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1. In the last two decades, two-dimensional field-
theory models were investigated extensively and com-
prehensively. Besides direct application to certain fields
of physics, these models provide excellent (and often
unique) opportunity for examining realistic, but consid-
erably more complex four-dimensional models.
Indeed, the phenomena such as asymptotic freedom,
dimensional transmutation, etc., also arise in two-
dimensional integrable theories and can be exactly
described. By examining these models, we hope to find
a way to construct the corresponding four-dimensional
mechanism. Finally, the study of two-dimensional
models may be helpful in gaining some information on
the structure of four-dimensional theories. From this
viewpoint, two-dimensional gravity is the most inter-
esting two-dimensional theory.

It is well known that the Einstein–Hilbert action in
two dimensions is a topological invariant proportional
to the Euler characteristic of a two-dimensional mani-
fold. Because the standard gravity Lagrangian is locally
trivial (proportional to the total derivative within an
arbitrary coordinate vicinity on the manifold), it is per-
tinent to remember Sakharov’s hypothesis that the clas-
sical gravitational Lagrangian should be identical to
zero while the true Hamiltonian is induced by quantum
fluctuations of gravitating matter fields. This is pre-
cisely the theory to which the problem of uncritical
strings was reduced after the famous work [1] by
Polyakov, who subsequently connected [2] the formu-
lation of this problem in the light-like gauge with the
Wess–Zumino–Novikov–Witten model for the SL(2, R)
group and calculated, on this basis, some important
characteristics of the string theory. David, Distler, and
Kawai [3] reproduced this result directly in the confor-
mal gauge. Later on, Knizhnik, Polyakov, and
Zamolodchikov [4] proposed the method of evaluating
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the exponents for the dimensional transmutation
induced in primary fields by their gravitational interac-
tion in the quantum two-dimensional conformal field
theory. They found that the condition for the cancella-
tion of quantum anomalies requires the fractional
dimensionality of space–time. The supersymmetric
generalization of [2] was given by Polyakov and
Zamolodchikov in [5].

David, Distler, and Kawai [3] have proved, in fact,
that the observable parameters of the theory are inde-
pendent of a regularization scheme because this
scheme is determined by the gauge chosen in calculat-
ing the effective action. The equivalence of different
regularization schemes was discussed in [6]. In [7],
induced two-dimensional supergravity was formulated
in terms of the Weyl-invariant regularization scheme.

Holomorphic properties of the effective action of
induced gravity were analyzed in [8, 9]. An attempt to
take into account the effect of an external curvature on
the action of induced gravity was made in [10].

Fujiwara et al. [11] examined the relation between
the super-Weyl and super-Virasoro anomalies and con-
structed the super-Weyl-invariant functional by cancel-
ing the super-Virasoro anomaly with the use of a non-
local functional.

A nonlocal action depending only on the gravita-
tional variables was presented for the induced two-
dimensional supergravity by Grisaru and Xu [12].
However, the theory has not yet been formulated in a

covariant form similar to the expression R R for the

ordinary two-dimensional gravity, i.e., without involv-
ing additional variables. This work is aimed at filling
this gap.
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The result obtained in this work can be generalized
to higher dimensions. The Weyl anomaly was analyzed
for the 4D and 6D theories of ordinary gravity in [13],
where Polyakov’s action was generalized to these
cases. However, in contrast to 2D, the number of
degrees of freedom for higher dimensions exceeds the
number of classical action symmetries and the total
effective action cannot be reproduced by integrating the
anomalous Ward identities; the dependence on the
other components of the metric tensor will be expressed
in terms of integration constants. For this reason, the
nonlocal expression derived in such a way will be only
a part corresponding to the contribution of the Weyl
anomaly to the total effective action.

2. In gravity theory, graviton excitations are
described by traceless metric disturbances, and the gen-
eral covariance requires that the classical action be
unchanged under these variations of the metric tensor.
It is well-known that the general covariance in two-
dimensional theory is always accompanied by the Weyl
invariance: any expression written as an integral over a
two-dimensional manifold of the scalar density con-
structed of local matter fields and metric tensor is
invariant about the Weyl transformation; i.e., gαβ(x) 
ρ(x)gαβ. Thus, the Weyl invariance implies that the
action is also independent of the residual variations of
the metric gαβδgαβ. In other words, the general covari-
ant action in two-dimensional theory is independent of
the metric tensor, and two-dimensional space–time is
locally flat or, strictly speaking, may be flattened in
every coordinate vicinity through the coordinate trans-
formation.

However, quantum fluctuations break this symmetry
so that the variation of the effective action under the
conformal transformations of the metric is no longer
zero:

(1)

where R is the curvature of the space–time manifold. It
is easy to see that, being a conformal anomaly, the cur-
vature R satisfies the self-consistency condition; i.e.,
under the Weyl transformations

(2)

the curvature is transformed as

(3)

where h is the Laplacian acting on scalar fields. There-
fore, the second derivative of the effective action W

gαβ δW
δgαβ
----------- R,=

δgαβ gαβδσ=

δ gR[ ] ghδσ,=
with respect to σ is symmetric:

(4)

i.e., R determines the self-consistent expression for the
Weyl anomaly.

A graviton partner in the two-dimensional super-
gravity (gravitino) is described by the Rarita–
Schwinger field components corresponding to spin 3/2,
so that local supersymmetry implies that the action is
independent of these components. On the classical
level, the two-dimensional superspace is also locally
flat, because the local supersymmetry in two dimen-
sions is always accompanied by the super-Weyl sym-
metry, signifying that the action is independent on the
components of spin 1/2 as well:

(5)

This symmetry also breaks by the quantum corrections:
the convolution of a supercurrent Jα theory, i.e., the
variational derivative of the effective action with respect
to the super-Weyl parameter, with the γ matrices

(6)

is no longer zero, in contrast to the derivative of the
classical action.

To obtain an explicit expression for the super-Weyl
anomaly, one can use the condition for integrability of
the effective action (Wess–Zumino self-consistency
condition): the variational derivative of the curvature
(Weyl anomaly) with respect to λ should be equal to the
derivative of the super-Weyl anomaly with respect to σ.
The λ dependence of the curvature originates from the
nonminimal term in the expression for spinor connec-
tivity:

(7)

where e is the determinant of the set of coordinates. By
solving this condition, one obtains the following set of
anomalous Ward identities for the effective action cal-
culated for the two-dimensional supergravity in the
supercoordinate-invariant regularization:

(8)

where Dαλ = ∂αλ + (γ3ωαλ)/2.
Finally, the third and last component of the Wess–

Zumino condition is also satisfied: the derivative of the
super-Weyl anomaly (8) with respect to λ is symmetric
about the change of arguments, as also is the derivative
of the curvature with respect to σ. This expression for

δR x( )
δσ y( )
---------------

δR y( )
δσ x( )
--------------,=

δχα γαδλ .=

δW /δλ γ α, Jα=

ωα –eα
a e

µν

e
-------∂µeν

a 2iχαγ3γ
µχµ,–=

gαβTαβ R,=

γα Jα 4i
e

αβ

e
-------γ3Dαχβ,–=
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the anomaly coincides with the result obtained by Fuji-
wara et al. in [14]. Taking finite Weyl and super-Weyl
variations of the right-hand sides of Eqs. (8), multiply-
ing them, respectively, by δσ and δλ, and adding the
results, one finds that the total variation of the effective
action is equal to the sum of the Neveu–Schwarz action

and integral of Rσ and –4i γ3Dα χβ. Indeed,

because Eqs. (8) are self-consistent, the above-
described variational equation is integrable to give

(9)

This result was also obtained by Kamimura et al. in

[15]. The functional S(σ, λ; , χα ) is cocyclic:

(10)

From the viewpoint of the cohomology theory, the
cochains for the Weyl transformations in the theory of
two-dimensional supergravity should be dimensionless

local actions constructed of the gravitational ( , χα )
and group (σ, λ) variables and having the correspond-

ing cocyclicity properties. The variables σ and  are
dimensionless, χα and λ have a dimensionality of 1/2,
and the derivative has a dimensionality of 1.

The quantum anomaly corresponds, in quantization,
to the transition from the exact representations in the
space of functions defined on the phase space of classi-
cal theory to the projective representations of the state
wave function in quantum theory. This anomaly is
determined by the phase multiplier of the wave func-
tion (partition function) in the theory and is a 1-cocycle.
Then, group multiplication immediately leads to
Eq. (10) for this phase multiplier. A 0-cochain is deter-
mined by an arbitrary counterterm (it does not contain
group parameters), and its addition to the effective
action corresponds to the finite renormalization of the
latter. An arbitrary coboundary, i.e., finite (super)Weyl
variation of a 0-cochain, is a 1-cocycle. If the anoma-
lous phase multiplier is determined by the coboundary
of some local functional, the latter can be absorbed by
redefining the effective action. Such an anomaly is
removable and the corresponding theory is nonanoma-
lous.

e
αβ

e
-------λ

S σ λ  eα
a , χα;,( ) e x Rσ 4ieαβ/eλγ3Dαχβ–[

2
d∫=

– 1/2gαβ∂ασ∂βσ i/2λγα∂αλ–

+ iλγβγαχβ ∂ασ i/2λχα–( ) ] .

eα
a

S σ1 σ2+ λ1 λ2  eα
a χα,;+,( )

=  S σ1 e
σ2/4–

λ1  e
σ2/2

eα
a e

σ2/4
χα

1
4
---γαλ2+ 

 ,;, 
 

+ S σ2 λ2  eα
a χα,;,( ).

eα
a

eα
a
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According to this definition, functional (9) is a
1-cochain. It is obvious that each 1-cochain is no more
than quadratic in group variables, and the terms of the
maximum power of group variables are super-Weyl-
invariant.

In the case under consideration, the anomaly is
unremovable and cocycle (9) can be represented in the
form of a coboundary only in a broader class of nonlo-
cal functionals:

(11)

This functional is supercovariant, but is not invariant
about the Weyl transformations and corresponds to the
effective action calculated in the regularization scheme
invariant with respect to the superdiffeomorphisms.
Indeed, the desired effective action is determined by
anomalous Eqs. (8). Equation (11) obviously satisfies
these restrictions. The cocyclicity of S is a trivial con-
sequence of this expression. For this reason, I will try
to find the effective action on the basis of Eq. (9). How-
ever, an attempt at performing Gaussian integration
over the group variables, considering its quadratic
dependence on the latter, does not give the desired
result, because of the presence of a mixed term

i γβ−γαχβ∂ασ in Eq. (9). When treating Eq. (11) as an

initial relation for determining W[ , χα ] and trying to
satisfy it by a nonlocal functional of the form anomaly
(Weyl-invariant differential operator)–1 anomaly [13]
[with allowance made for Eq. (9)], one must take into
account the arbitrariness in the choice of local counter-
terms. The kinetic operators appearing in the Neveu–
Schwarz action as matrix elements of the matrix of sec-
ond derivatives of effective action can be taken as a
Weyl-invariant operator in this symbolic expression.
Unfortunately, this matrix is nondiagonal. It can be
diagonalized by finite renormalization (corresponding
to the addition of a counterterm) of the measure of
functional integral in the definition of effective action:

(12)

This renormalization clearly leads to the redefinition of
currents, and the set of anomalous equations takes the
form

(13)

The cocycle arising upon the integration of this set of
anomalous Ward identities is the sum of cocycle (9) and

S σ λ  eα
a; χα, ,( )

=  W eσ/2eα
a eσ/4 χα

1
4
---γαλ+ 

 , W eα
a χα,[ ] .–

λ
eα

a

W' eα
a χα,[ ] W eα

a χα,[ ] 8i e xχβγβDαχα .
2

d∫+=

δW '
δσ x( )
-------------- gαβTαβ'≡ R 4i∇ α χβγβχα( ),–=

δW '
δλ x( )
-------------- γα Jα'≡ 4iDα γαγβχβ( ).–=
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the coboundary of the added counterterm and is linear
in the group variables. Taking this fact into account,
one can easily verify that the expression

(14)

has the same transformation properties as does W'[e, χ].
Indeed, when taking the Weyl coboundary (finite varia-
tion), the nonlocality cancels out through the same
mechanism as in the pure boson theory for Polyakov’s
action. As a result, the coboundary of the above expres-
sion yields two independent cocycles:

(15)

where

(16)

is a 1-cocycle with respect to the Weyl transformations

(17)

and is super-Weyl-invariant. The second cocycle

(18)

is Weyl-invariant and is a 1-cocycle with respect to the
super-Weyl transformations:

(19)

A closer inspection shows, however, that the last cocy-
cle is trivial, i.e., is a coboundary of the local counter-
term.

e R i/4∇ α χµγµχα( )–( ) 1
eh
-------e R i/4∇ β χνγ

νχβ( )–( )∫

+ e3/4 4iDα χµγµγα( )–( )

× 1

e1/2 1γνDν– χνχργνγρ+( )
--------------------------------------------------------------e3/4 4iDβ γβγτχτ( )–( )

S σ  eα
a; χα,( ) S λ  eα

a; χα,( )+

=  W ' eσ/2eα
a eσ/4 χα

1
4
---γαλ+ 

 , W ' eα
a χα,[ ] ,–

S σ  eα
a; χα,( ) e x2d∫=

× Rσ 1/2gαβ∂ασ∂βσ– 4iχβγβχα∂ασ+( )

S σ1 σ2  eα
a;+ χα,( )

=  S σ1  e
σ2/2

eα
a; e

σ2/4
χα,( ) S σ2  eα

a; χα,( )+

S λ  eα
a; χα,( ) e x i/2λγα∂αλ 2iχβγβDαχα+(

2
d∫=

+ 2χµγµγ3χαλγ3γ
βγαχβ 1/4λλ χβγαγβχα( )– )

S λ1 λ2  eα
a;+ χα,( )

=  S λ1  eα
a; χα

1
4
---γαλ2+ 

 , 
  S λ2  eα

a; χα,( ).+
Thus, the final expression for W[e, χ] takes the form

(20)

This result is not surprising, because the torsion terms
are known to split off in two-dimensional supergravity,
and the curvature can be determined by the metric ten-
sor alone. It is this curvature which appears in the
resulting expression for the effective action.

In this interpretation, the first term in Eq. (20)
reflects the contribution of the separated Fermi fields to
the finite renormalization of the action.

3. Thus, dealing with the Weyl anomaly, I arrive at
the following basic conclusion. The most general form
of the conformal anomaly is expressed in terms of three
types of solutions of the corresponding Wess–Zumino
self-consistency condition: the density of the Euler
characteristic of the space–time manifold, the Weyl-
invariant Lagrangian densities, and the variational
derivatives of the dimensionless local actions with
respect to the Weyl parameter (improving terms).

Among the solutions of the self-consistency condi-
tions, there is always a solution that has a linear (and
diagonal in the supersymmetric case) finite Weyl varia-
tion. The corresponding cocycle is quadratic in the
Weyl parameter, and the corresponding anomalous
phase multiplier, being integrated with respect to the
group variables, makes a conformal anomaly contribu-
tion to the effective action.

The above argument applies to four-dimensional
supergravity as well. However, in contrast to two-
dimensional supergravity, one cannot reconstruct the
whole effective action in this case, because the equa-
tions for the anomaly contain information only about
the anomalous dependence of the effective action on
the Weyl supergroup parameters: the determinant of the
metric and the Rarita–Schwinger field components cor-
responding to spin 1/2. After allowance made for the
general covariance and local supersymmetry, the effec-
tive action still depends on five degrees of freedom of
the metric and eight degrees of freedom of the Rarita–
Schwinger field, which is not fixed by the anomalous
equations. The corresponding terms in the effective
action arise as integration constants in solving the
anomalous equations.

I am grateful to A.G. Sedrakyan and R. Kuriki for
useful remarks.
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In the effective relativistic quantum field theories, the energy region in which special relativity holds can be
sandwiched from both the high- and low-energy sides by domains where special relativity is violated. An exam-
ple is provided by 3He-A, where the relativistic quantum field theory emerges as the effective theory. The reen-
trant violation of special relativity in the ultralow-energy corner is accompanied by the redistribution of the
momentum-space topological charges among the fermionic flavors. At this ultralow energy, an exotic massless
fermion with topological charge N3 = 2 arises whose energy spectrum mixes classical and relativistic behaviors.
This effect can lead to neutrino oscillations, if neutrino flavors are still massless on this energy scale. © 2001
MAIK “Nauka/Interperiodica”.
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INTRODUCTION

The condensed-matter analogy supports the idea that
special and general relativity might be emergent prop-
erties of quantum vacuum that arise gradually in the
low-energy corner [1–3]. If this is true, one can expect
that the Lorentz invariance of our low-energy world is
violated at high energy. The condensed matter provides
examples of how this violation can occur. Here we
demonstrate one generic example which is realized in
the superfluid 3He-A, where the effective special rela-
tivity and gravity arise in the low-energy corner together
with chiral fermions and effective gauge fields [3]. It
suggests that, if the effective Lorentz invariance is vio-
lated in the extreme limit of the “Planckian” scale, it
becomes violated also in the opposite extreme limit of
ultralow energy. The energy scale where the reentrant
violation of special relativity occurs is also dictated by
“trans-Planckian” physics. If there are still fermions
which remain chiral and massless when approaching
this ultralow-energy scale, the reentrant violation of
Lorentz invariance leads to the crucial reconstruction of
their energy spectrum. Thus, trans-Planckian physics
can be probed in the limit of low energies.

In this example, two flavors of chiral left-handed
fermions are hybridized to produce one massive fer-
mion with the relativistic spectrum E2 = c2p2 + m2c4 and
one exotic gapless fermion whose spectrum mixes classi-

cal and relativistic behaviors: E2 = c2  + ( /2m)2 (seep||
2 p⊥

2

1 This article was submitted by the authors in English.
0021-3640/01/7304- $21.00 © 20162
figure). Such an energy spectrum is a consequence of
the nontrivial momentum-space topology. The hybrid-
ization of fermions due to the violation of special rela-
tivity can provide a scenario for neutrino oscillations
similar to that discussed in [4], where the violation of
special relativity was also considered, though in terms
of different maximum attainable velocities c for differ-
ent neutrino species.

MOMENTUM-SPACE TOPOLOGY
AND DISCRETE SYMMETRY

BETWEEN FERMIONS

Special relativity (and also general relativity, with
the effective gravitational field being one of the collec-
tive modes of the fermionic vacuum) naturally arises in
those Fermi superfluids whose fermionic quasiparticle
spectrum contains topologically nontrivial point nodes
in the momentum space. Examples are the superfluid
phases of 3He: 3He-A and the planar state. In the low-
energy limit, i.e., in the vicinity of a given topologically
stable point node (Fermi point), fermionic quasiparti-
cles behave as chiral fermions with the massless spec-
trum obeying the relativistic-like equation

(1)

Here, pµ(a) (position of the node in the spectrum of the

ath quasiparticle) and  are the dynamic variables
describing the collective bosonic degrees of freedom of
the vacuum. They play the role of the gauge and gravity
fields, respectively.

g a( )
µν pµ pµ a( )–( ) pν pν a( )–( ) 0.=

g a( )
µν
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In each of the two phases of superfluid 3He (3He-A
and the planar state), there is a symmetry that connects
all the low-energy fermionic species. As a result, the
effective metric gµν is the same for all fermions (at least
in equilibrium), which means that all of them have the
same “speed of light” (i.e., the same maximum attain-
able speed). Moreover, for the “perfect” fermionic sys-
tem (for which the Lagrangian for the collective
bosonic modes is obtained by the integration over fer-
mions in the vicinity of the Fermi points, see [3]), the
bosonic fields are governed by the same effective met-
ric gµν as are the fermions and, hence, have the same
speed of light. Thus, the nontrivial momentum-space
topology and the symmetry between fermions are two
ingredients for establishing special relativity in the low-
energy corner of the effective theory.

The massless (gapless) character of the fermionic
spectrum in a system with Fermi points is protected by
the nonzero value of the ground-state topological
invariant that is expressed as the integral over the
Green’s function in the 4D momentum–frequency
space:

(2)

The integral is over the surface σ enclosing Fermi point
pµ(a) = (pa , 0) in the 4D momentum space pµ = (p, p0),
p0 is the energy (frequency) along the imaginary axis,
and tr is the trace over the fermionic indices. If the
topological charge of the Fermi point is N3 = +1 or
N3 = –1, then in the vicinity of this point the quasipar-
ticle is a massless fermion, whose Green’s function,
after proper rescaling and shifting the position of the
Fermi point, has the following form

(3)

This is the Green’s function of a left-handed (if N3 =
−1) or right-handed (if N3 = +1) chiral fermion. Thus,
the topologically nontrivial momentum-space topology
automatically produces “relativistic” chiral fermions as
low-energy quasiparticles if N3 = ±1.

In the gapless superfluid phases of 3He, the topolog-
ical invariants of each of the two Fermi points are dif-
ferent from ±1; they are N3 = ±2 in 3He-A and N3 = 0 in
the planar state. In both phases, however, there is a dis-
crete symmetry between the fermionic species, which
leads to the equal (in 3He-A) or opposite (in the planar
state) distribution of topological charges among fermi-
ons: N3 = +2  +1 + 1 and N3 = –2  –1 – 1 in
3He-A, and N3 = 0  +1 – 1 in the planar state. As a
result, each gapless fermion has a unitary charge, N3 =
−1 or N3 = +1, and, hence, all gapless quasiparticles are
relativistic in the low-energy corner. This again shows
that the existence of a discrete or continuous symmetry
between fermions is important for special relativity to
hold in the low-energy corner. For a discrete symmetry

N3
1

24π2
-----------eµνλγtr Sγ&∂pµ

& 1– &∂pν
& 1– &∂pλ

& 1–
.d

σ
∫=

& i p0 *–( ) 1–
, * N3cσ p.⋅= =
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providing unitary charges N3 = –1 and N3 = +1 for chiral
fermions in the standard model, see [3].

CONDENSED MATTER SCENARIO
OF THE REENTRANT VIOLATION

OF SPECIAL RELATIVITY

In 3He-A, the global symmetry SO(3)S × SO(3)L ×
U(1)N of the normal 3He is broken into the little group
U(  × U(  whose generators are Lz – N/2 and
Sz. Here, SO(3)S, SO(3)L, and U(1)N are, correspond-
ingly, the spin rotation group, the group of orthogonal
coordinate transformations, and the global U(1) group
responsible for the conservation of the global charge—
the number of 3He atoms. The corresponding 3 × 3
order-parameter matrix Aµi, which transforms as a vec-
tor under spin rotations SO(3)S (the first index) and as a
vector under orbital rotations SO(3)L (the second
index), is

(4)

Fermionic quasiparticles living in the vacuum with
such order parameter have two point nodes in the spec-
trum. In the vicinity of the Fermi point at p = (0, 0, pF)
with the topological charge N3 = –2, these quasiparti-
cles correspond to two chiral left-handed relativistic
fermions described by the following Bogoliubov–
Nambu Hamiltonian

(5)

Here, the speeds of light propagating along and perpen-
dicular to the z axis are, correspondingly, c|| = vF

and c⊥  = ∆0/pF; vF and pF are, respectively, the Fermi
velocity and the Fermi momentum in the normal 3He;
∆0 is the amplitude of the gap; σz is the Pauli matrix for
the nuclear spin of the 3He atom; and  are the Pauli

1 )Lz N /2– 1 )Sz

Aµi ∆0ẑµ x̂i i ŷi+( ).=

*A phase– c|| pz pF–( )τ3 c⊥ σz τ1 px τ2 py–( ).+= ˇ ˇ ˇ

τ i
ˇ

Low-energy memory of high-energy nonsymmetric phys-
ics.
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matrices for the Bogoliubov–Nambu spin in the parti-
cle–hole space.

Two projections of atomic spin (1/2)σz = ±1/2 can
be considered as two fermionic flavors. Each of the two
fermions has N3 = –1, so that both fermions are chiral
(left-handed) and massless with the energy spectrum

(6)

where  = pz – pF. The symmetry, which couples the
two flavors and forces them to have identical topologi-
cal charge N3 = –1 and identical relativistic spectrum, is
the discrete symmetry U2 of the order parameter in
Eq. (4). U2 is a combined symmetry; it is an element of
the SO(3)S group, say, the spin π rotation about x axis
supplemented by the gauge rotation eiπ from the U(1)N

group: U2 = eiπ. It is the same discrete symmetry as
that giving rise to the Alice string (half-quantum vortex,
see [5] for review). Such symmetry came from the fun-
damental level well above the first Planck scale EPlanck =

/vFpF [3] on which the spectrum becomes nonlinear
and the Lorentz invariance is violated.

However, this discrete U2 symmetry is not exact in
3He even on the fundamental level. This is because of a
tiny spin–orbit interaction, which slightly violates the
SO(3)S symmetry under the separate rotations in spin
space. Since the U2 symmetry was instrumental for
establishing special relativity in the low-energy corner,
its violation must lead to the violation of the Lorentz
invariance and also to the mixing of the two fermionic
flavors at a very low energy determined by the tiny
spin–orbit coupling.

Let us consider how this happens in 3He-A. Due to
the spin–orbit coupling, the U  × U  sym-

metry of 3He-A is not exact. The remaining exact sym-
metry is a combined symmetry constructed from the
sum of two generators: U , where Jz = Sz + Lz

is the generator of the simultaneous rotations of spins
and orbital degrees of freedom. As a result, the order
parameter in Eq. (4) acquires a small correction consis-
tent with the U  symmetry:

(7)

The first term corresponds to the Cooper-pair state with
Lz = 1/2 per atom and Sz = 0, while the second one is a
small admixture of the state with Sz = 1/2 and Lz = 0.
Both components have Jz = 1/2 and, thus, must be
present in the order parameter. Due to the second term,
the order parameter is not symmetric under the U2 oper-

ation. The small parameter α ~ ξ2/  ~ 10–5 is the rel-
ative strength of spin–orbit coupling, where ξ ~
10−6−10–5 cm is the superfluid coherence length and
ξD ~ 10–3 cm is the so-called dipole length characteriz-
ing the spin–orbit coupling.

E2 c||
2 p̃z

2 c⊥
2 p⊥

2 , N3+ 1,–= =

p̃z

Cπ
x

∆0
2

1( )Lz N /2– 1( )Sz

1( )Jz N /2–

1( )Jz N /2–

Aµi ∆0ẑµ x̂i i ŷi+( ) α∆0 x̂µ i ŷµ+( )ẑi.+=

ξD
2

The Bogoliubov–Nambu Hamiltonian for fermionic
quasiparticles in such a vacuum is modified compared
to that in the pure vacuum state with Lz = 1/2 and Sz = 0
in Eq. (5):

(8)

Diagonalization of this Hamiltonian shows that the
small correction due to spin–orbit coupling gives rise to
the following splitting of the energy spectrum

(9)

Near the Fermi point one can set α|pz| = αpF . The +
and – branches give the gapped and gapless spectra cor-
respondingly. For p⊥  ! αpF , one has

(10)

(11)

(12)

In this ultralow-energy corner, the gapped branch of the
spectrum in Eq. (10) is relativistic, though with the
speed of light other than in the intermediate regime of
Eq. (6). The gapless branch in Eq. (11) is relativistic in

one direction E = c||| |, and is classical E = /2  for
the motion in the transverse direction.

MOMENTUM-SPACE TOPOLOGY OF EXOTIC 
FERMION

What is important is that such a splitting of the spec-
trum is generic and can thus occur in other effective
field theories such as the standard model. This is due to
the topological properties of the spectrum: the mixing
of the two fermionic flavors occurs with the redistribu-
tion of the topological charge among two fermions. In
the relativistic domain, each of the two fermions has a
topological charge of N3 = –1. It is easy to check that in
the ultralow-energy corner this is not the case. While
the total topological charge of the Fermi point N3 = –2
must be conserved, it is now redistributed among the
fermions in the following manner: the massive fermion
(with energy E+) acquires the trivial topological charge
N3 = 0 (that is why it becomes massive), while another
(with energy E–) has the double topological charge N3 =
–2 (see figure). It is important that the topological
charge N3 = –2 describes a single fermionic species: it
cannot split into two fermions with N3 = –1 each. This
exotic fermion with N3 = –2 is gapless because of the
nonzero value of the topological charge, but the energy
spectrum of this fermion is nonlinear. Such a spectrum
cannot be described in relativistic language.

*A phase– c||p̃zτ3 c⊥ σz τ1 px τ2 py–( )+=

+ αc⊥ pz σxτ1 σyτ2–( ).

ˇ ˇ ˇ

ˇ ˇ

E±
2 c||

2 p̃z
2 c⊥

2 α pz α2 pz
2 p⊥

2+±( )
2
.+=

E+
2 c||

2 p̃z
2 c̃⊥

2 p⊥
2 m̃2c̃⊥

4 ,+ +≈

E–
2 c||

2 p̃z
2 p⊥

4

4m̃2
---------,+≈

c̃⊥ 2c⊥ , m̃ α
pF

c⊥
------, p⊥  ! m̃c⊥ .= =

p̃z p⊥
2 m̃
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Much as the N3 = ±1 fermions are necessarily rela-
tivistic and chiral in the low-energy corner, the fermi-
ons with higher |N3| are necessarily nonrelativistic. The
momentum-space topology, which induces special rel-
ativity if |N3| = 1, becomes incompatible with the rela-
tivistic invariance if |N3| > 1, and the latter is obligatory
violated. The properties of the fermionic systems with
multiple zeroes, |N3| > 1, including the axial anomaly in
its nonrelativistic version, are discussed in [6].

The energy scale on which the splitting of the
energy spectrum occurs is EReentrant = α∆0, which is
much less than the first Planck level in 3He-A, EPlanck =

/vFpF . Thus, the relativistic region for the 3He-A fer-
mions, EReentrant ! E ! EPlanck, is sandwiched from both
high and low energies by the nonrelativistic regions.

DISCUSSION

The above example of 3He-A shows that the discrete
symmetry between fermions, together with the momen-
tum-space topology, guarantee that massless fermions
obey special relativity in the low-energy corner. If the
discrete symmetry is approximate, then in the ultralow-
energy corner the redistribution of the momentum-
space topological charges among the fermions occurs
with appearance of a higher topological charge |N3| > 1.
This topological transition leads to a strong modifica-
tion of the energy spectrum, which becomes essentially
nonrelativistic.

In principle, such a topological transition with the
appearance of exotic fermions with N3 = ±2 can also
occur in the relativistic quantum field theories if these
theories are effective. In the effective theory, the
Lorentz invariance (and hence, special relativity)
appears in the low-energy corner as an emergent phe-
nomenon, while it can be violated at a high energy
approaching the Planck scale. At low energy, fermions
are chiral and relativistic if there is a symmetry between
the flavors. If such symmetry is violated, either sponta-
neously or due to the fundamental physics above the
Planck scale, then in the extreme low-energy limit,
when the asymmetry between the fermionic flavors

∆0
2
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becomes important, the system remembers its high-
energy nonrelativistic origin. The rearrangement of the
topological charges N3 among the fermionic species
occurs and special relativity disappears again.

This scenario can be applied to massless neutrinos.
The violation of the horizontal symmetry between the
left-handed neutrino flavors can lead to the violation of
Lorentz invariance at very low energy. If neutrinos
remain massless at this ultralow-energy scale, then
below this scale the two flavors (say, electronic and
muonic left-handed neutrinos each with N3 = –1)
hybridize and produce an N3 = 0 fermion with a gap and
an exotic gapless N3 = –2 fermion with the essentially
nonlinear nonrelativistic spectrum. This is another
example of the violation of special relativity, which can
also give rise to the neutrino oscillations. The previ-
ously considered effect of the violation of special rela-
tivity on neutrino oscillations was related to the differ-
ent speeds of light for different neutrino flavors [4] (the
related effect is the violation of the weak equivalence
principle: different flavors are differently coupled to
gravity [7]).

This work was supported in part by the Russian
Foundation for Fundamental Research and the Euro-
pean Science Foundation.
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A Nonperturbative a-Expansion Technique
and the Adler D-function1
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We show that the “experimental” D-functions corresponding to the e+e– annihilation into hadrons and the inclu-
sive τ-decay data both are in good agreement with results obtained in the framework of the nonperturbative
a-expansion method. © 2001 MAIK “Nauka/Interperiodica”.
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The specific feature of quantum field theory is that a
sufficiently complete study of the structure of a quan-
tum field model within the framework of perturbative
approach is insufficient even in theories with a small
coupling constant. Numerous publications are devoted
to the problem of going beyond the perturbation theory.
However, many of them use model assumptions and
phenomenological parameters which are not involved
in the Lagrangian. Clearly, it is desirable to use a theo-
retical method that is based on a minimum number of
additional parameters and allows the nonperturbative
region to be considered. The theoretical method we use
is the nonperturbative expansion technique [l] based on
the idea of variational perturbation theory (see [2] for a
review), which, in the case of QCD, leads to a new
small expansion parameter a. Even when entering the
infrared region of small momenta where the running
coupling becomes large and the standard perturbative
expansion fails, the a-expansion parameter remains
small and the approach is still valid [3].

When comparing theoretical predictions with exper-
imental data, it is important to relate measured quanti-
ties to the “simplest” theoretical objects, to check direct
consequences of the theory without using model
assumptions in an essential manner. Some single-argu-
ment functions, which are directly related to the exper-
imentally measured quantities, can play the role of
these objects. A theoretical description of inclusive pro-
cesses can be made in terms of the functions of this sort.
Let us mention, among them, the hadronic correlator
Π(s) and the corresponding Adler function [4] D that
appear in the process of e+e– annihilation into hadrons
and the inclusive decay of the τ lepton.

1 This article was submitted by the authors in English.
0021-3640/01/7304- $21.00 © 20166
The cross section for e+e– annihilation into hadrons
or its ratio to the leptonic cross section, R(s), has a res-
onance structure, which is difficult to describe without
model considerations at the present stage of theory.
Moreover, the basic method of calculations in quantum
field theory—perturbation theory—becomes ill-
defined due to the so-called threshold singularities.
These problems can, in principle, be avoided if one
considers a smeared quantity [5]

(1)

However, the straightforward use of conventional per-
turbation theory for calculating R∆ is impossible.
Indeed, if the QCD contribution to the function R(s) in
Eq. (1) is, as usual, parametrized by the perturbative
running coupling which has nonphysical singularities,
it is difficult to define the integral on the right-hand
side. Moreover, the standard renormalization group
method gives a Q2-evolution law for the running cou-
pling in the Euclidean region, and the question arises of
how to parametrize a quantity, e.g., R(s) defined for
timelike momentum transfers [6]. To perform this pro-
cedure self-consistently, it is important to maintain cor-
rect analytic properties of the hadronic correlator,
which are violated in the perturbation theory. Within
the nonperturbative a expansion, it is possible to main-
tain such analytic properties and to self-consistently
determine the effective coupling in the Minkowskian
region [7].2 

Another function which characterizes the process of
e+e– annihilation into hadrons and can be extracted

2 The analytic approach to QCD [8] also leads to a well-defined
procedure of analytic continuation [9].

R∆ s( ) ∆
π
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from experimental data is the Adler function

(2)

The D-function defined in the Euclidean region for a
positive momentum Q2 is a smooth function, and, thus,
it is not necessary to apply any smearing procedure in
order to compare theoretical results with experimental
data. Recently, an “experimental” curve for this func-
tion has been obtained [10].

For massless quarks, one can write the
Minkowskian quantity R(s) in the form

(3)

where the sum runs over quark flavors, qf are quark
charges, and r0 is the first perturbative coefficients that
is independent of the renormalization scheme. This
expression includes the effective coupling defined in
the Minkowskian region or, as we will say, in the
s channel, which is reflected in the subscript s. It should
be stressed that, as it is argued from general principles,
the behavior of the effective couplings in the spacelike
and the timelike domains cannot be symmetric [11].

Within the a-expansion method, the s-channel run-
ning coupling can be written as

(4)

where a± obeys the equation [2]

(5)

At the O(a3) level, the function φ(a) has the form

(6)

Similarly, a more complicated expression for the O(a5)
level, which we will use, can be derived.

A convenient way to incorporate quark mass effects
is to use an approximate expression [5]

(7)

D Q2( ) Q2 s
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where

(8)

The quantity rf (s) is defined by the s-channel effective

coupling (s). Smeared quantity (1) and the D func-
tion (2) can be calculated by using Eq. (7) in the corre-
sponding integrands. For MS-like renormalization
schemes, one has to consider some matching proce-
dure. To perform this matching procedure, we can
require that the s-channel running coupling and its
derivative be continuous functions in the vicinity of the
threshold [7, 12].

A description of quark–antiquark systems near the
threshold requires taking into account the resummation
factor. In a nonrelativistic approximation, this is the
well-known Sommerfeld–Sakharov factor [13]. For a
systematic relativistic analysis of quark–antiquark sys-
tems, it is essential to have from the very beginning a
relativistic generalization of this factor. A new form for
this relativistic factor in the case of QCD was proposed
in [14] by using the quasipotential approach to quan-
tum field theory formulated in the relativistic configu-
ration representation [15]. The local Coulomb potential
defined in this representation is specified by its QCD-
like behavior in momentum space [16].

The relativistic S factor has the form [14]

(9)

where χ is the rapidity, which is related to s by

2m  = .

To take into account the threshold resummation fac-
tor, we modify Eq. (7) as follows:

(10)

As the mass m  0, this expression leads to Eq. (3).
We use Eq. (10) in our analysis.

The nonstrange vector contribution to the inclusive
τ-lepton decay can be described by analogy with the
process of e+e– annihilation into hadrons. Using the the-
oretical expression for the Rτ ratio [17]

(11)
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where R(0) corresponds to the parton level, and the mea-

sured value  = 1.775 ± 0.017 [18] is an input, we

extracted the value of parameter a0 in Eq. (5) at the
τ-mass scale, Q0 = Mτ.

Rτ
V

Fig. 1. Plot of the light D function. The experimental curve
corresponding to the ALEPH data is taken from [19].

Fig. 2. The smeared quantity R∆(s) for ∆ = 3 GeV2. The
solid curve is our result. The smeared experimental curve is
taken from [22].

Fig. 3. The D function for the process of e+e– annihilation
into hadrons. The solid curve is our result for five active
quarks. The experimental curve is taken from [10].

Q (GeV)

D

Q (GeV)

D
e+

e–
The “light” D function with three active quarks is
shown in Fig. 1, where we draw the experimental curve
(dashed line), which was extracted in [19] from the
ALEPH data, and our theoretical result (solid line)
obtained by using the following effective masses of
light quarks: mu = md = 260 MeV and ms = 400 MeV.3

These values are close to the constituent quark masses
and incorporate some nonperturbative effects. The
shape of the infrared tail of the D function is sensitive
to the value of these masses.

In Fig. 2, we present the smeared function R∆(s) for
∆ = 3 GeV2. We use the same masses for the light
quarks as before and the following masses for heavy
quarks mc = 1.3 GeV and mb = 4.7 GeV. The smeared
R∆(s) function for ∆ . 1–3 GeV2 is less sensitive to the
value of light quark masses, as compared with the infra-
red tail of the D function. The result for the D function
of the e+e– annihilation process, which includes both
light and heavy quarks, is plotted in Fig. 3. The experi-
mental curve is taken from [10].

The experimental D function turned out to be a
smooth function without traces of the resonance struc-
ture of R(s). One can expect that this object more pre-
cisely reflects the quark–hadron duality and is conve-
nient for comparing theoretical predictions with exper-
imental data. Note here that any finite order of the
operator product expansion fails to describe the infra-
red tail of the D function. Within the framework of non-
perturbative a-expansion technique, we have obtained a
good agreement between our results and the experi-
mental data down to the lowest energy scale for both
Minkowskian and Euclidean quantities.

We thank K.A. Milton for interest in this work and
valuable discussions. This work was supported in part
by the RFBR (project nos. 99-01-00091 and 99-02-
17727).
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The freak wave phenomenon in the ocean is explained by the nonlinear dynamics of phase-modulated wave
trains. It is shown that the preliminary quadratic phase modulation of wave packets leads to a significant ampli-
fication of the usual modulation (Benjamin–Feir) instability. Physically, the phase modulation of water waves
may be due to a variable wind in storm areas. The well-known breather solutions of the cubic Schrödinger equa-
tion appear on the final stage of the nonlinear dynamics of wave packets when the phase modulation becomes
more uniform. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 92.10.Hm; 47.35.+i; 92.60.Dj
The increase in a number of reported damages of
ships and offshore platforms is explained very often by
a freak wave appearance on the sea surface [1, 2].
Several physical mechanisms of the freak wave phe-
nomenon are discussed. First of all, the water wave
interaction with an opposite current is considered as a
mechanism of wave amplification due to the blocking
of water waves on the current. This phenomenon is
investigated within the framework of the wave action
balance equation and the variable-coefficient nonlinear
Schrödinger equation [2–4]. The second mechanism of
wave amplification is related to the formation of caus-
tics in the wave field on random currents [5]. These the-
ories are used to explain freak wave formation due to
the Agulhas current off the southeast coast of South
Africa. Many observations of abnormal waves have
been done in areas with no strong currents. For such
areas, the opinion that the nonlinearity of surface waves
in deep water can produce a giant wave by itself has
become very popular [6, 7]. The theory is based on the
modulation instability of water waves (see review [8])
and the existence of breatherlike solutions of the non-
linear Schrödinger equation [7, 9, 10–13]. The ampli-
tude of breathers can exceed the amplitude of unper-
turbed nonmodulated wave trains more than twice
(remember that it is the formal definition of a freak

1 This article was submitted by the authors in English.
0021-3640/01/7304- $21.00 © 20170
wave). The nonlinear Schrödinger equation is a simpli-
fied model of real wind waves, and more sophisticated
models are also applied (Zakharov equation, Dysthe
equation, etc.). In [6], the freak wave formation due to a
modulation instability computed by a numerical model
of the full-nonlinear hydrodynamic potential equations
was compared with the cubic nonlinear Schrödinger
equation and found a good agreement if the steepness
of waves is not too large. According to these theories,
freak waves exist during the characteristic time scale of
modulation instability and may propagate at a relatively
large distance. Meanwhile, the event descriptions
emphasize the very short-lived character of the freak
wave. In our opinion, the mechanism of water wave
packet focusing due to phase (frequency) modulation
should play a significant role in the formation of a short-
lived freak wave. This mechanism is well known in the
linear theory of dispersive waves [14] and may occur
under specific meteorological conditions. For instance,
an increase in wind speed generates, at the early stages,
wave packets with low group velocities and, later, wave
packets with larger group velocities. The propagation
process results in the formation of an impulse of very
large amplitude, which is due to the superposition of
many spectral packets. Analytic solutions proving this
linear focusing mechanism are presented in [15]. The
phenomenon of significant wave focusing in laboratory
tanks was reported [16, 17] for a wide variation of the
wavelength/depth ratio for deep water and shallow
water as well. Recently, the authors of [18] have
001 MAIK “Nauka/Interperiodica”
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showed that the mechanism of wave focusing can be
applied in the weakly nonlinear theory of shallow
water2 (Korteweg–de Vries model) and suggested a
way to find possible forms of wave trains moving
towards the freak wave, including the random back-
ground of wind waves. Owing to the absence of the
modulation instability for shallow water, the wave
focusing mechanism seems to be major in shallow
water.

This paper deals with freak wave formation in deep
water due to the focusing of nonlinear wave packets
with phase modulation. This mechanism is compared
with the possible generation of giant waves (breathers)
due to the usual modulation instability of water waves.
The main result of the paper is that the frequency mod-
ulation of a nonlinear wave field can lead to larger
amplification of the freak wave than does the amplitude
modulation usually considered by previous authors.

The simple model of weakly nonlinear deep-water
wave packets is the famous cubic Schrödinger equation

(1)

where, in dimensionless variables, A is proportional to

the wave steepness, A = k0a, a is the amplitude of
the surface elevation, k0 and ω0 are the carrier wave
number and frequency respectively, x = 2k0x ' – ω0t ', t =
ω0t '/2, x' and t ' are coordinate and time. Due to the
invariance transformation of Eq. (1), t  –t, i  –i,
the simplest algorithm to find the nonlinear wave pack-
ets moving toward the giant wave can be suggested:
take the expected form of the freak wave as an initial
condition for Eq. (1) and consider the resulting field as
the initial condition that gives the freak wave under the
invariant transformation. The solution of the Cauchy
problem for the nonlinear Schrödinger equation is
known by using the inverse scattering method, see the
pioneering paper [21]. In general, the scattering data
include both continuous and discrete spectra. The con-
tinuous spectrum corresponds to the dispersive wave
packets. In the case of no discrete spectrum, the solu-
tion of Eq. (1) tends to the phase-modulated wave for
large times

(2)

where Q and θ are functions of (x/t) [22]. When Q and
θ are real constants, Eq. (2) gives an exact solution of
Eq. (1), which almost coincides with the self-similar
solution of the linear version of Eq. (1). The difference
is in the logarithmic term of the phase. Replacing t by
T – t and i by –i, Eq. (2) describes the transformation of

2 The process of focusing of phase-modulated impulses in nonlin-
ear media is also known and applied in optics [19, 20].
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the initial frequency modulated wave into the delta
function formally representing the freak wave. There-
fore, the mechanism of wave focusing is valid in linear
theory and in nonlinear theory as well, but the nonlin-
earity influences the optimal phase (wavenumber) dis-
tribution of individual waves due to the logarithmic
term that depends on wave intensity.

Each discrete eigenvalue λ of the spectrum corre-
sponds to an isolated soliton with amplitude 2a and
speed 4b, where a = Re(λ) and b = Im(λ) [21]. The
number of the discrete eigenvalues depends on the form
and energy of the initial disturbance. If the expected
freak wave has the form of an isolated crest with van-
ishing tails at infinity and no phase modulation, all dis-
crete eigenvalues are real and correspond to standing
solitary waves. Due to interaction between them, the
resulting wave field is unsteady and shows the complex
picture of the oscillating impulses of nonconstant form.
In particular, the two-soliton solution (bi-soliton)
describes a wave which breathes with the period T =

π/2  and peak value Amax = 2(a1 + a2), where
a1 = Re(λ1) and a2 = Re(λ2). The discrete spectrum is
found for several forms of initial disturbances; in par-
ticular, [23] considered the profile Afr(x) = Ap (x/L)
(index fr refers to the freak wave). Eigenvalues are pos-
itive and equal to

(3)

where the number of eigenvalues is

(4)

E is the integer function and M is the mass of the freak
wave, M = πApL.

It is important to note that if M < π/2, there is no
soliton generation, and this case can be considered as
quasi-linear. The wave evolves like a self-similar solu-
tion (2): at first, the wave focuses on short freak wave
and then disperses. One soliton forms if π/2 < M <
3π/2, and its amplitude will vary from 0 to 2Ap. In the
latter case, the soliton amplitude exceeds the amplitude
of the initial disturbance. If we consider such a wave
group (one soliton with amplitude 2Ap and the disper-
sive tail) as an initial condition, it will transform into
the sech-disturbance, but it has no specificity of the
expected freak wave (its amplitude should be large on
the background of other waves). If we introduce the
formal definition of the freak wave (its amplitude is no
less than twice the background amplitude), it means
that the amplitude of the freak wave should satisfy the
following condition

(5)
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Therefore, the freak wave generated from the bounded
wave group is a weakly nonlinear wave. Such a wave
can be generated by dispersive wave packets only if
M < π/2 or by dispersive wave packets plus the single
soliton if π/2 < M < 2π/3. The interaction between soli-
tons cannot generate the large-amplitude impulse; it
will be comparable with solitons in amplitude. If we
consider other profiles of the expected freak wave dif-
ferent from the sech-function, the integer constants in
Eqs. (3) and (4) will change (see, for instance, [24]), but
in the same order of magnitude. If we consider the ini-
tial impulse with the quadratic phase modulation like
exp(iqx2), the discrete eigenvalues will increase with q
[25]. This result is obvious, because such a disturbance
will transform first into an impulse with no phase mod-
ulation due to the wave focusing, and this large impulse
leads to the large eigenvalues. Therefore, the form of
the expected freak wave can be taken with no phase
modulation, and the details of the waveform have no
principal significance for the understanding of the wave
focusing phenomenon in the nonlinear medium. The
mechanism described above for the freak wave forma-
tion from the bounded wave packets is the same as for
shallow water [18].

Fig. 1. Development of the modulation instability for differ-
ent phase indexes D. Time of appearance of the wave of
maximal amplitude is provided.

|A|
 The mechanism of the localized wave formation
(solitons or breathers) from the preliminary plane wave
due to the modulation instability has been studied for
almost 20 years. Several nonlinear structures can be
considered as models for the freak wave, its peak
amplitude exceeds more than twofold the unperturbed
value. First of all, there is the Ma-breather [7, 9]

(6)

where p = 2 , Ω = 2 , and ϕ is an arbi-
trary positive constant. This wave tends to the unper-
turbed plane wave of unit amplitude for |x |  ∞, and
its amplitude is periodic in time with a frequency of Ω .
The peak value of the breather exceeds the unperturbed
value twofold and more for 0 < ϕ < 0.96. It is important
to emphasize that the freak wave phenomenon has a
periodic character in this model.

Another solution, called homoclinic orbit, was
found in [11, 13] and may be expressed by Eq. (6) if
replacing ϕ by –iϕ, p by –ip and Ω by –iΩ . This wave
is periodic in space and tends to the unperturbed plane
wave when |t |  ∞. The maximal peak value of the
impulse is less than three. This homoclinic orbit can
also be considered as a model for the freak wave for
ϕ > π/3. It is important to mention that freak waves in
this model should appear simultaneously in many spa-
tial points.

Both breather solutions considered above for ϕ = 0
transform into the algebraic breather [10] as the peak
value becomes three times higher than the value of the
unperturbed wave amplitude. At the moment of maxi-
mal amplification (t = 0), the freak wave represents the
large crest above the unperturbed plane wave (|x | <
1/2), and two depressions up to zero. The mass of this
positive crest only is

(7)

Thus, the breather solution provides a model for the
freak wave with mass greater than for pure focusing
regime, see Eq. (5). This is the main kinematic differ-
ence between focused and nonlinear freak waves. Phys-
ically, this difference can be clarified as follows. The
focused freak wave is formed by the superposition of
many spectral components and the number of spectral
components, or the effective spectrum width, K0,
should be large to provide the narrow crest. The
focused freak wave is a very weakly nonlinear disper-
sive wave, and it should be narrow if the dispersion pre-
vails over nonlinearity. Its time of existence can be very
small. The nonlinear freak wave is due to the modula-
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tion instability. As it is well-known (see, for instance,
[8]), the width of the unstable spectral domain is KBF =
2A0, and the characteristic time scale of the instability

is TBF ~ 1/(2 ), where A0 is the amplitude of the
unperturbed plane wave. For a nonlinear freak wave,
dispersion and nonlinearity are of the same order. Its
time of existence is the characteristic time of the mod-
ulation instability.

For small wave amplitudes, the width of the modu-
lation instability is narrow and the focusing mechanism
should dominate. With the increase of the unperturbed
wave amplitudes, KBF will become comparable to K0,
and the spectral components will contribute in both
processes of the formation of the freak wave. In the
case of no specific phase modulation of the wave
packet, the nonlinear mechanism of the freak wave phe-
nomenon should dominate the general dynamics of the
wave field. But if the specific order of the “draw up” of
the spectral components is organized (for instance due
to the wind action), the phase modulation can cardi-
nally change the modulation instability. The important
role of frequency modulation in the modulation insta-
bility was emphasized in [26]. The author of [26]
pointed out that the small focusing effects may have a
destabilizing effect under certain conditions. Neverthe-
less, it seems that the nonlinear stage of the modulation
instability for frequency-modulated wave packets was
as yet not investigated in the literature. The effect of the
quadratic phase modulation on the nonlinear evolution
of the modulation instability is considered here numer-
ically.

The nonlinear Schrödinger equation is solved by
using a pseudospectral method in a periodic domain of
dimensionless length 176; the number of points varies
from 128 to 1024. The initial condition is

(8)

where A0 = 0.043, d = 28, and D is varied in wide range.
Figure 1 shows various forms of the freak wave for dif-
ferent phase indexes D. The maximal amplitude is
reached at different moments of time; they are given in
Fig. 1. The phase modulation of the initial envelope
leads to the increase in the wave amplitude and to the
decrease in time of freak wave formation (the latter is
provided in Fig. 2). For small D, the formation time is
described by the power-law asymptotic expression (T ~
D2/4), as it can be shown in the linear theory; for large
D it tends to a constant value defined by the modulation
instability (approximately 3TBF). As it is predicted, the
phase modulation of the preliminary amplitude-modu-
lated envelope leads to the formation of a more ener-
getic wave impulse at a shorter time.

For D = 28, the long-term nonlinear dynamics of the
wave field is displayed in Fig. 3. The phase modulation
leads to a complex picture of a wave envelope with one

A0
2

A x 0,( ) A0 1 0.1 x/d( )cos+( ) ix2/D2( ),exp=
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or several peaks and holes that can be considered as a
group of freak waves. The time evolution of the maxi-
mal value of wave amplitude is shown in Fig. 4a. The
very large amplitude peaks appear several times during
12000 time units, and their amplitudes decrease with
time. Then the process becomes more stationary and

Fig. 2. Time of appearance of the freak wave as a function
of D.

Fig. 3. Wave evolution from the initial modulated distur-
bance (D = 28) at different times.

|A|
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peaks with amplitudes about 0.12 appear regularly.
Figure 4b shows the time evolution within the frame-
work of linear theory. In this case, the process of gener-
ation of significant peaks is almost periodic. Similar
behavior is found for wide ranges of the variation of the
phase index D. Physically, the role of nonlinearity in
the wave field behavior can be explained as follows.
The quadratic phase modulation in Eq. (8) corresponds
to a linear variation of the wave number (wave fre-
quency) with distance. At the first stage, the slope of
K(x) increases and tends to infinity, leading to focusing
(it can be easily shown for linear waves within the
framework of the kinematic equation for the wave num-
ber). After focusing, the slope of K(x) changes its sign
and decreases. Then, a jump in wave number is formed
and the function K(x) becomes multivalued with many
jumps. As a result, the wave packet in the periodic prob-
lem can focus many times, as it is shown in Fig. 4b.
The nonlinear effects leads to the smoothing and uni-
formity of the phase distribution. Here, the role of the
classical modulation instability is more significant and
the wave transformation is similar to that studied in
[6, 12, 13]. At this stage, the amplitude of freak wave is
less than three times the amplitude of the unperturbed
value.

Therefore, the effect of phase modulation of the ini-
tial wave disturbance leads to a significant intensifica-
tion of the process of freak wave generation. The phase
modulation of the wind wave field can be due to spe-
cific meteorological conditions and the relation

Fig. 4. Time variation of the maximal amplitude in the wave
packets for D = 28; (a) nonlinear and (b) linear cases.

|A|

|A|
between the observed freak waves and heavy weather
conditions is very often mentioned in the literature.
Due to the short time of existence of the freak wave, the
random forcing from the wind (this process should be
studied within the framework of the forced version of
the nonlinear Schrödinger equation) cannot modify
radically the process of freak wave formation from the
frequency-modulated disturbances at least at the first
stage, meanwhile as it was shown in [27], the usual
modulation instability is reduced in the random fields.

The one-dimensional model used cannot predict the
behavior of the wave field in two-dimensional case. The
transversal instability (see [28]) may have an influence
on the process of formation of a freak wave. This
should become the topic for following investigations.

This work was supported by the INTAS (grant
no. 99-1637) and the TEMPUS-TASIS (JEP no. 10460-
98) and (for EP) by the INTAS (grant no. 99-1068) and
the RFBR (project no. 99-05-65576).
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In the framework of a variational method, the molecular ion  in a magnetic field is studied. The optimal form
of the vector potential corresponding to a given magnetic field (gauge fixing) is chosen variationally. It is shown
that for any magnetic field strength, as well as for any orientation of the molecular axis, the system (ppe) pos-
sesses a minimum in the potential energy. The stable configuration always corresponds to the elongation along

the magnetic line. However, for magnetic fields B * 2 × 1011 G and some orientations, the  ion becomes
unstable, decaying into the H atom +p. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 31.15.Fm; 31.15.Pf; 32.60.+i
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The  ion is simplest one-electron molecular sys-
tem, which is more stable than the hydrogen atom. It
appears to be one of the most studied problems in non-
relativistic quantum mechanics. In particular, the
wealth of physical phenomena displayed by this system
in a magnetic field becomes of great importance in
astrophysics, solid state, and plasma physics. For
instance, as the magnetic field grows, the system
becomes more and more strongly bound and compact.
Such a behavior naturally leads to the guess that, in spite
of the huge temperatures at neutron star surfaces, their
atmosphere can still contain molecular objects [1, 2].
On the other hand, a shrinking of the equilibrium dis-
tance between protons with the growth of the magnetic
field drastically increases the probability of nuclear
fusion [3]. It is quite surprising that such a shrinking is
also accompanied by a change from ionic to covalent
character at ~5 × 1011 G [4] (see also [5]). The goal of
this paper is twofold. Firstly, to show that the system
(ppe) always has a minimum and, correspondingly, the

molecular ion  can exist at least in magnetic fields

&4.414 × 1013 G. Secondly, to demonstrate that for B *
2 × 1011 G and for some orientations of the molecular
axis the ion becomes unstable, dissociating into the

H2
+

H2
+

1 This article was submitted by the authors in English.
0021-3640/01/7304- $21.00 © 20176
H atom +p. The variational method is used to study this
problem.

The Hamiltonian describing the  molecular ion
placed in a uniform constant magnetic field directed
along the z axis, @ = (0, 0, B) (see, for example, [6]) is
given by

(1)

(see Fig. 1), where  = –i∇  is the momentum and ! is a
vector potential corresponding to the magnetic field @.

The vector potential for a given magnetic field is
defined ambiguously to a gauge factor. Thus, the
Hamiltonian is gauge-dependent, but the observables
are not. Since we are going to use an approximate
method for solving Eq. (1), our energies can be gauge-
dependent (only the exact ones would be gauge-indepen-
dent). Hence, one can choose the form of the vector
potential in an optimal way. Let us consider a certain
one-parameter family of vector potentials corresponding
to the constant magnetic field B (see, for example, [4])

(2)

where ξ is the parameter to be fixed in a certain optimal
way. If ξ = 1/2, we get a gauge called symmetric or cir-
cular, while ξ = 0 corresponds to an asymmetric gauge

H2
+

* p̂2 2
R
--- 2

r1
---- 2
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(see [6]). By substituting Eq. (2) into Eq. (1), we arrive
at the Hamiltonian

(3)

The idea of choosing an optimal gauge has widely
been exploited in quantum field theoretical consider-
ations. It has also been discussed in connection with the
problem at hand (see, for instance, [7] and references
therein). Perhaps, the first constructive (and remark-
able) attempt to apply this idea was made by Larsen [4].
In his study of the ground state, it was explicitly shown
that the gauge dependence of energy can be quite sig-
nificant and even an oversimplified optimization proce-
dure improves the numerical results.

Our aim is to study the ground state for the Hamil-
tonian (3). It is not difficult to see that there exists a cer-
tain gauge for which Hamiltonian (3) has a real ground-
state eigenfunction. This gauge will be sought below,
and, correspondingly, we will deal with real trial func-
tions in our variational calculations. In this case, one
can prove that the expectation value for the term ~B in
Eq. (3) vanishes when it is taken over any real normal-
izable function. So, without loss of generality we can
omit this term in the Hamiltonian. Finally, the recipe of
our variational study can be formulated as follows:
Construct an adequate variational real trial function
[8] that reproduces the original potential near Cou-
lomb singularities and at large distances, where ξ
should be included as a parameter. Perform a minimi-
zation of the energy functional by treating the trial
function’s free parameters and ξ on the same footing. In
particular, such an approach enables one to eventually
find the optimal form of the Hamiltonian. The above
recipe was successfully applied in the previous study of

 in magnetic field [5] and allowed one to predict the

existence of the exotic ion  at B * 1011 G [9].

One of the simplest trial functions satisfying the
above-mentioned criterion is

(4)

(cf. [5]), where α1 and β1x, 1y are the variational param-
eters. We assume that ξ ∈  [0, 1], which is a restriction
that will later be justified. Actually, this is a Heitler–
London function multiplied by the lowest Landau
orbital associated with gauge (2). This function pre-
sumably describes internuclear distances near the equi-
librium and a covalent character. Another possible trial
function is

(5)
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(cf. [5]), where α2 and β2x, 2y are the variational param-
eters. This is a Hund–Mulliken function multiplied by
the lowest Landau orbital. One can assume that for a
sufficiently large internuclear distance R, this function
dominates, thus giving an essential contribution in this
regime. Hence, it describes an interaction of a hydrogen
atom and a proton (charged center) and can also

describe a possible decay mode of  into them. There
are two natural ways—linear and nonlinear—to incor-
porate the behavior of the system both near equilibrium
and at large distances in a single trial function. The non-
linear interpolation is of the form

(6)

(cf. [5]), where α3, 4 and β3x, 3y are the variational
parameters. This is a Guillemin–Zener function multi-
plied by the lowest Landau orbital. The linear superpo-
sition is given by

(7)

H2
+

Ψ3–1 –α3r1 α4r2–{ } –α3r2 α4r1–{ }exp+exp( )=

× B β3xξ x2 β3y 1 ξ–( )y2+[ ]–{ }exp

Ψ3–2 A1Ψ1 A2Ψ2,+=

Fig. 1. Geometrical setting for the  ion in a magnetic

field directed along the z axis.

H2
+

Fig. 2. Gauge parameter as a function of the inclination

angle for . The magnetic field B = 1012 G was taken as

an example. This dependence is found in the present study.

H2
+

θ, deg
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Fig. 3. Total energy of the  ion as a function of the inclination angle. The horizontal lines refer to the H ground-state energy taken

from Lai et al. [11].

H2
+

θ, degθ, deg

×

where one of the parameters A1, 2 is kept fixed. The final
form of the trial function is a linear superposition of
functions (6) and (7)

(8)

where only two of the three A parameters are variation-
ally treated. The total number of variational parameters
in Eq. (8) is fourteen when ξ is included.

It is easy to prove the general statement that if a sys-
tem possesses axial rotational symmetry (in our case, it
appears if the molecular axis coincides with the mag-
netic line, θ = 0°; see Fig. 1), the optimal gauge corre-
sponds to ξ = 1/2 (symmetric or circular gauge). It is
precisely this gauge which was used in most of previ-

ously performed -studies. However, this is not the
case if θ ≠ 0°. As an example, one can see in Fig. 2 the
behavior of ξ as a function of θ at B = 1012 G. It is typ-
ical behavior for all studied magnetic fields, both weak
and strong, up to the nonrelativistic limit B = 4.414 ×
1013 G. It justifies our above assumption with regard to
the domain of gauge parameter ξ ∈  [0, 1].

Ψtrial A1= Ψ1 A2Ψ2 A3–1Ψ3–1,++

H2
+

We carried out extensive studies of the ground state

of  for magnetic fields B = 0–4.414 × 1013 G and ori-
entations ranging from 0° (parallel configuration) to
90° (perpendicular configuration). They turned out to
be more accurate than any available results obtained to
date, except for a domain of small magnetic fields for
the perpendicular configuration, where the results of
Wille [10] appear to be slightly better.2 The detailed
numerical analysis and comparison with available cal-
culations will be published elsewhere.

As previously obtained by other authors [3, 10, 4],
we quantitatively confirm the natural expectation that the
parallel configuration is the most stable for all magnetic
fields B & 4.414 × 1013 G, where nonrelativistic consid-
erations are valid. The total energy of the molecular ion

 as a function of angle θ for different magnetic fields
is shown in Fig. 3. For any magnetic field in the region

2 These results were obtained using a basis-set expansion including
up to approximately 500 terms, depending on the value of mag-
netic field.

H2
+

H2
+
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B = 0–4.414 × 1013 G and any orientation, a well-pro-
nounced minimum in the total energy is attained at
finite internuclear distances. This is in contradiction
with a statement by Khersonsky [3] about the nonexist-
ence of a minimum for some values of the magnetic
field and orientation. Perhaps, it should be emphasized
that the variational study in that article was carried out
using a trial function which is almost coincident with
that in Eq. (5). We can thus presume that the above
statement is an artifact arising from insufficient accu-
racy of calculations. The horizontal line in Fig. 3 pre-
sents the hydrogen atom total energy in the magnetic
field (see [11]). For magnetic fields B * 1.8 × 1011 G,
the total energy of the atom becomes lower than that of

 for angles larger than some critical angle, θcr . For
θ = 90°, a similar statement was made by Larsen [4]. It

points to the possible dissociation channel  
H atom + p. The dependence of the critical angle θcr on
the magnetic field is shown in Fig. 4. It is quite striking
that dissociation occurs for a wider and wider range of
orientations as the magnetic field grows, reaching
25° & θ ≤ 90° for B = 4.414 × 1013 G.

H2
+

H2
+

Fig. 4. Critical angle for dissociation of .H2
+

θ c
r, 

de
g

×
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Chaotic Motion of Atom in the Coherent Field
of a Standing Light Wave
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A new effect of chaotic motion of the center of mass of a cold atom in the coherent field of a standing light wave
in a high-finesse Fabry–Pérot cavity is theoretically predicted and numerically implemented in the absence of
any random fluctuations due to spontaneous emission. Numerical experiments demonstrate that the Hamilto-
nian chaos arises near resonance in the range of parameters characteristic of the strong coupling regime that
was implemented in recent experiments. The effect is of interest in studying the quantum–classical correspon-
dence and quantum chaos in atomic optics. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 32.80.Lg; 42.50.Vk; 42.65.Sf; 05.45.Mt
The interaction of a free atom with a resonance elec-
tromagnetic field not only changes the internal (elec-
tronic) degrees of freedom of an atom but simulta-
neously changes its external (translational) degrees of
freedom. The ideas of laser action on the translational
degrees of freedom [1–4] have led to the development
of powerful methods of laser-induced atom cooling and
trapping [5–7]. Under ordinary conditions, the light
intensity is high enough so that it can be considered as
an inexhaustible energy and momentum reservoir for
an atom whose presence has no effect on the field state.
In a high-finesse microcavity, the interaction of an atom
with the field is strong to the extent that a multiple exci-
tation exchange between them becomes possible. The

strong coupling regime for the internal (Ω0  > ,
where Ω0 is the single-photon Rabi frequency, n is the
mean number of photons in the mode, and Γa, f are the
relaxation rates of atomic dipole and photons, respec-

tively) and external ("Ω0  > , where va is the
atomic velocity) degrees of freedom has recently been
realized in [8, 9].

A fundamental model of interaction of the atomic
internal and external degrees of freedom with the field
of a standing light wave is expressed by the Hamilto-
nian

(1)

that describes, in the rotating-wave approximation, the
coherent dynamics of a two-level atom placed in an
ideal one-dimensional Fabry–Pérot-type cavity. In this
communication, it is shown that: (i) within the frame-

n Γa f,
1–

n mv a
2

Ĥ
p̂2

2m
-------

1
2
---"ωaσ̂z "ωf â†â

1
2
---+ 

 ++=

+ "Ω0 â†σ̂– âσ̂++( ) k x̂ ϕ+( )sin
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work of the fundamental model, a new effect of chaotic
motion of the center of mass of an atom in the coherent
potential field of a standing light wave is possible in the
absence of any random fluctuations; (ii) the Hamilto-
nian dynamic chaos arises near the resonance in the
range of parameters characteristic of strong coupling
regime [8, 9]; and (iii) this effect leads to partial
destruction of a regular structure formed by the poten-
tial wells (traps) for slow atoms and to the disappear-
ance of a regular spatial modulation of Rabi oscillations
for fast atoms. It should be emphasized that the effect
of chaotic motion of the center of mass of an atom
arises in model (1) describing the dynamic interaction
of the atomic internal and external degrees of freedom
with the field degree of freedom. So far, the chaos in the
interaction of the elementary quantum systems with
radiation has been studied using models disregarding a
change in the momentum of the system in the course of
interaction with field (see pioneer work [10] and other
papers, e.g., [11, 12] and literature cited therein). In
[13, 14], the dynamic chaos was numerically revealed
and studied, with allowance made for the spatial struc-
ture of standing wave, but again without regard for a
change in the atomic momentum, within the framework
of a model of parametric interaction between the mov-
ing atoms and the field (i.e., in the Raman–Nath
approximation).

Hamiltonian (1) describes the interaction between
three subsystems: translational, characterized by the
atomic coordinate  and momentum  operators; elec-
tronic, characterized by the Pauli matrices  =

 and ; and the field subsystem, charac-

terized by the photon annihilation  and creation 
operators. The semiclassical coherent dynamics of

x̂ p̂
σ̂±

1
2
--- σ̂x iσ̂y±( ) σ̂z

â â†
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interaction between these systems is described by the
Heisenberg equations

(2)

that are derived from Hamiltonian (1) with initial phase
ϕ = –π/2 for the following dimensionless variables:

(3)

which are averages of the corresponding operators in
the quantum state |ψ〉 of the total system. It is assumed
to be factorized at the initial time τ0 = Ω0t0 in a product
of translational |ψ0〉 tr , electronic |ψ0〉e, and field |ψ0〉 f

vector states. The normalized resonance detuning δ =
(ωf – ωa)/Ω0, the normalized recoil frequency α =
"k2/mΩ0 ≡ 2ωR/Ω0, and the number of excitations N =

n + (z + 1), which, as known, is conserved in the rotat-

ing-wave approximation, are the driving parameters of
the closed system of nonlinear Eqs. (2). System of
Eqs. (2) provides the conservation of the total energy
and the electron–field interaction energy,

(4)

It can be interpreted as a Hamiltonian system with the
coupled translational (the ξ and ρ variables) and elec-
tron–field (the u and v variables) degrees of freedom.
At the initial time, the u and v quantities are simple
combinations u0 = (e0x0 – p0y0)/2 and v0 = (e0y0 +

p0x0)/2 of the field variables e0 ≡  and p0 ≡
i  and the atomic dipole-moment variables
x0 ≡  and y0 ≡ .

If the mode frequency ωf coincides with the atomic
transition frequency ωa, i.e., if δ = 0, then it follows
from the third equation in Eqs. (2) that there is an addi-
tional integral of motion u = u0. In this case, the atomic
center-of-mass motion in the potential periodic field
U = –u0cosξ produced by the standing wave obeys the

simple equation of a free nonlinear oscillator  +
αu0sinξ = 0 and is independent of the internal atomic
state. Depending on the initial conditions, the atom is
either trapped by the standing wave, so that its center of
mass executes periodic oscillations, or crosses the
standing wave in such a manner that its momentum is
periodically modulated. The atom is trapped by the
field if its initial momentum satisfies the condition ρ0 ≤
ρcr = 2 . The critical atomic velocity and the nor-

ξ̇ αρ, ρ̇ u ξ , u̇sin– δv ,= = =

v̇ –δu 2Nz ξ , żcos+ 2v ξcos–= =

ξ k x̂〈 〉 , ρ 1
"k
------ p̂〈 〉 ,= =

u â†σ– âσ̂++〈 〉 , v i â†σ̂– âσ̂+–〈 〉 ,= =
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malized frequency  of atomic small-amplitude
oscillations in the potential well depend on the initial
field and atomic dipole components. It follows from
these relationships that, in the exact resonance, the
atom moves uniformly and rectilinearly, provided that
the field and/or atom are initially prepared in such a
manner that u0 = 0, i.e., if e0x0 = p0y0. In particular, the
completely inverted atom (z0 = 1 and x0 = y0 = 0) will
continue the uniform and rectilinear motion irrespec-
tive of the initial standing-wave state |ψ0〉 f. The same
will occur with an atom entering the cavity in which the
field is in the Fock’s state |n〉 f with a specified number
of photons, regardless of the initial state |ψ0〉e of the
atom. Clearly, these considerations are valid only in the
absence of dissipation. The decay of the chosen mode
and the spontaneous emission to other modes are
ignored in the strong-coupling approximation.

On the other hand, the evolution of the atomic inter-
nal energy and the evolution of the average number of
photons in the mode depend on the translational
degrees of freedom, because the coupling strength
between the atom and field depends on the atomic posi-
tion in the periodic potential of the standing wave. The
equation of motion for the population inversion can be
obtained from the two last equations in Eqs. (2) with
the use of Eqs. (4),

(5)

The solution of this equation is straightforward:

(6)

Therefore, the atomic internal energy (and the average
number of photons in the mode) undergo periodically
modulated oscillations. In the limit of large detunings,

δ @ , the population inversion can be adiabatically
eliminated from Eqs. (2). As a result, the number of
degrees of freedom in the system of Eqs. (2) is effec-
tively reduced to unity and it becomes integrable with
the periodic solutions. In actuality, we are dealing with
two coupled oscillators, one of which (electron–field)
is linear, with the eigenfrequency δ being much higher

than the frequency  of the small-amplitude trans-
lational oscillations.

In the limiting cases of large and small detunings,
the system executes periodic motions. A simple quali-
tative analysis of equations of motion (2) yields the fol-
lowing quantitative criteria for the limiting cases: δ >

max{1, , αρ0/ } and δ < min{1, ,

αρ0/ }. The dynamical complexity in the interaction
between the internal and external degrees of freedom of
a two-level atom in the field of a standing light wave
arises in the near-resonance region. Before proceeding
to the numerical experiments, let us estimate the range

αu0
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of driving parameters of our system in the strong-cou-
pling regime. In experiments [8, 9], atoms (precooled
in a magneto-optical trap down to the energy Ek in the
millikelvin range) enter a high-finesse Fabry–Pérot
microcavity and move in a radial plane (where the
standing-wave mode is Gaussian-shaped) across the
cavity axis x with a coskx mode shape. At small veloc-
ities, the atoms are trapped by the Gaussian potential
well. The real-time detection of the atomic oscillations
in the well is accomplished by monitoring the intensity
variations of a probe laser beam directed along the x
axis. Since the probability of laser-induced transition
between the states of the dressed atom depends on the
atomic coordinate r, the intensity of light passed
through the cavity with an atom inside it directly
depends on the coupling strength Ω(r) between the
atom and the field. The measured intensity oscillations
can be used to reproduce the atomic trajectory in the
radial plane.

The authors of [8] used cesium atoms with mass
ma . 10–22 g, kinetic energy Ek . 0.46 mK, a working

Fig. 1. Typical chaotic trajectory of an atom in the coherent
field of a standing light wave.

Fig. 2. The maximum Lyapunov exponent λ, in units of
inverse dimensionless time, as a function of the normalized
resonance detuning δ for two values of the average number
of photons n0 in the mode.

λ

transition frequency ωa . 2π × 3.5 × 108 MHz, detuning
|ωf – ωa| . 2π × 50 MHz, and decay rate of Γa . 2π ×
2.6 MHz in a Fabry–Pérot cavity with a length of
10.9 µm, finesse Q . 4.8 × 105, field decay rate Γf .
2π × 14.2 MHz, and a standing-wave potential well
depth of .2.3 mK. Since the single-photon Rabi fre-
quency Ω0 . 2π × 110 MHz in the standing-wave anti-
node is larger than Γa, f and "Ω0 . 5.3 mK is larger than
Ek, the conditions for strong coupling are fulfilled for
both internal and external atomic degrees of freedom.
These quantities can be used to calculate the dimen-
sionless driving parameters of our system [Eqs. (2)]:
the recoil frequency α . 4 × 10–6 and the detuning |δ| .
0.4. The experimental parameters used in [9] for the
85Rb atom give α . 4.4 × 10–4 and |δ| . 1, and α .
10−3 and |δ| . 0.5 is obtained for the light He atom. In
the semiclassical approximation, the atom is a material
point with coordinate  and momentum  driven
by the –"kΩ0  force. This approximation is
valid if the recoil energy "ωR is much lower than the
other characteristic energies, i.e., the kinetic energy

/2 and electron–field energy "Ω0. It follows that
the criterion for the validity of semiclassical approxi-
mation can be formulated as α ! 1 and vR = "k/m ! va.

If the atom is completely inverted (z0 = 1) at the ini-
tial time, then u0 = v0 = 0, regardless of the type of
quantum state of a field in the cavity. At the exact reso-
nance (δ = 0), this atom crosses the standing light wave
without being affected by the field. The situation dras-
tically changes for the atom slightly detuned to both the
red (δ < 0) and blue (δ > 0) regions. A typical trajectory
of the He atom with initial momentum ρ0 = 50 and δ =
0.5 in the field of a standing wave with initial average
number of photons n0 = 9 is depicted in Fig. 1. When
moving across the cavity, the atom oscillates in the
wells and jumps at random from one well to the other.
The fact that this motion is chaotic in the sense of expo-
nential sensitivity to the changes in initial conditions is
proved by evaluating the maximum Lyapunov expo-
nent λ for the system of Eqs. (2) in units of inverse
dimensionless time. Figure 2 shows the dependence of
λ on the detuning δ for different initial values n0. As
expected, the chaos disappears (λ = 0) near the reso-
nance and away from it. Note that the atom can chaoti-
cally move at δ ≠ 0 even if the field in the cavity is ini-
tially in the vacuum state. Figure 3 is the so-called topo-
graphical λ map [13, 14] constructed in the va – ωR/2π
coordinates for fixed δ = 0.5 and N = 10. In Fig. 3, dif-
ferent regions of the λ values are differently shaded for
the initial velocities va lying in the range 1–500 cm/s
and the recoil frequencies ωR/2π lying in the range
1−1000 kHz. This map is used to determine the values
of indicated quantities (and, hence, the type of atom)
for which one can expect either the chaotic or a regular
motion of an atom in cavity.

x̂〈 〉 p̂〈 〉
û k x̂cos〈 〉

mv a
2
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In summary, we have predicted, both theoretically
and numerically, the effect of chaotic motion of an
atom in a high-finesse Fabry–Pérot cavity in the range
of parameters corresponding to the strong-coupling
regime. The semiclassical Hamiltonian chaos arises as
a result of the coherent energy exchange between the
translational and electron–field degrees of freedom of a
nonlinear atom–field–cavity system in the absence of
any random fluctuations due to spontaneous emission
or to the other coherence-breaking factors. The realiza-
tion of the strong-coupling regime for single atoms and
photons in experiments [8, 9] allows one to believe that
special experiments on studying the quantum–classical
correspondence and the quantum chaos in atomic
optics would be quite promising. The studies of quan-
tum dynamics for an atomic wave packet in the quan-
tized field and, in particular, of the effect of dynamical
localization in the range of parameters where we have
revealed semiclassical chaos seem to be of particular
interest.

Fig. 3. The topographical map of λ values as a function of
the initial atomic velocity va (cm/s) and the recoil frequency
ωR/2π (kHz).

v
a 

(c
m

/s
)

[kHz]
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Note in conclusion that the Hamiltonian dynamics
studied in this work for an atom in the spatially periodic
potential can be considered adequate in the extremely

strong-coupling regime (Ω0  @ Γa, f). Rapid advance
in experimental technique allows us to believe that this
regime will be realized in near future for single atoms
and photons in the optical range. The dissipation and
spontaneous emission can be taken into account within
the framework of semiclassical approach. It is conceiv-
able that this will give rise to a dissipative chaos, which
deserves special investigation.

This work was supported by the Russian Foundation
for Basic Research, project no. 02-17269.
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The theoretical and experimental possibilities of obtaining enlarged images in the hard X-ray range with the use
of asymmetrical crystals (monochromators) are considered. © 2001 MAIK “Nauka/Interperiodica”.
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At present, a considerable interest is being shown,
both in Russia and abroad, in works devoted to obtain-
ing images of internal details of nontransparent objects
by the methods of X-ray microscopy [1]. Depending on
the chosen wavelength, the use of X-ray radiation
allows one to vary both the radiation penetration depth
into a substance and the contrast of various chemical
compounds and biological tissues relative to each other.
Unfortunately, one cannot as yet realize the huge
resolving potentialities of X-ray optics because of its
poor development (the theoretically highest attainable
resolution is comparable to the wavelength), especially
for energies higher than 1 keV. The potentialities of X-
ray microscopy without the use of optics are limited by
a resolution of several microns because of either the
finite sizes of a source [2] (in projection microscopy) or
a poor detector resolution [3] (in contact microscopy).
Attempts at improving the resolution to fractions of a
micron lead to large exposure times (tens of hours),
thereby restricting the practical use of these micros-
copy schemes.

In this work, we use a range of hard X-rays (λ =
0.05–0.3 nm). In our opinion, this wavelength range is
promising for studying various objects, because the
absorption and refraction are comparatively weak for
most materials, whereas the contrast is still noticeable.
In addition, the use of such radiation does not necessi-
tate the evacuation of an apparatus; i.e., the proposed
scheme can be realized in the laboratory conditions
with the use of an X-ray tube as a source.

In this wavelength range, Fresnel zone plates [4] for
transmission [4] and reflection (Bragg–Fresnel optics
[5]) have found the greatest application. The fabrica-
tion of such optics is a highly complicated technologi-
cal problem, while the resolution, determined by the
width of external zone, presently does not exceed
0.2 µm for the best lithographically fabricated zone
plates [6]. At present, these zone plates are used only
for synchrotron radiation sources. The corresponding
0021-3640/01/7304- $21.00 © 20184
visual field is equal to hundreds of microns. In this
paper, the reflection from an asymmetrical crystal
(monochromator) is suggested for obtaining enlarged
images [7]. Such a crystal may become an alternative
optical element for laboratory X-ray microscopes,
because it provides (as will be shown below) a rather
high resolution and a large visual field. This paper is
devoted to the estimates of theoretical resolution and
the description of our experiments with an asymmetri-
cal silicon crystal.

Theoretical estimates of resolution. Let us prove
that the submicron resolution and a 30–50-fold enlarge-
ment can be obtained by using the above-mentioned
radiation and the asymmetrical reflection from perfect
single crystals. As known, the linear dimensions dr of
the reflected beam become different from the incident
value d0 upon the asymmetrical Bragg reflection. In
geometrical optics, their ratio is given by the expression

(1)

where θ0 is the angle of incidence and θr is the angle of
reflection.

Let us demonstrate that the micron resolution can be
obtained with the use of ordinary X-ray tubes if the
crystal parameters and the wavelength of incident radi-
ation are optimally chosen. Equation (1) can be used to
estimate the maximum enlargement for a single reflec-
tion. Setting sin θr ≈ 1 and taking into account that the
smallest angle of incidence for a highly asymmetrical
diffraction is determined by the angle of total external

reflection θc =  ≈ 4 × 10–3 rad, one finds that the
maximum enlargement is on the order of 250. However,
Eq. (1) is only valid under the condition that the beam
widths are much larger than the extinction length. For
an infinitely narrow incident beam, the characteristic
sizes of the reflected beam are determined by the pro-
jection of the extinction length onto the entrance face of
a crystal. It is conceivable that it is this fact which

dr/d0 θr/ θ0,sinsin=

χ0
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reduces interest in the use of asymmetrical reflection in
X-ray microscopy. Let us determine the limiting possi-
bilities for spatial resolution in this scheme. In the dif-
fraction by a perfect crystal, the extinction length of
X-ray radiation is given by the expression lc = λ / |χh|.
For the CuKα radiation, this is on the order of 20 µm in
silicon and 5–10 µm in germanium (χ0 and χh are the
Fourier components of dielectric susceptibility). For
an  angle of incidence of 10–2 rad and hole sizes of
0.2 µm in the object, its projection onto the crystal sur-
face is 20 µm; i.e., it coincides with the extinction
length in silicon and is 2–4 times larger than the extinc-
tion length in germanium. For instance, for a germa-
nium (111) crystal, such angle gives a value of 40 for
the asymmetry parameter, so that the size of the spot
on photographic film will be 8 µm. With the photo-
graphic film, this is likely close to the limiting value,
because the grain size in the film is 2–5 µm. However,
the resolution of the scheme, in principle, can be
brought to 1000 Å upon a twofold decrease in the angle
of incidence. In Fig. 1, the curve for the total external
reflection is compared with the curve for a diffraction
reflection. It is seen in this figure that the intensity of
the diffracted wave exceeds the intensity of the reflected
wave at the angle of incidence θc ≤ θ0 ≤ 2θc, so that the
reflection losses are insignificant. Let us estimate the
diffraction limits of reflection. The angular divergence
caused by the passage of a plane wave through the hole
can be expressed by the formula ∆θ = λ/d. The corre-
sponding linear expansion of a beam at distance l is
∆x = l∆θ. Consequently, the divergence of a plane wave
with λ ≈ 0.1 nm will be equal to ∆θ ≈ 10–4 after passing
through a hole with diameter d = 1 µm, so that the holes
spaced at ∆x = 1 µm will merge at a distance of l = 1 cm.

The angular divergence of a polychromatic beam of
the X-ray tube should not exceed the divergence due to
the diffraction by the object, so that, if we want to
obtain a resolution of 1 µm, it should be less than 10–4.
This limitation is not stringent in the single-reflection
schemes and can easily be removed by choosing the
appropriate distance from the tube to the sample under
study and the appropriate tube focus size. However, the
use of a scheme with two reflections in mutually per-
pendicular planes is more efficient for the two-dimen-
sional enlargement. Due to the dispersion properties of
this scheme, one can make the distance from the tube to
the sample arbitrarily short, thereby appreciably
enhancing the intensity of the reflected beam and
reducing the exposure time.

Enlarged images experimentally obtained using
an asymmetrical monochromator. The scheme of our
experimental setup is shown in Fig. 2. An air-cooled
point source of MoKα radiation was used (the diameter
of a focal spot was about 50 µm). The widths of slit dia-
phragms 2 were chosen to be 250 µm. The sample was
fixed at the second diaphragm as close to the asymmet-
rical monochromator as possible. The monochromator
was mounted on a goniometer and could be moved in
JETP LETTERS      Vol. 73      No. 4      2001
the direction perpendicular to the incident radiation and
rotated about two perpendicular axes (one of them was
aligned with the normal to the entrance face of crystal).
To reduce the resolution losses caused by beam diver-
gence, the object and the detector were be placed as
close to the crystal as possible. A Si crystal with an
asymmetrical (111) reflection was used as the enlarging
optical element. The angle between the crystal surface
cut and the reflecting crystallographic planes was
5.64°. According to Eq. (1), this provided a ~20-fold
enlargement (in one direction, because only one mono-
chromator was used). The crystal tuning to the reflec-
tion was carried out using a scintillation detector. The
enlarged image of the object was placed on the photo-
graphic film UFShS (Khimfotoproekt Research Insti-
tute, Russia). Copper objective gauze for electron
microscopy and a tantalum impact membrane were
chosen as objects for investigation. The electron-
microscopic images of the objects are shown in Fig. 3.
One can see that the objective gauze for electron
microscopy is a network of square holes with sides of
~65 µm and a spacing of ~100 µm. The impact track
membranes represent a system of holes with diameters
of 10–70 µm in a tantalum foil. These holes (tracks)
may be differently inclined to the membrane surface
(Fig. 3, tracks a, b).

Fig. 1. The coefficients of diffraction (|Rdif |2) and total

external (|Rter|2) reflections as functions of glancing angle.

Fig. 2. Scheme of experimental setup. (1) Microfocal
source, (2) collimating slits, (3) sample, (4) asymmetrical
crystal on a goniometer, and (5) photographic film.
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Fig. 3. Electron-microscopic images of the objects studied: (a) and (b) are images of the surfaces of track membranes, as obtained
with different enlargements on the side of particle entrance, and (c) is the same on the exit side. The image of electron-microscopic
gauze is seen at the right of panel (a).
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Fig. 4. Experimental X-ray image obtained for the objects with a 20-fold enlargement in one direction.

6

The results of our X-ray experiments are presented
in Fig. 4. The image of the copper gauze is a system of
sticks separated by light strips. One stick corresponds
to one square hole. Considering that the enlargement
was only in one direction, the ratio between the length
and width of the stick corresponds to the actual enlarge-
ment and, as expected, equals ~20. The image of holes
in the impact membranes also represents a system of
JETP LETTERS      Vol. 73      No. 4      2001
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Fig. 5. Image of the same objects obtained on an optical microscope: (a) optical image and (b) the same image extended 20-fold in
one direction.
sticks. This image can be juxtaposed with the image
obtained on an optical microscope (Fig. 5). The pore
diameters obtained in the X-ray experiment agree well
with the electron microscopy data. The number of
tracks distinguished by an optical microscope is
smaller than their number found in the electron photo-
micrographs, indicating that not all tracks are through-
going, although they can be distinguished in the X-ray
image (Figs. 3, 4, 5, tracks 10, 12, 21).

Thus, we have substantiated the possibility of
obtaining enlarged images of the objects with a resolu-
tion of ~20 µm. The images of some objects are
obtained with a ~20-fold enlargement. The enlarged
images are obtained for the holes in the impact track
membranes with the smallest diameter being on the
order of 20 µm.

We are grateful to A.V. Vinogradov and D.L. Zagor-
skiœ for helpful discussions. This work was supported
by the International Scientific and Technical Center
(grant no. 918) and the Russian Foundation for Basic
Research (project no. 99-02-17336).
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Spin Disclination in a Layered Antiferromagnet
with a Screw Dislocation
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A screw dislocation perpendicular to layers in layered antiferromagnets with a ferromagnetic exchange inter-
action of spins in the atomic planes and an antiferromagnetic interaction between planes gives rise to nonsin-
gular disclinations with a ferromagnetic core. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 61.72.Lk; 75.25.+z
Spin ordering in an antiferromagnet is described
within the concept of a finite number of magnetic sub-
lattices each ferromagnetically ordered, provided that
the total magnetic moment of the antiferromagnet
equals zero in the exchange approximation. Antiferro-
magnetic ordering is sensitive to crystal lattice defects,
which destroy the sublattice structure of a perfect anti-
ferromagnet. Lattice defects may give rise to an inho-
mogeneous spin distribution [1, 2].

Historically, the first example of such inhomogene-
ities was proposed by Dzyaloshinski [3] and Kovalev
and Kosevich [4], who noted that the presence of an
edge dislocation in an antiferromagnet brings about a
“failure” in sublattices and gives rise to macroscopic
magnetic defects, namely, domain walls and disclina-
tions. Such effects arise in the case when the interface
between the antiferromagnet and ferromagnet (FM)
contains an atomic step (see [5, 6] and references
therein). A common property of all these inhomogene-
ities is the appearance of antiferromagnetic disclina-
tions that can be considered antiferromagnetic vortices
with a half-integer value of the topological charge (vor-
ticity) (see [1, 2]). An analysis of disclinations is of its
own interest within the context of enhanced interest to
two-dimensional magnetic solitons and especially to
vortices (see [7–10]).

An edge dislocation with staggered ordering in an
antiferromagnet was considered in all papers men-
tioned above. The occurrence of a jump in the antifer-
romagnetic vector l at a certain surface that rests on the
dislocation line and extends to the crystal surface is a
common property of all disclinations in an antiferro-
magnet with a dislocation in the lattice. However, the
specific spin density distribution for various types of
antiferromagnets may strongly differ from the distribu-
tion characteristic of the antiferromagnetic disclination
described above. To demonstrate this fact, we consider
a spin inhomogeneity that arises in layered antiferro-
magnets like CoCl2, FeCl2, and NiCl2 with screw dis-
0021-3640/01/7304- $21.00 © 20188
locations perpendicular to the layers. In the antiferro-
magnets indicated above, the spin-exchange interaction
in the planes is ferromagnetic (exchange integral J),
and the neighboring planes are coupled by an antiferro-
magnetic interaction with an exchange integral J ',
which is commonly weaker than the in-plane interac-
tion. The typical ratio J /J ' ≈ 10–100, and it reaches
104–106 for intercalated systems [11]. We will show
that the smallness of J ' /J gives rise to nonsingular dis-
clinations, which can be consistently described within
a continual theory.

The Hamiltonian of a perfect magnet of the type
indicated above can be written as

(1)

where n numbers the layers with a ferromagnetic inter-
action (exchange integral J), r determines the sites in
one layer, d designates the vectors from the nearest
neighbors to a given site inside the layer, J ' ! J is the
exchange coupling between the layers, and Nz = Lz/az is
the number of atomic planes. We also took into account
easy-plane anisotropy with a constant K.

The summation in the Hamiltonian given by Eq. (1)
is carried out over spins inside each layer and, then,
over individual layers. If a screw dislocation is intro-
duced into the crystal, the same classification can be
made for any crystal region that does not contain the
dislocation line, but the resulting system of atomic
planes globally changes to a screw surface (see [12] for
more detail and figure). It is convenient to parametrize
this surface by coordinates r and χ, where χ varies con-
tinuously from 0 to 2πNz. With the use of these coordi-
nates, one can proceed to the continual limit for the spin
density S = Sm, m2 = 1. Let us use the long-wave

* JSn r, Sn r d+,–[
r d,
∑

n 1=

Nz

∑=

+ J 'Sn r, Sn 1 r d+,+ K Sn r,
z( )2 ] ,+
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approximation for spins lying locally in the same plane
[changing, for example, S(r + aex) + S(r – aex) to
2S(r) + a2∂2S/∂x2, and so forth] and retain the discrete
description for neighboring planes. Then, the following
equation can be obtained for the macroscopic magnet
energy:

(2)

Here, the gradient is taken only in the given plane, j =
J '/J, the quantities m(r, χ) and m(r, χ + π) correspond
to spins arranged in neighboring planes, and the z axis
is perpendicular to the layers. For simplicity, we
assume that the sample is cylindrical in shape and has
radius R.

Let us start with an analysis of the simple case of the
XY model, in which the easy-plane anisotropy is
extremely strong and all spins lie in the xy plane; that
is, mz = 0, mx = cosφ, and my = sinφ. In the case of the
XY model, the problem can be analyzed exactly. In par-
ticular, the occurrence of the second-order phase tran-
sition homogeneous state–spin disclination can be
demonstrated. Next, we will show that a nonsingular
disclination with a ferromagnetic core may arise in the
case when the anisotropy is finite and spins can be off-
set from the XY plane.

For the XY model, energy (2) takes the form

(3)

The extremals of the functional in Eq. (3) are defined
by the equation

(4)

It is easy to verify that a regular rotation of the type

(5)

0 JS2 r rd χ 1
2
--- ∇ m( )2





d

0

2πLz/az

∫
0

R

∫=

+
j

a2
-----m r χ,( ) m r χ, 2π+( )[

+ m r χ, 2π–( ) ] K

Ja2
--------mz

2 r χ,( )+




.

0 JS2 r r χ 1
2
--- ∇ φ( )2





d

0

2πLz/az

∫d

0

R
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+
j

a2
----- φ χ( ) φ χ 2π+( )–[ ]cos[

---+ φ χ( ) φ χ 2π–( )–[ ] 2 ]+cos

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.

∇ 2φ j
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-------- φ χ( ) φ χ 2π+( )–[ ]sin+

+
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-------- φ χ( ) φ χ 2π–( )–[ ]sin 0.=

φ αχ
2

------- φ0+=
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corresponds to an exact solution of this equation. Note
that α can correspondingly take arbitrary values, as dis-
tinct from the case of a vortex or a common disclination
where α is an integer or half-integer value. This behav-
ior of α is determined by the properties of the Riemann
surface at which the variable φ is defined, namely, by the
fact that there is no need to introduce the continuity con-
ditions for cosφ and sinφ when χ is rotated through 2π.

Substituting the solution given by Eq. (5) into
Eq. (3) and taking into account that, by virtue of
Eq. (5), (∇φ )2 = α2/4r2, we obtain the magnet energy as
a function of parameter α, J '/J ratio, and system size

(6)

where r0 is the cutoff radius on the order of the lattice
constant in the layer.

From the energy minimum condition d0/dα, it fol-
lows that two types of magnet states are possible: a
homogeneous state with α = 0 and inhomogeneous
states that correspond to the values of α obeying the
transcendent equation

(7)

The homogeneous (ferromagnetic) state is unfavorable
from the point of view of the antiferromagnetic cou-
pling between the layers. It corresponds to the magnet
energy 0hom = 2J 'S2V/v0, where V = πR2Lz is the mag-
net volume, and v0 = a2az is the unit cell volume. The
inhomogeneous solutions exist only for large particles
at R > Rc, where Rc is defined by the equation

(8)

At small j ! 1, the value of Rc is macroscopic, Rc @
a. Therefore, it is reasonable to consider the transition

0 πJS2 Lz

a
----- α2

4
----- R

r0
---- 

  jR2

a2
-------- 1 παcos+( )+ln ,=

παsin
πα

---------------
R/r0( )ln

2π2 j R/a( )2
----------------------------.=

2π2 j
Rc

a
----- 

 
2 Rc

r0
-----.ln=

Screw dislocation in a magnet (the core dislocation region is
conventionally designated by a cylinder) and the spin distri-
bution (arrows) in the spiral line enclosing the dislocation
line.
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from an inhomogeneous state, which can exist at R >
Rc, to the homogeneous state, which is the only possible
one at R ≤ Rc. Here, α serves as the order parameter, and

α ∝   in the vicinity of the transition
point. If R @ Rc, the term on the right-hand side of
Eq. (7) is small, the value of α is close to unity, α = 1 –
(Rc/R)2, so that the spin distribution is almost identical
to the distribution of vector l in an antiferromagnetic
disclination, where φ = χ/2 + φ0, and the energy in
Eq. (3) is defined by the equation

(9)

In this case, spins in neighboring layers are almost anti-
parallel, and we may pass to the description in terms of
the antiferromagnetic vector l, which is defined for lay-
ered antiferromagnets as the difference of spins located
one above the other. It is clear that such a vector can be
introduced locally for a region that does not contain the
dislocation line. The antiferromagnetic vector l defined
in this way will have a discontinuity at a certain surface
that rests on the dislocation line and extends to the crys-
tal surface.

Taking into account the real three-dimensional
nature of spins, which is essential at K ! J (at any ratio
between K and J ' under the condition that J ' ! J), leads
to much more complicated equations. Therefore, we
will restrict our consideration to the case of large R. In
this case, the energy in Eq. (3) is conveniently
expressed in terms of common angular variables for the
unit spin vector Sz = Scosθ, Sx = Ssinθcosφ, Sy =
Ssinθsinφ. The energy in this parametrization takes the
form

(10)

Here, we introduced parameter ∆0 with the dimensional-

ity of length,  = Ja2/K, and notations θ± = θ(r, χ ± 2π)
and φ± = φ(r, χ ± 2π). It is easy to verify that the system
of Euler–Lagrange equations for the functional given
by Eq. (10) has a solution of the form

(11)

R Rc–( )/Rc

E
πJLz

4a
------------ R

r0
---- 

   ! J Nat ! 0hom.ln=

0 JS2 r r χ 1
2
--- ∇ θ( )2 ∇ φ( )2 θsin

2
+[ ]





d

0

2πLz/az

∫d

0

R

∫=

+
1

2∆0
2

--------- θcos
2 j

a2
----- θ θ+cos θ–cos+( )cos[+

+ θ θ+ φ φ+–( ) θ θ– φ φ––( )cossinsin ]+cossinsin




.

∆0
2
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Here, the function θ obeys an ordinary differential
equation of the same type as for vortices in magnets,
see [1, 2],

(12)

with the only distinctions that α can now be arbitrary
rather than integer, and that the characteristic length ∆α
depends on the parameter α

(13)

The natural boundary conditions for this equation are
determined by the absence of singularities at the center
(θ = 0 or π at r = 0) and by the fact that, at large dis-
tances from the disclination center, spins lie in the easy
xy plane, forming the same structure as that considered
above for a disclination in the XY model,

(14)

Thus, the additional discrete parameter p arising in the
problem plays the same role as the polarization for the
out-of-plane vortex in easy-plane ferromagnets (see
[2]). The disclination state is degenerate not only in the
sign of α but also in the value of p.

The solution of Eq. (12) at r  0 can easily be
constructed numerically with regard to Eq. (14) and
asymptotic behavior sinθ . (r/∆α)α/2. For large R,
α . 1 and the disclination energy is

(15)

Thus, this disclination has a typical logarithmic depen-
dence on the sample size. However, this is the only sim-
ilarity of a disclination in a layered antiferromagnet to
the disclination in an antiferromagnet with a staggered
structure considered in the previous article. Let us list
their distinctions.

It is pertinent to refer to a disclination in a layered
antiferromagnet as ferromagnetic, because the ordering
of spins in the core is ferromagnetic along the entire
length of the disclination line and the arrangement of
spins in each of the local regions of atomic planes is
close to ferromagnetic. The total magnetization in the
basal plane of a magnetic particle composed of an odd
number of atomic planes is macroscopic and close to
(1/2)2µBSNat, where Nat is the number of atoms in the
plane.

If reasonable conditions K ! J and J ' ! J are ful-
filled, the core of a ferromagnetic disclination contains
no singularity and the cutoff parameter in the energy
takes a macroscopic value ∆ @ a.

The state of a ferromagnetic disclination is degener-
ate with respect to two discrete numbers, p and the sign

d2θ
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---dθ
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of α, rather than one, as in a singular antiferromagnetic
disclination. This feature can manifest itself in the
effects of macroscopic quantum tunneling for spin dis-
clinations, see [13].

The authors are grateful to V.G. Bar’yakhtar,
A.S. Kovalev, and S.M. Ryabchenko for useful discus-
sions. This work was supported by the INTAS, project
no. 97-31-311.
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Observation of Laser-Induced Local Modification
of Magnetic Order in Transition Metal Layers
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Laser-induced local modifications of magnetic order in thin Fe–Cr layers were investigated. Local modification
in the layers were induced by interfering laser beams. The results of the study give evidence for the formation
of submicron-sized anisotropically shaped ferromagnetic regions with a well-defined direction of the easy mag-
netic axis in the interference maxima at the modification threshold. It was also found that the magnetic
anisotropy of a medium is drastically reduced with changing the shapes of these local regions and distances
between them. This may be due to the strengthening of the interaction between the regions through the para-
magnetic matrix. © 2001 MAIK “Nauka/Interperiodica”.
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It is known [1–3] that the Fe(Co)-based nanocom-
posite alloys of 3d metals may not possess long-range
magnetic order at the concentrations of magnetic com-
ponent as high as 70–75 at. %. In [1], a model was sug-
gested according to which such alloys are composed of
superparamagnetic clusters in a nonmagnetic medium.
As the concentration of magnetic atoms increases, the
cluster formation becomes more intense and, eventu-
ally, a concentration is achieved (percolation threshold)
at which the long-range magnetic order is extended
over the whole material.

Another way of creating a magnetically ordered
state in alloys (without changing the mean concentra-
tion of the magnetic component) consists in heating a
metallic medium by an intense (~1 J/cm2) short (~10 ns)
laser pulse to a temperature higher than the melting
point, to initiate diffusional mixing of the alloy compo-
nents, and its fast cooling (with a rate of ~1010 K/s)
after the pulse. This gives rise to a metastable supersat-
urated solid solution whose magnetic properties are
sensitive to the positional and chemical short-range
orders in the system [4]. In [5, 6], we reported the
observation of thermo- and laser-induced modifications
of the magnetic order in thin-film (< 100 nm) mixtures
of the Fe−C, Co–C, and Fe–Cr types. The major exper-
imental fact was that after the laser pulse with an
energy density of 200–400 mJ/cm2, the originally
(super)paramagnetic medium became ferromagnetic at
room temperature in a certain (rather narrow) concen-
tration range of the magnetic component, with the sat-
uration magnetization of the resulting ferromagnet
being close to the value in the bulk Fe and Co samples.
0021-3640/01/7304- $21.00 © 20192
In this work, laser-induced magnetic ordering was
used to produce a regular grating of small ferromag-
netic elements. The sizes of these elements are limited
in all three directions and comparable with the key
micromagnetic parameters: exchange length (10 nm)
and domain wall thickness (10–100 nm). As regards the
physics of magnetization reversal, these elements are
intermediate between the multidomain and single-
domain systems. The physical behavior of this system
is noteworthy in two aspects. First, it is important to
determine the conditions for the formation of single-
domain (ferro)magnetic regions in the course of local
modification of a paramagnetic medium. Second, it is
of interest to study the specific features of magnetiza-
tion reversal for a system of magnetically hard particles
in a magnetically soft medium. Interest in the structures
of small magnetic objects has arisen because such sys-
tems are viewed as an alternative material for the
design of new magnetic ultrahigh-density recording
and data storage devices [7, 8].

In this work, local modification was accomplished
by the coherent UV laser beams that are capable of cre-
ating an interference grating with submicron spacing
(down to 200 nm) at the sample surface. The sizes of
modified magnetic elements can preliminary be esti-

mated from the thermal diffusion length , where a
is the thermal conductivity coefficient and τ is the heat
pulse duration. For a pulse duration of no more than
several nanoseconds and a pulse energy close to the
magnetic transformation threshold, the sizes of the ele-
ments can be expected not to exceed 100 nm.

aτ
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Fig. 1. The MFM image of the surface of a Fe0.7Cr0.3 layer irradiated by two pairs of beams with energy density E = 250 mJ/cm2.
The asymmetrically shaped dipoles are clearly seen. The image is obtained for a residual state after the magnetization along the
dipole direction.
The starting alloys for the subsequent laser anneal-
ing were thin layers (15–20 nm) prepared by the alter-
nate deposition of small portions (0.3–0.5 nm) of
Fe(Co) and Cr(C) on silicon substrates, with the
Nd3+ laser radiation being focused onto the targets
placed in a vacuum chamber. The absence of ferromag-
netic order in the starting samples and its appearance
after irradiation was monitored by the spectra of ferro-
magnetic resonance. These data were used to determine
the optimum concentration of the magnetic component
in a mixture for which the starting sample did not yet
show a magnetic response at room temperature while,
after irradiation, a well-defined signal of ferromagnetic
resonance appeared.

The magnetic structures were produced using a nar-
row-band (0.04 cm–1) XeCl eximer laser (λ = 308 nm)
with a pulse energy up to 50 mJ and a pulse duration of
8 ns. Laser emission was monochromatized by the
intracavity mode selection using a Fabry–Pérot inter-
ferometer to provide a contrast interference pattern
throughout the whole cross section of the laser beam.
To produce a two-dimensional grating of modified
JETP LETTERS      Vol. 73      No. 4      2001
local regions, the laser radiation was split into two pairs
of beams that were incident on the sample at different
angles in two mutually perpendicular planes. The inten-
sity distribution in the interference maxima was
extended along the axis in the plane of the smaller angle
of incidence, with the aspect ratio corresponding to the
ratio of angles of incidence. The total area of the array
was determined from the diffraction of a HeNe laser
radiation by the grating. Depending on the pulse
energy, this area was 5–10 mm2.

The properties of the gratings were studied by
atomic-force (AFM) and magnetic-force (MFM)
microscopy, and the magnetic hysteresis loops were
measured in the presence of the longitudinal magneto-
optical Kerr effect. The AFM/MFM data were recorded
on a Solver P47 (NT-MDT, Moscow) scanning probe
microscope. Silicon cantilevers sputtered with a
≈30-nm thick Co layer were used as magnetic probes.
Resonance frequencies of the probes were equal to
55−120 kHz. Before measurements, the magnetic
probe was magnetized along the tip axis while the sam-
ples themselves were preliminary magnetized in fields
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of up to 1500 Oe aligned in the sample plane with the
minor or major axis of the created elements. The distri-
bution of the magnetic force gradient was determined
from the phase shift induced in the cantilever oscilla-
tions by either attractive or repulsive forces acting on
the magnetic tip.

Figure 1 is the MFM image of the surface of a
Fe0.7Cr0.3 layer after interference irradiation at angles of
incidence of 10° and 40° by a laser pulse with an energy
density of E = 250 mJ/cm2. This energy is close to the
very threshold of magnetic modification (220–
240 mJ/cm2). It has not yet produced any changes in the
surface relief. Nevertheless, a periodic structure of
identically oriented asymmetrically shaped dipoles is
clearly seen in the MFM image: dark (large) and light
(smaller) spots indicate the poles of the magnetic ele-
ments. The observed orientation of the dipoles corre-
sponds to the sample premagnetization direction. One
can see from the pole positions that the aspect ratio of
the ferromagnetic elements equals approximately 1 : 4,
in quantitative agreement with the ratio of angles of
incidence.

Figure 2 shows the magnetization reversal curve for
the same Fe–Cr sample. In this experiment, an external
magnetic field was aligned with the dipole orientations
in Fig. 1. One can see that this curve has a hysteretic
character typical of ferromagnets, and the shape of the
hysteresis loop is close to rectangular with a magneti-
zation reversal field of ≈500 Oe. An attempt at revers-
ing magnetization of this sample in the direction per-
pendicular to the dipole orientation in fields up to
2000 Oe did not affect the magneto-optical response to
within the noise level. Therefore, the irradiation of the
layer near the magnetic transformation threshold gives
rise to a magnetic structure with a well-defined easy
magnetization direction corresponding to the orienta-
tion of dipoles in the MFM image.

A characteristic feature of the magnetic elements is
that their thickness (15–20 nm) is much smaller than
their lateral sizes (100 × 400 nm). We carried out

Fig. 2. Magnetization reversal curve for the magnetic ele-
ments in a Fe0.7Cr0.3 layer subjected to the interference

laser annealing (E = 250 mJ/cm2). The external magnetic
field H is applied in the dipole direction.
micromagnetic modeling of magnetization distribution
in the elements with thicknesses 10–20 nm. It follows
from the numerical experiments that the magnetic ele-
ments show a single-domain behavior at thicknesses
less than 12 nm in the case of weak anisotropy or at
15 nm in the case of a uniaxial anisotropy of
~106 erg/cm3. Otherwise, skew-symmetric magnetiza-
tion distributions with edge spin fixation or a more
complex spin configuration with one or two vortices
inside the elements are formed. Hence, the magnetic-
pole asymmetry observed in our experiments (Fig. 1)
may point to the inhomogeneous magnetization distri-
bution in the magnetic elements.

It is of interest to examine the properties of a layer
modified with higher-energy laser pulses. Figure 3 is
the AFM image of the topography of a surface Fe–Cr
layer irradiated by E = 300 mJ/cm2. This image pro-
vides evidence for the formation of craters in the inter-
ference maxima as a result of melting and expelling
melt toward the periphery of the interference maxima
by vapor pressure. The craters are shaped like ellipses
with an axes ratio of 1 : 2, and their depth from the bot-
tom to the top of their rims is as large as 8–10 nm. The
modification of surface topography is also accompa-
nied by profound changes in the properties of the cre-
ated magnetic structures. The magnetic hysteresis
loops of the same (E = 300 mJ/cm2) Fe–Cr sample sug-
gest that magnetic anisotropy in the new matrix is
strongly reduced (Fig. 4). It is seen that the remanent
magnetization of this sample remains close to the satu-
ration magnetization in an external magnetic field ori-
ented along both the major (Y) and the minor (X) crater
axes. Nevertheless, it is worth noting that the magneti-
zation reversal loop becomes more rectangular for
remagnetization along the X axis (minor axis of the cra-
ters in Fig. 3), possibly because of the appearance of the
easy magnetic axis in this direction, whereas the mag-
netization in a “hard” Y direction shows a relatively
smooth saturation. The shape of the hysteresis loop in
this direction is typical of a strongly dispersive medium
[9]. Note that if the system of magnetic elements is
well-defined in the topographical images, then the
anomalous orientation of the easy magnetic axis occurs
even for loose packing of elliptic craters. As the laser
energy further increases (350–400 mJ/cm2), the minor
axis of the ellipses increases up to a contact of two
neighboring crater rims. However, these relief modifi-
cations no longer alter the magnetic behavior of the
irradiated samples.

The studies of the morphology and magnetic prop-
erties of the Fe–Cr-type systems suggest [2, 3] that they
consist of Fe-enriched superparamagnetic grains no
larger than several nanometers. According to the corre-
sponding phase diagram [10], the Fe and Cr compo-
nents form unlimited solutions at temperatures higher
than the melting point (≈1600 K), while the supersatu-
rated FexCr1 – x (x = 50–70 at. %) solution possesses a
higher Curie temperature (≈900 K). The necessity of
JETP LETTERS      Vol. 73      No. 4      2001
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Fig. 3. Topography of the surface of a Fe0.7Cr0.3 layer after the irradiation with E = 300 mJ/cm2. The AFM image.
achieving the liquid state upon laser heating in an
attempt to accomplish magnetic transformation is cor-
roborated by the fact that the melting and expelling of a
liquid from the interference maxima (Fig. 3) are
observed for a laser energy (300 mJ/cm2) only slightly
above the magnetic transformation threshold (220–
240 mJ/cm2). However, the most pronounced and well-
interpreted magnetic structure is formed directly at the
modification threshold (Figs. 1, 2), where the craters
are as yet not formed at the surface.

It is not improbable that the observed increase in the
“rectangularity” of the magnetization loops of the cra-
ter structures (Fig. 4) in the transverse direction can be
explained by the interactions between the ferromag-
netic regions (craters) via the superparamagnetic
medium. This interaction becomes possible either
because of the medium magnetization by the stray
fields of the ferromagnetic regions or due to medium
modification upon an increase in the cluster sizes and
cluster approach. Evidently, the separation between
craters and their aspect ratio decrease with increasing
pulse energy. Since the distance between the elliptic
craters along their minor axes is appreciably shorter
than along the major axes (Fig. 3), the demagnetization
effect in this direction is less pronounced. Thus, the
direction of the easy magnetic axis in the resulting cra-
ter structures is likely determined by the competition of
two factors: the interaction between the ferromagnetic
regions via a magnetically soft (superparamagnetic)
medium and a change in the shapes of these regions.
TP LETTERS      Vol. 73      No. 4      2001
Note in conclusion that our experiments can be used
to formulate the technological requirements on the
variable parameters (concentration of the magnetic
component, laser pulse energy and duration, angles of
incidence, etc.) for producing gratings of magnetic sin-
gle-domain elements with spacing in the far-submicron

Fig. 4. Magnetization reversal curves for a Fe0.7Cr0.3 layer
with the surface lattice of elliptically shaped craters (E =
300 mJ/cm2). The loops are obtained for different orienta-
tions of H: along the major (Y) and minor (X) axes of
ellipses.
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range. The small sizes of the elements facilitate the
realization of practically important physical properties
(single-domain structure, rectangular hysteresis loops,
short magnetization-reversal time, etc. [11]) for small
magnetic objects.

This work was supported by the Russian Foundation
for Basic Research, project no. 01-02-16445.
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Inversion of Shear Rigidity
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The behavior of elastic moduli of substances is analyzed in the megabar pressure range. A new effect—inver-
sion of the shear moduli and mechanical properties upon compression—is predicted for various classes of sub-
stances. The melting-curve data for different materials confirm the predicted phenomenon. The materials tradi-
tionally considered the softest, such as rare gas solids and molecular substances, may become the hardest
in the megabar range. This should be taken into account in developing the experimental high-pressure tech-
nique. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 62.20.Dc; 62.50.+p
1. Investigations into the behavior of elastic proper-
ties and mechanical characteristics of strongly com-
pressed materials are of crucial importance both to fun-
damental physics and geology and in high-pressure
technique. In the quantum pressure range P >
Z10/3m4e10/"8 ~ 102–104 Mbar corresponding to the
compression ratio of several tens of factors, all proper-
ties of a substance, including its elastic moduli, can be
thought to be monotonic and almost linear functions of
atomic number [1]. It is known that in the experimen-
tally attainable megabar pressure range corresponding
to the compression ratio of several times the properties
of substances are, generally, nonmonotonic functions
of atomic number [1, 2]. At the same time, it is a priori
unclear whether the materials will still be divided into
hard and soft in the megabar range, and which classes
of substances will have the highest elastic moduli,
hardness, etc., at such pressures.

It should be emphasized that the determination, by
both experiment and computer simulation, of the
mechanical properties such as hardness and strength of
the substances under pressure is a highly challenging
task. It is known, however, that these properties are
closely related to the shear rigidity of materials and,
correspondingly, to their elastic moduli [3], which, in
turn, are the uniquely defined physical characteristics
of substances. Therefore, the purpose of this work was
to analyze the behavior of elastic, primarily, the shear
moduli of substances in the megabar pressure range on
the basis of the available experimental data and model
empirical approaches. We will restrict ourselves mainly
to rare gas solids and metals, because these classes are
precisely the ones for which the predicted effect is
expected to be most pronounced.

2. At normal pressure, the bulk and shear moduli of
various substances lie in the range from kilobars to
megabars [4, 5]. On compression, the elastic moduli
0021-3640/01/7304- $21.00 © 20197
increase (except for the possible anomalous behavior
near phase transitions). For most substances, the exper-
imentally measured derivatives of the bulk and shear
moduli with respect to a pressure range from 1 to 8
[4, 5]. Consequently, the elastic moduli at megabar
pressures are more likely determined by the corre-
sponding baric derivatives rather than by the initial val-
ues of the moduli. At pressures of 3 Mbar and higher,
the elastic moduli of every substance are higher than
those of diamond at normal pressure, the record holder
among all materials. As a result, there are no soft, in the
ordinary sense, substances in the megabar range.

The behavior of bulk moduli of the majority of sub-
stances has been much studied up to megabar pressures
[1, 2]. By contrast, the shear moduli of the majority of
substances are measured only up to pressures of several
tens of kilobars [4, 5]. As to the megabar range, only
indirect estimates are known for the behavior of elastic
shear constants of some substances, including some
metals (Fe, Au, and Mo) [6, 7].

At the same time, the behavior of elastic constants
of various classes of substances at high pressures can
be analyzed by using a simple model of a system of par-
ticles interacting via the power n/m-potential U =
A/rn − B/rm. With an increase in pressure, the effective
repulsion exponent n lying in the interval from 6 to 12
for the majority of substances becomes dominant. This
is so because the relative contribution to the elastic
moduli and pressure from the noncentral forces, energy
of valence electrons, and interion Coulomb forces, as
well as from the attractive forces (the –B/rm term in the
n/m-potential) rapidly drops upon compression, as
compared to the contribution from the central repulsive
forces between the nearest neighbors [8].

In this paper, we restrict ourselves for brevity only
to the analysis of an FCC lattice that corresponds to one
of the close-packed atomic arrangements. For the ele-
001 MAIK “Nauka/Interperiodica”
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mentary cubic (simple cubic, BCC, and FCC) lattices
with central interactions between atoms, one can
readily obtain general expressions for the pressure and
elastic constants [8, 9]:

(1)

(2)

(3)

where v is the unit cell volume, the sums are over the
lattice vectors Ri, and the derivatives of the interaction
potential are taken with respect to the r2 variable:  =

dU(r2)/d(r2), etc. The values obtained in this work for
the derivatives of the bulk and shear moduli of a lattice
with purely repulsive potential U = A/rn in the short-
range (soft spheres) and long-range interaction models
are given in the table. Note that the bulk modulus of a
lattice with central interaction is related to Voigt’s shear
modulus by the exact expression that follows from the
Cauchy relation with pressure [10], c12 = c44 + 2P. Indeed,
Gf = (9c44 + 3(c11 – c12))/15 = ((c11 + 2c12) – 6P)/5 =
(3B – 6P)/5. The derivatives with respect to pressure
are also obtained from these expressions:

(4)

It is significant that the derivatives of the elastic
moduli and the relative shear elasticity of a lattice

P
1
v
---- U

r
2' rx

2[ ] Ri
,

Ri

∑=

c11
2
v
---- U

r
2'' rx

4[ ] Ri
P,–

Ri

∑=

c12 P– c44 P+
2
v
---- U

r
2'' rx

2ry
2[ ] Ri

,
Ri

∑= =

U
r

2'

G f' 3B ' 6–( )/5.=

Fig. 1. The /B' ratio as a function of the repulsion expo-

nent n for the FCC lattice with n/m-potential. (1, 2) P = 0
and m/n = (1) 0.5 and (2) 0.8. (3, 4) Pressure corresponding
to V/V0 = 0.5 and m/n = (3) 0.5 and (4) 0.8. The data for the

soft-sphere model with the 1/rn potential (see table) corre-
spond to the n/m-potential (m < n) at P  ∞.

G f'

n

G/B ≈ G'/B' both increase with n at ultrahigh pressures.
The same trends hold in the general case of the
n/m-potential (Fig. 1). With a rise in pressure, the deriv-
atives of the elastic moduli of a lattice with n/m-poten-
tial tend to their soft-sphere (U = A/rn) values (Fig. 2).
For compressions V/V0 ~ 0.5 (which correspond to real
substances under pressures from tens of kilobars to the
megabar [1]), they differ from the limiting values at
V/V0  0 by no more than 5–20%. That is, in the
high-pressure limit (P  ∞), one has (∞)/B'(∞) =
3/5[(n – 3)/(n + 3)]. At the same time, it follows from
Eq. (4) that, in a lattice with central forces (or, approx-
imately, in any lattice at ultrahigh pressure),
∆( )/∆(B') = 3/5 for any change in pressure. It then

follows that the ratio (∆( )/∆(B'))/( (∞)/B'(∞)) =
(n + 3)/(n – 3) always exceeds unity and decreases with
increasing n. Therefore, with a rise in pressure, the rel-
ative change in the derivative of the shear modulus is
always larger than in the derivative of the bulk modu-
lus, the effect being more pronounced with a decrease
in the exponent n of the repulsive potential.

One can draw the following important conclusion
from the above analysis. If the elastic moduli of one of
any two substances are lower at normal conditions but
its interatomic repulsive potential is more rigid (effec-
tive exponent n), then the ratios of moduli of these sub-
stances will be inverted under pressure and the final dif-
ference between their shear moduli will always be
higher than between their bulk moduli. Evidently, the
physical reason for such effects is associated with the
negative contribution of pressure to the shear moduli
[2, 9], in particular, to the (c11 – c12)/2 and c44 constants
for the cubic lattice [see Eqs. (2) and (3)] and is for-
mally clarified by Eq. (4).

3. Clearly, real substances are not described by the
simple n/m-potential. However, one can draw from
the  above-mentioned analysis qualitative conclusions
about the relative behavior of elastic properties of vari-
ous classes of substances under strong compression. In
particular, the effective interatomic potential in metals
is softer than in rare gas solids. The effective repulsion
exponent n in metals is smaller because of the screen-
ing effect of free valence electrons. One can naturally
expect the inversion of shear moduli and, correspond-
ingly, of other mechanical characteristics of these two
classes of substances, with regard to the fact that rare
gas solids are exceedingly soft substances at low pres-
sures.

Note that simple estimates by Eqs. (1)–(3) yield
quite realistic values for the derivatives of elastic mod-
uli under pressure. For instance, the B' value in rare gas
solids (n ≈ 12 and m ≈ 6) should change from 8 to 5 and

 should change from 3.6 to 1.8, in good agreement
with experimental data [11, 12]. For transition metals,
one can set n ≈ 8 and m ≈ 1 [13]. Accordingly, the B'
value should change from 5 to 3.7 and  from 1.8 to

G f'

G f'

G f' G f'

G f'

G f'
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1, also in good agreement with the experiment [4–7].
These estimates are also confirmed by other empirical
calculations. The expression suggested in [5] gives G' ~
1.3 ± 0.3 for metals and G' ~ 1.9 ± 0.4 for rare gas solids
at megabar pressures. Lattice calculations with a more
exact interaction model give G' ≈ 2–2.5 for rare gas sol-
ids at P ~ 0.5 Mbar [2].

At a pressure of several megabars, the shear moduli
of metals, probably become 1.5–2 times smaller than in
rare gas solids (except, maybe, He), whereas the bulk
moduli of metals become either close to or 10−50%
higher than the rare-gas values. The fact that the B' and
G' values in He, Li, LiH, and, probably, metallic hydro-
gen are smaller than in the other substances of their
classes is caused by the absence of inner core electrons
and by the soft repulsive potentials in these materials.
At relatively low pressures, the derivatives in alkaline
and some alkaline-earth metals are also small, G' ~
0.5−1 [4, 5], and, accordingly, the shear moduli are sev-
eral times lower than in other substances. However,
after the electronic and phase transitions occurring in
the pressure range from 50 kbar to 1 Mbar, the G' values
in these substances should become close to the values
in other metals.

4. The presently known empirical calculations and
available experimental dependences do not contradict
our hypothesis of the inversion of shear moduli in sub-
stances of various classes (Fig. 3a). Moreover, some
indirect facts count in favor of this assumption. Within
the framework of the Lindemann melting criterion, the
baric behavior of the melting temperature Tm is prima-
rily governed by the behavior of the shear modulus, as
is also confirmed by experimental data [15].

As distinct from the shear moduli, the melting tem-
peratures are experimentally measured or calculated
ab initio for a series of substances of different classes
up to pressures of several megabars. It turns out that the
melting curves of metals in the megabar pressure range
become flatter than those of nonmetals [16, 17]. The
melting curves of inert substances such as Ar and of
alkali-halide crystals such as NaCl intersect the melting
curves of metals, e.g., Fe (Fig. 3b). The intersection of
melting curves is a remarkable corroboration of the
hypothesis of inversion of shear moduli of the corre-
sponding classes of substances.

5. The results obtained in this work may find an
important practical application to high-pressure tech-
nique in the problem of choosing between various sub-
stances as pressure-transmitting media. At room tem-
perature and pressures higher than 120 kbar, all sub-
stances are solids. In particular, helium crystallizes and
alcohol mixtures undergo glass transition. Neverthe-
less, the experimenters working in the megabar pres-
sure range traditionally use solidified organic liquids or
rare gas solids as working media at high pressures. In
doing so, they groundlessly extend the conclusion
about the softness of these substances to the megabar
JETP LETTERS      Vol. 73      No. 4      2001
pressure range. As was pointed out above, no soft sub-
stances occur in the megabar range: the shear moduli of
all materials are equal to several megabars and, accord-
ingly, their flow stresses σy ~ (0.05–0.1)G (see [18] and
references cited therein) are equal to hundreds of kilo-
bars. The ratio between the characteristics of different
substances is an important parameter.

Fig. 2. The baric derivatives of bulk modulus (thick lines)
and Voigt’s shear modulus (thin lines) as functions of
the compression ratio for the FCC lattice with the
n/m-potentials typical of rare gases (n = 12 and m = 6) and
d metals [13].

Pd3/Ua

≈13.18 – 0.762n + 0.0822n2

B/P = 1/3(c11 + 2c12)/P 1/3n + 1

1/2(c11 – c12)/P 1/8n – 3/4

≈–0.23 + 0.056n + 0.0024n2

c44/P 1/4n – 1/2

≈–0.85 + 0.296n – 0.0016n2

Gf/P –3/5 + 1/5n

Gfr/P 53/280n – 669/980 – 
120/(343n – 1274)

≈–0.53 + 0.161n + 0.0011n2

Derivatives of elastic moduli with respect to pressure for the
FCC lattice with central potential U = A/rn (in this case, B' =
B/P etc.). The shear moduli were calculated in the Voigt
approximation Gf = [9c44 + 3(c11 – c12)]/15 and the Voigt–
Royce–Hill approximation Gfr = (Gf + Gr)/2, where 15/Gr =
12/(c11 – c12) + 9/c44 [4, 5]. The first value in the table is for
the short-range (nearest-neighbor) interaction model and the
second value is the interpolation in the interval 5 ≤ n ≤ 15 for
the usual long-range model. The expressions for B ' and

 are the same in both cases and are exact. The pressure is

normalized to Ua/d3, where d is the nearest-neighbor separa-
tion, and Ua = A/dn is the nearest-neighbor interaction energy.

2n 2

G f'

f
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It follows from the predicted inversion of elastic
moduli that, starting at certain pressures, the shear
rigidity (hardness etc.) of rare gas solids (except
maybe, He) should be higher than the same character-
istics of metals and alkali-halide crystals (Fig. 3).
Besides, the σy/G ratio for metals should be lower
because of their high plasticity. Indeed, it is known
from experimental studies that Ar becomes stiffer than
iron and steel at pressures above 1–1.5 Mbar [19], and
Xe becomes stiffer than CsCl at pressures of hundreds
of kilobars [20]. The solidified organic carbon-contain-
ing liquids polymerize at 50–400 kbar to form dia-
mondlike sp3 bonds. This should lead to a rapid
increase in the shear moduli and hardness up to a level
close to diamond. As a result, starting at several hun-
dreds of kilobars, it makes no sense to use organic liq-
uids as a quasi-hydrostatic medium, because they are
stiffer at these pressures than practically all materials
under investigation.

Thus, the materials that are stiff at normal pressure
(metals and ionic dielectrics) are preferable to use as
soft quasi-hydrostatic media in the megabar pressure

Fig. 3. Pressure dependences of the (a) shear moduli and
(b) melting temperatures for typical representatives of rare
gas solids (Ar), alkali-halide compounds (NaCl), and metals
(Fe). The experimental shear moduli are taken from [6] for
Fe or calculated from the experimental elastic constants for
Ar [12] and NaCl [14]. The shear modulus of NaCl (with the
CsCl structure) is estimated from the theoretically calcu-
lated (c11 – c12)/2 values [2]. The theoretical melting curve
for Ar is taken from [1], and the experimental curves are
taken from [16] for Fe and NaCl (interpolations) and from
[21] for Ar.

4000
range. The transparent materials such as alkali-halide
crystals, and hydrogen-containing compounds such as
ice H2O, ammonia NH3, etc. are suitable for the optical
studies. Note that, although experimental data on the
shear modulus of ice H2O at P > 100 kbar are lacking,
the melting-curve data for H2O [21] allows one to
assume that ice, along with LiH, becomes one of the
softest materials (probably, softer than helium) at P ~
2–3 Mbar. Indeed, the ionic crystals KBr and NaCl
have found use in recent years as pressure-transmitting
media in megabar experiments. In many cases, it is rea-
sonable to use the appropriate metals, including In, Pb,
Sn, Na, Be, Bi, Ga, etc. (Li is unsuitable because of its
active diffusion into the diamond anvils), as quasi-
hydrostatic mediums in studying the magnetic, super-
conducting, and structural properties in the megabar
range.

6. In summary, one can assume that, apart from the
equalization of elastic characteristics of the materials of
various classes, a new phenomenon should occur in the
megabar pressure range—inversion of shear rigidity.
The molecular substances such as rare gas solids may
surpass metals, as well as the ionic and covalent mate-
rials, in shear modulus and hardness. Such relative
behavior of the moduli should be taken into account
when analyzing various processes in the interior of the
Earth and planets and also in high-pressure megabar-
range experimental technique. Clearly, the predicted
phenomenon has a transient character. After the metal-
lization of ionic and molecular materials at pressures of
1–103 Mbar, the elastic moduli of all substances will be
determined only by the corresponding atomic numbers.

We are grateful to S.M. Stishov and V.N. Ryzhov for
fruitful discussions. This work was supported in part by
the Russian Foundation for Basic Research (project
nos. 99-02-17408, 00-15-99308, and 01-02-16557).
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We study the dynamical behavior of proton transfer in hydrogen bonds in the base pairs of double helices of the
DNA type. Under the assumption that the elastic and tunnelling degrees of freedom may be coupled, we derive
a nonlinear and nonlocal Schrödinger equation (NLNLS) that describes the concerted motion of the proton tun-
nelling. Rough estimates of the solutions to the NLNLS show an intimate interplay between the concerted tun-
nelling of protons and the symmetry of the double helix. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 87.14.Gg; 87.15.-v; 33.15.Fm
1. Recent direct observation of coherent proton tun-
nelling in macromolecules [1] has focused attention on
systems allowing for the nontrivial dynamics of protons
contained in hydrogen bonds. Perhaps the most signif-
icant system of this kind is the DNA molecule. The
problem of proton transfer inside the hydrogen bonds
of the double helix representing a molecule of DNA has
a long and rich history. The importance of the phenom-
enon was noticed soon after the DNA double helix had
been discovered (see [2]). In fact, from the chemical
point of view, the proton transfer is a so-called tau-
tomerization reaction that is a kind of transition that
preserves the constituent atoms of a compound but, at
the same time, changes their mutual positions. It is
believed that the tautomerism transition could provide
a mechanism for genetic mutations [2].

Later, Crick [3] suggested that the mutations could
be due to conformational changes within the double
helix, the so-called “wobbling” [2]. By now, there has
been no definite conclusion as to whether the wobbling
or the tautomerism are responsible for the occurrence
of mutations. Recent work on the i-motif of DNA, in
which the tautomerism, rare in the usual DNA, is the
rule and not an exception [4], has given a new impetus
to the problem of proton transfer.

The phenomenon of tautomerism in the base pairs
of DNA has been studied extensively, both experimen-

1 This article was submitted by the authors in English.
0021-3640/01/7304- $21.00 © 20202
tally and theoretically [2, 5, 6], but for individual single
molecules of purines and pyrimidines. Here, it should
be noted that even though there is a considerable body
of information about the chemical reaction correspond-
ing to the tautomer transition, such as its reaction con-
stant, and even about the concentration of tautomeric
forms, 10–4–10–5 mol/l, in the B-type of DNA, there is
little knowledge of the dynamics of proton transfer
accompanying this transition in DNA. In fact, the esti-
mates for the transition frequency widely diverge, and
generally it is believed to be within 106−1011 s–1 [4].

In our opinion, the unsatisfactory state of the art, as
regards the proton transfer and the tautomeric dynam-
ics in the DNA, is to a certain extent due to the absence
of theoretical models of the phenomenon. In this paper,
we would like to draw attention to the fact that if the
tautomeric transitions are coupled with a change in
elastic properties of the DNA molecule, one could
expect a concerted tunnelling of the protons in the
hydrogen bonds. Taking into account the extremely
sophisticated nature of the system, i.e., the DNA mole-
cule, we aim at studying it in a qualitative framework
allowing for the main features of the molecule, i.e., the
presence of the two strands, the helical structure or the
winding symmetry, and the dynamics of protons consid-
ered within the approximation of two-level systems.

2. Aiming at a simple model, we will describe the
states of the hydrogen bonds as those of a one-dimen-
sional Bose oscillator, the two-level requirement being
accommodated by considering only its ground state and
001 MAIK “Nauka/Interperiodica”
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the lowest excited one. In this sense, the tautomeric
reaction of proton transfer is described by the excited
state of an oscillator. Thus, we will consider the protons
inside the hydrogen bonds of a molecule of DNA as a

quantum system described by the Bose operators 
and bn subject to the usual commutation relation

in which n and m are the indices of the corresponding
sites of hydrogen bonds. We will suppose that the sys-
tem of protons is in a weakly excited state that can be
cast in the form of wave function

(1)

in which An(t) are complex amplitudes satisfying the
relation

The Hamiltonian of the total system, that is the protons
and the elastic part corresponding to the sugar phos-
phates, reads

(2)

where HH is the proton Hamiltonian

(3)

where E0 is the level splitting between two states of a
proton in a hydrogen bond, κ is the tunnelling probabil-
ity, HY is that of the elastic part, and HI is the interaction
between them. We will consider the elastic part of the
system as classical and even neglect its kinetic energy.
The reason is that the characteristic times for the elastic
vibrations of the DNA molecule are usually estimated
as being in the region of 10–11–10–13 s, whereas the pro-
ton tunnelling is alleged to be within 10–6–10–11 s (more
exact figures are unavailable; according to [5], the
value is 10–6 s). Thus, one may suggest that elastic
motion follows proton tunnelling without inertia so
that  we may take into account the lattice deformation
only through the potential energy HY and neglect the
kinetic one. In writing HY , we will follow the method
worked out in papers [7, 8], aiming at a simplified
description of the dynamics of double helix considered
as a one-dimensional lattice of vectors yn describing
mutual positions of the two strands at sites correspond-
ing to the base pair of index n. The helix structure is
described with the help of the covariant derivative for
the description of deformations resulting from a change

bn
+

bn
+ bm,[ ] δnm,=

D t( )| 〉 An t( )bn
+ 0| 〉 ,

n

∑=

An
2

n

∑ 1.=

H HH HY HI,+ +=

HH E0bn
+bn κ bn 1+

+ bn bn
+bn 1++( ),

n

∑–
n
∑=
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in the positions of the strands, so that the potential HY

reads

(4)

Here, the harmonic term (1/2)e  describes the bind-
ing of the two strands, and ∇ yn is the covariant deriva-
tive in discrete form, linearized with respect to rotations
that relate the two adjacent sites, n and n + 1.

(5)

and

(6)

where Ωk ≡ (0, 0, Ω); K and e are elastic constants; and
a is the spacing of the lattice of the base pairs. We
assume that the molecule is parallel to the z axis. Hav-

ing chosen the dynamical variables , bn, and yn for
the protons and the elastic excitations, we have a lim-
ited number of options for the interaction energy. The
simplest one should couple the proton excited states,

given by bn, and the elastic deformations, which are
a function of yn in the simplest situation we adopt—the
linear one. We assume that yn enters in the form of its
covariant derivative, for this way one might accommo-
date the interaction of the proton tunnelling with the
stack of the π electrons of the bases.

The choice of the interaction Hamiltonian is a deli-
cate problem, but the knowledge of the structure and
binding in DNA gives some indications. The stacking
interaction between adjacent base pairs is strongly
affected by the overlap of the π electrons of the bases.
But the proton transfer is accompanied by a redistribu-
tion of the electrons on the bases so that the stacking
interaction is changed and, therefore, we expect that
proton tunneling will affect the coupling between adja-
cent bases. It means that the derivative ∇ yn, rather than
yn itself, should enter into the interaction Hamiltonian.
We have chosen the simplest form coupling the compo-
nent of the gradient, which is along the direction hn of
the hydrogen bonds connecting the bases within the
pair n, and the state of the protons in this pair given by

bn; i.e.,

(7)

in which the vectors hn are subject to the helical sym-
metry of the molecule. They can be written in the form

(8)

where the angle α is related to the helical pitch. Having
chosen a primitive model of the DNA, and neglecting
subtle features like 2 or 3 hydrogen bonds for the A–T

HY
K
2
---- ∇ yn( )2 e

2
---yn

2+ .
n

∑=

yn
2

∇ yn
1
a
--- yn 1+ yn Ω̂yn+–( )=

Ωij eijk– Ωk,=

bn
+

bn
+

bn
+

HI λ ∇ yn hn⋅( )bn
+bn,

n

∑–=

hn nα ; nα ; 0sincos( ),=



204 GOLO et al.
or G–C base pairs, and confining ourselves to one-site
one H-bond picture, we may set α = Ω , equalizing the
pitch of hn and the twist of the double helix.

It is important to notice that the sign of λ will be cru-
cial for the NLNLS equation that we will derive. Our
choice means that the stacking energy is reduced when
protons are in the excited state.

We employ the method worked out by Davydov [9]
to study the model described above. According to [9],
we must calculate the effective potential

, (9)

which is a function of yn; find its minimum ; and sub-

stitute  into H given by Eq. (2), thus obtaining the
effective Davydov Hamiltonian HD.

Finally, we must write the Schrödinger equation for
the function |D(t)〉  given by Eq. (1) and the Hamilto-
nian HD

(10)

Both sides of the equation indicated above are linear

forms in the operators , and by equating the coeffi-

cients at corresponding , we obtain the following
equation for An:

(11)

in which the angle φ is determined by the equation
tanφ = Ω , and λ/K and ea2/(KΩ2) are small parameters.

In assessing the importance of cos-terms in the
equation given above, it is worthwhile to note that,
since we have assumed α = Ω and there is the relation

Ueff D t( )〈 |HY HI D t( )| 〉+=

yn
0

yn
0

i" ∂
∂t
----- D t( )〉 HD D t( )| 〉 .=

bn
+

bn
+

i"
∂An

∂t
--------- E0An κ An 1+ An 1–+( )–=

–
λ2

K
----- An

2 An
λ2

K
----- Am

4

m

∑ An
λ2

2K
------- ea2

KΩ2
-----------+–

× φcos
m' m''–

m' m'',
∑





× m' m''–( ) φ Ω–( )[ ] Am'
2 Am''

2





Ancos

+
λ2

2K
------- ea2

KΩ2
----------- φcos

m n–

m

∑




m' m'',
∑





× m n–( ) φ Ω–( )[ ] Am
2





An,cos
tanφ = Ω , the typical term in Eq. (11) contains a factor
that reads asymptotically

We have assumed Ω to be a small parameter and, there-
fore, the oscillations due to Ω3 are negligible. Let us
consider a possible simplification of the Eq. (11)
obtained above. There is a chance that it may have a
bearing on the dynamics of the proton transfer in DNA.
To this end, note that the angles φ and Ω are close to
each other; indeed, for the B DNA the angle Ω corre-
sponds to the pitch, i.e., 10 steps for 2π. For this reason,
we set all the functions cos[(m – n)(φ – Ω)] equal to 1
in Eq. (11), and introduce

(12)

Then, in the continuous notations, (i.e., for scales larger
than a) we obtain the following nonlinear and nonlocal
Schrödinger equation (z ≡ x/a):

(13)

in which

(14)

ωH ≡ κ/", and ωT ≡ λ/". We may perform a very crude
estimate so as to see the part played by the nonlocal
terms as regards the structure of solitons that might turn
around.

The standard procedure to treat the nonlinear
Schrödinger equation is as follows [9, 10]. We are look-
ing for the solution in the propagating wave (soliton)
form

(15)

Introducing Eq. (15) into Eq. (13), we get two equa-
tions for the imaginary and real parts of solution (15).
From the former, we find the velocity of the soliton v

(16)

Ω2 m n––( ) m n– Ω3( )cos .exp

A z t,( ) i
E0t
"

-------– 
  B z t,( ).exp=

i
∂B
∂t
------ ωH

∂2B

∂z2
---------

λ
K
----ωT B2 B––=

–
λ
K
----ωT B B z'( ) 4 z'd

λ
K
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ea2

KΩ2
-----------+∫

× z' zd '' µ z' z''––( ) B z'( ) 2 B z''( ) 2B z( )exp∫d∫

+
λ
K
----ωT

ea2

KΩ2
----------- z' µ z z'––( ) B(z' 2 )B z( ),expd∫

µ φcosln–
1
2
--- 1 Ω2+( ) . 

Ω2

2
------,ln= =

B i kz ωt–( )[ ]ψ z vt–( ).exp=

v 2ωHk,=
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and the real part of (13) leads to the equation

(17)

Neglecting µ, we get the standard nonlinear
Schrödinger equation, however, with renormalized
coefficients. It is easy to find the first integral of the
equation, i.e., the energy W

(18)

where we used the following notations:

and C is a factor on the order of 1. It is worth noting that
even though we have made rough simplifications as
regards the nonlocality, its bearing on the proton
dynamics still has remained, as is seen in the ea2/KΩ2

term, preserved in the equation given above. One may
infer from the fact that with the approximations used,
there is a profound interplay of the dynamics of proton
transfer and the conformational structure of the double
helix.

From Eq. (17) we obtain the asymptotic width ∆ of
the soliton, which reads

(19)

The frequency ωac ≡ K/" is generally accepted to be
within 1011–1013 Hz, but the available estimates for ωT ,
ωH, e widely diverge, ωH = 106–1011 Hz, ωT/ωH =
0.1−0.01, and ea2/KΩ2 . 0.1. Consequently, the width
of the solution varies within 10–1000 Å, so that one
may expect a concerted tunnelling of protons for the
lower estimation of ∆.

3. In conclusion, we would like to draw attention to
the fact that the existence of an appreciable interaction
between the proton transfer inside the hydrogen bonds
of the double helix and elastic modes of the latter could
result in a concerted dynamics of the protons, which is
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ωacωH
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generally of nonlinear character and governed by the
nonlinear and nonlocal Schrödinger equation. To our
knowledge, it is the first appearance of the nonlinear
Schrödinger equation with nonlocal terms. The transfer
of protons may be due to various reasons, and among
these are the action of external agents, especially,
according to recent experimental work [11, 12],
enzymes; it is also worth keeping in mind the possible
links with the mutation mechanism [2]. In this paper,
we have tried to put these ideas in more quantitative
form within the framework of a model that accommo-
dates the basic symmetry structure of the double helix
and, as was shown above, allows for certain rough esti-
mates of dynamical features that may surface, presum-
ably, of the soliton nature. In this respect, it is worth-
while to note that even the crude estimate we made con-
serves the bearing of the double helix, as is seen
through the occurrence of the characteristic parameter
e/(KΩ2) in the final formulas. Of course, Eq. (11) we
obtained has a larger scope. It may not imply the exist-
ence of solitons in DNA, but could open another possi-
bility: the existence of nonlinear localization leading to
a collapse of an initially broad excitation into a highly
localized deformation [13]. Collapse does not occur in
the standard NLS equation, but the existence of nonlin-
earities with higher power in our NLNLS suggests that
it could occur in this equation, although, as these terms
are nonlocal, no definite conclusion can be given with-
out further studies of the equation. If this hypothesis
would be confirmed, a weak and broad perturbation of
the hydrogen bonds of a DNA molecule by the vicinity
of an enzyme carrying local charges could trigger this
nonlinear localization phenomenon and finally lead to
the formation of a tutomerized form by the tunneling of
one proton. As the present stage of the study, this is
however, only a speculation raised by the form of the
NLNLS equation that we derived.
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