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In this paper, we have experimentally studied the
effect of magnetic field on the detonation initiation by
spark discharge in hydrogen–air mixture. We have
shown that the magnetic field imposed on the discharge
region affects the shock-wave intensity so that the pre-
detonation distance is reduced by a factor of 5 when the
magnetic induction attains 1.5 T.

It is well known that electric discharge is the most
propagated method for the ignition of combustible mix-
tures. The characteristic feature of streamer and arc dis-
charges is the existence of a narrow channel in which
breakdown occurs and electric current flows. Gas in the
channel is heated up to temperatures of tens thousands
of Kelvin, which exceeds by more than an order of
magnitude the temperature required for the inflamma-
tion of a gas mixture. In addition, as a result of rapidly
heating and expanding gas in a channel, a shock wave
is formed. This shock wave also is capable of heating
the gas mixture up to the inflammation temperature,
which eventually leads to the detonation initiation. The
parameters of the shock wave are dependent on those of
the electric discharge, in particular, on the amplitude
and rise time of the electric current, i.e., on its power.
Magnetic field significantly affects the electric dis-
charge. The effect of external physical fields on the
combustion and explosion of combustible mixtures rep-
resents an urgent problem of modern physics [1]. The
action of electric fields on burning gases has been thor-
oughly investigated and is for the most part understood.
However, to date, the action of magnetic and electro-
magnetic fields has not been exhaustively clarified.

The goal of this study is to improve the efficiency of
the detonation initiation by increasing the region of the
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igniting discharge and, thereby, increasing the volume
of gas participating in the initiation.

The effect of the initial parameters of the electric
discharge on the length of the pre-detonation segment
in a hydrogen–air mixture at a pressure of 1 atm and
temperature of 20°C was investigated in a cylindrical
detonation combustion chamber (cylindrical DCC)
2510 mm in length and 83 mm in internal diameter. The
DCC was preliminary evacuated and then filled with
the stoichiometric hydrogen–air mixture up to the
atmospheric pressure. A spark discharger was posi-
tioned at distances of 40 and 175 mm from the DCC lat-
eral surface and DCC end, respectively. The energy that
had been accumulated in an electric capacitor and was
then transferred to the spark discharger varied within
the limits of 0.20 to 1.56 kJ. The energy-release time
attained 20 µs. The propagation velocity of shock
waves in the DCC and the velocity of the flame-front
motion were measured by RSV-113A34 pressure sen-
sors and FD-256 photodetectors, respectively. The
measured shock-wave velocity was normalized to the
steady-state velocity DCJ of the one-dimensional deto-
nation. This was realized according to the Chapman–
Jouguet model based on the equilibrate composition of
combustion products beyond the flame front at a given
temperature and density of the substance. In the hydro-
gen–air mixture, DCJ = 1968 m s–1 at a pressure of 1 atm
and temperature of 20°C. We have found that two sce-
narios of the detonation formation are possible at the
shock-wave initial velocity 0.7DCJ (Fig. 1).

(a) At a distance of 5–7 DCC calibers, the steady-
state detonation with Chapman–Jouguet parameters is
formed;

(b) at a distance of 6 DCC calibers, the retardation
of the shock-wave front occurs, which is accompanied
by the consequent acceleration up to 0.55DCJ at a dis-
tance of 25 DCC calibers (the length of the DCC mea-
surement section).

At an initial shock-wave velocity higher than
0.7 DCJ , the detonation is developed in accordance with
the first scenario. In this case, the energy release back
of the shock wave exceeds the work spent by the shock
wave for gas compression. At an initial shock-wave
 2005 Pleiades Publishing, Inc.
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velocity lower than 0.7DCJ, the detonation is developed
in accordance with the second scenario. In this case, the
chemical energy released in the process of burning a
combustible mixture does not compensate the work
spent for compression. The intensity of the shock wave
drops until the compression work being accomplished
by the shock wave becomes lower than the chemical
energy released in the combustion process.

The effect of magnetic field on the plasma region
formed by the electric discharge was investigated in
two steps. At the first step, the spark discharge in air at
atmospheric pressure was visualized by the Foucault–
Maksutov method [2] based on the light refraction by
the density gradient (with application of the knife-and-
slit method) in the case of the simultaneous initiation of
two dischargers. One of them was subjected to the
action of magnetic field produced by the same dis-
charge electric current in a conductor situated close to
the discharge gap. It was found that the presence of the
magnetic field increased the size of the plasma region
near the discharge gap, and the shock-wave velocity at
the initial stage was elevated by 10%.

At the second step, the investigation of the effect of
the magnetic field on the electric discharge was carried
out in the above-described DCC. The magnetic field
was produced by two induction coils installed outside
the DCC at two sides from the spark discharger, the
energy accumulated having been 6 or 3 kJ. The electric
energy accumulated and transferred to the spark dis-
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Fig. 1. Effect of the velocity V of the primary shock wave
on the transition of deflagration to detonation in the hydro-
gen–air mixture: (1) Chapman–Jouguet detonation velocity,
V = (2) 1670, (3) 1582, (4) 1380, (5) 1243, (6) 1115, and
(7) 1017 m s–1. 
charger varied from 0.20 to 1.56 kJ. The electrodes of
the spark-discharger inside the DCC had been installed
in a position such that the direction of the discharge cur-
rent was perpendicular to the magnetic field. This
ensured the maximum effect of the magnetic field on
the discharge current. The results obtained are pre-
sented in Fig. 2.

The calculation according to the Biot–Savart–
Laplace formula has shown that under the given condi-
tions when the directions of the external (induction
coils outside the DCC) and proper (magnetic induction
of the spark current) magnetic fields coincide with each
other, the magnetic induction inside the discharger
increased from 2 to 2.7 T, whereas for their opposite
directions, the induction decreased from 2 to 1.3 T.

An effect was also found of the magnetic field on the
intensity of the shock wave arising in the DCC as a
result of the discharge in air. For coincident and oppo-
site directions of the external magnetic field and of the
proper magnetic field of the spark discharger, the
shock-wave velocity increased by 50 m s–1 and
decreased by 100 m s–1, respectively (Fig. 2).

At the third step, we studied an effect of the mag-
netic field on the length of the pre-detonation segment
in the hydrogen–air mixture at a pressure of 1 atm in the
case when the electric energy transferred to the spark
discharger equaled 0.9 kJ (Fig. 3). Switching on the
external magnetic field (measured magnetic induction
of 1.5 T) whose direction coincided with the direction
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Fig. 2. Distribution of the shock-wave velocity along the
axis of the detonation combustion chamber (DCC). (1) E =
900 J, B = 1.5 T; (2) E = 900 J, B = 1.5 T; (3) E = 900 J, B =
−1.5 T; (4) E = 200 J, B = 1.5 T; (5) E = 200 J, B = 0;
(6) sonic velocity.
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of the proper magnetic field generated by the spark dis-
charger, the formation of the over-compressed detona-
tion was observed at a distance of 8 calibers. In this
case, sensors installed at a distance of 9 calibers from
the discharger fixed no delay of the flame front the
shock wave. At the same time, in the absence of mag-
netic field, the primary shock wave initially weakened
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Fig. 3. Effect of external magnetic field on the velocity of a
shock wave induced by electric discharge in a hydrogen–air
mixture and on the process of passage from deflagration to
detonation: (1) Chapman–Jouguet detonation velocity; B =
(2) 1.5 T; (3) 0; and (4) –1.5 T.
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and then in 7 calibers from the ignition point began to
rise again. However, in the DCC of 30 calibers in
length, the flame front retarded from the shock wave by
approximately 100 µs so that the detonation formation
failed. Variation of the direction of the magnetic induc-
tion for the opposite one resulted in the lowering of the
velocity of the primary shock wave by 100 m s–1.

Thus, we have managed to demonstrate that mag-
netic field imposed on the discharge region affects the
shock-wave intensity and, for a magnetic induction of
1.5 T, the pre-detonation distance is reduced by not less
than 5 times. The effect discovered makes it possible to
both enhance the efficiency and reduce the size of
promising devices that utilize detonation combustion of
fuels [3].
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Among standard thermodynamic characteristics of a
single-component substance in its liquid or gaseous
state, the behavior of the specific heat at a constant vol-
ume (CV) is apparently of most interest. At present, there
is almost no doubt that CV exhibits divergence at the crit-
ical point of the phase diagram, since both experimental
data and theoretical models (see, e.g., [1−3]) present
unambiguous evidence that the value of CV tends to
infinity upon approaching the critical point. Of course,
physical quantities never reach infinite values in exper-
iment, and the application of laws, established within
the framework of theoretical models, to actual systems
always implies a certain approximation. In this context,
there have been continuous attempts to determine the
behavior of the specific heat at a constant volume at the
critical point proceeding from the so-called “first prin-
ciples” based on well-established experimental facts.
One recent example is offered by a series of papers by
Novikov [4–6], where the divergence of CV and some
other physical quantities at a given critical point has
been described within the framework of phenomeno-
logical thermodynamics, proceeding from consider-
ations of system stability. The complexity of the theo-
retical analysis of the behavior of thermodynamic func-
tions in the vicinity of a given critical point is related,
in particular, to the fact that the application of the dif-
ferential equations of thermodynamics to a system in
this region of states leads to the appearance of indeter-
minacies of the 0/0 or ∞/∞ types. This problem has
been considered in more detail, in particular, in mono-
graph [7].

This paper presents an attempt to analyze the behav-
ior of CV at a critical point and in the two-phase region
of the phase diagram of a single-component system,
proceeding from rigorous differential equations of the
phenomenological thermodynamics and from experi-
mental facts that have been reliably established for such
regions.
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Let us consider the behavior of a thermodynamic
system with continuously varying state parameters,
assuming that the thermodynamic surface of states
exhibits no jumps or discontinuities [8]. At the critical
point corresponding to the liquid–vapor phase transi-
tion, the first two derivatives of the pressure with
respect to volume at a constant temperature vanish by
definition:

(1)

We may regard it as a reliably established fact that the
next two derivatives of the pressure with respect to vol-
ume at a constant temperature vanish as well:

(2)

Relations (2) were obtained by Novikov (see, e.g., [4])
proceeding from considerations of system stability. The
same conclusion follows from an analysis of the equa-
tions of the fluctuational theory of phase transitions (the
hypothesis of scaling invariance).

In the subsequent analysis of critical phenomena, it
is implied that the number of independent coupling
relations such as Eqs. (1) and (2) for the equation of
state F(P, V, T; a, b, c, …) = 0 does not exceed the num-
ber of coefficients a, b, c, … entering into this equation.

In order to analyze the behavior of the specific heat
at a constant volume at a critical point, let us use the
well-known relation for CV (see, e.g., [9]),

(3)

and perform simple transformations to express CV as

(4)

∂P
∂V
------- 

 
T

c ∂2P

∂V2
--------- 

 
T

c

0.= =

∂3P

∂V3
--------- 

 
T

c ∂4P

∂V4
--------- 

 
T

c

0.= =

CV
∂U
∂T
------- 

 
V

∂U
∂T
------- 

 
P

∂U
∂V
------- 

 
T

∂V
∂T
------- 

 
P

–= =

CV
∂P
∂T
------ 

 
V

∂U
∂V
------- 

 
T

∂U
∂V
------- 

 
P

–

∂P
∂V
------- 

 
T

--------------------------------------,=
© 2005 Pleiades Publishing, Inc.



        

BEHAVIOR OF THE HEAT CAPACITY 

 

C

 

V

 

 AT THE LIQUID–VAPOR CRITICAL POINT 435

                                                 
where U is the internal energy, T is the absolute temper-
ature, P is pressure, and V is volume. In Eq. (4), the

internal energy U in the derivative  is the func-

tion of the independent variables T and V, while in the

partial derivative , this energy is a function of

the independent variables P and V.

At the liquid–vapor critical point, the first derivative
of the pressure with respect to volume at a constant

temperature vanishes, whereas the derivative 

has a finite value. If the numerator in Eq. (4) at the crit-
ical point also vanishes,

, (5)

there appears an indeterminacy of the 0/0 type that has
to be eliminated, for example, using the L’Hospital
rule. This situation can also arise with the higher deriv-
atives, since the derivatives up to the fourth order in the
denominator of expression (4) vanish in accordance
with Eqs. (1) and (2).

In the general case, the internal energy and its partial
derivatives are the functions of two independent vari-
ables. Let us consider the behavior of the partial deriv-
ative of U with respect to volume at a constant temper-
ature on the critical isotherm U1 = U(Tc, V) and the
behavior of the partial derivative with respect to volume
at a constant pressure on the critical isobaric line U2 =
U(Pc, V). In this case, both U1 = U(Tc, V) and U2 =
U(Tc, V) are the functions of only one variable, namely,
the volume (or the density), and the values of Tc and Pc

in equations for the internal energy play the role of
parameters. Since there are only two independent vari-

ables, the relation  =  is obviously valid at the
critical point. It is also evident that the total derivatives
on the isolines at the critical point are equal to the cor-
responding partial derivatives for the corresponding
constants:

(6)

We now analyze the behavior of the function ψ(V)
defined as the difference of the internal energies on the
isotherm and isobar,

ψ(V) = U1(V) – U2(V), (7)

which is also a function of only one variable. Using this

∂U
∂V
------- 
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T
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P

c

– 0=

U1
c U2

c
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dVn
------------

V Vc=

∂nU

∂Vn
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 
T
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= , dnU2

dVn
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V Vc=

∂nU
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 
P

c
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function and its derivatives

(8)

we can try to eliminate the indeterminacy in expres-
sion (4) using the L’Hospital rule for the function of
one variable.

The behavior of the function ψ(V) = U1(V) – U2(V)
is elucidated by an analysis of the phase diagram P ver-
sus V for a single-component substance (Fig. 1). For
any arbitrarily set volume below the critical one
(V < Vc), the temperature on the critical isobar is always
below the critical temperature, whereas for V > Vc , the
temperature on this isobar is always above the critical
value. By virtue of the positive definiteness of CV (at
least, outside the spinodal), the internal energy
increases with the temperature. From this it follows that
the function ψ(V) defined by formula (7) is positive for
V < Vc, negative for V > Vc , and is zero at V = Vc . In
other words, the critical point is the point of intersec-
tion of the critical isobar and critical isotherm of the
internal energy.

In this analysis of the behavior of the function ψ(V)
at the critical point, we should take into account certain
well-known mathematical statements [10]: if the order
of the first nonzero derivative at a given point is even,
the function exhibits a maximum at this point; if the
order of the first nonzero derivative is odd, the given
point is a bending point. Since, according to the above

∂ψ V( )
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dV
-------------------
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P

Pc

P1

Tc

T < Tc T > Tc

C

T1

V1
V*sp

V

Pressure P as a function of the volume V for a single-com-
ponent substance at various temperatures T (see the text for
explanations).
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considerations, the function ψ(V) cannot have a maxi-
mum at the critical point, the first case is ruled out.

As is known [1–7], the ratio of the heat capacities

 at the critical point is zero. Then, taking into

account the relations

(where H is the enthalpy) and using expression (4), we
obtain

(9)

Using certain well-known differential equations of
thermodynamics, it can be readily shown that, if condi-

tion (9) is valid, the derivative  at the critical

point is finite and positive. From this it follows that the
numerator in Eq. (9) at the critical point vanishes,

(10)

and, hence,

(11)

Since the function ψ(V) changes its sign at the critical
point, while its first derivative with respect to volume is
zero, the second derivative with respect to volume must
also vanish at this point:

Therefore, the critical point must be a bending point for
the function ψ(V) (otherwise, this function would have
an extremum at this point), and we have

(12)

(It should be noted that in this equation, it is probable
that both second-order partial derivatives of the internal
energy with respect to volume vanish at the critical
point.)
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Thus, our analysis of expression (4) shows that the
necessary and sufficient condition for the heat capacity
CV at the liquid–vapor critical point to exhibit infinite
growth if conditions (1), (9), (10), (12) are fulfilled, and
the first equality (2) is

(13)

In this case, the heat capacity CV according to expres-

sion (4) tends to infinity in proportion to 1 .

We now demonstrate that CV has a substantially pos-
itive nonzero value on the entire thermodynamic surface.
This analysis also is based on expression (4), from which
it can be seen that a divergence of CV can only appear
on the spinodal. Indeed, there are no other points in the
two-phase region where the denominator of expression
(4) can acquire zero values.

Since the ratio of the heat capacities  on the spin-

odal (as well as at the critical point) is zero [2], the
expression for CV at an arbitrary point on the spinodal,

, (14)

exhibits an indeterminacy of the 0/0 type. In order to
find the value of this indeterminate form, we use the
same approach as that described above for the critical
point. For this purpose, let us draw the isotherm T = T1
and the isobar P = P1 through an arbitrary point of the
spinodal (see the figure, where this point is chosen on
the liquid branch of the spinodal sp) in which the vol-
ume has the value V = V1(T1, P1). Obviously, the inter-
nal energy on these isolines is a function of the volume
alone: U3 = U(T1, V) and U4 = U(P1, V). An analysis of
the behavior of the function

χ(V) = U3(T1, V) – U4(P1, V),

similar to that performed above for the function ψ(V) at
the critical point, shows that χ(V) has a minimum at

V = V1, so that  > 0. However, since the second-

order derivative in the denominator of expression (14)

on the spinodal also is positive,  > 0, this for-

mula shows that the specific heat at a constant volume
does not change sign on crossing the spinodal. There-
fore, the heat capacity CV is finite and positive both on
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the spinodal and in the entire region of the thermody-
namic surface bounded by the spinodal.

The same conclusion concerning the finiteness of
the specific heat at a constant volume on the spinodal
was derived by Ivanov [2] who had analyzed the stabil-
ity of the thermodynamic system. Moreover, the same
result can be obtained proceeding from the assump-
tion that CV cannot vanish on the spinodal, since the
temperature on the spinodal is always above zero [11].

Thus, we have demonstrated that one of the two con-
ditions of thermodynamic stability (the mechanical sta-

bility criterion is  < 0, and the thermal-stability

criterion is CV =  > 0), namely, the thermal-stabil-

ity condition is not violated and is valid everywhere on
the thermodynamic surface, including the region
bounded by the spinodal on the phase diagram P versus V.

The results of our analysis lead to the conclusion
that the infinite growth of CV at the critical point can be
provided by describing the thermal and caloric proper-
ties in terms of the analytical equations of state (in
which the first three derivatives of the pressure with
respect to volume at a constant temperature must not
diverge), whereby the singularity in CV appears as a
result of the division by zero in these equations. This
approach solves the problem of matching the regular
and singular parts of the equation of state, which (to our
knowledge) has not thus far been solved.
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The properties of substances under high pressures
are of great interest in the physics of condensed state
[1]. In the present paper, we analyze certain unconven-
tional causes for the loss of stability in the crystal lattice
of ionic dielectrics.

As is well known, under equilibrium conditions,
surface energy is a strictly positive quantity [2]. As fol-
lows from the Gibbs formalism [3], in addressing the
surface properties of a substance, we must allow for the
surface energy in the crystal thermodynamic potential.
This corresponds to the fact that the surface-layer par-
ticles of a substance tend to penetrate into the interior
of a sample in order to reduce the internal energy of the
system. In thermodynamics, this phenomenon is
referred to as surface tension. However, the surface
energy decreases when the external pressure is ele-
vated [4]. Therefore, we can expect that at a certain
pressure pcr the surface energy will vanish and that it
may even turn out to attain the region of negative values
with a further increase in pressure. In this state, it is
more profitable for surface-layer particles, from the
standpoint of energy, to pass from the bulk of the sub-
stance onto the surface, because, in this case, the sur-
face area increases, which results in a decrease in the
system’s total energy.

The formalism of the method of the electron-density
functional [4] makes it possible to calculate the pres-
sure value for which the surface energy can vanish. The
corresponding calculation was performed for ionic
crystals with a lattice structure of the NaCl type.
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We write out the thermodynamic potential of a crys-
tal under pressure as

(1)

Here, αµ is the Madelung constant; R is the distance
between the nearest neighbors; V = 2R3 is the unit-cell
volume; U(R) is the potential of the pair interaction;

ak =  is the ratio of the radii of the kth coordination

sphere and of the first coordination sphere, respec-
tively; Nk is the coordination number; σ is the surface
energy; and k is the numerical coefficient taking into
account the deviation of the crystal shape from the
spherical one.

In accordance with the Gibbs definition, at the abso-
lute-zero temperature, the surface energy density σ(hkl)
is of the form [5]

(2)

Here, σ(hkl) is the surface-energy density for the (hkl)

face;  is the energy of one particle in the jth layer,
which is caused by the ith type of forces of the interi-

onic interaction;  is the same quantity related to the
bulk of the crystal; and nj(hkl) is the number of particles
per unit area in the jth plane.

We now analyze the approximation being used in
more detail. One of the disadvantages of the Gibbs
approach is the arbitrariness in the choice of the sepa-
rating plane. By virtue of this fact, the value of σ(hkl)
depends on the place where the crystal interface is cho-
sen because, as was emphasized in [6], the particle’s
density turns out to be different in different planes. A
method that allows us to avoid this indeterminacy was
developed in [7]. The essence of this method lies in the
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fact that a crystal is divided into plane grids, and the
summation in the expression for the surface energy
density is performed over the set of such grids. This is
the approach that is used below for calculating the sur-
face energy of ionic crystals.

In the zero approximation used here, expression (2)
takes the form

(3)

We consider a plane grid inside an infinite solid. It is
evident that for an undistorted crystal, one can write out

(4)

where  is the energy of one particle on the grid,
which is stipulated by the ith-type interaction forces of
the given particle with all other particles belonging to

the plane under consideration; and  is the energy
of the same particle, which is determined by the inter-
action with all particles belonging to all planes that lie
above or below the given plane. Thus, the energy of one
particle lying in the surface plane of an undistorted
crystal is

(5)

Excluding  from expressions (4) and (5), we
arrive at

(6)

We now introduce the notation β(l) =  =  for the

ratio of sums over the infinite plane grid and the infinite
lattice for the ith-type interaction forces of ions. Then,
expression (6) is written out in the form

(7)

In particular, for Coulomb forces, β is the ratio of the
Madelung constants for the plane grid and three-dimen-
sional lattice. For other forces, the quantity β is the ratio
of rapidly converging series whose summing encoun-
ters no difficulties.

After the thermodynamic potential (1) has been con-
structed, we can find the desired equation of state p =

− , which allows us to determine the interparticle

distance for which the surface energy vanishes. Calcu-
lations performed for all alkali-halide crystals yield for

the ratio  the value of 1.16–1.21. Using the experi-

mental data of [8] for the pressure dependence of the
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lattice constant, it is easy to find the pressure value for
which the surface energy vanishes. The results obtained
for infinitely large crystals and samples with a diameter
of crystalline grains of 100 µm are presented in the
table. For comparison, the values of pressure for the
B1–B2 transition in massive samples of the given com-
pounds [11] are also shown in the table. At pressures
higher than those indicated in the table, the surface
energy of alkali-halide crystals can become negative.

In addition to these calculations, the possibility of
the existence of substance states having a negative sur-
face energy was studied in the experiments with the
optical breakdown of the bulk and surface of high-qual-
ity ionic crystals [9].

In our experiments, pulses 8 ns in duration (at half
width) of a neodymium laser operating at a wavelength
of 1.06 µm and a repetition frequency of 30 Hz were
directed onto samples upon passing a lens with a focal
distance of 5 cm.

In further calculations, we used the formula

(8)

where  is the width of the forbidden zone in the sam-

ple volume,  is the critical strength of the electric

field in the volume, and  is the critical strength of
the electric field on the sample surface.

The experiment of [9] with a sodium chloride crystal

has shown that  < , which, in accordance with
relationship (8), yields σ > 0. However, while investi-
gating the laser breakdown of high-quality potassium

chloride crystal, it was found that  > ; i.e.,
according to (8), σ < 0. This testifies to the fact that we
have experimentally found conditions for the appear-
ance of the substance state characterized by the nega-
tive surface energy.

As was emphasized in [10], for the substance state
with a negative energy, which arises at extremely high
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 Critical pressure for a number of alkali-halide compounds

Crystal
pcr, kbar pB1–B2,

kbar [14]d = ∞ d = 10–4 m

LiF 1.21 160 180 300

NaF 1.19 140 150 154

NaCl 1.18 110 115 138

NaBr 1.17 29 33 45

KCl 1.16 24 26 29

KBr 1.16 24 26 29

r0

rcr
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pressures, one can expect a sharp variation in the prop-
erties of a sample and even its failure. This is the pro-
cess that occurs in the case of laser-induced breakdown.
The pressures calculated in the present study at which
the sample can pass to the state with a negative surface
energy and pressures that can be obtained in the process
of the laser destruction of ionic-dielectric surfaces are
close to each other.

Indeed, in order to calculate the ablation pressures
arising on the sample surface, while exposing the sub-
stance to nanosecond laser pulses, with allowance for
the estimates made in [11, 12], and in addition to the
scaling laws [13], we can use the formula

(9)

where I is the power density of laser radiation.

Insofar as we have observed the laser breakdown of
potassium chloride for Icr = (1.4 ± 0.1) × 1010 W cm–2,
we obtain pa = 57 ± 4 kbar. This value exceeds the value
of pcr indicated in the table for which the surface energy
of an ionic crystal vanishes.

For sodium chloride, we have found in our experi-
ments that Icr = (1.55 ± 0.15) × 1010 W cm–2, which, in
accordance with (9), yields pa = 60 ± 6 kbar. This value
is lower than that of pcr given in the table; i.e., under our
conditions for sodium chloride, σ > 0.

The found values of pcr (see table) for different sizes
of the calculation region (d) are somewhat lower than
the pressure (pÇ1–Ç2) of the polymorphic B1–B2 transi-
tion that is realized in ionic crystals also under high
pressures [14].

Thus, we have substantiated the possibility of the
existence of a state in which a condensed medium can
possess a negative surface energy.

pa kbar( ) 4.8 104× I    W /cm 
2 ( ) ,=
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The rapid progress that has been made in the area of
ultra-wideband electromagnetic pulse (UWB EMP)
technology [1, 2] poses new tasks of increasing com-
plexity, which implies the need for the generalization
and development of new theoretical and computational
methods. One of these tasks is related to the possibility
of using the subnanosecond pulsed flows of photoelec-
trons, emitted from metal walls of irregular waveguide
tracts for the generation of UWB EMPs in such sys-
tems. The aim of this study was to evaluate this possi-
bility.

Let us consider the device that is schematically
depicted in Fig. 1. Here, A is the wall of an irregular
waveguide, which acts as a photocathode; B is an iso-
tropic pulsed source of monoenergetic photons
(photoflash) with an energy exceeding the work func-
tion of the photocathode; and C is the accelerating grid
with a high transmission (transparency) coefficient,
which is equidistantly spaced from the cathode. Prior to
the source flashing, the grid is charged to a sufficiently
high voltage U relative to the photocathode, so that the
flow of photoelectrons emitted from the cathode in the
region 0 < z* < 1 is virtually perpendicular to the cath-
ode surface. 

The spatial coordinates (r and z in Fig. 1) and the
other linear quantities (e.g., dimensions of structural
elements) are rendered dimensionless by normalizing
to a certain natural linear scale L, so that r* = r/L, z* =
z/L, etc. In particular, the photocathode surface is
described by the equation r = b(z) or r* = b*(z*), where
b*(z*) = L–1b(Lz*). The time t is rendered dimensionless
by normalizing to the characteristic time L/c, so that

t* = , where c is the velocity of light in vacuum.

According to the theory of the nonstationary excita-
tion of irregular waveguides by TM waves, the device

ct
L
----
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1028-3358/05/5009- $26.00 ©0441
in Fig. 1 can be described in terms of the following set
of equations [3]:

(1)

Here, f(z*, t*) is the unknown column vector with the
coordinates fj(z*, t*). These coordinates are represented
by the coefficients of expansion of the magnetic field
(having in this case the only nonzero component
Hϕ( , z*, t*) with respect to a certain set of the basis

functions {ej( , z*)}:

(2)

The dimensions of the [N × 1] column vectors
f(z*, t*), l, and r, the [N × N] square matrices G(z*),
P(z*), T(z*), and Q(z*), and the transposed matrix

∂
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Fig. 1. Schematic diagram of the UWB EMP generator (see
the text for explanations).
 2005 Pleiades Publishing, Inc.



442 GOLIKOV et al.
Qτ(z*) are determined by the number N of terms in
sum (2). The matrix elements are defined as

and the coordinates of the column vectors l and r, as

where j is the photoelectron-current density; ei = eij0;
j0 and z0 are the unit vectors of the cylindrical coordi-
nate system; S(z*) is the integration domain represent-
ing a waveguide section perpendicular to the Z axis; ε
and µ are the relative permittivity and magnetic perme-
ability of the medium, respectively; and the subscripts
z* and r* denote differentiation with respect to these
variables.

A convenient basis set {ej( , z*)} in expansion (2)
is offered by a set of polynomials, which is obtained
from the system (r*k, k = 1, 2, …) by the orthogonaliza-
tion on the segment [0, b*, (z*)] with the weight r* and
by subsequent normalization.

The flow of photoelectrons emitted from the cathode
in the region 0 < z* < 1 can be considered as a sequence
of Nq quasi-particles representing thin circular tori with

the radii  = (t*), which are situated in the planes

 = (t*) (k = 1, 2, …., Nq). Photoelectrons gener-
ated outside the region 0 < z* < 1 are assumed to be
slow. These particles produce no significant contribu-
tion to the electromagnetic radiation and, hence, can be
ignored. In order to describe the flow of quasi-particles,
let us divide the region 0 < z* < 1 into M equal parts and
assume that the middle of each part is the emission cen-
ter for a group of Mg quasi-particles, which are emitted
sequentially with certain time delays so that M Mg = Nq .
Every kth quasi-particle consists of nk photoelectrons
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and carries a charge qk = –enk . As a result, we obtain the
total photoelectron current

The set of equations (1) is solved together with the set
of equations describing the motion of quasi-particles.
In the relativistic approximation, these equations of
motion are of the form

(3a)

(3b)

The quantities Hϕ, Er , and Ez in the right-hand side of
Eqs. (3a) and (3b) can be expressed as functions of f
given by Eqs. (1). The calculations involve the averag-
ing of the right-hand side of Eqs. (1) and of the func-
tions Hϕ, Er , and Ez over the computational lattice.

The starting conditions for each quasi-particle are
determined by the start time (instant of emission) and
the initial velocity. The start time is determined with
allowance for a delay that is equal to the sum of the time
required for photons to propagate over the distance
from the source to the corresponding emission center of
the photocathode, the time of quasi-particle formation
(dependent on the electromagnetic radiation intensity),
and the time required for the quasi-particle to travel
over the cathode–grid distance δ*. The initial quasi-
particle velocity is determined by the grid voltage at the
emission site at the start time.

Figure 2 shows an example of the results of the cal-
culations performed for L = 100 cm, U = 105 V, and
δ* = 0.02. The number of photons emitted within the
solid angle 4π per unit time (∆t* = 1) was calculated as

n(t*) = Asin2  [0 ≤ t* ≤ T*] for A = 1021 and T* = 10−1.

The quantum yield of photoelectrons was taken equal
to 10−3 for N = 15, Nq = 5000 (M = 500, Mg = 10), and
the computational lattice parameters were hz* = 5 ×
10−3 and ht* = 5 × 10–4. The electromagnetic energy
excited by photoelectrons was determined by the inte-
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gration of the excitation density over the volume. As
can be seen from Fig. 2, this energy (curve 1) initially
increases with time (at the expense of the energy taken
from the increasing number of accelerated electrons)
and then decreases because the energy is returned to
accelerated electrons. In Fig. 2, curve 2 shows the sum
of the kinetic energies of all quasi-particles, including
the loss related to the fraction of quasi-particles
returned to the cathode (this loss is shown separately by
curve 3); curve 4 shows the sum of the excited electro-
magnetic energy (curve 1) and the total kinetic energy
of all quasi-particles (curve 2). After the process of
photoelectron emission to the space behind the grid
(t* > 1.2) has been terminated, this curve attains a pla-
teau that corresponds to the electrostatic energy ini-

tially stored in the photocathode-grid gap, W = CU2,

where C is the gap capacitance. Curve 5 in Fig. 2 corre-
sponds to the total work performed by the Lorentz force
for the transfer of all quasi-particles. The accuracy of
calculations performed in the approximation used
(assuming ideally conducting metal walls) can be
judged from the difference between curves 1 and 5
(which must coincide) and from the amplitude of vari-
ations at the plateau of curve 4 (~0.2%). Calculations
show that, by decreasing the scale of the computational
lattice and increasing N, M, and Mg , the accuracy of the
results (which was already high) can be further
improved.

The obtained results show that the proposed
approach ensures a high and controlled accuracy of cal-
culations and can be efficiently used for the investiga-
tion and development of a broad class of devices and
setups for the UWB EMP technology whose operation
principle is based on the self-consistent interaction

1
2
---
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between the flows of charged particles and irregular
waveguides.
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Fig. 2. Electromagnetic energy dynamics calculated using
Eqs. (1) and (3) (see the text for explanations).



  

Doklady Physics, Vol. 50, No. 9, 2005, pp. 444–447. Translated from Doklady Akademii Nauk, Vol. 404, No. 1, 2005, pp. 37–40.
Original Russian Text Copyright © 2005 by Ilgamov.

                                   

MECHANICS

     
Qualitative Analysis of the Evolution of Deviations
from the Spherical Shape During the Collapse 

of a Cavity in a Liquid
Corresponding Member of the RAS M. A. Ilgamov

Received March 31, 2005
The spherical collapse of gas and vapor cavities
under pressure in the surrounding liquid has been ana-
lyzed in numerous studies, e.g., in [1, 2]. A recent
experimental investigation [3] was devoted to achiev-
ing a strong compression of bubbles in a cluster in the
liquid subjected to acoustic action. The problem con-
cerning the stability of the spherical motion of a cavity
is complicated, and the effect of individual factors has
not yet been revealed. A rather complete review of
investigations on the stability of the spherical shape of
small bubbles in the acoustically excited liquid was
given in [4]. Linear and nonlinear problems concerning
the stability of a spherical cavity are usually solved
using numerical methods. In this case, it is difficult to
determine the dependence of the solution on the input
parameters because of their large number. In view of
this circumstance, it is desirable to have simple analyt-
ical estimates, although they may be rough.

In this study, the evolution of a small deviation from
the spherical shape of the cavity subjected to compres-
sion is considered disregarding the counterpressure,
surface tension, viscosity, and compressibility of the
liquid. This Rayleigh–Plesset problem [5, 6] can be
taken as the simplest model for estimating distortions
of the spherical shape. A further simplification can be
achieved by considering only the final phase of the
cavity collapse. As was shown in the numerical simula-
tion [7], the rapid development of the instability of the
shape occurs at that time.

Each of the above factors in the model leads to an
increase in the stability of the process of the strong
compression of the cavity, so that the stability is
expected to be maximal when all these factors are taken
into account. Thus, the proposed model underestimates
the stability of the process of the strong compression of
a cavity or overestimates its instability. If such an esti-
mate of the increase in deviations turns out to be accept-
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able for certain cases, it is not necessary to take into
account complex processes in the cavity or the actual
properties of the surrounding liquid. This estimate may
be used, e.g., to determine the conditions of the frag-
mentation of gas and vapor cavities up to a certain stage
of compression when the characteristic times of forma-
tion of a converging spherical shock wave, its separa-
tion from the cavity surface, and its focusing at the cen-
ter of the cavity are compared with the time of the sub-
stantial distortion of the spherical shape of the cavity. If
this distortion occurs later than the focusing of the
shock wave at the center of the cavity, it can be
expected that the effect of the distortion of the cavity
shape on the extremal values of temperature, pressure,
and density will be small. The role of the above factors
is significant for cavities with sizes of a millimeter or
less (at the beginning of motion). It weakens with an
increase in sizes. The role of the counterpressure and
compressibility of the liquid is significant only at the
final stage of compression.

Deviation from the spherical shape of the phase sur-
face is assumed to be much smaller than the current
radius and is taken in the form of spherical harmonics.
In the above approximation, the set of the Rayleigh–
Plesset equations for describing the motion of the cav-
ity has the form [4–6]

(1)

Here, R and ai are the current radius of the cavity and
the amplitude of the ith mode of the deviation of the
spherical shape, respectively; ρ and p∞ are the density
and pressure in the liquid, respectively; and a dot over
symbols stands for the derivative with respect to time t.
The pressure p∞ can vary with time t. According to the
numerical simulation [7], the collapse at the final stage
occurs several orders of magnitude faster than change
in p∞(t). For this reason, when integrating the first of
Eqs. (1), the pressure p∞(t) is taken as a constant (for the
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acoustic excitation of pressure oscillations in the liquid,
p∞ can be approximately taken as the sum of the aver-
age pressure p0 and amplitude pa of the oscillations). In
this case, we arrive at the following well-known first
integral of the equation of motion [5]:

(2)

where Rm is the initial radius of the cavity (or its maxi-
mum radius in the case of spherical oscillations).

We assume that the final stage of the collapse is
determined by the radius R∗  satisfying the condition

 ! 1. Then we take, e.g.,  = 0.1 and measure

time t from the instant at which the radius is equal
to R∗ . For this radius, the velocity is equal to

(3)

but the time at which the values of R∗  and  vary
from Rm is unknown. The determination of this time is
not required for further analysis.

Integrating Eq. (2) from R∗  to R and from t = 0 to t
and neglecting the last term, we obtain

(4)

Substituting this value of R into Eq. (2) and into the
first of Eqs. (1) and neglecting in the latter equation the

terms  that are much smaller than unity, we

arrive at the expressions

(5)

In view of Eqs. (4) and (5), the second equation of
Eqs. (1) can be represented in the form

(6)

The initial deviation  from the spherical shape

and the corresponding velocity  (τ = 0) are specified
at the radius R∗ . The problem is to determine the evolu-
tion of the initial deviation as the cavity surface moves
to the center. The dimensionless deviation εi(τ)
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increases due not only to an increase in the absolute
value of the deviation, but also to a decrease in the aver-
age radius R(τ). There is a certain arbitrariness in the
specification of sufficiently small values of  and ,
as well as in their specification at the true initial radius
Rm or at the equilibrium radius before the expansion of
the bubble in the liquid where oscillations are acousti-
cally excited. The following rough estimates are valid:

where  is the deviation at the radius Rm.

The solution of Eq. (6) is well known. It has a singu-
larity as τ  1 and is expressed in terms of trigono-
metric functions with an argument containing the func-
tion ln(1 – τ). However, the qualitative behavior can be
revealed with less difficulty. Analysis of the solution of
Eq. (6) shows that, from τ = 0 to τ ≈ 0.85, the function
εi(τ) varies smoothly. Within this range, the effect of the
term with the second derivative is relatively small. For
τ > 0.85, a sharp increase in εi begins. The second deriv-
ative also increases, but the factor 
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value of the relative deviation
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A somewhat more accurate result can be obtained by
substituting Eq. (7) into the correction term containing
the second derivative in Eq. (6) and again integrating
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A further refinement of the solution may be
achieved by seeking it in the form of a series with a sin-
gularity at  τ   = 1, e.g., in the form of the function 
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Figure 1 shows (for the case
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= 2) plots for the exact
solution of Eq. (6) and approximate solutions of
Eqs. (7) and (8). The basic deficiency of the latter solu-
tions is that they do not change the sign as 
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 is of real
interest, this deficiency is insignificant.
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We note that the substitution of expression for µi

from Eqs. (6) into Eqs. (7) and (8) reduces the latter
expressions to the clearer approximate form

(9)
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Fig. 1. Amplitude of elliptic (i = 2) deviation from the
spherical shape of a spherical cavity near its poles vs.
dimensionless time measured from the instant when the

radius is R∗  = , where Rm is the maximum radius, for the

initial conditions  = –0.1771 and  = −0.0623: (1)

exact solution of Eq. (6), (2) the same for  = 0, (3) solu-

tion (7), and (4) solution (8).
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Fig. 2. Dimensionless-time dependence for amplitudes of
spherical harmonics.
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In particular, for an important applied case of ellip-
soidal perturbations i = 2, we have ε2 = (1 – τ)–1/4.
Figure 2 shows the solution yielded by the first of
Eqs. (9) for various spherical-harmonic numbers i. As
is seen in Fig. 2, instability develops rapidly for higher
harmonics. This property is consistent with the results
obtained in [6] for oscillations and is a consequence of
disregarding the factors indicated at the beginning of
this paper.

Let us estimate the minimum of the radius R = Rc
under the assumption that the counterpressure is
formed in the cavity when its initial volume decreases
by a factor of 106 or more. The order of magnitude of
Rc can be used to determine the order of magnitude of
the dimensionless time τc to which Eqs. (7)–(9) are
applicable.

For definiteness, we assume that the average pres-
sure reaches p∗  = p0, where p0 is the equilibrium pres-
sure in the liquid, when the cavity decreases to radius
R∗  in a rarefied gas medium. For an adiabatic process
with the adiabatic index γ, Eq. (2) is replaced by

(10)

where surface tension with the coefficient σ is also

taken into account. Setting  = 0 at R = Rc and γ = 

in Eq. (10), we obtain

(11)

Thus, if the pressure-oscillation amplitude pa in the
total pressure in the liquid p∞ = p0 + pa is on the order of

2p0, then according to Eq. (11), the ratio  is on the

order of . For the case under consideration, it is

on the order of 10–3; i.e., for very small radii Rc counter-
pressure leads to complete deceleration. Another esti-
mate can be obtained using the van der Waals constant

A ≈  from which  = A1/3 ≈ (8.5–3)1/3 ≈ 10–1. At

the same time, the rapid increase in perturbations
(Fig. 1) begins after τ ≈ 0.85, which yields R ≈ 0.5R∗
according to Eq. (4). Therefore, the rapid increase in
deviations from sphericity begins much earlier than the
deceleration of the spherical motion of the cavity
begins and stops. This behavior implies that the above
assumptions are acceptable for the qualitative analysis
of the phenomenon within the interval 0.5R∗  < R < R∗ .
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Numerical simulation of the compression of a vapor
bubble in deuterated acetone under the conditions of
the experiments reported in [3] shows that a convergent
spherical shock wave is formed in a bubble at R ≈
0.8R∗ , and its focusing at the bubble center occurs at
R ≈ 0.3R∗ . Thus, near R ≈ R∗ , an interval may exist,
where Eqs. (7)–(9) are applicable for the estimation of
the shape distortion. Since the wave in the bubble is
formed in this case earlier than distortions of its shape
begin to rapidly increase (estimates are R ≈ 0.8R∗  and
R ≈ 0.5R∗ , respectively) and it moves faster than the
phase surface, the focusing of the shock wave occurs
with small deviation from sphericity when the initial

dimensionless deviation  is on the order of 10−3 or

smaller (when  ~ 10–2,  is on the order of 10−1).
For other input parameters, such estimates may change.

In particular, for  ~ 10–2, the focusing of the shock
wave does not occur.

Thus, a simple model has been developed for the
evolution of deviations from the spherical shape in the
collapse of a cavity in a liquid. In this model, the pure
radial motion is described by a nonlinear equation,
whereas deviations from this motion, by a linear equa-
tion. According to this model, the collapse of the evac-
uated cavity is always unstable with respect to devia-
tions from the spherical shape. Therefore, in the classi-
cal Rayleigh problem [5], the shape of a cavity in an
ideal incompressible liquid is linearly unstable. For the
most interesting case of ellipsoidal distortions of the
spherical shape, this instability is rapidly developed
only at the final stage of the collapse, when the radius
reaches one-twentieth of the initial radius. This is an
upper estimate (with reserve) of instability. The evolu-
tion of deviations from sphericity is approximately

εi
m

εi* εi
m
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m
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described by the very simple formula (7). The more

accurate description for smaller radii (R < ) can be

obtained only by numerical simulation with the com-
plete inclusion of actual properties of the liquid and gas
in the cavity and in the framework of nonlinear theory
of deviations from the spherical shape. However, in this
case, perturbations also increase strongly only after the
phase interface reaches one-twentieth of the initial
radius.
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INTRODUCTION

Dynamic fracture in continua is a nonequilibrium
process occurring at different structure-scale levels in
both space and time. Experiments on the dynamic frac-
ture of solids have revealed a number of effects that
drastically contradict the classical models of strength
properties and crack resistance [1, 2]. The correspond-
ing classical criteria imply that the energy and momen-
tum needed for the formation of new surfaces and frac-
ture domains are spent in a continuous manner in the
course of dynamic rupture. In [1], it was shown that
introducing physical discreteness (alongside with dis-
creteness related to the spatial geometry, which was
discussed in [3–5]), i.e., the discrete consumption of the
energy and momentum needed to maintain the process
of dynamic rupture, provides the possibility of resolv-
ing some discrepancies of classical theory. Similar
arguments were later presented in [6]. This approach,
which, in fact, corresponds to an allowance for the
space-time metrics of the process of dynamic rupture in
continua [7], makes it possible to extend the nonlinear
mechanics of fracture to dynamic problems [7, 8]. The
principal difference of this approach from the others is
that it explicitly introduces the concept of an incubation
period (characteristic relaxation time for the pre-frac-
ture process [7]), which forms the characteristic time
scale. In addition, the corresponding extreme condition
(criterion) for the rupture of continua at the given scale
level is introduced, which takes into account both the
space-time structure and the physical (energy) discrete-
ness of fracture processes.

In the present paper, we demonstrate that the
dynamic fracture of materials at different structure
scales can be characterized by a constant value of the
average power. This quantity can be defined as the ratio
of the characteristic energy spent for the fracture of a
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structure element to the corresponding incubation
period determined by the so-called fracture quantum.
We also propose the general principle of equal power
for the fracture of subsystems. This principle can be
used for modeling different transition processes in both
mechanics and physics.

THE STATIC LOADING

Let us discuss the slow uniaxial stretching of a sam-
ple made of an elastic brittle material. At a sufficiently
slow variation of a load (for which the kinetic energy is
negligibly low), a uniform stressed state is formed in
the sample. In this case, numerous experimental data
for different materials are well described by the force
criterion of fracture:

(1)

The fracture occurs when stress σ attains the critical
value σc (ultimate tensile strength). For a linearly elas-
tic material, the ultimate specific (per unit volume)
elastic energy can be written as

(2)

where E is the Young modulus. The critical value of the
specific energy characterizes the strength of the mate-
rial. It seems evident that the fracture is related to the
energy consumption insofar as work is performed to
break elementary bonds. Thus, it is natural to use the
work performed (i.e., the energy spent for fracturing) as
a defining characteristic parameter. In the case of an
overloaded material, the ratio of the energy spent to the
volume of the ruptured material exhibits a clearly pro-
nounced size effect. Figure 1a illustrates the data for
rocks on the specific (per unit volume) energy con-
sumption for fracture as a function of the characteristic
size of a fragment [9]. These data are well described by
the relationship

 +  = const.

Taking into account the fact that the volume is pro-
portional to the linear size d cubed, we find that the
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energy consumption W is proportional to d 2, i.e., is
determined by the area of the formed surface. This is
clearly seen from Fig. 1b, which demonstrates the
dependence of the energy per unit area on the linear size
of a sample.

Thus, if the fracture occurs as a result of the forma-
tion of new surfaces, then the ratio of the accumulated
elastic energy to the area of the formed surface attains
the critical value. Note that this concept forms the basis
of the Griffith theory, according to which the crack
growth must begin when the internal energy accumu-
lated in the process of strains is transformed into the
energy of new arising surfaces:

(3)

Here, γ is the Griffith’s constant, i.e., the specific (per
unit area) energy spent for the formation of a new sur-
face. All the aforementioned criteria have shown their
adequacy in the analysis of experimental data for the
case of a sufficiently slow loading. The seeming dis-
crepancy between criteria (2) and (3) is explained in the
following way. On the one hand, the fracture is not a
local process (the energy needed for the fracture is not
concentrated at a single point). On the other hand, this
process involves not the entire energy accumulated in
the sample, but only a portion concentrated in a region
close to the fracture zone. Let S be the area of the sur-
face arising in the course of fracture. Then, according to
relationships (2) and (3), the energy spent for fracture
can be written in the form

(4)

where δ is the characteristic linear size of the region
involved in the fracture process. From relationship (4),
we find γ = Wspδ. In the case of a crack loaded accord-
ing to mode 1, the critical surface energy corresponding
to the fracture is expressed in terms of the critical

stress-intensity coefficient by the formula γ = .

Then, the characteristic size of the fracture zone can be
represented in terms of the characteristic parameters of
the material

(5)

The quantity δ features the typical size of a fragment at
a quasi-static fracture. Note that relationship (4)
implies that the tests for fracture (at the given scale
level) in samples with sizes much less than the critical
value are incorrect, since they are unable to accumulate
a sufficient energy. Note also that similar conclusions
were drawn by other authors (see, e.g., [10, 11]).
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THE DYNAMIC LOADING

Numerous experimental data demonstrate that crite-
rion (1) is inapplicable in the case of short-time load-
ing. This occurs because the critical stress correspond-
ing to fracture becomes significantly higher with a
decrease in the duration of loading and also depends on
the fracture history. There is also no reason to believe
that the other characteristics of the static fracture, such
as δ and γ, remain unchanged.

We now consider the case in which the elastic
energy in a sample far exceeds the local kinetic energy,
i.e., the kinetic energy determined by the displacement
of fixed points in the sample with respect to each other.
Note that the local kinetic energy turns out to be domi-
nant for either samples of a larger size or very high
strain rates. We discuss the situation when the loading
is rapid from the “standpoint” of the material proper-
ties, while it is slow (static) from the “standpoint” of the
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Fig. 1. Specific energy expenditures for the fracture of rocks
(a) per unit volume and (b) per unit area as functions of the
fragment characteristic size. The data were obtained from
the measurements performed under laboratory, industrial,
and natural conditions [9].
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sample (structure) [12]. In this case, the fracture of the
material is determined not only by force-related param-
eters but also by time characteristics such as the charac-
teristic time τ of incubation processes occurring in the
material structure. As the fracture criterion, we use that
related to the incubation time [1, 2, 7, 8].

Let us assume that the sample is suddenly loaded by
a constant tensile stress σ(t) = PH(t) exceeding the
static ultimate tensile strength. (Here, H(t) is the Heavi-
side step function.) The fracture occurs not instanta-
neously but after a certain time period t∗  determined by
the incubation-time criterion, i.e., by the condition that
the momentum applied during the incubation time τ is
equal to the minimum fracturing momentum

(6)

From relationship (6), we have t∗  = . The specific

elastic energy in the fracture zone is determined by the

formula  = , and, hence,  = .

Let δ∗  be the size of the region whose energy could
be transferred to the fracture zone. Insofar as the trans-
fer of the elastic energy takes place at a finite rate coin-
ciding with the velocity c of an elastic wave, we assume
that δ∗  = ct∗  [11, 13]. At P = σc, the time t∗  elapsed
before fracture coincides with the incubation time τ. In
this case, denoting the characteristic size of the fracture
zone as δ0 = cτ, we arrive at the evident relationships

(7)

Using formula (7), we rewrite the expression for the
specific elastic energy in the form

(8)

To find the energy spent for fracture, we multiply the
specific energy by the characteristic volume of the frac-

ture region, which is obviously proportional to :

Taking (7) into account, we obtain as a final result

Dividing both parts of the latter relationship by the
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the power, i.e., for the rate at which the elastic energy is
liberated:

(9)

THE PRINCIPLE OF EQUAL POWERS

Thus, the ratio of the energy spent for fracture to the
time elapsed before fracture, i.e., the average power,
remains constant at an arbitrary applied stress exceed-
ing the threshold level for the static case. Let γ = Wspδ
be the characteristic energy for the formation of a new
surface for a load equal to the static ultimate tensile
strength at a given scale level. We assume that the mate-
rial is characterized by the limiting value of the strain
energy density Wsp being the same for all scale levels.
Nevertheless, this assumption does not exclude a possi-
bility of changing the strength and strain characteristics
of the material, while passing from one to another scale
level.

We admit that the fracture of a material is consti-
tuted by the formation in this material of a defect of the
characteristic size δ1. This process is characterized by

the incubation time τ1 = . In this case, the specific

power remains the same as in the situation when δ0 is
chosen as the characteristic scale for fracture. Indeed,

taking into account that  =  = c, we find from (9)

Introducing the characteristic area of the fracture sur-

face by the relationship Sk = , we obtain the follow-

ing equality for specific powers  = , or

(10)

Eventually, we arrive at the conclusion that, at dif-
ferent scale levels (or for subsystems corresponding to
the given point in a continuum), the fracture can be
characterized by the principle of equal powers:

(11)

where Qi is the characteristic energy for the activation
of the fracture process, and τi is the incubation time for
the ith scale level. The above reasoning demonstrates
that, for a fracture occurring due to the crack formation,
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the quantity Qi can be treated as the specific surface
energy for fracture at the corresponding ith scale level.
A particular case of relationship (11) was previously
discussed in [14], namely,

(12)

Here, k = 1.3807 × 10–23 J/K is the Boltzmann constant,
T is temperature, and τ0 ≈ 10–13 s is the period of
valence vibrations of atoms in solids (period of elemen-
tary fluctuation). It is well known that kT is the energy
corresponding to the vibratory degree of freedom in the
equilibrium state. Thus, it is the minimum energy
required to disturb the elementary bond, i.e., the bond
between two atoms. The parameter Q was interpreted
as the elementary portion of energy required for frac-
turing the structure cell at a given scale level. Based on
relationship (12) and incubation-time criterion (6), an
explanation was given in [14] for both the temperature
dependence of the splitting-off strength and anomalous
melting points related to the splitting off [15]. The cor-
responding calculations have also been performed, and
their good agreement with experimental data was dem-
onstrated.

The suggested principle of equal powers can serve
as a tool in modeling both dynamic-fracture processes
and phase transitions at different scales of structure-
scale levels and for the efficient analysis of transition
(nonequilibrium) processes in the mechanics and phys-
ics of continuum.
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At present, mechanisms responsible for the forma-
tion of fine structures in stable stratified media such as
the Earth’s atmosphere [1] or hydrosphere [2] with
allowance for high-gradient interfaces and thicker
homogeneous layers are being intensely studied in nat-
ural and laboratory conditions. In the case of flows
around obstacles, extended long-life interfaces gener-
ated by both vortices and boundary layers appreciably
affect flow dynamics and flow structure, as well as the
energy and mass transfer. In certain two-dimensional
stratified cuts, isolated interfaces having no singulari-
ties on their edges are formed immediately in the inter-
nal-wave field [3]. In flow-regime diagrams typical of
stratified flows near a horizontal circular cylinder, there
exist parameter ranges in which isolated interfaces are
observed for both pointed and blunted leading edges
[4]. The mutual transformation of solitary interfaces
and soaring vortices (or vortex systems) has never been
considered. In the present study, we analyze the process
of soaring-vortex formation in the field of attached
internal waves and of reconstructing their structure in
the case of the vortex-system generation. We studied
experimentally the flow pattern arising at the onset of
the uniform motion of a circular cylinder in a linearly
stratified fluid.

The dimensional parameters of the problem are the
velocity of motion U, the obstacle size (cylinder diam-

eter D), fluid density ρ and its gradient , kinematic

viscosity ν, diffusivity κs of a stratifying admixture, and
the free-fall acceleration g. The stratification is charac-

terized by the scale Λ = , the buoyancy fre-

quency N, and the buoyancy period Tb (N =  = ).

The salinity and density are considered to be bound by

dρ
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the linear equation of state, the coefficient of the salt con-
traction being included in the definition of salinity [2].

The basic components of the flow pattern in front of
the obstacle are blocked liquid and advancing unsteady
internal waves. Behind the obstacle, the basic compo-
nents are attached internal waves with the characteristic
scale λ = UTb [5] and the wake with immersed and soar-
ing vortices. The family of boundary layers adjoins the
obstacle surface [6]. Periodic boundary layers such as
flows induced by diffusion on topography are charac-

terized by the universal internal microscales δν = 

for the velocity and δρ =  for the density. The veloc-

ity boundary layer and the density boundary layer con-
tacting the uniform flow have the characteristic scales

δu =  and δs = , respectively.

The ratios of the problem characteristic scales and
basic structural flow components form conventional
dimensionless flow characteristics, namely, Reynolds

number Re =  = , Pecklet number Pe =  =

, and Stokes number St =  =  (or internal

Froude number Fr =  =  = ; here, λ = UTb

is the wavelength of the attached internal wave). The

ratio of the scales C =  characterizes the density vari-

ation on the obstacle scale. In the given experiments,
the Schmidt number Sc = Pe/Re = 700 was constant.

The experimental method and the size of the flow
observation domain were chosen based on the condi-
tions of recording large-scale components (internal
waves and vortices) and of resolving the most small-
scale flow components. The high-sensitivity optical
shadow methods [7] entirely satisfy these requirements.
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(a) (b) (c)

Fig. 1. Evolution of the flow pattern near the horizontal cylinder in a weakly stratified fluid (Tb = 13 s; D = 5 cm; U = 0.35 cm s–1;

Fr = 0.14; and Re = 165): (a) soaring interface being formed, τ =  = 3.9; (b) solitary vortex at the interface leading edge, τ = 5.8;

and (c) vortex system on the density interface, τ = 65.

t
Tb
------
Our experiments were carried out in a basin with a
volume of 220 × 40 × 60 cm3 with transparent optical
windows mounted on the side walls. Using the perma-
nent-replacement method, we filled the basin with the
stratified solution of common salt at the buoyancy
period of 7.4 s < Tb < 23 s. The homogeneity and the
stratification value were checked by means of a density
marker [8].

Above the basin, a movable carriage was installed to
which a plastic horizontal cylinder 5 cm in diameter
and of a length equal to the basin width was fixed by
means of knives. The cylinder was placed across the
basin and was towed in the horizontal direction at a
constant velocity. The uniformity of motion and the
velocity magnitude U (0.1 cm s–1 < U < 6.5 cm s–1) were
recorded by optical methods.

The observations were carried out by the shadow
IAB-458 device using the method of vertical-slit–fila-
ment in focus and a white-light source [7]. The color
flow image obtained is determined by the light disper-
sion in the stratified fluid. This image was recorded by
a photographic camera onto a color film. In this paper,
we demonstrate black-white versions of the images
after they have been modified by a computer.

The experimental method used is based on the pre-
viously established reproducibility of both the micro-
structural and macrostructural components of stratified
flows [4, 5]. In the series of sequential experiments,
parameters of the stratification and of the body’s
motion were maintained invariable. The towed obstacle
was installed at different distances from the observation
domain so that the length of the path passed every time
increased by the width of the field of vision. Thus, the
flow patterns at the exit of the obstacle from the field of
vision in the preceding experiment and at the entrance
into the field of vision in the next experiment coincided
with each other.

A typical shadow image of flow in the phase of the
soaring-interface formation is shown in Fig. 1a.
Inclined bands in front of the body (i.e., beams with a
DOKLADY PHYSICS      Vol. 50      No. 9      2005
step λ ≈ UTb = 4.55 cm) illustrate advancing unsteady
internal waves. The wedge-shaped perturbation in front
of the cylinder corresponds to the blocked liquid that
moves together with the obstacle. In contrast to the
more widely propagated knife method, the filament
method makes it possible to both visualize the general
flow structure and recognize delicate flow components
such as the high-gradient interfaces that bound blocked
fluid immediately in front of the obstacle. These inter-
faces are located near the contact domains of blocked
liquid and free external flow with the cylinder leading
edge. The contact points of advancing interfaces with
the cylinder are located on beams inclined at an angle
ϕ = ±52° (here, angles are counted off from the first
damping point). These structures increase the effective
length of the obstacle and promote the rise of internal-
wave amplitudes.

Behind the body, a system of attached internal
waves and the density wake are formed [1, 5]. For the
latter, the shape of its boundary and its internal struc-
ture are dependent on the pattern of immersed vortices.
The phase surfaces of attached internal waves are
smoothly transformed into the beams of unsteady
waves in front of the body.

The wake consists of a sequence of vortices and a
system of flows. In Fig. 1a, the most rapid (central) flow
is marked by the dark band. The rear vortex directly
adjoins the body. The vortex height, like the height of
the wake as a whole, rapidly decreases. Further
increase in the wake height is stipulated by a pair of
immersed vortex bundles (vortex bubbles in the termi-
nology of [1]) stationary with respect to the obstacle
and located in parallel with the cylinder generatrix. The
vortex leading edge is convex, whereas the trailing edge
has a more complicated shape. This is caused by the
fact that in the vicinity of the trailing edge fluid moves
more rapidly, and here the interfaces are drifted by the
flow. At the vortex center, a merging of oppositely mov-
ing interfaces occurs, which is confirmed by the charac-
teristic shape of perturbations. Further, the vertical
wake size decreases again and attains the minimum at a
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distance of s3 = 4.9 cm from the body’s trailing edge.
The position of vortex pairs immersed in the wake is
strongly synchronized with the phase structure of
attached waves. Lines of crests (solid dark lines) and of
troughs (double grey lines) advance precisely to the
center of the vortices immersed in the wake.

In the transition regime, features of all flow compo-
nents vary with time: the length of the blocked-liquid
domain increases, the amplitudes of unsteady advanc-
ing and attached internal waves rise, the sizes of vortex
systems extend, and the uniformity of the initial density
gradient is violated (Figs. 1a and 1b). Each new
attached wave is formed after the body has passed a
path equal to its wavelength. The shape of the wave cor-
responds to that calculated according to the linear the-
ory [5]. The position of vortex bundles immersed into
the wake, which is synchronized with the field of sta-
tionary attached internal waves, remains invariable,
whereas their shape and size smoothly vary with time.

The pattern of high-gradient interfaces characterizes
the complicated flow structure inside the wake. In its
center, there is a relatively rapid jet approaching the
obstacle, which is bounded by inclined shells (Fig. 1b).
Here, optical inhomogeneities are oriented towards the
direction of the body’s motion.

The pattern of attached internal waves preserves its
regularity until the density-gradient field loses its uni-
formity. Attached internal waves incident on interfaces
are partly reflected and partly transformed into internal
boundary currents [9] that, in turn, amplify arising
stratification inhomogeneities.

Gradually, distortions of the initially homogeneous
stratification gradients become more and more pro-
nounced and begin to be recorded by the shadow
device. Novel structure components appear in the flow
pattern, namely, solitary isolated interfaces [3]. They
are located at both sides at a distance h = 4.3 cm from

the density-wake axis  = 0.95,  = 0.86, Fig. 1a

and are formed simultaneously along the entire length.
The pointed leading edge of the soaring interface is
located on the beam forming the angle ψ = 48° with the
axis of motion and at a distance of 6 cm from the body’s
center (here, angles are measured from the damping
back point).

An advancing effect of the soaring interface is man-
ifested in the distortions of the first crest of the attached
wave in the lower half-space (dark line) and of the first
trough (double grey line) in the upper half-space. Fur-
ther, the flow pattern is analyzed only in the lower half-
space, in which the perturbing action of the supporting
knives is not manifested.

The inclination of phase surfaces for short internal
waves is determined by the ratio of the local wave fre-
quency ω to the buoyancy frequency N with allowance
for the Doppler shift (ω = ω0 + ku, where u is the fluid-
flow velocity, k is the wave vector of attached internal

h
λ
---

 h
D
---- 



waves). The inverse inclination of phase surfaces exist-
ing between the density wake and the internal interface
edge (Fig. 1b) testifies to the formation in the vicinity
of the density-layer boundary of a liquid layer with a
large shear of velocity.

The wake boundaries are separated by immersed
vortices and merge in the domains of jet flows. The
height of the attached vortex decreases rather rapidly,
and the wake vertical size attains its minimum value
hz = 2.0 cm at a distance s1 = 1.1 cm from the body’s
trailing edge (Fig. 1b). Further, the height smoothly
increases and attains its maximum in contact domains
with the crest in the upper half-space and the trough of
the second attached wave at a distance s2 = 3.5 cm from
the trailing edge.

The analysis of changes in the location and shape of
the crests and troughs of attached internal waves allows
us to reveal the mechanism of the vortex-system forma-
tion at the body’s leading edge. This mechanism is
closely related to the arising spatial homogeneity of the
flow structure.

Inhomogeneities of the velocity and density fields
behind the obstacle distort the shape of the second
attached internal wave. At the external side of the inter-
face, the second trough deviates in the forward direc-
tion with respect to the body’s motion; at the internal
side, within the flow region between the interface and
the density wake, it deviates backward (Fig. 1a). In con-
trast to the trough, the second crest everywhere dis-
places backward: significantly near the interface exter-
nal side and negligibly at the internal side. As the gra-
dients increase, these displacements rise, and gradually
the intersection domain of the internal wave with the
interface acquires new properties. In this domain, a
wave crest incoming from the external side turns out to
be in contact with a trough incoming from the internal
side.

At this stage, in the vicinity of the first vortex
immersed in the wake, there exists a trough of the
attached wave (its center corresponds to the double
grey line in Figs. 1b and 1c) in the layer of liquid
between the soaring interface and the density wake.
One of its ends adjoins the vortex center, whereas the
other end touches the interface and determines its con-
cave shape in this segment.

On the outside of the interface, an internal-wave
crest adjoins the same point (the crest center corre-
sponds to the solid dark line). Thus, in the head segment
above and below the soaring interface, wave fields are
present in which the velocities have oppositely directed
vertical components. Counter-running wave motions
are transformed into spatially inhomogeneous spread-
ing horizontal flows on the surface of the soaring inter-
face. This complicated flow structure is stabilized by
high-density gradients at the interface. All arising inho-
mogeneities of the density distribution are of a purely
deformation nature and have been formed as a result of
smooth liquid-particle transfer from different horizons.
DOKLADY PHYSICS      Vol. 50      No. 9      2005
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In the vicinity of its leading edge, the soaring inter-
face can be considered as an analog of a shock wave,
because in its vicinity, the continuity condition for the
velocity normal component is violated. In high-velocity
hydrodynamics, shock waves separating spatial
domains with different values of the velocity normal
component have been rather thoroughly studied [10]. In
low-velocity hydrodynamics, such flow components
have yet to be observed.

The perturbations that arrived at the soaring inter-
face are accumulated with time. The fluid inflow attains
the leading edge, interacts with the external flow, and
forms a vortex head. The internal vortex is stretched by
the accelerated flow between the wake and the interface
(Fig. 1b). The external vortex remains more compact.
Wave-field structures and wavelengths in the layer
between the soaring interface and the density wake, as
well as in free space, noticeably differ.

The homogeneity of the phase structure for the
attached internal waves is restored with the distance to
the body. Here, while intersecting the soaring interface,
the crests and troughs conserve their features. As the
distance from the obstacle increases, the soaring inter-
face assumes the features of a tangential velocity dis-
continuity possessing an internal high-gradient inter-
face.

Vortex heads for the leading edges of solitary inter-
faces, in turn, deform the regular pattern of attached
internal waves [3]. The forward shell of the soaring vor-
tex contacts the crest of the first attached internal wave
in the lower half-space. The trough of the second wave
approaches the interface; it is then curved and merges
with the external shell of the pair of soaring interfaces.
The crest of the second wave in the vicinity of the soar-
ing interface is split into two parts. One of them is ori-
ented toward the vortex head upstream of the main flow.
The second one is directed oppositely. It intersects the
soaring interface and attains the wake external shell.
Here, it conjugates with the wave trough in the upper
half-space (Fig. 1b). These flow components can signif-
icantly affect the redistribution and anomalously rapid
transfer of passive admixtures, which is often observed
in natural systems, e.g., in the atmosphere and ocean.

For all other waves, the phase structure does not
vary as it approaches the wake axis, although shear
flows cause appreciable deformation of phase surfaces.
As the size of the second pair of vortices immersed in
the density wake increases, both the internal-wave
amplitude and displacements of the soaring interface
increase, which promotes the formation of the second
soaring vortex. Like the first one, it is localized in the
domain of the minimal density-wake height (Fig. 1c).

In stabilized flow, two pairs of soaring vortices
(above and below the density wake) correspond to each
pair of immersed vortex bundles. The size of central
vortices (5 cm) is comparable with the cylinder diame-
ter at a distance of 5.4 cm from its trailing edge, the dis-
tance between their centers being 7 cm. The minimal
DOKLADY PHYSICS      Vol. 50      No. 9      2005
wake height at a distance of 2.2 cm from the obstacle
equals 0.8 cm. The vertical size of the soaring vortex is
2.8 cm. In this regime, the total height (11 cm) of the
domain of both vortex and small-scale perturbations
significantly exceeds the cylinder diameter.

As the buoyancy period is reduced, the wave length
of the attached internal wave that determines the repe-
tition period for vortex systems in the wake also
decreases (Fig. 2). The stratification suppresses the ver-
tical motion, and only a single vortex pair is formed in
the density wake. In this case, the gradients in the cen-
tral part of the wake, which map the domain of the inci-
dent flow, become sharp. The amplitude of the waves
and the corresponding light-beam deviations increase,
so that shadowing light beams by the design members
of the shadow device occurs, and dark spots are
observed in the flow pattern near the cylinder (Fig. 2).

The forward surface of the vortex head becomes
denser, and the anticyclonic vortex is flattened, whereas
the cyclonic vortex loses its well-defined shape. The
waviness system observed in Fig. 2, as opposed to the
clear high-gradient interface (Fig. 1), testifies to the
flow inhomogeneity along the cylinder generatrix. At
the same time, the contrast shape of certain components
allows us to make the conclusion that the high-gradient
interface remains thin in each vertical cross section.

The range of parameters for the existence of soaring
interfaces and solitary vertices, which were found in
this experiment, is consistent with the flow-regime dia-
grams obtained in [1, 4]. As the flow velocity increases,
the wake transforms into the narrower turbulent wake.
These features disappear in the internal-wave field.
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Bodies optimal with respect to the critical Mach
number were studied in [1]. In particular, it was shown
that, in the flow around a body of revolution of a given
length and volume, the critical Mach number å∗  is

maximal when the body is of the Riabouchinsky cavity
shape [2]. The speed of sound is reached on the free
flow surface connecting the disks. However, in order to
solve a number of aerodynamic problems, it is impor-
tant to know the so-called upper critical Mach number
å∗∗  above which no continuous flow is possible [3], as

opposed to the critical Mach number å∗  at which the

local velocity reaches the speed of sound. The upper

critical Mach number is reached when  = 0.1,

where Cx is the drag coefficient and M is the Mach
number of the airflow [4].

To determine this number, we conduct a wind-tun-
nel investigation of the flow around the Riabouchinsky

disk-shaped nose parts with specific length λ =  =

0.87 and 2.5, where L is the length of the nose part and
D is the diameter of its maximum midsection, as well
as the ogive nose [4] with λ = 3.5 coupled to the body
of revolution (as is evident from Fig. 1) with total spe-
cific length Λ = 8.5, 9, 10 in the ADT-106M TsAGI
wind tunnel. Its working-section diameter is 2.48 m,
and its length was 4.84 m. The diameter of the maxi-
mum midsection of the model was D = 0.17 m. The
model was mounted on the strip suspension. The mea-
surement data were corrected for the drag of the sus-
pension rollers by the value of 0.008594, which was
constant for different Mach numbers. The instrumental
error for drag (in the gas flow) is ±0.05% of the maxi-
mum load of the scale. The drag coefficient Cx is related

dCx

dM
---------

L
D
----

Central Aerohydrodynamic Institute (TsAGI), Zhukovsky, 
Moscow oblast, 140180 Russia
1028-3358/05/5009- $26.00 0457
to the midsection area S = 0.0229 m2 of the model. The
experimental investigation was carried out for Mach
numbers M = 0.7–0.98 and angle of attack α = 0. The
Reynolds numbers were ReD = (3.05−3.34) × 106 for
the Riabouchinsky nose parts and ReD = (3.02–3.31) ×
106 for the ogive nose. The values of the Reynolds num-
ber ReD are related to the midsection diameter of the
nose part. The point of laminar–turbulent transition is
fixed at the distance Xtr = 3% of the model length from
the nose by means of rough hills that had a height of
0.1 mm and were spaced by a distance of 2 mm.

Figure 2 shows drag coefficients Cx(M) measured
for the model with the Riabouchinsky nose part having
λ = 0.87 in the ADT-106M TsAGI and ADT-112 TsAGI
[5] wind tunnels. We took into account that the models
in these wind-tunnel experiments had different lengths
and, consequently, different drag coefficients. The cal-
culated drag coefficient Cx(M, å∗∗ ) [4] that is also pre-
sented in Fig. 2 is in good agreement with experimental
data for å∗∗  = 0.815.

Figure 3 shows drag coefficients Cx(M) measured
for the model with the Riabouchinsky nose part with
λ = 2.5 and with the nose ogive with λ = 3.5. The coef-

1

2

3

Fig. 1. Models under investigation: (1) with the Riabouch-
insky nose part, λ = 0.87, (2) with the Riabouchinsky nose
part, λ = 2.5, and (3) with the ogive nose, λ = 3.5.
© 2005 Pleiades Publishing, Inc.
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ficients Cx(å, å∗∗ ) calculated at å∗∗  = 0.875 for the
Riabouchinsky nose part and at å∗∗  = 0.895 for the
ogive nose are also presented in Fig. 3.

As follows from Fig. 4, the test data for the nose
parts under investigation are in a good agreement

1
1a

0.7 0.8 0.9 1.0
M

Cx

0.16

0.14

0.12

0.10

0.08

M**

Fig. 2. Drag coefficients (triangles) measured for the model
used and the test data (circles) taken from [5].

0.90
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0.84

0.82

0.80
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

M**

λ

1
2
3

Fig. 4. Upper critical Mach numbers M**(λ) for three mod-
els and the test data.
(within 3%) with the plot of å∗∗ (λ) that is often used
in applied aerodynamics and for designing aircrafts [6].
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The detailed investigation of capillary waves is
associated with the search for physical mechanisms
of  the formation of signals stipulated by the topogra-
phy [1], internal waves [2], and other processes occur-
ring in the ocean interior. We confront these problems,
e.g., in the analysis of radar-image patterns for free
ocean surface [3]. A review of the present state of the art
for the linear and nonlinear theories of gravity-capillary
waves in the vicinity of the phase-velocity minimum is
given in [4], and the effect of viscosity on the damping
and generation of short waves was considered in [5].

Under actual conditions, the temperature and con-
centration of substances on the ocean surface is not
constant. Near-surface convection processes produce
gradients of the surface-tension coefficient, which, in
turn, affects the short-wave sea-way [6]. The interac-
tion of waves with regular structures arising as a result
of near-surface convection or of rainfalls is of particular
interest [3]. In the present paper, we have constructed,
for the first time, a model for the propagation of capil-
lary-gravity waves in a viscous temperature-inhomoge-
neous medium with allowance for the corresponding
near-surface boundary layers.

We consider the transformation of a surface wave of
frequency ω, which propagates from the left to the
domain x ∈ [0, D] containing N identical cells of size L,
D = NL, with a quasi-stationary temperature distribu-
tion. In the absence of waves, the water surface is
assumed to be planar: z = 0, z being the vertical axis
aligned oppositely to the gravity-force vector g. The
fluid-surface temperature that determines the kinematic
viscosity ν(x) = ν(T(x)) and the surface-tension coeffi-
cient α(x) = α(T(x)) is given by the spectral expansion

(1)T x( ) T0

∆T cn 2µnx( ), x 0 D,[ ]∈sin
n 1=

∞

∑
0, x ∞– 0 ], [D +∞,∪( ).∈






+=
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Here, ∆T is overheating inside a cell, µ =  is the wave

number of a periodic convective structure, and cn are
the spectral coefficients.

For small deviations ζ(t, x) of the disturbed surface,
the set of equations of motion and of boundary condi-
tions is linearized and takes the form [7]

(2)

Here, u = (u, w) is the fluid-velocity vector; p is pres-
sure in water; p0 is atmospheric pressure; and α is the
surface-tension coefficient. All the quantities are nor-
malized to the average fluid density ρ. Under actual
conditions, temperature variations ∆T are small, and the
values of ν and α inside the convection domain are
given in the form of expansions in the vicinity of the
basis temperature T0 [8]:

(3)

.

Using small parameters

(4)

π
L
---

ut' px'– 2 νux'[ ] x
' ν uz' wx'+( )[ ] z

' ,+ +=

wt' pz'– ν uz' wx'+( )[ ] x
' 2 νwz'[ ] z

' g,–+ +=

ux' wz'+ 0, p p0– αζ xx'' 2νwz' z ζ=–+ 0,= =

ν uz' wx'+( ) α x' z ζ=+ 0, w ζ t'– uζ x' z ζ=– 0.= =

ν T x( )( ) ν T0 ∆T cn 2µnx( )sin
n 1=

∞

∑+
 
 
 

=

≈ ν T0( ) νT' T0( )∆T cn 2µnx( ),sin
n 1=

∞

∑+

α T x( )( ) α T0 ∆T cn 2µnx( )sin
n 1=

∞

∑+
 
 
 

=

≈ α T0( ) αT' T0( )∆T cn 2µnx( )sin
n 1=

∞

∑+

ε νT' T0( )∆T
ν T0( )

------------------------  ! 1, δ αT' T0( )∆T
α T0( )

-------------------------  ! 1,= =

ν ν T0( ), α α T0( ),= =
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we can represent these formulas in the more compact
form:

(5)

Introducing the stream function Ψ (u = , w =

− ), substituting p = p0 + g(ζ – z) + , linearizing and
reducing boundary conditions to the level z = 0, and
allowing for (4), (5), we can reduce Eqs. (2) to the form

(6)

If the viscosity and surface tension are independent
of temperature (ε = δ = 0), then expressions (6) are
transformed into the standard set of equations for short
surface waves [7]. We find the solution to Eqs. (6) in the
class of harmonic oscillations, namely,

In the convection domain, (ε = δ = 0), waves of
amplitudes A+ and A– with associated periodic bound-
ary layers (of amplitudes B+ and B–) propagate, respec-
tively, along the positive and negative directions of

ν x( ) ν 1 ετ x( )+( ), α x( ) α 1 δτ x( )+( ),= =

τ x( ) cn 2µnx( ).sin
n 1=

∞

∑=

Ψz'

Ψx' p̃

∂
∂t
----- ν∆– 

  ∆Ψ νε ∆ τ∆Ψ( ) 2τ xx'' Ψzz''–( ),=

Ψzz'' Ψxx'' z 0=– 0,=

gΨxx'' Ψztt'''– ν∆Ψzt'' αΨxxxx
IV– 2νΨxxzt

IV+ +

+ νε 4τ x' Ψx' τ∆Ψ 2τΨxx''+ +( )zt
'' αδ τΨxxx'''( )x

'
z 0=–  = 0.

Ψ x z t, ,( ) Ψ x z,( )e iωt– .=

nµ

4µ

3µ

2µ

µ

ω1 ω2 ω3 ω4 ω

k

Dispersion curves for nonuniformly heated liquid (dashed
lines) and periodically uniformly heated liquid (solid lines).
Forbidden zones are shown by thick segments in the coor-
dinate axes.
the x axis. Outside of this domain, the stream function
Ψ is of the form

(7)

The choice of signs for the real and imaginary parts of
the wave numbers k and kb is based on the perturbation-
damping conditions as x  ±∞ and z  –∞.

Substituting expression (7) into the boundary condi-
tions of the set of Eqs. (6), we arrive at two sets of equa-
tions that connect the amplitudes A± and B± together:

(8)

For them, the compatibility condition

(9)

is the dispersion equation for capillary-gravity waves.
As follows from the set of Eqs. (8), waves and

boundary layers appear or disappear simultaneously,
whereas the amplitudes of the wave (A±) and boundary-
layer (B±) parts of surface oscillations are rigidly bound
together.

With allowance for the thermodynamic parameters
of water (see [8]), Eq. (9) has the unique physically
admissible solution:

(10)

where k∗  is the root of the dispersion equation ω2 – gk –
αk3 = 0 for capillary-gravity waves in a perfect liquid.
(The root is unique provided that the conditions Rek,
Imk > 0 are true [7]; the dispersion curve is shown in
the figure by the dashed line.) As also follows from
expressions (8),

. (11)

The wave incident onto the convective zone

is in part reflected:

Ψ ekz A+eikx A–e ikx–+( ) e
kbz

B+eikx B–e ikx–+( ),+=

kb
2 k2 i

ω
ν
----, Rek, Imk 0, Rekb 0.> >–=

2k2A± kb
2 k2+( )B±– 0,=

k ω2 gk– αk3– 2iωνk2+( )A±

+ ω2kb gk2– αk4– 2iωνkb 3k2 kb
2–( )+( )B± 0.=

2k ω2kb gk2– αk4– 2iωνkb 3k2 kb
2–( )+( )

– kb
2 k2+( ) ω2 gk– αk3– 2iωνk2+( ) 0=

k k*
4ωνk*

2

g 3αk*
2+

---------------------- k*
ν

2ω
-------– i 1 k*

ν
2ω
-------+ 

 + ,+=

A–

A+
------

B–

B+
------ β 2νk2

iω 2νk2–
-----------------------= = =

Ψin ekz βe
kbz

+( )eikx=

Ψr R ekz βe
kbz

+( )e ikx–=
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and in part transmitted:

Here, R and T are the coefficients to be determined.

Taking into account the smallness of ε and δ, we
seek the solution to Eqs. (6) in the form of expansion

(12)

(13)

In this case, the quantity k is determined by relation-
ship (10).

Substituting expressions (12) and (13) into Eqs. (6)
and separating terms of the same order of smallness in
ε and δ, we arrive at two sets of equations with respect
to the function Ψν and Ψα , which, being too cumber-
some, are not given here. The solutions to these equa-
tions depend on the relation between the wave number

 of the incident wave and the Bragg wave numbers
µm, m = 1, 2, … of periodic distributions (3) (see [9]).

In the nonresonance case  ≠ µm, when the relation-
ships

are fulfilled, secular terms do not appear in expan-
sions (12), (13), and with allowance for the second
boundary conditions, the latter relationships take the
form

(14)

Variations of the kinematic viscosity with temperature
slightly affect the dynamics of the nonresonance wave
scattering. Cumbersome calculations show that in this
case, the amplitudes of the forward (G+, H+) and back-
ward (G–, H–) waves are weakly bound and, in the zero
approximation (over ε and δ), i.e., when

(15)

the action of the convection zone on surface waves is
small.

Ψt T ekz βe
kbz

+( )eik x D–( ).=

Ψ Ψ0 εΨν δΨα …,+ + +=

Ψ0 Ψw Ψb+ e
k̃wz

G+eik̃ x G–e ik̃ x–+( )= =

+ e
k̃bz

H+eik̃ x H–e ik̃ x–+( ),

k̃ k ε∆kν δ∆kα , k̃w+ + k ε∆kwν δ∆kwα ,+ += =

k̃b kb ε∆kbν δ∆kbα .+ +=

k̃

k̃

∆kwν ∆kν, kb∆kbν k∆kν, ∆kwα ∆kα ,= = =

kb∆kbα k∆kα=

∆kν = ∆kα  = ∆kwν = ∆kwα  = ∆kbν = ∆kbα  = 0.

R 0, T ikD( )exp≈ ≈          T 1, ≈                                
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Near the resonance, when  ≠ µm, we find the solu-
tion using the slowly varying amplitudes (see [9]):

(16)

where s = Im , ∆ =  – µm is the detuning from the res-
onance, and parameters λw and λb should be deter-
mined.

In the first approximation over viscosity, the action of

the operator  in the case of boundary conditions (6) is

described by the relationships

(17)

where λw = σ ± is, λ

 

b

 

 = ,

 

 and 

 

σ

 

 = 

 

µ

 

m

 

.

Substitution of (16) into boundary conditions (6)
with allowance for (17) results in the set of equations
linking 

 

G

 

±

 

 and 

 

H

 

±

 

. The solution to this set is of the form

 

(18)

 
The multiplier e

 
xp(–

 
sx

 
)

 
 that characterizes the vis-

cous damping is identical for waves running in both the
positive and negative directions; i.e., the distributions
of amplitudes of incident and reflected waves are simi-
lar in the convective zone.

k̃

Ψ Ψw Ψb,+=

Ψw e
λwz

e sx– G+ x( )ei µm ∆+( )x G– x( )ei µm ∆+( )x+( ),=
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∂
∂z
-----

∂
∂z
----- e

λwz
e sx– G± x( )e i σ ∆+( )x±( ) σ is±( )G± iG±' ---+−⇒

−+
2νεcmσ3

ω
---------------------G+− 2i∆x+−( )exp e

λwz
e sx– e i σ ∆+( )x± ,

∂
∂z
----- e

λbz
e sx– H± x( )e i σ ∆+( )x±( ) 
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In the resonance case, the surface wave is efficiently
reflected from convection domains. In the zero approx-
imation with respect to ε and δ, the values of the reflec-
tion (|R| ≈ 1) and transmission (|T | ≈ 0) coefficients are
typical of the Bragg scattering [9].

In the nonviscous limit, there exists a manifold of
wave numbers σ = µm near which the properties of sur-
face waves change. Forbidden zones of the width

∆ωm = ωBm , which are generated by the resonant

scattering on a periodic structure, never overlap (they
are shown by thick lines in the coordinate axes of the
figure). The dispersion curve k(ω) for surface waves,
which was calculated on the basis of formula (9), is
plotted by solid lines. It is divided into separate seg-
ments inside which the Bragg frequencies ωBm are
located. They are defined by the relation

The incident wave is efficiently reflected from the
convection domain under the condition

As follows from solution (18), the viscosity
expands the opacity zones. In low-viscosity media,
relationships (18) take the form

(19)

where ∆σ = ± . 

The shorter the wavelength of the incident wave, the
larger the number m of the resonance harmonic and the
stronger the manifestation of the viscosity effect in the
resonance case. A part of the incident packet of surface
waves, which satisfies the Bragg resonance condition,
is efficiently reflected from the convection zone and

δ∆km

µm
-------------

ωBm
2 µm g α µm( )2+( ).=

∆2 k µm–( )2 δ2 ∆km
2.<=

ζ δ2 ∆σ 2 1 ν2ϕ σ( )+( ) ∆2– ,±=

ϕ σ( ) 24 g α µm( )2+( )2 µm( )3

g 3α µm( )2+( )3
---------------------------------------------------------,=

cm α( ) µm( )3

2 g 3α µm( )2+( )
----------------------------------------
generates standing waves in the domain x < 0. The rest
part of the packet escapes from the convection zone
with the thinned out spectral characteristic. Thus, the
Marangoni convection domain plays the role of an effi-
cient band-pass filter.

The approximation of the quasi-stationary tempera-
ture distribution, which was used in the calculations, is
true when u, χk ! cph , where k and cph are the wave
number and wave phase velocity, u is the characteristic
rate of the convective temperature transfer, and χ is the
thermal-diffusivity coefficient of the medium. For
water (u ~ 1–10 cm s–1, χ ≈ 1.43 × 10–3 cm2 s–1), these
conditions are always fulfilled.

REFERENCES
1. C. P. Summerhayes and S. A. Thorpe, Oceanography

(Manson, Southhampton, 1996).
2. K. N. Fedorov and A. I. Ginzburg, Near-Surface Layer in

Ocean (Gidrometeoizdat, Leningrad, 1988) [in Rus-
sian].

3. V. Yu. Raœzer and I. V. Chernyœ, Microwave Diagnostics
of the Near-Surface Layer of Ocean (Gidrometeoizdat,
St. Petersburg, 1994) [in Russian].

4. F. Dias and C. Kharif, Annu. Rev. Fluid Mech. 31, 301
(1999).

5. M. Perlin and W. W. Schultz, Annu. Rev. Fluid Mech. 32,
241 (2000).

6. A. A. Lazarev, K. V. Pokazeev, and N. K. Shelkovnikov,
Physico-Chemical Inhomogeneity of Ocean Surface and
Surface Waves (Mos. Gos. Univ., Moscow, 1987) [in
Russian].

7. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd
ed. (Nauka, Moscow, 1986; Pergamon Press, Oxford,
1987).

8. Tables of Physical Data: Reference Book, Ed. by
I. K. Kikoin (Atomizdat, Moscow, 1976) [in Russian].

9. M. B. Vinogradova, O. V. Rudenko, and A. P. Sukho-
rukov, The Theory of Waves (Nauka, Moscow, 1979) [in
Russian].

Translated by G. Merzon
DOKLADY PHYSICS      Vol. 50      No. 9      2005



  

Doklady Physics, Vol. 50, No. 9, 2005, pp. 463–466. Translated from Doklady Akademii Nauk, Vol. 404, No. 2, 2005, pp. 188–191.
Original Russian Text Copyright © 2005 by Malashin.

                                                   

MECHANICS
Longitudinal and Torsional Waves and Vibrations
in Stressed Thin-Walled Tubes

A. A. Malashin
Presented by Academician E.I. Shemyakin March 28, 2005

Received April 4, 2005
In this study, differential equations for the torsional
and longitudinal motions of thin-walled tubes are
obtained with allowance for the interference of
motions. General solutions to these equations are found
for the case of the torsion of an infinitely long tube
under action at a constant angular velocity. Linearized
equations for torsional and longitudinal vibrations are
obtained. The contributions of torsional and longitudi-
nal components to dynamic loading are shown to be of
the same order of magnitude. The longitudinal compo-
nents of the velocities and strains exhibit a break on tor-
sional waves. The equation for longitudinal vibrations
is inhomogeneous, torsional components playing the
role of a stimulating force for longitudinal ones. The
appearance of torsional motions gives rise to the forma-
tion of longitudinal ones. Vibrations in the longitudinal
direction occur at both natural frequencies and at the
frequencies of torsional vibrations.

DERIVATION OF DIFFERENTIAL EQUATIONS 
FOR TORSIONAL–LONGITUDINAL MOTIONS

We consider a thin-walled (cylindrical) tube of aver-
age radius R and of wall thickness h. (Because in this
1028-3358/05/5009- $26.000463
case h ! R, we can consider R to be the radius of the
middle surface and use it to describe the position of
tube components.) We direct the OX axis along the tube
axis. Using the laws of variation of the kinetic momen-
tum and of the moment of momentum to a tube element
of length ∆s, we can, by analogy with [1], derive equa-
tions for the longitudinal and torsional motions of a
thin-walled tube in the form

(1)

Here, s is the Lagrangian coordinate that coincides with
the longitudinal Cartesian coordinate x of the unde-
formed tube; ρl is its linear density; Q and M are the
vectors of forces and of moments acting on the cross-
section area; l and j are, respectively, the vectors of the
linear and angular displacements for the given cross
section; J is the polar moment of inertia for the tube
cross section; and q and m are the linear densities of
external forces and moments.

For simultaneous torsional and longitudinal
motions, a linear element of length ∆s of a thin-walled
tube transforms into an element of length

ρl
∂2l

∂t2
------- ∂Q

∂s
------- q, J

∂2j
∂t2
---------+ ∂M

∂s
-------- m.+= =
∆l ∆s x s ∆s+ t,( ) x s t,( )–+( )2 r2 ϕ s ∆s+ t,( ) ϕ s t,( )–( )2+=
and thereby, has the relative elongation

The inclination angle of the given element to the cylin-
drical generatrix of the tube’s middle surface is deter-

e
∆l ∆s–

∆s
----------------- 1 ∂x

∂s
------+ 

  2

r2 ∂ϕ
∂s
------ 

 
2

+ 1.–= =
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In this case, the longitudinal and torsional (angular)
strains are written as

In the case of a decomposition into the longitudinal

γcos
1 ∂x

∂s
------+

1 e+
---------------, γsin

r
∂ϕ
∂s
------

1 e+
-----------.= =

ex e γ, eϕcos 1 e+( ) γ.sin= =
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and torsional components, Eqs. (1) can be represented
in the form

where E and G are elastic and shear moduli, respec-
tively; ρ is the material density; and D is the cross-sec-
tion area.

By virtue of the condition h ! R and of the mean-
value theorem, we arrive at the equations for the tor-
sional–longitudinal motion of a thin-walled tube:

(2)

where

(3)

SOLVING EQUATIONS IN THE CASE 
OF A PERMANENT TUBE-TWISTING VELOCITY

At a certain instant of time, let a tangent action begin
to twist a tube at a constant angular velocity ω0 . Here
we imply a point action, i.e., an action that can be rep-
resented by a zero-width line tangent to the tube sur-
face.

We now introduce the dimensionless variables

The quantities  and  can depend only on dimension-

less parameters z = .
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Figure.
Equations (2) written out in terms of the given vari-
ables are

(4)

where

The general integrals of this set of equations can be rep-
resented in the form

The solutions obtained imply that only domains of
permanent strains arise in the tube. Two elastic waves
propagate along the tube at a velocity b < a. At an arbi-
trary instant of time, the tube shape has the following
form (see figure): I and IV are the regions of torsional
and longitudinal strains (in this case, the inclination
angle of linear elements to the tube cylindrical genera-
trix remains constant); II and V are the regions of lon-
gitudinal-strain propagation (back of the elastic wave);
and III and VI are the rest regions.

The solutions obtained make it possible to deter-
mine the relationships for the torsional-wave front (by
analogy with the relationships for the transverse-wave
front [2]).

The mass conservation law

with the relation

taken into account lead to the equation

(5)

Here, b is the velocity of the torsional-wave front; ρi

and ei are, respectively, the density and strain of ele-
ments in the corresponding regions of the figure; Vl =
Vcosβ is the longitudinal component of the linear
velocity for the tube particle’s velocity within region I;
and β is the inclination angle of the tube-particle’s
velocity vector to the tube cylindrical generatrix. In this
case, Vsinβ = Rω.

z2x''
d
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Application of the conservation laws for both the
kinetic momentum and moment of momentum results
in the following relations on the torsional wave:

(6)

(7)

The following kinematic relationship takes place:

(8)

Combined with the relationship u = a(e2 – e0) at the lon-
gitudinal wave, Eqs. (5)–(8) form a closed set of equa-
tions for the determination of the velocities and strains,
i.e., quantities b, γ, u, e1, and e2.

In the framework of this study, we solve the problem
of an action on a tube (under the presence of a certain
stretching stress) at a constant velocity ω0 of the angular
rotation in the transverse direction to its generatrices
(under the condition ω0R ! b and, hence, small angles γ).
For short time intervals, in which the waves do not
attain the tube edges, the wave pattern is analogous to
that presented in the figure. The set of Eqs. (5)–(8)
admits the solution

(9)

DERIVATION OF LINEARIZED EQUATIONS
FOR TORSIONAL AND LONGITUDINAL WAVES 

AND VIBRATIONS

Let a tube be preliminarily stressed in the longitudi-
nal direction, its initial strain being e0 . We consider the
case of small-angle rotation and low angular velocities.
The longitudinal displacement can be represented as
x = e0s + , where  is the dynamic component of the
longitudinal displacement. The strain can be described
in the form

With allowance for e0 @  and e0 @ R , this expres-

sion is linearized:

(10)

After taking into account this fact, the set of Eqs. (2) is
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written out in the form

(11)

(12)

The set of Eqs. (2) can also be linearized by asymp-
totic methods. To this end, we choose the dynamic
component of the total strain ε =  = e – e0 as a small
parameter. With due regard for expressions (9) and
(10), the torsional and longitudinal components can be
written in the form of the asymptotic series in terms of
the chosen small parameter:

With the given expansion taken into account, the equa-
tions written in the first-order approximation are analo-
gous to Eqs. (11), (12):

At the same time, in the second-order approximation,
the equations take the form

It is evident that Eq. (11) is the conventional equa-
tion of torsional vibrations [3], whereas Eq. (12) for the
longitudinal component is inhomogeneous. In this case,
the torsional components play the role of an inhomoge-
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neity (or of a stimulating force). According to the anal-
ysis of both expression (10) for the total strain and non-
linear Eqs. (2), the longitudinal and torsional compo-
nents that contribute to dynamic loading under tension
turn out to be of the same order of magnitude. The solu-
tions to Eq. (12) are superpositions of natural longitu-
dinal waves and vibrations, as well as of stimulated lon-
gitudinal waves and vibrations acting at the frequency
of torsional ones, resonance phenomena being possible
in this case.

In the framework of the theory of plane cross sec-
tions, the results presented above can be generalized for
the case of the torsional-longitudinal motions of thin
strings and rods.
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In nonlinear dynamics, the motion of a pendulum
represents a classical paradigm. The vibrations and sta-
bility of a pendulum with a vibrating support were stud-
ied by many authors (see, e.g., [1–12]). In spite of many
publications, there were few experiments devoted to the
analysis of the stability and nonlinear behavior of the
pendulum. Among the well-known experimental stud-
ies, we point to the experiments made by Kapitza [1, 2]
in connection with the stabilization of an inverted pen-
dulum by the high-frequency excitation of the support,
as well as those made by Chelomeœ [3] on the stability
of an inverted rod with a sliding washer under the
vibrating suspension point. Experiments on the stabili-
zation of a pendulum with a vibrating suspension point
about a tilted axis were described in [4, 5]. The routes
from the lower vertical position to the chaotic motion of
the parametrically excited pendulum were investigated
experimentally in [6]. We note that those experiments
were mostly qualitative.

In this study, the nonlinear behavior of a physical
pendulum with a vibrating suspension point is investi-
gated both theoretically and experimentally. Instability
conditions for the lower vertical position of the pendu-
lum are found. Periodic motions corresponding to the
swinging of the pendulum are obtained for various
parameters, and their stability with respect to the
parameters is investigated. The frequency–response
curve is obtained for periodic motion with small ampli-
tude. Theoretical and experimental results are in good
agreement with each other.

BASIC RELATIONS

The plane oscillations of a physical pendulum about
the lower vertical position with the periodically varying

* Institute of Mechanics, Moscow State University,
Michurinskiœ pr. 1, Moscow, 119192 Russia
e-mail: seyran@imec.msu.ru

** Institute of Engineering Mechanics and Systems,
University of Tsukuba, Tsukuba, Japan
1028-3358/05/5009- $26.00 0467
displacement of the suspension point and viscous
damping (see Fig. 1) are governed by the equation

(1)

Here, I and m are the moment of inertia and the mass of
the pendulum, respectively; θ is the angle measured
from the lower vertical position; c is the viscous-fric-
tion coefficient; r is the distance between the suspen-
sion point and the center of gravity of the pendulum; g
is the acceleration of gravity; z is the vertical displace-
ment of the suspension point; and the dot stands for dif-
ferentiation with respect to time t. It is assumed that the
displacement of the suspension point of the pendulum
is governed by the law

(2)

where a and Ω are the excitation amplitude and fre-
quency, respectively, and φ(τ) is an arbitrary smooth

I θ̇̇ cθ̇ mr g ż̇–( ) θsin+ + 0.=

z aφ Ωt( ),=

O

z

r

m

g

θ

Fig. 1. Physical pendulum.
© 2005 Pleiades Publishing, Inc.
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periodic function with the period 2π. The amplitude a
and friction coefficient c are assumed to be small.

For the sake of convenience, we introduce the func-

tion ϕ = – . Then, we obtain

(3)

It is assumed that the mean value of the 2π-periodic
function ϕ(τ) is zero: 

We now introduce the dimensionless variables and
parameters

(4)

Note that Ω0 is the eigenfrequency of the pendulum
with the immobile suspension point. With this notation,
Eq. (1) takes the form

(5)

where the dots stand for differentiation with respect
to τ. The coefficients of Eq. (5) depend explicitly on the
periodic function ϕ(τ) and on the three independent
parameters ε, β, ω, where ε and β are small.

INSTABILITY REGIONS

According to Lyapunov’s theorem, the stability or
instability of the trivial solution θ = 0 of nonlinear
equation (5) with periodic coefficients is governed by
the stability or instability of the linearized equation

(6)
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ϕ τ( ) τd
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I
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Fig. 2. Instability region of the vertical position of the pen-
dulum (θ = 0).
This is Hill’s equation with damping. It is known that
instability (parametric resonance) occurs near the val-

ues ω = , k = 1, 2, …. According to [11], the instabil-

ity regions for Eq. (6) in the three-parameter space are
given by half of the cone

(7)

where

(8)

are the Fourier coefficients of the function ϕ(τ).
Formulas (7) describe the first-order approxima-

tions of instability regions and show that the kth reso-
nance region depends only on the kth Fourier coeffi-
cients of the periodic function ϕ(τ).

The cross section of half-cone (7) by the plane β =
const ≥ 0 yields the zones of parametric resonance
bounded by hyperbolas (see Fig. 2). The asymptotes of
these hyperbolas are found from Eq. (7) with β = 0.
When damping is included (β > 0), the minimum exci-
tation amplitude of the resonance according to (7) is
equal to

(9)

With an increase in the resonance number k, the Fourier
coefficients ak and bk tend to zero. This implies that, for
a fixed damping coefficient β, the minimum excitation
amplitude tends to infinity with increasing k. This
explains why it is easier to observe the parametric res-
onance at small numbers k = 1, 2, …, because, at higher
resonance numbers, essential efforts and high excita-
tion amplitudes are needed to set the system into unsta-
ble motion.

For the function ϕ(τ) = cosτ, we have a1 = 1, b1 = 0.

Thus, the first resonance region ω ≈  for this peri-

odic function is given by the inequality

(10)

In dimensional quantities, we obtain from Eqs. (4)
that the swinging of the pendulum occurs near excita-
tion frequencies close to the critical values

. (11)

In dimensional quantities, inequalities (4), (7) yield the
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DOKLADY PHYSICS      Vol. 50      No. 9      2005



INSTABILITY AND PERIODIC MOTION OF A PHYSICAL PENDULUM 469
instability regions as

(12)

When the problem parameters satisfy inequalities (12),
the lower vertical equilibrium position of the pendulum
θ = 0 becomes unstable, and the pendulum begins to
swing. Then, both regular and chaotic motions are pos-
sible.

The solid line in Fig. 2 shows the boundary of the

first resonance region ω ≈  for the function ϕ(τ) =

cosτ and damping coefficients β = 2.61 × 10–3, given by
formula (10), and experimental points are shown by
circles.

PERIODIC SOLUTIONS

Assuming that the angle θ is small, we replace sinθ
in (5) by the first two terms of the Taylor expansion,

sinθ ≈ θ – . Neglecting higher-order terms, we arrive

at the equation with small nonlinearity:

(13)

Here, it is assumed that ε and β are small quantities on
the order of o(1) [12].

We can estimate the amplitude of oscillations at
which Eq. (13) is valid. The absolute value of the non-

linear term  in Eq. (13) is necessarily much less

than the absolute value of the linear term ω2θ. Thus, we

have the condition  ~ O(ε). For example, |θ| <  for

ε ≈ 0.1. This is a rough estimate of the validity of
Eq. (13). Equation (13) with ϕ(τ) = cosτ is sometimes
called the nonlinear Mathieu–Hill equation [8, 12].

Let us study the behavior of nonlinear system
described by Eq. (13) and parametrically excited by the
periodic function ϕ(τ) = cosτ near the first resonance

frequency ω ≈  (Ω ≈ 2Ω0). Using the method of aver-

aging [7, 8], we seek an approximate solution of the

system in the form θ(τ) = Θcos  + ψ , where the

amplitude Θ and phase ψ are slow variables. As a result,
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for these variables, we arrive at the set of differential
equations

(14)

For steady motion, we have

(15)

From Eqs. (14) and (15), in addition to the trivial
solution Θ = 0, we find the nontrivial amplitude

(16)

and the phase

(17)

We insert the denominator of expression (16) inside the
parentheses and express the amplitude as a function of

the ratio  = :

(18)

The frequency–response curve for the fixed damping
parameter β = 2.61 × 10–3 and amplitude ε = 1.098 ×
10−2 (a = 1 mm) is presented in Fig. 3. The minus and
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Fig. 3. Frequency–response curve for ε = 1.098 × 10–2 and
β = 2.61 × 10–3.
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plus signs in formula (18) correspond to the lower
(dashed line) and upper (solid line) branches of the
curve, respectively, and experimental points are given
by circles.

To find the width of the resonance zone AC (see
Fig. 3), it is necessary to equate the right-hand side of
expression (18) to zero. Then, we find that the width
AC in the first approximation is determined by ine-

quality (10) in terms of the variable . This is not sur-

prising, because AC specifies the instability zone of the
trivial solution θ = 0.

The lower and higher branches of the frequency–
response curve given by Eq. (18) meet at the point B
with the vertical tangent at the frequency

(19)

With increasing damping, the frequency–response

curve becomes narrower and shorter, and as   2,

the curve disappears tending to the point  = 2, Θ = 0.

We note that the point B (with the vertical tangent)
according to (18) obeys the parabolic law.

Thus, according to Eqs. (10) and (19), periodic solu-
tions (16)–(18) exist within the frequency interval

(20)

It should be noted that the method of multiple
scales [12] yields another form of the frequency–
response curve

(21)

However, near the resonant frequency Ω ≈ 2Ω0, formu-
las (18) and (21) yield similar results.

STABILITY OF PERIODIC SOLUTIONS

In this section, we analyze the stability of periodic

solutions θ0(τ) = cosΘ  + ψ , the amplitude and

phase of which are given by relations (16)–(18). We
take a small increment to the periodic solution θ(τ) =
θ0(τ) + u(τ) and substitute this function into Eq. (13)
with the periodic function ϕ(τ) = cosτ. Then, in the first
approximation, we obtain a linear equation in terms
of u(τ):

(22)
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According to Lyapunov’s stability theorem based on
the linear approximation, the stability and instability of
periodic solutions is determined by the stability and
instability of the solutions of the corresponding linear-
ized equation for the increment function u(τ), i.e., of
Eq. (22). This is Hill’s equation with damping [11], the
coefficients of which depend on the three independent

parameters ω, ε, β with ω ≈ , ε, β ! 1 and on the

2π-periodic function

(23)

The instability region for Eq. (22) near the values ω =

, ε = β = 0 is given by [11]

(24)

where a0, a1, and b1 are first Fourier coefficients of the
function Φ(τ). The asymptotic stability region is corre-
spondingly given by inequality (24) with the opposite
sign.

For Fourier coefficients, we find

(25)

Since ω ≈ , the first term in inequality (24) can be

replaced by ω2β2. Thus, near the values ε = β = 0, ω =

, the following inequality is valid:

(26)

Substituting coefficients (25) into (26), expressing
cos2ψ from Eqs. (14) and (15), and using relations (16),
we obtain

(27)

From the last inequality, it follows that the periodic
solution (16)–(18) with the plus and minus signs is,
respectively, stable and unstable. These solutions are
shown in Fig. 3 by the solid and dashed lines, respec-
tively. The experimental points in Fig. 3 correspond to
stable periodic solutions, while unstable solutions are
not observed in the experiment. It is seen in Fig. 3 that
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Fig. 4. Experimental setup.
the results of the experiment are in good agreement
with theoretical results up to the periodic-motion

amplitude Θ ≈ . Note that, for higher amplitudes,

Eq. (13) and formulas (16)–(18) are not valid.
Thus, it follows from Fig. 3 and the above consider-

ation that, when the suspension point is excited at a fre-
quency Ω ≈ 2Ω0, the pendulum oscillates according to

the harmonic law θ0(t) = Θcos  + ψ , and the fre-

quency  can be higher or lower than the eigenfre-

quency Ω0 of the pendulum with the immobile suspen-
sion point. This conclusion contradicts the important
conclusion made by Kapitza [1, 2] according to which
vibrations of the support always reduce the period of
the pendulum. This erroneous conclusion was caused
by an oversimplification of the analysis.

DESCRIPTION OF THE EXPERIMENT

As shown in Fig. 4, the experimental setup consists
of a pendulum with the length l = 108 mm whose pivot
(radial bearing) is vertically excited by an electromag-
netic shaker. The deflection angle of the pendulum is
measured with a rotary encoder, and the vertical motion
of the pivot is measured with an LB-60 laser sensor
(KEYENCE Corp.) with the spatial resolution of
40 µm. To study unstable regions and frequency–

π
4
---

Ωt
2

------
 --



Ω
2
----
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response curves, we monitored the angular deflections
and frequency components of the excitation of the pen-
dulum by a DS-2100 Multichannel Data Station (ONO
SOKKI Corp.). The frequency resolution for the excita-
tion and response of the pendulum was 0.02 Hz, and the
experimental angular resolution for the pendulum was
1.57 × 10–3 rad. The eigenfrequency of the pendulum
was equal to Ω0 = 10.374 rad/s, and the range of the
pivot excitation amplitude was a = 0.5–5 mm. The
damping coefficient calculated from the decay of free
oscillations of the pendulum with the immobile suspen-
sion point was equal to β = 2.61 × 10–3.

For a fixed damping coefficient and excitation
amplitude, the instability range of the vertical position
of the pendulum in Fig. 2 is equal to the interval AC of
the frequency–response curve. The experimental points
on the upper part of the frequency–response curve in
Fig. 3 were obtained by the excitation of the pivot of the
pendulum with the given amplitude at the near-critical
frequency Ω ≈ 2Ω0, with the subsequent small-step
increase in frequency until point A with the zero ampli-
tude is reached. Thus, the points of the left boundary of
the instability region in Fig. 2 were obtained for differ-
ent excitation amplitudes. The experimental points on
the frequency axis in Fig. 3 correspond to the stability
of the vertical position of the pendulum θ = 0. The right
boundary of the instability region in Fig. 2 was
obtained by the excitation of the pendulum from the
equilibrium position θ = 0 at different amplitudes and
frequencies with Coulomb friction preventing paramet-
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ric resonance. For this reason, the left and right bound-
aries of the instability region in Fig. 2, obtained exper-
imentally by different methods, differ in the degree of
their agreement with the theoretical curves. Neverthe-
less, Figs. 2 and 3 demonstrate rather good consistency
of theoretical and experimental results.
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In this paper, some numerical and experimental
results are presented for supersonic conical gas flows
over V-shaped wings with a bow shock wave attached
to the leading edges. These results are related to one of
the features of the flow in the inner elliptic region of the
disturbed flow, which is bounded by an extensive sys-
tem of shock waves. According to calculations for an
inviscid flow over a wing and experiments with corre-
sponding parameters, different structures of the flow
are observed for cases in which the developed separa-
tion of the boundary layer is induced by a shock wave
in the actual flow. This separation leads to the appear-
ance of an additional surface of an intense contact dis-
continuity, which is attributed to the λ configuration of
shock waves. In other words, the results indicate that
the inviscid-origin features of the flow structure that are
manifested in experiments can be attributed to new
boundary conditions that arise for the inner inviscid
problem due to the developed separation of the bound-
ary layer.

The existence of this feature of conical flows is dem-
onstrated for an airflow with the Mach number M = 3
over a V-shaped wing. The wing has the opening angle

γ =  and the angle β =  at the vertex of the wing

struts. Regular interaction between plane shock waves
propagating from the leading edges is realized near the
wing with such geometric parameters for small angles
of attack α and angles of sideslip ϑ . In this paper, we
present examples of flow regimes in the canonical vari-

ables η =  and ζ =  (the x axis coincides with the

central chord and z = 0 is the wing symmetry plane),
where the shock wave structure is far from that of lin-
early perturbed regular interaction [1].

The region of angles α and ϑ between the axis ϑ = 0
and curve 1 (Fig. 1) corresponds to the flow regimes
with asymmetric or Mach interaction of shock waves
attached to the leading edges of the wing. Curve 1 is

2π
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2
---
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x
-- z

x
--
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determined by numerical calculations according to the

condition  = 0 for pressure applied from the inner

side of the Mach cone of the uniform flow on the sur-
face of the windward strut. In this curve, the flow with
a shock wave on the surface of the windward strut
transforms to a shock-free flow. In these cases, the cor-
responding inner shock wave of the Mach configuration
on the windward-strut surface has zero intensity.

Curve 2 corresponds to the condition  = sinϑ

under which the leeward strut does not introduce per-
turbations to the incident flow. To the right of this curve,
flow regimes with a centered rarefaction wave at the
leading edge of the leeward strut occur. Curve 3 is
determined from the condition that the Mach cone of
the uniform flow over the leeward strut passes through
the intersection line of the plane shock waves attached

∂p
∂ζ
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αtan γ
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---cot
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Fig. 1. Variation regions of the angle of attack α and of the
angle of sideslip ϑ  for various regimes of an asymmetric
flow over a V-shaped wing (curves 1–4); γ is the opening
angle; β is the angle at the vertices of the wing struts; and
open and closed circles (1, 2) correspond to experimental
parameters.
 2005 Pleiades Publishing, Inc.
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Fig. 2. (a) Isobars and (b–d) fragments of the transverse velocity-direction fields for various regimes of gas flow around a wing.
to the leading edges. Therefore, flow regimes with the
Mach configuration of shock waves are inevitably real-
ized above curves 2 and 3. The selection rule for a cer-
tain regime exists only for the symmetric flow around
the wing [2]. Curve 4 corresponds to the separation
of the shock wave from the leading edge of the wind-
ward strut.

For a qualitatively new type of conical flow, which
is realized in an asymmetric stream of ideal gas around
the wing (α = 20° and ϑ  = 18°), Fig. 2a shows the iso-
bars in the region bounded by the unperturbed flow
(from above) and uniform flows behind plane shock
waves attached to the leading edges. Figure 2b shows
the fragment of the transverse-velocity direction field
(on a sphere) projected on the x = 1 plane (a rectangle
in Fig. 2a). According to the direction field, the classi-
cal Ferry singularity (a node of conical streamlines) [3]
that coincides with the position of the drain line on the
windward strut is absent. Streamlines coming from the
two leading edges to the drain point pass upward from
the wall and, together with other streamlines, are rolled
into a spiral with a low absolute value of the transverse
velocity as compared to its value in peripheral regions.

Thus, Ferry singularities that can be called vortex
singularities exist in an asymmetric flow around
V-shaped wings. In these cases, streamlines other than
those beginning at the leading edges of leeward and
windward struts do not enter the drain point on the wall.
The vortex Ferry singularity is formed inside the shock
layer at the vertex of the contact discontinuity passing
upward from the drain point on the wall.

According to calculations for both asymmetric
Mach interaction (Fig. 2a) and flow regimes with a
shock-free flow on the windward strut surface (between
DOKLADY PHYSICS      Vol. 50      No. 9      2005
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(a) (b) (c)

Fig. 3. Patterns of limiting streamlines near the central chord, which are obtained in experiments with various regimes of flow
around a wing.
lines 1 and 2 in Fig. 1), a vortex Ferry singularity is
formed above the windward strut. In this case, the
height of a “leg” (contact discontinuity) at whose vertex
the vortex Ferry singularity is formed depends on the
distance from the regime image point to line 2 [see
fragments of velocity-direction fields in Fig. 2 for α =
15° and ϑ = (c) 18° and (d) 26.5°]. For the regime cor-
responding to almost zero intensity of the compression
shock at the leading edge of the leeward strut (Fig. 2d),
the standard structure of the flow with the Ferry singu-
larity on the wall of the leeward strut is observed.

According to analysis of the total-pressure recovery

factor K(ϑ) = Sk (S is the entropy and k = , where

γ is the specific-heat ratio), the jump ∆K at the contact
discontinuity, e.g., for α = 20° (0.17 < ∆K < 0.25 and
ϑ  < 25°) and 15° (0.1 < ∆K < 0.16 and ϑ  < 20°) is large
on both sides of the contact discontinuity beginning at
the branch point of the bow shock wave over the lee-
ward strut. This contact discontinuity enters the Ferry
point along with the contact discontinuity coming from
the branch point over the windward strut if the latter
point exists. The values of K on both sides of the con-
tact discontinuity approach each other when the regime
image point approaches curve 2 (Fig. 1). In contrast to
the above data on ∆K for α = 20° and 15°, losses of the
total pressure in shock waves are relatively low for, e.g.,
α = 8°, and the jump of K(ϑ) at the contact discontinu-
ity is small (∆K < 0.05). In this case, a standard Ferry
singularity is observed on the windward strut surface.

Analysis shows that the existence of the vortex
Ferry singularity in an asymmetric flow of an ideal gas
around the V-shaped wing depends on the distribution
of the parameters at the boundary of the elliptic region
determined in the conical flow by the system of shock

1
1 γ–
-----------
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waves, which bounds this region and can be accompa-
nied by intense contact discontinuities.

The prediction of new structures that are formed in
conical flows by the stream surfaces should be tested
experimentally. These qualitatively new types of flow
exist at intensities of internal shock waves over the lee-
ward strut, which exceed the critical value pk = 1.6 cor-
responding to the initiation of separating the turbulent
boundary layer [4]. Points 1 and 2 in Fig. 1 are the
image points for the regimes of flow around wings,
which are realized in the experiments in the A3 wind
tunnel at the Institute of Mechanics, Moscow State Uni-
versity. The values of Mach number M = 2.96 and of the
Reynolds number Re = 6 × 106 were calculated on the
basis of the model length. We note that the intensity of
the compression shock incident onto the leeward strut
for α = const increases with ϑ . Analysis shows that the
critical value of the intensity for, e.g., α = 8° and 10° is
attained at ϑ  ≈ 9° and 7.5°, respectively.

Figure 3 shows patterns of the limiting streamlines
near the central chord of the wing, which are obtained
by the oil–soot visualization [α = 15° and ϑ  = (a) 18°
and (b) 26.5°]. According to these data and pressure
distribution on the wall, the separation of the turbulent
boundary layer occurs on the leeward strut. In addition
to the separation lines of the boundary layer and attach-
ment (spreading) of the flow, the internal separation of
the boundary layer is observed [4, 5]. New features in
the flow are observed on the windward strut, and they
become more pronounced as the angle of sideslip
increases (Figs. 3a and 3b). These features are repre-
sented by two regions that are lighter than the general
background and where the flow is conical. Each of
these regions contains the spreading line and is sepa-
rated by drain lines (dark bands formed by oil coating
carried from two sides) from the neighboring regions of



476 ZUBIN et al.
the flow and from the flow beginning at the leading
edge of the windward strut. The central chord of the
wing is also a drain line. Such structures introduce fun-
damental changes to the elliptic region of the conical
flow, which are accompanied by increased thermal
fluxes on the wall. It is important to reveal the reasons
of the origin of such structures, because the ideal-gas
model realization of various Ferry singularities on the
surface of the windward strut, where only the drain line
exists (Figs. 2b–2d), does not exhibit experimentally
observed structures.

The results obtained using special laser technology
for studying supersonic conical flows [6] indicate the
cause of the existence of two conical domains of the
flow with the spreading lines of the flow on the wind-
ward strut. Figure 4a shows the shadow pattern of the
flow in a plane perpendicular to the central chord of the
wing. The pattern consists of several fragments
obtained in various experiments at α = 15° and ϑ = 18°.
The separation of the boundary layer on the leeward
strut that is accompanied by the developed λ configura-
tion of shock waves is observed in the pattern, where
two intense contact discontinuities are also seen. One of
these discontinuities begins at the triple point of the λ
configuration of shock waves, and the other, at the
branch point of the compression shock over the leeward
strut. According to the calculations, the latter disconti-
nuity is observed when K(ϑ) undergoes a noticeable
jump on the contact discontinuity. Both contact discon-
tinuities (or streamlines close to them) arrive at differ-

(a)

(b)

Fig. 4. (a) Shadow pattern of the flow in a plane perpendic-
ular to the central chord of the wing and (b) flow diagram.
ent points on the windward strut surface. Regions that
can be identified as conical vortex ones are observed to
the right of their attachment points. The contact discon-
tinuity coming from the branch point of the bow shock
wave over the windward strut is seen on the pattern. It
approaches the contact discontinuity originating from
the branch point over the leeward strut and is immersed
in the region of the vortex rotating counterclockwise.
The vortex that arises to the right of the attachment
point of the contact discontinuity belonging to the λ
configuration of shock waves rotates in the same direc-
tion. Ferry singularities exist inside these vortices.

We note that, for α = 15° and ϑ  = 26.5° (Fig. 3b),
when the contact discontinuity originating from the
branch point of the bow shock wave over the leeward
strut is of low intensity and is not observed in experi-
ment, the conical vortex region that is associated with
the attachment of the contact discontinuity for smaller
angles of sideslip and is attributed to the indicated
branch point (Fig. 4a) continues to exist. It is also real-
ized for regimes whose image points lie to the right of
curve 3 (Fig. 1), when the leading edge of the leeward
strut becomes a generator of the centered rarefaction
wave and only the triple point of the λ configuration of
shock waves exists. Therefore, the existence of a coni-
cal vortex structure that is farther from the central chord
and consists of two vortices observed in experiment
(Figs. 3b and 4a) is not generally associated with the
attachment of the contact discontinuity (or neighboring
streamlines) generated by the branch point of the bow
shock wave over the leeward strut. The assumed flow
diagram realized in such cases is shown in Fig. 4b.

The features experimentally observed in the shock
layer of the flow imply the following hypothesis. Struc-
tures differing from those predicted within the frame-
work of ideal-gas theory are realized in an actual flow
due to special boundary conditions for the inner elliptic
region of the conical inviscid-gas flow. These boundary
conditions are characterized by the existence of the sur-
face of the intense contact discontinuity generated due
to the separation of the boundary layer on the leeward
strut. To verify this hypothesis, we carried out experi-
ments using various methods for α < 15° (Fig. 1). The
investigation shows that, if the intensity pw of the shock
wave incident on the leeward strut is insufficient for the
formation of the developed separation of the turbulent
boundary layer, when pw > 2.5 [5], the contact disconti-
nuities generated by the branch point in the wave struc-
ture (realized when the boundary layer becomes thicker
and the boundary layer is separated) are not observed
on shadow patterns due to low intensity and give rise to
the formation of no special structures on the windward
strut. We note that, for the indicated value of pw , which
changes slightly with the Mach number of the preced-
ing uniform flow, the contact discontinuity intensity
depending on ∆K > 0.06 becomes more noticeable.

As an example, Fig. 3c shows the pattern of limiting
streamlines on the wing surface for α = 9.2°, ϑ  = 15.2°
DOKLADY PHYSICS      Vol. 50      No. 9      2005
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(pw ≈ 2.25). In this case, the central chord is the stagna-
tion line for the transverse flow rather than the drain
line as, e.g., in Figs. 3a and 3b. The drain line compos-
ing angle ϕ ≈ 3.5° with the central chord is revealed in
both simulation and experiment. This property indi-
cates that the intensity of the contact discontinuity gen-
erated by the λ configuration of shock waves in the
undeveloped separation of the boundary layer is insuf-
ficient for generating the boundary conditions responsi-
ble for the existence of two conical vortex structures on
the windward strut.

Analysis of the function K(ϑ) that is calculated for
α = 15° on both sides of the contact discontinuity that
originates from the triple point of the λ configuration of
shock waves in terms of the coordinates of the branch
point on the shadow patterns (Fig. 4a) and the plateau
pressure in the separation region shows that the jump
∆K increasing with the angle of sideslip is very small
(~0.02) at ϑ  = 13°. This property agrees with the oil–
soot visualization of the flow. Comparison of the pat-
terns for the limiting streamlines at α = 15° and at vari-
ous ϑ  values shows that the existence of two conical
regions on the windward strut with the flow spreading
lines becomes less pronounced at ϑ  = 13°. The approx-
imate boundary of the transition from flow regimes
with the drain line on the windward strut to regimes
with the two indicated regions is shown by closed cir-
cles in Fig. 1.

On the whole, experimental results corroborate the
hypothesis of the origin of particular vortex structures
on the windward strut that are not revealed in ideal-gas
DOKLADY PHYSICS      Vol. 50      No. 9      2005
calculations. However, since the concept of the devel-
oped separation of the turbulent boundary layer has no
formal description, the determination of the region of
parameters in which these structures are realized pre-
sents a particular problem for each case.
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An explicit representation is provided for solutions
of gravity-filtration problems for a liquid through
porous media, when a given part of the boundary of a
filtration domain is curvilinear. Similar to problems
with polygonal boundaries, the construction of their
solutions is reduced to the determination of numerical
parameters that are analogous to constants in the
Schwarz–Christoffel formula for the conformal map-
ping of polygons. The solvability of a nonlinear set of
equations with respect to parameters is determined
using the method proposed by the author in 1967 on the
basis of a priori estimates of the solutions to this set.

1. CONFORMAL MAPPING REPRESENTATION
Two-dimensional stationary problems of the filtra-

tion of an incompressible liquid through homogeneous
isotropic media are described by the complex potential
of a flow w = w(z) = ϕ + iψ, which is an analytical func-
tion, where ψ is the stream function and ϕ = p(ρg)–1 + x
is the hydrostatic pressure. The derivative of the com-
plex potential is related to the filtration rate v = (u, v) as

 = u – iv  [1, 2]. The Ox axis is assumed to be oppo-

site to the gravitational acceleration g = (–g, 0).
The method proposed in this study is applicable to

numerous problems of the theory of gravity filtration
for a liquid in porous media [3–8]. For definiteness, we
consider the general problem of the filtration of a liquid
in a finite aquifer (embankment dam) with a free
boundary. The boundary ∂D of the filtration domain D
consists of an unknown free surface L (ψ = Q = const,
ϕ + x = const) and a given curve Γ = Γ0 ∪ Γ 1 ∪ Γ 2

including an aquifuge Γ1 (ψ = const) and boundaries
with the immobile liquid Γk (ϕ = ϕk = const, k = 0
and 2).

Boundary conditions for the desired analytic func-
tion w(z) = ϕ + iψ are specified as the image of the
boundary ∂D = L ∪ Γ  of the filtration domain D. This

dw
dz
-------
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image is a rectangle ∂D* = w(∂D) whose height Q > 0
(fluid-flow rate) is unknown. 

We first consider the curve Γ as a polygon P with
vertices zk and the corresponding angles αkπ, where k =
0, 1, …, n + 1, and side lengths lk = |zk – zk – 1|, where
k = 1, 2, …, n + 1.

Let us carry out the conformal mappings z: E  D
and w: E  D* of the upper half-plane E: Imζ > 0
onto the domains D(P), ∂D = P ∪ L and D*, respec-
tively, and let tk, where k = 0, 1, …, n + 1 (t0 = –1 < t1 <
… < tn + 1 = 1), be the preimages of points zk, and τj,
where j = 1, 2, 3, 4, be the preimages of vertices
wj ∈ ∂ D*. Each τj obviously coincides with one of tk . 

In this case, the derivative  of the conformal

mapping z: E  D(P) satisfies the boundary value
problem [3–8]

(1)

Here, h = N t – τj|–1/2 ≡ , N = const,  = , and

t ∈  [tk, tk + 1], π  is the angle between the kth side of
the polygon P and the Ox axis.

Some filtration flows of an incompressible liquid
that have contact (free) boundaries with immobile liq-
uids of different densities (water–air, sweet water–salt
water) are also described by boundary conditions (1),

where h = q(t)  for |t| > 1, q(t) = 1 on the preimages

of the free boundaries and q(t) = 0 on the preimage of
the horizontal drain [6]. The technique given in this
study is also applicable to such filtration problems.

The solution of the Hilbert boundary value problem
given by Eq. (1) is represented in the form

(2)

dz
dζ
------

dz
dt
-----arg πθ t( ), t 1; Re

dz
dt
-----< h t( ), t 1.>= =

|
j 1=

4

∏ dw
dt
------- θ δk

δk

dw
dt
-------

dz
dζ
------

Π ζ( )
πi

------------ h t( ) td
Π t( ) t ζ–( )
---------------------------

t 1>
∫ Π ζ( )M ζ( ),≡=
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where

Canonical solution Π(ζ) of the homogeneous problem
given by Eq. (1) (h ≡ 0) is the derivative of the confor-

mal mapping Z: E  D( ), Π =  of the upper

half-plane onto a domain bounded by a polygon  =
P ∪  P0 ∪  Pn + 1, where P0 and Pn + 1 are rays that are par-
allel to the Oy axis and begin at the vertices z0, zn + 1 of
the polygon P.

Each vector T = (t1, t2, …, tn) (N = 1, t0 = –1, and
tn + 1 = 1) appearing in Eq. (2) corresponds to a certain
polygon P(T) with links Pk(T) parallel to Pk ⊂  P. The
desired constants tk, where k = 1, 2, …, n, are deter-
mined from the following conditions of coincidence of
P(T) with given P:

(3)

where

Since the drainage-domain width |zn + 1 – zn| = yn + 1 –
yn > 0 (zn is fixed and Imzn + 1 = yn + 1 is unknown) is
unknown in problems of the filtration of the liquid
through embankment dams, Eqs. (3) completely deter-
mine the geometry of the polygon P, and the system of
equations (3) corresponding to P is solvable with cer-
tainty, as was proved in [4–8].

2. THE CURVILINEAR BOUNDARY

Our goal is to construct a certain Lyapunov curve
Γ(µ) ⊂  Cα + 1 for which α > 0 and µ > 0 is the approxi-
mation parameter that approximates the polygon P so
that the explicit representation of form (2) is valid for

the derivative  of the conformal mapping z: E 

D(Γ), ∂D(Γ) = Γ ∪  L. We introduce the notation  = tk ±
rk, rk(µ) = µinf{(tk – tk – 1}, (tk + 1 – tk)}, k = 1, 2, …, n + 1,

0 < µ ≤ ,  = t0 = –1:  = tn + 1 = 1, ∆k = [ , ],

Π ζ( ) ζ tk–( )
βk, βk

k 0=

n 1+

∏ α k 1, βk

k 0=

n 1+

∑– 1.–= = =

P
dZ
dζ
------

P

l g T β,( ); l l1 l2 … ln, , ,( ),= =

β β0 β1 … βn 1+, , ,( ),=

lk Π t( ) M t( ) t   for   kd  

t

 

k

 

1–

 

t

 

k

 ∫  1 2 … n . , , , = =

dz
dζ
------

tk
±

1
3
--- t0

± tn 1+
– tk

– tk
+
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 = [ , ], and consider the function θ(t) = (t) –

1: θ(

 

t

 

) = 

 

δ

 

k

 

π

 

, 

 

t

 

 

 

∈

 

 ; 

 

θ

 

 = 0, 

 

|

 

t

 

|

 

 > 1

 

;

where 

 

δ

 

k

 

 =  – 1

 

. The constructed function 

 

θ

 

(

 

t

 

, 

 

µ

 

),

 

where 

 

|

 

t

 

|

 

 < 1, is continuous and uniformly bounded for
any arbitrary values 

 

(

 

t

 

k

 

 + 1

 

 – 

 

t

 

k

 

) 

 

≥

 

 0, 

 

k

 

 = 0, 1, …, 

 

n

 

, 

 

|θ|

 

 

 

≤

 

.

The canonical function 

 

Π

 

θ

 

(

 

ζ

 

)

 

 of the homogeneous
problem given by Eq. (2) with the chosen function 

 

θ

 

(

 

t

 

)

 

is calculated using Gakhov’s formula (see [3], p. 42)

 

(4)

 

and is the derivative of the conformal mapping

The domain  D  ( )  , which is a half-strip, is bounded
by a certain approximating curve 

 
Γ

 
(

 
µ

 
)

 
, whose tangent

has the slope angle 

 

π

 

(

 

t

 

)

 

 to the 

 

Ox

 

 axis, and rays 

 

P

 

0

 

 and

 

P

 

n

 

 + 1

 

 introduced in the first section. Calculating the
Cauchy integral appearing in Eq. (4), we arrive at the
following representation for the function 

 

Π

 

θ

 

(

 

ζ

 

)

 

 with an
arbitrary extension constant:

 

(5)

 

Here, 

 

γ

 

k

 

 = (

 

a

 

k + bkζ) |∆k|–1, ak = δk – 1 – δk , bk = δk –

δk – 1, k = 1, 2, …, n, γ0 = 0,  = t0 = –1,  = tn + 1 = 1,

|∆k| = (  – ), k = 1, 2, …, n. 

By the construction, θ(t, µ)  δk, for t ∈  [tk − 1, tk]
and µ  0, and the curve Γ(µ) is reduced to the given

polygon P, and the derivative (µ) = Πθ(ζ)Mθ(ζ) of

the conformal mapping z: E  D(Γ) is represented in

the form of Eq. (2) with Π(ζ) = ζ − tk .

∆k
+ tk

+ tk 1+
– θ

∆k
+

θ δk t tk
––( ) δk 1– tk

+ t–( )+[ ] ∆ k
1– θk t( ),≡=

t ∆k,∈

δk

δk
k

sup

Πθ ζ( ) 1 ζ2–( ) 1/2– θ t µ,( ) td
t ζ–

---------------------

1–

1

∫ 
 
 

exp=

Z Πθ ζ( ) ζ , Z: E D Γ( ),→d

1–

ζ

∫=

Γ µ( ) Γ P0 Pn 1+ .∪ ∪=

Γ

θ

Πθ 1 ζ2–( ) 1/2– tk
+ ζ–

tk
– ζ–

------------
 
 
 

γk ζ( )
tk 1+

– ζ–

tk
+ ζ–

------------------
 
 
 

δk

.
k 0=

n

∏=

tk
+ tk

–

t0
± tn 1+

–

tk
+ tk

–

dz
dζ
------

(
k 0=

n 1+

∏ )
βk
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Similar to the problem for a polygon, we consider
Eq. (3) for determining the vector T = (t1, t2, …, tn),
where

(6)

Here, Mθ in Eq. (2) is calculated in terms of Πθ(ζ) given
by Eq. (5).

The definition of the curve Γ(µ) contains the given
geometric characteristic (l, β), where l = (l1, l2, …, ln)
and β = (β0, β1, …, βn + 1) of the basic polygon P with
which Γ(µ) coincides for µ = 0. It is assumed that the
vector (l, β) satisfies the conditions under which the
polygon P is nondegenerate [4–8]

The conformal mapping

transforms tk, where k = 0, 1, …, n + 1, into the points
zk(µ) = Fθ(tk) ∈ Γ (µ) that are the vertices of a certain
polygon P(µ) approximated by the curve Γ(µ). In this
case, the lengths lk(µ) of the sides of Pk(µ) coincide
with the respective lengths lk of the sides of P, whereas
the exterior angles πβk(µ) generally differ from the
respective exterior angles πβk .

An arbitrary vector T substituted into Eq. (3) corre-
sponds to a certain curve Γ(µ, T) approximating the
polygon P(µ, T). Equations (3) are the conditions of the
coincidence of Γ(µ, T) with Γ(µ) and, therefore, the
coincidence of P(µ, T) with P(µ).

3. A PRIORI ESTIMATES OF SOLUTIONS
TO THE PROBLEM ON PARAMETERS

Let us prove that the desired constants tk, where k =
1, 2, …, n, in Eq. (3) satisfy the a priori estimates

(7)

where ε = ε(δ) is the function of a single constant δ in
the definition of the nondegenerate polygon P [4].

Let τk, where k = 1, 2, 3, 4, be the preimages of the
vertices of the rectangle ∂D* in the conformal mapping
w: E  D*. We define τk as follows: τ1 = t0 = –1, τ2 =
ts, τ3 = tm, τ4 = tn + 1 = 1, 0 < s < m < n + 1. In this case,

gk T β,( ) Πθ t( )Mθ t( ) td

tk 1–

tk

∫ zk zk 1–– ,= =

k 1 2 … n., , ,=

lkln δ 1– , δ 1– βk 1, k≤ ≤ ≤ 1 2 … n;, , ,=

1
2
---– β0 βn 1+,( ) 1

2
--- δ, δ 0.>–≤ ≤

z Πθ ζ( )Mθ ζ( ) ζd

1–

ζ

∫ Fθ ζ( ), Fθ: E         D Γ( )≡  =

tk 1+ tk– ε 0, k>≥ 0 1 … n,, , ,=
 

using the method of the extreme lengths of families of
curves [8], we obtain

i.e., the rectangle 

 

∂

 

D

 

*

 

 is nondegenerate.
To prove estimates (7) for the remaining 

 

t

 

k

 

 (

 

k

 

 = 0, 1,
…, 

 

n

 

 + 1)

 

, we assume that the opposite property is
valid, i.e., that a part of them can approach each other.
In view of Eq. (7) for 

 

τ

 

k

 

, constants 

 

t

 

s

 

 = 

 

τ

 

2

 

 and 

 

t

 

m

 

 = 

 

τ

 

3

 

cannot simultaneously be approaching parameters. Let

 

t

 

0

 

 = –1 and 

 

t

 

n

 

 + 1

 

 = 1 be absent among approaching

parameters 

 

t

 

k

 

; i.e., 

 

1 –  

 

≥

 

 

 

ξ

 

 > 0

 

, where 

 

k

 

 = 1, 2, …, 

 

n

 

.

Substituting 

 

Π

 

θ

 

(

 

t

 

),

 

 where 

 

|

 

t

 

|

 

 > 1, in the form

we arrive at the relation

which provides the inequalities

Let constants 

 

t

 

k

 

, 

 

k

 

 = 

 

ν

 

, 

 

ν 

 

+ 1, …, 

 

p

 

, 

 

0 < 

 

ν

 

 < 

 

p

 

 < 

 

m

 

 be
approaching parameters. The second possible case 

 

s

 

 <

 

ν

 

 < 

 

p

 

 < 

 

n

 

 + 1 is similarly considered (

 

t

 

s

 

 = 

 

τ

 

2

 

 

 

≠

 

 

 

τ

 

3

 

 = 

 

t

 

m).

We set 2r =  –  and t∗  = tν + r and consider semicir-
cle Kr = {|ζ – t∗ | = r, Imζ > 0}. In this case,

For r ! 1, the inequalities |  – ζ| ≥ ξ > 0 are valid at
k = 0, 1, …, ν – 1 and at k = p + 1, p + 2, …, n + 1. Taking
into account the latter inequalities, we obtain

where βkπ = (δk – 1 – δk)π is the exterior angle in the ver-
tex zk ∈  P. Thus,

τk 1+ τk– ε 0, k>≥ 1 2 3,, ,=

tk
2

Πθ
tk

+ t–

tk
– t–

-----------
 
 
 

γk
tk 1+

– t–
tk 1+ t–
-----------------

tk t–

tk
+ t–

-----------
 
 
 

δk

tk t–( )
βk,

k 0=

n 1+

∏
k 0=

n

∏=

Mθ τ( ) 1
π
--- h t( ) td

Πθ t( ) t τ–
------------------------------, τ 1,≤

t 1>
∫=

0 a Mθ τ( ) K ξ( ), τ 1 ξ , ξ 0.>–≤ ≤ ≤<

t p
+ tν

–

r tk
± ζ– 2r, k<≤ ν ν 1 … p for ζ Kr.∈, ,+,=

tk
±

Πθ ζ( ) C Rk , Rk

k ν=

p

∏≤
tk

+ ζ–

tk
– ζ–

------------
 
 
 

βk /qk

,=

qk

∆k

tk
– ζ–

------------,=

Rk C0 1 qk+( )
βk /qk .≤
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If qk(t)  0 for r  0, then

If |qk| ≥ a > 0 for ∀ r ! 1, then |Rk| ≤ C3 < ∞ and,
thereby, |Πθ(ζ)| ≤ C4, ζ ∈ Kr.

We consider the curve Fθ(Kr) ≡ Λr that is the image
of a semicircle, lies in the domain D(Γ), and connects
inner points ( , ) ∈ Γ , |  – | ≥ ξ > 0. 

The length of the curve Λr is estimated as

Therefore, |Λr|  0 for r  0. Thus, lk = |zk –
zk − 1|  0, where k = ν + 1, ν + 2, …, p, which con-
tradicts the condition that the basic polygon P is nonde-
generate.

We now assume that, e.g., t0 and 2r = (  – t0)  0,
where 0 < p < m, are among approaching parameters.
Let Kr = {|ζ – t∗ | = r, Imζ > 0}, t∗  = t0 + r. We represent
Πθ(ζ) in the form

where Rk = (1 + qk  and qk = |∆k| (  – ζ)–1. As
above, |Rk| ≤ C3 for ζ ∈ Kr , and, therefore,

Similarly, for ζ = t ∈  L1, where L1 = (–2, –1 – r) with 0 <
r ! 1, we have

We set

where L2 = (–∞, –2) ∪  (1, ∞). 

1 qk+( )
βk /qk

r 0→
lim e

βk, Rk C1 ∞.<≤=

zν* zp* zp* zν*

Λr

Fθd
ζd

-------- ζd

Kr

∫ πC5r.≤=

t p
+

Πθ ζ( ) 1 ζ+( )
β0 RkΠ* ζ( ), Π*ln C7,≤

k 1=

p

∏=

)
βk /qk tk

–

Πθ ζ( ) C8 1 ζ+
β0 1

2
--- β0 0.≤<–≤

h t( ) Πθ
1– ζ( ) ρ t( ) 1 t+( )

β0–
, ρ t( ) C9.≤≡

Mr ζ( )  + 

L2

∫
L1

∫ 
 
  ρ t( ) 1 t+( )

β0–
td

t ζ–
------------------------------------- Mr

1 Mr
2,+≡=
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Then, for ζ ∈ Kr we obtain

Thus, |Λr|  0 as r  0, which contradicts the non-
degeneracy of P. A similar estimate for the integral

shows that Ir  0 as r  0. The case in which 2r =

(  – )  0, for m ≤ ν ≤ n is similar to the above
case. Thus, the validity of a priori estimates (7) has
been proved.

4. SOLVABILITY OF THE PROBLEM

Similar to [3], after reducing integration intervals in
Eq. (6) to [0, 1], the functions gk(T, β) are continuously
differentiable with respect to ti, where i = 1, 2, …, n. 

We set uk = tk + 1 – tk, where k = 1, 2, …, n, and trans-
form Eq. (3) with g = (g1, g2, …, gn) written as (6) to the
form

(8)

where the vectors T and u are unambiguously expressed
in terms of each other.

A priori estimates (7) for Eq. (8) can be represented
in the form of the implication

(9)

Since the operator f: Rn  Rn, which is continuously
differentiable on the set Ω(ω) and at its boundary, has
no stationary points in view of Eq. (9), Eq. (8) has at
least one solution according to the Shauder theorem.
Thus, the following statement has been proved.

Theorem (of existence). Let the basis polygon P be
nondegenerate. Then, Eq. (8) for the corresponding
curve Γ(µ) has at least one solution u = (u1, u2, …, un)
belonging to the set Ω(ε) as defined in Eq. (9).

Mr
2 C10; Mr

1 C11 1 ζ+ δ, 0 δ ! 1<≤ ≤
δ 0 for β0 0<=( );

Λr ΠθMr ζd

Kr

∫ C12r1/2 δ– .≤=

Ir Πθ Mr td

1– r–

1–

∫=

tn 1+
– tν

+

u f u l f, ,( ), f k lk
1– ukgk T β,( ),= =

u Ω ε( )∈ u uk ε, k 1 2 … n, , ,=≥{ } .=
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