM Topical Seminar and 3rd Conference “Mate-
rials of Siberia. Nanoscience and Technology” (Novosi-
birsk, 2003), p. 81.

5. P. Alexandris and R. A. Hatton, Colloids Surface 96, 1
(1995).

6. S. Z. Mirzaev, P. K. Khabibullaev, A. A. Saidov, et al.,
J. Chem. Phys. 112, 1057 (2000).

7. S. Z. Mirzaev, P. K. Khabibullaev, V. S. Kononenko,
et al., J. Acoust. Soc. Am. 107, 585 (1998).

Translated by G. Merzon



  

Doklady Physics, Vol. 50, No. 2, 2005, pp. 72–76. Translated from Doklady Akademii Nauk, Vol. 400, No. 4, 2005, pp. 470–474.
Original Russian Text Copyright © 2005 by Shlensky.

                                                                                                                       

TECHNICAL 
PHYSICS

    
Conditions of the Attainable Superheating of the Surface
of Nonvolatile Condensed Systems upon Intense Heating

O. F. Shlensky
Presented by Academician V.V. Osiko June 21, 2004

Received September 9, 2004
The necessary conditions for the attainable super-
heating of volatile substances and their mixtures above
the temperature of the liquid–vapor equilibrium phase
transition are quite well studied [1, 2]. In particular, the
heating intensities necessary for approaching the upper
phase-state boundary are determined by detection of
the pressure dependence of the attainable superheating
temperatures Tl(p). In thermal physics, the phase-state
boundary is determined by the condition of thermody-
namic stability, i.e., the zero second variation of one of
the thermodynamic potentials, e.g., δ2G = 0, where G is
the free Gibbs energy. At the stability boundary, the

derivatives  and  vanish, which makes it possi-

ble to calculate the parameter of the phase-state bound-
ary from the equation of state. The conditions for the
attainable superheating of nonvolatile condensed sys-
tems are determined primarily in experiments [2–4]. At
the same time, the development of mathematical mod-
els of the thermal destruction of condensed systems,
e.g., for calculations of thermal protective covering,
optimization of combustion regimes of solid fuels and
the cracking processes of heavy mineral oils, etc.
require the analytical representation of the above con-
ditions.

The aim of this work is to determine the heat con-
sumption and heating rates necessary for reaching the
phase-state boundary under a given pressure in the
steady regime of the thermal destruction of the heated
surface of nonvolatile condensed systems and to exper-
imentally test the resulting relations.

We consider steady processes of propagating a ther-
mal wave with a velocity of uí , which are described by
the heat conduction equation

λ  + uícρ  + F(T) = 0, (1)

∂p
∂v
------- ∂T

∂v
-------

d2T

dx2
--------- dT

dx
------

Mendeleev University of Chemical Technology, 
Miusskaya pl. 9, Moscow, 125047 Russia
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where F(T) = ρQw is the heat-absorption (heat-libe-
ration) function and Q is the heat of the reaction, and
the other notations are standard. The boundary condi-

tions have the form –λ  = q for x = 0 and í = í0

for x = ∞. Integration of Eq. (1) shows that the maxi-
mum superheating arises on the surface of a condensed
system (for ı = 0) [5]

ís = T0 + + , (2)

where f is the factor of a decrease in the heat of reaction
due to the incompleteness of the reaction. According
to [6, 7], taking the front propagation velocity as u =

, we obtain

ís = T0 + fQ +  (3)

Here, ‡ = ; and w =  = –kCn, where n is the reac-

tion order, is the average reaction rate in the reacting
layer. The rate constant k with allowance for an
increase in the transformation rate near the phase-state
boundary is determined by the generalized Arrhenius
equation [7, 8]

k = Çä(T)exp , (4)

where Ç is the pre-exponential factor; Ö is the activa-
tion energy; and 

ä = exp Âı , 

where m is a parameter, represents a change in the con-
version mechanism near the phase-state boundary. For
temperatures T < Tl, K ≈ 1 and Eq. (4) is an ordinary
two-parameter Arrhenius equation. Substituting w into
Eq. (3), we express the heat flow necessary for estab-

dT
dx
------

fQu
cuT

---------- q
ucρ
---------

aw
f

------- 
 

1/2

q
λcρw

f
-------------- 

 
1/2–

.

λ
cρ
------ dC

dt
-------

E
RT s
---------– 

 

T
T1
----- 

  m E
RT
-------– 

 
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Fig. 1. Temperature dependence of the heat of the thermal-destruction reaction that is necessary for reaching the phase-state bound-

ary for q = const, q = , where q0 = 4.186 J/(m2 s) for (solid lines) a nitrocellulose-based compound and (dashed lines) ammonium

perchlorate.

q
q0
-----

Q, cal/g
lishing a given temperature on the surface of the con-
densed system for Q < 0 in the form

q = BKexp  + (Ts – T0) . (5)

For condensed systems destroyed with the heat
release (Q > 0), the heat of the reaction Q necessary for
establishing a given temperature on the surface for q =
const is obtained from Eq. (3) as

Q = (Ts – T0) – BKexp . (6)

Working from a number of assumptions, such as the
existence of constant parameters, Eqs. (5) and (6) make
it possible to determine the q and Q values at which the
surface temperature ís asymptotically tends to the
attainable superheating temperature. To this end, ís ≈
Tl – ∆T, where ∆T is the given calculation accuracy,
should be assumed in these equations.

Let us compare calculations by the above formulas

with experimental data. For the parameters  =

21500 K, B = 1013.32 s–1, ρ = 1.2 g/cm3, and c = 1.9 J/g,
calculations based on data from [9] show that the sur-
face temperature of polymethyl methacrylate is equal to
498°C for a heat flow of q = 70 cal/(m2 s). This result is
consistent with experimental data from [9], where it
was found by the linear pyrolysis method that the sur-
face temperature of the polymethyl methacrylate sam-
ples is limited by a maximum value of ís ≈ 500°ë, with
an increase in the supplied heat flow. Thus, the temper-
ature of the surfaces of samples slightly differs from the
attainable superheating temperature of polymethyl

λcρ
f

--------- E
RT s
---------– 

  1/2 fQu
cuT

----------

c
f
--- cq

f
------ λcρ

f
--------- E

RT s
---------– 

  1/2–

E
R
---
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methacrylate that is determined by independent meth-
ods (515–520°C), which corroborates the calculation
results.

Function (6) is analyzed by the graphical method.
Figure 1 shows the dependences Q(T) for materials with

the parameters  = 17500 K, B = 9 × 1013 s–1, ρ =

1.6 g/cm3, λ = 5.6 × 104 cal/cm, and c = 0.35 cal/(g K)
taken from [10, 11] for nitrocellulose-based H powder

and  = 15000 K, B = 6.3 × 106 s–1, ρ = 1.94 g/cm3, c =

0.3 cal/(g K), f = 0.64, and ∆T = 5°C taken from [7] for
ammonium perchlorate. As follows from drawing, the
heat of the reaction Q = 270 cal/g is sufficient with a
small reserve for approaching the surface temperature
ís to the attainable superheating temperature of the
nitrocellulose-based compound íl = 300°C. Such a
result corresponds to the data presented in [10], where
it was equal to 280–290°C.

According to the Q(T) plots for ammonium perchlo-
rate (Fig. 1, right part), the reaction heat Q ≈ 80–
100 cal/g is insufficient for achieving the phase-state
boundary (íl = 495°C) at atmospheric pressure. The
surface temperature can approach the phase-state
boundary upon an increase in the reaction heat by 100–
120 cal/g, a supply of an additional heat flow q of about
10 cal/(cm2 s), or an increase in the initial temperature í0.
This result satisfactorily agrees with experimental data.
As was noted in [13], “according to experiment, ammo-
nium perchlorate can spontaneously burn ( = 1 atm)
upon the supply of an additional heat of ∆Q ≈ 100 cal/g
in the form of radiation energy, preheating, or small
addition of fuel.” In this case, the surface temperature is
close to 500°C. This temperature is close to the attain-
able superheating of ammonium perchlorate, which is
corroborated by the data from [14], where the tempera-

E
R
---

E
R
---



74 SHLENSKY
ture ís of ammonium perchlorate samples reaches no
more than 500°C as Q and velocity u increases by a fac-
tor of 7.

In addition to a rather large heat inflow to the region
of the destruction of the condensed system, high heat-
ing rates are necessary for approaching the phase-state
boundary. Let the substance concentration to the time
of reaching temperature T be the fraction z of the initial
concentration ë0 of the initial substance. Integrating the
kinetic equation, we obtain

and

for n = 1 and 0, respectively. The integrals of the form

dT with the Arrhenius dependence k(T) are not

expressed in terms of elementary functions. Using the
method for approximately calculating such an integral
[8] and substituting dependences k(T) from Eqs. (4), we

express the heating rate bcal =  that ensures the

superheating of the condensed system above the begin-
ning of transformation to a temperature of íl as

 (7)

Therefore, for n = 0,

(8)

We then calculate the heating rates for the con-
densed system that are necessary for reaching the
phase-state boundary. The calculation by Eq. (12)
shows that, to ensure the attainable superheating of the
nitrocellulose-based compound, the heating rate must
be no less than 1687 K/s. At the same time, actual rates
of an increase in temperature upon combustion are
much higher (about 105 K/s) and the conditions of
attainable superheating are satisfied. For the attainable
superheating of ammonium perchlorate, a heating rate
of 2500 K/s is sufficient. At the same time, the actual
heating rate upon the combustion of ammonium per-
chlorate is much higher (the average heating rate

 in the destruction front upon the combustion of
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av
ammonium perchlorate is determined by a ratio of ,

where l is the front thickness, and is equal to about
105 K/s [11]), which ensures the combustion of ammo-
nium perchlorate with reserve at a temperature close to
attainable superheating. Under these conditions, Eq. (4)
should be used for more accurate calculations of ther-
mal processes.

To experimentally determine the conditions for the
attainable superheating of nonvolatile substances, the
pulse method is used to heat samples deposited as a thin
layer on a filament heater [13–15] through which an
electric current is transmitted. The heater simulta-
neously serves as a temperature sensor. Figure 2 shows
the layout of the operation cell of the setup. The char-
acteristic time of heating the 1-µm-thick layer depos-
ited on the filament is equal to about 10–6 s, for which
temperature over the entire thickness of the substance
layer and filament is equalized with an accuracy of
2−3% [4]. The transparent body of the setup makes it
possible to perform video filming or shooting of the
processes of thermolysis of samples at normal and
higher pressures. The accuracy of measurements of the
attainable superheating temperature by the filament
method increases upon measurement of the temperature
difference between a sample and a reference substance
deposited on the second section of the filament heater
(the method of differential thermal analysis) [14].

Tests by the filament method enable a determination
of the minimum heating rate necessary for reaching the
vicinity of the phase-state boundary. To this end, exper-
iments were carried out at various temperature increas-
ing rates. In each experiment, the temperatures of the
beginning and completion of the gasification process
are recorded. At high heating rates, the difference
between these temperatures was nearly absent. Figure 2
shows the filming pattern in the gasification stage of
phenol formaldehyde resin. The time at which a cloud
of condensed products from the thermal destruction of
phenol formaldehyde resin is separated from the heater
is clearly seen in this figure. These products then rise
due to convection. Experiments with various heating
rates showed that an increase in the heating rate of phe-
nol formaldehyde resin samples above b = 3700 K/s
does not shift the destruction process to higher temper-
atures, which indicates that the phase-state boundary is
reached and corroborates the correctness of the calcula-
tion for the required heating rate. According to experi-
ments, the maximum attainable superheating tempera-
ture at the gasification stage for phenol formaldehyde
resin is equal to 750°C. The periodic weighting of the
filament with a sample deposited on it at individual
stages of heating enables one to analyze the kinetics of
a decrease in the sample mass upon heating. Analysis of
phenol formaldehyde resin samples before and after
heating to the maximum temperature showed a
decrease in the relative mass of the burned residual
from 0.5 to 0.25 when the heating rate increases from 3
to 103 K/s, which indicates a change in the reaction

l
u
---
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Fig. 2. Filming frames (a–f) of the process of the thermal destruction and gasification of phenol formaldehyde resin in a nitrogen
medium (negative images). The arrow shows the time direction. The inset shows the layout of the operation cell (altitude chamber):
(1) transparent body, (2) and (3) filaments for the thermal and differential thermal analysis, (4) contact bars, (5) seal assembly, and
(6) connections for supplying compressed air and evacuation.
mechanism at high temperatures near the phase-state
boundary.

Figure 3 shows the attainable superheating temper-
atures experimentally determined for certain sub-
DOKLADY PHYSICS      Vol. 50      No. 2      2005
stances and compounds by the method of contact ther-
mal analysis [15]. The comparison of the results with
the surface temperatures experimentally determined
upon combustion of these materials shows that the tem-
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peratures of a combustion surface are always lower than
the attainable superheating temperatures [9, 11, 12],
which corroborates the results of the above analysis.

In summary, analytical expressions have been
obtained for calculating the maximum heat flow and the
heat of the thermal destruction reaction at the steady
regime of the thermal destruction of condensed system
that are necessary for reaching the phase-state bound-
ary. Under these conditions, the temperature of the sur-
faces of condensed system samples subjected to intense
heating approaches the attainable superheating temper-
ature. The calculations satisfactorily agree with the
published and newly obtained experimental data. 

The minimum heating rates necessary for establish-
ing the attainable superheating of polymethyl meth-
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Fig. 3. Attainable superheating values determined by con-
tact thermal analysis for (1) low-pressure polyethylene,
(2) polymethyl methacrylate, (3) ammonium perchlorate,
(4) H powder, and (5) HMX.

1 t x

acrylate, ammonium perchlorate, and phenol formalde-
hyde resin have been determined by heating samples
from surfaces by intense heat flows. The calculations
have been corroborated by experimental data.
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The generalized parametric structural model and
parametric structural circuit of a compound electro-
magnetoelastic transducer have been constructed. The
effect of the geometric and physical parameters of the
transducer and external load on its dynamic character-
istics has been determined. The transfer functions of the
compound electromagnetoelastic transducer for an
electromechanical drive of nanometer displacements
have been obtained.

INTRODUCTION. FORMULATION 
OF THE PROBLEM

The use of piezoelectric drives of nanometer dis-
placements is a promising approach in nanotechnology,
nanobiology, microelectronics, and adaptive optics to
precision alignment and compensation of temperature
and gravitational strains, as well as to atmospheric tur-
bulence by correction of a wave front [1, 2]. The piezo-
electric transducer of such a drive operates on the basis
of the inverse piezoelectric effect; i.e., displacement is
achieved by the application of electric voltage, which is
caused by deformation of the piezoelectric transducer,
in the range of several nanometers to several microme-
ters, with an accuracy of up to several tenths of a
nanometer. A compound transducer is used to increase
the displacement range to several tens of micrometers.

The parametric structural model of a simple piezo-
electric transducer (piezoelectric plate and simple
piezoelectric drive of nanometer displacements) is con-
structed by jointly solving the wave equation [3], the
corresponding equation of the piezoelectric effect, and
the boundary conditions on two loaded working sur-
faces of the simple piezoelectric transducer. The trans-
fer functions of the simple piezoelectric transducer are
determined from a system of equations describing its
parametric structural model [4, 5].

The parametric structural model of the compound
piezoelectric transducer is similarly developed by

Moscow State Institute of Electronic Engineering
(Technical University), Zelenograd,
Moscow oblast, 103498 Russia
1028-3358/05/5002- $26.00 ©0077
jointly solving a system of equations of the equivalent
four-terminal compound piezoelectric transducer, the
corresponding equation of the piezoelectric effect, and
the boundary conditions on two loaded working sur-
faces of the piezoelectric transducer. The transfer func-
tions of the compound piezoelectric transducer are also
determined from a system of equations describing its
parametric structural model [4].

GENERALIZED PARAMETRIC
STRUCTURAL CIRCUIT 

OF THE ELECTROMAGNETOELASTIC 
TRANSDUCER

The equation of electromagnetoelasticity has the
general form [3]

(1)

where Si is the strain along the ith axis;  is the
elastic compliance for E = const, H = const, and Θ =
const; Tj is the mechanical stress along the jth axis;

 is the piezoelectric modulus; Em is the electric

field along the mth axis;  is the magnetostriction
coefficient; Hm is the magnetic field along the mth axis;

 is the thermal expansion coefficient; Θ is temper-
ature; i, j = 1, 2, …, 6; and m = 1, 2, 3. 

For example, for separate action of electric and
magnetic fields on the transducer at constant tempera-
ture, the following equations of electromagnetoelastic-
ity are obtained [3]:

S3 = d33E3 + T3

for the longitudinal piezoelectric effect,

S1 = d31E3 + T1

for the transverse piezoelectric effect,

S3 = d33H3 + T3

for the longitudinal magnetostriction,

Si sij
E H Θ, , T j dmi

H Θ, Em dmi
E Θ, Hm α i

E H, dΘ,+ + +=

sij
E H Θ, ,

dmi
H Θ,

dmi
E Θ,

α i
E H,

s33
E

s11
E

s33
H
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S1 = d31H3 + T1

for the transverse magnetostriction,
where S3 and S1 are the strains along the third and
first axes, respectively; d33 and d31 are the longitudinal
and transverse piezoelectric moduli, respectively; E3
and H3 are the electric and magnetic field strengths

along the third axis, respectively;  and  (  and

) are the elastic compliances for E = const (H =
const) along the third and first axes, respectively; and T3
and T1 are the mechanical stresses along the third and
first axes, respectively.

As an example, let us consider problems of
piezoelasticity. Jointly solving the matrix equation of
the four-terminal compound piezoelectric transducer,
the corresponding equation of the piezoelectric effect,
and the boundary conditions on two loaded working
surfaces of the piezoelectric transducer, we obtain the
corresponding parametric structural model of the com-
pound piezoelectric transducer. The matrix equation of
strains and transfer functions of the compound electro-
magnetoelastic transducer are also determined from a
system of equations describing its parametric structural
model.

s11
H

s33
E s11

E s33
H

s11
H

1

T2

T3

T1
2

3

1

T5

T6

T4

2

3

Fig. 1. Components of mechanical tension–compression
and shear stresses in a piezoceramic body.
The stress state in a piezoceramic body is shown in
Fig. 1 [5, 6]. If mechanical stress T is created in the
elastic piezoceramic body, strain S linearly depending
on T arises in that body. There are six components of
stress T: T1, T2, and T3 are tension–compression
stresses, and T4, T5, and T6 are shear stresses. Corre-
spondingly, there are six components of strain S: S1, S2,
S3, S4, S5, and S6. There is shear (Fig. 1) in planes per-
pendicular to axes 1, 2, and 3 [5].

Strain in a piezoelectric medium is generally written
using the equation of the inverse piezoelectric effect [4,
5, 7] in the form

Si = dmiEm + Tj (2)

for voltage control and

Si = gmiDm + Tj (3)

for current control. Here, i, j = 1, 2, …, 6; m = 1, 2, 3,
where 1, 2, 3 are the mutually perpendicular coordinate
axes; Si is the strain with subscript i; dmi and gmi are the
piezoelectric moduli; Em and Dm are the electric field
strength and electric displacement along the mth axis,

respectively;  and  are the elastic compliance for
E = const and D = const, respectively; and Tj is the
mechanical stress with subscript j.

In a polarized ferroelectric ceramic material and
TsTS or PZT piezoceramic material, there are five inde-
pendent components of elastic compliances for E =

const, , , , , and , and three piezoelec-
tric moduli, d31, d33, and d15 [5].

Let us consider a compound piezoelectric trans-
ducer consisting of piezoelectric plates connected elec-
trically in parallel and mechanically in series. The com-
pound piezoelectric transducer has a length of l upon
the longitudinal piezoelectric effect, and each of its
n piezoelectric plates has a height of δ and a cross sec-
tion of S0 . Electrodes are placed on the faces of piezo-
electric plates perpendicular to the third axis. 

To derive a system of equation for the equivalent
four-terminal compound piezoelectric transducer, we
consider the corresponding matrix equations. The
equivalent T-shaped four-terminal circuit of the kth
piezoelectric plate in the series equivalent circuit of the
compound piezoelectric transducer in Fig. 2 has the
ordinal number k and is composed using the equation of
oscillations and equation of forces [4–10] acting on the
faces of piezoelectric plates.

Thus, we obtain the Laplace transforms [10] of the
corresponding forces on the input and output faces of
the kth piezoelectric plate in the form of a system of

sij
E

sij
D

sij
E sij

D

s11
E s12

E s13
E s33

E s55
E
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equations for the equivalent T-shaped four-terminal cir-
cuit (Fig. 2):

(4)

where

(p) and (p) are the Laplace transforms of the
forces on the input and output faces of the kth piezo-
electric plate in the compound piezoelectric transducer,
respectively; Z1 and Z2 are the resistances of the equiv-
alent four-terminal device; Ξk(p) and Ξk + 1(p) are the
Laplace transforms of the displacements on the input
and output faces of the kth piezoelectric plate, respec-
tively; p is the Laplace operator; γ is the wave-propaga-
tion coefficient; c is the speed of sound in the piezoce-
ramic material; α is the damping coefficient; Ψ is the
generalized parameter of the electric field, i.e., electric-

field strength E or electric displacement D;  is the
elastic compliance for Ψ = const; and i, j = 1, 2, …, 6.
From these equations, we obtain the following system
for the kth piezoelectric plate:

which is equivalent to the matrix equation

(5)

Here,

Fkinp
p( ) Z1 Z2+( )Ξk p( )– Z2Ξk 1+ p( ),+=

Fkout
p( )– Z2Ξk p( )– Z1 Z2+( )Ξk 1+ p( ),+=

Z1

S0γ δγ( )tanh

sij
Ψ-------------------------------, Z2

S0γ
sij

Ψ δγ( )sinh
---------------------------,= =

γ p
c
--- α , Ψ+ E,   D { } = =

Fkinp
Fkout

sij
Ψ

Fkinp
– 1

Z1

Z2
-----+ 

  Fkout
Z1 2

Z1

Z2
-----+ 

  Ξk 1+ ,+=

Ξk
1
Z1
-----Fkout

1
Z1

Z2
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Fkinp
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where

For the compound piezoelectric transducer, the
Laplace transforms Ξk + 1(p) and (p) of the dis-
placement and force, respectively, on the output face of
the kth plate (Fig. 2) correspond to the respective
Laplace transforms of the displacement and force on
the input face of the (k

 

 

 

+ 1)th plate [4–10]. The force
 on the output face of the 

 

k

 

th plate is equal in mag-

nitude and opposite in direction to the force 

 

 

 

on
the input face of the (

 

k 

 

+ 1)th plate:

From matrix equation (5) for 

 

n

 

 plates in the com-
pound piezoelectric transducer, we obtain the matrix
equation

 

(6)

 

By mathematical induction, the elements of the
matrix 

 

||

 

M

 

||

 

n

 

 are determined as

Matrix equation (6) for the compound piezoelectric
transducer with the expression for the matrix 

 

||

 

M

 

||

 

n

 

 cor-
responds to the equivalent four-terminal compound
piezoelectric transducer. 

m11 m22 1
Z1

Z2
-----+ γδ,cosh= = =

m12 Z1 2
Z1

Z2
-----+ 

  Z0 γδ,sinh= =

m21
1
Z2
-----

γδsinh
Z0

----------------, Z0

S0γ
sij

Ψ--------.= = =

Fkout

Fkout

Fk 1inp+

Fkout
p( ) Fk 1inp+ p( ).–=

F1inp
–

Ξ1

M n Fnout

Ξn

.=

M n
nγδ( )cosh Z0 nγδ( )sinh

nγδ( )sinh
Z0

------------------------ nγδ( )cosh
.=

Z1 Z1 Z1 Z1

Ξk (p) Ξk + 1(p) Ξk + 1(p) Ξk + 2(p)
Z2 Z2Fk inp(p) Fkout(p) Fk + 1inp(p) Fk + 1out(p)

Fig. 2. Equivalent series circuit for the compound piezo-
electric transducer.
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The equations of forces acting on the faces of the
compound piezoelectric transducer have the form

T3(0, p)S0 = F1(p) + M1p2Ξ1(p) for x = 0,

T3(l, p)S0 = –F2(p) – M2p2Ξ2(p) for x = l,

where T3(0, p) and T3(l, p) are the Laplace transforms of
mechanical stresses on two faces of the compound
piezoelectric transducer, and Ξ2(p) and F2(p) are the
Laplace transforms of the displacement and force,
respectively, on the x = l face of the piezoelectric trans-
ducer.

Let us construct a mathematical model of the com-
pound piezoelectric transducer for the longitudinal
piezoelectric effect and voltage control. In this case, the
Laplace transform of the force [4] that drives the oscil-
lations of the compound piezoelectric transducer, is
obtained from equation (2) of the inverse piezoelectric
effect as

Jointly considering the system of equations for the
equivalent four-terminal compound piezoelectric trans-
ducer with voltage control, the equation of force on the
faces of the compound piezoelectric transducer, and the
equation of force stimulating oscillations gives the fol-
lowing system of equations describing the parametric
structural model of the compound piezoelectric trans-
ducer for the longitudinal piezoelectric effect:

Here,

 =  = ,

where mc is the mass of the compound piezoelectric
transducer. 

Thus, taking into consideration generalized piezo-
electric equation (1), we arrive at the following system

F p( )
d33S0E3 p( )

s33
E

---------------------------= .

Ξ1 p( ) 1

M1 p2
------------- F1 p( )–

1

χ33
E

------- d33E3 p( )---+




=

–
γ

lγ( )sinh
-------------------- lγ( )Ξ1 p( ) Ξ2 p( )–cosh[ ]





,

Ξ2 p( ) 1

M2 p2
------------- F2 p( )–

1

χ33
E

------- d33E3 p( ) ---+




=

–
γ

lγ( )sinh
-------------------- lγ( )Ξ2 p( ) Ξ1 p( )–cosh[ ]





.

1

χ33
E

-------
S0

s33
E

------
mc cE( )2

l
------------------
of equations describing the generalized parametric
structural model of the piezoelectric transducer:

(7)

Here,

where the upper lines and superscripts E, D, and H cor-
respond to voltage, current, and magnetic-field con-
trols, respectively, and

 = .

System of equations (7) corresponds to the generalized
parametric structural circuit of the piezoelectric trans-
ducer (Fig. 3).

GENERALIZED TRANSFER FUNCTIONS 
OF THE PIEZOELECTRIC TRANSDUCER

After algebraic reformulation, the generalized struc-
tural parametric model of the piezoelectric transducer
enables one to calculate the transfer functions of the
piezoelectric transducer as the ratio of the Laplace
transform in the displacement of the piezoelectric
transducer face to the Laplace transform in the corre-
sponding input electric parameter, or to the Laplace
transform of the corresponding force for zero initial
conditions. The joint solution of the above equations

Ξ1 p( ) 1

M1 p2
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1

χ ij
Ψ------ νmiΨm p( ) ---+
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

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Fig. 3. Generalized parametric structural circuit of the electromagnetoelastic transducer.
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for the Laplace transforms in the displacement of two
faces of the piezoelectric transducer gives

(8)

where the generalized transfer functions of the piezo-
electric transducer have the form

Ξ1 p( ) W11 p( )Ψm p( )=

+ W12 p( )F1 p( ) W13 p( )F2 p( ),+
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Thus, from a system of equations (8), we obtain the
generalized parametric structural circuit of the piezo-
electric transducer (Fig. 3) and the matrix equation

CONCLUSIONS

The generalized parametric structural model devel-
oped for the electromagnetoelastic transducer makes it
possible to determine its generalized parametric struc-

W12 p( )
Ξ1 p( )
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χ ij
Ψ
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tural circuit and generalized transfer functions and to
use methods of automatic-control theory for calcula-
tions of the dynamic and static electromechanical char-
acteristics of the electromagnetoelastic transducer for a
drive of nanometer displacements.
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An Approach to the Experimental Determination
of the Bending Stiffness of Nanosize Shells

E. A. Ivanova* and Academician N. F. Morozov**

Received October 15, 2004
The problem of the experimental determination of
elastic moduli of nanoscale objects is of present inter-
est. The determination of the elastic moduli of thin
macroscopic shells is usually based on experiments
with plates. It is known that, when grown using certain
techniques, nanoobjects are obtained only in the form
of shells. Therefore, it is necessary to develop a method
for determining the elastic moduli of nanoobjects on
the basis of experiments with shells. Experimental
determination of the bending stiffness of nanosize
shells presents a serious problem, because for such
widespread nanoobjects as nanotubes and fullerenes
under arbitrary deformation, the material is subjected to
both bending and tension. Therefore, all parameters
(e.g., natural frequencies) that can be measured directly
are complicated functions of both bending and tension
stiffness. In recent years, together with nanotubes and
fullerenes, nanoobjects of a more intricate configura-
tion have been obtained [1–4]. Nanosize cylindrical
helices [1, 3] are of particular interest in connection
with the possible experimental determination of bend-
ing stiffness. This is due to the fact that (1) in helical
shells under arbitrary deformation, the material is
mainly bent, so that the material tension effect can be
neglected when interpreting experimental data; and
(2) the natural oscillation shapes of helical shells are
much more easily observed than those of cylindrical
shells associated with pure bending of the material. The
latter statement is illustrated in Fig. 1, which presents
the first four helical shell oscillation shapes. The analy-
sis of helical shell dynamics [5] presented below may
be a theoretical foundation for experimental testing of
the applicability of the continuum theory to (a) the cal-
culation of mechanical characteristics of nanoobjects
and (b) the experimental determination of the bending
stiffness of nanoshells.
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BASIC EQUATIONS 
OF THIN SHELL THEORY

We present here a summary of basic equations from
the classical linear theory of shells. For the sake of
brevity, we use the apparatus of direct tensor calculus
[6, 7]. The dynamic equations have the form

(1)

where  and  are the force and momentum tensors,
respectively; ( )× is the vector invariant of a tensor; ρ is
the surface mass density; and u is the displacement vec-
tor. In the classical theory of shells, the transverse shear
strain vector is assumed to be zero. Thus, the angle-of-
rotation vector  can be expressed in terms of the dis-
placement vector as

(2)

where n is the unit normal vector to the shell surface.
The transverse force vector N ≡  · n is determined
from dynamic equations (1). The elasticity equation for
the force tensor in the tangent plane  ·  has the form

(3)

The elasticity equation for the momentum tensor 

∇ T⋅ ρu̇̇, ∇ M T×+⋅ 0,= == = =

T= M=

ϕ

ϕ n ∇ u( ) n,⋅×–=

T=

T= a
=

T a⋅ 1
2
--- M · · b( )c+ A4  · · ε.=

= = = = = = =

M=

Fig. 1. Oscillation shapes of a helical cylindrical shell.
 2005 Pleiades Publishing, Inc.
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has the form

(4)

Here  and  are the shell stiffness tensors,  is the

unit tensor in the tangent plane,  = –∇ n,  = –  × n,

and the tension–shear strain tensor  in the tangent

plane and the bending–torsion strain tensor  are cal-

culated by the formulas

(5)

HELICAL SHELL GEOMETRY

We will consider a cylindrical helical shell (Fig. 2)
of radius R with helix angle α, helix-forming band
length l, band width a, and band thickness h. Shell kine-
matics will be described below using two coordinate
systems: a cylindrical coordinate system r ≡ R, ϕ, z,
where the z axis is directed along the helix axis; and a
curvilinear coordinate system s, ζ introduced on the
shell surface as follows:

(6)

MT C4  · · κ .== = =

A4

= C4

= a
=

b= c= a
=

ε=
κ
=

ε 1
2
--- ∇ u( ) a a ∇ u( )T⋅+⋅( ),=

κ ∇ϕ( ) a
1
2
--- ∇ u( ) · · c( )b.+⋅=

= = =

= ===

z R αssin αζcos+( ), ϕ α s αζ .sin–cos= =

ζ s

Fig. 2. Helical cylindrical shell.
The dimensionless coordinates s and ζ vary within the
following limits

(7)

The unit vectors es and eζ directed along the coordinate
lines and the unit vector n determining the direction of
the outward normal to the shell surface have the form

(8)

APPROXIMATE EQUATIONS
GOVERNING THE DYNAMICS 
OF A THIN HELICAL SHELL

It is known that the tensor  of the tension–shear

stiffness of the shell in the tangent plane is proportional

to the shell thickness h, while the tensor  of the bend-

ing–torsion stiffness is proportional to h3 . Therefore, in

the case  ! 1 and  ! 1, the helical shell under con-

sideration can be treated as inextensible. Thus, we will
assume that the tension–shear strain tensor in the tan-
gent plane is equal to zero

(9)

In this case  → ∞, elasticity equation (3) becomes

meaningless, and the force tensor in the tangent plane
 ·  is determined from dynamic equations (1) with

regard to the strain compatibility equation

(10)

where ν is the Poisson’s ratio. We note that the continu-
ity equation (10) follows from the assumption that the
tension–shear strain is absent in the tangent plane.
Thus, the problem is reduced to the solution of the sys-
tem of equations (1), (2), (4), (5), (9), and (10), where

the bending–torsion stiffness tensor  has the form

(11)

Here D is the bending stiffness of the shell,  = eses –

 eζeζ, and  = eseζ + eζes .

l
2
---– Rs

l
2
---,

a
2
--- Rζ a

2
---.≤≤–≤≤

es αeϕcos= αk,sin+

eζ αeϕsin– αk, ncos+ er.= =

A4

=

C4

=

h
a
--- h

l
---

ε 0.=
=

A4

=

T= a
=

∆ tr T a⋅( )( ) 1 ν+( )∇ ∇ T a⋅( )⋅( )⋅– 0,=
= = = =

C4

=

C4 D
1 ν+

2
------------cc

1 ν–
2

------------ a2a2 a4a4+( )+ .=
= == = = = =

a2=
a4=
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SOLUTION OF THE DYNAMIC EQUATIONS
FOR A THIN HELICAL SHELL

The displacement vector is represented in the form
of the decomposition in the u = uses + uζeζ + wn basis.
The displacement w along the normal to the shell sur-
face is chosen as the main variable. Using rather simple
transformations, we reduce the equations of shell
motion to the single differential equation

(12)

where  ≡ R2∆ is the dimensionless Laplace operator.
Representing condition (9) of the absence of tension–
shear strain from the tangent plane in the coordinate
form, we obtain the following relationship between the
displacement vector components:

(13)

and arrive at the following the strain compatibility
equation in displacements:

(14)

We note that Eq. (14) is a direct consequence of
Eqs. (13).

Thus, the problem is reduced to the determination of
solutions of dynamic equations (12) that satisfy an
additional constraint imposed by strain compatibility
equation (14). In the cylindrical coordinates [see
Eqs. (6)], strain compatibility equation (14) takes the
form

(15)

The solutions of dynamic equation (12) that satisfy
strain compatibility equation (15) can obviously be rep-
resented as

(16)

Substituting expressions (16) into dynamic equation (12)
and equating the coefficients of different powers of z to
zero, we obtain the system of two differential equations

α ∂4

∂s4
-------sin

2 α ∂4

∂ζ4
--------cos

2 1
4
--- ∂4

∂s2∂ζ2
----------------–+ 

 

× D

ρR4
--------- ∆̃ 1+( )2

w ẇ̇+
2αsin

2

4
----------------∆̃ẇ̇– 0,=

∆̃

∂us

∂s
-------- αcos

2
w,

∂uζ

∂ζ
--------– αsin

2
w,–= =

∂uζ

∂s
--------

∂us

∂ζ
--------+ 2αsin w=

2α ∂2w
∂s∂ζ
------------sin α∂2w

∂s2
---------sin

2 α∂2w

∂ζ2
---------cos

2
+ + 0.=

∂2w

∂z2
--------- 0.=

w ϕ z t, ,( ) W ϕ z,( )eiωt,=

W ϕ z,( ) zW1 ϕ( ) W2 ϕ( ).+=
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in the variables W1(ϕ) and W2(ϕ). Solving this system
and returning to the variables s and ζ, we obtain

(17)

where , , , and  are arbitrary constants and
λj are the roots of the characteristic equation

(18)

Here, Ω is the dimensionless natural frequency; for its
determination, some boundary conditions should be
formulated. As follows from Eqs. (17) and (18), the
dimensionless frequency Ω is independent of the phys-
ical characteristics of the shell ρ and D if these param-
eters do not enter into the boundary conditions.

FORMULATION OF THE BOUNDARY 
CONDITIONS. DETERMINATION 

OF THE NATURAL FREQUENCIES
OF OSCILLATIONS OF A THIN HELICAL SHELL

In accordance with Eq. (17), the function W(s, ζ)
involves twelve constants, which, naturally, make it
impossible to satisfy all the boundary conditions of the
classical theory of shells. However, the formulation of
twelve homogeneous equations specifying the dis-
placements or stresses at any point of the boundary is
sufficient for a formal solution of the problem within
the framework of the simplified formulation under con-
sideration.

We will assume that the shell is fixed at corners; i.e.,
the displacement vector u(s, ζ, t) = u∗ (s, ζ)eiωt is zero at
the corner points

(19)

From the condition that the determinant of system (19)
is equal to zero, we obtain the frequency equation. As

W s ζ,( ) A j
s p js q jζ+( ) B j

s+( )[
j 1=

3

∑=

× λ j αscos αζsin–( )[ ]sin A j
c p js q jζ+( ) B j

c+( )+

× λ j αs αζsin–cos( )[ ]cos ] ,

p j α β j, q j–sin α β j,+cos= =

β j
2 2αΩ2cos

9 α λ j
4 Ω2 1–( )λ j

2 2Ω2+ +( )cos
---------------------------------------------------------------------------,=

A j
s B j

s A j
c B j

c

λ6 2λ4– 1 Ω2–( )λ2 4
3
---Ω2–+ 0, Ω ρR4

D
---------ω.==

u
*

l
2R
------- a

2R
-------, 

  0, u
*

l
2R
-------–

a
2R
-------, 

  0,= =

u
*

l
2R
------- a

2R
-------–, 

  0, u
*

l
2R
-------– a

2R
-------–, 
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can be seen from Eqs. (13) and (15)–(18), the determi-
nant of system (19) depends on the dimensionless fre-

quency Ω and three dimensionless parameters α, ,

and . Therefore, the solution of the frequency equa-

tion represents a spectrum of dimensionless natural fre-
quencies of the form

. (20)

Numerical calculations of the natural frequencies
and shapes of helical shell oscillations with the dimen-

sionless parameters α = ,  = 20π, and  =1 showed

that the approximate theory specified by Eqs. (17)–(19)
adequately describes low-frequency oscillations.

DISCUSSION OF THE RESULTS

We will consider two thin helical shells with differ-
ent physical and geometric characteristics but the same

dimensionless parameters α, , and . We will

assume that both shells are fixed at corners; i.e., bound-
ary conditions (19) apply. In this case, in accordance
with Eq. (20), the spectra of the dimensionless natural
frequencies of shells under consideration coincide with

(21)

Then, in accordance with Eq. (18), the natural fre-

quency ratio  is independent of their ordinal num-

ber n

(22)

Relation (22) may serve as a theoretical basis for the
experimental investigation of the applicability of the
continuum theory to nanoobjects and, if the answer is
affirmative, for experimental determination of the
bending stiffness of nanoshells.

EXPERIMENTAL TESTING 
OF THE APPLICABILITY OF THE CONTINUUM 

THEORY TO NANOSCALE OBJECTS

To test the applicability of the continuum theory to
nanoobjects, the following measurements can be per-
formed:

l
R
---

a
R
---

Ωn Ωn α l
R
--- a

R
---, , 

  , n 1 2 …, ,= =

π
6
--- l

R
--- a

R
---

l
R
--- a

R
---

n:    Ω n 
1

 
( ) ∀ Ω n 

2
 

( ) .=

ωn
1( )

ωn
2( )---------

ωn
1( )

ωn
2( )---------

D2ρ1R1
4

D1ρ2R2
4

------------------.=

                         
(1) several first natural frequencies of a helical
nanoshell are measured;

(2) the natural frequencies of a macroscopic helical

shell with the same dimensionless parameters α, ,

and  and the same fixation conditions are measured;

(3) the measured frequency ratios δn =  are cal-

culated.

If the continuum theory is applicable to nanoobjects,
then the equality δn = δ1 theoretically holds true for any
n. The applicability condition for the continuum theory

is really formulated as the inequality ,

which must be fulfilled for ∀ n ≤ N. The permissible
error 

 

ε

 

N

 

 can be estimated by comparing with the results
of an analogous experiment performed with two mac-
roscopic helical shells.

EXPERIMENTAL DETERMINATION
OF THE BENDING STIFFNESS OF NANOSHELLS

If the continuum theory is applicable to nanoobjects,
then formula (22) makes it possible to experimentally
determine the bending stiffness of a nanoshell. In order
to determine the bending stiffness, it is necessary:

(1) to measure the first natural frequency  of the
helical nanoshell;

(2) to measure the mass 

 

m

 

1

 

 and the geometric
dimensions 

 

l

 

1

 

, 

 

a

 

1

 

,

 

 and 

 

R

 

1

 

 of the nanoshell and to calcu-

late its surface density 

 

ρ

 

1

 

 = 

 

;

(3) to determine the characteristics 

 

, 

 

D

 

2

 

, 

 

ρ

 

2

 

, and

 

R

 

2

 

 of a compared macroscopic helical shell with the

same dimensionless parameters 

 

α

 

, 

 

, 

 

and 

 

 

 

and the

same fixation conditions as those of the nanoshell under
study;

(4) to calculate the bending stiffness of the
nanoshell 

 

D

 

1

 

 using formula (22).

We note that the proposed approach to the experi-
mental determination of bending stiffness does not
require the determination of nanoshell thickness [8, 9].
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The spallation fracture of samples of polycrystalline
aluminum and aluminum single crystals was experi-
mentally studied at various temperatures in [1]. Analy-
sis of experimental data for polycrystalline aluminum
shows that resistance to tensile fracture varies only
slightly when temperatures increase from room temper-
ature to a value of 90% of the melting temperature and
decreases abruptly to zero with a further increase in
temperature. Experiments with aluminum single crys-
tals reveal the effect of anomalously high temperatures:
a conservation of high strength was observed in a state
in which melting upon tension was expected. In this
work, the effects of temperature anomalies discovered
in [1] are analyzed for impact loading of materials. An
analytical expression for the temperature dependence
of the spallation strength of materials has been derived
on the basis of the criterion for fracture incubation
period. We introduce a new melting criterion relating
phase-transition time to melting incubation period,
which makes it possible to naturally explain the anom-
alous temperature effect upon impact loading.

TEMPERATURE DEPENDENCE
OF SPALLATION STRENGTH

The time dependence of the impulse strength of
materials can be obtained on the basis of the incubation
period criterion [2–4]. For spallation fracture, this cri-
terion has the form

, (1)

where σ(t) is the time dependence of the local stress at
the fracture point, σs is the static strength of fracture,
and τ is the fracture incubation period for a material,
which may depend on temperature.

The measurements reported in [1] were conducted
under conditions in which samples were acted upon by

σ t '( ) t ' σsτ≤d

t τ–

t

∫
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plane shock waves, which were generated in the sam-
ples under investigation by impact with an aluminum
plate. For the given ratio of the thicknesses of a hammer
and a sample, the shape of wave profiles was close to
triangular. The problem of the reflection of a triangular
compressing-stress pulse from the free end of a semi-
infinite rod was analyzed in [2]. The equations that are
derived using criterion (1) and that describe the time
dependence of strength over the entire range of loading
durations with allowance for the fracture incubation
period have the form

(2)

where P∗  is the threshold amplitude of the initial stress
pulse and ti is its duration.

In [5], an analytical expression was obtained for the
temperature dependence of the fracture incubation
period and it was shown that the incubation period can
be expressed in terms of the parameters of kinetic
strength theory [6]. We consider the temperature depen-
dence of the fracture incubation period in the form

(3)

where k = 1.3807 × 10–23 J/K is the Boltzmann constant,
T is temperature, and τ0 = 10–13 s is the period of the
valence atomic vibrations in a solid. As is known, kT is
the energy of the vibrational degree of freedom in the
equilibrium state. This energy is necessary for breaking
of an elementary bond, i.e., a bond between two atoms.
The quantity G should be treated as an elementary por-
tion of energy necessary for breaking the structural cell.

We assume that the fracture incubation period τ in
expressions (2) for the time dependence of strength
depends on temperature T according to law (3) and
apply this result to analyze experimental data obtained
in [1]. In the experiments reported in [1], the action was

P*

2σsτ T( )
ti

--------------------, ti τ T( ),≤

σs

1 τ T( )
2ti

-----------–
--------------------, ti τ T( ),≥









=

τ τ 0
G
kT
------,=
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a triangular pulse, and the pulse duration ti was the
same for all test temperatures and was equal to 0.12 µs.
Tests were carried out in a temperature range of 15 to
650°C, which is only 10°C lower than the melting
point. For each material, we select the elementary
energy of cell breaking G such that the threshold ampli-
tudes for minimum testing temperature (15°C) cor-
respond to the experiments in [1]. In this case, for-
mula (3) yields a corresponding fracture incubation
period of 0.137 and 0.75 µs for single crystals and poly-
crystals, respectively. Static strengths σs = 100 and
1000 MPa are used in the calculations for polycrystal-
line aluminum and single crystals, respectively. 

The figure shows the temperature dependences of
spallation strength calculated for aluminum single crys-
tals and polycrystalline aluminum by formulas (2) and
(3). Points are experimental data. 

More accurate quantitative comparison of calcula-
tions can be carried out as soon as experimental data are
accumulated and procedures of experiments and mea-
surements are refined.

We note that the fracture incubation period for poly-
crystalline aluminum coincides with the value obtained
in [5] for experimental data obtained in [7], where the
brittle fracture of solids in a tensile stress wave was
experimentally studied using the procedure of plane
collisions between the hammer plate and target plate.
Thus, the experiment described in [1] for polycrystal-
line aluminum at room temperature well agrees with
classical experiments made at Ioffe Physicotechnical
Institute [7] and is efficiently reproduced by incubation
period theory.

ANOMALOUS TEMPERATURE EFFECT

In [1], tensile stresses at which material melting
begins were estimated using the relation

(4)

where the derivative  represents the dependence of

melting point Tm on pressure p, α = 1.12 × 10–4 K–1 is
the volume thermal expansion coefficient, Tm0 =
933.2 K is the melting point at zero pressure, T0 is the
initial test temperature, and KT = 56.7 GPa and KS =
71.1 GPa are the isothermal and isentropic bulk elastic
moduli of the material, respectively. This is a relation
used in melting physics to determine the relations
between temperature and pressure corresponding to the
onset of melting. It corresponds to smooth (quasi-
static) action and its application implies that body melt-
ing is treated as an instantaneous process.

Tensile stresses at which material melting begins
were estimated in [1] using this relation for both mate-
rials. Experimental data for polycrystalline aluminum
lie below this estimate. At the same time, experiments

pα
dTm

dp
---------- p

KT

------– α T0 Tm0–( ) p
KS

------,–=

dTm

dp
----------
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with aluminum single crystals show that high strengths
are present at the intersection of the calculated bound-
ary of the melting region. To explain this effect, we
introduce a new criterion corresponding to melting. We
suppose that melting is not an instantaneous process
and is characterized by its incubation period τm. Let us
consider a melting criterion of the form

(5)

where Pm is the average (“equilibrium”) stress that
must be realized for the incubation period τm in order
for the melting of material to occur. It corresponds to
negative pressure determined from Eq. (4).

When inequality (5) takes the form of equality, the
material melts and the corresponding temperature is
defined as the melting point T = Tm. Solving the above
problem for triangular wave stress pulses and using ine-
quality (5) as a melting criterion, we express the
dynamic threshold amplitudes P*melt inducing melting in
terms of the duration ti, melting incubation period τm,
and temperature T as

(6)

σ s( ) s Pmτm,≤d

t τm–

t

∫
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2Pm T( )τm
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-------------------------, ti τm,<
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(Points 1 and 2) Experimental data [1] and (lines 3 and 4) cal-
culations by formula (2) for the temperature dependence of
the fracture threshold amplitude of a 0.12-µs pulse for alu-
minum single crystals and polycrystalline aluminum,
respectively. Lines 5 and 6 are tensile stresses correspond-
ing to the onset of melting as calculated by formulas (7) and
(6), respectively.
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As a specific case of the classical approach (when melt-
ing is treated as an instantaneous event), i.e., for τm = 0,
we have

(7)

The temperature dependences of dynamic threshold
amplitudes P∗ melt inducing melting are shown in the
figure as calculated by formulas (6) and (7) with τm =
0.7 µs. To determine the conditions for the onset of
melting for polycrystalline aluminum, the classical
melting criterion in the form of Eq. (7) can be used,
because, as is seen, experimental data for the strength
of polycrystals near melting temperature approxi-
mately correspond to negative pressures obtained by
this criterion and corresponding overheating is insignif-
icant. High-temperature data for the strength of single
crystals significantly exceed limiting stresses corre-
sponding to the classical melting criterion, and the
incubation period criterion (5) should be applied to
determine the melting conditions in these cases.

As is seen, values that are calculated for aluminum
single crystals using the model of melting incubation
period (6) and corresponding to threshold fracture
amplitudes are much larger than values predicted in
classical melting model (7). The melting incubation
period τm for aluminum single crystals was estimated
using their overheating with respect to an estimate
obtained using the classical criterion. This implies that
the experiment provides the temperature at which the
spallation strength of single crystals begins to abruptly
decrease due to the onset of melting. According to the
classical criterion, the difference between this tempera-
ture and melting onset temperature constitutes over-
heating for aluminum single crystals. An overheating of

P*melt T( ) Pm.=
30°C was presented in [1], and the melting incubation
period taken above corresponds to this overheating.

Thus, the model developed above attributes the
effect of a sharp decrease in strength near the melting
point to the competition between two processes—frac-
ture and melting—characterized by the corresponding
incubation periods. It is possible to estimate pressure
and temperature at which this transition occurs. This
transition is determined as the intersection point of
plots corresponding to these processes. The model of
melting incubation period proposed in this work
explains anomalously high melting points observed in
the experiment with aluminum single crystals reported
in [1].
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We consider a set of ordinary differential equations

(1)

where x ∈ Rn, X(t, x) = (X1(t, x), X2(t, x), …, Xn(t, x))T

is a vector function defined in the region Γ = R+ × G =
{(t, x): t ≥ 0, and ||x|| < ν, ν = const > 0 or ν = +∞}, ||·||
is a certain norm in Rn.

We suppose that the right-hand side of set (1) satis-
fies the Lipshitz condition over x uniformly with
respect to t, i.e., for an arbitrary compact set K ⊂ G,
there exists a number L = L(K) such that for an arbitrary
x1, x2 ∈ K and an arbitrary t ∈ R+, the inequality

(2)

holds true. Then, the family of shifts {Xτ(t, x) = X(t + τ, x),
τ ∈ R+} is precompact in a certain compact metric space
FX [1].

Definition 1 [1]. As tj  +∞, the function X*(t, x)
defined by the relationship

(3)

for arbitrary x ∈ G and t ∈ R+ is called limiting with
respect to X(t, x). The set of equations

(4)

is called limiting with respect to initial set (1).
Thus, the entire family of limiting sets (4), where

X* ∈ FX, corresponds to set (1). In this case, the posi-
tive limiting manifold ω+(x(t, t0, x0)) of the solution
x(t, t0, x0) to set (1) is quasi-invariant with respect to the
family of sets (4).

ẋ X t x,( ), X t 0,( ) 0,≡=

X t x1,( ) X t x2,( )– L x1 x2–≤

X* t x,( ) d
dt
-----   X j τ x ,( ) τ , d 

0

 

t

 ∫  
j

 
∞→

 lim=  

X

 

j

 

τ

 

x

 

,( )

 

X

 

t

 

j

 

τ

 

+

 

x,( ),=

ẋ X* t x,( )=
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We introduce a class K1 of vector functions VT =
(V1, V2, …, V
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V
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Γ → 
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k
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R

 

k

 

 is a 

 

k

 

-dimensional space
of the norm 

 

||

 

·

 

||

 

k

 

. These functions are bounded and uni-
formly continuous for each manifold 

 

R

 

 × 

 

K

 

 in such a
manner that for each arbitrary compact set 

 

K

 

 ⊂ 

 

G

 

, there
exists a number 

 

m

 

 = 

 

m

 

(

 

K

 

)

 

 > 0, and for any arbitrary

 

ε

 

 > 0, we can find a number 

 

δ
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 > 0 such that
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For each function 

 

V

 

 ∈ 

 

K

 

1

 

, the family of shifts
{

 

V

 

τ(t, x) = V(t + τ, x), τ ∈ R+} is precompact in a certain
metrized space FV of continuous functions V: Γ → Rk

with open compact topology [2]. Hence, it follows that
for an arbitrary sequence tl  +∞, we can find both
the sequence   +∞ and the function V* ∈ FV such

that the sequence of shifts {Vj(t, x) = V(  + t, x)} will
converge to V*(t, x) in the space FV , namely, the con-
vergence will be uniform over (t, x) ∈ [–β, β] × K for
each number β > 0 and for each compact manifold
K ⊂ G.

We now introduce similar classes K2 and K3 of vector
functions U: R × Rk  Rk and W: R × G × Rk  Rk

bounded and uniformly continuous over (t, u) ∈ R × K2
and (t, x, u) ∈ R × K1 × K2 for arbitrary compact mani-
folds K1 ⊂ G and K2 ⊂ Rk.

Employing the uniformly differentiable Lyapunov
vector function V ∈ K1, V ∈ C1, we consider the prob-
lem of the stability of the zero solution to set (1).

With allowance for set (1), the derivative of this vec-
tor function can be represented in the form

(5)

where the function U = U(t, u), U ∈ K2 is quasi-mono-
tonic and continuously differentiable with respect to

V t x,( ) k m, V t2 x2,( ) V t1 x1,( )– k ε<≤

tl j

tl j

V̇ t x,( ) U t V t x,( ),( ) W t x V t x,( ), ,( ),+=

U t 0,( ) 0, W t x 0, ,( ) 0,≡ ≡
 2005 Pleiades Publishing, Inc.
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u ∈ Rk,  ∈ K2 , and the function W ∈ K3,

W(t, x, u) ≤ 0 for any arbitrary (t, x, u) ∈ R × G × Rk.

It follows from representation (5) that the function
V(t, x) is the vector function of comparison, and the set

(6)

is the set of comparison [3].

If V = V(t, x) is the function satisfying Eq. (5), and
V(t0, x0) = V0 , and u = u(t, t0, V0) is the solution to
set (6), which is defined within the interval [t0, t0 + β),
β > 0, then for all t ∈ [t0, t0 + β), the solution x =
x(t, t0, x0) to set (1) obeys the inequality

From the condition U ∈ K2 , it follows that set (6) is
precompact [2], and it is possible to define a family of
limiting sets of comparison for this set:

(7)

From the conditions U = U(t, u) related to the right-
hand side of set (6), it follows that solutions u =
u(t, t0, u0) to this set are continuously differentiable
over (t0, u0) ∈ R+ × Rk. From the property of a nonde-
crease in the dependence u(t, t0, u0) as a function of u0 [3],
it follows that the matrix

is a nonnegative, normalized (i.e., Φ(t0, t0, u0) = I,
where I is the unit matrix), fundamental matrix for a lin-
ear system in variations

We assume that for an arbitrary compact set K ∈ Rk,
there exist numbers M(K) and α(K) > 0 such that the
matrix Φ for arbitrary (t, t0, u0) ∈ R+ × R+ × K satisfies
the conditions

(8)

Let x = x(t, t0, x0) be an arbitrary solution to set (1),
which is bounded by the compact set K0 ⊂ G,
x(t, t0, x0) ∈ K0 for all t ≥ t0 .

We analyze the problem of localization of the posi-
tive limiting manifold ω+(t0, x0) for this solution under
the assumption that the existence of the vector function
V(t, x) satisfies equality (5). On the basis of Alekseev
formula [4], it follows from equality (5) that the relation
between the value V[t] = V(t, x[t]) = V(t, x(t, t0, x0)) of
the function V(t, x) for the solution x = x[t] = x(t, t0, x0)

∂U
∂u
-------

u̇ U t u,( )=

V t x t t0 x0, ,( ),( ) u t t0 V0, ,( ).≤

u̇ U* t u,( ), U* FU.∈=

Φ t t0 u0, ,( )
∂u t t0 u0, ,( )

∂u0
----------------------------=

ẏ H t t0 u0, ,( )y, H ∂U t u,( )
∂u

--------------------
u u t t0 u0, ,( )=

.= =

Φ t t0 u0, ,( ) M K( ), detΦ t t0 u0, ,( )≤ α K( ).≥
and the solution u = u[t] = u(t, t0, V0), V0 = V(t0, x0) to
set of comparison (6):

(9)

We assume that the function V(t, x) is bounded from
below on the manifold R+ × K0 , and the solution u[t] of
set (6) is bounded from above for all t ≥ t0 . Then, as a
corollary of condition (8) and equality (9), we can find
the relationship

(10)

Let p ∈ ω +(t0, x0) be a limiting point defined by the
sequence tj  +∞, x(tj, t0, x0)  p as tj  +∞. We
choose a subsequence   +∞ for which there exist

the corresponding convergences X(  + t, x) 
X*(t, x), U(  + t, x)  U*(t, x), W(  + t, x, u) 
W*(t, x, u). From this, as in the case of the limit being
passed in [1], we find that uniformly over t ∈ [–β, β],
the convergences

take place for an arbitrary β > 0. Here, x*[t] =
x*(t, 0, p), u*[t] = u*(t, 0, ),  = V*(0, p) is the cor-
responding solution to sets (4) and (7). In this case,
using relationships (9) and (10) for all t ∈ R, we arrive
at the equalities

This is the basis for proving the following theorem.
Theorem 1. We assume that (I) a certain solution

x(t, t0, x0) of set (1) is bounded by a some compact set
K ⊂ G for all t ≥ t0, and (II) there exists a certain
Lyapunov function V = V(t, x), V ∈ K1 satisfying differ-
ential equality (5), the solution u(t) = u(t, t0, V0),
V0 = V(t0, x0) to set of comparison (6) being bounded for
all t ≥ t0 and condition (8) being valid for this solution.

Then, for an arbitrary limiting point p ∈ ω +(t0, x0),
there is a set of limiting functions (X*, V*, U*, W*)
such that the solution x = x*(t, p) to set (4) with the ini-
tial condition x*(0, p) = p, satisfies the relationships
x*(t, p) ∈ ω +(t0, x0), x*(t, p) ∈  {V*(t, x) = u*(t)} ∩
{W*(t, x, u*(t)) = 0} for all t ∈ R, where u*(t) is the
solution to limiting set of comparison (7) with the ini-
tial condition u*(0) = V*(0, p).

The theorem proved is the theorem on the localiza-
tion of a positive limiting manifold based on the
Lyapunov vector function and the set of comparison.
This theorem develops the La Salle invariance principle
formulated in [5] for an autonomous system and the
quasi-invariance principle for a nonautonomous system

V t x t[ ],( )

= u t[ ] Φ t τ V τ x τ[ ],( ), ,( )W τ x τ[ ] V τ x τ[ ],( ), ,( ) τ .d

t0

t

∫+

W t x t[ ] V t x t[ ],( ), ,( )
t +∞→
lim 0.=

t jl

t jl

t jl
t jl

x t jl
t+[ ] x* t[ ] , u t jl

t+[ ] u* t[ ]→ →

u0* u0*

V* t x* t[ ],( ) u* t[ ] , W* t x* t[ ] V* t[ ], ,( ) 0.= =
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on the basis of the scalar Lyapunov function with the
derivative of a constant sign [1].

We now define the scalar function  = (t, x):

Based on Theorem 1, we can obtain the following result
developing the theorem on the asymptotic stability [3].

Theorem 2. We assume that there exists a positive-
definite Lyapunov vector function V = V(t, x), V ∈ K1
such that:

(I) differential equality (5) is valid;
(II) the zero solution u = 0 to set of comparison (6)

is stable (uniformly stable);
(III) for each bounded solution to set of compari-

son (6), condition (8) is fulfilled;
(IV) for arbitrary limiting totality {X*, V*, U*, W*}

and each bounded solution u = u*(t) ≠ 0 of limiting set
of comparison (7), the manifold {V*(t, x) = u*(t)} ∩
{W*(t, x, u*(t)) = 0} does not contain the solution to
limiting set (4).

In this case, the zero solution x = 0 to set (1) is equi-
asymptotically stable (uniformly asymptotically stable).

Using the definition of [6], we can prove the follow-
ing stability theorems for Lyapunov vector functions of
a constant sign.

Theorem 3. We assume that there exists a Lyapunov
vector function V = V(t, x) ≥ 0, V ∈ K1 such that the
conditions (I)–(III) of Theorem 2 are fulfilled, as well as
the condition:

(V) the zero solution x = 0 is uniformly asymptoti-
cally stable with respect to both the manifold
{ *(t, x) = 0} and the family of limiting totalities
{(X*, V*, U*, W*)}.

Then, the solution x = 0 to set (1) is stable (uni-
formly stable).

Theorem 4. We suppose that in addition to the con-
ditions of the preceding theorem, for arbitrary limiting
pair (X*, W*), the manifold { *(t, x) = c: c = c0 =
const > 0} ∩ {W*(t, x, u*(t)) = 0} does not contain
solutions to set (4).

In this case, the solution x = 0 of set (1) is (uni-
formly) asymptotically stable. 

We now consider a holonomic mechanical system
that is described by n generalized coordinates q1, q2, …,

qn with the kinetic energy 2T = A(q) . The system is
subjected to both the action of potential forces with the

potential energy Π = Π(t, q),  = 0, for q = 0 at all

t ∈ R+ and other generalized forces with the resultant
force Q = Q(t, q, ), Q(t, 0, 0) ≡ 0.

V V

V t x,( ) Vi t x,( ).
i 1=

k

∑=

V

V

q̇T q̇

∂Π
∂q
-------

q̇
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The equations of motion for this system can be writ-
ten out in the form of Lagrange equations

(11)

We assume that these equations resolved with respect to

 satisfy conditions (2) within the region R+ × Gε × Gε,
Gε = {q: ||q|| < ε, ε > 0}, and that limiting equations (3),
(4) can be composed for this region.

Theorem 5. We assume that

(i) Π = Π(t, q) has an isolated minimum  ≥

δ(η) > 0 at the point q = 0 for all t ∈ R+ and q ∈  Gηε =
{0 < η ≤ ||q|| < ε};

(ii) the combined action of all forces is such that for
all (t, q, ) ∈ R+ × Gε × Gε and (t, ) ∈ R+ × Gε the
relations 

are correspondingly fulfilled;

(iii) the zero solution of the scalar equation  =
f(t, u) is stable.

In this case, the equilibrium position  = q = of sys-
tem (11) is asymptotically stable.

Let the generalized coordinates of mechanical sys-
tem (11) be separated into positional and quasi-cyclic
ones: q = (r, z), r = (q1, q2, …, qk)T and z = (z1, z2, …,

zn – k)T = (qk + 1, qk + 2, …, qn)T so that  ≡ 0,  ≡ 0.

The kinetic and potential energies and the resultant
force of generalized forces of the system, are repre-
sented in the form

Then, the equations of motion of the system can be
written as

(12)

where R = R(t, r, , p) = R2 + R1 – W, 2R2 = F , F =
A – BC–1BT, R1 = pTC–1BTr, and W(t, r, p) = Π +
1/2pTC–1p.

We assume that in the case of  = r = 0, p = p0, and

 = C–1(0)p0, for all t ∈ R+, the equalities  = 0,

d
dt
----- ∂T

∂q̇
------ 

  ∂T
∂q
------– ∂Π

∂q
-------– Q.+=

q̇̇

∂Π
∂q
-------

q̇ q̇

∂Π
∂t
------- t q,( ) q̇

T
Q t q q̇, ,( )+ f t T Π+,( ) g t q̇,( ),+≤

g t q̇,( ) 0; g t q̇,( ) δ η( ) 0>≥≤

u̇

q̇

∂T
∂z
------ ∂Π

∂z
-------

2T  = ṙ
T
A r( )ṙ 2ṙ

T
B r( )ż ż

T
C r( )ż, Π+ +  = Π t r,( ),

Q Qr Qz,( ), Qr Qr t r ṙ, ,( ), Qz Qz t ż,( ).= = =

d
dt
-----∂R

∂ṙ
------ ∂R

∂r
------– Qr,

dp
dt
------ Qz,

dz
dt
------ ∂R

∂p
------,–= = =

ṙ ṙ
T

ṙ

ṙ

ż0
∂W
∂p
--------
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Qr  = Qz = 0 are valid. Then the system has the steady-
state motion

(13)

On the basis of Theorem 3, we can derive the following
result on the stability of this solution.

Theorem 6. We assume that
(i) for p = p0 , the function W(t, r, p) has an isolated

minimum  ≥ δ(η) > 0 at the point r = 0 for all

t ∈ R+ and r ∈ Gηε;
(ii) the combined action of forces over positional

coordinates is such that for p = p0 , for all (t, r, ) ∈
R+ × Gε × Gε, (t, ) ∈ R+ × Gηε the relations

are correspondingly fulfilled;
(iii) the action of forces over cyclic coordinates is

such that for all t ∈ R+, p ∈ {||p – p0|| < ε}, the scalar

(pi – pi0) ≤ (t, p – p0), (i = 1, 2, …, n – k), where

f z = ( , , …, )T is a quasi-monotonic function;

(iv) the zero solution to the scalar equation  =
f r(t, u) and of the vector equation of comparison  =
f z(t, u) is stable.

Then, steady-state motion (13) is stable with respect
to r, , , and is asymptotically stable over r,  with
respect to motions corresponding to the unperturbed
value p = p0 .

Theorems 5 and 6 develop and complement the
results of [6–11] on stability of the steady-state motion
of mechanical systems.

r = 0, ṙ = 0, p = p0, ż = ż0 = C 1– 0( )p0.

∂W
∂r
--------

ṙ
ṙ

∂W
∂t

-------- t r p0, ,( ) ṙ
T
Qr t r ṙ, ,( )+ f r t R2 W+,( ) g t ṙ,( ),+≤

g t ṙ,( ) 0; g t ṙ,( ) δ η( ) 0>≥≤

Qi
z f i

z

f 1
z f 2

z f n k–
z

u̇
u̇

ṙ ż ṙ
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It is now known [1, 2] that the angular velocity of
the Earth’s rotation varies over time; however, it was for
a long time regarded as a constant, while day length
was taken as a time standard. Following the discovery
of the secular acceleration of the Moon by E. Halley in
1696, the constancy of the Earth’s rotation velocity
became doubtful. The physical causes of this behavior
are tidal friction induced by the gravitational effect of
the Moon and Sun on the rotation of the Earth, which
cannot be treated as solid in this case; a moment acting
on the Earth from moving air and liquid masses; the
possible motion of masses inside the Earth, and, more
precisely, in its core; etc.

In our opinion, significant advances occurred in the
study of the mechanism of variation in the Earth’s rota-
tion velocity when (i) an atomic clock was built in 1955
that provided both for atomic time measurements that
were more uniform than previous time measurements
and for much more accurate measurements of day
length; and when (ii) the advanced rotation of the solid
core with respect to the mantle was discovered from the
propagation of seismic waves in the Earth’s depths [3].

Variations in day length for all the times of instru-
mental observation (the last 300 years) were presented
in [4]. Analyzing these data, one can reliably separate a
constant decrease rate for the Earth’s rotation velocity,
which corresponds to an increase in day length by 1.7 ×
10–3 s per century [2]. This rate of decrease in the angu-
lar velocity of the Earth’s rotation was first obtained by
comparing times of known antique solar eclipses with
times of these eclipses calculated with the constant
present angular velocity. Data acquired after 1955
exhibit annual, and even seasonal, oscillations caused
by the motion of air masses, melting of ice, and other
seasonal factors. 

At the same time, there are long-term variations in
rotation velocity: the rotation velocity decreased for
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several decades and then increased for nearly the same
period. These variations in angular velocity are much
larger than 1.7 × 10–3 s per century. 

Many hypotheses were proposed to explain these
variations. Some of them are based on the angular-
momentum exchange between the core and the mantle,
which occurs upon changes either in the electromag-
netic interaction between the core and the mantle [1] or
in the viscosity of the liquid core [5].

In this work, we propose a simple mechanical model
for explaining the above-mentioned long-term varia-
tions in the Earth’s rotation and for estimating the char-
acteristic parameters of the gravitational and viscous
interaction between the mantle and the solid core. This
model is based on the recently discovered differences in
the angular velocities of the mantle and the core [3]. If
the mantle and crust are treated as one rigid body in the
form of a three-axial ellipsoid and the solid core is
treated as another such body coaxially rotating about
the principal axes with the maximum moment of iner-
tia, then, in addition to viscous friction forces in the liq-
uid core, the gravitational moment arises due to the
asphericity of the solid-body density. This moment
depends on the rotation angle between the bodies and
twice changes sign upon the total relative rotation.

If I1 and I2 are the moments of inertia of the crust–
mantle system and the core, respectively, and ϕ1 and ϕ2
are the respective rotation angles, the equations of rota-
tional motion have the form

In these equations, in addition to the moment M of the
tidal friction forces, the moment of viscous friction
forces with the coefficient h and the fundamental har-
monic of the moment of the gravitational interaction
between the mantle and solid core with the coefficient k
are included. The gravitational moment will be esti-

I1

d2ϕ1

dt2
----------- h

d
dt
----- ϕ1 ϕ2–( )– k 2 ϕ1 ϕ2–( ) M,–sin–=

I2

d2ϕ2

dt2
----------- h

d
dt
----- ϕ2 ϕ1–( )– k 2 ϕ2 ϕ1–( ).sin–=
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mated below under the assumption that the mantle and
core are coaxially rotating bodies with three-axial ellip-
soids of inertia.

Introducing dimensionless parameters and time and
combining equations, we arrive at the system

(1)

Here, the dot stands for the differentiation with respect
to τ: t = τt∗ , where t∗  is the time scale,

The form of these equations enables one to solve
them sequentially. The first equation is equivalent to the
equation of a pendulum with a constant moment and
belongs to equations with a cylindrical phase surface [6],
because the state ( , ψ) coincides with the state
( , ψ ± 2πn), where n is an integer.

Depending on the parameters h' and k' and the ratio
between them, qualitatively different phase portraits of
the system are realized. They are presented as a com-

plete list in [6]. We are interested in the case  > 1 for

small h' values, when the first equation, in addition to
the equilibrium state k'sinψ0 = m, includes the stable
limit cycle encircling the phase cylinder, which corre-
sponds to the difference that was found in observations
between the angular velocities of the solid core and the
mantle. We seek this limiting cycle in the form

The first equation then takes the form

Since h' and k' are small, ψ1 ! 1, and for the estimate in
which we are interested, it is sufficient to consider the
equation

,

which has the obvious solution

ψ̇̇ h'ψ̇ 2k' ψsin+ + 2m,=

ϕ̇̇1 γ ϕ̇̇2+ m.–=

ψ 2 ϕ1 ϕ1–( ), γ
I2

I1
----, h'

h
I1
---- 1 1

γ
---+ 

  t*,= = =

k'
k
I1
---- I

1
γ
---+ 

  t*, m
M
I1
-----t*

2 .= =

ψ̇
ψ̇

k'
m
----

ψ ωτ ψ1 ψ0.+ +=

ψ̇̇1 h'ψ̇1 2k' ωτ ψ0 ψ1+ +( )sin+ + 0, ω 2m
h'

-------.= =

ψ̇̇1 h'ψ̇1 2k' ωτ ψ0+( )sin+ + 0=

ψ̇1
2k'

ω2 h'2+
------------------ ω ωτ ψ0+( )cos[=

– h' ωτ ψ0+( )sin ] 2k'
ω

------- ωτ ψ0+( ).cos≈
We note that the latter relation is written under the con-
dition h' ! ω.

As a result, system (1) reduces to the form

where c is the integration constant. Therefore, the angu-
lar velocity of mantle rotation as a function of time has
the form

or, taking into account the initial conditions and that
γ ! 1,

In terms of the initial parameters, this equation has the
form

Thus, the angular velocity of mantle rotation
decreases under the action of the moment of tidal forces

at a constant rate of  and oscillates with an amplitude

of , where 2T1 is the period of rotation of the

Earth’s solid core with respect to the mantle, which
determines long-term variations in the Earth’s rotation
velocity.

Using known measurements [7] of the Earth’s rota-
tion velocity from 1955 to 2003, one can determine the
parameters M, k, and T1 . According to these data, T1 ~
60–70 yr. Moreover, taking 2003 as the beginning of
time (so that t < 0) and taking into account the relation

,

where Td is the day length, we obtain
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This expression has been obtained using the data
∆Td(t = 0) = 0.8 × 10–3 s and ∆Td(t = 30 yr) = 3 × 10–3 s.
In this case, we obtain k = 8.4M. From the formulas for
the dimensionless parameters and taking t∗  = 1 yr =
3.15 × 107 s and γ ∼  1/500 (according to data on the
Earth’s structure; see, e.g., [2]) as a time scale, we
obtain h' ~ 0.87 × 10–4, k' ~ 0.019, m ~ 4.5 × 10–6, and
ω = 0.1. Therefore, the conditions of the smallness of h'
and k' and h' ! ω, which were used for the above esti-
mates, are satisfied quite well.

Let us estimate the gravitational moment between
the mantle and crust (which are treated as one rigid
body in the form of a three-axial ellipsoid with an inter-
nal spherical cavity) and the inner core (another rigid
body) located in the cavity of the first body. 

The outer ellipsoid surface in the spherical coordi-
nate system (r, ϕ, θ) is described by the expression

The solid core of the Earth is also a three-axial ellip-
soid with the surface equation

These bodies coaxially rotate about their principal
axes with the maximum moments of inertia. The equa-
tions of the surfaces are written at the specific time
when the angle between them is equal to ϕ2 – ϕ1 = σ.

ϕ1 θ1sin
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2
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θ1cos
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DOKLADY PHYSICS      Vol. 50      No. 2      2005
We consider a case where the surfaces slightly differ
from spherical shape:

In this case, it is easily seen that

It is obvious that only the material points of the first
body that lie between the ellipsoid surface and the
sphere of radius c1 or in the layer δ1(ϕ1, θ1) = r1 – c1 , as
well as the points belonging to the layer δ2(ϕ2, θ2, σ) =
r2 – c2 , contribute to the gravitational interaction
between the bodies under consideration. 

To simplify the calculation, since the layers are
thin, we consider the interaction between two spheres
of radii c1 and c2 with the surface densities ρ1δ1 and
ρ2δ2 that is described by the elementary gravitational
potential

where ρ1 and ρ2 are the volume densities and

The elementary moment is given by the expression
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The integration with respect to θ1, ϕ1, θ2, and ϕ2 is sig-
nificantly simplified for c2 ! c1 and yields

which provides for the estimate of the amplitude of the
moment of the gravitational interaction between the
solid core and the mantle (k value).
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For the Earth, we have [2]

Assuming that the parameters of the core ellipsoid are

approximately the same as for the mantle, i.e.,  –  =

6.7 × 10–5, we obtain k = 4.9 × 1019 kg m2 s–2. We note
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Variation in day length for about one and a half cen-
turies is shown in Fig. 1 (the upper line corresponds to
data obtained from [7] and the lower line corresponds
to those data minus a constant increase of 
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 s
per century in day length). Spectral analysis of these
data (Fig. 2) shows that oscillations with periods of
about 65 and 130 yr correspond to coefficients of 0.8
and 0.4, respectively. Contributions from other compo-
nents are much smaller, which corroborates the validity
of the assumption about the periodicity of variations.
Figure 3 shows the superposition of the fundamental
harmonic of day-length oscillations with a period of
65 yr and data on their variation for about 150 years.
We emphasize the satisfactory coincidence of super-
posed data from the building of the atomic clock (1955)
and the qualitative coincidence (coincidence of times of
maxima and minima and absence of large discrepan-
cies) in an earlier period, when measurements were not
so accurate.

 

Discussion. 

 

The phenomenon of long-term varia-
tions in the angular velocity of Earth’s rotation presents
one of the most intricate and inexplicable problems.
Indeed, for such a significant change (a change of

 

~

 

±

 

3

 

 

 

× 10–3 s in day length for the short time of
60−70 years) in the angular velocity of Earth’s rotation,
which displays such a huge moment of inertia, it is dif-
ficult to point to sources for a mechanical moment that
is sufficiently large and changes sign. In view of this
circumstance, information on the rotation of the solid
core of the Earth with respect to the mantle enables one
to point to such a moment based on the gravitational
interaction between two bodies—the crust–mantle sys-
tem and the solid core. Here, the solid core is treated as a
powerful wheel and significant variations in mantle rota-
tion are attributed to a change in its angular velocity.

The key point of the above mechanism is the estima-
tion of the gravitational interaction between the mantle
and the core, data on which are nearly absent. In this
work, the spherical symmetry of the densities of bodies
is proposed, and only the ellipsoid shape of their sur-
faces is taken into account. Data on the core ellipsoid
are absent, and its shape is considered to be similar to
that of the mantle. In spite of these and other crude
assumptions, the estimate obtained for the gravitational
interaction is three orders of magnitude larger than the
moment necessary for explaining variation in the
Earth’s rotation. This fact indicates that this interaction
is possible, although it can be caused by a significantly
smaller asphericity of the core than that accepted in this
work and by the general deviation of its density from a
spherically symmetric distribution. The only important
fact is the sinusoidal dependence of the gravitational
moment on the angle between the bodies in the first

k
M
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approximation for both the case of uniform aspherical
bodies and the general case of inhomogeneous bodies.

If the above conclusions are corroborated by a more
careful comparison of measurement data with calcula-
tions and longer observation of the Earth’s rotation
velocity, then (1) the rotation period of the solid core
with respect to the mantle will be significantly refined
(about 120 yr instead of 400 yr [3]); (2) the gravita-
tional moment between the core and the mantle, as well
as the periods of its maximum and corresponding
stresses inside the Earth, which are sources of earth-
quakes, will be estimated (according to the estimate,
this moment is eight times as large as the tidal
moment); and (3) the concept of the solid core as a
three-axial ellipsoid will appear and its moments of
inertia will be estimated.
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