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It is inspected whether the predictions of the inflationary scenario regarding the spectra of scalar and tensor per-
turbations generated by quantum vacuum fluctuations are robust with respect to the modification of the disper-
sion law for frequencies beyond the Planck scale. For a large class of such modifications of special and general
relativity, for which the WKB condition is not violated at ultrahigh frequencies, the predictions remain
unchanged. The opposite possibility is excluded because of the absence of a large amount of particles created
due to the Universe expansion. The creation of particles in the quantum state minimizing the energy density of
a given mode at the moment of Planck boundary crossing is also prohibited by the latter argument (contrary to
the creation in the adiabatic vacuum state, which is very small now). © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 04.62.+v; 98.70.Vc; 98.80.Cq
The approximately flat spectrum of scalar and ten-
sor perturbations generated by quantum vacuum fluctu-
ations at a quasi-de Sitter (inflationary) state in the
early Universe is certainly the most important prediction
of the inflationary scenario, because it can be directly
tested and falsified using observational data. Fortunately,
all existing and continuously accumulated data, instead
of falsifying, confirm these predictions (within observa-
tion errors). Another observational prediction of the sim-
plest variants of the inflationary scenario—the approxi-
mate flatness of the Universe, |Ωtot – 1| ! 1—is actually
a consequence of the first one, since an isotropic part of
the spatial curvature can be considered as a monopole
perturbation with respect to the spatially flat Fried-
mann–Robertson–Walker (FRW) background. Note
that the first quantitatively correct derivation of pertur-
bation spectra after inflation was obtained in [1] for the
case of tensor perturbations (gravitational waves) and in
[2] for the case of scalar (adiabatic) perturbations. For
completeness, one should mention two important interme-
diate steps made between 1979 and 1982 on the way to the
correct answer as to scalar perturbations: in [3], the first
estimate of scalar perturbations after inflation was made
according to which scalar and tensor perturbations are of
the same order of magnitude, while the spectrum of scalar
perturbations during inflation was calculated in [4] using
the Starobinsky inflationary model [5] (however, the
actual amplitude of scalar perturbations after inflation
was still significantly underestimated in both these
papers).

1 This article was submitted by the author in English.
0021-3640/01/7308- $21.00 © 20371
Therefore, it is very important to investigate the
validity of assumptions on which this prediction is
based.2 All derivations of perturbation spectra use quan-
tum field theory in classical curved space–time or semi-
classical quantum cosmology. Both these approaches are
valid and essentially equivalent if H ! MP , where
H ≡ /a, a(t) is the scale factor of a flat FRW cosmo-

logical model, the dot denotes time derivative, MP = ,
and " = c = 1 is put throughout the paper. On the other
hand, comparison of the predicted spectrum with
observational data shows that H should be less than
~10–5MP at least during last 70 e-folds of inflation. So,
the assumption H ! MP is required and self-consistent,
if we are speaking about inflationary models having
relation to reality. Recently it was questioned whether
the inflationary predictions are robust with respect to a
change in the so-called “trans-Planckian physics.”
What is meant by this term is some ad hoc modification
of special and general relativity leading to violation of
the Lorentz invariance and to deviation of the disper-
sion law ω(k) from the linear one for field quanta with
frequencies (energies) ω > MP , where k is the particle
wave number (momentum). In the absence of the
Lorentz invariance, a preferred system of reference
appears (in which this dispersion law is written). Usu-
ally, it is identified with the basic cosmological system
of reference which is at rest with respect to spatially
averaged matter in the Universe.

2 Results of this paper partially overlap with those obtained in
recent papers [6, 7] (which appeared when this paper was pre-
pared for publication) and are in general agreement with them
whenever they overlap.

ȧ

G

001 MAIK “Nauka/Interperiodica”



 

372

        

STAROBINSKY

                                                                                                                         
Initially, trans-Planckian physics was introduced to
obtain a new way to derive Hawking radiation from
black holes. In this case, it was shown that the spectrum
of Hawking radiation does not depend on a particular
form of dispersion law ω(k) at k  ∞ [8–10]. On the
other hand, an opposite result was recently claimed in
[11] regarding the inflationary perturbation spectrum.
No self-consistent theory of such a modification exists
leading to a certain unique dispersion law ω(k), but
arguments showing that this possibility should not be
considered as logically impossible are based either on
higher dimensional models of the Universe (see, e.g.,
recent paper [12]) or on the condensed matter ana-
logues of gravity [13, 14] which do not have too much
symmetry at the most fundamental level. So, ω(k)
should be considered as some fixed but unknown func-
tion at the present state-of-the-art level.

The very possibility of trans-Planckian physics affect-
ing the (supposedly known) sub-Planckian physics is due
to the expansion of the Universe. This expansion gradu-
ally shifts all modes of quantum fields from the former
region to the latter one. Indeed, for a FRW model with
metric

, (1)

where dl2 is the 3D Euclidean space interval (spatial
curvature can be always neglected), the spatial depen-
dence of a given quantum field mode can be taken as
exp(inµxµ), µ = 1, 2, 3. Then the frequency ω = n/a(t),
n = |n | = const in the ultrarelativistic (but still Lorentz-
ian) limit. This redshifting occurs equally well in the early
and the present-day Universe. So, any effect connected
with trans-Planckian physics can also be observed now;

inflation (i.e., the epoch when  ! H2) is not specific
for that at all.

I will model metric fluctuations by a massless
minimally coupled scalar field satisfying the equa-
tion ∇ i∇ iφ = 0. This form is sufficient both for scalar
perturbations for which the effective mass satisfies the
condition |m2| ! H2 necessary for inflation and for ten-
sor perturbations because their amplitude satisfies the
same wave equation in the FRW Universe filled by any
matter with no nondiagonal pressure perturbations
(δpµν ∝  dµν). It is also assumed that H ! MP . Then the
equation for the time-dependent part of φn reads

, (2)

with ω(k) = k for ω ! MP . Solutions of this equation
have the WKB form for H ! ω ! MP:

(3)

where αn, βn = const, and |αn|2 – |βn|2 = 1 for any quantum

state if the quantum field  is second-quantized and

ds2 dt2 a2 t( )dl2–=

Ḣ

φ̇̇n 3Hφ̇n ω2 n
a
--- 

  φn+ + 0=

φn

αn

2na
-------------e inη–=

βn

2na
-------------einη , η+

td
a t( )
---------,∫=

φ̂

φnexp(inµxµ)(2π)–3/2 is the c-number coefficient of the
Fock annihilation operator . The average number of
created pairs is N(n) = |βn|2. Therefore, whatever the
trans-Planckian physics is (namely, whatever the form of
ω(k) and the initial condition for φn at t  –∞), once
ω ! MP , we can say that field mode (3) emerges from
the Planck boundary n = MPa in some quantum state
that is characterized by αn and βn . In particular, the rate
of growth of the average energy density of particles
with ω ! MP is

(4)

where g = 1 for scalars and g = 2 for gravitons. M is
an auxiliary mass satisfying H ! M < MP for which
ω(M) = M with sufficient accuracy (for estimates, we
will take M = MP). It follows from time translation
invariance that N(0)(n) is independent of n. Here, N(0)

means the part of N(n) which does not depend on the
background space–time curvature at the moment of
Planck boundary crossing (n = MPa).

Let us first consider the case where the WKB condi-
tion for φn is satisfied for all n @ Ha including the trans-
Planckian region n > MPa. Then the natural and self-
consistent choice of the initial condition for φn is the
adiabatic vacuum at t  –∞:

(5)

Note that this mode is not in the minimum energy-den-
sity state at finite t, in particular, at the moment of
Planck boundary crossing (I will return to the discussion
of this point below). Equation (5) reduces to Eq. (3) with
βn = 0 and αn = 1 in the sub-Planckian region. Then it
just coincides with the initial condition for φn used in
the standard calculation of the spectrum of inflationary
perturbations. Thus, no correction to the standard result
arises in this case, irrespective of the form of ω(n/a).

The necessary condition for the WKB behavior is
 ! ω2 or

(6)

for all k > MP . Since H/MP is already a small parameter
and ω(k) presumably does not depend on H for k @ H,
this inequality is satisfied practically always if ω does
not become zero either for k  ∞ or at some finite
k0 > MP [another dangerous case is when dω/dk
diverges at a finite k = k0, in particular, if ω ∝  (k0 – k)γ

with –1 < γ < 0 or ω ≈ ω0 + ω1(k0 – k)γ, 0 < γ < 1]. As a
consequence, N(0) = 0 for the dispersion law ω(k) =

M , m > 0 proposed by Unruh [8], for
ω2 = k2[1 + bm(k/M)2m] with positive m and bm consid-

ân

d ε〈 〉 a4( )
a4dt

---------------------
gM4H

2π2
---------------N n( ) n Ma= ,=

φn
1

2ωna3
------------------- i– ωn td∫( ).exp=

ω̇

H d 1/ω k( )( )
d kln

--------------------------------- ! 1, k n/a=

k/M( )m[ ]tanh
1/m
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ered in [10, 11], and for the ω2 = [Mln(1 + k/M)]2

dependence introduced in [15].

There still exist exceptional forms of ω(k) for which
the WKB behavior is not valid for some k > MP . In par-
ticular, this refers to the case ω2 = k2[1 + bm(k/M)2m]
with bm < 0 and to the dispersion law introduced in
recent paper [16], for which ω(k)  0 at k  ∞.
Such a possibility should not be excluded a priori.
Then there is no preferred initial condition for φn, and it
is impossible to define a unique initial vacuum state.
So, in this case N(0) ≠ 0 generically; i.e., creation of
pairs in the expanding Universe occurs due to trans-
Planckian physics.

However, nature tells us that such an effect is infin-
itesimally small, if exists at all. Indeed, from the evident
condition that the created ultrarelativistic particles do not
contribute significantly to the present energy density in the

Universe, it follows that N(0) &  ~ 10–122, where
H0 = H(t = t0) is the Hubble constant. Thus, curvature-
independent particle creation due to trans-Planckian
physics in the expanding Universe is very strongly sup-
pressed, in any case because of observational data. Of
course, the corresponding change in the inflationary
perturbation spectrum is also negligible (relative cor-

rection is ~|βn| = ).

Finally, let us consider a more subtle effect: creation
of particles due to both trans-Planckian physics and
background space–time curvature in the expanding

Universe. Then N(n) ~ H2/ , where H is estimated at
the moment of high-energy boundary crossing n = Ma(t).
Certainly, corrections to the inflationary spectrum are
negligible (~H/MP < 10–5) in this case. Nevertheless,
even such a small effect can be significantly restricted.
An example of this effect arises if one assumes that
modes crossing the boundary n = Ma are in the exactly
minimum energy-density state just at this moment; i.e.,

φn = –inφn/a = –i a–2 and εn ≡ (  + n2 a–2|φn|2)/2 =
n/2a4 for each mode at the moment t = tn when n = Ma.
On the other hand, the adiabatic vacuum for each mode
has the larger energy density

(7)

(see, e.g., [17, 18]). Note that this excess is due only to
vacuum polarization. Of course, this assumption may
be immediately criticized from the logical point of view
because such a state ceases to diagonalize the mode
Hamiltonian and minimize its energy density for all
other moments of time t ≠ tn . Nevertheless, let us con-
sider its implications.

H0
2/MP

2

N 0( )

MP
2

n/2 φ̇n
2

εn
n

2a4
-------- 1 H2a2

2n2
------------+ 

 =
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Writing, as, e.g., in [17],

(8)

(9)

so that αn(tn) = 1 and βn(tn) = 0 for the Heisenberg quan-
tum state of each mode |ψn〉  which minimizes its
Hamiltonian and energy density at the moment t = tn
when n = Ma, we obtain the following system of equa-
tions for αn(t) and βn(t):

(10)

(11)

with the additional condition |αn|2 – |βn|2 = 1. If ω @ H,
βn is small and αn ≈ 1. For t ≥ tn, one may take ωn ≈ n/a.
Then βn = –(iH(tn)/2M)exp(–2iη(tn)) plus a strongly
oscillating term. So,

(12)

If the cosmological constant is neglected and the present
law of the Universe expansion is taken as a(t) ∝  t2/3, then
N(n) ∝  n–3 for particle energies close to MP at the present
time. Integrating Eq. (4) with N(n) from Eq. (12), one
obtains εg = M2/9π2t2 for gravitons. For M ~ MP one has
εg ~ H2/G, which contradicts the assumption that a(t) ∝
t2/3. In other words, this model of particle creation by
trans-Planckian physics results in a significant part of
the present total energy density of matter in the Uni-
verse being contained in gravitons with energies ~MP ,
which is not compatible with the observed behavior of
a(t). Similar arguments show that there may be no term

(13)

with N(1) ~ 1 in Eq. (4). Here, R is the scalar curvature.
On the other hand, for the adiabatic vacuum state in the

WKB regime, the quantity βn = iH(t)a(t)exp(–2inη)/2n in
the leading order, so that it approaches zero at t  ∞.
Note that the creation of real gravitons does occur in the

next order (N = N(2)(n)R2/ ) and even without any
violation of the Lorentz invariance [19]. In the latter
case, the effect is due to the violation of the WKB
approximation at ultralow, and not ultrahigh, frequen-
cies ω ~ H. Also, the notion of “vacuum” as a state of
minimum energy density may be restored in the follow-

φn t( ) 2ωna3( ) 1/2–
=

× αn t( ) i ωn td∫–( ) βn t( ) i ωn td∫( )exp+exp( ),

φ̇n t( ) i
ωn

2a3
-------- 

 –
1/2

=

× αn t( ) i ωn td∫–( ) βn t( ) i ωn td∫( )exp–exp( ),

α̇n
1
2
--- ω̇

ω
---- 3

ȧ
a
---+ 

  e
2i ωn td∫ βn,=

β̇n
1
2
--- ω̇

ω
---- 3

ȧ
a
---+ 

  e
2– i ωn td∫ αn,=

N n( ) βn ∞( ) 2 H2 tn( )/4M2.= =

N n( ) N 1( ) n( )
R tn( )
MP

2
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MP
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ing nonrigorous sense: the adiabatic vacuum for each
mode n in the WKB regime has the lowest energy den-
sity, compared to other quantum states, if the energy
density is averaged (“coarse grained”) over a time inter-

val ∆t @ , in accordance with the energy uncertainty
relation.

So, whatever occurs in the trans-Planckian region,
observational evidence shows that creation of particles
due to mode transition from the trans-Planckian region
to the sub-Planckian one is absent with a very high
accuracy. The standard predictions about perturbations
generated during inflation are not altered by this hypo-
thetical mechanism either.

I am thankful to Prof. K. Sato and M. Kawasaki for
hospitality in RESCEU, the University of Tokyo. This
work was supported in part by the Russian Foundation
for Basic Research, project nos. 99-02-16224 and
00-15-96699.

REFERENCES

1. A. A. Starobinsky, Pis’ma Zh. Éksp. Teor. Fiz. 30, 719
(1979) [JETP Lett. 30, 682 (1979)].

2. S. W. Hawking, Phys. Lett. B 115B, 295 (1982);
A. A. Starobinsky, Phys. Lett. B 117B, 175 (1982);
A. H. Guth and S. Y. Pi, Phys. Rev. Lett. 49, 1110 (1982).

3. V. N. Lukash, Zh. Éksp. Teor. Fiz. 79, 1601 (1980) [Sov.
Phys. JETP 52, 807 (1980)].

ωn
1–
4. V. F. Mukhanov and G. V. Chibisov, Pis’ma Zh. Éksp.
Teor. Fiz. 33, 549 (1981) [JETP Lett. 33, 532 (1981)].

5. A. A. Starobinsky, Phys. Lett. B 91B, 99 (1980).
6. T. Tanaka, astro-ph/0012431 (2000).
7. J. C. Niemeyer and R. Parentani, astro-ph/0101451

(2001).
8. W. G. Unruh, Phys. Rev. D 51, 2827 (1995).
9. R. Brout, S. Massar, R. Parentani, and P. Spindel, Phys.

Rev. D 52, 4559 (1995).
10. S. Corley and T. Jacobson, Phys. Rev. D 54, 1568 (1996).
11. R. H. Brandenberger and J. Martin, astro-ph/0005432

(2000); J. Martin and R.H. Brandenberger, hep-th/0005209
(2000).

12. D. J. H. Chung, E. W. Kolb, and A. Riotto, hep-ph/0008126
(2000).

13. G. E. Volovik, Phys. Rep. (2001) (in press); gr-qc/0005091
(2000).

14. G. E. Volovik, Pis’ma Zh. Éksp. Teor. Fiz. 73, 182 (2001)
[JETP Lett. 73, 162 (2001)]; hep-ph/0101286 (2001).

15. J. Kowalski-Glikman, Phys. Lett. B 499, 1 (2001).
16. L. Mersini, M. Bastero-Gil, and P. Kanti, hep-

ph/0101210 (2001).
17. Ya. B. Zeldovich and A. A. Starobinsky, Zh. Éksp. Teor.

Fiz. 61, 2161 (1971) [Sov. Phys. JETP 34, 1159 (1972)].
18. S. A. Fulling, L. Parker, and B. L. Hu, Phys. Rev. D 10,

3905 (1974).
19. Ya. B. Zeldovich and A. A. Starobinsky, Pis’ma Zh.

Éksp. Teor. Fiz. 26, 373 (1977) [JETP Lett. 26, 252
(1977)].
JETP LETTERS      Vol. 73      No. 8      2001



  

JETP Letters, Vol. 73, No. 8, 2001, pp. 375–379. From Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 73, No. 8, 2001, pp. 419–423.
Original English Text Copyright © 2001 by Volovik.

                                                                     
Mesoscopic Casimir Forces in Quantum Vacuum1
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Traditionally, it is assumed that the Casimir vacuum pressure does not depend on the ultraviolet cutoff. There
are, however, some arguments that the effect actually depends on the regularization procedure and thus on trans-
Planckian physics. We provide the condensed matter example where the Casimir forces do explicitly depend on
microscopic (correspondingly trans-Planckian) physics due to the mesoscopic finite-N effects, where N is the
number of bare particles in condensed matter (or correspondingly the number of elements comprising the quan-
tum vacuum). The finite-N effects lead to mesoscopic fluctuations of the vacuum pressure. The amplitude of the
mesoscopic fluctuations of the Casimir force in a system with linear dimension L is a factor of N1/3 ~ L/aP larger
than the traditional value of the Casimir force given by effective theory, where aP = "/pP is the interatomic distance
which plays the role of the Planck length. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 67.20.+k; 11.10.-z
INTRODUCTION

The attractive force between two parallel metallic
plates in vacuum induced by vacuum fluctuations of an
electromagnetic field was predicted by Casimir in 1948
[1]. The calculation of vacuum pressure is based on regu-
larization schemes, which allows one to separate the
effect of low-energy modes of the vacuum from a huge
diverging contribution of the high-energy degrees of
freedom. There are different regularization schemes: Rie-
mann’s zeta-function regularization, introduction of the
exponential cutoff, dimensional regularization, etc. People
are happy when different regularization schemes give the
same results. But this is not always so (see, e.g., [2–4]; in
particular, the divergences occurring for spherical
geometry in even spatial dimension are not canceled
[5, 6]). This raises some criticism against the regular-
ization methods [7] or even some doubts concerning
the existence and the magnitude of the Casimir effect.

The Casimir effect of the same type arises in con-
densed matter due to thermal (see review paper [8])
or/and quantum fluctuations. When considering the
analogue of the Casimir effect in condensed matter, the
following correspondence must be taken into account.
The ground state of quantum liquid corresponds to the
vacuum of quantum field theory. The low-energy
bosonic and fermionic quasiparticles in quantum liquid
correspond to matter. The low-energy modes with lin-
ear spectrum ω = csp can be described by the relativis-
tic-type effective theory. The speed of sound cs or of
other collective modes (spin waves, etc.) plays the role

1 This article was submitted by the author in English.
0021-3640/01/7308- $21.00 © 200375
of the speed of light. This “speed of light” is the “fun-
damental constant” which enters the effective theory
(quantum hydrodynamics in quantum liquids or elec-
tromagnetic theory in real vacuum). The fundamental
constants of the effective theory can be in principle cal-
culated using microscopic physics, an analogue of
trans-Planckian physics. The effective theory is valid
only at low energy that is much smaller than the
“Planck cutoff.” In quantum liquids, the analogue of the
Planck energy scale EP is determined either by the mass

m of the atom in the liquid, EP ≡ , or by the Debye
energy, EP ≡ "cs/aP , where aP is the interatomic dis-
tance which plays the role of Planck length [9].

In some cases, the analogy between effective theo-
ries in quantum vacuum and in quantum liquids
becomes exact. For example, the low-energy fermionic
and bosonic collective modes can correspond to the
chiral fermions and gravitational and gauge fields. This
allows one to simulate in condensed matter the phe-
nomena such as chiral anomaly and event horizon (see
review [9]).

The advantage of the quantum liquid is that the
structure of the quantum vacuum is known at least in prin-
ciple. That is why one can calculate everything starting
from the first principle microscopic theory. For example,
one can calculate the vacuum energy under different exter-
nal conditions without invoking any cutoff or regulariza-
tion scheme. Then one can compare the results with what
can be obtained within the effective theory dealing only
with the low-energy phenomena. The latter requires the
regularization scheme in order to cancel the ultraviolet
divergency, and thus one can judge whether and which of
the regularization schemes are physically relevant.

mcs
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The traditional Casimir effects deal with the low
energy massless modes. The typical massless modes in
quantum liquid are sound waves. The acoustic field is
described by the effective theory and corresponds to the
massless scalar field. The walls provide the boundary
conditions for the sound wave mode; usually these are
the Neumann boundary conditions. Because of the
quantum hydrodynamic fluctuations, there must be the
Casimir force between two parallel plates immersed in
the quantum liquid. Within the effective theory, the
Casimir force is given by the same equation as the
Casimir force acting between the conducting walls due
to quantum electromagnetic fluctuations. The only
modifications are (i) the speed of light must be replaced
by the spin of sound cs and (ii) the factor 1/2 must be
added, since we have the scalar field of a longitudinal
sound wave instead of two polarizations of light. If a is
the distance between the plates and A is their area, then
the a-dependent contribution to the ground-state energy
of the quantum liquid at T = 0 in the effective theory
must be

(1)

The microscopic quantities of the quantum liquid such
as the mass of atom m and interatomic space aP do not
explicitly enter Eq. (1); the traditional Casimir force is
completely determined by the “fundamental” parame-
ter cs of the effective scalar field theory.

However, I will show that Eq. (1) is not always true.
I will give here an example where the effective theory
is not able to predict the Casimir force, because the
microscopic high-energy degrees of freedom become
important. In other words, the trans-Planckian physics
shows up, and the “Planck” energy scale explicitly
enters the result. In this situation, the Planck scale is
physical and cannot be removed by any regularization.

Equation (1) gives a finite-size contribution to the
energy of quantum liquid. It is inversely proportional to
the linear dimension of the system, EC ∝  1/L. However,
it is important for us that it is not only the finite-size effect
but also the finite-N effect, EC ∝  N–1/3, where N is the num-
ber of atoms in the liquid in the slab, which is a discrete
quantity. Since the main contribution to the vacuum
energy is ∝ L3 ∝  N, the relative correction of order N–4/3

means that the Casimir force is the mesoscopic effect.
I will show that in quantum liquids the essentially larger
mesoscopic effects of the relative order N–1 can be more
pronounced. Such a finite-N effect cannot be described
by the effective theory dealing with the continuous
medium, even if the theory includes the real boundary
conditions with the frequency dependence of dielectric
permeability.

I will start with the simplest quantum “liquid”—
one-dimensional Fermi gas—where the mesoscopic
Casimir forces can be calculated exactly without invok-
ing any regularization procedure.

EC

"csπ
2A

1440a3
------------------.–=
VACUUM ENERGY
FROM MICROSCOPIC THEORY

I consider a system of N one-dimensional massless fer-
mions, whose continuous energy spectrum is ω(p) = cp,
with c playing the role of speed of light. Let us start
with the microscopic theory, which is extremely sim-
ple: at T = 0 fermions merely occupy all energy levels
below chemical potential µ. In the continuous limit, the
total number of particles N and the total energy in a one-
dimensional “cavity” of size a are expressed in terms of
the Fermi momentum pF = µ/c in the following way:

(2)

(3)

Here, n is the particle density. The vacuum energy den-
sity of this condensed matter as a function of n is e(n) =
(π"c/2)n2. The equation of state comes from the ther-
modynamic identity relating the pressure P to the
energy:

(4)

where µ = de/dn = cpF is the chemical potential. In our
case µ = cpF , and one obtains the equation of state for
our vacuum

, (5)

which is conventional for the system of 1 + 1 relativistic
fermions.

VACUUM ENERGY IN EFFECTIVE THEORY

As distinct from the microscopic theory, which
deals with bare particles, the effective theory deals with
the quasiparticles—fermions living at the level of chemi-
cal potential µ = cpF. There are four different quasiparti-
cles: (i) quasiparticles and quasiholes living in the vicinity
of the Fermi point pz = +pF have spectrum ωqp(p+) =
|ω(p) – µ| = c|p+|, where p+ = pz – pF, and (ii) quasiparticles
and quasiholes living in the vicinity of the other Fermi
point at pz = –pF have spectrum ωqp(p–) = |ω(p) – µ| = c|p−|,
where p– = pz + pF. In the effective theory, the energy of
the system is the energy of the Dirac vacuum E =

 – . This energy is divergent and

requires a cutoff, which is provided by the Fermi momen-
tum playing the role of the cutoff Planck momentum: pF ≡
pP. Note that even with this cutoff the energy obtained
within the effective theory has a wrong sign, compared
with the correct microscopic result in Eq. (3).

The difference between the energies obtained in the
microscopic and the effective theory approaches becomes
important if gravity is involved, since the energy is the

N na a
pd

2π"
----------

pF–

pF

∫
a pF

π"
---------,= = =

E e n( )a a
pd

2π"
----------cp

pF–

pF

∫
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source of the gravitational field. What kind of vacuum
energy is gravitating is the essence of the cosmological
constant problem.

RELEVANT VACUUM ENERGY
AND COSMOLOGICAL CONSTANT

Inspection of those condensed matter systems in
which an effective gravity arises as a low energy phe-
nomenon suggests the possible answer: the vacuum
energy density responsible for the cosmological con-
stant is  = e – µn [9, 10]. This follows from micro-
scopic physics: the conservation of particle number N
requires that the quantum field theoretical description
of the N-body system be given by * – µ1, where *
and 1 are the Hamiltonian and the particle number
operators in the second-quantized form. The energy 
does not depend on the choice of zero energy level: the
shift ∆ of the zero energy level for one particle leads to
the shift of the chemical potential µ  µ + ∆ and of

the total energy E  E + N∆, while  = E – µN

remains invariant. In terms of , the equation of state
of the quantum vacuum is always

(6)

Although this is obtained using the microscopic theory
(  is not determined within the effective theory), the
result does not depend on details of the quantum liquid:
it follows from the thermodynamic identity in Eq. (4).

Equation (6) is the same as the equation of state of
the vacuum in quantum field theory, which follows
from the Einstein cosmological term. Thus,  serves as
the cosmological constant in the effective gravitational
theory. For our vacuum represented by the Fermi gas,
this cosmological constant is large, being determined

by the Planck energy scale,  ~ . The minus sign
is in agreement with the negative energy of the Dirac
vacuum in effective theory, and, according to Eq. (6),
this corresponds to the positive vacuum pressure: Fermi
gas (and also the Dirac vacuum) can be in equilibrium
only in the presence of positive external pressure P.

There are, however, quantum liquids which can
exist without an external pressure. Liquid 3He and liq-
uid 4He at T = 0 are examples. In both of these liquids,
there is some analogue of gravity that arises in the low-
energy corner. Let us consider the ground state of such
quantum liquid, if there is no contact with the environ-
ment. In a complete equilibrium, the pressure P in the
liquid must be zero, since there is no external forces
acting on the liquid. Then, from Eq. (6), one automati-
cally obtains that for such equilibrium vacuum at
T = 0 the cosmological constant in the effective gravity
is identically zero,  ≡ 0, without any fine tuning. This
means that, according to the quantum liquid analogy,

ẽ

ẽ

Ẽ

ẽ

P ẽ.–=

ẽ

ẽ

ẽ c– pP
2

ẽ
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the stationary equilibrium vacuum is not gravitating
(see for more details [10]).

LEAKAGE OF VACUUM THROUGH THE WALL

Now let us discuss the Casimir effect—a change in
the vacuum pressure caused by the finite-size effects in
the vacuum. We must take into account the discreteness
of the spectrum of bare particles or quasiparticles
(depending on which theory we use, microscopic or
effective) in the slab. Let us start with the microscopic
description in terms of bare particles (atoms). We can
use two different boundary conditions for particles,
which give two kinds of discrete spectrum

(7)

(8)

Equation (7) corresponds to the “classical spinless” fer-
mions with Dirichlet boundary conditions. Equation (8)
is for the 1 + 1 Dirac fermions with no particle current
through the wall; this case with the generalization to the
d + 1 fermions was discussed in [11].

The vacuum is represented by the ground state of
the collection of N noninteracting particles in a 1D box
of size a. The “vacuum” energies for the spinless and
Dirac fermions are correspondingly

(9)

(10)

To calculate the Casimir force acting on the wall, we
must introduce the vacuum on both sides of the wall.
Let us thus consider three walls: at z = 0, z = a1 < a, and
z = a. Then we have two slabs with sizes a1 and a2 =
a – a1, and we can find the force acting on the wall
between the two slabs, i.e., at z = a1. We assume the
same boundary conditions for all walls. But we must
allow the particles to transfer between the slabs, other-
wise the main force acting on the wall between the
slabs will be due to the different bulk pressure in the
two slabs. This can be done due to, say, very small holes
(tunnel junctions) in the wall, which do not violate the
boundary conditions and do not disturb the particle
energy levels, but still allow the particle exchange
between the two vacua.

This situation can be compared with the traditional
Casimir effect. The force between the conducting
plates arises because the electromagnetic fluctuations
of the vacuum in the slab are modified due to boundary
conditions imposed on electric and magnetic fields. In
reality, these boundary conditions apply only in the
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low-frequency limit, while the wall is transparent for
the high-frequency electromagnetic modes, as well as
for the other degrees of freedom of real vacuum (fermi-
onic and bosonic), which can easily penetrate through
the conducting wall. In the traditional approach, it is
assumed that these degrees of freedom, which produce
the divergent terms in the vacuum energy, must be can-
celed by the proper regularization scheme. That is why,
although the dispersion of dielectric permeability does
weaken the real Casimir force, nevertheless in the limit
of large distances, a1 @ c/ω0, where ω0 is the character-
istic frequency at which the dispersion becomes impor-
tant, the Casimir force does not depend on how easily
the high-energy vacuum leaks through the conducting
wall.

I consider here just the opposite limit, when
(almost) all bare particles are totally reflected. This cor-
responds to the case when the penetration of the high-
energy vacuum modes through the conducting wall is
highly suppressed, and thus one must certainly have the
traditional Casimir force. Nevertheless, I will show
that, due to the mesoscopic finite-N effects, the contri-
bution of the diverging terms to the Casimir effect
becomes dominant. They produce highly oscillating
vacuum pressure, whose amplitude exceeds the value
of the conventional Casimir pressure by a factor of
pPa/". For their description, the continuous effective
low-energy theories do not apply.

MESOSCOPIC CASIMIR FORCE
IN 1D FERMI GAS

The total vacuum energies of the spinless and Dirac
fermions in two slabs are

(11)

(12)

(13)

Since particles can transfer between the slabs, the glo-
bal vacuum state in this geometry is obtained by the
minimization over the discrete particle number N1 at a
fixed total number N of particles in the vacuum. If the
mesoscopic 1/N corrections are ignored, one obtains
N1 ≈ (a1/a)N and N2 ≈ (a2/a)N, and the force acting on
the wall between the two vacua is zero.

However, N1 and N2 are integer valued, and this
leads to mesoscopic fluctuations of the Casimir force.
Within a certain range of parameter a1, there is a global
minimum characterized by integers (N1, N2). In the
neighboring intervals of parameters a1, one has either
(N1 + 1, N2 – 1) or (N1 – 1, N2 + 1). The force acting on
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the wall in the state (N1, N2) is obtained by variation of
E(N1, N2, a1, a – a1) with respect to a1 at fixed N1 and N2:

(14)

If a1 increases, then at some critical value of a1, where
E(N1, N2, a1, a2) = E(N1 + 1, N2 – 1, a1, a2), one particle
must cross the wall from the right to the left. At this crit-
ical value, the force acting on the wall changes abruptly
{we do not discuss here interesting physics arising just
at the critical values of a1, where the degeneracy of the
states (N1, N2) and (N1 + 1, N2 – 1) occurs; for these
positions of the wall (or membrane), the particle num-
bers N1 and N2 are undetermined and are actually frac-
tional due to the quantum tunneling between the slabs
[12]}. Using, for example, the spectrum in Eq. (12),
one obtains for the jump in the Casimir force

(15)

If a1 ! a, the amplitude of the mesoscopic force

(16)

It is by a factor of 1/N1 = π"/a1pF ≡ π"/a1pP smaller
than the bulk vacuum energy density in Eq. (3). On the
other hand, it is by the same factor pFa1 ≡ pPa1 larger
than the traditional Casimir pressure, which in the

1D case is PC ~ "c/ . The divergent term which linearly
depends on the Planck momentum cutoff pP, as in
Eq. (16), was revealed in many different calculations
(see, e.g., [6]), and attempts were undertaken to invent
the regularization scheme which would cancel the
divergent contribution.

MESOSCOPIC CASIMIR FORCES 
IN A GENERAL CONDENSED MATTER SYSTEM

Equation (16) for the amplitude of mesoscopic fluc-
tuations of vacuum pressure can be generalized to any
dimension. The mesoscopic random pressure comes
from the discrete nature of the quantum vacuum in
quantum liquids. If the volume V1 of the vessel changes
continuously, the equilibrium number N1 of particles
changes stepwise. This results in abrupt changes of
pressure at some critical values of V1:

(17)

The mesoscopic pressure is determined by microscopic
physics, and thus a microscopic quantity such as the
mass m of the atom, the “Planck mass,” enters this
force.

For the pair-correlated systems such as Fermi super-
fluids with finite gap in the energy spectrum, the ampli-
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tude must be twice as large. This is because the jumps
in pressure occur when two particles (the Cooper pair)
tunnel through the junction, ∆N = ±2.

For the spherical shell of radius a immersed in the
quantum liquid, the mesoscopic pressure is

(18)

DISCUSSION

Let us compare the mesoscopic vacuum pressure in
Eq. (18) with the traditional Casimir pressure obtained
within the effective theories for the same spherical shell
geometry. In the case of the original Casimir effect, the
effective theory is quantum electrodynamics. In super-
fluid 4He, this is low-frequency quantum hydrodynam-
ics which is equivalent to the relativistic scalar field
theory. The sound-wave modes with a linear (“relativ-
istic”) spectrum play the role of the relativistic massless
scalar field with Neumann boundary conditions corre-
sponding to the (almost) vanishing current through the
wall (recall that there must be some leakage through the
shell to provide equal bulk pressure on both sides of the
shell).

If we believe in the traditional regularization
schemes which cancel out the ultraviolet divergence,
then from the effective scalar field theory one must
obtain the Casimir pressure PC = –dEC/dV = K"cs/8πa4,
where K = –0.4439 for the Neumann boundary condi-
tions and K = 0.005639 for the Dirichlet boundary con-
ditions [6]. However, at least in our case, the result
obtained within the effective theory is not correct: the
real Casimir pressure in Eq. (18) is produced by the
finite-N effect. It essentially depends on the Planck cut-
off parameter; i.e., it cannot be determined by the effec-
tive theory; it is much larger, by a factor of pPa/", than
the traditional Casimir pressure; and it is highly oscil-
lating. The regularization of these oscillations by, say,
averaging over many measurements, by noise, or due to
quantum or thermal fluctuations of the shell, etc.,
depends on the particular physical conditions of the
experiment.

This shows that in some cases the Casimir vacuum
pressure is not within the responsibility of the effective
theory, and microscopic (trans-Planckian) physics must
be invoked. If two systems have the same low-energy
behavior and are described by the same effective the-
ory, they do not necessarily experience the same
Casimir effect. The result depends on many factors:
discrete nature of the quantum vacuum, ability of the

Pmeso

3mcs
2

4πa3
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3 pPc

4πa3
------------.≡±∼
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vacuum to penetrate through the boundaries, dispersion
relation at high frequency, etc. It is not excluded that
even the original electromagnetic Casimir effect is
renormalized by high-energy modes.

Of course, the extreme limit of an almost impenetra-
ble wall, which we considered, does not apply to the
original (electromagnetic) Casimir effect, where the
overwhelming part of the fermionic and bosonic vacua
easily penetrates the conducting walls, and where the
mesoscopic fluctuations must be small. But are they
negligibly small? In any case, our example shows that
the cutoff problem is not a mathematical but a physical
one, and the physics dictates the proper regularization
scheme or the proper choice of the cutoff parameters.

The dependence of low-energy effects on physics
beyond the effective theory was also discussed in con-
nection with the Chern–Simons terms violating
Lorentz and CPT symmetries [13, 14]. Quantum liq-
uids provide an example of a finite system where trans-
Planckian microscopic physics determines the coeffi-
cient of the Chern–Simons term [9, 15], which remains
ambiguous within the effective theory.

I thank A.Yu. Kamenshchik for fruitful discussion.
This work was supported in part by the Russian Foun-
dation for Fundamental Research and by the ESF.
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The quantity ξ introduced recently in the phenomenological description of neutrino oscillations is in fact not a
free parameter, but a fixed number. © 2001 MAIK “Nauka/Interperiodica”.
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The literature on phenomenology of neutrino oscilla-
tions is vast (see, e.g., [1–6] and references therein). In a
recent paper [7], Giunti and Kim in the case of two-flavor
mixing have introduced a new phenomenological param-
eter ξ. According to [7], ξ = 0 corresponds to the so-called
equal-momentum assumption [1, 2], while ξ = 1 corre-
sponds to equal-energy assumption [5, 6]. The authors of
[7] emphasize that ξ disappears from the final expressions
for the neutrino oscillation probability.

The aim of this letter is to indicate that parameter ξ
is fixed by energy–momentum conservation in the pro-
cess which is responsible for neutrino emission, as
explicitly assumed in [7].

Following [7], I will consider the decay π  µν
within in the framework of two-flavor toy model. The
parameter ξ is defined in [7] for the pion rest frame by
considering the auxiliary case of absolutely massless neu-
trinos and denoting the energy of such neutrinos as E,

(1)

where mµ and mπ are the masses of the muon and the
pion. Then for massive (but light!) neutrinos, the
authors of [7] get

(2)

(3)

Here E1, 2, p1, 2, and m1, 2 are the energies, momenta, and
masses of neutrinos, respectively. From the above state-
ment about ξ = 0, 1, it follows that

(4)

Thus, the equal-energy and equal-momentum assump-
tions in the form ∆E ≡ E1 – E2 = 0 and ∆p ≡ p1 – p2 = 0,

ξ 1/2 1 mµ
2 /mπ

2+( ),=

E1 2, E 1 ξ–( )m1 2,
2 /2E,+=

p1 2, E ξm1 2,
2 /2E.–=

E1 E2= for ξ 1 and p1 p2 for ξ 0.= = =

1 This article was submitted by the author in English.
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respectively, are treated by the authors of [7] as partic-
ular cases of the general kinematic relations (1) and (2):

(5)

(6)

Unfortunately, both treatment and relations (6)–(8)
are erroneous.

On the one hand, the quantity ξ is not a free param-
eter. Indeed, it follows from Eq. (5) that ξ has a fixed
value (.0.8) for the decay under consideration. On the
other hand, it is evident from definitions of E and ξ that

(7)

The parameter ξ determines sharing of the decay
energy. As seen from Eq. (3), the values ξ = 0 and ξ =
1 are senseless because they refer, respectively, to the
limiting cases Erecoil = 0 and E = 0. Therefore, one can-
not assume that ξ can be equal to 1 or 0. Instead, the
solution to Eqs. (7) and (8) is the vanishing ∆m2, that is,
the absence of oscillations.

I am grateful to L.B. Okun for friendly support. This
work was supported by the Russian Foundation for
Basic Research, project no. 00-15-96562.
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A simple microscopic formula is derived for the renormalization factor Z of Green’s function on the basis of
the self-consistency relation of many-body theory and the Brueckner method. This formula involves the deriv-
ative of the Brueckner G matrix with respect to energy. Based on the analysis of the properties of the G matrix
for a slab of nuclear matter, the G matrix is approximately replaced by the off-mass-shell T matrix taken for
free NN scattering at a negative energy E equal to the doubled chemical potential µ of the nucleus under con-
sideration. The Z factor thus calculated depends strongly on µ and decreases with |µ|. This effect is important
for analyzing the properties of atomic nuclei near the drip line, where µ is zero.

PACS numbers: 21.65.+f; 24.10.Cn
The renormalization factor Z of the one-particle
Green’s function &(p, ε) of Fermi liquid (Z factor) is one
of the fundamental characteristics of a Fermi system.
However, it is eliminated from all observables in the
Landau theory of Fermi liquid [1] by means of the
renormalization procedure similar to that applied in
QED. Only one observable remains—the “Migdal
jump” in the momentum distribution of particles n(p)
[2]—that is determined directly by the Z factor. How-
ever, in atomic nuclei, this jump is strongly smeared
due to finite range effects [3] and, therefore, can hardly
be determined experimentally. Instead, a new important
observable appears, which is determined by the Z fac-
tor. This is the one-particle spectroscopic factor Sλ,
where λ is a set of quantum numbers of the knocked-
out (or added) nucleon. The relationship between Sλ
and Z is the simplest in magic nuclei, where Sλ coin-
cides with the matrix element (Z)λλ.

Theory of finite Fermi systems (TFFS) was devel-
oped by Migdal [4] similar to the Landau theory of
Fermi liquid and also involves a coordinate-dependent
factor Z(r) that is implicitly present in the amplitude of
effective quasiparticle interaction ^. However, there is
a variant of the self-consistent TFFS [5, 6], so-called
quasiparticle Lagrangian method, in which the Z factor
is introduced explicitly through one more phenomeno-
logical parameter which determines the energy depen-
dence of the effective interaction. The problem of cal-
culating the Z factor cannot be circumvented when one
develops a first-principle nuclear theory based on a free
NN potential. In particular, the effective interaction
between nucleons near the Fermi surface (Landau–
Migdal amplitude) is expressed in the Brueckner theory
[7, 8] in terms of the Brueckner G matrix, the key
0021-3640/01/7308- $21.00 © 20381
parameter of this approach, through the following for-
mula including the Z factor in an explicit form:

(1)

Here, E is the total energy in the two-particle channel,
and µ is the chemical potential of the system.

Note that the Z factor of infinite nuclear matter was
calculated in [9, 10] from the dispersion relation for the
nucleon mass operator in a nuclear medium. Under
rather general assumptions, the Z factor was expressed
in terms of the nuclear response function. It turned out
that the Z factor differs from unity due predominantly
to the spin–isospin component of the response func-
tion. This component is primarily determined by the
Migdal constant g'. Unfortunately, this method of cal-
culating Z does not provide extrapolation to loosely
bound nuclei near the drip line, which have been
intensely studied both experimentally and theoretically
in recent years. Indeed, the g' constant is known only
for the nuclear chemical potential µ . –8 MeV that is
characteristic of stable nuclei, and its behavior with
decreasing |µ| is not a priori clear.

In this work, we calculate the Z factor by a different
method, which enables us to reveal the dependence of
the Z factor on µ. We start with the many-body self-
consistency relation [5, 11] between one-particle and
two-particle characteristics of the system. This condi-
tion follows from the spontaneous violation of the
translational invariance and is valid for any finite “self-
bound” Fermi system, i.e., which is in bound state in
the absence of external fields. This condition relates the

^ r1 r2 r3 r4, , ,( )

=  Z r1( )Z r2( )Z r3( )Z r4( )G r1 r2 r3 r4, , , ; E 2µ=( ).
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mass operator Σ, effective interaction 8, and one-par-
ticle Green’s function & to each other and has the form

(2)

where R = (r + r')/2, R1 = (r1 + )/2, and the block 8
of NN interaction is irreducible in the particle–hole
channel and corresponds to zero energy transfer in this
channel.

We are interested in the Z factor, i.e., in the residue
of the Green’s function & at the one-particle pole. More
precisely, the Z factor in a nonuniform system is
defined as

(3)

where &q(r, r'; ε) is the quasiparticle Green’s function
with unit residue and &R(r, r'; ε) has no poles near the
Fermi surface. Following the TFFS [4], we expand the
mass operator near the Fermi surface in powers of ε – µ
and of the difference between the squared momentum
p2 and squared Fermi momentum. Retaining only lin-
ear terms and using notation from [5], we obtain

(4)

Here, normalization quantities  = π2/mC0, where the
standard normalization factor C0 = (dn/dεF)–1 of the
TFFS is equal to the density of states near the Fermi

surface, and  = /2m are introduced for the com-
ponents of the mass operator Σi to have the same

dimensions. In this notation, Z(r) = (1 – Σ2(r)/ )–1.

Differentiating Eq. (2) with respect to energy and
using local expansion (4), one obtains the following
integro-differential self-consistency relation for the Z
factor:

(5)

where the subscript 0 means that ε = µ. Equation (5) is
formally exact. Below, we simplify it by using various
approximations, in particular, taking 8 = G, where G is
the Brueckner matrix satisfying the Bethe–Goldstone
equation [7, 8], which takes into account two-particle
correlations.
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In [12], the Bethe–Goldstone equation was solved
for a slab of nuclear matter, a simple system simulating
heavy spherical nuclei, by using the separable represen-
tation [13, 14] of the Paris NN potential [15] and the
mixed coordinate–momentum representation technique
[16]. The latter was developed for microscopic consider-
ation of superfluidity in semi-infinite nuclear matter.
Some results from [12] were applied in [17] to finite
nuclei, for which the coordinate dependence of the sca-
lar–isoscalar component f0(r) of the Landau–Migdal
amplitude was calculated on the basis of Eq. (1) and the
nuclear mean field obtained from Eq. (2). The calcula-
tion was based on the fact that the main contribution to
the mean field, when calculated using Eq. (2), comes
from the nuclear surface region, where, first, the
Brueckner theory is accurate enough and, second, some
additional approximations can be used. In particular,
one can consider only s-wave scattering and approxi-
mate the G matrix in each of the two s-wave channels
by the expression

(6)

where the total spin in the two-particle channel is S = 0
and 1 for the singlet and triplet channels, respectively.
The procedure of localization of the G matrix, Eq. (6),
is based on the local-potential approximation proposed
in [16]. This procedure requires specification of the
nuclear mean field V(r), for which, as in [17], we use
the Woods–Saxon well with realistic parameters for
stable nuclei. For more details, see [12, 16, 17].

The invariant amplitude f0 corresponds to zero spin
and zero isospin in the particle–hole channel and is
determined by the following combination of the G
matrices in the two channels:

(7)

According to this equation, γf depends only on the total
energy E = ε + ε'. Under the same approximations,
Σ(r, r'; ε) = Σ(r; ε)δ(r – r') and the mean field has the
form

(8)

Taking Eq. (8) into account, one can approximately
renormalize Eq. (2) as [5]

(9)

Equations (8) and (9) provide the following explicit
expression for the central part of the nuclear potential
in terms of the known renormalization factor Z(r):

(10)

G
S r r ' r1 r1' ; ε ε',, , ,( ) C0γ

S r; ε ε',( )=

× δ r r '–( )δ r r1–( )δ r1 r1'–( ),

γ f r E,( ) 3
16
------ γ0 r E,( ) γ1 r E,( )+( ).=

V r( ) Z r( )Σ r; ε µ=( ).=

dΣ r; ε( )
dr

-------------------- Z r( )C0γ f r; ε µ,( )dρ r( )
dr

--------------.=

V r( ) C0Z r( ) dsZ s( )γ f s; µ µ,( )dρ s( )
ds

--------------.

r

∞

∫–=
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In [17], Eq. (10) was used to determine the mean field
from phenomenological Z(r). We demonstrate now that
self-consistency relation (9) can be used to find the
quantity

(11)

Differentiating Eq. (9) with respect to ε and using defi-
nition (11), we obtain

(12)

This equation can be integrated in the explicit form

(13)

A simple model of the Landau–Migdal scalar–isos-
calar amplitude f(r) was proposed in [17] on the basis
of the analysis of the results from [12]. In this model,
the G matrix is replaced in Eq. (7) by the off-mass-shell
T matrix for free NN scattering at negative energy E = 2µ.
The T matrix satisfies the Lippmann–Schwinger equa-
tion

(14)

where 9 is the free NN potential and A(E) is the prop-
agator of two free nucleons with the total energy E. The
T matrix can be calculated much more simply than the
G matrix, but it rather accurately reproduces the G
matrix when calculating the f(r) amplitude (Fig. 1).
This simple model for the amplitude f(r) is valid, at
least when used under self-consistency relation (10),
because of two reasons. First, the property G  T is
asymptotically valid beyond the nuclear edge. Second,
as is seen from Fig. 1, the magnitude of this asymptotic
value is very large and is approximately an order of
magnitude larger than the inner values of each of the
amplitudes under consideration. Because the basic con-
tribution to Eq. (10) comes from the nuclear surface,
where the derivative of density is large, a change in the
inner f(r) value even by a factor of 2 only slightly
affects the result of calculation of the mean field. Note
that this model does not apply to the other invariant
components of the Landau–Migdal amplitude, in par-
ticular, to the scalar–isoscalar amplitude f '.

In this work, we approximately calculate the Z fac-
tor from Eq. (13) using the same approximation for the
derivative of the scalar–isoscalar amplitude f with
respect to the energy. This substitution is indirectly jus-
tified by the fact that, as is shown in [17], this approxi-
mation holds for f even upon varying the nuclear chem-
ical potential µ. Thus, we replace γf in Eq. (13) by tf, i.e.,
by the combination for the free T matrix similar to Eq. (7).
Apart from the quantities calculated in [12, 17], Eq. (13)
involves a new quantity—the derivative of the T matrix

Z r( ) 1
dΣ r, ε( )

dε
-------------------- 

 
0

– 
 

1–

.=

Z 1– r( )dZ 1– r( )
dr

------------------ C0

∂γ f r; ε µ,( )
∂ε

----------------------------- 
 

0

dρ r( )
dr

--------------.–=

Z r( ) 1 2C0 ds
∂γ f s; ε µ,( )

∂ε
----------------------------- 

 
0

dρ s( )
ds

--------------

r

∞

∫+

–1/2

.=

T E( ) 9 9A E( )T E( ),+=
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with respect to energy. The equation for this derivative can
easily be obtained from Eq. (14); it has the form

(15)

The method for solving this equation and the way of
local representation in form of Eq. (6) are completely
analogous to those used in [12, 17] for the T matrix.

The dimensionless  combination
similar to Eq. (7) is shown in Fig. 2 for the chemical poten-
tial µ = –8 MeV typical of stable nuclei and for somewhat
smaller |µ| values corresponding to approaching the
boundary of nucleon stability. The calculation was per-
formed with the following parameters of the Woods–
Saxon potential: the depth V0 = 50 MeV; the radius Rp =
r0A1/3, where r0 = 1.24 fm and A is the number of nucle-
ons in a nucleus (A = 200 was taken in the calculation);
and the diffuseness parameter b = 0.65 fm. As is seen,
the qualitative behavior of this derivative is similar to
that of t f (r): the outer magnitude is considerably larger

∂T E( )
∂E

--------------- 9
∂A E( )

∂E
---------------T E( ) 9A E( )∂T E( )

∂E
---------------.+=

εF
0∂t f r E,( ) ∂E⁄

Fig. 1. Scalar–isoscalar combinations of the (solid line)
γf (r) and (dashed line) t f (r) components of the G and T
matrices, respectively.

Fig. 2. Dimensionless derivative ∂t f /∂E of the scalar–

isoscalar component of the Landau–Migdal amplitude cal-
culated for different values of chemical potential. The |µ|
values are indicated above the lines.

εF
0
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in absolute value than the inner magnitude. For this rea-
son, the substitution of ∂ in Eq. (13) is qualitatively jus-
tified.

For calculating the Z factor from Eq. (13), it is nec-
essary to know the derivative of density dρ/dr. As in
[17], the density was specified by the Fermi function
with radius Rd = Rp – δR, where δR = 0.5 fm, and the
diffuseness parameter identical to that for the potential.
The calculation by Eq. (13) was performed with the same
µ values as above. The fact that the Z value in the nuclear
interior at µ = –8 MeV (Fig. 3) is considerably smaller
than the known experimental value Zexp = 0.8 ± 0.05 [5] is
not surprising because of the crude approximations
used. As is seen, the error introduced into the calculated
f amplitude [17] by the substitution of the T matrix for
the G matrix is smaller than for the calculated deriva-
tive with respect to energy. Among the necessary
refinements, the direct calculation and use of the deriv-
ative of G matrix with respect to energy, instead of its
replacement by the derivative of T matrix in Eq. (13),
should be the first step. The calculation of the correc-
tions to the Brueckner theory is a more complicated
problem (see, e.g., [18, 19]), but one can expect that
these corrections are less significant because they are
more important in the inner nuclear region, which
makes only small contribution to integral (13).

As is seen, the Z factor decreases noticeably with
|µ|. The reason is quite clear: both amplitude t f and its
derivative with respect to energy in Eq. (13) increase on
approaching the poles (real in the triplet channel and
virtual in the singlet channel). Clearly, this reason will
hold to some extent after the above-mentioned refine-
ments of the calculation. We restricted our consider-
ation to the values |µ| ≥ 4 MeV because the calculation
of the Z factor by this method becomes doubtful for
smaller |µ| values. Indeed, such a sizable decrease in

Fig. 3. Z factor for various values |µ| indicated above the
lines.
Z implies a considerable rearrangement of the system,
so that the variation in the quantities such as mean field
V(r) and density ρ(r) should be taken into account self-
consistently, i.e., by including the variation in Z as well.
This calculation will be performed in a separate work.

This work was supported by the Russian Foundation
for Basic Research, project nos. 00-02-17319 and
00-15-96590.
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Temperature Effect on the Decay Periods
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V. G. Alpatov, Yu. D. Bayukov, A. V. Davydov*, Yu. N. Isaev, G. R. Kartashov,
M. M. Korotkov, and V. M. Samoylov

State Scientific Center of the Russian Federation Institute for Theoretical and Experimental Physics,
ul. Bol’shaya Cheremushkinskaya 25, Moscow, 117259 Russia

* e-mail: Andrey.Davydov@itep.ru
Received March 20, 2001

Experiments on measuring the decay periods of long-lived 180mHf and 87mSr isomers at room temperature and
at 77 K in massive samples of HfO2, Sr(NO3)2, and SrCO3 are reported. The isomeric nuclear states were
excited by irradiating the samples with neutrons from a Pu–Be source. According to the theory of V.I. Vysotskiœ
et al., the T1/2 value must increase if a γ-active nucleus is surrounded by many identical ground-state nuclei,
because these distort the spectrum of electromagnetic vacuum oscillations near the nuclear energy level. As the
temperature of the sample decreases, γ-ray lines narrow, especially for the low-energy Mössbauer transitions,
thereby enhancing the resonance effect on the spectrum of vacuum oscillations. For the 180mHf isomer, whose
upper γ transition carries away 57.55 keV, the T1/2 value was found to increase by 2.99 ± 0.87% upon sample
cooling. For 87mSr, whose decay scheme has no Mössbauer lines, the relative change in T1/2 was found to be
0.77 ± 0.53%. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 21.10.Tg
It has become evident from the Mössbauer experi-
ment on 109Ag [1] that the relevant γ-ray line (88 keV) is
scarcely broadened, if at all. The broadening factor lies in
the range from 1 to 3 with 67% probability, and it is not
improbable that this factor is even less than unity, indicat-
ing γ-ray line narrowing. In the works of Vysotskiœ et al.
[2–4], the effect of the resonant environment on the
gamma-decay probability of excited nuclei is discussed
in terms of a mechanism in which the spectrum of elec-
tromagnetic vacuum oscillations near the γ source is
distorted by introducing in this spatial region a massive
sample containing the same nuclei in the ground state.
Since, according to the authors of [2–4], it is precisely
the vacuum oscillations which are responsible for the
gamma decay, the weakening of the spectrum of vac-
uum oscillations in the region of nuclear resonance
results in a decrease in the gamma-decay probability
and ensuing narrowing of the γ-ray emission line.

In our experiment on the decay of excited 109mAg
nuclei [1], the situation is just that corresponding to condi-
tions for the occurrence of the effect of Vysotskiœ et al.
A γ source is a single-crystal silver plate, into which a
mother nuclide 109Cd was intruded by thermal diffusion. It
decays into the excited 109mAg nucleus, which, being sur-
rounded by silver atoms, among which the 109Ag isotope
is in a 48.2% abundance, should experience, according
to the theory of Vysotskiœ et al., the distorted spectrum
of vacuum oscillations.

To directly ascertain that the gamma-decay proba-
bility of the 109mAg nuclei indeed decreases in a massive
0021-3640/01/7308- $21.00 © 20385
silver sample, one should compare the decay kinetics
measured for these nuclei in a massive silver γ source
with analogous kinetics in a silver-free radioactive
109Cd sample. To implement the first variant, an exper-
iment on γ-resonance activation of silver nuclei should
be carried out similar to experiment [5], but with a
source prepared not on a cyclotron but using a sparing
technique of intruding 109Cd into a silver single crystal
through thermal diffusion. If the γ-ray line only slightly
broadens or not at all, then one will obtain a much
stronger, than in [5], silver activation effect with a
much weaker γ source. This would allow the decay law
to be measured with a good accuracy for the excited
isomeric state of 109Ag. The second experiment should
be carried out using very weak 109Cd activities in the
absence of traces of silver.

Inasmuch as the setup for implementing the experi-
ments on gamma activation of the 109Ag nuclei is pres-
ently unavailable to us, we could not accomplish direct
measurements of the mean lifetimes for the isomeric
states of these nuclei in the presence of a resonant envi-
ronment. For this reason, the experiments were carried
out with other isomers, namely, 180mHf and 87mSr. The
decay schemes for these isomers are shown in Fig. 1.
For the decay period of the 180mHf 8– state to be affected
by the resonant environment, it is necessary that the
180Hf nuclei of this environment be in the 8+ state. Then,
their action on the spectrum of vacuum oscillations
near the line at 57.55 keV will be similar to the effect
of ground-state two-level nuclei. This effect can be
001 MAIK “Nauka/Interperiodica”



 

386

        

ALPATOV 

 

et al

 

.

                                                                                                       
imagined as an unobservable exchange of virtual pho-
tons between nuclei and vacuum oscillations. If such an
exchange takes place, then the multistep sequential vir-
tual excitation of the energy levels of the 180Hf isomer
becomes possible and some of these nuclei may occur
in the virtual 8+ state with a nonzero probability. On
cooling the massive hafnium γ source, the widths of all
lines in the γ-ray cascade originating at 57.55 keV will
decrease. In this case, a certain fraction of gamma
intensity at 93.3 and 57.55 keV will undergo very
strong Mössbauer narrowing, while the Doppler widths
of higher energy lines will diminish (by approximately
a factor of two upon passing from room temperature to
77 K). This narrowing must result in a strong distortion
of the spectrum of vacuum oscillations in the resonance
region near the 57.55-keV transition, which, in turn,
would have an effect on the decay period of the 8– state.

With the 87mSr isomer, the γ-line energy is too large
(388.4 keV) for the Mössbauer effect to be detectable.
Because of this, the γ-ray line of the strontium source
changes only its Doppler width on cooling. Hence, it is
expected that a decrease in T1/2 for 87mSr should be less
pronounced than for 180mHf.

Fig. 1. Decay schemes for the 180mHf and 87mSr isomers.

180mHf,

180mSr,

h

h

×

The experimental setup for checking the validity of
these premises is very simple. A metallic vessel is
placed inside a foam plastic thermal shield, and a mas-
sive sample of the substance of interest containing
nuclei in the isomeric state is put at the vessel bottom.
A Ge(Li) detector connected to a Nokia LP 4900B pulse-
amplitude analyzer is placed underneath this primitive
cryostat. Samples of HfO2 (19 g) and Sr(NO3)2 (20 g) in
35-mm-i.d. fluoroplastic ampoules were used. For each
sample, the experiment was conducted as follows. The
sample was exposed overnight to neutrons from a Pu–Be
source with an intensity of ~2 × 107neutron/s. The isomer
was formed both by the (n, γ) reaction of slow neutrons
with the 179Hf or 86Sr isotope and as a result of inelastic
scattering of fast neutrons by the 180Hf and 87Sr iso-
topes. The decay period of the isomer was measured by
the Ge(Li) detector for the next day. If, on a certain day,
the measurements were performed at room tempera-
ture, then the next day they would performed at 77 K,
for which purpose liquid nitrogen was poured into the
metallic vessel with the sample. For hafnium, the decay
periods were determined using the lines at 215.3-,
332.3-, and 443.2-keV separately, whereupon the
results were averaged.

One of the main problems arising in the data pro-
cessing was associated with choosing the most correct
method of determining gamma intensities for the 215.3-,
332.3-, and 443.2-keV lines of the 180mHf isomer and
the 388.4-keV line of the 87mSr isomer. Simultaneously
with 180mHf, the other long-lived radioactive hafnium
isotopes are formed upon exposing a hafnium sample
with natural isotope abundance to neutrons; these iso-
topes also contribute to the measured γ-ray spectrum.
As a result, the γ-ray lines listed above have rather high
pedestals produced by low-energy “tails” of the lines
due to 180mHf and other γ-ray emitting hafnium iso-
topes. Among these, the greatest contribution to the
pedestals comes from 181Hf, which undergoes β decay
with a half-life T1/2 = 42.4 days, and from 175Hf, which
decays through electron capture with a half-life of
70 days. The most intense line of 181Hf (more precisely, of
its decay product 181Ta) occurs at 482 keV and, hence,
contributes to the pedestals under all three 180mHf lines. In
the γ-ray spectrum of 175Hf, the main role is played by
the line at 343.4 keV, which is emitted in 86.9% of all
decay events and contributes to the pedestals under the
215.3- and 332.3-keV lines.

Several methods of separating γ-ray peaks from
pedestals were tested. The first was as follows. Each
peak was assigned a finite energy interval with a margin
(i.e., covering some portions of the pedestal to the left
and right of the peak), and the same intervals were
taken on both sides of the peak. Gamma intensity was
calculated as the difference between the number of
counts in the peak’s interval and one-half of the number
of counts in the left and right portions of the pedestal.
This method, e.g., was employed for data processing in
JETP LETTERS      Vol. 73      No. 8      2001
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[6, 7]. Its drawback is that the left (low-energy) portion
of the pedestal contains a certain number of counts that
are related to the peak. For this reason, the resulting
gamma intensity proves to be underestimated. Subse-
quently, two other methods of pedestal determination
were tested with the use of only the right (high-energy)
portion of the spectrum. The first of these methods con-
sisted in a linear least-squares fit to the right portion of
the pedestal followed by the extrapolation of the result-
ing straight line to the region under the peak. This
method was suitable for the lines at 215.3 and
443.2 keV but not for the 332.3-keV peak because of
the presence of energetically close 175Hf 343.4-keV and
181Hf 345.8-keV lines above it. For this reason, the ped-
estal under the 332.3-keV peak was determined by
averaging the number of counts in eight analyzer chan-
nels above the peak energy. However, the error in deter-
mining the peak area by this method was too large pri-
marily because of the error in the calculated line slope,
which is close to zero. We eventually adopted the sec-
ond method of data processing. This method consisted
in mere averaging of the number of counts in a rela-
tively small number of channels (~20 for the peaks at
215.3 and 443.2 keV and eight for the peak at
332.3 keV; note that the maximum of a peak at
443.2 keV fell on channel no. 1065), followed by sub-
tracting the resulting average value from the number of
counts in each channel under the peak. The validity of
such an averaging procedure was confirmed by the chi-
square statistics.

A total of two measurement runs were conducted
for each isomer. In the first run with 180mHf, the decay
period of the isomer was measured five times at each
temperature, with the duration of each measurement
being 9–10 h. The results are

For 87mSr, the following relative change in T1/2 was
obtained upon passing from room temperature to 77 K
in the first run:

In the second run, the thickness of a heat-insulating
foam plastic layer under the metallic vessel in which
the γ sources were placed was slightly increased. As a
result, the distance from the source to the detector also
slightly increased and the counting rate declined
accordingly. Since the durations of the first and the sec-
ond experiments with 180mHf were the same, the error of
the second result was slightly greater than that of the
first one. The relative change in T1/2 on passing from
273 to 77 K was found to be

293 K: T1/2 5.471 0.043 h,±=

77 K: T1/2 5.655 0.042 h,±=

∆T1/2/T1/2 3.4 1.1%.±=

∆T1/2/T1/2 1.1– 2.0%.±=

∆T1/2/T1/2 2.4 1.4%.±=
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The averaging of the mutually consistent results of
the two experiments with 180mHf gave the following
value:

To make sure that the observed change in the 180mHf
T1/2 was not the result of drawing the γ source and detec-
tor together due to a very slow contraction of the lower
foam plastic layer upon its cooling by liquid nitrogen
that was poured into the cryostat, the following control
experiment was carried out. A silver foil γ source with
57Co nuclides intruded in it was put under the fluoroplastic
container with a nonactivated sample of hafnium oxide.
The counting rates for the 122-keV γ-ray quanta from this
source were measured for a rather long time at room tem-
perature and at 77 K. The results of measurements are pre-
sented in Fig. 2. The counting rate is seen to be stable at
both temperatures. The effect of drawing the γ source
and detector together might be invoked for explaining
the observed growth of T1/2 in the first and second
experimental runs with hafnium only if the experimen-
tal points obtained at 77 K fell on lines 1 and 2, respec-
tively. One can see that this explanation of a rise in T1/2

does not work. However, the possibility of the HfO2

powder very slowly settling inside the container at 77 K
still exists (note that this does not occur with the stron-
tium samples). For this reason, it would be profitable to

∆T1/2/T1/2 2.99 0.87%.±=

Fig. 2. Counting rates vs. time t in the control experiment
with a thin γ source (57Co in a silver foil) at room tempera-
ture and at 77 K. Lines 1 and 2 show how the counting rates
would change at 77 K in the first and second experimental
runs, respectively, if the observed growth in T1/2 of the
180mHf isomer was due to gradual drawing of the γ source
and detector together because of a slow contraction of foam
plastic upon cooling.

(h)
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carry out analogous experiments with monolithic sam-
ples of metallic hafnium.

The second experiment with the 87mSr isomer was
carried out using the 50- and 38-g samples of SrCO3.
Measurements were conducted continuously for 10 days
alternately for both samples with periodically changing
temperature conditions. Each measurement of T1/2 took
6 h. The following value was obtained for the relative
change in 87mSr T1/2 upon passing from 293 to 77 K in
the second run:

Together with the results of the first experiment, this
gives for 87mSr

Therefore, the data of our experiments with 180mHf
and 87mSr are in qualitative agreement with the afore-
mentioned model predictions, and it is reasonable to
assume that this effect should be observed in our exper-
iments with the 109mAg isomer, so that the narrowing of
the γ-ray line in these experiments is quite possible.
Notice that analogous effects were observed in [8–11].

The second experimental run with 180mHf and 87mSr
was supported by the INTAS, grant no. 97-31566.
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Focusing of a Nonlinear Phase-Conjugate Ultrasonic Wave 
Transmitted through a Phase-Inhomogeneous Layer
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The propagation of a nonlinear phase-conjugate ultrasonic wave through a layer introducing random phase
aberrations is studied experimentally. The wave is generated by an overthreshold parametric phase-conjugating
ultrasonic amplifier. It is shown that, with the extent of nonlinearity achieved for the conjugate wave, the phase
locking of harmonics is retained and, as a consequence, a compensation of the distortions introduced by the
layer takes place. The possibility of an automatic focusing of a nonlinear phase-conjugate wave propagating in
an inhomogeneous medium is demonstrated, which is important for practical applications. © 2001 MAIK
“Nauka/Interperiodica”.

PACS numbers: 43.25.Jh
It is well known that phase conjugation provides a
possibility for an automatic focusing of wave beams on
objects placed in both homogeneous media and inhomo-
geneous media introducing considerable phase aberra-
tions in the wave field [1]. In recent years, the phase-con-
jugation focusing has become an object of intensive exper-
imental studies in acoustics [2–6]. This fact is related to
the development of effective methods of phase conju-
gation for ultrasonic waves [5, 7–9], as well as to the
prospects for the applications of phase conjugation in
medical diagnostics and nondestructive testing. One of
the most interesting methods of the phase conjugation
of ultrasonic waves is the parametric phase conjugation
of waves above the absolute instability threshold in a solid,
which provides a giant amplification of the conjugate
wave relative to the incident one [10]. The possibility of
using this method for phase-conjugation focusing of ultra-
sound in solids and in liquid media was demonstrated
experimentally [2, 11]. In other experiments, such effects
as the self-targeting of acoustic beams at regular and ran-
dom scattering objects in liquid [3, 12] and the compen-
sation of phase distortions at the carrier frequency of
the conjugated wave [13] were observed. The high
intensity of the conjugate wave under conditions of
giant parametric amplification provides a possibility to
study the specific features of the self-focusing of acous-
tic beams in the case of their nonlinear propagation.
The focusing of nonlinear phase-conjugate beams in a
homogeneous medium was considered in recent publi-
cation [14]. At the same time, the question about the
possibility of the compensation of phase distortions in
the case of phase-conjugate beam focusing under con-
ditions of amplification and nonlinear propagation
remained a matter of discussion. One of the recent pub-
lications [15] reported on the compensation of phase
0021-3640/01/7308- $21.00 © 20389
aberrations of an image obtained at the second har-
monic of the conjugate wave in an acoustic microscope
on the basis of a parametric phase-conjugating ampli-
fier.

In this paper, we report on the results of the direct
measurements of the field structure produced by a
focused phase-conjugate ultrasonic wave propagating
in a phase-inhomogeneous medium under conditions of
a well developed nonlinearity. We present the ampli-
tude distributions for the first four harmonics and the
distributions of the rms pressure in the focal plane and
along the beam axis. We discuss the mechanism of the
phase locking of harmonics in the case of the self-
focusing of a nonlinear conjugate wave.

The experiment is schematically illustrated in Fig. 1.
A spherically focused ultrasonic source S with a focal
length of 82 mm and a diameter of 27 mm was placed in a
water-filled tank. The ultrasonic beam diverging from the
focal region was characterized by a carrier frequency of
5 MHz and a pulse duration of 30 µs. The beam was
directed at an overthreshold parametric phase-conju-
gating amplifier made on the basis of magnetostrictive
ceramics [7, 16]. The amplifier was placed at a distance
of 206 mm from the source and had an operating aper-
ture 36 mm in diameter. The conjugate wave generated
by the amplifier at the same frequency propagated in
the backward direction, through the focus toward the
source. In the pulsed-periodic mode of operation used
in the experiment, the bursts of incident and conjugate
waves propagating in water were separated in time. The
appropriate time gating allowed us to perform the mea-
surements for a selected wave train. The acoustic field
in water was measured by a acoustically transparent
broadband membrane PVDF hydrophone H with an
active element 0.5 mm in diameter. The positioning of
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the hydrophone was performed using an automated
XZ system with an accuracy of 0.2 mm. At each point
of the field, the measuring system averaged the hydro-
phone signal over 32 samples and determined the peak
and the rms pressure values and the amplitudes of the
first four spectral components. At the focus, the ampli-
tude of the incident wave was 2.44 × 105 Pa and the
level of the second harmonic did not exceed –25 dB rel-
ative to the fundamental harmonic, which allowed us to
consider the beam propagation as practically linear.

The inhomogeneous medium was represented by a
specially designed layer R of a silicone polymer. The
acoustic parameters of the layer material were as fol-
lows: the density 850 kg/m3, the sound velocity 1160 m/s,
and the attenuation 6 dB/cm at a frequency of 5 MHz.
One side of the layer was flat, and the other had random
surface irregularities in the form of irregular pyramids.
The dimensions of the bases of these pyramids and the
pyramid heights were within 2–5 mm. Hence, the dif-
ference in the phase shifts in water and in the layer, e.g.,

Fig. 1. Simplified schematic representation of the experi-
ment. The dashed lines show the propagation of the incident
and conjugate acoustic waves in the absence of the layer.
The notation is as follows: S is the ultrasonic radiator, C is
the phase-conjugating amplifier, T is the metal tube, H is the
membrane-type hydrophone, R is the phase layer, (1) and
(2) are the positions of the layer, and X and Z are the axes of
the hydrophone positioning.

Fig. 2. Focal distribution of the normalized pressure ampli-
tude in the incident wave (1) in the absence of the phase
layer and (2) with the phase layer set in position (1); X is the
distance from the beam axis.
at a distance of 3 mm, was greater than 4π. The acoustic
impedance of the layer provided a sufficiently good
acoustic matching with water. Taking into account the
relatively small thickness of the layer, we can assume
that the distortions introduced in the acoustic beam
were mainly concerned with the phase, while the con-
tribution of the amplitude loss was insignificant.

To study the ability of the layer to introduce distor-
tions in the propagating wave so that these distortions
are noticeable at a given distance, we placed the layer
in the position denoted as position (1) in Fig. 1. The dis-
tance from the flat surface to the focus was 20 mm. In
these conditions, we measured the field produced by
the radiator in the focal plane. The typical curve
obtained from these measurements is shown in Fig. 2.
For comparison, Fig. 2 also shows the focal distribution
of the field in the absence of the layer. One can see that
the presence of the layer strongly affects the distribu-
tion typical of a spherical beam and destroys the focus-
ing. Multiply repeated measurements with the layer
being shifted without changing its orientation and the
distance to the source provided similar results, which
testified to the destruction of the focus and differed in
the positions, shape, and number of peaks in the curves.
Thus, the experiment demonstrated the satisfactory
quality of the layer as a medium introducing phase
aberrations.

For the experiments with a phase-conjugate wave,
the phase layer was shifted from position (1) to posi-
tion (2) symmetric with respect to the focus. In this
geometry, the aberrations were introduced into the inci-
dent wave after its propagation through the focal
region. Since, in this case, a strong stochastic defocus-
ing was observed, it was necessary to eliminate the loss
caused by the part of the scattered beam falling outside
the aperture of the phase-conjugating amplifier. For this
purpose, between the layer and the amplifier, we placed
a metal tube T with an inner diameter 36 mm and a
length of 101 mm, which played the role of an acoustic
waveguide. Experiments showed that, in the absence of
this tube, the reproduction of the spatial structure of the
field produced by the incident beam failed.

The results obtained by measuring the field of a
phase-conjugate beam along the axis are shown in Fig. 3.
The dotted lines show the position of the layer. The
scanning region began immediately from the layer and
was 30 mm long. For comparison, the dashed line
shows the pressure distribution in the incident wave.
The time profile of the conjugate wave taken at the ini-
tial point of scanning is shown on the lower right of
Fig. 3a. One can see that, at the left boundary of the
layer, the conjugate wave is obviously nonlinear: the
amplitudes of the second, third, and fourth harmonics
reach 18, 8, and 4% of the first harmonic amplitude,
respectively. On the whole, the longitudinal profile of
the conjugate beam adequately reproduces the profile
of the incident beam.
JETP LETTERS      Vol. 73      No. 8      2001
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Figure 4 represents (a) the measured transverse dis-
tributions of the rms pressure value and (b) the corre-
sponding distributions of the harmonic amplitudes for
the conjugate beam in the focal plane of the source. The
field distribution in the incident beam is shown by the
dashed line. The time profile of the conjugate wave at
the focus is shown on the upper right of Fig. 4a. The
ratio of the fundamental harmonic amplitudes of the
conjugate and incident waves at the focus was about 10,
and the peak pressure drop in the conjugate wave, i.e.,
the difference between the positive and negative peaks
of the wave profile, was 6.95 MPa. Despite the increase
in the relative level of the side lobes, the field of the
nonlinear conjugate wave exhibits a high quality of
phase-conjugation focusing of the ultrasonic beam in
both the position and the width of the principal maxi-
mum. Our experiments on the phase conjugation with
amplification allow us to judge the quality of the repro-
duction of the acoustic field at the maximum attained
pressure amplitude of the conjugate wave. One can see
that it is possible to obtain an automatic phase-conjuga-
tion focusing of amplified conjugate waves with the
compensation of phase aberrations due to the inhomo-

Fig. 3. Distribution of the sound pressure along the beam
axis: (a) the normalized mean effective value and (b) the
amplitudes of the first four harmonics. The solid curves cor-
respond to the conjugate wave, and the dashed curve corre-
sponds to the incident wave. The dotted lines indicate the
position of the phase layer R; the numbers 1–4 indicate the
harmonic numbers; Z is the distance from the source. The
inset (a) shows the conjugate wave form at the beam axis at
the point Z = 97 mm.
JETP LETTERS      Vol. 73      No. 8      2001
geneities of the medium even in the presence of consid-
erable nonlinear distortions of the waveform.

It should be noted that the experimental results pre-
sented above point to the essential difference between
the properties of nonlinear wave beams with reversed
fronts in acoustics and in optics. From the study of the
propagation of optical beams with conjugate fronts in a
homogeneous medium with a cubic nonlinearity [17], it
follows that the compensation of nonlinear distortions
is possible only when the transformation coefficient of
the phase-conjugation mirror is close to unity, which
corresponds to the general requirement that the time-
reversal invariance of the equations describing the wave
propagation in nonlinear and dispersive media be
retained. In the case of a dispersionless propagation,
which is typical of acoustics, the nonlinearity manifests
itself primarily in the form of a cascade harmonic gen-
eration. In this case, the phases of all harmonics of the
nonlinear wave are described by the same eikonal equa-
tion for both homogeneous and inhomogeneous media
[18]. The analysis shows that such a phase correlation can
lead to the compensation of phase distortions and to a
spatial localization of the harmonics of the conjugate

Fig. 4. Focal distribution of the sound pressure field: (a) the
normalized mean effective value and (b) the amplitudes of
the first four harmonics. The solid curves correspond to the
conjugate wave, and the dashed curve corresponds to the
incident wave. The numbers 1–4 indicate the harmonic
numbers; X is the distance from the beam axis. The inset
shows the conjugate wave form at the point X = 0.
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wave in the focal region of the initial wave [15] even
when, in the strict sense, the time-reversal invariance is
violated. As a consequence, using the phase conjuga-
tion of the fundamental harmonic with an amplifica-
tion, it is possible to obtain an efficient phase-conjuga-
tion focusing of a nonlinear wave in a dispersionless
inhomogeneous medium. This specific feature of the
phase conjugation of acoustic beams can find various
practical applications in nonlinear systems of acoustic
imaging and in the physics of intense ultrasound.

We are grateful to the staff members of the Acoustics
Department of Moscow State University O.A. Sapozhni-
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Inverse-bremsstrahlung absorption of an intense laser field in cluster plasma is considered in the Born approx-
imation with allowance made for electron interaction with the entire subsystem of clustered ions. The electro-
magnetic power absorbed in plasma is calculated for linearly and circularly polarized laser radiations. It is
shown that plasma “clustering” can give rise to much more effective absorption of electromagnetic energy as a
result of collisions. The collective effects (the action of the overall field of clustered ions on an electron) dom-
inate over the elementary processes (electron scattering by individual ions in the cluster) in the course of inverse
bremsstrahlung.

PACS numbers: 52.38.Dx; 52.27.-h; 36.40.-c
Cluster properties have long attracted the particular
attention of physicists. In recent years, interest in clus-
ters has increased due to the development of nanotech-
nology [1, 2] and to the effects caused by the action of
intense laser radiation [3, 4]. Modern experimental
technique allows the preparation of clusters from vari-
ous chemical compounds over a wide range of parame-
ters (from 100 to 1000000 atoms and molecules per a
cluster of size 10–1000 Å). Intense laser radiation pro-
duces cluster plasma which efficiently absorbs laser
energy (more than 95% of the radiant energy [5]) and is
characterized by a high density and temperature of par-
ticles. High energy density renders such a medium
promising for studying thermonuclear reactions [6] and
generation of intense X-ray radiation [7].

It is pointed out in [7, 8] that, due to a high cluster
density, the early stage of the process is characterized
by a highly efficient collisional heating. Apart from the
effective electromagnetic energy absorption channels
such as cluster inner ionization (ionization of atoms
and molecules inside the cluster) and its outer ioniza-
tion (overcoming of the attractive cluster field by an
electron), the inverse bremsstrahlung accompanying
collisions of free (cluster-noncaptured) electrons with
the ionized cluster also plays a great part. However, the
available theories of inverse absorption [9, 10] do not
take into account the collective effects occurring in a
cluster plasma. The point is that, before cluster decay,
an electron interacts not only with a single ion (as is
assumed in the standard theory) but also with the entire
dense cluster ion core that is formed as a result of pho-
toionization and composed of a large number of ions. It
is the purpose of this work to extend the theory of
inverse bremsstrahlung to the case of cluster plasma
0021-3640/01/7308- $21.00 © 20393
with inclusion of the electron interaction with the
whole subsystem of clustered ions.

To study the inverse bremsstrahlung in a cluster
plasma, it is convenient to employ the “jelly” cluster
model [4]. This model assumes that the ion core can be
represented as a sphere of radius a with a constant ion
density ni inside. Therefore, the scattering potential in
the case of cluster plasma is written as

(1)

where e is the electron charge and Z is the ion charge.
The Fourier transform of this potential is

(2)

In the limit a  0, this expression transforms into the
Fourier transform of a point-charge Coulomb potential
U(k) = 4πq/k2 = (4π/k2)(4πa3eZni/3).

It follows from Eq. (1) that the electric field is max-
imal (Emax . 4πe2Znia/3) at the cluster surface. For the
typical ion concentration ni . 1022 cm–3 in the cluster
[6, 11] and single ionization Z = 1, Emax is smaller than
the atomic field (Ea . 5.1 × 109 V/cm) at a < 85 Å,
which occurs when the number of particles in cluster
Ni = 4πnia3/3 is less than 2.6 × 104. Thus, despite the
large core charge, electrons can be pulled out from the
cluster by a relatively weak laser field [12] and then
heated as a result of inverse bremsstrahlung absorption.
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The electromagnetic power absorbed due to the
electron collisions with scattering centers is given by

(3)

where ne is the electron concentration, ncl is the concen-
tration of scattering centers, f(v) is the electron distri-
bution function, ω is the laser frequency, and " is
Planck’s constant. The electron scattering cross section
by a potential center with absorption and emission of n
photons of a circularly polarized plane electromagnetic
wave can be calculated for the arbitrary scattering
potential using the Born approximation [10, 13],

(4)

where "k = p' – p; U(k) is the Fourier transform of the
scattering potential; ε', p', ε, and p are the electron ener-
gies and momenta before and after the collision,
respectively; E is the amplitude of electric laser field;
and m and c are the electron mass and the velocity of
light, respectively.

It is assumed that the plasma is hot enough and the
electron temperature is much higher than the photon

energy, T = m /2 @ "ω. Let us first consider the
absorption in a weak laser field where the quiver veloc-
ity of an electron is much lower than its thermal veloc-
ity, v~ = eE/(mω) ! vT . In this case, the main contribu-
tion to the absorption comes from the terms with n =
±1, and the Bessel function in Eq. (4) can be expanded
in powers of its small argument. Integration with
respect to velocities with the Maxwellian electron dis-

tribution function f(v) = π–3/2exp(–v2/ ) gives for
the arbitrary scattering potential [9, 14]

(5)

where ncl is the cluster concentration, rmin = max{rs, λe},
λe = "/mvT is the electron de Broglie wavelength, and
rs is found from equation T = eϕ(rs). The radius rs

bounds the spatial region r < rs around the monotoni-
cally decreasing scattering potential, where the poten-
tial energy of a particle is greater than its kinetic energy
and, hence, the theory becomes inapplicable. Since the
Coulomb potential has a singularity at zero, this condi-
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tion is fulfilled in a region sufficiently close to the ion.
Contrary to the Coulomb potential, the cluster potential
is finite, so that under certain conditions perturbation
theory becomes valid everywhere. Equation (5) is
obtained in the approximation max{rs, λe} ! vT/ω. In the
opposite limit, the particle adiabatically passes through
the scattering region and the absorption becomes expo-
nentially weak [15].

Integrating in Eq. (5) with cluster potential (1), one
obtains the following expression for the power
absorbed in cluster plasma in the case of a circularly
polarized wave:

(6)

where ci stands for integral cosine. The function F(y) .
–lny if y  0 and F(y) . 18y–4 if y  ∞. Then, to
logarithmic accuracy, Eq. (6) can be rewritten as

(7)

It follows from this expression that, if the integration
region lies outside the cluster (rmin > a), then the latter
can be considered as a high-charge ion. Thus, in the
limit a  0 and, correspondingly, ncl  ni and
ni4πa3/3 = Ni  1, the scattering potential takes the
Coulomb form and Eq. (7) converts to the standard
expression for the power absorbed as a result of electron–
ion collisions in an ordinary uniform plasma [9, 14]. If
vT/ω @ a and rmin ! a, the main contribution to the
absorption comes from electrons passing outside the
cluster and the cutoff at small distances actually coin-
cides with the cluster radius. If the integration region
lies inside the cluster (vT/ω < a), then the absorbed
power decreases markedly and the logarithmic depen-
dence on the parameters is replaced by a power law.
Notice that Qcl depends on rmin only if rmin > a. Inas-
much as λe < a in a cluster plasma, one has rmin = rs =
2e2ZNi/T in Eqs. (6) and (7). Thus, because of a large
cluster size (λe ! a), the quantum effects in the inverse
bremsstrahlung are insignificant. Note that it is sufficient
to determine rmin to a numerical multiplier because rmin
enters only the argument of a logarithm in the expression
for absorbed power.
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Let us now consider the inverse bremsstrahlung
absorption of an intense circularly polarized electro-
magnetic wave (v~ @ vT). In this limit, one can employ
the following simplifying assumptions [10, 16]: instead
of the Bessel function in Eq. (4), one can use its asymp-
totic form

(8)

and the summation over n can be replaced by integra-
tion with respect to n, because the number of absorbed
and emitted photons in this case is large. For the intense
laser field, the absorbed power shows little dependence
on the electron distribution function, so that one can
assume for simplicity that it has the form f(v) = δ(v  –

vT)/4π , where δ(x) is the delta function. In particu-
lar, the expression for the power absorbed in a uniform
plasma with such a distribution function coincides with
the analogous expression obtained using the Max-
wellian distribution function [9, 16]. Integrating with
respect to velocities and n, one obtains for the power
absorbed in a cluster plasma in the case of an intense
circularly polarized wave

(9)

For an intense laser field, the parameter rmin is deter-
mined by the quiver velocity of an electron rather than
by its thermal velocity. Since "/mv~ < λe < a and "ω !
T, the quantum effects in this case are also insignificant

and rmin = rs = 2e2ZNi/m . Using the asymptotic form
of F(x), Eq. (9) can be recast as

(10)

For the Maxwellian electron distribution, the expres-
sions for the first two limiting cases are the same, while
in the third limiting case of large clusters (a > vT/ω) the
absorbed power increases by a factor of 15/4.

Let now consider the inverse bremsstrahlung
absorption of a linearly polarized plane wave in a clus-
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ter plasma. In the limit of a weak electromagnetic wave
(v~ ! vT), the expression for the absorbed power has
the same form as for the circular polarization, Eqs. (6)
and (7). For an intense linearly polarized electromagnetic

wave, rs depends on time, rs = e2ZNi(m sin2ωt + T)–1,
because the squared electron velocity in such a wave
also depends on time. In this case, the absorbed power
is calculated using the following relationship [15]:

(11)

where (x) is given by Eqs. (7) and (10) as a function
of oscillation velocity v~. Depending on the value of
v~sinωt, one should use different limiting expressions
in Eqs. (7) and (10) at different instants of time.

The integration procedure in Eq. (11) is the same as
in the case of scattering by an ion in ordinary uniform
plasma [15]. Let us first consider the limit vT/ω @

e2ZNi/T and a ! e2ZNi/m . Then, when calculating
the integral in Eq. (11) for the times v~sinωt < vT , one
should use Eq. (7) for a weak laser field in the limit a !
e2ZNi/T, while for the times v~sinωt > vT one should
use Eq. (9) for an intense laser field in the limit a !

e2ZNi/(m ). The result

(12)

coincides at Ni = 1 and ncl = ni with the expression
obtained for an intense linearly polarized wave
absorbed due to the electron–ion collisions in a uniform
plasma at Ze2 @ "v~ and vT/ω @ Ze2/T [9, 15].

Likewise, in the general case of an intense linearly
polarized electromagnetic wave absorbed in a cluster
plasma with a Maxwellian electron distribution, one
has at vT/ω @ e2ZNi/T

(13)
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In the opposite limit vT/ω ! e2ZNi/T, the expressions
for the absorbed power have the form

(14)

Let us compare the absorption efficiencies for the
cluster plasma and an ordinary uniform plasma assum-
ing that the average ion density in cluster plasma 〈ni〉  =
Nincl coincides with the ion density in a uniform plasma
(e.g., plasma formed after cluster decay). Then, the
ratio of absorbed powers in these media at {a, vT/ω} @
e2ZNi/T is

(15)

In the general case, the gain in inverse bremsstrahlung
in a cluster plasma, as compared to a uniform plasma,
is also proportional to the number of particles in the
cluster. It is worth noting that Qpl also coincides with
the power absorbed in a cluster plasma as a result of
electron collisions with individual ions in the cluster
without regard for the action of the overall ion-core
field. Therefore, the parameter α can be treated as the
ratio of the power absorbed in cluster plasma taking
into account the collective effects (i.e., taking into
account the electron interaction with the entire cluster
ion core) to the power absorbed without regard for
these effects (i.e., only as a result of electron scattering
by an individual ion in the cluster without regard for the
field of the remaining ions).

It follows from Eq. (15) that the absorption efficiency
in a cluster plasma increases with increasing cluster
charge and can markedly exceed the absorption efficiency
in the corresponding uniform plasma. In experiments [6]
on thermonuclear reactions, deuterium clusters of size
2a . 50 Å with density ni . 3 × 1022 cm–3 were irradi-
ated by a titanium–sapphire laser with an output I .
5 × 1017 W/cm2 and a wavelength λ . 7800 Å. At the
electron temperature T . 1 keV typical for experiments
on the interaction of an intense laser radiation with
clusters [3, 4], the absorption efficiency in a cluster
plasma is higher than the absorption efficiency in the
corresponding uniform plasma by a factor of ~4 × 102.
Thus, the energy exchange between the laser field and
electrons interacting with the cluster ion core as a
whole is much more efficient than in the case of their
interaction with individual ions in the cluster. Despite
the large logarithmic factor converting for large clusters
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with a > vT/ω into a small multiplier (vTω/a)4, the
parameter α remains large enough. For example, for
experiments with large clusters [11] 2a . 80–100 Å (I .
1018 W/cm2, λ . 7800 Å, and ni . 8 × 1021 cm–3), the
inclusion of collective effects enhances absorbed power
~3 × 102 times.

When estimating the efficiency of inverse bremsstrahl-
ung in cluster plasma, it was assumed in this work that
most electrons escape from the cluster. However, it is
likely that a major part of electrons do not escape from
large clusters, so that the charge distribution inside the
cluster should be different from uniform and deter-
mined with regard to the inner electrons. It is notable
that the question of how many electrons leave the clus-
ter as a result of interaction is as yet little studied. The
use of a Maxwellian distribution is another simplifying
assumption. In real conditions, the electron velocity
distribution may be anisotropic [17], and this should be
taken into account when describing the heating dynam-
ics in cluster plasma.

Evidently, the above results cease to be valid after
cluster decay. Therefore, the effects studied in this work
evolve during time on the order of the oscillation period
of ions in the cluster (the cluster decay time approxi-

mately equals τcl . 2π/ωi = 2π/ , where
M is the ion mass [6]), i.e., at the early stage of heating
by prolonged laser pulses. Note that the pulse duration
in many experiments is shorter than the cluster lifetime
[3, 6], so that the cluster is decomposed only after the
pulse. Since the characteristic time of cluster explosion
is much longer than the period of the laser field, the
expressions obtained in this work can be used for esti-
mating the inverse bremsstrahlung absorption by
slowly expanding clusters.

Note in conclusion that the results presented in this
work are obtained in the dipole approximation. For
ultrahigh-intensity laser fields, relativistic theory
should be invoked [18]. However, calculations show
that the inclusion of relativistic corrections in the
expression for the coefficient of inverse bremsstrahlung
in a usual uniform plasma brings about corrections only
in the argument of a logarithm [18]. This allows one to
believe that the above expressions can be used for esti-
mating the inverse bremsstrahlung absorption of ultra-
high-intensity laser radiation in the case of cluster
plasma as well.

This work was supported by the INTAS (grant
no. YSF 00-46) and the Russian Foundation for Basic
Research (project nos. 01-02-16575 and 99-02-16443).
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Capillary Turbulence at the Surface of Liquid Hydrogen
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The results of studying the nonlinear capillary waves at a charged surface of liquid hydrogen are reported. Spec-
tral density is experimentally determined for the surface elevations excited by spectrally narrow low-frequency
pumping. It is shown that the spectral density in the range 100 Hz–5 kHz obeys the power-law dependence
constωm (scaling). The m exponent is close to –3, indicating that the capillary turbulence regime is established.
© 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 68.03.Kn; 47.27.Gs
In this letter, we report the results of studying the
oscillations of a charged surface of liquid hydrogen
excited by an external force with a frequency ranging
from 20 to 300 Hz. The studies were carried out in a
cylindrical cell in an external dc electric field of strength
lower than the critical value above which the charged
flat surface of a liquid undergoes reconstruction [1].

It is known that the nonlinear interactions of capil-
lary waves are relatively strong [2]. An ensemble of
interacting waves can be described by a kinetic equa-
tion quite similar to the Boltzmann equation in gas
dynamics. The dispersion law for the capillary waves
ω = (σ/ρ)1/2k3/2, where σ is the surface tension coefficient
and ρ is the fluid density, is of the decay type. Conse-
quently, the main contribution to the wave interaction
comes from three-wave processes, namely, the process
of wave decay into two waves with the conservation of
total wave vector and frequency and the inverse process
of confluence of two waves into a single wave.

The steady-state distribution of surface waves can
be described by the Fourier transform of pair correla-
tion function Iω = 〈|ηω|2〉 for the surface deviations η(r, t)
from the flat state. The theory of homogeneous capil-
lary turbulence [3] predicts a power-law frequency
dependence for the correlation function

, (1)

i.e., a Kolmogorov-type spectrum in the inertial inter-
val. At low frequencies, the inertial interval is bounded
by the drive frequency, and at high frequencies it is
bounded by viscous damping. Distribution (1) is char-
acterized by a constant energy flux to high frequencies
and, hence, occurs at frequencies higher than the pump
frequency (direct cascade). This prediction is con-
firmed by numerical simulation of the nonlinear evolu-
tion of capillary waves using “first principles,” i.e., by
solving equations of hydrodynamics [4].

It is the purpose of this work to study the steady-
state distribution of capillary waves at the surface of

Iω constω 17/6–
=
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liquid hydrogen and to compare the experimental
results with the predictions of the theory of weak capil-
lary turbulence about the formation of a power-law
Kolmogorov-type spectrum. The merit of liquid hydro-
gen in experiments on capillary turbulence is that the
kinematic viscosity of the capillary waves in this case
is small, while the coefficient of nonlinearity is large,
allowing the observation of the Kolmogorov-type tur-
bulence distribution over a wide inertial frequency
interval. Note that the power-law frequency depen-
dence was recently observed for the correlation func-
tion of surface elevations at frequencies lower than
1 kHz in experiments with water [5].

The frequency spectrum of a charged surface of a
fluid in a cylindrical cell was studied earlier in [6].
When comparing our experimental results with the the-
ory developed for a continuous spectrum, account must
be taken of the discrete and nonequidistant character of
our spectrum.

Experimental. Experiments were carried out in an
optical cell placed in a helium cryostat. A flat capacitor,
with a radioactive target on its lower plate, was
mounted horizontally inside the cell. Hydrogen was
condensed into a container formed by the lower plate
and a guard ring 25 mm in diameter and 3 mm in
height. The liquid layer was 3 mm thick. The upper
capacitor plate (collector with a diameter of 25 mm)
was situated at a distance of 4 mm above the liquid sur-
face. The liquid temperature in the experiments was 15 K.

The free fluid surface was charged by β electrons
emitted from the radioactive target. Electrons ionized a
thin liquid layer near the surface. A dc voltage U =
1300 V was applied to the capacitor plates. The sign of
charges forming a quasi-two-dimensional layer under-
neath the liquid surface was determined by the voltage
polarity. In our experiments, we investigated the oscil-
lations of a positively charged surface. The metallic
guard ring installed around the radioactive target pre-
vented escape of charged particle from the surface to
the container walls.
001 MAIK “Nauka/Interperiodica”
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The surface oscillations of liquid hydrogen were
excited at one of the resonance frequencies (hydrogen
standing waves) by an ac voltage that was applied to the
guard ring additionally to the dc voltage.

It follows from our preliminary experiments with
the same cell [6] that the frequency spectrum of the
charged surface of liquid hydrogen is adequately
described by the expression deduced in [7] taking into
account the thickness of liquid layer, the distance from
the surface to the upper capacitor plate, and the applied
voltage U. For frequencies higher than 20 Hz, the dis-
persion law is close to ω ~ k3/2.

Surface oscillations of liquid hydrogen were moni-
tored by a change in the power of a laser beam reflected
from the surface. The angle between the beam and the
unperturbed flat surface (glancing angle) was α = 0.2 rad.
The linear dimensions of a light spot on the surface
were l ≈ 0.5 mm. The beam reflected from the oscillat-
ing surface was focused by a lens onto a photodetector.
The voltage at the photodetector was directly propor-
tional to the beam power P(t) and was recorded for a
few seconds on a computer interfaced to a high-speed
12-bit analog-to-digital converter.

The power of a beam reflected from the liquid sur-
face depends on the glancing angle and the ratio of the
surface wavelength λ to the spot size l. In our experi-
ments, the oscillating surface deviated from the flat
state by an angle δϕ ≤ 10–2 rad that was much smaller
than the angle α. For small-amplitude waves with
wavelengths much larger than the spot size, λ @ l, the
power of the reflected beam is a linear function of angle
δϕ [8]. In the opposite case, λ < l, the spot size accom-
modates several wavelengths and the recorded power of
the reflected beam is determined by the surface slope
averaged over the light spot area. Estimates show that
the power of the reflected beam generally changes by a
value that is proportional to the product of the ampli-
tude of angle δϕ and the wavelength λ. The crossover
from one recording regime to another occurs at a fre-
quency ωl /2π ≈ 500 Hz corresponding to the surface
wave with λ ≈ l in liquid hydrogen.

Results and discussion. The oscillations of the
charged surface of liquid hydrogen were excited at fre-
quencies from 20 to 300 Hz. The spectral density of
beam power reflected from the charged surface of liq-
uid hydrogen was obtained by taking Fourier transform
of the measured P(t) dependence. Typical results are
presented in Figs. 1 and 2.

The frequency dependence of the squared amplitude

of Fourier transform  of the measured signal is
shown in Fig. 1. The surface was excited at a frequency
of the third resonance of surface waves in the cell,
ωp/2π = 28 Hz. The main peak at a drive frequency ωp

and the peaks at multiple frequencies are observed in

the  vs. ω/2π curve. These peaks correspond to the
capillary waves excited at the surface as a result of non-

Pω
2

Pω
2
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linearity. The frequency dependence of a peak at fre-
quencies below 800 Hz fits a power law ωm with expo-
nent m ≈ –1.3. At high frequencies ω/2π > 800 Hz, the
frequency dependence of peak heights is described by
a steeper function with exponent m ≈ –3.5. At frequen-
cies above 4 kHz, the peaks disappear in the instrumen-
tal noise. A change in the exponent m at a frequency
near 800 Hz is likely caused by the crossover from the
regime of recording long-wavelength oscillations with
ω < ωl to the regime of recording short-wavelength
oscillations (ω > ωl). The observed crossover frequency
ωl /2π = 800 Hz is close to the above-mentioned value
obtained from qualitative considerations.

The frequency dependence of  obtained in the
experiment with pump frequency ωp/2π = 263 Hz (16th
resonance) is shown in Fig. 2. It clearly demonstrates
that the peak height decreases at ω > ωp following the

law close to  ~ ω–3.5 up to a frequency of 5 kHz. The
spectrum suffered a substantial change with increasing

pump frequency: the low-frequency interval where 
is proportional to ω–1.3 disappeared.

In our experiments, we measured the reflected beam
power, which at ω < ωl is proportional to the angle δϕ of
surface deviation from the equilibrium position. This
angle can be estimated as a ratio of the wave amplitude to
the wavelength. Then the correlation function of surface
elevations is written in the frequency representation as

(2)

At ω > ωl , the power Pω ~ λδϕω, or

(3)

Pω
2

Pω
2

Pω
2

Iω ηω
2〈 〉 ω 2/3– δϕω( )

2
Pω

2 ω–4/3
.∼ ∼=

Iω Pω
2
.∼

Fig. 1. Frequency dependence of the squared Fourier trans-
form of the laser beam power reflected from the oscillat-
ing charged surface. Pump frequency ωp /2π = 28 Hz and

U = 1300 V. The dashed lines correspond to the ωm depen-
dences with m = –1.3 and –3.5.
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It follows from the  dependences shown in Figs. 1
and 2 that the correlation function in the frequency
range 200– 800 Hz, as estimated using Eq. (2), is close
to Iω ~ ω–2.6. At frequencies higher than 800 Hz, the
estimate by Eq. (3) gives Iω ~ ω–3.5. Thus, experimental
data demonstrate the power-law (scaling) frequency
dependence for the correlation function of surface ele-
vations (scaling) in the frequency range 100–5000 Hz.
This is consistent with the results of work [5]. The fact
that the measured exponents are close to theoretical
estimate (1) provides evidence for the occurrence of a
weak-turbulence regime in the system of capillary
waves. The deviation of the exponent m from its theo-
retical value at low frequencies may be due to the dis-
creteness of the frequency spectrum of a liquid surface
oscillations in a finite-size cell. Moreover, the excita-
tion conditions in our experiments differed from those
in the theoretical model; in the experiment, the pump-
ing was accomplished at a fixed frequency, whereas

Pω
2

Fig. 2. Spectral distribution of  for pumping at ωp/2π =

263 Hz with U = 1300 V. The dashed line corresponds to the

 ~ ω–3.5 dependence.

Pω
2

Pω
2

theoretical Eq. (1) implies a broadband pumping with
simultaneous excitation of many surface eigenmodes.

In summary, a power-law (scaling) frequency
dependence was observed experimentally for the corre-
lation function of surface elevations (scaling) in liquid
hydrogen in the frequency range 100–5000 Hz. The fre-
quency dependence obtained for the correlation func-
tion as a result of processing experimental data is in
qualitative agreement with the predictions of the theory
of weak capillary turbulence.

We are grateful to V.E. Zakharov and E.A. Kuz-
netsov for helpful discussion; to E. Henry, P. Al’strom,
and M. Levinsen for providing the manuscript of paper
[5] before publication; and to V.N. Khlopinskiœ for
assistance in experiments. This work was supported (in
part) by the Ministry of Industry, Science, and Technol-
ogy of the Russian Federation (project “Kristall-6”)
and by the INTAS-NETWORK (grant no. 97-1643).
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The phenomenological theory of a sequence of two second-order phase transitions in Ni–Br boracite is pre-
sented. Two different components of the toroidal moment vector Ti are the order parameters of these transitions.
Expressions are derived for the temperature dependences of the spontaneous values of Ti, polarization Pi, and
magnetization Mi and the dielectric χij = dPi/dEj, magnetic kij = dMi/Hj, and magnetoelectric αij = dPi/dHj =
dMj/dEi susceptibilities. Some of these susceptibilities display sharp temperature peaks in the vicinity of phase
transitions. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 77.80.Bh; 75.30.Cr; 75.30.Kz
It has been realized rather unexpectedly that, along
with the well-known dipole moments such as polariza-
tion Pi and magnetization Mi, there is one more dipole
moment in electrodynamics, namely, a toroidal
moment Ti, that was discovered not too long ago (see
review [1]). The transformation properties of the vector
Ti are different from those of the Pi and Mi vectors; it
changes sign both under spatial and under time inver-
sions. In [2], phase transitions with the order parameter
Ti were assigned to a separate class of transitions (see
also [3]). A phenomenological approach to the descrip-
tion of the phase transition in Ni–I boracite (T = 64 K)
was suggested in [4], where this transition was treated
as a ferrotoroidal (or toroidal; there is no unique termi-
nology as yet) transition. Although all available exper-
imental data were explained, it was still unclear
whether the same data could be explained in any other
way (especially if the translational symmetry of crystal
changed upon the transition). In more recent experi-
ments on low-temperature phase transitions in Co–Br,
Co–I, and Ni–Cl boracites [5–7], a narrow temperature
peak due to the α32 component of magnetoelectric ten-
sor αij was observed near the transition (no such peak
was observed for the α23 component). These data were
explained on the assumption that the transition was a
ferrotoroidal phase transition, for which the T1 compo-
nent of the Ti vector plays the part of order parameter
[8] (see also [9, 10]). As a result, no doubt remained
that boracites provide the first examples of ferrotoroic
crystals (or toroics) exhibiting the ferrotoroidal phase
transition.

In recent work [11], two sequential low-temperature
second-order phase transitions were observed in Ni–Br
boracite at T = 30 K and T = 21 K. The proximity of
these two transitions suggests that they are caused by a
0021-3640/01/7308- $21.00 © 20401
common mechanism. In other words, they can be
described by a single thermodynamic potential, in

which only the coefficient A of  changes with tem-
perature T and passes through zero upon lowering T.
Therefore, both transitions are proper ferrotoroidal
transitions, the first one being related to the T1 compo-
nent and the second to the T2 component of the Ti vec-
tor. It is of interest to find out what characteristic tem-
perature anomalies can be observed for the Pi, Mi, and
Ti vectors and the χij, kij, and αij tensors in the vicinity
of these transitions. It is also of interest to reveal
whether there are other possible sequences of ferrotor-
oidal phase transitions in boracites, and, if so, under
what conditions they can occur. This issues are the sub-
ject of this work.

Let us denote the sequence of phase transitions
observed in the Ni–Br boracite as G0  G1 
G2  G3. The phase transition G0  G1 at T = 398
K is an improper ferroelectric transition. The symmetry

of the cubic phase G0 is  = m1', and the symmetry

of the orthorhombic phase G1 is  = mm21'. We are
interested in the transition sequence G1  G2  G3.
The symmetry of another orthorhombic phase G2 is
C2v(Cs) = m'm2'. For the symmetry of the G3 phase, see
below. It is assumed that the T1 component is the order
parameter of the first phase transition G1  G2 at T =
θ1 (as in other boracites showing only a single such
transition) and the T2 component is the order parameter
of the second G2  G3 transition at T = θ2. Let us
focus on the thermodynamic potential for the cubic
phase of a crystal. Our goal is to estimate the spontane-
ous Ti, Pi, and Mi vectors and χij, kij, and αij susceptibil-
ities using the coefficients in the respective expressions.

Ti
2

Td' 43

G2v'
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The following invariants (structural and exchange)
are used in writing the potential for the G0 phase:

(1)

where R2 stands for the square of the six-component
order parameter of the G0  G1 phase transition. It is
assumed that the transition results in the nonzero spon-
taneous component P3 and that P3 > 0 (single-domain
crystal). The relativistic invariants

(2)

are also used. In what follows, the experimentally suit-
able orthorhombic coordinates x1, x2, x3 turned relative
to the cubic coordinates x, y, z through π/4 about the
z = x3 axis are used.

The thermodynamic potential has the form

(3)

(As to the choice of the invariants in Eqs. (1) and (2)
and the potential in Eq. (3), see in more detail [8].)
Eliminating R2, one arrives at the thermodynamic
potential that contains only the desired vector compo-
nents of Pi, Mi, and Ti:

(4)

The following notation is used hereafter:

(5)

where the spontaneous polarization P0 = P0(T) in the G1
phase should be taken from the experiment. Note that
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the use of P0(T) allowed the unknown and temperature-
dependent coefficient α to be eliminated from Eq. (3).
It follows from Eqs. (3) and (4) for the potentials that

β > 0,  > 0,  > 0, and B > 0, while the signs of coef-
ficients D, a, b, c, and d are arbitrary.

By varying the potential in Eq. (4) with respect to
the Ti, Pi, and Mi variables and solving the resulting
equations, one obtains the following expressions for the
spontaneous values of these quantities in the G1, G2,
and G3 phases. Below, only the nonzero components
and only the leading terms of power series expansions

in parameters , a, b, c, d, and P0 are presented. In the
G1 phase,

(6)

In the G2 phase,

(7)

It is assumed that only the coefficient  linearly

depends on T:  = AT(T – θ1). The quantity P0 also
depends on T (see above). For the G1  G2 phase
transition to be ferrotoroidal with respect to the T1 com-
ponent, it is necessary that the inequality d > 0 be ful-
filled. In the G3 phase,

(8)

An analysis of the potential in Eq. (4) shows that the
G2  G3 phase transition is ferrotoroidal with respect
to the T2 component only if the inequalities c > 0 and
c – Dd > 0 are fulfilled.

By twice varying the potential in Eq. (4), first with
respect to Ti, Pi, and Mi and next with respect to Ei and
Hi, and solving the resulting equations, one arrives after
tedious mathematics at the following expressions for
the χij, kij, and αij susceptibilities [under the same con-
ditions as in deriving Eqs. (6)–(8)]. In the G1 phase,

(9)
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In the G2 phase,

(10)

And in the G3 phase,

(11)

In Eqs. (10) and (11),  and  in the denominators
are replaced by their T-dependent expressions given by
Eqs. (7) and (8). The quantities χij and kij that are not
given in Eqs. (9)–(11) are equal to χij = 1/κ and kij =
1/B, as in the initial G0 phase.

It follows from Eqs. (6)–(11) that the phase transi-
tions G1  G2 and G2  G3, being presumably
proper ferrotoroidal with respect to T1 and T2, prove to
be improper ferroelectric transitions with respect to P3
and weak ferromagnetic ones with respect to M2 and
M1. In the vicinity of the first G1  G2 transition, the
k22 and α32 components show anomalous temperature
behavior in the form of narrow peaks [cf. Eqs. (9) and
(10)], with the k22 component being anomalous in both
the G1 and the G2 phase while α32 only in the G2 phase.
The k11, k12, and α31 components are responsible for the
narrow peaks near the second transition G2  G3 [cf.
Eqs. (10) and (11)], with k11 being anomalous in both
phases G2 and G3 while k12 and α31 only in the G3 phase.
The observation of this anomalous behavior in the
experiments would serve as a test for the validity of the
theoretical approach suggested in this work. According
to this approach, the magnetic point symmetry group of
the G3 phase should be C2(C1) = 2'.

If one assumes that not T2 but the T3 component is
the order parameter of the second transition G2  G3,
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then this transition can occur only if the inequalities c +
Dd < 0 and c – 2Dd < 0 hold. In this case, the magnetic
point symmetry group of the G3 phase should be Cs = m.
This variant of the theory is less appropriate to the
experimental data [11] than the one suggested above,
and so it is not considered here. Note that the magnetic
point group of the G3 phase was experimentally speci-
fied as C1 = 1 [11]. However, the second-order phase
transition from the C2v(Cs) = m'm2' group to the C1 = 1
group, strictly speaking, is forbidden. This point also
calls for further experimental verification.

An analysis of potential (4) suggests that other
sequences of ferrotoroidal phase transitions are also
possible in boracites. If the inequalities c < 0 and c –
2Dd > 0 are fulfilled, then the sequence G1  G2 
G3  G4 becomes possible, where the magnetic point
symmetry group of the G3 phase is Cs = m and that of
the G4 phase is C1 = 1. This case was not considered in
this work because there is no experimental need for it: a
sequence of three low-temperature phase transitions was
observed in none of the boracites. Finally, if c – Dd < 0
and c + Dd > 0, then only a single G1  G2 transition
is possible. This case was considered in [8] and, in fact, is
reproduced in this work [cf. Eqs. (6), (7), (9), and (10)].

I am grateful to V.A. Golovko for useful remarks.
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Anomalous Phonon Wind Effect on the Lateral Exciton 
Migration in Ultrathin Quantum Well CdTe/ZnTe
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The effect of nonequilibrium acoustic phonon flux on the photoluminescence of an ultrathin quantum well
CdTe/ZnTe upon its quasi-resonant excitation by a He–Ne laser was studied. It is found that the phonon flux
generated by an external source affects the quantum well luminescence bandshape even at small lasing power
and large (up to 1 cm) distance between the phonon generation zone and the quasi-resonant luminescence exci-
tation zone. It is assumed that the phonon flux stimulates exciton in-plane (lateral) migration in the quantum
well through the tunneling between the local potential minima accompanied by induced phonon emission.
© 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 78.67.De; 63.22.+m
Introduction. It is known that when interpreting
luminescence spectra of real quantum wells (QWs)
with intrinsic thickness fluctuations, it is necessary to
take into account the transfer of localized excitons
between the spatially separated states with different
energies. As a rule, such a lateral transfer is assisted by
acoustic phonons [1]. Inasmuch as the situation in real
heterostructures is generally nonequilibrium, it is of
interest to study the influence of nonequilibrium acoustic
phonons on the ensemble of localized excitons.

The influence of a nonequilibrium phonon flux
(phonon wind [2]) on the QW photoluminescence in
III-V and II-VI semiconductors was investigated in a
number of works [3–5]. In these works, phonons were
excited using a heat pulse technique which is widely
employed for studying the phonon propagation and
electron–phonon interaction in semiconductors. Con-
trary to the classical heat pulse technique, in which a
heated metallic film serves as a phonon source, non-
equilibrium phonons in our experiments were gener-
ated directly by the optical excitation of the structure.
In this case, phonons are generated in the course of
thermalization and nonradiative recombination of opti-
cally excited nonequilibrium charge carriers. Compared to
the heat pulse technique, the spectrum of the phonons
generated in this way is more nonequilibrium [6].

In the experiment described below, the influence of
a phonon wind on the luminescence of an ultrathin
CdTe/ZnTe QW was studied (the nominal thickness of the
CdTe layer composed of four monolayers was ≈1.3 nm).
The QW luminescence was excited in a quasi-resonant
regime by a He–Ne laser because

(1) this allowed the number of nonequilibrium
phonons generated in the course of excitation of the
QW exciton states to be minimized;
0021-3640/01/7308- $21.00 © 20404
(2) it was shown by us in [7] that the short-wave-
length wing of the QW luminescence band excited in
this way displays two additional (compared to the non-
resonant excitation) features whose dynamics upon
temperature increase or under the action of phonon
wind allows qualitative conclusions to be drawn about
the influence of acoustic phonons on the lateral exciton
migration;

(3) the contribution from the luminescence of the
isovalence OTe impurity is absent in the luminescence
spectrum (at low nonresonant excitation levels, this band
would superpose on the QW luminescence band, thus
impeding the interpretation of the experimental results).

Experimental. A CdTe/ZnTe structure was grown
on a semi-insulating GaAs(001) substrate by molecular
beam epitaxy [7]. The scheme of the experiment is
shown in Fig. 1. The excitonic luminescence was
excited by a He–Ne laser beam (λ = 632.8 nm) focused

Fig. 1. Scheme of the experiment. Quasi-resonant photolu-
minescence (PL) excitation was provided by a He–Ne laser
in zone A, and the nonequilibrium phonons were generated
in zone B by the beam of an argon laser. The radiation of a
He–Ne laser was modulated by chopper Ch.
001 MAIK “Nauka/Interperiodica”
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into a spot with diameter ~0.1 mm at a laser output of
1 mW (zone A). The laser radiation was modulated
with a frequency of 1 kHz by mechanical chopper Ch.
At a distance of several millimeters (from 1.5 to 7 mm
in our experiments) from zone A, phonons were gener-
ated in zone B by an argon laser beam (λ = 488 nm). For
a beam diameter of ~0.1 mm, the excitation power was
varied within 0.4–150 mW. The luminescence spectra
were analyzed by a DFS-24 double grating monochroma-
tor (with a reciprocal linear dispersion of 0.5 nm/mm).
The signal was recorded using the lock-in detection
technique. Measurements were performed at tempera-
tures of 4.2 and 1.8 K.

Description of the structure. The band diagram of
the CdTe/ZnTe structure is depicted in Fig. 2. The con-
tribution of the conduction band (CB) to the potential
jump is the greatest, resulting in a deep potential well
for electrons. The valence band (VB) accounts for no
greater than 20% of the difference in the energy gaps of
ZnTe and CdTe (≈0.8 eV). The electron (and exciton)
energy level is shifted approximately by 100 meV upon
changing the QW thickness by one monolayer (in the
range of 1–5 monolayers).

High-resolution transmission electron microscopy
suggests that the ultrathin QW is a CdTe layer of vari-
able local thickness. The layer geometry is schemati-
cally depicted in the inset in Fig. 2. The characteristic
lateral irregularity scale (islands of a monolayer thick-
ness) is di < aB, where aB is the exciton Bohr radius. The
irregularity of heteroboundaries produces a fluctuation
potential. As was mentioned above, a change in the
average QW thickness by one monolayer brings about
a sizable (approximately by 100 meV) change in the
depth of the exciton energy level. This defines the char-
acteristic scale (tens of millielectronvolts) of fluctua-
tions in the energy spectrum. Accordingly, the degree
of localization at low temperatures is different for all
excitons in QW; i.e., excitons cannot freely move in the
QW plane but can migrate executing tunneling transi-
tions between the local potential minima. These transi-
tions are accompanied by the emission (absorption) of
acoustic phonons. At low temperatures, the migration
mainly proceeds with energy loss. As a rule, the higher
energy states are less localized (for these states, the
time of exciton departure to the other state is shorter
than the recombination time).

As expected, the QW luminescence bandwidth at
low temperatures is due to the inhomogeneous broad-
ening and measures ~25 meV. Figure 3 shows the QW
luminescence spectrum upon quasi-resonant excitation
by a He–Ne laser (solid line). The features indicated by
vertical dash-dot lines emerge because both interface
("ω1 = 19 meV) and confined ("ω2 = 25 meV) optical
phonons, appearing due to the CdTe layer, are involved
in the relaxation of excitons produced by the He–Ne
laser photons [8].

Results. The influence of phonon wind on the lumi-
nescence of the ultrathin QW is demonstrated in Fig. 3.
JETP LETTERS      Vol. 73      No. 8      2001
The features caused by the exciton relaxation mediated
by the confined and interface phonons markedly
weaken, and the integrated photoluminescence inten-
sity increases by 5–15%. The phonon wind effect is
observed even at an argon laser output of 0.4 mW (!)
and for a distance of 7 mm between zones A and B. At
a pump power of >10 mW, the magnitude of the effect
(change in the luminescence integrated intensity and
bandshape) ceases to depend on the distance between
zones A and B.

Discussion. The phonon wind enhances the QW
luminescence integrated intensity and the population of
low-energy exciton states, because a part of the exci-
tons relax from the higher energy states. Note that the
rise in temperature brings about an opposite transfor-
mation (Fig. 4). The integrated intensity is reduced,

Fig. 2. Energy band diagram for the CdTe/ZnTe structure.
Subscripts: e electron, hh heavy hole, and EB exciton bind-
ing energy. The QW cross section perpendicular to the layer
plane is schematically shown in the inset.

Fig. 3. The bold solid line is the QW luminescence spectrum
for the quasi-resonant excitation by a He–Ne laser in the
absence of nonequilibrium phonon flux. The solid line is the
QW luminescence spectrum for an argon laser output of
1 mW. The points are the QW luminescence spectrum for
and argon laser output of 150 mW. In both cases, the spacing
between zones A and B is 7 mm. The potential relief is sche-
matically shown in the inset. The horizontal lines indicate
the exciton energy levels in the local potential wells. The
nonequilibrium phonon flux (1) with energy "ω ~ ∆E stim-
ulates the exciton down-energy transition (2) accompanied
by the induced emission of a phonon with "ω = ∆E (3).
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while the luminescence intensity in the range of short-
wavelength wing (near the above-mentioned features)
increases because of the migration of a part of the exci-
tons from the low-energy states to the higher energy
states. On further rise in temperature, the features
smear out and disappear.

The situation where excitons migrate to the lower
energy states through the mediation of equilibrium or
nonequilibrium phonons is not unique. With an
increase in temperature, the luminescence band maxi-
mum in low-dimensional structures (cf. [9, 10] and lit-
erature cited therein) often undergoes in a certain tem-
perature range a long-wavelength shift that is larger
than the change in the band gaps of the well and barrier
materials. This occurs because excitons can migrate to
the lower energy states via the “intermediate” (higher
energy) states upon a temperature increase. However,
this effect was not observed in our structure either upon
quasi-resonant excitation or upon barrier (ZnTe) excita-
tion. Moreover, such a thermally activated mechanism
of exciton migration to the deeper states increases the
fraction of nonradiatively recombining excitons [11]
and, hence, diminishes the luminescence integrated
intensity, whereas in our case it increases.

The exciton redistribution from the higher energy
states (free excitons) to the lower energy states (exci-
tons localized at the interface ihomogeneities) under
the action of phonon wind was observed in [4] for a
wide (10.2 nm) GaAs/Al0.33Ga0.67As QW. However, the
situation in our case is different because of a consider-
able inhomogeneous broadening, so that one cannot
speak about free excitons in our structure. For this rea-
son, the explanation suggested in [4] that relates to the
momentum transfer from the nonequilibrium phonons
to the exciton subsystem does not apply in our case.

Attempts at furnishing a consistent analytical descrip-
tion of the lateral exciton transfer in a QW with fluctuat-
ing thickness at nonzero temperatures have encountered
considerable difficulties [9]. The influence of nonequi-

Fig. 4. Transformation of the luminescence signal from the
ultrathin QW (1) with increasing temperature to 10 K and
(2) under the action of phonon wind.

2

1

librium phonons with unknown spectral distribution is
also hard to take into account. We will restrict ourselves
to a brief qualitative consideration of the problem.

The features related to the exciton relaxation involv-
ing confined and interface phonons (Fig. 3) are note-
worthy. The photoexcited excitons emitting optical
phonons (in a time shorter than 1 ps) fall within a rather
narrow energy interval specified by "ω1 and "ω2. Fur-
ther relaxation can proceed only through much slower
transitions promoted by the acoustic phonons. The
characteristic time of such processes (tens of picosec-
onds) is comparable with the exciton radiative recom-
bination time. Using the data presented in [12], one can
approximately estimate this time (200–300 ps). There-
fore, excitons are accumulated in a narrow energy
range. In effect, the population of localized exciton
states is inverted (with respect to the lower energy
states) near the above-mentioned features. In such a sit-
uation, the phonon flux with energy comparable to the
energy difference ∆E between any closely spaced states
(this situation is schematically illustrated in the inset in
Fig. 3) must stimulate the induced phonon emission in
the course of exciton transitions between these local
potential minima. It is these processes, rather than the
processes of phonon absorption, that are predominant.
As a result, the population of the states with higher
energy will diminish, while the population of the lower-
energy states will increase, as is indeed observed in the
experiment.

Of interest is the spectrum of nonequilibrium
phonons reaching zone A. High-frequency acoustic
phonons into which the optical phonons decay are char-
acterized by short lifetimes due to spontaneous anhar-
monic decay and short mean free time (due to strong
scattering by defects), resulting in their “localization”
near the generation zone. The high-frequency acoustic
phonons decay into lower frequency phonons that are
capable of propagating to much greater distances. The
characteristic energies of phonons reaching zone A will
be discussed elsewhere; here we only briefly touch on
this issue. In a bulk homogeneous material with almost
isotropic (because of strong scattering [13]) phonon
propagation, only a few phonons would reach zone A.
One can thus assume that the phonons propagate in a
quasi-two-dimensional (quasi-waveguide) regime.
That we indeed deal with the quasi-two-dimensional
propagation of nonequilibrium phonons is evident from
the fact that the phonon wind effect did not quench even
after the sample had been immersed in superfluid
helium. As is well known [14], those phonons reaching
sample boundaries pass to helium under these condi-
tions. Since the phonons are generated in the region of
ultrathin layers that are positioned near the sample sur-
face, it might be expected that, due to strong scattering,
the fraction of phonons reaching the structure/super-
fluid helium interface would be large enough. For this
reason, one can expect that the phonon wind effect in
the case of a three-dimensional quasi-diffusion phonon
propagation regime will quench upon immersing the
JETP LETTERS      Vol. 73      No. 8      2001
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sample in superfluid helium. However, this does not
occur in the experiment.

Conclusions. The transformation of the QW lumi-
nescence spectrum under the action of phonon wind
was observed. It is assumed that in the presence of an
inverse population of localized states the nonequilib-
rium phonon flux stimulates lateral exciton migration
over the local potential minima through the tunneling
transitions accompanied by induced phonon emission.
To explain the effect observed at low phonon genera-
tion level and for a macroscopic distance to the zone of
quasi-resonant QW luminescence excitation, one has to
assume that the nonequilibrium acoustic phonons in the
structure under study propagate in a quasi-waveguide
regime.

In our experiments, we dealt (1) with a nonequilib-
rium phonon flux of unknown spectral composition and
(2) with the ensemble of excitons localized due to the
fluctuation potential. It is conceivable that the nonequi-
librium phonon fluxes with a given spectral composi-
tion can selectively act at low temperatures in hetero-
structures with predetermined parameters (geometry,
energy level structure, etc.), allowing one to control the
quasiparticle transport between “structural elements”
and the population of energy levels in different struc-
tural elements. We mention in passing that these struc-
tures may serve as a base in designing quantum
(phonon) amplifiers.

We are grateful to T.I. Galkina for interest in the
work and valuable remarks, A.I. Sharkov for useful dis-
cussion, and S.R. Oktyabr’skiœ for electron microscopy
studies. This work was supported by the Russian Foun-
dation for Basic Research (project nos. 00-02-17335
and 99-02-17183), the interdepartmental program
FTNS of the Ministry of Science of the Russian Feder-
ation (project no. 97-1045), and the Grants for the Sup-
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port of Scientific Schools (project no. 00-15-96568)
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It is shown that the softening of the acoustic mode and the ensuing ferroelastic phase transition are due to the
linear–quadratic interaction between the symmetric and antisymmetric deformations, which is presently
neglected in the literature. An expression is obtained which can be used to predict the phase transition pressure
if the initial elastic moduli are known. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 64.70.Kb; 61.50.Ks; 62.20.Dc
In recent years, lattice dynamics and molecular
dynamics methods were used to numerically calculate
the soft modes causing ferroelastic phase transitions in
crystals [1, 2]. Calculations of this type do not use ana-
lytical expressions describing the mechanism for the
appearance of soft modes. It is assumed that symmetry-
breaking deformation arises spontaneously without
applying any force and appears due to critical softening
of elastic moduli. In the Landau theory of ferroelastic
phase transitions, the free energy is expanded in powers
of order parameters breaking crystal symmetry. The
deformations not breaking symmetry are not treated as
order parameters, because it is assumed that they are
not involved in the transition. Next, it is postulated that
the coefficient of the quadratic term of expansion, i.e.,
the elastic modulus, must vanish when the external
variable thermodynamic parameter reaches its critical
value. Within this approach, the reason for the forma-
tion of a soft mode remains unclear.

Of particular interest is physics of high-pressure fer-
roelastic phase transitions. Under pressure, the symme-
try lowers to triclinic, after which amorphization
occurs, as was demonstrated by an example of anorthite
and quartz in [3, 4]. In this work, we consider the
proper monoclinic–triclinic ferroelastic phase transi-
tion in Sr-anorthite (Sr,Ca)Al2Si2O8). A ferroelastic
phase transition is considered proper when the order
parameter and the spontaneous deformation behave
identically under symmetry operations. In a proper fer-
roelastic phase transition, one of the components of the
spontaneous deformation tensor can be taken as a criti-
cal parameter [1]. We studied a proper ferroelastic
phase transition because in this case cell deformation
can be treated as a whole, i.e., without specifying dis-
placements of particular atoms, as in the case of an
improper transition, and, hence, the mechanism of
interaction between deformations of cell edges and
0021-3640/01/7308- $21.00 © 20408
angles becomes more pictorial. We aimed at revealing
the most general reason for crystal destabilization. We
demonstrated that the soft acoustic mode responsible
for the instability of the ferroelastic lattice is due to the
linear–quadratic interaction between symmetric and
antisymmetric deformations, which is presently
neglected in the literature [5], although this interaction
is the strongest among the anharmonic interactions.

In our previous work [6], we found that the energy
of ferroelastic phase transition is due to symmetric
components, and, therefore, their contributions cannot
be neglected, as was done previously. The effect of
symmetric components of the deformation tensor on
the phase transition is accounted for by the term pextV
in the Gibbs potential of a crystal subjected to external
pressure G = F + pextV, where F is the free energy, V ≈
e1 + e2 + e3 is the relative change in the volume of the
unit cell, and ei are components of the deformation ten-
sor. The importance of making allowance for the effect
of symmetric deformations was also pointed out in [7],
where mechanical stress was calculated for a triatomic
T–O–T molecule distorted under pressure from linear
to bent. In that work, the authors examined how the
transverse destabilizing force appears under the action
of external forces applied to the molecule on two sides
along the T…T line.

Recall that in the general case the symmetric and
antisymmetric order parameters can be represented as
the sum of the static and a small dynamic components
related to lattice vibrations: Qj = Qjstat + Qjdyn. The anti-
symmetric order parameters Qjstat describe the system
in thermodynamic equilibrium and are zero in the sym-
metric phase. The antisymmetric order parameters
Qjdyn describe lattice vibrations with certain frequen-
cies ωj and wave vectors kj and occur in both symmetric
and low-symmetry phases. On approaching the point of
001 MAIK “Nauka/Interperiodica”
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phase transition, some vibrations with eigenfrequen-
cies ωj(kj) are softened. In the case of the monoclinic–
triclinic transition, the Bg representation, to which the
acoustic branch belongs, is the eigenvalue of the
dynamic matrix that accounts for the direction and
polarization of the acoustic phonon wave vector. The
stability condition for the dynamic matrix can be repre-

sented as (c44c66 – ) > 0. This matrix corresponds to
the propagation of three acoustic waves, with the low-
est frequency soft mode being the transverse acoustic
wave propagating along Y with the polarization
[−c46/c66, 0, 1] [5].

Figure 1 shows the origin of the transverse antisym-
metric force by an example of the phase transition in a
triatomic T–O–T molecule. Solid lines show the static
positions of atoms in thermodynamic equilibrium, and
dashed lines show the transverse vibrations of the O
atom. The forces Fr appear under the action of the con-
tracted interatomic bonds, and their sum gives the tan-
gential force Ft that provokes the bending phase transi-
tion in Fig. 1b if Ft > Fa, where Fa is the restoring force
caused by the stiffness of the T–O–T angle.

In our analysis of the monoclinic–triclinic transi-
tion, we will use analogous reasoning. We assume that,
on applying hydrostatic pressure to the unit cell, anti-
symmetric destabilizing forces also appear under the
action of contracted interatomic bonds. By analogy
with the triatomic molecule, Fig. 1 illustrates the action
of static pressure and dynamic shear stress caused by a
transverse acoustic wave on the monoclinic cell.

Let us consider a monoclinic cell with the normal to
symmetry plane aligned with the Y axis. For this cell,
the quadratic expansion of the free energy of deforma-
tion in the natural curvilinear q coordinates (ri , ϕk) is

(1)

where i, j = 1, 2, 3; k, l = 4, 5, 6;  and  are the ini-
tial elastic moduli in the symmetric phase; and r0i are
the initial cell parameters; small nondiagonal terms of
the angle–bond type are omitted. For the sake of sim-
plicity, we will first consider the two-dimensional
deformation of one of the faces b0c0, which includes the
deformation of edges b0 and c0 and angle α. In Fig. 1b
it is seen that ∆α = ∆z/b0, where b0 is a parameter corre-
sponding to the Y axis in the initial cell. The correspond-
ing quadratic expansion of free energy is written as

(2)

Let us express this energy in Cartesian coordinates.
Since the edge b0 departs in the Z direction under the

c46
2

F Σijcij
0 ∆ri/r0i( ) ∆r j/r0 j( )/2 Σklckl

0 ∆ϕk∆ϕ l/2,+=

cij
0 ckl

0

F c22
0 ∆b/b0( )2/2 c23

0 ∆b/b0( ) ∆c/c0( )+=

+ c33
0 ∆c/c0( )2/2 c44

0 ∆z/b0( )2/2.+
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action of the acoustic wave, the power-series expansion
of ∆b has the form

(3)

It is seen that ∆b contains not only linear components
along the Y axis, but also quadratic components along
the perpendicular direction. This means that linear
deformations in the natural curvilinear space, in which
the deformations of chemical bonds and angles in the
crystal lattice are considered, cause nonlinear deforma-
tions in Cartesian coordinates, in which atomic dis-
placements are considered. In terms of the deformation
tensor components, Eq. (3) takes the form ∆b/b0 = e2 +

/2, because in the monoclinic cell ∆ϕ4 = ∆α = –e4. As

∆b = b0 ∆y+( )2 ∆z( )2+[ ] 1/2
b0 ∆y ∆z( )2/2b0.+≅–

e4
2

Fig. 1. Schematic illustration of phase transitions under the
action of hydrostatic pressure P and transverse acoustic
wave for the triatomic T–O–T molecule and the monoclinic
crystal lattice (a) before and (b) after phase transition.
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a result, for the Gibbs energy G = F + pextV, one obtains
the expression

(4)

from which it follows that, upon applying hydrostatic
pressure to the unit cell, the symmetric static deforma-
tions of the e2stat and e3stat bonds come into linear–qua-
dratic interaction with the dynamic deformations of the
transverse acoustic wave e4dyn, leading to a change in
the force constants of transverse vibrations. Hence, for
the direction of symmetry-breaking deformations dis-
torting the cell so that the angle ϕ4 ≠ 90°, the effective
force constant is

(5)

Under equilibrium conditions, ∂G/∂e2 = e2 + e3 +
pext = 0; hence, for the symmetric phase one finds

(6)

It is seen that the elastic modulus c44 softens upon the
pressure buildup and vanishes (i.e., acoustic instability
appears) at the critical pressure

(7)

As was mentioned above, the amplitude vector of the
soft acoustic mode has components not only along Z,
but also along X. Therefore, for a more accurate quan-
titative estimation, one must introduce in Eq. (4) the
second antisymmetric parameter e6, which also softens
under pressure. Now, because the edge b0 departs in the
X and Z directions under the action of the acoustic
wave, the power-series expansion of ∆b has the form

(8)

Due to the interaction between parameters e4 and e6, the

combination of moduli c44c66 –  approaches zero
faster than the individual modulus c44; therefore, after
substituting expansion (8) into the Gibbs potential, one

obtains that c44c66 –  = (  – p)(  – p) –  =
0 in the transition point. Hence,

(9)

Using the data for the initial moduli of Sr anorthite [1]

 = 11.6 GPa,  = 24.7 GPa, and  = –12.7 GPa,
one finds pc = 3.86 GPa, whereas the experimental pres-
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0 e2

2/2≅ c23
0 e2e3 c33

0 e3
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+ c22
0 e2 c23

0 e3 c44
0+ +( )e4
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02+[ ]
1/2

.–
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0 c66

0 c46
0

sure for this transition is 3.2 ± 0.4 GPa [8]. The above
moduli were obtained within the pair potential model
with parameters fitted so that the calculated and exper-
imental cell parameters were the same. These calcu-
lated moduli should be considered as approximate
because of the lack of experimental data for the elastic
moduli of Sr anorthite. Therefore, it is unreasonable to
expect full coincidence between the theory and experi-
ment.

As a result, we have demonstrated that the soft
acoustic mode responsible for the proper ferroelastic
phase transition is caused by the linear–quadratic inter-
action between the static symmetric and the dynamic
antisymmetric deformations, which is currently
neglected in the literature, although it is the strongest
among the anharmonic interactions. The authors of [5]

justify the neglect of the terms ei  by the fact that
symmetric components ei are smaller than e4 by about
a factor of five. However, it follows from our expres-

sions that the terms  and Σi ei with i = 1, 2, 3, and
5 must be compared rather than ei and e4. This interac-
tion is common to structural phase transitions because
it results from the nonlinear relation between the curvi-
linear natural coordinate space, in which the deforma-
tions of chemical bonds and angles in the crystal lattice
are considered, and the Cartesian space of atomic dis-
placements upon applying hydrostatic pressure to the
ferroelastic. In addition, we have obtained an expres-
sion which can be used to predict phase transition pres-
sure provided that the initial elastic moduli are known.

This work was supported by the Russian Foundation
for Basic Research, project nos. 00-05-65429, 00-05-
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Quantitative theory of the effect of nuclear ferromagnetism on the superconductivity of metals is proposed tak-
ing into account the electron–nuclear spin–spin interactions. At negative nuclear temperatures, when the
nuclear magnetization is in opposition to an external magnetic field, nuclear ferromagnetism is favorable to
superconductivity rather than suppressing it. The critical magnetic field in Be and TiH2.07 hydrate metals may
exceed the critical field of a nonmagnetic superconductor by an order of magnitude. © 2001 MAIK
“Nauka/Interperiodica”.

PACS numbers: 74.25.Nf
1. The coexistence of nuclear ferromagnetism and
superconductivity was discovered in AuIn2 metal,
whose critical magnetic field Hc0 = 14.5 Hz is small at
temperatures T well below Tce = 0.207 K [1]. The criti-
cal field Hc(T) was found to strongly decrease at T <
Tcn = 35 µK, where Tcn is the phase transition tempera-
ture into the nuclear ferromagnetic state. It was pointed
out in [2] that nuclear ferromagnetism may suppress
superconductivity. The theory of competing supercon-
ductivity and electronic ferromagnetism was suggested
in [3] and extended to nuclear ferromagnetism in [4, 5].
We have emphasized in [6] that there is no full analogy
between electronic ferromagnetism and nuclear ferro-
magnetism in superconductors. Electronic ferromag-
netism occurs upon lowering T in the superconducting
phase of a metal. This results in a spiral or domain
structure that adjusts to the superconducting order
parameter [7]. However, by the very statement of the
experiment [1], nuclear ferromagnetism appears upon
lowering of the temperature in the normal phase of a
metal, while the superconducting transition occurs
upon reduction of the magnetic field only after, on the
background of the formed nuclear magnetic structure
whose rearrangement time is exceedingly long. In other
words, there is no need to take into account the back
action of superconductivity on nuclear ferromag-
netism. The interpretation of the experimental data on
AuIn2 [1] is not easy because the appearance of a spon-
taneous nuclear moment in this metal is due to the spin–
spin nuclear interactions, and it is unclear which type of
magnetic domain structure will form in this case.
Because of this, we proposed in [6] the experimental
methodology that was later independently imple-
mented in [8, 9] for Al and Sn metals. It is based on the
fact that single-domain nuclear ferromagnetism can be
obtained by adiabatic demagnetization at high nuclear
0021-3640/01/7308- $21.00 © 20411
temperatures Tn > Tcn, when the effects caused by the
appearance of a spontaneous nuclear moment can be
ignored. The superconducting transition occurs at elec-
tron temperature T @ Tn and magnetic field Hc(T) other
than the field Hc0(T) in nonmagnetic metals. To a first
approximation, this difference can be determined from
the expression [3]

(1)

where Mn is the nuclear moment density and n is the
demagnetization factor depending on the sample geom-
etry. At T ! Tce, the field Hc0(T) shows little dependence
on the electron temperature T:

(2)

For an ideal system of nuclear spins in a strong mag-
netic field, the moment Mn does not change upon adia-
batic demagnetization,

(3)

where Mn0 is the saturation value for Mn; Bs is the Bril-
louin function; and µn and S are the nuclear magnetic
moment and spin, respectively. It is assumed that the
initial field Hi @ h, where h is the local magnetic field.
The final nuclear temperature Tn and the moment
Mn(Hf) in the final field Hf of adiabatic demagnetization
are given by [10]

(4)

The parameters Hc and Hc0 are measured experimen-
tally, so that Mn can be found using Eq. (1) and com-
pared with the value calculated by Eqs. (3) and (4). For

Hc T( ) Hc0 T( )= 4π 1 n–( )Mn Hc( ),–

Hc0 T( ) Hc0 0( ) 1 T2/Tce
2–( ).=

Mn Hi( ) Mn0Bs X( ) X µnHi/ST ,= =

Mn H f( ) Mn Hi( )
H f

h2 H f
2+

----------------------, Tn T
H f

2 h2+
Hi

----------------------.= =
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Al one has h ! Hc and Mn(Hi) ≅ Mn(Hc), and it was
found in [7] that there is a small though detectable dif-
ference between the Mn values determined from Eqs. (1)
and (3) for Mn close to its saturation value Mn0.

2. We now show that the linear relationship between
Hc – Hc0 and Mn is merely the leading term in the expan-
sion of Hc – Hc0 in powers of Mn and, thereby, explain
the effect observed in [8] for Al. Let us take into
account that, apart from the purely electrodynamic
effect of ferromagnetism on superconductivity [3], the
Cooper pair breaking mechanism can also be associ-
ated with the electron magnetizing by nuclear spins.
This effect was considered for a nonuniform order
parameter in superconductors [11, 12]. Nuclear ferro-
magnetism removes the spin degeneracy of electronic
states in the Mn direction [11, 12],

The parameter J is related to the effective nuclear spin
field Hn as J = µeHn, where µe is the electron magnetic
moment [6]. The field Hn is proportional to Mn and
reaches maximum value Hn0 for saturated Mn,

(5)

where  is the reduced nuclear moment  =
Mn/Mn0. The critical field of a superconductor is deter-
mined from the general thermodynamic relation [13]

(6)

The difference Fn – Fs in the free energies of the normal
and superconducting metals at low temperatures T !
Tce can be found by the methods developed in [13],

(7)

where ν is the density of electronic states and ∆0 =

1.76Tce. The critical value J = ∆0/  corresponds to the
phase transition of a superconductor to the normal
phase or to the state with nonuniform condensate at T =
0 [11, 12]. Equations (6) and (7) can be used to the
deduce relationship between the critical magnetic fields
in magnetic Hc and nonmagnetic Hc0 metals,

(8)

where Hc0(T) is found from Eqs. (6) and (7) at Mn = J = 0:

(9)

The accuracy of Eqs. (8) and (9) is determined only by
the domain of applicability of the BCS theory. These
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*; J0 µeHn0( ),= = =

Mn* Mn*

Fn Fs– Bc
2/8π; Bc Hc 4π 1 n–( )Mn.+= =

Fn Fs–
1
4
---ν ∆0

2 2π2T2

3
--------------– 2J2– 

  ,=

2

Hc T( ) 4πM Hc( )+ 1 n–( )[ ] 2

=  Hc0
2 T( ) 2

J2 Hc( )
∆0

2
----------------Hc0

2 0( ),–

ν∆0
2 Hc0

2 0( )
2π

----------------; Hc0 T( ) Hc0 0( ) 1 π2T2
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  .= =
expressions can be used to derive the parameter Mn

from the measured values of Hc and Hc0 or to determine
the critical field shift Hc – Hc0 from the calculated Mn

value. At ultralow temperatures, the difference between
Hc0(T) and Hc0(0) can be ignored and Eq. (8) transforms
to the relation between Hc and Hc0 obtained in our work
[6] for a cylindrical sample (n = 0):

(10)

3. In what follows, we restrict ourselves to the anal-
ysis of simplified Eq. (10) and consider two cases, Mn >
0 and Mn < 0. The sign of nuclear magnetization
depends on the method of its “preparation.” If the
nuclear spins are in thermodynamic equilibrium at the
initial stage of adiabatic demagnetization, then the
signs of H and Mn will coincide regardless of the sign
of nuclear moment; i.e., Mn is aligned with H. In the
case of dynamic nuclear polarization using the nuclear
Overhauser effect, the nuclear temperature for negative
µn(Be, Rh, and Cd) is negative and Mn is antialigned
with H [14]. The sign of nuclear magnetization can be
changed by the well-elaborated experimental method
of obtaining negative nuclear temperatures by rapidly
turning over the external magnetic field [15].

For positive nuclear temperatures, Mn > 0 and
Eq. (10) has only one solution for Hc,

(11)

The nuclear spin field Hn0 and the parameter J0 in
Eq. (5) can be estimated from the relationship [14]

(12)
where K is the Knight shift and χ is the electronic mag-
netic susceptibility. The latter is known only for two
metals Li and Na, in which χ ≈ 10–6. The theory of
Fermi liquid gives the following expression for χ [13]:

(13)
Using Eqs. (12) and (13) and relation (9) connecting
the density of states ν with Hc0 and ∆0, one obtains for
J0/∆0 ≡ λ

(14)

All parameters in this expression, except for the Fermi-
liquid constant B0, are experimentally measurable
quantities. The parameter e is determined for all known
superconductors in [16]. Making use of Eqs. (11) and
(14), one obtains the following relation between the
reduced critical field  = Hc/Hc0 and the reduced

nuclear magnetization  = Mn/Mn0:

(15)
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According to Eqs. (3) and (4), the reduced moment 
depends on Hc and T as

(16)

For most superconductors, the parameters λ and e are
small. For example, in Al λ0 = 0.03 [Eq. (14)], e = 0.13
[16], and Hc0 @ h, so that

(17)

Consequently, the measurement of  provides a
basic opportunity to determine λ and the Fermi liquid
constant B0 from Eqs. (14) and (17).

For the Be and Rh metals, the parameter e is large,
e ≈ 8 [16], and one can expect, according to Eq. (15),
that superconductivity is strongly suppressed by
nuclear ferromagnetism. However, the local field in Rh
is high, h ≈ 7 Hc0 [17], while the nonzero quadrupole
moment of the Be nucleus is equivalent to the presence
of a certain effective local field [10]. For metals with
low critical fields, Hc0 ! h, one may set λ = 0 in
Eq. (15), because the reduced moment (Hc) in this
case is necessarily small [see Eq. (16)],

(18)

The correctness of Eq. (16) in a weak Hc field is
questionable. The statement that the local field h is
identical for all observables needs refinement. The def-
inition of effective field Heff = (H2 + h2)1/2 contradicts
the experiments on measuring zero-field H nuclear spe-
cific heat at T > Tcn. For several very different sub-
stances He3, AuIn2, and PrNi5, the cn ~ 1/T law is
observed at H ! h instead of the expected cn ~ (H2 +
h2)/T2 dependence [18]. In this connection, the inverse
problem of determining Mn from the experimental
dependence of Hc on the initial conditions of nuclear
demagnetization and the problem of determining the

/Bs ratio in Eq. (16) seem to be more topical than
the revelation of the interconnection between Hc and
Mn. One has from Eq. (15)

(19)

The domain of applicability of Eqs. (15) and (19) is

restricted by the condition  < 1. For Be, the λ
parameter is very small, while only λ0 from Eq. (14)
can be determined for Rh resulting in λ0 = 2.5. At

 > 1, conventional superconductivity is impos-
sible [11, 12].
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4. At negative nuclear temperatures, the external
magnetic field H and the nuclear magnetization Mn

have different signs. Because of this, Eq. (10) can have
two solutions Hc±. In the reduced variables Hc/Hc0 =

, 4πMn0/Hc0 = e, and h* = h/Hc0, one obtains from
Eqs. (10) and (16)

(20)

The first solution  exists at any ratio between the
parameters e and h*, at least for small X = µnHi/ST

when 2λ2  < 1. The domain of existence of the sec-
ond solution is restricted by the condition Hc– > 0. The
solution does not exist, e.g., if h* > |e| because Bs(X) < 1:

(21)

Hence, the relation between 4πMn0 and h, i.e., between
|e| and h*, becomes important. For Rh, the measured
value h = 0.34 Hz [17], 4πMn0 = 0.4 Hz, and Hc0 =
0.049 Hz [16]; i.e., e @ 1, h* @ 1, and e ≈ h*. The
dependences of the critical field  of Rh on the
reduced temperature TS/µnHi = 1/X are presented in
Fig. 1 for different values of parameter λ.

For Be, one has 4πMn0 = 9.1 Hz and Hc0 = 1.1 Hz
[16]. The local field h in Be is unknown because the
contribution from the quadrupolar effects is indetermi-
nate. Figure 2 shows the dependence of  on 1/X for
λ = 0 and different values of h* in Be. Note that the
strong inequality h ! 4πMn0, i.e., h* ! e, cannot occur.
Indeed, the local field h cannot be smaller than the
dipolar contribution hdip, for which the following
expression is given in [10]:

(22)

where Ri are the reciprocal lattice vectors. For example,
in a cubic lattice

(23)

where nn is the nuclear concentration. Since Mn0 = µnnn,
the h/4πMn0 ratio can only be small numerically. It is
pointed out in [16] that the experimental observation of
the effect of nuclear ferromagnetism on the supercon-
ductivity of Be and Rh is hampered. Because of a large
Koringa constant κ . 1.8 × 104 Ks, it is difficult to carry
out an experiment on nuclear demagnetization in Be.
The critical field Hc0 in Rh is low, and it is hard to pre-
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Fig. 1. Reduced critical field  of Rh vs. effective tempera-

ture 1/X for different values of parameter λ. The reduced local
field h/Hc0 = 6.9. The parameter e = 8.2. Nuclear spin 1/2.

Hc*

Fig. 2. Reduced critical field  = Hc/Hc0 of Be vs. 1/X for

different values of local field h*; λ = 0 and e = 8.2. Nuclear
spin 3/2.

Hc*

Fig. 3. Temperature dependences of the critical field  of

TiH2.07 hydrate for two values of local field h* = 5 and 15;
λ = 0 and e = 17. Nuclear spin 1/2.

Hc*

e

e

e

pare a sample with a low concentration of magnetic
impurities. It is argued in [16] that the experimental
study of TiH2.07 hydrate, whose critical field Hc0 = 1 G
and nuclear magnetization 4πMn0 ≈ 17 G, i.e., for
which e = 17 @ 1, holds much promise. Because the
other characteristics of TiH2.07 are unknown to us, we

calculated the (1/X) dependence for this metal for
several values of the reduced local field h* at λ = 0 (Fig. 3).
One can see from Figs. 1–3 that nuclear ferromag-
netism “enhances” superconductivity at negative
nuclear temperatures rather than suppressing it. This is
the key result of this work.

This work was supported by the Russian Foundation
for Basic Research, project no. 00-02-17729.
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A generalization of the Monte Carlo method to the case of grand canonical ensemble allowing the elimination
of the problem of determination of the chemical potential of alloy components was proposed. The method is
particularly convenient for the calculations of surface segregations because it excludes time-consuming calcu-
lation of the temperature-dependent bulk chemical potential µ(T). The new method was used for calculating
segregations at the (100), (110), and (111) surfaces of the Ni50Pd50 alloy using the Ising model with ab initio
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The concentration of components at the surface of
an alloy can strongly differ from the bulk concentration
because of the existence of surface segregations. How-
ever, the experimental determination of the concentra-
tion profile at the surface is an extremely difficult prob-
lem [1]; therefore, of particular value are theoretical
methods for the simulation of surface segregations.

For determining the equilibrium concentration pro-
file at the surface of a binary alloy, it is necessary to find
the surface free energy F(T) = –kTln –Esurf(ss)/kT)
of a system with a surface, where s = {σ1…σN} is the
surface configuration, σ1…σN are occupation numbers
for N lattice sites at the surface (σi = 1 if the ith site is
occupied by an atom of type A, and σi = –1 if the ith site
is occupied by an atom of type B), Esurf(s) is the surface
energy corresponding to a given configuration, and
summation is over all s possible configurations s. Mod-
ern ab initio methods [2–4] provide sufficiently accu-
rate determination of surface energy Esurf for the given
surface configuration s; however, because of the huge
number of possible surface configurations, direct calcu-
lation of surface free energy as a logarithm of the parti-
tion function is practically impossible.

Therefore, for the calculation of the segregation pro-
file, the dependence of surface energy Esurf or total sur-

face energy  on the surface configuration s is usu-
ally written in the form of an effective Hamiltonian of
the Ising type [5] as a function of occupation numbers
σ1…σN and configurationally independent one-, two-,
and many-body effective potentials of interatomic
interaction. Next, statistical mechanics methods are

(
s∑

Esurf
tot
0021-3640/01/7308- $21.00 © 20415
used for finding the equilibrium segregation profile cor-
responding to the given effective Hamiltonian at tem-
perature T and bulk concentration c. Thus, the theoreti-
cal calculation of the equilibrium concentration profile
is carried out in two steps: calculation of effective inter-
atomic interaction potentials in the Hamiltonian, which
can be performed by ab initio methods [6–9], and sta-
tistical calculation of the equilibrium segregation pro-
file.

In this work, we focus on the application of the
Monte Carlo (MC) method to the calculation of surface
segregations within the Ising model.

For the MC calculation of the thermodynamically
stable configuration of an alloy, the dependence of total
energy Etot(s) on configuration s can be represented as
an effective Hamiltonian of the Ising type. In the bulk,
this Hamiltonian has the form

(1)

where summation is over all N atoms of the alloy, V (0)

is the energy of a completely disordered equiatomic
alloy, V (1) is the one-body effective potential, and
V (m, s)(sijk…) are effective m-body interatomic interac-
tion potentials depending only on the spatial configura-
tion of the corresponding m-atomic cluster sijk…. Only a
finite number of effective interactions is included in

Etot s( ) V 0( ) V 1( )σi
1
2!
----- V 2 s,( ) sij( )σiσ j

j i≠
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∑+=
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1
3!
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∑ ,
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Hamiltonian (1), i.e., V (m, s)(sijk…) ≠ 0 only for some of
the clusters sijk…, usually those involving neighboring
atoms. Because of the existence of some maximum
interaction radius Rmax, all potentials V (m, s)(sij…) for
atoms i and j separated by distances larger than Rmax are
zero.

In bulk MC calculations, one can use a canonical

ensemble; then the one-body contribution σi =

NV (1)〈σ〉  is constant and can be neglected. In this case,
the MC steps are performed as follows: using effective
Hamiltonian (1), a change in the energy of the alloy
(trial energy) ∆E is calculated for the exchange of two
atoms of types A and B chosen at random in the
N-atomic three-dimensional crystal lattice (with peri-
odic boundary conditions). Next, one of the MC algo-
rithms (e.g., asymmetric Metropolis algorithm [13]) is
used to decide on the atom exchange. Successive steps
are performed until the total energy Etot(s) at the given
temperature T becomes stable.

The dependence of total surface energy (s) on
the surface configuration s of the alloy can also be rep-
resented in the form of an effective Hamiltonian [6, 8]
similar to Hamiltonian (1):

(2)

where effective potentials depend now not only on the
order of the corresponding cluster s and mutual
arrangement of its atoms, as in the bulk case, but also
on the position of the cluster λλ '… with respect to the
surface (λ and λ' denote the layers in which the cluster
atoms are located). In this case, effective potentials V
are considered renormalized because surface affects
only a few near-surface layers, whereas in the deeper
layers the potentials are fixed at bulk values.

Because the concentration of components in the
near-surface region is not fixed, it is reasonable to per-
form the MC simulation at the surface using the grand
canonical ensemble approximation. In this case, only a
change of the atom type from A to B in the ith site is
considered, and, hence, the trial energy ∆E is equal to

∆  – µ, where ∆  is a change in the total surface
energy upon the replacement, as calculated by Eq. (2),
and µ = µA – µB is the bulk chemical potential. The bulk
chemical potential µ at temperature T is equal to
dF(T, 〈σ〉 )/d〈σ〉 , where F(T, 〈σ〉 ) is the free energy of
alloy per atom, 〈σ〉  = 2c – 1 is the average over occupa-
tion numbers, and c is concentration. Correspondingly,
µ depends on temperature T and cannot be obtained

V 1( )
i∑

Esurf
tot

Esurf
tot s( ) V 0( ) Vλ

1( )σi

i

∑+=

+
1
2!
----- Vλλ '

2 s,( )

j j, i≠
∑ sλλ '

ij( )σiσ j …+ ,

Esurf
tot Esurf

tot
from the ab initio results for T = 0, contrary to effective
potentials V.

Several techniques were proposed in the literature
for avoiding the problem associated with the calcula-
tion of bulk chemical potential µ(T) [10–12] by the
simulation of surface segregations in the canonical
ensemble approximation with fixed concentrations of
components in the sample or by the calculation of
chemical potential µ(T) using the bulk MC method.

However, in the case of canonical ensemble, a great
number of layers must be included in the MC cell. In
the case of grand canonical ensemble, the difficulties
are associated with the calculation of temperature-
dependent chemical potential µ(T) = dF(T)/d〈σ〉 .

In this work, we propose a version of the MC
method that makes it possible to avoid the calculation
of chemical potential without expanding the size of the
MC cell. Let us consider in the canonical ensemble
approximation the atom exchange between the thermo-
dynamically equilibrium thermostat (bulk) and a sub-
system small compared to the thermostat (surface). In
this case, the alloy atoms in the bulk are characterized
by a certain distribution function ρ(Eat) over the spec-
trum of possible energy values. The energy of the ith
atom Eat(s', σi) in the model with effective Ising
Hamiltonian (1) has the form

(3)

where s' = σ1, …, σi – 1, σi + 1, …, σZ + 1 is the configu-
ration of the alloy at all Z sites with which the central
ith atom interacts.

On going from the surface to the bulk, an atom of
type σ with the probability ρ(Eat) will occur in the state
with energy Eat(s', σ) and the change in the energy of
the entire system will be

(4)

where ∆Ebulk(σi  –σi) and ∆Esurf(–σi  σi) are
the changes in energy upon atom exchange in the bulk
and at the surface, respectively. Note that the distribu-
tion ρ(Eat) is (a) constant in time (because the contribu-
tion of fluctuations in the thermostat can be neglected)
and (b) independent of the surface configuration
(because the bulk is much larger in size than the sur-
face, Nbulk @ Nsurf).

When applying the above technique of atom
exchange between the bulk “reservoir” and the surface
to practical calculations, one can actually use a reser-
voir with the number of atoms N ~ 103–105, which, by
the order of magnitude, is equal to the number of atoms
in the surface calculation, and, thus, the condition

Eat s' σi,( ) V 0( )

N
--------- V 1( )σi+=

+
1
2!
----- V 2 s,( )σiσ j …,+

j i≠
∑

∆E ∆Ebulk σi σi–( ) ∆Esurf σi σi–( )+=

=  Eat s' σ–,( ) Eat s' σ,( )– ∆Esurf,+
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Nbulk @ Nsurf is not fulfilled. Nevertheless, this bulk res-
ervoir can be used if the distribution function of atoms
over energies in the reservoir ρres(Eat) is close to the
bulk (with N  ∞) distribution function ρ(Eat) and, in
addition, the following conditions are fulfilled for the
function ρres(Eat): it is (a) constant in time and (b) inde-
pendent of the surface configuration. This idea is at the
basis of the proposed method.

The scheme of the algorithm of the surface MC
method is shown in the panel in Fig. 1.

The simulation of surface segregations by the new
MC method is accomplished as follows: the bulk MC
calculation is performed for the temperature T, and,
after attaining the thermodynamically equilibrium
state, the bulk configuration of atoms is retained as a
reservoir for the surface MC simulation. Next, the sur-
face MC calculation is performed at the same tempera-
ture T; in this calculation, the atom exchange between
the surface and the bulk reservoir is treated according
to the algorithm described above. In the surface MC
calculation, periodic boundary conditions are imposed
only in the directions perpendicular to the surface
plane. Several atomic layers of the bulk MC sample
parallel to the surface plane were used as a boundary
between surface and bulk. Bulk periodic boundary con-
ditions were employed (if necessary) for increasing the
area of these layers so that they covered the whole
bulk–surface boundary. The calculation went on until

the total surface energy  became stable. Unlike the
method proposed in [11, 12], the new method requires
only one preliminary bulk calculation for a given tem-
perature. The method can be generalized without sub-
stantial changes to the case of a multicomponent alloy;
in this case, only one preliminary bulk calculation is
also necessary.

With the aim to illustrate the application of the new
MC method to the problem of simulation of surface
segregations in real systems, we carried out a calcula-
tion of the equilibrium segregation profile at the (100),
(110), and (111) surfaces of the Ni50Pd50 alloy.

The method used in this work for the calculation of
effective potentials was described in detail in [8, 9].
Effective potentials were considered renormalized in
the first three layers of the (100) and (111) surfaces and
in the first four layers of the (110) surface; in deeper
layers, the bulk values were used for effective poten-
tials. For the Ni50Pd50 system, effective many-body
potentials were found to be very small (about several
kelvin) and, hence, were not included in MC calcula-
tions. Pair potentials were included up to the fourth
coordination sphere.

The bulk reservoir was generated using the bulk MC
calculation; in this case, the sample was a cell with lin-
ear size L = 32 atoms (of a total of L3 = 32768 atoms
located at the fcc lattice sites). A random distribution of
Ni and Pd atoms was the initial configuration at a tem-
perature of 1500 K. Next, temperature T was lowered

Esurf
tot
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with a step of 50 to 400 K, 5000 MC steps per atom
(tries at exchanging atom pairs) were performed at each
temperature, and the total energy and the short-range
order parameters were averaged over the last 1000 steps.
The equilibrium bulk configuration at each T was
stored as a bulk reservoir for the subsequent use in the
surface MC calculation.

In the MC calculations at the (100) and (111) sur-
faces, we used cells with a surface area of 32 × 32
atoms and a thickness of 28 atomic layers, whereas for
the (110) surface the thickness of the cell was increased
to 40 atomic layers and the surface area was decreased
to 28 × 28 atoms. Temperature ranges and the number
of steps at the surface were the same as in the bulk.

The calculated bulk pair effective potentials at the
first to fourth coordination spheres of the fcc lattice
were 279.00, 0.34, –9.95, and –12.59 K, respectively.
The bulk MC calculation involving the local relaxation
effect has demonstrated that the long-range order is
absent in the alloy down to the temperature 400 K, in
agreement with the bulk phase diagram of the Ni–Pd
system [17]. The calculated surface effective potentials (2)
for the Ni50Pd50 system are presented in the table. The

value of the one-body potential at the surface  is
given with reference to the one-body bulk potential

. The table also presents the pair potentials at the

first coordination sphere  multiplied by the num-

Vλ
1( )

Vbulk
1( )

Vλλ '
2 1,( )

Fig. 1. Total energy per atom in the first layer at the (100)
surface of the Ni50Pd50 alloy versus linear size of the bulk
reservoir L. Results are presented for several random config-
urations of the bulk reservoir. The dashed line is drawn
through the values averaged over reservoir configurations.
Panel: algorithm of the surface MC method. Calculation of
the change in energy ∆E upon exchanging atoms of different
sorts chosen at random at the surface and in the bulk reser-
voir. If the exchange is accepted, the atom sort is changed
only at the surface. To the right, two possible surface config-
urations after the surface MC step are shown: the type of
atom at the surface (1) was changed and (2) was not
changed. Configuration in the bulk reservoir remains
unchanged.
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ber of corresponding clusters  per surface atom.
In our calculations, σ = 1 corresponds to the Pd atom,
and σ = –1 corresponds to the Ni atom.

Before calculating the segregation profile, we car-
ried out several tests with the aim to examine the influ-
ence of the size of bulk reservoir on the surface results.

Zλλ '
2 1,( )

Fig. 2. Calculated surface segregation profiles at tempera-
tures 1000 (solid line) and 600 K (dashed line) at the (100),
(110), and (111) surfaces of the Ni50Pd50 alloy.

(a
t. 

%
)

The segregations at the (100) surface of Ni50Pd50 were
calculated using several instantaneous configurations
of reservoirs with linear sizes L = 3, 4, 8, 12, 16, 24, and
48. Figure 1 presents the resulting total energies per
atom in the first layer Eλ = 1 at a temperature of 600 K
for seven random configurations of reservoirs for each
L value. Obviously, the scatter of Eλ = 1 decreases rapidly
with increasing L; it is no larger than 20 K for L ≥ 8, and
the corresponding scatter of concentrations in the first
layer is less than 1 at. %. Thus, one can state that at L ≤
8 the instantaneous configurations of the reservoir are
quite close to equilibrium.

The segregation profiles of the (100), (110), and
(111) surfaces at temperatures 1000 and 600 K are pre-
sented in Fig. 2. The root-mean-square deviation of
concentrations in layers, as calculated for the last
1000 steps per atom, is no larger than 1.5 at. %. The
strong segregation of palladium to the surface layer is

due to the sign of one-body potential  – ; the
largest segregation amplitude for the (110) surface and
the smallest segregation amplitude for the (111) surface
are also in agreement with the largest absolute value of

the one-body potential  –  at the (110) surface
and its smallest absolute value at the (111) surface. The
segregation of Pd into the second layer at the (110) sur-
face is nearly absent, although it was expected to occur
on the basis of the analysis of one-body potentials. This
is so because of a strong tendency to interlayer ordering
at the (110) surface. In the situation when the surface
layer contains nearly pure palladium, the pair interac-
tions will favor the segregation of nickel into the sub-
surface layer, thus acting against the one-body potential

 – . A decrease in temperature to 600 K
enhances concentration oscillations, especially, at the
(100) surface; at the other surfaces, oscillations are

V1
1( ) Vbulk

1( )

V1
1( ) Vbulk

1( )

V2
1( ) Vbulk

1( )
Effective one-body and pair potentials (in K) for the (100), (110), and (111) surfaces of the Ni50Pd50 alloy

Layers λ 1 2 3 4 5

(100) –1389.19 –197.67 –157.56 0.0 –

446.28 583.60 585.31 557.99 –

1085.19 1176.34 1115.99 1115.99 –

(110) –1612.88 –647.59 –126.03 35.41 0.0

223.74 262.41 279.31 280.08 279.00

1016.66 1097.45 1132.03 1115.99 1115.99

260.55 295.70 279.00 279.00 279.00

(111) –1117.93 2.30 –60.31 0.0 –

819.59 854.22 870.64 836.99 –

920.53 861.35 836.99 836.99 –
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smoothed either because of the presence of a negative
one-body potential in the second layer for the (110) sur-
face or due to relatively weak interlayer interactions for
the (111) surface.

The calculated segregation profiles at the (100) sur-
face are in qualitative agreement with the experiment
[14]. The segregation profiles at the (110) and (111)
surfaces of the Ni50Pd50 alloy were not measured.
Experiments were performed at the (110) and (111)
surfaces of the Ni92Pd8 alloy [15], where, similarly to
our calculations, a higher concentration of palladium
was observed at the (110) surface, as compared to the
(111) surface. On the whole, the calculations of surface
segregations in the Ni50Pd50 alloy by the new surface MC
method yield reasonable results that are in good agree-
ment with previous studies of this system [14, 15, 16].

This work was supported by the Swedish Founda-
tion for International Cooperation in Research and
Higher Education (STINT), the Swedish Royal Acad-
emy of Sciences (KVA), and the Russian Foundation
for Basic Research. We are grateful to É. Isaev for
assistance in the preparation of the article.
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The dependence of the critical current of a highly transparent S–N–D corner junction on the applied magnetic
field is determined for different orientations of a d-wave superconductor relative to the interface plane. It is
shown that this dependence exhibits characteristic plateaus in a certain range of magnetic fields at low temper-
atures. These plateaus do not appear in the S–N–S corner junctions, indicating the presence of a superconductor
with a sign-variable order parameter. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.50.+r; 74.80.Fp
The experimental studies of S–I–D (isotropic super-
conductor–insulator–d-wave superconductor) corner
tunneling junctions in a magnetic field provide strong
evidence for a sign-variable order parameter corre-
sponding (at least approximately) to the d-wave pairing
in high-Tc superconductors [1–4]. This method proves
to be less sensitive to the effects of magnetic flux cap-
ture and sample asymmetry than the experiments with
corner-type SQIDs [1, 5]. In the absence of a magnetic
field, the Josephson critical current Ic in an S–I–D cor-
ner tunneling junction has a minimum (in an ideal case,
it becomes zero), whereas, in an S–I–S tunneling junc-
tion, the quantity Ic has a maximum in zero magnetic
field. This fact was used as the key feature for the iden-
tification of d-wave superconductors on the basis of the
aforementioned method [1–4]. Its explanation lies in
the mutual compensation of the two contributions of
different sign from the two sides of the corner in an
S−I–D tunneling junction to the Josephson current in
the absence of a magnetic field. In the case of an S–I–S
corner junction, these currents in the absence of a mag-
netic field are in phase, and when they add together, the
resulting current becomes twice as great in the case of
a symmetric junction. However, the aforementioned
compensation occurs only in the tunneling limit, and,
for junctions with a sufficiently large transparency, it
does not take place. In junctions with high transpar-
ency, the dependence of the Josephson current on the
phase difference ϕ is essentially nonsinusoidal (con-
tains higher harmonics), and, as a result, one obtains
js(ϕ + π) ≠ –js(ϕ). In this connection, it is of interest to
consider the corner junctions with high transparency
and to study their behavior in the presence of a d-wave
superconductor.

In this paper, we consider totally transparent S–N–D
(isotropic superconductor–normal-metal interlayer–
d-wave superconductor) corner junctions with the
width of the pure normal metal layer d @ ξ0 (Fig. 1). We
0021-3640/01/7308- $21.00 © 20420
determine the critical current for such systems in the
presence of an external magnetic field. We show that, at
sufficiently low temperatures, the presence of a plateau
in a certain interval of magnetic fields is the character-
istic feature of the interference dependences of critical
current on magnetic field in corner junctions with high
transparency. The plateau is most pronounced in the
characteristics of S–N–D corner junctions with the
(100) and (010) orientations of the boundary of the
d-wave superconductor. As the temperature increases,
the plateau is distorted and then disappears. For the
(110) boundary orientation, the plateau is absent,
including the case T = 0. In this case, as one would

Fig. 1. Schematic representation of the corner junction
under study. The magnetic field is directed normally to the
plane of the figure; α is the angle between the x0 axis of the

superconductor with  pairing (D) and the normal to

the boundary.
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expect, the minima (zeros, in the ideal case) of the
interference dependence of the critical current on mag-
netic field occur with a period half as large as in the
case of an S–N–S junction.

Let two pure superconductors with singlet order
parameters ∆l(pf, l) and ∆r(pf, r) occupy the regions x <
–d/2 and x > d/2, respectively, and the region –d/2 < x <
d/2 be occupied by a normal metal. To solve the Eilen-
berger equations for quasiclassical retarded Green’s
functions,

(1)

with allowance made for the normalization condition

, (2)

we use the following ansatz, which automatically satis-
fies normalization condition (2):

(3)

The substitution of Eqs. (3) into Eqs. (1) leads to an
equation for the quantity η(pf, x, ω)

(4)

with the asymptotic conditions

(5)

which provide the finiteness of the Green’s function
g(pf, x, ω) when x  ±∞. We do not present here the
cumbersome explicit expression for the Green’s func-
tion g(pf, x, ω) in terms of η(pf, x', ω), which can be
readily derived using the aforementioned substitution. In
Eq. (4) and below, we introduce the magnitude and the

phase of the order parameter: ∆(pf, x) = |∆(pf, x)| .
For simplicity, we assume that the Fermi surfaces of

the superconductors and the metal between them are
identical. Then, we have the conventional boundary
conditions for the Green’s functions at the totally trans-
parent boundaries: gl(–d/2, pf) = gN(pf) = gr(d/2, pf),
fl(–d/2, pf) = fN(–d/2, pf), and fN(d/2, pf) = fr(d/2, pf).

2ω iv f x, ∂x+( ) f p f x ω, ,( )
+ 2∆ p f x,( )g p f x ω, ,( ) 0,=

2ω iv f x, ∂x–( ) f
+ p f x ω, ,( )

– 2∆* p f x,( )g p f x ω, ,( ) 0,=

iv f x, ∂xg p f x ω, ,( ) – ∆ p̂ x,( ) f
+ p f x ω, ,( )

– ∆* p f x,( ) f p f x ω, ,( ) 0=

g
2

f f
+

+ π2
–=

f p f x ω, ,( ) iπ xv f x,( )sgn–(=

– g p f x ω, ,( ) )e
iη p f x ω, ,( )

,

f
+ p f x ω, ,( ) iπ xv f x,( )sgn–(=

+ g p f x ω, ,( ) )e
iη p f x ω, ,( )–

.

v f x,

2
----------∂xη p f x ω, ,( )– ω+

– ∆ p f x,( ) η p f x ω, ,( ) φ p f x,( )–( )cos 0=

v f x, η∞ p f ω,( ) φ∞ p f( )–( ) xsgnsin 0,>

e
iφ p f x,( )
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With these relationships, we obtain from Eqs. (3)–(5)
the following expression for the temperature Green’s

function (pf, ωn) in the region occupied by the nor-
mal metal:

(6)

This formula is valid for all temperatures and for a
coordinate-dependent self-consistent profile of the
order parameter ∆(pf, x). Neglecting the suppression of
the order parameter, we obtain from Eqs. (4) and (5) in
the low-temperature region T ! ∆max: η(pf, d/2, ωn) –
η(pf, –d/2, ωn) = φ(pf) + πsgn(v f, x), where φ(pf) =
φr(pf) – φl(pf) is the phase difference of the order
parameters for a given momentum direction. In this
approximation, the calculation of the Josephson current
jx with the use of the Green’s function derived above
leads to the following expression on condition that T !
v f/d ! ∆max [6, 7]:

(7)

Here, we introduced the sawtooth function saw(φ):
saw(φ) = φ on the segment φ ∈  [–π, π] and saw(φ + 2π) =
saw(φ). The condition v f /d ! ∆max can be represented
in the form ξ0 ! d, where ξ0 = v f /∆max.

Separating the constant phases ϕl,r that do not
depend on the momentum direction, we describe the
superconductors by real sign-variable order parame-
ters. In particular, this is possible for d-wave supercon-

ductors. Let us assume that  ( ) is the part of the
Fermi surface Sf within which the order parameters
∆l, r(pf , 0) are of the same (opposite) sign. Then, denot-
ing the constant phase difference by φ = ϕr – ϕl, we

obtain φ(pf) = ϕ for pf ∈   and φ(pf) = ϕ + π for

pf ∈  . Now, we determine the quantities a± by the
expressions

(8)

and A{ } and A{Sf} are determined in a similar way.

Evidently, we have  +  = Sf, which yields a+ + a– =
1. The quantities a± strongly depend on the type of pair-
ing and the mutual orientation of the superconducting
crystals, as well as on the shape of the Fermi surface. At
the same time, they are insensitive to the specific form
of the basis functions of the corresponding point group
representation of the superconducting crystal. For
superconductors whose order parameters have constant

gN
M
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signs on the entire Fermi surface (an anisotropic s pair-
ing), the quantities a± take the values a+ = 1 and a– = 0
(or a– = 1 and a+ = 0 when the constant signs of the two
order parameters are opposite).

Generally speaking, the problem on the current
through a corner junction is two-dimensional. How-
ever, we will assume that the characteristic length of the
junction L satisfies the conditions λl, r ! L ! λj, where
λl, r and λj are the penetration depths of the magnetic
field in the bulk superconductors and in the Josephson
junction, respectively. Then, in magnetic fields H !

Hc1 ~ Φ0/ , the magnetic flux through the corner-
containing region with a characteristic area of the order

of  is much less than the flux quantum, and the
problem can be approximately considered as one-
dimensional. In this case, the self-magnetic field in the
junction can be neglected.

In these conditions, we consider a planar junction in
a magnetic field directed parallel to the S–N boundary
along the z axis. We assume that, along the y direction,
the junction consists of two parts, which, in the one-
dimensional problem under study, correspond to the
two sides of the corner. As compared to the region 0 <
y < L, the quantity π should be added to the phase dif-
ference in the junction for each of the momentum direc-

λ l r,
2

λ l r,
2

tions in the region –L < y < 0. This takes into account
the change of sign of the order parameter in the d-wave
superconductor when the momentum of a quasiparticle
is rotated through π/2 about the z axis, which coincides
with the tetragonal axis of the crystal. Below, by the
term corner junction is meant such a one-dimensional
model.

To take into account the effect of magnetic field H
on the Josephson current, we use the substitution
φ(pf)  φ(pf) + (2eHy/c)(d + λl + λr) in Eq. (7), where
d is the thickness of the normal metal interlayer and λl, r
represents the penetration depths of the magnetic field
in the left and right superconductors, respectively. The
magnetic flux Φ = 2HL(d + λl + λr) through the normal
metal layer and the surface layers of the superconduc-
tors (2L is the length of the boundaries of the junction
under study along the y axis) is conveniently measured
in the flux quantum units n = Φ/Φ0 ≡ |e|Φ/πc. We assume
that, in a small-size junction, both the current distribution
along the field (along the z axis) and the magnetic field
itself are homogeneous. Then, for the Josephson critical
current in a common S–N–D planar junction, we obtain
the same result as was reported in [8]. Calculating the total
current through the S–N–D corner junction and determin-
ing its maximal values depending on the magnetic field,
we arrive at the following relationships:
(9)
jc0 H( )
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Here, {n/2} is the fractional part of the magnetic flux
through the corner junction on one of the two sides of
the corner.

From Eqs. (9) and Fig. 2, one can see that, in the
field region (1 – |a+ – a–|)/2 < n < max(a+, a–), the curve
jc0(H) has a plateau: the critical current is jc0(0)|a+ – a–|
and does not depend on the magnetic field. Since such
plateaus never occur in the magnetic-field dependences
of the critical current in S–N–S junctions [6, 9], their
presence in the curves at low temperatures testifies that
the junction contains a superconductor with a sign-vari-
able order parameter.
Assuming that, the  pairing takes place in one

of the superconductors and the z0 crystal axis of this
superconductor is parallel to the junction plane, whereas
the second superconductor is characterized by an iso-
tropic s pairing, we obtain a± = 1/2 ± cos2α/π, where α
is the angle between the x0 axis of the crystal and the
normal to the S–N boundary. In this case, the plateau is
in the field interval (π – 2|cos2α|)/2π < n < (π +
2|cos2α|)/2π at the level 2|cos2α|/π of the critical cur-
rent in zero field. For the orientation α = 0, the plateau
has the maximal length, and for α = 45° the plateau is
absent. In the latter case, a+ = a– = 1/2. As in an ordinary
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Fig. 2. Dependence of Jc0 = jc0(H)/jc0(0) on n = Φ/Φ0
obtained from Eqs. (9) at zero temperature for different orienta-
tions of the superconductor with  pairing; the tetragonal

axis of the superconductor is parallel to the magnetic field. The
angle between the x0 axis of the crystal and the normal to the
surface is α = (1) 0, (2) π/16, (3) π/8, (4) 3π/16, and (5) π/4. The
plateau of maximal length corresponds to the (100) orientation.
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2–

Fig. 3. Dependence of Jc = jc(H)/jc0(0) on n for an S–N–D
corner junction with orientation α = 0° at different temper-
atures; ξ0/d = 0.1.

Fig. 4. Dependence of jc(H)/jc0(0) on n for the orientation
α = 22.5° and for different temperatures; ξ0/d = 0.1.
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S–N–D planar junction [8], the critical current in the cor-
ner junction becomes zero at every half flux quantum (n =
0.5, 1, 1.5, …), i.e., with a period two times shorter than
usual. Such a behavior is caused by the specific symmetry
of the problem at α = 45°and should manifest itself not
only for metal but also for insulator interlayers [10].

The revealed characteristic behavior of the critical
current of S–N–D corner junctions in a magnetic field,
including, first of all, the presence of a plateau and lin-
ear dependences on the magnetic field, is closely
related to the initial sawtooth dependence of the
Josephson current on the phase difference in the sys-
tems under study [6, 7, 11]. As compared to an S–N–S
junction, in an S−N–D junction the sawtooth depen-
dence of the Josephson current on the phase difference
is more complex, namely, jx(ϕ) ≠ jx(–ϕ), and a discon-
tinuity occurs at ϕ = 0. Therefore, in the ground state of
a superconducting ring containing an S–N–D junction,
a spontaneous current is present [7]. The spontaneous
current occurs along the surface of the S–N–D junction,
and it is mainly localized in the interlayer [12, 13]. This
current is screened by the Meissner currents arising in the
superconductors. Generally speaking, in the presence of a
spontaneous current, the appearance of a small asymmetry
of the critical current with respect to the change of sign of
the external field is possible. However, this fact does not
introduce any significant changes in the main results
obtained above for the dependence of the critical current
on the external magnetic field.

The described behavior of the critical current is dis-
torted with increasing temperature to the same extent as
the aforementioned sawtooth dependence. Figures 3–5
show the dependences of the critical current of an S–N–D
junction on the magnetic field for different temperatures
and orientations of the superconductor with d pairing.
The width of the normal metal interlayer is taken to be
10ξ0. The suppression of the order parameter near the
transparent boundary is neglected. From these figures,
one can see that, in the case of high-Tc superconductors

Fig. 5. Dependence of jc(H)/jc0(0) on n for the orientation
α = 45° and for different temperatures; ξ0/d = 0.1.
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with Tc ~ 100 K, the appearance of the plateau charac-
teristic of S–N–D corner junctions should be expected
at temperatures about 0.1–0.5 K.

This work was supported by the Russian Foundation
for Basic Research, project no. 99-02-17906.
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Elementary events of low-temperature surface erosion induced by the bombardment with accelerated helium
atoms and ions were studied at the atomic level. It is established that the regular arrangement of surface atoms
is disturbed due to the release of energy of formation of interstitial atoms emerging at the surface and to the
expenditure of part of this energy on the formation of surface defects in excited states. The adatom excitation
energy allowing the short-range diffusion processes was determined experimentally. © 2001 MAIK
“Nauka/Interperiodica”.

PACS numbers: 68.49.Sf; 61.80.Jh; 66.30.Hs
In recent years, rapid development of nanotech-
niques has quickened interest in radiation-induced phe-
nomena at solid surfaces. The studies of ion-bombard-
ment-activated surface self-diffusion were first initiated
in connection with the problem of high-voltage vacuum
discharge and radiation resistance of field emitters
[1, 2]. At present, this phenomenon has found wide use
in developing methods of preparing chemically clean
surfaces with minimum roughnesses; in analyzing the
evolution of surface wall microtopography of thermo-
nuclear devices subject to low-energy ion bombard-
ment, in the activation of surface chemical reactions,
and in the design of various systems with local ion or
electron field emission [3–5]. It is known that, upon ion
bombardment, the initially perfectly flat surface
assumes atomic roughness which can be removed by
low-temperature annealing. The annealing temperature
is lowered because of the enhanced mobility of the
radiation-induced adatoms [5, 6]. This work is devoted
to studying the mechanism of adatom formation and
the origin of high adatom mobility at low temperatures.

Experiments were carried out using a field ion
microscope with samples cooled to 21–80 K. Helium at
a pressure of 10–2–10–3 Pa was used as an imaging gas.
Needle-shaped samples with radius of curvature 20–
100 nm were prepared from a tungsten wire of 99.98%
purity by electrochemical etching. After mounting in
the microscope, the samples were subjected to low-
temperature field evaporation until an atomically flat
surface was formed. The field strength necessary for the
microscope operation was created by simultaneously
feeding a dc voltage of 3–25 kV and an ac voltage of
4−15 kV to the sample. The ac voltage amplitude was
chosen so that the field-emission current density lay in
the range 108–1010 A/m2. The net current trough the tips
of needle-shaped samples was 10–7–10–6 A.
0021-3640/01/7308- $21.00 © 20425
The tips were bombarded by helium ions that were
formed upon passing electron flow through the imaging
gas. The bombardment intensity was determined from
the relationships obtained in [7]. Those ions formed at
a distance shorter than five radii of curvature R0 of the
tip fell on the emitting surface from a conical region.
For larger distances, the bombardment proceeded from
a cylindrical region coaxial with the sample. The ion
energy distribution was close to Maxwellian with a
mean energy of eER0, where e is the electron charge.
The electric field during the process of ion bombard-
ment was (3–5) × 109V/m. The electric field strength
was determined from the ratio of operating voltage to
the threshold evaporation voltage for the tungsten face
{110} at 21 K. The latter corresponds to an electric
field of 5.8 × 1010 V/m. The average energy of the ion
flow incident on the sample area under study was 150–
500 eV; the fluence varied in the range 108–1020 ion/m2.

Field ion microscopy can be used to reveal the char-
acter of defect structure produced by ion bombardment.
The phenomenon of controlled low-temperature field
evaporation allows the layer-by-layer analysis of the
defect distribution in depth under the sample surface.
The location of point defects is usually determined
from the disturbance of regular arrangement of surface
atoms or from the appearance of points with enhanced
brightness [8]. However, in most cases, one fails to dis-
tinguish between the contrasts produced by the subsur-
face point defects and adatoms. Therefore, the conven-
tional method of interpreting point defects in field ion
images cannot be applied to the microcrystal surfaces
subjected to intense ion bombardment. With the aim of
minimizing the uncertainty in the interpretation of sur-
face point defects, part of the experiments were carried
out using a two-chamber field ion microscope equipped
with a source of monoenergetic helium atoms. The
samples were bombarded with neutral helium atoms
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Field ion microscopy images of the surface of tungsten microcrystals (a) before and (b) after the bombardment with helium
ions with average energy 180 eV and fluence 2 × 1019 ion/m2.
with an energy of 2–7 keV and a fluence of (5–20) ×
1015 atom/(m2 s). The bombardment was accomplished
in the direction perpendicular to the 〈110〉  axis, which
in most cases coincides with the sample axis. After
completion of irradiation, the appearance of new emis-
sion centers was observed for 1–5 min at the surface
areas not subjected to the bombardment.

Figure 1 demonstrates the ion microscopy images of
a surface of tungsten single crystals before and after
exposure to helium ions with an average energy of
180 eV and a fluence of 2 × 1019 ion/m2 at a tempera-
ture of 70 K. The regular arrangement of the surface
atoms contributing to the formation of the field emis-
sion image is disturbed by the ion bombardment. The
configuration of atomic steps at the faces with low
Miller indices is altered. In particular, the shape of the
central face {110} in Fig. 1 changed substantially; the
concentric steps (a) assumed a spiral shape (b) after the
bombardment. The removal of a monolayer by con-
trolled field evaporation almost completely recovered
the regular atomic structure over the whole temperature
range studied (21–80 K). The direct field ion micros-
copy observations indicate that in the absence of ion
bombardment the surface atoms at all faces are immo-
bile at temperatures as low as those. In this connection,
the character of observed changes in the microtopogra-
phy suggests that the main contribution to the change of
shape comes from low-temperature radiation-stimu-
lated surface migration.

With the aim of elucidating the atomic mechanism
of the radiation-stimulated surface self-diffusion, a
source of accelerated helium atoms was used. Since the
neutral atoms do not deflect in the electric field of the
samples, the possibility exists of examining the ele-
mentary events of surface erosion. Figure 2 shows the
ion microscopy images of the nonirradiated (dark) sur-
face area of the single crystal before (a) and after (b)
exposure to the helium atoms with an energy of 7 keV
and a fluence of 3 × 1016 atom/m2 in an electric field of
3 × 1010 V/m. Analysis of the radiation-induced changes
in the surface morphology suggests that, apart from the
single adatoms, the defect complexes of the type “sur-
face vacancy–pair of adatoms” also make a sizable con-
tribution to the disturbance of regular arrangement of
surface atoms. For instance, the distances between the
radiation-induced surface vacancy and adatoms
(marked by arrows in Fig. 2b) are 2.6 and 2.8 nm. For
visual monitoring, the formation of this group of sur-
face point defects is perceived as simultaneous. The
distances between the correlated radiation-induced sur-
face point defects did not depend on the energy of inci-
dent helium atoms and lay in the range 2–6 nm. The
formation of single adatoms and correlated pairs was
observed directly in the field ion microscope both in the
course of irradiation and for 1–5 min after switching off
the source of accelerated helium atoms. This provides
evidence for the nondynamic character of the surface
damage process. In the temperature range studied, only
the interstitial tungsten atoms are mobile [9]. One can
thus conclude that the formation of adatoms and corre-
lated pairs after switching off the source of accelerated
atoms is the result of the diffusion of radiation-induced
interstitial atoms to the surface.

The number of new emission centers formed upon
irradiation depends on the electric field strength at the
sample. For an electric field weaker than 4.9 × 1010 V/m,
the density of emission centers was approximately
equal to the density in the absence of a field. With
increasing field strength to (4.9–5.3) × 1010 V/m in the
vicinity of the {211} face, the surface density of the
JETP LETTERS      Vol. 73      No. 8      2001
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Fig. 2. Field ion microscopy images of the {211} face of a microcrystal (a) before and (b) after the bombardment with helium atoms
with average energy 7 keV and fluence 3 × 1016 atom/m2. Arrows indicate the surface point defects.
emission centers newly formed during the course of
bombardment and immediately after switching off the
source of accelerated helium atoms drops by two orders
of magnitude. These values are appreciably smaller
than the threshold evaporation field of the ground-state
surface atoms at the {211} face at 21 K (6.38 × 1010 V/m).
This indicates that the release of energy of formation of
interstitial atoms emerging at the surface is accompa-
nied by the formation of surface defects in the excited
state.

The desorption field F for the atoms occurring in the
excited state immediately after they overcome the bar-
rier is different from the desorption field for the atoms
relaxed to the ground state at the same surface sites. To
determine the threshold evaporation field for the
ground-state surface atoms, the bombardment with
neutral helium atoms was performed at F = 0, after
which the positive potential was raised until the bright
emission centers disappeared. It turned out that the
ground-state atoms can be removed from the {211}
face only in rather high fields F = (5.5–5.9) × 1010 V/m.

The difference between the threshold evaporation
fields for the excited-state (Fe) and ground-state (F0)
atoms was observed not only during the bombardment
but also after switching off the ion source. This, in par-
ticular, points to the fact that the displacements of sur-
face atoms were of nondynamic nature. In the temper-
ature range studied (21–80 K), the interstitial tungsten
atoms are the only mobile radiation distortions. As the
interstitial atom executes diffusion to the surface, the

energy of formation  decreases because of the action
of image forces. However, a decrease in energy is of the

same order as the activation energy  for migration of
interstitial atoms [10] and, hence, is appreciably lower

Ei
f

Ei
m
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than . One can thus conclude that the energy
released by the interstitial atoms emerging at the sur-

face is close to the total energy of formation . The
energy of formation of the interstitial tungsten atom
(4.7–4.9 eV [9, 10]) is considerably higher than the
energy necessary for displacing surface atoms to the
adsorption state. As a result, the displaced surface atom
may occur in the excited state and, hence, reduce the
desorption field. Within the image force model [8], the
excitation energy of the displaced surface atom is deter-
mined by the difference between the evaporation fields
for the ground-state and excited-state atoms

In this expression, n is the ion multiplicity. At low tem-
peratures, tungsten is evaporated as three- and fourfold
ionized atoms. A barrier produced by the image forces
is the highest for the quadricharged ions. By setting n =
4, one obtains ∆Ee = 3.9 eV for the maximum excitation
energy of the displaced surface atom. Thus, the fact that
the evaporation fields for the atoms in the nascent
adsorption state and in the relaxed state are different is
evidence that the atoms in the adsorption state bear an
excess energy. The lifetime of the excited-state atom is
comparable with the characteristic time of nonactiva-
tion field evaporation. The excess energy of the ada-
toms in this state permits short-range surface diffusion
with characteristic diffusion length on the order of the
distance between the point defects in the correlated
pairs.

We are grateful to A.S. Bakaœ and V.I. Gerasimenko
for discussion and E.I. Lugovskaya for assistance in
experiments.
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The insulating state of κ-(BEDT-TTF)2Cu[N(CN)2]I salt appearing at ambient pressure at low temperatures is
suppressed by hydrostatic pressure. The resistive measurements showed that the emerging metallic state reveals
superconductivity in high-quality crystals. The superconducting state with the transition temperature of about
8 K is stable at pressures higher than 0.1 GPa. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.62.Fj; 74.10.+v; 74.70.Kn
The κ-(BEDT-TTF)2Cu[N(CN)2]X salts, with X
standing for halogen atoms Cl, Br, and I (in what fol-
lows, we designate salts according to their X as Cl, Br,
and I), form a homologous series of compounds [1]. All
three salts are isostructural at room temperature and
possess metallic electronic structure, according to band
structure calculation [2]. In reality, the ground states of
the salts are drastically different. The Cl and Br salts are
the highest Tc quasi-two-dimensional organic super-
conductors under hydrostatic (X = Cl, Tc = 12.8 K at
0.03 GPa) and ambient (X = Br, Tc = 11.6 K) pressure,
respectively. The third member of the family, I salt, is
an insulator at low temperatures and ambient pressure,
similar to Cl salt, but does not undergo superconduct-
ing transition under hydrostatic pressure up to 0.5 GPa
[1]. For I salt, however, traces of a superconducting
phase with a Tc of about 8 K were found in the
modulated microwave absorption experiments [3, 4].
Since the volume fraction of these inclusions increases
upon prolonged annealing of the crystals [3], it was
assumed that they represent an impurity phase of
βH-(BEDT-TTF)2I3 that is formed due to the thermoly-
sis of κ-(BEDT-TTF)2Cu[N(CN)2]I.

In order to understand the mechanism of formation
of the insulating state, we have recently studied the
electronic transport properties and X-ray diffuse scat-
tering in I salt [5]. We have found that the high-temper-
ature metallic state of I salt is in agreement with the
band structure calculation, while the insulating state is

1 This article was submitted by the authors in English.
0021-3640/01/7308- $21.00 © 20429
formed as a result of the structural transformation due
to ordering of the terminal ethylene groups in the
BEDT-TTF molecules.

The studies of mixed Br–Cl salts [6] and Br–I salts
[7] indeed showed a correlation between the electronic
properties and the conformational disorder in the crys-
tals [8]. Simultaneously, it was found that the degree of
conformational order may be influenced by the method
of sample preparation. A similar effect of the crystal
growth procedure on the conformational state of the
BEDT-TTF molecule in lattice was first reported for β
phases [9]. This effect may also be important for
closely related κ-(BEDT-TTF)2Cu(NCS)2, for which
the growth conditions strongly influence the tempera-
ture dependence of resistivity [10–13]. Since the elec-
trochemical synthesis of I salt is not easy, the typical
crystals (in what follows we call them standard crys-
tals) are of a rather low quality. This difficulty of sam-
ple preparation is the main reason why the studies of I
compound are scarce compared to the Cl and Br salts.
Therefore, we considered the growth of high-quality
single crystals of κ-(BEDT-TTF)2Cu[N(CN)2]I to be
our important goal.

In this letter, we report observation of superconduc-
tivity in high-quality crystals of I salt under moderate
hydrostatic pressures of about 0.1 GPa. This observa-
tion shows that the superconducting properties of the
compound are in line with the other members of the
κ-(BEDT-TTF)2Cu[N(CN)2]X family. The transition
temperature for I salt, as determined from resistive
measurements, is ~8 K. A small value of the critical
pressure required for inducing superconductivity
001 MAIK “Nauka/Interperiodica”
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allows us to reinterpret previously observed supercon-
ducting inclusions in the salt [3, 4] as intrinsic and
caused by local strains.

The crystals of κ-(BEDT-TTF)2Cu[N(CN)2]I were
synthesized by electrochemical oxidation of BEDT-
TTF in a 1,1,2-trichloroethane medium. A mixture of
(PPh4)[N(CN)2] and CuI was used as an electrolyte.
Starting salts used for the preparation of the electrolyte
were of high purity and did not contain the Cl or Br
anions as adulterants.2 The typical current density was
3–5 µA/cm2. The current density was reduced approxi-
mately twice after the nucleation of the crystals on the
Pt electrode. The growth was carried out for a period of
3 to 4 weeks. Below, we refer to the crystals obtained
by this route as “new crystals.” The resultant new crys-

2 The absence of Cl and Br impurities was confirmed by electron
probe microanalysis of the crystals.

Fig. 1. Temperature dependence of resistivity for sample 1
at ambient pressure and under a pressure of 0.12 GPa.

Fig. 2. Temperature dependence of resistance for sample 1
under a hydrostatic pressure of 0.12 GPa in the vicinity of
the superconducting transition as a function of magnetic
field applied in the arbitrary direction with respect to the
sample.
tals had usual shapes of a rhombus or a distorted hexa-
gon; however, contrary to the standard samples, they
were free of layered defects [5]. Two crystals studied
had sizes 0.5 × 0.5 × 0.1 mm and 0.6 × 0.5 × 0.12 mm.
The resistance of the samples was measured by the
standard four-probe technique with a current flowing
along the highly conducting ac plane. All four termi-
nals were attached to the same sample surface. Mea-
surements under quasi-hydrostatic pressure were per-
formed in a beryllium copper clamp pressure cell with
silicon oil as a pressure medium. A pressure of up to
0.4 GPa was applied at room temperature. The pressure
at low temperatures was calculated using the results
[14]. The in-plane resistance of the sample was found
to decrease by a factor of 2 on loading from 0 to
0.4 GPa; no special features that could be attributed to
phase transitions under pressure were detected.

In Fig. 1, we show the temperature dependence of
resistivity at ambient pressure and under a pressure of
0.12 GPa on a log–log scale. At ambient pressure, the
resistivity decreases upon cooling from room tempera-
ture to 60 ~ 80 K (depending on the sample) and then
shows a notable increase at low temperatures. It is
worth noting that no resistivity decrease was found at
ambient pressure down to 1.1 K. Under a pressure of
0.12 GPa, the sample shows a resistive transition into
the superconducting state with the onset of transition at
8.2 K, midpoint at 7.7 K, and zero-resistivity state
being achieved at 6.8 K (see expanded view in Fig. 2).
To confirm the superconducting nature of this behavior,
we show in Fig. 2 the temperature dependence of resis-
tivity in the vicinity of the superconducting transition in
magnetic fields of different strength.

In order to understand the striking difference
between our results and those previously reported for
this compound, it is instructive to compare the proper-
ties of the two different sets of crystals with each other.
Both crystals were studied by X-ray analysis and were
found to be isostructural at room temperature. The ele-
mental composition of the crystals was studied using
the electron probe microanalysis technique, and no
deviation from the chemical formula was found within
the accuracy of the method. Besides, the ESR spectra of
the new crystals were typical for κ-phase salts [3]. They
show no detectable inclusions of the β phase possessing
notably different ESR spectrum.

A slight difference in the properties of the two sets
of I crystals suggests that the main effect comes from
the improved quality of the new samples. Although the
temperature dependence of resistivity for the new crys-
tals is basically similar to that of the standard crystals
[1, 5, 15], some small differences should be noticed. In
the standard samples, the resistivity starts to increase
just below ~200 K, although this increase is very small
down to 70 K. In addition, the overall resistance
increase on cooling to 1.2 K in the standard samples
(amounting to ~1000 times the room-temperature
value) is notably higher than in the new samples (200
JETP LETTERS      Vol. 73      No. 8      2001
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to 500 times). Since both of the above-mentioned fea-
tures in the standard samples are due to disorder [2, 5],
we conclude that the new crystals are characterized by
a much higher degree of ordering at low temperature.

As can be seen from Fig. 1, on applying pressure,
the temperature dependence of resistance changes in a
way very similar to that observed for Cl salt [16].
A resistivity maximum appears, signaling ethylene
reordering taking place under pressure [17]. It is known
that the resistance of Cl and Br salts is sensitive to ther-
mal cycling, mainly in 50 to 100 K range [15, 17],
because of the proximity to structural instability [18].
For the standard I salt, this sensitivity is very small,
indicating much higher lattice stability. In the samples
under study, the resistance hysteresis has almost the
same magnitude as in Cl salt. This finding shows that
the samples are characterized by a soft lattice prone to
the structural transformation into the superconducting
phase.

In conclusion, high-quality single crystals of I salt
show a clear superconducting transition under pressure,
in contrast to the previous reports on this compound.
This finding demonstrates the crucial importance of
crystal perfection for the occurrence of superconductiv-
ity in this family of materials.

This work was supported by the NWO (grant
no. FN4359), the Russian Foundation for Basic
Research (project no. 00-02-04019DFG_a), and by the
CREST, Japan Science and Technology Corporation.
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Explosive ice instability under strong uniaxial compression at high pressures is observed over a wide tempera-
ture range from 244 K down to 100 K. The critical dependence of the threshold instability pressure on
temperature in the region of expected Ih–II and IX–VI transitions displays features with minima. It is conjec-
tured that explosive instabilities may occur on cosmic bodies such as the Jupiter satellites Europa and
Ganymede. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 62.50.+p; 64.70.Kb; 96.35.-j
The problem of explosive ice instability attracts
interest because of the discovery of many-kilometer
glacial shells on some satellites of big planets in the
solar system [1, 2]. Estimates show [3] that the ice crust
on the Jupiter satellites Europa and Ganymede may be
as deep as 100–150 km. Moreover, when it is consid-
ered that these satellites are covered by a network of
giant cracks [4], then it becomes clear that a body of ice
crust contains vast compression areas where conditions
are far from hydrostatic. It is believed that, in conjunc-
tion with open boundaries, these conditions can gener-
ate giant explosive instabilities in the depths of ice
crust. As is well known, such instabilities (Bridgman
effect) can be excited in the laboratory for many solid
insulators through slow uniaxial compression at a rate
dP/dt < 0.1 GPa/s at high pressures (P < 20 GPa)
between anvils with open boundaries [5–13]. This
effect is accompanied by shock waves and high-speed
(v  ~ 0.5–2 km/s) ejection of a destructed microdispersed
substance beyond the compression system. This phe-
nomenon evolves when the elastic energy of a strongly
compressed body converts into mechanical work, result-
ing in an ultrahigh-speed volume relief after the system
has reached certain critical P–T parameters [9, 10]. The
possible pressure-induced phase and polymorphic transi-
tions in solid insulators can reduce substantially the exci-
tation threshold for such explosion phenomena [10].
Note also that the explosion effect is accompanied by
energetic electromagnetic radiation over a wide spectral
range up to the X-ray range [8] and by electron emission
[9]. The Pc threshold (or the average critical pressure
inducing the Bridgman effect in a substance) decreases
with increasing temperature and compression rate [11]; it
correlates with the parameters of the substance and
shows size dependence [10]. It was also established that
a weak ultralow-frequency electric field influences the
threshold Pc in crystal hydrates [12, 13].

In this work, a direct experiment was conducted to
demonstrate that a strongly compressed ice may exhibit
0021-3640/01/7308- $21.00 © 20432
explosive instability over a wide temperature range.
Bridgman anvils with gaskets made from superhard
VK-8 alloy and shaped like a truncated cone with a
working area of diameter d = 10 mm were used in the
experiment. The loading rate for uniaxial compression
was fixed at dP/dt ≈ 0.02 GPa/s. The temperature near
the sample was measured by a Cu–Copel thermocouple
whose junction was brought immediately to the sample
edge. At the first (preliminary) step, the anvils were
cooled directly by liquid nitrogen to a temperature of
230–240 K. Then, a batch of distilled water was poured
as a thin layer onto the working area of one of the anvils
and moulded into a thin ice disk of thickness d ≈
0.4 mm through lightly pressurizing the solidifying
water with a dielectric sheet. At the second step, the ice
disk on the anvil could be cooled down to any required
temperature in the range from 273 to 100 K. The cool-
ing rate was dT/dt ~ (5–10) K/s. There seems to be no
other feasible way of obtaining an ice disk that would
have standard thickness and could be pressurized
between anvils at any temperature.

Inasmuch as statistically significant values of exci-
tation threshold Pc can be obtained only by conducting
many experimental runs at a fixed temperature T, the
required T was achieved in the following way. The
anvils were cooled together with the sample down to a
temperature slightly lower than the required one. Then
the system was put under a press, where, after attaining
the required temperature and on a slight natural heating
at a rate dT/dt ≈ 0.01 K/s, the compression procedure
began and lasted up to the occurrence of the explosive
instability.

The experimental results are presented in the figure,
where each point was obtained in ten experiments with
explosive instabilities. One can see from the figure that
the ice instability occurs practically over the whole
temperature range studied. Baric ice explosion was
observed only at temperatures T ≤ 244 K, while above
001 MAIK “Nauka/Interperiodica”
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this limiting value a plastic extrusion of ice from the
anvils was observed.

In the remaining temperature range, the critical con-
ditions Pc(T) for explosive instability do not obey any
certain law. For instance, one could expect that the Pc(T)
dependence would obey the empirical rule log(Pc) ≈
A T) + B in the low- temperature range, with A =
−5.35 and B = 28.9 for ice, as was earlier observed in
[10] for ordinary compounds. However, this rule is ful-
filled more or less satisfactorily only in the interval
from 144 to 244 K. At T < 144 K, the critical depen-
dence has quite a different character. It should be noted
that the standard deviation from the mean threshold
value does not exceed ~10% in the range from 196 to
244 K, whereas at T < 196 K the deviations are as large
as ~25%. In the temperature range 206–218 K, the critical
curve displays a feature with a minimum at T ≈ 211 K.

Earlier, it was shown in [10] that the initial destruc-
tion processes in the volume, which eventually initiate
the Bridgman effect, to a first approximation can be
rationalized in terms of the theory of thermal fluctua-
tions [14]. The temperature dependence Pc(T) obtained
for the ice instability threshold in this work is no excep-
tion. No doubt, ice may contain various microinhomo-
geneities just before the explosion effect, as usually
occurs upon strong compression of ice [15]. Evidently,
the initial microfractures in a strongly compressed ice
start with rupturing hydrogen bonds in the microvol-
umes that are mechanically loosened by lattice defects.
This implies that the critical curve Pc(T) can, in princi-
ple, be used to derive a certain curve that correlates
with the temperature dependence of hydrogen bond
energy in ice in these microvolumes. It is quite logical
to assume that the temperature dependence of hydrogen
bond energy in the defect microvolumes correlates with
the analogous dependence in the defect-free volume.
As is well known, it is hard to obtain such a dependence
by other experimental methods or by model calcula-
tions. This can be judged if only from a large scatter of
temperature curves obtained for the ice sublimation
energy in different models [16].

Let us determine the threshold rupture stress using
the following relationship of the theory of thermal fluc-
tuations [14]:

(1)

where

(2)

Here, T is the temperature, k is the Boltzmann constant,
U0 is the initial interatomic bond dissociation energy,
τ0 ~ 10–13 s is the period of interatomic thermal vibra-
tions, τ is the expectation time for the critical nucleus
appearance, γ is a structure-sensitive multiplier, V ≈ a3

is the activation volume, σl is the local stress in the frac-
ture nucleus, and a is the interatomic distance. Notice
that the parameters σ, γ, U0, and τ may depend on pres-

(log

σ γ 1– U0 kT τ /τ0( )ln–[ ] ,=

γ Vσl/σ.=
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sure. However, the accuracy of the results obtained
from Eq. (1) is limited because the character of the
P dependence is not known with certainty for these
parameters. Nevertheless, it is known [17] that the
breaking radial stress σ in the disk between the Bridg-
man anvils correlates with the average pressure at any
distance from the disk center,

(3)

where parameter ξ weakly changes with compression.
Let us assume that the activation volume coincides with
the volume of a molecular unit cell in water. Assuming
τ to be pressure-independent, one obtains the correla-
tion relationship for the hydrogen bond energy in the
form

(4)

where τ and γ can be estimated from the known (see, e.g.,
[16, 18–20]) value UH ~ 0.5 eV ≈ 8 × 10–20 J/(hydrogen
bond) for ice I at 240 < T < 273 K and P = 0. One has
τ ~ 2 × 10–3 s. For ξ ~ 1 and temperatures from T =
100 K to T = 273 K and P ~ 0.1 GPa, one obtains γ ~
10–28–10–27 m3. In the range of moderate pressures
below P ~ 1.5 GPa, the latter value may prove to be 30–
45% smaller by virtue of the multiplication coefficient
[7, 17, 21] M = σz/P ~ 2–3 and corresponding axial
stress σz ~ 3–4.5 GPa in the disk between the anvils for
the ice isothermal compressibility ~10–10 Pa–1 [22].

σ ξP,∝

UH γξP kT τ /τ0( ),ln+∝

Critical temperature dependence of the ice explosive insta-
bility threshold ( ) and the known [34, 35] ice equilibrium
phase diagram. The regions of metastable phases in the
equilibrium diagram are shown by the dashed lines. The
dotted lines 1 and 2 corresponding to the Ih–hda and lda–
hda transitions in the metastable P–T ice phase diagram
with a critical point at T ~ 225 K and P ~ 0.03 GPa [28–30].
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Then, one finds from Eq. (2) that the local stresses in the
fracture microvolume may exceed the stresses in the
multiplication zone by a factor of 3–15. Such a consid-
erable local overstresses may evolve at the preexplo-
sion stage of ice compression because of the parametric
onset of oscillations in the system of hydrogen-bonded
water molecules [23]. Hence, it is assumed that the
temperature dependence of the critical hydrogen bond
energy, Eq. (4), can correlate with the Pc(T) depen-
dence. One can expect that the energy will increase
from UH ≈ 0.5 eV to UH ≈ 1.8 eV at the maximum at
T ≈ 145 K.

The following features of the Pc(T) curve are note-
worthy. The local minimum in the range of tempera-
tures 206–218 K and critical pressures 0.1–0.2 GPa can
naturally be assigned to the phase transition from poly-
crystalline ice Ih to phase II. This transition can be
expected to occur in the indicated region, as follows
from the equilibrium phase diagram of ice, where the
critical curve Pc(T) is also plotted (figure). This feature
is likely evidence for a strong (by ~50–70%) weaken-
ing of the lattice bonds during the process of phase tran-
sition. Accordingly, the bond strengths in the range
100–140 K at critical pressures 0.8–1.1 GPa are, appar-
ently, affected by the IX–VI phase transition, during
which the bonds also weaken by ~50–70%. This esti-
mate of the relative hydrogen bond weakening is con-
sistent with the relevant theoretical assumption [24].

A slight discordance between the phase-transition
curves and the coordinates of the above-mentioned
minima on the critical curve Pc(T) in the ice phase dia-
gram is probably due to the following reasons. In prac-
tice, pressure is distributed nonuniformly along the
diameter of Bridgman anvils [7, 17, 21]. For this rea-
son, the explosive ice instability is most likely activated
in the regions where the pressure is approximately
twice its critical threshold value Pc, as follows from the
ratio of pressures corresponding to the Ih–II phase tran-
sition and to the Pc(T) curve at the minimum at T ≈
212 K (figure). For the second phase transition, the crit-
ical curve Pc(T) intersects the phase equilibrium curve
in the metastability region at T ~ 100–140 K and critical
pressures Pc ≈ 0.8–1.1 GPa, where the phase equilib-
rium curve is rather conventional. The authors of
[28−30] have used recent experimental data [25– 27] to
construct the metastable ice diagram, which is drawn in
the figure as two dotted lines labeled 1 and 2 and inter-
secting with each other at the critical point T ≈ 225 K
and P ≈ 0.03 GPa. One can see that the local minimum
in the Pc(T) curve coincides with the phase equilibrium
curve lda–hda. There is evidence that the ice structure
in the vicinity of this phase transition may be unstable
[15, 31, 32]. However, taking into account the pressure
multiplication in the Bridgman anvils and the fact that
the Pc(T) curve goes almost parallel to the equilibrium
curve lda–hda over a rather wide range of temperatures
from 180 to 225 K and drops only in the narrow interval
from 206 to 218 K, one can conclude that this drop for
disk thicknesses h ≤ 0.4 mm is most likely unrelated to
the phase transitions of the lda–hda type.

The critical dependence Pc(T) is obtained in this
work only for the disk thickness h ≈ 0.4 mm. However,
the critical parameters Pc(T) for larger sizes must be
smaller because of the well-known size effect [11]. The
corresponding change can be estimated from the
dependence of the multiplication coefficient M on the
ratio d/h [17]. For example, with a decrease in the d/h
ratio from 25 (this work) to 10, the critical pressure is
expected to decrease also by a factor of 2–3 over the
whole Pc(T) dependence. Because of this, the features
with minima in the region of phase equilibria may
undergo an appreciable shift to lower temperatures.
The resultant shifted Pc(T) curve may be affected by
the phase transitions of the lda–hda type to a much
greater extent.

It follows from the experiments described in this
work that the explosive instability may, in principle,
take place on cosmic bodies of the Europa and
Ganymede type. Ice crusts in these Jupiter satellites
have thicknesses up to h ~ 150 km (at free fall acceler-
ation g ~ 1.5 m2/s). It is quite possible that their temper-
atures and pressures lie in the ranges 130 < T < 273 K
and 0 < P < 0.25 GPa [33], respectively, which is suffi-
cient for the occurrence of the explosion effects consid-
ered in this work.

In summary, explosive ice instability induced by
strong uniaxial compression has been observed in this
work experimentally over wide temperature and pres-
sure ranges. The corresponding dependence of the
instability critical pressure on temperature is found to
display features with minima in the regions of ice phase
transitions. It is assumed that this dependence corre-
lates with the corresponding temperature dependence
of hydrogen bond strength in ice. The phase transitions
in ice may result in an additional (by ~50–70%)
decrease in the mechanical stability of ice.

I am grateful to Yu.I. Prokhorov for useful discus-
sions.
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