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In this paper, we consider the nuclear-physical and
astrophysical aspects of investigations associated with
the search for heavy and superheavy nuclei in the com-
position of cosmic rays. We also discuss the potentiality
of searching for tracks of these nuclei in the olivine
crystals found in meteorites with the use of the com-
pletely automated PAVICOM setup, which was
designed for the scanning and processing of tracks of
particles.

The detection of heavy and superheavy nuclei of
cosmic rays and the search for transfermium nuclei
with charges Z ≥ 110 are among the most important and
topical problems of modern nuclear physics and astro-
physics [1].

1. The question of the existence of superheavy
nuclei is of the utmost importance for understanding
the properties of nuclear matter. What is of interest here
is, first of all, verifying the considerable enhancement
of nuclear stability that has been predicted [2] near the
magic numbers Z = 114 and N = 184 (N is the number
of neutrons in a nucleus), which may result in the exist-
ence of so-called stability islands for the superheavy
nuclei in this region. The very first corroboration of this
prediction was recently obtained at the JINR during the
accelerator experiments carried out under the supervi-
sion of Yu.Ts. Oganesyan, in which the 114th and 116th
elements were discovered [3]. In spite of this success,
the search for superheavy nuclei is in fact continued.
Moreover, the results of the Dubna experiment provide
an impetus to the continuation of these searches. Only
two events associated with a nucleus having Z = 114
and one event associated with Z = 116 were detected in
this experiment. Undoubtedly, these results call for fur-
ther verification and confirmation. It is also necessary
to search for other possible superheavy nuclei. If the
regularities associated with the magic numbers con-
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tinue to hold for very large values of N and Z, the exist-
ence of stability islands for even heavier nuclei must
not be ruled out.

Verification of the existence of unusual stable forms
of nuclear matter containing, for example, strange [4]
or other even heavier quarks [5] would also be of obvi-
ous interest.

2. The measurement of fluxes and of the spectra of
heavy and superheavy nuclei composing cosmic rays is
a sensitive method for studying the composition of cos-
mic-ray sources, the processes occurring in both the
sources and the interstellar medium through which the
cosmic rays propagate, as well as the models of cosmic-
ray confinement in the galaxy. There are extremely lim-
ited experimental data available on the abundance of
heavy nuclei (i.e., those with Z > 30) and on the spectra
and fluxes of these nuclei, while reasonably reliable
data on transfermium nuclei are entirely absent.
Absent, as well, are any data on the possible existence
of exotic superheavy nuclei.

The current notion is that atomic nuclei, beginning
with the carbon and heavier ones, are produced in the
interior of stars and during supernova explosions.
Heavy and superheavy chemical elements located on
the periodic table beyond bismuth are formed in the
course of rapid processes (r-processes) occurring at
high neutron concentrations and may give rise to super-
heavy nuclei with neutron numbers up to N = 184.

In addition to these traditional mechanisms, the pos-
sibility of producing very heavy nuclei (with mass
numbers up to 500) at high neutron densities (on the
order of 1030 cm–3) and moderate temperatures (í ≤
108 K) has also been discussed [6]. This scenario could
be realized in nonequilibrium shells of neutron stars,
eruptions from which would give rise to the appearance
of superheavy nuclei in the interstellar medium, stars,
and planets [7].

As mentioned above, along with normal superheavy
nuclei consisting of protons and neutrons, the possibil-
ity of the existence of other stable forms of nuclear mat-
ter containing strange and other even heavier quarks
© 2005 Pleiades Publishing, Inc.
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also is an object of speculation [4, 5]. Particles of such
matter in the form of exotic superheavy nuclei (strange-
lets, technets, etc.) retained since the early-universe
epoch or produced in astrophysical objects could be
present in the cosmic-ray flux. The aforementioned the-
oretical schemes call for thorough verification and
comparison against experimental data.

Initially, the experimental search for superheavy
nuclei in cosmic rays was carried out with the use of
thick nuclear-emulsion layers exposed on balloons in
the upper atmosphere [8]. Later, multilayer detectors
made of polymeric materials in combination with
Cherenkov detectors were also employed for this pur-
pose [9]. In addition, tracks of superheavy cosmic-ray
nuclei in meteoritic silicate olivine crystals were sought
in some laboratories, including JINR, where these stud-
ies were carried out under the supervision of G.N. Fle-
rov. An efficient procedure was developed for revealing
tracks on the basis of annealing and etching samples.
Among the found tracks of nuclei with Z ≥ 60, about
150 were assigned to tracks of uranium-group nuclei.
A 365-µm-long track was also found, which could be
attributed to a nucleus with Z ≥ 110 [10–12].

3. Recently, a group of researchers from the Lebe-
dev Physical Institute (LPI) proposed the OLIMPIYA
experiment (Olivines from meteorites: search for heavy
and superheavy nuclei). In this experiment, it is sug-
gested that the PAVICOM modern high-performance
completely automated measuring setup developed at
this Institute for scanning samples of olivine crystals
from meteorites, will be used with the goal of searching
for and processing tracks of heavy and superheavy cos-
mic-ray nuclei. Employment of this automated setup
provides fundamental advantages in terms of process-
ing rate, measurement accuracy, and reliability.

In common with previous studies on olivines, the
OLIMPIYA experiment is based on the application of
the solid-state track-detector technique, in which the
radiation damages produced by ionizing particles in the
detector material are used to detect these particles. In
the search for relict tracks that are produced by cosmic-
ray particles in minerals incorporated into some mete-
orites [10–13], use is made of the ability of silicate
crystals from meteorites (olivine, pyroxene) to register
and preserve over a long period of time (>108 yr) tracks
of nuclei with Z ≥ 20 [14]. The typical age of meteorites
and, consequently, the time of their irradiation by the
cosmic ray flux, is estimated as 107–109 yr. Therefore,
meteorites can contain a wealth of tracks of cosmic-ray
nuclei. According to the estimates obtained in [10–12],
for the time of 108 yr, in 1 cm3 of such crystals located
at a depth of ≤5 cm beneath the preatmospheric mete-
orite surface, 102–103 tracks of nuclei with Z ≥ 90 could
be produced. At the same time, in crystals from the
meteorite-surface areas (depth ≤1 cm), this number
could be as high as 104.

Therefore, the employment of the long exposure
time of meteorites in space provides for the tremendous
advantage of this method as compared to methods
based on the use of various satellite-borne and balloon-
borne detectors. By measuring track parameters and the
depth variation of the track diameter as the particle pen-
etrates into the meteorite, one can not only identify par-
ticles but also determine their spectra.

The sample scanning and measurement of charac-
teristics of particle tracks are both the most important
and laborious parts of the work on track revealing and
studying in solid-state track detectors (in particular, in
olivine crystals). Visual scanning with a microscope by
an operator is highly time consuming. It requires stren-
uous and exhausting work and actually sets limits on
the feasibility of the track technique because it prede-
termines the low event statistic. Moreover, the results
obtained are difficult to verify in terms of the possible
malfunctions that arise in the course of data processing
(for example, the loss of particle tracks by operators
and other errors).

The novelty of the proposed approach consists prin-
cipally in the means it provides for tackling these diffi-
culties. This has become feasible owing to the progress
achieved in the last few years in the production of a pre-
cision technique and the advent of optical tables with
the high-precision movement on computer commands,
the widespread use of modern charge-coupled devices
for detection and digitization of optical images, and the
high potentialities of modern computers. Taken
together, these achievements make possible the com-
plete automation of scanning and measurements and
speed up data processing by approximately three orders
of magnitude as compared to that achieved when so-
called semiautomatic devices are used.

In Russia, the PAVICOM is the only completely
automated setup combining two devices of this kind.
This setup was constructed at the Lebedev Physical
Institute, Russian Academy of Sciences [15] for pro-
cessing data of both nuclear emulsions and solid-state
track detectors that are used in nuclear and high-energy
physics. Currently (from the middle of 2000), the
PAVICOM is being successfully used by scientists of
the LPI and by groups from a number of Russian Insti-
tutes (JINR, ITEP, MSU, INR, etc.). In the OLIMPIYA
project, problems associated with scanning and mea-
surements will be solved through the use of the
PAVICOM.

The PAVICOM program package for seeking and
processing tracks provides scanning over three coordi-
nates, and the determination of characteristics of found
tracks including their lengths with an accuracy of about
1 µm. Image sewing is also performed if the track
length exceeds the size of the microscope field of view.
In the case of intersecting tracks, the events are auto-
matically recognized, and each track is processed sepa-
rately. Upon etching olivine, dislocation zones and
other defects can look like nuclear tracks. Therefore,
the tracks are analyzed from their origin to the vertex so
that they may be distinguished from etched defects.
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The result of the proposed study would be a track-
length distribution that both enables the charge distri-
bution in the flux of galactic cosmic particles to be esti-
mated and makes it possible to search for superheavy
nuclei.
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As massive neutrinos propagate through a dense
medium, electromagnetic radiation caused by constitu-
ent fermions of the medium can arise [1, 2]. In this case,
by virtue of radiative self-polarization, a neutrino can
change its helicity. As distinct from Cherenkov radia-
tion, this effect does not disappear even if the refractive
index of the medium is considered to be unity. This
conclusion is true for the model of neutrino interactions
that violate spatial parity. On the basis of analogy with
the dependence of synchrotron-radiation power on
electron spin orientation, such an effect was called the
neutrino spin light (see [3]).

The quasi-classical theory of radiation and of the
radiative self-polarization of neutral particles has
served a basis for the description of spin-light proper-
ties [4, 5]. This theory employs the Bargmann–Michel–
Telegdi equation [6] and its generalizations [7, 8]. The
applicability of this theory is restricted by the condition
of the low energy of emitted photons compared to the
energy of a radiating particle. This condition narrows
the region of astrophysical applications in which the
results obtained can be used.

In this paper, based on the successive quantum
approach, we study the properties of spin light, making
it possible to allow for neutrino recoil in the radiation
emission process. Thereby, the above-indicated restric-
tion is eliminated. On the other hand, detailed analysis
of the results obtained shows that the possibility that the
effect will arise depends on the neutrino type, neutrino
helicity, and on the composition of the medium. This
allows us to draw the conclusion that depending on the
situation, the spin light can be a cause both of neutrino
transition from the active form to the virtually sterile
one and of the inverse process.

When the substance is sufficiently dense and the
neutrino interaction with fermions of the medium is
considered to be coherent, the neutrino propagation in
the substance is described by the Dirac equation with
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the effective potential given in [9, 10]. In the framework
of the minimally extended standard model, and for the
uniform and isotropic medium under consideration, the
form of this equation is unambiguously determined by
arguments similar to those given in [11]:

(1)

The function f µ is a linear combination of current
4-vectors and polarizations of fermions of the medium.
If the medium is immobile and unpolarized, then f = 0.
The f 0 component calculated in the lowest order of the
perturbation theory is determined by the formula
(see [12–14])

(2)

Here, nf,  are, respectively, the densities of fermions

and antifermions in the medium,  is the third com-
ponent of the weak isospin, and Q( f ) is the electric
charge. The parameter Ieν = 1 for the interaction of an
electron neutrino with electrons of the medium; in other
cases, Ieν = 0. The summation is performed for all fer-
mions.

We now analyze the process of photon emission by
a massive neutrino in such a medium. In the case of
spontaneous radiation, the probability of a radiative
transition for a neutral fermion with an anomalous
magnetic moment µ0 is determined by the formula1 

(3)

1 In the formula for the radiation energy %, the common multi-
plier k0 , i.e., the emitted-photon energy, appears in the integrand.
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Here, (x, y; p, ζi) and (y, x; q, ζf ) are the density

matrices of the initial (i) and final (f) states of particles,

(x, y; k) is the density matrix of an emitted photon,

and the vertex function is Γµ = – µ0σµνkν . The den-
sity matrix for a longitudinally polarized neutrino in the
immobile unpolarized medium, which was constructed
with allowance for the solutions of Eq. (1), is of the
form

(4)

where pµ is the neutrino kinetic momentum, ∆pζ = 1 +

, and  = , . Thus, ζ = ±1 determines

the sign of the spin projection onto the direction of the
neutrino kinetic momentum.

The calculated results can be conveniently
expressed in terms of the dimensionless variables γ =

, d = ,  = ζi, f sgn f 0. The transition probabil-

ity per unit of time is determined by the formula
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where

(7)

Hence, the radiative-transition probability summed
over the final-neutrino polarizations is

(8)

If the condition dγ ! 1 holds, expression (5) trans-
forms into the formula

(9)

This formula was derived in the quasi-classical approx-
imation in [2]. In the ultrarelativistic case (γ @ 1,
dγ @ 1), we have

(10)

We now consider the radiation power. To this end,
we introduce the function
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Formulas for the total radiation power are obtained
from (5) and (8) provided that the replacement

Z(z, )  (z, ) is performed in them. In the case
when the relation dγ ! 1 is valid, the radiation power is
determined by the formula

(13)

which is obtained in the quasi-classical approximation
(see [1]). In the ultrarelativistic case, the radiation
power is

(14)

As follows from (10) and (14), in the ultrarelativistic

case, the average energy of emitted photons is 〈εγ〉  = .

It should be noted that the formulas obtained are valid
not only for neutrinos, but also for antineutrinos. The
operation of charge conjugation results in the variation
of the effective-potential sign and in the replacement of
the left projector for the right one in Eq. (1). In this
case, the sign ahead of the term containing γ5 remains
invariable.

The results obtained allow us to make the following
conclusions. Neutrinos (antineutrinos) can emit pho-
tons in the case of coherent interaction with a medium
only when the sign of their helicity is opposite to that of
the effective potential. Otherwise, radiative transitions
are absent. At low energies of an initial neutrino, only
emission without the particle’s spin flip is possible, the
process probability being extremely low. At high ener-
gies, transitions including spin flip mainly contribute to
the emission, and transitions without spin flip are
absent or their probability is strongly suppressed. This
results in the complete self-polarization effect: initial
active left neutrinos (right antineutrinos) transform into
virtually sterile right neutrinos (left antineutrinos). The
situation is opposite for sterile particles: they can trans-
form into the active form in media transparent for active
neutrinos.

Using results of the first-order calculations for effec-
tive potential (2), we arrive at the following conclu-
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sions. If the medium consists only of electrons, then we
have in the ultrarelativistic case,

(15)

for the transition probabilities of an electron neutrino
(here, the Gaussian units are employed) and

(16)

for the total radiation power. Here, εν is the neutrino
energy; µB is the Bohr magneton; α is the fine-structure

constant; me is the electron mass; and  = GF(1 +
4sin2θW), where GF and θW are the Fermi constant and
the Weinberg angle, respectively. Thus, after the radia-
tive transition, two thirds of the energy of initial active
neutrinos is carried away by sterile finite neutrinos. At
the same time, muon neutrinos do not emit in an elec-
tron medium. Muon neutrinos also do not emit in an
electrically neutral medium in which the proton density
and the electron density are equal. However, electron
neutrinos can emit in this medium, provided that the
electron density exceeds the neutron density. An exam-
ple of such a medium is the Sun. The neutron medium
is transparent for all active neutrinos but active
antineutrinos can emit in a neutron medium, the
corresponding formulas being obtained from expres-

sions (15) and (16) by the replacements   GF and
ne  nn. Hence, spin light can change the relative
number of active neutrinos of different types.

Naturally, the opposite of these conclusions is true
when the medium consists of antiparticles. Therefore,
the spin light of neutrinos constitutes a specific tool for
the determination of types of astrophysical objects, as
the radiative transitions of neutrinos in a dense medium
can result in the emission of very high-energy photons.
The effect under consideration may prove to be impor-
tant for purposes of understanding the mechanism of
dark-matter formation at early stages in the evolution of
the Universe.
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At normal pressure, iron has three polymorphic
modifications that exist in the equilibrium state within
different temperature ranges. Below 1189 K, α modifi-
cation with body-centered cubic (bcc) structure (A2) is
stable, whereas within the range from 1189 to 1165 K,
γ modification with the face-centered cubic structure
(A1) is stable. At higher temperatures ranging from
1165 K to the melting point of iron (1808 K), there
exists δ modification with the bcc structure (A2) [1].
Structurally, the α and δ modifications are isomorphic
but differ in their magnetic properties. At temperatures
below 1043 K (Curie point), the α modification is fer-
romagnetic. Magnetization MS of the α modification
progressively decreases with increasing temperature.

On the contrary, the derivative  increases with

temperature and attains the maximum at the Curie
point, which is typical of second-order phase transi-
tions. Unlike the α modification, the δ modification is
paramagnetic. Its free energy and other thermodynamic
properties differ greatly from those of the α modifica-
tion in terms of their magnetic components.

At the absolute zero temperature, the difference in
enthalpy for the α and δ modifications (Hα – Hδ)0 =
∆Uα – δ,0 is specified by the value of the spontaneous-
magnetization energy of the α modification.

According to the calorimetric data of [2], the exper-
imental value of the magnetic component for enthalpy
is the following:
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The magnetic component ∆H0mag in the enthalpy differ-
ence for the α and δ modifications (as T  0) corre-
sponds, in fact, to the (α–δ) phase transition energy as
T  0. In the approximation of the molecular-field
theory, this quantity is directly proportional to the satu-
ration spontaneous magnetization MS squared for a
mole of iron at T = 0 K:

(1)

where k is the proportionality coefficient.

In a certain sense, we may consider that the other
thermodynamic components of the free energies for the
α and δ modifications (with the exception of the mag-
netic components caused by ferromagnetic long-range
ordering) are virtually identical.

Table 1 presents experimental values of molar heat
capacity Cp at a constant pressure, enthalpy ∆HT , and
entropy ST for the α modification [3]. The calculated
values of Cp, ∆HT , and entropy ST for the δ modification
(for which the lattice components are foundational), as
well as the calculated differences in the corresponding
thermodynamic functions for the α and δ modifica-
tions, are also indicated. The thermodynamic functions
for the δ modification were found with the use of the
Debye functions at the characteristic Debye tempera-
ture ΘD = 420 K [4, 5]. We took into account the elec-
tron component that was determined for the heat capac-
ity by the formula Cel = aT + bT3 , where the coefficients
a and b are equal to 4.942 × 10–3 J/(mol K2) [4, 6] and
0.19 × 10–9 J/(mol K4), respectively [7]. The values of
heat capacity Cp were calculated from the known Grü-
neisen relation Cp = CV (1 + γαVT), where CV is the heat

capacity at a constant volume and γ =  is the Grü-

neisen coefficient. To calculate the Grüneisen coeffi-
cient, we used the temperature dependences for the
coefficient of volumetric expansion αV(T) and for molar
volume V(T), the latter having been taken from [8, 9].
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The values for the iron compressibility factor χ(T) [10]
were extrapolated to the high-temperature range. The
anharmonic component in the thermodynamic func-
tions was ignored.

Figure 1 shows the calculated temperature depen-
dences (for the δ modification) of the heat capacities Cp

and CV (CV = CDeb + Cel), as well as their lattice CDeb and
electron Cel components.

Within the temperature range in which the δ modifi-
cation exists in the equilibrium state, the character of
the temperature dependences of its thermodynamic
functions is in good agreement with the experimental
data of [3, 6].

The difference found in the thermodynamic func-
tions for the α and δ modifications within the tempera-
ture range lower than the temperature of the α–γ transi-
tion (1189 K [1], 1184 K [3]) can be considered to be
consistent with the magnetic component of the thermo-
DOKLADY PHYSICS      Vol. 50      No. 6      2005
dynamic functions for the α modification. The calcu-
lated values of the magnetic components are close to
those obtained in [4, 7, 11].
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Fig. 1. Temperature dependences of heat capacities Cp and
CV and their components for the δ modification of iron.
Table 1.  Thermodynamic functions of the α [3] and δ modifications of iron and their difference

T, K

α modification δ modification α – δ

Cp,
J/(mol K)

H – H0,
J/mol

S,
J/(mol K)

Cp,
J/(mol K)

H – H0,
J/mol

S,
J/(mol K)

Cp,
J/(mol K)

H – H0,
J/mol

S,
J/(mol K)

0 0 0 0 0 0 0 0 – –

100 12.05 421 5.98 12.03 441 6.40 0.02 – –

200 21.42 2184 17.82 21.35 2187 18.35 0.07 – –

300 25.02 4531 27.28 24.59 4529 27.66 0.43 – –

400 27.41 7151 34.80 26.25 7078 34.71 1.16 –7988 0.09

500 29.58 10004 41.17 27.57 9770 41.00 2.01 –7826 0.17

600 31.67 13067 46.74 28.71 12579 46.23 2.96 –7572 0.51

700 34.35 16359 51.80 29.67 15499 50.68 4.68 –7200 1.12

800 38.07 19970 56.61 30.66 18515 54.75 7.41 –6605 1.86

900 43.51 24025 61.42 31.59 21710 58.44 11.92 –5746 2.98

1000 55.52 28865 66.53 32.56 24843 61.95 22.96 –4037 4.57

1042 89.96 31585 69.56 32.93 26423 63.66 57.03 –2898 5.51

1100 44.52 34472 71.87 33.45 28161 65.08 11.07 –1749 6.79

1184 38.99 37945 74.80 34.37 31000 67.55 4.62 –1116 7.25

1200 38.53 38564 75.43 34.51 31561 68.14 4.02 –1057 7.30

1300 38.91 42426 78.53 35.40 35084 70.91 3.51 –719 7.62

1400 39.58 46355 81.44 36.40 38703 73.66 3.18 –408 7.78

1500 40.21 50342 84.19 37.53 42448 76.34 2.68 –166 7.85

1600 40.84 54392 86.80 38.65 46384 78.94 2.19 –52 7.87

1665 41.25 57061 88.06 39.52 49028 80.55 1.73 –26 7.88

1700 41.46 58509 89.30 39.86 50457 81.41 1.60 –8 7.89

1800 42.13 62689 91.69 41.08 54629 83.77 1.05 –1 7.92
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In accordance with (1), the magnetic components of
the heat capacity Cmag , internal energy ∆Umag , enthalpy
∆Hmag , and entropy Smag are as follows:

Cmag = k (2)

∆Hmag = ∆Umag = (3)
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Fig. 2. Dependence : (1) calculations by formula (6);

(2) calculations by formula (2) on the basis of experimental
values of MS; and (3) extrapolation of the low-temperature
branch of curve 2.
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Table 2 presents the experimental values of magne-
tization MS [12, 13] and the calculated values for the
magnetic components of the thermodynamic functions
for the α modification. These data were calculated on
the basis of experimental values of the magnetization
and formulas (2)–(4). The coefficient k was assumed to
be constant and was taken to be equal to 2.58 ×
109 J m2/(mol A2) according to formula (1), where
H0mag = 8060 J/mol and MS0 = 1.766 × 106 A/m.

Using the expression for the temperature depen-
dence of the saturation magnetization

(5)

taken from [14], where

χ(T) = µ  + c , 

µ = 1.2, c = 0.002, and α = 0.98, we can calculate the
magnetic components of the thermodynamic functions
∆Hmag, Smag , and of the heat capacity:

(6)

The values obtained are presented in Table 2.
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Table 2.  Temperature dependence of the magnetic components ∆Hmag and Smag of enthalpy and entropy, respectively, for
the α modification of iron according to calculations based on experimental [12, 13] and theoretical [formula (5)] values of the
saturation magnetization MS

T, K

Experiment Calculation according to (5)

MS, 106 A/m ∆Hmag, J/mol Smag, J/(mol K)
Smag, J/(mol K)
(extrapolation)

MS, 106 A/m ∆Hmag, J/mol Smag, J/(mol K)

0 1.766 –8060 0 0 1.766 –8060 0

100 1.766 –8019 0.69 0.08 1.762 –8059 0.01

200 1.764 –7917 1.39 0.29 1.750 –8045 0.10

300 1.758 –7754 2.01 0.65 1.732 –7991 0.32

400 1.743 –7549 2.65 1.17 1.709 –7846 0.72

500 1.709 –7219 3.37 1.79 1.671 –7553 1.37

600 1.651 –6757 4.21 2.60 1.617 –7046 2.29

700 1.559 –6156 5.14 3.53 1.543 –6283 3.46

800 1.426 –5326 6.24 4.65 1.436 –5258 4.83

900 1.246 –4076 7.74 6.16 1.255 –4011 6.29

1000 0.952 –1904 9.99 8.43 0.859 –2345 8.04

1043 0.352 –79 11.82 10.26 0.173 –320 9.91
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The magnetic component Smag of the entropy was

found graphically from the dependences ( )

shown in Fig. 2. Table 2 also contains the values of Smag
that were obtained by the linear extrapolation of the

low-temperature branch of the curve , which

was calculated from the experimental values of the sat-
uration magnetization MS.

The magnetic components of the thermodynamic
functions, which are caused by the ferromagnetic
(long-range) ordering of spins, were found from the
experimental values given in [12, 13] and those calcu-
lated by formula (5) for the saturation magnetization
MS . The results obtained are close to each other. At low
temperatures, they approach the calculated difference
in the thermodynamic functions for the α and δ isomor-
phic modifications. With increasing temperature, the
difference between them increases due to the enhanced
role of the short-range spin ordering, which was
ignored in our calculations.

The values of  for the α modification, which

were calculated by formula (5) and found experimen-
tally, are presented in Fig. 3. We note the good agree-
ment between the experimental and calculated data.
The curves shown in Fig. 4 correspond to dependences
Cmag(T) calculated by formula (6) (curve 1), by for-
mula (2) using the experimental values of MS [12, 13]
(curve 2), and using the difference in heat capacities of
the α and δ modifications of iron (curve 3).

As a result of introducing the correlation function,
the existing tails [13] caused by different factors,
including the presence of the short-range spin ordering,
are cut off. The maximum of the temperature depen-
dence of the heat-capacity magnetic component Cmag
calculated by formula (6) corresponds to the experi-
mental value of the Curie point.

As was shown in [14], the critical temperature TC
can be found by the formula 

where γ is a constant (γ = 0.47), ΘD = 410 K, and U0 =
8060 J/mol is the energy of the spontaneous magnetiza-
tion as T  0. Therefore, TC ≈ 1043 K. The Curie
temperature thus obtained coincides with its experi-
mental value.

Thus, the magnetic components of thermodynamic
functions for the α modification of iron that were calcu-
lated in this study determine a significant part of these
functions. The method used of the quantitative descrip-
tion of the magnetic components enables one to dis-

Cmag

T
---------- T( )

Cmag

T
---------- T( )

MS

MS0
---------

TC

U0ΘD
3

γ
-------------- 

 
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,=
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cover their temperature-dependent values at an accept-
able level of accuracy.
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At present, the development of a general theory that
describes the unsteady processes involved in the evap-
oration and condensation growth of aerosol droplets
remains a rather urgent physical problem. A particu-
larly significant component of this problem is the phys-
ically correct formulation of boundary conditions at the
droplet–environment interface. In this case, it is
extremely important to give adequate account to the
evaporation (condensation) coefficient of the droplet
substance [1].

In the present paper, we propose to take into direct
account the evaporation coefficient while analyzing the
unsteady processes of the evaporation and condensa-
tion growth of an immobile spherical droplet. Using the
Laplace integral transformations, we have managed to
obtain general expressions for the distributions of both
the vapor concentration and temperature field in the
medium surrounding the droplet, as well as for the con-
centration of saturated vapors on the droplet surface as
a function of time. Expressions for the droplet-radius
variation rate are found. The results of the present paper
are compared with those previously obtained by the
authors for a case in which the evaporation coefficient
was taken into account implicitly (i.e., in terms of gas-
kinetic coefficients for jumps of the concentration and
temperature) [2]. In addition, we have studied here the
problem associated with the effect of temperature vari-
ation inside the aerosol droplet on the rate of the
unsteady process of droplet evaporation and condensa-
tion growth.

The distribution of the (relative) vapor concentra-
tion c1 and the temperature T of the vapor–gas mixture
satisfy the set of equations

(1)
∂c1

∂t
-------- D

∂2c1

∂r2
----------

2
r
---

∂c1

∂r
--------+
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 
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(2)

with the boundary conditions

(3)

(4)

(5)

(6)

(7)

Here, r is the radial coordinate of a spherical coordinate
system with the origin at the droplet center, and t is
time. The quantities entering into Eqs. (1) and (2) are

the following: D = , where D12 is the coeffi-

cient of mutual diffusion for the components of the
binary mixture whose first and second components are
formed by droplet-substance molecules and carrier-gas
molecules, respectively. Furthermore, n = n1 + n2; n1
and m1 and n2 and m2 are the concentrations and masses
of molecules belonging to the first and second compo-
nents, respectively; ρ is the density of the vapor–gas
mixture, and a is the thermal diffusivity of a binary
mixture. The following quantities enter into boundary
condition (5): L is the specific heat of the phase transi-
tion for the droplet substance and κ is the thermal con-
ductivity of the vapor–gas mixture. Condition (6) is the
linear approximation of the Clapeyron–Clausius equa-

tion and contains the terms c1s(t) = c1(Ts) = ,

where n1(Ts) is the concentration of saturated vapors of
the droplet substance at the surface temperature Ts =

∂T
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Ts(t) = T(r, t)|r = R; c1s0 = c1s(t)|t = 0; and νs0 = ,

where k is the Boltzmann constant. In accordance with
the reference data of [3], we suppose that νs0 > 0.

Boundary condition (7) makes it possible to imme-
diately take into account the effect of the evaporation
coefficient α in the process under consideration. Here,

the quantity ν =  represents a quarter of the

average absolute thermal velocity of vapor molecules.
It is worth noting that the validity of relationships (7)
follows from simple statistical considerations [4].

In order to solve the problem, we introduce the nota-
tion

(8)

and make use of the Laplace integral transformations [5].

Employing initial conditions (3) and (4), we find the
corresponding images of Eqs. (1) and (2):

(9)

They are ordinary differential equations expressed in
terms of unknown functions S(r, p), θ(r, p), where r is
the independent variable and p plays the role of a
parameter. Solutions to Eqs. (9) in the image space
must satisfy certain relationships that correspond to
boundary conditions (3)–(7). Taking into account all of
these relationships, we find in the image space

(10)

(11)

(12)
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Here,

We note that the expansion δ = g0(  + β1)(  + β2)
is valid, where β1, β2 are positive quantities that are not
equal to each other.

We use the following denotations for functions in
the original space:

Passing to the space of originals, we find in accor-
dance with expressions (10)–(12) and by virtue of nota-
tion (8) that the vapor-concentration distribution, the
temperature field in the medium surrounding the drop-
let, and also the dependence of the saturated-vapor con-
centration at the droplet surface as functions of time are
the following:

(13)

(14)

(15)

where

As is well known from [6], the rate of the unsteady
variation of the droplet radius is determined by the

εα αν c10 c1s0–( ), l Lm1nD, κ D c1s0νs0l,= = =

α c
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------------, αT
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------------;= =
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formula

(16)

where γ is the density of the droplet substance, and the
value of the quantity can be found from Eq. (13). Thus,
we arrive at

(17)

where

It should be noted that the value  can be

immediately found as an original of the image .

As follows from relation (10), the expression for this
original is of the form

(18)

Relationships (17) and (18) are obtained without
allowance for the temperature variation inside the drop-
let. We now clarify the question associated with the
effect of the temperature variation inside the droplet on
the rate of the unsteady variation of its radius. The tem-
perature Ti = Ti(r, t), (0 ≤ r ≤ R) of a spherical droplet
obeys the thermal-conduction equation

(19)

and boundary conditions

(20)

(21)

where ai, κi are the thermal diffusivity and conductivity
of the droplet substance. Thus, in order to take into
account the temperature variation inside an aerosol
droplet in the process we considered, one should inves-
tigate the set of Eqs. (1), (2), (19) assuming the validity
of initial and boundary conditions (3), (4), (6), (7), (20),
and (21) [boundary condition (5) is replaced by (21)].

As before, we apply the Laplace integral transfor-
mations [5] with due regard to the fact that the temper-
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ature Ti(r, t) at the droplet center (r = 0) cannot be infi-
nitely high. Then, we find that in the image space

(22)

where Fi = Fi(p) =  – .

Since

and using the limiting theorem [5], we obtain in accor-
dance with formula (16)

Hence, it follows that the allowance for temperature
variation inside the droplet affects the rate of the
unsteady variation of the droplet radius neither at the
initial instant of the process nor for extended times.

We now analyze the solutions obtained. Expres-
sions (18) and (22) both tend to zero as α  0. Thus,
in accordance with formula (16), the rates of the drop-
let-radius variation will tend to zero both with and with-
out allowance for the temperature change inside the
droplet.

We now consider the expression

(23)

which was derived in [2]. In this expression, the evapo-
ration coefficient is taken into account implicitly via the
coefficients of jumps of the concentration and tempera-

ture , , ,  [1]. In expression (23), the
notation

is used (below, in comparing the formulas, we suppose
that T0 – Ts0 = 0) and

As is seen from relationship (23), jumps in the con-
centration and temperature affect the rate of the drop-

∂S
∂r
------ 

 
i r R=
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p
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D
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p
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-----------------------------------------------,=

dR
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------- 
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∂S
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let-radius variation via the function χ. Taking the

expressions for the coefficients , , , 
from the monograph [1], we find the quantity χ as a

function of the evaporation coefficient α: χ =  + χ2,

where χ1, χ2 are known quantities independent of α. As
far as in the general case, χ1 ≠ 0, we arrive at α  0

as   0. Hence, according to formula (16),

we deal with the tendency   0.

We note that all functions (13)–(15) and (17)
obtained in the space of originals linearly depend on the
quantity εα = αν(c10 – c1s0).

Further, we continue the analysis of expressions for
the rate of the droplet-radius variation. Formula (17) is
derived for all times from 0 to +∞. We consider the
asymptotic expansion of the function ϕ(βj, t) for large
values of t, namely,

(24)

Employing expansion (24) and in accordance with for-
mula (17), we can obtain the expression for the droplet-
radius variation rate in the form of an infinite series for
large values of time. Taking the zero approximation in
expansion (24), we obtain the corresponding approxi-
mation of formula (17):

(25)

We now compare formula (25) with the analogous
approximate formula

(26)

Kc
c( ) Kc

T( ) KT
T( ) KT

c( )

χ1

α
-----

∂S
∂r
------ 

 
χ r R=
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dt
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 
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ϕ β j t,( ) = 
1

β j πt
-------------- 1 1–( )m1 3 …×× 2m 1–( )×

2β j
2t( )m

----------------------------------------------------
m 1=

∞

∑+ .

dR
dt
-------

εαnm1Dκ
γ Dκ αν R κ D κ+( )+[ ]
-------------------------------------------------------.=

dR
dt
------- 

 
χ

εnm1Dκ
γ χ R κ D κ+( )+[ ]
------------------------------------------=

Table

T0, K

0.5 µm 1 µm 5 µm 10 µm

293 1.21 1.11 1.02 1.01

323 1.33 1.17 1.04 1.02

dR
dt
------- dR

dt
------- 

 
χ

–1
found in [2]. To arrive at concrete conclusions, we con-
sider the process of unsteady evaporation (εα < 0) of
water droplets in dry air (c10 = 0) at a pressure p =
105 Pa. In this case, we restrict our analysis to two char-
acteristic values 293 and 323 K of the initial tempera-
ture T0. We assume α = 1 and calculate the values of
expressions (25) and (26) at the indicated initial tem-
peratures for different values of R. Afterwards, we com-

pose the table of ratios .

From both the table and expressions (25) and (26),
we can conclude that the larger an evaporating droplet,
the smaller the discrepancy between the variation rates
of its radius, which were calculated on the basis of var-
ious methods that took into account the evaporation
coefficient.

Thus, although the method proposed in this study is
very simple, it is rather important because of its practi-
cal applications; and it is capable of directly allowing
for the evaporation coefficient, which is highly consis-
tent with results obtained by us on the basis of another,
more complicated method. This conclusion particularly
relates to the case of the evaporation of large droplets
(R > 7 µm).
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The equilibrium α  γ transition between the iso-
morphic phases of cerium for various pressures and
temperatures up to the end point, i.e., critical point, is a
feature of this element. Cerium is the only known ele-
ment for which the critical point exists in the p–T phase
diagram.

The critical transition was experimentally studied
in, e.g., [1–4], where the following coordinates of the
critical point on the p–T phase diagram were obtained:
Tc = 550 K and pc = 1.8 GPa [1, 2], Tc = 630 K and pc =
2 GPa [3], and Tc = 480 K and pc = 1.45 GPa [4]. The
α–γ transition has been theoretically analyzed in
numerous works [5–11]. However, the critical transi-
tion in cerium remains poorly studied.

In this work, we quantitatively describe the differ-
ence between the volumes of the α and γ phases as a
function of temperature and pressure, particularly
along the line of the isomorphic α–γ phase transition up
to the critical point (Tc , pc).

At various temperatures and normal pressure, four
equilibrium polymorphic phases α, β, γ, and δ are pos-
sible for cerium. The α and γ phases are structure iso-
morphic (see table) and they have the A1 fcc structure
with four atoms in the unit cell. The size of the unit cell
of the γ phase is much larger than that of the α phase.
The difference between their specific volumes is equal
to 15–20% at T = 297 K [3, 5].

Direct α  γ and γ  α transitions are observed
for increased pressures (above 0.2 GPa), as well as for
overcooling.

The difference ∆Hαγ = Hα – Hγ between the enthalp-
ies of the α and γ phases as a function of temperature
and pressure can be described by the expression [15]

(1)

     

∆Hαγ ∆H0 a
T
Tc
-----

4

–
p
pc
----- 

  4

+ 
  η ,exp=
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where the pressure is taken into account and ∆Hαγ =
(Hα – Hγ)T, p, ∆H0 = (Hα – Hγ  is the difference
between the enthalpies of the α and γ phases for tem-
perature T and pressure p (T = 0 and pressure 
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, because the number of
valence electrons and the distribution of their inter-
atomic electron density in the crystal lattice of cerium
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Fig. 1. (a) Variation in the relative difference between the volumes of the α and γ phases along the α–γ phase equilibrium curve and
(b) experimental-versus-calculated relative differences between the specific volumes of the α and γ phases along the phase equilib-
rium curve.
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∆Vαγ

∆V0
------------- 

 
exp

%,

∆Vαγ

∆V0
------------- %,
vary. The difference between the enthalpies is quantita-
tively described as a function of pressure and tempera-
ture by Eqs. (1), (1a), and (1b). When pressure and tem-
perature increase, the difference between the enthalpies
decreases to a minimum at the end point (Tc , pc), where
∆Hαγ = 0 and, therefore, the α and γ phases become
completely identical.

If the difference between the specific volumes Vα
and Vγ of the α and γ phases is proportional to the dif-
ference between the enthalpies as a function of temper-
ature and pressure, we obtain

(2)

Figure 1a shows variation in the difference between

∆Vαγ ∆V0 a
T
Tc
----- 

  4 p
pc
----- 

  4

+– 
  η .exp=
the molar volumes of the α and γ phases with tempera-
ture and pressure along the phase equilibrium curve.
This difference is calculated by Eq. (2) for Tc  = 480 K
and pc = 1.45 GPa [4], a = 0.5, c = 0.0067, and α = 1.
The experimental points taken from [4] are also shown
in Fig. 1a. Figure 1b demonstrates good agreement
between experimental and calculated values.

The difference between the specific heats of the α
and γ phases as a function of temperature is determined

as the temperature derivative  of the difference

between enthalpies, assuming that the lattice compo-
nents of the specific heats, as well as the characteristic

∂∆Hαγ

∂T
----------------
Cerium phases at normal pressure, lattice constants, density ρ, phase transition temperature Tt , and changes in enthalpy ∆H
and volume ∆V in the polymorphic transition

Phase Structure Spatial 
group

Lattice constant,
nm [14]

ρ, g/cm3

[14]
Tt , K

[12, 13]
∆H, J/mol
[12, 13]

∆V, cm3/mol
[12]

α fcc Fm3m a = 0.485, T = 77 K 8.23 α → β

143 1955 3.2

β dhcp P63/mmc a = 0.368, c = 1.186,
c/a = 0.16063, T = 298 K

6.66 β → γ

~346 54.4 –0.074

γ fcc Fm3m a = 0.516, T = 296 K 6.768 γ → δ

1003 2973 –0.037

δ bcc Im3m a = 0.412, T = 1030 K 6.770 δ → liquid

1077 5234 –0.140
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temperatures of the α and γ phases, are equal to each
other in this temperature range:

(3)

Figure 2 shows variation in the difference between
the specific heats with temperature and pressure along
the phase-transition line. As is seen in this figure, a
sharp extremum corresponding to a second order phase
transition appears on the curve ∆ (T) at temperature
Tc in the critical transition region.

The temperature dependence of the difference
between the thermal expansion coefficients is deter-
mined by the temperature derivative of the difference
between the molar volumes of the α and γ phases,
which is divided by the averaged volume  =

 of these phases:

(4)

The temperature dependence of the difference
between the thermal expansion coefficients of the α and
γ phases displays a sharp peak near the critical point
and is similar to the curve ∆ (T) in Fig. 2. The pres-
ence of a sharp peak in the temperature dependence of
the difference between the thermal expansion coeffi-
cients of the α and γ phases at transition temperatures
was experimentally indicated in [4], but the shape of the
peak in that work differs from that obtained in our
work.

The ratio of the pressure derivative of the difference
between the molar volumes of the α and γ phases to 
determines the pressure and temperature dependences
of the difference between the compressibility factors χα
and χγ of these phases.

Using Eqs. (1) and (2), we calculate the end curve
for the difference between the isomorphic α and γ
phases on the p–T phase diagram. This curve corre-
sponds to ∆Hαγ = ∆Vαγ = 0. Figure 3 shows the end
curve in the p–T phase diagram in the regions of the
metastable existence of the α phase and equilibrium
existence of the γ phase, as well as the metastable exist-
ence of the γ phase and equilibrium existence of the
α phase. Figure 3 also shows the contours of the ratio
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, as well as the experimental points taken from [4]

for the difference between the volumes of the α and
γ phases along the phase equilibrium curve [4]. The
experimental points agree with the contours.

Thus, the temperature and pressure dependences of
the thermodynamic and thermal properties of cerium

∆Vαγ

∆V0
------------

300
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Fig. 2. The variation in the difference between the specific
heats of the α and γ phases that is divided by ∆H0 along the
α–γ phase equilibrium curve near the end temperature.
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Fig. 3. (1) Variation in the position of the end point
(∆Vαγ = 0) with temperature and pressure and contours of
the relative difference between the volumes of the α and γ

phases  = (2) 6.96, (3) 11.02, (4) 13.5, and

(5) 14.93%.
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are satisfactorily described by an exponential law,
which approximates the differences between their
enthalpies and molar volumes as functions of tempera-
ture and pressure.

REFERENCES

1. E. G. Ponyatovskiœ, Dokl. Akad. Nauk SSSR 120 (5),
1021 (1958) [Sov. Phys. Dokl. 2, 498 (1958)].

2. A. Jayaraman, Phys. Rev. 137, A179 (1965).
3. R. I. Beecroft and C. A. Swenson, J. Phys. Chem. Solids

15, 234 (1960).
4. A. R. Kutsar, Structure of Phases, Phase Transforma-

tions, and Phase Diagrams of Metallic Systems (Nauka,
Moscow, 1974), p. 76 [in Russian].

5. W. H. Zachariasen, Phys. Rev. 76, 301 (1949).
6. J. W. Allen and R. M. Martin, Phys. Rev. Lett. 49, 1106

(1982).
7. B. Johansson, Philos. Mag. 30, 469 (1974).
8. P. B. Coqblin and A. Blandin, Adv. Phys. 17, 281 (1968).
9. R. Ramirez and L. M. Falikov, Phys. Rev. B 3, 2425

(1971).
10. I. L. Aptekar’ and E. G. Ponyatovskiœ, Fiz. Met. Metall-

oved. 25, 777 (1968).
11. B. Johansson, I. Abrikosov, M. Alden, et al., Phys. Rev.

Lett. 74, 2335 (1995).
12. K. A. Gschneider, R. Elliot, and R. McDonald, J. Phys.

Chem. Solids 23, 555 (1962).
13. F. H. Spedding, J. J. McKeown, and A. H. Daane,

J. Phys. Chem. 64, 289 (1960).
14. The Rare Earths, Ed. by F. H. Spedding and A. H. Daane

(Wiley, New York, 1961; Metallurgiya, Moscow, 1965).
15. N. N. Sirota, Dokl. Akad. Nauk 402, 329 (2005) [Dokl.

Phys. 50, 42 (2005)].

Translated by R. Tyapaev
DOKLADY PHYSICS      Vol. 50      No. 6      2005



  

Doklady Physics, Vol. 50, No. 6, 2005, pp. 303–307. Translated from Doklady Akademii Nauk, Vol. 402, No. 6, 2005, pp. 754–758.
Original Russian Text Copyright © 2005 by Ba

 

œ

 

dakov, Protsenko.

                                                                  

PHYSICS
Spinodal and the Melting Curve of a Lennard-Jones Crystal 
at Negative Pressure

V. G. Baœdakov* and S. P. Protsenko
Presented by Academician V.P. Skripov November 12, 2004

Received December 3, 2004
Liquids and crystals can exist in the metastable
phase at negative pressures. Such metastability is pri-
marily attributed to the instability of condensed phases
with respect to the formation of a gaseous phase in
these liquids and crystals. The maximum tensions of
fluids and crystals are limited by spinodals, i.e., lines on
which their isothermal elasticity vanishes.

Two macroscopic phases that are instable with
respect to the formation of a certain third phase in them
may coexist in equilibrium [1, 2]. Thus, the fluid–crys-
tal phase equilibrium line must have an analytic contin-
uation to the negative-pressure region. At pressures
below the triple point, both a fluid that is overcooled
beyond this line and a crystal that is overheated beyond
this line are doubly metastable. The positions of the
melting curve and spinodals of the fluid and crystal on
the thermodynamic surface of state and their low-tem-
perature asymptotic behaviors are of interest. In this
work, these problems are solved using the molecular
dynamic method.

We analyze a system consisting of 2048 Lennard-
Jones particles with a mass of m = 66.336 × 10–27 kg.

The potential parameters are σ = 0.3405 nm and  =

119.8 K, where k is the Boltzmann constant. In what
follows, σ, ε, and m values are used as the reduction
parameters for thermodynamic quantities. Reduced
(dimensionless) quantities are marked by asterisks.

We consider that particles are situated in a cubic cell
at whose boundaries periodic boundary conditions are
imposed. In order to integrate the classical equations of
motion of particles, the Beemon scheme is used [3].
The time integration step is taken to be 0.01 and
0.005 ps for the fluid and crystal, respectively. The
interparticle interaction potential is cut at a distance of

ε
k
--
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 =  = 6.78 for a density of ρ* = ρσ3 ≤ 0.82. The

cutoff radius is taken to be half the cell edge length if
ρ* > 0.82. The thermodynamic properties (tempera-
ture, pressure, potential and kinetic energies, and spe-
cific heat at constant volume) of the fluid and crystal-
line phases are calculated in the N, V, E ensemble along

11 isotherms in the interval T* =  = 0.1–2.0. The cal-

culation procedure was described in [4].
Calculations always begin from the stable region. A

random arrangement and an fcc lattice are taken as the
initial configurations of particles in a cell for the fluid
and crystal, respectively. For temperatures T* = 0.7–
2.0, the metastable region of the fluid is reached by
sequential isothermal compression of particles in the
cell. The final configuration of particles at each given
density is the initial configuration for calculation of the
state with a higher density. Data on the thermodynamic
properties of the fluid in the negative-pressure region
are obtained by isochoric cooling of the particle config-
uration that is in equilibrium at T* = 0.7 and ρ* = 0.85
to temperatures T* = 0.55 and 0.4, with subsequent ten-
sion and compression. The characteristic time in which
the system reaches equilibrium is equal to 0.5 and 1 ns
in the stable and metastable regions, respectively. The
calculated quantities were averaged over a time interval
from 5 to 10 ns.

Figure 1a shows pressure calculated for the fluid
phase. The last points corresponding to the highest den-
sities on the isotherms determine the maximum over-
cooling of the fluid in the model. The last points corre-
sponding to the lowest density on the isotherms T* =
0.4, 0.55, and 0.7 determine the maximum tension pre-
ceding the boiling of the fluid.

According to Fig. 1a, an increase in density (pres-
sure) is accompanied by an increase in the isothermal
elasticity of the irregular structure. Thus, thermody-
namic stability under infinitely small long-wavelength
density perturbations does not decrease for the fluid
phase to the maximum overcooling point. This state-
ment is consistent with the absence of the spinodal for
an overcooled single-component fluid [5] and is corrob-
orated by the density dependences of the internal

rc*
rc

σ
----

kT
ε

------
 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Isotherms of the (a) fluid and (b) crystal for T* = ( ) 0.1, ( ) 0.2, (*) 0.3, (x) 0.4, (s) 0.55, (n) 0.7, (,) 0.85, (e) 1.0,
(v) 1.15, (q) 1.5, and (u) 2.0. The dashed lines are the fluid–crystal phase transition lines and the dash–dotted line is the spinodal
of the extended fluid.

e a
energy u and specific heat at constant volume cv . Spe-
cific heat at constant volume on the isotherm reaches a
maximum at the boundary of the overcooled-state
region for the fluid phase. According to the thermody-
namic relation

(1)

the pressure isochore changes its curvature from con-
vex to concave at the extreme point of cv . This property

ensures the validity of the condition   0 for

T  0 and the absence of the envelope, i.e., spinodal,
for isochores.

In calculations of the properties of the crystalline
phase, the initial state on the isotherm is always the
state with the highest density. Calculations were per-
formed up to the extensions at which the crystalline
order of particles disappears in the model. When
approaching this point, the thermodynamic stability of
the crystalline phase decreases (Fig. 1b). The depen-
dence p(ρ) is consistent with the existence of such

ρ2 ∂cv

∂ρ
-------- 

 
T

T
∂2 p

∂T2
--------- 

 
ρ
,–=

∂p
∂T
------ 

 
ρ

points on isotherms, at which  = 0, i.e., with the

existence of a spinodal. According to Fig. 1b, the
destruction of the crystal structure at high temperatures
occurs quite far away from the spinodal. As tempera-

ture decreases, the derivative  at the boundary of

the spontaneous-disorder region decreases, and the
destruction of the crystal structure at T* ≤ 0.4 occurs for
tensions close to spinodal tensions. This conclusion is
consistent with general concepts from the thermal acti-
vation theory of nucleation [6]. For low temperatures,
although the work W∗  of the formation of the critical

nucleus decreases as supersaturation increases, the
probability of the formation of the nucleus decreases as

exp  due to the temperature factor (T  0). In

real systems at temperatures close to absolute zero, the
thermal activation mechanism of nucleation changes to
the quantum one [7].

In computer experiments, weak quantum effects can
be taken into account in terms of the semiclassical

∂p
∂ρ
------ 

 
T

∂p
∂ρ
------ 

 
T

W ∗
kT
--------– 

 
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expansion of the partition function [8]. The calculation
of the first quantum correction shows its immaterial
effect on the behavior of the stability of the crystalline
phase for temperatures T* > 0.4 and for densities close
to the boundary of the spontaneous-disorder region.

Data for P, ρ, and T in the fluid and crystalline
phases of the Lennard-Jones system are approximated
by the local equations of state of the form

(2)

The coefficients of Eqs. (2), as well as the maximum
values of the exponents n and m, were determined using
the regression analysis method. For the fluid phase,

 = 12.727,  = –31.7465,  = 14.9614,  =

−18.1082,  = 75.0892,  = –61.2481,  =

19.1732,  = 1.80406,  = –5.71191, and  =
0.64104. The standard deviation of p is equal to 0.0266
over the entire data set. For the crystalline phase with
nearly the same error of description of data that are
obtained for p, ρ, and T in the molecular dynamic
experiment, the regression analysis leads to a set of
equations in which the continuation of isotherms over
the spontaneous-disorder line exhibits a different char-
acter. Owing to this circumstance, the approximation of
the spinodal of the crystalline phase at high tempera-
tures is not unique. One of the resulting sets of the coef-
ficients, which will be used to determine the phase-

equilibrium line, is as follows:  = –69.8834,  =

286.813,  = –412.723,  = 191.151,  =

9.46960,  = –31.8944,  = 47.2784,  =

−17.2507,  = 71.9482,  = –170.891,  =

135.637, and  = –36.0205. The error of the approx-
imation of pressure by the equation with these coeffi-
cients is equal to 0.0146. Figure 1 shows results from
the description of p, ρ, and T for the fluid and crystal by
Eqs. (2).

The single-component two-phase system is in equi-
librium when the temperature, pressure, and chemical
potential of one coexisting phase are equal to the
respective quantities of the other coexisting phase. The
molecular dynamic method does not allow direct calcu-
lations of the chemical potential and free energy. How-
ever, the internal energy is calculated quite simply in
this method. The internal energy is related to the ther-
mal equation of state as

(3)

p* aijρ* j
T*i

.
i 0=

m

∑
j 0=

n

∑=

a01
l a02

l a05
l a12

l

a13
l a14

l a15
l

a21
l a22

l a32
l

a00
cr a01

cr

a02
cr a03

cr a10
cr

a20
cr a21

cr a22
cr

a30
cr a31

cr a32
cr

a33
cr

∂u
∂ρ
------ 

 
T

∂ β p

ρ2
----- 

 

∂p
------------------

 
 
 
 
 

ρ

,=
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where β = . Integration of Eqs. (2) and (3) with

respect to density yields the function u that includes a
certain temperature function u0(T), which is determined
from the results of the molecular dynamic calculation
of the internal energy. Using the function u(ρ, T) and
integrating the Gibbs–Helmholtz equation

(4)

we determine the free energies of the fluid and crystal-
line phases that include a certain constant f0 . This con-
stant is determined from the parameters calculated for
the triple point of the Lennard-Jones system in a special
computer experiment. According to our data, which is
consistent with the results of [9],  = 0.692,  =

0.0012,  = 0.847, and  = 0.962.

Figures 1 and 2 show the melting curve calculated
for the positive- and negative-pressure regions. In
Figs. 1a and 2, the spinodal of the extended fluid is
shown as calculated for T* ≤ 0.7 from equation of
state (2) and for T* > 0.7 from the equation of state for
the Lennard-Jones fluid taken from [10]. As is seen in
Fig. 2a, the melting curve in the negative-pressure
region ends on the spinodal of the extended fluid. As
can be shown, at point A where the metastable continu-
ation of the melting curve intersects the spinodal, the
following relation is valid:

(5)

where ∆s and ∆v  are the jumps of entropy and volume,
respectively, on the melting curve. For the Lennard-
Jones system,  = 0.5286,  = –1.7128,  =

0.7374,  = 0.9423,  = 4.748, and

 = 8.480. Because the slopes of the tangent to

the spinodal and melting curve at point A on the (p, T)
plane are not equal to each other,

(6)

Because  = 0 at the point of the intersection

of the spinodal and melting curve, inequality (6) and

condition  >  are valid if  =

0 and  ≠ 0. In this case, point A on the

1
T
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∂ βf( )
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u,=

Tt* pt*

ρt l,* ρt cr,*
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 
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∆s
∆v
--------
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=
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------ 

 
sp A,

≠ dp
dT
------ 

 
ρ A,

= ,

T A* pA* ρl A,*
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------- 
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------- 

 
m A,

0.≠

∂p
∂v
------- 

 
T

dp
dT
------ 

 
m A,

dp
dT
------ 

 
sp A,

dT
dv
------- 

 
m A,

d2T

dv 2
--------- 

 
m A,



306 BAŒDAKOV, PROTSENKO
0.4
T*

0.8 1.2 1.60

–6

–4

–2

0

2

4

6
p* (a)

E B G M

T

F

p*0

D
L

C

A

0.7
ρ*

0.8 0.9 1.00.6 1.1

0.4

0

0.8

1.2

1.6
(b)

M G B B'

C'

C''

A

T

A'

T '

E

D L

F
N

T*

1

2

3

Fig. 2. (a) (p, T) and (b) (T, ρ) projections of the lines of the phase transitions fluid–crystal (BTA and B'T 'A'), fluid–gas (CT and
C'T), and crystal–gas (T'N); spinodals of the extended fluid (CAD and C''AD) and extended crystal (ML); lines of the attainable over-
cooling of the fluid (EF, 1) and overheating of the crystal (GL, 2, 3). The critical point, triple point, and point of the intersection of the
melting curve and spinodal are indicated as C, T, and A. Data 1 and 2 were obtained in this work and data 3 were taken from [15].
(T, v  = ) plane is the point of a minimum of the fluid

branch of the crystal–fluid phase equilibrium line.
Thus, the point of the termination of crystal–fluid phase
equilibrium is a singular point on the thermodynamic
surface of states of the single-component system.

In Fig. 2a, the dashed line continuing over point A is
the approximation of the melting curve by the Simon
equation

(7)

where  = –5.328,  = 0.693, and c = 1.509. This
equation reproduces the melting curve with high accu-
racy in both the positive- and negative-pressure regions.
In the limit T  0, the limiting pressure  = (0)
on the melting curve in the Simon-equation approxima-
tion is close to the limiting pressure (0) on the
spinodal of the fluid. Although the extrapolation of the
melting curve over the spinodal has no physical mean-
ing, the correlation between  and (0) is impor-
tant for the determination of the thermodynamic simi-
larity of substances in the crystal–fluid and fluid–vapor

1
ρ
---

pm* p0*
T*

T0*
------ 

  c

1– ,=

p0* T0*

p0* pm*

psp l,*

p0* psp l,*
phase transitions [2]. The possibility of the termination
of metastable equilibrium in the fluid–crystal system on
the spinodal of the extended fluid was mentioned in [6]
and discussed in [11].

The spinodal that is constructed for the overheated
Lennard-Jones crystal using the family of local equa-
tions of state is shown by a shaded band in Fig. 2. The
width of this band determines the error of the spinodal
approximation. The error increases with temperature.
The spinodal of the crystalline phase on the (p, T) plane
for low temperatures lies somewhat lower than the
spinodal of the extended fluid phase. The condition

 = 0 is valid for both phases at the point of inter-

section of the boundaries of thermodynamic stability of
the fluid and crystal in the (p, T) coordinates.

Under the assumption that the destruction of meta-
stable states in the model occurs through the nucleation
mechanism (see [12]), the nucleation frequency at the
extreme points of the isotherms of the overcompressed
fluid and extended crystal is estimated by the formula
J = (V )–1, where V is the metastable-phase volume
and  is the mean expectation time for the first viable

∂p
∂ρ
------ 

 
T

τ
τ

DOKLADY PHYSICS      Vol. 50      No. 6      2005



SPINODAL AND THE MELTING CURVE OF A LENNARD-JONES CRYSTAL 307
nucleus. For the conditions of the molecular dynamic
experiment under discussion, V . 8 × 10–20 cm3 and

 . 10 ns (time over which the parameters are aver-
aged). In this case, J . 1027 cm–3 s–1. Figure 2a shows
the boundaries of attainable overcooling of the fluid
and overheating of the crystal in the Lennard-Jones sys-
tem for a given nucleation frequency. The data pre-
sented here for the fluid and crystalline phases agree
well with the results reported in [13–15]. As tempera-
ture decreases, the boundary of the attainable overheat-
ing of the crystal approaches the spinodal.

Thus, the computer experiment described above has
revealed that the metastable continuation of the melting
curve does not reach the T = 0 isotherm in the limit
T  0 but ends on the spinodal of the extended fluid
for nonzero temperature. The point of the intersection
of the melting curve and spinodal is a singular point on
the thermodynamic surface of states of the single-com-
ponent system. In the low-temperature limit, the spin-
odals of the extended fluid and crystal approach each
other and display similar values of pressure and density
at T = 0.
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There is a well-known discrepancy that arises in
connection with describing the transition to turbulence
in viscous shear flows. The linear stability theory often
predicts the stability (exponential damping) for all
eigenmodes of the linearized set of Navier–Stokes equa-
tions at sufficiently small Reynolds numbers for which
actual flows are already turbulent (see, e.g., [1, 2]).

For example, the theory predicts the stability for the
plane Poiseuille flow when Re < 5772 [3, 4] and for the
cylindrical Poiseuille flows at all Reynolds numbers.
The Couette flow between two plates is also stable for
all Reynolds numbers. Experiments were performed in
practically ideal conditions when the effect of various
perturbing causes (including the roughness of the wall)
on the flow was completely suppressed. Nevertheless,
these experiments have shown that the flows are turbu-
lent in the case of Reynolds numbers for which, in
accordance with the linear stability theory, they must be
exponentially stable. A more detailed list of similar sit-
uations with indicated exact Reynolds numbers for
which the transition had occurred was discussed, e.g.,
in [5].

In recent years, certain expectations associated with
the so-called optimal-perturbation theory [6] have
appeared in hydrodynamics. The essence of this theory
is the fact that, at a certain stage of evolution of an ini-
tial-perturbation, growth is possible in systems that are
stable with respect to exponentially growing perturba-
tions. This growth is called transient, insofar as it is
usually replaced in the end by the usual ordinary vis-
cous damping. The initial perturbation (among the infi-
nite number of various possible ones) for which the

amplification factor _ ≡  attains the highest value

is called optimal. Here, E is a certain positive definite
quadratic functional (usually, the total energy) featur-

Emax

E0
----------
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ing the given perturbation and Emax and E0 are its max-
imum value in the course of the evolution and its value
at the initial instant of time, respectively. As has been
shown by numerous calculations performed in recent
years for different flow models, the value of _opt can
attain tens of thousands [7–9]. The expectations men-
tioned above are associated with the fact that the tran-
sient growth of optimal perturbations can result in a
transition even in systems that are stable in the usual
sense.

It is worth noting that the range of problems in
which the concept of transient growth has been
exploited is not restricted to the purely hydrodynamic
flows of incompressible fluids. These concepts have
also been actively discussed (being associated with var-
ious astrophysical applications) in connection with
more complicated situations. We refer here to phenom-
ena in which the gravitation and self-gravitation of a
medium, as well as its compressibility, play an impor-
tant role. As examples, we may point to the regenerative
theory of spiral-structure formations in galaxies by
Goldreich and Lynden-Bell [10], as well as estimates of
the turbulent viscosity in both accretion disks and the
Galaxy gas disk [11, 12].

The formal cause for the transient growth of shear
flows in channels is associated with the fact that the set
of linearized Navier–Stokes equations for three-dimen-

Decomposition of the vector a over almost parallel basis
vectors e1 and e2 . The angle ε ! 1 is the angle between the
vectors e1 and e2; the angle ψ is the angle between a and
g = e1 – e2. C1 and |C2| are the lengths of the projections
along the vectors e1 and e2, respectively.; C1 ≈ –C2 ≈

acos  @ a.
ψ
ε
----

10 2 3

C1 = |C2| = 
ψ

ε g a e1

ε

e2

C1C2

ε
ε

acosψ
ε

--------------- @ a
 © 2005 Pleiades Publishing, Inc.
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sional perturbations1 is described by the so-called non-
normal operator [1, 6]. For example, in the most thor-
oughly studied case of three-dimensional perturbations
of the plane oblique-wave type, in plane-parallel flows
of an incompressible homogeneous fluid, the combina-
tion of Orr–Sommerfeld and Squire operators [1] is
taken for this operator. The eigenfunctions of such non-
normal operators are not mutually orthogonal. There-
fore, even in the case when all eigenfunctions corre-
spond to the damping, nevertheless, temporal growth is
possible. This idea is routinely used in the literature in
explanation of the transient-growth phenomenon. How-
ever, in our opinion, this explanation is true but not evi-
dent, which hampers understanding its essence. The
present study is aimed to fill in this gap.

Considering a simple dynamical system (with only
two degrees of freedom) whose state is described by the
usual two-dimensional vector lying in a plane, we now
demonstrate the essence of transient growth as well as
a method of separating the optimal perturbation.

Thus, let a dynamical system be described by the

equation  = F and have two eigenvectors e1 and e2
dF
dt
------- L̂

1 For plane-parallel flows, with the velocity profile Ux(y), perturba-
tions are called three-dimensional provided that they depend on
all three coordinates. In particular, perturbations can be oblique
waves of the form ~f(y, t)exp[i(kxx + kzz)], where kz ≠ 0. The
dynamics of 3D perturbations considerably differs from that of
2D perturbations (independent of z and conserving the vorticity
of a liquid particle in the nonviscous case) [1]. Generally speak-
ing, the transient growth of perturbations is possible for both the
2D and 3D case. However, for 2D perturbations, there exists only
one cause of transient growth. This is the so-called Orr mecha-
nism [13] (see also [8]). For example, in the case of an initial per-
turbation in the form of a plane wave, in a flow with a constant
shear, the growth is associated with the fact that, at certain rela-
tions between the shear signs for an unperturbed velocity α =

 and the signs of the x and y components of the initial wave

vector k = (kx, ky, 0) (namely, the quantities kx , ky , and α must be
of the same sign), it turns out that in a certain time, the compo-
nent ky(t)(≡ky – αtkx) disappears, and the perturbation attains its
maximum value at this instant of time. Then, even in the absence
of viscosity, the power-like damping begins. The viscosity makes
this damping more rapid (exponential). (It is worth noting that in
studies devoted to the transient growth of perturbations in differen-
tial rotating gravitating disk-shaped systems [10–12], where the
perturbations are two-dimensional by definition, this is the Orr
2D mechanism that is discussed in connection with the case of a
circular flow.) For 3D perturbations, in addition to the Orr mecha-
nism [13], there exists a more interesting and important mecha-
nism of transient growth. This is the lift-up Landahl effect [14].
The essence of this effect is also very simple, and it becomes par-
ticularly obvious for initial perturbations that depend only on y and
z (kx = 0). In this case, the perturbation corresponds to the rotation

of the entire liquid (with its shear of the streamwise velocity )

about the x axis. This rotation results in the algebraic (linear)
growth of the streamwise velocity and in the formation of domains
(over z) with higher and lower values of the streamwise velocity
(streaks). In the particular case of a flow with a constant shear Ux =
αy, this algebraic growth was calculated for the first time in [15].

dUx

dy
----------

dUx

dy
----------
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corresponding to the eigenvalues λ1 and λ2: e1 = λ1e1,

e2 = λ2e2 . Without a loss of generality, we can con-
sider their length to be equal to unity, |e1| = |e2| = 1.

We show that when the vectors e1 and e2 are nonor-
thogonal (in the given example, it is implied in the usual
sense, i.e., as (e1 × e2) ≠ 0), transient growth of the initial
perturbation is possible even in the case when both
eigenvalues correspond to the damping: λ1 ≡ –γ1, λ2 ≡
−γ2, and γ1, 2 > 0. For greater clarity, we analyze the case
in which the damping decrements are significantly dif-
ferent: γ1 ! γ2 , and the vectors e1 and e2 , in themselves,
are almost parallel, i.e., the angle ε is small, in other
words, ε ! 1.

Let the initial vector a (t = 0) be parallel to none of
the basis vectors. (The case in which this vector is
almost parallel to one of them is not of interest because,
as is immediately evident, under these conditions, tran-
sient growth is impossible.) We now decompose the ini-
tial vector over this pair: a (t = 0) = C1e1 + C2e2. It is
easy to understand (see also the figure) that insofar as
the vectors Â1 and Â2 are almost parallel, the coefficients
of this decomposition must have opposite signs and
must considerably exceed the length of the initial per-
turbation a = |a(t = 0)|:

(1)

Here, ψ is the angle between the small vector g ≡ Â1 –
Â2 , which is oriented almost perpendicularly to both
basis vectors Â1 and Â2  (see figure) and the vector ‡(0).

At the instant of time t, we have

a(t) = C1e1exp(–γ1t) + C2e2exp(–γ2t). 

In the time t ~ t1 after the evolution has begun, when

 ! t1 ! , the projection of the vector ‡(t) of the

perturbation onto the rapidly attenuating eigenvector e2
disappears, and the perturbation vector coincides with
its initial component along the vector e1:

‡(t) ≈ C1e1exp(–γ1t) ≈ C1e1. 

In other words, it rotates along the vector Â1 and its
magnitude grows by the factor

. (2)

The significant growth of the initial perturbation is
clearly seen. However, it is quite clear that this growth
is only temporal (transient), since in the time t ~ t2 @

, the perturbation damps. From expression (2), it fol-

lows that the gain K in the perturbation amplitude

L̂

L̂

C1 C2 a
ψ
ε
---- @ a.cos≈–≈

1
γ2
----- 1

γ1
-----

K
C1

a
------

ψ
ε
---- @ 1cos= =

1
γ1
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depends on the orientation ψ of the initial perturbation.
In the case of

ψ = ψopt = 0, (3)

this factor attains the maximum equal to Kopt =  so

that

(4)

Thus, we have shown that the optimal initial vector
‡opt is oriented almost along the normal to the basis vec-
tors Â1 and Â2 . The figure obviously illustrates the geo-
metric sense of this amplification.

It follows from the example under consideration that
transient growth is caused exclusively by the nonor-
thogonality of the basis vectors. This results in the fact
that the decomposition coefficients, i.e., the lengths of
the components along the basis vectors, exceed the
length of the initial vector. After the extinction of the
rapidly attenuating component, the resulting perturba-
tion coincides with its slowly attenuating component,
i.e., it is, in fact, noticeably increased compared to its
initial value. It is also evident that this is impossible in
a system in which eigenvectors are orthogonal, since
the length of each of the projections of the initial vector
is smaller than its length. Only monotonic damping can
occur in this system. 

In conclusion, we can show in more detail (in addi-
tion to the figure) why, in the case of the almost parallel
unit basis vectors Â1 and Â2 , the lengths of the compo-
nents of an arbitrary vector ‡ along each of them must
significantly exceed the length of this vector (in the
case, of course, when the direction of this vector is not
nearly coincident with one of these basis directions).

The decomposition of the initial vector ‡ = C1Â1 +
C2Â2 can also be represented as a decomposition over
the almost orthogonal basis vectors g(=e1 – e2) and e2
(or e1). Indeed, we have

a = C1e1 + C2e2 = C1g + (C1 + C2)e2. 

The almost orthogonality of the vector g and the
vectors e1 and e2 is evident from the figure and also fol-
lows formally from the simple estimate of the angle β
between g and e1:

i.e.,

β =  – .

The length of the vector g is ε (see also the figure).

Indeed, g =  = (2 – 2cosε)1/2 ≈ ε. From the

1
ε
---

_opt Kopt
2 1

ε2
----.= =

βcos  = 
g e1⋅

g
------------ = 

1 e1 e2⋅( )–
ε

--------------------------- = 
1 εcos–

ε
-------------------- ε

2
--- ! 1,≈

π
2
--- ε

2
---

e1 e2–( )2
almost orthogonality of the vectors g and e2 (or g
and e1), simple expressions follow for the decomposi-
tion coefficients of the vector a, i.e., we have for C1 and
C1 + C2

(5)

From expressions (5), we arrive at C1 ≈ –C2 ≈ acos  +

O(a) @ a. Thus, we have formally confirmed the state-
ment made above (which is evident from the figure) that
the components of the vector a along the directions
almost parallel to the basis vectors considerably exceed
its length a.
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A free dense body in a vibrating cavity with an
incompressible fluid executes vibrations under the
action of an oscillating force. The hydrodynamic inter-
action of the vibrating body with the fluid creates a lift
force, which depends strongly on the character of the
vibration.

In the presence of the translational vibrations of the
cavity, motion is induced in the fluid by body vibrations
(in the absence of the body or when the densities of the
body and fluid are equal to each other, the fluid is at rest
in the cavity reference frame). High-frequency vibra-
tions have traditionally been considered. In this case,
the viscous boundary layer near the solid surface is neg-
ligibly narrow and viscosity can be disregarded when
describing the vibrational motion of the fluid. The mean
force appears due to the breaking of the symmetry of
the pulsation velocity field and pressure field on the
body surface. This scenario is realized when the body
vibrates at a certain distance from the wall of the cavity
(it is attracted to the wall) or near another body [1–3].
This interaction decreases rapidly when the distance
increases.

Another mechanism is manifested in the case of
combined, translational–rotational vibrations of the
cavity, such as pendulum vibrations. Here, the rota-
tional vibration component induces vibrations of the
fluid with respect to the cavity that are not associated
with the presence of the body, and the intense transla-
tional component generates synchronous vibrations of
the body. In this case, the resulting lift force is mani-
fested over the entire cavity volume and is so strong
that it can ensure the flotation of the heavy body in the
gravitational field [4, 5].
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The above problems refer to the high frequency lim-
iting case. When the viscosity of the fluid is substantial,
i.e., when the size of the body or the distance between
bodies is comparable with the thickness of Stokes lay-
ers, the vibrational interaction between bodies becomes
complicated and the direction of mean forces is often
opposite, which is demonstrated in both physical exper-
iments [5] and numerical calculations [6].

In this work, we carry out an experimental study on
the lift force acting on the dense spherical body in the
viscid incompressible fluid near the wall of the cavity
that executes longitudinal vibrations.

Measurement of the vibrational lift force acting on a
body is based on comparisons with the gravitational
force: quasi-stationary suspended states are studied
when the lift force is in balance with the weight of the
body, more precisely, with its component perpendicular
to the boundary. A procedure for reducing the effective
action of the gravitational force is used [5]; i.e., the
interaction of the body with the lateral wall of the cav-
ity, which is inclined at a small angle α to the vertical
line, is studied. The body vibrates along this wall, being
continuously supported in the plane to which the wall is
perpendicular. In the equilibrium suspended state,
when the body does not touch the lateral wall, the vibra-
tional force perpendicular to this wall is in balance with
the tangent component of the gravitational force Pn .
This component can vary over a wide range due to vari-
ation in the angle α. Using small angles, one can mea-
sure even weak vibrational forces under normal gravi-
tational conditions.

A steel ball with a diameter of d = 5–9 mm (density
ρS = 7.8 g/cm3) is placed in a transparent rectangular
Plexiglas 20 × 40 × 140-mm cell with a water–glycerol
solution (density is ρL ~ 1.2 g/cm3 and viscosity varies
in the range ν = 0.04–5.8 S). The cell executes back-
and-forth vibrations with a frequency of f = 0–20 Hz
and an amplitude of b = 5–25 mm. The frequency and
amplitude are measured with an accuracy of 0.01 Hz
and of no worse than 0.02 mm, respectively (the insta-
bility of frequency during an individual experiment
does not exceed 0.2 Hz).
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Body position (d = 9.6 mm, ν = 0.5 S, α = 0.026 rad) in the quasi-stationary suspended state near the (left photo) top and
(right photo) bottom of the layer for the same vibration parameters b = 17.2 mm and f = 11.2 Hz.
The vibration frequency increases (decreases)
smoothly at a fixed angle α (in the range 0.05–0.3 rad)
and a fixed amplitude b. At the critical frequency, the
body is separated from the lateral wall (in the direction
of the lift force), and a gap l appears between the body
and wall. When the frequency decreases, the body
returns to the initial state. The position and dynamics of
the body are recorded by a video camera.

When vibrations are not intense, the body executes
vibrations along the lateral wall, being in continuous
contact with this wall and the cavity bottom. At the crit-
ical intensity of vibrations, the body is separated from
the lateral wall and hovers at a certain distance l (see
Fig. 1), executing vibrations and being supported only
on the cavity bottom. This quasi-stationary state is sta-
ble. When the intensity of vibrations increases, the gap
between the body and wall increases to the limiting
value, which depends on the frequency of vibrations
and viscosity of the fluid. The gap increases with the
viscosity.

At high dimensionless frequencies, the body can
also be in the quasi-equilibrium state near the top of the
cavity but at larger distances (see Fig. 1). This behavior
indicates that the vibrational repulsion force acting at a
short distance is changed to the attraction force when
the distance between the body and cavity increases.

In low-viscosity fluids, the separation of the body
from the bottom occurs smoothly, the lifting height is
low, and there is no hysteresis in the transitions. The
critical frequency increases when the amplitude of
vibrations decreases or the angle α increases.

In viscous fluids, the separation of the body from the
surface is stepwise, and the body immediately rises at a
finite distance l*. The gap l increases with the fre-
quency. When the frequency decreases, l decreases
monotonically and the body continuously approaches
the wall; however, it completes a stepwise return at the
last instant (hysteresis is observed in the transitions).

An important parameter in vibrational hydrome-

chanics is the dimensionless frequency ω =  (Ω ≡

2πf is the angular frequency of the vibrations), which
characterizes the ratio of the body size d to the Stokes

boundary layer thickness δ = . For high frequen-

cies, the dynamics of the body is governed by the vibra-

tional parameter W =  [4], which has the form

W =  [5] in the case of the reduced action of the

gravitational force.

The force of the vibrational repulsion of the body
from the cavity wall depends on ω. In the (ω, W) plane,
the boundaries of the rise (vibration suspension) and
fall of the body are shown by the closed and open

Ωd2

ν
----------

2ν
Ω
------

bΩ( )2

gd
--------------

bΩ( )2

dg αsin
------------------
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points, respectively (see Fig. 2). The results that are
obtained with fluids of various viscosities, with bodies
of various sizes, and with various coefficients of the
reduction of the gravitational force agree satisfactorily
with each other (curves I and II). For frequencies ω <
100, the separation of the body from the wall when the
vibration parameter increases, as well as the fall of the
body when W decreases, occurs with hysteresis. For
ω > 100, the boundaries I and II coincide with each
other (open points are retained in the plot) and hystere-
sis is absent.

For low frequencies, the threshold value of the
parameter W increases sharply when the frequency
decreases. For ω < 10, the frequency dependence has
the form W* ~ ω–2.

Analysis shows that the repulsion force is mani-
fested only at short distances comparable with the
Stokes layer thickness. This conclusion is valid for the
entire range of dimensionless frequencies under inves-
tigation.

For moderate frequencies, the vibrational lift force

changes sign when the dimensionless distance 

between the body and wall increases (see Fig. 3). The
parameter W–1 characterizes the vibrational lift force
(with a dimension unit of ρLb2Ω2d2) disregarding the

l
δ
--

10 100 1000
ω

0

200

400
W

I

II

Fig. 2. Boundary of (I) the rise of the body and (II) the
return to the initial state in the (ω, W) plane (α = 0.157 rad)
for d = 9.2 mm and ν = ( ) 5.6, ( ) 4.6, ( ) 1.6, ( ) 1.1,
( ) 0.73, ( ) 0.46, ( ) 0.18, and ( ) 0.063 St and for d =
6.0 mm and ν = ( ) 5.8 and ( ) 1.5 S. For ω > 100, the lines
coincide with each other (closed points are omitted).
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coefficient . Positive and negative W–1 val-

ues correspond to the repulsion force (rise of the body
over the bottom of the vibrating cavity) and attraction
to the top, respectively (see Fig. 1). The force vanishes

at  ≈ 1.8, which corresponds both to the maximum

distance at which the body can rise over the bottom of
the cavity and to the minimum distance at which the
body can be attracted to the top. The separation of the
curves is associated with different values of the dimen-
sionless frequency ω.

The extreme right points in Fig. 3 correspond to the
minimum in the interaction curves. With a further
increase in the distance, the attraction force decreases
(in these sections of the curves, the equilibrium of the
body is instable), which agrees with the theory of the
interaction of a vibrating body under the conditions of
potential flow for ω @ 1 [1–3].

For low frequencies ω < 10, when W* ~ ω–2, the
vibrational lift force is characterized by the product
W−1ω–2, and the role of the Stokes boundary layer con-

tinues to be decisive. In the ( , W–1ω–2) plane (see

Fig. 4), all points corresponding to the suspension of
the body over the bottom of the cavity agree with each

ρS ρL–( )π
6

-------------------------

l
δ
--

l
δ
--

20 4
l

0

0.008

0.016
W–1

Fig. 3. Vibrational lift force W–1 vs. the dimensionless dis-

tance  for moderate dimensionless frequencies (ω = 25–

160, b = 17.9 mm, and ν = 0.20 S) for α = ( ) 0.0051,
( ) 0.0108, and ( ) 0.03 rad.

l
δ
--

δ
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other. For  > 0.2, the repulsion force decreases expo-

nentially when the distance increases, W–1ω–2 ~

exp . The attraction force is not manifested for

low frequencies.
The vibrational repulsion force, which can raise a

heavy spherical particle in the static gravitational field,
is generated by the viscous interaction of the body with
the walls of the cavity. This force is manifested when
the gap width is comparable to the Stokes layer thick-
ness, and it decreases monotonically when the distance
increases.

For low frequencies, the results are qualitatively
consistent with those obtained in [7], where a repulsion
force also acts on a particle moving uniformly parallel
to a planar surface. In the case analyzed in [7], as the
distance increases, the force decreases rapidly beyond
the radius of the viscous interaction between the parti-
cle and wall (in our case, the Stokes layer thickness
serves as this radius). Moreover, this force is propor-
tional to the velocity squared of the body. The latter

l
δ
--

3l
δ
-----– 

 

1.40 2.8
10–7
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10–3
(Wω2)–1

5 × 10–4 exp

1
2
3
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5

Fig. 4. Vibrational interaction curve in the ( , W–1ω–2)

plane for low frequencies (ω < 10, (1–3) b = 24.7 mm, and
α = (1) 0.005, (2) 0.204, and (3) 0.307 rad, (4) b = 19.2 mm
and α = 0.234 rad, and (5) b = 11.8 mm and α = 0.078 rad.
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l
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dependence is consistent with the controlling parameter
W–1ω–2 that is found in the experiment and character-
izes the vibrational lift force in the low-frequency
region, where the role of viscous forces is decisive and
the velocity of the vibrational motion of the body is
proportional to bΩω.

Thus, the vibrational repulsion of a solid spherical
body that vibrates in an incompressible viscous fluid
from the wall of the cavity has been experimentally
detected and analyzed in this work. It has been shown
that the repulsion force is generated by the viscous
interaction of the body with the wall and that it is man-
ifested over the entire range of dimensionless frequen-
cies at distances comparable with the Stokes-layer
thickness. For high frequencies beyond the viscous
interaction region, the repulsion force is changed to the

attraction force at distances  > 2.

For low frequencies ω < 10, the vibrational repul-
sion force is characterized by the dimensionless param-
eter W–1ω–2 and it depends exponentially on the dis-

tance, W–1ω–2 ~ exp . The boundary of the vibra-

tional suspension of a heavy sphere in a static force
field is determined as a function of the dimensionless
frequency.
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In the case of high-speed collisions, ceramic materi-
als based on refractory compounds are brittle and unre-
liable. A promising direction for improving the physi-
cal–mechanical characteristics of ceramics operating at
high pressures and temperatures is the introduction of
an efficient metal matrix into their content. A reliable
tool for designing materials with a given directivity of
properties is a computational–experimental method
based on the mathematical simulation of shock wave
processes and experiments. A mathematical model
describing the deformation and fracture of a metal
ceramic based on titanium diboride and bore carbide
(TiB2 + B4C) with a metal matrix upon dynamic load-
ing is proposed in this work.

The metal ceramic based on TiB2 + B4C with a metal
matrix was obtained using the method of self-propagat-
ing high-temperature synthesis. Figure 1 shows the
microstructure of this metal ceramic. Against the back-
ground of the bright metallic component, large dark
B4C fragments and small TiB2 particles (whose sizes
are smaller by an order of magnitude) are seen. Table 1
presents certain physical–mechanical characteristics of
the metal ceramic based on TiB2 + B4C for various frac-
tions of the metal matrix. In Table 1, Cl and Ct are the
velocities of longitudinal and transverse waves, respec-
tively; c0 is the volume speed of sound; K is the volume-
compression modulus; µ0 is the shear modulus; and ν is
Poisson’s ratio.

The fundamental advantage of this metal ceramic
over the single-phase high-strength ceramics that con-
stitute its components is its increased crack fracture
toughness. Moreover, this metal ceramic is very hard,
and it possesses high refractoriness, comparatively low
density, and high wear resistance. The introduction of
the metal matrix makes the material more plastic and
viscous and prevents the growth of cracks upon com-
pression and particularly upon tension, when fracture
occurs primarily along grain boundaries.

Tomsk State University, Tomsk, 634050 Russia
e-mail: svetl@niipmm.tsu.ru
1028-3358/05/5006- $26.00 0315
The metal ceramic based on TiB2 + B4C is charac-
terized by high impact-protective properties. Figure 2
shows the x-ray patterns of the piercing of (left) an alu-
minum plate by a steel projectile 5.8 mm in diameter
and 3.5 g in mass with an ogival head at an impact
velocity of 763 m/s and of (right) a metal ceramic plate
based on TiB2 + B4C by the same projectile with a
velocity of 766 m/s. The fracture of the aluminum plate
upon penetration of the projectile occurs as a puncture,
and the projectile remains undeformed. The residual
velocity is equal to 724 m/s. When piercing the metal
ceramic plate, a semispherical dome is formed from the
fractured metal ceramic, and the plate holds integrity
beyond the contact zone. The projectile wears intensely
upon interaction, and its residual assumes a mushroom-
like shape. The residual velocity is equal to 552 m/s.
Thus, the metal ceramic plate provides higher resis-
tance against penetration of the projectile than the alu-
minum plate.

100 µm

Fig. 1. Microstructure of the metal ceramic based on
TiB2 + B4C.
© 2005 Pleiades Publishing, Inc.
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Fig. 2. Piercing of the (left panel) aluminum and (right panel) metal ceramic plates by a steel projectile.
When the shock wave propagates in the metal
ceramic, a pronounced elastic sighting is not observed,
which indirectly testifies to the presence of a viscous
component [1]. The fracture of the metal ceramic in the
shock wave occurs through the shear mechanism in
brittle components.

To calculate the stress–strain state and fracture of
the metal ceramic based on TiB2 + B4C upon dynamic
loading, we propose a generalization of the model of
porous high-strength ceramic [2] to this material. The
necessary characteristics of this model as applied to the
TiB2 and B4C ceramics were obtained using experi-
mental data [3].

The metal ceramic based on TiB2 + B4C is treated as
a homogeneous three-phase mixture with an initial den-
sity of 

where ρ0i and νi are, respectively, the initial densities
and volume concentrations (ν1 + ν2 + ν = 1) of (i = 1)
TiB2, (i = 2) B4C, and (i = 3) the metallic component.
In the model of the porous elastoplastic medium, the
metal ceramic is considered as a two-component mate-
rial consisting of the solid phase, matrix with the initial
density ρ0 , and inclusions, including pores with a char-
acteristic size of a0 . The specific volume v  of the
porous medium is represented as the sum v  = vm + v p +
v c , where vm, v p, and v c are the specific volumes of the
matrix material, pores, and cracks, respectively. The

ρ0 ν1ρ01 ν2ρ02 ν3ρ03,+ +=

Table 1

ρ0,
g/cm3

Cl ,
km/s

Ct ,
km/s

c0,
km/s

K,
GPa

µ0,
GPa

ν

3.18 10.5 5.81 8.13 204 104 0.28

3.5 10.5 6.89 6.9 167 166 0.12

3.8 11.1 7.82 6.5 160 160 –
porosity of the material is characterized by the relative

volume of cavities ξ = ξp + ξc, where ξp =  and ξc =

 are the relative volumes of pores and cracks, respec-

tively, or by the parameter α =  = .

The system of equations describing the behavior of
the porous elastoplastic medium has the form

Here, t is time; V is the integration volume; S is the inte-
gration surface; n is the outward normal unit vector; ρ
is the density; s = –pg + s is the stress tensor; s is its
deviator; p is the pressure; g is the metric tensor; u is the

velocity; E = ε + u ·  is the specific total energy; ε is

the specific internal energy; e = d – (d : g)  is the devi-

ator of the strain rate tensor; d = (∇ u + ∇ uT) is the

strain rate tensor; sJ =  + s · w – w · s is the Jaumann–
Noll derivative of the stress-tensor deviator; w =

 is the vortex tensor;

v p
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is the effective shear modulus; σT =  + kp is the yield

strength; and ρ0, c0, µ0, Y0, and k are the constants of the
matrix material. 

The parameter λ is excluded using the yield condi-
tion. The equation of state for the porous material is
written in the form

where η = 1 –  and

is the Grüneisen parameter of the matrix material,
where γ0i are the coefficients of the components of the

metal ceramic and mi =  are the mass concentra-

tions (m1 + m2 + m3 = 1).
If the dependence of the shock wave velocity D on

the mass velocity u in the case of a one-dimensional
deformed state of matrix material, D = c0 + S0u, the
coefficients c0 and S0 of the linear dependence are
determined in terms of the shock adiabatic relations for
the components of the metal ceramic, Di = c0i + S0iui .
This occurs as follows: In terms of the specific volume
vm and pressure pm (subscript “m” refers to the param-
eters of the matrix material), the shock adiabatic rela-
tion of the mixture has the form

From the following relations on the shock wave for the
mixture:

where vm0 = , the shock wave velocity is found as a

function of the mass velocity. From this dependence,
the coefficients c0 and S0 are then determined. Table 2
presents the parameters of the equation of state for the
TiB2 and B4C ceramics and for the metal ceramic based
on TiB2 + B4C.

The metal ceramic is broken due primarily to the
growth of microcracks. The maximum elastic half-
opening of a coin-like crack under the tensile stress that
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is perpendicular to the crack plane is determined from
the relation [4]

where ν is Poisson’s ratio, R is the crack radius, and
pm = αp is the pressure in the matrix material. When the
crack opens, its faces form an ellipsoid of revolution
with the semiaxes δ, R, and R. The crack volume is
determined by the expression

Therefore,

where N0 is the number of cracks per unit volume.
Assuming that the volume of pores remains equal to ξ0
up to the time at which the material damaged with
cracks undergoes fragmentation, we obtain

In this case, the pressure in the material is determined
as

Therefore, discontinuities grow more freely as the
crack radius increases.

The growth of cracks is determined by the equation

 = F1 + F2. Here,

δ 2 1 ν–( )
πµ0

--------------------R pm,–=

VT
8 1 ν–( )

3µ0
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ξc
8 1 ν–( )
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

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=

Table 2

Material
ρ0,

g/cm3
c0,

cm/µs
S0 γ0

TiB2 4.51 0.9 0.75 1.5

B4C 2.52 0.93 1.44 1.5

TiB2 + B4C + metal 3.494 0.71 1.32 1.5
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where 

and , η1, η2, and β are the constants of the mate-
rial. The equality R = R∗  is a criterion for the complete
fragmentation of the material. Under this condition, the
material assumes the properties of a granulated
medium, which carries compressing and shear stresses
but does not hold tensile forces.

The shock wave compaction of the fractured metal
ceramic is calculated using the equation

where coefficients Y0 and k of the Mohr–Coulomb con-
dition are determined by comparing the theoretical and
experimental adiabatic relations. The fractured material
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Table 3

Parameter TiB2 B4C TiB2 + B4C + 
metal

ρ0, g/cm3 4.51 2.52 3.494

µ0, GPa 210.0 182.0 166.0

N 0.28 0.17 0.12

R0, µm 2.5 2.5 2.5

R*, µm 11.6 11.6 11.6

N0, 107, cm–3 64.0 64.0 64.0

η1, GPa µs 0.75 0.7 1.6

η2, GPa µs 0.5 0.5 0.7

p0, GPa 0.5 1.8 1.22

S0, GPa 5.0 6.0 5.0

α0 1.0006 1.0006 1.0006
upon tension is described as a medium free of stresses.
In this case, the relative concentration of cavities is
determined from the equation of state for the material
with zero pressure in particles. Table 3 presents the con-
stant for the model of the fracture of TiB2, B4C, and of
the metal ceramic based on TiB2 + B4C. The yield
strength of the metal ceramic is taken as the maximum
of the yield strengths of its components.

Using the above model, we solve the problem of the
penetration of a projectile made of the metal ceramic
based on TiB2 + B4C into a semi-infinite aluminum tar-
get. The parallelepiped-shaped projectile with a height
of l0 = 30 mm and a square base with a side of d0 =
9.3 mm normally falls with a velocity of 870 m/s onto
the semi-infinite aluminum plate. Figure 3 shows the
calculation results for the sections of isometric projec-
tions of the colliding bodies for various times. The pho-
tograph of a crater that was formed upon impact in an
experiment specially carried out with the same initial
conditions is also shown. To calculate the behavior of
the fractured material, the algorithm of the rearrange-
ment of the calculation grid was applied [5]. Particles of
the fractured material were simulated by the site ele-
ments of an elementary tetrahedron that had mass and
velocity and obeyed the laws of conservation of mass
and angular momentum. Particles are not presented in
the figure, as graphical visualization is complicated.

As a result of the impact by the metal ceramic pro-
jectile, a cone-like crater with a depth of 40 mm is
formed in the aluminum plate. The height of the unde-
stroyed projectile fragment was equal to 10 mm. Small
pressed particles of the metal ceramic lie under this
fragment at the crater bottom.

The calculation of the penetration of the projectile
into the aluminum plate reveals the following pro-
cesses. At the beginning of the interaction, shock
waves, whose maximum amplitude reaches 8 GPa to
4 µs, propagate in the colliding bodies from the contact
boundary. The propagation of compression waves in
the projectile is accompanied by the intense growth of
cracks. In this case, the region where cracks reach the
critical value takes approximately 3/4 of the projectile
height to the sixth µs. In this time range, owing to
unload propagating from the free surfaces of the projec-
tile and target, the tensile stress region is formed in the
projectile near the contact surface. In this region, the
projectile decays into two fragments. Beginning with
the 24th µs, both these fragments and particles of the
fractured projectile material are involved in the interac-
tion. When penetrating, the part of the fractured mate-
rial is displaced in a radial direction and acts on the tar-
get material, which leads to the formation of a conic
crater. At the 280th µs, the projectile velocity becomes
equal to zero, and the interaction process ends. The dif-
ferences between the calculation and experiment in
terms of the residual length of projectile, crater depth,
DOKLADY PHYSICS      Vol. 50      No. 6      2005
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Fig. 3. Chronogram of the penetration of the metal ceramic projectile into the aluminum target and crater photograph.
and input crater diameter are equal to 8, 3, and 30%,
respectively.
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1. Processes of salt precipitation that occur when
fluids flow through a permeable soil are of great interest
for oil and gas extraction problems, soil science, geo-
thermal reservoir engineering, ecology, etc. [1–4]. The
precipitate occupies a certain part of the porous space,
hampers mass transfer, and significantly changes
porosity and permeability. Observations show that this
circumstance sometimes causes the formation of
impermeable layers, where salt in the solid form com-
pletely occupies the porous space. From the practical
point of view, the main goal is to define the critical con-
ditions under which certain properties of the porous
medium are qualitatively changed.

A mathematical model of salt precipitation due to
the evaporation of ground water was presented in [5, 6].
It was found that the mass of precipitate depends on
both the front velocity and the rate of advective salt
transport towards the front. Numerical experiments
have shown that the mass of the precipitate increases
sharply in a certain region of parameters, but the critical
parameters that correspond to porous space clogging
have not been determined.

The purpose of this work is to explore the processes
of salt precipitation in the region of critical parameters
and porous space clogging due to the evaporation of
ground water, which contains salt in the dissolved form.
Analysis of the one-dimensional flow shows that the
solution of the problem is nonunique. Transition from
the salt accumulation regime to the salt precipitation
regime is accompanied by the formation of a second
solution, which has no physical meaning. The first solu-
tion satisfies the criterion of the transition to the unique
solution for the salt accumulation problem. If the mass
of precipitate increases due to variation in parameters,
these two solutions approach each other. When the
parameters reach certain critical values, two branches
of the solutions converge and coincide with each other.
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In the region above these critical values, the solution of
the problem does not exist at all. From the physical
point of view, the coincidence of the branches corre-
sponds to the porous space that is being clogged with
salt.

2. Let us consider soil that was initially saturated
with saline water. If air humidity near the ground sur-
face is less than the saturation value, ground water
evaporates and a region that is saturated with air-vapor
mixture is formed. As a result, the salt concentration
increases ahead of the evaporation front. For the sake of
simplicity, we assume that the velocity of water and air
humidity are known parameters [5].

In the region behind the front, the vapor diffusion
equation and the Clapeyron equation of state have the
form

(1)

Ahead of the front, the salt concentration is determined
by the diffusion equation

(2)

If the filtration velocity is low, the heat conduction
equation

(3)

is valid in both regions. Here, v  is the velocity, m is the
porosity, ν is the humidity, P is the pressure, D is the
diffusion coefficient, R is the gas constant, ρ is the den-
sity, c is the salt concentration, T is the temperature, and
a is the thermal diffusivity. The subscripts a, v , and c
refer to the properties of air, vapor, and salt, respec-
tively; and the subscripts 1 and 2 refer to the regions
saturated with saline water and air–vapor mixture,
respectively.

We assume that all phases are in local thermody-
namic equilibrium and the evaporation pressure is a

∂ν
∂t
------ divDv gradν– 0,=

Pv ρv Rv T , P ρaRaT , ν
RaPv

Rv Pa

------------= = = .

m
∂c
∂t
----- v gradc divDcgradc–⋅+ 0.=

∂T
∂t
------ a1 2, ∆T=
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function of the evaporation temperature and salt con-
centration

(4)

where the function F is defined as [7]

Here, α is the coefficient that changes evaporation tem-
perature due to salt concentration and c∗  = cs(T∗ ),
where cs(T) is the known salt solubility function. The
subscripts plus (+) and minus (–) refer to the parame-
ters ahead of the front and behind the font, respectively,
and asterisk corresponds to the values at the front.

The laws of conservation of the masses of H2O and
salt have the form

(5)

(6)

It was shown in [8] that energy absorption at the front
due to evaporation is negligible compared to the advec-
tive heat transfer. As a result, the energy balance at the
front takes the form

(λgradT)n1 = (λgradT)n2. (7)

Here, m0 is the initial porosity, mc is the fracture of
porous space saturated with precipitate, V is the veloc-
ity of the evaporation front, λ is the heat conductivity,
and the subscript n denotes the normal component.

The initial and boundary conditions have the form

(8)

3. Let us consider the motion of the front from the
flat ground surface z = 0 in the positive z direction under
constant initial and boundary conditions for a given

flow rate v = , where U = const. The problem

admits the similarity solution

Solutions in each region are expressed in terms of error
functions. These solutions are substituted into boundary
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conditions (5)–(8), which, together with relation (4),
lead to the system of transcendental equations. The sys-
tem was solved in [5] by using the Newton method. The
roots of the system were easily computed with a given
accuracy for the parameters that differ strongly from
certain critical values. When the parameters approach
their critical values, the accuracy decreases and eventu-
ally the method ceases to work altogether.

Analysis shows that the system can be transformed
to a single equation for the velocity of an unknown
front. We utilize this circumstance to graphically trace
the evolution of the transcendental curve in order to
understand what happens when the parameters are
close to their critical values.

The transcendental equation for the unknown
parameter γ has the form

(9)

where unknown values ν∗ , T∗ , and mc depend on γ and
may be written as
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Transcendental curves 1 and 2 in Fig. 1 correspond
to the regimes of salt accumulation ahead of the front
and salt precipitation, respectively. As is seen, the first
curve is monotonic and continuous for 0 < γ < ∞, but it
has a discontinuity at γ = 0. The unique point of inter-
section is the root of the system and, if c0  0, this
solution is transformed to the solution of the problem of
the evaporation of pure water. When the initial salt con-
centration increases, there occurs a transition from the
salt accumulation regime to the precipitation regime.
Figure 1 also illustrates the appearance of a new sec-
ond-order discontinuity at γ = 0, as well as the appear-
ance of the second root in the neighborhood of the ori-
gin. The behavior of the transcendental curve is the
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Fig. 1. Transcendental functions for the regimes of salt
accumulation and salt precipitation. The parameters are
T0 = 283.15 K, Ta = 310 K, U = 1.119, νa = 0, and c0 =
(1) 0.0635 and (2) 0.1.
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Fig. 2. Transcendental functions for the case in which the
similarity solution of the problem is absent. The parameters
are T0 = 283.15 K, Ta = 310 K, U = 1.721, νa = 0, and
c0 = 0.1.
same if the flow rate increases at a fixed initial concen-
tration.

Calculations show that precipitate increases with the
initial concentration and flow rate. As a result, the tran-
scendental curve deforms and the roots converge. When
the initial salt concentration or flow rate reaches the
respective critical value, the roots coincide with each
other and the transcendental curve touches the γ axis.
Beyond the critical values, there are no roots of the
transcendental equation and the curve lies above the
abscissa axis (see Fig. 2). When the curve touches the
axis and the roots coincide with each other, this condi-
tion provides the criterion for the existence of the sim-
ilarity solution.

Figure 3 shows the roots of the transcendental equa-
tion as functions of the flow rate of ground water. As is
seen, the roots coincide with each other for a certain
critical value U and there is no solution above the criti-
cal flow rate. The upper part of the curve (solid line)
corresponds to the root that has physical meaning,
while the second part of the curve (dashed line) corre-
sponds to the smaller γ values and has no physical
meaning. The dependence of γ on the initial concentra-
tion is similar.

Figure 4 shows the porous-space fraction occupied
with precipitate as a function of the flow rate of ground
water. In this case, the lower part of the curve corre-
sponds to the physical solution (first root) and the upper
part corresponds to the second root, which has no phys-
ical meaning. This fact can be regarded as follows. A
decrease in the flow velocity must lead to an increase in
the front velocity and to the reduction of precipitate.
The largest root γ (upper branch) and the lower branch
of mc correspond to this condition and may be regarded
as the physical solution of the problem.
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Fig. 3. Two solutions for the evaporation front velocity γ vs.
the velocity of ground water for the same parameters as in
Fig. 2. The dashed line is the solution that has no physical
meaning.
DOKLADY PHYSICS      Vol. 50      No. 6      2005



SOLUTION NONUNIQUENESS FOR THE PROBLEM OF SALT PRECIPITATION 323
4. In this work, we have explored the similarity
problem of salt precipitation due to the evaporation of
ground water. Our analysis has established that there
are two solutions for the same initial and boundary con-
ditions. For the critical values of parameters, the roots
of the transcendental equation coincide with each other
and the solution of the problem ceases to exist. The
absence of the similarity solution in a certain region of
the parameters means that soil becomes clogged with
salt near the ground surface when the similarity solu-
tion has not yet been formed. If the boundary values
vary with time, clogging may occur at arbitrary depths,
but this problem cannot be solved analytically. In [9],
the problem of salt precipitation in geothermal systems
was investigated, and there, too, more than one solution
was obtained. We can assume that problems of precipi-
tation are characterized by multivalued solutions, and
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Fig. 4. Two solutions for the volume fraction saturated with
salt in the solid state vs. the flow rate. The parameters are
the same as in Fig. 2. The dashed line is the solution that has
no physical meaning.
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the fusion of roots corresponds to porous space clog-
ging and leads to the termination of a fluid flow. When
the parameters approach their critical values, numerical
simulation of these processes will be characterized by
the deterioration of the convergence of numerical
schemes.
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FORMULATION OF THE PROBLEM

Flight dynamic problems associated with the
launching of space rockets and maneuvers of high-
speed aircrafts were the first applied problems to stim-
ulate the development of the modern optimal control
theory. These problems became important in the 1940s
and 1950s in view of the necessity to minimize expen-
sive and limited resources (amount of fuel, maneuver
time, etc.). An appropriate technique for analyzing such
problems is provided by calculus of variations. Certain
of these flight dynamic problems became the first seri-
ous objects to which the latter classical section of math-
ematical analysis was applied. Many of the basic ideas
associated with adapting variational calculus to modern
control problems and modern optimal control theory
were developed in investigations of flight dynamics.
The first of these problems was to find a program for
controlling the thrust of a jet engine of a rocket in order
to ensure the maximum altitude when it rises vertically
from the ground with a given amount of fuel by taking
into account the effect of gravitation and air resistance.
Goddard [1] was the first to point to the variational
character of this problem: motion in a vacuum requires
the fastest transformation of fuel to velocity and further
free flight, whereas the atmosphere is an alternative fac-
tor that requires the deceleration of motion. Hammel [2]
provided a strict formulation of this problem as a Boltza
variational problem. Since instantaneous fuel con-
sumption (infinite thrust) is assumed to be possible, the
initial mass and velocity are not fixed (they are related
by the Tsiolkovsky formula), nor are the final velocity,
altitude, and time. Okhotsimskiœ [3] solved this varia-
tional problem in an even more realistic formulation
that took into account limited thrust. This result was
important both for mathematical control theory and for
the insights it provided into the features of the optimal
trajectories of rockets. Constraints that are present in
this problem for control functions are nonstandard for
variational calculus, but they are characteristic of the
modern control problem, and Okhotsimskiœ proposed a
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method for the “direct analysis of variations,” which
included certain ideas that have more recently been
completely developed in the Pontryagin maximum
principle. The optimal trajectory is a sequence of rise–
acceleration with the maximum thrust, motion in a spe-
cial control regime, and free flight after the complete
consumption of fuel. The Hammel problem was inde-
pendently solved by Tsien and Evans [4]. Their solution
is similar to the solution found in [3], where an instan-
taneous impulse was assumed instead of the accelera-
tion with maximum thrust. The solutions obtained in
[3] and [4] are based on the first-order necessary opti-
mizing conditions of the variational calculus and they
do not guarantee their optimum: their correction
remains possible in theory. An approach based on the
sufficient optimizing conditions of the controlled pro-
cesses was proposed in [5].

The motion of the center of mass of the rocket is
described by the equations

(1)

Here, x = (x1, x2, x3) is the phase coordinate vector, XT is
the set of its admissible terminal values, x1 = V is the
velocity of the rocket, x2 = h is the altitude, x3 = m is the
mass, the control function u is the consumption of the
working medium (fuel), U is the set of its admissible
values,

(2)

P = cu is the jet thrust, c is the flow velocity of the work-
ing medium, G = mg is the weight of the rocket,
g(h) > 0 is the gravitational acceleration such that

 < 0 and g(h)  0 for h  ∞, X = cx(h, M) ×

dx t( )
dt

------------ f x t( ) u t( ),[ ] , u t( ) U , x 0( )∈ x0,= =

x T( ) XT .∈

f x u,( ) f 1 x u,( ) f 2 x u,( ) f 3 x u,( ),( );,(=

f 1 x u,( ) P X– G–( )
m

----------------------------,=

f 2 x u,( ) V , f 3 x u,( ) cu;–= =

dg h( )
dh

--------------
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S is the aerodynamic drag, ρ(h) > 0 is the atmo-

spheric density such that  < 0 and ρ(h)  0 for

h  ∞; S is the effective wing area, M =  is the

Mach number, a(h) is the speed of sound, and cx(h, M)
is the aerodynamic coefficient whose plot as a function
of M for a fixed h has a pronounced hill with the maxi-
mum at M = 1. The controlled process is the motion of
the rocket during an unfixed time interval (0, T) with the
phase coordinates h, V, and m and control function u.
The constraints and boundary conditions have the form

(3)

where m0 and m1 < m0 is given positive numbers. Values
h(t) that can be reached according to Eqs. (1)–(3) are
limited: h(t) > b > 0. Each allowable process is specified
by the value T and functions x(t) = (h(t), V(t), m(t)) and
u(t), which are defined in the segment [0, T] and satisfy
Eqs. (1)–(3), as well as by the standard functional-the-
ory restrictions: the function u(t) is piecewise continu-
ous and the function x(t) is piecewise differentiable. It
is necessary to find the sequence {v s} on the set D of
the triples v  = [x(t), u(t), T] that minimizes the functional
J(v) = h(T):

(4)

The above-formulated variational problem of flight
dynamics, whose history reaches back almost a cen-
tury, has been analyzed in this work in the framework
of the approach proposed in [5]. Its complete solution
has been derived, considerably correcting the results
obtained in [3, 4]. New solutions have been found and
they have proven to be optimal; i.e., they ensure the
absolute maximum of the reached altitude. Similar
to [2, 4], instantaneous accelerations with infinite thrust
are allowed, but they are obtained as the properties of a
solution (so-called singular solution) rather than being
formalized and fixed in time a priori. Since there is no
constraint such as u(t) ≤ u1, the formulation of the prob-
lem is more idealized than that in [3]; at least in the case
of sufficiently large u1 values, though, the qualitative
structure of the solution remains. New properties of the
optimal control function appear. Indeed, this control
was synthesized in [3, 4] as a sequence of the accelera-
tion with maximum (infinite) thrust, the section of
motion with a special continuous control regime (so-
called special optimal control regime), and free flight
after the consumption of fuel. At the same time, accord-
ing to the results obtained in this work, there are two
sections of the special regime—with subsonic and
supersonic velocities—and two sections of the maxi-
mum thrust—the initial acceleration and acceleration
near the sound threshold V = a(h). The optimal regimes

ρ h( )V2

2
-----------------

dρ h( )
dh

--------------

V
a h( )
-----------

U: u 0, x0: V≥ 0, h 0, m m0;= = =

XT : m m1;=

J v s( ) supJ v( ), v D.∈→
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found in [3, 4] are also possible for certain parameters
of the rocket.

SUFFICIENT OPTIMIZING CONDITIONS 
FOR THE CONTROLLED PROCESSES 

AND REDUCTION OF THE EQUATIONS 
OF MOTION

Here we recall some necessary information from
[6]. Let conditions (1) describe a dynamic process with
the n-dimensional vector of the phase coordinates x and
r-dimensional control vector u. Problem (4) is formu-
lated in application to such a system, with the func-
tional of the form J(v) = –F(x(T), T); i.e., the functional
I(v) = F[x(T), T] is minimized.

Definition. Let a pair of piecewise continuous func-
tions (x*(t), u*(t)), where x*(t) is the discontinuous
component, be defined in the segment [0, T*], and let
the sequence {v s} converge to the triple v* = (x*(t),
u*(t), T*), i.e., Ts  T*; F(xs(Ts), Ts)  F(x*(T*),
T*); for any ε > 0, the measure of the set Ms(ε):
minTs ,T*) < t < max(T*, Ts), |xs(t) – x*(t)| > ε, |us(t) –
u*(t)| > ε, is infinitely small. Such a sequence {v s}, as
well as the set v*, is called a discontinuous solution of
problem (4).

Let ϕ(t, x) be a continuously differentiable function
of time and coordinates and

(5)

Let ϕ(t, x) and v* = (x*(t), u*(t), T*) ∈ D exist such
that

In this case, the process v* is optimal.
Let u be a scalar such that f(x, u) = f1(x) + f2(x) u,

R(t, x, u) = R1(t, x) + R2(t, x)u, R1(t, x) = Σi (x)  +

, and R2(t, x) = Σi (x) .

In this case, n-dimensional controlled system (1) is
reduced to an (n – 1)-dimensional system. The new vec-
tor y = (y1, y2, yn – 1) of the phase coordinates is related
to x as the set of linearly independent solutions

(6)

of the linear homogeneous partial differential equation
R2(t, x) = 0 and

(7)

R x u,( ) Σi f i x u,( ) ∂ϕ
∂xi
-------

∂ϕ
∂t
------,+=

G x t,( ) F x t,( ) ϕ t x,( ).+=

R t x* t( ) u* t( ), ,( ) 0 maxx u, R t x u, ,( ) t,∀= =

G x* T*( ) T*,[ ] minx t, G x t,( ).=

f 1
i ∂ϕ

∂xi
-------

∂ϕ
∂t
------ f 2

i ∂ϕ
∂xi
-------

y Y x( )=

dy
dt
------ g x( ), g x( ) Σi f 1

i x( )∂Y x( )
∂xi

--------------.= =
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The new control is the vector x constrained by
Eq. (6). By definition, the control program x(t) for the
new system may have first-order discontinuities, which
is in contrast to the trajectory x(t) of system (1). Let a
pair (y(t), x(t) satisfy Eqs. (6) and (7). In this case, at
points where x(t) is differentiable, there is a function
u(t) that satisfies Eq. (1).

Let Φ(y, T) = minF(x,T): x ∈  XT, Y(x) = y, and let the
triple w* = (y*(t), x*(t), T*) be a solution of the varia-
tional problem I(w*) ≡ Φ(y*(T*), T*) = minw under con-
ditions (6) and (7). In this case, the program x*(t) that is
complemented by the values x*(0) = x0, x*(T*) =

F(x, T*): x ∈  XT, Y(x) = y*(T*), together with
the corresponding function u*(t), constitutes a discon-
tinuous solution of problem (4) if this pair is consistent
with the constraint u*(t) ∈  U, including discontinuities
of x*(t).

In application to the rocket motion,

The expression

(8)

is a solution of this equation and, according to the
above consideration, new phase coordinates h and y can
be assigned. The new control x = (V, h, m) has the only
independent component and it is either V or m. Let
it be V. According to Eqs. (7) and (8),

(9)

(10)

where B = cln . The jumps ∆V(t) = V(t + 0) – V(t – 0)

of the control function V(t) are approximated by the
sequence us  ∞, i.e., in the limit, by infinite thrust P
instantaneously consuming a finite amount of fuel.
Only jumps ∆V(t) ≥ 0 can be realized in view of the ine-
quality u ≥ 0. For any functions V(t) satisfying Eq. (10),

 > 0. Reaching the constraint V(t) = B – y(t) at

t = t** means that the fuel has been completely con-
sumed and flight is free uncontrollable motion with
decreasing velocity [increasing y(t)] for t > t**. If
y** = y(t**) < B, there is T* > t** such that y(T*) = B
and, correspondingly, V(T*) = 0, h(t) < h(T*) for t > T*.

minarg x

R2 x( ) c
m
----∂ϕ

∂V
-------≡ ∂ϕ

∂m
-------– 0.=

y c
m0

m
------ V–ln=

dh
dt
------ V ,

dy
dt
------ g

X h V,( )
m y V,( )
-------------------;+= =

m y V,( )= m0
y V+

c
-------------– 

  , y 0( )exp  = 0, h 0( ) = 0,

V B y,–≤

m0

m1
------

dy t( )
dt

------------
This means that values T > T* and h(T) are certainly
nonoptimal.

SYNTHESIS OF OPTIMAL MOTION

Let

(11)

(h*(t), y*(t)) be the solution of the problem given by
Eqs. (9) and (10) for V(t) = V*(t) = V*(h(t), y(t)), and

Theorem. Functions h*(t), y*(t), and V*(t) are
defined in any segment [0, T], h*(t) and y*(t) are piece-

wise differentiable, and  > 0; V*(t) and the cor-

responding m*(t) are piecewise continuous and have no
more than two discontinuities at t = 0 and t = t* > 0:
W*(t* + 0) = W*(t* – 0). In this case, ∆V*(t) ≥ 0,

∆m*(t) ≤ 0,  ≤ 0; there is t = t** > t* such that

m*(t**) = m1, V*(t) = B – y*(t) for t ≥ t**; there is
T* > t** such that y*(T*) = B, V*(T*) = 0, and
h*(T*) = maxh*(t) for any t > 0. The quintuplet v* =

V*(t), h*(t), m*(t), u*(t) = − ,T*  is a discontin-

uous solution of problem (4).

Proof. In view of Eqs. (8), (10), and  > 0, we

can write

(12)

Let h*(y) be a solution of Eq. (12) for V = V*(h, y)
and V*(y) = V*(h*(y), y). We use the following property
in application to Eq. (12). Let system (1) be one-dimen-
sional, i.e., x ∈  R, u(t, x) = f(t, x, u), and x*(t)
be the only solution of Eq. (1) complemented by the
value u = u(t, x) in the segment [0, T] for fixed initial
conditions. In this case, x(t) ≤ x*(t) for all t values and
pairs (x(t), u(t)) satisfying Eq. (1), these initial condi-
tions, and the above conditions of the theory of func-
tionals. In application to Eq. (12), y, h, V*(h, y), and
h*(y) play the roles of t, x, u(t, x), and x*(t), respec-
tively. It follows from Eq. (11) that the function
W*(h, y) is a continuous, Lipschitz, and bounded func-
tion, V*(h, y) > 0 and W*(h, y) > 0 for the region given

W h y V, ,( ) V g
X h V,( )
m y V,( )
-------------------+

1–

,=

V* h y,( ) maxVW h y V, ,( ): V B y,–≤arg=

W* h y,( ) maxVW h y V, ,( ), V B y,–≤=

W* t( ) W* h* t( ) y* t( ),( ).=

dy* t( )
dt

----------------

dm* t( )
dt

-----------------

-
 dm*

dt
----------- 



dy t( )
dt

------------

dh
dy
------ W h y V, ,( ), h 0( ) 0, V B y.–≤= =

maxarg u
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by the inequalities 0 ≤ y < B and 0 ≤ h ≤ b, and
V*(h, B) = W*(h, B) = 0. Correspondingly, an increas-
ing function h*(y) is defined in the segment [0, B]: it is
a solution of Eq. (12) and is the exact upper boundary
of the accessibility region of Eq. (12) for V ≤ B – y. The
value V*(h(y), y) for y = B lies on the upper boundary
of the allowable velocities V = B – y, and further motion
occurs along it. Since, as was mentioned above,
V*(h(y), y) = B – y < 0 for y >B and h*(y) decreases, the
maximum altitude is h*(B) or h(T*) in terms of Eqs. (9)
and (10). The other statements of the theorem are
proved as follows.

Analysis. It is easy to verify that the function W(h,
y, V) has the only maximum in V at V*(h, y) = Vc(h, y)
if cx(h, M) = const. The value Vc(h(y), y) increases along
the trajectory h*(y) up to the boundary value V = B – y.
The plot of the real function cx(h, M) for a fixed h value
has a pronounced hill with the maximum at M = 1. This
property is responsible for the minimum of the function
W(h, y, V) at Va(h, y) near V= a(h) and two relative max-
ima at the subsonic point V1(h, y) and supersonic point
V2(h, y) instead of the only maximum at the point
Vc(h, y). The value V*(h, y) coincides with one of these
maximum points and increases along the trajectory
h*(y) up to y** < B, beginning with which V* = B – y
and further to y = B. In this case, the difference
W[h, y, V2] – W[h, y, V1] increases and is positive for a
sufficiently large parameter B at y = y**; i.e., V*(y**) =
V2(y**). Let this difference be negative at t = 0; i.e.,
V*(0, 0) = V1(0, 0) [this property depends on the input
rocket parameters cx(h, M), S, and B]. In this case, there
is a time t* where W[h, y, V2] = W[h, y, V1] and the
velocity displays a jump from V1(h, y) to V2(h, y).

As a whole, the optimal flight program consists of
the following regimes.

(i) Instantaneous acceleration at t = 0 from V = 0 to
V*(0, 0) = W(0, 0, V). In dependence of the
input rocket parameters, V*(0, 0) coincides with either
V1(0, 0) or V2(0, 0). For low fuel resource m0 – m1 ,

V*(0, 0) = B = cln  is also possible.

(ii) Then, if W[0, 0, V2(0, 0)] < W[0, 0, V1(0, 0)], i.e.,
V*(0, 0) = V1(0, 0), the following section of motion is
determined by the law V = V1(h, y) and Eqs. (8) and (9),

u(t) = –  to the time t = t*.

(iii) Instantaneous acceleration at t = t* from
V =V1(h, y) to V2(h, y).

minarg V

m0

m1
------

dm
dt
-------
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(iv) Motion that is determined by the law V =
V2(h, y), the initial conditions y(t* + 0) = y(t*) and

h(t* + 0) = h(t*), and Eqs. (8) and (9), u(t) = –  to the

time t = t**: V2(h, y) = B – y.
(v) Free flight to the time t = T*: y(T*) = 0

[V(T*) = 0].
If V*(0, 0) = V2(0, 0), the optimal motion for t > 0 is

described by (iv) and (v). If V*(0, 0) = B, the optimal
motion for t > 0 is described by (v).

The maximizing sequence {v s} is constructed as
follows. A numerical sequence {us > 0}  ∞ is
assigned. For each s,

(a) the system given by Eqs. (1)–(3), which is com-

plemented by the program Vs(t) = cln  – ys(t),

where ms(t) = m0 – ust, is integrated to the time t = t1s:
Vs(t) = V1(ys(t), hs(t));

(b) see (ii);
(c) see (a) for ms(t) = m(t*) – ust to the time t = t2s:

Vs(t) = V2s(ys(t), hs(t));
(d) see (iv) and (v) [generally, Vs(T*) ≠ 0, but

Vs(T*)  0].
Note 1. The above results provide the complete

solution of the problem given by Eqs. (1)–(4) in which
the jet thrust is not limited. In the presence of the con-
straint u(t) ≤ u1 and for sufficiently large u1, the struc-
ture of the solution remains the same with the following
correction: the discontinuous trajectory that is specified
by h*(t), y*(t), and V*(t) is changed to a trajectory sim-
ilar to the elements of the sequence {v s} for us = u1 with
the correction of the onset time t2s of the second accel-
eration section. For small u1 values, specific trajectories
may be unrealizable and an additional analysis is
required.
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Problems of brittle fracture mechanics are by nature
three-dimensional, because, in addition to the determi-
nation of the onset of the quasi-static growth of a crack,
it is necessary to determine the shape of the formed free
surface, which significantly affects the fracture process
but is rarely known a priori. The application of classi-
cal Griffith and Irwin, energy and stress, criteria to
through cracks in thin plates under conditions of the
generalized plane stress state represents only the lead-
ing approximation: it is not an unconditional result.
Indeed, as was shown in [1], for the parallel transfer of
the through-crack front, the relative increment of the
total energy (surface energy + elastic energy – external-
force work) determined by solving the two-dimen-
sional problem differs from this increment as calculated
for the three-dimensional problem by O(h), where h is
the relative thickness of the plate. Moreover, according
to that work, the stress intensity factor KI(s) (a function
of the arc length) on the crack front is indirectly related

to the stress intensity factor  (a scalar) at the vertex
of a plane image of the crack.

For thick plates with cracks, which are most fre-
quently used as experimental samples, the two-dimen-
sional energy criterion is altogether inapplicable. This
is because the latter involves the global characteristics
of the stress–strain state, and two-dimensional analysis
that is based on the stress criterion is difficult in view of
the change in the order of singularities when approach-
ing the end points P± of the crack front, which are ver-
tices of polyhedral angles, and the possible singularities
of the function KI at these points. If the exponent µ of
the spatial singularity O(ρ–µ) of stresses at the points
P± is less than 1/2, KI(P±) = 0 and the vertices hinder the
quasi-static propagation of the entire edge of the

K I
0
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through crack and form the local-fracture stage

(cf. [1]). If µ >  and, correspondingly, KI(P±) = ∞, the

propagation of the crack begins near the vertices, and
the aforementioned stage is dynamic. The above con-
clusions clearly refer to brittle fracture, and plastic
effects can completely change the pattern. However,
forecasts of crack propagation are approximate in any
case, and the estimation of errors in this situation is
complicated.

As was revealed in [2, 3] for two-dimensional prob-
lems, the quasi-static growth of cracks is of the varia-
tional nature. On this basis, variational asymptotic
models of energy and stress criteria were formulated
and analyzed in [4, 5], describing the quasi-static prop-
agation of smooth fronts of mode I plane cracks in an
elastic brittle medium. Mathematical formulation of the
three-dimensional problem of fracture mechanics
involves the variational inequality on the crack front.
The solution of this inequality yields the critical load
and front shape as functions of the timelike load param-
eter in a small range of variation in this parameter.
Moreover, analysis of the variational inequality reveals
the onset of the avalanche-like growth of the crack, as
well as the possibility of crack bifurcation.

Numerous fracture criteria, in which a special struc-
ture of the crack mouth is postulated and fracture is
associated with other physical processes, especially
require three-dimensional formulations, because errors
caused by the transition to the two-dimensional formu-
lation of the problem can exceed and sometimes defi-
nitely do exceed the corrections associated with the
introduction of additional parameters—the characteris-
tics of the crack mouth—to the criterion. In this paper,
a new three-dimensional formulation is proposed for
the fracture criterion that was developed by Novozhilov
in [6] for segment cracks and was applied [7–9] for
other stress concentrators, mostly two-dimensional.

If M is a segment crack {y = (y1, y2): |y1| ≤ l, y2 = 0}
in a plane elastic body Ω ⊂ R2 and load p(y) is applied
to its boundary, the growth of the crack at the vertex

1
2
---
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P+ = (l, 0) can occur, according to Novozhilov, only
under the condition

(1)

Here, y is the Cartesian coordinate system, l is the half-
length of the crack, σ22 is the rupture stress in the
y1 axis, and the characteristic size d and theoretical crit-
ical stress σc of the material are the parameters of the
fracture criterion. The integration in Eq. (1) along the
segment that is a continuation of the crack means that
the direction of the crack propagation is predefined,
which is acceptable for symmetric data and, corre-
spondingly, the stress state of the first mode near the
crack vertex.

We emphasize that the above formulation of the cri-
terion indicates only the possibility of fracture, but it
does not answer the following questions: Does the
crack grow? How does its length increase? Does the
fracture process remain quasi-static? The three-dimen-
sional case, in which the determination of the shape of
the propagating crack is of primary importance,
requires answers to these questions. For this reason, the
initial formulation of the problem should be changed,
introducing a new time scale that is longer than the real
scale. This scale is associated with the loading process,
and it justifies one in disregarding the inertial terms in
the equations.

Let us consider the plane crack

in the three-dimensional isotropic elastic brittle body
Ω; i.e., the crack lies in the plane Π = {x: z = 0} and has
the profile G ⊂ Π . This profile is a closed set in the plane
and it is bounded by the simple smooth contour Γ, which
is the crack front. Mass forces are absent and loads
p(τ; x) are applied to the surface ∂Ω, where τ ∈ [0, τ0) is
the timelike loading parameter (e.g., the relative force
increment under simple loading). Let M(τ) be the posi-
tion of the crack at the instant τ and Γ(τ) be its front. In
this case, M ⊂ M(τ) (fracture is an irreversible process),
but the case M = M(τ) (crack is at rest) is not excluded.
Stresses arising in the body Ω\M(τ) under load p(τ; x)
are denoted as σ(τ; x), and σzz(τ; y, 0) are rupture
stresses in the crack plane Π. In the vicinity of the con-
tour Γ = Γ(0), we introduce the orthogonal curvilinear
coordinate system (n, s, z), where s is the arc length in
Γ and |n| is the distance from Γ in the plane Π such that
n > 0 beyond the set G. In the formula

(2)

a nonnegative function h(τ; ·) arises, which indicates
the depth of propagation of the front Γ(τ) at the point
s ∈ Γ  (the same character is used for the point and its
coordinate). Contours Γ(τ) are also parameterized by
the variable s ∈ Γ  for small τ values, and s(τ) and κ(τ; s)

1
d
--- σ22 1 η+ 0,( ) ηd

0

d

∫ σc.=

M x R
3
: y x1 x2,( )= G, z x3 0= =∈ ∈{ }=

Γ τ( ) x: s Γ , n h τ ; s( ), z 0= =∈{ }=
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are the corresponding point in Γ(τ) and the arc curva-
ture, respectively. This curvature is positive for the con-
vex case. Let Id(τ; s) ⊂ Π  be segments that begin at the
points s(τ), have length d, and are directed along the
outward normal vectors to Γ(τ).

A posteriori three-dimensional variant of criterion (1)
is formulated as follows (cf. [5]). It is necessary to find
a function h ≥ 0 such that, for any small parameter τ ≥ 0
and all points s ∈ Γ , there is the alternative

(3.1)

(3.2)

Here,

(4)

where y(τ; r, s) is the point in the segment Id(τ; s) and is
spaced at a distance r from the front Γ(τ). Formulas (3.1)
and (3.2) mean that, for the moving point s(τ) of the
front Γ(τ), the stress that is averaged along the segment
Id(τ; s) (i.e., that is divided by

which arises from the Jacobian of the transition to the
curvilinear coordinates, see below) coincides with the
theoretical critical stress σc and does not exceed this
stress for an immovable point. We emphasize that the
inequality

is impossible by the definition of the parameter σc , and
a simultaneous satisfaction of the inequalities

contradicts the criterion, because the latter of these ine-
qualities means that the motion of point s must cease at
a preceding instant in time.

One additional new property—the appearance of
weighted average stresses in Eq. (4)—requires more
detailed analysis. First, we consider the circle crack
M = {x: |y| < R, z = 0} that grows under an axisymmetric
load and assume that the crack is developed conserving
its symmetry; i.e., the problem is two-dimensional.
According to the concept of microstructure fracture [6, 8]
(the number of elementary fracture events is propor-
tional to the area of the formed free surface Ξd),

h τ ; s( ) 0> J τ ; s( )⇒ 1
d
2
---κ τ ; s( )+ 

  σs,=

h τ ; s( ) 0= J τ ; s( )⇒ 1
d
2
---κ τ ; s( )+ 

  σs.≤

J τ ; s( ) = 
1
d
--- σzz τ ; y τ ; r s,( ) 0,( ) 1 rκ τ ; s( )+( ) r,d

Id τ ; s( )
∫

1
1
2
---dκ+

1
d
--- 1 rκ+( ) r,d

0

d

∫=

J τ ; s( ) σc 1
1
2
---dκ τ ; s( )+ 

 >

h τ ; s( ) 0, J τ ; s( ) σc 1
1
2
---dκ τ ; s( )+ 

 <>
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Novozhilov criterion (1) for the circle crack has the
form

(5)

Here, the denominator is the area of the ring Ξd =
{y: R < |y| < R + d}. Due to axial symmetry, σzz(y, 0) =
σzz(R + r, 0) and equality (5) is transformed to

(6)

where κ =  is the curvature of the crack front. It is

seen that Eq. (6) is a partial case of the first of Eqs. (3).
We now continue our discussion of integral (4) for

an arbitrary crack. The possibility of dealing with
smooth crack fronts in bodies with a microstructure is
ensured by a feature of the Novozhilov criterion:
Eq. (1) contains the characteristic size d of the material,
but stresses σzz are calculated without regard for micro-
irregularities. For a one-dimensional crack, the size d is
related to the diameter of a grain or a conglomerate of

grains (see [8]), and it is reasonable to associate 

for a two-dimensional crack with the area of the section
of these irregularities. If dl is the arc length element on
Γ(τ), (1 + rκ(τ; s))dl dη is the surface area element on
Π, which is written in the curvilinear coordinates.
Therefore, the integral formulation of criterion (3)

(7)

contains the integral over the strip that has width d and
covers the contour Γ(τ) in the plane Π. Note that varia-
tional inequality (7) is derived from conditions (3) by
the classical scheme. In particular,

according to Eqs. (3); i.e., Eq. (7) follows from point
relations (3), because the test function χ is nonnegative.
The inverse statement is also valid.

The presence of the Jacobian 1 + rκ on the right-
hand sides of Eqs. (3) and (4) not only reflects the cur-
vature of the crack front and corrects the calculation of
the strip area, but also imposes a constraint: the product
dmax{κ(s)} must be small. The latter constraint agrees
with the above feature of the Novozhilov criterion,
because the microstructure of the material cannot be

1
πd 2R d+( )
---------------------------- σzz y 0,( ) yd

Ξd

∫ σc.=

1
d
--- σzz R r+ 0,( ) 1 rκ+( ) rd

0

d

∫ 1
d
2
---κ+ 

  σc;=

1
R
---

πd2

4
--------

J τ ; s( ) σc 1
d
2
---κ τ ; s( )+ 

 – 
 

Γ τ( )
∫
× χ τ ; s( ) h τ ; s( )–( )dl 0≤

χ∀ C∞ Γ τ( )( ), χ 0,≥∈

J τ ; s( ) σc 1
1
2
---dκ τ ; s( )+ 

 –
 
 
 

h τ ; s( ) 0=
neglected during the averaging that occurs as part of the
calculation of stresses near front sections, where the
curvature radius is comparable with d. For two-dimen-
sional problems, κ = 0 and no constraints are required.

The direct application of fracture criteria in the a
posteriori formulation is very laborious, because elas-
tic fields under the arbitrary perturbation of the crack
front must be known in this case. For this reason, it is
appropriate to construct their variational asymptotic
models, which are based on asymptotic formulas for
the stress–strain state and that lead to well posed math-
ematical problems. The use of the asymptotic formulas
and the approximate inclusion of the effect of variations
in the crack front require that the timelike parameter τ
be small, as well as the stepwise application of a model
in the case that a long-term forecast is necessary.

Let us construct a variational asymptotic model for
the criterion given by Eq. (3) or (7) with the following
additional assumption proposed in [8]: for small d val-
ues (compared to the contour curvature radius), the
stress σzz(τ; y(τ; s, r), 0) in integral (4) can be replaced
by the leading term (2πr)–1/2KI(τ; s) of its expansion
near the crack front. In [4], the asymptotic formula was
obtained for the stress intensity factor on the front Γ(τ)
under the symmetric (with respect to the plane Π) ten-
sile stress p(τ; y) = p(y) + τp'(y) + O(τ2), which is
applied to the faces of the crack M(τ) in the elastic
homogeneous medium Ω = R3:

(8)

Here, KI(s) = KI(0; s) and kI(s) are the coefficients in the
representation

(9)

of stresses that are induced in the body R3\M by the
load p(y) = p(0; y), (s) is the intensity factor that is
induced on the front Γ = Γ(0) by the load p'(y) =
∂τ p(0; y), κ(s) = κ(0; s) is the curvature,

(10.1)

is the integral operator with the symmetric positive ker-
nel

(10.2)

and q(s) is the jump of the limited part of the indefinite
integral Γ\{s} ] t ° Q(s, t) that arises when regulariz-
ing the hypersingular integral in Eq. (10.1).

Let the crack M be completely open by load p, more
specifically, KI(s) > 0 for s ∈ Γ . We introduce the
dimensionless parameter β = dmax{KI(s)–1kI(s), κ(s)},
which should be small enough to ensure the above

K I τ ; s( ) K I s( ) τK I' s( ) B K Ih τ ; ·( ); s( )+ +∼

+ q s( ) 3
8
---κ s( )–

1
2
---K I s( ) 1– kI s( )+

 
 
 

K I s( )h τ ; s( ).

σzz s n 0, ,( ) 2πn( ) 1/2– K I s( ) kI s( )n O n2( )+ +{ }=

K I'

B H; s( ) H t( ) H s( )–( )Q t s,( ) t,d

Γ
∫=

Q s t,( ) Q t s,( ) 2π( ) 1– s t– 2– O 1( ),+= =
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replacement for σzz(·) in Eq. (4) [KI(s)–1kI(s) cannot be
introduced into max when the gradients of normalized
stresses r1/2σ(0; x) are large]. In addition, similar to [4, 5],
we introduce the following new unknown in terms of h
from Eq. (2):

(11)

where KIc is the critical stress intensity factor such that

KIc = σc in agreement with [8]. Substituting

expansions (8) and (9) into Eqs. (3) and (4), omitting
terms that are small compared to O(τ + β), and perform-
ing simple transformations, we arrive at the variational
inequality

(12)

where B is the integral operator given by Eq. (10.1), b
is the quantity opposite to the expression in the braces
in Eq. (8), and

(13)

We emphasize that all quantities entering into ine-
quality (12) are obtained by solving problems of elas-
ticity theory for a given initial position of the crack.
Determining the solution H of this inequality, we recon-
struct the shape of the crack front at the time instant τ
according to Eqs. (2) and (11). As was shown in [4], the
properties of the integral operator B ensure the correct
formulation of inequality (12) on the convex cone

in the Sobolev–Slobodetskiœ space [in particular, the
test function X in inequality (12) is taken from the cone

(Γ)+]. Moreover, when b > 0, problem (12) has the

unique solution H ∈  (Γ)+ for any right-hand side
F ∈ L2(Γ). In this case, if F ∈ Lp(Γ) and p ∈ [2, +∞),

then H ∈ (Γ) (the smoothness of the solution
increases) and there is the estimate

Analysis of variational inequality (12) shows that
(i) if there is only a trivial solution, the crack is

at rest;

H τ ; s( ) K Ic
1– K I s( )h τ ; s( ),=

πd
2

------ 
 

1/2

b s( )H τ ; s( ) B H τ ; ·( ); s( )–( ) X s( ) H τ ; s( )–( ) ld

Γ
∫

≥ F τ ; s( ) X s( ) H τ ; s( )–( ) l X∀ C∞ Γ( ), X 0,≥∈d

Γ
∫

F τ ; s( ) 1–
1

K Ic

------- K I s( ) τK I' s( )+( )+=

+
1
3
--- d

K Ic

------- kI s( ) κ s( )K I s( )+( ) d
2
---κ s( ).–

W2
1/2 Γ( )+ X W2

1/2 Γ( ): X 0≥∈{ }=

W2
1/2

W2
1/2

W p
1

H; W p
1 Γ( ) Cp F F ; Lp Γ( )+ .≤
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(ii) if there is the unique small solution, the propa-
gation of the crack is quasi-static and stable;

(iii) if there are several small solutions, the bifurca-
tion of the shape of the crack front can occur;

(iv) if small solutions do not exist, the propagation
of the crack is avalanche-like, and the above analysis is
invalid in the case that the dynamic effects are not
included.

If the load increases, (s) ≥ 0, and the start of the
crack occurs at τ = 0 [for small τ < 0, inequality (12) has
only the trivial solution H = 0], then function (13) must
satisfy the relation

(14)

and have a zero global maximum. It is easy to see that
the last term in Eq. (13) is negligibly small only when
β is infinitesimal. Therefore, the critical load according
to Novozhilov coincides with the critical load obtained
according to the Irwin criterion from the condition
max{KI(s)} = KIc (see [4]). Recall that the stress and
energy three-dimensional fracture criteria yield identi-
cal loads under which the crack loses stability. How-
ever, owing to positive curvature κ(s) for convex
cracks, the former criterion predicts a deeper propaga-
tion of the front than the does the latter (see [5, 10]).

According to Eqs. (13) and (14), fracture on con-
cave sections of the front Γ begins earlier than fracture
on convex sections under other identical conditions.
Asymptotic formulas that were obtained in [11] for the
front Γ(τ) of the crack M(τ) for small τ values are appli-
cable to model (12) of the three-dimensional
Novozhilov criterion. In this case, similar to other mod-
els, the local fracture (crack shoot) is characterized by
the singular perturbation of the front Γ: the first deriva-
tive of the function h from Eq. (2) with respect to τ is
equal to zero at τ = 0, and the second derivative does not
exist. This effect appears due to different velocities (in
terms of the timelike parameter τ) O(τ3/2) and O(τ1/2) of
the depth and lateral propagations of the branch,
respectively. The irregular behavior of front (2) at the
initial stage of propagation is responsible for the para-
doxical result ∂τh(0; s) = h0δ(s – s0) that was obtained
in some investigations using classical asymptotic anal-
ysis methods. This formula contains the Dirac delta
function δ and signifies that only one point s0 starts
from the entire front Γ. These features of the solutions
to variational models of fracture criteria were discussed
in detail in [5].

In contrast to the three-dimensional fracture criteria
analyzed in [4, 5], the Novozhilov criterion given by
Eq. (3) or (7) is applicable to the problem associated
with the growth of a through crack in a thick plate,
which was mentioned at the beginning of this paper, as
it is independent of a specific form of stress singulari-
ties. At the same time, it is difficult to develop a varia-
tional asymptotic model for the criterion that is similar

K I'

F 0; s( ) 0, s Γ ,∈≤
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to the model given by Eq. (12), because there are no
asymptotic formulas for the increment of the stress
intensity factor under variation in the edge of the
through crack. When the asymmetric growth of the seg-
ment crack in the plane elastic body is admissible, cri-
terion (1) should also be reformulated as a variational
algebraic inequality (cf. [10]).
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