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Being a constituent of numerous minerals, magne-
sium silicates are of extraordinary interest for the Earth
and planetary sciences, as well as for cosmology. At the
same time, they have many industrial and technological
applications, including those associated with the build-
ing industry. Reliable data on the thermodynamic prop-
erties of magnesium silicates at high temperatures are
necessary for the forecasting of various natural phe-
nomena, optimization of technological parameters in a
wide range of technological processes and production
techniques, and for the development of novel ceramic
and ceramic-metal materials, glasses, fluxes, slags and
slag-forming mixtures. However, these data are at
present almost entirely absent. Results from the direct
measurement of thermodynamic characteristics for a
magnesium-silicate melt have been reported by a single
group only [1, 2]. However, these results do not agree
with the data related to the phase diagram [3]. The
description of the thermodynamic characteristics of
intermediate phases is mainly based on low-tempera-
ture measurements and the extrapolation of tempera-
ture dependence for specific heats [4].

The present study is aimed at determining the ther-
modynamic properties of all phases existing in the
MgO–SiO2 system within the wide temperature range
1571–1873 K for the entire set of chemical composi-
tions. The measurements were performed by the Knud-
sen mass-spectrometry method using the approach
of [5], which was based on the generation of volatile
reaction products formed as a result of the reduction of
oxide components. When the MgO–SiO2 mixture inter-
acts with the reducing agent R, which is, in this case,
either the material of the effusion cell itself (R = Ta, Nb,
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Mo) or the purposefully added powders of these metals,
the following chemical reactions occur:

nMgO(solid, liquid) + R(solid) 

= ROn(gas) + nMg(gas), (1)

nSiO2(solid, liquid) + R(solid) 

= ROn(gas) + nSiO(gas). (2)

The calculations and preliminary experiments per-
formed have demonstrated that both processes (1) and
(2) take place in liquid and crystallized MgO–SiO2
mixtures. Hence, in order to determine the thermody-
namic properties of the components, we can study the
equilibrium conditions for the chemical reaction

SiO2(solid, liquid) + Mg(gas) 

= ågO(solid, liquid) + SiO(gas). (3)

The MgO–SiO2 compositions were synthesized
using high purity MgO and SiO2 preliminarily dried by
heating in vacuum. Some samples were produced
directly in the effusion chamber, whereas others were
manufactured by melting the components together in
closed molybdenum crucibles in a vacuum not worse
than 10–4 Pa with subsequent long-time homogenizing
annealing. The selective chemical and X-ray phase
analysis conducted after the measurements had been
performed demonstrated that, in the course of the
experiments, there occurred neither a significant disso-
lution of Nb, Ta, or Mo oxides, nor changes in the oxy-
gen stoichiometry of MgO and SiO2. In other words,
the configuration point of the sample composition did
not exceed the limits of the quasi-binary MgO–SiO2 cut
for the Mg–O–Si system. The X-ray diffraction patterns
exhibited only such lines as corresponded to combina-
tions of the equilibrium phases existing in the MgO–
SiO2 system.

The mass-spectrometry of saturated vapor that
formed above the MgO–SiO2 system revealed the exist-

ence of Mg+, SiO+, MoO+, , , NbO+,

, TaO+, and  ions arising as a result of the
ionization of Mg, SiO, MoO, MoO2, MoO3, NbO,

MoO2
+ MoO3

+

NbO2
+ TaO2

+
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NbO2, TaO, and TaO2 molecules. The most intense

lines corresponded to Mg+, SiO+, , , and

 ions.

In the crystalline state of the MgO–SiO2 system,
there exist two intermediate phases having the metasil-
icate (MgSiO3) and orthosilicate (Mg2SiO4) composi-

tions. The determination of the intensity ratio 

for ionic currents in all heterogeneous mixtures enabled
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Fig. 1. Temperature dependence of ln  deter-

mined for MgO–SiO2 crystalline mixtures of different
chemical composition, which were measured under differ-
ent experimental conditions, i.e., different values x(SiO2),
material of the effusion chamber, and diameter deff (mm) of
the effusion hole: (1) 0.498, Nb, 0.162; (2) 0.486, Ta, 0.190;
(3) 0.403, Mo, 0.284; (4) 0.605, Nb, 0.154; (5) 0.563, Ta,
0.181; (6) 0.528, Mo, 0.232; (7) 0.678, Nb, 0.129; (8) 0.745,
Ta, 0.157; and (9) 0.811, Mo, 0.201.
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Table 1.  Parameters of temperature dependences for the in-

tensity ratios ln  =  + B of ionic currents above

the MgO–SiO2 crystalline mixture

Phase field T, K n A ± ∆A –B ± ∆B

MgO + Mg2SiO4 1584–1835 95 14190 ± 68 5.455 ± 0.040

MgSiO3 + Mg2SiO4 1571–1824 95 2592 ± 56 4.680 ± 0.040

MgSiO3 + SiO2 1578–1808 92 2905 ± 57 5.164 ± 0.040

I Mg+( )
I SiO+( )
-------------------

 
 
  A

T
---
us to find the following expression for the partial Gibbs
free energy of MgO and SiO2 in the MgSiO3–Mg2SiO4
two-phase region using the equilibrium constant for
reaction (3):

(4)

(5)

Here, symbols marked by a single prime, two primes,
and three primes correspond to heterogeneous fields
MgO + Mg2SiO4, MgSiO3 + Mg2SiO4, and MgSiO3 +
SiO2, respectively. In each coexistence region for two
crystal phases, we have studied several samples of dif-
ferent compositions. The intensity ratios for currents
produced by Mg+ and SiO+ ions, which were measured
under various experimental conditions (material of
effusion chamber, diameter of the effusion hole), were
highly reproducible. The maximum deviation did not
exceed the experimental error (about 1%) of the deter-
mination of ionic currents, so that it was possible to per-
form the combined data processing (Fig. 1). Based on
the coefficients for the temperature dependence

ln  =  + B (Table 1), which were deter-

mined by the least-squares method, we have calculated
according to expressions (4) and (5) the partial Gibbs
free energies (expressed in J/mol) for MgO and SiO2 in
heterogeneous fields MgSiO3 + Mg2SiO4 using as ref-
erence points the corresponding values for crystalline
MgO and β-cristobalite:

∆fG''(ågO) = –(32144 ± 245) + (2.15 ± 0.16)T, (6)

∆fG''(SiO2) = (1302 ± 332) + (2.01 ± 0.24)T. (7)

The partial thermodynamic parameters determined for
both components of the heterogeneous mixture of mag-
nesium metasilicate and orthosilicate allowed us to cal-
culate (and to express in units of J/mol) the integral
thermodynamic functions related to the formation of
these compounds:

∆f G(ågSiO3) = – (30842 ± 413) + (0.14 ± 0.29)T,  (8)

∆f G(åg2SiO4) = –(62986 ± 592) + (2.19 ± 0.40)T.  (9)

The dependence of x(ågO) on ln  deter-

mined from the experimental data for MgO–SiO2 melt
has a complicated form (Fig. 2). The sharp breaks
observed correspond to the positions of stability bound-
aries for the liquid phase. The performed calculations

∆ f G'' MgO( ) RT
3
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---------------------ln I' Mg+( )
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yielded the values x l(SiO2) = 0.488 and 0.563 (T =
1873 K) for the liquidus positions from the side of mag-
nesium silicate and silica, respectively. These values
are in good agreement with the published data on the
phase diagram: x l(SiO2) = 0.494 and 0.562 (T =
1873 K) [3]. The activities of the components in the liq-
uid phase were determined by integrating the Gibbs–
Duhem equation expressed in terms of the intensity
ratio for ionic currents. For example, the activity of
MgO in the MgO–SiO2 melt is calculated on the basis
of the relationship

(10)

The initial value a(ågé) in the equilibrium region
between the melt and Mg2SiO4 was calculated using
Eq. (9) and the found value a(SiO2). The results
obtained are presented in Table 2.

The concentration dependences of thermodynamic
functions related to the formation of crystalline MgO–
SiO2 mixtures have asymmetric shapes (Fig. 3). The
extrema of the corresponding curves are shifted toward
MgO and their positions correspond to the forsterite
composition (Mg2SiO4). This well agrees with the
shape of the MgO–SiO2 phase diagram [3]. For com-
parison, we present in Fig. 3 the values of the Gibbs
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Fig. 2. Dependence of x(ågO) on ln  (T =

1873 K).
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free energy ∆f G and enthalpy ∆f H for protoenstatite
MgSiO3 and forsterite, which are given in the reference
book [6] and reported in [4, 7]. These values were
found by means of the combined analysis (optimiza-
tion) of all available data on the thermodynamic prop-

Table 2.  Activities of the components in the MgO–SiO2
melt with respect to β-cristobalite and crystalline MgO
(T = 1873 K)

x(SiO2) a(SiO2) a(MgO)

0.486* 0.693 0.181

0.498 0.737 0.171

0.511 0.797 0.158

0.528 0.865 0.144

0.550 0.951 0.129

0.563 1.0 0.122

* The coexistence region for the melt and Mg2SiO4.
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Fig. 3. Thermodynamic functions that characterize the for-
mation of magnesium silicates (T = 1700 K) from β-cristo-
balite and crystalline MgO. The results of the present study:
(d) ∆f G and (s) ∆f H. The data of other authors: (j) ∆f G
and (h) ∆f H [6]; (m) ∆f G and (n) ∆f H [4]; (.) ∆f G and
(,) ∆f H [7].
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erties and phase equilibrium conditions in the MgO–
SiO2 system. The analysis was focused on finding the
most precise and justified values of the parameters that
characterize these two types of data. One can see that
the values ∆f G reported in all the papers are close to
each other, whereas there is a substantial divergence of
the data for ∆f H. The value of ∆f H(ågSiO3) recom-
mended in the reference book [6] seems to be too low.
This implies that the chemical bonds in magnesium
orthosilicate and metasilicate are comparable in terms
of strength, which is difficult to reconcile with the
incongruent melting type of the latter silicate [3]. In
contrast, the enthalpy change corresponding to the for-
mation of forsterite from the components found in [4]
turns out to be too low. The described situation proba-
bly stems from the absence of direct measurements of
thermal parameters characterizing the formation of
magnesium silicates at high temperatures. Therefore, it
is necessary to extrapolate the quantities measured at
relatively low temperatures to a wider temperature
range.

The activities of the components forming the MgO–
SiO2 melt, which were determined in the present study
and in the studies [1, 2], are close to each other (Fig. 4),
but they differ in the shape of their concentration
dependence. In [1, 2], the existence of a much broader
stability range for the liquid phase at 1873 K and
1973 K was reported than follows from the data of [3]

0.2

0.400.35 0.45 0.50 0.55 0.60
0

x(SiO2)

0.4
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1.0

a(SiO2), a(MgO)
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Fig. 4. Activities of components forming MgO–SiO2 melt
at T = 1873 K. Data of the present study: (d) a(SiO2) and
(s) a(ågO). Data of other authors: (j) a(SiO2) and
(h) a(ågO), T = 1873 K [1]; (m) a(SiO2) and (n) a(ågO),
T = 1973 K [2].
on the phase diagram (the reported range is extended to
the region in which the formation of magnesium ortho-
silicate occurs). In the liquid MgO–SiO2 mixtures, it is
this composition range that is characterized by the most
pronounced tendency to glass formation [8, 9]. Appar-
ently, in the course of the measurements performed
in [1, 2], the supercooling of the melt was not avoided,
and this has led to a certain distortion in the concentra-
tion functions of the activity.

Thus, in the present study, the thermodynamic prop-
erties of liquid and crystalline MgO–SiO2 compositions
were determined by means of measurements performed
with several samples of both the same and different
compositions under different experimental conditions.
In all the cases, the measured values for the ratios of
ionic-current intensities coincided with each other
within the experimental errors (about 1%). Therefore, it
was possible to perform the combined treatment of
these data (see Tables 1 and 2). We also note that none
of the calculation methods that were used required data
on the ionization cross sections of gas molecules or on
the sensitivity of the mass-spectrometric device. This
has led to a substantial enhancement of the determina-
tion accuracy of the thermal parameters. All of this
allows us to recommend the obtained data for use in the
thermodynamic calculations of reactions and processes
involving MgO–SiO2 mixtures and, in particular, for
choosing slags and slag-forming mixtures for the con-
tinuous casting of steels with improved operating per-
formance.
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Determination of the Grüneisen coefficient as a
function of the specific volume is one of the basic prob-
lems in constructing equations of state for solids. Many
theoretical and experimental studies have been devoted
to solving this problem [1–3]. However, in the case of
molecular crystals, the problem is especially compli-
cated by virtue of the fact that molecules composing a
crystal possess a large number of degrees of freedom.
Nevertheless, the present author has managed to over-
come this difficulty and has obtained in analytical form
the dependence of the Grüneisen coefficient on the spe-
cific volume of a solid, which was precisely the goal of
this paper.

The thermodynamic properties of a substance can
be entirely determined provided that one of the thermo-
dynamic potentials is known. It is convenient to pro-
ceed from the definition of the Helmholtz free energy
F(V, T), which is most simply formulated in association
with a model of the substance structure:

(1)

Here, u is the energy of interatomic interaction, V is the
specific volume, T is temperature of a body, k is the
Boltzmann constant, h is the Planck’s constant, ωα is
the frequency of normal oscillations, and E0 is the
energy of zero oscillations.

If F(V, T) is specified, then the expressions for all
measurable thermodynamic quantities can be found by
differentiation:

(2)

It is well known that the interaction energy between
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atoms of a molecular crystal is the sum of the intramo-
lecular and intermolecular energies. The former con-
sists of the energies of the valent and non-valent inter-
actions of atoms inside a molecule. The intermolecular
energy is that of the non-valent interactions of atoms
belonging to different molecules. It is well known that
the intramolecular energy of valent interactions consid-
erably exceeds the energy of non-valent interactions
between atoms both inside a molecule and amongst
atoms of different molecules. Therefore, it is reason-
able to divide the interaction energy of a molecular
crystal into the molecular energy uM (energy of valent
interactions) and crystal energy uC (energy of non-
valent interactions). If the energy uC is dependent on the
spatial disposition of molecules, then the energy uM
exceptionally depends on values of valent bonds and
valent angles.

It is well known that the frequencies of normal oscil-
lations inside a molecule exceed by an order of magni-
tude those of normal oscillations for a molecule as a
whole and also of deformation oscillations. With allow-
ance for this fact, we can introduce two characteristic
temperatures and divide the oscillatory component of the
free energy into low-frequency and high-frequency parts.
The frequencies of normal oscillations of a molecule as a
whole and of deformation oscillations are determined by
the variation of the energy uC, i.e., by the energy of non-
valent interactions. Therefore, only these frequencies of
normal oscillations depend on the volume.

Assuming that the Debye (Einstein) approach is
valid in application to the low-frequency (high-fre-
quency) component of the free energy, we can rewrite
expression (1) in the form

(3)

F uC uM E0 3MRT
T
θD
------ 

  3

+ + +=

× ξ2 1 ξ–( )exp–[ ]ln ξd

0

θD/T

∫

+ 3N M–( )RT 1
θE

T
-----– 

 exp– .ln
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Here, R is the universal gas constant, M is the number
of low-frequency oscillations, N is the number of atoms
in a molecule, 3N – M is the number of high-frequency
oscillations, θD is the Debye characteristic temperature,
and θE is the Einstein characteristic temperature.

Upon integrating by parts the expression for the
low-frequency component F(V, T) of the free energy
and introducing the Debye function D(x) in accordance
with formulas presented in monographs [4, 5], namely,

we arrive at

(4)

where xD =  and xE = .

Using formula (3), we easily obtain the expression
for the pressure P and entropy S:

(5)

(6)

In deriving formula (6), we have used the following
feature of the Debye function:

(7)

where the symbol prime corresponds to differentiation
over the characteristic temperature x.

D x( ) 3

x3
----- ξ3 ξd

ξexp 1–
---------------------,

0

x

∫=

F = uM uC E0 MRT 1 xD–( )exp–( )ln
D xD( )

3
--------------–+ + +

+ 3N M–( )RT 1 xE–( )exp–[ ] ,ln

θD

T
------

θÖ

T
------

P
∂F
∂V
------- 

 
T

–
∂uM

∂V
---------–

duC

dV
---------–

dE0

dV
---------–= =

– MRTD xD( )
d θDln
d Vln
--------------- 1

V
---

– 3N M–( )RT xÖ

d θEln
d Vln
-------------- 1

V xÖexp 1–( )
---------------------------------,

S = 
∂F
∂V
------- 

 
T

– MR 1 xD–( )exp–( )ln
D xD( )

3
---------------–





–=

– MRD xD( ) 3N M–( )R 1 xÖ–( )exp–[ ]ln+

–
3N M–( )RT xÖ

xÖexp 1–
--------------------------------------





.

D x( ) x
xexp 1–

---------------------
x
3
---D' x( ),–=
With known equalities (4) and (6), it is easy to deter-
mine expressions for the total energy and heat capacity
CV at the constant volume:

(8)

(9)

Following the definition of the Grüneisen coefficient

, (10)

we can rewrite expression (5) in the form

(11)

The last term in expression (5) equals zero because,
while dividing frequencies, we have made the assump-
tion that high frequencies are volume-independent.

Thus, based on the definition of the zero-oscillation
energy and allowing for the separation of frequencies,

we arrive at the expression for the function E0 and :

(12)

(13)

Here, N' and M' are the numbers of atoms and of low-
frequency oscillations in the volume V, respectively.

Substituting the expression (13) for the derivative of
the zero-oscillation energy as a function of the volume
into equality (11), we obtain the equation for the deter-
mination of pressure in the form

(14)

In order to find a possible dependence of the Grü-
neisen coefficient for molecular crystals on the volume,
we can use the following approach.
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The isothermal modulus of compression (modulus
of isothermal compressibility) βT is determined by the
expression

(15)

where the quantity cT corresponds to the isothermal
sonic velocity.

Substituting expression (14) into the right-hand side
of equality (15), we arrive at

(16)

where (V) is the derivative of the Grüneisen coeffi-
cient with respect to volume V, and

We now determine the value of the isothermal com-
pressibility as T  0. To this end, we pass to the limit
in the last expression:
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Hence, as T  0, the isothermal compressibility is
determined by the expression 

(17)

By definition, the isothermal compressibility βT is
associated with the isothermal sonic velocity cT by for-
mula (15), i.e.,

(18)

Assuming further that the sonic velocity is deter-
mined only by the elastic properties of a crystal, we
obtain the following differential equation analogous to
the Bernoulli equation, which allows us to determine
the dependence of the Grüneisen coefficient on density:

By replacement z = , we reduce this equation to

the linear differential equation

which is easily integrated. The dependence of the Grü-
neisen coefficient on density is described by an expres-
sion of the form

(19)

where the constant C is determined from the condition

γD(V0) = . A similar expression for the Grüneisen
coefficient was derived on the basis of other concepts
by Molodets [3, 6]. As a result, we arrive at the expres-
sion

. (20)

In the case of a weak compression, formula (19) trans-
forms into the well-known expression
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Thus, our assumption that at T = 0, the isothermal
sonic velocity is determined only by the elastic proper-
ties of a crystal has made it possible to find the analyti-
cal dependence of the Grüneisen coefficient on the spe-
cific volume of a solid.
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In experiments [1] in which flows of weakly con-
ducting hydrocarbon liquids in narrow channels were
studied, the luminescence of liquids was observed
under certain conditions. In the opinion of the authors
of [1], this luminescence was caused by microdis-
charges in the liquid that acquired an electric potential
of several kilovolts while passing through the channel.
The luminescence of dielectric liquids of the industrial-
oil type due to microdischarges was found experimen-
tally in strong electric fields in the course of developing
methods for the electrical cleaning of media from
microscopic-scale inclusions [2].

In this paper, we propose a new interpretation of the
phenomena that cause the luminescence of dielectric
liquids being pumped through narrow channels, and
this interpretation is not associated with microdis-
charges in a medium. Within the framework of electro-
dynamics, we have theoretically substantiated the pos-
sibility of the generation of strong electric fields at
phase interfaces for flows of weakly conducting liquids
in narrow channels in the presence of surface electro-
chemical processes. We have also investigated the
effect of the parameters of a medium on the field inten-
sity and have proposed a mechanism explaining the
observed localization of the luminescence domain. It is
shown that, in this case, the electric potential of a liquid
moving in a narrow channel does not exceed several
tens of millivolts. In the experiments mentioned above,
a source of light radiation can be the negative ions that
are produced in reactions of electron attachment to
molecules of a liquid possessing a high energy of elec-
tron affinity. Free electrons appear in the liquid as a
result of cold emission from walls, which proceeds in
strong induced electric fields.

In the experiments described in [1], industrial oil
was pumped through a cylindrical channel with an
internal diameter of 1.5 × 10–3 m. The channel was
composed of two parts: the input and rest parts were
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made of fluoroplastic and organic glass, respectively.
The parts had smooth internal conjugation with each
other. The luminescence of the liquid was observed at
the junction of walls made of different materials, the
luminescence intensity rapidly dropping as distance
from the junction domain increased.

For the theoretical explanation of the phenomenon
observed, we analyze the steady-state laminar flow of a
liquid with a small admixture of ions of three kinds.
The concentrations and charges of the ions are nm and
em , respectively (m = 1, 2, 3; e1 > 0; and e2, 3 < 0). To
simplify our calculation, we assume that the channel is
plane, semi-infinite, and has the width h, the channel
being at an identical constant electric potential. At the
channel input, the medium is considered to be quasi-
neutral, with the concentration n0 of charge carriers
originally appearing in the liquid due to the dissociation
of admixture molecules of an electrolyte nature (n1 =
n2 = n0, n3 = 0). The velocity u of the carrier liquid is
considered to be given by the Poiseuille formula, inso-
far as in the absence of external electric fields, a small
admixture of charged particles does not affect motion
of the medium.

The electrodynamic equations in a two-dimensional
Cartesian coordinate system in which the x and y axes
are directed along the channel centerline and across the
channel, respectively, can be written in the form
(see [3])

(1)

Here, Dm and bm are the ion diffusivity and mobility; Um

is the ion velocity in the direction normal to the channel

u
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walls; q is the space-charge density, F is the electric
potential; E is the transverse component of the electric-
field strength; εε0 is the permittivity.

The formulation of boundary conditions for the con-
centration of charged components is of crucial impor-
tance for the problem under study. In the present paper,
we use boundary conditions that are based on the bal-
ance of particle flows directed towards channel walls
with allowance for the nonequilibrium electrochemical
processes of surface ionization and ion recombination
[3]. For the sake of certainty, we make the following
assumptions. The channel wall is chemically neutral
with respect to positive ions, whereas negative ions of
kind 2 participate in the surface reactions of recombina-
tion and ionization. Negative ions of kind 3, which are
absent in the liquid at the channel input, appear as a
result of the surface ionization, whose rate is consid-
ered to be proportional to the electric-field strength.
The formation of ions of kind 3 may be considered to
occur by the following process. A strong induced elec-
tric field causes cold emission from the channel walls.
Insofar as in a liquid the lifetime of emitted free elec-
trons is short, they attach to molecules of the liquid
forming negative ions. The majority of hydrocarbon
molecules bear a positive affinity to electrons [4].
Therefore, the attachment process can be accompanied
by photorecombination luminescence.

With allowance for the aforementioned, relation-
ships at the interface y = 0 can be written out in the form
(for y = h, the conditions are similar)

(2)
n1U1 0, n2U2 A2 K2n2, n3U3– B3E= = =

B3 0=    x x 0 ,    B 3 0,    x x 0 ≥><,( ) .                                  

2

0 1000

Ew* × (–0.0001)

x*

4

6

2000 3000 4000 5000

Fm*

Q* × 1000

Fig. 1. Distributions for the electric-field strength  at the

channel wall, the maximum value  of the electric poten-

tial in liquid, and the total charge Q* in a channel cross sec-
tion along the channel. Injection of ions of kind 3 begins at
x* = 4000.

Ew*

Fm*
The parameters A2, B3 , and K2 entering into relation-
ship (2) describe the surface ionization and recombina-
tion of ions. These parameters depend on the material
of the channel walls and can be different for different
segments of the wall. In modeling the discharge pro-
cess, we suppose that the quantity B3 is nonzero only on
a certain part of the walls, as is written out in (2). This
condition takes into account the variation of the channel
wall material in [1].

For the electric potential on the walls, we take the
condition Fw = 0.

Problem (1), (2) is solved numerically. Below, we
present the calculation results for a medium of the type
of transformer oil with electrolyte additions. These
additions make it possible to change within a wide
range the conductivity of the medium. To make the
equations dimensionless, we have used the characteris-
tic values for the conductivity σ0 = 10–10 S m–1, diffu-
sivity D0 = 1.34 × 10–9 m2 s–1, velocity 
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 = 300 K are analyzed. Below,
dimensionless quantities are marked by asterisks.

Figure 1 presents the electric-field strength  at
the wall, the maximum value for the potential of liquid

, and the total charge 

 

Q

 

*

 

 in a channel cross section
(obtained by integrating the quantity 

 

q

 

 along the trans-
verse coordinate) as functions of the longitudinal coor-
dinate 

 

x

 

*

 

. In this calculation, the field-dependent injec-
tion of ions of kind 3 is initiated at a distance 

 

x

 

*

 

 = 4000
from the input. Immediately after the liquid has been
injected into the channel, the concentration of negative
ions in the vicinity of the wall decreases as a result of
the nonequilibrium surface recombination, and a posi-
tive space charge begins to be generated in the liquid.
The space charge induces a nonuniform electric field
directed toward the wall. In the arising field, positive
ions that do not react at the surface begin to move from
the flow core to the boundary domain. Their concentra-
tion rises near the wall, thereby increasing the space
charge all the more. In the processes described, along
with the electric field, there arise concentration gradi-
ents of charged components, which produce diffusion
flows of negative ions both towards the wall and from
the wall. The diffusion flows of charged components
compete with their drift flows under the action of the
induced field. The distribution of the dimensionless
parameters of the medium in the channel cross section

 x  *   = 3999 is shown in Fig. 2. As is seen, the concentra-

kT
e

------

F0

h
-----

Ew*

Fm*
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tion of positive ions  on the wall exceeds its value at
the channel center by a factor of approximately 25. The
maximum value of the electric potential F* of the liquid
exceeds the thermal potential by a factor of only 3. The
large value of the field at the wall is explained by the
fact that the layer in which the charge is concentrated
is thin.

The variation of the ion and space-charge concentra-
tions, as well as of the longitudinal convective electric
current (stipulated by the space charge), occurs along
the channel until a balance of the diffusion flows and
ion drift in the transverse direction is established. In
this case, the space charge in the cross section and the
convective current attain their saturation values and do
not further vary along the channel. The tendency to the
attainment of saturation is seen even in Fig. 1 in which
the rapid rise of electrical parameters in the channel
onset is being changed because they are rather slowly
approaching the ultimate values. It is worth noting that
the field strength at the wall attains a large value and
can cause the aforementioned cold emission from the
walls. For example, in the cross section in which the
injection of ions of kind 3 begins, the true value of the
electric field is Ew = 1102 kV m–1.

After the injection (whose intensity is time-depen-
dent) has begun, negative ions of kind 3 compensate at
a short distance the positive space charge near the wall,
the field rapidly drops, the injection of ions of kind 3

n1*

10

0 0.0001

E* × (–0.0001)

y*

20

30

0.0002 0.0003 0.0004

F*q*

q*

n*1
n*2

Fig. 2. Distribution of the electric potential F*, of the elec-
tric-field strength , of the space-charge density q*, and
of concentrations of negative  and positive  ions in

the electrodiffusion boundary layer near the wall y* = 0 for
x* = 3999.

E*
n2* n1*
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decreases, and the electrical parameters pass to a new
equilibrium state at a considerably lower level.

The numerical experiments allow us to determine
two basic parameters that strongly affect the field
strength at the wall. We refer here to the conductivity of
liquid and the rate of surface recombination for ions of
kind 2. The calculation results are demonstrated in
Fig. 3. There, bilogarithmic dependences for the field at
the wall are presented as functions of the surface
recombination rate for ions of kind 2 (curves 1, 2, and
3 correspond to 10 K20 , 100 K20 , and 1000 K20 , respec-
tively). The bilogarithmic dependences of the field at
the wall as a function of the conductivity are close to
linear ones. This is especially clearly seen for curve 1,
for which the field at the wall can be written out as

 ≈ . We should note that, varying (in corre-

spondence with Fig. 3) parameters of the medium in a
physical experiment, we can use the variation of lumi-
nescence to obtain information on the adequacy of the
theoretical model in relation to the actual phenomenon.

Thus, within the framework of the electrodynamic
model of a medium, we have shown that the separation
of charges in a thin electrodiffusion boundary layer at
the phase interface is accompanied by the generation of
strong electric fields. These fields are capable of caus-
ing cold emission from the channel wall and the lumi-
nescence of a fluid moving through a narrow channel.
This phenomenon is determined by the attachment of

Ew*
σ
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Fig. 3. Electric-field strength  on the channel wall as a

function of the conductivity σ for x* = 3999: (1) 10 K20;
(2) 100 K20; (3) 1000 K20.
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electrons to molecules that bear a positive electron
affinity. The form of the radiation spectrum obtained
in [1] confirms that the processes occurring near the
interface [6] have their origin in photorecombination.
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In [1, 2], in order to explain the laws of formation of
deformation localization bands in austenite steels, a
new mechanism of the deformation and reorientation of
a crystal lattice was proposed. This is the mechanism of
direct plus inverse (through alternative systems) of
martensitic transformations in fields of high local
stresses. In our opinion, this mechanism is a clear illus-
tration and represents the first atomic model of the non-
equilibrium local structure transformations that were
introduced in the concept of physical mesomechanics
[3, 4] as carriers of plastic deformations in stress-con-
centrator zones.

In this work, using the mechanism of reversible
martensitic transformations and martensitic transfor-
mation theory [5] based on the concept of the coopera-
tive thermal vibrations of extended two-dimensional
objects (close packed planes) in crystals, we develop
atomic models of the formation (nucleation) of disloca-
tions and deformation twins in fcc crystals.

MODELS OF NUCLEATION 
OF PARTIAL (SHOCKLEY) DISLOCATION 

AND TOTAL DISLOCATION

According to [5], atomic rearrangements in the pro-
cess of bcc  fcc and bcc  hcp transformations
are combinations of shear and contraction (Bein-type)
deformation modes. The shear component appears due
to the freezing of cooperative thermal vibrations of
atoms of close packed planes (such as {110}) of the bcc
phase in directions such as 〈110〉. It is equal to the dou-
ble amplitude of these vibrations and is limited by the
free paths (up to collisions with neighboring atoms) of
atoms in the bcc lattice. The direction and value of con-
traction displacements are determined by the tendency
of atoms to pack closer and to occupy energetically
favorable states in the structure of a new martensitic
phase. If such rearrangements involve one family of
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planes and the mutual displacements between pairs of
neighboring planes are accumulated from plane to
plane, a bcc  fcc transformation is observed. If
mutual displacements are compensated in each sequen-
tial interplanar interval, bcc  hcp transformations
occur.

The concept of the model presented below is to
attribute the nucleation of the dislocation displacement
with the load-induced shear component of the local
fcc  bcc  fcc transformation. The scheme of
such a transformation that is localized in two adjacent
slip planes of the fcc lattice (atoms of these planes are
shown by open symbols) is shown in Fig. 1. Let us con-
sider a variant of the local stress field with a large shear
component τ acting in the (111) slip plane in the direc-
tion of the Burgers vector of the Shockley partial dislo-

cation [ ] (see  in Fig. 1a). Under the condi-

tions of constrained deformation, the responses to this
component are large diagonal components of the stress
tensor (σii in Fig. 1a), i.e., compression stress in the

[ ] direction and tensile stresses in the [ ] and
[111] directions that are perpendicular to the former
one.

The geometry of these stresses is such that the direc-
tions of the corresponding tensile–compression defor-
mations (εii in Fig. 1b) are similar to those for contrac-
tion displacements of atoms in the process of the
fcc  bcc transformation. The atomic configuration
after such displacements localized in two neighboring
slip planes is shown in Fig. 1b. The values of these dis-
placements, as well as those of the tensile–compression
deformation components, are not strictly determined
for two reasons. First, the intermediate bcc phase is
absent in the equilibrium diagram of state for fcc metals
with a high packing-defect energy and is virtual in this
case; i.e., it exists only in the process of deformation in
the field of high local stresses. Second, the parameters
of this phase can depend strongly on these stresses. The
εii values obtained under the assumption that the atomic
size does not change in the transformation process are
indicated in Fig. 1b.

a
6
--- 121 τ

121[ ]

121 101
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Fig. 1. Atomic configurations at various stages of the direct plus inverse (fcc–bcc–fcc) martensitic transformation that is localized
in two adjacent slip planes and leads to the formation of Shockley partial dislocation in (left panels) a section parallel to the (111)

slip plane and (right panels) a section parallel to the ( ) plane that is perpendicular to the slip plane and is parallel to the Burgers
vector of the dislocation after (b) the contraction plus (c) shear deformation modes of the direct transformation and (d) the direct
and inverse transformations.

101

εiiεii
According to [5], if the contraction displacements
under the action of the shear stress component in the

[ ] direction of the fcc phase are accompanied by
the mutual displacement of planes in this direction by
the double amplitude of the cooperative thermal vibra-
tions of atoms in the bcc lattice (2∆ in Fig. 1c), the
resulting atomic configuration consists of two close

121
packed planes of the bcc lattice. A cell with an atomic
configuration characteristic of such a pair of planes is
shaded in Fig. 1c.

This configuration is nonequilibrium with a strong
thermodynamic stimulus of the inverse bcc  fcc
transformation. In this case, only two variants of such a
transformation are possible: first, strictly backward
DOKLADY PHYSICS      Vol. 50      No. 8      2005
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with reversal of the signs of both contraction and shear
deformation modes and, second, with the shear compo-
nent in the direction of the displacement of the direct
deformation. The first variant leads to the initial crystal
(Fig. 1a). However, the existence of the shear stress
components and the necessity of its relaxation stimu-
late the realization of the second variant of the inverse
transformation. In the process of such a transformation

(shift by 2∆ in the [ ] direction plus contraction
shifts directed towards the formation of the close
packed structure of the fcc phase), the atoms of the
transformation plane ë that are indicated by triangles
occupy close packing sites in the fcc lattice of the lower
part of the crystal, and the atoms of the transformation
plane Ä (shown by crosses) are shifted along with the
upper part of the crystal to the sites of the close packing
over the atoms of the planes Ç (see Fig. 1d). As a result,
the shift by the Burgers vector of the Shockley partial

dislocation (b = [ ]) occurs in the (111) plane with

the formation of the subtraction packing defect
(ÄÇëÄÇë…  ÄÇëÇëÄ…) in this plane.

If the local stress is such that the shear stress com-

ponent comparative with  acts also in the [ ]

direction (see Fig. 1d) or the [ ] direction, the for-
mation of Shockley partial dislocations with the Burg-

ers vector [ ] or [ ] is possible through a

mechanism similar to that shown in Figs. 1a–1d. Mov-
ing in the same slip plane, these dislocations recover the
packing of the fcc phase (ÄÇëÇëÄ… 
ÄÇëÄÇë…) and, together with the first dislocation,

make shifts by the Burgers vector [ ] (Fig. 1d) or

[ ] of the total dislocations.

The variants of fcc  bcc  fcc transformations
that are shown in Fig. 1 give rise to the formation
(nucleation) of partial (Shockley) dislocation or total
dislocation. If local martensitic transformations begin
at the intercrystalline boundary and propagate in the
transformation plane into the grain bulk under the
action of the shear component τ, dislocations originate
at the grain boundary. When these transformations
occur in the grain bulk, loops of partial or total disloca-
tions are formed.

FORMATION OF DEFORMATION TWINS

When local shear stresses reduced to the shear direc-
tions of driven dislocations (  or ) are much
lower than  and are insufficient for the nucleation
of these dislocations, the relaxation of the local stress
field can proceed through the nucleation and motion of
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partial dislocations [ ] in the slip planes parallel

to the slip plane of the first dislocation. If each sequen-
tial dislocation slips in the neighboring plane, a defor-
mation microtwin nucleates and grows.

We discussed above the variants of direct plus
inverse martensitic transformations localized in two
adjacent slip planes. In this case, a dislocation arises as
a linear defect bounding the 2D transformation region
and is in essence the front of this transformation. At the
same time, the variant of this transformation that occurs
simultaneously in several (more than two) neighboring
slip planes or the motion of the transformation front in
the third direction perpendicular to the slip plane is not
excluded. In this case, the front of the local martensitic
transformation is a 2D defect bounding a 3D region,
where shifts by the Burgers vector of the Shockley par-
tial dislocation occur in each plane; i.e., it is the region
of a twinned crystal. We note that such a twinning
mechanism, which is based on the motion of the high-
angle boundary that produces a pair of coherent twin-
ning boundaries after it, was discovered recently [6] in
the plastic deformation of nanocrystalline aluminum.

DISCUSSION OF THE RESULTS

According to [7], the motion of the total dislocation

〈110〉 in the fcc crystal through the sequential motion

of a pair of Shockley partial dislocations may be favor-
able, because the distortion of the crystal lattice is much
lower than the value in the direct shift by the Burgers
vector of the direct dislocation. In the atomic model
presented in this paper, this distortion is reduced to the
distortion of the local fcc  bcc phase transition, and
the shear direction is the direction of the cooperative
thermal vibrations of the atoms of close packed planes
in the bcc phase. In this case, the shift by the Burgers
vector of the Shockley partial dislocation is a result of
the cooperative shifts of atoms by distances that do not
exceed their free paths (up to collision with neighbor-
ing atoms) in the intermediate martensitic phase.

In this case, the energy barrier of the nucleation of a
partial dislocation necessarily includes the energy of
the local fcc  bcc transformation. Therefore, the
phase instability of the crystal in the field of high local
stresses is an important factor underlying the above
atomic mechanisms of the formation of partial disloca-
tions and deformation microtwins. The most favorable
conditions for the formation of such stresses are evi-
dently high deforming stresses and low efficiency of
their relaxation through the standard mechanisms of
generation and motion of dislocations, when, in partic-
ular, the critical work stress of a Frank–Read source
becomes higher than the stress of the local martensitic
transformation leading to the formation of a local dislo-
cation or a deformation microtwin.

The above models are of considerable interest in the
physical mesomechanics of the surface layers of solids.

a
6
--- 121

a
2
---
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According to the concepts developed in this field [8], a
surface layer is treated as a special state of matter that
is characterized by a specific crystalline structure with
several atomic configurations, including those that are
not inherent in the crystalline structure of the material
bulk, increased concentration of vacancies, softening of
phonon modes, etc. As was shown in [8], these proper-
ties give rise to the development of specific deforma-
tion mechanisms at micro-, meso-, and macroscales in
the surface layers of a loaded material. The initial dis-
placements and dislocations associated with them
nucleate primarily on the surface. However, the mecha-
nism of this nucleation is not yet known, as was men-
tioned in [8]. We believe that the mechanism of the
direct plus inverse martensitic transformation localized
in two neighboring slip planes may serve as such a
mechanism in fcc crystals. In this mechanism, the role
of the free surface is not only in the presence of stress
concentrators but also in the reduction of the phase sta-
bility of the initial fcc phase. This reduction is reliably
corroborated by the aforementioned softening of
phonon modes and by the existence of atomic configu-
rations whose crystalline structure is not inherent in this
phase. Local regions of such configurations can be
potential nuclei of local martensitic transformations as
dislocation nucleation mechanisms.

We emphasize that the above reversible martensitic
transformations in materials with relatively high phase
stability develop in fields of high local stresses. In this
case, direct martensitic transformations result from the
phase instability of the crystal in stress fields, and they
provide a pathway for the plastic relaxation of these
fields. The choice of the system of the inverse transfor-
mation is determined both by the character of the local
stress field and by the necessity of the plastic deforma-
tion of transformed volumes for the relaxation of this
stress field.

Since the Bein-type transformation deformation (εii
in Fig. 1) is an important deformation mode in this pro-
cess, its carriers are necessarily volume structures.
These may be microvolumes of unstable (stables in
stress fields?) martensitic phases or of nonequilibrium
phase-structure states that are superpositions of two
structures, when the interstitial space of the initial crys-
tal contains new allowed states—sites of the martensi-
tic phase. The plastic deformation and reorientation of
the crystal lattice occur by means of the motion of
atoms through these states. In contrast to, e.g., disloca-
tions, such carriers exist only in the process of deforma-
tion in fields of high local stresses.
In conclusion, we emphasize that, if change in the
inverse-transformation system in the process of the
fcc  bcc  fcc transformation is associated with
change in the transformation plane, this mechanism
explains the features of the reorientation of the crystal
lattice in the deformation localization bands formed
when rolling austenitic steels [1, 2]. The properties of
formation of bands of the localization and deformation
twins in planes with various indices ({112}, {113}, and
{225}) in titanium nickelide were described in [9, 10]
in the framework of the model of the direct plus inverse
B2  B19  B2 transformation.
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In this paper, we consider the dynamics of deforma-
tion-wave propagation along a tubular volume in a bub-
ble liquid containing a chemically-active gas mixture.
Such a bubble cluster is shown to serve as a waveguide
capable of transmitting pulsed signals in the form of
detonation solitons. In order to prevent the stall of det-
onation solitons due to the acoustic-wave emission into
the bulk of liquid surrounding the waveguide, its radius
must exceed a certain critical value that depends on the
radii of bubbles, as well as on their volume content and
characteristics of the explosive gas mixture.

Let the tubular volume of radius R0 be filled with a
homogeneous bubble medium containing a combusti-
ble gas mixture (e.g., mixture of C2H2 + 2.5O2). There
is a pure liquid around the tubular volume (i.e., for
r0 > R0, see Fig. 1). At the instant of time t = 0, a piston
begins to act in order to initiate the detonation at the
boundary of the tubular volume (z0 = 0, 0 < r0 < R0). The
rest part of the boundary (z0 = 0, r0 > R0) remains free.
Below, the action of the gravity force is ignored.

To describe the further evolution of the wave in this
system, we take the following equations for the bubble
liquid [1, 2], which are written out in the two-dimen-
sional radial-symmetric approximation and have the
following form in Lagrangian variables:
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The subscripts i = l, g mark the parameters of the liquid
and gas phases, and the subscript 0 corresponds to the

initial state. Here, pi are phase pressures;  are the true
phase densities; αi are the volume phase contents; n is
the number of bubbles per unit volume; a is the bubble
radius; w is the radial velocity of bubbles; νl is the kine-
matic viscosity of the carrier phase; Cl is the sonic
velocity in liquid; T0 = const is temperature of liquid;
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q is the heat-exchange intensity; γ is the adiabatic index
for gas; λg is the thermal conductivity; Nu and Pe are
the Nusselt and Pecklet numbers, respectively; z0 and r0
are the Lagrangian variables (for them, we take the ini-
tial cylindrical coordinates); and J is the Jacobian of
mapping from Lagrangian to Eulerian variables. The
velocities υr and υz correspond to motion over coordi-
nates r and z.

Henceforth, we assume that, in the initial state (t = 0),
the system under consideration is at rest. Then, we may
write out the following initial conditions:

We specify the initiating pulse at the boundary of the
tubular bubble volume (z0 = 0, 0 < r0 < R0) in the form
of a bell-shaped time law for the velocity of a rigid
striker, whereas the rest boundary (z0 = 0, R0 < r0 < ∞)

pl p0, υr υz 0, ρ ρ0;= = = =

αg αg0, ρ0 ρl0
0 1 αg0–( ),= =

pg p0, a a0, w 0 0 r R0< <( );= = =

ag0 0, ρ0 ρl0
0 r R0>( ) for t 0, z0 0.>= = =

Z

r

R0

∆υ0(t, r0)

Fig. 1. Illustration of the problem under study.
is free. We can write out the corresponding boundary
conditions as

for z0 = 0, 0 < r0 < R0 and pl = p0 for z0 = 0, R0 < r0 < ∞,
where ∆υ0 is the velocity amplitude and t∗  is the char-
acteristic duration of a pulse.

The impermeability condition (υr = 0) is specified at
the symmetry axis (r0 = 0). At the cylindrical boundary
(r0 = R0) of the calculation region, the reflection-free
conditions [3] are posed in the form of the impedance
relation ∆pl = ∆υrρlCl , where ∆pl and ∆υr are current
perturbation values for pressure and radial velocity at
the calculation-region boundaries of the Lagrangian
system.

We allow for the inflammation of bubbles in accor-
dance with the instantaneous scheme. According to this
scheme, after the gas temperature in bubbles has
attained a certain value T∗ , the temperature instanta-
neously increases by the value ∆T, which corresponds
to the caloric power of the combustible-gas mixture in
bubbles.

Figure 2a exhibits plots for pressure in liquid and
gas temperature in bubbles, which illustrate the dynam-
ics of the detonation wave along a cylindrical bubble
cluster of radius R0 = 0.05 m. For parameters that deter-
mine both the system and an initiating signal, the follow-

ing values are taken: p0 = 0.1 MPa;  = 1130 kg m–3;
Cl = 1700 m s–1; νl = 6 × 10–6 m2 s–1; χl = 4.65 ×
10−7 m2 s–1; T0 = 293 K; γ = 1.35;  = 1.3 kg m–3;
cg = 1.14 × 103 J (kg K)–1; T∗  = 1000 K; ∆T = 3000 K;
αg0 = 0.01; a0 = 10–3 m; ∆υ0 = 10.5 m s–1; and t∗  =
0.1 ms. Here, as in other figures, the pressure distribu-
tions are presented for the entire axial cross section
(−Rc0 < r0 < Rc0).

Under the action of the boundary pulse, the temper-
ature inside bubbles in the zone near the piston attains
the value T∗ , and a self-maintaining detonation wave
arises. In the upper part of Fig. 2a, it is shown that the
detonation wave propagates along the cylindrical bub-
ble cluster and is accompanied by a wave packet in the
ambient liquid, which is caused by acoustic radiation
from the detonation-wave zone. In the lower part of
Fig. 2a, the pressure distributions ∆pl (∆pl = pl – p0)
along the cluster axial line (solid curves) and at a cer-
tain distance (r0 = 0.1 m) from the axial line (dashed
curve) in the liquid are presented. As is seen, the back-
ground wave in liquid, which accompanies the detona-
tion wave, also has the shape of a spread soliton with a
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considerably lesser amplitude compared to that of the
detonation signal.

Figure 2b illustrates the results of our numerical
experiment for the same parameters of the bubble sys-
tem and the initiating signal as in Fig. 2a but with a
lesser radius (R0 = 0.025 m) of the bubble cluster. It is
seen that, against the background of the detonation
wave at the instant of time t = 0.3 ms, pressure waves
after the stall has occurred at the instant of time 1.2 ms
are virtually unnoticeable. Under the action of the pis-
ton, the gas temperature in cluster bubbles near the pis-
ton boundary attains the value T∗ , and the detonation is
thereby initiated. However, the arisen detonation center
is not further capable of additionally compressing bub-
bles located in the foreground to increase their temper-
ature up to the temperature T∗ , and therefore, the deto-
nation stalls. The basic reason for the stall is an increase
(with a decrease in the cluster radius) in the specific lat-
eral bubble-cluster boundary through which the acous-
tic radiation propagates into the ambient liquid.

To illustrate the role of the acoustic-radiation emis-
sion into the ambient liquid, we present in Fig. 2c the
calculation results for the case in which a bubble cluster
of radius R0 = 0.025 m is placed into a cylindrical chan-
nel of radius RC0 = 0.1 m with rigid walls. In this situa-
tion, the condition υr = 0 for r0 = RC0 is specified on the
surface of the cylindrical channel. As is seen, in this
case, in which the acoustic-radiation emission into the
ambient liquid is screened by the rigid wall, the stable
propagation of a self-maintained detonation soliton is
observed. In the lower part of Fig. 2c, pressure distribu-
tions along the axial line and at the distance of r0 =
0.1 m are presented for a number of time instants. In
this case, the amplitudes of both the detonation soliton
and the accompanying wave that propagates through
the liquid and is located between the cluster and chan-
nel walls exceed, approximately by a factor of two, the
values obtained for reflection-free conditions at the
boundary of radius RC0, although, in this case, the bub-
ble-cluster radius is smaller by a factor of two (R0 =
0.025 m) than in the case shown in Fig. 2a (R0 =
0.05 m).

When we employ waveguides of such a type, a dan-
ger arises to the survival of the underwater fauna,
because, as is seen from Fig. 2a, the acoustic wave in
pure liquid, which accompanies the detonation wave,
has an amplitude of ~8 atm at a distance of 10 cm from
the axis of the bubble cluster. However, as the calcula-
tions have shown, even at a distance on the order of 1 or
2 m, the amplitudes of the acoustic wave become
smaller than ∆pl = 104 and 103 Pa, respectively. This is
associated with the fact that such a strong damping is
determined not only by the spherical scattering of the
acoustic wave of the detonation soliton into the volume
of the ambient bulk of liquid but also by the unloading
coming from the waveguide. Indeed, after the detona-
tion wave has passed, the waveguide surface plays the
role of a free surface for perturbations propagating in
the liquid surrounding the waveguide.
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INTRODUCTION

In this paper, we perform a theoretical analysis of
the structural mechanisms of low-temperature plastic
strain for bulk-amorphous metallic alloys. We have
studied the mechanisms of heterogeneous plastic flow
at different structure-scale levels. We have investigated
the stage of shear-band multiple development and have
shown its important role in the deformation behavior of
massive metallic glasses. We have also considered the
effect of nanocrystals on the conditions of development
and shear-band multiplication processes.

The unique combination of electromagnetic, corro-
sive, mechanical, and other specific properties of amor-
phous metallic alloys has led to their practical applica-
tion in many branches of science and technology [1–4]
and is responsible for the permanent attention given to
these materials. Particular interest has been taken in
bulk-amorphous alloys obtained as a result of the solid-
ification of melts at low cooling rates (102–10–1 K s–1)
[2–4]. Nanocrystalline and amorphous-nanocrystalline
materials obtained on the basis of massive amorphous
metallic alloys have also garnered special attention [5].
These materials exhibit unique mechanical properties.
Alloys that simply become amorphous and have nano-
crystalline or quasi-nanocrystalline inclusions can pos-
sess both high strength and plasticity [6].

In order to discover the interconnection that exists
between the structure and mechanical properties of
bulk-amorphous metallic alloys, it is important to know
the nature of their plastic strain. In this paper, we ana-
lyze the structural mechanisms of heterogeneous strain
at different structure-scale levels, as well as the strain
features of bulk-amorphous metallic alloys.
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STRUCTURAL-SCALE LEVELS 
FOR PLASTIC STRAIN 

OF AMORPHOUS ALLOYS

Under high stresses and at low temperatures (T <
0.7Tg, where Tg is the vitrification temperature), het-
erogeneous plastic flow is realized in amorphous
metallic alloy whose strain is localized in thin shear
bands [7, 8].

In [9], heterogeneous plastic flows of amorphous
metallic alloys under high shear stresses were analyzed.
The appearance of localized shears of small atomic
groups referred to as shear transformations was consid-
ered to be the basic microstructural mechanism govern-
ing this phenomenon. These shears had the form of
disk-shaped domains of a diameter s = (4–6)a, where
a is the mean interatomic distance. In this case, the gen-
eration of a free volume occurs, which results in mate-
rial softening and leads to the localization of material
plastic flow in shear bands [9, 10]. Recent numerical
studies [11] confirm the existence of this microscopic-
level deformation mechanism.

The scale of the intermediate mesostructure-scale
level of the heterogeneous plastic flow of amorphous
metallic alloys is determined by the size of uncom-
pleted shear bands (δ, 1) nucleating on stress concentra-
tors, i.e., sample defects and alloy defects of average
size h (Fig. 1a). 

The conditions of shear-band development in amor-
phous metallic alloys were investigated in [10], in
which a quantitative criterion for shear-band develop-
ment was formulated. The condition for shear-band
propagation can be written in terms of either the stress-
intensity coefficient Kb (Kb ≥ ) for a band or the
external stress τ. The criterion for the propagation of a
band of length L can be written in the form

(1)

Here, ue is the mean displacement at the end part of the
band, τ0 is the steady-state shear-resistance stress in the
band, µ is the shear modulus, and ν is the Poisson’s
ratio. The stress τm depending on the degree of material

Kb1*

τp τ0–
4µ

π 1 ν–( )
--------------------

τm xi[ ] τ 0–( )ue

L
-----------------------------------

1/2

.=
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homogeneity, and hence, on the spatial coordinates xi is
determined by the concentration levels fv(xi) and fs(xi)
of the excess free volume and nanometer-size structural
inhomogeneities, respectively. Relationship (1) deter-
mines the critical propagation stress for a band of the
given size or the critical band size at a given external
shear stress. Upon attaining a certain length, the shear
bands formed are stopped due to their blocking on
mesostructure inhomogeneities. The characteristic
scale of structural processes is Sm ~ 0.01–1 µm.

The macroscopic condition for the development of a
shear band in an amorphous metallic alloy, i.e., the con-
dition of overcoming by a shear band obstacles caused
by microstructure inhomogeneities can be represented
by introducing the second critical value of the stress-
intensity coefficient  (  > ) for the bands:

(2)

The quantity  is determined by the nature, size, and

Kb2* Kb2* Kb1*

Kb Kb2* .≥

Kb2*

Fig. 1. Mechanisms of heterogeneous plastic strain of amor-
phous alloy: (a) the initial stage of the shear-band develop-
ment and (b) completed shear bands.

h

2l

θ

δ

τmax

(a)

(b)

SM

Smacro
concentration of mesostructure inhomogeneities in
amorphous metallic alloy.

In the case of strain of amorphous metallic alloys
that are rendered amorphous with difficulty, only the
initial stage in the development of uncompleted shear
bands is realized when their interaction is insignificant
(the exclusion is the strain under rolling a tape of amor-
phous metallic alloy). As a rule, shear bands are posi-
tioned at an angle of 45°–55° to the axis of uniaxial
loading [7, 8]. The deformation process rapidly attains
the third macroscopic level, whose scale is determined
by the sample thickness. Under stretching tapes made
of amorphous metallic alloy, the most intense of them
occupy the entire sample, and intense plastic flow arises
over several completed shear bands (Fig. 1b). This
intermittent plastic flow is completed by opening
cracks along the band [7, 8]. In this case, the character-
istic scale of the macrostructure level is SM ~ 1–40 µm.

MULTIPLE DEVELOPMENT
OF SHEAR BANDS

We call shear bands formed at stress concentrators
primary shear bands. The intrinsic feature of plastic
strain for bulk amorphous metallic alloys that can eas-
ily be rendered amorphous is that of the formation of
new secondary shear bands in the vertices of blocked
primary ones. This results in the multiple development
of shear bands (i.e., self-catalytic properties of the pro-
cess manifest themselves) (see Fig. 2). We now analyze
the kinetics of the process.

The volume fraction of primary shear bands formed
at stress concentrators is fb. An increase in the band vol-
ume fraction is proportional to the plastic strain εp.
Under the assumption of a permanent generation rate of
the shear bands and with allowance for the excess band
volume, we may write the expression connecting the
volume fraction of the bands with the plastic strain in
the form

(3)

Here, τ* is the stress of the shear-band formation on a
concentrator of maximum size for a given sample, and
pb is a parameter independent of εp and corresponding
to the intensity of the primary-band formation at small
εp. Hence, it follows that

fb = 1 – exp(–pbεp), τ ≥ τ*. (4)

The number of primary shear bands per unit volume of

amorphous metallic alloy is Nb = , where v b is the

mean volume of a primary band.

d f b

1 f b–( )
------------------- pbdεp, τ τ *.≥=

f b

v b
------
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Fig. 2. Stage of the multiple development of shear bands in bulk-amorphous alloys.
The number Ns of secondary shear bands per unit
volume is proportional to a certain power n of the pri-
mary-band number:

Ns = ps(Ns)n. (5)

The parameters n and ps are determined by the genera-
tion conditions for novel shear bands in the vertices of
blocked ones. At the same time, the process of band
multiplication leads to delocalization and, correspond-
ingly, to hampering of the heterogeneous plastic flow:

dfs ~ (1 – βfs)dεp, (6)

where β is a certain numerical coefficient.
CS      Vol. 50      No. 8      2005
If the average volume of secondary shear bands is
v s , then the increase in the volume fraction fs of the sec-
ondary shear bands is determined by the expression

fs = β–1[1 – exp{–α[1 – exp(–pbβεp)]n}], (7)

where α ≡  The dependence of the reduced vol-

ume fraction fsβ of the bands on the plastic strain εp for
α = 8, pbβ = 20, and n = 4 is shown in Fig. 3.

The scale of the macrostructure level attains the
sample thickness of the bulk-amorphous metallic alloy:
SM ~ 10 mm.

v s pp

v b( )n
-------------.
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AN EFFECT OF NANOCRYSTALLINE 
INCLUSIONS ON THE DEVELOPMENT

OF SHEAR BANDS

The effect of nanocrystals appearing in amorphous
alloy upon the development of a heterogeneous flow of
bulk-amorphous metallic alloys is twofold. On the one
hand, they increase the resistance stress for the band
development [12]. The critical stress for the shear-band
development as a function of the volume fraction of dis-
perse crystalline inclusions is of the form [12]

(8)

Here, f is the volume fraction of nanocrystals in amor-
phous metallic alloy, ε* is the strain at the band front,
which corresponds to the relative displacement ue, and
A is the numerical parameter on the order of unity.

When the size of crystalline particles is comparable
with the shear-band thickness, the process of bending
the band front between particles and changing the tra-
jectory of its development is possible [12].

On the other hand, the probability of shear-band
multiplication arises in amorphous metallic alloys con-
taining nanocrystals. There are two structural mecha-
nisms of the band development that are most probable,
namely, the branching of bands blocked at nanometer-
size inclusions and the nucleation of new bands in the
vertices of blocked ones (Fig. 2). Hence, the presence
of nanocrystals in an amorphous matrix results in the
intensifying processes of band multiplication: ps = ps(f).

τp

4µ τm0 τ0– Aµε* f+( )ue

π 1 ν–( )L
------------------------------------------------------------

1/2

.≥

0.02 0.04 0.06 0.08 0.10

0.8

0.6

0.4

0.2

0

1.0

εp

fsβ

Fig. 3. Reduced volume fraction fsβ of shear bands as a
function of plastic strain εp.
STRAIN BEHAVIOR 
OF AMORPHOUS METALLIC ALLOYS

Different variants of the development of heteroge-
neous plastic flow and, correspondingly, different strain
behaviors are possible. They depend on the structure
state of the amorphous alloy, which is determined by
the conditions of rendering the amorphous state, of the
development of structural-relaxation processes, and of
the sample loading.

The plastic strain εp is determined by the volume
fraction of shear bands fsb( fsb = fb + fs) and by the average
strain s in the bands:

dεp = fsbds + sdfsb. (9)

At the first stage of the heterogeneous-strain pro-
cess, the formation and development of primary shear
bands occurs, and the value of s depends on the acting
stress, s = s(τ). The physical yield stress τ* is deter-
mined by the distribution function Ψ(τ3) for the stress τ3
of the band formation.

The flow stress σ(εp) of amorphous metallic alloy
can be found as the mean value of the stress for the
shear-band propagation in the given sample. If the dis-
tribution function for the shear-band propagation stress
τp in amorphous metallic alloy is Φ(τp), then the plastic-
flow stress is

(10)

Here, mp is the orientation factor, σi(fsb, fs) is the internal
stress stipulated by shear bands with volume fraction
fsb and by structure inhomogeneities with volume den-
sity fs. At the second stage of the deformation process,
the level of internal stresses depends, in the main, on
the volume fraction of shear bands. At this stage, s =
const(τ, εp), and the shape of the σ–ε curve is deter-
mined by the process of the shear-band multiple devel-
opment.

Thus, in the present study, we have analyzed the
mechanisms of heterogeneous plastic flow at different
structure-scale levels for bulk metallic alloys that can
be rendered amorphous. We have shown the crucial
effect of the stage responsible for the multiple develop-
ment of shear bands on the deformation behavior of
massive metallic glasses. A model for the kinetics of
shear-band multiplication has been proposed. The
effect of nanocrystals in amorphous alloy on features of
the development and multiplication of shear bands in
massive amorphous alloys has also been considered.
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Due to its complexity, the problem of the motion of
a rigid body in an unbounded medium requires the
introduction of certain simplifying restrictions. The
main aim in this connection is to introduce hypotheses
that would make it possible to study the motion of the
rigid body separately from the motion of the medium in
which the body is embedded. On the one hand, a similar
approach was realized in the classical Kirchhoff prob-
lem on the motion of a body in an unbounded ideal
incompressible fluid that undergoes an irrotational
motion and is at rest at infinity [1]. On the other hand,
it is obvious that the above-mentioned Kirchhoff prob-
lem does not exhaust the possibilities of this kind of
simulation.

In this paper, we consider the possibility of transfer-
ring the results of the dynamics of the plane-parallel
motion of a homogeneous axisymmetric rigid body
interacting with a uniform flow of a resisting medium
through its forward circular face to the case of three-
dimensional motion [2, 3]. In contrast to the preceding
works (see also [4, 5]), the medium action on the rigid
body is simulated with the inclusion of the effects of the
so-called rotary derivatives of the moment of
hydroaerodynamic forces with respect to the compo-
nents of the angular velocity of the body itself [6, 7].

A DYNAMICALLY SYMMETRIC BODY
UNDER THE ACTION

OF THE NEWTONIAN DRAG 
AND A CONTROLLING FORCE

On the basis of certain hypotheses, the main one of
which is the quasi-stationarity hypothesis, a three-
dimensional dynamic model of the medium action on
the body was developed. In this connection, the possi-

Institute of Mechanics, Moscow State University, 
Michurinskiœ pr. 1, Moscow, 119192 Russia
e-mail: shamolin@imec.msu.ru
1028-3358/05/5008- $26.00 0414
bility arises to formalize the model assumptions and
derive a complete system of equations.

As noted above, the medium–body interaction is
concentrated on the body-surface part that has the
shape of a plane circular disk. Under the assumption
that the interaction obeys the jet flow laws [8, 9], the
interaction force S is normal to the disk, while the
application point N of the force S is determined by at
least one parameter, namely, the angle of attack α
between the velocity vector v of the center D of the disk
and the outward normal at this point. Thus, we have
DN = R(α, …). We will take the magnitude of the New-
tonian drag S in the form S = s1v 2 , where the drag coef-
ficient s1 is a function of the angle of attack α only:
s1 = s1(α).

At the same time, we will separate a class of prob-
lems related to the medium action on a body in which
the controlling force acting along the geometrical sym-
metry axis ensures the realization of the classes of
motions of interest under certain conditions [3, 10]
(imposed constraints). Precisely the controlling force is
a reaction of the constraints imposed. In the absence of
a controlling force, the body undergoes three-dimen-
sional free deceleration in a resisting medium (see
also [11, 12]). In this study, the controlling force
always ensures the fulfillment of the condition

(1)

In a body-fitted coordinate system, with one of the
coordinate axes aligned with the axis of symmetry and
two other axes lying in the plane of the disk, the tensor
of inertia is diagonal: diag{I1, I2, I3}. Obviously, in this
case we have

(2)

In order to describe the body position in the three-
dimensional space, we will choose the cyclic Cartesian

v v const.= =

I2 I3.=
© 2005 Pleiades Publishing, Inc.
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coordinates of point D and three (also cyclic in our
case) angles related, together with their velocities, by
kinematic equations.

We will consider the spherical coordinates (v , α, β1)
of the end of the velocity vector v of the point D relative
to the flow, where the angle β1 is measured in the disk
plane. Expressing the quantities (v , α, β1) in terms of
the cyclic kinematic variables and velocities via nonin-
tegrable relations, we will consider them as quasi-
velocities supplementing them by the components
(Ωx, Ωy, Ωz) of the angular velocity in the body-fitted
axes.

By virtue of Eq. (2) and the jet flow hypothesis, the
following invariant relation, which is cyclic according
to Routh, is always fulfilled:

(3)

EQUATIONS OF MOTION IN THE CASE 
OF ZERO SPIN OF THE RIGID BODY 
ABOUT THE LONGITUDINAL AXIS

In what follows, we will investigate in more detail
the case of zero spin of the rigid body about its longitu-
dinal axis. In this case, the following condition is ful-
filled:

(4)

If s(α) = s1(α) , then the independent
dynamic part of the equations of motion in the four-
dimensional phase space has the form

(5)

(6)

(7)

Here, σ is the distance from the center of mass to the
plate and yN and zN are the Cartesian coordinates of the
drag application point in the disk plane.

System (5)–(7) involves the medium action func-
tions yN, zN, and s; for their qualitative determination,
we will use the experimental information on the jet flow
properties [4–9].

CHAPLYGIN FUNCTIONS
OF MEDIUM ACTION

In what follows, we will address some typical “rep-
resentatives” of the classes of the medium action func-

Ωx Ωx0
const.= =

Ωx0
0.=

αcossgn

α
.
v α β1 β1

.
v α β1sinsin–coscos

+ Ωzv α σΩ z

.
–cos 0,=

α
.
v α β1 β1

.
v α β1cossin+sincos

– Ωyv α σΩ y

.
+cos 0,=

I2Ωy

.
zNs α( )v 2, I2Ωz

.
– yNs α( )v 2.= =
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tions under consideration, namely, the Chaplygin func-
tions.

We will use Chaplygin’s result as a reference point.
Chaplygin calculated the medium action functions for
an infinitely long plate in plane-parallel motion in the
oncoming flow following the jet flow laws. In this case,
the distance between the drag application point (center
of pressure) and the plate center is proportional to the
sine of the angle of attack, while the Newtonian drag
coefficient multiplied by  is proportional to its
cosine [13].

Moreover, integrable cases in the dynamics of the
three-dimensional motion of a rigid body were also
found for other model problems in the early works of
the present author [14]. For the Chaplygin medium
action functions, the systems had a complete set of tran-
scendental first integrals, which could be expressed in
terms of a finite combination of elementary functions.
In this case, transcendence is understood in the sense of
the theory of functions of a complex variable (that is,
their continuations to the complex plane have essen-
tially singular points).

Thus, in what follows, we will restrict ourselves to
the investigation of system (5)–(7) for the following
medium action functions:

(8)

where the coefficient h occurs in terms that are propor-
tional to the rotary derivatives of the moment of
hydroaerodynamic forces with respect to the compo-
nents of the angular velocity of the rigid body [6, 7].

A SYSTEM WITH VARIABLE DISSIPATION 
WITH ZERO MEAN VALUE 

AND AN ANALYTICAL RIGHT SIDE

System (5)–(7), including the case of Eq. (8), is a
dynamic system with variable dissipation with zero
mean value (over the angle of attack, in our case) [15].
This means that the integral over a period of the angle
of attack from the divergence of its right-hand side is
equal to zero [this integral is responsible for the phase
volume variation (after the corresponding reduction of
the system)]. In this sense, the system is “semiconser-
vative.”

αcossgn

yN A α β1 h
Ωz

v
------,+cossin=

zN  = A α β1 h
Ωy

v
------,–sinsin

s α( ) B α , A B h 0,>, ,cos=
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Projecting then the angular velocities onto movable
axes, which are unfitted to the body, so that

(9)

and introducing dimensionless variables wk, k = 1, 2, and
parameters in accordance with the formulas h1 = hB,

 = H1, β = σ2 , and σzk = vwk , where α' = α.,

etc., we obtain the fourth-order dynamic system

(10)

(11)

(12)

(13)

which incorporates an independent third-order sub-
system given by Eqs. (10)–(12).

For β = H1 , the divergence of the right-hand side of
system (10)–(12), or (10)–(13), is identically zero after
the change of variables  = ln|w1|; this property
makes it possible to consider this system (these sys-
tems) as conservative.

Theorem 1. System (10)–(13) possesses a complete
set of first integrals being elementary transcendental
functions of their phase variables. Two of them form a
complete set of the first integrals of system (10)–(13).

z1 Ωy β1 Ωz β1,sin+cos=

z2 Ωy β1 Ωz β1,cos+sin–=

σh1

I2
--------- AB

I2
------- v

σ
----

α' 1 H1+( )w2– β α ,sin+=

w2'  = β α α 1 H1+( )w1
2 αcos

αsin
------------– H1w2 α ,cos–cossin

w1' 1 H1+( )w1w2
αcos
αsin

------------ H1w1 α ,cos–=

β1' 1 H1+( )w1
αcos
αsin

------------,=

w1*
Indeed, we will associate system (10)–(13) with the
second-order non-autonomous system

(14)

(15)

Applying the substitution τ = sinα, we transform the
system of Eqs. (14) and (15) to the form

(16)

(17)

Making then the change wk = ukτ, k = 1, 2, characteristic
of homogeneous systems, we will associate the system
specified by Eqs. (16) and (17) with the non-autono-
mous differential equation

(18)

which has a first integral of the form

(19)

In other words, system (10)–(12) has a first integral of
the form

dw2

dα
---------

=  
β α α 1 H1+( )w1

2 αcos
αsin

------------– H1w2 αcos–cossin

1 H1+( )w2– β αsin+
-----------------------------------------------------------------------------------------------------------,

dw1

dα
---------

1 H1+( )w1w2
αcos
αsin

------------ H1w1 αcos–

1 H1+( )w2– β αsin+
-------------------------------------------------------------------------------.=

dw2

dτ
---------

βτ 1 H1+( )w1
21
τ
---– H1w2–

1 H1+( )w2– βτ+
--------------------------------------------------------------,=

dw1

dτ
---------

1 H1+( )w1w2
1
τ
--- H1w1–

1 H1+( )w2– βτ+
--------------------------------------------------------.=

du2

du1
--------

β 1 H1+( ) u2
2 u1

2
–( ) H1 β+( )u2–+

2 1 H1+( )u1u2 H1 β+( )u1–
------------------------------------------------------------------------------------,=

1 H1+( )u2
2

H1 β+( )u2 1 H1+( )u1
2 β+ +–

u1
----------------------------------------------------------------------------------------------------- C1.=
(20)
1 H1+( )w2

2 H1 β+( )w2 α 1 H1+( )w1
2 β αsin

2
+ +sin–

w1 αsin
---------------------------------------------------------------------------------------------------------------------------------- C1.=
As noted above, at β = H1 the dynamic system given
by Eqs. (10)–(12), as well as system (10)–(13), is con-
servative. Indeed, Eq. (20) is transformed to the invari-
ant relation

(21)
w2

2 1 β+( )w1
2 β w2 αsin–[ ] 2+ +

w1 αsin
----------------------------------------------------------------------------- C1.=
Moreover, it is easy to verify that both the numerator
and the denominator of Eq. (21) at β = H1 are the first
integrals of system (17)–(19):

(22)
w2

2 1 β+( )w1
2 β w2 αsin–[ ] 2+ + C1*,=

w1 αsin C2*.=
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For β ≠ H1 , system (10)–(12) is no longer conservative
and neither the numerator nor the denominator of the
invariant relation (20) is the first integral. This fact
can not necessarily be verified analytically, because
system (10)–(12) has attractive and repulsive limiting
sets, which preclude the existence of the complete set
of even continuous first integrals for the system under
consideration.

The additional first integral for system (10)–(12) is
obtained, by virtue of Eqs. (18) and (11), from the
quadrature

(23)

where U(u1, C1) = {C1 ± } on the

level C1 > 4(1 + H1)D1 of integral (21), where D1 =

(1 + H1)  – (H1 + β)u2 + β.

The general structural form of the additional first
integral for system (10)–(12) is as follows:

(24)

In view of Eqs. (13) and (17), the additional first
integral for the fourth-order system given by Eqs. (10)–
(13) is obtained from the solution of the equation

(25)

which leads to the relation

(26)

THREE-DIMENSIONAL PENDULUM
IN AN ONCOMING FLOW

By analogy with a free body, we will consider the
problem of the motion of a three-dimensional pendu-
lum in an oncoming uniform flow for the following
case: the flow acts only on a circular disk fixed rigidly
at its center, perpendicular to a sting that, in turn, is
fixed by its other end on a spherical hinge. The model
of the medium action on the disk is the same as above.

τd
τ
-----∫

=  
β 1 H1+( )u2–[ ] u2d

β H1 β+( )u2– 1 H1+( ) u2
2 U u1 C1,( )–[ ]+

-------------------------------------------------------------------------------------------------------∫ ,

1
2 1 H1+( )
------------------------ C1

2
4D1–

u2
2

Φ1 w1 w2 αsin, ,( ) C2.=

du1

dβ1
--------

β 1 H1+( )u2–
1 H1+

-----------------------------------+ u2

H1

1 H1+
----------------,–=

2 1 H1+( )2 β1 C3+( ){ }sin
2

2 1 H1+( )w1 2C1 αsin–( )2

H1 β+( )2 4β 1 H1+( )– C1
2

+[ ] αsin
2

----------------------------------------------------------------------------------------.=
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The pendulum moves without its own spin. As before,
the effects of the rotary derivatives of the moment of
hydroaerodynamic forces with respect to the angular
velocity of the rigid body are taken into account using
the Chaplygin functions of the medium action.

If (ξ, η) are the angles determining the position of
the three-dimensional pendulum on a sphere S2 , then
the equations of motion of the system on the tangent
bundle T∗ S2 of the two-dimensional sphere can be writ-
ten in the form

(27)

(28)

Here, β and H1 are dimensionless physical constants
and the coefficient H1 is, as before, proportional to the
rotary derivatives of the moment of hydroaerodynamic
forces with respect to the components of the angular
velocity of the three-dimensional pendulum. The sting
length is equivalent to the distance σ and the constant
velocity of the oncoming flow is equivalent to the con-
stant parameter v. The angle of attack of the free body
is equivalent to the angle ξ of the pendulum deviation
from the flow velocity vector and the angle β1 is equiv-
alent to the cyclic variable (angle) η.

Theorem 2. System (10)–(12) is topologically
equivalent to the system given by Eqs. (27) and (28).

We note that system (27), (28) for the case cosξ = 0
can be defined using continuity.
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1. In this paper, we present results of the first mea-
surements of turbulent helicity in the atmospheric
boundary layer. The spectra obtained are analyzed
within the framework of the problem of helicity turbu-
lent cascades towards small scales. For the scales being
considered in this study, the helicity spectrum turns out
to be similar to the passive-admixture spectrum.

Helicity is defined as a scalar product of the velocity
v and the vorticity: w = ∇ × v. A difference of helicity
from zero implies the violation of the flow mirror sym-
metry that exists, e.g., in the Ekman’s atmospheric
boundary layer. Helicity plays a significant role in pro-
cesses of magnetic-fields generation in a conducting
liquid, and it is one of the important characteristics of
large-scale atmospheric motions [1–5]. At the same
time, the role of helicity in hydrodynamic turbulence
has not yet been entirely revealed, although we may
assume that the turbulization of spiral flows results in
the helicity of turbulent velocity pulsations. Within the
inviscid limit, the Navier–Stokes equations conserve
kinetic energy and helicity. For turbulent flows, the
presence of two quadratic invariants indicates the pos-
sible existence of both double cascades (when cascades
of the energy and helicity are realized in different seg-
ments of wave numbers by analogy with the two-
dimensional turbulence) and the helicity cascade in par-
allel with the energy cascade towards small scales [6].
In particular, the existence of the exact relation con-
necting double and triple velocity correlations, which
was later referred to as the 2/15 law (by analogy with
Kolmogorov’s 4/5 law) [7], is associated with the helic-
ity cascade.

In accordance with [6], the above-indicated scenar-
ios of turbulent cascades exhibit different spectral scal-
ings. In the case of isotropic turbulence, parallel cas-
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cades of the energy E = 〈v2〉  and helicity H = 〈vw〉

towards small scales correspond to the spectra

In the case of double cascades, they correspond to the
spectra

Here, v(k) = , w(k) = w(k) are, respec-

tively, the Fourier components of the velocity and vor-

ticity; ε = ν  and η = 2ν  are the dis-

sipation rates for the turbulent energy and helicity,
respectively; ν is the kinematic viscosity; and k is the
wave number.

The theoretical arguments of Kraichnan [8] and the
results of numerical simulations [9–11] of Navier–
Stokes equations uphold the realization of the parallel-
cascade scenario. In the present study, we carry out
measurements of the velocity and vorticity, which
allow us to experimentally estimate the spectrum of the
turbulent helicity in the atmospheric boundary layer.
The results obtained show that the spectrum has a slope
of close to –5/3, which corresponds to the helicity
transfer over the spectrum towards small scales analo-
gously to a passive scalar. This implies that the helicity
slightly affects small-scale motions. At the same time,
the existence of the helicity flux of only one sign weak-
ens the energy cascade associated with modes of the
other sign [11].

1
2
---

E k( ) 1
2
--- v k( )v* k( )〈 〉 Ceε

2/3k 5/3– ,= =

H k( ) v k( )w* k( )〈 〉 Chηε 1/3– k 5/3– .= =

E k( ) ceη
2/3k 7/3–= , H k( ) chη
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k k=
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Fig. 1. Frequency spectra for velocity components.
The balance of turbulent helicity H in the atmo-
spheric boundary layer can be described by the equa-
tion

whence it follows the estimate [5]

Here, K is the turbulent viscosity, W = ∇ ×  V is the
large-scale vortex, Ω0 is the angular velocity of the
Earth’s rotation, β is the buoyancy parameter, θ is the
temperature pulsation, F(Ri) is the function of the

Richardson number, τ = , and l is the turbulence

characteristic scale.
Thus, the turbulent-helicity density in the boundary

layer close to the neutral one is estimated as H ≈ 3 ×
10−3–2 × 10–2 m s–2.

2. Experiments aimed at the measurement of helic-
ity spectral characteristics are extremely rare. They
have been carried out under laboratory conditions only
(the experiments were performed in solutions of weak
electrolytes, which was stipulated by the measurement
methods used) in turbulence beyond a grid [12], where
nonzero averaged-helicity values were observed.

dH
dt
-------

∂ v iv k〈 〉
∂xk

--------------------Ωi v iv k〈 〉
∂Ωi

∂xk

---------–=

+ 2Ω0i
∂E
∂xi

------- 2β θωz〈 〉 ,+

∂
∂xk

-------- p
ρ
---ωk v iv kωi

1
2
---ωkv iv i–+– ν∆H η ,–+

H 2Kτ  W · ∇ W×( ) Ω0τ
dE
dz
-------F Ri( ).–=

l

E1/2
---------
For experimental helicity estimates, it is necessary
to measure all three components of the velocity and of
the vortex. The direct estimation of the vortex accord-
ing to the velocity fields is at present a rather compli-
cated task. At the same time, while measuring the cir-
culation along the given contour, namely,

,

we can obtain a quite acceptable accuracy for the area-
averaged vorticity. The concept of the acoustical
method of vorticity measurements and the first results
of its realization are described in [13]. This method
consists in measuring the time that is required for a
sound signal to pass along a closed contour. In addition
to the wind-velocity circulation, this time also depends
on the temperature inhomogeneity along the contour,
whose effect can be estimated by comparing the results
obtained for two opposite path tracings. In these spec-
tral measurements, the other sources of systematic error
are the vorticity averaging over the contour area and the
spatial displacement of the points for measuring the
velocity and the vortex.

In [14, 15], estimates of the effects indicated and
measured results are given for the circulation spectra
and co-spectra of certain components of the vortex-flux
tensor in the atmospheric surface layer. In the same
papers, the latter are compared with theoretical predic-
tions that are based on the assumption of the mirror
symmetry of flow characteristics with respect to reflec-
tions in the vertical plane parallel to the direction of the
average velocity. The deviation from zero of covari-
ances 〈v3Z2〉 and 〈v1Z2〉, which are associated with the
circulation in the vertical plane parallel to the average
flow, is explicitly consistent with this theory. In addi-

Z v ld∫° ωn sd∫= =
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tion, a strong correlation of the circulation field with the
temperature field was found.

In the present study, based on a novel version of the
three-component circulation meter, we have performed
combined measurements of the circulation compo-
nents, velocity, and temperature in the atmospheric
boundary layer at an altitude of 46 m. At this altitude, it
is expected that the effect of the local inhomogeneities
of the underlying surface will be weakened. On the
other hand, the wind turn stipulated by the Earth’s rota-
tion must manifest itself more noticeably with increas-
ing altitude.

The measurements were carried out at the Zvenig-
orod scientific station of the Institute of Atmospheric
Physics in September 2004. Circulation was measured
using a quadratic contour with side lengths of 0.5 m.
The distance between a velocity-measurement point
and the contour center was about 1 m. The experimental
data were registered by a 14-digital transformer with a
sampling frequency of up to hundreds of Hertz. The
total time duration for the measurements attained more
than 70 h.

3. In conclusion, we present the results of the analy-
sis of the experimental data for two two-hour realiza-
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Fig. 2. Frequency spectra for the enstrophy.
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tions. The first of these relates to daily measurements in
a weakly convective boundary layer, whereas the sec-
ond one corresponds to nightly measurements when
the boundary layer passed toward the stable state. Fig-
ures 1 and 2 exhibit the autospectra for temporal varia-
tions of the velocity components and of the enstrophy
(vorticity squared) in the case of a weakly convective
boundary layer. The features of the velocity spectra
obtained are typical of the atmosphere boundary layer
at such altitudes. We note a steepening in the enstrophy
spectrum near the frequency f ≈ 1 Hz. This frequency
approximately corresponds to the wave numbers for
which pulsations begin to be averaged by the contours.

The power spectrum of helicity fluctuations in a
daily boundary layer is shown in Fig. 3. It is worth not-
ing that this spectrum is highly consistent with the scal-
ing EH( f ) ~ f –1/3, which corresponds to the Kolmogorov
theory and is based on the assumption that the spectrum
is determined solely by the energy-dissipation rate ε.

The spectra of vertical and horizontal helicity com-
ponents for the daily and nightly boundary layers are
given in Fig. 4. For comparison, the slope of –5/3 is
shown in the figure. As is seen, the slopes of the helicity
spectrum components are close to this value. The inte-
gral estimate of the helicity according to its spectrum
yields a value of 0.02–0.03 m s–2, which coincides in
terms of the order of magnitude with above-mentioned
theoretical estimates. It is of interest to note that these
values of helicity are close to those for characteristic
secondary structures of the atmospheric boundary
layer, the so-called rolls [1].

The data obtained for both the values of turbulent
helicity in the atmospheric boundary layer and helicity
spectra indicate the existence, at least in the region of
the scales that have been considered, of parallel cas-
cades of the energy and helicity. This also implies the
possibility of the realization of certain effects following
from the models of turbulent flows and taking into
account turbulent helicity [4, 5]. The importance of the
determination of actual helicity cascades in natural sys-
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Fig. 3. Frequency spectra of helicity fluctuations.
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Fig. 4. Spectra of helicity components.
tems is also stipulated by the fact that some numerical
calculations of the Navier–Stokes equations manifest
certain effects of nonzero helicity on the energy transfer
over the spectrum. This emphasizes the role of helicity
in the formation of large-scale structures.
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The available models of multicomponent media
(MCM) were described in the most general form in [1, 2].
The following statements made in those works had a
large effect on the development of MCM models: first,
balance conservation equations in their general form
are of little interest for the mechanics of mixtures, and,
second, the main problem in the mathematical simula-
tion of multiphase mixtures is to derive a closed system
of equations both for given physical and chemical prop-
erties of each individual phase and for a given structure
for the mixture as a whole. In the 20–25 years that have
elapsed since the appearance of the aforementioned
publications, many works have been devoted to the
development of particular models based on certain
specifications. So far, the problem of deriving the con-
servation laws for a mixture from those for individual
components, as well as the problem of the closure of the
system of equations for the ith component, remains
unsolved in the general case.

CONSTRAINTS

Each component i of a mixture of N components
conserves the chemical attributes of the substance irre-
spective of its mass and is characterized by the follow-
ing physical parameters: the pressure Pi , the density ρi ,
the specific internal energy Ei , the velocity Ui , the tem-
perature Ti , etc. The thermodynamic parameters obey
the equation of state for the ith component. After the
physical parameters have been changed to the partial
quantities αiPi, αiρi, αiρiUi, αiρiEi , etc., which are con-
tinuous in the (t, xk) space (k = 1, 2, 3), each component
turns out to be a continuous medium in the entire space
occupied by the mixture, so that mass, momentum, and
energy conservation laws can be written for it in the
form of differential equations. Thus, all components of
the mixture are simultaneously present at each point of
the (t, xk) space.

To clarify the essence of the MCM model proposed,
we consider ideal compressible media that are free of

Russian Federal Nuclear Center VNIITF, 
Snezhinsk, Chelyabinskaya oblast, 454070 Russia
e-mail: V.F.Kuropatenko@vniitf.ru, domkur@snz.ru
1028-3358/05/5008- $26.00 0423
heat conduction, chemical reactions, and field effects
and have zero deviator of the stress tensor. This consid-
eration does not lead to any loss of generality of the
model, because all the above physical processes can be
incorporated into the conservation laws for the compo-
nents if necessary.

INTERACTION OF COMPONENTS

Type 1. Pairwise interaction. Let the ith and
jth components interact with each other independently
of other components. Then the momentum (Rij) and
energy (Φij) flux densities satisfy the equation

(1)

The order of the subscripts indicates the interaction
direction. We will multiply Eq. (1) by αj and sum over
j under the condition that Rii = 0 and Φii = 0. The result
is marked by the subscript 0:

(2)

Multiplying Eq. (2) by αi , summing over i, and taking
Eq. (1) into account, we obtain

(3)

The quantities Ri0 and Φi0 are the sums of the indepen-
dent intensities of the momentum and energy fluxes
from the ith component to all N components. The pair-
wise interaction is taken into account in the conserva-
tion laws for the ith component in almost all MCM
models (see, e.g., [1–4]).

Type 2. Cluster interaction. In terms of the partial
parameters αiPi, αiρi, αiρiUi, αiρiEi , etc., a virtual con-

Rij R ji, Φij– Φ ji.–= =

α jRij

j 1=

N

∑  = Ri0 R0i, α jΦij

j 1=

N

∑–  = Φi0 Φ0i.–= =

α iRi0

i 1=

N

∑ α iα jRij

j 1=

N

∑
i 1=

N

∑ 0,= =

α iΦi0

i 1=

N

∑ α iα jΦij

j 1=

N

∑
i 1=

N

∑ 0.= =
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tinuum (VC) can be introduced with the parameters

(4)

which are continuous in the space occupied by the mix-
ture. The forces and fluxes associated with the VC will
be marked by the subscript s. The mixture and VC are
nonequilibrium if one of the following conditions is not
fulfilled:

where Pp, Up, and Tp are the equilibrium state parame-
ters. In the process of relaxation, the parameters of the
components and VC change, because U, P, ρ, and E are
determined by Eq. (4). The interaction between the ith
component and the VC will be called the cluster inter-
action. By analogy with Eq. (2), the forces and energy
fluxes associated with the cluster interaction are related
by the equations

(5)

CONSERVATION LAWS

We write the conservation laws for the ith com-
ponent:

(6)

(7)

(8)

In view of Eqs. (2), (3), and (5), the conservation laws

P α iPi, ρ
i 1=

N

∑ α iρi, ρU
i 1=

N

∑ α iρiUi,
i 1=

N

∑= = =

ρE α iρiEi,
i 1=

N

∑=

Pi Pp, Ui Up, Ti T p, P Pp,= = = =

T T p,=

Fksi Fkis, Qsi– Qis, Fk0s– α iFkis,
i 1=

N

∑= = =

Q0s α iQis.
i 1=

N

∑=

∂
∂t
----- α iρi( ) ∇ α iρiUi( )+ 0,=

∂
∂t
----- α iρiUi( ) ∂

∂xk

-------- α iρiUkiUi( )+

+ ∇α iPi
∂

∂xk

-------- α iFksi( ) α iR0i–+ 0,=

∂
∂t
----- α iρiεi( ) ∇ α iUi Pi ρiεi+( )( )+

+
∂

∂xk

-------- α iFksiUi( ) ∇α iQsi α iΦ0i–+ 0.=
for the VC are written in the form

(9)

(10)

(11)

FORCE

We consider the following equation obtained by
substituting Eq. (4) into Eq. (9):

Each term in this sum is equal to zero, because it coin-
cides with the left-hand side of Eq. (6). Thus, the sum-
mation of Eq. (6) yields Eq. (9).

Substituting Eqs. (2)–(5) into Eq. (10), we obtain

(12)

We choose Fksi so that each term in Eq. (12) coincides
with Eq. (7). After simple transformations, we obtain
the following expression for the force Fksi:

(13)

NONEQUILIBRIUM KINETIC ENERGY

We consider the specific total energies of the VC and
the ith component:

(14)

Expressing E and Ei from Eq. (14) and substituting the
result into the fourth of Eqs. (4), we obtain

(15)

where Hi is determined by the equation

(16)

We will call this quantity the nonequilibrium kinetic
energy of the ith component.

∂ρ
∂t
------ ∇ρ U+ 0,=

∂
∂t
----- ρU( ) ∂

∂xk

-------- ρUkU( ) ∇ P
∂

∂xk

-------- Fk0s( )+ + + 0,=

∂
∂t
----- ρε( ) ∇ U P ρε+( )( ) ∂

∂xk

-------- UFk0s( ) ∇ Q0s+ + +  = 0.

∂
∂t
----- α iρi( ) ∇ α iρiUi( )+ 

 
i 1=

N

∑ 0.=

∂
∂t
----- α iρiUi( ) ∂

∂xk

-------- α iρiUkiUi( )+


i 1=

N

∑

+ ∇α iPi
∂

∂xk

-------- α iFkis( ) α iR0i–+ 
 0.=

Fksi 0.5ρi Uki Uk–( ) U Ui–( ).=

ε E 0.5UU H+ , εi+ Ei 0.5UiUi.+= =

ρH α iρiHi,
i 1=

N

∑=

Hi 0.5 U Ui–( )2.=
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ENERGY FLUX
The substitution of Eqs. (2)–(5), (13), and (15) into

Eq. (11) yields

(17)

The condition that the ith term in Eq. (17) coincides
with Eq. (8) is as follows:

(18)

Requiring that the increment of the entropy of the mix-
ture is equal to the sum of the increments of the entro-
pies of the components, we arrive at the equation for
volume concentration:

(19)

Equation (19) closes the system of equations for the
ith component.

New forces Fksi (13) and energy fluxes Qsi (18)
include the parameters of the structural MCM level
(mesolevel) with the subscript i and the barycentric
velocity U, which is a macrolevel parameter. This struc-
ture is typical of mesomechanical equations. These
forces and fluxes vanish at velocity equilibrium.

The technique for obtaining Fksi and Qsi is such that
the conservation laws for the VC are derived by sum-
ming the conservation laws for the components.

∂
∂t
----- α iρiεi( ) ∇ α i U Pi ρiεi+( ) Qsi–( )( )+


i 1=

N

∑

–
∂

∂xk

-------- α iFksiU( ) α iΦ0i– 
 0.=

Qsi 0.5 Pi ρiHi+( ) U Ui–( ).=

Pi

dilnα i

dt
-------------- α iΦsi U Ui–( )ρiEi∇α i–+

α i Ei

Pi

ρi

-----+ 
  ∇ρ i U Ui–( )– 0.=
DOKLADY PHYSICS      Vol. 50      No. 8      2005
COMPLETE EQUATIONS OF THE MODEL

The system of equations governing the behavior of
the ith component includes the conservation laws given
by Eqs. (6)–(8); the second of Eqs. (14); Eq. (19) for the
function αi given by Eq. (19); the equations of state Pi =
Pi(ρi, Ei) and Ti = Ti(ρi, Ei); Eqs. (13) and (18) for the
force Fksi and energy flux Qsi , respectively; the expres-
sion for the intensities of the exchange by the momen-
tum R0i and the energy Φ0i; and Eqs. (4) for P, ρ, and
U. Thus, the complete system of equations for the mix-
ture contains the same number of equations and func-
tions and is closed without any additional hypotheses
specifying the mixture.
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Waves on the surface of a liquid dielectric layer in
an alternating electric field are studied both experimen-
tally and theoretically. The experiments reveal the char-
acteristic patterns of standing waves forming rectangu-
lar and hexagonal cells—quasicrystalline wave struc-
tures. The shapes and sizes of these cells are studied as
functions of the intensity and frequency of the electric
field. The theoretical analysis is performed in the linear
approximation. Equations are derived that describe the
dynamics of standing waves in arbitrarily thick layers
of both ideal and viscous fluids. Theory is in good
quantitative and qualitative agreement with experi-
ments.

The problem concerning the excitation of waves on
the surface of a liquid-dielectric layer was first studied
long ago [1, 2]. However, a complete linear theory of
wave formation on the viscous-fluid surface has not yet
been developed for any thicknesses of the dielectric
layer or any wavenumbers. Experimental studies of
such phenomena have been constrained by the absence
of appropriate measuring instruments for the mathe-
matical processing of measured wave structures.

In this work, we consider a linear problem of the
generation of waves on the surface of an infinite hori-
zontal dielectric layer situated inside a plane capacitor.
The dielectric is placed in the parallel gravitational and
electric external fields. The z = 0 plane coincides with
the free surface of the immovable dielectric layer with
thickness h2 and dielectric constant ε2. Potential differ-
ence U = U1 + U2, which is a periodic time function, is
applied to the capacitor plates. The electric field poten-
tial ϕ is chosen to be zero on the z = 0 surface. Let the
wave motion on the liquid surface have the characteris-
tic spatial size λ and amplitude a0 . The equation of the
free surface is represented in the form z = η(x, y, t),
where x, y, z, and t are the Cartesian coordinates and
time, respectively.
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Russian Academy of Sciences,
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The equations of motion of the fluid and electric
field generally have the form

(1)

where

(2)

is the total momentum flux tensor. In our problem, D =
εE and E = –∇ ϕ . 

The boundary conditions on the free surface F(x, y,
z, t) = z – η(x, y, t) = 0, which is the liquid dielectric–air
interface, have the form

(3)

Here, n is the outward normal to the liquid dielectric
surface; subscripts 1 and 2 refer to the region beyond
the liquid dielectric and the inner region, respectively;
and R1 and R2 are the principal curvatures of the free
surface. No-slip conditions are imposed on the velocity
on the solid surface of the lower electrode, and the elec-
tric potential is specified on the lower and upper elec-
trodes as a time function.

We introduce the dimensionless quantities by the
expressions

∂ρv
∂t

--------- divΠ+ ρg, divv 0,= =

Π ij ρv iv j pδij µ
∂v i

∂x j

--------
∂v j

∂xi

---------+ 
 –+=

–
1

8π
------ DiE j D jEi+( ) 1

8π
------E2δij+

Π1ij Π2ij–( )n j = σ 1
R1
----- 1

R2
-----+ 

  ni,
∂F
∂t
------ v ∇ F,( )+  = 0,

E1τ E2τ , D1n D2n.= =

x'
x
λ
---, y'

y
λ
---, z'

z
h2
-----, t'

t gh2

λ
--------------,= = = =

η x y t, ,( ) a0η' x' y' t', ,( ),=

ϕ x y z t, , ,( ) Uϕ' x' y' z' t', , ,( ),=
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(4)

The problem under consideration is characterized by
the set of dimensionless parameters

(5)

where JE is an analog of the Froude number, We is the
Weber number, g is the gravitational acceleration, and
Ga is the Galileo number. In what follows, we omit
primes in the symbols of dimensional quantities.

Seeking the solution of the linearized problem in the
form of Fourier series in the homogeneous coordi-
nates x and y:

after the cumbersome algebra with inclusion of the
boundary and initial conditions, we arrive at the system
of two integro-differential equations

(6)

u x y z t, , ,( ) gh2

a0

h2
-----u' x' y' z' t', , ,( ),=

v x y z t, , ,( ) gh2

a0

h2
-----v ' x' y' z' t', , ,( ),=

w x y z t, , ,( ) gh2

a0

h2
----- λ

h2
-----w' x' y' z' t', , ,( ),=

p x y z t, , ,( ) ρga0 p' x' y' z' t', , ,( ).=

α
a0

h2
-----, β

h2

λ
----- 

 
2

, ζ
h1

h2
-----, JE

1
8π
------ U2

ρgh2h1
2

-----------------,= = = =

We
σ

ρgh2
2

------------, Ga
gh2h2

ν
------------------,= =

η x y t, ,( ) Z t( ) i kxx kyy+( )[ ] ,exp=

w x y z t, , ,( ) un t( ) πn z 1+( )[ ]cos
n 0=

∞

∑=

× i kxx kyy+( )[ ]exp …,,

Ż̇ t( ) κ2

Gaβ1/2
--------------- 2 1

κcosh
---------------+ Ż t( )+

+
κ κtanh

β
------------------ 1 Weκ2 FrE f 2 t( )–+[ ] Z t( )

=  
1

β κcosh
------------------ κ2

Gaβ1/2
---------------Gu t τ–( ) Ġu t τ–( )+ u̇0 τ( )

0

t

∫–

+
κ2

Gaβ1/2
---------------GZ t τ–( ) ĠZ t τ–( )+ Ż̇ τ( ) dτ ,
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where the kernels of the integral operators have the
form

(7)

and κ2 = β(  + ).

The remaining functions are easily expressed in
terms of Z(t) and u0(t). In particular,

where

.

It can be shown that the solutions of system (6) are
similar to the Mathieu functions if the time dependence
of the electric potential difference on the capacitor
plates is harmonic (with frequency Ω). In other words,
parametric resonance induced by periodic variation in
the electric pressure at the interface between media

u̇0 t( ) 1
κ
--- κ

2
--- βŻ̇ t( ) Ġu t τ–( )u̇0 τ( )[

0

t
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----------------------------------,
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exists in the electrohydrodynamic system. In the limit-
ing cases of low (Ga  ∞) and high (Ga  0) vis-
cosities, as well as for κ @ 1, one can derive equations
that reduce to the Mathieu equations. In particular, for
κ @ 1, system (6) reduces to one differential equation

(8)

where

Z'' t( ) 2ξZ' t( ) a 2q 2tcos–( )Z t( )+ + 0,=

10

0

100

1
5 10 15 20 25 30 35 40 45 50

f, Hz

λ, mm

Fig. 1. Wavelength of excited waves vs. the electric field fre-
quency. Open circles are the linear-theory results and closed
squares are experimental data for a dielectric (water)
25-mm thick in an electric field of 6 kV.
The substitution Z(t) = F(t)e–ξt reduces Eq. (8) to the
Mathieu equation. For high viscosities (Ga  0), we
arrive at an equation similar to Eq. (8), but with differ-
ent coefficients. In the low-viscosity limit (Ga  ∞),
the system of equations reduces to one equation in frac-
tional derivatives:

where d1, d2, d3, and d4 are given functions of κ.
In the framework of the above complete linear the-

ory of the problem, wave regimes corresponding to the
waves observed in the specially conducted experiment
were calculated (see Fig. 1). Experimental points below
the curve correspond to nonlinear interaction between
harmonics. The linear theory agrees with the experi-
mental data within the experimental errors.

ξ κ2

ΩGaβ1/2
--------------------, a ω0

2 1 Weκ2+( )
ω0

2FrE

2
--------------,–= =

q
ω0

2FrE

4
--------------, ω0

2 κ κtanh
β

------------------,= =

FrE 2ζ2 h2

ε2h1 ε1h2+
-------------------------- 

 
2

κ JE ε1 ε2–( )=

×
ε1

2 3ε2 2–( ) ε2
2 1 2ε1–( )+

ε1 κtanh ε2 ζκ( )tanh+
------------------------------------------------------------.

Z 2( ) t( ) d1Z 3/2( ) t( ) 2ζ d2+( )Z 1( ) t( )+ +

+ d3Z 1/2( ) t( ) a d4 2q 2tcos–+( )Z t( )+ 0,=
1 2 3

4 5 6

Fig. 2. Shadow patterns of gravity–capillary waves (quasicrystals) on the surface of the distilled water layer 45-mm thick in a 15-Hz
ac electric field with an amplitude of 8 kV. The air gap is equal to 4 mm. Wave structures 1–6 are shown.
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Fig. 3. Wavelet decomposition of the central transverse gravity–capillary wave in a strong oscillating electric field for experimental
series no. 3.
In addition to good agreement with the linear theory,
the experiment shows that organized dynamic struc-
tures, which have recently been referred to as hydrody-
namic quasicrystals, arise in such electrohydrodynamic
systems [3]. Figure 2 shows an example of these struc-
tures. We emphasize that the presented pattern is
dynamic, and the shapes of crystals vary periodically in
time. Dislocations arise and develop in them, which
leads to periodic variation in the structural order. Qua-
sicrystals were visualized using a stroboscope to obtain
corresponding shadow patterns of the wave surface of
the liquid dielectric. The wave patterns were subjected
to additional mathematical processing. Two-dimen-
sional Fourier and wavelet transforms of shadow pat-
terns provide a detailed spectral pattern of wave struc-
tures.

The advantages of the new spectral-analysis meth-
ods are illustrated in Fig. 3, where the wavelet decom-
position of the central transverse gravity–capillary
wave in a strong oscillating electric field is shown. This
decomposition makes it possible to separate the spa-
tial–frequency modulation in shadow patterns. Figure 3
DOKLADY PHYSICS      Vol. 50      No. 8      2005
shows brightness distribution along a certain row of a
digital image, as well as two-dimensional spatial Fou-
rier and wavelet spectra. The wavelet spectrum clearly
exhibits the spatial–frequency modulation of the large-
scale wave component. We note that it would appear to
be very difficult to reconstruct such a spatial frequency
modulation by other processing methods.
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ERRATA
Erratum: “Failure of Concrete and Reinforced-Concrete 
Plates under High-Speed Shock and Explosion” 
[Doklady Physics 50, 132 (2005)]

S. A. Afanas’ev, N. N. Belov, D. G. Kopanitsa, N. T. Yugov, and A. A. Yugov

In our paper “Failure of Concrete and Reinforced-Concrete Plates under High-Speed Shock and Explo-
sion,” the text after the formula p = Aρn + γρε on p. 134 (left column) should be read as “where γ = γ0 + cρ,

c = , A and n are constants, and subscripts 0 and H refer to the ideal gas and state at the Jouguet

point, respectively.”

Translated by R. Tyapaev

γH γ0–
ρH
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