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In this study, we consider a radically new problem
on the photophoretic motion of large spherical aerosol
solid particles suspended in a one-component gas with
allowance for effects of both evaporating the substance
from a particle and its inhomogeneous thermal conduc-
tivity. In the mechanics of aerodisperse systems, a par-
ticle is assumed to be large provided that its radius far
exceeds the mean free path of molecules in an ambient
gaseous medium. As a model describing the inhomoge-
neous thermal conductivity, we consider its dependence
at each point of a particle on the radius vector of this
point.

We suggest the following mechanism of interaction
between a particle and an ambient medium. The parti-
cle is exposed to a uniform flux of electromagnetic radi-
ation whose energy is absorbed by the particle, which
leads to the appearance of thermal sources in it. On the
surface of the nonuniformly heated particle, a phase
transition occurs in the form of sublimation (evapora-
tion) of the particle’s substance, which is accompanied
by the formation of a viscous binary mixture around the
particle. The interaction between the binary system and
the nonuniformly heated particle’s surface results in the
thermal slipping of the mixture over the surface,
whereas the concentration inhomogeneity provides the
diffusion slipping. Under these conditions, a momen-
tum appears acting on the particle. By this action, the
particle is driven into accelerated motion. In addition,
there is the viscous-resistance force acting on the parti-
cle from the binary system. When the total force acting
on the particle vanishes, it begins to move uniformly
and rectilinearly with a certain constant velocity called
the photophoresis rate. The goal of the present study is
to find this rate and to estimate the contribution that is
made to it by the evaporation effect and the inhomoge-
neity effect.

In a coordinate system whose origin coincides with
the particle center, we consider the problem of flow
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around a sphere that has a constant (in the absolute
value and direction) velocity v∞ at infinity. As the posi-
tive direction of the z axis, we choose that of the prop-
agation of the uniform radiation flux. Since the electro-
magnetic-radiation flux is uniform, it is sufficient to
analyze the dependence on the two coordinates θ and r.
Let U(is) be the velocity of motion of a particle with
respect to the center of gravity of the outer medium (the
photophoresis rate of an inhomogeneous sublimating
particle). Then, v∞ = –U(is) = Uk, where U is an
unknown quantity. Considering the stationary motion
of the binary system with respect to the particle, we
arrive at the following equations of motion and the
boundary conditions at infinity [1]:

(1)

(2)

where η is the dynamic viscosity of the binary mixture,
whereas v and p describe the velocity and pressure dis-
tributions in the mixture, respectively; and p∞ is a con-
stant.

We suppose that n1 is the number of molecules of the
first component (evaporating substance of the particle)
and n2 is the number of molecules of the second com-
ponent (one-component gas) per unit volume of the
binary mixture; c1 and c2 are the relative concentration
of the components, respectively; and n = n1 + n2 . Since
c1 + c2 = 1, it is sufficient to find c1 . The function c1 sat-
isfies the following equation and the condition at infin-
ity [1]:

(3)

where c∞ is a constant. The quantities n1, n2, n, ρ, Te, and
Ti (where ρ and Te are the density and temperature of

η∇ 2v ∇ p, divv 0,= =

v r U θ, v θcos U θ, psin– p∞= = =

for  r          ∞ ,

∇ 2c1 0, c1 c∞ at r          ∞ ,= =      
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the binary mixture, respectively, and Ti is the particle’s
temperature) can be represented in the form

where the first terms located on the right-hand sides of
these relationships are equal to the average values of the
corresponding quantities, and the second terms are the
deviations from them. In the boundary conditions, we
will use the quantities n01, n02, n0, ρ0, T0e, and T0i [1].

The particle’s surface is impermeable for the second
component of the binary mixture [1], i.e.,

(4)

Here,  a is the particle’s radius, m1 is the

molecular mass of the evaporating particle’s substance,
and D is the interdiffusion coefficient for the compo-
nents of the binary mixture.

The thermal and diffusion slips of the binary mix-
ture over the particle’s surface lead to the following
condition for the velocity vθ [1]:

(5)

where  and Ksl are the coefficients of the thermal
and diffusion slips of the medium.

Let qi(r, θ) be the thermal-source density inside the
particle and κi(r) be its variable thermal conductivity.
Then, for temperature inside the inhomogeneous parti-
cle, we have the equation [2]:

(6)

For the temperature Te of the medium, we have the fol-
lowing conditions [3]:

(7)

On the particle’s surface, a phase transition occurs for
which the following boundary conditions are valid [4]:

(8)

(9)

where β2 = , m2 is the mass of a molecule for the

second component of the binary mixture, and α, ν, s1 ,
and L are the evaporation coefficient, one-fourth of the

n1 n01 n1' , n2+ n02 n2' , n+ n0 n',+= = =

ρ ρ0 ρ', Te+ T0e Te' ,   and   T i +  T 0 i T i ',+= = =

n02v r Dβ1
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v θ
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absolute thermal velocity of evaporating molecules, the
saturating relative concentration for the first component
of the binary mixture, and the specific heat of the phase
transition for the same component, respectively (
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where

and Bin are the indeterminate coefficients. In the general
case, the functions M1n(r) appearing in these formulas
are constructed according to recurrence formulas. Let
the coefficients bj be determined by the formulas

Then, we have [5]

where

In the particular cases, it is possible to derive
explicit formulas for M1n(r). If κi ≡ const, then

(11)

It is of interest to consider the case in which the ther-
mal conductivity radically varies:

(12)

where k is a constant.
In this case, in what follows, we need only M1n(r) at
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(13)

The coefficients Aen, Bin, and Cn can be found from
expressions (7)–(9) with allowance for condition (4).

The solution to the Stokes equation is sought in the
form [3, 6]:

where Jn + 1(cosθ) are the Gegenbauer functions, vnr,
vθn, and fpn are unknown functions written in terms of
the indeterminate coefficients that can be found from
the boundary conditions (see [6]). Since the forces act-
ing on the particle are determined only by the first terms
in these sums [3, 6], we restrict our consideration to the
search for these terms alone. As is well known from [1],
they have the form

where Ae and Be are the indeterminate coefficients that
can be found from the boundary conditions (4) and (5).
Since F = –4πηUaBek (see [3]), from the condition
Be = 0, we arrive at the formula
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where V is the volume of the particle and

(15)

If the phase transition on the particle’s surface is

absent, then α = 0 and  =  [1]. Hence, we

obtain the formula for the velocity U(iv) of an inhomo-

qi
iv( ) r θ,( ) qi r θ,( )

M11 r( )/r
M11 a( )/a
----------------------, γ

M11' a( )a
M11 a( )

--------------------.= =

KTsl
e( ) KTslη

ρ
-------------
geneous nonvolatile particle (assuming M11(r) ≡ r, we
can find the velocity U(hn) of a homogeneous nonvola-
tile particle on the basis of this formula). Similarly,
assuming M11(r) ≡ r, it is possible to obtain from for-
mula (14) the velocity U(hs) of a homogeneous
sublimating particle. Considering sublimating parti-
cles, we deal with small concentrations. Therefore, we

can suggest that  = , n02 = n0 , and ρ0 = ρ.

Then, 

KTsl
e( ) KTslη

ρ
-------------
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D
------+

1 0.5α 1
2DδLm1n0

2κ e γκi+
---------------------------+

νa
D
------+

---------------------------------------------------------------------------------------------------------.=
In the case in which ice on the particle surface melts
and evaporates into air, this formula takes the form [7]

(17)

In order to analyze this formula, we consider exponen-
tial dependence (12) as a model problem. At a distance
of one particle’s radius, let the drop in κi(r) obey the

following condition: 0.1 ≤  ≤ 10. As was men-

tioned above, the quantity M11(r) is determined by
formula (13), provided that κi(r) is determined by for-
mula (12). From (13) and (15), it follows that the quan-
tity γ ranges from 0.59 to 1.81. When α varies between
0 and 1, the correction factor in formula (17) varies in
the following limits: from 1 to 1.024 at γ = 0.59; from
1 to 1.197 at γ = 1; and from 1 to 1.343 at γ = 1.81. Thus,
taking account of the evaporation effect can signifi-
cantly contribute to the photophoresis rate of a homo-
geneous particle, whereas allowance for the effect of
inhomogeneous thermal conductivity can increase and
decrease this contribution.

U is( ) U iv( ) 1 45.41α+

1 37.77α 0.75 0.25
γ

----------+ 
 +

------------------------------------------------------------.=

κ i a( )
κ i 0( )
------------
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Artificial structures with periodic inhomogeneities
whose sizes are comparable with the electromagnetic
wavelengths in a certain (e.g., optical) range are called
photonic crystals. Such structures are present as sys-
tems of coupled resonators and, hence, have transparent
windows and stopbands [1]. The physical properties of
the periodic structures are determined both by the mate-
rials and the construction features of inhomogeneities,
whose parameters can be varied over wide ranges by
changing the technological conditions of their produc-
tion. Investigations of photonic crystals are of great
applied interest in view of the possibility of using them
to create various optical devices, such as filters and mir-
rors with high characteristics. Moreover, these investi-
gations are of great fundamental interest, because they
make it possible to study the features of the propagation
and localization of electromagnetic waves in the space
of interacting resonators.

Photonic crystals can be one-dimensional, as well as
complex two- and three-dimensional. However, even
the production of 1D photonic crystals is an expensive
process that requires special equipment. For this rea-
son, it is appropriate to perform preliminary experi-
mental and theoretical investigations of the properties
of photonic crystals with bulk (nonfilm) analogs oper-
ating, e.g., in the UHF band. The most successful ana-
log of 1D dielectric photonic crystals—alternating lay-
ers with different refractive indices—is a microstrip
structure for which the quasistatic calculation is in quite
good agreement with experiment [2, 3].

The principle of designing microstrip models of
photonic crystals is based on the strong dependence of
the effective dielectric constant εeff of a microstrip
transmission line on the strip-conductor width and sub-
strate thickness. The propagation velocity and, corre-
spondingly, the electromagnetic wavelength in the line
are determined by εeff , which can be expressed in terms
of the relative dielectric constant ε of the substrate and
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the basic construction parameters of the line [4]. In this
case, the microstrip model of a photonic crystal con-
sists of sequentially connected alternating sections:
those with a large width of the strip conductor imitating
layers with high refractive indices, and those with a
small width of the conductor imitating layers with low
refractive indices. The input and output in such a struc-
ture are usually formed by coaxial-strip junctions with a
characteristic impedance of 50 Ω, which are conduc-
tively connected to the outer strip-conductor sections [3].

Figure 1a shows the frequency responses of (solid
line) insertion and (dashed line) return losses, as well as
the topology of the conductors of the microstrip model
of the 1D photonic crystal, which consists of seven res-
onator layers and whose lattice constant is a1 [3]. The
structure is adjusted as a bandpass filter with the central
frequency f0 = 3 GHz of the passband and the relative

width  = 40% of this band as measured at a level of

–3 dB from the minimum-loss level. Such photonic
crystals have numerous equidistant transparent win-
dows, where the electrical (optical) lengths of each
layer at the central frequency are odd multiples of π,
and stopbands at the center of which the electrical

lengths of the layers are multiples of  [5]. It is impor-

tant that the dielectric constants and characteristic
impedances of microstrip transmission lines are charac-
terized by a frequency dispersion whose character is
determined by the geometric parameters of the lines
and by the dielectric constant of the substrate [6].
Owing to this dispersion, the irregularity of the fre-
quency response in passbands higher than the first band
increases, a situation that is due to the appearance of
considerable UHF-power reflections associated both
with the breakdown of the balance of couplings
between resonators and the difference between their
resonance frequencies.

Figure 1b shows the frequency responses and topol-
ogy of the conductors of the microstrip model of the 1D
two-sublattice photonic crystal whose lattice constant
is a2 [7]. For appropriate comparison, this structure is
also adjusted as a bandpass filter with f0 = 3 GHz and a

∆f
f 0
------

π
2
---
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Frequency responses for microstrip models of a 1D photonic crystal with (a) a standard lattice and (b) a lattice consisting of
two sublattices. The solid and dashed lines are insertion and return losses, respectively.

(a) (b)
relative width of  = 40%. In contrast to one-sublat-

tice photonic crystals, a several-fold increase in the
width and depth of the stopband under consideration
can be achieved in this photonic crystal. This property
allows the production of high-quality dielectric multi-
layer mirrors that operate in a frequency band much
larger than the octave, and the almost complete reflec-
tion of electromagnetic waves is observed in this band
without any parasitic passbands.

The study of UHF models of devices based on pho-
tonic crystals makes it possible not only to reduce the
cost and time investments in the development stage but
also to obtain important recommendations for achiev-
ing the extreme characteristics of the construction
under investigation. In particular, the simulation of 1D
photonic crystals [3, 7] shows that a number of condi-
tions are necessary for manufacturing high-quality
bandpass filters and mirrors. First, the necessary jump,
which is determined by a given passband of a device or
a given width of a stopband, must be ensured between
the characteristic impedances of the outer layers of a
photonic crystal and the characteristic impedances of
the input and output. Second, it is necessary to select
the dielectric constants of the layers of the superlattice
such that the couplings between them are in balance,
which must also correspond to the given passband of
the filter. Third, the electrical lengths of resonator lay-
ers should be selected such that their natural frequen-
cies coincide with the central frequency of the pass-
band. In other words, for a given passband of the optical
filter, it is necessary to ensure (i) the necessary jumps
between the refractive indices of the materials of the
outer layers of the structure and the refractive indices of
the input and output media, (ii) the required jumps
between the refractive indices of the materials of all
layers of the structure, and (iii) the coincidence of the

∆f
f 0
------
 resonance frequencies of the layers with the central fre-

quency of the passband, which can be achieved by
selecting the optical lengths of the layers.

We note that the frequency ranges where the reflec-
tivity for light incident on the photonic crystal is close
to unity are called photonic band gaps. The introduction
of a defect (such as a layer whose thickness or dielectric
constant differs from the respective value of the basic
periodic structure) into the photonic crystal evidently
leads to the distortion of the frequency response due to
the appearance of resonances in this defect layer. Such
defects are called impurities, and their frequency spec-
trum is called impurity oscillation modes. It is known
that the impurity mode resonance has the high loaded Q
factor Qimp when it coincides with the center of the pho-
tonic band gap [8, 9]. It is convenient to use irregular
microstrip structures in order to analyze the possibility
of increasing the Q factor of the impurity mode reso-
nance by optimizing the construction parameters of the
photonic crystal and defect [2, 10]. This work is
devoted to such an analysis.

Figure 2 shows the topologies of conductors and fre-
quency responses of microstrip constructions that are
models of 1D photonic crystals with possible basic
defects shown by closed boxes on the topologies of the
conductors. For simplicity, each photonic crystal con-
tains only two unit cells and one defect, and the fre-
quency dispersion of both the effective dielectric con-
stant and the characteristic impedance of the microstrip
lines is disregarded in the calculation. Transverse elec-
tromagnetic waves propagate in transmission lines
called T lines. For the appropriate comparison of the
loaded Q factor Qimp of the impurity mode resonance,
the proper Q factor of all sections of the models of pho-
tonic crystals, including defects, is assumed to be
Q0 = ∞. In addition, the parameters of the structure in
DOKLADY PHYSICS      Vol. 50      No. 7      2005
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Fig. 2. Microstrip constructions of the 1D photonic crystals under investigation with various lattice defects and their frequency
responses. The solid and dashed lines are insertion and return losses, respectively.
each construction under consideration are chosen so
that the central frequency of the first passband is equal
to f0 = 3 GHz, the relative width of this band as mea-

sured at a level of –3 dB is equal to  = 40%, and the

maxima of return losses in this passband are equal to
−14 dB. The loaded Q factor of the impurity resonance
mode Qimp is determined as the ratio of the resonance
frequency fimp to the resonance linewidth ∆fimp as mea-
sured at a level of –3 dB.

∆f
f 0
------
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In the first variant (see Fig. 2a), the photonic crystal
consists of one sublattice and the electrical length of the
defect in it is approximately two-thirds of the electrical
length of the remaining four regular sections of the
structure whose half-wavelength resonances form the
first passband. In this case, the lowest resonance of the
defect coincides with the center of the second stopband
or the second photonic band gap.

In the second variant (see Fig. 2b), the electrical
length of the defect is approximately twice as large as
the electrical lengths of the other sections of the struc-
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Fig. 3. Q factor of the impurity resonance mode vs. (a) the relative width of the passband of three-link constructions and (b) the
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ture. Therefore, its first resonance lies in the first band
gap, and the second resonance, along with the reso-
nances of the four basic sections of the structure, is
involved in the formation of the first passband. This fact
is manifested in the frequency dependence of return
losses, where five minima corresponding to five reso-
nances are well pronounced in the first passband. The
resonance of the third oscillation mode of the defect lies
in the second band gap, and its loaded Q factor is shown
in Fig. 2b for comparison. The resonance of the fourth
oscillation mode of the defect is involved in the forma-
tion of the second passband, which is also seen in the
frequency dependence of return losses, etc.

In the third variant (see Fig. 2c), the photonic crystal
consists of two sublattices and the electrical length of
the defect is such that the resonance of its first oscilla-
tion mode coincides with the center of the second band
gap. Finally, in the fourth variant (see Fig. 2d), the pho-
tonic crystal also has two sublattices and the electrical
length of the defect is such that its first resonance is
involved in the formation of the first passband, the sec-
ond resonance coincides with the center of the second
band gap, and the third resonance is involved in the for-
mation of the third passband.

As is known, the loaded Q factor of the resonator
that has an infinite proper Q factor and is connected “in
line” is determined only by its coupling with the input
and output transmission lines. In the microstrip struc-
tures under consideration (see Fig. 2), the extent of cou-
pling of the resonator defect with the transmission
lines, as well as its loaded Q factor, is presented by the
value of damping for electromagnetic waves in the pho-
tonic band gap in which its resonance lies. For this rea-
son, a change in the electrical length of the defect, lead-
ing to a corresponding shift in the resonance from the
center of the photonic band gap to a certain edge,
reduces the loaded Q factor of the impurity mode.
Investigations show that the loaded Q factor of the
impurity mode increases strongly when the first and
second resonances of the defect are involved in the for-
mation of the first and second passbands of the two-
sublattice photonic crystal, respectively. In this case,
Qimp of the impurity is much higher for two-sublattice
constructions.

The coupling of the resonator defect with the trans-
mission lines can evidently be controlled by varying the
construction parameters and the number of unit cells in
the photonic crystal model. In particular, it is known
that an increase in the difference between the reflective
indices of the layers in the dielectric photonic crystal
reduces the width of passbands in it and correspond-
ingly increases the width and depth of band gaps,
which, in turn, necessarily affects the loaded Q factor of
the impurity. Figure 3a shows the Q factor of the defect
on the relative width of the first passband of the struc-
ture for (dashed line) one-sublattice and (solid line)
two-sublattice photonic crystals. In this investigation,
DOKLADY PHYSICS      Vol. 50      No. 7      2005
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Fig. 4. (Upper panel) Topology of the conductors and (lower panel) frequency responses of the insertion and return losses (line)
calculated and (points) measured for the microstrip model of the 1D two-sublattice photonic crystal with a defect.
simple microstrip models are used, and the topologies
of their conductors are also shown in this figure. In
these models, the first passband is formed by only three
resonances, including the defect resonance: it is the first
or second resonance for the two- or one-sublattice crys-

tal, respectively. It is seen that, as the relative width 

of the passband decreases, Qimp increases sharply. In
this case, the Q factor of the defect in the two-sublattice
crystal is an order of magnitude higher for any fixed
width of the passband.

Investigations of the loaded Q factor Qimp as a func-
tion of the number of unit cells forming the photonic
crystal are of great interest. Figure 3b shows the loaded
Q factor Qimp as a function of the number N of reso-
nances forming the first passband for (open and closed
circles for constructions (a) and (b) in Fig. 2, respec-
tively) the one-sublattice photonic crystal and (open
and closed squares for constructions (c) and (d) in
Fig. 2, respectively) the two-sublattice photonic crys-
tal. These plots are drawn for the relative width of the

first passband  = 40% and f0 = 3 GHz. The gray tri-

angles in Fig. 3b are Qimp(N) for a microstrip analog of
the two-sublattice photonic crystal, where the real
proper Q factor Q0 = 280 of microstrip lines is used. As

∆f
f 0
------

∆f
f 0
------
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is seen, this curve is saturated at N = 9, approaching the
proper Q factor of microstrip lines, whereas the remain-
ing presented curves increase exponentially. It is impor-
tant that the Q factor of the impurity resonance mode in
the two-sublattice photonic crystal increases with N
much faster than that for the one-sublattice photonic
crystal.

An experimental test of several microstrip construc-
tions manufactured by engraving a lacquer [11] showed
good agreement with the numerical calculations in qua-
sistatic approximations for 1D models of irregular
structures. As an example, Fig. 4 shows (points) mea-
surements of insertion and return losses for the micros-
trip model of the two-sublattice photonic crystal with a
defect in comparison with (lines) the corresponding
calculations. The 60 × 16 × 2-mm substrate was made
of B20 ceramic (ε = 20). The topological pattern for the
conductors of this device was previously obtained by
parametrically synthesizing the bandpass filter with a
central frequency of f0 = 1.8 GHz and a relative pass-

band width of  = 35%. However, the experiment was

compared with theoretical calculations using the actual
construction parameters of the microstrip structure that
were measured after its manufacture.

∆f
f 0
------
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The topological parameters of the conductors of the
microstrip model of the two-sublattice photonic crystal
with a defect (see Fig. 4) on a 2-mm substrate with the
dielectric constant ε = 20 are as follows:

The loaded Q factor of the impurity resonance mode
Qimp ≈ 96 that was measured for the microstrip structure
under investigation is in fairly good agreement with the
Qimp ≈ 105 obtained from numerical quasistatic ana-
lysis.

Thus, the loaded Q factor of the impurity resonance
mode has been analyzed for the microstrip model of a
1D photonic crystal with a defect. It has been shown
that, when the impurity resonance frequency coincides
with the center of a photonic band gap, Qimp increases
with the damping of electromagnetic waves in this gap.
For this reason, the loaded Q factor of the impurity
depends not only on the number of dielectric layers
(unit cells) forming the photonic crystal [2] but also on
the relative width of the passband and on the construc-
tion features of the photonic crystal. In particular, the
impurity-mode Q factor in the two-sublattice photonic
crystal can be much higher than that in the one-sublat-
tice photonic crystal. Moreover, Qimp increases when
low-lying resonances of the impurity are involved in the
formation of the first passband. The quasistatic numer-
ical analysis of microstrip models of photonic crystals
with impurities is in good agreement with experiment.

i 1 2 3 4 5 6 7

li, mm 4.62 5.45 4.72 25.08 4.68 5.46 4.71

wi, mm 8.06 3.49 11.67 0.14 11.66 3.47 8.06
Hence, the construction parameters of a model of a 1D
photonic crystal with a defect can be obtained such that
a given loaded Q factor of the impurity mode is
ensured.
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Transition-metal monoxides (MnO, FeO, CoO,
NiO) are of great interest for solid-state physics in vir-
tue of their magnetic, electron, and structural character-
istics, which underlie the wide technological applica-
tions of this group of materials. These oxides are typi-
cal antiferromagnets with a cubic crystal structure of
the NaCl type (structural type B1) above the Néel tem-
perature (TN). Below TN , these oxides undergo a struc-
tural transition of the distortion type (corresponding to
the lowering of symmetry to a trigonal or tetragonal
one). The structural phase transition occurs within
approximately the same temperature range in which the
magnetic ordering arises. Therefore, until recently, it
was commonly believed that the loss of symmetry in
these oxides stems from the ordering of magnetic
moments in the crystal structure [1]. The growth of
pressure at room temperature leads to similar distor-
tion-type phase transformations in MnO, FeO, CoO,
and NiO. Since the Néel temperature has a positive
baric coefficient (increases with pressure), it has been
suggested [2] that the structural transitions in these
materials under high pressures have the same nature as
those occurring at low temperatures. Recent studies of
the magnetic and elastic characteristics of wustite
(FeO) at high pressures [3, 4] have demonstrated that
the onset of magnetic ordering in wustite takes place at
about 5 GPa. This pressure is significantly lower than
that corresponding to the structural phase transition
(about 17 GPa). In light of these results, it becomes
clear that the relation between magnetic ordering and
structural distortion needs a revision—for FeO at the
very least.

To make the magnetic interactions weaker or to get
rid of them completely, it is possible to “dilute” wustite

1 Moscow State University, Vorob’evy gory, 
Moscow, 119899 Russia

2 Bayerisches Geoinstitut, Universität Bayreuth,
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by means of an isostructural diamagnetic compound
that forms a continuous series of solid solutions with
FeO. A suitable component is periclase MgO, which
forms a continuous series of solid solutions
(Mg1 − xFex)O with wustite (referred to as magnesio-
wustite at x ≥ 0.5 and ferropericlase at x < 0.5). MgO
periclase does not undergo any phase transformations
and remains cubic up to at least 227 GPa [5]. The prop-
erties of ferropericlase with an FeO content of about
15–20 mol % are of great interest for the Earth sciences,
as it is common knowledge that it represents one of the
main rock-forming minerals in the lower mantle of the
Earth [6].

We have performed experimental studies on the
Mössbauer effect and on the x-ray diffraction patterns
of ferropericlase (Mg0.8Fe0.2)O. The latter composition
is close to that expected for the Earth’s mantle. The
experiments at room temperature and high pressures
(up to 60 GPa) were performed using the diamond anvil
cell [7]. The diameter of the diamond working surface
(culet) was 0.25 mm. In the experiments, we used a rhe-
nium spacer with an initial thickness of 0.26 mm, which
was pressed between the diamonds down to a thickness
of about 60 µm. The high-pressure chamber was
0.125 mm in diameter. In addition to the powder sam-
ple, several small ruby spheres (about 1–2 µm in diam-
eter) were put into the chamber in order to measure
pressure in the anvil cell by the shift of the fluorescence
lines of chromium ions.

The Mössbauer spectroscopy of the 57Fe isotope is
in fact the only reliable method for determining the in
situ magnetic, valence, and spin states of iron atoms in
the diamond anvil cell. Since the sample volume was
very small, we used a synthesized sample with the
nominal composition (Mg0.8Fe0.2)O artificially enriched
(up to 50%) by the 57Fe isotope. The measurements
were performed using a spectrometer of the constant-
acceleration type with a highly active point (about
200 µm in size) 57Co radioactive source in the rhodium
matrix. The iron foil was used as a reference sample for
determining the Doppler velocity. According to the
model [8], the obtained spectra were decomposed into
two doublets corresponding to the bivalent and trivalent
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Mössbauer spectra of ferropericlase (Mg0.8Fe0.2)O
at pressures of 13.33 GPa and 58 GPa. The dashed and dot-
ted lines correspond to Fe2+ and Fe3+, respectively. Here
and below, zero in the velocity axis corresponds to metallic
iron.
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Fig. 2. Pressure dependence of the isomer shift and quadru-
pole splitting for the main doublet of Fe2+ in the Mössbauer
spectra of (Mg0.8Fe0.2)O.
states of iron (Fig. 1). The Fe3+ content in the sample
related to a certain number of structural defects
remained constant and was equal to about 4% of the
overall iron content. The paramagnetic doublet has two
parameters characterizing the hyperfine interaction: the
isomer shift and the quadrupole splitting. The isomer
shift characterizes valence, spin, and (to a smaller
extent) coordination states of the absorbing atom. The
measured shift of the main doublet exactly corresponds
to the high-spin state of Fe2+ ions and linearly decreases
with the pressure growth (Fig. 2). The latter decrease
can be explained by the growth of electron density in
the region of nuclei of iron ions due to the compression
of the material. The variation of quadrupole splitting is
nonmonotonic (Fig. 2): the splitting increases up to
35 GPa and decreases at higher pressures. We observe
no baric hysteresis with an increase or decrease in pres-
sure. The quadrupole splitting is a sensitive probe, indi-
cating the degree of distortion for the coordination
polyhedron. The decrease in quadrupole splitting
observed at pressures exceeding 35 GPa can stem from
the distortion of FeO6 octahedron, which is similar to
that occurring in clinoferrosilite (Mg,Fe)SiO3 [9]. We
wanted to find out whether this distortion is local or is
induced by a structural transition, i.e., related to the
symmetry changes in the structure of the material. To
this end, we performed the powder x-ray diffraction
study at high pressures. The x-ray diffraction patterns
were recorded in situ using an ID30 high-pressure setup
at the European Synchrotron Radiation Facility (ESRF)
in Grenoble, France. The patterns were recorded at a
constant x-ray wavelength of 0.3738 Å. Until pressures
of the order of 35 GPa, the x-ray diffraction patterns
exactly correspond to the NaCl-type cubic structure.
With further growth of pressure, some reflections
exhibited a substantial broadening. The trigonal distor-
tion of the cubic lattices (induced by contraction or
stretching along one of the triple axes) manifests itself
in the splitting of some x-ray reflections. In particular,
(111), (220), (311), and (220) reflections become split,
whereas (200) and (400) reflections undergo no split-
ting. Near the transition point, the deviations from
cubic symmetry are very small, and the splitting of
reflections manifests itself in the broadening of diffrac-
tion peaks. Therefore, to determine the phase transition
point, we used the ratio of FWHM (full width at half
maximum) values for (200) and (220) reflections [10].
For our sample, this ratio remains constant up to
35 GPa and starts to steeply increase at higher pressures
(Fig. 3). The analysis of x-ray diffraction patterns at
42 GPa demonstrates that the splitting of all reflections
except (200) and (400) ones agrees with the trigonal

symmetry of the lattice, and the ratio ( ) of lattice

parameters is smaller than that for the rhombohedral
unit cell of the ideal cubic structure. This corresponds
to the contraction of the cubic lattice along one of the
triple axes.
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DOKLADY PHYSICS      Vol. 50      No. 7      2005



        

TRIGONAL DISTORTION OF FERROPERICLASE (Mg

 

0.8

 

Fe

 

0.2

 

)O AT HIGH PRESSURES 345

                                                              
Based on the measured pressure dependence for the
sample volume, we have determined the parameters
involved in the Birch–Murnagham isothermal equation
of state, which can be written in the form

where K is the isothermal bulk modulus, V0 is the volume
at zero pressure, and V is the volume at a pressure P.
For  the cubic phase, we have K = 158(5) GPa and
V0 = 11.53(1) cm3/mol; for the trigonal phase, K =
170(7) GPa and V0 = 11.21(1) cm3/mol (Fig. 4).
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tions as a function of pressure. The steep broadening of the
(220) line starts at 35 GPa.

0.80

V/V0

Pressure, GPa

0.85

0.90

0.95

1.00

0 10 20 30 40

K = 158(5) GPa
V0 = 11.53(1) cm3/mol

K = 170(7) GPa
V0 = 11.21(1) cm3/mol

Fig. 4. Compressibility ( ) of ferropericlase

(Mg0.8Fe0.2)O as a function of pressure. Solid lines corre-
spond to the Birch–Murnagham isothermal equation of
state for the cubic and trigonal phases.

V
V0
------
DOKLADY PHYSICS      Vol. 50      No. 7      2005
Based on the x-ray diffraction data and the results of
Mössbauer spectroscopy, we have arrived at a conclu-
sion concerning the existence of trigonal distortion in
ferropericlase (Mg0.8Fe0.2)O at 35 GPa and room tem-
perature. The Mössbauer spectroscopy suggests that
this transition is not related to magnetic ordering, and,
hence, the existing concepts concerning the relation
between antiferromagnetism and structural distortions
in transition-metal oxides should be revised. The
obtained results are in good agreement with computer
simulations that make use of semi-empirical atomic
potentials [11]. These simulations show that the rhombo-
hedral distortion of FeO wustite at high pressures is a
consequence of multiparticle metal–oxygen interactions.

Structural transitions similar to the type discussed in
this paper are usually related to a steep decrease in the
cubic elastic modulus C44 [12], and, hence, to a
decrease in the velocity of transverse seismic waves.
The latter conclusion may be especially important for
the description of seismic inhomogeneity in the lower
mantle of the Earth.
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Over the last two decades, the development of per-
manent magnets based on Nd2Fe14B [1] and the rapid
implementation of their industrial production have
stimulated investigations into the magnetic properties
of compounds of R2Fe14B with other rare earth metals
(REMs), such as Ho, Er, Tm, and Yb. Complex borides
containing these REMs are characterized not only by
quite high Curie temperatures TC but also by various
spin-reorientation phase transitions. Among these
borides, Er2Fe14B (TC = 554 K) is of particular interest,
because it undergoes a spin-reorientation phase transi-
tion at a temperature TSR = 327 K that is close to room
temperature. This transition is associated with a step
change in the easy magnetization axis from the basal
plane to the tetragonal axis c [2]. This property makes
it possible to use materials based on this compound as
thermomagnetic sensors.

As is known, borides similar to R2Fe14B easily
absorb gaseous hydrogen at room temperature and
atmospheric pressure [3]. The introduction of hydrogen
into the crystal lattice of Er2Fe14B considerably
changes both the Curie temperature and the tempera-
ture TSR of the spin-reorientation phase transition. An
observation of the nonmonotonic hydrogen-content
dependence of TSR in polycrystalline Er2Fe14BHx

samples has been reported [4]. However, our investiga-
tions [5] carried out with both single crystalline and
polycrystalline Nd2Fe14BHx samples show that the data
for the latter samples should be significantly corrected
in order to reveal the “true” effect of hydrogenation on
the magnetocrystalline anisotropy and spin-reorienta-
tion phase transition. Thus, the use of high-purity single
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crystal samples in investigations is of fundamental
importance for determining the temperatures of the
spin-reorientation phase transition and analyzing
anomalies in the magnetic properties near TSR.

The aim of this work is to study the effect of the
absorbed hydrogen content on the temperatures of mag-
netic phase transitions in Er2Fe14BHx single crystals. The
dependences found in this study can be used to develop
new magnetic materials with preset properties.

The Er2Fe14B compound was synthesized by melting
in an arc furnace with a non-consumable tungsten elec-
trode on a water-cooled copper bottom in an atmosphere
of purified helium. High-purity erbium (99.96 wt %)
obtained by double vacuum sublimation [6], Armco
iron, and foundry Fe–B alloy were used as initial com-
ponents. The uniformity of the composition of the com-
pound was ensured by multiple melting and subsequent
homogenization annealing in evacuated quartz
ampoules at a temperature of 700°C for 200 h. Crystal
blocks in which the disorientation of crystal axes did
not exceed 10° were prepared from the resulting ingots.
The Er2Fe14B compound was hydrogenized by hydro-
gen that had escaped in the decomposition of titanium
dihydride TiH2. We obtained Er2Fe14BHx hydrides with
x = 0.4, 1.2, 1.5, 2, and 2.5. After hydrogenation, the
block crystal structure did not break. The temperature
dependence of magnetization was analyzed on a pendu-
lum magnetometer in a magnetic field of H = 500 Oe in
the temperature interval 150–700 K.

It has been found that the strongest change resulting
from the introduction of hydrogen into the crystal lat-
tice of Er2Fe14B is that of the magnetic ordering tem-
perature, which was determined as the temperature of
the sharpest drop in the magnetization σ(T) in the tran-
sition from the ferromagnetic state to the paramagnetic
one. Figure 1 shows the Curie temperature as a function
of the absorbed hydrogen content for Er2Fe14BHx com-
pounds. These compounds can be treated as two-lattice
(REM and iron sublattices) ferrimagnets. For compari-
son, TC(x) for the isostructural compound with lute-
tium, which is a nonmagnetic REM, is also shown in
Fig. 1. As is seen in the figure, the introduction of
© 2005 Pleiades Publishing, Inc.
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hydrogen into the crystal lattice of the Er2Fe14B and
Lu2Fe14BHx compounds leads to a monotonic increase
in the Curie temperature TC by an average of 25 K per
hydrogen atom.

Figure 2 shows the temperature dependences of
magnetization σ(T) measured for Er2Fe14BHx com-
pounds in the temperature interval 150–450 K and in
the magnetic field applied along the texture axis. As is
seen in Fig. 2, a pronounced peak is observed on the
σ(T) curve for the initial Er2Fe14B compound at T =
327 K, which corresponds to the spin-reorientation
temperature. Hydrogenation slightly changes the char-
acter of the σ(T) dependences: the sharp peak becomes
a step (which probably indicates a change in the transi-
tion character), and the temperature of the spin-reorien-
tation phase transition, which is determined as the tem-
perature at which σ(T) is maximal, is shifted towards
higher temperatures.

Figure 3 shows (1) the temperature of the spin-reori-
entation phase transition as a function of absorbed
hydrogen content as compared to (2) the available ref-
erence data [4]. As is seen in Fig. 3, the TSR(x) depen-
dence is nonlinear in both cases. However, our investi-
gations show that the introduction of hydrogen atoms
into the crystal lattice of the Er2Fe14B compound
increases the temperature of the spin-reorientation
phase transition (except for the case x = 0.4 the spin-
reorientation phase transition in which, as well as in the
initial sample, is observed near TSR ≈ 327 K); whereas,
according to data from [4], the spin-reorientation tem-
perature TSR decreases in the content range 0 ≤ x ≤ 1.7
and increases only for x > 1.7. As was mentioned above,
such a difference in the behaviors appears because the
spin-reorientation temperature TSR was measured in [4]
for polycrystal samples. The crystal axes of grains in
polycrystal samples have different orientations with
respect to the applied magnetic field. In the magnetic
field applied along the easy magnetization axis, the
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Fig. 1. Curie temperature vs. the absorbed hydrogen content
for the Er2Fe14BHx and Lu2Fe14BHx compounds.
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spin-reorientation phase transition (its character and
transition temperature) differs from that observed when
the magnetic field is applied along the hard magnetiza-
tion axis. For this reason, spin-reorientation phase tran-
sitions that occur in different grains of a polycrystal
sample are superimposed, which leads to a nonmono-
tonic TSR(x) dependence.

Both the REM and iron sublattices contribute to the
magnetic anisotropy of the R2Fe14B compounds. The
contribution from the iron sublattice to the magnetoc-
rystalline anisotropy is determined by empirically ana-
lyzing the anisotropy of compounds with Lu or Y. The
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Fig. 2. Temperature dependence of magnetization σ(T)
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Er2Fe14BHx compounds with x = (1) 0, (2) 1.5, and (3) 2.5.
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REM and iron sublattices make the main contribution
to the magnetocrystalline anisotropy for low and high
temperatures, respectively. The competition between
the contributions from the REM and 3d sublattices to
the magnetocrystalline anisotropy of the Er2Fe14B com-
pound leads to their compensation at the temperature
TSR at which the spin-reorientation phase transition
occurs. It is a first order phase transition that is accom-
panied by the step reorientation of the easy magnetiza-
tion axis from the basal plane in the direction of the
c axis for T > TSR.

In order to separate the contributions from the Fe
and REM sublattices to the magnetocrystalline anisot-
ropy, we previously analyzed the effect of hydrogena-
tion on the magnetocrystalline anisotropy of the
Lu2Fe14B compound [7]. It has been found that the
hydrogenation of this compound reduces the magnetic
anisotropy constant K1Fe (by 10%, on average, after the
introduction of one hydrogen atom per formula unit at
T = 4.2 K). Using the known values of the temperature
TSR for the Er2Fe14BHx compounds and the magnetic
anisotropy constant K1Fe, one can determine the change
in the crystalline field B20 after the introduction
of hydrogen atoms into the crystal lattice by the for-
mula [4]

(1)

Here, ∆ex is the exchange splitting between the two
nearest energy levels in the exchange field Bex, kB is the

Boltzmann constant, and J =  is the total angular

momentum of the Er3+ ions. We calculated the
exchange field Bex and exchange splitting ∆ex using data
on the Curie temperatures of the Lu2Fe14BHx and
Er2Fe14BHx compounds within the framework of the
molecular field theory [8]. It has been found that hydro-
genation enhances both the exchange field acting inside
the iron sublattice and the exchange field of the iron
sublattice acting on the REM sublattice.

The inset in Fig. 3 shows the concentration depen-
dence of the critical field parameter B20 calculated by
Eq. (1) and divided by B20 at x = 0 for the Er2Fe14BHx

compound. It is seen that the parameter B20 decreases as
the hydrogen content increases. Since the basic contri-
bution to the magnetocrystalline anisotropy constant
K1R of the REM sublattice for this class of compounds
comes from the crystal field parameter B20, hydrogena-
tion significantly reduces K1R (e.g., the introduction of
2.5 hydrogen atoms per formula unit into the crystal lat-
tice of the compound reduces K1R by 60% at T = 4.2 K).

B20

20K1Fe
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15
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Therefore, a decrease in TSR would be expected due to
the weakening of the magnetocrystalline anisotropy of
the erbium sublattice. Nevertheless, TSR increases due
to the enhancement of the Fe–Fe and R–Fe exchange
interactions, which leads to a considerable change in
the temperature dependence of the magnetic anisotropy
constants K1R(T) and K1Fe(T) in the hydrogenized
Er2Fe14BHx compounds.

Thus, investigations performed with single crystal
Er2Fe14B samples prepared from high-purity initial
components provided more accurate data on the basic
magnetic characteristics of this material (Curie temper-
ature and temperature of the spin-reorientation phase
transition). The subsequent controlled introduction of
hydrogen enabled us to reveal the laws of change in
these magnetic characteristics; namely, their monotonic
increase with the hydrogen content was found. Knowl-
edge of the true dependences TC(x) and TSR(x) for
Er2Fe14BHx single crystals that are undistorted by
impurities and defects makes it possible to achieve both
purposeful changes in these characteristics and the pro-
duction of materials with preset properties.
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The problem of achieving fracture in rocks has
always been and remains of crucial importance.
Recently, along with conventional methods of fracture,
novel approaches based on various physical phenom-
ena have been used. We refer here to electric (electric-
discharge, electrostriction, and piezoelectric) methods,
magnetic (magnetostriction) methods, electromagnetic
(laser) methods, sonic (shock-plastic) methods, beam
(electron, proton, and plasma) methods, and thermal-
shock methods of fracture. The common feature of all
these methods is that, as a result of the action on a sub-
stance, stresses exceeding the rupture stress arise in the
material. For the majority of rocks, such stresses attain
several units or even tens of MPa. However, many of
the above-listed methods either can only be employed
for fracturing materials of a certain class, or else dis-
play low efficiency. From this standpoint, thermal-
shock fracture methods are apparently rather attractive.
At the same time, their potentialities are limited by the
difficulties involved in rapidly heating rocks over a
large depth, which is associated with their low heat con-
ductivity.

The method of thermal-shock fracture, which is
based on heating samples by powerful microwave radi-
ation, seems to be the most promising. We now con-
sider this problem in more detail.

Fracture caused by the action of thermal shock can
occur for two reasons.

The first is the rapid evaporation of water contained
in rock pores when the saturated-vapor pressure in hol-
lows filled with water comes to exceed the rupture
stress P [1].

The second reason is the linear expansion of solids
in the process of heating, so that arising stresses attain

the rupture stress, i.e., α∆T = . Here, α is the linear-

expansion coefficient, ∆T is the temperature variation
under heating, and Ö is the Young’s modulus [2]. It is

P
E
---
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evident that this effect is manifested especially clearly
for rocks having a high linear-expansion coefficient and
low Young’s modulus.

At Moscow State Mining University, a vast number
of investigations into the loss of strength by rocks based
on the employment of the microwave energy were car-
ried out [3]. Unfortunately, the microwave-power den-
sity was low in these studies. Therefore, the heating of
samples was slow, so that the most interesting features
of the process escaped observation. All these studies
were performed with iron ores and ferrous quartzites
that exhibited noticeable inhomogeneities and pos-
sessed a large number of cracks along interfaces. In
addition, the authors of [3], strictly speaking, investi-
gated not the fracture of rocks under the action of
microwave energy, but the effect of a preliminary
microwave irradiation on the results of subsequent
grinding and mesh analysis. From this standpoint, it is
of interest to study the possibility of the fracture (but
not the loss of strength) of hard homogeneous rocks
under their rapid heating. Kimberlite was chosen as an
example of such a rock because it possesses a high
hardness and has great practical importance insofar as
it is a unique root rock that contains diamonds.

As is well known from [4], kimberlite is an ultra-
basic brecciated rock of magmatic origin and corre-
sponds to the carbonate–serpentine rock type. Unal-
tered nonserpentinous kimberlite rocks consist of 50%
or more olivine. As the basic rock-forming mineral for
deep xenolites, olivine is not only the basic fraction of
kimberlite but is also found as one of the most propa-
gated inclusions in such protomaterials as granite,
picroilmenite, etc., that are contained in kimberlites.
However, unaltered kimberlites are rather rare, due to
the fact that their intense transformations occur under
the action of hydrothermal processes. Usually, kimber-
lite is a rock of kimberlite–serpentine composition with
negligible amounts of olivine, pyroxenes, granite,
ilmenite, phlogopite, apatite, magnetite, perovskite,
chromspinelite, and other minerals. In other words,
kimberlite is a combination of a number of various
dielectrics: calcium carbonates, calcium silicates, and
oxides of iron, aluminum, magnesium, chromium, tita-
nium, and of other metals. Bound water is contained
only in phlogopite in which its fraction attains 10%.
 2005 Pleiades Publishing, Inc.
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Thus, water does not affect the fracture of kimberlite
because the content of phlogopite in it is not high.

Our experiments were carried out with kimberlite
samples taken from different diamond deposits,
namely, two in Yakutia and one near Arkhangelsk. Con-
tinuous frequency-range magnetrons with a power of
0.6 and 5 kW and operating at a frequency f = 2.45 GHz
were used as a microwave-radiation source. In order to
elevate the microwave-energy density, we used the res-
onator-type rather than waveguide-type microwave sys-
tems. This has allowed us to considerably reduce the
time of heating samples. As a heating chamber for kim-
berlite, we used a cylindrical resonator with H111-type
oscillations and a capacity-terminated cylindrical
E010-type resonator. The copper-made resonators had
high intrinsic Q factors. They were supplied with
ceramic channels for introducing and removing the
substance under study. For the stable operation of the
magnetron generator with the resonator termination,
we applied the same resonator load as in the magne-
tron-frequency stabilization system.

As a preliminary, we determined the dielectric char-
acteristics of a sample. The measurements were per-
formed by the comparative resonance method in the
reference E010 resonator. It was determined that the per-
mittivity ε = 6 and  = 0.026, where δ is the loss
angle. For different samples, the measurement accuracy
was about 20%. These results testify to the fact that
kimberlite belongs to a class of imperfect dielectrics,

and its skin-layer depth attains δ =  ≈ 60 cm.

Thus, we can expect that the bulk heating of a sample
will occur, and, therefore, we can introduce a sample of
a size 3–4 cm3 into the cylindrical H111 resonator. The
coefficient of the microwave-power transfer to a kim-
berlite sample in the case of positioning it in the elec-
tric-field maximum attains approximately 95%. This
makes it possible to heat a kimberlite sample for several
seconds at a microwave power of 0.6 kW up to temper-
atures of several hundreds of degrees Celsius.

The heating process had been accompanied by a
series of explosions, as a result of which the samples
were dispersed. It was found that Arkhangelsk kimber-
lites were grinded sufficiently well. At the same time,
Yakutian kimberlites were split into 2–4 pieces. This
can be explained by the fact that the latter samples had
a higher hardness than the former (the hardness was
7−8 in the Moos scale) and, probably, possessed a large
viscosity [5], which resulted in damping mechanical
shifts caused by heating and prohibited stresses exceed-
ing the rupture stress. Insofar as in ambient air dia-
monds begin to burn at a temperature of 850°C, it does
not seem reasonable to heat kimberlite up to tempera-
tures exceeding (300–400)°C. The experiments per-

δtan

λ
π ε1 δtan
------------------------
formed have shown that stresses arising as a result of
heating are lesser than the rupture stress. Thus, we can
fracture and grind a kimberlite sample only by the
evaporation of water contained in pores. Unfortunately,
it is difficult to realize this process because the fraction
of water in solid rocks is usually low, decreasing even
further with time. Therefore, for fracturing kimberlite,
we have used the vapor-bath method. Holding kimber-
lite samples for 1.5 h in a vapor bath significantly
improved the situation. After the microwave irradia-
tion, an Arkhangelsk kimberlite sample held in water
vapor was easily dispersed into small pieces. After self-
grinding in a centrifuge, these pieces could be trans-
formed into rough sand. It was more difficult to fracture
Yakutian kimberlites. However, it was possible to
obtain 2–4-mm pieces from them after the microwave
irradiation in the resonator, which is sufficient for
extracting diamonds from kimberlite. The situation can
be simplified provided that the newly-extracted kimber-
lite contains about 5% water.

Thus, the studies carried out have shown that rapid
microwave heating combined with the preliminary
holding of kimberlite in a vapor bath makes it possible
to fracture and grind an arbitrary solid rock. However,
from an economic point of view, the developed fracture
method yields its undoubted advantages only in the
case that a diamond-containing rock such as kimberlite
is being treated. The method is especially promising in
combination with the preliminary enrichment of kim-
berlite or in the case of the development of small-scale
setups for performing rapid analysis. The fact that the
linear-expansion coefficient of diamond is lower than
that for kimberlite by approximately one order of mag-
nitude allows us to avoid unfavorable scenarios at the
initial heating stage. The use of methods that eliminate
the mechanical fracturing and grinding of kimberlite
makes it possible to extract diamonds without any
changes in their original shape, which significantly
increases their value.

REFERENCES

1. A. N. Didenko, Microwave Energetics: Theory and
Practice (Nauka, Moscow, 2003) [in Russian].

2. A. N. Didenko, Dokl. Akad. Nauk 331, 571 (1993)
[Phys. Dokl. 38, 344 (1993)].

3. V. M. Petrov, Radioélectron. Telekommun., No. 4
(2002).

4. S. I. Kostrovskiœ, Geochemical Features of Kimberlite
Minerals (Nauka, Novosibirsk, 1986) [in Russian].

5. L. D. Landau and E. M. Lifshitz, Theory of Elasticity
(Nauka, Moscow, 1986; Pergamon, Oxford, 1986).

Translated by G. Merzon
DOKLADY PHYSICS      Vol. 50      No. 7      2005



  

Doklady Physics, Vol. 50, No. 7, 2005, pp. 351–354. Translated from Doklady Akademii Nauk, Vol. 403, No. 2, 2005, pp. 189–192.
Original Russian Text Copyright © 2005 by Ekimov, Ivanov, Pal’, Ryabinkin, Serov, Starostin, Fortov, Sadykov, Mel’nik, Presh.

                                              

TECHNICAL
PHYSICS
Behavior of the System of Diamond Particles 
with Nanometer Nickel Coating at High Pressures

and Temperatures in the Sintering Process
E. A. Ekimov1, A. S. Ivanov2, A. F. Pal’3, A. N. Ryabinkin3,*, A. O. Serov3, A. N. Starostin2, 

Academician V. E. Fortov4, R. A. Sadykov5, N. N. Mel’nik5, and A. Presh6

Received January 21, 2005
Diamond powders are usually sintered at tempera-
tures of 1500–2200°C and pressures of 6–8 GPa. Such
additions as Co and Ni, which are catalysts for the
transformation of graphite into diamond at high pres-
sures, promote the recrystallization of carbon through
the liquid phase, resulting in the formation of diamond–
diamond contacts, under conditions in which the sinter-
ing temperature is not optimal for diffusion processes
or for plastic deformation in the diamond itself [1, 2]. It
is known that the physical properties of sintered dia-
mond depend substantially on the activator concentra-
tion, because the area of diamond–diamond contacts in
the diamond matrix decreases as this concentration
increases. The production of sufficiently hard and
strong diamond compact materials at a pressure of
7.7 GPa and a temperature of 2000°C without the intro-
duction of additions or with its concentration, i.e.,
cobalt, lower than the critical concentration of 5 vol %,
appeared to be impossible even in the absence of non-
diamond carbon in the final sintered product [1]. Exper-
imental data on the sintering of diamond with low con-
tents of activators and binders are scarce due primarily
to the problem of the homogeneous introduction of
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additives to the diamond powder. The application of
new procedures, which ensure the deposition of
nanometer layers of an additive on particles of the dia-
mond powder and solve the problem of the inhomoge-
neity of the initial mixture, may allow for the produc-
tion of diamond ceramic with a diamond content of
95 vol % with high mechanical and chemical proper-
ties. The problem of the sintering of diamond with
small amounts of an activator deposited on diamond as
nanometer layers is nontrivial and requires that prelim-
inary investigations of the behavior of the diamond–
additive system be conducted at high pressures and
temperatures.

In this work, we analyze the physicochemical pro-
cesses that occur at high pressures in the system of dia-
mond particles with sizes 3–5 µm and activator concen-
trations of about 1–2 vol %, which is deposited in the
form of nanometer layers on diamond particles in a
plasma [3]. Nickel is used as the activator, because the
resulting compact materials are expected to be applied
to produce a high-pressure diamond chamber for neu-
tron diffraction studies under pressure (the neutron
absorption in Ni is one-eighth of that in Co [4]).

Using a special disposition of the electrodes of a
radio frequency discharge, we create a region in which
it is possible to confine a cloud of suspended micron
particles, i.e., a plasma–dust trap. The trap is filled with
the dust component by means of the inertial dispersion
device. Metallic nickel is deposited on suspended dia-
mond particles by means of an ion–plasma spraying
system of the magnetron type. According to spectral
analysis, the diamond powder with coating contains, in
addition to carbon, 2.5 wt % Ni, 0.3 wt % Fe,
0.018 wt % Cr, 0.05 wt % Si, 0.07 wt % Cu, 0.05 wt %
Mn, 0.03 wt % Al, and 0.03 wt % B. Scanning electron
microscopy of the nickel-coating surface shows that an
increase in the thickness of the coating from 10 to
100 nm can be accompanied by the formation of a
“fibrous” structure. Grains or fibers with a diameter of
about 10–20 nm are observed in electron-microscopy
 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Microphotographs of samples: (a) nickel-coated diamond particles, (b) 10-nm nickel coating on a diamond particle,
(c) 100-nm nickel coating on a diamond surface, and (d) microstructure of the break of the sintered compact material near the grain
joint; nickel particles are marked.
pictures. This formation occurs when the pressure of a
plasma-forming gas, argon, increases from 0.18 to
0.7 Pa. Owing to a decrease in the thermalization length
of the nickel atomic flow, a supersaturated nickel vapor
is formed and condensed, and clusters appear. Figure 1
shows the characteristic morphology of the “thin” and
“thick” nickel coatings on diamond powders.

The experiments are carried out with powders with
thin coating whose thickness is equal to about 10 nm,
as determined by transmission electron microscopy.
Diamond is sintered in a high-pressure chamber of the
toroid type [5] at a pressure of 8–9 GPa. The process of
sintering diamond is studied by analyzing the effect of
power supplied to a heater (temperature) on the phase
content and structure of samples. X-ray analysis is car-
ried out by means of a GADDS (BRUKER AXS) dif-
fractometer. Raman scattering in samples is studied by
means of a U-1000 Jobin–Yvon spectrometer. Laser
radiation with a wavelength of 488 nm is focused onto
a spot with a diameter of about 20 µm.

Figures 2 and 3 show the data of the x-ray phase
analysis and Raman spectroscopy of samples of the
initial material and sintering-produced compact mate-
rials. The sintering duration for samples corresponding
to the data presented in the figures was equal to 30 s,
with the exception of samples that were sintered at a
temperature of 2400°C. At this temperature, samples
were sintered for 2–3 and 5–6 s in order to exclude the
effect of the transformation of the graphite heater into
diamond, which proceeds very intensely for given
parameters in the zone of contact between graphite and
the container.

Analysis of the above data shows that the initial dia-
mond powder is not graphitized during the deposition
of nickel coating; i.e., the transformation of diamond
into sp2 hybridized carbon is not observed. Sintering of
diamond at 800–1000°C is accompanied by the forma-

24
2Θ Cu

Graphite NiCx

Diamond

Ni

2400°C

2000°C

1600°C

1400°C

1000°C

800°C
Ni(Nanocrystalline)

25°ë(Initial)

Intensity

28 32 36 40 44 48 52 56

Fig. 2. Results of x-ray phase analysis of samples before
and after the sintering process at a pressure of 8–9 GPa.
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tion of disordered sp2 hybridized carbon, whose pres-
ence is revealed only in Raman spectra. At a tempera-
ture of 1400°C, the formation of graphite-like carbon is
observed (Fig. 2), which is revealed in samples by x-ray
phase analysis. As is known, the pressure-induced
graphitization of diamond proceeds near pores, where
the pressure is much lower than the mean value. The
temperature of the onset of the formation of graphite-
like carbon is close to the temperature of the graphite–
nickel eutectic (~1300°ë), which indicates the pres-
ence of processes of the solution of diamond carbon in
a nickel melt and its liberation in the graphite form. We
emphasize that the initial stage of diamond graphitiza-
tion, which is revealed by Raman spectroscopy but not
by x-ray phase analysis, is also observed near 800°C in
the diamond powder at a pressure of 2 GPa in the
absence of additions [6]. One feature of graphite-like
carbon that is formed at temperatures above 1400°C is
its presence in the form of two phases with various
interlayer distances d002. Omitting details, we note that
the hypothesis of compressed graphite [7] does not
explain the appearance of sp2 graphite with two dedi-
cated interplanar distances and a regular decrease in the
interplanar distances occurring alongside an increase in
the treatment temperature. A possible hypothesis is that
an intermediate graphite-like carbon structure with
sp2−sp3 bonds and an interplanar distance smaller than
that of graphite is formed in the graphite–diamond
transformation process. The fraction of graphite-like
carbon in diamond compact materials is more than
halved as the sintering temperature increases from 1400
to 2400°C. A decrease in the fraction of nondiamond
carbon in compact materials with an increase in tem-
perature can be caused by the inverse catalytic transfor-
mation of the graphite-like phase compressed in pores
into diamond. We note that samples sintered at 2400°C
for 2–3 and 5–6 s have the same ratio of the intensities
of x-ray peaks for graphite-like carbon and diamond,
which indicates the filling of pores with graphite-like
carbon in 2–3 s at 2400°C in the presence of nickel. As
temperature in the experiment varies, the position of the
diffraction peak near 2Θ ~ 36° varies regularly along
with the nickel lines on x-ray patterns with respect to
the diamond diffraction lines. Taking into account the
observed behavior, we attribute the appearance of this
peak (2Θ ~ 36°) to the presence of the metastable phase
of the content NiCx that is formed in the nickel matrix
in the form of thin assemblies of (220) planes. The
Raman spectra of samples change substantially as the
sintering temperature increases. Only lines correspond-
ing to sp2 carbon are observed in samples for sintering
temperatures above 1000°C, and considerable lumines-
cence with a peak near 1300–1400 cm–1 is observed in
the spectra for sintering temperatures above 1400°C.
Such a change in the Raman spectra of sintered dia-
mond samples can be explained by the dominant role of
DOKLADY PHYSICS      Vol. 50      No. 7      2005
luminescence of a phase that is formed at temperatures
above 1400°C on the basis of both sp2–sp3 carbon and
plastically deformed diamond [8]. As follows from
analysis of x-ray patterns (Fig. 2) and electron micro-
scopic studies (Fig. 1d) of samples, nanosize nickel
deposited on the surface of diamond particles is recrys-
tallized in the process of thermobaric treatment, result-
ing in the formation of particles smaller than 200 nm
that are uniformly distributed over the volume of the
diamond compact material. We attribute the formation
of spherical nickel particles to the tendency to the
reduction of surface energy that is displayed by the sys-
tem at all stages in the formation of the microstructure
of the compact material.

Thus, 10-nm nickel coating has been deposited on
diamond particles without the formation of sp2 carbon
in the final product by means of plasma–dust technol-
ogy. During the sintering process of the composite
powder under pressure, the recrystallization of nickel is
observed over the entire temperature range under inves-
tigation. The graphitization of diamond in pores of the
diamond compact material begins with the formation of
disordered sp2 carbon at temperatures below 800°C,
whereas the graphite-like structure of nondiamond car-
bon is formed at temperatures above 1400°C. It has
been found that the fraction of nondiamond carbon in
diamond compact materials decreases and the fraction
of graphite-like carbon with a low interplanar distance
increases correspondingly as the treatment temperature
increases to 2400°C.
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ing sintering temperature.
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INTRODUCTION

The wide application of digital methods for the for-
mation and processing of radar signals has stimulated
the development of problems associated with the syn-
thesis and analysis of discretely coded signals. In order
to increase the reliability of extracting weak signals
against the background of intense noise, sounding sig-
nals of a complicated shape are employed. In this case,
to satisfy the requirements of modern radar stations
they should possess uncertainty functions of a certain
form and provide a low level of side lobes, as well as a
high resolution with respect to both the time delay and
frequency of signals [1]. To ensure the necessary design
requirements for radar stations, the method of weight
processing is widely exploited. The theory of atomic
functions [2–6], which is applied for the first time in
solving the formulated problem, represents one prom-
ising method in this direction.

CONSTRUCTING 
THE UNCERTAINTY FUNCTION

Narrow-band signals conventionally used in radar
applications can be represented in the form

u(t) = Um0(t)exp[j(ω0t + jϕ(t))] = Um(t)exp(jω0t), (1)

where Um(t) = Um0(t)exp[jϕ(t)] is the complex-valued
modulating function, otherwise known as the complex
signal envelope, which is determined by the form and
parameters of the modulation, and ω0 is the mean value
of the sounding-signal frequency. For the signal u(t),
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the two-dimensional correlation function is given by
the correlation integral

(2)

The modulus of the normalized two-dimensional
correlation function acting as the uncertainty function
for a sounding signal is denoted as χ(τ, Ω) = |ρ(τ, Ω)|,
where ρ(τ, Ω) is the normalized two-dimensional cor-
relation function. This function is widely used in the
analysis of sounding-signal properties. In the case of
optimal processing, the relief of the uncertainty func-
tion for a sounding signal makes it possible to estimate
the features of the signal. For example, the sharpness of
the basic maximum testifies to the possibility of the pre-
cise measurement of the distance (tR) and velocity (Vr)
or of the resolution in the case of observing closely
located goals. The existence of additional relief max-
ima of the uncertainty function of a sounding signal
indicates the possible ambiguity of measurement
results or the masking of a weak reflected signal by side
lobes of the uncertainty function of an intense signal.

DISCRETELY CODED SIGNALS

Discretely coded signals can be written out in an
analytical form as

(3)

Here, ai, fi, and ϕi are the code-modulation parameters
for the sequence {τi} of discrete elements τi , which can
contain codes {ai, fi, ϕi}; i = 1, 2, …, N is the ordering
number of a discrete element of the code sequence; N is

Rm τ Ω,( ) Um t( )Um* t τ+( ) jΩt–( )exp t.d
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




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=
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the number of discrete elements in the signal under con-
sideration; Umi(t) is the standard-amplitude pulse of a
duration τk (duration of a code element) so that

(4)

In this case, the signal duration is Ts = Nτk. The com-
plex envelope of a complicated signal discretely coded
over frequency can be represented in the form

(5)

Here, An is the amplitude of a partial rectangular pulse,
ϕn is the signal initial phase, fn is the frequency-time
code given as a numerical sequence  of N nonrecur-

rent integers, fn = ∆f ,  =  – 1, and N is the
code dimension. The uncertainty function of a signal is
the modulus of its self-correlation integral

(6)

where E is the signal total energy. Assuming that the
initial phase ϕn is zero, we arrive at the relationship

(7)

Performing certain mathematical transformations of
phase multipliers, we then obtain the complete expres-
sion for the uncertainty function of a signal discretely
coded over frequency

(8)
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where

Thus, the features of the uncertainty function of an
amplitude-weighted signal discretely coded over fre-
quency are determined by two data bases, namely, those
of the frequency-code  and weight An . The algo-
rithm for obtaining [An] consists in the partitioning of
the segment x = [–1, 1] into N – 1 elementary intervals

∆x = xi + 1 – xi = . The values of the weight func-

tion at the ends of the interval are weights of discrete
components An = W(xn) for a signal discretely coded
over frequency, where xn = –1 + ∆x. For a periodic
phase-manipulated signal (0, π), the two-dimensional
correlated function at times that are multiples of the ele-
mentary-pulse duration is

(9)

Here,  τ  and  f  are the deviations of the delay and of the
Doppler shift for the reflected signal from the delay and
the frequency shift of the reference oscillation, respec-
tively; 
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and the periodicity multiplier. The two-dimensional
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correlation function for one period of a phase-manipu-
lated signal is of the form

(10)

where  is the time-delay detuning expressed in terms

of fractions of the period, and  is the frequency

detuning expressed in fractions of the reciprocal dura-
tion of the period.

ANALYSIS OF THE RESULTS 
OF A NUMERICAL EXPERIMENT

We now consider the application of Kravchenko–
Rvachev atomic functions [2–5] as weight functions
(windows) in the formation of the vector [An]. For com-
parison, we take the cosine function on a pedestal

(11)

where the parameter p [6] is chosen to be equal to 0.3,
this choice corresponding to the best reduction
(−32 dB) of the side-lobe level over time delay. In
accordance with [6], the side-lobe level over time delay
in the case of the rectangular envelope (p = 1) is –14 dB.
With the variation of the parameter p from 1 to 0.3, the
side-lobe level over frequency increases from –13 to
−8 dB. The expansion coefficient Kp(τ) of the main lobe
over time delay is elevated by a factor of 1.9, whereas
the expansion coefficient Kp(Ω) over frequency is con-
stant and equals 1. The dispersion of the signal energy
spectrum in the case of a rectangular envelope is
∆W 2 = 0, and the root-mean-square of the signal time
duration is ∆T 2 = 13.1595. For the cosine function on a
pedestal and p = 0.3, the following values were
obtained: ∆W 2 = 1.8045 and ∆T 2 = 18.3692.

Example 1. We now analyze the application of the
atomic function up(x). The side-lobe levels over time
delay and over frequency attain, respectively, –29 dB
(which approaches the best result for the cosine func-
tion on a pedestal) and –6 dB. The expansion coeffi-
cient for the main lobe is Kp(τ) = 2.8, ∆W 2 = 4.0892,
and ∆T 2 = 2.8936.

Example 2. Using the atomic function fupn(x), we
now determine the dependence of the side-lobe level
and the expansion coefficient of the main lobe on the
parameter n. The best value of the weight function
fup(x) for reducing the side-lobe level over the time
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delay is n = 10. The use of the atomic function fup10(x)
to form a weight sequence makes it possible to reduce
the side-lobe level to –32 dB. In this case, the first side-
lobe level over frequency is elevated by 4 dB and attains
–11 dB. At the same time, the resolution of the dis-
cretely coded frequency signal over time delay (dis-
tance) becomes worse (as compared to an unweighted
signal) by a factor of 1.4, whereas it remains invariable
over frequency (velocity).

Example 3. We now determine the dependences of
the side-lobe level and the expansion coefficient for the
main lobe on the parameter a of the atomic function
ha(x). With a rise in the parameter a, the weight function
approaches a rectangular function, which allows us to
find the optimal relation for the side-lobe level over
time delay, frequency, and resolution. For example,
employing the function h2.1(x) makes it possible to
lower the side-lobe level to –22.5 dB, the side-lobe
level over frequency being –9.5 dB, and the resolution
over time delay becoming worse by a factor of 1.37.

Example 4. We study here the weight function
(window) of the parabolic shape

W1(x) = 1 – (1 – ∆)2t2   for   ∆ = 0.5.

The side-lobe level over time delay attains –32 dB. This
result can be compared with physical parameters of the
cosine function on a pedestal and with the atomic func-
tion fup10(x). In the given case, the side-lobe level over
frequency is –7.1 dB, and the resolution with respect to
time delay for a signal discretely coded over frequency
becomes worse by a factor of 2.1. The dispersion of the
signal energy spectrum in the case of a rectangular
envelope is ∆W2 = 2.5, and the root-mean-square value
for the signal time duration is ∆T2 = 5.6398. In the fig-
ure, the cross sections of the uncertainty function in the
case of a signal discretely coded over frequency for
optimal weight functions (windows) of the rectangular,
cosine, as well as the Kravchenko–Rvachev [fup10(x)
and [h2.1(x)] functions, are presented. As follows from
Table 1, in the case of the employment of the fupn(x)
Kravchenko–Rvachev atomic function, the dispersion
of the energy spectrum is lower by a factor of approxi-
mately 8–9 than the analogous physical characteristics
in the case of the cosine function on a pedestal. The
root-mean-square of the signal time duration also dif-
fers by a factor of 1.9 from the same physical character-
istics for the weight functions in the case of the cosine
function on a pedestal. The spectral characteristics of
the ha(x) Kravchenko–Rvachev function vary in the fol-
lowing manner: for this atomic function, the dispersion
of the energy spectrum is higher by a factor of 2.2.
However, for the root-mean-square characteristics of
the signal time duration, its value is smaller by a factor
of approximately 5.5 than that in the case of the cosine
function on a pedestal.

Example 5. We now analyze the processing of a
phase-manipulated signal. To this end, we estimate the



358 KRAVCHENKO et al.
–0.1

(a)

0

0.1

0.2

–0.2

(b)

–0.1

–0.1

(c)

0 0.1 0.2–0.2

0

0.1

0.2

–0.2
–0.1

(d)

0 0.1 0.2–0.2

Fig. 1. Cross sections of the uncertainty function in the [τ, Ω] plane for the envelope: (a) of rectangular shape; (b) of cosine shape;
(c) in the form of the Kravchenko–Rvachev function fup10(x); and (d) in the form of the Kravchenko–Rvachev function h2.1(x).
side-lobe level in the case of a nonzero detuning over
frequency and among M-sequences of the same length
N = 127. This ensures the necessary bandwidth at a
given resolution. The minimum of the sum of side lobes
over power can serve as a quality criterion. The values
of the sequence terms were calculated according to the
recurrence formula

qn = k1qn – 1 + k2qn – 2 + … + k7qn – 7

(summation over modulus 2).
For each sequence, we found the phase-manipulated

signal corresponding to one period θn = (–1 . We con-
sider the M sequence 3 for which the coefficients equal
0, 0, 0, 0, 0, 1, 1. From the standpoint of code forma-
tion, this sequence is the simplest (only one summation
over modulus 2 is required) but has a high side-lobe
level. We study a two-dimensional correlation function
of form (9) for a standard phase-manipulated signal. In
the basic cross section (for k = 0), the function has the

)
qn
Table 1.  Values of the first side-lobe level and of the expansion coefficient Kp(τ) for the optimal weight functions (windows)

Form of the envelope Side-lobe level
over τ, dB

Side-lobe level
over Ω, dB ∆W2 ∆T2 Kp(τ)

p + (1 – p)cosn , p = 0.3 –32 –8 1.8045 18.3692 1.9000

1 – (1 – ∆)2t2, ∆ = 0.5 –32 –7.1 2.5000 5.6398 2.0710

up(x) –29 –6 4.0892 2.8936 2.8000

fupn(x) for n = 10 –32 –10.4 0.2600 9.9839 1.3450

ha(x) for a = 2.1 –22 –9.34 3.9020 3.1509 1.3750

πx
2

------
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form . In side lobes (for k = 0), this function

increases from  and attains its maximum between

m = 10 and m = 20; it further oscillates about the value

of . The curves converge to the value of 0.0078 at

m = 20. Their monotonic increase between m = 0 and
m = 10 is violated only for low lobes. Therefore, the rel-
ative lobe size is characterized by the values in one
cross section of the time axis, e.g., for m = 10. A high
value of the side-lobe level, equal to 0.0305, is
observed for k = 7. For weight functions constructed on
the basis of atomic functions the characteristics of a
phase-manipulated signal are shown in Table 2. In the
case of using the weight function (window) in the form

W1(x) = 1 – (1 – ∆) × 2t2 (∆ = 0.5),

we obtain that the maximum value of a side lobe is
0.0058. It is worth comparing this result with the
numerical data obtained for the atomic function fupn(x)
and uncertainty function H(x). The mean value near
which all the curves oscillate is also comparable with

x2sin

x2
------------

1

1272
-----------

1
127
---------

Table 2.  Values of the first side-lobe level and of the expansion
coefficient Kp(τ) for the optimal weight functions (windows)

Weight function Side-lobe level Kav Kp

– 0.0305 0.0078 1.0000

H(x) for p = 0.1 0.0063 0.0042 1.4250

W1(x) for ∆ = 0.5 0.0058 0.0043 1.4417

fupn(x) for n = 3 0.0052 0.0042 1.3725

ha(x) for a = 2.1 0.0137 0.0063 1.1325
DOKLADY PHYSICS      Vol. 50      No. 7      2005
the above-listed functions. However, an expansion of
the main lobe by a factor of 1.4417 takes place.

CONCLUSIONS

The calculation results obtained for the uncertainty
function of discretely coded signals at zero Doppler
shift of the frequency and zero time-delay in the case of
different physical parameters of Kravchenko–Rvachev
weight functions were analyzed. The analysis has
shown that a significant decrease occurs in the side-
lobe level for the uncertainty function at a high resolu-
tion over both time delay and frequency. This approach
makes it possible to elevate the reliability of detecting
weak signals against the background of intense noise
and demonstrates the efficiency of the novel-class
weight functions in problems associated with the pro-
cessing of sounding signals.
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1. According to the main concept of physical meso-
mechanics, a deformable solid is a multilevel system in
which a plastic flow is self-consistently developed at
the micro-, meso-, and macro-levels [1]. Its surface
layer is an autonomous mesoscopic level of structural
deformation, where mesoscopic mechanisms of the
plastic flow develop much more freely than in the mate-
rial bulk [2]. The motion of dislocations at the
microlevel plays a decisive role in the active loading of
polycrystals at room temperature. All processes at
mesoscopic structural levels are developed self-consis-
tently with the dislocation deformation at the
microlevel. This circumstance hinders the development
and manifestation of these mechanisms at mesolevels.

The intense development of mesoscopic deforma-
tion mechanisms in the surface layers can be expected
in cyclically loaded polycrystals below the macro-
scopic yield point. The specificity of the crystal struc-
ture of a weakened surface layer [2, 3] is responsible for
the plastic flow in this layer when the material bulk is
loaded yet below the yield point [4]. The surface–bulk
matching causes the surface corrugation effect, result-
ing in the appearance of stress concentrators in the
regions of the local curvature of the corrugation [5].
The relaxation of these stress concentrators through the
generation of dislocations in an elastically deformed
substrate is hindered. For this reason, an increase in the
number N of loading cycles necessarily leads to the
continuous growth of the stress concentrators in the
surface layer. As a consequence, the excess of deforma-
tion defects in surface layers increases continuously,
exceeding their density in the material bulk by one or
two orders of magnitude [6, 7]. Owing to this behavior,
deformation mesolevels are involved in the plastic flow.

The character and kinetics of the development of
mesoscopic levels of structural deformation necessarily
depend on the structure-phase state of the surface layer,
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the degree of grain-boundary sliding in this layer, and
the shear stability level of its crystal lattice and of the
whole internal structure. In this work, the role of meso-
scopic mechanisms of cyclic deformation in the surface
layers of polycrystals with the strongly varied parame-
ters listed above in presence of fatigue failure is ana-
lyzed.

2. We have studied polycrystals of titanium, alumi-
num, and lead and its alloys. They have strongly differ-
ent homological temperatures. Aluminum and lead are
monomorphic metals with the same (fcc) crystal lattice.
A fundamental difference between these polycrystals is
that of the shear-stability degrees of their internal struc-
tures. The shear stability of the internal structure of a
polycrystal is qualitatively expressed in values of its
shear modulus G, stacking fault energy γ [8, 9] (see
table), and grain-boundary sliding degree.

Lead has comparatively low G and γ values, while
grain boundary sliding is easily developed in this poly-
crystal at 20°C [10]. These properties indicate that the
shear stability of the internal structure of lead is low.
Aluminum has high shear stability, which is manifested
in high G and γ values (see table) and in the absence of
grain boundary sliding at 20°C [11]. Titanium has a
very high melting temperature and very low stacking
fault energy. It qualitatively differs from lead and alu-
minum in the crystal lattice type (α-Ti has a hexagonal
close packed lattice) and by its manifestation of poly-
morphism.

Flat samples have the shape of a dumbbell with a
40 × 8 × 1 mm working part. Since loading is per-
formed by alternating bending, only the surface layers
of a sample are primarily deformed. Tests are carried
out in the multicycle fatigue regime. Fatigue is qua-
ntitatively characterized by the number of cycles to fail-
ure Nf . Extended patterns of the deformation of the sur-
face layer at the mesolevel are obtained by scanning the
optical images of the deformed-sample surface.

3. Based on the theory of a vortex mechanical field
in a deformed solid [13], in [12] a synergetic criterion
of plasticity was formulated as the equality of the curls
© 2005 Pleiades Publishing, Inc.
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The composition and parameters of the materials under investigation: the homological test temperature Ttest /Tmelt , the shear
modulus G, the stacking fault energy γ, the bending amplitude A, the number Nf of the loading cycles to failure, and the mean
diameter d of the elements of the mesosubstructure II

Composition,
wt % Ttest /Tmelt , K G, GPa γ, mJ/m2 A, mm Nf × 10–6 d, mm

Pb 0.5 5.6 50 0.5 0.15 0.5

Pb–1.9 Sn 0.5 – – 0.5 0.07 1.0

Pb–0.03 Te 0.5 – – 0.5 0.75 0.38

Al A6 0.3 24.5 200–280 1.0 7.6 0.2

Ti BT1-0 0.2 39.4 10 2.5 does not break at N = 16.7 × 106 0.05
of the primary sliding and accommodation secondary
flows of all types of deformation defects:

curlSαµ = V(curlRα)µ, (1)

where V =  is the complete deformation rate. Equa-

tion (1) physically means that, in a material under
deformation, there is a volume at which the total curl of
the flows of deformation defects is equal to zero:

(2)

where Jk is the deformation defect flow at the kth struc-
tural level. The linear size l of this volume characterizes
the upper structural deformation level that must be
included in the description of the solid under deforma-
tion in the multilevel formulation. In order to satisfy
condition (2), a mesosubstructure whose scale is deter-
mined by the parameter l must be formed in the
deformed material. The self-consistent deformation of
a mesovolume at scale l is accommodated by its frag-
mentation at lower mesolevels.

Structural investigations have completely corrobo-
rated this statement. It has been shown that a disori-
ented mesosubstructure II (according to the classifica-
tion given in [1]), where the parameter l may vary
between the mean size of grains and the sample width,
is formed on the sample surface in dependence on the
shear stability of the internal structure of the polycrys-
tal subjected to alternating bending. The character and
scale of the mesosubstructure II determines the fatigue
failure of the polycrystal. Let us discuss the results for
the materials under consideration.

Lead and its alloys. The development of deforma-
tion at the mesolevel is most pronounced in pure lead,
because the shear stability of its internal structure is low
and the homological temperature of the test is high.
This development is manifested in the formation of the
large-block mesosubstructure II (see Fig. 1a). The
mechanism of its formation is based on a single sliding

dε
dt
-----

curlJk

k 1=

N

∑ 0,=
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in grains that is accompanied by their material rotation
as a whole. This rotation initiates intense grain bound-
ary sliding at the grain boundary. In Fig. 1a, such grain
boundary sliding is clearly seen at the AB boundary of
grains 1 and 2 by the break of special marks at the place
of their intersection with the boundary. The constrained
character of grain boundary sliding is responsible for
the appearance of a stress mesoconcentrator at the point
of bending of the boundary (point ë). As the number of
loading cycles increases, a disclination is formed at this
region of the local bending of the grain boundary; this
disclination initiates the propagation of localized trans-
lational–rotational deformation in grain 1 in the direc-
tion of maximum tangential stresses (τmax) of the meso-
band CDE. As the number of loading cycles increases,
the length of the mesoband increases proportionally to
the sliding degree along the boundary AB. This behav-
ior indicates that the source C of localized deformation
is continuously fed by grain-boundary flows of defor-
mation defects and, hence, by the primary sliding flows.
In other words, intragrain translational flows generate
particular disclinations as accommodation rotational
deformation modes.

For lead as a shear-unstable material, the develop-
ment of numerous localized-deformation mesobands is
typical, which propagate in the conjugate directions
τmax through many grains. The self-organization of
these bands leads to the formation of the block mesos-
ubstructure II, each element of which includes several
initial grains of the polycrystal. When this process ends
over the entire width of the sample, accommodation
processes are further developed via an increase in the
rotations of the material inside the mesobands under
consideration. This development gradually leads to the
nucleation and propagation of fatigue cracks in these
mesobands, and this process ends with the failure of the
sample over the boundaries of blocks at a compara-
tively small number of loading cycles (see table).

Special doping of lead with tellurium, which forms
a chemical compound with the former, results in an
increase in the shear stability and suppression of grain
boundary sliding. As a result, instead of the block
mesosubstructure II, a similar substructure is formed in
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Fig. 1. (a) Surface mesosubstructure II: blocks in lead for N = 7.5 × 104 cycles as shown with a magnification of 30× and (b) loop
conglomerates in Pb–Te alloy for N = 6.5 × 104 cycles as shown with a magnification of 100x; the digits indicate the central parts
of the conglomerates.
the Pb–Te alloy in the form of loops of self-consistently
deformed grains (see Fig. 1b). Such a doping of lead
results in a several-fold increase in the number of cycles
to failure (see table). In contrast, the doping of lead
with a eutectic tin addition, which decreases the atomic
bonding forces in the crystal, reduces the shear stability
of the internal structure of the polycrystal. This reduc-
tion is accompanied by a significant decrease in the
number of cycles to failure.

The size distribution of cracks at various fatigue
stages is analyzed for lead and its alloys. Change in the
strength σb is investigated as a function of the number
of cycles N of the preliminary alternating bending. As
is seen in Fig. 2, the first stage of the cyclic loading is
DOKLADY PHYSICS      Vol. 50      No. 7      2005
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accompanied by a monotonic decrease in σb , which
ends with a sharp drop in the material strength at N ~
90% Nf. The instant of the transition to the sharp drop
of σb is associated with the completion of the formation
of the mesosubstructure II over the entire width of the
sample. This experimental observation conclusively
indicates that the character and rate of the development
of the mesosubstructure II in the surface layer of the
cyclically loaded polycrystal are important criteria for
estimating its fatigue strength and number of cycles to
failure.

Aluminum. The high shear stability of the internal
structure of aluminum is characterized by high stability
under cyclic loading: for doubled bending amplitude, it
is by one and a half orders of magnitude higher than the
value for lead (see table). Intragrain deformation in alu-
minum also occurs via a single sliding, which is accom-
panied by the material rotation of grains. As a result of
the matching of adjacent strongly deformed grains,
long-range stress mesoconcentrators arise at their
boundaries. The interaction between these mesocon-
centrators in the complete absence of grain boundary
sliding leads to the step-by-step self-consistent arrange-
ment of active adjacent grains to deformation loop con-
glomerates that form the mesosubstructure II. In terms
of the character and sizes of elements of this substruc-
ture, aluminum is similar to the Pb–Te alloy. However,
their formation in aluminum requires many more load-
ing cycles.

A typical example of such a substructure at the late
fatigue stage is shown in Fig. 3. In this figure, the very
strong localization that is a feature of the cyclic defor-
mation is manifested. Some strongly deformed adja-
cent grains are arranged step-by-step in closed loop
conglomerates according to Eq. (2). Their central parts
are slightly deformed grains marked by digits.

As conglomerates of self-consistently deformed
grains are formed, the role of the structural deformation
element gradually passes from the initial grains of the
polycrystal to large-scale elements of the mesosub-
structure II. A sharp increase in the size of the structural
deformation elements is naturally accompanied by a
considerable increase in the stress-mesoconcentrator
level at their boundaries. The relaxation of these
stresses first occurs due to the fragmentation of the
material inside the deformation conglomerates of
grains. When the possibility of fragmentation as a rota-
tion-type accommodation process is exhausted, the
rotational relaxation mechanism of crack formation is
manifested. This mechanism ends with the fatigue fail-
ure of aluminum at a comparatively large number of
loading cycles.

Commercial titanium. Analysis of the titanium
surface mesosubstructure that is formed during alter-
nating bending reveals the anomalously low shear sta-
bility of the internal structure of its surface layer. This
low stability is manifested in the formation of a multi-
DOKLADY PHYSICS      Vol. 50      No. 7      2005
level mesosubstructure on the surface of recrystallized
titanium: the formation of a surface corrugation,
motion of grains as a whole system with anomalously
developed grain boundary sliding at room temperature,
the self-organization of extruded grains in loop con-
glomerates at the centers of which the intrusion of
grains is developed (see Fig. 4). The size of such loops
is 40–60 µm, which is equal to 1/4 and 1/10 of their
diameter in aluminum and Pb–Te alloy, respectively.
The shear moduli of these materials are in the same
inverse relation. This correlation is not surprising,
because the formation of the mesosubstructure in the
form of loops is associated with the matching of plasti-
cally deformed surface grains with the elastically
loaded substrate. This matching determines the satis-
faction of condition (2).

The deformation profile determined by a nano-
profilometer for the titanium sample surface after

2
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4 6 8 10 12
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1.5
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N × 10–4

σb, MPa

Fig. 2. Breaking stress σb of lead vs. the number N of cycles
of preliminary alternating bending.

1

2

3

4

5

Fig. 3. Mesosubstructure II on the aluminum surface for
N = 5 × 106 cycles as shown with a magnification of 100×.
The digits indicate the centers of the conglomerates of self-
consistently deformed grains. The arrows show the shear
direction in conglomerate grains.
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Fig. 4. (a) Surface mesosubstructure II: commercial titanium for N = 15 × 106 cycles as shown with a magnification of 350×,
(b) surface morphology, and (c) surface profile pattern in the AB section.
15 × 106 loading cycles is a corrugation with a wave-
length of about 150 µm and a height of 0.4 µm. The sur-
face corrugation effect ensures the high degree of the
reversible inelastic deformation of the sample sub-
jected to alternating bending. All these properties pro-
vide for a very large number of cycles to failure for tita-
nium. This number for titanium subjected to bending
with even much larger amplitude is several times larger
than that for aluminum (see table). This property is also
ensured by the strong bonding forces in the crystal lat-
tice of titanium.

4. The formation of the mesosubstructure in the sur-
face layers of polycrystals has the above properties
exclusively because the “surface layer–substrate” sys-
tem is multilevel. When these polycrystals are sub-
jected to alternating bending below the yield point, con-
siderable residual strain is accumulated in the surface
layer. The matching of the plastically deformed surface
layer with the elastically stressed substrate naturally
leads to the appearance of a residual surface corruga-
tion. Thus, when a polycrystal is subjected to alternat-
ing bending below its macroscopic yield point, the vir-
tual “plastically deformed surface layer–elastically
deformed substrate” boundary should be brought into
consideration.

A complete and adequate theory of such multilevel
processes in the surface layers of deformable solids
does not exist as of yet. However, the individual
mesolevel mechanisms considered above were satisfac-
torily described in [14].

Rotational deformation modes associated with
deformation along a closed contour in the loops of the
surface mesosubstructure give rise to the nucleation of
fatigue cracks in the inner loop volumes. These modes
are also associated with the incompatibility between
the turn of the loop of plastically deformed surface
grains and the elastically deformed substrate. In view of
this circumstance, we note that a close correlation is
observed between the size of blocks or loops in the
mesosubstructure of the surface layer and the shear
modulus of the substrate material. By changing the
state of the surface layer, one can significantly vary the
scale of the surface mesosubstructure and thereby the
number of cycles to failure of the material.
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The goal of this paper is to study microscopic-scale
(0.1–1 µm) features of shock-wave propagation
through various materials that are inhomogeneous in
their initial state. Modern methods that have been
developed for the continuous measurement of both the
mechanical stresses and velocity of a substance in
shock-wave experiments provide for spatial resolution
at a level of 10 µm [1]. In the present study, we propose
a new approach to the investigation of microscopic fea-
tures in the action of shock waves. The essence of this
approach consists in the analysis of electron-micros-
copy patterns for a deformed microstructure of inhomo-
geneous materials loaded with shock waves. In this
case, inhomogeneities existing in the material are used
as a natural reference grid, which makes it possible to
investigate microscopic features of strain localization
with the subsequent reconstruction of shock-wave
motion at the microscopic level. The approach used
ensures a spatial resolution higher by two orders of
magnitude than that attained in applying methods of the
direct experimental observation of shock-wave pro-
cesses.

As an initial material, we employed 40Kh steel con-
sisting of 0.4% carbon and 1.1% chromium in the initial
ferrite–perlite state. The perlite components of steel are
colonies of alternating parallel plates of ferrite and
cementite, which are variously oriented in space. The
thicknesses of cementite and ferrite plates were, on
average, approximately 20 nm and 130 nm, respec-
tively. The perlite structure entirely corresponded to the
goal formulated in the study. Cementite is a brittle and
hard perlite component, whereas ferrite is a soft com-
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ponent. Correspondingly, the ferrite strain in shock
waves occurs owing to plastic flow, whereas the
cementite strain is predominantly realized through brit-
tle fragmentation. The combination of the physical
properties and features of the microstructure for the
given material makes it possible to use it as a model
material, which is promising from the standpoint of the
possible generalization of the results obtained to the
entire class of solid media with ordered microscopic
inhomogeneities.

A 40Kh-steel solid ball-shaped sample 40 mm in
diameter was subjected to the action of a quasi-spheri-
cal shock wave, with the pressure rise near the focusing
center exceeding 200GPa [2–4]. The sample was cov-
ered by a 20-mm explosive layer and was placed into a
massive metallic case that prevented the fracture of the
ball [5]. At the charge surface, there were detonators
that made it possible to simultaneously blast the explo-
sive at several initiation points. A converging quasi-
spherical shock wave was excited in the sample mate-
rial, the pressure being increased as the ball center was
approached. The outer part of the ball, having preserved
the ferrite-perlite structure, was then investigated by the
transmission electron-microscopy method. At the
microscopic level, the curvature of the shock-wave
front, which had been associated with the loading
geometry, was insignificant, because the front curvature
radius had exceeded by four orders of magnitude the
characteristic sizes of the sample domains under study.
In these conditions, the wave should be considered as a
plane one. At the same time, the loading scheme used
has allowed us to obtain a wide-range spatial pressure
scan within the same sample. Thus, we have managed
to study the domains that are most convenient for the
attainment of our goals within the framework of a sin-
gle experiment. 

Figure 1 exhibits a series of electron-microscopy
patterns (panorama) of perlite colonies in a 40-Kh-steel
sample subjected to shock-wave loading. Changes in
the material microstructure (initial stages of spheroidiz-
ing cementite and recrystallization processes in ferrite in
© 2005 Pleiades Publishing, Inc.
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A

C
B

D

1 µm

Fig. 1. Microstructure of perlite component in 40Kh steel after shock-wave loading. Line AB corresponds to the calculated direction
of maximum tangential stresses. Line CD denotes the position of the shock-wave front. Traces of spheroidization are observed in
cementite plates oriented along the maximum tangential stresses.
the presence of traces of plastic strain) testify to the fact
that the residual temperature attained 500–700°C [6].
Correspondingly, the pressure in the shock wave was
about 75 GPa [2–4]. The average distance between
cementite plates (structure period) in the perlite colo-
nies was ~150 nm.

As is seen from Fig. 1, the cementite plates are shat-
tered. In this case, the displacement directions for sep-
arate fragments are easily traced, and initial plate con-
tours can be reconstructed. This makes it possible to
consider the initial perlite component of steel as a nat-
ural reference grid whose distortions allow us to study
the microscopic features of material strain.

For investigating microscopic-strain fluctuations, a
computer program package was developed that is capa-
ble of digitizing electron-microscopy perlite images
with the subsequent statistical and mathematical pro-
cessing data obtained. An example of a digitized image
for a segment of a perlite colony is presented in Fig. 2.
The straight segments indicate displacements of
cementite plates. The statistical analysis performed for
the panorama (Fig. 1) has led to the following results.
In the Cartesian coordinate system associated with the
microstructure (Fig. 1), the vector 〈∆e〉  of the fragment
mean displacement is

〈∆e〉  = (44 ± 6, 36 ± 3) nm. 

In Fig. 1, the direction corresponding to this vector is
marked by line AB. The standard deviation of the dis-
placements from the mean value is

S = (65, 30) nm,
DOKLADY PHYSICS      Vol. 50      No. 7      2005
i.e., the strain essentially fluctuates.1 
The direction of vector 〈∆e〉  coincides with that of

the material-shear strain, which corresponds to the
maximum tangential stresses in the shock wave. Corre-
spondingly, the shock-wave front is inclined at an angle
of 45° to vector 〈∆e〉  (Fig. 1). This result is ambiguous
insofar as there exist two equivalent positions of the
shock wave with respect to vector 〈∆e〉 . However, the
values of strain fluctuations in various directions must
be different because the loading is anisotropic: there
exists a preferred direction along which the shock wave
propagates. Therefore, the orientation of the front with
respect to the deformed microstructure (Fig. 1) can be
determined by the other independent method based on
the differences (associated with the anisotropy of the
loading) in the projections of the displacement vector
onto various directions. This allows us, first of all, to
find which of the two equivalent positions of the shock-
wave front with respect to vector 〈∆e〉  is realized. Sec-
ond, it is necessary to verify the accuracy of the pro-
posed method for analysis of the deformed microstruc-
ture. The coincidence of the results obtained by the two
independent methods confirms the accuracy of the
results.

The displacements of cementite-plate fragments
describe the strain corresponding to the inhomogeneity
of the mass velocity in the shock wave. Along the direc-
tion perpendicular to the shock-wave front, the mass-

1 Nevertheless, the error d〈∆e〉 in the determination of the quantity
〈∆e〉  is small. For the given number N = 500 of measurements
(number of digitized fragment-displacement vectors) and the cor-
responding Student’s coefficient t ≈ 2, we have 

d ∆e〈 〉 t
1
N
----S (6,  3)  nm . ≈  =           
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0.5 µm

Fig. 2. A part of the perlite-structure image subjected to computer digitization with subsequent statistical treatment. Displacements
of cementite-plate fragments are marked by short segments.
                
velocity gradient must be low and, correspondingly,
strain fluctuations must be at their lowest. Otherwise,
this could lead to the presence in the sample of domains
of local compression and rarefaction of the material, the
appearance of which is accompanied by significant
energy expenditures. Insofar as the strain causes a sig-
nificant variation in the specific volume, this strain can-
not be elastically fixed in residual microstructure
changes. Thus, the displacements of cementite-plate
fragments along the direction perpendicular to the
shock-wave front are minimal.

The mass velocity may significantly vary along the
direction parallel to the shock-wave front. In this case,
the material strain is attained by shear and is accompa-
nied by lower energy expenditures. This strain is fixed
in the sample microstructure, and the corresponding
displacements of cementite-plate fragments are maxi-
mal.

We now construct the angular dependence f(α) for
the rms projection of strain fluctuations onto the given
direction lα = (cosα, sinα), where α is the polar angle
that we (for the sake of obviousness) count off counter-
clockwise from the direction of the maximum tangent-
stress vector 〈∆e〉. Let ∆e(Ri) be the displacement vec-
tor located at the point Ri of the microstructure pre-
sented in Figs. 1 and 2. In this case,

f α( ) 1
N
---- ∆e Ri( ) lα,( )2

i 1=

N

∑ .=

                           

The shape of the dependence f(α) is shown in Fig. 3.
For α ≈ 45° and α ≈ 135°, the function f(α) has its min-
imum and maximum, respectively. This implies that the
direction perpendicular to the shock-wave front corre-
sponds to α ≈ 45°, and the front position is the same as
is shown in Fig. 1.

It is worth mentioning that, by virtue of the local
character of the transmission electron-microscopy
method, the position of the shock-wave front with
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Fig. 3. Angular dependence f(α) of rms strain fluctuations.
For α ≈ 45° and 135°, the minimum and maximum of the
function f(α) are observed. These extrema correspond to the
shock-wave front position shown in Fig. 1.
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respect to the microstructure shown in Fig. 1 was not
known a priori. It was only known that the microstruc-
ture panorama had been obtained in the plane perpen-
dicular to the surface of the shock-wave front. Thus, the
statistical analysis of strain microscopic fluctuations
made it possible to associate the local microstructure
with the geometry of the shock-wave experiment.

As is seen from Fig. 1, the partial spheroidization of
cementite has occurred in perlite colonies located in
parallel to the vector 〈∆e〉 . Fragments of the plates ori-
ented in a proper way are of a rounded shape, whereas
the plates aligned along other directions exhibit only
brittle fracture. This implies that the dissipation of
shock-wave energy proceeds in a different manner
depending on the orientation of cementite plates with
respect to the shock-wave front. The cementite plates
located along the direction of the maximal tangential
stresses (at an angle of 45° to the shock-wave front) are
heated and coagulate; in other cases, cementite is
destroyed by brittle fracture.

Analysis of the origin of the observed microscopic
perlite-strain fluctuations in shock waves naturally
raises the following question: Is the existence of such
fluctuations a manifestation of the poorly investigated
fine structure of the shock-wave front, or does the
medium itself (to be more precise, its inhomogeneity)
lead to the appearance of the corresponding fine struc-
ture of the shock-wave flow? In order to answer this
question, we should determine the characteristic size of
domains in which the displacements of cementite-plate
fragments are correlated and then compare the value
obtained with the characteristic size of material inho-
mogeneities (the plate-structure period). A closeness of
the indicated values will testify to the interrelation of
the fine structure of the front with initial inhomogene-
ities of the medium.

We will describe the correlations between displace-
ments of the cementite-plate fragments according to the
following method. As previously, let the quantity
∆e(Ri) be the displacement vector located at the point Ri

of the microstructure presented in Figs. 1 and 2. Let
also {∆e(Rk)}, (k = 1, 2, …, ni) be a set of displacement
vectors located at a distance of r to r + ∆r from the
point Ri , i.e.,

r < |Ri – Rk| < r + ∆r, 

where ni is the number of these vectors.
The deviation from zero of the sum of scalar prod-

ucts

implies that the displacements by the distance r from
the point Ri are correlated with the displacement at the
point Ri . The summation of the functions ϕi(r) over all

ϕ i r( ) 1
ni

---- ∆e Ri( ) ∆e Rk( ),( ),
k 1=

ni

∑=

r Ri Rk– r ∆r+< <
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N digitized vectors and the corresponding normaliza-
tion allow us to find the function ϕ(r), i.e., the depen-
dence of the displacement correlation on the distance,
namely,

The form of the dependence ϕ(r) is shown in Fig. 4,
whence it follows that the correlations disappear at dis-
tances of about 140 nm. At this point, an abrupt fall of
the function ϕ(r) almost to zero value is observed.

The characteristic size of the correlated-displace-
ment domain is consistent with that of the initial inho-
mogeneity of the perlite structure (~150 nm). This fact
indicates that the physical nature of the observed per-
lite-strain microscopic inhomogeneities is caused by
that of the initial structure and, in other words, is asso-
ciated with shock waves being scattered due to inhomo-
geneities of the medium.

Thus, the investigation of perlite-strain microscopic
inhomogeneities in shock waves has produced the fol-
lowing conclusions.

1. Statistical analysis of the microscopic displace-
ments of cementite-plate fragments in perlite colonies
makes it possible to reveal the direction of the maxi-
mum tangential stresses and to determine the orienta-
tion of the shock-wave front with respect to the micro-
structure obtained by the method of local analysis.

2. It is established that the absorption of shock-wave
energy by a medium occurs in a different manner

ϕ r( ) 1
N
---- 1

ni

---- ∆e Ri( ) ∆e Rk( ),( ),
k 1=

ni

∑




i 1=

N

∑=

---r Ri Rk– r ∆r+< <




.
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Fig. 4. Dependence of the correlation of displacements for
cementite-plate fragments on the distance. The abrupt fall
almost to zero of the function ϕ(r) near the point r = 140 nm
implies the disappearance of correlations.
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depending on the orientation of the perlite colony with
respect to the shock-wave front. In the case that
cementite plates are aligned parallel to the direction of
the maximum tangent-stress vector, the energy being
spent for heating and spheroidizing cementite. Other-
wise, the brittle fracture of plates occurs.

3. We have shown that the cause of perlite-strain
microscopic fluctuations is the scattering of shock
waves due to the initial microscopic inhomogeneities of
the medium. These inhomogeneities lead to the forma-
tion of the fine structure of the action of shock waves,
which is imprinted into the loaded substance and man-
ifests itself in the form of microscopically localized
strain.
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The inversion formulas for a Cauchy-type integral
[1, p. 444] and for an integral operator with a logarith-
mic kernel [1, p. 585] are well known. In this work, we
derive an inversion formula for a hypersingular opera-
tor and construct effective numerical–analytical meth-
ods for solving the hypersingular integral equations of
diffraction theory and antenna theory.

An equation of the form

(1)

where

(2)

(3)

is referred to as a hypersingular equation. Equation (1)
arises when solving problems of diffraction (Appen-
dix 1), elasticity, and antennas (Appendix 2). This
equation, as well as an integral equation with a logarith-
mic kernel, attracted great interest in the latter half of
the last century (see [2–4] and references therein).

In the 1960s and 1970s, Eq. (1) was usually solved
by integrating it by parts and then reducing it to a sin-
gular equation for the derivative of an unknown func-
tion [2, 3]. Some direct numerical methods for solving
hypersingular equations were developed later. The col-
location method, which was based on a piecewise con-
stant basis, and the Galerkin method, were proposed
in [4] and [5], respectively. Chebyshev polynomials of
the second kind multiplied by a weight function were
used in the latter paper as the basis functions.

However, in many applied problems, in particular,
in antenna theory, direct numerical methods become

Au( ) τ( ) Nu( ) τ( )+ v τ( ), 1– τ 1,≤ ≤=

Au( ) τ( ) 1
π
--- ∂

∂τ
----- u t( ) ∂

∂t
----- 1

t τ–
-------------ln t,d

1–

1

∫=

Nu( ) τ( ) u t( )N t τ,( ) td

1–

1

∫=
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ineffective owing to the behavior of the right-hand side
of Eq. (1), i.e., the function v(τ). This function can have
a pronounced extremum, and, therefore, its expansion
into a series can be slowly convergent. For this reason,
direct numerical methods are ineffective in these cases.

In this paper, with the object of solving this prob-
lem, we propose a new method based on an analytical
inversion of the hypersingular operator. We construct
the numerical–analytical schemes based on the Galer-
kin and collocation methods.

ANALYTICAL INVERSION 
OF THE HYPERSINGULAR OPERATOR

The hypersingular operator was studied, in particu-
lar, in [5], where it was written in the form

(4)

The operator A is unbounded in the space L2[–1, 1];
therefore, the equality of operators defined by Eqs. (2)
and (4) signifies an equality on a dense set. This state-
ment is proven directly using the well-known relation

where C is the Euler constant.
As was proven in [5], the domain of definition of the

operator A is dense in L2[–1, 1] and the operator is sym-
metric and positive definite. These properties allow us
to introduce the energy space HA of the operator A, as
well as an analytical orthonormal basis of the energy
space HA , in the form

(5)

(6)

Au( ) τ( ) x u t( ) ix t τ–( )( )exp t x.dd

1–

1

∫
∞–

+∞

∫=

1
τ t–
-------------ln  = C

τ t–( )x 1–cos
x

------------------------------------ x
τ t–( )xcos
x

--------------------------- x,d

1

+∞

∫+d

0

1

∫+

ϕn τ( ) 2
πn
------ n τarccos[ ]sin 2

πn
------ 1 τ2– Un τ( ),= =

n 1 2 …,, ,=

Aϕn ϕm,( )
1, m n,=

0, m n.≠



=
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Here, (·, ·) stands for the scalar product in L2[–1, 1], and
U(τ) are Chebyshev polynomials of the second kind:
U1(τ) = 1, U2(τ) = 2τ, U3(τ) = 4τ2 – 1, etc.

In view of its great importance, we now prove rela-
tion (6). We use the known relation for Chebyshev
polynomials of the first kind [3]

(7)

We perform the integration by parts in the expression
Aϕm, find the integral using Eq. (7), and then perform
the differentiation. As a result,

(8)

Hence,

Thus, relation (6) is proved.
Let us now consider the equation with the hypersin-

gular operator

(9)

We seek a solution of this equation in the form of a
series in the basis functions

(10)

1
π
--- n tarccos( )cos

1 t2–
----------------------------------- 1

t τ–
-------------ln td

1–

1

∫ 1
n
--- n τarccos( ),cos=

n 1.≥

Aϕm
2

πm
-------

∂
∂τ
----- 1

π
--- m tarccos( ) ∂

∂t
----- 1

t τ–
-------------lnsin td

1–

1

∫ 
 
 

=

=  2
πm
-------

∂
∂τ
----- 1

π
---m

m tarccos( )cos

1 t2–
------------------------------------ 1

τ t–
-------------ln td

1–

1

∫ 
 
 

=  2
πm
-------

∂
∂τ
----- m τarccos( )cos 2

πm
-------

m τarccos( )sin

1 τ2–
------------------------------------m.=

Aϕm ϕm,( ) 2
πm
-------m

2
πn
------=

× m τarccos( ) n τarccos( )sinsin

1 τ2–
----------------------------------------------------------------------- τd

1–

1

∫

=  2
πm
-------m

2
πn
------ mϕ( ) nϕ( )sinsin ϕd

0

π

∫
1, m n,=

0, m n.≠



=

Au( ) τ( ) 1
π
--- ∂

∂τ
----- u t( ) ∂

∂t
----- 1

t τ–
-------------ln td

1–

1

∫ v τ( ),= =

1– τ 1.≤ ≤

u t( ) cnϕn t( ).
n 1=

+∞

∑=
We then substitute Eq. (10) into Eq. (9) and multiply
both sides of the equation by ϕm in L2[–1, 1]. With
regard to Eq. (6),

Therefore, the solution of Eq. (9) has the form

(11)

With regard to definition (5) of the basis functions ϕn(t),
this series can be written as

(12)

Finally, using the known sum of the series,

(13)

we represent the solution of Eq. (9) in the form

(14)

where θ(t) = .

Thus, the solution of Eq. (4) has been found in an
analytical form, i.e., an analytical inversion of the
hypersingular operator has been found.

As far as we know, formula (14) has been derived
for the first time.

REDUCTION OF THE HYPERSINGULAR 
EQUATION TO AN INFINITE FREDHOLM 

SYSTEM OF THE SECOND KIND: 
A NUMERICAL–ANALYTICAL METHOD

Let us consider the initial hypersingular equation

(15)

cn v ϕn,( ).=

u t( ) v ϕm,( )ϕn t( ).
n 1=

+∞

∑=

u τ( )

=  
2
π
--- v t( )

1
n
--- n tarccos( ) n τarccos( )sinsin

n 1=

+∞

∑ 
 
 

t.d

1–

1

∫

1
n
--- x x'sinsin

n 1=

+∞

∑

=  2ln
2

-------- x x'+
2

-------------sin
1
2
--- xcos x'cos– ,ln–ln+

u τ( )

=  
2
π
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2
-------- θ t( ) θ τ( )+

2
---------------------------sinln

1
2
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  t,d

1–

1

∫
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π
--- ∂
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∂t
----- 1

t τ–
-------------ln td

1–
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∫ u t( )N t τ,( ) td
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1– τ 1.≤ ≤
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To solve this equation, we expand the desired func-
tion in the basis

(16)

and reduce Eq. (15) in HA space to the equivalent infi-
nite system in the space l2 of sequences

(17)

where

If the operator A–1N is completely continuous in HA

space, Eq. (17) is a Fredholm equation of the second
kind in the space l2 of sequences, i.e., the matrix ele-
ments Nmn define a completely continuous operator.
One of the complete continuity criteria for the operator
A–1N in HA space was given in [5].

We now attempt to solve infinite system (17). In
many problems of mathematical physics, such infinite
systems are effectively solved by the truncation
method. We find an approximate solution from the trun-
cated system

(18)

and an approximate solution of the hypersingular equa-
tion is sought in the form

The convergence rate of the truncation method also
depends on the decrease rate of the right-hand side of
system (17). Since many applied problems are
described by systems with slowly decreasing right-
hand sides, the truncation method becomes ineffective
in these cases. In order to solve this problem, we pro-
pose here a new numerical–analytical method. We seek
a solution of infinite system (17) in the form

(19)

u t( ) cnϕn t( )
n 1=

+∞

∑=

cn cmNmn

m 1=

+∞

∑+ v n, 1 n +∞,≤ ≤=

Nmn N t τ,( )ϕm t( )ϕn τ( ) t τ ,dd

1–

+1

∫
1–

+1

∫=

v n v τ( )ϕn τ( ) τ .d

1–

+1

∫=

c̃n c̃mNmn

m 1=

M

∑+ v n, 1 n M,≤ ≤=

u t( ) c̃nϕn t( ).
n 1=

M

∑=

cn v n cn

.
.+=
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Substituting Eq. (19) into Eq. (17), we obtain

(20)

The right-hand side of this system decreases rapidly,
because the matrix elements Nmn determine a com-
pletely continuous operator. Solving system (20) by the
truncation method and taking Eq. (19) into account, we
find the solution of hypersingular equation (15) in the
form

(21)

Here,  is the solution of the truncated system corre-
sponding to Eq. (20).

One remark is advisable at this point. The solution
of the hypersingular equation is expanded, along with
the right-hand side of the equation, into a slowly con-
vergent series. Using formula (14) for the analytical
inversion of the hypersingular operator, we write solu-
tion (21) in the form

(22)

NUMERICAL–ANALYTICAL METHOD 
FOR SOLVING THE HYPERSINGULAR 
EQUATION IN AN ARBITRARY BASIS

The numerical–analytical method constructed in the
preceding section was based on particular basis (5). We
now construct such a method with the use of an arbi-
trary basis. Let us consider the initial equation

(23)

We write a solution of Eq. (23) in the form

(24)

where the function v  is a solution of the equation

(25)

and is given by formula (14). Then, the second term in
Eq. (24) satisfies the equation

(26)

which follows from Eq. (23).
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.
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.
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2
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The right-hand side of this equation, in contrast with
that of Eq. (23), is expanded into a rapidly convergent
series. This statement, which is valid because the oper-
ator A–1N is completely continuous in HA space, can be
rigorously proven. Hence, Eq. (26) can be solved by
various numerical methods. In this paper, the colloca-
tion method in a piecewise constant basis will be used.

NUMERICAL SOLUTION
OF THE HYPERSINGULAR EQUATION

FOR DIPOLE ANTENNAS

As an example, we now consider the hypersingular
equation for the surface current I(τ) of a dipole antenna
(Appendix 2).

In the theory of dipole antennas, as in mathematical
physics as a whole, the delta-function model is com-
monly used. In this model, the initial field is presented
in the form

(27)E0 τ( ) U0δ τ( ),=

Table 1

N
(kl) = ,  = 50,  = 1 (kl) = ,  = 50,  = 1

ReZ InZ ReZ InZ

2 119.88 82.413 33.498 –626.82

3 120.43 83.018 33.982 –634.16

4 120.22 82.893 33.898 –632.54

5 120.23 82.900 33.904 –632.64

10 120.25 82.918 33.910 –632.73

20 120.25 82.915 33.909 –632.708

π
2
--- 1

a
--- T

l
--- π

4
--- 1

a
--- T

l
---

Table 2

N
(kl) = ,  = 50,  = 1 (kl) = ,  = 50,  = 1

ReZ InZ ReZ InZ

10 125.99 140.23 36.086 –487.95

20 122.93 92.440 34.822 –598.166

40 121.44 84.672 34.309 –621.04

60 121.01 84.883 34.170 –623.20

80 120.81 84.772 34.105 –624.20

100 120.69 84.600 34.065 –624.19

200 120.46 83.939 33.987 –629.15

300 120.39 83.383 33.960 –630.51

π
2
--- 1

a
--- T

l
--- π

4
--- 1

a
--- T

l
---
where δ(τ) is the Dirac delta function and U0 is the con-
stant voltage amplitude.

However, such a model cannot be used to determine
the input resistance. As follows from the formulas for
analytical inversion, the corresponding solution of
Eq. (23) becomes infinite, which scenario yields no
physical meaning. Moreover, the delta-function model
is applicable to the determination of fields in the far
wave zone.

For this reason, we consider the model

(28)

Function (28) tends to delta function (27) in an integral
sense as the parameter T tends to zero.

In this case, integral (14) can be found in the explicit
form

(29)

where

Two properties follow from the analysis of Eq. (29). If
T = 1, the right-hand side of Eq. (29) satisfies the Meik-
sner condition at the edge. If τ = 0, the right-hand side
of Eq. (29) diverges logarithmically as T  0; there-
fore, model (27) is inapplicable in this case.

In conclusion, we present some solutions of hypers-
ingular equation (23). We solved the equation by the
following four methods: the Galerkin method with
basis (5), the collocation method with a piecewise con-
stant basis, the numerical–analytical method with
basis (5), and the numerical-analytical method with a
piecewise constant basis.

The calculation results for the input resistance that
is determined by the formula

are listed in the tables for various numbers N of the
basis functions. The tables demonstrate the conver-
gence of all the methods; i.e., the results are stabilized
as the number of basis functions increases.

E0 τ( )
U0

2T
------

1, τ T ,≤
0, τ T .>




=

2
π
--- E0 t( ) 2ln

2
-------- θ t( ) θ τ( )+

2
---------------------------

1
2
--- τ t–ln–sinln+ 

  td

1–

1

∫

=  U0
f T τ,( ) f T– τ,( )–

πT
--------------------------------------------,

f t τ,( ) 2ln
2

--------t
1
2
--- 1 tτ– 1 t2– 1 τ2–+

2
------------------------------------------------------- t τ–( )ln+=

–
θ t( ) 1 τ2–

2
---------------------------- t τ–( ) t τ–ln

2
----------------------------------.–

Z
U0

I 0( )
----------=
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The results obtained by the Galerkin and collocation
methods are presented in Tables 1 and 2, respectively, for

the case  = 1, i.e., for the uniform initial field distribu-

tion over the dipole length. These tables show that the
methods are rapidly convergent and are in strong agree-
ment with each other, in spite of their different natures.

Similar results obtained by the Galerkin and collo-

cation methods for the case of the variable parameter 

are listed in Tables 3 and 4, respectively. In this case,
the convergence rate of the numerical methods

decreases with the parameter . The slow convergence

of numerical methods in antenna theory turns out to be
primarily attributable to the behavior of the right-hand
side of the corresponding integral equations. In antenna
feed problems, initial fields are localized in regions that
are much smaller than the antenna length.

The numerical–analytical methods proposed above
completely solve the problem of the evaluation of input
resistances.

As is seen in Tables 5 and 6, the numerical–analyti-
cal methods with basis (5) and the piecewise constant
basis, respectively, are rapidly convergent.

T
l
---

T
l
---

T
l
---

Table 3

N
(kl) = ,  = 50,  = 0.05 (kl) = ,  = 50,  = 0.02

ReZ InZ ReZ InZ

2 84.550 53.826 84.496 53.781

3 89.194 52.625 89.164 52.568

4 90.482 51.542 90.474 51.468

5 91.579 50.893 91.599 50.800

10 94.105 49.270 94.310 49.042

20 95.573 48.212 96.326 47.558

π
2
--- 1

a
--- T

l
--- π

4
--- 1

a
--- T

l
---

Table 5

N
(kl) = ,  = 50,  = 0.05 (kl) = ,  = 50,  = 0.02

ReZ InZ ReZ InZ

2 90.729 50.481 93.443 48.607

3 94.286 49.471 97.058 47.350

4 94.664 48.821 97.415 46.648

5 95.090 48.534 97.845 46.319

10 95.656 48.158 98.435 45.872

20 95.670 48.140 98.440 45.858

π
2
--- 1

a
--- T

l
--- π

4
--- 1

a
--- T

l
---
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Thus, the numerical–analytical methods that have
been developed in this paper completely solve the prob-
lem of the calculation of dipole and many other types of
antennas, as well as diffraction problems for the case in
which initial-field sources are located close to the dif-
fraction surface.

APPENDIX 1

INTEGRO-DIFFERENTIAL EQUATION 
DESCRIBING THE DIFFRACTION 

OF H WAVES BY A STRIP

The integro-differential equation describing the dif-
fraction of H waves by a strip (both the electric field and
surface currents are perpendicular to the strip) has the
form [6]

1
4kd
--------- µ

ε
---

∂
∂t
----- j t( ) ∂

∂τ
-----H0

2( ) kd τ t–( ) td

1–

1

∫

–
kd
4

------ µ
ε
--- j t( )H0

2( ) kd τ t–( ) td

1–

1

∫  = E τ( ), 1– τ 1.≤ ≤–

Table 4

N
(kl) = ,  = 50,  = 0.05 (kl) = ,  = 50,  = 0.02

ReZ InZ ReZ InZ

20 50.052 28.946

40 98.086 49.799

60 148.02 73.302 59.210 29.321

80 97.144 49.663 79.341 38.438

100 80.283 41.624 99.584 47.352

120 96.719 49.362 119.92 56.115

140 84.157 43.372 140.352 64.762

π
2
--- 1

a
--- T

l
--- π

4
--- 1

a
--- T

l
---

Table 6

N
(kl) = ,  = 50,  = 0.05 (kl) = ,  = 50,  = 0.02

ReZ InZ ReZ InZ

11 124.04 85.381 124.39 77.049

21 103.98 54.980 104.45 50.738

41 98.724 49.780 101.35 47.418

61 98.006 49.861 100.93 47.692

81 97.465 49.682 100.48 47.556

101 97.181 49.537 99.931 47.278

π
2
--- 1

a
--- T

l
--- π

4
--- 1

a
--- T

l
---
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Here, j is the desired function of the surface current
density; E0 is the initial electric field; ε and µ are the
electric permittivity and magnetic permeability, respec-
tively; k is the wavenumber; 2d is the width of the strip;

and  is the Hankel function. Isolating the singular-
ity of the Hankel function, we arrive at the hypersingu-
lar equation

(30)

where

APPENDIX 2

INTEGRO-DIFFERENTIAL EQUATION
FOR DIPOLE ANTENNAS

Let an arbitrary electromagnetic wave (E0, H0) fall
on a dipole antenna. The wave field induces electric
currents with density j on the surface S of the antenna.
These currents satisfy the equation [5]

(31)

Here, R = , where a
is the radius of the dipole.

Since integral equation (31) is two-dimensional and
the current depends on only one variable, the kernel can
be integrated with respect to one variable. Introducing
the current

we arrive at the integro-differential equation

(32)

H0
2( )

β
π
--- ∂

∂τ
----- j t( ) ∂

∂t
----- 1

t τ–
-------------ln td

1–

1

∫ j t( )N τ t,( ) td

1–

1

∫+ E τ( ),–=

1 τ 1,≤ ≤–

β i
2ka
--------- µ

ε
---,=

N τ t,( ) = 
1

4ka
--------- µ

ε
---

∂
∂τ
----- ∂

∂t
----- H0

2( ) ka τ t–( ) 2i
π
----- 1

τ t–
-------------ln–

–
ka
4

------ µ
ε
---H0

2( ) ka τ t–( ).

d2

dz2
------- k2+ 

  jz z'( )e ikR–

4πR
---------- S'd

S

∫∫ iωεEz
0 z( ).–=

z z'–( )2 2α2 1 ϕ ϕ '–( )cos–( )+

jz z( )2πa I z( ),=

d2

kl( )dτ2
------------------ kl( )+ 

  I t( )B τ t,( ) td

1–

1

∫– i
µ
ε
---

1
k
---E τ( ),=

1 τ 1,≤ ≤–
where

and 2l is the length of the dipole. Isolating the logarith-
mic singularity of the kernel

we arrive at the hypersingular equation

(33)

where
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The physics of mixing in jets is of considerable
interest from the standpoint of both fundamental sci-
ence and practical application. The intensity and homo-
geneity of mixing significantly affect the combustion
efficiency, heat transfer coefficient, formation of waste,
and jet noise (see, e.g., [1]).

Laminar jets have inflectional mean velocity pro-
files. This property leads to the formation of Kelvin–
Helmholtz vortices, which represent the main instabil-
ity of such shear layers. The initial stage in the develop-
ment of these vortices is usually well described by lin-
ear stability theory (see, e.g., review [2]). The next,
nonlinear stage is characterized by amplitude saturation
and vortex pairing due to the resonance of disturbances
with subharmonics and superharmonics. Further devel-
opment of nonlinear structures is often accompanied by
the occurrence of longitudinal, or streamwise, vortical
structures. Their formation is usually attributed to the
so-called secondary three-dimensional instability of the
Kelvin–Helmholtz vortices [3, 4]. Experiments show
that the dynamics of these structures play an important
role in the mixing process in the far wake of a jet [5].

Other longitudinal disturbances that can often be
developed in shear layers are formed downstream of
nozzle surface irregularities [6]. These are regions of
quasi-stationary three-dimensional deformations,
mainly of the longitudinal velocity in the shear flow,
and have a characteristic form of “streaks” in the visu-
alization pictures [7]. Their occurrence is not due to the
secondary instability of the Kelvin–Helmholtz vortices.
These structures arise as a result of stabilization effects
upon the development of compact three-dimensional
disturbances of the normal velocity component even
with small amplitude [7]. These longitudinal structures
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intensely interact with other flow disturbances, e.g.,
instability waves. This interaction usually accelerates
flow turbulization [8]. This feature of the streaky struc-
tures makes them a promising means for improving the
mixing and control over the flow in jets.

There is an extensive literature on the investigation
of longitudinal structures in wall flows (see, e.g., the
overview in [7]). However, investigations into the phys-
ics of similar structures in jets began only recently. Suc-
cessful excitation and observation of natural longitudi-
nal structures and their interaction with Kelvin–Helm-
holtz vortices in circular jets [9] offer the possibility of
studying controlled longitudinal structures in plane
jets. To this end, a simple but efficient smoke visualiza-
tion technique using a pulsed laser sheet synchronized
with the Kelvin–Helmholtz vortex shedding was
applied in this study.

The plane jet generator and visualization schematics
are presented in Fig. 1. The flow was produced by a
DISA wind tunnel that is designed for the calibration of
sensors of a hot-wire anemometer and ensures a stable
air flow rate. Smoke was supplied to the test section
through a tube connected to a smoke generator. The
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Fig. 1. Experimental setup and jet stream: (1) plenum cham-
ber, (2) deturbulizing grids, (3) nozzle, (4) potential jet core,
(5) Kelvin–Helmholtz vortices, (6) shear layer, (7) laser
sheet, (8) loudspeaker, (9) laser, (10) coordinate device,
(11) generator, (12) phase variator, (13) roughness ele-
ments, and (14) video camera.
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tunnel diffuser was connected to the plenum chamber
of the setup. A separating plate was placed in the ple-
num chamber for producing a uniform jet stream. Low
turbulence level was ensured by a punched screen, hon-
eycombs, and two grids, as well as by a 10 : 1 contrac-
tion. A rectangular nozzle at the plenum chamber exit
had a height of h = 10 mm and a width of l = 200 mm.
The jet was visualized in its cross sections at distances
of 5 to 85 mm from the nozzle exit and in the longitu-
dinal sections in the shear layer region using a laser
sheet about 0.3-mm thick. The accuracy of positioning
the coordinate device was 0.1 mm.

In standard experiments, continuous light restricts
the use of the laser sheet to quasi-stationary phenom-
ena. For this reason, it is difficult to study periodic flow
disturbances. In order to overcome this limitation, we
used a pulsed semiconductor laser with a wavelength of
650 nm and a pulse power of 150 mW, which allowed
for the synchronization of the laser pulse starting from
the front of an external rectangular signal. In these
experiments, the laser pulse duration was 255 µs. Stro-
boscopic images of the flow sections were shot at a
speed of 25 fps by a stationary video camera placed at
an angle of 45° to the plane of the section at a distance
of 0.5 m from the jet axis. Then, the record was pro-
cessed using a personal computer.

The natural shedding frequency of Kelvin–Helm-
holtz vortices was slightly time-dependent. This depen-
dence was minimized by generating controlled vortical

Longitudinal structures

U0

Kelvin–Helmholtz vortices

Fig. 2. Visualization of a longitudinal section of the jet in
the shear layer at U0 = 3 m/s.

z
y

Fig. 3. Visualization of cross sections of the jet with streaky
structures at distances of (from left to right) 5, 25, 45, 65,
and 85 mm from the nozzle.
disturbances in the flow by means of 140-Hz sound,
which were emitted by a loudspeaker normal to the jet
at a distance of 200 mm from the nozzle. The acoustic
level measured at the center of the nozzle exit by a
microphone oriented normal to the loudspeaker plane
was 90 dB. Rectangular signals were supplied to the
laser at the sound frequency. Using a phase variator, it
was possible to change the duration of these signals
and, therefore, the localization of signal fronts, relative
to the period of the vortical disturbances generated.
This procedure enabled us to stroboscopically “freeze”
most interesting stages of the periodic phenomena in a
visualized section.

Longitudinal structures were controllably generated
downstream of roughness elements—0.2-mm high,
20-mm long, and 5-mm wide—that were placed near
one of the bases of the nozzle exit along its span, at a
distance of 10 mm from each other. This distance was
chosen so that the transverse dimension of the struc-
tures was equal to several characteristic thicknesses of
the jet shear layer, in accordance with the parameters of
streaky structures naturally developed in wall boundary
layers [10].

The jet outflow velocity U0 ranged from 2 to
12.2 m/s, which corresponded to the Reynolds number

Re ≈ , where h is the height, from 1.3 × 103 to 8 ×

103. The rms disturbance intensity measured by the hot-
wire anemometer on the jet axis and in the shear layer
near the nozzle exit did not exceed 0.4 and 1.5% of U0.

It is seen that the two-dimensional Kelvin–Helm-
holtz vortices oriented across the flow and the longitu-
dinal structures (streamwise “rays”) coexist in the shear
layer (see Fig. 2). Their interaction results in a compli-
cated periodic disturbance pattern that is periodic both
in time and space.

Several snapshots of the visualization of jet cross
sections are presented in Fig. 3. They show the result of
the interaction between the longitudinal structures and
Kelvin–Helmholtz vortices, namely, the downstream
development of a periodic system of mushroom-shaped
structures that “escape” from the shear layer into the
ambient space. This process is obviously similar to the
development of lambda structures in boundary layers,
whose “hats” are carried away into the external flow
[7]. Though the irregularities were located on only one
side of the nozzle, the mushroom structures developed
in both shear layers; their dimensions were greater,
though, in the layer modulated by the roughness ele-
ments. Vortical motion within the mushroom structures
is also visible in the video record; that is, this rotation
is not synchronized with the acoustic excitation and
vortex period. Flow visualization in different longitudi-
nal and transverse sections indicates that the Kelvin–
Helmholtz vortices do not penetrate into this region,
and the process of mixing with the ambient air is deter-
mined by the behavior of these structures. We also

hU0

ν
---------
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emphasize the continuous downstream narrowing of
the potential jet core due to the growth of the shear
layer thicknesses.

Figure 4 shows two visualizations of the same jet
cross section at flow velocities U0 = 2 and 4 m/s. Obvi-
ously, the fluctuation amplitude increases with the
velocity of the outflow from the nozzle, but this
increase does not lead to any qualitative changes in the
features of the mixing in the flow under consideration.
Similar results were also obtained for other velocities in
the range under consideration.

Thus, it has been shown that longitudinal structures
in a jet can be generated by surface irregularities
located at the nozzle exit. The interaction between
Kelvin–Helmholtz vortices and these structures leads
to the formation of a periodic three-dimensional flow
pattern. This interaction gives rise to the appearance of
vortical structures that are carried away into the ambi-
ent space and have the form of rays and mushroom
structures in longitudinal and cross sections, respec-
tively. In the region of their development, the jet and
ambient air are intensely mixed. It has been found that
a sixfold increase in the jet Reynolds number from
1.3 × 103 to 8 × 103 enhances the mixing process with-

Fig. 4. Visualization of a cross section of the jet in the shear
layer at U0 = 2 and 4 m/s.
DOKLADY PHYSICS      Vol. 50      No. 7      2005
out qualitative changes occurring in the observable pro-
cesses.
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Slow flows of a viscous liquid on a solid surface in
the presence of a free boundary and a moving contact
line of three phases are considered. A second-order
asymptotic theory is developed for describing the laws
of varying the free boundary at a finite dynamic contact
angle.

The approximate dependences of the contact angle
on the dimensionless velocity α0 ~ Ca1/3 for the wetting
of a surface, as well as on the dimensionless time for the
spreading of a drop on a wall, are known [1–3], having
been treated by De Gennes [4] as similarity laws in wet-
ting dynamics. However, due to the effect of the scaling
factor [1, 2], such a treatment is possible only in a nar-
row approximate sense.

The dynamic (apparent) contact angle α0 exists
because a flow described by the general asymptotic law
[1] is characterized by several scales. The width of the
range of scales in the logarithmic scale is a large param-
eter of the theory. A second-order theory describes the
scaling effect of wetting dynamics in terms of the large
parameter or corresponding inverse small parameter ε.
Second-order asymptotic solutions of wetting dynamic
problems are known for small contact angles [2]. The
flows with dynamic contact angles for the wetting of a
tube and the spontaneous spreading of a drop on a wall
that are considered in this work share a common prop-
erty in the quasi-equilibrium of free boundaries at the
large scale.

RELATIONS ON A MOVING CONTACT LINE 
OF THREE PHASES

The dynamics of the wetting of a solid includes
mechanisms that are realized at the microscopic scale
beyond the scope of hydrodynamics. They correspond
to the common equation of energy at a moving contact
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line of three phases [1]:

(1)

Here, σ1 and σ2 are the surface free energy densities at
the solid–liquid and solid–gas interfaces, respectively;
σ is the surface tension of the liquid; v  is the wetting
rate; Em(v) is the energy dissipation in unit time per unit
length of the contact line; and αm(v) is the microscopic
contact wetting angle. For Em = 0, αm is equal to the
static contact angle αs according to the Young equation.
Relation (1) is important for the formulation of the
problem.

(i) For constant G > 0, it describes two effects [1]:
first, the dependence of the contact angle on the sign of
low velocity v, i.e., static angle hysteresis, and, second,
the limiting contact angle for high velocities, i.e., the
Ablett effect [5]. The latter effect was observed in
experiments for low Reynolds numbers, but it is mani-
fested in some systems with low-viscosity liquids. The
Ablett effect is used in computer simulations of the
flows with high Reynolds numbers that arise when a
drop collides with a solid wall [6, 7].

Equation (1) with the variable G for the case in
which ∆σ = σ2 – σ1 – σ < 0 describes Ablett experi-
ments at velocities less than the limiting value.

(ii) Equation (1) determines the energy balance in
the precursor-film flow [1, 2] for the case of complete
wetting (∆σ > 0): G = ∆σ and αm = 0.

(iii) The case of ∆σ > 0 and G – ∆σ > 0 considered
in [1] corresponds to αm > 0, i.e., the appearance of the
contact angle in complete wetting due to the microdis-
sipation of energy Em. This contact angle can be real-
ized in experiments with low-viscosity liquids [8].

For a high-viscosity liquid, the apparent contact
angle α0 can differ from the microangle αm, because
the flow near the contact line is multiscale.

αmcos σ2 σ1– G vsgn
σ

------------------– ,=

Em v G v( ) 0.≥=
© 2005 Pleiades Publishing, Inc.
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A SECOND-ORDER ASYMPTOTIC THEORY
OF WETTING DYNAMICS

We consider the dynamics of a nonvolatile liquid in
zero gravity for low Reynolds numbers and capillary

number Ca =  (µ is the dynamic viscosity). For a

large scale, the liquid flow is described by Stokes equa-
tions. The velocity on the solid is zero: u = 0. At the
free boundary S, the tangent stress is Pτ = 0; the mean
curvature H satisfies the Laplace condition 2σH =
Pn + p0, where Pn is the normal stress in the liquid and
p0 is the pressure in the gas; and the normal component
of the velocities of the liquid and solid are equal to each
other: (un) = w.

For small distances near the moving contact line, the
following general asymptotic relation is valid for the
tangent angle α to the free surface [1–3]:

(2)

where hm is the microscopic scale, microangle αm cor-
responds to Eq. (1), and α∗  = αm for αm ≥ |9Ca|1/3 and
α∗  = (9Ca)1/3 otherwise. With these parameters, Eq. (2)
is known to be in agreement [3] with the small-angle
asymptotic relation for αm = 0 [2]. In the flow with a

nonzero Reynolds number, the condition  ! 1 of the

smallness of the local number is necessary (ν is the
kinematic viscosity). In an unsteady flow with the char-

acteristic time τ, the condition  ! τ is necessary.

Asymptotic relation (2) is valid for hm ! h ! h0 , where
the maximum distance h0 is found from the asymptotic
matching condition. According to Eq. (2), the free
boundary is close to tangent; i.e., the angle α varies

slowly along the boundary:  ! 1 [1]. This condi-

tion is satisfied, because ln  @ 1. We now introduce

the parameter

(3)

Condition h0 @ hm is written in an explicit form in
the problem of meniscus motion [2]. For the case of the
presence of a precursor film [2] moving under the
action of van der Waals forces, the microscale hm is
equal to the maximum thickness of the film. The film
can appear for small contact angles α0 , and hm for finite
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α0 values can be on the order of the size of a liquid mol-
ecule [1, 2, 4]. If the surface is preliminarily covered
with a film of thickness h∞ , the microscale is hm =
1.84h∞ [2].

The distance to the contact line r =  and rm =
 can be used instead of h and hm, respec-

tively, in asymptotic relation (2). For the film-covered
surface, rm depends strongly on the velocity, whereas
the microscale hm is independent of the velocity. For
this reason, we use the variable h rather than the vari-
able r.

The free boundary S is sought by the method of per-
turbations in Ca. In the leading approximation, the qua-
sistatic surface S is obtained in the large-scale region,
because the angle α varies slowly with distance near the
contact line according to asymptotic relation (2) and the
wetting rate is low, v  ~ ε, for a fixed angle α0 . On the
surface S and on the static surface S1 (spherical seg-
ment) close to S, the normal stresses Pn(θ) – Pn(0) (θ is
the polar angle on the sphere) are close to each other.
They are found by solving the problem of the flow of
the viscous liquid with S1, and the small perturbation of
the surface S1 is determined from the Laplace boundary
condition [1]. From the matching condition for asymp-
totic expansions of the boundary slope angle α, we
derive the formulas for the contact angle α0 for the sur-
face S1 in terms of the parameter h0 in the form of a
functional of the stress Pn. The parametric dependence
for the maximum scale h0 = h0(α0), which determines
the contact angle from asymptotic relation (2) in the
form α0 = αas(lnh0), is determined numerically.

ASYMPTOTIC NUMERICAL SOLUTION

Let us give two definitions of the spherical segment
S1 passing through the contact line: (a) the curvature of
the sphere is equal to the curvature of the surface S on
the axis: R–1 = H(0); and (b) the sphere touches the sur-
face S at the point with the coordinate x2 on the symme-
try axis and the segment height is a0 = x2 (x2 = 0 on the
contact line); a0 = h(0) for the case of a drop. 

Calculating perturbation of the surface S1 , we find
perturbation of the surface slope angle α1 near its edge
(θ  θ0):

. (4)

Here, α1 ≈ α0, R0 = |R|, θ =  for the flow in a

tube and θ = α for the drop, Λ in (4) for cases (a) and

h/ αsin
hm/ α*sin

α α 1–
Pn α( ) Pn 0( )–

σ
----------------------------------Λ θ0 θ',( )R0 θ' …+d

0

θ

∫=

1
2
---π α–
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(b) has the form

(5)

(6)

respectively, and the stress on S1 is expressed as

(7)

In the limit h  0, G  1 according to the solution
of the problem for the flow in a corner.

Asymptotic matching with the accuracy O(ε2) is
known for small angles [2]. We use the Taylor expan-
sion of asymptotic relation (2) [αas(z), z = lnh] at the
point z0 = lnh0 for h ! h0:

(8)

This expansion is justified because ln  @ 1. For-

mula (8) does not change when h changes to the dis-
tance r from the contact line. 
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Fig. 1. 
Matching expansions (4) and (8) for the flow in the
tube with the radius hk for h ! h0 (θ  θ0), we arrive
at the expressions

(9)

(10)

(11)

The stress Pn on the spherical segment S is calcu-
lated for the Stokes flow in the tube. At a large distance
H from the contact line, the velocity profile for the Poi-
seuille flow is specified. Calculations are performed for
α0 ≤ 160°, because the problem of the flow in the corner
is degenerate (Q = 0) for α0 = π.

The numerical solution of the Stokes equations has
been obtained using the method of the boundary inte-
gral equation [9]. The velocity of the axisymmetric
flow is expressed in terms of two harmonic functions by
Oberbeck’s formula. To determine these functions, a
modified integral equation is used, where the harmonic
function Φ(x) in the integrand is changed so that the
double-layer density vanishes at x = x' [9]:

where SL is the boundary of the liquid, x, x' ∈  SL, r =
|x – x'|, and the coefficient K is determined by the
geometry of the problem. For the unbounded region
beyond SL , K = 1 independently of the connectivity of
SL [9]. For the problem inside the closed boundary SL ,
K = 0. The modification of the integral equation
increases the accuracy of its finite difference approxi-
mation. To ensure high accuracy, a special quadrature
formula is used [9]. Numerical solutions of the
dynamic problems for an ideal liquid with free bound-
aries [9, 10] demonstrate the efficiency of this
approach.

The asymptotic formula for stresses near the contact
line at the large scale [11], which contains a term with
logarithmic singularity in addition to a singular term, is
used as a test when numerically solving the problem of
the viscous-liquid flow. The calculation results for the
parameter C0 = C0(α0) in Eq. (9) for α0 are shown in
Fig. 1. Solid lines a and b correspond to calculations,
and the dotted lines are plotted using the following for-
mulas of analytical theory for small angles [2, 12]:
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, (12b)
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where Eq. (12a) corresponds to the explicit solution [2].
The dotted lines in Fig. 1 are close to the calculations in
the region of small α0 values. The plot C0(α0) along
with asymptotic relation (2) provides the dependence
α0(Ca) of the dynamic contact angle on the velocity in

the parametric form. The value C0b  = 1.64 is in

agreement with a similar constant c1 = 1.83 [1] for finite
contact angles. We emphasize the known agreement [1, 3]
of theory [1] with experiments.

DYNAMICS OF THE DROP
FOR FINITE CONTACT ANGLES

For the liquid drop that axisymmetrically flows on a
flat surface, the surface of the drop at the large scale is
close to the spherical segment with the radius R0(t) and
the contact angle α0(t), according to the quasi-equilib-
rium model with the parameters hm and αm [1, 2]. Let
the subscript Ò refer to the spherical segment whose vol-
ume is equal to the drop volume V. The contact angle αc

is related to the radius x0 of the drop base and equivalent

radius Re = , and the function Λ in Eq. (4) for

the angle perturbation has the form

(13)

The substitution of a0 for hk in Eq. (9) and matching of
expansions (4) and (8) yields

(14)

(15)

The normal stress Pn on S and dependences C0(α0) for
various spheres (Fig. 2) are found from the numerical
solution of the problem of the flow inside the liquid
spherical segment. For small α0 values, C0b ≈ 1.64
and C0c ≈ 2, as in agreement with the analytical theory

[13–15]. The constant C0c  = 1.23 is close to a sim-

ilar constant [1] that is equal to unity. The contact angle
parameter αb makes it possible to take into account the
small difference between the drop height h(0) and the
height a0 of the spherical segment c.

π
2
--- 

 

3V
4π
------- 

 
1/3

Λc θ0 θ,( ) 1 2
h
a0
-----– 

  θsin
θ0sin

-------------,=

h R0 θcos θ0cos–( ).=

C0b θsin θ0Λb θ0 θ,( )G θ( )sin+{ }
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h
----- θ;d

0

θ0

∫=

C0c 2 2
h
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----- 1– 

  G 1–
h

------------- h.d

0
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∫+=

π
2
--- 

 
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The equation for the contact angle of the drop follows
from the relation  = v  for the spherical segment [1]:

(16)

(17)

where a0 and x0 are simple functions of α0 . The plot of
C0c(α0) is given in Fig. 2. Complementing Eqs. (16) and
(17) by expressions for the microparameters hm and αm
(for one of the particular cases), we obtain a closed
model for the dynamics of the drop on the wall. This
model provides for a description of the flow in the drop
with an accuracy of O(ε2). The parameters hm and αm,
which are common for hydrodynamic problems at the
large scale, are applicable to drops of arbitrary volume.
The details of the boundary conditions of the problem
are insignificant at large times.

The ordinary differential equation of the model is
readily integrated analytically if the microangle αm is
independent of the velocity v  (αm = αS). Indeed, the
expression that appears in braces in Eq. (17) and that
includes the large parameter is a slow varying function
of time. It should be treated as a constant in the leading
approximation and its slow variation should be taken
into account in the resulting formula. The correction is
found by the iteration method. Using such a method,
from Eqs. (16) and (17) for small α0 values and com-

x0

.

dα0

dt
---------

v
Re
----- 2 α0cos+( )
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2
-----sin

4/3
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v
σ
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α0sin
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2
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384 VOINOV
plete wetting, we obtain the approximate solution, α0 ~
t–3/10 and x0 ~ t1/10, which is valid [1, 2] for various
expressions for the microscale hm (including that for the
precursor-film flow). This validity has been corrobo-
rated by many experiments, some of which were pre-
sented by De Gennes in review [4].

In conclusion, we emphasize that, for Reynolds
numbers near unity, wetting theory based on Stokes
equations is applicable with an accuracy of O(ε).
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It is well known that certain materials, such as cast
iron, titanium and aluminum–magnesium alloys, beryl-
lium copper, carbon plastic, granite, sandstone, coal,
etc., behave in different ways under compressive and
tensile loads [1–3]. This difference is due to various
internal microprocesses, such as the generation and
growth of microcracks and microvoids, disclination
distribution, sliding of grain boundaries, etc. This phe-
nomenon is observed in both reversible [4–6] and irre-
versible [7–10] deformation processes and affects the
entire spectrum of the mechanical and physical proper-
ties of materials. In this study, a creep model for mate-
rials with different moduli is constructed using piece-
wise-linear deformation potentials, and a technique for
determining the material constants responsible for its
mechanical properties is discussed.

The creep model with piecewise-linear potentials
for materials with different moduli is constructed on the
basis of the assumption that, in the initial creep stage,
the total strains of a material remain small, and the
stresses are moderate and do not lead to plastic flow.
Therefore, the total strain tensor eij is the sum of the

elastic strain tensor  and the creep strain tensor :

(1)

We assume that the elastic strains of the medium and
the creep strain rates are determined solely in terms of
the stresses σij in the medium through the potential
dependences

(2)

eij
e eij

v

eij eij
e eij

v .+=

eij
e ∂U σij( )

∂σij

-------------------= , ėij
v ∂V σij( )

∂σij

------------------,=

U σij( ) U1 σ( ) U2 Σ( ), V σij( )+ V Σ( ),= =
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where σ and Σ are certain invariants of the stress tensor.

We choose the mean stress σ =  as the first invariant

in Eq. (2) and specify the second invariant in the form
of a linear homogeneous function of the principal
stresses σi

(3)

where Si = σi – σ are the principal values of the stress
deviator. For β = 1 and q1 = q2 = 0, expression (3) is the
Tresca flow function Σ = max(Si – Sj), which is widely
used in plasticity theory as a yield criterion for media
having the same properties under tension and compres-
sion. The same function was used in [11, 12] for con-
structing a creep model for normally isotropic materi-
als. In the general case, 0.5 ≤ β ≤ 2 and qi > 0. Here, the
parameter β is directly responsible for the existence of
different moduli of the medium, while the parameters
q1 and q2 are responsible for its capacity for compaction
and thinning, respectively. The isovalue surfaces of
Eq. (3) represent two hexahedral pyramids whose bases
meet in the deviator plane (Fig. 1a). The cone vertices

lie on the hydrostatic axis at the points σ =  and σ =

. The cones vary with time and from one point of

the material space to another, and their vertices slide
along the hydrostatic axis. The vertex angle depends
only on the mechanical properties of the medium and
remains unchanged. Figure 1b shows the sections of
surface (3) by the deviator plane σ = 0 for different val-
ues of β. Here, the outer and inner triangles are associ-
ated with β = 0.5 and 2, respectively, and the hexagon
corresponds to any intermediate value 0.5 < β < 2.

Under the assumption that the material exhibits lin-
ear elastic properties and obeys a power law of creep
throughout the entire space of principal stresses, except

σkk

3
-------

Σ
max Si βS j–( ) q1σ for σ 0,>+

max Si βS j–( ) q2σ for σ 0,<–



=

Σ
q1
-----

Σ
q2
-----–
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for the vicinity of zero, the potentials can be taken in
the form

(4)

Since function (3) is piecewise smooth and rela-
tions (2) imply its differentiation, we assume, accord-
ing to [11, 12], the following relation at the points of
loss of smoothness:

(5)

where Σ(1) = const and Σ(2) = const are edge-forming
surfaces, and α is the new unknown function determin-
ing the direction of the normal vector at the corner
point. The system of equations at the edge of the piece-
wise-linear surface Σ = const includes, along with α,
the equality

Σ(1) = Σ(2), (6)

which relates the static unknowns. In most cases, this
equality makes it possible to considerably simplify the
process of solving boundary value problems. The sys-
tem of Eqs. (1)–(6) is closed when it is complemented
with the equilibrium equations, the strain compatibility
equations, and the relations between the stress tensor
and its principal values.

It should be noted that, on the one hand, the creep
model thus constructed is so simple that new analytical
solutions of non-one-dimensional boundary value
problems on the creep and strain relaxation in normally
isotropic materials were derived within the framework
of the model [11, 12]. Moreover, the idea of this con-
struction is to obtain creep relations that are consistent
with the foundations of ideal plastic flow theory [13],

U1 σ( ) a
2
---σ2, U2 Σ( ) b

2
---Σ2,= =

V Σ( ) B
n 1+
------------Σn 1+ .=

∂Σ
∂σi

-------- α∂Σ 1( )

∂σi

------------ 1 α–( )∂Σ 2( )

∂σi

------------, 0 α 1,≤ ≤+=

(a)

σ2

σ3

σ1

σ3

σ1 σ2

β = 0.5
(b)

β = 2

Fig. 1. (a) Surfaces Σ = const for materials with different
moduli and (b) their sections by the deviator plane.
so that the well-developed mathematical apparatus of
that theory can be applied to the creep problem. On the
other hand, the model presented above possesses a very
broad potential for describing certain features of the
creep process for various materials whose mechanical
properties are described by three potential functions,
U1(σ), U2(Σ), and V(Σ), and the form of the equivalent
stress Σ.

In order to complete the description of the proposed
model of a medium with different moduli, it is neces-
sary to indicate the manner in which the material con-
stants β, q1, q2, a, b, B, and n can be determined using
experimental data. Uniaxial tensile–compression tests
may be regarded as baseline experiments.

In uniaxial tensile tests, the load is applied to a sam-
ple in such a way that σ1 = σ+ = const and σ2 = σ3 = 0.
The stresses correspond to the edge Σ(1) = Σ(2), where
Σ(1) = S1 – βS2 + q1σ and Σ(2) = S1 – βS3 + q1σ. From the
model relations, it follows that

Uniaxial compression is realized at σ1 = σ– = const and
σ2 = σ3 = 0 and corresponds to the edge Σ(1) = Σ(2),
where Σ(1) = S2 – βS1 – q2σ and Σ(2) = S3 – βS1 – q2σ.
From the model relations, it follows that

By plotting the stresses and the strain rates  and

 in the logarithmic scale, we determine the creep

e1+
e a b 2 β q1+ +( )2+( )

σ+

9
------,=

ė1+
v B 2 β q1+ +( )n 1+ σ+

n

3n 1+
-----------,=

e2+
e e3+

e a 2 β q1+ +( ) 2q1 2– β–( )b
2
---+ 

  σ+

9
------,= =

ė2+
v ė3+

v B
2
--- 2 β q1+ +( )n 2q1 2– β–( )

σ+
n

3n 1+
-----------.= =

e1–
e a b 1 2β q2+ +( )2+( )

σ–

9
-----,=

ė1–
v B 1 2β q2+ +( )n 1+ σ–

n
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-----------,–=

e2–
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2
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ė2
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exponent n and the quantities

whence it follows that

where  and  are the measured values of the
instantaneous strain arising immediately after the load
has been applied. Thus, two tensile–compression

B
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3n
-------------------------------

2q1 2– β–
6

-------------------------- η+,=

B
1 2β q2+ +( )n 1+

3n 1+
---------------------------------------- ξ–

n 1+ ,=

B
1 2β q2+ +( )n

3n
----------------------------------

1 2β 2q2–+
6

------------------------------ η–,=

β
2ξ+

n ξ–
n 1+ η–+( ) ξ–

n ξ+
n 1+ η+–( )–

2ξ–
n ξ+

n 1+ η+–( ) ξ+
n ξ–

n 1+ η–+( )–
----------------------------------------------------------------------------,=

B
2
3
--- 

 
n 1+ 2 ξ+

n 1+ η+–( )
ξ+

n
-------------------------------

ξ–
n 1+ η–+

ξ–
n

-----------------------–
 
 
  n 1+

,=

q1 3ξ+B 1/(n– 1)+ 2– β,–=

q2 3ξ–B 1/(n– 1)+ 1– 2β,–=

b
B2/(n 1)+

ξ+
2 ξ–

2–
------------------

e1+
e

σ+
-------

e1–
e

σ–
------– 

  ,=

a 9
e1–

e

σ–
------

ξ+
2

ξ+
2 ξ–

2–
---------------- 9

e1+
e

σ+
-------

ξ–
2

ξ+
2 ξ–

2–
----------------,–=

e1+
e e1–

e

DOKLADY PHYSICS      Vol. 50      No. 7      2005
experiments are sufficient to determine the relevant
parameters of the model.
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