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Among the numerous steady-state random pro-
cesses, those in which the power spectrum is inversely
proportional to the frequency f, i.e., the so-called

“ ” processes are of particular importance. They

attract attention due to their scaling-invariant fluctua-
tion distribution. In the general case, scaling invariance
can be associated with the critical behavior or self-orga-
nization in complex systems [1]. An example of scal-
ing-invariant behavior is the Kolmogorov turbulence
when energy fluxes of various length scales arise in
fluid flows, these phenomena obeying unified universal
similarity laws [2]. However, not all random processes
are reduced to such turbulence. Almost 80 years ago,
electric-voltage fluctuations inversely proportional to
the frequency were discovered in electronic devices
(flicker-noise [3]). It turned out that random processes

displayed by the  spectrum may be encountered in a

number of phenomena. In addition to the electric-cur-
rent and magnetic fluctuations studied in solid-state
physics, many random processes in astrophysics, geo-
physics, biology, and computer science also display
a power spectrum inversely proportional to the fre-
quency [4].

However, in spite of the wide prevalence of  ran-

dom processes in nature, a commonly used model for
them is absent. Moreover, in various cases, different

explanations are associated with the  spectrum, and

different models are constructed for its description.
There have been numerous attempts to explain a possi-
ble generation mechanism for scaling-invariant fluctua-
tions, which are based on the concept of self-organized
criticality [5] applied to the description of complex sys-
tems with developed fluctuations.
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Studies of random processes occurring in the pro-
cesses of the heat-and-mass transfer have shown that

 spectral fluctuations appear as a result of interactions

between subcritical and supercritical nonequilibrium
phase transitions in the presence of white noise [6]. In
this case, the extended critical behavior of the fluctua-
tions is characterized by a self-similar probability-den-
sity distribution independent of time. In this case, it is
important to reveal the effect of initial conditions on the
settling time of the steady-state fluctuation distribution
function, to clarify a law determining (at arbitrary ini-
tial conditions) the relaxation of the random-process
realization when a scaling-invariant distribution settles,
and also to estimate the settling time. This is the basic
topic of the present study.

In the theory of  fluctuations of nonequilibrium

phase transitions [7], stochastic equations are used for
the description of fluctuation dynamics in a concen-
trated system. In the simplest case, these equations are
of the form

(1)

Here, φ and ψ are dynamic variables (order parame-
ters), whereas Γ1 and Γ2 correspond to the Gaussian
δ-correlated noise. When this set of equations is written
out in the form (1), Γ1 and Γ2 can have different realiza-
tions but identical dispersions. The multiplier 2 stand-
ing at the variable φ in the second equation of set (1)
renders these equations nonequivalent and implies the
existence of a certain uncompensated flux.

In order to integrate the set of Eqs. (1), we rewrite
them in the form [8]

(2)
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dφ
dt
------ φψ2– ψ Γ1 t( ),+ +=

dψ
dt
------- φ2ψ– 2φ Γ2 t( ).+ +=

φi 1+ φi ψi∆t+( ) 1 ψi
2∆t+( ) 1– ξ i∆t0.5,+=

ψi 1+ ψi 2φi∆t+( ) 1 φi
2∆t+( ) 1– η i∆t0.5.+=
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Here, ξi and ηi are the sequences of Gaussian random
numbers with zero average value and with standard
deviation σ, which model white noise. This form of
equations is obtained when the values of φi and ψi in
nonlinear terms of the first and second equations of
set (1) are taken, respectively, not at the initial, but at
the final point of the partition interval ∆ti . This ensures
the stability of the numerical integration of set (1) under
both arbitrary initial conditions and arbitrary integra-
tion steps ∆t. It is worth noting that we can arrive at the
same form of set (2) for the numerical integration in a
more rigorous manner by summarizing (in the course of
integrating the determinate part of the stochastic equa-
tions) the jumps within the time interval ∆ti not only for
the first derivative, but for all successive derivatives of
the functions φ(t) and ψ(t). The corresponding Taylor
series can be approximated by infinitely decreasing
geometrical progressions. As a result, upon summariz-
ing the jumps for all the derivatives, we obtain set (2).
In order not to correct the values of standard deviations
σ of Gaussian random numbers ξi and ηi with the vari-
ation of the integration step ∆t, the differentials ξi∆t0.5
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Fig. 1. Initial segments for the relaxation of system (2):
(a) relaxations for separate realizations of random pro-
cesses (1) ∆φ(t) and (2) ∆ψ(t); (b) relaxations of random
processes: (1) 〈∆φ(t)〉  and (2) 〈∆ψ(t)〉  both averaged over the
realization ensemble. The integration step is ∆t = 0.15.
and ηi∆t0.5 in set (2) contain the time interval taken in
the power of 0.5.

Set (1) and its calculation version (2) have a noise-
induced transition with respect to the probability den-

sity P( ). The criticality vicinity for this transi-
tion determines the intensity of the external noise
(σ . σc) for which the system generates the stochastic
processes φ(t) and ψ(t). In these processes, the power
spectra are inversely proportional to the frequency (i.e.,

Sφ ~ ) and inversely proportional to the frequency

squared (Sψ ~ ), respectively [9]. However, the ran-

dom function χ(t) inverse with respect to ψ(t) has the
spectrum inversely proportional to the first power of the

frequency Sχ ~ , which coincides with the spectrum Sφ.

In order to exclude large fluctuations of the function
χ(t), the latter must be defined as the inverse function
with respect to ψ(t), for example,

(3)

where ε . 0.01–0.02 is a small constant, and χ(t) = 

everywhere except in the vicinity of zeros of the func-
tion ψ(t). In the vicinity of zeros, ψ(t) = χ(t) if ψ  0.
The function χ(t) is of interest because of the fact that it
is scaling-invariant for virtually all time intervals [10].

Our goal is to study the relaxation process for the
system described by set (1) while settling the scaling-
invariant parameter distribution for different initial con-
ditions. To do this, we consider the behavior of the dif-

ferences ∆φ = (t) – φ0(t) and ∆ψ = (t) – ψ0(t) corre-
sponding to different initial conditions. The numerical
integration of set (2) has made it possible to analyze
various initial conditions. It was found that in a case in
which the same sequences of Gaussian random num-
bers {ξi} and {ηi} had been given, the random pro-

cesses (t) and (t) independently of initial condi-
tions converged to the same random functions φ(t) and
ψ(t) after a lapse of a certain time τ, i.e., ∆φ(t)  0,
∆ψ(t)  0, as t @ τ. However, for certain realizations
of the random process, this transition occurs in the form
of a jump (Fig. 1a). In the case of averaging the relax-
ation over a large number of realizations, we can obtain
a smooth relaxation dependence of 〈∆φ(t)〉  and 〈∆ψ(t)〉 ,
where skew brackets denote the time dependence aver-
aged over the realizations. The typical averaged func-
tions 〈∆φ(t)〉  and 〈∆ψ(t)〉  are shown in Fig. 1b. In this
case, the following calculated values of the parameters
of set (2), namely, σ = 0.85, ∆t = 0.15, and the step
number N = 400 were used. The initial conditions were
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φ0(0) = ψ0(0) = 0 and (0) = (0) = 0.3. The curves in
Fig. 1b are obtained by averaging over 500 random
realizations of the process. In general, in calculations of
the relaxation, the integration steps from 0.06 to 0.3
were used for the number of integration steps up to
16000 and for averaging up to 1000 realizations. Initial
segments of the realizations are shown in Fig. 1.

We can now discuss general relaxation features
while settling the scaling-invariant distribution of fluc-

tuations in random processes featured by the  spec-

trum.

Firstly, after a certain transition time t0 (see Fig. 1b),
the system under consideration becomes self-orga-
nized, and for t > t0 , the averaged relaxations 〈∆φ(t)〉
and 〈∆ψ(t)〉  begin to obey the simple exponential form

〈∆φ(t)〉  ~ 〈∆ψ(t)〉  ~ exp , where τ is the character-

istic time.

Secondly, while settling the scaling-invariant distri-
bution in system (2), the characteristic relaxation time
τ is inversely proportional to the integration step
squared (τ ~ ∆t–2) and remains the same for both pro-
cesses 〈∆φ(t)〉  and 〈∆ψ(t)〉 . In Fig. 2, the relaxations
〈∆φ(t)〉  and 〈∆ψ(t)〉  are plotted in semi-logarithmic
coordinates. The estimation of the relaxation time
yields τ . 2∆t–2 for the integration steps employed.

Thirdly and finally, the transition time at the begin-
ning of the relaxation is determined by the initial con-
ditions and, in terms of order of magnitude, coincides
with the relaxation time or is even shorter: t0 ≤ τ.

The general features of the relaxation while settling
the scaling-invariant distribution are conserved not
only for small differences in the initial conditions when
this difference does not exceed the root-mean-square
deviation corresponding to a settled steady-state ran-
dom process but also for the case of large differences in
initial conditions. However, it is worth noting that for
large differences of initial conditions, the relaxation
〈∆φ(t)〉 yields a new qualitative behavior during the
transition period t0 , i.e., at the very beginning of the
relaxation. If for small differences in the initial condi-
tions the quantity 〈∆φ(t)〉  can even slightly increase at
the beginning of the relaxation (see Fig. 1b), then for
large differences in the initial conditions (on the order
of a standard deviation of a steady-state process or
greater), 〈∆φ(t)〉  at the initial period t ≤ t0 obeys the
power dependence of the relaxation: 〈∆φ(t)〉  ~ t–0.5. In
Fig. 3, this dependence is illustrated in the double-log-
arithmic scale. It should be noted that the relaxation of
function 〈∆χ (t)〉 , where the function χ(t) is defined by
formula (3), virtually entirely coincides with the relax-
ation behavior of the function 〈∆φ(t)〉  (which is why the
relaxation of function 〈∆χ (t)〉  is not shown in the
figures).
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Thus, in this study, we have investigated the relax-
ation of fluctuation parameters for random processes

with the  spectrum as a function of initial conditions.

In the given case, the relaxation of a steady-state ran-
dom process is associated with settling the scaling-
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Fig. 2. Relaxations of random processes: (1) 〈∆φ(t)〉;

(2) 〈∆ψ(t)〉; and (3) dependence ~exp  for τ . 2∆t–2.
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Fig. 3. Relaxation of a random process 〈∆φ(t)〉 : (1) for
large differences in initial conditions and (2) the depen-
dence ~t−0.5.
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invariant fluctuation distribution and obeys a simple
exponential form. The characteristic settling time for
the scaling-invariant fluctuation distribution is
inversely proportional to integration step squared and
coincides for all parameters of the model system that

describes fluctuations with the  spectrum.
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A multiwall carbon nanotube is a set of single-wall
nanotubes embedded into each other, where the dis-
tance between tubes is equal to about 3.35 Å. The mul-
tiwall carbon nanotube is not always formed by coaxial
cylinders. Increase in the tube diameter and in the num-
ber of walls causes deviations from cylindrical shape.
In this case, faceted nanotubes formed by coaxial
prisms embedded into each other can arise [1]. The
structural features of prismatic tubes manifest them-
selves in electron diffraction patterns. The aim of this
paper is to describe the characteristic features of elec-
tron diffraction patterns for prismatic carbon nanotubes
and to determine the chirality angle for a faceted tube.

The arrangement of the reciprocal lattice for a tube
is partially similar to that for a textured polycrystal: in
both cases, the reciprocal lattice could be constructed
based on that for the single crystal by rotation about a
certain axis. For the textured polycrystal, the rotation of
small single crystals forming the polycrystal occurs
about such an axis. This gives rise to ring- or arc-shaped
reflections that characterize the texture and belong to
one band. Such a pattern occurs in the case of usual ori-
entation of the texture when the electron beam is per-
pendicular to the sample plane and the basal plane of
the texture. The latter is the plane of the preferred ori-
entation (with respect to the external reference system)
for microscopic single crystals forming the polycrystal.

For the carbon nanotube, the reciprocal lattice is
formed by the rotation of the reciprocal lattice of the
graphite ab plane about an axis arbitrarily oriented in
this plane. In contrast to the texture, the tube axis at its
usual orientation is parallel rather than perpendicular to
the sample plane and, hence, it is perpendicular to the
electron beam. As a result, the electron diffraction pat-
tern for the tube is that cross-section of the reciprocal
lattice which passes through the tube axis.
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The upper panel of Fig. 1 shows the mutual orienta-
tion of axes for the direct and reciprocal lattices (a, b, c
and a*, b*, c* axes, respectively). This figure also dem-
onstrates the main rows of lattice sites in the reciprocal
lattice of graphite (10l, 11l, and 01l). If the electron
beam is directed parallel to the c axis, the cross-section
of the site rows by a plane corresponding to the diffrac-
tion sphere involves the lattice sites in the a*b* plane.
In the corresponding electron diffraction pattern, we
should see the reflections arranged in the form of a
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Fig. 1. Site rows in the graphite lattice. Upper panel: the
reciprocal lattice of graphite. The rotation for site row 11l
about the b* axis by an angle of α = 36.2° is shown. Lower
panel: the schematic electron diffraction pattern for the tube
with zero chirality. The rays along which the displacement
of reflections due to the lattice rotation occurs are shown.
 2005 Pleiades Publishing, Inc.
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characteristic hexagonal network. Using this graphite,
let us make a tube in the form of a straight cylinder. To
this end, we choose the direction of the tube axis in the
ab plane and rotate the depicted reciprocal lattice about
this axis. If the tube axis is parallel to the [120] direc-
tion, it corresponds to the [010]* direction, i.e. to the
b* axis in the reciprocal lattice. In this case, we have a
zero chirality angle for the tube. Let us now rotate site

rows 11l, 30l, 5 l, and 7 l, which are based on the line
perpendicular to the b* axis, about the b* axis. If the
rotation of the lattice is continuous, then the plane of
the diffraction sphere will meet the lattice sites in the

following sequence (when we start from site 7 6):

1 2

2

hkl 7 6 7 4 7 2 7 0 5 6 5 4 5 2 5 0 307 306

dhkl, Å 0.3258 0.3337 0.3388 0.3406 0.4286 0.4473 0.4597 0.4641 0.5696 0.5984

hkl 305 304 303 302 301 300 116 114 112 110

dhkl, Å 0.6266 0.6528 0.6757 0.6936 0.7050 0.7090 0.8259 0.9902 1.1529 1.2280

2 2 2 2 1 1 1 1
In this case, the electron diffraction pattern will con-
tain a set of reflections lying in the ray that starts from
the reflection (110) and is perpendicular to the rotation
axis of the tube. Taking into account the rotation of the
remaining site rows, we get the picture shown in the
lower panel of Fig. 1. The distant reflections turn out to
be located so close to each other that they merge into a
single bar. Note that the efficient crossing with diffrac-
tion in the course of the rotation with the lattice, i.e., the
crossing with a site in the site row, is possible only for
some definite position of the row. For the aforemen-
tioned rows, the efficient crossings occur at the follow-
ing tilting angles α (hkl is the reflection index appear-
ing in the electron diffraction pattern as a result of the
tilting of the site row):
hkl 110 300 5 0 7 0 7 2 301 5 2 7 4 302 5 4

α, deg 0.0000 0.0000 0.0000 0.0000 5.9713 6.9575 8.3310 11.8157 13.7156 16.3240

hkl 7 6 303 5 6 304 305 112 306 307 114 116

α, deg 17.4216 20.1073 23.7165 26.0181 31.3897 36.2111 36.2111 40.5045 55.6714 65.5223

1 2 2 1 2 1

2 1
The continuous rotation of the site rows discussed
above leads to the formation of the cylindrical carbon
tube. In the case of the prismatic tube, its individual
faces have a constant tilting angle with respect to the
electron beam. Therefore, the electron diffraction pat-
tern of the faceted tube exhibits a discrete set of lattice
orientations with respect to the tube axis rather than a
continuous rotation of the lattice. This corresponds to
the reflections, the arrangement of which is determined
by the set of inclined cross-sections of the site rows par-
allel to the c* axis corresponding to the given prismatic
tube. Let the site rows of the face perpendicular to the
electron beam and those in the tilted face form angle ϕ
(see the right top panel in Fig. 2). Consider reflections
Y and Y' located in the perpendicular plane (they are
shown in the electron diffraction pattern in the left top
part of Fig. 2). They are split due to the nonzero chiral-
ity and the angle between their radius-vectors is equal
to 2αn (Fig. 2, lower panel), where αn is the chirality
angle, and the length of the radius vector for each
reflection is equal to rhk . In the tilted plane, these reflec-
tions correspond to reflections X and X', with the radius

vector  (φ is the angle between the radius vector

of the reflection and its projection onto the perpendicu-

rhk

φcos
------------
lar plane, 0 ≤ φ ≤ ϕ). The change in the length of the
radius vector rhk of the reflection depends on the angle
φ. Hence, the tilting of the face gives rise to changes in
the interplanar distances dhkl along symmetrically
equivalent directions. Undistorted dhkl should be
located at the tilting axis, whereas the maximum distor-
tions should correspond to the direction perpendicular
to the tilting axis.

The tilting of the tube face causes changes not only
in the distances between reflections but also in the
angles between radius vectors of the reflections. Let us
now demonstrate how the chirality angle αt in the tilted
plane changes as compared to the chirality angle αn in
the perpendicular plane (Fig. 2, bottom). Taking into
account the prismatic symmetry of the faceted tubes,
we can base our consideration on the fact that the tilting
direction should be parallel to the tube axis.

Let θ be the angle between the tilting axis and the
radius vector of the split reflection in the tilted plane
and θ' be the angle between the tilting axis and the pro-
jection of the radius vector corresponding to the split
reflection onto the perpendicular plane. In this notation,
we have

θ = (90° – αt), θ' = (90° – αn).
DOKLADY PHYSICS      Vol. 50      No. 3      2005
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Fig. 2. Left upper panel: the schematic electron diffraction pattern for the tube with nonzero chirality. Split reflections ( )' and

( ), α is the chirality angle. Right upper panel: the positions of lattice-site rows for the faceted tube (for two faces) and their
cross-section by the diffraction-sphere plane. The change in interplanar distances determined by the parameter rhk is shown for a
tilted face in comparison with the face perpendicular to the electron beam. Lower panel: the schematic diagram illustrating calcu-
lations of the chirality angle for the tube with faces; αn is the chirality angle, i.e., the half angle between the radius vectors of reflec-
tions Y and Y' (in the zero-slope a*b* plane) and αt is the distorted chirality angle, i.e., the half angle between the radius vectors of
the X and X' reflections (in the tilted plane).

210

210
Let us relate θ' and θ

 =  =  = cosϕ. 

Therefore,

90° – αn) = 90° – αt)cosϕ. (1)

Relationship (1) should be taken into account in mea-
surements of the chirality angle in a faceted tube: if the
measurements are performed using X and X' reflections

θ'tan
YO '
OO '
---------- XO ' ϕcos

OO '
---------------------- θtan

(tan (tan
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coming from the face tilted with respect to the beam,
then the chirality angle turns out to be distorted (αt)
compared to the chirality angle αn in the perpendicular
plane.

Let us discuss the electron diffraction pattern of a
multiwall tube 190 nm in diameter, which is repre-
sented in Fig. 3 [2]. Measurement of the chirality angle

between the radius vectors of ( )' and ( ) reflec-
tions gives the value α = 25.1° (±0.3°) [2]. However, if

210 210
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Fig. 3. Electron diffraction pattern for a multiwall monochiral carbon tube [2]. Doubled  distance is indicated; in electron dif-

fraction pattern, this represents the parameter .

s
210
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210

2s210
we calculate the interplanar distance d110 using ( )'

and ( ) reflections, it turns out to be 1.17 Å
(±0.2 Å), which is close to the tabulated point d112 =
1.1529 Å, rather than to the tabulated value d110 =
1.2280 Å. This deviation indicates that the reflections
come from the face that is not perpendicular to the
beam (in this case, the tilting angle corresponding to the
rotation of the (11l) row is equal to 36.2°, according to
the aforementioned data). Therefore, the chirality angle
αt obtained using this pair of reflections will deviate
from the true one.

Let us discuss the problem concerning the determi-
nation of the chirality angle for the non-cylindrical
tube. The reflections that arise due to the rotation of one
site row and that correspond to the faces with different
tilting angles with respect to the beam lie at one ray par-
allel to the equatorial line of the electron diffraction
pattern. Therefore, it would be convenient to relate the
chirality angle not to those reflections whose positions
at the ray vary depending on the tilt of the face with
respect to the beam, but to the position of the ray where
all these reflections lie.

In paper [3], we considered the problem of describ-
ing the positions of the reciprocal lattice sites of the
tube as a function of the chirality angle. To this end, we

210

210
introduced coordinate Shk0 (α), which is defined by
Eq. (2) and represents the distance between the point of
origin for the coordinate system to the plane that is per-
pendicular to the axis of rotation and passes through the
given site (Fig. 1, bottom):

(2)

where a and b are the lengths of the basis vectors a and
b with angle γ = 120° between them, a = b = 2.46 Å, γ*
is the angle between a* and b*, γ* =180° – γ = 60°, h
and k are the indices of reflection in the a*b* plane, and
α is the chirality angle of the tube. As was shown above,
the set of reflections arising due to the rotation of the
site row (hkl) lies on the ray that starts from reflection
(hk0) and is perpendicular to the rotation axis of the
tube (Fig. 1, bottom). Therefore, the position of the ray
at which the reflection (hk0) lies could also be given by
the coordinate Shk0 (α), which is a single-valued func-
tion of the chirality angle.

Now, we determine the chirality angle for the elec-
tron diffraction pattern shown in Fig. 3 using the

parameter Shk0 for the rays at which reflections ( )

and ( )' lie. The latter reflections are used in the con-
ventional technique for finding the chirality angle. We

Shk0
h

a γsin
-------------- γ* α+( ) k

b γsin
-------------- αcos+cos ,=

210

210
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calculate the constant C of the electron microscope
using the relationship r(mm) = R(Å–1)C (Å mm) for the
electron diffraction pattern based on the reflections of
the {100} family. Here, we assumed that R(Å–1) =

(Å–1) and r(mm) =  (mm). As a result, we

found the value 0.359 Å–1 for  and, according
Eq. (2), the chirality angle is equal to α = 26.5° (with a
measurement error of ±0.1°).

Thus, the difference in the values of the chirality
angle calculated on the basis of relationship (2) and
determined in [2] is equal to 1.4°. How significant is
this difference for the properties of the carbon nano-
tube? According to the calculations reported in [4], the
electronic characteristics of the tube of the given radius
in the single-wall approximation could be determined
through the chirality of the tube expressed in terms of
the index k, which incorporates the indices m and n
characterizing chirality as

k = m – 2n (m ≥ 2n).

Note that if k = 0, the tube is characterized by metallic
conductivity; if k = 3(q + 1) = (3, 6, 9, …), the tube is a
narrow-band semiconductor (q = 0, 1, 2, 3); if k = 3q +
2 = (2, 5, 8, …) or k = 3q + 1 = (1, 4, 7, …), the tube is
a semiconductor with a medium value of band gap. For
the tube under study, we have k = 411; thus, in the sin-
gle-wall approximation, this tube is a narrow-band
semiconductor. We use formulas relating the tube diam-
eter D and the chirality angle α to indices m and n char-
acterizing chirality

D = ,

where d0 = 1.42 Å,

 = 

The increase in k by one changes the electronic
properties of the tube from a narrow-band semiconduc-
tor to a semiconductor with a medium value of band
gap. The increase in k by one implies the increase in m
by one (at n = const). In the tube with a diameter of
190 nm and a chirality angle of 25.1°, this leads to a
change in the chirality angle by 0.07°.

Thus, we have demonstrated that continuous rota-
tion of the crystal lattice in the case of a cylindrical tube

S
210

s
210

S
210

m2 n2 mn–+
d0 3

π
------------

αtan
n 3

2m n–
----------------.
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gives rise to a set of reflections in the electron diffrac-
tion pattern, which merge into rays (bars) for high-
order reflections. In the case of a prismatic tube, the set
of reflections correspond to a certain rotation angle of
lattice-site rows parallel to the c* axis with respect to
the rotation angle. It is shown that measurement of
chirality angle based directly on electron diffraction
patterns as an angle between radius vectors split due to
nonzero chirality can lead to erroneous results when the
tube shape deviates from the cylindrical one [according
to Eq. (1)]. We suggested a technique for calculating the
chirality angle of a graphite tube taking into account
deviation from the cylindrical shape of the tube. The
results of calculations by Eq. (2), as well as estimates of
the sensitivity of electronic characteristics of the tube to
changes in the chirality angle, demonstrate that it is
necessary to calculate chirality angle with the inclusion
of the tilting of the tube face with respect to the electron
beam. Calculations of chirality angle based on Eq. (2)
with the use of coordinate Shk0 could be applied to
determine chirality angle without a preliminary analy-
sis of the structural features of tube walls. This is pos-
sible because chirality angle is calculated using the
positions of the rays along which displacements from
the standard positions occur due to the structural fea-
tures of tube walls rather than on the basis of the posi-
tions of separate reflections undergoing these displace-
ments. Calculation of chirality angle based on the posi-
tion of rays (2) rather than on the angle between radius
vectors of separate reflections apparently is a correct
method for determining the chiral characteristics not
only of prismatic tubes, but also of the tubes of more
complicated cross-section (e.g., of column-shaped
tubes [5]).
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The investigation of instabilities driven by fast ions
in tokamaks represents one of the central problems of
the physics of collective processes in magneto-thermo-
nuclear reactors. This area of physics has been developed
in view of the design of the International Thermonuclear
Experimental Reactor (ITER) [1]. In the framework of
such an investigation, a class of instabilities called “ener-
getic-particle modes” was predicted in [2–6], whose
authors stated that energetic ions not only drive these
modes but are also responsible for their existence. In
this work, we show that the theory of energetic-particle
modes is invalid, because it is based on electrodynamic
equations that disregard the effect of the drift of elec-
trons in crossed fields, which compensate the electric
charge of energetic ions. This effect was initially taken
into account in [7], and its physical meaning was
explained in [8], where it was noted that the effect
under discussion is physically similar to the Varma–
Shukla effect studied in the physics of dusty plasma [9].

As was mentioned in [4], energetic-particle modes
are negative-energy waves. At the same time, according
to the general concepts [10], such waves can exist only
if the contribution of energetic ions to the equation for
perturbations is not small as compared to other terms of
this equation. We show that, in the approximation of
large orbits of energetic particles, which is used in the
theory of energetic-particle modes [2–6], their contri-
bution represents a small addition compared to the con-
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tribution of compensating electrons. For this reason, the
existence of negative-energy waves in the case under
consideration is impossible.

The problem of perturbations in reversed (negative)
shear discharges was considered in [7, 8]. For this rea-
son, we study the case of positive-shear discharges (a
monotonic profile of the safety factor). In this case, a
new class of perturbations called compensating-elec-
tron Alfvén eigenmodes is realized. Compensating-
electron Alfvén eigenmodes, as well as nonexisting
energetic-particle modes, lie in the so-called Alfvén
continuum. As a result, they are sensitive to continuum
dissipation (cf. [2–6]). However, in contrast to ener-
getic-particle modes, compensating-electron Alfvén
eigenmodes are positive-energy waves. Therefore, con-
tinuum dissipation leads to their damping. According to
the above discussion, the contribution of energetic ions
to the equation for compensating-electron Alfvén
eigenmodes is a small correction. This correction is
complex, and its imaginary part characterizes the effect
of resonance interaction of energetic ions with compen-
sating-electron Alfvén eigenmodes. We show that com-
pensating-electron Alfvén eigenmodes propagate in a
direction opposite to that of the diamagnetic drift of
energetic ions. Hence, according to general concepts of
the theory of plasma instabilities (see [11] and refer-
ences cited therein), the mentioned resonance interac-
tion leads to additional damping of compensating-elec-
tron Alfvén eigenmodes. Overall, the general pattern of
Alfvén instabilities in discharges with the monotonic
profile of the safety factor is favorable to that predicted
by the theory of energetic-particle modes.

We assume that, in addition to the thermal plasma
characterized by equilibrium ion density nc , there are
energetic ions with an equilibrium density of nh . In this
case, the equilibrium density of electrons is equal to the

sum nc + , where eh and ei are the charges of ener-

getic and thermal ions, respectively, under the assump-

tion that ei ≡ e = –ee. Electrons with a density of 

are called compensating electrons.

nheh

ei

----------

nheh

ei

----------
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According to [8], in the approximation of infinitely
large orbits of energetic ions, the perturbed current-clo-
sure equation, in which the drift of compensating elec-
trons in crossed fields is taken into account, is reduced
to the form

(1)

Here, r is the radial coordinate; ω is the frequency of
perturbations [the time dependence of perturbations is
taken in the form exp(–iωt)]; vA is the Alfvén velocity;

k|| =  – n /R, m and n are the poloidal and toroidal

mode numbers, respectively; q = q(r) is the safety fac-
tor; R is the large radius of the torus; φ is the perturbed

electrostatic potential; ky = , B0 is the equilibrium

magnetic field; and c is the speed of light. The substitu-

tion of   ikx , where kx is the radial wavenumber,

into Eq. (1) yields the local dispersion equation

(2)

Here,  is the transverse permittivity of compensat-
ing electrons, given by 

(3)

where  =  + .

According to the above discussion, we consider a

monotonic profile q. In this case, k|| = – , where s

is the shear and x is the distance from the rational mag-
netic surface near which perturbation is localized. In

the local approach, we can set x2  . Then,

neglecting the term with  (inertia term) in Eq. (2),

we obtain the following “local” expression for the
eigenfrequency

(4)

Here,

(5)
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where κh ≡ , ωA = , subscript CE means

compensating electrons, Ωh is the cyclotron frequency
of energetic ions, and Mh and Mc are the masses of
energetic and thermal ions, respectively. Below,
expression (5) for eigenfrequency will be corroborated
and refined in the eigenvalue problem. Eigenmodes
characterized by this frequency are the compensating-
electron Alfvén eigenmodes introduced above. Using
Eq. (15.16) from [12] and taking Eq. (3) into account,
one can see that compensating-electron Alfvén eigen-
modes are positive-energy waves.

When the contribution of energetic ions is taken into
account, Eq. (2) is modified by the change

(6)

where  is the permittivity of energetic ions. An
expression corresponding to the approximation of
strongly circulating Maxwell energetic ions with non-
uniform density nh and uniform temperature Th can be

used as a model for . In this case, we have (for
details, see [11, 13])

(7)

Here,

(8)

ω∗ h =  is the diamagnetic drift frequency of

energetic ions, ξ⊥ h = , ξ||h = k⊥ Λ, where

is the radial width of the magnetic-drift orbits of ener-
getic ions, where v ⊥  and v || are the transverse and lon-
gitudinal velocity of particles, respectively. Angle
brackets represent averaging with the Maxwell distri-
bution of energetic ions and dh is the Debye radius of

energetic ions. The term with  corresponds to the

Boltzmann response of energetic ions. The term with

〈 (ξ⊥ h)〉  can be called the cylindrical nonadiabatic
response of energetic ions, and the term with

(ξ⊥ h) (ξ||h) describes their toroidal response.
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The case ω ! ω∗ h is the most important for the
problem of instabilities. In this case, the expression for

 determined by Eq. (6) takes the form

(9)

In terms of εh, it can be shown that analysis in [2–6] is
based on the use of an expression of type (9), where
unity on the right-hand side is neglected compared to
δh . However, in the case (k⊥ ρh, k⊥ Λh) @ 1 considered in
those works, Eq. (8) shows that

(10)

In other words, the term with δh is a small addition
on the right-hand side of Eq. (9), which contradicts
works [2–6].

We now consider the resonance interaction of ener-
getic ions with compensating-electron Alfvén eigen-
modes. Using Eqs. (2), (6), and (9) and neglecting the
inertial term as stated above, we arrive at the local dis-
persion equation

(11)

We seek a solution of Eq. (11) in the form ω = ωCE +

i , where  is the imaginary part of the mode fre-
quency that is associated with the imaginary part of δh ,

so that  = ωCEImδh . Taking Eq. (8), we have the
identity

(12)

where P means the principal value. Then, it follows
from Eq. (8) that Imδh ~ – . As a result, we find

that  < 0, which corresponds to the damping of the
mode. Such a result could have been predicted in
advance, taking into account that the modes under con-
sideration have positive energy and propagate in a
direction opposite to that of the diamagnetic drift veloc-

ity  < 0.

For slightly circulating or trapped energetic ions, a
specific expression for δh evidently differs from Eq. (8).
Nevertheless, the above condition of the negativity of
Imδh remains unchanged. Therefore, the conclusion
that energetic ions lead to damping is fairly universal.
In order to ascertain this fact, one is advised to see [14]
(see also Section 4.3.3 in [13]), where the interaction of
Alfvén waves with strongly trapped ions was investi-
gated.
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Taking the local approach to the eigenvalue prob-
lem, we note that, in the case of the monotonic profile
of the safety factor, differential equation (1) takes the
form

(13)

where

(14)

The above local analysis concerned the limiting case of

zero , which represents a complete neglect of the

inertia of the plasma. In this case, Eq. (13) reduces to
the form

(15)

This equation has an exact solution expressed in terms
of the Bessel function Kiα(|xky|) of an imaginary argu-
ment (for details, see Section 5 in [15]), where

(16)

Following [15], one can find the explicit asymptotic
behavior of the solution of Eq. (15) for xky ! 1, which
can be called the short-range asymptotic behavior of
the inertialess solution.

At the same time, in the region x . , where the

inertia term in Eq. (13) is important, neglecting the term

with  when  is small, we reduce Eq. (13) to the

form

(17)

where z =  and ν = –  + iα. Equation (17) has a

solution that is expressed in terms of Legendre func-
tions. This solution is complex due to the presence of
singularities z = ±1 in Eq. (17). This circumstance leads
to the necessity of bypassing singularities in accor-
dance with the well-known Landau rule. The fact that
the solution of Eq. (17) is complex physically presents
the continuum dissipation discussed above.

Finding the solution of Eq. (17), we can determine
its asymptotic behavior for large z values, which can be
called the large-range asymptotic behavior. Joining this
asymptotic behavior with the aforementioned short-
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range asymptotic behavior of the inertialess solution,
we arrive at the dispersion equation

(18)

where l = 1, 2, 3, … is the number of the mode level and
γ is the Euler constant. 

Dispersion equation (18) is obtained under the con-
ditions α ! 1 and Reα @ Imα. The latter condition is

satisfied only if Qh exceeds a threshold value of :

(19)

The condition α ! 1 is evidently satisfied only if ine-
quality (19) is weak. An additional analysis shows that
compensating-electron Alfvén eigenmodes also exist
when inequality (19) is quite strong.

According to Eq. (18), the frequency of compensat-
ing-electron Alfvén eigenmodes is complex, i.e.,

(20)

where

(21)

(22)

According to Eq. (20), the imaginary part of the eigen-
frequency of compensating-electron Alfvén eigen-
modes is negative. This property confirms the above
conclusion that continuum dissipation leads to the
damping of compensating-electron Alfvén eigen-
modes. It is seen that decrement increases as l2 with the
level number l. Therefore, modes with the minimum l
value, l = 1, are most interesting for instabilities.
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It is well known that numerous studies have been
devoted to calculating collisions between solids and
various targets (e.g., monolithic, layered, layered-sepa-
rated targets) made of metals and composite materials
(see review in [1]). Nevertheless, problems associated
with the piercing of concrete and reinforced-concrete
structures remain insufficiently studied. In [2], experi-
mental and theoretical data are presented that relate to
shock interactions between cylindrical bodies and rein-
forced-concrete plates. The corresponding calculation
was performed under assumption of the absolute rigid-
ity of a reinforcing fabric and a striker. In this case, the
striker diameter was supposed to be smaller than the
fabric-cell size. These assumptions are not always ade-
quate for addressing practical problems. In the same
study [2], the conclusion was drawn that reinforcing a
concrete obstacle improves its bearing strength but
does not noticeably affect the process of striker pene-
tration.

Recently, a mathematical model [3] was proposed
that describes the deformation and failure of layered
concrete structures under a high-speed shock. This
model makes it possible to account for the existence of
reinforcing steel bars in a reinforced-concrete plate and
does not impose any constraints on characteristic sizes
of interacting bodies. However, certain difficulties can
arise in the process of the numerical realization of this
problem. We suggest the necessity of a small-size spa-
tial and temporal step resulting in time-consuming cal-
culations.

In the present study, the mathematical model of [3]
is generalized for calculation of the deformation and
failure of reinforced concrete subjected to shock-wave
loading. The reinforced concrete as a concrete layer
containing a steel reinforcing fabric is modeled by an
elastoplastic medium, i.e., by an homogeneous two-
phase mixture of steel and concrete. The initial density ρs0
of the reinforced concrete is determined by the formula
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ρs0 = ν1ρ0 + ν2ρ20, where ρ10, ρ20 and ν1 and ν2 are the
initial densities and concentrations of steel and con-
crete, respectively (ν1 + ν2 = 1). The volume concentra-
tions are determined via areas occupied by steel and
concrete in the cross section perpendicular to the direc-

tion of a reinforcing bar: ν1 = , ν2 = 1 – ν1, where

n is the number of bars in a strip of length L, and d1 is
bar diameter (Fig. 1).

The set of equations describing the motion of a
porous elastoplastic medium is of the form

where,

Here, ρ =  and ρm are the densities of the medium

and of the matrix, respectively; u is the velocity vector;
sn is the vector of exterior surface stresses; F is the vec-
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tor density of exterior mass forces; E is the internal
energy per unit mass; σij = Sij – Pδij are the stress-tensor
components; Sij are the components of the stress-tensor
deviator, δij is the Kronecker delta; p is hydrostatic
pressure; eij = 0.5(∇ iuj + ∇ jui) are the strain-rate tensor
components; ui are the velocity-vector components; µm

is the matrix shear modulus; σsm is the matrix dynamic

yield strength; Km = ρ0  is the bulk matrix compres-

sion modulus; α =  is the porosity; ξ is the relative

void volume; and ρ0, c0, α0, α*, η and as are constants
of the material.

The parameter λ is zero and always positive in the
case of the elastic and plastic strains, respectively. This
parameter is determined by the Mises yield condition

The shear modulus and the dynamic yield strength
for reinforced concrete can be expressed in terms of the
corresponding parameters of the mixture components:

where mi =  are the mass concentrations of steel

(i = 1) and concrete (i = 2) in the reinforced-concrete
layer (m1 + m2 = 1); and µ0i and σsi are the shear moduli
and yield strengths for steel and concrete, respectively.

The equation of state for reinforced concrete is of
the form

(1)

where η0 = 1 – ρs0v , v  is the specific volume. The Grü-
neisen coefficients γi0 for steel and concrete are

where v s0 = .

The coefficients c0 and q in the linear dependence of
the shock-wave velocity on the mass velocity of rein-
forced concrete are determined by the shock adiabats
Di = ci0 + qiui of components of the steel–concrete mix-
ture in the following manner.
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In terms of the variables (v , p), the shock adiabat of
the steel–concrete mixture has the form

Using the relation for the steel–concrete mixture at the
shock-wave front:

we can construct the dependence of the shock-wave
velocity on the mass velocity and determine the coeffi-
cients c0 and q.

The failure of reinforced concrete is modeled with
allowance for two failure mechanisms, namely, break-
ing and shear failures [4]. The local criterion for break-
ing failure is the ultimate value of the relative void vol-
ume ξ*. When this criterion holds, a material is consid-
ered to be destroyed by breaking. The local criterion of
shear failure is the ultimate value of the plastic-defor-
mation intensity

where T1 = εijδij and T2 = εijεij are the first and second
invariants of the strain tensor. When this value is
attained, the material is considered to be destroyed
according to the shear mechanism. In this case, cracks
appear in the material, and opening of the cracks occurs
under the action of tensile stresses. The behavior of the
destroyed material is similar to that of a medium resist-
ing compressive and shear forces but failed under the
action of tensile forces.

The behavior of a solid explosive under a shock is
also described in the framework of the model of a
porous elastoplastic medium with an equation of state
in the form of Eq. (1). The detonation arising under a
certain condition is considered to occur instantaneously
in the entire bulk of the material. The empirical equa-
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Fig. 1. Sketch of reinforced concrete.



134 AFANAS’EVA et al.
tion of state (see [5]) is used for calculating the expan-
sion of explosion products:

where γ = γ0 – cρ and c =  are the variable Grü-

neisen coefficient and volume sound velocity, respec-
tively. A, n, ρH, γ0 , and γH are material constants.

For the given mathematical model, we now study an
effect of the reinforcement of concrete on the piercing
and failure of a reinforced-concrete plate by a compact
steel striker. A reinforced-concrete plate is modeled by
a structure consisting of concrete and reinforced con-
crete. Reinforcing the plate is performed by two fabrics
with cells of 120 × 120 mm and steel bars 32 mm in
diameter, which are immersed in concrete at a depth of
30 mm (Fig. 1). The striker is a steel cylinder with

p Aρn γρε,+=

γH γ0–
ρH

-----------------

Fig. 2. Piercing of a concrete plate.

Table 

Time,
ms

u, m s–1

concrete 
plate

reinforced-
concrete 

plate

concrete 
plate

reinforced-
concrete 

plate

0.2 0.17 0.17 254 246

0.5 0.42 0.39 240 214

1.8 1.25 1.16 151 141

3.5 1.98 1.84 119 89

4.3 2.3 116

4.5 2.14 85

5.2 2.34 84

H
d0
-----
parameters h = d0 = 300 mm. The results of a collision
of the striker with a monolithic concrete plate are also
given for comparison. The thickness of concrete and
reinforced-concrete plates is 2d0; the shock speed is
300 m s–1.

In the form of isomeric projections in the symmetry
plane, Figs. 2 and 3 illustrate piercing of the reinforced-
concrete plate at, respectively, 4.3 and 5.2 ms after the

shock. The relative penetration depth  of the striker

and its velocity u as functions of time are shown in the
table. 

Piercing of the reinforced-concrete plate occurs 9 ms
later as compared to the concrete plate, and the shock
velocity is lower by 27.6% than in the latter case. The
character of plate failure also differs significantly.

During the piercing of the concrete plate, breaking
failure begins at 1.8 ms. The level of compressive
stresses in the plate is 0.1 GPa < p < 0.26 GPa, the max-
imum values being attained in the region of the striker
contact. Up to the very instant of piercing, a crater is
being produced in the plate. The shape of the crater
resembles two truncated cones with a common base
1.9d0 in diameter. The diameters of the upper and lower
bases are 2.2d0 and 2.1d0 , respectively.

Up to 1.8 ms, the striker pierces the first reinforced
layer (in Fig. 4, concrete layer with a reinforcing fabric
is shown as dark). In this case, the plate is subjected to
the action of compressing stresses 0.05 GPa < p <
0.19 GPa. At 3.5 ms, the striker attains the second rein-
forced layer. Its piercing occurs at 4.5 ms. In conse-
quence of the breaking failure, concrete flakes appear
on the external side of the reinforced layers. Through
holes 1.2d0 in diameter arise in the reinforced layers.
Above the second reinforced layer inside the plate, fail-

H
d0
-----

Fig. 3. Piercing of a reinforced-concrete plate.
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t = 168 µs t = 170 µs t = 180 µs

Fig. 4. Striker penetration into an obstacle composed of concrete–sand–concrete layers, which is accompanied by explosion of the
striker.
ure occurs. The crater in the plate has a nearly cylindri-
cal shape 1.2d0 in diameter.

Further, we analyze the penetration of a steel cylin-
drical striker into an obstacle composed of concrete–
sand–concrete layers. Inside the striker, an explosive
charge is introduced. The striker diameter is d0 =
7.6 mm, and its height is h = 4d0. The obstacle consists
of two layers of fine-grain concrete, a layer of dry sand
being placed between them. The thickness of the layers
is the same and attains 2.98d0 . The shock velocity is
800 m s–1; the angle of incidence is 20°.

The calculated streak picture of the striker penetra-
tion and explosion is shown in Fig. 4. Piercing of the
first concrete layer takes place up to 50 µs. Up to this
instant, the striker velocity is 459 m s–1. The penetration
of the striker through the sand layer is completed up to
104 µs, the striker velocity decreasing to 363 m s–1. A
noticeable deformation of the striker head part is
observed. The detonation of the striker explosive occurs
at 168 µs when the striker velocity is 191 m s–1. The
maximum pressure of explosion products attains
26 GPa. As a result of their expansion, swelling of the
striker steel shell and its failure occur. (Due to visual-
ization difficulties, striker fragments and explosion
products are not reproduced in Fig. 4.) Further, at
180 µs, as a result of the interaction of destroyed-shell
fragments and explosion products with the obstacle,
DOKLADY PHYSICS      Vol. 50      No. 3      2005
failure of the concrete plates occurs. It becomes even
stronger with time, since the maximum pressure of
explosion products remains significant and attains
5 GPa.
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1. When analyzing certain physical phenomena in
gas disperse media, it is necessary to take into account
both the microstructure of a medium, which is a system
of a large number of disperse particles and gas mole-
cules, and the microstructure of an individual particle.
In this case, statistical theory and the corresponding
distribution functions must be applied. Known distribu-
tions with unlimited values of random variables pro-
vide certain mathematical conveniences, but they can-
not be accepted a priori in all cases. Their application
can lead not only to numerical errors but also to the loss
of certain dependences, particularly in nonequilibrium
states. The artificial truncation of integrals is incorrect
when distributions remain in the same form. Thus, we
arrive at the important problem of finding distributions
with a limited spectrum of certain variables.

There is a wide range of such problems, including a
relativistic problem concerning the velocity distribu-
tion of particles whose velocities are lower than the
maximum velocity. Quantum statistic problems with
the limit on energy are known. A model with an upper
energy limit for particles exists for a classical system
surrounded by a finite-height potential barrier. A simi-
lar problem arises when considering volatile aerosol
particles. Similar problems also arise upon the separa-
tion of disperse particles with a certain limiting veloc-
ity, when volume is limited, as in the classical model of
harmonic oscillators, etc. Therefore, the problem is of
current interest.

To estimate its application significance, we consider
the example of the escape of atoms from a volatile solid
particle. The table presents the maximum velocity vm

of atoms of the solid (an atom escapes from the solid
when v  > vm) according to estimates based on the sum
of the heats of phase transitions and their mean thermal
velocity 〈v 〉  at temperatures near the melting tempera-
ture. It is seen that velocity-limit corrections can reach

10% even if they are of the second order in .
v〈 〉

v m
---------

Moscow State Regional University, 
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In the above examples, restrictions are due to differ-
ent causes, but a general formulation of this problem is
both desirable and possible. Below, we propose a
method for finding limited distributions of a certain
type and present results for some models.

2. Following Prigogine’s proposal, we start with the
Liouville–Gibbs equation and complement the stan-
dard requirements on its solution by the zero boundary
condition at finite values of certain variables. We con-
sider only the classical variant of the theory, because
the quantization procedure for the Liouville–Gibbs
equation is well developed [1]. Following the method
reported in [2], we transform the Liouville–Gibbs equa-
tion to the form

Ltη = 0. (1)

Here, Lt is the time-dependent Liouvillian and η =
−lnFN , where FN is the distribution function. We con-
sider only Gibbs and quasi-Gibbs solutions. In this
case, the standard transition from statistical description
to thermodynamics can be used. Both equilibrium and
nonequilibrium states can be considered in such a for-
mulation. Integrals of the homogeneous Liouvillian
satisfy Eq. (1). These integrals are generalizations of
the invariants of motion according to Noether’s theo-

Table

Element vm, m/s 〈v 〉 , m/s

Ag 1281 308 0.24

Al 2740 536 0.2

Ca 1650 483 0.29

Cu 1821 420 0.23

Fe 2060 519 0.25

Hg 450 99 0.22

Kr 292 107 0.37

Pb 768 155 0.2

Pt 1293 294 0.23

Sn 1255 189 0.15

v〈 〉
v m
---------
© 2005 Pleiades Publishing, Inc.
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rem and are reduced to these invariants for closed sys-
tems in the absence of dissipative forces and nonideal
constraints. The function η is sought in the form

(2)

where ηi are the functionals of s mentioned integrals.
The requirements of the invariance of solutions under
transformations corresponding to the symmetry of the
problem are taken into account. The assumption of the
statistical independence of phase variables is used
when the model allows.

3. The stationary problem with condition v  ≤ vm
limiting the velocity of particles is the simplest case.
Molecules or macroparticles in vacuum can be such
particles. Phenomena associated with the structure of
particles, their interaction, and external fields are disre-
garded. Velocity may be limited due to special relativity
or other causes. A volatile particle surrounded by a
potential barrier with a height of Em is an example.
Momentum and kinetic energy are invariants of motion.
The functions ηi are formed by their even dimension-
less superposition in the form of converging geo-
metrical series (dimension scale is vm). In this case,
function (2) satisfies Eq. (1), and the corresponding
function FN is that solution of the Liouville–Gibbs
equation that satisfies the boundary conditions FN(v i =
vm) = 0. For an isotropic uniform system of N identical
particles with mass m in volume V, we obtain

(3)

The partition function is expressed in terms of the
Whittaker function Wλ, µ , but it is reduced to the more
convenient form

(4)

Here, Em = , g = , is a dimensionless param-

eter, Θ is the asymptotic modulus of the distribution for
Em  ∞, and Kλ(x) are cylindrical functions of an imag-
inary argument. Single-particle distributions of a similar
form are known in relativistic kinetic theory [3–6], but
they have been obtained from special-relativity require-
ments without assuming the statistical independence of

variables. In relativistic theory, g = , and this

parameter is very large (~1010–1011) for most atomic
systems. Therefore, relativistic corrections for such
systems are insignificant, while the effects associated
with formula (3) can be considerable. Computer calcu-
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lations show that the single-particle distribution follow-
ing from Eq. (3) in the isotropic approximation for
g ≥ 100 is close to the Landau function [5] with an
accuracy of small fractions of a percent in the region

 ≤ 0.5. Relativistic modification of the Liouville–

Gibbs equation is not necessary to obtain Eq. (3), and
this expression is preserved if the velocity restriction is
nonrelativistic. This is important for applications, in
which relativistic effects are very small, but other
restrictions may include vm ! c, and the corresponding
effects may be manifested under ordinary conditions
(see table).

Knowing function (3), we can determine statistical
means. Knowing function (4), we can find the free
energy Ψ and all thermodynamic functions of the sys-
tem according to Gibbs. In particular, the internal
energy and entropy have the form

The pressure and thermodynamic properties of the sys-
tem can be determined by standard formulas. The lim-
iting transition of function (3) to the Maxwell distribu-
tion is obvious. However, the latter distribution does
not satisfy the imposed boundary conditions and does
not carry information on the barrier parameters.

4. The system of harmonic oscillators with a maxi-
mum energy of Em is analyzed similarly. This model is
applicable to solid clusters. Oscillations are assumed to
be small in this model, but unlimited distributions inte-
grable in infinite limits are often used. Limited distribu-
tions eliminate this contradiction. Since the conse-
quences of new boundary conditions are of primary
interest, we accept the simplest model of independent
oscillators with the same frequency ω. In the general
case, random values of momentum and coordinate can
be correlated due to the conservation of the total energy
Em of oscillatory motion in a given degree of freedom.
The same method provides the formulas

(5)

(6)
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where

Function (5) is represented as a product of the
momentum and coordinate distributions only in the
limit Em  ∞. The partial momentum and coordinate
distributions are determined by integrating function (5)
with respect to the respective conjugate variables and
have the form

where

Here, pk and qk are also limited by the maximum values.
Distribution (5) satisfies the correspondence principle.
For large Em values, it is close to the canonical distribu-
tion vanishing for Em  ∞, but it significantly differs

from the latter distribution when  is not too large

(strongly heated states). When p and q are statistically
independent, the distribution is represented as a product
of a function of form (3) by a similar coordinate func-
tion.

5. We consider a system of noninteracting particles
freely expanding to vacuum from a small instantaneous
source. It may be a molecular cloud around a volatile
disperse particle or an expanding cloud of nonvolatile
particles. For simplicity, we consider a distribution
depending on one pair of phase variables p and q. The
generalization for many statistically independent
degrees of freedom is evident. The homogeneous Liou-
villian for this model has the integrals I1 = p and I2 =

q − . The unlimited time-dependent solution of the

g
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Liouville–Gibbs equation that satisfies the standard
requirements has the form [2]

(7)

where

and a, b, and c are the nonnegative constants of the
problem. However, for unlimited p and q values, parti-
cles have arbitrarily large velocities and coordinates at
the initial time.

The distribution that vanishes at p = pm and is unlim-
ited as a function of q is obtained similarly in the form

(8)

Integration of distribution (8) with respect to q yields
the momentum distribution

where w = 1 –  and A is the normalization constant.

The distribution limited in the p and q variables has the
form

(9)

where

For k = 0,

The partial distributions are found from Eq. (8) in the
form
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where

These distributions describe the spatially limited sys-
tem of particles with limited velocities and eliminate
the aforementioned physically inconsistent properties.

6. The above distributions belong to a new class of
solutions of the Liouville–Gibbs equation that satisfy
the boundary conditions at finite phase variables and
are obtained using a unified method. They enable one to
eliminate certain contradictions that arise when solving
a number of problems, satisfy the correspondence prin-
ciple, and can be used in kinetic theory and statistical
thermodynamics. The results show that the approach
proposed above is fruitful when applied to the statisti-
cal theory of gas disperse systems and allows the inclu-
sion of the characteristic features of a certain class of
such systems.

When calculating integrals and dealing with special
functions, we used handbooks [7, 8] and the Maple-8
package.

λ g
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The problem of the motion of a heavy rigid body
suspended on an inextensible string is considered. The
conditions ensuring the existence of first integrals,
which hold both when the string is stretched and during
free flight, are formulated. The possibility of extending
the results to the case where the motion is executed by
a chain of bodies is discussed.

It is known that three additional integrals are lacking
for the integrability of the equations of the motion of a
heavy body on a stretched string in the general case.
However, this problem is completely integrable when the
body is suspended at the center of mass. In this case, the
integration is performed by separation of variables [1]. It
is also known that the problem has one additional inte-
gral when the body is suspended at a point in the axis of
dynamic symmetry [1]. The existence of particular
integrals such as the Hess integral [2] for this problem
was studied in [3]. The problem was generalized to the
case of chains of rigid bodies in [4].

The general issue of the existence of first integrals in
the problems of rigid-body dynamics in the presence of
unilateral constraints was discussed in [5, 6].

FORMULATION OF THE PROBLEM
AND EQUATIONS OF FREE MOTION

We will consider the motion of a heavy rigid body
suspended at a fixed point 3 on an inextensible string.
We will assume that the other end of the string is fixed
at a point 4 belonging to the body. Let 3XαXβXγ be an
absolute coordinate system (ACS) with the horizontal
3Xα and 3Xβ axes and the upward-directed vertical
3Xγ axis. We will denote a movable coordinate system
(MCS) fixed to the body by #x1x2x3 . The origin of this
system is at the center of mass # of the body, and its
axes coincide with the principal central axes of inertia.

Since the string is assumed to be weightless, the
motion of the center of mass of the body and the motion
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of the body about the center of mass can be separated
for a time interval between impacts. The center of mass
of the body moves along a parabola or a straight line,
while the body itself rotates as an Euler gyroscope.

Let X = (Xα, Xβ, Xγ) be the vector  projections
onto the ACS axes and V = (Vα, Vβ, Vγ) be the center-of-
mass velocity in the projections onto the same axes. We
denote the center-of-mass and angular velocities in the
projections onto the MCS axes by v = (v 1, v 2, v 3) and

w = (ω1, ω2, ω3), respectively, and the vectors ,

,  and the unit vector of the upward vertical in
the projections onto the same axes by x = (x1, x2, x3), , =
(,1, ,2, ,3), c = (c1, c2, c3), and g = (γ1, γ2, γ3), respec-
tively. Now, if m is the body mass, I = diag(I1, I2, I3) is
its principal central inertia matrix, and g is the gravita-
tional acceleration, then the kinetic energy of the body
and the potential energy of the system are represented
in the form

The rotational motion of the body during free flight
can conveniently be described by the equations

(1)

The motion of the center of mass can be described by
either the ACS equations

(2)

or the MCS equations

(3)

In this case, the translational and rotational motions of
the body are completely separated, and the equations
themselves are completely integrable. The integrals

3#

3#

34 #4

T  = TV Tω+( )

=  
1
2
---mV2 1

2
--- Iw w,( )+  = 

1
2
---mv2 1

2
--- Iw w,( ),+

U mgXγ.=

Iẇ Iw w, ġ× g w.×= =

V̇α 0, V̇β 0, V̇γ g, Ẋ– V,= = = =

v̇ v w gg, ẋ–× v x w.×+= =

(ω Tω, (V TV U+= =
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express the conservation of the kinetic energy of rota-
tion and the total energy of translation.

Moreover, the projection of the total kinetic moment
onto the vertical (ψ = (Iw + mx × v, g) is also con-
served during free motion. Finally, the integral (γ =
(g, g) – 1 = 0 represents the fact that g is a unit vector.

TRANSFORMATION OF VELOCITIES
FOR THE CASE OF THE STRETCHED STRING

We will now assume that the string is stretched at a
certain time. Then, the position of the body is
unchanged at the moment of interaction, while the cen-
ter-of-mass and angular velocities are transformed in
accordance with a rule (V, w)  (V', w') determined
by the equations

(4)

Statement 1. The scalar quantities

(5)

and the vector quantities

(6)

are conserved during the impact.
The proof of relations (5) reduces to the scalar mul-

tiplication of the left and right-hand sides of the first of
Eqs. (4) by the vectors , and c, respectively. To prove
the first of Eqs. (6), we perform the vector multiplica-
tion of the left and right-hand sides of the second
of Eqs. (4) by the vector –Ò from the left and add the
result to the first of Eqs. (4). To prove the second of
relations (6), it is sufficient to perform the vector multi-
plication of the second of Eqs. (4) by , from the left.

Note. Combining the integrals (1 and (2 , we can
ascertain that the quantity (ψ is also conserved during
the impact. Moreover, this note is valid according to the
general theory of the symmetries of mechanical sys-
tems subject to unilateral constraints (see, e.g., [7]).

DETERMINATION OF REACTIONS
For definiteness, we will assume that the impact

occurs without loss of energy. Since the potential
energy of the system depends only on the body position
that does not change at the impact moment, to deter-
mine the quantity R we will use the kinetic-energy-con-
servation condition

(7)

We perform the scalar multiplication of the first and
the second of Eqs. (4) by w' + w and v' + v, respectively.
Summing the results, by virtue of Eq. (7), we arrive at
the result

(8)

I w' w–( ) c R,–( ), m v' v–( )× R,.–= =

(c Iw c,( ), (, Iw ,,( )= =

(1 Iw mc v, (2×+ , v×= =

Iw' w',( ) mv'2+ Iw w,( ) mv2.+=

Iw' w',( ) mv'2 Iw w,( ) – mv2–+

=  R w' w+ c ,–( )×,( ) v' v+ ,–( ),( )+[ ] 0.=
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Expressing w' and v' from Eqs. (4), we obtain

(9)

Substituting relations (9) into Eq. (8), we find that the
nonzero root of Eq. (7) is determined from the equation

in the form

(10)

THE CASE OF DYNAMIC SYMMETRY

We will assume that the body is dynamically sym-
metric with an axis of symmetry, for example, #x3 and
that the suspension point 4 belongs to this axis. Then,
we have

(11)

and, by virtue of Eq. (4), the following equality holds:

Thus, this integral, which holds in the absence of an
unilateral constraint, is also valid when the constraint is
imposed.

ANALOG OF THE HESS–APPELROT CASE

Let I1 > I2 > I3 for definiteness. It is known that, if

then the case of free motion has particular integrals, or
invariant relations

(12)

Statement 2. If the conditions

(13)

are fulfilled, then particular integrals (12) are valid not
only for the motion of a body with a stretched constraint
but also for the motion with impacts.

Note 1. If the body is suspended on several strings
and all the suspension points satisfy relations (13), then
the statement is also valid, at least for motions with
nonmultiple impacts.

Note 2. The statement is also valid if the body is sus-
pended on extensible weightless strings whose suspen-
sion points satisfy relations (13).

w' w R– I 1– c ,×( ), v'⋅ v m 1– R,.–= =

2w R I 1– c ,–( )×( ) c ,–( )×,( )⋅+( )

+ 2v m 1– R, ,–( ),–( ) 0=

R 2
v ,,( ) w c ,×,( )+

m 1– ,2 I 1– c ,×( ) c ,×,( )+
----------------------------------------------------------------.=

I1 I2, c1 c2 0,= = =

ω3' ω3.=

a a1 a2 a3, ,( ): =

a1 I2
1– I1

1–– ,=     a 2 0, a 3 I 3
1– I 2

1– – ,= =

^ε a1I1ω1 εa3I3ω3+ 0, ε 1.±= = =

a1c3 εa3c1– 0, c2 0,= =
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EXTENSION OF THE RESULTS TO THE CASE 
OF A HEAVY GYROSTAT

Under certain conditions, the results concerning the
existence of the integrals of the equations of motion of
a heavy rigid body suspended on a string can be
extended to a heavy gyrostat.

In the case of the stretched string, the motion can be
described by the equations

(14)

where k = (k1, k2, k3) is the gyrostatic moment vector,
which is constant throughout the body, and R is the con-
straint reaction determined from the condition that the
string is inextensible.

Statement 3. If the dynamic symmetry conditions
given by Eqs. (11) are fulfilled, together with the condi-
tion k = (0, 0, k3), then Eqs. (14) admit the integral
(3 = ω3 .

If conditions (13) are fulfilled, together with the
conditions

then there is the particular integral

(15)

which is analogous to the Sretenskiœ integral [7].

Iẇ Iw k+( ) w c R,–( ), ġ×+× g w,×= =

k2 0, δI2a1a3 a3k1 εa1k3,–= =

^ε a1I1ω1 εa3I3ω3 δ+ + 0,= =
The same integrals exist for the motion of the heavy
gyrostat with impacts, as well as for the case of an
extensible string.
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We calculate the coordinates of an axisymmetric
nozzle with a central body. This nozzle ensures a tran-
sonic flow with a plane sound surface, which is orthog-
onal to the symmetry axis and has a wall kink at the
sonic point. A modification of the numerical method
previously developed in [1–4] for shaping plane and
axisymmetric De Laval nozzles is applied. As in [1–4],
the Chaplygin transformation in the subsonic part of the
flow leads to the Dirichlet problem for a system of non-
linear equations. The definition domain of the solution
in the velocity-hodograph plane is taken as a rectangle
similar to [1–4]. This enables one to obtain the nozzle
with a monotonic distribution of velocity along its sub-
sonic part. In the nonlinear differential equation, the
linear Chaplygin operator for plane flows is separated,
which allows the iterative calculation of the solution.
The supersonic part of the nozzle is calculated under
the assumption that the flow at the nozzle exit is uni-
form and parallel to the symmetry axis; i.e., the super-
sonic jet outflows to the submerged space with the same
pressure. The calculation is performed by the character-
istic method. The exact solution [2] for near-sonic flows
with the straight sonic line is used to “move away” the
sound plane. The velocity distribution along the super-
sonic part of the nozzle is also monotonic, which
ensures the absence of the boundary-layer separation
and, therefore, the adequacy of the ideal-gas model.
Calculations show that the flow in the supersonic part
of the nozzle is continuous (compression shocks are
absent).

A ring (axisymmetric) De Laval nozzle with a “cen-
tral body” is of great engineering interest [5, 6]. We
determine the contour of such a nozzle with the follow-
ing properties.

(i) The transition through the speed of sound occurs
on a plane sound surface orthogonal to the symmetry
axis.
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(ii) The flow velocity does not decrease along the
entire contour. This property ensures the adequacy of
the ideal-gas model (with boundary-layer corrections)
for any Reynolds numbers. Therefore, the flow separa-
tion regions and corresponding energy losses are
absent.

(iii) The nozzle-contour kink at the sonic point
makes it possible to obtain the nozzle of the minimum
length. In this case, as was proved in [7], the flow near
the corner point is not decelerated. In addition, there is
no compression shock emerging from the corner point
when it is placed on the curvilinear sound surface.

The gas dynamic equations for axisymmetric poten-
tial flows were transformed to the variables τ and β in
[1, 2, 4]. The right-hand side of the nonlinear (in con-
trast to the plane case) Chaplygin equation includes the
Jacobian J of mapping into the hodograph plane and the
physical-plane ordinate y(τ, β), which is described by
the solution of the Cauchy problem for the ordinary dif-
ferential equation

(1)

Here, τ =  is the Chaplygin variable, β is the

velocity argument, ψ(τ, β) is the stream function, and
k is the adiabatic index.

2τψττ 3 2τR–( )ψτ Rψββ+ +

=  Q 2J βcos Jβ βsin+( ),–

J
2τ ψτ( )2 R ψβ( )2+

Q ψβ βsin y2Q+( )
-------------------------------------------,–=

R
τ* τ–

2τ*τ 1 τ–( )
-----------------------------= ,

Q
τ

τ*
----- 1 τ–( )1/ k 1–( ),=

τ∀ 0
k 1–
k 1+
------------, ,∈

∂y τ β,( )
∂β

--------------------
2τ βψτ βψβcos–sin

yQ
-------------------------------------------------.=

V
V max
-------------
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We solve the problem of shaping the nozzle in the
class of flows with the plane sound surface. In the
potential axisymmetric flow, such a surface is necessar-
ily orthogonal to the symmetry axis [8]. This property
enables one to design the subsonic and supersonic parts
of the nozzle independently. Moreover, the contour
kink can be introduced at the sonic point in the super-
sonic region.

Subsonic part of the nozzle. The image of the sub-
sonic-flow region in the (τ, β) plane is specified in the
form of a rectangle D = abcd, where ab is the segment

of the sonic line τ = , ad and bc are the segments

of the straight lines β = 0 and β = β0 , respectively; and

dc is the segment of the straight line 0 ≤ τ = τ0 < 

(Fig. 1). The piecewise continuous boundary condition
ψ = 1 on ad and ψ = 0 on ab, bc, and cd is specified at
the boundary of D. In addition, y = const is specified on
ad. These conditions determine the Dirichlet problem
for system (1).

By analogy with a plane flow, one can assume that
the solution of this problem ψ(τ, β) ∈  C2(D) finite in 
exists and satisfies the boundary condition at its conti-
nuity points. In view of the one-to-one nature of the
mapping of D onto the subsonic-flow region in the
physical plane, this solution has the following proper-
ties.

(i) The velocity distribution along the nozzle wall
(in the direction from the nozzle entrance) is a nonde-
creasing function of the arc length.

(ii) The one-to-one nature of the mapping breaks
down at the points a and d, where the stream function ψ
has the first-kind discontinuities. The point a presents
the segment of the straight sonic line (its length is deter-
mined by the gas rate through the nozzle that corre-
spond to the unit discontinuity of the stream function).
The point d presents the entry nozzle section that is at
infinity from the sonic line.

k 1–
k 1+
------------

k 1–
k 1+
------------

D

c

d a

b
ψ = 0

ψ = 0ψ = 0

ψ = 1τ0 τ* τ

β

Fig. 1. Flow definition domain in the (τ, β) plane.
(iii) One wall of the nozzle is a circular cylinder par-
allel to the symmetry axis, which is the image of the
segment ad. The other wall consists of two curvilinear
sections (the images of segments ab and cd, on which
velocity is constant) smoothly matched with each other
by the straight (conic) section bc, where the velocity
increases monotonically from the entry value corre-
sponding to τ0 to the speed of sound.

As in [1–4], we use the approximating algebraic
system obtained by changing derivatives in the differ-
ential equation to the central finite-difference formulas
of the second order of accuracy. This system is solved
by the iterative method with sequential sweeps at each
iteration along the inner straight lines τi = const, i = 1,
2, …, I. After the “practical convergence” of the itera-
tive process, the nozzle coordinates are obtained by
integrating the expressions for the derivatives

along three sides of the rectangle abcd. The derivatives
normal to the boundary are calculated by three-point
finite difference formulas of the second order of accu-
racy.

As in [4], to avoid the instability of the iterative pro-
cess, the mixed derivative ψτβ is approximated on a
seven-point template, which does not include points a
and d (where ψ is discontinuous) at the appropriate ori-
entation of the template. We emphasize that the itera-
tions converge much more slowly than in the plane
case.

Figure 3 shows the results of the calculations for
various nozzle contours.

Supersonic part of the nozzle. The supersonic-
flow region consists of two subregions. In the first sub-
region adjacent to the straight sonic line, the flow turn-
ing at the corner point of the contour is accelerated.
This subregion is bounded by the sonic line AA', the last
characteristic AD of the rarefaction node (Prandtl–
Mayer flow) and cylinder wall A'D parallel to the sym-
metry axis. The second subregion is bounded by the
shaped supersonic section AE of the nozzle contour, the
characteristic AD, and the straight-line characteristic DE
passing from the end point of the shaped contour sec-
tion to the outer cylinder wall (Fig. 2). At the character-
istic DE, the supersonic flow is uniform and parallel to

xτ –
Rψβ βcos JQ β βcossin ψτ βsin+ +

yQ
-------------------------------------------------------------------------------------,=

xβ
ψτ βcos  + JQ βsin

2
 + Rψβ βsin

yQ
----------------------------------------------------------------------------,=

yτ
2 βψτcos βψβsin–

yQ
----------------------------------------------,=

yβ
2τ βsin ψτ βψβcos–

yQ
-------------------------------------------------=
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the symmetry axis. When the pressure in the submerged
space coincides with the pressure at the jet boundary
downstream of the characteristic DE, the flow in the jet
remains uniform and straight. When the pressure in the
jet is higher than the pressure in the submerged space
(underexpanded jet), the flow expands downstream of
the characteristic DE, turning around the point D.
When the pressure in the jet is lower than the pressure
in the submerged space (overexpanded jet), compres-
sion shocks generally arise upstream of the characteris-
tic DE. In this case, the Mach reflection from the central
body, as well as the separation of the flow from the cyl-
inder wall A'D of the nozzle, is possible. The flow in the
underexpanded jet was not calculated. This calculation
should be performed separately with a modified algo-
rithm.

The supersonic part of the contour is calculated in
several stages.

(i) The characteristic of the first family A"A''' is cal-
culated near the sonic line. This enables us to avoid the
degeneration of the characteristic method by moving
away the straight sonic line.

(ii) The characteristic of the second family A"B in
the Prandtl–Mayer flow is calculated near the corner
point.

(iii) The solution is calculated in the domain
A"'A"BD (between two characteristics obtained at the
first two stages). At this stage, the solution is calculated
first in the characteristic quadrilateral A'''A"BC and then
in the triangle A'''CD bounded by the cylinder wall.

(iv) The contour of the central body, section AE, is
calculated.

The characteristic A"A''' is determined with the use
of the exact solution of the Tricomi equation [1, 2, 4]
that describes the plane near-sonic flow near the
straight sonic line, which arises due to the symmetric
interaction between two centered rarefaction waves
(i.e., due to the reflection of the Prandtl–Mayer flow
from the symmetry axis).

This exact solution is given by the improper integral

We calculate this solution by dividing the integration
region into three sections:

 ≤ z1 <  + 0.0001,

 + 0.0001 ≤ z2  <  + 0.1,

 + 0.1 ≤ z3 ≤ ∞. 

Ψ C1
zd

z3 9
4
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------------------------ C2, z

9
4
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Asymptotic expressions are used in the first and
third sections, and numerical methods, in the second
section.

The use of this exact solution can be justified as fol-
lows. Since the radial velocity component in the
straight sonic line, which is orthogonal to the symmetry
axis, is equal to zero, the equations of the characteris-
tics of the plane and axisymmetric flows on the straight
sonic line coincide with each other. Therefore, if a char-
acteristic (beginning at a point far from the symmetry
axis) is close to the straight sonic line, it differs slightly
from a characteristic of the same family in the plane
flow.

Upon turning at the corner point by means of the
Prandtl–Mayer flow, there are three possible cases. If
the flow turns slightly, the supersonic part of the nozzle
contour does not reach the symmetry axis; i.e., βE ≠ 0
and yE > 0 at the point E. If the turn of the flow is too
large, the central-body contour cannot be shaped by the
characteristic method so that it can reach and touch the
symmetry axis. Indeed, according to the Nikol’skiœ the-
orem [9], there is no continuous axisymmetric super-
sonic flow near the thinning point of a body with a non-
zero inner angle (the characteristic DE cannot reach the
symmetry axis in the continuous velocity field so that
βE ≠ 0 and yE = 0). Therefore, the flow turning angle at
the corner point of the contour must be chosen such that
the equalities βE = 0 and yE = 0 are satisfied. Such a
choice in the computational process is made by varying
flow-turning values at the point A.

A
B

C

DA'A'''

A''

E

Fig. 2. Flow definition domain in the physical (x, y) plane.

3

2

1

0–2–4–6–8–10–12–14

Fig. 3. Contours of the subsonic part of the nozzle for τ0 =
0.01. Different lines correspond to different sonic-line seg-
ments. The dashed line is the contour for τ0 = 0.02.
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3

2

1

0 1 2 3 4 5 6 7 8 9

M3

M2

M1

Fig. 4. Contours of the supersonic part of the nozzle for the exit Mach numbers M1 = 2.125, M2 = 2.040, and M3 = 1.881. The
dashed line is the contour corresponding to an excessively large flow turning at the point Ä.
The results of the calculations are shown in Fig. 4.
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It is well known [1] that the laminar–turbulent tran-
sition at a low turbulence level of the free flow is asso-
ciated with the development of instability waves, the
so-called Tollmien–Schlichting waves. When a two-
dimensional Tollmien–Schlichting wave reaches a cer-
tain amplitude at the nonlinear stage of its develop-
ment, it undergoes three-dimensional distortion and, as
a result, characteristic three-dimensional Λ structures
arise [1]. Owing to certain features of the appearance
and development of these structures, they are not only
typical for the classical laminar–turbulent transition,
but are also inevitable attributes of a transition to more
complex flows, e.g., flows modulated with longitudinal
streaky structures, such as Hertler vortices, transverse-
flow vortices on sliding wings, etc., as well as flows in
the viscous sublayer of a turbulent boundary layer. In
these cases, they arise in particular due to the secondary
high-frequency instability of such flows and may be
manifested not only as Λ structures, but also in the form
of horseshoe vortices (Ω structures), hairpin vortices,
etc. A characteristic feature of the development of such
structures, e.g., on a sliding wing, is the disappearance
of one of the counter-rotating vortices due to the trans-
verse flow, whereas the development of a classical
Λ structure can be observed on a straight wing [1].

The high-frequency secondary instability of transi-
tion and turbulent near-wall flows in the presence of
streaky structures is often attributed to so-called sinuso-
idal and varicose instability. Both instability modes
were investigated under controlled conditions at the lin-
ear and initial stages of nonlinear development. When
the transverse size of the streaky structure was larger
than the thickness of the shear layer, growth of varicose
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instability was observed. At the same time, when the
transverse size of the streaky structure was comparable
to or smaller than the thickness of the shear layer, it
became more instable with respect to antisymmetric
(sinusoidal) modes than to symmetric (varicose)
modes. The experiment reported in [2] clearly shows
that the growth of the symmetric mode leads to the for-
mation of hairpin vortices, which are a pair of counter-
rotating longitudinal vortices that are connected by a
head, i.e., a Λ vortex, while an antisymmetric mode is
developed to a train of quasi-longitudinal vortices with
alternating-sign vorticity. Unfortunately, the experi-
ments reported in [2] concerned only the initial stage of
the nonlinear development of disturbances, and spatial
resolution was insufficiently high to reveal the structure
of the flow in more detail.

In this paper, we report on our experimental investi-
gations of the nonlinear stage of the varicose and sinu-
soidal instability of the streaky structure in the Blasius
boundary layer. In contrast to the experiment reported
in [2], the study is more detailed (thermal anemometer
measurements of the longitudinal velocity component
and velocity pulsations in space (xyz) at 5 × 104 points)
in order to reveal the features of the dynamics of the
appearance, development, and internal structure of
coherent formations up to the later stages of their non-
linear development.

The experiments were carried out under controlled
conditions in a low-turbulent wind tunnel. A plane plate
14 mm in thickness, 1000 mm in width, and 2000 mm
in length was placed in parallel in the operation part of
the tunnel. The streaky structure was generated by
means of a cylindrical roughness element, which had a
height of 1.1 mm and a diameter of 5.8 mm and was
placed in the center of the plate at a distance of x0 =
438 mm from the fore. The velocity of the flow was
equal to U∞ = 7.8 m/s, and the turbulence level was no
higher than 0.04%. In the absence of the roughness ele-
ment, the laminar boundary layer was developed with-
out any waves and the velocity profile was close to the
Blasius profile. A roughness-element height of h =
1.1 mm is close to the thickness of the displacement of
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Spatial patterns of the sinusoidal destruction of the streaky structure: (a) the development of the secondary disturbance jointly
with its effect on average velocity (minimum pulsation level 6.4% of U∞) and (b) the development of the secondary high-frequency
disturbance (minimum pulsation level 1.3% of U∞). Dark and light grey tones are excesses and defects of velocity, respectively.
the Blasius laminar boundary layer  = 1.5 mm for
x = x0 and U∞ = 7.8 m/s. The Reynolds number was

equal to R* =  = 780 for x = x0. In the absence of

artificial disturbances, the boundary layer with the
streaky structure remained laminar in the measured
range x – x0 = 30–150 mm. This circumstance enabled
us to control the instability of the streaky structure by
means of artificial disturbances generated by the injec-
tion–drainage of a gas through three small holes on the
plate surface. One hole (z = 0) at x – x0 = 14.5 mm was
used to excite transverse symmetric disturbances, and
other two holes were used to excite antisymmetric dis-
turbances ∆z = ±4.5 mm at x – x0 = 19.5 mm. The
excited frequency of the secondary high-frequency dis-
turbance was equal to 150 Hz, which approximately

corresponded to a dimensionless parameter of  ×

106 = 232. The amplitude of the secondary disturbance
reached 10% of U∞ near the source (x – x0 = 30 mm),
which made it possible to study the nonlinear stage of
the process that was of primary interest. The thermal
anemometer measured the time-averaged longitudinal
component of the velocity U and velocity pulsation u'.

δB*

δB*U∞

ν
-------------

2πfν
U∞

2
------------
We consider the flow structure at the nonlinear stage
of sinusoidal and varicose instability in more detail.
Figure 1 shows patterns of the sinusoidal destruction of
the streaky structure. The spatial pattern of the distur-
bance development (Fig. 1a) shows that transverse
meandering of the streaky structure is observed at the
initial stage, which is typical for the development of
sinusoidal instability. However, the structure of the dis-
turbed downstream region of the flow is transformed to
characteristic coherent structures similar to Λ vortices.
The development of secondary disturbances is most
clearly observed in the spatial pattern presented in
Fig. 1b. At the initial stage of disturbance development,
a pair of quasi-longitudinal, alternating-sign vortices is
observed. Downstream of the flow, they are trans-
formed to Λ structures, and the transverse scale of these
coherent structures increases. Thus, detailed thermal
anemometer measurements at the nonlinear stage of the
development of sinusoidal instability show that the sec-
ondary high-frequency destruction of the streaky struc-
ture is associated with the formation of Λ structures, the
destruction of which downstream of the flow leads to
the turbulization of the flow.

Figure 2 shows patterns of the varicose destruction
of the streaky structure. The spatial pattern of the dis-
turbance development (Fig. 2a) shows that the longitu-
DOKLADY PHYSICS      Vol. 50      No. 3      2005



        

NONLINEAR SINUSOIDAL AND VARICOSE INSTABILITY IN A BOUNDARY LAYER 149

                                              
40

60

80

100

120

140

50–5–10
0
5
y, mm

z, mm

x, mm

40

60

80

100

120

140

10
0–10

0
5
y, mm

z, mm

x, mm

(a) (b)

Fig. 2. Spatial patterns of the varicose destruction of the streaky structure: (a) the development of the secondary disturbance jointly
with its effect on average velocity (minimum pulsation level 3.8% of U∞) and (b) the development of the secondary high-frequency
disturbance (minimum pulsation level 1.3% of U∞). Dark and light grey tones are excesses and defects of velocity, respectively.
dinal modulation of the streaky structure by the second-
ary-disturbance frequency (f = 150 Hz) is observed at
the initial section, which is typical of the development
of varicose instability. However, the structure of the
disturbed region further downstream of the flow is
transformed to characteristic coherent structures simi-
lar to Λ vortices, as in the case of the sinusoidal destruc-
tion of the streaky structure. However, we emphasize
that, in contrast to the latter case, Λ structures are asym-
metric; i.e., the second counter-rotating vortex is at the
formation stage due to weak vorticity at the transverse
boundaries of the disturbance field. Below, symmetric
Λ structures will be observed when considering the
direct development of high-frequency disturbance.

We consider the dynamics of the direct development
of secondary high-frequency disturbance generated on
the streaky structure. The development of secondary
disturbances is most clearly manifested in the spatial
pattern shown in Fig. 2b. At the initial stage of distur-
bance development, a set of quasi-longitudinal vortices
is observed, which is transformed downstream of the
flow to hairpin vortices or Λ structures. These vortices
are pronounced at z = 0 mm in the form of a pair of
DOKLADY PHYSICS      Vol. 50      No. 3      2005
alternating-sign structures at each period of the second-
ary disturbance. As was mentioned above, Λ structures
or hairpin vortices become asymmetric at z = ±5 mm
(transverse boundaries of the disturbed region). Never-
theless, the structure of the second counter-rotating vor-
tex of these coherent formations is evidently observed.
We note that such coherent structures were observed
in [2], where the nonlinear stage of varicose instability
was studied. Investigations of the varicose instability of
a single streaky structure in the boundary layer of the
sliding wing [3] show that Λ vortices are transformed to
asymmetric structures due to the transverse flow. Thus,
detailed thermal anemometer measurements at the non-
linear stage of the development of varicose instability
show that the secondary high-frequency destruction of
the streaky structure is attributed to the formation of
Λ structures, as in the case of the sinusoidal destruction
of the streaky structure.

In conclusion, we emphasize that the scenario of
classical laminar–turbulent transition at the nonlinear
stage of this process is associated with the three-dimen-
sional distortion of the two-dimensional Tollmien–
Schlichting wave and the formation of three-dimen-
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sional coherent structures of the Λ-vortex type. These
investigations show that there are other scenarios for
the occurrence of Λ structures in the near-wall shear
flows, in particular, in the process of the secondary
high-frequency instability of streaky structures of the
sinusoidal and varicose types. The secondary high-fre-
quency instability of streaky structures of the sinusoidal
and varicose types at the nonlinear stage was found to
lead to the multiplication of new streaky structures
downstream of the flow. It has been established that the
mechanism of the nonlinear destruction of the streaky
structure through the development of secondary distur-
bance in it is associated with the formation of coherent
structures of the Λ-vortex type for both sinusoidal and
varicose types of instabilities. Λ vortices are shown to
be multiplied in the transverse direction upon the evo-
lution of disturbance downstream of the flow. It has
been shown that varicose instability can exist on the
sliding wing [3], rapidly transforming under the action
of the secondary flow to the superposition of structures
of sinusoidal and varicose instability.

This result is important for insights concerning both
a mechanism of the turbulization of flows modulated by
streaky structures and mechanisms of the reproduction
of turbulence in turbulent flows, where the dynamics of
coherent structures of the viscous sublayer plays a sub-
stantial role. The mechanism of the transformation of a
Λ structure to a turbulent spot, particularly through the
secondary high-frequency instability of its compo-
nents—two counter-rotating vortices (legs of the struc-
ture)—is also well known [4]. At the same time, there
are various methods for controlling the development of
coherent structures such as Λ vortices, hairpin vortices,
streaky structures, etc. As was shown in a number of
works, riblets [1, 5–8], localized and distributed drain-
age [1, 8], transverse vibrations of the wall [9], etc.,
considerably affect both the intensity of coherent struc-
tures and their secondary instability, which can be used
to control sinusoidal and varicose instability.
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It has been established that the dry friction (as a non-
Coulomb dry friction model) in a direct action regulator
(Vyshnegradskii problem) with a self-restoring object
causes self-oscillations in the system. Therefore, the
common opinion that dry friction in the Vyshnegradskii
problem does not change the conclusion of unlimited
stability, which was obtained from linear analysis,
remains correct only for the Coulomb dry friction
model.

The majority of investigations of the effect of dry
friction on the stability of control systems were per-
formed for a simplified model of dry friction, the so-
called Coulomb friction, which ignores the excess of
static friction over sliding friction in the dry friction law
(Fig. 1a).1 However, there are examples of exciting
oscillations that cannot be described by the Coulomb
friction law.

Let us bring the problem into focus by means of an
example of the well-known Vyshnegradskii problem,
which is the main problem associated with the effect of
dry friction in a direct action regulator on the stability
of control systems.2 This problem has been described
sequentially in a number of works [2, 3]. The main con-
clusion is as follows: when the object is absolutely sta-
ble, Coulomb friction in the regulator does not generate
oscillations but promotes the stability of the system,
thus extending the area of the stability of equilibrium
states due to the appearance of an area of “conditional”
stability, in addition to the area of stability “on the
whole” [2, 3].

1 The term “Coulomb friction” for the simplest approximation of
the dry friction law has emerged quite inexplicably: S.A. de Cou-
lomb (1736–1806) was the first who determined the existence of
dry friction static forces, which exceed sliding forces.

2 Classification of automatic control systems according to their
definitions (that is, the presence or absence of an amplifier in the
system) does not have an adequate mathematical correspondence.
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Free oscillations corresponding to the Vyshnegrad-
skii problem for a dynamical system, with the non-
Coulomb dry friction model taken into consideration,
can be described by the equations

(1)

(2)

Equations (1) and (2) correspond to the dynamics of
the controlled object and regulator, respectively, and a
dot over a symbol stands for time differentiation. All
terminology and definitions are given in accordance
with [3]. The difference from the corresponding defini-
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Fig. 2. Phase portrait.
tions [2, 3] is that the excess of state friction forces
(parameter ε) over sliding friction forces (parameter
ε' < ε) is now taken into consideration (Fig. 1b). In the
limiting case (when   0), we get a so-called
“degenerate model” (when Tp2 = 0) of the dynamic reg-
ulator:
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where  is the pre-historical state. The legality of the
transformation, which was earlier known as the “jump
hypothesis,” is based on arguments given by
A.N. Tikhonov, L.S. Pontryagin, E.F. Mishchenko,
et al. in the theory of relaxation oscillations [4].

In contrast to the detailed model given by Eqs. (1)
and (2), the initial conditions  for the degenerated
model should be compatible with the description given
by Eq. (3). The presence of a limited cycle (self-oscil-
lations) in the space of states (three-sheeted phase
plane) was determined in [5] by the point transforma-
tion of the segment 

where x = Tp3  + ϕ – δpµ. The second transformation
is an inverse point transformation of a symmetric
segment 
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into the points of the half-line x = ,  < 0 (Fig. 2a).

Finally, the point transformation of the half-line x > ,

 = 0 and a backward point transformation of the sym-

metric half-line x < – ,  = 0 into the points of the

half-line x = ,  < 0 are performed (Fig. 2b).
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is broken, and if (at A1 > 0) the condition

is broken, or (at A = 1, A1 = 0) the condition 

is broken. The generalized parameter Q =  char-

acterizes the non-Coulomb dry friction in the regulator.
The other parameters can be defined as: 

Here, β and α are, respectively, the imaginary and real
parts of complex conjugate roots, and α = λ1 and
α1 = λ2 are the real roots (α > α1) of the equation

The above results prove the presence of self-oscilla-
tions in the system described by Eqs. (1) and (2) for the
region of the parameters (when δa > 0), where roots λ1,
λ2, and λ3 of the equation
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are real negative roots or where two of them are com-
plex conjugate roots with a negative real part that is
larger than the real root.

The above results were confirmed in [6], where the
system of Eqs. (1) and (2) with  > 0 and δa ≥ 0 was
investigated by the methods of real and computer
experiments. These conclusions are consistent with the
Ishlinsky–Kragelsky theory, which attributes the excess
of dry friction static forces over sliding forces to long-
term immobility [7].
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Methods for calculating potential flows based on the
theory of functions of a complex variable have been
widely used as fundamental investigation methods in
many fields of engineering, including seepage theory,
elasticity theory, continuum mechanics, heat dynamics,
aero- and hydromechanics, electromagnetism, electro-
and radio engineering, etc. [1–3]. In most cases, the
application of these methods involves conformal map-
ping of the rectangle 1–2–3–4 of the complex domain
W = ϕ + iψ (Fig. 1a) onto a complex half-plane ζ = ξ +
iη (Fig. 1b). It is well known [1–5] that this mapping is
performed by means of Jacobi elliptic functions, mak-
ing use of the complete elliptic integrals of the first kind
K and K' (Fig. 1) with the modulus λ and the comple-

mentary modulus λ' = , respectively. This gen-
erates considerable difficulties due to the necessity of
series expansion of elliptic functions, interpolation of
special nonograms and tables, solution of inverse table
problems, etc., particularly when it comes to determin-
ing the current values of Jacobi functions for the rect-
angle interior [1–4, 6, 7]. Moreover, the difficulty of
expressing the elliptic functions in terms of elementary
functions restricts the possibility of analytically repre-
senting the relationship between the physical parame-
ters of the problem under consideration and the given
boundary conditions, as well as the use of complicated
calculation techniques.

The above circumstances considerably constrain the
further development of analytical methods for investi-
gating engineering problems in the above-listed lines of
inquiry. In this study, we present a new method for solv-
ing this problem based on the conformal mapping of a
rectangle, one side of which has a vanishingly small con-
vexity, onto a half-plane by means of elementary func-
tions. For this purpose, in the complex half-band W = ϕ +
iψ of width H (Fig. 2), we introduce the function

(1)

where ϕ and ψ are the current coordinates, and R ≥ 1 is
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a parameter determining a family of symmetric curves
ψ = f(ϕ) that is orthogonal to the lateral sides of the
half-band and has a convexity in their central part. The
values of function (1) on the half-band boundaries 1–4

and 2–3 and on the 0ψ axis are determined at ϕ = ±

and ϕ = 0, respectively:

points 3 and 4: ψ3, 4 =  = Q; 

(2)

From Eq. (2) we determine the parameter
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Fig. 1. Exact conformal mapping of a rectangle onto a half-
plane using Jacobi elliptic functions: (a) rectangle 1–2–3–4
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------------
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the ordinate of point A is equal to

that is, the curve 3–A–4 is almost coincident with the
straight line 3–4 (the maximum error at point A is equal
to 0.118%). Therefore, figure 1–2–3–A–4 can be
treated with fairly high accuracy as a rectangle with
equal sides (square). With further increase in the verti-
cal side of the rectangle, i.e., the value of Q, the convex-
ity at point A relative to line 3–4 becomes vanishingly

small: it is equal to 0.01, 0.001, and 0.0001% for  =

1.35, 1.67, and 2, respectively.

The main feature of curves (1) is that domains 1–2–
3–A–4 in the half-band W = ϕ + iψ (Fig. 3a) bounded
by the curves and treated as “elongated” rectangles for

 ≥ 1 or  ≥ 2  can be rigorously mapped onto a

semicircle of radius R in a complex domain ε = ε1 + iε2
(Fig. 3b) by means of the function

(4)

Further mappings of this semicircle onto the half-
plane ζ = ξ + iη (Figs. 3b–3g) are performed using the
functions

(5)

where

(6)

is the inverse of the point-1 image on the half-plane ζ0 =
ξ0 + iη0 (Fig. 3e) and corresponds to the modulus of the
complete elliptic integral of the first kind K.

After the transformations, we obtain a function con-

formally mapping the “elongated” rectangle  ≥ 1 or

 ≥ 2  1–2–3–A–4 of the domain W = ϕ + iψ onto the

half-plane  in the form

(7)

ψA
H
π
---- πcosh( )arcsinh 1.00118H ,= =

Q
H
----

Q
H
---- -

 K'
K
----- 



ε πW
H

--------.sin=

t
ε
R
---, ζ 1

t
---, ζ0 0.5 ζ1

1
ζ1
-----+ 

  ,= = =

ζ*
1
ζ0
-----, ζ ζ*

λ
------,= =

λ 2R

R2 1+
---------------=

Q
H
---- -



K'
K
----- 



ζ ξ iη+=

ζ 2
λR
-------

πW
H

--------sin

1 R 2– πW
H

--------sin
2

+
------------------------------------.=
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Since R ≥ 11.59195 in this case (correspondingly, R2 ≥
134.373), unity can be neglected in the denominator of
Eq. (6). Then, we have

(8)

while dependence (7) takes the simpler form

(9)

From Eqs. (6) and (8), the parameter R can be expressed
as follows:

(10)

For the particular case of a rectangle with an infinitely

long vertical side (half-band), when   ∞, formu-

las (7) and (9) provide the conformal mapping of the

half-band onto a half-plane in the form ζ = sin ,

λ 2
R
---,≈

ζ

πW
H

--------sin

1 R 2– πW
H

--------sin
2

+
------------------------------------= .

R
1 1 λ2–+

λ
--------------------------- 2

λ
---.≈=

Q
H
----

πW
H

--------

W = ϕ + iψψ

3 4A
R = 22.052

R = 11.59195

R = 2.509

R = 1.551

R = 1

Q

1
ϕ

2

ψ = f(ϕ)

0 H
2
----

H

H
2
----–

Fig. 2. Plots of the function ψ =  in

the complex half-band W = ϕ + iψ.

H
π
---- R

2 πϕ
H
-------sin

2
–arcsinh
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H
2
----– H

2
----

1
λ
---1

λ
---–

Fig. 3. Diagram of successive conformal mappings W = ϕ + iψ of the complex domain 1–2–3–A–4 onto the complex half-plane
ζ = ξ + iη.
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2
---– π

2
---

1
λ
---
which completely coincides with the known exact solu-
tion [1, 2, 4, 5].

A rectangle “broadened” along the real axis 0ϕ,

 < 1 or  < 2  is conformally mapped onto the

half-plane ζ = ξ + iη using an additional intermediate
complex π-wide domain W0 = ϕ0 + iψ0 (Fig. 3h) deter-
mined by the function

(11)

which rotates and extends the “broadened” rectangle
along the imaginary axis 0ϕ0 , as shown in Fig. 3h. Its
further successive conformal mappings onto the half-
plane ζ = ξ + iη (Fig. 3g) are performed similarly. As a
result, we obtain the mapping function

Q
H
---- -

 K'
K
----- 



W0
π
2
--- iπ W

H
2
----+ 

  Q 1– ,+=

ζ ζ* n–( ) 1 m–( )
ζ* 1 m 2n–+( ) n 1 m+( ) 2m–+
-------------------------------------------------------------------------------;=
(12)

Thus, functions (7), (9), and (12) conformally map

the “elongated”  ≥ 1  and “broadened”  < 1

rectangles, respectively, onto the half-plane ζ = ξ + iη
(Fig. 3g).

A comparison of the results of calculations accord-
ing to formulas (7), (9), and (12) gives almost complete

ζ*
2
r
---

π
Q
---- W

H
2
----+ 

 cosh

1 r 2– π
Q
---- W

H
2
----+ 

 cosh
2

+

--------------------------------------------------------------,=

r = 
πH
Q

--------, mcosh  = 
2r

r2 1+
-------------,

n = 
2
r
---

0.5πH
Q

---------------cosh

1 r 2– 0.5πH
Q

---------------cosh
2

+
----------------------------------------------.

Q
H
----

 --
 Q

H
----

 --

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coincidence with the exact values. Maximum errors in a

narrow range of the rectangle side ratio, when   1

(i.e., for near-square shapes), are not greater than
0.60−0.65%.

The above presentation provides grounds for recom-
mending formulas (7), (9), and (12) in the interest of
improving the available and developing new, nearly
exact methods of calculation in different fields of engi-
neering. They make it possible to consider a rich variety
of engineering problems associated with the mapping
of rectangles onto a half-plane, which were previously
solved using Jacobi elliptic functions, on the basis of
elementary functions, while using the advantages pro-
vided by rigorous analytical methods.

We will consider the use of the solution suggested in
engineering problems with reference to the example of
high-pressure water seepage through a permeable founda-
tion of depth T below a plane shallow apron with a length
of L. The exact value of the reduced (specific) seepage rate
Q under such a structure is equal to [2, 4, 5, 7]

(13)

where K and K' are the complete elliptic integrals of the
first kind with, respectively, the modulus

(14)

and the complementary modulus λ' = , H is the
water head acting on the structure, Qn is the (specific)
seepage rate under actual conditions [4], and k is the
soil permeability of the base.

The expressions for determining the reduced seep-
age rate Q on the basis of dependences (9) and (12) for

the cases  ≥ 1 and  < 1, i.e., for  ≥

0.25π  ≈ 4.51 and  < 4.51, are as fol-

lows:

for  < 1  < 4.51

(15)

where F = , and 

for  ≥ 1  ≥ 4.51

(16)

Q
H
----

Q
Qn

k
------

0.5HK'
K

------------------,= =

λ 0.25πL
T

-----------------tanh=

1 λ2–

Q
H
---- Q

H
---- T

L
---

2
πcosh

---------------arctanh
1– T

L
---

Q
H
---- T

L
---

 --


Q
πH

F F F2 2++( )[ ]arccosh
--------------------------------------------------------------,=

0.5 1 λ+( )
2

1 λ–
-----------------------------------

Q
H
---- T

L
---

 --


Q
H
π
---- 2

λ
---.arccosh=
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A comparison of the seepage rates Q through the
permeable base of a limited depth T of the plane L-long
apron calculated by formulas (15) and (16) with the
exact values given by Eqs. (13) for H = 1 and k = 1 (in
conditional units) yields an almost complete coinci-
dence of results (the maximum error is 0.1–0.2%).
Moreover, the method proposed above provides the
solution for the particular case of an infinitely deep per-
meable base (T  ∞). For example, the head h acting
along the basement of this plane apron is obtained in
the form

(17)

where –  ≤ x ≤  is the abscissa of a point on the

apron basement, which completely coincides with the
result of the rigorous hydromechanical solution
obtained by N. N. Pavlovskiœ for this case [2, 4, 5, 7].

Thus, the solution obtained above makes it possible
to determine all required parameters of a seepage flow
at any point of the flow region, which would be hardly
realizable using Jacobi elliptic functions [2, 4, 5]. The
results of this study can be used for refining the avail-
able and developing new fundamental methods for
studying potential flows associated with conformal
mappings of a rectangle onto a half-plane in different
fields of engineering. Deriving highly accurate and
simple dependences provides deeper insight into the
internal relationships and the current characteristics of
the problem under study including the case of more
complicated calculation schemes.
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Flutter of viscoelastic rectangular plates was first
investigated in [1–3]. The results of those studies were
based on both the Bubnov–Galerkin and averaging
methods [4]. It was found that the critical flow velocity
was lower by a factor of approximately 2 than that of
the corresponding elastic plate with an instant Young’s
modulus, the ratio between the velocities being inde-
pendent of the viscous properties of the material. In [5],
a seemingly natural result was reported concerning
asymptotic stability. It was estimated that in the case of
low viscosity, flow velocity found according to the ulti-
mate modulus provides the sufficient condition for the
stability of vibrations. In the present study, we deal with
a crucial new result based on one exact and one approx-
imate solution to the problem of the flutter of a vis-
coelastic strip. We have established that critical velocity
is equal to that corresponding to the instant Young’s
modulus, and viscous properties of the material affect
the character of strip motion only in the subcritical
region.

FORMULATION OF THE PROBLEM
We consider a rectangular coordinate system in

which a strip occupies the domain 0 ≤ y ≤ l and |x| < ∞.
Gas flowing around the strip on one side is character-
ized by the velocity vector v = vn0 (n0 = {cosθ, sinθ})
and by the unperturbed parameters p0, ρ0 and a0 (pres-
sure, density, and sound velocity, respectively). The
strip is made of a linear viscoelastic material. The
strain–stress relation has the form

σ E0 ε t( ) ε0 Γ t τ–( )ε τ( ) τd

0

t

∫–
 
 
 

=

E0 1 ε0Γ̂1–( )ε t( );≡
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where E0 is the instant modulus and ε0 is the viscosity
parameter.

Strip vibrations are described by the equation [6, 7]

(1)

Here, D0 = , h is the strip thickness, γ is the poly-

tropic exponent, ρ is the density of the material, and υ
is the constant Poisson’s ratio. Equation (1) is investi-
gated under the boundary conditions of a pin-edge fix-
ing:

(2)

and for initial conditions determined by the type of per-
turbation. The problem consists in the necessity of find-
ing the minimum value of flow velocity νcr such that
the perturbed motion is stable at υ < υcr and unstable at
υ > υcr.

We now assume that Γ(t) = exp(–βt). Upon intro-
ducing the dimensionless variables, namely, coordi-

nates , , time βt, and velocity M =  (under con-

servation of other previous notation), Eq. (1) takes the
form

(3)

D0 1 ε0Γ̂1–( )∆2w ρh
∂2w

∂t2
---------+

+
γp0

a0
-------- ∂w

∂t
------- v n0 gradw⋅+ 

  0.=

E0h3

12 ν–
---------------

y 0, w 0,
∂2w

∂y2
--------- 0;= = =

y l, w 0,
∂2w

∂y2
--------- 0= = =

x
l
-- y

l
-- υ

a0
-----

1 λΓ 1–( )∆2w a3Mn0 gradw⋅+

+ a2
∂w
∂t
------- a1

∂2w

∂t2
---------+ 0.=
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Here, 

LONGITUDINAL FLOW
AROUND THE STRIP

In the case θ = 0, a perturbation bounded at infinity
and satisfying conditions (2) is chosen in the form 

t = 0, w = c1exp(–iαx)sinπy,

and 

In accordance with the above conditions, we take

w = A(t)exp(–iαx)sinπy.

Next, substituting this expression into (3) and passing
to the Laplace image, we arrive at

(4)

(s is the transformation parameter). The original of
image (4) is reconstructed in the conventional manner:

(5)

In formulas (5), sm are the roots of the equation p3(s) = 0
and µ = (α2 + π2)2 . Solution (5) exponentially decreases
(being asymptotically stable) if Resm < 0 for an arbi-
trary m. At the same time, the solution is asymptotically
unstable if one of the roots has Resm > 0. The condition
Resm = 0 corresponds to the boundary between the sta-
ble and unstable domains provided that the remaining
two roots lie in the left half-plane.

As our calculations indicate, at M = 0 (free vibra-
tions), Resm < 0 (∀ m); with a rise in M, one of the roots
(let it be s1) most rapidly approaches the imaginary axis

a1 12 1 ν2–( )β
2l4ρ

h2E0

-------------, a2 12 1 ν2–( )
βl4γp0

h3a0E0

----------------,==

a3 12 1 ν2–( )
γp0

E0
-------- l

h
--- 

 
3

, λ
ε0

β
----; Γ e t– .= = =

∂w
∂t
------- c2 iαx–( ) πy (α R).∈sinexp=

L A t( )( )
p2 s( )
p3 s( )
-------------,=

p2 s( ) s 1+( )(a1c1s a1+= c2 a2c1 ),+

p3 s( ) a1s3 a1 a2+( )s2+=

+ µ a2 iαa3M–+( )s 1 λ–( )µ iαa3M–+

A t( ) A1e
s1t

A2e
s2t

A3e
s3t

,+ +=

Am

1 sm+( ) c2 c1
a2

a1
----- sm+ 

 + 
 

sm s j–( ) sm sk–( )
---------------------------------------------------------------,=

m k, m j, k j.≠≠≠
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and, at a certain M*, becomes purely imaginary. The
values of both  = iy and M* can be easily found from
the equation p3(iy) = 0. As a result, we arrive at

Instead of y, the positive root of the biquadratic
equation

should be substituted into this equation.

The dimensionless velocity M* depends on the wave
formation parameter α. By definition, we take Mcr =
M*(αcr), where αcr is found from the condition .

Table 1 presents the data of specific calculations for
a number of parameters: 

 = 5 × 10–7, ρ = 8 × 103 kg m–3, γ = 1.4, ν = 0.3,

a0 = 330 m s–1, and  = 3 × 102. In all cases, it turned

out that αcr = π with an accuracy to the fourth signifi-
cant figure after the decimal point.

The velocity being evaluated by the formula  =

 and having the instant Young’s modulus corre-

sponds to λ = 0.

A crucial result follows from the data given in

Table 1: Mcr and  differ only in the fourth figure
after the decimal point, and this difference decreases
with increasing relaxation time.

In the domain M < Mcr, variation of the root s1 with
an increase in M was investigated. For values M ~

0.1Mcr, Res1 < Re  (the difference is within several

percent); at M > 0.1Mcr, the roots s1 and  coincide

s1*

M*
µ a2 a1y2–+( )y

αa3
---------------------------------------.=

y4 µ
a1
----- 1– 

  y2– 1 λ–( ) µ
a1
-----– 0=

M*
α

min

p0

E0
-----

l
h
---

Mcr
el

2πa2

a3 a1

--------------

Mel
cr

s1
el

s1
el

Table 1

β
Mcr

λ = 0 λ = 0.1 λ = 0.2 λ = 0.3

0.1 0.096029 0.096065 0.096102 0.096138

0.01 0.096029 0.096033 0.096037 0.096040
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with an accuracy to the fourth decimal place. This is
also a new mechanical effect.

FLOW AROUND A STRIP
AT AN ARBITRARY ANGLE

We take the solution to Eq. (3) in the form of a tri-
nomial Bubnov–Galerkin approximation:

w = (ck(t)sinkπy)exp(–iαx), k = 1, 2, 3.

Using the well-known procedure associated with
Laplace images, we arrive at the following set of linear
equations with respect to ck(s):

(6)

λ1µ1 B2+( ) c1 s( ) 8
3
---a3M θ c2 s( )⋅sin–⋅ Q1 s( ),=

8
3
---a3M θ c1 s( ) λ1µ2 B2+( )c2 s( )+⋅sin

–
24
5
------a3M θsin c3 s( )⋅ Q2 s( ),=

24
5
------a3M θsin c2 s( ) λ1µ3 B2+( ) c3 s( )⋅+⋅ Q3;=

Table 2

θ Mcr

0 0.096066 0.096030

0.253636 0.253543

0.714807 0.714590

1.737786 1.737783

1.727327 1.727324

1.725347 1.725344

Mcr
el

3π
8

------

58π
128
---------

59π
128
---------

62π
128
---------

π
2
---
where λ1 = 1 – , B2 = s(a1s + a2) – iαMa3 cosθ, and

µk = (a2 + k2π2)2. The polynomials Qk(s) are determined
from the initial data.

The behavior of solutions ck(t) to set (6) is charac-
terized by the roots of its determinant (a polynomial of
the ninth power); as previously, we have found the root
s1 that most rapidly approaches the imaginary axis with
an increase in M. We have also found the critical flutter
velocity: Mcr = (α) provided that P9(iy) = 0 and

iy = . The calculation results are presented in Table 2
(the values of the parameters are the same: β = 0.1 and
λ = 0.1).

The principal conclusion remains the same: the crit-

ical flutter velocity Mcr coincides with . The second
important result consists in the fact that, in the vicinity

of angle θ =  (similarly to the elastic problem), there

exists an angle θ0 near which (on the left) Mcr sharply
increases, i.e., the plot of Mcr(θ) has a vertical tangent
line. The character of strip vibrations drastically
changes after the angle θ has passed through θ0.
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INTRODUCTION

In this paper, we propose a combined solution to the
problem of determining the shape of a profile that pos-
sesses the property of streamline flow around its lead-
ing edge and an electromagnetic-scattering level close
to the assigned value. These tasks cannot be solved sep-
arately because they are connected with each other by
the unknown shape of the profile surface.

Thus, we consider the scattering of a plane mono-
chromatic E- or H-polarized electromagnetic wave on
an aerodynamic profile with the perfectly conducting
surface S. In an exterior domain DS , for the nonzero
field component (this is either u = Ez(x, y) or u =
Hz(x, y) in the case of E- or H-polarization, respec-
tively), the Helmholtz equation

(1)

is valid with its boundary conditions

(2)

or

(3)

in the case of E- or H-polarization, respectively. Here,
W is the surface impedance, i.e., the complex-valued
function of the arc coordinate of the boundary contour.
This function describes processes occurring in the con-
ductor surface layer that interacts with the electromag-

netic field; k = ; λ is the wavelength; W0 = 120π =

 is the wave resistance of the free space; the symbol

∂2u

∂x2
-------- ∂2u

∂y2
-------- k2u+ + 0, x y,( ) DS∈=

u x y,( ) W
ikW0
------------

∂u0 x y,( )
∂n

----------------------– 0, x y,( ) S,∈=

∂u x y,( )
∂n

-------------------- ik
W
W0
-------u0 x y,( )– 0, x y,( ) S∈=

2π
λ

------

µ
ε
---
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 denotes differentiation over the outer normal; and

u0 is the solution to the direct problem in the case of a
perfectly conducting surface (W = 0). For the reflected
field at infinity, the asymptotic condition for radiation
must be valid.

An incompressible potential flow around a profile is
described by the Laplace equation for the velocity
potential:

(4)

with the impermeability boundary condition:

(5)

At the profile trailing edge, the Joukowski–Chaplygin
condition is posed that expresses the finiteness of the
velocity at the flow trailing point.

The inverse problem for the reconstruction of the
unknown profile-surface segment S0 ⊆ S is considered
in the following formulation. It is necessary to find a set
of values ri, i = 1, 2, …, L, which parametrically deter-
mine the desired surface segment S0 and provide:

(i) approximation (at a reasonable level of accuracy)
to the prescribed scattering diagram;

(ii) shock-free incoming flow around the profile
(streamline flow around the profile leading edge).

We now assume that the scattering diagram is given
by its complex values at a finite number of far-field
points: ea(ϕ), ϕ ∈ {ϕj, j = 1, 2, …, m}; ϕ is the polar
angle; 2m = L – 1 [for H-polarization, the function ha(ϕ)
is given]. The criterion of the approximation to the
given scattering diagram (in the mean-square sense) is

(6)

The shock-free behavior at the input, as a compo-
nent of the adaptive-wing concept, corresponds to a
load on the profile leading edge, which is close to zero.

∂
∂n
------

∂2Φ
∂x2
---------- ∂2Φ

∂y2
----------+ 0, x y,( ) DS,∈=

∂Φ
∂n
------- 0, x y,( ) S.∈=

J1 e ϕ j( ) ea ϕ j( )– 2

j 1=

m

∑ min.→≡
 2005 Pleiades Publishing, Inc.
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In the case of a thin profile, this provides a considerable
decrease in the drag and an increase in the aerodynamic
efficiency. Assuming the profile to be thin and its cen-
terline to be slightly bent, we consider that boundary
condition (5) is valid for the profile basis surface
(chord). Then, the shock-free condition in terms of
pressure factor takes the form Cp(0) = 0. When we
apply the panel method to model flows around a profile,
it is necessary that the vortex-layer density at the chord
forepart be zero. We represent the variational analog of
this equality as

(7)

This condition arising from aerodynamic concepts
complements the insufficiently determinate (2m < L)
electrodynamic problem of identifying the profile
shape. 

It should be noted that in this situation, various addi-
tional conditions, for example, of an isoparametric
type, may be given. In particular, if we need to maintain
a constant lifting force, e.g., using the corresponding
deflection of flaps, then we obtain the relationship

(8)

A METHOD FOR A COMBINED SOLUTION
TO THE PROBLEM

The problems formulated above are both aerody-
namic and electrodynamic. They cannot be solved sep-
arately because their solutions are connected with each
other by the unknown profile-contour segment S0 . We
assume that the desired parameters {ri} are moduli of
radii vectors of the segment S0 in support cross sections
with polar angles ψi , i = 1, 2, …, L.

In order to numerically solve the electrodynamic
part of the problem, we employ the method described
in [1]. This method makes it possible to skip to the inte-
gro-operator equation. This equation is nonlinear
because the integration domain S(r(ψ)) includes the
segment S0 to be determined, namely,

(9)

and

(10)

J2 γ 0( ) min.→≡

Cya
Cya

0 .=

q
2πkW0
----------------- gD 1– C i

∂g
∂n
------+ 

  W
∂u0

∂n
-------- SPd

S r ψ( )( )
∫ ea M( )=

–
q

2π
------

∂u0

∂n
--------g SP, P S r ψ( )( ), M SR,∈ ∈d

S r ψ( )( )
∫

kq
2πW0
-------------- ig

∂g
∂nP

--------C 1– D– 
  u0W SPd

S r ψ( )( )
∫

=  ha M( )
q

2π
------ ∂g

∂nP

--------u0 SP, P S r ψ( )( ), M SR,∈ ∈d

S r ψ( )( )
∫+
for the E- and H-polarization, respectively. Here, SR is
the circular contour of radius R (R is sufficiently large);

q = e–ikR; g(M, P) is the fundamental solution to the
Helmholtz equation; C and D are the operators inherent
in the direct problem for a perfectly conducting surface S
in the case of the H- and E-polarization, respectively.
Thus, we have applied the method of artificial immer-
sion in the more general problem, for which surface
impedance W is considered to be unknown in the
desired profile segment.

The aerodynamic problem is solved by the panel
method described in [2] with the boundary conditions
transferred to the basis plane. Reversing the aerody-
namic-influence matrix A, we express the vortex-layer
intensity γ in terms of local angles of attack δ of panels.
As a result, condition (7) can be rewritten in the form

(11)

where α0 is the angle of attack,  are angles of the
panel deflection caused by the initial deformation of the
profile centerline, δp are varied deflection angles, and
NW is the number of panels in which the profile chord
is partitioned.

If the value of the lifting force is fixed, then the con-
dition of inverse problem (8) results in the appearance
of the additional relationship

where  is the dimensionless panel length, and  is
the value of vortex-layer intensity at the panel center. In
this case, the flap deflection angle δf is added to the
number of desired variables.

In [3], an efficient method was indicated for recon-
structing the surface impedance, which uses the given
field in the case of fixed geometry. This method makes
it possible to determine the operator G upon solving
Eqs. (9) or (10):

Here and below, the vector quantities are discrete ana-
logs of the corresponding continuous functions.

Relationship (11) allows us to express the load on
the profile leading edge in terms of the variable r:

Introducing the notation Z = {G, Y}, X = {W, γ1}, we
can write out the equality

It is worth noting at this point that the desired solu-
tion to the inverse problem corresponds to the zero val-
ues of the parameters W and γ1. Therefore, instead of

R

γ1 A 1–( )p 1, δp α0– δp
0+( )

p 1=

NW

∑ 0,= =

δp
0

2 spγp

p 1=

NW

∑ Cya

0 ,=

sp γp

W G r( ).=

γ1 Y r( ).=

X Z r( ).=
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the totality of extremal problems (6) and (7), we arrive
at the nonlinear operator equation

(12)

Solving this equation by Newton’s method, we obtain
the shape of the profile leading edge that exhibits
streamline flow around the front edge in the cruising
regime and, furthermore, possesses a scattering dia-
gram close to the assigned one.

CONVERGENCE 
OF THE NUMERICAL SOLUTION
TO THE OPERATOR EQUATION

Regularization of the auxiliary discrete problem
under conditions of a fixed geometry, which is based on
the Tikhonov zeroth-order regularizer [4], allows us to
calculate W and γ1 with the estimate of the norm, which
depends on the regularization parameter α:

(13)

where ∆r is the increment of the vector r that deter-
mines the shape of the segment S0 . Upon solving non-
linear operator equation (12) by Newton’s method and
after discretization, we can calculate the matrix of
finite-difference derivatives

The next approximation rk is found from the formula

(14)

In this case,

(15)

We now study the convergence of the vector Xk to
zero. The Taylor expansion of relationship (15) in the
vicinity of rk – 2 allows us to find the estimate

The right-hand side of this equality contains the
norm for the second-derivative matrix as well as the
norm for the inverse first-derivative matrix. We denote

Relationship (13) ensures the choice of initial

parameters such that ||X0|| ≤ . Then,

Thus, assuming the smoothness and boundedness of
the matrix norms ∂2Z and DZ–1, the initial approxima-
tion taken in sufficiently close vicinity to the exact solu-

Z r( ) 0.=

X ε1 α ∆r,( ),≤

DZ
∂Zi

∂r j

-------- 
  , i j, 1 2 … L., , ,= =

rk rk 1– DZ 1– Xk 1– , k– 1 2 …., ,= =

Xk 1– Z rk 1–( ).=

Xk 1–
1
2
--- ∂2Z x( ) DZ 1– 2

Xk 2–
2.≤

D2 max ∂2Z ξ( ) , D1 max DZ 1– .= =

1

D1
2D2

-------------

Xk
1
2
--- 

  1 2 4 8 … 2k 1–+ + + + +
X0

1
2
--- 

  2k 1–
X0 .≤ ≤
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tion guarantees convergence of the vector Xk to zero at
a velocity higher than that of a geometric progression.
Analogous estimates and conclusions are also valid for
the sequence {∆rk}. By virtue of this fact, the sequence

Y

X

X

Y

(a)

(b)

Fig. 1. Contours for (a) the initial profile and (b) the profile
obtained as a result of solving the inverse problem.

90°

ϕ = 180°

(a)

(b) 90°

ϕ = 180°

Fig. 2. Scattering diagram for (a) the initial profile and
(b) the profile obtained as a result of solving the inverse
problem.
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of vectors {rk} converges at the same velocity to the
solution of Eq. (12).

THE RESULTS 
OF THE NUMERICAL EXPERIMENT

We analyzed as an example the problem of recon-
structing the shape of the leading edge of an aerody-
namic profile when the shock-free behavior (streamline
flow around the profile) had been combined with the
assigned level of electromagnetic reflection in fixed
directions. In addressing this problem, the most conve-
nient approach involves parameterization of the profile
contour not by the polar angle ψ, but by another method
traditional in aerodynamics. We allude to the use of
equations yu(x) and yl(x) for the upper and lower profile
surfaces, respectively, where x is the dimensionless
coordinate along the profile chord.

The initial (undeformed) profile was taken symmet-
ric and lens-shaped. The wavelength λ is linked with

the chord length b by the relation  = 1.23. Figure 1a

shows the shape of the initial contour. Variation of the
parameters was performed by flanging the profile lead-
ing edge in the segment 0 ≤ x ≤ 0.2, having taken into
account the correlation relationship yu(0) = yl(0). The
cruiser regime of flow around the profile was assigned
at the angle of attack α0 = 3°. The level of electromag-
netic reflection was set in the form of complex values of

λ
b
---
the magnetic field in the measurement directions ϕ ∈
[−25°; 25°], irradiation being performed from the lead-
ing-edge side at the incidence angle ϕ = 0 of a plane H
polarized wave.

As a result of solving the inverse problem, the
desired profile contour was obtained (Fig. 1b). In
Fig. 2, scattering diagrams are presented for the bistatic
location of the initial and resulting forms of the adap-
tive profile. The scattering diagram is asymmetric with
respect to the horizontal axis due to the nonzero angle
of attack α0 .

Analysis of the plots shows that flanging the leading
edge results in the redistribution of reflection intensity
in favor of the upper hemisphere.
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