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The problem of the high-velocity interaction of var-
ious technogenic bodies with targets and constructions
usually consisting of a set of simple targets (layered,
screened, and spaced) made of various materials is of
specia importance in the general problem of high-
velocity impact phenomena. It is a scientific basis for
solving practical problems concerning the devel opment
of double-purpose technologies and permanent
advancements in the protection of civil, marine, avia-
tion, and space equipment against penetrating impacts
of various technogenic bodies. Complex experimental
and numerical investigations into the damages caused
to finite-thickness targets by projectiles show that
mechanisms of the destruction of targets change signif-
icantly with variation in the initial conditions of inter-
action (increase in the collision velocity of bodies,
change in the materials of targets and projectiles, their
shape, etc.) [1]. Since a high-velocity impact proceeds
very quickly (over atime period of about 101077 s)
and resultsin destructive action, experimental informa-
tion on the dynamics of the entireimpact processis pri-
marily obtained by high-speed optical shooting (ordi-
nary and laser), pulsed multiple radiography [2], and
recording of pressures and velocities by differential
laser interferometry, manganin, capacity, and piezo-
electric and electret sensors[3]. In addition, mathemat-
ica simulation by modern numerical methods is an
important source of information immediately from any
zone of active deformation, prefracture and fracture of
materials of interacting bodies [4].
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Computer simulation of the interaction of projec-
tiles with targets and simple constructions was per-
formed by the numerical finite-element method, which
was efficiently applied to various impact problems [5].
The physical-mathematical model of colliding solids
that is used in this work is generally represented by a
compressible strong medium whose behavior under
extreme impact loads is described by a broadband
semiempirical equation of state [6], eastoplastic
model, dynamic yield stress, shear modulus, and con-
stants of the kinetic fracture model [7]. The last model
describes the local formation, development, and target
evolution of microdamages, which continuously
change the properties of the materials in contact and
induce arelaxation of stresses.

The spall—shear fracture process was simulated based
on the concept of a continuous accumulation of damages
characterized by the specific volume of cracks [7]. The
rate of increase in the specific volume of cracksor pores
was specified as a function of acting pressure and the
volume of damages attained according to relations
obtained in [7, 8]. These relations take into account the
possibility of partial or complete closure of microdam-
ages upon change in the sign of tensile stresses and the
appearance of compressive stresses [9], which is very
important for analysis of the perforation of spaced con-
structions. Step-by-step analysis of contours of the spe-
cific volume of cracks (at different times) at the stage of
prefracture of materials makes it possible to locally
determine the general developmental tendencies of
fracture both qualitatively and quantitatively, aswell as
its mechanism, the local damage degree of a material,
and the behavior of the main spall crack and adiabatic
shift due to decrease in the strength of the material that
is caused by its adiabatic heating [10]. In addition, the
formation and evolution of different fracture mecha-
nisms and their interference are revealed. In particular,
analysis of amechanism of the perforation of plates by
deformable projectiles revealed that the formation of a
separated disc in the upper and lower halves of a plate
occurred through different mechanisms[11].

A high-velocity impact is mathematically simulated
by a system of equations that describes the unsteady
spatial adiabatic motions of a continuum and includes
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Fig. 1. (Upper part) Chronograms of the 2500-m/s collision of a steel cylinder 8 mm in both diameter and height with a double-
layer steel target (the thicknesses of the platesis equal to 5 mm and the gap between them was equal to 3 mm) at times 7, 8, and 8.5
us. (Lower part) The chronograms of the accumulation of damages in the plates at the same times.

equations for continuity, motion, energy, and changein and simple constructions consisting of separate plates

the specific volume of cracks.

of identical thickness that are made of the same mate-

In this work, we numerically analyze the results of ~ rial asamonolithic target. Inthe general case, such con-
the perforation of monolithic finite-thickness targets  structions have the same specific weight (weight of a
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Fig. 2. Timevariationsin the kinetic energy of the projectile
colliding with an initial velocity of 2500 m/s with the
(line 1) monolithic plate and weight-equivalent double-layer
target with an interlayer gap of (line 2) 1 and (line 3) 3 mm.
Time variations in the kinetic energy of the (line 4) mono-
lithic target and double-layer target with an interlayer gap of
(line 5) 1 and (line 6) 3 mm. Time variations in the kinetic
energy of the (line 7) first and (line 8) second plates of the
double-layer target with agap of 3 mm.

construction per unit surface). The numerical scheme
for the realization of the finite element method for sub-
stantially unsteady problems in the mechanics of a
deformable solid is taken from [4]. The velocity at
which a projectile penetrates behind the back surface of
thelast target of the construction with a certain velocity
that induces a minimum behind-target shock effect
(velocity of about 50 m/s) isgenerally taken asthelim-
iting velacity of the perforation of a separate target or
spaced construction. In this work, we anayze the
results from the perforation of spaced targets, because
screened targets were considered in [11] and their effi-
ciency is based on the Whipple shield [12]. It is based
on the use of thin screensthat are placed in front of the
basic target and that give rise to the intense fragmenta-
tion of projectiles into smaller fragments upon high-
velocity interaction. This leads to a dispersion of
impact momentum over the larger surface of the basic
target and, finally, to a significantly smaller penetration
(perforation thickness). The protection of spacecrafts
with thin screens was practically implemented in the
Vegainternational project [13].

For spaced targets for which the distance between
plates does not noticeably affect the perforation process
in contrast to the discontinuity in the denseness of
materials, numerical calculations show and experi-
ments corroborate that a monolithic steel plate is the
most efficient protection against high-strength (unde-
formable) fragments. The latter ensures maximum
resistance to an impressing projectile (maximum
absorption of the kinetic energy of a fragment) com-
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pared to any weight-equivalent spaced target consisting
of two, three, etc. components with the same physical
and mechanical characteristics. The result is different
for the penetration of compact deformable elements
into such targets[14].

We simulate the interaction of asteel cylinder 8 mm
in both diameter and height with targets consisting of
one, two, three, etc. steel layers with ayield stress of
10.1 x 10° MPaand a shear modulus of 7.9 x 10° MPa.
Figure 1 (the upper part) shows the chronograms cal cu-
lated for the process of impressing afragment in a dou-
ble-layer construction consisting of two plates 5 mm
thick with agap of 3 mm between them. Theinitial col-
lision velocity was equa to 2500 m/s. The configura
tions of the interacting bodies correspond to times 7, 8,
and 8.5 ps. Analysis of the process of the perforation of
both plates, the step-by-step penetration of the
deformed projectileinto the first and second plates, and
the accumulation of damages in them shows that the
fracture of the plates occurs via different mechanisms.
Figure 1 (lower part) shows the chronograms of the
accumulation and evolution of damages in the projec-
tile and both plates at the same times 7, 8, and 8.5 s,
which are discrete (drawn with a certain step) contours
of the specific volume of cracks. More detailed analysis
of the prefracture of both plates shows that the first
plate breaks through the knockout of a disc whose
diameter isonly dightly larger than the diameter of the
deformed projectile [9]. The separation of the disc is
completed after the confluence of the fracture nuclei
propagating from the front and back surfaces of the
plate. Parametric calculations show that the knockout
of the disc (adiabatic shift) isaccompanied by aconsid-
erable release of thermal energy due to intense shear
strainsin the upper half of the plate. This release gives
rise to the local heating of the material in this domain,
which is accompanied by a local decrease in the
strength of the medium. The fracture of the second
plate, which is subjected to tension for nearly the entire
interaction process, occurs due to the development of
cracks, which initially arise near the symmetry axis on
the back surface under the action of rarefaction waves.
Therefore, the energy required for the perforation of the
second plate in the construction is higher than that
required for thefirst plate. This property represents one
of the main reasons why a target consisting of two
plates of the same thickness displays greater efficiency
than amonolithic target or any other spaced target con-
sisting of three or more components. In particular, the
velocity of the deformed projectile behind the target is
equal to 45, 75, and 90 m/s when the above compact
stedl projectilewith avelocity of 2500 m/s collideswith
a double-layer spaced sted target, monolithic target,
and triple-layer spaced target, respectively.

To analyze mechanisms of the perforation of mono-
lithic and double-layer spaced targetsin detail, we draw
anumber of parametric dependences characterizing the
development of the penetration process. In particular,
Fig. 2 showstime variationsin the kinetic energy of the
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Fig. 3. Chronogramsfor the penetration of the extended cylindrical steel projectile with aninitial velocity of 2500 m/sinto the dou-

ble-layer target at times 1, 3, 5, and 7 ps.

projectile colliding with avelocity of 2500 m/swith the
(line 1) monolithic plate and weight-equivalent dou-
ble-layer target with aninterlayer gap of (line2) 1 and
(line 3) 3mm. In addition, Fig. 2 showstime variations
inthe kinetic energy of the (line 4) monalithic target and
double-layer target with an interlayer gap of (line5) 1
and (line 6) 3 mm change. Timevariationsin thekinetic
energy of the (line 7) first and (line 8) second plates of
the double-layer target with a gap of 3 mm are aso
shown. The kinetic energy of the projectile is first lost
upon collision with the monoalithic plate. However,
after interactions between the plates of the target, the
values of the kinetic energy of the projectile begin to
approach each other. For the double-layer target with a
gap of 1 and 3 mm, approaching occursto 4 and 7 s,
respectively. Lines 46 show that the kinetic energy
acquired by the double-layer target is larger than that
acquired by the monolithic plate for nearly the entire
No. 2
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interaction process. Therefore, double-layer targets
generally provide for more efficient protection. The
impact resistance of targets decreases with an increase
inthe number of platesinthe mass-equivalent construc-
tion, because the spall mechanism of the fracture of
individual platesis nearly absent in this case.

Similar numerical investigations show that atriple-
layer spaced construction provides for the most effi-
cient protection against the penetration of an extended
deformable projectile with an elongation of about 10
(theratio of the cylinder length to its diameter) as com-
pared to a mass-equivalent continuous monolithic con-
struction or any other spaced construction. In this case,
the gain in limiting penetration velocity reaches 10%.
Figure 3 shows the chronograms for the penetration of
the extended cylindrical steel projectile with an initial
velocity of 2500 m/s into the spaced construction con-
sisting of two plates of the samethicknessat times 1, 3,
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Fig. 4. X-ray patterns for the penetration of the projectile (elongation of 10) with an initial velocity of 2016 m/s into the spaced
construction consisting of three steel plates of the same thickness at times 23, 29, and 40 ps.

5, and 7 ps. Theoretical investigations are compared
with basic experiments carried out with various combi-
nations of colliding bodies on specia racks including
powder and light-gas ballistic setups, a target setup
with an x-ray pulsed system of detecting the behavior
of colliding bodies, and equipment for the storage of
necessary samples[15]. Figure 4 shows X-ray patterns
for the penetration of the projectile (elongation of 10)
with aninitial velocity of 2016 m/sinto the spaced con-

struction consisting of three steel plates of the same
thickness at times 23, 29, and 40 us. They show that the
velocity of the projectile residual behind the target is
minimal as compared to the perforation of the continu-
ous target and target consisting of two plates of the
same thickness (velocities 650, 740, and 710 m/s,
respectively).

Anaysis of the problem of the collision of projec-
tiles with various el ongations with combined (layered—
No. 2
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spaced) constructions for the normal impact and partic-
ularly oblique impact is more complicated. Experimen-
tal and numerical investigations of such phenomenaare
complicated and expensive. They will be conducted

step-by-step.

ACKNOWLEDGMENTS

Thiswork was supported by the Russian Foundation

for Basic Research, project no. 03-01-00386.

=

REFERENCES

I. E. Khorev, Khim. Fiz. 21 (9), 16 (2002).

Ballistic Setups and Their Application in Experimental
Investigations, Ed. by N. A. Zlatina and G. |. Mishina
(Nauka, Moscow, 1974) [in Russian].

G.l.Kand’, S. V. Razorenov, A. V. Utkin, and V. E. For-
tov, Shock-Wave Phenomena in Condensed Media
(Yanus-K, Moscow, 1996) [in Russian].

G. R. Johnson, J. Appl. Mech. 44 (1), 95 (1977).

I. E. Khorev and V. A. Gorel’skii, in Proceedings of 2nd
All-Union Conference on Detonation (Otd. Inst. Khim.
Fiz. AN SSSR, Chernogolovka, 1981), Issue2, p. 149]in
Russian].

DOKLADY PHYSICS Vol.50 No.2 2005

6.

7.

10.

11

12.

13.
14.

15.

105

A.V.Bushman and V. E. Fortov, Usp. Fiz. Nauk 140 (2),
177 (1983) [Sov. Phys. Usp. 26, 465 (1983)].

G. |. Kand’ and V. V. Shcherban’, Fiz. GoreniyaVzryva
5 (4), 93 (1980).

G. I. Kanel’, S. G. Sugak, and V. E. Fortov, Probl.
Prochnosti, No. 8, 40 (1983).

A. N. Dremin, I. E. Khorev, V. A. Gorel’skii, and
V. F. Tolkachev, Dokl. Akad. Nauk SSSR 290 (4), 848
(1986) [Sov. Phys. Dokl. 31, 841 (1986)].

I. E. Khorev and V. A. Gorel’skii, Dokl. Akad. Nauk
SSSR 271 (3), 623 (1983) [Sov. Phys. Dokl. 28, 588
(2983)].

A. V. Radchenko, V. E. Fortov, and I. E. Khorev, Dokl.
Akad. Nauk 389 (1), 49 (2003) [Dokl. Phys. 48, 126
(2003)].

F. I. Whipple, Mistas in Astronautics 1958 (Pergamon,
New York, 1958), pp. 115-119.

V. E. Fortov, Priroda, No. 3/4, 146 (1996).

V. A. Gorel’skii, A. V. Radchenko, and I. E. Khorev, 1zv.
Akad. Nauk SSSR, Mekh. Tverd. Tela3 (7), 185 (1988).
V. F. Tolkachev, A. A. Konyaev, A. G. Nazarov, and
I. E. Khorev, in Investigations on Ballistics and Adjacent
Problems of Mechanics (1zd. Tomskogo Universiteta,
Tomsk, 1997), p. 70 [in Russian].

Trandlated by R. Tyapaev



Doklady Physics, Vol. 50, No. 2, 2005, pp. 106-111. Trandlated from Doklady Akademii Nauk, Vol. 400, No. 6, 2005, pp. 758-763.

Original Russian Text Copyright © 2005 by Akulenko, Kumakshev, Markov.

MECHANICS

Model of the Gravitational-Tidal M echanism
of Exciting Oscillations of the Earth’s Pole

L. D. Akulenko*, S. A. Kumakshev*, and Yu. G. Markov**
Presented by Academician V.V. Kozlov June 29, 2004

Received July 5, 2004

The perturbed rotational—vibrational motion of the
Earth in the gravitational fields of the Sun and Moon
has been investigated using the linear mechanical
model of a viscoelastic solid. The tidal mechanism of
exciting the oscillations of the poles, i.e., the angular-
velocity vector in the Earth-fixed coordinate system,
has been revealed. It is attributed to the rotational—
trandational motion of the Earth-Moon barycenter
around the Sun. It has been found that the basic charac-
teristics of the oscillations do not significantly change
over time intervals much longer than the period of the
precession of the Earth’s axis. A simple mathematical
model involving two frequencies, Chandler and annual,
has been developed by the celestial mechanics meth-
ods. It isadequate to the astronomical measurements of
the International Earth Rotation Service (IERS). The
parameters of the model have been fitted by the least
squares method with the use of spectral analysis of
IERS data. A statistically convincing interpolation of
the process has been obtained over time intervals from
severa months to 1520 yr. A precision forecast for
0.5-1 yr and a reliable forecast for 1-3 yr, which are
corroborated by observations for several recent years,
are presented for the first time. The results are of theo-
retical interest for geodynamics and celestial mechan-
ics, and they are important for applications in astrome-
try, navigation, and geophysics.

1. The very complex process of pole oscillations
includes components with strongly different frequency
and amplitude characteristics [1-6]. In particular, the
small oscillations of the angular-velacity vector in the
Earth-fixed coordinate system (reference system)
involve the main component with an amplitude of
0.20"-0.25" and a period of about 430-440 siderea
days (S. Chandler, 1891). It was necessary to explain

* Ingtitute for Problemsin Mechanics,
Russian Academy of Sciences,
pr. Vernadskogo 101-1, Moscow, 119526 Russia
e-mail: kumak@ipmnet.ru
** Moscow Sate Aviation Institute
(University of Aerospace Technology),
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the strong deviation of the Chandler period from the
value predicted by the rigid-body theory (Euler preces-
sion period of 305 days). Such an explanation was par-
tially given using the model of the deformable Earth
[2—6]. A noticeable component with an amplitude of
0.07"-0.08" and aperiod of 1 yr (about 365.25 sidereal
days) was found to exist (as noted by Chandler). The
observed oscillations of the pole are beating. The pole
motion trajectory on the ground is a spiral folding and
unfolding with a period closeto 6 yr.

The analysis and forecast of the pole tragjectory are
of considerable interest in scientific and application
aspects. The development of a precision theoretical
model of the rotation of the deformable Earth, the
determination of its parameters on the basis of IERS
data, and a reliable forecast of pole motion are very
important for navigational purposes over time intervals
sufficiently long for practical goals and for investiga-
tion of astronomical, geodynamical, and geophysical
problems[1-6].

The rotation of the deformable Earth and oscilla-
tions of its pole are described in a simplified mechani-
cal model of aviscoelastic body [7]. To include gravi-
tational-tidal actions, the planet can be treated as an
almost axisymmetric two-layer body consisting of the
rigid core (ball) and viscoel astic mantle. Any complica:
tion of the model of the Earth’s shape is not justified,
because the required geometric and physical character-
istics of the planet cannot be determined by statistically
processing indirect measurement datawith the required
accuracy and completeness. The obvious, logicaly jus-
tified point of view is that the complexity of the model
must strictly correspond to the problem under consider-
ation and measurement accuracy. Comparison with
measurements and further analysis show that the
accepted simplifications are justified.

At the initial stage of investigation of the pole
motion and its evolution under the action of perturbing
moments, a spatial variant of the two-body problem is
considered [7, 8]. The center of mass of the deformable
planet (Earth) and pointlike satellite (Moon) rotate
about the common center of mass (barycenter), which
moves along an elliptic orbit around the Sun.

1028-3358/05/5002-0106$26.00 © 2005 Pleiades Publishing, Inc.
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On the basis of asymptotic analysis of equations of
motion in the oscul ating variabl es action—-angle, the sta-
ble characteristics of the rotational—vibrational motion
of the deformable Earth with respect to the center of
mass are determined in the quasi-static approximation.
The refined periods (frequencies) of the axial rotation
and Chandler oscillation are found and compared with
the spectral-analysis data[1, 2]. The amplitudes of the
natural oscillations of the angular-velocity vector in the
Earth-fixed coordinate system are estimated and com-
pared with observable values.

A first-approximation mathematical Chandler
model and annual oscillations of the pole under the
action of gravitational-tidal forces from the Sun and
Moon is developed on the basis of Euler's kinematic
equations and Euler—Liouville dynamic equations. The
parameters of motion are numerically determined by
the least squares method with the use of the daily mea-
surement data, and the results are given in conclusion.
Moreover, the tragjectories of the Earth’'s pole are plot-
ted, and aforecast of thismotion isgiven in comparison
with the |IERS astronomical data[1].

2. To develop amathematical model of the perturbed
rotation of the deformable Earth with respect to the cen-
ter of mass, we represent equations in the form of the
classical Euler—Liouville dynamic equations with the
variable tensor of inertiaJ [2—6, 8, 9]

JotoxJo =M, o= (p, g1,

J=J*+0dJ, J* = congt,

a (1)
J* = diag(A*, B*,C*),

33 = 8J(t), I8J]f < [19*]l.

Here, o istheangular velocity in the coordinate system
fixed to the Earth in 1900 (reference system [5]), which
approximately coincideswith the principal central axes
of inertia J* of the “frozen” Earth including the “ equa-
torial bulge” [1-7]. Additional perturbation terms,
which appear due to the differentiation of the kinetic-
moment vector of the deformable Earth, are assigned to
the perturbing force moment M with a very complex
structure. It isthought that small variationsin the tensor
of inertia dJ can involve various harmonic components
associated with the effect of diurnal solar and lunar
gravitational tides and maybe other components
(annual, semiannual, monthly, semidiurnal, etc. [1-5]).
Gravitational-tidal actions with an annual period and a
period close to the Chandler period (see below) are
taken as the basic factors of perturbing external force
moments M inducing nutations. We first discuss asim-
ple mechanism of generation and support of annual
nutations. Euler kinematic equations specifying the ori-
entation of the Earth-fixed axes with respect to the
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orbital coordinate system have the form [8, 9]
8 = pcosh —gsing —wy(V)siny,

V = wp(V) = (1 +ecosv)’,

P = W—wo(v)cotecosw, (2)

e = 0.0167,

¢ = r—(psind +qcosd)cotb + (oo(v)C(.)—qu.
sin®
Here, v(t) isthe true anomaly, eisthe orbit eccentricity,
and w: is the constant determined by the gravitational
and focal parameters. When system of equations (1)
and (2) is studied for the case corresponding to the
motion of the pole, thosetermsin Egs. (2) that are pro-
portional to wy, are much larger than p and q (by afactor

of about 300), and they are determining for 6 and ¢ .
Thisimportant property was not mentioned in the pub-
lished works, and the above terms were disregarded
without appropriate justification (orbital and rotational
motions are separated) [1-6].

3. Let us consider the annual component of the
oscillations of the Earth’s pole. The components of the
gravitational-force moment from the Sun have the

structure Mﬁ,q ~sinBcosB [9]. Analysis of expressions

M‘; q Shows that there are annual perturbation compo-

nents that are associated with the terms containing
products of the direction cosines. In the first approxi-
mation (for p=q=0), they arecalculated by integrating
Egs. (2)

r=r’ o=rt+¢° v=w,t+v’
cosB(v) = a(6°, y°)cosv,
8(0) =08°=66°33', 04<as<l, Osy’s2m (3)

cosBsin® = b(8°, Y°)cosv +dcos3v + ...,

04<bs -, |d <1.
3

The second and higher harmonics of v provide val-
ues that are equal to 0.001-0.01 of the main compo-
nents. For this reason, they are disregarded. The quan-
tity B*—A* is aso much lower than C*—A* (by afactor
of about 160). Estimating terms of Egs. (1) for pand q
with allowancefor Egs. (3) after averaging over thefast
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phase ¢, we arrive at the simplified model

P+ Ny = Ko’ + 3bwi x5 cosv,

NP,q

0

N = ?r—”=(0.84—o.85)m*,
! “4)
q—Ngp = —K,r’—3bwi x5 cosv,

p(0) = p°, q(0) = q”.

0J
Here, K, and K, are the average values of B—*pr and
0Jgr
AN
tities x; and X; are obtained by ¢-averaging the coef-
ficients of cosv in the components of the Sun gravita-
tional-force moment.

which can be slow-varying functions. The quan-

Moon gravitational-force moments with a monthly
period of 27.55 days are disregarded because their
effect on nutationsis relatively small due to significant
difference in frequencies. These effects become impor-
tant only for detailed analysis of the extrema of the pole
deflection in each component. The effect of monthly
perturbationsis most pronounced in beating (minimum
oscillation amplitudes).

Theright-hand sides of Eq. (4) explicitly involve an
annual-period harmonic action that explains the mech-
anism of nutations detected by the IERS observations.
The sensitivity of the k, , coefficients is five orders of

magnitude higher than the sensitivity of xﬁ, q- Thiscir-

cumstance is a reason for the geophysical seasonal
treatment of the annual component of oscillations.
However, the explicit regular mechanism of an annual
(force-moment) action with an estimated required
amplitude of My, ~ 10 kg m? s? caused by internal
geophysical factors (atmospheric actions, oceanic
flows, seasonal phenomena on the ground, etc.) seems
to be invalid in the mechanical aspect. The spectral
analysis of the annual component of the oscillations
(the sharpness of the peak in the spectral density of time
series), aswell asanalysis of the phase shifts of various
processes, shows that the geophysical interpretation is
invalid [2].

4. Let us analyze a mechanism of excitation of the
pole oscillations with afrequency close to the Chandler
frequency. The potential of the lunar gravitational-tidal
action involves components with the diurnal period and
six-year modulation [2—6] caused by the precession of
its orbit. Taking into account the annual motion of the
barycenter of the Earth-Moon system, the projections

AKULENKO et al.

of the force moment onto the Earth-fixed axes can be
represented in the following form similar to M‘;"q :

M} = [Qpcos(¢ —1) —Q,sin(¢ )] cosB sind,
Mg" = [Qpsin(¢ —1) + Qqcos(¢ —1)] cosB sinb.

Here, ¢ isthe angle defined according to Eq. (3), | isthe
average longitude of the Moon, and Q,, , are the com-
ponents of the tidal force moment in the barycentric
rotating coordinate system. They are expressed interms

of unknown gravitational-tidal coefficients X}, and
the measurable angle U, of the lunar—solar precession

as

Qp = X';JACOSQJM’ X’xq = X"\:q((l)—|),
Qq = Xq COSWy, Wy = Py + Qy.

Here, py is the average longitude of the perigee of
the Moon’s orbit and Q,, isthe longitude of the ascend-
ing node of the Maon. The periods of varying py and
Q,, are equal to 8.85 and 18.61 yr, respectively. The
angular variable |, is representable as

(6)

2 . 2n 2m
885 1861 6.00' (7)

WS, = const,

— 0 —
Py = OuT+Py, Wy =

where T ismeasured in years.

The substitution of Egs. (3), (6), and (7) into Eq. (5)
yields the multifrequency expressions for M'F\)’!q with
significantly different periods that are close to day,
year, and six years. This circumstance allows both the

application of the asymptotic methods of the separation
of motions and averaging of the corresponding coeffi-

cients X';!q cos(¢p — /) and X',\J/!q sin(¢ — /) with respect
to the fast phase ¢ — 1.

Asaresult, we obtain the following equations of the
pole oscillations under the action of the force moments
given by Egs. (5) of form (4)

p+Ng+aop = pycosa,

a=v—(Py+p),

8
Hp o B = const. ®

g—Np+a0q = p4cosa,

The quasi-constant parameters W, , and B are
expressed in terms of the above average coefficients

X',fq. In Egs. (8), similar terms with a phase of v +
(Y + B) arergjected, and dissipative termswith a coef-
ficient of o are introduced. This is fundamentaly
important for the reported procedure of developing the
gravitational-tidal model of oscillations with the Chan-
dler period T,. According to the spectral-analysis data
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and calculations, T, is estimated as T, = 410-440 d
(average value T, =433 £ 2 d); i.e., the coefficient N of
the frequency of the natural nutations is equal to N =
0.89-0.83 (average value N = 0.845-0.850). The fre-
guency N of natural oscillations of system (8) is inde-
pendent of aquite small o value. It should be taken into
account due to the resonant action of the gravitational-

force moments with a phase of o = gT + a®and afre-

guency of y=0.833. Termsrejected in Egs. (8) havethe
same amplitude and phase varying with a frequency of

g = 1.17, which is far from eigenvalue N. The ampli-

tudes of steady-state oscillations with the indicated fre-
guencies are significantly different (by two orders of
magnitude).

The desired quasi-stationary solution of system (8)
has the form

P, = d(a°cosa +a’sina),

—1 C S - (9)
Jen = d (b cosa + b’sina),
where the coefficients d, a> S, and b® S are defined in the
standard manner. The structural properties of the model
given by Egs. (5)—(8) are manifested approximately for
0 = N -y and o vaues much smaller than N and v,
respectively. In this case, we obtain the expressions

a’=2N*(op, +Bl,), a’=2N(3p, — O}y),

(10)
b°=-a°, b°=a% d=4N*(3*+0c?).

The amplitude of the steady-state oscillations have
small modulation with a period of about 0.6 yr corre-
sponding to afrequency of 2y =1.7, which isexplicitly
observed on the spectral-density line [1]. In the first
approximation in & and o, the amplitude Ay, of the
oscillations with a frequency of y close to the Chandler
frequency is estimated as

Ao = DG+ Go= 3005+ 1) (8 + 0. ()

According to Egs. (99«11), the components and
amplitude of the oscillations are highly sensitive to
variationsin the frequency difference 6 and dissipation
factor o. Structural property (10) of the forced oscilla-
tions is similar to that determined previously for the
model of the free oscillations with the Chandler fre-
guency, aswell asfor annual nutations. Thisproperty is
clearly corroborated [8, 9] by the independent statisti-
cal processing of the measurement data and solution to
the problem of the model identification, i.e., the deter-

c, S bc,s

mination of unknown coefficients aT and e by the

least squares method [10]. Moreover, the amplitude
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changesin dependence of the composition of used mea-
surements—the length, number of points, and position
of theinterval of |ERS data on the time axis.

5. We present the results of numerical simulation of
the pole motion on the basis of linear equations with
additive entry of unknown perturbing actions—quasi-
static, annual (4), and Chandler (8). The introduced
parameters are assumed to be constant over short time
intervals (several years). However, the model must be
refined for long time intervals of about 10-20 yr or
longer: interpolation errors of the quasi-stationary
model can be partially compensated by introducing
secular terms. The developed theoretical model has
restrictions in the accuracy of the approximation of the
process and duration of the intervals, which are deter-
mined by numerical simulation using the measurement
data. The duration of the forecast and its accuracy are
significantly determined by the indicated factors.

We present the results of calculations based on a
simplified procedure of the least squares method [10].
It isapplied to variables x(T) and y(T) independently in
the form of the 6D approximations

x(1) = (& f(1), y(1) = (n, £(1)),

£= €88 N = (MuN2-ne) (g
f(1) = (L, T, cos2nNT, Sin27iNT, cos2TtT, sin211)’,

N = 0.845-0.850.

The 6D vectors & and n must be determined. It is of
interest to analyze the efficiency of interpolation and
forecast of the pole motion in avery simple mathemat-
ical model given by Egs. (12) with the use of the known
daily IERS data[1].

In 2001, we performed the optimum interpol ation of
the 1994-2000 observation data [7]. The following
optimum parameters &* and n* of model (12) and rms
deviations g, and o, are obtained:

* = (0.039, 0.0001, 0.015, 0.161,—0.046,—0.076)T,

o, = 0.024; (13)

n* = (0.334, 0.0005, 0.162,—-0.014,-0.068, O.O43)T,
o, = 0.025.

A biannual forecast of the pole motion (for 2001 and
2002) was given using the interpolation results. The
dashed line in Fig. 1 is the theoretical (x*, y*) curve,
which for convenience is plotted as two annual seg-
ments (2001 and 2002). The solid lines are parts of the
experimental curve corresponding to the IERS data
Comparison of the measured trgjectory of the pole
motion with the theoretical trgjectory given by
Egs. (12) and (13) shows that the developed model is
consistent with the observation data.
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Fig. 1. (Dashed line) Forecast of the Earth’s-pole motion for 2001 and 2002 and (solid line) the IERS data. The points mark the

beginning and end of ayear.
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Fig. 2. (Line) Interpolation and forecast of the components of the oscillations of the Earth’s pole for 2004 and 2005 as obtained

using (points) 19962003 |ERS data.

Using the operative IERS data, the Washington
Naval Observatory forecasts pole motion for 100—
150 days (IERS, EOP Product Center, http://hpi-
ers.obspm.fr/eoppc/eop/eopc04/eopcO4-xy.gif). The
model and procedure accepted by IERS provide an
inaccurate and unstable forecast that requires weekly
correction.

Figure 2 shows the interpolation of the observed
process and a biannual forecast (up to the end of 2005)
of pole oscillations. This interpolation and forecast are
based on eight-year |ERS data (1996-2003). The fol-

lowing optimum parameters £* and n* and rms devia-

tions o, and o, have been obtained:
&* = (0.0314, 0.0027, —0.1347, —0.0596,

~0.0494,-0.0741)", o, = 0.0175;
n* = (0.3315, 0.001, —0.0613, 0.1341,

-0.0679, 0.0426)", o, = 0.0175.

Comparison of the components of the vectors &*
and n* given by Egs. (14) shows that the approximate

DOKLADY PHYSICS Vol.50 No.2 2005
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equalities characterizing the properties of the model are
valid.
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Through an Inflexible Circular Cylindrical Die
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Analytical solutions to similar problems have been
found in [1, 2] for the case of viscoplastic flows of a
Shvedov-Bingham material. In this paper, we solve the
problem, taking into consideration the elastic proper-
ties of the material under examination.

1. We assume that a deformable materia initially
fillsinacircular cylindrical die of radiusRand length |.
The material isin equilibrium under the boundary con-
ditions

Gzz|r =0 = —po(t), Gzzl = 0, (1)

r
Z:u‘r=0 z
ul,.g = 0. 2)

Here, 0, isthe component of the stresstensor in the
cylindrical coordinates(r, 8, 2), withthezaxisalong the
die axis; u= u,r) isthe only nonzero component of the
displacement vector; and p,(t) is the applied pressure.
The initial time of the forcing process coincides with
the start of the plastic flow at the boundary r = R. Both
the stress and strain distributions, as well as the initial
moment, are determined by the properties of the mate-
rial. The material is treated as incompressible, and its
viscosity is manifested only in the course of the plastic
flow. Following [3, 4], we describe the elastic proper-
ties of the material by the tensors in the rectangular
coordinates:

1
dij = E(ui,j+uj,i_uk,iuk,j)
_ 1
= §; TP _éeikekj — € Pyj — Pi€ T €k PrsCs
ow
0 = _péij'l'é_d'__k(akj_dej) for p; =0,

3)
ow
0 = _paij+£(6kj_ekj) for p;#0,
1k
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Russian Academy of Sciences,
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W = —2ul; —pl, + bl + (b—p)l,1,-813,
I, = dw, 12 = dikdkj-

Here, d; istheAlmansi strain tensor with reversible and
irreversible components g; and p;, respectively; g is
the stress tensor; p is the hydrostatic pressure; and
W(,, I,) isthe elastic potential. The potential Wiswrit-
tenin Eq. (3) for the case of p; = 0. If p; # 0, the elastic
potential depends on the invariants J; and J, of the

reversible strain tensor g; EJI = 6k — %estets, J, =685 —

€38¢Es+ % esquemem%. We choosetheinvariants J, and

J, such that the Murnaghan formula with p; # 0 in the
limit of zero plastic strains reduces to the correspond-
ing correct expression. The form of W(I,, |,) given
above is the Taylor series expansion of this formulain
the neighborhood of the free state under the condition
of antiplane motion [5]. We take theload functioninthe
form

|01 —nel - (o;-nef)| = 2k @

as the plastic potential. Here, o; and €/ are the funda-
mental eigenvalues of the stress tensor and the plastic
strain rate tensor, respectively; n is the coefficient of
viscosity; and k is the yield stress. Expression (4) is a
generalization of the known Treska plastic-flow condi-
tion to viscoplastic flows. According to [3, 4], the plas-

tic strain rate tensor €]} is defined as a source in the
transport equation for theirreversible strains:

dp;;
d_t] = eiF} — Pislsj — pisezj — I Psj _egi Psj>
_1
rj = 5(Vij=Vvii) + Fiy(ea &), )
1 u;
&j = é(vi,j+vj,i)1 Vi = —a't'l+vjui,j-

The skew-symmetric tensor F;; was defined in [3, 4].

1028-3358/05/5002-0112$26.00 © 2005 Pleiades Publishing, Inc.
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The material remainsin elastic equilibrium until the
applied pressure reaches the value p, = pg . At this

value, condition (4) with zero € is satisfied at the

boundary r = R. The equilibrium equations are solved
in the cylindrical coordinates under boundary condi-
tions (1) with regard to Egs. (3) and (4). The parameters
evaluated for the stress—strain state under consideration
take the form

k _ . _
u= ﬁ(R—rle), p: = 2kIR™,

2kR™(z=1)=K°u™, o,, = —krR™, (6)

Oy = Ogg

0,, = 2kR™(z=1) + Kp (r’R*-1).

For the sake of simplicity, only the dominant nonlinear
terms are written in both Egs. (6) and following expres-
sions.

2. The development of the plastic flow is determined
by load pressure p,(t). At any time, the plastic regionis
bounded by cylindrical surfaces r (t) <r < R. In the
regionr <r(t), the strainsremain reversible. The mov-
ing boundary r(t) serves as an interface between the
elastic and plastic regions. Neglecting inertial forces,
we solve the equilibrium equations in the cylindrical
coordinates in region 0 < r < r(t) of zero irreversible
strains. As aresult, we arrive at the equations

p(t) = cy(tyz—EER(tyr2 + cy(t),
81

()

TOLE & 00).

4p

_cy()r’
- o

tCy(t), v = vy (r) =
Here, ¢, ¢,, and ¢; are unknown functions of time and
the point stands for the derivative with respect to time.
These functions will be found from the continuity con-
dition at the boundary r = r,(t) of plastoelastic strains.

It is worth noting that, according to the first of
Egs. (3), the elastic-strain tensor g; does not coincide
with the Almans strain tensor even in the case of zero
irreversible strains (p;; = 0). The components of the
Almansi tensor satisfy the relations

1 1
drr = err_éerzz = _éui’
1 1
dzz = ezz_éerzz =0, drz = 6; = éu,rv (®)
€r = _gerzzv €, = %erZZ'

Thereversible strains e,,, e,,, and e, describe the defor-
mation field in the plastic region. At the same time, the
DOKLADY PHYSICS  Vol. 50
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stressin thisregion must satisfy plasticity condition (4),
which can be rewritten in the form

f(07) = o—(k+nel)" = 0. (9
Therefore,

o,, = —k—neb,. (10)

Thus, the associated plastic-flow rule si”j = % isvalid

if A =—¢P (k+neh) L

For the stress to be continuous at the boundary of
plastoelastic strains, reversible strains must be continu-
ous; therefore, the last two of Egs. (8) must be satisfied
in the plastic region. In this case, it follows from Mur-
naghan formula (3) for p; # 0 that

Oy = Ogg = —p1—2(p+b)er22,

Oz = _pl_z(b_u)erzz’ (11)

Oz = zuerz-

As follows from the kinematics of the motion under

consideration, the component €, should be afunction
of the only variabler. Therefore, the stress g,, depends

only onr. In this case, it follows from the equilibrium
equations

-1
0-rz,r + 0-zz,z"' r o, = O,
. Y (12)
0-rr,r + O-rLz +r (Grr _099) -

that 0, 0,,, and Ogg are linear functions of z Solving
Egs. (12), wefind

=1
9z = S (13)
and, with regard to Egs. (10) and (13),
p _ C(t) Kk
2 = ———r——. 14
on ' h (14)

In the case under consideration, it followsfrom Egs. (3)
and (5) that

drz =€t Py

dUr der Bjerz pl:l
—_ = = +

a - Zar C cOq e

Taking into account the boundary condition v|,_g =0
and the continuity condition for displacements at the

V,r = ZSTZ =
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plastoel astic boundary, we obtain

v = rfa(t)  ca(t)y
O 4u Zu O

(rZ—RZ)—Zn—k(r—R),

_ fa(t) _es(t 2k
u = DZ_H_Z_qD(rZ_RZ)_W(r_R)t’ (15)

cs(t) = J’c4(t)dt.

Joining the stress, strain, and strain rate tensors at the
boundary r =r(t), we arrive at the solution
(R, cs(t)

4n 2n

ca(t) = cy(t), rq(t) = —2ktcs (t).

Finally, the functionsc,(t) and c,(t) are found from con-
ditions (1):

Ca(t) = —po(t)1 ™, ca(t) = po(t)(L+cy(t)17).

If the pressure drop tends to a constant, the elastic
region becomes fixed and moves as awhole with acon-
stant velocity.

G(t) = — (#—@—%m—mn
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In this paper, asolution is obtained in compl ete for-
mulation of the problem on heat-and-masstransfer in a
flowing fluid film. Solutions are presented for both nat-
ural and excited waves. Investigations are carried out
for basic regimes of mass transfer in fluid films, and
optimum regimes corresponding to the mass-transfer
maximum are determined for excited waves.

The investigation of heat-and-mass transfer in fluid
films is an important problem of hydromechanics.
Large contact-surface area aong with low specific
fluid-flow rate determine the significant role of fluid
films in studies of interphase heat-and-mass transfer.
An additional intensification in the transfer process
occurs due to wave formation. As follows from the
experimental dataof [1, 2], wave regimes are capabl e of
enhancing mass transfer by 100 to 400%. All theoreti-
cal studies of mass-transfer processes are based on sim-
plified equations for heat-and-mass transfer and on
analysis of both a thin boundary concentration layer
and other limiting cases [3, 4]. However, these simpli-
fications result in the appearance of a singularity that
prevents a solution being obtained for many regimes
that are optimum for the mass transfer.

1. We anadyze the problem associated with the
absorption of dightly soluble gas in athin film of vis-
cous incompressible fluid flowing over a vertical wall.
The film surface is an interface between the liquid and
gas phases. For poorly soluble gases, the basic diffusion
resistanceis concentrated in theliquid phase; therefore,
the diffusion process in the gas phase can be ignored.

Under the given assumptions, the diffusion is
described by the equation

2 2
oc, e, 0 _ 1k, o'g

ot ox dy  Pelpe gy

Here, (u, v) are the components of the velocity vector;
Pe = Re x Sc is the Peclet number (Re and Sc are the
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Reynolds and Schmidt numbers, respectively); ¢ =

Cyxy—Cop . . : .
=¥ js the normalized concentration, where ¢, is
Ch—Co
the concentration at the point (x, y); and ¢, and ¢, arethe
initial and surface concentrations, respectively.

The boundary conditions are

_ o _n 9C_
y=h(xt):c=1, y=0: ay—O,
x=0:¢c=0, x=L:a—C=O.

ox

The hydrodynamics of the process is described by
the set of Kapitza—Shkadov equations averaged over
the normal to the flow having the semi-parabolic veloc-
ity profile:

09,60d _ \yendh, 30,_ a0
ot * 50xh w ax° * Re hi)
@4_6_(:] =
ot 0x
The boundary conditions for these equations are
x=0:h=1, q=1+F({);
_oh oo @h
X—L aX - 0, aXZ - 01

h
whereq= J'udy isthelocal flow, Weisthe Weber num-

0
ber, and F(t) models disturbances at the input. The
vel ocity-vector components have the form

y = 39y _1nh

y
_ _rau
nh 2D VT e
0

We used two types of disturbances:
(i) for stimulated oscillations,

F(t) = ecoswt,

where € and w are the amplitude and frequency of oscil-
lations, respectively; and

1028-3358/05/5002-0115$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Mass-transfer intensification by natural and excited
waves. Denotations Re, Sh, and Sc correspond to Reynolds,
Sherwood and Schmidt numbers, respectively.

(i) for natural waves,
F(t) = J’Fk(co)e_i‘*”dw, Fo(~w) = F (0)*.

Here, the asterisk denotes the complex conjugation,
F(w) = |FJ€®, |F ] = const, and 6 is a random quantity
uniformly distributed within the segment [0, 217.

The problem was solved numerically using afinite-
difference scheme of second-order accuracy. The Sher-
wood number

Pe, C —Cy
Sh, = —|n=—"2=
LT L c—c,

was calculated on the basis of the mean-logarithmic
concentration difference, where ¢, is the concentration
averaged over the flow rate at a distance L from the
input.

2. The mass transfer was calculated for natural
waves that developed as a result of random input noise
for stimulated waves of the first family (i.e., for those
close to sine-shaped waves), and for stimulated waves
of the second family (chains of solitary waves) [5].

The natural waves arose as a result of the develop-
ment of arandom noise at the operation segment input.
The degree of consistency with experimental data
obtained was quite high (Fig. 1).

Regular two-dimensional waves were produced by
periodic oscillations of the input fluid-flow rate; Quasi-
stationary periodic waves of a given period were rap-
idly (i.e., at adistance of one wavelength) formed from
these oscillations. The Sherwood number was obtained
asafunction of both the wave frequency and oscillation
amplitude. Oscillation amplitude affects the stabiliza-
tion rate of regular waves. An increase in the amplitude

RASTATURIN et al.

decreases the length of the initial segment, hence, its
effect.

For each Reynolds number, there is a wave fre-
guency for which the maximum mass-transfer factor is
attained; this frequency for all Reynolds numbers is
related to the third family (solitary waves). The flow
regime for waves at this frequency is the optimum
regime for a given Reynolds number (see Fig. 1).

One can identify two basic mass-transfer regimes
(Fig. 2).

(a) For wave velacities exceeding the surface fluid-
flow velocity, gas dissolution is determined both by the
diffusion process and by the velocity component nor-
mal to the fluid surface. The fluid flow carries away the
dissolved substance from wave hollows (in which the
wave velocity attains its minimum) to wave crests in
which the flow rate is ultimately close to the wave
velocity. Here, the accumulation of the dissolved sub-
stance occurs. The maximum and minimum values of
the flow through the surface are attained in wave hol-
lows and wave crests, respectively. The magnitude of
the mass transfer depends on the amplitude and veloc-
ity of the waves.

(b) There are points at the interface for which the
wave velocity islower than the surface flow velocity. In
this case, there exist points on the wave surface at
which the flow velocity on the surface equals the wave
velocity (rest points). If so, the upper layers saturated
with gas are carried away under the wave crest, which
resultsin displacement of the saturated solution deepin
the fluid film. Thus, the dissolved substanceis not accu-
mulated at the surface, which would prevent dissolu-
tion, but is delivered deep in the flow.

On thereverse side of awave, there exists apoint at
which fluid isdrawn from the wave depth to the surface.
In this case, low-concentration zones are formed at the
surface, which sharply increases the mass transfer at
these domains. In contrast to the case (a), where the
flow through the surface rapidly decreases with therise
in the concentration boundary layer, the decrease in the
flow rate occurs much slower, until the wave crests are
saturated with the dissolved gas.

The larger the amount of saturated solution that
arrives at the domain under the wave crest, the greater
the increase in the mass transfer; i.e., the lower the
points are located at which the flow from the surface
enters deep into the film, the higher the wave ampli-
tude. In the case of displacement of the points to the
wave vertex, the given regime is transformed into
regime (a).

(c) For the regime of solitary waves, there exist in
wave crests vortex mations of the fluid, as observed in
the second regime. Here, the plane region existing
between the solitary waves additionally affects the
mass transfer. The concentration layer is mixed when
waves pass by, and the boundary layer again begins to
form in the film. However, as distinct from the forma-
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Fig. 2. Basic mass-transfer regimes.

tion of the boundary layer near the input, the gas con-
centration in the film is now nonzero.

As follows from our calculations, the mass-transfer
intensification factor elevates somewhat with a
decrease in the wave frequency and increase in the size
of the plane region between waves. However, when the
plane-region size is sufficiently high, the overall effect
of the solitary waves on the mass transfer becomes neg-
ligible. In this case, the mass transfer, on average, pro-
ceeds in nearly the same manner as in the case of a
wave-free flow. In other words, the mass-transfer inten-
sification factor tends to unity, as the wave frequency
tends to zero. Hence, a certain optimum wave fre-
guency must exist for which the mass-transfer maxi-
mum is attained, which is confirmed by our calcula-
tions.
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It is well known that a large percentage of techno-
logical accidents are caused by fatigue of metallic
structures. At the same time, the allowance for fatigue
in strength calculations is often incorrect. There are a
number of causes why this is so: defects of material,
deviations from standard composition, computational
problems, etc. In this study, we deal with a new phe-
nomenon associated with the strong dependence of
fatigue damages on magnetic-field intensity—an issue
that has previously been ignored. This phenomenon is
of interest from the standpoint of metal physics, is
important in technological applications, and represents
one of the manifestations of magnetoplastic effects
(MPEs).

In recent years, MPEs in crystals have attracted
much attention (see, for example, review [1]). In
numerous studies, phenomena such as macroscopic
plastic-flow rate, creep, yield point, and microhardness
were investigated. It has been found that dislocation
paths in silicon subjected to the action of a magnetic
field with the induction of 1 T were up two times
greater than those in the absence of the magnetic field
[2]. It should be noted that this effect was observed only
in silicon crystals with oxygen impurities that may be
paramagnetic. The basic materials for investigations of
MPEs have been NaCl crystals (often used to visually
observe dislocations), semiconductor crystals, and, far
more infrequently, polycrystals of metals. In [3], it was
established that, in the case of a concentrated load, the
process of twinning is partly suppressed in bismuth
crystals subjected to the action of a magnetic field. The
authorsof [3] believe that thisfact testifiesto adecrease
in the mobility of partia twinning dislocations in the
presence of magnetic field. In this case, the twin length
decreased by 30%, and the microhardnessincreased by
10%. The basic difficulty in explaining MPEs is the
weak interaction between a point defect possessing a
spin and the magnetic field. For example, in the field of
1 T, the corresponding interaction energy U, equals

Ingtitute of Information Technologies,
Russian Research Center Kurchatov Institute,
pl. Kurchatova 1, Moscow, 123182 Russia

e-mail: iitdir@mail.ru; msha@bk.ru

10“ eV, i.e, it is much lower than the thermal-fluctua-
tion energy (3 x 102 eV). Therefore, it is assumed that
M PEs have a dynamic character and that the magnetic
field affects both dislocation motion and dislocation—
stopper interaction.

Based on the above reasoning, we supposed that the
magnetic field also affects other phenomena associated
with dislocation motion. In our opinion, metal fatigue,
of al phenomena, may be the most sensitive to the
magnetic field. Metal fatigue is a phenomenon related
to the generation and motion of dislocations under the
action of mechanical stresses. Didlocations can stop on
stoppers, i.e., on high potential barriers associated with
lattice defects. Being concentrated in a certain region,
the dislocations form clusters that can later transform
into crack nuclei along which metal fatigue failure may
occur. It is clear that, insofar as the dislocation—defect
interaction depends on magnetic field, the entire pattern
of metal fatigue may dramatically changein amagnetic
field.

It seems likely that weakening the interaction
between dislocations and a paramagnetic impurity must
result in alonger dislocation path and alarger concen-
tration of the dislocations at stopping points. As a
result, the fatigue damages under deformation must be
accumulated for a shorter time, and afailure of sample
must also occur more often. However, due to the
unknown structure of paramagnetic defects and the
complex character of dislocation—defect interaction, it
is possible to evaluate neither the magnitude of the
effect nor even its sign. Nevertheless, we may assume
that fatigue phenomena are solely responsible for the
MPE, which must be well pronounced because the dis-
location accumulation process depends on a magnetic
field.

In this study, we investigated the low-cycle fatigue
of acylindrical wire under bending deformation in both
the presence and absence of magnetic field. We choose
the wire because its uniformity across the diameter
along the entire length of the sample was provided by
the production technology. Cyclic bending was per-
formed through an angle of 180° along aguide 7 mmin
diameter. The magnetic field was produced by two per-
manent magnets with dimensions of 60 x 32 x 17 mm?,;
there was a 3-mm gap between the magnets. The mag-
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Effect of the magnetic field on the number of cycles before failure of a sample

Number of cycles before failure

Material of sample gﬁnﬁt%ﬂ]
PIE, with magnetic field without magnetic field
Unannealed copper 15 180, 180, 156, 209, 119, 211 75, 111, 118, 106, 116

Unannealed copper in the polyvinyl 25
chloride insulation

2.5 22,23,21,25,22,24
123, 72, 86, 138, 100

33, 24, 24, 23, 30, 39, 23
127,114, 90, 118, 64

Annealed copper* 25 35, 29, 40, 29, 28, 31, 36 44,41, 42, 43, 34, 39
Aluminum 15 7,7,6,8,7,7 6,6,7,6,7,5
Tungsten—rhenium wire 15 7,17,4,16,1 15,21,1,1,7,12
Lead** 30x1 10, 14, 12, 15, 13, 22 20, 18, 27, 27, 29, 20
E110 zirconium 3.0 23,22,23 56, 53, 52

Brass 2.0 78, 88, 89, 84, 96 160, 164, 147, 154

* Annealing: heating to 700°C for 50 min, holding for 30 min followed by cooling to room temperature in afurnace for about 6 h.

** Stripe-shaped samples; the cross-section size is indicated.

netic field attaining 0.79 T was measured by a Sh1-8
magnetometer. In our experiment, we determined the
number of deformation cycles before failure for wires
made of different metals. Furthermore, we performed
experiments in the absence of the magnetic field under
similar conditions (i.e., with the same angle and bend-
ing radius). The results obtained are presented in the
table. As seen there, the effect of the magnetic field on
metal fatigue is noticeable.

For the copper wire, we obtained rather contradic-
tory results. In the first series of our experiments, the
samplesfailed more rapidly upon cycling without mag-
netic field, whereas in the remaining series, the situa-
tion was reversed. In addition, the results obtained are
characterized by a considerable spread. However,
despite this spread, the effect of the magnetic field is
noticeable.

To determine the role of the adsorbed oxygen and
didocation structure appearing over time in copper
samples, the copper wires were subjected to annealing.
After annealing, the spread in the results had dightly
decreased, but the effect also existed.

For aluminum samples, there was no significant dif-
ference between the numbers of cyclesbefore failurein
both the presence and the absence of the magnetic field.

For the tungsten—henium wire, in addition to the
high spread of the results, a considerable inhomogene-
ity was observed in the samples. Therefore, the results
obtained cannot confirm or deny the expected effect.

The lead-based samples (in contrast to others, they
had been made stripe-shaped) failed much morerapidly
and with rather high reproducibility in the presence of
magnetic field.

Samples made of E110 zirconium aloy failed much
more rapidly in the magnetic field. In this case, the
number of cyclesbeforefailureissmaller by afactor of
two compared to the case in which the field is absent.
The spread of data obtained is low. However, because
the number of the samples was limited, we managed to
perform only three tests. Nevertheless, the results
obtained demongtrate that the magnetic field essentially
affected the fatigue characteristics of the given materia.
For brass samples, a significant decrease in the number
of cyclesbeforefailure was observed if the samples had
been loaded in the presence of magnetic field. The
number of cycles before failure decreased by afactor of
approximately two. The spread of results obtained for
the brass samplesisthe lowest among all tested materi-
als (with respect to the number of cycles beforefailure,
the spread in the results is about 10%).

In addition to tests aimed at low-cycle fatigue, the
brass samples were tested with an Instron 4301 tensile-
testing machine. We measured the tensile diagrams in
both the presence and absence of the magnetic field. As
is seen in the figure, the curve shapes are different for
these cases, i.e., the magnetic field al so affects mechan-
ical characteristics of the materials (changes attain
about 10%).

Thus, the rather strong effect of the magnetic field
on fatigue failure in series of metals is experimentally
demonstrated. It is important to note that fatigue is
much more sensitive to the magnetic field than are other
mechanical properties of the materials (see the figure).

We now formulate the conditions under which the
effect of the magnetic field on the mechanical proper-
ties of metals can be observed. First, a sample must be
in a stressed state that stimulates dislocations into
motion. This stress may be caused both by an applied
2005
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Stress—strain diagram for brass samples: (1) without mag-
netic field and (2) with magnetic field.

external load and by the residual stresses that appear in
the course of preparing samples. Second, the existence
of paramagnetic impuritiesis necessary; however, their
amount can be very small, since the path passed by a
didocation is rather long (hundreds and thousands of
interatomic distances). Therefore, it is sufficient to have
a background impurity concentration (see the experi-
ments with the copper wire).

Thus, the effect observed may be of interest not only
from the standpoint of metal physics, but also from that
of technical applications. First, we note large-scale

DOKLADY PHYSICS Vol.50 No.2 2005

thermonuclear facilities, in which a large number of
structural elements undergoing cyclic loads are placed
into a magnetic field with the induction exceeding 1 T.
The other line of research in which high magnetic fields
are applied is the use of large-scale detectors in high-
energy physics experiments.

The radiation hardness of materials, which is asso-
ciated with dislocation motions such as creep and
embrittlement, seems a so to be dependent on the mag-
netic field.

Theresults obtained indicate that it is appropriate to
perform experiments and, probably, to revise the calcu-
lations for materials and structures used in large-scale
facilities (for example, inthe I TER thermonuclear reac-
tor and ATLAS detector for the accelerator under con-
struction at CERN) in which magnetic fieldsof 45T
occupy a large volume so that similar effects can be
much stronger than those in the experiments described
above.
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In [1] various types of tornado-like flows arising
above a heated rotating disk in the quiescent-air atmo-
sphere were studied and an illustrating diagram was
also presented. In what follows, we will refer to one of
these types, namely a sole tornado-like vortex, as a
thermal tornado.

In [2], different methods for physically modeling
fire tornados were proposed. It was shown that forma-
tion of fire tornados depends neither on the method of
their production nor the nature of combustible material.
This phenomenon is determined rather by both the den-
sity of heat flow arising as a result of combustion and
the angular velocity (or frequency w = 1.1-1.3 Hz) of
rotation of the cylinder into which the combustible sub-
stanceis placed.

The goals of the present paper are to present a com-
parative study of thermal and fire tornados, to under-
stand conditions causing the appearance of fire torna-
dos, toidentify their types, and to analyze their stability
as afunction of both the level of combustible liquid in
the cylinder and gas-flow properties.

In this study, ethyl alcohol was used as a combusti-
ble liquid. Two methods were employed for swirling
combustible liquid and combustion products. We
implemented swirling from below by the rotation of a
substrate (cylindrical vessel) and from above by means
of afan.

Our setup consisted of an Mi-22 electric hester, a
base, an electric-current voltage regulator, and a circu-
lar steel disk 0.4 min diameter. The combustible liquid
was placed on a cylindrical steel substrate fixed to the
disk. In different experiments, the diameter and height
of the cylinder were (6, 7, 10, 12, or 20) x 102 m and
(2, 6, or 12) x 102 m, respectively.
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A thermocouple and a thermal-flux sensor, whose
signals had been registered by a KSP-4 recorder, were
used as measuring tools. The shaft rotation frequency
of an electric motor with the disk was specified by the
voltage regulator and varied within the limits of
0-20 Hz. In addition, as distinct from the experiment
performed in [2], in a number of cases, an immobile
stedl circular plate 2 x 102 m thick and 0.5 min diam-
eter was placed at heights of 0.4, 0.45, and 0.5 m above
the rotating substrate. In the experiments, the tempera-
ture of this plate remained amost invariable, which
allowed usto model the action of the inversion layer of
atmosphere temperature on afire tornado.

According to established methods for studies of
state parameters, which had been applied in [2], we
used in the present work an AGA-780 SW infrared
imager with a registration frequency of 25 frames per
second and a hest-loss anemometer with a platinum-
wire diameter of 2 x 10° m and length of 6 x 10° m.
The height of the liquid layer in the cylinder varied
within arange of 0.02 mto 0.11 m.

Weinitially performed experimentsin which differ-
ent levels of ethyl alcohol were poured into the metallic
cylinder heated by an electric heater. It was found that
a decrease in the level of combustible liquid made it
possible to vary the rotational velocity from 1.1 to
4.3 Hz, at which a fire tornado arose. This result is
explained by the fact that the process of diffusion com-
bustion proceeds in the cases in which oxygen is suffi-
ciently delivered from the surface of aliquid fuel. It is
well known that with an increase in rotational velocity,
the free convexity of theliquid surfaceinthe cylindrical
vessal is more and more directed downward, therewith
parts of the liquid, which adjoin the vessel surface, are
situated higher than the quiescent-liquid level in the
basic volume. Therefore, diffusion combustion arisesin
the vicinity of the substrate walls. Upon formation of a
fire tornado, combustion shifts to the central region of
the vessel, since the delivery of oxygenisprovided asa
result of air suction from the environment. This suction
is explained by the fact that the pressure in the vortex
central part is lower than the pressure in the envi-
ronment.

1028-3358/05/5002-0066$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Fire tornado in free space (swirling from below).
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Fig. 2. Firetornado in the case of the presence of an obstacle

from above at a height H = 4 x 10t m (swirling from
below).
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Fig. 3. Combustion of ethyl acohol without swirling. Here,
asinFig. 4, (1) h=10"2mand (2) 1.5 x 102 m.

A photograph is shown in Fig. 1 of a free fire tor-
nado that was obtained as aresult of burning 0.05 kg of
ethyl acohol for the edge height (distance from the sur-
face of theliquid to the open upper boundary of the ves-
sel) of 0.08 m and the rotation frequency w=4Hz. The
velocities of gas-flow particles in the tornado, which
had been measured by method of observing lumines-
cent-particle tracks, attained 0.2-0.25 m s at a height
of 0.1 m reckoned from the substrate.

Figure 2 presents a photograph of atornado devel-
oped in aspace bounded from above. Asis seen, thefire
tornado takes the mushroom-like shape.

Variations in the geometric size of the fire tornado
in a space bounded from above at a height of 0.5 m
are showninthetable. Hereh, (i = 1, 2, 3) are heights
of fire-tornado cross sections, d; are their diameters,

DOKLADY PHYSICS Vol.50 No.2 2005
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Fig. 4. Gas temperature inside afire tornado in the case of
its swirling from below.

and g;,, and g;4 are the corresponding standard devia-
tions.

h, 1023 m 98.53 96.28 155.75
O, 103 m 9.5 117 30.45
d, 10°%m 60.01 66.36 104.20
Oig, 10°m 13.3 17.5 20.3

In Figs. 3 and 4, plots are shown illustrating varia-
tions of gas temperature at the flame axis for w =0 and
in the case of gas swirling from below, respectively.
Comparing these plots, we may conclude that swirling
from below results in elevating the temperature, which
can be explained by arise of the diffusion combustion
rate as aresult of an increase in the oxygen inflow rate.

It is of interest to clarify causes for the appearance
and existence of fire tornados. In [3], al examples of
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concentrated tornados known in the literature are given.
The authors of [3] indicate that these tornados corre-
spond to “such vortex motionsfor which the vorticity is
concentrated in spatially localized domains, exhibiting
the localization in at least one direction.” Twelve types
of such phenomena and their diagrams are givenin [3].
Among them a phenomenon described in detail in[1] is
mentioned. However, there is no information on spa
tially localized structures such as fire tornados. These
structures can undoubtedly be related to a specific class
of concentrated columnar tornados and are reminiscent
of Rankine vortices and one-dimensional columnar tor-
nados[3]. From aphysical standpoint, the phenomenon
of fire tornados are like vortex filaments caused by
ascending flows above an evaporating liquid heated
from below [4]. At the same time, a fire tornado is a
more complicated physical phenomenon that includes
(in conditions of a quasi-steady process) the following
features.

Rotation of aliquid fuel and itsignition in thevicin-
ity of cylinder walls.

Evaporation of aliquid fuel under the action of radi-
ant thermal flow from the combustion zone and forma-
tion of vortex filaments.

Air suction by the tornado from the environment to
the combustion zone, since the pressure at the tornado
axisremains|ower than air pressurein the environment,
which is, in turn, aresult of the convection caused by
pressure difference and diffusion.

Oxidizer inflow to the combustion zone.

Energy release in the combustion zone (the burning
of vortex filaments of the evaporated liquid) and forma-
tion of afire tornado.

Ascending (turbulent flow) of combustion products
as aresult of the buoyancy force.

Afterburning of gaseous-fuel vaporsin the tornado
above the combustion zone.

Local mechanical equilibrium of forces acting on
the tornado (the centrifugal force arising by virtue of
the pressure difference between the tornado interior and
the external medium and buoyancy force) in the system
involving the substrate, the combustion zone, the con-
centrated vortex, and the environment.

Thus, the fire tornado, as distinct from the thermal
variety, isacomplicated air-thermochemical phenome-
non. For its mathematical modeling, it is appropriateto
apply methods for substituting and solving conjugate
problems of the mechanics of reacting media[5].

Based on the conditions of the local mechanical
equilibrium of atornado, as well as arotating platform
and the experimental results obtained in [1], we have
managed to derive a semi-empirical formula for the
critical (equilibrium) platform velacity at which afire
tornado arises:

_ 2Ty =T
W = a‘D—Te g o

1,2. (1)

Here wisthe platform rotation vel ocity; r, and h are the
radius and height of the columnar firetornado; Tjisthe

temperature inside the fire tornado; T, is the environ-
mental temperature; and a, and a, are empirical con-
stants corresponding to therma and fire tornados,
respectively.

Expression (1) can be rewritten in the dimensionless
form

Ro:_vy_:]_, W = a lz_g_bf[f_:_-[e_), )
roWw Te

where W is the characteristic floating-up velocity and
Ro isthe Rossby criterion number [1].

In accordance with [1], formula (2) represents the
condition for the appearance of thermal tornados. This
expression corresponds to the condition of local equi-
libriumandis, at the sametime, the necessary condition
of fire-tornado formation.

Analyzing both these formul as and the experimental
data presented in [1], we arrive at the conclusion that
the rotation velocity of atornado decreases asitsradius
increases and rises asits height increases.
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Surface-active substances (SAS) and triblock copol-
ymers are objects composed of structurally compli-
cated molecules that clearly demonstrate the orienta-
tion interaction between themselves and an ambient
solution. Thisleadsto the appearance of both regular and
irregular structures, such as molecular complexes and
associations. micelles, vesicles, liquid crystals, etc. [1].
The properties of these systems near stability pointsare
determined by the finite sizes of arising structures. In
the vicinity of phase-transition points, the universal
properties of these objects are violated and features
characteristic of objects of each class begin to manifest
themselves.

Structural-association processes are collective and
are characterized by rather long mean lifetimes and
mean reconstruction times of corresponding structures.
The use of low-frequency precision acoustical technol-
ogy makes it possible to investigate self-organization
processes in solutions.

In this paper, we describe results of studies on the
ability of triblock copolymersto form premicellar asso-
ciations in a water solution. The investigations were
performed by a low-frequency acoustical method over
a wide range of temperatures and concentrations. An
advantage of using triblock copolymers is that it pro-
vides the possibility of approaching the critical point of

micelle production over temperature (CMT) and con-
centration (CMC). In order to investigate sound attenu-
ation at low frequencies, a precision ultrasonic resona-
tor was devel oped intended to register the relaxation in
weakly absorbing copolymer solutions at low frequen-
cies. Water taken at atemperature of 25°C was used as
areference liquid. The ultrasonic resonator alowed us
to investigate the sound attenuation in weakly absorb-
ing liquids, in which it was previously impossible,
employing known methods, to measure this pheno-
menon.

There is but poor information in the literature on
processes that occur in the cases where SAS concentra-
tions are lower than the CMC [2-4]. This information
is limited to the possibility of description, e.g., of the
relaxation-frequency increase as aresult of several pro-
cesses that can occur under given conditions. Unfortu-
nately, the absence of an acceptable theory of premicel-
lar-association processes prevented calculation of the
Kinetic parameters and thermodynamic characteristics
of the suggested process. It was assumed that a weak
decrease in relaxation frequency within the region of
strong dilutions was contingent upon a decrease in
monomer concentrations.

The triblock copolymer PLURONIC PE6400
(BASF) with the macroscopic-chain structure

H(CH,-CH,-0),5-(CH,~CH(CH;)-0);~(CH,~CH,-0) ;H

(without additional purification) was chosen for our
experiments aimed at the observation of acoustica
relaxation at concentrations and temperatures of a
copolymer aqueous solution lower and higher than
CMC and CMT. Prior to its use, water was subjected to
thorough purifying and degassing. For any studied con-
centration, the interface between the micellar and free
states of the copolymer monomer was determined in
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accordance with the equation
t(CMT) =31.92(°C) — 8.22(°C) logx,

where x (wt %) isthe amount of acopolymer [5]. Aque-
ous solutions of the copolymer were studied at concen-
trationsof 0.55, 1, 3,4, 4.3,4.5,5.5,6,6.2,6.5,7, 8, 9,
and 10 wt % within a frequency range of 200 kHz to
500 MHz.

In the figure, experimental results are presented for

the dependence q

2 as a function of the frequency for

two copolymer concentrations at atemperature of 25°C.
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Sound attenuation (related to the frequency squared) as a
function of frequency for copolymer solutions at concentra-
tions of (1) 4 and (2) 6 wt %.

At temperatures lower than CMT and CMC, the sound
attenuation divided by the frequency squared hasavery
small value. However, it is dways larger than for pure
water at the same temperatures and it increases with the
copolymer concentration x. This behavior of the sound
attenuation indicates the existence of processes weakly
contributing to the sound attenuation in cases when
micellar aggregations are absent in the system. Similar
behavior was observed for ionogenic SASs that have
short alkyl chains, and such behavior was attributed to
the formation of premicellar aggregations [2]. The
other process that can contribute to the sound attenua-
tion spectrum is the monomolecul ar relaxation associ-

Parameters 1, A, and B as functions of the concentration in
the low-frequency relaxation region

Copolymer I, A, B,
conc\(,avr:tg/ittl on, ns 1085mt | 10°mt
2 226 5.2 31
3 237 7.7 37
4 255 9.3 45
4.5 277 10 47
55 400 14.3 65
6 253 14 68
6.2 218 16 74
7 189 31 115
8 172 42 128
9 159 50 157
10 153 64 180

ated with variation in the copolymer-chain conforma-
tion, which was observed in the copolymer solution[2].
The measurements performed for the concentrations of
0.55-1 wt % at 22°C have revealed the existence of a
single processonly. Asis seen from thefigure, at atem-
perature of 25°C, there exist two characteristic bends
corresponding to two different relaxation processes in
the 4-wt % solution. In order to determine the relax-
ation time, the data obtained were treated with the help
of the equation involving two relaxation times:

Z (1)
L1+ (an e

Here, A is the relaxation-process amplitude; T; is the
relaxation time; and B is the amplitude of the sound
background attenuation, which was obtained for the
frequency of 500 MHz. For the solution with the copol-
ymer content of 6 wt %, an eguation with three relax-
ation times was used.

Two relaxation regions are manifested in the acous-
tical spectra obtained: the first one extends up to
1.5 MHz and the second up to 40 MHz. The values of
A and T1; were abtained by the best-fit method using
experimental data and the cal culation results according
to Eqg. (1) (see table). Parameters of the experimental
spectra were found on the basis of a computer version
of anonlinear algorithm. The first relaxation region has
avery low amplitude A, and linearly increases with the
copolymer concentration. The second region has an
explicitly pronounced characteristic bend, and the
relaxation time for this process lieswithin the same fre-
guency range for al concentrations studied. Asis seen
from the figure, the relaxation time of the process is
independent of the concentration. A similar concentra-
tion—temperature behavior is characteristic of all mono-
molecular relaxation processes [6, 7]. Therefore, we
have attributed this behavior to the conformational
equilibria of atriblock-copolymer macromolecule.

In the concentration dependence of relaxation time,
two regions are manifested. The first one corresponds
to concentrations lower than CMC and is characterized
by a slow monatonic increase in the relaxation time.
The second region is located beyond the CMC and is
observed in the case of afurther increase in copolymer
concentration in the solution, which is accompanied by
amonotonic decrease in the relaxation time.

We now consider the first region in the concentra-
tion dependence of the acoustical relaxation time T,
which is apparently associated with the reaction of for-
mation and decomposition of dimers and with the cre-
ation from the dimers of aggregations composed of
copolymer molecules whose number exceeds two:

Ny +N; = Ny, (2)
N, +N, = Na. 3)
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Here, N; and N, are the numbers of copolymer mono-
mers and dimers, respectively, and N3 is the number of
aggregations in which the number of copolymer mole-
cules exceeds two. For solving reaction equation (3),
we need to know the equilibrium distribution of con-
centrations among different aggregations. Solution of
this as-yet unsolved problem will enable a complete
description of concentration dependences for the
acoustical parameters of premicellar solutions. In [1],
an eguation was derived that makes it possible to con-
nect the inverse-reaction rate constant and the relax-

ation time of premicellar aggregations: %1— ~0.5k. In
1

accordance with this expression, the constant of the
inversereactionis k ~ 1 x 109 s2,

We may conclude that the application of new preci-
sion low-frequency acoustical methods has allowed us
to discover relaxation processeswith avery small atten-
uation in the regions of lower concentrations compared
tothe CMC and CMT in copolymer water solutions and
to determine important kinetic parameters of relaxation
processes. Our investigations have shown that in copol-
ymer solutions, the relaxation time of structure-forma-
tion processes anomalously increases as the CMC and
CMT are approached. It has been found that in contrast
to segregating systems [1], times of relaxation pro-
cesses in micelle-forming triblock copolymers have
finite durations in the vicinity of the critical concentra-
tion of micelle formation.

DOKLADY PHYSICS Vol.50 No.2 2005

ACKNOWLEDGMENTS

The study was supported by the Science-and-Tech-
nology Center Foundation of Republic Uzbekistan and
by the NATO grant no. RIG 981193.

REFERENCES

1. P. K. Khabibullaev and A. A. Saidov, Phase Separation
in Soft Matter Physics. Micellar Solutions, Microemul-
sions, Critical Phenomena (Springer, Heidelberg, 2003),
Part B, p. 180.

2. P. K. Khabibullaev, E. V. Chertkov, and A. A. Saidov,
Colloids Surf. A, Phys. Eng. Asp. 168, 185 (2000).

3. A. W. Adar Douglas, V. C. Reinsborough, H. M. Tren-
holm, et al., Can. J. Chem. 56, 1162 (1976).

4, Z. S. Bakaeva, M. Zaitdinov, S. Z. Mirzaev, et al., in
10th APAM Topical Seminar and 3rd Conference” Mate-
rials of Sberia. Nanoscience and Technology” (Novosi-
birsk, 2003), p. 81.

5. P Alexandris and R. A. Hatton, Colloids Surface 96, 1
(1995).

6. S. Z. Mirzaev, P. K. Khabibullaev, A. A. Saidov, et al.,
J. Chem. Phys. 112, 1057 (2000).

7. S. Z. Mirzaev, P. K. Khabibullaev, V. S. Kononenko,
et al., J. Acoust. Soc. Am. 107, 585 (1998).

Translated by G. Merzon



Doklady Physics, Vol. 50, No. 2, 2005, pp. 72-76. Translated from Doklady Akademii Nauk, Vol. 400, No. 4, 2005, pp. 470-474.

Original Russian Text Copyright © 2005 by Shlensky.

TECHNICAL

PHYSICS

Conditions of the Attainable Superheating of the Surface
of Nonvolatile Condensed Systems upon Intense Heating

O. F. Shlensky
Presented by Academician V.V. Osiko June 21, 2004

Received September 9, 2004

The necessary conditions for the attainable super-
heating of volatile substances and their mixtures above
the temperature of the liquid—vapor equilibrium phase
transition are quite well studied [1, 2]. In particular, the
heating intensities necessary for approaching the upper
phase-state boundary are determined by detection of
the pressure dependence of the attainable superheating
temperatures T\(p). In thermal physics, the phase-state
boundary is determined by the condition of thermody-
namic stability, i.e., the zero second variation of one of
the thermodynamic potentials, e.g., G =0, where G is
the free Gibbs energy. At the stability boundary, the

9p and oT vanish, which makes it possi-
av ov

ble to calcul ate the parameter of the phase-state bound-
ary from the equation of state. The conditions for the
attainable superheating of nonvolatile condensed sys-
tems are determined primarily in experiments [2—4]. At
the same time, the development of mathematical mod-
els of the thermal destruction of condensed systems,
e.g., for calculations of thermal protective covering,
optimization of combustion regimes of solid fuels and
the cracking processes of heavy mineral oils, etc.
require the analytical representation of the above con-
ditions.

derivatives

The aim of this work is to determine the heat con-
sumption and heating rates necessary for reaching the
phase-state boundary under a given pressure in the
steady regime of the thermal destruction of the heated
surface of nonvolatile condensed systems and to exper-
imentally test the resulting relations.

We consider steady processes of propagating ather-
mal wave with avelocity of u;, which are described by
the heat conduction equation

d’T dT
)\(—j—x—z +uTcpa; +F(T) =0, (D)

Mendeleev University of Chemical Technology,
Miusskaya pl. 9, Moscow, 125047 Russia

where F(T) = pQw is the heat-absorption (heat-libe-
ration) function and Q is the heat of the reaction, and
the other notations are standard. The boundary condi-

tions have the form —)\%;I—(— =gforx=0and T =T,

for x = oo. Integration of Eq. (1) shows that the maxi-
mum superheating arises on the surface of a condensed
system (for x = 0) [5]

fQu q

Ti=To+ cu. T uc
T p’

)

wherefisthefactor of adecreasein the heat of reaction
due to the incompleteness of the reaction. According
to[6, 7] taking the front propagation velocity as u =

EﬁV\D ;
o070 , we obtain
c
7,=Ty+ 0+ qERCRMT ™ 3)
Here, a = )\p andw = ?j(t: —kC", where n isthereac-

tion order, is the average reaction rate in the reacting
layer. The rate constant & with allowance for an
increasein the transformation rate near the phase-state
boundary is determined by the generalized Arrhenius
equation [7, 8]

EQ
4
RTO” “)

k= BK(T)exp E—

where B is the pre-exponentia factor; E is the activa-
tion energy; and

" o ED
K_eXpDTD expDRTD

where m is a parameter, represents a change in the con-
version mechanism near the phase-state boundary. For
temperatures T < T,, K = 1 and Eq. (4) is an ordinary
two-parameter Arrhenius eguation. Substituting w into
Eqg. (3), we express the heat flow necessary for estab-

1028-3358/05/5002-0072$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Temperature dependence of the heat of the thermal-destruction reaction that is necessary for reaching the phase-state bound-
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s

0

ary for g =congt, ¢ =

perchlorate.

lishing a given temperature on the surface of the con-
densed system for Q < 0in the form

0 E D}”[@
URTH] [cur

For condensed systems destroyed with the heat
release (Q > 0), the heat of the reaction Q necessary for
establishing a given temperature on the surface for ¢ =
const is obtained from Eq. (3) as

BKexp

= [hee

: HT=Ty |. )

Acp

g Eo™®
f } . (6)

_Cor 7y Cd 1 E
0=3T-Ty- | BKexp s

Working from anumber of assumptions, such asthe
existence of constant parameters, Egs. (5) and (6) make
it possible to determine the ¢ and Q values at which the
surface temperature 7, asymptotically tends to the
attainable superheating temperature. To this end, 7, =
T,— AT, where AT is the given calculation accuracy,
should be assumed in these equations.

Let us compare calculations by the above formulas

with experimental data. For the parameters

R
21500K,B=101%%gt p=1.2¢g/cm?, andc= 1.9 Jg,
calculations based on data from [9] show that the sur-
face temperature of polymethyl methacrylateisequal to
498°C for aheat flow of ¢ = 70 cal/(m? s). Thisresult is
consistent with experimental data from [9], where it
was found by the linear pyrolysis method that the sur-
face temperature of the polymethyl methacrylate sam-
plesislimited by amaximum value of T, = 500°C, with
an increase in the supplied heat flow. Thus, the temper-
ature of the surfaces of samplesdlightly differsfromthe
attainable superheating temperature of polymethyl
DOKLADY PHYSICS  Vol. 50

No. 2 2005

whereg, = 4.186 J/(m2 s) for (solid lines) anitrocellul ose-based compound and (dashed lines) ammonium

methacrylate that is determined by independent meth-
ods (515-520°C), which corroborates the calculation
results.

Function (6) is analyzed by the graphical method.
Figure 1 showsthe dependences Q(T) for materialswith

R 17500 K, B=9 x 108 s, p =

1.6 g/lcm3, A = 5.6 x 10* cal/cm, and ¢ = 0.35 cal/(g K)
taken from [10, 11] for nitrocellulose-based H powder

E 15000K,B=6.3x10°s?, p=1.94¢g/cm3,c=

and ﬁ =

0.3 cal/(g K), f=0.64, and AT = 5°C taken from [7] for
ammonium perchlorate. As follows from drawing, the
heat of the reaction Q = 270 cal/g is sufficient with a
small reserve for approaching the surface temperature
T, to the attainable superheating temperature of the
nitrocellulose-based compound 7, = 300°C. Such a
result corresponds to the data presented in [10], where
it was equal to 280—290°C.

According to the O(T) plots for ammonium perchlo-
rate (Fig. 1, right part), the reaction heat O = 80-
100 cal/g is insufficient for achieving the phase-state
boundary (7T, = 495°C) at atmospheric pressure. The
surface temperature can approach the phase-state
boundary upon an increase in the reaction heat by 100—
120 cal/g, asupply of an additional heat flow ¢ of about
10cal/(cm?s), or anincreasein theinitial temperature 7.
Thisresult satisfactorily agrees with experimental data.
Aswasnoted in[13], “according to experiment, ammo-
nium perchlorate can spontaneously burn (p = 1 atm)
upon the supply of an additional heat of AQ = 100 cal/g
in the form of radiation energy, preheating, or small
addition of fuel.” Inthis case, the surface temperatureis
close to 500°C. This temperature is close to the attain-
able superheating of ammonium perchlorate, which is
corroborated by the datafrom [14], where the tempera-

the parameters
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ture T, of ammonium perchlorate samples reaches no
morethan 500°C as Q and velocity u increases by afac-
tor of 7.

In addition to arather large heat inflow to the region
of the destruction of the condensed system, high heat-
ing rates are necessary for approaching the phase-state
boundary. Let the substance concentration to the time
of reaching temperature T be the fraction z of theinitial
concentration C, of theinitial substance. Integrating the
Kinetic equation, we obtain

t T

O O 0. O
C= Coexp[-l—fkdﬂj = Coexp[-)—BJ’deD = zC,
0 5 0 0 0

and

t

0 0 0 1. 0
o 1o 0 0

for n = 1 and O, respectively. The integrals of the form
kdT with the Arrhenius dependence k(T) are not

expressed in terms of elementary functions. Using the
method for approximately calculating such an integral
[8] and substituting dependences k(T) from Egs. (4), we
dT
dt
superheating of the condensed system above the begin-
ning of transformation to atemperature of 7, as

express the heating rate b, = that ensures the

_ _RTB " 0 EQ
Bea = “Einzc, P oD eXpD =0 @
Therefore, for n =0,
_RTB_ 0 EQ
by = £ PR 8)

We then calculate the heating rates for the con-
densed system that are necessary for reaching the
phase-state boundary. The calculation by Eg. (12)
shows that, to ensure the attainable superheating of the
nitrocellulose-based compound, the heating rate must
be no less than 1687 K/s. At the same time, actual rates
of an increase in temperature upon combustion are
much higher (about 10° K/s) and the conditions of
attainable superheating are satisfied. For the attainable
superheating of ammonium perchlorate, a heating rate
of 2500 K/s is sufficient. At the same time, the actual
heating rate upon the combustion of ammonium per-
chlorate is much higher (the average heating rate
AT

mT in the destruction front upon the combustion of
av

ammonium perchlorate is determined by a ratio of ll] ,

where [ is the front thickness, and is equal to about
10° K/s[11]), which ensures the combustion of ammo-
nium perchlorate with reserve at atemperature close to
attainable superheating. Under these conditions, Eq. (4)
should be used for more accurate calculations of ther-
mal processes.

To experimentally determine the conditions for the
attainable superheating of nonvolatile substances, the
pulse method is used to heat samplesdeposited asathin
layer on a filament heater [13-15] through which an
electric current is transmitted. The heater simulta-
neously serves as atemperature sensor. Figure 2 shows
the layout of the operation cell of the setup. The char-
acteristic time of heating the 1-um-thick layer depos-
ited on the filament is equal to about 1076 s, for which
temperature over the entire thickness of the substance
layer and filament is equalized with an accuracy of
2-3% [4]. The transparent body of the setup makes it
possible to perform video filming or shooting of the
processes of thermolysis of samples at hormal and
higher pressures. The accuracy of measurements of the
attainable superheating temperature by the filament
method increases upon measurement of the temperature
difference between a sample and a reference substance
deposited on the second section of the filament heater
(the method of differentia thermal analysis) [14].

Tests by the filament method enable a determination
of the minimum heating rate necessary for reaching the
vicinity of the phase-state boundary. To thisend, exper-
iments were carried out at various temperature increas-
ing rates. In each experiment, the temperatures of the
beginning and completion of the gasification process
are recorded. At high heating rates, the difference
between these temperatures was nearly absent. Figure 2
shows the filming pattern in the gasification stage of
phenol formaldehyde resin. The time at which a cloud
of condensed products from the thermal destruction of
phenol formaldehyde resinis separated from the heater
is clearly seen in this figure. These products then rise
due to convection. Experiments with various heating
rates showed that an increasein the heating rate of phe-
nol formaldehyde resin samples above b = 3700 K/s
does not shift the destruction process to higher temper-
atures, which indicates that the phase-state boundary is
reached and corroborates the correctness of the calcula-
tion for the required heating rate. According to experi-
ments, the maximum attainable superheating tempera-
ture at the gasification stage for phenol formaldehyde
resin is equal to 750°C. The periodic weighting of the
filament with a sample deposited on it at individual
stages of heating enables one to analyze the kinetics of
adecrease in the sample mass upon heating. Analysis of
phenol formaldehyde resin samples before and after
heating to the maximum temperature showed a
decrease in the relative mass of the burned residual
from 0.5 to 0.25 when the heating rate increases from 3
to 10° K/s, which indicates a change in the reaction
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(a)

(b)

AN

N\

Fig. 2. Filming frames (a—f) of the process of the thermal destruction and gasification of phenol formaldehyde resin in a nitrogen
medium (negative images). The arrow shows the time direction. The inset shows the layout of the operation cell (altitude chamber):
(2) transparent body, (2) and (3) filaments for the thermal and differential thermal analysis, (4) contact bars, (5) seal assembly, and
(6) connections for supplying compressed air and evacuation.

mechanism at high temperatures near the phase-state  stances and compounds by the method of contact ther-
boundary. mal analysis [15]. The comparison of the results with

Figure 3 shows the attainable superheating temper-  the surface temperatures experimentally determined
atures experimentally determined for certain sub-  upon combustion of these materials showsthat the tem-

DOKLADY PHYSICS Vol.50 No.2 2005
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Fig. 3. Attainable superheating values determined by con-
tact therma analysis for (1) low-pressure polyethylene,
(2) polymethyl methacrylate, (3) ammonium perchlorate,
(4) H powder, and (5) HMX.

peratures of a combustion surface are aways lower than
the attainable superheating temperatures [9, 11, 12],
which corroborates the results of the above analysis.

In summary, analytical expressions have been
obtained for cal culating the maximum heat flow and the
heat of the thermal destruction reaction at the steady
regime of the thermal destruction of condensed system
that are necessary for reaching the phase-state bound-
ary. Under these conditions, the temperature of the sur-
faces of condensed system sampl es subjected to intense
heating approaches the attai nabl e superheating temper-
ature. The calculations satisfactorily agree with the
published and newly obtained experimental data.

The minimum heating rates necessary for establish-
ing the attainable superheating of polymethyl meth-

acrylate, ammonium perchlorate, and phenol formalde-
hyde resin have been determined by heating samples
from surfaces by intense heat flows. The calculations
have been corroborated by experimental data.
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The generalized parametric structural model and
parametric structural circuit of a compound electro-
magnetoelastic transducer have been constructed. The
effect of the geometric and physical parameters of the
transducer and external load on its dynamic character-
istics has been determined. Thetransfer functions of the
compound electromagnetoelastic transducer for an
electromechanical drive of nanometer displacements
have been obtained.

INTRODUCTION. FORMULATION
OF THE PROBLEM

The use of piezoelectric drives of nanometer dis-
placementsis apromising approach in nanotechnol ogy,
nanobiology, microelectronics, and adaptive optics to
precision alignment and compensation of temperature
and gravitational strains, as well as to atmospheric tur-
bulence by correction of awave front [1, 2]. The piezo-
electric transducer of such adrive operates on the basis
of the inverse piezoelectric effect; i.e., displacement is
achieved by the application of electric voltage, whichis
caused by deformation of the piezoel ectric transducer,
in the range of several nanometers to several microme-
ters, with an accuracy of up to severa tenths of a
nanometer. A compound transducer is used to increase
the displacement range to several tens of micrometers.

The parametric structural model of a simple piezo-
electric transducer (piezoelectric plate and simple
piezoel ectric drive of nanometer displacements) iscon-
structed by jointly solving the wave equation [3], the
corresponding equation of the piezoelectric effect, and
the boundary conditions on two loaded working sur-
faces of the simple piezoel ectric transducer. The trans-
fer functions of the simple piezoel ectric transducer are
determined from a system of equations describing its
parametric structural model [4, 5].

The parametric structural model of the compound
piezoelectric transducer is similarly developed by

Moscow Sate Institute of Electronic Engineering
(Technical University), Zelenograd,
Moscow ablast, 103498 Russia

jointly solving a system of equations of the equivalent
four-terminal compound piezoelectric transducer, the
corresponding equation of the piezoelectric effect, and
the boundary conditions on two loaded working sur-
faces of the piezoel ectric transducer. The transfer func-
tions of the compound piezoel ectric transducer are also
determined from a system of equations describing its
parametric structural model [4].

GENERALIZED PARAMETRIC
STRUCTURAL CIRCUIT
OF THE ELECTROMAGNETOELASTIC
TRANSDUCER

The equation of electromagnetoelasticity has the
general form [3]

S = 5T + A °E, + dPH, + ol de, ()
E,H,0

where § is the strain along the ith axis; s;; is the

elastic compliance for E = const, H = const, and © =
const; T, is the mechanical stress along the jth axis;

d:® is the piezoelectric modulus; E,, is the electric

field along the mth axis; d5:° is the magnetostriction

coefficient; H,, is the magnetic field along the mth axis;

aF " isthethermal expansion coefficient; © istemper-
ature;i,j=1,2,...,6;andm=1, 2, 3.

For example, for separate action of electric and
magnetic fields on the transducer at constant tempera-
ture, the following equations of electromagnetoel astic-
ity are obtained [3]:

S =dy;E; + 553 T;
for the longitudinal piezoelectric effect,
S =0d;E+ 551T1
for the transverse piezoelectric effect,
S =dyH; + 523 T
for the longitudinal magnetostriction,

1028-3358/05/5002-0077$26.00 © 2005 Pleiades Publishing, Inc.
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S =dyH; + STlTl

for the transverse magnetostriction,

where S; and S are the strains aong the third and
first axes, respectively; d;; and d;, are the longitudinal
and transverse piezoelectric moduli, respectively; E;
and H; are the electric and magnetic field strengths

along the third axis, respectively; s5, and s.; (Si and

sii) are the elastic compliances for E = const (H =
const) along thethird and first axes, respectively; and T,
and T, are the mechanical stresses along the third and
first axes, respectively.

As an example, let us consider problems of
piezoelasticity. Jointly solving the matrix equation of
the four-terminal compound piezoelectric transducer,
the corresponding equation of the piezoelectric effect,
and the boundary conditions on two loaded working
surfaces of the piezoelectric transducer, we obtain the
corresponding parametric structural model of the com-
pound piezoelectric transducer. The matrix equation of
strains and transfer functions of the compound el ectro-
magnetoelastic transducer are also determined from a
system of equations describing its parametric structural
model.

3

1

Fig. 1. Components of mechanical tension—compression
and shear stressesin a piezoceramic body.

The stress state in a piezoceramic body is shown in
Fig. 1[5, 6]. If mechanical stress T is created in the
elastic piezoceramic body, strain Slinearly depending
on T arises in that body. There are six components of
stress T: T,, T,, and T; are tension—compression
stresses, and T,, Ts, and Tg are shear stresses. Corre-
spondingly, there are six componentsof strainS' S, S,,
S;, S, S, and S;. Thereisshear (Fig. 1) in planes per-
pendicular to axes 1, 2, and 3 [5].

Strain in apiezoel ectric medium isgenerally written
using the equation of theinverse piezoelectric effect [4,
5, 7] intheform

S=duEn+ ST, )

for voltage control and

S=0nDn+ S, T, 3)

for current control. Here, i, j=1,2,...,6; m=1,2, 3,
where 1, 2, 3 are the mutually perpendicular coordinate
axes; § isthe strain with subscript i; d; and g,; are the
piezoelectric moduli; E,, and D,, are the electric field
strength and electric displacement along the mth axis,

respectively; s; and s, are the elastic compliance for
E = const and D = congt, respectively; and T; is the
mechanical stress with subscript j.

In a polarized ferroelectric ceramic material and
TsTSor PZT piezoceramic material, therearefiveinde-
pendent components of elastic compliances for E =

const, S5, Sy, Sia, Sy, and S, and three piezoelec-
tric moduli, ds;, di5, and d;5 [5].

Let us consider a compound piezoelectric trans-
ducer consisting of piezoelectric plates connected elec-
trically in parallel and mechanically in series. The com-
pound piezoelectric transducer has a length of | upon
the longitudinal piezoelectric effect, and each of its
n piezoelectric plates has a height of 6 and a cross sec-
tion of S,. Electrodes are placed on the faces of piezo-
electric plates perpendicular to the third axis.

To derive a system of equation for the equivaent
four-terminal compound piezoelectric transducer, we
consider the corresponding matrix equations. The
equivalent T-shaped four-termina circuit of the kth
piezoelectric plate in the series equivalent circuit of the
compound piezoelectric transducer in Fig. 2 has the
ordinal number k and is composed using the equation of
oscillations and equation of forces [4—10] acting on the
faces of piezoelectric plates.

Thus, we obtain the Laplace transforms [10] of the
corresponding forces on the input and output faces of
the kth piezoelectric plate in the form of a system of
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equationsfor the equivalent T-shaped four-terminal cir-
cuit (Fig. 2):

Fkinp( P) = —(Z1+2Z,)=k(P) + Z,=+1(P), @
—Fi (P) = =Z,=(p) + (Z1+ Z3) =4+ 1(P),

out

where
7 = Syytanh(dy) _ SY
1 = ] ’ 27y, ’
S; s sinh(dy)
y:E+a, W = {E, D}

() and F, (p) are the Laplace transforms of the

forces on the input and output faces of the kth piezo-
electric platein the compound piezoel ectric transducer,
respectively; Z, and Z, are the resistances of the equiv-
alent four-terminal device; =(p) and =, ,(p) are the
Laplace transforms of the displacements on the input
and output faces of the kth piezoelectric plate, respec-
tively; pisthe Laplace operator; y is the wave-propaga-
tion coefficient; c is the speed of sound in the piezoce-
ramic material; a is the damping coefficient; W is the
generalized parameter of the electricfield, i.e., electric-

field strength E or electric displacement D; s:f is the

elastic compliance for W = const; andi,j=1, 2, ..., 6.
From these equations, we obtain the following system
for the kth piezoel ectric plate:

- 0420 2
F T G T T DR Z e

Z—
oul+ +Z_E:k+1l

which is equivalent to the matrix equation

—Fy F
H Pl = | . ®
=k =k+1
Here,
4
1+2 7z, 20
M = [ Mo Mo 2 1% 28
ImI| = :
My My 1 1+ Z,
Z, Z,
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Z
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Zz ZZ
Fleing®) Fioul® Fiet 1j0,P) Fri140®

0

Fig. 2. Equivalent series circuit for the compound piezo-
electric transducer.

where

Z
My =my,=1+ Z_i = coshy$,

z .
my, = Z; +2E = Z,sinhyd,

Z, Z, S_T

For the compound piezoelectric transducer, the
Laplace transforms =, (p) and F,_ (p) of the dis-
placement and force, respectively, on the output face of
the kth plate (Fig. 2) correspond to the respective
Laplace transforms of the displacement and force on
the input face of the (k + 1)th plate [4-10]. The force
Fy,, ontheoutput face of thekth plateis equal in mag-

nitude and opposite in direction to the force F, . 1, ON
the input face of the (k + 1)th plate:

Fi. . (P) = —Fyiq (D).

out inp

From matrix equation (5) for n plates in the com-
pound piezoelectric transducer, we obtain the matrix
equation

F
= M| "l (©)

H_Flinp

=1

-n

By mathematical induction, the elements of the
matrix |[M|" are determined as

cosh(nyd) Z,sinh(nyd)
sinh(nyd)

IMI” = | sinh(
Z,

cosh(nyo)

Matrix equation (6) for the compound piezoelectric
transducer with the expression for the matrix |[M|[" cor-
responds to the equivalent four-terminal compound
piezoel ectric transducer.



80 AFONIN

The equations of forces acting on the faces of the
compound piezoel ectric transducer have the form

T;(0, pS = Fi(p) + M;p?=,(p) for x=0,

T:(, PS = —F.(p) — Myp*=,(p) for x =1,

where T;(0, p) and T5(l, p) are the Laplace transforms of
mechanical stresses on two faces of the compound
piezoelectric transducer, and =,(p) and F,(p) are the
Laplace transforms of the displacement and force,
respectively, on the x = | face of the piezoel ectric trans-
ducer.

Let us construct a mathematical model of the com-
pound piezoelectric transducer for the longitudinal
piezoel ectric effect and voltage control. In this case, the
Laplace transform of the force [4] that drives the oscil-
lations of the compound piezoelectric transducer, is
obtained from equation (2) of the inverse piezoelectric
effect as

F( p) - d33S)EE3( p) )

Sz3

Jointly considering the system of equations for the
equivalent four-terminal compound piezoel ectric trans-
ducer with voltage control, the equation of force on the
faces of the compound piezoel ectric transducer, and the
equation of force stimulating oscillations gives the fol -
lowing system of equations describing the parametric
structural model of the compound piezoelectric trans-
ducer for the longitudinal piezoelectric effect:

- 1 0 1
=(p) = —Z0rFu(p) + 2| duEs(P)

1P O X33

G o))~ (00 |

=,(p) = Ml 2%— Fz(p)"'iE[dssEs(p)

2P0 X33

‘sinrY(lv)[Cosh(lv)Ez(p)—El(p)]} Ex

Here,
1S _my
ng 553 ! ,

where m, is the mass of the compound piezoelectric
transducer.

Thus, taking into consideration generalized piezo-
electric equation (1), we arrive at the following system

of equations describing the generalized parametric
structural model of the piezoelectric transducer:

_ 1 O 1
=(p) = = zszl(p)+—q,[vmiwm<p>

1P O Xij

-GS VZ(P) - =P |5

(7
— 1 0O 1
Z2(P) = =50 Fa(p) + =5 Vs Win(P)
M,p°D Xi|
Y = ()= O
Sy oIV =P | 5
Here,
%Ussv d3, dis EEsa =
Vmi = 5933, Oa1: 015, Wp = EDS! D,,
[Fjaz’ d31, d15 DHaa H1

[553: Si, 555 :
= B0

O3, S11, St

where the upper lines and superscripts E, D, and H cor-

respond to voltage, current, and magnetic-field con-
trols, respectively, and

A
c=0a" v=0v°
0, 0

(e Oy

el'—‘
el

Xi

System of equations (7) corresponds to the generalized
parametric structural circuit of the piezoelectric trans-
ducer (Fig. 3).

GENERALIZED TRANSFER FUNCTIONS
OF THE PIEZOELECTRIC TRANSDUCER

After algebraic reformulation, the generalized struc-
tural parametric model of the piezoelectric transducer
enables one to calculate the transfer functions of the
piezoelectric transducer as the ratio of the Laplace
transform in the displacement of the piezoelectric
transducer face to the Laplace transform in the corre-
sponding input electric parameter, or to the Laplace
transform of the corresponding force for zero initial
conditions. The joint solution of the above equations
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Fi(p)
oo ° _
~T;(0, p) 5@ = =@
1 1 1 1
*TS?’J_’SO My [ p [ p
Y cosh(ly)
sinh(ly)
d=
qu(p) dx| x=0
— Vi d=
dx x=1
y ~— cosh(ly)
sinh(ly)
- 1 1 1 1
v ™ S Mo 2 T
8jj T M, P P
b h —
=T;{,p) @ =0 = @)
Fy(p)

Fig. 3. Generalized parametric structural circuit of the electromagnetoel astic transducer.

for the Laplace transforms in the displacement of two
faces of the piezoelectric transducer gives

Z1(p) = Wy (p)¥n(p)
+W,(p)F1(p) + Was(p)F2(p),
Z2(p) = W (p)Wn(p)
+Wo,(P)F1(p) + Was(p)F2(p),

where the generalized transfer functions of the piezo-
electric transducer have the form

®)

_ =1(P) _ Vni w 2 dyd
Was(p) = s = E[sz” p* + ytanh 535
_ Wy2 4 (M1+M2)XiLjp 3
Aij - MlMZ(XI]) p + Ctanh(ly)
1]
L M+ Mo)xia 1 p2+g_gp+o(2,
tanh(ly) 2 c
_ =2(P) _ Vi w 2 Oy
WZl(p) - me(p) - A|]|:M1X”p +ytanh|]2|:|i|a
DOKLADY PHYSICS Vol.50 No.2 2005

_ (D) - X[y ¥z, Y
Wa(p) = 205 = —A—;[szup +tanh(|y)}'
_Zu(p) _ _ 50 - XY
Wis(p) = E(p) Wa(p) = Fj(p) - Aijsinjh(iy)’
_ 5P Xilpg o2 Y
Wal(P) = £y = —A—i’j[Mlxup +tanh(|v)]

Thus, from a system of equations (8), we obtain the
generalized parametric structural circuit of the piezo-
electric transducer (Fig. 3) and the matrix equation

. Wl )
=) | W) WaalP) WestP) || ° 0

CONCLUSIONS

The generalized parametric structural model devel-
oped for the electromagnetoel astic transducer makes it
possible to determine its generalized parametric struc-
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tural circuit and generalized transfer functions and to
use methods of automatic-control theory for calcula
tions of the dynamic and static electromechanical char-
acteristics of the electromagnetoel astic transducer for a
drive of nanometer displacements.

1
2.

3.

4,
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MECHANICS

An Approach to the Experimental Deter mination
of the Bending Stiffness of Nanosize Shells

E. A. lvanova* and Academician N. F. M or ozov**

Received October 15, 2004

The problem of the experimental determination of
elastic moduli of nanoscale objects is of present inter-
est. The determination of the elastic moduli of thin
macroscopic shells is usually based on experiments
with plates. It is known that, when grown using certain
techniques, nanoobjects are obtained only in the form
of shells. Therefore, it is necessary to develop amethod
for determining the elastic moduli of nanoobjects on
the basis of experiments with shells. Experimental
determination of the bending stiffness of nanosize
shells presents a serious problem, because for such
widespread nanoobjects as nanotubes and fullerenes
under arbitrary deformation, the material is subjected to
both bending and tension. Therefore, all parameters
(e.g., natural frequencies) that can be measured directly
are complicated functions of both bending and tension
stiffness. In recent years, together with nanotubes and
fullerenes, nanoobjects of a more intricate configura-
tion have been obtained [1-4]. Nanosize cylindrical
helices [1, 3] are of particular interest in connection
with the possible experimental determination of bend-
ing stiffness. This is due to the fact that (1) in helical
shells under arbitrary deformation, the materia is
mainly bent, so that the material tension effect can be
neglected when interpreting experimental data; and
(2) the natural oscillation shapes of helical shells are
much more easily observed than those of cylindrical
shells associated with pure bending of the material. The
latter statement isillustrated in Fig. 1, which presents
thefirst four helical shell oscillation shapes. The analy-
sis of helical shell dynamics [5] presented below may
be a theoretical foundation for experimental testing of
the applicability of the continuum theory to (a) the cal-
culation of mechanical characteristics of nanoobjects
and (b) the experimental determination of the bending
stiffness of nanoshells.

* K. Petersburg Technical University,
ul. Politekhnicheskaya 29, S. Petersburg,
195251 Russia
e-mail: ivanova@EI5063.spb.edu
** Q. Petersburg Sate University (Petrodvorets Branch),
pl. Bibliotechnaya 2, Petrodvorets, 198904 Russia
e-mail: morozov@NM1016.sph.edu

BASIC EQUATIONS
OF THIN SHELL THEORY

We present here a summary of basic equations from
the classical linear theory of shells. For the sake of
brevity, we use the apparatus of direct tensor calculus
[6, 7]. The dynamic equations have the form

O = pl, OM+T, =0, (1)

where T and M are the force and momentum tensors,

respectively; (). isthe vector invariant of atensor; p is
the surface mass density; and u isthe displacement vec-
tor. Inthe classical theory of shells, the transverse shear
strain vector is assumed to be zero. Thus, the angle-of-

rotation vector ¢ can be expressed in terms of the dis-
placement vector as

¢ = —nx(Ou) h, )

where n is the unit normal vector to the shell surface.
The transverse force vector N = T - n is determined

from dynamic equations (1). The elagtici ty equation for
theforcetensor inthetangent plane T - a hastheform

+

(

The elasticity equation for the momentum tensor M

3)

I~
1%
NI
=

2)2:4,6\

lHen

Fig. 1. Oscillation shapes of ahelical cylindrica shell.
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Fig. 2. Helical cylindrical shell.

has the form

n=
—
I
S
no
=

“)

Here 4:A and 4(:: are the shell stiffness tensors, a isthe
unit tensor in the tangent plane, t:) =-[n, c=-axn,
and the tension-shear strain tensor g€ in the tangent
plane and the bending—torsion strain tensor K are cal-
culated by the formulas B

e = 3((0u) a+a(0u)),
1 )
K = (@) 2+3((00) - 9b

HELICAL SHELL GEOMETRY

We will consider a cylindrical helical shell (Fig. 2)
of radius R with helix angle a, helix-forming band
length |, band width a, and band thickness h. Shell kine-
matics will be described below using two coordinate
systems: a cylindrical coordinate systemr = R, ¢, z
where the z axis is directed along the helix axis; and a
curvilinear coordinate system s, { introduced on the
shell surface asfollows:

z = R(sinas+cosal), ¢ = cosas—sinal. (6)

The dimensionless coordinates s and ¢ vary within the
following limits

< Rs<

, —gs Rz <2 %)

NI

NI—
NI —

The unit vectors g and g, directed along the coordinate
lines and the unit vector n determining the direction of
the outward normal to the shell surface have the form

€ = Cosa g, + sinak,

)

g = —sinag, +cosok, n = g.

APPROXIMATE EQUATIONS
GOVERNING THE DYNAMICS
OF A THIN HELICAL SHELL

It is known that the tensor “A of the tension-shear
stiffness of the shell in the tangent planeis proportional
to the shell thickness h, whilethetensor 4g of the bend-

ing-torsion stiffnessis proportional to h*. Therefore, in

thecaszeg1 < 1land ? < 1, the helical shell under con-

sideration can be treated as inextensible. Thus, we will
assume that the tension—shear strain tensor in the tan-
gent planeis equal to zero

= 0. C)

I

In this case “A - o, elasticity equation (3) becomes

meaningless, and the force tensor in the tangent plane
T - a isdetermined from dynamic equations (1) with

regard to the strain compatibility equation

A(tr(T () - (1+v)D M QTm@) =0,  (10)

wherev isthe Poisson’s ratio. We note that the continu-
ity equation (10) follows from the assumption that the
tension—shear strain is absent in the tangent plane.
Thus, the problem is reduced to the solution of the sys-
tem of equations (1), (2), (4), (5), (9), and (10), where

the bending—torsion stiffness tensor 4(=: has the form

‘c = D[mgg‘* 1%\)(2222 "'3424)]

5 (11)

Here D is the bending stiffness of the shell, a, = eg;—
e, and 3, = eg; + g
DOKLADY PHYSICS  Vol. 50
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SOLUTION OF THE DYNAMIC EQUATIONS
FOR A THIN HELICAL SHELL

The displacement vector is represented in the form
of the decomposition in the u = ug; + u €, + wn basis.
The displacement w along the normal to the shell sur-
faceischosen asthe main variable. Using rather simple
transformations, we reduce the equations of shell
motion to the single differential equation

9t 1 0"
ot 4astor

} sm220(~
w

%nza 6—4 + cos’
(12)

x[—(A+l) w+ Aw = 0,

pR

where A = R?A is the dimensionless Laplace operator.
Representing condition (9) of the absence of tension—
shear strain from the tangent plane in the coordinate
form, we abtain the following relationship between the
displacement vector components:

(‘)_US = —COSZO(W % = —sm aw,
s ©oar
(13)
QH-MQE = sin2aw
ds al

and arrive at the following the strain compatibility
equation in displacements:

2 0°wW > 9°w
+ sin a— +Cosa—; = 0.
0s0¢ 05’ h1&

9°w

SN20— (14)

We note that Eq. (14) is a direct consequence of
Egs. (13).

Thus, the problem isreduced to the determination of
solutions of dynamic equations (12) that satisfy an
additional constraint imposed by strain compatibility
equation (14). In the cylindrical coordinates [see
Egs. (6)], strain compatibility equation (14) takes the
form

o'w
07
The solutions of dynamic equation (12) that satisfy

strain compatibility equation (15) can obviously be rep-
resented as

= 0. (15)

w(d, 2 t) = W(¢, 2)e",
W(9,2) = 2W,(9) +W5().
Substituting expressions (16) into dynamic equation (12)

and equating the coefficients of different powers of zto
zero, we obtain the system of two differential equations

(16)

DOKLADY PHYSICS Vol.50 No.2 2005

in the variables W,(¢) and W,(¢). Solving this system
and returning to the variables sand ¢, we obtain

W(s, () = z [(Aj(pjs+ql) + B))
j=1

x sin[A;(cosas—sinal)] + (Aj(p;s+q;{) + BY)
x cos[Aj(cosas—sinaf)] ], (17)
p; = sina—B;, q; = cosa +f3;,

2c0s20Q?
4 2 2 2\
9cosa (A + (Q"—1)A; +2Q%)

B,

where A}, B}, A, and Bj are arhitrary constants and
A; are the roots of the characteristic equation

)\6—2)\4+(1—QZ))\2—ng -0, 0= /p['? w. (18)

Here, Q isthe dimensionless natural frequency; for its
determination, some boundary conditions should be
formulated. As follows from Egs. (17) and (18), the
dimensionless frequency Q isindependent of the phys-
ical characteristics of the shell p and D if these param-
eters do not enter into the boundary conditions.

FORMULATION OF THE BOUNDARY
CONDITIONS. DETERMINATION
OF THE NATURAL FREQUENCIES
OF OSCILLATIONS OF A THIN HELICAL SHELL

In accordance with Eq. (17), the function W(s, {)
involves twelve constants, which, naturally, make it
impossible to satisfy all the boundary conditions of the
classical theory of shells. However, the formulation of
twelve homogeneous equations specifying the dis-
placements or stresses at any point of the boundary is
sufficient for a formal solution of the problem within
the framework of the simplified formulation under con-
sideration.

We will assumethat the shell isfixed at corners; i.e.,
the displacement vector u(s, {, t) = u{s, {)e“ iszero at

the corner points

Ol an_ ol ap._
Urora - O Y“izraopd - O
(19)
! ap uD|__i _
*EiZR ZR] *U2R 2RI '

From the condition that the determinant of system (19)
is equal to zero, we obtain the frequency eguation. As



86 IVANOVA, MOROZOV

can be seen from Egs. (13) and (15)—(18), the determi-
nant of system (19) depends on the dimensionless fre-

guency Q and three dimensionless parameters a, lR
a
R

tion represents a spectrum of dimensionless natural fre-
guencies of the form

and = . Therefore, the solution of the frequency equa-

Q, = QnB},lR, % n=12... 20)

Numerical calculations of the natural frequencies
and shapes of helical shell oscillations with the dimen-
sionless parametersa = g lR =20t and % =1 showed
that the approximate theory specified by Egs. (17)—19)
adequately describes low-frequency oscillations.

DISCUSSION OF THE RESULTS

We will consider two thin helical shells with differ-
ent physical and geometric characteristics but the same

I a .

5 and R We will
assume that both shells arefixed at corners; i.e., bound-
ary conditions (19) apply. In this case, in accordance
with Eqg. (20), the spectra of the dimensionless natural
frequencies of shells under consideration coincide with

dimensionless parameters a,

On: QP = @, 21)
Then, in accordance with Eq. (18), the natural fre-
1)

n

w?

guency ratio is independent of their ordinal num-

ber n

00511) _ D,p, Ri
00512) D.1p, Rg
Relation (22) may serve as a theoretical basis for the
experimental investigation of the applicability of the
continuum theory to nanoobjects and, if the answer is

affirmative, for experimental determination of the
bending stiffness of nanoshells.

(22)

EXPERIMENTAL TESTING
OF THE APPLICABILITY OF THE CONTINUUM
THEORY TO NANOSCALE OBJECTS

To test the applicability of the continuum theory to
nanoobjects, the following measurements can be per-
formed:

(1) severa first natural frequencies of a helical
nanoshell are measured,;

(2) the natural frequencies of a macroscopic helical
I

shell with the same dimensionless parameters a, R

and % and the same fixation conditions are measured;
o
(3) the measured frequency ratios &, = —(32—) are cal-
(‘)n
culated.
If the continuum theory is applicabl e to nanoobjects,
then the equality &, = 9, theoretically holds true for any
n. The applicability condition for the continuum theory

|6n — 61|

61 < 8N ’
which must be fulfilled for On < N. The permissible
error €, can be estimated by comparing with the results
of an analogous experiment performed with two mac-
roscopic helical shells.

is realy formulated as the inequality

EXPERIMENTAL DETERMINATION
OF THE BENDING STIFFNESS OF NANOSHELLS

If the continuum theory is applicabl e to nanoobjects,
then formula (22) makes it possible to experimentally
determine the bending stiffness of a nanoshell. In order
to determine the bending stiffness, it is necessary:

(1) to measure thefirst natural frequency oo(ll) of the
helical nanoshell;

(2) to measure the mass m; and the geometric
dimensions|,, a,, and R, of the nanoshell and to calcu-

, . m
late its surface density p, = o
1%

(3) to determine the characteristics co(f) ,D,, p,,and
R, of a compared macroscopic helical shell with the
same dimensionless parameters a, I—R and % and the
same fixation conditions asthose of the nanoshell under
study;

(4) to caculate the bending stiffness of the
nanoshell D, using formula (22).

We note that the proposed approach to the experi-
mental determination of bending stiffness does not
require the determination of nanoshell thickness[8, 9].
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The spallation fracture of samples of polycrystalline
aluminum and aluminum single crystals was experi-
mentally studied at various temperaturesin [1]. Analy-
sis of experimental data for polycrystalline aluminum
shows that resistance to tensile fracture varies only
slightly when temperaturesincrease from room temper-
ature to a value of 90% of the melting temperature and
decreases abruptly to zero with a further increase in
temperature. Experiments with aluminum single crys-
talsrevea the effect of anomalously high temperatures:
a conservation of high strength was observed in a state
in which melting upon tension was expected. In this
work, the effects of temperature anomalies discovered
in [1] are analyzed for impact loading of materials. An
analytical expression for the temperature dependence
of the spallation strength of materials has been derived
on the basis of the criterion for fracture incubation
period. We introduce a new melting criterion relating
phase-transition time to melting incubation period,
which makes it possible to naturally explain the anom-
alous temperature effect upon impact |oading.

TEMPERATURE DEPENDENCE
OF SPALLATION STRENGTH

The time dependence of the impulse strength of
materials can be obtained on the basis of the incubation
period criterion [2—4]. For spallation fracture, this cri-
terion hasthe form

t

J’ o(t)dt'< o, (1)

t-1
where o(¢) is the time dependence of the local stress at
the fracture point, 0, is the static strength of fracture,
and T is the fracture incubation period for a material,
which may depend on temperature.

The measurements reported in [1] were conducted
under conditions in which samples were acted upon by

Faculty of Mathematics and Mechanics,
S. Petersburg Sate University, Universitetskii pr. 28,
Petrodvorets, . Petersburg, 198504 Russia

* e-mail: yp@yp1004.spb.edu

plane shock waves, which were generated in the sam-
ples under investigation by impact with an aluminum
plate. For the given ratio of the thicknesses of ahammer
and a sample, the shape of wave profiles was close to
triangular. The problem of the reflection of atriangular
compressing-stress pulse from the free end of a semi-
infinite rod was analyzed in [2]. The equations that are
derived using criterion (1) and that describe the time
dependence of strength over the entire range of 1oading
durations with allowance for the fracture incubation
period have the form

20s1(T)

D t I} tIST(T)1
|:| |

P, = 2
H% (), @
(M
AR

where Pisthe threshold amplitude of theinitial stress
pulse and ¢; isits duration.

In [5], an analytical expression was obtained for the
temperature dependence of the fracture incubation
period and it was shown that the incubation period can
be expressed in terms of the parameters of Kinetic
strength theory [6]. We consider the temperature depen-
dence of the fracture incubation period in the form

G
T = Topg 3)

wherek =1.3807 x 10723 JK isthe Boltzmann constant,
T is temperature, and 1, = 107!? sis the period of the
valence atomic vibrationsin asolid. Asis known, kT is
the energy of the vibrational degree of freedom in the
equilibrium state. Thisenergy is necessary for breaking
of an elementary bond, i.e., abond between two atoms.
The quantity G should be treated as an elementary por-
tion of energy necessary for breaking the structural cell.

We assume that the fracture incubation period T in
expressions (2) for the time dependence of strength
depends on temperature T according to law (3) and
apply this result to analyze experimental data obtained
in[1]. Inthe experimentsreported in [1], the action was

1028-3358/05/5002-0088%$26.00 © 2005 Pleiades Publishing, Inc.
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a triangular pulse, and the pulse duration ; was the
same for all test temperatures and was equal to 0.12 us.
Tests were carried out in a temperature range of 15 to
650°C, which is only 10°C lower than the melting
point. For each material, we select the elementary
energy of cell breaking G such that the threshold ampli-
tudes for minimum testing temperature (15°C) cor-
respond to the experiments in [1]. In this case, for-
mula (3) yields a corresponding fracture incubation
period of 0.137 and 0.75 psfor single crystals and poly-
crystals, respectively. Static strengths o, = 100 and
1000 MPa are used in the calculations for polycrystal-
line auminum and single crystals, respectively.

The figure shows the temperature dependences of
spallation strength calculated for dluminum single crys-
tals and polycrystaline auminum by formulas (2) and
(3). Points are experimental data.

More accurate quantitative comparison of calcula-
tions can be carried out as soon as experimental dataare
accumulated and procedures of experiments and mea-
surements are refined.

We note that the fracture incubation period for poly-
crystalline al uminum coincides with the val ue obtained
in [5] for experimental data obtained in [7], where the
brittle fracture of solids in a tensile stress wave was
experimentally studied using the procedure of plane
collisions between the hammer plate and target plate.
Thus, the experiment described in [1] for polycrystal-
line aluminum at room temperature well agrees with
classical experiments made at |offe Physicotechnical
Institute [ 7] and is efficiently reproduced by incubation
period theory.

ANOMALOUS TEMPERATURE EFFECT

In [1], tensile stresses at which material melting
begins were estimated using the relation

pa—-L = a(m-T -2, @

S

T
dp
melting point T, on pressurep, o = 1.12 x 10* K- ! is
the volume thermal expansion coefficient, 7, =
933.2 K is the melting point at zero pressure, 7, is the
initial test temperature, and K, = 56.7 GPa and K =
71.1 GPa are the isothermal and isentropic bulk elastic
moduli of the material, respectively. Thisis a relation
used in melting physics to determine the relations
between temperature and pressure corresponding to the
onset of melting. It corresponds to smooth (quasi-
static) action and its application impliesthat body melt-
ing istreated as an instantaneous process.

Tensile stresses at which material melting begins
were estimated in [1] using this relation for both mate-
rials. Experimental data for polycrystalline aluminum
lie below this estimate. At the same time, experiments

where the derivative represents the dependence of
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(Points 1 and 2) Experimental data[1] and (lines3 and 4) cal-
culations by formula (2) for the temperature dependence of
the fracture threshold amplitude of a 0.12-ps pulse for alu-
minum single crystals and polycrystalline aluminum,
respectively. Lines 5 and 6 are tensile stresses correspond-
ing to the onset of melting as cal culated by formulas (7) and
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with aluminum single crystals show that high strengths
are present at the intersection of the calculated bound-
ary of the melting region. To explain this effect, we
introduce a new criterion corresponding to melting. We
suppose that melting is not an instantaneous process
and is characterized by itsincubation period T,,,. Let us
consider amelting criterion of the form

t
I o(s)ds< P, 1, (5)

t-T,

where P, is the average (“equilibrium”) stress that
must be realized for the incubation period T1,, in order
for the melting of material to occur. It corresponds to
negative pressure determined from Eq. (4).

When inequality (5) takes the form of equality, the
material melts and the corresponding temperature is
defined as the melting point T = T,,,. Solving the above
problem for triangular wave stress pulses and using ine-
guality (5) as a melting criterion, we express the
dynamic threshold amplitudes P..,.;, inducing melting in
terms of the duration ¢, melting incubation period T,,,,
and temperature T as

2Pm(T) T

ot %Tm
D I
Pimat(T) = OPw(T) (6)
o=, t=T1,,.
D]__T_m
O 2t
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As aspecific case of the classical approach (when melt-
ing istreated as an instantaneous event), i.e., for T, =0,
we have

P* melt(T) = I:)m- (7)

The temperature dependences of dynamic threshold
amplitudes P, inducing melting are shown in the

figure as calculated by formulas (6) and (7) with T, =
0.7 ps. To determine the conditions for the onset of
melting for polycrystalline aluminum, the classica
melting criterion in the form of Eq. (7) can be used,
because, as is seen, experimental data for the strength
of polycrystals near melting temperature approxi-
mately correspond to negative pressures obtained by
thiscriterion and corresponding overheating isinsignif-
icant. High-temperature data for the strength of single
crystals significantly exceed limiting stresses corre-
sponding to the classical melting criterion, and the
incubation period criterion (5) should be applied to
determine the melting conditions in these cases.

As is seen, values that are calculated for aluminum
single crystals using the model of melting incubation
period (6) and corresponding to threshold fracture
amplitudes are much larger than values predicted in
classical melting model (7). The melting incubation
period 1, for aluminum single crystals was estimated
using their overheating with respect to an estimate
obtained using the classical criterion. Thisimplies that
the experiment provides the temperature at which the
spallation strength of single crystals begins to abruptly
decrease due to the onset of melting. According to the
classical criterion, the difference between this tempera-
ture and melting onset temperature constitutes over-
heating for aluminum single crystals. An overheating of

30°C was presented in [1], and the melting incubation
period taken above corresponds to this overheating.

Thus, the model developed above attributes the
effect of a sharp decrease in strength near the melting
point to the competition between two processes—frac-
ture and melting—characterized by the corresponding
incubation periods. It is possible to estimate pressure
and temperature at which this transition occurs. This
transition is determined as the intersection point of
plots corresponding to these processes. The model of
melting incubation period proposed in this work
explains anomalously high melting points observed in
the experiment with aluminum single crystals reported
in[1].
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We consider a set of ordinary differential equations
x = X(t,X), X(t,0)=0, (1)

wherex O R", X(t, x) = (X'(t, x), X2(t, x), ..., X"(t, x))"
isavector function defined intheregionl’ = Rt x G =
{(t,x):t=20, and ||x||<v,v =const>0o0rv=-+o}, ||
isacertain normin R".

We suppose that the right-hand side of set (1) satis-
fies the Lipshitz condition over x uniformly with
respect to t, i.e., for an arbitrary compact set K 0 G,
there existsanumber L = L(K) such that for an arbitrary
X, X, K and an arbitrary t 0 R*, the inequality

"X(t! Xl) —X(t, X2)|| = L"X]_—lel (2)

holdstrue. Then, thefamily of shifts{ X,(t, x) = X(t+ 1, x),
T O R} isprecompact in acertain compact metric space
Fy [1].

Definition 1 [1]. Astj —= +oo, the function X*(t, x)
defined by the relationship

t

X*(t,x) = dgtjlimo-[xi(T,x)dr, 3)
0

Xi(1,x) = X(t; +1,X),

for arbitrary x 0 G and t 0 R* is called limiting with
respect to X(t, x). The set of equations

X = X*(t,X) )

is called limiting with respect to initial set (1).

Thus, the entire family of limiting sets (4), where
X* [ Fy, corresponds to set (1). In this case, the posi-
tive limiting manifold w*(x(t, t,, x,)) of the solution
x(t, t,, X,) to set (1) isquasi-invariant with respect to the
family of sets (4).

UI’yanovsk State University, Ul’ yanovsk, 432000 Russia
e-mail: AndreevAS@ulsu.ru; peregudovaoca@sv.ulsu.ru

We introduce a class [, of vector functions VT =
V', V2, .., V9, Vi T - R Reisak-dimensiona space
of the norm ||||.. These functions are bounded and uni-
formly continuous for each manifold R x K in such a
manner that for each arbitrary compact set K [ G, there
exists a number m = m(K) > 0, and for any arbitrary
€ >0, we can find anumber & = &(¢, K) > 0 such that

IV (t, X)) < m, ||V('[2, Xp) =V (ty, Xl)"k <€t

foral (t,x) ORxK, (t, x)), (t,, x,) ORXK: [t,—t,| < S,
[ix; — x| < .

For each function V O [,, the family of shifts
{V.(t,x)=V(t+T1,x), T OR} isprecompact in acertain
metrized space F, of continuous functions V: ' - R¥
with open compact topology [2]. Hence, it follows that
for an arbitrary sequence t, — +c0, we can find both

the sequence f, —> 4 and the function V* [0 F,, such
that the sequence of shifts { Vj(t, x) = V(tIj +1t,x)} will

converge to V*(t, X) in the space F,, namely, the con-
vergence will be uniform over (t, x) O[3, B] x K for
each number 3 > 0 and for each compact manifold
KOG.

We now introduce similar classes [, and [, of vector
functionsU: Rx R —= Rfand W: Rx G x R¢ —» R¢
bounded and uniformly continuous over (t, u) O R x K,
and (t, x, u) O R x K, x K, for arbitrary compact mani-
foldsK, 0 Gand K, O R

Employing the uniformly differentiable Lyapunov
vector function vV 0 [K,, V O C!, we consider the prob-
lem of the stability of the zero solution to set (1).

With allowancefor set (1), the derivative of thisvec-
tor function can be represented in the form

V(LX) = U(t, V(t, X)) + W(t, X, V(t, X)),
U(t,0)=0, W(t, x,0) =0,

®)

where the function U = U(t, u), U O [K, is quasi-mono-
tonic and continuously differentiable with respect to

1028-3358/05/5002-0091$26.00 © 2005 Pleiades Publishing, Inc.
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ull R g—tj O K,, and the function W O [K;,

W(t, x, u) < 0 for any arbitrary (t, x,u) DR x G x RX,

It follows from representation (5) that the function
V(t, x) isthe vector function of comparison, and the set

u = U(t, u) (6)

isthe set of comparison [3].

If V =V(t, x) isthe function satisfying Eqg. (5), and
V(ty, Xo) = Vy, and u =u(t, t,, V) is the solution to
set (6), which is defined within the interval [t,, t, + B),
B> 0, then for al t OJ [t,, t, + B), the solution x =
x(t, t,, x,) to set (1) obeysthe inequality

V(t, X(t, to, Xo)) S u(t, ty, Vo).

From the condition U O [,, it follows that set (6) is
precompact [2], and it is possible to define a family of
limiting sets of comparison for this set:

u = U*(t,u), U*OF,. 7)

From the conditions U = U(t, u) related to the right-
hand side of set (6), it follows that solutions u =
u(t, t,, uy) to this set are continuoudly differentiable
over (t,, uy) O R* x R From the property of a nonde-
creasein the dependenceu(t, t,, u,) asafunction of u, [3],
it follows that the matrix

ou(t, ty, ug)

D(t, to, Ug) = au,

is a nonnegative, normalized (i.e., ®(t,, t,, uy) = I,
wherel isthe unit matrix), fundamental matrix for alin-
ear systemin variations

y = H(t.tou)y, H =LY .

Ju U = u(t, ty, Ug)
We assume that for an arbitrary compact set K 0 R,
there exist numbers M(K) and a(K) > 0 such that the
matrix & for arbitrary (t, t,, u)) J R* x R* x K satisfies
the conditions

[®(t, to, up)[| < M(K),  det®d(t, to, ug) 2 a(K). (8)

Let x = x(t, t,, X,) be an arbitrary solution to set (1),
which is bounded by the compact set K, O G,
x(t, ty, xo) O K, foral t=t,.

We analyze the problem of localization of the posi-
tive limiting manifold w(t,, x,) for this solution under
the assumption that the existence of the vector function
V(t, x) satisfies equality (5). On the basis of Alekseev
formula[4], it followsfrom equality (5) that therelation
between the value V[t] = V(t, x[t]) = V(t, x(t, t,, x,)) of
the function V(t, x) for the solution x = x[t] = x(t, t,, X,)

and the solution u = u[t] = u(t, t;, Vy), Vo= V(t,, x,) to
set of comparison (6):

V(t, x[t])

= u[t] +J'<D(t, T, V(T, X[T])W(T, X[T], V(T, X[T])dT.
t )

We assume that the function V(t, x) is bounded from
below on the manifold R* x K,,, and the solution u[t] of
set (6) is bounded from above for dl t = t,. Then, asa
corollary of condition (8) and equality (9), we can find
the relationship

tIierW(t,x[t],V(t,x[t])) = 0. (10)
Let p Ow *(t,, X,) be a limiting point defined by the
sequence tj — +oo, X(t, ty, Xg) —= pasty — +o. We
choose a subsequence t; — +o for which there exist
the corresponding convergences X(t; + t, x) —=
X*(t, x), U(t]-| +1,x) — U*(t, x), W('[]-| +tx,u) —
WH(t, x, u). From this, asin the case of the limit being

passed in [1], we find that uniformly over t O [-3, ],
the convergences

X[t +t] - x*[t], uft; +t] - u*[t]

take place for an arbitrary B > 0. Here, x*[t] =
x*(t, 0, p), u*[t] =u*(t, 0, ug ), ug =V*(0, p) isthecor-
responding solution to sets (4) and (7). In this case,
using relationships (9) and (10) for all t O R, we arrive
at the equalities

V*(t, x*[t]) = u*[t], W*(t,x*[t],V*[t]) = O.
Thisisthe basis for proving the following theorem.
Theorem 1. We assume that (1) a certain solution
x(t, t,, x,) of set (1) is bounded by a some compact set
KO G for al t = t,, and (I1) there exists a certain
Lyapunov function V = V(t, x), V O [, satisfying differ-
ential equality (5), the solution u(t) = u(, t,, V),
V, = V(t,, X,) to set of comparison (6) being bounded for
all t > t, and condition (8) being valid for this solution.

Then, for an arbitrary limiting point p [k *(t,, X,),
there is a set of limiting functions (X*, V*, U*, W¥*)
such that the solution x = x*(t, p) to set (4) with the ini-
tial condition x*(0, p) = p, satisfies the relationships
x*(t, p) Ow *(t,, xo), x*(t, p) O {V*(, x) = u*()} n
{W*(t, x, u*(t)) = 0} for all t R, where u*(t) is the
solution to limiting set of comparison (7) with the ini-
tial condition u*(0) = V*(0, p).

The theorem proved is the theorem on the localiza-
tion of a positive limiting manifold based on the
Lyapunov vector function and the set of comparison.
Thistheorem developsthe La Salleinvariance principle
formulated in [5] for an autonomous system and the
quasi-invariance principlefor a nonautonomous system
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on the basis of the scalar Lyapunov function with the
derivative of aconstant sign [1].

We now define the scalar function V = V (t, x):

k
Vitx) =y V(t, ).

Based on Theorem 1, we can obtain the following result
devel oping the theorem on the asymptotic stability [3].

Theorem 2. We assume that there exists a positive-
definite Lyapunov vector function V = V(t, x), V O K
such that:

() differential equality (5) isvalid;

(1) the zero solution u = 0 to set of comparison (6)
is stable (uniformly stable);

(111) for each bounded solution to set of compari-
son (6), condition (8) is fulfilled;

(IV) for arbitrary limiting totality { X*, V*, U*, W*}
and each bounded solution u = u*(t) # 0 of limiting set
of comparison (7), the manifold { V*(t, x) = u*(t)} n
{W*(t, x, u*(t)) = 0} does not contain the solution to
limiting set (4).

In this case, the zero solution x = 0 to set (1) is equi-
asymptotically stable (uniformly asymptotically stable).

Using the definition of [6], we can prove the follow-
ing stability theorems for Lyapunov vector functions of
aconstant sign.

Theorem 3. We assume that there exists a Lyapunov
vector function V = V(t, x) = 0, V O [K, such that the
conditions (I)—(111) of Theorem 2 arefulfilled, aswell as
the condition:

(V) the zero solution x = 0 is uniformly asymptoti-
cally stable with respect to both the manifold
{V*(t,x)= 0} and the family of limiting totalities
{(X*, V¥ U*, W¥)}.

Then, the solution x = 0 to set (1) is stable (uni-
formly stable).

Theorem 4. \We suppose that in addition to the con-
ditions of the preceding theorem, for arbitrary limiting
pair (X*, W#), the manifold { V*(t, x) = ¢c: c= ¢, =
const > 0} n {W#*(t, x, u*(t)) = 0} does not contain
solutions to set (4).

In this case, the solution x = 0 of set (1) is (uni-
formly) asymptotically stable.

We now consider a holonomic mechanical system
that is described by n generalized coordinatesq;, o, ...,

g, With the kinetic energy 2T = ' A@)q . Thesystemis
subjected to both the action of potential forces with the
potentia energy N =T, q), g—g =0,forq=0at al

t 0 R* and other generalized forces with the resultant
forceQ =Q(t, q, q), Q(t, 0,0) =0.

DOKLADY PHYSICS Vol.50 No.2 2005

The equations of motion for this system can be writ-
ten out in the form of Lagrange equations

QE@_TD_G_T = _a_I-I+Q
thqu aq aq '

We assume that these equations resol ved with respect to

d satisfy conditions (2) within theregion R* x G, x G,,
G:=1{q: |lgl| <&, €>0}, and that limiting equations (3),
(4) can be composed for this region.

Theorem 5. We assume that

(11)

(i) M = N, q) has an isolated minimum H%_” >
q

&(n) >0at thepointq =0for all t DR*andq U G, =
{0<n<llll<e};

(i) the combined action of all forcesis such that for
alt,q, q) OR" xG, xG,and (t, q) O R x G, the
relations

T t,0)+a'Q(t q, )< F(t, T+M) +g(t,a),

o(t,a)<0; lg(t, @) 23(n)>0
are correspondingly fulfilled;

(iii) the zero solution of the scalar equation U =
f(t, u) isstable.

In this case, the equilibriumposition g = q = of sys-
tem (11) is asymptotically stable.

Let the generalized coordinates of mechanical sys-
tem (11) be separated into positional and quasi-cyclic
ones. q =(r,z), r=(q, %, ....qQ and z = (z,, 2, ...,

oT on
Zn—k)T = (qk+ 1 Ok+25 +es qn)T so that ‘a—z‘ =0, 5‘2‘ =0.
The kinetic and potential energies and the resultant
force of generalized forces of the system, are repre-
sented in the form

OT =1 A(r)r+2r B(r)z+z C(r)z, M=T1(t,r),

Q=(Q.Q), Q =Q(tr,r), Q =Qt2).

Then, the equations of motion of the system can be
written as

doR_oR _ ~r dp
' = Q. dt

z dz oR

= === (12

Q 1) dt api ( )

whereR=R(t,r, f,p) =R+ R —W,2R, = r ' Fr,F=

A— BC'B", R, = p'™C'Br, and W(t, r, p) = M +
1/2p'C'p.

We assume that inthecaseof r =r=0, p=p,, and

Z0 = Cl(0)p,, for al t O R, the equalities %lpv =0,
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Q" = Q%= 0arevadlid. Then the system has the steady-
state motion

r=0, F=0, p=p, z=2=C0)p, (13)

On the basis of Theorem 3, we can derive the following
result on the stability of this solution.

Theorem 6. We assume that

(i) for p = p,, the function W(t, r, p) has an isolated

minimum H%y_v > 9(n) > 0 at the point r = O for all
r

tOR"andr 0 Gy,
(i) the combined action of forces over positional

coordinates is such that for p = p,, for all (t, r, f) O
R*x G, x G, (t, r) DR x G, therelations

aaltv(t, Fpg) + QI (L1, 1)< £7(L Ry + W) +g(t, 1),

o(t,1)<0; lg(t, 1) =8(n)>0
are correspondingly fulfilled;

(iii) the action of forces over cyclic coordinates is
such that for all t O R, p O {||p — pol| < €}, the scalar

le(pl - piO) < fiz(t’p_p())1 (I = 1’ 2’ s = k)! Where
f2=(f1, f3, ...

(iv) the zero solution to the scalar equation u =
fT(t, u) and of the vector equation of comparison U =
fZ(t, u) isstable.

Then, steady-state motion (13) is stable with respect
tor, r, z, and is asymptotically stable over r, r with
respect to motions corresponding to the unperturbed
valuep = p,.

Theorems 5 and 6 develop and complement the

results of [6—11] on stability of the steady-state mation
of mechanical systems.

, Tr_)Tisaquasi-monotonic function;
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It is now known [1, 2] that the angular velocity of
the Earth’srotation varies over time; however, it wasfor
a long time regarded as a constant, while day length
was taken as a time standard. Following the discovery
of the secular acceleration of the Moon by E. Halley in
1696, the constancy of the Earth’s rotation velocity
became doubtful. The physical causes of this behavior
are tidal friction induced by the gravitational effect of
the Moon and Sun on the rotation of the Earth, which
cannot be treated as solid in this case; a moment acting
on the Earth from moving air and liquid masses; the
possible motion of masses inside the Earth, and, more
precisely, in its core; etc.

In our opinion, significant advances occurred in the
study of the mechanism of variation in the Earth’s rota-
tion velocity when (i) an atomic clock was built in 1955
that provided both for atomic time measurements that
were more uniform than previous time measurements
and for much more accurate measurements of day
length; and when (ii) the advanced rotation of the solid
core with respect to the mantle was discovered from the
propagation of seismic waves in the Earth’s depths [3].

Variations in day length for al the times of instru-
mental observation (the last 300 years) were presented
in[4]. Analyzing these data, one can reliably separate a
constant decrease rate for the Earth’s rotation velocity,
which correspondsto anincreasein day length by 1.7 x
1073 sper century [2]. Thisrate of decreasein the angu-
lar velocity of the Earth’s rotation was first obtained by
comparing times of known antique solar eclipses with
times of these eclipses calculated with the constant
present angular velocity. Data acquired after 1955
exhibit annual, and even seasonal, oscillations caused
by the motion of air masses, melting of ice, and other
seasond factors.

At the same time, there are long-term variations in
rotation velocity: the rotation velocity decreased for

Research Institute of Applied Mathematics and Cybernetics,
Nizhni Novgorod Sate University,
ul. UlI'yanova 10, Nizhni Novgorod, 603005 Russia
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several decades and then increased for nearly the same
period. These variations in angular velocity are much
larger than 1.7 x 103 s per century.

Many hypotheses were proposed to explain these
variations. Some of them are based on the angular-
momentum exchange between the core and the mantle,
which occurs upon changes either in the electromag-
netic interaction between the core and the mantle[1] or
in the viscosity of the liquid core [5].

In thiswork, we propose a simple mechanical model
for explaining the above-mentioned long-term varia
tionsin the Earth’srotation and for estimating the char-
acteristic parameters of the gravitational and viscous
interaction between the mantle and the solid core. This
model isbased on the recently discovered differencesin
the angular velocities of the mantle and the core [3]. If
the mantle and crust are treated as onerigid body in the
form of a three-axial ellipsoid and the solid core is
treated as another such body coaxially rotating about
the principa axes with the maximum moment of iner-
tia, then, in addition to viscousfriction forcesinthelig-
uid core, the gravitational moment arises due to the
asphericity of the solid-body density. This moment
depends on the rotation angle between the bodies and
twice changes sign upon the total relative rotation.

If I, and I, are the moments of inertia of the crust—
mantle system and the core, respectively, and ¢, and ¢,

are the respective rotation angles, the equations of rota-
tional motion have the form

d’ .
L = hS -0 —ksin2(0: -6 M,
d’ .
122 = =S80 —ksin2(¢; - 6,).

In these equations, in addition to the moment M of the
tidal friction forces, the moment of viscous friction
forces with the coefficient h and the fundamental har-
monic of the moment of the gravitational interaction
between the mantle and solid core with the coefficient k
are included. The gravitational moment will be esti-
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mated below under the assumption that the mantle and
core are coaxially rotating bodieswith three-axia ellip-
soids of inertia.

Introducing dimensionless parameters and time and
combining equations, we arrive at the system
P +hy+2Kksing = 2m,
R (1)
$1+yd, = -m.

Here, the dot stands for the differentiation with respect
to T: t = Tt where tjisthetime scale,

|
w=200-0, v=Fow= PR
. _k 1O _ M,
k _E_a-l-g:lt*’ m—l_lt*.

The form of these equations enables one to solve
them sequentially. Thefirst equation isequivalent to the
equation of a pendulum with a constant moment and
belongsto equationswith acylindrical phase surface[6],

because the state (), ) coincides with the state
(U, Y £ 2mm), where nis an integer.

Depending on the parameters h' and k' and the ratio
between them, qualitatively different phase portraits of
the system are realized. They are presented as a com-

pletelistin [6]. We are interested in the case E > 1for

small h' values, when the first equation, in addition to
the equilibrium state k'siny), = m, includes the stable
limit cycle encircling the phase cylinder, which corre-
sponds to the difference that was found in observations
between the angular velocities of the solid core and the
mantle. We seek this limiting cycle in the form

P = 0T+ Y+ Y.

The first equation then takes the form
. o . _ _2m
Py + Py + 2k sin(wt+ P+ ;) = 0, w = v

Sinceh'and k are small, i, < 1, and for the estimate in
which we are interested, it is sufficient to consider the
equation

P+ Py +2Ksin(wt+ Yy,) = 0,
which has the obvious solution

: 2K
= WCOoS(WT+
lIJl wz + h|2[ ( l'IJO)

_hsin(eT+ Wy)] = %k'cos(wu w,).

We note that the latter relation is written under the con-
ditionh' < w.
Asaresult, system (1) reducesto the form

b = 2(0,-0,) = 0+ Zcos(wr+ uy),

b1 +yd, = —mr +c,

where cistheintegration constant. Therefore, the angu-
lar velocity of mantle rotation as a function of time has
the form

1
1+y

O K -
b, = [p—%oo—mr—\—/—cos(oot+ Wo)d,
0 @ D

or, taking into account the initial conditions and that
y<1,

YK

b1 = ¢1—mr + I cosy— cos(wT+ o))

In terms of the initial parameters, this equation has the
form

0. kT, 2 . o
g n[coswo— cosiEt + wqj]g.

Thus, the angular velocity of mantle rotation
decreases under the action of the moment of tidal forces

at aconstant rate of ¥ and oscillateswith an amplitude
1

T . . .
of F#T , Where 2T, is the period of rotation of the
1
Earth’'s solid core with respect to the mantle, which
determines long-term variations in the Earth’s rotation

velacity.

Using known measurements [ 7] of the Earth’s rota
tion velocity from 1955 to 2003, one can determine the
parameters M, k, and T, . According to these data, T, ~
60-70 yr. Moreover, taking 2003 as the beginning of
time (so that t < Q) and taking into account the relation

21
Aw, = —?ATd,

d

where T, is the day length, we obtain

AT,x10%s = 1.7 00 t(yr)

2)
o b d] o
+ 1.36[003%%60 T+ 173~ cos173 } +0.8.
DOKLADY PHYSICS Vol. 50 No. 2 2005
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This expression has been obtained using the data
AT (t=0)=0.8x10%sand AT (t=30yr) =3x 1073s.
In this case, we obtain k = 8.4M. From the formulas for
the dimensionless parameters and taking tj= 1 yr =

3.15 x 10" s and y [01/500 (according to data on the
Earth's structure; see, e.g., [2]) as a time scale, we
obtain h' ~ 0.87 x 104, k' ~ 0.019, m~ 4.5 x 105, and
w = 0.1. Therefore, the conditions of the smallness of h'
and k' and h' < w, which were used for the above esti-
mates, are satisfied quite well.

Let us estimate the gravitational moment between
the mantle and crust (which are treated as one rigid
body in the form of athree-axial ellipsoid with an inter-
nal spherical cavity) and the inner core (another rigid
body) located in the cavity of the first body.

The outer ellipsoid surface in the spherical coordi-
nate system (r, ¢, 6) is described by the expression

cos’6, _1

2 .2 .2 . 2
cos §,sin 61+ sin“¢,sin 61+

>
1

-

2 2 2
Q b1 C,

Thesolid core of the Earth isalso athree-axia ellip-
soid with the surface equation

cos’ (¢, —0)sin’e, .\ sin’(¢,—0)sin’0,
a; b’
005262 1
+t———= =5, C<a,<by,.
C, o

These bodies coaxially rotate about their principal
axes with the maximum moments of inertia. The equa-
tions of the surfaces are written at the specific time
when the angle between them isequal to ¢, - ¢, =0o.

dM

We consider acase where the surfaces dlightly differ
from spherical shape:

2 2
C C

= =1-28, 5 =1-28 (g, <1),
a 1

2 2

Cr _ v G ' -

_2 - 1—281, _2 - 1—282 (81, 82< 1)
a; 2

Inthiscase, it is easily seen that
.2 2 . 2
r,=c,+c,sin"6,(¢,cos ¢, +¢&,sn"¢,),

r,=C,+ czsinzez(s'lcosz(q)l—o) + s'zsinz(cbl—o)).

It isobvious that only the material points of thefirst
body that lie between the ellipsoid surface and the
sphere of radiusc, or inthe layer §,(¢,,0,)=r, —¢c,, as
well as the points belonging to the layer 8,(¢,, 6,, 0) =
r, — ¢c,, contribute to the gravitational interaction
between the bodies under consideration.

To simplify the calculation, since the layers are
thin, we consider the interaction between two spheres
of radii ¢, and ¢, with the surface densities p,d, and
p,0, that is described by the elementary gravitational
potential

dw = plélclsme de dcl)lpzézczsme de,d¢,

(c1 + c2 2clc2cosa)

where p, and p, are the volume densities and
cosa = cosB,cosh, + sinB,sinB,cos(d, —

$2).

The elementary moment is given by the expression

P1CiSin’0,(€,C0S° D, + £,8in°§,)dB,dd,p,CosiN°B,(g1 — £5) SiN(2(, — 7)) dB,dd,

gr = —(dW); =G

Theintegration with respectto 8, ¢,, 8,, and ¢, issig-
nificantly simplified for ¢, < ¢, and yields

2 1 1 H
= £TCG(e; —€1)(€1—£,)SN(20)p1p,C;
4 sCEy I o
= =G Co0= — B— sn2(¢,—9,),
10 >P1P2 2|:b 2 % (92—91)

which provides for the estimate of the amplitude of the
moment of the gravitational interaction between the
solid core and the mantle (k value).
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(c;+co—

1/2
2c,c,cosa)

For the Earth, we have [2]

C_1_& _ (b1 a?) = 2(b, —ay)
- —2 X213m_ _ 67x10°,
6.36 x10" m

Assuming that the parameters of the core élipsoid are
2 2
. . C, C
approximately the same asfor the mantle, i.e, = — = =
a, 2

6.7 x 10, we obtain k = 4.9 x 10'° kg m? s. We note
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that % = 3.8 x 103 for the tidal moment M = 1.3 x

10'® kg m? s is much larger than the above ratio Mk— :

Variation in day length for about one and ahalf cen-
turiesis shown in Fig. 1 (the upper line corresponds to
data obtained from [7] and the lower line corresponds
to those data minus a constant increase of 1.7 x 107 s
per century in day length). Spectral analysis of these
data (Fig. 2) shows that oscillations with periods of
about 65 and 130 yr correspond to coefficients of 0.8
and 0.4, respectively. Contributions from other compo-
nents are much smaller, which corroborates the validity
of the assumption about the periodicity of variations.
Figure 3 shows the superposition of the fundamental
harmonic of day-length oscillations with a period of
65 yr and data on their variation for about 150 years.
We emphasize the satisfactory coincidence of super-
posed datafrom the building of the atomic clock (1955)
and the qualitative coincidence (coincidence of times of
maxima and minima and absence of large discrepan-
cies) in an earlier period, when measurements were not
SO accurate.

Discussion. The phenomenon of long-term varia-
tionsin the angular velocity of Earth’srotation presents
one of the most intricate and inexplicable problems.
Indeed, for such a significant change (a change of
~+3x 1073 s in day length for the short time of
60-70 years) in the angular velocity of Earth’srotation,
which displays such a huge moment of inertia, it is dif-
ficult to point to sources for a mechanical moment that
is sufficiently large and changes sign. In view of this
circumstance, information on the rotation of the solid
core of the Earth with respect to the mantle enables one
to point to such a moment based on the gravitational
interaction between two bodies—the crust—mantle sys-
tem and the solid core. Here, the solid coreistreated asa
powerful wheel and significant variationsin mantle rota-
tion are attributed to a changein its angular velocity.

Thekey point of the above mechanism isthe estima-
tion of the gravitational interaction between the mantle
and the core, data on which are nearly absent. In this
work, the spherical symmetry of the densities of bodies
is proposed, and only the ellipsoid shape of their sur-
faces is taken into account. Data on the core ellipsoid
are absent, and its shape is considered to be similar to
that of the mantle. In spite of these and other crude
assumptions, the estimate obtained for the gravitational
interaction is three orders of magnitude larger than the
moment necessary for explaining variation in the
Earth’s rotation. Thisfact indicates that this interaction
is possible, although it can be caused by a significantly
smaller asphericity of the core than that accepted in this
work and by the general deviation of its density from a
spherically symmetric distribution. The only important
fact is the sinusoidal dependence of the gravitational
moment on the angle between the bodies in the first
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approximation for both the case of uniform aspherical
bodies and the general case of inhomogeneous bodies.

If the above conclusions are corroborated by amore
careful comparison of measurement data with calcula-
tions and longer observation of the Earth’s rotation
velocity, then (1) the rotation period of the solid core
with respect to the mantle will be significantly refined
(about 120 yr instead of 400 yr [3]); (2) the gravita-
tional moment between the core and the mantle, aswell
as the periods of its maximum and corresponding
stresses inside the Earth, which are sources of earth-
quakes, will be estimated (according to the estimate,
this moment is eight times as large as the tidal
moment); and (3) the concept of the solid core as a
three-axial ellipsoid will appear and its moments of
inertiawill be estimated.

ACKNOWLEDGMENTS

Thiswork was supported by the Russian Foundation
for Basic Research, project no. 02-01-00921.

DOKLADY PHYSICS Vol.50 No.2 2005

REFERENCES

1. W. Munk and G. Macdonad, The Rotation of the Earth
(Cambridge Univ. Press, Cambridge, 1960; Mir, Mos-
cow, 1964).

2. A.S. Monin, Earth’s Rotation and Climate (Gidrometiz-
dat, Leningrad, 1972) [in Russian].

3. X. Song and R. G. Richards, Nature 382 (6588), 221
(1996).

4. K. A. Kulikov, Rotation of the Earth (Nedra, Moscow,
1985) [in Russian].

5. G. G. Denisov andV. V. Novikov, Dokl. Akad. Nauk 362
(4), 484 (1998).

6. A.A.Andronov, A. A.Vitt, and S. E. Khaikin, Theory of
Oscillators (Fizmatgiz, Moscow, 1959; Pergamon,
Oxford, 1966).

7. http://hpiers.obspm.fr/eop-pc/earthor/utllod/lod-1623.html

Tranglated by R. Tyapaev



	100_1.pdf
	106_1.pdf
	112_1.pdf
	115_1.pdf
	63_1.pdf
	66_1.pdf
	69_1.pdf
	72_1.pdf
	77_1.pdf
	83_1.pdf
	88_1.pdf
	91_1.pdf
	95_1.pdf

