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Closed analytical expressions for the probability of multiphoton ionization of atoms and ions by a time-varying
electric field %(t) are obtained by the imaginary time method. These expressions apply for arbitrary values of
the Keldysh parameter γ. The dependence of the ionization probability and the photoelectron momentum spec-
trum on the shape of an ultrashort laser pulse is considered. © 2001 MAIK “Nauka/Interperiodica”.
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The generation of more and more intense electro-
magnetic fields is associated with the shortening of a
laser pulse [1–3] whose duration becomes comparable
with the optical period (see, e.g., [2–4] and references
cited in [4]), so that the spectrum contains many higher
harmonics. Being highly nonlinear, the multiphoton
ionization process [5–7] cannot be reduced to the sum
of contributions from individual harmonics. Besides,
the ionization probability and the momentum spectrum
of emitted photoelectrons depend strongly on the pulse
shape, especially in the region γ * 1. The revelation of
this dependence becomes necessary for the analysis of
experimental data.

In this connection, the problem of atomic ionization
in an arbitrarily time-varying electric field (uniform in
space and linearly polarized)

(1)

will be considered in this work. In Eq. (1), F is the field
amplitude, ω is its characteristic frequency, and t is the
dimensionless time; the function ϕ specifies the pulse
shape and satisfies the conditions ϕ(–t) = ϕ(t) and
|ϕ(t)| ≤ ϕ(0) = 1 at –∞ < t < ∞ (t = 0 is the time instant
where the field is maximal and an electron leaves the
barrier). The calculations are carried out by the semi-
classical imaginary time method [7, 8], which ade-
quately describes the tunneling of particles through
rapidly oscillating barriers. In this method, the subbar-
rier trajectories formally satisfying classical equations
of motion (but with imaginary “time”) are introduced.
The main (exponential) factor in the ionization proba-
bility is determined by the so-called extremal subbar-
rier trajectory, for which the imaginary part ImS of the
action function is maximal (and which determines,
according to Feynman [9, 10], the most probable trajec-
tory of the tunneling particle). To find the momentum

% t'( ) Fϕ t( ), t ωt'==
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spectrum of emitted electrons, the quadratic correction
∝ (p – pmax)2 to ImS should be calculated for a bundle
of classical trajectories close to the extremal one (see
[8, 11] for more details).

It is assumed that the conditions

(2)

ensuring the applicability of the semiclassical approach
to the multiphoton processes, are fulfilled. Here, K0 is
the multiquantum parameter, e is the reduced electric
field, I = κ2me4/2"2 is the ionization potential, and κ is
the characteristic dimensionless momentum in the
bound state.1 The tunneling process strongly depends
on the Keldysh parameter [5] γ:

(2')

where ωt is the tunneling frequency in the field F. In
what follows, atomic units are used: " = m = e = 1 (m is
the electron mass, and Fa = m2e5/"4 = 5.14 × 109 V/cm).

It is clear from physical considerations that the
extremal trajectory in field (1) is one-dimensional and
directed along the field. By solving the equations of
motion and evaluating ImS, one obtains for the proba-

1  For the ground states of neutral atoms, parameter κ varies from
0.535 for Cs (I = 3.89 eV) to 1.344 for He (I = 24.59 eV; see [12]
and [11, Table 1]). For the weakly bound states, it may be much
less than unity. For example, I = 0.754 eV and κ = 0.235 for the
negative hydrogen ion, I = 0.077 eV and κ = 0.075 for the He–

ion, etc. In these cases, the values of reduced field e and the ion-
ization probabilities markedly increase (at a fixed F value).
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bility of multiphoton ionization (to a preexponential
factor)

(3)

where p|| and p⊥  are, respectively, the longitudinal (with
respect to the field) and transverse momenta of the
emitted photoelectron and pmax is its most probable
momentum,

(4)

After determining the function χ(z) that depends on
pulse shape (1), the problem reduces to quadratures.
This function can be defined parametrically

(5)

where (t) ≡ ϕ(it). The last equation in (5) also deter-
mines the inverse function τ(z) = h–1(z) (in the implicit
form). The “initial moment” of the subbarrier motion of
an electron is

(6)

In the tunneling limit γ ! 1 (low-frequency laser
field), the ionization occurs at times close to t = 0.
Assuming that

(7)

at t  0, one finds from Eq. (5) that

(7')

Then, using Eq. (4), one obtains the expansions
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which permit the calculation of adiabatic corrections.
In the first approximation in γ2, the dependence of
Eq. (3) on the pulse shape is universal:

(9)

where a2 = –ϕ''(0) is the pulse curvature near its top. In

Eq. (9), ∆p⊥  ~ κ ! κ and ∆p|| ~ γ–1∆p⊥  ~ F/ω. In
this case, the longitudinal momentum of an electron is
much larger than its transverse momentum, because it is
accelerated along the slowly varying electric field %(t).

In the other limit (γ @ 1), it is convenient to recast
Eq. (3) in the form

(10)

where

In physical problems, the function f(γ) either tends to a
constant limit at γ  ∞ [if the function ϕ(t) has a sin-
gularity in the complex plane at a finite distance from
the real time axis] or increases logarithmically. Let us
consider some characteristic examples.

(1) Monochromatic laser light corresponds to ϕ(t) =
cost. In this case, χ(z) = (1 + z2)–1/2, and the integrals in
Eqs. (4) are tabular and give2 

(11)

2 A comparison with [5–7] demonstrates how much the use of
Eqs. (4)–(6) obtained by the imaginary time method simplifies the
calculation.
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(2) For a solitonlike pulse with ϕ(t) = 1/ , one
has χ(z) = (1 + z2)–1, whence

(12)

(3) For a Gaussian pulse, ϕ(t) = exp(–t2/2σ2), the
function χ(z) is found from the equation

(13)

where

is the well-known Doson integral. Further calculations
by Eqs. (4) are straightforward.3 

(4) For the pulse field

(14)

Eqs. (5) take the form

(15)

where 0 ≤ τ < 1 and F(…) ≡ 2F1(…) is the hypergeomet-
ric Gauss function. At γ  ∞, the initial point t0 =
iτ0(γ) approaches the singularity ts = i of field (14):

(15')

where k = [2α(α – 1)]–1/(α – 1). This example is typical for
those cases where the nearest singularity ts = iτs of the
field function ϕ(t) lies at a finite distance from the real
axis and is a pole (α = 1, 2, …) or a power-type branch
point. In this case, Eq. (10) takes the asymptotic form

(16)

and, therefore, wi = (p)d3p ∝  exp(–2K0τs), which is

much higher than the probability wi ∝  exp(–2K0ln2γ)
of ionization by the monochromatic field. The respec-
tive photoelectron distribution is nearly isotropic
(about the point pmax in the momentum space): ∆p|| ≈
∆p⊥  ~  ! κ.

3 Note that the individual terms in the expressions for f(γ) and g(γ)
at γ  0 tend to infinity (they cancel each other). For this rea-
son, to obtain the expansions in the adiabatic region γ ! 1, it is
more convenient to use Eqs. (8) than the exact formulas of the
type (11) or (12).
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An analytical solution is also possible for ϕ(t) =
1/ , (1 + t2)–1 (Lorentzian pulse shape), (1 –

t2)/(1 + t2)2, (1 + t2)–3/2, (  + β2 )–1 for 0 <
β < ∞, etc. For any physically reasonable pulse shape
ϕ(t), the numerical calculation by Eqs. (4)–(6) is not a
problem.

Let us now discuss the numerical results. Functions
g(γ) for several pulse fields are presented in Fig. 1,
where this function is also shown for a monochromatic
field for comparison (curve 1). The time axis is scaled
so that all pulses have the same curvature at the top
[ϕ''(0) = –1], which corresponds to passing from the

parameter γ to  = γ, where a2 is the coefficient in
Eq. (7). Figures 2 and 3 refer to a modulated light pulse
of the form

(17)

which is close to the real experiment. Here, one has for
small γ

(18)

With a decrease in σ, the pulse shortens; its amplitude
decreases by a factor of δ ≈ exp(–2π2/σ2) per one
period of the laser field. The functions g(γ) and f(γ) also
decrease, resulting, due to Eqs. (2), in a sharp increase
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Fig. 1. The functions g(γ) for the fields of form (1). Lines 1–3
correspond to the respective examples; (4) ϕ = (1 + t2)–3/2

and (5) ϕ = (1 + t2)–1. The scaled variable  = γ is

plotted on the abscissa, where a2 is the coefficient in expan-
sion (7).

γ̃ a2
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in the ionization probability, especially in the γ * 1
region (rapidly varying fields). As is seen from Fig. 1,
the same takes place when going from the monochro-
matic field to the pulse fields of various shapes concen-
trated at a finite time interval. Thus, the pulse shorten-
ing leads to an increase in the ionization probability.
Physically, this is caused by an increase in the weight
of higher harmonics ωn in the pulse spectrum, because
they can ionize atoms even in the first order of pertur-
bation theory if ωn > I (whereas monochromatic light
does not contain higher harmonics and, therefore, pro-
vides only the multiphoton ionization mechanism [5]).
For field (17), this becomes noticeable at σ & 10, when
the pulse covers N ~ 2σ/π ~ 5–10 periods of the laser
field. As for the pulse spectrum shape, it follows from
Fig. 3 that the dependence of the coefficient c1(γ, σ) on
parameter σ can be neglected if σ * 3 [the same is also
true for the coefficient c2 in Eq. (10)].

Similar results were obtained for the Lorentzian
envelope, i.e., for

(19)

Here, as also for Eq. (17), the ionization probability
monotonically increases with decreasing σ (i.e., with
pulse shortening—see Fig. 4). However, Eqs. (17) and
(19) are qualitatively different at large γ values, as
directly follows from the analytical properties of the
function ϕ(t) in the complex plane. Namely, the func-
tions f(γ, σ) in Fig. 2 increase logarithmically with γ
and tend to a constant limit f(γ, σ)  τs = σ/2 for
Eq. (19), as in the case of pulse (14).4 This is explained
by the fact that Eq. (17) is an entire function without

4 With an increase in σ, the region of establishing this asymptotic
behavior is shifted to larger γ values, and, for σ = ∞, one has
f(γ) = ln2γ – 1/2 + O(lnγ/γ2), in accordance with Eq. (11).

ϕ t( ) 1 2t/σ( )2+[ ] 1–
t.cos=

Fig. 2. The function f(γ, σ) from Eq. (10) for field (17). The
lines correspond to (from bottom to top) σ = 1, 3, 5, 10,
and ∞.

21

3

∞

singularities in a finite part of the t plane, whereas
Eq. (19) has a pole at the point t = ts = iσ/2.

It should be emphasized that Eqs. (4)–(6) allow the
calculation of all the quantities entering into the semi-
classical formulas for wi(p) for an arbitrary pulse %(t)
and for any γ value, thereby providing the possibility
for a detailed comparison of multiphoton ionization
theory with experiments with strong fields and ultrashort
pulses.5 

Note in conclusion that the imaginary time method
can also be applied to the problem of electron–positron
pair production from vacuum in the presence of a time-
varying electric field (1). This problem formally differs
from the problem considered above in that the subbar-
rier electron motion between the boundaries of the
lower and upper continua is essentially relativistic and
should be treated with the relativistic Lagrangian L =

−m  + e%(t)x. In this case, the differential prob-
ability of pair production is represented by Eq. (3), in
which the coefficient 2/3 is replaced by π; e = F/F0,
where F0 = m2c3/e" is the “critical,” or Schwinger, field
[14], typical for QED; γ = mcω/eF; and

(20)

while the expressions for the coefficients b1(γ) and b2(γ)
are not presented. The similarity to Eq. (3) is apparent
if it is considered that both formulas include the same
functions χ and τ, which are uniquely determined by
field shape (1), and that χ(z) = τ'(z). However, the

5 For monochromatic laser radiation, the energy, momentum, and
angular distributions of photoelectrons were studied in detail in
[13] over the entire range of the Keldysh parameter γ.
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Fig. 3. The coefficient c1 of the momentum spectrum vs. the
parameter γ. The numbers near the lines are the σ values in
Eq. (17).

∞
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MULTIPHOTON IONIZATION OF ATOMS 5
parameters F0 and γ have quite a different order of mag-
nitude, as compared to those in the atomic problem:
F0/Fa = ("c/e2)3 ≈ 2.6 × 106. An immense value F0 =
1.32 × 1016 V/cm indicates that the observation of this
process is as yet far beyond the possibilities of experi-
ments. However, in solid-state physics and, in particu-
lar, for semiconductors, the following dispersion law is
used [5]:

(21)

where m* is the effective mass and ∆ is the band gap

separating the valence band from the conduction band.
Formally, Eq. (21) has the same form as the formula

ε(p) =  for a free particle in relativistic
mechanics. Therefore, after changing notations, formu-
las of type (20) can be used in the theory of multiphoton
ionization of semiconductors by a laser pulse. For a
monochromatic light field, this was already done in [5].

After this paper had been finished, it came to my
attention that similar problems were considered in [4],
where, in particular, solitonlike, Gaussian, and Lorent-

ε p( ) ∆ 1 p2/m*∆+( )1/2
,=

m2 p2+

Fig. 4. The function f(γ, σ) from Eq. (10) for a light pulse
with Lorentzian envelope (19). The lines correspond to
(from bottom to top) σ = 1, 2, 2.5, 3, 4, 5, 6.67, 10, 20, and
∞ (σ is the width of envelope at half maximum).

∞f
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zian pulses were analytically and numerically analyzed
by a different method. I am grateful to L.V. Keldysh for
leaving the manuscript [4] for me to read and for stim-
ulating discussion; to S.P. Goreslavskiœ, V.D. Mur, and
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nyakov for numerical calculations; and to N.S. Libova
and M.N. Markina for assistance in manuscript prepa-
ration. This study was supported in part by the Russian
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1. Rydberg matter at T = 0. The concept of “Ryd-
berg matter” is developed in [1–6]. By this term is
meant a crystal at T = 0 formed from highly excited
atoms (with the same principal quantum number n).
The formulation of the mechanism responsible for the
metastability of the Rydberg matter to the radiative
recombination is a crucial achievement of the authors
of [1–6]. The point is that the authors of [1–6] have rec-
ognized that the electron density distribution in the
Rydberg matter is highly nonuniform: electrons are at
the periphery of the Wigner–Seitz cell. Moreover, the
domain of their residence is separated from the central
region by a potential barrier. Therefore, the atomic
ground-state wave functions do not overlap with the
valence states of the Rydberg matter. Accordingly, the
matrix element for the radiative recombination is virtu-
ally zero. The recombination proceeds only through the
intermediate tunneling transition to the center of the
Wigner–Seitz cell; i.e., it is slow, which is necessary for
the metastability. The stability to Auger processes was
also analyzed.

In [1–6], the principal quantum numbers were n =
10–20; i.e., the density of the Rydberg matter was equal
to 1019–1016 cm–3. In other words, the Rydberg matter
is a condensed state with gas density.

2. Experimental observations. The results [7, 8]
are considered as an evidence for the existence of long-
lived low-density condensed states. The concepts
developed in [1–6] are compared with the observations
[7, 8] in [5, 9].

A setup based on a thermionic converter was
designed in [7, 8]. A container with metallic cesium at
T = 400–420 K served as a source of cesium atoms. The
excited cesium atoms were emitted from a graphite foil,
T = 1300 K. The cesium atoms were excited upon
impact on the emitter. The flux of excited atoms from
the emitter was as high as 1015 cm–3 s–1. In addition to
the cesium atoms, clusters of approximately forty thou-
sand cesium atoms were detected in the flux. These
0021-3640/01/7301- $21.00 © 20010
clusters were subsequently collected onto a trap cooled
with liquid nitrogen. The resulting microflashes were
about 0.5 mm in diameter and had a density of approx-
imately 1018 cm–3, i.e., typical of gas.

3. Phase state. The lifetimes of the microflashes
observed in [7, 8] were equal to tens of seconds and
even minutes before their radiative deexcitation. This is
much longer than the time of establishing equilibrium
over the internal degrees of freedom. One can thus
introduce the notions of temperature, pressure, and spe-
cific volume, i.e., standard thermodynamic parameters.
Since the energy was not delivered under the conditions
of observation of the clusters and microflashes, the
microflash state can be related to the metastable states
that are considered in thermodynamics.

Point B in Fig. 1 corresponds to the observations
[7, 8]. It is plotted on the conventional cesium phase
diagram [10, 11] in density–temperature coordinates.
The measured density is assigned to the final tempera-
ture of 70 K, while the initial state A is conventionally
assigned to the temperature 1300 K and a slightly lower
density, both points being connected by the assumed
AB curve of the cooling process.

One can hardly expect that the metastable states are
represented by a single point or curve. The authors of
[7, 8] also assume that the Rydberg matter exists in a
certain finite range of densities (or quantum numbers
n = 10–14). For this reason, the metastable states in
Fig. 1 are represented by a certain conventional region
bounded by the dashed line. At low densities, this
region is bounded due to the bond energy decrease that
was found in [1–6]. The transition to higher densities
would mean the transition to smaller n values. As a
result, the boundary of the Wigner–Seitz cell
approaches the central region, and the conditions ensur-
ing, according to [1–6], the stability to radiative recom-
bination are lost. At high temperatures, the region is
bounded by the absolute level of bond energy that was
found in [1–6].
001 MAIK “Nauka/Interperiodica”
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4. Isolated segment of isotherm. Point A in Fig. 2
corresponds to the observations [7, 8] and is plotted on
the cesium phase diagram [10, 11] in density–pressure
coordinates. This point [7, 8] is assigned a pressure of
1 torr. This value belongs to the pressure range that is
typical of thermionic converters. The isotherm (abcd +
eAf ) is schematically drawn for the conventional tem-
perature of 1300 K. The eAf segment of the isotherm is
bounded from the left by the point where (dP/dv)T = 0
and from the right by the loss in stability against radia-
tive recombination. As in Fig. 1, the possible metasta-
ble states are represented in Fig 2 by a certain conven-
tional region bounded by the dashed line. Therefore, it
follows from the results [7, 8] that an isolated segment
eAf of metastable states exists at T = 1300 K, in addition
to the main isotherm branch abcd. The same segments
occur for any temperature near 1300 K and below.

The notion of isolated metastable segment of the
P(v) isotherm was introduced in [12] and discussed
later in [13, 14]. The metastable states were considered
for a supercooled nonideal plasma. The hypothesis
[12–14] was based on the assumption about plasma
phase transition [13, 15] (see also [16–18]). According
to these ideas, the phase transitions may occur as a
result of the competition between the Coulomb attrac-
tion of charges and their quantum repulsion at small
distances. The situation is quite similar to the van der
Waals equation, for which the phase transition is a
result of the competition between the long-range attrac-
tion of molecules and their short-range repulsion. The
only distinction is that plasma contains two sorts of

Fig. 1. Cesium phase diagram in density–temperature
coordinates. Standard phase diagram: solid line is the liq-
uid–saturated vapor coexistence curve; K is the critical
point. Schematic representation of metastable states: A
and B are the experimental microdrop states; AB arrow is
the cooling path; dashed line bounds the isolated region of
existence of the homogeneous metastable states of non-
ideal plasma.
JETP LETTERS      Vol. 73      No. 1      2001
charged particles: electrons and ions, which, moreover,
are in equilibrium with the particles of the third sort—
atoms. The latter were assumed in [15] to be an ideal
gas. Contrary to [15], the phase transition [15] consid-
ered in [12–14] occurs in the region where atoms do not
form an ideal gas. For this reason, the phase transition
[15] may disappear, while the segment of metastable
states may be retained. Estimates show that such a seg-
ment may occur in the isotherms of various substances,
e.g., air [12, 14] and cesium [13] at temperatures close
to room temperatures.

Turning back to Figs. 1 and 2, let us emphasize that
the solid curve passing through point K separates the
regions of two-phase (below the curve) and one-phase
(vapor on the left, liquid on the right, and fluid above)
states. The dashed lines bound the region of existence
of the homogeneous metastable states. This region
superposes on the stable (one- or two-phase) states.
Thus, the states bounded by the dashed lines are two-
valued. For instance, rarefied vapor a coexists with a
much denser nonideal plasma state A at the same pres-
sure and temperature. The possibility of such a metasta-
ble state A coexisting with the stable state was dis-
cussed in [12, 13]. States like supercooled vapor or
superheated liquid are absent because they cannot
coexist with the stable state.

5. Unified approach. An analysis of the hypothesis
[1–6] shows that it does not address the crystallinity of
the Rydberg matter, because the calculations are based
on the use of a density functional, while the Wigner–
Seitz cell is taken to be spherical. Hence, the same cal-

Fig. 2. Cesium phase diagram in density–pressure coordi-
nates. The solid line, the point K, the triangle A, and the
dashed line denote the same as in Fig. 1. 1300 K isotherm,
abcd: (ab) vapor, (bc) two-component region, and (cd) liq-
uid. eAf is the isolated segment of metastable states; points a
and A correspond to the same pressure.
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culation may apply, with no changes, to the system with
short-range order, dealt with in [12–14]. The only mod-
ification is that the radius of the Wigner–Seitz cell
should then be equated to the mean distance between
the charges rather than to the radius of the excited state.
The estimate of the Madelung energy [12–14], like esti-
mate [1–6], is independent of temperature, so that the
approach [1–6] can be regarded as a quantum refine-
ment of the classical Madelung estimate.

Although the radiative instability [1–6] is disre-
garded in the hypothesis [12–14], it can naturally be
included in this hypothesis. Conversely, the concept
[12–14] can be included in the hypothesis [1–6]. Both
approaches complement each other and can be com-
bined into a unified approach, which may lay claim to
the theory of supercooled metastable dense-plasma
states. These are the states of the type of condensed
matter plasma with a density several orders of magni-
tude lower than the metal density. Accordingly, the
degeneracy temperature becomes lower than its normal
value. The experimental results [7, 8] can be considered
as the confirmation of both concepts [1–6] and [12–14].
The metastable states may occur in the disordered (liq-
uid) state at relatively high temperatures and in the
crystal state at low temperatures.

6. The Manykin, Ozhovan, and Poluéktov Rydberg
matter [1–6], the microflashes of Holmlid et al. [7, 8,
19, 20], and the plasma phase transition [12–14] are
different facets of the same phenomenon. The presence
of an isolated region of metastable nonideal plasma can
hardly be restricted to cesium alone. The authors of
[12–14] and [1–6] considered this to be the general
property. The authors of [7, 8] also observed micro-
drops for various substances other than cesium. One
can expect that the isolated regions of metastable states
of nonideal plasma are present in a broad range of
phase diagrams. This region superposes on and supple-
ments the standard phase diagrams.

I am grateful to É.A. Manykin for discussion of the
results. This work was supported by the Russian Foun-
dation for Basic Research, project no. 00-02-16310.
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The phase composition of Ti–C films (with the carbon content varying from 50 to 100 at. %) is studied by elec-
tron diffraction. The films are obtained by C and Ti ion sputtering followed by vapor deposition in the regime
of the lowest possible supersaturation. It is found that the condensation in a certain proportion of components
leads to the formation of a TiC2 compound, which has the bcc lattice with a period of 0.294 nm. When the car-
bon content is increased above 64 at. %, a transition to the diamond phase is observed. © 2001 MAIK
“Nauka/Interperiodica”.

PACS numbers: 68.55.Nq; 81.15.-z; 61.14.-x
Among the known low-temperature ion technolo-
gies used for obtaining diamond and diamondlike car-
bon films, three directions can be distinguished [1]. The
first of them includes the sequential processes of graph-
ite ion sputtering, vapor deposition, and formation of
condensates whose structure is then transformed to the
diamond phase upon fast heating and cooling by elec-
tron beams. In the second direction, the transformation
of graphite films to the diamond phase occurs under the
action of ion beams in the process of ion sputtering and
deposition of carbon. And, finally, the third direction
includes the technologies that are based on the synthe-
sis of diamondlike films obtained by the deposition of
carbon ions with energies of 80–110 eV on a substrate.
It is stressed in [2] that the main general condition for
the formation of diamond and diamondlike phases in
ion technologies is that the processes occur at high
supersaturations, to increase the probability of diamond
nucleation. In our opinion, the latter statement is not
always true, because the vapor deposition at an infi-
nitely low supersaturation leads to an increase in the
contribution of the diffusion processes to the structure
formation, while these processes should also stimulate
the diamond nucleation. In this paper, we study the pro-
cess of structure formation in the films of the Ti–C sys-
tem obtained by vapor condensation in the regime of an
infinitely low supersaturation and with the carbon con-
tent varying from 50 to 100 at. %.

Experimental technique. It is known [3] that, in
contrast to thermal evaporation, ion sputtering provides
0021-3640/01/7301- $21.00 © 20013
film deposition at a vapor supersaturation as small as
one likes. This fact allows one to obtain infinitely low
rates of film growth, and it is used as the basis for our
experiment.

At the first stage of the experiment, the films of the
Ti–C system were obtained with the help of two mag-
netron sputterers whose axes were oriented at an angle
of 30° to each other and lay in one plane. One of the
magnetrons was used for the carbon sputtering, and the
other for the titanium sputtering. The orientation of an
oblong substrate holder relative to the sputterers made
it possible to vary the chemical composition of the con-
densates from 10 to 80 at. % of carbon. The deposition
temperature varied from 60 to 500°C. Thin films were
condensed on cleaved KCl facets and then, after the
dissolution of the substrate, were studied by electron
microdiffraction. To study the microhardness as a func-
tion of the chemical composition, we fabricated coat-
ings 10–18 µm thick on oblong glass substrates, which
were positioned along the axis of the substrate holder.
To determine the behavior of the microhardness as a
function of the chemical composition more accurately,
we used a diamond indenter to make a scratch along the
sample, the width of the scratch being determined by a
scanning electron microscope. To determine the micro-
hardness value with higher accuracy, we made, in addi-
tion to scratching, a microhardness indentation. Using
the ratio between the microhardness values obtained
with these two methods, we refined the numerical data
on microhardness obtained from scratching.
001 MAIK “Nauka/Interperiodica”
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On the basis of the thickness distribution obtained
for the Ti and C coatings deposited in equal time inter-
vals with each of the two sputterers operating sepa-
rately, we estimated the variations in the component
concentrations along the axis of the substrate holder. To
obtain the Ti–C coatings for the subsequent studies, we
set the sputterers in the operating modes identical to
those used in the determination of the chemical compo-
sition.

A serious technological problem that is encountered
in the deposition of films with the lowest possible
growth rates is the interaction of Ti with chemically
active residual gases, which competes with the carbide
process. Therefore, we paid special attention to the
optimization of the vacuum conditions of condensate
formation. Argon (used in our experiment as working
gas) was subjected to a thorough cleaning, which
allowed the partial pressure of chemically active gases
to be maintained at a level not exceeding 10–6 Pa during
the entire technological process. To test the vacuum
conditions of film deposition, we studied the phase
composition of Ti films deposited with low growth rates
[4]. The condensates obtained under these conditions
had an α-Ti face-centered close-packed lattice, which,
with allowance for the getter properties of Ti, confirmed
that the partial pressures of chemically active gases were
sufficiently low. At the second stage of our studies, the
films were deposited by a single-magnetron sputtering
of a composite target consisting of Ti and C.

Results and discussion. In the case of film deposi-
tion by the two-magnetron sputtering with condensa-
tion temperature Tcond ~ 60°C followed by the anneal-
ing of the condensates at T = 430°C for 3 h, we
observed no deviations from the constitution diagram
of the Ti–C system [5]. This fact indirectly confirms the
validity of the calculated chemical composition. At
higher condensation temperatures, the phase composi-
tion of the films remained coincident with the constitu-
tion diagram of the Ti–C system up to Tcond ~ 350°C. At

Fig. 1. Microhardness of Ti–C coatings as a function of the
carbon concentration.

C, at. %
the same time, with an increase in the carbon content
above 55 at. %, the microhardness decreased and the
dispersivity of films increased. The electron diffraction
studies showed that, when the carbon content in the
films exceeded 65 at. %, the period of the fcc lattice of
TiC increased to ~4.55 Å. Such a noticeable increase in
the lattice period presumably testifies to the formation
of interstitial defects upon the deposition of high-
energy atoms that are always present in the sputtered
vapor flow [3]. We also note that, as the carbon concen-
tration grows and becomes higher than 60 at. %, the
intensity of the diffraction lines gradually decreases
and the background due to the diffusion scattering of
electrons increases. All these facts testify to an increase
in the concentration of free carbon.

At Tcond ~ 400°C, the mechanism of structure forma-
tion changes. In the region with a carbon content of
about 65 at. %, a considerable growth of microhardness
is observed (Fig. 1) and, simultaneously, three rela-
tively intense but broadened lines of the bcc lattice with
a period of ~0.3 nm appear in the electron diffraction
patterns. The dynamics of the changes occurring in the
film phase composition with an increase in the carbon
content from 50 to 65 at. % is shown in Figs. 2a–2c.

To verify the fact of the bcc lattice formation, the
film growth was also performed by using only one mag-
netron with a composite target of Ti and C. The neces-
sary geometry of the composite target was calculated
by a special technique and provided the vapor flow with
the carbon contents of ~66 and 82 at. %. In this case, the
film growth rate was reduced by approximately a factor
of 60 (to 0.008–0.01 nm/s), and the condensation tem-
perature was Tcond ≈ 500°C. Simultaneously, the partial
pressure of chemically active gases was reduced to
8 × 10–8 Pa. Such extreme conditions made it possible
to obtain the bcc lattice in the pure state, with a simul-
taneous considerable decrease in both dispersivity
(Fig. 2d) and lattice period (to 0.294 nm). At the carbon
content of 82 at. %, the electron diffraction patterns
show the lines belonging to the diamond phase
(Fig. 2e). In this case, the diffraction peaks corre-
sponding to the (111) and (220) planes of the diamond
phase are superimposed on the diffraction peaks of the
(110) and (211) planes of the bcc phase. This results in
a relative growth of the intensities and a broadening of
the corresponding lines in the electron diffraction pat-
tern.

Using one magnetron and a pure carbon target with
the technological parameters of the preceding experi-
ment, we obtained films containing a diamond phase
(Fig. 2f).

From the experimental results described above, we
can draw the following conclusions:

(1) the chemical composition of the bcc phase
approximately corresponds to the TiC2 compound.
JETP LETTERS      Vol. 73      No. 1      2001
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Fig. 2. Phase composition of Ti–C films with different carbon contents: (a) ~50, (b) 58, (c) 65, (d) 66, (e) 82, and (f) 100 at. %.
(2) the formation of the bcc phase is accompanied
by an increase in the microhardness.

Using these experimental data, we constructed the
TiC2 lattice shown in Fig. 3. In essence, this lattice is a
result of the introduction of four carbon atoms into the
interstitial positions of the TiC fcc lattice. The transi-
tion from TiC2 to the diamond phase with decreasing
titanium concentration is presumably caused by the
compression of the carbon sublattice to the diamond
form.

The crystallographic density of TiC2 is 2350 kg/m3.
In the case under study, a decrease in Tcond, an

increase in the film growth rate (i.e., in the supersatura-
tion), and an increase in the partial pressure of chemi-
cally active gases lead to an increase in the dispersivity
and to the appearance of the graphite phase. Presum-
ably, the presence of atoms with higher energies in the
ion-sputtered vapor flow is also the necessary condition
for the formation of the diamond phase and TiC2. Pos-
sibly, heating of the growth surface by secondary elec-
trons and stability of the technological process are cru-
cial factors as well.

It should be noted that the possibility of the exist-
ence of TiC2 was considered earlier. In studying the
reaction products of ethylene with titanium tetrachlo-
ride at high temperatures [6], it was found that the con-
tent of bound carbon in this product was higher than
JETP LETTERS      Vol. 73      No. 1      2001
50 at. %. It was assumed that the resulting carbide had
a TiC2 composition and a cubic lattice of the CsCl type
with a period of 0.313 nm. However, these results were
not confirmed by the subsequent studies [7]. The phase

Fig. 3. Structure of the TiC2 lattice.
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observed in [6] could presumably be a transition phase
between TiC and TiC2.

Thus, the increase in the contribution of the diffu-
sion process to the formation of a film structure extends
the technological possibilities for obtaining the dia-
mond phase and its associates.
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The most prominent features of the behavior of domain structures of the “driving center” type were obtained
within a simple phenomenological model. It was shown that the external field frequency is a stabilizing factor
for such systems. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.60.Ch
An excited state of a multidomain medium, named
the Anger state, was found when studying garnet ferrite
films with perpendicular anisotropy in an audio-fre-
quency alternating magnetic field [1]. In this state,
moving domain walls are self-organized to form diver-
sified stable dynamic domain structures. For example
[2, 3], dynamic systems of concentric circular domains
arise on some local defects of the sample at certain val-
ues of the amplitude and frequency of a field perpendic-
ular to the film surface. These domains propagate from
the center with small velocity. Such a dynamic domain
structure was named “driving center.” Several driving
centers may exist simultaneously in a sample, and the
most active driving center may contain more than
30 circles. The rate of change in radii of domain walls
and their number in a driving center depend on the field
amplitude and frequency.

At present, there is no theory that would describe the
process of formation and development of driving cen-
ters or even the amplitude–frequency domain of exist-
ence of the dynamic domain structures of this type.
Static properties of systems of concentric circular
domains were studied theoretically in [4, 5].

The aim of this work is to explain some features of
dynamic domain structures of the driving center type.
For this purpose, it is suggested that the existence of
driving centers is primarily caused by the dynamic sta-
bility of the system of concentric circular domains
rather than the features of magnetization reversal pro-
cesses on a defect. Then, the amplitude–frequency
domain of existence of driving centers must be the
domain of stability for the systems of concentric circu-
lar domains. A defect is merely a source of circular
domains whose formation mechanism is an indepen-
dent problem, whereas the influence of a defect on the
stability of the systems of concentric circular domains
still remains to be clarified. Thus, to determine the
amplitude–frequency domain of existence of driving
centers, one should study the stability of systems of
0021-3640/01/7301- $21.00 © 0017
concentric circular domains rather than the conditions
for magnetization reversal on a defect.

A phenomenological dissipative model was chosen
as a basis for calculations. The geometry of the problem
is shown in Fig. 1. It was assumed that the thickness of
domain walls equals zero, and their effective mass is
expressed in terms of the Döring mass. It was also
assumed that a moving domain wall experiences a fric-
tional force proportional to the velocity of motion (vis-
cous friction) and a frictional force due to the interac-
tion of the domain wall with inhomogeneities and
defects (coercive force). These forces were expressed
through a dissipative function of the following form:

Here, the following notation is introduced: M is the
magnetization, µ = γ∆0/α is the domain wall mobility,
α is the viscous dissipation factor, γ is the gyromagnetic

ratio, ∆0 = , A is the exchange interaction con-
stant, K is the uniaxial anisotropy constant, Hc is the
coercive force, and N is the number of domain walls in
the system of concentric circular domains. The first
term in this expression is the Rayleigh dissipative func-
tion for a system of circular domain walls, and the sec-
ond term describes the friction associated with the pres-
ence of defects and inhomogeneities, also for a system
of N circular domain walls.

The equation of motion in a dimensionless form for
an arbitrary kth domain wall was obtained from the
Lagrange equation with allowance made for energy dis-
sipation. The conversion to dimensionless quantities
was carried out by dividing the energies by (2πM)2L3

and by introducing “dimensionless time” τ = ω0t and
dimensionless variables Rk = rk/L. In this notation, the
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dissipative function takes the following form:

where ω0 is the frequency of external field and hc =
Hc/4πM is the reduced coercive force. The kinetic
energy in the Lagrangian was determined by the equa-
tion

The total potential energy of an isolated system of con-
centric circular domains in an infinite film (minus the
energy of the film magnetized to saturation) was
described by the equation given in [5]:

where  = l/L = σ0/2πM2L is the reduced characteristic
length; σ0 is the energy density of domain wall

ρ = Mdef/M is the “magnetic charge” of the defect; J0
and J1 are, respectively, the zero-order and first-order
Bessel functions of the first kind; and h(τ) = H(τ)/4πM
is the reduced external magnetic field. The first term in
the expression for the potential energy is the wall
energy, the second term describes the energy of interac-
tion with the external field, and the remaining terms
represent the magnetostatic energy of a system of N
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Fig. 1.

M M
concentric circular domain walls with a defect with
irreversible magnetization at the center of the system.

The following equation of motion was obtained for
the kth domain wall:

(1)

where

In compliance with the experimental data [1, 2], the
following values were used in calculations: M = 11 G,
L = 10–3 cm, l = 10–4 cm, and ∆0 = 1.3 × 10–6 cm.
Assuming that γ ≈ 2 × 107 Oe–1 s–1 and α2 ≈ 0, we find
that β1 is seven orders of magnitude smaller than β2.
Therefore, the terms in Eq. (1) with the coefficient β1
can be omitted in the first approximation. That is, the
inertial effects were not taken into account. The model
was further simplified by excluding from consideration
both the coercivity of the walls and the defect at the

center of the structure. Thus, the equation β2  +
Fk(Rk, τ) = 0 was used for calculations and solved
numerically by the fourth-order Runge–Kutta method.
The integrals of the form

were either tabulated beforehand or approximated by
the expression

The number of domain walls N, the field amplitude h,
the field frequency ω0, the character of field variations
(sinusoidal or sawtooth oscillations), and the parameter
β2 were varied in calculations.

The dynamics of a system of concentric circular
domains with N = 2, that is, a single circular domain,
was initially studied. The calculation shows that, at
small β2 (!0.01), the walls move synchronously in uni-
polar sinusoidal and sawtooth fields, the width of the
circular domain remains unchanged, and the circle rap-
idly shrinks and collapses. At large β (≈0.01), the
domain walls move nonsynchronously. As the field
increases, the radius at the inner wall decreases, and the
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Fig. 2. Time dependence of the reduced radii of domain walls (R) in a system of four driving center (field amplitude h = 0.88): ω =
(a) 20 and (b) 50 kHz.
radius at the outer wall remains unchanged. Con-
versely, as the field decreases, the radius at the inner
wall remains unchanged, and the radius at the outer
wall decreases. Previously, the same behavior of a cir-
cular domain was observed in orthoferrite plates placed
in a unipolar alternating magnetic field [6, 7]. The
dynamics of an isolated circular domain was also con-
sidered with inclusion of inertial effects; however, no
qualitative difference was found, giving additional evi-
dence in favor of the approximation chosen.

The behavior of a system of concentric circular
domains in an alternating sinusoidal field (without
magnetic biasing) was studied for various numbers of
domain walls in the system. No significant qualitative
difference was found in the behavior of a circular
domain and a system with a large number of walls. The
following stability test was used: if the radii of the
neighboring domain walls are not equal and do not van-
ish at the initial stage of their existence, the system is
assumed stable. It was found that an increase in fre-
quency at a constant field amplitude may enhance the
stability of systems of concentric circular domains. The
variation of their radii with time is shown in Fig. 2 for
a system of four domain walls. The field amplitudes in
Figs. 2a and 2b are equal; however, the field frequency
is 20 kHz in Fig. 2a and 50 kHz in Fig. 2b. Figure 2a
demonstrates that the radius of the inner wall becomes
equal to zero at a certain instant of time. According to
the test chosen, this points to the instability of the sys-
tem at this frequency. The radius of the inner wall
becomes different from zero only after the outer walls
have moved outward to a certain distance. The radii of
all walls in Fig. 2b are different from zero; that is, an
increase in the field frequency enhanced the stability of
this system of concentric circular domains. A compari-
son of Figs. 2a and 2b indicates that the amplitude of
domain wall oscillations decreases as the frequency of
the external field increases. The outer size and, hence,
its growth rate also decrease. A calculation shows that
the system loses stability above a certain field ampli-
tude. However, an increase in frequency restores the
JETP LETTERS      Vol. 73      No. 1      2001
system to a stable state. The dependence of stability on
the field amplitude and frequency found here can be
explained as follows: the increase in frequency leads to
a decrease in the amplitude of wall oscillations; hence,
the average distance between walls becomes larger in
one period of field oscillation; that is, the walls have no
time to collapse. Conversely, an increase in the field
amplitude increases the amplitude of domain wall
oscillations, resulting in their collapse; that is, the sys-
tem loses stability.

The calculated curves for the upper bound (with
respect to the field amplitude) of domain of stability are
presented in Fig. 3 as functions of frequency for sys-
tems with various numbers of domain walls. This figure
demonstrates that the system with N = 2 is unstable at a
frequency of 20 kHz if the reduced field amplitude is
h = 0.54, but it will be stable at this amplitude if the fre-
quency is increased up to 25 kHz. A similar behavior is
observed experimentally in [1, 2].

Figure 3 also demonstrates that, at a fixed frequency,
the field oscillation amplitude at which the system still
remains stable decreases with increasing number of
domain walls. Consequently, the number of domain

Fig. 3. Upper bounds of the amplitude–frequency domain of
existence of a system of concentric circular domains con-
taining two, four, six, and eight domain walls.
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walls in a system of concentric circular domains will
decrease if the field amplitude is increased at a constant
field frequency. This decrease in the number of domain
walls in a driving center upon an increase in the field
amplitude is also observed experimentally [3].

According to Fig. 3, the system becomes unstable as
the field amplitude reaches a certain value (at a fixed
frequency); that is, the radius of the inner wall becomes
different from zero only a certain time after switching
on the field, as is shown in Fig. 2a. This means that the
new wall forms in a longer time than at smaller ampli-
tudes. A decrease in the frequency of driving center
“operation” (the frequency of the formation of new
walls) with increasing pumping field amplitude was
also observed experimentally [2]. The results displayed
in Figs. 2 and 3 were obtained for β2 = 10–6. This value
corresponds to the garnet ferrite films used experimen-
tally. A calculation shows that an increase in β2
enhances the stability of the system. Thus, for example,
the system at a fixed frequency will be stable at large
amplitudes in films with large β2.

A number of the most prominent features of the
behavior of a driving center can be explained using the
frequency dependence of the upper bound (for the field
amplitude) of the stability domain of a system of con-
centric circular domains, calculated for various N. This
demonstrates the effectiveness of the approach chosen
and leads to the conclusion that the amplitude–fre-
quency domain of existence of a driving center is the
domain of its dynamic stability. It should especially be
noted that the pumping field frequency is a stabilizing
factor for a system of dynamic concentric circular
domains.

This work was supported by the US Civilian
Research & Development Foundation for the Indepen-
dent States of the Former Soviet Union, project
no. REC-005.
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Structure of the Intersubband Collective Excitations
in Quasi-Two-Dimensional Systems in a Magnetic Field
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The spectrum of intersubband collective spin- and charge-density excitations is calculated for a system of quasi-
two-dimensional electrons with ν ≤ 10 (ν is the filling factor) in a magnetic field. The transitions both without
changing the Landau level and with its change (Bernstein modes) are considered. All excitations are shown to
have a multimode structure, the number of modes being determined by the filling factor. The dispersion and
interaction of small-quasimomentum collective excitations are also considered. The possibility of observing the
multimode structure is predicted. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.20.Mf
Quasi-two-dimensional electron systems have been
an object of investigation over the last several decades.
Of particular interest are the collective excitations spe-
cific to these systems and caused by the presence of
several size-quantization subbands. Charge-density
excitations (CDEs) and spin-density excitations (SDEs)
are the main collective excitations associated with the
intersubband transitions. They were rather thoroughly
studied, both theoretically and experimentally, in the
absence of a magnetic field [1–8]. The theoretical meth-
ods of their description include the random phase
approximation (RPA) [1, 2], the local density approxi-
mation (LDA) [3, 4], and the direct variational methods
[5–7].

For the quasi-two-dimensional systems in a mag-
netic field, both the fundamental excitations without
changing the Landau level (CDEs and SDEs) and the
combined intersubband-cyclotron Bernstein modes
(ISBMs) were considered [9–14]. The theoretical
approach to this problem within the framework of RPA
and LDA [9, 10] does not explain all the experimental
results obtained in recent years by the Raman scattering
technique [12–14]. For instance, the study of the CDEs
and SDEs in strong magnetic fields [14] has revealed a
new nonpolarized line that appears at ν = 2 near the
SDE line and persists at ν ≥ 2.

In my previous work [15], the spectrum of intersub-
band collective excitations was calculated for ν ≤ 4 in
the strong field limit by the direct method in the Har-
tree–Fock approximation. It was shown that two
closely spaced lines appear at ν = 2, in accordance with
the results obtained in [14].

In this work, the method suggested for calculating
the collective excitations in strong magnetic fields is
applied to the spectra of intersubband excitations of
0021-3640/01/7301- $21.00 © 20021
various types over a wide range of magnetic fields for
different quasimomenta. The spectra of intersubband
excitations are calculated for small k values, ν ≤ 10,
and ∆n = 0, ±1, and ±2 (∆n is a change in the Landau
level number). It is shown that both the Bernstein
modes (excitations with ∆n ≠ 0) and the ∆n = 0 excita-
tions have a multimode structure; the new modes
appear upon filling the new Landau level. Quasimo-
mentum dependence is considered for the new modes,
and comparative intensities are estimated for the
Raman scattering from various modes.

The spectrum of intersubband collective excitations
is calculated as a function of magnetic field H under the
following conditions:

(1) The system contains two size-quantization sub-
bands, and the influence of the remaining subbands is
ignored. The density ns of two-dimensional electrons is
such that the lower subband E0 is filled, while the next
E1 is empty. The energies E0 and E1 are calculated in the
Hartree approximation, and E10 = E1 – E0.

(2) Magnetic field H is applied perpendicularly to
the two-dimensional layer. The range of magnetic fields
corresponds to ν ≤ 10.

(3) Only the processes without spin flip are consid-
ered; for simplicity, the electron g factor is assumed to
be zero (µ0g ! T, where T is temperature), but spin
degeneracy is taken into account.

(4) The long-wavelength limit ka ! 1 and kaH ! 1
[a is the width of quantum well, and aH = ("c/eH)1/2 is
the magnetic length] is considered.

(5) Energy scales are such that δE ! T ! ∆E (∆E is
the characteristic spacing between the levels in the sys-
tem, and δE is the impurity-induced width of the Lan-
dau levels).
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The energies of collective excitations are deter-
mined by the poles of the total polarization operator
Π(k, ω). Since the intersubband and intrasubband exci-
tations can be considered independently in the long-
wavelength limit, let us consider the intersubband
polarization operator

(1)

where m, m', n, and n' number the Landau levels.

For an integer filling factor, all energy-degenerate
Landau levels are filled with the probability equal to
unity. It will also be assumed that the filling of Landau
levels is equally probable for an arbitrary filling factor,
because the level widths are small compared to the tem-
perature; otherwise, the zero-temperature Green’s
function technique will be used [condition (5) is ful-
filled]. A comparison of the ECD value calculated in the
RPA approximation by this method with the result
obtained in [10] by using the finite-temperature tech-
nique shows that both values are equivalent under the
above-mentioned assumptions.

The set of equations for Π0n, 1n', σ includes the sum-
mation over the ladder and loop diagrams describing,
respectively, the excitonic and depolarization effects.
The one-particle Green’s function takes into account
the exchange corrections to the self-energy part. This
set of diagrams corresponds to the Hartree–Fock
approximation. It was taken into account in [5–7],
where the intersubband collective excitations were cal-
culated in the absence of a magnetic field; in [16, 17],
devoted to magnetoplasmon-type excitations in purely
two-dimensional systems; and, in part, in [18], where
the Mott exciton in quasi-two-dimensional semicon-
ductors was considered in a strong magnetic field. In
this approximation, the one-particle Green’s function in
a magnetic field depends only on frequency, while the
interaction depends only on momenta. Because of this,
the interaction can be averaged over the momenta,
whereupon the set of equations becomes algebraic. The
interaction responsible for the depolarization shift has
the form

(2)

The interaction responsible for the excitonic correc-
tions is

(3)

Π01 k ω,( ) Π0n 1n' σ,, k ω,( )
n n' σ, ,
∑=
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m m' σ', ,
∑
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∑
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01 k( )Inn' k 0,( )Im'm* k 0,( ) = αnn'
mm' k( ).

β0n 1n' σ,,
0m 1m' σ',, k( ) δσσ'– 2π( ) 1–=

× V00
11 q( )Jnm q( )Jn'm '* q( )e

iaH
2

qyk
qd∫ δσσ'βnn'

mm' k( ),=
where

(4)

(5)

i, j, k, and l label the subbands; ψi(z) are the electronic
wave functions in the direction of quantization axis;

and φn(y) = π–1/4(aH2nn!)–1/2exp(–y2/2 )Hn(y/aH). The
x axis is directed along k.

At k = 0, the transitions with different ∆n = n' – n
can be considered independently from each other. At
small k values [condition (4)], the interaction of levels
manifests itself only near the crossing points. For this
reason, one can consider the restricted number of tran-
sitions for a given energy range; in this work, these are
the transitions with |∆n | ≤ 2, which were experimen-
tally observed in [11, 13]. The set of equations for
Π0n, 1n', σ then becomes finite:

(6)

The zeroth polarization operators including the exchange
corrections are

(7)

The exchange corrections to the one-particle energies are

(8)

where nnσ is the electron density at the (0, n, σ) level
and ωc = eH/mc is the cyclotron frequency.

The poles are found by setting the determinant of
Eq. (6) equal to zero,

(9)

Introducing finite damping, one can solve the inhomo-
geneous set of Eqs. (6) to estimate the relative line
intensities for the Raman scattering from the calculated
excitations. The number of modes is

(10)

where i = cd and sd; no modes exist at negative N val-
ues. Note that the modes are separated into the CD and
SD types, so that their spectra are determined indepen-
dently only if the system is spin-nonpolarized (nn, 1/2 =

Vik
jl q( ) 2πe2
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nn, –1/2); however, the number of modes always
increases with an increase in the filling factor.

Figure 1 demonstrates the spectra of collective exci-
tations in a rectangular quantum well GaAs/AlGaAs
(a = 250 Å and ns = 6.8 × 1011 cm–2) for k = 0 and mag-
netic fields corresponding to ν ≤ 10. The Bernstein
modes are degenerate at k = 0 (the ISBMcd and ISBMsd

energies coincide). The energies of fundamental CDE
and SDE modes as functions of magnetic field weakly
oscillate and coincide at integer filling factors. New
modes obtained in [15] (CDE1, SDE1, CDE2, SDE2,
etc.) are nondegenerate. Their energies have nonzero
slopes to the H axis. This multiplet corresponds to the
L0 line that was experimentally observed in [11, 14] and
interpreted in [11] as being due to the single-particle
excitations.

The quasimomentum dependence of collective exci-
tations calculated for k ≤ 1.5 × 105 cm–2 under the same
conditions is significant only for the CDE mode in the

region of its crossing with the lowest of  (the
degeneracy of ISBMcd and ISBMsd is then removed).
The remaining Bernstein modes and the L0 and SDE
modes are virtually dispersionless. Figure 2 illustrates
the effect of quasimomentum on the spectrum. One can
see that the splitting between the fundamental CD

mode and the  mode is proportional to k. The
linear dependence on k is also demonstrated by the
CDE energy at ν < νc (νc corresponds to the level cross-
ing). The calculated dependence is consistent with the
experimental data and the LDA calculations [13].

The estimation of the Raman intensities from the
collective excitations shows that the greatest contribu-
tion comes from CDE, SDE, and L0. The Bernstein
modes are much weaker and depend on k. The L0 mul-
tiplet is dominated by the lowest pair of CD and SD

ISBM+1
cd

ISBM+1
cd

Fig. 1. Energies of intersubband collective excitations in the
system of two-dimensional electrons confined in a single
quantum well of width 250 Å (ns = 6.8 × 1011 cm–2) vs. per-
pendicular magnetic field at k = 0. The integer filling factors
are marked above the abscissa axis.
JETP LETTERS      Vol. 73      No. 1      2001
lines. However, as new line pairs appear near even inte-
ger ν values, the intensities become comparable and the
conditions for the observation of a doublet structure are
most favorable. The intensity of the lowest line in each
group ISBM∆n of Bernstein modes is also the highest,
and, as for L0, the doublet structure can be observed as
the new modes appear.

In summary, the structure of the intersubband col-
lective excitations in a magnetic field is obtained, its
dependence on the momentum is studied, and the con-
tributions of different excitations to the Raman intensi-
ties are estimated. The calculations were carried out
under the assumption that the energy-degenerate levels
are occupied with equal probability at low, though
finite, temperature. The results obtained allow the
whole spectrum of the experimentally observed collec-
tive excitations to be interpreted within the framework
of a unified scheme. Finally, the possibility of observ-
ing the multimode structure is predicted.

I am grateful to S.V. Iordanskiœ for helpful discus-
sions, I.V. Kukushkin and L.V. Kulik for attention, and
O.V. Volkov for assistance in numerical computations.
This work was supported in part by the Russian Foun-
dation for Basic Research.
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It is found that, with decreasing thickness of the crystals of TaS3 and NbSe3 quasi-1D conductors, the dependences
of the conductivity of these crystals on temperature and electric field change from the form typical of bulk samples
to a nearly power law behavior typical of 1D electron systems. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.10.Pm; 71.30.+h; 71.45.Lr; 72.15.Nj
The behavior of 1D electron systems essentially
depends on the effects of Coulomb interaction and elec-
tron correlations. For example, in the absence of long-
range interaction in 1D metallic systems, one should
expect, instead of the electron Fermi liquid, the forma-
tion of a Luttinger liquid [1] characterized by a power-
law decrease in the tunneling density of states near the
chemical potential [2, 3], and, at small concentrations
of charge carriers, one can expect the formation of a
one-dimensional Wigner crystal [4]. As a result, the
behavior of the conductivity of such systems must
noticeably differ from the behavior typical of 3D met-
als. Specifically, one should expect for such 1D systems
the power law G ∝  Tα [2, 3] or the close exponential
law G ∝  exp[–ν(lnT0/T)1/3] [5, 6] for the temperature
dependence of conductivity; one should also expect the
appearance of nonlinear current–voltage characteristics
I ∝  Vβ [2, 3].

Currently, active search for objects in which the
effects of one-dimensionality can be realized is in
progress. In recent years, different methods were devel-
oped for fabricating various types of systems in which
the manifestations of 1D properties should be expected.
For example, chains of metals on the vicinal faces of
platinum, palladium, silicon, and other crystals were
obtained (see, e.g., [7] and references therein); Si, Ge,
and GaAs semiconductor whiskers of diameter less
than 10 nm were grown [8, 9]; and Bi nanowires with a
diameter of down to 7 nm in an Al2O3 matrix were fab-
ricated [10]. However, the expected 1D behavior of
conductivity was observed in none of these objects. The
predicted power-law decrease in the tunneling density
of states was observed for the edge currents in the quan-
tum Hall effect regime with filling factor ν = 1/3
[11, 12] (Luttinger chiral liquid) and in carbon nano-
tubes [13, 14]; in the latter, a change in the tunneling
conductivity was relatively weak (eightfold). Recently,
the power-law dependences of conductivity on temper-
ature and electric field, characteristic of 1D systems,
0021-3640/01/7301- $21.00 © 20025
were observed in InSb quantum nanowires embedded
in an asbestos matrix. Although the conductivity range
observed for these objects with changing temperature
and electric field, was greater than five orders of mag-
nitude, further studies were hampered because of the
uncertainty in the doping level and other important
parameters of InSb filling the asbestor matrix. 

The quasi-1D conductors are promising objects for
revealing 1D properties, because they initially (even 3D
samples) exhibit effects associated with a reduced
dimensionality. One of recent publications describes
measurement of the tunneling conductivity of a molec-
ular wire consisting of a Mo6Se6 quasi-1D conductor
mounted on gold and pyrolitic graphite surfaces [16].
However, even at T = 4.2 K, only a weak decrease in the
tunneling density of states near the Fermi level was
observed in this experiment; i.e., the electron spectrum
retained its metallic character. Below, we report the
observation of 1D properties of thin crystals of TaS3
and NbSe3 quasi-1D conductors mounted on an insula-
tor substrate.

Samples of TaS3 and NbSe3 crystals were studied. At
room temperature, these materials have a metallic conduc-
tivity, judging from the magnitude (2–5 × 103 Ω–1 cm–1)
and the sign of the dG/dT derivative. As the temperature
decreases, these materials exhibit a Peierls transition
with the formation of a 3D-ordered charge density
wave (CDW) [17, 18]. In TaS3, the Peierls transition
temperature TP is 220 K, and, at lower temperatures
T < 220 K, the conductivity exhibits a semiconductor
behavior with an activation energy of about 800 K. In
NbSe3, two Peierls transitions occur, with the electron
spectrum becoming partially of the insulator type; the
transitions occur at temperatures TP1 = 145 K and TP2 =
59 K. In this case, those electrons not condensed into
the CDW cause metallic behavior of conductivity down
to the lowest temperatures. Thin samples of TaS3 and
NbSe3 were obtained by splitting them from the bulk
samples and placed on a sapphire substrate. The leads
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were connected to the samples by cold indium solder-
ing or vacuum deposition of indium. The conductivity
was measured by the two-terminal technique. An addi-
tional decrease in the thickness of the NbSe3 samples
was achieved by SF6 plasma etching.

Figure 1 presents a set of temperature dependences
of the linear resistance of the NbSe3 sample before etch-
ing (curve a) and after etching for 7 and 9 s (curves b and
c, respectively) at a rate of 3 Å/s; the figure also shows
the typical temperature dependences of the linear resis-
tance of two thin TaS3 samples, one of which retains the
traces of the Peierls transition (curve d) and the other
has lost such traces (curve e).1 One can see that, as the
transverse dimensions of the NbSe3 samples decrease
(i.e., as their resistance per unit length increases), a
gradual transition from metallic behavior of conductiv-
ity (dR/dT > 0) to nonmetallic behavior (dR/dT < 0) is
observed first at low temperatures (curve b) and, then, at
T < 250 K (curve c). Behavior similar to that of curve b
was recorded for NbSe3 samples split from the bulk crys-
tal and characterized by R(300 K)/L = 0.6 and 2 kΩ/µm;
for the sample with R(300 K)/L ~ 10 kΩ/µm, insulator-
type behavior of conductivity, similar to that of curve c,
was observed.

For the TaS3 samples with the cross-sectional area
*0.1 µm2 (R/L & 3 Ω/µm), dR/dT > 0 at room temper-
ature [17–20]. As the transverse dimensions of the sam-
ples decrease, the sign of the dR/dT derivative changes

1 The cross-sectional area of the samples with R(300 K)/L =
103−104 Ω/µm can be roughly estimated as 103 nm2, on the basis
of the value of the bulk conductivity.

Fig. 1. Temperature dependences of the resistance of the
thin TaS3 and NbSe3 samples. The arrows indicate the posi-
tions of the Peierls transitions in usual bulk samples. Curves b
and c correspond to different stages of etching of the NbSe3
sample (curve a) in SF6 plasma. The TaS3 samples (curves d
and e) are obtained by splitting from bulk samples.

(Ω
/µ

m
)

and the Peierls transition is smeared out (see also [19,
21]), as is seen from curve d. A further decrease in the
transverse dimensions leads to a total disappearance of
the traces of Peierls transition (curve e).

The current–voltage characteristics of thin samples
are nonlinear, and their nonlinearity increases with
decreasing temperature. Figure 2 shows a typical set of
dependences of the conductivity L/R ≡ LI/V on the elec-
tric field E ≡ V/L for the NbSe3 sample etched during a
period of 9 s (this corresponds to curve c in Fig. 1). One
can see that the nonlinearity is distinctly observed at
temperatures below 100 K, and, at the lowest tempera-
ture, the resistivity changes by more than three orders
of magnitude.

To analyze the results, we first consider the temper-
ature dependence of the conductivity. We note the fol-
lowing qualitative changes in conductivity behavior
with decreasing sample thickness: the tendency toward
insulator behavior (in TaS3 at room temperature and in
NbSe3 at T > TP1 = 145 K) and the total disappearance
of Peierls transitions. It should be emphasized that the
disappearance of metallic conductivity at T > TP in
NbSe3 occurs not only when the sample thickness is
reduced by etching, but also when thin samples are split
from the bulk crystal. This allows one to conclude that
the observed tendency toward insulator properties is
caused by the smallness of transverse dimensions of the
crystals rather than by the changes in the sample com-
position due to chemical reactions accompanying the
etching process.

A decrease in the transverse dimensions of the sam-
ple to sizes smaller than the CDW phase correlation
length (~1 µm) leads to a decrease in the CDW correla-
tion volume and a decrease in the pinning energy per
correlation volume, thereby promoting the phase slip
process. All these effects give rise to the growth of the
fluctuation conductivity at T < TP and to the spreading
of the threshold field corresponding to the appearance
of a nonlinear conduction [21–23]. These effects were
studied in detail on samples with much greater trans-
verse dimensions than those used in our experiment. As
for the behavior of the conductivity of quasi-1D con-
ductors at T > TP with decreased dimensions, it is
poorly understood. The data reported in the literature
testify that, when the cross-sectional area of the TaS3
[19] and NbSe3 [22, 23] samples decreases, the fluctu-
ative spreading of the Peierls transition causes a slight
increase in their resistance at T > TP , including temper-
atures much higher than TP . This experimental fact was
not considered earlier, although it deserves attention. In
principle, one should not rule out the possibility that a
decrease in the stiffness of the crystal lattice near the
surface contributes to the formation of the CDW, thus
leading to an increase in the order parameter of the
CDW near the surface of the quasi-1D conductor. In
this case, one can expect that a decrease in the sample
dimensions is accompanied by an increase in the effec-
tive value of the order parameter, i.e., by the appearance
of additional insulator features in the electron spec-
JETP LETTERS      Vol. 73      No. 1      2001
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trum, as compared to the bulk sample. The enhance-
ment of the surface effects can also be responsible for
the coherent depinning of the CDW fluctuations, as
was  observed recently [20] in thin TaS3 samples
(R(300 K)/L = 15 Ω/µm) at temperatures far above TP .

The observed tendency toward insulator properties
with decreasing crystal thickness agrees well with the
expected behavior of a 1D electron system. In fact, at
zero temperature, the conductivity of a 1D electron sys-
tem in the presence of impurities must be zero, at least
in the one-electron approximation [24]. The spreading
and disappearance of the Peierls transition with
decreasing thickness of quasi-1D conductors also
points to the transition from quasi-1D to 1D electron
spectrum: as is known, phase transitions in 1D systems
are impossible. The realization of a 1D electron system
depends on the electron and impurity concentrations,
the strengths of the Coulomb and electron–phonon
interactions, the type of screening, and other parame-
ters of the physical system of interest. The experimental
dependences (Figs. 1, 2) are adequately described by
power laws [2, 3] or laws close to them [5, 6], both typ-
ical of 1D systems. This means that, in fact, we observe
a continuous transition from the conduction typical of
quasi-1D conductors with CDW to the conduction of
1D systems. In this case, the Peierls gap is smeared by
fluctuations and becomes a pseudogap characteristic of
1D electron systems.

We are grateful to Yu.A. Firsov and V.A. Volkov for
useful discussions. Part of this work was performed at
the CRTBT-CNRS. One of the authors (S.V.Z.)
acknowledges the hospitality of the CRTBT-CNRS.

Fig. 2. Conductivity of a thin NbSe3 sample (curve c in
Fig. 1) versus electric field at different temperatures.
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The kinetics of disorientation of  centers is studied. The reorientation energy of the centers is determined
to be ~1.5 eV. Based on the fact that this value is close to the energy of hexavacancy transition from the ground

state to the first metastable state, it is concluded that the  center is a ring hexavacancy. The reorientation
mechanism is explained by the hexavacancy transition to the metastable state and, then, to a state with a new
orientation. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.35.-y; 71.55.Cn
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Earlier, in studying  isoelectronic centers1 and
excitons bound to them, it was found that these centers
are formed in pure silicon containing a large number of
vacancies upon its annealing at ~375°C [1–3]. The cen-
ters belong to the trigonal system and are characterized
by a point symmetry group no lower than C3V . In addi-

tion, it was shown that excitons bound to  belong to
the “triplet–singlet” type, and a Hamiltonian describing
all their properties was constructed [3]. Later [4], it was

demonstrated that the  centers can be almost totally
oriented in one of the 〈111〉  directions. This paper pre-
sents the results obtained by studying the kinetics of

disorientation of the  centers.

Samples with dimensions 17 × 1.25 × 1.25 mm were
cut along the [111] direction from pure silicon that was
preliminarily irradiated with neutrons (cadmium num-
ber ~50 and a dose of 1017 cm–2). To initiate the forma-

tion of  centers oriented in the [111] direction, the
samples were subjected to uniaxial compression along
this direction and annealed in the compressed state at

375°C for 30 min. If the samples already contained 
centers, the orientation of the latter in the desired direc-
tion could be achieved by annealing the compressed
samples at a lower temperature of 250°C for ~30 min.
To excite the samples, the radiation of a 200-mW argon
laser was used. The spectral analysis of the recombina-
tion radiation (RR) was performed on an SDL-1 spec-
trometer. The RR detector was a cooled photomultiplier
operating in the photon counting mode. The spectra
were analyzed with a resolution of ~300 µeV. In the

samples containing oriented , the RR is polarized

1 The notation used in this paper is the same as in [1, 3].
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and its spectral composition is strongly distorted on
passing through the optical channel. To obtain correct
results, the spectra of two RR components with mutu-
ally orthogonal polarizations were recorded and then
combined.

According to [4], the intensity ratio I1/I2 of the

(J1) and (J2) lines observed in the RR spectrum

of the excitons bound to  depends on the relations
between the concentrations n1, n2, n3, and n4 of the cen-

ters oriented in the [111], [ 11], [ 1], and [1 1]
directions, respectively. When the centers are oriented
in the [111] direction (i.e., n2 = n3 = n4) and the radia-
tion is detected in the direction perpendicular to [111],
the ratio I1/I2 is determined by the expression [4]

(1)

where x = n2/n1 is the ratio of the concentration of the
centers oriented in one of the equivalent directions

[ 11], [ 1], or [1 1] to the concentration of the cen-
ters oriented in the [111] direction, and the quantity w is
determined from the experiment at x  1 or t  ∞.

Introducing the vector n = {n1, n2, n3, n4} with the
components whose sum is equal to the total concentra-
tion of centers, one can represent the time dependence
of n in the form

(2)

where G is the evolution operator of the vector n(t) for
trigonal centers, g = exp(–4t /τ), τ is the time of center
reorientation, M is a matrix with elements all equal to
unity, and I4 is the identity matrix. When the centers are
oriented along [111], the initial state of the centers can
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be represented in the form n(0) = {1 – 3p, p, p, p}n,
where p = n2/n = n3/n = n4/n. Then, one obtains from
Eqs. (2)

(3)

One can see from Eqs. (1)–(3) that the dependences of
the ratio I1/I2 on the time t of annealing at a fixed tem-

x n2/n1
1 g 1 4 p–( )–

1 3g 1 4 p–( )+
------------------------------------.= =

Fig. 1. Spectral distribution of the RR of excitons bound to

the  centers in undeformed silicon at 4.2 K. The anneal-

ing temperature is 375°C. The symbols in parentheses cor-
respond to the line notations used in [1]. The RR spectra
shown by the dashed and the solid lines refer to silicon
annealed without compression and under a pressure of
0.24 GPa applied along the [111] direction, respectively.
The spectra are not corrected for the distortions introduced
by the optical channel.
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perature T can be used to determine the time of center
reorientation τ(T). Assuming that the relationship [5]

(4)

is valid, one also obtains the reorientation energy E.
Figure 1 shows two spectra of the RR in silicon: one

of them (solid line) corresponds to the beginning of the
disorientation process, when the threefold axes of the

majority of  centers are parallel to [111], and the
other (dashed line) corresponds to the end of the pro-
cess, when the orientation of the centers corresponds to
the equilibrium state.

Figure 2 presents two typical dependences of the
ratio I1/I2 on the annealing time for different annealing
temperatures. From the comparison of these experi-
mental dependences with the dependences calculated
by Eqs. (1) and (3), the reorientation times of the cen-
ters were determined at different temperatures. As a
result, the experimental dependence of τ on T was
obtained, from which the energy of center reorientation
and the preexponential factor in Eq. (4) were deter-
mined: E = 1.503 eV and a = 6 × 1013 min–1. Note that
Eq. (4) fits well with the experiment in the temperature
interval from 190 to 240°C.

To explain the results obtained above, it is natural to
consider the centers consisting of vacancies, because
the centers under study occur in abundance in pure sil-
icon containing large numbers of vacancies (e.g., sili-
con irradiated with fast neutrons). The most suitable
center that was not observed before and that belongs to
the trigonal symmetry class is the theoretically pre-
dicted hexavacancy (V6) [6]. Among the centers con-
sisting of vacancies, the ring hexavacancy is the most
stable. It can be represented as a cavity formed as a
result of the elimination of six silicon atoms from the
vertices of a spatial hexagon having the shape of a
“chair” with the threefold axis parallel to [111]. In this
case, the broken bonds are completely closed to each
other. As a result, V6 is electrically inactive [6], does not
luminesce, and has an anomalously small dipole

1/τ a E/kT–( )exp=

B80
4

Fig. 2. Intensity ratio I1/I2 of the (J1) and (J2) lines versus the time of annealing at different annealing temperatures:

(a) 217.5°C and (b) 195°C. The solid lines show the dependences calculated by Eqs. (1)–(3) at w = 0.575 and p = 0.11. The centers
were oriented under a uniaxial compression (P = 0.24 GPa) of the samples along the [111] direction at 375°C.
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moment. This all makes hexavacancies almost unde-
tectable by conventional methods. According to theo-
retical predictions, a large family of new centers can be
formed on the basis of hexavacancies (in particular, the
hexavacancy may contain two hydrogen atoms) [7].

The distinctive feature of V6 is its ability to pass to a
nonring metastable state with binding energy that,
according to estimates [6], is lower than the binding
energy of V6 by ~0.87 eV. Taking into account that the

reorientation energy of  is close to this value, one

can conclude that  and V6 are identical. Then, the
reorientation process can be explained in the following
way. As a result of thermal excitation, V6 passes to the
metastable hexavacancy state, after which it collapses
into V6 with a different orientation. The results pre-
sented in this paper agree well with the theoretical
study [7], where the idea that the ring hexavacancies V6

should be identified with the  centers was boldly put
forward.

Thus, it is experimentally demonstrated that the 
centers can be identified with hexavacancies, and an
unconventional mechanism of their reorientation is
proposed.
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New Scenario for the Decay
of Spin-Peierls State in CuGeO3 : Fe.
Onset of a Quantum Critical Point
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It is found experimentally that the introduction of 1% Fe in the CuGeO3 matrix gives rise to a strong disorder
in the magnetic subsystem and leads to an appearance of the χ ~ 1/Tα (α ≈ 0.36) low-temperature asymptotic
form for magnetic susceptibility over a wide temperature range 1.7 ≤ T ≤ 30 K. A model attributing this anomaly
to the suppression of spin-Peierls state as a result of the formation of the quantum critical point is proposed.
© 2001 MAIK “Nauka/Interperiodica”.
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1. It is well known that the doping suppresses the
spin-Peierls transition in CuGeO3. Numerous studies
devoted to the effect of impurities such as Zn, Si, Ni,
Co, Mg, and Mn have demonstrated that the transition
temperature Tsp decreases with increasing impurity
concentration x and, for x > xc, the dimerization coex-
ists with antiferromagnetism at T < TN (see [1–4] and
references cited therein).

For example, the microwave magnetic-resonance
spectra of CuGeO3 show at T < TN the antiferromag-
netic resonance lines coexisting with electron paramag-
netic resonance (EPR) of impurities and (or) lattice
defects. Theoretically, this effect is explained by the
fact that the impurity or the defect in a dimerized matrix
is surrounded by a “cloud” of antiferromagnetically
correlated spins, and the overlap between such clouds
gives rise to the long-range magnetic order [5, 6].

A further increase in the impurity concentration
completely suppresses the spin-Peierls transition and
only the transition to the antiferromagnetic state is
retained. The TN(x) dependence is nonmonotonic; the
Néel temperature first increases with concentration,
passes through a maximum, and then starts to decrease
at high doping levels. Interestingly, the concentration
phase diagrams can be brought to the universal form
upon scaling the x axis [2]. This is ordinarily consid-
ered as evidence for a universal mechanism [5, 6] of
destruction of the spin-Peierls state, regardless of the

† Deceased.
0021-3640/01/7301- $21.00 © 0031
chemical nature of the impurity. In our opinion, such a
universal scenario is not the only possible mechanism
of the doping effect on the spin-Peierls state of
CuGeO3. Let us consider, as an alternative, the results
of theoretical works [7–11], where the effect of disor-
der was studied for various low-dimensional spin sys-
tems such as one-dimensional chains with antiferro-
magnetic and ferromagnetic interactions, two-dimen-
sional Ising glass, three-dimensional heavy-fermion
systems with antiferromagnetic correlations, and the
dimerized S = 1/2 chains. An analysis carried out in
[7−11] showed that, independently of the type of inter-
action and the dimensionality, such spin systems
exhibit very similar behavior: the disorder smears the
phase transition in such a way that the T = 0 point
becomes critical [so-called quantum critical point
(QCP)]. Simultaneously, the thermodynamic properties
at T  0 become dominated by the sparse strongly
correlated (compared to the mean values) clusters giv-
ing rise to the Griffiths singularities [12]. This results in
the low-temperature divergence of magnetic suscepti-
bility

(1)

where α < 1. An analogous result was also obtained for
the one-dimensional S = 1/2 chain with antiferromag-
netic interaction [7, 10], for which the antiferromag-
netic transition is absent at low temperature. Note that
the possibility of QCP appearing follows from the stan-
dard scenario of the decay of spin-Peierls state, because
TN(x)  0 as x  ∞. However, the possible deviations

χ ∝ 1/Tα ,
2001 MAIK “Nauka/Interperiodica”
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Fig. 1. Raman spectra of pure and iron-doped CuGeO3 at
T = 300 K. Arrows indicate the discharge lines.

Fig. 2. EPR spectra of CuGeO3 : Fe at different tempera-
tures.

(cm–1)

(cm–1)
from the Curie law χ ~ 1/T were either not observed for
CuGeO3 at T  0 or interpreted within the framework
of the antiferromagnetic ordering model [3].

In this work, we present experimental data indicat-
ing that the decay of spin-Peierls state in CuGeO3 can
be caused by the formation of a quantum critical point
and, generally, is not associated with the formation of
the long-range antiferromagnetic order.

2. Iron-doped CuGeO3 samples were chosen for the
investigation. The samples were synthesized by the
method described in [13, 14] and identical to that used
in [2]. Chemical analysis suggested that the
CuGeO3 : Fe samples contained 1% iron. The sample
structure was monitored by X-ray diffraction and by the
Raman scattering spectra. To reveal the disorder
effects, samples of pure CuGeO3 synthesized by the
same method were used as a reference (their physical
properties had been studied earlier in [13, 14]).

The magnetic properties of the samples were stud-
ied by EPR. Experimentally, transmittance was
recorded as a function of magnetic field H for a cylin-
drical cavity with the sample (TE011 mode, Q = 104, res-
onance frequency f ~ 60 GHz); BWT-based radiation
sources were used. The external magnetic field was par-
allel to the crystallographic a axis. A DPPH crystal was
placed in the cavity for the accurate determination of
the g factor.

3. The X-ray structural data did not show a notice-
able change in the lattice parameters of CuGeO3 upon
doping with iron. At the same time, the Raman spectra
suggest a strong disorder effect. One can clearly see in
Fig. 1 that the introduction of Fe into the CuGeO3
matrix brings about a strong broadening and decrease
in amplitude for the main Ag modes [15] at 187, 332,
594, and 859 cm–1. The 594 and 859 cm–1 modes, corre-
sponding to different vibrations of oxygen atoms [15],
are strongly suppressed compared to the 187 cm–1 mode
(the in-phase vibrations of the Ge and O atoms).

Since the doping does not shift the main frequencies

due, according to [15], to the vibrations of the 
complexes, the replacement of the germanium atoms
by the impurity iron atoms seems to be improbable, so
that one may assume that the iron atoms in CuGeO3 : Fe
are built in the copper chains.

The magnetic resonance spectrum of CuGeO3 : Fe
shows a single EPR line over the entire temperature
range studied (1.7–300 K, Fig. 2). It should be empha-
sized that the low-temperature spectra of the doped
samples did not show any satellites [13] or several
absorption lines with comparable amplitudes [16], or
even antiferromagnetic resonance lines (the latter was
checked by us additionally in the frequency range
20−120 GHz using nonresonance technique described
in [13]).

Line shape analysis showed that it is described well
by a Lorentzian at all temperatures studied (Fig. 2). The

GeO3
2–
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Fig. 3. Temperature dependence of (a) the g factor and (b) the relaxation time.

g 
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temperature dependences of the g factor, the relaxation
time τrel, and the integrated intensity χ were calculated
for the best fit of the experimental spectra to the Lorent-
zian curve. The latter parameter is proportional to the
magnetic susceptibility of free spins [17]. The resulting
data are shown in Figs. 3 and 4. At T > 20 K, the g factor
of CuGeO3 : Fe equals 2.15 and is independent of tem-
perature (Fig. 3a). Notice that this value is observed for
the H || a geometry in pure CuGeO3. However, contrary
to pure CuGeO3, for which the g factor remains constant
down to T ~ 0.5 K [13], in CuGeO3 : Fe this parameter
increases approximately by 2% upon lowering the tem-
perature from 20 to 1.7 K (Fig. 3a). It is likely that the
temperature renormalization of the CuGeO3 : Fe g fac-
tor is due to the increased role of the interaction
between the copper and iron magnetic moments at T ≤
20 K. Interestingly, the relaxation time passes through
a maximum (Fig. 3b) and then decreases in the range
T ≤ 20 K; accordingly, the resonance width, being
inversely proportional to τrel, increases at these temper-
atures (Figs. 2, 3b). Such behavior can also be
explained by the dominant role of the disorder effects
at T ≤ 20 K in CuGeO3 : Fe (otherwise the relaxation
time should increase with lowering temperature [17]).

The most pronounced distinction between the sam-
ples of doped and pure CuGeO3 is observed in the tem-
perature dependences of their integrated intensities
(Fig. 4). A broad maximum in the vicinity of T ~ 80 K
in the χ(T) curve of the pure sample gives way to an
exponential decrease at T < Tsp because of the appear-
ance of a gap in the spectrum of magnetic excitations.
At the same time, the χ(T) dependence in CuGeO3 : Fe
has a cardinally different type: the integrated intensity
first increases following the Curie law χ(T) ~ 1/T with
decreasing temperature in the range 70–180 K (Fig. 4,
curve 1), whereupon the temperature dependence has a
plateau χ(T) ≈ const in the range 30–70 K. A further
decrease in temperature at 1.7 ≤ T ≤ 30 K gives way to
a new portion of χ(T) increase described by Eq. (1) with
exponent α ≈ 0.36 (Fig. 4, curve 2 and inset in Fig. 4).
The data in Fig. 4 allow the conclusion to be drawn that
ETTERS      Vol. 73      No. 1      2001
the spin-Peierls state is completely suppressed by the
introduction of 1% Fe in the CuGeO3 matrix. This con-
clusion correlates with the absence, up to 50 T, of the
low-temperature magnetic transition,1 which is observed
for pure CuGeO3 in a field of ~13 T and is a characteristic
feature of the spin-Peierls state [14].

4. Thus, we have shown that the doping with iron
and the ensuing disorder of the spin-Peierls copper
chains suppresses the spin-Peierls transition and leads
to the appearance of a low-temperature asymptotic law
χ(T) ~ 1/Tα that is substantially different from the stan-
dard Curie law.

It is worth noting that the anomalous temperature
dependence χ(T) is observed over a wide range of 1.7 ≤
T ≤ 30 K, where the temperature changes by more than
17 times (Fig. 4). No deviation from dependence (1)
was observed in our experiments down to the lowest
attainable temperature. Since antiferromagnetic reso-
nance was not observed, such behavior occurs in the
absence of the long-range antiferromagnetic order,
which, according to the standard scenario, should
appear upon doping CuGeO3 with impurity atoms
[5, 6]. It would thus be logical to rationalize the unusual
low-temperature asymptotic behavior χ(T) ~ 1/T0.36 for
CuGeO3 : Fe in terms of the formation of the quantum
critical point.

This interpretation is in full agreement with the pre-
diction made in [10] for a one-dimensional antiferro-
magnetic S = 1/2 chain in a random dimer (RD) phase.
For a weak dimerization, the spectrum of the RD phase
is gapless and, instead of decreasing, the susceptibility
would increase following Eq. (1) with the index α < 1,
typical of the Griffiths phase in the vicinity of QCP [10].

According to [10], the exponent α is not a universal
quantity because it depends on the bond distribution
function. Nevertheless, both theoretical calculations [8]
and experimental results [18] yield for QCP the values
α ~ 0.30–0.33, which are close to α ≈ 0.36 obtained in

1 L. Weckhuysen, private communication.
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this work. This also may serve as an additional argu-
ment in favor of the suggested explanation.

The analysis carried out in this work indicates that
CuGeO3 : Fe, apparently, exhibits a new scenario of
suppressing the spin- Peierls state through the forma-
tion of the quantum critical point. In this connection, it
would be quite promising to study the magnetic prop-
erties of the doped spin-Peierls compounds, in particu-
lar, CuGeO3 : Fe, at ultralow temperatures.

We are grateful to S.V. Popova for assistance in
chemical analysis of the CuGeO3 : Fe samples. This
work was supported by the programs “Physics of

Fig. 4. Temperature dependence of the integrated intensity
χ(T) for the samples of (light circles) pure and (dark circles)
iron-doped CuGeO3: (1) Curie law χ(T) ~ 1/T and

(2) asymptotic form χ ~ 1/Tα with α = 0.36. Inset: log–log
plot of the low-temperature asymptotic power-law depen-
dence χ(T). Experimental data for the pure sample are taken
from [13]; the dashed lines are the calculated χ(T) depen-
dences: (B–F) Boner–Fisher law and (B) Bulaevskiœ law
(from [13]).
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Microwaves” and “Fundamental Spectroscopy” of the
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The temperature-independent paramagnetism and high Oh symmetry of PtF6 molecules in solids (at 77 K) and
of the octahedral molecular complexes [IrF6]– in KIrF6 and [OsF6]2– in K2OsF6 are shown to be consistent with
the model of strong spin–orbit coupling of 5d4 electrons. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 31.30.Jv; 75.30.Cr
PtF6 molecules are characterized by regular octahe-
dral structure and point group symmetry Oh in both the
gas phase [1–5] and two crystalline modifications, bcc
and orthorhombic [3]. At the same time, a similar PdF6
hexafluoride is unknown, while the isoelectronic
[RuF6]2– anions in the M2RuF6 (M = K, Rb, and Cs)
compounds are known to be characterized by the tet-
ragonal distortion of the Jahn–Teller type [1–3]. One
may assume that the instability of the hypothetical PdF6
molecule is caused by vibronic effects [4]. If so, the
question arises of the mechanism of stabilization of
high Oh symmetry and suppression of vibronic instabil-
ity of the PtF6 molecules and the isoelectronic [IrF6]–

and [OsF6]2– anions in compounds of the M2OsF6 and
MIrF6 type [1–3].

Experimental evidence for a high symmetry of the
PtF6 molecules and the isoelectronic [IrF6]– and
[OsF6]2– anions [3] is provided by solid-state high-res-
olution 19F NMR data. In this work, we examine how
the anomalous 19F NMR chemical shifts correlate with
the van Vleck paramagnetism of PtF6, KIrF6, K2OsF6,
and K2RuF6 and with the symmetry predicted for octa-
hedral molecules and molecular ions by the quantum-
chemical ab initio calculations.

Samples of KIrF6, K2OsF6, and K2RuF6 were pre-
pared by the method described earlier in [5, 6]. Temper-
ature measurements of magnetic susceptibilities χ of
the compounds were performed by the Faraday method
in the range 4.2–300 K in magnetic fields of up to 1 T.
Co[Hg(SCN)4] salt was used as a reference for calibra-
tion [6]. Instrumental error in χ was ±1%. The diamag-
netic contributions χd were calculated using the addi-
tive Pascal scheme [7]. The resulting χd values are pre-
sented in Table 1. The temperature-independent (van
0021-3640/01/7301- $21.00 © 20035
Vleck) paramagnetic contribution χp was separated
from the measured paramagnetic susceptibility χ by
subtracting the temperature-dependent paramagnetism,
according to the Curie–Weiss law:

(1)

where χ0 = χd + χp is the temperature-independent com-
ponent of magnetic susceptibility and χd is the correc-
tion for the diamagnetism of the sample. The results of
measurements are presented in the figure and analyzed
in Table 1.

The experimental magnetochemical data for PtF6
were obtained earlier in [8]. It was found that the mag-
netic susceptibility of PtF6 is also independent of tem-
perature and, hence, corresponds to the van Vleck para-
magnetism with χp(PtF6) = 812 × 10–6 cm3/mol. This
fact was considered as evidence of the spin-paired
5d4 state of the Pt6+ ion in platinum hexafluoride. The

χ C/ T θ–( ) χ0,+=

Temperature dependences of magnetic susceptibilities of
(1) K2RuF6, (2) KIrF6, and (3) K2OsF6.
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temperature-independent paramagnetism is due to the
mixing (induced by the external magnetic field) of the
ground and excited states of the Pt6+ ion having elec-
tronic configuration 5d4. The applied external magnetic
field polarizes the electronic shell of the Pt6+ ion, i.e.,
admixes the excited-state wave functions to the ground
state and, thus, partially “freezes out” the orbital angu-
lar momentum of the spin-paired 5d4 electrons. As a
result, the ion ground state acquires an induced mag-
netic moment parallel and proportional to the applied
magnetic field [9, 10]. Such an induction gives rise to
the induced local magnetic fields at the nuclei of sur-
rounding atoms, leading to the broadening and shifting
of the NMR spectra. In the NMR spectrum of a van
Vleck paramagnet, the shift σiso is linearly related to the
magnetic susceptibility χp [11]:

(2)

where g is the nuclear g factor, µB is the Bohr magne-
ton, γ is the nuclear gyromagnetic ratio, and h is
Planck’s constant. The experimental parameter As is
the constant of hyperfine interaction of the 19F nucleus
with the spin density induced at the 2s orbitals of the
fluoride ion.

Table 2 presents the experimental σiso values mea-
sured earlier [1–3] for the compounds of interest, as
well as the longitudinal (σ||) and transverse (σ⊥ ) compo-
nents of the 19F magnetic shielding tensor. In Table 2,
the absolute scale of fluorine NMR chemical shifts is
used, for which the shielding of the 19F nucleus of a free
[F]– ion is taken as a reference; in this scale, the shield-
ing constant of the gaseous fluorine nuclei is σ(F2) =
−713 ppm [2, 12]. The corrections suggested in [3] for
the interference of the anisotropy effects in magnetic

σiso 2πAs/gµBγh( )χ p,=

Table 1.  Magnetic susceptibility components of KIrF6,
K2OsF6, and K2RuF6

χp × 106, 
cm3/mol

–χd × 106, 
cm3/mol

C × 103, 
(cm3 K)/mol –θ, K

KIrF6 685 ± 7 99 30.5 3.1 ± 1.5

K2OsF6 538 ± 5 121 4.04 0.9 ± 0.2

K2RuF6 4138 ± 42 110 0.276 –0.7 ± 0.6
shielding and dipole–dipole interactions of the 19F
nuclei (so-called cross-singular distortions [3]) are
taken into account in Table 2. The σ|| and σ⊥  parameters
for two overlapping K2[RuF6] NMR lines were newly
calculated using the spectra obtained in [1, 2]. The
uncertainty in these parameters is 2–3%, as in the other
cases. Both cross-singular distortions and high-resolu-
tion 19F NMR spectra obtained in [3] for K2[RuF6] in
fields of 2.1 and 5 T were taken into account in the anal-
ysis.

The data on χp and σiso and Eq. (2) were used to cal-
culate the As coefficients (Table 2). These coefficients
allow the estimation of the fs = As/As[F0] values charac-
terizing the fraction of unpaired 2s-electron density at
the F– ion nuclei in the compounds considered. The cal-
culations were carried out using the tabulated value
As[F0] = 4.51 × 1010 Hz that is adopted for the free flu-
orine atoms [12]. The results correlate well with the fs

values measured earlier [13] for the fluorine nuclei in
binary iridium and rhodium pentafluorides IrF5
[ fs(2F1) = 0.45%; fs(2F2) = 0.38%; and fs(F3) = 0.12%]
and RhF5 [fs(2F1) = 0.04%; fs(2F2) = 0.34%; and fs(F3) =
0.89%].

Two main features of K2[RuF6] (palladium group)
are worthy of notice: the small parameters As and fs, on
the one hand, and the structural distortion of the octa-
hedral [RuF6]2– ions, resulting in the positional non-
equivalence of the fluorine atoms (F1 and F2), on the
other. To elucidate the origin of the structural distor-
tion, ab initio quantum-chemical calculations were per-
formed for the molecular and electronic structures of
the coordination hexafluoro groups [MF6]n– [n = 0, 1,
and 3, and M is the transition metal with electronic con-
figuration 4d4 (palladium group) or 5d4 (platinum
group)] with inclusion of the vibronic interactions. The
calculations were carried out by the Hartree–Fock
method using the Jaguar 3.5 program package for quan-
tum-chemical calculations [14]. For Pt, Ir, and Os
atoms, a quasi-relativistic atomic basis set was chosen
[15], and, for F atoms, the 6–31G(p, d) atomic basis
was used [16]. It is essential that the spin–orbit interac-
tion was disregarded in this method. The calculated
geometries of the PtF6 molecule and isoelectronic
molecular anions [IrF6]– and [OsF6]2– are given in Table 3.
Table 2.  Experimental values of principal components of 19F magnetic shielding tensor, hyperfine interaction constants As,
and fraction of unpaired electrons at the 2s orbitals of fluoride ions

–σ||, ppm –σ⊥ , ppm –σiso λso, cm–1 As, 106 fs, %

PtF6 6900 3700 4800 12082 263.6 0.585

K[IrF6] 3360 1900 2390 10256 155.7 0.346

K2[OsF6] 1880 1240 1560 8464 129.4 0.287

K2[RuF6] (2F1) 8860 5370 6530 2854 70.5 0.156

" (4F2) 9660 6170 7330 " 78.9 0.175
JETP LETTERS      Vol. 73      No. 1      2001
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According to the calculations, the expected symmetry
of the PtF6 molecule and [IrF6]– and [OsF6]2– anions
lowers because of the Jahn–Teller orthorhombic distor-
tion of point group symmetry D2h. Nevertheless, the
degree of deviation from tetragonal symmetry is small
for orthorhombically distorted molecules: the calcu-
lated distinctions for the four shortest 4D(M–F2) bonds
appear only in the fifth decimal place. Thus, the calcu-
lated symmetry is quasi-tetragonal for all octahedral
groups and corresponds to the octahedra stretched
along the C4 axis. The calculated energy spectra and
electron distributions over the states suggest that the
triplet state t2g is split in the tetragonal field into a sin-
glet and a lower lying doublet, with four 5d4 electrons
occupying the 5dxz and 5dyz atomic orbitals in the spin-
paired state.

A comparison of the data in Tables 2 and 3 shows
that the agreement between the ab initio calculations
and the experiment holds only for K2[RuF6]. Indeed,
the ~6% relative difference in the D(Ru–F1) and
D(Ru−F2) distances is in qualitative agreement with the
experimentally observed difference of ~10% between
σiso(2F1) and σiso(4F2). The relation between σiso and
D(M–F) follows from Eq. (1) and the fact that the
hyperfine interaction constant As is proportional to the
overlap integral between the orbitals of the central atom
and the ligands and, hence, depends on the interatomic
distance as exp(–D/D0) ≈ 1 – D/D0. At the same time,
there are no indications of the structural distortions in
the coordination hexafluoro groups PtF6, [IrF6]−, and
[OsF6]2–; their point group symmetry was found to be
Oh. This fact gives evidence for the occurrence of a
mechanism that “switches off” or “suppresses” the
vibronic effects in platinum metal hexafluoro coordina-
tion compounds.

The mechanism of stabilizing the high-symmetry
(Oh) octahedral configurations of the PtF6 molecule and
[IrF6]– and [OsF6]2– anions may be associated with the
large spin–orbit coupling constant λso, which was disre-
garded in the ab initio calculation. The spin–orbit cou-
pling splits the atomic d levels into pairs of sublevels,
the lower d3/2 doublet and the upper d5/2 triplet, with the
splitting being equal to λso. The λso values calculated by
the Dirac–Fock method [17] for Pt, Ir, Os, and Ru
atoms are given in Table 2. One can see that the λso

value for Ru is approximately an order of magnitude
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smaller than the value of 10Dq ≈ 15–20 × 103 cm–1 typ-
ical of octahedral palladium group complexes. This
allows the λso parameter to be treated as a perturbation
with respect to the crystal field. In this case, the ground
state of the system is spin-paired, which corresponds to
the occupation of the 4dxz and 4dyz orbitals of the central
atom. The spin–orbit perturbation mixes this ground
(singlet) state with the nearest excited 4dxy state and,
hence, is responsible for the observed orbital paramag-
netism.

By contrast, the spin–orbit interaction in platinum
metals is on the order of the crystal-field energy of their
ions. Qualitative electrostatic considerations suggest
that the lower relativistic d3/2 (m = ±3/2; ±1/2) level of
the electronic 5d4 configuration remains spin-paired
and ground state in the octahedral field. The crystal
field is strong in this case and cannot be treated as a per-
turbation, while the ion ground state is mixed with the
excited d5/2 (m = ±1/2) state. Therefore, because of a
relatively strong spin–orbit interaction, the ground-
state wave functions of the PtF6 molecule and [IrF6]–

and [OsF6]2– anions are essentially different from the
ground-state wave functions of the analogous mole-
cules and anions of palladium metal hexafluoro coordi-
nation compounds. This distinction may be the main
reason for a drastic (by a factor of ~5) difference in the
magnetic susceptibilities and the As and fs parameters of
K2[RuF6], on the one hand, and of PtF6, KIrF6, and
K2OsF6, on the other.

The above analysis also provides the qualitative
explanation of the enhanced stability of PtF6, as com-
pared to PdF6. In our ab initio calculations (without
regard for the spin–orbit interaction), we determined
the energies of formation from elements for PtF6 and
PdF6 molecules. The dissociation energy of both PdF6
and PtF6 molecules is positive: Ue(PdF6) = +6.60 eV
and Ue(PtF6) = +0.03 eV, indicating that both systems
are unstable (if the spin–orbit interaction is neglected).
However, the inclusion of the spin–orbit interaction
diminishes the calculated Ue value by a value on the
order of 3/5λso. For PdF6 molecules [λso(Pd) ≈ 0.5 eV],
this contribution has no effect on the stability, whereas
for PtF6 [λso(Pt) ≈ 1.5 eV] the contribution of the spin–
orbit interaction is large enough for providing the sta-
bility of PtF6 hexafluoride.

The study presented in this work demonstrates that
relativistic effects play the important part in the inter-
Table 3.  Results of ab initio Hartree–Fock calculations of the intramolecular M–F distances in the octahedral molecular com-
plexes [MF6]n– (n = 2, 1, and 0)

[MF6]n– [RuF6]2– [RhF6]– PdF6 [OsF6]2– [IrF6]– PtF6

Point group D2h D2h D2h D2h D2h D2h

2D(M–F1), Å 1.97435 1.87753 1.8378 2.0165 1.912 1.862

4D(M–F2), Å 1.88344 1.80165 1.76507 1.9111 1.826 1.781
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pretation of the properties of the compounds of plati-
num transition elements.
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It is shown that a two-component mixture of resonant condensates can be unstable toward the transition to the
state with spontaneous Josephson oscillations in the absolute minimum of thermodynamic potential. The tran-
sition occurs stepwise at a certain critical value of the total number of particles or chemical potential. © 2001
MAIK “Nauka/Interperiodica”.

PACS numbers: 03.75.Fi; 05.30.Jp; 32.80.Pj; 74.50.+r
1. Since the discovery of two-component conden-
sates [1], the phenomena caused by phase coherence of
two condensate modes attract considerable interest,
both experimental and theoretical (see, e.g., [2, 3]). In
numerous studies devoted to the Josephson effect (see
[4] and references therein) in a system of two conden-
sates in different mF states [3, 5] or in a double-well
potential [6, 7], coherent Josephson oscillations were
considered for various dynamic regimes caused by the
competition between tunneling and intracondensate
interaction (nonlinearity). For a relatively weak interac-
tion, the particle number oscillations between the con-
densates are complete. They are suppressed when the
total number of atoms in the condensates exceeds a crit-
ical value and the behavior of the system is governed by
the nonlinearity [7]. However, the thermodynamic sta-
bility of the states with a fixed relative phase between
the condensates has yet to be analyzed.

In this work, the thermodynamically stable state
with spontaneous Josephson oscillations is obtained for
two resonant condensates. This state is formed as a
results of the competition between the inter-condensate
interactions, one of which depends on the relative phase
and the other is of the “density–density” type.

2. Let us consider two condensates in different inter-
nal states though in the same trap. Experimentally, this
may be a mixture of two 87Rb condensates in the |F = 2,
mF = 2〉  and |F = 1, mF = –1〉  states. Since the spatial
region of overlap between the condensates can be con-
trolled experimentally [3], only a uniform overlap is
considered below for simplicity. As is known [3, 5], a
weak driving field can be used in the overlap region to
create a certain relative initial phase for the conden-
sates. In this work, a mechanism of transition of a mix-
ture of resonant condensates with a given initial phase
to the thermodynamically stable state in the presence of
0021-3640/01/7301- $21.00 © 20039
only internal (i.e., independent of the external fields)
interactions is described.

The proposed mechanism is also operative for the
condensates in an asymmetric double-well potential
formed by two different traps with a barrier between
them. The barrier is created by the laser light, and its
height is directly proportional to the laser power and,
thus, can be varied with ease [2]. In particular, for a
very high barrier (mutually independent condensates),
the condensates can be created with their own initial
phases or, what is the same, in different coherent states
in each of the traps. After removal of the barrier, the
condensates start to overlap, and one again arrives at
the problem of possible ground state of a mixture of
condensates with a given initial relative phase. In this
work, the two-mode model is used, with the noninter-
acting condensates each being described by the “zero-
mode” model. The Hamiltonian of the system has the
form

(1)

where  and  are, respectively, the creation and
annihilation operators for the atoms of the condensate
mode, while the constants λi of intracondensate interac-
tion are scaled to the volume of condensate mode:
λi = U0/Veff. As is well known, the coherent state |Ψi〉 =
ai |Ψi 〉 , where ai are complex numbers, minimizes the

mean energy 〈Ψi | |Ψi 〉  with |ai | = (ni – 1/2)1/2 ≈ .
Hence, the wave functions of the condensate modes can

be written as Ψi = exp(iθi). A uniform wave func-
tion describes the condensate states in a trap either with
vertical wells or with parameters slowly varying at
interatomic length scale, when the condensate wave

Ĥ0 Ĥi
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∑ µ0iâi
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Ĥi ni
1/2

ni
1/2
001 MAIK “Nauka/Interperiodica”



 

40

        

MANAKOVA

                                                                                   
functions are independent of coordinates. The energies
of both condensates are independent of their phases and

are given by the expressions εi(ni) = µ0ini + λi . In

the equilibrium state with dεi/dni = 0, the “chemical
potential” µ0i < 0 specifies the mean particle (occupa-

tion) numbers ni = 〈 〉  @ 1 for the condensates; i.e.,
for a given µ0i value one has n0i = |µ0i |/λi and ε0i =
−|µ0i |2/2λi in the equilibrium state. In the general case
considered below, dεi/dni ≠ 0. The total Hamiltonian of
a mixture of interacting condensates is H = H0 + Hint,
where H0(n1, n2) = ε1(n1) + ε2(n2); with the canonically
conjugate “action–angle” variables, the interaction of ni

and θi can generally be written as

(2)

where l1 and l2 are integers describing a change in the
number of particles upon switching on the interaction
between the condensates. Phase-dependent intercon-
densate interactions (2) are primarily due to the nonor-
thogonality of the coherent states. The resonance con-
dition

(3)

where the pair of numbers l1r and l2r specifies the reso-
nance type, depends on the particle numbers and should
be self-consistently taken into account when determin-
ing the state of a nonlinear system. In this respect, two
key factors should be kept in mind. First, the resonance
condition determines the phase φr = l1rθ1 – l2rθ2, which
varies anomalously slowly with time, because it is an
approximate integral of motion in the absence of particle
number fluctuations: dφr/dt ≈ l1rdε1/dn1 – l2rdε2/dn2 ≈ 0,

so that  ≈ const ≠ 0. Second, due to this relation-
ship, the term with phase φr(t) can be set off in sum (2).
All remaining terms in this sum are rapidly oscillating
perturbations and will be disregarded in this work.
Thus, for each type of resonance, a certain type of
phase-dependent intercondensate interaction is speci-
fied (it will be called Josephson interaction for brevity).
If the interaction is independent of time, the difference
between the occupation numbers n1 and n2 monotoni-
cally increases with time, as follows from the equations
of motion; i.e., dynamic instability takes place. This
instability corresponds to the internal Josephson effect
and is “removed” by the coherent density oscillations
between the condensates. It should be emphasized that
the instability arises only if the initial relative phase

 is nonzero. Contrary to the well- known Josephson

1
2
--- ni

2

âi
+âi

H int g n1 n2; θ1 θ2,,( )≡

=  gl1l2
n1 n2,( )e

i l1θ1 l2θ2–( )
h.c.+[ ] ,

l1l2 0≥
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l1r

dε1

dn1
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dε2
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--------– 0,=

φr
0( )

φr
0( )
effect, e.g., in superconductors, the Josephson interac-
tion in the case at hand depends on a macroscopic num-
ber of particles, so that both values are determined self-
consistently from the condition for minimum of the
thermodynamic functions. It is this circumstance that is
responsible for the appearance of a new ground state.

If the total number of particles n0 = n1 + n2 is con-
served (dn0/dt = 0), the resonant condensate popula-
tions n1m and n2m = n0 – n1m are found from Eq. (3). Let
us consider the state with particle number fluctuations
in the region of a simple resonance: l1r = l2r = 1 and φr =
θ1 – θ2. In this case, the leading term in Eq. (2) has the
form

(4)

and corresponds to the uniform overlap of condensates.
Using the fact that the Hamiltonian H0 of noninteract-
ing condensates is a function of a single dynamic vari-
able, e.g., n1, it is straightforward to write the Hamilto-
nian near the resonance to the first nonvanishing order
in particle number fluctuations:

(5)

Here, H0m ≡ H0(n1m, n2m), (∆n1) = n1 – n1m, and (∆n2) =
–(∆n1). In what follows, the notation (∆n1) ≡ (∆n) is
used. The expansion in (∆n) in Eq. (5) is written on the
assumption that the width of the near-resonance region
(determined by the particle number fluctuations) is
large at the characteristic interaction variation scale. In
other words, Hamiltonian (5) and the “resonance” solu-
tion obtained below are valid if the following condi-
tions are fulfilled for each n0:

(6)

where (∆n)max is the maximum possible change in the
number of particles near the resonance. This quantity
will be calculated below. Due to the second inequality,
terms with the derivatives of interaction are absent in
Eq. (5). Writing the terms linear in (∆n) in dφr/dt, with
allowance made for conditions (6), one finds that the φr

and (∆n) variables are canonically conjugate. The
change in the number of particles near the minimum is
also a macroscopic variable, (∆n) @ 1. This follows
from the fact that the energy changes only slightly upon
changing the number nim of particles by lir ! nim:

H0m(n0; n1m + l1r) – H0m(n0; n1m) ~ λ, whereas g1m is
a macroscopic quantity. Because of this, the interaction

g1 n1m; n2m; φr( )

=  g1n1m
1/2
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leads to the reconstruction of a large number of states,

(∆n) ~ (g1m/ λ)1/2 @ 1. This allows the use of a
quasiclassical approximation for determining quantum
states of the system governed by Hamiltonian (5).

The resonance corresponds to the minimum of func-
tion H0 at λ > 0; only in this case can it make the main
contribution to the partition function and thermody-
namic functions. In the quantum regime, the region of
finite motion of Hamiltonian (5) [where the phase
changes within – ε/g1m) < φr < ε/g1m)
for every ε ≡ Hm – H0m] corresponds to the discrete qua-
siclassical spectrum of particle number fluctuations
near the minimum of function H0(n0; n1) at n1m. The states
of this spectrum represent the quantum analogue of
Josephson oscillations. Substituting (∆n)  –i∂/∂φr,
one finds that the Schrödinger equation for Hamilto-
nian (5) takes the form of Mathieu’s equation. As
known, the eigenvalues of Mathieu’s equation form a
continuous spectrum at ε > g1m and allowed narrow
bands at –g1m < ε < g1m. Neglecting the corresponding
bandwidths, one may speak about the discrete spectra
in the wells. Since the number of states in the well is
large, the number of the discrete level is determined by
the Bohr–Sommerfeld quantization rule

(7)

accordingly, the density of states ρd(ε) in the discrete
spectrum is

(8)

where K(κ) and E(κ) are the complete elliptic integrals
of the first and second kind, respectively. The maxi-
mum number of levels in the well is nc ≡ (∆n)max @ 1.
In the continuous spectrum, ν(ε) and the density of
states ρc are

(9)

The quantity ωm = (λg1m)1/2 ! g1m has a meaning of the
maximum level spacing in the discrete spectrum. It fol-
lows from these expressions that the density of states
has a logarithmic singularity at the edges of continuous
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and discrete spectra: ρd, c(ε) ~ ln|1 – ε/g1m|–1, ε  g1m.
This corresponds to an infinite period of coherent oscil-
lations, i.e., to the loss of phase coherence. All the
quantities depend parametrically on the total number n0
of particles. This parameter can be determined from the
conditions for the minimum of the thermodynamic
potential.

3. Let us now determine the conditions for and the
character of instability toward the transition to the cur-
rent state upon changing the number of particles or the
chemical potential of the mixture. With the known den-
sity of states (8) and (9), one obtains the following
expressions for the thermodynamic potential in the dis-
crete and continuous regions [ε in Eqs. (8) and (9)
should be replaced by µ, with µ being measured
from H0m]:

(10)

(11)

In both cases,

(12)

According to the definition given in Eq. (8), the chem-
ical potential and g1m depend on the initial relative
phase. The g1m value determines the amplitude and fre-
quency of Josephson oscillations [see Eqs. (7) and (8)].
At the same time, it monotonically depends on n0, so
that the behavior of the derivative ∂Ω/∂g1m completely
determines the behavior of the system upon changing
the population n0. It follows from Eqs. (10)–(12) that
Ω < 0 over the entire range of g1m from 0 to ∞, so that
the thermodynamic potential Ω monotonically
decreases with increasing g1m; i.e.,

(13)

Thus, the system is thermodynamically unstable
toward the growth of Josephson oscillations. The
increase in g1m is equivalent to the increase in either the
total population n0 or the intercomponent scattering
length. To determine the equilibrium  value,
account must be taken of the phase-independent repul-
sive interaction between the condensates [i.e., the term
with l1, l2 = 0 in Eq. (2)]: g0m(n1, n2) = g0n1m(n0 – n1m) ~

α , where α ~1/ |µ02 – µ01 |. This interaction charac-
terizes the “rigidity” of the system against the increase

ωm
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in g1m. With allowance made for this interaction, the
Landau functional can be written as

(14)

The equilibrium  values are found from the condi-
tion for the minimum of this functional; i.e., they are
solutions of the equation

(15)

The nonzero equilibrium  value defines the total

number of particles  for which spontaneous Joseph-
son oscillations occur in the system. In other words, the
system has the current ground state; namely, for the
chemical potential coinciding with the energy of one of
the discrete levels (7), the equilibrium value of the max-
imum Josephson current is

(16)

In turn,  = 0 in the ground state implies that the mix-
ture of condensates is thermodynamically unstable in
the presence of Josephson interaction. This state corre-
sponds to the nonzero population of one of the mixture
components and, correspondingly, to the absence of the
Josephson current. In this case, short-lived dynamic
oscillations are only possible for an arbitrary (i.e., dif-
ferent from equilibrium) number of particles.

The qualitative behavior of the derivative |∂Ω/∂g1m |
is illustrated in the figure. The domains of g1m values to
the right and left of the g1m = µ point correspond to the
discrete and continuous spectra, respectively. In this
figure, |∂Ω/∂g1m | ~ g1m/(µλ)1/2 at µ @ g1m, |∂Ω/∂g1m | ~
(g1m/2λ)1/2 at µ ! g1m, and |∂2Ω/∂ | ∼ ln |g1m – µ|–1 as

F Ω µ g1m,( ) αg1m
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Figure.

∂Ω
∂g1m
-----------
 |µ – g1m|  0. The tangent to the ∂Ω/∂g1m curve at the

zero point is α0 = (µλ)–1/2. Graphical solution of

Eq. (15) (see figure) yields the following results. At µ >
0 and α < α0, the state with  = 0 is absolutely unsta-

ble; in the ground state of the system,  ≠ 0. At α0 <

α < αc (αc ≈ 1.14α0), the state with  = 0 becomes
metastable; the system still has the current ground state.
At αc < α < α1, where α1 ≈ 1.25α0, the state with  ≠
0 becomes metastable. Finally, at α > α1, Eq. (15) has
no solutions with  ≠ 0. Note that the states with

 ≠ 0 and  = 0 correspond to discrete and contin-
uous spectra, respectively. It follows from the definition
of α0 that the stronger the intracondensate interaction λ,
the narrower the domain of existence of the current
state. Using Eq. (8), one can readily show that the
chemical potential µ > 0 decreases with an increase in

the initial phase ; hence, the domain of existence of
the current state becomes more extended.

At µ < 0, the condensate in the region of discrete
levels exists regardless of the α value. One can readily
show that the µ = 0 value defines the most unstable state
corresponding to the number of particles n0c = 0.2nc. At
the same time, if the total number of particles decreases
at a fixed α value, the transition to the current state pro-
ceeds jumpwise at µ = µc = α2/λ.

The competition between the Josephson interaction
g1(n1, n2) and the density–density-type interaction
g0(n1, n2) gives rise to the current ground state and plays
in the resonance region the role similar to the role the
competition between the tunneling and intracondensate
interaction plays for the dynamic nonresonance solu-
tions [4, 7]. The transition considered in Section 1 for
the dynamic solutions corresponds to the transition in
the resonance region from the current ground state to
the state in which the mixture of condensates with
Josephson interaction is thermodynamically unstable
because  = 0. Note also that, inasmuch as Hamilto-
nian (5) describes the oscillations with amplitudes
much smaller than the resonance populations [the first
inequality in Eq. (6)], the resonance region, by defini-
tion, corresponds to the strongly nonlinear regime.

It is worth noting that the resonance region defined
by Eqs. (3) and (6) was not considered in [4, 7]. How-
ever, one can easily show that conditions (6) for appli-
cability of the resonance solution are identically ful-
filled for the same condensates. Therefore, the solutions
obtained in [4] for the identical condensates without
regard for the resonance condition are, at least, thermo-
dynamically unstable. The fact that the resonance condi-
tion defines the populations of the mixture components
was not taken into account in [5]. For this reason, the
dynamic solution found in [5] is likely invalid.

1
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For the resonances with l1r , l2r ≠ 1, the relevant
expressions differ from the above formulas by numeri-
cal multipliers compiled of l1r and l2r . As the number of
particles in the mixture increases, the main contribution
to the thermodynamic functions may come from reso-
nances of increasingly high order, because (n1, n2) ~

 in Eq. (2). The corresponding characteristic
frequency ωm of Josephson oscillations increases as lir ,
and, simultaneously, the widths of resonance regions
increase as ~λ(∆n)max ~ ωm. If the resonance regions
start to overlap at a certain critical number of particles,
the phase coherence breaks and a stochastic regime pre-
vails with randomly varying phase.
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The impurity conduction of a series of crystalline silicon samples with the concentration of major impurity N ≈
3 × 1016 cm–3 and with a varied, but very small, compensation K was measured as a function of the electric field
E in various magnetic fields H – σ(H, E). It was found that, at K < 10–3 and in moderate E, where these samples
are characterized by a negative nonohmicity (dσ(0, E)/dE < 0), the ratio σ(H, E)/σ(0, E) > 1 (negative magne-
toresistance). With increasing E, these inequalities are simultaneously reversed (positive nonohmicity and pos-
itive magnetoresistance). It is suggested that both negative and positive nonohmicities are due to electron tran-
sitions in electric fields from impurity ground states to states in the Mott–Hubbard gap. © 2001 MAIK
“Nauka/Interperiodica”.

PACS numbers: 72.20.My; 72.80.Cw
1. It is commonly known that the conduction of
doped semiconductors at low temperatures (T) and a
small compensation (K) is due to the hopping motion of
carriers (vacancies in n-type semiconductors at K ! 1)
over ground states of impurity atoms (σ3 conduction).
A theory of σ3 conduction has been developed that pro-
vides a quantitative description of the phenomenon at
K  0 (see, for example, [1]). In fact, relationships
predicted by this theory are observed only at K > 10–3.
Significant discrepancies exist between the theory and
experiment at lower K. Our investigations of such mate-
rials revealed a number of new effects. For example,
contrary to theoretical predictions [1], the activation
energy for hopping conduction (ε3) in the ohmic region
significantly increases with decreasing K (K < 10–3).
With increasing N at K = const, ε3 grows weaker [2]
than is predicted by the theory.

These discrepancies are explained by the existence

of impurity molecules ( ) whose single-ionization
energy is lower than the ionization energy of an isolated
impurity. As a consequence, an additional peak of den-
sity of states appears in the lower Hubbard impurity
band with an energy of ≈3 meV relative to the ground
state [2]. We believe that the existence of states in the
Mott–Hubbard gap is another reason (essential mainly
in the nonohmic region) for the discrepancies [4].

This article describes the first results of studying the
magnetic field effects on the impurity conduction in the
nonohmic region (E > E1).

2. Figure 1 displays the σ(E) curves at T = 8 K for
Si : B samples with N = const = 3.6 × 1016 cm–3 and dif-
ferent concentrations NK of the compensating impurity.

D2
0
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Samples 3–8 were obtained from the same cut of an
ingot with NK = 8 × 1012 cm–3; changes in NK were
accomplished by transmutation doping. It is evident
that, as E increases, the ohmic region (E < E1) for the
samples with small K is followed by a portion of a drop
in σ (negative nonohmicity), which is succeeded by a
rise in σ at E > E2. The value of E2 increases with
increasing K. As E further increases (E > E3), the σ(E)
dependence becomes stronger.

As an example, Fig. 2 demonstrates distinctions
between σ(E) curves at H = 0 (dot-and-dash line) and
H = 2 T for samples 4 and 6. It is seen that the magnetic
field at E > E1 increases the conductivity and shifts the
point E1 toward higher E. At E > E2, the greater σ, the
stronger the decrease in conductivity in magnetic
field H.

Figure 3 demonstrates the dependence of the σH/σ0
ratio on E at H = 2 T. In the ohmic region, σH/σ0 = 1; at
E2 < E < E1, the conductivity increases by a factor of
2−2.5 and the magnetoresistance (MR) is negative. At
E > E2, the magnetoresistance is positive and increases
with E. At E > E3, the positive magnetoresistance
increases even more strongly.

Figure 4 demonstrates the dependence of the current
on E for sample 6 at T = 8 K and H (T) = (1) 0, (2) 1,
(3) 1.5, and (4) 2. It is clear that the magnetic field shifts
the point E1 toward higher E: for this series of samples,

E1 = (1 + βH2), where β ≈ 0.34 T–2 and slightly var-
ies with T. At E1 < E < E2, the current hardly increases
with increasing E. Oscillations of the σ3 conductivity
with time are observed in the j(E) saturation region [3].

E1
0
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MAGNETIC FIELD EFFECTS 45
This region is shown in Fig. 4 by the dotted line. The
magnetic field effect on the oscillation amplitude and
period will be considered separately.

3. Let us discuss the results obtained. A large nega-
tive magnetoresistance is observed in the region E1 <
E < E2. On the other hand, a positive magnetoresistance
is observed at E > E2. The observation of the negative
magnetoresistance in the region of negative nonohmic-
ity and the sign reversal of the magnetoresistance
together with the sign reversal of the nonohmicity is the
main result of this work. We emphasize that the mag-
netic fields in which these effects are observed are weak
in the sense that these magnetic fields do not affect the
radius of an isolated impurity center.

Let us first consider the region E > E2. We have dem-
onstrated previously that the conduction at E > E2 is due
to the electron motion over states lying 10–15 meV
below the free band bottom [4] (30–35 meV higher
than the impurity ground state; the consideration relates
to an n-type material). We called this region of fields
the region of high-temperature variable range hopping
conduction (σM) [5]. Similar to the conventional Mott
conduction [1], σM is characterized by the dependence
σM ~ exp(–(T/T0)0.25) and increases with E as σM ~
exp(αE).

In order to explain these results, we proposed a
model of a long tail of states extending in energy down
to the Fermi level in the upper Hubbard impurity band
[6]. Electrons in an electric field hop over these states
(both activationless and with phonon absorption), trav-
eling up in energy. The hopping distance is variable. It
decreases with increasing E and electron energy ε (it is
assumed that the density of states in the tail increases
with ε). Eventually, electrons reach a certain “trans-
port” level ε = εtr whose position is determined by equal
probabilities of hopping up and down in energy. Hop-
ping over the εtr level determines the conductivity in
this region of fields. The energy εtr grows with increas-
ing E [7]. Simultaneously, the number of electrons in
the vicinity of the εtr level increases.

The εtr level concept readily explains the evolution
of conductivity with increasing concentration of the
compensating impurity NK at H = 0 (Fig. 1) in the
region of positive nonohmicity. The rise of the electron
concentration in the vicinity of the εtr level is limited by
the recombination process. The corresponding lifetime
τ ~ (NK)–1. The concentration drops with increasing
NK: n(εtr) ~ (NK)–1. The greater NK, the lower, gener-
ally, the position of the εtr level at a given E. This leads
to the additional dependence σ(NK). If a vertical sec-
tion of curves in Fig. 1 is mentally drawn in the region
of positive nonohmicity, it can be verified that σ(E =
const) ~ (NK)–α, where α > 1. At the same time, the field
in which a given value of σ is attained must increase
with increasing (NK). This is directly seen in Fig. 1.

As NK increases, recombination is enhanced, elec-
trons have no time to attain the states with high mobil-
JETP LETTERS      Vol. 73      No. 1      2001
ity, and σM is not observed at all (Fig. 1, curve 7). Con-
duction via the band of states with E > 35 meV appears
at E > E3, when a band of delocalized states is formed
below the increasing band bottom [4, 8, 9].

At higher NK, when the recombination probability
becomes higher than the probability of electron transi-
tion from the states in the vicinity of the Fermi level to
the states in the Mott–Hubbard gap, not only σM disap-
pears but the negative nonohmicity disappears as well:

Fig. 1. Curves σ(E) at T = 8 K for a series of samples with
N = 3.6 × 1016 cm–3 and various NK (1012 cm–3): (1) 3,
(2) 5, (3) 8, (4) 15, (5) 20, (6) 30, (7) 60, and (8) 150.

Fig. 2. Curves σ(E) for samples 4 and 6 at H = 0 (dot-and-
dash line) and H = 2 T.

σ 
(Ω

–1
 c

m
–1

)
σ 

(Ω
–1

 c
m

–1
)



46 MEL’NIKOV et al.
σ3 grows with E as predicted by the theory (Fig. 1,
curve 8), and σH/σ0 = 1 (see Fig. 3, curve 8).

Figures 2 and 3 demonstrate that the positive mag-
netoresistance increases with increasing σM. Note that
εtr and, hence, the electron localization radius a(ε)
increase with increasing E. The larger a(ε), the stronger
the effect of H on the overlap of states (all other factors
being equal). In addition, we cannot exclude the
decrease in the density of states in the vicinity of εtr
with increasing H [10].

Let now consider the region E < E2. At E < E2, con-
duction occurs via the states of the main impurity band.
As it must, σ3 ~ NK in the ohmic region at high temper-
atures. With increasing E, σ3 drops. To account for the
drop in σ3 conductivity with decreasing E [3], the
model of “dead ends” was proposed. According to this
model, vacancies move mainly in the direction of the
field and arrive at the ends of chains of impurity cen-
ters, around which the concentration of impurities is
small. Vacancies are localized, and the number of mov-
ing vacancies is reduced. We believe that the effect
must be significant at small N and K (KN < the number
of “dead ends”) at temperatures close to the depletion
of σ3 conduction. At low T, the decrease in the activa-
tion energy with E (Frenkel–Pool effect) in the region
of an exponential growth of the conductivity affects σ3
more strongly, and σ3 grows with E.

Note two points. In our experiments (small N and
very small K), a drop in σ3 with E is also observed in
the region of an exponential growth of σ3, down to the
lowest T. Small magnetic fields do not affect the con-
ductivity in the ohmic region. However, small H shift
E1 toward large E significantly (up to 2–2.5 times).

We failed to explain the occurrence of a negative
magnetoresistance in the region of negative nonohmic-
ity within the model of “dead ends.” A negative magne-
toresistance may occur in the case of variable range
hopping conduction because of the effect of H on inter-
ference processes. This effect is significant in two-

Fig. 3. Curves σH/σ0(E) at T = 8 K and H = 2 T for
samples 1, 3, 4, 6, 7, and 8.

0

dimensional structures. A negative magnetoresistance
may also arise from a decrease in the density of states
at H in the case when the Fermi level lies in the region
of an abrupt drop in the density of states with decreas-
ing energy (see [10] and references therein). Both these
mechanisms are irrelevant to our situation: three-
dimensional structure, nearest-neighbor hopping (σ3
conductivity), and Fermi level lying in the region of a
smoothly descending tail of the lower Hubbard impu-
rity band.

We observed previously a large negative magnetore-
sistance in more heavily doped and more compensated
samples [11]. In that work, we explained the negative

magnetoresistance by the presence of  molecules
(see the beginning of the article), which are traps for
vacancies. With an increase in H, these traps are
destroyed, the vacancy concentration in the main peak
of the lower Hubbard impurity band increases, and the
conductivity increases as well. This effect must also be
observed in the ohmic region. This is not confirmed by
experiments. Apparently, the molecules decay at large
H, and our results are due to a different process.

We believe that the drop in σ3 with decreasing E
cannot be explained if the consideration is restricted to
only the ground impurity states. The strong effect of H
on σ3 and σM suggests that the drop in σ3 with decreas-
ing E is also associated with the electron transition
from the states in the vicinity of the Fermi level to the
states in the Mott–Hubbard gap. At E < E2, electrons do
not reach states with high mobility, and their contribu-
tion to the conductivity is not conspicuous: σM < σ3.
The moving vacancies are attracted by immobile non-
equilibrium electrons and recombine on them. The
number of free vacancies is reduced. Electrons must be
activated to states in the vicinity of the Fermi level to
generate free vacancies. A magnetic field decreases the
localization radius of electrons and, correspondingly,
the probability of electron transition to vacancies. We

D2
0

Fig. 4. Current vs. E for sample 6 at T = 8 K and H (T):
(1) 0, (2) 1, (3) 1.5, and (4) 2. Arrows mark changes in E1
with H.
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relate the shift of E1 toward large E and the increase in
σ3 with increasing H to this phenomenon.

We are grateful to Ya.E. Pokrovskiœ for providing the
possibility of performing experiments on samples with
transmutation doping.

This work was supported by the Russian Foundation
for Basic Research (project no. 98-02-16903) and by
the Leading Scientific School (grant no. 00-15-96616).

REFERENCES
1. B. I. Shklovskiœ and A. L. Éfros, Electronic Properties of

Doped Semiconductors (Nauka, Moscow, 1979;
Springer-Verlag, New York, 1984).

2. A. P. Mel’nikov, Yu. A. Gurvich, L. N. Shestakov, and
E. M. Gershenzon, Pis’ma Zh. Éksp. Teor. Fiz. 71, 28
(2000) [JETP Lett. 71, 17 (2000)].

3. D. I. Aladashvili, Z. A. Adamiya, K. G. Lavdovskiœ, and
B. I. Shklovskiœ, Pis’ma Zh. Éksp. Teor. Fiz. 47, 390
(1988) [JETP Lett. 47, 466 (1988)].

4. A. P. Mel’nikov, Yu. A. Gurvich, L. N. Shestakov, and
E. M. Gershenzon, Pis’ma Zh. Éksp. Teor. Fiz. 66, 240
(1997) [JETP Lett. 66, 249 (1997)].
JETP LETTERS      Vol. 73      No. 1      2001
5. E. M. Gershenzon, Yu. A. Gurvich, A. P. Mel’nikov, and
L. N. Shestakov, Pis’ma Zh. Éksp. Teor. Fiz. 51, 204
(1990) [JETP Lett. 51, 231 (1990)].

6. Yu. A. Gurvich, A. P. Mel’nikov, L. N. Shestakov, and
E. M. Gershenzon, Pis’ma Zh. Éksp. Teor. Fiz. 60, 845
(1994) [JETP Lett. 60, 859 (1994)].

7. B. I. Shklovskii, E. I. Levin, H. Fritzshe, and S. D. Bara-
novskii, Transport Correlation and Stuctural Defects,
Ed. by H. Fritzshe (World Scientific, Singapore, 1990),
p. 161.

8. Yu. A. Gurvich, A. P. Mel’nikov, L. N. Shestakov, and
E. M. Gershenzon, Pis’ma Zh. Éksp. Teor. Fiz. 61, 717
(1995) [JETP Lett. 61, 730 (1995)].

9. A. P. Mel’nikov, Yu. A. Gurvich, L. N. Shestakov, and
E. M. Gershenzon, Pis’ma Zh. Éksp. Teor. Fiz. 63, 89
(1996) [JETP Lett. 63, 100 (1996)].

10. M. E. Raikh, Y. Cringon, Qiu-Yi Ye, et al., Phys. Rev. B
45, 6015 (1992).

11. E. M. Gershenzon, Yu. A. Gurvich, A. P. Mel’nikov, and
L. N. Shestakov, Pis’ma Zh. Éksp. Teor. Fiz. 54, 639
(1991) [JETP Lett. 54, 646 (1991)].

Translated by A. Bagatur’yants



  

JETP Letters, Vol. 73, No. 1, 2001, pp. 6–9. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 73, No. 1, 2001, pp. 8–12.
Original Russian Text Copyright © 2001 by Dolgova, Ma

 

œ

 

dikovski

 

œ

 

, Martem’yanov, Marovsky, Mattei, Schuhmacher, Yakovlev, Fedyanin, Aktsipetrov.

                                          
Giant Second Harmonic Generation in Microcavities
Based on Porous Silicon Photonic Crystals

T. V. Dolgova1, A. I. Maœdikovskiœ1, M. G. Martem’yanov1, G. Marovsky2, G. Mattei3,
D. Schuhmacher2, V. A. Yakovlev4, A. A. Fedyanin1, and O. A. Aktsipetrov1,*

1 Moscow State University, Vorob’evy gory, Moscow, 119899 Russia
* e-mail: aktsip@shg.phys.msu.su

2 Laser-Laboratorium Göttingen, D-37077 Göttingen, Germany
3 Instituto di Metodologie Avanzate Inorganiche, CNR, Monterotondo Scalo 00016, Italy

4 Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow region, 142092 Russia
Received November 28, 2000

The experimental spectral dependence of the intensity of the second harmonic (SH) generated in microcavities
based on porous silicon photonic crystal demonstrates resonant intensity enhancement (by a factor of
~2 × 102) in the vicinity of the cavity mode and at the edges of the photonic band gap. The enhancement is due
to the combined effect of pump radiation localization inside the microcavity, multiple SH interference in the
photonic crystal, and two-photon resonance of the porous silicon quadratic susceptibility at the SH frequency.
© 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.65.Ky; 42.70.Qs
Photonic crystals (PCs) are the microstructures with
periodically modulated optical (including high-order)
susceptibility with a period on the order of the optical
wavelength. They possess unique physical properties
and are of great practical interest. The presence of a
photonic band gap, i.e., the range of optical frequencies
where the electromagnetic field exponentially decays
inside the PC, renders them candidates for use in opti-
cal switches and optical transistors [1], as well as in PC
lasers with extremely low lasing threshold [2]. PCs
exhibit unique optical effects such as giant optical dis-
persion [3], optical bistability [4], and light localization
[5]. So far, most attention in studying the nonlinear
optical properties of PCs has been given to efficient fre-
quency doubling, because the conditions for quasi-
phase-matching are fulfilled in PCs. Quasi-matching
can be attained (1) in nonlinear PCs with quadratic sus-
ceptibility periodically modulated in one or two direc-
tions and uniform linear susceptibility [6] and (2) in
PCs with modulated linear susceptibility [7, 8]. In the
latter case, the quasi-matching condition can be ful-
filled if either the pump frequency or the second har-
monic (SH) frequency falls on the edge of the photonic
band gap in the PC. Naturally, such PCs were fabri-
cated from noncentrosymmetric materials with large
bulk quadratic susceptibility: lithium niobate [6], gal-
lium arsenide [7], and zinc sulfide [8]. Of particular
interest is the investigation of the nonlinear optical
response of a PC fabricated from centrosymmetric
materials, e.g., porous silicon (PS) [9]. Porous silicon
PCs are grown using a comparatively simple electro-
chemical technique that provides high reproducibility
0021-3640/01/7301- $21.00 © 20006
of parameters. This method has become part of modern
silicon technology, thereby resulting in the high practi-
cal importance of porous silicon PCs and microstruc-
tures on their base. It is of interest to explore the nonlo-
cal effects in the nonlinear optical response of
PC-based microcavities (MCs). The parameters of the
distributed PC mirrors of such Fabry–Pérot microcavi-
ties determine the MC Q factor. This permits the con-
trol of the electromagnetic field localization in the MC
at the frequency of the cavity mode, providing enhance-
ment of the MC optical response, e.g., luminescence
[10] and Raman scattering [11]. The MC mode within
the photonic band gap is analogous to the impurity level
within the semiconductor electronic energy gap. The
spectral position of the cavity mode in the photonic
band gap can be changed by varying the MC parame-
ters [layer thicknesses in PC mirrors and the MC
(“impurity”) level], allowing the control of the
enhancement effects in the nonlocal nonlinear MC
optical response.

This work reports the experimental results on the
intensity spectrum of the SH generated in porous sili-
con microcavities. The enhancement of the SH
response was observed in the vicinity of the cavity
mode and at the edges of the photonic band gap. The
SH generation in a multilayer structure with distributed
nonlinear sources is phenomenologically described
with account taken of the multiple interference of the
pump and SH fields. It is shown that the enhancement
of SH response at the frequency of the MC mode differs
in nature from the enhancement at the edges of the pho-
tonic band gap: the mode SH resonance is caused by the
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Left: porous silicon MC structure and geometry of the experiment; light regions correspond to the optically denser PS layers.
Right: MC cut image obtained on a scanning microscope with a quasi-friction detector. The gray scale of the displacement of the tip
with respect to the MC cleavage face at a constant friction force is given on the right.

(a) (b)
localization (amplification) of the standing pump wave
in the vicinity of the MC layer, whereas the SH reso-
nance at the edge of the photonic band gap is caused by
a uniform amplification of the pump field in the distrib-
uted PC mirrors of the microcavity.

Microcavity samples (Fig. 1a) were composed of
two one-dimensional PCs formed by five pairs of quar-
ter-wave (λ0 = 945 nm) PS layers and a half-wave PS
cavity layer as a spacer. The samples were prepared by
electrochemical etching [12] of a single-crystal p-type
silicon wafer in the crystallographic (001) orientation
with a resistivity of 0.01 Ω cm in an electrolyte consist-
ing of a 50% solution of hydrofluoric acid and ethyl
alcohol taken in 1 : 2 v/v ratio. The alternating PS lay-
ers of different porosity (air volume concentration)
were obtained by periodic modulation of the current
density flowing through the silicon wafer perpendicu-
larly to its surface. The etching rate was determined by
the current density of the electrochemical process and
the resistivity of the silicon wafer. The porosities and
thicknesses were, respectively, fh = 0.77 and dh =
160 nm for the optically denser PC layers and fl =
0.88 and dl = 200 nm for the less dense layers. The cav-
ity layer was formed from PS with fr = 0.88 and dr =
400 nm. Figure 1b is the MC cut image obtained on a
scanning force microscope with a piezoelectric quasi-
friction force detector based on a 32.8-kHz quartz tun-
ing-fork. The scanning tip was made from a single-
mode fiber by etching in a protective envelope. Light
areas in the image correspond to a high longitudinal
friction, i.e., to the less porous regions. The strict peri-
odicity in the PS layers and the 5-µm-scale longitudinal
homogeneity of the structure confirm the high quality
of the prepared samples. However, it was hard to deter-
mine the thickness ratio for the PS layers of different
porosity because the scanning tip had a large radius (on
the order of 50 nm) of curvature, resulting in an asym-
metry toward the denser PS layers.
JETP LETTERS      Vol. 73      No. 1      2001
The SH spectra were recorded using a Spectra-Phys-
ics MOPO 710 optical parametric oscillator (OPO),
tuned in the range 730–1100 nm, with a 10-ns pulse
duration and pulse energy of approximately 10 mJ,
excited by the third harmonic of a YAG laser. Collinear
phase matching in the OPO nonlinear crystal provided
a fixed angle of incidence θ for the pump radiation upon
frequency tuning. The SH radiation from the MC sam-
ple was filtered and focused onto the photomultiplier
cathode. To normalize the SH spectrum to the fre-
quency-dependent photomultiplier sensitivity and filter
transmission coefficients, a portion of the pump radia-
tion was fed into the reference channel that was identi-
cal to the main channel and contained z-quartz crystal
as a source of calibrating SH radiation. For linear spec-
troscopy, the pump radiation reflected from the MC
sample was detected by a photodiode and normalized to
the intensity of incident light.

For the p- and s-polarized pump radiations (p–p and
s–p geometries, respectively), the intensity of the
p-polarized SH radiation reflected from the MC was
independent of the angle of rotation of the MC sample
about its normal, to within the experimental error
caused by a weak inhomogeneity of the MC in its
plane.

The dependence of the SH intensity I2ω on the pump
wavelength λω, measured for the angle of incidence θ =
45° in the s–p geometry, is shown in Fig. 2a. For com-
parison, the spectrum of the linear reflection coefficient
(Rs) of the s-polarized pump radiation is presented in
Fig. 2d. In the vicinity of 780 nm, corresponding to the
spectral position of the MC mode, I2ω increases by a
factor of ~2 × 102, as compared to the SH intensity in
the band gap. Another resonance feature is observed in
the vicinity of 910 nm (~50-fold enhancement), which
coincides with the long-wavelength edge of the photo-
nic band gap. The increase in the SH intensity at the
short wavelength edge of the photonic band gap is much
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Fig. 2. Intensity of the p-polarized SH radiation as a function of the wavelength of s-polarized pump radiation, measured in the
porous silicon MC at different angles of incidence: θ = (a) 45°, (b) 40°, and (c) 30°. The SH intensities in panels (b) and (c) are given
on 7- and 20-fold enlarged scales, respectively. Solid lines are the results of model calculations. Reflectivity spectra are given for
the s-polarized pump radiation at different angles of incidence: θ = (d) 45°, (e) 40°, and (f) 30°.

(nm)
smaller. When changing θ to 40° (Fig. 2b) and 30°
(Fig. 2c), the SH resonances are shifted to longer wave-
lengths. This correlates with the angular dependence of
the cavity mode in the Rs(λω) spectra (Figs. 2e, 2f). The
greatest SH enhancement at the edge of the photonic
band gap (~1 × 102) is observed at θ = 55° (Fig. 3a).

The spectrum of the SH radiation reflected from the
PS microcavity was calculated by using the following
phenomenological approach. At the first step, the trans-
fer-matrix formalism was used to solve the problem of
multiple interference of pump radiation in a multilayer
structure with the dispersion εPS(λ) calculated for each
PS layer in the effective-medium approximation [13]
taking the dispersion εSi(λ) of single-crystal silicon as a
basis [14]:

(1)

This was used to calculate the reflection coefficient Rs(p)
of the polarized pump radiation and the spatial distribu-

tion of the amplitude (z) = exp( z) +

exp(– z) of the pump standing wave inside the
jth layer of the microcavity. At the second step, the
components of quadratic polarization were calculated
for each layer to determine the coupled SH wave field.

1 f–( )
εSi εPS–

εSi 2εPS+
---------------------- f

εPS 1–
1 2εPS+
-------------------.=

Eω
j( ) Eω

+ j( ) ikω z,
j( )

Eω
j( )– ikω z,

j( )
It was assumed that the quadratic susceptibility χ(2)( j) is
uniformly distributed inside the jth layer and that only

the  =  components are involved in the SH
generation by the s-polarized pump radiation (the point
group of the PS layer was assumed to be ∞m). The
spectral behavior of the effective components of qua-
dratic susceptibility was modeled for the jth layer by
the sum of two Lorentzians, χ(2)( j)(2ω) = (a – b1/(–Ω1 +

2ω + iΓ1) – b2/(–Ω2 + 2ω + iΓ2)) , with "Ω1 =
3.36 eV and "Ω2 = 4.3 eV corresponding to the direct

electronic transitions /E1 and E2 in silicon [14].
Next, the nonlinear transfer-matrix formalism, analo-
gous to that applied in [15] to the generation of the third
harmonic, was used to solve the problem of interfer-
ence of the coupled and free SH waves in the jth layer
and the problem of linear propagation of the SH wave
in the structure with multiple interference. The SH
amplitude from the whole microcavity was found by
summing the SH fields from each of the layers.

The calculated SH and linear reflection spectra are
shown in Figs. 2 and 3a by solid lines to demonstrate
good qualitative agreement with the experiment. The
calculations were carried out for all angles of incidence
and the following MC parameters: thicknesses dl =

χzxx
2( ) j( ) χzyy

2( ) j( )

f j
2–

E0'
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204 nm, dh = 165 nm, and dr = 408 nm and porosities
fh = 0.774 and fl = fr = 0.882. Figures 3b and 3c show
the spatial distribution of the absolute value of local

amplitude | (z)| of the pump standing wave in the
MC at two characteristic wavelengths: λω, 1 = 781 nm
(corresponding to the MC mode) and λω, 2 = 909 nm
(coinciding with the SH maximum at the long-wave-
length edge of the photonic band gap). In the vicinity of
λω, 1, the pump field is mostly localized in the microcav-
ity and the volume energy density of pump radiation
exponentially decreases as the outer edges of the PC
mirrors are approached. At the wavelength λω, 2, the
pump field is amplified uniformly throughout the MC.

Since the induced quadratic polarization is (z) ∝

(z) (z), the resonance enhancement of the SH
signal in the vicinity of λω, 1 is caused by the effects of
pump field localization in the MC layer and the adja-
cent layers of the PC mirrors. Note that, due to the half-
wave thickness of the MC layer, its contribution to the
SH at λω, 1 is much smaller than from the nearest lying
layers of the PC mirrors, and it is nonzero only due to
the dispersion. The increase in the SH intensity in the
vicinity of λω, 2 is caused by the uniform amplification
of the pump field. The SH resonance at the short-wave-
length edge of the band gap has the same origin: the
strong θ dependence of the SH enhancement in this
region is caused by the strong dispersion of the PS qua-
dratic susceptibility in the vicinity of 370 nm, which is
close to the energy of two-photon resonance of the
direct electronic transitions /E1 in silicon. This

Eω
j( )

P2ω
2( ) j( )

Eω
j( ) Eω

j( )*

E0'

Fig. 3. (a) Intensity of the p-polarized SH radiation as a
function of the wavelength of s-polarized pump radiation,
measured in the porous silicon MC at θ = 55°. Solid line is
the result of model calculations. (b) Spatial distribution of
the pump standing wave amplitude in the MC, calculated for
the wavelength λω, 1 = 781 nm corresponding to the micro-
cavity mode at θ = 45°, and (c) λω, 2 = 909 nm correspond-
ing to the edge of the photonic band gap. Vertical lines indi-
cate the boundaries of the cavity layer.

(nm)
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explains why the intensity increase at the edge of the
photonic band gap is the largest at θ = 55° (Fig. 3a).

Thus, when built in the porous silicon photonic
crystal, the microcavity layer gives rise to an additional
SH resonance, analogous to the resonant increase in the
combined density of states for the direct electronic
transitions to the impurity level in the semiconductor
energy gap. The nonlinear polarization is localized in
the vicinity of the microcavity layer. The spectral posi-
tion of the cavity mode and the radius of localization
can be varied by varying the microcavity parameters.

This work was supported by the Russian Foundation
for Basic Research (project nos. 00-02-04026 and
00-15-96555), the Deutsche Forschungsgemeinschaft
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copy” within the framework of the Federal Program
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