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On Nambu monopole dynamics in a SU„2… lattice Higgs
model

M. N. Chernoduba)

Institute of Theoretical and Experimental Physics, 117259 Moscow, Russia

~Submitted 1 October 1997!
Pis’ma Zh. Éksp. Teor. Fiz.66, No. 9, 577–580~10 November 1997!

It is shown that anSU(2) Higgs model on a lattice is equivalent to the
Georgi–Glashow model in the limit of a small coupling constant be-
tween the Higgs and gauge fields. It can therefore be concluded that the
transition between the confinement and symmetric phases in a 31 1
dimensionalSU(2) Higgs model at finite temperature is accompanied
by condensation of Nambu monopoles. ©1997 American Institute of
Physics.@S0021-3640~97!00121-7#

PACS numbers: 11.15.Ha, 12.60.Fr, 14.80.Hv

According to one of the most popular modern hypotheses, the baryon asymme
the universe arose in the process of an electroweak phase transition~see, for example, the
review by Rubakov and Shaposhinkoov1!. On account of the smallness of the Weinbe
angleuW and the insignificance of the fermion effects, this transition is largely de
mined by the properties of theSU(2) Higgs model. The present letter examines t
behavior of the magnetic fluctuations, which can play an important role in a tempera
induced phase transition, in theSU(2) Higgs model.

Let us consider theSU(2) lattice Higgs model with scalar fieldFx in the funda-
mental representation, the action in which is described by the formula

S@U,F#52
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~Fx
1Ux,mFx1m̂1c.c.!1V~ uFu!. ~1!

HereUP represents the ordered product of the edge elements of the gauge fieldUx,m over
the boundaries faces of the plaquetteP, andV(uFu) is the potential on the fieldF, and
uFu25F1F.

On account of the triviality of the homotopy groupp2(SU(2)), there are no topo-
logically stable monopolar defects in this theory. However, ‘‘embedded’’2 monopoles,
the so-called ‘‘Nambu monopoles,’’3 which are not topologically stable defects, do ex
in the theory. These objects are described by the composite field

xx
a5Fx

1saFx ~2!

(sa are Pauli matrices!, which behaves under gauge transformations as a scalar fie
the adjoint representation. A Nambu monopole is a configuration of fieldsU andF such
that the fieldU and the composite fieldx, expressed in terms of the fundamental fieldF
605 6050021-3640/97/090605-04$10.00 © 1997 American Institute of Physics
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according to Eq.~2!, possess the configuration of a ’t Hooft–Polyakov monopole4 in the
Georgi–Glashow model5 with the fieldx in the adjoint representation and with the gau
field U.

Since Nambu monopoles are described solely by the gauge fieldU and the compos-
ite field x, the dynamics of these monopoles is determined completely by the effe
actionSeff

e2Seff[U,x]5E DFe2S[U,F])
a

)
x

d~xx
a2Fx

1saFx!. ~3!

To calculate the actionSeff it is convenient to study the following parametrization of t
field F:

F5eiwC, C5rS cosa eiu

sin a D ,

where w,u P@2p,p), aP@0,p/2#, and rP@0,1`). The fieldsr, a, and u can be
expressed in terms of the fieldxa with the aid of Eqs.~2!:
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Using the relation for the modulus of the fieldF, uFu25uxu5A((a51
3 (xa)2), and the
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we obtain for the effective action~3!

Seff@U,x#52
b

2 (
P

Tr UP1Sh@U,x#1Ṽ~ uxu!, ~5!

where the new potential on the fieldx is determined by the expression

Ṽ~ uxu!5V~Auxu!1(
x

lnuxxu, ~6!

and the interaction of the fieldsU andx is

e2Sh[U,x]5E
2p

p

Dw expH k(
x

(
m

Rx,m cos~wx1m̂2wx1Ax,m!J . ~7!

In this formula we introduced the notation

Cx
1Ux,mCx1m̂5Rx,meiAx,m. ~8!
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The derivation of the effective action~5! is correct in any dimension of space–time.

For simplicity, we shall examine the case of an infinitely deep potentialV(uFu) with
a minimum atuFu25uxu51. In this case, the lengths of the Higgs fieldF and of the
composite fieldx are frozen. The integral~7! is most easily calculated in the limitk!1.
In leading order we obtain~to within a constant!

Sh52
k2

2 (
x

(
m

Rx,m
2 1O~k4!52

k2

8 (
x

(
m

Tr~Ux,mxxUx,m
1 xx1m̂!1O~k4!,

where we employed Eqs.~4! and~16! and introduced the notationx5xasa. Thus in the
limit k!1 the effective action~5! with the lengthuFu251 of the Higgs field frozen is
identical in leading order to the Georgi–Glashow action

Seff@U,x#52
b

2 (
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Tr UP2
g

2 (
x

(
m

Tr~Ux,mxxUx,m
1 xx1m̂!1O~k4!, ~9!

where

g5k2/4 . ~10!

It is interesting to compare the phase diagrams of the 31 1-dimensionalSU(2) Higgs
model ~1! and the Georgi–Glashow model~9!–~10! at nonzero temperature for sma
values of the parameterk (g, respectively!. Figure 1 displays schematically the pha
diagram obtained in Ref. 7 for theSU(2) Higgs model. Figure 2 shows the pha

FIG. 1. Phase diagram of theSU(2) Higgs model for small values ofk.

FIG. 2. Phase diagram of the Georgi–Glashow model for smallg.
607 607JETP Lett., Vol. 66, No. 9, 10 Nov. 1997 M. N. Chernodub
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diagram obtained in Ref. 8 for the Georgi–Glashow model. For small values o
constantb both theories are in the confinement phase~color confinement!. As b in-
creases, a phase transition from the confinement phase to the symmetric phase oc
both theories, and the line of phase transitionsA82B8 in the Georgi–Glashow mode
should correspond to the line of phase transitionsA–B in the SU(2) Higgs model
according to Eq.~10!: gc(b)5kc

2(b)/41O(kc
4). Figure 2 shows schematically the pha

transition predicted with the aid of Eq.~10! ~dashed lineA8–C8). Unfortunately, it is
impossible to determine the correctness of this prediction quantitatively on the ba
the results of Refs. 7 and 8, since in those papers the phase diagrams were stu
different temperatures.

It is known6 that in the Georgi–Glashow model confinement is due to the dynam
of the ’t Hooft–Polyakov monopoles: in the confinement phase the monopoles are
densed, while in the deconfinement phase there exists a dilute gas of mono
antimonopole pairs. Therefore, at least for low values of the coupling constantk, the
phase tranistion from the symmetric phase to the confinement phase in theSU(2) Higgs
model ~1! is accompanied by condensation of Nambu monopoles, since the Na
monopoles in theSU(2) Higgs model~1! correspond to the ’t Hooft–Polyakov mono
poles in the Georgi–Glashow model~9!.

It is natural to suppose that condensation of Nambu monopoles also occurs for
values of the parameterk in the course of the phase transitions from the confinem
phase to the symmetric phase and from the confinement phase to the Higgs phas
latter conjecture finds support in the fact that in the Higgs phase there exists an emb
string3,9 with nonzero string tension. Stretched between Nambu monopoles, such a
destroys the condensate. The results of investigations of this question will be pub
later in a separate paper.

I thank E.-M. Ilgenfritz and M. I. Polikarpov for helpful remarks. This work w
supported in part by the Russian Fund for Fundamental Research under Grant N
02-17230a and under the Grants INTAS-94-0840 and INTAS-RFBR-95-0681. I
thank the Japan Society for the Promotion of Science~JSPS! for financial assistance
provided as part of the program for the support of scientists of the former Soviet U
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608 608JETP Lett., Vol. 66, No. 9, 10 Nov. 1997 M. N. Chernodub



egion,

The

e-

ining
n the
the

rfaces

f the
thods

n.
—

face

gle

the
Giant enhancement of sum-frequency generation upon
excitation of a surface plasmon–polariton
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Institute of Spectroscopy, Russian Academy of Sciences, 142092 Troitsk, Moscow R
Russia

E. R. Eliel, E. W. M. van der Ham, and Q. H. F. Vrehen
Huygens Laboratory, Leyden University, 2300 RA Leyden, The Netherlands

A. F. G. van der Meer
FOM-Institute for Plasma Physics Rijnhuizen, P. O. Box 1207, 3430 BE Nieuwegein,
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V. A. Sychugov
Institute of General Physics, Russian Academy of Sciences, 117942 Moscow, Russia

~Submitted 18 September 1997!
Pis’ma Zh. Éksp. Teor. Fiz.66, No. 9, 581–584~10 November 1997!

The generation of the sum frequency of visible~0.5235mm! and IR~10
mm! radiation on smooth and corrugated silver surfaces is investigated.
The sum-frequency signal obtained with a visible-range surface
plasmon–polariton excited on a corrugated silver–air interface is found
to be more than four orders of magnitude stronger than the signal from
a smooth silver surface. ©1997 American Institute of Physics.
@S0021-3640~97!00221-1#

PACS numbers: 73.20.Mf, 71.36.1c

Nonlinear sum-frequency generation~SFG! spectroscopy has been under active d
velopment in recent years as a tool for investigating surfaces and interfaces.1 SFG meth-
ods are especially promising for the investigation of the surfaces of media conta
centers of inversion, since in this case nonlinear optical processes occur only o
surface. The investigation of thin films, right down to monolayer thicknesses, on
surface of these materials is also promising. However, the SFG signal from most su
is very weak.

The SFG signal can be intensified by resonantly increasing the strength o
electric field at the surface under study. One of the simplest and most effective me
of enhancing the field on the surface of a metal is excitation of a surface polarito2 A
surface plasmon–polariton~SPP! can exist on metal surfaces in a wide spectral range
from the far-IR up to UV.3 The electromagnetic field of a SPP is strongest at an inter
and decreases exponentially with distance from the interface.

We employed a diffraction grating~corrugated silver surface! to excite a SPP.4 In
this case, the SPP is excited by ap-polarized beam of light incident at a prescribed an
onto a surface which is corrugated with a period of the order of the wavelength.

A diagram of the experiment is displayed in Fig. 1. The setup employed in
609 6090021-3640/97/090609-05$10.00 © 1997 American Institute of Physics
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present work is described in Ref. 5. The FELIX free-electron laser was used as t
radiation source.6 The visible-range radiation source operates at the second harmon
a Nd:YLF laser~the wavelength of the second harmonic equals 523.5 nm!. The two lasers
are synchronized with each other so as to be able to obtain the maximum tem
overlap of the micropulses at the required point through a continuous adjustment
delay of the visible radiation pulse. The energy of the FELIX micropulse and of
visible-range laser pulse equalled, on average, 10 and 8mJ, respectively. All measure
ments were performed at a fixed FELIX radiation wavelength — 10mm. The sum-
frequency signal was detected with a liquid-nitrogen-cooled Princeton Instruments
~charge-coupled device! camera. The SFG signal was emitted from the surface in
form of an approximately parallel beam, which was focused by a lens onto the
camera. The focal length of the lens was equal to 20 cm. A replaceable selective na
band filter~transmission coefficient — 70% at the frequency of the SFG signal and 125

at the frequency of the Nd:YLF laser! was used to suppress the strong scattered radia
of the Nd:YLF laser. The signal with the IR radiation blocked off was recorded to m
sure of the absence of a Nd:YLF-laser signal.

A diffraction grating was deposited on part of the surface of glass plates
photolithographic method followed by ion etching. The period of the gratings~deter-
mined according to the diffraction of a visible-range laser beam! was equal to 305 nm for
grating I and 318 nm for grating II; the depth of the gratings was 15–20 nm. A silver
approximately 200 nm thick was deposited on the grating from above by thermal e
ration in vacuum with a residual-gas pressure of'1025 torr.

In the excitation of a SPP at an interface the tangential component of the mome
must be conserved. In the case of a diffraction grating deposited on a surface, an
both the visible-range and IR beams lying in a plane perpendicular to the grating
this condition for an air–metal interface can be written in the form

FIG. 1. Diagram of the experimental setup:1 — Sample,2 — focusing lens,3 — filter, 4 — CCD camera.
610 610JETP Lett., Vol. 66, No. 9, 10 Nov. 1997 Alieva et al.
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1

lvis
sin uvis2

1

l ir
sin u ir 5

1

ls f g
sin us f g , ~1!

wherelvis , l ir , and ls f g are, respectively, the wavelengths of the visible-range la
radiation, the infrared FELIX radiation, and the generated sum-frequency radiation
uvis , u ir , andus f g are the corresponding angles of incidence~emission!.

The same equation also holds in the case of SFG on a smooth surface of the sa6

Hence it follows that we can compare the SFG intensities from smooth and corru
surfaces by simple parallel displacement of the sample, keeping the entire geome
the experiment unchanged.

In the experiment the angles of incidence of the visible-range and IR beams o
sample were varied simultaneously by rotating the sample. The angle between the
fixed and equal to 90.3°. The angle of maximum excitation of the SPP was determ
experimentally by two independent methods: according to the minimum of the spe
reflection and visually according to the maximum of the light scattered by the sam
The two methods gave identical values to within the experimental error. The angl
incidenceuvis , corresponding to maximum excitation of the SPP are given in Tab
The values of the real partn8 of the effective refractive index of the SPP3 calculated
using these values~and also presented in Table I! are in good agreement with the valu
1.056 calculated from the optical constants of silver, which are given in Ref. 7~see also
Ref. 8!.

The SFG yield was measured in three different configurations:

1. With the wave vector of the visible-range radiation parallel to the dispersion p
of the grating.

2. With the wave vector of the visible-range radiation perpendicular to the dis
sion plane of the grating.

3. With the sum-frequency generation occurring on the smooth surface of the
outside the diffraction grating.

The transition between these configurations is made by rotating the sample by 9
by parallel displacement of the sample. The results of these three measurements a
presented in Table I. As one can see from the table, in the case of excitation of a
~configuration 1! the enhancement of the SFG is by a factor of'103 for sample I and
'1.53104 for sample II. The absence of enhancement in configuration 2~a SPP is not

TABLE I. Experimental parameters and intensities~in the pulses! of the SFG signal measured with
CCD camera for different configurations of the samples.

Lattice
I s f g

Sample period, nm uvis n8 config. 1 config. 2 smooth metal

I 305 40.3° 1.069 13105 82 57
II 318 35.5° 1.065 1.53106 – 98
611 611JETP Lett., Vol. 66, No. 9, 10 Nov. 1997 Alieva et al.
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excited! indicates that this effect is not associated with an increase in the roughness
surface, which might have taken place in the course of preparation of the diffra
grating.

It is well known that the angular dependence of the intensity of the electromag
radiation specularly reflected from a diffraction grating has a minimum near the ang
excitation of a SPP.3,4 If the depth of the grating is small compared with the wavelen
of the incident radiation, as is the case for all the gratings employed in the present
the intensity of the SPP and therefore alsoI s f g(uvis) should be proportional to 12R(uvis),
whereR(uvis) is the reflectivity of the grating for visible-range radiation.3 The curves
I s f g(uvis) and 12R(uvis) for sample II are presented in Fig. 2. As one can see from
figure, the indicated relation holds to within the experimental error. Although our re
indicate unequivocally that the excitation of a SPP is responsible for the enhancem
SFG, the value obtained for the enhancement factor is approximately two orde
magnitude greater than the expected enhancement of the electric field of the wa
exciting radiation on the corrugated surface.9 Further investigations are needed to det
mine the reasons for such a large discrepancy.

We thank the The Netherlands Fund for Research on the Fundamental Proper
Materials~FOM! for support and for providing the time required for working on FELI
This work is part of the research program of the The Netherlands Technological F
dation~STW! and is supported by Russian Fund for Fundamental Research Grants~Nos.
95-02-04194, 95-02-04195, and 97-02-16792!. We thank L. A. Kuzik and I. F. Salakhut
dinov for assistance in setting up the experiment.

a!e-mail: yakovlev@isan.troitsk.ru
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FIG. 2. 12R (s) and SFG intensityI s f g (3) versus the angle of incidence of the visible-range radiation
sample II in the region of SPP excitation.
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Photo- and conversion electron yield from a target
irradiated with a 57Co source at glancing incidence of the
primary beam

A. S. Serebryakov and V. V. Smirnov
V. G. Khlopin Radium Institute Scientific–Industrial Association, 194021 St. Petersburg,
Russia

~Submitted 18 September 1997!
Pis’ma Zh. Éksp. Teor. Fiz.66, No. 9, 585–587~10 November 1997!

A Monte Carlo calculation of photo- and conversion electron yields and
spectra from a Fe target shows that the yield and hardening of the
spectrum increase with increasing grazing angles of incidence of the
primary beam, and that this effect is sharper for photoelectrons, indi-
cating that their ionization efficiency is higher. ©1997 American
Institute of Physics.@S0021-3640~97!00321-6#

PACS numbers: 79.60.2i, 02.70.Lq

The photoelectron yield from targets irradiated with an x-ray beam at diffe
angles of incidence was studied experimentally and theoretically in Refs. 1 and
Monte Carlo calculation showed that the anisotropy produced in the initial angular
tribution of photoelectrons by a variation in the degree of polarization of the prim
photon beam has virtually no effect on the integrated electron yield from the ta
However, these calculations did not treat the case of glancing incidence of the pr
beam on the target. Moreover, the anisotropy due to the predominant emergence
photoelectrons in the direction of the electric field vector of the incident electromag
wave is small and is described by a cos2f law, wheref is the azimuthal angle o
emergence.

At the same time, for glancing incidence of a beam on a target, the subst
anisotropy of the initial distribution of the photoelectrons over the polar angleu of
emergence should result in a large change in the integrated yield. This is due t
circumstances: First, the initial angular distribution of emergence~Fisher or Sauter, de
pending on the energy of the photoelectron! has a sharp maximum at anglesu close to
p/2, and this means that some photoelectrons move from inside the target in a dir
almost normal to its surface; second, glancing incidence of the primary beam mak
photoelectron production in an ultrathin layer of the target, and therefore the trajec
of these photoelectrons before emerging from the target can retain information abou
initial angular distribution. Thus it is obvious that, as compared with an isotropic in
angular distribution, some hardening of the spectrum of the emerging electrons sho
observed in addition to an increase in the integrated photoelectron yield.

A model simulating the production and transport of electrons was constructe
two types of particles: photoelectrons and conversion electrons~CEs! produced in an iron
target by a well-collimated beam of radiation from57Co. It was assumed that the initia
614 6140021-3640/97/090614-03$10.00 © 1997 American Institute of Physics
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angular distribution of the CEs is strictly isotropic. The model employed the differe
elastic electron scattering cross sections tabulated in Ref. 3, the total inelastic el
scattering cross sections from Ref. 4, and the method described in Ref. 5 for mo
energy losses in inelastic collisions. Conversion-electron spectra for electrons em
from different depths in the target, as presented in Ref. 6, were obtained in order to
the simulation program.

Assuming that the production probabilities of the two types of electrons are id
cal, the spectra of the particles emerging from the target were calculated for two gr
angles of incidencea of the primary radiation beam on the target — 1.754 and 0.
mrad relative to the surface of the target~see Fig. 1!. The total mass coefficient o
absorption for the primary beam in the target material was equal to 0.0636 cm2/mg,
which corresponds to the photoabsorption cross section for theK shell of iron atoms for
an energy of 14.4 keV, and the number of ‘‘successful’’ trajectories, on which
electrons emerged from the target was equal to 23104 in each case.

Peaks with a maximum initial energy of 7.29 keV can be seen in the spectra. T
peaks are due to electrons which have undergone only elastic collisions in the targ
the anglea increases, the integrated yields for both groups of electrons increase an
photoelectron and CE spectra harden. But this tendency is sharper in the photoe
spectra, i.e., the number of emerging photoelectrons in the energy range 6.8–7.29
fixed angles of incidence of the primary beam on the target is larger by 10.5 and
respectively, than the number of emerging CEs, and their spectrum is harder.
spectrum in the figure is normalized to the total number of emerging electrons of a
type. Therefore the total ionization effect produced by electrons in the detector~for

FIG. 1. Conversion-electron spectra~solid lines! and photoelectron spectra~dashed lines! from an iron target at
grazing angles of incidencea of the primary beam from a57Co source: a —a51.754 mrad, b —a50.853
mrad.
615 615JETP Lett., Vol. 66, No. 9, 10 Nov. 1997 A. S. Serebryakov and V. V. Smirnov
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example, in a gas proportional counter! for the same initial number of particles of bot
types is appreciably larger for photoelectrons than for CEs.

In our opinion, these results explain the distortion of the information-carrying si
in experiments on the Mo¨ssbauer spectroscopy of ultrathin layers of matter at glanc
incidence of the radiation beam on target.7 In this case it is assumed that the signal in t
detector is entirely due to the emerging CEs. However, photoelectrons are produ
the target together with CEs, and the contribution of the photoelectrons to
information-carrying signal is found to be substantial. Specifically, the observed ri
the amplitudes on the wings of the resonance absorption curve, where the cross
for resonance absorption of photons drops to and below the level of the photoabso
cross section, is attributed to the increasing contribution of photoelectrons in the e
interval under study.
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Solid State28, 1918~1986!#.
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4A. F. Akkerman,Simulation of Charged Particle Trajectories in Matter@in Russian#, Énergoatomizdat,
Moscow, 1991.
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6D. Liljequist, T. Ekdahl, and U. Baverstam, Nucl. Instrum. Methods155, 529 ~1978!.
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Intraexcitonic transitions in two-dimensional systems in
a high magnetic field

A. B. Dzyubenko
Institute of General Physics, Russian Academy of Sciences, 117942 Moscow, Russia

~Submitted 30 September 1997!
Pis’ma Zh. Éksp. Teor. Fiz.66, No. 9, 588–593~10 November 1997!

The internal transitions of two-dimensional~2D! excitons in a high
magnetic fieldB exhibit features due to the coupling of the internal and
center-of-mass motions. A study is made of these features, and it is
shown that for magnetoexcitons with a center-of-mass momentumK
Þ0 the energies of the strong transitions decrease with increasingK ,
and the absorption spectra show weakly resolved transitions, whose
total intensity depends strongly on the exciton statistics~distribution
function!. © 1997 American Institute of Physics.
@S0021-3640~97!00421-0#

PACS numbers: 71.35.Ji, 75.70.Cn

1. Intraband transitions of quasi–two-dimensional excitons in quantum wells~QWs!
and superlattices in a magnetic field have attracted a great deal of interest in recen
~see Refs. 1–3 and the literature cited therein!. Progress in this field requires a sensiti
method of investigation — optically detected cyclotron resonance. Intraband IR mag
spectroscopy could be effective for studying the kinetics of interlevel excitonic tra
tions, for investigating collective effects in a system of excitons with finite density,
for resolving the fine structure of the ground and excited states of quasi-2D exciton
example, in coupled double QWs.4

In the case of intraband IR spectroscopy, all populated excitonic states give
sponse, including states with finite center-of-mass momentumK . This is in contrast to
interband transitions for which only excitons withK50 are optically active. Physically
the center-of-mass and relative motions of a neutrale–h pair are coupled in a magneti
field B. The present letter examines theoretically some characteristics of exciton
absorption, which are associated with this circumstance, in 2D systems in a high
netic field. Similar effects should exist in atomic physics~taking account of the change i
the characteristic magnetic field and momentum scales5!.

2. For simplicity, we shall study the purely 2D situation. Motion of a 2D neutrale–h
pair in a transverse magnetic fieldB5(0,0,B) is described by the Hamiltonian

H5
1

2me
S 2 i\“e1

e

c
AeD 2

1
1

2mh
S 2 i\“h2

e

c
AhD 2

2
e2

eure2rhu
[H01Ueh , ~1!

wherer5(x,y). The motion is characterized5 by a conserved magnetic momentum of t
center of massK̂52 i\“R2 (e/c) A(r ). HereR5(mere1mhrh)/M are the coordinates
of the center of mass andr5re2rh are the relativee–h coordinates,M5me1mh , and
617 6170021-3640/97/090617-07$10.00 © 1997 American Institute of Physics
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2B3r . The wave function of an exciton with momentumK can be represented in th

form5 CK5exp(i/\) @K1 (e/c) A„r …#•R)FK(r ). This can also be regarded as a unita
transformation of the HamiltonianH→H̃(K )5Û†HÛ, where Û(K )5exp((i/\)
3@K1 (e/c) A„r …#•R). The transformed Hamiltonian has the form5,6

H̃(K )5H̃0(K )1Ueh , and

H̃0~K !52
\2

2m
“ r

21
1

2
\~vch2vce! l̂ z1

e2B2

8mc2
r 21

e

Mc
B•@r3K #1

K2

2M
, ~2!

wherem215me
211mh

21 , vce(h)5eB/me(h)c, and l̂ z52 i @r3¹r#z is the projection of
the angular momentum of the relative motion. Similarly to the case of electrons
magnetic fieldB, the Hamiltonian~2! can be diagonalized in a representation of Bo
ladder operators~see Ref. 7!. For this, we first perform another unitary transformatio5

H̃(K )→H̄5Ŵ†(K )H̃(K )Ŵ(K ), whereŴ(K )5exp((i/2\) gK–r ) andg5(mh2me)/M ,
and then a translation of the coordinatesr˜ r̄ 5r2r05( x̄ , ȳ ) with r05ez3K l B

2/\. After
this we obtain the HamiltonianH̄0 ~obviously,H̄5H̄01Ueh( r̄ )) which in the coordinate
representation assumes the form of the HamiltonianH̃0(K50) from Eq.~2!. To diago-
nalizeH̄0 we introduce the ladder operators

ā†5
1

A2
S z

2l B
22l B

]

]z*
D , b̄†5

1

A2
S z*

2l B
22l B

]

]zD , ~3!

such that @ ā , ā†#5@ b̄ , b̄†#51 and @ ā , b̄ #5@ ā , b̄†#50; here z5 x̄ 1 i ȳ and

l B5(\c/eB)1/2. In this representation, we haveH̄05\vce( ā† ā1 1
2)1\vch( b̄† b̄1 1

2),
so that the orthonormalized eigenstates have the form of factorized wave func

unm&5( ā†)n( b̄†)mu00&/An!m! with eigenvalues\vce(n1 1
2)1\vch(m1 1

2). In the co-
ordinate representation the wave functions^r unm&[fnm(r ) are identical to the wave
functions of an electron in a fieldB ~for example,̂ r u00&5exp(2r2/4l B

2)/(2p l B
2)1/2). In

the case of a magnetoexciton the operatorsā†, ā ( b̄†, b̄ ) describe electronic~hole!
Landau levels. Since Ŝ(K )[Ŵ„K )Û(K )5exp((i/\) R0•@K1 (e/c) A„r …#), where

R05 1
2(re1rh),the wave functionsunmK &5Ŝ(K )unm& describing the free motion of an

e–h pair in a fieldB can be represented in the form

CnmK~re ,rh!5^rerhunmK &5expS i

\
R0•FK1

e

c
A~r !G Dfnm~r2r0!. ~4!

The wave functionsCnmK(re ,rh) correspond in the limit of a high magnetic fiel
~cf. Ref. 6! to 2D magnetoexcitons with the dispersion relationEnm(K )
5^nmuUeh(r2r0)unm&.

3. Let us examine the interaction of excitons with IR radiation. In the Fara
geometry~the radiation propagates parallel toB) the Hamiltonian describing absorptio
accompanying an interaction with the ac electric field~with amplitudeF0 and frequency
v) of circularly polarized IR radiation has the form
618 618JETP Lett., Vol. 66, No. 9, 10 Nov. 1997 A. B. Dzyubenko
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dV̂65
eF0

v S pe
6

me
2

ph
6

mh
Dexp~2 ivt !. ~5!

Here the6 signs denote left~right! circular polarizations6, and

p j
65p jx6 ip jy ,~ j 5e,h!, pe52 i\“e1

e

c
Ae , ph52 i\“h2

e

c
Ah .

It can be shown that@dV̂6,K̂ #50, i.e., magnetic momentum is conserved in IR tran
tions ~in the dipole approximation this also follows from the law of conservation of
total momentum!. For K50, magnetoexcitons can be characterized by the conse
projection of the angular momentuml z of the relativee–h motion; here l z5n2m

( l̂ z5 ā† ā2 b̄† b̄ ). For this reason, for excitons withK50 in a fieldB the selection rules
have the standard form

^CK50,l
z8

8 udV̂6uCK50,l z
&;d l

z8 ,l z61 . ~6!

For KÞ0, on account of the presence of the term (e/Mc)B•@r3K # ~which corre-
sponds to a uniform electric field in the moving coordinate system inB), the Hamiltonian
~2! does not possess axial symmetry. As a result, the selection rules for IR trans
reduce to only conservation of momentum: generally speaking,^CK8 udV̂6uCK&Þ0 for all
pairs of excitonic terms. The analysis simplifies in the high-field limit. The matrix
ments of the operator describing the interaction with the IR radiation field between s
of the 2D magnetoexcitons~4! have the form

^n8m8K udV̂6unmK &5^n8m8uŜ~K !†dV̂6Ŝ~K !unm&. ~7!

The relation

Ŝ~K !†dV̂1Ŝ~K !5
iA2e\F0

v l B
S a †̄

me
2

b̄

mh
D e2 ivt ~8!

shows that the matrix element~7! does not depend on the momentumK , and in this limit
transitions are possible only with a change in the Landau level numbersDn(Dm)51 for
s6 polarization. The mixing of the Landau levels is taken into account below.

4. Let us consider IR transitions between excitons withK50. In high magnetic
fields, the 1s excitonic states are formed mainly by the stateu00K50&, which corre-
sponds to the zerothe andh Landau levels. On account of thee–h Coulomb interaction,
there is also a weak; l B /aBe(h)!1 @aBe(h)5e\2/me(h)e

2# admixing of higher Landau
levels unnK50&. In a similar manner, the 2p1(2p2) excitonic states are formed in th
ground stateu10K50& (u01K50&) with a weak admixing of the statesun11 nK50&
(unn11 K50&). For this reason, the excitonic transition 1s→2p1 (1s→2p2) in a high
field B can be regarded4 as an electron~hole! cyclotron resonancef00→f10 (f00→f01),
which is modified by excitonic effects. In the purely 2D case and in the limit of a h
magnetic field, the binding energies of 1s and 2p6 magnetoexcitons are equal to6 E00

5E0 andE105E015
1
2E0, respectively; hereE05Ap/2e2/e l B;AB. For this reason, the

1s→2p6 transition energies in this limit are
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E1s→2p15\vce1
1

2
E0 , E1s→2p25\vch1

1

2
E0 . ~9!

The transitions 1s→np6 to higher-lying excited states are weak;@ l B /aBe(h)#
2, and their

energies

E1s→np65\vce~h!1~n21!@\vce1\vch#1F12
@2~n21!#!

22~n21!@~n21!! #2GE0 ~10!

contain a contribution which is a multiple of the sum of thee andh cyclotron energies
@\vce1\vch#; the last term'@12(pn)21/2#E0 for n@1 in Eq. ~10!.

Evidently, the excitonic IR transitions are sensitive to thee–h Coulomb interactions.
Kohn’s theorem8 is inapplicable in this situation, since the charge-to-mass ratios
different for e andh. However, as one can see from Eq.~10!, thedifference

E1s→np12E1s→np25\vce2\vch ~11!

does not depend on thee–h interactions.4 The result~11! follows from the fact that the
variables in Eq.~2! are separable in cylindrical coordinates, and it is valid not only in
limit of a high magnetic field or for a 2D system. This can likewise be attributed to
existence of an exact symmetry for excitons in a uniform fieldB. To show this, we
introduce9 the time-reversal operatorT̂ which operatesonly on the system under study
The fieldB is assumed to be an external field: The direction ofB does not change unde
the operationT̂ ~the currents generatingB do not change direction!. In the standard
manner, the coordinates do not change sign under the operationT̂: T̂21r T̂5r , while the
momenta and orbital angular momenta do change sign:T̂21p̂T̂52p̂ and T̂21 l̂T̂52 l̂ .
For the total HamiltonianH̃(K )5Û†(K )HÛ(K ), corresponding to the internal motion o
an e–h pair ~see Eq.~2!!, we have

@H̃~K !,T̂#5@H̃0~K !,T̂#5~\vch2\vce!T̂l̂ z . ~12!

We shall now take into account that for excitons withK50 the projectionl z is a good
quantum number and thatT̂CK50np15CK50np2. ~We note thatT̂21 ā†T̂5 b̄†, so that
T̂unm&5umn&, and the last equality is obvious in the high-field limit.! Therefore relation
~11! follows from the operator algebra~12!. In order for the relation~12! to hold formally
it is important that the operatorT̂ is antiunitary, so thatT̂21Û(K )T̂ÞÛ(K ) and

@Û(K ),T̂#Þ0. The analysis based on an operator algebra similar to the algebra~12!
could be helpful for investigating more complicated Hamiltonians in a fieldB ~compare
with the theorem for a one-component many-electron system9!.

5. Let us establish the characteristic features due to IR absorption by~for example,
thermally excited! magnetoexcitons withKÞ0. We assume that the magnetic fieldB is
high enough (l B!aBe(h)) that the mixing of different Landau levels can be taken in
account by perturbation theory. The results should also be applicable qualitative
lower fields l B<aBe(h) . We shall study the magnetic quantum limitnX52p l B

2nX!1,
when magnetoexcitons fill the zeroth Landau levels;nX is the exciton density.
620 620JETP Lett., Vol. 66, No. 9, 10 Nov. 1997 A. B. Dzyubenko
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Let us consider first how the energy of a strong transitionu00K &→u10K & depends on
K. Assuming low temperatureskBT!E0, we can limit the analysis to low moment
Kl B /\!1. The dispersion relations for magnetoexcitons in this region are quadrat6

E00~K !.2E01K2/2M00, E10~K !.2
1

2
E01K2/2M10, ~13!

whereM0052\2/E0l B
2 and M10522M00. The magnetoexcitonu10K & is characterized

by anegativeeffective mass. As a result of this, the ‘‘kinetic’’ energies of the initial a
final states do not compensate each other, and the transition energy

E00→105\vce1
1

2
E02

K2

2M00
S 11

M00

uM10u
D ~14!

decreases with increasing momentumK. ~A similar situation for the transition
u00K &→u20K & is shown in Fig. 1.! Therefore it can be expected that as the tempera
increases in a high magnetic field, the line due to this transition will broaden pred
nantly into the region oflower energies. Since the dispersion of 2D magnetoexciton
due to onlye–h interactions,6 this effect is simply due to the influence of interpartic
interactions on intraband excitonic IR transitions.

Let us now estimate the characteristic size of the third term in Eq.~14!. Since 2D
magnetoexcitons form an almost ideal gas,10 we propose for them a Bose distributio
function f X5(exp@(eK2m)/kBT#21)21, whereeK5K2/2M005E0K2l B

2/4\2 from Eq.~13!,
and the chemical potential of a 2D ideal Bose gas is given by the expre
m5kBT ln@12exp(2E0nX/2kBT)#. Therefore, for 2D magnetoexcitons, the particular
gime which is realized is determined by the parameterz[E0nX /kBT. In the classical
limit, z!1, we have Maxwell–Boltzmann statistics, and^K2&/2M005kBT. In the degen-

FIG. 1. Schematic illustration of the dispersionE00(K) andE20(K) of 2D magnetoexcitonsu00K & and u20K &.
The vertical double arrow shows the weakly resolveds1 IR transition. The dashed lines mark the positions
the unoccupied Landau levels (nenh).
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erate quantum limit,z@1 ~when the chemical potentialm52kBTe2z/2 is exponentially
small!, we obtain^K2&/2M005p2kBT/3z!kBT, i.e., narrowing of the absorption lin
occurs.

Another feature associated with IR absorption by magnetoexcitons withKÞ0 is due
to mixing of different Landau levels. In the high magnetic field limit, when mixing
neglected, the magnetoexciton wave functionsunmK & are given by expression~4!. In the
next order in the parameterl B /aBe(h)!1, the wave functions assume the for
unm̃K &5(n8m8An8m8

(nm) un8m8K &, where the coefficientsAnm
(nm)5O(1) and

An8m8
~nm!

5
Unm

n8m8~K !

\vce~n2n8!1\vch~m2m8!
;

l B

aBe~h!
!1. ~15!

HereUnm
n8m8(K )5^n8m8K uUehunmK & is the Coulomb matrix element between two ma

netoexcitonic states. An analytical expression forUnm
n8m8(K ) with arbitrary indices is

obtained in Ref. 11~see also Ref. 6!. For magnetoexcitons withKÞ0 thee–h interaction
mixesall states on different Landau levelsunmK &. This gives rise to a number of new
lines in the spectra@cf. Eq. ~6!#: ^nm̃K udV̂6u00̃K &Þ0. However, all transitions with
un2muÞ1 are found to be weak, of order;( l B /aBe(h))

2. Furthermore, forkBT!E0, the
larger the differenceun2mu, the weaker the transition is. Let us consider as an exam
the transitionu00̃K &→u20̃K & ~see Fig. 1!. We underscore that forK50 this is a strictly
forbidden transition 1s→3d1. The total intensity of the transitionu00̃K &→u20̃K & ~the
total absorbed power is.2\vceR20)

R205
2p

\ (
K

u^20̃K udV̂1u00̃K &u2f X~K,T! ~16!

depends on the population of differentK states;f X(K,T) is the Bose distribution function
of 2D magnetoexcitons in the zeroth Landau level. In the classical (z!1) and quantum
(z@1) limits we obtain

R205
25

32

e2F0
2

\
zS kBT

\vce
D 2

;TB25/2, z[E0nX /kBT!1 , ~17!

R205
25

32

e2F0
2

\ Fp2

3
2ze2z/2G S kBT

\vce
D 2

;T2B22, z@1 . ~18!

It is interesting to note that in the classical limit~17! the total intensityR20;nX , whereas
in the quantum limit~18! R20 saturates and~to within exponential corrections! is inde-
pendent of the exciton densitynX . Transitions to higher Landau levelsu00̃K &→unm̃K &
~i.e., transitions in thes1 polarization withN[n2m.1) are suppressed even mo
strongly at low temperatures: For example, forz!1 their total intensity is

Rnm;
nX~kBT!N21

@~n1m21!\vc#
2E0

N23
;TN21B2~N13!/2, ~19!

where we have set as a simplificationvce.vch5vc .
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6. In summary, we have studied the internal magnetooptic transitions of 2D
tons. It was established that for excitons with center-of-mass momentumK50 the spec-
tra contain pairs of transitions differing in energy by the difference of the cyclo
energies of an electron and hole\(vch2vce). This result was obtained for the case
simple bands with quadratic dispersion relations. A recent experiment12 showed that this
property also holds approximately for quasi-2D excitons in a GaAs/GaAlAs quan
well with a complicated valence band. This situation will be studied theoretically
separate publication. It was predicted that for magnetoexcitons withKÞ0 the spectra of
strong transitions will broaden into the region of low energies with increasing temp
ture. It was also shown that transitions for whichKÞ0 and which are weakly resolve
are sensitive to the magnetoexciton statistics. Thus a study of transitions of this
could be helpful in the investigation of the condensation of 2D magnetoexcitons.
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Shape of the Cu „2… NQR spectra in YBa 2Cu3O7,
TmBa2Cu3O7 and TmBa 2Cu4O8

A. V. Dooglav, A. V. Egorov, E. V. Krjukov, Yu. A. Sakhratov,
and M. A. Teplov
Kazan State University, 420008 Kazan, Russia

Yu. Xu
Experimental Physik-Institut, Universita¨t des Saarlandes Im Stadtwald, D-66123
Saarbrücken, Germany

~Submitted 30 September 1997!
Pis’ma Zh. Éksp. Teor. Fiz.66, No. 9, 594–598~10 November 1997!

We present a study of shape of the Cu~2! NQR spectra in YBa2Cu3O7,
TmBa2Cu3O7, and TmBa2Cu4O8 compounds at temperatures of 4.2–
300 K. The results of the quantitative analysis lead us to conclude that
the shape of the Cu~2! NQR spectra in all the samples studied can be
described in the framework of the ‘‘motional narrowing’’ model, which
implies that the Cu~2! nucleus possesses two different NQR frequencies
between which it can rapidly jump. The difference in frequencies seems
to be related to the charge-stripe correlations in CuO2 planes resulting
in a dynamical modulation of the electric field gradients at the Cu~2!
nuclei. © 1997 American Institute of Physics.
@S0021-3640~97!00521-5#

PACS numbers: 76.60.Gv, 74.72.Bk, 74.72.Yg

In the present study an attempt was undertaken to analyze quantitatively a reso
line shape of so-called ‘‘planar’’ copper nuclei belonging to CuO2 planes. The main
problems preventing the correct studies of the planar copper NQR/NMR line shap
widely believed to arise from an enormously strong inhomogeneous broadening of
tral lines due to the large number of defects of the crystal lattice~oxygen vacancies and
interstitials, twin boundaries, impurity phases, stacking faults, etc.! typical for the layered
cuprates. These difficulties ultimately seemed to preclude cooperative studies of th
shape problem, since the Cu~2! NQR/NMR spectra of the same compounds prepared
different laboratories usually appeared to be very much different and ‘‘sam
dependent.’’ In order to minimize the problems of the inhomogeneous broadening d
crystal lattice defects, we have studied nominally pure stoichiometric 123 and 124
pounds. Furthermore, by measuring the Cu~2! NQR spectra~i.e., in a zero externa
magnetic field!, the additional complications resulting from inhomogeneous broade
due to the vortex lattice in a superconducting state have been avoided. The pri
finding of the paper is that the shape of the Cu~2! NQR spectra in all the samples studie
can be described in a framework of the ‘‘motional narrowing’’ model,1–3 which implies
that the Cu~2! nucleus possesses two different NQR frequencies between which i
rapidly jump.
624 6240021-3640/97/090624-06$10.00 © 1997 American Institute of Physics
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All three samples studied in the present work were previously used in our N
NQR experiments: YBa2Cu3O7 ~Y1237!,3 TmBa2Cu3O7 ~Tm1237!,4 and TmBa2Cu4O8

~Tm1248!;5 the critical temperaturesTc(onset) of 92.5 K, 91.5 K and 80.0 K, respe
tively, have been obtained in ac susceptibility versusT measurements at a frequency of
kHz ~amplitude'1 Oe!. A home-built spin-echo coherent pulsed spectrometer was
for the Cu~2! NQR spectra measurements. Both of the 1237 compounds were found
in a slightly overdoped state. As an example, the Tm1237 spectrum is shown in Fig
is seen that, except for the relatively narrow63Cu~2! and65Cu~2! NQR lines, the spectrum
of Tm1237 ~like that of Y1237!3 has a broad ‘‘pedestal’’~P!. It has recently been
suggested3 that theP spectrum arises from copper nuclei which are located in areas
a partially disordered oxygen sublattice of CuO basal planes~for example, in regions
around twin boundaries! and, accordingly, with a reduced and locally inhomogene
hole concentration in the CuO2 planes. The spectrum of the Tm1248 sample has no s
pedestal. SubtractingP from the observed ‘‘raw’’ spectrum, we obtain the spectrum o
‘‘good’’ 1237 superconductor, free~or almost free! of crystal structure defects. In fac
this refinement procedure makes it possible to perform a subsequent quantitative a
of the Cu~2! NQR line shape of a 1237 superconductor having an undistorted or slig
distorted orthorhombic structure. Fitting of the Cu~2! NQR spectra of Y1237 by using
superposition of Gaussian-type lines has shown3 that theP spectrum can be satisfactoril
described by a single Gaussian with a temperature-independent rms wid
1.5~1! MHz. The corresponding width of the Tm1237 pedestal turned out to be so
what bigger, 1.9~1! MHz, whereas the relative intensities of theP spectra in both the
Y1237 and Tm1237 samples were found to be approximately equal to 1/3.

The refined spectra of Y1237 and Tm1237~the experimental spectra minus th
‘‘pedestals’’! and the ‘‘raw’’ spectrum of Tm1248 are shown in Fig. 2 for the63Cu
isotope. A common property of all the lines in Fig. 2 is that their shape is interme
between Gaussian and Lorentzian. Such a shape, being atypical for resonance l
rigid-lattice solids, can be regarded as a hint that some kind of a charge motion
place in the CuO2 planes. Assuming that this motion is indeed present in the highTc

cuprates, one can immediately find a qualitative explanation for two puzzles that
existed from the very beginning of the high-Tc story. First, the striking fact that the
electric field gradient at the orthorhombic Cu~2! sites has axial symmetry (h'0) can be

FIG. 1. The Cu~2! NQR spectrum in Tm1237 atT5120 K; the solid line is a best fit by six Gaussians~dotted
lines; for details see Ref. 3!.
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understood as simply the result of motional averaging. Second, the strong inhom
neous broadening of the Cu~2! NQR lines which is observed at low temperatures can t
be regarded as resulting not only from the appearance of some excess distortions
crystal lattice but also from changes in the characteristics of the charge motion. In
follows, we try to analyze the shape of the Cu~2! NQR lines~Fig. 2! using a model with
two NQR frequencies (v1, v2) between which the Cu~2! nucleus can rapidly jump
When applying the ‘‘motional narrowing model’’ we expect to find it capable of app
hending the essential difference in the Cu~2! NQR parameters at temperatures above a
belowTc . For this simplest version of the model, the shape of the Cu~2! NQR spectrum
can be described by the following expressions:3

S~v!;E I ~v,V!exp@2~V2v0!2/2s2#dV, ~1!

I ~v,V!;@~v22v1!2~W21W1!#/@~v2v1!2~v2v2!21~W1~v2v2!

1W2~v2v1!!2#. ~2!

Here v15V1 lD , v25V2D, the frequency shifts (1 lD) and (2D) are due to fluc-
tuations of a hole density in the first and second states, respectively, 1/Wi is the lifetime
of the i th state,W15kW, and W25W. The individual NQR line is assumed to b
inhomogeneously broadened due to crystal lattice defects, so its shape is Gaussia
an rms half-widths, andv05^V& is the mean NQR frequency over the sample volum
One may regard the above model as being oversimplified, since the crystalline d
should also result in a random distribution of the other parameters, i.e.,D, W, k and l .
However, it was shown recently3 that the Cu~2! NQR spectrum shape in the Pr-dope
Y1237 compound can be fitted well by Eqs.~1! and~2! at the valuesk5 l 52 correspond-
ing to the particular conformation of charge stripes in the CuO2 planes.6 Therefore, we
start with the same modelk52, l 52, which is expected to give some averaged value
D andW.

FIG. 2. The63Cu~2! NQR lines in Y1237, Tm1237~as obtained by subtraction of the ‘‘pedestal’’P from the
experimental spectra; see Fig. 1 and the text for details!, and Tm1248. The solid lines are a best fit by Eqs.~1!
and ~2! with k52, l 52; for other parameters of the model see Fig. 3.
626 626JETP Lett., Vol. 66, No. 9, 10 Nov. 1997 Dooglav et al.
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The temperature dependences of the parametersD/2p, W, s/2p, andv0/2p for the
63Cu~2! NQR lines in all three samples are shown in Fig. 3 by the filled circles,
examples of the calculated line shapes are illustrated by the solid curves in Fig. 2. F
the samples, the case of an intermediate jumping rate is realized,

~v12v2!/W;1, ~3!

and the rate itself,W, appears to be rather low:W523106–23107 s21. In fact, accord-
ing to Eq. ~3! the jumping rate is closely related to the frequency differen
v12v253D. It is interesting to note here that the values of (v12v2)/2p appear to lie
in the frequency range from 0.7 MHz~separation of the63Cu~2! NQR lines in the Pr-
doped Y1237!3 to 2.2 MHz ~separation of theA and B lines in La22xSrxCuO4 and
La2CuO41d).7 In two of three samples studied, Y1237 and Tm1237, the differe
(v12v2) seems to exhibit a sharp decrease at the superconducting transition. How
the most striking result is that in all the samples under study the inhomogeneou
ewidths undergoes a sharp increase atTc , so that one actually has two different valu
of s, i.e., sn for T .Tc and ss (.sn) for T ,Tc , which seem to be temperature
independent. The small widthsn in Tm1248 is close to that usually observed in t

FIG. 3. The temperature dependences of the parametersD/2p, W, k, s/2p, andv0/2p of Eqs.~1! and ~2!, as
obtained from fitting of the ‘‘refined’’63Cu~2! NQR lines in Y1237 and Tm1237 and of the ‘‘raw’’63Cu~2!
NQR line in Tm1248. Filled circles correspond to a model withk52, l 52, and variables; the unfilled circles
correspond to a model with variablek, l 52, ands5const (sn5ss).
627 627JETP Lett., Vol. 66, No. 9, 10 Nov. 1997 Dooglav et al.



rnal
tural

a
y
nate
Since
n be
. It is
ygen

ist in
e
be

the
of

s at

f

e
d

ted as
ticu-
n be

s in
ency
e
ormal
-

63Cu~2! NMR spectra of the crystallographically perfect materials in a high exte
magnetic field. For the 1237 compounds, which are known to have many struc
defects, the values ofsn appear to be rather large. As to the values ofss , it is found to
be the same for all three samples,ss'0.83106 s21. The latter fact can be regarded as
hint that the broadening of the Cu~2! NQR line atT,Tc reflects some intrinsic propert
of high-Tc cuprates. In principle, the broadening of the copper NQR lines can origi
from disordering of both the positions of the atoms and the charges of the ligands.
the values ofsn in 1237 compounds are much bigger than that in Tm1248, they ca
naturally attributed to a disorder of the oxygen positions in the CuO basal planes
known8 that even in the almost stoichiometric Y123-6.98 single crystal the chain ox
is statically displaced in thea direction by 0.074~10! Å. Starting from this fact, we then
arrive at the conclusion that the same type of oxygen displacements should ex
Tm1248 belowTc . In fact, the dynamic displacements of the chain oxygens in tha
direction by 0.1 Å resulting in the formation of ferroelectric domains, were found to
present in the Y1248 compound.9 If those displacements are indeed responsible for
broadening of the Cu~2! NQR line in Tm1248, one can conclude from the static nature
the linewidthss that the oxygen motion in CuO chains slows down or even freeze
T,Tc . The modification of charge motion in CuO chains atT5Tc , if it exists, may have
an indirect effect on the electronic state of CuO2 planes via an abrupt re-distribution o
holes between chains and planes.

Alternatively, the broadening of the Cu~2! NQR spectra atT ,Tc can be explained
as arising from an abrupt re-distribution of charges in CuO2 planes. In the particular
conformation of charge stripes in Refs. 3–6, two types of Cu~2! ions are distinguished
~see Fig. 2b and c in Ref. 6! — those located at the center of the stripe~type 1, the hole
density on the nearest oxygen ligands is high! and those at the stripe boundaries~type 2,
the hole density is low!. At the optimal doping of the CuO2 planes by holes~i.e., for close
packing of the stripes in rows -2-1-2-2-1-2-! the number of centers of type 2 (n2) appears
to be twice as large as the number of centers of type 1 (n1), in which case
k5W1 /W25n2 /n152. Fitting of the experimental63Cu~2! NQR lines by Eqs.~1! and
~2! with k andl as free parameters~along withD, W, s) has shown the parameterl to be
temperature-independent and close~on average! to the value of 2. When performing th
subsequent fits with a constantl 52 and variablek, we obtained a striking result: it turne
out that the experimental data forT ,Tc can be well described~unfilled circles in Fig. 3!
by using a constant value ofss5sn , the only condition necessary for this beingk;1. At
T ,Tc the parameterx2 for the modelk51, l 52 is definitely smaller than that fork52,
l 52. In the framework of the model under discussion this last result can be interpre
hinting of a modification of a stripe pattern at the superconducting transition. In par
lar, a stripe conformation of the -1-2-1-2-1-2- type or a checkerboard pattern ca
deduced from the above conditionk51. The decrease ofk from 2 ~aboveTc) to 1 ~below
Tc) may actually mean that the lifetime of Cu~2! ions in the state with a high NQR
frequency~corresponding to a high local density of holes at neighboring oxygen ion
the CuO2 plane! becomes longer in the superconducting state. Moreover, the frequ
difference (v12v2) appears to be smaller atT,Tc which, perhaps, indicates that th
charge-stripe modulation in the superconducting state is weaker than that in the n
state or that, in other words, charge-density waves in the CuO2 planes coexist but com
pete with superconductivity.
628 628JETP Lett., Vol. 66, No. 9, 10 Nov. 1997 Dooglav et al.
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When interpreting the experimental results on the Cu~2! NQR in the framework of
the stripe model of Ref. 6 we do not rule out the possibility of other modifications
charge-density waves in the CuO2 planes. It should be noted, however, that the ab
model seems to get an indirect confirmation in inelastic neutron scattering~INS!
studies10–13 of YBa2Cu3O6.6. Indeed, if one takes every third hole-rich stripe in Fig.
of Ref. 6 away, the mean hole concentrationp becomes equal to (2/3)3(1/6)51/9 per
CuO2 unit, and, according to the empirical formulap50.18720.21d ~Ref. 14!, the
oxygen index 72d56.64 appears to be close to 6.6. The resulting stripe pattern sh
give rise to magnetic neutron scattering not atQAF5(1/2,1/2) but instead a
(1/26d,1/26d), with d51/1850.0556. Very recent INS experiments wit
YBa2Cu3O6.6 single crystals have revealed such an incommensurate structure
d50.05760.006.13

In conclusion, analysis of the shape of the63Cu~2! NQR spectra in Y1237, Tm1237
and Tm1248 compounds performed on the basis of a simplified model of motiona
rowing supports the idea that the Cu~2! nucleus possesses two different resonance
quencies between which it can jump. The plausible cause of this difference in freque
seems to be related to charge-density waves~or dynamic charge-stripe correlations! in the
CuO2 planes, resulting in a dynamic modulation of the electric field gradients at
Cu~2! nuclei.
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Bound states of an electron in an impurity potential on
the surface of liquid helium

P. D. Grigor’eva)

L. D. Landau Institute of Theoretical Physics, Russian Academy of Sciences, 142432
Chernogolovka, Moscow Region, Russia; Max-Planck-Institut fu¨r Festkorperforschung,
BP166, F-38042 Grenoble, France

~Submitted 5 July 1997; resubmitted 1 October 1997!
Pis’ma Zh. Éksp. Teor. Fiz.66, No. 9, 599–604~10 November 1997!

The energies and widths of the levels of an electron on impurity centers
on the surface of liquid helium are calculated with allowance for the
deformation of the surface. The level shift associated with the defor-
mation effects is small and decreases very slowly with increasing level
number. However, even a small shift of the energy levels relative to
one another affects ripplon scattering, which makes the main contribu-
tion to the level width at low temperatures. It is predicted theoretically
that this width depends very strongly on the external parameters and on
the level number and that a maximum obtains at a clamping field
E'51500 V/cm. The width of the levels of an electron in a bound state
is found to be less than for free electrons. This makes it possible to
perform a beautiful spectroscopic experiment. ©1997 American In-
stitute of Physics.@S0021-3640~97!00621-X#

PACS numbers: 67.55.Lf, 67.57.Pq, 67.40.Yv

The behavior of electrons on the helium surface has been studied for almo
years. An extensive analysis of the phenomena arising here can be found in Ref. 1.
present letter we solve the single-particle problem of an electron in an impurity pote
This is an important subject, since scattering by nonuniformities of the substrate
especially, localization on positive ions have a strong influence on the dynamical
erties of the surface electrons2 and on the collective effects in the two-dimensional s
tem formed by these electrons.

If a positively charged impurity is present at some distance from the helium sur
then electrons form bound states near it. The stability of such a system was invest
in Ref. 3, where the position of the impurity was determined as the result of the co
tition between the image force repelling the impurity from the helium–air boundary
the Coulomb force attracting the impurity to the electron on the surface. In our cas
impurity is at rest at the bottom of the vessel, since it is confined by the much stro
force of the electrostatic image at the helium–substrate boundary~the permittivity of the
substrate material is ordinarily greater than that of helium!. Furthermore, the position o
the impurities and their density can be set at a prescribed level by illuminating
substrate with a laser. In this case the question of the equilibrium position of the imp
becomes irrelevant.

Similar bound states arise at the boundary between two semiconductors, for
630 6300021-3640/97/090630-07$10.00 © 1997 American Institute of Physics
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Vinter4 found by numerical methods the energy levels and the approximate form o
wave functions of the bound states for small distances of the impurity from the sur
d,60 Å. The situation is somewhat different in helium. First, the permittivity of heli
is very close to 1 and the image forces are not so strong. Second, the electrons
helium interact with ripplons and with helium vapor, which in the present problem re
in broadening of the levels. Third, there arises a static deformation of the helium su
that influences the position of the levels.

ENERGY LEVELS AND WAVE FUNCTIONS

Neglecting scattering and static deformation of the surface, which will be exam
in detail below, the electron is in a potential1

V5eFz2
e2

4z

«21

«11
2

e2

4~d1z!

«s21

«s11
1V0u~2z!2

e2Zeff

A~d1z!21x21y2
,

where the permittivity of helium is«51.045. The effective charge of the impurity
Zeff5 (2/«11)(2«/«s1«) Z. Even without an external field (F50) an electron is
clamped very strongly to the surface~the average distance from the surface is^z&,100
Å!, so that̂ z&/d!1. Therefore the last term, which corresponds to the impurity, can
assumed to be independent of the coordinatez and to depend only on its average valuez̃ .
This approximation also works well because of the fact that the impurity potential
small correction to the potential along thez axis ~but by no means in a plane parallel
the helium surface!. Now the variables separate; the wave function has the f
c(x,y,z)5z(z) f (x,y), wherez(z) and f (x,y) satisfy the equations

S 2
\2

2m

d2

dz2
1eFz2

e2

4z

«21

«11
2

e2

4d

«s21

«s11
1V0u~2z!2EnD z~z!50, ~1!

S 2
\2

2mS d2

dx2
1

d2

dy2D 2
e2Zeff

Ad21x21y2
2EklD f ~x,y!50. ~2!

In the last equation we introduced the notationd5d1 z̃ , where
z̃.^z&5*z* (z)z(z)zdz. In the absence of a field one has^z&5a53\2/2ma'100 Å
and a5(«21)e2/4(«11). For very strong fields in the bottom subban

^z&5b'1.6(\2/2meF)1/3. On this basis,z̃5(a221b22)21/2 gives fairly good accuracy
~the error<1% of the value ofd).

The splitting between the subbands~between energy levels along thez axis! is about
30 K, and at low temperatures an electron ‘‘freezes’’ in the bottom subband. For
reason, the two-dimensional behavior of an electron is determined by Eq.~2!, which
looks simple but cannot be solved exactly. For the lower levels, the region of localiz
^x2&;^y2&;200 Å and an expansion can be made in powers of the param
^x21y2&/d2. Then the potential assumes the form

V5
Zeffe

2

d S 211
r 2

2d2
2

3

8S r 2

d2D 2

1
5

16S r 2

d2D 3

2 . . . D .
631 631JETP Lett., Vol. 66, No. 9, 10 Nov. 1997 P. D. Grigor’ev



with

min-
hese

ection
of the

elium
n the

efit
me
In zeroth-order perturbation theory, we have a two-dimensional oscillator
v5AZeffe

2/d3m'(4 K!AZeff.

As we can see, the corrections of higher orders will be very important in deter
ing the width of the levels. We shall employ perturbation theory to calculate t
corrections. A potential of the formr 2n is not diagonal in the basis of wave functions

f kl~x,y!5S mv

p\ D 1/2 1

A2k1 lk! l !
e2~x21y2!/2a2

HkS x

aDHl S y

aD .

For this reason, it is more convenient to classify the states with respect to the proj
m of the angular momentum. Then the wave functions can be expressed in terms
confluent hypergeometric function

f nm~r ,f!5Cnme2x/2xm/2F~2n,m11,x!eimf,

where the radial quantum numbern50,1, . . . , andx5r 2A(Zeffe
2me /d3\2). The first-

order correction to the energy levels is given by the integral

Ekl
~1!5V~nm!~nm!

~1! 5E f nm
2 ~r ,f!S 2

3

8

Zeffe
2

d2 D S r

dD 4

rdrdf.

Integrals of this type are easy to calculate@Ref. 5, Appendix f#. The final answer is

Enm
~1!52

3

8

\2~m12!~m11!

med
2

3F11 (
s50

n21
n~n21! . . . ~n2s!~232s!~222s! . . . ~221s!

@~s11!! #2~m11!~m12! . . . ~m1s!
G

3F11 (
s50

n21
n~n21! . . . ~n2s!~212s!~2s! . . . ~s!

@~s11!! #2~m11!~m12! . . . ~m1s!
G21

. ~3!

For the second level, this formula gives the corrections to the energy

E10
~1!52

3

4

7\2

med
2

and E02
~1!52

3

4

6\2

med
2

.

Perturbation theory works if\(n21m211)/2eAmdZeff!1, which for d5500 Å holds
fairly well for the six lowest levels.

DEFORMATION EFFECTS

Under the action of the clamping field an electron exerts a pressure on the h
surface, deforming it. This static, craterlike deformation of the surface acts back o
electron and localizes it in the region1,6 L54pa\2/me2E'

2 , whereE'5E01e/d2 is the
sum of the external field and the field of the impurity. The energy ben
W52 (e2E'

2 /4pa) ln(1/kL) accompanying the formation of the crater is of the sa
order of magnitude as the correctionE(1) in first-order perturbation theory in (r /d)2. In
632 632JETP Lett., Vol. 66, No. 9, 10 Nov. 1997 P. D. Grigor’ev
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addition, W is virtually independent of the electron level number. Therefore the s
deformation of the surface may be regarded as a perturbation and investigated
order only.

The energy correction due to the formation of the crater
W5*d2r (a/2) @(¹j)21k2j2#2eE'uCu2j. We need not solve the self-consistent pro
lem of finding j(r ) and uC(r )u2 as was done in Refs. 1 and 6, since in first order
electron wave functionC(r ) does not depend on the surface deformationj(r ) but only
on the number of the level in the impurity potential. The functionj(r ) that minimizesW
is given by the equationaj9(r )1 (a/r ) j82rgj5eE'uC(r )u2. The solution of this
equation is

j~r !5
1

a E
0

`

G~v!J0~vr !vdv, ~4!

where

G~v!5
P~v!

v21k2
, P~v!5E

0

`

eE'uC~r !u2J0~vr !rdr . ~5!

For the ground state of an electron with wave functionuC(r )u25(1/pa2)exp(2r2/a2)

G~v!5
eE'

2p~v21k2!
expS 2

a2v2

4 D⇒j~0!'
eE'

4pa
ln

4

gk2a2

whereg51.78.6 Since ln(k2a2)@1, the quantityj9(0)52eE' /paa2!j(0)/2a2⇒j(r )
starts to change substantially on scales larger than the electron localization regio
then falls monotonically to zero over distances 1/k50.05 cm:
j(r )ur→`'eE'K0(kr )/2pa. The shift of the lower level isW00'eE'j(0)'0.7 K with
E'53000 V/cm. This is a large correction, but it is still much less than the split
between the levels in the zeroth approximation, so that perturbation theory remain
plicable. Let us now see how the deformation correction depends on the level num

It follows from Eq. ~4! that G(v) andj(r ) depend linearly onuC(r )u2. Therefore
the value ofj(0) for different levels can be obtained by differentiating expression~5!
with respect to the parameter 1/a2. For the levelnr50, m51

uC~r !u01
2 5

1

pa4
r 2e2r 2/a2

52
1

a4

]

]~1/a2!
~a2uCu00

2 !

⇒G015
eE'

2p~v21k2!

21

a4

]

]~1/a2!
Fa2expS 2

a2v2

4 D G
5

eE'

2p~v21k2!
S 12

a2v2

4 DexpS 2
a2v2

4 D⇒j015j002
eE'

4pa
.

The difference of the shifts of the first and zeroth levels is ln(4/gk2a2)'22 times less
than the shift of each level, but even a very small shift of the levels relative to
633 633JETP Lett., Vol. 66, No. 9, 10 Nov. 1997 P. D. Grigor’ev
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another can affect their width, which as we shall see below is very sensitive to
splitting between the sublevels of the split level. Let us calculate the deformation co
tion for different sublevels of the second level:

G025
eE'

2p~v21k2!
S 12

a2v2

2
1

a4v4

32 DexpS 2
a2v2

4 D⇒j025j002
3

2

eE'

4pa
,

G105
eE'

2p~v21k2!
S 12

a2v2

2
1

a4v4

16 DexpS 2
a2v2

4 D⇒j105j002
eE'

4pa
.

The energy correction isW025W0013(eE')2/2(4pa) and W105W001(eE')2/4pa.
Deformation effects increase the splitting between the sublevels of the second
decreasing its ripplon width appreciably. The calculations performed above have
firmed that the deformation correction to the energy decreases very slowly with inc
ing level number.

LEVEL WIDTH

Scattering by atoms in the helium vapor and by ripplons make the main contrib
to the level width. In the case of free electrons the width of intersubband transi
which is due to scattering by atoms was found both theoretically and experimenta
Ref. 7. For bound electrons, the arguments remain the same and the answer diffe
by a coefficient whose value is close to 1. Scattering by the vapor gives the w
\Dv5meNGUG

2 /2\2a, whereUG is related with the electron scattering cross section
an atom by the formulaA5m2UG

2 /p\4'5310216 cm2, the localization region
a5A\/mv, and the vapor density decreases very rapidly with decreasing temper
NG5(MkBT/2p\2)3/2exp(2Q/kBT), where Q57.17 K. At T51 K one has
NG51.531018 cm23 andG'0.01 K.

For free electrons the ripplon width obtained by numerical methods for an inter
band transition by T. Ando8 decreases with temperature more slowly than does the w
due to scattering by the atoms. For this reason ripplon scattering dominates at tem
turesT,0.8 K.

Let us examine the width of discrete levels of an electron in an impurity poten
Here there are substantial differences from the case of free electrons, so that w
perform the calculation from the very beginning. According to Ref. 1, the elect
ripplon interaction operator for transitions within the same subband has the follo
form in an approximation linear in the vertical displacementj of the
surface: V̂R5*d2rc1(r )c(r )(qjqeiq–rV(q), where jq5Q(q)(bq1b2q

1 ),
Q(q)5(\q tanh(qd)/2rvq)1/2, and

V~q!5E ~«21!e2q

4~«11!z S 1

qz
2K1~qz! D z2~z!dz1eE' .

The first term inV(q) is due to the image-force distortions and the second is due to
clamping field. These contributions are equal forE'5300 V/cm. Therefore we replac
the first term byeEeff5300 V/cm and introduceF5E'1Eeff .
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To find the width we shall calculate the probability of a transition of an electron
other levels and sum these probabilities:

Gn
R52p(

m
E d2q

~2p!2
^~bq1b2q

1 !~b2q1bq
1!&Q2~q!uVmn

R u2d~Em1v~q!2En!.

The matrix elementVmn(q)5*cm(r )cn(r )eiq–rd2rV(q) decreases very rapidly a
q→`. If the unperturbed oscillator eigenfunctions are taken forc(r ), then
Vmn(q);e2q2a2/4. Analysis of the exact solution of the Schro¨dinger equation does no
change this estimate. Thus only the interaction with the long-wavelength ripplons, w
energy is not much greater than\v(q52/a)'0.02 K but equals the energy splittin
between the levels, need be taken into account. If we actually did have a harm
oscillator, then there would be no such levels and the ripplon width would be negli
small. This is not the case because the degenerate levels of the oscillator are split, a
width depends strongly on the magnitude of this splitting. We note that the ground
was nondegenerate and therefore did not split, and the first level was degenerat
with respect to the projection of the angular momentum and also did not split
potential of the formr 2k. Let us calculate the ripplon width of the second level. T
electron wave functions are

c025
1

A2pa2
e2r 2/2a2S r

aD 2

eimf, c105
1

Apa2
e2r 2/2a2S 12

r 2

a2D .

The matrix element is

uV~10!~02!
R u25~eF!2expS 2

q2a2

2 D ~qa!4

8 S 12
q2a2

8 D 2

and the width of the second level is

G2
R5

~eF!2

a

2nq11

24
expS 2

q0
2a2

2 D ~q0a!4S 12
q0

2a2

8 D 2

,

wherenq51/(e\v0 /kT21), andq0 is determined by the relation

\v~q0!5\Aa

r
q0

3/25E10
~1!1W102E02

~1!2W025
3

4

\2

med
2

1
~eE'!2

8pa
,

whence

qa5S 1

\
Ar

a D 2/3S \2d3

mZe2D 1/4F 3\2

4md2
1

~eE'!2

8pa G 2/3

.

One can see that the width depends very strongly onqa, i.e., on the depthd, on the
substrate permittivity«s , and on the level number. Ford51000 Å, F53000 V/cm,
Zeff51, andT50.5 K we obtainqa55.2 andG2

R50.003 K. If d is halved, thenqa57
and G2

R;1025 K. The width of the second level is a nonmonotonic function of
clamping field. ForE''1500 V/cm it has a flat maximum which arises as a result of
competition between the factor (E'1Eeff)

2 and the exponential dependence of the wid
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on q0a, where the clamping field enters on account of the deformation corrections
d51000 Å one hasG'0.005 K at the point of the maximum. The surface deformat
strongly influences the width of the second level. This is also due to the fact tha
splitting between its sublevels is small. For the third level the initial splitting is 11 tim
larger, and for this reason the width of this level should be very small and be
independent of deformation effects.

At low temperatures the contribution of scattering by the atoms is exponen
small, and the interaction with ripplons remains the only cause of the level broade
The strong dependence of the ripplon width on the external parameters and on the
number is a distinguishing feature of an electron in a bound state. The smallness
level width for T,0.6 K makes it possible to perform a beautiful spectroscopic exp
ment, similar to that of Ref. 7 but for bound states.

I thank A. M. Dyugaev and V. B. Shikin for a helpful discussion.
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Aharonov–Bohm oscillations in a ring with a quantum
well

I. A. Ryzhkin
Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovk
Moscow District, Russia

~Submitted 23 September 1997; resubmitted 1 October 1997!
Pis’ma Zh. Éksp. Teor. Fiz.66, No. 9, 605–610~10 November 1997!

Aharonov–Bohm oscillations in a ring with a quantum well are inves-
tigated in the ballistic regime. It is shown that when trajectories with
multiple circuits around the ring are taken into account, the maxima in
the conductivity correspond to resonance levels of an isolated ring. The
results obtained are in qualitative agreement with the experiment per-
formed by Yakoby, Heiblum, Mahalu, and Shtrikman@Phys. Rev. Lett.
74, 4047~1995!#: Although the scattering phase of an electron scattered
by a quantum well changes byp on passage through each resonance,
the Aharonov–Bohm curves for the centers of neighboring resonances
are identical. In the simplified interpretation employed by Yakobyet al.
the latter result looks like an identical scattering phase in neighboring
resonances. ©1997 American Institute of Physics.
@S0021-3640~97!00721-4#

PACS numbers: 72.15.Rn, 73.90.1f

The development of nanotechnology in the last 10 years has led to the creat
electronic structures several tens of nanometers in size~quantum wires, contacts, wells
and their combinations!. On account of their smallness and low impurity density,
transport in such structures at low temperature is ballistic: Along their entire propag
path electrons do not undergo any scattering by phonons or a random static im
potential. The only form of scattering is scattering by elements of the structure i
Under such conditions electron propagation is a quantum-limit process and is des
best by the quantum theory of scattering and not by the classical Boltzmann equ
Under quantum scattering conditions the behavior of a scattered electron is charac
not only by the scattering probability but also by the scattering phase. For this reas
conductivity of topologically nontrivial structures can depend directly on the phase.
is a new circumstance compared to classical transport, and it can serve as a basis
development of fundamentally new electronic devices with unusual characteristics

The electrical properties of one such structure were investigated in detail in R
and shown schematically in Fig. 1: a ring with current contacts and a quantum well in
of the arms. The ring was placed in a magnetic field and thus carried a magnetic flF.
A voltage U was applied to one of the electrodes creating the quantum well, the
changing the depth of the well. The conductance of the structure as a function of th
F manifested Aharonov–Bohm oscillations with period equal to the magnetic flux q
tum F05hc/e, indicating transport coherence, i.e., transport was sensitive to the p
637 6370021-3640/97/090637-06$10.00 © 1997 American Institute of Physics
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acquired in a magnetic field. The conductance as a function ofU in the presence of zero
magnetic flux had the form of narrow resonance peaks at voltages which the au
associated with matching of the resonance levels of the well with the Fermi level o
system. The most interesting and contradictory results were obtained in an investi
of the scattering phases of the quantum well. There the Aharonov–Bohm oscilla
were investigated at fixed voltages, and the scattering phases were determined fr
shifts of the oscillations relative to the origin of coordinates. It was found that when
energy is scanned through each resonance the scattering phase changes byp, as should
happen according to the Breit–Wigner formula.2 However, the phases in successi
resonances turned out to be the same, which is obviously at variance with simple m
of a quantum well and resonance levels~the phases should differ byp). This contradic-
tion, formulated on the basis of a simple and graphic theory, appears to be comp
unresolvable if the electron–electron interaction is neglected. It is probably for this
son that the latest attempts to resolve it3–5 are all based on models of interacting ele
trons.

The objective of the present letter is to make a theoretical analysis of the con
tance of an Aharonov–Bohm ring with a quantum well in one arm of the ring an
investigate the dependence of the conductance on the magnetic field and voltage a
to the well. In contrast to Refs. 3–5, we employ the same model of nonintera
electrons as that in Ref. 1, but we do not confine ourselves to summing only the
simplest trajectories connecting the contacts 1 and 2. Actually, our method of solut
equivalent to taking into account nonrectilinear trajectories, including those with diffe
numbers of circuits around the ring. When they are taken into account, propagation
the two arms is no longer independent and actually signifies that a necessary condit
a resonance in the conductance is that the Fermi level coincides with the resonanc
of the entire ring~isolated from the current contacts! and not with the resonance level o
the quantum well. This circumstance radically changes the outcome and gives a s
and natural explanation for all observed results.

To find the conductance, we note first that it can be expressed, by means
Landauer formula,6 in terms of the transmission coefficient, the finding of which is
standard quantum-mechanical problem. We represent the electron wave function i
segment in the form

FIG. 1. Aharonov–Bohm ring with a quantum well in the bottom arm~on the left-hand side of the figure!. The
magnetic flux is directed upwards out of the plane of the figure. The arrows show the incident and re
waves. A quantum well with resonance levels is shown schematically on the right-hand side.
638 638JETP Lett., Vol. 66, No. 9, 10 Nov. 1997 I. A. Ryzhkin
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c i~x!5
ai

Ak
exp~ ikx!1

bi

Ak
exp~2 ikx!, ~1!

whereai andbi are the amplitudes of the waves shown in the figure by arrows,x is the
one-dimensional coordinate along a segment~we assume that the system is on
dimensional or has only one channel!, andk is the wave number. The wave functions
each arm are matched by means of unitary scattering matrices expressing the amp
of the scattered waves in terms of the amplitudes of the incident waves:

H b2

a4
J 5H 0 t08

t0 0 J H a2

b4
J , H b3

a5
J 5H r t 8

t r 8
J H a3

b5
J , ~2!

wherer andr 8 are the reflection coefficients andt andt8 the transmission coefficients o
the lower arm, treated as a single scatterer; similarly,t0 and t08 are the transmission
coefficients for the upper arm. The upper arm is assumed to be free and the refl
coefficients for it equal zero. In the absence of a magnetic flux one hast05t085exp(ikl),
wherel is the length of the semicircle. When a magnetic flux is switched on,r andr 8 do
not change but the transmission coefficients do change:t0→t0exp(ia), t08→t08exp(2ia),
t→t exp(2ia), and t8→t8exp(ia), a5(F/F0)p. The location where the current
conducting contacts connect with the ring are also described by scattering matrices33
matrices!.7 Unitarity ~flux conservation! and symmetry~reversibility in time!, the sym-
metry between the two arms of the ring, and the additional requirement that the m
elements be real allow the scattering matrices of the units to be parametrized by a
real parameter:8

H b1

a2

a3

J 5H 2a2b A« A«

A« a b

A« b a
J H 1

b2

b3

J ,

H a6

b5

b4

J 5H 2a2b A« A«

A« a b

A« b a
J H 0

a5

a4

J , ~3!

wherea,b5(A122«71)/2 and« varies in the range@0,1/2# and characterizes the cou
pling of the ring with the contacts. The value«50 corresponds to an isolated ring an
«51/2 corresponds to the maximum coupling of the ring with the contacts. We un
score that the units are treated as point objects. For this reason, they do not enc
finite magnetic flux, and the constantsa, b, ande do not depend on the magnetic fiel
We also note that an ideal connection~in the sense that the fluxes are conserved and
wave function is continuous! corresponds to a matrix~3! with «54/9 which is symmetric
with respect to all three arms. The system of equations~2! and ~3! makes it possible to
find directly the transmission amplitude (5a6). Omitting long algebraic calculations, w
present the final expression for the transmission amplitudeF12 for small «, which is the
most interesting and, from the experimental standpoint, most likely case:
639 639JETP Lett., Vol. 66, No. 9, 10 Nov. 1997 I. A. Ryzhkin
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F125«F t0~12t21r 1r 81rr 8!exp~ ia!1t~12t0
2!exp~2 ia!

D01«D1
G , ~4!

whereD0 andD1 are determined by the equations

D05~12tt0 exp~22ia!!~12tt0 exp~2ia!!2t0
2rr 8. ~5!

D152tt0 cos~2a!1~r 1r 8!~11t0
2!/212t0

2~rr 82t2!. ~6!

Using the Landauer formula, the equations~4!–~6!, and the unitarity of the scatterin
matrices, the conductanceG12 of the ring can be represented in the form~here and below
the conductance is given in units of 2e2/h)

G125«2
@r cos~b!2sin~d!#21t2 sin2~w!22t sin~w!@r cos~b!2sin~w!#cos~2a!

@cos~d1w!2t cos~2a!#21«2@~r cos~b!2sin~d!! cos~w!2sin~w!cos~d!#2
.

~7!

Here and belowr andt are the moduli of the reflection and transmission coefficients
scattering by a quantum well, the value of the parameterb5@arg(r 8)2arg(r )#/2 depends
on the model of the quantum well and in the general case is nonzero,d is the scattering
phase of the quantum well, andw5kl is the phase acquired during free propagat
along the top arm. It is important to underscore that besides the symmetry dictat
time reversalG12(F)5G21(2F), the conductance exhibits an additional symme
G12(F)5G12(2F).

It is evident from Eq.~7! that for small« the dependence of the conductance on
parameters of the problem is of a resonance form. Maxima occur whenD050 ~the first
term in the denominator in Eq.~7! vanishes!. It is easy to show that this condition i
identical to the condition for quantization of the levels of an isolated ring. The heigh
a maximum is independent of«, whereas the width is directly proportional to«. There-
fore the conductance resonances correspond to the energy levels of the ring and
quantum well by itself. A striking illustration of this assertion is the possibility o
conductance resonance even in regions far from the well resonances, wheret50 ~this
requires that cos(d1w)50). The conductance at resonances of this type does not de
on the magnetic flux. This is entirely understandable, since in the case when propa
occurs only along one arm there is no interference mechanism there. This case pr
does not correspond to the experiment of Ref. 1.

Strong modulation of the conductance by a magnetic flux~pronounced Aharonov–
Bohm oscillations! exists only fort comparable to 1, i.e., when the Fermi level is clo
to a resonance level of the well~but does not necessarily coincide with it!. However, it
would be incorrect to think that a neighborhood of each resonance level of the
necessarily results in a conductance resonance for a fixed magnetic flux. Indeed, s
that d r and t r from a neighborhood of a resonance of the well give a conducta
resonance, i.e., they are solutions of the equation cos(d1w)2t cos(2a)50. Then the
corresponding point of the next well resonance (d r1p), t r is not a solution of this
equation with the same magnetic flux. It is easy to see, however, that it becom
solution when the magnetic flux changes bydF5F0/2 and thereby gives a resonan
with a different value of the magnetic field. We underscore that the heights and widt
640 640JETP Lett., Vol. 66, No. 9, 10 Nov. 1997 I. A. Ryzhkin
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the conductance resonances at these successive points can be completely differ~for
some parameters of the problem some of them can be observed and others cann!.

The magnetic flux dependence of the conductance in Eq.~7! appears at two loca
tions: in the numerator and in denominator. The term with cos(2a) in the numerator is
virtually identical to the result of the simplified theory1 and originates from a simple
addition of the amplitudes of the waves propagating along the two arms. This depen
is weak, of the order of«2. The denominator in Eq.~7! ~or equivalently Eq.~4!! is
actually obtained by adding all trajectories with different numbers of circuits around
ring and leads to a more complicated and stronger dependence on account of the
resonance form of Eq.~7!.

Next let us investigate the dependence of the conductance on the direction and
of the Aharonov–Bohm oscillations near the resonance levels of the quantum wel
moduli of the reflection and transmission coefficients and the scattering phase c
expressed as

r 5
uhu

Ah211
, t5

1

Ah211
, d56

p

2
2arctan~h!, ~8!

whereh5(EF2E0)/g is the dimensionless deviation of the resonance levelE0 of the
well from the Fermi level,g is the width of the resonance level, and the6 are chosen in
order to permit comparison of two successive resonances differing in phase byp. Sub-
stituting expression~8! into Eq. ~7! gives for the conductance

G125«2
@ uhucos~b!71#21sin2~w!22@ uhucos~b!71#sin~w!cos~2a!

@6hcos~w!6sin~w!1cos~2a!#21«2@~ uhucos~b!71!cos~w!6hsin~w!#2
.

~9!

The voltage and magnetic flux dependences of the conductance are strongly dete
by the value of the phasew, which in turn depends on the dimensions of the ring and
Fermi energy. For cos(w)50 the sharph dependence observed experimentally does
occur. To come closer to experiment, let us examine the directly opposite case cos(w)51.
We obtain for the conductance

«2G125
@ uhucos~b!71#2

@6h1cos~2a!#21«2@ uhucos~b!71#2
. ~10!

It is evident from this formula that a conductance resonance exists only in a quite
neighborhood of a well resonance,uhu<1. As the energy is scanned within one we
resonance in the region21<h<1, the value of 2a changes byp, which corresponds to
the Breit–Wigner formula and the experimental result. At the same time, foruhu.1 the
Aharonov–Bohm oscillations become increasingly shallow. However, if the form of
oscillations directly near the center of the resonance (h!1) is investigated, then the
result does not depend on which sign, upper or lower, is chosen. This means that th
of the oscillations is identical at the centers of successive well resonances~the oscilla-
tions appear to be in phase!. This qualitative analysis is also confirmed by a numeri
analysis of Eqs.~7!, ~9!, and~10! for different values of the parametersb, «, andw.
641 641JETP Lett., Vol. 66, No. 9, 10 Nov. 1997 I. A. Ryzhkin
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In closing, let us list the basic results of this work. First, conductance resona
correspond to the energy levels of the isolated ring and not of the well. Second
resonances of an isolated well should be separated into two types: even and odd~with
scattering phase equal to 0 andp, respectively!. If the even well resonances lead
conductance resonances with an integral magnetic flux (F5nF0), then the odd reso-
nances lead to conductance resonances with a half-integral flux (F5(n11/2)F0). For
definite parameters of the problem, the latter~or former! could be much weaker o
narrower, i.e., unobservable experimentally. This is one of the possible resolutions
paradox formulated in Ref. 1. Finally, a systematic calculation of the conductance t
into account trajectories with different numbers of circuits around the ring leads to a
complicated dependence of the conductance on the magnetic flux and the voltage th
simplified theory of Ref. 1. This dependence in itself looks like a ‘‘change in scatte
phase byp ’’ near each resonance and ‘‘identical phase’’ at the centers of succe
resonances. The latter is the most likely explanation of the experimental results ob
in Ref. 1.

I thank V. I. Marchenko, V. M. E´ del’shte�n, and G. B. Lesovik for valuable discus
sions and interest in this work. This work was supported by the Russian Fund for
damental Research under Grant No. 96-02-19568.
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Change in the nature of the Ni diffusion mechanism on
the Si „111… surface with adsorption of Co atoms

A. E. Dolbak, B. Z. Ol’shanetski ,a) S. A. Ti s, and R. A. Zhachuk
Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Scie
630090 Novosibirsk, Russia

~Submitted 6 October 1997!
Pis’ma Zh. Éksp. Teor. Fiz.66, No. 9, 611–614~10 November 1997!

The diffusion of Ni on a Si~111! surface is investigated by LEED and
Auger electron spectroscopy. It is found that, in contrast to the process
on the initially clean Si~111!–737 surface, on Si~111! surfaces with
submonolayer Co coverages the nature of the Ni transport mechanism
changes at a temperature of about 750 °C, and the Ni surface diffusion
coefficients increase sharply below this temperature. ©1997 Ameri-
can Institute of Physics.@S0021-3640~97!00821-9#

PACS numbers: 68.35.Fx, 82.80.Pv, 61.14.Hg

Research on surface diffusion is important for surface physics and its applicatio
technology. It is known that surface diffusion can depend on surface orientation
structure, the densities of atomic steps, the chemical nature and density of ads
atoms, external fields, and so on~see, for example, Refs. 1–4!.

Using LEED and Auger electron spectroscopy~AES!, we have observed an abrup
change in the nature of the mechanism of surface diffusion of Ni, with a sharp inc
in the Ni surface diffusion coefficients on the Si~111! surface at temperatures belo
70 °C upon the adsorption of submonolayer quantities of Co atoms as compared w
diffusion on the initially clean Si~111!–737 surface. In a previous work5 we investi-
gated in detail Ni diffusion on a clean Si surface. In the present work we performed
control experiments on a clean silicon surface.

The temperature dependences of the nickel surface diffusion coefficientsD(T) were
calculated from the concentration distributionsCNi(x) (x is the distance from the edge o
the strip! obtained on a Si~111! surface as a result of the diffusion of Ni from a nick
strip deposited on the surface, as the sample is annealed for a timet. The distributions
CNi(x) were measured by the AES method at room temperature. The transport of
a clean silicon surface was observed at temperatures above 700 °C. At this tempe
after the sample was annealed for 60 min, we could not record the concentration
butions CNi(x) because the sensitivities and spatial resolution of the AES and LE
methods are too low. It follows from our experiments that transport of Ni atoms a
clean Si surfaces occurs by means of diffusion of the atoms through the bulk followe
segregation on the surface as a result of a decrease in the solubility of Ni in Si
decreasing temperature of the sample.5 The conclusion that Ni diffuses through the bu
of the Si is based on the fact that the concentration distributions of Ni on the Si su
appeared only after the sample cooled, while no Ni Auger signal was detected fro
643 6430021-3640/97/090643-04$10.00 © 1997 American Institute of Physics
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surface when Ni diffused during annealing of the sample, though during this time int
Si Auger peaks as well as Ni Auger peaks from the surface of the deposited strip
be observed. The conclusion that diffusion occurs through the bulk also agrees wi
fact that the nickel diffusion coefficients do not depend on the orientation and structu
the silicon surface;5 such a dependence should be present if the nickel atoms di
along the surface. Moreover, this conclusion was indirectly confirmed by the fact tha
values of the Ni diffusion coefficients calculated from our experimental results are
to the corresponding values presented in Refs. 6–8 for the diffusion coefficients
diffusing along interstices in Si. Our conclusion about the mechanism of the transp
nickel on a clean silicon surface was confirmed in Ref. 9.

Nickel nonetheless still does diffuse on clean silicon surfaces. This is seen a
formation of nickel-induced ordered surface structures and formation of epitaxial is
of nickel disilicide NiSi2. But the Ni surface diffusion coefficients are several orders
magnitude lower than the diffusion coefficients along interstices, and surface diffu
makes a negligibly small contribution to Ni transport on clean Si surfaces. This res
remarkable in that it does not fit into the existing picture of surface diffusion, accor
to which the migration rates of atoms along a surface are higher and the activation e
of the surface diffusion is lower than the corresponding values in the bulk of a cry

To investigate the effect of Co adsorption on Ni surface diffusion, a submono
Co coating~in what follows, a monolayer is denoted as ML! was deposited on a clea
Si~111! surface in an ultrahigh vacuum at room temperature. As we showed in Re
heating of a Si~111! surface on which Co is adsorbed results in the formation of a num
of Co-induced surface structures which depend on the coverage and the conditi
heat treatment. These are surface structures Si~111!–737 –Co, Si~111!–131 –Co,
Si~111!–A73A7 –Co, and Si~111!–A133A13–Co. They are observed at room tempe
ture and are formed in a definite range of Co concentrations and annealing temper
If the Co concentration exceeds the amount required for a given surface structure to
the excess Co atoms combine with silicon to form epitaxial islands of cobalt disili
CoSi2 ~Ref. 10!. The LEED patterns from the Si~111!–737 –Co surface are similar to
those observed from the clean Si~111!–737 surface. This is due to the fact that C
atoms adsorbed on a Si~111!–737 –Co surface are incorporated in the epitaxial Co2

islands, which occupy a small area and a large part of the silicon surface remains
The curves of the Ni surface diffusion coefficients were measured on samples
surface structures 737 –Co~0.4 and 0.8 ML Co!, 131 –Co ~0.6 ML Co!, and
A73A7 –Co~0.2 ML Co!. Before the Ni diffusion experiments were performed, samp
with A73A7 –Co and 131 –Co surface phases and Co coatings of 0.2 and 0.6
respectively, were annealed at temperatures up to 600 °C for 180 min. In the proce
did not observe any changes in the LEED patterns. This attests to the stability o
surfaces of the samples during the anneals. The values obtained for Ni diffusion c
cients on theA73A7 –Co surface exhibited poor reproducibility, and we do not pres
them in this letter.

The concentration distributionsCNi (x) measured on clean Si~111! surfaces and on
Si~111! surfaces with adsorbed cobalt were found to satisfy the equation

C~x!5C0 erfc~x/2ADt !. ~1!
644 644JETP Lett., Vol. 66, No. 9, 10 Nov. 1997 Dolbak et al.
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Similar distributions are characteristic for one-dimensional surface diffusion fro
source of constant intensity.11

The temperature dependences of the Ni diffusion coefficients on clean Si~111! sur-
faces and Si~111! surfaces with adsorbed Co are displayed in Fig. 1. The diffus
coefficients are determined with an accuracy of630% from the distributionsCNi(x)
measured at the given temperature.

The curves obtained for a clean silicon surface at temperatures above 700 °
identical to those obtained for a silicon surface with adsorbed Co. However, b
750 °C a sharp change occurs in the mechanism of nickel transport along a s
surface. Nickel diffusion is not detected on a clean surface below 750 °C, whereas
centration distributionsCNi(x) are detected on a surface with adsorbed Co all the way
to a temperature of 500 °C. At about 750 °C the slope of the temperature depende
the diffusion coefficients changes. The activation energy of Ni surface diffusion c
lated for the Si~111!–737 –Co surface~see Fig. 1! equals 1.3 eV, and the temperatu
dependence of the diffusion coefficients can be expressed asD513102exp(21.3/kT)
cm2/s. The corresponding expression for the Ni diffusion coefficients measured o
clean Si~111! surface has the formD52.431023exp(20.32/kT) cm2/s.5

As follows from our experiments, the Ni diffusion mechanism on a Si~111! surface
with adsorbed Co is different from the mechanism observed on a clean silicon su
When submonolayer quantities of Co are present on the surface, an Auger signal fr

FIG. 1. Temperature dependence of the Ni surface diffusion coefficients on a clean Si~111! surface and a
Si~111! surface with adsorbed Co.
645 645JETP Lett., Vol. 66, No. 9, 10 Nov. 1997 Dolbak et al.
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is observed in the process of diffusion of Ni at temperatures of 500–700 °C, an
nickel concentration distribution observed on the surface of a heated sample
completion of annealing is identical to that measured at room temperature. Therefo
transport occurs in this case by means of diffusion along the surface, in contrast
clean silicon surface, where, as we have said, nickel diffuses through the bulk of t
and is then segregated at the surface.

It was natural to expect that the Ni surface diffusion coefficients would depen
the structure of the silicon surface and the concentration of adsorbed cobalt. One c
from the figure that the Ni surface diffusion coefficients on a Si~111! surface with dif-
ferent surface structures and adsorbed Co concentrations in the temperature rang
700 °C differ somewhat: The Ni diffusion coefficients are lower on surfaces with a
Co concentration.

In summary, we have observed that adsorption of submonolayer concentratio
Co atoms results in an abrupt change in the nature of the mechanism of Ni diffusio
a Si~111! surface at a temperature of about 750 °C. The values of the Ni diffu
coefficients on a Si~111! surface with adsorbed cobalt are much higher than the co
sponding values on an initially clean silicon surface in the temperature range
700 °C. However, at present we cannot explain the mechanism responsible for t
crease in the Ni surface diffusion coefficients on a Si~111! surface containing cobalt
induced surface phases in the temperature range 500–700 °C. Especially surprisin
effect of Co atoms on the nickel diffusion mechanism on the Si~111!–737 –Co surface,
where the Co atoms are incorporated into irregularly arranged epitaxial islands o
disilicide CoSi2, which occupy a small fraction of the surface, while a large part of
silicon surface remains clean and even retains the 737 structure of the clean surface.

This work was supported by the Russian Fund for Fundamental Research~Grant
95-02-05336! and the Russian State Program ‘‘Surface Atomic Structures’’~95-1.17!.
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Neutron diffraction investigations have shown that a 2% substitution Fe
atoms for Pd radically alters the magnetic structure of UPd2Ge2. If the
magnetic structure in the undoped compound atT,50 K consists of a
longitudinal spin density wave~LSDW! with ‘‘square’’ modulation,
then in polycrystalline U~Pd0.98Fe0.02)2Ge2 a ‘‘simple’’ antiferromag-
netic ~AF! phase is observed below 65 K and a sinusoidally modulated
LSDW–AF phase is observed between 65 K and the Ne´el temperature
TN5135 K. In the interval 65,T,135 K the magnetic cell is incom-
mensurate with the crystal cell, with the exception of the pointT593
K, where the wave vector of the magnetic structure passes through a
‘‘commensurate’’ value equal to 0.75. BelowTN the magnetic mo-
ments of the uranium atoms are always parallel to the tetragonal axisc
of the unit cell. © 1997 American Institute of Physics.
@S0021-3640~97!00921-3#

PACS numbers: 75.50.Ee, 75.30.Fv

The first neutron diffraction investigations of UPd2Ge2 ~Ref. 1! revealed the pres
ence belowTN5140 K of a magnetic structure of the antiferromagnetic~AF! type with a
modulated longitudinal spin density wave~LSDW!. Recent magnetic measurements2–5

have indicated the existence of at least two additional magnetic transitions — near
and 50 K — and the possible coexistence of several magnetic phases at low tempe
— AF, ferromagnetic~FM!, metamagnetic~MM !, and spin glass~SG!. This has stimu-
lated repeated neutron diffraction investigations of UPd2Ge2 ~Ref. 6! with much better
resolution and accuracy than in the early work.1 It was shown that at temperature
1.4<T<50 K the magnetic structure of UPd2Ge2 is described by a commensura
LSDW with ‘‘square’’ modulation and with a magnetic wave vectork5(0,0,3/4). At
temperatures 95<T<TN (TN5135 K! the magnetic structure consists of an incomme
surate LSDW with sinusoidal modulation. In the interval 50<T<95 K the structure
consists of a mixture of these two phases and gradually transforms from a sq
647 6470021-3640/97/090647-06$10.00 © 1997 American Institute of Physics
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modulated into a sinusoidally modulated structure; a first-order phase transition fro
commensurate into an incommensurate phase, expressed as a sharp change inkz , occurs
near 80 K. Only the uranium atoms carry a magnetic moment, and the direction o
moments are parallel to thec axis of the unit cell.

The system UPd2Ge2–UFe2Ge2 forms a continuous series of solid solutions with
structure of the ThCr2Si2 type.3,4 It is curious that the final member of this serie
UFe2Ge2, is nonmagnetic and is a Pauli paramagnet.7,4 Measurements of the magnet
susceptibility and magnetization in the system U~Pd12xFex)2Ge2 have shown3,4 that even
a very low iron concentration radically changes the magnetic state of the initial c
pound UPd2Ge2. Specifically, 2% Fe is a critical concentration at which a number
magnetic properties change radically.

We performed neutron diffraction magnetic and structural investigations of the
tem U~Pd12xFex)2Ge2 for different Fe and Pd concentrations. The present letter rep
the results for the critical concentrationx50.02.

Polycrystalline samples of pure UPd2Ge2 and of the doped compoun
U~Pd0.98Fe0.02)2Ge2 were prepared by melting stoichiometric quantities of the constitu
materials in an argon arc furnace. The details of the sample preparation metho
described in Ref. 3. The magnetic susceptibility and magnetization measurements
performed on a SQUID magnetometer in the temperature interval 5–300 K and in e
nal magnetic fieldsH up to 5.5 T.

Neutron diffraction data for refinement of the structure were obtained for sev
temperatures on a high-resolution Fourier diffractometer in the IBR-2 pulsed reac
Dubna. A G4.1 diffractometer in the Orphee reactor in Saclay, France, with a ne
wavelength of 2.426 Å was used for the neutron magnetic investigations. All neu
diffraction patterns obtained on the G4.1 diffractometer were recorded in a regime
temperature increasing from 1.4 K up to 142 K. The data were analyzed by the Rie
method using the MRIA and FullProf codes.8,9

Figure 1 displays the temperature dependences of the magnetic susceptibilityx for
pure and iron-doped samples. The inset in Fig. 1 also shows curves of the in
susceptibility 1/x5 f (T). Besides the magnetic anomaly atTN , two additional anomalies
are observed in both samples. In UPd2Ge2 the susceptibility passes through a maximu
at Tm1587 K andTm2'50 K. In U~Pd0.98Fe0.02)2Ge2 the maximum of the susceptibility
at Tm1 shifts to 74 K and becomes very intense, while the maximum atTm2'50 K is
strongly suppressed.

High-resolution neutron diffraction patterns confirm that U~Pd0.98Fe0.02)2Ge2 pos-
sesses a simple body-centered tetragonal structure of the ThCr2Si2 type with space group
I4/mmm and atoms in the following crystallographic positions: U in 2~a!: 0, 0, 0; Pd~Fe!
in 4~d!: 0, 1/2, 1/4; Ge in 4~e!: 0, 0,z. Thez coordinate of Ge and the thermal factors f
all the atoms were refined, and no substantial anomalies were observed in their tem
ture dependence.

Only the coordinatez(Ge) and the lattice parameters were refined with the nuc
diffraction peaks obtained on the G4.1 diffractometer. It was found thatz(Ge!50.3812~2!
at 142 K, and this parameter remains constant all the way down to 1.4 K. A s
648 648JETP Lett., Vol. 66, No. 9, 10 Nov. 1997 Balagurov et al.
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anomaly was observed in the temperature dependences of the lattice parametersa andc
near 65 K. This anomaly was not observed6 in pure UPd2Ge2.

It follows from the neutron data that atT,65 K the compound U~Pd0.98Fe0.02)2Ge2

possesses a simple AF structure with wave vectork5 c* . The magnetic moments o
uranium are parallel to thec axis, and the magnetic unit cell coincides with the nucl
cell. The only difference between the cells is that body-centered symmetry does no
for the magnetic cell~the magnetic moments are oppositely oriented at the points~0, 0, 0!
and~1/2, 1/2, 1/2! and, in consequence, the magnetic peaks withh1k11Þ2n are visible
in the low-temperature diffraction spectra.

Figure 2 shows the temperature variations of the intensity of the magnetic p
~100! and ~1012), referring to the commensurate and incommensurate phases, re
tively. The transition atT565 K to the incommensurate structure is formally manifes
as a sharp decrease in thez component of the wave vectork from 1 to 0.76~in units of
c* ) ~see Fig. 3!. At temperaturesT.65 K the magnetic structure of U~Pd0.98Fe0.02)2Ge2

consists of an incommensurate longitudinal spin density wave~LSDW! with sinusoidal
modulation. The phases AF and LSDW coexist in a very narrow temperature int
near 65 K.

We observed another curious effect: Above 65 K, as the wave vector decr
slowly ~Fig. 3!, its length passes through the ‘‘commensurate’’ value of 3/4 at 93
Thereforekz.3/4 at 65,T,93 K andkz,3/4 at 93 K,T,TN .

The temperature dependence of the magnetic moment of uranium in
U~Pd0.98Fe0.02)2Ge2 sample is shown in Fig. 4. As the temperature increases, the m

FIG. 1. Temperature dependence of the magnetic susceptibility in the fieldH52 kOe for pure UPd2Ge2 and
iron-doped U~Pd0.98Fe0.02)2Ge2. Inset: Inverse susceptibility of U~Pd0.98Fe0.02)2Ge2.
649 649JETP Lett., Vol. 66, No. 9, 10 Nov. 1997 Balagurov et al.
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tude of the moment remains almost constant in the region 0,T,65 K. Then it decreases
abruptly at 65 K, and on the way to the Ne´el temperatureTN5135 K it passes through a
additional anomaly near 93 K. This temperature is also the point wherekz becomes equa
to the ‘‘commensurate’’ value of 3/4.

The neutron diffraction experiments show that even very light doping with
changes the magnetic structure of UPd2Ge2 radically. After doping with only 2% Fe the
low-temperature LSDW phase of pure UPd2Ge2 with ‘‘square’’ modulation (kz53/4)
changes into a simple AF (kz51) structure. As the temperature increases, the magn
transition from the commensurate to the incommensurate phase in UPd2Ge2 is accompa-
nied by a sharp decrease in the numberkz ~Ref. 6!, while in the doped sample the wav
numberkz varies continuously in the entire temperature range from 65 K up to 13
One gets the impression that in U~Pd0.98Fe0.02)2Ge2 the wave number, in going from th

FIG. 2. Temperature dependence of the intensity of the magnetic Bragg peaks 100 and 1012. The peak 100
vanishes atT'65 K, while the peak 1012 appears at the same temperature.

FIG. 3. Temperature dependence of the componentkz of the magnetic wave vectork for U~Pd0.98Fe0.02)2Ge2.
Inset: Transition of the wave vectorkz through the ‘‘commensurate’’ value (kz50.75) atT593 K.
650 650JETP Lett., Vol. 66, No. 9, 10 Nov. 1997 Balagurov et al.
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value kz.3/4 to kz,3/4 at 93 K, does not at all ‘‘feel’’ this temperature as a pha
transition point. However, the anomaly in the magnitude of the magnetic mome
uranium atT'93 K ~Fig. 4! confirms the existence of a magnetic transition. It should
noted that the sharp change in the wave vectork and magnitude of the magnetic mome
of uranium at the transition pointT565 K correlate with the anomalies of the lattic
parametersa andc at this temperature.

The magnetic transition temperatures 65 and 93 K found for U~Pd0.98Fe0.02)2Ge2 in
the diffraction experiment are different from the positions of the maxima of the mag
susceptibility~50 and 74 K; Fig. 1!, but they correspond to the onset of the rise~67 K!
and the termination of the drop~94 K! of the susceptibility in the peak atTm1. According
to Fig. 1,x(T) increases rapidly at the pointT567 K, which according to the neutro
data is the temperature of the transition AF⇒ LSDW. One can also see in the inset
Fig. 1 that the value of 1/x increases in the interval 74–135 K, with a change in slo
occurring exactly at the pointT593 K. Therefore, like the magnetic moment of th
uranium, the magnetic susceptibility is also sensitive to the transitionkz.3/4⇒kz,3/4.

It is known that several crystals with the ThCr2Si2 structure possess a simple A
structure at low temperatures, for example, UNi2Si2 at 53,T,103 K,10 UPd2Si2 at
T,108 K,11 and UNi2Ge2 at T,80 K,12 but this structure has not been observed6 in pure
UPd2Ge2. We have now found that the low-temperature phase of iron-doped UPd2Ge2

possesses a simple AF structure.

To relate the neutron diffraction data with the results of magnetic measurement
necessary to assume3,4 that the compound U~Pd0.98Fe0.02)2Ge2 below TN is in a mul-
tiphase state. The coexistence of different phases and the competition between
result in frustrations of the magnetic order, which results in the appearance of SG
FM phases in small volumes of the sample. The iron impurity intensifies the frustra
changes the magnetic anisotropy of the material, and strongly modifies the ma
properties of UPd2Ge2. Apparently, the development of the magnetic states

FIG. 4. Temperature dependence of the magnetic moment of uranium~in units of mB) in U~Pd0.98Fe0.02)2Ge2.
651 651JETP Lett., Vol. 66, No. 9, 10 Nov. 1997 Balagurov et al.
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U~Pd0.98Fe0.02)2Ge2 with temperature is determined by the temperature dependence o
anisotropy energy.3 The neutron-diffraction experiments did not reveal SG or FM pha
To check for their presence we plan to investigate these compounds by the meth
mSR spectroscopy.

This work was supported by the Russian Fund for Fundamental Research an
INTAS-RFFI Fund.
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Zero curvature representation for classical lattice sine-
Gordon model via quantum R matrix

A. V. Zabrodin
Institute of Theoretical and Experimental Physics, 117259 Moscow, Russia; Joint Inst
of Chemical Physics, 117334 Moscow, Russia

~Submitted 1 October 1997!
Pis’ma Zh. Éksp. Teor. Fiz.66, No. 9, 620–625~10 November 1997!

Local M operators for the classical sine-Gordon model in discrete
space–time are constructed by convolution of the quantum trigonomet-
ric 434 R matrix with certain vectors in its ‘‘quantum’’ space. Com-
ponents of the vectors aret functions of the model. This construction
generalizes the known representation of continuous-timeM operators
in terms of the classicalr matrix. © 1997 American Institute of Phys-
ics. @S0021-3640~97!01021-9#

PACS numbers: 03.50.Kk, 11.10.Lm

1. Soliton equations are integrable Hamiltonian systems,1 with Poisson brackets fo
Lax matrices having a unified form in terms of the~classical! r matrix. An alternative
approach1,2 consists in representing soliton equations as 2D zero curvature~ZC! condi-
tions for a pair of matrices calledL andM operators depending on a spectral parame
Although this method avoids any reference to the Hamiltonian aspects, ther matrix arises
here, too, as a machine to produceM operators fromL operators. Let us recall how i
works.

Let Ll(z) be a classical ultralocal 232 L operator on 1D lattice with the periodi
boundary conditionLl 1N(z)5Ll(z); z is the spectral parameter. The monodromy mat
is Tl(z)5Ll 1N21(z) . . .Ll 11(z)Ll(z). Hamiltonians of commuting flows are obtaine
by expanding logT(z) in z, whereT(z)5 Tr Tl(z) does not depend onl due to the
periodic boundary condition. All these flows admit a ZC representation. The gener
function of correspondingM operators is3,1

Ml~z;w!5T21~w! Tr1@r ~z/w!~Tl~w! ^ I !#, ~1!

where r (z) is the r matrix ~of size 434! acting in the tensor product of two 2
dimensional spaces, Tr1 means the trace in the first space, andI is the identity matrix.

A way to construct localM operators from~1! is well known.4,1,5 Suppose there
exists az0 such that detLl(z0)50 for any l , soLl(z0) is a projector:

Ll~z0!5
ua l&^b l u

l l
, ua&5S a~1!

a~2!D , ^bu5~b~1!,b~2!!. ~2!

Herel l is a scalar normalization factor. ThenMl(z;z0) is a local quantity:
653 6530021-3640/97/090653-07$10.00 © 1997 American Institute of Physics
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Ml~z![Ml~z;z0!5
^b l ur ~z/z0!ua l 21&

^b l ua l 21&
. ~3!

The scalar product is taken in the first space only, so the result is a 232 matrix. It obeys
the ZC condition] tLl(z)5Ml 11(z)Ll(z)2Ll(z)Ml(z) with the spectral parameter.

The goal of this work is to extend Eq.~3! to M operators fordiscrete time flowsin
Hirota’s 2D partial difference equations.6–8 We follow Refs. 9 and 10, treating the dis
crete equations as members of the same infinite hierarchy as the continuous ones

Let us outline the results. In the discrete case the functionr (z) in Eq. ~3! is replaced
by the quantumR matrix. Specifically, the following representation of discreteM opera-
torsMl(z) holds:

Ml~z!5
^b l uR~z/z0!ub̌ l 21&

^b l ua l 21&
ub̌ l&[s1ub l& ~4!

~hereafters i are Pauli matrices!. On the right-hand side,R(z) is a quantum434 R
matrix to be specified below, with the ‘‘quantum’’ parameter related to the time la
spacing. A similar formula for theL operator itself is valid with another quantumR
matrix R(2)(z):

Ll~z!5
^b l uR~2 !~z/z0!ua l&

^b l ua l 21&
. ~5!

The vectorsua l& and ub l& are the sameas in Eq.~3!. In the language of the algebra
Bethe ansatz11,3 the scalar product is taken in the ‘‘quantum’’~vertical! space, so one get
a 232 matrix in the ‘‘auxiliary’’ ~horizontal! space:

The M operator~4! generates shifts of a time variablem. The ZC condition

Ml 11,m~z!Ll ,m~z!5Ll ,m11~z!Ml ,m~z! ~6!

gives rise to the discrete soliton equations from Refs. 6 and 8.

The change of dynamical variables to the pair of vectorsua l&, ub l& plays a key role.
Using the equations of motion of the discrete model, we show that~suitably normalized!
components of the vectorsua l&, ub l& are t functions~concerningt functions see, e.g.
Ref. 12!.

In this paper we elaborate the simplest example — the lattice sine-Gordon~SG!
model. There are two lattice versions of the classical SG model: the model on a
lattice with continuous time5,13 and Hirota’s SG equation on a space–time lattice.8 They
have commonL operator. TheM operators are given by Eq.~3! with the trigonometric
classicalr matrix for the former and by Eq.~4! for the latter, withR(z) being the
simplest trigonometric solution of the quantum Yang–Baxter equation~the R matrix of
the XXZ spin chain!.
654 654JETP Lett., Vol. 66, No. 9, 10 Nov. 1997 A. V. Zabrodin
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2. By the SG model on a space–time lattice we mean the Faddeev–Vo
version14,15 of Hirota’s discrete SG equation.8 This is a nonlinear equation for a functio
c(u,v) on the 2D square lattice. Let

be an elementary cell of theu,v lattice. In this notation the equation reads

ncCcD2ncAcB5m~cBcD2mcAcC!, ~7!

wherem,n are constants. It contains both the Korteweg–de Vries~KdV! and sine-Gordon
~SG! equations as different continuum limits. Equation~7! can be represented14 as the ZC
conditionLD←B(z;n)LB←A(z;m)5LD←C(z;m)LC←A(z;n) with the L matrix14,16

LB←A~z;m!5S mc
B

1
2c

A

2
1
2 zc

B

2
1
2c

A

2
1
2

zc
B

1
2c

A

1
2 mc

B

2
1
2c

A

1
2
D . ~8!

We call l 5 1
2(u1v), m5 1

2(u2v) discrete space and time coordinates, respectively. C
sider ‘‘composite’’ L and M operators generating shiftsA→D and C→B,
respectively: L̂D←A(z)5z21LD←C(z;m)LC←A(z;n), M̂B←C(z)5z21(z22n2)
3LB←A(z;m)@LC←A(z;n)#21. From ~8! we find:

L̂D←A~mz!5S mzc
A

1
2c

D

2
1
21nz21c

D

1
2 c

A

2
1
2 cC

21S mc
D

1
2 c

A

2
1
21nc

A

1
2c

D

2
1
2D

cCS mc
A

1
2c

D

2
1
21nc

D

1
2 c

A

2
1
2D mzc

D

1
2 c

A

2
1
21nz21c

A

1
2c

D

2
1
2
D , ~9!

M̂B←C~mz!5S mzc
C

1
2 c

B

2
1
22nz21c

B

1
2c

C

2
1
2 cA

21S mc
B

1
2c

C

2
1
22nc

C

1
2 c

B

2
1
2D

cAS mc
C

1
2 c

B

2
1
22nc

B

1
2c

C

2
1
2D mzc

B

1
2c

C

2
1
22nz21c

C

1
2 c

B

2
1
2
D .

~10!

The L operator of the lattice SG model with continuous time5 at l th site isa!

L̂l
~ IK !~z!5S zx l1z21x l

21
s2

1
2w lp l

s2
1
2w lp l

21 zx l
211z21x l

D . ~11!

Herep l andx l are exponentiated canonical variables,w l5@11s(x l
21x l

22)#1/2, ands is
a parameter. To identify theL operators~11! and ~9!, consider the composite field
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nal
p(u,v)5c1/2(u11,v)c1/2(u,v11), x(u,v)5c1/2(u,v)c21/2(u11,v11) and set
p l5p( l ,l ), x l5x( l ,l ) at the constant time slicem50. Identifying s5mn(m21n2)21

and using Eq. ~7!, we conclude that L̂l
(IK )(z)5(mn)21/2L̂l((mn)1/2z). Here

L̂l(z)[L̂Dl←Al
(z), where Al5( l ,l ),Dl5( l 11,l 11). Similarly, we write

M̂B̄l←Al
(z)[M̂l(z), where B̄l5( l 11,l 21). Then the discrete ZC condition acquire

the form~6!. TheL operatorL̂l
(IK )(z) has two degeneracy pointsz0

65(m/n)6
1
2 at which

it is a projector~2! with the right-hand side expressed in terms of the fieldc(u,v).

3. The idea of Hirota’s approach7 is to treat Eq.~7! as a consequence of 3-ter
bilinear equations fort functions~see also Refs. 10 and 17!. In the case at hand we nee
two t functions:t and t̂. Set

c~u,v !5
t̂~u,v !

t~u,v !
~12!

then Eq.~7! follows from

~n2m!t̂AtD5ntBt̂C2mt̂BtC, ~n2m!tAt̂D5nt̂BtC2mtBt̂C . ~13!

The equivalent form of these equations,

~n1m!tBt̂C5mtAt̂D1nt̂AtD, ~n1m!t̂BtC5mt̂AtD1ntAt̂D, ~14!

is equally useful. At last, we point out the relation

t~u21,v !t̂~u11,v !1 t̂~u21,v !t~u11,v !52t~u,v !t̂~u,v !. ~15!

A few remarks are in order. Equations~13! form a part of the 2-reduced 2D Tod
lattice hierarchy,18 wherem, n areMiwa’s variables.9 They play the role of inverse lattice
spacings for the elementary discrete flowsu,v. The lattice spacing in them direction is
then (mn)21(m2n). Note that theu andv coordinate axes are in general not orthogo
to each other. In particular, as is seen from Eqs.~13!, for m5n one mustidentify u with
v, and so the 2D lattice collapses to a 1D one. In this sense Eq.~15! follows from Eq.
~14! for n5m.

4. We are ready to represent theM operator as a convolution of quantumR matrix
with some vectors in its ‘‘quantum’’ space. Consider the quantumR matrices

R~6 !~z;q!5~a~z!6b~z!!I ^ I 1~a~z!7b~z!!s3^ s31c~s1^ s11s2^ s2!, ~16!

wherea(z)5qz2q21z21, b(z)5z2z21, c5q2q21, q is a ‘‘quantum’’ parameter, and
z is the spectral parameter. TheR matricesR(1) andR(2) differ by Drinfeld’s twist. Both
of them satisfy the quantum Yang–Baxter equation~in Sec. 1 we hadR(z)5R(1)

3(z;q)).

Let ua&, ub& be two vectors~see Eq.~2!! from the first~‘‘quantum’’! space. Consider
the convolution̂ buR(6)(z;q)ua& in the first space. This is a 232 matrix in the second
~‘‘auxiliary’’ ! space:
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trans-
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.

ly of

y
al-
^buR~6 !~z;q!ua&5S b~1!a~1!a~z!6b~2!a~2!b~z! b~2!a~1!c~z!

b~1!a~2!c~z! 6b~1!a~1!b~z!1b~2!a~2!a~z!
D .

~17!

Let us compare this with right-hand sides of Eqs.~9! and ~10!. To do that, we write
elements of theL andM operators in terms of thet functions~12! and after that use Eqs
~13! and ~14! when necessary. The best result is achieved after the simple gauge
formation

LA←D~z!5S tDt̂D

tAt̂A
D 1/2

L̂D←A~z!, MB←C~z!5S tBt̂B

tCt̂C
D 1/2

M̂B←C~z!. ~18!

Let us skip the details and present the final result. We set^au5(t,t̂), ^bu5( t̂,t), and
q5m/n. At the slicem50 we have

Ll~mz!5
2mn

m2n

^b l uR~2 !~z;q!ua l&

^b l ua l 21&
, Ml~mz!5

2mn

m1n

^b l uR~1 !~z;q!ub̌ l 21&

^b l ua l 21&
~19!

where the notation from the end of Sec. 2 is used. Up to the constant prefactors
formulas coincide with the ones announced in Sec. 1. The location of the vectors

ua l&5S t~ l ,l 11!

t̂~ l ,l 11!
D and ub l&5S t̂~ l 11,l !

t~ l 11,l !
D ~20!

is shown in the first diagram, displayed below Eq.~5!.

The normalization factor in Eq.~2! is equal tol l5mn(m2n)21t( l ,l ) t̂( l ,l ).

5. At last we show that ther -matrix formula~3! is a degenerate case of Eq.~4!. A
naive continuous-time limit would ben→m, i.e., q→1, so that, in agreement with Eq
~3!, we do get ther matrix. However, this would imply limq→1ub̌ l&5ua l& that is certainly
wrong in general. The naive limit does not work, since theL operator itself varies as
n→m. In the correct limit the time lattice spacing must approach zero independent
m, n.

Let us introducev8 — another ‘‘copy’’ of the discrete flowv with Miwa’s variable
n8, so that we now have a 3D lattice. Equations of the type~13! are valid in the 2D
sectionsv85 const,u5 const,v5 const. Now we can letn8→m while leavingn un-
changed. We setq85m/n8511«1O(«2), «→0, where« is the lattice spacing in the
directionm851/2(u2v8). The discreteM operators are defined up to multiplication b
a scalar function ofz independent of the dynamical variables. It is convenient to norm
ize theM operators byMl(z)5I at «50. Then the next term~of order «) yields the
continuous-timeM operator. To find it, we expand in« the discreteM operator
MB

l8←C
l8
(z), which generates the shift (l 21,l ,1)→( l ,l ,0) on the 3D lattice with coordi-

nates (u,v,v8).
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The second diagram, displayed below Eq.~6!, shows theu,v8 section. The coordi-
nates of the vertices are:Al85( l 21,l ,0), Bl85Al5( l ,l ,0), Cl85( l 21,l ,1), Dl85( l ,l ,1).
The pointCl8 tends to the pointBl85Al asn8→m, so the parallelogram collapses to th
u axis. We have:MB

l8←C
l8
(z)5I 1«Ml(z)1O(«2), where

Ml~mz!5
1

z2z21S 1

2
~z1z21!

t~ l 21,l !t̂~ l 11,l !

t~ l ,l !t̂~ l ,l !

t~ l 21,l !t~ l 11,l !

t~ l ,l !t̂~ l ,l !

t̂~ l 21,l !t̂~ l 11,l !

t~ l ,l !t̂~ l ,l !

1

2
~z1z21!

t̂~ l 21,l !t~ l 11,l !

t~ l ,l !t̂~ l ,l !

D .

~21!

The r matrix is r (z)5 lim«→0«21@(z1z21)21R(1)(z;q8)2I ^ I #, and so

r ~z!5
1

2~z2z21!
@~z1z21!I ^ I 12s1^ s112s2^ s21~z1z21!s3^ s3#. ~22!

Comparing with~21!, we get Eq.~3! with the r matrix ~22!.

6. The main result of this work is theR matrix representation~19! of the localL –M
pair for the classical SG model in discrete space–time. In our opinion, the very fac
the typical quantumR matrix naturally arises in a purely classical problem is import
and interesting by itself. It would be desirable to clarify a connection with the quan
Yang–Baxter equation~which already arose in purely classical problems in a differ
context.19,20! We should stress that the ‘‘quantum’’ parameterq of the R matrix in our
context is related to the mass parameter and the lattice spacing of the classical m

I thank S. Kharchev and P. Wiegmann for steadfast interest in this work,
helpful discussions, and critical remarks. Discussions with O. Lipan, I. Krichever an
Volkov are also gratefully acknowledged. This work was supported in part by R
Grant No. 97-02-19085.

a!We take theL operator from Ref. 5 and multiply it bys2 from the left so as to deal with Eq.~7! rather than
Hirota’s equation.
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