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INTRODUCTION

Atomic functions [1, 2] have recently been actively
exploited in studies of the ultra-wideband processes of
antenna technology [3–5]. In the present paper, we have
investigated for the first time properties of a symmetric
vibrator excited by ultrashort electric-current pulses
whose shape corresponds to an atomic function. For
two excitation modes, namely, the traveling-wave
regime and the uniform distribution, it is shown that
under certain conditions the directivity pattern of ultra-
wideband radiators by analogy with the narrow-band
case is similar to the derivative of the current distribu-
tion.

INITIAL RELATIONSHIPS. 
THE TRAVELING-WAVE DISTRIBUTION

We consider a symmetric infinitely thin perfectly
conducting electric vibrator with a branch length L and
with an infinitely small distance between the vibrator
shoulders at the feeding point O. We also assume that
the vibrator branches are formed by N elementary radi-

ators of the size ∆L =  with the coordinates Lj =

.

Let an electric-current pulse J(t) be excited in accor-
dance with a certain time law at the point O. Further, the
pulse propagates along the vibrator z axis at the velocity
c of light (traveling-wave mode). The radiation field of
an elementary vibrator segment in the far-field region

L
N
----

j 1/2+
∆L

----------------
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can be written out in the form

(1)

where Z0 is the characteristic impedance of the free
space, r is the distance to the far-field region, and θ is
the angle between the directions to the observation
point and the antenna center. The resulting radiation
field is obtained by summing fields (1) excited by ele-
mentary radiator segments:

(2)

In the limiting case as N  ∞, sum (2) transforms
into the integral

(3)

whence it follows

(4)

Usually, a classic distribution (Gaussian, triangular,
etc.) is chosen for the function J(t) [6–8]. Here, we can
distinguish two ultimate cases: L ! cτ and L @ cτ, in
which the parameter τ characterizes the effective pulse
duration. For L ! cτ (long-wave case), the interference
of elementary fields (2), (3) results in the fact that the
field EΣ(t, θ) turns out to be similar to the derivative of
the electric-current J(t). This is clearly seen from rela-
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tionship (4) since, at small values of the ratio , the

expression entering into the square brackets approxi-
mates with an accuracy to a certain constant the first
derivative. In the second ultra-wideband case (L @ cτ),
the resulting field EΣ(t, θ) can be represented as a sum
of two fields whose shapes are similar to that of the ini-
tial pulse excited at the initial instant of the current-
pulse formation and at the instant of its absorption at
the vibrator end.

THE CURRENT PULSE IN THE FORM 
OF AN ATOMIC FUNCTION ha(t)

For L @ cτ, the difference in square brackets of rela-
tionship (4) is equal to the first derivative of a certain
function J1(t):

(5)

which corresponds to the initial current pulse of the
longer duration τ1 ≥ τ.

We now find the distribution J(t) for which

(6)

i.e., the field EΣ(t, θ) with a certain extension coefficient
a, as in the case of L ! cτ, is similar to the first deriva-
tive of the exciting pulse. This problem has a nonunique
solution, and for J(t), we may choose an arbitrary
atomic function ha(t) (a > 1) [1, 2]. Indeed, the given

functions are finite within the interval ; they

belong to the class C ∞(R) and are the solutions to the
functional-differential equations

(7)

The Fourier transformation for ha(t) has the explicit
form

(8)

where sincp ≡ .

We now assume that
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Then, after replacing into (4) the relationship

(10)

we arrive at

(11)

With due account for (7), relation (11) implies

(12)

Comparing expressions (12) and (1), we can show
that the function J1(t) entering into (5) and (6) should be
of the form

(13)

Under the validity of condition (9), the radiation
field along the direction θ ~ 90° in the far-field region

is excited by current pulse (10) of the duration ,

which propagates along the vibrator, and turns out to be
similar to this pulse. Moreover, this field coincides with
that excited by the analogous scaling pulse (13) of dura-

tion . As in the case L ! cτ, the radiation field is

equal to the pulse first derivative. The inverse statement
is also true: the long-wave vibrator field is similar to the
first derivative of the exciting pulse of the shape given
by the atomic function and can be considered as a sum
of two fields reiterating the shape of the pulse com-
pressed by a times.

We now consider the electric-current distribution,
assuming it to be uniform over the longitudinal coordi-
nate z. In this case, as opposed to the traveling-wave
mode, the fields in the far-field region of an elementary
vibrator and of the entire radiator [7] are of the form

(14)
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Fig. 1. Radiation field in the far-field region along the direction θ = 90°: (a) L ! cτ and (b) L = 2cτ.
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Fig. 2. Radiation field in the far-field region for L = 2cτ and different observation angles θ.
Independently of the vibrator length, for angles θ close
to 90°, the field EΣ reiterates the shape of the current
derivative. As the angle θ tends to zero and for arbitrary
functions J(t), directivity pattern (15) is similar to the
first derivative of the current only in the ultra-wideband
case (L ! cτ). The exception is the distribution J(t) in
the form of atomic function (10). In this case, under the
condition

, (16)
L
cτ
----- θcos 2=
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we have

(17)

In other words, current field (10) along the direction
θ ~ 0° coincides with the directivity pattern of a vibra-
tor excited by time distribution (13), which is uniform
over the entire vibrator length.
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RESULTS OF A NUMERICAL EXPERIMENT
To illustrate, we analyze the atomic function h2(t)

for the carrier (–1, 1), which is denoted as up(t). Fig-
ure 1 shows results of the calculation of the radiation
field along the direction θ = 90° for the cases (a) L ! cτ
and (b) L = 2cτ in the traveling-wave mode. As is
clearly seen in both cases, the field shape in the far-field
region is similar to that of both the initial pulse and its
derivative in accordance with the functional-differen-
tial relationship

Figure 2 presents the field in the far-field region for
L = 2cτ when the angle θ decreases from 90° to zero.
When θ approaches zero, the field shape becomes sim-
ilar to that of the exciting current, whereas the pulse
amplitude decreases by virtue of the dominating effect
of the multiplier sinθ in (4).

CONCLUSIONS
Thus, in this study, we have determined for the first

time shapes of the current pulses of an ultra-wideband
vibrator. These shapes determine the field behavior in
the far-field region, which is similar to that of long-
wave radiation. This physical effect is observed due to
specific properties of the atomic functions ha(t). The
data for these functions are unique and make it possible
to reveal the indicated analogy between ultra-wideband
and long-wave radiators. The novel physical effect

up' t( ) 2 up 2t 1+( ) up 2t 1–( )–[ ] .=
obtained as a result of the study can be efficiently
applied to solve problems of ultra-wideband radars and
communication, generation of ultra-wideband radiation
pulses, interactions of pulsed beams of charged parti-
cles with matter, etc.
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In experiments [1], metastable plasma-like micro-
scopic cesium droplets having a temperature of about
102 K and concentration of 1018 cm–3 were observed.
Recent experiments [2, 3] have revealed new regimes of
ultracold neutral plasma with a temperature of about
1 K. Although the states observed in [1–3] were rela-
tively short-life, in their lifetime they attained station-
ary parameters. The results both of numerical simula-
tions based on molecular-dynamics models and of the
theory of ultracold plasma were analyzed in [4, 5]
alongside the relevant problem of a Rydberg substance
(see [6, 7]). Plasma parameters attained in the experi-
ments described in [1–3] and analyzed on the basis of
model calculations in [4–6] were related to nonideal
plasma in which the number ND of particles in the
Debye sphere could be less than unity, the plasma hav-
ing remained nondegenerate. Such a plasma should be
verified from the standpoint of thermodynamic stabil-
ity, which was performed in [8] for higher tempera-
tures. However, in [1–7], the analysis for stability was
not carried out, which could affect the interpretation of
the results of both the experiments and numerical sim-
ulations. In the present study, we have extended the
approach of [8] to low temperatures under the assump-
tion that one may use the concepts of electron and ion
temperatures. In this case, it is not required to discuss
ionization equilibrium: neutral atoms either were
absent or were not in equilibrium with electrons and
ions in the conditions of [1–3].

THE THEORETICAL PHASE DIAGRAM
The diagram for temperature T and the electron con-

centration ne is shown in the figure (the possible exist-
ence of neutral atoms is not taken into account). The

nonideality parameter γ =  characterizes the

ratio of the Coulomb interaction energy of free elec-

e2 2ne( )1/3

kBT
-----------------------
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trons and ions and their thermal energy. The value γ ≈ 1
corresponds to line 1; i.e., plasma becomes strongly
nonideal below this line. In such a situation, the poten-
tial arises for phase transitions as a result of the compe-
tition between the resulting Coulomb attraction of
charges to each other, at distances on the order of inter-
particle distance, and the quantum repulsion of parti-
cles, occurring at short distances compared to the mean
interparticle distance [8]. This pattern is analogous to
the case of the van der Waals equation for which the
phase transition is a result of the competition between
the long-range attraction of molecules and their short-
range repulsion.

The regions of stable and/or metastable states are
bounded by the condition of thermodynamic stability
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T–ne diagram. Lines are based on theoretical concepts:
(1) γ = 1; (2a) λκ  = 5 [asymptotic values 1 and 2a are con-
nected by a smooth transition line that corresponds to the
dependence described by formula (3)]; (2b) the asymptotic
limit (6); (3) the boundary of electron degeneration;
(4) ND = 1; and (5) conditional right boundary of metasta-
bility for τ = 1 s. Experimental points: (6) [1]; (7) [2];
(8) [3]; and (9) [15] and simulation results: (10) [4] and
(11) [5] are also shown.
 2005 Pleiades Publishing, Inc.
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or by a line for which  = 0 (here, P and V are,

respectively, pressure and volume). For the van der
Waals equation, these regions exist at temperatures
lower than the critical temperature Tc . This statement is
also true for nonideal plasma: in the figure, these
regions are constrained by the lines 1 and 2. In line 1,
plasma loses its thermodynamic stability with a

decrease in temperature; i.e., below line 1,  > 0.

In line 2, plasma recovers its thermodynamic stability;

i.e., below this line,  < 0.

In order to illustrate possible positions of lines 1
and 2, as well as the spread in estimates of the value of
Tc for nonideal plasma, we exploit two approximations
of [8] for the free energy of electrons and ions,
namely, F1, 2 = F0 – ∆F1, 2 . Here, F0 is the free energy
of perfect gas:

(1)

(2)

FDH = π1/2e3N3/2(kBTV)–1/2 is the Debye–Hückel free

energy for a classical system of charged particles; N =
2Ne is the number of electrons and ions in the volume V;
Ne = neV; λ = h(3kBTm)–1/2 is the electron de-Broglie
wavelength; κ is the reciprocal Debye radius; and
C = 0.1.

The multiplier (1 ± 0.75Cλκ) in (1) or (2) allows for
the quantum repulsion between charges. Expression (1)
is the virial expansion for plasma, which was obtained
in [9] in the approximation γ ! 1 and λκ ! 1. Expres-
sion (2) is the Padé approximation that is considered
more reliable for the extrapolation to the nonideal
region (see, e.g., [10] and references therein). Expres-
sions (1) and (2) coincide with each other for γ ! 1 and
λκ  ! 1.

For both Eq. (1) and Eq. (2), the condition γ * 1 cor-

responds to the sign change for , i.e., to thermo-

dynamic-stability loss at temperatures much lower than
the critical temperature Tc . Line 1 in the figure con-
strains the stability region from below for both Eq. (1)
and Eq. (2). The equivalency of the conditions for the

stability loss  > 0 and γ * 1 is retained for nearly

all approaches in the thermodynamics of nonideal
plasma [8, 10].

Nevertheless, there exists the noticeable difference
in the estimate of the condition for which the thermo-
dynamic stability is recovered due to the quantum
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repulsion between particles [8, 10]. Therefore, the posi-
tion of line 2 is less determinate than that of line 1.

From the condition  =  = 0 for Eq. (1),

we can find the connection between temperature T and
concentration ne:

(3)

in the line that separates thermodynamically stable and
unstable regions. Dependence (3) has the asymptotic
values γ ≈ 1 (line 1) and

(4)

(lines 2a). Both asymptotes are connected in the region
of the critical temperature Tc = 2660 K in the same
manner as that occurring for the van der Waals equa-
tion.

From the condition  = 0, for (2), we find a

dependence that strongly differs from (3):

(5)

this yields the same first asymptote, γ ≈ 1 (line 1), and
a different second asymptote,

(6)

(line 2b), where a0 is the Bohr radius. The smooth con-
nection of lines 1 and 2b occurs in the vicinity of the
critical temperature Tc = 104 K, which is not shown in
the figure. The values of Tc for (1) and (2) were found
even in [8]. Since then, the range of values of Tc has
been discussed many times; however, it has changed lit-
tle, having been shifted to values close to 104 K [10].

Line 3 constrains from above the region of degener-
ate plasma. The degeneration of electrons ensures the
thermodynamic stability of electron-ion plasma. How-
ever, it was noted even in [8] that pair quantum effects
in electron-ion interactions, which are characterized by
the parameter λκ , could be an even stronger stabilizing
factor. Both line 2a and, partly, line 2b are located
above line 3.

Thus, independently of the approximations used,
one can separate three regions in the figure. Plasma is
ideal or weakly nonideal and thermodynamically stable

in region I above line 1, where  < 0. In region I,

collisional recombination occurs. Plasma is thermody-
namically labile (absolutely unstable) in region II

between lines 1 and 2, where  > 0. Comparing

the positions of lines 2a and 2b, we can see that the
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lower boundary of absolutely unstable region II is esti-
mated with a noticeable indeterminacy. However, even
the most unfavorable approximation (1) (line 2a) does
not cast any doubt on the fact of the existence of

region II. The condition  < 0 of thermodynamic

stability is recovered in region III below line 2. Meta-
stable plasma in this region between lines 2 and 3 is
nondegenerate, and the Debye number formally calcu-
lated for it turns out to be well below unity.

In accordance with [7], the metastable region is con-
strained from the side of high densities by the stability
loss with respect to the radiative and/or Auger recombi-
nation, because the lifetime τ with respect to these pro-
cesses depends on ne . The function τ(ne) was calculated
in [7] for T = 0. Vertical line 5 is indicated as a condi-
tional boundary ne = 1018 cm–3, which corresponds to
τ = 1 s. The function τ(ne) is rather steep. The shadowed
region III is extended up to the value ne = 4 × 1018 cm–3,
which corresponds to τ = 10–3 s. The estimates of [7]
were performed for a crystalline model at T = 0. The
melting line of such a Rydberg crystal is poorly esti-
mated and is therefore not shown in the figure.

To the left of vertical line 5, plasma densities corre-
spond to principal quantum numbers exceeding 10, i.e.,
to hydrogen-like atoms. Therefore, one can expect that
the diagram in the figure weakly depends on the type of
plasma-forming atoms.

It should be emphasized that the metastability of
states in region III has a double nature and corresponds
to both the radiative and/or Auger recombination [7]
and homogeneous nucleation (see [11]). In [11], the
stability of metastable nonideal plasma with respect to
the collisional recombination was also considered.

DISCUSSION OF EXPERIMENTAL RESULTS

In [1], an experimental setup was developed on the
basis of a thermal-field emission transformer. A con-
tainer with metallic cesium acted as a source of cesium
atoms at a temperature T of about 400 K. Cesium atoms
were excited as a result of striking the graphite foil
(1300 K) that served as an emitter. The flux density of
excited atoms attained 1015 cm–3 s–1. Alongside the sep-
arate atoms, clusters containing up to 40000 cesium
atoms were registered in the flux. The clusters were cap-
tured by a trap cooled by liquid nitrogen. The micro-
scopic droplet formed as a result of this procedure had a
diameter of about 0.5 mm and density of 1018 cm–3,
which was close to the gas density.

Point 6 in the figure corresponds to the final state of
cooled condensed cesium microdroplets [1]. The way
to obtain the microdroplets is approximately indicated
by the arrow. The existence of the stationary state of
these microdroplets was confirmed by the series of
experiments performed in [12], in which laser genera-
tion with the participation of microdroplets was

∂P
∂V
------- 

 
T
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observed. The reliability of the approach used in [1, 12]
was verified in the experiments carried out in [13].

The lifetime of the microdroplets for their radiative
decay attained several seconds. This time greatly
exceeds that for establishing equilibrium over all intrin-
sic degrees of freedom. Therefore, to describe the
microdroplet state, one can use standard thermody-
namic parameters, namely, temperature, specific vol-
ume, and pressure. Since in the process of the observa-
tion of microdroplets after their formation they are not
supplied with energy, states of microdroplets can be
related to the metastable states considered in thermody-
namics. Thus, the presence of point 6 in the thermody-
namic diagram is quite correct. This point turned out to
be just on the boundary of region III, where, in accor-
dance with [8], the recovery of thermodynamic stability
of the metastable states of nonideal plasma can be
expected.

The presence of the results of [2–5] in the diagram
exhibited in the figure seems more ambiguous. In the
experiments performed in [2, 3], nonequilibrium
plasma with different temperatures Te of electrons and
Ti of ions was generated by the femtosecond laser exci-
tation of ultracold gas. In the first paper [2], it was
reported that the parameters Te = 100 mK and ne = 2 ×
109 cm–3 had been obtained (point 7). Later, these
parameters were simulated in [4, 5] by molecular-
dynamics methods (points 10 and 11). In [4] and [5],
models of the effective electron-ion interaction were
different. However, the results obtained turned out to be
the same: very rapid (within one plasma oscillation)
initial plasma heating up to a state with γ ≈ 1 and the
subsequent molecular-dynamic trajectory at a station-
ary value of γ or of the electron temperature. The
authors of [2] then agreed that the same pattern must
also be observed in their experiment.

In [4, 5], the rapid initial heating of plasma electrons
was related to the process of the establishment of elec-
tron-ion correlations, which had been accompanied by
a potential-energy transfer to the kinetic energy due to
the noncorrelatedness of the initial state of plasma (ini-
tial coordinates of ions are random as in the ideal gas).
Without a doubt, such a process does take place (see
also [14]). At the same time, the process of establishing
the electron distribution close to the Maxwellian one
lasts only for one-tenth of a fraction of a plasma oscil-
lation [14], i.e., is much shorter than heating time.
Therefore, the electron equation of state is valid virtu-
ally from the very onset of the heating, and thermody-
namic instability must be manifested. Taking into
account the long distance of points 7, 10, and 11 from
line 1, the difference between Te and Ti must not affect
the instability of plasma states 7, 10, and 11, although

the value of  may slightly differ from its value at

Te = Ti . Thus, it seems to us that the rapid relaxation of
states 7, 10, and 11 in the region γ ≈ 1 is stipulated by

∂P
∂V
------- 

 
T
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both the disorder-induced heating and spinodal decay.
It is of importance the fact that relaxation processes
starting from points 10 and 11 end up exactly in the
region of line γ ≈ 1 in which the thermodynamic stabil-
ity is recovered.

It is worth noting that, if, in [1], the stationary state
is obtained as a result of stimulated external cooling,
then, in [2], it is caused by the spontaneous internal
heating.

The authors of [2] have extended their measure-
ments to the region of final states obtained in [4, 5], i.e.,
to those above region II of the absolute instability
(points 8 in the figure). In [2, 3], xenon plasma was
studied. A similar point was obtained in [15] for cesium
plasma. No indications of initial rapid heating were
obtained in these studies, although, as in [2], initial ion
coordinates were also uncorrelated. In other words,
inevitable heating caused by initial chaotic ion distribu-
tion is not manifested at once when there is no basis for
spinodal decay. Point 9 represents ultimate parameters
attained in [15], where, nevertheless, an attempt to con-
dense excited cesium atoms failed. The authors of [15]
assumed that in order to do this it was necessary to
either elevate the plasma density by two orders of mag-
nitude or to decrease temperature down to fractions of
a Kelvin. These estimates do not strongly deviate from
the boundary of region III.

The region between lines 4 and 1 is of particular
interest because, here, the number ND is less than unity,
and nonideality effects can already be observed.

Thus, the possibility of the existence of thermody-
namically labile and metastable states of nonideal
plasma, which are similar to those considered in ana-
lyzing the van der Waals equation, was predicted at the
end of the 1960s [8]. Neither the results of recent exper-
iments [1–3] nor those of simulations [4, 5] contradict
to the prediction of [8].

In [1], a stationary state existing throughout the
period of one second, i.e., a metastable state was exper-
imentally observed. The parameters of this state lay in
region III of the states that belonged to metastable ones
according to the estimates of [8].

The states studied in [2–5], with initial parameters
that corresponded to the region of states II and that
were (according to estimates of [8]) labile, underwent
decay. This decay may be interpreted as the spinodal
type.
As was shown in the experiments, the states experi-
mentally studied in [3, 15] whose initial parameters
corresponded to region I and that, according to esti-
mates of [8], had been thermodynamically stable
indeed turned out to be stationary.
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The problem of describing distortions of radio-fre-
quency (radio) pulses in media exhibiting dispersion
was formulated almost a century ago and continues as
ever to be urgent by virtue of its practical significance.
Within the framework of the problem, an important
place is occupied by the theory of the propagation of
radio pulses through the ionosphere in the presence of
magnetic field. Relevant studies are based on the anal-
ysis of results of the inverse Fourier transformation of
the current frequency spectrum for a propagating sig-
nal. Thus, transformation is performed by both analyti-
cally and numerically and, as a rule, under noticeable
constraints for problem parameters [1–11]. In the
present paper, we propose a solution to the problem of
the propagation of radio pulses in magneto-active colli-
sional cold plasmas. The solution is not based on fre-
quency conceptions and allows us to analytically
describe the space-and-time evolution of a pulse with
an initial envelope of a rather general shape.

As is well known, the pulse propagation obeys the
wave equation

(1)

where E is the electric-field strength, c is the speed of
light in a medium, z is the pulse propagation direction,
t is time, and P is the polarization of a unit volume of
the medium. Within the model of a medium with free
charges (see, e.g., [12, 13]), the quantity P is described
by the equation

(2)

Here, e, m, and N are the electron charge, mass, and
concentration, respectively; ν is the effective collision
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frequency that allows for the energy loss by electrons in
their collisions with neutral molecules and ions; and
H0 is the strength of the homogeneous magnetic field.
The solution to the set of equations (1), (2) is found in
the long-pulse approximation, with the pulse carrier
frequency f and characteristic pulse duration tp satisfy-
ing the inequality ftp @ 1. This approximation is ful-
filled, in particular, for large-basis pulses.

The exact form of the solution is determined by the
value of the angle between the vectors of the pulse-
propagation and magnetic-field directions. We now
introduce the coordinate system (x, y, z) with the unit
vectors i0, j0 , and k0 . We also assume that the pulse
propagates along the z axis, i.e., along the magnetic-
field direction, so that H0 = k0H0. The plane wave
impinging onto the half-space boundary z ≥ 0 can be
specified in the form

(3)

(Here, ω = 2πf and A(0; t) is the pulse envelope for
z = 0.)

The leading front of the pulse always propagates at
a velocity equal to the speed of light in the medium.
Correspondingly, we seek the field E in the medium in
the form

(4)

where k =  is the wave number and A(z; t) =

i0 Ax(z; t) + j0 Ay(z; t).

We change the variables in relationships (1) and (2):

(5)

E 0; t( ) = A 0; t( ) iωt( )exp  = i0A 0; t( ) iωt( ),exp

t 0≥

E z; t( )
A z; t z

c
--– 

  i ωt kz–( ))( , t
z
c
--– 0,≥exp

0, t
z
c
--– 0,<









=

2π
λ

------

z' z, t ' t
z
c
--.–= =
© 2005 Pleiades Publishing, Inc.



628 STRELKOV
Thus, with allowance for expression (4), we arrive at

(6)

(7)

We now compare the first and third terms on the left-
hand side of Eq. (6) with respect to their moduli as
applied to the pulse (with the filling) under consider-
ation. For the characteristic pulse duration tp, the ine-
quality ftp @ 1 holds true, and the pulse occupies the
interval Lp = ctp @ λ in the z' axis. Therefore, the
estimate

(8)

is valid, and we may ignore the first term on the left-
hand side of Eq. (6).

When the pulse propagates along the magnetic field
direction, P = i0Px + j0Py , and Eq. (7) is equivalent to
the set of two scalar equations

(9)

(10)

As the position and velocity of an electron cannot be
changed instantaneously, the following condition holds
in cold plasma at the moment of pulse arrival at the
point z':

(11)

We now substitute the solution to the set of Eqs. (9),
(10), which was obtained for initial conditions (11),
into Eq. (6). With due regard for estimate (8), we arrive
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at the following set of equations for the envelope com-
ponents Ax(z'; t ') and Ay(z'; t '):

(12)

(13)

In Eqs. (12) and (13), denotations are used:  =

 (ω0 is the plasma frequency) and ωH =  is

the electron gyromagnetic frequency.
The solution to the set of Eqs. (12), (13) is found by

the operator method. Omitting the rather cumbersome
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intermediate calculations, we obtain the final result (δ =

δ(z') = : hereinafter, Jk(x) is the Bessel function):

(14)

(15)

The solution obtained can be represented in the vector
form as

(16)

where the denotation

(17)

is used, and the expression for Ae(z'; t ') is obtained from
the expression for Ao(z'; t ') provided that we have
replaced +ωH by –ωH on the right-hand side of expres-
sion (17). The result (16) implies that a pulse propagat-
ing along the magnetic-field direction is the sum of two
pulses with the circular and counter-wise polarizations.
Following the standard terminology in the theory of
plane waves in plasmas (see [12]), it is natural to define
these pulses as ordinary and extraordinary. Their pro-
jections onto the x axis were denoted above as Ao(z'; t ')
and Ae(z'; t ').
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We can illustrate the solution obtained by the exam-
ple of distortions of a biexponential pulse with the ini-
tial envelope

(18)

(A0, α, and β are numbers). Substituting (18) into (14)

and (15) and replacing the variable µ =  in the

expressions obtained, we arrive at the relationships

(19)

(20)

where the α-dependent terms have the form

(21)

(22)

and the terms depending on the parameter β are found
from equalities (21) and (22), respectively, by replacing
in them α by β. The decay process for the initial biex-
ponential pulse, as can be observed in the case when the
signal is received by an electric dipole oriented along
the x axis [see (19)], is illustrated in the figure. Initially,
the ordinary and extraordinary pulses mutually inter-
fere with each other so that the envelope observed
(curve 2) can noticeably differ from the initial one
(curve 1). With penetration deep into the medium, the
extraordinary pulse follows the ordinary one, retarding
more and more from it and undergoing relatively stron-
ger absorption (curve 3).
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Analytical expressions for the propagation veloci-
ties of the ordinary and extraordinary pulses can be
derived on the basis of any of the terms entering into the
expressions for Ax and Ay [see (19) and (20)]. For exam-
ple, we make use of expression (21) for the term
Ax(z'; t '; α). Sequentially applying the relationship

 = , we calculate the inte-

grals in (21) by parts for an infinite number of times. As
a result, we arrive at

(23)

We assume the validity of the inequality  @ 1,
which is usual for ionospheric routes (see caption to the
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Decay of biexponential pulse in cold gyrotropic plasma

(N = 105 cm–3; ν = 103 s–1; f0 =  = 2.84 MHz; H0 =

0.5 Oe; f = 10 MHz; tp = 10–4 s; α = 4; β = 10; A0 = 3.07):
(1) initial envelope, z = 0; (2) z = 800 km and δtp = 4.24 ×
107; and (3a) ordinary and (3b) extraordinary pulses, z =
2000 km and δtp = 1.06 × 108.
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figure), and use the asymptotic representation of the
Bessel functions for large arguments [14]:

(24)

After the substitution of expression (24) into relation-
ship (23) and the summation of the series, the expres-
sion for Ax(z'; t '; α) takes the form

(25)

Thus, the pulse is concentrated in the vicinity of two
points in the z' axis, which correspond to the minima of
the moduli of subradical expressions in the denomina-
tors of the right-hand side of expression (25). The coor-
dinates of these points satisfy the condition
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pulses propagate at the velocities

, (27)

(28)

respectively. According to formulas (27) and (28), col-
lisions occurring in plasma can affect the pulse propa-
gation velocity if the collision frequency ν is compara-
ble with the carrier frequency. For the parameters indi-
cated in the figure caption for the medium and the
pulse, the inequality (ω ± ωH)2 @

max  is fulfilled, which charac-

terizes the situation that is typical for the ionosphere
(see, e.g., [15]). In this case, the expressions for the
propagation velocity are considerably simplified,
namely,
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The relativistic theory of gravity (RTG) as a field
theory considers the gravitational field as a physical
field with spins 2 and 0 propagating in the Minkowski
space. The source of this field is a universal conserved
quantity, namely, the energy momentum tensor of all
the fields of the matter including the gravitational field.
This very approach to gravity leads to a field-generated
effective Riemannian space. Note that the effective Rie-
mannian space has only a trivial topology. A test body
moves in the Minkowski space under the action of a
gravitational field, which is equivalent to the motion of
the test body along a geodesic line of the effective Rie-
mannian space. In the framework of this approach, the
principle of least action implies the following complete
system of equations of RTG [1, 2]:

(1)

(2)

Since the gravitational field acts in the Minkowski
space with a metric tensor γµν , it should keep the
motion of the test body inside the null cone of the
Minkowski space. This is ensured by the causality con-
ditions

(3)

(4)

Here, Uµ is the isotropic four-vector of velocity in the
effective Riemannian space, which corresponds to
physical fields with zero rest mass.

Rµν 1
2
---gµνR–

m2

2
------ gµν gµαgνβ 1

2
---gµνgαβ– 

 + γαβ+

=  8πTµν,

Dνg̃µν 0.=

gµνUµUν 0,=

γµνUµUν 0.≥
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The time-like four-vector of velocity in the Rieman-
nian space satisfying the relation

where ds is an interval of the effective Riemannian
space, corresponds to physical fields with nonzero rest
mass.

The particle four-momentum is determined by the
well-known equality

According to the causality conditions (3) and (4),
any time-like vector in the effective Riemannian space

(5)

should also remain a time-like vector in the Minkowski
space, i.e.,

(6)

Insofar as conditions (3) and (4) should also be valid for
weak gravitational fields, in this case, according to the
perturbation theory, we have

(7)

For a weak gravitational field such as a weak gravita-
tional wave, condition (3) takes the form

(8)

Here, we take into account the equality γµν  = 0.

The right-hand side of equality (8) is not positive defi-
nite. Therefore, condition (4) may be violated. This is
the reason why it is necessary to preclude the possibil-
ity that the equality

(9)

will hold for any field, because this equality contradicts
the causality conditions, which must be valid for all
physical fields due to the universality of the gravita-
tional field.

gµνUµUν 1, Uν dxν

ds
--------,= =

pν mcUν.=

gµνUµUν 1=

γµνUµUν 0.>

gµν γµν φµν
1
2
---γµνφ, φ+– γµνφ

µν.= =

γµνUµUν φµνUµUν.=
0 0

UµUν

0 0

gµνUµUν 0=
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The causality principle was discussed in papers [3–6].
However, in that discussion, the counterarguments
raised in papers [3–4] were not disposed of in full. In
order to preclude any possibility of the violation of the
causality principle, it is necessary to formulate the fol-
lowing general physical conclusion: all free physical
fields including the electromagnetic field have a non-
zero rest mass. This general physical conclusion of the
RTG is in good agreement with the main Minkowski
axiom [7]: “The space and time being properly defined,
a substance located at any worldpoint can always be
considered as staying at rest.”

The axiom states that, at any worldpoint, the expres-
sion

is always positive or, in other words, that any velocity
v  is always less than c. Accordingly, c  is the upper limit
for supersubstantial velocities. This is the more pro-
found meaning of the quantity c. 

By virtue of our general physical conclusion, the
causality conditions (3) and (4) are reduced to the fol-
lowing conditions:

(10)

(11)

These very conditions were mentioned in paper [5]
without due regard for equality (8).

In the case of a weak gravitational field, this gives us

(12)

Here,  =  and dσ is an interval of the Minkowski

space

(13)

c2dt2 dx2– dy2– dz2–

gµνUµUν 1,=

γµνUµUν 0.>

γµνUµUν 1 UµUν φµν
1
2
---γµνφ– 

  0.>+=
0 0

Uν

0

dxν

dσ
--------

γµνUµUν 1.=
0 0
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Thus, in accordance with (12), the time-like vector
Uν in the effective Riemannian space also remains
time-like in the Minkowski space. This means that the
null cone of the effective Riemannian space is con-
tained within the null cone of the Minkowski space.
Therefore, constant c involved in the expression for the
interval of the Minkowski space

(14)

is a universal constant combining the space and time
into a unified space-time continuum. It always remains
an unattainable upper limit for the velocity of motion of
any kind of matter. The fact that this conclusion follows
from the RTG is due to the universality of gravity,
which implies that its physical requirements should
hold for all free physical fields.
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The problem of the identification and biological sig-
nificance of chromosome fragments and complete
genomes is approached on the basis of the representa-
tion of a sequence of DNA nucleotides as a two-dimen-
sional walk. Self-similarity properties have been ana-
lyzed; similar fragments of chromosomes, as well as
some known functional and structural elements, have
been distinguished. Completely and partially decoded
chromosomes have been considered; in particular, frag-
ments of the 22nd chromosome of a human and a chim-
panzee have been compared.

It is well known that DNA is a macromolecular
complex in the form of a double helix consisting of two
strands of nucleotides that are connected via hydrogen
bonds. Nucleotides are low-molecular compounds that
consist of nitrogen bases (purines and pyrimidines),
carbohydrates (ribose or deoxyribose), and a phosphate
group. Molecules of DNA contain two different
purines, namely, adenine (A) and guanine (G), as well as
two pyrimidines, namely, cytosine (C) and thymine (T).
Each pair of nucleotides on opposite complementary
strands is associated by hydrogen bonds: a guanine–
cytosine pair, by three hydrogen bonds; an adenine–
thymine, by two bonds. The phosphate groups run
along the outside, while nitrogen bases run inside, so
that their planes are perpendicular to the axis of the
molecule. Each branch of the helix consists of nucle-
otide units linked together to form a long polynucle-
otide strand, which is conventionally represented as a
string of characters drawn from the so-called nucleotide
alphabet ATTGCCAA… and considered as the DNA
sequence. A double-strand molecule of DNA linked
with some proteins and organized in a certain hierarchi-
cal manner forms a chromosome.

The term genome is used for the complete set of the
whole-cell DNA, i.e., the complete sequence of nucle-
otides.

It is conventionally assumed that the main function
of DNA is to carry, process, and reproduce information,
as well as to adapt to a dynamic environment by means
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of evolution. Moreover, these processes should operate
on the basis of the information carried by the very same
sequence; this imposes specific restrictions on the orga-
nization of DNA.

The organization of sequences of various DNA frag-
ments and their functional meaning is currently an
important and urgent problem. The point is that, by
now, a considerable number of sequenced chains of
genomes have been obtained; however, the functional
organization of these sequences has yet to be explained.

In this paper, we suggest a method that makes it pos-
sible to present the whole chromosome (even if it con-
tains more than one million nucleotides) in a compact
form, to easily find similar fragments, to identify func-
tional and structural elements, and to detect the self-
similarity of some fragments of the DNA sequence.
The method is based on the representation of DNA as a
plane walk of a particle.

Represent the sequence of nucleotides as a plane
walk on a square lattice starting from the origin (0, 0)
in the following way. Read the nucleotide chain in the
order of appearance of the bases A, T, G, and C. In
encountering adenine (A), make a step right, when
thymine (T), a step left, when guanine (G), a step up,
and when cytosine (C), a step down. Denote these coor-
dinates by AGTC moving counterclockwise from the x-
axis. Then, the original sequence of nucleotides corre-
sponds to a certain walking trajectory on the plane
AGTC. This representation of DNA is composed of two
sequences A–T and G–C, which cannot be reduced to
each other. The sequences may be considered sepa-
rately and, moreover, may be represented as time series.
The series, in turn, may be studied by well-known
methods of calculus, such as wavelet transformation.

This method seems to be mentioned for the first time
in 1962 by S.W. Golomb, one of the pioneer investiga-
tors of the genome, in [1], where he represented the
DNA sequence on the complex plane by associating the
nucleotide types with the coordinate vectors. However,
at the time, the DNA code had not been discovered in
full. Twenty years later, small sequences of the decoded
DNA were considered as plane walks [2, 3]. There, the
choice of the coordinates G–C and A–T was determined
by considerations of the complementarity of the strands
by the balance of hydrogen bonds along the strand. This
© 2005 Pleiades Publishing, Inc.
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Fig. 1. AGTC-representation of the first chromosome of S. cerevisiae.
approach was subsequently provided with a strict justi-
fication (see, for instance, [5]).

Obviously, there are many sequences that may be
considered as plane walks; then, there arise fractal
structures that may be studied, etc. (see [6, 7] and ref-
erences therein). However, as applied to DNA, func-
tional and structural fragments of a chromosome may
be distinguished by a typical walk “pattern” only for a
sufficiently large number of units. Moreover, the num-
ber of units in the sequence of nucleotides may be of the
same order of magnitude as the length of the sequence
of the whole chromosome. Earlier, it seemed impossi-
ble to perform identification by this method with the
use of only small fragments of chromosomes. The other
methods of identification based on the alignment algo-
rithms are rather labor-intensive and are not so demon-
strative. It is from this viewpoint that ATGC sequences
are considered in this paper.

Moreover, modern computer techniques allow auto-
mated processing by this method. One tentative attempt
has already been made by a group of researchers
(see [4]), who considered a somewhat different version
of the plane walk. The authors formally used the
method of a two-dimensional walk to construct an algo-
rithm for comparing sequences. However, typical walk
patterns, which might be crucial for understanding the
organization of the structure of the sequence of chro-
mosomes and its properties, had not been analyzed.
DY PHYSICS      Vol. 50      No. 12      2005
Today there are only a few species of living organ-
isms for which the sequences of DNA of all their chro-
mosomes have been completely decoded. Among them
is the yeast cell Saccharomyces cerevisiae, by whose
example we illustrate the analysis of the AGTC map.

Figure 1 shows the first of its 16 chromosomes,
which contains approximately 230000 nucleotides.
Almost identical large fragments (the square selec-
tions) are seen by the naked eye. Moreover, it follows
from the construction that these fragments are passed in
the opposite directions. This suggests that the frag-
ments are complementary. Note that the length of each
fragment is approximately 4000 units, which means
that the use of another method (such as the alignment)
for distinguishing these fragments would require
incomparably greater investigative resources. These
fragments are representatives of the family of floccula-
tion genes FLO1 and FLO9 in the subtelomeric region.

Consider one of these fragments in more detail (see
the insert to Fig. 1). It is seen to have an almost periodic
spatial structure. Decompose this fragment into compo-
nents (A–T) and (G–C). The wavelet transformation
applied to these components explicitly shows that the
selected fragment also possesses the property of self-
similarity.

Employing the method of two-dimensional walk,
one can easily find huge palindromes with a consi-
derable share of pseudorandom inclusions. One of
these is selected at the top left of Fig. 1. Its total length
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Fig. 2. Telomeres (the rectangles) of the 12th chromosome of S. cerevisiae and the cluster of ribosomal RNAs (the ellipse).
is 35000 nucleotides. Such a fragment cannot be iden-
tified by other methods; and even if it could, it would
then require, at the least, an additional careful examina-
tion. This is the region with mobile genome transposi-
tions represented by the Ty-family of retrotransposons.

Moreover, it is easy to identify telomeres. Figure 2
shows the 12th chromosome of the same yeast cell Sac-
charomyces cerevisiae. The telomeres are located at its
ends; they are selected by rectangles. Each fragment
has a size of approximately 20000 nucleotides. It is not
difficult to visually detect similar fragments in other
chromosomes without performing any statistical analy-
sis. Note that these fragments are complementary.

The most indicative elements of this representation
are the fragments in which the trajectory concentrates
within a certain domain of the ATGC plane, skews, and
long curved fragments of various shapes (see Figs. 1
and 2).

It is obvious that, throughout long skews, certain
nucleotides dominate in the sequence. This is clearly
seen in Fig. 2, where such a fragment is selected by an
ellipse (here, the cluster of ribosomal RNAs is located).
What is identified here is either satellite sequences or
the averaged selected concentration of nucleotides
without specific motifs, which may be seen by scaling
up the observed fragment. In view of the different con-
centrations of purines and pyrimidines, the slope of this
fragment suggests that the complementary strands of
the DNA helix are of unequal weight (size) and aniso-
tropic. Therefore, it appears interesting to investigate
the length and directional distribution of the skews.

Fix a frame of the size N nucleotides with due regard
for the appropriate scale and consider the motion of this
frame along the walking trajectory on the AGTC-plane
with the step of one nucleotide. Construct the diagram
of such a motion in the coordinate system AGTC as fol-
lows. At each step of the motion, fix the radius vector
that joins the beginning and the end of the frame. This
radius vector is characterized by its length and direc-
tion. Plot the end of this radius vector on the diagram.
Then, moving the frame by one step, we obtain a new
radius vector. Plot its end on the diagram and proceed
further in the same way. We thus obtain a plane diagram
(Fig. 3). Each point i of this diagram (0 < i < M – N; M
is the number of nucleotides in the sequence; and N is
the size of the frame) shows how far and in which direc-
tion the representative point has moved from the begin-
ning of the ith segment in N steps. This construction
makes it possible to easily distinguish fragments of the
domination of certain nucleotides. In particular, the
outliers (see Fig. 3) characterize the direction and the
length of the observed skews. Obviously, for each
sequence, there exists a specific indicative size of the
frame.

Finally, with the use of the above representation,
one can easily compare sufficiently long fragments of
chromosomes of different organisms. For a human and
a chimpanzee, such a comparison has recently been
made by a team of authors [8] by means of alignment.
DOKLADY PHYSICS      Vol. 50      No. 12      2005
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Fig. 3. Normalized length distribution of the 12th chromosome of S. cerevisiae.
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Fig. 4. Fragment (1934000–2134000) of the human 22nd chromosome (on the left) and the fragment (2176500–2376500) of the
chimpanzee 22nd chromosome (on the right). They are seen to be almost identical.
Although the method of alignment constants is rather
efficient, detection of similar fragments turns out to be
quite labor-intensive, especially with account for the
large number of missing fragments. At the same time,
the above-described method enables us to easily render
the general sequence fragmented for further alignment.
Figure 4 presents the fragment (1934000–2134000) of
the human 22nd chromosome compared with the frag-
DOKLADY PHYSICS      Vol. 50      No. 12      2005
ment (2176500–2376500) of the chimpanzee 22nd
chromosome. These fragments are seen to be almost
identical.

The application of the above-described treatment of
DNA as a random walk is much broader than simply the
identification and comparison of fragments. Combined
with other modern methods (such as fractal and Fourier
analysis [9], wavelet transformation [10], the sliding
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window method, etc.), it enables one to carry out a
detailed fragmenting and, being rather demonstrative,
becomes an instrument for advancing and testing the
hypotheses on the organization of complete genomes
and their properties.
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The development of efficient methods for the self-
organized synthesis of single-walled carbon nanotubes
(SWCNTs) and other functional molecular structures
with given characteristics is of great interest. An
SWCNT is a unique fiber molecular structure with an
extreme strength capacity, high heat conductivity, and
high electrical conductivity and is considered to be a
key element of nanotechnology [1–7]. At present, the
potential areas of their application require the produc-
tion of large amounts of SWCNTs with given proper-
ties (semiconducting, thermal mechanical, etc.). How-
ever, the solution to this problem directly depends on an
understanding of the mechanisms of the nucleation and
growth of SWCNTs, which are not yet clear.

In this paper, we present the results of an experimen-
tal investigation into the optimum conditions for the
synthesis of SWCNTs in a jet of products of the laser
ablation of graphite with a catalyst. Among the avail-
able methods for the synthesis of SWCNTs, the laser
ablation method stands out due to an increased content
and primarily to the high crystallinity and quality of
SWCNTs. The optimization of the synthesis of
SWCNTs in a laser torch makes it possible not only to
increase the efficiency of this process, but also to pro-
pose new approaches to determining mechanisms of the
nucleation and growth of SWCNTs. In particular, a
mechanism of the growth of nanotubes that is based on
their self-organized formation by a wave of a strong
electric field localized at the edge of a growing nano-
tube is proposed for the first time. Such a model of the
process enables one to derive an analytical expression
for the nanotube growth rate.

In our experiments concerning the synthesis of
SWCNTs by the laser ablation method, the radiation of
a CW gas-discharge 2-kW CO2 laser passed through a
salt window inside the helium-filled quartz reaction
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tube and was focused by a lens on the end surface of the
cylindrical graphite target containing a catalyst [4].
Owing to the action of CW laser radiation, the target is
gasified with the formation of a jet of the ablation prod-
ucts. As this jet expands and the vapor–gas–plasma
flow is correspondingly cooled, the saturation state is
achieved in the jet at a certain time, and then, with fur-
ther cooling, vapor in the flow becomes supersaturated.
Since the state of supersaturated vapor is instable with
respect to the formation of the condensed phase, the liq-
uid disperse phase is synthesized in the form of nano-
sized droplets of the catalyst metal with carbon, which
provides favorable conditions for the nucleation of
SWCNTs. Condensate particles formed in the vapor–
gas phase were precipitated on substrates placed in the
reaction tube. Figure 1 shows a microphotograph of
such a condensate, which was obtained by a scanning
electron microscope. This photograph is very informa-
tive and its analysis raises many questions, primary
among which are the following: Why do SWCNTs
grow predominantly in the form of bundles? What is the
role of the catalyst metal? What are the factors deter-

60 nm

Fig. 1. Microphotograph of single-walled nanotubes that
was obtained by a scanning electron microscope.
 2005 Pleiades Publishing, Inc.
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mining the diameter and chirality of SWCNTs? What is
the mechanism of growing SWCNTs?

According to the analysis of microphotographs, the
sequence of processes leading to the synthesis of
SWCNTs is as follows. First, in the process of expan-
sion, condensation nuclei are formed from clusters in
the cooled vapor–gas–plasma flow and grow up to liq-
uid supercritical-size drops 10–30 nm in diameter. At
the next, most important, stage in the development of
the process, these drops are crystallized with the forma-
tion of seed particles. Since the molecular structure of
these particles is of fundamental importance, the fur-
ther careful electron microdiffraction study of this
structure is planned. It is assumed that this structure is
similar to that of so-called supramolecular systems.
Figure 2 schematically shows the molecular structure
of one such complex that has been synthesized to date.
The characteristic structural feature of these complexes
is that the atoms of the transition metal elements that
are located at the center of a complex tend to surround
themselves with complex molecular circular blocks
formed from nonmetal atoms, e.g., carbon. Some of
these blocks that appear on the seed particle surface in
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Fig. 2. Schematic picture of the structure of a synthesized
supramolecular system.
the process of crystallization are catalytically active
and promote the nucleation and initial growth of
SWCNTs. The parameters of these blocks likely deter-
mine the diameter and chirality of synthesized
SWCNTs and their distinctive growth in the form of
bundles. Thus, the catalyst metal without which
SWCNTs do not grow is necessary only for the nucle-
ation of a nanotube and then the structure grows
according to the program that is determined by the con-
figuration of the coupling orbitals localized at the edge
of the growing nanotube and is sequentially cloned
itself.

In general, on these catalytically active centers,
other carbon modifications, along with SWCNTs,
including disordered amorphous carbon, fibers, polyhe-
dral particles, etc., can be formed depending on the
realized conditions. However, it appears that favorable
conditions for the synthesis of SWCNTs arise only in
the case of relatively small catalyst particles with diam-
eters of 10–20 nm. As the size of particles increases, the
growth of multiwalled nanotubes first occurs and then
carbon fibers begin to grow [7]. This behavior implies
an important conclusion: when synthesizing SWCNTs,
it is necessary to avoid the formation of large drops,
which requires large supersaturations in the vapor–gas
jet in short time intervals even at the initial stage in the
development of the process in order to synthesize
numerous small droplets in the jet. Analysis of the
Raman spectra of the synthesized material [8–10]
shows that the diameter of nanotubes is determined
only by the type of the catalyst and is independent of its
dispersion and its content in the mixture. This indirectly
corroborates our conclusion that the nucleation and
parameters of formed SWCNTs are determined by the
molecular structure of seed particles.

When using the laser ablation method, the optimum
conditions for synthesizing SWCNTs with a mean
diameter of 1.3–1.4 nm are ensured by using the
Ni:Y2O3:C catalyst mixture with the component weight
ratio 1 : 1 : 6 and buffer gaseous helium at a pressure of
700 mbar [4, 9]. When the content of nickel decreases
below the above-indicated ratio, the intensity of the
D mode in the Raman spectrum of the synthesized
material increases, indicating that carbon is disordered
and the content of the amorphous phase increases. It
was found that the 1 : 1 ratio of Ni and Y2O3 in the mix-
ture is favorable for the optimum content of yttrium
oxide in the catalyst mixture. An increase in the content
of yttrium oxide does not affect the quality of SWCNTs
and a decrease in this content in the mixture gives rise
to an increase in the formation of amorphous carbon.
Instead of nickel and yttrium oxide, other transition
metals can evidently be used. In particular, if Pd or Fe
is used as the catalyst, the diameter of the synthesized
SWCNTs decreases. Unfortunately, this decrease is
accompanied by a decrease in the content of carbon
nanotubes in the synthesized material. For example,
their content in the condensate reaches 20% when
DOKLADY PHYSICS      Vol. 50      No. 12      2005
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nickel is used as the catalyst, whereas the yield of
SWCNTs does not exceed 5% if iron is used as the
catalyst.

As was mentioned above, when SWCNTs are syn-
thesized by the method of the laser ablation of the car-
bon target containing the catalyst, a slightly ionized
vapor–gas jet is formed. Seed nanoparticles appearing
in the laser torch are effective electron-capture centers,
but the charge gained by them cannot be large in con-
trast to micron and submicron particles. A question
arises as to how these charges affect the laws of the self-
organized growth of SWCNTs. In the present work, a
model of growing SWCNTs in the vapor–gas flame is
proposed for the first time that allows for the evaluation
of the nanotube growth rate, which is very important for
realizing the controlled synthesis of SWCNTs.

We consider how a nanotube can grow in the laser
torch. Let seed particles be formed in the periphery jet
region, where temperature decreases and condensation
occurs. Electrons appearing in the jet adhere to these
particles and are distributed over their surface and edge.
Charges localized at the circular edge of the growing
nanotube generate the following electric field in the
surrounding space:

(1)

where ε0 is the permittivity of free space, r is the dis-
tance from the nanotube edge, and charges are assumed
to be quite uniformly distributed over the cylindrical
section of the nanotube with a density of one elemen-
tary charge e per several structural hexagons. Estimates
show that the field even from one elementary charge at
a distance of 10 Å from the section of the nanotubes is
equal to 1.5 × 109 V/m; i.e., it is very strong. It
decreases rapidly but remains quite strong even at a dis-
tance of, e.g., 100 Å (approximate intermolecular spac-
ing in the vapor–gas jet). Thus, the strong electric field,
which provides two functions important for growing
nanotubes, is localized on the section of the growing
nanotube. First, it induces the following dipole moment
in neighboring molecules:

(2)

Here, α is the polarizability of molecules, which is
related to the dielectric constant ε as ε = 1 + αn, where
n is the carbon molecular density. Second, in the non-
uniform electric field, an electric dipole is drawn to the
stronger field region, i.e., towards the edge of the grow-
ing nanotube. Thus, the drift of carbon molecules and
their clusters with induced electric dipoles in the gradi-
ent electric field creates a flow of dipoles to the section
of the nanotube channel and determines its growth rate.
Dipoles, as well as gas molecules, have a disordered
velocity. We assume that the drift velocity after the col-

E
e

4πε0r2
----------------,=

pe αε0E.=
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lision of a dipole with a molecule is equal to zero and
that, between collisions, the dipole is accelerated by the
electric field and moves as in high vacuum. In this case,
the drift velocity v d of the dipole with mass m in the
electric field can be determined from the equation of
motion of the dipole toward the edge of the growing
SWCNT:

(3)

Integrating this equation, we arrive at the following
expression for the drift velocity:

(4)

Here, µ is the mobility of molecules with the induced
dipole moment. We emphasize that graphite is thermo-
dynamically instable and dissociates in a laser torch at
temperatures above 2600 K. In this case, single bonds
in the graphene layer are broken with the formation of
either C2 or C3 molecules [11]. However, we assume for
simplicity that the basic component in the laser torch is
C2 molecules. The inclusion of C3 molecules does not
change the main conclusions.

Since molecules move chaotically, i.e., all spatial
directions are identical for them, it may be thought that
only one-sixth of all carbon molecules on average move
toward the edge of the nanotube. It follows from the
kinetic theory of gases that the fraction of these mole-
cules that undergo collisions in the mean free path λ is
equal to 0.63. Therefore, the flux j of the carbon mole-
cules drifting in the direction of the edge of the nano-
tube with radius rt is represented as

(5)

Let all the molecules of this flux be placed by molecular
forces into a newly forming section of the nanotube, as
is schematically shown in Fig. 3. Since the bond length,
i.e., the distance between carbon atoms in the nanotube

structure, is equal to a = 1.42 Å,  carbon atoms are

required for the formation of one atomic layer of the
growing nanotube. Correspondingly, the linear growth
rate of a SWCNT in the laser torch is given by the
expression

(6)

Since the electric field decreases rapidly as the dis-
tance from the nanotube edge increases, it is reasonable

m
dv d

dt
--------- αε0E

dE
dr
-------.=

v d
αε0

m
--------E µE.= =

j 0.63
n
6
---πrt

2v d.=

2πrt

a
----------

u 0.1nrtv da2.=
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to replace vd depending on the distance from the edge

by the average drift velocity  of a molecule in the
distance range from a to λ:

(7)

Substituting Eqs. (1) and (4) into this expression and
performing the integration, we obtain

(8)

v d

v d
1
λ
--- v d r( ) r.d

a

λ

∫=

v d
B
λa
------, B

e
4π
------ α

mε0
---------.= =

2

2

2
2

3

–

–

–

–
–
+

+

+

+

+

E

4
5

Fig. 3. Schematic picture of the process of the self-orga-
nized integration of molecules and clusters into the newly
formed section of a growing nanotube: (1) growing single-
walled nanotube, (2) C2 radical, (3) molecular clusters,
(4) electrons adhere to nanotubes, and (5) forming molecu-
lar bonds.

1

Substituting the expression obtained for the average
drift velocity into Eq. (6), we arrive at the following
final expression for the growing velocity of the
SWCNT in the laser torch jet:

(9)

This formula expresses fundamental relations between
various parameters determining the self-organized syn-
thesis of carbon nanotubes. It is interesting to estimate
the nanotube growth rate for the conditions of our
experiment [4, 6] concerning the synthesis of carbon
nanotubes by the method of laser ablation of graphite
with a catalyst for a pressure of 1 atm and a temperature
of about 2000 K in the reaction space. Unfortunately,
we do not know the polarizability or mean free path of
C2 molecules. For this reason, we obtained the below
estimates with the respective values ε and λ for nitrogen
molecules. In addition, the carbon molecule density in
the vapor–gas flame was assumed to be 50% and the
parameters entering into Eq. (9) were taken as e =
1.62 × 10–19 C, ε = 1.00059, λ = 5.9 × 10–5 cm, ε0 =
8.85 × 10–12 C2/(N m2), m = 24 × 1.66 × 10–27 kg, rt =
0.7 × 10–9 m, a = 1.42 × 10–10 m, and n = 2 × 1024 m–3.

Formula (9) with these parameters yields a value of
about 1.3 × 10–3 cm/s. Unfortunately, direct measure-
ments of the linear growth rate for SWCNTs have not
yet been reported. In our experiments on the synthesis
of SWCNTs, the length of the reaction zone was equal
to 2−3 cm and the average velocity of the ablation prod-
uct flux was equal to 5 × 10–2 s. For this time, the length
of synthesized nanotubes may increase with the above-
calculated rate to 6.5 × 102 nm, which is in good agree-
ment with the maximum length of nanotubes in the
photograph shown in Fig. 1. The comparison of calcu-
lation and experiment evidently requires direct mea-
surements of the growth rate of SWCNTs in the process
of synthesis, but these measurements are very difficult
and will not likely be performed in the near future. For
this reason, the most realistic way to determine the nan-
otube growth kinetics is to determine the length of syn-
thesized SWCNTs as a function of the reaction time.
We will solve this problem at the next stage of the
study. In conclusion, we note that, in the framework of
the above model, the cessation of the growth of nano-
tubes can be caused by the neutralization of charges at
the edge of a growing nanotube due to recombination
processes.
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We describe the process of the deformation of a
weakly inhomogeneous (at the initial instant) contin-
uum by an asymptotic method with the process in the
homogeneous medium taken as the zeroth approxima-
tion. Our primary interest is in the deviation of the par-
ticle trajectories in the disturbed process from those in
the corresponding undisturbed process. Deviation mea-
sures and a classification of the disturbed motion in
terms of these measures are proposed. The trajectory
approach is illustrated through the example of the plane
problem of spreading of a radially inhomogeneous
incompressible ideally plastic tube under the pressure
drop between the inner and outer surfaces.

1. An inhomogeneous medium is known to refer to
a medium whose density and material functions of the
constitutive relations are coordinate-dependent. If these
dependences are discontinuous in coordinates, then the
body is a composite [1]. Denote some material function
characterizing the continuum by Λ(x, t); this function
may be a time-dependent field—scalar, vector, or ten-
sor. In the Eulerian description of the motion, the coor-
dinate dependence of the material functions can be of
two types. Let us focus on these two types in more
detail.

1°. The quantity Λ(x, t), as well as density ρ(x, t), is
a known function of x and t. This takes place in the fol-
lowing case. The material functions may depend on
external fields, e.g., temperature, humidity, radiation
dose, and electromagnetic quantities. For instance,
there are many known empirical temperature depen-
dences of the dynamic viscosity of a fluid or empirical
dependences of the Young modulus of an elastic mate-
rial on the radiation exposure intensity. If these external
fields are given, then the material functions are also
known. In this case, the closed system of N equations
(the equations of motion, the continuity equation, the
constitutive relations, etc.) involving N unknowns and
describing the medium deformation within a certain

Moscow State University, Leninskie Gory,
Moscow, 119992 Russia
e-mail: georgiev@mech.math.msu.su
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time-dependent domain Ωt with a boundary Σt = ∂Ωt

(system AN) is closed in Ωt .
2°. The physical and mechanical properties of the

medium at each point x of the space at instant t are the
properties of the Lagrangian particle that resides at this
point at this instant [2]. Since either the law of motion
or the particle trajectories are not known in advance, the
dependences of the density and material functions on x
and t are also unknown. For an incompressible medium,
the continuity equation and the incompressibility con-

dition imply the equation  = 0 with the first integral

(1)

Assume that function Λ(x, t), as well as the density
of the incompressible material, is preserved under the
mass transfer [3–5], that is

(2)

Then, the equalities of system A must be supplemented
with the following three equations:

(3)

which determine the law of motion of the particles

(4)

Reversing this law, we can determine the inverse law of
motion

(5)

and substitute it into Eqs. (2) and (3) with the result that
the functions ρ0(x0(x, t)) and λ(x0(x, t)) become known.
Then, the values to be determined are supplemented
with the vector x(x0, t) or x0(x, t), so that the total sys-
tem includes N + 3 equations (system BN + 3). Note that
system BN + 3 cannot be divided into the independent
subsystems AN and (4) owing to the fact that ρ and Λ

dρ
dt
------

ρ x t,( ) ρ x0 0,( ) ρ0 x0( ).≡=

Λ x t,( ) Λ x0 0,( ) λ x0( ).≡=

dx
dt
------ v x t,( ), x 0( ) x0,= =

x x x0 t,( ).=

x0 x0 x t,( )=
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present in the equations of subsystem AN are not known
and are determined from Eqs. (1) and (2), which
involve the inverse law of motion.

In order to formulate the initial-boundary value
problem for the inhomogeneous flow of a continuum,
the equations of system BN + 3 in Ωt should be supple-
mented with boundary conditions on Σt and with initial
conditions at t = 0. Since the objects to be determined
include the law of motion of the particles, the approach
considered in item 2° is actually a Lagrangian–Eulerian
one (the law of motion being known, it is not difficult
to pass from the Eulerian to the Lagrangian description
and vice versa).

Note the case of a plane motion of an incompress-
ible medium when the velocity field v(x, t) is solenoidal
and it is possible to introduce a scalar stream function
ψ(x, t) such that the Cartesian components v1 and v2 can
be presented in the form v1 = ψ,2 and v2 = –ψ,1. In view
of Eq. (3), we obtain

(6)

The two equations (6) are mathematically identical
to the Hamilton canonical equations for a system with
a single degree of freedom, the role of the Hamilton
function being played by the stream function (for this
reason, it is sometimes called the Hamiltonian) and the
role of the generalized coordinates and the momentum,
by the Cartesian coordinates x1(t) and x2(t). Equations (6)
hold for any plane incompressible continuum flow.
Therefore, certain qualitative conclusions of Hamilto-
nian mechanics are quite applicable in continuum
mechanics [6].

2. The fact that the material function Λ in the system
of equations BN + 3 is not specified as a function of the
Eulerian coordinates and time but is determined from
the inverse law of motion makes the problem of inho-
mogeneous flow rather complicated. If the initial distri-
bution λ(x0) is slightly different from a certain function
λ0(x0), so that

(7)

where λ0(x0), λ1(x0), … are given, then one can use the
asymptotic approach based on the expansion of all
unknowns of system BN + 3 as power series in a small
parameter α, for example, v(x, t) = v0(x, t) + αv1(x, t) +
…. The direct (4) and inverse (5) laws of motion can
also be presented in the form of the series:

(8)

(9)

dx1

dt
--------

∂ψ
∂x2
--------,

dx2

dt
-------- ∂ψ

∂x1
--------.–= =

λ x0( ) λ0 x0( ) αλ 1 x0( ) …,++=

α
λ x0( ) λ0 x0( )–

λ0 x0( )
--------------------------------------- ! 1,

x0 Ω0∈
sup=

x x0 t,( ) X0 x0 t,( ) αX1 x0 t,( ) …,+ +=

x0 x t,( ) X0
0 x t,( ) αX0

1 x t,( ) ….+ +=
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In these series,

(10)

, (11)

where I is the second-rank identity tensor.
In view of Eq. (9), each of the known coefficients of

series (7) can be expanded in a Taylor series, for exam-
ple,

(12)

If the zeroth approximation in α for the function
λ0(x0) is a constant, then the medium under consider-
ation is weakly inhomogeneous in the narrow sense.
For the sake of generality, we assume that λ0(x0) need
not be identically equal to a constant. Such a medium
will be called weakly inhomogeneous in the wide
sense.

The system of equations in the N + 3 unknowns with

zero superscript (system ) is identical in Ωt with
system BN + 3 and corresponds to the deformation of a
homogeneous body with the material constant λ0 for a
weak inhomogeneity in the narrow sense or with the
material function λ0(x0) for a weak inhomogeneity in
the wide sense. We assume that the initial-boundary

value problem for system  is easy to solve.

For the N + 3 unknowns with superscript 1, we have

an already linearized system  involving quantities
with zero superscript as known coefficients. This sys-
tem corresponds to the deviation from the basic (undis-
turbed) process due to the initial disturbance of the
medium by a weak inhomogeneity. It can be seen from
Eq. (12) that all the material functions and their gradi-

ents in  are taken on the trajectories (x, t)
determined from the basic process for the homoge-
neous material. Moreover, if λ0 ≡ const, then system

 can be divided into a subsystem  that is free

of the components of vector (x, t) and three equa-
tions corresponding to Eq. (3), namely,

(13)

X0 x0 0,( ) x0, X1 x0 0,( ) 0;≡ ≡

X0
0 x 0,( ) x, X0

1 x 0,( ) 0;≡ ≡

∂X0

∂x0
---------

∂X0
0

∂x
---------⋅ I,

∂X0

∂x0
---------

∂X0
1

∂x
---------⋅ ∂X1

∂x0
---------–

∂X0
0

∂x
---------⋅==

λ0 x0( ) λ0 X0
0 x t,( )( )=

+ α∂λ0

∂x0
-------- X0

0 x t,( )( ) X0
1 x t,( ) …+⋅

BN 3+
0

BN 3+
0

CN 3+
1

CN 3+
1 X0

0

CN 3+
1 DN

1

X0
1

dX1

dt
--------- x0 t,( ) v1 X0 x0 t,( ) t,( )=

+
∂v0

∂x
-------- X0 x0 t,( ) t,( ) X1 x0 t,( ),⋅

X1 x0 0,( ) 0.=
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Solving the initial-boundary value problem for sub-

system , we determine the disturbed kinematic field
v1; then, we integrate the linear inhomogeneous
Cauchy problem (13) and determine the vector

(14)

where

(15)

Expression (15) for the tensor kernel K includes
only the parameters of the undisturbed process; that is,
it depends only on the kinematics of deformation of the
homogeneous medium. This kernel can be explicitly
written for different simple types of deformation such
as extension and compression, source and sink flows,
and pure shears and their combinations.

If the material function λ(x0) is not identically equal
to a constant, then the right-hand side of Eq. (12) con-

tains the vector , so that system  cannot be

divided into subsystems  and (13). Thus, in the case
of a weak inhomogeneity in the wide sense, the formu-
lation of the problem in terms of disturbances becomes
interconnected and thereby more complicated.

Of interest is the degree of deviation of the particle
trajectories in a weakly inhomogeneous medium from
the corresponding trajectories in the homogeneous
medium. The first approximation in α for this deviation

is described by the vector  (14). For each x0 ∈  ,
we denote

(16)

(17)

where ||· || is a certain norm in the vector space.

Let us classify three cases of a disturbed motion.

1°.  = ∅ ; that is, there exists a constant  < ∞
such that

(18)

DN
1

X1 x0 t,( ) K x0 t τ, ,( ) v1 X0 x0 τ,( ) τ,( ) τ ,d⋅
0

t

∫=

K x0 t τ, ,( ) ∂v0

∂x
-------- X0 x0 ξ,( ) ξ,( ) ξ .d

τ

t

∫exp=

X0
1 CN 3+

1

DN
1

X0
1 Ω0

Ξ0 x0( ) X0 x0 t,( ) ,
t 0>
sup=

Ξ1 x0( ) X1 x0 t,( ) ,
t 0>
sup=

ω0
0 x0 Ω0∈  : Ξ0 x0( ) ∞={ } ,=

ω0
1 x0 Ω0 : Ξ1 x0( ) ∞=∈{ } ,=

ω0
1 Ξ*

1

Ξ1 x0( ) Ξ*
1 .<

x0 Ω0∈
sup
Then, the initial weak inhomogeneity of order α yields
the deviation of the trajectories of all particles by quan-
tities of the same order α or higher.

2°.  ≠ ∅  but, for any particle x0 ∈ , the follow-
ing inequality holds:

(19)

3°.  ≠ ∅  and there exist particles x0 that do not
satisfy inequality (19).

The first two cases correspond to the stability of the
process of deformation of a homogeneous medium
under a small perturbation of the inhomogeneity
parameter. In the third case, the deviation of the particle
trajectories under such perturbation has a finite mea-
sure and the asymptotic approach used in this study is
adequate only on a finite time interval 0 < t < T, where

T can be up to order  (temporal boundary layer). The

instability of motion under a small perturbation of the
inhomogeneity can be treated as the onset of mixing of
a weakly inhomogeneous continuum.

3. The trajectory approach described above was
developed in [4] for weakly inhomogeneous viscous
flows and in [5] for the deformation of weakly inhomo-
geneous viscoplastic solids; the latter study contains
general statements of the problems in the first approxi-
mation in α and solutions to some of these problems.
Let us present the results of the solution of the plane
problem of spreading of a weakly inhomogeneous (in
the wide sense) incompressible ideally plastic tube
under the action of pressures applied to its inner and
outer surfaces.

The only material function present in the constitu-
tive relations for an ideally plastic material satisfying
the von Mises–Hencky plasticity criterion is the yield
limit σs(x, t), for which Eq. (2) can be rewritten as fol-
lows:

(20)

Introduce a polar coordinate system (r, θ) fitted to
the center of the tube cross-section. We assume that the
initial distribution of function Σ(x0) is slightly different
from the radial distribution

(21)

In the region a0(t) < r < b0(t), the solution corre-
sponding to the plane inertialess spreading of an ideally
plastic tube, which is inhomogeneous only in the radial

ω0
1 ω0

1

X1 x0 t,( )
X0 x0 t,( )

-------------------------- ∞.<
t 0>
sup

ω0
1

1
α
---

σs x t,( ) σs x0 0,( ) Σ x0( ).≡=

Σ r0 θ0,( ) Σ0 r0( ) αΣ1 r0 θ0,( ) …+ +=
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direction, with a yield limit Σ0(r0) at t = 0 takes the
form [7]

(22)

where  and  are the components of the velocity

vector,  and  are the components of the stress
deviator, p0 is the pressure, pa and pb are the pressures
specified on the tube surfaces (pa > pb), and c > 0 is an
arbitrary constant.

The condition of full plasticity has the form:

(23)

In the case of a homogeneous plastic material with the
yield limit σs , this condition implies the well-known
relation between the pressure drop and the tube geom-
etry at each time instant [7]

(24)

In Eqs. (22) and (23), the law of motion of
Lagrangian particles along the rays

(25)

and the inverse law of motion

(26)

are used.

We note that the distribution of the yield limit Σ0(r0)
can be arbitrary and, in particular, discontinuous, which

v r
0 c

r
--, v θ

0 0,≡=

srr
0 1

2
-------Σ0 r2 2ct– 

  , srθ
0 0,≡–=

p0 pa
1

2
-------Σ0 r2 2ct– 

 –=

– 2 Σ0 ξ2 2ct– 
  ξd

ξ
-----,

a
0

t( )

r

∫

v r
0 v θ

0

srr
0 srθ

0

pa pb– 2 Σ0 ξ2 2ct– 
  ξd

ξ
-----

a
0

t( )

b
0

t( )

∫=

≡ 2
ηΣ0 η( ) ηd

η2 2ct+
-------------------------.

a 0( )

b 0( )

∫

pa pb– 2σs
b t( )
a t( )
---------.ln=

r r0 θ0 t, ,( ) r0
2

2ct+ R0 r0 t,( ),≡=

θ r0 θ0 t, ,( ) θ0,=

r0 r θ t, ,( ) r2 2ct– R0
0 r t,( ),≡=

θ0 r θ t, ,( ) θ=
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corresponds to the spreading of a plastic composite
tube [1].

Similarly to Eqs. (8) and (9), we present the laws of
motion for a weakly inhomogeneous flow in the form

(27)

(28)

The linearized system  of seven equations in
seven unknown disturbances with superscript 1 is as
follows:

(29)

(30)

(31)

(32)

(33)

For the sake of brevity, in Eqs. (31) and (32), the argu-

ments r and t of  are omitted.

We also write two boundary conditions on each sur-
face of the tube carried over to the undisturbed circles
r = a0(t) and r = b0(t):

(34)

(35)

Now, we pass to the analysis of system (29)–(33)
with boundary conditions (34) and (35). Algebraic

r r0 θ0 t, ,( ) R0 r0 t,( ) α R1 r0 θ0 t, ,( ) …,+ +=

θ r0 θ0 t, ,( ) θ0 αΘ1 r0 θ0 t, ,( ) …;+ +=

r0 r θ t, ,( ) R0
0 r t,( ) α R0

1 r θ t, ,( ) …,+ +=

θ0 r θ t, ,( ) θ αΘ0
1 r θ t, ,( ) …+ +=

C7
1

p,r
1–

1

r2
---- r2srr

1( ),r
srθ θ,

1

r
----------+ + 0,=

p,θ
1– srr θ,

1 1
r
--- r2srθ

1( ),r+– 0;=

v r r,
1 v r

1

r
------

v θ θ,

r
----------+ + 0;=

2srr
0 srr

1

=  Σ0 R0
0( ) Σ1 R0

0 θ,( )
∂Σ0

∂r0
--------- R0

0( )R0
1

r θ t, ,( )+ ;

srθ
1 Σ0 R0

0( )
v u

0
----------------v rθ

1 ;=

dR1

dt
--------- v r

1 R0 θ0 t, ,( )
∂v r

0

∂r
--------- R0( )R1 t( ), R1 0( )+ 0,= =

dΘ1

dt
----------

1

R0
-----v θ

1 R0 θ0 t, ,( ), Θ1 0( ) 0.= =

R0
0

p1– srr
1+ ∂p0

∂r
--------

∂srr
0

∂r
---------– 

  b1,=

srθ
1

p0– srr
0– pb+( ) 1

b0
-----∂b1

∂θ
--------.=
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equation (31) and formulas (22) immediately imply an

expression for the component :

(36)

We will seek the disturbance of the velocity field

,  in the form of a Fourier series in angle θ

(37)

where vθ is an unknown function and cm = const. Thus,
the incompressibility condition (30) is automatically
satisfied.

After the expressions for  (22) and  (37) are
substituted into the first equation of (33), the latter can
be rewritten in the form

(38)

The exact solution to the Cauchy problem (38)

(39)

enables us to easily determine :

(40)

Expression (40) can be substituted into Eq. (36) with

the result that the component  becomes a known

srr
1

srr
1 1

2
------- Σ1 R0

0 r t,( ) θ,( ) -–=

+
∂Σ0

∂r0
--------- R0

0 r t,( )( )R0
1 r θ t, ,( )

v r
1 v θ

1

v r
1 1

r
--- cm mθ, v θcos

m 0=

∞

∑ v θ
1

r( ),= =

v rr
1 1

r2
---- cm mθ,cos

m 0=

∞

∑–=

v rθ
1 1

2
--- v θ

1' 1

r2
---- mcm mθsin

m 0=

∞

∑–
 
 
 

,=

v r
0 v r

1

dR1

dt
--------- cR1

r0
2 2ct+

------------------+

cm mθ0cos
m 0=

∞

∑
r0

2 2ct+
----------------------------------, R1 0( ) 0.= =

R1 r0 θ0 t, ,( )

t cm mθ0cos
m 0=

∞

∑
r0

2 2ct+
------------------------------------

t cm mθ0cos
m 0=

∞

∑
R0 r0 t,( )

------------------------------------≡=

R0
1

R0
1 r θ t, ,( )

t cm mθcos
m 0=

∞

∑
r2 2ct–

----------------------------------

t cm mθcos
m 0=

∞

∑
R0

0 r t,( )
----------------------------------.–≡–=

srr
1

function of the Eulerian coordinates r and θ and time t
for any given distribution of the yield limit Σ1 .

Then, Eqs. (37) and (32) imply that

(41)

With account for Eq. (41), the first equilibrium equa-
tion (29) gives

(42)

the right-hand side of Eq. (42) being known. Integrat-
ing Eq. (42) with respect to r with the boundary con-
dition (34), where we substitute

(43)

we arrive at an expression for the pressure disturbance

(44)

Substituting r = a0(t) into Eq. (44), we obtain

(45)

This is the condition of realizability of a plastic flow
with kinematics (37), which is analogous to Eq. (23) for
a radial motion. Analyzing the dependence of both
sides of Eq. (45) on θ and expanding Σ1 in a Fourier
series in the same set cosmθ with coefficients dm , we
can express dm in terms of cm .

The last unknown stress component  is deter-
mined by integrating the second equation (42) with

srθ
1 Σ0

2v u
0

--------- v θ
1' 1

r2
---- mcm mθsin

m 0=

∞

∑–
 
 
 

.=

p,r srr r,
1 2srr

1

r
---------

Σ0

2v u
0r3

-------------- m2cm mθ,cos
m 0=

∞

∑–+=

b1 t

b0
----- cm mθ,cos

m 0=

∞

∑=

p1 srr
1 2 srr

1 ξ θ t, ,( ) ξd
ξ
-----

r

b
0

∫–=

+
1

2 2c
------------- m2cm mθ Σ0 ξ2 2ct– 

  ξd
ξ
-----

r

b
0

∫cos
m 0=

∞

∑

+
2t

b02
---------Σ0 b0( ) cm mθ.cos

m 0=

∞

∑

pa pb–
4c

----------------- m2cm mθ 2 srr
1 ξ θ t, ,( ) ξd

ξ
-----

a
0

b
0

∫–cos
m 0=

∞

∑

=  2t
Σ0 a0( )

a02
----------------

Σ0 b0( )

b02
----------------–

 
 
 

cm mθ.cos
m 0=

∞

∑

srθ
1

DOKLADY PHYSICS      Vol. 50      No. 12      2005



MODELING OF A WEAK INHOMOGENEITY 649
respect to r with the boundary condition (35). Then,

(r) is found from Eq. (41) and the function
Θ1(r0, θ0, t), from the second equation (33).
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Within the framework of the model of local interac-
tion between a moving body and a medium and under
the assumption that the tangential stress on the body
surface is described by the mixed model of friction, the
shapes of the bodies that have a given area of base and
afford, for a rectilinear motion in the medium, a mini-
mum to the resistance or a maximum to the length of
the trajectory of an inertial motion are found. The
parameters of the optimal body shape are related with
the medium characteristics and the body velocity.

STATEMENT OF THE PROBLEM

Consider a rectilinear inertial motion of a body in a
medium opposite to vector x. Neglecting the gravity,
write the equation of motion for a body of mass m and
the medium resistance force D in the form

(1)

Here, t is time, U is the motion velocity, σn and στ are
the normal and tangential stresses exerted on a body
surface element, n and τ are the unit vectors of inward
normal and tangent to the surface element (vector t is
directed in the line of the particles' slide over the sur-
face), and the integration is taken over the surface S of
contact between the body and the medium.

We consider the interaction between the medium
and surface S within the framework of the model of
local interaction (MLI) and write σn as the sum of the
dynamic and strength terms:

(2)

In (2), positive constants A1 and B1 are parameters of
the model determined by the characteristics of the

m
dU
dt
------- D, D– σn n x⋅( ) στ t x⋅( )+[ ] S.d

S

∫∫= =

σn A1U2α2 B1, α+ n x⋅( ).= =
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medium. Under certain assumptions, expression (2)
describes σn on the surface of a body that moves in a gas
or in dense media such as soil, concrete, or metal.

We write στ with the use of the mixed model of fric-
tion, which is suggested in paper [1] and that general-
izes both the Coulomb model of friction and the model
of constant friction:

. (3)

Here, µ0 is a constant coefficient and τS is the shear
yield point of the medium. As a result, στ is described,
similar to σn , by the two-term formula

(4)

Moreover, according to (2) and (3), if

(5)

then στ is calculated by the Coulomb model of friction
and

(6)

Otherwise, στ involves the model of constant friction
and

(7)

Within the framework of MLI, vector t is assumed
to be coplanar to vectors U and n and surface S is
defined by the condition

Suppose that, at the initial time instant, U = U0 . Tak-
ing into account (1)–(7), we write the resistance D =

στ

µ0σn, if µ0σn τS,≤
τS, if µ0σn τS.>




=

στ A2U2α2 B2.+=

α α k, α k≤ α k λ( ) C
µ0
----- 1– 

  1
λ
---,= =

λ λ U( )
A1U2

B1
-------------, C

τS

B1
-----,= = =

A2 µ0A1, B2 µ0B1.= =

A2 0, B2 τS.= =

0 α 1.≤ ≤
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D0 = D(U0) of the body and the total length H0 of its tra-
jectory in the form

(8)

(9)

Here, λ0 = λ(U0), γ = (t · x) = , and the friction
parameters B and ν depend on α and αk:

(10)

(11)

Model (2)–(7) represents a particular case of writing
the stresses in the framework of MLI. Given the char-
acteristics of the medium and velocity U0, it makes it
possible to represent D0 and H0 in the form of function-
als of the shape of surface S. This makes it possible to
apply methods of variational calculus when determin-
ing the shapes of the bodies that afford the minimum
D* = min(D0) or the maximum H* = max(H0).

For the generalized MLI, it has been demonstrated
[2] that, velocity U0 being fixed, in the class of three-
dimensional configurations, for a flow without separa-
tion past a body with a given area of base Sb , the mini-
mum D* is attained on the bodies such that the condi-
tion

(12)

is satisfied at each point of the body surface.
In [2], methods for constructing three-dimensional

configurations satisfying condition (12) have been
developed. These methods are based on blending the
patches of the surfaces of the optimal cone with half-
angle β* =  and the tangent planes. It has been
shown that, for a specified Sb and under given con-
straints on the length and lateral dimensions of the
body, one can construct infinitely many three-dimen-
sional bodies having the same resistance D*; they have
been called absolutely optimal bodies (AOB).

Below, in the framework of model (2)–(7), by
known characteristics of the medium and given values
of U0 and Sb , we find the α* that determines, according

D0 B1 f α( )α  S, f α( )d∫
S

∫ λ0g1 α( ) g2 α( ),+= =

H0
m

2A1
--------- λd

λ D1 D2+
-----------------------, Di

0

λ0

∫ gi α( )α  S,d∫
S

∫= =

i 1 2,,=

g1 α( ) α2 1 νBγ
α

----------+ 
  , g2 α( ) 1

Bγ
α

-------,+= =

B
B2

B1
-----.=

1 α2–

B µ0, ν 1, if α α k,≤= =

B C, ν 0, if α α k.>= =

α α * const= =

α*arcsin
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to (2) and (12), the optimal angle of incidence between
the flow of the medium and the normal to the element
of the AOB surface. It is demonstrated that the maxi-
mum H* of the trajectory length is attained on the bod-
ies that also satisfy condition (12), but, in the general
case, they are not the bodies of the minimal resistance
and their value of α* is different.

OPTIMAL SHAPES OF THE BODIES

For an AOB, value α* in (12) is the value of α at
which the positive function f (α) present in (8) has the
minimum on the segment [0, 1]. The values of B and ν
for functions gi(α), i = 1,2, present in (8) are calculated
in accordance with (10) and (11) at αk = αk(λ0) and
function f (α) is seen to be continuous and independent
of Sb . Hence, the minimum of f (α) and value α* are
determined only by velocity U0 and parameters of
model (2)–(7).

If values Di, i = 1, 2, in expression (9) are indepen-
dent of λ, which is the case for constant B and ν, then
one can integrate expression (9) and write H0 in the
form

This expression may be used when στ presented in (4)
is calculated by the Coulomb model of friction (6) or by
the model of constant friction (7) and parameters A2 and
B2 in (4) are constant. It has been shown [3] that,
parameters Ai and Bi, i = 1, 2, being constant, in the
class of three-dimensional configurations, for a flow
without separation and for given U0, Sb , and m, the
maximum H* is attained on the bodies such that condi-
tion (12) is satisfied at each point of their surface. This
means that, in this case, the shapes of the bodies with
the longest trajectory have the same structure as AOB;
however, they have a different α*, which is the value of
α ∈  [0, 1] that affords a maximum to the function

(13)

Here, constants B and ν are determined by expressions
(10) or (11) for the models of friction (6) and (7),
respectively.

For the mixed model of friction, according to (5),
(10), and (11), values B, ν, and Di, i = 1, 2, depend on λ
and, for an arbitrary shape of the body, expression (9)
for H0 cannot be integrated. Nevertheless, this does not
preclude the use of the methods of variational calculus
when searching for the extremum of H0 and, following

H0
m

2A1D1
---------------- 1

λ0D1

D2
------------+ 

  .ln=

h0 α( ) 1 q+( )ln

q 1 Bγ
α

-------+ 
 

-------------------------,=

q λ0α
2  α ν B γ + 

α
 

B
 

γ
 

+
--------------------.=
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the technique employed in [3], one can show that, in
this case, again, the bodies that afford the maximum H*
are constructed under condition (12) just as AOBs are,
and their α* is the value of α ∈  [0, 1] at which the func-
tion

(14)

attains its maximum. Here, λ1 depends on α and λ0 .
However, for C < µ0, the second condition in (3) is
always true and στ is calculated throughout by model (7).
In this case, λ1 = 0, h1(α) = 0, and function h(α) = h0(α)

with B and ν given in (11). When C ≥ µ0, if  –

1  < λ0, then λ1 =  – 1 ; otherwise, λ1 = λ0 . In

the latter case, condition (5) is always valid, στ is calcu-
lated by the Coulomb model (6), h2(α) = 0, and function

h α( )
h1 α( ) h2 α( )+

λ0α
2

----------------------------------,=

h1 α( ) = 
λ1α

2 1+( )ln

1
µ0γ
α

--------+
-------------------------------, h2 α( ) = 

λ0α
2 Cγ

α
------- 1+ +

λ1α
2 Cγ

α
------- 1+ +

----------------------------------ln

1

α2
----- C

µ0
-----



--
 1

α2
----- C

µ0
-----

 --


0.9
α*

0.6

0.3

0 0.1 0.2 0.3
µ0

1

2

3

Fig. 1. The µ0-dependence of the values α* for the bodies
with the longest trajectory in the case C = 0.2 given for λ0 =
1, 5, and 50 by curves 1, 2, and 3, respectively. The solid
lines correspond to the mixed model of friction, the dashed
lines, to the Coulomb model of friction, and the dot-and-
dash lines, to the model of constant friction.
                                              

h(α) = h0(α) with B and ν defined in (10). This case is

realized, in particular, for λ0 ≤  – 1.

Thus, there is a domain of values of C, µ0 , and λ0
such that h(α) = h0(α) and, hence, in this domain, h(α)
and h0(α) have the same α*. Curves 1, 2, and 3 in Fig. 1
show the µ0-dependence of values α* for function h(α)
when C = 0.2 and λ0 = 1, 5, and 50, respectively. The
values of α* obtained for h0(α) by models (6) and (7)
for the same C, λ0 , and µ0 , are shown in Fig. 1 by
dashed and dot-and-dash lines, respectively. It can be
seen that, for small µ0 , the values of α* calculated for
h(α) coincide with those obtained for h0(α) with B and
ν defined in (10) and, when µ0 ≥ C, these values coin-
cide with α* obtained for h0(α) with B and ν defined
in (11).

We search for the minimum of f (α) and maximum
of h(α) among their local and boundary extrema. The
local extrema are attained at α = αm and satisfy the
equations f '(α) = 0 or h'(α) = 0. The boundary mini-
mum of f (α) and maximum of h(α) may occur at α = 1.
Hence, the values of α* for f (α) and h(α) are such that

Write the equations for f (α) and h0(α) at α = αm in
the form

(15)

Here, we take Q = 1 when searching for the minimums
of f (α) and

(16)

for the maximums of h0(α). It can be shown that, when

 ! 1, the value Q in (16) is close to a constant:

Q ≈ 2. Then, in the slender-body approximation,
assuming that

(17)

one can write solutions to Eq. (15) in the form

(18)

where Q = 1 for the minimums of f (α) and Q = 2 for the
maximums of h0(α).

C
µ0
-----

f α*( ) min f αm( ) f 1( ),( ), f 1( ) 1 λ0,+= =

h α*( ) max h αm( ) h 1( ),( ), h 1( )
1 λ0+( )ln
λ0

-------------------------.= =

2λ0α
3γ νBλ0α

2 γ2 α2–( ) QB–+ 0.=

Q
q2

q 1+( ) q 1+( )ln q–
-------------------------------------------------=

λ0α
2

3
-----------

α2
 ! 1,

α α m, αm
QB
2λ0
-------- 

  1/3

,= =
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It can be demonstrated that, for a fixed λ0 and small
Ç, the values α* = αm . However, according to (18), the
values αm grow with increasing Ç. In this case, the val-
ues f (αm) increase and the values h0(αm) decrease. The
growth of f(αm) when α* = αm is bounded by the value
f(1) attained at B = B* and αm = : f ( ) = f (1). Tak-
ing into account formulas (8) and (15), one can write
the following expressions for B* and :

Figure 2 shows B* related to λ0 for the bodies of the
minimal resistance (curves 1 and 2 constructed for
models (6) and (7), respectively) and for the bodies
with the longest trajectory (curves 3 and 4 constructed
for models (6) and (7), respectively). For the function
h0(α), the values of B* and  such that h0( ) = h0(1)
are obtained with the use of (13) and (15). One can see

that, for h0(α), as well as for f (α),  ≤ . The value

αm ≤  ≤  and since, for B < B*, the value α* = αm ,

in this case, we always have β* < 45°. If B ≥ B*, then
α* = 1, β* = 90°, and the optimal body is the cylinder
with the end face of a given area. As far as, for most
media, B ≤ 0.3, it can be shown that the latter case is
realized for comparatively slow motions, when the
shape of the body exerts little influence on the resis-
tance and the length of its trajectory.

It was demonstrated above that there are values of C,
µ0 , and λ0 such that h(α) = h0(α) and, hence, for these
values, the local maximums of h(α), as well as of h0(α),
are attained in approximation (17) at α = αm (see (18)).
Figure 1 shows the values α* = αm related to µ0 for C =
0.2. One can see that, parameters C and λ0 being fixed,
there is a range of values of µ0 such that h(α) and h0(α)
have different α*. However, in this range, the values of
α* for h(α) may be approximated by the values of α*
for function h0(α) with B and ν defined in (11).

It can easily be shown that, for the mixed model of
friction, functions f (α) and h(α) have at most two local
extrema and, since, for B < B*, the values α* = αm , in
this case, α* is determined in approximation (17) by the
relations

(19)

αm* αm*

αm*

B*
λ0

2 1 λ0ν+
-------------------------, αm*

1

2 λ0ν+
----------------------.= =

αm* αm*

αm*
1

2
-------

αm*
1

2
-------

α*
α1 for λ0 λ k,≤
α2 for λ0 λ k,>




=

α1

Qµ0

2λ0
---------- 

 
1/3

, α2
QC
2λ0
-------- 

  1/3

.= =
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0.4

0.3

0.2

0.1

B*

0 1 2 3
λ 0

12 34

Fig. 2. Limiting values of the friction parameter B* related
to λ0 for the bodies of the minimal resistance (curves 1
and 2) and for the bodies with the longest trajectory (curves 3
and 4) constructed for the Coulomb model of friction
(curves 1 and 3) and for the model of constant friction
(curves 2 and 4). 

1.0

0.5

0 0.5 1.0
α

∆H

123

Fig. 3. The α-dependence of the values of ∆H = 

presented for the mixed model of friction in the case C = 0.2
and µ0 = 0.1 by curves 1, 2, and 3 constructed for λ0 = 5, 10,
and 50, respectively.

H0 α( )
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Here, we take

(20)

for the bodies of the minimal resistance and

(21)

for the bodies with the longest trajectory.
One can demonstrate that, for λ0 ∈  [3, 50] and B ≤

0.3, approximation (19)–(21) allows constructing bod-
ies such that D0 and H0 differ from D* and H* by less
than 3%. Such λ0 and B correspond to the cases of the
motion in soil, concrete, and metal, when the shape of
the body exerts an essential influence on its motion
characteristics and the optimal bodies exhibit signifi-
cant advantages over other bodies in terms of resistance
and trajectory length. For instance, curves 1, 2, and 3 in
Fig. 3 show the α-dependence of the values ∆H =

 for λ0 = 5, 10, and 50, respectively, when C =

0.2 and µ0 = 0.1. Here, H0(α) is the length of the trajec-
tory of the cones with half-angle β =  having
the same initial velocity, mass, and area of base as the
optimal body. For α > 0.3, the advantages of the opti-
mal bodies are seen to grow with increasing α and λ0
and, for λ0 = 50, the trajectory of the optimal body is
almost five times longer than that of the cylinder having
α = 1 on the front face.

Q 1, λ k
27

2µ0
2

-------- C
µ0
----- 

  2/3

1– 
  3

= =

Q 2, λ k
1

µ0
2

----- C
µ0
----- 1– 

  3

= =

H0 α( )
H*

---------------

αarcsin
CONCLUSIONS

Within the framework of model (2)–(7), the shapes
of the bodies that have a given area of base and afford,
for a rectilinear motion in a medium, a minimum to the
resistance or a maximum to the length of the trajectory
of an inertial motion have been found. For a flow with-
out separation, the angle of incidence between the flow
of the medium and the normal to the element of the sur-
face of the optimal body has been shown to be constant
throughout the body surface. In approximation (17),
formulas (19)–(21) relate this angle with the charac-
teristics of the medium and the velocity of the body.
Note that, within the framework of model (2)–(7), con-
dition (12) holds on the surface of the optimal bodies.
Therefore, these bodies may be constructed with the
use of the methods developed earlier [2] for construct-
ing AOBs, which allows constructing optimal three-
dimensional bodies of various configurations.
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A theory based on the asymptotic analysis of Rey-
nolds-averaged Navier–Stokes equations and dimen-
sional analysis is proposed for obtaining a complete
solution to the problem of the turbulent boundary layer
on a plate with uniform suction without involving any
special closure hypotheses. The profiles of velocity and
shear stress, the friction distribution over the wall, and
the integral characteristics in the entire possible region
of the parameters are calculated using only the velocity
profile known for an impermeable plate. The results are
presented in the scaling variables.

1. We consider the flow of an incompressible fluid in
the turbulent boundary layer on a flat smooth plate
streamed by a uniform flow with the velocity Ue con-
stant along the plate length at the outer boundary of the
layer and constant suction velocity vw directed along
the normal to the surface. We assume that the turbulent
flow is developed directly from the leading edge of the
plate. We assume that the level of turbulent pulsations
in the free stream is negligibly small and does not affect
the flow in the boundary layer.

All mean quantities including the gradient of the
longitudinal velocity, turbulent shear stress, and the
boundary-layer thickness ∆ are functions of the Carte-
sian coordinates x and y and determining parameters of
the problem

(1)

Here, ν is the kinematic viscosity coefficient and the
origin of the Cartesian coordinate system is on the lead-
ing edge of the plate. The quantity ∆ that is a certain
transverse scale of the flow in the boundary layer will
be defined below.

∂u
∂y
------ F1 x y ν v w Ue, , , ,( ),=

u'v '〈 〉  = F2 x y ν v w Ue, , , ,( ), ∆ = F3 x ν v w Ue, , ,( ).

Central Institute of Aviation Motors,
ul. Aviamotornaya 2, Moscow, 111116 Russia
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1028-3358/05/5012- $26.00 0655
The substitution of x and Ue expressed from the first
and third of Eqs. (1) into the second of Eqs. (1) yields

Applying dimensional considerations to this relation,
we obtain

(2)

The function S, as well as the functions F1, …, F4, is
universal for the class of flows under consideration that
depend on the three parameters ν, vw, and Ue. We
assume that the function S is continuous for 0 ≤ Rl ≤ ∞,
–∞ ≤ β ≤ 0, and 0 ≤ η < ∞ and is differentiable with in
this region, which physically corresponds to usual
assumptions according to which viscosity is significant
only in a thin near-wall region (viscous sublayer),
where the outer scale (boundary layer thickness) does
not affect the flow. In addition, we assume that
S(∞, 0, 0) ≠ 0. As was shown in [1], this is the existence
condition for the logarithmic velocity profile in the
boundary layer over the impermeable plate.

The flow under consideration is described by the
boundary layer equations with zero pressure gradient
under the corresponding boundary conditions on the
wall. Taking into account closure relation (2), we arrive
at the boundary value problem for the mean velocity
field. Below, we will give the asymptotic solution of
this boundary value problem for large Reynolds num-
bers.

In the boundary layer equation that is written for the
stream function of the mean flow ψ, we change to new
variables by the formulas [2]

u'v '〈 〉 F4 y ν v w ∆ ∂u
∂y
------, , , , 

  .=

u'v '〈 〉 y
∂u
∂y
------ 

 
2

S Rl β η, ,( ), Rl–
y

2

ν
-----∂u

∂y
------,= =

β
v w

Rly∂u/∂y
-----------------------, η y

∆
---.= =

ψ Ue∆Ψ ξ η,( ), Λ ξ( )
dR∆

dRx

---------, ξ R∆,ln= = =

Rx

Uex
ν

---------, R∆
Ue∆

ν
----------.= =
© 2005 Pleiades Publishing, Inc.
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In addition to the dimensionless stream function
Ψ(ξ, η), we introduce the second unknown function
Λ(ξ), which has the physical meaning of the rate of the
longitudinal variation of the transverse scale ∆. For
Ψ(ξ, η) and Λ(ξ), we obtain the equation [2]

(3)

where

(4)

(5)

Here, B =  is the suction factor. Relations (4) and (5)

specify the conditions on the plate and the outer bound-
ary of the boundary layer, respectively. Two conditions
(for the velocity and shear stress) are imposed at the
outer boundary taking into account the order of the dif-
ferential equation.

We seek the asymptotic representation of the solu-
tion of the problem given by Eqs. (3)–(5) for ξ  ∞.
Let us introduce the small parameter ε and new inde-

pendent variable ζ = εξ such that  = O(1). Thus, the

small parameter ε is the reciprocal of the logarithm of
the Reynolds number calculated in terms of the charac-
teristic transverse scale of the flow.

The suction velocity on the wall is specified as

(6)

i.e., we assume that the transverse velocity at the wall
is a small quantity of the second order in ε.

2. In the transverse direction, it is necessary to con-
sider two characteristic regions: outer and near-wall
regions of the boundary layer. The flow in the near-wall
region was studied in [1, 3]. In particular, it was shown
that, for arbitrary suction, the profiles of the velocity
and shear stress can be evaluated using only the veloc-
ity profile in the boundary layer on an impermeable
plate.

In what follows, we consider only the outer region

of the boundary layer, where  = O(1). According

to [4, 5], two characteristic regions along the flow are
generally formed in the boundary layer with suction. In
the initial section of the plate, the moderate suction
regime is realized such that the shear stress at the wall
is of the same order as that in the outer region. At a con-

Λ ΨηΨξη Ψηη Ψ Ψξ+( )–[ ]

=  ηΨηη( )2
S Rl β η, ,( ) e

ξ– Ψηη+[ ] η ,

Rl e
ξη2Ψηη , β B η RlΨηη( ) 1–

;= =

ξ ∞ , η–> 0:    Ψ η 0, Λ Ψ Ψ ξ + ( ) B ;–= = =

η          ∞ :     Ψ η         1, ηΨ ηη S R l β η, ,( )         0.

v w

Ue
-------

1
ζ
---

B ε2
b, b O 1( ),= =

1
η
---
 

stant suction velocity and increasing Reynolds number,
the moderate suction region is followed by the strong-
suction region, where the shear stress at the wall is
much larger than the value in the outer region. The solu-
tion obtained in [4] for the moderate-suction case has a
singularity at 

 

ζ

 

 = 2

 

κ

 

(–

 

b

 

)

 

–1/2

 

, which corresponds to van-
ishing of the leading term of the expansion of the func-
tion 

 

Λ

 

(

 

ξ

 

)

 

.

Then, we consider the vicinity of this singular point,
where strong suction occurs. We change to the new
variable 

 

s

 

 = 

 

O

 

(1)

 

 by the formula [5]

 

(7)

 

where 

 

k

 

 is a constant to be determined.

For moderate suction, the function  Λ ( ξ )  is on the
order of 

 
ε

 
 and, as was mentioned above, vanishes in the

leading term at the singular point [4]. For this reason,
the solution in the strong-suction case is sought in the
form [5]

 

(8)

(9)

 

Here, 

 

Ψ

 

w

 

(

 

ξ

 

)

 

 is the stream function on the wall and,
therefore, 

 

g

 

(

 

s

 

, 0)

 

 = 0. In view of Eqs. (6) and (8), from
the second of conditions (4) on the wall, we obtain

 

(10)

 

Substituting expansions (8)–(10) into Eq. (3), taking
into account Eq. (7), and performing the passage to the

limit as 

 

ε  

 

0

 

 such that 

 

s

 

 = 

 

O

 

(1)

 

 and 

 

 = 

 

O

 

(1)

 

, we

arrive at the following partial differential equation for
the functions 

 

g

 

(

 

s

 

, 

 

η

 

)

 

 and 

 

λ

 

(

 

s

 

)

 

:

 

(11)

 

where

and 

 

S 

 

= 

 

S

 

(

 

∞

 

, 0, 

 

η

 

)

 

.

The case of moderate suction corresponds to the fol-
lowing passage to limit in Eq. (11):

 

(12)

s ε 1– ζ 2κ b–( ) 1/2–
–[ ] 2k εln– k b–( ),ln–=

Λ ξ( ) ε2
bλ s( )– O ε3( ),+=

Ψ ξ η,( ) Ψw ξ( ) η ε2
bg s η,( )– O ε3( ).+ +=

Ψw ξ( )
dΨw ξ( )

dξ
-------------------+ 1

λ s( )
---------- O ε( ).+=

1
η
---

ηgηη( )2
S[ ] η 1 ηλ+( )gηη+ λgsη ,=

g s 0,( ) gη s ∞,( ) 0, ηgηη S
η ∞→
lim 0= = =

s        ∞ , λ s ( ) –          ∞ , g s η,( )         λ s ( ) f η( ) ,
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where the function f(η) satisfies the following bound-
ary value problem for the ordinary differential equ-
ation:

(13)

The solution of boundary value problem (13) has the
form

(14)

The function f '(η) specifies the velocity profile in the
boundary layer on the impermeable plate [2]. Accord-
ing to Eq. (14), its asymptotic expression at the wall has
the form

(15)

where

and A0 is a constant.
Another limiting case, λ = 0, corresponds to the

asymptotic suction boundary layer with suction, i.e., a
one-dimensional flow, where all mean quantities
depend only on the distance from the wall [6]. Such a
flow on the plate is achieved in a far downstream region
of the flow. Setting λ = 0 in Eq. (11), we find that the
function g satisfies the ordinary differential equation

(16)

and can be represented in the form

(17)

Here, the function h(η) has the following logarithmic
asymptotic behavior on the wall:

(18)

where A∞ is a constant.

η f ''( )2
S[ ] ' η f ''+ 0, f 0( ) f ' ∞( ) 0,= = =

η f '' S
η ∞→
lim 0.=

f ' η( ) Φ ηd

2η S
--------------, Φ η( )

η

∞

∫–
ηd

S
-------.

η

∞

∫= =

f ' η( )
F1

κ
----- ηln A0 F1ln–+( ) O ηα( ), η        0,+=

α 0, F1 f ∞( )–≡> Φ 0( )
2

------------,=

ηg''( )2
S[ ] ' g''+ 0;=

g 0( ) g' ∞( )=  = 0,   ηg'' S
η ∞→
lim 0=

g'
h

2

4
-----, h η( )–

ηd

η S
-----------.

η

∞

∫= =

h η( ) 1
κ
--- ηln A∞ F1ln–+( )– O ηα( ),+=

η         0, α 0, >                                                  
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Thus, the solutions of Eq. (11) describe the entire
family of velocity profiles in the turbulent boundary
layer with suction, including the limiting cases of the
impermeable plate and asymptotic boundary layer.

Then, we consider the function γ(s, η) related to
g(s, η) as

(19)

where

(20)

From Eq. (11), the asymptotic expression for γ(s, η) on
the wall is found in the form

(21)

where A(s) is a certain function.
3. The skin-friction coefficient is sought in the

form [5]

(22)

As was shown in [5], the asymptotic matching of the
solutions for the outer and near-wall regions with the

use of asymptotic representation (21) provides k = –

and two equalities

(23)

where C0 = 2.05 is the additive constant in the logarith-
mic law for the velocity profile near an impermeable
wall [1], and

(24)

Relation (23) makes it possible to close the boundary
value problem given by Eqs. (11) for two desired func-
tions g(s

 

, 

 

η

 

)

 

 and 

 

λ

 

(

 

s

 

)

 

. Relation (24), together with
Eq. (20), is the representation of skin-friction in terms
of the solution of this boundary value problem.

To solve the boundary value problem specified by
Eqs. (11) with additional condition (23), it is necessary
to know only the function 

 

S

 

(

 

∞

 

, 0, 

 

η

 

)

 

. In view of
Eq. (13), this function is unambiguously related to 

 

f

 

'(

 

η

 

)

 

and can be expressed in quadratures in terms of the lat-
ter function as

gη
γ2

4
-----– γ G,–=

G s( ) λ s( ) g s ∞,( ) d
ds
-----g s ∞,( )+ .–=

γ s η,( ) 1
κ
--- ηln A s( ) F1ln–+[ ]– O ηα( ),+=

η 0, α 0,>→

c f

2
----- ε2

b– ε4
b

2
t s( ) O ε5( ).+ +=

1
2
---

A s( ) F1ln– 2κ G s( )– s C0,+=

t s( ) G s( ).=

S
f f ∞( )– η f '–

η f ''( )2
-----------------------------------.=
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Since the function f '(η) specifies the velocity profile in
the boundary layer on the impermeable plate, it is well
known from experimental data. To calculate this func-
tion, we use the Coles empirical formula [7]

Here, ∆ is the distance from the wall at which the lon-
gitudinal component of the mean velocity differs from
Ue by 0.5%. It is the general definition of the transverse
scale ∆.

Solving Eq. (19) as a quadratic equation with
respect to γ and taking into account Eq. (24), we obtain

(25)

Relation (25) shows that velocity profiles in the bound-
ary layer with suction beyond the viscous sublayer can
be described by the family of curves depending on one
parameter q. For q = 0, scaling rule (25) expresses the
well-known velocity defect law for an impermeable
plate. According to Eqs. (12), (20), and (24), γ(0, η) =

– . Another limiting case q = –∞ corresponds to

the asymptotic boundary layer when γ(–∞, η) = h(η).
To represent the results, it is convenient to use the

transverse scale

For a particular case of an impermeable plate, this

quantity is equal to δ*  and is the boundary

layer thickness introduced by Clauser [8].
Turbulent shear stress also satisfies the one-parame-

ter scaling law. The substitution of Eq. (19) into Eq. (2)
yields

f ' η( )
F1

-------------
1
κ
--- ηln 0.55 1 πη( )cos+( )–[ ] ,=

0 η 1, F1≤< 1.55
κ

----------.=

2 Ue u–( )

Ue
1
2
---c f B+

1
2
---c f

Bu
Ue
-------++ 

 
------------------------------------------------------------------- γ q η,( ) O c f( ),+=

q
B

1
2
---c f B+

----------------------≡ 1

t
-----– O B–( ), –∞+ q 0.≤ ≤=

f ' η( )
F1

-------------

∆*
2 Ue u–( )

Ue
1
2
---c f B+

1
2
---c f

Bu
Ue
-------++ 

 
------------------------------------------------------------------- y.d

0

∞

∫=

1
2
---c f 

 
1–

u'v '〈 〉–

Ue
1
2
---c f B+ B– 

 
--------------------------------------------

=  
ηγη q η,( )

1 q–
------------------------ qγ q η,( )

2
--------------------- 1– 

  S ∞ 0 η, ,( ) O c f( ),+
where

This relation should also be satisfied everywhere
beyond the viscous sublayer.

In [5, 9], a universal friction law was found, which
can be represented as

(26)

where

and Rδ* is the Reynolds number based on the displace-
ment thickness. According to Eq. (26), the friction dis-
tributions over the plate for various suction velocities
and various Reynolds numbers can be described by one
universal curve in scaling variables.

4. In Eq. (11), we make the substitution

(27)

and change the variable s to the independent variable

τ = . A pair of functions ϕ(τ, η) and

(28)

satisfies the boundary value problem

(29)

(30)

(31)

(32)

∞– q 0.≤ ≤

Z
δ*

x 
 
 
*ln Φ

1

2 
 
 

q( ) O c f( ),+=

Z
δ*

x 
 
 
* 1

2
---c f B–( ) 1+−

2κ 1
2
---c f

B
-------------------

 
 
 
 
 

R
δ*

x 
 
 

,exp≡

Φ1 g s ∞,( )e
s
, Φ2–

e
s

λ s( )
---------- sd

∞–

s

∫= =

gη λ f ' h
2

4
-----– ϕη+=

1
λ
---

Ω τ( ) dλ
ds
------– dτ

τ2
ds

----------= =

Φ τh+( ) η Sϕηη( )η τ η Sϕηη( )
2

[ ] η+

=  Ω τ2ϕτη f '–( ),

ϕ τ 0,( ) ϕη τ ∞,( ) 0, η Sϕηη
η ∞→
lim 0,= = =

s τ( ) A τ( ) F1ln– C0– 2κ t τ( ),–=

0 τ ∞ ,<≤

t τ( )
F1

2

τ2
------

F1D
κτ

----------
F1

2Ω τ( )
τ

------------------–
ϕ τ ∞,( )

τ
------------------–+=

– τΩ τ( )dϕ τ ∞,( )
dτ

----------------------,    
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where

Expression (32) is Eq. (20) rewritten with regard to
Eq. (27).

The asymptotic expression for the desired functions
for small τ values has the form

(33)

where ϕ0 , according to Eq. (29), satisfies the linear
ordinary differential equation

(34)

This equation has the following solution satisfying
conditions (30) in the free stream:

(35)

where

Asymptotic expression (33) enables one to obtain
the expansion of the function γ for a regime close to the
moderate-suction regime:

(36)

where

According to the last expression,

Thus, the first term of expansion (36) has the logarith-
mic asymptotic behavior and the next terms have no
singularities on the wall.

D A0 A∞.–=

Ω τ( ) = 1
2κ F1
------------ O τ2

( ), ϕ τ η,( )+  = ϕ0 η( ) O τ( ),+

Φ η Sϕ0
''( )' f '

2κ F1
------------+ 0.=

ϕ0
' hN1 N2–

2κ
----------------------,=

N1
f ' ηd
F1Φ
-----------, N2

η

∞

∫–
hf ' ηd
F1Φ

--------------.

η

∞

∫–= =

γ q η,( ) f ' η( )
F1

-------------– qγ1 η( ) O q
2( ), q        0,–+ +=

γ1
f '2

4F1
2

--------- h
2

4
-----–

N1 0( ) D–[ ] f '
2κ F1

-----------------------------------
hN1 N2–

2κ
----------------------.+ +=

γ1 0( )
2DN1 0( ) D

2
–

4κ 2
-----------------------------------

N2 0( )
2κ

--------------.–=
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The expansion of the functions 

 

Φ

 

1

 

 and 

 

Φ

 

2

 

 given by
Eqs. (26) has the form

 

5. 

 

To analyze the other limiting case 

 

λ 

 

 0

 

, i.e.,
the flow regime close to the asymptotic boundary layer,
in Eq. (11) we make the substitution

 

(37)

 

and change 

 

s

 

 to the independent variable 

 

λ

 

. A pair of
functions 

 

ψ

 

(

 

λ

 

, 

 

η

 

)

 

 and

 

(38)

 

satisfies the boundary value problem

 

(39)

(40)

(41)

 

According to Eq. (39), the function 

 

ψ

 

0

 

(

 

η

 

) 

 

≡

 

 

 

ψ

 

(0, 

 

η

 

)

 

satisfies the ordinary differential equation

 

(42)

 

whose solution near the wall can be represented in the
form

 

(43)

Φ1 q( ) 2κ
q

------ q–( )ln– A0 C0– b1q O q
2( ),+ + +=

Φ2 q( ) = 2κ
q

------ q–( )ln A0 C0– b1
1
κ
---+ 

  q O q
2( ),+ + + +

q         0,–

b1 κγ1 0( )
N1 0( ) D– 1–

2κ
----------------------------------.+=

gη
h

2

4
-----– λψη+=

Ω1 λ( ) dλ
ds
------– Ω λ 1–( )= =

h η Sψηη( )η λ η Sψηη( )
2

[ ] η+

+ ληψ ηη Ω1 λψλη ψη+( ) h

2 S
----------+ + 0,=

ψ λ 0,( ) ψη λ ∞,( ) 0, η Sψηη
η ∞→
lim 0,= = =

s λ( ) A λ( ) F1ln– C0– 2κ t λ( ), 0– λ ∞ ,<≤=

t λ( )
F1D

κ
----------λ λψ λ ∞,( ) Ω1 λ( ) λ–[ ]+=

+ λ 2Ω1 λ( )dψ λ ∞,( )
dλ

-----------------------.

h η Sψ0
''( )'

ωψ0
'

F1
---------- h

2 S
----------+ + 0, ω F1Ω1 0( ),= =

ψ0 0( ) ψ0
' ∞( ) 0, η Sψ0

''
η ∞→
lim 0,= = =

ψ0
' F1Z1 ω( )h Z2 ω( ) O ηα( ),+ +=

η         0, α 0. >
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Here, Z1(ω) and Z2(ω) are certain functions. Therefore,
 has the logarithmic asymptotic behavior on the

wall.
Solving Eq. (19) as a quadratic equation with

respect to γ and taking into account Eq. (37), we obtain 

Taking into account asymptotic representations (18),
(21), and (43), from this expression we obtain

(44)

Substituting this expression into closure condition (41),
differentiating the resulting equality with respect to the
variable λ, and taking into account Eq. (38), we arrive
at the following equation for the parameter ω:

(45)

Thus, the eigenvalue problem given by Eqs. (42) and
(45) is obtained for determining the leading terms of the
asymptotic representation of the desired functions. The
numerical solution of Eq. (42) shows that Eq. (45) has
an infinite number of roots on the positive semiaxis and
has no root on the negative semiaxis. The smallest root
is equal to ω = 1.423.

Thus, the desired asymptotic representation cannot
be unambiguously determined by analyzing the solu-
tion of the boundary value problem given by Eqs. (39)–
(41) for a parabolic equation near λ = 0. The ω value
will be finally chosen due to the numerical solution of
the problem with the initial conditions at λ = ∞.

The asymptotic representation of the functions Φ1
and Φ2 has the form

(46)

Excluding the parameter q from Eq. (46) and taking
into account Eq. (26), we obtain the displacement
thickness as a function of the longitudinal coordinate:

The resulting expressions show that the asymptotic
boundary layer regime is achieved only in the limit
Rx  ∞ rather than at a finite distance from the lead-

ing edge. In this case, the quantity  + B and differ-

ψ0
'

γ h
2

4λψη– 4t+ 2 t.–=

A = A∞ 2κ F1λZ1 ω( ) 2κ t O λ 2
( ), λ       0.+ + +

2κωZ1 ω( ) 1+ 0.=

Φ1 D1
D
κ
----ln κ

ωDq
2

--------------– O q
4–( ),+ +=

e
Φ2 2e

D1

ω
---------- q–( )ln O 1( ), D1+ A∞ C0,–= =
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ence between the current and limiting values of the dis-
placement thickness tend to zero exponentially.

6. For numerical calculations, two formulations of
the boundary value problem are used. The problem
given by Eqs. (29)–(31) is first solved in the interval
0 

 

≤

 

 

 

τ

 

 

 

≤

 

 

 

a

 

 (0.8 

 

≤

 

 

 

a

 

 

 

≤

 

 1.5)

 

 and the problem given by

Eqs. (39)–(41) is then solved in the interval 0 

 

< 

 

λ

 

 < 

 

.

We represent Eq. (29) in the form

 

(47)

 

and solve Eq. (47) as the second order equation with
the known right-hand side. Taking into account condi-
tions (36) on the outer boundary of the layer, we arrive
at the integro-differential equation 

For the desired function to have no singularity on the
wall, we make the change 

 

ϕ

 

η

 

 = 

 

hy

 

. As a result, we
obtain the following equation for 

 

y

 

(

 

τ

 

, 

 

η

 

)

 

:

 

(48)

 

where

From Eq. (31), there follows the closure condition

 

(49)

 

The system of Eqs. (48) and (49) for two functions

 

y

 

(

 

τ

 

, 

 

η

 

)

 

 and 

 

Ω

 

(

 

τ

 

)

 

 is numerically solved by the iteration
method. With a given function 

 

Ω

 

(

 

τ

 

)

 

 [

 

Ω

 

(

 

τ

 

) 

 

≡ Ω

 

(0)]

 

 at the
first step of iterations, in order to determine 

 

y

 

(

 

τ

 

, 

 

η

 

)

 

 from
Eq. (48) in each layer in the variable 

 

τ

 

, the integral is
changed to the sum according to the Gregory formula
(modified trapezoid formula, which is exact for the
third order polynomials), which allows for the calcula-
tion of the desired function by an explicit formula
sequentially for all 

 

η

 

 values. In order to approximate
the partial derivative with respect to 

 

τ

 

, the function val-
ues in the current and preceding layers in 

 

τ

 

 are used.
After the determination of 

 

y

 

(

 

τ

 

, 

 

η

 

)

 

, new 

 

Ω

 

(

 

τ

 

)

 

 values are
calculated from Eq. (49) using numerical differentia-

1
a
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η Sϕηη( )η G1,=
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Φ τh 2τη Sϕηη+ +
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η

∞

∫=

y τ η,( ) 1
h η1( )
h η( )
-------------– G2 τ η 1,( ) η1,d

η

∞

∫=

G2 τ η,( )
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hyτ f '–( )
Φ τh 2τη Shyη 2τy–+ +
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Fig. 1. Profiles calculated for (a) velocity and (b) turbulent
shear stress in the boundary layer for q = (1) 0, (2) –0.25,
(3) –1.5, and (4) –∞.
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Fig. 2. Theoretical distributions of (a) friction and (b) dis-
placement thickness over the plate in the scaling variables
along with the experimental data taken from (s) [10] and
(u) [11].
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tion with smoothing. The calculation shows that the
function Ω(τ) is almost constant in the interval 0 ≤ τ ≤
a and the iteration procedure can be completed after the
third step.

The boundary value problem specified by Eqs. (39)–
(41) is solved similarly. After the representation in the
form

Eq. (39) is reduced to the integro-differential equation

The calculated limiting value of the function
F1Ω1(0) coincides with the smallest root of Eq. (45).

Thus, the function –  is almost constant in the

entire range of λ and increases monotonically from

 = 1.220 corresponding to λ = ∞ to 1.423 corre-

sponding to λ = 0.

Figure 1 shows the calculated profiles for (a) the
velocity and (b) shear stress for various values of the
scaling parameter q. Figure 2a shows a universal curve
specifying the friction distribution over the plate with
suction along with the measurement data [10, 11] plot-
ted in the scaling variables given by Eqs. (26). Experi-
ments reported in [10, 11] were carried out in a rather
wide region of the parameters: 3.8 ≤ Rx × 10–5 ≤ 35 and
1 ≤ –B × 103 ≤ 3.6. On the whole, the agreement of the
theoretical dependence with the measurements is satis-
factory. Discrepancy is observed only for large values

of the scaling variable  corresponding to the strong-
suction regime. In Fig. 2b, the calculated curve is com-
pared with the data reported in [10, 11] for the displace-
ment thickness distribution. All experimental points
plotted in the scaling variables given by Eqs. (26) lie
near the theoretical curve.
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In this paper, we study general solutions to the
Stokes equations in hydrodynamics and equations of
equilibrium in the elasticity theory, obtain new forms
for the representation of general solutions, and con-
struct a numerical method for calculating the Stokes
flows of a viscous fluid. By the representation of the
solutions to the Stokes equations we mean the expres-
sion of these solutions in terms of harmonic functions.
The new formulas include the representation in terms
of the first order operator and a class of 27 representa-
tions. The symmetries of fluid flows with low rates and
of elastic media equilibria have been found.

The suggested numerical method involves the
above-mentioned representations and a boundary inte-
gral equation of a particular type. It is essentially differ-
ent from the known methods of boundary integral equa-
tions based on multipole solutions to the Stokes equa-
tions [1–3].

The manner in which the solutions to the Stokes
equations and to the equations of the elasticity theory
are related to the solutions to the Laplace equations is
considered in detail in [4] for the case of plane problems.

REPRESENTATION OF THE VELOCITIES IN 
TERMS OF THE FIRST ORDER DIFFERENTIAL 

OPERATOR

The solutions to the Stokes equation

(1)

are known to be the same as the solutions to the dis-
placement equations of equilibrium in the elasticity
theory

(2)

∇ i p µ∆ui, ∇ ju j 0, i j, 1 2 3,, ,== =

1 2σ–( )∆ui ∇ idivu+ 0=
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ul. Taœmyrskaya 74, Tyumen, 625000 Russia
e-mail: o.v.voinov@mtu-net.ru
1028-3358/05/5012- $26.00 0663
at the Poisson coefficient σ = . Here, summation is

taken over repeated subscripts.
It is known that the general solution to the three-

dimensional Stokes equations (1) can be represented [5]
in terms of the second order differential operator. The
representation of the solutions to Eqs. (2) in terms of
the second order operator is also known [6].

By contrast, we represent the solution to the Stokes
equations in terms of the first order differential opera-
tor:

(3)

where δik is the Kronecker delta. To solve Eqs. (2), we
replace coefficient 2 in representation (3) with

. By analogy with the velocity potential u = ∇

Φ of a vortex-free flow of an ideal liquid, we call the
harmonic functions in (3) the generalized potentials.

For an arbitrary axisymmetric flow, according to (3),
the velocity field may be specified via two harmonic
functions ϕ and Q in the form

(4)

Consider the Poiseuille flow through a channel with
a unit circular cross-section at the unit average velocity

The Poiseuille flow is associated with two generalized
potentials

(5)

The Oberbeck formula [7, 8] for the solution to the
problem of motion of an ellipsoid in a viscous fluid

1
2
---

ui Γ ijϕ j, Γ ij 2δikx j δjixk δkjxi–+( )∇ k,= =

∆ϕ i 0, p 2µ∇ jϕ j,= =

4 1 σ–( )
3 4σ–

--------------------

ur 2x2∇ rϕ r∇ 2ϕ– ∇ rQ,+=

u2 r∇ rϕ 2x2∇ 2ϕ ∇ 2Q,+ +=

∆Q 0, p 2µ∇ 2ϕ , r x1
2 x3

2+ .= = =

ur 0, u2 2 2r2, p– 8µx2.–= = =

ϕ r2 2x2
2, Q–

8
3
---x2

3 4r2x2– 2x2.+= =
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involving two arbitrary harmonic functions implies,
with one of them being neglected and the indices being
circularly permuted, the representation of the solutions
to the Stokes equations

(6)

Note that formulas (6) and (3) are qualitatively dif-
ferent, because representation (6) involves the func-
tions themselves along with their derivatives.

A formula for the general solutions to Eq. (2), which
is similar to (6), has been obtained in works by P.F. Pap-
kovich, H. Neuber, and G.D. Grodskiœ (see [9, 10]);
their formula includes an additional potential vector.

THE CLASS OF GENERAL REPRESENTATIONS 
OF THE SOLUTIONS

TO THE STOKES EQUATIONS

Theorem 1. An arbitrary solution to the Stokes
equations (1) or Eqs. (2) that is sufficiently smooth in
some domain may be represented in the Cartesian
coordinates as

(7)

where ϕ, Q, and ψ are harmonic functions of x; the indi-
ces m, q = 1, 2, 3; and εijq is the Levi–Civita antisym-
metric tensor.

Theorem 1 is also valid for the representation

(8)

In the case of solutions (7) and (8) to the Stokes equa-
tions, the pressure p = 2µ∇ mϕ.

Finally, the theorem also holds for the following
representation implied by the first two representations:

(9)

In the case of solution (9) to the Stokes equations, the
pressure p = –2µ∇ mϕ.

Formulas (7)–(9) form a class of representations
consisting of 27 vector formulas. Arbitrary functions
in (7) may be called generalized potentials. Note that
the three-dimensional character of representation (7) is
essential: there is no simple formula for the plane case.

The first terms in (8) are similar to the terms in the
Oberbeck formula or the

Papkovich–Neuber–Grodskiœ formula (see [9, 10]).
The first terms in (9) are similar to the formula in
paper [9]. It should be emphasized that formulas (8)

ui x j∇ iϕ j 3 4σ–( )ϕ i,–=

p 2µ∇ jϕ j.=

ui
4 1 σ–( )
3 4σ–

--------------------xm∇ iϕ xK ∇ kϕδim xi∇ mϕ–+=

+ ∇ iQ εijq∇ jψ.+

ui xm∇ iϕ 3 4σ–( )ϕδim– ∇ iQ εijq∇ jψ.+ +=

ui 4 1 σ–( )ϕδim xk∇ kϕδim xi∇ mϕ–+=

+ ∇ iQ εijq∇ jψ.+
and (9) are qualitatively different, due to their last
terms, from the formulas in the aforementioned works.

SYMMETRIC EQUATIONS 
FOR THE VELOCITY FIELD

Write the Stokes equations in a certain domain V in
the form

(10)

(11)

The pressure p = 2µΠ. The equations also correspond to
Eqs. (2) for the displacement in an elastic medium.

Consider other field equations within domain V and
a particular condition on its boundary ∂V, which is a
surface S:

(12)

(13)

The following theorem asserts the equivalence of
the two ways of describing the field (under the conven-
tional assumptions about the smoothness of the fields
on the boundary of the domain and about the smooth-
ness of the boundary).

Theorem 2. Within a simply connected domain V,
equation system (12) together with the boundary condi-
tion (13) are equivalent to the equation system (10), (11).

According to Theorem 2, the solutions to Eqs. (12)
under condition (13) satisfy the source system (the con-
verse statement is obvious).

Equations (12) possess the property of symmetry;
namely, they are invariant under a transformation that
involves four arbitrary harmonic functions:

(14)

The field symmetry characterized by the invariant
transformation (14) is a property of Eqs. (12), which are
valid in the framework of the global description of the
field in a certain domain under condition (13) on its
boundary.

According to (14), in the general case, the velocity
field has the form

(15)

By the field equations (12), Π and v i are arbitrary har-
monic functions.

Particular condition (13) on the boundary surface S
should be considered together with the conventional

∆ui 2∇ iΠ ;=

divu 2 1 2σ–( )Π+ 0, x V .∈=

∆ui 2∇ iΠ , ∆Π 0, x V ;∈= =

divu 2 1 2σ–( )Π+ 0, x S.∈=

Π' Π Φ, ui'+ ui xiΦ ϕi, ∆Φ+ + 0,= = =

∆ϕ i 0.=

ui Π xi v i, ∆Π+ 0, ∆v i 0, x V ;∈= = =

divu 2 1 2σ–( )Π , x– S.∈=
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boundary conditions for the velocities (displacements)
or stresses in the statement of boundary-value prob-
lems. For the case of a viscous fluid, this means the
incompressibility of the fluid on the boundary surface.
This condition makes sense, because the flow is not
affected by the fluid inertia.

Note that Eqs. (12) or the first formulas in (15) are
usually considered [5, 8, 10] together with an equation
of the type (11), which precludes a simple symmetric
description of the field, and are not treated as the field
equations.

A NUMERICAL METHOD 
BASED ON THE GENERAL REPRESENTATIONS 

OF THE VELOCITIES 
AND THE INTEGRAL EQUATION

Denote functions ϕ, Q, and ψ in representations (7)–
(9) by Φα, α = 1, 2, 3. The components of velocity u on
surface S may be expressed in terms of ϕ and ∇Φ α|S . In
the case of representation (7), they are independent of
ϕ. On surface S, the gradient

where n, t1, and t2 are the unit normal and tangent vec-
tors, and l1 and l2 are the lengths of the arcs of ortho-
gonal curves on S. Write the normal and tangent
stresses Pn, Pτ1, Pτ2 in the form of linear functions of
∇Φ α|S, ∇ l1∇Φ α , and ∇ l2∇Φ α .

In the axisymmetric case, for representation (7), we
have

(16)

where R is the radius of curvature of the contour of sur-
face S. The normal stress

(17)

The pressure p = 2µ∇ 2ϕ. Stress formulas (16) and (17)
are also valid for representation (8). Here, the normal
velocity

(18)

In the case of the symmetric description of the field,
expression (15) for velocity u implies the formulas for
the velocity components on surface S, tangent and nor-
mal stresses:

∇ S n∇ S t1∇ l1 t2∇ l2,+ +=

un 2x2∇ nϕ r∇ lϕ ∇ nQ;+ +=

uτ r∇ nϕ– 2x2∇ lϕ ∇ lQ;+ +=

1
2µ
------Pτ

∂un

∂l
--------

uτ

R
----– ∇ rϕ ,+=

Pn p– 2µ
∂uτ

∂l
--------

un

R
-----

ur

r
----+ + 

  .–=

un x2∇ nϕ n2ϕ– ∇ nQ.+=

Pn 2µ Π 1 2σ–( ) x n∇ nΠ n j∇ nv j+⋅+( ).=
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In the axisymmetric problem, the components of
vector v can be expressed in terms of two harmonic
functions: v r = ∇ rQ, v 2 = ∇ 2Q + f.

The statement of boundary-value problems for the
Stokes equations on separate parts of the boundary sur-
face S usually involves the specification of the velocity

(19)

(i = 1, 2, 3), the surface force

(20)

(pij is the stress tensor), the normal velocity and the tan-
gent stresses

(Pτ2 is written in the same way). The representation of
the general solution via three harmonic functions or the
symmetric description of the field, which involves four
functions of this kind, allows us to express the bound-
ary conditions in terms of the values of Φα on S and in
terms of the normal derivatives ∇ nΦα . To make
the equations closed, we need a relation between Φα
and ∇ nΦα . Such a relation is the integral equation (IE)
on the boundary surface

(21)

where r = |x – x'|, x' is the integration point. This equa-
tion was first introduced in [11] for the cases of plane
and axisymmetric problems for the surfaces of several
cavities in an unbounded liquid. In these cases, coeffi-
cient K = 1. The problem being posed inside the closed
surface S, coefficient K = 0. For an arbitrary case, K is
determined via calculation of the right-hand side of the
main integral relation for the harmonic function const
and subtraction of both sides of the obtained identity
and relation. For the plane problem, function r–1 in (21)
is replaced with lnr and coefficient 4π is replaced
with 2π.

If the flow domain is not simply connected, then,
following Kelvin [8], we include the partitions that
make this domain simply connected into surface S.
Function Φ may have a cyclic constant κ on a partition,
namely, the increment of Φ in tracing a closed contour
partitioned by the partition. The possible contribution
of the integral over the partition to (21) is proportional
to the cyclic constant κ. Since all the possible partitions
are included in surface S, the form of Eq. (21) is pre-
served.

The coefficient in the main integral relation of the
theory of harmonic functions is known to undergo a

ui ui
0, x S0 S⊂∈=

pijn j Pi, x S1 S⊂∈=

u n⋅ un, pijn jτ1i Pτ1, x S2 S⊂∈= =

4πKΦ x( ) 1
r
---∂Φ

∂n
------- x'( ) Φ x'( ) Φ x( )–( )–

∂
∂n
------1

r
---

 
 
 

S,d∫
S

∫=

x x', S,∈
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jump on S (between close points x ∉  S and x ∈  S). This
jump may be eliminated by subtracting Φ(x) and Φ(x')
under the integral sign in (21). Then, the IE may be dis-
cretely approximated (by the same scheme) with a
much higher accuracy than in the presence of the jump.
This is due to the fact that the presence of coefficient
Φ(x') – Φ(x) vanishing at r = 0 significantly diminishes
the impact of the error of approximation of the normal
derivative ∇ nr–1 in the close neighborhood of point r = 0.

Writing the modified IE (21) for each function Φα ,
together with the boundary conditions on S, we obtain
a closed description of the viscous fluid flow.

In the framework of the method, one may also con-
sider operator A of taking the normal derivative, which
is defined by IE (21):

(22)

With the use of operator A, the normal derivatives ∇ nΦα
may be eliminated from the boundary conditions. As an
operator of differentiation, operator A is unbounded.

In the design of numerical algorithms, points of sur-
face S are specified by two parameters, τ and η:

(23)

Express the singularity of the integrand in (21) in
terms of the singularity of the function of the para-
meters:

(24)

A Φ S( ) ∇ nΦ.=

x' X τ η,( ), x X τ0 η0,( ).= =

1
r
---

1
r'
--- f τ η τ 0 η0, , ,( ),=

r' Xτ0 τ τ 0–( ) Xη0 η η 0–( )+ ,=

0.40

10

20

30

0.8 1.2

Pn0–Pn

α0

θ

Figure.
Here, Xτ0 and Xη0 are the derivatives with respect to τ
and η at point τ0, η0 .

For r > 0, the function f = r'r–1 in the three-dimen-
sional problem has bounded first derivatives with
respect to τ and η. By comparison, note that, in plane
and axisymmetric problems [11], transformation (24)
with a single parameter τ gives an infinitely differentia-
ble function f in a certain neighborhood of point τ0 pro-
vided that the contour is an analytic curve.

In the two-dimensional problem, substitution (24)
replaces the singularity of lnr with the singularity of
ln|τ – τ0|.

Functions Φ and ∇ nΦ in (21) are represented by
interpolation on a certain number of nodes. For the two-
dimensional case, the integrals in the two-dimensional
version of (21) are approximated by quadrature formu-
las with a weight [11]

. (25)

In three-dimensional problems, we use a similar for-
mula for integration with respect to the parameters with
the weight function r'–1.

CALCULATION OF A FLOW
WITH A MOVING ANGULAR POINT 

ON THE BOUNDARY CONTOUR

An axisymmetric flow of a liquid that slowly fills a
channel with a circular cross-section, where the free
surface is close to a sphere segment intersecting the
wall at an angle of α0 , has been calculated. On the
sphere, Pτ = 0 and a normal velocity un is specified. The
velocity on the wall is equal to zero. Away from the
sphere, the flow is close to the Poiseuille flow.

In the small neighborhood of the angular point, the
problem has been regularized in order that the problem
to be calculated have sufficiently smooth boundary
conditions. The small neighborhood has a size of 10–2

of the channel radius in the example under consider-
ation. 

The spacing of the nodes on the contour of the flow
boundary S could significantly vary over the boundary,
becoming closer near the angular point. The method
works even for a gross variation of the grid step (up to
100 times in the case that the total number of nodes is
on the order of 100). In the example (figure), the coef-
ficient of the step nonuniformity is 50. The figure shows
the difference between the normal stress and its singu-
lar part Pn – Pn0 related to the polar angle θ on the
spherical free surface; the contact angle is α0 = 30°. The
numerical values of this difference are compared with

F τ( ) τ τ 0–ln τd

τ1

τN

∫ ckF τk( )
k 1=

N

∑=
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the asymptotics near the angular point, according to
which the stress

where the constants are known [14]. The first term Pn0
is the Taylor stress singularity for a flow in a corner. The
values given in Fig. 1 are calculated by the equivalent
formula

where h is the distance from the wall. It is seen that,
near the edge of the spherical segment, the numerical
value of the difference between the stresses (the solid
line) is close to its asymptotic values (the dotted line).
The diagram shows the difference between two values,
which are slightly different (about 10%) at the points
where the calculations are close to the asymptotic val-
ues. The calculated curve is smooth because of the
highly accurate calculation of the stress (the error is less
than 10–3), which is maintained notwithstanding the
strong nonuniformity of the grid.

It is seen in the figure that, subtracting the Taylor
singularity from the stress, we do not obtain a bounded
function Pn – Pn0; there is another peak for the stress
difference. It is important that both peaks are correctly
described by the suggested numerical algorithm.

The numerical calculations employ the symmetric
equations for the velocity field with a special boundary
condition (13), representation (7) of the velocities via
the generalized potentials, and the representation by
formula (8). The results obtained by different methods
are in good agreement.

The presented calculation results demonstrate that
strong nonuniformities of the stress field of a slow flow
of a viscous fluid can be calculated with the use of the
same integral equation that was used for the calculation

Pn c1r 1– c2 rln …,+ +=

Pn c1 α0h 1–sin c2 hln …,+ +=
DOKLADY PHYSICS      Vol. 50      No. 12      2005
of the dynamics of an ideal liquid with a free boundary
[11–13].
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Stability of Two-Dimensional Solitons 
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E. N. Kalaidin1, S. Yu. Vlaskin1,*, E. A. Demekhin1, and S. Kalliadasis2

Presented by Academician G.G. Chernyi April 4, 2005

Received June 24, 2005
The mechanism of the transition from two-dimen-
sional (2D) waves to a 3D wave regime in a viscous liq-
uid film falling down on a vertical wall has been eluci-
dated for the first time. The linear stability of 2D soli-
tons with respect to 3D perturbations is analyzed. The
decomposition of solitary waves and their transforma-
tion into localized wave structures is described using
numerical methods. The proposed physical mechanism
of 2D solitary wave breakage is related to the destabi-
lizing action of capillary forces in the transverse direc-
tion and to the development of a Rayleigh instability,
which leads to the decomposition of capillary streams.

1. The 3D flow in a thin liquid film falling down on
a vertical wall at moderate Reynolds numbers is
described by the Kapitza–Shkadov system of equations
[1–3]:

(1)

where q and p are the liquid flow rates along the gravity
force (x axis) and in the normal (z axis) directions,

∂q
∂t
------

6
5
--- ∂

∂x
------q2

h
----- 6

5
--- ∂

∂z
-----qp

h
------+ +

=  
1

5δ
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∂3h

∂x3
-------- ∂3h

∂x∂z2
--------------+ 

  h
q

h2
-----–+

 
 
 

,

∂p
∂t
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6
5
--- ∂

∂x
------qp

h
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5
--- ∂

∂z
----- p2

h
-----+ +

=  
1

5δ
------ h

∂3h

∂x2∂z
-------------- ∂3h

∂z3
--------+ 

  p

h2
-----–

 
 
 

,

∂h
∂t
------ ∂q

∂x
------ ∂p

∂z
------+ + 0,=
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respectively; h is the film thickness; δ =  is

the modified Reynolds number; Re is the flow-rate-
average Reynolds number; γ = σρ–1ν–4/3g–1/3 is the
Kapitza number; σ, ρ, and ν are the surface tension,
density, and kinematic viscosity of the liquid, respec-
tively; and g is the acceleration of gravity.

System (1) has a one-parametric family of solutions
of the 2D soliton type [4]:

for which h0  1 for x  ±∞ [infinity]. These soli-
tons, which appear due to random perturbations arising
at the input and evolving downstream [5], have been
observed in experiment [6, 7]. In the case of relatively
large Reynolds numbers and sufficiently long channels,
the 2D solitons exhibit disintegration with the forma-
tion of 2D localized structures [8, 9].

Let us impose a small perturbation on the above 2D
soliton-type solution:

(2)

Substituting expressions (1) into Eq. (1) and linearizing
the obtained relations, we obtain a boundary-value
problem for determining the eigenvalues λ:

Re11/9

5γ1/3 37/9⋅
-----------------------

p
∂
∂z
----- 0,

∂
∂t
----- c

∂
∂x
------, q0– ch0 c– 1,+= = = =

h h0 ξ( ) Ĥ ξ( )eiβz λ t+ ,+=

q q0 ξ( ) Q̂ ξ( )eiβz λ t+ ,+=

p iP̂ ξ( )eiβz λ t+ , ξ x ct.–= =

λQ̂
d

dξ
------ 12

5
------

q0

h0
-----Q̂

6
5
---

q0
2

h0
2

-----Ĥ– cQ̂–
 
 
  6

5
---β

q0

h0
-----P̂–+
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1

5δ
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d3Ĥ

dξ3
---------- h'0''Ĥ β2h0

dĤ
dξ
--------– Ĥ

1

h0
2
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2q0

h0
3

--------Ĥ+ + +
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,
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(3)

where  

At ξ  ±∞, the system of equations (3) transforms
into a system with constant coefficients, which has
solutions of the type exp(σx), where σ are determined
by the dispersion relation

Three σk correspond to the components with Re{σk} >
0, which decay at ξ  –∞ and yield the solution 

System (3) was numerically integrated from these ini-
tial conditions to a region of large ξ > 0, which corre-
sponds to the asymptotics at ξ  +∞. This region is
described using the remaining two σk values with
Re{σk} < 0, which decay at ξ  +∞ and yield the
solution 

It was found that, for all δ values, there is a single
unstable real eigenvalue λ(β). In a small vicinity of
β = 0, we have λ = 0. As β increases, λ grows, passes
through a maximum (λm at β = βm), decays to zero at
β = β0 , and goes to a stable region of λ < 0.

Figure 1 shows the plots of βm and λm versus δ. For
δ  0, the problem has an asymptotic solution with
βm  0.3255(15δ)1/2, λm  0.0545(15δ)2, and
β0  0.4758(15δ)1/2 (dashed lines in Fig. 1). For suf-
ficiently large δ values, the solution exhibits a different
asymptotic behavior, which corresponds to βm 
0.361, λm  0.2382, and β0  0.832.

The recalculation from βm to a dimensional quantity
for water (γ = 2850) yields an estimate of the most
“dangerous” wavelength: 1.42Re1/9. For Re = 5–80, this
wavelength is on the order of 2 cm, which is in good
agreement with experiment [7, 8, 9]. Taking into
account that the initial perturbation amounts to 5–10%
of the soliton amplitude, the distance traveled by a 2D
soliton downstream until its complete disintegration is

λ P̂
d

dξ
------ 6

5
---

q0

h0
-----P̂ cP̂– 

 +

=  
1

5δ
------ βh0

d2Ĥ

dξ2
---------- β3h0Ĥ–

1

h0
2

-----P̂–
 
 
 

,

λ Ĥ
d

dξ
------ Q̂ cĤ–( ) βP̂–+ 0,=

Ĥ Q̂ P̂, ,         0 for ξ        ∞ . ±

σ4 5c2 12c– 6+( )δ 2β2–( )σ2+(

+ 3 10λcδ– 12λδ c–+( )σ 5λ2δ λ β4 )+ + +

× 6 5c–( )δσ 5λδ 1+ +( ) 0.=

A1 σ1x( )exp A2 σ2x( )exp A3 σ3x( ).exp+ +

B1 σ4x( )exp B2 σ5x( ).exp+
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6Re

 

1/9

 

. This value also rather weakly depends on the
Reynolds number and is on the order of 10 cm [7, 8, 9].

 

2. 

 

We have integrated system (1) using numerical
methods. The initial conditions corresponded to a 2D
soliton perturbed with respect to 

 

z

 

:

where 
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 are constants. The calculations were

performed for 
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, which

corresponded to a small random noise imposed on the
2D solution. A solution was found in a rectangular

domain 
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 = 
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. The boundary conditions at
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 = 
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l

 

 were selected in the form of 

 

h

 

 = 

 

q

 

 – 

 

ch

 

 = 1, 

 

p

 

 =
0; the boundary conditions with respect to 

 

z

 

 were peri-
odic:

The solution was obtained by the high-order finite dif-
ference (lattice-point) method in a coordinate system
moving at a 2D soliton velocity, with an implicit finite
difference scheme in the time domain.
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Fig. 1. The plots of (1) βm and (2) λm versus δ. Dashed lines
show the asymptotic behavior for small δ.
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Fig. 2. Decomposition of a 2D soliton with the formation of 3D solitons (δ = 0.05).
The results of our calculations showed that, for δ <
δ∗  . 0.05–0.07 (for water, this corresponds to Re∗  . 6),
2D solitons do not exhibit complete disintegration and
the signal acquires a stationary quasi-2D shape slightly
curved in the z direction. For δ > δ∗  . 0.05, a Rayleigh
instability is developed that leads to the complete
decomposition of 2D solitons with the formation of 3D
solitons (Fig. 2).
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