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One of the possible hypotheses implies that cosmic gamma-ray bursts can arise when two neutron stars or black
holes merge together. These bursts sometimes continue for several tens of seconds, but the time dependence of
their intensity often exhibits ~102–103 almost periodic small peaks with a period of ~10 ms. A model of oscil-
lations in the lower plasma shell, which arises in cosmic gamma-ray bursts and is located near a neutron star,
is proposed; the greater part of arising plasma in the form of an “upper” shell continues to expand into the sur-
roundings. Other possible interpretations of periodicity of the “small peaks” are also analyzed. © 2001 MAIK
“Nauka/Interperiodica”.

PACS numbers: 98.70.Rz; 95.30.Qd
Typical time dependences of the intensities of cos-
mic gamma-ray bursts (CGBs) are shown in Figs. 1 and
2, where almost periodic small peaks are observed
against a wide background hump.

In addition, after the basic burst with small peaks,
Fig. 1 exhibits two sequential bursts. Therefore, we can
assume that, during this burst, two gradually approach-
ing neutron stars touch one another, then some part is
broken off, returns, and touches the basic residual two
more times 18 and 25 s after the first contact of the
stars. Approximate constancy of the period of small
peaks with a duration of 1–10 ms was pointed out by,
e.g., Postnov [1], who indicated that this property must
be explained because the periods of small peaks should
increase when a fireball scatters.

In this work, we demonstrate that this constancy can
qualitatively be attributed to the stratification of the
scattering plasma “atmosphere” into two regions with
approximately identical thicknesses—an expanding
upper shell and lower one, where small peaks are gen-
erated. Other hypotheses are also possible (see below),
and the presence of the small peaks provides the possi-
bility of gaining information on the fine structure of
expanding fireball from experimental data. Below, we
will explore this problem.

Instead of the spherical case, we first consider the
problem of small oscillations in the atmosphere over
the flat surface z = 0 in a constant gravitational field g.
Assuming that the atmosphere arose from one source,
we treat it as isentropic. In this case, it is convenient to
express the density and pressure of a gas with the adia-
bat p = p0(ρ/ρ0)γ in terms of the reduced dimensionless
0021-3640/01/7309- $21.00 © 20439
temperature Θ = (T/T0) = (ρ/ρ0)γ – 1. Then, the hydrody-
namic equations take the form

(1)

where µ = 1/(γ – 1) and c0 =  is the speed of
sound at the lower boundary z = 0 of the atmosphere. In
the stationary case (v  = 0), we obtain the equilibrium
profiles of the temperature, pressure, and density in the
form

(2)

Here, ξ = z/H0, where H0 = /g is the upper atmo-
sphere boundary. As is seen, the temperature in the
isentropic atmosphere with arbitrary adiabat exponent γ
linearly decreases as the height increases.

Setting Θ = Θ0 + θ, where θ ~ exp(iωt) ! Θ0, we
obtain the equations of small oscillations:

(3)
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whose solution is expressed in terms of the Bessel func-
tion:

(4)

We omitted the second solution because it diverges at
the upper boundary z = H0, i.e., at x = 0. The velocity
v  ~ dθ/dξ ~ x–p – 1Jp + 1(2Ωx) should vanish at the lower
boundary z = 0, i.e., at x = 1. Therefore, the natural fre-
quencies are determined from the equation Jµ(2Ωn) = 0,
where n = 1, 2, 3, … . Using the well-known asymptotic
form of the Bessel function, we find the natural fre-
quencies Ωn ≈ (π/8)(2µ – 1 + 4n).

A case when the adiabat exponent has the one-
atomic value γ = 5/3 is particularly simple. In this case,

µ = 3/2, the Bessel function J3/2(z) = (z–1sinz –
cosz), and the frequencies are determined from the
equation 2Ωn = . Therefore, Ωn ≈ π(2n + 1)/4;
i.e., Ω1 ≈ 3π/4, Ω2 ≈ 5π/4, … .

We note also the case when γ = 3/2, i.e., µ = 2. In this
case, the equation has the form J2(2Ωn) = 0, which gives
Ωn ≈ π(4n + 3)/8, … .

In summary, at γ = 5/3, the first frequency is Ω1 ≈ 2.3,
corresponding to the fundamental period T1 ≈ 3H0/c0.
For the neutron star radius ~10 km, the height of the
lower atmosphere arising at a gamma-ray burst can be
about 10–100 km and the speed of sound in electron–
positron plasma at a temperature of 10 keV is approxi-

θ x p– J p 2Ωx( ), x 1 ξ– , p µ 1.–= = =

2/πz

2Ωn( )tan

Fig. 1. The time dependence of the intensity of a CGB on
January 13, 1979.

Fig. 2. The time dependence of the intensity of a CGB on
January 23, 1999.
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mately one-tenth of the speed of light. In this case, the
oscillation period is T1 ~ 1–10 ms, which can be attrib-
uted to the small peaks against the general hump in the
intensity of a CGB continuing ~1–10–100 s.

Observations indicate that the period of small peaks
does not noticeably increase at the end of the basic
hump and, therefore, the height H0 of the lower atmo-
sphere does not vary. It is reasonable to assume that
most of the plasma formed is ejected upward in the
form of a mushroom (as occurs in surface nuclear
explosions) and forms the upper atmosphere in the
form of a spherical shell, which continues to diverge
into the surroundings at approximately the speed of
light.

According to the magnetic model proposed in [2],
CGBs are induced due to generation of a strong mag-
netic field B in the shear flow of arising plasma, which
revolves around the star body of radius a. In this model,
the linear time increase in the field is described by the

simple magnetohydrodynamic equation  = curl[vB]

in the case of a constant velocity v  = v 0(a/r)nsinθ. For
the initial field B ~ 1012 G and velocity v 0 ~ c/2, this
mechanism can pump the total magnetic energy Wmag

on the order of the kinetic energy of rotation of two
touching neutron stars into the plasma during typical
CGB times. This estimate corresponds to the observed
CGB energies.

For the problem of small peaks, it is important to
note that the field is generated in this mechanism in a
fairly narrow layer, which is assumed to separate the
upper and lower plasma atmospheres and keep approx-
imately constant thickness H0 of the latter.

For completeness, let us consider the case of a
spherical “lower” shell over the neutron star of radius
a. This gives the following remarkable result: in the
case a ! H0, the periods of small oscillations are inde-
pendent of the star size and depend only on the upper
bound H0. 

The equations for a spherical layer are written as 

(5)

But here, g = GM/r2 depends on the radius and the latter
equation provides the profile of equilibrium tempera-

ture Θ0 = θ∗ [(H0/r) – 1], where θ∗  = GM/ H0 =
const.
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Setting as above Θ = Θ0 + θ, we obtain the equations
for small disturbances of the temperature and velocity

(6)

whose solutions for arbitrary γ values are not expressed
in terms of known functions and can be determined by
numerical calculations.

Only for µ = 2, i.e., γ = 3/2, are the relations simpli-
fied and reduced to the equation

(7)

where Ω = ωH0/c0  and y = 1 – (r/H0) < 1. Introduc-
ing the argument z = 2Ωy and setting θ = exp(–z/2)K(z),
we obtain the equation

, (8)

which is satisfied by the known (see [3]) Kummer con-
fluent hypergeometric function K(z) = M(a, b, z) with
the parameters a = 1 – Ω/2 and b = 2. The boundary
condition is that the velocity v  vanishes at the star sur-
face, i.e., at r = a. But assuming that a ! H0, we impose
this condition at r = 0, i.e., at y = 1, z = 2Ω . In this case,
the dimension of the star is omitted.

We found numerically (by the Kummer series) the
values Ωn = 3.3, 5.4, 7.5, and 9.5, which differ little
from the “flat” spectrum determined by the equation
2Ω =  at γ = 5/3 (see above).

The periods of harmonics are represented as

(9)

where T∗  is the period of revolution of satellites in the
orbit with radius H0 from the center of the neutron star
of mass M. Formula (9) yields the periods ~10–3 s,
which coincide with the estimates for the flat model.

Let us clarify the behavior of the expanding outer
CGB shell for which, due to its detachment from the
star, for simplicity we ignore the gravitational strength
g. Omitting g in Eqs. (5), we can find the following sim-
plest self-similar solution with a linear profile of veloc-
ity and a parabolic profile of temperature:

(10)

where R = R(t) = R0  and τ0 = R0/c0 . We
emphasize that this solution is obtained only for the
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one-atomic exponent γ = 5/3, i.e., µ = 3/2. According to

this solution, the velocity  of the outer boundary first
(at t ! τ0) increases with time and then (at t @ τ0)

attains a constant value  =  = const. If this
maximal nonrelativistic value is higher than the speed
of light, it is necessary to use the relativistic equations
of gas motion.

We numerically solved these equations in two vari-
ants. The first and the second variants involve the equa-
tion of state in the intrinsic reference frame for nonrel-
ativistic gas with an adiabatic exponent of 5/3 and for
ultrarelativistic gas, respectively. Figures 3 and 4 show
the radial profile of the temperature calculated for two
successive time instants differing by an order of magni-
tude.

The lines are normalized so that all three maxima
are equal to unity and the right edge is the propagating
front. Both figures also present the parabola of nonrel-
ativistic solution (10). The dotted and solid lines in
these figures are the profiles for the first and the second
variants, respectively.

In contrast to time-independent nonrelativistic pro-
files (10), ultrarelativistic gas concentrates near the
front as time increases and forms the increasing hump
of temperature and density immediately behind the
front. Therefore, a thin scattering spherical shell is
formed and moves virtually at the speed of light.

Ṙ

Ṙmax c0 3

Fig. 3

Fig. 4
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Then, the shell as a “bulldozer” rakes the rarefied
gas of the surroundings. As a result, the X-ray, optical,
and radio afterglows of CGBs arise sequentially, con-
tinue for about a day, weeks, and months, respectively,
and are observed after CGBs.

For treating the periodicity of small peaks in the
model proposed above, it should be assumed that only
one (fundamental) mode of oscillation is excited if the
peaks are indeed strictly periodic. The accuracy of
observed intensities is still insufficient for drawing a
conclusion about strict periodicity. But if it is discov-
ered, another interpretation of the periodicity can be
considered along with the model proposed above.

In particular, one may expect that a body (maybe a
black hole) which is formed when a pair of rapidly
rotating neutron stars merges takes the form of a
Maclaurin general ellipsoid rotating with a period on
the order of milliseconds [cf. Eq. (9)]. It is its rotation
that provides the strict periodicity of small peaks. In
this case, three large humps could be attributed to the
fact that the general ellipsoid loses stability after 18 s
due to the evaporation of two of its opposite vertices,
becomes a Maclaurin two-axis ellipsoid, and, at 25 s,
becomes a single-axis ellipsoid of revolution due to the
further mass evaporation. If this is a black hole consist-
ing of quarks (this possibility was pointed out in [2] and
[4]), these rearrangements of the body shape should be
accompanied by intense coupling of quarks into had-
rons, which induces gamma-ray bursts. It is interesting
to note that the small peaks in Fig. 1 are distinct only in
the first hump, whereas they are less pronounced or
completely absent in two subsequent humps. To our
knowledge, the possibility of Maclaurin rearrangement
of a body generating gamma-ray bursts has not been
discussed yet.

Addition after review. Gershteœn [5] proposed a
different mechanism implying that CGB arises when a
massive Volf–Rayet star collapses, leading to the pro-
duction of a neutron star. Subsequent accretion of mat-
ter from the shell to the star surface results in thermo-
nuclear combustion, which can occur in the oscillator
regime with the characteristic periods τ ~ (Gρ∗ )−1/2 ~
10 ms, where the estimate ρ∗  ~ 1011 g/cm3 for the mat-
ter density at the boundary of a neutron star was
obtained in [6]. Gershteœn [5] emphasized that the anal-
ysis of the small peaks “can be a basic key for the prob-
lem of the gamma-ray bursts.”

This work was supported by the Council for Grants
of the President of the Russian Federation and by the
Russian Foundation for Basic Research (project no. 00-
15-96526 for support of Leading Scientific Schools).
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Possible Galactic Sources of Ultrahigh-Energy Cosmic Rays
and a Strategy for Their Detection Via Gravitational Lensing1
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If decays of superheavy relic particles in the galactic halo are responsible for ultrahigh-energy cosmic rays,
these particles must be clustered to account for small-scale anisotropy in the AGASA data. We show that the
masses of such clusters are large enough for them to gravitationally lens stars and galaxies in the background.
We propose a general strategy that can be used to detect such clusters via gravitational lensing, or to rule out
the hypothesis of decaying relic particles as the origin of highest energy cosmic rays. © 2001 MAIK
“Nauka/Interperiodica”.

PACS numbers: 98.70.Sa; 98.62.Sb
The origin of cosmic rays [1–3] with energies
beyond the Greisen–Zatsepin–Kuzmin (GZK) cutoff
[4] is unknown. One of the possible explanations
invokes decays of metastable superheavy relic particles
X with masses 1013 GeV or higher and cosmologically
long lifetimes [5–7]. Such superheavy particles could
be produced nonthermally at the end of inflation
[8−10]. Their extremely small decay width may be due
to a conservation of some topological charge [6]. Parti-
cles with the requisite properties may also arise from
string theory [11].

If these particles decay into hadrons and photons,
the flux of ultrahigh-energy cosmic rays (UHECR) is
dominated by those particles in the halo of our galaxy
[5]. This can explain the absence of the GZK cutoff.
Even if the superheavy particles decay predominantly
into neutrinos [12], cosmic rays with energies beyond
the GZK cutoff may originate through Z bursts [13]. In
this letter, we concentrate on the former possibility and
assume that observed ultrahigh-energy events [1–3]
come mainly from the decays of relic particles in the
Milky Way halo.

The new data provide an opportunity to test this
hypothesis through gravitational lensing. There is
strengthening evidence for directional clustering of
events in the AGASA data [2, 3]. The latest analyses [2]
show one triplet and six doublets of events, each origi-
nating from the same point in the sky, to ±1.3° accu-
racy. The probability of this clustering to occur by acci-
dent is less than 0.07% [2]. The only way to reconcile
these data with the hypothesis of relic particle decays is
to assume a nonuniform distribution of particles in the

1 This article was submitted by the authors in English.
0021-3640/01/7309- $21.00 © 20443
halo. If the relic particles form regions of increased
density, such lumps may be responsible for the doublets
in the UHECR data. To produce a doublet, a lump of
particles must be of a certain size determined by the
decay probability. Since the mass of the hypothetical
particle is fixed by the energy of UHECR, there is a pre-
diction for the mass of each lump that can give rise to a
doublet. In addition, the celestial coordinates of the
particle cluster are known to one degree accuracy. In
this letter we propose a novel gravitational lensing
technique that can be used to discover a cluster of relic
particles, or to rule out such particles as the origin of
ultrahigh-energy cosmic rays.

Under the assumption that UHECR are caused by
the relic particle decays, the data suggest that (in addi-
tion to a possible uniform distribution) on the order of
ten clusters of X particles exist in our galactic halo.
N-body simulations of dark matter halos predict some
inhomogeneities that can be related to small-scale
anisotropy of UHECR [14] but probably are not suffi-
cient to produce larger clumps. However, additional
interactions of the hypothetical particles can alter this
picture dramatically. We assume that each doublet
comes from a separate cluster of particles. Here, we do
not discuss the dynamics of clustering of the heavy par-
ticles. This issue will be addressed in an upcoming pub-
lication. We note in passing that clumps of dark matter
with masses 108M( may resolve [15] the widely
debated issue of cusps in the halo density profiles [16].

If the X-particle lifetime is τX ~ 1010–1022 yr [6], a
cluster of N particles produces decays at a rate

(1)P
N
τ X

-----= 10 10– –10 22–( )N  yr 1– .∼
001 MAIK “Nauka/Interperiodica”



 

444

        

KUSENKO, KUZMIN

                                                                                
The probability for the decay products to produce an
air shower in a detector is P × (d/L)2, where d ~ 106 cm
is the size of the detector and L ~ 1023 cm is the distance
to the cluster of relic particles. In order to have a dou-
blet in a one-year data set, each cluster must have

(2)

particles. If an X particle has mass mX ~ 1013 GeV [5, 6],
the mass of the cluster is

(3)

The lifetime τX can be in the range from 1010 yr (for the
relic particles to survive until the present) to 1021 yr (for
the total mass of the clusters not to exceed the mass of
the galaxy). Correspondingly, the masses of clusters
can range from one solar mass to 1010M(.

There is a remarkable possibility to discover such
invisible massive objects by what we will call a “lens-
chasing” technique. Although the cluster can be
entirely dark, it can be detected through gravitational
lensing of stars and galaxies behind it. AGASA data
[1, 2] provide the celestial coordinates of the clusters
with a precision of a few degrees.

The Einstein radius of a cluster with mass M is

(4)

A lens of this kind has angular size

(5)
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Fig. 1. A typical light curve for gravitational lensing of a
single source as a function of time (a) and the corresponding
plot of brightness variations for a sample of stars (b) as a
function of celestial coordinates, in arbitrary units. Photo-
metric changes indicate the location of the lens.
and passes the line of sight in time

(6)

We propose to use the small changes in brightness
of stars and galaxies behind the lens on time scales of
the order of one year. The AGASA data specify the
location of the cluster to ±1.3°. It is possible to scan
over a large sample of remote sources in the patch spec-
ified by the UHECR data, recording the brightness of
the background stars and galaxies. The scan must be
repeated after a period of several months. Next, one
should extract the changes in the absolute brightness of
the background stars. A slowly moving lens with a sin-
gle-star light curve shown in Fig. 1a will produce a map
of brightness differentials shown in Fig. 1b. By using
temporal changes in the brightness of stars from a large
sample, one can locate a small lens within a large, 2.5°,
patch of the sky.

The number of background sources chosen for scan-
ning and photometry determines the sensitivity of the
proposed lens-chasing experiment. Let us consider a
sample of n2 stars with an average angular separation of
θb ≈ 2.5°/n. A lens that passes near one of these stars at
an angular distance δθ = θb/2 < θE from the line of sight
will magnify the source by a factor (2θE/θb)2 as com-
pared to its brightness in the absence of the lens. The
change in the star’s brightness over a one-year period is

(7)

Assuming a better than 1% precision photometry, a
sample of 107 background sources allows detection of
clusters with mass 107M( and higher. Smaller masses
require a higher number of background sources. For
comparison, the MACHO project has monitored 11.9
million stars during 5.7 yr of operation [17]. Of course,
lens chasing presents a very different challenge from
that faced by MACHO. Unlike MACHO, which moni-
tors bright nearby stars in the Large Magellanic Cloud
on a continuous basis, we want a relatively infrequent
(once a year) accurate photometry of stars in the direc-
tions of UHECR doublets.

Some of the clusters in the AGASA data lie in the
supergalactic plane [2, 3]. The presence of many rela-
tively close (and, hence, bright) background stars in
these directions makes the corresponding clusters par-
ticularly appealing for lens chasing.

One can, of course, refine this technique. If the lens-
ing cluster is discovered after several initial crude
scans, one can narrow down its coordinates and per-
form a more detailed monitoring of closely spaced
sources around the location of the lens.
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We note in passing that future detectors can observe
yet another signature of the same kind of sources.
Decays of superheavy particles and subsequent frag-
mentation can produce excited hadrons. Their decays,
in turn, can produce simultaneous air showers sepa-
rated by thousands of kilometers. The time delay is δt =
tγ–2∆E/E, where t is the time of flight, γ ~ 1011 is the
Lorentz factor, and ∆E/E ~ 1. The difference in the
arrival time δt ~ 10–11 s, and the distance between air
showers is on the order of 103 km. Future space-based
detectors, such as EUSO and OWL, will be able to
observe such spatially separated events in coincidence.

To summarize, a small-scale anisotropy in the
AGASA data demands that, if the UHECR are due to
decaying relic particles in the halo, these particles form
clusters with coordinates specified by the cosmic ray
events. The masses of such clusters can range from M(

to 1010M(. We have proposed a general strategy for
detecting such clusters by their gravitational lensing of
the background stars and galaxies.

This work was supported by the NATO Collabora-
tive Linkage Grant no. PST.CLG.976397. In addition,
A.K. was supported by the US Department of Energy,
grant no. DE-FG03-91ER40662, Task C. The work of
V.A.K. was supported in part by the Russian Founda-
tion for Basic Research, project no. 98-02-1744a.
V.A.K. thanks UCLA for hospitality during his visit,
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An idea that Lorentz invariance can be violated was proposed by Coleman and Glashow to overcome the astro-
physical problems of air showers of ultrahigh energies E > 1020 eV. This statement can be tested by analyzing
experimental data on these showers. The longitudinal development of showers and the distribution of the depths
of shower maxima were calculated in the model of quark–gluon strings with allowance made for the Landau–
Pomeranchuk–Migdal effect and the interactions of ultrahigh-energy neutral pions. Comparison of the calcula-
tions with available experimental data provides a new bound |cγ – cπ°| < 10–20 for the possible difference
between the speeds of photons and neutral pions. This bound becomes |cγ – cπ°| < 10–22 when one takes the upper
limiting value for the observed depth of maximum. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 13.85.Tp; 96.40.Pq; 11.30.Cp
The detection of giant air showers (GASs) of ener-
gies above 1020 eV [1–3] has revealed some problems.
First, these energies are well beyond a cutoff that arises
in the energy spectrum of primary cosmic rays (PCRs)
due to interaction with relict photons, i.e., due to the
Greisen–Zatsepin–Kuz’min (GZK) effect [4, 5]. A spe-
cific mechanism that is responsible for such high ener-
gies of particles remains an enigma. Second, the distri-
bution of GAS arrival directions does not contradict the
isotropic one. It is surprising that the arrival directions
of ultrahigh-energy particles, which must travel along
almost straight lines in known intergalactic magnetic
fields, do not explicitly point to sources. These particles
possibly arrive from cosmological distances [6], which
contradicts the GZK prediction.

These problems were called the GZK paradox. To
overcome this paradox, various extravagant ideas have
long been proposed. One of such ideas was proposed
about 30 years ago by Kirzhnits and Chechin [7, 8],
who assumed possible violation of Lorentz invariance
at ultrahigh energies and the gravitational origin of this
violation. Recently, as the number of detected GASs of
energies above 1020 eV considerably increased [9, 10],
the interest in ideas implying Lorentz invariance viola-
tion (see, e.g., [11–16]) and in other extravagant suppo-
sitions grew. Topological defects, active galactic nuclei,
γ-ray bursts [17], magnetic monopoles [18], Z-boson
bursts (which are generated in collisions of ultrahigh-
energy neutrinos with relict neutrinos near the Earth)
[19], and decay of hypothetical very massive relict par-
0021-3640/01/7309- $21.00 © 20446
ticles [20, 21] were considered as sources of ultrahigh-
energy PCRs. Some authors [22–24] regarded the
quantum properties of space–time, as well as quantum
gravity, as causes of possible violation of Lorentz
invariance.

In view of ideas proposed in [11], we consider here
a new interesting possibility of testing Lorentz invari-
ance through the results for observed longitudinal
development of extensive air showers (EASs) of ener-
gies E > 5 × 1019 eV. Due to the assumption that maxi-
mal attainable speeds of photons cγ and neutral pions
cπ° are different, neutral pions do not decay at energies

Eπ° ≥ mπ°/ , which results in faster dissipation
of the energy of a PCR particle, as compared to the
standard model. Therefore, the development of air
showers occurs earlier, and, as a consequence, the depth
Xmax of their maximum decreases. Below, the supposi-
tion that ∆cγπ° = |cγ – cπ°| < 10–22 and Eπ° = 1019 eV will
be referred to as hypothesis 1. To estimate the effect of
the degree of Lorentz invariance violation, we consider
also hypothesis 2 in which ∆cγπ° = 10–20 and Eπ° =
1018 eV. The longitudinal development of showers and
the distribution of the depth Xmax of shower maximum
are calculated in the model of quark–gluon strings
(QGSs) [25] with allowance made for the Landau–
Pomeranchuk–Migdal effect [26] and interactions of
ultrahigh-energy neutral pions with atomic nuclei in the
atmosphere (standard variant) and with allowance

cγ
2 cπ°

2–
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made for hypotheses 1 and 2. Comparison of calcula-
tions with available experimental data provides a new
bound for the difference of maximal attainable speeds
of photons and neutral pions.

The experimental procedure at Fly’s Eye set and at
its updated variant HiRes [10] provides determination
of the cascade curve of a GAS. Figure 1 shows (points
with error bars) experimental data [3] for the cascade
curve of GAS of energy E ~ 3.2 × 1020 eV and (lines)
our calculations. The dashed line is the standard variant
of simulation. Solid lines 1 and 2 were calculated with
hypotheses 1 and 2, respectively. It should be borne in
mind that experimental data compose an individual
cascade curve, whereas the calculations correspond to
average curves (statistics of simulated showers is
~1000). Experimental estimate Xmax = 815 ± (40) +
45 − 35 g/cm2 [3], where the number in the parentheses
is the systematic error and the last two numbers are sta-
tistical errors, for the depth of shower maximum can be
compared to the theoretical values Xmax = 875, 866, and
836 g/cm2 for the standard variant (dashed line), as well
as for lines 1 and 2, respectively. Errors in calculated
estimates are less than several grams per centimeter
squared. Note that Fig. 1 and above estimates for the
depth Xmax demonstrate that Lorentz invariance viola-
tion can be tested through data on the longitudinal
development of GASs and hypotheses 1 and 2 are
attractive for improving agreement in interpretation of
experimental data.

More detailed information is shown in Fig. 2, where
the distributions of the depths Xmax for (dashed histo-
gram) the standard variant of the model and for (solid
histograms 1 and 2) hypotheses 1 and 2, respectively,
are plotted. Figure 2 demonstrates that the standard
variant is free from showers with the depth of maxi-
mum Xmax = 815 g/cm2. Only an increase in the experi-
mental estimate for the depth Xmax by the sum of sys-
tematic and statistical errors provides agreement
between the experimental estimate and calculation. The
computational results with hypothesis 1 and especially
with hypothesis 2 do not noticeably differ from the
experimental value. In particular, calculation with
hypothesis 2 indicates that a considerable fraction
(about 40%) of showers of energy E ~ 3.2 × 1020 eV
attains a maximum up to a depth of 815 g/cm2. Thus, an
analysis of the distributions of the depths Xmax corrobo-
rates the above conclusion that experimental data on
the longitudinal development of GASs and, in particu-
lar, on the depth Xmax of the shower maximum can be
used as a test of possible Lorentz invariance violation in
the ultrahigh-energy region. Because the calculation
with hypothesis 2 agrees well with experimental data,
the upper limit of violation can be estimated as ∆cγπ° <
10–20. A more stringent bound ∆cγπ° < 10–22 is obtained
when one takes the upper value (including the total
value 60 g/cm2 [3] of systematic and statistical errors)
for the observed depth Xmax of the maximum. A more
JETP LETTERS      Vol. 73      No. 9      2001
stringent bound cannot be obtained because the calcu-
lated results become virtually independent of the differ-
ence ∆cγπ° at small values of this difference. The bounds
obtained for the difference of maximal attainable
speeds of other particles are of approximately the same
order of magnitude [27–29].

Finally, let us consider the dependence of the depth
Xmax of shower maximum on the energy E of PCR par-

Fig. 1. The cascade curve for the E = 3.2 × 1020-eV GAS.
The points with error bars are experimental data [3]. The
dashed line is the standard variant of our calculations. Solid
lines 1 and 2 were calculated with hypotheses 1 and 2,
respectively [11].

Fig. 2. The distributions of the depth Xmax for (dashed line)
standard variant and (solid lines 1 and 2) with allowance
made for hypotheses 1 and 2, respectively [11].
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ticles. Experimental data [30], which were obtained in
the energy range 1017 – 2 × 1018 eV, are shown by thick
solid line in Fig. 3, where the solid polygon around this
line is the range of systematic and statistical errors. The
dotted lines between open circles and squares are the
calculations [30] for primary protons in the hadron-
interaction models SYBILL and QGSJet, respectively.
The dash–dotted lines between closed circles and
squares are the calculations for iron primary nuclei in
the same models. An important characteristic of a
shower is the variation ∆Xmax in the depth of shower
maximum when the energy E increases by an order of
magnitude. This quantity is abbreviated as ER [31]. All
the current models of hadron interactions give values
ER ~ 60 g/cm2 with a small error. Experimental data [30]
provide the estimate ER = 91.4 ± (15.3) ± 9.6 g/cm2,
where the number in the parentheses is the systematic
error and the latter term is the statistical error. Such a
large value does not agree with any model of hadron
interactions. A natural interpretation of this value con-
sists in a hypothesis that the chemical composition of
the PCRs changes from a heavy mixture dominated by
iron nuclei at energies above 1017 eV to a light mixture

Fig. 3. The depth Xmax of the shower maximum vs. logE,
where E is the shower energy in electronvolts. The thick
solid line is experimental data [30], the solid polygon
around this line is the range of systematic and statistical
errors. The dotted lines between open circles and squares
are the calculations for primary protons in the hadron-inter-
action models SYBILL and QGSJet, respectively. The
dash–dotted lines between closed circles and squares are the
calculations for primary iron nuclei in the same models. The
dotted and dash–dotted lines in the energy range 1019–1021 eV
are calculated in the standard variant for primary protons
and primary iron nuclei, respectively. Solid lines 1 and 2 in
this energy range are calculated with hypotheses 1 and 2
[11], respectively. The asterisks with error bars are experi-
mental data for the shower described in [3].
dominated by protons at energies above 2 × 1018 eV.
This interpretation is supported by an observed value
α = 0.73 ± 0.03 of the exponent in the energy depen-
dence Nµ ~ Eα of the number of muons. Because vari-
ous models give α ~ 0.85, the observed α value can be
attributed only to a change in the composition of the
PCRs from a heavy mixture to a light one.

The dotted and dash-dotted lines in the energy range
1019–1021 eV in Fig. 3 are our calculations in the stan-
dard variant for primary protons and primary iron
nuclei, respectively. Because we use the QGS model,
which does not take jets into account, Fig. 3 exhibits a
slight decrease in the depth Xmax compared to that
expected in the QGSJet model [30]. Solid lines 1 and 2
in this energy range are our calculations with hypothe-
ses 1 and 2, respectively. The asterisks with error bars
are the experimental data for GAS of the highest energy
E ~ 3.2 × 1020 eV [3]. As well as Figs. 1 and 2, Fig. 3
demonstrates that the calculations with hypotheses 1
and 2 do not contradict experimental data, and, there-
fore, the above-indicated bounds on the maximal
attainable speeds of photons and neutral pions are
valid.

Figure 3 allows one to analyze also various alterna-
tive hypotheses. First, the simplest alternative is the
assumption that the highest energy particles of the
PCRs are nuclei. However, the left part of Fig. 3 indi-
cates that the primary particles of energies E > 1019 eV
are most likely protons, because the experimental data
lie near the line for protons. The muon fraction in
almost vertical 2.4 × 1020-eV GAS, which was detected
at AGASA [2], is also consistent with that calculated
for a primary proton [32].

Second, another alternative possibility is a change in
the hadron interactions in the ultrahigh-energy region.
As is seen in Fig. 3, frequently used models SYBILL
and QGSJet give larger values of the depth Xmax than
that in the QGS model, which is used in this study. Per-
turbative QCD calculations [33, 34] demonstrated that
the QGS model leads to more rapid dissipation of the
primary-particle energy and, therefore, underestimates
the depth Xmax compared to the QCD. Thus, to reduce
the depth of shower maximum, the concept of hadron
interactions should be changed considerably so as to
increase the dissipation rate of primary-particle energy
at ultrahigh energies. But such a change is beyond rea-
son yet.

Third, one can assume that GASs are induced by
primary photons arising, e.g., in the chain of decays of
hypothetical very massive particles, which form dark
matter in the Galaxy [20]. In view of this alternative, we
note that a photon intersecting a magnetic field line in
the Earth’s magnetosphere generates an electron–pho-
ton cascade [35, 36]. As a result, instead of one particle,
100–1000 particles (electrons and photons), which are
distributed in energy, fall on the atmosphere. These par-
ticles have characteristic energy E ~ 1018 eV and induce
JETP LETTERS      Vol. 73      No. 9      2001
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a shower with the depth Xmax ~ 870 g/cm2 of the maxi-
mum. This value scarcely fluctuates and, therefore, can
hardly be consistent with an experimental estimate. For
a cascade induced by a 3.2 × 1020-eV photon, the depth
is Xmax = 1100 g/cm2 disregarding the Landau–Pomer-
anchuk–Migdal effect and is considerably larger when
this effect is taken into account. Thus, this hypothesis
does not result in a decrease of the depth of maximum.
Moreover, the fraction of muons in these showers
should be approximately one-thirtieth of that in hadron-
induced showers [37] if the cross section for photonu-
clear reactions is not assumed to sharply increase with
energy. This cross section increases very slowly up to
energies Eγ ~ 1016 eV [38], and there are no reasons to
assume that it sharply changes at Eγ ~ 1018 eV. As was
mentioned above, the fraction of muons in a 2.4 × 1020-eV
shower [2] corresponds to that calculated for protons
and is approximately 30 times as large as that estimated
for a shower induced by the primary photons. More-
over, an inclined 3 × 1020-eV GAS [1], which was
detected at the Yakutsk array, consists virtually of
muons only. If this shower were induced by photons, its
energy estimate would be larger by a factor of ~30, i.e.,
E ~ 1022 eV, which is inconsistent with the array area
~10 km2 and observation time ~10 years.

Finally, we note that the Chudakov effect [39] is of
little importance.1 Indeed, the minimal scattering angle
of photons is θmin ~ 1/γ, where γ ~ 1011 is the Lorentz
factor. Therefore, the scattering occurs over the dis-
tance r ~ d/θmin ~ 10–2 cm (d ~ 10–13 cm is the charac-
teristic nuclear dimension), which is much less than the
free path λ ~ 1 km for the interaction of neutral pions in
the rarefied atmosphere.

An idea of small Lorentz-invariance violation [11],
proposed for overcoming the GZK paradox, which
results in the stability of neutral pions at ultrahigh ener-
gies, can be tested through GAS data. Our analysis of
the longitudinal development of GASs and distribution
of the depth Xmax of shower maximum demonstrates
that possible violation is ∆cγπ° ≤ 10–20. A more stringent
bound ∆cγπ° ≤ 10–22 is obtained when one takes
the upper value (including the total systematic and sta-
tistical errors) for the observed depth Xmax of the maxi-
mum [3].

Measurements of the depth of maximum at the new
HiRes array [9] and at future arrays Auger [40], Tele-
scope Array [41], Air Wath [42], etc., as well as more
accurate QCD predictions for the interactions of ultra-
high-energy hadrons, will provide more stringent
bounds.

We are grateful to G.T. Zatsepin for valuable com-
ments and to I.M. Dremin, who proposed that we ana-
lyze the role of the Chudakov effect. This work was
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The η  3π0 decay was studied with the SND detector at the VEPP-2M e+e– collider. The parameter that
describes deviation of the Dalitz plot of events from a uniform distribution was found to be α = –0.010 ± 0.021 ±
0.010. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 13.25.Jx; 14.40.Aq
According to the one-loop approximation of the
chiral perturbation theory, the Dalitz plot for η  3π0

events is uniform [1, 2]. However, when the final-state
pion interaction is taken into account [3], the matrix
element of this decay can be represented as

where Ei is the energy of ith pion in the rest frame of the
η meson and ρmax is the maximum value of the distance
ρ from the center of the Dalitz plot. This matrix element
was previously examined in [4–7]. All values obtained
for the parameter α are negative, and the maximum
deviation of these values from zero is 2.5σ (see Table
1). Theoretical models [3] give α = –0.014 and –0.007,
where the second value is preferable because it includes
higher order corrections.

In this work, the η  3π0 decay is examined in the
process e+e–  φ  ηγ. An experiment was carried
out at the VEPP-2M collider with the SND detector [8].
The accumulated integrated luminosity was 4.4 pb–1 in
1996 (PHI_96 experiment) and 8.7 pb–1 in 1998
(PHI_9801 and PHI_9802 experiments), which corre-
sponds to 8.4 × 106 and 13 × 106 of produced φ mesons,
respectively. The decay was analyzed and the relative
probability of φ  ηγ transition was determined in [9].

The Dalitz plot was analyzed under rather stringent
conditions, which provide virtually total suppression of
background. We selected seven-photon events, for
which the polar angle was greater than 36° and 27° for
the photon energy less and higher than 50 MeV, respec-
tively. For selected events, kinematic reconstruction
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was performed under the assumption that the events are
due to the process e+e–  ηγ  3π0γ  7γ. In [9],
we demonstrated that, under these conditions, the
detection efficiency of the process was 5%, which
ensured determination of the relative decay probability
of the φ  ηγ decay without noticeable systematic
shift. The number of events of the basic background
process φ  KSKL is ~1% of the total number of
selected events. Simulation demonstrates that the back-
ground events are uniformly distributed in the Dalitz
plot. Figure 1 shows the energy distribution of recon-
structed π0 mesons in simulation and experiment. In
[9], we found that inaccuracy in the efficiency determi-
nation provided a 2% error in the number of events of
the effect.

After subtraction of the background, the distribution
of events in the parameter z was constructed (see Fig. 2)
and was analyzed as follows: the z interval was divided

into ten parts, and then the number  was compared

with the calculated one  = (1 + αzi)fi,
where fi is the phase-space volume; εij is the matrix of the
event detection efficiencies, which are determined from the

N j
exp

N j
thr Cεiji 0=

10∑

Table 1.  The α values obtained in previous studies

α The number
of events

Baglin et al. [4] –0.32 ± 0.37 192

Alde et al. [5] –0.022 ± 0.023 5 × 104

Abele et al. [6] –0.052 ± 0.020 9.8 × 104

Teige  et al. [7] –0.005 ± 0.008 8.75 × 104
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simulation; and C = (1 +
αzi)f i is the normalization factor. The phase-space vol-
ume is calculated by the Monte Carlo method with an
accuracy of 0.4%. The α parameter was determined by
the maximum likelihood method. The likelihood func-

tion was constructed in terms of  and  in the
form

(1)

and its minimum with respect to the only free parame-
ter α was found. Table 2 presents the results of approx-
imation. The α values that were obtained in three inde-
pendent experiments agree with each other within the
statistical errors. Joint approximation of data from all
three experiments gives the value

(2)

The former error is the statistical error, and the latter
one is systematic error, which is due to inaccuracy in
simulation and statistical errors in εij.

Ni
exp/ ε jii 1=

10∑j 1=
10∑i 1=

10∑

Ni
exp Ni

thr

F Ni
thr Ni

exp– Ni
exp+

Ni
exp

Ni
thr

----------ln
 
 
 

,
i 1=

10

∑=

α –0.010 0.021 0.010, χ2/ndf±± 4.4/9.= =

Fig. 1. The sum of the energy distributions of π0 mesons.
The histogram is the simulation and the points are the exper-
imental data.

Table 2.  The α values obtained in different experiments.
Only statistical error is presented

Experiment α The number 
of events χ2/ndf

PHI_96 0.002 ± 0.035 4883 5.6/9

PHI_9801 –0.053 ± 0.035 3702 7.6/9

PHI_9802 0.030 ± 0.039 3916 5.7/9
Result (2) is consistent with data of other experi-
ments [4–7] and theoretical predictions [3] but also
agrees well with zero value of the parameter α. In this
work, its error is determined by the experimental statistics.
Therefore, the accuracy can be improved at larger inte-
grated luminosity in the experiment e+e–  φ  ηγ.

This work was supported by the “Russian Universi-
ties” Foundation (project no. 3N-339-00) and by the
Russian Foundation for Basic Research (project
nos. 99-02-16813, 00-02-17478, and 00-02-17481).

REFERENCES

1. J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 539
(1985).

2. P. Di Vecchia et al., Nucl. Phys. B 181, 318 (1981).

3. J. Kambor, C. Wiesendanger, and D. Wyler, Nucl. Phys.
B 465, 215 (1996).

4. C. Baglin et al., Nucl. Phys. B 22, 66 (1970).

5. D. Alde et al., Z. Phys. C 25, 225 (1984).

6. A. Abele et al., Phys. Lett. B 417, 193 (1998).

7. S. Teige et al., hep-ex/0002064.

8. N. N. Achasov et al., Nucl. Instrum. Methods Phys. Res. A
449, 125 (2000).

9. M. N. Achasov, S. E. Baru, K. I. Beloborodov, et al.,
Pis’ma Zh. Éksp. Teor. Fiz. 72, 411 (2000) [JETP Lett.
72, 282 (2000)].

Translated by R. Tyapaev

Fig. 2. The z distribution of events. The histogram is the
simulation, and the points are the experimental data.
JETP LETTERS      Vol. 73      No. 9      2001



  

JETP Letters, Vol. 73, No. 9, 2001, pp. 453–456. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 73, No. 9, 2001, pp. 513–516.
Original Russian Text Copyright © 2001 by Bystritsky, Glavanakov, Grabmayr, Krechetov, Saigushkin, Tabachenko, Fix, Schuvalov.

                                                                                                                                                     
Estimate of the D(1232) Component in the 12C Nucleus
V. M. Bystritsky1, I. V. Glavanakov2, P. Grabmayr3, Yu. F. Krechetov2,*,

O. K. Saigushkin2, A. N. Tabachenko2, A. I. Fix4, and E. N. Schuvalov2

1 Joint Institute for Nuclear Research, Dubna, Moscow region, 141980 Russia
2 Research Institute of Nuclear Physics, Tomsk Polytechnical University, Tomsk, 634050 Russia

* e-mail: krechet@npi.tpu.ru
3 Institute of Physics, Tübingen University, D-72076 Tübingen, Germany

4 Tomsk Polytechnical University, Tomsk, 634034 Russia
Received March 22, 2001

The cross section for the 12C(γ, π+p) reaction was measured in the range of the ∆(1232) isobar. The data were
analyzed using the models taking into account the nucleon and isobaric degrees of freedom of the 12C nucleus.
The conclusion is drawn that in the large-momentum transfer range the π+p pairs are produced in the course of
the direct knocking-out of ∆++ isobar from the nucleus. The probability of finding the ∆ isobar in the ground-
state 12C nucleus is estimated at 0.018 ± 0.005 ∆ isobars per nucleon. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 25.20.Lj; 21.30.-x
The isobaric degrees of freedom in nuclei are part of
the fundamental problem of nucleon–nucleon interac-
tion at medium and short distances (see reviews [1, 2]).
The exchange of π and ρ mesons between nucleons
may give rise to the virtual N∆ and ∆∆ states. In 1971,
Gerasimov suggested using the process of isobar
knocking-out by high-energy particles for studying the
isobaric degrees of freedom in nuclei [3]. Theoretical
estimates [4, 5] and the results of a few experiments on
setting off the mechanism of direct isobar knocking-out
[6, 7] gave a value of 0.5–4% for the contribution of
∆-isobaric states to the wave function of p-shell nuclei.
Such a small value hampers experimental observation
of the ∆ component in the collisions of particles with
nuclei. The main difficulty consists in setting off the
background reaction mechanisms. We solved this prob-
lem by measuring the cross section for π+p-pair produc-
tion in the reaction

(1)

in the range of large momentum transfer to the residual
nucleus X. The idea of the experiment is that the direct
production of π+p pairs by the nucleons in a nucleus is
forbidden for reaction (1), whereas the background is
concentrated in the small-momentum transfer range.

The experiment was conducted on an electron
bremsstrahlung beam of the Tomsk synchrotron. The
experimental setup included two channels for detecting
the positive pion–proton coincidences in the coplanar
geometry.

Positive pions with an average momentum of
181 MeV/s were detected by a strongly focusing mag-
netic analyzer [8] arranged at an angle of 54° to the

γ C12 π+ p X+ + +
0021-3640/01/7309- $21.00 © 20453
photon beam axis. Angular and momentum acceptan-
ces of the analyzer were 3 × 10–3 sr and 24%, respec-
tively. The pion momentum was measured with an
accuracy of ~1% using a scintillation hodoscope placed
in the focal plane of the analyzing magnet.

Protons with energies in the range Tp = 50–130 MeV
were detected by a (∆E, E) scintillation spectrometer at
an angle θp = (75 ± 19)° to the photon beam axis. The
solid angle in the proton channel was determined by the
∆E detector and chosen to be 0.26 sr. The E detector of
the proton spectrometer consisted of three counters
arranged one above the other, each with a scintillator of
size 10 × 10 × 50 cm. A joint analysis of the pulse
amplitudes in the photomultipliers of the ∆E and E
detectors facing each of the scintillators on both sides
allowed one to determine the polar angle and the energy
of a proton. The accuracies of measured proton energy
(σT) and proton emission angle (σθ) were 4 MeV and
3°, respectively. The accuracy σφ ~ 2° of measuring the
azimuthal emission angle of a proton was determined
by the vertical size of the E counter.

For monitoring the stability of (∆E, E)-spectrometer
operation, two auxiliary narrow scintillation counters
with absorbers were placed behind the spectrometer. In
parallel with the accumulation of the π+p events, the
pulse amplitude spectra were measured for the ∆E and
E detectors, which were triggered by the coincident
spectrometer and auxiliary counter pulses. Two por-
tions of these spectra were identified and monitored,
one corresponding to pions and another to the lowest
energy protons. This energy was determined by the
absorbers and chosen within the spectrometer operat-
ing range.
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To reduce the cosmic-ray background, a large-area
scintillation veto counter was placed over the detectors
in the pion channel. For the same purpose, the final trig-
ger was formed only during the accelerator pulse. This
allowed the cosmic-ray background to be reduced
down to a level of 2%.

A graphite plate of natural isotope composition,
with a thickness of 4.35 × 1022 nucleus/cm2 for the pho-
ton beam, was used as a target. The total energy of the
photon beam was measured by a gauss quantometer [9]
with an accuracy of 3%. The 12C(γ, π+p)-reaction
events were accumulated at two electron energies Ee =
420 and 500 MeV. The accidental coincidence level
depended on the energy of detected protons and was
determined by the intensity of events beyond the π+p-
coincidence correlation peak. Its magnitude in the
operating range changed from 6% at Tp = 50 MeV to
1% at Tp > 80 MeV.

Fifty-two π+p coincidences were detected in the
experiment. Figure 1 demonstrates their distribution
over the proton exit angle and energy.

With the aim of determining the kinematic region
where the reaction mechanisms caused by nonnucleon
degrees of freedom may dominate, analysis was carried
out of the contributions from the background π+p-pro-
duction mechanisms. For this purpose, we employed a
model described in [10] (see also [11–13]). This model

Fig. 1. Distribution of events over the proton emission angle
θp and its kinetic energy Tp for two electron energies Ee. The
events shown by the black circles were used to estimate the
experimental reaction cross section.
takes into account the one-, two-, and three-nucleon
modes of incident-photon absorption and the single-
pion production on nucleons, as well as the pion and
nucleon rescattering by the residual nucleus. The cross
sections for background reactions were calculated for
the photon energies Eγ = 400 and 450 MeV and aver-
aged over the proton polar angles θp = 56°–94° and
pion energies Tπ = 71.5–106.5 MeV; the results are pre-
sented in Fig. 2. The background is mainly due to the
π+n- or π0p-pair production followed by charge-
exchange rescattering of a neutron into a proton or a π0

meson into a π+ meson. According to the calculation, the
background is concentrated in the range of small
momentum transfer.

To analyze the data for Ee = 500 MeV, we took into
account the background caused by the pion-pair pro-
duction in the 12C(γ, π+p)π–11B reaction (it is absent at
Ee = 420 MeV). The corresponding cross section, cal-
culated using the DWIA model [14], is shown in Fig. 2
by the dot-and-dash curve.

Based on the results of these calculations, the
boundary of the kinematic region was chosen at Tp =
80 MeV (shown by the dashed line in Fig. 1), beyond
which (at higher proton energies and, correspondingly,
larger momentum transfer) the contribution from the
π+p-production background does not exceed 3% of the
experimental reaction yield at Ee = 500 MeV and is
negligible at Ee = 420 MeV. Because of this, further
analysis was carried out for the events that fell within
the region to the right of the dashed line in Fig. 1.

The experimental cross section for the π+p-pair pro-
duction in reaction (1) was averaged in the following
kinematic intervals:

(2)

Based on the data obtained for two electron energies
Ee = 420 and 500 MeV, the cross section was found to be

(3)

For the events in the indicated kinematic region, the
average photon energy Eγ was 355 MeV. Experimental
cross section (3) is shown in Fig. 2 by the dot. The ver-
tical bar denotes the total error of measuring cross sec-
tions, and the horizontal bar is the standard deviation
obtained for Tp on the assumption that the events are
uniformly distributed over the averaging interval.

Figure 3 shows the distribution of events over the
invariant masses of π+p pair. One can see that the events
in region (2) fall within the range of ∆(1232)-resonance
masses. For this reason, we assume that the consider-
able experimental reaction yield in this region is due to
the isobaric nuclear degrees of freedom.

T p 80–120 MeV;=

Tπ 71.5–106.5 MeV;=

θp 56°–94°.=

d3σ
dEpdΩpΩπ
--------------------------- 8.5 2.4 0.5 

nb

MeV sr2
---------------------.±±=
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The experimental cross section for reaction
12C(γ, π+p) measured in kinematic region (2) was ana-
lyzed within the framework of a model described in
[15, 16]. This model is based on the assumption that the
γ∆++  π+p process, where the incident photon is
absorbed by the nuclear ∆++ isobar, is the dominant
mechanism of our reaction in the large-momentum
transfer range. This approach was implemented in a
practical manner within the framework of impulse
approximation and using the closure relation when
summing over the experimentally undetectable final
nuclear states. In this case, the following expression
holds for the squared modulus of reaction amplitude in
Eq. (1):

(4)

Here, fi (i = π, p) are the suppression factors accounting
for the particle absorption in nucleus; they are functions
of the pion and proton kinetic energies, respectively.
The function ρ∆(p) denotes the momentum distribution
for the ∆++ isobar in the ground-state 12C nucleus. The
amplitude Tγ∆ → πN of elementary γ∆++  π+p process
was calculated using the diagrammatic technique in the
nonrelativistic approximation [15, 16].

The momentum distribution ρ∆ in Eq. (4) was writ-
ten as

(5)

Here, (p) are the occupation numbers of the ∆ isobar
with momentum p in the 12C nucleus with effective
radius R, which was chosen to be 3.2 fm.

Because of the lack of literature data on the momen-
tum distribution ρ∆ in p-shell nuclei, we used the results

of work [17], where the occupation numbers (p) are
given for the ∆(1232)-isobar states of nuclear matter. It

was assumed that (p) and (p) are linearly related
to each other taking into account that the densities of
the nuclear matter and the 12C nucleus are different. The
momentum distribution ρ∆ was normalized as

(6)

where A = 12 is the mass number of the target nucleus

and  is the number of ∆ isobars per nucleon in the
12C nucleus. The α multiplier stands for the ratio of the
number of ∆++ isobars to the total number of ∆ isobars
in the nucleus. It follows from the SU(2) symmetry of
the NN  N∆ process that α = 15/64 (see also [7]).

To compare the expected reaction cross section due
to the isobaric nuclear degrees of freedom with the
cross section for background reactions and the experi-
mental cross section, the cross section calculated for

M fi
2 ρ∆ p( ) f π f p Tγ∆ πp→

2.=

ρ∆ p( ) 4
4
3
---πR3n∆

c p( ).=

n∆
c

n∆
m

n∆
m n∆

c

ρ∆ p( ) pd

2π( )3
-------------∫ αAN∆

c ,=

N∆
c
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the 12C(γ, π+p) reaction in the above-mentioned approx-
imations is shown in Fig. 2 as a function of proton
energy. The cross section is averaged over the proton
exit angle and the pion energy, according to Eq. (2).

The calculations were performed with the value  =
0.015 that was experimentally measured for the pion
double charge-exchange [7]. One can see in Fig. 2 that
the cross-section maximum due to the π+p-pair produc-
tion by knocking out the ∆ isobar with a photon is
strongly shifted to higher proton energies and, hence, is
well-defined kinematically. The experimental cross
section at Tp > 80 MeV is almost two orders of magni-
tude larger than the theoretical estimates obtained with
the models allowing for only the nucleon degrees of
freedom in the 12C nucleus. This fact, being particularly
important for low-intensity signals, is one of the main
advantages of the method used in this work.

The computational results presented in Fig. 3 for the
cross section dependence on the invariant mass of π+p
pair indicate that the model used does not contradict the
experimental data.

Considering the aforesaid and regarding the quan-

tity  in Eq. (6) as a free parameter, we determined its
value on the condition for best coincidence between the
calculated and the measured cross section (3):

 = 0.018 ± 0.005 ± 0.001 ∆ (7)

isobars per nucleon.

The resulting  value agrees well with the esti-
mate made in [7].

The systematic error in Eq. (7) is due to the mea-
surement procedure. The use of physical constants and

N∆
c

N∆
c

N∆
c

N∆
c

Fig. 2. Differential cross section for the 12C(γ, π+p) reac-
tion: the solid and dotted histograms correspond to the sin-
gle-pion production at Eγ = 400 and 450 MeV, respectively,
in the model [10] based on the nucleon degrees of freedom;
the dot-and-dash curve corresponds to the pion-pair produc-
tion; the solid line corresponds to the model of direct knock-
ing-out of the ∆(1232) isobar; and the dot is for the experi-
mental cross section.

(n
b/
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methods of calculation of some low-accuracy nuclear
effects is another source of a sizable systematic error in
the reaction model. In particular, our estimates show
that the systematic error introduced by the uncertainty
in magnetic moment of the ∆++ isobar and in the final-
state interaction is 0.006 ∆ isobars per nucleon.

This work was supported by the Russian Foundation
for Basic Research, project nos. 96-02-16742, 97-02-
17765, and 99-02-16964.
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X-ray Spectrum Determination from the Angular Dispersion
of Radiation in a Diamond Prism
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The X-ray spectrum of hard polychromatic radiation with energies of up to 40 keV was obtained from the angu-
lar dispersion of the radiation beam in a diamond prism. In contrast to the classical optical scheme, the beam
to be analyzed is passed through the entrance face of the prism without refraction and is directed onto the exit
face at a glancing angle ~(2δ)1/2, where δ is the real part of the decrement of the refractive index for the short-
wavelength edge of the spectrum. The spectrum distortions caused by the intersection of the reciprocal lattice
points by the Ewald sphere at a fixed number of wavelengths λ are minimized by the use of the angular diver-
gence of the beam of ~10′ in the plane perpendicular to the refraction plane. In the energy range of 8–9 keV, an
energy resolution of less than 100 eV was obtained, which exceeds the corresponding parameter for cooled
semiconductor detectors. The measuring scheme suggested makes it possible to solve the problem of the anal-
ysis of spectra of directional X-ray beams when studying fast nonstationary generation processes. © 2001
MAIK “Nauka/Interperiodica”.

PACS numbers: 07.85.Nc; 07.60.Hv; 41.50.+h
INTRODUCTION

The possibility of determining the spectra of hard
X-ray radiation using the prism-spectrometer method
that is well known in optics [1] has scarcely been con-
sidered to date. This is explained by the smallness of
the real part of the decrement δ of the refractive index
of any substance in the X-ray range (10–6 ≤ δ ≤ 10–5 for
the radiation energy E ~ 10 keV) and by the spread of
the dispersion picture because of diffraction effects at
the edges of the refracting sample [2–4]. It was shown
in our previous work [5] that the X-ray optical parame-
ters of diamond single crystals make it possible, first, to
minimize the influence of diffraction effects at the
refracting face and, second, to obtain refraction con-
traction and a multiple increase in angular dispersion
using beams that strike the refracting interface from
the  inside of the prism at a glancing angle θ < θc(E)
(where θc is the critical angle of the total external
reflection).

In this work, we realized the scheme of a prismatic
X-ray spectrometer in a practical manner and obtained
the full spectrum of a polychromatic beam with an
energy E > 6 keV, including bremsstrahlung and fluo-
rescent lines, from the angular dispersion of radiation
in a diamond prism.
0021-3640/01/7309- $21.00 © 200457
RESULTS AND DISCUSSION

Figure 1 displays the experimental scheme of the
spectrometer. The dispersion element is a rectangular
diamond prism 5 cut along {110} planes and having
optically polished faces. The exit surface of the prism
facing the absorbing shield 6 had the dimensions of 2
and 5 mm along the beam and in the perpendicular
direction, respectively. As a source of polychromatic
radiation, an X-ray tube with a copper anode was used.
The voltage at the tube was changed in steps from 15 to
40 kV. The angle γ at which the X-ray beam exits the
anode, as measured from the anode mirror, was 5°. The
radiation was detected with a scintillation counter 12
based on an NaI(Tl) crystal, which ensured a detection
efficiency of more than 85% in the range of 6−33 keV.
Prism 5 and detector 12 were placed on goniometers 4
and 10, respectively, whose rotation axes were directed
along the primary beam. This geometry permitted us to
increase the accuracy of measuring small deviation
angles by a factor of (s + r)/s, where s is the distance
between the axes O1 and O2, and r is the distance from
the axis O2 to the entrance slit 11 of the detector 12. The
monochromator 7 and detector 9, which could be
rotated about the axis O1, were used to adjust the spec-
trometer to the monochromatic spectrum line
employed.

The full widths at half-maximum (FWHMs) of the
beam in the measuring plane (which coincided with the
01 MAIK “Nauka/Interperiodica”
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plane of paper; see Fig. 1) and in the perpendicular
direction, ∆θp and ∆θs, were 25″ and 1200″, respec-
tively. For these values of ∆θp and ∆θs, the depths of
diffraction dips in the angular dependence of the trans-
mission coefficient of the prism upon rocking when
using the CuKα1 line (8048 eV) did not exceed 20% of
the average value in adjacent angular positions. The
deepest dips corresponded to the energy band ∆Ed =
3−10 eV. As will be shown below, in spectral decompo-
sition, the condition ∆Ed ! ∆E is fulfilled, where ∆E is
the energy resolution of the prism spectrometer. This
ensures a virtually complete smoothing of diffraction
dips in the continuous spectrum that are caused by the
intersection of the reciprocal lattice points of diamond
by the Ewald sphere for a discrete set of bands of the
spectrum.

The X-ray beam was directed onto the entrance side
face of the prism at an incidence angle ϕ = 3″. With the
above-indicated orientation of the prism, the deviation
angle of the primary beam for the typical wavelength
~0.1 nm is ~0.001″; i.e., it is negligible in comparison
with ϕ. Therefore, we have θ1 ≅  ϕ, where θ1 is the

Fig. 1. Experimental scheme of measuring angular disper-
sion: (1) X-ray tube focus; (2, 3, 8, 11) vertical collimating
slits; (4, 10) goniometers; (5) sample (prism); (6) absorbing
shield; (7) monochromator; and (9, 12) detectors of radia-
tion.

Fig. 2. Angular diagrams of the intensity of refracted radia-
tion at various voltages at the X-ray tube with a copper
anode.

Ψ

Ψ (deg)
glancing angle between the plane of the exit face of the
prism and the central ray of the beam to be analyzed.
When calculating the deviation angle of the primary
beam (Ψ = θ2 – θ1; see Fig. 1), the contribution of the
imaginary part of the decrement of the refractive index
iβ can be neglected, since in the energy range studied
(E > 6 keV) the following condition is fulfilled for dia-
mond: δ(E) @ |iβ(E)|. Passing in the sine law from the
sines of angles to the glancing angles themselves and
using a series expansion at θ1 ! π/2, we obtain the
expression for the angle of deviation of the primary
beam after transmission through the prism:

(1)

where K is the dimensional coefficient, Z is the atomic
number of the material of the refracting medium, ρ is
the density of the material of the prism, and A is the
atomic weight. Designating C = KZρ/A and differenti-
ating Eq. (1) with respect to E, we obtain the following
formula for the angular dispersion of the rectangular
prism:

(2)

Figure 2 shows the angular diagrams of the intensi-
ties of the analyzed beam after the radiation passes
through the prism for various voltages at the X-ray
tube. The intense peaks in the diagram are due to the
fluorescent copper lines (CuKα doublet at 8028 and
8048 eV and the CuKβ line at 8906 eV); the rise in the
intensity at small angles Ψ is due to the passage of part
of the direct beam over the prism. As the voltage
increases, the intensity of the bremsstrahlung part of
the spectrum increases and the short-wavelength edge
is shifted toward smaller angles Ψ.

Using expressions (1) and (2), we can pass from
angular intensity distributions shown in Fig. 2 to the
energy spectrum S(E) = d2N(E)/dEdΩ measured in a
given direction, where d2N(E) is the number of X-ray
photons in the range (E, E + dE) that fall into a solid
angle dΩ depending on the distance between the source
of radiation and the prism and on the area of the
entrance aperture of the spectrometer.

In the scheme used in this work, the effective width
of the entrance aperture of the spectrometer deff(E) is
determined by the absorption of the radiation in the
prism A(E) and by the Fresnel transmission coefficient
T(E) at the exit face. The magnitude of A(E) can easily
be found in terms of geometric optics by solving the
problem of beam transmission through an absorbing
rectangular wedge [6]. The T(E) dependence on the

Ψ θ1
2 KZρ
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D E θ1,( ) dΨ/dE
2C

E3 θ1
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glancing angle can be obtained from the Fresnel formu-
las [2, 3] by expanding into a power series at θ1 = 0:

(3)

(4)

where µ(E) is the energy dependence of the mass
absorption coefficient, ρ is the density of the material of
the prism, and y is the current coordinate for the beam
outgoing from the refractive face of the prism. Note
that, at the glancing angles θ1 used in this work, the dif-
ference between the T(E) values for the s and p polar-
izations is negligible and, therefore, the refracted spec-
trum is virtually polarization-independent.

Figure 3 displays the experimental energy spectrum
(at a voltage at the tube equal to 30 kV) recorded by
detector 12 (curve 1) and the initial spectrum (curve 2)
at the exit window of the X-ray tube. Spectrum 2 was
obtained from curve 1 with allowance for the depen-
dences (3) and (4) and for the absorption in air and in
the beryllium window (0.5 mm thick) of detector 12. At
E = 8990 eV, a jump of photoabsorption in copper is

A E( ) e

µ E( )ρy
θ1cos

-------------------–

y,d

0

L
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T E( ) 1
θ1

2 E( ) 2δ E( )+ θ1–

θ1
2 E( ) 2δ E( )+ θ1+

---------------------------------------------------
 
 
 

2

,–≅

Fig. 3. Energy spectra of an X-ray tube with a copper anode
and the escape angle of 5° at the voltage at the tube of 30 kV:
(1) at the entrance window of the detector of radiation at a
distance of 135 cm from the tube focus and (2) at the exit
window of the X-ray tube.
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observed. Since the exit angle of the beam with respect
to the anode mirror of the tube is relatively small, the
absorption in the material of the anode exerts a signifi-
cant effect on the shape of the spectrum. In particular,
this leads to the appearance of a minimum in the
bremsstrahlung part of the spectrum near the CuKβ flu-
orescent line. The observed asymmetry of spectral lines
is mainly caused by the deviation of the refracting face
from flatness near the prism edge.

With allowance for the instrument function, the
energy resolution ∆E, characterized by the FWHM of
the CuKα line, is 97 eV, which is approximately half as
large as the corresponding parameter for cooled semi-
conductor silicon detectors [7, 8]. This resolution is by
no means limiting; an estimation shows that it can
reach values of less than 40 eV with decreasing angular
divergence in the plane of incidence.

The dependences shown in Figs. 2 and 3 were
obtained by continuous angular scanning by the
entrance slit. It is obvious that the replacement of a sin-
gle-channel detector by a linear array or a matrix of
detectors covering the entire angular range of the
motion of the entrance slit will permit one to reject the
angular rotation and, consequently, record a pulsed
spectrum in a given direction without any restrictions
on the duration of the pulse. Note that such a problem
cannot be solved by using analyzing crystals, since, if
the direction of recording is fixed in accordance with
the Bragg diffraction condition, a change in the angle of
rotation of the analyzing crystal is required.

CONCLUSION

The main results of this work are as follows.

(1) On the basis of a diamond prism, a scheme of a
prism X-ray spectrometer was realized in a practical
manner and spectra of hard X-ray radiation were
obtained from the data on angular dispersion.

(2) In the energy range of 8–9 keV, an energy reso-
lution of 97–106 eV was reached, which is half as large
in comparison with that of cooled semiconductor detec-
tors. This provides the possibility of practical applica-
tion of such a prism spectrometer for analyzing spectra
of intense X-ray sources.

(3) It is shown that the prism scheme with a linear
array of detectors can be used for recording X-ray spec-
tra in a given direction without any restrictions on the
duration of the exciting pulse.
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Ge/Si superlattices containing Ge quantum dots were prepared by molecular beam epitaxy and studied by res-
onant Raman scattering. It is shown that these structures possess vibrational properties of both two- and zero-
dimensional objects. The folded acoustic phonons observed in the low-frequency region of the spectrum (up to
15th order) are typical for planar superlattices. The acoustic phonon lines overlap with a broad emission con-
tinuum that is due to the violation of the wave-vector conservation law by the quantum dots. An analysis of the
Ge and Ge–Si optical phonons indicates that the Ge quantum dots are pseudoamorphous and that mixing of the
Ge and Si atoms is insignificant. The longitudinal optical phonons undergo a low-frequency shift upon increas-
ing laser excitation energy (2.54–2.71 eV) because of the confinement effect in small-sized quantum dots,
which dominate resonant Raman scattering. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 63.22.+m; 78.67.Hc; 78.30.Fs
In the last few years, semiconductor Ge/Si struc-
tures have been intensively studied because of their
potential use in optoelectronic devices compatible with
silicon technology. Their vibrational properties are well
studied and understood [1–3]. It was recently demon-
strated that molecular beam epitaxy allows one to pre-
pare, under certain growth conditions, dislocation-free
Ge quantum dots (QDs) of various size (8–95 nm in
base and 1–7 nm in height) [4–6]. It is expected that the
Ge/Si superlattices (SLs) containing Ge QDs should
combine QD advantages over the Ge/Si SL and, at the
same time, retain a compatibility with silicon technol-
ogy. Although considerable progress has been achieved
in the Ge QD growth technology, the inquiry into the
optical properties of these structures is presently the
subject of numerous theoretical and experimental
works.

Recently, Raman scattering spectroscopy was suc-
cessfully applied in studying the built-in mechanical
stress and the mixing effect in Ge QDs using the fre-
quencies of longitudinal optical (LO) Ge and Ge–Si
phonons [4, 7, 8]. Transverse optical (TO) phonons are
not observable in these experiments because, according
to the Raman selection rules, they are inactive in the
scattering geometry used. As in the case of planar Ge/Si
SLs, Raman spectra of the Ge/Si SLs with QDs show
lines due to the folded longitudinal acoustic (LA)
phonons in the low-frequency region [8]. At the same
time, the presence of QDs is expected to weaken or
even remove the selection rules, because the wave-vec-
tor conservation law is no longer operative in such a
structure, so that Raman scattering can involve phonons
0021-3640/01/7309- $21.00 © 20461
in the “forbidden” geometry. Nevertheless, this prob-
lem has not been studied in detail so far.

This work reports the results of studying the vibra-
tional spectra of periodic structures with Ge QDs by
resonant Raman scattering. It is demonstrated that
these structures possess vibrational properties that are
typical of both two- and zero- dimensional objects. The
observation of QD-size-selective resonant Raman scat-
tering from the LO phonons confined in Ge QDs is
reported.

Samples for investigation were grown by molecular
beam epitaxy in the Stranski–Krastanov growth regime
on a (001)-oriented Si substrate coated with a 20-nm-
thick buffer Si layer. The growth temperature for the Si
layers was 800 and 500°C, respectively, before and
after applying the Ge layer. The Ge layers with QDs
were grown at a temperature of 300°C. The nominal
thicknesses of the Ge and Si layers were 1.4 and 37 nm,
respectively. The number of repetitive Ge and Si layer
pairs was 10. The structural monitoring of the QD
parameters was performed by high-resolution transmis-
sion electron microscopy of the structure cross section.

The Raman experiments were carried out with a
Dilor XY800 spectrometer in the backscattering geom-
etries z(xx)z and z(xy)z using the excitation lines of Ar+,
Kr+, and HeNe lasers in the wavelength range 676.4–
457.9 nm (1.83–2.71 eV). Raman spectra in the y'(zz)y'
and y'(zx')y' geometries were recorded at a wavelength
of 514.5 nm of the Ar+ laser using a microscope focus-
ing light into a spot of diameter 1 µm onto the sample
cross section. The x, y, z, x', and y' indices correspond to
001 MAIK “Nauka/Interperiodica”
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5 nm

Fig. 1. High-resolution electron microscopy image of the sample. The dark area corresponds to the Ge layer with quantum dots.
the directions parallel to the [100], [010], [001], [1 0],
and [110] axes, respectively.

Figure 1 is a high-resolution electron microscopy
image of the sample. The dark area corresponds to a
layer with Ge QDs, and the light area corresponds to Si.
One can see that the Ge QD is pyramid-shaped with a
base on the order of 15 nm and a height of 2 nm. These
parameters agree well with the tunneling microscopy
data for samples prepared under similar growth condi-
tions [9].

The Raman spectra recorded for different geome-
tries are shown in Fig. 2. The low-frequency region of
the z(xx)z Raman spectra shows a line progression (up
to the 15th order) due to folded LA phonons (FAPs) in
the SL with Ge QDs. This fact is consistent with the
Raman selection rules for the planar Ge/Si SLs [1]. The
doublets of folded phonons are not resolved because of
a small splitting (about 1 cm–1) for the wave vector used
in the experiment. The FAP lines overlap with a broad
emission continuum with a maximum near 40 cm–1.
The FAP frequencies can be calculated using the
dielectric continuum model [10], according to which
the FAP dispersion in a periodic structure (e.g., Ge/Si)
can be represented as

(1)

where k = v 1ρ1/v 2ρ2; d = d1 + d2; and d1 and d2, ρ1 and
ρ2, and v 1 and v 2 are the thicknesses, the densities, and
the sound velocities for the Ge and Si layers, respec-
tively. The FAP dispersion calculated with parameters
taken from [3] is shown in the inset in Fig. 2. The hori-
zontal line in the inset corresponds to the wave vector
used in the experiment. One can see from Fig. 2 that the
agreement with the model is very good and there is no
need to introduce any additional fitting parameters. The
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calculated period of the structure is 37.9 nm, in compli-
ance with the value obtained from the high-resolution
microscopy experiments.

The origin of the emission continuum observed in
the Stokes and anti-Stokes regions of the z(xx)z spec-
trum can be understood using the model of interaction
between electrons (holes) confined in a quantum well
and acoustic phonons. The charge-carrier confinement
in a quantum well, whose width fluctuates because of
the insular growth regime, breaks the translational sym-
metry and renders the whole acoustic branch Raman-
active [11, 12]. The corresponding resonant Raman
intensity is expressed as qz|Mqz |2, where qz is the wave
vector of a phonon propagating along the z axis and Mqz
is the electron–phonon matrix element given by

(2)

Here, the wave function ϕ(z) of the localized hole is
taken in the form ϕ(z) = a1/2e–|z|/a, where a is the average
thickness of the layer containing Ge QDs. This model
was employed to calculate the Raman spectrum for a
Ge layer thickness of 1.2 nm (Fig. 2, dotted line). The
interaction between the neighboring layers with QDs
was assumed to be negligible. One can see from Fig. 2
that this model adequately describes the experiment
and that the Ge layer thickness is in agreement with its
nominal value specified in the structure growth
(1.4 nm). It is notable that the band maximum and
shape strongly depend on the form of wave function.
For this reason, the quantitative estimates should be
done with the wave functions that are most appropriate
to the geometry of the structures under study.

Let us now consider the optical phonon frequency
range.

In the SLs containing Ge QDs, the optical phonons
are split into two branches whose wave vectors are
directed either along or perpendicular to the (001)
direction: LO phonons and doubly degenerate TO
phonons, respectively. According to the Raman selec-

Mqz e
iqzz ϕ z( ) 2 z.d∫=
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tion rules, the LO phonons in the planar Ge/Si SLs
grown on a (001) Si substrate should be observable in
the Raman spectra for the z(yx)z and y'(x'x')y' scattering
geometries, while the TO phonons are active in the
y'(zx')y' geometry [1]. The selection rules for Raman
scattering in the SL containing Ge QDs are expected to
weaken because of symmetry lowering. As a result, the
“forbidden” vibrational modes become Raman-active
in the structures with QDs. Indeed, as in the case of pla-
nar Ge/Si SLs, the experimental spectra of the struc-
tures with QDs (Fig. 2) show LO (315 cm–1) and TO
(308 cm–1) phonons in the z(yx)z, y'(x'x')y' and y'(zx')y'
geometries, respectively. Strong lines corresponding to
the LO or to the LO and TO phonons are additionally
observed in the forbidden z(xx)z and y'(zz)y' geome-
tries, respectively, indicating the weakening of the
Raman selection rules in the SL containing Ge QDs.
Weak Raman lines observed at 405 and 417 cm–1 are
caused by the transverse and longitudinal Ge–Si inter-
face phonons labeled, respectively, T and L in Fig. 2.

A high-frequency shift of the LO and TO Ge
phonons in QD relative to their bulk frequency
(300 cm–1) points to the presence of a strong mechani-
cal stress in the QD. The calculation using the known
dependence of phonon frequencies on mechanical

Fig. 2. Raman spectra recorded for the sample in different
geometries. Inset: the calculated dispersion of acoustic
phonons in the structure. The horizontal line corresponds to
the wave vector used in the experiment.

y'(zx')y'

y'(zz)y'

y'(x'x')y'

z(xx)z

z(yx)z
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stress [13] suggests that the Ge QDs are biaxially com-
pressed to an extent of about 3.6% [8]. The TO and LO
frequencies in this state are equal, respectively, to 310.6
and 315 cm–1. A good coincidence with the experimen-
tal frequencies of optical phonons, as well as the small
width of the corresponding lines (about 6 cm–1 at a half
height), is evidence that the Ge QDs are unrelaxed and
that there is no atomic mixing at the Ge–Si interface.
A large experimental value of the LO–TO splitting is
explained by the fact that the LO and TO phonons are
characterized by different degrees of confinement in the
Ge/Si structures. Indeed, only the TO Ge phonons are
confined in the Ge/Si SL, because their frequencies do
not overlap with the frequencies of optical and acoustic
Si phonons. The longitudinal optical phonons in the Ge
layers are quasi-localized because the Ge LO and Si LA
bands overlap.

The observed L–T splitting fits the data in [2] and is
explained by the fact that the atomic clusters contribut-
ing to the L and T vibrations have different character at
the Ge/Si interface.

Whereas the acoustic phonons in the Ge/Si SL with
QDs are satisfactorily described by the two-dimen-
sional model, the behavior of optical phonons in the
Raman spectra recorded at different laser excitation

Fig. 3. The Raman frequency and intensity of LO phonons
for different laser excitation energies.
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energies can be explained only in terms of their con-
finement in the Ge QDs. Figure 3 displays the experi-
mental Raman spectra in the LO region for different
laser excitation energies in the z(yx)z scattering geome-
try. The Raman intensity has a maximum at 2.34 eV,
which is close to the resonance corresponding to the E1
exciton in the Ge QD in [4]. The position of the LO
phonons confined in the Ge QD shifts to lower frequen-
cies (by 4–5 cm–1) upon an increase in the excitation
energy, which is evidence of the distribution of Ge QDs
in size. The Raman intensity for small-sized QDs, in
which the E1 exciton lies at higher energy, increases when
the excitation and E1 energies are at resonance. The opti-
cal phonons confined in small-sized QDs are precisely the
ones which undergo the largest low-frequency shift. Such
a behavior is typical of the Ge-type materials with nega-
tive dispersion of optical phonons [14].

In summary, the vibrational spectrum of the Ge/Si
superlattices containing Ge quantum dots have been
studied in detail. It is found that these structures exhibit
properties that are characteristic of both layered struc-
tures and quantum dots. The spectrum of acoustic
phonons is adequately described by the dielectric con-
tinuum model. The low-frequency emission observed
in the Raman spectra is caused by the contribution from
the phonon states corresponding to the entire acoustic
branch because of the violation of translational symme-
try in the structures with QDs. As the laser excitation
energy increases, the QD-size-selective resonant
Raman spectra show a low-frequency shift for the opti-
cal phonons confined in the Ge QDs.

This work was supported in part by the Russian
Foundation for Basic Research, project no. 00-02-
18012.
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Magnetoresistance ρxx measurements are performed for a quasi-one-dimensional electron system over liquid
helium in the gas-scattering region (the temperature range 1.3–2.0 K). The measurements show that, as the mag-
netic field increases, the magnetoresistance ρxx first decreases and then passes through a minimum and increases
according to the law ρxx ~ B2. It is suggested that the negative magnetoresistance observed in the experiment is
caused by the weak localization effects. The results of the experiment are in qualitative agreement with the
theoretical model describing the weak localization effects in a one-dimensional nondegenerate electron system.
© 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.20.Fz; 73.50.Jt
The localization effects in low-dimension disor-
dered electron systems are the subject of many experi-
mental and theoretical studies [1]. Two localization
regimes are known: a weak localization and a strong
one. A strong localization occurs when the electron free
path l0 for elastic scattering is small and the condition
kl0 ~ 1 is satisfied (k is the electron wave vector). The
weak localization regime corresponds to the condition
kl0 > 1. A weak localization occurs as a result of the
interference of the electron wave function in the pres-
ence of multiple electron scattering by impurities and
other quasiparticles, which leads to noticeable correc-
tions in the kinetic coefficients and, specifically, to a
decrease in the conductivity. A weak localization is
destroyed by the inelastic scattering and by the mag-
netic field. Earlier [2], it was shown that, in a magnetic
field, the suppression of localization gives rise to an
increase in the electron conductivity, and this negative
magnetoresistance effect is one of the main indicators
of weak localization.

Until recently, the attention of researchers was
mainly concentrated on the weak localization effects in
degenerate electron systems, i.e., in metals and semi-
conductors. However, the study of such effects in a
nondegenerate electron gas is of major interest. Exam-
ples of nondegenerate systems of this kind are electrons
localized on the surfaces of some cryogenic liquids or
crystals—the surface electrons (SE). In nondegenerate
systems, by varying the temperature it is possible to
control the electron wave vector kT and, hence, the
quantity kTl0, which governs the localization processes.
0021-3640/01/7309- $21.00 © 20465
An SE layer allows one not only to vary the wave vector
kT in it, but also to vary the electron density n0 and the
electron free path l0 in the same experiment, which can
be important for studying fine effects of localization.

The weak localization effects that occur in a 2D
electron system over solid hydrogen in the presence of
the electron scattering from the surface roughness and
from helium atoms were studied in [3, 4], and similar
effects on a liquid helium surface with the scattering
from vapor helium atoms were described in [5]. In
these studies, the magnetoconductivity of the electron
layer σxx was measured; it was found that the decrease
in σxx due to the weak localization effects is within sev-
eral percent.

The weak localization effects are most pronounced
in quasi-one-dimensional (Q1D) and 1D electron sys-
tems. Up to now, the electron transport in Q1D and 1D
systems in the weak localization conditions was studied
in various types of nanostructures, such as metal films
and semiconductors [6], carbon nanotubes [7], and
other systems. In this paper, we describe the study of
the weak localization effects in a Q1D electron system
over liquid helium in the gas-scattering region.

To obtain a Q1D electron system in the experiment,
we used a profiled insulating substrate covered with liq-
uid helium [8, 9]. In this case, a system of parallel liq-
uid channels with some curvature radius r is formed on
the surface of the liquid. In the presence of a pressing
electric field E⊥ , the electrons on the liquid surface pass
001 MAIK “Nauka/Interperiodica”
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to the bottoms of the liquid channels and form 1D or
Q1D systems.

In a 1D system, the electron energy spectrum has the
form [8]

(1)

where " is Planck’s constant, e and m are the electron
charge and mass, kx is the electron wave vector along
the channel, and n = 1, 2, 3, … .

Earlier [10, 11], in studying the electron mobility in
such a system, we found that, when the substrate was
contaminated by foreign substances or a charge accu-
mulation occurred at its surface, a localization of elec-
trons was observed at T < 0.8 K, which was accompa-
nied by a considerable decrease in the effective mobil-
ity. However, the experiments were performed in zero
magnetic field, and, therefore, it was difficult to sepa-
rate the strong and weak localization processes. In the
experiments described below, we measured the magne-
toresistance in a Q1D electron system over liquid
helium at relatively high temperatures, in the gas-scat-
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Fig. 1. Magnetic field dependence of the channel magne-
toresistance divided by the resistance in zero magnetic field.
Different signs represent the data obtained from different
experiments.
tering region where the free path l0 was small and the
localization effects were expected to be more pro-
nounced. The experiments were performed within the
temperature range 1.3–2.0 K in a pressing electric field
of 450 V/cm, at a frequency of 100 kHz.

The experimental cell and the method of determin-
ing the conductivity of the channels are described in
our previous publication [11]. The cell contained
150 channels with the mean curvature radius r = 3.6 ×
10–3 cm and with a mean distance of 0.1 mm between
them. The magnetic field was directed normally to the
surface of the insulating substrate. In the experiments,
we measured the real and imaginary parts of the cell
conductance in the magnetic field B up to 2.5 T, which
allowed us to determine the magnetoresistance of the
channels.

The data obtained from our measurements are pre-
sented in Fig. 1, which shows the magnetoresistance
ρxx(B) divided by the resistance of the channels in zero
magnetic field ρ0 versus the magnetic field B. One can
see that the quantity ρxx/ρ0 first decreases with increas-
ing magnetic field and then, passing through a mini-
mum, increases approximately as ρxx ~ B2. We note a
good stability and reproducibility of the data for the
temperatures 1.3 and 1.63 K. At T = 2.0 K, despite spe-
cial precautions, some uncontrolled changes were
observed in the electron density in the liquid channels,
which explains the slight difference in the experimental
data obtained in different experiments for T = 2 K.

We assume that the negative magnetoresistance
observed in the experiment in small magnetic fields is
caused by the weak localization of electrons in the Q1D
electron system. As was mentioned above, the mag-
netic field suppresses the localization, which leads to a
decrease in ρxx . With a further increase in magnetic
field, ρxx begins to grow because of the decrease in the
effective relaxation time due to the transition to the
quantum transport regime.

The experimental data allow us to determine the
value of the negative magnetoresistance ∆ρxx, but it is
necessary to know the dependence ρxx(B) that should be
observed in the absence of localization. An analysis of
the literature data on σxx for SE over liquid helium [12]
shows that the mobility µ of electrons over liquid
helium does not depend on B up to the values µB ~ 8 at
T = 1.3 K and up to µB ~ 2–3 at T = 2.0 K. We assume
that, for the Q1D system under study, the mobility µ
does not depend on B approximately up to the same val-
ues of µB. Extrapolating the dependence ρxx(B)
obtained from the experiment for magnetic fields B >
1–1.5 T to the region of small magnetic fields where the
mobility of the SE is independent of B, we can deter-

mine the value of /  for B = 0 (  and  represent
the channel resistance in the absence and in the pres-
ence of localization, respectively) and, hence, the val-

ρ0
0 ρ0

l ρ0
0 ρ0

l
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ues of ∆ρxx and ∆σxx. From the table, which shows the

values of / , one can see that the effect of localiza-
tion on the conductivity of the system reaches ~20%.
This value far exceeds the corresponding value
obtained for 2D nondegenerate systems [3–5].

In analyzing the results of our experiments, it is nec-
essary to take into account that the system under study
is not a 1D system in the strict sense. For the pressing
electric field used in the experiment, the energy differ-
ence between two adjacent energy levels of the spec-
trum given by Eq. (1) is ∆e = 0.13 K and, hence, at the
temperature of the experiment, the electrons occupy not
only the ground level, but also the higher levels with the
numbers n ≈ kT/∆e (k is the Boltzmann constant). The
table presents the lengths of the free paths l0, as well as
the mean “width” of a conducting channel at B = 0,
which represents the localization length yn of the elec-
trons at the nth energy level. Unfortunately, the electron
concentration in the channels n0 could not be measured
in the experiment, and, hence, we could not determine
the electron mobility µ0. However, taking into account
that ∆e ! kT, we can assume that, in the system under
study, the value of µ0 is close to the corresponding
value for a 2D electron layer. To calculate the values of
n0 and µ0, we used the data on the mobility of electrons
over liquid helium from [13]. According to the data pre-
sented in the table, at T = 1.6–2 K, we have yn > l0 and,
at T = 1.3 K, the values of yn and l0 approximately coin-
cide. Thus, one can see that, from the point of view of
the kinetic characteristics, the system under study is
close to a 2D system.

Using the data on ρ0 obtained from the experiment
and the data on µ0 from the literature [13], we deter-
mined the decrease in conductivity due to the weak
localization effects. The calculated values of this
decrease per unit charge, ∆σ/n0, are presented in the
table, and the dependence of this quantity on the con-
centration of helium atoms in the vapor, ng, is shown in
Fig. 2 by a solid line. One can see that ∆σ/n0 increases
with decreasing ng.

The characteristic length within which the coher-
ence of electron states in the 2D system fails is deter-
mined by the expression

(2)

ρ0
0 ρ0

l

Lϕ
2( ) 1

2
---l0lin, lin v Tτφ,= =
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where lin is the free path for inelastic processes, vT is
the thermal velocity of electrons, and τφ is the time
within which the coherence of the wave function of the
localized state is lost. Earlier [14], it was shown that, in
the case of electron scattering by helium atoms, the fol-
lowing relations are valid:

(3)

where τ0 is the relaxation time determined by the elastic
processes and M is 4He atomic mass. The table presents

the values of  calculated by Eqs. (2) and (3). One
can see that, at relatively high temperatures, we have

 < yn and, at T = 1.3 K, the opposite inequality is

valid,  > yn. Thus, is seems reasonable to conclude
that, from the point of view of localization effects, the
system under study occupies an intermediate position
between 1D and 2D systems.

The weak localization effects in the magnetocon-
ductivity σxx of a nondegenerate electron gas were the-
oretically studied in [14]. The expression for σxx
obtained in [14] is similar to that obtained in [2] and
can be represented in the form

(4)

Here, E is the energy, f is the distribution function, νd is
the density of states, Ec is the limiting energy below
which the localized electrons do not contribute to the
conductivity, and d is the system dimension. The quan-
tity Jd depends on the system dimension and, for a 2D
electron gas, is determined by the expression

(5)

where ψ is the digamma function.
At B = 0, Eq. (5) is reduced to the expression

and the decrease ∆σ2 that occurs in the conductivity of
a 2D electron system in zero magnetic field due to the
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Characteristics of the conducting channels

T, K τ0, 10–11 s l0, 10–5 cm kTl0 yn, 10–5 cm , 10–5 cm ∆σ/n0, 10–3 cm3/s

1.3 10.3 3.6 10.9 2.64 4.64 0.83 4.44

1.63 2.51 0.97 3.29 2.96 2.0 0.75 1.59

2.0 0.91 0.42 1.58 3.3 1.06 0.86 0.35
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weak localization effects is determined by the expres-
sion [14]

(6)

In the derivation of Eq. (6), it was assumed that Ec ≈ 0,
which is valid in the case of electron scattering by
helium atoms in the vapor when the concentration of
helium atoms ng is small. The quantity ∆σ2/n0 calcu-
lated by Eqs. (3) and (6) is shown in Fig. 2 by the dot-
and-dash line. From Fig. 2, one can see that, at T = 2 K,
the experimental and calculated values approximately
coincide, but, at lower temperatures, a considerable dif-
ference between experiment and calculation is
observed. Thus, by analyzing the data in the framework
of the theory developed for a 2D electron gas, we obtain
no agreement with the experiment. It should be noted
that the value obtained for τφ from Eq. (3) is greater
than the experimental value reported in [5], and the use
of the experimental value of τφ in the calculations
decreases still further the calculated value of ∆σ2/n0.

Using Eq. (4), we can obtain an expression that
describes the decrease in the conductivity of a 1D non-
degenerate electron gas, ∆σ1, due to the localization
effects. We assume that, for d = 1, we have J1 =

a(  − l0) [1], where  is the length within which
the coherence of the wave function in the 1D system
fails and a is a constant. The corresponding expression
for ∆σ1 has the form

(7)

In the derivation of Eq. (7), it was assumed that a = 1
and Lϕ = vT(τφτ0)1/2. Expression (7) adequately
describes the experimental data if we take τφ/τ0 = 1.44
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Fig. 2. Dependence of the quantity ∆σ/n0 on the concentra-
tion of helium atoms in the vapor. The solid line shows the
experimental data, the dot-and-dash line corresponds to the
calculation for a 2D system [14], and the dashed line shows
the result of the calculation by Eq. (7) for τφ/τ0 = 1.44.
(the dashed line in Fig. 2). Such an agreement between
the calculated and experimental data suggests that, at
T < 2 K, in terms of the localization effects, the system
under study is close to a 1D system.

It should be noted that the values of τφ/τ0 obtained
from the experiment are smaller than the corresponding
value obtained in [5]. Presumably, in the Q1D system
under consideration, additional mechanisms that
destroy the coherence of the wave function come into
play, for example, the mechanisms related to interlevel
transitions.

It is well known that magnetic field destroys the
localization when the magnetic length is λH ≈ l0. How-
ever, this condition is likely to be unsuitable for the sys-
tem under study. According to [15], the energy spec-
trum of a 1D electron system changes in a magnetic
field: in Eq. (1), the frequency ω0 should be replaced by

the frequency Ω =  (ωc is the cyclotron fre-
quency), and the electron mass should be replaced by
the effective mass m* = m(Ω/ω0)2. We note the follow-
ing interesting feature: in contrast to a 2D electron sys-
tem in which an electron is localized by the magnetic
field within a length of the order of λH, in the system
under study, in spectrum (1) in the magnetic field we
have kx ≠ 0 [15], and, hence, an electron retains its abil-
ity to move along the channel. One can expect that, in
this case, the localization effects caused by the interac-
tion of electrons with scatterers are suppressed by
much greater magnetic fields and the localization dis-
appears when τφ/τ0  1 with increasing magnetic
field. Unfortunately, so far the theory describing the
weak localization effects in a Q1D electron system over
liquid helium is lacking.

Thus, in our study, we observed the weak localiza-
tion effects in a Q1D nondegenerate electron system
over liquid helium. It was shown that the relative varia-
tion of the magnetoresistance due to the localization
reaches ~20%, which far exceeds the corresponding
value for a 2D nondegenerate electron gas. The calcu-
lated values of the magnetoconductivity decrease due
to the weak localization effects in a 1D nondegenerate
electron system are in qualitative agreement with the
experimental results.
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Observation of Anomalously Fast Diffusion
in 3He–4He Solid Solutions near the BCC–HCP Transition
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The pulsed NMR technique was used to investigate diffusion on the BCC–HCP phase-equilibrium and melting
curves of a dilute solution of 3He in 4He. The contributions from all coexisting phases were identified using the
spin-echo method. It is established that, along with the contributions from the equilibrium BCC and HCP
phases or from bulk liquid (in the melting curve measurements), there is an additional diffusional process that
is characterized by an anomalously high diffusion coefficient. It is found that the latter is close to the diffusion
coefficient in liquid helium, while the diffusion itself is spatially restricted. The observed effect may be caused
by the formation of liquid droplets in the course of the BCC–HCP transition. © 2001 MAIK “Nauka/Interpe-
riodica”.

PACS numbers: 67.80.Mg; 66.30.-h
Diffusional processes in solid 3He–4He solutions are
highly diversified due to the quantum nature of the
impurity and defect motions [1, 2] and to the coexist-
ence of several crystallographic phases in crystal [2, 3].
The latter cause has not been adequately studied so far,
while the experimental data obtained by different
authors [3–5] do not allow one to draw unambiguous
conclusions about the character of diffusional motion
in the course of the BCC–HCP transition.

The BCC phase in pure 4He and in a dilute solution
of 3He in 4He exists only at relatively high temperatures
(above 1 K), so that the diffusion in this phase mainly
involves vacancies. NMR measurements have shown
[3] that the spin-diffusion constant increases more than
an order of magnitude upon the transition from HCP to
BCC phase and reaches 10–7 cm2/s. This result was con-
firmed in [4] for a broader range of solution concentra-
tions. It should be noted that the diffusion coefficient
measured in these works had a certain effective mean-
ing; it described the diffusional transport in a mixture
of phases and was assigned to that phase (BCC or HCP)
which dominated in crystal at a given temperature.

A radically different temperature dependence was
recently observed [5] for the diffusion coefficient at the
melting point in the vicinity of the BCC–HCP transi-
tion. The authors of [5] measured the velocity of a thin
superconducting wire moving in solid helium under the
action of electromagnetic force. They assumed that the
plastic flow accompanying this motion was caused by
the self-diffusion of atoms via the exchange with
vacancies and used this assumption to determine the
relevant diffusion coefficient. The temperature depen-
dence of this coefficient had a pronounced maximum
0021-3640/01/7309- $21.00 © 200470
near the BCC–HCP transition, with a peak value of
10−5 cm2/s (for both pure 4He and 3He–4He solutions)
being close to the diffusion coefficient in liquid.

The inconsistency between the experimental results
obtained in [3–5] motivated our detailed NMR studies
of the diffusional motion in the vicinity of the BCC–
HCP transition. Our concern was to use the merits of
the spin-echo method and identify the diffusional pro-
cesses for each of the phases coexisting in solution.

The experiments were carried out using a solution
containing 1.05% of 3He at temperatures of 1.3–1.8 K.
In this temperature range, the melting curve has two tri-
ple points corresponding to the coexistence of the BCC,
HCP, and liquid phases. In addition, measurements
were made along the BCC–HCP phase equilibrium
curve at pressures of 25.9–30.1 atm. A crystal for the
investigation was grown by the capillary blocking
method, and the diffusion coefficient was determined
using the pulsed NMR technique at a frequency of
3.6 MHz.

A Stycast 1266 epoxy glue NMR tube was in close
contact with a 4He evacuation chamber. A capacitive
pressure gauge was fitted to one of the tube’s ends, and
the temperature was measured by two resistance ther-
mometers. Measurements were taken at each tempera-
ture point after 15-min holding to stabilize the temper-
ature. The spin-diffusion coefficient was determined,
for the most part, by the Carr–Purcell method [6] with
a 90°–τ–180° sequence of probe pulses, where τ is the
time delay between the pulses. If several equilibrium
phases, each characterized by the individual diffusion
coefficient Di, are present in a sample, then the diffu-
01 MAIK “Nauka/Interperiodica”
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sional decay of the spin-echo amplitude in a magnetic
field with gradient G is given by

(1)

Here, index i numbers the phases, αi is the relative con-
tent of the ith phase in the sample, γ is the gyromagnetic
ratio, h0 is the maximal echo amplitude at G = 0, and h
is the current value of echo amplitude at G > 0. In our
experiment, the diffusional decay dominated over the
decay caused by spin–lattice and spin–spin relaxation,

because the condition  > τ >  was fulfilled. The
parameters τ and G in Eq. (1) were chosen in such a
way that the diffusional echo-signal decay could reli-
ably be identified for each of the coexisting phases sep-
arately; for instance, it is convenient to use large τ times
for the phases with small diffusion coefficient.

A typical dependence of the diffusional spin-echo
decay on the magnetic-field gradient is presented in
Fig. 1. Curve 1 (Fig. 1a) corresponds to a small τ value
such that the exponentials in Eq. (1) are close to unity
and h/h0 ≈ 1 for all G values. At the larger τ value
(curve 2), the diffusion coefficient can be determined
from the slope of the h/h0 vs. G curve with the use of
Eq. (1). The result coincides well with the diffusion
coefficient Db measured for the BCC phase in [3, 7].

To identify the HCP phase, for which the diffusion
coefficient is an order of magnitude smaller than for
BCC, a more sensitive method of stimulated echo with
three probe pulses 90°–τ1–90°–(τ2 – τ1)–90° [8] was
used. In this case, the diffusional spin-echo decay has
the form

(2)

An example of dependence (2) is demonstrated in
Fig. 1a, where curve 3 approximates the experimental
result by the sum of two exponentials corresponding to
the diffusional processes in the BCC and HCP phases
with diffusion coefficients Db and Dh, respectively.

One can also see from Fig. 1a that, at small G, the
h/h0 ratio in curves 2 and 3 does not reach a maximum
value close to curve 1. This may signify the presence of
one more phase with the diffusion coefficient much
greater than Db and Dh. To detect this diffusional pro-
cess, we carried out systematic measurements by the
Carr–Purcell method with short delay times τ. The
results are presented in Fig. 1b, where each point corre-
sponds to the average over several measurements.

It follows from Fig. 1 that, in addition to the diffu-
sion in the BCC and HCP phases, a new diffusional
process is clearly defined at small τ values in our exper-
iment. As to curve 4 (Fig. 1b) for longer times τ, an
analysis showed that it corresponds to the superposition
of this new diffusional process and the diffusion in the
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BCC phase (the HCP signal decay is not detected at
short times τ). The weight factor αx for the additional
fast diffusional process in Eqs. (1) and (2) is 7−9%.

Unexpectedly, the coefficient Dx calculated for the
new process using Eq. (1) proved to be dependent on τ.
This implies that the additional diffusional process
observed in our experiment is spatially restricted; i.e.,
atoms have time to encounter volume boundaries dur-
ing the measurement. The restricted diffusion was
examined earlier, both theoretically and experimen-
tally, for various systems with different geometries of
bounding cavities [9–12]. In this case, the true diffusion
coefficient Dx corresponding to the bulk NMR mea-
surements is related to the experimentally measured
diffusion coefficient  of the particles moving in a
system of characteristic size a by expression

(3)

where the parameters A and B depend on the geometry
of the system. In particular, A = 175/3 and B = 581/1680
for the spherical cavity of radius a [11]. Note that
Eq. (3) is valid if 2τ > a2/πDx, i.e., if the diffusing par-
ticle suffers many collisions with barriers (droplet
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Fig. 1. Typical diffusional decay of spin-echo amplitude on
the BCC–HCP phase equilibrium curve at T = 1.42 K.
(a) Curves 1 and 2 are for the usual echo with τ = 0.3 and
104 ms, respectively, and curve 3 is for the stimulated echo
with τ1 = 40 ms and τ2 = 910 ms. (b) Usual echo at small τ
values: (1) 2.2, (2) 10, (3) 25, and (4) 52 ms.
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boundary) during time 2τ, so that its motion, though
being three-dimensional, becomes spatially restricted.

Figure 2 shows the typical dependence of the mea-
sured  value on the time delay between the pulses.
These data were approximated by expression (3),
which is valid for spherical geometry, and the result of
the fitting procedure is shown by the solid curve. Note
that the result changes only slightly if cylindrical
[11, 12] or plane-parallel [9, 10] geometry is taken
instead of a sphere.

The values of the true diffusion coefficient Dx corre-
sponding to the new diffusional process are given in
Fig. 3 together with the data for the BCC and HCP
phases (Db , Dh). The data obtained earlier in [7] for the

Dx'

Fig. 2. The measured effective diffusion coefficient for the
new diffusional process vs. the time delay between the
NMR pulses at T = 1.6 K and P = 29.9 atm. Solid line is a
fit to Eq. (3) with Dx = (4 ± 2) × 10–4 cm2/s and a =

(2 ± 0.5) × 10–3 cm.

Fig. 3. Temperature dependences of the diffusion coeffi-
cients for each of the coexisting phases of a solid solution
near the HCP–BCC phase equilibrium curve: (n) HCP
phase; (s) BCC phase (this work); (×) BCC phase ([7]); and
(j) the additional diffusional process. Solid line corre-
sponds to the temperature dependence of the spin-diffusion
coefficient in a bulk liquid at a pressure of 19 atm, as recal-
culated to the 1% 3He concentration [13].
BCC phase are in good agreement with our results and
also presented in Fig. 3.

In spite of a noticeable scatter of the experimental
data, it is clearly seen in Fig. 3 that the Dx value is sev-
eral orders of magnitude greater than Db and Dh and vir-
tually coincides with the diffusion coefficient Dl in liq-
uid [13] (solid line in Fig. 3). This fact and the restricted
character of the diffusion allow the assumption to be
drawn that Dx accounts for the diffusion in liquid drop-
lets (of size a) that are formed in the course of the
BCC–HCP transition. This assumption is also sup-
ported by the fact that the observed temperature depen-
dence of Dx correlates well with the temperature depen-
dence of Dl.

Inasmuch as the pressure in the sample far exceeds
the pressure of liquid crystallization, the above-men-
tioned droplets can arise in the course of the BCC–HCP
phase transition only if a local region of reduced pres-
sure appears in crystal as a result of the defect forma-
tion due to lattice strains at the BCC–HCP interface and
to the difference in molar volumes of the BCC and HCP
phases. Liquid helium “pockets” arising near the rough
tube walls or because of poor wetting of solid sub-
strates with crystal helium [14] may be another possi-
ble source of the liquid.

The aforementioned results were obtained in the
measurements along the BCC–HCP phase equilibrium
curve. Similar studies were carried out for the melting
curve in the temperature range covering two triple
points and the two-phase liquid–BCC coexistence
region. In the latter case, only two diffusional pro-
cesses, corresponding to the BCC crystal and to the vol-
ume liquid, were detected in the spin-echo experi-
ments. However, the experimental data obtained in the
region near both triple points allowed the identification,
apart from the expected three diffusional processes cor-
responding to the volume liquid, BCC phase, and HCP
phase, of an additional restricted-diffusion process with
the diffusion coefficient close to Dl. This process is
quite similar to the diffusional motion of atoms with
diffusion coefficient Dx, as discussed above for the
higher pressure range (Fig. 3). The temperature depen-
dence obtained in this case for the diffusion coefficients
of the coexisting phases correlates with the results
obtained in [3] and does not with the anomalous behav-
ior observed for the diffusion coefficient in [5].

Note that the appearance of a liquid in the BCC–
HCP transition was previously observed in the acoustic
studies of the solid 4He–HeII interface mobility [15].
Recent direct optical observations have shown [16] that
the formation of the equilibrium HCP phase in the
vicinity of the triple point on the 4He melting curve is
preceded by the appearance of a metastable BCC
phase, whose formation requires a lower potential bar-
rier than for the HCP phase. The subsequent formation
of the HCP phase proceeded through the melting of the
BCC phase.
JETP LETTERS      Vol. 73      No. 9      2001
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There is also experimental evidence [17–20] for the
ease of formation of liquid droplets in solid helium. It
seems likely that the inner crystal surfaces containing
defects are the most suitable places for the nucleation
of liquid droplets. In the case of the BCC–HCP transi-
tion, the lattice distortions in the crystal boundaries are
particularly strong and, thus, favor the formation of a
liquid.

It is noteworthy that the fast diffusion may also be
caused by a mechanism associated with the formation
of linear defects (dislocations) or two-dimensional
defects (grain boundaries) during the BCC–HCP tran-
sition. Since the activation energy for diffusion over the
grain boundaries or along the dislocations is in many
cases appreciably lower than the activation energy for
bulk diffusion [21], the corresponding diffusion coeffi-
cients may differ from one another by several orders of
magnitude.

In this case, a restricted low-dimensional diffusion
should be observed instead of the three-dimensional
restricted diffusion in droplets. Accordingly, the expo-
nential form of the diffusional spin-echo decay, typical
of the bulk diffusion [Eqs. (1), (2)], should be replaced
by a nonexponential function [22, 23].

An analysis showed that our experimental results
cannot be described by a one-dimensional model. As to
the choice between two-dimensional and three-dimen-
sional diffusion, the accuracy of our measurements is
insufficiently high for an unambiguous conclusion to
be drawn; to do this, measurement with larger mag-
netic-field gradients are necessary. However, the large
relative contribution (αx = 7–9%) from the fast diffu-
sion to the echo-signal amplitude argues against the
two-dimensional model. This situation can occur only
if small-sized, on the order of 10–6–10–5 cm, crystallites
form during the BCC–HCP transition. This size is sev-
eral orders of magnitude smaller than the value of a
obtained in our experiment. Therefore, our experimen-
tal findings suggest that the fast diffusion observed in
the solid solutions of 3He in 4He near the BCC–HCP
transition is associated with the formation of liquid
droplets in a crystal.

We thank V.N. Grigor’ev for the remark that initi-
ated these experiments and for helpful discussions. We
are also grateful to J. Saunders and B. Cowan (Royal
Holloway University of London) for kindly providing
us with a pulsed NMR spectrometer and to E.V. Syrni-
kov for assistance in the experiment.
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Based on computer simulation of the physicochemical segregation processes involving dopants implanted into
a host material (silicon), the details of boron injection were investigated for four types of angular configurations
(direct and inverse kinks and cavities of the “trench” and “square” types) of the “silicon/silicon dioxide” oxi-
dation boundary. A complicated picture of the B distribution inside the Si and SiO2 regions and at the SiO2/Si
front was obtained and analyzed in general terms. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 68.35.Dv; 66.30.Jt
Modeling of the segregation process, i.e., physico-
chemical process of interaction between the oxidation
wave (boundary) in a host material and the impurities
of various chemical elements implanted into the host
(substrate), is an important part of computer simulation
of a complex problem associated with the fabrication of
materials possessing predetermined semiconductor
properties. The physical mechanism of segregation is
based on the appearance, at the oxide/material bound-
ary, of an electromagnetic field with strongly localized
high-intensity short-lived potential that either expels
(ejection-type segregation) or draws in (injection-type
segregation) the doping chemical elements, depending
on the configuration of their outer electronic shells.
This work is devoted to studying the segregation of
boron B-5 (2s22p1) implanted into silicon Si-14
(3s23p2). The configurations of electronic shells whose
structures cause strong injection (drawing-in) of B
from the Si material to the SiO2 oxide at the SiO2/Si
wave are given in parentheses. The quantum-mechani-
cal approach to solving this problem encounters con-
siderable difficulties and cannot be implemented in a
practical manner even with modern computer tech-
niques. This causes the necessity of developing approx-
imate segregation models. The computational cycle
presented below employs the theoretical model and the
computer algorithm for its implementation that were
described in detail in [1], where the interrelation
between this model and other segregation models was
also discussed. The dopant segregation at the SiO2/Si
boundary is induced by thermochemical silicon oxida-
tion and characterized by the segregation coefficient
0021-3640/01/7309- $21.00 © 20474
m = C+/C–, where C+ and C– are the impurity concentra-
tions at the material/oxide boundary on the material
and oxide sides, respectively. The thermodynamic esti-
mates of this coefficient are accurate to one to two
orders of magnitude. The direct experimental measure-
ments made by different authors (see, e.g., [2–7]) indi-
cate that this coefficient strongly varies depending on
the oxidation conditions. In the computations presented
below, the value m = 0.3 taken for B corresponds to the
coefficient that is most commonly accepted for the ther-
modynamically equilibrium segregation (note that m
may change significantly under nonequilibrium condi-
tions [8]). Generally, numerical simulation of the semi-
conductor properties of doped silicon is mainly carried
out by taking into account simultaneously several pro-
cesses: implantation of impurities into a host material,
its oxidation, segregation of impurities at the boundary
of oxidation wave, and impurity diffusion in oxide and
material. In the simplest cases, the computational
results for such a completely formulated problem cor-
relate with the experimental data with a more or less
reasonable accuracy. In the more complicated cases (in
particular, with essentially curvilinear oxidation
boundaries), the interpretation of the results may be
rather difficult, because it then becomes unclear which
of the above-mentioned processes is modeled with a
good accuracy and which is not. For example, a rather
inaccurate calculation of the oscillatory segregation
process may be masked by the diffusion computations
because the latter have a pronounced smoothing-out
effect. In our opinion, this renders the development of
numerical simulation separately for different physical
001 MAIK “Nauka/Interperiodica”
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processes quite necessary because it would allow ade-
quate comparison with the experimental data of type
[9, 10] when designing new methods of fabricating
semiconductor materials.

Statement of the problem. The segregation of
Group IIIA element (boron) implanted into silicon with
an oxide wave moving inside it is considered. The
SiO2/Si boundaries have rectangular bends comprising
four types of oxide configuration in a material: “direct
and inverse kinks” and cavities of the “trench” and
“square” types (Figs. 1a, 2a, 3a, 4a). The initial impu-
rity concentration in Si was taken to be uniform, and the
diffusion of impurity is disregarded. The dimensional
parameters of the problem were as follows: the length
and width of the Si substrate (the computational X–Y
region) ranged from 0.5 to 1.5 µm; the minimum initial
and the maximum final thicknesses of oxide were 0.001
and 0.8 µm, respectively; the oxidation rate was
0.005 µm/min at a free O2 pressure of 105 Pa and an
oxidation temperature of 1100°C; and the initial impu-
rity concentration was varied from 1016 to 1022 cm–3. In
the computations, linear dimensions were normalized
to 1 µm, time to 1 min, and concentrations to 1020 cm–3.
This allowed the recalculation of the results from the
dimensionless to the dimensional form when needed.
As a rule, numerical simulation of segregation is per-
formed for the smooth oxidation wave boundaries (con-
tinuous first and second derivatives with respect to
coordinates) of the “bird beak” type (see, e.g., [7]). This
also brings about rather smooth impurity distributions
ahead and behind the segregation front and in the tan-
gential direction. However, in practice, when develop-
ing the techniques of fabrication of semiconductor
materials with predetermined properties, it is necessary
to form depressions of various rectangular configura-
tions in a host substrate, which also results in the right-
angle configurations of the oxide/material boundaries
(actually, the regions with a very sharp change in cur-
vature and, formally, the regions where the first deriva-
tive has a discontinuity). On the one hand, the calcula-
tion of segregation at the boundaries of such a configu-
ration is a good test of the computational methods and
their computer implementation, while, on the other, the
resulting numerical data are of considerable physical
interest and important practical use. Figure 1 presents
some numerical results for the impurity segregation
dynamics at the SiO2/Si oxidation wave shaped like a
direct kink. Figure 1a shows the topology of the prob-
lem: the hatched area is occupied by SiO2 whose
boundary moves uniformly from the origin of coordi-
nates through the SiO2 material, draws in the B impuri-
ties from Si, and shifts them behind the front (into the
SiO2 oxide). Figure 1b shows the impurity distribution
C(x, y) in the substrate (the far corner in Fig. 1b corre-
sponds to the origin of coordinates in Fig. 1a); the
impurity concentration appears as strongly localized
groovelike fronts at the oxide boundary. Behind this
front, the trajectory of the corner on a flat C(x, y) field
JETP LETTERS      Vol. 73      No. 9      2001
in SiO2 is well-defined as a “ridge” with a maximum in
the center and a sharp drop to its right and left. [Note
that this impurity configuration serves as an initial con-
dition for the algorithm of calculating diffusion in this
temporary layer, so that one can expect high diffusion
flows not only across the segregation front but also
along it. This places special requirements upon the
quality of diffusion calculation in the indicated subarea
and upon the methods of its implementation and neces-
sitates the use of a dense computational grid in two
coordinate directions in the regions with large C(x, y)
gradients. Considering the boundary dynamics, this
may become an overly stringent and hard-to-realize
requirement when organizing the solution of a com-
plete problem involving the implantation, oxidation,
segregation, and diffusion processes.] Figure 1c allows
one to carry out exact quantitative analysis. It demon-
strates the one-dimensional impurity distributions
C(x, yi) at time t = 40 for certain fixed values y1 = 0.139,
y2 = 0.25, y3 = 0.62, and y4 = 0.64 indicated by the
dashed lines in Fig. 1a. Lines 1–3 pass through the
regions of SiO2 oxide (x < 0.62) and Si (x > 0.66) and
intersect the front of the SiO2/Si oxidation wave at the
point x = 0.64. Accordingly, curves 1–3 corresponding
to the C(x, y1), C(x, y2), and C(x, y3) distributions are of
the same type and have flat “plateaus” at a level of
0.96 × 10–4, above which the “peaks” with a height of
about 1.73 × 10–4 arise at the intersection points of the
yi = const lines and the SiO2/Si-corner trajectory. In the
second region, where the SiO2/Si front is intersected, a

Fig. 1. Segregation at the direct kink. (a) General topology
of the problem; (b) isometric projection of the C(x, y) con-
centration in the computational region; (c) C(x, yi) distribu-
tions for yi = 0.13, 0.25, 0.62, and 0.64 (curves 1–4).
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“dip” arises with a minimum of 0.3 × 10–4 (segregation
region). In the third region (Si), the concentrations are
equal to their background value of 10–4. Line 4 goes
along the SiO2/Si front (x < 0.62) and in Si (x > 0.66).
Accordingly, curve 4 corresponding to the C(x, y4) dis-
tribution has three segments: two flat plateaus, one at a
level of 0.3 × 10–4 along the SiO2/Si front and the sec-
ond at 10–4 in Si, and the intermediate segment between
them at the SiO2/Si corner (0.62 < x < 0.66).

The segregation at the inverse kink (Fig. 2a) is the
inverse process of segregation at the direct kink, in the
sense that, although the SiO2/Si oxidation wave
extracts the boron impurity from Si to SiO2 oxide, the
distribution of the extracted mass in SiO2 is quite differ-
ent; the ridge effect is replaced by the “gully” effect, for
which a subarea (in our case a straight line) arises on
the SiO2/Si-corner trajectory, where the minima appear
on the background of uniform C(x, y) values in the
remaining SiO2 region. Three dips are clearly seen in
Fig. 2b: two at the SiO2/Si front and one on the corner
trajectory. Figure 2c can be used to perform exact quan-
titative analysis. It illustrates the one-dimensional
boron distributions C(x, yi) at time t = 40 for certain
fixed values y1 = 0.12, y2 = 0.41, y3 = 0.64, and y4 = 0.82
indicated by the dashed lines in Fig. 2a. Lines 1 and 2
pass through the SiO2 oxide, line 3 passes through the
SiO2 region (x < 0.64) and along the SiO2/Si front (x >
0.64), and line 4 passes through SiO2 (x < 0.64) and Si

Fig. 2. Segregation at the inverse kink. (a) General topology
of the problem; (b) isometric projection of the C(x, y) con-
centration in the computational region; (c) C(x, yi) distribu-
tions for yi = 0.12, 0.41, 0.64, and 0.82 (curves 1–4).

(µm)
(x > 0.64) and intersects the SiO2/Si front at the point
x = 0.64. Curves 1 and 2 (Fig. 2c) corresponding to the
C(x, y1) and C(x, y2) distributions illustrate, in fact, the
whole history of the SiO2/Si-boundary motion “upward
rightwards” (Fig. 2a); in the vicinity of the intersection
point of the yi = const line and the corner trajectory
(x = 0.12 and x = 0.41 points for curves 1 and 2, respec-
tively), the dips with identical shapes and a minimum
value of 0.3 × 10–4 arise in C(x, y2) on the background
of a flat plateau of 10–4 values in the gully subarea (note
for completeness that the peaks with maxima at 1.6 ×
10–4 at x = 0.04 are caused by the initial configuration
and are irrelevant to the further analysis). The C(x, y3)
distribution in SiO2 shows a plateau at 10–4 and is of the
same type, but the flat plateau in the region x > 0.7
(SiO2/Si front) is situated at a level of 0.3 × 10–4. There
is an intermediate region between these plateaus (0.6 <
x < 0.7), with a deep minimum of 0.095 × 10–4 at x =
0.64, where the SiO2/Si corner is located, and, hence,
the segregation is more pronounced because of the
injection of B through the fronts simultaneously in two
directions (x and y). Curve 4 has the standard shape: a
plateau at 10–4 in SiO2 (x < 0.62) and Si (x > 0.66) and
the intermediate region (0.62 < x < 0.66) at the SiO2/Si
front with a symmetric “triangular” 0.3 × 10–4 dip.

Segregation in a cavity of the trench type. The
configuration of the oxidation boundary of this type
(Fig. 3a) resembles the one used in semiconductor
materials design. The impurity segregation in such a
system has the same traits as in the above-mentioned
segregation processes occurring at the direct and
inverse kinks. Figure 3b provides a rather adequate
qualitative illustration of the structures arising at the
SiO2/Si front as a result of the injection of boron impu-
rity from the material to oxide. Among these are the
direct dips in the C(x, y) curves at the boundaries of the
oxidation wave and the ridges on the trajectory of the
convex corners of the front. A quantitative analysis of
the C(x, y) distribution in the computational region can
be carried out using the graphs of one-dimensional sec-
tions C(x, y) along the y = const (0.5, 0.62, 0.75, and
0.86) and x = const (0.5, 0.67, and 0.8) rays (Figs. 3c
and 3d, respectively). Curve 1 corresponding to C(x, y1)
in Fig. 3c passes along the SiO2/Si front (Fig. 3a), with
its central portion (0.2 < x < 0.8) lying at the front and
its left (x < 0.2) and right (x > 0.8) portions lying in the
Si region [note that for the chosen instant of time t = 40
the coordinates of the two convex corners of the bound-
ary are (0.2, 0.5) and (0.8, 0.5), respectively]. The curve
has a piecewise-constant shape with a central plateau of
0.3 × 10–4 in the [0.22, 0.78] interval and plateaus cor-
responding to the background concentrations of 10–4 in
the [0, 0.2] and [0.8, 1] intervals. Curve 2 in Fig. 3c is
the C(x, y2) distribution along the y2 = 0.62 ray that
passes through the Si (x < 0.2 and x > 0.8) and SiO2
(0.2 < x < 0.8) regions and twice intersects the segrega-
JETP LETTERS      Vol. 73      No. 9      2001
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tion front at x = 0.2 and 0.8. In the Si region, the con-
centration is equal to its background value of 10–4; at
the fronts, the concentration curve shows 0.3 × 10–4

dips; and in the SiO2 region, the concentration increases
to 10–4. Peaks with a maximum of about 1.7 × 10–4 cor-
responding to the intersection of the y = y2 ray and the
SiO2/Si-front corner trajectories are seen at x = 0.35 and
0.65 in the SiO2 region. Curves 3 and 4 correspond,
respectively, to C(x, y3) and C(x, y4) for the rays lying
in Si (at x < 0.2 and x > 0.8) and SiO2 (at 0.2 < x < 0.42
and 0.58 < x < 0.8) and intersecting the front at x = 0.2
and 0.8. In the range x ∈  [0.42, 0.58], the y3 ray goes
along the initial SiO2/Si front, while the y4 ray twice
intersects the initial front of the SiO2 oxide at x = 0.42
and 0.58 and passes through it. Accordingly, the peaks
in curves 3 and 4 are shifted to these coordinates, and
the concentration reaches its absolute maximum of 2 ×
10–4 at the corners of the initial SiO2/Si boundary. The
C(x, y) distributions along the x = const rays, i.e., in
another coordinate direction, are given in Fig. 3d.
Curve 1 corresponds to the C(x1, y) values at the sym-
metry line x1 = 0.5. This ray (Fig. 3a) passes through the
Si material (y < 0.5), intersects the SiO2/Si front at the
point y = 0.5, and further goes through the two subareas
of the SiO2 oxide (y > 0.5), namely, through the region
where the oxidation happened while solving the prob-
lem (0.5 < y < 0.75) and through the initial oxidation
region (y > 0.75). The concentration changes along this
ray in the following way. C(x1, y) is equal to its back-
ground value of 10–4 in the Si region; at the front, it
decreases peakwise to a value of 0.3 × 10–4; it reaches
a plateau value of 10–4 in the first SiO2 subarea, where
a 1.5 × 10–4 peak occurs at y = 0.75; and then C(x1, y)
regains its background value of 10–4 in the initial oxide
subarea. Curve 2 in Fig. 3d corresponds to the C(x2, y)
concentration on the x2 = 0.67 ray that passes through
the Si (y < 0.5) and SiO2 (y > 0.5) regions and intersects
the SiO2/Si front at y = 0.5. In the Si region, the concen-
tration is equal to its background value of 10–4; at the
front, it drops to 0.33 × 10–4; and finally it regains its
plateau value of 10–4, where a peak with a maximum of
1.8 × 10–2 appears at the point y = 0.67 (corresponding
to the intersection of the x = x2 ray and the trace of the
SiO2/Si-corner trajectory). Curve 3 in Fig. 3d corre-
sponds to C(x3, y) on the x3 = 0.8 ray. This ray passes
(Fig. 3a) through the region of Si material (y < 0.5),
goes along the SiO2/Si-wave front (0.5 < y < 0.8), and
then passes through the SiO2 oxide (y > 0.8). Accord-
ingly, C(x3, y) is equal to its constant background value
of 10–4 in the Si region and drops from 10–4 to 0.3 × 10–4

in the second region. Note that the curve in this region
also has a plateau, after which C(x3, y) increases to its
maximum value of 1.1 × 10–4 at the concave corner of
the boundary, where an additional portion of impurity
is injected. Understandably, C(x3, y) acquires its back-
JETP LETTERS      Vol. 73      No. 9      2001
ground value after passing through the SiO2/Si front
into the region of initial SiO2.

Segregation in a cavity of the square type. Con-
trary to the preceding cases, this configuration (Fig. 4a)
has the shape of a closed area of oxide surrounded by
the material on all sides. Square-type geometry, as well
as trench geometry, is often used for the oxidation pro-
cess in semiconductor materials design. The isometric
projection of the impurity segregation at the moving
SiO2/Si boundary is qualitatively illustrated in Fig. 4b.
The process is characterized by the presence of four
oxidation fronts moving from the center to the periph-
ery, four stationary traces of the initial SiO2/Si fronts,
and four semidiagonals corresponding to the trajecto-
ries of corner points. The C(x, y) concentrations are
characterized by the presence of dips at the fronts,
ridges on the semidiagonals, and a flat field in between.
A quantitative analysis of the impurity distribution
C(x, y) in the substrate can be carried out by analyzing
the one-dimensional sections of C(x, yi) along the y1 =
0.2, y2 = 0.3, and y3 = 0.5 rays at time t = 50 (Fig. 4c).
Curve 1, corresponding to the C(x, y1) values, passes
through the Si region (x < 0.2 and x > 0.8) and along the
SiO2/Si front (0.2 < x < 0.8). As before, it represents a
0.3 × 10–4 plateau in the second (central) subarea and
becomes a plateau of background values of 10–4 to the
left and right. The C(x, y2) distribution (curve 2 in
Fig. 4c) shows two 0.3 × 10–4 dips at the SiO2/Si fronts
(x = 0.2 and 0.8) and two peaks of a height of 1.8 × 10–4

at the intersection points of the y2 ray and the corner tra-

Fig. 3. Segregation at the cavity of the trench type. (a) Gen-
eral topology of the problem; (b) isometric projection of the
C(x, y) concentration in the computational region;
(c) C(x, yi) distributions for yi = 0.5, 0.62, 0.75, and 0.86
(curves 1–4); and (d) C(xi, y) distributions for xi = 0.5, 0.67,
and 0.8 (curves 1–3).

(µm) (µm)
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jectories (x = 0.3 and 0.7). The background concentra-
tion between the peaks and dips is equal to 10–4.
A small difference between the heights of the left and
right peaks is due to the computational algorithm; it is
associated with either clockwise or counterclockwise
sense of going along the SiO2/Si boundary (for details,
see [1]). Curve 3 (Fig. 4c) corresponds to the C(x, y3)
distribution. This curve is also symmetric about x = 0.5

Fig. 4. Segregation at the cavity of the square type. (a) Gen-
eral topology of the problem; (b) isometric projection of the
C(x, y) concentration in the computational region; (c) C(x, yi)
distributions for yi = 0.2, 0.3, and 0.5 (curves 1–3).

(µm)
and has five characteristic segments: the Si region (x <
0.2); the SiO2/Si front intersections (x = 0.2 and 0.8);
the SiO2 region (0.2 < x < 0.8); and the region of initial
oxide (0.45 < x < 0.55). In the Si and SiO2 regions, the
concentrations are equal to their background value of
10–4, with two 0.3 × 10–4 dips occurring at the segrega-
tion fronts. At the initial fronts of the SiO2/Si boundary
(x = 0.45 and 0.55), there are concentrations peaks of
1.55 × 10–4 that are formed at the starting period of the
oxidation wave motion. Note that the peaks in curves 2
and 3 have different origins.
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Low-Temperature Kinetics of 2D Exciton Gas Cooling
in Quantum Well Bilayer1
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We study the kinetics of 2D Bose gas cooling provided Bose particles interact with 3D phonons. At low tem-
peratures, phonon emission is prohibited by energy and momentum conservation. We show that both particle–
particle scattering and impurity scattering assist Bose gas cooling. The temporal relaxation of temperature fol-

lows the law T ~ 1/  above the Berezinski–Kosterlitz–Thouless phase transition point and T ~ 1/t after a
Bose–Einstein 2D quasi-condensate develops. © 2001 MAIK “Nauka/Interperiodica”.
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t

Exciton gas in GaAs bilayer quantum represents
well a system where a 2D Bose–Einstein quasi-conden-
sation (BEqC) is possible at low temperatures. Experi-
mental efforts [1, 2] have been directed to produce such
an exciton gas and to cool it down to BEqC tempera-
ture. A short laser photoillumination pulse excites elec-
tron and hole pairs. The so-called indirect exciton tech-
nique is used where a perpendicular electric field drags
electrons and holes apart into two spatially separated
layers. Then, an electron and a hole bind themselves
into an indirect exciton particle. This experimental
setup suppresses the electron–hole recombination giv-
ing rise to a relatively long exciton lifetime. During the
initial photoexcitation pulse, newly born excitons are
hot and form a nonequilibrium state. A short time after
the pulse ends, the exciton gas reaches equilibrium at
some effective exciton temperature which is much
higher than the lattice temperature of the cold GaAs
crystal. Frequent exciton–exciton collisions ensure that
the exciton temperature is uniform across the bilayer.
Exciton gas then starts to cool down slowly due to
emission of phonons into a crystal away from the
bilayer. This is the longest phase of the experiment lim-
ited only by a decay time of excitons due to the elec-
tron–hole recombination. In order to reach the BEqC
point, one needs both low temperature and a high den-
sity of excitons. Hence, a fast cooling is essential.

An important point is that the phonon emission
gives the only way for exciton gas to cool. Otherwise,
it is a closed system with conserved energy. Recent cal-
culation of energy losses in a 2D ideal exciton system
has predicted an extremely slow cooling at low temper-
atures with the temporal law T(t) ~ 1/log(t), where t is
the time [3]. This fact is intimately related to the energy

1 This article was submitted by the authors in English.
0021-3640/01/7309- $21.00 © 20479
and momentum conservation, which prohibits an emis-
sion of phonons by an exciton moving slower than the
velocity of sound in GaAs crystal c. Thus, the exciton
gas cooling appears to stop when the exciton tempera-
ture falls below a characteristic blocking temperature
Tb = mc2/2, where m is the mass of exciton, even if the
crystal temperature is zero.

This kinetic bottleneck problem becomes especially
acute when the exciton gas is subjected to a strong per-
pendicular magnetic field that quenches the motion of
exciton to the lowest Landau level and, thus, helps to
bind electrons and holes into exciton pairs. In this case,
the effective mass of an exciton is determined by the
Coulomb interaction and can be much larger than either
the electron or the hole mass [4]. This results in a higher
blocking temperature Tb and makes it difficult to reach
low temperatures in the end.

In this communication, we supplement the analysis
of exciton cooling of [3] by an addition of exciton–
exciton collisions and scattering on impurities. Both
events assist the phonon emission. We specialize in the
case of exactly zero lattice temperature, which allows
us to neglect exciton–phonon scattering. Actually we
are dealing with a general problem of 2D Bose gas
cooling provided its particles interact with 3D phonons.
The universal nature of 2D scattering at low energy of
incoming particles makes these two assistance mecha-
nisms robust to specific details of a particle–particle or
impurity potential. The latter is only assumed to be
short-ranged, with the characteristic interaction radius
r0 being shorter than the DeBroigle wavelength. For
example, the indirect exciton interacts with an impurity
or another exciton via the electron–hole dipole moment
ed, directed along the normal to the bilayer. Hence, the
radius of such a dipole interaction is equal to the spac-
ing between the electron and the hole layers r0 ~ d.
001 MAIK “Nauka/Interperiodica”
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The Hamiltonian of the particle phonon interaction
can be written generally as

(1)

where r = (r, z), ψ+ and ψ are the particle creation and
annihilation operators and u is a crystal deformation
induced by an acoustic phonon. Wavelengths of rele-
vant phonons are much larger than the width of the
bilayer d. The lattice deformation u can be expanded
into the normal phonon modes as

(2)

where  and bs are the phonon creation and annihila-
tion operators of polarization s; ρ is the mass density of
solid; and ωs(q) = cq is the phonon frequency disper-
sion, which we assume to be isotropic and independent
of phonon polarization s.

The exciton phonon interaction in GaAs crystal can
be separated into piezoelectric and deformation poten-
tial parts. Lattice deformation in a piezoelectric crystal
induces a polarization density Pi = βijk∂juk [5], where
βijk is the piezoelectric tensor. This polarization inter-
acts with the exciton dipole moment. In the limit
qd ! 1, the deformation potential for an exciton Θ is a
sum of the deformation potentials for an electron and a
hole taken at the same spatial point. The latter repre-
sents a change of the semiconductor gap due to the
local compression caused by a phonon deformation.
Combining the piezoelectric and deformation parts and
expanding the crystal lattice deformation in acoustic
phonon modes, we write the exciton–phonon vertex in
the Hamiltonian (1) as [5]

(3)

For a cubic GaAs crystal without the inversion center,
βijk = β if all i, j, k are different and zero otherwise. In the
limit of large d, the piezoelectric part dominates over
the deformation potential, but in the experiments [1, 2]
d ≈ 50 Å and both exciton–phonon interaction terms are
of the same order of magnitude Θ ≈ 4πedβ ≈ 10 eV.

The amplitude of phonon emission is given to the
lowest order of perturbation theory by the matrix ele-
ment

(4)

between initial state of Bose gas |i0〉  with no phonons
and the final state of Bose gas | fqs〉  with just one
phonon specified by the momentum q and the polariza-
tion s. We assume that the thermalization of the Bose

Hx ph–

=  ψ+ r( )ψ r( )δ z( )Γ i r r '–( )ui r '( )d3r 'd2r z,d∫∫

ui r( ) "
2ρωs q( )
--------------------- 

  1/2

s q,
∑=

× ei
sbs

+ q–( ) ei*
s
bs q( )+( )eiqr,

bs
+

Γ i q( ) Θqi edβijk

4πqzq jqk

q2
----------------------+ 

  .=

Mif
s q( ) f qs H ph i0〈 〉=
gas due to particle–particle scattering is much faster
than the slow cooling due to phonon emission. Thus, at
any given time t, the Bose gas is characterized by an
effective temperature T(t). This temperature defines the
total gas energy E = E(T). The Fermi Golden Rule gives
the probability of phonon emission per unit time, and
one needs to multiply it by the phonon energy ωs(q) =
cq to find the total energy losses

(5)

Equation (5) has to be averaged over the Gibbs distri-
bution of the initial state with the effective temperature
T(t). Both the initial and the final states of the Bose gas
are calculated in the interaction representation (see,
e.g., [6]). Particles are confined to the 2D layer, and the
energy losses are proportional to the area of this layer.

In the experiments [1, 2], the exciton gas is dilute

 ! 1. Popov has shown [7] that for a 2D dilute Bose
gas there is a 2D Berezinski–Kosterlitz–Thouless phase
transition point,

(6)

that separates high-T almost ideal Bose gas phase from
the low-T superfluid phase. Actually, Popov theory is
controlled by the large logarithm

(7)

where n is the particle density, E0 = "2/ m, and g is the
particle internal degeneracy [7]. For a Bose particle, g =
2S + 1, where S is the spin of particle. It was shown in
[8] that electron and hole spins flip rapidly due to the
spin–orbit interaction. Thus, g = 4 for a GaAs exciton.

For 2D dilute nonideal Bose gas, one can distinguish
three temperature regions. At high temperatures T @
TclogL, the ideal Bose gas is a good approximation. At
intermediate temperatures gTc/L ! T ! Tc/logL, an
overwhelming amount of particles constitute 2D BEqC
with the density

(8)

whereas a small fraction of thermal particles have the
bare dispersion and Bose distribution with the chemical
potential µ ≈ gTc/L [7]. At low temperatures T ! µ, a
weak particle–particle interaction is crucial and the
quasiparticle excitations of the Bose system acquire
Bogoliubov soundlike dispersion. Here, the transfer of
momentum to impurity becomes inefficient because the
quasiparticle has a vanishing scattering cross section on
a pointlike impurity. In the case of excitons in GaAs
crystal, the intermediate-T region hardly exists at all.

Ed
td

------ 2π
"

------– cq Mif
s q( ) 2δ Ei E f– cq–( ).

f qs

∑=

nr0
2
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2πn"
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At T @ Tb, a phonon is emitted perpendicular to the
layer. Using Eq. (5), we calculate the total energy losses
here:

(9)

where A is the total area of bilayer. It is convenient to
define a characteristic exciton–phonon energy:

(10)

In the case of GaAs, Tx – ph ≈ 5 K. Using the ideal gas
equation of state, E(T) = AnT, we get the temperature

relaxation law: T(t) ~ 1/ .
At T ! Tb, an unassisted phonon emission is forbid-

den. Figure 1 shows two ways of particle scattering
accompanied by an acoustic phonon emission. The left
diagram shows a scattering on the second particle, and
the right diagram shows a scattering on impurity. First,
we treat this problem in the high-T and intermediate-T
regions where particles have the bare dispersion: e =
p2/2m. 2D scattering amplitudes in both cases are iso-
tropic and depend only on the total kinetic energy in the
center of mass frame: % (in the impurity case % = e) in
the limit %  0:

(11)

where m* = m/2 for particle–particle scattering and
m* = m for the impurity scattering (see, e.g., [7]). Both
the particle–particle interaction line and the impurity
line on Fig. 1 correspond to the scattering amplitude
F(%). The total amplitude of assisted phonon emission
is universal in both cases and is given by the following
matrix element:

(12)

where C = 2 for the particle–particle scattering and C =
1 for the impurity scattering. We neglect the phonon
momentum transfer q|| to the particle because q|| ! p,
p' ! cm, if T ! Tb .

Plugging Eqs. (12) and (3) into Eq. (5) and taking
the integral over the final state of the Bose gas, we
obtain the total energy losses per unit time. In the high-
T region we get

(13)
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where K(e, T) = 2AnN(e)(1 + 1/g) in the case o f parti-
cle–particle scattering and K(e, T) = AnimpN(e)/2 in the
case of impurity scattering. nimp is the areal density of
impurities, and

(14)

is the Bose–Einstein occupation number. Combining
the particle–particle and impurity contributions, we
find the total cooling rate:

(15)

From Eqs. (9) and (15), we conclude that the tempera-
ture dependence of the 2D Bose gas cooling rate is the
same above and below the phonon emission threshold:
T = Tb .

In the intermediate-T region at g = 1, the cooling
rate is enhanced by the stimulated scattering into the
BEqC final states:

(16)

In the low-T region, the thermodynamic equation of
state reads E(T) = Aζ(3)T3/πs2, where s is the Bogoli-

ubov sound velocity: s = . In order to calculate
the energy losses, we apply the Bogoliubov unitary
transformation to the Hamiltonian (1):

(17)

N e( ) 1
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Fig. 1 Amplitude of exciton–exciton scattering (a) and exci-
ton–impurity scattering (b) accompanied by phonon emis-
sion. Full lines correspond to the propagation of exciton,
and dotted lines correspond to the propagation of phonon.
Wavy line describes interaction either between excitons or
exciton and impurity.
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This Hamiltonian allows emission of phonons. The
cooling rate in this case is also enhanced by the conden-
sate stimulation:

(18)

In both cases of condensate stimulation, we find the
temperature relaxation law: T(t) ~ 1/t.

For experimental realization of exciton cooling, the
most relevant is Eq. (15). Integrating it and inserting
L ≈ 6 and n @ nimp, we find the overall cooling time tc

required to reach the phase transition point. Here, one
can distinguish between two cases: (i) cooling of exci-
ton gas with constant density, e.g., sustained by photo-
excitation, and (ii) cooling of decaying exciton gas with
n(t) = n0exp(–t/τr), where τr is the exciton recombina-
tion time. We find

(19)

Td
td

------
µ2

"πT x ph–
2

--------------------- 1 ζ 4( )
ζ 3( )
-----------– 

  T2.–=

tc C"T x ph–
2 /Tc n( )3,=

Fig. 2. Kinetic phase diagram showing the possibility of
reaching a Bose–Einstein quasi-condensate phase in the
GaAs indirect exciton bilayer.
where Tc(n) is the BKT temperature as a function of the
exciton density n (6), and C ≈ 10 in the case (i) and C ≈
30 in the case (ii). Note that C does not depend on exci-
ton mass m and in the case (ii) the best condition for
reaching Tc occurs at t = τr/3. Equation (19) defines a
line in the bilayer parameter space: (n, τr) or equiva-
lently (Tc(n), τr), separating the two kinetic phases—
one that can condense and the second that remains
above Tc during the exciton life time τr . Figure 2 shows
this borderline for the case of a thin GaAs bilayer.
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discussions. This work was supported by the Russian
Foundation for Basic Research, project no. 01-02-
17520, and INTAS, grant no. 97-31980.

REFERENCES
1. L. V. Butov, A. Imamoglu, A. V. Mintsev, et al., Phys.

Rev. B 59, 1625 (1999); L. V. Butov and A. I. Filin, Phys.
Rev. B 58, 1980 (1998).

2. A. V. Larionov, V. B. Timofeev, I. Hvam, and R. Soer-
ensen, Zh. Éksp. Teor. Fiz. 117, 1255 (2000) [JETP 90,
1093 (2000)].

3. A. L. Ivanov, P. B. Littelwood, and H. Haug, Phys. Rev.
B 59, 5032 (1999).

4. Yu. E. Lozovik and A. M. Ruvinskii, Zh. Éksp. Teor. Fiz.
112, 1791 (1997) [JETP 85, 979 (1997)].

5. V. F. Gantmakher and Y. B. Levinson, Scattering of
Charge Carriers in Metals and Semiconductors (Nauka,
Moscow, 1984).

6. A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii,
Methods of Quantum Field Theory in Statistical Physics
(Fizmatgiz, Moscow, 1962; Prentice-Hall, Englewood
Cliffs, 1963).

7. P. N. Brusov and V. N. Popov, Superfluidity and Collec-
tive Properties of Quantum Liquids (Nauka, Moscow,
1988); D. S. Fisher and P. C. Hohenberg, Phys. Rev. B
37, 4936 (1988).

8. A. Vinattieri, J. Shah, T. C. Damen, et al., Phys. Rev. B
50, 10868 (1994).
JETP LETTERS      Vol. 73      No. 9      2001



  

JETP Letters, Vol. 73, No. 9, 2001, pp. 483–486. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 73, No. 9, 2001, pp. 546–550.
Original Russian Text Copyright © 2001 by Lisovski

 

œ

 

, Polyakov.
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Numerical analysis is used to study the nonlinear oscillation processes in an open nonconservative system of
two plane coplanar magnetized bodies with moments of inertia. Bifurcation diagrams that illustrate different
dynamic regimes of the system in an oscillating magnetic field, as well as the possibility of transitions from one
regime to another due to variations in the parameters of the external action, are obtained. It is established that,
for the regimes corresponding to infinite phase trajectories, in the general case, an asymmetry occurs in the
choice of the rotation direction of the magnetized bodies. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.70.Kw; 05.65.+b; 05.45.-a
It is well known that the ground state of a finite-size
ferromagnet is in most cases magnetically nonuniform,
whereas, in the presence of nonstationary external
actions of a certain type, it exhibits a self-organization
with the formation of completely or partially ordered
domain structures (see, e.g., [1–3]). Several attempts
were made to describe mathematically the dynamical
processes that occur in this case by the nonlinear Lan-
dau–Lifshits equation with the use of analytical meth-
ods [4–6]. However, these attempts did not result in any
major breakthrough. Presumably, some progress can be
achieved with the help of a numerical analysis based on
modern computational techniques. Such an approach
allowed us earlier [7] to establish that a system consist-
ing of two “massless” magnetic dipoles, which are
bound by a dipole interaction, exhibits a stochastic
behavior in the presence of an oscillating magnetic field
[7]. Further studies showed that a full dynamic portrait
of such a system with four degrees of freedom can
hardly be obtained at the moment, even with the most
advanced high-performance computers. This paper pre-
sents an attempt to make the physical model used in [7]
as rough as possible (with retaining the ability for the
chaotization of oscillations) by excluding the preces-
sion component of the magnetic dipole motion.

In the proposed model, each of the two magnetic
dipoles is a centrosymmetric quasi-two-dimensional
object with a moment of inertia; the object is elongated
in one direction and magnetized along the same direc-
tion (an object of a type of magnetic compass needle).
In addition, the symmetry of the object is characterized
by the presence of a mirror plane passing through the
center of symmetry normally to the plane of the object.
0021-3640/01/7309- $21.00 © 20483
We assume that the dipoles have a rotation axis passing
through the center of symmetry, which also is the center
of inertia. The magnetic needles are assumed to be
made of a hard magnetic material (with an infinitely
large coercive force).

The numerical calculation was performed for the
following geometric configuration. The plane of the
dipole rotation was the XY coordinate plane; the rota-
tion axes of the dipoles with the magnetic moments p1
and p2 lay on the X axis, and the distance between them
was r = aex. The angular positions of the magnetic nee-
dles at any instant of time t were uniquely determined
by the angles φ1(t) and φ2(t), where φi = (piy/pix).

In the absence of external actions, such a system has
two equilibrium states (the centers or attractors of a
“stable focus” or “node” type) for which the equalities
φ1 = φ2 = 0 and φ1 = φ2 = π are satisfied. The choice of
one of the two equilibrium configurations is determined

by the values of the angles  = φ1(0) and  = φ2(0)
at zero time. In the presence of an alternating external
magnetic field Hsin(ωt) with the field vector lying in
the XY plane and oriented at an angle φH to the X axis,
the magnetic needles will experience rotational
moments K1, 2 caused by the Zeeman and dipole–dipole
interactions:

(1)

arctan

φ1
0( ) φ2

0( )

K1 2,
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Since, in the geometry under study, each rotational
moment has only one nonzero component Kiz = |Ki | =
Ki, the time variation of the orientation of the magnetic
needles with the moments of inertia J1 and J2 is
described by the equations

(2)

where αi are the damping constants. These equations
can be represented in an explicit form:

(3)

where a dot over a symbol denotes the differentiation
with respect to the dimensionless time τ = νt and the
dimensionless parameters βi, αHi, and Ω are expressed
through the initial parameters by the formulas

(4)

From general considerations, it follows that at least
four different dynamic regimes can occur in the system

Ji
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Fig. 1. Dependence of the maximal and minimal values of

 on the normalized frequency of magnetic field.φ̇1

φ̇1
 under study. Regime I (with a limiting cycle) and
regime II (without the limiting cycle) are characterized
by a finite phase trajectory, and, in both these regimes,
the dipoles oscillate about some dynamic equilibrium
position with a peak-to-peak amplitude φmax – φmin not
exceeding 2π. Infinite phase trajectories correspond to
regime III (with a limiting cycle) and regime IV (with-
out the limiting cycle) in which the objects can perform
as many revolutions as one likes about the rotation axes
(clockwise or counterclockwise).

The typical results that were obtained from the
numerical simulation of the behavior of the dynamic
system under discussion for the simplest case of identi-
cal dipoles (J1 = J2 = J; α1 = α2 = α; β1 = β2 = β) are
presented in Figs. 1 and 2 in the form of bifurcation dia-
grams for the following initial conditions and values of

internal parameters: φ1(0) = 2.5, φ2(0) = π/4, (0) =

(0) = 0, αH = 10, β = 0.3, and φH = 0.
Figure 1 shows the maximal and minimal values of

the angular velocity  of the first magnetic dipole for
each fixed value of Ω; the values of the angular velocity
are those realized in the system in the course of the
observation within the time interval ∆τ far exceeding
the time interval Te between the neighboring extrema in
the dependence of the angular velocity of the first

dipole on the dimensionless time (τ).1 If the set of
extremum values contains a single element, we have
either a stable state (a zero element) or a uniform rota-

tion with  =  = const ≠ 0. A two-element set
corresponds to a simple cycle with a finite (for φ1max =
–φ1min) or infinite (for |φ1max| ≠ |φ1min|) phase trajectory.
A four-element set and every 2n-element set corre-
spond to a twofold cycle and a cycle of order n, respec-
tively, which can be with either a finite (for elements
pairwise coincident in magnitude but different in sign)
or an infinite (when φ1max andφ1min differ in magnitude)
phase trajectory. In the case of a total dynamic chaos,
the number of elements in the set of extremum values
linearly increases (in proportion to the time of observa-
tion), and they fill uniformly a certain segment of the
straight line Ω = const.

The above consideration shows that the identifica-
tion of the dynamic regimes which occur in the system
under study by using only the bifurcation diagram pre-
sented in Fig. 1 can lead to ambiguous results. To elim-
inate this ambiguity, additional information is neces-
sary: for example, the data on the time variations of the
values of the function φ1(τ) (or φ2(τ)) at the extremum
points at Ω = const. If, for τ @ τ0, these values remain
invariant (correct to 2πn), we deal with the fully deter-
ministic regimes (with a limiting cycle), i.e., regime I

1 In our case, ∆τ = 100Te; the initial point τ0 was chosen so as to
eliminate the effect of transient processes occurring in the system
on the results of observations for the dynamic regimes with a lim-
iting cycle.

φ̇1

φ̇1

φ̇1

φ̇1

φ̇1max φ̇1min
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(n = 0) or regime III (n ≠ 0). A variation of these values
within a bounded interval ∆φ < 2π is an indication of
regime II (chaotic oscillations of the dipoles near some
middle position). If the value of ∆φ grows without limit
(in proportion to ∆τ), regime IV, i.e., a chaotic rotation
of the dipoles, is observed. The data on the evolution of
the values of the function φ1 at the extremum points are
shown in Fig. 2 for the same initial conditions and the
same parameters as in the bifurcation diagram shown in
Fig. 1.

The analysis of Figs. 1 and 2 with allowance for the
above considerations shows that the high-frequency
region corresponds to the equilibrium state,2 whereas,
at the point Ω ≈ 5.7, a Hopf bifurcation or a bifurcation
of a simple cycle production (regime I with small oscil-
lations of the dipoles near the equilibrium position)
arises. As the normalized frequency decreases, the
oscillation amplitude gradually increases and, at the
second bifurcation value Ω ≈ 5.0, a transition to
regime III with a complete revolution of the dipoles
takes place (the production of twofold cycles, then
fourfold cycles, etc.).

In the low-frequency region, below the third bifur-
cation value Ω ≈ 2.5, the system exhibits a chaotic
behavior. In the diagram presented in Fig. 1, the points
lying in this region are nonuniformly distributed with a
tendency to being denser or sparser; i.e., the dynamic
chaos is not absolute, but structured. In this case,
regimes II and IV are realized. The regions correspond-
ing to regime II are extremely narrow and localized
near certain values of Ω , namely, Ω ≈ 0.875, Ω ≈ 0.5,
Ω ≈ 0.125, etc. (see Fig. 2). In addition, the low-fre-
quency region contains relatively wide zones of self-
organization near the values Ω ≈ 1.5 and Ω ≈ 1.75,
where attractors of the simple-cycle and twofold-limit-
ing-cycle types, respectively, are observed.

The bifurcation diagrams presented in Figs. 1 and 2
also show that, in the general case, for regimes III and
IV corresponding to infinite phase trajectories, an
asymmetry in the choice of the rotation direction of
magnetized bodies takes place. For example, when Ω ∈
[2.5, 5], the clockwise rotation of the first dipole (  <
0) is realized much more often than its counterclock-

wise rotation (  > 0). One can also see that, in some
cases, the direction of the dipole rotation changes to the
opposite as a result of an insignificant variation of the
frequency Ω . The presence of such an asymmetry,
which is a consequence of the asymmetry of the initial

conditions for the first and second dipoles (at  =

, the asymmetry is absent), could be considered as
a common phenomenon, were it not for the following
fact: the asymmetry manifests itself to one or another

2 With the selected value of the attenuation coefficient β = 0.3, the
equilibrium states correspond to the attractors of the stable-focus
type, because β < min{Ω0i}, where Ω0i are the eigenfrequencies
of the system for low-amplitude oscillations (see below).

φ̇1

φ̇1

φ1
0( )

φ2
0( )
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extent for all values of Ω for which a complete revolu-
tion of the dipoles is realized in the system in both the
deterministic and the chaotic regimes. In other words,
the dynamic chaos in the system under study exhibits a
memory for the initial conditions.

The analysis of the analogous bifurcation diagrams
obtained for the second magnetized body with the same
initial conditions and parameters as for the first body
showed no qualitative difference in the dynamic behav-
ior of the two objects under consideration. In the inter-
val of the normalized frequency variation 0 < Ω < 8.0,
for the second magnetized body we also obtained the
zones of deterministic and chaotic behavior, the focus-
type attractors, simple and multiple limiting cycles, the
predominant clockwise rotation of the dipole in the
regimes with an infinite phase trajectory, the self-orga-
nization regions within the frequency interval with a
predominance of chaos, etc. However, it should be
noted that, the changes in the rotation direction of the
second object occur at other values of Ω than in the case
of the first object; i.e., situations with opposite rotation
directions of the magnetized bodies are possible.

A variation of the initial conditions causes no con-
siderable changes in the dynamic behavior of the sys-
tem under study. Nevertheless, when the initial devia-
tion of the axis of the first dipole from the X axis
decreases (above, we used the value φ1(0) = 2.5) and the
initial position of the second dipole remains unchanged
(φ2(0) = π/4), the number of Ω values at which the first
dipole changes its rotation direction increases, and,
when φ1(0)  0, the cycles with the clockwise and
counterclockwise rotations (for infinite phase trajecto-
ries) become of equal occurrence. However, these
changes have practically no effect on the dynamic por-
trait of the second dipole, for which the asymmetry in

Fig. 2. Dependence of the maximal and minimal values of
φ1 on the normalized frequency of magnetic field.

φ1
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the choice of the rotation direction is retained even at
φ1(0) = 0.

The aforementioned features of the dynamic pro-
cesses that occur in the system under consideration are
determined by the fact that its behavior is described by
a system of equations with periodic coefficients in
which the external action manifests itself not as a driv-
ing force, but as a factor modulating the internal param-
eters. For example, if we introduce new variables φ(+) =
φ1 + φ2 and φ(–) = φ1 – φ2, the system of equations (3)
will take the form

(5)

A linearization of the system of equations (5) at
αH = 0 leads to the equations

(6)

i.e., in the low-amplitude approximation, the normal
coordinates of the system are the quantities φ(+) and φ(−)

whose variations represent the in-phase and antiphase
oscillations, respectively, of the magnetic dipoles with

the normal frequencies  =  and  = 1.

It is well known that, for the equations with periodic
coefficients of a similar type (e.g., for the Hill equation)
that describe the behavior of systems with one degree
of freedom, the alternation of the domains of stable and
unstable solutions in the frequency space is typical
(see, e.g., [8]). In the absence of attenuation, unstable
solutions can exist at any nonzero amplitude A of the
external action; a dissipation gives rise to an instability
threshold. The instability zones in the (A, Ω) plane lie

near the values Ω = , where Ω0 is the resonance

frequency for free (undamped) oscillations. Although
the system studied in this paper is more complex, one
must take into account that the frequency intervals with
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φ +( ) φ –( )+

2
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Ω0

2
------
a deterministic dynamic behavior within the chaos
region (Fig. 1) may occur because of the same reason.

In closing, we note that, in Figs. 1 and 2, the role of
the bifurcation parameter is played by the variable Ω ,
which is a dimensionless combination of several
dimensional parameters of the system. However, the
analysis of Eqs. (4) shows that the expression for the
normalizing factor involves only the geometric (the dis-
tance between the dipoles), magnetic (the magnetic
moments of the dipoles), and mechanical (the moments
of inertia) parameters; i.e., the Ω and ω axes are related
by a simple similarity transformation. Therefore, in an
experimental study of the processes studied in this
paper, the bifurcation diagrams should be determined
by varying the frequency of the external magnetic field
with a constant distance between the dipoles; in corre-
lating the experimental values of the instant angular
velocities of the dipoles, one should take into account
that the values presented in Fig. 1 (and corresponding
to the derivatives with respect to the dimensionless
time) differ from the real values by the factor ν–1. For
the bifurcation diagram regions that correspond to the
complete revolutions of the dipoles, it is also necessary
to take into account the presence of the dynamic mem-
ory in the system under study, i.e., the dependence of
the experimental data on the initial conditions.

This work was supported by the Russian Foundation
for Basic Research, project no. 99-02-17404.

REFERENCES

1. G. S. Kandaurova and A. É. Sviderskiœ, Pis’ma Zh. Éksp.
Teor. Fiz. 47, 410 (1988) [JETP Lett. 47, 490 (1988)].

2. F. V. Lisovskiœ and E. G. Mansvetova, Pis’ma Zh. Éksp.
Teor. Fiz. 55, 34 (1992) [JETP Lett. 55, 32 (1992)].

3. F. V. Lisovskiœ, E. G. Mansvetova, and Ch. M. Pak, Zh.
Éksp. Teor. Fiz. 108, 2031 (1995) [JETP 81, 567 (1995)].

4. I. E. Dikshteœn, F. V. Lisovskiœ, E. G. Mansvetova, and
E. S. Chizhik, Zh. Éksp. Teor. Fiz. 100, 1606 (1991)
[Sov. Phys. JETP 73, 888 (1991)].

5. A. G. Shagalov, Fiz. Met. Metalloved. 84, 17 (1997).

6. V. E. Ivanov and G. S. Kandaurova, Fiz. Met. Metall-
oved. 87, 571 (1999).

7. F. V. Lisovskiœ and O. P. Polyakov, Pis’ma Zh. Éksp.
Teor. Fiz. 68, 643 (1998) [JETP Lett. 68, 679 (1998)].

8. E. Kamke, Differentialgleichungen, Bd. I: Gewöhnliche
Differentialgleichungen (Geest and Portig, Leipzig,
1964; Nauka, Moscow, 1976).

Translated by E. Golyamina
JETP LETTERS      Vol. 73      No. 9      2001



  

JETP Letters, Vol. 73, No. 9, 2001, pp. 487–490. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 73, No. 9, 2001, pp. 551–555.
Original Russian Text Copyright © 2001 by Kudryashov, Emel’yanov.

                                                                                                                                                                      
Nonthermal Structural Transformation
in Quasi-Monocrystalline Graphite during 100-fs Laser Pulse

S. I. Kudryashov* and V. I. Emel’yanov
International Laser Center, Faculty of Physics, Moscow State University, Moscow, 119899 Russia

* e-mail: sergeikudryashov@chat.ru
Received March 28, 2001

Nonthermal structural transformation in quasi-monocrystalline graphite excited by a laser pulse with a duration
of 100 fs was directly confirmed by ellipsometry. © 2001 MAIK “Nauka/Interperiodica”.
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1. In the past decade, the hypothesis for “plasma-
induced” nonthermal structural transitions initiated in
semiconductors by intense femtosecond laser pulses
has been confirmed both experimentally and theoreti-
cally in a number of works [1–7]. However, it is still
hard to directly identify the resulting new disordered
(including fluid) and crystalline phases, because the
methods of linear and nonlinear optical diagnostics do
not always provide the desired structural sensitivity of
optical response and its unambiguous interpretation
[1−5], while the more universal X-ray diffraction
method [6, 7] does not meet the requirements for sub-
picosecond time resolution of the structural changes in
a medium. Nevertheless, in some cases, the optical
methods allow the direct observation of long-range
order breaking on a subpicosecond time scale in mate-
rials with pronounced optical anisotropy, e.g., in graph-
ite [8]. Graphite is also of interest because its structural
transformations are of great fundamental and practical
importance, not only in connection with the develop-
ment of new methods for manufacturing diamond (e.g.,
by exposure to electron beams [9]) but also because of
the lack of reliable data on the hypothetical graphite
phases—carbyne and liquid phase [10, 11].

In this work, ellipsometry (self-reflection of s- and
p-polarized pulses) was used to prove that a 100-fs laser
pulse can initiate nonthermal plasma-induced structural
transformations in a quasi-monocrystalline graphite.

2. A standard femtosecond laser setup of the Insti-
tute of Laser and Plasma Physics (University of Essen,
Germany) was used, whose components (oscillator and
regenerative and multipass sapphire amplifiers) were
described in [12]. The laser output was 1.5 mJ per pulse
(TEM00 mode) at a wavelength λ ≈ 800 nm, a pulse
(Gaussian) duration τ ≈ 100 fs (FWHM), a repetition
rate of 10 Hz, and relative amplitude of the pre- and
postpulses no higher than 5–7%. The focused polarized
(s and p) beam was directed at an angle of 45° onto the
basal plane of a wafer that was made from high-ori-
ented pyrolytic type UPV1-TMO (quasi-monocrystal-
0021-3640/01/7309- $21.00 © 20487
line) graphite and moved from pulse to pulse. The
energy of mirror-reflected s- and p-polarized pump
beams was measured by a pyroelectric detector at dif-
ferent energies of the incident single pulses. The pump-
beam self-reflectivities Rs and Rp were measured as
functions of pulse energy, and the corresponding curves
were processed to eliminate their spatial averaging due
to the inhomogeneous distribution of pump fluence F
over the TEM00 beam spot on the wafer. The resulting
R1s and R1p values are presented in Fig. 1 as functions
of the effective (pulse-integrated) pump fluence Feff =
(1 – R1s, p)F. This allowed the curve portions corre-
sponding to the identical conditions of sample excita-
tion to be juxtaposed in the plot.

3. The analysis of the ellipsometric data carried out
for quasi-monocrystalline graphite in [13], where it
was considered as an isotropic medium, seems to be
incorrect because of the pronounced structural anisot-
ropy and anisotropy of physical (primarily optical)
properties of this material. Indeed, for an oblique (45°)
incidence of a beam on the sample basal plane perpen-
dicular to the C axis, the electric vector E of the
s-polarized beam lies in the surface plane (E ⊥  C)
[R1s(Feff) in Fig. 2] and interacts with the “semimetal-
lic” atomic planes in graphite (n⊥  = 2.7 and k⊥  = 1.67
[14]; n⊥  = 3.1 and k⊥  = 1.9 [15]; n⊥  = 3 and k⊥  = 1.5 [16];
the data are for λ ≈ 800 nm) to excite electron–hole
(e−h) plasma in them. By contrast, the p-polarized
beam incident at 45° has two mutually perpendicular E
components with identical amplitudes (E ⊥  C and
E || C; hereafter E⊥  and E||, respectively), of which the
latter acts across the graphite planes (along the C axis)
and has optical constants (λ ≈ 800 nm) n|| = 1 and k|| =
0.25 [14], n|| = 1.4 and k|| = 0.7 [15], and n|| = 2 and k|| =
0.13 [16]. One can show that the mutually perpendicu-
lar E⊥  components of the s- and p-polarized beams are
virtually equivalent for the quasi-monocrystalline
graphite with hexagonal structure. Thus, the interaction
of the s- and, especially, p- polarized beam incident on
001 MAIK “Nauka/Interperiodica”
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the basal plane of graphite is characterized by two pairs
of optical constants [R1p(Feff) in Fig. 2] that cannot be
uniquely determined by ellipsometry from two mea-
sured parameters, namely, reflectivities for different
polarizations or angles of incidence. However, in the
diagnostics of graphite structural transformations, it is
more important that the contribution from the p-polar-
ization E|| component to the reflectivity, although being
negligible for the unexcited sample, becomes compara-
ble with the contribution from E⊥  and, hence, apprecia-
ble after the structural transformation of graphite into a
phase with weak anisotropy (amorphous substance,
“cold” melt, or diamondlike phase).

Fig. 1. Self-reflectivities R1s = R⊥ , R1p, and R|| as functions
of effective (integrated) fluence Feff of the pump beam. The
confidence intervals (for P = 0.95, N = 15) and the calcu-
lated reflectivities of the unexcited graphite (data from
[14−16]) are also given.

Fig. 2. Comparison of the R1s(Feff) (dark triangles) and
R1p(Feff) (light triangles) dependences with the correspond-
ing R1s("ω) (solid line) and R1p("ω) (dotted line) depen-
dences calculated for the unexcited graphite using the data
on n⊥  and k⊥  from [15].
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Taking into account the effect of graphite anisot-
ropy, the reflectivity for both beam polarizations at an
incidence of 45° can be represented for the E|| and E⊥
components as

(1)

(2)

where  and  are the reflected fluences for the s
and p polarizations, respectively, and incident fluence
F, i.e., for R⊥  = R1s:

(3)

The experimentally measured R1s(Feff) and R1p(Feff)
reflectivities were used, together with Eqs. (1) and (3),
to construct the R⊥ (Feff) and R||(Feff) curves (Fig. 1). The
initial portion of the latter is scaled by a factor of 0.5 in
the range Feff ≤ 0.025 J cm–2 because the pumping was
mainly provided by the E⊥  component. It is notable that
R|| is close to zero at Feff ≤ 0.025 J cm–2, confirming that
the E|| component weakly interacts with graphite, in
accordance with its optical properties along the C axis.
The R⊥ (Feff) curve shows a minimum in this range of
Feff values, indicating the onset of plasma effects—
attainment of the plasma reflection edge or, due to the
plasma-induced π-electron band-gap collapse, red shift
in linear absorption of the E⊥  component. Indeed, the
pumping E⊥  component undergoes strong linear
absorption in graphite {α(800 nm) ≈ 3 × 105 cm–1

[15]}. Under the condition that the rate of optical e–h-
plasma generation is equal to the Auger recombination
rate, the data on the linear absorption in the indicated
Feff range yield, according to the expression

(4)

a value higher than 1022 cm–3 for the upper limit of
plasma density (estimates were made using the rate
constant γA = 4 × 10–31 cm6 s–1 for Si [17]). A compari-
son of the R⊥ (Feff) curve with the Rs("ω) curve con-
structed for the unexcited graphite (Fig. 2) using the
data from [15] shows that a change in R⊥  in the range
Feff = 0.02–0.07 J cm–2 can be described within the
framework of the hypothesis for the red shift in a linear
absorption spectrum.

A sharp increase in R||(Feff) at Feff > 0.025 J cm–2

(Fig. 1) is due to a thresholdlike change in the optical
properties in the C direction. At Feff > 0.08 J cm–, the
R||(Feff) curve flattens out at a level of about 0.12. The
sharp increase in R||(Feff) points to the fact that the min-
imum in the R⊥ (Feff) curve is due not to the electronic
effect alone, because the expected contribution from
the e–h plasma does not account for the observed
change in R||(Feff). It is more conceivable that graphite

F1s
R FR1s FR⊥= = ,

F1 p
R FR1 p F⊥
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undergoes at Feff > 0.08 J cm–2 a nonthermal structural
transformation from the two-dimensional phase with
pronounced anisotropy into a transient three-dimen-
sional phase with weak anisotropy. This transformation
occurs within the pump pulse of a duration of 100 fs
[shorter than the period of optical or acoustic vibrations
in graphite (2 × 10–13 s)] as a result of the well-known
plasma-induced instability of acoustic modes [18, 19],
likely, of the TA modes near the Brillouin zone bound-
ary in our case. Indeed, the π-electron excitation to the
antibonding states (conduction band) converts inter-
layer attraction into interlayer repulsion, thus causing
mutual shift of the atomic planes in graphite (TA E2g

mode, 43 cm–1), as was predicted in [20] and experi-
mentally proved in [21]. The instability of this mode
induces transition from the hexagonal graphite struc-
ture to the orthorhombic structure in which the planes
may be linked together by the covalent bonds to form
hexagonal or cubic diamond [22]. The density of the
substance (2.26 g cm–3) does not change in the course
of structural transition during the 100-fs laser pulse, so
that the interatomic distances in the transient diamond-
like phase are appreciably larger than in the equilibrium
diamond structure. As a result, the structure, the den-
sity, and, likely, the optical properties of the transient
phase should be close to the analogous characteristics
of crystalline Si, which also has the diamond lattice and
a density of 2.33 g cm–3.

The optical properties of the transient phase were
analyzed in the range Feff > 0.08 J cm–2 [plateau on the
R||(Feff) curve in Fig. 1]. In the new structural phase, R||
is not an independent component of R1p in the indicated
Feff range, so that its optical properties are unambigu-
ously determined by a pair of values R1p and R1s, with
allowance made for the fact that the pumping is pro-
vided by both E⊥  and E|| components of the p-polarized
beam. Since the reflectivities R1s(Feff) and R1p(Feff) very
weakly change at Feff > 0.08 J cm–2, one can ignore the
averaging of the actual R2p and R2s values over the pulse
duration, which is caused by the pump-pulse “self-
action,” and set R2p and R2s equal to R1p and R1s, respec-
tively, for instantaneous Feff(t) values during the pulse.
The presence of a plateau in the corresponding curves
suggests that the surface layer of the new phase is opti-
cally “thick.” Consequently, using the plateau values
R1p ≈ 0.28 ± 0.02 and R1s ≈ 0.40 ± 0.02 in Fig. 1 and the
Fresnel formulas, one can calculate the optical con-
stants for the new phase. The result is n(800 nm) ≈
3.8 ± 0.1 and k(800 nm) ≈ 1.1 ± 0.6. The Brewster
angle for these values of n and k is considerably larger
than 45°; i.e., the reflectivity of the new phase at the
normal incidence and λ ≈ 800 nm is approximately the
half-sum of R1p ≈ 0.28 ± 0.02 and R1s ≈ 0.40 ± 0.02, giv-
ing 0.34 ± 0.05, in accordance with the calculated
0.37 ± 0.05.

Thus, as was assumed in the analysis of the hypo-
thetical structure of the transient phase, it is “dielectric”
JETP LETTERS      Vol. 73      No. 9      2001
at a wavelength of 800 nm and its optical constants, pri-
marily n(800 nm), are close to those of crystalline Si
{n(800 nm) = 3.7 and k(800 nm) = 0.007 [15]}.
A strong, as compared to Si, linear absorption of the
transient phase at a wavelength of 800 nm can be
explained by a rather narrow energy gap in the new
phase because of large interatomic distances and smaller
radius of the carbon atom. At the same time, the optical
resistivity of the transient phase is 550 ± 310 µΩ cm at
λ ≈ 800 nm, in compliance with the experimental data
presented in [13] for the static resistivity of a short-lived
laser-induced liquid carbon phase (625 ± 75 µΩ cm) and
with the experimental data for the static resistivity of the
equilibrium liquid carbon phase (600–900 µΩ cm [23]).
The value of 0.37 ± 0.05 calculated for the normal-inci-
dence reflectivity of the transient phase at λ ≈ 800 nm
agrees well with the analogous value for the equilib-
rium liquid carbon phase (0.4 at λ ≈ 650 nm [24]).
These facts give evidence for the liquid state of the tran-
sient diamondlike phase, as was predicted in recent the-
oretical works [10, 11].

In [4], the “optical microscopy” method (optical
probing of the excited area with a spatial resolution up
to 2 µm and a time resolution up to 100 fs) was used to
study the reflection of the second harmonic from this
graphite sample after it had been exposed to the pump
beam. The data obtained indicate that, in the region of
laser action beyond the area of sample damage through
laser ablation {Fabl(800 nm) ≈ 0.18 J cm–2 for the p-
polarized pump beam [20]}, no detectable traces of
structural transformation occur within several tens of
seconds after the action. This suggests that the
observed structural transformation is reversible.

4. In summary, the ultrafast (during the 100-fs laser
pulse) nonthermal (plasma-induced) structural trans-
formation into a short-lived three-dimensional dielec-
tric (at λ = 800 nm) phase (presumably diamondlike or
liquid) has been observed experimentally in quasi-
monocrystalline graphite.
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A New Crystalline Form of Carbon Based on the C36 Fullerene: 
Simulating Its Crystal and Electronic Structure
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A new crystalline allotropic form of carbon consisting of covalently bound fullerenes C36 of symmetry D6h is
suggested. The structure of the unit cell of this compound was simulated. The unit-cell parameters obtained
(a = b = 6.695 Å and c = 6.763 Å) are close to experimental data. The band structure of the spectrum of valence
electrons was calculated by the method of crystal orbitals. The bandgap was found to be ~1.9 eV. The energy-
band structure of quasi-one-dimensional macromolecules [C36]n (n @ 1) is discussed depending on the way in
which the monomers are bound in them. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 61.48.+c; 71.20.Tx
The discovery and synthesis of macroscopic quanti-
ties of fullerenes C60 and C70 [1, 2] generated a vast
flow of interdisciplinary investigations of these novel
allotropic forms of carbon. The crystal structures of the
fullerenes C60 and C70 were identified. The most abun-
dant fullerenes C60 were found to form molecular close-
packed crystals under conventional conditions. Under
the effect of visible or ultraviolet light on C60, photopo-
lymerization of these carbon clusters was revealed in
1993 [3], which can be interpreted as a result of the
reaction of (2 + 2) cycloaddition widely known in the
chemistry of hydrocarbons [4]. Later, new polymeric
structures on the basis of C60, both layered (2D) [5, 6]
and three-dimensional (3D) [7, 8], were found to be
formed under the action of pressure and temperature.
Polymerization of other fullerenes was only studied on
the example of the C70 clusters. In this case, also several
polymeric phases were found [9, 10].

The recent works on the synthesis and identification
of the structure of smaller fullerenes C36 [11, 12] stim-
ulated the appearance of new theoretical investigations
of the properties of such clusters and their prognostica-
tion (see [12–15] and the references therein). Note that
the possibility of the existence of the fullerene C36,
whose structure is displayed in Fig. 1 (1), was noted in
[16, 17]. In these papers, it was also indicated that the
cluster C36, because of the stressed state of its carbon
skeleton, should be more reactive than the fullerene C60.

In principle, several isomers of the fullerene mole-
cule C36 are possible, including a high-symmetry clus-
ter of symmetry D6h. The experimental data speak in
favor of the formation of the isomer (D6h)-C36 [11],
although calculations performed in [14, 15] show that
0021-3640/01/7309- $21.00 © 20491
an isomer of a lower symmetry D2d should be more sta-
ble. It was established in [17] that the ground state of
the fullerene C36 of symmetry D6h is triplet. Therefore,
such an isomer should have an enhanced ability to
dimerization and to the formation of polymeric struc-
tures. In addition, the symmetry D6h imposes suffi-
ciently hard restrictions not only on the structure of the
molecule itself but also on the arrangement of mole-
cules in a covalent crystal that is formed from such
fullerenes. Therefore, the (D6h)-C36 fullerene is of spe-
cial interest as a possible structural module in simulat-
ing new carbon forms.

The (D6h)-C36 fullerene molecules can form dimers
of several types [12, 14–16]. Three of them, 2–4, which
are of greatest interest, are shown in Fig. 1. The struc-
ture of dimer 2 can be interpreted as a result of the reac-
tion of (2 + 2) cycloaddition. In the region of bonding
of neighboring monomers, a four-membered cycle is
formed. Dimer 3 can be considered as a result of the
reaction of (4 + 4) cycloaddition. In this case, the cova-
lent bonds are formed between 1,1' and 4,4' atoms
(Fig. 1). In dimer 4, a hexagonal prism is formed in the
region of linking of two monomers. Note that earlier
such a way of bonding of two monomers was suggested
in [18] for hypothetical structures consisting of
fullerenes C60 and later, in [19], an analogous approach
was used for the simulation of hypothetical crystals of
fullerenes C60 of an elongated shape (barrelenes).

The table lists the heats of formation for dimers 2–4
obtained by the MNDO/PM3 method (widely applied
in calculations of the geometry and electron structure
of cage-type molecules and their derivatives) by the
optimization of the energy of these systems on the basis
001 MAIK “Nauka/Interperiodica”
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of their geometrical parameters. (A GAMESS program
packet [20] for a DEC 3000 Alpha AXP 400X worksta-
tion was used.) It follows from the table that it is dimer 3
that is most stable. The reaction of the formation of
dimer 2 from two monomers is endothermic, and the
analogous reaction of formation of dimer 4 is exother-
mic. Note that the lengths of bonds between the mono-
mers increase monotonically from 1.51 to 1.56 Å in the
series of clusters 2, 3, 4. In addition, the valence angle
4'–4–5 in cluster 3 is 134°, whereas in cluster 4 the
analogous angle 4–6–6' differs from the classical

Fig. 1. (D6h)-C36 molecule (1) and dimers (2)–(4) with three
different types of linking (schematic).

Heats of formation of carbon clusters 1–4 found by the
MNDO/PM3 method

Multi-
plicity Cluster ∆Hf, kcal/mol ∆Hf, kcal/mol/C36

1 (D6h)-C36 (1) 840.8 840.8

3 (C2v)-C36 (1) 821.0 821.0

1 (C36)2 (2) 1724.96 862.4

1 (C36)2 (3) 1535.8 769.9

1 (C36)2 (4) 1596.6 798.3

2

1

3

4

valence angles (109° and 120°) even more and is equal
to 149°. With such a large valence angle, we may
expect a noticeable participation of some orbitals of
four-coordinated carbon atoms in the interaction with
residual conjugated systems of neighboring monomers. 

Oligomeric and polymeric structures based on
(D6h)-C36 clusters were discussed in a number of works
(see, e.g., [13–15, 21, 22]). In [15, 21], a quasi-two-
dimensional layer of covalently bonded (D6h)-C36
fullerenes was considered. In [14, 22], the so-called
clathrate structures were studied, in which the (D6h)-C36
clusters were used as the main structural units bound
with one another by carbon atoms located in intermo-
lecular cavities.

In this work, we suggest a new 3D crystal structure
(5, Fig. 2) based on the (D6h)-C36 fullerenes, which is
constructed as follows: within one layer, each barrelene
is bound with each of six neighbors by two covalent
bonds of the same type as in dimer 3; with the upper
and lower neighbors, it forms, as in dimer 4, hexagonal
prisms of sp3 hybridized atoms. This crystal structure
belongs to the space group P6/mmm; its unit cell con-
tains 36 atoms.

The structure of the unit cell of crystal 5 also was
simulated in terms of the MNDO/PM3 quantum-chem-
ical method. Note that this method was earlier used in
describing the structure of a quasi-two-dimensional
layer of (D6h)-C36 fullerenes [21]. The parameters of the
hexagonal unit cell of crystal 5 and the atomic coordi-
nates were chosen as a result of optimization of the
energy of the hydrocarbon molecule C264H132 (6) of
symmetry D6h. The carbon skeleton of molecule 6 con-
sists of a central cluster (D6h)-C36 and “halves” of eight
adjacent clusters C36. This lattice fragment is cut from
the structure of crystal 5 by a sphere with its center
located in the center of symmetry of the internal cluster
C36. The projection of this sphere on the plane z = 0 is
shown in Fig. 2 by a dotted line. The broken C–C bonds
were replaced by C–H bonds. The optimization of the
geometry of this giant hydrocarbon molecule consist-
ing of 396 atoms yielded the following coordinates of
inequivalent atoms in the unit cell of this crystal: C(1):
0.414, 0.207, 0.099; C(2): 0.384, 0, 0.214; C(3): 0.237,
0, 0.386 (in Fig. 1, these atoms are designated 3, 4, and
5, respectively); and the following parameters of the
hexagonal lattice: a = 6.695 Å and c = 6.763 Å.

The electron spectrum of the crystal structure 5 was
calculated by the crystalline orbital method in the
valence approximation of the extended Hückel tech-
nique (EHT) using the program that is described in
[23]. Figure 3 displays the energy band structure of
crystal 5 and its Brillouin zone. It is seen from this fig-
ure that crystal 5 is a semiconductor with an energy gap
of ~1.88 eV.

In contrast to the so-called clathrate structures of
symmetry D6h based on the C36 clusters [22], which
contain additional atoms in the cavities between the
JETP LETTERS      Vol. 73      No. 9      2001
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fullerenes, the structure of crystal 5 consists of only
molecules C36 and is characterized by a semiconductor
rather than insulating (7 eV) gap in its electron spec-
trum. The parameters a and c of its unit cell turned out
to be somewhat nearer to the experimental value 6.68 Å
than in the most energetically stable clathrate C36+4 [22]
(a = 6.91 Å and c = 6.23 Å). Note also that on the sur-
face of this crystal the vertices of the C36 molecules
([001] plane) in their structure coincide with the layer
of C36 molecules linked by (4 + 4) cycles [21] and the
lateral faces ([100] plane) coincide with the structure of
chains of C36 (7) linked by hexagonal prisms. There-
fore, in the crystal considered, the surface states local-
ized at these structures as at defects (they lie inside the
forbidden gap of crystal 5) can yield a “fine structure”
in the electron spectrum, which can be observed by
using scanning tunneling spectroscopy of the surface of
a nanocrystalline film of C36 [12].

Two ways of monomer linking are realized in crys-
tal 5, which determine the band structure of its electron
spectrum. It is, therefore, of interest to compare its
spectrum with the spectra of linear macromolecules in
which only one type of monomer linking is used: either
as in dimer 3 or as in dimer 4. The first case was studied
in [21], where it was shown that the corresponding lin-
ear polymer [C36]n (n @ 1) has a semiconductor spec-
trum with an energy gap of ~1 eV. The quasi-one-
dimensional macromolecule 7 with intermonomer
bonds of the second type (Fig. 1, 4) was not investi-
gated earlier. The structure of the repeating unit of the
linear polymer 7 was determined based on the calcula-
tion of the trimer (C36)3. The results of the calculations
of the electron spectrum of this macromolecule are
given in Fig. 4. It is seen that there is a sufficiently nar-
row energy gap (0.06 eV) in the spectrum of the mac-
romolecule 7. Such a character of the spectrum appears
to be related to the anomalously large values of one of
the valence angles (reaching 150°) of each of the four-
coordinated carbon atoms. The macromolecule 7 can
be regarded as a (6.0) nanotube with defects that lead to
the formation of a corrugated structure, which never-
theless exerts no significant effect on the conducting
properties of the molecule.

We performed a simulation of the geometric and
electronic structures of the new crystal allotropic form
of carbon of symmetry D6h consisting of 3D polymer-
ized barrelenes (D6h)-C36. The parameters of the unit
cell of this crystal agree well with the experimental data
[11, 12]. These data correspond to a semiconductor
character of the electron spectrum of the structure con-
sidered. Because of the presence of one-third of sp2

hybridized atoms in crystal (1), it should be expected
that the structure considered will have a sufficiently
large hardness, similar to the structures of 3D poly-
meric fullerenes C60 [7, 8]. In future, we plan to calcu-
late the phonon spectrum of the C36 crystal and estimate
the bulk elasticity modulus and the modes that are
active in Raman spectra, as well as its X-ray diffraction
JETP LETTERS      Vol. 73      No. 9      2001
Fig. 2. Crystal (5) of hexagonal symmetry D6h consisting of
3D polymerized fullerenes (D6h)-C36. Dotted line shows the
[001] projection of the sphere (with the center located at the
center of symmetry of the internal cluster C36) that restricts a
crystal lattice fragment of 264 carbon atoms. This fragment
was used for calculating unit-cell parameters of crystal (5).
The values obtained are a = 6.695 and c = 6.763 Å.

Fig. 3. Energy band structure of crystal (5) of hexagonal
symmetry D6h consisting of 3D polymerized (D6h)-C36
clusters. In the top portion, the first Brillouin zone is shown.
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pattern, to more reliably identify its properties in exper-
iment.

Note that the existence of the cluster C36 obtained by
the authors of [11] was confirmed recently by high-res-
olution electron microscopy [24].
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of Infrared Radiation
S. G. Gassan-Zade*, S. V. Staryœ, M. V. Strikha, G. A. Shepel’skiœ, and V. A. Boœko

Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Kiev, 01650 Ukraine
* e-mail: gassan@class.semicond.kiev.ua

Received December 15, 2000; in final form, March 29, 2001

In a narrow-gap semiconductor with a direct band gap, an elastic state of stress provides the possibility to con-
siderably reduce the collisional interband recombination because of the transformation of the valence band. As
a result, the quantum yield of infrared radiation in the interband transition region increases drastically. The
experimental results are obtained for InSb crystals. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.28.+d; 73.61.Ey; 78.66.Fd
It is common knowledge that the main obstacle to
obtaining efficient radiators on the basis of narrow-gap
semiconductors with direct band gaps is the collisional
interband recombination (the Auger recombination).
This important type of radiationless recombination is
inherent in semiconductors, because its characteristics
are determined by the parameters of the intrinsic
energy-band spectrum of a semiconductor rather than
by the presence of impurity or defect energy levels in
the band gap. For example, in InSb, even at low excita-
tion levels, the Auger recombination becomes signifi-
cant at T ≥ 250 K [1], i.e., in the intrinsic conduction
region, whereas, in CdxHg1 – xTe with x = 0.20, it
already begins to dominate in the impurity conduction
region (T ≥ 77 K) [2].

In the case of a high-level excitation, when the non-
equilibrium carrier concentration far exceeds the equi-
librium concentration, i.e., δn = δp @ n0, p0, the role of
the Auger recombination drastically increases. This is
related to the steeper (cubic) concentration dependence
of the Auger recombination rate, as compared to the
quadratic dependence for the radiative recombination
rate. The latter fact imposes fundamental limitations on
the limiting theoretical values of the parameters of
infrared radiators.

This paper shows that, by producing an elastic state
of stress in narrow-gap semiconductors, it is possible to
considerably increase the quantum yield of infrared
radiation in the interband transition region. Such an
increase is achieved as a result of the suppression of the
Auger recombination rate because of the radical trans-
formation of the valence band under a uniaxial elastic
stress.

In the presence of a uniaxial stress (below, we con-
sider a compression along the [001] crystal axis; for
other axes, one obtains similar results), the degeneracy
0021-3640/01/7309- $21.00 © 20495
of the valence band at the point k = 0 is eliminated, and
the light and heavy hole states are mixed [3–5]. In this
case, they are conveniently described by the subbands
V+ and V–. Between the vertices of the subbands, an
energy gap ε0 is formed. According to the Bir and Pikus
model [6], this energy gap is proportional to the com-
pression P and can be represented in the form ε0 =
2|b |(S11 – S12)P, where b is the deformation potential
constant and S11 and S12 are the components of the elas-
tic compliance tensor. We note that, in this case, the
band gap (and, thus, the long-wavelength limit of the
interband radiation) varies insignificantly (at P = 4 kbar,
the variation of εg in InSb does not exceed 3 meV). This
is related to the competition between two mechanisms:
an increase in the energy gap because of the hydrostatic
component of the uniaxial deformation and a decrease
in this gap by 1/2ε0(P) because of the upward motion of
the V+ subband. As a result, we obtain  = εg + ζ/3P –
1/2ε0(P), where ζ is the deformation potential constant
for hydrostatic compression. The results of calculations
agree well with the experimental data obtained from the
polarization-spectral measurements of the photocurrent
in uniaxially stressed InSb [7].

As one can see from the schematic diagram shown
in Fig. 1, the quantity ε0 reaches considerable values
even at small values of P. Such a strong effect of defor-
mation on the band structure of narrow-gap semicon-
ductors is explained by the large effective mass ratio of
light and heavy holes in the initial crystal, as compared
to conventional semiconductors (in InSb, mh/ml = 20
and, in CdxHg1 – xTe with x = 0.20, mh/ml = 50). In the
elastic state of stress, the effective masses of holes
become anisotropic and are described by the expres-
sions m0/(γ1 ± 2γ) for the longitudinal and m0/(γ1γ) for

ε̃g
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the transverse directions relative to the compression
axis (here, γ1 and γ are the Luttinger parameters).

The main result produced by the valence band trans-
formation under uniaxial stress, which leads to a
change in the interband recombination rate, consists in
a considerable decrease in the average effective hole
mass relative to the hole mass mh in the initial crystal.
In such a situation, most of the holes are thermalized in

Fig. 1. Transformation of the energy spectrum of InSb under
a uniaxial stress P = (a) 0 and (b) 4 kbar. The arrows indicate
the interband recombination transitions: the Auger (the solid
lines) and the radiative (the dotted lines) transitions; k0 ≈
4 × 10–6 cm–1.

Fig. 2. Dependences of the recombination radiation inten-
sity of n-InSb on the excitation level L for P = (1) 0, (2) 2.6,
and (3) 4.5 kbar.
the small momentum region, and the direct radiative
transitions of electrons from the c band become more
efficient. The latter fact must lead to an increase in the
radiative recombination rate with increasing P. At the
same time, in the absence of deformation, the high rate
of collisional interband recombination is determined by
the low energy thresholds of the Auger transitions
because of the small value of the ratio mc/mh ! 1 [8]
(mc is the effective electron mass). A decrease in the
effective masses of holes under an elastic stress leads to
a sharp increase in these thresholds. Therefore, the
Auger recombination rate decreases substantially
(unlike the radiative recombination rate).

The deformation dependences of the quantum yield
of radiation were studied on n-InSb crystals whose
parameters at T = 77 K were as follows: n = (2–4) ×
1013 cm–3 and µn = (3–5) × 105 cm2/(V s). The sample
to be studied was placed along with the uniaxial com-
pression device in a cryostat with liquid nitrogen. The
sample was excited by a neodymium laser in a pulsed
mode of operation. The radiation was detected by a
cooled Ge(Au) detector.

Figure 2 presents the dependences of the radiation
intensity I of an n-InSb sample on the excitation level L
for different values of the elastic stress P. The curves
exhibit characteristic breakpoints, which testify to a
change in the dominant recombination mechanism. In
the interval L = 5 × 1022–3 × 1023 kV/(cm2 s), the slope
of the curves is about 0.5 on the logarithmic scale, and
at smaller values of L, it is within 1.5–1.6 for different
samples. One can assume that, at high excitation levels,
the Auger recombination should dominate.

By solving the continuity equation for a nonuniform
excitation of carriers by strongly absorbed light with
the corresponding boundary condition at the sample
surface (a small surface recombination rate), one can
obtain an expression for the intensity of the interband
recombination radiation as a function of the external
excitation [9, 10]. For relatively low excitation levels
(for InSb, δn < 1017 cm–3), the calculation yields the
dependence I ~ L1.7, whereas, for higher excitation lev-
els, we have I ~ L0.5. These relations fit the experimental
data with fair accuracy. We note that the power laws
obtained from the calculations are governed by the
recombination terms that describe different recombina-
tion mechanisms in the aforementioned equation. The
inclusion of the carrier degeneracy somewhat modifies
the form of the dependences I(L), as compared to the
dependences obtained in [10].

Thus, the parts of the curves with the slope 0.5 in
Fig. 2 can be associated with the dominance of the
Auger interband recombination. The fact that the
breakpoint in the curves moves to higher values of L
with increasing P testifies to a decrease in the Auger
recombination rate in the elastic state of stress.

The data shown in Fig. 3 seem to be of most interest.
This figure presents the deformation dependences of
the interband radiation intensity for InSb crystals at dif-
JETP LETTERS      Vol. 73      No. 9      2001
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ferent excitation levels. One can notice the qualitative
difference between curves 1–3. At small values of L
(curve 1), the dependence I(P) tends to saturation
already at P ≥ 2 kbar, whereas, at the maximal excita-
tion levels (curve 3), a superlinear dependence is
observed. In this case, the intensity I increases several
times relative to the initial value. We note that the
behavior of the curves I(P) at high values of L (curve 3)
proved to be identical for all InSb samples studied. This
means that the decisive factor is not the initial crystal
parameters, but the high density of nonequilibrium
charge carriers, which provides the dominance of the
Auger recombination. At the same time, the form of
curve 1 (qualitatively, curves 1 obtained for different
samples were also similar to each other) points to an
insignificantly small contribution of the Auger transi-
tions to the resulting recombination in the initial crystal
(P = 0) at low excitation levels. In this case, the growth
of I with increasing P is determined by virtually noth-
ing but the increase in the rate of direct interband radi-
ative transitions. Curve 2 should be attributed to an
intermediate case. The theoretical estimates (the
detailed calculations will be published later) agree well
with the experimental results presented above.

From the form of curve 3, we can also conclude that
the value P = 4.5 kbar achieved in the experiment does
not exhaust the possibilities of the elastic state of stress
from the point of view of increasing the quantum effi-

Fig. 3. Deformation dependences of the interband radiation
intensity of an n-InSb sample for different excitation
levels L.
JETP LETTERS      Vol. 73      No. 9      2001
ciency of interband radiation in InSb. According to the
literature, elastic stresses in InSb can reach 5–5.5 kbar
[5, 11] and, in CdxHg1 – xTe, they can reach 3.5–4.2 kbar
[5, 12].

Thus, the experimental dependences I(P) presented
in this paper testify to a suppression of the Auger inter-
band radiationless recombination by an elastic stress
and to a substantial increase in the quantum yield of
infrared radiation due to this mechanism.

In closing, we note that the necessary elastic state of
stress can easily be implemented in a semiconductor
structure. For example, it can result from the difference
between the lattice constants of the substrate material
and the active layer of the main material. Another pos-
sibility is to use the difference between the linear
expansion coefficients of materials.

We are grateful to F.T. Vas’ko for useful discussions.
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Introduction. The model of a chain of two-level
atoms with nearest-neighbor interactions [1] was pro-
posed by Heisenberg as early as 1926 and now is one of
the simplest models describing one-dimensional crys-
tal. The Hamiltonian of the anisotropic Heisenberg–
Ising model (XXZ model) has the form

(1)

where J is the Slater exchange integral [in our case, ∆ =

(q + q–1) ≡ cos(η), where q = eiη]. In 1931, Bethe sug-

gested the method for calculating the eigenvectors and
eigenvalues of this Hamiltonian and, therefore, for
solving the problem. To do this, one has to solve the
transcendental Bethe equations. In this work, we dem-
onstrate how one can obtain the explicit expression for
the energy spectrum in the case of generalized periodic
boundary conditions without solving the transcenden-
tal equations of the Bethe ansatz.

The twisted boundary conditions read

(2)

where σ± = (σx ± iσy). The spin projection onto the

z axis is conserved: [Sz, HXXZ] = 0, where Sz =

 + … + . The energies of the chains with dif-

ferent twist parameters are related to each other as fol-
lows [2]: the energy spectrum of a chain with twist
parameter β from the Sz = β – 1 sector contains the

HXXZ 2J σn
xσn 1+

x σn
yσn 1+

y ∆σn
z σn 1+

z+ +( )
n 1=

N

∑ ,=

1
2
---

σN 1+
± q 2β± σ1

±, σN 1+
z σ1

z ,= =

1
2
---

1
2
---σ1

z 1
2
---σN

z
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energy spectrum of a chain with twist parameter β – n
from the Sz = β – 1 + n sector, where n is an integer,

(3)

This is so because of the quantum group symmetry
Uq(sl(2)). We say “spectrum contains” because the sec-
tor Sz = β – 1 contains a smaller number of vectors than
does the sector Sz = β – 1 + n.

The XXZ model is related to a two-dimensional clas-
sical statistical six-vertex lattice model (ice model). Ice
H2O crystal, PO4H2K ferroelectric, and PO4H2NH4

antiferroelectric are among the physical systems obey-
ing this model. It represents a two-dimensional ideal-
ized crystal with “hydrogen-bonded” atomic pairs or
neighboring radicals. No more than two H+ ions are
located near each crystal site. In ice crystal, each oxy-
gen atom forms four bonds with the neighboring oxy-
gen atoms that are arranged in the vertices of a tetrahe-
dron, giving six configurations relative to the lattice
(Onsager and Dupuis, 1960). The Hamiltonian of the
XXZ model and the transfer matrix (u) of the six-
vertex model are related to each other by the following
equation:

(4)

The Hamiltonian and the transfer matrix commute with
each other and, hence, have the same set of eigenvec-
tors. In this work, we will first of all obtain the transfer
matrix eigenvalues and then calculate the energy spec-
trum using Eq. (4).

E
S

z β 1–=

β( ) E
S

z β 1– n+=

β n–( )= .

t̂1/2

HXXZ
N
2
---- η( )cos–= η( ) d

du
------ t̂1/2 u( ) u 0=logsin+ .
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There is an infinite family of transfer matrices tj(u)

with j = 0, , 1, , … . They commute with each other

and satisfy the following infinite system of recurrence
functional fusion relations [3–5]:

(5)

where t0(u) = sinN(u + η/2). In this work, we prove that,
for the anisotropy parameter equal to a root of unity,
qp + 1 = –1, the transfer matrix with spin j = p/2 has zero
eigenvalues for the Bethe eigenvectors if the twist
parameter β and the sector Sz = s satisfy certain condi-
tions. If the eigenvalue of tp/2(u) becomes zero, the infi-
nite system of functional fusion relations (5) becomes
truncated and transforms to a functional equation for
t1/2(u). By solving this equation, we find t1/2(u) and the
corresponding energy value using Eq. (4). Denote the
whole set of Bethe eigenvectors for which tp/2(u) has
zero eigenvalues by the symbol Vp. We will call the pro-
jection of the XXZ model on the Vp space the reduction
of the XXZ model. It was shown in [2] that the thermo-
dynamic limit of such a reduced XXZ model coincides
with the minimal model of the conformal field theory
with central charge c = 1 – 6/p(p + 1), rendering this
treatment particularly interesting. The energy spectrum
of the reduced XXZ model can be calculated by solving
the functional equations for the transfer matrix of a six-
vertex model.

Zero eigenvalues. Let us consider the Baxter’s T–Q
equations [t(u) ≡ t1/2(u)]

(6)

where t0(u) = sinN(u + η/2). According to [6], this equa-
tion can be considered as a discrete version of the sec-
ond-order differential equation [7]. In this case, in addi-
tion to the Q(u) function, it must have the second lin-
early independent solution P(u) with the same
eigenvalue of the transfer matrix t(u). The transfer
matrix eigenvalues can be expressed through the eigen-
values of the Baxter operator Q(u) and the P(u) opera-
tor as

(7)

where f(u) is a quasiperiodic function,

, (8)

1
2
--- 3

2
---

t̂1/2 u j 1/2+( )η–( ) t̂ j u( )

=  t0 u – j 1+( )η( ) t̂ j 1/2– u η /2+( )

+ t0 u jη–( ) t̂ j 1/2+ u η /2–( ),

t u( )Q u( ) q β– t0 u η /2+( )Q u η–( )=

+ qβt0 u η /2–( )Q u η+( ),

t j u( ) q 2 j 1–( )β= f u j 1/2–( )η–( )
× Q u j 1/2+( )η–( )P u j 1/2+( )η+( )[
– Q u j 1/2+( )η+( )P u j 1/2+( )η–( ) ] ,

f u η+( ) q 2β– f u( )=
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which is introduced for the sake of convenience [the

function (u) = f(u)P(u) may also be introduced].
Let us consider the case for which the anisotropy

parameter is a root of unity, qp + 1 = –1, where p is a cer-
tain positive number. For the transfer matrix in the j =
p/2 spin representation, one has

(9)

whence it immediately follows that, if the functions
Q(u) and P(u) satisfy relations

(10)

then the eigenvalue of the transfer matrix tp/2(u)
becomes zero.

We can express the function P(u) through Q(u):
namely, after decomposing

(11)

where R(u) is a trigonometric polynomial of degree
N − 2n, which is uniquely defined by the known trigo-
nometric polynomials t0(u) and Q(u); accordingly, the
degree of A(u) is less than n (in the sector of interest, the
integer n is related to the Sz = s eigenvalue as n =
N/2 − s). Let us now decompose

(12)

One can readily see that the function P(u) is determined
by the expression

(13)

An analysis of this expression leads to the following
limitations on the twist parameter β in the boundary
conditions of the XXZ model:

(14)

If the spin-chain length is even, then the β number must
be integer, and if the length is odd, it must be half-inte-
ger. The system of functional relations is not truncated
for the other β values. The condition for decomposing
the R(u) function into F(u) (12), where the function
F(u) behaves exactly as R(u) upon shifting u  u + π,
is expressed by the inequality

(15)

[because this product appears in the denominator of
F(u)]. The m variable runs from –s to +s over either
integer or half-integer values. Depending on the even-

P̃

t p/2 u π/2+( )

=  1–( )β f u( ) P u π+( )Q u( ) P u( )– Q u π+( )[ ] ,

P u π+( )
P u( )

---------------------
Q u π+( )

Q u( )
----------------------,=

t0 u( )
Q u η /2+( )Q u η /2–( )
-------------------------------------------------------

=  R u( ) qβ A u η /2+( )
Q u η /2+( )
--------------------------- q β– A u η /2–( )

Q u η /2–( )
---------------------------,–+

R u( ) qβF u η /2+( )= q β– F u η /2–( ).–

P u( ) 1
f u( )
----------- Q u( )F u( ) A u( )+( ).=

1–( )2β 1–( )N= .

πm β+
p 1+
------------- 

 sin
m s–=

+s

∏ 0≠
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ness of the chain length, the β and s numbers are
both either integer or half-integer, so that their sum or
difference is an integer number. Condition (15) is satis-
fied if

(16)

Therefore, when analyzing the second linearly inde-
pendent Baxter’s solution, one arrives at the following
conclusion: for the anisotropy parameter equal to a
root of unity, qp + 1 = –1, the transfer matrix for spin j =
p/2 has zero eigenvalues in the sector Sz = s if condi-
tions (14) and (16) are fulfilled.

Algebraic structure. We proved in the preceding
section that, for the vectors subjected to certain restric-
tions, the chain of functional relations (5) breaks and
transforms into a closed system of eigenvalue equations
for the transfer matrix t1/2(u). In this section, we list all
vectors satisfying this condition in the state space of the
model.

It was pointed out in the Introduction that relation-
ship (3) between the energies of the chains differing in
twist parameter β is due to the presence of quantum
group symmetry Uq(sl(2)). The Sz, X, and Xt operators
are generators of this symmetry, where

(17)

(one can readily verify that Xp + 1 = 0 for qp + 1 = –1).
When acting on a vector from the sector Sz = s, the
operator X transforms it into a vector from the Sz = s + 1
sector: [Sz, X] = X. The action of this operator on the
Hamiltonian gives

(18)

which proves Eq. (3).
The transfer matrix of the six-vertex model, which

is associated with the Hamiltonian of the XXZ model, is

expressed through the diagonal elements (u) of the
monodromy matrix:

(19)

Making use of the Yang–Baxter equation, one can
obtain, exactly as was done in [8], the commutation
relations between the matrix elements of the mono-
dromy matrix and the Sz and X operators:

(20)

s min β p 1 β–+,( )< mod p 1+( ).

X q
1
2
--- σ1

z … σn 1–
z+ +( )

σn
+q

1
2
---– σn 1+

z … σN
z+ +( )

n 1=

N

∑=

XHXXZ
β( ) HXXZ

β 1–( )– X …( ) 1 q2 S
z β– 1+( )–( ),=

Lk
n

t j u( ) q 2β j 1 n–+( )– Ln
n u( ).

n 1=

2 j 1+

∑=

qS
z

Lk
n qn k– Lk

nqS
z

= ,

XLk
n u( ) q2 j 1+( ) n– k–= Lk

n u( )X

+ ωk 1– e+iuq j 1 n–+ Lk 1–
n u( )q S

z–

– ωne+iuq j 2 k–+ Lk
n 1+ u( )q+S

z

,

where ωn =  and the standard nota-
tion [x]q = (qx – q–x)/(q – q–1) is used. Commutation rela-
tions (20) allow one to express the transfer matrix
through the X operator. Below, a nontrivial formula,
which we derived for the transfer matrix with spin j =
p/2 in the sector Sz = s, is presented without proof:

(21)

In this formula, the  operator is

(22)

The following notation is introduced: ω = ,

 are the q-binomial coefficients

and λm, p – r – k are defined as

One can see from Eq. (21) that the transfer matrix tp/2(u)
is expressed through the sum of monomials of the

Xr Xk type. Let us find for which integer numbers r

and k the  operator is nonzero if qp + 1 = –1. The

operator  is proportional to the following sum of
the q-binomial coefficients:

(23)

where l = β – s. Unfortunately, we failed to obtain
closed expression for the frk coefficients. For this rea-
son, we analyzed the sum in Eq. (23) numerically. We
checked numerically the hypothesis that for qp + 1 = –1
the coefficients frk are nonzero only in the following
closed domain: r + k ≤ p and either r > p – l or k > l – 1.

n[ ] q 2 j 1 n–+[ ] q

t p/2 u( ) XrM̂rk Xk.
r k, 0=

p
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M̂rk

M̂rk 1–( )rω 1– e ipu– q 2s– 2β 1 r– k–+( ) p/2– 2k–=

× q 2 β s–( ) r k–+( )nCr
nCk
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∑
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1 X p r– k– m– .
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p r– k–

∑

ωkk 1=
2 j∏

Cn
N

Cn
N 1

n[ ] q!
-----------= N[ ] q N 1–[ ] q… N 1 n–+[ ] q

=  
N[ ] q!

n[ ] q! N n–[ ] q!
----------------------------------,

λm m',

=  eimuqp/2 1 s m' m–( ) m' s 3 p/2– 1–+( )+ + + Cm
m' ωm' l– .

l 1=

m

∏

M̂rk

M̂rk

M̂rk

f rk Cr
nCk

p n– qn 2l r k–+( ),
n 0=
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Consequently, the transfer matrix tp/2(u) is represent-
able as

(24)

and, hence, becomes zero on the cohomologies

(25)

Hence, zero eigenvalues exist for those eigenvectors v
from the sector Sz = s which, first, vanish under the
action of the operator Xl,

(26)

and, second, cannot be represented in the form
Xp + 1 − lχ, where χ is any other vector,

(27)

Thus, we listed above all vectors for which the
transfer matrix tp/2(u) has zero eigenvalues and, hence,
the recurrence system of Eqs. (5) transforms, as was
stated above, to a closed system of eigenvalue equa-
tions for the transfer matrix t1/2(u).

Eigenvalue calculations. Let us find the eigenval-
ues of the transfer matrix and Hamiltonian for the case
q4 = –1. One has

(28)

To simplify calculations, we introduce the function
SN(u) ≡ (–2)N/2t1/2(u – η/2). Then the functional rela-
tionships take the form

(29)

This equation contains the numbers N and l = β – s.
Depending on whether these numbers are even or odd,
one obtains four different equations and, correspond-
ingly, four different solutions:

t p/2 u( ) X p 1 l–+ …( )= …( )+ Xl,

V p l, Ker Xl/Im X p 1 l–+ .=

Xlv 0,=

v X p 1 β s–( )–+ χ .≠

t3/2 u( ) 0,=

t1 j– u( ) 1–( )
N
2
---- β s–+

t j u π/2+( ).–=

SN u
π
8
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  SN u
π
8
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 

=  2u( )cos
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2
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S4M
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4M
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× π 2m
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  4u( )cos 
 ,cos
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(30)

where the symbol {nm} stands for any arbitrary set of
numbers 0 or 1, e.g., {0, 1, 0, …, 0, 1}. We treat these
numbers as Fermi occupation numbers. These func-
tions satisfy the equation

(31)

Thus, we have found solutions only in the case of odd
β – s. For the energy eigenvalues, we obtain

(32)

Although the imaginary unit explicitly enters into the
last two formulas, the energy E is real because the
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imaginary parts cancel out when evaluating this sum.
For the even spin-chain lengths N = 4M and N = 4M + 2,
we have found 2M energy levels for each. For the odd
spin-chain lengths N = 4M – 1 and N = 4M + 1, we have
found, respectively, 22M – 1 and 22M eigenvalues.

We thank M.Yu. Lashkevich for helpful remarks and
fruitful discussions.
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