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It is shown that ar§ U(2) Higgs model on a lattice is equivalent to the
Georgi—Glashow model in the limit of a small coupling constant be-
tween the Higgs and gauge fields. It can therefore be concluded that the
transition between the confinement and symmetric phases in-al3
dimensionalSU(2) Higgs model at finite temperature is accompanied
by condensation of Nambu monopoles. 1®97 American Institute of
Physics[S0021-364(07)00121-1
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According to one of the most popular modern hypotheses, the baryon asymmetry of
the universe arose in the process of an electroweak phase traifsémrfor example, the
review by Rubakov and ShaposhinkdpvOn account of the smallness of the Weinberg
angle 6, and the insignificance of the fermion effects, this transition is largely deter-
mined by the properties of th8U(2) Higgs model. The present letter examines the
behavior of the magnetic fluctuations, which can play an important role in a temperature-
induced phase transition, in ttf8J(2) Higgs model.

Let us consider th&U(2) lattice Higgs model with scalar fiel®#, in the funda-
mental representation, the action in which is described by the formula

U, d]=— g > up—gZ S (D] Uy Dy 5 +C.C)+ V(D)) 1)
X w

HereUp represents the ordered product of the edge elements of the gaudé,ficlover
the boundaries faces of the plaque®eandV(|®|) is the potential on the field, and
|®|2=D" .

On account of the triviality of the homotopy group,(SU(2)), there are no topo-
logically stable monopolar defects in this theory. However, “embeddaddnopoles,
the so-called “Nambu monopoleswhich are not topologically stable defects, do exist
in the theory. These objects are described by the composite field

Xi=d,; o?D, )
(o® are Pauli matrices which behaves under gauge transformations as a scalar field in
the adjoint representation. A Nambu monopole is a configuration of figldad® such

that the fieldU and the composite fielgl, expressed in terms of the fundamental fiéld
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according to Eq(2), possess the configuration of a 't Hooft—Polyakov mondhini¢he
Georgi—Glashow mod@lvith the field y in the adjoint representation and with the gauge
field U.

Since Nambu monopoles are described solely by the gaugdfialtd the compos-
ite field y, the dynamics of these monopoles is determined completely by the effective
action Sy

e—seﬁ[u,xlzj poe SV [ (32— ) o?,). )
a X
To calculate the actioB it is convenient to study the following parametrization of the

field @:

cosa e'’
sin a

d=e*¥, T=p

where ¢,0 e[—m,m), ac[0,7/2], and pe[0,+). The fieldsp, «, and # can be
expressed in terms of the fiej with the aid of Eqs(2):

x? 1 JixhHZ+(x?)?

0=arctan—l, azi arctan—3, p:,/|X|,
X x|
whence
1 Xl+iX2
:—Jﬁ_(lxl—bﬂ - @
2(IxI=1xD

Using the relation for the modulus of the fieldl, |®|2=|x|=\(Z3_,(x?)?), and the
measure

+ o T + o0 1
f D®~~=f Dsof IT — dx dxi dis- -,
—o - —w X |Xx|
we obtain for the effective actio(8)
B ~
Serl U, x]= =5 2 Tr Up+Si[U,x]+ V(| x)), ®
where the new potential on the fiejdis determined by the expression

V<|x|>=v<m>+§ In|x., (6)

and the interaction of the fieldd and y is

e SlUx— f Dy exp{ Kg > Ry, COS@yi i @xt AL T (7)
™ M

In this formula we introduced the notation

WUy Wi =Ry 0%, (8)
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FIG. 1. Phase diagram of tf#U(2) Higgs model for small values of.

The derivation of the effective actiod) is correct in any dimension of space—time.

For simplicity, we shall examine the case of an infinitely deep potevgb|) with
a minimum at|®|2=|x|=1. In this case, the lengths of the Higgs fiekdand of the
composite fieldy are frozen. The integrdl) is most easily calculated in the limit<1.
In leading order we obtaifto within a constant
2

K2 K
Si=- 52 2 ROk =5 2 X T(Ux U i) Ok,
M M

where we employed Eq$4) and(16) and introduced the notatign= y*¢®. Thus in the
limit k<1 the effective actior(5) with the length|®|2=1 of the Higgs field frozen is
identical in leading order to the Georgi—Glashow action

B Y
SerlUnx]=—5 2 TrUp= 5 2 2 Tr(Uy Uy uxxs i) + O, E)
y
where
y=«%l4 . (10

It is interesting to compare the phase diagrams of thie B-dimensionalSU(2) Higgs

model (1) and the Georgi—Glashow modé&)—(10) at nonzero temperature for small
values of the parameter (y, respectively. Figure 1 displays schematically the phase
diagram obtained in Ref. 7 for th8U(2) Higgs model. Figure 2 shows the phase
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FIG. 2. Phase diagram of the Georgi—Glashow model for small

607 JETP Lett., Vol. 66, No. 9, 10 Nov. 1997 M. N. Chernodub 607



diagram obtained in Ref. 8 for the Georgi—Glashow model. For small values of the
constantB both theories are in the confinement phaselor confinement As 3 in-
creases, a phase transition from the confinement phase to the symmetric phase occurs in
both theories, and the line of phase transitidds-B’ in the Georgi—Glashow model
should correspond to the line of phase transitidnsB in the SU(2) Higgs model
according to Eq(10): y.(8) = ;@([5’)/44— O(K‘C‘). Figure 2 shows schematically the phase
transition predicted with the aid of Eq10) (dashed lineA’—C'). Unfortunately, it is
impossible to determine the correctness of this prediction quantitatively on the basis of
the results of Refs. 7 and 8, since in those papers the phase diagrams were studied at
different temperatures.

It is knowrP that in the Georgi—Glashow model confinement is due to the dynamics
of the 't Hooft—Polyakov monopoles: in the confinement phase the monopoles are con-
densed, while in the deconfinement phase there exists a dilute gas of monopole—
antimonopole pairs. Therefore, at least for low values of the coupling constahie
phase tranistion from the symmetric phase to the confinement phase3tl2g Higgs
model (1) is accompanied by condensation of Nambu monopoles, since the Nambu
monopoles in thesU(2) Higgs model(1) correspond to the 't Hooft—Polyakov mono-
poles in the Georgi—Glashow modé).

It is natural to suppose that condensation of Nambu monopoles also occurs for larger
values of the parameter in the course of the phase transitions from the confinement
phase to the symmetric phase and from the confinement phase to the Higgs phase. The
latter conjecture finds support in the fact that in the Higgs phase there exists an embedded
string®® with nonzero string tension. Stretched between Nambu monopoles, such a string
destroys the condensate. The results of investigations of this question will be published
later in a separate paper.
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The generation of the sum frequency of viside5235um) and IR(10

pm) radiation on smooth and corrugated silver surfaces is investigated.
The sum-frequency signal obtained with a visible-range surface
plasmon-polariton excited on a corrugated silver—air interface is found
to be more than four orders of magnitude stronger than the signal from
a smooth silver surface. @997 American Institute of Physics.
[S0021-364(97)00221-1

PACS numbers: 73.20.Mf, 71.36¢

Nonlinear sum-frequency generati®FQ spectroscopy has been under active de-
velopment in recent years as a tool for investigating surfaces and intetf&&&3.meth-
ods are especially promising for the investigation of the surfaces of media containing
centers of inversion, since in this case nonlinear optical processes occur only on the
surface. The investigation of thin films, right down to monolayer thicknesses, on the
surface of these materials is also promising. However, the SFG signal from most surfaces
is very weak.

The SFG signal can be intensified by resonantly increasing the strength of the
electric field at the surface under study. One of the simplest and most effective methods
of enhancing the field on the surface of a metal is excitation of a surface polaton.
surface plasmon—polaritgi®PP can exist on metal surfaces in a wide spectral range —
from the far-IR up to U\2 The electromagnetic field of a SPP is strongest at an interface
and decreases exponentially with distance from the interface.

We employed a diffraction gratingcorrugated silver surfagéo excite a SPP.In
this case, the SPP is excited bp-polarized beam of light incident at a prescribed angle
onto a surface which is corrugated with a period of the order of the wavelength.

A diagram of the experiment is displayed in Fig. 1. The setup employed in the
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FIG. 1. Diagram of the experimental setup:— Sample,2 — focusing lens3 — filter, 4 — CCD camera.

present work is described in Ref. 5. The FELIX free-electron laser was used as the IR
radiation sourcé.The visible-range radiation source operates at the second harmonic of
a Nd:YLF laser(the wavelength of the second harmonic equals 523.6 Tihe two lasers

are synchronized with each other so as to be able to obtain the maximum temporal
overlap of the micropulses at the required point through a continuous adjustment of the
delay of the visible radiation pulse. The energy of the FELIX micropulse and of the
visible-range laser pulse equalled, on average, 10 apd,&espectively. All measure-
ments were performed at a fixed FELIX radiation wavelength —udf. The sum-
frequency signal was detected with a liquid-nitrogen-cooled Princeton Instruments CCD
(charge-coupled devigecamera. The SFG signal was emitted from the surface in the
form of an approximately parallel beam, which was focused by a lens onto the CCD
camera. The focal length of the lens was equal to 20 cm. A replaceable selective narrow-
band filter(transmission coefficient — 70% at the frequency of the SFG signal andl 10

at the frequency of the Nd:YLF lagawvas used to suppress the strong scattered radiation
of the Nd:YLF laser. The signal with the IR radiation blocked off was recorded to make
sure of the absence of a Nd:YLF-laser signal.

A diffraction grating was deposited on part of the surface of glass plates by a
photolithographic method followed by ion etching. The period of the gratidgser-
mined according to the diffraction of a visible-range laser beaas equal to 305 nm for
grating | and 318 nm for grating Il; the depth of the gratings was 15—20 nm. A silver film
approximately 200 nm thick was deposited on the grating from above by thermal evapo-
ration in vacuum with a residual-gas pressure<df0° torr.

In the excitation of a SPP at an interface the tangential component of the momentum
must be conserved. In the case of a diffraction grating deposited on a surface, and with
both the visible-range and IR beams lying in a plane perpendicular to the grating lines,
this condition for an air—metal interface can be written in the form
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TABLE |. Experimental parameters and intensiti@s the pulses of the SFG signal measured with a
CCD camera for different configurations of the samples.

Isfg

Lattice
Sample period, nm Oyis n’ config. 1 config. 2 smooth metal
I 305 40.3° 1.069 XK10° 82 57
I 318 35.5° 1.065 1.510° - 98
! s 0 ! 0 ! s 0 (D)
— SIN 6,js— — SIn 6;, =—— SIn ,
)\vis vis )\ir ir )\ng sfg

where\,s, Nir, and\g¢q are, respectively, the wavelengths of the visible-range laser
radiation, the infrared FELIX radiation, and the generated sum-frequency radiation, and
byis, Oir » and fs¢q are the corresponding angles of incideriemission.

The same equation also holds in the case of SFG on a smooth surface of theSample.
Hence it follows that we can compare the SFG intensities from smooth and corrugated
surfaces by simple parallel displacement of the sample, keeping the entire geometry of
the experiment unchanged.

In the experiment the angles of incidence of the visible-range and IR beams on the
sample were varied simultaneously by rotating the sample. The angle between them was
fixed and equal to 90.3°. The angle of maximum excitation of the SPP was determined
experimentally by two independent methods: according to the minimum of the specular
reflection and visually according to the maximum of the light scattered by the sample.
The two methods gave identical values to within the experimental error. The angles of
incidenced,;s, corresponding to maximum excitation of the SPP are given in Table I.
The values of the real part’ of the effective refractive index of the SPBalculated
using these value@nd also presented in Tabledre in good agreement with the value
1.056 calculated from the optical constants of silver, which are given in Rek& also
Ref. 8.

The SFG yield was measured in three different configurations:

1. With the wave vector of the visible-range radiation parallel to the dispersion plane
of the grating.

2. With the wave vector of the visible-range radiation perpendicular to the disper-
sion plane of the grating.

3. With the sum-frequency generation occurring on the smooth surface of the metal
outside the diffraction grating.

The transition between these configurations is made by rotating the sample by 90° or
by parallel displacement of the sample. The results of these three measurements are also
presented in Table I. As one can see from the table, in the case of excitation of a SPP
(configuration 1 the enhancement of the SFG is by a factor~of0® for sample | and
~1.5x 10* for sample Il. The absence of enhancement in configuratite QPP is not
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FIG. 2. 1-R (O) and SFG intensitys4 (X) versus the angle of incidence of the visible-range radiation for
sample Il in the region of SPP excitation.

excited indicates that this effect is not associated with an increase in the roughness of the
surface, which might have taken place in the course of preparation of the diffraction
grating.

It is well known that the angular dependence of the intensity of the electromagnetic
radiation specularly reflected from a diffraction grating has a minimum near the angle of
excitation of a SPP# If the depth of the grating is small compared with the wavelength
of the incident radiation, as is the case for all the gratings employed in the present work,
the intensity of the SPP and therefore dlsg( 6,is) should be proportional to-2R(6,s),
whereR(6,;0) is the reflectivity of the grating for visible-range radiatidithe curves
Isio( Ovis) and 1—R(#6,;s) for sample 1l are presented in Fig. 2. As one can see from the
figure, the indicated relation holds to within the experimental error. Although our results
indicate unequivocally that the excitation of a SPP is responsible for the enhancement of
SFG, the value obtained for the enhancement factor is approximately two orders of
magnitude greater than the expected enhancement of the electric field of the wave of
exciting radiation on the corrugated surfddeurther investigations are needed to deter-
mine the reasons for such a large discrepancy.
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dinov for assistance in setting up the experiment.
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A Monte Carlo calculation of photo- and conversion electron yields and
spectra from a Fe target shows that the yield and hardening of the
spectrum increase with increasing grazing angles of incidence of the
primary beam, and that this effect is sharper for photoelectrons, indi-
cating that their ionization efficiency is higher. ®97 American
Institute of Physicg.S0021-364(07)00321-9

PACS numbers: 79.661, 02.70.Lq

The photoelectron yield from targets irradiated with an x-ray beam at different
angles of incidence was studied experimentally and theoretically in Refs. 1 and 2. A
Monte Carlo calculation showed that the anisotropy produced in the initial angular dis-
tribution of photoelectrons by a variation in the degree of polarization of the primary
photon beam has virtually no effect on the integrated electron yield from the target.
However, these calculations did not treat the case of glancing incidence of the primary
beam on the target. Moreover, the anisotropy due to the predominant emergence of the
photoelectrons in the direction of the electric field vector of the incident electromagnetic
wave is small and is described by a &¢daw, where ¢ is the azimuthal angle of
emergence.

At the same time, for glancing incidence of a beam on a target, the substantial
anisotropy of the initial distribution of the photoelectrons over the polar adgt#
emergence should result in a large change in the integrated yield. This is due to two
circumstances: First, the initial angular distribution of emergdifrigher or Sauter, de-
pending on the energy of the photoelecjrbias a sharp maximum at anglésclose to
/2, and this means that some photoelectrons move from inside the target in a direction
almost normal to its surface; second, glancing incidence of the primary beam makes for
photoelectron production in an ultrathin layer of the target, and therefore the trajectories
of these photoelectrons before emerging from the target can retain information about their
initial angular distribution. Thus it is obvious that, as compared with an isotropic initial
angular distribution, some hardening of the spectrum of the emerging electrons should be
observed in addition to an increase in the integrated photoelectron yield.

A model simulating the production and transport of electrons was constructed for
two types of particles: photoelectrons and conversion elect®Bs produced in an iron
target by a well-collimated beam of radiation froffCo. It was assumed that the initial
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FIG. 1. Conversion-electron specfsolid lineg and photoelectron specttdashed linesfrom an iron target at
grazing angles of incidence of the primary beam from &'Co source: a —a=1.754 mrad, b —a=0.853
mrad.

angular distribution of the CEs is strictly isotropic. The model employed the differential
elastic electron scattering cross sections tabulated in Ref. 3, the total inelastic electron
scattering cross sections from Ref. 4, and the method described in Ref. 5 for modeling
energy losses in inelastic collisions. Conversion-electron spectra for electrons emerging
from different depths in the target, as presented in Ref. 6, were obtained in order to adjust
the simulation program.

Assuming that the production probabilities of the two types of electrons are identi-
cal, the spectra of the particles emerging from the target were calculated for two grazing
angles of incidencer of the primary radiation beam on the target — 1.754 and 0.853
mrad relative to the surface of the targsee Fig. 1 The total mass coefficient of
absorption for the primary beam in the target material was equal to 0.063Bngm
which corresponds to the photoabsorption cross section fdK thleell of iron atoms for
an energy of 14.4 keV, and the number of “successful” trajectories, on which the
electrons emerged from the target was equal xal2* in each case.

Peaks with a maximum initial energy of 7.29 keV can be seen in the spectra. These
peaks are due to electrons which have undergone only elastic collisions in the target. As
the anglea increases, the integrated yields for both groups of electrons increase and the
photoelectron and CE spectra harden. But this tendency is sharper in the photoelectron
spectra, i.e., the number of emerging photoelectrons in the energy range 6.8—7.29 keV at
fixed angles of incidence of the primary beam on the target is larger by 10.5 and 8.8%,
respectively, than the number of emerging CEs, and their spectrum is harder. Each
spectrum in the figure is normalized to the total number of emerging electrons of a given
type. Therefore the total ionization effect produced by electrons in the detéotor
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example, in a gas proportional countéor the same initial number of particles of both
types is appreciably larger for photoelectrons than for CEs.

In our opinion, these results explain the distortion of the information-carrying signal
in experiments on the Misbauer spectroscopy of ultrathin layers of matter at glancing
incidence of the radiation beam on targén this case it is assumed that the signal in the
detector is entirely due to the emerging CEs. However, photoelectrons are produced in
the target together with CEs, and the contribution of the photoelectrons to the
information-carrying signal is found to be substantial. Specifically, the observed rise in
the amplitudes on the wings of the resonance absorption curve, where the cross section
for resonance absorption of photons drops to and below the level of the photoabsorption
cross section, is attributed to the increasing contribution of photoelectrons in the energy
interval under study.
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Intraexcitonic transitions in two-dimensional systems in
a high magnetic field
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The internal transitions of two-dimensionéD) excitons in a high
magnetic fieldB exhibit features due to the coupling of the internal and
center-of-mass motions. A study is made of these features, and it is
shown that for magnetoexcitons with a center-of-mass momemtum
#0 the energies of the strong transitions decrease with incre&sing
and the absorption spectra show weakly resolved transitions, whose
total intensity depends strongly on the exciton statis(distribution
function). © 1997 American Institute of Physics.
[S0021-364(®7)00421-7

PACS numbers: 71.35.Ji, 75.70.Cn

1. Intraband transitions of quasi—two-dimensional excitons in quantum (@)
and superlattices in a magnetic field have attracted a great deal of interest in recent years
(see Refs. 1-3 and the literature cited thexefrogress in this field requires a sensitive
method of investigation — optically detected cyclotron resonance. Intraband IR magneto-
spectroscopy could be effective for studying the kinetics of interlevel excitonic transi-
tions, for investigating collective effects in a system of excitons with finite density, and
for resolving the fine structure of the ground and excited states of quasi-2D excitons, for
example, in coupled double QWs.

In the case of intraband IR spectroscopy, all populated excitonic states give a re-
sponse, including states with finite center-of-mass momerurfhis is in contrast to
interband transitions for which only excitons with=0 are optically active. Physically,
the center-of-mass and relative motions of a newddl pair are coupled in a magnetic
field B. The present letter examines theoretically some characteristics of excitonic IR
absorption, which are associated with this circumstance, in 2D systems in a high mag-
netic field. Similar effects should exist in atomic physitaking account of the change in
the characteristic magnetic field and momentum scales

2. For simplicity, we shall study the purely 2D situation. Motion of a 2D neugrdl
pair in a transverse magnetic fiekl= (0,0B) is described by the Hamiltonian

2 e2

Ho+Uen, (D)

1 _ e \?
|~V A

H= ! inv eA
B Vet SRt o,

2m, - €|re_rh| -

wherer = (x,y). The motion is characterizétly a conserved magnetic momentum of the

center of masK = —ifiVg— (e/c) A(r). HereR=(mgr .+ myr,)/M are the coordinates
of the center of mass and=r,—r}, are the relativee—h coordinatesM =m,+my,, and
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A=1BXr. The wave function of an exciton with momentincan be represented in the
form® W =exp(/%)[K + (e/c) A(r)]-R)®«(r). This can also be regarded as a unitary
transformation of the HamiltonianH—H(K)=U0THU, where U(K)=exp({/%)
X[K+ (e/lc)A(r)]-R). The transformed Hamiltonian has the fdrfn
H(K)=Hq(K)+Ugp, and

2 2R2 2

fi e e
H = — — 2 —_ —_— T 2 R — . _—
Ho(K) ZMVr+ Zh(wch wee)l,+ 8,u,02r + McB [rxXK]+ oM (2

where " t=mg+m, ", weem=eB/Mgpc, andi,=—i[rxV,], is the projection of

the angular momentum of the relative motion. Similarly to the case of electrons in a
magnetic fieldB, the Hamiltonian(2) can be diagonalized in a representation of Bose
ladder operatorgsee Ref. ¥. For this, we first perform another unitary transformation

H(K)—H=W"(K)H(K)W(K), whereW(K) = exp((/2%) yK -r) andy= (my,—mg)/M,
and then a translation of the coordinatesr =r —ry=(x,y) with ro=e,x KI3/%. After
this we obtain the HamiltoniaH , (obviously,H=H g+ Ugx(r)) which in the coordinate
representation assumes the form of the HamiltomigK =0) from Eq.(2). To diago-
nalizeH, we introduce the ladder operators

— 1/ z d — 1
aT=—( 2l —) bT=—

2\ 2l 8 g 2

such that [a,a*]z[W]zl and [TM:[W]:O; here z=x_+iy_ and
lg=(fic/eB)Y2 In this representation, we hawé,=#fw.(a’a+2)+hwe(bTb+3),

so that the orthonormalized eigenstates have the form of factorized wave functions
Inmy=(a®)"(bT)™00)/ ynIm! with eigenvaluesi weo(n+ ) + A wen(M+3). In the co-
ordinate representation the wave functigmgnm)= ¢, (r) are identical to the wave
functions of an electron in a fielB (for example,(r|00)=exp(—p%43)/(2713)*?. In

the case of a magnetoexciton the operatafs a (b', b) describe electroni¢hole)
Landau levels. SinceS(K)=W(K)U(K)=exp(i/4)Ro-[K+ (e/c) A(r)]), where
Ro=3(re+ry),the wave functiongn mK)=§(K)|nm) describing the free motion of an

e—h pair in a fieldB can be represented in the form

()

z* ol d
2lg “Boaz)

‘I'an(re,fh)=<rerh|an>=ex;<ﬁ Ro-

K+§A(r)}>¢nm(r_r0)- (4)

The wave functions¥,,,k(re,r,) correspond in the limit of a high magnetic field
(cf. Ref. 6 to 2D magnetoexcitons with the dispersion relatidg,(K)
:<nm|Ueh(r_r0)|nm>-

3. Let us examine the interaction of excitons with IR radiation. In the Faraday
geometry(the radiation propagates parallelB) the Hamiltonian describing absorption
accompanying an interaction with the ac electric figlith amplitude 7, and frequency
w) of circularly polarized IR radiation has the form
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5At_e}'0 T ot 5
= lm ™ exp —iwt). (5)

Here the* signs denote leftright) circular polarizationo™, and

=+

G

ijii’ﬁjy,(j:e,h), ﬂe:_iﬁve'f‘gAe, ﬂh=—iﬁVh—§Ah.

It can be shown tha{té\A/i,R]=0, i.e., magnetic momentum is conserved in IR transi-
tions (in the dipole approximation this also follows from the law of conservation of the
total momentum For K=0, magnetoexcitons can be characterized by the conserved
projection of the angular momentuly of the relativee—h motion; herel,=n—m
(T,=aTa—bTb). For this reason, for excitons with=0 in a fieldB the selection rules
have the standard form

<‘1’|/<:0,|;|5\7t|‘1’|<:0,|z>“5|£,|z:1- (6)

For K#0, on account of the presence of the teM c)B-[r X K] (which corre-
sponds to a uniform electric field in the moving coordinate systeB) jrthe Hamiltonian
(2) does not possess axial symmetry. As a result, the selection rules for IR transitions
reduce to only conservation of momentum: generally speakifi§| 5V=|¥ )+ 0 for all
pairs of excitonic terms. The analysis simplifies in the high-field limit. The matrix ele-
ments of the operator describing the interaction with the IR radiation field between states
of the 2D magnetoexciton@) have the form

(n'm’K| sV InmK)=(n'm’|S(K)TsV=S(K)|nm). 7

The relation

S(K) 6V S(K) = .

i \/Eeﬁ]-‘o( al E) oot ®

(l)lB

shows that the matrix eleme(¥) does not depend on the momentéfmand in this limit
transitions are possible only with a change in the Landau level nurdygiAm) =1 for
o* polarization. The mixing of the Landau levels is taken into account below.

4. Let us consider IR transitions between excitons wWitl-0. In high magnetic
fields, the k excitonic states are formed mainly by the stf6K =0), which corre-
sponds to the zeroth andh Landau levels. On account of tieeh Coulomb interaction,
there is also a weak-|g/ageny<1 [Agen)= €2/ Mg €®] admixing of higher Landau
levels|nnK =0). In a similar manner, the2" (2p~) excitonic states are formed in the
ground statg 10K =0) (|01K =0)) with a weak admixing of the statéa+ 1 nK=0)
(Inn+ 1 K=0)). For this reason, the excitonic transitios-:2p* (1s—2p~) in a high
field B can be regardédis an electrothole) cyclotron resonanceoy— ¢ 10 (boo— Po1).,
which is modified by excitonic effects. In the purely 2D case and in the limit of a high
magnetic field, the binding energies of &nd 2 magnetoexcitons are equaftBy,
=E, and E;j=Eq;= 1E,, respectively; her&,= \/m/2e? elg~ \B. For this reason, the
1s—2p™ transition energies in this limit are
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1 1
E13ﬁ2p+=ﬁwce+ EEo, ElsﬂZp*:ﬁwch"' EEO (9)

The transitions $—np~ to higher-lying excited states are weak| B/aBe(h)]z, and their
energies

[2(n—-D]!
220 (1)1 2] °

Elsanp,=ﬁwce(h)+(n—1)[ﬁwce+ﬁwch]+ 1 (10)

contain a contribution which is a multiple of the sum of #¢m@andh cyclotron energies
[hwcethwgy]; the last terme[1— (mn)~ Y?]E, for n>1 in Eq.(10).

Evidently, the excitonic IR transitions are sensitive to¢ké Coulomb interactions.
Kohn's theorerfl is inapplicable in this situation, since the charge-to-mass ratios are
different fore andh. However, as one can see from Eg0), the difference

Elsaanr_Elsﬂnp’:ﬁwce_hwch (11

does not depend on the-h interactions: The result(11) follows from the fact that the
variables in Eq(2) are separable in cylindrical coordinates, and it is valid not only in the
limit of a high magnetic field or for a 2D system. This can likewise be attributed to the
existence of an exact symmetry for excitons in a uniform fiBldTo show this, we

introducé the time-reversal operaté'r which operate®nly on the system under study.
The fieldB is assumed to be an external field: The directio®afoes not change under

the operationT (the currents generating do not change directionIn the standard
manner, the coordinates do not change sign under the opefatibn’r T=r, while the
momenta and orbital angular momenta do change sigipT=—p and T~ 1T=—1.

For the total Hamiltoniaii (K)=U0T(K)HU(K), corresponding to the internal motion of
an e-h pair (see Eq(2)), we have

[H(K), T1=[Ho(K), T]=(hwecn— o) T1,. (12)

We shall now take into account that for excitons wihk=0 the projection, is a good
quantum number and thdt¥x gnp+ =¥k —onp-- (We note thatl *a’T=bT, so that
TInm)=|mn), and the last equality is obvious in the high-field limitherefore relation
(11) follows from the operator algeb(a2). In order for the relatiori12) to hold formally
it is important that the operatofr is antiunitary, so that'i"lfJ(K)'i'aﬁ U(K) and
[U(K),T]#0. The analysis based on an operator algebra similar to the algéPra

could be helpful for investigating more complicated Hamiltonians in a fel@ompare
with the theorem for a one-component many-electron sy$tem

5. Let us establish the characteristic features due to IR absorptigfobgxample,
thermally excitedl magnetoexcitons witk # 0. We assume that the magnetic fi@ds
high enough (g<agep)) that the mixing of different Landau levels can be taken into
account by perturbation theory. The results should also be applicable qualitatively for
lower fieldslg<aggn). We shall study the magnetic quantum Iina&;(=2wlanx<1,
when magnetoexcitons fill the zeroth Landau levalg;is the exciton density.
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FIG. 1. Schematic illustration of the dispersifgy(K) andE,K) of 2D magnetoexcitonf00K) and|20K ).
The vertical double arrow shows the weakly resoleedIR transition. The dashed lines mark the positions of
the unoccupied Landau levelay,).

Let us consider first how the energy of a strong transitfiK ) —| 10K ) depends on
K. Assuming low temperaturdesT<E,, we can limit the analysis to low momenta
Klg/%<1. The dispersion relations for magnetoexcitons in this region are quafiratic:

1
Eoo(K)=—Eq+K?/2Mqy, E1o(K)=—5Eo+ K2/2M 19, (13

whereM go= Zf'LZIEOIZB and M ;o= —2Mgo. The magnetoexcitoflOK) is characterized
by anegativeeffective mass. As a result of this, the “kinetic” energies of the initial and
final states do not compensate each other, and the transition energy

K?2 M00>

EOO—»lO:hwce+ —EQ— m 1+ m (14)

2

decreases with increasing momentukh (A similar situation for the transition
|00K )—|20K) is shown in Fig. 1. Therefore it can be expected that as the temperature
increases in a high magnetic field, the line due to this transition will broaden predomi-
nantly into the region ofower energies. Since the dispersion of 2D magnetoexcitons is
due to onlye—h interactions this effect is simply due to the influence of interparticle
interactions on intraband excitonic IR transitions.

Let us now estimate the characteristic size of the third term in(E4). Since 2D
magnetoexcitons form an almost ideal dAsye propose for them a Bose distribution
function fy= (exff (ex— w)/ksT]—1) "%, wheree, = K2/2M go= EoK?I 3/442 from Eq.(13),
and the chemical potential of a 2D ideal Bose gas is given by the expression
pn=kgT In[1—exp(—Eyvy/2kgT)]. Therefore, for 2D magnetoexcitons, the particular re-
gime which is realized is determined by the paraméteiEyvy /kgT. In the classical
limit, <1, we have Maxwell-Boltzmann statistics, afi?)/2M o;=kgT. In the degen-
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erate quantum limit;>1 (when the chemical potentiagl= —kgTe ¢ is exponentially
smal)), we obtain(K?2)/2M o= m?kgT/3{<kgT, i.e., narrowing of the absorption line
occurs.

Another feature associated with IR absorption by magnetoexcitonsiwith is due
to mixing of different Landau levels. In the high magnetic field limit, when mixing is
neglected, the magnetoexciton wave functipnsK ) are given by expressio@). In the
next order in the parametelg/aggn<1, the wave functions assume the form
InmK) ==, A n"m’K), where the coefficientd"™ = (1) and

n'm’
AlM = Yo _(K) LR (15)
hoc(n—n")+hwp(M—m')  8Beh)

HereUﬂ;nm'(K)=<n’m’K|Ueh|an> is the Coulomb matrix element between two mag-
netoexcitonic states. An analytical expression w};nm’(K) with arbitrary indices is
obtained in Ref. 11see also Ref.)6 For magnetoexcitons witk # 0 thee—h interaction
mixes all states on different Landau leveismK). This gives rise to a number of new
lines in the spectracf. Eq. (6)]: <W’nK|5\7t|0~OK>¢O. However, all transitions with
In—m|+ 1 are found to be weak, of order(lg/agen)) 2. Furthermore, fokgT<E,, the
larger the differencén—m|, the weaker the transition is. Let us consider as an example
the transition 00K )—|20K ) (see Fig. 1 We underscore that fd =0 this is a strictly
forbidden transition $—3d*. The total intensity of the transitiofdOK )—|20K) (the
total absorbed power is 2% w..R50)

2w N
Roo= 2 [(20K| 8V [00K) [*F (K, T) (16

depends on the population of differdfitstatesfy(K,T) is the Bose distribution function
of 2D magnetoexcitons in the zeroth Landau level. In the classicall) and quantum
(£>1) limits we obtain

25’75 [ kel |2 -5/2
R20:3_ZT£ — ~TB %, (=Egvx/kgT<1, 17
ce
25€2fg m keT |
Reo=35 7~ ?‘ge_m}(m) TR, ol 1o
ce

It is interesting to note that in the classical linlf7) the total intensityR,g~ny, whereas
in the quantum limit(18) R, saturates an¢to within exponential correctionss inde-
pendent of the exciton density . Transitions to higher Landau level80K )—|nmK)
(i.e., transitions in ther™ polarization withN=n—m>1) are suppressed even more
strongly at low temperatures: For example, €1 their total intensity is

vy(kgT)N 1
[(n+m—1)hw]?EY 3

NTNle*(NJr?:)/Z, (19)

nm

where we have set as a simplification,= w.y= o .
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6. In summary, we have studied the internal magnetooptic transitions of 2D exci-
tons. It was established that for excitons with center-of-mass mometa® the spec-
tra contain pairs of transitions differing in energy by the difference of the cyclotron
energies of an electron and hdléw.,— w¢e). This result was obtained for the case of
simple bands with quadratic dispersion relations. A recent expertfnemiwed that this
property also holds approximately for quasi-2D excitons in a GaAs/GaAlAs quantum
well with a complicated valence band. This situation will be studied theoretically in a
separate publication. It was predicted that for magnetoexcitonskw#l the spectra of
strong transitions will broaden into the region of low energies with increasing tempera-
ture. It was also shown that transitions for whi€hk=0 and which are weakly resolved
are sensitive to the magnetoexciton statistics. Thus a study of transitions of this kind
could be helpful in the investigation of the condensation of 2D magnetoexcitons.

| thank G. E. W. Bauer and A. Yu. Sivachenko for helpful discussions and B. D.
McCombe for communicating the results of Ref. 12 prior to publication. This work is
supported by grants from the Russian Fund for Fundamental Research and INTAS.
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Shape of the Cu (2) NQR spectra in YBa ,Cu;0-,
TmBa,Cu3;0,; and TmBa ,Cu,Og
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Pis’'ma zZh. Kksp. Teor. Fiz66, No. 9, 594—-59810 November 1997

We present a study of shape of the(uNQR spectra in YBgCu;O,
TmBa,Cu;0,, and TmBaCu,Og compounds at temperatures of 4.2—
300 K. The results of the quantitative analysis lead us to conclude that
the shape of the GR) NQR spectra in all the samples studied can be
described in the framework of the “motional narrowing” model, which
implies that the C(2) nucleus possesses two different NQR frequencies
between which it can rapidly jump. The difference in frequencies seems
to be related to the charge-stripe correlations in €planes resulting

in a dynamical modulation of the electric field gradients at thé2Cu
nuclei. © 1997 American Institute of Physics.
[S0021-364(®7)00521-5

PACS numbers: 76.60.Gv, 74.72.Bk, 74.72.Yg

In the present study an attempt was undertaken to analyze quantitatively a resonance
line shape of so-called “planar” copper nuclei belonging to Guidanes. The main
problems preventing the correct studies of the planar copper NQR/NMR line shape are
widely believed to arise from an enormously strong inhomogeneous broadening of spec-
tral lines due to the large number of defects of the crystal latbeggen vacancies and
interstitials, twin boundaries, impurity phases, stacking faults) gtgical for the layered
cuprates. These difficulties ultimately seemed to preclude cooperative studies of the line
shape problem, since the @i NQR/NMR spectra of the same compounds prepared in
different laboratories usually appeared to be very much different and ‘“sample-
dependent.” In order to minimize the problems of the inhomogeneous broadening due to
crystal lattice defects, we have studied nominally pure stoichiometric 123 and 124 com-
pounds. Furthermore, by measuring the(ZJuNQR spectra(i.e., in a zero external
magnetic field, the additional complications resulting from inhomogeneous broadening
due to the vortex lattice in a superconducting state have been avoided. The principal
finding of the paper is that the shape of the WNQR spectra in all the samples studied
can be described in a framework of the “motional narrowing” madélwhich implies
that the C@2) nucleus possesses two different NQR frequencies between which it can
rapidly jump.
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FIG. 1. The C2) NQR spectrum in Tm1237 &t=120 K; the solid line is a best fit by six Gaussigdstted
lines; for details see Ref.)3

All three samples studied in the present work were previously used in our NMR/
NQR experiments: YB#Cu;0; (Y1237),2 TmBa,Cu,0; (Tm1237,* and TmBaCu,Og
(Tm1248;° the critical temperature$.(onset) of 92.5 K, 91.5 K and 80.0 K, respec-
tively, have been obtained in ac susceptibility verSuseasurements at a frequency of 1
kHz (amplitude~1 Og. A home-built spin-echo coherent pulsed spectrometer was used
for the Cuy2) NQR spectra measurements. Both of the 1237 compounds were found to be
in a slightly overdoped state. As an example, the Tm1237 spectrum is shown in Fig. 1. It
is seen that, except for the relatively narr&@u(2) and®*Cu(2) NQR lines, the spectrum
of Tm1237 (like that of Y1237 has a broad “pedestal'(P). It has recently been
suggestetithat theP spectrum arises from copper nuclei which are located in areas with
a partially disordered oxygen sublattice of CuO basal plaf@sexample, in regions
around twin boundarigsand, accordingly, with a reduced and locally inhomogeneous
hole concentration in the Cy(lanes. The spectrum of the Tm1248 sample has no such
pedestal. Subtracting from the observed “raw” spectrum, we obtain the spectrum of a
“good” 1237 superconductor, freéor almost fre¢ of crystal structure defects. In fact,
this refinement procedure makes it possible to perform a subsequent quantitative analysis
of the Cu2) NQR line shape of a 1237 superconductor having an undistorted or slightly
distorted orthorhombic structure. Fitting of the @UNQR spectra of Y1237 by using a
superposition of Gaussian-type lines has shbifat theP spectrum can be satisfactorily
described by a single Gaussian with a temperature-independent rms width of
1.51) MHz. The corresponding width of the Tm1237 pedestal turned out to be some-
what bigger, 1.61) MHz, whereas the relative intensities of tRespectra in both the
Y1237 and Tm1237 samples were found to be approximately equal to 1/3.

The refined spectra of Y1237 and Tml128he experimental spectra minus the
“pedestals” and the “raw” spectrum of Tm1248 are shown in Fig. 2 for tfi€u
isotope. A common property of all the lines in Fig. 2 is that their shape is intermediate
between Gaussian and Lorentzian. Such a shape, being atypical for resonance lines in
rigid-lattice solids, can be regarded as a hint that some kind of a charge motion takes
place in the Cu@ planes. Assuming that this motion is indeed present in the hjgh-
cuprates, one can immediately find a qualitative explanation for two puzzles that have
existed from the very beginning of the high-story. First, the striking fact that the
electric field gradient at the orthorhombic Qusites has axial symmetryy=0) can be
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FIG. 2. The®3Cu(2) NQR lines in Y1237, Tm123T7as obtained by subtraction of the “pedesta¥’from the
experimental spectra; see Fig. 1 and the text for d¢faited Tm1248. The solid lines are a best fit by EDs.
and(2) with k=2, 1=2; for other parameters of the model see Fig. 3.

understood as simply the result of motional averaging. Second, the strong inhomoge-
neous broadening of the () NQR lines which is observed at low temperatures can then

be regarded as resulting not only from the appearance of some excess distortions of the
crystal lattice but also from changes in the characteristics of the charge motion. In what
follows, we try to analyze the shape of the(@uNQR lines(Fig. 2) using a model with

two NQR frequencies ¢;, w,) between which the G@) nucleus can rapidly jump.
When applying the “motional narrowing model” we expect to find it capable of appre-
hending the essential difference in the(@UNQR parameters at temperatures above and
belowT.. For this simplest version of the model, the shape of th&CNQR spectrum

can be described by the following expressidns:

S(w)~f (w,Q)ex] — (Q— wg)?/20°]dQ), )

H(0,Q)~[ (03— 1) 2(Wot+ W) /[ (0— 01)X(0— 02) 2+ (Wy(0— wy)
+Wa(w—wq))?]. (2)

Here w,=Q+1D, w,=Q—A, the frequency shifts{1A) and (—A) are due to fluc-
tuations of a hole density in the first and second states, respectivlyjslthe lifetime

of the ith state, W;=kW, and W,=W. The individual NQR line is assumed to be
inhomogeneously broadened due to crystal lattice defects, so its shape is Gaussian with
an rms half-widtho, andwy=(Q) is the mean NQR frequency over the sample volume.
One may regard the above model as being oversimplified, since the crystalline defects
should also result in a random distribution of the other parametersAi.&V, k andl.
However, it was shown recenflghat the C2) NQR spectrum shape in the Pr-doped
Y1237 compound can be fitted well by Eq%) and(2) at the valuek=I1=2 correspond-

ing to the particular conformation of charge stripes in the p@nes® Therefore, we

start with the same modg&lk 2,1 =2, which is expected to give some averaged values of

A andW.
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FIG. 3. The temperature dependences of the param&i@rs, W, k, o/27, andwy/27 of Eqs(1) and(2), as
obtained from fitting of the “refined”®*Cu(2) NQR lines in Y1237 and Tm1237 and of the “rawf®Cu(2)

NQR line in Tm1248. Filled circles correspond to a model with2, | =2, and variabler; the unfilled circles
correspond to a model with variabke | =2, ando=const (,= o).

The temperature dependences of the paramats, W, /27, andwy/27 for the
83Cu(2) NQR lines in all three samples are shown in Fig. 3 by the filled circles, and
examples of the calculated line shapes are illustrated by the solid curves in Fig. 2. For all
the samples, the case of an intermediate jumping rate is realized,

(01— wp)/W~1, ()

and the rate itself\V, appears to be rather low=2x 10°-2x 10" s 1. In fact, accord-

ing to Eq. (3) the jumping rate is closely related to the frequency difference
w;— w,=3A. It is interesting to note here that the values of - w,)/27 appear to lie

in the frequency range from 0.7 MHgeparation of thé3Cu(2) NQR lines in the Pr-
doped Y1237 to 2.2 MHz (separation of theA and B lines in La_,Sr,CuQ, and
La,CuQy, 5).” In two of three samples studied, Y1237 and Tm1237, the difference
(w1— w,) seems to exhibit a sharp decrease at the superconducting transition. However,
the most striking result is that in all the samples under study the inhomogeneous lin-
ewidth o undergoes a sharp increaselat so that one actually has two different values

of o, i.e., o, for T >T,. and o5 (>0,) for T <T., which seem to be temperature-
independent. The small widtlr, in Tm1248 is close to that usually observed in the

627 JETP Lett., Vol. 66, No. 9, 10 Nov. 1997 Dooglav et al. 627



8Cu(2) NMR spectra of the crystallographically perfect materials in a high external
magnetic field. For the 1237 compounds, which are known to have many structural
defects, the values af,, appear to be rather large. As to the valuesrgf it is found to

be the same for all three samples~0.8x 1P s~ 1. The latter fact can be regarded as a
hint that the broadening of the @) NQR line atT<T, reflects some intrinsic property

of high-T. cuprates. In principle, the broadening of the copper NQR lines can originate
from disordering of both the positions of the atoms and the charges of the ligands. Since
the values ofo,, in 1237 compounds are much bigger than that in Tm1248, they can be
naturally attributed to a disorder of the oxygen positions in the CuO basal planes. It is
knowr? that even in the almost stoichiometric Y123-6.98 single crystal the chain oxygen
is statically displaced in tha direction by 0.07410) A. Starting from this fact, we then
arrive at the conclusion that the same type of oxygen displacements should exist in
Tm1248 belowT,. In fact, the dynamic displacements of the chain oxygens inathe
direction by 0.1 A resulting in the formation of ferroelectric domains, were found to be
present in the Y1248 compourdf those displacements are indeed responsible for the
broadening of the G2) NQR line in Tm1248, one can conclude from the static nature of
the linewidth o that the oxygen motion in CuO chains slows down or even freezes at
T<T.. The modification of charge motion in CuO chaingat T, if it exists, may have

an indirect effect on the electronic state of Gu@anes via an abrupt re-distribution of
holes between chains and planes.

Alternatively, the broadening of the @) NQR spectra aT <T_ can be explained
as arising from an abrupt re-distribution of charges in guianes. In the particular
conformation of charge stripes in Refs. 3—6, two types of2Cions are distinguished
(see Fig. 2b and c in Ref.) 6— those located at the center of the stripge 1, the hole
density on the nearest oxygen ligands is highd those at the stripe boundariggpe 2,
the hole density is loyv At the optimal doping of the Cufplanes by hole§.e., for close
packing of the stripes in rows -2-1-2-2-1}2he number of centers of type B{) appears
to be twice as large as the number of centers of typen]),(in which case
k=W, /W,=n,/n;=2. Fitting of the experimentd®Cu(2) NQR lines by Egs(1) and
(2) with k andl| as free parametefalong withA, W, o) has shown the parameteto be
temperature-independent and clgea averaggto the value of 2. When performing the
subsequent fits with a constdnt 2 and variablé, we obtained a striking result: it turned
out that the experimental data fér<T_ can be well describetunfilled circles in Fig. 3
by using a constant value of,= o,, the only condition necessary for this beikg 1. At
T <T,. the parametex? for the modek=1, =2 is definitely smaller than that fér=2,
I=2. In the framework of the model under discussion this last result can be interpreted as
hinting of a modification of a stripe pattern at the superconducting transition. In particu-
lar, a stripe conformation of the -1-2-1-2-1-2- type or a checkerboard pattern can be
deduced from the above conditiis= 1. The decrease & from 2 (aboveT,) to 1 (below
T.) may actually mean that the lifetime of @) ions in the state with a high NQR
frequency(corresponding to a high local density of holes at neighboring oxygen ions in
the CuQ plane becomes longer in the superconducting state. Moreover, the frequency
difference @,— w,) appears to be smaller @< T, which, perhaps, indicates that the
charge-stripe modulation in the superconducting state is weaker than that in the normal
state or that, in other words, charge-density waves in the,Qui&hes coexist but com-
pete with superconductivity.
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When interpreting the experimental results on théZLNQR in the framework of
the stripe model of Ref. 6 we do not rule out the possibility of other modifications for
charge-density waves in the Cu@lanes. It should be noted, however, that the above
model seems to get an indirect confirmation in inelastic neutron scatté€ii(g)
studies®13of YBa,CuyOg4 6. Indeed, if one takes every third hole-rich stripe in Fig. 2b
of Ref. 6 away, the mean hole concentratptvecomes equal to (2/3)(1/6)=1/9 per
CuG, unit, and, according to the empirical formufa=0.187-0.215 (Ref. 14, the
oxygen index 7+ §=6.64 appears to be close to 6.6. The resulting stripe pattern should
give rise to magnetic neutron scattering not @hr=(1/2,1/2) but instead at
(1/2£ 6,1/2*= 6), with 6=1/18=0.0556. Very recent INS experiments with
YBa,Cu;Og ¢ Single crystals have revealed such an incommensurate structure with
6=0.057+0.006

In conclusion, analysis of the shape of fi€u(2) NQR spectra in Y1237, Tm1237
and Tm1248 compounds performed on the basis of a simplified model of motional nar-
rowing supports the idea that the @u nucleus possesses two different resonance fre-
quencies between which it can jump. The plausible cause of this difference in frequencies
seems to be related to charge-density wdweslynamic charge-stripe correlations the
CuG, planes, resulting in a dynamic modulation of the electric field gradients at the
Cu(2) nuclei.
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Bound states of an electron in an impurity potential on
the surface of liquid helium

P. D. Grigor'ev®
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The energies and widths of the levels of an electron on impurity centers
on the surface of liquid helium are calculated with allowance for the
deformation of the surface. The level shift associated with the defor-
mation effects is small and decreases very slowly with increasing level
number. However, even a small shift of the energy levels relative to
one another affects ripplon scattering, which makes the main contribu-
tion to the level width at low temperatures. It is predicted theoretically
that this width depends very strongly on the external parameters and on
the level number and that a maximum obtains at a clamping field
E, =1500 V/cm. The width of the levels of an electron in a bound state
is found to be less than for free electrons. This makes it possible to
perform a beautiful spectroscopic experiment. 1897 American In-
stitute of Physicg.S0021-364(®7)00621-X]

PACS numbers: 67.55.Lf, 67.57.Pq, 67.40.Yv

The behavior of electrons on the helium surface has been studied for almost 20
years. An extensive analysis of the phenomena arising here can be found in Ref. 1. In the
present letter we solve the single-particle problem of an electron in an impurity potential.
This is an important subject, since scattering by nonuniformities of the substrate and,
especially, localization on positive ions have a strong influence on the dynamical prop-
erties of the surface electrdnand on the collective effects in the two-dimensional sys-
tem formed by these electrons.

If a positively charged impurity is present at some distance from the helium surface,
then electrons form bound states near it. The stability of such a system was investigated
in Ref. 3, where the position of the impurity was determined as the result of the compe-
tition between the image force repelling the impurity from the helium-air boundary and
the Coulomb force attracting the impurity to the electron on the surface. In our case the
impurity is at rest at the bottom of the vessel, since it is confined by the much stronger
force of the electrostatic image at the helium—substrate bourftteypermittivity of the
substrate material is ordinarily greater than that of helidrurthermore, the position of
the impurities and their density can be set at a prescribed level by illuminating the
substrate with a laser. In this case the question of the equilibrium position of the impurity
becomes irrelevant.

Similar bound states arise at the boundary between two semiconductors, for which

630 0021-3640/97/090630-07$10.00 © 1997 American Institute of Physics 630



Vinter* found by numerical methods the energy levels and the approximate form of the
wave functions of the bound states for small distances of the impurity from the surface,
d<60 A. The situation is somewhat different in helium. First, the permittivity of helium

is very close to 1 and the image forces are not so strong. Second, the electrons above
helium interact with ripplons and with helium vapor, which in the present problem results

in broadening of the levels. Third, there arises a static deformation of the helium surface
that influences the position of the levels.

ENERGY LEVELS AND WAVE FUNCTIONS

Neglecting scattering and static deformation of the surface, which will be examined
in detail below, the electron is in a potential

e?e—1 2 ss—1 €%Z ot

V=eFz— — +Vob(—2)— ,
V(d+2)Z+x2+y?

4z e+1 4(d+2z) est1
where the permittivity of helium ig=1.045. The effective charge of the impurity is
Zew= (26 +1)(2eles+€) Z. Even without an external fieldH=0) an electron is
clamped very strongly to the surfa¢ie average distance from the surfac€zs<100
A), so that(z)/d<1. Therefore the last term, which corresponds to the impurity, can be
assumed to be independent of the coordizatad to depend only on its average vakie
This approximation also works well because of the fact that the impurity potential is a
small correction to the potential along thexis (but by no means in a plane parallel to
the helium surface Now the variables separate; the wave function has the form
P(x,Y,2)=L(2)f(x,y), wherel(z) andf(x,y) satisfy the equations

h? d? ee—1 e?e—1
Fz- o= S Vb~ 2)~ E, | {(2)=0, @

-+
oma2 % azs+1 4de.+1

A2 d? d? e’z

2m dx2+dy2 a2+ x2+y2
In the last equation we introduced the notatiod=d+2z, where
Z=(2)=J{*(2){(z)zdz In the absence of a field one hé® =a=3%2%/2ma~100 A
and a=(e—1)e?/4(s+1). For very strong fields in the bottom subband
(z)=b~1.6(h%2meP). On this basisz=(a~2+b~?) "2 gives fairly good accuracy
(the error<1% of the value ofd).

f(x,y)=0. @

The splitting between the subband@i®etween energy levels along thexis) is about
30 K, and at low temperatures an electron “freezes” in the bottom subband. For this
reason, the two-dimensional behavior of an electron is determined by2Eaqwhich
looks simple but cannot be solved exactly. For the lower levels, the region of localization
(x?)~(y?)~200 A and an expansion can be made in powers of the parameter
(x2+y?)/d?. Then the potential assumes the form

V_Zeﬁe2 14 r2  3(r? 2+5 r2\®
Cod | T T2d2 8la2) 16lg2) )
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In zeroth-order perturbation theory, we have a two-dimensional oscillator with
w= \Zeﬁe /d m~(4 K)\ Zeff-
As we can see, the corrections of higher orders will be very important in determin-

ing the width of the levels. We shall employ perturbation theory to calculate these
corrections. A potential of the form?" is not diagonal in the basis of wave functions

Mw 2 1 2,.2 2 X y
— —(x+y9)/2a _ Z
futxy) (wﬁ> 2T F”<a "ia)

For this reason, it is more convenient to classify the states with respect to the projection
m of the angular momentum. Then the wave functions can be expressed in terms of the
confluent hypergeometric function

fam(r, ®)=Cpme ¥X™2F(—n,m+1x)e'™m?,
where the radial quantum number0,1, ..., andk=r2\(Z.we’m./d*%?). The first-
order correction to the energy levels is given by the integral

3 Zg%\[r\?
Eﬁ):VEﬁ)m)(nm):f fﬁm(hd’)(_g ‘;2 )(a) rdrd¢.

Integrals of this type are easy to calcul@ief. 5, Appendix }. The final answer is

E(1):_§h2(m+2)(m+1)
nm 8 medz

"In(n—1)...(n—s)(—3—s)(—2—5)...(—2+5)
1+,
=) [(s+1)!1]2(m+1)(m+2)...(m+5)

S
-1

X

n—-1 _ _ a4 _
1+2 n(n—=1)...(n=s)(=1-s)(—=S)...(s)
50 [(s+D)!1A(m+1)(m+2)...(m+s)

X )

For the second level, this formula gives the corrections to the energy

3 7h? 3 6h?
(H__~ (€ —
Eig i and Eg; 2
Perturbation theory works i (n?+m?+ 1)/2e/mdZ<1, which ford=500 A holds
fairly well for the six lowest levels.

DEFORMATION EFFECTS

Under the action of the clamping field an electron exerts a pressure on the helium
surface, deforming it. This static, craterlike deformation of the surface acts back on the
electron and localizes it in the regiohL =47a%?/me’E? , whereE, =E,+e/d? is the
sum of the external field and the field of the impurity. The energy benefit
W=— (eZEf/47ra) In(1/kL) accompanying the formation of the crater is of the same
order of magnitude as the correcti&t" in first-order perturbation theory irr{d)2. In
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addition, W is virtually independent of the electron level number. Therefore the static
deformation of the surface may be regarded as a perturbation and investigated in first
order only.

The energy correction due to the formation of the crater is
W= [d?r (a/2)[(V&)2+ k%£2]— eE, | W|?£. We need not solve the self-consistent prob-
lem of finding £(r) and|W¥(r)|?> as was done in Refs. 1 and 6, since in first order the
electron wave function’(r) does not depend on the surface deformaior) but only
on the number of the level in the impurity potential. The functign) that minimizesw
is given by the equationvé&”(r)+ (a/r) & —pgé=eE, |W(r)|?. The solution of this
equation is

1 o0
f(r):; JO G(w)Jo(wr)wdw, (4)
where
G(w)=%. P(w)=ferll‘lf(r)lzJo(wr)rdr. (5)
w + K 0

For the ground state of an electron with wave functigt(r)|?>= (1/a?)exp(—r?a?)

&) eE, F{ azwz) £0) eE, I 4
w)=————> expg — =§(0)~ n——
27m(w’+ K?) 4 Ama  yk?a?

where y=1.78° Since Ing?a?)>1, the quantity¢”(0)=2eE, /raa’<&(0)/2a%= £(r)

starts to change substantially on scales larger than the electron localization region and
then falls monotonically to zero over distances «%0.05 cm:
E(N)|;L~€eE, Ko(kr)/2wa. The shift of the lower level isVyy~eE, £(0)~0.7 K with

E, =3000 V/cm. This is a large correction, but it is still much less than the splitting
between the levels in the zeroth approximation, so that perturbation theory remains ap-
plicable. Let us now see how the deformation correction depends on the level nhumber.

It follows from Eq. (4) that G(w) and &(r) depend linearly oW (r)|2. Therefore
the value of¢(0) for different levels can be obtained by differentiating expres$in
with respect to the parametera®/ For the leveln,=0, m=1

1 2.9 1 J
q,(r)Z :_rZe*r lac_ _ (32\1}2
| |Ol ’7Ta4 a4 &(1la2) | |0(9
eE -1 d a’w?
:>G01: ZL 2 — 2 [az [{—
2m(w?+ k%) a* g(lla )l 4
eE, (1 a’w? p( a’w? i eE,
= - expg — = Eg1= Egp— —
2m(w?+ KZ)\ 4 4 017500 47q

The difference of the shifts of the first and zeroth levels is #h?)~22 times less
than the shift of each level, but even a very small shift of the levels relative to one

633 JETP Lett., Vol. 66, No. 9, 10 Nov. 1997 P. D. Grigorev 633



another can affect their width, which as we shall see below is very sensitive to the
splitting between the sublevels of the split level. Let us calculate the deformation correc-
tion for different sublevels of the second level:

o & /1 a2w2+ atow? r{ 2202 ) 3 eE,
= 27 (w?+ KZ)\ 2 32 | 4 = &02= oo 2 dna’
l0_271'(w2+ Kz)\ 2 16 | ¥ 4 = &10= o0 Ira’

The energy correction iVo,=Wyo+ 3(eE,)?/2(4ma) and Wio=Wyo+ (€E,)%/47a.
Deformation effects increase the splitting between the sublevels of the second level,
decreasing its ripplon width appreciably. The calculations performed above have con-
firmed that the deformation correction to the energy decreases very slowly with increas-
ing level number.

LEVEL WIDTH

Scattering by atoms in the helium vapor and by ripplons make the main contribution
to the level width. In the case of free electrons the width of intersubband transitions
which is due to scattering by atoms was found both theoretically and experimentally in
Ref. 7. For bound electrons, the arguments remain the same and the answer differs only
by a coefficient whose value is close to 1. Scattering by the vapor gives the width
hAw=mNgU2/2%%a, whereUg is related with the electron scattering cross section of
an atom by the formulaA=m2U%/7mh*~5Xx10 %6 cn?, the localization region
a=+f/mw, and the vapor density decreases very rapidly with decreasing temperature,
Ng=(MkgT/27%?)%%exp(—Q/kgT), where Q=7.17 K. At T=1 K one has
Ng=1.5x10"® cm 3 andI'~=0.01 K.

For free electrons the ripplon width obtained by numerical methods for an intersub-
band transition by T. Andbdecreases with temperature more slowly than does the width
due to scattering by the atoms. For this reason ripplon scattering dominates at tempera-
turesT<0.8 K.

Let us examine the width of discrete levels of an electron in an impurity potential.
Here there are substantial differences from the case of free electrons, so that we shall
perform the calculation from the very beginning. According to Ref. 1, the electron-
ripplon interaction operator for transitions within the same subband has the following
form in an approximation linear in the vertical displacemeit of the
surface:  VR=[d2r gt (r) (r)2qé.€'9V(0), where  £,=Q(q)(bg+b’,),

Q(0) = (%q tanh@d)/2pw,) ' and

(e—
(q)= f4(s+1)z<qz K1(q2)

The first term inV(q) is due to the image-force distortions and the second is due to the
clamping field. These contributions are equal Eor=300 V/cm. Therefore we replace
the first term bye E.4=300 V/cm and introduc& =E, +E;.

’(z)dz+eE, .
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To find the width we shall calculate the probability of a transition of an electron into
other levels and sum these probabilities:

I'n= 2772 J ——{(bg+b ) (b_q+bg))QA(®)| Vi *8(Em+ w(q) —En).

The matrix elemenvmn(q)=f¢m(r)¢//n(r)eiq'rd2rV(q) decreases very rapidly as
g—o. If the unperturbed oscillator eigenfunctions are taken fér), then
an(q)~e‘q232/4. Analysis of the exact solution of the Scldinger equation does not
change this estimate. Thus only the interaction with the long-wavelength ripplons, whose
energy is not much greater thadnw(q=2/a)~0.02 K but equals the energy splitting
between the levels, need be taken into account. If we actually did have a harmonic
oscillator, then there would be no such levels and the ripplon width would be negligibly
small. This is not the case because the degenerate levels of the oscillator are split, and the
width depends strongly on the magnitude of this splitting. We note that the ground level
was nondegenerate and therefore did not split, and the first level was degenerate only
with respect to the projection of the angular momentum and also did not split in a
potential of the formr?¥. Let us calculate the ripplon width of the second level. The
electron wave functions are

1 0o ol F\2 1 S r?
¢02_ —r4f2ac __ eImQS, ‘/’10: e ' 2a’ 1— —|.
J2ma?® a Jma® a®

The matrix element is

2 (qa)4/ q2a2 2
1_
8 | 8

q
|V(R10)(02)|2:(9F)29XF{_ 2
and the width of the second level is

pr_(ePP2ngtl [ q0
2 24

(goa)*

do
1_T) !

whereny=1/(e"*0/*T—1), andq is determined by the relation

3 #? (eE)?
ﬁw(%):ﬁ\[%lz E{o +Wio—Efp Wozzzm 8o’
e
whence
- 1\ﬁ 2B[ 23\ M 3p2 L (eE)? 2B
995N e) \mze) |ame 8wa

One can see that the width depends very stronghygani.e., on the depthd, on the
substrate permittivitye, and on the level number. Fat=1000 A, F=3000 V/cm,
Z.+=1, andT=0.5 K we obtainqa=5.2 andl'5=0.003 K. Ifd is halved, therga=7
andI'5~1075 K. The width of the second level is a nonmonotonic function of the
clamping field. FoilE, =~1500 V/cm it has a flat maximum which arises as a result of the
competition between the factoE( + E.¢)? and the exponential dependence of the width
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on qpa, where the clamping field enters on account of the deformation corrections. For
d=1000 A one had’~0.005 K at the point of the maximum. The surface deformation
strongly influences the width of the second level. This is also due to the fact that the
splitting between its sublevels is small. For the third level the initial splitting is 11 times
larger, and for this reason the width of this level should be very small and be more
independent of deformation effects.

At low temperatures the contribution of scattering by the atoms is exponentially
small, and the interaction with ripplons remains the only cause of the level broadening.
The strong dependence of the ripplon width on the external parameters and on the level
number is a distinguishing feature of an electron in a bound state. The smallness of the
level width for T<<0.6 K makes it possible to perform a beautiful spectroscopic experi-
ment, similar to that of Ref. 7 but for bound states.
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Aharonov—Bohm oscillations in a ring with a quantum
well

I. A. Ryzhkin
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Aharonov—Bohm oscillations in a ring with a quantum well are inves-
tigated in the ballistic regime. It is shown that when trajectories with
multiple circuits around the ring are taken into account, the maxima in
the conductivity correspond to resonance levels of an isolated ring. The
results obtained are in qualitative agreement with the experiment per-
formed by Yakoby, Heiblum, Mahalu, and Shtrikm@hys. Rev. Lett.

74, 4047(1995]: Although the scattering phase of an electron scattered
by a quantum well changes hy on passage through each resonance,
the Aharonov—Bohm curves for the centers of neighboring resonances
are identical. In the simplified interpretation employed by Yakebwl.

the latter result looks like an identical scattering phase in neighboring
resonances. €1997 American Institute of Physics.
[S0021-364(©7)00721-4

PACS numbers: 72.15.Rn, 73.94.

The development of nanotechnology in the last 10 years has led to the creation of
electronic structures several tens of nanometers in(gizantum wires, contacts, wells,
and their combinations On account of their smallness and low impurity density, the
transport in such structures at low temperature is ballistic: Along their entire propagation
path electrons do not undergo any scattering by phonons or a random static impurity
potential. The only form of scattering is scattering by elements of the structure itself.
Under such conditions electron propagation is a quantum-limit process and is described
best by the quantum theory of scattering and not by the classical Boltzmann equation.
Under quantum scattering conditions the behavior of a scattered electron is characterized
not only by the scattering probability but also by the scattering phase. For this reason the
conductivity of topologically nontrivial structures can depend directly on the phase. This
is a new circumstance compared to classical transport, and it can serve as a basis for the
development of fundamentally new electronic devices with unusual characteristics.

The electrical properties of one such structure were investigated in detail in Ref. 1
and shown schematically in Fig. 1: a ring with current contacts and a quantum well in one
of the arms. The ring was placed in a magnetic field and thus carried a magneti. flux
A voltage U was applied to one of the electrodes creating the quantum well, thereby
changing the depth of the well. The conductance of the structure as a function of the flux
@ manifested Aharonov—Bohm oscillations with period equal to the magnetic flux quan-
tum ®y=hc/e, indicating transport coherence, i.e., transport was sensitive to the phase
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FIG. 1. Aharonov—Bohm ring with a quantum well in the bottom &am the left-hand side of the figureThe
magnetic flux is directed upwards out of the plane of the figure. The arrows show the incident and reflected
waves. A quantum well with resonance levels is shown schematically on the right-hand side.

acquired in a magnetic field. The conductance as a functidsh iof the presence of zero
magnetic flux had the form of narrow resonance peaks at voltages which the authors
associated with matching of the resonance levels of the well with the Fermi level of the
system. The most interesting and contradictory results were obtained in an investigation
of the scattering phases of the quantum well. There the Aharonov—Bohm oscillations
were investigated at fixed voltages, and the scattering phases were determined from the
shifts of the oscillations relative to the origin of coordinates. It was found that when the
energy is scanned through each resonance the scattering phase chamgess tshould
happen according to the Breit—Wigner formal&owever, the phases in successive
resonances turned out to be the same, which is obviously at variance with simple models
of a quantum well and resonance levélse phases should differ by). This contradic-

tion, formulated on the basis of a simple and graphic theory, appears to be completely
unresolvable if the electron—electron interaction is neglected. It is probably for this rea-
son that the latest attempts to resolvEare all based on models of interacting elec-
trons.

The objective of the present letter is to make a theoretical analysis of the conduc-
tance of an Aharonov—Bohm ring with a quantum well in one arm of the ring and to
investigate the dependence of the conductance on the magnetic field and voltage applied
to the well. In contrast to Refs. 3-5, we employ the same model of noninteracting
electrons as that in Ref. 1, but we do not confine ourselves to summing only the two
simplest trajectories connecting the contacts 1 and 2. Actually, our method of solution is
equivalent to taking into account nonrectilinear trajectories, including those with different
numbers of circuits around the ring. When they are taken into account, propagation along
the two arms is no longer independent and actually signifies that a necessary condition for
a resonance in the conductance is that the Fermi level coincides with the resonance level
of the entire ring(isolated from the current contat@nd not with the resonance level of
the quantum well. This circumstance radically changes the outcome and gives a simple
and natural explanation for all observed results.

To find the conductance, we note first that it can be expressed, by means of the
Landauer formul4,in terms of the transmission coefficient, the finding of which is a
standard quantum-mechanical problem. We represent the electron wave function in each
segment in the form
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a; . b; .
l//i(X)—ﬁeXF(IkX)-F\/EeXF( ikx), D

wherea; andb; are the amplitudes of the waves shown in the figure by arravis the
one-dimensional coordinate along a segméme assume that the system is one-
dimensional or has only one chanpealndk is the wave number. The wave functions in
each arm are matched by means of unitary scattering matrices expressing the amplitudes
of the scattered waves in terms of the amplitudes of the incident waves:

b, 0 ti]fa b, r t')(as
ol it (ol oo

ay to 0 |bs as t r'|bs
wherer andr’ are the reflection coefficients abéndt’ the transmission coefficients of
the lower arm, treated as a single scatterer; similagyand t; are the transmission
coefficients for the upper arm. The upper arm is assumed to be free and the reflection
coefficients for it equal zero. In the absence of a magnetic flux onéyhasg = exp(kl),
wherel is the length of the semicircle. When a magnetic flux is switched @mdr’ do
not change but the transmission coefficients do chahgetsexpfa), ti—tiexpia),
t—t exp(—ia), and t'—t'expla), a=(P/Py)7. The location where the current-
conducting contacts connect with the ring are also described by scattering matricgs (3
matrices.” Unitarity (flux conservationand symmetry(reversibility in time, the sym-
metry between the two arms of the ring, and the additional requirement that the matrix
elements be real allow the scattering matrices of the units to be parametrized by a single
real parametef:

by —a~b & e 1

as = Ve a b by,

ag Je b a) lbs

ag —a—b e e 0

bg p = Je a b as ¢, ()
by Je b a) las

wherea,b=(y/1—2&¥1)/2 ande varies in the rangg0,1/2] and characterizes the cou-
pling of the ring with the contacts. The valée=0 corresponds to an isolated ring and
£=1/2 corresponds to the maximum coupling of the ring with the contacts. We under-
score that the units are treated as point objects. For this reason, they do not enclose a
finite magnetic flux, and the constargsb, ande do not depend on the magnetic field.
We also note that an ideal connectign the sense that the fluxes are conserved and the
wave function is continuogorresponds to a matri®) with £ =4/9 which is symmetric

with respect to all three arms. The system of equati@snd (3) makes it possible to

find directly the transmission amplitude=@¢). Omitting long algebraic calculations, we
present the final expression for the transmission amplifugdor small e, which is the
most interesting and, from the experimental standpoint, most likely case:
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to(1—t2+r+r'+rr')expia)+t(1—t3)exp —ia)

F1z=e DoteD; ! @
whereD, andD; are determined by the equations

Do=(1—ttg exp(—2ia))(1—tty exp2ia))—tarr’. (5)

D,=2tty cog2a)+ (r+r')(1+1t3)/2+2t3(rr ' —t?). (6)

Using the Landauer formula, the equatiod$—(6), and the unitarity of the scattering
matrices, the conductan€&,, of the ring can be represented in the fofinere and below
the conductance is given in units 0éZh)

, [r cogB)—sin(6)]%+1t? si’(¢) — 2t sin(¢)[r cog B) —sin(¢)]cog2a)

[cog 8+ @) —t cog2a)]?+&2[(r cogB)—sin(8)) cog ¢)—sin(¢)cog 81
(7)

Here and below andt are the moduli of the reflection and transmission coefficients for
scattering by a quantum well, the value of the param@tefarg(r’) —arg(r) ]/2 depends

on the model of the quantum well and in the general case is non2éscdhe scattering
phase of the quantum well, ang=kl is the phase acquired during free propagation
along the top arm. It is important to underscore that besides the symmetry dictated by
time reversalG,(®)=G,(—P), the conductance exhibits an additional symmetry
G P) =Gy — D).

It is evident from Eq(7) that for smalle the dependence of the conductance on the
parameters of the problem is of a resonance form. Maxima occur WherD (the first
term in the denominator in Eq7) vanisheg It is easy to show that this condition is
identical to the condition for quantization of the levels of an isolated ring. The height of
a maximum is independent af whereas the width is directly proportional £0 There-
fore the conductance resonances correspond to the energy levels of the ring and not the
quantum well by itself. A striking illustration of this assertion is the possibility of a
conductance resonance even in regions far from the well resonances, twirghis
requires that cog+ ¢)=0). The conductance at resonances of this type does not depend
on the magnetic flux. This is entirely understandable, since in the case when propagation
occurs only along one arm there is no interference mechanism there. This case probably
does not correspond to the experiment of Ref. 1.

12— €

Strong modulation of the conductance by a magnetic famnounced Aharonov—
Bohm oscillation$ exists only fort comparable to 1, i.e., when the Fermi level is close
to a resonance level of the welut does not necessarily coincide with iHowever, it
would be incorrect to think that a neighborhood of each resonance level of the well
necessarily results in a conductance resonance for a fixed magnetic flux. Indeed, suppose
that 6, andt, from a neighborhood of a resonance of the well give a conductance
resonance, i.e., they are solutions of the equationdsos(—t cos(2x)=0. Then the
corresponding point of the next well resonanag - ), t, is not a solution of this
equation with the same magnetic flux. It is easy to see, however, that it becomes a
solution when the magnetic flux changes 8¢ =®,/2 and thereby gives a resonance
with a different value of the magnetic field. We underscore that the heights and widths of
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the conductance resonances at these successive points can be completely different
some parameters of the problem some of them can be observed and other$ cannot

The magnetic flux dependence of the conductance in(Bgappears at two loca-
tions: in the numerator and in denominator. The term with c@s{@ the numerator is
virtually identical to the result of the simplified thedrand originates from a simple
addition of the amplitudes of the waves propagating along the two arms. This dependence
is weak, of the order ot2. The denominator in Eq(7) (or equivalently Eq.(4)) is
actually obtained by adding all trajectories with different numbers of circuits around the
ring and leads to a more complicated and stronger dependence on account of the sharp
resonance form of Eq7).

Next let us investigate the dependence of the conductance on the direction and form
of the Aharonov—Bohm oscillations near the resonance levels of the quantum well. The
moduli of the reflection and transmission coefficients and the scattering phase can be
expressed as

| 7] 1 77
r= t= o== 57 arctan 7), (8)

\/772 1 \/772 1

where n=(Er—Eg)/y is the dimensionless deviation of the resonance I&bf the

well from the Fermi levelyy is the width of the resonance level, and theare chosen in
order to permit comparison of two successive resonances differing in phase Syb-

stituting expressior8) into Eq. (7) gives for the conductance

[| 7|cog B) + 112+ sir?(¢) — 2[ | |cog B) F 1]sin(¢)cog 2a)

[+ ncog ¢) = sin( @) + cod 2a) 12+ [ (| | cog B) F 1) cog ¢) = psin(¢) ]2 ©

G12:82

The voltage and magnetic flux dependences of the conductance are strongly determined
by the value of the phasg, which in turn depends on the dimensions of the ring and the
Fermi energy. For cog() =0 the sharpy dependence observed experimentally does not
occur. To come closer to experiment, let us examine the directly opposite cagg=cbs(

We obtain for the conductance

G [l 7lcog B)*17°
[+ p+cog2a) 2+ &% | ylcog B) F 112

(10

It is evident from this formula that a conductance resonance exists only in a quite close
neighborhood of a well resonandej|<1. As the energy is scanned within one well
resonance in the region 1< »<1, the value of 2 changes byr, which corresponds to

the Breit—Wigner formula and the experimental result. At the same timegforl the
Aharonov—Bohm oscillations become increasingly shallow. However, if the form of the
oscillations directly near the center of the resonange<() is investigated, then the
result does not depend on which sign, upper or lower, is chosen. This means that the form
of the oscillations is identical at the centers of successive well resongiheesscilla-

tions appear to be in phgsérhis qualitative analysis is also confirmed by a numerical
analysis of Eqs(7), (9), and(10) for different values of the parametefs ¢, and ¢.
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In closing, let us list the basic results of this work. First, conductance resonances
correspond to the energy levels of the isolated ring and not of the well. Second, the
resonances of an isolated well should be separated into two types: even afdithdd
scattering phase equal to 0 aad respectively. If the even well resonances lead to
conductance resonances with an integral magnetic flux (®,), then the odd reso-
nances lead to conductance resonances with a half-integral®ex((+ 1/2)®). For
definite parameters of the problem, the latter formep could be much weaker or
narrower, i.e., unobservable experimentally. This is one of the possible resolutions of the
paradox formulated in Ref. 1. Finally, a systematic calculation of the conductance taking
into account trajectories with different numbers of circuits around the ring leads to a more
complicated dependence of the conductance on the magnetic flux and the voltage than the
simplified theory of Ref. 1. This dependence in itself looks like a “change in scattering
phase by#” near each resonance and “identical phase” at the centers of successive
resonances. The latter is the most likely explanation of the experimental results obtained
in Ref. 1.

I thank V. I. Marchenko, V. M. Bel'shtein, and G. B. Lesovik for valuable discus-
sions and interest in this work. This work was supported by the Russian Fund for Fun-
damental Research under Grant No. 96-02-19568.
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Change in the nature of the Ni diffusion mechanism on
the Si(111) surface with adsorption of Co atoms
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630090 Novosibirsk, Russia

(Submitted 6 October 1997
Pis'ma Zh. Ksp. Teor. Fiz66, No. 9, 611-61410 November 1997

The diffusion of Ni on a S{111) surface is investigated by LEED and
Auger electron spectroscopy. It is found that, in contrast to the process
on the initially clean Si{111)-7X 7 surface, on S{111) surfaces with
submonolayer Co coverages the nature of the Ni transport mechanism
changes at a temperature of about 750 °C, and the Ni surface diffusion
coefficients increase sharply below this temperature.1997 Ameri-

can Institute of Physic§S0021-364(17)00821-9

PACS numbers: 68.35.Fx, 82.80.Pv, 61.14.Hg

Research on surface diffusion is important for surface physics and its applications in
technology. It is known that surface diffusion can depend on surface orientation and
structure, the densities of atomic steps, the chemical nature and density of adsorbed
atoms, external fields, and so see, for example, Refs. 1%4

Using LEED and Auger electron spectroscdfyES), we have observed an abrupt
change in the nature of the mechanism of surface diffusion of Ni, with a sharp increase
in the Ni surface diffusion coefficients on the(BL1) surface at temperatures below
70 °C upon the adsorption of submonolayer quantities of Co atoms as compared with Ni
diffusion on the initially clean $111)—7X 7 surface. In a previous wotkve investi-
gated in detail Ni diffusion on a clean Si surface. In the present work we performed only
control experiments on a clean silicon surface.

The temperature dependences of the nickel surface diffusion coeffiié¢mjswere
calculated from the concentration distributidg;(x) (x is the distance from the edge of
the strip obtained on a $111) surface as a result of the diffusion of Ni from a nickel
strip deposited on the surface, as the sample is annealed for d.tifle distributions
Cni(X) were measured by the AES method at room temperature. The transport of Ni on
a clean silicon surface was observed at temperatures above 700 °C. At this temperature,
after the sample was annealed for 60 min, we could not record the concentration distri-
butions Cy;(x) because the sensitivities and spatial resolution of the AES and LEED
methods are too low. It follows from our experiments that transport of Ni atoms along
clean Si surfaces occurs by means of diffusion of the atoms through the bulk followed by
segregation on the surface as a result of a decrease in the solubility of Ni in Si with
decreasing temperature of the santblhe conclusion that Ni diffuses through the bulk
of the Si is based on the fact that the concentration distributions of Ni on the Si surface
appeared only after the sample cooled, while no Ni Auger signal was detected from the
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surface when Ni diffused during annealing of the sample, though during this time interval

Si Auger peaks as well as Ni Auger peaks from the surface of the deposited strip could
be observed. The conclusion that diffusion occurs through the bulk also agrees with the
fact that the nickel diffusion coefficients do not depend on the orientation and structure of
the silicon surfacé;such a dependence should be present if the nickel atoms diffuse

along the surface. Moreover, this conclusion was indirectly confirmed by the fact that the
values of the Ni diffusion coefficients calculated from our experimental results are close

to the corresponding values presented in Refs. 6—8 for the diffusion coefficients of Ni

diffusing along interstices in Si. Our conclusion about the mechanism of the transport of
nickel on a clean silicon surface was confirmed in Ref. 9.

Nickel nonetheless still does diffuse on clean silicon surfaces. This is seen as the
formation of nickel-induced ordered surface structures and formation of epitaxial islands
of nickel disilicide NiSp. But the Ni surface diffusion coefficients are several orders of
magnitude lower than the diffusion coefficients along interstices, and surface diffusion
makes a negligibly small contribution to Ni transport on clean Si surfaces. This result is
remarkable in that it does not fit into the existing picture of surface diffusion, according
to which the migration rates of atoms along a surface are higher and the activation energy
of the surface diffusion is lower than the corresponding values in the bulk of a crystal.

To investigate the effect of Co adsorption on Ni surface diffusion, a submonolayer
Co coating(in what follows, a monolayer is denoted as Mivas deposited on a clean
Si(111) surface in an ultrahigh vacuum at room temperature. As we showed in Ref. 10,
heating of a Sil11) surface on which Co is adsorbed results in the formation of a number
of Co-induced surface structures which depend on the coverage and the conditions of
heat treatment. These are surface structurd@19i—-7x7-Co, S{111)-1x1-Co,
Si(111)—\7x \[7—-Co, and SiL11)—/13% \/13—Co. They are observed at room tempera-
ture and are formed in a definite range of Co concentrations and annealing temperatures.
If the Co concentration exceeds the amount required for a given surface structure to form,
the excess Co atoms combine with silicon to form epitaxial islands of cobalt disilicide
CoSj, (Ref. 10. The LEED patterns from the @il11)—7Xx 7—Co surface are similar to
those observed from the clean(Bil)-7Xx 7 surface. This is due to the fact that Co
atoms adsorbed on a($11)—7x7—-Co surface are incorporated in the epitaxial GoSi
islands, which occupy a small area and a large part of the silicon surface remains clean.
The curves of the Ni surface diffusion coefficients were measured on samples with
surface structures ¥7-Cd0.4 and 0.8 ML C¢ 1x1-Co (0.6 ML Co), and
J7X\[7=C0(0.2 ML Co). Before the Ni diffusion experiments were performed, samples
with \7Xx \7—Co and X 1-Co surface phases and Co coatings of 0.2 and 0.6 ML,
respectively, were annealed at temperatures up to 600 °C for 180 min. In the process, we
did not observe any changes in the LEED patterns. This attests to the stability of the
surfaces of the samples during the anneals. The values obtained for Ni diffusion coeffi-
cients on the|7x \7—Co surface exhibited poor reproducibility, and we do not present
them in this letter.

The concentration distributiorSy; (x) measured on clean @ilL1) surfaces and on
Si(111) surfaces with adsorbed cobalt were found to satisfy the equation

C(x)=C, erfox/2\/Dt). D

644 JETP Lett., Vol. 66, No. 9, 10 Nov. 1997 Dolbak et al. 644



T, °C
1000 900 800 700 600 500

103 T T T T T T
Dy, -
» % - Si¢111)-7x7 - clean
cme/s .
e - Si(111)-7x7-Co, 0.4 ML
o - Si(111)-1x1-Co, 0.6 ML.
104 X% I - Si(111)-7x7-Co, 0.8 ML
X
IO‘S Q
+
ket
.
“y
10-6 . + .\
.
+
107 L 1 1 1 i l
8 10 12 14
104/T, K-!

FIG. 1. Temperature dependence of the Ni surface diffusion coefficients on a clddri) Siurface and a
Si(111) surface with adsorbed Co.

Similar distributions are characteristic for one-dimensional surface diffusion from a
source of constant intensity.

The temperature dependences of the Ni diffusion coefficients on cléablBsur-
faces and $111) surfaces with adsorbed Co are displayed in Fig. 1. The diffusion
coefficients are determined with an accuracyZ0B0% from the distribution<Cy;(x)
measured at the given temperature.

The curves obtained for a clean silicon surface at temperatures above 700 °C are
identical to those obtained for a silicon surface with adsorbed Co. However, below
750 °C a sharp change occurs in the mechanism of nickel transport along a silicon
surface. Nickel diffusion is not detected on a clean surface below 750 °C, whereas con-
centration distribution€;(x) are detected on a surface with adsorbed Co all the way up
to a temperature of 500 °C. At about 750 °C the slope of the temperature dependence of
the diffusion coefficients changes. The activation energy of Ni surface diffusion calcu-
lated for the Si111)-7%7—Co surfacdsee Fig. 1 equals 1.3 eV, and the temperature
dependence of the diffusion coefficients can be expressddl=asx 10°exp(—1.3kT)
cn/s. The corresponding expression for the Ni diffusion coefficients measured on the
clean S{111) surface has the forr® =2.4x 10" 3exp(—0.32kT) cn?/s?

As follows from our experiments, the Ni diffusion mechanism on @8I surface
with adsorbed Co is different from the mechanism observed on a clean silicon surface.
When submonolayer quantities of Co are present on the surface, an Auger signal from Ni
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is observed in the process of diffusion of Ni at temperatures of 500—700 °C, and the
nickel concentration distribution observed on the surface of a heated sample at the
completion of annealing is identical to that measured at room temperature. Therefore Ni
transport occurs in this case by means of diffusion along the surface, in contrast to the
clean silicon surface, where, as we have said, nickel diffuses through the bulk of the Si
and is then segregated at the surface.

It was natural to expect that the Ni surface diffusion coefficients would depend on
the structure of the silicon surface and the concentration of adsorbed cobalt. One can see
from the figure that the Ni surface diffusion coefficients on éL81) surface with dif-
ferent surface structures and adsorbed Co concentrations in the temperature range 500—
700 °C differ somewhat: The Ni diffusion coefficients are lower on surfaces with a high
Co concentration.

In summary, we have observed that adsorption of submonolayer concentrations of
Co atoms results in an abrupt change in the nature of the mechanism of Ni diffusion on
a Si(111) surface at a temperature of about 750 °C. The values of the Ni diffusion
coefficients on a $111) surface with adsorbed cobalt are much higher than the corre-
sponding values on an initially clean silicon surface in the temperature range 500—
700 °C. However, at present we cannot explain the mechanism responsible for the in-
crease in the Ni surface diffusion coefficients on &1$1) surface containing cobalt-
induced surface phases in the temperature range 500—700 °C. Especially surprising is the
effect of Co atoms on the nickel diffusion mechanism on tH&é=)—7x 7—-Co surface,
where the Co atoms are incorporated into irregularly arranged epitaxial islands of the
disilicide CoSj, which occupy a small fraction of the surface, while a large part of the
silicon surface remains clean and even retains tR& &tructure of the clean surface.

This work was supported by the Russian Fund for Fundamental Resgaraht
95-02-05336 and the Russian State Program “Surface Atomic Structuf@§-1.17.
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Neutron diffraction investigations have shown that a 2% substitution Fe
atoms for Pd radically alters the magnetic structure of JG#d. If the
magnetic structure in the undoped compound &t50 K consists of a
longitudinal spin density wavéLSDW) with “square” modulation,
then in polycrystalline (Pd, o€ 0),G& a “simple” antiferromag-
netic (AF) phase is observed below 65 K and a sinusoidally modulated
LSDW-AF phase is observed between 65 K and thel Nemperature
Tn=135 K. In the interval 65 T<<135 K the magnetic cell is incom-
mensurate with the crystal cell, with the exception of the pdirto3

K, where the wave vector of the magnetic structure passes through a
“commensurate” value equal to 0.75. BeloWy, the magnetic mo-
ments of the uranium atoms are always parallel to the tetragonat axis
of the unit cell. © 1997 American Institute of Physics.
[S0021-364(®7)00921-3

PACS numbers: 75.50.Ee, 75.30.Fv

The first neutron diffraction investigations of Uk, (Ref. 1) revealed the pres-
ence belowl =140 K of a magnetic structure of the antiferromagnéig) type with a
modulated longitudinal spin density waveSDW). Recent magnetic measureménts
have indicated the existence of at least two additional magnetic transitions — near 87 K
and 50 K — and the possible coexistence of several magnetic phases at low temperatures
— AF, ferromagnetidFM), metamagneti¢MM ), and spin glas$SG). This has stimu-
lated repeated neutron diffraction investigations of WBg (Ref. 6 with much better
resolution and accuracy than in the early work. was shown that at temperatures
1.4<T=<50 K the magnetic structure of UR@e, is described by a commensurate
LSDW with “square” modulation and with a magnetic wave vector (0,0,3/4). At
temperatures 95T<T)y (Ty=135 K) the magnetic structure consists of an incommen-
surate LSDW with sinusoidal modulation. In the interval<bD<95 K the structure
consists of a mixture of these two phases and gradually transforms from a square-
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modulated into a sinusoidally modulated structure; a first-order phase transition from the
commensurate into an incommensurate phase, expressed as a sharp ckangedaors

near 80 K. Only the uranium atoms carry a magnetic moment, and the direction of the
moments are parallel to theaxis of the unit cell.

The system UPd5e,—UFe,Ge, forms a continuous series of solid solutions with a
structure of the ThGSi, type* It is curious that the final member of this series,
UFe,Ge,, is nonmagnetic and is a Pauli paramagrfeMeasurements of the magnetic
susceptibility and magnetization in the systeriPd| _Fe,),Ge, have showh* that even
a very low iron concentration radically changes the magnetic state of the initial com-
pound UPdGe,. Specifically, 2% Fe is a critical concentration at which a number of
magnetic properties change radically.

We performed neutron diffraction magnetic and structural investigations of the sys-
tem UPd, _,Fe),Ge, for different Fe and Pd concentrations. The present letter reports
the results for the critical concentration 0.02.

Polycrystalline samples of pure Uf8e, and of the doped compound
U(Pdy.oden.00) 2G& were prepared by melting stoichiometric quantities of the constituent
materials in an argon arc furnace. The details of the sample preparation method are
described in Ref. 3. The magnetic susceptibility and magnetization measurements were
performed on a SQUID magnetometer in the temperature interval 5-300 K and in exter-
nal magnetic field$d up to 5.5 T.

Neutron diffraction data for refinement of the structure were obtained for several
temperatures on a high-resolution Fourier diffractometer in the IBR-2 pulsed reactor in
Dubna. A G4.1 diffractometer in the Orphee reactor in Saclay, France, with a neutron
wavelength of 2.426 A was used for the neutron magnetic investigations. All neutron
diffraction patterns obtained on the G4.1 diffractometer were recorded in a regime with
temperature increasing from 1.4 K up to 142 K. The data were analyzed by the Rietveld
method using the MRIA and FullProf cod®s.

Figure 1 displays the temperature dependences of the magnetic suscepyiffiity
pure and iron-doped samples. The inset in Fig. 1 also shows curves of the inverse
susceptibility 1= f(T). Besides the magnetic anomalyTg{, two additional anomalies
are observed in both samples. In YBa, the susceptibility passes through a maximum
atT,,;=87 K andT,,~50 K. In U(Pd, ogF&, 90) ,G& the maximum of the susceptibility
at T, shifts to 74 K and becomes very intense, while the maximum,g&=50 K is
strongly suppressed.

High-resolution neutron diffraction patterns confirm thatPd, od€ 00) .G& pos-
sesses a simple body-centered tetragonal structure of the Sih@me with space group
I4/mmm and atoms in the following crystallographic positions: U (@20, 0, O; Pd(Fe)
in 4(d): 0, 1/2, 1/4; Ge in &): 0, 0,z Thez coordinate of Ge and the thermal factors for
all the atoms were refined, and no substantial anomalies were observed in their tempera-
ture dependence.

Only the coordinateg(Ge) and the lattice parameters were refined with the nuclear
diffraction peaks obtained on the G4.1 diffractometer. It was foundz{@a¢) =0.38122)
at 142 K, and this parameter remains constant all the way down to 1.4 K. A small
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FIG. 1. Temperature dependence of the magnetic susceptibility in theHield kOe for pure UPgGe, and
iron-doped UPd, o6, 00) ,G&. Inset: Inverse susceptibility of Bd, g€ o) 2GE-

anomaly was observed in the temperature dependences of the lattice paraeetdis
near 65 K. This anomaly was not obser¥éu pure UPdGe;.

It follows from the neutron data that &< 65 K the compound (Pd, o€, 90 ,G&
possesses a simple AF structure with wave vekter c*. The magnetic moments of
uranium are parallel to the axis, and the magnetic unit cell coincides with the nuclear
cell. The only difference between the cells is that body-centered symmetry does not hold
for the magnetic cellthe magnetic moments are oppositely oriented at the p@nt 0
and(1/2, 1/2, 1/2 and, in consequence, the magnetic peaks kittk+ 1+ 2n are visible
in the low-temperature diffraction spectra.

Figure 2 shows the temperature variations of the intensity of the magnetic peaks
(100 and (1017), referring to the commensurate and incommensurate phases, respec-
tively. The transition al =65 K to the incommensurate structure is formally manifested
as a sharp decrease in theomponent of the wave vectérfrom 1 to 0.76(in units of
c*) (see Fig. 3 At temperature§ >65 K the magnetic structure of(Bd, o€ 02 2G&
consists of an incommensurate longitudinal spin density wa@® W) with sinusoidal
modulation. The phases AF and LSDW coexist in a very narrow temperature interval
near 65 K.

We observed another curious effect: Above 65 K, as the wave vector decreases
slowly (Fig. 3), its length passes through the “commensurate” value of 3/4 at 93 K.
Thereforek,>3/4 at 65<T<93 K andk,<3/4 at 93 K<T<Ty.

The temperature dependence of the magnetic moment of uranium in the
U(Pdyod&.002Ge sample is shown in Fig. 4. As the temperature increases, the magni-
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FIG. 2. Temperature dependence of the intensity of the magnetic Bragg peaks 100 andi®}eak 100
vanishes aff~65 K, while the peak 101 appears at the same temperature.

tude of the moment remains almost constant in the regioif €65 K. Then it decreases
abruptly at 65 K, and on the way to the &léemperaturd =135 K it passes through an
additional anomaly near 93 K. This temperature is also the point wydrecomes equal
to the “commensurate” value of 3/4.

The neutron diffraction experiments show that even very light doping with iron
changes the magnetic structure of YB8d, radically. After doping with only 2% Fe the
low-temperature LSDW phase of pure URd, with “square” modulation k,= 3/4)
changes into a simple AFK{=1) structure. As the temperature increases, the magnetic
transition from the commensurate to the incommensurate phase 3gPid accompa-
nied by a sharp decrease in the numkg(Ref. 6, while in the doped sample the wave
numberk, varies continuously in the entire temperature range from 65 K up to 135 K.
One gets the impression that iR, gd-& o) G, the wave number, in going from the

Wave vector (0, 0, c*)
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FIG. 3. Temperature dependence of the compohkgnf the magnetic wave vectdr for U(Pd, od- € 00 2G&.
Inset: Transition of the wave vectéy, through the “commensurate” valuef=0.75) atT=93 K.
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FIG. 4. Temperature dependence of the magnetic moment of urgmuwmits of ug) in U(Pd, od &) 02) 2G&.

value k,>3/4 to k,<3/4 at 93 K, does not at all “feel” this temperature as a phase-
transition point. However, the anomaly in the magnitude of the magnetic moment of
uranium atT~93 K (Fig. 4) confirms the existence of a magnetic transition. It should be
noted that the sharp change in the wave vektand magnitude of the magnetic moment
of uranium at the transition point=65 K correlate with the anomalies of the lattice
parameters andc at this temperature.

The magnetic transition temperatures 65 and 93 K found {&tdyhd=ey 92 2G& in
the diffraction experiment are different from the positions of the maxima of the magnetic
susceptibility(50 and 74 K; Fig. L but they correspond to the onset of the ri6& K)
and the termination of the dra®4 K) of the susceptibility in the peak &t,,. According
to Fig. 1, x(T) increases rapidly at the poifit=67 K, which according to the neutron
data is the temperature of the transition AFLSDW. One can also see in the inset in
Fig. 1 that the value of }/ increases in the interval 74—135 K, with a change in slope
occurring exactly at the poinT=93 K. Therefore, like the magnetic moment of the
uranium, the magnetic susceptibility is also sensitive to the tranditiorB/4=k,<3/4.

It is known that several crystals with the ThSK, structure possess a simple AF
structure at low temperatures, for example, bB¥ at 53<T<103 K° UP4,Si, at
T<108 K and UN,Ge, at T<80 K12 but this structure has not been obsefiadoure
UPd,Ge,. We have now found that the low-temperature phase of iron-doped&H#d
possesses a simple AF structure.

To relate the neutron diffraction data with the results of magnetic measurements it is
necessary to assufitethat the compound (Pd, odF e, 0p),Ge below Ty is in a mul-
tiphase state. The coexistence of different phases and the competition between them
result in frustrations of the magnetic order, which results in the appearance of SG and
FM phases in small volumes of the sample. The iron impurity intensifies the frustration,
changes the magnetic anisotropy of the material, and strongly modifies the magnetic
properties of UPgGe,. Apparently, the development of the magnetic states in
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U(Pdy od&.02 2G& with temperature is determined by the temperature dependence of the
anisotropy energy.The neutron-diffraction experiments did not reveal SG or FM phases.
To check for their presence we plan to investigate these compounds by the method of

MSR spectroscopy.

This work was supported by the Russian Fund for Fundamental Research and the
INTAS-RFFI Fund.
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Zero curvature representation for classical lattice sine-
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Local M operators for the classical sine-Gordon model in discrete
space—time are constructed by convolution of the quantum trigonomet-
ric 4X4 R matrix with certain vectors in its “quantum” space. Com-
ponents of the vectors arefunctions of the model. This construction
generalizes the known representation of continuous-tilneperators

in terms of the classical matrix. © 1997 American Institute of Phys-
ics.[S0021-364(®7)01021-9

PACS numbers: 03.50.Kk, 11.10.Lm

1. Soliton equations are integrable Hamiltonian systémith Poisson brackets for
Lax matrices having a unified form in terms of tf@assical r matrix. An alternative
approach? consists in representing soliton equations as 2D zero curvéI@econdi-
tions for a pair of matrices calleld andM operators depending on a spectral parameter.
Although this method avoids any reference to the Hamiltonian aspectsntlagrix arises
here, too, as a machine to produdeoperators fronlL operators. Let us recall how it
works.

Let £,(z) be a classical ultralocal>22 L operator on 1D lattice with the periodic
boundary conditiorC,, y(2) = £,(2); z is the spectral parameter. The monodromy matrix
is 7/(2)=Ln-1(2) ... L£1+1(2) £(2). Hamiltonians of commuting flows are obtained
by expanding lodl(z) in z, whereT(z)= Tr 7,(z) does not depend ohdue to the
periodic boundary condition. All these flows admit a ZC representation. The generating
function of corresponding/! operators i*

M (z;w) =T 1(w) Try[r(zZ/w)(T(w)®1)], (1)

where r(z) is the r matrix (of size 4<4) acting in the tensor product of two 2-
dimensional spaces, jfmeans the trace in the first space, dnd the identity matrix.

A way to construct locaM operators from(1) is well known*® Suppose there
exists azy such that det’,(z,)=0 for anyl, so L,(zp) is a projector:

(1)
EI(ZO):MI;#IL |a>:(Z(2))' (Bl=(BP,8?). 2

Here\, is a scalar normalization factor. Thé (z;zy) is a local quantity:

653 0021-3640/97/090653-07$10.00 © 1997 American Institute of Physics 653



(Bilr(z/zo)| e - 1)
(Bla—1)

The scalar product is taken in the first space only, so the resultis2ar@atrix. It obeys

the ZC conditiond,£,(z) =M, 1(2) £,(2) — L;(2)M,(z) with the spectral parameter.

The goal of this work is to extend E@3) to M operators fodiscrete time flow
Hirota’s 2D partial difference equatiofis® We follow Refs. 9 and 10, treating the dis-
crete equations as members of the same infinite hierarchy as the continuous ones.

M|(2)=M,(z;2y) =

()

Let us outline the results. In the discrete case the functjapin Eq. (3) is replaced
by the quantunR matrix. Specifically, the following representation of discrbteopera-
tors M,(z) holds:

(BIIR(Z/20)| B -1)
(Bilew-1)

(hereaftero; are Pauli matrices On the right-hand sideR(z) is a quantum4x4 R

matrix to be specified below, with the “quantum” parameter related to the time lattice

spacing. A similar formula for thd&. operator itself is valid with another quantuR
matrix R(7)(2):

_(BIRT(Zz0)| o)
L= (Bile-1) ' ®)

The vectors ;) and|B,) arethe sameas in Eq.(3). In the language of the algebraic
Bethe ansaiZ*the scalar product is taken in the “quanturfVertica) space, so one gets
a 2X 2 matrix in the “auxiliary” (horizonta) space:

(s

(8| R(9)|a) = +

o)
The M operator(4) generates shifts of a time variable The ZC condition
Mis1m(2D) Ly m(2) = Ly m+1(2) M) m(2) (6)

gives rise to the discrete soliton equations from Refs. 6 and 8.

M(2)= |B)=01]B)) (4)

The change of dynamical variables to the pair of vectai$, | 3,) plays a key role.
Using the equations of motion of the discrete model, we show(thatably normalizep
components of the vectolg,), | ;) are r functions(concerningr functions see, e.g.,
Ref. 12.

In this paper we elaborate the simplest example — the lattice sine-G¢RBn
model. There are two lattice versions of the classical SG model: the model on a space
lattice with continuous tinte*® and Hirota’s SG equation on a space—time laffidéey
have commorL operator. TheM operators are given by E¢3) with the trigonometric
classicalr matrix for the former and by Eq4) for the latter, withR(z) being the
simplest trigonometric solution of the quantum Yang—Baxter equdtitenR matrix of
the XXZ spin chain.
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2. By the SG model on a space-time lattice we mean the Faddeev—Volkov
versiort*1° of Hirota’s discrete SG equatidhiThis is a nonlinear equation for a function
¥(u,v) on the 2D square lattice. Let

—C =(u,v+1) D=(u+1v+1)

B=(u+1lv) ——r

be an elementary cell of the,v lattice. In this notation the equation reads

vipcihp— vipathg= u(ethp — nibatbc), (7)

whereu, v are constants. It contains both the Korteweg—de i&h/) and sine-Gordon
(SO equations as different continuum limits. Equati@hcan be represent&tas the ZC
conditionLp. g(z;¥)Lg_a(Z; ) =Lp._c(Z; 1) Lca(z;v) with the L matrix'*1®

11 _1rt
nps, 2 ARG
Leg_a(zip)= - P (8

A mibg 203
We calll = 3(u+v), m=3(u—v) discrete space and time coordinates, respectively. Con-
sider “composite” L and M operators generating shiftA—D and C—B,

respectively: Lo a(2)=2 Lo c(ziw)Lc a(zv), Mg _c(2)=2"42*~1?)
XLg_a(Z;)[Lea(z;v)]7 L. From(8) we find:

1 1 1 -1 1
R TR IRt L I WY Bl TV |
Lo a(p2)= 11 11 11 o 9
vl o 2wz 2 pagRe, v 2 2
1 1 1 1 1 1 1 1 1
2 -3 _ 2 : 1
~ ,LLZl/f(Z:l,bB Z_VZ wél//cz l/,A (/‘Ldjéwcz_vdjéwB 2)
Mecluz)= 111 Lo L1
AP TR T RS Vs MY s
(10)
The L operator of the lattice SG model with continuous tag¢lth site i$’
_ — 1
ZX|+Z 1XI ! Sizg0|7T|
L{"(2)= . : (12)
S_igo|7'r|_l Z)(I_l'i'z_l)(l

Here m andy, are exponentiated canonical variablap?[1+s()(,2+)(|_2)]1’2, ands is
a parameter. To identify the operators(11) and (9), consider the composite fields
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w(u,v)= Y (u+1p) M uv+1), x(uv)=y¢*Huv)y Y (u+1lp+1) and set
m=(l,1), x;=x(l,) at the constant time slice=0. Identifying s= uv(u?+v?) !
and using Eq. (7), we conclude thatZ{(")(z)=(uv) Y2L,((uv)Y%). Here
Li(2)=Lp, a(2), where A=(l1),D;=(I+1/+1). Similarly, we write
Mg, _a(2)=/,(2), whereB,=(I+1]—1). Then the discrete ZC condition acquires

. N L1 .
the form(6). ThelL operatorﬁl('K)(z) has two degeneracy poineg = (u/v)~ 2 at which
it is a projector(2) with the right-hand side expressed in terms of the fig{d,v).

3. The idea of Hirota’s approaétis to treat Eq.(7) as a consequence of 3-term
bilinear equations for functions(see also Refs. 10 and 1 Tn the case at hand we need

two 7 functions: 7 and 7. Set

 m(uw) 12

Wu)= s (12
then Eq.(7) follows from

(V_M);'ATD: VTB;'C_M;'BTQ (V_M)TA}D: V;BTC_:U“TB;C- 13
The equivalent form of these equations,

(v+ 1) ToTc=UTaTp+ VTATp, (v+ @) TeTe=UTATD+ VTATD, (14)
is equally useful. At last, we point out the relation

7(u—1p)7(u+1p)+7(u—1p)7(u+1p)=27(u,v) 7(u,v). (15)

A few remarks are in order. Equatiof3) form a part of the 2-reduced 2D Toda
lattice hierarchy!® whereu, v areMiwa’s variables® They play the role of inverse lattice
spacings for the elementary discrete flows. The lattice spacing in the direction is
then (wv)  (u— v). Note that thes andv coordinate axes are in general not orthogonal
to each other. In particular, as is seen from E@8), for = »r one mustidentify uwith
v, and so the 2D lattice collapses to a 1D one. In this sensélB5yfollows from Eq.
(14) for v=p.

4. We are ready to represent the operator as a convolution of quantuRnmatrix
with some vectors in its “quantum” space. Consider the quanRimatrices

R (z;q)=(a(z2)=b(2)I®1+(a(z) ¥b(2))03@ 03+ C(01@ 01+ 0,@05), (16)

wherea(z)=qz—q !z %, b(z)=z—z"%, c=q—q %, qis a “quantum” parameter, and
z is the spectral parameter. TRematricesR(™) andR(™) differ by Drinfeld’s twist. Both
of them satisfy the quantum Yang—Baxter equatigm Sec. 1 we hadR(z)=R(*)
X(z,9)).

Let|a), | B) be two vectorgsee Eq(2)) from the first(“quantum”) space. Consider
the convolution<,8|R(i)(z;q)|a) in the first space. This is aX22 matrix in the second
(“auxiliary” ) space:
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B aWa(z)= B2 aPb(z) B2aVe(2)

(£)( 5 _
(BIRT(z )| ) (Bu)a(z)C(z) i,B(l)a(l)b(Z)+,8(2)a(2>a(2)).
17

Let us compare this with right-hand sides of E¢®). and (10). To do that, we write
elements of thé andM operators in terms of the functions(12) and after that use Egs.

(13) and (14) when necessary. The best result is achieved after the simple gauge trans-
formation

r '7*_ 1/2 . '7\_ 1/2
LAHD(z>=( DAD) Lo_a(2), MBHc<z>=( BAB) Mg_c(2). (18)

TATA TcTc

Let us skip the details and present the final result. We sgt (7, 7, (,8|=(?, T), and
g=ul/v. At the slicem=0 we have

_ 2uv (BIRT(Z0)|a) _ 2uv (BIRD(z0)|Bi-1)
LI(MZ)_M_V (Bil 1) ' Ml(MZ)_MJFV (Bil 1)

(19

where the notation from the end of Sec. 2 is used. Up to the constant prefactors these
formulas coincide with the ones announced in Sec. 1. The location of the vectors

T+1))

<T(|,|+1)
)= (1+1)) 20

(,1+1)

|,3|>:(

is shown in the first diagram, displayed below ES).
The normalization factor in Eq2) is equal tox;= wv(u—v) ~27(1,1)7(1,1).

5. At last we show that the-matrix formula(3) is a degenerate case of E¢). A
naive continuous-time limit would be— u, i.e.,g—1, so that, in agreement with Eq.
(3), we do get the matrix. However, this would imply Iir@H1|B|>=|a|> that is certainly
wrong in general. The naive limit does not work, since theperator itself varies as
v— u. In the correct limit the time lattice spacing must approach zero independently of
M, V.

Let us introducey’ — another “copy” of the discrete flow with Miwa’s variable
v', so that we now have a 3D lattice. Equations of the typ® are valid in the 2D
sectionsv’ = const,u= const,v = const. Now we can let’ — u while leavingv un-
changed. We se&i’ =u/v'=1+¢&+0(&?), e—0, wheres is the lattice spacing in the
directionm’=1/2(u—v"). The discreteM operators are defined up to multiplication by
a scalar function of independent of the dynamical variables. It is convenient to normal-
ize theM operators byM,(z)=1 at e=0. Then the next ternfof ordere) yields the
continuous-timeM operator. To find it, we expand i@ the discreteM operator
Msl'hcl'(z), which generates the shift{ 1,,1)—(l,1,0) on the 3D lattice with coordi-

nates (,v,v’).
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The second diagram, displayed below E8), shows theu,v’ section. The coordi-
nates of the vertices ar&/ =(1—1],0), B/=A,=(1,1,0), C/=(1—-1J,1), D/ =(l,1,1).
The pointC, tends to the poinB, =A, asv’— u, so the parallelogram collapses to the
u axis. We haveMBlreclr(z):I+sM|(z)+O(32), where

1 al=1DH1+1)) (I=1))7(1+1))
=(z+z ) = =
2 (1,1)7(1,1) (1L07(11)
M\(u2)=—— . . X
—z (=171 +1)) 1 Fl-1hr(+1))
= =(z+z ) =
(1D 7(1,1) 2 #(1L,h7(,1)
(21
Ther matrix isr(z)=lim, e (z+z 1) R (z;q")—1®1], and so
r(z):%[(Hz*l)lcbl+201®al+202®02+(z+z*1)a3®o3]. (22

2(z—z
Comparing with(21), we get Eq.(3) with ther matrix (22).

6. The main result of this work is th@ matrix representatio(il9) of the localL —-M
pair for the classical SG model in discrete space—time. In our opinion, the very fact that
the typical quantunR matrix naturally arises in a purely classical problem is important
and interesting by itself. It would be desirable to clarify a connection with the quantum
Yang—Baxter equatiofwhich already arose in purely classical problems in a different
context!®?% We should stress that the “quantum” parameteof the R matrix in our
context is related to the mass parameter and the lattice spacing of the classical model.

| thank S. Kharchev and P. Wiegmann for steadfast interest in this work, very
helpful discussions, and critical remarks. Discussions with O. Lipan, I. Krichever and A.
Volkov are also gratefully acknowledged. This work was supported in part by RFBR
Grant No. 97-02-19085.

3\We take thel operator from Ref. 5 and multiply it by, from the left so as to deal with EG7) rather than
Hirota’'s equation.
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