
  

JETP Letters, Vol. 72, No. 12, 2000, pp. 593–594. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 72, No. 12, 2000, pp. 859–861.
Original Russian Text Copyright © 2000 by Danilyan, Krakhotin, Pavlov, Fedorov, Korobkina, Lelivre-Berna.

                                                          
Search for T-Odd Left–Right Asymmetry
of Prompt Neutron Emission in Binary Fission

of the 233U and 239Pu nuclei by Slow Polarized Neutrons
G. V. Danilyan*, V. A. Krakhotin*, V. S. Pavlov*, A. V. Fedorov*,

E. I. Korobkina**, and E. Lelivre-Berna***
* Institute of Theoretical and Experimental Physics State Research Center, ul. Bol’shaya Cheremushkinskaya 25, Moscow, 

117259 Russia
** University of Mainz, Mainz, Germany

*** Laue et Langevin Universite, Grenoble, France
Received October 30, 2000; in final form, November 17, 2000

We report preliminary results of measuring the T-odd left–right asymmetry of prompt neutron emission in
binary fission of the 233U and 239Pu nuclei by slow polarized neutrons. Assuming that about 35% of prompt neu-
trons are emitted from the “neck,” one can conclude that the emission asymmetry of scission neutrons in 233U
is an order of magnitude lower than the asymmetry of α-particle emission in ternary fission. © 2000 MAIK
“Nauka/Interperiodica”.

PACS numbers: 25.85.Ec; 24.80.+y
The T-odd left–right asymmetry recently observed
in [1] for the angular distribution of the long-range
α particles in 233U and 235U ternary fission by cold
polarized neutrons may be caused by electromagnetic
or strong interaction in the final state. To establish
which of these interactions is responsible for the
observed correlation, it is desirable to examine analo-
gous asymmetry for the emission of a neutral particle in
ternary fission. However, by ternary fission is histori-
cally meant the bipartition accompanied by emission of
a light charged particle (LCP). In 90% of events, this is
the α particle. The angular distribution of these parti-
cles unambiguously attests that they are emitted from
the area between the future fragments before the
nuclear scission into two fragments. Most models of
ternary fission are based on the assumption that LCPs
are emitted from the neck connecting “fragments”
before its scission. At the same time, it is established
experimentally that a portion of prompt neutrons in
binary fission are also emitted before nuclear scission.
One might naturally consider these neutrons the “neu-
tral” component of nuclear tripartition. Then, if the
emission mechanisms are similar for α particles and
scission neutrons and if the correlation is due to strong
interaction, one can expect the same asymmetry for the
emission of scission neutrons. Of course, it should be
kept in mind that, contrary to α particles, the neutron
spin is nonzero.

The desired left–right asymmetry can be described
by the expression

(1)W const 1 DnS P f Psn×[ ]+( ),=
0021-3640/00/7212- $20.00 © 20593
where Dn is the asymmetry coefficient, S is the unit vec-
tor along the spin of a neutron captured by the target
nucleus, and Pf and Psn are unit vectors along the
momenta of the light (or heavy) fragment and the α par-
ticle, respectively.

Since the electromagnetic interaction of a neutron in
the final state is weaker than the interaction of a
charged particle, Dn should be much smaller than Dα if
the correlation in the ternary fission is due to the elec-
tromagnetic interaction.

The first experiment was set up on a polarized ther-
mal-neutron beam from the reactor of the Moscow
Institute of Engineering Physics. The geometric
arrangement of a target and the fragment and neutron
detectors is schematically shown in Fig. 1. The longitu-
dinally polarized neutrons were incident on a target
containing 100 µg/cm2 of 233U on a thin titanium sub-
strate situated midway between two low-pressure mul-
tiwire proportional counters spaced 180 mm apart. The
plastic scintillator neutron detector with an FÉU-62
photomultiplier was placed outside the fission chamber
(filled with hexane to a pressure of 3 torr) at a distance
of 220 mm from the target center perpendicularly to the
axis of the fragment detectors. The light and heavy
fragments were identified by their time of flight from
the target to the detectors. The fragment–fragment
coincidence pulses triggered a time-to-code converter
whose input was fed with pulses from the neutron
detector. An example of the time spectrum of neutron–
fragment coincidence pulses is shown in Fig. 2. The left
peak corresponds to the coincidence between the frag-
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ments and the prompt fission γ quanta. A broad time
spectrum on the right is caused by the coincidence
between the prompt fission neutrons and the fragments.
Clearly, a considerable amount of events are due to the
neutrons emitted by the fragments. The fragment neu-
trons in this experiment produce an unwanted back-
ground, which, unfortunately, cannot be separated from
the events of interest. This background diminishes the
absolute value of the asymmetry coefficient by a factor
of (1 + η), where η is equal to the ratio of the number
of detected fragment neutrons to the number of
detected scission neutrons. The experimental data on η
are quite contradictory: 3 ≤ η ≤ 35. However, insofar as
the angular and energy distributions of the scission and
fragment neutrons are markedly different, it becomes
possible not only to correct the experimentally mea-
sured asymmetry coefficients for the background but

Fig. 1. Geometry of the experiment: (1) target; (2, 3) frag-
ment detectors; (4) fission neutron detector; and (5) longitu-
dinally polarized neutron beam.

Fig. 2. Time coincidence spectrum. One channel = 100 ps.

Dn coefficients measured for the 233U and 239Pu targets

Neutron energy, 
MeV

Measured Dn values in units 10–3

233U 239Pu

<0.7 0.16 ± 0.34 –0.05 ± 0.68

≥0.7 0.35 ± 0.35 0.62 ± 0.53

Prompt γ quanta 0.13 ± 0.15 0.27 ± 0.27
also to determine the η value for the target. The angular
distributions of the neutrons emitted by the completely
accelerated fragments are concentrated near the fission
axis,1 whereas the emission of scission neutrons is
almost spherically symmetric. As regards energy distri-
butions, one can naturally expect that the spectrum of
fragment neutrons is “harder” than the spectrum of
scission neutrons. Both these factors enable one to esti-
mate the background contribution to the experimental
Dn coefficients measured at 90° and 45° (135°) to the
mean direction of fission axis. Evidently,

(2)

The optimum η values satisfying Eq. (2) can be found
by the Monte Carlo calculations under reasonable
assumptions about the angular and energy distributions
of the fragment and scission neutrons, of course, if the
desired effect is observed in the experiment, i.e., if it is
nonzero.

The second experiment with a 239Pu target was car-
ried out on a beam of polarized 150-meV neutrons from
the D3 diffractometer of the Laue and Langevin Insti-
tute (Grenoble, France). In this experiment, CF4 at a
pressure of 18 torr was taken as a working gas. The pre-
liminary results of both experiments are presented in
the table. No statistically significant effect was
observed. Since the Dα value experimentally measured
for 233U was found to be 2.7 × 10–3, it turns out, on the
assumption that the contribution of the scission neu-
trons comprises 35% in this case [2], that the asymme-
try coefficient Dn is almost an order of magnitude
smaller than Dα. As for 239Pu, the experimental data on
the ternary fission of this nucleus are as yet lacking. Of
course, measurements will be continued until a statisti-
cal accuracy better than 10–5 has been achieved.
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1 A slightly greater number of neutrons are emitted along the direc-
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High-precision calculations of the (nsnp)  1S0(ns2) E1 amplitudes were carried out for magnesium,
calcium, and strontium (n = 3, 4, and 5, respectively). The following results were obtained for the reduced

matrix element 〈 ||d ||1S0〉  of electric dipole moment operator: 4.03(2) au for Mg, 4.91(7) au for Ca, and
5.28(9) au for Sr. These matrix elements are necessary for calculating the van der Waals coefficients C6, which
are used in evaluating the atomic scattering lengths. The latter determine the dynamics and stability of the
Bose–Einstein condensate. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 32.70.Cs; 31.15.Md; 31.25.Jf
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In this work, high-precision calculations of the

(nsnp)  1S0(ns2) E1 amplitudes were carried
out for magnesium, calcium, and strontium (n = 3, 4,
and 5, respectively). The computations were motivated
by the following reasons. First, in recent years consid-
erable success has been achieved in the development of
magneto-optic traps. Trapping and cooling of atoms
makes it possible to study the atomic interactions at
ultralow temperatures. Most experiments were carried
out with alkali atoms, for which it is possible to achieve
high densities and low temperatures and observe the
Bose–Einstein condensation. However, the interpreta-
tion of the experimental data for these systems is quite
complicated and ambiguous, in particular, because of
the presence of a ground-state hyperfine structure in
alkali atoms. For example, the authors of recent works
[1, 2] draw antithetical conclusions about the possibil-
ity of obtaining the Bose–Einstein condensate for
cesium.

An attractive feature of the bivalent atoms is that
they have several isotopes with zero nuclear spin. The
absence of the hyperfine structure in these atoms facil-
itates both experimental and theoretical study of atomic
interactions. Since the cold traps were already obtained
for magnesium, calcium, and strontium, the new possi-
bilities of studying their interatomic interactions and the
prospects for achieving the Bose–Einstein condensation of
these atoms have been actively discussed, e.g., in [3–5].

The dispersion (van der Waals) coefficient C6 is one
of the main parameters characterizing the dipole–
dipole interaction of atoms in a cold trap. This coeffi-
cient is necessary for evaluating the atomic scattering
lengths, which determine the dynamics and stability of
the Bose–Einstein condensate. To calculate the C6 coef-
ficient, one should know the matrix elements for the E1

P3 1, o
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transitions from the low-lying odd-parity states to the
ground state (see, e.g., [6, 7]). It is worth noting that the
expression for C6 contains the fourth power of matrix

elements 〈 ||d ||1S0〉  and, considering the resonant

character of the   1S0 transition (the contribution
of the corresponding E1 amplitude to C6 ~ 90% [8]), it
becomes clear that the E1 amplitude of this transition
should be determined with the highest possible accu-
racy.

Another motive is as follows. Despite the fact that

the oscillator strengths and lifetimes of the  and 
states were repeatedly determined both theoretically
and experimentally [4, 9–12], the results for all three
atoms are quite contradictory. In particular, the discrep-
ancies between the data of different experimental
groups are as great as 70%. Therefore, high-precision
calculations of the above-mentioned E1 amplitudes
appear to be well-timed and topical.

We used a method combining the configuration
interaction (CI) and the many-body perturbation theory
(MBPT). This method was developed by our group
over several recent years and successfully applied to the
energies of low-lying levels and various observables in
some atoms [13]. Since the method is described in
detail in the cited papers, we only outline its basic posi-
tions. The MBPT is used to construct effective opera-
tors (Hamiltonian, electric dipole moment operator,
etc.) for valence electrons. In doing so, the interaction
between valence and core electrons is taken into
account. Next, if the number of valence electrons is two
or more, the CI is used to account for the interaction
between them. This approach describes both the inter-
action between valence electrons and the valence–core
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correlations and, thereby, improves the accuracy of cal-
culating level energies and various observables by an
order of magnitude, as compared to the pure CI
method. It should be noted that this method is particu-
larly efficient in the high-precision calculations of biva-
lent atoms. First, the presence of only two valence elec-
trons allows one to apply full CI. In this case, the num-
ber of basis functions is taken to be so large that the
error introduced by the incomplete basis set is negligi-
ble. Therefore, the problem of unsaturated CI (typical
of the systems with many valence electrons) does not
arise. Second, due to the compact core, the perturbation
series converges better than for the alkali atoms.
Because of this, even the second-order MBPT provides
a good accuracy for both energies and E1 amplitudes.

The aforesaid indicates that the combination of CI
and MBPT (CI + MBPT) is highly appropriate for our cal-
culations. We omit the detailed description of the com-
putational procedure (it will be given elsewhere) and
pass on to the numerical results for the reduced matrix

elements 〈 ||d ||1S0〉  for Mg, Ca, and Sr. For com-
parison, we present the results obtained for all three
atoms by two methods, pure CI and CI + MBPT. In the
latter case, we took into complete account the second
order and partially included the higher-order MBPT cor-
rections. As regards these latter, the following should be
pointed out. Specific to the MBPT for the atoms with sev-
eral valence electrons, both one- and two- electron dia-
grams need to be calculated at the step where the sec-
ond-order corrections to the Hamiltonian are obtained.
There are great many of such diagrams (>107), whose
evaluation is a rather time-consuming procedure even
for modern supercomputers. Fortunately, there is no
need to calculate all the diagrams, and one usually
restricts oneself to evaluating several hundred thousand
diagrams practically without any loss in accuracy.
However, it is clear that an attempt to take into account
all the third-order diagrams will face immense techni-
cal obstacles and is hardly feasible in practice.

In this connection, a variant with partial inclusion of
high-order diagrams in an indirect way seems to be
more reasonable. One such method is used in this
paper. This method was proposed in [14], where, in par-
ticular, it was demonstrated that the agreement between
the calculated and experimental spectra of many-elec-
tron atoms can be substantially improved by choosing
an optimal one-electron Hamiltonian. Below, the opti-
mized effective Hamiltonian is used for calculating the
atomic observables. When constructing the effective
electric dipole moment operator and at the step of
E1 amplitude calculations, the RPA equations were solved
and one- and two-particle corrections to the RPA were
evaluated (including corrections for the normalization of
wave functions and for the structural radiation). This pro-
cedure is described in detail in [15]. Note that, when solv-
ing the RPA equations, we effectively sum a certain subse-
quence of all-order MBPT diagrams. The RPA equa-

P3 1, o
1

tions were solved at frequency ω = E( ) – E(1S0) for
all three atoms. Both length (L) and velocity (V) gauges
were used in the calculations. This allowed the control
of computational accuracy and was helpful in the esti-
mation of theoretical error. The results are presented in
the table.

One can see that the difference between the L- and

V-gauge results for the E1-allowed   1S0 transi-
tion is 0.3% for Mg, 0.5% for Ca, and 0.8% for Sr. For

the   1S0 transition, the corresponding E1 ampli-
tudes are small. This transition is accompanied by a
change in the total spin S and, hence, its amplitude is
suppressed. Mathematically, this is a result of multiple
mutual cancellations of the major contributions that
come from the one-electron matrix elements
〈np1/2||d ||ns〉  and 〈np3/2||d ||ns〉  (n = 3, 4, and 5 for Mg,
Ca, and Sr, respectively). This, naturally, impairs the
computational accuracy. Nevertheless, the correspond-
ing L- and V-gauge results coincide at a 6% level and
are quite satisfactory. The V-gauge matrix element of
electric dipole moment operator is written as (atomic
units " = e = m = 1 are used)

Here, c is the speed of light, Ei and Ef are the energies
of the initial and final states, respectively, and α are the
Dirac matrices. Hence, a good result for the V gauge
can be obtained if not only the matrix elements of
dipole moment operator but also the transition energies

are properly calculated. For all three atoms, the ,

, and 1S0 energies were reproduced with a very high
accuracy (≤0.1%).

It is worth noting that, for all six transitions (see
table), the V-gauge values obtained at the CI step are
closer to the final results than the corresponding
L-gauge values. Unfortunately, this fact does not imply
that the V gauge is more trustworthy in this case.
Although the contribution of MBPT to the final result
is less for the velocity gauge, this is so because of mul-
tiple cancellations of various perturbative corrections,
each being several times larger in magnitude than for
the length gauge. As a result, the V gauge is much more
sensitive to the high-order MBPT corrections than the
L gauge. For this reason, the length-gauge values are
taken as the final results of our calculations.

Note that the major error in the results is caused by
the fact that all-order MBPT cannot be realized. As was
mentioned above, the CI is saturated and does not intro-
duce any additional errors. Therefore, the smaller the
MBPT corrections, the smaller the resultant error. In
addition, the computational error was estimated with
allowance made for the proximity of the L- and V-gauge
results. The MBPT yields the following corrections to

the L-gauge   1S0 E1 amplitudes: 1.6% for Mg,
5.5% for Ca, and 6.4% for Sr (table).
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L- and V-gauge reduced matrix elements |〈 ||d||1S0〉| (au) calculated for Mg, Ca, and Sr

Transition
Mg Ca Sr

CI CI + MBPT CI CI + MBPT CI CI + MBPT

  1S0

L gauge 4.09 4.03 5.20 4.91 5.63 5.28
V gauge 4.07 4.04 5.11 4.89 5.48 5.32
Resultant value 4.03(2) 4.91(7) 5.28(9)
Experiment 4.15(10) [9] 4.967(9) [4] 5.57(6) [10]

4.06(10) [17] 4.99(4) [10] 5.40(8) [18]
4.12(6) [19] 4.93(11) [20]

  1S0

L gauge 0.0055 0.0064 0.027 0.034 0.123 0.161
V gauge 0.0062 0.0062 0.030 0.032 0.133 0.172
Resultant value 0.0064(7) 0.034(4) 0.161(16)
Experiment 0.0053(3) [21] 0.0357(4) [22] 0.1555(16) [23]

0.0056(4) [24] 0.0352(10) [25] 0.1510(18) [25]
0.0061(10) [26] 0.0357(16) [27] 0.1486(17) [28]

The experimental values of matrix elements were obtained by recalculating the  and  levels in the indicated works. (Only those

experimental data are presented for which the errors of measurment are the smallest.)

P1
1 3, o

P1
1 o

P1
3 o

P1
1 o

P1
3 o
Our final |〈 ||d ||1S0〉| values, which can be used
for the subsequent calculations (e.g., of the C6 coeffi-
cients), are as follows: 4.03(2) for Mg, 4.91(7) for Ca,

and 5.28(9) for Sr. Note that the   1S0 transition
probability in Ca was recently experimentally found to
be 2.205(8) × 108 s–1 [4]. Being recalculated to the cor-
responding transition amplitude, this gives 4.967(9) au.
The experimental accuracy of 0.2% is unprecedented
for the E1 amplitude and far exceeds the accuracy of
our calculation. At the same time, this enables us to
check the reliability of the estimated computational
accuracy. As for Mg and Sr, the accuracy of our results
is higher than the experimental accuracy for the former
and is at a level of the best experimental results for the
latter.

The MBPT contributions to the   1S0 transi-
tions are considerably greater for the L gauge, which
we believe to be more reliable than the V gauge. In
addition, due to multiple cancellations (reaching 99%,
e.g., for magnesium) of the major contributions, the
role of high-order corrections is much greater for these
transitions. In particular, it was demonstrated in [16]
that the inclusion of Breit interaction reduces by ~5%

the   1S0 transition amplitude for magnesium.
For this reason, we estimate the computational error for
this E1 amplitude at a level of 10–12% for all three
atoms.
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In conclusion, note once more that we have calcu-

lated the 〈 ||d ||1S0〉  and 〈 ||d ||1S0〉  matrix elements
with emphasis on the high-precision calculations of the
singlet–singlet transitions. As expected, the best accu-
racy is obtained for Mg (0.5%) and it equals 1.4% for
Ca and 1.7% for Sr. The accuracy obtained for magne-
sium is the best in the world, and the results for calcium
and strontium are the best among the theoretical works.
As pointed out above, the major error in our calcula-
tions is due to the incomplete inclusion of high-order
MBPT terms. Since the second-order MBPT usually
overstates the correlation corrections to various observ-
ables, we assume that our results are slightly lower than
the true value for the singlet–singlet amplitudes and
higher than the singlet–triplet ones. This agrees well
with the experimental data on the singlet–singlet ampli-
tudes. One can see in the table that the amplitudes cal-
culated for all three atoms proved to be less than the
experimental values. Subsequently, we intend to use the
results of this work for calculating the C6 coefficients
for magnesium, calcium, and strontium.

We are grateful to A. Derevyanko for drawing our
attention to the problem and for useful remarks. This
work was supported in part by the Russian Foundation
for Basic Research, project no. 98-02-17663.
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Magnetic susceptibility of the La0.9MnO3 single crystal was measured and its (139La, 55Mn) NMR spectra were
recorded. The data obtained indicate that the areas with an A-type antiferromagnetic order (TN = 140 K) and
magnetic moments aligned with the b axis occupy a major part of the sample volume in manganite with a con-
siderable concentration of cationic vacancies; simultaneously, the clusters with a canted magnetic sublattice and
ferromagnetic interaction between magnetic moments are formed near the vacancies. Charge distribution in
these clusters is materially different from that in the antiferromagnetic areas. Magnetic state and relative con-
centration of the clusters are discussed. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.30.Cr; 76.60.-k
Manganites have been extensively studied in recent
years because, showing the giant magnetoresistance
effect, they offer promise as materials for microelec-
tronics and, at the same time, demonstrate a broad spec-
trum of physical phenomena caused by the interplay
between the orbital, charge, and spin degrees of free-
dom [1, 2].

The starting LaMnO3 compound is an insulator and,
simultaneously, an A-type antiferromagnet with Néel
temperature TN = 140 K [3]. This compound can be con-
verted into the metallic state via the heterovalent substi-
tution of bivalent alkaline-earth ions (Ca, Sr, Ba, …) for
lanthanum or by increasing the number of vacancies in
the cationic sublattice during the course of synthesis.

Two major models lay claim to the explanation of
the microscopic properties of manganites. One of them,
suggested by de Gennes in [4], predicts a uniform
canted magnetic sublattice for LaMnO3 and weakly
doped manganites. The other model was proposed in an
early work of Wollan and Koehler [3] and recently elab-
orated by Nagaev in [1]. In this model, the ferromag-
netic and antiferromagnetic phases are assumed to
coexist in the form of ferromagnetic droplets in an anti-
ferromagnetic matrix. This model has generated the
particular interest of researchers in the magnetic and
charge states of microareas located near the cationic
vacancies or impurity bivalent ions, where a mixture of
manganese ions with charges 3+ and 4+ should neces-
sarily occur.
0021-3640/00/7212- $20.00 © 20599
Magnetic neutron diffraction analysis and NMR are
most efficient local methods of studying the magnetic
state. However, because of fundamental limitations, it
seems impracticable to establish the magnetic state of
microareas with linear sizes d < 100 Å by neutron dif-
fraction, whereas analysis of the NMR data is strongly
hampered by inhomogeneous line broadening, short
spin–spin relaxation times (see, e.g., [5–8]), and the
quality of polycrystalline samples. The single-crystal
NMR data for LaMnO3 are presently lacking. At the
same time, some nuclei, e.g., 139La (I = 7/2) and 55Mn
(I = 5/2), have quadrupole moments and, thus, interact
with the electric field gradient, allowing the local
charge distribution to be studied.

In this work, we perform an NMR study of a
La0.9MnO3 single crystal with the near-percolation-
threshold concentration of the presumed ferromagnetic
microareas [9].

A La0.9MnO3 single crystal was prepared by the
floating zone method with radiant heating. The weight
of the starting components was chosen so as to account
for the technology of crystals with real composition
close to LaMnO3. Structural analysis and crystal orien-
tation were carried out on a DRON-type automated
X-ray diffractometer equipped with a vacuum chamber
for temperature studies with monochromatized Cr Kα
radiation.

Magnetic measurements were made on an MPMS-
5XL (Quantum Design) magnetometer.
000 MAIK “Nauka/Interperiodica”
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The NMR spectra were recorded on a pulsed phase-
coherent NMR spectrometer with the quadrature sys-
tem of signal recording by the integration of spin echo
at each frequency point in a zero external field at T =
4.2 K (55Mn) and in a field of 9.123 T over the temper-
ature range 85–340 K (139La).

The temperature dependence of magnetic suscepti-
bility is shown in Fig. 1. It increases with decreasing
temperature following the Curie–Weiss law, passes
through a maximum at the Néel point TN = 140 K,
whereupon it becomes orientation-dependent. For a
field directed along the presumed direction of magnetic
moments in the initial manganite (H0 || b), the suscep-
tibility (χ||) is smaller than for the perpendicular direc-
tion (χ⊥ ). However, the temperature dependences of χ⊥
and χ|| below the Néel point differ from the behavior
typical of antiferromagnets (see, e.g. [10]). From these
data, one may assume the presence of both a canted
magnetic sublattice and a mixture of antiferromagnetic
and ferromagnetic phases with a predominance of the
antiferromagnetic phase. In this case, one should
expect a single 55Mn NMR line with different orienta-
tion dependences or two lines.

Indeed, the 55Mn NMR spectra in Fig. 2 are
recorded for two different orientations of the alternat-
ing field H1 about the crystallographic b axis. Each of
these spectra shows at least two lines with intensities
strongly depending on the sample orientation. It has now
been established [11–14] that the signal from the Mn3+

ions in the 55Mn NMR spectrum of manganites appears
in the frequency range 360–400 MHz, while the Mn4+

ions are observed at 300–330 MHz. One usually asso-
ciates the frequency range between these intervals with
a double exchange; i.e., this signal comes from the sam-
ple area where the hole mobility is high and the hole
lifetime on a manganese atom is shorter than the
inverse of the NMR frequency. Although the H1 ⊥  b

Fig. 1. Temperature dependence of static magnetic suscep-
tibility χ of the La0.9MnO3 single crystal in a magnetic field
of 5 T: H0 || (s) c and (d) b.
orientation corresponds to the appearance of a signal
from Mn3+, nevertheless, both the Mn4+ line and a small
portion of spectral density in the double-exchange
region are also seen. After changing orientation, the
Mn3+ line intensity sharply decreases, while the Mn4+

line becomes stronger. This orientation dependence
gives evidence that a part (no less than 50%) of manga-
nese magnetic moments are aligned with the b axis,
which corresponds to the antiferromagnetically ordered
tervalent manganese ions; another part is directed at an
angle of about 60° to the b axis and is comprised (judg-
ing from the frequency range) of Mn4+ ions. Finally,
there is a double-exchange region (evidently at the inter-
face) with magnetic moments forming an even larger
angle with the b axis in the manganite under study.

The 55Mn NMR spectrum for the H1 ⊥  b orientation
is closely similar to the spectrum obtained for a poly-
crystalline La0.8Ca0.2MnO3 [13]. Consequently, the
concentration of holes formed through the cationic
vacancies in the crystal under study is the same. How-
ever, La0.8Ca0.2MnO3 is a ferromagnet with metallic
conduction and Curie point TC ~ 240 K, whereas our
single crystal is an isolator and an antiferromagnet [9].
It is thus logical to assume that the hole mobility in our
initial manganite is appreciably lower due to the cat-
ionic vacancies, which function in this case as efficient
localization centers.

The typical 139La NMR spectra are presented in
Fig. 3 (inset). In both orientations, two lines are clearly
visible: a more intense A line (~75% relative intensity)
with smaller shift and a higher quadrupole frequency
(spacing between the quadrupole satellites) of νQ =
3.4(3) MHz and a weaker F line with a lower quadru-
pole frequency of νQ = 0.7(4) MHz. The temperature
dependence of line shifts K is displayed in Fig. 3. In the

Fig. 2. Zero-field 55Mn spectra recorded in the ordered state
(T = 4.2 K) for two different orientations of the alternating
rf field about the crystallographic axes of the La0.9MnO3
single crystal: H1 ⊥  (d) b and (s) c.
JETP LETTERS      Vol. 72      No. 12      2000
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Fig. 3. Temperature-dependent 139La NMR shifts (K) obtained for two orientations of external magnetic field H0 = 9.123 T about

the crystallographic axis b of the La0.9MnO3 single crystal: H0 (s) ⊥  b and (d) || b. The inset shows the typical 139La NMR spectra
of La0.9MnO3 (T = 340 K). A and F indicate the line maxima for the central transitions (1/2  –1/2) in the antiferromagnetic and
ferromagnetic areas, respectively; A1 and F1 are the so-called satellite lines (the first pair corresponds to the +3/2  +1/2 transitions).

     
     
simplest form, the 139La NMR line shift can be repre-
sented as

(1)

where µB is the Bohr magneton, Hhf is the hyperfine

field at the lanthanum, and  are the local suscepti-
bilities in the sample microareas corresponding,
respectively, to the A and F lines. It is reasonable to
assume that the hyperfine fields do not depend on tem-
perature so that the temperature dependence of the shift
is governed by the behavior of the local susceptibility.
In this case, the A-line shift changes with temperature
like the susceptibility of a classical antiferromagnet
[10]: in the paramagnetic region, the temperature
dependences of the local susceptibilities in the external

magnetic fields H0 oriented parallel  and perpen-

dicular ( ) to the b axis are similar; the susceptibili-
ties increase with decreasing temperature to the Néel
point TN ~ 140 K; they behave differently in the ordered

state:  does not change with decreasing tempera-

ture, while  decreases. If so, the A line is due to the
areas with antiferromagnetic order (Mn3+) and mag-
netic moments aligned with the b axis. This is con-
firmed by the higher quadrupole frequency and the
asymmetry parameter  = 0.94(3) of the electric field
gradient. Both these values are close to the ones previ-
ously found for the initial LaMnO3 [8] and satisfacto-
rily agree with the parameters calculated using the
point-charge model.

KA F, 1/µB( )Hhf χL
A F, T( ),=

χL
A F,

χ||L
A( )

χ⊥ L
A

χ⊥ L
A

χ||L
A

ή
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Notice that the shift is slightly anisotropic in the
paramagnetic region, presumably because of the pres-
ence of a short-range magnetic order in the antiferro-
magnetic matrix. This is quite conceivable when it is
taken into account that, as was proved earlier in [15],
the orbital ordering is present in the initial manganite.

The F-line shift increases following the Curie–
Weiss law with a decrease in temperature to 85 K. The
tendency toward saturation at low temperatures is seen
only in the perpendicular orientation. Judging from the
large shift and the less steep temperature dependence
(the Curie law constant is smaller, as is also the effec-
tive magnetic moment), this line corresponds to the fer-
romagnetically ordered microareas near the vacancies
in the cationic sublattice. However, the exchange inter-
action should be weaker than in the antiferromagnetic
matrix, because the Curie temperature, in any case, is
lower than 85 K.

The following conclusions can be drawn from this
work:

(1) The sample under study consists of the antiferro-
magnetic matrix (75% relative volume) and ferromag-
netic microareas with a canted magnetic lattice and an
angle of ~60° between the magnetic moments and the
b axis.

(2) The charge distribution in the ferromagnetic
clusters differs appreciably (judging from the electric
field gradient on the lanthanum) from that in the anti-
ferromagnetic matrix and does not fit in the point-
charge model. This may be caused either by the local
violation of lattice point symmetry in the ferromagnetic
clusters near the defects or by the anomalous hole
dynamics in these areas.
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(3) A small anisotropy of the 139La NMR line shift
in the antiferromagnetic matrix is evidence for the pres-
ence of a short-range magnetic order in the paramag-
netic region, presumably because of the orbital order-
ing in the initial manganite.

We are sincerely indebted to S.V. Verkhovskiœ and
A.P. Tankeev for discussion and helpful remarks. This
work was supported by the Russian Foundation for
Basic Research (project nos. 99-02-16975 and 99-02-
16280).
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An experimental determination (both direct and indirect) of the characteristics of the magnetic microstructure,
namely, the ferromagnetic correlation radius Rf and the rms fluctuation of the mean anisotropy D1/2〈Ha〉 , is per-
formed for amorphous and nanocrystalline ferromagnets with a random anisotropy characterized by the quan-
tities Rc and D1/2Ha, respectively. The magnetization curves of amorphous and nanocrystalline ferromagnets are
found to exhibit a dependence on H that is caused by the alignment of the magnetizations of individual magnetic
blocks with the field. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.30.Gw; 75.50.Kj; 75.60.Ej
1. Amorphous and nanocrystalline ferromagnetic
alloys can be represented as an ensemble of clusters or
grains of size 2Rc, which are bound together by the
exchange interaction and have randomly oriented easy
axes. In the approximation of a continuous medium,
such a system is described by the internal energy den-
sity

(1)

where the magnetization M is characterized by a con-
stant magnitude Ms, the exchange parameter α =

2A/  is determined by the exchange interaction con-

stant A, the parameter β = Ha/Ms = 2K/  is deter-
mined by the local anisotropy constant K, l is the unit
vector of the easy axis of this anisotropy, and H is the
external magnetic field.

It is known that, in a ferromagnet, an orientational
irregularity of the magnetic anisotropy of any origin
(crystallographic, elastic, or other) gives rise to the for-
mation of an inhomogeneous state of the magnetic
moment M(x) [1–10]. This state is called in [1, 3] a sto-
chastic magnetic structure (SMS). The parameters of
the SMS are determined by the relations between three
characteristic fields: the external field H, the exchange

field Hex = 2A/Ms , and the rms fluctuation of the

U
1
2
---α ∇ M( )2 1

2
---β Ml( )2– HM,–=

Ms
2

Ms
2

Rc
2
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local anisotropy field D1/2Ha, where D is the symmetry
factor equal to 1/15 for a uniaxial anisotropy [4]. In the
case of large grains satisfying the inequality

(2)

the correlation properties of the inhomogeneous state
of the orientation of M always coincide with the corre-
lation properties of the local anisotropy fluctuations. In
this case, the approximation of crystallites without
exchange interaction between them is valid. Beginning
from the publications [11, 12], this approximation was
used for calculating the law of magnetization approach
to saturation:

(3)

For amorphous and nanocrystalline ferromagnets, the
other inequality is valid:

(4)

If this inequality is satisfied, the correlation properties
of the SMS fundamentally differ (in the fields H < Hex)
from those of the local anisotropy: the deviations of the
magnetization M(x) from the direction of the external
field are correlated in space and form a static wave with
the characteristic wavelength RH = (2A/MH)1/2. The
changes occurring in the correlation properties of the
SMS in the vicinity of the field Hex lead to a change in

Rc ≥ D 1/4– A/K( )1/2, Hex D1/2Ha,≤

∆M/Ms DHa/H( )2
, H D1/2Ha.>=

Rc D 1/4– A/K( )1/2, Hex D1/2Ha.><
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the law of magnetization approach to saturation. For
three-dimensional and isotropic inhomogeneities of
anisotropy, the following relationship was obtained
[4, 7–9]:

(5)

For anisotropic and low-dimensional inhomogeneities,
the dependence on H may be different [6, 7, 13–16].

As the magnetic field further decreases (H ! Hex),
the situation changes. In low magnetic fields, the mag-
netic system of amorphous and nanocrystalline ferro-
magnets exhibits the well-known Imry–Ma effect [17].
This effect consists in the instability of the ferromag-
netic state with respect to the randomly oriented local
magnetic anisotropy. In this case, the ferromagnetic
order is characterized by the correlation length Rf =
Rc(Hex/D1/2Ha)2 [5, 10], so that the magnetic structure

∆M/Ms D1/2Ha/Hex( )2
Hex/H( )1/2=

=  D1/2Ha/Hex( )2
RH/Rc( ),

H Hex or RH Rc.><

Fig. 1. Schematic representation of a ferromagnet with a
random anisotropy. The small arrows indicate random ori-
entation of the local magnetic anisotropy l(x), and the large
arrows show random orientation of the mean anisotropy of
a magnetic block n(x).

Fig. 2. Theoretical dependences of the variance of magnetic
moment on the external magnetic field in the D1/2〈Ha〉  units:
the solid curve corresponds to Eq. (11) and the dashed curve
to Eq. (14).
of such a material can be described by an ensemble of
weakly coupled magnetic blocks (Fig. 1). The block
size is 2Rf, the mean anisotropy in the block is 〈K〉  =
K/N1/2 = K(Rc/Rf)3/2, and the unit vector n of this anisot-
ropy is randomly oriented. In the approximation of a
continuous medium, such a system can be described by
the internal energy density represented in the form

(1')

where the parameter βe = 〈Ha〉/M = 2〈K〉/M2 is deter-
mined by the constant 〈K〉  characterizing the mean
anisotropy in the magnetic block. In zero field, the
magnetization of a magnetic block is oriented along the
unit vector n. Therefore, in this case, the correlation
properties of the irregular orientation of M(x) com-
pletely reproduce the correlation properties of the fluc-
tuations of mean anisotropy 〈K〉 . This means that the
magnetization curve in low magnetic fields should be
described by dependence (3) modified as follows:

(3')

Simultaneously, using the definition of the characteris-
tics of the system of magnetic blocks (Rf and D1/2〈Ha〉)
in terms of the characteristics of the grain system (Rc

and D1/2Ha), Eq. (5) can be represented in the form

(5')

The aim of our work is the experimental study of the
aforementioned effects. Its significance is determined
by the fact that the experimental measurement of
dependence (3') is a direct, rather than indirect [see
Eq. (5')], proof of the existence of magnetic blocks and
allows one to directly measure the characteristics of the
magnetic microstructure (the quantities 〈Ha〉 , 〈K〉 , and
Rf) of amorphous and nanocrystalline ferromagnets.

2. Let us theoretically estimate the correlation prop-
erties of the irregular orientation of M(x). The main
characteristic of these properties is the correlation func-
tion Km(r) or the spectral density Sm(k) related to the
correlation function through the Fourier transform:

(6)

where m⊥ (x) are the transverse components of the unit
vector of magnetization m(x) = M(x)/M. The magneti-

U
1
2
---βe Mn( ) HM,––=

∆M/Ms D1/2 Ha〈 〉 /H( )2
RH/R f( )4,= =

H D1/2 Ha〈 〉 or RH R f .<>

∆M/Ms D1/2 Ha〈 〉 /H( )1/2
RH/R f ,= =

Rc RH ! R f .<

m⊥ x( )m⊥ x r+( )〈 〉 Km r( );=

m⊥ k( )m⊥* k'( ) Sm k( )δ k k'–( );=

Km r( ) Sm k( )eikr k,d∫=
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zation curve is related to Km(r) and Sm(k) by the stan-
dard relationships

(7)

The general expression for Sm(k) through the arbitrary
spectral density S(k) of the fluctuations of the local
anisotropy axis has the form [3, 4, 17]

(8)

where kH = 1/RH is the wave number of exchange cor-
relations. If we model the stochastic properties of the
orientational irregularity of magnetic anisotropy by the
simplest correlation function

(9)

where kc = 1/Rc, we obtain a symmetric expression for
Sm(k):

(10)

In this case, the expression for the variance dm has the
form [4]

(11)

One can see that, for H @ Hex, Eq. (11) yields expres-
sion (3) for both inequalities (2) and (4) and, for H !
Hex, Eq. (11) yields expression (5).

We now consider a random function  that
is obtained by averaging the random function m(x) over
the space interval (x – |Rf |, x + |Rf |):

(12)

The stochastic properties of the orientational irregu-
larities of the mean anisotropy 〈K〉  of magnetic blocks
are determined by the rules described in [18]. In the
case Rf @ Rc, these properties are described by the cor-
relation function and the spectral density of the follow-
ing types:

(13)

where kf = 1/Rf. Substituting Eqs. (13) into Eq. (8) and
then into Eq. (7), we obtain the following expression

∆M/Ms dm H( )≡ Km r( ) r 0= Sm k( ) k.d∫= =

Sm k( )
K
A
---- 

 
2 S k( )

kH
2 k2+( )2

------------------------,=

K r( ) De
kcr–

, S k( )
Dkc

π2 kc
2 k2+( )2

----------------------------,= =

Sm k( )
1

π2
----- K

A
---- 

 
2 Dkc

kH
2 k2+( )2

kc
2 k2+( )2

-----------------------------------------------.=

dm H( )
D1/2Ha( )2

H1/2 Hex
1/2 H1/2+( )3

------------------------------------------.=

m x( )〈 〉 R f

m x( )〈 〉 R f

1

2R f( )3
---------------- m x( ) x.d

x R f–

x R f+

∫=

K̃ r( ) D
k f

kC

----- 
 

3

e
k f r–

, S̃ k( )
Dk f

π2 k f
2 k2+( )2

-----------------------------
k f

kc

----- 
 

3

,= =
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for the variance of the random deviations of :

(14)

Here, the rms fluctuation of anisotropy in a magnetic
block is D1/2〈Ha〉  = D1/2Ha/(Rc/Rf)3/2 and the field Hf is

determined as Hf = 2A/M . A direct substitution of Rf

yields Hf ≡ D1/2〈Ha〉 . Hence, Eq. (14) is valid only for
the fields H > Hf = D1/2〈Ha〉 . In this field range, Eq. (14)
is reduced to Eq. (3'). Figure 2 shows dependences (11)
and (14) as functions of magnetic field in D1/2〈Ha〉  units.
One can see that, up to H ≈ 10D1/2〈Ha〉 , the variations of
dm are insignificant, whereas  drops to zero (within
the experimental error). This means that the magnetiza-
tion of amorphous and nanocrystalline ferromagnets
occurs through the alignment of the mean magnetiza-
tions of the blocks with the field [according to Eqs. (3')
and (14)], and only after that the decrease in the ampli-
tude of m⊥ (x) [described by Eqs. (5), (5'), and (11)]
takes place.

3. Figure 3 presents the high-field portions of the
magnetization curves M(H) for films and foils of amor-
phous and nanocrystalline alloys produced by different
techniques (fast quenching of the melt or chemical dep-
osition). The magnetization curves were obtained using
vibrating-coil magnetometers with an electromagnet
for fields of up to 15 kOe and with a superconducting

m x( )〈 〉 R f

dm' H( )
D1/2Ha( )2

H1/2 H f
1/2 H1/2+( )3

------------------------------------------
Rc

R f

------ 
 

3

=

=  
D1/2 Ha〈 〉( )2

H1/2 H f
1/2 H1/2+( )3

------------------------------------------.

R f
2

dm'

Fig. 3. High-field portions of the magnetization curves
M(H): (1) Fe73.5Cu1Nb3Si13.5B9 and (2) Co80Zr10 amor-
phous tapes; (3) a Fe73.5Cu1Nb3Si13.5B9 nanocrystalline
tape; Co90P10 amorphous films with t = (4) 500 and
(5) 2000 Å; and (6) a Co90P10 amorphous coating with t =
30 µm.
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solenoid for fields of up to 30 kOe. One can see that, in
the (∆M/Ms, H–1/2) coordinates, the experimental curves
can be described by linear dependences (of the type y =
ax) determined by Eqs. (5) and (5'). This means that
inequality (4) is valid for the amorphous and nanocrys-
talline alloys under study. The experimental curves also
suggest that the numerical value of the coefficient of
linear dependence is determined by the characteristics
of the random anisotropy, Rc and D1/2Ha. To calculate
the latter, it is necessary to measure the magnetization
curve in the fields H > Hex. By recording the part of the
curve described by dependence (3), one can determine
D1/2Ha. The revealed crossover of M(H) (the transition
from ∆M ~ H–1/2 to ∆M ~ H–2) provides the possibility
to measure Hex. Substituting the exchange interaction
constant A, which is calculated from the low-tempera-
ture thermomagnetic curves ∆M ~ (T/A)3/2, into Hex,
one can determine Rc. However, in many cases this pro-
gram cannot be implemented. Many amorphous and
nanocrystalline ferromagnetic alloys are characterized
by values of Hex that exceed the maximal fields used in
the experimental measurements of M(H) (see, e.g.,
[16]). Then, the grain size (or the cluster size) 2Rc can
be determined by direct methods such as X-ray struc-
tural analysis or transmission electron microscopy and
the values of Hex and D1/2Ha can be calculated (the latter
is obtained from the linear dependence ∆M ~ H–1/2 simi-
lar to that shown in Fig. 3).

For the characteristics of the magnetic microstruc-
ture (Rf and D1/2〈Ha〉), the situation is entirely different.
For their indirect determination, it is sufficient to record
the linear dependences shown in Fig. 3. The measure-
ment of the coefficient of linear dependence allows one
to calculate the rms fluctuation of the anisotropy field in
a magnetic block, D1/2〈Ha〉  ≡ Hf. The substitution of A
into Hf provides the value of Rf . For the amorphous and
nanocrystalline alloys presented in Fig. 3, the following
values of D1/2〈Ha〉  and Rf were obtained: 340 Oe and
130 Å, respectively, for a Fe73.5Cu1Nb3Si13.5B9 amor-
phous tape 20 µm thick; 25 Oe and 640 Å for a
Co80Zr10V10 amorphous tape 30 µm thick; 100 Oe and
240 Å for a Fe73.5Cu1Nb3Si13.5B9 nanocrystalline tape
20 µm thick; 120 Oe and 380 Å for a Co90P10 amor-
phous film 500 Å thick; 9 Oe and 1430 Å for a Co90P10
amorphous film 2000 Å thick; and 3 Oe and 2460 Å for
a Co90P10 amorphous coating 30 µm thick. To directly
determine the values of Rf and D1/2〈Ha〉 , it is necessary
to record the part of the dependence M(H) that is
described by Eqs. (3') and (14) rather than by Eqs. (5),
(5'), and (11). With a vibrating-coil magnetometer, such
a measurement is apparently impossible, because real
amorphous and nanocrystalline alloys contain microc-
racks, pores, and inclusions of a second phase, giving
rise to magnetostatic mechanisms of scattering for the
magnetic moment [these mechanisms are not included
in Eqs. (1) and (1')]. As a result the true values of H
inside the sample do not coincide with the external
magnetic field strength at H ~ Hf .

This difficulty can be overcome with the use of an
experimental technique that allows one to exclude the
effect of magnetostatic mechanisms. Such a technique
is realized by a magneto-optic micromagnetometer
[19] allowing the measurements of the local magnetiza-
tion curves by using the equatorial Kerr effect δ(H) ~
M(H) with a light spot diameter of 1 to 30 µm in mag-
netic fields of up to 200 Oe. In this technique, the exter-
nal magnetic field is applied along the sample surface
normally to the plane of light incidence. Before mea-
suring the local magnetization curves M(H), the system
is tuned so as to depart from the significant magneto-
static sources. For this purpose, it is necessary to con-
struct the distribution curves δ(L)/δs ~ M(L)/Ms at a
constant external magnetic field H (much lower than
the saturation field Hs). The curves are obtained by
scanning the light spot over the sample surface along an
arbitrarily chosen direction. (The scan length L is cho-
sen so as to exceed the spot diameter by two to three
orders of magnitude.) Typical distribution curves can
be found in [20]. They exhibit irregular deviations of M
from the mean magnetization 〈M〉 . As the field is
increased and the scanning along L is repeated, the
value of 〈M〉  increases and the deviations decrease, but
the spatial scale of deviations is retained. The field Hs

is determined as the one at which the amplitude of the
deviations is of the order of experimental error. For our
samples, the following deviations were observed:
200−300 µm for a 500 Å-thick Co90P10 amorphous
film; 120–150 µm for a Fe73.5Cu1Nb3Si13.5B9 amor-
phous tape; and 50–70 µm for a Fe73.5Cu1Nb3Si13.5B9
nanocrystalline tape. The local magnetization curves
M(H) were obtained from the light spot, 20–30 µm in
diameter, set at the center of a soft magnetic region. It
was believed that the deviations of M(x) in this region
are caused by the scattering due to the chaotic orienta-
tion of the axis n(x) of a magnetic block.

Figure 4 shows the local magnetization curves M(H)
for a Fe73.5Cu1Nb3Si13.5B9 amorphous foil and a Co90P10
amorphous film; the curves were measured for different
parts of the samples. One can see that, in the (∆M/Ms ,
H–2) coordinates, the experimental magnetization
curves are described by linear dependences of the type
of Eq. (3'). The slopes of these dependences character-
ize the values of the rms fluctuation of the mean anisot-
ropy field in a magnetic block, D1/2〈Ha〉 . For the curves
presented in Fig. 4, we obtained D1/2〈Ha〉  ≈ 3–6 Oe and
Rf ≈ 970–1300 Å for a Fe73.5Cu1Nb3Si13.5B9 foil and
D1/2〈Ha〉  ≈ 60–70 Oe and Rf ≈ 500–570 Å for a Co90P10
film (500 Å thick). One can see that the difference
between the values of D1/2〈Ha〉  and Rf determined for
the Co90P10 amorphous film by the direct [Eq. (3')] and
indirect [Eq. (5')] methods does not exceed 50%. The
greater difference between the corresponding values
obtained for a Fe73.5Cu1Nb3Si13.5B9 tape is no surprise.
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Fig. 4. Local magnetization curves M(H) measured for different parts of (a) a Fe73.5Cu1Nb3Si13.5B9 amorphous tape (20 µm) and
(b) a Co90P10 amorphous film (t = 500 Å).
The point is that the local signal δ(H) ~ M(H) is
obtained from a thin surface layer ~200 Å thick. There-
fore, a coincidence between the “surface” signal M(H)
and the integral value of M(H) should be expected only
for films whose thickness is comparable to the penetra-
tion depth in the magneto-optic technique. The latter
condition is fulfilled for the 500 Å-thick Co90P10 amor-
phous film and does not hold for the foils showing
noticeable differences between the values of D1/2〈Ha〉
and Rf obtained for the bulk of the samples and for the
surface layer of the material.

We are grateful to L.A. Chekanova and
V.P. Ovcharov for providing the films and foils and to
V.A. Ignatchenko for useful discussions and interest in
our study.
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The problem of explaining the critical angular velocity Ωc when the formation of a vortex in the stirred Bose–
Einstein condensate becomes energetically possible is considered in the framework of the variational approach.
The origin of smallness of the calculated Ωc in comparison with the measured values, which takes place for a
pure quantum state with the unit angular momentum per condensed particle, is uncovered. The agreement with
the measured Ωc is achieved upon admitting a small admixture of the zero angular-momentum state in the wave
function of the one-vortex quantum state prepared after stirring. A portion of this admixture amounts to
10−13% of the total condensed atoms. A possible test of this hypothesis is proposed. © 2000 MAIK
“Nauka/Interperiodica”.

PACS numbers: 03.75.Fi; 05.30.Jp
The Bose–Einstein condensate (BEC) discovered in
the trapped clouds of alkali atoms [1] has been proven
to be an excellent test site of fundamental concepts of
quantum physics of systems consisting of a macroscop-
ically large number of particles [2]. One of the most
intriguing features of such systems is the quantized vor-
tex. Recently, the formation of such vortices in the
trapped BEC was observed in two different situations.
First is the two-component BEC [3], where the vortex
state is created via interconversion between two hyper-
fine states. The second one is realized by the stirring of
BEC with a toggled laser beam. This toggling beam
creates a small axial asymmetry of the trap potential,
which is rotated slowly with the angular velocity Ω . It
was found that for Ω exceeding a definite critical value
Ωc, the images of the space distribution of BEC atoms
after the ballistic expansion reveal the visible signature
of the vortex [4], and even the lattice of the vortex array
was observed in some situations [4]. The method of [4]
directly corresponds to the classical experiment with
the rotating bucket [5]. As was pointed out in [4], the
measured critical angular velocity of the formation of a
single vortex in the stirred BEC appears to be notably
larger than that predicted theoretically [6].

Recently, the efforts aimed at explaining a larger
critical angular velocity were undertaken in [7]. The
purpose of this work is to propose another explanation
of the critical angular velocity Ωc of the stirring of BEC
when the formation of the single vortex becomes ener-
getically possible. To this end, the energy of different
configurations of the BEC atoms is calculated. The rea-

1 This article was submitted by the author in English.
0021-3640/00/7212- $20.00 © 20608
son for the smallness of the calculated Ωc, as compared
to the measured one, is revealed. It was shown that the
agreement with the measurements can be achieved by
assuming the admixture of the vortex-free state with
zero angular momentum in the wave function of the
final state prepared after the stirring and containment of
the visible vortex.

As is known [2], all basic properties of BEC in
diluted gases of alkali metals are described by the
Gross–Pitaevskii (GP) equation [8] which has the form
of Schrödinger equation supplemented with the nonlin-
ear term arising due to the short-range interaction char-
acterized by a single parameter—the scattering length.
Since it is the equilibrium energy of the BEC gas that is
the main concern here, the GP energy functional

(1)

is used instead of the GP equation. In the above equa-

tion,  = x2 + y2, m is the mass of an atom, ω⊥  and ωz

are, respectively, the transverse and longitudinal fre-
quencies of the oscillator-like potential modeling the
axially symmetric trap, and a is the scattering length.
Also, ψ is the condensate wave function normalized
according to the condition

(2)

E x3 "
2

2m
------- ∇ψ 2





d∫=

+
m
2
---- ω⊥

2 r⊥
2 ωz

2z2+( ) ψ 2 2πa"
2

m
--------------- ψ 4+





r⊥
2

N x3 ψ 2d∫=
000 MAIK “Nauka/Interperiodica”



        

EXPLANATION OF CRITICAL ANGULAR VELOCITIES 609

                                                                              
and N is the number of condensed atoms. The trap
parameters N, ω⊥ , and ωz are specified as follows. The
first set, referred below as the set A, is [4]

(3)

and the corresponding critical angular velocity of stir-
ring is Ωc/2π = 152 Hz [4]. The second set, referred to
below as set B, is [9]

(4)

and the corresponding critical angular velocity of stir-
ring is Ωc/2π = 115 Hz [9].

Since the accuracy of determining the number of
condensed atoms is about 30% and the energy of BEC
is scaled as E ∝  N2/5 [see [2] and Eqs. (7) and (11)
below], it is unnecessary to bother to calculate E with
the accuracy better than 10%. So, one may hope that the
variational calculation [10] of energy instead of full
numerical solution of GP equation will be sufficient. As
will soon become clear, it is convenient to take the trial
wave function in the form

(5)

where 0 ≤ κ ≤ 1; Rκ and zκ are variational parameters.
Notice that κ = 0, 1 corresponds to, respectively, the
pure vortex-free state and the state with the singly
quantized vortex placed at the center of the trap, while
intermediate values of κ correspond to an arbitrary
mixture of the above states. Introducing the dimension-
less parameters ρκ and zκ according to the relations
Rκ = ("/mω⊥ )1/2ρκ and zκ = ("/mωz)1/2ζκ, one can find
from Eqs. (1) and (5) the energy per condensed atom:

(6)

where
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The mean value of angular momentum in the quantum
state with wave function (5) is

(8)

As is known [2, 11], the condition of the thermody-
namic possibility of vortex formation in the system
rotated at the angular velocity Ω can be formulated as
∆E – 〈Lz〉Ω  < 0, where ∆E is the energy difference
between the states with the vortex and without it, so that
the critical angular velocity is defined as Ωc = ∆E/〈Lz〉 .
Let us evaluate Ωc in the framework of the variational
approach.

The values of variational parameters ρκ and ζκ can
be found from the condition of the minimum of BEC
energy (6), which is reduced to the following equations:

(9)

First, let us consider the problem of the critical angular
velocity in the approximation when the kinetic energy
of both the transverse and longitudinal motion can be
neglected. This is the Thomas–Fermi (TF) limit [2].
The solution of Eq. (9) in this limit looks as follows:

(10)

Direct numerical evaluation shows that at, say, κ = 0 the

parameters  = 2.16 (2.63) and  = 9.36 (10.7)
evaluated in this limit for the set of parameters (3)
[respectively, Eq. (4)], coincide within the accuracy of
1% with those found from Eq. (9). Hereafter, when
doing the specific numerical evaluations, we take the
scattering length a = 5.77 nm for 87Rb atoms [12] and
the above two sets of BEC parameters from Eqs. (3)
and (4). The corresponding energy in the TF limit is
found to be

(11)

One can see that in TF limit the energies of the pure
vortex-free state (κ = 0) and the state with a single vor-
tex (κ = 1) are equal, hence Ωc found from relation

(12)

{see [2] and Eq. (8)} at κ = 1 vanishes in the TF limit.
Thus, one should take the kinetic energy of the BEC
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cloud into account. Here, this is done by the numerical
solution of Eq. (9) for the two values κ = 0, 1. The result
is ρ0 = 2.19 (2.64), ζ0 = 9.28 (10.66), and ρ1 =
1.61 (1.90), ζ1 = 9.06 (10.53) in the case of experimen-
tal conditions (3) and (4), respectively. One then finds

/2π = 65.9 Hz and /2π = 36.1 Hz, where the
upper indices refer to the two above sets of the trap
parameters. The smallness of these values, as compared
to those experimentally measured, is due to the small-
ness of the energy difference between the pure BEC
states with κ = 0 and 1.

To reconcile the result of calculations with the mea-
surements in the present approach, one should keep in
mind that, in fact, the density of atoms does not vanish
in the central dip [4]. The authors of [4] propose three
possible reasons for this: (i) oscillations of the vortex
filament, (ii) the presence of noncondensed atoms, and
(iii) insufficient resolution of the imaging optics, as
compared to the vortex core radius of the BEC cloud.
Here, I propose the fourth possible reason and admit
that the quantum state of the BEC cloud after the stir-
ring is the superposition of pure quantum states with
the angular momenta per particle Lz/N = 0 and ", that
is, admitting κ ≠ 1 in the wave function (5) of the final
quantum state. The presence of BEC atoms in the state
with zero angular momentum explains in a natural way
a nonzero density in the central dip.

Ωc
A Ωc

B

The critical angular velocity of formation of the quantum
state of BEC with one vortex vs. the portion κ of atoms in
the state with the unit angular momentum per particle. The
curves labeled A and B correspond to the trap parameters in
Eqs. (3) and (4), respectively.

A

B

Solving Eq. (9) numerically, one can find the energy

dependence on κ and calculate the critical angular
velocity from Eq. (12). The result of this calculation is
shown in the figure. Then, fitting the calculated critical
angular velocity (12) to the experimental values is pos-
sible if the portion κ of the number of BEC particles in
the state with the unit angular momentum per particle
amounts to, respectively,

(13)

The latter values, in view of Eq. (8), give, respectively,
〈Lz〉/N = 0.87" and 0.9" and do not contradict the mea-
sured magnitude [9] of the mean angular momentum of
the condensate. Equation (13) means that the admixture
of the atoms in the zero angular-momentum state in the
case of the trap parameters (3)–(4) amounts to
0.13 (0.1), respectively. Notice that, despite the essen-
tial difference in the experimental trap parameters (3)
[4] and (4) [9], the portion of the number of atoms in
the zero-momentum state needed to explain very differ-
ent observed critical angular velocities in the final state
prepared after the stirring turns out to be practically the
same. To be more precise, the 30% accuracy of deter-
mining the number of atoms in the condensates
reported in [4, 9] implies, as is explained earlier in this
paper, approximately 10% uncertainty of the calcula-
tion of energy per condensed atom, which translates to
approximately the same uncertainty of calculation of κ,
while the central values of the calculated κ differ in the
above experimental conditions by 3–4%, which is well
below their estimated uncertainty.

Could the proposed feature of the BEC wave func-
tion such as the presence of the portion 1 – κ of zero
angular-momentum-condensed atoms be tested in
experiments? Let us discuss this issue. As is known
[4, 9], the presence of the vortex is detected through the
visualization of the images of the BEC cloud obtained
after its ballistic expansion. One can obtain the spatial
distribution of the BEC atoms after this expansion by
the usual quantum mechanical method upon finding the
wave function (5) in the momentum-space form, prop-
agating it forward in time freely, and then finding its
resulting coordinate-space form. The resulting spatial
distribution appears to be

(14)
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One can see that the dependence of the spatial distribu-
tion of the BEC atoms on the azimuth angle φ is the sig-
nature of the above admixture of the vortex free state.
The dependence arises from the interference term. But
the contribution of the latter becomes significant only
after some duration of the process of free expansion.
Taking the estimates of the rms values of r⊥ /Rκ and

 from the written spatial distribution function,
one can find that the axial asymmetric contribution
∝ sinφ becomes dominant after the time of flight

(15)

Using the parameter sets in Eqs. (3) and (4) and the
results of numerical solutions of Eq. (9), together with
Eq. (13), one can find from Eq. (14) that the interfer-
ence term becomes dominant after a free expansion
time exceeding τ = 24 ms (50 ms), respectively. Since
the time of free expansion reported in [4, 9] is 27 ms, it
is clear that the proposed feature of the final wave func-
tion that could emerge after the stirring had no time to
develop in the experiments [4, 9]. An additional test-
able feature of the proposed wave function of the final
state is the flattening of the central vortex dip in the
density distribution, due to the increasing relative con-
tribution of the zero angular-momentum state ∝ 1 – κ as
time of free expansion of the BEC cloud increases. It
would be interesting to enlarge (if possible) the time of
ballistic expansion of the BEC clouds after the stirring
to see whether the dependence of their spatial distribu-
tion will acquire the angular dependence ∝ sinφ and to
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study the relative weights of the components of con-
densed atoms with different angular momentum at dif-
ferent times of their ballistic expansion.
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A new way of attaining large values of magnetoresistance in a magnetic semiconductor was investigated. The
mechanism of magnetoresistance is based on the formation of a space charge, a depletion layer, and a contact

potential Uc at the interface between two semiconductors with different Fermi levels  and  and on the
dependence of Uc, the electrical resistivity, and the size of the depletion layer in the magnetic semiconductor
on the magnetic field strength. The model proposed was experimentally verified using a microstructure consist-
ing of an HgCr2Se4 n-layer with a thickness of up to several tens of microns deposited on the surface of a bulk
p-HgCr2Se4 single crystal. Depending on microstructure parameters, a sharp (up to ~ 30 times) rise in the cur-
rent flowing through the n-layer was observed in the region of Curie temperature upon switching on a magnetic
field (H ~ 15 kOe). © 2000 MAIK “Nauka/Interperiodica”.
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Elucidation of the nature of magnetoresistance
(MR) in magnetic materials such as superlattices, mag-
netic semiconductors, and lanthanum manganites is a
practically important and topical problem of modern
physics. The highest MR values (as high as 1011%)
were found in magnetic semiconductors [1, 2]. The
known MR mechanisms in magnetic semiconductors,
namely, intersection of the impurity and conduction
bands, magnetic polarons, ferrons, phase separation,
etc. [1], qualitatively explain but provide no answer to
the question of how to fabricate materials with large
MR values. Because of this, large MR values in mag-
netic semiconductors are observed for “occasional”
samples, whereas the mechanisms of their variation
under the conditions of fabrication of such materials are
unknown. The situation is very similar for lanthanum
manganites. The colossal magnetoresistance (≈106–108%)
in lanthanum manganites is mainly observed for films
or superlattices [3]. The MR values in perfect bulk sin-
gle-crystal lanthanum manganites are not so high and,
apparently, can be understood within the double
exchange model with allowance made for the cascade
of structural and phase transitions, charge and orbital
ordering, and other properties characteristic of perovs-
kites [4]. The aforesaid stimulates a search for other
mechanisms of magnetoresistance.

It is known [5] that the unreliability and ambiguity
of many results obtained in early investigations of clas-
sical semiconductors were connected with the inability
to separate the bulk effects from the surface effects or
from the effects of the interface between substances
0021-3640/00/7212- $20.00 © 20612
differing in nature and with the fact that the over-
whelming majority of semiconductor applications were
based on the surface and contact phenomena. In [6], we
explained the kinetic features and MR of polycrystal-
line manganites by the surface contact phenomena. We
believed that there exists a layer on the grain surface
with properties slightly differing from the properties of
the sample inside the grain. Such a layer is usually
formed, for example, in ferrites [7], because there is no
equilibrium between the atmosphere and the sample
during the course of its preparation. It was suggested
that the nature of magnetoresistance is associated with
the formation of a space charge, a contact potential, and
a depletion (barrier) layer at the interface between the
surface layer and the grain bulk and with the depen-
dence of the contact potential on the magnetic field
strength. Based on the dc current and microwave stud-
ies of the manganite magnetoresistance as a function of
temperature and electric field (breakdown) strength, we
estimated [6] the thickness of the inhomogeneous sur-
face layer (≈10–5 cm) and the potential barrier height
(Uc ≈ 0.05 eV) between the surface layer and the grain
bulk. In support of these suggestions, this work pre-
sents a model and experimental evidence of the effects
of inhomogeneous states (“phase separation”) and sur-
face and contact phenomena on the magnetoresistance
in magnetic semiconductors.

Interface model of colossal magnetoresistance.
A thin, well-conducting film of a magnetic semicon-
ductor with thickness τn is placed on the surface of a
poorly conducting magnetic semiconductor of thick-
000 MAIK “Nauka/Interperiodica”
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ness τp (Fig. 1), with Fermi levels  and . In the
limiting case, these are p- and n-type semiconductors.
An equilibrium between the semiconductors [5] is
established through the diffusion of electrons from the
n region to the p region and holes to the n region. On
bringing these films into contact, a space charge is
formed at the interface, and a contact potential Uc =

 –  arises equal to the difference between the
Fermi levels of the p and n films. The number of elec-
trons that must pass from the n region to the p region
when the semiconductors are in contact at the distance
d can be estimated as [5]

(1)

When the semiconductors are in direct contact at
the interatomic distance d = 5 × 10–8 cm, the number of
diffusing electrons equals nd ≈ 2 × 1013 cm–2 for the
dielectric constant ε0 = 10 and Uc = 0.2 eV. An atomic
layer of a semiconductor with an impurity concentra-
tion N = 1015 cm–3 contains ns = (1015)2/3 = 1010 cm–2

electrons. Thus, the boundary layers dn and dp (up to
1000 atomic layers) of the semiconductors are depleted
in electrons. A layer of an appreciable thickness dL =
dn + dp (up to tens of microns, depending on the param-
eters of the semiconductor) becomes nonconducting
because of a decrease in the concentration of carriers in
the barrier layer by a factor of the order of exp(Uc/T).
For example, at Uc = 0.2 eV and temperature T = 100 K,
the charge carrier concentration in the barrier layer
must decrease by a factor of more than 109.

On bringing these films into contact, the electrical
resistivity of the n layer increases (or, more precisely,
the current flowing through the n layer decreases)
because of the following (Fig. 1):

(1) a decrease in the volume of the conducting layer
if the film thickness τn is comparable to the thickness of
the space-charge layer dn, τn ≥ dn;

(2) a decrease in the concentration of charge carriers
in the barrier layer if τn < dn.

Strong variations of the band structure parameters
EF and Uc as functions of the magnetic field strength are
a characteristic property of magnetic semiconductors.
The greatest changes in the absorption edge (“red
shift”) in a magnetic field are observed in the vicinity
of the Curie temperature TC and are of the order of
dU/dH = 5–10 meV/kOe in ferromagnetic semiconduc-
tors like EuO and HgCr2Se4 [8]. In a magnetic field, the
contact potential decreases, leading to a negative mag-
netoresistance. Therefore, even in relatively low mag-
netic fields of ~ 10 kOe, the barrier layer may become
enriched, Uc = 0, and the electrical resistivity of the n
film sharply decreases, almost attaining its initial value.

Experiment. To verify the model proposed, we cre-
ated n-HgCr2Se4 layers on the surface of a p-type
HgCr2Se4 single crystal. The layers were of approxi-

En
F Ep

F

En
F Ep

F

nd Ucε0/ed .=
JETP LETTERS      Vol. 72      No. 12      2000
mately the same thickness but differed in the electron
concentration. It is known [9–11] that the electrical
conduction of undoped HgCr2Se4 crystals is due to
mercury and selenium vacancies. In an as-grown crys-
tal, p-type conduction is commonly observed. Both the
conduction and the type of charge carriers can be mod-
ified by annealing in mercury vapor [9–11].

Parallelepipeds with sizes ~ (3.5–4) × (0.6–0.75) ×
(0.6–0.75) mm were cut from a large single crystal pre-
pared by the gas transport method using the technique
described in [12] and then polished. The samples were
additionally annealed in sealed ampoules at an excess
pressure of mercury vapor (from 0.5 to 10 atm) and a
fixed temperature of 500°C for 30 min. After that, the
samples were cooled at room temperature. Under these
conditions, the modification of mercury vacancies will
proceed within approximately the same effective thick-
ness. It is known that for the diffusion processes the
p−n junction is not abrupt and the impurity concentra-
tion varies smoothly in the junction. It follows from our
additional studies that, under the indicated conditions,
mercury diffused mainly to a depth of about ld ≈
30−80 µm.

The average values of the electrical resistivity ρ and
the magnetoresistance MRH = [ρ(H) – ρ(0)]/ρ(H) were
measured by the standard four-probe method. Indium
leads were applied by an ultrasonic soldering iron to the
surface of the layer annealed in mercury (Fig. 1).

It is seen (Fig. 2, curve 0) that the electrical resistiv-
ity in a homogeneous as-grown single crystal of
p-HgCr2Se4 monotonically increases with decreasing
temperature (activation energy ∆E ≈ 0.2 eV at T @ TC).
The magnetoresistance is positive in the paramagnetic
region and changes its sign slightly above the Curie
temperature TC = 107 K. The value of MRH is small and
monotonically increases to maximum values MRH =
−0.15 at 77 K with decreasing temperature in the field
H = 15 kOe (Fig. 3, right axis, curve 0). The results are
typical of p-HgCr2Se4, and the nature of electrical resis-
tance is principally understood (see [13]).

Fig. 1. Scheme of a contact structure for n- and
p-semiconductors: tn and tp are the film thicknesses, dn and
dp are the thicknesses of the space charges of n- and
p-semiconductors; and I and U are the measuring current
and potential contacts.
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All annealed samples exhibit below TC ≈ 107–117 K
the metallic type of electrical conduction, evidencing
the electronic type of conduction in the surface layer
[10, 11]. We observed a 27-fold maximum decrease in
the electrical resistivity (MRH ≈ –27) for a sample
annealed at 1 atm of mercury. MRH decreases with both
decrease (0.5 atm) and increase (2 atm) in mercury
vapor pressure from this value. On removing (by grind-
ing) a ~100 µm-thick surface layer from a sample
annealed at 2 atm, the MRH values and the electrical
resistivity changed almost to those of the as-grown
sample (Figs. 2, 3; curves 2, 2–a, 0). Small differences
in the ρ and MRH values can be explained by the diffu-
sion of some amount of mercury into the deeper layers
of the sample.

The electrical resistivities of an inhomogeneous
sample of HgCr2Se4 annealed at 10 atm of mercury
(Fig. 2, curve 10) and a homogeneous sample of
HgCr2Se4 annealed at 8 atm (Fig. 3, curve 1 [10]) are
small (~10–3 Ω cm) and only slightly differ from each
other. Due to the smallness of the ρ value (the concen-
tration of charge carriers in the n layer is high [10]),
electrons pass into the p layer from only a small part of
the n layer, the contact-induced change in the volume of
the conducting film is insignificant, and, accordingly,
MRH is small.

A high MRH value observed in [10] for a HgCr2Se4
sample annealed at 1 atm of mercury is also notewor-
thy. In this connection, it might be assumed that the
results obtained for electrical resistivity and magne-
toresistance are not associated with the inhomogeneity
of the sample but are caused by unknown reasons, for
example, by the concentration effects in the mecha-
nisms of electrical conduction in HgCr2Se4. For this

Fig. 2. Temperature dependences of the average electrical
resistivity for the HgCr2Se4 samples annealed at various
mercury vapor pressures. Numbers near the curves indicate
the mercury vapor pressures in atm; letters at the numbers
indicate that (a) the surface layer is removed and (t) the sam-
ple is thin (0.2–0.35 mm).
 purpose, we performed annealing with thinner samples:

0.2 mm at 1 atm of mercury and 0.35 mm at 1.5 atm of
mercury (Figs. 2, 3; curves 1–t, 1.5–t). One can see
(Figs. 2, 3; curves 1.5–t, 1–t) that the MRH values sig-
nificantly diminished, as compared to MRH for the
thick (t = 0.6–0.75 mm) samples, and both MRH and
electrical resistivity in sample 1–t are smaller than in
sample 1.5–t. These results show that, under our exper-
imental conditions, the depth of mercury diffusion and
the thickness of the space charge p-HgCr2Se4 are
approximately the same, ld ≈ dp ≈ 30–100 µm.

We also obtained direct evidence for the influence of
surface phenomena on the electrical resistivity and
magnetoresistance of the as-grown samples of
HgCr2Se4. The electrical resistivity and the MRH values
measured for the natural faces of HgCr2Se4 single crys-
tals are much higher than those for crystal cuts. For one
such sample, we found MRH = –350% in a magnetic
field of 15 kOe in the vicinity of TC. After removing a
~30–50 µm layer from the surface of the natural face,
the value of MRH diminished from 350 to 10–20%. We
believe that these results are explained by the fact that,
according to the method of growing the HgCr2Se4 sin-
gle crystals [12, 14], the ampoule contains an excess
amount of mercury vapor. After switching off the fur-
nace, a peculiar kind of annealing occurs in mercury
vapor upon slow cooling of the sample and an inhomo-
geneous surface layer is formed.

These results give irrefutable evidence for the sur-
face nature of magnetoresistance in HgCr2Se4. We
believe that the d(MRH)/dH = 0.2%/Oe value attained
in this work is not optimum and that the understanding
of the nature of the phenomenon and the development
of technology will allow it to be increased by at least
one to two orders of magnitude.

Fig. 3. Temperature dependence of magnetoresistance
MRH = [ρ(H) – ρ(0)]/ρ(H) in a magnetic field of 15 kOe for
the HgCr2Se4 samples annealed at various mercury vapor
pressures. The values of MRH for two samples of HgCr2Se4
are scaled up on the right axis. Notations are as in Fig. 2.
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Note in conclusion that the situation with magne-
toresistance in lanthanum manganites is almost the
same as in magnetic semiconductors [1]. Therefore, we
believe that these conclusions also apply to lanthanum
manganites, because these materials also exhibit some
evidence for the influence of magnetic ordering on their
band structure [15]. Evidently, one can also expect that
the giant magnetoresistance values similar to those
observed in some europium chalcogenides and chro-
mium chalcogenide spinels (for example, EuO, EuSe,
CdCr2Se4) [2] can also be obtained owing to the surface
inhomogeneity of these magnetic semiconductors,
because, in addition to the red-shift effect they exhibit
transitions of the insulator–metal type upon changing
vacancies [16].

Thus, the occurrence of inhomogeneous states
(phase separation [1]) and the related contact phenom-
ena (the appearance of a contact potential and a deple-
tion layer at the interface between inhomogeneities; the
exponential dependence of the charge-carrier concen-
tration in the depletion layer on the contact potential
Uc; and the dependence of Uc and the size of depletion
layer on the magnetic field) can provide high magne-
toresistance values.

This work was supported by the Russian Federal Pro-
gram “Surface Atomic Structures” (project no. 2.4.99)
and by INTAS (project no. 97-OPEN-30253).
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A model system of an ideal gas of neutral fermions in a confined geometry of different symmetry and size is
theoretically examined. The behavior of these systems is found to exhibit qualitatively new features such as the
oscillations in magnetic susceptibility with changing geometry size and particle density, indicating that the geo-
metric confinement substantially affects the thermodynamic properties of the system. © 2000 MAIK
“Nauka/Interperiodica”.

PACS numbers: 75.40.Gb; 67.55.Cx; 71.10.Ay
1. Continuity of an energy spectrum is an acceptable
approximation for macroscopic systems at high tem-
peratures. For finite systems, the energy discreteness
leads to important consequences at low temperatures.
In particular, it is well known that the geometrically
confined system of fermions acquires a number of new,
often quite unexpected properties. Interest in problems
of this kind arose long ago in connection with the inves-
tigation of metallic nanoparticles [1–6] and properties
of atomic nuclei (see, e.g., [7, 8]). Progress in nano-
technology has stimulated study of the size effect on
the properties of finite Bose and Fermi systems (see,
e.g., [9] and references therein). In recent years, consid-
erable interest has been shown in the physical proper-
ties of quantum liquids—liquid 3He and liquid 4He—in
a confined geometry. Investigations of these liquids in
pores of solids (see, e.g., [10, 11]) and the mesoscopic
droplets of liquid 3He in solid 4He [12] testify to the
new features in the behavior of these liquids under such
conditions.

It should be noted that the results of previous studies
of finite Fermi systems cannot be directly applied to
liquid 3He because neither the Coulomb and electron
spin–orbit interactions, which are responsible for the
properties of conduction electrons in metallic nanopar-
ticles, nor the strong nucleon–nucleon interaction,
which governs the properties of nuclear matter, are
present in it.

The work [13], where the transport coefficients were
studied for the case where the mean free path of quasi-
particles is comparable with the system size, is an
example of using the Landau Fermi-liquid theory in the
investigation of the properties of liquid 3He in a con-
fined geometry.
0021-3640/00/7212- $20.00 © 20616
When analyzing the effect of finite geometry on the
properties of liquid 3He, one should apparently distin-
guish between two causes for the appearance of new
properties, as compared to the bulk liquid:

(i) “Purely geometric” factor—the presence of a
geometric boundary modifies the energy spectrum of
even noninteracting fermions;

(ii) “Fermi-liquid” factor—the Landau or any other
Fermi-liquid theory should be reformulated for the con-
fined geometry because the system size strongly affects
the spectrum of elementary excitations.

The influence of the first factor was demonstrated in
our work [14], where a model describing the effect of
confined geometry (microcracks on a crystal surface)
on the magnetic relaxation was proposed to explain the
unexpectedly fast magnetic relaxation of liquid 3He
contacting dielectric van Vleck crystals or their dia-
magnetic analogues. The basic idea of this model is as
follows. In a solid, where the translational motion of
atoms is absent, the magnetic resonance line is rather
broad and the transverse relaxation times are small. In
a liquid, due to the translational motion of atoms, the
resonance line is strongly narrowed, while the relax-
ation times are long. If a liquid where the modulation of
dipole–dipole interaction by the diffusion motion is an
efficient relaxation mechanism is placed in a confined
geometry, not all diffusion modes are possible, in con-
trast to the bulk liquid, but only the resonant modes
“survive.” Therefore, the magnetic resonance line will
not be as narrow as in the bulk liquid and, at the same
time, as broad as in a solid. In the quantum liquid (liq-
uid 3He), the restrictions on the diffusion motion can be
even more numerous, e.g., due to the Pauli exclusion
principle. Numerical calculations for the spherically
symmetric confined geometry corroborate these quali-
000 MAIK “Nauka/Interperiodica”
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tative considerations and yield a difference of at least
an order of magnitude between the longitudinal and
transverse relaxation times for liquid 3He [14, 15].

In this work, we will demonstrate how the geomet-
ric confinement leads to the appearance of new physical
properties in a system of noninteracting fermions (gas-
eous 3He and dilute quantum mixtures of 3He in 4He).
In particular, the magnetic susceptibility of such a sys-
tem becomes an oscillating function of the size or the
particle number density. This resembles the well-
known de Haas–van Alphen effect caused by the quan-
tization of Landau levels in the electron gas in metals.

The inclusion of a real interaction between 3He
atoms in the form of, e.g., Aziz potential [16] will be
the subject of our further investigations.

2. Due to the discreteness of states, the thermody-
namic characteristics of finite systems, such as heat
capacity and magnetic susceptibility, differ consider-
ably from the corresponding macroscopic parameters.
The mean spacing δ between the one-particle states in
a finite system is on the order of EF/N, where EF is the
Fermi energy and N is the number of particles. If the
thermal energy kT or the Zeeman energy µH of a parti-
cle in an external magnetic field H (µ is the magnetic
moment of the particle) or any other characteristic
energy becomes of the order of δ or less, the discrete
character of levels starts to influence the respective
thermodynamic characteristics. Since the properties of
Fermi systems are determined by the density of energy
states at the Fermi level, further analysis of the effect of
level discreteness on the thermodynamic properties
requires certain assumptions about the distribution of
energy levels near the Fermi energy [3].

However, the effects of confined geometry in a sys-
tem of neutral fermions can be studied by using another
approach that is based on the determination of the
energy spectrum of particles by solving the correspond-
ing Schrödinger equation and subsequent analysis of
the thermodynamic and magnetic properties of these
systems.

The effects of confined geometry can be most sim-
ply demonstrated for a system of N noninteracting fer-
mions confined to a sphere of radius R. This geometry
is implemented in the experiments with mesoscopic
droplets of liquid 3He in solid 4He [12]. Evidently,
droplets of liquid 3He cannot be treated as a gas of non-
interacting 3He atoms and, as is mentioned above, the
Landau Fermi-liquid approach should also be revised
because of the changes in the spectrum of elementary
excitations caused by the confined geometry. Neverthe-
less, manifestations of the confined geometry in the
system of noninteracting fermions are of interest as a
first approximation to the real situation.
JETP LETTERS      Vol. 72      No. 12      2000
In the case of interest, the energy spectrum of the
particles (without regard for spin degeneracy) has the
form

(1)

where m is the mass of the particle (3He atom in our
case) and kl, n are found from the equation for the zeroes
of the Bessel function

(2)

The Bessel function for each l has an infinitely large
number of zeroes, numbered by the subscript n. Since l
is the orbital angular momentum of the particle, each
energy level En, l is (2l + 1)-fold degenerate and, thus, is
strongly degenerate at large l values. This degeneracy
can be removed by an external magnetic field. In addi-
tion, the symmetry lowering (e.g., to cubic or axial) due
to the confined geometry also removes the degeneracy
of energy levels. In our calculations of the thermody-
namic and magnetic characteristics of a gas of noninter-
acting fermions confined to the spherical geometry, we
numerically found zeroes of the Bessel functions, the
maximum number of zeroes not exceeding 500. This
allowed the consideration of the systems with sizes of
up to 100 Å and particle number of up to 100000.
Using the calculated zeroes of the Bessel functions, the
energy spectrum can be rewritten as Ei, where i num-
bers the states in the order of increasing energy.

The Fermi energy EF and the population ni of each
level at temperature T are determined in the usual way,

(3)

(4)

The calculated Fermi energies and the density of states
at the Fermi level are presented in the table for different
radii of spherical geometry (in the numerical calculations,
the particle density was taken to be 1.62 × 1028 m–3, which
corresponds to liquid 3He at zero pressure). As the
sphere radius increases, the Fermi energy monotoni-
cally decreases tending to a value of 5 K, which is
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Fermi energy and density of states of a Fermi gas confined to
a sphere of radius R. The particle density is equal to the den-
sity of atoms of liquid 3He at zero pressure

R, Å EF, K Density of states, 1/K

25 6.01 170

50 5.87 1200

100 5.71 10000
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obtained when treating bulk liquid 3He as a gas of non-
interacting Fermi particles. The energy dependence of
the density of states is shown in Fig. 1 for a sphere of
radius 50 Å. The oscillatory character of this depen-
dence is clearly seen. Therefore, one should expect
oscillations in the observable physical characteristics of
the system.

Figures 2 and 3 show the temperature dependences
of the energy per particle and of the heat capacity of a
Fermi gas confined to spheres of various radii. Notice
that the heat capacity in the approximation of noninter-
acting particles does not depend on the size of confined
geometry and exhibits linear temperature dependence
at temperatures below 0.5 K (which corresponds to
approximately 0.1TF). Our calculations demonstrate
that such a behavior holds also for the other shapes of
confined geometry, e.g., for a cube.

As is mentioned above, due to the nonmonotonic
energy dependence of the density of states, one can
expect an appearance of oscillations in the physical
characteristics of a confined gas of noninteracting
Fermi particles. To demonstrate this, we calculated the

Fig. 1. Energy dependence of the density of states for a
Fermi gas confined to a sphere of radius R = 50 Å. The par-
ticle density is equal to the density of atoms of liquid 3He at
zero pressure.

Fig. 3. Temperature dependence of the heat capacity per one
particle for the spheres of different radii.
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magnetic susceptibility for this gas as a function of
temperature, particle density, and sizes of confined
geometry. The magnetic susceptibility in the magnetic
field H is calculated as

(5)

where the level populations ni, ↑ (↓ ), with allowance
made for spin, are

(6)

Here, γ is the nuclear gyromagnetic ratio of 3He; γ/2π =
3.24 kHz/Oe. The oscillatory dependence of the mag-
netic susceptibility on the radius sphere is most inter-
esting (Fig. 4). Such a behavior of the susceptibility at
low temperatures can be easily understood from the fol-
lowing considerations. At very low temperatures, the
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Fig. 2. Temperature dependence of the energy per one par-
ticle for the spheres of different radii.

Fig. 4. The magnetic susceptibility vs. the sphere radius.
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susceptibility, as also the magnetization, is determined
by the particles at the nearest-to-EF energy level. Let us
assume that this level is 2(2l + 1)-fold degenerate (with
allowance made for the spin degeneracy) and there are
n particles on this level. In a weak magnetic field, the
susceptibility of this system satisfies the Curie law and
is proportional to the difference between the numbers
of particles with opposite spin projections (we consider
particles with spin 1/2). The susceptibility is maximum
at n = l and decreases as n approaches zero or 2l. Such
a behavior, in a sense, is similar to the de Haas–van
Alphen oscillations in electron gas with quantized Lan-
dau levels.

Of course, it is not practical to vary the radius of
confined geometry under the experimental conditions
and, hence, observe these oscillations. However, the
density of accessible states depends also on the particle
density which can easily be varied, e.g., in experiments
with dilute 3He–4He solutions. The oscillations in the
magnetic susceptibility with changing the density of
Fermi particles at various temperatures are shown in
Fig. 5 for the sphere of radius 25 Å. As the temperature
increases, the oscillations are blurred because of

Fig. 5. The magnetic susceptibility vs. the density of parti-
cles at various temperatures for a sphere of radius 25 Å.
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spreading the particle distribution over the energy lev-
els near the Fermi level.

Our calculations show that for the confined geome-
try of lower (axial) symmetry (typical, e.g., of the
experiments with liquid 3He in Vycor glass [10, 17])
these oscillations strengthen and a modulation appears
whose origin is yet to be clarified.

Note that recent experiments on the observation of
the “expelling” of quasiparticles of liquid 3He from the
pores of Vycor glass with a decrease in temperature
[17] were also explained by the confinement-induced
change in the density of states at the Fermi level.
A “semisuperfluidity” of liquid 3He in aerogel, recently
discovered in [18], also testifies to a considerable
change in the magnetic and orbital states of 3He in aero-
gel. Thus, further theoretical investigations of the effect
of geometric confinement on the properties of Fermi
systems seem to be quite topical.

To illustrate the effect of confined geometry on the
properties of a system of neutral Fermi particles, we
have considered in this study the model problem of an
ideal Fermi gas confined to a sphere, cube, and cylinder
of various sizes. These systems exhibit some effects,
such as the oscillations in magnetic susceptibility with
changing particle density, which indicate that the con-
fined geometry gives rise to the essentially new features
in the behavior of even the ideal systems. Evidently, the
inclusion of a real interaction between the neutral
Fermi particles will approximate the experimental con-
ditions occurring in the studies of liquid 3He in the con-
fined geometry. This is the subject of our further inves-
tigations.

This study was supported by the Russian Founda-
tion for Basic Research (project no. 99-02-17536), by
the Netherlands Organization for Scientific Research
(NWO, project no. 047-008-015), and by the Research
and Education Center REC-007. We are grateful to
L.R. Tagirov, M.S. Tagirov, and I.A. Fomin for discus-
sion.
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To the Memory of Our Contributors
PACS numbers: 01.60.+q
I.M. Beterov et al., Experimental Implementa-
tion of a Four-Level N-Type Scheme for the Obser-
vation of Electromagnetically Induced Transpar-
ency [JETP Lett. 71, 175 (2000)].

Igor’ Mendelevich Beterov, doctor of physics and
mathematics, professor, director of the Quantum Elec-
tronics Division at the Institute of Semiconductor Phys-
ics, Siberian Division, Russian Academy of Sciences,
suddenly died September 3, 1999.

Beterov was born June 7, 1942, in Ordzhonikidze.
After graduation from the Novosibirsk State University
in 1964, he took a position at the Institute of Semicon-
ductor Physics, Siberian Division, USSR Academy of
Sciences. He progressed from a senior laboratory
worker to the director of the division, combining his
work at the institute with teaching activity.

Beterov will be kept in colleagues’ memory as an
outstanding experimenter. He developed original meth-
ods of studying atomic photoionization processes, for
polarization nonlinear spectroscopy, and for infrared
and microwave spectroscopy of highly excited (Ryd-
berg) states. Beterov pioneered the studies of three-
level systems, one of the main present-day objectives of
laser spectroscopy. His works on tunable lasers, laser
studies of surface phenomena, and investigations into
multiphoton processes in atomic gases are widely
known.

Beterov was an organizer of several Vavilov Confer-
ences on Nonlinear Optics, held at the Novosibirsk
Akademgorodok, as well as International Conferences
and Workshops on Quantum Electronics. He was a
0021-3640/00/7212- $20.00 © 20621
member of the SPIE and the Rozhdestvenskiœ Optical
Society.

The Beterov’s achievements will remain a good
memory of this remarkable scientist and man.
Prof. Beterov’s death is a great and irreparable loss for
his collaborators and colleagues.

V.I. Mikhaœlichenko et al., Experimental Study of
the Subthreshold Production of K+-Mesons in Pro-
ton–Nucleus Collisions [JETP Lett. 72, 100 (2000)].

Vyacheslav Ivanovich Mikhaœlichenko, leading sci-
entific researcher of the Institute of Theoretical and
Experimental Physics, candidate of physics and mathe-
matics, suddenly died at the age of 61. After graduation
from the Moscow Institute of Engineering Physics, he
joined the laboratory of S.Ya. Nikitin at the Institute of
Theoretical and Experimental Physics, where he
worked all his life. Mikhaœlichenko organized data pro-
cessing from the USSR’s greatest two-meter liquid-
hydrogen bubble chamber and controlled all the results
obtained on it. He initiated interesting research into
physics of baryon and meson resonances involving
strange particles. In his final years, he participated in
the work of a research group on studying the subthresh-
old production of K mesons by nuclei and has made a
considerable contribution thanks to his erudition and
professionalism. The good memory of Mikhaœlichenko
will be kept for a long time in the hearts of his numer-
ous friends and collaborators.

Translated by V. Sakun
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