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Precision X-ray structural studies were carried out for LiNbO3 : Znx single crystals with x = 0.0, 2.87, 5.20, and
7.60 at. %. It was found that the insertion of the Zn atoms into the Li position was accompanied by a decrease
in the concentration of intrinsic NbLi defects. At x = 7.6%, the Zn atoms change their locations in the lattice and
partially occupy the Nb positions. This clarifies the structural nature of the “threshold” Zn concentration, which
manifests itself as singularities in the concentration dependences of various optical properties. The structural
origin of the threshold concentration is likely a common feature of all nonphotorefractive impurities (Mg, Zn,
In, and Sc) in LiNbO3. A change in the intrinsic defect structure of the LiNbO3 crystals with different Zn con-
centrations is discussed. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 61.72.Dd; 61.72.Ss; 61.66.Fn; 61.10.Eq
Lithium niobate is a universal material for optical
applications. Of considerable interest are LiNbO3 crys-
tals containing the Mg, Zn, In, and Sc impurities named
“nonphotorefractive” or “optical-damage resistant”
(see bibliography in reviews [1, 2]) because they sup-
press photorefraction by no less than two orders of
magnitude at certain doping levels and, thereby,
enhance crystal tolerance to intense laser radiation.
Doping with these ions also modifies some optical
properties of LiNbO3. Numerous studies have led to the
conclusion that the main role of the ions of these type
amounts to controlling the concentration of intrinsic
(structural) defects in LiNbO3 [1, 2]. Recall that intrin-
sic defects arise in LiNbO3 crystals as a result of the
deviation from the stoichiometry caused by the Li defi-
ciency [1]. According to the presently adopted model
that was substantiated by the structural studies [3–5],
some of the Li vacancies are occupied by Nb atoms,

which typically form the Nb  structural defects.1

Their charges are compensated by either  [4, 6] or

 [1, 3]. This model implies that the nonphotorefrac-
tive ions, when they occupy the Li position, reduce the
concentration of the intrinsic NbLi defects and, corre-
spondingly, the concentration of their compensators.
The location of Mg in the Li position is proved by struc-
tural measurements [7]. A decrease in the NbLi concen-
tration is precisely the factor which was assumed to be
the main reason why the effect on the optical properties
of LiNbO3 is common to all nonphotorefractive impu-

1 The Kröger–Winck notations are used: a heavy point and a prime
label the defects charged, respectively, positively and negatively
with respect to the lattice.

Li
4.

VLi'

VNb
5'
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rities [1, 2]. The commonness of the effect of these
impurities is clearly demonstrated by the occurrence of
singularities (extremes, kinks, or breaks) in the concen-
tration curves for different optical properties (e.g.,
maxima in the concentration dependences of 90° phase
matching in SHG, parallel shifts of IR bands, etc.) at
certain “threshold” concentrations. The threshold con-
centrations are close for the bivalent Mg and Zn ions
(5–6 and 7–8 at. %, respectively) and tervalent In and
Sc ions (1.5–2%). There is some debate over the nature
of the threshold concentrations [1, 2, 8–10]; in particu-
lar, it was speculated that they are associated with a
change in the location of dopants in the lattice [1, 2, 8].
However, so far all structural models for the insertion of
nonphotorefractive ions into the LiNbO3 lattice and the
discussion about the relation between the threshold
concentrations and changes in the defect structure have
been based only on chemical analysis data [9, 10] and
spectroscopic tests [1, 2] without structural studies.

Our precision X-ray structural study was aimed at
determining the location of the Zn atoms for different
concentrations in the LiNbO3 lattice. The main purpose
of this work was to trace the influence of Zn on the
intrinsic defect structure of LiNbO3 and analyze the
structural origin of the threshold concentration. The
choice of impurity was dictated by the fact that the
highest threshold Zn concentration (~7%) provided the
most reliable estimates.

Single-domain crystals were grown by the Czo-
chralski method from a congruent melt
([Li2O]/[Nb2O5] = 48.5 : 51.5 mol %); zinc was added
to the melt in the form of oxide. Samples with zinc con-
tents of 0.0, 2.87, 5.20, and 7.60 at. % in the crystal
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were studied. The method of preparing single-domain
samples is described in [11].

X-ray experiments were carried out for samples
shaped like spheres with diameters ranging from
0.15(1) to 0.28(1) mm. Measurements were accom-
plished on an Enraf-Nonius CAD-4F diffractometer
using MoKα radiation. Diffraction data were collected
over a full reflection sphere of the reciprocal space for
the scattering angles constrained to 2ϑ  ≤ 100°. Inten-
sity arrays containing from 3559 to 5092 reflections
with I ≥ 3σ(I) were obtained for different samples.
Averaging of the symmetrically equivalent reflections
gave working arrays containing from 640 to 943 unique
structure amplitudes. After averaging, the discrepancy
factors did not exceed 2.2%. The maximum number of
refined structural parameters did not exceed 28 even if
the anisotropy and anharmonicity of atomic thermal
vibrations were taken into account. All calculations
were performed using the Prometheus program pack-
age [12].

The structure of LiNbO3 is realized in the R3c space
group with unit-cell parameters a = 5.149(1) and c =
13.862(2) Å of the matrix crystal in hexagonal basis.
The structural models were refined by the full-matrix
least-squares method with a step-by-step scan if there
was a strong correlation between the refined parameters
[13]. The correlations considerably hampered the reli-
able determination of site occupancies for atoms. The
final discrepancy factors between the calculated and
experimental moduli of structure amplitudes were
0.90–1.62% for the unweighed and 0.79–1.38% for the
weighed R factors. Selected structural crystallographic
data for the single crystals under study are given in the
table. A large number of experimental structure ampli-
tudes for each refined parameter and low ~1% R factors
are evidence for a high reliability of the results.

The main and basically new result of this work is
that a part of the Zn ions were located in the Nb positions
at a concentration of 7.6% (table), i.e., at a concentration
falling within the range of “threshold” changes in crystal
properties [2]. Preliminary measurements carried out for
crystals with 8.2% Zn lead to the same conclusion about
the Zn location. At lower concentrations, Zn occupies
only the Li positions, displacing NbLi and partially sub-
stituting for Li. This confirms the a priori suggestion,
made on the basis of the available spectroscopic data
[1, 2] and model calculations [8], about the intercon-
nection between the threshold concentrations of non-
photorefractive ions and their simultaneous insertion
into two basis cationic positions.

Let us consider in more detail a “stepwise” transfor-
mation of the intrinsic defect structure of LiNbO3 with
increasing concentration of the inserted Zn ions. The
discussion will be based on the model [4, 7]. Notice that
the composition of the undoped crystal is consistent
with the literature data for congruent crystals [3–5] and
can be schematically represented by the well-known
formula [Li1 – 5xNbxu4x[[Nb]O3 (u stands for the vacan-
cies, and the first and second square brackets denote the
Li and Nb sites, respectively). In accordance with the
above-mentioned a priori assumptions, the insertion of
Zn into the Li position is accompanied by a decrease in
the NbLi concentration (table); NbLi defects are fully
Selected crystallographic data for LiNbO3 : Znx single crystals; space group R3c

Zn: 0.0 mol %; a = 5.149(1) Å; c = 13.862(2) Å; R = 0.011, Rw = 0.011

Atoms site multiplicity site occupancy x/a y/b z/c Beff, Å

Nb 6 100.0(2) 0 0 0 0.41

(Li, Nb) 6 95.2(3) 0 0 0.2810(1) 0.99

O 18 100.0(2) 0.0482(1) 0.3432(1) 0.0645(2) 0.54

Zn: 2.87 mol %; a = 5.150(1) Å; c = 13.861(2) Å; R = 0.009, Rw = 0.008

Nb 6 100.0(3) 0 0 0 0.39

(Li, Zn, Nb) 6 94.4(6) 0 0 0.27786(1) 1.00

O 18 100.0(5) 0.0479(1) 0.3429(1) 0.0640(2) 0.59

Zn: 5.2 mol %; a = 5.151(1) Å; c = 13.862(2) Å; R = 0.011, Rw = 0.010

Nb 6 100.0(2) 0 0 0 0.45

(Li, Zn) 6 95.2(3) 0 0 0.2810(1) 0.95

O 18 100.0(2) 0.0482(1) 0.3432(1) 0.0645(2) 0.63

Zn: 7.6 mol %; a = 5.152(1) Å; c = 13.867(2) Å; R = 0.016, Rw = 0.014

(Nb, Zn) 6 99.6(8) 0 0 0 0.42

(Li, Zn) 6 99.9(4) 0 0 0.2774(1) 0.89

O 18 100.0(5) 0.0485(1) 0.3438(1) 0.0633(2) 0.57
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Fig. 1. Crystal structure of lithium niobate LiNbO3 of stoichiometric composition. (a) Close packing of the O atoms (large spheres)
and positioning of the Nb atoms (dark spheres) and Li (light spheres) in octahedral cavities of the structure. (b) Nb and Li octahedra;
a pair of such face-sharing octahedra is seen.
absent in a crystal with 5.2% Zn. According to the
model [4, 6], the intrinsic NbLi defect is compensated
by 4VLi; it is logical to assume that the Zn ion in the Li

position, , is compensated by  and formulate a
crystal with 5.5% Zn as [Li1 – 2xZnxux[[Nb]O3. There-
fore, the replacement of NbLi by the Zn ions is simulta-
neously accompanied by a decrease in the concentra-
tion of Li vacancies. Such a transformation of the
defect structure is corroborated by the fact that, at con-
centrations of 2.87 and 5.2% Zn, the lattice parameters
a and c virtually coincide with their values in the
undoped crystal (table), despite the difference in the
ionic radii of Li+ and Zn2– [64 and 74 pm, respectively
[14]). This departure from Vegard’s law can be
explained by the lattice “compaction” due to the col-
lapsed vacancies [15].

The insertion of Zn into the Nb positions requires
reformulation of the compensation conditions. Model
calculation shows [8] that, if bivalent ions are inserted
into both cationic positions, then the self-compensation

mechanism, for which  is compensated by 3 ,
is probable. The self-compensation requirement that
the concentration ratio in a crystal with 7.6% Zn should
be [ZnNb]/[ZnLi] = 1 : 3 is fulfilled to a first approxima-
tion (table). This gives grounds to assume that the self-
compensation mechanism is realized, and the crystal
formula for [Zn] ≥ 7.6% can be written as
[Li1 − 3yZn3y][Nb1 – yZny]O3. Since the self-compensa-
tion condition does not require that vacancies VLi be
involved, their concentration becomes zero at the
threshold Zn concentration.

Figures 1a and 1b display the LiNbO3 structure of
stoichiometric composition. One can clearly imagine
from these figures the changes occurring in the crystal
structure upon doping it with zinc. The structure of

ZnLi

.
VLi'

ZnNb
3' ZnLi

.
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LiNbO3 is a hexagonal close packing of O atoms, with
two-thirds of octahedra each being occupied, respec-
tively, by Nb and Li atoms while the last one-third
being empty. Figure 1a demonstrates the close packing
and the positioning of niobium and lithium in the octa-
hedral cavities of the structure. For clarity, some of the
Nb and Li octahedra are set off in Fig. 1b. If some of the
Li positions in the matrix crystal are occupied by nio-
bium, pairs of face-sharing Nb octahedra appear. Such
uncommon configurations with two closely spaced
highly charged cations are known in crystal chemistry.
In the Zn-doped LiNbO3 crystal, the pairs of two Nb
octahedra are replaced by pairs of Nb and Zn octahe-
dra; the first structural threshold appears when the
Nb−Nb pairs of octahedra fully disappear (this occurs
at concentrations 3 < [Zn] < 5%). In this concentration
range, the concentration dependences of electrooptical
coefficients z13 and z33 exhibit nonmonotonic behavior
[15]; the other properties do not show any anomalies. If
zinc substitutes for Nb in basis positions, the pairs of Li
and Zn octahedra appear, while the pairs of Zn and Nb
octahedra are retained. The Zn–Zn pairs of octahedra
may also appear with low probability.

In summary, this study has confirmed the a priori
assumption about the displacement of excess Nb from
the Li positions by the Zn atoms and established the
structural origin of the threshold Zn concentration
(~7%), which is manifested as singularities in the con-
centration dependences of optical properties. The
threshold Zn concentration corresponds to a change in
the cationic position of the Zn ion and the disappear-
ance of the Li vacancies from the lattice. This conclu-
sion can likely be extended to the whole family of non-
photorefractive impurities (Mg, Zn, In, and Sc) in
LiNbO3 because of the similarity in the properties of
these compositions.
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Under rather general assumptions about the properties of a quantum channel with noise, a quantum protocol
providing implementation of secret bit commitment with the probability as close to unity as is wished is pro-
posed. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 03.67.Hk; 03.67.Dd
Weisner has come up in [1] with an idea that quan-
tum physics can ensure higher security in information
transmission than classical physics does. Later, after
publications [2, 3], the secret key distribution (quantum
cryptography) was studied in a number of papers. Apart
from the key distribution protocol, other cryptographic
protocols, so-called bit commitment (BC) and coin
tossing (CT) protocols [4, 5], are important for applica-
tions and are of interest themselves. The quantum vari-
ant of these protocols was proposed in [6].

The BC protocol is an exchange protocol allowing
two participants A and B, who do not trust each other,
to implement the following scheme. Participant A
sends a portion of information about his secret bit to
participant B (b = 0 or 1, the commitment stage), so
that, knowing this portion, participant B cannot deter-
mine what participant A contemplates. However, this
portion of information is such that participant A cannot
change the value of his secret bit b at the revelation
stage when participant B claims the remaining portion
of information. The CT protocol is a scheme through
which two distant participants, who do not trust one
another, can realize an honest coin tossing procedure.

The classical variants of the protocols are based on
the unproved computational complexity of some trap
functions (functions whose reversion requires exponen-
tially large computation time with a classical computer)
[7, 8].

It was believed that quantum protocols based not on
computational complexity but on the fundamental
exclusions imposed by quantum mechanics are uncon-
ditionally secure [9]. However, it was demonstrated
later that the nonrelativistic quantum BC protocol is
insecure [10, 11]. Participant A can cheat successfully
by using a so-called Einstein–Podolsky–Rosen (EPR)
attack [12]. The proof of the possibility of EPR attack
is essentially based on the result obtained in [13] for
measurements in quantum ensembles of composite sys-
tems.
0021-3640/01/7302- $21.00 © 20107
All the above-mentioned nonrelativistic quantum
protocols are based only on the properties of quantum
states in the Hilbert space and do not explicitly include
the effects of the state propagation from one distant par-
ticipant of the protocol to the other. In practice, infor-
mation is transmitted from one participant to another
through Minkowski space–time. Allowance made for
this fact in an explicit form extends the possibilities of
constructing quantum relativistic protocols [14] and
noticeably simplifies the proof of their security [15].
Restrictions imposed by special relativity on the mea-
surability of quantum states allow one to realize the
secret BC and CT protocols in an ideal channel [16]. An
EPR attack is inefficient in the relativistic case because
a state extended in space–time cannot be instanta-
neously measured. Moreover, it is impossible to instan-
taneously separate even one of a pair of orthogonal
states with certainty. Restrictions imposed by special
relativity on the measurability of quantum states were
discussed even by Landau and Peierls [17].

In this paper, we propose the relativistic quantum
BC protocol in a quantum channel with noise. The
notion of the protocols is intuitively simple. Participant
A prepares (turns on a source) one of a pair of orthog-
onal states corresponding to 0 or 1, which, being
formed, are sent to a communication channel with the
highest possible speed (speed of light c, which is taken
as c = 1 in what follows). Until the whole states are
available for participant B, he cannot with certainty
determine what the value is of the secret bit, 0 or 1. Due
to existing highest propagation speed, participant A
cannot affect that portion of the state which has been
sent to the communication channel; i.e., participant A is
committed to the bit (commitment stage). When the
whole state becomes available to participant B, he can
determine the value of the secret bit with certainty,
because of the orthogonality of the states, and can com-
pare this value with the one that will be reported to him
by participant A through a classical communication
channel at the revelation stage. Restrictions imposed by
special relativity on the measurability of quantum
001 MAIK “Nauka/Interperiodica”
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states allow one to realize the original idea of the BC
protocol about placing a portion of information at the
disposal of one of the participants. The restriction of the
accessible coordinate space automatically leads to the
restriction of a part of the Hilbert space of states even
for internal degrees of freedom of a quantum system
(spin and polarization) because these degrees of free-
dom do not exist in isolation from the spatial degrees of
freedom.

The protocol uses a pair of single-photon states
which have orthogonal polarizations and spatial ampli-
tude of a special form and correspond to 0 and 1:

(1)

where a+(k) is the creation operator of the state with
momentum (energy) k > 0, ^(k) is the amplitude in the
k representation, |e0, 1〉  is the polarization state, and

(2)

In the space–time τ representation, the states have the
form

(3)

where ^(τ) is the amplitude in the τ representation.
This form corresponds to the intuitive notion of a
packet that moves in the positive direction along the x
axis with the speed of light and has a space–time form
of ^(τ). The normalization condition in the τ represen-
tation, with allowance made for [18], has the form

(4)

ψ0 1,| 〉 k^ k( )a+ k( ) 0| 〉 e0 1,| 〉⊗d

0

∞
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=  k^ k( ) k| 〉 e0 1,| 〉⊗d
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∞
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ψ0 1,| 〉 τ^ τ( ) τ| 〉d e0 1,| 〉 ,⊗
∞–

∞

∫=

^ τ( ) k^ k( )e ikτ– , k τ〈 | 〉d

0

∞

∫ 1

2π
----------eikτ ,= =
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eikτ 1
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∞–

∞

∫ iπ k( )e ika– ,sgn=
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∫
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∞
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× 1
2
---δ τ τ'–( ) i

π
--- 1

τ τ'–
------------+ ^ τ( )

2 τ .d

∞–

∞

∫=
The following two points are important for the pro-
tocol: (i) there is the highest speed of state propagation
and (ii) the orthogonal states are indistinguishable with
certainty if they are not available as a whole, even
though they remain orthogonal under the restriction on
the region accessible for measurements. The values of
the classical bits 0 and 1 are attributed to two orthogo-
nal polarization states |e0〉  and |e1〉 . Because there is no
polarization state in isolation from the spatial degrees
of freedom ^(τ), for the states to be distinguished with
certainty, i.e., with unit probability, the whole spatial
region, where the amplitude ^(τ) is nonzero, should be
accessible. More precisely, any measurement in the
restricted τ region has nonzero error in distinguishing
between states. Any measurement is described as a
decomposition of unity in the Hilbert space * [19–23]

and, when the restricted region ∆(τ) is accessible [ (τ)
is the complement with respect to the whole space τ ∈
(–∞, ∞)], is given as the following decomposition of
unity:

(5)

where 30, 1 are the projectors onto the polarization
states |e0, 1〉 . If the measurement outcome is in the
region ∆(τ) accessible for measurement, the probabili-
ties of the outcomes in two orthogonal channels 30 and
31 have the form

(6)

where ρ(0, 1) = |ψ0, 1〉〈ψ 0, 1| and N(∆(τ)) is the fraction
of the outcomes in the accessible region. In this case,
the probability of error due to the channel orthogonality
is pe(∆(τ)) = 0. However, if the outcome is not obtained
in the region accessible for measurements, the proba-
bility of error is pe( (τ)) = 1/2 and the fraction of these
outcomes is

(7)

∆

I τ τ| 〉 τ〈 |d I
C

2⊗
∞–

∞

∫=

=  τ τ| 〉 τ〈 |d 30 31+( )⊗
∆ τ( )

∫ τ τ| 〉 τ〈 |d I
C

2⊗ ,
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Tr ρ 0 1,( ) I ∆ τ( )( ) 30 1,⊗( ){ }

=  τ ^ τ( )
2

d

∆ τ( )

∫ N ∆ τ( )( ),=

Tr ρ 0 1,( ) I ∆ τ( )( ) 30 1,⊗( ){ } 0,≡

∆

Tr ρ 0 1,( ) I ∆ τ( )( ) I
C

2⊗( ){ }

=  τ ^ τ( )
2

d

∆ τ( )

∫ N ∆ τ( )( ).=
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The total error is

(8)

The protocol uses states with the space–time amplitude
of a special form, namely, the states consisting of two
highly localized halves separated by the interval τ0:

(9)

where δ is taken as small as is wished. The amplitude
f(τ) cannot have a compact carrier [23]. However, the
localization as strong as is wished and the falloff as
close to exponential as is wished are possible [23, 24].
In what follows, we will omit the parameter δ, bearing
in mind that it can be taken as the smallest parameter in
the problem with any accuracy. The last statement
means that, if the accessible region of the space–time τ
covers the interval –∆τ < τ < ∆τ + τ0, the probability of
error (8) is Pe = 0. If only one of the halves of the state
is available, the probability of error (8) is Pe = 1/4. This
means that, in order to distinguish between a pair of
orthogonal states of form (9) with certainty, the space–
time region of a size ≈τ0 should be accessible, which
cannot be ensured in a time shorter than τ0 because of
the existence of the limiting propagation speed.

Participant A sends the initial states ρin(0, 1) =
(|e0, 1〉  ^ |̂ 〉)(〈^| ̂  〈e0, 1|) to a quantum communication
channel. The description of the quantum communica-
tion channel with noise reduces to the specification of
an instrument [19–23], which is sometimes called
superoperator, converting input density matrices into
output ones which need not be normalized. Each quan-
tum communication channel specifies an affine map-
ping of the set of input density matrices into the set of
output density matrices. Any such mapping is reduced
to the specification of the instrument 7:

(10)

Pe pe ∆ τ( )( )N ∆ τ( )( ) pe ∆ τ( )( )N ∆ τ( )( )+=
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2
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2
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∆ τ( )

∫=
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1

2
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∆τ τ0+
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where |ui〉 = dτui(τ)|τ〉 are eigenvectors of the oper-

ator of an output density matrix, i.e., of the kernel
ρout(τ, τ'). Taking Eq. (4) into account, we have

(11)

The output polarization vectors are |ei, 0, 1〉  = αi, 0, 1|e0〉  +
βi, 0, 1|e1〉  (|αi, 0, 1|2 + |βi, 0, 1|2 = 1). Any instrument can be

represented in the form 7[ρ] = Viρ , with

Vi  ≤ I [19–22] (here, it is sufficient to restrict our

consideration to the discrete outcome space i). For the
case under consideration, this representation can be
written as

(12)

where 7⊥ […] is the instrument’s part that identically
gives zero on the linear shell of vectors |̂ 〉 ^ |e0, 1〉 .

Since the time of preserving the secret bit is deter-
mined by the extent τ0 of the states, the channel can
have an arbitrary length. Therefore, this length may be
taken as 0 without loss of generality. In fact, the speci-
fication of an instrument is the description of the prop-
erties of the quantum communication channel, simi-
larly to the classical case when the probability distribu-
tion over the output alphabet is specified for each
symbol of the input alphabet. This mapping can intu-
itively be treated (with minor reservations) as the trans-
formation of the input state |ψ0, 1〉  with the form ^(τ)
and polarization e0, 1 to one of the output states, which
have the form ui(τ) and polarization ei, 0, 1 and occur
with the probability λi. In the case under consideration,
the fact that the sum of probabilities does not exceed

unity, i.e., λi ≤ 1, can be treated as disappearance

(absorption) of a photon in the channel. The channel
properties are specified by the functions ui(τ) and prob-
abilities λi, which are assumed to be a priori known and
can be determined from the channel calibration. If one
can choose a new interval Dτ of the localization of the

∞–

∞∫

τ'ρout τ τ',( )ui τ'( )d

∞

∞

∫ λ iui τ( ),=

τui τ( )u j* τ( )d
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∫ δij, λ i 1.≤
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i∑ Vi
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halves of the output states so that

(13)

where δ is as small as is wished, as in Eq. (9), the chan-
nel fits for implementing the proposed protocol. In
other words, the channel is organized so that the states
strongly localized at the input remain strongly localized
at the output within an accuracy of Dτ ! τ0 and Dτ >
∆τ (see figure) but can change their form and polariza-
tion. The Dτ value controls the accuracy with which a
possible delay in the choice of the secret bit by partici-
pant A, i.e., the delay in sending the state to the com-
munication channel, is detected. The probability of
detecting the states at the output by participant B in the
space–time window ∆(τ) covering only one of the
halves ui(τ) independently of the outcome in the chan-
nels 30, 1 is

(14)

and can be made as close to 1/2 as is wished (with expo-
nential accuracy by appropriately choosing Dτ and τ0).
In this case, when only one half is available, i.e., during
the time ≈τ0, the probability of distinguishing between
the states is not higher than 1/2 · 1/2 = 1/4, according to
Eq. (8).

Let us now calculate the probability of error when
the states become entirely available after the protocol
time Dτ + τ0 ≈ τ0 (recall that this distinguishing error is
equal to zero in an ideal channel). If a state is entirely
available (the time ≈τ0 after the protocol beginning),
the probability of the outcome in one of the channels
30, 1 is

(15)

i∀ 1 ∞,
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T ρin[ ] =

Pr ∆ τ( ) ∆ τ( )+{ }

=  Tr 7 ρin 0 1,( )[ ] I ∆ τ( )( ) I
C

2⊗( ){ } λ i

i 1=

∞

∑ 1.≤=
The inequality Pr{∆(τ) + (τ)} ≤ 1 means that the
states do not all attain the channel output; i.e., states are
absorbed in the channel with a probability of 1 –

λi. Formally, with this probability they are never

accessible for measurement by participant B. In this
case, when the instrument of participant B does not
change state, he can only guess what has been sent. The
contribution of these events to the probability of error

is 1/2(1 – λi). Let us calculate the contribution to

error from the events when the instrument of partici-
pant B changes state. The measurement minimizing
error in distinguishing between two polarization states
on the “honest” input states, which are sent by partici-
pant A, is described by the following decomposition of
unity (see, e.g., [26] for more detail):

(16)

Here,

(17)

where  is the eigenvectors of the operator

(18)

with

(19)

Taking into account Eq. (18) and the fact that a priori
probabilities of choosing the states 0 or 1 by participant
A are equal to 1/2, one can represent the total error in
distinguishing between the polarization states on the

∆

i 1=
∞∑

i 1=
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honest input states, when they are entirely available, in
the form

(20)

where γ2 is the negative eigenvalue of the operator Γ
appearing in Eq. (18):

(21)

Assuming that the polarizations |e0〉  and |e1〉  are identi-
cally confused in the channel, one has γ2 = – |γ01|. As fol-
lows from Eqs. (18)–(20), the error in an ideal channel
is Pe = 0.

The protocol is specified as follows. (i) The partici-
pants check only their local neighborhoods. Previously,
they came to an agreement about the time of the proto-
col onset, the form ^(τ) of the states, and the polariza-
tion basis |e0, 1〉  for 0 and 1. (ii) Participant A encodes

the secret bit b (0 or 1) by the parity bit over N states 

and , consisting of the blocks of k states (b =

 ⊕  a[i, j], i = 1, …, k, where all a[i, j] belonging
to the same block are identical), and sends k · N states
alternately through k · N quantum communication
channels, while participant B carries out measurement
(16). (iii) At the revelation stage at any ∆τ < τ < ∆τ + τ0,
participant B can request through the classical channel
what has been sent by participant A. (iv) As the protocol
time passes, participant B compares the outcomes of
his measurements with what has been reported by par-
ticipant A. (v) If all the tests are successful, the protocol
is completed; otherwise it is broken.

So long as the protocol is not finished, the probabil-
ity of the correct determination of the secret bit by par-
ticipant B exceeds 1/2, which is the probability of sim-
ple guessing, only by an exponentially small quantity.
Indeed, the number of binary rows of length k · N in the
block representation with 0 and 1 is (see [27] for the
summation)

(22)

and is virtually equal to the total number of binary rows
of length N · k. Shannon’s information [28–30] in the
set of the block rows is (within an accuracy of round-
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off error) the number of binary symbols that are neces-
sary for identifying the row parity:

(23)

i.e., almost all bits in the row should be known. How-
ever, when only half of the state is accessible (∆τ < τ <
∆τ + τ0), the probability of error in determining a bit in
each position is equal to or less than 1/4, according to
Eq. (8), even in a channel without noise. Therefore, the
probability that participant B has determined the parity
bit until the protocol is finished does not exceed

(24)

Let us calculate the probability of error in determin-
ing the parity bit by participant B after the protocol is
finished. The block representation for even k is stable
(errors are corrected by the majority voting method)
when the number of errors in each block is no more
than k/2 – 1. The probability of error in the block  or

 is

(25)

which may be made smaller than any preset quantity by
choosing k. The total error in determining the parity bit
is (N is assumed to be even)

(26)

where the summation is performed only over odd
superscripts i because error in the parity bit arises when
malfunction occurs in an odd number of blocks. Taking
into account that

(27)

and setting z = Pe(k) and y = 1 – Pe(k) (x + y = 1), we
find

(28)

By choosing large enough k for a given quantum chan-
nel, the probability Pe(k) can be made as small as is
wished so that NPe(k) ! 1 is exponentially small. In
this case, the error in determining the parity bit after the

I
2N k⋅

2k
---------- lπ

k
----- 

 cos
N k⋅

lNπ( )cos
l 1=

k

∑ 
 
 

2 η N k,⋅≈log=

η 1;≈

P parity( ) 1
2
--- 2

η
2
--- N k⋅–

.+=

0̃

1̃

Pe k( ) Ck
i Pe

i 1 Pe–( )k i–

i
k
2
---=

k

∑=

≈ 2
πk
------ 2 Pe 1 Pe–( )[ ] k

,

Pe parity( ) CN
i Pe

i k( ) 1 Pe k( )–( )N i– ,
i odd=

N 1–

∑=

1
2
--- x y+( )N x y–( )N–[ ] CN

i xiyN i–

i odd=

N 1–

∑=

Pe parity( ) 1
2
--- 1 1 2Pe k( )–( )N–[ ] .=



112 MOLOTKOV, NAZIN
protocol is finished is also as small as is wished and the
probability of correct determination is as close to unity
as is wished.

Let us discuss now the stability of the protocol to
deception by participant A. Because the minimal dis-
tance (according to Hamming) between two block rows
of different parities equals k (the minimal number of
different positions), k positions, as a minimum, should
be changed for changing the parity of the whole row.
Since the probability of correct determination of each
block  or  is no less than 1 – Pe(k)  1 [Pe(k) is
exponentially small, see Eq. (25)], the probability that
deception by participant A cannot be detected by par-
ticipant B does not exceed this quantity.

The protocol is also stable to the delay in choosing
the secret bit by participant A after the protocol onset.
Recall that, for honest undelayed input states, the prob-
ability of outcome in the channel 3⊥  = I – 3i is
equal to zero:

(29)

with allowance made for |αi, 0, 1|2 + |βi, 0, 1|2 = 1 and
3i3j = δij3i.

Any state delayed by more than Dτ can be detected
with the probability as close to unity as is wished. This
detection can be ensured by the restrictions imposed on
instrument (12) by special relativity, more precisely, by
existence of a limiting propagation speed. If a state pre-
pared at the input of any quantum communication
channel is strongly localized, i.e., the squared ampli-

tude is dτ|µ(τ)|2 = 1 – δ, where δ is exponentially

small and ∆τ  0, this state cannot be detected at the
channel output in a time shorter than t = L/c, where L is
the channel length; more precisely, detection with the
probability as close to unity as is wished is possible in
the time window –∆τ + L/c ≤ t ≤ ∆τ + L/c. For the case
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under consideration, instrument (12) must convert
states prepared later at the input into states which
appear later at the output. The shift value for the leading
edge of the state amplitude at the output cannot be less
than the corresponding shift at the input.

Any delayed input state can be presented in the form
(polarization degrees of freedom are omitted for brev-
ity)

(30)

where |µl〉  are the eigenstates of the density matrix and
the functions µl(τ) have a carrier which does not over-
lap in the interval Dτ with the carrier of the leading half
of any of the functions ui(τ) obtained at the channel
output from undelayed states. At the channel output,
the density matrix ρdelay is converted to such a density
matrix that the carriers of the eigenfunctions |ηk〉
also do not overlap with the leading half ui(τ) in the
interval Dτ:

(31)

Therefore, |〈ηk|ui〉|2 ≤ 1/2, because ηk(τ) does not cover
the leading half ui(τ) where one-half of the squared
modulus of ui(τ) is gained.

The probability of the outcome on delayed states in

the channel 3i < I is

(32)

and the probability of the outcome on undelayed states
is equal to unity. Similarly, the probability of the out-
come in the channel 3⊥  = I – 3i is (recall that
this probability is equal to zero on honest states)

(33)

The sum of probabilities of the outcomes in both chan-
nels is equal to unity if all states attain the channel out-
put, i.e., are not absorbed, ηk = 1.

Delay in choosing the secret bit (state delay) is
detected upon appearance of the outcomes in the chan-
nel 3⊥  with the probability p⊥ . For changing parity bit,
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it is sufficient to delay the states only in one of the
blocks of k states. The probability that delay of k states
by participant A remains undetected is equal to the
probability that all k delayed states do not give an out-
come in the channel 3⊥  and, therefore, imitate the sta-
tistics of measurement outcomes for honest states. This
means that

Pcheat = (1 – p⊥ )k ! 1, (34)

which can be achieved by taking large enough k for
known probability p⊥ .

Thus, the protocol provides implementation of hon-
est bit commitment protocol with the probability as
close to unity as is wished.

This study was supported by the Russian Founda-
tion for Basic Research (project no. 99-02-18127), by
the project “Physical Foundations of Quantum Com-
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On the Energy Loss of High Energy Quarks
in a Finite-Size Quark–Gluon Plasma1
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The induced gluon emission from a fast quark passing through a finite-size QCD plasma is studied within the
light-cone path integral approach. It is shown that the leading log approximation used in previous studies fails
when the gluon formation length becomes on the order of the length of the medium traversed by the quark. Cal-
culation of the energy loss beyond the leading log approximation gives the energy loss which grows logarith-
mically with quark energy, contrary to the energy-independent prediction of the leading log approximation.
© 2001 MAIK “Nauka/Interperiodica”.

PACS number: 12.38.Mh
In recent years, much attention has been attracted to
the problem of induced gluon radiation from fast par-
tons in a hot QCD medium (for a review, see [1]). It is
of great interest in connection with the current experi-
ments at SPS, RHIC, and future experiments at LHC on
A + A collisions, since jet quenching due to the parton
energy loss can be a good probe for the formation of a
hot quark–gluon plasma (QGP).

Evaluation of the gluon emission from a fast parton
in a medium requires the understanding of the nonabe-
lian analogue of the Landau–Pomeranchuk–Migdal
(LPM) effect [2, 3]. There are two approaches to the
LPM effect in QCD: the so-called BDMS approach [4]
(see also [1, 5]) based on the Feynman diagrammatic
formalism, and the light-cone path integral (LCPI)
approach developed in our paper [6] (see also [7–10]).
The BDMS approach neglects the mass effects and
applies in the case of large suppression of the radiation
rate, as compared to the Bethe–Heitler one. The LCPI
approach applies to an arbitrary strength of suppres-
sion. For large suppression, these approaches are equiv-
alent [1, 4, 11]. The probability of gluon emission in the
BDMS and LCPI approaches is expressed through the
solution of a two-dimensional Schrödinger equation
with an imaginary potential. This equation describes
evolution of the color singlet gq system in a medium.
The potential is proportional to the cross section for
scattering of the gq system by a medium constituent.
For the QGP, the constituents can be modeled as Debye-
screened colored Coulomb scattering centers [12].

In [4], the quark energy loss ∆E has been evaluated
analytically by treating interaction of the gq system

q

q

q

1 This article was submitted by the author in English.
0021-3640/01/7302- $21.00 © 20049
with the Debye-screened centers in the Leading Log
Approximation (LLA), which is equivalent to the har-
monic oscillator approximation for the Hamiltonian of
the gq system. For a quark produced inside a finite-
size QGP, the BDMS prediction is

(1)

where L is the length of QGP traversed by the quark,
µ is the Debye screening mass, λg is the mean free path
of the gluon in QGP, CF is the color Casimir for the
quark, and the factor  grows smoothly with L; at L @
λg,  ≈ .

The energy-independent ∆E, Eq. (1), differs from
that obtained recently by Gyulassy, Levai, and Vitev
(GLV) [13]. By calculating the Feynman diagrams for
single scattering [first order (N = 1) in opacity], they
obtained

(2)

Since ∆EBDMS should include the N = 1 contribution,
the contradiction between Eqs. (1) and (2) at E  ∞
seems to be surprising.2 Until now, there has not been
given any explanation of this fact, except for the argu-
ment of the authors of [13] that it can be connected with
the neglect of the finite kinematic bounds in the analy-
sis [4]. However, it is clear that it cannot be important
at E  ∞.

2 Strictly speaking, the derivation of the BDMS formalism given in
[4] is only valid when the number of rescatterings is large. How-
ever, since the formulas obtained are equivalent to those of the
LCPI [6] approach, which is free from this restriction, it is clear
that the BDMS prediction should contain the N = 1 term.

q

∆EBDMS

CFα s

4
------------L2µ2

λg

-----------ṽ ,=

ṽ
ṽ L/λg( )log

∆EGLV

CFα s

4
------------L2µ2

λg
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µ
---.log=
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In this paper, the above puzzle of discrepancy
between the BDMS and GLV predictions is resolved. It
is demonstrated that the absence of the logarithmic
energy dependence in Eq. (1) is connected with the fact
that the LLA fails when the gluon formation length
becomes on the order of L. In this case, the spectrum is
dominated by the N = 1 scattering, which simply van-
ishes in the LLA. It is shown that, if one uses the actual
imaginary potential, the energy loss grows logarithmi-
cally with quark energy. However, the denominator in
the argument of the logarithm is not the Debye mass, as
it is in Eq. (2).

We will work in the LCPI formalism [6]. The prob-
ability distribution of the induced gluon emission from
a quark produced at z = 0 can be written as [10]

(3)

where x is the gluon fractional momentum, n is the
number density of the medium, and

(4)

Here, σ3 is the cross section for interaction of the gq
system with a scattering center. The relative transverse
separations in the gq system are  = (1 – x)r and

 = –xr, Ψ(r, x) is the light-cone wave function for
the q  gq transition in vacuum, and Ψm(r, x, z) is the
quark light-cone wave function in the medium for the
longitudinal coordinate z (spin and color indices are
omitted). The wave functions (modulo color factor)
read

(5)

(6)

where P(x) = i [sg(2 – x) + 2sqx]/2M(x), sq, g

denote the parton helicities, _ is the Green’s function
for the two-dimensional Hamiltonian

(7)
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Ĥ z( ) –
1

2M x( )
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2

i
n z( )σ3 ρ x,( )

2
------------------------------,–=
and

(8)

is the Green’s function for Hamiltonian (7) with
v(r, z) = 0, M(x) = Ex(1 – x), and Lf = 2Ex(1 – x)/e2,

where e2 = (1 – x) + x. The gluon mass mg plays
the role of infrared cutoff removing the contribution
from long-wavelength gluons which cannot propagate
in the QGP. It is natural to take mg ~ µ. However, for
large suppression, which occurs at E  ∞, the parton
masses can simply be neglected. The three-body cross
section can be written as [14]

(9)

where CA = Nc is the octet color Casimir and σ2(ρ) is the
dipole cross section for scattering of a q pair by a
color center. For the parametrization σ2(ρ) = C2(ρ)ρ2,
the factor C2 is

(10)

Here, CT is the color Casimir of the scattering center. In
the region ρ ! 1/µ, which dominates the spectrum for
strong suppression, Eq. (10) takes the form

(11)

The LLA consists in replacing C2(ρ) by C2(ρeff),
where ρeff is the typical value of ρ. This seems to be a
reasonable procedure, since C2(ρ) has only a slow log-
arithmic dependence on ρ. Then σ3(ρ, x) = C3(x)ρ2,
where C3(x) = C2(ρeff)A(x), with A(x) = [1 + (1 – x)2 –

x2/ ]CA/2CF, and Hamiltonian (7) takes the oscillator

form with frequency Ω(x) = . The
value of ρeff is connected with the gluon formation

length lf by the Schrödinger diffusion relation  ~
lf /2M. lf is the typical scale of ξ in Eqs. (5) and (6) when
the wave functions are substituted in Eq. (4).

Let us discuss the gluon emission at a qualitative
level. We begin with estimating ρeff and lf. Let us first
estimate these quantities for gluon emission from a
quark in an infinite medium. We will denote them by

 and . They should also be related to each other by
the Schrödinger diffusion relation. On the other hand,
the absorption effects for the gq system should

_0 r2 z2 r1 z1, ,( )
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become strong at the scale . It means that

nC3 /2 ~ 1. From these conditions one gets  ~

[Eax(1 – x)nC3]–1/4 and  ~ 2 .

These estimates are valid when  & 1/e and  & Lf .

Let us now turn to the gluon emission from a quark
produced inside a finite-size medium. In this case, two
qualitatively different situations are possible in the
high-energy limit. The first regime occurs for the glu-

ons with x such that  & L. In this case, the finite-size
effects play a marginal role and ρeff ~ . The spec-
trum can roughly be calculated using the effective
Bethe–Heitler cross section for the infinite medium. We
call this regime the infinite-medium regime. The sec-

ond regime occurs for the gluons for which  * L. In

this case, ρeff ~ ρd(L), where ρd(L) =  is simply
the diffusion radius on the scale of quark path length
inside the medium. In this regime, the effective Bethe–
Heitler cross section is chiefly controlled by the finite-
size effects. We will call this regime the diffusion
regime. Thus, one can write for the above two regimes

(12)

Here, it is taken into account that ρeff & 1/e. In terms of
x, the infinite-medium regime occurs at x & δ and (1 –
x) & δ and the diffusion regime occurs at δ & x & (1 –
δ), where

(13)

For definiteness, only the region x & 0.5 is discussed
below. At x * δ, the probability of interaction of the

gq system with the medium [it is of the order of
nσ3(ρd, x)L] becomes small. Thus, it is clear that, in the
developed diffusion regime, the spectrum is dominated
by the N = 1 scattering. It is surprising that this proves
to be in apparent contradiction with the prediction of
the LLA. The LLA spectrum can be obtained by using
the oscillator Green’s function in Eq. (6). For zero par-
ton masses, it gives

(14)

where G(x) = αsCF[1 – x + x2/2]/x. This spectrum was
derived in [4]. Note that |ΩL| ~ 1 at x ~ δ. For the diffu-
sion regime, one gets from Eq. (14)

(15)

l f
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π
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8πE2x2 1 x–( )2
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Since the right-hand side of Eq. (15) ∝ n2, it is clear that
it corresponds to the N = 2 term. Thus, one sees that the
N = 1 contribution is simply absent in the LLA.

The fact that the LLA fails in the diffusion regime
can be directly seen from the calculation of the N = 1
contribution. To obtain it, one should use free Green’s
function (8) in Eq. (6). Then, in the massless limit,
Eq. (4) gives

(16)

For C2(ρ) = const, the ρ2 integral in Eq. (16) has zero
imaginary part and the right-hand side of Eq. (16) is
also zero. On the other hand, using Eq. (11) one gets
from Eq. (16)

(17)

Then Eq. (3) yields

(18)

Let us see why the LLA fails in momentum repre-
sentation, in which Eq. (4) reads

(19)

In the massless limit, one can obtain from Eq. (19)

(20)

(21)

where φ is the angle between q and p. The logarithmic
situation with dominance of q2 ! p2 would correspond
to F(p, q) ∝  q2 at q2 ! p2. However, the azimuthal φ
integral in Eq. (21) equals 2πθ(q2 – p2), and the process
is dominated by hard t-channel exchanges with q2 >
p2 ~ 2M(x)/z. After integrating over p2 and q2 in
Eq. (20), one reproduces Eq. (17).
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It should be emphasized that the LLA fails only in
the diffusion regime. But it is a good approximation in
the infinite-medium regime when Ψm falls off rapidly at
a scale much smaller than ρd(L). It is also worth noting
that boundary (13), beyond which the diffusion regime
occurs, is obtained assuming that LPM suppression in
the infinite-medium regime is strong [it means that

(x ~ δ) ! 1/e]. It is possible that the Bethe–Heitler
(BH) situation takes place in this case. One can easily
show that then δ ~ Lµ2/2E. Thus, in general, the diffu-
sion regime occurs for the gluons with energy ω * ωcr ,
where

(22)

Let us now discuss the energy loss. It can be written
as

(23)

One can show that the first term in Eq. (23) is indepen-
dent of energy and is on the order of ∆EBDMS (1) for
both LPM and Bethe–Heitler situations. At E  ∞,
the energy loss is dominated by the second term in
Eq. (23), which grows logarithmically with E. Then,
using Eq. (18) to logarithmic accuracy, one can obtain
in the high-energy limit

(24)

Here, we have used that πCFCTA(0)n/2µ2 = 1/λg.
Note that, since L @ 1/µ, from Eq. (22) it follows that
always ωcr @ µ. The qualitative estimates (including
the region ω & ωcr) show that the appearance of ωcr

under the logarithm in Eq. (24), instead of µ in Eq. (2)
for the RHIC conditions (L ~ 4 fm), can suppress the
energy loss at E ~ 10 GeV by a factor of ~0.5. For the
SPS conditions (L ~ 2 fm), the suppression is not strong
(~0.7–0.8 at E ~ 5 GeV). The above estimates are
obtained for the plasma temperature T = 250 MeV. Note

ρeff

ωcr max
nC3L2
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2
---------, 
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∫+=
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CFα s

4
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λg

----------- E
ωcr

-------.log=

α s
2

that the absence of ωcr in the GLV prediction, Eq. (2),
is connected with the neglect in [13] of the mass effects
in evaluating the phase factor which controls the inter-
ference of the gluon emission from different points of
the quark trajectory.

The above analysis is valid for the gluon emission
from a fast quark as well. In this case, CF in Eq. (24)
should be replaced by 2CA (the factor 2 comes from
symmetry of the spectrum with respect to substitution
x  (1 – x)).
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We show that topological conformal theory contains solutions for WDVV equations for genus zero amplitudes
and solutions to Commutativity equations from its quantum mechanics on the annulus. We explain behavior of
these solutions under the tensor product of the theories. We make a conjecture that it is compatible with the
construction of solutions to WDVV equations from a solution to the Commutativity equation and explicitly
check it in the first nontrivial case. © 2001 MAIK “Nauka/Interperiodica”.
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The topological string theory (TST) is based on the
2D conformal topological theory that has nilpotent odd
symmetry Q and Q-exact energy–momentum tensor:
T = Q(G). The n-point amplitude (traditionally denoted
as F) in TST is given as an integral over the moduli
space Mg, n of complex structures on the genus g Rie-
mann surface Σg with n-marked points. The integrand is
the correlator of n Q-closed vertex operators , …,

 and 2n + 2g – 6 superpartners of the energy–
momentum tensor G:

(1)

where GL(GR) is the superpartner of the energy–
momentum tensor for the left (right) movers respec-
tively and µa is the basis in the space of Beltrami differ-
entials corresponding to coordinates ma on the moduli
space [1–5].

The notion of the amplitude in TST can be extended
to the notion of Generalized Amplitude (GA) G
[6, 7] taking values in cohomologies of the Deligne–
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Mumford compactification  of the moduli space

of complex structures. Its value on the cycle 
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is given by the integral

, (2)

where  is the dim 

 

C

 

A

 

 component of the closed

form  given by the correlator
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S. Keel [8] found that the homology ring 
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* of

 is generated by cycles numbered by trees. These
cycles correspond to the degeneration of a sphere into a
collection of spheres joined by the double points with
each other. Each sphere correspond to a vertex, and a
point of junction of two spheres corresponds to an edge.
Below, we will denote such vertices by parentheses
containing labels of points and the labels of double
points. For example, a cycle that corresponds to degen-
eration of the sphere with five marked points (such that
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points 1, 2, 3 belong to the first sphere and points 4, 5
belong to the second) is denoted as (1236)(745). Here,
6 and 7 are labels of the point of junction on the first
and the second spheres, respectively.

Let us further assume that conformal dimensions of
all fields in conformal topological theory are greater
than or equal to zero, and the only fields that have zero
dimensions are vertex operators Φi. Then, from the fac-
torization properties of the correlators in conformal
field theory, we conclude that the correlator on the
degenerated surface is expressed in terms of correlators
on components with insertions of the full basis of ver-
tex operators at the place of the double point. For exam-
ple, the correlator on a surface that is a junction of two
spheres looks like

, (4)

where ηij is inverse to the bilinear pairing on vertex
operators (given by a two-point correlator on the
sphere) [1, 3, 9].

Keel described relations between cycles corre-
sponding to trees. The evaluation of GA on these rela-
tions gives a set of constraints that are compactly repre-
sented as follows.

Introducing formal parameters Ti, we define the for-
mal series

(5)

Keel’s relations, together with the factorization condi-
tions, lead to Associativity (WDVV) equations [2, 9, 3, 7]
that were extensively studied in [10]:

(6)

We say that the TST(I · II) is a product of theories I
and II if its Lagrangian is a sum of Lagrangians. From
this we get

(7)

Thus, the differential form  in the product
theory is a pointwise product (on the moduli space of
complex structures) of differential forms ΩI and ΩII:

 = .

Therefore, the GA for the product of two theories is
a product of GA in cohomologies. It can be computed
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ΩI1… In
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I Ω
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II
using the intersection product in homologies; in partic-
ular, the amplitude equals

(8)

where CA is the basis in the space of homologies, NAB =
CA ∩ CB. Due to factorization property (4), the GA can
be expressed in terms of F; thus, Eq. (8) can be consid-
ered as a formal product of solutions to WDVV equa-
tions (even if these solutions are not coming from any
TST) [11].

It is believed that the above scheme of reasoning
(with some modifications) can be applied to the wider
class of theories, for example, to theories that can con-
tain gravitational descendants (that lead to Morita–
Mumford classes on the Deligne–Mumford compactifi-
cation of moduli space). In particular, action in such
theory can be deformed by adding to it 2-observables,
corresponding to gravitational descendants. As was
shown in [12–14, 11], the generalized amplitudes in
these theories also can be considered as maps to
cohomologies of  and, thus, lead to solutions of
WDVV equations. So the product operation for GA can
be defined in these theories as above.

Each 2D topological theory contains a supersym-
metric quantum mechanics whose Hilbert space * is a
space of wave functions associated to the circle (that
are invariant under the rotations of this circle), with
supersymmetries and Hamiltonian [15, 16]

that obey (anti)commutation relations

(9)

This quantum mechanics also contains Q+-closed oper-

ators φi = (x)dx, where 0 ≤ x ≤ 2π is a standard

coordinate on S1.

We assume that the kernel W of the Hamiltonian
consists of Q+ and G– closed states, and the rest of its
eigenvalues have a strictly positive real part.

One can show that the regularity of the form 
(3) at points of degeneration of Riemann surface leads
to

(10)

Given N operators , …, , we define the form

 on (C*)N/C* taking values in linear operators
in W as follows.
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Let us parameterize points on C* by two standard
real coordinates l > 0 and ϕ (taking the value in the
interval [0, 2π]) : z = exp(l + iϕ). Consider the space of
N points on (C*)N—it is parameterized by coordinates
li and ϕi, i = 1, …, N.

Let us delete all l diagonals (li = lj for some pair
(i, j)) from the space (C*)N. The rest of the space is
divided into regions labeled by permutations σ of the
first N integers, such that

(11)

The form  is defined separately in each
region:

(12)

where

(13)

and ΠW is the projector on W.
One can easily check that in each region the form is

closed: Q+ΠW = 0 and

(14)

Now, we would like to get the closed form on the
union of regions: we need to take care about disconti-
nuities. Suppose that at the boundary of the regions lk =
lm. Then, discontinuities in the terms containing d(lk –
lm) are irrelevant—these terms are closed anyway. So,
we have to take care about terms containing no differ-
entials in the lk – lm direction and about terms contain-
ing d(ϕk – ϕm), but these discontinuities are absent due
to Eq. (10).

Now we come to the issue of the “sausage” compac-
tification: the proper compactification of (C*)N/C* is
such that  is defined and closed on it.

The obvious “infinities” are directions when
(lσ(p + 1) – lσ(p))  +∞, where exp(–(lσ(p + 1) – lσ(p)H) 
ΠW .

The component of the differential form  that
does contain neither dϕσ(p + 1) – dϕσ(p)  nor dlσ(p + 1) –
dlσ(p) tends to its factorized value, while components
that contain any of them rapidly tend to zero, because
G+ΠW = G–ΠW = 0.

The proper compactification of (C*)⊗ n/C* was
introduced and studied in [17, 18]. In particular, it was
shown that the set of forms  are maps to

cohomologies of the new moduli spaces  taking val-
ues in linear operators in W that satisfy the factorization
property. It was shown that (similar to  case) all

lσ k( ) lσ m( )iff k m.>>

ωi1…iN

ωi1…iN
ΠWΦiσ 1( )

Ĥσ 1( )σ 2( )( )Φiσ 2( )
exp=

× Ĥσ 2( )σ 3( )( )…Φiσ N( )
ΠW ,exp

Ĥkm H lk lm–( )–=

+ G+ dlk dlm–( ) G– dϕk dϕm–( )+

d Ĥkm( ) Q+ Ĥkm,[ ] .=

ωi1…iN

ωi1…iN

ωi1…in

Ln

M0 n,
JETP LETTERS      Vol. 73      No. 2      2001
cycles in  can be represented as a sequence of
spheres containing marked points and special points 0
and ∞, such that the ∞ of the kth sphere is attached to
the 0 of the k + 1 sphere. Below, we will denote a sphere
with marked points by parentheses containing labels of
these points, and the sequence of spheres, by a
sequence of such parentheses.

Relations between cycles in the homology group of
 spaces were studied in [18], where it was shown

that all these relations are generated as pullbacks of the
Commutativity relation

(15)

under the forgetful map    that forgets the
positions of (n – 2) points.

From the factorization property of ω discussed
above, we see that, if the sequence S1S2 is a junction of
two sequences S1 and S2, then

(16)

Evaluation of ω on cycles that are relations in
cohomology gives equations for

If we consider the generating function

, (17)

these equations would be equivalent to the Commuta-
tivity equations (known also as a t part of t – t* equa-
tions [19]:

(18)

Now consider the product of two theories:

(19)

(20)

The form ωI · II on the space  is

(21)

Thus,

. (22)

Ln

Ln

1( ) 2( ) 2( ) 1( )=

Ln L2

ωi1…im n+

S1S2

∫ ωi1…im
ωim 1+ …im n+

.

S2

∫
S1

∫=

τ i1…im
ωi1…im

.

Lm

∫=

τ t( ) 1
m!
------τ i1…im

t
i1…t

im

m

∑=

τ∂
ti∂

----- τ∂
t j∂

------ τ∂
t j∂

------ τ∂
ti∂

-----.=

*I II⋅ *I *II
, QI II⋅ QI QII,+=⊗=

GI II⋅ GI GII,+=

φI
I II⋅ φi

I φi
II.⊗=

LN

ωI1 … IN, ,
I II⋅ ωi1 … iN, ,

I ωi 1 … i N,
II .⊗=

ωI1 … IN, ,
I II⋅

LN

∫ n 1–( )AB ωi1 … iN, ,
I

CA

∫ ωi 1 … i N,
II

CB

∫⊗=



56 LOSEV, POLYUBIN
Here, classes of CA form a basis in the space of homol-

ogies of , and n is the intersection matrix in homol-

ogies of .

Due to the factorization property,  can be

expressed in terms of products of ; thus, τI · II

can be expressed in terms of τI and τII, τI · II = τI · τII. As
in the case of product of solutions to WDVV equations,
Eq. (22) can be considered as a formal product opera-
tion on solutons to Commutativity equations (even if
they are not coming from any TST). In [20], it was pro-
posed that, starting with a solution to the Commutativ-
ity equation, one can construct a solution to the Asso-
ciativity equation as follows. We pick up a vector h ∈
W and make a change of coordinates from t to θa:

(23)

If matrix τ is symmetric with respect to some scalar
product 〈, 〉  and the change of coordinates is invertible,
then

(24)

and F solves the Associativity equation with the metric
ηab = δab.

We will denote the construction above as the CTA
map from the pair τ, h (such that τ solves the Commu-
tativity equation) to F(θ) (such that F solves the Asso-
ciativity equations): F = CTA(τ, h).

Heuristically, vector h should be considered as a
state that is generated by the functional integral over a
disk in the theory with two-observable (corresponding
to the first gravitational descendant) added to the action
(in particular, it is well known [19] that adding to the
action the first gravitational descendant of 1 corre-
sponds to the rescaling of h).

The above heuristic considerations lead to the con-
jecture that can be rigorously checked and is really
checked below in the first nontrivial case (correspond-
ing to  and ), that the CTA map is compatible
with the product operation

(25)

It would extremely desirable to have a complete proof
of the conjecture (25), but at the moment the direct
check looks very complicated.

In preparation to the check of this conjecture, we
will make the linear parameter redefinition (θ  T)

In these coordinates, the metric equals ηij = 〈hτiτjh〉 .

LN

LN

ωi1…iNCA∫
ωi1…imLm∫

θa t( ) τb
a t( )hb.=

τab ∂2F/∂θa∂θb=

M0 5, L3

CTA τ I τ II⋅ hI hII⊗,( )

=  CTA τ I hI,( ) CTA τ II hII,( ).⋅

θa Ti τab∂
ti∂

---------
t 0=

hb.=
Let us get an explicit expression for the rhs of
Eq. (25). The five-point amplitude looks like

(26)

Let us choose the basis in the space of cycles such that
the intersection matrix is nondegenerate (it has rank 5):

(27)

In this basis, the intersection matrix is diagonal:
diag(1; –1; –1; –1; –1).

The five-point amplitude for the tensor product of
two theories in terms of amplitudes of these theories
can be symbolically rewritten as

(28)

where F(n) denotes , the first two terms corre-
spond to intersection of cycles of real dimension 4 and
0, and the last term corresponds to intersection of
cycles of real dimension 2; F(i);  correspond to the
first and second theory correspondingly. Using
Eq. (28), we get

(29)

For  moduli space, the intersection matrix of
2-cycles has rank 4. In the basis of cycles

(30)

Fijlkm hτ i τ jkl τm,[ ]h〈 〉 h τ im τ j,[ ] τklh〈 〉+=

+ h τ im τk,[ ] τ jlh〈 〉 h τ im τ l,[ ] τ jkh〈 〉 .+

ik( ) jlm( ) jl( ) ikm( )+

+ jm( ) ikl( )  ij( ) klm( )  jk( ) ilm( )  jl( ) ikm( )  jm( ) ikl( ).;;;;

F 5( )
1 2⊗ F 5( ) F 3( )F 3( )F 3( )( ) F 3( )F 3( )F 3( )( )F 5( )+=

+ F 4( )F 3( )( )a F 3( )F 4( )( )b N 1–( )ab
,

Fi1…in

F i( )

FIJKLM
1 2⊗  = Fijklm hτ iτ jτkτ lτmh〈 〉 hτ iτ jτkτ lτmh〈 〉 Fijklm+

– hτ iτ j τ lm τk,[ ]h〈 〉 hτ iτ j τ lm τk,[ ]h〈 〉

– hτ jτk τ lm τ i,[ ]h〈 〉 hτ jτk τ lm τ i,[ ]h〈 〉

– hτ jτ l τ ik τm,[ ]h〈 〉 hτ jτ l τ ik τm,[ ]h〈 〉

– hτ jτm τ ik τ l,[ ]h〈 〉 hτ jτm τ ik τ l,[ ]h〈 〉

+ hτ iτk τ lm τ j,[ ]h〈 〉 hτ jτ l τ ik τm,[ ]h〈 〉+(

+ hτ jτm τ ik τ l,[ ]h〈 〉 ) hτ iτk τ lm τ j,[ ]h〈 〉(

+ hτ jτ l τ ik τm,[ ]h〈 〉 hτ jτm τ ik τ l,[ ]h〈 〉 ).+

L3

jl( ) k( ) j( ) kl( )+

+ jk( ) l( )  jk( ) l( )  jl( ) k( )  kl( ) j( ),;;;
JETP LETTERS      Vol. 73      No. 2      2001



ON COMPATIBILITY OF TENSOR PRODUCTS 57
the intersection matrix is diagonal: diag(1; –1; –1; –1).
The lhs of Eq. (25) can be written as

(31)

,

where

(32)

Substituting Eq. (32) into Eq. (31), one gets

(33)

Fijklm
1 2⊗ h1 2⊗ τ i

1 2⊗ τ jkl
1 2⊗ τm

1 2⊗,[ ]h1 2⊗〈 〉=

+ h1 2⊗ τ im
1 2⊗ τ j

1 2⊗,[ ] τkl
1 2⊗ h1 2⊗〈 〉

+ h1 2⊗ τ im
1 2⊗ τk

1 2⊗,[ ] τ jl
1 2⊗ h1 2⊗〈 〉

+ h1 2⊗ τ im
1 2⊗ τ l

1 2⊗,[ ] τ jk
1 2⊗ h1 2⊗〈 〉

h1 2⊗ h h, τ i
1 2⊗ τ i τ i,⊗=⊗=

τ jk
1 2⊗ τ jk τ jτk τ jτk τ jk,⊗+⊗=

τ jkl
1 2⊗ τ jkl τ jτkτ l τ jτkτ l τ jkl⊗+⊗=

+ τklτ j τklτ j τklτ j τ lτ jk⊗+⊗

+ τklτ j τkτ jl τkτ jl τklτ j⊗+⊗

+ τkτ jl τ lτ jk τ lτ jk τklτ j⊗+⊗

+ τ lτ jk τkτ jl τ jτkl τ jτkl.⊗–⊗

Fijklm
1 2⊗ hτ j τ ilm τk,[ ]h〈 〉 hτ iτ jτkτ lτmh〈 〉=

+ hτ iτ jτkτ lτmh〈 〉 hτ j τ ilm τk,[ ]h〈 〉

+ hτ iτ jτkτ lmh〈 〉 hτ iτ jτkτ lmh〈 〉

– hτ iτ jτ lmτkh〈 〉 hτ iτ jτ lmτkh〈 〉

+ hτ jτkτmτ ilh〈 〉 hτ jτkτmτ ilh〈 〉

– hτ jτmτ ilτkh〈 〉 hτ jτmτ ilτkh〈 〉

+ hτ jτkτ lτ imh〈 〉 hτ jτkτ lτ imh〈 〉

– hτ jτ lτ imτkh〈 〉 hτ jτ lτ imτkh〈 〉

+ hτ jτ lmτ iτkh〈 〉 hτ jτ lτ imτkh〈 〉 hτ jτmτ ilτkh〈 〉+ +( )

× hτ jτ lmτ iτkh〈 〉 hτ jτ lτ imτkh〈 〉 hτ jτmτ ilτkh〈 〉+ +( )

– hτ jτkτ lmτ ih〈 〉 hτ jτkτ lτ imh〈 〉 hτ jτkτmτ ilh〈 〉+ +( )

× hτ jτkτ lmτ ih〈 〉 hτ jτkτ lτ imh〈 〉 hτ jτkτmτ ilh〈 〉+ +( )

+ h τ jk τ i,[ ] τ lmh〈 〉 hτ iτ jτkτ lτmh〈 〉

+ hτ iτ jτkτ lτmh〈 〉 h τ jk τ i,[ ] τ lmh〈 〉

+ hτ iτ jτkτ lmh〈 〉 h τ jk τ i,[ ] τ lτmh〈 〉

+ h τ jk τ i,[ ] τ lτmh〈 〉 hτ iτ jτkτ lmh〈 〉
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Straightforward but tedious calculations show that
Eq. (33) is Eq. (29), so (25) is fulfilled.

In this paper, we motivated and checked the compat-
ibility between product operations on solutions to
Commutativity and Associativity equations in the first
nontrivial case. It is not excluded that in more compli-
cated cases these two product would give different
results. If this happens, it would give a nontrivial indi-
cator of whether solution to Commutativity equations
came from TST or not. At the same time, if conjecture
turns out to be a theorem, it would drastically simplify
the calculation of the product on solutions to Associa-
tivity equations (because spaces  are much more

tractable than ).
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The nonlinear Bloch theorem for the temporal and spatial Schrödinger solitons in dispersive and nonlinear peri-
odic structures is proved. It is shown that bright and dark solitary nonlinear Bloch waves exist only under certain
conditions and that the parameter functions describing dispersion and nonlinearity periodic inhomogeneities
cannot be chosen independently. © 2001 MAIK “Nauka/Interperiodica”.
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A fundamental theorem concerning electrons in a
crystal was proved by F. Bloch in 1928 [1]. It was
shown that the wave functions of electrons in a periodic
crystal lattice have the Bloch form

(1)

where the function Uk(x) = Uk(x + L) possesses the
same periodicity as the lattice, and the wave number k
is related to the de Broglie wavelength of the electron.
The Bloch function in one-dimensional form (1) corre-
sponds to a free electron wave function, exp(ikx), mod-
ulated by a function Uk(x), which has the periodicity of
the crystal lattice. The Bloch theorem is one of the
basic concepts in solid state physics (see, for example,
[2–6]).

In this letter, we show that there exists a nonlinear
Bloch theorem for temporal and spatial Schrödinger
solitons propagating through an inhomogeneous non-
linear and dispersive structures characterized by trans-
lational symmetry.

Let us consider the nonlinear Schrödinger equation
(NLSE) model with periodically varying nonlinearity
and dispersion:

(2)

Equation (2) is written here in the standard soliton
units, as they are commonly known. It is assumed that
periodic perturbations to the dispersion D(Z) = D(Z +
nL) and nonlinearity R(Z) = R(Z + nL) are not limited to

Ψk x( ) Uk x( ) ikx( ),exp=

i
∂Ψ±

∂Z
---------- 1

2
---D Z( )

∂2Ψ±

∂X2
------------ R Z( ) Ψ± 2Ψ±+± 0.=

1 This article was submitted by the authors in English.
0021-3640/01/7302- $21.00 © 20059
the regime where they are smooth and small. Here, we
also assume that the periods of these functions are arbi-
trary values. Due to a spatial–temporal analogy, both
temporal and spatial solitons are described by Eq. (2).

Nonlinear Bloch theorem. The transformation law
for the bright Ψ+(Z, X) and dark Ψ–(Z, X) NLSE soli-
tons propagating through an inhomogeneous medium
characterized by translational symmetry D(Z) = D(Z +
nL) and/or R(Z) = R(Z + nL) is defined by the self-
reproducing stable configuration

(3)

where the real function P(Z) possesses the same period-
icity as the medium: P(Z) = P(Z + nL). Nonlinear Bloch
waves exist only under certain conditions given by the
following relations:

(4)

where the dispersion parameter function is assumed to
be given in the form of a periodic function D(Z + nL) =
Φ(Z + nL).

Ψ± Z( ) P Z( )
Cη η P Z( )X( )sech

Cη η P Z( )X( )tanh 
 
 

=

× i
P Z( )

2
-----------X2 i K± ζ( ) ζd

0

Z

∫+± ,exp

P Z( ) P0 1 P0 Φ Z'( ) Z'd

0

Z

∫+

1–

;=

R Z( ) P Z( )Φ Z( )/C,=
001 MAIK “Nauka/Interperiodica”
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In another case, when the nonlinearity is assumed to
be a given periodic function R(Z) = R(Z + nL), the non-
linear Bloch wave exists only under conditions

(5)

Parameter C = D0P0/R0 in Eqs. (4) and (5) is determined
by the initial conditions at Z = 0.

Proof. Substitution of the nonlinear Bloch’s func-
tion

(6)

in Eq. (2) leads to

(7)

(8)

One can transform the general system of Eqs. (7),
(8) to an exactly integrable form. Let us consider the
complete nonlinear regime, when Eq. (7) represents the
“classical,” exactly integrable NLSE model and when
two Eqs. (8) have a nonsingular solution for the Q func-
tion. The necessary transformation can be expressed by
the following system of equations:

(9)

The eigenvalues E± = K±/DP2 in Eq. (7) must satisfy
E+ = 0.5η2 and E– = η2 for the bright and dark nonsin-
gular soliton solutions of Eqs. (7), (8):

(10)

So, it is not surprising to find from Eqs. (9) that the vari-
ation of soliton shape is also periodic, P(Z) = P(Z + nL),
if the following relations are satisfied:

(11)

P Z( ) P0 C R Z'( ) Z'd

0

Z

∫– ;exp=

D Z( ) CR Z( )/P Z( ).=

Ψ± Z( ) P Z( )Q± S( )=

× i
P Z( )

2
-----------X2 i K± ζ( ) ζd

0

Z

∫+±exp

1
2
---∂2Q±

∂S2
------------ R

DP
-------- Q±( )3

+±

– Q± K±

DP2
---------- S2Q±

2DP4
-------------- DP2 ∂P

∂Z
------+ 

 +− 0,=

DP2 ∂P
∂Z
------+ 

  1
2
---Q± S

∂Q±

∂S
---------+ 

  0.=

P 1– Z( ) C D ζ( ) ζ ;d∫+=

D Z( )P Z( ) R Z( )C.=

Q S( )± η ηP Z( )X( )sech

η ηP Z( )X( )tanh 
 
 

.=

R Z nL+( )
R Z( )

------------------------
D Z nL+( )

D Z( )
-------------------------.=
Notice that the necessary condition for the existence
of a Bloch theorem in the NLSE model with periodic
gain or loss Γ(Z) = Γ(Z + nL) is

(12)

It should also be noted that exact integrability of the
model (2) under conditions (9) means that there exists
a transformation law (nonlinear Bloch theorem) for the
high-order soliton solutions of Eq. (2) as well.

Two features of the exact self-reproducing stable
solutions (3)–(5) and (9) are noteworthy.

(1) Solutions (3)–(5) and (9) can be considered as
nonlinear Bloch waves with a periodic scattering poten-
tial, which is reproduced by a solitary wave itself from
cell to cell of a periodic structure. Unlike the homoge-
neous medium solution [D(Z) ≡ 1 and R(Z) ≡ 1], the
soliton amplitude, pulse width and chirp (for the case of
temporal solitons), or the radius of curvature of the
wavefront (for the case of spatial solitons) has period-
icity of the medium symmetry.

(2) The dependence of soliton pulse width and phase
profile on the propagation distance is defined by the
same periodic function P(Z). This remarkable result
opens up the possibility to construct different nonlinear
Bloch functions by using the algorithm proposed.

The fundamental set of nonlinear Bloch waves can
be represented by Jacobi elliptic functions:

(13)

where dn2 = 1 – s2sn2(Z; s), and sn(Z; s) is the elliptical
sine function with the module parameter m = s2. Peri-
odic function P(Z), represented by Eq. (13), has a
period equal to 2K(s), where K(s) is a complete elliptic
integral of the first kind [6]. Periodic function P(Z) (13)
transforms to a sinelike wave for parameter s ! 1:

(14)

[with asymptotic period given by 2K(s) = π(1 – s2/4) for
s ! 1]; and it transforms to a periodic train of sechlike
solitons for s  1:

with period given by asymptotic value 2K(s) =
ln(16/(1 – s2)) for s  1.

In the case when a periodic structure is closed in the
form of a loop with a total length equal to Z = nL, such

D Z( )P Z( ) R Z( )C 2 Γ ξ( ) ξd

0

Z

∫ 
 
 

.exp=

P Z( ) A Bdn2 Z; s( );+=

D Z( )
s2Bsn 2Z; s( ) 1 s2sn4 Z; s( )–[ ]

A Bdn2 Z; s( )+[ ]2
--------------------------------------------------------------------------,=

P Z( ) A B 1 s2 Zsin
2

–( );+=

D Z( ) s2B 2Z( )sin=

P Z( ) A B Z( )sech
2

;+=

D Z( )
2s2B Z( )sech

2
Z( )tanh

A B Z( )sech
2

+[ ]
2

------------------------------------------------------,=
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a structure can be considered as an example of the soli-
ton memory [7]. One of the simplest periodic solutions
of Eq. (2) in this case is given by a periodic function
P(Z):

(15)

which, for β  1, becomes a periodic grating of delta
functions and, for β  0, a constant P(Z)  1. Then,
the nonlinear Bloch theorem (3) leads to the require-
ment that dispersion and nonlinearity of the soliton
memory loop must be given by periodic functions:

(16)

It seems very attractive to use the nonlinear Bloch
concept to design novel types of soliton lasers. The
most noteworthy feature of the quasi-steady-state soli-

P Z( )
1 β2–

1 β kZcos–
----------------------------,=

D Z( )
βk kZsin

1 β2–
---------------------; R Z( )

βk kZsin
1 β kZcos–
----------------------------.= =

Fig. 1. Evolution of the nonlinear solitary Bloch wave
[Eqs. (3), (15), and (16)] as a function of the propagation
distance. Initial conditions: k = 1 and β = 0.5.
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ton laser operation scenario is the fact that the gain and
losses are exactly compensated during one soliton
pulse round trip. One can model the effective distrib-
uted gain and losses inside the laser cavity by a periodic
function such as

(17)

The nonlinear Bloch theorem (3), (4) states that the cor-
responding dispersion function must satisfy

(18)

The main soliton features of the nonlinear solitary
Bloch waves predicted analytically were investigated
by using direct computer simulations. The nonlinear
Bloch waves scenario for the case represented by
Eqs. (3), (15), and (16) is shown in Fig. 1. Nontrivial

Γ Z( )
Zsin

∆3
-----------; where ∆ 1 δ2 Zsin

2
– .= =

D Z( ) 2
Zsin

∆3
----------- 2

1 δ2–( )
------------------ 1 Zcos

∆
------------– 

 – .exp–=

Fig. 2. Evolution of the nonlinear solitary Bloch wave
[Eqs. (3), (15), and (16)] with nontrivial initial conditions as
a function of the propagation distance: soliton “snake”
effect. Initial conditions: initial group velocity V = 10; k = 1;
and β = 0.5.
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(nonzero) initial velocities in the comoving frame of
reference are given via the Galileian transformation of
Eq. (3). A periodic “snake” effect arises in the space–
time domain for solitons with nonzero initial velocities
in the retarded frame of reference (see Fig. 2). In Fig. 3,
we illustrate typical interactions between nonlinear sol-
itary Bloch waves. An important feature of the solitary
nonlinear Bloch waves consists in an elastic character
of their interaction, which is shown in Fig. 3.

Recently, the possibility of spatial self-trapping of
quasi-periodic waves due to cascaded self-focusing
was numerically demonstrated, and the quasi-periodic
envelope soliton concept was introduced [8]. The con-
cept of nonlinear Bloch waves, which are localized
nonlinear waves in periodic structures, was proposed
for the first time by Haus and Chen [9]. Haus and Chen
tried to construct the steady-state solutions for the non-
linear problem as a superposition of the Hermit–Gaus-
sians polynomials of the linear propagation problem

Fig. 3. Elastic interaction between two and three solitary
nonlinear Bloch waves in periodic structure given by Eqs. (15)
and (16). In the case of temporal solitons, X axis corre-
sponds to the dimensionless time in retarded frame; in the
case of two-dimensional spatial solitons, X axis corresponds
to the transverse coordinate. Y axis represents the normal-
ized distance of the nonlinear Bloch waves propagation.
[9]. In this letter, the exact solution of the nonlinear
problem is obtained. It is shown that solitary nonlinear
Bloch waves exist only under certain conditions, and
the nonlinear Bloch theorem is proved.

In summary, we predict a novel class of nonlinear
solitary bright and dark Bloch waves in inhomogeneous
media characterized by translational symmetry. “Clas-
sical” solitonlike features of the nonlinear Bloch waves
are confirmed by accurate direct computer simulations.
The nonlinear Bloch theorem obtained in this letter is
of general physical interest and should be readily veri-
fied experimentally in periodic nonlinear and disper-
sive structures in different branches of physics, where
the “universal” NLSE model is applicable. For exam-
ple, it seems very attractive to use the nonlinear Bloch
wave concept in ultrashort pulse photonics applications
and soliton laser design [10]. The best soliton laser per-
formance is obtained when there is a sign-reversal peri-
odic dispersion and/or nonlinearity inside the laser cav-
ity, according to the nonlinear Bloch theorem.

We would like to express special gratitude to Profes-
sor Akira Hasegawa for reading and commenting the
entire manuscript and for fruitful suggestions.
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Kolmogorov Spectra in One-Dimensional Weak Turbulence1
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In this article, we report the results of our numerical simulation of a one-dimensional modified MMT model,
which includes the processes of “one-to-three” wave interactions. We show that this model, with properly cho-
sen parameters, behaves according to the weak-turbulence theory. In particular, it demonstrates the validity of
the Kolmogorov spectrum over a wide range of wave numbers. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 47.27.Eq; 47.35.+i
1. The problem of Kolmogorov spectra is the core of
the theory of weak wave turbulence. These spectra
appear as exact solutions of stationary kinetic equation
for mean squared wave amplitudes [1]. In our opinion,
the Kolmogorov weak-turbulence spectra should be
used for the theoretical explanation of power-law spec-
tral distributions of energy in ensembles of stochastic
nonlinearly interacting waves of any nature. Spectra of
such type are observed systematically. The most con-
spicuous example of this sort is the spectrum eω .
gv/ω4, which is routinely observed in the systems of
wind-driven gravity sea waves.

However, this viewpoint is not shared by everybody.
Moreover, the very applicability of the kinetic equation
for waves to the real situation is under discussion (see,
for instance, [2]). The derivation of the kinetic equation
from the initial dynamic equation implies the validity
of the assumption of phase randomness, which can be
destroyed by the formation of some coherent struc-
tures, like solitons or wave collapses. Actually, this crit-
icism has serious foundations. In real situations, the
coherent structures are common, but there is no reason
for complete abandonment of the weak-turbulence the-
ory. The real life is multicolor, and in many particular
situations the coherent structures coexist with weak tur-
bulence, sharing the processes of transport and dissipa-
tion of energy and other integrals of motion.

Hence, there is a strong motivation to continue the
study of weak turbulence and explore both the case
where the coherent structures are important and the
case when the influence of such structures is negligible.

2. One of the most promising approaches for the
study of weak turbulence is a direct numerical simula-
tion of nonlinear dynamic equations describing wave
systems. In many cases, these equations can be effec-

1 This article was submitted by the authors in English.
0021-3640/01/7302- $21.00 © 20063
tively solved by the use of a spectral code. Of course,
numerical simulation of the equation completely rele-
vant to the real physical situation is most preferable.
However, a considerable amount of interesting infor-
mation can be extracted from the solution of simplified,
more or less artificial models, which account for the
basic features of the real physical equations. Since the
weak turbulence is a very general theory, its main state-
ments—applicability of the kinetic equation, existence
of the Kolmogorov-type spectra and structures of high-
order correlation functions, etc.—can be properly
tested with these simple models, for which computer
simulation can be carried out more easily.

One-dimensional models are the most attractive
ones from this point of view. Even a modest modern
computer makes it possible to perform numerical sim-
ulation of a system of nonlinear waves including a
thousand modes and three decades of scaling. Histori-
cally, the first such simulation was accomplished in
1997 by the authors of [2]. They used a model which is
called now, after their names, the MMT model. The
MMT model is the generalized nonlinear Schrödinger
equation conserving not only energy and momentum
but also the wave action (number of particles).

Further simulation with the MMT model was per-
formed by the same authors in [3]. Later on, numerical
experiments with the MMT model were performed in
[4, 5]. The results of both groups basically coincide.
The MMT model demonstrates a complicated many-
variant behavior that cannot be considered as a certain
confirmation of the weak-turbulence theory. In our
opinion, this is so because of an interference of the
coherent structures, which are present in all versions of
the MMT model.

In this article, we report results of our numerical
simulation with a modified MMT model, which
includes processes “one-to-three” wave interactions
not conserving wave action. We will show that this
model, with properly chosen parameters, behaves
001 MAIK “Nauka/Interperiodica”
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according to the weak-turbulence theory. In particular,
it demonstrates the validity of the Kolmogorov spec-
trum in the range of more than two decades.

3. We study the following model:

(1)

If g = 0, this model becomes the MMT model.
Model (1) can be written as

(2)

where

(3)

(4)

Hamiltonian H describes the following four-wave pro-
cesses:

(a) scattering obeying the resonant conditions

(5)

(b) “one wave-to-three” decay and the reverse pro-
cess of gluing three waves to one wave, obeying the res-
onant conditions

(6)

Here, ωk = |k |α.
We have studied only the case α > 1. In this case,

resonant conditions (5) have only a trivial solution

(7)

while resonant conditions (6) describe 2 – D manifold
in space (k, k1, k2, k3). If a > 0 and g is small, then
Hamiltonian (4) is positively defined. This makes it
possible to get rid of any kinds of localized structures.

Under these assumptions, system (1) is described by
the kinetic equation

∂n/∂t + 2γknk + st(n, n, n), (8)

i
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where

(9)

By definition,

(10)

A stationary equation

st(n, n, n) = 0 (11)

has, for the proper values of α and β, a power-low solu-
tion

nk = αp1/3/kλ, (12)

(13)

This is the Kolmogorov spectrum carrying a constant
flux of energy p to the large-k region, and α is the
dimensionless Kolmogorov constant.

4. We have performed the numerical simulation of
Eq. (1) by the use of the standard spectral code. We set
α = 3/2, β = 9/4, a = 1 for different values of the dimen-
sionless parameter g = 0, 0.05, 0.1, 0.15, 0.2.

Our spectral array included 2048 modes, –1024 <
k < 1023. The system was pumped at low wave num-
bers, γk = –0.005 at 5 ≤ |k | ≤ 10. The energy sink at large
wave numbers was provided by damping, γk =
400(k/512 – 0.5)2 at |k | > 512.

In all variants of our computations, we observed a
growth and stabilization of the total energy H of the
wave system. According to the weak-turbulence theory,
the stabilization level depends drastically on the g
parameter.

Figure 1 clearly demonstrates that 1  3 pro-
cesses play the main role in establishing equilibrium.

Figure 2 displays typical stationary spectra at g =
0.15. One can see that, in the range 30 < k < 300, they
can be well approximated by the Kolmogorov exponent
λ = 5/2. A typical value of nonlinearity

e = Hint/H

is e . 0.15.
In conclusion, we would like to claim that our result

is the first clear confirmation of the validity of the

st n n n, ,( ) 4πa2g2 kk1k2k3( )β/2∫



=

× nk1
nk2

nk3
nknk1

nk2
– nknk1
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Fig. 1. Total energy of the pumped system versus time for
different coefficients of “three-to-one” process.

Fig. 2. |ψk|2 averaged over time 100. Spectra for positive and
negative k are shown.
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weak-turbulence theory for the 1 – D case. A similar
confirmation for the 2 – D case was done in work [6].
However, in the present 1 – D case, the range of scales
where the Kolmogorov spectrum is observed is sub-
stantially larger.
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sion. This work was supported in part by the ONR
(grant no. 00014-98-1-0070), RBRF (grant no. 00-01-
00929), and by the Grant of Leading Scientific Schools
of Russia no. 00-15-96-007. O. Vasilyev acknowledges
the Landau Scholarship Committee (Forshungzen-
trum/KFA, Jülich) for financial support.
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Anomalous Slowdown of Relaxation
in an Ultracold Plasma
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Recent experiments by T.C. Killian et al. [Phys. Rev. Lett. 83, 4776 (1999)], in which an ultracold plasma
(Ne ~ 2 × 109 cm–3, Te ~ 0.1 K, and Ti ~ 10 µK) with anomalously long lifetime of ~100 µs was obtained, are
explained based on a previously developed theory. The results of computer simulations of the plasma transition
into a metastable state and initial heating of electrons up to several K are presented. An expression earlier
obtained for the rate of the metastable plasma recombination agrees with the measured anomalously long life-
time. A conclusion is drawn that the previously predicted new physical object—a metastable overcooled
plasma—is realized experimentally. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 52.27.Gr; 52.50.Jm; 52.55.Dy
EXPERIMENTAL RESULTS

In [1], an ultracold plasma with unique parameters
(the charge density Ne ~ 2 × 109 cm–3, electron temper-
ature Te ~ 0.1 K, ion temperature Ti ~ 10 µK, and degree
of ionization α ~ 0.1) was reported to have been obtained.
The plasma was produced via two-step (λ1 ≈ 882 nm and
λ2 ≈ 514 nm) ionization of the xenon 6s[3/2]2 metasta-
ble state. Xenon metastable atoms were produced in a
discharge, slowed down using the Zeeman deceleration
technique, accumulated in a magnetic–optical trap, and
underwent radiative cooling via the 6s[3/2]2–6p[5/2]3
(λ1 ≈ 882 nm) transition to a temperature of ~10 µK.
The ionizing photon energy (λ2 ≈ 514 nm) was chosen
such that the kinetic energy of an electron created dur-
ing photoionization would be low, E/kB= 0.1–1000 K.

Such a plasma is strongly nonideal, because the
Coulomb coupling parameter γ = e2/aTl,i (the ratio of
the mean particle potential energy to the kinetic energy)
is large: γe = 34 for electrons and γi = 3.4 × 105 for ions
(where e is the electron charge and a = (4πNe/3)–1/3 ~
5 × 10–4 cm is the average distance between charged
particles). According to the conventional theory of three-
body recombination, such a plasma should instantly be
decomposed and heated. The characteristic time of three-

body recombination  ~ 0.3( )/e10  (where
e and me are the electron charge and mass, respectively)

is equal to  ~ 5 × 10–16 s for Ne ≈ 2 × 109 cm–3 and

Te ≈ 0.1 K and  ~ 2 ns for Ne ≈ 2 × 108 cm–3 and
Te ~ 1 K. However, a plasma lifetime of ~100 µs
observed in experiments [1] was many orders of mag-
nitude longer. In [1], it was pointed out that the lifetime

τ rec
0( ) me

1/2 Te
9/2 Ne

2

τ rec
0( )

τ rec
0( )
0021-3640/01/7302- $21.00 © 20066
of an ultracold plasma was anomalously long, but no
explanation for this fact was presented.

THEORETICAL PREDICTION
OF A METASTABLE PLASMA

An anomalously slow recombination of an over-
cooled plasma was predicted in the late 1980s by ana-
lyzing the results of simulations based on the funda-
mental principles of dynamics of a large ensemble of
Coulomb particles (see reviews [2–5] and the literature
cited therein). To verify this conclusion experimentally,
it was proposed to form a bunch of nonideal plasma by
ionizing atoms with a laser with a photon energy close
to the ionization energy [6, 7]. A concept of “frozen”
recombination in a dynamic system was supported in
[8]. Below, it is shown that the experimental results [1]
can be explained based on the previously developed
theory [2–5].

INITIAL STAGE OF RELAXATION

Although, in [1], it was declared that an electron
temperature of Te ~ 0.1 K was achieved, the experimen-
tal results were presented only for Te of approximately
several K. It is not accidental. The point is that, accord-
ing to our results, in a time of about one-half of the

inverse plasma frequency t ≈ 0.5 , where ωL =
(4πe2Ne/me)1/2, the electrons are heated due to collec-
tive interactions. During this time, the dynamic mixing
of phase trajectories of a large ensemble of Coulomb
particles occurs. The mixing is characterized by the
Lyapunov exponent L ≈ 2.4ωL [4, 5]. Due to mixing, the
coupling parameter decreases to γ ~ 0.4–0.8.

ωL
1–
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To simulate experiments [1], we calculated the
dynamics of a large ensemble of particles using a tech-
nique described in [2, 3]. As before, the electrons and
ions were represented by small interpenetrating spheres

of diameter d ≈ 0.02  with a uniform surface
charge density. The density of charged particles was
2 × 109 cm–3, and the interaction energy of the touching
particles was equal to 105 K. The initial conditions,
which simulated the photoionization of neutral atoms,
were defined as follows. At the initial time, the ions
(n = 512) were randomly (with a uniform probability
density) distributed within a simulation box (a cube
with an edge of (n/Ne)1/3 with specularly reflecting
walls). The initial ion velocities were specified accord-
ing to the Maxwellian distribution with the temperature
Ti = 10 µK. Each ion was superimposed by an electron
(the initial electron coordinates coincided with the ion
coordinates), the electron velocity vectors were uni-
formly distributed in directions, and the electron kinetic
energy was set equal to the ionization energy for a
given pair of particles (an “atom”). Then, the Newton
equations for 2n particles were solved taking into
account all the electrostatic interactions, and statistical
data were accumulated.

Under the given initial conditions, the stage of elec-
tron thermalization is preceded by the escape of elec-
trons from the potential wells at the descending portion
of the temperature dependence (see Fig. 1). As multi-
particle interactions are involved, the electrons, as in
our previous studies, thermalize, and, in a time of

0.5  ≈ 0.2 ns, the electron temperature stabilizes due
to heating at a level of Te ≈ 3.3 K, which corresponds to
γ ≈ 1. Then, Te slowly increases, so that its average
value is 4.8 K.

Note that the use of the classical approximation to
examine the free particle motion under conditions of
experiments [1] is well justified. Even at Te ~ 0.1 K, the
quantity a(meTe)1/2/", which characterizes the ratio of
the mean interparticle distance to the de Broglie wave-
length, is large: a(meTe)1/2/" ~ 53 (a(meTe)1/2/" ~ 370 at
Te ~ 5 K). For the ions and atoms, we have a(mXeTi)1/2/" ~
260 at Ti ~ 10 µK, where mXe is the mass of a xenon
atom.

Thus, even if laser ionization produces electrons
with zero kinetic energy, the electron temperature will
stabilize at a value of several K in a time less than one
nanosecond. This agrees with the results of [1].

RECOMBINATION MECHANISM

Simulation of the dynamics of a large ensemble of
particles [2–5] showed that, in the metastable state, the
electron velocity distribution function was Max-
wellian; however, the total electron energy distribution
function f(ε) (where ε is the electron energy) differed
substantially from the Boltzmann distribution. At neg-

Ne
1/3–

ωL
1–
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ative energies (ε < 0), the distribution function f(ε) in
the metastable state decays exponentially, f(ε) ~

exp(−0.32|ε|/e2 ), which drastically differs from the
Boltzmann distribution, characterized by exponential
growth. A similar result was obtained by us when mod-
eling experiments [1] (see Fig. 2).

Previously, we developed a recombination theory
[2, 3] that provided an explanation why the effect of
frozen recombination was not observed under ordinary
conditions. The theory, which is consistent with the
results of computer simulations, is based on the idea
that the well-known relations between the kinetic coef-
ficients cannot be used in the region of exponential
decay. These relations are based on the detailed equilib-
rium principle and the assumption that the Boltzmann
distribution for the high-lying excited states is equilib-
rium. Actually, an equilibrium distribution for the high-
lying excited states is the above-mentioned distribution
with an exponential decay (see [4, 5] for details). How-
ever, for the electrons, whose negative energy is high
enough,

(1)

a discrete nature of the spectrum becomes of impor-
tance, and relaxation due to pair collisions, which can
be described by the conventional kinetic models, starts
to dominate. Solving the equation for diffusion along
the energy axis with allowance for the new relations

Ne
1/3

ε ε1–< Ry e2Ne
1/3/2Ry( )2/3

,≡

Ry mee
4/2"

2 13.6 eV,≈≡

Fig. 1. Time evolution of (a) the ion and electron tempera-
tures (light and heavy curves, respectively) and (b) the cou-
pling parameter γe = e2/(aTe).
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between the kinetic coefficients leads to the following
expression [3]:

(2)

Here,  is the recombination time predicted by the
conventional theory; ξ is a correction factor; 

When the electron temperature and density are not
too low, expression (2) gives values close to the results
of the conventional theory of three-body recombination
(ξ ~ 1 at Te > 0.03 eV ≈ 350 K and Ne > 1010 cm–3). For
this reason, we previously concentrated on attempts at
creating a strongly overcooled ion–ion plasma, in
which quantum effects are of minor importance. It
seemed to us that the experimental conditions under
which the slowdown of recombination in an electron–
ion plasma plays an important role were hard to realize.

However, these hardly achievable conditions were
realized in experiments [1]. Indeed, at Te = 5 K and

τ rec τ rec
0( )ξ ;=

ξ 1.82δ5/6ξ1 ε1/Te( )ξ2 Ne( ) 6.73δ7/6 ξ2 Ne( ) 1–( ).+=

τ rec
0( )

δ 2e6Ne/Te
3; ξ1 z( ) ez/4z5/2( )==

× yy3/2e y– 1 6y 0.75y2 πx3/16( )+ + + ;d

z

∞

∫

ξ2 Ne( ) 0.4 ε1 1.5e2Ne
1/3–( )/21/3e2Ne

1/3–( ).exp=

Fig. 2. Electron distribution function over the total energy.
Simulation parameters are as follows: the number of
charged particles (electrons and ions) is 2n = 1024 and Ne =

2 × 109 cm–3. At the initial instant, the electrons are super-
posed on the ions and their kinetic energy is equal to the ion-
ization energy. The solid curve is the distribution in a meta-
stable state; it is obtained by averaging over the time interval
ωLt = 3.1–12.4 (see Fig. 1). The dotted and dashed curves
are the microfield distribution calculated by analytical for-
mulas from [2–5] and the Boltzmann distribution, respec-
tively (both for Te = 3.7 K).
Ne = 2 × 109 cm–3, we have ε1 = 56 K and expression (2)
gives a substantial slowdown of recombination com-
pared to the conventional theory: ξ = 2.4 × 103. In this
case, according to our theory, the characteristic recom-
bination time is τrec = 60 µs. At Te = 5 K and
Ne =109 cm–3, we have ξ = 2.5 × 103 and τrec = 212 µs.
This is also in agreement with the experimental results
[1]. Under these conditions, the radiative recombina-
tion, whose characteristic time is about several sec-
onds, can be neglected.

Note that the recombination theories that take into
account that the plasma is nonideal [9, 10] also give a

recombination time close to  ≈ 25 ns for Te = 5 K
and Ne = 2 × 109 cm–3.

Thus, experiments [1] can naturally be explained by
the theory [2–5]. Hence, it is reasonable to assume that
a new physical object—a metastable overcooled
plasma—was realized in [1]. The initial electron heat-
ing occurs due to dynamic relaxation. An anomalous
slowdown of relaxation is in quantitative agreement
with our theory (up to now, there has been no alterna-
tive explanation). The experimental realization of a
metastable plasma state is of great importance from the
standpoint of the fundamental principles of statistical
physics and phase transition theory (see [5] for details).
In ion–ion plasmas, the slowdown of relaxation should
be even more pronounced [2, 3].
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Experimental results on Joule energy deposition upon initiation of a fast electrical explosion of 16-µm tungsten
wire in vacuum at current densities of more than 108 A/cm2 are reported. We have found that explosion with a
fast current rise time (~170 A/ns into a short) results in homogeneous and enhanced deposition of electrical
energy into the tungsten before surface flashover. The maximum tungsten wire resistivity reaches a value of up
to ~185 µΩ cm before surface flashover that significantly exceeds the melting boundary and corresponds to a
temperature of ~1 eV. The highest values for light radiation and expansion velocity of wire ~1 km/s were
observed for the fast explosion. For the explosion mode with a slower current rise time (~22 A/ns into a short),
we observed the existence of an “energy deposition barrier” for tungsten wire. In the slow explosion mode, the
current is reconnected to the surface shunting discharge before melting. The maximum tungsten wire resistivity
in this case reaches the value of ~120 µΩ cm, which is less than indicative of melting. Also, the energy depo-
sition along the wire is strongly inhomogeneous, and wire is disintegrated into parts. We attribute the early
reconnection of the current to the surface discharge for the slow explosion to high electron emission from the
wire surface, which starts before melting. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 52.80.Qj
A better understanding of the initial stage in the
electrical explosion of refractory metal wires is
extremely important for modern Z-pinch physics. The
impressive result [1, 2] of 1.8 MJ of X rays radiated in
5 ns FWHM, achieved on the Z-facility at Sandia
National Laboratories, crucially depends on mitigating
the Rayleigh–Taylor instability, which degrades plasma
compression. The initial perturbations for this instabil-
ity arise in the plasma shell formed from the exploded
wire array. Increased peak X-ray power correlates with
decreased wire gap, presumably because this leads to
the formation of a smoother plasma shell. Similarly, the
dynamics of single-wire Z-pinches depends on how
energy is initially absorbed by the load.

It is assumed [3] that surface impurities, such as
absorbed gases and hydrocarbons, play an important
role in energy deposition processes. It is supposed that
heated fast-vaporizing impurities create a gas shell
around the wire and, after field flashover, the current is
switched from the wire to the ionized gas shell. The
effectiveness of Joule energy deposition decreases after
flashover. The main strategy to avoid the influence of

1 This article was submitted by the authors in English.
2 On leave from Lebedev Physics Institute, Russian Academy of

Sciences, Moscow, 117924, Russia.
0021-3640/01/7302- $21.00 © 20069
the early surface flashover is preliminary heating of the
wire in vacuum for surface degasation. Preheating the
wire has been shown [4] to increase the mass and uni-
formity of the plasma surrounding the cold core. Nev-
ertheless, the maximum wire resistivity in experiments
[4] did not reach the level of tungsten melting, and the
deposited energy was less than the energy needed for
vaporization. The other approaches to increase energy
deposition before surface flashover were dielectric
coating of the wire [5], explosion of the wire in oil [6],
in deionized water [7], and in gas [8]. It has been shown
that electrical explosion of tungsten wire in a dense
medium and with a coating results in enhanced energy
deposition before surface flashover.

We have found a new approach to significantly
enhance the efficiency and homogeneity of the electri-
cal explosion of pure tungsten wire in vacuum. In our
experiments, we find, for the first time, a connection
between the rate of energy deposition and the absolute
value and homogeneity of deposited energy into the
tungsten wire before surface flashover. For an energy
deposition rate of ~0.1 (eV/atom)/ns, we observe an
“energy deposition barrier,” when surface flashover
reconnects current from the wire to the surface before
melting. In this case, the wire becomes mainly disinte-
grated into parts. Parts of the wire that absorbed some
energy expand with a velocity of ~0.1–0.2 km/s. For a
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Time-integrated CCD images of a 16-µm diameter 2-cm long tungsten wire explosion: (a) fast “cylindrical” explosion (shot
0626-08); (b) fast “conical” explosion (shot 0626-11); (c) slow explosion with peripheral vacuum arcs (shot 0801-06); (d) the cath-
ode–anode gap after a slow explosion with unvaporized wire (black arrow). The white arrows show the cross section imaged to the
streak camera to investigate the velocity of the wire expansion (Fig. 2). Positions of the anode (A) and cathode (C) are marked on
image (d).
faster energy deposition rate, ~0.7 (eV/atom)/ns, we
observe a qualitative and quantitative breakthrough in
the energy deposition processes. Tungsten wire was
exploded homogeneously, and the deposited energy
was ~3 times higher. In this case, we observe strong
light emission synchronized with surface flashover, and
the wire expansion velocity reaches the value ~1 km/s.

A 120-kV Maxwell 40151-B pulse generator with
stored energy of 12.6 J (7 nF, 60 kV) provides the cur-
rent and voltage used to drive the wire explosions.
A 50-Ω 9-m coaxial transmission line delivers the pos-
itive-voltage pulse from the generator to the wire. The
setup produces a fast pulse with a ~170-A/ns current
rise into a short circuit (voltage rate ~11 kV/ns in an
open circuit) or, with an inductor inserted before the
generator output, a slower pulse with a ~22-A/ns cur-
rent rise into a short circuit (voltage rate ~1 kV/ns into
an open circuit). The slower rise is characteristic of the
prepulse through individual wires on the Z-facility at
Sandia National Laboratories. The electrical pulse is
applied to a single tungsten wire 2 cm in length and
16 µm in diameter. The wire forms the central conduc-
tor of a coaxial line evacuated to a pressure of ~10–5 torr
to prevent early gas breakdown.

The current flowing through the wire is measured
with a 2-GHz bandwidth shunt resistor, and the voltage
drop across the wire is measured with a resistive high-
voltage probe (100 kV, 1.5 ns rise time). From current
and voltage data, the resistive component of the volt-
age, the load resistance, and the Joule heating of the
wire can be determined throughout the wire explosion.
The evolution of space-integrated light intensity emit-
ted from the exploding wire is monitored by a PIN
diode with a rise time of less than 1 ns. The light is
focused by a f/0.7 lens with a focal length of 50.3 mm.
Streak camera shadowgrams of the wire during the
explosion are obtained using a high-power diode
pulsed laser back lighter (905 nm, 10 W, 200 ns). From
these streaked images, the plasma expansion velocity
and the starting time of the explosion are determined.
Time-integrated visible-light CCD images of wire
explosions give information on the two-dimensional
structure of the energy deposition. We also analyze the
time-integrated emission spectra using a visible imag-
ing spectrometer.

Typical time-integrated images of exploding 16-µm
diameter and 2-cm long W wire are shown in Fig. 1.
There are big differences in the energy deposition
structure between the explosions driven by fast and
slow pulses. The fast pulse produces a homogeneous
“cylindrical” (a) or a “conical” (b) structure. The “con-
ical” explosion (b) is wider at the anode and narrower
at the cathode side. The slow pulse results in many
peripheral vacuum arcs between the wire and the
ground cylinder 2.8 cm away. Part of the wire is left
unvaporized (d) after the slow pulse shot (c). For the
cylindrical (a) and the conical (b) explosion modes, the
region surrounding the wire glows brightly. For the
slow pulse case (c), the light emission is over an order
of magnitude less and comes mostly from the periph-
eral vacuum arcs.

The velocity of expansion is dramatically greater for
the fast pulse explosion than for the slow pulse case
(Fig. 2, data from the shots shown in Fig. 1). The veloc-
ity of expansion in the middle of the 16-µm diameter W
wire is 0.83 km/s for the fast cylindrical explosion
JETP LETTERS      Vol. 73      No. 2      2001
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135 ns

(a) (b) (c)

Fig. 2. Radius vs. time (R–T) streaked laser shadowgrams of the expansion in the middle plane of the 16-µm diameter W wire. R–T
images (a), (b), and (c) correspond to time-integrated images (a), (b), and (c) in the cross sections marked by white arrows in Fig. 1.
mode (Figs. 2a and 1a), 0.59 km/s for the fast conical
explosion mode (Figs. 2b and 1b), and 0.15 km/s for the
slow-pulse explosion (Figs. 2c and 1c). In slow-pulse
explosion, the wire expands only in the region where
the peripheral vacuum arcs are absent. The wire
remains unvaporized in the arcing region. The wire
starts to expand after the voltage reaches the maximum
value, i.e., after surface flashover. The expansion pro-
ceeds at a constant speed, indicating minimal heating of
the wire after flashover.

Optical spectra for the fast and slow explosion of
16-µm W wire contain a high level of continuum radia-
tion combined with spectral lines of W and some light
species.

Temporal evolution of current (1), voltage (2),
deposited Joule energy (3), and light emission (4) for
fast cylindrical (a) and slow (b) explosion modes of
16-µm W wire is presented in Figs. 3a and 3b. For both
types of explosions, we can see the same feature: after
reaching the maximum value, the voltage drops fast and
then becomes inductive. The rate of specific energy
deposition for the fast explosion is seven times higher
than for the slow one [~0.7 (eV/atom)/ns for fast explo-
sion and ~0.1 (eV/atom)/ns for slow explosion]. The
maximum electrical power for the fast explosion
reaches the value of ~61 MW and ~5.5 MW for the
slow one. The extremely fast rising (~2 ns initial spike)
light intensity for the fast cylindrical explosion coin-
cides in time with the rapid decrease in voltage and
rapid increase in current, i.e., with surface flashover.
Fast explosions yield the most powerful light emission.
The first radiation peak is 4–5 times weaker for wires
driven by the slow explosion.

There is a large difference in the long-time behavior
of light emission for fast and slow explosion modes.
The fast explosion mode gives a strong (3–4 times)
increase in the light after the first peak for ~500 ns and
a slow drop for ~5–10 µs. For the slow explosion mode,
light intensity only drops after the first peak. Interest-
JETP LETTERS      Vol. 73      No. 2      2001
ingly, the long-scale temporal shape of radiation for the
fast exploding mode is typical only for W. Other sub-
stances give significantly different temporal shapes for
the radiation, indicating quite different conditions of
the wire core and coronal plasma. For the fast cylindri-
cal mode of explosion, the temporal shape of the radia-
tion depends very strongly and distinctly on the wire
material, but not much on the wire diameter.

The dependence of load resistivity (1), current den-
sity (2), electrical power (3), and magnetic field pres-
sure (4) on deposited Joule energy for fast cylindrical
(c) and slow (d) explosion modes is presented in Figs. 3c
and 3d. During the voltage increase, we can attribute
the recovered value of resistivity to the property of the
wire. When the voltage starts to drop, the current splits
between wire and surface flashover and we cannot
attribute the recovered value of the resistivity to only
the wire or flashover property. The resistivity curves (1)
in Figs. 3c and 3d for fast and slow exploding wires
coincide for low value of energy deposition. The only
difference is the point at which surface flashover occurs
(~3 eV/atom for the fast cylindrical mode and
~1.5 eV/atom for the slow explosion mode). For fast
explosions, the wire resistivity (1) reaches ~185 µΩ cm,
far above the melting boundary [9] corresponding
to  the saturation plateau in [10]. In contrast, the resis-
tivity with the slowly rising pulse (3) only reaches
~120 µΩ cm, which is below the melting boundary [9].
The maximum current densities before flashover
(Figs. 3c, 3d) are substantial, ~250 MA/cm2 for fast
pulses and ~130 MA/cm2 in the slow case. The maxi-
mum magnetic field at the wire surface before flashover
is ~131 kG and ~67 kG for the fast and slow pulses,
respectively. The maximum of the average pressure
inside the wire is approximately equal to the magnetic-
field pressure on the wire surface and corresponds to
~135 MPa for the fast explosion and ~36 MPa for the
slow explosion modes. The magnetic-field pressure in
the fast explosion mode is 40% of the critical pressure
for W (pcr = 337 MPa, [11]) and can suppress boiling at
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Fig. 3. Temporal evolution of (1) current, (2) voltage, (3) deposited Joule energy, and (4) emission light intensity for (a) fast and
(b) slow explosions of 16-µm W wires. Dependence of (1) wire resistivity, (2) current density, (3) electrical power, and (4) magnetic-
field pressure on the deposited Joule energy for (c) fast and (d) slow explosions. Magnetic field induction corresponding to current
density (2) in (c) and (d) has a maximum value of 131 and 67 kG, respectively.
liquid–gas phase transition. In this case, we can assume
a homogeneous expansion of the W wire.

The results of our experiments suggest the follow-
ing scenario for the initial stages of the electrical explo-
sion of tungsten wire. For the slow explosion mode,
current flows through the wire and increases the tem-
perature for the first ~45 ns. Before melting, the surface
flashover starts. Current switches from the wire to sur-
face flashover for a few nanoseconds and practically
stops the heating of the substance. In this case, the wire
becomes mainly disintegrated on macroparts.

Let us now dwell on flashover reasons. Tungsten is
known as a strong electron emitter. It has been found in
[6] that, in rapid electrical heating of fine W wire in a
vacuum, there is an “anomalous electron emission”
phenomenon when thermal electron emission exceeds
the normal value by ~100 times before melting. Emit-
ted electrons may be a “trigger” for the ionization of
vapors surrounding the wire and the creation of a low-
resistance plasma shell [12]. Ionization of the vapor
shell can be due to direct electron–atom collisions
or/and photoionization by X-ray and UV radiation gen-
erated in the collisions of emitted electrons with a high-
density wire surface. The strong electron emission from
the W wire creates an “energy deposition barrier” to
effective heating of the substance up to vaporization.

We can support this flashover scenario, because, in
the slow pulse case, effective wire resistivity stops to
grow at the level of W wire melting. Furthermore, we
observe a set of peripheral vacuum arcs (Fig. 1c), which
can be initiated by electron emission from the wire dur-
ing the negative period of the electrical pulse (~400 ns
after explosion initiation). The high level of continuum
radiation in the optical spectra for the fast and slow
explosion modes may support the electron emission
hypothesis, because it is well known that the interaction
of electrons with the wire generates bremsstrahlung
radiation. There is another argument for the electron
emission hypothesis. Experiments with W wire coated
with vacuum pump oil demonstrate significantly higher
values of deposited energy and expansion velocity than
with uncoated wire. In this case, oil can “deactivate”
emitted electrons because of high density at the metal–
JETP LETTERS      Vol. 73      No. 2      2001
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oil interface. We will describe in detail these experi-
ments in future publications.

We found one of the first descriptions of “wire dis-
integration regime” in [13] and in recent investigations
using high-resolution X-ray back lighting [14]. It has been
found that, in the slow explosion mode (~10–20 A/ns),
W wire is disintegrated into longitudinal and radial
parts, separated into drops [15, 16], and destroyed into
microscopic sol with sizes on the order of the electron
free path in a metal ~10 nm [17].

Energy deposition into the W wire is significantly
improved in the fast implosion regime. In this case, sur-
face flashover starts far after melting. The W wire resis-
tivity reaches a maximum value of ~185 µΩ cm, which
is beyond the melting level for W [9] and corresponds
to the saturation plateau under normal density [10]. For
this value of wire resistivity (at normal density), the
temperature before the surface flashover is supposed to
be ~1 eV [10]. For the fast explosion mode, the wire is
heated at a larger value of current density and magnetic
field than for the slow mode. In this case, the larger
magnetic insulation of the wire may result in the sur-
face flashover occurring at a temperature that is much
higher than the melting temperature. The first narrow
peak in light emission, which coincides with time of
flashover, can be attributed to the radiation of the exited
atoms and recombination of the ions produced due to
the ionization of a vapor shell surrounding the wire.
Analysis of the role of electron emission in the explo-
sion of the refractory metals wire at current densities
~106–107 A/cm2 can be found in [18].

There is no essential difference between the fast
cylindrical (Fig. 1a) and the fast conical (Fig. 1b)
explosion modes. For the fast conical explosion mode,
electron emission may start the flashover at smaller val-
ues of absorbed energy and the maximum resistivity
does not reach a resistivity plateau [10] but passes
through the melting level. For the fast cylindrical explo-
sion mode, flashover starts at higher absorbed energy
(close to the vaporization energy) and the maximum
resistivity reaches a plateau [10]. The conical deposi-
tion energy was observed for many substances with
large vaporization energy: W, Mo, Pt, Ti, Ni, and Fe;
however, it was never observed for low vaporization
energy substances: Au, Cu, Al, and Ag. We will discuss
this effect in later publications.

In our experiments, the energy necessary to start
wire melting is 1.5 eV/atom, which is ~1.8 times as
large as the tabulated value. This agrees with the obser-
vation of increased specific heat capacity before melt-
ing, discussed in [18]. The high magnetic pressure may
also play a certain role in increasing the energy deposi-
tion.

Finally, let us summarize the major results of this
work. It has been shown that the quality of the electrical
explosion of tungsten wire is critically dependent on
the rate of energy deposition. The processes vary from
electrical disintegrating of the wire into macroscopic
JETP LETTERS      Vol. 73      No. 2      2001
parts (under slow-pulse mode ~20 A/ns) to the homoge-
neous explosion with a large value of deposited energy
(under fast-pulse mode ~170 A/ns). The main barrier to
enhanced energy deposition in the slow explosion
mode is caused by the initiation of high thermal elec-
tron emission before wire melting. Current becomes
reconnected to the surface flashover, and heating of the
wire stops. This “energy deposition barrier” can be
avoided by increasing the wire heating rate. In this case,
heating occurs at higher current density, so that a larger
magnetic field may restrict the electron emission before
melting. In the fast explosion mode, the wire resistivity
reaches a value of ~185 µΩ cm, which is a plateau for
the normal density of tungsten [10]. In this case, the
temperature of the wire before expansion reaches the
values of ~1 eV, the energy deposition is homogeneous
along the axis, and the expansion velocity reaches a
maximum value of ~1 km/s.

The effect of significant enhancement of energy
deposition before surface flashover with increasing
energy deposition rate was observed for all available
pure metal wires (Mo, Pt, Ti, Ni, Fe, Ag, Cu, Al, and
Ag); we will discuss the results in future publications.
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Enhanced Superconductivity of the Ti–Zr Alloys
in the High-Pressure BCC Phase*
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A high-pressure study of the crystal structure and superconductivity of Ti–Zr alloys demonstrates an increase
in the ω–β-transition pressure from about 30 to 43–57 GPa when the titanium content in the alloys increases
from 0 to 50 at. %. The isobaric values of the BCC β-phase superconducting temperature (at 46 GPa) increase
from 5.7 to more than 15 K between 0 and 50 at. % Ti, the latter value being the absolute maximum for BCC
d-metal alloys. These data correlate with the earlier assumption of an s–d electron transfer in Zr under pressure.
© 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 64.70.Kb; 74.62.Fj
1. Titanium and zirconium at normal conditions are
stable in the hexagonal close-packed structure (the
HCP α phase) and transform to the body-centered
cubic (BCC) β phase above 1155 and 1136 K, respec-
tively [1]. The hexagonal ω phase becomes stable for
both metals under pressures of P > 2 GPa at room tem-
perature [1–4]. Recently, Xia et al. [5] found that ω-Zr
compressed to P ≈ 30 GPa at room temperature under-
goes a transition to a BCC phase which is also called
β-phase, by analogy with the low-pressure/high-tem-
perature phase. The hard-sphere packing ratio for the
BCC structure is not as high as in the close-packed FCC
or HCP structures; therefore Xia et al. related this tran-
sition to the s–d electron transfer in Zr, which results in
a reduction of the atomic volume [5], as discussed in
theoretical studies on the relation between the crystal
structure and the d-band occupancy in the nonmagnetic
d-band metals (see, e.g., [6–11]). Later, Akahama et al.
[12] measured the pressure dependence of the super-
conducting temperature, Tc, for Zr and presented new
arguments for the s−d electron transfer also in relation
to the structural transition and to the similarity in the
behavior of Zr under pressure to Group Vb metals.
Actually, the Tc values increase under pressure moder-
ately in the stability ranges of the α-Zr and ω-Zr
phases, but a sharp jump by several degrees is observed
near P = 30 GPa [12]. The idea of an electronic transi-
tion was used later in order to explain a similar ω–β
transition in Hf around 71 GPa [13], as well as an
isostructural BCC-to-BCC transition in Zr which was
claimed to be seen at 56 GPa [14]. Titanium does not

* This article was submitted by the authors in English.
0021-3640/01/7302- $21.00 © 20075
undergo a transition to the BCC phase at room temper-
ature up to 87 GPa [13].

The hypothesis of a strong s−d electron transfer for
the Group IVb metals under pressure opens a door for
a new study. In fact, there is a considerable difference
between the Group IVb and Vb metals, as well as
between the binary Group IVb–Vb and Vb–Vb metal
alloys, with respect to their phase diagrams and super-
conducting properties. For example, the Ti–Zr alloys
form homogeneous solid solutions in both liquid and
solid states (solid α solutions at low and moderate tem-
peratures and β solutions up to melting) [15]. The
superconducting temperatures of pure Ti and Zr, as well
as of their HCP α-alloys, are low and show a maximum
of Tc = 1.7 K at the equiatomic composition, TiZr [16].
The Group Vb metals have a BCC lattice and higher Tc

values (Tc = 5.4 and 9.26 K for V and Nb, respectively)
[15, 16]. The solubility of the Group Vb metals in HCP
α-Ti and α-Zr amounts only to a few percent, but the
BCC alloys of Group IVb–Vb elements are homoge-
neous over a much broader concentration range; e.g.,
the homogeneity ranges of the β phase in the Ti–V or
Ti–Nb systems at room temperature are extended from
about 20 to 100 at. % V or Nb. The concentration
dependence of the superconducting temperature, Tc(x),
in the stability range of the BCC Group IVb–Vb alloys
has a maximum between 60 and 75 at. % Group Vb
metal [15–18].

One can assume from this consideration that
Ti1 − xZrx alloys become similar to the Group IVb–Vb
alloys above the high-pressure electronic transition in
Zr with the respective consequences; i.e., the BCC solid
solutions of titanium in β-Zr extend their stability range
001 MAIK “Nauka/Interperiodica”
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as the pressure is increased, and the superconducting
temperature increases also as the Ti content in β-Zr is
increased under isobaric conditions. These assump-
tions are examined here by Tc measurements for Zr and
its alloys with 30 and 50 at. % Ti under pressures up to
the transition to the BCC phase, and the α  ω  β
structural sequence is confirmed by X-ray diffraction.

2. Experimental. Alloys were prepared from Zr and
Ti iodide rods melted in vacuum by electron arc. The
purities of molten Zr and Ti were 99.96 and 99.98 at. %,
respectively, the interstitial impurities being taken into
account. The final alloy compositions were measured
by an electron-probe X-ray microanalyzer JXA-5, with
the results of x = 69.3 ± 0.8 and x = 50.4 ± 0.4 at. % Zr
for the samples used in superconductivity measure-
ments and x = 71.9 ± 0.8 and x = 50.4 ± 0.4 at. % Zr for
the structural studies.

The superconducting transitions in the samples
were detected as anomalies in the magnetic susceptibil-
ity curves, χ(T), measured with alternating current [19].
The diamond-anvil apparatus made of nonmagnetic
materials and the experimental details were described
elsewhere [19, 20]. Cooling of the diamond apparatus
results in its mechanical relaxation and a marked pres-
sure increase; therefore, pressure determination in
these experiments was carried out at room temperature
at the end of each experimental cooling/heating cycle.
Energy-dispersive X-ray diffraction (EDXD) with syn-
chrotron radiation and diamond-anvil high-pressure
cells was performed at HASYLAB (DESY, Hamburg),
as described previously in [21, 22].

Fig. 1. Representative magnetic susceptibility curves, χ(T),
measured upon heating of a Ti30Zr70 alloy at indicated pres-
sures. The arrows explain the determination of the super-
conducting temperature from the intersection of two tan-
gents to the curve. The curves are measured in a run of step-
wise compression, but for the 35.0-GPa isobar (dashed
curve) it was measured on decompression.
3. Results. Typical experimental χ(T) curves for
Ti30Zr70 measured on heating at constant pressures are
represented in Fig. 1. Similar curve shapes were char-
acteristic of Zr and the equiatomic alloy. The jumps due
to the superconducting transition are clearly visible in
each curve. The jumps in most of the χ(T) isobars are
very steep, indicating a single-phase state of the alloy.
There are, however, some pressure intervals where the
superconducting χ(T) anomalies either are extended
over several degrees (e.g., the 35.6 GPa isobar in Fig. 1)
or consist of two jumps separated by an inclined pla-
teau (the 35.0 GPa decompression isobar in Fig. 1).
A strong distortion of the χ(T) anomalies is typical for
pressure intervals, where the ω–β phase transition takes
place and the alloy is in a two-phase state. In the pres-
sure intervals of the ω–β transition, distortions of the
χ(T) anomalies are rather small. The superconducting
temperature was determined as the intersection point
between the steepest tangent to the χ(T) curve and the
linear extension of the high-temperature section of the
χ(T) curve, as shown in Fig. 1.

The corresponding Tc values for the three alloys are
plotted versus pressure in Fig. 2 together with the liter-
ature data [12, 23, 24] for pure Zr (bottom curve). Fig-
ure 2 shows a good agreement between the different
data below 30 GPa. Above this pressure, the Tc values
from Akahama et al. [12] are systematically larger than
the present values, probably, due to the difference in the
experimental techniques: Akahama et al. [12] deter-
mined the Tc values from the resistivity measurements,
unlike the present χ(T) data. One can also see from
Fig. 2 that the Tc(P) curve in the ω-Zr range is almost a
smooth continuation of the Tc(P) curve in the α-Zr
range. The ω–β transition occurs in a very narrow pres-
sure interval near 30 GPa, as reported earlier [5, 13].
After the Tc jump from 4.1 to 9.4 K due to the ω–β tran-
sition, further pressure increase results in a gradual
decrease in Tc.

The alloys have similar Tc(P) dependences in the α-
and ω-phase regions: Tc grows with pressure buildup
for both phases. Transitions to the ω phase are
observed near 10 GPa as a small but distinct decrease
in Tc. The slope of the Tc(P) dependence for the ω phase
of the equiatomic TiZr alloy is smaller than for the
α phase. The process of the ω–β transition in the alloys
is different from that in pure Zr. For Ti30Zr70, the χ(T)
jump is very broad around 35 GPa on increasing pres-
sure, and two χ(T) jumps are observed in this range on
decompression. This is an indication of an intermediate
two-phase state occurring in an extended pressure
interval. The transition hysteresis, however, remains
rather small. Above the ω–β transition, Tc(P) does not
decrease as steeply as in pure Zr. The two-phase nature
of the ω–β transition is most clearly seen in the equi-
atomic TiZr alloy. The broad χ(T) anomaly around
40 GPa changes to two jumps at P ≥ 43 GPa, and these
two jumps are observed up to the highest pressure of
P = 47 GPa where Tc for the β phase is 15.5 K.
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The in situ EDXD measurements confirm for both
alloys that the high-pressure Tc jump is related to the
formation of the BCC phase. The coexistence interval
of the ω and β phases for the TiZr alloy is rather broad:
the ω phase is observed up to 56.3 GPa, and the alloy
becomes purely β phase at P = 57.0 GPa. At 47 GPa,
the ω phase is still the dominant phase of the TiZr alloy,
with only about 20% of the β phase. So far, Tc seems to
increase with pressure, at least until the ω–β transition
is completed at 57.0 GPa.

4. Discussion. The present study over a wide pres-
sure range allowed one to determine the Tc(P) depen-
dence for Zr and Ti30Zr70 in the pure β phase. For the
equiatomic alloy, the Tc value for the pure β phase at
the end of the transition should be higher than the value
in the two-phase state. For the sake of comparison,
Fig. 3 shows the Tc values for the present alloys in the
β phase at P = 46 GPa and their dependence on the Zr
concentration. Figure 3 shows also the earlier ambient-
pressure data for the β phase Ti–V and Ti–Nb alloys
[16]. From a comparison with these alloys, one could
have anticipated, also for the β phase Ti–Zr alloys, only
a small initial increase in Tc with increasing Ti content
on the Zr-rich side of this diagram. However, the high-
est observed value of Tc = 15.5 K for β TiZr at 47 GPa

Fig. 2. The pressure effect on the superconducting tempera-
ture, Tc(P), for (bottom) Zr, (middle) Ti30Zr70, and (top)
TiZr, together with literature data for Zr [12, 23, 24]. Open
symbols represent the data on decompression of Ti30Zr70.
JETP LETTERS      Vol. 73      No. 2      2001
is much higher than Tc for pure Zr as well as for any
other BCC phase in the transition-metal alloys.

The increase in Tc in the ω + β two-phase region of
the TiZr alloy may result from proximity effects in the
process of nucleation and growth of the β-phase grains.
If this is the case, the Tc values for β-TiZr should further
increase until the bulk β grains are well developed.

The Tc values increase upon the ω–β transitions.
Thus, the present experimental data support a correla-
tion between the high-pressure structural ω–β transi-
tion and the expected s−d electron transfer in Zr. This
observation also fits the general assumption of a pro-
gressive s−d electron transfer in the earlier transition
metals under pressure [6–11]. This correlation can be
further elucidated by a more detailed study of Tc(P) for
β-TiZr at higher pressures, as well as by further studies
closer to the possible maximum in the isobaric Tc(x)
curve for the β-Ti1 – xZrx alloys.

The present determination of the ω–β-transition
pressures in the Ti1 – xZrx alloys at room temperature
shows their strong nonlinear increase with the 1 – x
increase in the range 0 ≤ 1 – x ≤ 0.5 in such a way that
the transition in pure Ti may be expected only above
100 GPa. The Tc values also increase with increasing
1 – x and become larger than 15 K for TiZr under pres-
sure, which is the record for BCC transition metals and
alloys. The Tc increase due to the ω–β transition is in
agreement with the general assumption of a progressive
s−d electron transfer in the earlier transition metals
under pressure.

This work was supported by the RFBR (grant
no. 00-02-17562). HASYLAB experiments were per-
formed under project no. II-96-76.

Fig. 3. Effect of the concentration of the second component
on the superconducting temperatures of Ti–V and Ti–Nb
alloys (reproduced from [16]) and for Ti–Zr alloys (at P =
46 GPa). For the Ti–V and Ti–Nb systems, the data in the
vicinity of the α/β phase boundary were partly measured on
the quenched samples [16].
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It is shown that nonadiabatic corrections to the dispersion law of optical phonons in the region of small wave
vectors in the case of branches, for which the vibration with a zero wave vector is not accompanied by the
appearance of a dipole moment in the ionic lattice, are significant for all possible directions of the wave vector.
If a dipole moment arises, nonadiabatic corrections reach a noticeable value only for the wave-vector directions
that are almost perpendicular to the direction of the dipole moment. © 2001 MAIK “Nauka/Interperiodica”.

PACS number: 63.20.-e
The adiabatic approximation, which suggests that
the electron density distribution corresponds to an
instantaneous configuration of the ionic lattice, is com-
monly used to calculate phonon spectra. It was shown
[1] that the nonadiabatic corrections in the absence of
nesting in the electronic system of the crystal can
become significant at ωp(q) * qvF (q is the wave vector,
ωp(q) is the adiabatic dispersion law for the pth phonon
branch, and vF is the Fermi velocity of electrons), i.e.,
for the optical phonon branches in the region of small
wave vectors. The nonadiabatic corrections are small
for q ≈ qB, where qB is the Brillouin wave vector,
because they are proportional to the (m/M)1/2 ratio (m is
the electron mass and M is the ion mass).

It is in the region of wave vectors q & ωp(q)/vF ! qB

that the corrections to the bare vertex of electron–
phonon interaction become significant [2].

These corrections were taken into account in [3, 4]
under the assumption that the electron screening effects
are insignificant. At the same time, it was demonstrated
in [5] that the screening effects can almost fully com-
pensate for the nonadiabatic corrections.

This article is devoted to examining the screening
process and to finding the phonon modes for which the
nonadiabatic corrections are not compensated.

The electron–phonon interaction Hamiltonian has
the form

(1)
He– ph Γn n' k k', , , ân'k'

+ ân k,

n n' k k', , ,
∑=

× b̂ k' k–( ) b̂
+

k k'–( )+[ ] ,
0021-3640/01/7302- $21.00 © 20079
where  and  are the second quantization oper-
ators of electrons belonging to the nth band; k is the

wave vector; and ,  are the second quantiza-
tion operators of phonons. For simplicity, we will
restrict our consideration to one optical phonon branch
with the adiabatic dispersion law ω0(q). The
unscreened matrix element of the electron–phonon
interaction has the form

(2)

where the summation is over all ions in the unit cell,
N is the number of unit cells in the crystal, ψn, k(r) is the
Bloch function of an electron of the nth band, Ws(r) is
the potential energy of electron interaction with the sth
ion of mass Ms and charge Zs in the equilibrium posi-
tion, and es(q) is the polarization vector of the corre-
sponding ion for a given vibrational mode.

Consider the diagonal matrix element (n = n'). The
major contribution to the integral on the right-hand side
of Eq. (2) comes from distances r ≈ |k' – k |–1 large as
compared to the interatomic distance d. It can be
assumed that

(3)

and the Bloch function can be replaced by plane waves.
Then, in the rigid-ion approximation, Γn, n, k, k' = Γ(k' – k);

ân k,
+ ân k,

b̂
+

q( ) b̂ q( )

Γn n' k k', , ,
"N

2Msω0 k' k–( )
----------------------------------- 

  1/2

s 1=

r

∑–=

× ψn' k',* r( ) ∇ Ws r( ) es k' k–( ),( )ψn k, r( ) r,3d∫

ψn k', r( ) un k', r( ) ik'r( ) un k, r( ) ik'r( ),exp≈exp≡
001 MAIK “Nauka/Interperiodica”



80 MOROSOV
i.e., this quantity depends only on the difference k' – k
and equals

(4)

where

(5)

Two cases are possible in the region q ! qB:
(a) If A ≠ 0 and the angle between q and A is not too

small, Γ(q) ∝  q–1.
(b) If A = 0 or the cosine of the angle ϕ between q

and A is small (cosϕ & q/qB), the next terms of the
expansion of un, k'(r) in terms of q in the vicinity of k' =
k must be taken into account. In this case, the Γn, n, k, k'
function no longer has a singularity at k'  k,
depends on k' and k separately, and is of the same order
of magnitude as the nondiagonal (n ≠ n') matrix ele-
ments, for which the distances r ≈ d make the major
contribution when taking the integral in Eq. (2).

The Coulomb matrix element of electron–electron
interaction can be considered in a similar way. Because
of the scalar nature of a Coulomb vertex, divergence
always takes place at small transferred momenta if both
interacting electrons (from n and n' bands, respectively)
remain in the initial bands

(6)

Therefore, one may neglect the other nonsingular con-
tributions to screening in the region of small q and
restrict the consideration to the random phase approxi-
mation.

Let us consider the renormalization of the phonon
Green’s function D(q, ω) in the presence of nonadia-
batic corrections

(7)

where

(8)

while the polarization operator Π(q, ω), with regard to
screening, is given, similarly to [5], by the following
series:

(9)

where a vertex with a wavy line corresponds to Γn, n', k, k',
the dashed line corresponds to the Coulomb interac-
tion, and the shaded loop is formed by two electron
Green’s functions

(10)

Γ q( ) i
"N

2ω0 q( )
---------------- 

  1/24πe2

q2
----------- q A,( ),–=

A
Zs

Ms
1/2

----------es 0( ).
s 1=

r

∑=

Vn n', q( ) 4πe2/q2.=

D 1– q ω,( )
ω2 ω0

2 q( )–
2ω0 q( )

------------------------- ∆Π q ω,( ),–=

∆Π q ω,( ) Π q ω,( ) Π q 0,( ),–=

------- -------

-------Π q ω,( ) +=

+ …,+

Gn k ε,( ) ε εn k( ) µ Σn k ε,( )–+–[ ] 1– ,=
where εn(k) is the dispersion law for electrons in the nth
band, µ is their chemical potential, and Σn(k, ε) is the
self-energy part. The loop contains all ladder-type cor-
rections caused by the electron–phonon interaction

(11)

The summation in Eq. (9) goes over all indices of
bands n.

In the case (a), the contribution to Π(q, ω) from the
terms diagonal in n and relating to partially occupied
bands takes the following form after making allowance
for the screening effects:

(12)

where P(q, ω) is given by series (11).

The second term in the denominator of Eq. (12) by
far exceeds the first one in the region of small wave vec-
tors. Therefore, to the corrections of order m/M, P(q, ω)
cancels at q & ω0/vF , and the corresponding contribu-
tion to ∆Π(q, ω) equals zero. The ladder corrections to
the vertex are small for the terms nondiagonal in n, and
the same is true for the nonadiabatic corrections [which
are of order (m/M)1/2]. Thus, in the case (a), the nonadi-
abatic corrections to the adiabatic dispersion law of
optical phonons in the region of small wave vectors are
of the same order of smallness, (m/M)1/2, as at q ≈ qB,
and the dispersion is small in the region q & ω0/vF . It is
this case that was considered in [5].

In the case (b), the contribution of the terms diago-
nal in n is no longer expressed by Eq. (12). The point is
that Γn, n, k, k' depends on the angle between k and q =
k' – k. Therefore, the integral over k in a loop contain-
ing one Coulomb and one phonon vertex gives a zero
result to the leading order in q [6]. At the same time, the
integral in a loop containing two phonon vertices is
nonzero. Thus, in the case (b), the screening effects are
unimportant, the nonadiabatic corrections to the terms
nondiagonal in n are significant, and the contribution
from the nondiagonal terms is the same as in the case
(a). Finally, for the case (b), the nonadiabatic correc-
tions to the adiabatic dispersion law of optical phonons
in the region q & ω0/vF are on the order of ω0 and must
be taken into account in the calculation of phonon spec-
tra. It is precisely the case (b) to which the results of
calculations in [3, 4] relate.

Because the displacement of the sth atom in the unit

cell for a given phonon mode is proportional to es/ ,
the vector A [Eq. (5)] is proportional to the ionic dipole
moment of the unit cell, which arises for an optical
vibration with q = 0. If A = 0 for a given optical phonon
branch (that is, the dipole moment does not arise), the
nonadiabatic corrections are significant for all q &

ω0/vF . If A ≠ 0 for a given optical branch (a dipole
moment arises), the nonadiabatic corrections are signif-

….+ + +=

Π q ω,( )
Γ q( ) 2P q ω,( )

1 4πe2P q ω,( )/q2+
-----------------------------------------------,–=

Ms
1/2
JETP LETTERS      Vol. 73      No. 2      2001



NONADIABATIC EFFECTS IN THE PHONON SPECTRUM 81
icant only for q directions that are virtually perpendic-
ular to the dipole moment vector, namely, for the stripe

(13)

In these cases, a notable dispersion due to nonadiabatic
corrections must occur in the region of wave vectors
q & ω0/vF , which can be observed experimentally.
Because the adiabatic approximation overestimates the
screening effect, the nonadiabatic corrections must lead
to a rise in phonon frequency. This behavior of the
phonon spectrum was observed for osmium [7] by
Raman scattering spectroscopy.

If the nonadiabatic corrections for a given q are sig-
nificant for several optical branches, their mixing must
be taken into account. This mixing is accomplished by
the polarization operator nondiagonal in the phonon
branch number, i.e., having vertices relating to different
phonon branches. The hybridization with the other
phonon branches for which the adiabatic approxima-
tion is adequate is insignificant.

Of interest is an experimental investigation of the
angular dependence of dispersion in the region of small
wave vectors for phonon modes with A ≠ 0. The inves-
tigation of centrosymmetric metal compounds, for
which these modes are Raman-inactive, can be carried

q A,( )/qA & q/qB.
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out by hyper-Raman or neutron scattering spectros-
copy.

I am grateful to E.G. Maksimov for valuable discus-
sions that led to writing this article.
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The hyperbolic metric of the dispersion law (the effective mass tensor components of carriers are opposite in
sign) in the vicinity of the Fermi contour in high-Tc superconducting cuprates in the case of repulsive interaction
gives rise to a superconducting state characterized by the condensate of pairs with a large total momentum
(hyperbolic pairing). The gain in the energy of the superconducting state over the normal state is due to the fact
that a change in the kinetic energy of pairs (because of the negative light component of the effective mass) dom-
inates over the change in the potential energy (corresponding to energy loss). The shift of the chemical potential
upon the transition to the superconducting phase is substantial in this case. With increasing repulsive interac-
tion, the superconducting gap ∆K increases and the resulting gain in energy changes to an energy loss at a certain
critical value of the repulsive potential. The low temperature Tc of the superconducting transition and the large
value of ∆K in this region of potential values are the reasons for the high value of the 2∆K/Tc ratio and for the
developed quantum fluctuations that are observed in underdoped cuprate superconductors. © 2001 MAIK
“Nauka/Interperiodica”.

PACS number: 74.20.-z
When quasiparticles in a Fermi system are paired
into pairs with a nonzero quasimomentum K, the quasi-
momentum of the relative motion of a pair belongs to a
certain region ΞK inside the Brillouin zone [1, 2]. The
size and the shape of this region depend on K and are
determined by the condition that the quasimomenta of
two quasiparticles forming a pair must be either outside
or inside the region bounded by the Fermi surface.

The electronic states in high-Tc superconducting
compounds are of quasi-2D character, and the structure
of energy bands is such that the equienergy lines in the
vicinity of the Fermi level contain long, almost rectilin-
ear sections, which provides almost ideal Fermi-con-
tour nesting [3]. Thus, if pairs with K ! kF rather than
K ≈ 2kF [4, 5] are considered, where kF is the Fermi
momentum for a given direction, the ΞK region has a
form of a long narrow stripe, as is shown schematically
in Fig. 1 for the case when K is aligned with the [010]
axis. The k1 axis divides the ΞK region into two parts. If
in one of the parts (the upper part in Fig. 1a) the quasi-
momentum of the relative motion of a hole pair equals
k and the spin of a hole with the quasimomentum k+ =
K/2 + k is, by convention, oriented up (↑ ), then in the
other (lower) part the quasimomentum of the relative
motion equals –k and the spin of a hole with the quasi-
momentum k– = K/2 – k at singlet pairing has the orien-
tation ↓ . Inside ΞK disposed in the vicinity of a saddle
point of the dispersion law, holes have a rather weak
dispersion (extended flat-band saddle point [3]), and
the (negative) effective mass along the k2 axis is signif-
0021-3640/01/7302- $21.00 © 20082
icantly smaller in magnitude than the effective mass
along the k1 axis (the corresponding Fermi velocities
vF1 and vF2 along k1 and k2 differ from each other by
more than an order of magnitude, vF1/vF2 < 0.1 [6]).

The singularity of the scattering amplitude for the
relative motion of two holes [2] subject to Coulomb
repulsion (Fig. 2) points to the possibility of pairing
(k+ ↑ ; k– ↓ ). Pairs with a positive decay correspond to
quasistationary states that can be responsible for the
formation of a pseudogap [1]. The occurrence of states
with a negative decay [2] reflects the tendency toward a
rearrangement of the ground state of the system with
the formation of a superconducting pair condensate.

Consider a ΞK region corresponding to hole energies
lower than the Fermi energy (Fig. 1). Let us write the
Hamiltonian describing the relative motion of hole
pairs with quasimomentum K in the form

(1)

Here, ε(k) is the energy of a hole with quasimomentum

k,  ( ) is the creation (annihilation) operator of a

ĤK ε K
2
---- k+ 

  âK
2
---- k↑+

+ âK
2
---- k↑+




k ΞK∈
∑=

+ ε K
2
---- k– 

  âK
2
---- k↓–

+ âK
2
---- k↓– 




+ U k k'–( )âK
2
---- k↑+

+ âK
2
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+ âK
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âK
2
---- k'↑+

.
k k', ΞK∈
∑

âkα
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Fig. 1. (a) Domain of definition of the quasimomentum of the relative motion of a pair with quasimomentum K. The section of the
hole Fermi contour is distinguished by a thick line. The part of the ΞK region with a negative excitation energy (ξKk < 0) is shaded.
In the unshaded area, ξKk > 0. The kinetic energy of a pair goes to zero on lines a–a' and b–b'. The point S is a saddle point of the
dispersion law of a pair. (b) Illustration of the dispersion law of a pair for directions k1 and k2.
hole with quasimomentum k and spin projection α,
U(k) is the Fourier transform of the energy of correla-
tion interaction between two holes, and the summation
over quasimomenta is restricted to the ΞK region.
Choosing the Hamiltonian in the form of Eq. (1) corre-
sponds to the Bardeen–Cooper–Schrieffer (BCS)
approximation in the sense that only the interactions
directly leading to the pairing of holes with total quasi-
momentum K ≈ 2kF are taken into account. As usual, it
is assumed that the interactions not included in Eq. (1)
exert no significant direct effect on the condensation
energy. The average number of holes participating in
pairing is evidently constant. Therefore, the corre-
sponding condition for the operator

(2)

can be, as usual, taken into account in the diagonaliza-
tion of Eq. (1) by the Lagrange multiplier method.
Denote a Lagrange multiplier by µK and introduce new
quasiparticle operators by using the Bogoliubov trans-
formation

(3)

This allows the Hamiltonian in Eq. (1) to be repre-

sented, to an accuracy of , in the form

(4)

N̂K âK
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âK
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uKkb̂k +1, v Kkb̂k –1,
+

,+=

âK
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+ uKkb̂k +1,
+
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+

,–=
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+
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+
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ĤK
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The ground-state energy can be written as

(5)

where 2ξKk = 2µK – ε(K/2 + k) – ε(K/2 – k) and, by def-
inition,

(6)

The part of the Hamiltonian diagonal in the opera-

tors  can be represented as

(7)

EK0 –2 ξKkv Kk
2

k ΞK∈
∑ ∆KkuKkv Kk,

k ΞK∈
∑+=

∆Kk U k k'–( )uKk'v Kk' .
k ΞK∈
∑=

b̂

ĤK
0( ) ηKβ k( )b̂kβ

+
b̂kβ,

k ΞK∈
β 1±=

∑=

Fig. 2. Graphical solution of the equation f(ε) + λK = 0
determining the real part of the pole of scattering amplitude
for the relative motion of a hole pair in the case of repulsive
interaction of holes [1, 2]. One of the solutions (SC) disap-
pears at λK < λKm and corresponds to a superconducting
condensate of pairs [2], and the second one (QSS) corre-
sponds to quasistationary states of pairs [1].
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where

(8)

The nondiagonal part (bilinear in the operators ) takes
the form

(9)

The minimization of EK0 with respect to uKk and vKk

under the additional condition  +  = 1 leads to

the cancellation of the  contribution; that is, the
braced expression in Eq. (9) identically goes to zero.
The equation obtained is fulfilled identically for a solu-
tion taken in the form

(10)

Then, the equation determining ∆Kk takes the form con-
ventional for BCS

(11)

The d-type orbital symmetry of the superconducting
gap observed in high-Tc superconducting cuprates fol-
lows from Eq. (11) if, as noted in [1], it is considered
that ∆Kk as a function of the pair quasimomentum K cor-
responds to the irreducible representation B1g of the
crystal symmetry group.

At ∆Kk  0, the system can be formally considered
[1] as a gas of hole pairs (with a zero binding energy).
In this case, the transformation defined by Eq. (3) leads
to “correct” zero-order (with respect to the interaction
of holes forming a pair) wave functions. Not the entire
region ΞK but only its part in which ξKk < 0 contributes
to these wave functions. That is, these wave functions
are constructed from the states with a positive kinetic
energy of the motion of a pair in which the positive
heavy component of the effective mass is predominant.
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The Lagrange multiplier is determined from the
condition

(12)

where  is the mean number of pairs in the con-
densate at ∆Kk  0. The asymmetry in the distribution
of states with effective masses of opposite sign within
the ΞK region can be characterized by the parameter δK

(13)

The parameter in Eq. (13) can, in principle, have any
sign. However, one can see from Fig. 1a, where the ΞK

region typical for high-Tc superconducting compounds
with the hole type of doping is shown, that δK > 0 at a
sufficiently strong anisotropy of the dispersion law of
holes, as observed in high-Tc superconducting cuprates
[6]. Passing in Eq. (13) from summation to integration
over the ΞK region and replacing the density of states
for the relative motion of pairs within this region by
some averaged value gK [a logarithmic singularity
occurring in the density of states gK(ξ) at ξ = 0 only
slightly affects the values of integrals within ΞK], we
find that the Lagrange multiplier takes the form µK0 =
δK/gK at ∆Kk = 0. As in [2], it is assumed for simplicity
that the pair energy (in the absence of interaction) var-
ies within symmetric limits |ε(k+) + ε(k–) – 2ε(K/2)| ≤
2εK0, where εK0 is the maximum kinetic energy of the
relative motion of a hole pair within the ΞK region
(Fig. 1b).

It is evident that a nontrivial solution ∆Kk ≠ 0 also
exists. In this case, ∆Kk ≠ 0 throughout the ΞK region,
and the part of this region in which states with a nega-
tive effective mass along the k2 axis predominate (that
is, bound states can form [1]) leads to a change in the
Lagrange parameter. We obtain approximate solutions
of Eqs. (11) and (13) by making a radical simplifying
assumption that U(k – k') = UK = const within the ΞK

region, which is equivalent to the BCS approximation.
The consequence of this simplification is that the
parameter ∆Kk becomes independent of k, ∆Kk ⇒  ∆K.
This allows the change in the Lagrange parameter ∆µK

upon the formation of a pair condensate to be found
from Eq. (13)

(14)

2 v Kk
2
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With this approximation, the solution of Eq. (11)
can be written as

(15)

Here, it is taken into account that |∆K| ! |εK0 ± µK0|,
which formally corresponds to the weak coupling
approximation UKgK ! 1.

Rewrite the ground state energy of the system as

(16)

At ∆K ≠ 0, the quasiparticle energy is reckoned from
µK = ε(K/2) + µK0 + ∆µK, and the ground-state energy
[Eq. (16)] of the superconducting phase at µK0 ! εK0

can be written, to an accuracy of ~ , as

(17)

Here,  ≈ 4µK0εK0, and  = gK  is the ground-

state energy of the normal phase in the case when the
states of the relative motion of a pair throughout the ΞK

region are uniformly occupied [in this case,  = 1,
which corresponds to choosing the coefficients in

Eq. (12) in the form  ≡  = 2π2/SΞK, where S is
the normalization area]. Thus, in the weak coupling
approximation and under the condition ∆K < ∆Km, it

turns out that  < ; i.e., the formation of a con-
densate provides a gain in the ground-state energy.

The condensation energy can be determined as

 =  –  and written in the form of a sum over
the ΞK region using Eq. (16). A plot of the function F(x)
under the corresponding sum (in ∆K units) against the
dimensionless variable x = ξKk/∆K is schematically
shown in Fig. 3. This figure illustrates how the shift of
the chemical potential ∆µK caused by the formation of
a superconducting condensate provides a gain in the
condensation energy on account of the kinetic energy
of pairs. It is seen in Fig. 3 that a gain corresponding to
positive values of F(x) is achieved when the maximum
kinetic energy of a pair εK0 [this value determines the
limits of integration in Eq. (16)] exceeds a certain value
at which the contribution of repulsive interaction
(which leads to a loss in the condensation energy) is
cancelled (the region in Fig. 3 in which F(x) < 0).
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The phenomenological picture with a gain in the
superconducting state energy on account of the kinetic
energy was presented in [7].

In the limiting case of weak coupling, ∆K decreases

exponentially at  ≡ UKgK  0, and the pole of the
scattering amplitude, which is determined [2] from the
condition f(ε) + λK = 0, shifts toward the point εK0 as
shown in Fig. 2. In this case, the decay remains negative
and tends to zero at ε  εK0. It is evident in Fig. 2 that,

with an increase in the coupling constant , the solu-
tion of the equation f(ε) + λK = 0 disappears starting at

a certain value . Nevertheless, the parameter ∆K

does not go to zero; moreover, it increases with increas-

ing . However, with increasing ∆K at a constant εK0,
the positive contribution to the ground-state energy
increases, whereas the negative contribution simulta-
neously decreases, both because of the “contraction” of
the limits of integration ±εK0/∆K over the dimensionless
variable z. It is seen in Fig. 3 that the contribution of the
region with F(x) > 0 decreases much faster than the
contribution of the region with F(x) < 0 (the latter con-
tribution leads to a loss in the condensation energy). As
a result, as ∆K increases, the situation is attained in

which  > . Thus, the disappearance of the insta-

bility of the normal state at  [2] corresponds to the
disappearance of the gain in the energy of the supercon-

ducting state over the normal state. As  tends to

, the superconducting transition temperature Tc

must tend to zero. The low temperature Tc and the large
value of ∆K in this region of variation of coupling con-

stant  are apparently the reasons for the large value
of the ratio 2∆K/Tc and the developed quantum fluctua-

λK
1–

λK
1–

λKm
1–

λK
1–

EK0
s( ) EK0

n( )

λKm
1–

λK
1–

λKm
1–

λK
1–

Fig. 3. Condensation energy (in ∆K units) as a function of
the dimensionless excitation energy x = ξKk/∆K. The plot in
the figure corresponds to the shift of the chemical potential
of a quasiparticle ∆µK/∆K ≈ 0.4.
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tions that are observed in underdoped cuprate super-
conductors [8].

The existence of a saddle point in the vicinity of
the Fermi level was used in [9] to explain the peak in
inelastic neutron scattering observed in high-Tc super-
conductors.

One of the authors (Yu.V. Kopaev) is grateful for
support from the Russian Federal Program “Integra-
tion,” project nos. A0133 and A0155.
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It is shown that a purely antiferromagnetic oscillatory mode can be excited by an ac electric field in a two-sub-
lattice single-position ferromagnet. The oscillation eigenfrequency and the corresponding susceptibility tensor
are calculated. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.25.+z; 75.30.Ds
In considering spin-wave representations for a single-
position four-sublattice magnet (four magnetic atoms all
occupy crystallographically identical positions in the
unit cell), it was shown that, besides the known oscilla-
tion types (ferromagnetic in the ferromagnetic phase
and quasi-ferromagnetic and quasi- antiferromagnetic
in the antiferromagnetic phase), the purely antiferro-
magnetic modes can also exist in this system [1] (see
also [2]). Each of the first two types contains two com-
ponents of ferromagnetic vector M (precession!) in
addition to the dynamic (oscillatory) variables, while
only a single component M oscillates in the third type;
the remaining variables relate to the antiferromagnetic
vectors Li (i = 1, 2, 3). In a purely antiferromagnetic
mode, all variables of the spin-wave representation
relate to the antiferromagnetic vector, so that these
oscillatory modes cannot be excited by a magnetic field
H(t) = H1exp(–iωt) (there is nothing for them to “clutch
at”). One should thus search for the other (other than
thermal motion) external perturbations that can excite
these modes. Under certain conditions (see below),
these may be the ac electric fields and elastic stress.

For brevity, the purely antiferromagnetic excitations
will be referred to as antimagnons.

In my opinion, the existence of antimagnons in a
purely ferromagnetic phase with the parallely directed
magnetization vectors of all sublattices in the ground
state is an interesting and, to some extent, exotic fact. It
is the purpose of this letter to consider the antimagnons
for this particular case.

From the text of articles [1, 2], an impression might
occur that the antimagnons (although they were not
considered there!) can exist only in the multisublattice
magnets (four or more magnetic atoms per unit mag-
netic cell). However, such is actually not the case.
Below, a simple example of a crystal with the twofold
position of magnetic atoms (two magnetic sublattices)
is presented, in which the purely antiferromagnetic
0021-3640/01/7302- $21.00 © 20087
mode (antimagnon) exists in the ferromagnetic phase.
It is reasonable to start investigation of the antimagnons
with this very simple example.

Let us consider a twofold 2i position 1(x00) and

2( 00) in the orthorhombic group Pmmm ( ), in
which magnetic atoms 1 and 2 are related by the center

of symmetry  (taken as the origin). There are a total
of six positions of this type in the group (i, j, k, l, m, and
n) [3], and the subsequent analysis can be reproduced
for each of them. The same can also be done for the
twofold positions e and f in another orthorhombic

group Pnma ( ).

Introducing, instead of the sublattice magnetiza-
tions M1 and M2, the usual basis ferromagnetic M =
M1 + M2 and antiferromagnetic M1 – M2 vectors corre-
sponding to the exchange magnetic structures coded

(+)2x(+)2y(+) and (–)2x(+)2y(–), it is straightfor-
ward to construct the following table for the variable
transformations under the indicated symmetry opera-
tions taken as generators of the Pmmm group. (The
transformations for the bracketed 2z = 2y · 2x element
are given for convenience.)

This table contains all symmetry information that is
necessary for further consideration. The rows Γ1–Γ6 in
the upper left part of the table give the one-dimensional
irreducible representations of the Pmmm group in terms
of the components of vectors M and L. The + and –
signs indicate how these components are transformed
(either remain unchanged or change their sign) under
the corresponding symmetry operation. Each row cor-
responds to a phase (magnetic structure) specified by a
single nonzero component of vector M or L. For exam-
ple, M || Z for the Γ3(Mz) phase while all remaining
components of M or L are zero. At the right, the mag-
netic point group is indicated for each phase in terms of

x D2h
1

1

D2h
5

1 1
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the unprimed mi (i = x, y, z) and primed  = mi · 1' sym-
metry planes (1' denotes the time inversion operation,
t  –t). The transformation rules are also given for
the components of electric field E and elastic stress ten-
sor tij.

Using the rules formulated in [1, 2], one can deter-
mine the spin-wave representations for each of the six
phases. There are two spin-wave representations for the
above-mentioned purely ferromagnetic Γ3(Mz) phase of
interest: a purely ferromagnetic mode Γ12(Mx, My)
(magnon) and a purely antiferromagnetic mode Γ45(Lx, Ly)
(antimagnon).1 

The oscillatory spectrum for a homogeneous system
can be found from the Onsager equations

(1)

(summation goes over the repeated indices), where x1 ≡
Lx and x2 ≡ Ly are the dynamic variables of the Γ45 mode
and Φ2 is the corresponding quadratic part of the ther-
modynamic potential. The kinetic tensor αnk(Mz) is a
function of the ground state with Mz = M0. In the
absence of dissipation, only the antisymmetric part of
the αnk tensor should be taken into account:

(2)

In Eq. (2), the Onsager relation is also used and only the
linear term is kept in the expansion of αnk in powers of
M0; γ is a constant for which one can only say that it has
the dimensionality of gyromagnetic ratio.

Let us now write the thermodynamic potential (see
the table) in the form

(3)

which includes the dynamic variables Lx and Ly relevant
to the Γ45 mode. The ε1 and ε2 constants describe both
exchange (for which ε1 = ε2) and magnetic anisotropy.
The last term in Eq. (3) is a linear magnetoelectric
(ME) interaction (the M0 = |Mz| term in the denominator
makes the h constant dimensionless, similar to ε1, 2).
One can see from the table that this is the only ME
invariant corresponding to the ground ferromagnetic
state with M || Z. As will be seen below, it is this inter-
action which can excite antimagnons at the appropriate
ω frequency if Ez(t) ∝  exp(–iωt).

1 Recall how the modes are found for the phase under consideration
[1, 2]: to a certain mode one attributes the variables of those two
rows for which the products of transformations (+1 or –1) yield a
row corresponding to the phase under consideration. For the Γ3
phase, one has: the product of (++–) (Mx) and (+–+) (My) is (+––),
which corresponds to Mz, and the product of (–++) (Lx) and
(−−−) (Ly) is also (+––).

mi'

ẋn αnk

∂Φ2

∂xk

----------=

αnk αnk
a M0( )≡ α kn

a– M0( ) α kn
a M– 0( ) γM0.≅= =

Φ2
1
2
---ε1Lx

2 1
2
---ε2Ly

2 h
M0
-------MzLxEz t( ),–+=
Equations (1), with allowance made for Eqs. (2) and
(3), take the form

(4)

The corresponding solution Lx ∝  Ly ∝  Ez ∝  exp(–iωt)
defines the antimagnon susceptibility tensor βij in the
relationships

Lx = βxzEz, Ly = βyzEz. (5)

Only two components of this tensor are nonzero:

(6)

Here, the quantity

(7)

defines the square of “antimagnon resonance” fre-
quency, whence it follows that the latter has an exchange
nature.

Since βxz and βyz, according to Eq. (6), are shifted in
phase by π/2 and, generally, have different magnitudes,
the end of the L vector describes an ellipsis around the
vector M || Z. Near the resonance frequency ω ≅  ω0, the
ratio

This implies that, in a uniaxial crystal considered as a
particular case of the orthorhombic crystal with ε1 = ε2,
the elliptic polarization becomes circular.

The dissipation, when taken into account, deter-
mines heat loss Q associated with the antimagnon exci-
tation by the Ez(t) field. Since the coefficient of Ez(t) in
Eq. (3) plays the role of electric induction (displace-
ment), one has

(8)

where the capping bar denotes time averaging over t @
2π/ω.

Setting Ez(t) = Ezexp(–iωt) + exp(iωt) (and sim-
ilarly for Lx), one obtains from Eq. (8) with the use of
Eqs. (5) and (6)

(9)

Needless to say, Q = 0 if there is no dissipation and,
hence, βxz is real, according to Eq. (6). As usual, the
damping can be most simply included by substituting
in Eqs. (4) ω2  ω2 –iΓω, where Γ is the damping
parameter.2 

2 One can readily verify that this result can be obtained by adding
to the right-hand sides of Eqs. (4) the terms proportional, respec-
tively, to Lx and Ly (as in the case of Bloch equations in paramag-
netic resonance [4]).
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Table of symmetry operations, representations, phases, and magnetic point groups

Γi M, L 2x 2y (2z)
Magnetic point 

group tij

Γ1 Mx + + – – tyz

Γ2 My + – + – txz

Γ3 Mz + – – + txy

Γ4 Lx – + + +

Γ5 Ly – – – +

Γ6 Lz – – + –

Ex – + – – M = M1 + M2

Ey – – + – L = M1 – M2

Ez – – – +

1

mxmy' mz'

mx' mymz'

mx' my' mz

mx' my' mz'

mxmymz'

mxmy' mz
Finally,

(10)

where

(11)

Equation (9) then gives

This letter, to some extent, may be considered as a
tentative prediction of a new type of spin waves (anti-
magnons) that are excited by an electric field rather
than by a magnetic field, as well as some of their prop-
erties. The point is that magnets with the magnetic
structure considered in this letter are unknown to me
(even if it is taken into account that a purely ferromag-
netic phase can be prepared artificially by applying a
strong magnetic field). For this reason, the system con-
sidered is a very simple model that realizes the pre-
dicted phenomena. In particular, one can see from it
that for this phenomena to exist the magnet must con-
tain magnetic ions related to each other by center of

symmetry , as is typical of the systems with magne-
toelectric interactions. Besides, the interaction of the
form MiLjEktmn can play the active part in such systems
(this interaction may be called piezomagnetoelectric).

βxz βxz' iβxz" ,+=

βxz'
ω0

2 ω2–( )ωM
2 ε2h

ω0
2 ω2–( )2 Γω( )2+

----------------------------------------------,=

βxz"
ΓωωM

2 ε2h

ω0
2 ω2–( )2 Γω( )2+

----------------------------------------------.=

Q 2ωhβxz" Ez
2.=

1
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The table in this letter indicates the existence of
MzLyEytxz and MzLyExtyz invariants in the thermody-
namic potential, as a result of which the antimagnons
can be excited in the Γ3(Mz) phase by electric field Ey(t)

or Ex(t), provided that a constant elastic stress  or 
is additionally applied. On the other hand, inhomoge-
neous antimagnons can be excited by the inhomoge-
neous elastic stress txz(t) or tyz(t), provided that a con-

stant electric field  or  is applied.

These and other issues arising in a more compli-
cated (four-sublattice) system will be considered else-
where in a separate paper.

I am grateful to V.V. Nikolaev and M.I. Kurkin for
discussion and helpful remarks. This work was sup-
ported by the Russian Foundation for Basic Research,
project no. 99-02-16268.
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Induced Jahn–Teller Transition in DyPO4 Caused
by a Change in Ground State upon Level Crossing
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The transition caused by a change in the ground state of a rare-earth ion upon level crossing, an analogue of the
induced Jahn–Teller transition in rare-earth compounds, is observed. It is shown that a jumpwise change in the
Jahn–Teller interactions of α and γ symmetries, caused by a change in the corresponding quadrupole moments
in DyPO4 upon level crossing, diminishes the critical field by ~20 kOe and leads to a sharper change in mag-
netization M and differential magnetic susceptibility dM/dH near the crossover point. © 2001 MAIK
“Nauka/Interperiodica”.

PACS numbers: 71.70.Ej; 75.30.Kz
In recent years, new impressive discoveries in solid
state physics in the fields of high-temperature super-
conductivity and colossal magnetoresistance of compo-
sitionally complex perovskites containing Jahn–Teller
(JT) Cu2+ and Mn3+ ions have rekindled interest in the
JT systems. Investigations into the spontaneous and
induced phase transitions associated with orbital and
magnetic ordering, charge-carrier localization, etc., in
these compounds have now become the hottest problem
of solid state physics. Similar problems, in particular,
the spontaneous and magnetic-field-driven structural
phase transitions of JT nature (quadrupolar ordering),
are currently being studied in rare-earth (RE) paramag-
nets with the zircon tetragonal structure RXO4 (X = P,

As, and V; space group  = I41/amd), which are ideal
objects for the examination of the quadrupolar effects [1].
Reliable experimental data on the interaction parame-
ters of these compounds, in conjunction with modern
theoretical approaches, allow not only the qualitative
study of the quadrupole interaction effects but also their
description on a good quantitative level.

Pronounced quadrupolar effects can be observed in
the RE compounds only if the quadrupole interaction
constants are large while the electronic structure (spec-
trum and wave functions of the RE ion) exhibits certain
specific features. The RE quadrupole interaction con-
stants are the characteristics of a family of isomorphous
compounds and vary, following the Stevens parameter
αJ, in a known manner along the RE series. Therefore,
the presence or absence of the quadrupolar ordering or,
more generally, of the observable quadrupolar effects
in RE zircons is dictated by the electronic structure of
the RE ion. In the absence of a magnetic field, only
those RE zircons show cooperative Jahn–Teller effect
which are characterized by a high quadrupole moment

D4h
19
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in the low-lying levels (TbVO4, DyVO4, TmVO4, and
TbPO4). A strong magnetic field modifies the spectrum
and wave functions of the RE ion and may form, under
certain conditions, electronic structures with high qua-
drupole moments, rendering the quadrupolar effects
observable.

The electronic structure of RE compounds changes
cardinally upon level crossing (crossover). An analysis
shows that the level crossing or, more generally,
avoided crossing of RE energy levels occurs in strong
and ultrastrong magnetic fields for almost all RE vana-
dates and phosphates having the zircon structure. The
crossover was observed and studied in detail for RE zir-
cons HoVO4 [2, 3], YbPO4 [4], and PrVO4 [5] in a mag-
netic field aligned with the tetragonal axis. In this work,
the strengthening of quadrupole interaction caused by a
change in the ground state upon level crossing is stud-
ied experimentally and theoretically for DyPO4, an
example of the ideal Ising-type magnet at low temper-
atures [6, 7].

The magnetization M(H) of the DyPO4 crystal was
studied at low temperatures in a field aligned with the
hard axis [100]. Measurements were made by the
induction method in pulsed magnetic fields up to
300 kOe (field raise time in the pulse was 10 ms). The
digital recording of the signals from the measuring M(t)
and field H(t) coils was made at 0.02-ms intervals dur-
ing the field pulse (about 500 points). The decompensa-
tion signal from the measuring coil was recorded under
the same conditions in the absence of a sample and sub-
tracted by a program. The programmed experimental
data processing consisted in calculating smoothed
magnetization function M(H) and its derivative
dM(H)/dH.

The magnetization along the [100] axis is small in
weak fields at low temperatures and increases jump-
001 MAIK “Nauka/Interperiodica”
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wise near the critical field Hc ~ 140 kOe, approaching
saturation in higher fields (Fig. 1). The critical field Hc

can be determined more trustworthily from the curves
for differential susceptibility dM/dH (inset in Fig. 1).
The magnetization in a strong field is close to a value of
~10µB, corresponding to the total magnetic moment of
the Dy3+ ion. The M(H) and dM(H)/dH curves exhibit a
small hysteresis at low temperatures (see curves at T =
17 K). In our opinion, it is not caused by the measure-
ment error. With a rise in temperature, the M(H) depen-
dence starts to smear and the critical field slightly
increases.

The Zeeman effect and the DyPO4 magnetization in
a magnetic field were calculated with the Hamiltonian
including the crystal-field (CF) Hamiltonian HCF , the
Zeeman interaction HZ, and the bilinear HB and quadru-
pole HQT interactions written in terms of the Stevens

equivalent operators  in the quadrupolar and molecu-
lar-field approximations (for more detail, see, e.g., [8]):

(1)

(2)

(3)

(4)

In these expressions, αJ, βJ, and γJ are the Stevens
parameters; gJ and µB are the Lande splitting factor and

the Bohr magneton, respectively; and  are the CF
parameters. The total quadrupole constants Gµ =

 + Kµ = (Bµ)2/  + Kµ (µ = α and γ) are the sums
of contributions from both single-ion magnetoelastic

Bµ and pair quadrupole Kµ interactions (  is the elas-
tic constant in the absence of interactions). Only the α-
and γ-symmetry modes are kept in the HQT Hamilto-
nian, because only these terms are nonzero in the field
H || [100]. The crystal field for DyPO4 is assumed to be
firmly established from numerous experimental data,
including neutron inelastic scattering [9]. The CF
parameters were borrowed from [10], where they were
determined for the lowest multiplet. The bilinear inter-
actions are not small for DyPO4 and are responsible for
the antiferromagnetic ordering of the Dy3+ ions at TN ~
3.4 K [11]. The quadrupole interaction parameters of
DyPO4 were determined in [10] for all symmetry
modes from the measurements of nonlinear susceptibil-
ity and parastriction at low temperatures. The corre-
sponding values θ = –1.5 K, Gα = 1.5 mK, and Gγ =
4.4 mK are used in the following calculations.

On
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In the pulsed fields with a pulse duration of ~15 ms,
the magnetization proceeds in a near-adiabatic regime
and, generally, is accompanied by a considerable mag-
netocaloric effect. For the sake of comparison with the
experiment, the adiabatic and isothermal magnetization
curves and the differential susceptibility were calcu-
lated together with the magnetocaloric effect. It turned
out that the sample heating for the magnetization along
the hard [100] axis is small (does not exceed 5 K) at
H < Hc and reaches ~20 K at H > Hc.

The Dy3+ spectrum calculated with the above
parameters for a magnetic field directed along the [100]
axis (Zeeman effect) is presented in Fig. 2. Only six
lower levels making the main contribution to the ther-
modynamic properties at low temperatures are shown
in this figure. The lowest Dy3+ 6H15/2 multiplet is split in
the phosphate crystal field in such a way that the “iso-
lated” Kramers doublet with almost the highest possi-
ble angular-momentum projection onto the z axis (the
smallest onto the x axis) becomes the ground level. The
nearest excited doublet is separated by a gap of ~100 K
and has, on the contrary, the greatest g factor along the

x axis (  @ ). It is precisely this feature of the
Dy3+ spectrum which determines its Ising-like charac-
ter and is favorable to the level crossing for the field ori-
entation along the hard [100] axis.

As expected, the ground doublet with the largest 
component is weakly split in the H || [100] field,
whereas the first excited level is split much more
strongly. As a result, the lowest sublevel of the first
excited doublet with large 〈Mx 〉  projection approaches
in a critical field Hc the ground level with small projec-

gx
ex gz

ex

gz
gr

Fig. 1. Magnetization (M) and (inset) differential suscepti-
bility (dM/dH) curves for the DyPO4 crystal in a magnetic
field H || [100] at different temperatures.
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tion of magnetic moment 〈Mx 〉 , causing a dramatic
increase in the magnetic moment.

A comparison of the spectra calculated with and
without taking account of the quadrupole interactions
(dashed and solid lines in the inset) indicates that their
role appreciably increases above the crossover field.
The fact that the spectra coincide in the fields lower
than critical means that the Jahn–Teller contribution
can be neglected. The calculation with inclusion of
only the CF and Zeeman terms yields a value of
~160 kOe for the field Hc corresponding to the level
closest approach and to a maximum in the differential
susceptibility curve dM/dH (Fig. 3, curve 1). This is
appreciably higher than the experimental value (curve 4).
Note that the demagnetizing field for our sample did
not exceed 3 kOe. In view of the fact that the CF param-
eters are established quite reliably, this discrepancy can
be considered as indicative of an additional contribu-
tion from the Jahn–Teller interaction.

A sharp increase in this contribution is caused by a
change in the quadrupole moments of the Dy3+ ion at
H > Hc. Because of a strong modification of the Dy3+

electronic structure, the quadrupole moment 〈 〉
decreases near the crossover point and a large quadru-

pole moment 〈 〉  ≈ 50 simultaneously arises. This
signifies that the contributions from both terms in the
HQT Hamiltonian [Eq. (4)] strongly change. A change of

–Gα∆Q0  [∆Q0 = 〈 〉(H) – 〈 〉(0) < 0] in the con-
tribution from the α interactions reduces the effective

O2
0

O2
2

O2
0 O2

0 O2
0

Fig. 2. Energies of the low-lying Dy3+ levels in a magnetic
field H || [100] (Zeeman effect) calculated (solid lines) with-
out inclusion of the pair interactions and (dotted lines) with
inclusion of the bilinear (θ = –1.5 K) and (inset, dashed
lines) quadrupole (Gα = 1.5 mK and Gγ = 4.4 mK) interac-
tions.

H || [100]

second-order CF parameter  and diminishes the crit-

ical field. Similarly, the γ interactions –Gγ〈 〉 ,
though being negligible in the absence of a magnetic
field, noticeably diminish the critical field after the

〈 〉  moment increases jumpwise near the crossover
point. Thus, both types of interaction decrease the crit-
ical field by approximately 20 kOe.

Note that the contribution from the quadrupole
interactions of α symmetry is nonzero even in the

absence of a magnetic field and adds –Gα〈 〉/αJ to the

second- order CF parameter . Due to a large quadru-

pole moment 〈 〉  ≈ 100, this addition amounts to

~10% of the static zero-field parameter  at helium
temperatures and, with regard to the Stevens parameter
αJ, is negative. The experimentally determined low-

temperature effective parameter  =  – Gα〈 〉/αJ

already includes this addition because it properly
describes the low-lying Dy3+ levels. The calculations

with only the  parameter (without inclusion of

Gα〈 〉/αJ) would give, e.g., for the energy of the first
excited doublet a value greater by ~20 K than its exper-
imental value.

The JT-induced modification of the Dy3+ spectrum
near the crossover point should alter various thermody-
namic characteristics, in particular, the magnetization
curves. To estimate the contributions from different
interactions, the M(H) and dM(H)/dH curves were cal-
culated with inclusion of the bilinear and α and γ qua-
drupole interactions (Fig. 3, curves 2 and 3). As
expected, the negative bilinear interactions with θ =
−1.5 K slightly increase Hc. By contrast, the quadrupole
interactions decrease the critical field and sharpen the
jump, while the peak in dM/dH becomes stronger and
narrower. The inclusion of the quadrupole interactions
with Gα = 1.5 mK and Gγ = 4.4 mK reduces the critical
field down to ~140 kOe and increases twofold the max-
imum of differential susceptibility, in accordance with
the experiment. It should be emphasized that all the cal-
culations were carried out without any fitting parame-
ters and using the values that were determined previ-
ously from independent weak-field experiments.

Thus, it is demonstrated in this work that the modi-
fication of the electronic structure of a RE ion near the
crossover point and a change in the RE ground state can
strongly alter the contribution from the quadrupole
interactions, leading to the observed quadrupolar
effects. At zero magnetic field, the DyPO4 crystal is not
a JT compound, contrary to DyVO4, which exhibits
spontaneous quadrupolar ordering. This is due to the

fact that the CF parameters  in phosphates differ
from those in vanadates, causing a change in the elec-
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tronic structure of the Dy3+ ion in phosphate, where the
quadrupole moments of Dy3+ are small at H = 0. The
magnetic field forms the electronic structure in such a
way that the quadrupolar effects for the Dy ion near the
crossover field Hc in phosphate and at H = 0 in vanadate
become comparable. A considerable increase (or
change) in the quadrupole moments (which are small at
zero field) near the crossover point results in an
increase in the contribution from the quadrupole terms
in the HQT Hamiltonian. Not only the magnetic moment

but also the quadrupole moment 〈 〉  increases jump-
wise at the critical field Hc, typical of the induced JT
transition. However, inasmuch as the magnetic field
induces a deformation of the same symmetry as the

quadrupole interactions do, the order parameter 〈 〉

O2
2

O2
2

Fig. 3. Experimental (4) and calculated adiabatic curves for
differential susceptibility dM/dH and (inset) magnetization
M(H) of DyPO4 in a magnetic field H || [100] at the initial
temperature T0 = 17 K. The calculations are carried out
(1) without inclusion of the pair interactions and (2) with
inclusion of the bilinear (θ = –1.5 K) and (3) quadrupole
(Gα = 1.5 mK and Gγ = 4.4 mK) interactions.
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of the induced transition is nonzero even in a weak
field, while the quadrupole interactions lead to its sharp
change in the crossover region. This situation is identi-
cal with that observed, e.g., for JT magnetics exhibiting
spontaneous transition at T > Tc in a field oriented along
the direction of spontaneous crystal deformation [12].

It follows from the calculations that the Zeeman
effect for the low-lying levels becomes more compli-
cated upon switching on the quadrupole interactions
and strongly depends on the quadrupole interaction
constants. In this connection, it is of interest not only to
study the thermodynamic characteristics but also to
directly examine the Zeeman effect in DyPO4 in the
presence of level crossing.

This work was supported by the Russian Foundation
for Basic Research, project no. 00-02-17756.
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Conductance of a Semiconductor(2DEG)–Superconductor 
Junction in High Magnetic Field1
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Conductance G of a 2DEG-Superconductor (S) device in a high magnetic field is studied; G(ν) is calculated.
When the cyclotron diameter in 2DEG is larger than the width of the 2DEG-S surface, G(ν) becomes a non-
monotonic function, owing to the Aharonov–Bohm-type interference of quasiparticles at the surface. At certain
parameters of the junction, the conductance oscillates with ν. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 85.25.-j; 74.80.Fp
In recent years, the study of hybrid systems consist-
ing of superconductors in contact with normal metals in
strong magnetic field has attracted considerable interest
[1–5]. Investigation of physical phenomena in S-2DEG
devices in high magnetic fields may be helpful in estab-
lishing a link between mesoscopic superconductivity
and quantum Hall physics. It was found experimen-
tally [1] that zero-bias conductance G of a ballistic
S-2DEG-S junction in the Integer Quantum Hall (IQH)
regime exhibits quantization upon varying the mag-
netic field. The quantum of G was not equal to a univer-
sal value in this experiment, as, for instance, in IQH or
in a quantum point contact [6], but was an oscillating
function of field H. Numerical simulations [4, 5]
showed that the conductance of a 2DEG-S contact in
the IQH regime is a nonmonotonic function of the fill-
ing factor ν; the quantization of G is nonuniversal if the
2DEG-S boundary is perfect;2 in the specific range of
magnetic fields, G(ν) oscillates. A phenomenological
theory of conductance oscillations was suggested in
[5]. But it is still unclear under which conditions the
conductance becomes sensitive to H, why it exhibits
oscillations, and how one can analytically describe
G(H). The analytical form of G(ν) is found in this
paper. It is shown that the conductance becomes sensi-
tive to H if 2Rc * L, where Rc is a cyclotron radius in
2DEG and L characterizes the length of the 2DEG-S
boundary; the nonlinearities in G(ν) result from Aha-
ronov–Bohm-type interference of quasiparticles at the
boundary.

We consider a junction consisting of a superconduc-
tor, 2DEG, and a normal conductor segments (Fig. 1).
Magnetic field H is applied along the z direction per-

1 This article was submitted by the authors in English.
2 The S-2DEG boundary is considered “perfect” if the probability

of Andreev reflection of an electron or hole quasiparticle with
zero energy and momentum directed perpendicular to the surface
is close to unity.
0021-3640/01/7302- $21.00 © 20094
pendicular to the 2DEG plane. It is supposed that the
quasiparticle transport is ballistic (mean free path of an
electron ltr @ L, where L is the length of the 2DEG-S
boundary). Current I is assumed to flow between the
normal (N) and superconducting (S) terminals (voltage
V is applied across them). The conductance G(H, L) =
I/V at V  0 is studied in this paper.

Following [7], we will describe the transport prop-
erties of the junction in terms of electron and hole qua-
siparticle scattering states satisfying the Bogolyubov–
de Gennes (BdG) equations. Then, the conductance

(1)

where  is the probability of Andreev reflection
of an electron with energy E = 0 (measured from Ef),
incident on the superconductor in the channel with
quantum number ni, into a hole moving from the super-
conductor in the channel lo.

Before explicit calculation of G, let us discuss, on a
qualitative level, how G should depend on H. When H
is small (Rc ! L), then  . , with 
weakly depending on H. So,

(2)

If 2Rc * L, the quasiparticles reflected from the super-
conductor (S) in the normal and Andreev reflection of
an electron return to S again because of trajectory bend-
ing in a magnetic field. The resulting G(H) dependence
is not weak. We will investigate the conductance using
the semiclassical approximation ν @ 1. An electron
(hole) quasiparticle in 2DEG can be treated in semi-
classics as a beam of rays (in a similar way, light prop-
agation in classical optics is described by beams of rays
[8]). Trajectories of the quasiparticle rays can be found
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from the equations of classical mechanics. If Rc @ L
(ν ! L/λf), the edge states in 2DEG do not overlap.
Then the quantum numbers no, li (1) of the incident
electron and the reflected hole correspond to the edge
states. Reflection of an electron from the superconduc-
tor is schematically illustrated in Fig. 1. The electron
ray (Fig. 2) reflects from S into the electron and hole
rays at y0. These rays reflect into another hole and elec-
tron rays at y1. So, two hole and two electron rays prop-
agate between y1 and y2. Then eight hole rays come
from S to N propagating along the same hole path
beginning at y3. One can approximate the probability P
of this hole path by the expression

(3)

where rba is the amplitude of reflection of a quasiparti-
cle a into a quasiparticle b from the superconductor.
Se(h) is the quasiclassical action of an electron (hole),
taken along the part of the trajectory connecting adja-
cent points of reflection. Then,  . 〈P(y0)〉 ,
where the average is taken over 0 < y0 < d(ni), with d
being the length of quasiparticle “jump” along the edge
of 2DEG (see Fig. 2). Equation (3) includes the inter-
ference terms depending on Se – Sh. Since Se – Sh =
2π(ν – 1/2), one can expect that the conductance is a
nonlinear function of ν, due to the interference terms.
The nature of this nonlinearity, indeed, resembles the
Aharonov–Bohm effect, as it was assumed in [5], for
which the conductance oscillates with H because the
vector potential changes the phases of electrons mov-
ing from a source along different paths. It will be seen
below that, under certain conditions, the S-2DEG con-
ductance oscillates with ν.

The above semiclassical estimates assume that spin
degeneracy takes place; T, eV = 0; and that diffraction
is small: the difference in the hole and electron
momenta at E > 0 is neglected. This approximation is
valid if max{T, |eV |, gµBH}/µ ! λF/L, where λF is the
Fermi wavelength in 2DEG. Below, these conditions
are also assumed to be satisfied in the conductance cal-
culation.

The conductance of the 2DEG-S structure will be
calculated as a semiclassical asymptotic limit (ν @ 1)
of Eq. (1). If the S-2DEG surface is flat, then the
approach described in [7, 9] gives an idea how one can
express  via the semiclassical asymptotic form of
the Green’s functions of BdG equations. The relevant
calculations confirm that the above naive estimates of G
actually lead to the semiclassical asymptotic expres-
sion for the conductance:

(4)
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where ni is the index of the edge state of an electron
incident on the superconductor; d(ni) is the quasiparti-
cle jump length; and ta is the probability amplitude for
the classical quasiparticle trajectory from y = y0 to y =

, the coordinate of the last reflection from the super-
conductor. The amplitude ta is a product of the Andreev
and the normal reflection amplitudes; Sa is the action
taken from y0, the coordinate of the first quasiparticle
reflection, to , the coordinate of the last reflection
(see Fig. 2); and µa is Maslov index of the trajectory.
For example, ta = rhereerehrhe and Sa = Sh + 2Se for the tra-
jectory drawn by the bold line in Fig. 2. Summation
over a means the sum over all paths connecting y0 with

 at the 2DEG-S boundary. The weight function

ρ(ni, y0), where ρ(ni , y0)dy0 = 1, generally depends

on the shape of the 2DEG-S contact. If 2DEG spreads
over the region x > 0, y > 2Rc + L, y < –2Rc, as in Fig. 2,
then ρ = 1/d. Equation (4) is the key result of this work.

The sum over trajectories in Eq. (4) can be con-
verted into the analytical expression

(5)
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Fig. 1. The device under consideration consists of a super-
conductor, 2DEG, and a normal conductor. An electron
injected from the normal conductor in the IQH regime
passes through an edge state to the superconductor and
reflects into a hole and an electron, which then return to the
normal contact through the other edge states.

Fig. 2. A quasiparticle in semiclassical approximation can
be treated as a beam of rays propagating along classical tra-
jectories. The figure illustrates reflection of rays from the
superconductor. Dashed curves correspond to the hole rays,
and solid curves, to the electron rays.
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where Ω = πν + θ – 2λp⊥ ; θ = arg(ree) is the phase of
the electron–electron reflection amplitude from the
superconductor, Ree = |ree |2; p⊥  = p⊥ (ni) is the perpen-
dicular momentum component of a quasiparticle at the
instant it reflects from the superconductor; λ is the pen-
etration depth of the superconductor; and ν =
Ef /("wc) – 1/2. Function Ps is the probability that s
reflections happened from the surface of the supercon-
ductor. If ρ = 1/d, this function can be expressed
through the maximum number of jumps g = [L/d]
across the S-2DEG surface, where […] denotes the
integral part:

(6)

Equations (4), (5) are the key result of this work;
they show how the conductance depends on magnetic
field and parameters of the contact. For small magnetic
fields, Eq. (5) reduces to Eq. (2). It follows from Eq. (5)
that at 2Rc * L the conductance becomes sensitive to H.
Some limiting cases of Eq. (5) will be considered below
for this regime. The Aharonov–Bohm-type conduc-
tance oscillations are the most interesting property of
G(ν). It follows from Eq. (5) that the oscillations are

visible when λ/L ! /L2 and Reh & 1/2. A typical con-
tact, for which the S terminal is made from type-I
superconductor and 2DEG is formed from GaAs, has
λ ~ λF ~ 10–6 cm and L ~ 10–3 cm. It follows from the
conditions given above that, if Rc ~ L, the oscillations
can be seen in the contact. (These oscillations were
numerically investigated in [4, 5]. It was checked that
the theory presented in this paper is consistent with the
numerical calculations.) When Ree ! 1, the conduc-
tance shows step features. It is of interest to investigate
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Fig. 3. The solid curve represents the conductance for λL =
3, and the dots are for λL = 1. The line parallel to the X axis
is the conductance at H = 0.
the regime Reh ! 1, L/Rc @ 1. For this regime, the func-
tional dependence G(ν) resembles the light intensity
distribution I(δ) that is observed in optics with a Lum-
mer–Gerike interferometer [8], if one considers s as the
number of beams in the interferometer and δ = 2Ω as
the phase difference between successive beams. The
probability Rhe will correspond to the transmission
probability through the mirror of the interferometer.
Examination of the quasiparticle trajectories making
the main contribution to the conductance in Eq. (4)
shows that they are similar to the trajectories of light
beams in the interferometer.

Figure 3 illustrates how the conductance depends on
the magnetic field according to Eq. (5). One curve cor-
responds to λpf = 1 (dots), and the other to λpf = 3 (solid
line). The solid line parallel to the X axis is for conduc-
tance (2). If 2Rc & L, the conductance oscillates because
of the quasiparticle interference, but when ν becomes
larger (2Rc & L), the interference phenomena become
less probable and the conductance approaches (2). The
graph also demonstrates that an increase in the ratio λ/L
leads to smearing of the oscillations. The following con-
tact parameters were used: Lpf = 80 and Z = 5. Parame-
ter Z [10] characterizes the normal scattering from the
superconductor caused by Schottky barriers, differ-
ences in the effective masses in 2DEG and S, and so on.
Amplitudes ree and reh of the normal and the Andreev
reflections from the superconductor were calculated for
zero magnetic field by matching the quasiparticle wave
functions in 2DEG with the wave functions in S. This
procedure is true if (λ/Rc)2 ! 1, where Rc is the cyclo-
tron radius in the superconductor. Magnetic fields used
in the plot satisfy this condition. The ratio ∆0/Ef was
equal to 0.02, and the gap ∆(x) = ∆0 in the superconduc-
tor and is zero in 2DEG.

It seems important to determine how a disorder at
the S-2DEG surface affects G(ν). The disorder can be
caused by surface roughness, impurities, and so on. It
may induce fluctuations of Sa and ta in Eq. (4), thus
breaking the quasiparticle interference. In this work,
the disorder is characterized by the mean free path ltr of
electron elastic scattering from impurities and by the

root-mean-square deviation δn =  of the
normal unit vector to the S-2DEG boundary from the n0

direction of the X axis, where 〈(n – n0)2〉  = dy(n(y) –

n0)2/L. Then, one can deduce that Eq. (5) is correct if

Rc ! ltr and δn ! min{ /Lλ, 1/pfL}.

If the superconductor surface is diffusive, i.e., δn *
max{1/λpf , 1/ν}  or ltr & Rc, then there is no interference
between different paths in Eq. (4). One can estimate the

n n0–( )2〈 〉

0

L∫
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reflection probability in this regime by neglecting the
interference terms in Eq. (5). Then,

. (7)

The number of quasiparticle reflections from the sur-
face of the superconductor is estimated as s0 = [L/2Rc];
then,

(8)

where Us(x) = sin(s )/sin( ) is a
Chebyshev polynomial of the second kind [11]. As
s0  ∞, conductance (8) tends to [ν]2e2/h.

One can assume that the deviations from the ideal
conductance quantization (with the universal step
2e2/h) observed in experiment [1] are due to the
above-mentioned interference of quasiparticles. The
S-2DEG boundary of the device used in [1] was hardly
flat, so that the contributions from harmonics with large
s [see Eq. (5)] should be suppressed. Then, it is
reasonable to approximate the conductance G by
(2e2/h)f(ν)(1 + acos(πν + ϕ0)), where a ! 1 character-
izes the disorder at the surface, ϕ0 is a phase shift, and
f(ν) ~ [ν] describes the shape of the conductance
“quantum.” This formula was found to be a good fit to
the experimental data.
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A model is suggested that explains the stationary high-frequency magnetization oscillations observed previ-
ously by M. Tsoœ et al. when passing dc current through a silver tip mounted on a magnetic Co/Cu multilayer.
At the interface between nonmagnetic and ferromagnetic (N/F) metals, Aronov’s gap ∆A (difference in the elec-
trochemical potentials of electrons with opposite spins) arises upon the passage of electric current, thereby ener-
getically promoting magnon creation. Electrons flowing from the nonmagnetic to the ferromagnetic metal
become spin-polarized. In a magnetic field, magnetization fluctuations in a mesoscopic ferromagnet give rise
to magnetization precession around the magnetic field. The precession is damped due to the viscous losses. In
the presence of spin-polarized electron flow, the fluctuations also produce a current-induced torque that com-
pensates for the dissipative torque, leading to stationary high-frequency magnetization oscillations. © 2001
MAIK “Nauka/Interperiodica”.

PACS numbers: 75.30.Ds; 72.25.Ba
High-frequency magnetization oscillations (HFMOs,
magnons) induced by electric current flowing perpen-
dicular to a magnetic multilayer were predicted by
Slonczewski and Berger [1, 2] and observed in [3, 4]. In
[3, 4], HFMOs were excited by passing dc current
through a microcontact formed by a silver tip mounted
on a Co/Cu multilayer composed of 20–50 pairs of
~2-nm-thick layers exposed to a strong magnetic field
H, which was higher than the Co spontaneous magne-
tization field and aligned with the normal to the multi-
layer surface (H || N). The HFMOs were detected by
measuring electrical resistance of the microcontact.
The excitation of HFMOs appeared as a stepwise
increase in the microcontact resistance and was
observed only for one current direction. The HFMOs
were also observed, e.g., in [5–7] for multilayers with
two ferromagnetic layers. In [5, 7], as in [3], the resis-
tance was measured. The microcontact used in [5] was
fabricated by electron-beam lithography and mounted
on a Cu/Co film structure exposed to a strong magnetic
field H || N. The observation of the HFMOs in a multi-
layer with one cobalt layer in zero external magnetic
field was also reported in [5]. The multilayer system
used in [7] consisted of alternating copper and cobalt
disks ~100 nm in diameter, and the HFMOs were
observed in a strong magnetic field both parallel and
perpendicular to the multilayer surface. In [6], HFMOs
were excited by ac current flowing through a tip into a
Fe/Cr film structure in a magnetic field H ⊥  N, and
the  oscillations were detected using Brillouin light
scattering.
0021-3640/01/7302- $21.00 © 200098
In the theoretical works on HFMOs [1, 2], two dif-
ferent models were applied to a five-layer structure of
alternating ferromagnetic and nonmagnetic metal lay-
ers, namely, three layers of a normal metal and two fer-
romagnetic layers crossed by a flow of conduction elec-
trons. The conductor cross sections in the layer plane
were assumed to be mesoscopic, the external field was
taken to be zero, and the ferromagnet magnetizations
were noncollinear. The HFMOs result from the magne-
tization transfer to the ferromagnetic layer by the spin-
polarized electron flow carrying (spin) angular-
momentum flux. For the magnetization to transfer
between two ferromagnets, the following conditions
must be fulfilled: (1) the first ferromagnet must polarize
spins of the nonpolarized electron flow from the non-
magnetic metal and make the outflowing electrons
spin-polarized; (2) the thickness of the normal metal
spacer between the ferromagnets is smaller than the
spin-relaxation length ΛsN in it, so that the electron flow
incident on the second ferromagnet is spin-polarized
and the angular-momentum flux into the second ferro-
magnet is nonzero; (3) the ferromagnet magnetizations
must be noncollinear, otherwise no magnetization
transfer occurs; and (4) the angular-momentum flux
must be absorbed by the second ferromagnet. For iden-
tical ferromagnets, the magnetization transfer results in
a propeller-like rotation of the ferromagnet magnetiza-
tions in their common plane [1, 2]. In [8], the ballistic
model [1] was used to develop, under the same basic
assumptions, a macroscopic theory of HFMOs excited
by passing dc current through a microcontact mounted
on a multilayer film containing two ferromagnetic lay-
01 MAIK “Nauka/Interperiodica”
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ers and exposed to a strong magnetic field perpendicu-
lar to the film surface.

In real experiments [3–5, 7], the basic conditions for
applicability of the theory of current-induced HFMO
excitation [1, 2, 8] are broken. In particular, (a) all mag-
netizations are collinear, and, hence, condition (3) is
broken, and (b) the layer thicknesses are much smaller
than the spin-relaxation length ΛsF in the ferromagnet,
and, hence, conditions (1) and (4) are also broken
(about spin relaxation, see, e.g., [9]).

In this work, the experimental situations realized in
[3–5, 7] are critically analyzed and a model is sug-
gested that explains the stationary current-induced
HFMO excitation in the thin film and disk magnetic
multilayers and the HFMO excitation in a single ferro-
magnetic layer. The model explains the HFMO excita-
tion only for one (and not for the opposite) current
direction and the presence of a current threshold for the
excitation.

At finite temperature, spin waves are always present
in a ferromagnet. The spin-wave amplification (genera-
tion) by a flow of charged particles was predicted by
Akhiezer, Bar’yakhtar, and Peletminskiœ as early as
1963 (see [10]). The problem of current-driven magnon
excitation amounts to the problem of macroscopic spin-
system “buildup.” Energetic estimates suggest (see
Fig. 2 in [3]) that almost every electron injected into the
ferromagnet creates a magnon. Under these conditions,
it seems natural to describe the current-driven magnon
generation by using the Landau–Lifshitz equation [11].

The key conditions for HFMO excitation in ferro-
magnet F are as follows: (I) energetically, magnons can
be created in F; (II) the conduction electrons incident
on F are spin-polarized; (III) the magnetization vector
M in ferromagnet F and the polarization vector S of
electron beam are noncollinear; and (IV) the angular-
momentum flux dissipates in ferromagnet F.

For condition I to be met, high current density I is
necessary. The current assists in creating electronic
states with opposite spins. Due to the transitions
between these states, the ferromagnet magnetization
changes and the energy necessary for creating a mag-
non is released. Two mechanisms are operative (Fig. 1):
(1) the formation of Aronov’s gap ∆A(I) at the N/F inter-
face [12] (Fig. 1a) and (2) the generation of nonequilib-
rium excitations with energy ∆ε(I) by electric current
[2] (Figs. 1b, 1c).

The reasons for the appearance of a spin-polarized
electron beam entering the nonmagnetic metal from the
ferromagnet are apparent [12]. The polarization arises
as a result of the transformation of the electronic spec-
trum at the N/F interface under the condition that the
electrochemical potential, as well as the electron flow
for each of the spin polarizations, is continuous [15].
The problem can exactly be solved for the diffusion
conduction mechanism [12]. For the same reasons and
under the same conditions, the spin polarization of an
electron beam entering the ferromagnet from the non-
JETP LETTERS      Vol. 73      No. 2      2001
magnetic metal (Fig. 1a) is no less apparent. Hence, the
electrons flowing into F from the nonmagnetic metal
are spin-polarized, and condition II is fulfilled. The
magnetization of the nonmagnetic metal near the
microcontact is determined by the magnetization of the
adjacent region of size on the order of spin-relaxation
length, which is much larger than the microcontact size
a. The spin polarization S of the electron flow is col-
linear with the magnetization M of the contacting F. We
assume that the electronic spectrum is transformed and
Aronov’s gap ∆A(I) appears. Such a transformation
seems to be natural for a magnetic multilayer with fer-
romagnetically ordered layers [3, 4]. For an arbitrary
experimental situation, the rigid conditions accepted in
theory [12] fall far short of being necessarily fulfilled, so
that an additional argumentation is needed in each case.

Condition III is fulfilled fluctuatively. The equilibrium
magnetization M* in the near-contact region of the ferro-
magnet is collinear with the electron-beam polarization.
The nonzero values of the vector product [M* × S] are
due to the fluctuations of magnetization M*.

The electron density is ~1023 el/cm3. For an experi-
mental current density of ~108 A/cm2, the injected mag-
netization constitutes ~10–4 of the ferromagnet magne-
tization; i.e., it is only a weak perturbation. The condi-
tion for current-driven excitation of F is dictated by the
angular-momentum conservation law and amounts to
the requirement that the total angular-momentum flux
into F be nonzero. One can suppose that the spin flux
transferred by the electron flow is zero if the electron
spin state does not change during the electron passage
through F. For the classical passage of electrons
through F, the time scale for a change in the electron
spin state in F (“change” in the magnetic moment of an
electron) is determined by the Larmor period. This
change is small, provided that the time of electron pas-
sage through F is much shorter than the Larmor period.
For a 2-nm-thick ferromagnet and a Fermi velocity of
~108 cm/s, the time of electron ballistic flight is a factor
of ~104 shorter than the Larmor period (~10–11 s [3]).
However, it should be taken into account that, first, the
desired change in M is small and, second, the absorp-
tion of angular-momentum flux in a ferromagnet with
thickness !ΛsF may increase due to several mecha-
nisms. Among these are (1) a dramatic decrease in l
upon increasing electron-excitation energy (see, e.g.,
[16]); (2) capture of an electron incident on F into the
surface state [17, 18]; and (3) spin-flip scattering by the
local magnetic centers at the N/F interface and by the
nonmagnetic defects both at the N/F interface and in F.
It is assumed that these mechanisms of angular-
momentum flux dissipation in a ferromagnet provide
the required weak perturbation of the ferromagnetic
state; i.e., condition IV is then fulfilled.

The excitation of the HFMOs in a film magnetic
multilayer by passing electric current through a micro-
contact made from a nonmagnetic metal and mounted
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Fig. 1. Excitation of an electron system by the electric current in the (a, b) diffusion and (c) ballistic conduction regimes; je, s↑ , and
s↓  indicate the electron drift direction and the electron spin polarizations, respectively. Electron transition from the excited state A
(circle) to the empty state A' (+) is accompanied by a change in the electron spin polarization and by the energy release. (a) Variation
of the electrochemical potential along the normal to the N/F interface (N is nonmagnetic metal, and F is ferromagnet). Due to the
spin asymmetry of the heterocontact materials, ∆A (difference in electrochemical potentials of electrons with opposite spins) arises
at the N/F interface [12]. The ferromagnet magnetization should decrease upon the HFMO excitation. In the case that the conduc-
tance and the magnetization are determined by the electrons with different spin polarizations (Co), the HFMOs are excited near the
surface through which electrons flow into the ferromagnet (A  A' transition). As the current at the N/F interface changes its direc-
tion, the electrochemical potential for s↑  becomes higher than for s↓ . If both conductance and magnetization of the ferromagnet are
determined by electrons with the same spin polarization, the HFMO excitation occurs near the surface through which electrons out-
flow from the ferromagnet. The current-induced electron excitation in momentum space is illustrated in Figs. 1b and 1c. The Fermi
surface in the equilibrium state is shown by the solid line and the filled region in the excited state is cross-hatched; εF is the Fermi
energy and ∆ε is the excitation energy. (b) The OO' displacement is equal to e × E × τ (e is the electron charge, E is the electric field,
and τ is the relaxation time), and the current density is |je| = ρ × vD × τ (ρ and vD are the electron density and the electron drift
velocity, respectively). (c) Ballistic regime of electron injection through the microcontact [13, 14]. The maximum excitation energy
is ~eV/2, where V is the microcontact voltage.

ΛsF
on a magnetic multilayer proceeds in the following way
(Fig. 2a). A local area of the magnetic layer under the
microcontact with characteristic size on the order of a
and high current density (magnon disk) plays the role
of excited ferromagnet F [3, 8]. This conclusion is con-
sistent with the fact that the microcontact resistance
(which is measured to gain information about the mul-
tilayer excitation) is determined by a near-contact
region with characteristic size ~a [13, 14]. For simplic-
ity, we assume that the magnon disk contains only a
single domain and the current density flowing through
it is uniform. The electron beam injected from the non-
magnetic tip into F is spin-polarized, and [M × S] = 0.
In the presence of fluctuations, the magnetization M*
of the magnon disk is noncollinear with S; i.e., [M* ×
S] ≠ 0. The magnetic dynamics is determined from the
Landau–Lifshitz equation [11]. Let us introduce unit
vectors sF and se for M* and S, respectively. In a mag-
netic field, the magnetic moment M* precesses around
the field. Due to the dissipation proportional to the pre-
cession velocity, i.e., in the presence of a viscous torque
acting on M*, the precession decays. Within the phe-
nomenological approach, the viscous torque for |M*| =
const is usually written as a vector product [10, 11, 19]

–(α/γ)[M* × dM*/dt]/[M*], (1)

where α is the Hilbert parameter, γ is the electron gyro-
magnetic ratio, and t is time. The current-induced mag-
netization flow into the ferromagnet is (Ie/e)g(θ)[sF ×
[sF × se]], where Ie is the electric current density and
g(θ) is a positive constant depending on the structure
parameters and the angle between M* and S [1, 2].
Assuming that only the conduction electrons are
responsible for the magnetization M*, one can reduce
the Landau–Lifshitz equation to the form {see Eq. (15)
in [1]}

(2)

where Beff is the effective magnetic field, N is the num-
ber of polarized electrons injected into F in unit time,
and N0 is the difference in the numbers of electrons
with different spin polarizations. This difference
defines the ferromagnet magnetization. We assume that
the electron distribution is properly corrected for elec-
troneutrality. If the condition

(3)

is fulfilled, Eq. (2) has a stationary solution in the form
of HFMOs: M*(r, t) = M0 + mexp[i(kmr – ωmt)], where
m, km, and ωm are, respectively, the amplitude, the wave
vector, and the frequency of a magnon; and r is the
coordinate.

dsF/dt γ sF Beff×[ ] α sF dsF/dt×[ ]–=

+ g θ( ) N /N0( ) sF sF se×[ ]×[ ] ,

αdsF/dt g θ( ) N /N0( ) sF se×[ ]– 0=
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Fig. 2. (a) Scheme of the microcontact HFMO excitation in a magnetic multilayer [3]. N(Ag) is a silver tip, and a is the microcontact
diameter. The ferromagnet region where HFMOs are excited (magnon disk) is cross-hatched [3, 8]. The interface area between the
magnon disk and the remaining ferromagnet, where the exchange interaction impedes excitation of the magnon disk, increases upon
replacing the multilayer by a bulk ferromagnet. (b) Current-induced effective torque |MMMM| normalized to current density I (the scale of
ordinate axis is arbitrary) vs. angle θ between the ferromagnet magnetization and the electron-beam spin polarization [1]. The point
A corresponds to unstable equilibrium: if δθ is added to θ1, the corresponding increment in |MMMM| tends to increase δθ. The point C
corresponds to stable equilibrium: if δθ is added to θ2, the corresponding increment in |MMMM| tends to decrease δθ. The point at which
|MMMM| is maximum (B, θ = θ*) corresponds to neutral equilibrium: a change in |MMMM| is negligible for a small change in δθ.

|MMMM|/I

θ

Qualitatively, the HFMO excitation proceeds as fol-
lows. In the equilibrium state, M* || Beff. If a magnetic
moment component perpendicular to Beff fluctuatively
appears in ferromagnet F, i.e., if [M* × Beff] ≠ 0, M*
precesses around Beff in the absence of damping and
current. In the presence of dissipation but absence of
current, this precession decays. However, in the pres-
ence of current, the current-induced magnetization flux
into the ferromagnet arises if [M* × Beff] ≠ 0. This is
equivalent to the appearance of an effective torque MMMM
acting on M*. It is important that MMMM is antiparallel to
dissipative torque (1) so that their sum goes to zero at a
certain current magnitude and condition (3) becomes
fulfilled. The viscous torque diminishes the angle θ
between M* and Beff, whereas MMMM increases θ. If condi-
tion (3) is met, M* executes stationary precession. In
particular, the role of MMMM in the HFMO excitation
amounts to the compensation for viscous torque. The
bell-shaped curve for the θ dependence of |MMMM | (Fig. 2b)
is also essential: it has a maximum at θ = θ* and zero
points at θ = 0 and π [1, 2]. Equation (3) can be satisfied
for two θ values: θ1 and θ2 such that θ1 < θ* < θ2. The
θ = θ1 state corresponds to unstable equilibrium,
whereas the θ = θ2 state corresponds to stable equilib-
rium. The character of equilibrium approach (oscilla-
tory or aperiodic) and the possibility of the stationary
state occurring are governed by the parameters of the
system, in particular, by the MMMM(θ) dependence. The
state with θ = θ* is also noteworthy because it may be
considered as a neutral equilibrium.

Within the framework of the model considered, the
HFMO excitation in a disk multilayer composed of thin
and thick ferromagnetic disks separated by a nonmag-
netic metal [7] is described in a similar manner, with
the only difference that the role of excited ferromagnet
belongs to the thin ferromagnetic disk. Apart from the
excited ferromagnet, it is necessary for the HFMOs that
there be a “bulk” ferromagnet, in which the magnetiza-
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tion fluctuations are small and due to which the elec-
trons flowing into the excited ferromagnet from the
nonmagnetic metal are polarized. In the film structure,
this function is fulfilled by the near-microcontact ferro-
magnet area of size on the order of spin-relaxation
length. In the disk structure, the thick ferromagnetic
disk plays the same role. Notice that neither the direc-
tion of the external magnetic field nor its magnitude is
of crucial importance.

The physical nature of the threshold character of
HFMO excitation is apparent. Since the magnon spec-
trum has a gap ∆m(Beff), condition I is fulfilled only if
current I exceeds a certain threshold value I*. The I*
value is determined from the condition ∆A(I*) or
∆ε(I*) > ∆m(Beff) (Fig. 1). Both mechanisms yield close
I* values for the experimental situations considered
above. The current is also responsible for the appear-
ance of a torque that sustains the fluctuative magnon
generation by compensating for the dissipative losses
of generation. It also provides high probability for the
ferromagnet to occur in the excited state [in particular,
due to ∆A(I) and thermal heating].

There are several reasons why the HFMOs are
excited only for one current direction. In the case of
microcontact excitation, a high current density occurs
only in the vicinity of the microcontact. For the diffu-
sion regime of electrical conductance in the presence of
ferromagnetic layer ordering and for layer thicknesses
much smaller than Λs, the multilayer can be considered
as a certain effective ferromagnet. The gap ∆A(I) >
∆m(Beff) appears in the vicinity of microcontact for both
I directions [12, 20, 21]. However, a change in the elec-
tron polarization accompanied by energy release ∆A

reduces the magnetization and provides the conditions
for HFMO excitation only for one direction of I
(Fig. 1a). The same reason holds for the HFMO excita-
tion in a single-layer ferromagnet [5]. The generation
of high-energy excitations [∆ε(I) > ∆m(Beff)] is insensi-
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tive to the current direction (Figs. 1b, 1c). However, for
the ballistic regime of electron passage through the
microcontact (Fig. 1c) and flow into the ferromagnet,
this generation occurs in the ferromagnet, where mag-
nons can be created, whereas for the opposite current
direction the generation proceeds in the nonmagnetic
metal, where the exchange interaction is absent and the
conditions for magnon excitation are cardinally differ-
ent (see Supplement in [10]) and not fulfilled in [3–7].
This mechanism is also operative for the HFMO exci-
tation in a single-layer ferromagnet [5].

The fact that the HFMOs are excited in a film mag-
netic multilayer with a microcontact mounted on it sug-
gests that the real balance of all driving forces and
energy conditions is positive for the HFMOs excitation.
This balance is positive [3, 4, 6] if the indirect antifer-
romagnetic exchange interaction between the magnetic
layers dominates [22], if the magnetic interaction
between the magnetic layers dominates [22] when the
thickness of the nonmagnetic layer is large [5, 7], and
if the HFMOs are excited in a single magnetic layer [5].
However, the HFMOs were not excited upon mounting
a tip on a bulk ferromagnet [23]. This is likely caused
by the greater suppression effect of exchange interac-
tion, whose magnitude is proportional to the surface
area between the ferromagnet and the excited ferro-
magnet. For a bulk ferromagnet, this area is consider-
ably larger (Fig. 2a). The microcontact situation is dif-
ferent from that considered in [24], where the current
density was assumed to be uniform in the plane parallel
to the N/F interface and where the authors predicted the
stationarity breakdown, appearance of instability, and
the possibility of HFMO excitation by a spin-polarized
electron flow incident on the half-space occupied by a
ferromagnet. When applying the fluctuation model to
the description of a current-driven HFMO excitation,
account should be taken of the results of a detailed anal-
ysis of magnetic dynamics [8] and the θ dependence of
electron-assisted magnetization transfer [1].

We believe that the spin-density fluctuations; the
increase in their amplitude due to the Aronov mecha-
nism, high current density, and thermal heating; and the
increased role of spin fluctuations in mesoscopic sam-
ples are precisely the factors which govern the effect of
current-driven magnon generation and create condi-
tions for the current-induced “spin-system buildup.”
This model fits naturally into the theory of magnetism
in itinerant electron magnetics, where the spatial fluc-
tuations of electron spin density are taken into account
[25]. With the model suggested, the current-driven
magnon excitation seems to be an efficient method for
studying fundamentals of this theory; in particular,
information can be gained about the space spin-density
correlation function.
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