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Coherent four-wave mixing (FWM) of laser pulses in gas-filled hollow fibers is studied. The experimental data
and the expressions derived for the amplitude of the FWM signal indicate that the excitation of higher order
waveguide modes is an important physical factor having a considerable influence on nonlinear optical processes
in hollow fibers. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.65.Hw
Nonlinear optical interactions in gas-filled hollow
fibers are currently widely employed for the generation
of extremely short light pulses [1, 2] and optical fre-
quency conversion to the vacuum-ultraviolet and X-ray
ranges (including the water-window region) through
high-order harmonic generation [3–8]. Fibers of this
type also allow the sensitivity of gas-phase analysis
based on coherent four-photon spectroscopy to be con-
siderably improved [9, 10].

An important advantage of hollow fibers is associ-
ated with the fact that they permit the pump and the sig-
nal generated through a frequency-nondegenerate non-
linear optical process to be phase-matched. With a care-
ful choice of the parameters of a hollow fiber, the gas
pressure, and excitation of appropriate waveguide
modes, the phase mismatch related to the gas disper-
sion can be compensated for by the waveguide compo-
nent of the phase mismatch [3, 8, 9, 11]. When these
conditions are satisfied, the energy of the nonlinear sig-
nal can be considerably increased by using longer hol-
low fibers. Parameters of short pulses of short-wave-
length radiation generated through nonlinear optical
interactions in gas-filled hollow fibers can be controlled
due to cross-phase modulation [12–14].

The results of nonlinear-optical experiments in hol-
low fibers are usually analyzed within the framework of
models that ignore the possibility of excitation of
higher order waveguide modes in the process of nonlin-
ear optical interaction in a hollow fiber. Although such
an approach provides an adequate qualitative descrip-
tion of the general features of nonlinear optical pro-
cesses in hollow fibers, more detailed models are often
0021-3640/01/7306- $21.00 © 20263
necessary for calculating specific parameters of hollow
fibers that allow the maximum efficiencies of nonlinear
optical interactions to be achieved [10]. Such a more
accurate analysis of nonlinear optical processes in hol-
low fibers has to include effects related to higher order
waveguide modes, which may influence phase-match-
ing conditions and change the energies of light pulses
involved in nonlinear optical interactions. Experimen-
tal and theoretical investigation of such effects is the
main aim of this paper.

Let us consider the process of coherent four-wave
mixing (FWM) of the following type: 3ω = 2ω + 2ω – ω,
where ω and 2ω are the frequencies of pump pulses
(fundamental radiation of the pump laser and its second
harmonic). Processes of this type, as demonstrated by
experiments [3], allow high efficiencies of nonlinear-
optical frequency conversion to be achieved by phase-
matching the light pulses involved in FWM in a hollow
fiber. The results of our experimental studies for such
processes will be presented below in this paper.

Suppose that fundamental radiation and its second
frequency (pump pulses) propagate along the z axis of
a hollow fiber with an inner radius a. We assume that
the hollow fiber is filled with a gas with a cubic nonlin-
earity and a refractive index n. The dielectric constant
of the cladding of the hollow fiber meets the condition
ε > n2. The fields of the pump and FWM pulses can then
be represented as

(1)E1
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(2)

(3)

where , , and  are the transverse
field distributions corresponding to the EH1q, EH1l, and
EH1m hollow-fiber modes of the fundamental radiation,
the second harmonic, and the FWM pulse, respectively
(see [15, 16]); ρ is the distance from the axis of the hol-

low fiber;  and  are the amplitudes of the pulses
of the fundamental radiation and the second harmonic
at the input of the fiber; Cm(z) is the slowly varying

amplitude of the FWM signal; , , and  are the
propagation constants of the fundamental radiation, the
second harmonic, and the FWM signal in the hollow

fiber, respectively; and  and  are, respectively, the
attenuation coefficients for the EH1q waveguide mode
at the fundamental frequency and the EH1l waveguide
mode at the frequency of the second harmonic (see
[15]). Representing the field of the second harmonic in
Eq. (2) as a sum of hollow-fiber modes, we extend our
analysis to FWM processes where two of the four
waves have equal frequencies 2ω but different trans-
verse field distributions corresponding to different
waveguide modes EH1l ' and EH1l '' (i.e., l = l ', l '').

Using standard assumptions concerning the proper-
ties of hollow fibers employed for nonlinear optical fre-
quency conversion and analyzing the equation for the
slowly varying envelope of the FWM signal using an
approach similar to that described in [10, 11, 14], we
arrive at the following expression for the amplitude of
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Fig. 1. Diagram of the experimental setup for studying the
influence of the gas pressure on FWM processes in a gas-
filled hollow fiber: LS, picosecond laser system; L, achro-
matic lens; VC, vacuum chamber; HF, hollow fiber; DG, dif-
fraction grating; PM, photomultiplier; F, filter blocking
pump beams; PD1 and PD2, photodiodes measuring the
energy of fundamental radiation and the second harmonic,
respectively; DO, digital oscilloscope; V, computer-con-
trolled valve for gas delivery.
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the FWM signal produced in the EH1m mode of the hol-
low fiber:

(4)

where  is the attenuation coefficient for the EH1m

mode of the hollow fiber at a frequency of the FWM
signal and L is the fiber length. Taking into consider-
ation the dispersion of waveguide modes, we can repre-
sent the phase mismatch ∆kml 'l ''q involved in Eq. (4) as

(5)

where ∆kg and ∆k'ml 'l ''q are the components of the phase
mismatch due to the dispersion of the gas and
waveguide dispersion, respectively. The fact that the
wave-vector mismatch entering Eq. (4) and determin-
ing the efficiency of the FWM process depends not only
on the gas dispersion but also on the dispersion of
waveguide modes provides an opportunity to improve
phase matching for a certain quadruple of waveguide
modes of pump pulses and the FWM signal. The non-
linear coefficient βml 'l ''q can be expressed in terms of the
relevant nonlinear optical susceptibility [14]:

(6)

where χ(3) is the third-order nonlinear optical suscepti-
bility responsible for the FWM process.

Expression (4) allows us to examine the dependence
of the FWM-signal power on the geometric sizes of a
hollow fiber and the type and pressure of the gas filling
the fiber. Below, this expression will be used to analyze
the results of our experiments.

The experimental setup for studying FWM pro-
cesses in gas-filled hollow fibers (Fig. 1) consisted of a
picosecond laser, a vacuum chamber with a hollow
fiber inside, and a detection system based on a photo-
multiplier. The Nd:YAG picosecond laser generated
50-ps pump pulses at 1.06 µm (pump frequency ω) and
0.53 µm (pump frequency 2ω). The maximum energy
of 1.06-µm radiation reached 100 mJ. A KDP crystal
was used to produce the second harmonic of fundamen-
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tal radiation. An achromatic lens was used to couple the
laser beams into a hollow fiber. Two photodiodes were
used to monitor the energies of both of these laser
beams transmitted through the fiber. The energies of
fundamental radiation and the second harmonic in
these experiments were equal to 1 and 0.1 mJ, respec-
tively. The signal produced through the FWM process
in a hollow fiber was detected with a photomultiplier
and then processed and displayed with a digital oscillo-
scope. The result of averaging over 30 FWM pulses
was stored in a personal computer.

Comparison of the experimental data presented in
Figs. 2 and 3 with the results of calculations performed
with the use of Eq. (4) reveals a noticeable role of
higher order waveguide modes in the FWM process in
a hollow fiber. It is instructive in this context to consider
in greater detail the results obtained for the FWM pro-
cess 3ω = 2ω + 2ω – ω in an argon-filled hollow fiber
with a length of 17.4 cm and an inner diameter a =
100 µm (Fig. 2). A satisfactory agreement between the
experimental data (dots) and theoretical predictions
(solid line) is achieved when effects related to higher
order waveguide modes are included in the analysis. In
particular, a satisfactory agreement between the exper-
imental data in Fig. 2 and the results of calculations
performed with the use of Eq. (4) was achieved when
not only the FWM process occurring in the fundamen-
tal waveguide mode (i.e., the FWM process involving
the EH11 hollow-fiber modes of the fundamental radia-
tion, the second harmonic, and the FWM signal) but
also the FWM process involving the EH12 mode of fun-
damental radiation, EH11 and EH13 modes of the second
harmonic, and the EH12 mode of the FWM signal was
included in calculations. The maximum of the FWM
signal for an argon pressure of about 0.7 atm is
observed within the pressure range where the FWM
interaction in the fundamental waveguide modes is
phase-matched (the dashed line in Fig. 2 shows the
phase mismatch for this process). At lower pressures,
the FWM interaction of the EH12 mode of fundamental
radiation, EH11 and EH13 modes of the second har-
monic, and the EH12 mode of the FWM signal begins to
play a more important role (the phase mismatch for this
process is shown by the dash-dotted line in Fig. 2).
Thus, higher order waveguide modes of a hollow fiber
may have a noticeable influence on FWM processes.

The results of our experiments also show that the
role of higher order waveguide modes in nonlinear
optical processes in a hollow fiber becomes more sig-
nificant with an increase in the inner diameter of the
fiber. Figure 3 presents the results of experiments per-
formed for the FWM process 3ω = 2ω + 2ω – ω in an
argon-filled hollow fiber with a length of 20.1 cm and
an inner diameter of a = 203 µm. To achieve a reason-
able agreement between the experimental data (dots)
and the results of calculations (solid line 1) in this case,
we have to take into consideration FWM processes
involving the EH11 and EH13 waveguide modes of fun-
JETP LETTERS      Vol. 73      No. 6      2001
Fig. 2. The power of the FWM signal (the dots show the
experimental data, and the solid line represents the results of
calculations) and the phase mismatch for the FWM process
3ω = 2ω + 2ω – ω in an argon-filled hollow fiber as func-
tions of the argon pressure p. The dashed line shows the
phase mismatch for the FWM process occurring in the fun-
damental waveguide mode EH11. The dash-dotted line rep-
resents the phase mismatch for the FWM process involving
the EH12 mode of fundamental radiation, EH11 and EH13
modes of the second harmonic, and the EH12 mode of the
FWM signal. The length of the hollow fiber is 17.4 cm, and
the inner diameter is 100 µm.

Fig. 3. The power of the FWM signal (the dots show the
experimental data, and solid line 1 represents the results of
calculations) and the phase mismatch for the FWM process
in an argon-filled hollow fiber as functions of the argon pres-
sure p. Dashed line 2 shows the phase mismatch for the
FWM process occurring in the fundamental waveguide
mode EH11. Dashed and dotted lines 3–5 represent the
phase mismatches for FWM processes involving (3) the
EH13 mode of fundamental radiation, the EH11 and EH14
modes of the second harmonic, and the EH11 mode of the
FWM signal; (4) the EH11 modes of fundamental radiation
and the second harmonic and the EH12 mode of the FWM
signal; and (5) the EH11 mode of fundamental radiation, the
EH11 and EH12 modes of the second harmonic, and the
EH13 mode of the FWM signal. The length of the hollow
fiber is 20.1 cm, and the inner diameter is 203 µm.
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damental radiation; the EH11, EH12, and EH14

waveguide modes of the second harmonic; and the
EH11, EH12, and EH13 modes of the FWM signal (the
phase mismatches for these FWM processes are shown
by dashed lines 2–5 in Fig. 3). The maximum of the
FWM signal observed for an argon pressure of about
0.25 atm then corresponds to the phase matching of the
FWM process in the fundamental waveguide mode (the
phase mismatch for this process is shown by dashed
line 2 in Fig. 3). For an argon pressure of 0.6 atm, the
chosen length of the fiber is close to a tripled coherence
length of the FWM process (L = 3Lcoh). The maximum
of the FWM signal observed for an argon pressure of
about 0.9 atm corresponds to the phase matching of the
FWM process involving the EH11 modes of fundamen-
tal radiation and the second harmonic and the EH12

mode of the FWM signal (the phase mismatch for this
process is shown by dashed line 4 in Fig. 3), as well as
the FWM process involving the EH11 mode of funda-
mental radiation, the EH11 and EH12 modes of the sec-
ond harmonic, and the EH13 mode of the FWM signal
(the phase mismatch for this process is shown by
dashed line 5 in Fig. 3). The four-wave mixing of the
EH13 mode of fundamental radiation, the EH11 and
EH14 modes of the second harmonic, and the EH11

mode of the FWM signal makes a noticeable contribu-
tion to the total FWM signal within the range of argon
pressures from 0.3 up to 0.4 atm, where this FWM pro-
cess is phase-matched (dashed line 3 in Fig. 3).

Figure 4 displays the power of the FWM signal gen-
erated in argon-filled hollow fibers with different inner
diameters and a length of ≈20 cm as a function of the
argon pressure p. As can be seen from Fig. 4, the max-
imum of the FWM signal related to the FWM process

Fig. 4. The power of the FWM signal in argon-filled hollow
fibers with different inner diameters as a function of the
argon pressure p. The length of hollow fibers in all experi-
ments was approximately equal to 20 cm. The inner diame-
ter of the hollow fiber was (u) 100, (+) 127, (×) 152, and
(n) 203 µm.
in the fundamental mode of a hollow fiber is shifted
toward lower pressures with an increase in the inner
diameter of the hollow fiber, approaching its limiting
position corresponding to the FWM process in colli-
mated beams. In this limiting case, the maximum
power of the FWM signal is achieved, in accordance
with Eqs. (4)–(6), for a gas pressure of 0.16 atm in the
fiber (at this pressure, the coherence length of the FWM
process Lph = π/∆kg becomes equal to the fiber length).
Thus, the results of these measurements agree well with
our expectations based on the analysis of Eqs. (4)–(6).
The maximum of the FWM signal observed at an argon
pressure of about 0.7 atm for a hollow fiber with an
inner diameter of 152 µm can be attributed, by analogy
with the cases considered above, to the FWM process
involving higher order waveguide modes of pump and
signal pulses.

Thus, the results of experimental and theoretical
studies presented in this paper reveal several important
features of nonlinear optical processes in gas-filled hol-
low fibers, giving a deeper insight into methodological
aspects of the problem and opening new possibilities
for practical applications of hollow fibers in nonlinear
optics, optics of ultrashort pulses, and nonlinear spec-
troscopy. Our experimental results indicate that higher
order waveguide modes may have a considerable influ-
ence on four-wave mixing processes in gas-filled hol-
low fibers. This effect can be employed to increase the
total energy of short-wavelength radiation produced
through nonlinear optical processes in hollow fibers.
On the other hand, effects related to higher order
waveguide modes should be taken into consideration in
the optimization of hollow-fiber frequency converters
and pulse compressors, where the excitation of higher
order waveguide modes may lead to unwanted energy
losses.
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A method is suggested for analyzing the spectra of central attractive potentials either with Coulomb singularity
(intra-atomic potentials) or finite at zero point (potentials in spherical clusters and nuclei). It is shown that, if
the orbital degeneracy is removed, then εnl – εn0 ≅  (l + 1/2)2 for small l in the shell n. In atoms and ions,

the coefficient aε is nonnegative, so that the energy in the n shell increases with l. The validity of this formula
for the inner electrons is illustrated by calculating the spectrum of the mercury atom. In cluster potentials, the
opposite situation, as a rule, occurs: the larger l, the lower the corresponding level (aε < 0). However, in the soft
potentials of small clusters, spectral regions with different signs of aε coexist and the orbitally degenerate level
exists in the spectral region where aε = 0. Aluminum clusters AlN are taken as an example to find out how the
position of the region with the degenerate level varies with varying cluster size N, and it is found that this region
is “pushed out” to higher energies with an increase in N. In this connection, the presence of multiply ionized
AlN clusters of the corresponding size in a low-temperature aluminum plasma is discussed. © 2001 MAIK
“Nauka/Interperiodica”.

PACS numbers: 31.10.+z; 36.40.Cg; 73.22.-f

aεn0
1. Energy levels  in the central potential depend
on two quantum numbers: radial nr and orbital l. In the
quasiclassical approximation, they are determined by
the Bohr–Sommerfeld quantization rule1 

(1)

where Sελ and pελ(r) =  are, respectively,
the radial action and the radial momentum of an elec-
tron with energy ε and angular momentum λ = l + 1/2
and the integration domain is bounded by the turning
points  and Rελ. Let us introduce the function νε(λ)
expressed through the radial action as

The quantity νε(λ) as a function of continuous argu-
ment λ decreases monotonically from the value νε(0) to
νε(λε) = 0, where λε is the maximal angular momentum
for energy ε.

1 Atomic units are used.

εnrl

Sελ r pελ r( )d

Rελ'

Rελ

∫ π nr
1
2
---+ 

  ,= =

pε
2 r( ) λ2/r2–

Rελ'

νε 0( ) r pε0 r( )/π, νε λ( )d

0

Rε0

∫ Sελ /π, λ 0.≠= =
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Let us examine how the function νε(λ) depends on λ
at small λ,

. (2)

For the spherical harmonic oscillator U(r) = –V0 +
ω2r2/2 and Coulomb potential U(r) = –Z/r, the function
νε(λ) is linear over the whole range of λ values:

(3)

(4)

It can easily be shown [1] that for the monotonic attrac-
tive potentials finite at zero point the first derivative in
Eq. (2) is equal to –1/2, as is the case for an oscillator.
These (anharmonic) potentials can be assigned to the
group of harmonic oscillator. An example of the poten-
tial of this type is provided by the self-consistent poten-
tials in spherical clusters and nuclei.

Likewise, the screened potentials having Coulomb
singularity at zero point U(r)  –Z/r (r  0) can be
assigned to the Coulomb group, for which  = –1

νε λ( ) νε 0( ) νε' 0( )λ 1
2
---νε'' 0( )λ2 …+ + +=

Harm. osc. νε λ( ) νε 0( ) 1
2
---λ , νε' 0( )–

1
2
---,–= =

Coul. νε λ( ) νε 0( ) λ , νε' 0( )– 1.–= =

νε' 0( )
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[1]. In particular, the intra-atomic (intraion) potentials
belong to this group.2 

The second derivative at zero point  in Eq. (2)
characterizes the degree of anharmonic or screening
effect. It is precisely the quadratic term with  ≠ 0
that is responsible for removing orbital degeneracy
inherent in the spectra of the “generic” potentials (har-
monic oscillator and Coulomb).

2. Before proceeding to the analysis of the spectra
with removed degeneracy, let us calculate the energy
levels for the generic potentials.

For l = 0, quantization condition (1) for the har-
monic oscillator reads

(5)

because in this case the particle can pass through the
center. For l ≠ 0 one has

.

Substituting νε(0) from Eq. (5) and denoting n' = n + 1,
one obtains

(6)

whence it follows that the principal n (n = 0, 1, …) and
the orbital l quantum numbers have the same parity and
that 2νε(0) = n + 3/2. The evaluation of the integral
νε(0) = (V0 – |ε|)/2ω yields the well-known expression
for the spectrum:  = –V0 + ω(n + 3/2) = –V0 +
ω(2nr + l + 3/2).

For the Coulomb potential, quantization condition (1),
with regard to Eq. (4), takes the form

where νε(0) = Z/ . Therefore,  = –Z2/2(nr + l +

l)2 = –Z2/2n2, n = 1, 2, ….
For the anharmonic potential, the energy εn0 of the s

level is also determined from the quantization condi-
tion of the type (5). Expanding the action νε(λ) in pow-
ers of energy in the vicinity of this level, one obtains for
the left-hand side of Eq. (1)

2 An example of a potential from this group, namely, the Thomas–
Fermi potential of a free atom, was analyzed in detail in [2, 3],
where the special case ε = 0 was set apart because the value of the
derivative  in this case depends on the rate of potential

decrease at infinity.

νε' 0( )

νε'' 0( )

νε'' 0( )
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2
---,+=
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2
---– nr

1
2
---, nr+ 0 1 2 …, , ,= = =

n l–( )/2 nr,=

εnrl

νε λ( ) νε 0( ) l
1
2
---–– nr

1
2
---, nr+ 0 1 2 …,, , ,= = =

2 ε εnrl

νε λ( ) νεn0
λ( )≅

∂νε 0( )
∂ε

----------------+
εn0

ε εn0–( )

≅ νεn0
0( ) λ

2
---

1
2
---νεn0

'' 0( )λ2 τn0

π
------ ε εn0–( ).++–
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Here, the notation τε = ∂Sε/∂ε is introduced for the clas-

sical time, and expansion (2) with  = –1/2 is used.

Note that the λ dependence of the ∂νε(λ)/  deriva-

tive is not taken into account because it would be
beyond the adopted accuracy. The right-hand side of
quantization condition (1) [cf. Eq. (6)] can be rewritten
as nr + 1/2 = n/2 + 3/4 – λ/2, after which one gets

(7)

where the value ∆εn = π/τn0 is the spacing between the
s levels of the neighboring n shells.

Similar mathematics for the potentials of the Cou-
lomb group gives the same result (7). Equation (7) pro-
vides the quantitative measure for the degeneracy
removal in the anharmonic or screened potential and
suggests the quadratic dependence of the correspond-
ing splitting on the orbital angular momentum, with the
sign of shifting from the s level being dependent on the
sign of the  derivative. For the positive sign, the
energy decreases with increasing l, and for the negative
sign it increases with l. The latter situation occurs in
atoms, and both variants may occur in clusters.

3. In an atom (and in an ion in plasma), the screen-
ing of the Coulomb potential brings about a constant
shift of the deepest energy levels by a value correspond-
ing to the potential of the electron cloud (and environ-
ment) at the nucleus. In this energy range,  = 0,
so that the spectrum is Coulomb-like, except that it is
shifted by the above-mentioned constant. For higher n
shells, the screening becomes substantial. Quantita-
tively, this is manifested in the  value: it is nega-

tive [  < 0] and increases in magnitude (cf. [4] for
plasma). If the coefficient of ∆εn in Eq. (7) becomes
larger than unity, the neighboring shells overlap, as is
actually observed in the spectra of atoms (and ions).

To demonstrate the domain of applicability of
Eq. (7), the electronic spectrum of the mercury atom is
taken as an example. The quasiclassical intra-atomic
potential corresponds to the Thomas–Fermi model:

(8)

where Z is the atomic number, the function φ(x) is
approximated by the Tietz expression [5] φ(x) = (1 + x)–2,
and b = 4.51/3. The results of the calculations of the
spectrum of the mercury atom (Z = 80) by Eq. (7) and
directly from quantization condition (1) are presented
in the table. The data for the inner p and d electrons are
in good agreement. The Hartree–Fock energies of inner
electrons are also given in the table. These data also
confirm that the dependence is close to Eq. (7), because
the coefficients an0 = –(εnl – εn0)/(l + 1/2)2 are virtually
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Spectrum of the mercury atom (Z = 80)

nl –εnl (HF) –εnl (1) –εnl (7) nl –εnl (HF) –εnl (1) –εnl (7)

1s 2778.6 2803.6 2803.6 4s 25.6 23.4 23.4
2s 470.7 477.1 477.1 4p 21.7 19.9 19.6
2p 452.2 464.2 462.7 4d 14.6 13.2 12.7
3s 113.1 110.6 110.6 4f 5.0 3.7 2.3
3p 104.3 102.8 102.2 5s 3.7 3.7
3d 88.1 87.8 87.3 5p 2.34 2.34

6s 0.257 0.257
constant within the n shells considered: a30 = 3.95 ±
0.05 and a40 = 1.72 ± 0.04.

4. A more complicated situation occurs for the spec-
tra of the cluster potentials belonging to the anhar-
monic group. As a rule, clusters exhibit quite the
reverse behavior: the larger l, the lower the correspond-
ing level in the shell, and the derivative is positive
[  > 0]. However, a subgroup of “soft” potentials

[6] for which the  < 0 value is negative (µ is the
chemical potential, i.e., Fermi energy at zero tempera-
ture) in small clusters with N < NF should be considered
separately. The upper portion of the spectra of such
clusters has a region displaying the “abnormal” behav-
ior with the negative  value. In clusters of a fixed

size, the derivative  increases with lowering
energy ε and changes sign at a certain energy. In the
region where  = 0, an l-degenerate level appears.
As the cluster size increases (the number N of its atoms
increases), the region where  = 0 “moves” to
higher energies, so that the degenerate level in a cluster

νε'' 0( )
νµ'' 0( )

νε'' 0( )
νε'' 0( )

νε'' 0( )

νε'' 0( )

Electronic spectrum in the Woods–Saxon potential for the
Al33 cluster.
with N = NF proves to be the highest (near the Fermi
energy µ). As for the clusters with N > NF , their spectra
have the “normal” shape [with  > 0] over the
whole range of ε values.

The calculations carried out in this work for the
spectra of the AlN clusters using Eq. (1) and the Woods–
Saxon potential (the corresponding parameters are
given, e.g., in [6]) confirm these conclusions. The
abnormal region of the spectrum of Al33 near the Fermi
energy µ (n = 4) is shown in the figure. The presence of
a nearly degenerate level (n = 3) and the normal l
dependence below it (n = 2) are clearly seen in the fig-
ure. The calculations predict NF = 57; in the Al57 cluster,
the level energies in the highest almost degenerate shell
with the principal quantum number n = 5 are ε51 = ε53 =
–0.126, ε55 = –0.127, and µ = –0.105.

The presence of a degenerate level near the Fermi
energy with ionization potential approximately half the
first ionization potential of the aluminum atom (I1 =
0.22) indicates that the clusters of size N ~ NF may be
multiply ionized even at not too high a temperature and
that multiply charged clusters may present in a low-
temperature aluminum plasma.

This work was supported by the Russian Foundation
for Basic Research, project nos. 00-01-00397 and
96-15-96616.
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It is demonstrated theoretically that the intensity distribution within the Kossel lines in an extremely asymmet-
ric X-ray diffraction scheme has an anomalous shape of a sharp peak exceeding the background intensity by
several hundred times. The possibility of experimental observation of this phenomenon is discussed. © 2001
MAIK “Nauka/Interperiodica”.

PACS numbers: 61.10.Dp
A unique possibility associated with the use of Kos-
sel lines in determining the scattering phase amplitudes
and in X-ray structural analysis was pointed out as
early as the 1960s [1]. More recently, this problem was
theoretically explored in detail in [2, 3], and a series of
experiments were carried out in the last five years [4, 5];
this approach was eventually given the name X-ray
holography method. Although the method of Kossel
lines has long been known [6], the main physical phe-
nomena arising upon the escape of this radiation from
perfect crystals are still not fully understood. It was
shown in [7] that the diffraction of an X-ray beam in a
extremely asymmetric scheme (see Fig. 1) is accompa-
nied by the formation of a strongly compressed beam at
a certain depth in the crystal. This beam propagates par-
allel to the crystal surface, and the degree of compres-
sion may be as high as several hundred times. This pre-
diction was experimentally confirmed by the X-ray
standing-wave method with the detection of photoelec-
trons [8, 9] by a specially designed proportional gas
counter [10]. One can naturally expect that this phe-
nomenon should affect the intensity distribution within
the Kossel line. It is shown below that the Kossel lines
in this diffraction scheme have an entirely different
structure and that the intensity distribution in the sec-
ondary X-radiation has the shape of a sharp peak,
whose intensity exceeds the background intensity by
several hundred times.

An extremely asymmetric diffraction occurs in the
so-called Bragg–Laue geometry, for which the dif-
fracted wave propagates nearly parallel to the crystal
surface, so that the diffraction geometry may be
changed from the Laue geometry to the Bragg geome-
try by a small change in the angle of incidence of the
initial X-ray beam on the crystal (Fig. 1). To determine
the wave-field distribution in the crystal for this diffrac-
tion scheme, one should take into account not only the
diffraction scattering but also the mirror reflection of
0021-3640/01/7306- $21.00 © 20271
the diffracted wave from the crystal surface. In this
case, the wave fields in crystal are determined by the
following expression:

(1)

where the wave vectors of the incident and diffracted
waves in crystal

(2)

and

(3)

(k0 is the wave vector of the incident wave in a vacuum,
and Kh is the reciprocal lattice vector) are determined
by the roots of the third-order equation [7]

(4)

where

(5)

(6)

 = 2 sinθB is the effective misorientation angle,
θB is the Bragg angle, ∆θ is the deviation from the
Bragg angle, χh is the Fourier component of polariz-
ability for a given reflection, and c is the polarization
factor. Dispersion Eq. (4) has three roots, two of which,
satisfying the condition Im(y1, 2 + χ0/2ϕ0) > 0, deter-
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mine extinction modes (1). The field amplitudes 

and  are given by

(7)

where

(8)

is the amplitude of the reflected wave and y3 is the root
of Eq. (4) with Im(y3 + χ0/2ϕ0) < 0.

One can see from these expressions that the 
amplitudes far exceed  if the roots of dispersion
Eq. (4) are close to each other. In the absence of absorp-
tion, one can readily find the degeneracy point at

(9)

where all three roots are equal:

(10)

For the amplitude of the diffracted wave in crystal, one
obtains at this point

(11)

i.e., the amplitude Dh(z) grows indefinitely with
depth z.
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Fig. 1. The diffraction scheme in the extremely asymmetric
Bragg–Laue geometry and the depth distribution of the
squared modulus of diffracted wave amplitude inside a Ge
crystal, as calculated for the (220) reflection of GeKα (Ψ =
30°, ϕ = 1128′, and ∆θ = 3.2″). Ψ is the angle between the
normal to the surface and the reflecting planes.
After inclusion of the absorption effect, the Dh(z)
amplitude ceases to grow indefinitely, and a maximum
appears for the compressed diffracted wave at a
depth of

(12)

where a = [Im(χ0)/ ]
1/3

 and λ is the radiation wave-
length. The intensity of radiation field inside the crystal
is

(13)

The calculated intensity distribution of X-rays
inside the crystal is shown in Fig. 1 for the (220) reflec-
tion of characteristic GeKα radiation from germanium
crystal and the incident-wave direction corresponding
to the “degenerate” point given by Eqs. (9) and (10).
One can see from this figure that the incident beam is
almost 300-fold compressed at a depth on the order of
30 nm. This phenomenon was experimentally observed
using the X-ray standing-wave method for a Si single
crystal cut at an angle of Ψ = 8° to the (111) direction.
In these experiments, the photoelectron yield from Si
crystal was enhanced by more than 20 times for the
(422) reflection [8]. This effect was later confirmed in
experiments with a Ge crystal, where the photoelectron
yield in the asymmetric diffraction scheme was more
than tenfold higher than the radiation yield for inci-
dence angles away from the Bragg angle [9].

The X-radiation intensity distribution within the
Kossel line for the radiation source located inside the
crystal can also be easily calculated by using Eqs. (1)–(8)
and (13) and the reciprocity principle [11]. According
to this principle, the distribution of radiation from the
excited atoms in crystal is determined for the Kossel
line by the equation

(14)

where P(z) is the depth distribution of radiating atoms
in crystal.

Figure 2 presents the GeKα radiation distribution
within the Kossel line in a Ge crystal cut in the (110)
direction. The calculation is carried out for the (022)
reflection under the assumption that the excited radiat-
ing germanium atoms are concentrated near the surface
with the exponential density

(15)

where the characteristic depth L of excited atoms in
crystal is taken to be 50 nm. It is seen from this figure
that the intensity distribution within the Kossel line has
a pronounced peak, whose intensity is more than 100-
fold higher than the background intensity. The diver-
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gence in the θ angle is as small as several seconds of arc
and in the ϕ angle is tens of angular minutes. These are
precisely the parameters which are achieved for a
sharply collimated beam formed using multiple mono-
chromators. The predicted effect can easily be observed
with the use of such monochromators as an analyzer of
the radiation distribution within the Kossel line.

Note that in the usual diffraction schemes, symmet-
ric or slightly asymmetric, the Bragg geometry (see
Fig. 2, ∆ϕ = –10°) provides relatively small changes in
the radiation intensity, and the distribution maximum
only several times exceeds the background intensity.
These variations are quite sufficient to fix the alternat-
ing light and black fringes (Kossel effect) on the photo-
graphic plate. With the Laue geometry (Fig. 2, ∆ϕ =

Fig. 2. Kossel diffraction in an extremely asymmetric dif-
fraction scheme and the intensity distribution of the GeKα
radiation from a Ge crystal (Ψ = 30°), as calculated for the
(220) reflection (right) in the vicinity of the degenerate point
ϕ = 1128′ + ∆ϕ and (left) far away from it in the Bragg
(∆ϕ = –10°) and Laue (∆ϕ = 10°) geometries. The scale for
the left curves is increased tenfold. 
JETP LETTERS      Vol. 73      No. 6      2001
10°), the changes in radiation intensity within the Kos-
sel line are very weak, so that this geometry is rarely
used.

Naturally, it remains to solve the problem of atomic
excitation in a narrow near-surface layer. If the excita-
tion is provided by an electron beam, this problem is
solved through lowering the energy of incident elec-
trons. In the case of an X-ray beam, this problem is
solved by decreasing the angle of incidence of the
exciting beam on the crystal. If the incident beam starts
to suffer mirror reflection, the excitation of the Ge
atoms, say, by the characteristic MoKα radiation occurs
at a depth on the order of 20 nm. Therefore, the exper-
imental implementation of the idea seems not to be a
challenge.

This work was supported by the Russian Foundation
for Basic Research, project no. 99-02-16665.
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A new linear centrifugal-dissipative mechanism is proposed that explains the vortex asymmetry observed, in
particular, in the structure of low-frequency anticyclonic Rossby vortices. It is shown that the relevant centrif-
ugal-dissipative instability, which spontaneously breaks the chiral symmetry of the vortices, takes place only in
the range ω < Ω , where ω is the frequency of small oscillations corresponding to the effective solid-body rota-
tion of a vortex and Ω is the rotation rate of a noninertial frame of reference. The onset of the instability is asso-
ciated with the existence of an optimum magnitude of the frictional force. In the vortex model based on a two-
dimensional oscillator with the natural frequency ω in a noninertial reference frame rotating at the rate Ω , the
instability shows up as an exponential increase in the total angular momentum. It is noted that the centrifugal-
dissipative instability may also manifest itself in the seismically active regions of the world. © 2001 MAIK
“Nauka/Interperiodica”.

PACS numbers: 47.32.Cc; 47.20.-k
It is well known that fairly stable low-frequency
(large-scale) vortices observed in the atmospheres of
rapidly rotating planets (like Jupiter, Saturn, and Earth)
are, as a rule, anticyclonic whirls; i.e., they usually
rotate in the direction opposite to the direction of rota-
tion of the planet [1]. The characteristic rate ω of the
effective solid-body rotation of such vortices is always
lower than the rotation rate Ωp of a planet. Analogously,
broken chiral symmetry dominated by anticyclonic cir-
culations is characteristic of vortex lenses in the oceans
[1] and vortices observed in laboratory experiments
with liquids in rotating vessels [1–3]. These observa-
tions of broken chiral symmetry in nonequilibrium vor-
tex systems supplement the well-known observations
made since Louis Pasteur (1862) of the left–right spa-
tial dissymmetry in objects of animate nature [4–6].

In the present-day nonlinear theory of Rossby vorti-
ces (see [1] and the literature cited therein), the chiral
symmetry breaks due to the predominance of a certain
type of nonlinearity. In this context, it is proposed to
describe the centrifugal-dissipative instability (CDI) by
a fundamentally new model that is based on a two-
dimensional oscillator in a rotating noninertial refer-
ence frame. According to this model, the chiral symme-
try of the developing low-frequency anticyclonic vorti-
ces is spontaneously broken by a linear mechanism for
the CDI. The validity of this model is proved by the fact
that exact vortex solutions to the hydrodynamic equa-
tions of an incompressible fluid can be adequately
0021-3640/01/7306- $21.00 © 0274
described by solid-body rotations (including those on a
spherical surface [7]) with the help of the equations of
a two-dimensional oscillator. The proposed model of a
two-dimensional oscillator in a rotating noninertial
frame can also be used to describe other physical phe-
nomena: from low-frequency (ω < Ωp) large-scale seis-
mically active geophysical wave processes to submo-
lecular oscillators in the corresponding microsystems
rotating at the rates Ω @ Ωp .

1. For simplicity, we start by considering a two-
dimensional oscillator in the plane (x, y) in a coordinate
system rotating at an arbitrary angular velocity Ω about
the z axis. In spherical geometry, the vortices at an arbi-
trary latitude  will be described later [see formula (8)].

The problem as formulated is a generalization of the
familiar classical problem [8] of how the Earth’s rota-
tion affects the small oscillations of a two-dimensional
oscillator—the Foucault pendulum—in the corre-
sponding rotating noninertial reference frame. In fact,
according to [8], a mathematical Foucault pendulum of

length l always satisfies the relationship ω =  @
Ωp . 10–5 s–1, so that the centrifugal acceleration, which

is proportional to , can definitely be neglected
(as is the case in [8]). On the other hand, the centrifugal
acceleration should be taken into account when analyz-
ing other kinds of oscillations, specifically, those at low
frequencies ω < Ωp . With allowance for the frictional

ϕ̃0

g/l

O Ωp
2( )
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force, which is proportional to velocity (the proportion-
ality coefficient being α), the equation of motion for a
two-dimensional oscillator in the frame of reference
rotating at a constant angular speed Ω has the form

(1)

where ξ ≡ x + iy ≡ rexp(iϕ),  ≡ dξ/dt, and α > 0. In
particular, in an inertial frame, Eq. (1) with α = Ω = 0
describes the solid-body rotation (at the rate ω) of the
cores of different types of vortices [1, 7]. The solution
to Eq. (1) is

(2)

where Cα = const (α = 1, 2), τ ≡ tΩ,  ≡ α2/Ω2, and

Obviously, solution (2) implies that the zero equilib-
rium state (x = 0, y = 0) of the system described by
Eq. (1) possesses chiral symmetry and is unstable
against arbitrarily small seed perturbations such that

 < 1, in which case the quantity λ0 in solution (2) sat-
isfies the condition

(3)

The unstable state (x = 0, y = 0) corresponds to an
unstable focal point, and, for arbitrary chirally symmet-
ric initial conditions, circulation along the trajectories
in the (x, y) plane under the condition τ @ 1 is anticy-
clonic; i.e., the circulation direction is opposite to the
direction of rotation of the reference frame (with the
angular speed Ω). In fact, for τ @ 1, which indicates
that the first term on the right-hand side of solution (2)
dominates over the second term, condition (3) implies
that the circulation frequency  (which is generally
different from the frequency ω of the seed perturba-
tions) is equal to

(4)

and satisfies the inequality  < Ω by virtue of (λ0 –

)/λ0 < 1. Under condition (3), the frequencies 
and Ω in Eq. (4) have opposite signs. The most unstable
perturbation mode is that with ω = 0, for which the
quantity λ0 is maximum. From solution (2) and condi-
tion (3), one can see that the seed perturbations are
unstable only when α ≠ 0, in which case the solution ξ
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increases exponentially with time. In particular, we
have

(5)

Although the general case is that with  ≠ ω, it is
of interest to consider the main frequency-demultipli-
cation resonance ω = Ω/2. Taking the limit  ! , we
can see that formulas (4) and (5) give the equality  = ω,
which is valid for the unstable state (x = 0, y = 0) under
condition (3). As in the case of parametric resonance
[8], solution (2) and condition (3) imply that, for the
dissipative vibrating system (1), it is precisely the
modes with ω . Ω/2 that grow exponentially in time.1

On the other hand, for ω . Ω/2, we have  ≤ ω.

Hence, in order for the chirally symmetric state to
be linearly unstable in the range  < 1, the dissipation
in the system should be finite. This stems from the fact

that the quantity λ0 –  approaches zero in both lim-
its   0 and   ∞. Note also that, regardless of
the values of  and , each solution to Eq. (1) in
which the centrifugal force is neglected describes a
damped Foucault pendulum [8]. For these reasons, the
instability in question is actually of centrifugal-dissipa-
tive origin. According to the approximate expressions (5)

for the dependence of λ0 –  on , there is an opti-
mum rate of dissipation  =  at which the quan-

tity λ0 –  is maximum. In particular, for  = 0, we

have  . 0.49; for  = 1/3, we have  . 0.405;

and for   1, we have   0, so that  .

3(1 – ). In other words, the quantity  decreases as

 increases from zero to unity.

The above-described dissipative effects, which play
an important role in triggering the instability that drives

1 However, in contrast to the case of parametric resonance, solution (2)
and condition (3) imply that not only the mode with ω = Ω/2
grows exponentially with time but also all modes with ω < Ω are
unstable. In addition, in the case at hand, the instability is associ-
ated precisely with the effects of the frictional force, while the
parametric resonance can also occur for α = 0 [8].
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the anticyclonic circulation of particles in a rotating
frame of reference, may also manifest themselves in
any rotating noninertial system, i.e., in the system that
initially has no chiral symmetry.

This conclusion is supported, e.g., by the following
two examples. First, let us mention the Andronikashvili
central vortex that arises in a rotating He I during the
transition into the superfluid phase (into He II) and is in
fact observed to dissipate gradually immediately after
the transition, while detaching itself from the bottom of
a rotating vessel and becoming progressively lower in
height [9]. Also, Chkhetiani and Moiseev [10] showed
that, in a medium in which the mean chirality of a
small-scale electromagnetic field is nonzero (in partic-
ular, because of the left–right spatial dissymmetry of
molecules), the possible exponential increase in the
magnetic field may stem, among other things, from a
finite dissipation in the low-conductivity limit.

If we consider Eq. (1) with α = νk2/2 (where ν is the
kinematic viscosity) as a linearized approximation to
the hydrodynamic equations, then the quantity  cor-
responds to the most unstable mode with k . k0 ≡

, i.e., the mode whose amplitude grows
exponentially in time at the highest rate.

2. In order to provide a clearer insight into the phys-
ics of the CDI of a chirally symmetric state, we can turn
to the corresponding representations of the total energy
and total angular momentum in rotating and nonrotat-
ing (immobile) reference frames [8] and of their time
derivatives at α ≠ 0. It turns out that, during the onset of
the CDI, the angular momentum is not an invariant of
motion (as is definitely the case with Eq. (1) at α ≠ 0)
but can increase exponentially in time, as can be

inferred from the equation  = –2αr2  for the angu-
lar momentum component of a unit mass rotating about
the z axis orthogonal to the (x, y) plane. Under condi-
tion (3) with  < 0, relationship (4) gives  < 0 and

solution (2) yields r = r0exp[τ(λ0 – )], so that we
have Mz = r2(  + Ω) > 0 [see formula (4)]. Note also
that the quantity Mz/2π describes the vortex circulation
of the velocity field v of an incompressible fluid in the
(x, y) plane in the reference frame rotating at the rate Ω .

In order to obtain equations for the total energy, we
supplement Eq. (1) with the equation for oscillations
along the z axis,

(6)

and consider a rotating frame of reference such that

 ≠ 0, in which case we must add the term –i ξ to the
right-hand side of Eq. (1). As a result, Eqs. (1) and (6)
yield the following equations for the total energy En per
unit mass in a rotating noninertial reference frame and
the total energy E0 in the corresponding immobile (non-

α̃0

2α̃0
1/2Ω/ν( )

1/2

Ṁz ϕ̇

ω̃ ϕ̇
α̃

ϕ̇

ż̇ 2α ż ω2z++ 0,=

Ω̇ Ω̇
rotating) frame [8] (these energies are related to each
other as E0 = En + (W · M)):

(7)

where  > 0, provided that the CDI occurs, i.e., that
inequality (3) and the condition 0 <  < 1, which is
imposed by this inequality on , are both satisfied.

Hence, during the onset of the CDI under condi-
tion (3), the total energy E0 can increase at the expense
of the energy that maintains the circulation at a constant
rate (4) and is associated with the increase in the angu-
lar momentum Mz resulting from dissipative forces
with α > 0.

3. In geophysics, the above-described mechanism
for transforming the rotational energy of the Earth,
together with the energy-related phenomena resulting
from both nonuniform (in latitude) mean heat balance
and other local manifestations of the nonuniform inso-
lation [11], may be responsible for the formation of
large-scale vortex structures in the atmosphere and the
oceans. The above analysis is also applicable to some
other problems. In particular, in Newtonian mechanics,
the model developed here can be used to explain the
principles of operation of the actual mechanical devices
aimed at converting the energy of the inertial forces of

rotational motions [including those at a rate  ≠ 0; see
Eqs. (7)] into the energy of translational motion
[12, 13]. The above model can also provide a new
insight into the experimentally observed asymmetry of
the chemical reactions in rotating vessels [5, 14] (in the
context of looking for physical causes for deracemiza-
tion of the biological objects [4–6]). However, these
problems, as well as the problems of the formation of
vortex structures and the problems of intermediacy and
turbulent diffusion [15], in which the CDI can also play
an important role, require a separate study, so that we
restrict ourselves here to discussing some possible geo-
physical consequences of the CDI.

Indeed, Eq. (1) and the above analysis can be simply
generalized to geophysical systems on a rotating
sphere. Thus, if we apply the f-plane approximation
[11] but choose a coordinate system with the z axis
directed parallel to the rotation axis of the sphere (the
z axis is aligned with the direction of the normal to the
sphere only at the pole), then we arrive at Eq. (1), which
should be supplemented with Eq. (6) for oscillations
along the z axis. The remaining coordinates of this sys-
tem are as follows. The x coordinate corresponds [11]
to the distance toward the east in the zonal direction
along the axis lying in the tangent plane to the sphere at
the latitude  =  and at a fixed longitude. The y and
z coordinates are related to the y' and z' coordinates that
are traditionally introduced in the f plane (the y' axis is

Ė0 2α ż2 ṙ2 r2ϕ̇ Ω ϕ̇+( )+ +[ ] ,–=

Ėn 2α ż2 ṙ2 r2ϕ̇2+ +( ) Ω̇Mz,––=

Ė0

ω̃
ω̃

Ω̇

ϕ̃ ϕ̃0
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directed northward in a meridional plane, and the z'-axis
coincides with a local normal to the sphere) [11] by

(8)

these relationships correspond to the rotation of the
(x, y', z') coordinates through the angle π/2 –  about
the x axis in a poleward direction. Equations (1) and (6)
can be regarded, in particular, as a linearized form of
the hydrodynamic equations for Lagrangian particles
on a sphere in the f-plane approximation, with the rep-
resentations ν∆v . –2αv and —p/ρ0 – ω2x, where —p is
the pressure gradient and ∆ is the Laplacian operator. In
this case, the solution for x, y, and z coincides with the
above solution to Eqs. (1) and (6) and, under condi-
tion (3) (i.e., for  < 1), describes anticyclonic [see
formula (4)] circulation of liquid particles about the
z axis, which is inclined at an angle  to the tangent
plane. Consequently, in the plane perpendicular to the
tangent plane, the particle trajectories are ellipses
(rather than circles, as is the case in the plane parallel to
the z axis) with their minor axes in the meridional direc-
tion. In fact, in laboratory experiments on modeling
Rossby vortices in a rotating parabolic vessel, the pho-
tographs taken precisely in the direction parallel to the
vessel’s rotation axis show that the passive particles,
which visualize a vortex, move along circles [1]. The
above analysis of Eq. (1) with  < 1 shows that, under
the condition τ @ 1, the CDI drives liquid particles only
into anticyclonic circulation. This conclusion agrees
with the observations according to which long-lived
anticyclones predominate in the atmospheres of rapidly
rotating large planets (such as the Earth, Jupiter, and
Saturn), whose rotation rate Ωp is much higher than the
anticyclonic circulation rate ω [1].

Thus, Jupiter’s Great Red Spot, which has survived
at least 300 years, is an oval-shaped huge anticyclone,
which drifts westward at a mean speed of about 3.5 m/s,
is centered at about latitude  ≈ –22°, and is flattened
in the meridional direction (according to the Voyager
photographs of Jupiter).

In fact, with allowance for the dependence of the
Coriolis parameter f = 2Ωsin  on the latitude , the
solution of hydrodynamic equations on a sphere in the
inertial wind approximation (for a zero pressure gradi-
ent in the horizontal direction) shows that liquid parti-
cles should inevitably experience anticyclonic circula-
tion: the particles move along trochoids that are, on
average, deflected westward (see [11]). In order to
incorporate the β effect [  .  + y'/R + o(y'R)] into
the above model of the CDI of Rossby vortices circulat-
ing at rate (4) in the case τ @ 1, the right-hand side of
Eq. (1) for ξ should be supplemented with the term
(2Ω/R)sin [ y + z + i( z – /Ω)], where R is the
radius of a sphere rotating at an angular speed Ω .
Applying the method of successive approximations in

z y ' ϕ̃0 z ' ϕ̃0, ysin+cos y ' ϕ̃0 z ' ϕ̃0;cos–sin= =
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ω̃
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the small parameter r/R ! 1 [i.e., substituting the solu-
tions obtained in the f-plane approximation into the
right-hand side of Eq. (1)], we can derive the following
estimate for the mean velocity of a vortex that drifts
westward in the zonal direction for  ! 1, τ @ 1, and

 ! 1:

(9)

where the root-mean-square initial speed  in
the meridional direction corresponds to the vortex cir-
culation at the rate  = ω, the angular brackets indicate
statistical averaging over the initial conditions such that
〈v0y'〉  = 0, and the overbar stands for averaging over the
period of circulation 2π/Ω . With the parameter values
characteristic of Jupiter and its Great Red Spot (Ω .

10–4 s–1, ω . 10–5 s–1,  . 102 m/s, and R =
700000 km), relationship (9) yields the estimate

 . –2 m/s, which agrees well with the above-men-
tioned value of the observed velocity of the westerly
drifting Great Red Spot,  . –(3.4–3.8) m/s.

It would be worthwhile to study the effect of the
nonlinear drift described by the nonlinear terms in the
expansion —p/ρ0 = ωx(1 + O(|x|)…) and to compare the
CDI of a chirally symmetric vortex state with the diffu-
sive [16] and stochastic [17] instabilities of a spatially
uniform state, which result in the formation of nonuni-
form structures.

In conclusion, let us estimate the conditions under
which the CDI plays the role of a possible driving force
for seismic activity in the Earth’s crust and in the upper
mantle in the form of seismic waves whose frequencies
are sufficiently low, ω < Ωp . 10–5 s–1 [see condition
(3)], and which are associated with the Earth’s rotation
and with the existence of the optimum dissipation rate
for the onset of the CDI. We assume that free small-
amplitude waves of the Earth’s crust satisfy the same
dispersion relation as the flexural waves of a plate of
thickness h, ω = c0h/λ2 (see formulas (25) and (8) in
[18]), where c0 . 6 km/s is the speed of the longitudinal
waves and λ is the wavelength or, equivalently, the
characteristic horizontal length scale of the process.
Condition (3) for the onset of the CDI such that ω < Ωp

yields the estimate λ > λcr =  . 2500 km of the
actual horizontal characteristic scale length of seismi-
cally active zones. In contrast to an isotropic medium,
in which the critical wavelength λcr is two orders of
magnitude longer (λcr . c0/Ωp), this estimate agrees
fairly well with the observed period (of about 3000 km)
of large-scale lithospheric magnetic anomalies of
unknown origin, as well as with the actually observed
effects of rotation of the contraction axes near the focus
of an impending severe earthquake [19].
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PACS numbers: 75.10.-b
Spiral (incommensurate) structures in ferromagnets
have long been studied and are well understood [1, 2].
They are formed due to the reconstruction of a Fermi sur-
face as a result of the interaction of magnetic moments
with conduction electrons.1 Mathematically, they were
used in the context of the inverse scattering problem,
e.g., as boundary conditions when solving the nonlin-
ear (2 + 0)-dimensional O(3)-sigma model (two-
dimensional stationary Heisenberg ferromagnet) [4].

In this work, a special model is invoked to demon-
strate theoretically that new magnetic structures can
exist which may naturally be called spiral-logarithmic
structures.

Let us consider cylindrically symmetric configurations
in the model of a “modified” Heisenberg magnet [5]:

(1)

where S(x, t) = (S1, S2, S3) is the magnetization vector

(S2 = 1) and x = , where x1 and x2 are the Car-
tesian coordinates on a plane. The Cauchy problem for
Eq. (1) was solved in [5] by the inverse scattering
method on a trivial background, and it was shown that
any perturbation localized at t = 0 spreads out.

However, one can readily verify by a direct calcula-
tion that the vector S = S(1) with components

(2)

where θ0 ∈  R is a constant and x > 0, is also a (station-
ary) solution of Eq. (1). Now, using the fact that this
equation is quite solvable, let us construct its exact
solutions on the background of structure (2). To this

1 The spiral structures in non-Abelian gauge theories are discussed
in recent publication [3].

St S Sxx
1
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1( ) x( ) xln θ0+( ),sin=

S2
1( ) x( ) xln θ0+( ), S3

1( ) x( )cos 0,= =
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end, let us represent Eq. (1) in the form of a condition
for compatibility of the following linear matrix system:

(3)

where U1 = –(i/2)S, V1 = (1/2)SxS + i(AS + SA), V2 =

(i/2)S, S = , σi are the Pauli matrices, Λ =

diag(λ, ), λ ∈  C is a parameter, matrix A = A(S) is
determined from the condition

(4)

and it is additionally assumed that the elements of the
matrix (S – S(1)) properly decrease at x  ∞.

Equation (1) will be solved by the Darboux matrix-
transformation method [6]. Let

(5)

where L1 = Ψ1  and Ψ1 is a certain fixed solution
of Eqs. (3) corresponding to the choice S = S(1) and
λ = λ1.

Checking for the covariance of system (3) about
transformation (5) yields the dressing relations (U1 =
−(i/2)S (1))

(6)

(7)

The equivalence of all these expressions can be proved
by simple mathematics. The second relation in Eqs. (6)
can be conveniently rewritten as

(8)
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From the property σ2Sσ2 =  of matrix S, one has

σ2U1σ2 = . The matrix Ψ1 then takes the form

(9)

where ϕ1 = ϕ1(x, t, λ1) and χ1 = χ1(x, t, λ1) are complex
functions to be determined.

The A matrix in Eq. (4) must satisfy the condition
Tr(AS + SA) = g(t) for any S, where g(t) is an arbitrary
function [in what follows, g(t) = 0]. Furthermore, con-

sidering that σ2SSxσ2 =  and using Eq. (4), one

obtains  = σ2Aσ2. It can easily be seen that Eq. (1) and
the right-hand side of Eq. (4) are invariant about the
substitution S  S (f) = S + f(x)I, where f(x) is an arbi-
trary complex function and I is 2 × 2 unit matrix.
By setting A(S) = (aij(S)) and using condition (2), let

us  bring Eq. (4) to the form diag((2i (S (f ))f )x,

−(2i (S (f ))f )x) = diag(1/2x2, –1/2x2), where a11(S (f )) =

i (S (f )),  = , and the a21(S (f )) element is zero.

Hence it follows that f(x) = i/4x and  = 1; one also
has A(S (f ))S (f ) + S (f )A(S (f ) ) = A(S)S + SA(S), so that all
properties of the matrix S are retained in the final for-
mulas.

To construct the explicit solutions, note that on bare
solution (2) the system of Eqs. (3) transforms, with
regard to Eq. (4), into the following system of scalar
equations (θ = lnx + θ0):

(10)

It follows from Eq. (10) that

(11)

Therefore, ϕ1(x, t) = F(x + λ1t) and χ1(x, t) = G(x + λ1t),
where functions F and G are constant on the character-
istic x + λ1t = const. They can be found by solving the
system of Eqs. (10), e.g., for t = 0. The corresponding
equation for ϕ1(x, 0) is reduced to

(12)

The solution to this equation is [7] ϕ1(x, 0) =
xi/2 + 1/2Zi/2 + 1/2(–λ1x/2), where Zν(s) = C1Iν(s) +
C2Yν(s); Iν and Yν are Bessel functions of the first and
second kind, respectively; and C1 and C2 are arbitrary
constants. The requirement that the solution be finite at

S–

U1

Ψ1
ϕ1 χ1–

χ1 ϕ1 
 
 

,=

SSx

A

a11
0

a11
0

a11
0 a11

0 a11
0

a11
0

ϕ1x
1
2
---λ1eiθχ1, χ1x–

1
2
---λ1e iθ– ϕ1,= =

ϕ1t
1
2
---λ1

2eiθχ1, χ1t–
1
2
---λ1

2e iθ– ϕ1.= =

ϕ1t λ1ϕ1x– 0, χ1t λ1χ1x– 0.= =

xϕ1xx iϕ1x–
1
4
---λ1

2ϕ1+ 0.=
zero gives C2 = 0. Then, the solution to the system of
Eqs. (10) takes the form

(13)

where q = q(x, t) = x + λ1t – x0, θ(x, t) = lnq + θ0, and
x0 is the initial point.

One can now construct the simplest one-soliton
solution. Nevertheless, it is still rather cumbersome, so
that it is pertinent to use Eq. (8) and write the solution

in the form2 (S+ = S1 + iS2 and S+[1] ≡ ):

(14)

where3 

This solution is nonsingular. It depends on four
parameters λ1R, λ1I, x0, and θ0, where λ1 = λ1R + iλ1I, and
includes a single complex function ρ1(x, t). Note also
that the spectrum of excitations in model (1) contains
satellites of the “fundamental harmonic” with an
incommensurate (and variable) “frequency.” By using
the asymptotic form of the Bessel function, one can
show that solution (14) converges to Eq. (2) at x  ∞.

Let now obtain the N-soliton solution. For this pur-
pose, let us use Eq. (5). One can easily show that

(15)

with the matrix functions Q1, …, QN being determined
from the linear matrix system of equations

(16)

2 It is more convenient to use the matrix Ψ1σ3 instead of Ψ1 [it is
also a solution of system (3)].

3 In this expression, as also in Eqs. (13) and (14), the logarithms are
taken on their major branches and the appropriate cuts on the
plane of parameter λ ∈  C are assumed to be made to provide
solution uniqueness.
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where Λi = diag(λi , ); i = 1, …, N; and Ψi are the solu-
tions to Eq. (3) corresponding to λ = λi. At the same
time, one has from Eq. (8)

(17)

The expression for the N-soliton solution can readily be
obtained from Eqs. (16) and (17):

(18)

where S+[N] = S1[N] + iS2[N],

and ∆1 and ∆2 are obtained by replacing the first and sec-
ond columns in the determinant ∆ by (ϕ1, –χ1, …ϕN, –χN)T

and (χ1, , …χN, )T, respectively. The fact that
Eq. (18) is an N-soliton solution can be proved in the
standard way [6, 8] {it should be noted that the explicit
determinant representation is difficult to obtain by the
inverse scattering method for this model, as also for the
standard model of Heisenberg magnetic, i.e., for Eq. (1)
without the second term [8]}. Similar to Eq. (14), this
solution converges to the bare solution at x  ∞,
while at finite x values the spectrum of excitations has
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on this background N! coupled satellites with incom-
mensurate frequencies.

In conclusion, let us present a quite soluble nonlin-
ear equation gauge-equivalent to Eq. (1) [9]:

(19)

Due to the gauge equivalence, the analysis applied to
Eq. (1) can also be used in this case.

I am grateful to G.G. Varzugin for helpful remarks
and A.B. Borisov for attention. This work was sup-
ported by the Russian Foundation for Basic Research,
project no. 00-01-00480.
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The excitation of IR emission is observed for thin films illuminated by continuous visible light in the absence
of light absorption in the sample. The effect is demonstrated by the example of the lysine molecule and
explained by the resonant combined action of optical photons with frequencies ωi and ωj, whose differences
ωi – ωj = Ω coincide with the frequencies of the lysine vibrational modes. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 78.30.-j; 78.45.+h; 33.20.Ea; 42.65.Ky
Thermally stimulated IR emission from the surfaces
of solids and thin films is analyzed in detail in [1–4].
The then cumbersome measurements of low “positive”
and “negative” [5] light fluxes have not been developed
further since that time. In addition, when dealing with
the positive fluxes, one was forced to heat samples up
to a relatively high temperature (≈150°), which could
lead to the sample destruction. The emergence of high-
sensitivity Fourier transform infrared (FT-IR) spec-
trometers greatly facilitated this problem and, in addi-
tion, made it possible to excite the IR emission of films
by illuminating them in the visible region [6]. This
communication is devoted just to this issue. In our
experiments, the IR emission was excited in the range
of chromophore absorption, as described in [7, 8]. In
this work, the IR emission was recorded for the samples
not absorbing in the visible region. The observed
effects are illustrated by the example of lysine, whose
low-frequency IR spectrum shows well-defined absorp-
tion bands. As in our previous experiments, the IR emis-
sion was excited by a moderately intense visible (non-
monochromatic) light. An attempt is also undertaken to
explain the observed effect by the resonant combined
action of optical photons with frequencies ωi and ωj,
whose differences ωi – ωj = Ω coincide with the fre-
quencies of the lysine vibrational modes. The emission
spectra were recorded on a domestic FT-IR spectrome-
ter FS-02 designed at the TsUP UP RAN and equipped
with low-temperature MST detectors (described in
detail in [9]). The emission was recorded after remov-
ing the standard IR source from the instrument. A sam-
ple illuminated by continuous visible light from a
100-W xenon lamp was placed instead. The light was
almost normally incident on the sample surface and
focused into a 4 × 1-mm spot using a short-focus glass
lens. With the geometry used, the IR emission from the
sample did not mix with the exciting visible light (use-
less light did not fall on the detector). Broadband or
0021-3640/01/7306- $21.00 © 20282
interference glass filters were used in the experiments.
The sample was a film of lysine amino acid precipitated
as a thin layer from the concentrated aqueous solution
onto a substrate (KRS-5, CaF2, or silicon). The sample
did not absorb in the visible region. The spectra were
recorded at room temperature with a spectral resolution
of 4 cm–1 and averaged over 400 scans. Figure 1 shows
the IR emission spectra of lysine on a KRS-5 substrate
in the range from 500 to 3500 cm–1. The absorption
spectrum of lysine is shown for comparison. One can
see that the IR emission spectrum (curve 1b) recorded
with the use of a broadband filter (λ > 560 nm) repro-
duces almost all bands at the same frequencies as in the
absorption spectrum. Although the set of emission
bands is identical to that observed in the absorption
spectrum, there is a difference between them primarily
in the intensity distribution among the bands. For
example, a weak absorption band near 540 cm–1

becomes one of the strongest in the emission spectrum
in the range from 500 to 1300 cm–1, whereas a strong
and broad absorption band at 2500–3300 cm–1 is prac-
tically absent in the emission spectrum. It is notable
that the strongest bands occur only in the low-fre-
quency range and that the envelope of these bands
monotonically drops at higher frequencies and resem-
bles in this respect the equilibrium Boltzmann distribu-
tion. According to this distribution, the number of mol-
ecules vibrationally excited at a given temperature
depends on the ratio between the vibrational energy \ω
and the thermal energy kT as

where k is the Boltzmann constant. The higher the
vibrational energy compared to the thermal energy, the
lower the number of molecules having this vibrational
energy. Because of this, the number of excited mole-
cules decreases rapidly with increasing frequency. For
instance, the number of vibrationally excited molecules

n1 "ω/kT–( ),exp∼
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with ω = 1000 cm–1 should be small at room tempera-
ture (~0.7% of all molecules [10]). However, the inten-
sity of a band at 1004 cm–1 in the emission spectra of
lysine is higher than that given by the Boltzmann distri-
bution. Apart from this band, the other rather intense
bands are also seen in the high-frequency range. Thus,
the recorded IR emission differs in character from the
thermal equilibrium emission and, hence, cannot be
characterized by comparing it with the blackbody radi-
ation. It should be noted that the absorption in the sub-
strate (e.g., KRS-5) may also cause heating of the sam-
ple even if the film does not absorb in the visible region.
However, the low-intensity light beams used in our
experiments cannot excite the thermal emission, in con-
tact to the laser radiation [6]. It will be shown in what
follows that the origin of IR emission can be under-
stood on the basis of the principles formulated previ-
ously for active Raman spectroscopy. Although both
the recording method and the observed effects are quite
specific in our case, there are grounds to assume that
they are based on the physical processes similar to
those underlying stimulated Raman scattering. This is
primarily related to the fact that, under certain condi-
tions, namely, when the frequency difference between
two light waves ωi and ωj converging into a beam is at
resonance with the vibrational mode Ω = ωi – ωj (this
situation occurs in our experiments because of the use
of a broadband excitation), a selective action (i.e.,
biharmonic “pumping”) takes place, which, as is well
known, can phase elementary excitations and alter the
population difference between the vibrational levels.
This phenomenon was first observed for intense light
beams [11]. However, shortly after, a method called
active Raman spectroscopy was developed, in which
the light beams were considerably less intense and
incapable of exciting stimulated Raman scattering [12].
This gives grounds to assume that such a population
mechanism may be operative in our case as well, with
the sole difference that the population is less intense
than in the case of Raman scattering but is sufficient for
being detected using the sensitive FT-IR technique.

The validity of this assumption is confirmed by our
other experiments. In these experiments, the IR emis-
sion was excited by the light monochromatized in a
high-quality interference filter or by a copper vapor
laser. The signal was detected in neither of these cases.
However, the use of interference filters with more than
one passband (low-quality filters) allowed the IR emis-
sion to be detected with certainty for even less intense
light (see, e.g., Fig. 1c). Therefore, the absence of a sig-
nal for both monochromatic and a more intense laser
radiation gives evidence that not the intensity of excit-
ing radiation but its spectral composition is the govern-
ing factor in the excitation of IR emission in our exper-
iments.

Let us consider the experiments with nonstandard
interference filters in more detail. The lysine IR emis-
sion spectrum recorded with one of such filters is
JETP LETTERS      Vol. 73      No. 6      2001
shown in Fig. 1c. Let us compare it with the spectrum
obtained using a broadband filter (Fig. 1b). One can see
that these spectra differ not in the set of bands but in the
intensity distribution that is determined by the spectral
characteristic of the filter. For instance, besides the
overall decrease in band intensities, the most intense nar-
row bands (e.g., at 1673, 1115, and 540 cm–1) in the
spectrum recorded with the nonstandard interference
filter (Fig. 1c) are other than in the spectrum recorded
with the broadband filter (Fig. 1b). Some of the intense
bands in the spectrum in Fig. 1b completely disap-
peared in the spectrum in Fig. 1c (e.g., the band at
1331 cm–1). We attempted to model this situation using
the spectral distribution of exciting light and assuming
that the intensity of stimulated IR emission is propor-
tional to the intensity of exciting light. By choosing a
certain frequency of the lysine vibrational mode, we
specified the interval ∆ω = ωi – ωj = Ω . Then, we used
the spectral distribution of exciting light to determine
the possible combinations matching this difference and
the corresponding intensities, as shown in Fig. 2a for
the frequency Ω = 1004 cm–1. The resulting intensities
were summed and then used for determining the inten-
sity of the corresponding band. The intensity distribu-

Fig. 1. IR (a) absorption and (b, c) emission spectra of a
lysine thin film, as recorded on a two-channel double-beam
IR Fourier spectrometer FS-02 at room temperature. The
emission spectra are recorded using the (b) broadband (λ >
560 nm and a power of 320 mW) and (c) nonstandard inter-
ference (λ = 633 nm and a power of 136 mW) filters.
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tion (the band intensity corresponded best to the square
of intensity of a combined radiation exciting this vibra-
tion) is depicted in Fig. 2b by the dashed line with tri-
angles. The circles stand for the real band intensities
(Fig. 1c). It is seen from the figure that the experimental
and calculated data are in good agreement. Therefore,
these results confirm that the IR emission recorded in
our experiments is caused by the Raman resonance
ωi − ωj = Ω of two fields ωi and ωj, as a result of which
the system is transferred to the nonequilibrium excited
state through the biharmonic pumping. Consequently,
the emission can be regarded as a process of emitting
IR photons upon the transition from the excited vibra-
tional levels to the equilibrium level of the electronic
ground state. The possibility of such a transition occur-
ring in the case of intense light beams was demon-
strated in [13, 14]. Unfortunately, no data on the pro-
cesses of vibrational relaxation upon the excitation by
low-intensity light beams are known to us. We assume
that our data can serve as an indication that these effects

Fig. 2. (a) Spectral distribution of exciting light in the sam-
ple for the nonstandard interference filter (λ = 633 nm); the
lengths of horizontal lines correspond to the interval ∆ω =
ω1 – ω2 = 1004 cm–1 (three frequency combinations giving
this difference are shown). (b) (d) The experimental band
intensities obtained with the interference filter and (m) the
scaled calculated band intensities obtained from the curve in
Fig. 2a; the normalization coefficient was determined by the
comparison of the intensities (experimental and calculated
from the curve in Fig. 2a) for the frequency of 1004 cm–1.
also occur for light intensities less than 500 mW/cm2,
provided that the radiation is not monochromatized.

Note in conclusion that the fact that the angular dis-
tribution of visible-light-stimulated IR emission is dif-
ferent for different spectral components—i.e., the
emission is not uniform throughout the solid angle (as
in the case of thermally stimulated emission) but has a
preferential direction—counts in favor of the mecha-
nism suggested and the analogy between the observed
effect and stimulated Raman scattering. This issue will
be considered elsewhere in more detail.

We are grateful to Prof. G.N. Zhizhin (Institute of
Spectroscopy, RAS) for helpful discussion of experi-
mental results and remarks. We also thank I.P. Susak
(Institute of Cell Biophysics, RAS) for assistance in
preparing the manuscript.
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A New Type of Peak Effect in the Magnetization
of Anisotropic Superconductors
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Experimental and theoretical studies of the magnetization curves M(H) obtained for plates of an anisotropic
hard superconductor are performed. The samples are YBCO single-domain textured crystals with the c axis
lying in the sample plane. It is shown that, for some orientations of the magnetic field in the sample plane, the
magnetization curves contain additional extrema; at the same time, the virgin magnetization curve M(H) exhib-
its features characteristic of the peak effect. This proves that the anisotropy of the current-carrying ability can
give rise to a new type of peak effect. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.25.Ha; 74.72.Bk
The peak effect in hard superconductors is the
object of many experimental and theoretical studies
[1−7]. This effect is usually understood as a nonmono-
tonic dependence of the critical current density Jc on
magnetic field [1, 2]. In many cases, this effect mani-
fests itself as a specific dependence of the irreversible
static magnetization M of a superconducting plate on
the external magnetic field H [3–7]. The virgin magne-
tization curve M(H) contains two minima, and addi-
tional extrema also appear in the stationary curve M(H).
The extrema in weak fields are caused by the penetra-
tion of magnetic flux into the entire plate volume, and
the additional extrema are related to the increase in Jc

in strong magnetic fields. The additional extrema in
M(H) can also occur as a result of the strong depen-
dence of Jc on the orientation of the magnetic flux den-
sity B [8] (see also [9]). Most experimental studies of
the peak effect were performed with the external mag-
netic field oriented normally to a single-crystal plate:
H || c.

In this paper, we show that the dependence M(H)
with additional extrema is also observed in a supercon-
ducting plate when the magnetic field is parallel to its
surface, provided that the sample is characterized by a
sufficiently large anisotropy of its current-carrying
ability. The studies were performed on Y1Ba2Cu3O7 – δ
single-domain textured disks with the c axis lying in the
sample plane. The reason why we began our search for
new features of the curves M(H) with these samples
was our earlier study [10] that revealed two size-related
maxima in the dependence of the imaginary part of the
dynamical magnetic susceptibility χ'' on the amplitude
h0 of an alternating magnetic field oriented at an angle
to the c axis. This phenomenon was interpreted in terms
of the critical state model, which was generalized to the
anisotropic case by representing the critical current
0021-3640/01/7306- $21.00 © 20285
density as a tensor with the principal values Jcy and Jcz

corresponding to the directions across and along the c
axis. The presence of two maxima of χ''(h0) is due to the
sequential penetration of the magnetic flux density
components Bz and By , each independently shielded by
the currents Jcy and Jcz, into the middle of the plate. In
the process of measurement of the magnetization
curves, the sweeping magnetic field penetrates into the
sample according to the same scenario. Therefore, it is
natural to expect that the curve M(H) can also exhibit
additional extrema.

The phenomenon observed in our study demon-
strates that the anisotropy of the current-carrying abil-
ity of the superconductor can give rise to a new type of
peak effect due to the sequential penetration of the two
components of the magnetic field into the sample.

Experiment. The magnetization curves were mea-
sured on YBCO single-domain textured crystals (disks
or plates). The samples were cut from a large crystal
grown by directional crystallization with an oriented
seed. They were cut so that the c axis was parallel to
the  plate surface. The typical sample thickness was
0.2–0.5 mm. The main measurements were performed
on a disk with a diameter of 1.3 mm and a thickness of
0.23 mm. The magnetization was measured by a vibrat-
ing sample magnetometer in a magnetic field produced
by an electromagnet. The sample was mounted so that
the dc magnetic field was parallel to its surface. The
direction of the field in the sample plane (the yz plane)
could be varied by rotating the electromagnet. The
measurements were performed in the temperature
interval 65−77 K.

Using a contactless technique, we preliminarily
determined for each of the samples the dependences of
the principal components Jcy and Jcz of the critical cur-
001 MAIK “Nauka/Interperiodica”
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rent density on the magnetic field H for its orientations
along the principal directions of the crystal, as well as
the dependences of Jcy and Jcz on the orientation of the
vector H for different values of its magnitude H and dif-
ferent temperatures T. The dependences obtained at T =
66 K are shown in Figs. 1 and 2. The method used for
determining the critical current density from the mea-
surements of the low-frequency surface impedance is
described in [11, 12].

The magnetization was measured on the zero-field
cooled samples. We studied both the virgin magnetiza-
tion curve and the stationary hysteresis loops of M(H).

Fig. 1. Critical current densities Jc in the ab plane and along
the c axis versus the magnetic field oriented in the ab plane
and along the c axis at a temperature of 66 K for a supercon-
ducting disk with a diameter of 1.3 mm and a thickness of
0.23 mm: (1) Jc || ab and H || ab; (2) Jc || ab and H || c;
(3) Jc || c and H || ab; and (4) Jc || c and H || c.

Fig. 2. Angular dependences of the critical current density
Jc (1) in the ab plane and (2) along the c axis for varying ori-
entation of magnetic field in the disk plane. The disk diam-
eter is 1.3 mm, and its thickness is 0.23 mm; T = 66 K; the
angle is measured relative to the c axis.
Figure 3 shows the dependences of the projection of the
magnetization vector onto the direction of the external
magnetic field on H for the orientations of H along the
principal directions of the crystal. One can see that the
upper parts of the magnetization loops contain one
maximum each, as in isotropic samples with a mono-
tonically decreasing dependence Jc(B). When the field
is oriented along the c axis, the loops are much wider
and the maximum of M(H) occurs in much higher fields
than in the case of the field orientation in the ab plane.
The difference in the curves M(H) is caused by the fact
that the critical current density in the ab plane far
exceeds Jc in the direction of the c axis.

When the vector H deviates from the principal
directions, the magnetization curves are deformed. An
example of such a dependence is shown in Fig. 4. After
a change in the direction of the field variation, the curve
M(H) exhibits a segment with a much smaller slope
than the slope of the virgin curve. The most interesting
feature of the virgin curve M(H) in a tilted magnetic
field is the presence of two minima. This behavior is
clearly visible in the inset in Fig. 4. The first minimum
occurs approximately at the same values of H as the
minimum in the virgin curve 1 in Fig. 3 corresponding
to the field orientation in the ab plane. The second min-
imum occurs at the same field values as the minimum
in the virgin curve 2. As the thickness of the sample and
the temperature vary, the extrema analogous to those
shown in Figs 3 and 4 are shifted according to the
changes in the penetration fields Hpy and Hpz. This fact
agrees with our assumption that, in a tilted magnetic
field H, the penetration of the magnetic flux into the
sample occurs sequentially: at first, the component By

penetrates into the sample, because this component is
shielded by the weak current Jcz [virgin curve M(H)
exhibits the first minimum], and then, at much greater
values of H, the component Bz penetrates into the sam-
ple [the second minimum in M(H)]. Two minima in the
virgin curve are observed for the angles between the
field H and the c axis within the interval 63°–68°. This
interpretation of the effect observed in the experiment
is illustrated below by the theoretical calculation of the
magnetization curves. The calculation is performed
within the framework of the critical-state model gener-
alized to the anisotropic case.

Theoretical calculation of magnetization curves
and discussion. To describe the experimental results,
we use the simple model [10] that generalizes the
known Bean model of the critical state. The Bean
model adequately describes the static and low-fre-
quency electrodynamic properties of isotropic hard
superconductors. Let us consider an infinite supercon-
ducting plate in an external field H parallel to its sur-
face. We assume that all fields and currents depend on
only one spatial coordinate x directed normally to the
plate. The origin of the coordinate x = 0 is at the sample
surface. We study the simplest type of anisotropy char-
acterized by two principal directions y and z lying in the
JETP LETTERS      Vol. 73      No. 6      2001



A NEW TYPE OF PEAK EFFECT 287
plane of the plate. These directions coincide with the
crystallographic axes of the sample or with the charac-
teristic directions of the defect structure. If the external
field H(t ) is oriented along one of the principal direc-
tions, we have only one component of the shielding
currents that is perpendicular to H(t ). In this case, only
the magnitude B(x, t) of the magnetic field varies in the
sample. The spatial distribution of B(x) is determined
by the Bean equation

(1)

In contrast to the isotropic case, we assume that the
parameter Jc is a second-rank symmetric tensor Jcik

(i, k = y, z) with the principal values  and . This
means that the ith component of the current density is
determined by the convolution of the tensor Jcik with the
vector Ek. Such a model represents the simplest gener-
alization of the Bean model to the anisotropic case.

In the anisotropic model, the equations describing
the critical state have the form

(2)

where φ(x) is the angle between the vector E(x) and the
y axis. Similar equations were used in [13] in an elec-
trodynamic description of composite materials.

Like the conventional model of the critical state, the
system of Eqs. (2) takes into account the important
property of hard superconductors. The density of the
current flowing in a certain direction decreases if an
orthogonal current component is excited at the same
point of the sample. The factors cosφ and sinφ in
Eqs. (2) allow for this fact. This property of hard super-
conductors leads to an interesting phenomenon consist-
ing in the collapse of the transport current [14] and
magnetic moment [15] under the effect of a magnetic
field.

To determine the projection MH of the magnetic
moment onto the direction of the external magnetic
field

(3)

where θ is the angle between the vector H and the
z axis, we have to solve Eqs. (2) with the boundary con-
ditions

(4)

These conditions hold when H far exceeds the first crit-
ical field, H @ Hc1. The signs of the projections of the
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electric field in Eqs. (2) (the electric field is excited
when scanning the magnetic field H) are determined by
Faraday’s law.

Figure 5 shows the magnetization curve calculated
numerically for the conditions close to the experimen-
tal ones with the magnetic field making an angle of 65°
with the c axis. To specify the magnetic-field depen-

dences of the critical current densities (By , Bz) and

(By , Bz), we used the model expressions correspond-
ing to the sample (see Figs. 1 and 2) for which the main
measurements were performed. As a result, we
obtained a fairly good qualitative agreement between

Jc
y

Jc
z

Fig. 3. Magnetization curves for a superconducting disk
with a diameter of 1.3 mm and thickness of 0.23 mm for two
principal directions of the magnetic field: (1) H ⊥  c and
(2) H || c; T = 66 K.

Fig. 4. Magnetization curve for a superconducting disk with
a diameter of 1.3 mm and thickness of 0.23 mm in a tilted
magnetic field (oriented at an angle of 65° to the c axis). The
inset shows the virgin magnetization curve with two minima
on an enlarged scale.
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the theoretical and experimental virgin magnetization
curves (see Figs. 4 and 5). Each curve contains two
minima.

The agreement between the calculations and the
measured magnetization testifies to the validity of our
model and the proposed interpretation of the observed
effect. Thus, this paper shows that the anisotropy of the
current-carrying ability can give rise to a new type of
peak effect that occurs in the magnetization of hard
superconductors. The virgin magnetization curve
obtained in the experiment contains two minima, as in
the case of the peak effect. The calculations show that
the anisotropy-related additional extrema of M(H) can
also occur in the stationary hysteresis loop of M(H) at a

higher value of the anisotropy parameter α =  in
weak magnetic fields.

Thus, the additional extrema observed in the magne-
tization curves of hard superconductors can be caused
by different physical reasons. This fact should be taken
into account in interpreting the experimental results.

This work was performed within the framework of
the Russian Program on Superconductivity (project

Jc
y/Jc

z

Fig. 5. Calculated magnetization curve of a model sample
with the parameters close to the experiment.
nos. 100292 and 100199) and was supported jointly by
the INTAS and the Russian Foundation for Basic
Research (project no. IR-97-1394) and by the Russian
Foundation for Basic Research (project no. 00-02-
17145).
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New features are observed for the pressure in a phase-separated dilute solid solution of 4He in 3He subjected to
multiple temperature cycling within the phase-separation region. The results are explained within the frame-
work of the hypothesis of A.F. Andreev and D.I. Pushkarov that the vacancies in a crystal without ideal period-
icity are surrounded by clusters with a periodic structure. The equation for determining the radius of a cluster
of pure 4He in a solution of 4He in 3He is refined. This hypothesis is shown to provide quantitative agreement
between the calculated and experimental data under the assumption that the homogenization of the phase-sep-
arated solution is accompanied by the formation of metastable vacancies with a concentration of ~(4–5) × 10–5.
© 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 67.80.-s
Vacancies in solid helium are quantum objects, so
that they can move in a gaslike manner within the
energy band formed in a crystal with ideal periodicity.
The bottom of this band lies at a distance of its half-
width ∆/2 below the ground state [1, 2]. In the absence
of strict periodicity, vacancies are localized. Thermo-
dynamic considerations suggest that there is a tendency
toward the formation of clusters with periodic structure
around the vacancies, because this extends the localiza-
tion size and, correspondingly, lowers the energy.

A.F. Andreev showed in [3] that, since the periodic-
ity in the 3He crystals is broken because of the chaotic
orientations of nuclear spins at temperatures higher
than the temperature of nuclear ordering, a ferromag-
netic cluster forms around the vacancy. The formation
of such clusters provides strong evidence for the quan-
tum nature of vacancies, and the revelation of these
clusters may conclusively resolve the as yet persisting
controversy over the broad- or narrowband character of
the vacansion spectrum (cf. [4–6]). However, attempts
at the experimental observation of the effects caused by
the formation of such clusters have not yet furnished
unambiguous results (see, e.g., [7, 8]).

The periodicity in solid 3He–4He solutions is broken
because of the random distribution of the 3He and 4He
atoms over the crystal sites. In such a situation, the for-
mation of a cluster consisting only of the 4He atoms
around the vacancy is most favorable. Such a situation
was considered by D.I. Pushkarov in [9], where the fol-
0021-3640/01/7306- $21.00 © 200289
lowing formula was deduced for the cluster radius:

(1)

where a is the interatomic distance and S is the entropy
of the surrounding solution. For a dilute solution with
impurity concentration x, the entropy is

(2)

Any experimental attempts at observing this effect are
unknown to us.

In this work, the phenomena occurring in phase-
separated dilute solutions of 4He in solid 3He are dis-
cussed and explained within the framework of the
hypothesis about clustering around metastable vacan-
cies that appear in the course of homogenization of a
phase-separated solution. These experiments continue
our previous investigations into the phase-separation
kinetics in solid 3He–4He solutions [10–12]. The pres-
sure in the solid solution was the main measured
parameter. At low temperatures and low impurity con-
tent, the pressure depends linearly on the impurity con-
centration in matrix, which varies during the course of
phase separation or solution homogenization [13]. The
sample was a disk 9 mm in diameter and 1.5 mm in
height. A detailed description of the experimental setup
and the method may be found in [11]. The main mea-
surements were performed in the range of 0.1–0.3 K for
two samples with close molar volumes Vm and 4He con-
centrations x0 (Vm = 23.99 cm3/mol and x0 = 2.2% in
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sample I and Vm = 23.90 cm3/mol and x0 = 2.8% in
sample II). The samples were prepared by the crystalli-
zation of the initial solution with a 4He concentration of
about 2% in the gas phase. The concentration x0 of 4He
in the crystal was estimated from the Mullin formula
[13] and the pressure change ∆P0 after complete phase
separation in the initial solution,

(3)

where the compressibility β of the solution was taken
equal to the compressibility of pure 3He, according to
the data in [14]. The phase-separation temperatures
Ts1 = 198 mK and Ts2 = 210 mK calculated for these
concentrations by using the Edwards and Balibar for-
mula [15] coincided with our experimental values to
within instrumental accuracy.

It was established in our previous experiments with
dilute solutions of 3He in 4He [11] that two types of
dependences can be obtained for the pressure in a sam-
ple subjected to several cooling and heating cycles
within the phase-separation region (as a rule, between
0.1 and 0.2 K).

(a) If the phase separation results in a solid phase of
concentrated 3He inclusions, this procedure leads to
pressure lowering and provides reproducible growth
rates of the new phase. This was considered as evidence
of the improvement of crystal quality. The character of
pressure variation is illustrated for this case in Fig. 1a.

x0
∆P0βVm

0.4
--------------------= ,

Fig. 1. Behavior of pressure in the phase-separated 3He–4He
solid solutions upon temperature cycling in the phase-sepa-
ration range from Ti = 110 mK: (a) solution of 2.05% 3He in
4He, Vm = 20.44 cm3/mol, and Tf = 204 mK; (b) solution of

2.05% 3He in 4He, Vm = 20.92 cm3/mol, and Tf = 204 mK;

(c) solution of 2.2% 4He in 3He, Vm = 23.99 cm3/mol, and

Tf = 190 mK; and (d) solution of 2.8% 4He in 3He, Vm =

23.90 cm3/mol, and Tf = 204 mK.
(b) If the same procedure is applied to a sample with
larger molar volume, for which the inclusions of nearly
pure 3He are in the liquid state [16], then the pressure
increases monotonically with increasing cycle number
at both high and low temperatures (Fig. 1b). Such a
behavior can be explained by the deterioration of crys-
tal quality because of high stresses arising due to the
increased mismatch ∆V between the molar volumes of
the initial crystal and the inclusions (in this case, ∆V is
approximately four times larger than in the case of the
solid 3He inclusions). It is likely that the stresses caused
by ∆V values as large as those exceed the yield point of
a crystal and give rise to plastic deformation that appear
near the inclusion boundaries and are enhanced upon
cycling.

Quite a different character of pressure variation was
observed in our experiments with a dilute solution of
4He in 3He (Figs. 1c, 1d). A strong decrease in the pres-
sure amplitude at the first cycles and its further stabili-
zation is the most remarkable feature in this case. The
stationary amplitude is approximately one-third of its
initial value. It is also notable that the initial pressure
amplitude is restored only after heating of the phase-
separated solution to a temperature appreciably (by
several tens of millikelvin) exceeding the phase-separa-
tion temperature.

The observed effects may be qualitatively explained
within the framework of the following evolution pic-
ture. After the first cooling run from the homogeneity
region, a certain amount of inclusions of concentrated
4He are separated in the ordinary way. On subsequent
heating, these inclusions rapidly dissolve, resulting in a
rather sharp pressure decrease. A pressure decrease in
the course of heating is favorable to the formation of
nonequilibrium vacancies likely in the region of inclu-
sion boundaries, around which, according to the Push-
karov proposal [9], the clusters of pure 4He are formed.
Such a structure is poorly mobile and rather stable. In
accordance with Eq. (1), the cluster size only decreases
slightly upon further increase in temperature, so that
the clusters contain a noticeable amount of 4He even
near Ts. As a result, the surrounding solution is incom-
pletely saturated, leading to the intense dissolution of
ordinary inclusions of concentrated 4He. A decrease in
both maximum and minimum pressures at the subse-
quent cycles (Figs. 1c, 1d) may be considered as a con-
sequence of this process because it leads to the
increased mean concentration in the matrix. After sev-
eral cycles, only those inclusions are retained which are
4He clusters around the vacancies.

For the quantitative analysis of this process, let us
make the following assumptions: (i) the vacancy con-
centration xv and, hence, the number of clusters at the
late stage of the process are constant; (ii) a change in
the concentration in the matrix with temperature is
determined only by a change in the cluster radius; and
JETP LETTERS      Vol. 73      No. 6      2001
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(iii) the vacancies make an independent contribution to
the pressure,

(4)

It follows from Eqs. (3) and (4) that Pv ≈ 60Px per one
particle at Vm ≈ 24 cm3/mol.

Using the above-mentioned assumptions, one can
readily obtain for the directly measured pressure
change

(5)

where P0 is the pressure in a homogeneous solution,
P(T) is the measured pressure at a given temperature,
and NA is Avogadro’s number.

This relationship can be used to calculate the tem-
perature dependence of pressure if the R(T) values are
known. The relevant dependences were obtained in
experiments where the temperature changed stepwise
immediately after cycling, as shown in Figs. 1c and 1d.
The results of such an experiment are illustrated in
Fig. 2. Note that the pressures corresponding to the
minimum and maximum cycling temperatures in this
experiment are reproduced rather well, in accordance
with the assumption about the quasistationarity of the
process. It should also be emphasized that the pressure
corresponding to the homogeneous solution is achieved
only at a temperature far exceeding Ts.

For the comparison with the experiment to be ade-
quate, one must primarily refine the equation for cluster
radius. Equation (1) was obtained in [9] by minimizing
the free energy that included only the entropic contribu-
tion. However, estimates showed that a change in the
4He energy upon clustering makes a comparative con-
tribution.1 A difference in the 4He energies in solution
and in pure substance was calculated by Mullin [13],
who found that the corresponding contribution to the
free energy of dilute 4He solutions is ∆F = 0.86x (K) at
a pressure of 35.8 atm close to that used in our experi-
ments.

Mullin’s calculations were carried out under the
assumption that the crystal structure does not change.
Assuming that the cluster has the hcp structure, while
the matrix has the bcc structure, one should introduce
an additional correction δ4 for a change in the free
energy. According to [15], δ4 ≈ 0.026 K in our case. An
additional contribution to the free energy, ∆Fσ = 4πr2σ,
may also come from the cluster–matrix interfacial ten-

1 Our attention to the possible important role of this component
was drawn by A.F. Andreev.
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sion σ. The resulting equation for the cluster radius has
the form

(6)

where k is the Boltzmann constant. The negative sign of
the last term in brackets is caused by the energetic pref-
erableness of the hcp structure.

Equations (5) and (6) can be used to carry out a
comparison with the experiment. The optimization of
the calculated and experimental data for sample I with
∆ = 4 K [4] gave the following parameters: xv ≈ (4 ±
0.4) × 10–5 and σ ≈ (3.7 ± 0.3) × 10–3 erg/cm2 (the errors
correspond to the increase in standard deviation by a
factor of two). The cluster radius evaluated with these
parameters changes from 3.0a to 3.6a.

A comparison between the experimental and calcu-
lated data shows a rather good agreement (Fig. 3). The
maximum discrepancy is observed at high tempera-
tures, where the cluster radius decreases markedly,
leading to the increased probability of cluster decay
and, hence, breaking the condition xv = const that was
used in our calculations. The resulting xv values are
quite reasonable. As to the interfacial tension in the
phase-separated solid solutions, the relevant data are as

π∆
R3
------- 2 Tx xln 1– 0.86x 0.026–+( )R2+–

+ 4
a2

k
-----σR 0,=

Fig. 2. Pressure (a) and temperature (b) as a function of time
(for a stepwise temperature change).
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yet lacking. One can see that the values obtained are
approximately an order of magnitude smaller than the
ones measured for liquid solutions (see, e.g., [17]). In
our case, the small value may be due to the expected
decrease in σ as the cluster radius approaches the inter-
atomic distance.

A similar processing of a series of experiments car-
ried out for sample II with a higher cycling temperature
(204 mK) yielded almost the same results: xv ≈
(5 ± 0.5) × 10–5 and σ ≈ (2.8 ± 0.4) × 10–3 erg/cm2. The
fact that the standard deviation from the experimental
data in this case proved to be twice as large as for sam-
ple I can presumably be caused by the increased contri-
bution of the above-mentioned high-temperature data.

Inasmuch as the hcp cluster structure is not evident
because the matrix can “obtrude” its own structure
upon such a small formation, the data were also pro-
cessed under the assumption of the bcc cluster struc-
ture. This gave the following parameters: xv = 3 × 10–5,
∆ ≈ 10 K, and σ < 10–4 erg/cm2. The fact that the ∆ value
is larger for the bcc phase correlates with the results
obtained in [4]. The smaller σ value at the interface of
two bcc structures is also expectable.

The 4He concentration in the matrix can be deter-
mined from the measured pressure values by using the
4He conservation law and the Mullin formula [13]. At
low temperatures, it was found to be appreciably higher
than the concentration corresponding to the phase equi-
librium diagram. The difference diminishes with
increasing temperature and changes sign near the
demixing point. After this, the concentration other than
x0 is retained in the matrix up to T ≈ 270 mK, which is
60–70 mK higher than Ts of the initial solution.

It is still unclear why the presence of an excess 4He
concentration in the matrix at low temperatures is sta-
ble and does not initiate the formation of ordinary 4He-

Fig. 3. Comparison of the (s) experimental and the (d) cal-
culated temperature dependences of pressure change in
sample I; Vm = 23.99 cm3/mol and Tf = 190 mK.
enriched phase nuclei upon cooling. It may well be that
the depletion of the solution because of 4He clustering
prevents the degree of supersaturation from achieving,
upon cooling, a level that is sufficient for obtaining an
appreciable nucleation rate. As to the formation of a
new phase on the cluster, it seems to be unfavorable
because of the appearance of one more interface.

Another problem is associated with estimating the
probability that the nonequilibrium vacancies appear
upon a pressure decrease in the crystal. This process,
undoubtedly, should be stimulated by a large amplitude
of atomic zero-point vibrations and a high (~10–6 s–1)
rate of relative density decrease during the course of the
sample homogenization, but it is still unclear whether
this would suffice to provide the required vacancy con-
centration.

In conclusion, let us point out some facts that are
presented in other works and qualitatively comply with
the picture suggested in this paper. Among these is, pri-
marily, the observation of the hysteretic effects and the
delay of homogenization to T > Ts in dilute solutions of
4He in 3He. This was most clearly demonstrated in the
work of A.S. Greenberg and G. Armstrong [18], where
the heat conductivity was measured. The assumption
about the formation of vacancy clusters upon homoge-
nization can be invoked to explain a quite paradoxical
fact, observed by S.N. Ehrlich and R.O. Simmons in
[19], that the lattice parameters in both phases of the
phase-separated solution increase upon heating from
0.12 to 0.14 K.

In summary, it is established in this work that the
pressure in a phase-separated dilute solid solution of
4He in 3He behaves abnormally upon temperature
cycling. It is also demonstrated that this effect can be
quantitatively explained within the framework of the
Andreev–Pushkarov hypothesis about the formation of
clusters of pure 4He around the metastable vacancies in
the course of solution homogenization.

We thank A.F. Andreev for useful discussions.
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It is established experimentally that the magnetic field directed along the b axis has little effect on the velocities
of antiferromagnetic vortices in the domain boundary (DB) of yttrium orthoferrite and fails to explain the pres-
ence of an appreciable gyroscopic force acting on these vortices. This force is induced by the dynamic canting
of magnetic sublattices proportional to the DB velocity. Due to the canting, the velocities of antiferromagnetic
vortices depend initially quadratically on the DB velocity, as was experimentally found in this work. The
dynamics of antiferromagnetic vortices in the yttrium orthoferrite DBs is gyroscopic and quasi-relativistic, with
the limiting velocity of 20 km/s equal to the velocity of spin waves at the linear portion of their dispersion curve.
© 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.60.Ch
The possibility of antiferromagnetic vortices exist-
ing in the domain boundaries of rare-earth orthoferrites
was theoretically predicted by Farztdinov et al. in [1]
and Malozemov and Slonchzewski in [2]. The genera-
tion, the dynamics, and the results of head-on binary
collisions of antiferromagnetic vortices in the domain
boundaries of yttrium orthoferrite were experimentally
observed by us in [3–5]. It was established that the
absolute velocities of the antiferromagnetic vortices
and antivortices in a domain boundary (DB) moving at
a speed of 12 km/s are very close to the limiting DB
velocity, which is close to the velocity of spin waves at
the linear portion of their dispersion curve. This led us
to the conclusion that the gyroscopic force was large
under conditions of our experiments. The presently
existing theory of gyroscopic force in orthoferrites was
developed on the basis of the Andreev and Marchenko
Lagrangian [6] and predicted that this force is nonzero
only if the antiferromagnetic vector is offset from the
ac plane in a magnetic field directed along the orthofer-
rite b axis [7, 8]. This result is valid if the velocity is
small compared to its limiting value. This work is
devoted to studying quasi-relativistic dynamics of anti-
ferromagnetic vortices in the yttrium orthoferrite DBs
by the method of real-time two-snap high-speed pho-
tography.

In connection with the abovesaid, it was of interest
to measure experimentally velocities of the antiferro-
magnetic vortices and antivortices in an external mag-
netic field applied along the b axis of yttrium orthofer-
rite. In our experiments, the external magnetic field Hb
was taken to be ±400 Oe.

The experiments were accomplished by the method
of two-snap high-speed photography using the Faraday
0021-3640/01/7306- $21.00 © 20294
effect and two red-light laser pulses with a duration of
250 ps and a time delay of 6–10 ns between them.
A two-snap high-speed photograph of a 40 µm-thick
yttrium orthoferrite plate with a moving DB and flex-
ural solitary waves propagating along the DB is shown
in Fig. 1. The solitary flexural waves attend the antifer-
romagnetic vortices in which the phase transition
GzFx  Gy occurs [4, 5].

In Fig. 1, the domain boundary moves from bottom
to top. The velocity of its left part is equal to the speed
of transverse sound, and its right part moves with
supersonic speed. The transition from light to dark indi-
cates the first position of the dynamic DB, and the tran-
sition from dark to light indicates its second position
10 ns later. It is seen from the photograph that pairs of
solitary flexural waves with steep leading and extended
trailing edges propagate in the opposite directions and
lag as a whole from the DB. These real-time photo-
graphs can be used to determine the DB velocity v, the
velocities u of the antiferromagnetic vortices and anti-
vortices along the DB, and their absolute velocities.

The time dependences of the distances traversed by
the vortices and antivortices along the DB are presented
in Fig. 2. The corresponding data are obtained from
two-snap high-speed photographs similar to those
shown in Fig. 1. It follows from these data that the
velocity of antiferromagnetic vortices in a magnetic
field of ±400 Oe differs from the velocity of antivorti-
ces by no more than 15%. Consequently, the magnetic
field used in the experiment was much lower than the
effective magnetic field violating the Lorentz-invariant
dynamics of topological magnetic solitons to produce
the gyroscopic force.
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To check these conclusions, the velocity of antifer-
romagnetic vortex was experimentally studied as a
function of the DB velocity. For this purpose, after the
generation of antiferromagnetic vortices, a DB with the
initial velocity of 12 km/s was either decelerated or
accelerated by a magnetic field of an additional coil that
was run off a separate pulse generator.

The experimental u(v) curves are shown in Fig. 3.
One can see from this figure that the u(v) dependence
is quadratic in v ranging from 6 to 9 km/s. At higher v
values, an inflection appears in the curve and the veloc-
ity of antiferromagnetic vortex reaches at v = 12 km/s
a maximum value of 16 km/s, which corresponds to the
absolute velocity equal to the limiting value c =
20 km/s. Thereafter the vortex velocity starts to
decrease and tends to zero as v  c. In the range of
u(v) maximum, the relationship u2 + v2 = c2 is strictly
obeyed for all experimentally observed amplitudes
(from 1 to 10 µm) of solitary flexural waves attending
the vortices. The same relationship also holds at higher
velocities up to v = c = 20 km/s. True enough, the mea-
surements in this range involve difficulties because the
amplitudes of flexural waves decrease as v  c. The
dependence u = 0.11v2 fits well the initial portion of the
experimental u(v) curve.

The experimental dependence u(v) is considerably
simpler than the one found for the DB velocity on the
magnetic field. Apart from the regions where the veloc-
ity is constant and coincides with the speed of longitu-
dinal or transverse sound, the dependence for the
domain boundary shows additional features that are
associated with its retardation by Winterian magnons.

The absolute velocity of antiferromagnetic vortex
was also experimentally studied as a function of the DB
velocity. The curve first rises quadratically, then passes
through an inflection and flattens out at a level corre-
sponding to the saturation velocity of 20 km/s, which is
equal to the velocity of spin waves at the linear portion
of their dispersion curve. Therefore, the experiment
suggests that the dynamics of antiferromagnetic vorti-
ces is quasi-relativistic and gyroscopic.

To explain the appearance of gyroscopic force and
the initial quadratic u(v) dependence, dynamic canting
of the orthoferrite sublattices [9–11] should be taken
into account. In [9–11], this canting was invoked to
explain the quasi-relativistic DB dynamics in orthofer-
rites. The expression for the dynamic canting of sublat-
tices in orthoferrite can be derived using the
Lagrangian obtained in [6]. The mb component of a
weak ferromagnetic moment in an ac-type domain
boundary moving with a velocity of v was calculated
by Bar’yakhtar et al. in [11, 12]:

(1)

Here, Mo is the magnetization of the orthoferrite sublat-
tices, ∆01(v) is the width of the moving DB, δ is the

mb

v /gδMo∆01 v( )
x vt/∆01 v( )–( )cosh

--------------------------------------------------.=
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parameter of uniform exchange, and g is the gyromag-
netic ratio. Similar results were obtained afterwards
in [13].

This canting is comparable with the canting induced
by the Dzyaloshinski field. The ratio of Eq. (1) to the
analogous value caused by the sublattice canting in a

100 µm

Fig. 1. A two-snap high-speed photograph of a moving
domain boundary in an yttrium orthoferrite plate with the
flexural solitary waves attending the antiferromagnetic vor-
tex and antivortex and propagating along the domain bound-
ary.

Fig. 2. Experimental time dependence of the distances tra-
versed by the antiferromagnetic (s) vortices and (+) antivor-
tices along the domain boundary in a magnetic field of
±400 Oe directed along the b axis.
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b-directed magnetic field is also large:

Here, HA is the anisotropy field in the ac plane, HE

is the exchange field, and Hb is the magnetic field along
the b axis. Hence, the dynamic canting of magnetic
sublattices, proportional to v/c, is likely the main cause
for the appearance of the gyroscopic force in orthofer-
rites. The gyroscopic force is also proportional to v.

It follows from above that the gyroscopic force act-
ing on the antiferromagnetic vortices in orthoferrites
must be proportional to the square of the ratio of the DB
velocity to its limiting value, v2/c2 [14]. This ratio is not
small in our experiment. The gyroscopic force propor-
tional to v2/c2 does not follow from [6] and thus calls
for theoretical analysis. The presently known theoreti-
cal expressions for the magnitude of gyroscopic force
in orthoferrites are valid for v/c ! 1 [7, 8, 15]. For the
stationary moving antiferromagnetic vortices, the
retarding force must be counterbalanced by the gyro-
scopic force. If the main contribution to the retarding
force comes from the leading edge of the solitary wave,
then this contribution is proportional to u. For this rea-
son, the relation u ≅  b(v/c)2 should hold, as was
observed in our experiment.

mbdyn

mbstat

----------
HAHE

Hb

------------------- 102–103.= =

Fig. 3. Experimental dependence of the velocity u of antifer-
romagnetic vortices along the domain boundary on the
boundary velocity v. The u(v) = 0.11v2 dependence is
shown by the solid line.
We are grateful to A.M. Balbashov for providing us
with single crystals of yttrium orthoferrite and to
A.K. Zvezdin, A.F. Popkov, and S.V. Gomonov for dis-
cussion of results.
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Raman E1, E1 + D1 Resonance
in Unstrained Germanium Quantum Dots
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Raman scattering by optical phonons in unstrained Ge quantum dots obtained in GaAs/ZnSe/Ge/ZnSe struc-
tures was studied using molecular beam epitaxy. A shift in the E1, E1 + ∆1 resonance energy due to the quanti-
zation of the spectrum of electron and hole states in quantum dots was observed. The properties observed were
explained with the use of a simplest model of localization with allowance for the spectrum of Ge electron states.
© 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.21.La; 78.67.Lt
Semiconductor quantum dots are obtained using
molecular beam epitaxy in InAs/GaAs, Ge/Si, and
other systems. The mechanical strains in these systems
caused by a mismatch of lattice constants of the film
and substrate materials (InAs and GaAs, Ge and Si,
etc.) lead to a breakdown of the two-dimensional
growth mechanism and to the formation of self-orga-
nized three-dimensional islands (quantum dots) [1, 2].
The quantum dots obtained in such a process are
strongly strained. The deformation of InAs quantum
dots obtained in GaAs reaches 7% [2], and that of Ge
quantum dots in Si reaches 4% [1]. Such strong defor-
mations lead to large shifts in the spectrum of electron
states in the quantum dots and also to significant
changes in other parameters [3]. Theoretical calcula-
tions [3, 4] and experimental data [5] showed that the
strain distribution in quantum dots is nonuniform,
which hampers the analysis of the spectrum of electron
states. In this work, unstrained Ge quantum dots were
obtained in GaAs/ZnSe/Ge/ZnSe structures. The study
of resonance Raman scattering by optical phonons
showed that the energies of the E1, E1 + ∆1 transitions
change as a result of size quantization of the spectrum
of Ge electron states and are determined by the quan-
tum dot sizes.

The structures studied were obtained in a molecular
beam epitaxy setup with a residual gas pressure of
~10−8 Pa. The setup was equipped with a high-energy
electron diffractometer for determining the surface
structure. GaAs wafers with the (110) and (001) orien-
tations were used as substrates. The substrates were
passed through a standard chemical treatment, after
which they were attached to a molybdenum support
with an indium–gallium eutectic. Thermal evaporators
served as sources of germanium and zinc selenide, and
ZnSe was grown from the compound [6]. An atomi-
cally clean surface was obtained in the process of ther-
0021-3640/01/7306- $21.00 © 20297
mal cleaning of the GaAs substrate in a high-vacuum
chamber at T = 580°C, which was monitored using a
high-energy electron diffractometer by the occurrence
of surface superstructures. The growth of an epitaxial
ZnSe layer 100–500 Å thick was carried out at T =
230°C, which provided the preparation of a surface
with a 2 × 1 superstructure stabilized by selenium.
Thereafter, a germanium layer with an effective thick-
ness from 10 to 70 Å was deposited at T ≈ 100°C. Sub-
sequently, Ge was covered with a thin layer of ZnSe
(~20–40 Å) at the same temperature. Next, the sub-
strate temperature was raised to 230°C, and a ZnSe
layer ~500 Å thick was grown.

GaAs, ZnSe, and Ge are characterized by close lat-
tice constants: the mismatch does not exceed 0.2%.
Mechanical strains in the structures obtained are negli-
gibly small. The mechanism of the growth of Ge quan-
tum dots in this case differs significantly from the
Stranski–Krastanov mechanism, which is realized in
strained systems. The Ge atoms are weakly bonded to
the ZnSe substrate, because Ge forms weak bonds with
ZnSe compounds (GeSe and Ge3Se2) [6]. The two-
dimensional growing film breaks down into an array of
three-dimensional islands under the action of surface
tension forces. The necessary conditions for growth are
attained by the temperature suppression of surface ada-
tom diffusion and island migration and by choosing an
optimal rate of Ge supply to the substrate in the process
of island formation. The working temperature range is
70–130°C, and the Ge growth rate is ~0.4 Å/min. The
Ge islands formed at the initial stages of epitaxy are
characterized by a certain critical size. This size
depends on the growth conditions and varies insignifi-
cantly with increasing effective coating thickness up to
the coalescence of islands into a continuous layer. The
size in the growth plane of Ge quantum dots obtained at
T = 100°C on the ZeSe surface with the (10) orientation
001 MAIK “Nauka/Interperiodica”
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is 150–200 Å, and this size for quantum dots obtained
on the (100) surface is half as large.

The size and shape of quantum dots were measured
using a Riber–Omicron scanning tunneling microscope
(STM) for samples that were specially not covered with
a ZnSe layer. Figure 1a shows an STM image of the
surface of a (1000 × 1000 Å) sample with an effective
Ge thickness of 34 Å obtained at a tunneling current of
0.2 nA. The lower part of Fig. 1b demonstrates a profile
measured along line a. It is clear that the quantum dots
are spherical in shape and that the lateral surfaces are
not faceted. The characteristic size of quantum dots in
the growth plane and their height are 200 and 50 Å,
respectively.

Spectra of Raman scattering by optical phonons for
the GaAs/ZnSe/Ge/ZnSe structures obtained were
studied at temperatures of 300 and 77 K. The spectra
were excited by the discrete lines of an Ar laser and
were recorded using a DFS-52 spectrometer. The
Raman spectra exhibited lines of optical phonons of the
GaAs substrate [294 (LO) and 268 (TO) cm–1] and the
ZnSe matrix [250 (LO) and 226 (TO) cm–1] and the
phonon line of Ge [300 cm–1 (LO + TO)]. The position
of the Ge phonon peak and the Raman intensities
obtained for different polarization geometries coincide
with their bulk values, indicating the absence of
mechanical strains and significant orientational disor-
der with respect to the crystallographic directions that
are specified by the support. The significant difference
between Ge and ZnSe matrix phonon frequencies leads

(a)

0 50 100 nm

a

Fig. 1. (a) STM image of the surface of a (1000 × 1000 Å)
sample with Ge quantum dots and (b) the profile measured
along line a; l is the size in the growth plane.
to the strong localization of optical phonons in quan-
tum dots. Therefore, the electronic states of quantum
dots can be investigated using resonance Raman scat-
tering by optical phonons (Raman resonance).

The resonance curves for Raman scattering by opti-
cal phonons of Ge in GaAs/ZnSe/Ge/ZnSe structures
with quantum dots were studied in the energy range of
exciting radiation 2.4–2.7 eV. The curves obtained at
T = 300 K for three samples are shown in Fig. 2. Exper-
imental points a, b, and c obtained with the Ar laser
lines are connected by straight lines, and the intensities
are normalized to the scattering volume. Samples a and
b were grown on a surface with the (100) orientation
and contained Ge quantum dots with a size of
70−100 Å in the growth plane and a height of 23–28 Å.
These samples differ in the effective thickness of the Ge
layer, which equals 34 Å for sample a and 20 Å for
sample b. Sample c was obtained on a surface with the
(110) orientation and contained quantum dots twice as
large in size for an effective thickness of the Ge layer of
34 Å. For comparison, Fig. 2 presents a resonance
curve obtained in the region of E1 and E1 + ∆1 bulk tran-
sitions of Ge [7]. The amplitude of this curve is also
normalized to the scattering volume. The vertical
arrows in Fig. 2 indicate the positions of the E1 and
E1 + ∆1 transitions in Ge. One can see that the reso-
nance position in quantum dots is shifted toward higher
energies relative to the bulk position, and the resonance
amplitude for sample a is three times higher. Note that
the density of quantum dots increases with increasing
thickness H of the effective Ge layer. At H = 50–70 Å,
the quantum dots coalesce into a continuous layer, the
Raman intensity drops sharply, and the shape of the res-
onance curve follows that of the bulk curve. The behav-
ior observed is due to the quantization of the spectrum
of electron and hole states in Ge quantum dots. The
direct optical transitions between these states contrib-
ute to the E1, E1 + ∆1 Raman resonance.

Let us consider the nature of the resonance in the Ge
band structure shown in Fig. 3. The conduction band
branch (Λ1 state) and both branches of the valence band
(Λ4, 5 and Λ6 states) along the kz (111) direction are par-
allel to each other in the major part of the Brillouin
zone. The reduced effective mass of the E1 and E1 + ∆1
transitions (indicated by vertical arrows in Fig. 3) is
m = 0.045m0 = (1/me + 1/mh)–1 [8] (m0 is the free elec-
tron mass, and me and mh are the electron and hole
masses, respectively) in the (kx, ky) plane perpendicular
to the (111) direction. This structure of the spectrum
creates a two-dimensional critical point in the interband
density of states [9], which reveals itself in optical
spectra. Thus, Raman scattering by optical phonons is
enhanced when the energy of exciting radiation falls
within the region of the E1, E1 + ∆1 transitions (Fig. 2).
The three-band processes for which the hole states Λ4, 5
and Λ6 are mixed by the optical mode deformation
potential make the main contribution to the observed
JETP LETTERS      Vol. 73      No. 6      2001
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resonance [7]. The two-band contributions from the
electron and hole transitions with phonon emission
within the same band are much smaller because of the
smallness of the intraband deformation potential [7].
The contour of resonance dependence is described by
the expression |ε+ – ε– |2, where ε+ and ε– are the contri-
butions to the dielectric constant from the E1 and
E1 + ∆1 transitions. This resonance contour is located
between the transition energies (Fig. 2). The contribu-
tion to Raman scattering from the two-band processes
is of the order of ~dε/dω for each transition [7], and the
resonance contour consists of two peaks at energies E1
and E1 + ∆1.

It is seen in Fig. 3 that the major part of Ge states in
the (111) direction are located in the region of the ZnSe
band gap. The positions of the ZnSe band edges
(valence Ev and conduction Ec) are shown by horizontal
lines in Fig. 3. The difference between the energies of
these states and the corresponding ZnSe edges forms
the localizing potential barrier. As a result, the spec-
trum of electron states in Ge quantum dots is quantized.
The quantization of the carrier motion along the (111)
direction does not change the energy of interband tran-
sitions, because the electron and hole bands are parallel
to each other (Fig. 3). Quantization in the perpendicular
(kx, ky) plane leads to an increase in the lowest state
energy for electrons and holes. The energies of the E1
and E1 + ∆1 transitions are increased by the sum of
these energies. The interband density of states, which is
a smeared function of energy with a width of ∆1 in bulk
Ge and determines the shape of the resonance (Fig. 2),
transforms to a δ function for all kz. It follows from the
frequency dependence ε(ω) for a discrete spectrum [9]
that the two-band contribution becomes dominant and
exceeds the contribution of the three-band processes by
a factor of ~(∆1/Γ)4 ≈ 104, where Γ ~ 20 meV is the tran-
sition broadening in bulk Ge. As a result, the E1 and
E1 + ∆1 Raman resonances in Ge quantum dots must
manifest themselves as individual peaks. We assign the
resonance observed in sample c to the E1 + ∆1 transi-
tions in quantum dots. The shift of its position from the
bulk value equals 0.13 eV and is shown by a dashed
arrow in Fig. 2. The region of the k space associated
with the E1 + ∆1 transitions in quantum dots is set off in
Fig. 3. With a decrease in size of quantum dots, elec-
tron (hole) states occur in the continuous spectrum of
ZnSe, resulting in a sharp drop in Raman intensity.
When all states from region A (Fig. 3) find themselves
in the continuous spectrum, the E1 + ∆1 resonance is not
observed, whereas the E1 resonance is now observed
for quantum dots half as large in size in the energy
range under study (Fig. 2, samples a, b). Its shift equals
0.34 eV, which is marked in Fig. 2 by a dashed arrow.
The intensity of the E1 resonance is three times higher
than the E1 + ∆1 amplitude because of the larger volume
in the k space (Fig. 3). Thus, the modification of the
interband density of states due to spectrum quantization
JETP LETTERS      Vol. 73      No. 6      2001
leads to a change of the mechanism of Raman scatter-
ing by optical phonons and to an increase in the Raman
intensity as compared to bulk Ge.

Let us consider the energies of electron (hole) states
in Ge quantum dots. Figure 1b shows the cross section
of an island with a plane perpendicular to the base and
containing the (111) z and x directions. The y axis is
perpendicular to the plane of the figure. The effect of
quantum-dot sizes on the motion along the z (111)
direction amounts to the quantization of the kz momen-
tum of electron (hole) states along this direction. The
spectrum will consist of a set of discrete levels with

kz = πn1/ , where n1 is an integer, h is the island

height, and  is the size along the (111) direction.
The spacing between the levels can be estimated at
∆Ez = (dE/dkz)∆kz ≈ 0.1 eV. The direct transitions
between the electron and hole states with the same
kz(n1) make a contribution to the observed resonance,
and the quantization along the (111) direction does not
change its energy. The quantization of electron and hole
motion in the (x, y) plane is described by the wave-
function envelope method, because the spectrum
depends quadratically on kx and ky. Figure 1b demon-
strates that the size of the cross section of a quantum
dot in the (x, y) plane varies only slightly in the apex
region because of the droplet-shaped form of the island.
We will approximate the shape of this cross section by

a rectangle with sizes of ~h  and ~d/2, where d is the
size of the quantum dot base. The energy of a two-
dimensional particle of mass m in a rectangular poten-

h 2

h 2

2

Fig. 2. (a, b, and c) Resonance curves for Raman scattering
by Ge optical phonons, as obtained for samples of
GaAs/ZnSe/Ge/ZnSe with Ge quantum dots in the energy
range of exciting radiation 2.4–2.7 eV. Samples a and b
were grown on substrates of the (100) orientation, and sam-
ple c was grown on a substrate with the (110) orientation.
A resonance curve obtained in [7] for Raman scattering by
optical phonons in bulk Ge is shown in the left part by a
solid line.

ZnSe/Ge/ZnSe
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tial well of an infinite depth is defined by the equation

(1)

where n2 and n3 are integers. A system of two-dimen-
sional quantization levels appears for each state with a
certain kz(n1). The shift in the ground-state energy (n2 =
n3 = 1) is defined as

(2)

This equation defines the energy shift of the E1, E1 + ∆1

resonance for m = (1/me + 1/mh)–1, thereby allowing for
a change in the energy of both the electron and hole
states due to size quantization. For the quantum dots of
sample c (Fig. 2), h ≈ 50 Å, and the calculated value
∆E = 0.163 eV, in agreement with the observed energy
shift of the E1 + ∆1 resonance. The average height of
quantum dots for samples a and b is h ≈ 25 Å. The
energy shift defined by Eq. (2) equals ∆E = 0.66 eV,
whereas the observed shift of the E1 resonance is ∆E =
0.34 eV (Fig. 2, sample a). This difference is due to the
specific features of the dispersion of Ge hole states. The
dispersion of hole subbands and the conduction band in
the kx, y plane perpendicular to k(111) is shown in the
right part of Fig. 3 for the range of the E1, E1 + ∆1 tran-
sitions. The dispersion of hole bands calculated by the
k · p method without allowance made for the spin–orbit
interaction [10] is shown by the dotted lines. Inclusion
of this interaction within a two-dimensional model of
the Kane model type [11] removes the degeneracy at
k = 0 and also leads to the fact that both subbands are
characterized by effective mass mh = 2me, where me is
the mass of the conduction band (∆1) in the kx, y direc-
tion. Figure 3 demonstrates that the dispersion goes

E π2
"

2/2m( ) n2
2/2h2 4n3

2/d2+( ),=

∆E π2
"

2/2m( ) 1/2h2 4/d2+( ).=

Fig. 3. Band spectrum of bulk Ge calculated in [10] for the
(111) direction. Arrows indicate the direct optical transi-
tions associated with the E1, E1 + ∆1 resonance. The disper-
sion of the electron and hole bands in the kx, y plane perpen-
dicular to the (111) direction in the range of the E1, E1 + ∆1
transitions is shown to the right of the vertical axis.
into a plateau with a large effective mass at a distance
of ∆1/2 = 0.115 eV from the valence band top. In this
case, the mass m = (2/3)me of the E1 transition
increases by a factor of 1.5, and the level shift due to
quantization is determined by the electron mass 2me.
With allowance made for this fact, Eq. (2) gives ∆E =
0.47 eV. Thus, the use of a simplest model of localiza-
tion taking into account the properties of the bulk elec-
tron-state spectrum of Ge provides an explanation for
the observed shifts of the E1- and E1 + ∆1-transition
energies in Ge quantum dots.

In this work, Raman scattering by optical phonons
in unstrained Ge quantum dots has been studied in the
range of the E1, E1 + ∆1 resonance. It is shown that the
modification of the interband density of states in quan-
tum dots results in a change of the mechanism of scat-
tering by phonons and in an increase in the resonance
amplitude, as compared to bulk Ge. The use of a sim-
plest model of localization taking into account the
properties of the bulk electron-state spectrum of Ge
provided an explanation for the observed shifts of the
E1- and E1 + ∆1-transition energies in Ge quantum dots.
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Excitons in an intrinsic semiconductor are the low-
est energy and electrically neutral electron excitations.
Over several decades, excitons have been used as a con-
venient object for modeling the behavior of a substance
in a situation when its density changes or it is exposed
to external temperature, pressure, magnetic field, etc.
Depending on the density of electron–hole (e−h) exci-
tations and temperature, the situations of weakly inter-
acting exciton gas, molecular exciton gas (biexciton
gas), metallic electron–hole liquid, and electron–hole
plasma can be realized experimentally.

An exciton consists of two fermions—electron and
hole. Therefore, it has an integer spin and is a compos-
ite boson. Based on this fact, Moskalenko [1], Blatt
et al. [2], and Casella [3] assumed in the early 1960s
that weakly nonideal and diluted exciton gas in bulk
semiconductors can undergo Bose–Einstein condensa-
tion (BEC) at low temperatures (in the limit of rarefied

exciton gas,  ! 1, where n is the exciton density
and aexc is the exciton Bohr radius). Bose–Einstein con-
densation of excitons in three-dimensional systems
implies the macroscopic occupation of the ground state
with zero total angular momentum and appearance of a
spontaneous order parameter (coherence) in the exciton

condensate. In the limit of high e−h density (  @ 1),
excitons were treated by direct analogy with the Cooper
pairs, while a condensed exciton state or exciton insu-
lator state was described in the mean-field approxima-
tion by analogy with the Bardeen–Cooper–Schrieffer
superconducting state, with the only difference that the
pairing in the exciton insulator is determined by the
e−h interaction, while the Cooper pairs are excitons
themselves [4–6]. Noticeable Coulomb gaps in the
exciton insulator state can arise when electron–hole
Fermi surfaces are conformal. Comte and Nozieres [7]
demonstrated that the transition between the low- and
high-density limits is smooth.

Bose–Einstein condensation in a weakly nonideal
Bose gas of given density occurs at critical temperature

naexc
3

naexc
3
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Tc inversely proportional to the boson mass. This phe-
nomenon was recently observed in rarefied strongly
cooled gases of alkali-metal atoms with an integer spin
[8–11]. This discovery became possible due to an ele-
gant implementation of atom laser cooling in a gas and
to selective accumulation of atoms in small volumes by
using magnetic traps. The critical temperatures Tc for
these gases proved to be extremely low (tenths of
microkelvin) because atomic masses are large and den-
sities are relatively low due to unavoidable losses in
cooling and trapping of atoms. In view of the discovery
of BEC in rarefied gases of boson atoms, this phenom-
enon becomes of current interest for excitons. The
effective translational masses of excitons in semicon-
ductors are usually low—about or less than the free-
electron mass. Therefore, in contrast to the gas of
alkali-metal atoms, BEC in the exciton gas at experi-
mentally attainable densities can occur at considerably
higher (liquid-helium) temperatures. However, the
exciton gas, being a photoexcited and, therefore, non-
equilibrium system, also must be cooled to the temper-
atures of a lattice which plays the role of a thermostat.
Because of finite exciton lifetime, the temperature of
quasiequilibrium exciton gas in actual experiments is
always slightly higher than the temperature of the lat-
tice in which excitons are “immersed.” This overheat-
ing of the exciton system becomes particularly appre-
ciable at T < 1 K because of a small lattice heat capacity
and the existence of a narrow small-momentum-trans-
fer region that is insurmountable to one-phonon exciton
relaxation (K < ms/h, where K is the exciton momentum
and s is the speed of sound). In view of this, the objects
in which the exciton annihilation (in particular, radia-
tive annihilation) rates are several orders of magnitude
lower than the rates of exciton energy relaxation are
most appropriate for BEC observation. These condi-
tions are met, in particular, in semiconductors with a
indirect gap because the radiative recombination in
them involves short-wavelength phonons and, there-
fore, is slow compared to the relaxation processes
establishing thermal equilibrium with the lattice. How-
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ever, because of highly degenerate (multivalley) elec-
tron and hole spectra and strongly anisotropic effective
carrier masses, the lowest state of the interacting
e−h system in these semiconductors is an electron–hole
liquid into which excitons and exciton molecules are
condensed [12, 13]. The exciton condensation into
electron–hole liquid droplets was predicted by Keldysh
[12] and most comprehensively studied for Ge and Si
[13]. The gas of excitons and exciton molecules in
equilibrium with the e−h liquid droplets obviously
remains a classical Boltzmann gas. By contrast, for
direct-gap semiconductors with allowed interband
dipole transitions, the exciton recombination is very
rapid. Moreover, some other difficulties associated with
the dispersion and dynamics of exciton polaritons near
K = 0 emerge for these semiconductors [14]. Experi-
mental attempts to discover BEC in the exciton gas
were undertaken for Cu2O [15], where the paraexciton
ground state is forbidden in zero order in K and is long-
lived, and for uniaxially deformed Ge crystals [16] with
broken symmetry in the spin degrees of freedom. In Ge,
experimentalists dealt with the spin-oriented excitons
by direct analogy with spin-aligned hydrogen atoms. In
both cases, the degenerate Bose statistics of excitons
was quite pronounced at high densities. In our opinion,
the critical conditions for the exciton BEC have not
been realized for these substances as yet (see, e.g.,
[17]). However, the investigations are being continued.

In recent years, the exciton BEC has extensively
been searched for in two-dimensional (2D) systems
based on semiconductor heterostructures. An interest in
2D systems with spatially separated electron–hole lay-
ers was stimulated by theoretical studies carried out as
early as the mid-1970s [18, 19]. However, it should be
recalled that an ideal unconfined 2D system where the
density of one-particle states is constant basically can-
not undergo BEC at nonzero temperatures because the
number of states diverges when the chemical potential
vanishes µ  0 (i.e., the states with K ≥ 0 can accu-
mulate an unlimited number of Bose particles). Bose
condensation can occur only at T = 0 K, which is mean-
ingless from the practical point of view. It is pertinent
to recall that Hoenberg [20] applied the Bogoliubov
inequalities to prove that an ideal unconfined 2D sys-
tem cannot have a nonzero order parameter because it
is destroyed by fluctuations. This proof applies to both
superfluid liquid and superconductivity in ideal 2D sys-
tems. Mermin and Wagner [21] proved a similar theorem
for a 2D model of Heisenberg ferromagnet. We will not
consider here the Kosterlitz–Thouless phase transition
[22] when the superfluid state in disordered 2D systems
can arise due to vortex pairing. This approach is topo-
logical and, therefore, does not contradict the theorem
proved in [20]. Nevertheless, the BEC can occur at non-
zero temperatures in quasi-two-dimensional systems
and 2D systems with lateral confinement. The critical
BEC temperature in a spatially confined 2D system,
where the number of states is finite and the spectrum is
discrete, is equal to Tc = 2π"n/m  [23], i.e., log-
arithmically decreases with increasing area S filled with
a 2D Bose gas. Finally, semiconductor 2D systems are
obviously quasi-two-dimensional because the ratio of
the Coulomb energy to the size-quantization energy is
not a small parameter in real cases. Moreover, spatial
confinement always arises in these systems because of
the effect of random potential.

Among the quasi-two-dimensional objects based on
semiconductor heterostructures, double quantum wells
(DQWs) and superlattices are of special interest to us
because they provide spatial separation of photoexcited
electrons and holes in neighboring quantum wells
(QWs) [24–31]. In DQW with bands inclined due to
bias, excitons can be excited whose electron and hole
occur in different QWs and are separated by a penetra-
ble tunneling barrier. These excitons are called spatially
indirect or interwell excitons (IEs) and differ from the
direct intrawell (D) excitons whose electron and hole
are in the same QW. Using a GaAs/AlAs heterostruc-
ture, Butov et al. [27, 28] realized the situation in which
excitons were indirect both spatially and in momentum
space. In contrast to the intrawell excitons, interwell
excitons are long-lived because the wave functions of
their electron and hole only overlap slightly through a
tunneling barrier. Therefore, the interwell excitons can
easily be accumulated, and a gas of these excitons can
be cooled to very low temperatures. Because the inver-
sion symmetry is broken, IEs have a constant dipole
moment even in the ground state. The dipole–dipole
repulsion prevents these excitons from binding into
molecules.

Various possible scenarios of collective behavior in
a dense system of spatially separated electrons and
holes were theoretically predicted [18, 19, 32–37]. In
particular, Lozovik and Berman [37] have demon-
strated that, despite the dipole–dipole repulsion
between interwell excitons, a liquid dielectric phase of
these excitons may become a metastable state of the
e−h system at certain critical values of the dipole
moment, density, and temperature of IEs. Earlier,
Xuejun Zhu et al. [34] pointed out that the condensed
dielectric exciton phase (an analogue of Bose conden-
sate) can arise only in the presence of lateral confine-
ment (spontaneous or artificially prepared) in the QW
plane. In the presence of this confinement and its atten-
dant external compression, it is easier to accumulate
interwell excitons up to the critical densities that are
sufficient for the effects of collective exciton interac-
tion to appear. The role of the exciton spin degrees of
freedom in Bose condensation was discussed in [35].

In real tunneling-coupled quantum systems based
on semiconductor heterostructures, a random potential
is always present due to various structural defects—
residual charged and neutral impurities, fluctuations of
the barrier width and widths of quantum wells, etc.
These fluctuations produce random potential relief in
the QW planes. For this reason, the photoexcited and
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spatially separated electrons and holes in the neighbor-
ing QWs, as well as the interwell excitons, can be
strongly localized on these fluctuations if the tempera-
ture is low enough. This strong localization effect in
bound quantum systems manifests itself, in particular,
in lateral thermally activated charge-carrier tunneling
[29, 30]. In this connection, the properties of delocal-
ized IEs are examined in structures where the density of
localized states associated with the random potential is
minimal (<1010 cm–2).

This review focuses on some recent experiments in
GaAs/AlGaAs DQWs with bands inclined by an elec-
tric field (n–i–n structures), where IEs exhibit collec-
tive behavior upon attaining critical density and tem-
perature. The main information on the IE properties is
gained by analyzing the photoluminescence (PL) spec-
tra measured under conditions of continuous or pulsed
optical excitation and varying excitation intensity, tem-
perature, and character of polarization of the resonance
optical pumping and magnetic field [38–41].

Experimental. We first discuss the IE properties in
GaAs DQWs with narrow four-monolayer AlAs barri-
ers separating QWs from each other and isolating each
QW from the AlGaAs barrier. The IEs are strongly
bound in such a narrow barriers. By applying a bias,
one can change the band inclination in these n–i–n
structures and, therefore, spatially separate photoex-
cited electrons and holes in the tunneling-coupled
QWs. It is known that, in structures with narrow AlAs
barriers grown by the interrupted epitaxial growth tech-
nique, fluctuations in the barrier width are large-scale
(up to micrometer), so that the corresponding fluctua-
tions in the lateral potential relief will also be large-
scale. It is reasonable to expect that IEs at low temper-
atures will be accumulated in these random lateral
large-scale potential wells. It turned out that the IE sys-
tem under the random lateral confinement conditions
exhibits critical behavior as the density increases at low
temperature.

The luminescence spectra, shown for (D) intrawell
and (I) interwell excitons in Fig. 1, were measured with
resonance excitation and various applied biases. The
optical transitions under investigation are schemati-
cally illustrated in Fig. 1a. In the region of intrawell
luminescence at zero bias, two lines, 1sHH of free exci-
ton on a heavy hole and of bound exciton, are observed.
At negative biases, the spectra exhibit the interwell
radiative-recombination line (I line), which almost lin-
early shifts down in energy as the applied voltage
increases, in accordance with the linear Stark shift
(eF∆z, where F is the electric field) of size-quantization
levels in QWs. In this case, only the line of the charged
exciton complex remains in the intrawell recombina-
tion spectrum [42]. At large negative biases U < –0.4 V
and continuous excitation, the spectra are dominated
only by the IE PL, whereas the luminescence of the
direct intrawell excitons and exciton complexes is con-
siderably less intense. In this case, the luminescence
JETP LETTERS      Vol. 73      No. 6      2001
quantum yield is very high and the nonradiative transi-
tions can be ignored. This conclusion is based on the
fact that, as the applied voltage increases, the IE life-
times change by several orders of magnitude, while the
PL intensity does not change appreciably.

The IE luminescence line at low temperatures (T =
2 K) and weak pumping is broad (FWHM = 4–5 meV),
and the line shape is asymmetric with an extended
long-wavelength tail and a sharp violet edge (see
Figs. 1, 2). These features of the PL line of IEs are due
to the strong localization of IEs on the random-poten-
tial fluctuations [29, 30]. In this case, the line width
reflects the statistical distribution of the random-poten-
tial amplitudes, and the pumping is so weak that the
average density of spatially separated electrons and
holes is ne−h < 109 cm–2. At these densities, the statisti-
cally averaged IE filling of the lateral random potential
wells with linear scales l < 1 µm is less than unity and
the inhomogeneous width of the PL spectrum of IEs is
large enough (see Fig. 2).

The intensity, shape, and width of the IE lumines-
cence line change considerably with increasing inten-
sity of resonance excitation of the direct 1sHH
intrawell excitons by circularly polarized light (see
Fig. 2). As the pumping increases, lines I narrow to
1.3 meV, i.e., by almost a factor of 4. In this case, the
maximum intensity increases superlinearly and the line

Fig. 1. (a) Scheme of optical transitions. (b) Spectral posi-
tions of the lines of the (1sHH) direct exciton, (T) exciton
complex, and (Iex) IE vs. bias. (c) Luminescence spectra of
the interwell excitons at T = 2 K for various applied voltages
indicated in volts to the left of the spectra.
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contour becomes almost symmetric. In the region of
strong narrowing, the IEs line shifts to lower energies
by a value of up to 1.5 meV as pumping increases. Only
at rather strong pumping P > 6 W/cm2 does this line
shift to higher energies and broaden. The high-energy
line shift testifies to the screening of the applied electric
field when the IE density becomes large. Therefore, by
using the Gauss formula, one can obtain an upper estimate
for the IE density from the spectral shift value. This
estimate for the IE density gives n = 3 × 1010 cm–2 when
the line width is minimal. A considerable narrowing of
the IE luminescence line is observed for negative volt-
ages in the range from –0.5 to –1.2 V. At large negative
biases, similar narrowing of the IE luminescence line
occurs at appreciably smaller pumping values.

Fig. 2. Spectra of the IE photoluminescence for various
intensities of the resonance excitation of the direct 1sHH
exciton by circularly polarized light (σ+) at the applied bias
of –1 V and T = 2 K. The corresponding pump values (in
watts per square centimeter) are indicated above the spectra
at the right. The inset shows (closed circles, left scale) the IE
line intensity and (open squares, right scale) the degree of
circular polarization of this line vs. the power density; the
dashed line is the extrapolation of the linear dependence of
the intensity.
Strong narrowing of the IE PL line at low tempera-
tures suggests that, as the excitation intensity increases,
IEs first fill the localized states caused by the random-
potential fluctuations. Each such state can be occupied
by only one exciton because of the strong dipole–dipole
repulsion between excitons. After the localized states
are filled and upon a further increase in pumping, IEs
find themselves above the percolation threshold (or
mobility threshold associated with the strong localiza-
tion effect) and become delocalized. These are pre-
cisely the delocalized IEs for which the narrow PL line
shifts to lower energies with increasing IE density (see
Fig. 2). This conclusion indicates that, despite the
dipole–dipole repulsion, the ground-state energy of
interacting IEs decreases with increasing IE density.
This behavior is typical of a degenerate boson system
with increasing boson density at a sufficiently low tem-
perature.

The behavior of the degree of circular polarization
of the IE luminescence line with an increase in the
intensity of resonance excitation in the region of super-
linear growth of line intensity is also noteworthy (see
Fig. 2). In the experiments under discussion, the circu-
larly polarized light generated direct and completely
spin-aligned 1sHH excitons for which the total angular
momentum of a heavy hole is Jh = 3/2 and electron spin
is Sz = –1/2. As a result of the carrier tunneling and
binding into IEs and of the spin-lattice relaxation and
spin–orbit interaction, which is strong for holes, the
spin “memory” of IEs is partially lost but remains
noticeable and is 5–10% at low excitation density,
although IEs under these conditions are localized and
the corresponding PL line broadens asymmetrically. At
a fixed pumping, the degree of IE PL circular polariza-
tion decreases monotonically with increasing bias.
When the IE PL line narrows strongly with an increase
in the power density of resonance photoexcitation, the
degree of circular polarization increases several times
in a thresholdlike manner. This behavior testifies to the
superlinear increase in the number of excitons having
preferable angular-momentum orientation. Assuming
that the spin-relaxation rate changes only slightly (and
most likely increases) with increasing pumping, the
increase in the degree of circular polarization can also
be associated with a decrease in the IE lifetime. This
conclusion follows from the simple expression relating
the degree of circular polarization to the lifetimes and
spin-relaxation times:

where γ0 and γ are the degrees of polarization of
intrawell and interwell excitons, respectively, and τd
and τs are the radiative recombination and spin-relax-
ation times of IEs, respectively. Assuming that τs is
weakly sensitive to pumping and using Eq. (1), one can
readily conclude that the experimentally observed
threefold increase in the degree of circular polarization
of IE PL with increasing excitation intensity results

γ γ0/ 1 τd/τ s+( ),=
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from at least a fivefold increase in the rate of the radia-
tive annihilation of IEs. The narrow IE line in the PL
spectra also appears under pulsed excitation. An analy-
sis of the time evolution of the spectra with pulsed
pumping suggests that this line corresponds to a relax-
ation rate that is almost an order of magnitude higher
than that for the PL decay of localized IEs.

As the pumping increases in the resonance excita-
tion of the direct 1sHH excitons by linearly polarized
light (polarization is parallel to the layer plane), a
thresholdlike increase in the linear polarization of the
narrow PL line (IE alignment) is observed in the region
of superlinear increase in line intensity. When the exci-
tation densities are low and IEs are strongly localized
on the random-potential fluctuations, the PL IE spec-
trum remains slightly polarized under the same condi-
tions. This effect of lateral alignment of IE dipole
moments reaches a maximum and then decreases with
a further increase in the power density of resonance
excitation when the screening of the applied bias
becomes appreciable (the pump region for which the
PL line starts to broaden and shift to higher energies).
The IE alignment also depends on the direction of lin-
ear polarization of the resonance excitation in the (001)
plane. The azimuthal dependence of the degree of IE
PL circular polarization was measured for two power
densities of resonance excitation linearly polarized in
the (001) plane (Fig. 3): (open squares) small and
(closed circles) higher by an order of magnitude. It is
seen that the degree of circular polarization of IE PL
considerably increases with increasing optical pump-
ing. Strong azimuthal dependence of the degree of cir-
cular polarization corresponds to the C2v symmetry and
is most likely due to the strong anisotropy of the lateral
relaxation time.

The above-described phenomena are very sensitive
to the temperature. It was found that, as the temperature
increases above the critical values at a fixed strong
pumping, the IE line width increases abruptly and the
degree of circular polarization decreases to previous
values. Figure 4 shows the temperature dependence of
the degree of circular polarization and of the IE PL line
width. It is seen that in the case under consideration
these dramatic changes in the spectrum occur at the
critical temperature Tc ≤ 6 K (∆T = ±1 K).

Let us consider the kinetics of IE luminescence
spectra. Butov et al. [40, 41] observed an unusual
behavior of the IE PL relaxation for pulsed laser exci-
tation. At sufficiently high excitation intensities and
low temperatures, the kinetics of radiative IE decay is
no longer described by a simple exponential law: the
PL intensity increases abruptly immediately after the
pulse and then nonexponentially decreases. Figure 5
illustrates these features of the IE PL kinetics. In con-
trast to such an unusual behavior, the IE radiative decay
kinetics becomes single-exponential and is character-
ized by large times at low excitation intensities, at high
temperatures, in the presence of strong disorder caused
JETP LETTERS      Vol. 73      No. 6      2001
by the random potential, and in the presence of a mag-
netic field transverse to the heterolayers. It should be
noted that only those delocalized excitons radiatively
annihilate whose translational momenta are on the
order of the light momentum; i.e., K ≤ Eg/hc, where c is
the speed of light in a medium. Butov et al. [40, 41]
explained the observed increase in the IE radiative
recombination rate by two effects. One of them is asso-
ciated with an increase in the coherence area of IEs
when they are condensed into states with momenta less
than the light momentum. The second effect is associ-
ated with the superlinear occupation of optically active
exciton states as a result of the stimulated exciton scat-
tering, when the occupation numbers of exciton states
n > 1 (i.e., owing to the degenerate Bose statistics of
IEs).

Discussion and conclusion. The experimental
results described above cannot be explained in the
framework of the simple one-particle concept of radia-
tive annihilation of IEs localized on the random-poten-
tial fluctuations. Indeed, if the appearance of the narrow
line in the photoluminescence spectra is due to the
delocalized interwell excitons which can appear above
the percolation threshold because of the screening of
the random potential, then it is not understood why this
phenomenon is so sensitive to the temperature and is
absent at T > Tc. The thresholdlike increase in the
degree of circular polarization and in the alignment of
IEs with increasing IE density, as well as the increase
in the radiative annihilation rate of excitons in critical
conditions, is also not understood. At the same time,
these results can be at least qualitatively explained by
the collective behavior of delocalized IEs at the critical

Fig. 3. Azimuthal dependence of the degree of IE PL circu-
lar polarization at T = 1.5 K under resonance excitation by
linearly polarized light for pump values of (closed circles) 4
and (open squares) 0.2 W/cm2.
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temperature and density. One can assume that our
structures with narrow AlAs barriers are characterized
by large-scale potential fluctuations, in particular,
caused by the variations of barrier width. These poten-
tial fluctuations are weakly screened, in contrast to the
random potential caused by the residual charged impu-
rities that are also present in the structures under inves-
tigation. Due to the large-scale fluctuations of the
potential relief in the QW plane, the photoexcited IEs
can be accumulated in macroscopically extended
regions (up to several tenths of micrometer) with lateral
confinement. Indeed, the variations of the QW width
w(r) can be associated with the variations of the effec-
tive lateral potential U(r) = U(w(r)). Under the condi-
tions of quasiequilibrium, the lateral distribution of the
exciton density will be determined by the equality
µ(n(r)) + U(r) = µ, where µ is the IE chemical potential
depending on the average IE density in QW and µ(n) is
the chemical potential of a homogeneous dielectric
exciton phase in the lateral confinement region. It is
obvious that |µ(r) | < |µ| because µ(n) = – |Eexc | + |δU |
(Eexc is the exciton binding energy), and the exciton
density in the lateral confinement region can be consid-
erably higher than the average density in the QW plane.

Fig. 4. Temperature dependences of (open circles, left scale)
the width Γ of luminescence line of the interwell excitons
and (closed squares, right scale) the degree γ of circular
polarization of this line for the biases of (upper panel) –0.7
and (lower panel) –0.85 V.

–0.7 V

–0.85 V
These are precisely the regions where the main events
associated with the photoexcited IEs occur.

One can assume that the strong narrowing of the IE
PL line and the critical sensitivity of this phenomenon
to the density and temperature are due to the IE conden-
sation into a collective dielectric exciton phase. Lozo-
vik and Berman [37] have demonstrated that a dense IE
system can be condensed into a dielectric phase at cer-
tain IE dipole-moment values, despite the dipole–
dipole repulsion between excitons. Xuejun Zhu et al.
[34] pointed out that this condensation can most likely
occur in the lateral confinement regions. The experi-
ments described above indicate that with continuous
excitation this condensation occurs at T < 5.5 K and at
the average exciton density of 3 × 1010 cm–2. The nar-
rowing of the IE PL line with an increase in the IE den-
sity at low temperature is accompanied by a systematic
shift of this line to lower energies (by about 1.5 meV).
Only a sufficiently dense system of Bose quasiparticles
can exhibit such a behavior at µ/kT  0. These obser-
vations provide independent support to the assumption
that we deal with a dense enough dielectric collective
IE phase in our system. In this phase, the IEs retain
their individual properties. This conclusion is corrobo-
rated by the investigations of the PL spectra in a mag-
netic field with Faraday geometry. Larionov et al. [39]
have found that the narrow line, similar to a free exci-
ton, splits into the Zeeman doublet with the intensity
ratio of the σ+ and σ– components corresponding to the
temperature and spin-splitting value.

The condensed fraction of excitons should be
phased within the coherence region. The spatial coher-
ence must arise at least on the scale of the IE de Broglie

wavelength λex = "/  whose value of 1.5 × 103 Å
at T = 2 K exceeds the exciton Bohr radius aB ~ 100 Å
by more than an order of magnitude. The exciton den-
sity under the same conditions corresponds to the

dimensionless parameter r = n ×  = 4. An increase
in the spatial coherence in the condensed phase is evi-
denced by the observed thresholdlike increase in the IE
alignment. It is known that the alignment is closely
related to the lateral relaxation and, therefore, to the
time of phase-coherence loss. The radiative decay of
the phase-correlated IEs in the condensate should be
characterized by considerably higher radiative proba-
bilities than the PL of uncondensed excitons. This con-
clusion is also consistent with the experiment because
the radiative probability of the narrow line in the PL
spectra of condensed IEs is an order of magnitude
higher than that for the localized excitons.

Nevertheless, the important problem of spatial
coherence scale of this collective state remains to be
solved in the context of justification of the assumption
that IEs are condensed into the dielectric collective
phase. The answer may be obtained, e.g., by measuring
the correlations in the photoluminescence intensity
under the conditions where the assumed exciton con-

πmkT

λ ex
2
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densation occurs. Because the exciton condensation
occurs in the lateral domains related to the large-scale
random-potential fluctuations, the investigations of the
PL of individual domains by microprobe optical
microscopy are of interest. It is expected that the IE PL
from an individual domain containing condensate
should be completely circularly polarized under the
condensation conditions. In the presence of a weak
coupling between domains, time beats in the degree of
linear polarization can be expected (optical analogue of
the Josephson effect).

This work was supported by the Russian Foundation
for Basic Research and, in part, by the interdepartmen-
tal program “Nanostructures.”
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