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INTRODUCTION

Electrodynamic systems of modern power and
super-power microwave electronic devices [gyrotrons,
relativistic running-wave lamps (RWLs), and relativis-
tic inverse-wave lamps (IWLs)], including energy
inputs/outputs, represent segments of irregular
waveguides. The operating conditions for these
waveguides are preferably multiwave. The improve-
ment of physical characteristics of superpower micro-
wave devices is associated with the optimization of the
profile of their electrodynamic systems. This requires
the development of a novel theory and methods for cal-
culating arbitrarily irregular waveguides. However,
there exists a method that would appear to be the most
efficient for both the calculation of irregular
waveguides and the physical interpretation of phenom-
ena occurring in them. This method is based on the
mapping of an arbitrarily irregular inner waveguide sur-
face onto a regular cylinder, a coaxial structure, etc.,
with a circular or rectangular cross section [1–5]. In the
transformed (oblique) system of coordinates, the solu-
tion represented in the form of connected normal waves
is based on using the projection procedure. In this case,
the amplitudes of the connected waves are described by
a set of ordinary differential equations with variable
coefficients, their form being determined by the irregu-
lar-waveguide profile. The boundary conditions to this
set correspond to the initial and final cross section of
the irregular-waveguide segment (two-point problem).
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Solving this problem by conventional methods meets
with no difficulties provided that only propagating
waves are considered. As is shown below, for the exact
calculation of the waveguide, supercritical waves that
substantially change the physical characteristics of the
waveguide should be taken into account along with the
propagating waves. However, for supercritical waves,
an exact solution to the boundary value (two-point)
problem, which is based on the use of traditional meth-
ods (stepwise methods of the Runge–Kutta type or the
Hemming method), is impossible by virtue of their
rapid divergence. (We imply that abruptly increasing
solutions appear due to small errors.)

To solve this problem, we used in this study the sta-
ble method of the block matrix sweep [6, 7]. We com-
pare the results obtained on the basis of the newly
developed method with those for the calculation of the
same waveguide irregularities by the finite-element
method. We give attention to the absence of the second-
rank periodicity condition (Floquet condition) in
matched segments of periodic irregular waveguides.
This shows the inaccuracy of a number of studies in the
field of the RWL and IWL theory [11–14], which are
based on the indicated condition and on the conception
of field spatial harmonics.

SELF-CONSISTENT EQUATIONS
OF THE NONLINEAR MODEL 

FOR RELATIVISTIC IWLS AND RWLS SUPPLIED 
WITH A RETARDING SYSTEM IN THE FORM

OF A CORRUGATED WAVEGUIDE

A theory of relativistic RWLs and IWLs supplied
with the electrodynamic system in the form of an irreg-
ular corrugated waveguide was developed in [1–3, 7,
15] on the basis of the method of coordinate transfor-
mations. For RWLs and IWLs operating with the E0m

wave of the irregular waveguide, this theory, in the two-
dimensional approximation, leads to the following set
of self-consistent nonlinear equations:

d Ȧm

dz
---------- sWV̇sm ν0mĊsm+( ),=
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(1)

The equations of motion of large particles are

(2)

Then, we express the physical high-frequency fields
in terms of the calculated amplitudes with allowance
for space-charge fields:

(3)
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The magnetostatic focusing field is

Here, B0(z) is the field along the axis; W = ; ω and

ω0 are the operating and reference frequencies, respec-
tively; s is the number of an operating-frequency har-
monic; m is the radial index of the E0m wave; ν0m is the

mth root of the function J0(x); e0m = 0.5 (ν0m); k0 =

; r = k0r'; z = k0z' (primes stand for dimensional

quantities having denotations that are identical to the
dimensionless ones); b(z) = k0b'(z); b'(z) is the inner

waveguide radius (waveguide profile);  = ;

 = ;  = ; , , and 

are the amplitudes for the partial-wave components; e
and m0 are the electron charge and rest mass; c is the

speed of light; G0 = , I0 is the beam current

in amperes; r0 = k0 ;  is the mean radius of the tubu-
lar electron flux at the input of the interaction region;
θi = ω0ti; ti is the time of flight for the ith large particle

through the cross-section z; βi = ; and  is the veloc-

ity of the ith particle. 

Excitation equations (1) involve both the vortex and
the potential (the space-charge field) components of the
total field at the frequency sω0W. The boundary condi-
tions related to the sets of Eqs. (1), (2) can be formu-
lated in the following manner. At the boundaries of the
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conjugation of the irregular region of the interaction
with the regular waveguide, the condition

is fulfilled, and the following relationships occur:

(i) for propagating E0m waves:

(4)

(ii) for supercritical E0m waves:

(5)

Here,  = , ,  are the rela-

tive amplitudes of the direct and opposite propagating
waves and supercritical waves at the regular segments
conjugated with the interaction region. For the unmod-
ulated electron beam, we have at the input of the inter-
action region

(6)

Thus, for the set of Eqs. (1) with respect to the ampli-
tudes, the boundary value problem is posed, and for the
equations of state (2) for large particles, the Cauchy
problem is formulated. The combined solving is per-
formed as a result of the iteration procedure. The inter-
action efficiency is determined by the following rela-
tions:

(i) in terms of the power of excited wave fluxes (the
so-called wave efficiency):

(7)

(ii) in terms of the kinetic-energy loss by the elec-
tron beam (the so-called electronic efficiency):

(8)
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grouping function

(9)

In the case of a small energy exchange, the quantity Grs

is close to the relative sth harmonic of the beam current.

APPROXIMATION OF THE CONTROL

Problem (1)–(6) with the indicated goal function
maxFe[g(z)] (usually Fe = ηe) belongs to the problems
of optimal control. In this problem, the normalized
waveguide profile b(z) of the waveguide or the profile
F(z) of the focusing magnetic field is the object of the
desired control g(z). In the approximation of the con-
trols, we used splines of the third and fifth orders. The
profile of the irregular corrugated-waveguide segment
was set in the form

(10)

where T = ; z0 and Lν are the beginning coordinate

and the length of the corrugated waveguide segment,
respectively; nν is the number of periods; hν(T) is the
corrugation depth; Dν(T) is the function determining
the period variation; e.g., Dν(0) = 0, Dν(1) = 0; for
Dν(T) = 0, the period is constant and is equal (in the

accepted units) to dν = . The functions hν(T) and

Dν(T) were set in the form of an expansion in shifts of
the standard finite function ϕ3(x) that corresponded to
B-splines of the third order [8]:

(11)
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hν  and Dν , respectively. The conjuga-

tion of the regular waveguide segments of different
radii b1, b2 were set in the form b = b1 + (b2 – b1)P5(T),

T = ; z0 and Lc are the onset coordinate and the

length of the conjugation segment. The fifth-order
polynomial

ensures the continuity of the first and second derivatives
at the conjugation points. Using these conjugations on
the waveguide profile, we simulated resonance grooves
and asperities of a certain configuration. In this case,
the configuration is determined by the physical param-

eters hk = |b2 – b1|, ∆p = . Here, Lk is the groove

width, hk is the groove height, and ∆p is the parameter
featuring the steepness of groove walls. Using these
conjugations of grooves, as well as splines of the form
Dν(T), hν(T) (11), we simulated retarding quasi-peri-
odic meander structures, mode transformers, and horn-
shaped outputs.

SETTING THE PROBLEM 
FOR GRID CALCULATIONS

In the accepted notation, the dimensionless compo-
nents Er, Ez, Bϕ of the symmetric E-wave fields of a
cylindrical longitudinally irregular waveguide (at the
fundamental frequency s = 1) are found by solving the
following boundary value problem:

In the region 0 ≤ r ≤ b(z), 0 ≤ z ≤ L, we have

(12)

The boundary conditions are the following. For r = 0,
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e+rJ1(ν0mr). For z = L,  + j u = 0 (the condition of

complete matching for the E0m wave). The power trans-
ferred through the waveguide cross section is

(13)

NUMERICAL EXPERIMENT

To verify the adequacy of set (1), we solved the
problem of the reflection of the E01 wave of a regular
cylindrical waveguide of radius b0 from an inhomoge-
neity of k sinusoidal-shape grooves of depth h and
width d:

(14)

The values of z1 and L were chosen based on the condi-
tion of the attenuation of supercritical waves excited on
the inhomogeneities, so that only E01 waves of the reg-
ular waveguide could be observed in the cross sections
with the coordinates z = 0, z = L. Figure 1 presents the
curves for the power transferred (13) normalized to that
of the regular waveguide as a function of the groove
height h. Curves 1 are calculated with allowance for
8 basis functions. The second curve is obtained from
the solution of the boundary value problem by the
method of finite triangular elements with the use of the
MATHLAB program package. The values z1 = 1.5b0
and L = 2z1 + kd were chosen. The number of partition
elements in this region equaled 2750. When the number
of partition elements reached 4000, all curves in Fig. 1
coincided with each other; i.e., the results obtained by
the finite-element method converge to those found from
Eqs. (1).

NONFULFILLMENT 
OF THE SECOND-KIND PERIODICITY 
CONDITION IN MATCHED SEGMENTS

OF PERIODIC WAVEGUIDES

It was indicated previously, in [7, 15], that the sec-
ond-kind periodicity condition is fulfilled neither in the
general case (EHnm and HEnm waves [15]), nor in the
case of E0m waves [6]. To confirm these statements, we
now present the data of calculations for matched seg-
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Fig. 1. Beam power transferred through the waveguide cross section as a function of the groove depth for d = 2.
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Fig. 2. Level lines real[u(r, z)] obtained by the grid method.
ments of periodic corrugated waveguides operating in
the E0m mode. The calculations were performed by
solving problem (12) on the basis of both the grid
method and the Galerkin method. In Fig. 2, the struc-

ture of level lines for the function real[r (r, z)] is
shown. The structure was obtained by calculations
according to the grid method for two waveguide config-
urations (these lines are close to the E-field lines). Fig-

ure 3 illustrates the variation of the modulus | (r0, z)|
of the longitudinal-component along the corrugated-
waveguide segment (calculations by the Galerkin
method). It is worth noting that calculations of this
waveguide with high accuracy by the grid method turn
out to be rather complicated, which is associated with
limitations in the capacities of modern computers. As
follows from Figs. 2, 3, the periodicity of the distribu-

tions over r  and  for these two cases is absent in the
corrugated section. As was noted previously, in [5, 6, 15],
this conclusion is important for the formulation of an
adequate self-consistent theory of RWLs and IWLs. In
this connection, the theoretical results of [12–14] based
on the concept of synchronous spatial field harmonics

Ḃϕ

Ėz

Ḃϕ Ėz
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in the retarding system of IWLs or RWLs are erro-
neous.

CALCULATION AND OPTIMIZATION 
OF RELATIVISTIC GENERATORS 

BASED ON RWLS AND IWLS 
WITH CORRUGATED WAVEGUIDES

Using the self-consistent set of Eqs. (1)–(3) and the
attached boundary conditions (4)–(6), and on the basis
of the block matrix sweep, the following generator vari-
ant is proposed. The operating frequency is f =
37.96 GHz, and the chosen reference frequency ω0 cor-
responds to the wavelength λ0 = 7.99 mm. The beam-
accelerating voltage is 212 kV, the beam current is I0 =
600 A, and the induction of the focusing magnetic field
is B0 = 5 T. The regular corrugated segment has nv =
12 periods, dv = 2.756, hv = 1.18, and b0 = 2.3615 (3.5,
1.5, 3 mm). The radius of the waveguide at its end is
bL = 2.952 (3.75 mm). The width, the height of the mod-
ulating groove, and its distance from the comb onset are
L1 = 4.72, h1 = 1.46, L1v = 5.51 (6, 1.86, 7 mm), and
∆p = 0.8. The beam radius is r0 = 2.06 (2.62 mm). The



488 KRAVCHENKO et al.
0.2

50 10 15 20 25 30 35 40 45 50
z

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

|Ez|

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

b(z)

Fig. 3. Variations of the modulus of the Ez-wave field component along the corrugated-waveguide segment (b0 = 3, d = 1.9) at the
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efficiency attained is 36%. As our analysis shows, the
synchronism is realized at the first harmonic far from
the boundary of the transparency band. At the inner
radius b0 = 2.36 mm, the waveguide is supercritical.
Therefore, to extract the microwave power, the
waveguide radius is increased immediately beyond the
corrugated segment. The features of this variant are
exhibited in Fig. 4. The results obtained for this variant
were verified by calculations of the PIC and KARAT
cones based on the finite-element method. In both
cases, a complete agreement was observed (the effi-
ciency attains 36%).

CONCLUSIONS

Thus, in this paper, the stability is shown and the
convergence rate is determined for projection methods
in problems of the theory and optimization of relativis-
DOKLADY PHYSICS      Vol. 50      No. 10      2005
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tic devices of the “O” types, which are based on irregu-
lar (both periodic and aperiodic) waveguides. An
important advantage of this method as compared to grid
methods should be noted here. It consists not only in the
fact that the three-dimensional problem is reduced to a
one-dimensional (two-point) problem, although this
represents a significant argument in favor of improving
the calculation procedure. The other property is more
important. In multiwave regimes, boundary conditions
of the type of the radiation conditions at the end of the
irregular-waveguide segment are not determined a pri-
ori. In addition, they differ at different points of the
cross section, which impedes the employment of the
grid methods. In the projection methods, in which
waves are separated, this problem does not exist at all.
Given the latter, it is rather difficult to solve the problem
of waveguide excitation on the basis of the self-consis-
tent RWL theory and grid methods.
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In this paper, the behavior of an excitable medium in
the state of developed spatio-temporal chaos is ana-
lyzed. We show that a weak point action on the medium
results in the suppression of all spiral waves and stabi-
lization of the system dynamics. The analysis per-
formed is based on the identification of the number of
spiral waves in the medium.

The stabilization of the turbulent dynamics of active
media, which is based on a weak periodic point action,
is a rather important direction of research, finding its
application in cardiology. At present, in the theory of
excitable systems, a hypothesis dominates according to
which the appearance of a fatal cardiac arrhythmias is
associated with the generation in the heart tissue of a
great number of autowave sources, namely, spiral
waves and vortex structures (i.e., spatio-temporal
chaos) (see, e.g., [1, 2] and references therein).

Modern methods for the stabilization of such
regimes based on single electric pulses (including those
based on implanted defibrillators) are rather arduous
and not always successful. However, recent studies
open novel potentialities in this field of medical sci-
ence. There is no necessity in high-amplitude pulsed
action, and, in many cases, the action can be weakened
[3]. Moreover, in a number of excitable media, the tur-
bulent regime can be stabilized by a rather weak peri-
odic parametric action [4, 5] or by a force action
applied at a certain domain of a medium [6–8].

In this study, we exploit the simple theoretical
model of the FitzHugh–Nagumo type [9, 10] for an
excitable medium. We show that the spatio-temporal
chaos arising as a result of the decay of spiral waves can
be suppressed by means of a point action having a
rather low amplitude. In addition, the problem of seek-
ing frequencies that provide for the efficient suppres-

Moscow State University, 
Vorob’evy gory, Moscow, 119992 Russia
e-mail: loskutov@moldyn.phys.msu.ru
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sion of all spiral waves is solved. Upon this stabiliza-
tion, the medium remains in the spatially homogeneous
state.

The FitzHugh–Nagumo model describes a two-
component system of the activator–inhibitor type:

(1)

As applied to the heart-muscle dynamics, variable U
corresponds to the action potential for muscular cells.

Although this model well describes (at the qualita-
tive level) the excitation propagation in the muscular
tissue and demonstrates basic types of structures aris-
ing in excitable media of the activator–inhibitor type, it
is unsuitable for quantitative description. This is asso-
ciated with the fact that this model does not allow for
certain important properties of the heart tissue, such as
the dependence of the refractoriness period on both the
amplitude and duration of the excitation phase.

In order to obtain a more adequate description, the
set of Eqs. (1) is usually represented in the form

.

In this case, the form of the functions f and g is chosen
with a goal to providing for the consistency of the
action-potential profiles to be obtained with experimen-
tal data.

Recently, the model developed in [11] has been
widely employed, it having been proposed there that

∂U
∂t
------- ∆U U U α–( ) U 1–( )– V ,–=

∂V
∂t
------- βU γV .–=

∂U
∂t
------- ∆U f U( )– V ,–=

∂V
∂t
------- g U V,( ) kU V–( )=
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Number of spiral-wave cores as a function of time in the case of the decay of a single spiral wave and generation of chaos
(G1 = 1/50, G3 = 0.3).
the following piece-wise linear functions be used for
the functions f and g:

(2)

One of the advantages of this description is the pres-
ence of two independent relaxation parameters. One of
them (G3) determines the relaxation period for small
values of U and V. The other parameter (G1) determines
the absolute value of the relaxation parameter for large
values of V and intermediate values of U, which corre-
sponds to the leading and trailing wave fronts.

To ensure a correspondence with actual media (e.g.,
heart tissue), the following values of the parameters
related to the set of Eqs. (2) are usually chosen: C1 = 20,
C2 = 3, C3 = 15, U1 = 0.0026, U2 = 0.837, V1 = 1.8, a =

0.06, and k = 3. In this case, G1 ranges from  to ,

G2 = 1, and 0.1 ≤ G3 ≤ 2.

We have analyzed the dynamics of this system in a
rectangular plane domain of the size of 350 × 350 nodes.
In order to exclude edge effects at the boundaries, we

f U( )

C1U , U U1,<
C2– U a, U U1U2( ),∈+

C3 U 1–( ), U U2,>





=

g U ,V( )

G1, U U1< ,

G2, U1 U2> ,

G3, U U1, V V1< .<





=

1
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------ 1

33
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set the periodic conditions; i.e., the domain under study
had the torus topology.

In the chosen range of parameter values, the auto-
wave solutions of the spiral-wave type are unstable. As
time elapses, they decay into smaller waves and, as a
result, the regime of spatio-temporal chaos is developed
in the system. The spiral waves are the basic types of
the autowave solutions in the given system. This opens
the possibility of using their number as a criterion of the
complexity of the regime existing in the system [12–15].
The calculation algorithm is based on the fact that the
core of a spiral wave (as an arbitrary singularity point
of the wave-front) is a singularity for the phase field:

ϕ(x, y, t) = (U(x, y, t) – U*, V(x, y, t) – V*).

In this case, the quantity n = , called the

topological charge, differs from zero only when the
integration contour envelopes the singularity. This is
the case when n is an integer, and its sign determines
the chirality of the spiral wave. The time dependence
for the calculated number of spiral-wave cores is plot-
ted in Fig. 1. The plot corresponds to the appearance of
the chaotic regime arising from a decaying single spiral
wave.

This chaotic regime is further used as the initial state
in the analysis of a system with a point periodic action
of the rectilinear-step shape:

I (t) = A(2θ(t – Tτ) – 1).

2arctan

1
2π
------ ∇ϕ dl∫°

+–
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Source of excitation

Fig. 2. Results of the action on a system with developed spatio-temporal chaos (G1 = 1/50, G3 = 0.3, A = 6).
Here, A = 6 is the amplitude, θ is the Heaviside step
function, and τ varies within the range from 0.1 to 0.9.
The action was applied to the domain enveloping 2 ×
2 nodes. As applied to the heart tissue, this action is
weaker than in the case of an implanted defibrillator by
a factor of 1000. 

Insofar as arbitrarily (in the dark) seeking suppres-
sion frequencies is extremely inefficient, we employed
a method that made it possible to preliminarily localize
the range of frequencies providing the suppression. The
concept of this method is based on a well-known prop-
erty of excitable media: in the case of competing wave
sources, only the source with the highest frequency of
the generated waves survives. Thus, the most favorable
frequencies of the external action (from the standpoint
of suppressing spiral waves) are those for which the fre-
quency of excited circular waves in the medium is close
to the maximum possible frequency for the given
parameters of the medium.

In order to determine these frequencies, we gener-
ated circular waves in a small volume of the medium
and found the dependence of the frequency ν of the
waves being obtained on the frequency ω of the point
source. The frequency intervals in the vicinity of the
maxima of this dependence served as candidates for a
more detailed study. It is worth noting that the simula-
tion in a small volume of the medium over the course of
several tens of periods is sufficient for constructing the
function ν(ω). However, to verify the presence or
absence of the suppression effect at the given fre-
quency, it is necessary to consider large volumes of the
medium over the course of several thousands of peri-
ods, since otherwise the turbulent regime is not deve-
loped.

The set of Eqs. (2) was investigated for values of the
parameters G1 = {1/75, 1/50, 1.33} and G3 = {0.1, 0.3,
0.5, 1.0, 1.5, 2.0}, i.e., on the calculation mesh with
18 nodes. For all of them, the effect of suppression of
the spatio-temporal chaos was observed (Fig. 2) at fre-
quencies in the vicinity of the maximum for the func-
tion ν(ω) (Fig. 3). The number of cores for spiral waves
as a function of time in the system with a point action
is shown in Fig. 4.

The numerical analysis performed has demonstrated
that the stabilization of the dynamics is also possible if
two or more excitation sources are introduced into the
medium. However, in this case, the suppression effi-
ciency noticeably depends on the distance between the
sources. When they are spaced for a sufficient distance,
the effective action turns out to be stronger than in the
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Fig. 3. Dependence ν(ω) (G1 = 1/50, G3 = 0.3).
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Fig. 4. Number of spiral waves as a function of time in the case of the point action (G1 = 1/50, G3 = 0.3, A = 6).
case of a single source, so that the suppression of spiral
waves occurs more rapidly by a factor of 3–5. If the
sources are placed closely to each other, they begin to
compete, thereby terminating the generation of circular
waves.

An additional series of numerical experiments was
carried out with an extended source in the form of a thin
filament. It was found that the suppression efficiency
rapidly dropped as the filament length was increased.
For example, filaments of length 10l and longer, where
l is the wave-front width, yielded the inverse effect;
namely, the number of spiral-wave cores increased.

Thus, the most efficient method for the stabilization
of the turbulent dynamics of excitable media is that of
suppressing spiral waves by a weak point action in the
form of a single or several sufficiently spaced small-
size sources. In the future, we hope to find conditions
that will allow us to reduce even more the amplitudes of
the negative half-wave. This will result in a decrease in
the total power of the action due to choosing a special
pulse shape, and, hence, will allow us to suppress the
spatio-temporal chaos by means of purposefully chosen
low-intensity pulses. It would appear to be impossible
to attain this effect with ordinary sinusoidal-shape
pulses.
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1. The main characteristic of unusual superconduc-
tors such as heavy-fermion superconductors and high-
temperature superconductors (HTSCs) is that the
superconducting order parameter (SOP) vanishes at
points and lines of the Fermi surface [1–3]. For spheri-
cally symmetric interaction, the SOP coincides with the
wave function of a Cooper pair.

Photoelectron spectroscopic investigations [2] of
HTSC materials and measurements of their conductiv-
ity [3] revealed that both the wave function of the
pseudogap (for T* > Tc) and the SOP (for T < Tc) vanish
on the diagonal of a square in the Cu–O bond plane.
This characteristic of the pseudogap holds even in the
presence of a magnetic field breaking superconductiv-
ity [3] and was attributed by the authors of [3] to the
crystal symmetry. Thus, the vanishing of the SOP is
associated with the features of the electronic structure
of HTSCs for T > Tc . Since we are analyzing the prop-
erty of HTSCs that holds for T > Tc , we use the term
“two-electron wave function” instead of the term “Coo-
per pair” or the SOP. We consider only those two-elec-
tron states that are continuously transformed to Cooper
pairs for T < Tc , i.e., those that satisfy the symmetry
conditions formulated by Anderson [4].

There are two approaches to the generalization of
the Anderson method to the crystal symmetry: the
point-group approach [5, 6] and space-group approach
[7–9]. The point-group approach is based on the repre-
sentation of the SOP in terms of the basis functions of
the irreducible representations of point groups.
Although the point-group approach correctly repro-
duces the nodal structure of the order parameter in
some cases, its results depend on the choice of the basis
functions and are ambiguous [10]. The space-group
approach [7–9], which is based on the induced-repre-
sentation method [11], is free of the above disadvan-
tages and allows basis-independent conclusions on the
nodal structure of two-electron states.
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Leninskiœ pr. 31, Moscow, 119907 Russia
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In this work, using the projection-operator method,
a new variant of the space-group approach has been
developed using the singlet and triplet Anderson two-
electron functions [4], on which the projection opera-
tors of a point group of a crystal act. Such an approach
makes it possible to take into account the crystal sym-
metry and to obtain the dependence of the pair wave
function on all prongs of the wavevector star. The pos-
sible singlet and triplet pair wave functions have been
constructed for the D2h and D4h symmetries and their
nodal structure has been analyzed. The theoretical
results are used to interpret experimental data on the
symmetry of two-electron states in HTSC materials.

2. In the spherically symmetric case, two electrons
with opposite momenta are coupled to a Cooper pair
[4]. The pair wave function is antisymmetric under per-
mutations, is invariant under lattice translations, and is
transformed according to an irreducible representation
of a point group. Excluding symmetric points in the
Brillouin zone, where small irreducible representations
are two-dimensional [7], the wave function of the sin-
glet and triplet pairs is even and odd, respectively [4–6].

In the L–S coupling approximation, the singlet two-
electron function and three components of the triplet
function are written in the form

Ψs = ΦsS0, (1)

(2)

where S0 and  are the singlet and triplet spin func-
tions, respectively. The corresponding spatial parts are
given by the expressions

(3)

(4)

where the superscript and subscript correspond to the
electron coordinate number and the prong of the star of
the electron wavevector k, respectively. Subscript 1
corresponds to an arbitrarily chosen vector in the basis
Brillouin zone and subscript 25 corresponds to the action

Ψm
t ΦtSm

1 , m 1 0 1,, ,–= =

Sm
1

Φ1
s ϕ1

1ϕ25
2 ϕ25

1 ϕ1
2,+=

Φ1
t ϕ1

1ϕ25
2 ϕ25

1 ϕ1
2,–=
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of the space inversion (h25 in Kovalev’s notation [12])
on this vector.

Owing to the translation symmetry, the single-elec-
tron function of the crystal is characterized by the star
{k} of the vector k. A correct, translationally invariant,
two-electron wave function is evidently antisymmetric
under permutations and is expressed as a linear combi-
nation of functions belonging to all prongs of the star.
The structure of this function depends on the choice of
the vector k1 and the symmetry group of this vector. We
begin with the general point of the Brillouin zone,
where the single-electron wave function is determined
by the wavevector star {k} whose dimension is equal to
the number of the point-group elements.

To construct the pair wave function, we use the pro-
jection operator method [13]. Since the space inversion
has already been used in the two-electron functions (3)
and (4), only pure rotations are used in the projection
operators. The singlet and triplet functions are obvi-
ously projected onto only even and odd irreducible rep-
resentations, respectively.

Acting on wave functions (3) and (4) by the ele-
ment h2 , which is the 180° rotation about the X axis, we
obtain the two other basis functions

(5)

(6)

Two approximations—localized spins and spin
space groups—are possible for the spin part of the wave
function. In the localized-spin approximation, projec-
tion operators act only on the spatial parts of the singlet
and triplet functions in Eqs. (1) and (2) and the spin part
is common for all prongs of the star. In the spin space
group approximation [11], the projection operators also
act on the spin parts of the wave functions, which are
associated with the prongs of the wavevector star.

In order to construct a complete basis set for the D2h

group, it is necessary to determine the functions 

and  that are obtained by the action of the opera-
tors h3 and h4 of the 180° rotation about the Y and Z

axes, respectively, on . For the D4h group, it is nec-
essary to determine the basis functions corresponding
to the elements h13 and h16 (180° rotation about the
(−1, 1, 0) and (1, 1, 0) axes, respectively) and h14 and
h15 (anticlockwise rotations about the Z axis by 90° and
270°, respectively).

Applying the standard projection-operator method
[13], we obtain (Table 1) the total two-electron func-
tions with zero total momentum for the D2h group and
(Table 2) results for the one-dimensional irreducible
representations of the D4h group. The projection opera-
tor method applied in this work is equivalent to the
induced-representation method [7–9, 11]. Applying the

Φ2
s ϕ2

1ϕ26
2 ϕ26

1 ϕ2
2,+=

Φ2
t ϕ2

1ϕ26
2 ϕ26

1 ϕ2
2.–=

Φ3
s t( )

Φ4
s t( )

Φ1
s t( )
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induced representation method for the general point of
the Brillouin zone, one can show that the number of
appearance of each irreducible representation is equal
to its dimension [9]. This conclusion is consistent with
the results of [5, 6]. Since the two-dimensional irreduc-
ible representations of the D4h group appear twice, their
qualification requires additional quantum numbers.

Beginning with the projection of the basis function 
on the first row of the irreducible representation Eg, we

arrive at the basis denoted as . Similarly, beginning

with the projection of the function  on the second

row, we obtain the basis denoted as .

As an initial vector k1, any wavevector in the basis
Brillouin zone can be taken [11]. At the general point of
the Brillouin zone, all even and odd irreducible repre-
sentations are possible for singlet and triplet pairs,
respectively. However, in the symmetry planes in the
Brillouin zone, some linear combinations may vanish.
Moving to the symmetry plane σh in the Brillouin zone,
the vector ki approaches its mirror image σhki and the
basis functions Φi approach their mirror images σhΦi .
Two cases are possible in the symmetry plane σh . If the
basis wave functions Φi and σhΦi enter a linear combi-
nation with opposite signs, such a linear combination
vanishes in the symmetry plane. The intersection of
such a plane with the Fermi surface gives the line of
zeros of the pair wave function. If the basis wave func-
tions Φi and σhΦi enter a linear combination with the
same sign, there are no symmetry causes for the vanish-

Φ1
s

Eg
α

Φ1
s

Eg
β

Table 1.  Pair wave functions and planes in which they van-
ish for the D2h group (the notation of symmetry elements is
taken from [12])

Irreducible 
representation Pair function Zero planes

Singlet pairs

Ag  +  +  + No

B1g  –  –  + σx, σy

B2g  –  +  – σz σx

B3g  +  –  – σz, σy

Triplet pairs

Au  +  +  + σx, σy, σz

B1u  –  –  + σz

B2u  –  +  – σy

B3u  +  –  – σx
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s Φ2

s Φ3
s Φ4

s

Φ1
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s Φ3
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s
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s Φ4
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s Φ2

s Φ3
s Φ4
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t Φ2
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Table 2.  Pair wave functions and planes in which they van-
ish for the D4h group (the notation of symmetry elements is
taken from [12])

Irreduc-
ible

represen-
tation

Pair function Zero planes

Singlet pairs

A1g  +  +  +  +  +

 +  + 

No

A2g  –  –  +  –  +

 +  – 

σx, σy, σxy, 
σx − y

B1g  +  +  +  –  –

 –  – 

σxy, σx − y

B2g  –  –  +  +  –

 –  + 

σx, σy

(1)  +  –  – σy, σz

(2)  –  +  – σx, σz

(1)  +  –  – σy, σz

(2)  –  +  – σx, σz

Triplet pairs

A1u  +  +  +  +  +

 +  + 

σx, σy, σz , σxy, 
σx − y

A2u  –  –  +  –  +

 +  – 

σz

B1u  +  +  +  –  –

 –  – 

σx, σy, σz

B2u  –  –  +  +  –

 –  + 

σz, σxy, σx − y

(1)  +  –  – σx

(2)  –  +  – σy

(1)  +  –  – σx

(2)  –  +  – σy
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ing of the pair wave function. Since the mirror reflec-
tion in the plane is equal to the product of the 180° rota-
tion about the axis perpendicular to this plane by inver-
sion and inversion has already been used to construct
basis functions (3) and (4), to determine the nodal
structure of the functions, it is sufficient to analyze their
behavior only under rotations. The function of a singlet
(triplet) pair vanishes in a plane if the 180° rotation
about the axis perpendicular to this plane changes (does
not change) the sign of this function. Tables 1 and 2
present the results of such an analysis of the pair wave
functions. The results for one-dimensional representa-
tions are unambiguous. Since two-dimensional irreduc-
ible representations appear twice in the D4h group, the
symmetry-analysis results for them are ambiguous.
This conclusion coincides with the results obtained in
[5], where two and three types of the basis functions
were obtained for two- and three-dimensional irreduc-
ible representations, respectively. The basis functions

of the irreducible representation  vanish in the (010)
and (001) planes. The basis functions of the irreducible

representation  vanish in the (100) and (001) planes.

At the same time, the linear combinations  +  and

 –  vanish in the vertical planes (110) and (–110),
respectively. In addition, both linear combinations van-
ish in the horizontal symmetry plane (001). Thus, for
the irreducible representation Eg , only zeros of the pair
wave function in the horizontal plane unambiguously
follow from symmetry. The results obtained for weak
spin–orbit interaction remain valid for singlet pairs in
the case of strong spin–orbit interaction. To analyze the
structure of triplet electron pairs in the case of strong
spin–orbit interaction, the projection-operator method
should be applied directly to functions (1) and (2) and
the action of rotations on the pair spin should be taken
into account. In the case of axial symmetry, the compo-

nents  and  of the projection of the total spin of
a triplet pair (ferromagnetic case [9]) are transformed

independently of  (antiferromagnetic case [9]) and
the vanishing of the pair functions occurs in different
planes. For this reason, there are usually no planes in
which the functions of all triplet pairs vanish, this cor-
responding to the Blount theorem [6]. However, either
the ferromagnetic or antiferromagnetic case is usually
realized in the superconducting state; therefore, there
are planes in which the triplet order parameter in the
presence of strong spin–orbit interaction vanishes due
to symmetry requirements [7–9]. The experimental
zero planes and directions UPt3 [1] completely coincide
with the group-theoretical zeros for the irreducible rep-
resentation E2u [9]. This coincidence provides the con-
clusion that the SOP in UPt3 has the E2u symmetry [9].
However, as will be seen below, such a simple relation
does not exist for HTSC materials.

Eg
α

Eg
β

Eg
α Eg

β

Eg
α Eg

β

S+1
1 S–1

1

S0
1
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3. Analyzing a wide variety of experimental data,
most authors (see review [2]) conclude that the SOP in
HTSC materials belongs to the irreducible representa-
tion Ag of the group D2h . In this case, two possibili-
ties—s pairing, i.e., without lines of zeros, and 

pairing with a line of zeros in the rectangle diagonal—
are analyzed. Interplay between two pairing types has
been found in some cases [2]. Photoelectron spectra
with angular resolution [2] and conduction spectra [3]
exhibit the anisotropy of the pseudogap and its vanish-
ing in the rectangle diagonal. According to data pre-
sented in Table 1, (i) all irreducible representations
except Ag in the singlet case corresponding to HTSC
have zero lines in coordinate planes that are not
observed experimentally and (ii) there is no irreducible
representation that has zeros in the diagonal plane.
From the first conclusion, it follows that Ag-type pairing
is the most probable. The second conclusion is trivial,
because the reflection in the diagonal plane is not an
element of the D2h group. Thus, the observed nodal
structure of pairs is more complicated than the structure
following from crystal symmetry. To describe the sym-

metry of such a wave function, we take two vectors 

and  that are symmetric with respect to the rectangle
diagonal. The stars of these vectors (without inversion)
in the projection onto the XY plane and the form of the
photoelectron spectrum with angular resolution [2] are

shown in Fig. 1. For two vectors  and , the singlet
wave functions corresponding to the irreducible repre-
sentation Ag are obtained from Table 1 by introducing
additional indices α and β. We emphasize that two-
electron states corresponding to different single-elec-
tron vectors k belong to the same irreducible represen-
tation Ag and, in contrast to single-electron states
belonging to different vectors k, can interact with each
other. We write the two resulting states in the form

(7)

(8)

The first function does not vanish in the diagonal
plane and is denoted by the subscript s. The second
function approaches zero in the diagonal plane and is
denoted by the subscript x2 – y2. It is worth noting that

orthorhombicity, i.e., , in YBCuO materials is as

small as 2% [2] and can be treated as perturbation. For
zero orthorhombicity, the D2h symmetry is transformed
to the D4h symmetry and the functions with subscripts

d
x

2
y

2–
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k1
β
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β

Φs
s c1 Φ1 α,

s Φ2 α,
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s Φ3 β,
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s c2 Φ1 α,
s Φ2 α,
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– c1 Φ1 β,
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α and β are transformed to  +  +  +  and

 +  +  + , respectively. In the D4h sym-
metry group, functions (7) and (8) belong to the irre-
ducible representations A1g and B1g , respectively, and
the latter function vanishes in a diagonal, which
corresponds to experiment [2]. Thus, as follows from
the group-theoretical analysis, experimental data, and
the small orthorhombicity of the crystal, the two-elec-
tron wave function in HTSC materials corresponds to
the irreducible representation B1g of the D4h group
rather than to the irreducible representation A1g of the
D2h group.

Thus, using the projection-operator method, we
have constructed the wave functions of two-electron
states (Cooper pairs) for HTSC materials. These wave
functions include all prongs of the wavevector stars and
are transformed according to the irreducible representa-
tions of a point group. It has been shown that experi-
mental data on the pseudogap symmetry are not
described by the D2h crystal symmetry and, according
to the above group-theoretical analysis and available
experimental data, correspond to the irreducible repre-
sentation B1g of the D4h group.
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The elasticity of the Riemannian space was previ-
ously discussed by Sakharov [1]. He related the cause
of space elasticity to an effect of the space curvature on
the quantum fluctuations of physical fields. In his opin-
ion, it is these effects that result in the appearance of
space elasticity. At the same time, these effects could
form conditions that promote a transition from contrac-
tion to expansion in the vicinity of a singularity. How-
ever, this concept has not been further developed.

In [1], the Riemannian space was considered within
the framework of general relativity theory (GRT) as a
basis space, and its metric tensor gµν determined both
the geometry of space–time and gravitation. Sakharov
saw the essence of gravitation in the existence of the
metric elasticity that counteracted space–time curving.
In the present study, we treat the gravitational field as a
physical field that is developed in the Minkowski space.
The source of this field is the energy–momentum tensor
of all physical fields, including the gravitational field.
In this approach, the Riemannian space arises not as the
initial one but as an effective space. It is this point of
view that in reality leads to the appearance in gravita-
tional field theory of the elasticity of the effective Rie-
mannian space, which resists an unbounded increase in
its curvature.

In this paper, we show that the cause of the appear-
ance of space elasticity is the process of time dilation.
It was established in [2] that in gravitational field theory
the time dilation of physical processes, which is caused
by the gravitational field, generates effective repulsive
forces that confine the gravitational potential. This is
the mechanism that realizes a termination of the col-
lapse, eliminates the cosmological singularity, and
ensures the cyclic development of the Universe. Thus,
the passage from contraction to expansion and the elim-
ination of the singularity do not require quantum vac-
uum fluctuations and occur due to the intrinsic gravita-
tional-field property to limit its potential. At the same
time, this property of the gravitational field results in
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e-mail: gershtein@mx.ihep.ru; Anatoly.Logunov@ihep.ru
1028-3358/05/5010- $26.00 0499
the elasticity of the effective Riemannian space, which
also manifests itself in the fact that the curvature of this
space is bounded as well. The elasticity counteracts
space–time curvature.

We now consider, as an example, the gravitational
field in a contracting (synchronous) coordinate system.
The passage to this system from the inertial one is
based on the transformations

In the synchronous coordinate system, intervals of the
Riemannian space and of the pseudo-Euclidean space
are of the form

(1)

(2)

where Z = R – τ and  = . The equations of relativ-

istic gravitational theory (RGT) taken outside the sub-
stance for the problem described by Eqs. (1) and (2),
namely,

(3)

(4)

(here, m = , where mg is the graviton mass) lead to
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equations of the form

(5)

(6)

Here, =  and  = . In the variation region of

the variable Z in which the graviton mass may be
ignored due to its smallness, we find from Eqs. (5)
and (6)

(7)

where rg is the Schwarzschild radius arising as a conse-
quence of the correspondence principle. From expres-
sion (7), it follows that the function U decreases with

decreasing Z, the derivative  being positive. Such a
decrease of the function U also occurs in the region of

lower values of Z, since the value of  in Eq. (6)
remains positive.

Insofar as (by virtue of the smallness of m) we can
ignore the quantity

compared to unity, one can find from Eq. (3) that out-
side the substance

(8)

In the region of small values of U, 0 < U ! 1, Eq. (8) is
slightly simplified and takes the form

(9)

This equation has the solution
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According to Eqs. (5) and (6), the second derivative 
at small values of U is positive, which testifies to the
presence of a repulsive force. This is the point from
which the expansion process begins to occur.
The expansion ceases in the region of Z for which

equalities (7) hold. In this region, the values of  are
negative:

(12)

hence, the attraction takes place. Thus, if the stop point
turns out to be outside the substance, then expansion
follows upon the contraction. Further, the stoppage and
the contraction occur again, etc. However, as we will
show below, the actual gravitational field excludes this
regime of motion.

As is shown in [3, 4], in the RGT, the following rela-
tionships are valid at a stop point:

(13)

In addition, for small values of U, the curvature invari-
ant

(14)

as we see, is bounded. At the stop point, this invariant
is equal to

(15)

In the framework of the GRT, this invariant is [5]

(16)

and may be arbitrarily large as W approaches zero.
Comparing expressions (15) and (16), we can see that
the repulsive forces arising in the field theory due to the
time dilation terminate [in accordance with (13)
and (15)] the rise of the effective Riemannian space,
which is manifested in the form of space elasticity. In
other words, the space resists an increase of its curva-
ture. However, this elasticity is not associated with
quantum fluctuations. It is determined by the funda-
mental properties of the gravitational field, namely, the
possibility of constraining its potential. Insofar as the
gravitational field (1) is produced by the substance, it
follows from the given example that, in order to obtain
the physical result, it is necessary to match the solutions
inside and outside of the substance. To do this, it is nec-
essary that the gravitational-field potential on the
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body’s surface be bounded in its absolute value by the
inequality

(17)

This is the solution that corresponds to the actual grav-
itational field and that leads to a scenario in which the
stop point cannot be in vacuum. For this reason, it is
impossible to reach even the value (15) of the curvature
invariant in the actual gravitational field. Therefore, in
the case when the value of expression (15) exceeds the
magnitude of the curvature invariant, the world lines of
particles that are at rest with respect to the contracting
coordinate system will collide with the substance of the
field source. In this case, for each observer, such colli-
sions will occur for a finite time. These arguments
exclude the regime of motion that was mentioned
above. At the same time, they also exclude the appear-
ance of black holes.

φ
c2
------ 1.<
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The propagation of high-intensity sound waves in
liquids causes acoustic cavitation. The complicated
nature of the interaction of arising vapor-gas bubbles
both between themselves and with the acoustic field
can result in the formation of various spatial structures.
Structures formed by vapor-gas bubbles, which recall
fractal clusters, were discovered experimentally when
standing waves arose in the sound field [1]. Such struc-
tures were called acoustic Lichtenberg figures [1, 2]. In
order to describe this phenomenon, a theoretical model
was developed in [2]. In accordance with this model, an
instability leading to self-organization arises in a sys-
tem of cavitation bubbles placed into the acoustic field.
When the size of the region occupied by the ultrasound-
radiation field is comparable with the radiation wave-
length, quasi-two-dimensional clusters can be formed
near the radiator surface [3]. The complicated character
of the interaction of cavitation pockets between them-
selves and with sound waves in an experimental cell
can result in the formation of bistability and transitions
between steady states [4, 5].

The formation of cavitation clouds can be consid-
ered as a nonequilibrium phase transition in the compli-
cated system of interacting cavitation pockets and
sound waves. In the acoustic field, a steady random pro-
cess is formed with nonequilibrium phase transitions

whose spectrum of power can be of the  shape (f is

frequency). Random processes displaying a spectrum
of power that is inversely proportional to the frequency
are rather interesting because they manifest the scale-
invariant properties of the fluctuation distribution.
These scaling properties may be associated with either
the critical behavior of complicated systems or the self-
organization occurring in them [6]. Many attempts have
been made to explain a possible mechanism for the gen-
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eration of scale-invariant fluctuations on the basis of the
concept of self-organized criticality [6, 7], which is
used to describe complicated systems with developed
fluctuations.

Studies of the random processes observed in crisis
regimes of boiling liquids have shown that fluctuations

exhibiting the  spectrum and self-organization of the

critical state can arise as a result of the interaction of the
subcritical and supercritical nonequilibrium phase tran-
sitions in the presence of white noise [8–10]. In this
case, the stretched critical behavior of fluctuations is
characterized by a self-similar distribution of the prob-
ability density, which is independent of time [10].
Alongside the crisis behavior of boiling liquids, the
critical properties of fluctuations are observed in cavi-
tation processes. In [11], results are presented of exper-
imental studies of fluctuations observed in cavitation
processes that occur in boiling water placed into the
ultrasound field. These experiments were conducted
using the laser-photometry method and the resistive

method. A regime was found that exhibited the  spec-

trum of power and the bimodal function of the local
fluctuation distribution. As the ultrasound-field inten-
sity was increased, some of the cavitation centers began
to interact with each other, which was accompanied by
the formation of various spatial structures.

In this paper, we describe experimental data that
was obtained as a result of observations of spatial struc-
tures associated with the acoustic cavitation of liquids.
For comparison, the results of numerical calculations
performed in the framework of the theoretical model of
interacting nonequilibrium phase transitions in a two-
dimensional spatially distributed system are analyzed.

We have carried out the experiments using a stan-
dard magnetostriction radiator of ultrasound oscilla-
tions at a frequency of 22 kHz. The radiator was placed
into an optical cell filled with water or glycerin. Having
elevated the radiator power, we produced the cavitation
in the cell. Varying the radiation intensity, we managed
to observe resonance phenomena occurring in the cell,
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which led to variations of the pattern produced by inter-
acting cavitation bubbles.

In the case of low radiation intensity, separate cavi-
tation centers arose on the surface of a liquid (Fig. 1a).
As a result of mutual attraction, bubbles lined up, form-
ing chains. The number of cavitation centers increased
with the radiator power. As a result of the cooperative
interaction of bubbles near the radiator surface, aggre-
gates redolent of fractal clusters were formed. The
vapor-gas flux was directed from the peripheral part of
the clusters to their central part. Certain clusters were
able to escape from the surface and penetrate into the
interior of the liquid. In the experiments with glycerin,
the aggregates being formed were relatively long-lived
and had a more contrasting shape.

With a further increase in the radiator power, the inter-
acting cavitation centers formed a critically fluctuating
surface (Fig. 1c). In this case, the large number of inter-
acting centers allows us to present a simplified descrip-
tion of the fluctuation dynamics. To this end, we can use
a variant of the concept of self-organized criticality to
interpret nonequilibrium phase transitions [8–10, 12].

The stochastic equations that describe the fluctua-
tion dynamics related to nonequilibrium phase transi-
tions in a spatially distributed system can be written in
the form [12]

(1)

Here, φ and ψ are the dynamic variables (order param-
eters), D is the diffusion coefficient, and Γ1 and Γ2 are
the intensities of the Gaussian δ-correlated noise. When
the set of equations is written in the form of (1), Γ1 and
Γ2 can have different realizations but identical disper-
sions.

In order to numerically integrate the set of Eqs. (1),
we have used the Euler difference scheme with periodic
boundary conditions and different initial conditions.
The functions Γ1(x, y, t) and Γ2(x, y, t) were approxi-
mated by samples of normally distributed random num-
bers.

The spectra of power for the stochastic variable φ
within the wide variation range of governing parame-

ters had the  shape. Correspondingly, the spectrum of

power for the stochastic variable ψ had the  shape.

However, the spectra of power for the reciprocal quan-

tity  varied in inverse proportion to ~ . The distribu-

tion function for the variables in the case of roughening
the time and space scales becomes scale invariant. This
result is analogous to those obtained in the course of
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investigating the concentrated system [10] and the spa-
tially distributed one-dimensional system [12]. Fea-
tures inherent in studies of two-dimensional systems
manifest themselves in the possibility of the appearance
of spatial structures. Figure 2a illustrates the spatial
configuration of the stochastic variable φ upon 8192
integration steps ∆t (∆t = 0.1; the number of spatial
steps is 1024 × 1024) for homogeneous initial condi-
tions. The pattern presented in Fig. 2 is roughened over
small-scale spatial fluctuations. Dark and light regions

(a)

(b)

(c)

Fig. 1. Photographic pattern of cavitation regions on the
radiator surface for different ultrasound-field intensities.
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correspond to positive and negative values of the vari-
able φ, respectively. As is seen, a self-similar spatial
structure corresponding to the critical state is formed in
the system.

These structures are obtained as a result of the sys-
tem evolution. Their shape weakly depends on the ini-
tial conditions and on the intensity of the external noise
within the wide range of their variations. Cluster
growth could be observed (Fig. 2b) upon setting a spa-
tial inhomogeneity in the random-field intensity.

In the case of a high density of cavitation centers,
the pattern obtained is not very sensitive to interaction
details. Therefore, a simplified description of the sys-
tem state, which uses the set of Eqs. (1), is possible. At
lower densities of cavitation centers, the character of

(a)

(b)

Fig. 2. Spatial distribution of the variable φ, which is rough-
ened over small-scale fluctuations. The distribution was
obtained by numerical calculation of the set of Eqs. (1):
(a) homogeneous random-field intensity and (b) cluster
growth in the case of setting a certain spatial inhomogeneity
in the random-field intensity.
bubble interactions becomes more important. In this
case, the evolution of the system should be described
on  the basis of hydrodynamics and nonlinear dyna-
mics [1–5].

Thus, the acoustic cavitation of liquids is accompa-
nied by the formation of various spatial structures, a
low-frequency divergence in the spectrum of power,
and the scale invariant fluctuation-distribution function.
The experimental data obtained in this study are quali-
tatively consistent with the results of the numerical sim-

ulation based on the theory of  fluctuations for non-

equilibrium phase transitions in spatially distributed
systems. The results obtained require no fine-tuning of
governing parameters and testify to the existence of the
regime of self-organized criticality.
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INTRODUCTION

An important research area in controlled thermonu-
clear fusion is the development of methods for recon-
structing the plasma parameters from experimental data
obtained at setups with magnetic confinement. Such
methods make it possible to acquire information on
plasma characteristics that cannot be directly measured
in experiment [1–3].

Reconstruction problems are usually very difficult,
because many of them are incorrectly posed. In most
cases, the solution of each inverse problem represents a
special individual laborious investigation. In such prob-
lems, the volume of the input data and the volume of
prior information on a desired solution are of key
importance: the larger the input information volume,
the more accurate the reconstruction results.

The methods previously applied towards solving the
problem of the reconstruction of equilibrium are based
on magnetic measurements and measurements of vari-
ous integral characteristics of a plasma. In a proposed
new method, in addition to the above-listed data, infor-
mation on the position of the plasma boundary is used.
1028-3358/05/5010- $26.00 0505
Such information can be extracted with a sufficiently
high accuracy from plasma video images. For example,
video recording is a standard diagnostic procedure for
the MAST and JET setups.

The aim of this work is to develop a fast reliable
algorithm for reconstructing the plasma boundary from
optical data and to work out its application to the devel-
opment of a new combined method for reconstructing
the internal characteristics of the plasma from optical
and traditional magnetic measurements. Moreover, the
method is analyzed both theoretically and numerically.

FORMULATION OF THE PROBLEM

The problem of the equilibrium of a toroidal plasma
column is mathematically formulated as follows. The
Grad–Shafranov equilibrium equation [4] obtained
from Ampere’s law and the force balance in an axisym-
metric magnetic field has the form

(1)R
∂

∂R
------ 1

R
---∂ψ

∂R
------- 

  ∂2ψ
∂Z2
---------+ µ0R jη ,–=
(2)jη R ψ,( ) = 

R
∂p t ψ,( )

∂ψ
-------------------- 1

2µ0R
-------------∂F2 t ψ,( )

∂ψ
----------------------- inside Dp t( ),+

Ji t( )δ R Ri–( )δ Z Zi–( ) outside Dp t( ).
i 1=

L

∑








Here, (R, η, Z) are cylindrical coordinates such that the
Z axis is the symmetry axis; Dp(t) is the region occupied
by the plasma; Γp(t) is the boundary of the domain
Dp(t); jη(t, R, Z) is the toroidal current density;
ψ(t, R, Z) is the poloidal flux function; F(t, ψ) is the
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poloidal current function; p(t, ψ) is the kinetic pressure;
and the summation with respect to subscript i on the
right-hand side of Eq. (1) outside the plasma is per-
formed over all the ring currents of a setup that flow in
a solenoid, driving coils of the poloidal field, and cham-
ber walls.

Owing to the axial symmetry, the problem is two-
dimensional and is considered in the unbounded space
of two variables (R, Z). The chamber wall is simulated
by a set of elementary ring currents [3]. The following
© 2005 Pleiades Publishing, Inc.
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additional conditions are taken into account:

(3)

(4)

(5)

The known input data are ψ(t, R, Z) values at the
points (R, Z), where the magnetic field is measured; the
total toroidal current Ip(t) in the plasma; the current
Irod(t) through the central rod creating the toroidal mag-
netic field; and the current Ji(t), i = NPFC, 1, …, NPFC, 2,
i = Nsol, 1, …, Nsol, 2 . The plasma boundary Γp(t) found
from optical measurements is also considered as
known. It is necessary to determine the functions
jη(t, R, Z), ψ(t, R, Z), F(t, ψ), and p(t, ψ) and currents
Ji(t), i = Nwall, 1, …, Nwall, 2 in the chamber walls.

The problem given by Eqs. (1)–(5) is an inverse
problem for the Grad–Shafranov equation. In contrast
to the approaches that are usually used, the problem is
solved in two steps: the plasma boundary Γp(t) is first
reconstructed from optical data, and the internal plasma
parameters are then reconstructed using traditional
magnetic measurements.

RECONSTRUCTION OF THE BOUNDARY

The reconstruction of the shape and position of the
plasma boundary is based on the processing of images
obtained by a fast video camera. The basic physical
effect used for the processing is an increased brightness
of the plasma boundary.

The difficulty of the problem is determined by sev-
eral factors: the inner surface of the toroidal chamber
usually has mirror properties; synchronous change in
the exposition time is complicated due to the fast
dynamics of the process; and an image is distorted due
to the optical properties of the chamber. Despite these
difficulties, a fast reliable algorithm has been developed
for calculating the cylindrical coordinates (R, Z) of the
boundary of the axisymmetric plasma.

It is proposed that the compensation of the spherical
distortions of the chamber and its calibration be per-
formed in a manner similar to that in [5, 6].

It is convenient to formulate the problem in the polar
coordinate system (r, φ) in the image plane (u, v). A
certain point (u0, v 0) close to the magnetic axis is taken
to be the origin of the coordinate system. Let us intro-
duce uniform grids in radius ri = i∆r, i = 0, …, Nr( j )
and angle φj = j∆φ, j = 0, …, Nφ, where ∆r and ∆φ are
the grid steps. The number of points in the radius,
Nr( j ) + 1, depends on the ordinary number j of the

ψ
R 0→
lim ψ

R ∞→
Z ∞→

lim 0,= =

F t ψ,( ) Γp t( )
µ0

2π
------ Irod t( ),=

Ip t( ) jη s.d

Dp

∫=
angle, because the photograph is rectangular. Let ri( j ) ≡
ri(φj) be the ri radius value on the jth ray.

To determine the plasma boundary on the photo-
graph, among the set Ω of all sequences {ri(φj )}, j = 0,
1, …, Nφ, of grid points {ri, φj}, it is necessary to find
a sequence { (φj)} for which the total luminescence
intensity Ipixel including constraints is maximal:

(6)

where

Here, Rk are the constraints that enable one to distin-
guish the most “reasonable” solution of the problem of
the plasma boundary: R1 is the maximum-radius condi-
tion, R2 is the condition of the minimum distance
between the neighboring points of the boundary, R3 is
the smoothness condition, R4 is the derivative-smooth-
ness condition, and R5 is the convexity condition. In
particular, the constraint R5 has the form

The weight coefficients α1, …, α5 determine the
contributions of the respective constraints into the func-
tional Φi( j) and are chosen by fitting the plasma bound-
ary reconstructed in test calculations to the original
boundary. The values once found are suitable for a suf-
ficiently wide class of plasma images comparable in
scale.

The problem of maximizing functional (6) is solved
by the dynamic programming method. If the number of
grid points is not too small, the method always provides
a certain solution. As a result, we obtain the parameter-
ization { (φj)} of the boundary image and use it to
reconstruct its cylindrical coordinates (R, Z) ∈ Γ p:

(7)

where

Here, u = r*(φ)cosφ + u0, v  = r*(φ)sinφ + v 0, α is the
angle between the normal vector to the image plane and

ri*

Φ ri j( ){ }( ) Ipixel ri φj( ) φj,( ) Ri j 1–( ) i j( ) i j 1+( ),, ),+(
j 0=

Nφ

∑≡

Ri j 1–( ) i j( ) i j 1+( ), , α1R1 i j( ),≡
– α2R2 i j 1–( ) i j( ), , α3R3 i j 1–( ) i j( ) i j 1+( ),, ,–

+ α4R4 i j 1–( ) i j( ) i j 1+( ), , , α5R5 i j 1–( ) i j( ) i j 1+( ), , , .+

R5 i j 1–( ) i j( ) i j 1+( ), , , ri j( ) ri j 1–( )((=

+ ri j 1+( ) ) 2ri j 1–( )ri j 1+( ) ∆φ( ) ).cos–

ri*

R
Rc αtan

1 αtan
2

+
---------------------------, Z

v v 0–
av

----------------
Rc

1 αtan
2

+
-----------------------,= =

αtan
u u0–

au

--------------.=
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the straight line passing through both the objective cen-
ter and a point on the plasma-bounding surface; Rc is
the R value at the objective center; and au and av are the
calibration parameters of the video camera.

The prior and posterior estimates of the error of
reconstructing the coordinates of Γp, which is associ-
ated with the discreteness of the photo receiver of the
camera and the thickness of the luminescence layer, are
no more than 1–2%, which is a very good result.

RECONSTRUCTION 
OF THE CURRENT DENSITY

The method of elementary ring currents is proposed
in [3] for solving the inverse problem given by
Eqs. (1)–(5). The use of the boundary Γp as input infor-
mation is a fundamental point in the method. The new
algorithm described in the preceding section allows for
the accurate calculation of Γp from optical data.

In [3], it was proposed to determine the pressure p
and poloidal current function F in the form of the par-
tial sums of power series. A new algorithm for solving
this problem will be formulated below.

Let us take into account Eq. (2), which means that
the function jη inside the plasma in equilibrium is rep-
resented as the sum of two functions

(8)

where ρ = ρ(R, Z) ∈ [0, 1] for (R, Z) ∈ Dp. The func-
tions ρ(R, Z) = ρ(ψ(R, Z)) and ϕ(R, Z) are given. In
the general case, the problem of determining the func-
tions A and B from the known ϕ function is evidently
incorrectly posed. Nevertheless, the problem has a
meaningful solution. The point is that the factors R and

 in Eq. (8) separate the values of the desired functions

in space; i.e., the second and first terms dominate for
small and large R values, respectively. Such a separa-
tion is particularly strong in spherical tokamaks for
which a more accurate reconstruction of p and F should
be expected. This assumption is corroborated by calcu-
lations.

Let us formulate theorems clarifying the unique-
ness, existence, and construction of the solution of
problem (8). The proof is omitted in this short publica-
tion.

Theorem 1. Let at least two points (R1, Z1) and
(R2, Z2) exist on the contour Γ(R, Z) = {(R, Z): ρ(R, Z) =
const} such that R1 ≠ R2 . If the solution (A(ρ), B(ρ) of
problem (8) exists on Γ(R, Z), it is unique. 

Theorem 2. Let problem (8) be solvable and P be
the set of all contours Γ(R, Z) = {(R, Z): ρ(R, Z) =
const} on each of which there are at least two points

A ρ( )R
B ρ( )

R
------------+ ϕ R Z,( ),=

1
R
---
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(R1, Z1) and (R2, Z2) such that R1 ≠ R2 . In this case, the
functions

(9)

(10)

constructed on the set P satisfy Eq. (8) and are unique. 

Theorem 3. Let all points (R1, Z1) of the contour
Γ(R, Z) = {(R, Z): ρ(R, Z) = const} in a certain deleted
neighborhood of the point (R, Z) be such that R1 ≠ R.
For the existence of a solution of problem (8) at the
point (R, Z), it is sufficient that the function ϕ(R, Z) can
be represented as ϕ(R, Z) = Φ(R, ρ), where Φ(R, ρ) has
the partial derivative with respect to R. In this case, the
solution of Eq. (8) at the point (R, Z) can be found by
the formulas

(11)

(12)

If the function Φ(R, ρ) is such that the right-hand sides
of Eqs. (11) and (12) are constant on the contour
ρ(R, Z) = const, the solution of problem (8) exists on the
entire contour.

Formulas (9) and (10) enable one to construct a
numerical algorithm for calculating the functions A(ρ)
and B(ρ). In the ideal case, according to theorem 2, to
determine the functions A(ρ) and B(ρ), it would be suf-
ficient to take two points on the contour Γ(R, Z). How-
ever, the input data of problem (8) include measure-
ment errors and errors of solving the approximate prob-
lems of the previous steps. Therefore, for different
points of the contour Γ(R, Z), the different A(ρ) and
B(ρ) values are generally obtained. Regularization is
necessary.

As is seen from estimates, the errors ∆A and ∆B of
the functions A(ρ) and B(ρ), respectively, approach zero
as the errors of the input data approach zero if the coor-
dinates R1 and R2 of the points chosen for calculating
the functions A(ρ) and B(ρ) are consistent with the
errors of the input data; i.e., R1 is not too close to
R2 : |R1 – R2| ≥ Rmin.

The following regularizing algorithm is acceptable
for calculating the functions A(ρ) and B(ρ). For each ρ

A ρ( )
ϕ R1 Z1,( )R1 ϕ R2 Z2,( )R2–

R1
2 R2

2–
-----------------------------------------------------------------,=

B ρ( )
R1R2 ϕ R2 Z2,( )R1 ϕ R1 Z1,( )R2–( )

R1
2 R2

2–
-----------------------------------------------------------------------------------=

A ρ( ) 1
2
---∂Φ R ρ,( )

∂R
----------------------- Φ R ρ,( )

2R
-------------------,+=

B ρ( ) 1
2
---RΦ R ρ,( ) R2

2
-----∂Φ R ρ,( )

∂R
-----------------------.–=
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value, we calculate the average over the pairs (Ri, Zi)
and (Rj, Zj) of the contour Γ(R, Z) and set

(13)

(14)

The weight |Ri – Rj | reduces the contribution to the sum
from the terms with close Ri and Rj values that deter-
mine the accuracy of the solution.

The method proposed for calculating p and F is
much simpler in its realization than that proposed
in [3]; however, it has a low accuracy near ρ = 0. In con-
trast, the method proposed in [3] is inaccurate near the
plasma boundary, where ρ ~ 1. For this reason, it is
appropriate to construct the final result of reconstruc-
tion using two methods.

On the whole, theoretical analysis and various test
calculations using SCoPE code [7] show that the accu-
racy of reconstructing jη, ψ, p, and F by the elementary
ring-current method using optical data and Eqs. (13)
and (14) is comparable with the perturbation of the
input data. It is expected that the above algorithm pro-
posed for solving the inverse problem will ensure
higher practical accuracy than the previously applied
algorithms, because it involves more input information,
including data on the plasma boundary position.

CONCLUSIONS

A new method has been proposed for solving the
inverse problem given by Eqs. (1)–(5) in the most com-
plex formulation, when all three functions ψ, F, and p
are desired. The data of optical and magnetic diagnos-
tics have been jointly used for the first time.

The algorithm for constructing the plasma boundary
is realized in the VIP (Video Image Processing) code,
which makes it possible to follow its evolution synchro-
nously with the measured plasma characteristics or to
process data in the packet regime. The results obtained

A ρ( )
Ri R j–
C ρ( )

-------------------
Ri Zi,( ) R j Z j,( ), Γ R Z,( )∈

Ri R j– Rmin≥

∑≈

×
ϕ Ri Zi,( )Ri ϕ R j Z j,( )R j–

Ri
2 R j

2–
-------------------------------------------------------------,

B ρ( )
Ri R j–
C ρ( )

-------------------
Ri Zi,( ) R j Z j,( ), Γ R Z,( )∈

Ri R j– Rmin≥

∑≈

×
RiR j ϕ R j Z j,( )Ri ϕ Ri Zi,( )R j–( )

Ri
2 R j

2–
------------------------------------------------------------------------------,

C ρ( ) Ri R j– .
Ri Zi,( ) R j Z j,( ), Γ R Z,( )∈

Ri R j– Rmin≥

∑≡
by the VIP code can be used as an additional constraint
for various algorithms for reconstructing the plasma
equilibrium.

The application of the procedure developed for
reconstructing the plasma boundary from photographs
to other problems is promising. For example, the high
speed of the algorithm makes it hopeful that an on-line
system will be created in the near future for controlling
the shape and position of the plasma with the feedback
based on the processing of video images. Several cam-
eras will make it possible to reconstruct the three-
dimensional image of the plasma and to acquire quan-
titative information on the plasma rotation and on the
toroidal-angle dependence of its shape for the axisym-
metric case.

The algorithm proposed for processing images or its
analogs can be used for numerous problems of recon-
structing the coordinates of curves from photographs or
video films.
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There are several descriptive levels for the fracture
of the solid phase. Thermodynamic analysis provides
the determination of the stability boundary for the solid
phase in the negative-pressure region [1]. The propaga-
tion of cracks is described by methods of continuous
mechanics [2]. When the fracture time is comparable
with the duration of the loading action (e.g., in shock
wave experiments), high-speed fracture is of a relax-
ation character and depends strongly on the kinetics of
damage accumulation [3]. In view of this circumstance,
problems concerning the initial stages of arising dam-
ages are of interest. The atomistic simulation methods
such as molecular dynamics and the Monte Carlo
method that are based on classical models of inter-
atomic interaction allow investigations of microscopic
fracture mechanisms (formation of defects, disloca-
tions, discontinuities, propagation of cracks) for non-
zero temperatures (see, e.g., [4–9]). At the same time,
modern methods for the ab initio calculation of the elec-
tronic structure make it possible to precisely determine
the cold curves and theoretical ultimate strength of sub-
stances (see, e.g., [10]).

In this work, a mechanism of the loss of stability and
the process of plastic deformation in crystalline iron
subjected to high-rate uniaxial tension are studied using
the molecular dynamics method.

MODEL AND CALCULATION METHOD

The model under consideration is an atomic lattice
whose initial undeformed state has the bcc structure.
The three-dimensional periodic boundary conditions
are used. The calculations are performed for systems
with sizes 15 × 15 × 20, 20 × 20 × 20, 25 × 25 × 20, and
30 × 30 × 20 unit cells, i.e., for the number of atoms
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Moscow, 125412 Russia
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from 9000 to 36000. The trajectories of atoms are cal-
culated by numerically integrating the system of clas-
sical equations of motion using the standard second-
order difference scheme with a step of 0.76 fs. The
interatomic interaction in iron is described by the
embedded atom method potential in the parameteriza-
tion proposed in [11]. This parameterization ensures
good quantitative agreement with a rich variety of
experimental and ab initio data, including the lattice
constant of α-Fe, elastic moduli, point-defect energies,
the energy of bcc–fcc transition, the density and struc-
ture factor of the liquid phase, and melting tempe-
rature.

The instantaneous temperature T and stress tensor
σαβ (α, β ∈ {x, y, z}) averaged over the calculation-cell
volume are calculated as

where kB is the Boltzmann constant; m is the atomic
mass; ri and vi are the coordinate and velocity of the
ith atom at the current integration step, respectively;
V is the calculation-cell volume; and U = U(r1, …, rN)
is the potential energy of the system. The initial temper-
ature is specified in the thermostabilization scheme:
additional Langevin terms—self-consistent white noise
and friction force [12], whose total effect is small com-
pared to the interatomic interaction—are introduced
into the equations of motion. The uniaxial tension with

a constant rate  is simulated by scaling of the simula-

T
2m

3kBN
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2

2
-----,
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tion box and atomic coordinates in the [001] direction
at each integration step.1 

To analyze structural transformations and to visual-
ize changes in the simulation box in the sequential
times, the coordination number K and the symmetry
parameter of the local environment C [13, 14] are cal-
culated for each atom. It is convenient to take the coor-

dination-sphere radius as rK = , where r2 and r3

1 Periodic boundary conditions in the tension direction do not con-
siderably affect the conservation of the total momentum of the
system, because the thermal atomic velocities are much higher
than the tension rate and atomic diffusion through the boundaries
of the simulation box is immaterial under these conditions.

r2 r3+
2

---------------
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Fig. 1. Stresses (solid line) σzz and (dash–dotted line) σyy
along and across the tension axis, respectively, vs. the rela-

tive volume change  and tension time t for T = 300 K and

 = 1.3 × 109 s–1. The arrows show the states (A, B, …, F)

for which the atomic structure in the simulation box is
shown in Fig. 2. The states corresponding to the local min-
ima of the σzz(V) plot are marked by diamonds for the
nucleation of clusters of an alternating body-centered tet-
ragonal lattice, by circles for the end of the martensitic
transformation, and by triangles for the nucleation of cavi-
ties. The inset shows the stress at the times of the above
transitions for various calculation-cell sizes (N is the num-
ber of particles). The dashed lines are the extrapolations of

the diamonds and triangles in the limit N  ∞,  =

const.

V
V0
------

V̇
V0
------

N
V
----
are the distances to the second and third nearest neigh-
bors in the initial undeformed bcc lattice, which corre-
sponds to K = 14. The symmetry of the positions of
neighboring atoms with respect to the ith atom is quan-
titatively given by the parameter

where din are distances to the nearest neighbors of the
ith atom (|din| ≤ rK) and Dim = |di(n') – di(n'')| are the dis-
tances between the corresponding (opposite) nearest
neighbors n' and n''.

In order to form the initial configuration, a prelimi-
nary molecular dynamics simulation was performed
with approaching a given temperature T, beginning
with the perfect bcc lattice. The lattice constant a was
chosen from the condition of zero pressure in the sys-
tem for a given initial temperature. From the resulting
equilibrium configuration, simulation was performed
for the adiabatic conditions for uniaxial tension with a

constant rate .

RESULTS AND DISCUSSION

To illustrate the typical tension-degree dependences
of stresses σzz and σyy along and across the tension axis,
respectively, as well as corresponding structural trans-
formations, Figs. 1 and 2 show the simulation results

for  = 1.3 × 109 s–1 and T = 300 K for the system with

20 × 20 × 20 unit cells in the initial configuration (a =
2.86 Å, V0 is the undeformed calculation-cell volume).
First, the body-centered tetragonal (bct) lattice, which
is formed in uniaxial tension, is homogeneously
deformed. The lattice constant a[001] in the tension
direction increases gradually. In this direction, the lat-
tice rigidity decreases gradually, atomic oscillations
become anharmonic, and the oscillation amplitude
increases, which leads to the appearance of pairs of
defect atoms with the coordination number K = 13 (see
Fig. 2a). As the tension degree increases, the number of
such pairs increases and, at a[001] ≈ 3 Å (VB = 1.08V0),
the lattice loses homogeneity due to the formation of
atom clusters with K = 12, which form another modifi-
cation of the bct lattice with a[001] ≈ 3.8 Å (Fig. 2b). The
time of the loss of homogeneity corresponds to a local
minimum in the σzz(V) plot in Fig. 1. Since the forma-
tion of clusters of the new bct phase is of a local char-
acter, it is expected to occur similarly in larger systems,
which is checked in this work up to the system consist-
ing of 30 × 30 × 20 unit cells.

Ci

Dim

m 1=

Ki/2

∑

2 din
2

n 1=

Ki

∑
------------------------,=

V̇

V̇
V0
------
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Fig. 2. Arrangements of particles in the simulation box that correspond to the respective points in Fig. 1: (a) atoms with the coordi-
nation number K = 13 (rK = 3.4525 Å) are shown in grey color, most atoms have K = 14 (they are not shown); (b) similar to (a), but
atoms with K = 12 are also shown in black color; (c) similar to (b), but all atoms are shown (those with K = 14, in white color); (d)
and (e) atoms for which the local-environment symmetry parameter is 0.033 < C < 0.5; and (f) to visualize cavities, the structure
cross-section in the simulation box is shown, atoms with different coordinate numbers are shown in different colors (most atoms
have K = 12 and are shown in black color).

(a) (b)

(c) (d)

(e) (f)
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In a time on the order of 10 ps, both crystalline
phases bct1 and bct2 with a[001] ≈ 3 Å, K = 14 and a[001] ≈
3.8 Å, K = 12, respectively, form a layered structure
(see Fig. 2c), where the part of the bct1 phases trans-
formed to the bct2 phases increases with further tension.
This transition can be classified as a martensitic trans-
formation, because the transition of atoms from one
phase to the other in the process of the phase transfor-
mation occurs due to displacements by distances
smaller than mean interatomic distances, the phase
interface holds order, and the rather slight change in the
stress σzz with change in the volume fraction of two
phases (B–C–D section) indicates that it is a first-order
transition. In the calculation-cell size interval, the form

of the dependences of σzz, σxx, and σyy on  does not

change. However, in the largest system under investiga-
tion (30 × 30 × 20 unit cells), bct-phase clusters are not
joined into layers and the interface has a complex shape
in the transition process.

V
V0
------

20

2

30

100
10

1010108106

10

5

GPa

GPa

20

200 300
í, ä

Fig. 3. Stress at the times of the characteristic structure
changes in the molecular dynamics simulations with vari-

ous tension rates  for T = 300 K. The triangles, circles,

and diamonds have the same meaning as in Fig. 1. The
closed circles are experimental data for the spall strength of
iron [15]. The inset shows the stress at the times of charac-

teristic structural changes for various temperatures at  =

1.5 × 1010 s–1. The calculations are shown for the system
with 20 × 20 × 20 unit cells in the initial configuration.

V̇
V0
------

V̇
V0
------

V̇
V0
------, s
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After the end of the martensitic transformation
(VD = 1.26V0), the atomic structure in the simulation
box consists of bct2-phase domains separated by
boundaries with broken atomic packing. Such a struc-
ture is unstable and decays in about 10 ps with the for-
mation of dislocations (see Fig. 2d). As a result of the
interaction between dislocations, a structure consisting
of several dislocation planes forms in the system. Fig-
ure 2e shows a typical example. The number and orien-
tation of the planes depend on the tension rate, temper-
ature, calculation-cell size, and choice of the initial
configuration. It is worth noting that the planes are
closed to themselves due to periodic boundary condi-
tions. As a result, several grains with the same orienta-
tion of the bct2 lattice that are separated by shear planes
arise in the system. This structure ensures hardening
due to which the crystalline structure exists without
qualitative changes to the rather large tension degrees,
when cavities are formed (VF = 1.43V0). In some cases,
in the hardening section, the further interaction of dis-
location planes or appearance of new planes is possible,
which is accompanied by small jumps in the σzz(V) plot.
The formation of the cavities occurs primarily in the
lines of intersection of dislocation planes at the places
of the largest break in the regular packing (see Fig. 3).

The extreme accessible stress depends on the sys-
tem size (see the inset in Fig. 1). The extrapolation of
the calculation results shows that, as the calculation-
cell size increases, the difference between the stresses
decreases at the time of the formation of cavities, at the
time of the loss of the initial lattice homogeneity, and in
the further bct1–bct2 phase transition.

Figure 3 shows the calculation results for various
tension rates and temperatures. It is interesting that the
stress at the end of the bct1–bct2 phase transition is vir-
tually independent of both temperature and the tension
rate. Using the available results, one cannot unambigu-
ously determine the dependence of the stress σzz at the
time of the loss of continuity on the tension rate and
temperature. As was mentioned above, the time of the
formation of cavities depends significantly on the sys-
tem size and choice of the initial configuration. As the
tension rate decreases, the stress corresponding to the
time of the loss of the homogeneity of the initial crys-
talline structure decreases slightly. As temperature
decreases, the stress σzz in the given transition
increases, because the formation of bct2-lattice clusters
is of a spontaneous fluctuation character and, therefore,
may begin at lower tension degrees due to longer “wait-
ing” times or higher temperatures. Owing to computa-
tional restrictions, the minimum tension rate used in the
molecular dynamics simulations in this work is two
orders of magnitude higher than the maximum tension
rate in experiment [15]. The dependence of the stress
σzz at the time of the loss of continuity that is observed
in the tension-rate interval under investigation is much
weaker than (although does not contradict) the depen-
DOKLADY PHYSICS      Vol. 50      No. 10      2005
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dence of shear strength obtained in shock-wave experi-
ments with iron single crystals [15].

CONCLUSIONS
Mechanisms of elastoplastic deformation and of the

loss of the continuity of crystalline iron subjected to
high-rate uniaxial tension has been investigated by the
molecular dynamics method for strain rates from 1.3 ×
107 to 1.3 × 1010 s–1. Sharp structural transitions occur
at the times of the loss of mechanical stability and are
separated by longer sections of smooth variations.

The transition of deformation from the elastic
regime to the plastic one is accompanied by the concen-
tration of defects in clusters forming an alternating
crystalline phase. The first stage of plastic deformation
is a martensitic transformation between two bct phases.
At this stage, the possibility of forming a characteristic
layered structure is found. At the second stage of plastic
deformation, hardening occurs due to the formation of
the system of dislocation (shear) planes. The formation
of discontinuities (nuclei of microcracks) is of a ran-
dom character of heterogeneous nucleation and occurs
primarily at places of the intersection of dislocation
planes.

Stress at the time of the loss of continuity has been
obtained for various strain rates and temperatures. The
results do not contradict the experimental data [15] on
the shear strength of iron.
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The current state of computers and computational
methods has made it possible to conduct numerical
aerodynamic experiments for complicated solid sys-
tems. We consider a supersonic flow over systems of
spheres whose centers form spatial configurations rela-
tive to the uniform flow.

It was previously suggested [1] that the study of a
supersonic flow over systems of spherical bodies given
the simplest configuration of their elements—when the
centers of all spheres are located in the flow plane—
could provide conclusions that apply to the more com-
plicated cases of spatial and irregular locations. To ver-
ify this assumption, we studied flows over spheres
whose centers lie in the plane perpendicular to the
incoming flow, as well as flows over pyramids and
prisms. The results of the calculations and their analysis
are discussed in this study.

Nine configurations were chosen for the investiga-
tion of supersonic aerodynamics. In six cases, the cen-
ters of the spheres were located in one plane, while in
the other three cases they lay in the vertices and in the
middles of the edges of a tetrahedron and two prisms.
For convenience of reference, the systems of spheres
are designated by letters, following the designations
from [1], where configurations ‡–d were considered.
These designations, along with brief descriptions of the
sphere center configurations, are as follows:

(e) three spheres with the centers at the vertices of a
regular triangle with the side 2(h +1);

(f) four spheres at the vertices of a square with the
side 2(h +1);

(g) six spheres in the vertices and middles of the
edges of the triangle with the side 4(h +1);

(h) nine spheres equally spaced in the square with
the side 4(h +1);

(i) 16 spheres uniformly located in the square with
the side 6(h +1);
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(j) an infinite rectangular lattice with the step
2(h +1);

(k) four spheres at the vertices of a tetrahedron with
the side 2(h +1);

(l) 12 spheres at the vertices and middles of the
edges of a right triangular prism with the sides 4(h +1)
and height 2(h +1);

(m) 18 spheres at the vertices and in the middles of
the edges, as well as at the centers of side faces, of the
right triangular prism with the sides 4(h +1).

In six cases (e–j), the uniform incoming flow is per-
pendicular to the plane of the sphere centers; the incom-
ing flow in the case k is orthogonal to the face of the tet-
rahedron; and the flow in the cases l and m is orthogonal
to the side face of the prism.

The characteristic configuration size h is equal to the
ratio of half the distance between the two nearest points
of neighboring spheres to the sphere radius R. All cal-
culations are conducted for the perfect gas flow with γ =
1.4 and M = 6. The aim of the calculations is to deter-
mine the drag coefficients, transverse forces, and the
configuration of shock waves as functions of h.

Let us note that the main characteristics of the
supersonic flow over systems of spherical bodies con-
sidered previously for the configurations a–d [1] are
retained in these calculations. The mutual influence of
the spheres is almost eliminated at h = 0.5. Drag coeffi-
cients cx approach the value for an isolated sphere in an
unbounded flow. Similar to [1], the exception is the sit-
uation in which the side regions of the bow shock waves
or reflected shock waves fall on the front surface of the
sphere from the rear rows. In this case, cx at much larger
distances can significantly exceed cx of an isolated
sphere.

The coefficient of the force that lies in the plane
orthogonal to the incoming flow and passes through the
sphere center is taken as a coefficient of transverse
force cy . This coefficient also vanishes at h = 0.5. The
common bow shock wave at the front of all configura-
tions breaks into individual shock waves in front of
each sphere at h ~ 0.5.
 2005 Pleiades Publishing, Inc.
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Table 1.  Drag coefficients cx of the spheres

Case, sphere 0.025* 0.1 0.2 0.25 0.3 0.4 0.5

e 1.131 1.090 1.030 0.978 0.796 0.813 0.842

f 1.165 1.135 1.072 0.796 0.804 0.810 0.823 

g, middle 1.365 1.276 1.209 1.169 0.713 0.753 –

g, corner 1.090 1.089 1.070 1.040 0.800 0.816 –

i, inner 1.529 1.441 1.326 0.660 0.658 0.755 0.783

i, middle 1.283 1.256 1.185 0.754 0.757 0.791 0.821

i, corner 1.103 1.111 1.090 0.797 0.797 0.818 0.841

j – 1.630 1.486 0.677 0.690 0.771 0.780

* Hereafter, the h values are given in horizontal.

Table 2.  Transverse force coefficients cy of the spheres

Case, sphere 0.025 0.1 0.2 0.25 0.3 0.4 0.5

e 0.455 0.430 0.417 0.398 0.160 0.038 0.001

f 0.501 0.488 0.460 0.156 0.087 0.018 0.004 

g, middle 0.486 0.439 0.406 0.409 0.199 0.034 –

g, corner 0.431 0.443 0.429 0.418 0.151 0.034 –

i, inner 0.047 0.055 0.046 0.031 0.013 0.004 0.002

i, middle 0.516 0.469 0.426 0.099 0.054 0.003 0.008

i, corner 0.553 0.538 0.500 0.138 0.082 0.012 0.011
Numerous individual features of the flow over the
configurations under study allow us to significantly
broaden the understanding of the aerodynamics of a
system of bodies in the supersonic flow.

The flows over configurations e–j were previously
studied in computations [2] and experiments with wind
tunnels [3]. Seven configurations were considered
in [2] and two of them coincide with our cases b [1]
and e. The calculated pressure fields including pressure
distributions on the sphere surfaces under the interfer-
ence conditions were presented. However, the values of
the transverse force were not given in [2].

The experimental values of the separation of a shock
wave in the supersonic flow over a square flat lattice
with the side L as a function of lattice permittivity were
provided in [3]. The separation of the shock wave
decreases with an increase in permittivity. These data
can be used to verify the computational model of a flow
over a cloud with a large number of fragments.

The drag coefficients cx calculated for the systems e,
f, g, i, and j are presented in Table 1. Note that the
sphere centers in these systems lie in the plane orthog-
onal to the incoming flow. The following terminology
is used: the center of the corner sphere lies at the verti-
DOKLADY PHYSICS      Vol. 50      No. 10      2005
ces of the triangle in systems e and g and of the square
in systems f and h; the middle sphere is located in the
middles of the triangle sides in the system g and on the
sides of the outer square in the system i; and the inner
sphere is located at the vertex of the square that has the
side 2(h +1) and lies inside the outer square with the
side 6(h +1) in the system i.

When the distances between spheres are small (h <
0.25), the drag coefficient cx depends strongly on the
“load factor,” i.e., on the number of spheres in the sys-
tem and on their locations. This dependence is clearly
seen in Fig. 1, where the dependences cx(h) are pre-
sented for configurations e and i. The differences are
caused by the shape of the common bow shock wave
under the specified conditions. It is seen that the coeffi-
cient cx of the spheres located closer to the system cen-
ter exceeds the coefficient cx for peripheral spheres; i.e.,
the value of the flow spreading accompanied by the
pressure fall on the front surface exceeds the flow
spreading value for the inner spheres. Correspondingly,
the parts of the bow shock wave in front of the inner
spheres are closer to the normal shock than those for the
peripheral spheres (the corner spheres for the configu-
rations e and i).
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Note also a certain decrease in cx at h ≥ 0.3 in com-
parison with an isolated sphere. This decrease is attrib-
uted to the fall of the reflected shock on the rear part of
the sphere, which leads to a certain increase in bottom
pressure. This fact was not previously mentioned in [1],
because the decrease in cx there was attributed to the
more significant increase in the bottom pressure due to
the support effect from the rear rows of the spheres. The
support effect due to the reflected shocks is signifi-
cantly higher for the inner sphere than for the corner
spheres.

The transverse force coefficients cy calculated for
the systems e, f, g, and i are presented in Table 2. Fig-
ure 2 shows cy(h) for the same cases as in Fig. 1.

0.2 0.4 h

0.8

1.0

1.2

1.4

cx

Fig. 1. Drag coefficient in cases (solid line) e and (dashed
line for the corner sphere and dash–dotted line for the inner
sphere) i.
We first point to the increase in the transverse force
coefficient as compared to the simplest case of the flow
over two spheres [1]. The dependence cy(h) remains
qualitatively unchanged. Finally, it should be noted that
the transverse force in the configuration i for the inner
spheres is significantly smaller than the value for the
peripheral spheres. All these facts can be explained by
the character of the evolution of the bow shock wave
with an increase in h. For example, the decrease in cy

for the inner spheres can be explained by the fact that
the reflected shock waves fall on the inner spheres from
both sides for almost all h values, whereas they fall on
the peripheral spheres from one, inner side.

The above features allow us to generalize the com-
putation procedure developed in [4] for the scattering of
two fragments to the case of multiple breakups. First,
the cy value in the equations in [4] should be increased
at the matching point of linear approximations for the
multiple breakups. Second, the solution should be mod-
ified taking into account the stage-by-stage separation
of peripheral fragments. At each stage, the debris cloud
should be considered as a binary complex, consisting of
one central and several peripheral fragments.

The above-described important property of the
supersonic flow over the debris cloud is also demon-
strated in Fig. 3 by the example of pressure distribution
for the cases h and i. This figure illustrates the pressure
change related to the pressure in the incoming flow
along the large circle of cross sections of the corner

0 0.2

0.4

h

cy

0.2

Fig. 2. Same as in Fig. 1, but for the transverse force coeffi-
cient.

0.4
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(case h) and inner (case i) spheres. These cross sections
contain the incoming flow velocity and are orthogonal
to a side of the square formed by the centers of the cor-

ner spheres. The value s = sinϕ,  ≤ ϕ ≤  is shown

along the abscissa with the upstream point of the sphere

corresponding to ϕ = . Solid lines are the results for

the case h; the curve with a local maximum corresponds

to the inner side of the sphere i.e., to the configuration

facing inside,  ≤ ϕ ≤ , and the smooth curve cor-

responds to the outer side  ≤ ϕ ≤ . The dashed

lines refer to the configuration i, where the upper curve

is for  ≤ ϕ ≤  and the lower curve is for  ≤ ϕ ≤

. The corner (case h) and inner (case i) spheres expe-

rience the reflected shock from one and both sides,
respectively. It is this small difference between the
dashed curves that results in the small value of the
transverse force coefficient for the inner sphere, which
is shown in Fig. 2.

The calculation results for the tetrahedron (case k)
and two prisms (cases l and m) are shown in Fig. 4. The
calculation results for prisms are presented in detail in
Table 3. For convenience of illustration, the double scale
(linear for 0 ≤ 2h ≤ 1 and logarithmic for 1 ≤ 2h ≤ 5) is
used for abscissa in Fig. 4. For the flow over the tetra-
hedron, the solid line is the drag coefficient cx for the
first-row sphere, the dashed line is the drag coefficient
cx for the second-row sphere at the vertex of the tetrahe-
dron, and the dash–dotted line is the transverse-force
coefficient for the first-row sphere. As h increases, the
coefficients cx and cy change qualitatively in a manner
that is similar to the case of three spheres with the cen-
ters lying in the plane along the flow direction (case c
in [1]). The drag of the rear sphere grew sharply due to
the effect of bow shock waves from the front spheres.

The markers in Fig. 4 illustrate the aerodynamic
coefficients of 4 out of 18 spheres of the prism in the
case m. The upper and lower markers in each pair show
cx and cy , respectively. The same data are presented in
Table 3 for 12 spheres of the system l and all 18 spheres
of the system m at two values of the distance h. The
change in cx as compared to the isolated sphere in the
unbounded flow is again determined by three factors.
First, the support effect of the rear rows reduces the
drag of the front spheres. Second, the fall of the
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reflected shock on the rear side of the sphere reduces
drag. Third, the fall of the front-sphere shock on the
front side of the rear sphere increases drag. The com-
bined action of all three factors is possible in the com-
plex configurations discussed above.

Computations have shown that the evolution of the
bow shock wave in complex configurations with an
increase in h is similar to the evolution in simple sys-
tems: the monotonic decay of the common shock wave

–1.0 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8

50

40

30

20

sinϕ

p∞

10

Fig. 3. Pressure distribution over a large circle in cases
(solid lines) h and (dashed lines) i.

p

Fig. 4. Drag coefficient and transverse force coefficient for
cases k (the solid and dashed lines are cx for the first- and
second-row spheres, respectively, and the dash–dotted line
is cy) and m (circles correspond to the middle sphere in the
first row and side layer, crosses are for the corner sphere in
the first row and side layer, squares correspond to the sec-
ond-row sphere in the central layer, and diamonds are for
the third-row sphere in the side layer. In all cases, cx > cy).
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Table 3.  Drag coefficient cx and transverse force coefficient cy of the spheres

Case, sphere
0.25 0.5

cx cy cx cy

l, middle in the first row 0.524 0.115 0.645 0.018

l, corner in the first row 0.756 0.138 0.803 0.008

l, second row; 0.602 0.323 0.632 0.170

l, third row 0.374 0.247 0.365 0.201

m, middle in the first row and central layer 0.203 0 0.527 0

m, middle in the first row and side layer 0.493 0.063 0.668 0.033

m, corner in the first row and central layer 0.646 0.112 1.121 0.471

m, corner in the first row and side layer 0.744 0.133 0.821 0.009

m, second row and central layer 0.773 0.258 0.601 0.325

m, second row and side layer 0.639 0.379 0.627 0.199

m, third row and central layer 0.616 0 0.353 0

m, third row and side layer 0.365 0.269 0.368 0.222

Note: The first, second, and third rows are enumerated streamwise, and the central and side layers are counted across the flow.
into the individual shock waves in front of each sphere
occurs at least in the front rows.
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It is known that problems of mechanics underlain by
Newton’s laws consist either in determining the applied
forces by a given motion (the first problem of mechan-
ics) or in determining the motion by given forces (the
second problem of mechanics).

The third problem of mechanics consists in deter-
mining the motion of the noninertial frame in which the
behavior of some material system under the action of a
specified force is known from observation. This statement
of the problem is typical of inertial navigation [1, 2].

A possible way to solve this problem consists in
assuming that the following are known: the projections
of the angular velocity of the moving frame of refer-
ence, as well as the projections of the absolute acceler-
ation of its origin, onto its axes. Then, the attitude of the
moving axes is determined by solving the Poisson kine-
matic equations; the velocity and location of the mov-
ing origin are determined by integrating the accelera-
tion already projected onto the inertial axes.

To solve this problem, three gyroscopes and three
newton-meters are required.

In this paper, complete information about the behav-
ior of the moving frame of reference is obtained from
the observed vibrations of a spatial isotropic oscillator.

First, we assume that the moving object rotates
about a fixed point, which coincides with the center of
vibration of the oscillator. Then, in the inertial refer-
ence system, the equations of the spatial isotropic oscil-
lator exposed only to elastic forces have the form

(1)

Here, the natural frequency of the oscillator determines
the time unit measure.

To write the equations of motion in the object-cen-
tered reference system

, (2)

ẋ̇ x+ 0, x x1 x2 x3, ,( ).= =

ẏ̇ y 2AT Ȧẏ AT Ȧ̇y+ + + 0=

Institute for Problems in Mechanics, 
Russian Academy of Sciences,
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we pass from x to y by an orthogonal transformation
with matrix A:

(3)

In the most general statement, the problem formu-
lated for Eqs. (2) consists in reconstructing the orienta-
tion matrix A(t) by the observed vibrations y(t) of the
oscillator in the object-centered reference system.

Introduce the angular velocity matrix Ω = AT .
Then, the second-order equations (2) with respect to the
desired matrix A can be written as a system of two
equations of the first order:

Here, the first equation is the Riccati equation for the
angular velocity matrix Ω and the second one is the
Poisson equation for matrix A.

Now, we assume that the natural frequency of the
oscillator is far above the modulus of the angular veloc-
ity of the moving object. Then, an approximate solution
to system (2) with respect to matrix A(t) can be sought
in the form of a step function A(t) = const for

Here, n runs through all integers (Fig. 1).

It is known from the theory of the Riemann integral
that a sequence of step functions uniformly converges
to a function A(t) if this function is continuous or has
discontinuities of only the first kind. This means that,
for any accuracy of calculation of matrix A, one can
always choose a natural period of vibrations of the
oscillator such that the required accuracy is guaranteed.
In particular, if function A(t) is smooth, then the natural
period of vibrations can be easily estimated from above
with the use of the upper estimate for the norm of the
derivative of this function.

x Ay.=

Ȧ

Ω̇y Ω2y– 2Ωẏ ẏ̇ y,–––=

Ȧ AΩ.=

2π n 1–( ) t 2πn.< <
© 2005 Pleiades Publishing, Inc.
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On each interval, the general solution to system (2)
has the form

(4)

where u and v are arbitrary three-dimensional constant
vectors. It is obvious that such a solution is exact for
equations in the inertial reference system. The meaning
of the approximate solution (4) is clear: during one
period of vibration of the oscillator, the vibration shape
in the object-centered reference system is changed neg-
ligibly.

Relations (4) determine the parametric representa-
tion of an arbitrary ellipse including the particular cases
of straight line segments passing through the origin and
circles centered at the same origin. Introduce the fol-
lowing notation (see Fig. 2):

e1 is the unit vector of the major semiaxis of the
ellipse, and r is the length of this semiaxis;

e2 is the unit vector of the minor semiaxis, and k is
the length of this semiaxis;

e3 is the unit normal to the ellipse plane (e3 = e1 × e2).

These vectors are the columns of the matrix A =
||e1 e2 e3||. This matrix relates the representation of the

y u tcos= v t,sin+

A

t

Fig. 1.

x1

x2

x3

e1 e2

e3

Fig. 2.
ellipse in the moving axes with that in the inertial refer-
ence system:

(5)

Here, angle τ determines the point location on the
ellipse at instant t = 0.

Let us explicitly express this matrix in terms of arbi-
trary constant vectors u and v. For this purpose, we note
that relation (5) is equivalent to the following two rela-
tions:

(6)

and calculate the vector product of vectors (6):

(7)

The value K = rk is the modulus of the angular
momentum of the vibrating particle; it is called the
quadrature (πrk is the ellipse area).

By virtue of the rotational invariance of the vector
product, the identity Au × Av = A(u × v) holds, and we
can write the following matrix equation:

(8)

This equation may be explicitly solved for matrix A:

(9)

If u × v = 0, then the ellipse degenerates into a
straight line segment, the information about the object
rotation around this straight line is lost, and this results
in the degeneration of the matrix A.

Expressing r, k, and τ in terms of arbitrary constant
vectors u and v, we can express matrix A, which deter-
mines the attitude of ellipse (4) relative to the original
trihedral, in terms of only u and v, i.e., in terms of the
observation data only. Since ellipse (4) remains fixed in

A u tcos v tsin+( )
r t τ+( )cos

k t τ+( )sin

0

=

=  
r τcos

k τsin

0

tcos
r τsin–

k τcos

0

tsin .+

Au
r τcos

k τsin

0

, Av
r τsin–

k τcos

0

,= =

Au Av×
r τcos

k τsin

0

r τsin–

k τcos

0

×
0

0

K

.= =

A u v u v×
r τcos       r τ sin– 0 

k

 
τ

 

sin       

 

k

 
τ

 

cos 0

0 0

 

K

B
 

.= =

A B u v u v× 1–     u v × 0 ≠( ) .=                
DOKLADY PHYSICS      Vol. 50      No. 10      2005



ON THE SOLUTION OF EQUATIONS OF THE LINEAR OSCILLATOR 521

                
the inertial reference system under rotations of this tri-
hedral, matrix A determines the attitude of the moving
object in the absolute space.

To find the required parameters, let us calculate the
scalar product of vectors (6) and their scalar squares:

(10)

Relations (10) imply

(11)

This finally gives

(12)

Note that the quadrature K = rk present in (8) and (9)
can also be calculated directly via u and v. Relations (12)
imply

(13)

In the case where u2 – v2 = 0 and u · v = 0 at the same
time, angle τ is undefined, and it is seen from (12) that
the point traces out a circle.

Together with (9), equalities (12) complete the con-
struction of matrix A, which determines the attitude of
the moving trihedron with respect to the fixed one, in
the case where the trajectory of the oscillator in the
inertial reference system is neither a line segment nor a
circle.

Relations (9) and (12) are of a general nature; they
are independent of the way the vector constants u and v

u u⋅ Au Au⋅
r τcos

k τsin

0

r τcos

k τsin

0

⋅= =

=  r2 τcos
2

k2 τ ;sin
2

+

u v⋅ Au Av⋅
r τcos

k τsin

0

r– τsin

k τcos

0

⋅= =

=  k2 r2–( ) τ τ ;sincos

v v⋅ Av Av⋅
r– τsin

k τcos

0

r– τsin

k τcos

0

⋅= =

=  r2 τsin
2

k2 τ .cos
2

+

u2 v2+ r2 k2, u2 v2–+ r2 k2–( ) 2τ .cos= =

r

k 
  1

2
--- u2 v2 u2 v2–( )2

4 u v⋅( )2+±+[ ] ,=

2τtan
2u v⋅
v2 u2–
----------------, u2 v2– 0.≠=

rk u2v2 uv( )2– u v× .= =
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are calculated by the measurement data. However,
these expressions can be significantly simplified by par-
ticularizing the measurement procedure for u and v.
Assume that the test oscillator involved in the measure-
ments has the same frequency as the oscillator under
consideration. This oscillator allows determining y(t)
at particular time instants. Therefore, in accordance
with (4), the required constants may be found in the fol-
lowing way:

(14)

Then, using the feedback, one can introduce a cor-
rection for the test oscillator frequency, which is pro-
portional to the scalar product of vectors (14):  =
a(u · v). By virtue of (10), this gives the equation

(15)

which implies that, for a > 0, the test oscillator adjusts
itself to the asymptotically stable mode, in which τ = 0.
At the measurement instants chosen in this way, the
product u · v = 0 and formulas (12) take the form

(16)

This allows finding matrix A in the form

(17)

In the second equality here, the inverse matrix is
replaced with the transposed one, which is the same due
to its orthogonality.

The elliptic trajectory (4) of the isotropic spatial
oscillator (2) is not stable under indefinitely small per-
turbations. In particular, the rigidity being slightly
varied

(here, E is the identity matrix and C is a symmetrical
matrix with a small norm), the trajectory is generally no
longer planar and closed and the above algorithm for
constructing matrix A is unrealizable.

Here, if perturbation C is small, then the fall of the
trajectory outside the plane can be treated as a slow
rotation of this plane in the inertial space, i.e., as a
“deviation” of the gyroscope constructed above. In this
case, the implementation of the above presented algo-

u y 2π n 1–( )( ), v y π
2
--- 2π n 1–( )+ 

  ,= =

n 1 2 … ., ,=

τ̇

τ̇ a k2 r2–( ) τ τ ,cossin=

r u , k v , τ 0.= = =

A
u     0     0

0     v     0

0     0      u v×

u v u v× 1–=

=  
u
u
------  

v
v
-----  

u v×
u v×
---------------

T
.

ẋ̇ E C+( )x+ 0=
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rithm runs into no difficulties. The situation is different
if the ellipse evolves within the plane. For small varia-
tions of the rigidity, the ellipse alternately (with a cer-
tain period) degenerates into a circle and into a straight
line segment. These are the cases in which the measure-
ments cannot be made.

In the case of a small dissipation

the vibration amplitude tends to zero, which makes the
measurements impossible.

In order for the spatial isotropic oscillator to be real-
izable in practice as a gyroscope, control actions that
provide its stability under small perturbations should be
introduced into Eqs. (2). However, it is impossible in
principle to ensure the stability of the plane of vibra-
tions of the oscillator, i.e., to guarantee such a gyro-
scope from deviation. For this reason, we do not even
pose this problem. On the other hand, the orbital
asymptotic stability of a specified elliptic trajectory in
the vibration plane can be ensured and this circum-
stance is sufficient for the above-presented algorithm
for constructing the orientation matrix A to be realiz-
able.

This problem is solved in [3, 4], where it is demon-
strated that the equation

(18)

where

possesses the asymptotically stable integral variety

(19)

The first relation in (19) signifies the constancy of
the vibration energy and the second relation signifies
the constancy of the quadrature. System (18) deter-
mines the plane oscillator into which the original oscil-
lator can be brought by means of transformation with

ẋ̇ Dẋ x+ + 0,=

ẋ̇ x+ µ K K0–( )Jx ε 1 x2– ẋ2–( )ẋ,+=

x
x1

x2

, J 0 1

1– 0
,= =

2E = x2 ẋ2+  = r2 k2+  = 1, x ẋ×  = K  = K0.

Fig. 3.
matrix A (9). With (3) in mind, one can write the three-
dimensional version of Eq. (18) in the form

(20)

where

In this equation, it is taken into account that the
quadrature K and the total energy E are invariant under
the action of the orthogonal group.

The forces applied to the pendulum in accordance
with (20) stabilize the vibrations with constant ampli-
tude and constant quadrature and provide the validity of
the above-presented algorithms.

In practice, such a gyroscope can be implemented,
for example, with the use of six Γ-shaped elastic rods
that make up a spatially isotropic elastic suspension
(see Fig. 3).

The rods are of square section and are equipped with
piezoelectric force sensors and information sensors
mounted on their side faces. Devices of this kind should
be considered as low-accuracy vibratory gyroscopes
for wide use [5, 6].

The gyroscope can also be implemented with the
use of a uniform ball in an electromagnetic suspension.

Remark 1. It is assumed above that the moving
object only rotates about the center of the oscillator. If
the motion is of a general nature, then the right-hand
sides of system (2) contain slowly varying terms due to
the projections of the apparent acceleration onto the
axes of the device. As a result, the harmonic high-fre-
quency solution (4) should be corrected by means of the
addition of a slowly varying component. In this case,
the realization of the algorithm described above should
be preceded by filtering out the harmonic component
from the signal. Then, the slowly varying component
reprojected onto the axes of the inertial trihedral with
the use of matrix A provides information about the
absolute acceleration. Thus, the above-considered
device can play the role of both a three-dimensional
attitude sensor and a three-dimensional sensor of abso-
lute acceleration at the same time. To realize the dis-
crete filtering, in the course of calculating matrix A, one
can determine u and v as

The information about the acceleration may be

ẏ̇ y+ µ K K0–( )J*y ε 1 y2– ẏ2–( )ẏ+=

+ 2AT Ȧẏ AT Ȧ̇y+ 0,=

J* AT
0    1   0

1–    0   0

0    0   0

A.=

u
1
2
--- y 2π n 1–( )( ) y π 2π n 1–( )+( )–[ ] .=
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obtained by calculating

[y(2π(n – 1)) + y(π + 2π(n – 1))].

Remark 2. Unlike the vibratory gyroscopes of the
type in [5, 6], the above considered device is not bal-
anced: the vibrating oscillator loads the mount with the
reactions of the elastic constraints. This problem seems
to be solvable with the use of purely constructive meth-
ods by means of adjusting two antiphased oscillators of
the above type.
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The nonclassical contact problem for an elastic
layer is analyzed under the assumption that the thick-
ness of the layer is small as compared to the a priori
unknown contact area. The asymptotic behavior is
found for the internal stressed state. Explicit expres-
sions are derived for the boundary layer and variation of
the elliptic contact domain. The asymptotic behavior is
found for the contact pressure and its resultant.

FORMULATION OF THE PROBLEM

Let us constructively consider the nonlinear prob-
lem concerning the pressure of an elliptic-paraboloidal
die on an elastic layer with thickness H:

(1)

The displacement vector u is determined as the solu-
tion of the Lamé system that satisfies the condition of
the absence of friction and the Signorini boundary con-
dition (see, e.g., [1, 2]):

(2)

respectively. Here, δ0 is the die displacement and σ3j (u)
are the stress tensor components. For definiteness, we
assume that the lower surface of the elastic layer
(x3 = H) is coupled with an undeformable support (see
also [3, Sect. 1.4]). The standard regularity conditions
are taken at infinity (see, e.g., [4, Sect. 1]). Assuming
that the layer is relatively thin, we set

(3)

x3 Φ x1 x2,( ),–=

Φ x1 x2,( ) 2R1( ) 1– x1
2 2R2( ) 1– x2

2.+=

u3 ε; x' 0,( ) δ0 Φ x'( ), σ33 u; x' 0,( ) 0,≤–≥
u3 ε; x' 0,( ) δ0– Φ x'( )+[ ]σ 33 u; x' 0,( ) 0,=

x' x1 x2,( ) R
2
,∈=

H εH*, δ0 εδ0*, R1 ε 1– R1*,= = =

R2 ε 1– R2*,=
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where , , and  are assumed to be comparable
with H*.

An important characteristic of the problem is the
contact-pressure distribution

(4)

Here, the contact domain ωε , where the settling of the
elastic layer surface is directly determined by the die
shape [see Eq. (2)], i.e., u3(ε; x', 0) = δ0 – Φ(x'), is
unknown and should be determined in the process of
solving the problem.

As is known [5, 6], the distribution of the contact
pressure over the domain ωε is nonuniform; i.e., the
domain ωε is separated into the following: a region in
which the pressure is mainly proportional to the settling
of the die; and a narrow boundary strip (with a thick-
ness on the order of the elastic layer thickness) over the
contour Γε of the domain ωε, in which the contact pres-
sure distribution is significantly nonuniform in the direc-
tion orthogonal to the contour Γε. The contact problem
for a die circular in plan was studied in [6–8, 4]. The
asymptotic behavior for the problem of the one-side
contact of the die with the surface with positive Gauss-
ian curvature was constructed in [9].

INTERNAL STRESSED STATE

We introduce the dimensionless coordinates

(5)

and the “extended” dimensionless longitudinal coordi-
nate

(6)

The substitution of Eqs. (5) and (6) reduces the
Lamé system for the vector u = (v, w), where v =

δ0* R1* R2*

pε x'( ) σ33 u; x' 0,( ), x' ωε.∈–=

x ξ1 ξ2,( ), ξ j H*
1– x j, j 1 2,,= = =

ζ ε 1– H*
1– x3.=
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(v 1, v 2) is the transverse displacement vector to the
form

(7)

In this case, the boundary conditions of the absence of
friction and a rigid attachment assume the form

(8)

Under the assumption that the point x belongs to the

domain  and in view of the second of Eqs. (3), the
Signorini boundary condition given by the second of
Eqs. (2) is reduced to the equality

(9)

Finally, formula (4) is transformed as

(10)

Following the algorithm described in [10, 11], the
solution of system (7) determining the displacement
field under the die far from the edge of the contact

domain  is obtained in the form

(11)

(12)

According to Eqs. (10)–(12), the contact-pressure

ε2 ∇ ξ ∇ ξv⋅ 1 2ν–( ) 1– ∇ ξ ∇ ξ+ v⋅( )

+ ε 1 2ν–( ) 1– ∇ ξ
∂w
∂ζ
------- ∂2v

∂ζ2
--------+ 0,=

ε2∇ ξ ∇ ξw⋅ ε 1 2ν–( ) 1– ∇ ξ  · 
∂v
∂ζ
------+

+
2 1 ν–( )
1 2ν–

--------------------∂2
w

∂ζ2
--------- 0.=

ε∇ ξw ∂v
∂ζ
------

ζ 0=

+ 0, v ζ 1= 0, w ζ 1= 0.= = =

ωε*

w x 0,( ) δ0* Φ* x( )–( ),=

Φ* x( ) H*
2 2R1*( ) 1– ξ1

2 2R2*( ) 1– ξ2
2+[ ] .=

ε∇ ξv
1 ν–

ν
------------∂w

∂ζ
-------

ζ 0=

+
1 2ν–
2νµ

---------------εH* pε x( ),–=

x ωε*.∈

ωε*

v x ζ,( ) = 
ε2

1 2ν–
---------------∇ ξϕ0* x( ) 2ν 1 ζ–( ) 1

2
--- 1 ζ–( )2+– 

  ,

w x ζ,( ) εϕ0* x( ) 1 ζ–( ) ε2∆ξϕ0* x( ) 1 ζ–( )+=

× ν 1 2ν+( )
6 1 ν–( ) 1 2ν–( )
---------------------------------------- ε3∆ξϕ0* x( )–

× 2ν
1 2ν–
--------------- 1 ζ–( )3

6
------------------–

ν
1 ν–( ) 1 2ν–( )

------------------------------------- 1 ζ–( )2

2
------------------+

 
 
 

.
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density is expressed as

(13)

The stressed state under the die bottom is deter-
mined by the components

(14)

PLANE BOUNDARY LAYER

The leading term of the asymptotic expansion of the
contact pressure given by Eq. (13) determines the con-
tact domain in the first approximation. In particular, the
equation (x) = 0 specifies the ellipse  with a
semimajor axis and eccentricity that are given by the
respective expressions

(15)

Let the equations ξ1 = (s) and ξ2 = (s) give a

natural parameterization of the contour . In this

case, the inward unit normal vector to the contour 
is determined as

(16)

To describe the behavior of the solution of the prob-
lem near the edge of the contact domain, we introduce

pε
0 x( ) 2µ 1 ν–( )

1 2ν–( )H*
----------------------------=

× ϕ0* x( ) ε2∆ξϕ0* x( ) ν 1 4ν–( )
3 1 ν–( ) 1 2ν–( )
----------------------------------------–

 
 
 

.

σ33–
2µ 1 ν–( )

H* 1 2ν–( )
----------------------------ϕ0* x( ) ε2∆ξϕ0* x( ) 2µν

H* 1 2ν–( )
----------------------------+=

× 1 2ν+
6 1 2ν–( )
----------------------- 1 ζ–( ) 1

2
--- 1 ζ–( )2+– 

  ,

σ jj–
2µν

H* 1 2ν–( )
----------------------------ϕ0* x( ) ε2 2µ

1 2ν–
---------------H*

R j*
-------+=

× 2ν 1 ζ–( )–
1
2
--- 1 ζ–( )2+ 

  ε2∆ξϕ0* x( ) 2µ
H*
-------+

× ν2 1 2ν+( )
6 1 ν–( ) 1 2ν–( )2
------------------------------------------- ν2 1 ζ–( )

1 ν–( ) 1 2ν–( )
------------------------------------- ν 1 ζ–( )2

2 1 2ν–( )
-----------------------–+

 
 
 

,

σ31e1 σ32e2+ ε∇ ξϕ0* x( ) 2µν
1 2ν–( )H*

----------------------------ζ , σ12 0.= =

ϕ0* Γ0*

a*
1

H*
------- 2δ0*R1, e2 1

R2*

R1*
-------– .= =

f 1* f 2*

Γ0*

Γ0*

n0 s( ) f 2*' s( )e1– f 1*' s( )e2.+=
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the local coordinates s, n, and ξ3 near the contour 
such that

(17)

Then, in planes orthogonal to the contour , we intro-
duce the extended coordinates

(18)

Correspondingly, we have

(19)

(20)

The boundary layer near the smooth contour  is
sought in the form

(21)

where W* = ( , ) is the solution of the Lamé
system in the band ζ ∈ (0, 1), ν ∈ R satisfies the bound-
ary conditions of the absence of friction and the rigid
fixation of the support, as well as the following condi-
tion of the unilateral contact given by Eq. (2) [see
Eqs. (19) and (21)]:

(22)

Here, τjk(W*) are the two-dimensional stress tensor
components.

Let the contour  in the coordinates given by
Eqs. (17) be given by the equation

(23)

In this case, the contact problem for an elastic strip
with the Signorini condition given by Eq. (22) under the
assumption that the contact occurs over the semi-infi-
nite interval ν ∈ (h*(s), +∞) is reduced to the integral
equation (see [4, Sect. 12])

(24)

(25)

Γ0*

ξ1 f 1* s( ) nn1
0 s( ), ξ2+ f 2* s( ) nn2

0 s( ),+= =

ξ3 H*
1– x3.=

Γε*

n εν, ξ3 εζ .= =

δ0 Φ x1 x2,( )– ε2H*
2 νb1* s( ) εν2b2* s( )+[ ] ;=

b1* s( )
f 1* s( )n1

0 s( )
R1*

---------------------------–
f 2* s( )n2

0 s( )
R2*

---------------------------,–=

2b2* s( )
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--------------.–=
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u

------------- ut u; ϑdcos

0

+∞

∫ µ
1 ν–
------------.= =
For the elastic strip rigidly coupled with the undeform-
able basis, we have

(26)

The function q**(s, ν) has the meaning of the reduced
contact-pressure density, i.e.,

(27)

Thus, taking into account Eqs. (4) and (27), near the
contact boundary we have

(28)

The solution of Eq. (24) is obtained using the
Wiener–Hopf method and results from [12, 13]. Fol-
lowing [6], we approximate the function +(s) by the
function

(29)

The functions u–1+(u) and u–1 (u) satisfy the
requirements formulated by Koiter [14] only under the
condition

(30)

Additionally, following Aleksandrov [6], we set

(31)

The positive solution of Eq. (24) with Eq. (29) exists
under the condition

(32)

and has the form

(33)

where erf(x) is the error function.

RESULTANT OF THE CONTACT PRESSURE

Separating the leading term of the asymptotic
expansion for ν  +∞, we represent the boundary
layer given by Eq. (33) in the form

(34)

+ u( ) 2κ 2usinh 4u–

2κ 2ucosh 1 κ2 4u2+ + +
-------------------------------------------------------------, κ 3 4ν .–= =

q** s ν,( ) H 1– τ22 W*; ν 0,( ).–=

pε x1 x2,( ) . εq* s ν,( ).

+̃ u( ) u
u2 B2+

u2 C+
---------------------.=

+̃

B
C
---- !, !

+ u( )
u

-------------.
u 0→
lim= =

1

C
---- 1

2B2
---------– 2m1, m1–

1
2!
-------- d2

du2
--------

+ u( )
u

-------------.
u 0→
lim= =

h* s( ) !
B
----- 1

2B
-------–=

q̃** s ν,( ) ϑ H*b1* s( )! 1–
=

× νerf B ν h*–( ) ν h*–
πB

--------------- B ν h*–( )–( )exp+
 
 
 

,

q̃** s ν,( ) ϑ H*b1* s( )! 1– ν q̃0** s ν h*–,( ).+=
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Here, the function

(35)

where erfc(x) is the additional error function, decreases
exponentially for τ  +∞.

Let χ(t) be a smooth cutoff function such that χ(t) = 1

for t ∈  [0, ] and χ(t) = 0 for t ∈  , +∞  and χ(t)

decreases monotonically from 1 to 0 for t ∈  , . In

this case, combining the internal distribution of the con-
tact pressure given by Eq. (13) and the boundary layer
given by Eq. (35), we arrive at the global approximate
representation

(36)

where  is the minimum value of the curvature radius

of the contour . 

We emphasize that the h* value given by Eq. (32) is
positive (the domain ω0 is an upper estimate for the
contact domain ) and, therefore, representation (36)
is correct.

The calculation of the resultant of the contact-pres-
sure density given by Eq. (36) yields

(37)

where  =  –  and

q̃0** s τ,( ) ϑ H*b1* s( )! 1–
=

× τ h*+( )erfc Bτ τ
πB
------- Bτ–( )exp+
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--- --



1
3
---

 2
3
---
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The integral  is calculated by transforming the

domain  into a circular one and is given by the
expression

(38)

Passing to the local coordinates given by Eqs. (17)

in the integrals  and , where integration is per-
formed over a narrow band, and changing the integra-
tion variable n according to Eq. (18), we obtain

(39)

(40)

Calculating integrals (39) and (40), substituting the
resulting expressions into Eq. (37), and taking Eq. (38)
into account, we arrive at the expression

(41)

where the constant  is given by the second of
Eqs. (40). In the case of Eqs. (1) and (19), we have
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Systems with constraints were first studied in [1], in
which a constrained system of a kind more general than
mechanical systems was considered, the principle of
the elimination of constraints being applied to this
system.

The class of dynamic systems with constraints is
studied when they contain restrictions (constraints)
realized by “reaction constraints” (reactions in what
follows). The problem is to develop mathematical mod-
els for a wide variety of physical phenomena presented
as constraint conditions. In the general approaches to
describing a constrained motion, it is natural to use the
principle of the elimination of constraints (in a wide
sense) and different means for the natural and artificial
realization of constraints.

The existence of a common problem made it possi-
ble to focus attention on new aspects of the interrelation
between the mathematical and physical parts of the the-
ory. In particular, for different solutions of the same dif-
ferential equations (in the case when they have several
solutions), it has been assumed that systems differing
by constraints should be assigned different constrained
systems (we call a new type of constraint, found in the
process of solving the equations of motion, “hidden
constraints”). It becomes possible to extend the range
of application of the virtual work principle and the
D’Alembert–Lagrange principle while also observing
Newton’s principle of determinacy.

The new type of systems with constraints is the sys-
tems with hidden constraints, which are found when the
differential equations of motion have several solutions.
Let us consider a simple example of such a system. One
of the solutions of the equations of motions describes
the equilibrium state. For this reason, we will discuss
simultaneously the application of the virtual work prin-
ciple [2] for the systems with ideal bilateral constraints:

(1)δ'A Fk δrk⋅
k

∑ 0,= =
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where δ'A is the “virtual work” of the active forces Fk

along any virtual displacement δrk of the kth material
point.

Let the motion of a system with one degree of free-
dom in the case when a generalized point force is active
be described by the differential equation (force is
divided by mass and the dot signifies the derivative with
respect to time t)

 = αxβ, α = const > 0, β = . (2)

Let the virtual work of the force be equal to zero
F δx = 0; then, at δx ≠ 0 and from the expression for
force in (2), it follows that x = 0 is the equilibrium posi-
tion and x = 0 and  = 0 is the equilibrium state.
According to the Galilean inertia principle, the equilib-
rium state will be preserved, because there is no cause
that would force a material point to leave the state
of rest.

Along with the solution x ≡ 0, Eq. (2) has the other
solutions

(3)

which satisfy the initial conditions x(0) = 0, (0) = 0,
and (0) = 0. However, at t > 0, it is possible for the
system to be in a state other than that of equilibrium. At
t > 0, for the motions given by Eqs. (3), the force is not
equal to zero and, if virtual displacements occur, i.e.,
δx ≠ 0, then Eq. (1) is not satisfied (the necessary con-
dition of equilibrium is not valid).

Although the initial conditions of motion obeying
Eq. (3) correspond to the initial conditions of the equi-
librium state at t = 0, the system is not in the equilib-
rium state later. A point force cannot cause motion from
this state (see above). Therefore, considering the time
t = 0, we arrive at the known restriction conclusions:

(i) general equation (1) is not the sufficient condi-
tion of the equilibrium of the system [3];

(ii) solution (2) is not a subject of mechanics,
because Newton’s principle of determinacy is not ful-
filled.

What is the way out of such a situation?

ẋ̇
1
3
---

ẋ

x atb, a± α
6
--- 

 
3/2

, b 3,= = =

ẋ
ẋ̇
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Let us consider the second solution as a model of
motion of another mechanical system described by the
same differential equation (2) (and similarly on the
third solution in (3) with the minus sign). This new sys-
tem can be obtained from free system (2) by imposing
the ideal nonstationary bilateral holonomic constraint

x – atb = 0, δx = 0. (4)

The constrained system [with constraint (4)] is
described by the equations

(5)

where λ is the constraint factor (reaction related to unit
mass). To find the reaction, we substitute  expressed
from constrained-motion equation (5) into the twice
differentiated constraint equation (  – 6at = 0). As a
result, we obtain

λ = –αxβ + 6at. (6)

The substitution of reaction (6) into Eq. (5) indicates
that the equation of motion (2) is identical to the twice
differentiated constraint equation. In addition, the
equation of the free system is identical to the equation
of the constrained system, because reaction (6) equals
zero (expressing the second term in Eq. (6) in terms of
the coordinate, we obtain  = αxβ – αxβ + αxβ instead
of Eq. (5); then, if the first or last term on the right-hand
side is taken, the equation of free or bounded motion is,
respectively, obtained).

Thus, one equation (2) describes three different sys-
tems: one free system and two constrained systems.
The free system has the equilibrium state; the con-
strained systems do not. Newton’s principle of determi-
nacy is valid for each of these systems. The absence of
the reaction in the equation of the constrained system
masks the presence of the constraint. The procedure of
expressing time in terms of coordinate is performed
here only for illustration, although the reaction in (6)
actually consists of two components (static and
dynamic). It is also worth noting that, in the free and
constrained systems of this example, the conditions for
the application of Eqs. (1) are different: the free system
has one degree of freedom, while the constrained sys-
tems have no degrees of freedom (from the general
equation of statics, it is impossible to draw a conclusion
for them concerning equilibrium, because δx = 0 in
Eq. (4)).

Thus, in the case of several solutions, there are hid-
den (not explicitly given) constraints the inclusion of
which makes it possible to assign a certain mechanical
system to each solution. The answer to the question on
the time instant of passage from the model of the free
system to the model of a constrained system (one of
them can be in the equilibrium state; the other cannot)
is obtained from the dynamic system  = αβx–2β ,
from which (under the initial conditions x = 0 and

 = 0) under the conditions of the indeterminacy of the

ẋ̇ α xβ λ x atb– 0=( ),+=

ẋ̇

ẋ̇

ẋ̇

ẋ̇̇ ẋ

ẋ

right-hand side, three models—  = 0 and  = ±6a—
are chosen.

Remark. It is of interest that the passage from one
model to another corresponds to natural phenomena
such as “the calm before the storm” (before an earth-
quake), the formation of a giant wave under calm con-
ditions, etc. The applications of Eq. (1) are as follows.
It provides the necessary equilibrium conditions (both
the forces and the system of material points); in other
words, the principle of virtual velocities represents the
general properties of the equilibrium of material points
(Galileo). Descartes and Wallis took the principle to be
a real cause of equilibrium [2], but this would mean that
the general equation is also a sufficient condition.
Strictly speaking, the determination of causes is not an
aim of mathematics, but in the case of hidden con-
straints (and not only this case), it is mathematics that
helps find the incompleteness of the initial (at first
glance, faultless) model of motion. Equation (1) made
it possible to reveal the absence of a cause of motion in
the equilibrium position of the free system. In “new”
constrained systems, the equilibrium positions are
absent.

Analysis of the simplest purely mechanical system
leads to a dynamic system presented in the form

(7)

where x is the phase-coordinate vector with dimension
n (the phase space with Euclidean metrics and the coor-
dinates of the vector f are the differentiable functions of
their arguments).

Motion described by Eqs. (7) can be changed by the
bilateral (explicit) constraint

ϕ(x, t) = 0, (8)

where ϕ is the continuous differentiable regular func-
tion (for simplicity, we assume that it is single). We
assume that constraint (8) is realized as reactions—
additive actions of the same physical nature as those
described by the functions on the right-hand sides of the
corresponding equations of system (7).

According to the principle of the elimination of con-
straints (in a wide sense), we write the equations of
bounded motion

(9)

which are considered along with constraint equation (8).
On the right-hand sides of Eqs. (9), the reactions (r∗ )
are objective actions changing the components of the
phase velocity of the marked (according to the proper-
ties of the system) phase coordinates (we denote this
vector as x∗  = (x1, …, xl, 0, …, 0)T, l ≤ n; the coordinates
of the vector r∗  from l + 1 to n are taken to be equal to
zero).

If certain phase coordinates are the time derivatives
of other phase coordinates, the reaction is introduced
only into the equation with the highest order derivative.

ẋ̇̇ ẋ̇̇

ẋ f x t,( ), x Rn,∈=

ẋ f x t,( ) r*,+=
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In the purely mechanical part of the system, reactions
are forces. In the Chetaev systems, in addition to the
reactions affecting the change in accelerations (deriva-
tives of the velocities), reactions are also introduced
into the first-order equations [1]. The formulation of
problems concerning the bounded motion of systems
with constraints of higher orders, Hamiltonian systems
with constraints, etc., is similar.

Model (8) and (9) must be complemented: informa-
tion concerning the problem of the realization of con-
straints is needed. The problem on the ways of the real-
ization of constraints represents one of the basic prob-
lems in the dynamics of constrained systems [4]. The
way of realizing the constraints can be disregarded due
to the property of the ideality of constraints. Similar to
analytical mechanics, this property can be formulated
by using the notion of virtual displacements (see, e.g.,
[5]) for which we have the varied constraint equation

(10)

where δx∗  is the vector of virtual variations (infinitesi-
mal virtual changes in the coordinates of the vector x∗
that satisfy constraint condition (8): the first l virtual
variations fulfill Eq. (10) and the remaining variations
are arbitrary). When writing the equations for virtual
variations, we fix both the time and those phase coordi-
nates in equations for which the reactions are absent.

We axiomatically introduce the criterion of the ide-
ality of a constraint:

(11)

ϕx*
( )Tδx* 0,=

ϕx*

∂ϕ
∂x1
-------- … ∂ϕ

∂xl

------- 0 … 0, , , , , 
  T

,=

r*
T δx* 0.=
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A hypothesis of the physical realization of reactions
formed by constraints, r∗  = , corresponds to the
property of ideality given by Eqs. (10) and (11). The
undetermined multiplier λ can be found by using the
same procedure as in the above example.

Taking into account the property of ideality, we
obtain the general equation of bounded dynamic sys-
tems with constraints:

(12)

General equation (12) is considered together with con-
straint equations (8) and the equations (10) for the vir-
tual variations. It does not contain the reactions of ideal
constraints and provides equations whose number is
equal to the number of independent virtual variations.

In the investigation of a dynamic system with con-
straints, in the case of finding hidden constraints, an
additional stage appears that is associated with the con-
sideration of these constraints in new models of motion.
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The rotational motion of an asymmetric satellite in
the elliptic-orbit plane about an axis that passes through
its center of mass and is perpendicular to this plane is
considered. It is easy to verify [1] that the equation of
oscillations of the satellite on the orbit has the form

(1)

Here, G is the gravitational constant; M is the mass of
the attracting center; a known time function R(t) is the
Kepler radius of the satellite orbit; A, B, and C are the
principal central moments of inertia of the satellite; θ is
the rotation angle of the satellite with respect to an iner-
tial reference frame (it is measured from the direction
to the orbit periapsis); a known time function ν(t) is the
true anomaly of the Kepler motion; c is the constant
representing the reflecting properties of the satellite
surface; and ϕ is the azimuth of the light-source posi-
tion as measured from the direction to the periapsis.

As is known [2], for the Kepler motion, R =

, where p is the focal parameter and e is the

eccentricity of the satellite orbit. The appropriate
choice of the dimensional quantities ensures the condi-
tions GM = 1, p = 1. Passing to the new independent
variable ν, which is the true anomaly, we transform dif-
ferential equation (1) to the form [1]

(2)

θ̇̇ 3
GM

R t( )3
------------ A C–

B
------------- θ ν t( )–( ) θ ν t( )–( )cossin–=

+ c θ ϕ–( ) θ ϕ–( )sin .sin

p
1 e νcos+
------------------------

x''
2e νsin

1 e νcos+
------------------------x'–

µ
1 e νcos+
------------------------ x 2ν–( )sin–=

+
c

1 e νcos+( )4
------------------------------- f x 2ϕ–( ).
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Here, x = 2θ is the new unknown function and µ =

 is the dynamic asymmetry parameter of the

satellite. The light pressure is taken into account by
means of the function

which has only one continuous derivative.

For e = 1, Eq. (2) has the singular points ν = π + 2kπ
(k ∈ Z). Let us consider deformations of the solution of
the Cauchy problem for differential equation (2) with
the initial conditions specified in the middle of the solu-
tion definition interval (–π, π): x(ν0) = x0, x'(ν0) = ,
where ν0 = 0. These deformations are constructed as
functions of the orbit eccentricity e ∈  [0, 1]. The param-
eters µ, c, and ϕ characterizing the dynamic asymmetry
of the satellite, reflecting capability of its surface, and
azimuth of the light source, respectively, are considered
to be fixed parameters. In what follows, we replace the
eccentricity e by a new parameter ε that is small near
the singular value e = 1 and is such that

According to this relation, two ε values correspond
to one e value. Such a change makes it possible to “reg-
ularly immerse” the limiting case e = 1 of the parabolic
orbit into the region of the parametric analysis of the
problem.

The Cauchy problem for differential equation (2)
can be represented by the functional equation

(3)

where A(ε): Z  Z is a linear operator and D(·, ε):
Z  Z is a nonlinear operator. Both operators depend

3 A C–( )
B

----------------------

f α( )
1 α for α

2
---sin 0,≥cos–

1– α for
αsin

2
-----------cos 0,<+






=

x0'

e
1 ε2–

1 ε2+
--------------, 1– ε 1.≤ ≤=

A ε( )z D z ε,( ),=
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on the parameter ε and are given by the formulas

Here, the unknown function z(ν) is the second deriva-
tive of the configuration variable x(ν) and, according
to [1], should be taken in the weight space Z =

[−π, π], where ω2(ε) = (1 + cosν)8. In this case,

the first derivative x'(ν) = y[z, ](ν) and configuration

variable x(ν) = x[z, x0, ](ν) automatically fall into the

weight spaces Y = [–π, π], ω1(ν) = (1 + cosν)7 and

X = [–π, π], ω0(ν) = (1 + cosν)6, respectively.
In [1], it was proved that the operators A(ε)z and D(z, ε)
are uniformly bounded with respect to ε. The latter
operator is also uniformly bounded in z ∈ Z.

The affine operator A(ε): Z  Z appears to be con-
tinuous and to have a continuous inverse operator uni-
formly in the parameter ε ∈  [–1, 1]. In what follows, we
also discuss the dependence of the constructed opera-
tors on this parameter. Let us analyze the properties of
the constructed mappings A, A–1, D: Z × [–1, 1]  Z
as functions of two variables z and ε.

Statement 1. The operators A, A–1, D: Z ×
[−1, 1]  Z are continuous. 

Proof. The proof is reduced to the application of the
Lebesgue theorem on the passage to limit in the inte-
grand.

The property of the compactness of the operator
D(·, ε): Z  Z is important for the development of
algorithms for approximating solutions of Eq. (3).
Moreover, this property is valid uniformly throughout
the entire interval of the parameter ε ∈  [–1, 1]. 

Considering a sequence bounded in Z, using the reg-
ularity of the weight-norm integrals together with the
Arzelà theorem, and applying the Lebesgue theorem,
we arrive at the following statement.

Statement 2. The operator D: Z × [–1, 1]  Z is
compact. 

The operator D: Z × [–1, 1]  Z that is continuous
and compact is usually called completely continuous [4]
or simply compact [5].

In view of the further application of the Schauder
fixed point theorem [7] and the theory of the Leray–
Schauder degree [8], we first transform Eq. (3) to the
equivalent form

(4)

A ε( )z[ ] ν( ) z ν( ) 2e ε( ) νsin
1 e ε( ) νcos+
--------------------------------y z x0',[ ] ν( ),–=

D z ε,( )[ ] ν( ) µ
x z x0 x0', ,[ ] ν( ) 2ν–( )sin

1 e ε( ) νcos+
-----------------------------------------------------------–=

+ c
f x z x0 x0', ,[ ] ν( ) 2ϕ–( )

1 e ϕ( ) νcos+( )4
--------------------------------------------------------.

L2 ω2,

x0'

x0'

L2 ω1,

L2 ω0,

z H z ε,( ),=
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where H(z, ε) = A–1(ε)D(z, ε) should be taken. Follow-
ing the above analysis, we conclude that H: Z ×
[−1, 1]  Z is a completely continuous operator.

Theorem 1. For any ε ∈  [–1, 1] and any given
parameters µ and c and initial data x0 and , Eq. (4)
has a single solution z(ε) in Z. Moreover, for sufficiently
large R > 0, the strict bound

(5)

is valid uniformly in the parameter ε ∈ [–1, 1]. 
Proof. The proof is based on the Schauder principle

[7] and takes into account that the mapping H: Z ×
[−1, 1]  Z is uniformly bounded. Thus, for the given
initial data, the family of solutions x(ν, ε) of the Cauchy
problem for Eq. (2) that depends on the parameter ε ∈
[–1, 1] specifies the bounded mapping z = x'':
[−1, 1]  Z, z: ε ° z(ε), where [x(ε)](ν) is the solu-
tion of Eq. (2).

Following [1], one can verify the next statement.
Statement 3. The function z: [–1, 1]  Z is con-

tinuous. 
The above results allow the construction of the

expansions of the function z(ν, ε) in the bases of the
space Z with Fourier coefficients continuously depend-
ing on the parameter ε. In order to simplify the further

consideration, we take certain basis {χk(ν)  in the
space Z and use it to construct an infinite sequence of
finite-dimensional spaces Z1 ⊂ Z2 ⊂  … ⊂  Zm ⊂  … in Z

such that Zm = Span(χ1, χ2, …, χm) and  is dense

in Z. Let Pm be a projector Pm: Z  Zm such that

 = Pm and PmZ = Zm.

To approximate the solutions of initial equation (4),
we consider the finite-dimensional Galerkin equation

(6)

If this equation has a solution zm(ε), then zm(ε) ∈  Zm . We
now analyze the existence and convergence of approx-
imate solutions to the exact solution for m  ∞.

Theorem 2. For given initial conditions x0,  ∈ R,
there is a natural number M independent of ε such that
Galerkin equation (6) for m > M has a solution
zm(ε) ∈ Zm . The sequence of solutions {zm(ε)} con-
verges for m  ∞ to the solution of exact equation (4)
uniformly in ε. 

Proof. The proof leads to the following conclusions
according to [5]. On the one hand, since the mapping
H: Z × [–1, 1]  Z is continuous and compact, the
completely continuous vector field G: (z, ε) ° z –
H(z, ε) is homotopic to the identical field G: (z, ε) ° z.
On the other hand, according to the Banach–Steinhaus
theorem, the compact operator H allows a uniform
finite-dimensional approximation. Therefore, the
Leray–Schauder degree of the finite-dimensional oper-

x0'

z ε( ) Z R<

}k 0=
∞

Zm
m 1=

∞

∪

Pm
2

z PmH z ε,( ).=

x0'
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ator G: (z, ε) ° z – PmH(z, ε) is nonzero, which ensures
the existence of a solution of Galerkin equation (6)
according to the Leray–Schauder theorem [8]. The con-
vergence of approximate solutions to the exact solution
can be proved using an appropriate modification of the
known Krasnosel’skii theorem [4].

The above consideration illustrates a situation that
arises when approximating solutions of differential
equations with singular disturbances. In the problem
under consideration for the satellite, solutions on the
rotation period for e  1 can be constructed numeri-
cally by using a regularizing independent variable.
However, for e  1, the computational complexity of
this problem increases unlimitedly; i.e., unlimitedly
large time is required for numerical integration. Such
an approach leads to algorithms that singularly depend
on the parameter.

In this work, we have presented an approach ensur-
ing the regularization of the numerical algorithm for
ε  0 (e  1). Indeed, the solutions of the finite-
dimensional equation approximate the exact solution
equally well throughout the entire interval of the
parameter ε ∈  [–1, 1]. The approximation algorithm
itself is “insensitive” to the passage through the singu-
lar parameter value ε = 0. Such a regularization of the
numerical procedure is obtained due to the refusal of
the uniform metric in the phase space and the use of
weight integral metrics. Thus, the topology of the
Sobolev weight space that is coarser than the uniform
topology can be treated as a measure of the computa-
tional complexity of the problem of approximating the
solutions of the equation of satellite oscillations.
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In order to construct efficient algorithms for solving
problems of linear elasticity theory, the approach is
used based on the introduction of integral relations
between components of the stress and strain tensors. In
the framework of the model proposed, the integro-dif-
ferential boundary value problem is reduced to a varia-
tional problem to which well-developed methods of
numerical analysis are applicable [1, 2]. To demon-
strate the potentialities of the proposed approach, we
employ the numerical-analytical method of finding
approximations for desired stress functions and dis-
placement functions.

1. We consider an elastic body that occupies a cer-
tain region Ω with boundaries γ. We assume that the
displacement and stresses are given at the parts γu

and γσ of the boundary, respectively, (γu ∩ γσ = 0,
γu ∪ γ σ = γ). The stress–strain state of the body is
described by the set of differential equations of the lin-
ear elasticity theory:

(1)

(2)

(3)

The boundary conditions are written in the form

(4)

(5)

where σij, , uk , and nj are the components, respec-
tively, of the stress and strain tensors σ and ε0, of the
displacement vector u, and of the unit vector n directed
along the normal to the boundary in a certain Cartesian
coordinate system {x1, x2, x3};  and  are the com-

σij j, 0,=

σij Cijklεkl
0 ,=

εkl
0 1

2
--- uk l, ul k,+( ).=

σijn j σ j, x γσ,∈=

uk uk, x γu,∈=

εij
0

σ j uk
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ponents of the given vector functions of  and 
dependent on the coordinates xi. The constants Cikjl are
the components of the tensor of the elastic moduli C
(Cijkl = Cijlk = Cklij). In the present study, we assume the
bulk forces to be absent.

The set of equations of the elasticity theory and
boundary conditions (1)–(5) are the Euler equations
and boundary conditions of the variational problem
(principle of the potential-energy minimum [1]):

(6)

where A is the density of the strain energy, which is
determined as the convolution of two of the second-
rank tensors σ and ε0:

(7)

It is well known that relationships (1)–(3) describe
the stress–strain state at an arbitrary inner point of a
body. In this case, we consider that stresses in the inner
body’s points must continuously pass to stresses at the
boundary, i.e., relationships (4) must hold. In the same
manner, displacements of the inner body’s points con-
tinuously pass to the boundary conditions described by
equality (5). We should note that the continuity of the
passage to the body’s boundary γ of components of the
elasticity-modulus tensor C defined at the inner body’s
points is implicitly assumed [1]. On the other hand, it
is necessary to take into account that boundary condi-
tions (4) and (5) cannot be given without allowance for
the physical arguments generating these conditions. For
example, a certain part of the boundary can be the inter-
face between two or more media. In this case, the tensor
of elastic moduli at the given boundary segment, gener-
ally speaking, is not defined.

In order to take into account the indeterminacy of
the tensor C at the body’s boundary, we propose the fol-
lowing integral formulation of Hooke’s law:

(8)

s u

Π A u( ) Ωd

Ω
∫ σ u,( ) γσd

γσ

∫– ,
u

min→=

A u( ) 1
2
---s e0.⋅=

s Ce0–( )
Ω
∫ s Ce0–( )dΩ⋅ 0.=
 © 2005 Pleiades Publishing, Inc.
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From this equality, it follows that the components of the
tensors s and Ce0 are identical to each other every-
where in the region Ω, with the possible exception of
the points that constitute a zero-measure manifold.
Similar approaches have been analyzed by a number of
authors (see, e.g., [3]).

Using the definition of Hooke’s law in the form of
relationship (8), we arrive at the integro-differential
problem (1), (8), (3)–(5). Below, for the sake of conve-
nience, we introduce two new tensors s0 and e related
to tensors e0 and s by the linear relations s0 = Ce0 and
s = Ce. Using the tensors e0, s0, e, and s, we can
rewrite integral relationship (8) in the form

(9)

It can be shown that if relationship (9) holds, then
the equalities

(10)

(11)

are also valid.

The proposed integral formulation of Hooke’s law (8)
makes it possible to reduce the integro-differential
problem (1), (8), (3)–(5) of the linear elasticity theory
to the variational problem. Indeed, if the solution s*
and u* to this set of equations does exist, then the func-
tionals Φi reach their minima for this solution, namely,

(12)

Hence, integro-differential problem (1), (8), (3)–(5)
can be reduced to problems of the minimization of the
functionals Φi with constraints (1), (3)–(5).

2. We now consider one of the possible algorithms
of the approximate solution to the problems of the con-
ditional minimization of the functionals Φi (i = 1, 2, 3)
for the two-dimensional problem of the linear elasticity
theory. This algorithm is based on the polynomial
approximation of unknown functions for the compo-
nents σij(x, y) and ui(x, y) of the stress tensor and dis-
placement vector, respectively (i, j = 1, 2, 3) [4, 5]. We
restrict our analysis to the case in which the given
region Ω is a convex body with the piece-wise linear
boundary γ. At each side of the polygon Ω, we set in the
polynomial form the boundary conditions either for
displacements or for stresses. We assume that the bulk
forces are absent and approximate the unknown func-
tions of the components of the stress tensor s and of the

Φ1 s s0–( )
Ω
∫ s s0–( )dΩ⋅ 0.= =

Φ2 e e0–( )
Ω
∫ e e0–( )dΩ⋅ 0,= =

Φ3 s s0–( )
Ω
∫ e e0–( )dΩ⋅ 0= =

Φi s* u*,( ) Φi s u,( )
s u,

min 0, i 1 2 3., ,= = =
displacement vector u by polynomial functions of the
form

(13)

(14)

Here,  and  are certain unknown coefficients,
whereas nσ and nu are the given degrees of the corre-
sponding approximating complete polynomials , .

For the convex polygon Ω , this representation of the
stress functions and displacement functions makes it
possible to satisfy precisely the polynomial boundary
conditions (4) and (5) and equilibrium equations (1)
under an appropriate choice of the polynomial dimen-
sions nσ and nu .

In order to satisfy equilibrium equations (1), which
in the two-dimensional case are of the form

(15)

the following relationships for the coefficients  must
be true:

(16)

Upon the fulfillment of equalities (3) and (16),
boundary conditions (4) and (5), and the integration
over the region Ω for the corresponding functionals Φi ,
problems (12) are reduced to the minimization of the
corresponding quadratic forms

(17)

Here, w is the N-dimensional vector of independent
parameters, which is obtained from the remaining

unknown coefficients  and  in (13) and (14);
K(i) ∈  RN × N is the symmetric positive matrix; and
b(i) ∈  RN is the vector defined by the boundary condi-
tions.

The vectors w(i) that provide the minimum for the

corresponding functionals  in (17) are defined as the
solutions to the following linear sets of equations (here-
inafter, the problems 1, 2, 3):

(18)

3. We now consider as an example the problem of
the transverse bending of a rectangular fixed plate (can-

σ̃ij σij
klxlxk l– , i j,

l 0=

k

∑
k 0=

nσ

∑ 1 2,,= =

ũi ui
klxlxk l– , i j,

l 0=

k

∑
k 0=

nu

∑ 1 2.,= =

σij
kl ui

kl

σ̃ij ũi

∂σ̃11

∂x
----------

∂σ̃12

∂y
----------+ 0,

∂σ̃12

∂x
----------

∂σ̃22

∂y
----------+ 0,= =

σij
kl

lσ11
kl k l– 1+( )σ12

k l 1–,+ 0,=

lσ12
kl k l– 1+( )σ22

k l 1–,+ 0,=

1 k nσ, 1 l k.≤ ≤ ≤ ≤

Φ̃i wTK i( )w 2b i( )w .
w R

N∈
min→+=

σij
kl ui

kl

Φ̃i

K i( )w b i( )+ 0, i 1 2 3., ,= =
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tilever bending). We assume that an isotropic plate
of length l and height b is loaded by the distributed
force p(y) applied to the side with the coordinate x = l
and fixed at the side x = 0. The other sides of the plate
are free of loads.

The following dimensionless parameters were cho-
sen in the numerical simulation: l = 10, b = 1, the Young
modulus E = 1, and the Poisson’s ratio ν = 0.3.

The boundary conditions are given in the form

(19)

The unknown functions σij and ui are approximated
by the polynomials defined in formulas (13) and (14).
In this case, we assume that nu = nσ + 1. After the
boundary conditions (19) and equilibrium equations
have been satisfied, in order to seek the approximate
values of  and  by means of the MARPLE program
package, the problems are solved in the analytical form

for the minimization of the functionals  (i = 1, 2, 3)
defined in (17) for different degrees nσ of the polyno-
mials.

The results obtained are compared with those of the
classical variational problem (6), (7) of the elasticity
theory (problem 4), in which the displacement func-
tions are approximated by complete polynomials of the
degree nW .

Figure 1 shows the displacements , i = 1, 2, 3, 4
at the point with the coordinates r = (x, y) = (10, 0) (the
bending at the plate edge) as a function of the number
of the degrees of freedom for problems 1, 2, 3, 4. It is

σ22 y = 0 = σ22 y = 1 = σ12 y = 0 = σ12 y = 1 = σ11 x  = 10 = 0,

σ12 x 10= 6 y y2–( ),=

u1 x 0= u2 x 0= 0.= =

s̃ ũ

Φ̃i

u2
i( )

4030

100 200 N250 300150
4020

4040

4050

4060

1

2

4

3

Fig. 1. Displacements  vs. the number N of the degrees

of freedom.

u2
i( )

u2
i( )
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worth noting that for all N, problem 2 yields an upper
bound for the bending value u2(10, 0). In this case, the

function (N) begins to monotonically decrease at
N > N0 = 227. As a lower bound, we can take, e.g., the

function (N).

In Fig. 2, the values of the accumulated elastic
energy Wi are presented as a function of the number of
the degrees of freedom, where

(20)

In the same manner as for the bending u2(10, 0),
problem 2 yields a monotonically decreasing upper

u2
2( )

u2
3( )

W
1
2
--- σε0 Ω.d

Ω
∫=

4030

100

4040

4050

4060

150 200 250 300 N
4020

W(i)

1

2

3

4

Fig. 2. Elastic energy W(i) vs. the number N of the degrees
of freedom.
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Fig. 3. Functional Φi vs. the number N of the degrees of
freedom.
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bound, whereas problems 1 and 3 yield, respectively, a
monotonically increasing lower bound for the value of
the accumulated elastic energy W.

The important characteristic for the convergence of
the approximate solutions to problems 1, 2, 3 is that of
the rate at which the corresponding magnitudes of the
functionals Φ1, Φ2, Φ3 tend to zero as functions depend-
ing on N. The behavior of these functions is shown in
Fig. 3.
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We have studied the problem of the description of a
thin liquid film flowing on a vertical wall in the pres-
ence of mass transfer through the free surface and have
constructed a class of self-similar solutions in the case
of a distributed nonstationary mass flux. The stability of
the obtained self-similar flows with respect to small
nonstationary harmonic perturbations of the liquid
parameters has been studied and it is shown that the
presence of a negative mass flux through the surface
(evaporation) produces a destabilizing action on the
flow. Similar to the case of a stationary flowing film of
constant thickness, the self-similar flows are unstable
with respect to perturbations of any frequency. In the
case of evaporation, the development of instability has
the character of an “explosion”: in the linear approxi-
mation, the amplitudes of perturbations exhibit infinite
growth within a finite time (the time of evaporation of
the liquid film). On the contrary, the presence of a pos-
itive mass flux through the surface (condensation, gas
absorption, etc.) leads to the stabilization of the flow,
whereby the amplitudes of perturbations exhibit limited
growth in time over the entire film length and remain on
the level of initial values. Moreover, in this case, there
is a certain interval of frequencies in which small per-
turbations exhibit decay. It will be shown below that,
using a feedback control, it is possible to stabilize the
initially unstable self-similar film flows.

FORMULATION OF THE PROBLEM 
AND THE SYSTEM OF EQUATIONS

The flow of a thin film of incompressible liquid on
the vertical wall is described by the following system of
equations:

(1)

(2)

∂h
∂t
------ ∂q

∂x
------+ χ x t,( ),=

∂q
∂t
------ 1.2

∂
∂x
------q2

h
-----+ gh

3νq

h2
---------–

3q
2h
------χ x t,( ),+=
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where t is the time, x is the coordinate in the gravity
force direction, h is the film thickness, q is the flow rate,
χ(x, t) is the mass flux through the film surface (in the
general case, dependent on both coordinate and time),
ν is the kinematic viscosity, and g is the acceleration of
gravity.

The system of equations (1), (2) is obtained by aver-
aging the equation of continuity and the equation of
motion of the incompressible liquid, with allowance for
the boundary conditions on the free surface and at the
vertical solid wall [1–3]. The presence of mass transfer
through the free surface influences the velocity of
motion and, hence, changes the kinematic condition on
the surface. In this study, we consider the case of a
small mass flux through the surface. For this reason, the
dependence of the longitudinal component of the liquid
velocity on the transverse coordinate is assumed to be
quadratic (as in the absence of mass transfer) [1–3]. In
addition, consideration will be restricted to the evolu-
tion of long-wavelength perturbations, so that the term
describing the surface tension in Eq. (2) can be omitted.

Let us introduce the dimensionless variables and
parameters defined as

(3)

where hc, qc, tc , and L are the characteristic film thick-
ness, flow rate, time, and film length, respectively. In
what follows, we set β = 1 (by selecting an appropriate
L value) and omit the asterisk at the dimensionless
quantities.

t*
t
tc

---,   x * 
x
L

 ---, q * 
q
q

 
c

 ----, h * 
h
h

 
c

 ----,= = = =

qc

ghc
3

3ν
--------, tc

hcL
qc

--------,= =

β 9ν2L

ghc
4

------------, χ* χ
tc

hc

----,= =
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In terms of the dimensionless variables, Eqs. (1) and
(2) appear as

(4)

(5)

As is known, the stationary solution for a vertical
film exhibits convective instability. The amplitude of
small harmonic perturbations introduced at a certain
point of the flow exhibits exponential growth down-
stream the flow (while remaining finite at each fixed
coordinate x) [1–3].

In the presence of mass transfer through the free sur-
face, the unperturbed film flow is substantially nonsta-
tionary. There are no analytical methods for investiga-
tion of the stability of arbitrary nonstationary flows.
However, the available methods for the investigation of
the stability of stationary flows can be generalized to
apply to the analysis of self-similar flows representing
a partial case of nonstationary flows.

SELF-SIMILAR SOLUTIONS

Let us consider the conditions under which the sys-
tem of equations (4), (5) admits self-similar solutions

(6)

Such solutions exist, in particular, if the mass flux
through the surface obeys the relation

Let us restrict our consideration to the simplest vari-
ant, where the expression for the mass flux is

(7)

The case of χ0 < 0, κ < 0 corresponds to a negative mass
flux (evaporation), while χ0 > 0 and κ > 0 correspond to
a positive mass flux (condensation). The κ value deter-
mines the characteristic time of the process. The phys-
ical meaning of this quantity is especially clear in the
case of evaporation (κ < 0): the value of abs(κ) is
inversely proportional to the dimensionless time (rela-
tive to a certain initial moment) required for the com-
plete evaporation of the liquid film.

Substituting expressions (6) and (7) into Eqs. (4)
and (5), we obtain the following system of equations

∂h
∂t
------ ∂q

∂x
------+ χ x t,( ),=

∂q
∂t
------ 1.2

∂
∂x
------q2

h
-----+ h

q

h2
-----–

3q
2h
------χ x t,( ).+=

h 1 κ t+( )1/2Hs ξ( ), q 1 κ t+( )3/2Qs ξ( ),= =

ξ x

1 κ t+( )2
---------------------, κ const.= =

χ χ0 1 κ t+( ) 1/2– χ1 ξ( ).=

χ t( ) χ0 1 κ t+( ) 1/2– , χ0 const.= =
                     

for the functions Hs(ξ) and Qs(ξ):

(8)

(9)

For investigation of the stability of solutions deter-
mined by the functions Hs(ξ) and Qs(ξ), it is convenient
to introduce new variables, defined as

(10)

(11)

Using these variables, Eqs. (4) and (5) can be rewrit-
ten as

(12)

(13)

The simplest solution of the system of equations (8),
(9) is

(14)

Here, the last equality introduces an additional rela-
tion between χ0 and κ, which will simplify the subse-
quent analysis. In a more thorough investigation, this
relation should be excluded. Now let us proceed to an
analysis of the stability of solution (14).

CONVECTIVE INSTABILITY 
OF SMALL PERTURBATIONS

A solution to the system of equations (12), (13) can
be represented in the following form:

(15)

A system of linearized equations for H1 and Q1 follows
from Eqs. (12) and (13) and appears as

(16)

(17)
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It can be shown that both characteristics of the hyper-
bolic system (1), (2) (and, hence, of the system (16),
(17)) are directed downstream. All perturbations intro-
duced into the flow will also be carried downstream
with the flow.

Now let us study the following problem. Assume
that harmonic perturbations with respect to τ are con-
tinuously introduced into the flowing film at x = 0
(ξ = 0):

(18)

where H10 and Q10 are (in the general case) complex
quantities. A solution to the system of equations (16),
(17) with the boundary conditions (18) can be found in
the following form:

(19)

where the functions Y and Z are determined from the
system of equations

(20)

(21)

Upon the exclusion of Z, this system reduces to the
second-order equation for Y:

(22)

Now let us consider two limiting cases.

Case 1: kx ! Qs0. In this case, Eq. (22) simplifies to

(23)

A solution to this equation is

(24)

H1 τ 0,( ) H10 iωτ{ } ,exp=

Q1 τ 0,( ) Q10 iωτ{ } ,exp=
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1
2
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where µ1 and µ2 are the roots of the quadratic equation

(25)

When κ is positive, ξ =  ξ  0 with

increasing t at any fixed x. Accordingly, the function Y
tends to Y(0) with increasing t at any fixed x irrespective
of the magnitude and sign of the real parts of µ1 and µ2 .
An analysis of the dependence of µ1 and µ2 on the fre-
quency ω shows that the real parts of both µ1 and µ2 for
κ ≤ 1 and 0 < ω < 100 are on the order of unity. There-
fore, when t increases, the perturbations in the case
under consideration remain uniformly bounded with
respect to x (rather than growing exponentially with x
as is the case for κ = 0).

For negative κ, the length of the interval of x in
which κξ ! Qs0 tends to zero with increasing t. How-
ever, the results of numerical analysis showed that, for
both κξ  ! Qs0 and the intermediate values of κξ  ~ Qs0,
the perturbations grow but do not pass to a nonlinear
growth stage. The further evolution of perturbations is
characterized by the asymptotic behavior considered
below.

Case 2: kx @ Qs0 . In this case, Eq. (22) simplifies to

(26)

This is the well-known Euler equation, the general
solution to which is

(27)

where µ1 and µ2 are constants satisfying the quadratic
equation

(28)

Upon solving this equation, we readily obtain

(29)

Substituting these formulas into expression (27) and
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Fig. 1. Plots of the liquid film thickness h versus coordinate
x in a thin liquid film flowing on a vertical wall (1) without
and (2) with a feedback control for the dimensionless time
t = 1 (a), 1.5 (b), and 1.9 (c). The flow experienced pertur-
bation at t = 0 (see the text for the system parameters).
returning to the initial variables t and x, we obtain

(30)

(31)

(32)

In the formulas for h1 and h2, the term

(33)

has a modulus equal to unity and determines the oscil-
latory character of perturbations depending on the spa-
tial coordinate. The spatial period of these oscillations
decreases (i.e., the frequency grows) with increasing x.
It should be noted that the temporal evolution of pertur-
bations does not exhibit an oscillatory character. The
character of the spatial and temporal evolution of per-
turbations strongly depends on the sign of κ.

In the case of evaporation (κ < 0), formula (31)
shows that the amplitude h1 increase with both x and t.
In the linear approximation, the time-dependent term

tends to infinity within a finite time for t  .

Such a growth of perturbations with time can be consid-
ered an “explosion.” The perturbation growth rate
increases with |κ| The second perturbation mode ampli-
tude h2 tends to zero with increasing x and vanishes

when t1  .

When the mass is supplied to the film (κ > 0), the
analysis of formulas (30)–(32) shows that the ampli-
tude h1 exhibits unlimited growth with increasing x, but
the time-dependent term tends to zero with increasing t.
This implies that, at each fixed x, the amplitude h1 van-
ishes with time and the rate of this decrease grows with
increasing κ. The amplitude h2 of the second perturba-

tion mode tends to zero with increasing x for 0 < κ < ,

exhibits unlimited growth for κ > , and is independent

of x for κ = . With increasing t, the second perturba-

tion mode amplitude h2 tends to zero with increasing x
for 0 < κ < 4, exhibits unlimited growth for κ > 4, and is
independent of t for κ = 4. Thus, when the parameter κ
is in the interval 0 < κ < 4, the total perturbation ampli-
tude c1h1 + c2h2 decreases with time at any fixed x.

The stabilizing action of condensation (κ > 0) on the
evolution of perturbations in the film is related to the
fact that the main flow velocity linearly increases with
time. The perturbations (growing with time) are also
carried downstream with increasing velocity and, at
each fixed x, their amplitudes, depending on the fre-
quency ω, either vanish with time or remain limited (on

h 1 κ t+( )1/2 1 c1h1 c2h2+ +( ),=

h1 x1/2 1 κ t+( ) 1– xiω/2κ ,=
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4
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the order of initial values). In the case of evaporation
(κ < 0), the main flow velocity tends to zero. As a result,
the perturbations (growing with time) are carried down-
stream slower and slower, which leads to their infinite
growth (within the linear approximation) at each fixed x.
In the final stage of evaporation, the film thickness
becomes comparable with the amplitude of perturba-
tions and the linear theory is no longer valid.

SUPPRESSION OF INSTABILITY

In order to solve the task of maintaining the flat sur-
face of evaporating liquid film unperturbed, it is possible
to use a feedback control as proposed previously [2, 3]
for the flows without mass transfer through the surface.
The proposed stabilizing system comprises a set of con-
trollers of the following type. The kth controller is
located at kd ≤ x ≤ (k + 1)d, where k = 0, 1, … and d > 0,
and includes a sensor that continuously measures the
deviation of the film thickness from the current unper-
turbed value at x = (k + 1)d, a feedback circuit with a
constant gain α whose output determines the degree of
homogeneous heating or cooling of the wall at kd ≤ x ≤
(k + 1)d, and a heating (cooling) device. The heating or
cooling of the wall leads to a corresponding change in
the liquid viscosity, thus producing a controlled action
on the flow [3]. An example of the stabilization of the
flow in evaporating liquid film with harmonic perturba-
tions introduced at x = 0 is offered by the results of a
numerical experiment presented in the figure. In this
DOKLADY PHYSICS      Vol. 50      No. 10      2005
experiment, the parameters of the main flow, perturba-
tion, and feedback control were as follows: κ = –0.5
(which corresponds to a dimensionless time of t = 2
from t = 0 to complete evaporation); initial perturbation
amplitude, 0.001; perturbation frequency, ω = 50; d =
0.02; and feedback gain, ω = 3. Note that the scale in
the x axis is strongly compressed because the results are
presented in the dimensionless form. As can be seen
from these data, the proposed feedback control solves
the task of flow stabilization.
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The Kelvin–Helmholtz instability (also known as
shear instability) is a type of hydrodynamic instability
that develops at the interface between two contacting
flows involving a tangential discontinuity of the veloc-
ity field [1]. Mathematical description of the instabili-
ties of interfaces is inevitably approximate, and it is
common practice to ignore phenomena such as molec-
ular diffusion (for gases or miscible liquids), evapora-
tion, condensation, and viscosity. For simplicity, a
mathematical analysis of the Kelvin–Helmholtz insta-
bility was originally also performed for an ideal (non-
viscous and incompressible) liquid. In the simplest
case, an unstable flow can be described by the follow-
ing boundary conditions [2]:

(1)

The Kelvin–Helmholtz instability also represents a
dynamic instability of the interface y = 0 in the flow
described by relations (1), including the cases of ρ = ρ'
(in homogeneous medium) and g = 0 (in the absence of
gravity). The surface tension at the y = 0 interface
reduces rather than eliminates this instability.

The problem of the Kelvin–Helmholtz instability in
a nonviscous fluid can be mathematically treated as the
problem with initial data for an autonomous conserva-
tive Lagrange’s dynamical system with an infinite num-
ber of the degrees of freedom. An equilibrium flow
obeying relations (1) represents the equilibrium state of
such a system, the stability of which can be studied in
terms of the general theory of small oscillations. This
theory stipulates the possibility of representing an arbi-

U y( )
U for y 0,<
U' for y 0,>




=

ρ y( )
ρ for y 0,<
ρ' for y 0.>




=
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trary small oscillation as a linear superposition of ele-
mentary wave solutions. The amplitude a(t) of any ele-
mentary wave with the wavenumber k satisfies the ordi-
nary differential equation

(2)

and the condition of stability is formulated as

(3)

for all k. Here, S(k) is the so-called perturbation growth
factor, which is a function of the wavenumber.

In the particular case of a single flat interface
described by relations (1), an elementary wave solution
of the differential equation (2) corresponds to sinusoi-
dal perturbations of the interface with an arbitrary
wavelength λ = 2π/k. For a horizontal interface in the
vertical gravitational field (two fluids with different vis-
cosities and flowing at different velocities), a small
sinusoidal perturbation of the interface with a wave-
length λ = 2π/k must exhibit exponential growth
according to the law exp[S(k)t] with the perturbation
growth factor [2]

(4)

where ρ and ρ' are the densities of layers, U and U' are
their velocities,  is the acceleration of the low-density
layer, g is the acceleration of gravity, and σ is the sur-

face tension at the interface. The wavenumber k = 

is introduced for the symmetrization of the plane wave
equation with respect to ı and t.
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The condition of stability (3) for the interface char-
acterized by relation (4) can be written as [2]

(5)

The Kelvin–Helmholtz instability phenomenon in
liquids and gases has been studied in much detail,
including interfaces of the gas–gas, gas–liquid, and liq-
uid–liquid types [1–5]. In recent decades, some experi-
ments have been devoted to monitoring the develop-
ment of shear instability at the contact between two
metals [6–9]. However, investigations of the state of the
interface between a medium possessing finite strength
(e.g., metal) and a medium without strength (gas, liq-
uid) under the conditions of flow at a large relative
velocity have not been reported thus far. Although the
process of the interaction of solid surfaces with explo-
sion products (EPs) under conditions of the sliding det-
onation of explosives is known and has been used for a

4g ρ ρ'–( )σ ρ2ρ'2 U U'–( )4

ρ ρ'+( )2
-----------------------------------.>

1

2

3

4

D

Fig. 1. Schematic diagram of the experimental arrangement
(see the text for explanations).
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long time (explosion welding, explosion alloy-free
coating, etc.), the related features in the state of the
EP−metal interface upon such dynamic loading
conditions has never been studied. It has been pointed
out [10] that an analog of the cumulative jet is formed
at the EP–metal interface upon the sliding detonation of
an explosive, which is manifested by the appearance of
traces of the jet action (blisters, caverns) on the surface
of a metal obstacle oriented perpendicularly to the
direction of motion of the detonation wave front.

This paper presents the results of experiments in
which we successfully observed the development of
perturbations at the EP–metal interface under condi-
tions of the sliding detonation of an explosive. Figure 1
shows a schematic diagram of the experimental
arrangement. We used a loading system of spherical
geometry, comprising a spherical steel capsule 2 (Steel
10 grade) with an outer radius of R = 87 mm and wall
thickness of ∆ = 4 mm, which was filled with a porous
substance b3 and placed inside a spherical layer 1 of an
explosive (TNT, ρ0 = 1.6 g/cm3, D = 6.9 mm/µs) with
an outer radius of R = 127 mm and a thickness of δ =
40 mm. The explosive was initiated at one point 4.

After the explosion, the surface of the steel capsule
(i.e., the EP–metal interface) exhibited large periodic
wavy perturbations. Figure 2 presents a photograph of a
fragment of the steel surface upon explosion. Figure 3
shows a micrograph (magnification, ×30) of a trans-
verse section of the EP–metal interface showing the
perturbation profile, which is characterized by the fol-
lowing parameters: wavelength, λ ≈ 2.5 mm; ampli-
tude, a ≈ 0.22 mm.

Evidently, the interface between hot EPs and the
metal featured the development of the Kelvin–Helm-
holtz instability. High-temperature (~3500 K) EPs slide
Fig. 2. Photograph of a fragment of the steel surface upon interaction with the explosion products.
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Fig. 3. Micrograph of a transverse section of the EP–metal interface showing the perturbation profile (magnification, ×30).
along the steel surface at a high velocity U =  ≤

2.2 mm/µs . Under these conditions, both the tangen-

tial and normal velocity of the metal layer can be
ignored. The short-term dynamic action leads to the
development of intense plastic straining at the EP–
metal interface, which leads to heating and a resulting
loss of strength (softening) in the thin surface layer of
the metal. Under the action of a large rotor of the tan-
gential velocity U, this layer features the development
of the Kelvin–Helmholtz instability.

The initial perturbation amplitude (a0 ≈ 10–2 mm) is
determined by the steel surface finish. Under dynamical
loading conditions, the perturbation increases accord-
ing to the exponential law until its amplitude becomes
comparable with the depth of the softened metal layer.
Further growth is impeded by the strength of deeper
metal layers.

Previously, we considered the development of small
perturbations in the case of an ideal liquid sliding over
the surface of a high-strength solid [11]. This formula-
tion of the problem corresponds to a variant whereby
one substance is sliding over another solid whose sur-
face layer is deprived of strength as a result of thermal
softening. In the approximation of an elastic-plastic
medium, the critical condition of stability for this layer
can be expressed as

(6)

where a0 is the initial perturbation amplitude, λ is the
perturbation wavelength, σT is the yield strength of the
layer, ρ is the density of the layer, M is the Mach num-
ber, µ = U/c, c is the shear wave velocity in the elastic
layer, U is the velocity of the ideal liquid layer, åcr is
the critical Mach number for the given perturbation
wavelength, and G is the shear modulus in the layer. For
perturbation wavelengths much smaller than the liquid
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layer thickness, we have åcr ≈ 1.8, and the critical con-
dition (6) acquires the following form:

(7)

For many metals under conditions of shock waves
that are not very strong, we have ρ/ρ0 < 0.05 and 

 ≈ 10–3. 

Then, for the EP velocity U ≈ 2.2 mm/µs and the
shear wave velocity in steel c = 2.8 mm/µs, we obtain

For a typical surface roughness of a0 ≈ 10–2 mm, the
critical perturbation wavelength is λcr ≈ 2.4 mm. Pertur-
bations with longer wavelengths must not exhibit
growth. In the experiments, we observed the growth of
perturbations with λ ≈ 2.5 mm, which is close to the
calculated critical value.

Thus, the experimentally observed growth of pertur-
bations at the EP–metal interface can be interpreted in
terms of the development of the Kelvin–Helmholtz
instability in the surface layer of the metal exhibiting a
short-term thermal softening. Using the proposed
model, the critical perturbation wavelength λcr such that
perturbations with greater wavelengths do not grow is
estimated.
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At the initial stage of the harmonic oscillations of a
circular cylinder in a linearly stratified fluid, a fan-
shaped pattern of internal waves is formed. With time,
this wave system is transformed to the classical St.
Andrew’s cross pattern: the internal waves emitted by
the oscillating body are localized inside four beams
directed at angle α =  to the horizon. Here,

Ω = , where ω is the body oscillation frequency and

N =  = const is the buoyancy frequency for

the fluid with density ρ in the presence of the gravita-
tional acceleration g directed oppositely to the y axis.
The beam width is on the order of the characteristic size
of the body. The phase patterns of internal waves for
steady-state oscillations and for the impulse displace-
ment of bodies were discussed in [1]. The theoretical
solution for internal waves generated by harmonic
oscillations of a circular cylinder in a linearly stratified
ideal fluid was obtained in [2]. An approximate solution
for the case of nonzero fluid viscosity was given in [3].
Various approaches to solving the problem of the emis-
sion of internal waves by oscillating bodies in a viscous
fluid were also discussed in [4]. A number of problems
concerning the viscous mechanism of generating inter-
nal waves were considered in [5–7].

The nonstationary problem of the formation of
internal-wave beams has been studied less thoroughly.
A review of works and the asymptotic solutions of the
time-dependent problem concerning internal waves
generated by various systems of model singularities
were given in [8]. Systematic experimental investiga-
tions of transient processes at the initial stage of the for-
mation of internal-wave beams have not yet been car-
ried out. In this work, quantitative experimental esti-
mates for the duration of transient processes are
obtained using the correlation analysis of wave-distur-
bance fields at different times.

Ωarcsin
ω
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g
ρ
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  dρ
dy
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The experiments were conducted in a rectangular
test tank 100 cm in length, 15 cm in width, and 30 cm
in depth. The tank was filled with a linearly stratified
fluid. Stratification was created using a sugar–water
solution. Internal waves were generated by vertical
oscillations of the circular cylinder with diameter D. To
acquire quantitative information on wave perturbations
in the fluid, we used the version of the “synthetic”
schlieren method that was proposed in [9, 10] and used
in [9, 11] to analyze the characteristics of steady pat-
terns of internal waves generated by harmonic oscilla-
tions of various bodies. The synthetic schlieren method
is based on the computer analysis of optical distortions
of an image that is obtained by video recording of a
contrast pattern (e.g., the system of black and white
bands) through a fluid layer disturbed by the passage of
internal waves. In this work, a regular system of black
points on a white background is used as such a pattern.
The passage of internal waves through the stratified
fluid is accompanied by local disturbances of the
refractive-index gradient. For this reason, the visible
positions of background points observed through the
disturbed fluid layer differ from those for the undis-
turbed layer. Various methods for quantitative estimates
of the visible displacement of the background elements
were discussed in [10]. In this work, the cross-correla-
tion analysis of images, which is one of the basic meth-
ods of particle image velocimetry, is used to calculate
the displacements of background points. Methods for
analyzing images were reviewed in [12]. A formula
relating the visible vertical displacements of back-
ground points δy to the disturbances of the buoyancy
frequency squared was obtained in [9]. In these experi-
ments, ∆N2 = –5.23δy (where ∆N2 and δy are measured in
squared inverse seconds and centimeters, respectively).
It is convenient to represent the measurement results for
disturbances of the density field in the dimensionless

form using the relation w' =  = – , where w(x, y)

is the vertical-displacement field of liquid particles in a
wave with respect to the initial undisturbed position.
Video recording was performed by means of a personal
digital video camera with a 768 × 576-pixel matrix. The

∂w
∂y
------- ∆N2

N2
----------
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Internal-wave pattern for various times at the initial stage of oscillations of a circular cylinder in a linearly stratified fluid.
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Fig. 2. Profiles w'(θ) for various times at various distances from the source of disturbances.
data for a region with size D around the oscillating cyl-
inder are filtered in the course of processing, because
large optical distortions in this region were beyond the
framework of applicability of the method in use.

In the experiments, the center of the circular cylin-
der underwent vertical oscillations described as yc = 0
for t < 0 and yc = asin(ωt) for t ≥ 0. Figure 1 shows the
patterns of internal waves at the times t = (from left to

right) T, 3T, and 5T, where T =  is the oscillation

period. The grey level is proportional to w' (light and
dark regions correspond to w' < 0 and w' > 0, respec-
tively). The wave patterns in Fig. 1 are obtained for D =
2 cm, a = 0.6 cm, Ω = 0.7, and N = 1.05 s–1. The black
circle at the center of each figure is the initial position
of the cylinder. Circles 1 and 2 are drawn at distances
r = 2.5D and 4D from the cylinder axis, respectively. It
is seen in Fig. 1 that the St. Andrew’s cross pattern of
internal waves in the region under consideration is
formed in several oscillation periods. Figure 2 shows
the distribution of w' over the angular coordinate θ

2π
ω
------
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along circles 1 and 2 (see Fig. 1) at various times. The
angle θ is measured anticlockwise from the horizontal
line. All curves in Fig. 2 correspond to the fixed phase

of cylinder oscillations for which yc = 0 and  > 0 and

differ from each other by the ordinal numbers of oscil-
lation periods. The vertical scale, which is identical for
all w'(θ) distributions, is shown for lower curves. The
dotted straight lines correspond to the undisturbed state
of the fluid. With time, the characteristic width of the
internal-wave beams decreases and the magnitude of w'
increases and approaches steady asymptotic values. It
is seen that the time interval of the formation of the
asymptotic form of the profiles w'(θ) increases with r.
As a quantitative characteristic of the duration of tran-
sient processes, it is convenient to use the correlation
function for the distributions w'(θ) that are obtained for
a fixed oscillation phase:

dyc

dt
--------

R m M,( ) w' θ mT,( )w' θ MT,( ) θ,d

0

2π

∫=
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where m and M are the ordinal numbers of oscillation
periods. In particular, we may set M = m + 1 or take a
sufficiently large M value at which the wave pattern can
be considered as stationary. It is convenient to introduce
the dimensionless correlation coefficient as CR =

. For steady oscillations, CR  1 for suffi-

ciently large m and M. It is worth noting that the analy-
sis of data in terms of CR is universal to a certain extent
for the class of problems under consideration, because
it is independent of the geometry of the internal-wave
generator.

Figure 3 shows CR(m) for the conditions correspond-
ing to Figs. 1 and 2. For the parameters used in the
experiments, M = 10 may be taken as a sufficiently
large value. Since the velocity of the propagation of dis-
turbances is finite, the characteristic relaxation time for

R m M,( )
R M M,( )
----------------------

20 4 6 8 10
m

0.5

1.0

CR

2.5

4

D

Fig. 3. Distribution CR(m) for various distances  from the

source of disturbances at a fixed oscillation frequency Ω .

r
D
----

50 10 15 20
m

0.5

1.0
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Ω
0.5
0.7

0.9

Fig. 4. Distribution CR(m) for various oscillation frequen-

cies Ω at a fixed distance  from the source of distur-

bances.

r
D
----

r

transient processes increases with r. The velocity of the
propagation of disturbances depends on Ω. For Ω  1,
the slope angle of the internal-wave beams is α  90°
and the group velocity of internal waves approaches
zero. Figure 4 shows the characteristic form of the
curves CR(n) for various Ω values. The data are
obtained with the parameters D = 1 cm, a = 0.6 cm, N =
1.4 s–1, r = 6D, and M = 20 as a sufficiently large value.
It is seen that the duration of the transient process
increases for Ω  1.

Thus, for large r values and Ω  1, the parameters
of internal waves approach the asymptotically steady
values in a noticeable time interval after the onset of
oscillations. This interval can be estimated using the
CR(m) dependence. We emphasize that, for r on the
order of tens of D, the characteristic duration of tran-
sient processes may reach tens of T, which should be
taken into account in experimental investigations of the
wave characteristics at large distances from the source
of disturbances. In particular, such conditions arise
when studying the propagation of internal-wave beams
in stratified waveguides.
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Applied problems present one of the promising
areas for applying the rapidly developed field of numer-
ical experiment. In this work, the behavior of an elon-
gated blunt body near a screen in a supersonic flow is
analyzed.

The placement of various cargos and devices on the
external surface of a main aircraft that separate from it
during the flight is characteristic of the current stage of
aircraft development. It would be difficult to overstate
the importance of understanding the laws of aerody-
namic interference for the flying craft’s safe start and
for the precise execution of tactical–technical tasks.
This problem for subsonic flight velocities was studied
in [1]. The case of supersonic velocities, where the
interaction of shock waves with each other and with
streamlined surfaces is the decisive process, has been
studied much less thoroughly.

The aim of this work is to demonstrate the capabili-
ties of numerical experiment for solving rather complex
problems of aerodynamic interference. Flow fields
around elongated blunt bodies near a screen, as well as
the coefficients of drag and lift force, have been calcu-
lated.

We calculate the flow around a circular cylinder
with radius 1 and length L. The cylinder has a hemi-
spherical front surface and a flat back section, is located
at distance h from the flat screen, and is streamed by a
flow of a perfect gas with the adiabatic index γ = 1.4.
Two series of calculations were performed for (i) the cyl-
inder whose axis is parallel to the screen and 0 ≤ h ≤ 3
and (ii) the cylinder that is streamed at the angle of
attack 0° ≤ α ≤ 15° and whose back section is spaced at
a distance of h = 1 from the screen. All calculations
were performed for the Mach number of free flow
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M = 3 and the length of the cylindrical part of the body
L = 8.

For the flow at zero angle of attack around the body
located at small distances from the screen (h ≈ 0.05), the
bow shock wave in the flow symmetry plane is orthog-
onal to the screen. In this case, the flow near the hemi-
spherical blunting is similar to the flow around two
spheres with the center line across the flow [2] for small
distances between spheres. Therefore, the flow near the
front part in the low near-screen region is subsonic.
This ensures a relatively high drag of the body for small
h values. The drag coefficient cx(h) is shown in Fig. 1.
As h increases, cx decreases rapidly, because the known
pattern of the flow around a single sphere with the sep-
arated shock wave is quite rapidly recovered with
increasing h. As usual, the closed subsonic zone is
recovered in the shock layer.

Small oscillations in cx(h) are likely associated with
the interaction between the bow shock wave reflected
from the screen and wake behind the cylinder. This
interaction leads to nonmonotonic changes in the bot-
tom pressure. The flow pattern around the body for
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Fig. 1. Drag coefficient for α = 0.
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Fig. 2. Flow pattern for h = 1.
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Fig. 3. Lift-force coefficient for α = 0.
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Fig. 4. Drag coefficient and lift-force coefficient vs. the
angle of attack.
h = 1 is shown in Fig. 2. The asymmetry of the wake is
a consequence of this interaction.

Figure 3 shows the distribution of the lift-force coef-
ficient cy(h). Under these conditions, the presence of the
lift force is completely determined by interference. A
relatively surprising result is a nonmonotonic change in
cy: as h increases, cy first increases to a certain maxi-
mum value at h ≈ 1.5 and then decreases rapidly to zero.
This behavior is attributed to the laws of multiple
reflection of the bow shock wave from both the screen
and the lateral cylindrical surface of the body. We recall
that the bow shock wave initially has the shape of a sur-
face of revolution with variable intensity along the gen-
eratrix. It is of interest to develop an approximate ana-
lytical model of such multiple reflection of the shock
wave from the flat and cylindrical surfaces.

Figure 4 shows the results of the second series of
calculations, i.e., for the flow around the body at the
angle of attack α. To simplify the calculations, S = π,
i.e., the section of a unit-radius sphere, is taken as the
midship section in the formulas for cx and cy [2]. As was
expected, the drag and lift force increase almost lin-
early with α. Comparing cy values in Figs. 3 and 4, we
easily conclude that the effect of the screen on the lift
force in the variant under consideration is secondary,
excluding the region of small angles of attack α ≈
1°−2°. This range of the simultaneous effect of the
angle of attack and the screen on the lift force can evi-
dently increase for smaller h values.

Thus, the above approach based on numerical
experiments provides for the investigation of the aero-
dynamics of elongated bodies in the presence of inter-
ference. Applying known numerical-simulation tech-
niques, one can study a phenomenon in detail, for
example, the behavior of the bow shock wave for small
distances from the body surface to the screen.

A number of interesting aerodynamic problems
including those presented in [1], as well as other prob-
lems, can be solved applying the above approaches.
This method provides broad possibilities for calculat-
ing and designing possible new systems.
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