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We have considered the effect of pressure on the
polymorphic α–γ and γ–δ transitions in iron under the
assumption that each structural modification is a Debye
solid with the characteristic temperature linearly
increasing with the pressure and independent of the
temperature. As is known, the pressure significantly
influences the polymorphism in iron. At normal pres-
sure, iron exists in three polymorphic (allotropic) mod-
ifications. The α-Fe polymorph that is stable in the
range of low temperatures below 1189 K has a bcc
structure and exhibits ferromagnetic behavior below
1043 K. The γ-Fe polymorph having an fcc structure is
stable in the temperature interval from 1189 to 1665 K.
In the interval from 1665 K to the melting point
(1809 K), the bcc δ-Fe modification isomorphic to the
α-Fe modifications is stable. Both γ- and δ-Fe polymor-
phs are paramagnetic.

The Debye temperatures of a-, g-, and d-Fe. The
characteristic temperature of α-Fe was calculated using
the average velocity of sound in this crystal. According
to the paper by Alers in monograph [1], the Debye tem-
perature can be expressed as

(1)

where 2/π is a factor taking into account the dispersion,
h is the Planck constant, k is the Boltzmann constant,
N is the Avogadro number, V is the molar volume, and
c is the average velocity of sound.

According to the paper by Anderson in mono-
graph [1], the average sound velocity is given by the
formula

(2)
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is the transverse velocity of sound,

v l = (4)

is the longitudinal velocity of sound, K is the bulk mod-
ulus, G is the shear modulus, and ρ is the density. 

The shear modulus G was calculated using for-
mula (4) for the experimental value of v l (determined by
linear extrapolation to the normal pressure) [2], the den-
sity ρ determined for a molar volume of V0 =
7.0938 cm3/mol [3], and the known bulk modulus ä.
For v l = 5899 m/s, ρ = 7874 kg/m3, and ä = 172 GPa [4],
this formula yields G = 76.5 GPa, which agrees with the
published data [1, 5]. The average sound velocity calcu-
lated using Eqs. (2)–(4) is c = 3484 m/s. The character-
istic temperature of α-Fe calculated by substituting this
average sound velocity into formula (1) is Θα = 419 K,
which is close to the values reported in [6, 7].

The characteristic temperature of γ-Fe at normal
pressure was taken as equal to Θγ = 335 K [6].

The characteristic temperature of δ-Fe was esti-
mated using the Helmholtz free energy of this poly-
morph at a temperature of the γ–δ transition. In order to
determine this quantity, we first calculated the Helm-
holtz free energy of γ-Fe at Tγ–δ = 1665 K using the cor-
responding characteristic temperature at normal pres-
sure. The sum of this value and the enthalpy of the γ–δ
transition (∆Hγ–δ = 980 J/mol, which corresponds to the
average of the data reported in [8, 9]) gives the Helm-
holtz free energy of δ-Fe at the transition temperature
and normal pressure. Using this value, the characteris-
tic temperature of δ-Fe was estimated in the Debye
approximation by assuming that the differences of heat
capacities at constant pressure and constant volume,
Cp – CV , for γ and δ polymorphs are the same and that
the ∆Hγ–δ value corresponds to the temperature-inde-
pendent part of the difference of internal energies

. This calculation yields Θδ = 328.3 K.
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Alternatively, the characteristic temperature of δ-Fe
was estimated using the Lindemann method, according
to which

Θ = , (5)

where Tm is the melting temperature; A is the atomic
weight (for iron, (A = 55.847); d is the minimum inter-
atomic distance at the melting temperature; and η is a
numerical coefficient. According to [10], the lattice
parameter of iron at Tm = 1807 K is α = 2.9411 Å,

which yields for a bcc iron structure d =  =

2.5471 Å. Adopting the value of η = 165 [11], we
obtain the characteristic temperature Θδ = 368 K. How-
ever, no polymorphic transition is observed at this tem-
perature (the free energy curves of γ-Fe and δ-Fe do not
intersect). Assuming that the transition temperature
Tγ−δ = 1665 K corresponds to Θδ = 328.3 K, we obtain
an estimate of η = 147.

The effect of pressure on the Debye temperatures
of iron polymorphs. The influence of pressure p on the
characteristic temperature Θ for α-Fe was determined
using the pressure dependences of the bulk modulus K
and the shear modulus G. In the interval of pressures
under consideration, these dependences can be approx-
imated by linear functions as [12]

K = K0 + kp, G = G0 + gp, 

where K0 , G0 are the values of the moduli at normal
pressure and k, g are the pressure-independent coeffi-
cients. The calculations were performed using K0 and k
values corresponding to the data reported in [3, 4]. The
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Fig. 1. Plots of the characteristic temperatures of α-, γ-, and
δ-Fe polymorphs versus pressure.
coefficient g =  was estimated using formula (4) for

the experimentally determined values of the longitudi-
nal sound velocity at various pressures [2], the bulk
modulus K, and the density ρ. The corresponding val-
ues of ρ(p) were determined from the experimental data
on the change in the molar volume of α-Fe as a function
of the pressure [3]. These calculations yield g = 1.97.
The calculated curve of the characteristic temperature
of α-Fe versus pressure is presented in Fig. 1. The
Debye temperature Θα exhibits linear growth with the

pressure at a slope of  = 4.89 K/GPa.

Söderlind et al. [13] calculated the characteristic
temperature of γ-Fe as a function of the molar volume.
Using these data and taking into account the pressure-
induced change in the molar volume of γ-Fe at 300 K
[12], we obtained the Θ(p) curve depicted in Fig. 1. In
the range of pressures under consideration, this depen-
dence can also be approximated by a linear function.
According to this, the Debye temperature Θγ exhibits

linear growth with the pressure at a slope of  = 1.38

K/GPa. Thus, the slope of Θ(p) for γ-Fe is significantly
lower than that for α-Fe.

Using the pressure dependences of the characteristic
temperatures of α-Fe and γ-Fe, we have determined the
temperatures of the α–γ polymorphic transition at vari-
ous pressures. The temperature of the polymorphic
transition corresponds to the point of intersection of the
curves of Helmholtz free energies of the corresponding
phases, including the temperature-independent part of
the difference of internal energies at a given pressure.
Using this definition, we have determined the tempera-
ture dependence of the Helmholtz free energy corre-
sponding to the Debye temperature at each pressure.
These curves were shifted relative to each other by a
value corresponding to the difference of internal ener-
gies of α-Fe and γ-Fe at a given pressure:

∆Uα–γ =  + p(Vγ – Vα), 

where  = 5912 J/mol [8] is the difference of
internal energies at normal pressure and T = 0 K. In the
range of pressures under consideration, the difference
of molar volumes Vγ – Vα can be considered as pres-
sure-independent and as equal to the value of this dif-
ference at normal pressure and T = 0 K. The latter value
was determined via extrapolation of the experimental
temperature dependence V(T) [10], which yielded
Vγ − Vα = 0.159 × 10–6 m3/mol.

Figure 2 (lower curve) shows the dependence of the
temperature of the α–γ polymorphic transition on the
pressure, calculated as described above, in comparison
with the experimentally determined values of Tα–γ
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(points). As can be seen, the theoretical and experimen-
tal data are in good agreement.

An analogous calculation of the polymorphic transi-
tion temperature as a function of the pressure was per-
formed for the transition from γ-Fe to δ-Fe. Using the
adopted pressure dependence of the characteristic tem-
perature of the γ-Fe polymorph, we have determined
the Helmholtz free energy of γ-Fe at p = 4 GPa. Using
this value and the transition temperature Tγ–δ = 1900 K
and taking into account the relation

∆Uγ–δ =  + p(Vδ – Vγ),

we calculated the Helmholtz free energy of δ-Fe and
determined the characteristic temperature Θδ = 335.3 K
in the Debye approximation. In these calculations, it
was assumed that the difference of molar volumes of
the γ-Fe and δ-Fe polymorphs is independent of the
pressure in the range under consideration and is equal
to the value at normal pressure and T = 0 K, which was
estimated as Vδ – Vγ = –0.04 × 10–6 m3/mol [10, 12].
Then, taking into account that Θδ = 328.3 K at normal
pressure, we obtained the Θδ(p) curve depicted in
Fig. 1. In the range of pressures under consideration,
the Debye temperature Θδ exhibits linear growth at a
slope of

 = 1.75 K/GPa.
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Fig. 2. Plots of the temperatures of the α–γ and γ–δ poly-
morphic transition in iron versus pressure. Solid curves
show the results of calculations (this study) and symbols
represent the experimental data: ( ) dynamic pressure [14];
(d) static pressure [14]; (j) generalized data [15].
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Figure 2 (upper curve) shows a plot of the tempera-
ture of the γ–δ polymorphic transition versus pressure,
calculated as described above, in comparison with the
experimentally determined values of Tγ−δ (points).

The calculated curves of the α–γ and γ–δ polymor-
phic transitions in iron practically coincide with the
experimental phase diagram and are close to the values
calculated using the Clausius–Clapeyron equation.

In conclusion, we have established that the charac-
teristic temperatures of α-, γ-, and δ-Fe polymorphs
exhibit linear dependences on the pressure. We have
also calculated the lines of α–γ and γ–δ phase equilibria
on the p–T diagram, proceeding from the equilibrium
conditions calculated in the Debye approximation from
the values of the characteristic temperatures of α-, γ-,
and δ-Fe. The results of the calculations are in good
agreement with the experimental phase diagram of
iron.
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The temperature Tmd equal to 4°C, which corre-
sponds to the maximum density of water (the tempera-
ture of the maximum density), is its anomalous prop-
erty and, thereby, holds theoretical and applied interest
in the investigation of other thermodynamic parameters
of water, e.g., the speed of sound C. This problem is
urgent for deep fresh reservoirs located at intermediate
and high latitudes, including Baœkal, the deepest lake in
the world (depth up to 1642 m) [1].

The goal of the present study is the analysis of vari-
ations in the behavior of the speed of sound C near the
temperature Tmd on the basis of experimental data
related to lake Baœkal.

The method of investigation employs both theoreti-
cal and experimental approaches and exploits the
Chen–Millero equation of state [2] for lake waters.

We theoretically analyze the speed of sound in terms
of independent variables T, S, P (T [°C] is temperature;
S [g kg–1] is salinity; and P [bar] is pressure). Based on
formulas taken from [3] for thermodynamic parameters
of water, we arrive at the following expression for the
speed of sound:

(1)

Here, ρ is the density of water, γad = (ρP)ad is the adia-

batic-compressibility coefficient, γisoth = (ρP)T, S is the
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isothermal-compressibility coefficient, ρP is the deriva-
tive of the water density with respect to pressure at a
constant temperature T and salinity S, α is the thermal-
expansion coefficient, and Γ is the adiabatic gradient.
The last quantity is calculated from the expression

(2)

where TK is temperature expressed in absolute degrees,

α = , ρT is the derivative of the water density ρ with

respect to temperature T at the constant salinity S and
pressure P, and QP is the specific heat at the constant
pressure P. All the parameters of formula (1) are func-
tions of T, S, and P, but we do not indicate this fact for
the sake of simplicity.

Formula (1) is identical to the ratio (4) of [4] for the
speed of sound. However, the form of (1), which was
proposed by us, makes it possible to more obviously
represent the dependence of the speed of sound on the
parameters α and Γ determining the adiabatic proper-
ties of water.

Using formula (1), we can analyze the variation of
the speed of sound in the vicinity of the temperature of
the maximum density Tmd. We can see that, firstly, as
follows from [3–5], at the temperature of the maximum
density, the water density ρ has the maximum, whereas
the parameters α and Γ attain the zero value. In this
case, the values of α and Γ are positive or negative as
T > Tmd or T ≤ Tmd, respectively, the product αρΓ
always exceeding zero. Thus, insofar as at Tmd all the
parameters determining the speed of sound attain their
maxima and stand in the denominator of formula (1)
(under the square-root sign), the value of speed of
sound C must have the minimum (i.e., be minimal).

Assuming that Tmd (Table 1), we consider the behav-
ior of the speed of sound C near the temperature of the
maximum density Tmd for temperatures from 0 to 8°C
and pressures from 0 to 180 bar. The maximum diver-

Γ –
TKρT

QPρ2
------------ TKα

QPρ
----------,= =

–
ρT

ρ
-----
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Table 1.  The speed of sound near the temperature of the maximum density Tmd within the pressure range P from 0 to 180
bar at the average salinity S = 0.096 g kg–1 in Lake Baœkal

P, bar
C, m s–1

0°C 1°C 2°C 3°C 4°C 5°C 6°C 7°C 8°C

0.00 1402.509 1407.475 1412.330 1417.076 1421.715 1426.247 1430.675 1435.000 1439.222

47.47 1410.022 1415.016 1419.897 1424.668 1429.330 1433.884 1438.332 1442.676 1446.917

95.09 1417.613 1422.632 1427.537 1432.330 1437.012 1441.585 1446.052 1450.412 1454.670

141.14 1425.006 1430.046 1434.971 1439.782 1444.481 1449.071 1453.552 1457.928 1462.199

180.00 1431.283 1436.339 1441.278 1446.103 1450.815 1455.416 1459.909 1464.296 1468.577

Note: Values of C (Tmd, S, P) are indicated by bold-type numbers.
gences of values of C from the data of [3] and [6] are
0.245 m s–1 (T = 3°C, P = 180 bar) and 0.208 m s–1 (T =
0–1°C, P = 150 bar), respectively, and do not exceed
0.20 m s–1 as compared to the experimental data of [7].
The use of the expression for the speed of sound in the
form of (1), where the dependence of C on the coeffi-
cients of the thermal expansion α and the adiabatic gra-
dient Γ is explicitly shown, essentially increases the
potential of the investigations.

Marked features in the behavior of the speed of
sound near the temperature of the maximum density
within the pressure range from 0 to 180 bar are not dis-
tinguished in Table 1. However, this effect can be
masked by the dependence of C on T.

We now additionally analyze the results of the appli-
cation of formula (1), (2). To this end, we consider the
behavior of the derivative of the function (T, S, P),
where the subscript x hereinafter stands for the differ-
entiation with respect to T, S, or P in the vicinity of Tmd.
To accomplish this, we find the derivative with respect
to temperature T from the speed of sound C written out
in form (1). As a result, we arrive at the relationship

(3)

At the temperature T = Tmd, the last three terms equal
zero, since the cofactors ρT, α, and Γ entering into them
are close to zero. Therefore, we do not need the exact

form of the derivatives for  and . As a result, we
obtain

(4)

where ρTP = ρPT is the thermal baric parameter that
determines the dependence on temperature and pres-
sure. From the analysis of formula (4) and thermal baric
parameter ρTP, whose behavior as a function of temper-
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CT Tmd S P, ,( ) –
C3 Tmd S P, ,( )ρTP Tmd S P, ,( )
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ature T and pressure P was thoroughly considered
in [7–9], it follows that, in the vicinity of the point Tmd ,
no singularities depending on T and P are present. This
conclusion is confirmed by the values of , calculated
according to formula (4) and shown in Table 2, as well
as by the direct comparison of differences ∆C deter-
mined on the basis of formula (1) with a temperature
step of 1°C.

As is seen from Table 1, the value of C decreases and
increases with increasing temperature and pressure,
respectively, which is confirmed by the data for 
given in Table 2.

Thus, as follows from Tables 1 and 2, evident
attributes of any singularities in varying values of C as
a function of T and  are absent in the vicinity of the
temperature of the maximum density.

We now analyze the expression standing under the
radical sign in the denominator of formula (1). The
product (ραΓ) entering into formula (1) is always posi-
tive and has a minimum equal to zero at the point T =
Tmd (see figure). The radicand ρP – ραΓ  has a weakly
pronounced maximum (see figure), which indicates the
existence of a scarcely distinguishable minimum of the

CT'

CT'

CT'

Table 2.  Derivative  of the speed of sound with respect
to temperature at the temperature of the maximum density
Tmd within the pressure range from 0 to 180 bar for the con-
ditions in Lake Baœkal

P, bar S, g kg–1 Tmd, °C α, 10–10 °C–1 (Tmd, S, P)

0.00 0.096 3.9642 3.6 4.59

47.47 0.096 3.0000 4.6 4.72

95.09 0.096 2.0000 6.6 4.85

141.14 0.096 1.0000 2.0 4.98

180.00 0.096 0.1292 8.2 5.10

CT'

CT'
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speed of sound C in the region of the temperature of the
maximum density Tmd.

At T = Tmd, the speed of sound corresponding to the
adiabatic regime, i.e., C = Cad, which we usually use
[see, e.g., formula (1)], becomes equal to Cisoth charac-
teristic of the isothermal regime. The latter quantity is
determined by the formula

(5)

where the coefficient γisoth of the isothermal compress-
ibility stands under the quadratic-radical sign, and

(6)

From the analysis of the radicand in formulas (1), (5) it
follows that

(7)

where the equality sign is realized only in the case of
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Analysis of the behavior of the terms ρP, ρP – ραΓ , and
ραΓ , which are radicands in the denominator of formula (1)
for the speed of sound in the four-degree vicinity of the tem-
perature of the maximum density. Tmd(P = 0) . 4°C.
the validity of formula (6). In fact, if we analyze the dif-
ference between the speed of sound for the adiabatic
and isothermal regimes, this difference

is zero as T = Tmd.
We now consider these differences within the four-

degree range in the vicinity of temperature Tmd (see
Table 3). In this table, the chosen values of pressure P
(excepting the edge values) correspond to integer val-
ues of Tmd, namely, 1, 2, and 3°C. The analysis of data
given in Table 3 allows us to make the following con-
clusions.

(i) At T = Tmd, the adiabatic regime transforms into
the isothermal one.

(ii) In the adiabatic regime, values of the speed of
sound are always higher than in the isothermal regime.

(iii) When the deviation of Tmd from T is 1°C, the
difference in the speed of sound attains 0.022 to
0.025 m s–1, and only when this deviation is 4°C does
the difference attain about 0.4 m s–1. In this case, the
difference increases (decreases) by approximately 10%
towards lower temperatures (higher pressures).

(iv) The ratio of speeds of sound corresponding to
the isothermal and adiabatic regimes has a clearly pro-
nounced maximum.

The principal feature of the thermodynamic regime
near the temperature of the maximum density Tmd is the
fact that the adiabatic properties of water are mani-
fested almost not at all and completely disappear at T =
Tmd. The water medium acquires a number of unusual
properties: indifferent equilibrium (or something close
to it) disappears or becomes close to the point of the
buoyancy-parameter disappearance (the buoyancy
parameter proportional to α tends to zero); the thick-
ness of a layer stratified by the gravity-force field is

given by the expression H = , where g is the free-fall

acceleration, and tends to infinity (α tends to zero); etc.
For sea water, the method of calculating the speed of

sound with allowance for the salt-ion concentration was

∆Cad–isoth Cad Tmd S P, ,( ) Cisoth Tmd S P, ,( )–=

CP

αg
-------
Table 3.  Difference in the speeds of sound (Cad) and (Cisoth) for adiabatic and isothermal regimes, respectively

P, bar
∆C, m s–1

0 1°C 2°C 3°C 4°C 5°C 6°C 7°C 8°C

0.00 0.4075 0.2238 0.0965 0.0229 0.0000 0.0255 0.0967 0.2115 0.3678

47.47 0.2245 0.0980 0.0241 0.0000 0.0233 0.0916 0.2026 0.3544 0.5450

95.09 0.0959 0.0236 0.0000 0.0228 0.0897 0.1985 0.3472 0.5339 0.7569

141.14 0.0231 0.0000 0.0223 0.0878 0.1943 0.3400 0.5230 0.7414 0.9938

180.00 0.0004 0.0166 0.0755 0.1750 0.3132 0.4883 0.6985 0.9423 1.2181

Note: For integer-valued temperatures of the maximum density, Tmd equal to 3, 2, 1°C, the differences under study are shown by bold-type
numbers.
DOKLADY PHYSICS      Vol. 50      No. 11      2005
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proposed in [10]. In the case of equal water temperature
and the temperature of the maximum density, the adia-
batic parameter κ = CP/CV = 1 (CV is the specific heat
at a constant volume). The speed of sound correspond-
ing to the adiabatic regime and defined as Cad =

Cisoth becomes equal to the speed of sound Cisoth cor-
responding to the isothermal regime, which is calcu-
lated as a function of T, S, P. The latter fact can be used
for methodological purposes, e.g., for the calculation of
speed of sound in the case of calibration of modern
velocimeters and sensors, both existing and under
development [11–15]. As was shown in [8], the state-
ments advanced above relate both to normal atmo-
spheric pressure (P = 0) and to other pressure values for
which the temperature of the maximum density is
attained.

Lake Baœkal presents all the necessary conditions
for realizing these investigations. Indeed, in this lake in
winter depth regions regularly arise with temperatures
equal to the temperature of the maximum density Tmd,
i.e., the so-called mesothermal temperature maximum
(see Table 3 and the figure). In this case, the speed of
sound can be calculated as a reciprocal value of the
square root of the isothermal compressibility, because
adiabatic effects are zero and degenerate. These results
can be applied for testing hydroacoustic equipment not
only in Lake Baœkal but also under laboratory condi-
tions or in experimental tanks. It is also of interest to
carry out studies for Baœkal thermal barriers when the
temperature of the maximum density (~4°C) is estab-
lished in upper water layers and occupies vast shallow
waters, e.g., the mouth of the Selenga River [15].
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INTRODUCTION

Based on concepts developed in [1, 2], we have
applied for the first time the Kontorovich–Lebedev
integral transformation to solve the first and second
boundary value problems for Helmholtz equations with
the three-dimensional unclosed biconic geometry. This
has allowed us to lower the dimension of the equations
and to obtain the solution of the electrodynamic prob-
lem in the frequency region [3]. In the present paper, we
propose and substantiate a novel method for solving
boundary value problems for the wave equation in
wedge-like and conic regions. The method is based on
the use of the Meler–Fock transformation [4] combined
with the method of singular integral equations of pair
summator equations [5]. The employment of this trans-
formation to solving boundary value electrodynamic
problems in the time region for unclosed conic struc-
tures makes it possible to find an analytical solution and
to perform the qualitative analysis of their scattering
properties.

FORMULATION OF THE PROBLEM

We consider the problem of wave diffraction on an
unbounded thin conic structure Σ consisting of two

cones Σ1 and Σ2 Σ =  with a common vertex

and axis, opening angles 2γj, and with N slots periodi-
cally cut along the generatrices and having the angular
width dj (j = 1, 2), respectively (Fig. 1). The structure

period is l = , and dj are the values of dihedral angles

formed by the intersection of planes that contain the

---
 Σ jj 1=

2∪ 


2π
N
------
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cone axis and slot edges. There is also a point field
source located at the point M0(r0). The field generated
by the source varies in accordance with a law given by
the function f(t – t0) (the source is switched on at the
time instant t0). We now introduce the spherical coordi-
nate system r, θ, ϕ with the origin at the vertex of the
conic structure. In this system, each of the cones is
determined by the equation Σj: θ = γj . It is necessary to
determine the potential υ(χ)(r, t) that satisfies at every
instant of time the following conditions:

the wave equation

(1)

the initial condition

(2)

the boundary condition

(3)

the bounded-energy condition

(4)

Here, the superscript χ = 1, 2 determines the type of the
source surface. According to [6, 7], the boundary value
problem given by Eqs. (1)–(4) has a unique solution.
We represent the potential υ(χ)(r, t) as

∆ 1

a
2

----- ∂2

∂t2
-------– 

  υ χ( ) r t,( ) F χ( ) r t,( ),–=

r Σ,  r0,∉

F χ( ) r t,( ) b χ( )

r
--------δ r r0–( ) f t t0–( );=

(

(

υ χ( ) 0
∂υ χ( )

∂t
------------, t t0;≤≡ ≡

∂χ 1–

∂nχ 1–
-------------- ∂υ χ( )

∂t
------------ 

 
Σ

0;=

∂υ χ( )

∂t
------------

2

∇υ χ( ) 2
+ 

  Vd∫
V

∫∫ ∞.<

υ χ( ) r t,( ) υ0
χ( ) r t,( ) υ1

χ( ) r t,( ),+=
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where

.

The source potential (r, t) is the desired Debye
potential that corresponds to the field excited by the
source, η(ξ) is the Heaviside step function, and R =
|r − r0|.

GREEN’s FUNCTION 
AND THE MELER–FOCK INTEGRAL 

TRANSFORMATIONS

We express the potential υ(χ)(r, t) in terms of the
Green’s function and use it to solve the boundary value
problem given by Eqs. (1)–(4):

(5)

The Green’s function is

(6)

where

G0(r, t) =  

is the Green’s function of the free space, satisfying
wave equation (1) having the δ-shaped right-hand side,
initial condition (2), boundary condition (3), and
boundedness condition (4). We seek the potential

(r, t) in the form of (5), whereas the initial problem

is reduced to finding the function (r, t) for the com-
plicated conic structure Σ. To this end, we use the
Laplace transformation for the function G(χ)(r, t) with
respect to the time parameter

(7)

We find the image Gs, (1) that must satisfy the following
requirements:

the inhomogeneous Helmholtz equation

(8)

the boundary condition

(9)

υ0
χ( ) b χ( )

4πr0R
--------------- f t t0–

1
a
---R– 

  η t t0–
1
a
---R– 

 –=

υ1
χ( )

υ χ( ) r t,( ) b χ( )

r0
-------- G χ( ) r r0– z,( ) f t t0– z–( ) z.d

0

t t0–

∫=

G χ( ) r t,( ) G0 r t,( ) G1
χ( ) r t,( ),+=

δ t t0– R
a
---–

4πR
------------------------------

υ1
χ( )

G1
χ( )

Gs 1( ), Gs 1( ), r( ) G 1( ) r t,( )e st– t, Resd 0.>
0

+∞

∫= =

∆ q2–( )Gs χ( ), r( ) e
st0–

δ r r0–( ),–=

r Σ0,∉     r0, q
s
a
---;=

∂χ 1–

∂nχ 1–
--------------Gs χ( ),

Σ 0;=
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the principle of the ultimate absorption;

and the bounded-energy condition.

We assume that q > 0. Then, we perform the analyti-
cal extension in finite formulas. In accordance with (6),
we write Gs, (1) in the form

where

(10)

Gs χ( ), r( ) G0
s r( ) G1

s χ( ), r( ),+=

G0
s r( ) e

qR st0+( )–

4πR
--------------------

2

π2
----- τ πτG0

s Kiτ qr( )
r

------------------sinh τ ,d

0

+∞

∫= =

G0
s αmτ

s Umτ
0( )eimϕ ,

m ∞–=

+∞

∑=

(

( ((

Umτ
0( ) θ θ0,( )

P 1/2– iτ+
m θcos( )P 1/2– iτ+

m θ0cos–( ),

θ θ0<

P 1/2– iτ+
m θcos–( )P 1/2– iτ+

m θ0cos( ),

θ0 θ,<







=

αmτ
s 1–( )m

4 πτcosh
---------------------

Kiτ qr0( )
r0

--------------------

Γ 1
2
--- m– iτ+ 

 

Γ 1
2
--- m iτ+ + 

 
----------------------------------e

i st0 mϕ0+( )–
.=

(

Σ1: θ = γ1

Σ2: θ = γ2

0

z

y

M(r, θ, ϕ)

r – r0

r

r0

x

Fig. 1. Structure geometry.
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Here, Kiτ(qr) is the modified Bessel function of the sec-

ond kind; (cosθ) is the associated Legendre
function of the first kind; and Γ(z) is the gamma func-
tion. To solve problem (8), (9), we exploit the integral
Kontorovich–Lebedev representation:

(11)

(12)

We now represent (r) in the form of (12). In this
case, we have

(13)

(14)

(15)

Here, , , , and  are unknown coeffi-
cients independent of the parameter q. Based on the
results of [3, 8], one can show that the Green’s function

(r, t) (6) (κ = 0, 1) can be represented (in a unique
manner) as the integral

(16)

P 1/2– iτ+
m

g τ( ) g r( )
Kiτ qr( )

r
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0

+∞
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(
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χ( )P 1/2– iτ+
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χ( )
ξ̂mn
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Gκ
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Gκ
χ( ) r t,( ) τ πτG̃

˜
κ
χ( )

P 1/2– iτ+ bcosh( )tanh τ ,d

0

+∞

∫=
where

(17)

(18)

The integral representation of type (16) is a version
of the Meler–Fock integral representation [4], which
can be written in the form

(19)

where

(20)

The Green’s function (r, t) (6) for a complicated
conic structure Σ can be found by using integral trans-
formations (19), (20), representations (17), (18),
boundary condition (3), and the conjugation condition
in slots. As a result, we arrive at two coupled sets of
functional equations for the determination of unknown

coefficients of the function  (15). The form of these
sets is presented in [3, 9], and their solution can be
obtained employing the method of singular integral
equations or the method of the Riemann–Hilbert prob-
lem [3, 5]. We present expressions describing the
Debye potentials in certain particular cases of a compli-
cated conic structure and the function f(t – t0).

(A).   f(t) = eiαωt, α = ±1, t0 = 0. 
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functions (u1) are defined in [10]; and  are
the potentials for the solid cone Σ1 [11]. Representa-
tion (21) is valid far from the slots.

(B).   f(t – t0) = δ(t – t0), χ = 1, θ0 = π.

The conic structure Σ consists of a solid cone Σ1 and
a semitransparent cone Σ2 . The latter is determined by
the existence of the limit

(22)

(23)

where Q–1/2 + µ( ) is the Legendre function of the
second kind. Representation (22) is obtained from (16)
as a result of the expansion of the integral (after the pas-
sage in (16) to integration over the imaginary axis µ =
iτ) into a series in terms of residues of the integrand in
its simple poles µn(Q, γ1, γ2), in which are contained the
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roots of Eq. (23). Figure 2 exhibits the values µ0, µ1 as

functions of the filling parameter Q for γ2 =  and dif-

ferent angles γ1 . The sequence of values  is
monotonically increasing. The least of the values µ0
determines the field behavior near the structure vertex
and the field spatial distribution in the case when the
source is closely located to the vertex.

Thus, we have proposed and substantiated a method
for solving boundary value problems of diffraction in
the time region for complicated three-dimensional
unclosed conic structures. The method constitutes a
generalization of the results reported by the authors in
[3, 9] as applied to solving problems of wave diffrac-
tion on unclosed perfectly conducting bicones in the
frequency region. This approach can also be used in
solving time-dependent problems of wave diffraction
on three-dimensional impedance structures of conic
geometry.
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Most rare earth (RE) elements exhibit structural
polymorphic transitions from low-temperature (I) to
high-temperature (II) modifications in the vicinity of
the corresponding melting temperatures. Among the
fourteen 4f elements (in which the 4f electron orbital is
occupied), there are apparently only two (europium and
thulium) that are not subject to such high-temperature
structural transformations. We have considered the
crystal structures, evaluated the temperature intervals
of the existence of the equilibrium RE polymorphs I
and II, and determined the corresponding characteristic
(Debye) temperatures θI and θII. In addition, we have
established relationships between the θI and θII values,
on the one hand, and the temperatures Tk of the corre-
sponding polymorphic transitions and the melting tem-
peratures Tm, on the other hand. The enthalpies ∆Hk of
the polymorphic transitions determined using the θI and
θII values are similar to the available experimental data.

The high-temperature polymorphic transitions in
RE elements exhibit interesting characteristic features.
In particular, the I–II transition temperatures Tk are
close to the corresponding (relatively high) melting
temperatures Tm: the ratios Tk/Tm vary from 0.87 for Nd
to 0.98 for Dy (Fig. 1). In all RE elements, the high-
temperature phase II has a relatively narrow tempera-
ture region of the equilibrium existence. Among the
“light” RE elements, the difference Tm – Tk is minimum
for Ce (69 K) and maximum for Sm (160 K). For the
“heavy” RE elements, this difference ranges from 24 K
(for Yb) and 28 K (Dy) to 162 K (Er). Accordingly, the
relative difference (Tm – Tk)/Tm varies with the atomic
number as depicted in Fig. 2.

The temperature region of the equilibrium existence
of the high-temperature phase II significantly increases
in the sequence Pr, Nd, Sm, while it decreases in the
sequence Gd, Tb, Dy, Ho. This variation can be consid-
ered in relation to the number of f electrons, which
increases to seven on the passage from Ce to Eu (in
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which all seven branches of the f orbital are occupied by
one electron) and then changes on the passage from Gd
to Lu in accordance with Hund’s rule.

Let us consider some structural characteristics of
polymorphs I and II for RE elements. Most of them
(except for Tm) exist at the melting temperature in the
form of polymorphs II with A2 (bcc) type structures
(Tm has an hcp structure of the A3 type). The structure
of Lu at the melting temperature is still unclear,
although it was also proposed to be of the A2 type [2].

The polymorphs I in almost all RE elements have
A3 type structures, Pr and Nd have the double hexago-
nal structure A3; the low-temperature modifications of
Ce and Yb have the A1 type fcc structures, and Sm has
a rhombohedral structure. Table 1 presents data on the
structural types and lattice periods of the crystal struc-
tures of the RE polymorphs I and II.

The high-temperature polymorphic I–II transition is
accompanied by a relatively small change in the vol-
ume per atom, which is inconsistent with a change in
the packing coefficient of identical balls upon the A2–
A3 transition. The relative difference of atomic vol-
umes of the RE polymorphs I and II amounts to ~2%
for Pr and ~0.6% for Lu. Figure 3 presents a diagram of
the specific volumes (per atom) for the RE polymorphs,
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which shows a virtually linear general decrease in the
atomic volume with increasing atomic number (nuclear
charge) with a slope of

for polymorph II and

for polymorph I. There are small deviations from lin-
earity for Ce, Nd, Gd, and Lu and significant deviations

1
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rare earth elements.
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Fig. 3. Variation of the atomic volume V of polymorphs with
the A2 and A3 type structures in the sequence of rare earth
elements.

Tm Tk–
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for Eu and Yb. For Eu and Yb, the atomic volumes are
30% greater than the values for their closest neighbors
(Gd and Lu, respectively).

There is a significant difference in the volume per
atom between the beginning and the end of the RE
group. Indeed, this difference for Pr and Lu reaches

 ≈ 16% in modification II and 15% in modifi-

cation I. For comparison, the change in the specific vol-
ume for La upon heating from T = 300 to 900°C is as
small as ~1.5% [7]. Thus, the change in the atomic vol-
ume for La in a broad temperature range is smaller than
the variation of this value in the RE sequence from Ce
to Lu, where it is caused by a change the nuclear
charge.

Let us consider the characteristic (Debye) tempera-
tures θI and θII of the RE polymorphs I and II, respec-
tively. As is known, the temperature of the polymorphic
transition corresponds to the point of intersection of the
curves of free energies of the corresponding phases. In
the Debye approximation, the temperature depen-
dences of these free energies are determined by the
characteristic temperatures θI and θII . The condition of
intersection of the free energy curves implies that θI >
θII; that is, the Debye temperature of the low-tempera-
ture polymorph is always higher than that of the high-
temperature polymorph. Published data show a consid-
erable scatter of the characteristic temperatures experi-
mentally determined for the low-temperature polymor-
phs [1, 4, 10–12], while data on the characteristic tem-
peratures for the high-temperature polymorphs are
almost entirely absent.

Table 2 presents the values of characteristic temper-
atures for the RE polymorphs I according to reference
data [4] in comparison to the results of our calculations
based on the average sound velocity  in polycrystal-
line samples [8]. These calculations were performed
using the formula

(1)

where h is the Planck constant; k is the Boltzmann con-
stant; NΑ is the Avogadro number; V is the molar vol-
ume [cm3/mol]; and  is the average velocity of sound,
which is related to the longitudinal (cl) and transverse
(ct) sound velocities by the relation

(2)

Alternatively, the characteristic temperatures of the
RE polymorphs I and II were estimated using the Lin-
demann–Gilvarry method. Unlike the conventional
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Table 1.  The structural types, lattice parameters and their ratios*, atomic volumes V, melting temperatures Tm, and atomiza-
tion energies ∆Hat of rare earth elements

Element Structure
Lattice parameters, pm [3]

V, 10–30 m3 Tm, K [2] ∆Hat, kJ/mol [2]
a c

Ce A3' 367.3 1180.2 1.6066 34.47 1072 423.0

A1 516.01 34.35

A2 412 34.97

Pr A3' 367.25 1183.5 1.6113 34.56 1204 355.6

A2 413 35.22

Nd A3' 365.79 1179.92 1.6128 34.18 1294 327.6

A2 413 35.22

Sm Rhom. 899.6, α = 23°13′ (a = 362.1, c = 2625) 1.611 33.12 1350 206.7

A2 407 33.71

Eu A2 458.2 48.10 1095 175.3

Gd A3 363.60 578.26 1.5904 33.10 1586 397.5

A2 405 33.22

Tb A3 360.10 569.36 1.5811 31.97 1629 388.7

A2 402 32.48

Dy A3 359.03 564.75 1.5730 31.52 1685 290.4

A2 398 31.52

Ho A3 357.73 561.58 1.5698 31.12 1747 300.8

A2 396 31.05

Er A3 355.88 558.74 1.5700 30.64 1802 317.1

A2 394 30.58

Tm A3 353.75 555.46 1.5702 30.10 1818 232.2

Yb A3 387.99 638.59 1.6459 34.47 1097 152.3

A1 548.62 41.28

A2 444 43.76

Lu A3 350.31 555.09 1.5846 29.50 1936 427.6

A2 390.0 29.66

*  =  (for Ce, Pr, Nd),  (for Sm), and  otherwise.

c
a
---

c
a
--- c

2a
------ c

4.5a
---------- c

a
---
approach, according to which θ is determined using the
melting temperature, we determined θI for polymorph I
using the temperature Tk of the I–II polymorphic tran-
sition.

According to the original Lindemann theory [5], a
metal exhibits melting when the amplitude of atomic

oscillations becomes equal to a certain fraction ( ) of

the distance δ between the nearest neighboring atoms.
Assuming that the energy εm of an atom oscillating with
a frequency of ω and an average amplitude of am at the

1
η '
-----
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melting temperature Tm is kTm , we obtain the following
relation:

where m = mHA, mH is the proton mass, A is the atomic
number, ω = 2πν (ν is the average frequency of atomic

oscillations), am ≈ , and f(z) is a function taking into

account the number of bonds of a given atom.

εm
1
2
---mω2

am
2

f z( ) kTm,= =

δ
η '
-----
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Table 2.  The polymorphic transition temperatures Tk and enthalpies ∆Hk and the characteristic temperatures θI and θII of the
rare earth polymorphs I and II

Ele-
ment

θI, K
[4]

, K
∆Hk, J/mol

[1]
Tk , K

[1]
θI, K

[formula (5)]
θII, K

[formula (4)]
θII, K

[formula (6)]
, J/mol

Ce 179 145 2932 1003 154 133 137 3841

Pr 152 144 3200 1065 157 140 139 3201

Nd 163 148 3009 1135 161 143 145 3202

Sm 169 135 3124 1190 163 145 147 3206

Eu 117 116

Gd 182 174 3900 1535 180 155 163 4451

Tb 178 173 5000 1590 184 157 162.6 4927

Dy 183 180 3978 1657 187 160 170 4804

Ho 190 183 4689 1701 189 162 169 4787

Er 188 191 1640 185 164 3580

Tm 200

Yb 118 96 1750 1073 135

Lu 183 168

* Determined using data on the velocity of sound.
** Calculated using the data on θI and θII.

θI* ∆Hk**
Using the above relations and defining the charac-

teristic temperature as θ = , we obtain

. (3)

Introducing the notation

η = , 

we can rewrite formula (3) as

(4)

The Lindemann theory was later developed by Gil-
varry [6], who suggested that the rms dynamic atomic

displacement  at the melting temperature amounts
to a certain fraction of the distance δ between the near-

h
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u
2

est neighboring atoms. According to the Debye–Waller

relation,  is a function of θ:

where x =  and Φ(x) = .

Then, by analogy with relation (4), we assumed that
the characteristic temperature of the low-temperature
polymorph I can be expressed as

(5)

where Tk is the temperature of the I–II polymorphic
transition, δ is the distance between the nearest neigh-
boring atoms in polymorph I, and χ is a numerical coef-
ficient (which was taken as equal to 210). The values of
the characteristic temperatures θI of the low-tempera-
ture RE polymorphs I calculated using formula (5) are
presented in Table 2. As can be seen, the obtained θI
values are close to the published data [4].

The characteristic temperatures of the RE polymor-
phs II possessing A2 type structures were calculated
using their melting temperatures by formula (4) with

u
2

u2 3"
2

mkθ
---------- Φ x( )
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---+ ,=
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e
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η = 171. The results of these calculations are also given
in Table 2.

Previously, Zener [9] established a relation between
the enthalpy ∆Hk of a polymorphic transition, the tran-
sition temperature Tk , and the ratio of characteristic
temperatures of the low-temperature (θI) and high-tem-
perature (θII) phases:

(6)

where R = 8.31 J/(mol K). Using this relation with the
characteristic temperatures θI calculated by formula (5)
and the experimental values of ∆Hk , we determined the
Debye temperatures for the high-temperature RE poly-
morphs II, which are presented in Table 2. As can be
seen, the values obtained using the Lindemann–Gilva-
rry theory (formula (4)) and according to Zener (equa-
tion (6)) are quite similar.

Using the characteristic temperatures θI and θII cal-
culated by formulas (4) and (5), we have estimated the
enthalpies of the I–II polymorphic transitions in RE
elements, together with the Helmholtz free energies,
the internal energies, and the entropies of each poly-
morph. The enthalpy of the transition at T = Tk was
determined as ∆Hk = Tk∆Sk . In these calculations, we
used the tabulated values of Debye functions (Helm-
holtz free energy and entropy) and assumed that the dif-
ferences of heat capacities at constant pressure and con-
stant volume, cP – cV, for both high- and low-tempera-
ture polymorphs are small. Table 2 presents the
experimental data and the results of calculations for the
enthalpies of the I–II polymorphic transitions in RE

θI

θII
------

∆Hk

3RTk
------------- 

  ,exp=
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elements. As can be seen, the calculated and experi-
mental values are in most cases similar to each other.

The method developed in this study for the calcula-
tion of θI, θII, and ∆Hk values can also be useful for the
analysis of polymorphism in other systems.
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Cavitation kinetics has traditionally been described
in terms of classical nucleation theory (CNT) based on
the thermodynamic calculation of work on the forma-
tion of a nucleus of a new phase and the solution of the
kinetic equation of the nucleus size distribution [1]. The
application of CNT is often complicated by the uncer-
tainty associated with the actual accuracy of the model
approximations that underlie the theory, as well as by
the absence of sufficiently reliable data on the surface
tension at the interface and the equation of state of a
metastable liquid.

Molecular dynamics (MD) simulation makes it pos-
sible to study the process of cavitation on the micro-
scopic level by using only a chosen potential of inter-
atomic interaction without additional assumptions
about mechanisms of the formation and growth of cav-
ities. For example, molecular dynamics investigation of
the cavitation process in a Lennard-Jones liquid
showed that the appearance and growth of a localized
vapor nucleus are clearly observed in a system consist-
ing of 10 976 particles [2]. The effect of the cutoff
radius of the interparticle interaction potential was ana-
lyzed in [3]. A method of calculating the homogeneous
nucleation rate in a metastable phase was proposed in
[4], where nucleation in a superheated crystal was con-
sidered as an example. This method is based on averag-
ing the lifetime of the metastable phase over an ensem-
ble of independent MD trajectories. A similar approach
was used in [3] to calculate the cavitation frequency in
a Lennard-Jones liquid.

Lead was chosen for investigation, because it is the
basic element in promising heat carriers for a new type
of power reactors with the fast initiation of DT fuel [5].
Processes associated with the loss of continuity of a
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Russian Academy of Sciences, Izhorskaya ul. 13/19, 
Moscow, 127412 Russia
1028-3358/05/5011- $26.00 0570
heat carrier (cavitation) during the relaxation of the
stresses that accompany microexplosions in a working
chamber significantly affect the operation of such sys-
tems (see, e.g., [6]). To simulate the operation of the
system, information on the cavitation kinetics in the
heat carrier under tensile stresses is needed.

In this study, the MD method with the use of
a realistic potential of interatomic interaction in Pb is
applied in order to investigate the stability boundary of
liquid lead and the cavitation kinetics in the range of
high negative pressures at temperatures that are much
less than the critical one (T < 0.5TCP). The results of the
MD calculations are compared with the predictions of
the CNT.

MODEL AND THE CALCULATION METHOD

In this study, to describe the interatomic interaction,
we use a many-particle potential for Pb from a family
of embedded atom potentials, which was proposed
in [7]. The parameters of the potential were chosen so
that they corresponded to the properties of a crystalline
phase of lead (binding energy, surface energy, elastic
constants, phonon frequencies, thermal expansion, and
melting temperature). This potential was successfully
used to study the melting and crystallization of surface
and clusters, as well as the vaporization of nanoparti-
cles [8]. In this case, it was shown, for example, that the
melting and vaporization temperatures (618 ± 4 and
~2050 K, respectively) are in good agreement with
their experimental values for lead (600.7 and 2033 K,
respectively).

In this study, we consider a system consisting of N =
13500 atoms in a cubic calculation cell. Three-dimen-
sional periodic boundary conditions are used. The
atomic trajectories are calculated by numerically inte-
grating the system of classical equations of motion in a
second-order finite difference scheme with a step of
1.43 fs. The instantaneous values of the temperature
© 2005 Pleiades Publishing, Inc.
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and pressure averaged over the calculation-cell volume
are evaluated as follows:

(1)

where kB is the Boltzmann constant; m is the atomic
mass; ri and vi are the current coordinate and velocity
of the ith atom, respectively; V is the calculation-cell
volume; and U = U(r1, r2, …, rN) is the potential energy
of the system. To set and maintain a constant tempera-
ture in the process of calculations, a scheme of thermal
stabilization (thermostat) is used: additional Langevin
terms—self-consistent white noise and self-consistent
friction force—are introduced into the equation of
motion [9]. The total effect of these terms is small as
compared to the interatomic-interaction forces.

An initial atomic configuration corresponding to the
liquid phase was obtained as follows. A configuration
representing a crystalline atomic lattice with a given

density ρ =  and velocities chosen randomly

according to the Maxwell distribution corresponding to
the temperature T is preliminary formed. In this study,
we investigate the metastable states of the liquid for
densities and temperatures at which the possibility of
the solid phase existing is excluded. Therefore, when
calculating the MD trajectory, the lattice is transformed
in several tens of femtoseconds to the liquid state with
a given temperature T, which is further maintained by
the thermostat for 10 ps. The final configuration of the
preliminary MD calculation is the desired initial con-
figuration. By using the different initial velocity distri-
butions, an ensemble of independent initial configura-
tions corresponding to the liquid for the given ρ and T
values is formed.

STABILITY BOUNDARY
OF THE METASTABLE LIQUID PHASE

In this study, we consider the cavitation process in a
liquid at high negative pressures corresponding to the
states close to the stability boundary (spinodal). To
date, experimental data for the spinodals of liquid met-
als (including Pb) are absent. Moreover, the general
characteristics of the spinodal of the liquid phase in the
range of negative pressures at low temperatures (0 <
T < 0.5TCP) have been poorly studied (see, e.g., [10]).
The position of the spinodal of liquid lead can be esti-
mated using MD calculations of the spinodal of the
Lennard-Jones liquid [11] and thermodynamic similar-

T
2m

3kBN
-------------

vi
2

2
-----, P

i 1=

N

∑ 1
V
--- NkBT

1
3
--- rij

∂U
∂rij

--------
i j<
∑–

 
 
 

,= =

rij ri r j– ,=

mN
V

--------
DOKLADY PHYSICS      Vol. 50      No. 11      2005
ity on the critical parameters (Fig. 1). Thus, in the tem-
perature interval under investigation, the negative pres-
sures corresponding to the strongly extended metasta-
ble melt of lead are preliminarily estimated.

In the framework of the MD model under consider-
ation, the position of the spinodal is calculated using
the P vs. ρ dependences along isotherms and the point

 = 0 by extrapolation (see the insert in Fig. 1).

For each density value at a fixed temperature, the MD
trajectory 50 ps long is calculated. At high densities
(e.g., ρ > 9.8 g/cm3 at T = 1000 K), the degree of meta-
stability is small, and cavitation in the system during
calculation is absent. The lifetime τ of the metastable
liquid decreases with density, and cavitation can occur
during calculations (Fig. 2). To construct an isotherm,
the pressure P is averaged over the section of the MD
trajectory before the onset of the phase transition (0 <
t < τ). When calculating the isotherm, the minimum
density is determined from the degeneracy (τ  0) of
a similar metastable section characterized by a pro-
nounced constant pressure. Arbitrariness in the choice
of an extrapolation function (in this study, we used
polynomials of degrees n = 2–5) results in an ambigu-
ous determination of the spinodal point (~7 and ~3% in
P and ρ, respectively).

The calculation data are somewhat higher than the
preliminary estimate of the spinodal from the similarity
relations (when comparing, the possible error of exper-
imental measurements of the critical parameters of lead
should be taken into account). The closeness of the cal-
culation data and the preliminary estimate of the spin-
odal can testify to the universal similarity of spinodals
for simple liquids at low temperatures. We emphasize
the qualitative difference of the compared models of
interatomic interaction: the pair Lennard-Jones poten-
tial (with the interaction radius to the third coordination
spheres) and the many-particle embedded atom poten-
tial (with the interaction radius to the second coordina-
tion spheres). In addition, note that, unlike the results
for the Lennard-Jones system [11], the spinodal of the
Pb melt does not intersect the continuation of the melt-
ing line of lead into the range of negative pressures
according to the Simon equation. This behavior indi-
cates that crystal–liquid phase equilibrium in a wide
range of metastable states is possible.

CAVITATION RATE

In the model under consideration, cavitation occurs
as random homogeneous nucleation, because the sur-
face effects and spatial inhomogeneities are absent in
the presence of periodic boundary conditions. The time
at which cavity formation begins depends on local fluc-
tuations of both the velocities of the particles that form
a nucleus of a new phase (cavity) and the distances
between them. According to the visual estimates in the

∂P
∂ρ
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T
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Fig. 1. P–T diagram of lead: (1) experimental melting curve and its extrapolation into the range of negative pressures according to

the Simon equation  =  – 1 (P∗  = 5.11 GPa, Tm = 600 ä, and c = 1.65); (2) vaporization curve; and (3) estimate of the

position of the spinodal for liquid lead by renormalizing the spinodal of the Lennard-Jones system using the parameters of the crit-
ical point CP (TCP = 5400 K and PCP = 0.175 GPa [12]). For clarity of the representation, the vertical axis of the graph is broken.
Open diamonds are the spinodal points obtained in this study and circles are the states in which the cavitation frequency was cal-
culated. The shaded area corresponds to the expected working parameters of the heat carrier in FIHIF reactors [5]. The insert shows an
isotherm of liquid lead (T = 103 K). Solid lines correspond to extrapolations of (r) the MD results by polynomials of degree 2–5. As
an example, the corresponding uncertainty of the position of a point on the spinodal is shown by error bars on the P–T diagram.
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density and temperature ranges under investigation, the
size of a critical nucleus corresponds to the volume of
no more than 10–100 atoms. Therefore, the periodic
boundary conditions do not affect the initial stage of the
cavitation process. The explosive growth of the cavity
leads to a rapid unloading of the extended liquid. In this
case, the effect of the periodic boundary conditions
becomes essential and requires a separate study (to
describe the further growth of the cavity into the range
of supercritical sizes, for example, the equation of con-
tinuous medium can be used [6]).

On a particular MD trajectory, the lifetime of a
homogeneous metastable liquid phase depends on the
initial configuration and the initial distribution of the
particle velocities, as well as on the integration step (in
the case of identical initial conditions) [3, 4]. For a
given thermodynamic state (ρ, T, and P), statistical
averaging is performed over the ensemble M of inde-
pendent initial microconfigurations, for each of which
the corresponding lifetime τi (i = 1, 2, …, M) is found.
According to the model of homogeneous nucleation as
a random Poisson process, the distribution of the life-
time τi over the ensemble of initial configurations has
the form [1]

(2)

where m(τ) is the number of trajectories in the ensem-
ble of the M trajectories on which the cavitation occurs
within the time interval (τ, τ + ∆τ) and  is the mean
lifetime. Figure 3 shows the distributions obtained in
the calculations. It is seen that model (2) describes
rather well the cavitation process under consideration.
To obtain distributions with a pronounced exponential
form, a set of greater statistics (M > 100–200) is

m τ( ) M∆τ
τ
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τ
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Fig. 2. Instantaneous pressure P vs. time t in the case of spontaneous decay of the extended liquid (T = 300 K). The lifetime τ of
the metastable state on the given MD trajectory is shown by the arrow. A section of the structure in the calculation cell is shown. At
the center of the section, a vapor nucleus is seen.
required. For the exponential distribution law, the rms

error of finding  from M measurements is  = .

The rate of a spontaneous phase transformation is char-
acterized by the average number of critical nuclei aris-
ing in unit volume in unit time, i.e., cavitation fre-
quency J. In this study, the cavitation frequency is cal-

culated as J = . The calculation data are presented in

Fig. 4.

DISCUSSION

Now, we compare the calculation data with the pre-
dictions of the CNT. We use the temperature depen-

τ στ
τ
M

---------

1
τV
------
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dence of the nucleation rate based on the Zeldovich
approach [1, 13]:

(3)

where σ is the surface tension along the vaporization
curve at the temperature T, W is the work for the forma-
tion of the critical nucleus, and P' is the vapor pressure
in the critical nucleus. Approximation (3) is chosen
because of the simplicity of the pre-exponential factor,
which contains no specific parameters characterizing
the metastable liquid except σ.

When comparing Eq. (3) with the results of the MD
calculations, we assume that the pressure in the system
containing the critical nucleus is equal to the average
pressure in the metastable section (0 < t < τ), and the

J
ρ
m
---- 2σ

πm
------- W

kBT
---------– 

  , Wexp
16πσ3

3 P P '–( )2
-------------------------,= =
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Fig. 3. Relative number m(t)/M of the MD trajectories in the ensemble of M independent trajectories in which the cavitation onset
time (lifetime τi) falls into the interval (τ, τ + ∆τ). Calculations are performed for T = 700 K (∆τ = 15 ps) and (1) P = –3.95 GPa,
M = 46; (2) P = –3.91 GPa, M = 232; and (3) P = –3.89 GPa, M = 142. For comparison, dependences (2) obtained from the cavitation
model considered as a random Poisson process are shown by straight lines.

m(t)
M

vapor pressure in the critical bubble is negligible, P' !
P. We used the experimental data concerning the sur-
face tension of lead melt on the vaporization line [14].
The work for the formation of the critical nucleus and,
as a consequence, the temperature and pressure depen-
dences of the nucleation frequency depend strongly on
the surface tension σ. Therefore, the spread of the
experimental data is taken into account in the form of a
confidence interval, σmin < σ < σmax, which is heuristi-
cally constructed using the uncertainty of the linear
approximation of the experimental data into the range
of high temperatures (see the insert in Fig. 4). Thus, for
each temperature, the ranges J(P; σ) and σmin < σ < σmax
are found from Eq. (3).

According to Fig. 4, the calculation data agree qual-
itatively with the CNT estimate, but the quantitative
agreement decreases with an increase in temperature.
In approach (3), the difference can be interpreted as a
systematic underestimation of the work W for the for-
mation of a critical nucleus. The discrepancy between
the theoretical and calculation results can be decreased
by taking into account the dependence of the surface
tension on the degree of surface curvature (see, e.g., [1,
15]). In this case, the calculation result may indicate
that the surface tension for critical-size bubbles is 5–
10% larger than that for the flat interface. Note that a
consistent comparison of the MD results with various
CNT approximations must involve an independent
determination of the temperature dependence of the
surface tension on the liquid–gas curve in the frame-
work of the same MD model. In spite of the reasonable
agreement of the calculation data with the CNT approx-
imation under consideration, the size of the critical

nucleus is estimated in CNT as Nn =  ≈

1 atom (ρ/m = 2.82 × 1028 m–3, T = 700 K, σ =
0.431 N/m, and P = –3.89 GPa); i.e., the region under
consideration is generally beyond the applicability lim-
its of the macroscopic CNT approach.

In this study, cavitation has been considered only in
terms of the homogeneous-nucleation processes in pure
lead. The homogeneous-nucleation frequency is expo-
nentially small far from the stability boundary of a
metastable liquid, because the activation barrier of the
spontaneous fluctuation formation of a cavity is high. In
the practically important range of the operation para-
meters of power setups, cavitation in a heat carrier nec-

ρ
m
----4π

3
------ 2σ

P
------ 

 
3
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Fig. 4. Cavitation frequency J vs. pressure P along the three isotherms for T = (1) 700, (2) 1000, and (3) 2000 K. Calculation points
are shown with error bars corresponding to the error of determining the mean lifetime. The dashed lines are the boundaries of the
regions on the J–P plane, which correspond to the calculations by Eq. (3) for the above temperatures including the uncertainty of
the surface tension σ for liquid lead. The insert shows the experimental σ values [14]; the dashed lines denote the region found from
the error of the linear extrapolation of the experimental points; and the arrows correspond to the uncertainty of σ at fixed tempera-
tures.
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essarily occurs through the heterogeneous mechanism
of nucleation on impurities and inhomogeneities (such
as, e.g., lithium atoms in Li17Pb83 eutectic [5]). MD cal-
culation of the heterogeneous cavitation rate is possible
if an adequate model of interatomic interaction with
impurity atoms is available.
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In [1, 2], it was found that the energy surfaces of
quantum systems can cross, forming a conic singular-
ity, which is often called a diabolo and the apex of the
cone is called the diabolic point [3]. The energy sur-
faces are mathematically described by the eigenvalues
of real symmetric and Hermitian operators (Hamilto-
nians) depending on two or more parameters, and the
diabolic point is characterized by a double eigenvalue
corresponding to two linearly independent eigenvec-
tors. In crystal optics, optical axes characterized by a
coincidence of the refractive indices are analogs of dia-
bolic points [4, 5]. In current problems of quantum
physics, physical chemistry, crystal optics, and acous-
tics, it is important to know how the conic singularity of
the energy surface is deformed under arbitrary complex
perturbation, which describes dissipative and other
nonconservative effects, with the formation of singular-
ities corresponding to Jordan blocks [6–9].

In this work, we study singularities of the energy
surfaces formed by the eigenvalues of the real symmet-
ric and Hermitian matrices depending on parameters
under arbitrary complex perturbation. Using the theory
of eigenvalue bifurcations, which was developed
in [10], we derive general asymptotic formulas describ-
ing the deformation of the energy surface near the conic
singularity for various complex perturbations. The
deformation of the eigenvalue surfaces appears to be
described by the eigenvalues, eigenvectors, and deriva-
tives of the Hamiltonian with respect to the parameters
at the diabolic point. As an application, the singularities
of the refractive-index surfaces in crystal optics are
studied. Explicit expressions are obtained for these sur-
faces as functions of the properties of a crystal. Singu-
lar axes are found for crystals with weak absorption and
optical activity. In terms of the components of the
inverse dielectric tensor, we obtain a new condition that

Institute of Mechanics, Moscow State University, 
Michurinskiœ pr. 1, Moscow, 119192 Russia
e-mail: kirillov@imec.msu.ru, mailybaev@imec.msu.ru, 
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1028-3358/05/5011- $26.00 0577
distinguishes crystals with prevailing absorption and
with prevailing optical activity.

1. We consider the eigenvalue problem

(1)

for an m × m Hermitian matrix A, where λ is an eigen-
value, and u is an eigenvector. Such eigenvalue prob-
lems appear in reversible and irreversible physical sys-
tems without dissipation. These two cases correspond
to real symmetric matrices and complex Hermitian
matrices [9]. In quantum mechanics, A, λ, and u corre-
spond to the Hamiltonian, energy level, and vector of
state, respectively. The matrix A is assumed to be a
smooth function of the vector p = (p1, p2, …, pn) of n
real parameters.

Let λ0 be a double eigenvalue of the matrix A0 =
A(p0) for a certain vector p0 . Since A0 is a Hermitian
matrix, the eigenvalue λ0 is real and corresponds to two
linearly independent eigenvectors u1 and u2 . Thus, the
point of interaction between two eigenvalues is dia-
bolic. Let us take the normalized eigenvectors; i.e.,

(2)

where (u, v) =  is the scalar product of the

vectors in Cm.
Under the perturbation of the parameters p = p0 +

∆p, the double eigenvalue λ0 is split into two single
eigenvalues λ+ and λ–, which are determined by the
asymptotic formula [10]

(3)

The components of the vector fij = ( , , …, ) are
given by the formula

(4)

Au λu=

u1 u1,( ) u2 u2,( ) 1, u1 u2,( ) 0,= = =

uiv ii 1=
m∑

λ± λ0

f11 f22+ ∆p,〈 〉
2

----------------------------------+=

±
f11 f22– ∆p,〈 〉 2

4
------------------------------------ f12 ∆p,〈 〉 f21 ∆p,〈 〉+ .

f ij
1 f ij

2 f ij
n

f ij
k ∂A

∂pk

--------ui u j, 
  ,=
© 2005 Pleiades Publishing, Inc.
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where the derivatives are calculated at the point p0 and

〈a, b〉 =  is the scalar product of vectors in Cn.

In Eq. (3), the terms o(||∆p||) and o(||∆p||2) are omitted
outside and inside the radicand, respectively. Since A is
a Hermitian matrix, the eigenvalues f11 and f22 are real

and vectors f12 =  are complex conjugate. The
asymptotic expressions of the zeroth approximation for
the eigenvectors u± corresponding to the eigenvalues λ±
have the form [10]

(5)

Let us consider an arbitrary complex perturbation of
the family of matrices A(p) + ∆A(p). Such perturba-
tions appear due to nonconservative effects (such as
dissipation), which violate the Hermiticity of the unper-
turbed problem [9]. Let us assume that the perturbation
∆A(p) ~ ε is small, where ε = ||∆A(p0)|| is the perturba-
tion norm calculated at the diabolic point. The behavior
of the eigenvalues λ± for small ∆p and ε values is
described by the asymptotic expressions [10]

(6)

where

(7)

are small complex numbers on the order of ε. The small
variation of the family of matrices provides a correction
to the asymptotic expression for the eigenvectors u± =

u1 + u2, where

(8)

We emphasize that /  = /  at the point of the
coincidence of the eigenvalues λ+ = λ–. Thus, at this
point, the eigenvectors coincide, u+ = u–, and a Jordan
block arises.

aibii 1=
n∑

f21

u± α±u1 β±u2,+=

α±

β±
------

f12 ∆p,〈 〉
λ± λ0– f11 ∆p,〈 〉–
--------------------------------------------

λ± λ0– f22 ∆p,〈 〉–
f21 ∆p,〈 〉

--------------------------------------------.= =

λ± λ0–
f11 f22+ ∆p,〈 〉

2
----------------------------------–

ε11 ε22+
2

-------------------– 
 

2

=  
f11 f22– ∆p,〈 〉 ε 11 ε22–+( )2

4
------------------------------------------------------------------

+ f12 ∆p,〈 〉 ε 12+( ) f21 ∆p,〈 〉 ε 21+( ),

εij ∆A p0( )ui u j,( )=

α±
ε β±

ε

α±
ε

β±
ε------

f12 ∆p,〈 〉 ε 12+
λ± λ0– f11 ∆p,〈 〉– ε11–
---------------------------------------------------------=

=  
λ± λ0– f22 ∆p,〈 〉– ε22–

f21 ∆p,〈 〉 ε 21+
---------------------------------------------------------.

α+
ε β+

ε α–
ε β–

ε

2. Let A(p) be the n-parametric family of real sym-
metric matrices. In this case, the vectors f11, f22, and
f12 = f21 are real and Eq. (3) assumes the form

(9)

This equation describes the surface consisting of two
sheets λ+(p) and λ–(p) in the (p1, p2, …, pn, λ) space.
For the two-parametric matrix A(p1, p2), Eq. (9) deter-
mines a cone with a vertex at the point (p0, λ0) in the
(p1, p2, λ) space [1, 2].

We consider the perturbation A(p) + ∆A(p) of the
real symmetric family A(p) near the diabolic point p0 ,
where ∆A(p) is a complex matrix with the small norm
ε = ||∆A(p0)||. The splitting of the double eigenvalue λ0
in the presence of the parameter change ∆p and small
complex perturbation ∆A is described by Eq. (6), which
assumes the form

(10)

where

(11)

are real and

(12)

are small complex coefficients.

From Eqs. (10) and (11), we obtain the following
expressions for the real and imaginary parts of the per-
turbed eigenvalues

(13)

(14)

Equations (13) and (14) determine surfaces in the
(p1, p2, …, pn, Reλ) and (p1, p2, …, pn, Imλ) spaces,
respectively. Two sheets of the surface given by

λ± λ0–
f11 f22+ ∆p,〈 〉

2
----------------------------------– 

 
2

–
f11 f22– ∆p,〈 〉 2

4
------------------------------------ f12 ∆p,〈 〉 2.=

λ± λ0' µ c, c±+ x ξ+( )2 y η+( )2 ζ2,–+= =

λ0' λ0
1
2
--- f11 f22+ ∆p,〈 〉 , x+

1
2
--- f11 f22– ∆p,〈 〉 ,= =

y f12 ∆p,〈 〉=

µ 1
2
--- ε11 ε22+( ), ξ 1

2
--- ε11 ε22–( ),= =

η 1
2
--- ε12 ε21+( ), ζ 1

2
--- ε12 ε21–( )= =

Reλ± λ0' Reµ 1
2
--- Rec Re2c Im2c++( ),±+=

Imλ± Imµ 1
2
--- Rec– Re2c Im2c++( ).±=
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Eq. (13) are joined (Reλ+ = Reλ–) at the points satisfy-
ing the conditions

(15)

and the sheets Imλ+(p) and Imλ–(p) are joined at the
points of the set

(16)

When the parameters are perturbed, the eigenvalues
continue to be double under the condition c = 0, which
provides the two equations Rec = 0 and Imc = 0.
Depending on the sign of the quantity

, (17)

two cases can be realized. For D > 0, the equations
Rec = 0 and Imc = 0 have the two solutions (xa, ya) and
(xb, yb), where

(18)

(19)

These solutions determine the points in the parameter
space at which double eigenvalues appear. For D = 0,
the solutions coincide. For D < 0, the equations Rec = 0
and Imc = 0 have no real solutions. In this case, the
eigenvalues λ+ and λ– are different for all ∆p values.

We note that Imξ and Imη are expressed in terms of

the anti-Hermitian component ∆AN = (∆A – ) of

the matrix ∆A as

(20)

whereas Imζ is expressed in terms of the Hermitian

component ∆AH = (∆A + ) as

(21)

For D > 0, the effect of the anti-Hermitian part of per-
turbation ∆A is stronger than that of the Hermitian part.

Rec 0, Imc≤ 0, Reλ± λ0' Reµ,+= =

Rec 0, Imc≥ 0, Imλ± Imµ.= =

D Im2ζ Im2η Im2ζ–+=

xa b, Reξ–
ImξReζ Imζ
Im2ξ Im2η+
-------------------------------+=

± Imη Im2ξ Im2η Re2ζ+ +( )D

Im2ξ Im2η+
--------------------------------------------------------------------------,

ya b, Reη–
ImηReζ Imζ
Im2ξ Im2η+
-------------------------------+=

−+
Imξ Im2ξ Im2η Re2ζ+ +( )D

Im2ξ Im2η+
-------------------------------------------------------------------------.

1
2
--- ∆A

T

Imξ
∆AN p0( )u1 u1,( ) ∆AN p0( )u2 u2,( )–

2i
----------------------------------------------------------------------------------------,=

Imη
∆AN p0( )u1 u2,( ) ∆AN p0( )u2 u1,( )+

2i
----------------------------------------------------------------------------------------,=

1
2
--- ∆A

T

Imζ
∆AH p0( )u1 u2,( ) ∆AH p0( )u2 u1,( )–

2i
----------------------------------------------------------------------------------------.=
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If the Hermitian part prevails in perturbation ∆A, then
D < 0. In particular, D = –Im2ζ < 0 for pure Hermitian
perturbation ∆A.

Let us assume that the vector p has only two compo-
nents p1 and p2 and consider the surfaces given by
Eqs. (13) and (14) for various perturbations ∆A(p).
First, we consider the case D < 0. Then, the eigenvalue
surfaces Reλ+(p) and Reλ–(p) do not cross (Fig. 1a).
The equation Imc = 0 determines a straight line in the
parameter plane. According to conditions (16), the
sheets Imλ+(p) and Imλ–(p) of eigenvalue surfaces (14)
cross along the straight line

(22)

For D > 0, the straight line Imc = 0 contains the
points pa and pb , where the eigenvectors coincide. The
coordinates of these points are determined from
Eqs. (11), where x = xa, b and y = ya, b are given in
Eqs. (18) and (19). According to Eqs. (15), the sheets of
the real parts Reλ+(p) and Reλ–(p) of the eigenvalues
are joined along the segment [pa, pb] of the line

(23)

The singularity of the surface of the real parts of the
eigenvalues described by Eq. (13) for D > 0 is called a
“coffee filter” [8]. The deformation of the conic singu-
larity to the coffee filter is shown in Fig. 1b. In the
optics and acoustics of crystals, the segment [pa, pb] is
called the branch cut, and the points pa and pb deter-
mine “singular axes,” because, according to Eq. (8),
each double eigenvalue at these points corresponds to
only one eigenvector [4, 5, 7].

3. The optical properties of a nonmagnetic crystal
are characterized by the inverse dielectric tensor h,
which relates the electric field strength E and electric
displacement D [4]

(24)

For a monochromatic plane wave propagating with fre-
quency ω in the direction s = (s1, s2, s3), ||s|| = 1, we have

(25)

where n(s) is the refractive index, and r is the real vector
of the spatial coordinates. In view of Eq. (25) for the
wave and Eq. (24), Maxwell equations are transformed
to the form

(26)

1
2
---Imc x Reξ+( )Imξ y Reη+( )Imη+=

– Reζ Imζ 0, Imλ± Imµ.= =

1
2
---Imc x Reξ+( )Imξ y Reη+( )Imη+=

– Reζ Imζ 0, Reλ± λ0' Reµ.+= =

E hD.=

D r t,( ) D s( ) iω n s( )
c

----------sTr t– 
  ,exp=

hD s( ) ssThD s( )–
1

n2 s( )
------------D s( ).=
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Fig. 1. Unfolding of a conic singularity under complex perturbation.
Multiplying Eq. (26) by the vector sT from the left,
we find that the vector D for a plane wave is always
orthogonal to the direction vector s; i.e., sTD(s) = 0.
Using this condition, we represent Eq. (26) in the form
of the eigenvalue problem

(27)

where λ = n–2, u = D, and I is the identity matrix. Since
I – ssT is a singular matrix, one eigenvalue is always
equal to zero. We denote the other two eigenvalues as
λ+ and λ–. These eigenvalues determine the refractive
index n, and the corresponding eigenvectors determine
the polarization [4].

The inverse dielectric tensor is described by the
complex non-Hermitian matrix h = htransp + hdichroic +
hchiral. The symmetric part of the matrix h consists of
the real matrix htransp and imaginary matrix hdichroic and
forms the anisotropy tensor describing the birefrin-
gence of the crystal. For a transparent crystal, the
anisotropy tensor is real and consists only of the matrix
htransp. For a crystal with linear dichroism, this tensor is
represented by a complex matrix. Choosing the coordi-
nate axes along the principal axes of the matrix htransp,
we obtain htransp = diag(η1, η2, η3). The matrix

(28)

I ssT–( )h I ssT–( )[ ] u λu,=

hdichroic i

η11
d η12

d η13
d

η12
d η22

d η23
d

η13
d η23

d η33
d

 
 
 
 
 
 

=

describes linear dichroism (absorption). The matrix
hchiral is the antisymmetric part of h. It is determined by
the optical activity vector g = (g1, g2, g3) of the crystal,
which depends linearly on s:

(29)

where g is the symmetric optical-activity tensor [4, 5].
First, we consider a transparent crystal for which

hdichroic = g = 0. In this case, the matrix

(30)

is real and symmetric and depends on the two-compo-
nent vector p = (s1, s2). The third component of the vec-

tor s is represented as s3 = ± , where the
cases of two different signs should be analyzed sepa-
rately. In what follows, we assume that η1 > η2 > η3 ,
which corresponds to a biaxial crystal.

Nonzero eigenvalues λ± of the matrix A(p) are
found in an explicit form and are identical for opposite

hchiral i
0 g3– g2

g3 0 g1–

g2– g1 0 
 
 
 
 

,=

g gs
γ11 γ12 γ13

γ12 γ22 γ23

γ13 γ23 γ33 
 
 
 
  s1

s2

s3 
 
 
 
 

,= =

A p( ) I ssT–( )htransp I ssT–( )=

1 s1
2– s2

2–
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directions s and –s. The eigenvalues λ+ and λ– coincide
at the points

(31)

which determine four diabolic points (for two signs of
S1 and S3), the latter also being called optical axes [4, 5].
A double eigenvalue λ0 = η2 of the matrix A0 = A(p0),
where p0 = (S1, 0), corresponds to two eigenvectors

(32)

which satisfy normalization conditions (2). Using
Eqs. (30) and (32), we find the vectors fij with compo-
nents (4) for the optical axes. Substituting them into
Eq. (9), we obtain the following local asymptotic expres-
sions for conic singularities in the (s1, s2, λ) space, which
are valid for each of the four optical axes (31):

(33)

Let us assume that the crystal is absorptive and opti-
cally active. In this case, one can suppose that the fam-
ily of matrices given by Eq. (30) undergoes complex
perturbation A(p) + ∆A(p), where

(34)

Let us assume that the absorption and optical activity
are weak; i.e., the quantity ε = ||hdichroic|| + ||hchiral|| is
small. In this case, the above general asymptotic formu-
las can be used to describe the rearrangement of the
conic singularity of the eigenvalue surface. To this end,
it is only necessary to know perturbation ∆A on the
optical axis s0 of the transparent crystal. Substituting
matrix (34), calculated on optical axis (31), into Eq. (7)
and using Eq. (12), we obtain

(35)

We note that µ, ξ, and η are imaginary and depend only
on absorption and that ζ depends on the optical activity
of the crystal.

Singularities in crystals with weak absorption and
optical activity were studied in [5]. It was shown that

s0 S1 0 S3, ,( )T , λ0 η2;= =

S1
η1 η2–
η1 η3–
-----------------, S3± 1 S1

2– ,±= =

u1 0 1 0, ,( )T , u2 S3 0 S1–, ,( )T ,= =

λ η 2– η3 η1–( )S1 s1 S1–( )–( )2

=  η3 η1–( )2S1
2 s1 S1–( )2 S3

2s2
2+( ).

∆A p( ) I ssT–( ) hdichroic hchiral+( ) I ssT–( ).=

µ i
2
--- η22

d η11
d S3

2 2η13
d S1S3– η33

d S1
2+ +( ),=

ξ i
2
--- η22

d η11
d S3

2– 2η13
d S1S3 η33

d S1
2–+( ),=

η i η12
d S3 η23

d S1–( ),=

ζ i γ11S1
2 2γ13S1S3 γ33S3

2+ +( ).–=
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the coffee filter singularity appears in crystals with pre-
vailing absorption and that the surfaces of the real parts
of eigenvalues for crystals with dominant optical activ-
ity do not cross. According to the above general results,
these two cases correspond to the conditions D > 0 and
D < 0, where D is given by Eq. (17).

As a numerical example, we analyze a crystal with
weak absorption and optical activity, which is
described by tensors (28) and (29), where

(36)

The corresponding transparent crystal is characterized
by the parameters η1 = 0.5, η2 = 0.4, and η3 = 0.1, and
its eigenvalue surfaces with two optical axes are shown
in Fig. 2 along with conical surfaces (33). Two optical

axes shown in Fig. 2 have the coordinates s0 = , 0,

 and correspond to the double eigenvalue λ0 = .

Using Eqs. (36) in Eq. (35), we conclude that the con-

dition D = (4  – 5) > 0 is satisfied for the left

optical axis s0 = , 0, . Therefore, the conic sin-

gularity is transformed into the coffee filter with two
singular axes. The local approximation of these sur-
faces is given by Eqs. (13) and (14). On the right optical

axis s0 = , 0, , the condition D =

− (4  + 5) < 0 is satisfied. Thus, the real parts

of eigenvalues do not coincide under a perturbation of

hdichroic
i
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Fig. 2. Conical singularities on optic axes and their local
approximations.
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Fig. 3. Refractive-index surfaces for a crystal with weak absorption and optical activity.

mate
the right optical axis. The approximate and exact eigen-
value surfaces are shown in Fig. 3, where it is seen that
asymptotic formulas well reproduce the singularities of
the refractive-index surfaces of crystals with weak
absorption and optical activity.
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The problem of the steady plane-parallel flow of an
ideal incompressible fluid around a point jet source,
i.e., a source from which a fluid with the parameters
(density and total pressure) different from the respec-
tive free-flow parameters is blown in the presence of a
dead zone near the flow separation point, has been
solved. The necessity of solving this problem arises in
connection with the study of jet collision problems. The
solution to similar problems for the case in which the
parameters of the fluids in the jet and free flow are the
same can be found in [1, 2]. If the parameters of the jets
are different, the solution of the problem is compli-
cated, because the complex potential function has a dis-
continuity at the interface between the media and a
rather complex iteration process is necessary for deter-
mining this interface. The authors of [3] analyzed the
problem of the collision of jets that have different Ber-
noulli constants and flow around a wedge with angle
απ, but the case of α = 1 was excluded from the analy-
sis, because an essential singularity arises near the flow
separation point. In this case, in view of the equality
condition for pressures, the angle internal to one of the
jets vanishes; i.e., a return-type singular point appears
at the boundary of this jet.

It is only in [4] that we find a problem in which such
a singularity has not been excluded from the solution.
In that work, a solution was provided to the problem of
the flow of the ideal incompressible fluid around the
point source from which fluid with the Bernoulli con-
stant different from the Bernoulli constant of the exter-
nal flow is blown and the flow separation point is a sin-
gular point. Integral formulas for obtaining the exact
solution were derived, but the numerical realization
was performed with simplifications that made it possi-
ble to simulate the flow near the flow separation point.

In this work, the problem of the flow around the jet
source is also solved, but we introduce a dead zone with
constant velocities at the boundary into the model of the
flow near the flow separation point. The introduction of
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this condition enables us to overcome difficulties asso-
ciated with the aforementioned singularity and to per-
form numerical calculations without additional simpli-
fications. The piecewise analytic function of the com-
plex potential and unknown interface between the
media were determined by the iteration method. The
conditions of the solvability of the problem are satisfied
by fitting the parameters in the additional plane. A
series of calculations is performed for various parame-
ters of the problem. The results are compared with the
results obtained by the method described in [4], as well
as with the limiting cases, which are written in the ana-
lytical form. The calculation results are analyzed and
conclusions are made.

FORMULATION OF THE PROBLEM

In the physical plane z = x + iy (Fig. 1), the point
source M with given rate Q is streamed by a steady
plane-parallel flow of an ideal incompressible fluid
with density ρ and velocity V∞ at infinity. The coordi-
nate origin is placed at the point M and the abscissa axis

lz

l'z

M

A

A'
B

C

V∞

x

y

(z)

Fig. 1. Physical z plane.
© 2005 Pleiades Publishing, Inc.
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is directed along the free-flow velocity. A fluid is blown
from the source with density ρj and velocity V∞j in the
jet at infinity, which are different from the respective
parameters of the external flow. The subscript j denotes
the jet parameters. In this case, the dimensionless

parameter µ =  – 1 characterizes the energy of the

blown fluid (0 ≤ µ ≤ ∞). The lz and  interfaces of the
media are the lines of the tangential velocity jump that
is determined by the formula

(1)

which follows from the Bernoulli integral. A dead zone
(pillar) with constant velocities at the boundary is intro-
duced into the flow model near the flow separation
point. Velocity V0 is specified in the section A'BA and
velocity V0j , which is related to V0 by Eq. (1), is speci-
fied in the section A'CA. 

It is necessary to determine the shape of the lz and 
interfaces of the media, as well as the shape and posi-
tion of the pillar BACA', and to analyze the effect of the
parameter V0 on the solution of the problem.

SOLUTION

Since the flow is symmetric, it is sufficient to con-
sider only the upper half of the flow. Let us consider an
auxiliary plane t = τ + iη whose upper half-plane Gt cor-
responds to the domain Gz of the flow in the physical
plane z (upper half-plane without the pillar). The corre-
sponding points are denoted by the same letters. For the
one-to-one mapping between Gz and Gt , we assume
that there exists a correspondence between the infinite
points of these domains and the mapping of the point
z = 0 to the point t = 0 and the point z = za to the point
t = –1, where za is the coordinate of the point A in the z
plane. Let b and c be the coordinates of the points B and
C in the t plane: b < –1 and –1 < c < 0, and let lt be the
image of the line lz in the auxiliary plane.

Under the above assumptions, complex potentials of
the flows exist in the external flow and jet. We consider
these potentials as a single piecewise analytic function
w(z) = ϕ(x, y) + iψ(x, y), which is discontinuous at the
interface between the media. The complex conjugate
velocity in the t plane is represented as

(2)

where u∞ is the velocity of the free flow in the t plane
and Ω(t) = T(τ, η) + iΛ(τ, η) is a piecewise analytic
function with a discontinuity on the line lt .

ρ jV∞j
2

ρV∞
2

-------------

lz'

ρ jV j
2 ρV2 µρV∞

2 ,+=

lz'

dw
dt
------- u∞ Ω t( )–[ ] t 1+

t
-----------,exp=
For a point ζ(σ) on the line lt with an arc abscissa σ
measured from the point A (σ ≥ 0) and the tangent slope
angle ϑ(σ) to lt at this point, there is the relation

(3)

Considering Eq. (2) on the line lt and taking into
account that this line is impermeable, we arrive at the
relation

(4)

i.e., only T(σ) = Re(Ω(ζ)) has a jump. Taking into
account that the real axis τ is also a streamline and sub-
stituting t = τ into Eq. (2), we obtain

(5)

Let χ(t) = ln  = S – iθ be the Michell–Joukowski

function. Here, S = ln|V|, V is the absolute value of the
velocity, and θ is the argument of the velocity in the
physical z plane. We consider the function

(6)

where χ0(t) = S0 + iθ0 is the function with a singularity
at point M. We specify θ0(τ) on the real axis so that

(τ) = –θ(τ) – θ0(τ) ≡ 0 for τ ∈  (–∞, b] ∪  [c, ∞):

The function χ0(t) is determined by solving the
Schwarz problem for the upper half-plane and finding
an arbitrary constant from the condition χ0(∞) = 0:

(7)

Then, from Eq. (6) we obtain

(8)

and, taking into account Eq. (2), arrive at the relation

(9)

Since the left-hand side of this equality is an analytic
function, the function (t) on the right-hand side is also
analytic. According to Eq. (6), the jumps of the func-

dζ iϑ σ( )[ ] dσ.exp=

ϑ σ( ) Λ σ( ) ζ 1+
ζ

------------,arg–=

Λ τ( ) 0.≡

dw
dz
-------

χ̃ t( ) χ t( ) χ0 t( )– Ω t( )+ S̃ iθ̃,+= =

θ̃

Section   ∞ ;  b ] – (  b ;  c [ ] c ; 0 [ ] 0;  ∞ )[
θ

 

0

 
τ( )

 
0

 
π τ
 

b
 

–
 
( )
 

/
 

c b
 

–
 

( )
 

–
 

π
 

– 0
.

χ0 t( ) t b–
c b–
----------- t b–( )ln

t c–
c b–
----------- t c–( )ln t 1.–ln––=

dw
dz
------- χ̃ χ0 Ω–+[ ]exp=

dz
dt
----- dw/dt

dw/dz
--------------- u∞

t 1+
t

----------- χ̃– χ0–[ ]exp .= =

χ̃
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tions χ(t) and Ω(t) cancel each other out. Taking into
account Eq. (8), we denote the jump functions as

(10)

where the velocities V and Vj are related through
Eq. (1). If the function λ(σ) is known, taking into
account Eq. (5), we obtain the function Ω in the form

(11)

Separating the real part in Eq. (6) for t = τ, we arrive
at the relation

(12)

where

according to Eq. (7). Since V(τ) (velocity at the bound-
ary of the pillar) is specified in the section [b, c] and,

therefore, the function (τ) is known, whereas (τ) ≡
0 in the remaining sections of the real axis, the function

(t) is determined as the solution of the mixed problem

(13)

where R(t) =  is taken as the branch pos-
itive in the region τ > c. The solvability condition

(14)

for the mixed problem is used to determine the function

(τ) at infinity.

The shapes of the pillar boundary BAC and line lz

are determined by integrating Eq. (9) as

The found solution should naturally be matched with
the asymptotic value

(15)

of the line lz at infinity.

λ σ( ) T σ( ) T j σ( )–
V j σ( )
V σ( )
--------------,ln= =

Ω t( ) Φ t( ) Φ t( ), Φ t( )+
1

2πi
-------- λ ζ( ) ζd

ζ t–
-----------------.

lt

∫= =

S̃ τ( ) V τ( )ln S0 τ( )– T τ( ),+=

S0 τ( ) τ b–
c b–
----------- τ b–ln

τ c–
c b–
----------- τ c–ln τln– 1,––=

S̃ θ̃

χ̃

χ̃ t( ) R t( )
π

---------- S̃ τ( )
R τ( )

-------------- τd
τ t–
----------,

b

c

∫–=

t b–( ) t c–( )

S̃∞
1
π
--- S̃ τ( )

R τ( )
-------------- τd

b

c

∫=

S̃

z t( ) zd
td

----- t.d

0

t

∫=

y∞
Q

2V∞j
-----------=
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SCHEME OF THE ITERATION PROCESS

The iteration process is necessary for finding
unknown functions λ(σ) and ϑ(σ). In view of Eq. (1),
the functions λ(σ) and ϑ(σ) should satisfy the condi-
tions

As the initial approximation for them, we can take

where

The iteration procedure consists of the following
steps:

(i) the line lt is found by integrating Eq. (3);
(ii) T(τ) = Re(Ω(τ)) on the real axis and Ω(ζ) on the

line lt are determined by Eq. (11);

(iii) solving mixed problem (13) with (τ) given by
Eq. (12), we determine the function (ζ) on the line lt;

(iv) V(σ) =  is found from Eq. (8) and Vj(σ)

is obtained using Eq. (1);
(v) new approximations for the functions λ(σ) and

ϑ(σ) are determined by Eqs. (10) and (4), respectively.
The iteration process should be continued until the

attainment of condition

where ε is a certain small positive number.

SOLVABILITY CONDITIONS

The problem of determining the pillar shape is an
inverse problem. For this reason, as in the inverse

λ 0( ) λ0
1
2
--- ρ

ρ j
---- 1 µ

V∞
2

V0
2

------+
 
 
 

,ln= =

λ ∞( ) λ∞
1
2
--- ρ

ρ j
---- 1 µ+( ) ,ln= =

ϑ 0( ) ϑ 0
π
2
---, ϑ ∞( ) ϑ ∞ 0.= = = =

λ 0( ) σ( ) λ0 γ σ( ) λ∞ λ0–( ),+=

ϑ 0( ) σ( ) ϑ 0 γ σ( ) ϑ ∞ ϑ 0–( ),+=

γ σ( ) 2
π
--- Cσ( )arctan , C 0.>=

S̃
χ̃

dw
dz
-------

t ζ=

ϑ n( ) σ( ) ϑ n 1–( ) σ( )–
σ

max ε,<

λ n( ) σ( ) λ n 1–( ) σ( )–
σ

max ε,<
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boundary value problem of aerohydrodynamics (see,
e.g., [5]), the solvability conditions should be satisfied.
Considering Eq. (8) for t  ∞, we obtain the condi-
tion that the velocity determined at infinity coincides

with the preset value in the form lnV∞ = , where 
is determined by Eq. (14). The condition of the close-
ness of the pillar is found from the equation

and has the form

where

These solvability conditions are satisfied by fitting the
parameters b and c. To determine the velocity u∞, we
use the condition that the rate Q is given. Using the rela-

tion  ~  and Eqs. (8) and (9), we arrive at

the relation Q = 2πu∞exp[–T(0)] between Q and u∞ .

Thus, in addition to the internal iteration process for
determining the functions λ(σ) and ϑ(σ), we organize
the external iteration process for finding the parameters
b, c, and u∞ on the basis of the Newton method for solv-
ing systems of nonlinear equations.

S̃∞ S̃∞

res  
t

 
∞→

 dz
dt
 ----- 0=

a 1–
1
2
--- b c+( ) 1 S̃∞+( )– 0,=

a
1
π
--- S̃ τ( )τ

R τ( )
-------------- τ .d

b

c

∫=

dw
dz
-------

z 0→

Q
2πz
---------

          

y = y∞
y

x

B C
A

M

0.3

0.2

0.1

0
–0.1 0 0.1 0.2 0.3

Fig. 2. Calculation results for various V0 values.
LIMITING CASES

To test the resulting numerical–analytical solution,
it is convenient to use the limiting cases of the problem
under consideration, in which the solutions are
obtained in the analytical form.

Case m = 0. This is the case of the flow of the ideal
incompressible fluid around the usual point source. The
complex potential for such a flow has the form

From this formula, it is easy to obtain the following
equation for determining the line lz:

where the parameter δ ranges from 0 to π

 

. The coordi-
nate of the flow separation point 

 

A

 

 has the form 

 

z

 

a

 

 =

 

−

 

.

 

Case 

 

m

 

 = 

 

•

 

. 

 

In this case, the velocity 

 

V

 

j

 

 at the
boundary of the jet is a certain arbitrary constant 

 

V

 

1

 

.
This problem is easily solved by the velocity
hodograph method (see, e.g., [1]). The resulting for-
mula for determining the line 

 

l

 

z

 

 has the form

where the parameter 

 

s

 

 ranges from 0 to 

 

∞

 

 and 

 

z

 

a

 

 =

 

 is the coordinate of the flow separation

point 

 

A

 

. We emphasize that the ratio  in this case is

the asymptotic value 

 

y

 

∞

 

 of the jet boundary at infinity.

CALCULATION RESULTS

We perform calculations with the parameters 

 

V

 

∞

 

 =

 

ρ

 

 = 

 

ρ

 

j

 

 = 1. In the first series of calculations, we analyze
the dependence of the solution on the velocity 

 

V

 

0

 

,
which is a parameter of the problem. Figure 2 shows the
shape of the pillar and interface between the media for

 

Q

 

 = 1, 

 

µ

 

 = 1, and 

 

V

 

0

 

 = 0.1, 0.05, 0.01, and 0.001. The
size of the pillar decreases with the velocity 

 

V

 

0

 

, but the
shape of the section 

 

AC

 

, which is streamed by the jet
from the source, remains almost unchanged. The shape
of the line 

 

l

 

z

 

 is also almost independent of 

 

V

 

0

 

. It can be
assumed with great certainty that the interface between
the media that is obtained by solving the problem with-
out the introduction of the dead zone is close to the line

 

l

 

z

 

, which is obtained above and is unified with the sec-
tion 

 

AC

 

 of the pillar. For comparison, points show the
shape of the interface between the media, as found by

w z( ) V∞z
Q
2π
------ zln C1.+ +=

z δ( ) Qδe iδ–

2πV∞ δsin
-------------------------,–=

Q
2πV∞
-------------

z s( ) za
Q

πV1
--------- 1

1 i s+
----------------- 1 i s+( )ln 1–+ ,+=

1 2 2ln–( )Q
2πV1

------------------------------

Q
2V1
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the method described in [4]. The good agreement of the
results indicates that the proposed method with the pil-
lar is efficient and that the assumptions made in [4] are
justified.

The second series of calculations was performed to
analyze the effect of the parameter µ. Figure 3 shows
the calculation results for Q = 1, V0 = 0.001, and µ =
(2) 0.1, (3) 1, and (4) 10 and (1) for the limiting case
µ = 0. As is seen in this figure, the shape of the line lz

for µ = 0.1 agrees well with the case µ = 0.
In the third series of calculations, both µ and Q were

varied and the rate Q was chosen so that, taking
Eq. (15) into account, the lines lz for various µ values

have the common asymptotic value y∞ =  at infinity

(this value corresponds to the case of Q = 1 and µ = 1).
Figure 4 shows the shape of the interface between the
media for µ = (2) 0.1, (3) 1, and (4) 10 and for the lim-
iting cases µ = (1) 0 and (5) ∞. As is seen in this figure,
the cases µ = 0.1 and 10 agree well with the limiting
cases µ = 0 and ∞, respectively.

In addition, according to the calculation results, the
line lz approaches the asymptotic value more rapidly as
µ increases. Moreover, we arrive at a seemingly para-
doxical conclusion: as the jet energy increases, the flow
separation point approaches the source. It is worth not-
ing that, at a given asymptotic value at infinity, all inter-

1

8
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0.4

0.3

0.2

0.1

0
–0.1 0 0.1 0.2 0.3 0.4

x

y
1

2

3

4

M

Fig. 3. Calculation results for Q = 1 and µ = (1) 0, (2) 0.1,
(3) 1, and (4) 10.
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faces between the media for different µ values intersect
at one point.
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The motion of a spherical pendulum under an arbi-
trary three-dimensional periodic vibration of the sup-
port is considered. A new system of differential equa-
tions for the radius vector of the pendulum is suggested.
Unlike the equations for the spherical coordinates, the
proposed system has no singular points and makes it
possible to describe the motion of the pendulum under
arbitrary vibrations by numerical methods or by meth-
ods of averaging in the case of high-frequency vibra-
tions.

STATEMENT OF THE PROBLEM

Consider a spherical pendulum, namely, a material
point of mass m suspended by a weightless inextensible
cord of length l. The pendulum support has the radius
vector r0(x1, x2, x3) and moves according to a prescribed
law. At the opposite end of the cord, which has the
radius vector r, the material point is suspended. This
material point is subject to an applied force F and the
cord tension T (see figure). Then, under the action of
tension T and applied force F, the radius vector R = r –
r0 traces out a trajectory on the sphere |R| = l.

The problem under consideration has been investi-
gated for a long time. The possibility of stabilizing the
mathematical pendulum at the apex with the help of
vertical vibrations of the support was first studied by
Stephenson [1].

The oscillation of a pendulum with vertical and hor-
izontal vibrations was investigated independently and
in more detail by Bogolyubov and Kapitsa [2–4].
Asymptotical solutions to the problem of the oscillation
of a planar pendulum for arbitrary vibrations are pre-
sented in papers [5, 6].

Paper [7] contains an examination of axially sym-
metric oscillations of a spherical pendulum with a ver-
tically vibrating support. In papers [8, 9], for high-fre-

Institute for Problems in Mechanics, 
Russian Academy of Sciences, pr. Vernadskogo 101, 
Moscow, 117526 Russia
1028-3358/05/5011- $26.00 0588
quency vibrations of the support, determination of the
stable periodic solutions is reduced to minimizing a
function of the spherical coordinates. An additional
degree of freedom significantly complicates the analy-
sis of the system. Below, we suggest new approaches,
which make the examination of the oscillation of a
spherical pendulum by the numerical and asymptotic
methods much easier. The periodic solution is con-
structed for arbitrary high-frequency vibrations.

LAGRANGE EQUATIONS 
AND HAMILTON EQUATIONS

For this purpose, either the Lagrange equations or
the Hamilton equations are most convenient. The
spherical pendulum has two degrees of freedom,
namely, θ, the angle of deviation of the pendulum mea-
sured from the lower equilibrium position, and ϕ, the
azimuth angle measured from the x-axis. The support
r0(x1, x2, x3) is forced to vibrate periodically in all three
directions, namely, in the horizontal directions x1 and x2

x1

x3 r0

θ

ϕ

R

x2

Figure.
© 2005 Pleiades Publishing, Inc.
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and in the vertical direction x3 . The Lagrange function
has the form [10]

The location of the material point of the pendulum can
be determined from the Lagrange equations

(1)

Equations (1) are written for two independent variables
θ and ϕ and can be easily solved with respect to the

higher derivatives  and . It is also convenient to
write the Hamilton form of Eqs. (1):

(2)

The Hamilton equations are particularly efficient for
the study of the oscillations of a pendulum with a high-
frequency vibrating support by asymptotic methods.

CONSTRUCTION OF THE PERIODIC SOLUTION 
BY THE METHOD OF INVARIANT 

NORMALIZATION OF THE HAMILTONIAN

In paper [7], axially symmetric oscillations of a
spherical pendulum with a vertical support were stud-
ied by the method of the Birkhoff normal form. To
determine the stable periodic solutions in that particular
case, it was necessary to expand the Hamiltonian in per-
turbations of the coordinates up to the fourth order
inclusive and to find the fourth-order Birkhoff normal
form. Moreover, the change of variables and the peri-
odic solution itself are not presented in that paper due
to the cumbersome calculations.

Here, we provide a solution to the general problem
of finding the periodic solutions and determining their
stability in the case of arbitrary three-dimensional
vibrations of the support under gravity (F1 = F2 = 0,
F3 = mg). We use the method of invariant normalization
[11, 12]. To provide for the same accuracy of result, we
need only one quadrature of simple trigonometric func-
tions, which is easy to find without the use of analytical
programming computer systems. Reduce the Hamilto-
nian (2) to the dimensionless form H(θ, ϕ, u, v) = H0 +
Φ, where u and v  are impulses corresponding to the
coordinates θ and ϕ.

L
ml2

2
-------- dθ

dt
------ 

 
2

θ ϕd
td

------sin 
 

2

+=

+ l θ F3 mẋ̇3–( )cos l θ F1 mẋ̇1–( ) ϕcos(sin+

+ F2 mẋ̇2–( ) ϕ ) .sin

d
dt
-----∂L

∂θ̇
------ ∂L

∂θ
------– 0,

d
dt
-----∂L

∂ϕ̇
------ ∂L

∂ϕ
------– 0.= =

θ̇̇ ϕ̇̇

θ̇ ∂H
∂ pθ
--------, ṗθ

∂H
∂θ
-------, ϕ̇–

∂H
∂ pϕ
---------, ṗϕ

∂H
∂ϕ
-------,–= = = =

H
pθ

2

2ml2
-----------

pϕ
2

2ml2 θsin
2

------------------------- l θ F3 mẋ̇3–( )cos–+=

– l θ F1 mẋ̇1–( ) ϕcos F2 mẋ̇2–( ) ϕsin+( ).sin
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The unperturbed part H0 of the Hamiltonian is the
energy of the inertial forces of vibration; the other
terms make up the perturbation:

(3)

Here, ω is the support vibration frequency and Wt't'
denotes the second derivative of function W with
respect to the dimensionless time t'.

Note that the form of the unperturbed Hamiltonian
is arbitrary. This trick is unusual for the classical
Birkhoff method. It makes it much easier to calculate
the normal form and perform the integration. We use a
modification of the method of invariant normalization
[13, 14]. This modification does not involve the reduc-
tion of the Hamiltonian to the autonomous form and
allows for an immediate computation of the quadrature.
The first step of the method consists in solving the

equations of the unperturbed system  = 0,  = 0,  =
–Wt't'θ, v  = Wt't'ϕ , where the subscripts t', θ, and ϕ denote
differentiation with respect to these variables.

The solution to the unperturbed system has the form

The quadrature

(4)

gives us the normal form

(5)

Expression U(θ0, ϕ0) coincides with the one obtained in
papers [8, 9] by the method of Poincaré mappings in the
parametric form. The minimum point θ0, ϕ0 of function

H0 Wt't' , Φ ε 1
2
---u2 v 2

2 θsin
2

---------------- θcos–+ 
  ,= =

ε g

lω2
--------,=

W a3 θcos θ a1 ϕcos a2 ϕsin+( ),sin+=

ai t'( )
ωxi

gl
---------, t' ωt.= =

θ̇ ϕ̇ u̇

θ θ0, ϕ ϕ 0, u u0 Wt'θ, v– v 0 Wt'ϕ .–= = = =

ε 1
2
--- u Wt'θ–( )2 v Wt'ϕ–( )2

2 θ0sin
2

-------------------------- θ0cos–+ td

t0

t

∫
= t t0–( )Φ t0 θ0 ϕ0 u0 v 0, , , ,( )

+ Ψ t0 θ0 ϕ0 u0 v 0, , , ,( ) f t( )+

Φ t0 θ0 ϕ0 u0 v 0, , , ,( ) ε 1
2
---u0

2 v 0
2

2 θ0sin
2

------------------ U θ0 ϕ0,( )+ +
 
 
 

,=

U θ0 ϕ0,( ) 1
2
--- Wt'θ

2〈 〉
Wt'ϕ

2〈 〉

2 θ0sin
2

------------------ θ0,cos–+=

f〈 〉 1
T
--- f t( ) t.d

0

T

∫=
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U(θ0, ϕ0) corresponds to the stable periodic solution.
The periodic solution has the form

(6)

It can be seen from quadrature (4) that function Ψ is
linear in u and v. The coefficients of the linear form are

(7)

Formulas (3), (6), and (7) determine the periodic trajec-

tory up to small ε2 . With regard for the relation εai = ,

the trajectory equation can be written in dimensional
variables:

(8)

EQUATIONS FOR THE RADIUS VECTOR 
AND THE ANGULAR MOMENTUM

Equation systems (1) and (2) have an essential draw-
back; namely, the spherical coordinates θ and ϕ are not
defined at the sphere poles θ = 0 and π. In this connec-
tion, when studying the pendulum oscillations in the
neighborhood of the singular points, geometric difficul-
ties are often faced, as they are hard to avoid. Below, we
suggest a new system of differential equations in the
radius vector R and the angular momentum K, which is
explicitly solvable for the derivatives, and the con-
straint equation follows from this system as its integral.
The idea of deducing this system of equations can be
attributed to V.F. Zhuravlev.

The law of motion of the material point can be found
from the variation equation for the angular momentum
K(K1, K2, K3) with respect to the support and the condi-
tion of inextensibility of the cord

(9)

The cord tension does not appear in the system of equa-
tions, because it has zero momentum about the origin.

Being unresolved with respect to the derivatives ,
Eqs. (9) in variables ä and R are not convenient for the
purpose of integration. Moreover, the determinant of

the system of equations for  is equal to zero. Never-
theless, this system can be uniquely solved. Indeed, tak-
ing the vector product of R with the second equation

in (9), we obtain the equality R × K = mR × (R × ),

θ θ0 Ψu– O ε2( ), ϕ+ ϕ0 Ψv O ε2( ).+–= =

Ψu = εWθ t' θ0 ϕ0, ,( ), Ψv
ε

θsin
2

------------Wϕ t' θ0 ϕ0, ,( ).=

xi

l
----

θ θ0
1
l
--- x3 t( ) θ0 x1 t( ) ϕ0cos(+sin–[–=

+ x2 t( ) ϕ0 ) θ0cossin ] ,

ϕ ϕ 0
1

l θ0sin
--------------- x1 t( ) ϕ0sin– x2 t( ) ϕ0cos+( ).–=

dK
dt

-------- R F m ṙ̇0–( ), K× mR Ṙ, R2× l2.= = =

Ṙ

Ṙ

Ṙ

which can be rearranged by the rule a × (b × c) = b(ac) –
c(ab) to give

The third constraint equation in (9) implies that

(R ) = 0 and (RR) = l2 . This gives us R × K = –ml2 .
Together with the variation equation for the angular
momentum, this equation makes up the system

(10)

with the initial conditions R(0) = R0, (0) = , and

K(0) = mR0 × .
System (10) is equivalent to the initial system of

equations. There is no need to write an additional con-
straint equation, since it is readily apparent as the inte-
gral of the system (RR) = (R0R0) = l2 . Equation sys-
tem (10) is more convenient for numerical integration
than is the system of equations for the spherical coordi-
nates of the pendulum, whose poles are singular points.

EQUATIONS FOR THE RADIUS VECTOR
One can exclude the angular momentum ä from

equation system (10) and obtain an equation in the
radius vector R alone. To do this, differentiate the sec-
ond equation in (10) with respect to time and express K
and  in terms of R and :

Expanding the vector triple product, we obtain

(11)

REACTION FORCE AT THE SUPPORT. 
WORK OF THE REACTION AT THE SUPPORT

The reaction force F0 at the support can be found
from the Newton law

(12)

With due account of Eq. (11), the reaction force can be
brought into the form

whence it is seen that the reaction force is directed
along the cord.

R K× mR RṘ( ) mṘ RR( ).–=

Ṙ Ṙ

K̇ R F m ṙ̇0–( )× , Ṙ
1

ml2
--------R– K×= =

Ṙ Ṙ0

Ṙ

K̇ Ṙ

Ṙ̇
1

l2
---Ṙ– R Ṙ×( ) 1

ml2
--------R–× R F m ṙ̇0–( )×( ).×=

Ṙ̇ = R

l2
---- ṘṘ( )– 1

m
---- F m ṙ̇0–( )

1

ml2
--------R R F m ṙ̇0–( )( ).–+

F0 m ṙ̇0 Ṙ̇+( ) F.–=

F0
R

l2
---- m Ṙ( )2

R F m ṙ̇0–( )+[ ] ,–=
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Assume that the support moves according to the
periodic law r0(t + T) = r0(t), where T is the period. Let
us find the average power N of the reaction force at the
support:

Since 〈 〉  = 0, expression (12) gives us

(13)

If the force F acting on the mass has a potential (for
example, the gravitational force), then F  is equal to
the variation of the potential energy of the mass and, for
a periodic motion, 〈F 〉 = 0, whereas, if the mass is
subject to frictional forces, which depend on the veloc-
ity, then the value 〈–F 〉 is strictly positive and is equal
to the dissipation of energy. The first term in the expres-
sion for the power can be conveniently transformed by
means of integration by parts:

Substituting  from Eq. (10) into the right-hand side,
we obtain

where the parenthesized expression denotes the triple
product of three vectors. It is equal to the determinant
of the matrix composed of the row vectors R, K,
and .

SYSTEM OF EQUATIONS
FOR THE COMPONENTS

Rewrite the obtained system of vector equations (10)
in the components R1, R2, , and R3 of the radius vector
and of the angular momentum:

N F0ṙ0〈 〉 1
T
--- F0ṙ0 t.d

0

T

∫= =

ṙ̇0ṙ0

N m Ṙ̇ṙ0〈 〉 Fṙ0〈 〉 .–=

ṙ0

ṙ0

ṙ0

m Ṙ̇ṙ0〈 〉 m Ṙṙ̇0〈 〉 .–=

Ṙ

m Ṙ̇ṙ0〈 〉 1

l2
--- RKṙ̇0( )〈 〉 ,=

ṙ̇0

Ṙ1
1

ml
2

-------- R2K3– R3K2+( ),=

Ṙ2
1

ml
2

-------- R3K1– R1K3+( ),=

Ṙ3
1

ml
2

-------- R1K2– R2K1+( ),=

K̇1 –R2 mẋ̇3 F3–( ) R3 mẋ̇2 F2–( )+( ),=

K̇2 –R3 mẋ̇1 F1–( ) R1 mẋ̇3 F3–( )+( ),=

K̇3 –R1 mẋ̇2 F2–( ) R2 mẋ̇1 F1–( )+( ).=
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Without regard for the frictional forces acting on the
pendulum, the average power N at the support can be
expressed in terms of the determinant

PERIODIC SOLUTION
IN THE CARTESIAN COORDINATES

Up to the small parameter ε, the periodic point
R0(t + T) = R0(t) can be found via a minimization of
function U(θ, ϕ) (5) and it corresponds to the periodic
solution (8). However, the minimization condition is
not applicable in the neighborhood of the poles. Let us
show the way to overcome this problem with the use of
Eq. (11). We seek the periodic solution to Eq. (11) in
the form

(14)

Substituting this expression into Eq. (11), up to small
quantities of order r2 , we obtain the linear equation

(15)

where the subscript n denotes the projection of vector s
onto the normal to the sphere |R| = l at point R0 and the
subscript τ denotes its projection on the plane tangent
to the sphere |R| = l at point R0 . Taking into account the

negligibility of the ratio  ~ ε, we write the equation

up to small quantities of order ε2, namely,  = – .
Hence follows the solution

(16)

If we express the Cartesian components r0(x1, x2, x3) in
terms of the spherical coordinates, then solution (16)
will coincide with (8). However, solution (16) would
have no singular points. The solution has a simple phys-
ical meaning; namely, the mass R = R0 + r traces out a
trajectory on the sphere that is symmetrical to the pro-
jection of the trajectory of the support onto the plane
tangent to the sphere |R| = l at point R0 . As for the
radius vector r0 + R0 + r = R0 of the mass of the pen-
dulum, its projection onto this plane is a fixed point.
This means that, in the absolute system of coordinates,
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1
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ṙ̇ ρ
l
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sn

s R0,( )
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----------------, sτ s
s R0,( )R0
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ṙ̇ ṙ̇0τ
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r0R0( )R0

l2
----------------------- O ε2( ).+ += =
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the mass of the pendulum moves only in parallel to the
pendulum cord.

EFFECTIVE POTENTIAL ENERGY

It follows from the theorem on the superposition of
solutions to the normal form of equations [12] that, at
the minimum point of function U(θ, φ) [see Eq. (5)], the
periodic solution is stable. In the Cartesian system of
coordinates, with due account taken of the dimensional
factor mgl, the function Ueff = mglU(θ, φ) has the form

where r0τ is the projection of the support velocity onto
the plane tangent to the sphere.

Thus, the effective potential energy Ueff under vibra-
tion is equal to the sum of the values of the kinetic and
potential energies averaged over the period.
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It is known that a body can move on a horizontal
plane due to internal oscillatory motions in the presence
of the forces of dry friction between the body and the
plane. In this study, we consider a very simple mechan-
ical model of such a motion realized as a result of the
specific periodic relative motions of a material point
inside the body.

The internal motion parameters providing for a
maximum average velocity of the system as a whole are
determined.

1. Consider an absolutely rigid body of mass M that
can move along a horizontal line. Inside the body, there
is a movable mass m that also moves horizontally
(Fig. 1). In what follows, for the sake of brevity, the
body of mass M and the internal mass will be referred
to as body M and mass m, respectively. Denote the
absolute coordinate of body M by x, its velocity by v,
the displacement of mass m relative to body M by ξ, and
the velocity and acceleration of mass m relative to body
M by u and w, respectively.

Write the kinematic equations of the motion of mass
m relative to body M in the form

(1)

Body M is exposed to the force of dry friction; the
friction coefficients may be different for the onward (f+)
and backward (f–) motion of the body.

We introduce the notation

(2)

where g is the acceleration of gravity, and write the
equations of the absolute motion of body M in the form

(3)

ξ̇ u, u̇ w.= =

a+ f +g, a– f –g, c
a+

a–
-----,= = =

µ m M m+( ) 1– 1,<=

v̇ µw– a+ for v 0,>–=

v̇ µw– a– for v 0,<+=

v 0 for –a+ µw≤ a–.≤=
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We consider periodic motions of mass m relative to
body M within a bounded displacement range 0 ≤ ξ(t) ≤
L, where L > 0 is a given parameter.

Moreover, we impose the conditions ξ(0) = ξ(T) = 0
and u(0) = u(t) = 0, where T is the motion period, and
require that the value ξ(θ) = L be reached at a certain
θ ∈ (0, T). We restrict ourselves to the consideration of
two classes of periodic relative motions of mass m,
which will be called two-phase and three-phase.

In the two-phase motion, the relative velocity u(t) is
piecewise-constant and the period includes two inter-
vals of constant velocity.

In the three-phase motion, the relative acceleration
w(t) is piecewise-constant and the period includes three
intervals of constant acceleration.

It can be shown that, under the periodicity condi-
tions imposed, the two-phase and three-phase motions
under consideration exhibit the least possible number
of intervals of constant velocity and constant accelera-
tion, respectively.

m ξ

M

x

Φ*(∞)

1

0 1

Φ*

x*1

c

2
3
---

Fig. 1. Mechanical model and functions (c) and Φ*(c).x1*
© 2005 Pleiades Publishing, Inc.
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Denoting the interval duration by τi , for the two-
phase motion, we have

(4)

where u1 and u2 are positive constants. Under the con-
ditions imposed, the two-phase motion is determined
by two parameters, u1 and u2 , which are subject to the
following constraint:

(5)

Here, U is the highest permissible velocity. Using
Eq. (1) and two periodicity conditions, we can express

u t( ) u1 for t 0 τ1,( ),∈=

u t( ) u2 for t τ1 T,( ), T∈– τ1 τ2,+= =

0 ui U , i≤< 1 2.,=

ν

τ1

(a)

T

t1

0

0

0
τ1 T

TT
2
--- t

(b)

(c)

Fig. 2. Two-phase motion.
the other parameters in terms of u1 and u2 as follows:

(6)

For the three-phase motion, we have

(7)

The parameters wi are subject to the constraint

(8)

where W is the highest permissible acceleration. By vir-
tue of Eqs. (1) and the periodicity conditions, the other
parameters can be expressed in terms of wi as follows:

(9)

Substituting the laws of motion (4) and (7) into
Eqs. (1) and (3) and using the imposed periodicity con-
ditions together with Eqs. (6) and (9), we study the pos-
sible motions of body M. Determine the motions from
the classes under consideration such that

(1) the velocity of body M varies periodically;
(2) the conditions v(0) = v(T) = 0 are fulfilled; and
(3) the average velocity of body M, which is equal

to V = , is maximal.

We present the results obtained for the two-phase
and three-phase motions.

2. The analysis shows that, for the two-phase
motion (4), the maximal average velocity can be real-
ized in one of the two regimes presented in Fig. 2. In
regime a, there is no interval in which body M is at rest
and velocity v(t) varies by the law

τ1 θ L
u1
-----, τ2

L
u2
-----, T L u1

1– u2
1–+( ).= = = =

w t( ) w1 for t 0 τ1,( ),∈=

w t( ) w2 for t τ1 τ1 τ2+,( ),∈–=

w t( ) w3   for   t τ1 τ2+ T,( ),  T∈ τ 1 τ2 τ3.+ += =

0 wi W , i≤< 1 2 3,, ,=

τ1

2w2L
w1 w1 w2+( )
-----------------------------

1/2

, τ3

2w2L
w3 w2 w3+( )
-----------------------------

1/2

,= =

τ2
2L
w2
------ 

  1/2 w1

w1 w2+
------------------ 

 
1/2 w2

w2 w3+
------------------ 

 
1/2

+ ,=

T
2L
w2
------ 

  1/2 w1 w2+
w1

------------------ 
 

1/2 w2 w3+
w3

------------------ 
 

1/2

+ .=

x T( )
T

-----------

v t( ) µu1– a–t for t 0 τ1,( ),∈+=

v t( ) µu2 a–τ1 a+ t τ1–( ) for t τ1 T,( ).∈–+=
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In regime b, there is a rest interval (t1, τ1) and

We pass to dimensionless parameters according to
the formulas

(10)

First, consider the case in which there is no upper
bound (5), that is, X  ∞. In this case, the maximal
average velocity is attained at c ≤ 1 in regime a and at
c > 1 in regime b. Here, for the optimal motion, we have

(11)

Here, the following notation is introduced:

(12)

The dependences (c) and Φ*(c) are plotted in
Fig. 1. Let us emphasize some properties of these func-
tions.

As c varies from 1 to ∞, function (c) decreases

monotonically from 1 to  = 0.816, while function

Φ*(c) increases monotonically from 1 to  =

1.089. Thus, the advantage in velocity of the optimal
regime b over regime a is not greater than 9%.

In the simplest case of the isotropic dry friction,
when a+ = a– = a, we have c = 1 and, in accordance with
Eqs. (10) and (11), we obtain

v t( ) µu1– a–t for t 0 t1,( ), t1 τ1,<∈+=

v t( ) 0 for t t1 τ1,( ),∈=

v t( ) µ u1 u2+( ) a+ t τ1–( ) for t τ1 T,( ).∈–=

u0

La–

µ
--------- 

 
1/2

, ui u0xi, i 1 2,,= = =

U u0X , V 0.5µu0Φ, c
a+

a–
-----.= = =

x1 1, x2 c, Φ 1 for c 1,≤= = =

x1 x1* c( ), x2
c

x1* c( )
-------------,= =

Φ Φ x1* x( )( ) Φ* c( ) for c 1.>= =

x1* c( ) c
2
--- c 1–( ) 1– 1 3c– 9c2 2c 7–+( )1/2

+[ ]
 
 
 

1/2

,=

Φ x( ) 2c x2 1 c–( )+[ ] x c x2+( ) 1–
.=

x1*

x1*

2
3
--- 

 
1/2

4
3
--- 2

3
--- 

 
1/2

x1 x2 1, u1 u2 u0
La
µ

------ 
 

1/2

,= = = = =

τ1 τ2 τ0
µL
a

------- 
 

1/2

,= = =

T 2τ0, V 0.5 µLa( )1/2.= =
DOKLADY PHYSICS      Vol. 50      No. 11      2005
This case is presented in Fig. 2c.

In the presence of constraint (5), the two-phase
motion under consideration can be realized only when

(13)

The optimal motion is determined by the relations

(14)

Here, notation given by Eqs. (11) and (12) is used.

Four cases (14) are associated with domains 1–4 in
Fig. 3a. The boundaries of these domains are the
straight lines c = 1, X = 1, and X = c and the curves X =

c1/2 and X =  marked by letters K and N, respec-

tively. Regime a is realized in domain 2, while, in the
other domains, regime b is realized. The passage to the
original dimensional parameters in Eq. (14) can be car-
ried out according to formulas (10).

3. An analysis of the three-phase motion (7) leads to
two possible regimes for the motion of body M; they are
denoted by a and b and are presented in Figs. 4a and 4b.
In regime a, there is an interval of the backward motion
of body M, in which v  < 0, whereas such intervals are
absent in regime b. It is shown that the maximal average
velocity is always realized in regime b, in which

 t2  ∈ [τ1 + τ2, T].

X max c1/2 c,( ).≥

x1 X , x2
c
X
----, Φ Φ X( ) for c1/2 X 1,<≤= = =

x1 1, x2 c, Φ 1 for c 1, X 1,≥≤= = =

x1
c
X
----, x2 X , Φ Φ c

X
---- 

 = = =

for  1 c X
c

x1* c( )
-------------,<≤<

x1 x1* c( ), x2
c

x1* c( )
-------------, Φ Φ* c( )= = =

for  
c

x1* c( )
------------- X .≤

c
x1* c( )
-------------

v t( ) 0 for t 0 τ1,[ ] ,∈=

v t( ) µw2 a+–( ) t τ1–( ) for t τ1 τ1 τ2+,[ ] ,∈=

v t( ) µw2 a+–( )τ2 µw3 a++( ) t τ1– τ2–( )–=

for  t τ1 τ2+ t2,[ ] ,∈

v t( ) 0 for t t2 T,[ ] ,∈=
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We pass to dimensionless parameters according to
the formulas

(15)

and, first, determine the optimal values of the parame-
ters in the absence of the upper bound in (8), that is, as
Y  ∞. We obtain

(16)

yi

µwi

a–
---------, i 1 2 3, W, ,

a–

µ
-----Y ,= = =

V
µLa–

2
------------ 

 
1/2

F=

y1 1, y2 ∞, y3 c2, F 1.= = = =

1

0 1

1

2 34

K

X

N

(a)

c

Y

1

0

1

1

2

2

c11
3
---

(b)

Fig. 3. Domains of optimal two-phase (a) and three-phase
(b) motions.
In accordance with Eqs. (15) and (9), motion (16)

undergoes a velocity jump ∆v  = (a+ + a–) at

instant t = τ1. We have

(17)

There is no rest interval for body M at the end of the
period. The velocity diagram of body M in the optimal
regime in the absence of the upper bound for the accel-
eration (Y  ∞) is presented in Fig. 4c.

2µL
a–

---------- 
  1/2

τ1
2µL
a–

---------- 
  1/2

, τ2 0, τ3

2µLa–( )1/2

a+
-------------------------,= = =

t2 τ1 τ3+ T .= =

ν

0

(a)

T

t

t1 t2τ1 τ1 + τ2

0

0

τ1 + τ2τ1 t2 T

τ1 T

(b)

(c)

Fig. 4. Three-phase motion.
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In the case of the isotropic dry friction a+ = a– = a,
in accordance with formulas (15)–(17), we have

In the presence of constraint (8), the three-phase
regime of motion is realizable under the condition

(18)

The optimal motion is determined by the relations

for max(1, c) < Y ≤ Y*,

(19)

 for Y > max(1, Y*),

where the following notation is introduced:

(20)

The first case in (19) corresponds to the presence of
a nonzero rest interval at the end of the period: here,
t2 < T (see Fig. 4b). In the second case of (19), the rest
interval at the end of the period is absent, as is demon-
strated in Fig. 4c, and t2 = T.

Figure 3b shows the c,Y-plane. The domains that
correspond to the two cases (19) are marked by num-
bers 1 and 2, respectively. The figure depicts the lines
c = 1, Y = 1, and Y = c, as well as the curve Y = Y*(c).

In the case of the isotropic dry friction a+ = a– = a,
Eqs. (19) and (20) take the form

(21)

w1 w3
a
µ
---, w2 ∞, τ1 τ3

2µL
a

---------- 
 

1/2

,= = = = =

τ2 0,=

∆v 2 2µLa( )1/2, V
µLa

2
---------- 

 
1/2

.= =

Y max 1 c,( ).>

y1 = 1, y2 = Y , y3 = 1, F = 
2 Y c–( )

c 1+( )Y1/2 Y 1+( )1/2
-------------------------------------------------

y1 1, y2 Y , y3
c2 Y 1+( )

Y c c 2+( )–
-----------------------------,= = =

F
Y

Y 1+
------------ 

 
1/2

=

Y* c( ) c 1 c 2 2c c2+ +( )1/2
+ +[ ] .=

y1 1, y2 Y , y3 1,= = =

F
Y 1–

Y1/2 Y 1+( )1/2
------------------------------- for 1 Y 2 5,+≤<=
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for Y > 2 + .

In solutions (19)–(21), the passage to the dimen-
sional variables can be carried out according to formu-
las (15) and (9).

4. Thus, the optimal two-phase and three-phase
motions in the presence of the anisotropic dry friction
are completely constructed both in the absence and in
the presence of constraints on the relative velocity (5)
and relative acceleration (8) of mass m.

Note some peculiar features of the obtained optimal
motions. In the absence of constraints (5), the average
velocity of the two-phase motion is, in accordance with

Eqs. (10) and (11), V ~ . In the absence of

constraints (8), the average velocity of the three-phase
motion is, in accordance with Eqs. (15) and (16), V =

. In both cases, the velocity of body M is

bounded for any permissible (including the case of infi-
nitely high) velocities and accelerations of the relative
motion of mass m. For the cases of two-phase and
three-phase motions, the values of the maximum veloc-
ities differ only in the coefficients.

In spite of the considerable difference between the
original assumptions made for the two-phase and three-
phase regimes, there is a great deal of similarity
between the corresponding optimal regimes.

In the presence of a restriction on the velocity
(acceleration) of mass m, the two-phase (three-phase)
motion is possible only under conditions (13) and (18)
for the two-phase and three-phase motions, respec-
tively, that is, at a fairly high level of these constraints.
As X  ∞ or Y  ∞, the corresponding optimal
motions (14) and (19) transform into motions (11)
and (16) corresponding to the absence of these con-
straints.

The displacement principle considered in this study
may be of interest for certain types of mobile robots.
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Three-dimensional waves appear at the final stage of
the evolving wave regime of a fluid-film flow [1]. At
this stage, for values of the Reynolds number of the film
flow that are sufficiently low (Re < 100), the wave
regime manifests itself as a soliton gas. The film surface
is covered by numerous horseshoe-shaped waves,
which propagate over a thin residual layer, randomly
interacting with each other and explicitly demonstrat-

ing a nonlinear character of motion. Here, Re = ,

where q is the specific fluid-flow rate and ν is the kine-
matic viscosity. There is no mathematical description
of these wave regimes in the literature.

A theoretical solution describing a time-indepen-
dent (stationary) solitary nonlinear wave similar in its
shape to waves observed in experiments is obtained
in [2] for the case of Re ~ 1. In [3], an equation is ana-
lyzed that generalizes the equations used in [2] for the
case of intermediate Reynolds numbers. Several
branches of time-independent solutions are found. The
solution obtained in [2] is related to one of these
branches. The other solutions correspond to solitary
multi-humped waves. In addition, the experimental
determination of characteristics for determinate three-
dimensional waves is hampered by their chaotic inter-
action with each other. Therefore, the problem of the
existence of stationary solitary three-dimensional
waves continued to be an open one until quite recently.
The significant technical difficulties accompanying the
investigation of natural three-dimensional waves are
also associated with the slow rate of processes of evo-
lution: the long-term nonlinear evolution of two-dimen-
sional waves (or waves close in terms of shape to two-
dimensional ones) precedes the appearance of a devel-

q
ν
---
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oped wave regime. It is for this reason that the operat-
ing-segment length of an experimental setup must be of
a sufficiently large size. The length may be consider-
ably reduced provided that we promote the decay of
regular two-dimensional waves using an external
action. However, even in this case, the interaction
between produced three-dimensional waves strongly
affects their characteristics.

An alternative method for the generation of solitary
three-dimensional waves, which makes it possible to
study regularities of their development on the basis of a
compact experimental setup, consists in wave excita-
tion by a point source. This source should be used in the
initial segment of the film flow, where the level of nat-
ural perturbations is low, and the film can be considered
as smooth. This approach was employed in [4]; how-
ever, time-independent horseshoe-shaped waves were
not observed.

In this study, using a point excitation source under
the condition of small Reynolds numbers 2.0 < Re <
5.0, we have managed to observe for the first time the
formation of stationary three-dimensional solitary
waves. The values of the Reynolds numbers are close to
those of the residual layer for a developed wave film
flow.

Our experiments were carried out on a vertical plate
made of an optic glass and having a width of 200 mm
and a length of 300 mm. To form the film, we applied a
slit distributor with a slit size of 0.23 mm. We have reg-
istered the wave pattern on the flowing film by the flu-
orescent-visualization method [5, 6]. The essence of the
method consists in the fact that the instantaneous distri-
bution of the film thickness on the plate is determined
by the intensity of the fluorescence radiation emitted by
a dyer dissolved in the liquid. In contrast to [5, 6], we
employed Particle Image Velocimetry measuring
equipment [7] that was adapted to the conditions of our
experiment, which operated in the double-frame
regime. This allowed us to determine not only the spa-
tial configuration but also the instantaneous velocities
of rapidly evolving waves. While registering the wave
pattern, we took pictures with a visual field of 100 mm ×
© 2005 Pleiades Publishing, Inc.
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100 mm in area, which has provided a spatial resolution
of 0.1 mm over the entire plate surface. The excitation
of three-dimensional waves was realized by the short-
time impact (of duration 10–15 ms) of a thin jet of the
liquid in the upper part of the wave-free zone of the film
flow. It was assumed that, under certain excitation con-
ditions, a wave could attain the stationary state for a
very short time. Therefore, the wave-excitation energy
(basically, variable at the expense of the ejected-fluid
mass) varied over a wide range in the course of the
experiment. The character of the wave evolution along
the operating segment of the experimental setup was
determined according to the variation of the amplitude,
velocity, and characteristic longitudinal and transverse
sizes of the wave. Then, the wave was considered to be
stationary provided that all its indicated properties
remained constant in the lower part of the wave-free
zone over the length of not less than three characteristic
longitudinal sizes. The liquid used in the experiments
(water-alcohol solution) had the following physical char-
acteristics. The surface tension was σ = 0.03 kg s–2, the
density was ρ = 931 kg m–3, and ν = 2.7 × 10–6 m2 s–1.
The rhodamine 6Zh that does not belong to surface-
active substances was used at a weight concentration of
~0.01% as a fluorescent dyer.

For a number of the flow regimes under study, it
turned out to be possible to find the excitation condi-
tions under which the initial perturbation, after its rela-
tively short-term evolution, transformed into a station-
ary solitary wave. The stationary-wave patterns
obtained experimentally are shown in Fig. 1. For
Re ~ 2, the wave shape is close to that described by the
theoretical solution of [2]. However, as the Reynolds
number is increased up to Re = 4–5 (Figs. 1b, 1c),
noticeable differences appear: the crest bend increases,
the crest lateral walls significantly elongate in the lon-
gitudinal direction, and a thin groove-shaped depres-
sion arises between them. The wave characteristics pre-
sented in Fig. 1c are measured in the region of the wave
interaction with growing two-dimensional natural
waves, which can be observed on the left part of Fig. 1c
in the form of transverse wrinkles. At the same time, as
can be seen from Fig. 2, for all Reynolds numbers, the
amplitudes and velocities of the registered waves
remain close to their values as calculated in [2].

Varying excitation conditions, we have managed to
form two-humped solitary waves similar to those pre-
dicted in [3]. Contrary to single-humped waves, slowly
evolving waves of this type were observed at distances
that exceeded by several times those characterizing the
attainment of the stationary regime by single-humped
waves. In addition, the two-humped waves are less sta-
ble as compared to single-humped waves. In the case of
fixed excitation conditions, the long-term and smooth
evolution of these waves equiprobably results either in
the rapid merging of humps or in the formation of a sta-
DOKLADY PHYSICS      Vol. 50      No. 11      2005
tionary two-humped wave. By virtue of the features
indicated, the experimental study of two-humped
waves represents a much more complicated problem
than that of single-humped waves. One of the examples
of a stationary two-humped solitary wave is shown in
Fig. 3.

Thus, in the present study, we have demonstrated for
the first time the existence of stationary solitary three-
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Fig. 1. Spatial shape of stationary solitary three-dimen-
sional waves for Re = (a) 2.5, (b) 3.9, and (c) 4.8; H is the
ratio of the local thickness to that of the unperturbed film,
X is the distance downstream from the excitation point, and
Y is the transverse coordinate.
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Fig. 3. Stationary two-humped solitary wave for Re = 2.2.
dimensional waves on a vertical flowing fluid film at
small Reynolds numbers. Experimental data related to
regularities of the propagation and spatial shape of
three-dimensional perturbations are also obtained. The
agreement for a number of parameters predicted by
existing theories has been demonstrated.
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INTRODUCTION

In this paper, we analyze the problem on the propa-
gation of elastic surface waves in the Cosserat medium
(the half-space case). The strain state is characterized
by an independent displacement vector and rotation
vector, the stress tensor and the moment-stress tensor
being asymmetric [1, 2]. In contrast to certain well-
known studies [3–6], we seek the solutions for equa-
tions of motion in the form of wave packets determined
by an arbitrary-shape Fourier spectrum. The solution
found consists of two independent parts: one of them
describes the Rayleigh wave, whereas the other corre-
sponds to the transverse wave that attenuates as the
depth is increased. For both wave types, the analytical
solutions are written out in terms of displacements. It is
especially worth noting that, in contrast to the Rayleigh
wave, the solution obtained for a transverse surface
wave has no analogs in the classical elasticity theory.
As numerical illustrations, we compare the solutions
for transverse and Rayleigh waves.

FORMULATION OF THE PROBLEM

We consider a half-space with its surface free of
loads for the case in which mass forces and moments
are absent. To describe the elastic Cosserat medium, we
exploit the following relationships [1]:

(1)

Here, u is the displacement vector; w is the rotation
vector; λ, µ are the Lamé coefficients; α, β, γ, and ε are

2µ λ+( )graddivu µ α+( )curlcurlu–

+ 2αcurlw εu,=

2γ β+( )graddivw γ ε+( )curlcurlw–

¨

+ 2αcurlu 4αw– jw.= ¨
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physical constants of the material in the framework of
the moment elasticity theory; ρ is the density; and j is
the parameter responsible for the inertia measure of the
medium under the rotation. We direct the Cartesian
coordinate axes x and y along the surface, whereas the
z axis is aligned inward the half-space. The boundary
condition takes the form

(2)

CONSTRUCTING THE SOLUTION

Let a wave propagate along the x axis. We represent
the general solution of the set of Eqs. (1) in the form of
the Fourier integrals, which corresponds to the repre-
sentation of the solution as that bounded in the time,
space, and in Fourier spaces of a wave packet of an arbi-
trary shape (only the real-valued parts of the corre-
sponding components have a physical sense):

(3)

Here, n = {x, y, z} is the coordinate subscript; i is the
imaginary unit; k is the wave number; f is the circular
frequency; t is time; Un(z) and Wn(z) are the depth-

depending amplitude functions; and ( f ) is the com-
plex-valued Fourier spectrum of the source signal,
which determines the wave-packet shape.

We now apply the continuous Fourier transforma-
tion to relationships (1)–(3), substitute the Fourier
image of the solution into the spectral set, and thus

σzx 0, σzy 0, σzz 0, µzx 0,= = = =

µzy 0, µzz 0.= =

un x z t, ,( ) Un z( )ei kx ft+( )Ŝ0 f( ) f ,d

∞–

∞

∫=

ωn x z t, ,( ) Wn z( )ei kx ft+( )Ŝ0 f( ) f .d

∞–

∞

∫=

Ŝ0
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obtain two decoupled sets of ordinary differential equa-
tions. Further, using the parameters

(here, X0 is a certain characteristic size, and f0 is the
characteristic frequency), we make the sets obtained
dimensionless.

The solutions to the sets obtained are expressions for
the amplitude functions. After their substitution into (3),
we finally arrive at
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Here, the exponents of the amplitude functions are
determined by the expressions

The real-valued constants Fm and Gm are determined
from the dimensionless boundary conditions (2):

where F0 and G0 are indeterminate constants and the
complex-valued quantities Dm and Em are the solutions
to the homogeneous sets

From the condition for the solvability of these sets,
we obtain the following wave equations:

(i) The equation detM1 = 0 describes the Rayleigh
wave with the components ux, uz, ωy , where
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(ii) The equation detM2 = 0 describes the transverse wave with the components uy, ωx , and ωz:
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Fig. 1. Comparison of (a) wave numbers and (b) phase velocities for classical and asymmetric media.
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The dependences of the wave numbers and phase
velocities on the physical frequency p measured in
Hertz are presented in Fig. 1, where ,  is the solu-kr* Cr*
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Fig. 2. Displacement components as functions of depth.
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tion for the Rayleigh wave in the classical case; , 
is the solution for the bulk transverse wave in the clas-
sical case; kr, Cr is the solution for the Rayleigh wave
in the Cosserat medium; and kt, Ct is the solution for the
surface transverse wave in the Cosserat medium.

Figure 2 shows the displacement components of the
solution obtained as a function of the depth normal-
ized to the wavelength. This dependence illustrates
that the transverse wave is a typical surface wave, the
localization-layer thickness being dependent on the
frequency.

CONCLUSIONS

The fundamental result obtained in the present study
is the following. In addition to the surface elliptical
Rayleigh wave, in a half-space whose dynamic behav-
ior is described by the model of the Cosserat medium,
a surface wave having one transverse displacement

kt* Ct*
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component can also exist. From the geometric stand-
point, this wave is similar to the Love wave. However,
in the classical elasticity theory, the existence of a Love
wave is determined by the presence of a certain layer on
the half-space. When the layer thickness tends to zero,
the Love wave transforms into a bulk wave. Thus, a
qualitatively new wave mode is observed in the
Cosserat medium. There is no analog of this mode in
the classical elasticity theory.

The second result is the existence of a frequency that
depends only on the material properties. For this fre-
quency, the propagation velocities in the half-space of
the Rayleigh wave and of the transverse surface wave
coincide.
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The problems discussed in this paper are concerned
with the design of quasi-brittle axisymmetric shells of
minimal mass. The considered optimization problems
consist in finding the optimal geometry together with
the optimal distribution of the shell thickness while giv-
ing due account to the constraint imposed on the shell
volume. We present the results of the analytic investiga-
tion and the exact solution to the problem of the optimal
design of the closed shells of revolution exposed to an
internal pressure.

STATEMENT
OF THE OPTIMIZATION PROBLEM

Consider a shell that has the shape of a surface of
revolution and is exposed to axisymmetric actions. The
orientation of the meridian plane is determined by
angle Θ as calculated from a specified meridian plane,
and the orientation of the parallel disk is determined by
angle ϕ between the normal to the surface and the axis
of rotation. The radius of the parallel disk, which deter-
mines the distance from a point on the neutral shell sur-
face to its axis of rotation, is denoted by r = r(x) (see
Fig. 1), where 0 ≤ x ≤ L, L > 0, is a given length of the
shell. The meridian plane and the plane orthogonal to
the meridian are the planes of principal curvatures at
the considered point of the shell surface. The corre-
sponding radii of curvature are denoted by rϕ and rΘ.
The thickness distribution h = h(x) is assumed to satisfy
the known condition from the theory of thin-walled
elastic shells of variable thickness:

(1)

(2)

h x( ) hm≤ h x( )
x

max  ! rm,=

rm min rϕ x( )
x

min rΘ x( )
x

min,{ } .=
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In (1) and (2), the minima in x are taken over the
closed interval [0, L] and the outer min in (2) denotes
the minimum of the two quantities in the braces.

The shell is exposed to a constant internal pressure
q and to distributed forces applied to the shell edge and
acting parallel to the x-axis. The resulting force applied
to the edge is denoted by R. The shell equilibrium equa-
tions, which are employed in the determination of the
values of normal membrane forces Nϕ and NΘ, have the
form [1, 2]

(3)

(4)

where r1 = r(0). The internal shearing force NϕΘ is iden-
tically zero. The radii of curvature rϕ and rΘ are calcu-
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(5)

It follows from (3)–(5) that the corresponding
stresses satisfy the following relations:

(6)

(7)

The considered optimization problem consists in
finding a shape r = r(x) and a distribution of the shell
thickness h = h(x) that afford a minimum to the volume
of the shell material

(8)

and satisfy the strength condition [3–6]

(9)

the boundary conditions imposed on function r(x)

(10)

and an additional geometric constraint imposed on the
shell volume

(11)

where σ∗ , r1, r2 , and V0 are given positive constants.
The strength condition may be written in the form of (9)
in the case of brittle or quasi-brittle axisymmetric
shells. Here, the material strength constant σ∗  (the
reduced critical stress) is determined by the known val-
ues of the material quasi-brittle strength constant K1c

and by the maximum allowed values of the initial
cracks of a normal fracture lm arising in the process of
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the production of the shell or in the process of its
exploitation [5, 6].

SOME PROPERTIES
OF THE OPTIMAL SOLUTION

In the construction of the optimal solution, we
assume that, throughout the whole interval x ∈ [0, L],
inequality (9) turns into an equality, i.e., either

(12)

or

(13)

Let us justify this assumption and demonstrate that,
for the optimal shell, there are no fragments of the
closed interval [0, L] where the strict inequality in (9) is
realized. Suppose, by contradiction, that, on a certain
segment [x1, x2] (0 ≤ x1 < x2 ≤ L), the optimal solution
( (x), h*(x)) satisfies the strict inequality in (9), i.e.,

On the other segments 0 ≤ x < x1 and x2 < x ≤ L of
the closed interval [0, L], it is assumed that the con-
sidered optimal solution (r*(x), h*(x)) will satisfy
either (12) or (13); i.e., it is assumed that inequality (9)
will turn into an equality. In this case, we can construct

an admissible design ( (x), (x)) in the following way:
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distributions (x) and (x) satisfy the strength condi-
tion (9) and the isoperimetric constraint (11) imposed on
the shell volume. Note that the admissible design (14)
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σϕ
Nϕ

h
------ σ*, σΘ σ*≤= =

σΘ
NΘ

h
------- σ*, σϕ σ*.≤= =

r0*

h*
Nϕ

σ*
------, h*

NΘ

σ*
-------.> >

r̂ ĥ
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tion is a full-strength design and, for this solution, we
have

(15)

The reverse inequality J(r*, h*) > J( , ), established
in (15), proves the assertion that, for the optimal solu-
tion, the strict equality in (9) is realized throughout the
entire closed interval [0, L].

CONSTRUCTION OF THE OPTIMAL SHAPE 
AND THE OPTIMAL THICKNESS 

DISTRIBUTION

Consider the problem of the optimal design of a
closed shell exposed to an internal pressure: r(0) = 0,
r(L) = 0. Here, we assume that R = 0. First, suppose
relations (12) to be valid throughout the entire closed
interval [0, L]. In this case, the optimal thickness distri-
bution and the corresponding optimal shape of the shell
are related by the formula

(16)
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expressions for the mass to be minimized (the func-
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r*d
xd

-------- 
 

2

xd+

x1

x2

∫

+ 2π r*h* 1
r*d
xd

-------- 
 

2

xd+

x2

L

∫

< 2π r*h* 1
r*d
xd

-------- 
 

2

+ xd

0

L

∫ J r* h*,( ).=

r̂ ĥ
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Under the assumption that r(x) ≠ 0, the necessary con-
dition of extremum for the Lagrange functional (18)
(the Euler equation) can be written for x ∈ (0, L) as

(19)

Here, determination of the shape of an optimal closed
shell reduces to the solution of the following boundary-
value problem:

(20)

By virtue of (20), we have
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The Lagrange multiplier λ can be found from the
isoperimetric constraint (11) imposed on the shell vol-
ume. We have
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mined by relation (16) and can be written in the form
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tributions h(x) are shown as dashed lines in Figs. 2

and 3, respectively, in dimensionless variables  = ,

 = h , and  = . It is seen from these figures that,

for α > 1, the optimal shell has the shape of an oblate
ellipsoid of revolution

and the thickness attains its maximum at the poles of
the ellipsoid. As α  1, the shape of the optimal shell
tends to a sphere and the distribution of its thickness
tends to the uniform one. Figure 4 shows the dimen-
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sionless mass of the shell versus parameter α in dimen-

sionless form  = J  (below, the tilde is omit-

ted) for α ≥ 1.

Now, consider the case where relations (13) are
valid throughout the entire closed interval [0, L]. Then,
the optimal shape r = r(x) of the shell is related to the
corresponding thickness distribution h = h(x) by the
expression

(26)

By virtue of this relation, the expression for the shell
mass to be minimized and for the extended Lagrange
functional may be put in the following form:
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Lagrange functional (28) has the form

(29)

Together with (10), it sets the following boundary-
value problem for the determination of the optimal
shape r(x) of the shell:

(30)

The optimal design determined by relations (26) and
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ing the Lagrange multiplier λ has the form
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soid of revolution and the thickness attains its maxi-
mum at x = 0.5. The case of α = 1 corresponds to a
spherical shell with a uniform thickness distribution.

CONCLUSIONS

In this paper, a new problem of the optimal design
of a thin-walled axisymmetric shell exposed to an inter-
nal pressure with regard for strength constraints has
been formulated and solved. The mass of the shell was
taken as the functional to be minimized; and the shape
of the shell (the meridian equation) and the distribution
of the thickness over the meridian were treated as the
design variables. The joint use of two control functions
made it possible both to significantly diminish the mass
of the designed shell and to essentially simplify the
analysis of the considered optimization problem. Then,
the optimal solution to the problem of shell design was
shown to depend on a single dimensionless parameter
characterizing the degree of oblateness or oblongness
of an axisymmetric shell. The finding of the optimal
shape and the optimal thickness distribution of an axi-
symmetric shell yielded an analytic definition of solu-
tions of two types, namely, oblate lens-shaped shells
and oblong cigar-shaped shells. For these types of solu-
tions, the optimal thickness distributions are qualita-
tively different. However, as the key parameter takes
the value that separates the types of solutions, the
obtained shapes and thickness distributions continu-
ously change into one another.
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In recent years, inverse problems related to the
determination of the coefficients of differential opera-
tors have more and more often come to the attention of
researchers in connection with the identification and
refinement of models in various areas of the natural sci-
ences. In some cases, the model of homogeneous iso-
tropic elasticity theory, which plays a key role in the
modern practice of structure integrity analysis, is in
need of refinement: the assumption of the homogeneity
of the medium should be rejected (in geophysics and
nanotechnologies). Moreover, determination of the
moduli of elasticity as functions of the coordinates
based on experimental data necessitates the solution of
inverse problems. By now, rather extensive experience
has been acquired in the investigation into the inverse
problems of the theory of elasticity. This experience has
mainly been based on models for the half-space in a
nonstationary statement, which lead to the solution of
nonlinear integral Volterra equations [1–3]. In this
paper, we suggest new integral equations to which the
inverse problems for finite bodies can be reduced by the
linearization procedure in the case of steady-state
vibrations. Some examples are considered.

RECIPROCITY RELATIONS

Consider the problem of steady-state vibrations at
frequency ω of a simply connected bounded domain V
with boundary S = Su ∪  Sσ. Here, we distinguish
between two states: the first state corresponds to the

elastic constant tensor (x), translation vector com-

ponents , and stress tensor ; the second, to

(x), , and , respectively. Within domain V,

Cijkl
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ui
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each state satisfies the equations of motion and Hooke’s
law:

(1)

The boundary conditions are the same for both states:

(2)

Theorem 1. Reciprocal states that meet conditions (1)
and (2) satisfy the relation

(3)

In the case where (x) = (x), the volume
integral in (3) vanishes and we come to the known Betti
relation in the absence of body forces [4].

Relation (3) enables us to formulate operator
expressions that relate the elastic characteristics of
domain V to the boundary fields of translations and
stresses on S.

INVERSE COEFFICIENT PROBLEM

Let us formulate the problem for the determination
of the moduli of elasticity as functions of the coordi-
nates by the information

(4)

which corresponds to the measurement of the transla-
tion field over part Sσ of the boundary exposed to the
load and simulates the echo regime in acoustic methods
for nondestructive testing. Note that, in the statement of
inverse problems, the translation field on the unloaded
part of the boundary is generally assumed to be known.
However, in this case, the system of resulting equations
contains intermediate unknown functions.
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The problem of the determination of the moduli of
elasticity is nonlinear [2, 3]. It may be solved by a cer-
tain iterative process, each stage of which solves a lin-
ear problem. Assuming

and retaining the linear (in νi and Rijkl) terms in (3), with
due account taken of the additional condition (4), we
obtain

(5)

Relation (5) may be treated as an integral equation
in components Rijkl(x) provided that the direct problem
of the distribution of the translation field within domain
V and on its boundary S with elastic characteristics

(x) (the reference field) is solved beforehand. In
the isotropic case, the elastic constant tensor is
expressed in terms of two Lamé functions λ(x) and µ(x)
and Eq. (5) takes the form

(6)

Functions λ(1)(x) and µ(1)(x) are determined from
integral equation (6) by the regularizing procedure [5]
given the prior information that they are positive and
depend on a single coordinate. Note that, in shape, the
volume integrand in (5) and (6) is an analog of the dou-
bled modulus of resilience, where the deformations
correspond to the reference field and the moduli, to the
other field. The surface integral characterizes the work
of the given load on the additional fields of translations,
which indicate the difference on the boundary Sσ
between the components of the reference field of trans-
lations and the translations specified in the inverse
problem. The discretization of the integral operator on
the basis of the simplest quadrature formulas gives a
system of linear algebraic equations in nodal values of
functions λ(1)(x) and µ(1)(x). This system turns out to be
ill-conditioned and regularizing algorithms must be
applied if it is to be used.

Remark. One can obtain additional integral rela-
tions in the form of (5), (6) for determination of the
elastic characteristics when the load shape or domain is
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changed. In this case,  and fi(x, ω) in relations (5)
and (6), respectively, are changed.

Examples
1. Antiplane vibrations of a bar of cross-section S,

∂S = l = l1 ∪  l2, µ = µ(x1), are described by the following
boundary-value problem:

(7)

Under an additional condition of the form (4), the
corresponding integral equation in the inverse problem

 = f(x, ω) has the form

(8)

2. Longitudinal vibrations of a rod of length l with a
variable Young modulus E = E(x). The boundary value-
problem for the longitudinal vibrations of a rod has the
form

(9)

while, in the inverse problem, u(l, ω) = f(ω), ω ∈ [ω1,
ω2], is specified. Then, Eq. (5) reduces to

(10)

where u0(x, ω) is the solution to problem (9) with the
known Young modulus E0(x). In the particular case of
E0 = const, we have

and Eq. (10) assumes the form of the first kind Fred-
holm integral equation with a smooth kernel

(11)

The following assertion is valid.
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Theorem 2. Equation (11) has a unique solution in
E1(x) ∈  L2[0, l] provided that there are no resonance
wave numbers of problem (9) within the closed interval
[k1, k2]. 

The figure presents the results of the model numeri-
cal experiment on the reconstruction of function E(x) =

E0(1 + η(x)), η(x) = , l = 1. The solid line shows func-

tion η(x); the dotted line depicts the solution obtained
by Tikhonov’s regularization method applied to the
integral equation (11). The range of wave numbers has
been varied: below the first wave number and between

x
10
------

0.2 0.4

0.06

0.8

0.02

0.04

0.6

0.08

x

η(x)

0

(Solid line) exact and (dotted line) reconstructed solutions.
the first and second wave numbers. The reconstruction
error is within 15%; moreover, the deviation of the
obtained solution from the exact one attains its maxi-
mum on the loose end of the rod.
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Rings are near-surface mesoscale vortex forms
(with horizontal sizes on the order of ~102 km) that
arise as a result of meandering ocean flows [1, 2]. These
flows propagate along frontal zones separating water
masses that substantially differ in terms of their temper-
ature, salinity, density, and other characteristic proper-
ties. Among them, rings of the Gulf Stream and Kurosio
are the most well known.

The generation of rings by meandering ocean flows
is the basic mechanism by which water masses are
transferred across frontal zones. Rings similar to
flooded lens vortices [3, 4] are vortex forms of an intru-
sive nature. Full-scale observations show that for the
Gulf Stream and Kurosio rings formed to the north and
south of the flows rotate in the anticyclonic and
cyclonic directions, respectively. Anticyclonic Gulf-
Stream rings have a significant warm and salt core con-
taining captured water of the Sargasso Sea; cyclonic
rings contain a cold and fresher core of subarctic water
captured to the north–west of the flow [2]. In this study,
we determine dynamically equilibrium shapes of a den-
sity-homogeneous rotating mass of liquid (of a ring) in
the near-surface layer of a quiescent stratified ocean
residing on the rotating Earth. Our analysis allows for
the vertical and horizontal projections of the Earth’s
angular velocity. For a linearly stratified ocean, the
exact solution is obtained for shapes of the interface
that separates water masses and ring-free boundaries.
For real parameters of the phenomenon, the separation
surface of the anticyclonic ring is part of a three-axis
ellipsoid, whereas the separation surface of a cyclonic
ring is part of a two-sheeted elliptic hyperboloid or
elliptic cone, which is also inclined to the horizon. The
free surface of the anticyclonic ring is part of an elliptic
paraboloid that elevates over the unperturbed oceanic
surface. At the same time, the free surface of the
cyclonic ring is part of an elliptic paraboloid (funnel)
that is located below the ocean surface, which corre-
sponds to ring-surface observations based on data
obtained with artificial satellites. The inclinations of the
principal axes of boundary surfaces for cyclonic and

Institute of Mechanics, Moscow State University, 
Michurinskiœ pr. 1, Moscow, 119192 Russia
1028-3358/05/5011- $26.00 0613
anticyclonic vortices differ in both their sign and mag-
nitude.

Similar to flooded vortices, i.e., lenses [4, 5], near-
surface rings can be considered as full-scale liquid
gyroscopes residing on the rotating base. A water mass
rotating with respect to the Earth has a proper moment
of momentum whose vector rotates (precesses)
together with the Earth and, thus, changes its orienta-
tion in absolute space. This variation is possible only
under the action of the moment of external forces. The
moment of forces exists even in the absence of the
translational motion of a rotating mass as a whole with
respect to the Earth. Ignoring friction (in the approxi-
mation of an idealized model), the only moment of
forces that can be responsible for the indicated change
of the orientation is the moment of hydrostatic forces in
the stratified ocean. This moment acts upon the dynam-
ically equilibrium shape of the rotating liquid mass that
has arisen.

The rings exist for a sufficiently long time, from sev-
eral months (anticyclonic rings) to two years (cyclonic
rings). Moving in the ocean, preferably to the south-
west, they propagate for hundreds of kilometers [6]. In
the opinion of the authors of [6], the long lifespan of
these rings is, in particular, explained by the existence
under actual conditions of a shape that is close to the
dynamically equilibrium shape of the idealized model.

We now formulate the hydrodynamic problem. A
rotating ideal incompressible liquid of finite volume,
which has the homogeneous density ρ, is immersed into
a stratified ocean. The ocean is quiescent with respect
to the Earth, which rotates at an angular velocity W . By
virtue of the smallness of the characteristic size of the
phenomenon under study compared to the Earth’s
radius, the non-sphericity of the Earth is not taken into
account. We perform our consideration in the plane
layer of a stratified perfect liquid, which is tangent to
the Earth’s surface and is placed in the plane-parallel
gravity field. Based on the condition of the equality of
pressures at the interface of the flooded part and the
pressure steadiness (pressure is assumed to be zero) at
the free boundary separating the ring from the atmo-
sphere, we construct a dynamically equilibrium shape
of the water-mass separation surface.

We introduce the Cartesian coordinate system x, y,
z, the z axis being directed upward. The plane z = 0 is
© 2005 Pleiades Publishing, Inc.
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located at a depth corresponding to the density of the
homogeneous formation. The x and y axes are directed
to the east and north, respectively.

In order to describe the motion within a ring, we
exploit hydrodynamic equations written in the
Gromeka–Lamb form in the coordinate system associ-
ated with the rotating Earth:

(1)

Here, V is the vector of the relative velocity for the liq-
uid, ρ is its density, p is pressure, and W is the vector of
the Earth’s angular velocity.

We write the relative velocities within the ring as

(2)

This velocity field corresponds to the plane circular
motion with respect to the Earth, with the centers of the
circles being located in the straight line y = κz lying in
the meridian plane. The angular velocity ω for the
motion is identical for all horizontal cross sections. The
point O of the intersection of this straight line with the
plane z = 0 is taken as the origin. The meridian cross
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sections passing through the point O are schematically
shown in Figs. 1 and 2 for anticyclonic and cyclonic
rings, respectively.

Based on a direct verification, we are easily con-
vinced of the validity of the continuity equation.

The set of Eqs. (1), written in projections onto the
coordinate axes, takes the form (ρr is the ring density)

(3)

The projections with respect to the vortex are (0, ωκ,
2ω); the planetary-vortex projections are (0, 
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From the compatibility requirements for Eqs. (3),
there follows the condition for the tangent 

 

κ

 

 of the incli-
nation angle (with respect to the vertical line) of the
rotation centerline, which should satisfy the relation-
ship
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It is worth noting that the parameter 
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, introduced as
a characteristic of the locus for centers of circular cross
sections, is closely related to the absolute-vortex vec-
tor; namely, the tangent of the inclination angle of the
absolute-vortex vector to the local vertical line is
exactly equal to 
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.

Integrating the set of Eqs. (3) by making use of the
boundary condition 
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 = 0 at the free boundary, as

well as of the condition for the equality of pressures at
the flooded part of the interface between the ring water
masses and the background
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we arrive at the equation for the ring perturbed free sur-
face:
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and at the equation for the water-mass interface:

(7)

Here, ρf and pf are the density and pressure in the lin-
early stratified background; ρr and pr are the density
and pressure in the ring; z = H is the equation for the
unperturbed ocean surface; xu, yu, and zu are the coordi-
nates of the ring perturbed surface (zero isobar); xb, yb,
and zb are the coordinates of points on the separation
surface; R is the ring radius on the ocean surface; and
N is the Brunt–Vãisãlã frequency. For a stably stratified

ocean,  < 0.

Analysis of the quadratic-form invariants shows
that, in the case of ω ≠ 0, the surface described by rela-
tionship (6) is the elliptic paraboloid.

There exist three possibilities for the paraboloid
positions:

(i) The case ω < 0, ω + 2Ωz > 0 corresponds to a
weak (|ω| < 2Ωz) anticyclone. In this case, zu > H; i.e.,
points of the perturbed free boundary are located higher
than the unperturbed ocean surface (elevation).

(ii) The case ω < 0, ω + 2Ωz < 0 corresponds to a
strong (|ω| > 2Ωz) anticyclone. In this case, zu < H; i.e.,
points of the perturbed free boundary are located lower
than the unperturbed ocean surface (funnel).

(iii) The case ω > 0 corresponds to a cyclone. In this
case, zu < H; i.e., points of the perturbed free boundary
are located lower than the unperturbed ocean surface
(funnel).

The quantity (ω + 2Ωz)R2 determines the funnel

depth or the elevation height. It is found for rings that
the values R ~ 50–100 km and circumferential veloci-
ties v  ~ 1 m s–1 are such that ω ~ 2 × 10–5 s–1. At lati-
tudes of about 35°, at which the Gulf-Stream rings
exist, Ωz ~ 4 × 10–5 s–1. At the indicated values of the
parameter, the funnel depth for cyclonic rings is
~25 cm, and the elevation height for anticyclonic rings
is ~15 cm. The case separating strong and weak anticy-
clones corresponds to the condition |ω| = 2Ωz . In this
case, the circumferential velocity for characteristic
sizes and latitudes of the ring locations would be v r ≈

ω
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2 m s–1. Apparently, strong anticyclonic rings are not
observed in the ocean.

Observations based on artificial satellites with the
application of altimeters measuring distances from a
satellite to the ocean surface show that the anticyclonic
rings have elevations on the order of 10 cm [6] and
higher, whereas cyclonic rings have funnel depths of
the same order of magnitude. There are data on the
Internet (http://users.erols.com/gulfstrm/) according to
which elevations and funnels attain heights of 50 cm
and depths of 55 cm, respectively. Thus, the proposed
ring model does explain these observation results.

The analysis of invariants of quadratic form (7)
shows that for weak (ω < 0, |ω| < 2Ωz) anticyclonic
rings, the water-mass interface is of the ellipsoidal
shape.

For cyclonic rings (ω > 0) under the condition

(8)

and

or 

(9)

the water-mass interface is the two-sheeted hyperbo-
loid. At latitudes of ϕ ≈ 35°, at which Gulf-Stream rings
are present, and for real parameters of their formation
and at their average depths of about 3 × 102 m (see [7]),
the background parameters are the following: ρf ~

27 arb. units;  ~ 10–3 arb. units; N2 ~ 3.6 × 10–4 s–2;

ω ~ 2 × 10–5 s–1; Ωz ≈ 4 × 10–5 s–1; and R/H ~ 2.5 × 10−2.
In this case, condition (8) is fulfilled, and the second
condition of (9) is surely fulfilled, insofar as the last
term standing in brackets exceeds by three orders of
magnitude the preceding terms.

When inequality (8) has the inverse sign, the surface
has the shape of the one-sheeted hyperboloid, while at
H2R–2 = ω(ω + 2Ωz)N–2, the surface separating the ring
and background water masses is a cone.

We now roughly estimate the parameters of an
atmospheric typhoon. The altitude of the troposphere in
which typhoons propagate is close to 10 km; the density
distribution over the altitude we may roughly consider
to be a linear one; and N ~ 10–2 s–1 [2, 8]. We also
assume the pressure at the troposphere upper boundary
to be zero. The circumferential velocities in a typhoon
are of about 50 m s–1, and R ~ 100 km. As a result, we
obtain ω ~ 5 × 10–4 s–1, which exceeds by an order of

1
ω ω 2Ωz+( )

N2
----------------------------- R2

H2
------– 0>

2ωΩy
2

ω 2Ωz+
--------------------

ω ω 2Ωz+( )
2

----------------------------- N2–+ 0>

2ωΩy
2

ω 2Ωz+
-------------------- ω ω 2Ωz+( ) N2–+ 0<

dρ
dz
------
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magnitude the frequency Ωz . We take the density of the
typhoon homogeneous core to be equal to the average
density of the troposphere, which corresponds to an
altitude of ~5 km, so that H ~ 5 km, and, thus, inequal-
ity (8) changes its sign. The second inequality of (9) is
surely fulfilled. The analysis of the invariants testifies to
the fact that the lateral boundary of the typhoon core is
a one-sheeted hyperboloid. This corresponds to the
schematic typhoon model developed in [8, 9]. At the
latitude ϕ ~ 25° and for the indicated typhoon parame-
ters, the centerline of circular cross sections deviates in
the meridian plane by an angle of about 13° from the
vertical line.

For the ring-free boundary, we obtain the following
canonical-form equation of the elliptic paraboloid in
the variables xu, , :

(10)

The signs plus or minus are taken for cyclonic and anti-
cyclonic rings, respectively.

The paraboloid axis is parallel to the straight line y =
kz, the variables ,  being linked with the variables
yu, zu by the relationships

(11)

The numerical estimates obtained for the above-
indicated parameters yield a ≈ 120 km, b ≈ 27 km,
κ ≈ 2,  ≈ 63° for the anticyclonic ring and a ≈
110 km, b ≈ 36 km, κ ≈ 1.2,  ≈ 50° for the
cyclonic ring.

Rotating the coordinate axes by the angle α, we can
reduce the quadratic form standing in the left-hand side
of relationship (7) to the canonical form:

(12)

yu'' zu''

xu
2

a2
-----

yu''( )2

b2
------------+ zu'', a2± 2gκ

ω Ωy 1 κ2+( )1/2
---------------------------------------,= =

b2 gκ
2 ω Ωy 1 κ2+( )3/2
------------------------------------------.=

yu'' zu''

yu yu' γcos zu' γ, zusin– yu' γsin zu' γ,cos+= =

γtan κ , yu''– yu' l, zu''+ zu' m,+= = =

l
gκ2

2ωΩy 1 κ2+( )3/2
---------------------------------------,–=

m
gκ3

4ωΩy 1 κ2+( )3/2
---------------------------------------=

+ H 1 κ2+( )1/2 R2ωΩy 1 κ2+( )1/2

gκ
------------------------------------------.–

κarctan
κarctan

2αtan
2κ

κ2 1– N2κ 2Ωyω( ) 1––
------------------------------------------------------.=
The last term in the denominator of formula (12)
exceeds the first two terms by five orders of magnitude
since 4Ωyω ! N2, and the angle α is small:

(13)

It is a rather complicated matter to express in the
canonical form, in terms of defining parameters, the
exact relationships for the coefficients standing at (xb)2,
( )2, and ( )2. Therefore, we make use of the fact that
the angle α is small. Omitting cumbersome calcula-
tions, we present the equation for the separation surface
in the principal axes with approximate coefficients [of
the terms R2 – N2H2κ(2Ωyω)–1 ≠ 0]:

(14)

For the anticyclonic ring (ω < 0), the exact equation
of the separation surface is the equation for the three-
axis ellipsoid, and approximate surface (14) is the ellip-
soid of revolution whose principal axes are inclined at
a small angle α in the meridian plane in such a manner
that the Southern edge of the ellipsoid is flooded. For
real ring parameters, α ≈ 5″.

For the cyclonic ring (ω > 0), the exact equation of
the separation surface is the equation for the three-axis
hyperboloid, and approximate surface (14) is the hyper-
boloid of revolution with the principal axes inclined to
the north in the meridian plane at a small angle α. For

,

the hyperboloid is two-sheeted; for

,

the hyperboloid is one-sheeted; and for

,

it is reduced to a cone with its apex coincided with the
origin. For real parameters of cyclonic rings, usually,
the first of the three inequalities holds, and the interface
between the ring water and background water is the
upper part of the two-sheeted hyperboloid (Fig. 2).

Thus, we have obtained a hydrodynamic solution to
the problem of the equilibrium shape of a homogeneous
rotating liquid mass in the stratified rotating ocean with
a free boundary. In the framework of our formulation of
the problem, this solution is exact, as the use of the con-

α
2Ωyω

N2
--------------.–≈

yb' zb'

xb
2 yb'( )2

+

R2 N2H2κ 2Ωyω( ) 1––
---------------------------------------------------

zb'( )2

H2 R22Ωyω N2κ( )
1–

–
---------------------------------------------------+  = 1.

1 N2 H
R
---- 

 
2

κ 2Ωyω( ) 1–– 0<

1 N2 H
R
---- 

 
2

κ 2Ωyω( ) 1–– 0>

N2 H
R
---- 

 
2

κ 2Ωyω( ) 1– 1=
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tinuity condition for pressures makes it possible to
match two exact solutions for perfect liquids at the sep-
aration surface. This spatial solution is non-axisymmet-
ric and discontinuous, because the density and the
velocity tangent to the separation surface of the liquids
have a break, which is quite admissible in the perfect-
liquid model. The problem of the structure of the dis-
continuity surface requires additional analysis.
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