
  

JETP Letters, Vol. 73, No. 11, 2001, pp. 579–583. From Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 73, No. 11, 2001, pp. 659–663.
Original English Text Copyright © 2001 by Gakh, Merenkov.

                                        
QED Corrections in Deep-Inelastic Scattering
from Tensor-Polarized Deuteron Target1

G. I. Gakh and N. P. Merenkov
National Science Center Kharkov Institute of Physics and Technology, Kharkov, 61108 Ukraine

Received April 18, 2001

The leading-log model-independent radiative corrections to deep-inelastic scattering of an unpolarized electron
beam from the tensor-polarized deuteron target have been considered. The calculation is based on the covariant
parameterization of the deuteron quadrupole polarization tensor and the use of the Drell–Yan-like representa-
tion in electrodynamics to describe the radiation of real and virtual particles by the initial and scattered electron.
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1. Processes with polarized particles are a rich
source of new information on the structure of the
nucleon and its fragmentation. Polarized deuterons and
nuclei of 3He are used to extract information on the neu-
tron spin-dependent structure function g1(x) [1]. How-
ever, the polarized deuteron is interesting in its own
right, because it has spin 1. Therefore, due to the deu-
teron electric-quadrupole structure, other spin-depen-
dent structure functions (as compared with spin 1/2 par-
ticles) appear [2]. The 15-GeV ELFE project provides
a good opportunity for the measurement of some had-
ron tensor structure functions, which could give clues
to physics of nonnucleonic components in spin-one
nuclei and to study the tensor structure on the quark–gluon
level [3]. The use of the tensor polarized deuteron target at
HERMES allows one to investigate the nuclear binding
effects and nuclear gluon components [4].

Current experiments at modern accelerators reached
a new level of precision, and this circumstance requires
a new approach to data analysis and inclusion of all
possible systematic uncertainties. One of the important
sources of such uncertainties is the electromagnetic
radiative effect caused by physical processes which
take place in higher orders of perturbation theory with
respect to the electromagnetic interaction. In this paper,
we give the covariant description of the cross-section of
the deep-inelastic scattering of unpolarized electron
beam from the tensor-polarized deuteron target

, (1)

and we use it to calculate the QED radiative corrections
(RC) by means of the electron structure function
method [5].

e– k1( ) dT p1( )+ e– k2( ) X px( )+

1 This article was submitted by the authors in English.
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The corresponding approach is based on the covari-
ant parameterization of the deuteron quadrupole polar-
ization tensor in terms of the 4-momenta of the particles
in process (1) [6] and use of the Drell–Yan-like repre-
sentation [7] in electrodynamics, which allows one to
sum the leading-log model-independent RC in all
orders. Some applications of this representation for the
calculation of RC to the polarization-independent and
polarization-dependent contributions to the cross sec-
tion in different processes one can find in [8].

2. To begin with, we define the DIS cross section of
process (1), taking into account RC, in terms of the lep-
tonic Lµν and hadronic Hµν tensors contraction

(2)

where q is the 4-momentum of the intermediate heavy
photon that probes the deuteron structure. Note that
only in the Born approximation (without taking into
account RC) q = k1 – k2.

The model-independent RC exhibit themselves by
means of the corrections to the leptonic tensor. In the
framework of the leading accuracy, this tensor can be
written as a convolution of two electron structure func-

tions D and the Born form of the leptonic tensor 
that depends on the scaled electron momenta

(3)
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where m is the electron mass.
The limits of integration on the right-hand side of

Eq. (3) can be derived from the condition that DIS pro-
cess (1) takes place. It is possible if the final undetected
hadron system consists, at least, of a deuteron and a
pion. In this case,

(4)

where M (mπ) is the deuteron (pion) mass. This inequal-
ity defines the integration limits as follows:

(5)

In fact, representation (3) for the leptonic tensor
contains all mass collinear singularities arising due to
the radiation of real and virtual photons and electron–
positron pairs by the initial and scattered electrons. It
reflects the essence of the quasi-real electron method
[9] suitable to describe the real collinear particle emis-
sion by means of the contribution of the so-called Θ
term to the electron structure function (for the details of
the D function see, for example, [10]).

The Born leptonic tensor is

(6)

To write the hadron tensor, we define first the tensor-
polarized deuteron density matrix (here, we do not con-
sider the effect caused by the vector polarization of the
deuteron)

(7)

where Qµν is the deuteron quadrupole polarization ten-
sor. The corresponding hadron tensor has polarization-
independent and polarization-dependent parts

(8)
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In general, all the hadron structure functions Wi (i = 1,
2) and Bj( j = 1, 2, 3, 4) depend on two independent vari-
ables: q2 and x' = –q2/2p1q [within the chosen accuracy
x' =  = x1xy/(x1x2 + y – 1)]. We used the following
notation on the right-hand side of Eq. (8):

(9)

Note also that the hadron structure functions Bj are
related to the structure functions bj, introduced in [2]
(HJM), in the following way:

At the chosen normalization, the elastic limit (  =
M2) can be reached by mere substitution in hadronic
tensor

(10)

where

(11)
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(12)

The elastic deuteron electromagnetic form factors
GE (electric), GM (magnetic), and GQ (quadrupole) can
be expressed in terms of the form factors Gi(i = 1, 2, 3)
[11] by means of the following relations:

3. Because the polarization-independent part of the
hadronic tensor depends on the scaled electron

momenta only (by means of q =  – ), we can write
the respective contribution to the cross section in the
form of the Drell–Yan representation in the electrody-
namics that takes into account the leading part of RC

(13)

where  = x1Q2/x2,  = (x1x2 + y – 1)/x1x2, and the
unpolarized Born cross section reads

(14)

As to the polarization-dependent contribution to the
cross section dσ(T), the situation is somewhat different.
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In general, we cannot use for it representation (13) with
mere substitution

(15)

on both sides of Eq. (13). The reason is that the axes
with respect to which the components of the deuteron
quadrupole polarization tensor Qαβ are defined can
change their directions with the scale transformation of

electron momenta: k1, 2  . For example, this
occurs obviously when one of the axes is directed along
the (k1 – k2) direction. But substitution of Eq. (15) can
be useful and applicable if all axes remain stabilized
under this transformation.

Therefore, we first have to find the set of stabilized
axes and write them in covariant form in terms of
4-momenta of the particles participating in the reaction.
If we choose the longitudinal direction l along the elec-
tron beam and the transverse one t in the plane (k1, k2)
and perpendicular to l, then

(16)

One can verify that the set  remains stabilized
under the scale transformation and

One can also make sure that in the rest frame of the deu-
teron

(17)

If we add one more 4-vector  = p1µ/M to the set
of Eqs. (16), we obtain the complete set of orthogonal
4-vectors with the following properties:

(18)
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This allows one to express the deuteron quadrupole
polarization tensor in general case as 

(19)

because the components R00, R0α, and Rα0 are identi-
cally equal to zero due to the condition Qµνp1ν = 0.

Within the leading accuracy, when the radiation of
noncollinear particles by the initial and the scattered
electrons is not considered, the components Rnl and Rnt
do not contribute and expansion (19) can be recast in
the following standard form:

(20)

where we took into account that Rll + Rtt + Rnn = 0.

So, if the components of the deuteron polarization
tensor are defined in the coordinate system with the
axes along the directions l, t, and n, as given by
Eqs. (17), the polarization-dependent contribution to
the cross section of the process (1), taking into account
the leading RC, can be written in the same way as the
polarization-independent one

(21)

Symbol Ts indicates that the components of the quadru-
pole polarization are defined with respect to the stabi-
lized set of Eqs. (16). The simple calculation, using
Eqs. (16) and (20) and the definition of the Born lep-
tonic (6) and hadronic (8) tensors, gives

(22)

where

(23)
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(25)

4. Consider now the case when the components of
the deuteron polarization tensor are defined in the coor-
dinate system with the axes along directions L, T, and
N in the rest frame of the deuteron, where

(26)

As one can see, directions L and T became unstable
under the scale transformation. The respective covari-
ant form of the set of Eqs. (26) reads

(27)

and the expansion of the deuteron polarization tensor is
defined in full analogy with Eq. (20)

(28)

To use the Drell–Yan-like representation in this case,

we have to express the unstable 4-vectors  (A =

L, T) through the stabilized 4-vectors  (α = l, t).
These sets are connected by means of an orthogonal
matrix which describes the rotation in the plane perpen-
dicular to direction n = N:

(29)

We now must substitute Eqs. (29) into expansion (28)
and perform the contraction of the leptonic and had-
ronic tensors. This procedure leads to the following for-
mula for the polarization-dependent part of the cross
section in the considered case of unstable axes:
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where we bear in mind the summation over i and j (i, j =
l, t). Symbol Tu indicates that the components of the
deuteron polarization tensor are defined with respect to
unstable axes (27).

The principal point of representation (30) resides in
that matrix Xij depends on nonscaled electron momenta
through the angle θ defined in Eq. (29). Its elements
read

(31)

where

The partial cross sections under the integral sign on
the right-hand side of Eq. (30) depend just on the scaled
electron momenta. These are

(32)

where elements of Sij are defined by Eqs. (23)–(25).

To derive the cross section on the left-hand side of
Eq. (30) in the Born approximation, one can use the
ordinary δ functions instead of D functions on the right-
hand side of this equation. This leads to the result very
similar to Eq. (22)

(33)
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(34)

Note that relations (34) can be checked independently
by the straightforward calculation using the expansion
of the deuteron polarization tensor as given by Eq. (28)

and covariant expressions  and  for the axes
defined by Eq. (27).
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It is shown that, at sufficiently low temperatures, the elastic scattering of dµ mesic atoms (as well as slow neu-
trons) in solid deuterium proceeds on the whole crystal lattice without energy loss, whereas inelastic scattering
with excitation of phonons is weak. For this reason, the resonant formation of ddµ mesic molecules in solid
deuterium occurs before the thermalization of dµ mesic atoms, which explains the observed temperature inde-
pendence of the ddµ-molecule formation rate and muonic catalysis. © 2001 MAIK “Nauka/Interperiodica”.
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Because a ddµ mesic molecule has a loosely bound
vibrational–rotational level with the quantum numbers
ν = 1 and K = 1 [1–3], these molecules can be formed
in gaseous and liquid deuterium through a very effec-
tive resonant mechanism [4] followed by the nuclear
fusion reactions dd  3He + n or dd  T + p. The
point is that the binding energy e ≈ 2 eV of the ddµ
mesic molecule in this state is so low that only a little
energy is required for exciting the n = 7 vibrational
level of the [dµd, d]2e molecular complex, which arises
when one of the nuclei of a D2 molecule is replaced by
a ddµ mesic molecule. The storage of energy is filled by
the thermal-motion energy of a dµ mesic atom, which
is thermalized in a medium, via colliding with one of
the constituent deuterons of the D2 molecule; this pro-
cess ensures the resonant-formation condition [4].

Because a dµ mesic atom has two hyperfine levels
with the total spins F = 3/2 and 1/2 and energy differ-
ence ∆E = 0.0485 eV, the resonant mechanism should
be examined in more detail.

Analyzing the time dependence of the muonic catal-
ysis at various temperatures, one can experimentally
determine the mesic-molecule formation rate from var-
ious hyperfine states of a dµ mesic atom and the rate of
the transition proceeding from the upper 3/2 state to the
lower 1/2 state in exchange collisions of the dµ mesic
atom with deuterons [5]. In agreement with the theoret-
ical calculations [6, 7], the rate of the resonant ddµ for-
mation from the lower hyperfine 1/2 state of the dµ
mesic atom decreases with decreasing temperature of
the gaseous or liquid medium because the thermal
energy of thermalized dµ mesic atoms is insufficient to
ensure the resonant condition. The resonant mechanism
of the ddµ formation from the state dµ(F = 1/2) almost
completely ceases to contribute at T ≈ 70 K, and the
ddµ formation from the 1/2 state proceeds through the
nonresonant mechanism with the transfer of the mesic-
0021-3640/01/7311- $21.00 © 20584
molecule binding energy to an atomic electron [6–15]
(see Fig. 1). The latter mechanism occurs with a proba-
bility that is almost two orders of magnitude lower than
that of the resonant mechanism and leads to the mesic
molecule formation predominantly in states with the
even rotational numbers and even total nuclear spin [2].
In addition, this is experimentally corroborated by the
observation [13] that the ratio R = Γ(dd  3He +
n)/Γ(dd  T + p) changes after transition to the non-
resonant ddµ formation because this ratio is different
for reactions proceeding from the rotational K = 1 state
and from the S-wave state with even rotational numbers
and spins. The rate of ddµ formation from the
dµ(F = 3/2) state depends only slightly on the tempera-
ture and begins to decrease only at T . 26 K. The tem-
perature dependence of the mesic molecule formation
rate, which was measured in dense gaseous and liquid
deuterium [7–15], agrees well with the theoretical cal-
culations [6, 7] (see Fig. 1). However, the ddµ forma-
tion rate measured in 3-K solid deuterium [16] is higher
than the theoretical predictions by more than an order
of magnitude. Careful measurements [17], which were
carried out in solid and liquid deuterium at the same
setup in the temperature range 5–50 K, corroborated
this result (see Fig. 2). It was found that the rate of the
resonant ddµ formation from the dµ(F = 3/2) state is
virtually unchanged at T . 20 K and below. In agree-
ment with the theory, the rate of the nonresonant forma-
tion from the dµ(F = 1/2) state is also unchanged. The
rate of the transition dµ(F = 3/2)  dµ(F = 1/2) (λd ≈
3.1 × 107 s–1) between the hyperfine levels of mesic
atoms is virtually unchanged as well. Thus, the behav-
ior is paradoxical; the process occurs as if the dµ mesic
atoms in the hyperfine 3/2 state conserve their energy
and are not thermalized when the temperature
decreases below 20 K. In this paper, I will demonstrate
that this phenomenon is naturally explained by the
001 MAIK “Nauka/Interperiodica”
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character of the energy loss of slow dµ atoms in a crys-
tal lattice and is independent of the lattice structure.

Because dµ atoms are electrically neutral and have
small sizes, their scattering in a crystal is similar to
slow-neutron scattering. Even in 1937, Pomeranchuk
[18] demonstrated that the neutron elastic scattering at
sufficiently low temperatures proceeds from the whole
crystal lattice and is not accompanied by energy loss.
(We can only regret that, obtaining this result, Pomer-
anchuk did not predict the Mössbauer effect in 1937.)
Inelastic collisions are predominantly related to the
one-phonon lattice excitation, and the mean free path lin
with respect to these collisions is longer than the mean
free path lel with respect to elastic collisions. According
to [18], one has for identical nuclei, when the neutron
wavelength is shorter than the lattice constant,

(1)

where kB is the Boltzmann constant, E = kBT is the neu-
tron energy, and Θ is the Debye temperature. It is obvi-
ous that lin > lel for E < kBΘ. In this case, if the neutron-
capture mean free path lc = 1/Nσc, where σc is the cap-
ture cross section and N is the density of nuclei, is con-
siderably shorter than lin, deceleration of neutrons will
stop and capture of neutrons by nuclei will occur before
neutron thermalization. Similar consideration applies
to the behavior of dµ mesic atoms in a crystal lattice.

Calculations [19] demonstrated that the cross sec-
tion for the elastic scattering of slow dµ atoms in the
upper hyperfine 3/2 state on deuterons at energies
below 0.1 eV is virtually constant and has the value

(2)

and the mean free path related to the resonant ddµ for-
mation is

(3)

where  = 2.27 × 106 s–1 is the mesic-molecule for-
mation rate and v  is the dµ velocity, which is v  =
(3kBT/Md)1/2 under the thermalization conditions. From
the condition lddµ < lin and Eqs. (1)–(3), we can estimate
the temperature at which the inelastic-scattering mean
free path is equal to the mean free path of ddµ forma-
tion:

(4)

which, at the deuteron Debye temperature Θ = 74 K and
the density of nuclei N = 4.25 × 1022 cm–3, yields

(5)

lin
7
8
---lel

kBΘ
E

---------- 
 

3

,=

σel . 2 10 19–  cm2,×

lddµ
1

Nσddµ
---------------

v
λddµ
----------,= =

λddµ

T 0.82≤
Md

kB
------- 

 
1/7 λddµ

Nσel
----------- 

 
2/7

Θ6/7,

T 13 K.≤
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Taking into account that the dµ atoms, which are
formed in the ground state with a mean energy of
1−2 eV, are thermalized at a distance of several inelas-
tic mean free paths, we conclude that the resonant
mesic molecule formation in solid deuterium occurs
before the thermalization of dµ mesic atoms.

This explains the observed temperature indepen-
dence of the muonic catalysis in solid deuterium.

It should be mentioned that the epithermal forma-
tion of the ddµ mesic molecules was previously
observed in a substance consisting of HD molecules
[20]. This was attributed to the fact that the effective

Fig. 1. The mesic molecule formation rates  and 
from all experiments carried out at the Paul Scherrer Insti-
tute (Switzerland) and fits presented in [7].

λ1/2 λ3/2

Fig. 2. The temperature dependence of the mesic molecule
formation rate in deuterium for various spin states of deute-
rium mesic atoms. The circles, square, triangle, and crosses
are experimental data taken from [17], [16], [15], and [13],
respectively. The solid lines are theoretical predictions
taken from [6, 7].
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cross section for the scattering of dµ mesic atoms by
protons is small due to the Ramsauer effect [21] and,
therefore, the energies of decelerating dµ mesic atoms
fall with certain probability within the range of the res-
onant formation of higher vibrational states of the
[ddµ, d]2e complex. According to estimations [22], a
solid deuterium crystal lattice only slightly affect the
resonant dtµ formation rate because of the difference in
the position and width of the resonance level for forma-
tion of the mesic molecules dtµ and ddµ [22]. However,
this statement should be experimentally verified.

After this paper had been written, I heard that the
hypothesis of epithermal ddµ formation in solid deute-
rium was suggested by L.I. Ponomarev on the basis of
an analysis of experimental data. A qualitative idea that
the energy loss of dµ mesic atoms decreases in solid
deuterium was also proposed in [16, 23]. This paper
was discussed at the International Conference on
Muonic Catalysis MuCF01 in Japan, April 22–26,
2001, where A. Adamchak and M. Faœfman presented
work containing similar ideas.

I am grateful to L.I. Ponomarev and G.G. Semen-
chuk for stimulating discussion and valuable remarks.
This work was supported by the Russian Foundation
for Basic Research, project nos. 99-02-16558 and 00-
15-96645.
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Approximate analytical solutions describing the skyrmions given by rational-map ansatz are obtained. At large
baryon numbers, these solutions are similar to the domain wall or to spherical bubbles with energy and baryon
number density concentrated at their boundary. A rigorous upper bound is obtained for the masses of rational
map multiskyrmions, which is close to known masses, especially at large B. The main properties of bubbles of
matter are obtained for an arbitrary number of flavors. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 12.39.Dc
1. Among many known soliton models used in dif-
ferent fields of physics, the chiral soliton approach
starting with a few basic concepts and ingredients
incorporated in the model lagrangian [1, 2] provides,
probably, the most realistic description of baryons and
baryonic systems. The latter appear within this
approach as quantized solitonic solutions of equations
of motion characterized by the so-called winding num-
ber or topological charge which is identified with
baryon number B. Numerical studies have shown that
the chiral field configurations of lowest energy possess
different topological properties—the shape of the mass
and B-number distribution—for different values of B. It
is a sphere for B = 1 hedgehog [1], a torus for B = 2, a
tetrahedron for B = 3, a cube for B = 4, and higher poly-
hedrons for greater baryon numbers. The symmetries of
various configurations for B up to 22 and their masses
have been determined in [3] (the references to earlier
original papers can be found in [3, 4]). These configu-
rations have a one-shell structure, and for B > 6 all of
them, except for two cases, are formed from 12 penta-
gons and 2B-14 hexagons; in carbon chemistry, similar
structures are known as fullerenes [3c].

A remarkable feature of the whole approach is that
the baryons/nucleons individuality is absent in the low-
est energy static configurations, and the conventional
picture of nuclei should appear when nonzero modes
motion—vibration, breathing, etc.—are taken into
account (see, e.g., discussion in [4]). The so-called
rational-map (RM) ansatz, proposed for skyrmions in
[5] and widely used now, allows one to simplify the
problem of finding the configurations of lowest energy.
As will be shown here, many important properties of
RM multiskyrmions can be studied analytically, and
this allows one to make some conclusions for arbitrary

1 This article was submitted by the author in English.
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large B and any number of flavors NF independently of
the presence of numerical calculations.

So far, the chiral soliton models have been consid-
ered as a special class of models. Their connection with
other soliton models would be of interest, and this is
also an issue of the present paper.

2. Here, we consider large B multiskyrmions
described by the RM ansatz mainly in the SU(2) model
and also in the SU(3) variant using the projector ansatz
in this case [6]. In the SU(2) model, the chiral fields are
functions of profile f and unit vector n, according to the
definition of the unitary matrix U ∈  SU(2) U = cf + isfnt.
For the ansatz based on rational maps, the profile f depends
only on the variable r, and the components of vector n,
on the angular variables θ, φ. n1 = (2ReR)/(1 + |R|2),
n2 = (2ImR)/(1 + |R|2), n3 = (1 – |R|2)/(1 + |R|2), where R is

a rational function of variable z = 
defining the map of degree 1 from S2  S2.

The following notation is used [5]:

(1)

where Ω is a solid angle. For B = 1 hedgehog, 1 = ( = 1.
1 = B for the configurations of lowest energy.

θ/2( ) iφ( )exptan

1
1

8π
------ r2 ∂in( )2 Ωd∫ 1

4π
------ 2i R Rdd

1 R 2+( )2
-------------------------∫ ,= =

(
1

4π
------ r4 ∂n1∂n2[ ] 2

n3
2

------------------------- Ωd∫=

=  
1

4π
------ 1 z 2+( )

1 R 2+( )
----------------------- Rd

zd
--------- 

 
4 2i z zdd

1 z+ 2( )2
-----------------------,∫
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The classical mass of the skyrmion for the RM
ansatz in universal units 3π2Fπ/e is [5, 6]

(2)

r is measured in units 2/Fπe, where we inserted the
coefficient AN = 2(N – 1)/N for symmetry group SU(N)
[6] to make it possible to consider models with arbitrary
number of flavors N = NF , essentially nonembeddings
of SU(2) in SU(N). To find the minimal energy config-
uration at fixed 1 = B, one minimizes (, and then finds
the profile f(r) by minimizing energy (2). The ( ≥ B2

inequality takes place [5, 6]. Direct numerical calcula-
tions have shown, and the analytical treatment here sup-
ports, that, at large B and, hence, large (, a multiskyr-
mion looks like a spherical bubble with profile f = π
inside and f = 0 outside. The energy and B-number den-
sity of this configuration is concentrated at its bound-
ary, similar to the domain wall system considered in [7]
in connection with cosmological problems.

Denote φ = cosf; then, energy (2) can be represented
as

(3)

with φ changing from –1 at r = 0 to 1 at r  ∞. The
first half of Eq. (3) is the second-order term contribu-
tion to the mass, and the second is the Skyrme term con-
tribution. At fixed r = r0, the latter coincides exactly
with one-dimensional domain wall energy. It is possi-
ble to write the second-order contribution in Eq. (2) in
the form

(4)

and similarly for the fourth-order Skyrme term. The

equality φ' = (1 – φ2)/r eliminates a consider-
able part of the integrand in Eq. (4). Therefore, it is nat-
ural to consider function φ satisfying the following dif-
ferential equation:

, (5)

M
1

3π
------ ANr2 f '2 2Bs f

2 f '2 1+( ) (
s f

4

r2
----+ +

 
 
 

r;d∫=

M
1

3π
------ 1

1 φ2–( )
------------------- ANr2φ'2 2B 1 φ2–( )2

+[ ]




∫=

--- + 2Bφ'2 ( 1 φ2–( )2
/r2+





dr,

M 2( ) 1
3π
------

ANr2

1 φ– 2( )
------------------- φ' 2B

AN

------- 1 φ2–( )/r–
2





∫=

-----+ 2r 2AN Bφ'




dr,

2B/AN

φ'
b
2r
----- 1 φ2–( )=
which has a solution satisfying boundary conditions
φ(0) = –1 and φ(∞) = 1:

(6)

with arbitrary r0, the distance from the origin of the
point where φ = 0 and profile f = π/2. r0 can be consid-
ered as a radius of multiskyrmion.

After substitution of this ansatz, one obtains the
soliton mass in the form

(7)

Integrating over dr using known expressions for the
Euler type integrals, e.g.,

allows one to obtain the mass of the multiskyrmion in
simple analytical form as a function of parameters b
and r0

(8)

which gives after simple minimization in r0

(9)

and

(10)

For any value of the power b, Eq. (10) provides an
upper bound for the mass of RM skyrmion. To get a bet-
ter bound, we should minimize Eq. (10) with respect to
b. At large enough B, when it is possible to neglect the
influence of slowly varying factors (1 – 1/b2) and
bsin(π/b), we easily obtain that

(11)

φ
r/r0( )b 1–

r/r0( )b 1+
-------------------------=

M B b,( ) 1
3π
------ ANb2/4 2B+( ) 1 φ2–( ){∫=

+ Bb2/2 (+( ) 1 φ2–( )2
/r2 } dr.

rd

1 r/r0( )b+
-------------------------

0
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∫
r0π

b π/b( )sin
------------------------, b 1,>=

M B r0 b, ,( ) 4

3b2 π/b( )sin
------------------------------ ANb2/4 2B+( )r0=
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3r0
------- Bb2 2(+( ) 1 1/b2–( ) ,
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Bb2 2(+( ) 1 1/b2–( )
3 ANb2 8B+( )

----------------------------------------------------
1/2
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M B b,( )/B
4

3b π/b( )sin
----------------------------=

× b2 2(/B+( ) ANb2 8B+( ) 1 1/b2–( )/ 3b2B( )[ ] 1/2
.

bmin b0 2 (/AN( )1/4
,= =

r0
min

 . 
2
3
--- (

AN

------ 1
4
---– 

 
1/2
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and, therefore,

(12)

The lower bound in Eq. (12) was known previously
[5, 6]. The correction to the value b0 can be found
including in the minimization procedure the factor (1 –
1/b2) and variation of bsin(π/b) ≈ π[1 – π2/6b2]. It gives

(13)

and the value b = b0 + δb should be inserted into
Eq. (10). This improves the values of M/B for B =
1, 2, 3 … but provides a negligible effect for b ~ 17 and

greater, since δb ~ 1/ . The comparison of the
numerical result and analytical upper bound (12) is
given in the table.

Numerically, Eqs. (10)–(13) provide an upper bound
which differs from the masses of all known RM skyrmi-
ons within ~2%, beginning with B = 4 (see table). Even
for B = 1, where the method evidently should not work
well, we obtain M = 1.289 instead of the precise value
M = 1.232. For maximal values of B between 17 and 22,
where the value of ( is calculated, the upper bound
exceeds the RM value of mass by 0.5% only. We took
here the ratio RI/B = (/B2 in the cases where this ratio is
not determined yet, the same as for highest B, where it
is known; i.e., 1.28 for SU(2) case [3] and B = 32, 64,
and 1.037 for B > 6 in SU(3) [6]. For RI/B = 1, the num-
bers in the table decrease by ~0.1% only in the latter
case. Note also that asymptotically at large B the ratio
of upper and lower bounds

(14)

1
3
--- 2 (AN/B+( ) M

B
----- 1

3
--- 2 (AN/B+( )≤<

× 4
b0 π/b0( )sin
----------------------------- 2

3
--- 1 1

4
---– AN/( 

  1/2

.

δb
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------------
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π
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3
--- 

 
1/2

 . 1.0396;=
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i.e., the gap between upper and lower bounds is less
than 4%, independently of B, the particular value of (,
and the number of flavors N. With decreasing (, the
upper bound decreases proportionally to the lower
bound. In view of such a good quantitative agreement
of analytical and numerical results, the studies of basic
properties of bubbles of matter made in the present
paper are quite reliable.

The width (or thickness) W of the bubble shell can
be estimated easily. We can define the half-width as a
distance between the points where φ = ±1/2; then,

(15)

It is clear that, at large B, W is constant and does not
depend on the number of flavors N either. The radius of
bubble (11) grows with increasing B like [(/AN]1/4.

Previously, we considered large B skyrmion within
the “inclined step” approximation [4]. Let W be the
width of the step, and r0 the radius of the skyrmion
where the profile f = π/2. f = π/2 – (r – r0)π/W for r0 –
W/2 ≤ r ≤ r0 + W/2. This approximation describes the
usual domain-wall energy [7] with an accuracy of
~9.5%.

We wrote the energy in terms of W, r0, then mini-
mized it with respect to both of these parameters, and
found the minimal value of energy:

(16)

This gave

(17)

and, after minimization,  =  .

0.612 , close to the above result  .

W
2
3
--- 1 1
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2

-----– 
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2 3(/8AN
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2

The skyrmion mass unit B-number in universal units 3π2Fπ/e for RM configurations, approximate and exact solutions. The
approximate values are calculated using Eq. (10) with the power b = b0 + δb. The numerical values for SU(2) model are from
[3] and earlier papers. The last three lines show the result for SU(3) projector ansatz [6] and approximation to this case, AN = 4/3

B 2 3 4 5 6 7 13 17 22 32 64

M/B|RM
1.208 1.184 1.137 1.147 1.137 1.107 1.098 1.092 1.092 – –

b(B) 3.89 4.47 4.85 5.39 5.80 6.03 8.00 9.02 10.23 12.24 17.2

M/B|appr 1.229 1.198 1.151 1.158 1.147 1.117 1.106 1.0976 1.098 1.094 1.089

M/B|num 1.1791 1.1462 1.1201 1.1172 1.1079 1.0947 1.0834 1.0774 1.0766 – –

1.222 1.215 1.184 1.164 1.146 – – – – – –

3.57 4.08 4.47 4.83 5.13 5.46 7.13 8.06 9.09 10.86 15.19

1.259 1.231 1.198 1.176 1.156 1.149 1.127 1.121 1.116 1.111 1.106

M/B RM

SU3

b B( )
SU3

M/B appr

SU3
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0.667 . In the dimensional units, r0 =
(6(/AN)1/4/Fπe. Since ( ≥ B2, the radius of minimized

configuration grows as  at least. Wmin = π; i.e., it
does not depend on B for any SU(N), similar to previous
result (15), which gives W . 1.8 for large B, all in units
2/Fπe. The energy

(18)

For the SU(2) model, AN = 1 and the energy Mmin =

(2B + )/3. The formula gives the numbers for
B = 3, …, 22, in 2–3% agreement with calculation
within the RM approximation [3, 5].

A more detailed analytical calculation made here
confirms the results of such “toy model” approximation,
and both reproduce the picture of RM skyrmions as a two-
phase object, a spherical bubble with profile f = π inside
and f = 0 outside, and a fixed-thickness shell with fixed

surface energy density,  . (2B + )/12π .
The average volume density of mass in the shell is

, (19)

and for SU(2) model at large B it is approximately equal
to ~0.6 GeV/Fm3 for a reasonable choice of model
parameters Fπ = 0.186 GeV, e = 4.12 [4]; i.e., it is few
times greater than the normal density of nuclei.

3. Consider also the influence of the chiral symme-
try breaking mass term (M.t.) which is described by the
Lagrangian

(20)

 = 8µ2/3π e2, µ = mπ. For strangeness, charm, or
bottom, the masses mK, mD, or mB can be inserted
instead of mπ.

Instead of the above Eq. (8), we now obtain

(21)

with α, β given in Eq. (8) and m = 2π /bsin(3π/b). It
is possible to obtain a precise minimal value of the mass

(22)

for the value of r0

(23)
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= .
When the mass m is small enough, the expansion in
12mβ/α2 can be made, and one obtains the following
reduction of dimension r0,

(24)

and increase of the soliton mass

(25)

We used that at large B

(26)

As was expected from general grounds, dimensions of
the soliton decrease with increasing m. However, even
for a large value of m, the structure of the multiskyr-
mion at large B remains the same: the chiral symmetry
broken phase inside the spherical wall where the main
contribution to the mass and topological charge is concen-
trated. The value of the mass density inside the bubble is
defined completely by the mass term with 1 – φ = 2. The
baryon number density distribution is quite similar,
with the only difference that inside the bag it equals
zero. It follows from these results that RM-approxi-
mated multiskyrmions cannot model real nuclei at large
B, probably B > 12–20, and configurations like skyr-
mion crystals [8] may be more valid for this purpose.

It is of interest to study what happens at very large
values of the mass, when 12mβ @ α2. Making an
expansion in α2/12mβ, we obtain

(27)

Minimization of M(B, b) with respect to b gives  =

, βmin = /9π and

(28)

So, in this extreme case b ~ , r0 ~ (µ)–1/2B3/8, the

mass of the soliton increases as M ~ B9/8, and the
binding should become weaker with increasing m and
baryon number of the skyrmion.

It is possible also to calculate analytically the ten-
sors of inertia of multiskyrmion configurations within
this approximation; see [4] for definitions and formu-
las.

4. By means of consideration of a special class of
functions (6), we established the link between topolog-
ical soliton models in the rational-map approximation
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and the soliton models of “domain-wall” or “spherical-
bubble” type. Of course, it is a domain wall of a special
kind, similar to a honeycomb. The upper bound for the
energy of multiskyrmions is obtained which is very
close to the known energies of RM multiskyrmions,
especially at largest B, and is higher than the known
lower bound by ~4% only.

The following properties of bubbles of matter from
RM multiskyrmions are established analytically, mostly
independent of particular values of the quantity (.

The dimensions of the bubble grow with B as ,
or as (1/4, whereas the mass is proportional to ~B at
large B. Dimensions of the bubble decrease slightly
with increasing N—the number of flavors, r0 ~
[N/(2(N – 1))]1/4; see Eqs. (11) and (12).

The thickness of the bubble envelope (15) is con-
stant at large B and does not depend on the number of
flavors; therefore, the average surface mass density is
constant at large B, as well as the average volume den-
sity of the shell. Both densities increase slightly with
increasing N. At the same time, the mass and B-number
densities of the whole bubble  0 when B  ∞, and
this contradicts the nuclear physics data.

It follows from the above consideration that the
spherical bubble or bag configuration can be obtained
from the Lagrangian written in terms of chiral degrees
of freedom only; i.e., the Skyrme model Lagrangian
leads at large baryon numbers to the formation of
spherical bubbles of matter. This picture of mass distri-
bution in RM multiskyrmions contradicts, at first sight,
what is known about nuclei; however, it emphasizes the
role of the periphery of the nucleus and could be an
argument in favor of shell-type models. The skyrmion
crystals [8] are believed to be more adequate for mod-
eling nuclear matter.

It would be of interest to perform the investigation
of the dynamics of bubbles in chiral soliton models
similar to that performed recently for the simplified
two-component sigma model, or sine-Gordon model in
(3 + 1) dimensions [9]. Observations concerning the

B
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structure of large B multiskyrmions made here can be
useful in view of possible cosmological applications of
Skyrme-type models; see, e.g., [10]. The large-scale
structure of the mass distribution in the Universe [11] is
similar to that in topological soliton models, and it can
be the consequence of the similarity of the laws in the
micro- and macroworld.

I am indebted to P.M. Sutcliffe for informing me
about the results of [3b, c] before publication and to
W.J. Zakrzewski for interest in the questions discussed
in this paper. This work was supported by the Russian
Foundation for Basic Research, project no. 01-02-
16615.
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In a simple stochastic system, an overdamped Kramers oscillator with two—internal white and external col-
ored—noise sources, the suppression of the noise component of the output signal spectrum with increasing
intensity of the external noise or periodic signal is discovered and analyzed. © 2001 MAIK “Nauka/Interperi-
odica”.

PACS numbers: 05.40.Ca; 05.45.Gg; 02.50.Ey
1. Considerable recent attention has been focused on
the constructive role of noise in nature. A large number
of experimental facts in various fields of science cor-
roborate the viewpoint that the influence of noise,
which always accompanies all actual systems, is not
restricted to destructive and thermodynamic effects. In
particular, thermal or external noise of optimal nonzero
intensity can improve the signal transfer when legiti-
mate signals pass through nonlinear systems. The
results on this phenomenon, which is referred to as sto-
chastic resonance, were summarized in reviews [1, 2].

Most theoretical investigations on stochastic reso-
nance were devoted to studying the signal passage
through systems with one, usually white, noise source;
the phenomenon is identified through the appearance of
a maximum in the signal-to-noise ratio as a function of
the noise intensity. However, the authors of [3, 4] exam-
ined systems with two noise sources, first without and
then with a periodic signal. This problem formulation is
physically natural and fruitful because each actual sys-
tem involves internal thermal noise whose intensity is
determined by the temperature. Controlling noise, as
well as the signal, is fed to the system from outside.
However, only the dependence of the signal passage on
the internal-noise intensity has been examined in these
problems until now. At the same time, in many cases,
especially in biological systems, the temperature and,
therefore, internal-noise power vary only within a nar-
row interval. On the other hand, the amplitudes of
external noise and signal can vary within a wide range.
This is the problem formulation that we consider in this
study: varying parameters are the ratios of the ampli-
tudes of controlling noise and signal to the internal
noise intensity.

We explore a two-well dynamical system with a
periodic rectangular signal and two noise sources,
white (internal) and colored (external). The choice of a
rectangular signal makes it possible to solve the prob-
0021-3640/01/7311- $21.00 © 20592
lem for high signal amplitudes beyond the scope of per-
turbation theory.

We analyze the noise background, which is defined
as the spectral density S(0) of the output system signal
at zero frequency.

We will report below the following new results: sup-
pression of the noise background by a signal and sup-
pression of the noise background by the external noise.
It follows from these results that the signal-to-noise
ratio (SNR) increases with increasing the external noise
and signal. Note that the suppression of the noise back-
ground in a stochastic nondynamical system by exter-
nal noise was recently found in [5].

We consider the following equation for the over-
damped Kramers oscillator with two noise sources:

(1)

Here, ξ(t) is the white noise; z(t) is the colored noise,
which is the sum of n dichotomic noises (n = 1 and ∞
correspond to ordinary dichotomic, or telegraph, noise
and Gaussian noise, respectively); and a, b, F, σ, ∆, and
A are constants.

The hierarchy of the characteristic times in Eq. (1)
is very important. Denoting the correlation time of the
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white (actual) noise as τ and assuming that a ~ b, we
take the following hierarchy of times:

(2)

where w0 is the characteristic switching frequency
induced by the white noise [see Eq. (6)].

We go over from Eq. (1) to the two-state model. It is
convenient to define the energy U0(x) as

(3)

where ±x0 are the stable fixed points of Eq. (1) at F =
∆ = A = σ = 0.

If the conditions

(4)

are satisfied, x(t) can be approximated by the dichoto-
mic signal

(5)

Thus, we arrive at the two-state model. The time-
dependent probabilities of transition between these two
states are determined in the Kramers approximation as

(6)

Under conditions (2), we can write the following
master equation for the distribution density of the non-
stationary process d(t):

(7)

If the external noise z(t) is fast, i.e., γ @ w0, the proba-
bilities α(t) and β(t) can be averaged over this fast
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noise. In this case, we arrive at a nonstationary stochas-
tic process whose master equation has the form

(8)

It is easy to show that the solutions to Eqs. (7) and
(8) for the fast noise (γ  ∞) coincide with each other.
Indeed, let us consider some random variable a(t) with
the expectation value 〈a(t)〉  = a1 and correlation func-

tion Ka(t) = 〈(a(t) – a1)(a(0) – a1)〉 = exp(–γ|t |). In the

limit γ  ∞, we have Ka(t)  δ(t)/γ  0; i.e.,
a(t) behaves as the nonrandom variable a1. We recall
that the white noise ξ(t) makes a nonzero contribution
because its correlation function is 〈ξ (t)ξ(0)〉  =

exp(−γ|t |)  δ(t) in the limit γ  ∞. The differ-

ence between a(t) and ξ(t) is that  = const, while
〈ξ 2〉  = γ/2  ∞ in the limit γ  ∞.

Returning to α(t) and β(t), we see that, e.g., at n = 1
and v  = 0, the dispersion is 〈(α(t) – α1)2〉  =

exp(2p)  and does not increase in the limit
γ  ∞; i.e., for the fast noise, α(t) can be replaced by
α1(t). This problem was analyzed in detail in, e.g., Sec-
tion 3.2 of [6].

Taking into account time hierarchy (2), we can solve
Eq. (8) in the adiabatic approximation. As a result, the
irreducible correlation function averaged over the
phase of the periodic signal R at large times t ~ T has
the form

(9)
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The spectral density S(ω) is obtained by the Fourier
transform of K(t):

(10)

which indicates that the noise background is S(0) = C.
The signal-to-noise ratio, which is determined as the
ratio of the intensity of the first harmonic to the back-
ground, is SNR = 8B/πC.

At p = 0, the expressions for the telegraph and Gaus-
sian noises are, respectively,

(11)

which demonstrates that, as the external noise q and/or
signal v  increase, the noise background decreases and,
for this reason, the SNR increases because the periodic
component of the output signal is saturated.
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Fig. 1. The noise background as a function of the amplitude
and switching frequency of external noise according to
Eq. (14) for σ2 = 1, a = b = 1, w0 ≈ 0.13. As γ increases, the
amplification of the noise background is replaced by its sup-
pression by the external noise [crossover occurs at γ ≈ 2w0
according to Eq. (14)].
Equations (9)–(11) were derived for the fast noise
(γ @ w0). It is of interest to look into the behavior of the
noise background S(0) at arbitrary ratios of γ to w0.
Here, we consider a simple example of an exactly inte-
grable problem. For p = v  = 0, n = 1, the problem
reduces to the four-state model [3, 4]. In this model, we
deal with the stationary two-dimensional Markovian
process {d(t), s(t)} whose master equation has the
form [4]

(12)

By solving this equation and calculating irreducible
correlation functions, we obtain

(13)

From this expression, it is easy to derive the expression
for S(0) at an arbitrary ratio of γ to w0:

(14)

The latter formula in Eq. (14) coincides with the first
formula in Eqs. (11) at v  = 0. Thus, the background S(0)
increases with q in the limit γ ! w0 and decreases in the
opposite limiting case. Figure 1 shows the background
S(0) as a function of q and γ and exhibits the clear-cut
transition from amplification to suppression of the
background S(0) by the external noise when the switch-
ing frequency of the latter noise increases.

2. We carried out analog simulation of the effect of
noise suppression by the electronic model of a two-
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level nonlinear system (an overdamped oscillator,
which has a piecewise linear current–voltage character-
istic and is similar to that used in [7, 8]). The fed volt-
age was a sum of the physical white Gaussian noise
with a cutoff frequency of about 30 kHz, the dichoto-
mic noise with the amplitude 0 ≤ ∆ ≤ 10 V and cutoff
frequency 0 ≤ γ/2π ≤ 2000 Hz, and the rectangular ac
signal with a frequency of Ω/2π = 1 Hz and amplitude
A. The characteristic frequency of the nonlinear system
is 1/2πRC ≈ 1400 Hz. Varying the Gaussian noise
intensity, we could change the characteristic switching
frequency between two states in the system.

Figures 2 and 3 show the noise background, which
is the spectral density S(0) of fluctuations at zero fre-
quency, as a function of the dichotomic-noise ampli-
tude for two limiting cases, w0 @ γ and w0 ! γ, respec-

Fig. 2. The noise background S(0) vs. the dichotomic-noise
amplitude for γ/2π ≈ 350 Hz. The frequency of switching
induced exclusively by the white noise is w0/2π ≈ 10 Hz.
The solid line is Eq. (14) for γ @ w0.

Fig. 4. The noise background S(0) as a function of the
amplitude of a rectangular signal with the frequency
Ω/2π = 1 Hz at ∆ = 0. The switching frequency at A = 0 is
w0/2π ≈ 10 Hz. The solid line is Eq. (11) for n = 1 and q = 0.
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tively. It is seen that the noise suppression by noise is
observed in the latter case.

Figures 4–6 show, respectively, the noise back-
ground S(0), the intensity of the first harmonic of the
output signal, and the signal-to-noise ratio, which is
determined as the ratio of the intensities of the first har-
monic and the noise background, as functions of the
input signal amplitude A in the adiabatic limit, i.e.,
when the signal period is much longer than all charac-
teristic times in the nonlinear system, at ∆ = 0. It is seen
that the total noise is suppressed by the applied signal.

In conclusion, we note that the deviation from the
theoretical dependences becomes substantial at high
intensities ∆ > 3 V of the dichotomic noise and input
signal amplitudes A > 1 V, when the applicability con-
ditions for the Kramers approximation are violated.
Different threshold values of ∆ and A are related to dif-

Fig. 3. The noise background S(0) against the dichotomic-
noise amplitude at γ/2π ≈ 10 Hz. The switching frequency
at ∆ = 0 is w0/2π ≈ 180 Hz. The solid line is Eq. (14) for
γ ! w0.

Fig. 5. The intensity of the output-signal first harmonic vs.
the amplitude of a rectangular signal with the frequency

Ω/2π = 1 Hz at ∆ = 0. The solid line is 

[see Eqs. (9), (10) at p = 0].

8x0
2
/π( ) v( )tanh

2
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ferent asymptotic behaviors with respect to the vari-
ables q and v  in the first of Eqs. (11).

This work was supported by the Russian Foundation
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Fig. 6. The signal-to-noise ratio against the amplitude of a
rectangular signal with the frequency Ω/2π = 1 Hz at ∆ = 0.
The solid line is Eq. (11) for n = 1 and q = 0.
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Laser Radiation Tuned to Sodium D1 Line
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A change in the conductivity of a sodium–helium plasma interacting with laser radiation tuned to the sodium
32S1/2– 32P1/2 transition and having sign-changing polarization is experimentally observed. It is shown that this
effect is caused by the processes of Penning ionization, spin exchange, and optical orientation of atoms in a gas-
discharge plasma. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 52.38.-r; 52.20.Hv
Investigation of the effect of optical orientation of
atoms on the electrical conductivity of a gas-discharge
plasma is one of the important directions of optovoltaic
spectroscopy [1]. Alkali–helium plasma is among the
most interesting subjects of investigation in this field.
For instance, it was found in [2, 3] that simultaneous
optical orientation of alkali-metal atoms (Rb, Na) and
metastable triplet helium atoms by two (helium and
alkaline) resonance lamps changes the conductivity of
alkaline– helium plasma. It was shown that the polar-
ization optovoltaic (POV) effect is due to the fact that
the probability of Penning ionization depends on the
mutual spin orientation of interacting alkali-metal and
helium atoms. It was emphasized in these studies that,
when carrying out control experiments, the POV effect
disappeared after switching off the helium lamp that
provided optical orientation of the He 23S1 atoms.

This work reports the observation of the POV effect
caused by laser optical orientation of only alkali-metal
atoms in alkali–helium (Na–He) plasma. The POV
effect is explained in terms of the multistep action of
optical orientation of sodium atoms and a number of
simultaneous elastic and inelastic spin-dependent pro-
cesses on the conductivity of alkali–helium plasma.

The experimental setup is schematically depicted in
Fig. 1. A working chamber containing sodium vapor
(T = 418 K) and helium gas at a pressure of 0.5–1 torr
was placed in the center of Helmholtz coils creating a
static magnetic field H0 = 5 Oe. A high-frequency dis-
charge was initiated in the chamber by a high-fre-
quency generator operating at a frequency of 45 MHz.
The gas-discharge chamber was illuminated by the
light of a rhodamine-6G tunable dye laser (Pmax ~
50 mW) pumped by an argon laser with an output of
4 W. The light beam of the tunable laser was directed
0021-3640/01/7311- $21.00 © 20597
along the static magnetic field H0. Before entering the
working chamber, the linearly polarized laser radiation
was passed through a quarter-wave plate rotating with
frequency Ω/2π = 10 Hz by a mechanical drive. Due to
this rotation, the circular polarization of laser radiation
changed four times during one revolution of the plate
(σ+  σ–  σ+  σ–). It was established experi-
mentally that, when the laser was tuned to λ = 589.6 nm
(sodium D1 line), the conductivity of alkali–helium

Fig. 1. Block diagram of experimental setup: (1) tunable
dye laser, (2) pumping argon laser, (3) recorder, (4) ampli-
tude detector, (5) narrowband amplifier, (6) high-frequency
discharge generator, (7) working chamber, (8) rf coil,
(9) rf oscillator, (10) frequency meter, (11) electric motor,
(12) quarter-wave plate, (13) beam expander to a diameter
of 6 mm, (14) block for recording the high-frequency dis-
charge voltage variations caused by a change in plasma con-
ductivity, and (15) Helmholtz coils.
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plasma periodically changed with a frequency of 4Ω
(δU4Ω ~ 10 µV at the output of block 14). The δU4Ω sig-
nal was amplified by a narrowband amplifier and
recorded on an X–Y recorder after amplitude detection.
An example of the POV signal recorded upon scanning
the laser wavelength in the range of the D1 line of the
sodium resonance doublet is shown in Fig. 2a. The
POV effect was not observed upon scanning the laser
wavelength in the vicinity of the sodium D2 line (λ =
589 nm).

The appearance of a conductivity change signal
(δU4Ω) caused by the action of a polarization-modu-
lated radiation on the alkali–helium plasma can be
explained as follows. The circularly polarized laser
radiation (four times during one revolution of the quar-
ter-wave plate) induces sign-changing orientation of

Fig. 2. Experimental results. (a) POV signal amplitude as a
function of laser wavelength; (b) POV signal amplitude as a
function of laser intensity (tuning to the sodium D1 line);
(c) POV signal amplitude as a function of static magnetic
field at a fixed frequency of the rf magnetic field (tuning to
the sodium D1 line).

(µ
V

)

sodium atoms which collide with the metastable helium
atoms in the discharge and polarize them. The follow-
ing reactions are responsible for the orientation transfer
from the sodium atoms to the helium atoms:1 

Penning ionization

(1)

and spin-exchange (see [2–5])

(2)

processes.
These processes induce sign-changing orientation

of the helium 23S1 atoms in synchronism with the ori-
entation of sodium atoms. Next, after the polarization
of the He 23S1 atoms, the Penning ionization of the
metastable He atoms in the collisions with each other

(3)

and with the Na atoms [again in reaction (1)] results
in the periodic variation of the rate constants for reac-
tions (1) and (3). This occurs because, due to the con-
servation of the total spin of reactants and reaction prod-
ucts, free electrons cannot be produced in reactions (3)
and (1) if the colliding atoms are spin-aligned (their
spins may be oriented both along and in opposition to
the H0 field; in our experiments, this was dictated by the
position of the mica plate determining the sign of circu-
lar polarization), and, quite the reverse, reactions (3)
and (1) are allowed and the electron population in
plasma increases if the atoms are not oriented (this cor-
responds to the situation when the quarter-wave plate
does not change linear polarization of laser radiation in
the chamber). Macroscopically, this is manifested by an
increase in the plasma conductivity. As a result of these
processes, the plasma conductivity must change with a
frequency of 4Ω , as was observed in the experiment.

To verify this hypothesis for the origin of the POV
signal, it is sufficient to destroy the polarization of
helium 23S1 atoms and make sure that the signal disap-
pears. In our experiments, the destruction mechanism
was provided by a resonant rf magnetic field saturating
the transitions between the components of the helium
23S1 level. Figure 2c shows the experimental depen-
dence of the amplitude of the POV signal (laser was
tuned to the sodium D1 line) for a static magnetic field
H0 scanned in the range of 5 Oe at a fixed frequency

1 It should be noted that electrons in gas-discharge plasma are spin-
polarized due to the spin-exchange collisions with sodium atoms
and to reaction (1); they collide with the metastable helium atoms
to orient them; i.e., they play the part of an additional mechanism
of polarization transfer from the Na atoms to the He atoms.

He 23S1( ) Na+ 32S1/2( )

– He 11S0( ) Na+ 21S0( ) e–+ +

He 23S1( )↑ Na 32S1/2( )↓+

– He 23S1( )↓ Na 32S1/2( )↑+

He 23S1( ) He+ 23S1( )

– He 11S0( ) He+ 12S1/2( ) e–+ +
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(14.6 MHz) of the rf field created by an rf oscillator
connected to a coil with its axis perpendicular to the
axis of Helmholtz coils. One can see from this figure
that the POV signal decreases (practically to the noise
level in the signal path) at the exact resonance, directly
confirming our assumptions about the origin of the
observed signal. The fact that at low output P of the dye
laser the amplitude of the POV signal depends nonlin-
early on laser intensity (see Fig. 2b) is an additional
corroboration of this assumption. The point is that the
POV signal in our experiments is formed in two steps;
helium is first oriented due to the collisions with
sodium atoms, after which the oriented helium atoms
collide with each other and with the sodium atoms. As
a result, the amplitude of the electron-density signal
should depend quadratically on the laser intensity at
small P values (far from saturation [7]). This also
explains why the POV signal is absent when the laser is
tuned to the sodium D2 line. As was shown in [8], the
signal due to helium orientation in the collisions with
sodium atoms excited at the D2 line is approximately
three times weaker than the signal obtained upon tuning
to the D1 line. Considering the above-mentioned qua-
dratic dependence, the δU4Ω(D2) signal should be
approximately an order of magnitude weaker than the
δU4Ω(D1) signal; i.e., it should be weaker than the noise
level ~1.5 µV, which is what is observed in our experi-
ment.

In summary, the conductivity of alkali–helium
plasma was found to change upon exposing it to a
polarized laser radiation orienting the sodium 32S1/2
atoms. It is shown that this effect is caused by a multi-
JETP LETTERS      Vol. 73      No. 11      2001
step mechanism including the optical orientation of
sodium atoms by laser radiation, the polarization of
metastable helium atoms in the collisions with optically
oriented sodium atoms, and the spin-dependent Pen-
ning ionization due to the interaction of sodium atoms
with the metastable triplet helium atoms. The latter pro-
cess eventually gives rise to the POV effect observed in
this work.
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Densities of quasilocalized states are calculated and analyzed for a one-dimensional system with a point defect
and an FCC crystal with a planar defect. The density of states displays a pronounced peak that is positioned
near the energy (frequency) of resonant transmission of a particle (wave) through the defect but slightly shifted
from this energy. The peak nears the resonance frequency and sharpens, tending to a δ function, as the contin-
uum edge is approached. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 63.20.Mt; 61.72.Ji
In recent years, considerable interest has been
expressed in the phenomena associated with the inter-
action of free propagating waves or particles with sin-
gle-type states localized near the defects. In this
respect, the specific features of a multichannel reso-
nance scattering prove to be the subject of discussion
[1– 3]. These features are closely related to the proper-
ties of quasilocalized states in a continuum [4]. The
purpose of this work is to analyze the interconnection
between the scattering amplitudes and the spectral den-
sity of states in the system of interest. Two examples are
taken for the analysis: the interaction of two particles
with different dispersion laws in a one-dimensional
quantum system and the resonance phonon scattering
in an FCC crystal containing a planar defect.

In Section 1, the amplitudes for particle scattering
from a point defect are analyzed for a one-dimensional
system with two types of elementary excitations that
differ in the parameters of quadratic dispersion laws. At
certain values of these parameters, the so-called Fano
resonances appear in this system (an analogous situa-
tion was observed for the electron scattering from an
impurity in a 2D quantum channel [2]). The density of
quasilocalized states is calculated. It is shown that its
maximum is fixed to the resonant transmission energy
but slightly shifted from it.

In Section 2, the density of quasilocalized states is
analyzed using the model of a planar discrete defect in
an FCC crystal with the central nearest-neighbor inter-
actions. The spectra of resonance modes and the in-gap
localized states were calculated for this model in [5].
0021-3640/01/7311- $21.00 © 0600
The density of quasilocalized states has a pronounced
peak that is slightly shifted from the frequency of reso-
nant transmission of elastic wave through the planar
defect. It is shown that, on approaching the continuum
edge, the peak comes closer to the resonant frequency
and sharpens, tending to a δ function. Beyond the con-
tinuum, the resonance curve is continued as a disper-
sion curve for the in-gap state localized near the defect.

1. Density of states in a 1D system with two dis-
persion branches. A 1D quantum system with two
groups of quasiparticles having quadratic dispersion
laws are considered:

(1)

where Planck’s constant " is taken to be unity. If a pas-
sive point defect is located at x = 0 in this system, the
interaction with this defect, according to [3], can be
written in the form of the following local potential:

(2)

where ψ1(x) and ψ2(x) are the wave functions of the par-
ticles of the first and second type, respectively.

Let the particle of the first type with energy E (E1 <
E < E2) be incident on the defect from the left. The sec-

E E1=
k2

2m1
---------, E+ E2

k2

2m2
---------, E1 E2,<+=

H int x x ',( ) U0 α1 ψ1 0( ) 2 α2 ψ2 0( ) 2+{=

+ β ψ1* 0( )ψ2 0( ) ψ2* 0( )ψ1 0( )+[ ] }δ x( )δ x '( ),
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ond particle with this energy can only be in the local-
ized state with wave function

(3)

It was shown in [3] that the scattered particle can
resonantly transmit through the defect at a certain ratio
between its energy and interaction parameters. The
interaction of a freely propagating particle of the first
type with the localized state of the second type is the
physical reason for the appearance of a resonance in the
transmission through the passive defect. The total trans-
mission occurs at α1κ = m2U0(β2 – α1α2).

We now intend to show that the energy correspond-
ing to the total defect transparency correlates with the
density of stationary quasilocalized states. The point is
that in the system of interest quasilocalized states occur
in the energy interval E1 < E < E2 for which the wave
function ψ1 has the form of a standing wave

(4)

while ψ2 is localized near the defect, according to
Eq. (3).

The spectrum of quasilocalized states is continuous
and characterized by a single parameter—phase ϕ.
Making use of the boundary conditions following from
the presence of the potential Hint, one can easily obtain
the relation for the phase ϕ

(5)

where

The addition to the bulk density of states is given by
the formula

(6)

Assume that the total transmission occurs in the sys-
tem [∆r(Et) = 0]. Assume also that the functions ∆r(E)
and ∆t(E) vary smoothly near Et; i.e., the point E = Et is
positioned far from any spectral singularities (edges of
spectral branches, etc.). Then, expanding in powers of
δE = E – Et in Eq. (6), one obtains in the leading
approximation

(7)

where Γ = /(  + ), ∆t, r ≡ ∆t, r(E = Et), and

 ≡ (E = Et). This expansion is valid if  does
not tend to zero; i.e., it is valid except for the cases

ψ2 Be κ x– , κ 2m2 E2 E–( ).= =

ψ1 z( )
A kx ϕ–( ), x 0<cos

A kx ϕ+( ), x 0,>cos



=

ϕtan ∆r E( )/∆t E( ),=

∆r E( ) m1U0 m2U0 β2 α1α2–( ) α1κ–{ } ,=

∆t E( ) k κ α 2m2U0+( ), k 2m1 E E1–( )= = .

δg E( ) 1
π
---dϕ E( )

dE
--------------- 1

π
---

∆r' E( )∆t E( ) ∆r E( )∆t' E( )–

∆r
2 E( ) ∆t

2 E( )+
---------------------------------------------------------------.= =

δg E( ) 1
π
--- Γ

δE ∆t∆t'/(∆t'
2 ∆r'

2
+ +( ) )

2
Γ2+

----------------------------------------------------------------------,=

∆r'∆t ∆r'
2 ∆t'

2

∆t r,' ∆t r,' ∆t'
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when

where

One can see that the density of states near the point E =
Et has the form of a Lorentzian peak with width Γ and

center shifted from the Et point by ∆t /(  + )
(Fig. 1).

2. Density of states in an FCC crystal with planar
defect. Let us consider the dynamics of an FCC crystal
with a planar defect coinciding with the (001) plane.
The coordinate axes are directed along the cube edges,
and the z axis is perpendicular to the defect plane. Only
the interactions between the nearest neighbors are con-
sidered. Following [5], we assume that the defect is
characterized by a change in the force constant between
the atoms belonging to the layers z = 0 and z = –1 (the
edge of the unit-cell cube is taken to be 2). The ratio of
force constant in the defect layer to the force constant
in the pure crystal is denoted by ε.

It was shown in [5] that eigenmodes (including
quasilocalized) in this crystal may be of two types,
symmetric and antisymmetric. We are interested in the
symmetric modes, for which

where  is the displacement in the upper half-space

(nz ≥ 0),  is the displacement in the lower half-space
(nz < 0), and nz numbers the atomic layers along the
z axis.

E* Et ! Et– E1 E2 Et,–,–

E*
1
8
--- 8E1 8E2 α2

2U0
2m2–+(=

+ 32E1
2 32E2

2 192E1E2+ +[

+ α2
4U0

4m2
2 16E1α2

2U0
2m2 ) ]1/2.–

∆t' ∆t'
2 ∆r'

2

ux
+ nz 1–( ) ux

– nz–( ), uz
+ nz 1–( )– uz

– nz–( ),= =

ui
+

ui
–

Fig. 1. The addition to the density of states as a function of
energy; U0 = –0.7, m1 = 1, m2 = 2, α1 = 2, α2 = 2, β = 1,
E1 = 0, and E2 = 10. Et is the total transmission energy.
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The resonant transmission and reflection take place
for the phonons whose frequencies lie within one of the
bulk crystal vibration branches but outside of the other
branch. In these spectral regions, the quasilocalized
eigenmodes may exist; i.e., two-partial modes, one

Fig. 2. Dispersion curves for the total transmission fre-
quency T and symmetric vibration S for ε = 3. The vertical
dashes correspond to the pseudotransverse branch, and the
inclined dashes correspond to the pseudolongitudinal
branch. Curve 2: λ = 2(1 – cosk), q = 0; curve 3: λ = 2 –
cos2k – cosk, q = π; curve 4: λ = 2(1 + cosk), q = π; curve 5:
λ = 2 – cos2k + cosk, q = 0; curves 1 and 6 are the lower and
upper spectrum edges, respectively.

Fig. 3. Density of states as a function of λ – λt for different
k along curve T; λt corresponds to the total transmission fre-

quency. Curves: (1) k = 84 ; (2) k = 85 ; (3) k =

86 ; (4) k = 86.5 ; and (5) k = 86.9 . ε = 3.

π
180
--------- π

180
---------

π
180
--------- π

180
--------- π

180
---------
component of which is localized near the defect while
the other freely propagates in the crystal.

Let us consider a wave propagating in the [110]
direction. This wave has two independent components:
lower frequency (pseudotransverse) component, whose
spectrum is vertically dashed in Fig. 2, and higher fre-
quency (pseudolongitudinal) component, whose spec-
trum is shown by the inclined dashes in Fig. 2. In this
case, there are three spectral regions where the quasilo-
calized states may exist (Fig. 2): the first one is bounded
by curves 2, 5, and 4; the second one is bounded by the
solid section of curve 3 and dashed section of curve 4;
and the third region is bounded by curve 5, solid section
of curve 4, and dashed section of curve 3. Curve T in the
low-frequency region of quasilocalized states corre-
sponds to the total transmission conditions for the
pseudotransverse wave through the defect. In the right
part of Fig. 2, this curve meets the edge of the gap
between the pseudotransverse and pseudolongitudinal
frequency branches. Then, it is continued as curve S for
the in-gap wave localized near the defect.

Let us consider the low-frequency region of quasilo-
calized modes. The wave displacement vector has the
following form at z ≥ 0:

(8)

where

λ = mω2/4γ, and γ is the force constant in the crystal
volume.

The addition to the unperturbed density of states in
this spectral region is

(9)

We will calculate it for the symmetric quasilocalized
modes. The explicit formulas for ϕ and δg(ω) are rather
cumbersome, so we only present the results of calcula-
tions.

The curve for the density of states at a fixed k shows
a peak that is slightly shifted from the resonant trans-
mission frequency to lower frequencies. If we are inter-
ested in a change in the density of states with changing
wave number k along the total transmission curve T
(Fig. 2), then we can see that the peak in the density of
states near the point at the bulk spectrum edge, where T
matches the curve for the dispersion law S of the in-gap
localized modes, approaches the total transmission fre-
quency, sharpens with increasing k, and tends to a
δ-like shape at the continuum edge (Fig. 3). It is this
state that transforms outside the continuum into the

ux
+ x z,( ) ut qz ϕ+( )cos ule

κ z–+( )eik x y+( ),=

uz
+ x z,( ) iutΓ t qz ϕ+( )sin ulΓ le

κ z–+( )eik x y+( ),=

Γ t –
2 2kcos– k q λ–coscos–

k qsinsin
---------------------------------------------------------------= ,

Γ l i
2 2kcos– k κ λ–coshcos–

k κsinhsin
------------------------------------------------------------------= ,

δg
1
π
---∂ϕ

∂λ
------.=
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symmetric mode localized near the defect (Fig. 2,
curve S).

Thus, it is shown by the examples of a 1D quantum
system with two groups of excitations and an FCC crys-
tal with a planar defect that the resonant transmission
curves in a continuum show peaks of the density of
states. The presence of a sharp peak on the curve for the
density of vibrational states indicates that the respective
vibrations are sharply set off and have resonant charac-
ter in the continuum. For an FCC crystal, this means
that these vibrations may play the role of so-called
“leaky waves.”

This work was supported in part by the INTAS-
1999, grant no. 167.
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The results of studying the fractal structure of Au clusters arising in pulsed laser deposition under conditions of
strong deviations from thermodynamic equilibrium are presented. A mechanism is suggested in which the for-
mation of fractal nanoclusters is considered as a result of the decay of a strongly correlated initial state in a non-
equilibrium system of adatoms. The geometrical shape of the fractal structures observed experimentally can be
described within the given mechanism, and their dimensionality can be estimated. © 2001 MAIK “Nauka/Inter-
periodica”.

PACS numbers: 81.16.Mk; 61.43.Hv; 64.60.Ak
At the present time, the ideas of fractal geometry
actively penetrate into various fields of modern physics
[1, 2]. The fractal nature of the objects under study is
revealed in nonequilibrium processes such as the for-
mation of new-phase nuclei. In particular, it has been
found that clusters of a metal deposited on a substrate
may have a fractal structure even at small deviations
from an equilibrium [2].

The growth of fractal micron-size clusters is
described by the diffusion-controlled aggregation
model [3], cluster–cluster aggregation model, and
Eden’s ballistic model [2]. Common to these models is
the suggestion of the occurrence of a spherical growth
nucleus followed by the development of micron-size
dendrite structures [2] observed only at a subsequent
stage. The existence of such a spherical “seed” is natu-
rally expected at a small deviation from equilibrium
within the Zel’dovich–Volmer–Weber model [4]. The
idea of the existence of fractal nanometer-size clusters
on pulsed laser deposition (PLD) was proposed in [5] in
connection with the explanation of the ordering of Au
clusters at the NaCl(100) surface.

This work presents the results of an experimental
study of the geometrical structure of Au nanoclusters
that are formed on the NaCl(100) and HOPG surface
under conditions of a strong deviation from thermody-
namic equilibrium, which occur during PLD. It was
found that nanometer-size clusters (~20 Å) possess a
fractal structure. Here, an important distinction from
micron-size clusters observed experimentally [2] is the
fact that the fractal nature of the nanoclusters obtained
in this work disappears as their size increases.

An analysis of characteristic times showed that the
formation of fractal nanoclusters is a consequence of
the evolution of the nonequilibrium initial state of the
system of deposited atoms in a time during which infor-
mation on the initial states of the system is not com-
pletely lost. In such a time, the discrete character of the
0021-3640/01/7311- $21.00 © 20604
motion of interacting Brownian particles over the sur-
face becomes principal [6]. The coordinates of these
particles at certain values of system parameters (the
rate of atom transportation to the surface, the tempera-
ture of the substrate, and its symmetry) form sets that
possess the properties of the known Julia sets [7]. The
boundaries of these sets, which correspond to the
perimeters of clusters, have a fractal structure [8].
Hence, the fractal shape of the resulting clusters can be
explained, and their dimensionality can be estimated.

Nanometer-scale metal clusters were formed by Au
PLD onto NaCl(100) and highly oriented pyrolytic
graphite (HOPG) crystals at room temperature under an
ultrahigh vacuum (p ≈ 5 × 10–10 torr) in the preparation
chamber of an XSAM-800 electronic spectrometer. The
surface was controlled in situ using Auger electron
spectroscopy. Radiation from a YAG:Nd3+ laser (λ =
1.06 µm) with the energy E = 80–200 mJ in the
Q-switched regime (τ = 15 ns) and a pulse repetition
frequency of 25 Hz was focused on the Au target. The
amount of Au atoms deposited in one pulse was varied
within the range 1013–1015 atom/cm2 with the deposi-
tion pulse duration τp ~ 10–6 s. The total amount of the
deposited substance was measured ex situ by Ruther-
ford backscattering with He+ ions. For comparison,
experiments were performed on the thermal evapora-
tion (TE) of an equivalent amount of Au onto
NaCl(100) and HOPG crystals. The rate of TE deposi-
tion was ~1014 atom cm–2 s–1.

The structure of Au clusters was analyzed by trans-
mission electron microscopy (TEM). The NaCl surface
coverage Θ with visible Au clusters (Θ = S/S0, where
S0 is the total surface area of the substrate and S is the
area occupied by gold clusters) for laser deposition was
ΘPLD ≈ 0.1 at the total amount of the deposited sub-
stance nPLD ≈ 1.1 × 1015 atom/cm2. The size distribution
of clusters f(r) is shown in Fig. 1, curve a. Here, the
001 MAIK “Nauka/Interperiodica”
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average cluster size 〈r〉  = 15 Å. For TE deposition, the
total amount of deposited atoms was nTE ≈ 1.25 ×
1015 atom/cm2. The coverage in this case was ΘTE ≈
0.06, and 〈r〉  ≈ 46 Å (see Fig. 1, curve b). Because TEM
is insensitive to 2D objects, the value of r should be
thought of as the size of the 3D part of islands.

The shape of Au clusters was analyzed based on
TEM images. A standard procedure was used for deter-
mining the ratio between the area and perimeter of the
object under study [9]. TEM images were divided into
square cells (pixels), and the area S and perimeter p
were determined in pixels for each cluster within the
ranges r = 6–60 Å for PLD and r = 20–120 Å for TE.
The size of one pixel b was b = 3 Å for PLD and b =
10 Å for TE.

In the general case, the ratio between the area and
perimeter of a 2D object is represented in the form [9]

(1)

where ν is the dimensionality of the object, and µ(ν) is
a coefficient independent of p. The dimensionality of the
clusters under study can be obtained by constructing the
dependence of log(S) on log(p). In the case of a smooth
boundary of the objects under study, ν = 2 (S ~ p2).
A noninteger value of parameter ν (fractional dimen-
sionality) may point to the existence of a fractal struc-
ture. When using this method of determining the
dimensionality, we gave special attention to taking into
account spurious effects of treatment associated with
the finite pixel size.

Curves of log(S) versus log(p) for cluster perimeters
p = 30–75 Å for PLD and p = 100–250 Å for TE are
given in Fig. 2. Here, νPLD = 1.7 ± 0.1 for PLD and
νTE = 2.0 ± 0.1 for TE. Note that clusters with perime-
ters p < 100 Å (r < 25 Å) were not observed in the case
of TE. For clusters of a larger size, an increase was
observed in index ν, which reached ν = 2.0 at r ≈ 35 Å
for PLD and r ≈ 70 Å for TE.

Thus, in the case of PLD, the structure of Au clusters
with the size r ≈ 〈r〉  observed by TEM has the fractal
dimensionality [9] DPLD = 2/νPLD ≈ 1.21 ± 0.07. In the
case of TE, the structure of clusters in the same range
of r has the dimensionality DTE = 2/νTO ≈ 1.05 ± 0.05.
Hence, it may be suggested that the structure of clusters
that are formed in the laser deposition of the metal is
close to fractal, in contrast to TE, in which clusters are
not fractal. The difference observed in the shape of the
Au clusters formed may point to a significant difference
between the condensate growth mechanisms for laser
and thermal depositions. The fractal structure of the
clusters that are formed on the PLD of the metal is
revealed only at the initial stages of growth (r =
10−20 Å). Clusters of a larger size (r ≥ 35 Å) have a
smooth shape, that is, are not fractal.

The Koch snowflake may serve as a simplest model
of a 2D fractal cluster. Figure 3 shows a comparison of
TEM images of real Au clusters that are formed in the

S µ ν( )pν,=
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case of PLD (r ≈ 〈r〉) and a modified Koch snowflake
[10] (DK ≈ 1.21). The similarity observed between the
real and model clusters may serve as an argument in
favor of the fact that we deal with physical fractals.

In the case of PLD, part of the deposited substance
may be accumulated in 2D structures [11]. These struc-
tures were studied using scanning tunneling micros-
copy (STM). An image of the Au clusters obtained
by PLD in one laser pulse on the HOPG surface (the
total amount of the deposited substance nPLD ≈
1.3 × 1014 atom/cm2) is shown in Fig. 4. The coverage
of the surface with Au clusters was ΘPLD ≈ 0.1. The
shape of clusters was analyzed by making a cut of the

Fig. 1. Size distributions of Au clusters obtained from an
analysis of TEM images: (a) laser deposition (〈r〉  ≈ 15 Å)
and (b) thermal evaporation (〈r〉  ≈ 46 Å).

Fig. 2. Ratio between the perimeter p and the area S of Au
clusters on NaCl in (a) PLD and (b) TE obtained by treat-
ment of TEM images.
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given STM image at a level of one monolayer with
respect to the graphite surface. The result of fractal
treatment is presented in Fig. 5. The experimental
points are approximated by a linear function with the
slope ν = 1.5 ± 0.1, which corresponds to the fractal
dimensionality of the clusters under study D = 1.33 ±
0.5. The difference of this value from the value D = 1.21
obtained from an analysis of the TEM image of Au
clusters in the case of PLD can be explained by the dif-

Fig. 3. Comparison of (a) TEM images of real Au clusters
on NaCl and (b) model Koch fractals with the dimensional-
ity DK ≈ 1.21.

Fig. 4. STM image of Au clusters on HOPG in laser depo-
sition (N = 1 pulse, nPLD ≈ 1.3 × 1014 atom/cm2). The image
size is 100 × 100 nm.

Fig. 5. Ratio between the perimeter p and the area S of Au
clusters on HOPG in PLD obtained by treatment of an STM
image. The slope of the straight line ν ≈ 1.50.

vs.
ference in the character of cluster formation: 2D on
HOPG [11] and 3D on NaCl [12].

Consider processes proceeding on the surface dur-
ing atom deposition. Under conditions corresponding
to TE with the rate of deposition j ≈ 1014 cm–2 s–1, an
adatom has an opportunity to perform m = τT/τ1 ≈ 104

elementary jumps during the time of its life at the sur-
face τT ≈ 10–4 s (τT = τ0exp(ε/T), τ0 ≈ 10–13 s, ε ≈ 0.6 eV,
T = 300 K, τ1 ≈ a2/$ ≈ 10–8 s is the time of an elemen-
tary jump, a = 4 Å is the lattice parameter, and $ ≈ 5 ×
10–6 cm2 s–1 is the surface diffusion coefficient of Au
atoms [12]). When the concentration of adatoms na =
jτa reaches the value na ≥ nsat (nsat is the surface density
of adatoms in the saturated 2D gas), a condensate
forms. The situation described above corresponds to the
formation of a new phase by the Zel’dovich–Volmer–
Weber mechanism [4].

A special feature of PLD is the high rate of deposi-
tion (jPLD/jTE ≈ 107). In this case, the coverage of the
surface with atoms θc ≈ 0.2 that corresponds to the
onset of the formation of a fractal cluster (see below) is
achieved in the time τf = nc/jPLD ≈ 10–7 s ≈ 0.1τp (nc ≈
θcn0, n0 ≈ 7 × 1014 cm–2 [12]). It is evident that an atom
makes m = τf /τ1 ≈ 10 elementary jumps in the time τf .
In this time, an essentially nonequilibrium system of
adatoms interacting both with each other and with an
underlayer of adatoms is formed on the surface because
of the high rate of its occupation with adatoms. The
relaxation of this system is determined by the initial
conditions and is performed by the motion of each par-
ticle to the state determined by the minimum of its
energy (motion to the attractor). The zone of attractor
influence is “macroscopic” at θ > θc. Actually, esti-
mates show that the size of a fractal formation at θ ≈ θc

is df ≈ 10a ≈ 4 × 10–7 cm, and a cluster containing Na ≈
nc ≈ 20 atoms is formed in a time τ ≈ /$ ≈ 3 ×

10−8 s.

Clusters containing Na ≈ 60 atoms are formed in the
pulse duration time τp ≈ 10–6 s at the coverage θ ≈ 0.5.
As θ further increases, the number of particles in a clus-
ter increases when retaining the size and symmetry of
clusters (spherization; see Fig. 7 below).

To describe the mechanism of cluster formation,
consider the equation of motion of each individual par-
ticle at the surface in the self-consistent field approxi-
mation

(2)

where r is the radius vector of the particle, Γ ~ $/T is
the mobility, and U = U1 + U2 is the potential energy of
the particle. The potential energy U is summed up of
the self-consistent field energy of all the deposited par-
ticles U1(n, |r |), which is defined by the number of the
nearest neighbors, and the field of the substrate crystal

d f
2 d f

2

ṙ Γ ∂U/∂r( ),–=
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lattice U2, which reflects the substrate surface symme-
try.

For times τ ≥ τ1, the motion of a particle over the
surface is essentially discrete; therefore, it is necessary
to pass to a discrete representation in Eq. (2). Then,
Eq. (2) takes the form

(3)

We will represent the self-consistent field of the depos-
ited particles U1 acting on a given particle as U1 ≈
Zf(rk – ), where Z is the number of nearest neighbors
for the given particle, f is the pair interaction energy of
adatoms, and  is the average distance between ada-
toms.

Equation (3) in the complex representation with
allowance for the surface symmetry with respect to the
rotation by an angle of 2π/q [13] takes the form

(4)

where A = 1 – τ1Γ(θn0)1/2 , and B is a con-

stant having the meaning of the bonding energy
between the particle and the substrate. It is evident from
Eqs. (3) and (4) that the coefficient A can be represented
in the form

(5)

Here, ∂U1/∂z is the force corresponding to the attrac-
tion of particles to the attractor, and T/df is the ampli-
tude of temperature fluctuations within the size of the
fractal cluster.

Equation (4) represents a one-dimensional mapping
of the complex plane into itself. It is known [7] that the
images of mappings of such kind are fractals in the
most general case. The boundary of such domains rep-
resents a Julia set [7, 8]. Under certain conditions at the
surface (θ( j), T, q), the atoms located in the domain
bounded by a Julia set will move toward the attractor,
forming a cluster. The atoms located outside this region
will move away from the attractor. Thus, energy
domains arise on the surface that are described by Julia
sets, and the behavior of each adatom depends on its
initial conditions, which corresponds to the initial
stages of the evolution of strongly correlated states of
the nonequilibrium system. If parameter A in Eq. (4)
lies in a certain range of values, connected Julia sets are
formed in the system at hand. It is clear from Eq. (5)
that the formation of such sets is possible in the case of
significant deviations from equilibrium of the system

 > . Taking into account a random force in

Eq. (2) does not change qualitatively the formation pat-
tern of fractal clusters [14].

rk 1+ rk= τ1Γ
∂U rk( )
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r
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It is important to note that such energy domains rep-
resent true (mathematical) fractals retaining self-simi-
larity in any scale. The structure of a real cluster must
repeat to a certain degree the fractal structure of a Julia
set. However, because of the finite size of an atom, such
an object cannot be a true mathematical fractal.

Suppose that the dimensionality of a physical nano-
cluster coincides with the dimensionality of the Julia
set DJ that has given rise to this cluster. The calculation
of the fractal dimensionality of the Julia set for a map-
ping of the type given by Eq. (4) was carried out numer-
ically with the use of the Schröder renormalization
equation [7, 8]. The dependence of DJ on the surface
coverage by atoms θ is presented in Fig. 6. The depen-
dence is calculated for the interaction energies of ada-
toms with each other εAu–Au ≈ 0.5 eV and with the sub-
strate εAu–C ≈ 0.4 eV, T = 300 K, and q = 3, which cor-
responds to a system of Au clusters on HOPG.

At small coverage values, DJ < 1; that is, the Julia set
is disconnected. This means that the clusterization of
adatoms does not proceed at such θ on the surface
under conditions of fast deposition. With increasing
coverage, the dimensionality DJ increases, reaching the

Fig. 6. Dependence of the dimensionality of Julia sets DJ on
the coverage θ for one pulse.

Fig. 7. Sequence of Julia sets for the mapping given by
Eq. (4) at some values of θ and (1, 2, 3) for STM images of
individual Au clusters on HOPG.
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value D = 1.3 at θ ≈ 0.5, and the structure of the result-
ing clusters is determined by the structure of the arising
energy domains of the corresponding dimensionality.
A sequence of Julia sets for a number of values of θ and
STM images of individual physical Au clusters on
HOPG is given in Fig. 7.

Thus, nanoclusters with a fractal structure, which
disappears as the size of nanoclusters increases, were
found experimentally under conditions of high deposi-
tion rates in gold PLD onto NaCl and HOPG surfaces.
A mechanism was proposed that describes the forma-
tion of fractal nanoclusters as a result of the evolution
of the initial states of a strongly nonequilibrium system
of interacting adatoms. It was found that the geometri-
cal structure of the arising nanoclusters essentially
depends on the rate of atom transportation to the sur-
face and is determined by the symmetry of the crystal
lattice of the substrate surface. The experimental results
obtained suggest the existence of a new mechanism of
condensed phase formation under conditions of strong
deviations from thermodynamic equilibrium. This
mechanism is not reduced to the known mechanism of
spinodal decay.

The authors are grateful to D.O. Filatov and
E. Lægsgaard for help in performing STM measure-
ments.
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The thermal conductivity of (La0.25Pr0.75)0.7Ca0.3MnO3 manganite has been studied. The isotope substitution of
18O for 16O in this compound leads to a ferromagnetic–antiferromagnetic phase transition at low temperatures.
It has been found that the thermal conductivity in the ferromagnetic state is approximately two times higher
than in the antiferromagnetic state. It has been shown that the small value of thermal conductivity and its tem-
perature dependence can be due to strong phonon scattering from crystal lattice defects, which are thought of
as Jahn–Teller distortions. The parameters of this scattering can be determined within the Debye model of ther-
mal conductivity from a comparison of samples differing in their isotope composition. © 2001 MAIK
“Nauka/Interperiodica”.

PACS numbers: 72.15.Eb; 75.30.Kz; 66.70.+f
Perovskite manganites Ln1 – yAyMnO3 (Ln desig-
nates a lanthanide; A = Ca, Sr, and others) demonstrate
anomalously high sensitivity of physical properties to
external factors. This feature of manganites is associ-
ated with strong interaction between charge, spin, and
orbital degrees of freedom. These compounds exhibit a
rich phase diagram with a number of states differing in
magnetic and electric properties, which is controlled by
the doping level y and by the ratio of ionic radii of the
Ln and A cations.

Investigations of the thermal conductivity κ(T) of
manganites [1–9] revealed the following two general
features. Firstly, the thermal conductivity of mangan-
ites, both single crystals and ceramics, is very low,
κ(300 K) ~ 1–2 W m–1 K–1 [2], which is close to the
minimal theoretical value for the thermal conductivity
of solids. Secondly, a transition to the metallic ferro-
magnetic phase at the temperature TFM is accompanied
by an increase in thermal conductivity, and this increase
for various compositions may amount to tens and hun-
dreds of percent.

An analysis of experimental data on the thermal
conductivity, electrical conductivity, and heat capacity
of manganites indicates that phonon thermal conductiv-
ity is the dominant mechanism of heat transport. Esti-
mates of the electron [1–6, 7] and magnon [2, 4] ther-
mal conductivity indicate that their contribution is less
than 10% of the total value, and hence these mecha-
nisms of heat transport cannot serve as an explanation
for the sharp increase in κ(T) at T < TFM.
0021-3640/01/7311- $21.00 © 20609
The anomalously low thermal conductivity of man-
ganites in a wide temperature range is explained by
strong phonon scattering from crystal lattice defects.
Along with this scattering, the interaction of phonons
with excitations of the spin subsystems can also be
observed in the vicinity of TFM. It is known that it can
sharply increase in the vicinity of the magnetic phase
transition in many magnetic dielectrics, causing a local
minimum in the temperature dependence of κ(T) near
the critical point. A similar behavior of thermal conduc-
tivity was observed in some manganites [3, 10, 11].
However, as well as in our case, the dependence κ(T)
for many manganites exhibits no characteristic dip near
TFM [8]. Note that a transition from a paramagnetic
phase (PM) to a charge-ordered state (CO), an AFM
state, or a dielectric FM state is not accompanied as a
rule by considerable changes in κ(T). Therefore, we
believe that spin–phonon interaction cannot be consid-
ered as the main process of phonon relaxation common
to all the manganites.

When considering crystal lattice defects as the
source of heat resistance, one can distinguish cation
disorder in Ln1 – yAyMnO3 solid solutions, grain bound-
aries (for polycrystalline samples), and also static and
dynamic distortions of MnO6 octahedra due to the
Jahn–Teller effect at Mn3+ ions. Undoubtedly, cation
disorder always makes an additional contribution to
phonon scattering, which apparently does not depend
on the type of ordering. At the same time, because the
thermal conductivity of LaMnO3, which has no cation
disorder, is close to the thermal conductivity of doped
manganites [2], it may be inferred that this mechanism
001 MAIK “Nauka/Interperiodica”
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is not general and determining. The same can also be
said about phonon scattering from grain boundaries
with regard to the data obtained with single crystals
[1, 2, 6, 7].

Evidently, Jahn–Teller lattice distortions are the
defects that determine to a large extent the behavior of
the thermal conductivity of manganites over a wide
temperature range. It is known that the delocalization of
electrons upon transition to a metallic FM state effec-
tively reduces Jahn–Teller distortions, which results in
a decrease in the rate of phonon scattering from these

defects  and can explain the increase in κ(T) at
T < TFM [1, 2, 4, 5, 7]. In the case of electron-doped
manganites, this mechanism must be less effective,
because the concentration of Jahn–Teller Mn3+ ions is
low at low doping levels. Actually, κ(T) for LaMnO3

(100% Mn3+) is approximately an order of magnitude
smaller than κ(T) in CaMnO3 (100% Mn4+), and the
thermal conductivity of the latter very strongly
decreases upon doping with samarium [7], which
increases the concentration of Mn3+ ions. In this case,
an increase in κ(T) of 30% is observed for the
Sm0.12Ca0.88MnO3 composition upon transition to the
metallic FM state.

In this work, a method is proposed for the
quantitative estimation of the intensity of the main
process of phonon scattering in manganites. It is
based on the giant isotope effect found in the
(La0.25Pr0.75)0.7Ca0.3MnO3 manganite [12, 13]. The FM
transition in this compound at temperatures below 100 K
is suppressed if the 16O oxygen isotope is replaced by
the heavy 18O isotope. In this case, the temperatures of
high-temperature phase transitions TCO ≈ 180 K and
TAFM ≈ 150 K and the crystal structure parameters
found by neutron diffraction [14, 15] change slightly on
isotope substitution at T > TFM. In addition, according
to [14, 15], it is sufficient to enrich a sample with the
18O isotope to 90% in order to decrease the FM phase
content of the sample to a level of less than 5%,
whereas the FM content of a sample with the natural
isotope composition (99.76% 16O, that is, almost the
pure 16O isotope) is about 90%. Thus, given two identi-
cal samples differing only in isotope composition, one
can distinguish and quantitatively investigate the spe-
cific process of phonon scattering, which determines
the behavior of the thermal conductivity of manganites.

Samples and measurement procedure. In this
work, thermal conductivity was measured in ceramic
samples of (La0.25Pr0.75)0.7Ca0.3MnO3 prepared by solid-
phase synthesis. The procedure of preparing samples
differing in the oxygen isotope composition and their
similar thermal history provided the identity of two
samples (hereafter referred to as O16 and O18) in the
chemical composition, including the oxygen index, and
in the ceramic structure (crystallite size, density, poros-
ity type). The procedure of isotope substitution (isotope

τ JT
1–
exchange of oxygen in the sample with oxygen in the
surrounding gas) and the properties of the samples
obtained were described in [13, 14]. The ceramics den-
sity was about 80% of the theoretical value. The
18O isotope content of the O18 sample was 90 ± 2%.
The characteristic dimensions of the samples were
1.5 × 0.5 × 0.2 mm. Such small sizes provide definite
advantages in measurements of thermal conductivity,
namely, a short thermal relaxation time of the sample
and reduced thermal radiation losses at temperatures
T > 100 K.

Thermal conductivity was measured by the steady-
state longitudinal heat flux method. An analysis of mea-
surement errors showed that the relative random error
in κ(T) was about 3% and the absolute error was
20−30%. The error is due to a large error in determining
the geometrical dimensions of the samples and uncer-
tainty in the heat power transfer from the heater to the
sample. In order to obtain more accurate data on the
absolute value of κ(T) for samples differing in isotope
composition, we repeated measurements with the same
sample before and after isotope exchange, trying to
reproduce experimental conditions as accurately as pos-
sible. At T > 120 K, the values of thermal conductivity
for the O16 and O18 samples coincided within 10% of
the experimental error, and the normalized values of
thermal conductivity κ(T)/κ(273 K) differed by less
than 2%. In a separate experiment, we determined that
the error due to radiation losses was no more than 10%
at T = 273 K and did not exceed 1% at T < 100 K. The
absolute value of thermal conductivity κ(273 K) ≈
1.7 ± 0.2 W m–1 K–1.

Results and discussion. Figure 1a shows the tem-
perature dependence of thermal conductivity for the
O16 and O18 samples. Throughout the entire tempera-
ture range, κ(T) was found to be small and close in
absolute value to the thermal conductivity of disordered
materials. No anomalies were observed in either sam-
ple at temperatures of charge TCO and antiferromag-
netic TAFM orderings that would be at all significant.
The thermal conductivity of the O16 sample sharply
increased almost two times upon transition to the ferro-
magnetic metal state at TFM ≈ 100 K. In contrast, the
temperature dependence κ(T) for the O18 sample
monotonically increases. The application of a magnetic
field of 5 T along the thermal flux direction shifts TFM
up by 60 K for the O16 sample, leaving the thermal
conductivity unchanged at T < 50 K. This behavior
indicates that the concentration of the FM phase in the
O16 sample is close to saturation. This result agrees
with the results of neutron experiments [14, 15].

Estimating the electron thermal conductivity κe(T)
with the use of the Wiedemann–Franz law and experi-
mental data on electric conductivity indicates that κe(T)
< 0.01κ(T) in our case; that is, heat transfer by charged
carriers is virtually absent. According to [16], the spe-
cific heat of manganites with compositions similar to
those studied in this work remains almost unchanged
JETP LETTERS      Vol. 73      No. 11      2001
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upon transition to the FM state. This indicates that the
ferromagnetic ordering of magnetic moments of man-
ganese ions leaves the density of states in the region of
thermal energies virtually unchanged and, conse-
quently, renders highly improbable the appearance of
heat transport by magnons. In addition, from these data
on heat capacity, it also follows that the change in
phonon thermal conductivity due to changes in elastic
properties and crystal lattice parameters cannot be sig-
nificant.

The rate of phonon scattering by Jahn–Teller distor-

tions  can be estimated using the equation of kinetic
theory

(1)

where C is the lattice heat capacity, v  is the average

phonon velocity, τ –1 =  +  is the total rate of

phonon relaxation, and  is the rate of scattering in all
the processes except for the Jahn–Teller ones. Assum-

ing that, at T < TFM,  = 0 in the O16 sample, we
obtain an estimate of the contribution from Jahn–Teller
defects (Fig. 1b)

(2)

and also the temperature dependence (T) (Fig. 1c)

(3)

Here, κO16(T, 5 T) is the thermal conductivity of the
O16 sample in a magnetic field of 5 T. The heat capac-
ity C(T) was approximated by a Debye function with
the Debye temperature TD = 500 K that was determined
from high-temperature data on the heat capacity of
manganites of the series (La1 – yPry)0.7Ca0.3MnO3 [17].
The velocity v  = 5.0 × 105 cm s–1 was estimated from
the value of TD in agreement with the data given in [18].
Figure 1b makes it evident that the rate of relaxation

 is effective over a wide temperature range, that is,
comprises more than half τ –1 in magnitude and weakly
depends on the frequency, whereas the phonon mean
free path lJT = τJTv  is close in magnitude to several lat-
tice parameters at T ≈ 100 K and grows as T –2 (Fig. 1c).

We also calculated the temperature dependence of
phonon thermal conductivity in the simple Debye
approximation

(4)

where x = "ω/kBT, and ω is the phonon frequency. It
was found that a good agreement with the experiment
can be reached only with the use of three independent
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relaxation processes: (1) phonon scattering from crys-

tallite boundaries with the rate  = v /L, where L is the
characteristic size of a crystallite; (2) scattering from

extended defects  = AdxT; and (3) scattering from

point defects  = Apdx4T4. Then,

(5)

The scattering parameters obtained by fitting the theo-
retical dependence (Eq. (4)) to experimental data are
given in the table. Figure 2 demonstrates how κ(T) in
the O18 sample can be described with consistent allow-
ance made for these processes. The approximately two-
fold increase in the thermal conductivity of the FM
phase is explained by the approximately fivefold
decrease in the rate of phonon scattering by extended
defects. On the strength of this result, it may be sug-

gested that the frequency dependence  is close to a
linear function, and Jahn–Teller distortions interact
with phonons as extended crystal structure defects.
A minor decrease in the intensity of scattering from
point defects is also observed. The addition of other
scattering processes, for example, from planar defects

τb
1–

τd
1–

τpd
1–

τ 1– x T,( ) τb
1–= τd

1– τpd
1– .+ +

τ JT
1–

Fig. 1. (a) Normalized thermal conductivity of
(La0.25Pr0.75)0.7Ca0.3MnO3 with various isotope composi-
tions, (b) ratio of the rate of phonon scattering by Jahn–
Teller distortions to the total rate of scattering from all other
processes, and (c) τJT(T) and lJT(T) as functions of temper-
ature.

κ(
T
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κ(

27
3 

K
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with rates of the form  ~ ω2 does not improve the
agreement with the experiment, and the process with

the scattering rate  ~ ω remains dominant.

Recently, the thermal conductivity of La1 – ySryMnO3
ceramics was studied in [18]. The authors found that the
thermal conductivity significantly decreases at T < TAF
upon transition from the ferromagnetic conducting
composition with y = 0.48 (TFM ≈ 290 K) to the antifer-
romagnetic insulating composition with y = 0.50 (TAF ≈
160 K, TFM ≈ 290 K). An analysis of the data for tem-
peratures from 10 to 90 K carried out within the Debye
approximation (Eq. (4)) showed that the feature
observed is explained by the 15-fold increase in the rate

of scattering  ~ ω. In this case, the other relaxation
processes change insignificantly, which is natural with
regard to the closeness of the cation composition. These
results are close to those obtained in this work under the
giant isotope effect conditions. The authors of [18] sug-

gested that the scattering of the form  ~ ω arises in
the AF state mainly because of scattering by tunnel
states associated with the motion of oxygen atoms.

τ sf
1–

τd
1–

τd
1–

τd
1–

Fig. 2. Temperature dependence of the thermal conductivity
of (La0.25Pr0.75)0.7Ca0.3MnO3 with various isotope compo-
sitions: s, O18 sample (H = 0 T); n, O16 sample (H = 0 T);
and h, O16 sample (H = 5 T). Lines correspond to the
results of calculations by the Debye model with the corre-
sponding rates of relaxation.

Fitting parameters of the phonon scattering rates in the
Debye model

Sample L (µm) Ad (s–1 K–1) Apd (s–1 K–4)

O16 10 5.0 × 108 3.2 × 103

O18 10 25.0 × 108 4.6 × 103

κ(
T

)

Apd
Phonon scattering by tunneling states determines
the behavior of the thermal conductivity of amorphous
materials in the low-temperature region (T & 1 K),
where κ ~ T2, and the rate of resonance scattering takes
the following form:

(6)

where  is the subset of tunneling states strongly cou-
pled with phonons, and γ is the average deformation
potential. The rate of this phonon scattering depends
approximately linearly on the frequency under the con-
dition that the density of tunneling states is constant in
the range of thermal energies [19]. At relatively high
temperatures (T * 10 K), the scattering by tunneling
states makes an insignificant contribution to the total
relaxation of phonons in glasses [20]. Using the value
of the fitting parameter Ats found in [18] and Eq. (6), we
obtain that the parameter of coupling between thermal
phonons and tunneling states in La0.50Sr0.50MnO3 is

 ≈ 90 × 108 erg cm–3, which is approximately two
orders of magnitude higher than the characteristic val-
ues for a wide range of amorphous materials [21]. On
the strength of this result, we believe that the use of
scattering by tunneling states as the source of the linear
frequency dependence of phonon scattering in manga-
nites is poorly justified.

The linear dependence of the rate of phonon scatter-
ing arises apparently from the interaction of phonons
with extended lattice defects in manganites. It is possi-
ble that there is spatial correlation among local Jahn–
Teller distortions of MnO6 octahedra. This correlation
creates extended deformation fields in the lattice simi-
lar to deformation fields around dislocation lines. The
lengths of such formations must be considerably larger
than the wavelength of thermal phonons, and, accord-
ing to our estimates, some of them can extend over hun-
dreds of unit cells.

Note in conclusion that this work reports the first
investigations of the thermal conductivity in the
(La0.25Pr0.75)0.7Ca0.3MnO3 manganite, which exhibits
the giant oxygen isotope effect in the metal–dielectric
transition. It is found that the transition to the ferromag-
netic metallic state is accompanied by a growth of ther-
mal conductivity. An analysis of experimental data car-
ried out within the simple Debye model leads to the
conclusion that the frequency dependence of the lead-
ing term in the relaxation rate of thermal phonons in
manganites is close to linear. Jahn–Teller distortions of
the crystal lattice are apparently the source of this
decay.

The authors are grateful to N.A. Babushkina and
N.M. Plakida for useful discussions and valuable com-
ments.
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ñ
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Anomalous Behavior of Linear and Nonlinear
Longitudinal Susceptibilities below Tc
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Frequency dependences of the linear and nonlinear longitudinal dynamic susceptibilities of an almost isotropic
cubic CdCr2Se4 ferromagnet were studied experimentally in the ordered phase. It was found that at frequencies
above the two-magnon creation threshold the linear susceptibility decreases as χ1 ∝ ω –0.28 with increasing fre-
quency and the nonlinear susceptibility decreases as χn ∝ ω –0.73, irrespective of n, where n is an odd number.
The observed susceptibility anomalies are due to the dipolar forces that violate the conservation of total spin.
© 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.30.Cr; 75.40.Gb
It is well known that a uniform alternating magnetic
field is not absorbed in a Heisenberg ferromagnet
because the operator for the total spin of the system
commutes with the exchange Hamiltonian. Weak rela-
tivistic interactions (anisotropy, dipolar forces, etc.)
violate spin conservation and provide homogeneous
relaxation.

The homogeneous longitudinal susceptibility in the
presence of dipolar forces was studied theoretically in
[1] within the framework of the linear spin-wave theory
(LSWT). According to [1], at nonzero temperatures this
susceptibility displays zero-field infrared divergence
(IRD) of the type χ(ω  0) ∝  iT/ω at frequencies
above the threshold that is determined by the internal
magnetic field and anisotropy. It should be noted that
this problem was explored earlier in [2], where the
influence of dipolar forces on the spin-wave spectrum
was modeled by introducing a gap. It turned out that
χ ∝ ω –3/2. This result is different from the one obtained
in [1], where the exact expression was used for the
spectrum.

The above-mentioned IRD is due to the specific
“weak” violation of spin conservation by the dipolar
forces, as a result of which the number of excitations
(magnons) can change in the elementary scattering
event, although the magnon spectrum remains gapless
if the anisotropy and internal magnetic field are
ignored.

Notice that the divergence of susceptibility,
obtained in [1], would lead to the nonzero absorption
coefficient at ω = 0 and, hence, to the heating of the
0021-3640/01/7311- $21.00 © 20614
sample in a static external magnetic field, which,
clearly, should not be the case.

Another example of a magnetic Bose system with
weak law violation—Heisenberg antiferromagnet—
was studied theoretically in [3] also within the frame-
work of the LSWT. The total spin is conserved in the
antiferromagnet, but the conservation law is absent in
the staggered channel. The corresponding elementary
excitation spectrum (antiferromagnons) is also gapless.
As was shown in [3], the resulting staggered longitudi-
nal susceptibility also displays an analogous IRD.

Thus, it follows from the cited works that the longi-
tudinal susceptibilities demonstrate anomalous low-
frequency behavior in the magnetic Bose systems with
weak law violations (nonconservation of the number of
excitations in the elementary events in the systems with
gapless spectrum of these excitations).

To verify the theoretical predictions for magnetic
Bose systems and answer the question of what the con-
sequences are of the IRD for the magnetic dynamics of
such systems, we earlier undertook experimental inves-
tigation of the homogeneous longitudinal susceptibility
of an almost isotropic cubic CdCr2Se4 ferromagnet
(Tc ≈ 128 K) in the magnetically ordered phase [4].
Experiments were carried out in weak external fields
(no higher than 100 mOe) in the low-frequency range
(ω/2π = f ~ 102–106 Hz). To minimize the demagneti-
zation effect, a sample was shaped like a ring with sizes
∅ 5.4 × ∅ 2.0 × 2.1 mm. The ring plane coincided with
the crystal [111] plane. The axially symmetric static
(H) and alternating (h0cos2πf0t) fields were applied in
the ring plane so that the field lines were closed and the
001 MAIK “Nauka/Interperiodica”
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field was almost completely concentrated inside the
sample. This strongly suppressed the domain formation
and allowed us to observe an exceedingly narrow hys-
teresis with the coercive force Hc ≈ 5 mOe. To avoid the
influence of domains, the experiments were conducted
under condition H, h0 > Hc.

The main result of that work consisted in the quali-
tative confirmation of the theoretical predictions about
the anomalous longitudinal dynamics due to the dipolar
forces in isotropic Heisenberg ferromagnets. At fre-
quencies above the frequency ωcr ≈ 2gµBH (µB is the
Bohr magneton, and g is the g factor) corresponding to
the creation of two magnons, the longitudinal suscepti-
bility was found to be a less singular function of fre-
quency than in [1] but still divergent in the low-fre-
quency limit, χ(ω  0) ∝  (i/ω)ρ. Specifically, Reχ ≡
χ' ∝  |ω|–ρcos(πρ/2) and Imχ ≡ χ'' ∝  |ω|–ρsin(πρ/2); the
ratio Imχ/Reχ =  was independent of fre-
quency and ρ ≈ 0.28. The power law dependence of χ
on ω was observed in the temperature range from 80 to
120 K, where the exponent ρ changed by no more than
10% (above 120 K, the frequency behavior of the sus-
ceptibility was influenced by critical fluctuations). It is
noteworthy that in the frequency range studied the
imaginary part of susceptibility is on the order of its
real part, and this is a nontrivial fact. One can see in
Fig. 1, taken from [4], that such a behavior of suscepti-
bility takes place over a wide frequency range. This
result gives evidence that the strong interaction of spin
waves screens the infrared divergence of the i/ω type
obtained in [1]. The departure from this law at ω < ωcr
(decrease in χ'' and a very weak increase in χ' at ω 
0) is due to the magnetic anisotropy, which is very
small in our case.

Every strongly interacting system should be nonlin-
ear. This consideration has stimulated our experimental
studies of higher harmonics. It is natural to assume that
the power law frequency behavior will be observed for
the higher order susceptibilities as well, at least at fre-
quencies above the energy threshold for the creation of
two magnons. To verify this assumption, the corre-
sponding experiments were performed with the same
single-crystal sample of CdCr2Se4 as in [4].

The frequency f0 of an alternating field was varied
from 1 to 200 kHz. The harmonics were measured by a
serial spectrum analyzer in the range 1–600 kHz. The

amplitudes An ∝  nf0(  + )1/2 ∝  |χn | (n = 1, 3, 5, …)
of higher harmonics were measured relative to the
amplitude of the first harmonic measured at the funda-

mental frequency f0, A1 ∝  f0(  + )1/2 ∝  |χ1 |, where

 and  are, respectively, the real and the imaginary
parts of the nth-order susceptibility. The observation of
harmonics was mainly limited, apart from the instru-
mental sensitivity, owing to the following reasons. It
will be seen below that the amplitudes of higher har-

πρ/2( )tan

χn'
2 χn''

2

χ '2 χ ''2

χn' χn''
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monics decrease at ω0 * 2gµBh0 rather rapidly with
increasing harmonic number; to take this into account,
small amplitudes of the alternating field h0 < 40 mOe
should be used in the range of frequencies f0 chosen.
For this reason, the results of this work are mainly
related to the third and fifth harmonics. Measurements
were made at T = 82 K. The results presented below
were obtained in zero static magnetic field, H = 0 (evi-
dently, only odd harmonics occur in this case), and in
the frequency range where the linear longitudinal sus-
ceptibility [χ'(f0) and χ''(f0)] displayed power law
behavior in [4], i.e., under the condition ω0 * 2gµBh0.

It follows from the results obtained that, if this con-
dition is met, then, at a fixed frequency f0 of the alter-
nating field, the ratio Rn = |χn |/ |χ1 | shows power law
dependence on the harmonic frequency nf0 (or, what is
the same, on the harmonic number n), Rn ∝  (nf0)–r ∝  n−r.
Some of these dependences are presented in Fig. 2 for
n = 3, 5, and 7 by the solid lines. It follows from the
analysis of the Rn vs. n curves that the exponent r is,
generally, a linear function of frequency and can
approximately be represented as r ≈ 5.50(±0.05) +
0.004f0 (kHz). The constant term is obtained by the
extrapolation of r(f0) to f0 = 0. Note that at lower fre-
quencies (ω0 < 2gµBh0) the Rn dependence on n did not

Fig. 1. Frequency dependence of (circles) real and (trian-
gles) imaginary parts of linear longitudinal susceptibility
and (squares) of their ratio at different values of the applied
static magnetic field. The vertical dashed lines correspond to
the two-magnon threshold 2gµBH/h, h0 = 12 mOe, T = 82 K.
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fit a power law, but the behavior of higher harmonics
was not examined in detail in this work.

As to the dependence of Rn on f0 at fixed values n =
3 and 5 (dashed lines in Fig. 2), one can easily see that
both harmonics also show power law dependence: Rn ∝
(nf0)–0.45 ± 0.03 ∝  . The data obtained for n = 7
at two frequencies and presented in Fig. 2, generally, do
not contradict this dependence. One can suppose that
the power law dependence of Rn on f0 will hold for the
higher harmonics as well. On the other hand, it was
found from the linear response measurements that χ1 ∝

. It follows herefrom that at ω0 * 2gµBh0 the

higher order susceptibilities χn ∝   ∝  ,
regardless of n. This result was also obtained in inde-
pendent measurements of only the third harmonic

f 0
0.45– 0.03±

f 0
0.28–

χ1
ρ– f 0

0.45– f 0
0.73–

Fig. 2. Plots of Rn = |χn |/ |χ1 | dependences (solid lines) on
frequency nf0 for different frequencies f0 of the alternating
field. The dashed lines connecting Rn values at fixed n dem-
onstrate power law dependence of the harmonic amplitudes
on the frequency of the alternating field. For the method-
ological reasons indicated in the text, the data for n = 7 are
obtained only at frequencies 60 and 70 kHz; h0 = 8 mOe.

Fig. 3. Frequency dependence of the threshold amplitude
h0cr of the alternating field above which the power law is no
longer valid for the decrease of higher harmonic amplitudes
with increasing harmonic number.

h 0
 c

r (
m

O
e)
amplitude as a function of alternating field in the range
50 ≤ f0 ≤ 200 kHz.

It was pointed out above that |χn |/ |χ1 | shows a power
law dependence on n at ω0 * 2gµBh0. Evidently, this
condition breaks at field amplitudes h0 > h0cr = ω0/2gµB,
and, hence, the indicated dependence may differ from a
power law. To determine the value of h0cr , |χn |/ |χ1 | was
measured as a function of n by changing field amplitude
h0 at a fixed frequency. Indeed, it turned out that the
power law dependence of |χn |/ |χ1 | on n disappeared at a
fixed value of h0. This amplitude of the alternating field
was taken as h0cr . The resulting h0cr(f0) dependence is
shown in Fig. 3, from which it follows that, as in the
case of linear susceptibility, h0cr corresponds to the two-
magnon threshold; i.e., 2gµBh0cr = ω0. The extrapola-
tion of h0cr to f0 = 0 gives a value of approximately
5 mOe for h0cr , which corresponds to the coercive force
found in [4] from the hysteresis curves for both χ(H)
and A2(H).

The experimentally observed scaling behavior of
the linear and nonlinear longitudinal susceptibilities
gives evidence for the presence of the developed
dynamical fluctuations in the system and indicates that
it is close to the instability outside the critical region
below Tc. This leads to the following important state-
ment: the dipolar forces in an ideal infinite isotropic fer-
romagnet without anisotropy make the magnetically
ordered ground state unstable in zero field because of
the increasing homogeneous dynamical fluctuations of
longitudinal susceptibility. The long-range magnetic
order in such a system is stabilized only by the finite-
size and anisotropy effects and also by the external
field.

We thank S.V. Maleyev and A.G. Yashenkin for
assistance in setting up the problem and for the discus-
sion of experimental results and to Ya.V. Greshneva for
taking part in the experiment and data processing. This
work was supported by the Russian Foundation for
Basic Research (project no. 00-02-16729) and the State
Program “Physics of Quantum and Wave Processes,”
subprogram “Statistical Physics” (project no. VIII-3).
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High-frequency conductivity has been calculated for triple-barrier nanostructures at resonance diagonal transi-
tions. It is shown that the neglect of transitions to side nonresonance quasi-levels in a high-frequency electric
field leads in some cases to an overestimation of the maximum conductivity by 60%, an increase in the line
width of more than 40%, and an increase in the integral conductivity by a factor of almost 2.5. In these cases,
the transmission coefficient calculated with allowance made for side satellites is approximately 0.6 rather than 1.
© 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 72.10.-d; 73.22.-f
Theoretical studies of electron transport through
resonance levels of a triple-barrier structure in a high-
frequency electric field commonly employ a two-level
approximation, that is, the representation of the elec-
tron wave function in the form ψ(x, t ) =

bK(t)ψK(x)  + bL(t )ψL(x) , where L and K are
the numbers of the energy levels between which the
transitions take place. The wave function components
with frequencies that fall outside the vicinity of ωL and
ωK are rejected as “nonresonance” ones. In the case of
diagonal transitions, this approximation is substanti-
ated (from somewhat abstract assumptions) by the fact
(see, for example, [1, 2]) that, firstly, transitions to the
energy regions "ωK + n"ω and "ωL – n"ω (where ω =
ωK – ωL is the frequency of the perturbing field and
n are natural numbers; see Fig. 1) are nonresonance
ones and, hence, weak; and, secondly, the escape of
electrons from the structure via these quasi-levels is
small.

A question arises of whether radiationless (in fact)
transitions (because virtually no electrons leave the
structure via the "ωK + n"ω and "ωL – n"ω quasi-lev-
els, each upward transition corresponds to a downward
transition, and, in principle, one may speak about vir-
tual transitions) inside a structure can affect observable
properties of the structure such as the transmission
coefficient, the high-frequency conductivity, or the
width of the interaction line. This question is of princi-
pal physical and, possibly, essential practical interest. If
they can, prospects are opened up for studying (and,
possibly, using) a number of analogous phenomena
such as states dynamically coupled in a high-frequency
field [3]. If not, the description of diagonal transitions
is significantly simplified, because the two-level
approximation appears to be sufficient in the majority

e
iωKt–

e
iωLt–
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of cases. The aim of this work is to answer this ques-
tion.

It seems necessary to make two general comments.
First, the use of the resonance two-level approximation
in a structure with impenetrable outer barriers is well
substantiated [4, 5], naturally, until the perturbing field
frequency is sufficiently close to the separation
between levels. However, the energy spectrum of a
structure with a finite penetrability of the barriers
becomes continuous, and the electron wave function
under steady-state conditions (on a time scale larger
than the tunneling electron lifetime in the structure)
may significantly differ from the electron wave func-
tion in a closed structure and contain components with
frequencies ωK + nω and ωL – nω. It will be shown
below that, in contrast to the case of a closed structure,
transitions between these components and the levels
with energies of "ωK and "ωL can be comparable with
transitions between the resonance components "ωK

and "ωL.

Results of numerical calculations. Consider a sim-
plest asymmetric triple-barrier structure with thin
(δ-shaped) barriers. Let a uniform high-frequency (HF)
electric field is applied across the structure, and let this
field varies with time according to the equation
Fcosωt = E(eiωt + e–iωt), F = 2E. Assume for definite-
ness sake that a monoenergetic electron stream is inci-
dent from the left on the resonance level with the num-
ber K of the first double-barrier structure, and that the
frequency of the HF field corresponds to transitions to
the level L of the second double-barrier structure (see
Fig. 1). Then, the nonstationary Schrödinger equation
takes the form

i"
∂ψ
∂t
------- "

2

2m*
-----------∂2ψ

∂x2
---------–= H x( )ψ H x t,( )ψ,+ +
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(1)

Here, q and m* are the electron charge and mass, α =
ϕbb is the power of the first barrier, ϕb and b are its
height and width, θ(x) is the unit function, γ and ρ are
numerical coefficients, and a and l are the distances
between the barriers.

In order to obtain a partial answer to the question of
the effect of virtual transitions on the observable prop-
erties of triple-barrier structures, let us solve Eq. (1)
numerically by the procedure described in detail in
[3, 6] within the two-level and four-level approxima-
tion (estimates similar to those given in [6] and below
indicate that taking into account four levels is quite suf-
ficient for describing the properties of the system in the
most interesting case when the transmission coefficient

H x( ) αδ x( )= αρδ x a–( ) αγδ x a– l–( ),+ +

H x t,( ) qE x θ x( ) θ x a– l–( )–( )[–=

+ a l+( )θ x a– l–( ) ] eiωt e iωt–+( ).

Fig. 1. Schematic representation of a band diagram for a tri-
ple-barrier structure.

Fig. 2. Frequency dependence of the active conductivity for
an InAs triple-barrier structure: the solid and dashed lines
correspond to calculations in the four-level and two-level
approximations, respectively; the width of the first well is
150 Å, the width of the second well is 165 Å, the height of
the barriers is 2 eV, and the thickness of the barriers is 33 Å.

2.95
for the structure in Fig. 1 is a maximum). The calcula-
tions show that the effect of side satellites strongly
depends on the structure parameters and the HF field
amplitude (usually, the greater the ω/ω0 ratio and the
smaller the amplitude, the smaller this effect). Consider
a rather typical example when the effect of radiationless
transitions can be significant. Figure 2 demonstrates the
dependence of the high-frequency conductivity of a tri-
ple-barrier InAs structure on the electric field fre-
quency. It is evident that the neglect of transitions to
side satellites leads to an overestimation of the maxi-
mum conductivity by 60% and an increase in the line
width of more than 40%. In this case, the integral con-
ductivity is overestimated by a factor of almost 2.5,
and, in addition, the maximal transmission coefficient
calculated with allowance made for side satellites is
approximately 0.6 rather than 1 (see Fig. 3). It should
be noted that escape via side satellites (which, though
being small, always takes place in structures with a
finite barrier width) is more than an order of magnitude
smaller than the escape of electrons from the main res-
onance levels. Thus, a conclusion can be made that vir-
tual transitions can notably affect observable properties
of quantum nanostructures.

Qualitative estimates. The results obtained can be
qualitatively explained using the second-order pertur-
bation correction to the ground-state wave function. For
the given structure, the unperturbed wave function of
electrons ψ0 with a plane wave of a unit amplitude inci-
dent from the left takes the form

(2)

where ε is the energy of electrons incident on the struc-
ture, and k = (2m*ε/"2)1/2 is the wave vector of elec-
trons.

The resonance parameter in the problems on
structures with thin barriers is represented by the quan-
tity [7]

(3)

which has the dimensionality of the wave vector. For
sufficiently powerful barriers (y @ k; only in this case
is  it meaningful to speak about a two-level system
at all),

(4)

Within the small-signal approximation, the first-order
correction ψ1 to the ground-state wave function has the

ψ0 x( )

=  

ikx( )exp D0 ikx–( ), x 0<exp+

A0 kx( )sin B0 kx( ), 0 x a< <cos+

Z0 k x a–( )( )sin W0 k x a–( )( ), a x a l+< <cos+

C0 ik x a– l–( )( ), x a l ,+>exp

y 2m*α /"2,=

D0 1, B0 2, A0
2y
k

------,= = =

W0
2
ρ
---, Z0

2 kl( )cot
ρ

---------------------= = , C0
2k

γρy klsin
----------------------.=
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following time dependence [3]: ψ1 = ψ+(x)  +

ψ–(x) , which corresponds to the emission and
absorption of a photon with the energy "ω. In the spe-
cific case of a triple-barrier structure, ψ± can be pre-
sented in the form

(5)

where

and

are particular solutions of the equations for ψ± (see
[3, 8]). Solving the corresponding system of equations
for determining the unknown coefficients, which fol-
lows from the continuity conditions, gives

(6)

For nonresonance transitions (in the given case, to an
upper nonresonance quasi-level),

(7)

It is evident that it is sufficient to take into account only
two resonance levels in the first and second wells in cal-
culations of the small-signal conductivity of the system
(C– ~ y, and D+ does not contain the large parameter y).
However, it is necessary to note immediately an impor-
tant detail: the coefficients A– and B–, which correspond
to resonance transitions, are of the same order of small-
ness with respect to the large parameter y as the coeffi-
cients A+ and B+ of the first-order correction to the wave
function corresponding to nonresonance transitions.
From here, it follows that the second-order correction
to the ground-state wave function due to transitions to
the resonance level and back (denote this correction as
ψ2–) will have the same order of smallness as the sec-
ond-order correction due to transitions to a nonreso-
nance quasi-level (denote this correction as ψ2+). Actu-
ally, it can be shown that the second-order corrections
to the resonance coefficient A in the first well (in fact, it

e
i ω0 ω+( )t–

e
i ω0 ω–( )t–

ψ± x( )

=  

D± ik±– x( ), x 0<exp

A± k±x( )sin B± k±x( )cos ϕ±+ + x( ), 0 x a< <
Z± k± x a–( )( )sin W± k± x a–( )( )cos χ± x( ),+ +

a x a l+< <
C± ik± x a– l–( )( ) P±+ ik x a– l–( )( ),expexp

x a l,+>

k± 2m* ε "m±( )/"2( )1/2
= , P±

qEa
"ω
----------C0,+−=

ϕ± χ±, qEa
"ω
----------ψ0 x( )+−=

qE

m*ω2
--------------ψ0' x( )+

A– B– W– C– y, Z– y2, D– y0.∼∼ ∼ ∼ ∼ ∼

A+ B+ y, D+ W+ Z+ y∼ 0, C+ y 1– .∼∼ ∼ ∼ ∼
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is this coefficient that determines the solution of the
problem) take the form

(8)

where f+(a, ω, ω0) and f–(a, l, ρ, γ, ω, ω0) are sufficiently
simple but rather cumbersome functions of the argu-
ments given in parentheses. It is interesting to note that
the second-order correction from upward–downward
transitions depends only on the parameters of the first
well, whereas the second-order correction from down-
ward–upward transitions depends on all the parameters
of the triple-barrier structure. It is evident that

(9)

Analogously, it can also be shown for the resonance
level in the second well that the third-order corrections
to the resonance coefficient Z from both the resonance
level in the first well Z3++ and the nonresonance quasi-
level in the second well that lies below the resonance
one Z3–– are of the same order of smallness with respect
to the resonance parameter y

(10)

In this case, it makes absolutely no difference whether
this nonresonance quasi-level lies above or below the
conduction-band bottom [3].

It is natural that this regularity is also generalized to
the corrections of higher orders. The calculations per-
formed allows one to imagine the following qualitative
pattern of diagonal transitions in triple-barrier struc-
tures. An electron does not pass directly from the reso-
nance level of the first well to the resonance level of the

A2+
qE

m*ω2
-------------- 

  2

= y3 f + a ω ω0, ,( ),

A2–
qE

m*ω2
-------------- 

  2

y3 f – a l ρ γ ω ω0, , , , ,( ),=

A2– A2+ y3.∼ ∼

Z3–– Z3++ y5.∼ ∼

Fig. 3. Frequency dependence of the transmission coeffi-
cient of electrons through an InAs triple-barrier structure:
the solid and dashed lines correspond to calculations in the
four-level and two-level approximations, respectively; the
parameters of the structure are the same as in Fig. 2.

2.95
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second well but initially makes a transition to the non-
resonance quasi-level of the first well (or from the non-
resonance level to the resonance level of the second
well). Then, the electron passes to the resonance level
of the second well and escapes from the structure via
this level. In other words, the transition matrix element
consists of a sum of products of the resonance part of
the wave function of one level into the nonresonance
part of the other one related to the same well. It can be
said that the transitions in the first well are made from
the resonance level to the nonresonance region of the
continuous spectrum. Therefore, the components of the
electron wave function that correspond to this region
are comparable with those corresponding to the upper
level (A– and B– are of the same order of smallness as A+
and B+). It is clear that the number of electrons tunnel-
ing from the lower quasi-level of the first well through
the resonance level of the second well is much greater
than the number of electrons directly tunneling from
the upper quasi-level (|C–| @ |D+|). However, the transi-
tions to the lower or upper nonresonance quasi-level
make a comparable contribution to the redistribution of
electrons over the levels. Analogous arguments are also
applicable to the resonance level of the second well.

In other words, when an electron lands on a level in
the first well, it has three possibilities. It can emit or
absorb a photon and pass onto the lower quasi-level
(with the energy of the resonance level in the second
well), or pass onto the quasi-level above the resonance
level, or simply pass nonradiatively to the second well.
An electron that passed onto the upper quasi-level (or
another electron from this level) must absorb a photon
and pass back onto the resonance level in the first well
(there is no escape from the well from this level). An
electron that passed onto the lower quasi-level can
either absorb a photon and return to the previous state
or pass onto the resonance level in the second well. In
this case, for an electron that returned from above to the
resonance level, the probability that it will pass down
rather than escape back from the structure may well be
quite different (which is confirmed by the calculation)
from the similar probability for an electron that simply
came onto the level from the outside. Thus, it is shown
that the distribution of electrons over the levels in a HF
electric field of a finite amplitude in triple-barrier struc-
tures and hence, in general, in multiple-barrier struc-
tures with barriers of finite thickness and electron
pumping qualitatively differs at t  ∞ from the case
of closed structures and depends essentially on quasi-
energetic satellites. From this main result, it follows, in
particular, that the two-level representation of diagonal
transitions is applicable only within the small-signal
approximation. At the same time, this representation is
also widely used in the case of finite amplitude, which
turns out to be incorrect. In order that the distribution of
electrons over the two levels of a triple-barrier structure
be correctly determined, it is necessary to take into
account two more satellites separated by "ω from the
resonance levels of the structure.

This work was supported by the Russian Foundation
for Basic Research, project no. 00-02-17119, and by
the Scientific Council on the Program “Physics of
Solid-State Nanostructures,” project no. 97-1094.
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Conductivity and magnetic susceptibility of disordered cubic titanium monoxide TiOy (0.920 ≤ y ≤ 1.262) are
studied. Temperature dependences of the conductivity of TiOy monoxides with y ≤ 1.069 are described by the
Bloch–Grüneisen function with Debye temperature 400–480 K, and temperature dependences of the suscepti-
bility include Pauli paramagnetism of conduction electrons. The behavior of conductivity and susceptibility of
TiOy with y ≥ 1.087 is typical of semiconductors with nondegenerate charge carriers obeying Boltzmann sta-
tistics. The band gap ∆E between the valence and conduction bands of TiOy (y ≥ 1.087) is 0.06–0.17 eV, and
effective mass of charge carriers is equal to 7–14 electron masses. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 72.80.Ga; 75.20.-g 
Titanium monoxide TiOy with the cubic (B1-type)
basis structure is a unique compound having no analo-
gies. TiOy monoxide has a broad homogeneity region
from TiO0.70 to TiO1.25 and simultaneously contains 10–
15 at. % structural vacancies in both titanium and oxy-
gen sublattices. The real structure of titanium monox-
ide can be represented if its composition is written with
allowance made for the contents of structural vacancies
in each of the sublattices, i.e., as TixOz ≡ TiOy or
Tixj1 − xOzh1 – z ≡ TiOy, where y = z/x and h and j are
the structural vacancies in the oxygen and titanium sub-
lattices, respectively. Even the TiO1.00 monoxide with
formal stoichiometric composition contains 16.7 at. %
vacancies in the titanium and oxygen sublattices, so
that its real composition is ~Ti0.833O0.833.

The properties of TiOy are rather poorly known. The
reasons are as follows. TiOy monoxide is hard to syn-
thesize because its composition is unstable even at
700−800 K and it can undergo disproportionation into
Ti2O (TiO0.50) or Ti3O2 (TiO0.67) and cubic oxide or into
cubic oxide and Ti2O3 (TiO1.50) or other phases of the
homologous series TinO2n – 1 (n is an integer from 2 to
10) even under controlled partial oxygen pressure. At
temperatures of ~700, ~1000, and ~1100 K, TiOy

undergoes phase transitions accompanied by the forma-
tion of various superstructures. Only four of them are
well documented [1, 2]. The type and symmetry of
superstructures depend on the real starting composition
of titanium monoxide. When synthesized by the usual
methods, TiOy samples almost always have two-phase
composition and contain a disordered and ordered
phase simultaneously. To synthesize a single-phase dis-
ordered samples, one should use a special quenching
0021-3640/01/7311- $21.00 © 20621
procedure. Temperature measurements of the kinetic
and magnetic properties of TiOy , made in 1960–1970s,
showed that the chemical and phase compositions of
the samples changed in the course of measurement.
This caused a contradiction between the results of dif-
ferent authors. For example, the temperature coefficient
dρ/dT of resistivity ρ of a disordered TiOy monoxide
with y ≈ 1 was positive in [3–5] and negative in [6].
Among the results coinciding in the cited studies is the
negative sign of the thermal electromotive force and the
Hall coefficient of TiOy monoxides with y > 0.85 [3–6].

The unreliability and contradictory character of the
experimental data have motivated numerous studies
devoted to calculating the electronic structure of TiOy .
However, the results of calculations, including the
ab initio ones, are also contradictory. According to
[7−11], there is a wide gap (of several eV) between the
O(2p) and Ti(3d) bands in the electronic spectrum of
cubic titanium monoxide. The authors of [11] suggest
that vacancies give rise to the local electron-density
peaks (vacancy peaks) in the p–d gap; this is in agree-
ment with the results of calculations [12, 13] suggest-
ing that the vacancy states occur in the energy gaps
lying lower than the Fermi level of TiOy . The presence
of a ~2-eV gap in a hypothetical defectless TiO1.0 mon-
oxide was confirmed by the authors of [14], although,
according to their calculations, the vacancy states are
situated only near the bottom of the conduction band
and do not eliminate the p–d gap. According to calcula-
tions [15], the O(2p) and Ti(3d) bands in a defectless
TiO monoxide are separated by a gap of width of about
1.8 eV, whereas in the ordered monoclinic Ti5O5 mon-
oxide the band gap is equal to 1.2 eV. The presence of
001 MAIK “Nauka/Interperiodica”



 

622

        

VALEEVA 

 

et al

 

.

                                                        
an energy gap was confirmed by the experimental stud-
ies of X-ray emission spectra [14, 16], bremsstrahlung
and UV emission spectra [14], and optical conductivity
[17] of a disordered TiOy  monoxide.

According to the results of another series of compu-
tational studies [18–20], the p−d gap is absent in the
electronic spectrum of TiOy. The theoretical conclu-
sions about the absence of the p−d gap were confirmed
by the experimental studies of X-ray emission spectra
of TiOy monoxide with different oxygen content [21]
and by the results of studying the X-ray photoelectron
and emission spectra [22] of a monoclinic ordered
Ti5O5 monoxide and a defectless cubic TiO1.0 monox-
ide obtained under high pressure.

Therefore, the available experimental and theoreti-
cal data are contradictory, and it is still unclear whether
the titanium monoxide is a metal or a semiconductor.

This work reports the experimental results on elec-
trical conductivity (resistivity) and magnetic suscepti-
bility of TiOy monoxide in the whole homogeneity
region of cubic phase.

Samples of nonstoichiometric cubic titanium mon-
oxide TiOy with different oxygen content (0.920 ≤ y ≤
1.262) were synthesized by solid-state sintering of
powder mixtures of metallic titanium Ti and titanium
dioxide TiO2 in a vacuum of 0.0013 Pa at a temperature
of 1770 K for 70 h with intermediate grinding of the
sintering products every 20 h. The diffraction studies
were carried out with a CuKα1, 2 radiation on a Siemens
D-500 or STADI-P (STOE) autodiffractometer. To
achieve a disordered state, the synthesized samples were
annealed for 3 h at a temperature of 1330 K in quartz
ampules evacuated to a residual pressure of 0.0001 Pa;
then, the ampules with samples were thrown in water;
the quenching rate was ~200 K s–1. The X-ray patterns
of quenched samples showed reflections corresponding
only to the cubic disordered phase of TiOy with the
B1 structure (samples with y ≥ 1.112) or to the mono-
clinic ordered Ti5O5 [23] phase (samples with y ≤
1.087). The oxygen content in the quenched TiOy sam-
ples proved to be larger than expected based on the
composition of starting mixture. This indicated that the
samples were partially depleted of titanium and
enriched with oxygen in the course of synthesis and
annealing.

The resistivity ρ was measured by a four-probe
method in the range 77–300 K. The resistivities of
TiO1.262, TiO1.087, and TiO0.920 were also measured at
4.2 K. To provide close electrical contact, an In–Ga
paste was applied to the contact area of the samples.

The magnetic susceptibility χ of TiOy (0.920 ≤ y ≤
1.262) was measured over the temperature range from
4 to 400 K in magnetic fields of 8.8, 25, 30, and 50 kOe
on an MPMS-XL-5 (SQUID) magnetometer. The sus-
ceptibilities of TiO0.946, TiO1.069, TiO1.087, and TiO1.262
were additionally measured at temperatures from 300 K
to the temperature of onset of the disorder  order                      
transition (about 1000 K) by the Faraday method on a
pendulum magnetic balance of the Domenicali type.

The chemical and phase compositions of the sam-
ples were controlled before and after the measure-
ments.

The magnetization measurements in fields up to
50 kOe at temperatures of 4, 130, and 300 K showed
that the TiOy samples did not have residual magnetiza-
tion and did not contain any ferromagnetic impurities.

The temperature dependences of resistivity ρ(T) are
shown in Fig. 1 for TiOy of different compositions. In
the temperature range studied, the resistivity ρ
increases on going from TiO0.920 to TiO1.262.

The resistivities of TiO1.069, TiO

 

0.985

 

, TiO

 

0.946

 

, and
TiO

 

0.920

 

 oxides increase with temperature, but the tem-
perature coefficients of resistivity are small. In materi-
als with electronic conduction, the temperature depen-
dence of mean free time  due to scattering by phonons
is described well at 

 

T

 

 < 300 K by the semiempirical
Bloch–Grüneisen function

(1)

where 

 

λ

 

 is the electron–phonon coupling constant and
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D

 

 is the Debye temperature. Since the resistivity is
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, its temperature dependence can be repre-
sented as

(2)

where 
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(0) is the residual resistivity. In different tem-
perature ranges, the integral in Eq. (2) has different
forms. For 
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 > 3.14;

in this case, the integral  is evalu-
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At T > 80 K and θD ~ 400–500 K, θD/2T < 3.14, and the

integral  is evaluated as

where B2k are Bernoulli numbers.

The experimental dependences ρ(T) of the TiO1.069,
TiO0.985, TiO0.946, and TiO0.920 oxides (Fig. 1) are well
approximated by function (2) with the θD value equal to
480, 400, 470, and 470 K, respectively. According to
the data in [4], θD varies from 350 to 410 K for equi-
atomic TiO1.00 monoxide and increases with decreasing
annealing temperature. In the ordered monoclinic Ti5O5
monoxide, θD = 500 K [15].

The resistivity of TiOy monoxides with y ≥ 1.087
rapidly decreases with rising temperature from 4.2 to
300 K. Although a low resistivity (~10–6 Ω m) of all
titanium monoxides is typical for metals, the negative
temperature coefficient dρ/dT of the TiOy monoxides
with y ≥ 1.087 is one of the main attributes of insula-
tors. Due to this effect, the resistivity change ∆ρ in the
range 4.2–300 K is as high as 20–50%, which does not
allow ∆ρ to be treated as a small correction in the relax-
ation time approximation.

The conductivity σ is proportional to the product of
carrier concentration n by carrier mobility u; i.e.,

(3)

If carriers obey the Boltzmann statistics and the energy
bands are parabolic, as is practically always true near
the band edges [24], the carrier concentration is

(4)

where m* is the effective mass of charge carriers, and
∆E is the energy parameter having a meaning of activa-
tion energy and equal to the band gap Eg between the
valence and conduction bands in the case of intrinsic
conductivity. For the Boltzmann distribution, the
mobility of charge carriers is inversely proportional to
temperature:

(5)

Since the residual resistivity of all samples studied is
nonzero, the conductivity of TiOy oxides (y ≥ 1.087)
can be represented, using Eqs. (4) and (5), as

(6)

The constant σ(0) has a meaning of “nonintrinsic” con-
ductivity of the system and indicates that the conductiv-
ity is nonzero at T = 0.

x4 xcoth xd
0

θD/2T∫

x4 xcoth xd

0

θD/2T

∫ 22kB2kx4 2k+ / 4 2k+( ) 2k( )![ ] ,
k 0=

∞

∑=

σ T( ) ene h, ue uh+( ).=

ne 2 m*( )3/2 kBT /2π"
2( )3/2 ∆E/2kBT–( ),exp=

u AT p– .∼

σ T( ) σ 0( )=

+ 2 kBm/2π"
2( )3/2

T 3/2 p–( ) ∆E/2kBT–( ).exp
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Numerical analysis of the experimental depen-
dences σ(T) showed that they are well described by
function (6) with p ≈ 1; i.e.,

(7)

The parameter p = 1 is typical of many-atomic semi-
conductors in which the charge carriers are scattered
not only by acoustic but also by optical phonons.

After representing the temperature-dependent part
of conductivity (7) for TiOy monoxides (y ≥ 1.087) in
the coordinates ln{[σ(T) – σ(0)]/T1/2} – 1/T (inset in
Fig. 1), one finds that a linear dependence exists over
the entire temperature range studied. The activation
energy ∆E is low for monoxides from TiO1.087 to
TiO1.233; it is equal to 0.015–0.030 eV, and only TiO1.262
has 0.043 eV. If the intrinsic conductivity arises near
300 K and above, one cannot confidently conclude
whether the observed ∆E energy is the band gap or it is
the activation energy for the impurity level. This ques-
tion can be clarified through the analysis of magnetic
susceptibility.

Measurements of magnetic susceptibility χ showed
that one can distinguish two portions in the temperature
curves χ(T) for all TiOy samples (Figs. 2, 3), where χ
changes with temperature in different ways. A decrease
in the susceptibility at low temperatures (T < 150–200 K)
is typical of a paramagnetic component described by
the modified Curie law χ(T) = χ(0) + C/(T + ∆) with
temperature-independent paramagnetic contribution

σ T( ) σ 0( )= BT1/2+ ∆E/2kBT–( ).exp

Fig. 1. Temperature dependences of resistivity ρ for disor-
dered cubic titanium monoxides TiOy with different oxygen
content. The approximation of the experimental results by
function (2) for TiOy with y ≤ 1.069 and by function (7) for
TiOy with y ≥ 1.087 is shown by solid lines. Inset: temper-
ature dependences of conductivity for TiO1.262 – TiO1.087 in

ln{[σ(T) – σ(0)]/T1/2} – 1/T coordinates.
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χ(0) and ∆ > 0. At temperatures above 150–200 K, the
susceptibility χ(T) includes, apart from χ(0) + C/(T +
∆), a quadratic or more complicated function of tem-
perature.

The Curie paramagnetism of the unit volume of a

substance is χV = Nn /3kBT, where N is the number
of atoms in unit volume, n is the relative concentration
of magnetic atoms, µeff = pµB is the effective magnetic
moment, and µB is the Bohr magneton. Because N =
NAd/M (NA is Avogadro’s number, d is density, and M is
molar weight), the measured magnetic susceptibility of
unit weight is χ = χV/d = (nNA/M)(pµB)2/3kBT ≡ C/T,

from which p2 = (CM/n)(3kB/NA ) or, after substitut-

ing the values of NA, µB, and kB, p ≈ , where
the Curie-law constant C has cm3 K g–1 dimensionality.
If the concentration n of atoms having magnetic
moment is unknown, the magnetic moment averaged

over all atoms is given by paver ≈ .

The calculation with the resulting constant C
showed that the effective magnetic moment µeff aver-
aged over all atoms comprises 0.015–0.225 Bohr mag-
netons. The small value of µeff implies that the Curie
contribution to the susceptibility is most likely of impu-
rity nature. It is probable that electrons of the majority
of Ti2+ ions in TiOy are paired or cation–cation
exchange interaction takes place. We failed to deter-
mine the presence of any ions with uncompensated
magnetic moment in TiOy by the EPR method because
of a high concentration of delocalized electrons. Inas-
much as the ferromagnetic impurities are absent in the
TiOy samples, the small effective moment may be due

µeff
2

µB
2

8CM/n

8CM

Fig. 2. Magnetic susceptibility χ of disordered cubic tita-
nium monoxides TiOy with different oxygen content in the
temperature range from 4.2 to 400 K (measurements were
made in a field H = 25 kOe).
to the impurity Ti2+ and Ti3+ ions. Judging from the p
value, the content of such impurity ions varies from 2 to
8 at. %. The Curie paramagnetism is most pronounced
in TiOy with relatively large oxygen content y > 1.2
(Fig. 3).

The χ(T) dependence for TiOy with y ≤ 1.069
(Fig. 3) is well approximated by the function χ(T) =
χ(0) + C/(T + ∆) + bT 2 over the entire temperature
range studied. The quadratic term bT 2 is characteristic
of the Pauli paramagnetism of conduction electrons.
This agrees well with the metallic type of conductivity
of these monoxides.

The temperature dependences of the susceptibility
of TiOy monoxides with y ≥ 1.087 are more compli-
cated, especially in a high-temperature range (Fig. 3). If
the concentration of charge carriers in TiOy with y ≥
1.087 is described by Eq. (4) at T > 300 K, then the tem-
perature-dependent part of magnetic susceptibility,
according to the Curie formula χp(T) = ne(µB)2/kBT, has
the paramagnetic component

(8)

where A = 2(m0/2π"2)3/2(kB)1/2(µB)2q3/2 = 3.008 ×
10−9q3/2 [K–1/2]; q = m*/m0; and m0 is the electron mass.
Note that Eq. (8) describes the dimensionless suscepti-
bility of unit volume. Taking into account the above-
mentioned features of the χ(T) dependences and intro-
ducing Am = A/d, the susceptibility of unit weight mea-
sured for TiOy with y ≥ 1.087 can be approximated over
the entire temperature range studied by the function

(9)

which includes the temperature-independent contribu-
tion χ(0), the Pauli paramagnetism of electronic system
with energy gap, and the Curie paramagnetism.

The coefficients Am in Eq. (9) are equal to 0.012 ×
10–6 and 0.034 × 10–6 cm3 g–1 K–1/2 for TiO1.087 and
TiO1.262, respectively, and the densities of TiO1.087 and
TiO1.262 are, respectively, 4.97 and 4.82 g cm–3. The
effective mass of charge carriers, expressed in m0, is
m* = 4.799 × 105(Amd)2/3m0. Hence, the effective
masses of carriers in TiO1.087 and TiO1.262 are ~7m0 and
~14m0, respectively. The fact that the effective mass is
rather large lends support to the validity of using the
Boltzmann distribution for the description of carrier
concentrations in TiOy monoxides with y ≥ 1.087.

The ∆E values found for the TiO1.087 and TiO1.262
monoxides from temperature dependences χ(T) (9) are
equal to 0.061 and 0.173 eV. The ∆E values derived
from the temperature dependences of conductivity for
the same monoxides are 0.029 and 0.043 eV. One can

χ p T( ) 2 m*/2π"
2( )3/2

kB( )1/2 µB( )2T1/2=

× ∆E/2kBT–( )exp AT1/2 ∆E/2kBT–( ),exp≡

χ T( ) χ 0( )= AmT1/2+

× ∆E/2kBT–( ) C/ T ∆+( ),+exp
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assume that the ∆E values derived from the low-tem-
perature conductivities correspond to the activation
energy for impurity levels, whereas the ∆E values
derived from the magnetic susceptibility in a broader
temperature range define the energy gap for the intrin-
sic conductivity. The fact that the energy gap is small
allows one to consider titanium monoxide TiOy with
y ≥ 1.087 as a narrow-gap semiconductor.

Thus, the kinetic and magnetic data obtained in this
work allow one to assume that a narrow gap between
the valence and conduction bands appears in the elec-
tronic structure of a disordered cubic titanium monox-
ide TiOy upon an increase in the oxygen content.
Accordingly, TiOy can behave as either a d metal or a
semiconductor depending on the oxygen content.

We are grateful to N.A. Kirsanov, A.V. Korolev, and
R. Henes for assistance in the experiment.
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An anomalously strong resonancelike change with a sharp minimum at a temperature of 15 ± 1 K was observed
for the heat conductivity of ZnSe:Ni crystals for the first time. The heat conductivity of one of the samples
decreased by more than 200 times, as compared to its maximal value in pure ZnSe. A new phonon scattering
mechanism including the A processes is suggested to interpret the unusual temperature dependence of heat con-
ductivity. These are the umklapp processes accompanying the phonon scattering from the anharmonic modes
induced by charged nickel impurities. As a result, the efficiency of A processes may be very high and comparable
at 15 K to the efficiency of the U processes in ZnSe at a temperature of approximately 1000 K. © 2001 MAIK
“Nauka/Interperiodica”.

PACS numbers: 66.70.+f; 63.20.-e 
In recent years, interest has grown in the nonlinear
properties of condensed media, including nonlinear lat-
tice vibrations. It was predicted theoretically that the
local or resonant modes (breathers) with frequencies
depending on the vibrational amplitude may appear in
a many-atomic chain with strong quartic anharmonicity
(see review [1]). Such vibrations have not been
observed experimentally so far. In [2, 3], field exciton–
vibrational spectroscopy was used to demonstrate that
the light-induced transformation Ni+2(d8)  Ni+(d9)
of the charge state of nickel impurity can give rise to the
dominant and spurious vibrational modes whose inter-
action in the Ni+Se4Zn12 cluster may be rationalized
only in terms of a strong cubic or quartic anharmonic-
ity. In this work, the phonon heat conductivity of
ZnSe:Ni samples was studied, because phonon scatter-
ing in crystal is highly sensitive to the anharmonicity of
lattice vibrations.

The heat conductivity κ was measured in the tem-
perature range 5–80 K by the stationary heat-flow
method. The maximal error of measurements at T <
10 K did not exceed 10% and was due to the error of mea-
suring the temperature gradient. The difference in temper-
atures was measured using two (Au + 0.012%Fe)–Cu
thermocouples with a sensitivity of ≈10 µV/K. The
thermocouple head was brought in contact with the
samples using silver paste. The heat conductivity was
measured for four ZnSe:Ni samples prepared from a
melt under inert gas pressure. Samples 2 and 3 were
semi-insulating, and sample 4 was low-ohmic with
0021-3640/01/7311- $21.00 © 0626
electronic electrical conductivity, as was evidenced by
the negative sign of its thermal emf. Figure 1 shows the
temperature dependence of heat conductivity for our
samples and the κ(T) function for pure ZnSe [4]. One
can see that our data for pure sample 1 are close to the
results [4] both in κ(T) magnitude and in temperature of
its maximum. The heat conductivity of Ni-doped ZnSe
crystals decreases appreciably at temperatures 5–60 K.
For sample 2, it sharply decreases from 6.7 to 2 W/(cm K)
starting at a temperature of 10 K, and then smoothly
approaches the heat conductivity of a pure sample as T
increases. The minimum in the difference ∆κ between
the heat conductivities of sample 2 and pure ZnSe [4] is
clearly seen in the inset. For samples 3 and 4, κ
decreases, respectively, from 1 to 0.15 and from 0.1 to
0.03 W/(cm K) with an increase in T starting at the low-
est measured temperatures (5–6 K). The lowest heat
conductivity is observed at Tmin = (15 ± 1) K. Compared
to the maximal heat conductivity ≈6.5 W/(cm K) of
pure ZnSe, its value for samples 3 and 4 is, respectively,
≈40 and more than 200 times smaller. At temperatures
T > Tmin, κ(T) sharply increases and tends to values that
are characteristic of pure ZnSe. So far, the pronounced
resonant character of temperature dependence of heat
conductivity, with a very steep drop to the left and a dis-
tinct increase to the right of Tmin, has been observed neither
in semiconductors nor in insulators. Thus, the temperature
dependences of heat conductivity for samples 2–4 show
the following common features: the presence of a min-
imum for κ or the difference ∆κ at temperature Tmin =
2001 MAIK “Nauka/Interperiodica”
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(15 ± 1) K and a steep drop in heat conductivity at T <
Tmin in the range 5–15 K for samples 3 and 4 and at
10−16 K for sample 2. However, the comparison of
these dependences is hampered because the heat conduc-
tivities of these samples change within the range of κ val-
ues differing by an order of magnitude for samples 2, 3
and 3, 4, respectively. For this reason, the κ(T) curves
for these samples are represented in Fig. 2 as plots of
fractional heat conductivity κ(T)/κmin vs. fractional
temperature T/Tmin. One can see that at T < Tmin the
curves in Fig. 2 differ for samples 2–4 by a factor of two
at most. They are described by the common empirical
formula

(1)

The fact that the fractional heat conductivities of the
above three samples are close to each other at T < Tmin
suggests that there is a common phonon scattering
mechanism of a new type providing very strong tem-
perature dependence in these samples, stronger than the
T 3 dependence caused by the lattice specific heat. It is
most convenient to derive the parameters of tempera-
ture dependence (1) from the curves at T < Tmin, because
the phonon scattering from the sample boundaries is
independent of T in this temperature range, while the
other known scattering mechanisms are inoperative at
T < Tmin. An analysis of the experimental data yields
B ≈ 2.5–3.0 and n ≈ 2. The heat conductivity of
sample 2 decreases at T > Tmin. This is due to the addi-
tional phonon scattering via the U processes that repre-
sent the most efficient phonon scattering mechanism at
high temperatures. The heat conductivities of samples 3
and 4 increase, and, hence, the scattering of a new type
is dominant, whereas the phonon scattering through the
U processes only depresses this dominant process.

The resonancelike character of phonon scattering in
the presence of impurities can be caused by the coinci-
dence of the phonon frequency either with the energy
gap between the electronic states of impurity center [4]
or with the frequency of impurity-induced lattice mode
[5]. The first variant was invoked to interpret the tem-
perature-dependent heat conductivities of CdTe:Fe and
ZnS:Fe, in which the electronic states of the Fe2+ ion
(d6 configuration) are separated by approximately
2−2.5 meV, so that the scattering of acoustic phonons
may induce transitions between these states [4]. For the
Ni2+ ion (d8 configuration), the splitting of the ground
state 3T1 is almost an order of magnitude larger than the
splitting in the Fe2+ ion. For this reason, the phonon
energy at a temperature of 15 K is too small to induce
the electronic transitions in the impurity center, so that
this mechanism cannot be responsible for the resonant
change in the heat conductivity of the ZnSe:Ni samples.
Since the Ni2+ ion is lighter than the Zn2+ ion, one
should not expect the appearance of a low-frequency
resonant mode in ZnSe:Ni, as usually occurs when the

κ T( )/κmin( )log B T /Tmin( )log{ } n.=
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mass of an impurity atom is greater than the mass of the
substituted host atom, e.g., as in KI:Ag [5].

The presence of electronic thermal emf in low-
ohmic sample 4 is helpful in the interpretation of our

Fig. 1. Temperature dependences of the heat conductivity of
zinc selenide crystals. (s) Pure ZnSe [4]; (j) sample 1 (pure
ZnSe). ZnSe:Ni samples with Ni concentration: (d) 4.3 ×
1017 cm–3 (sample 2); (n) 3.6 × 1019 cm–3 (sample 3);
(.) 1 × 1020 cm–3 (sample 4). Arrows indicate temperatures
at which the heat conductivity of pure crystal is approxi-
mately equal to the minimal heat conductivity of samples 3
and 4, respectively. Inset: difference in the heat conductivi-
ties of sample 2 and pure ZnSe [4].

Fig. 2. Fractional heat conductivity κ/κmin as a function of
fractional temperature T/Tmin for samples 2–4 (notation as
in Fig. 1).
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results. This fact gives evidence for the presence of
shallow donors in the sample. The donor electrons
transfer to the nickel ions, whose acceptor level (0/–)
lies approximately amid the energy gap of ZnSe. This
gives rise to the Ni+(d9) ions negatively charged relative
to the lattice. The excess electron of the negative
Ni+(d9) ion occupies its 3d shell. It was shown for
ZnSe:Ni that the Coulomb field of the negative Ni+(d9)
ion shifts the Se2– and Zn2+ ions to new equilibrium
positions. The Ni+  Se2– and Ni+  Zn2+ distances
change, respectively, by 10 and 1% of their values in a
crystal with neutral Ni2+ impurity [3, 6]. Note for com-
parison that the crystal melting upon heating occurs
when the bonds are elongated by approximately 3%.
This gives grounds to assume that the lattice is heavily
distorted upon changing charge of the impurity center
and the vibrational modes of a Ni+Se4Zn12 cluster
appear. According to the results of field exciton–vibra-
tional spectroscopic studies, these modes strongly
interact with each other due to their high anharmonicity
[2, 3].

Taking this into account, we suggest the following
qualitative explanation of the experimentally observed
strong resonancelike change in the heat conductivity
κ(T) of the ZnSe:Ni samples. Apart from the nickel
impurities, our samples also contain shallow donor-
type impurity centers. Because of this, both neutral
impurity centers Ni2+(d8) and negatively charged
Ni+(d9) centers coexist in the samples. Although the
concentration of the Ni+(d9) ions was not measured in
an independent way, we assume, based on the total con-
centration of nickel, that the concentration of the
Ni+(d9) ions is the lowest in sample 2 and the highest in
sample 4. The negatively charged Ni+(d9) ions distort
the lattice and give rise to the resonant anharmonic
modes. These modes strongly scatter phonons; we will
call this scattering the A process in order to emphasize
that the high anharmonicity of these vibrational modes
is the key element of the mechanism proposed. One can
tentatively compare the intensity of the A process at a
temperature of 15 K with the phonon scattering via the
umklapp processes (U processes) in pure crystal at high
temperatures. The heat conductivity of sample 2
decreases by 4 W/(cm K) with increasing T in the range
10–16 K, whereas in pure ZnSe crystal a decrease by
≈4 W/(cm K) occurs in the range of approximately
16−50 K. A sharp change ∆κ in heat conductivity of sam-
ple 3 from 1.2 to 0.14 W/(cm K) in the temperature
range 6–15 K is equivalent to a change in heat conduc-
tivity of pure ZnSe in the temperature range of approx-
imately 100–400 K, and a change ∆κ from 0.1 to
0.03 W/(cm K) for sample 4 corresponds to a change in
heat conductivity of ZnSe in the temperature range of
approximately 500–1200 K. A high efficiency of the
A processes at low temperatures (7–15 K) can be under-
stood at a qualitative level as follows. The anharmonic
vibrations involve the motion of ions in the first and the
second coordination spheres. This crystal region is
comparable in size with the unit cell, and, hence, the
quasimomentum corresponding to the anharmonic
mode is comparable with the reciprocal lattice vector.
For this reason, the quasimomentum of a long-wave-
length acoustic phonon scattered from this mode may
become equal to the reciprocal lattice vector, as occurs
with the U processes. Hence, the A processes are the
umklapp processes occurring in the scattering of acous-
tic phonons from the anharmonic vibrational modes
induced by the charged nickel impurities. This renders
the A processes as efficient at low temperatures as the
U processes are at high temperatures in pure crystal.

The resonant temperature dependence of A pro-
cesses may be caused by the potential energy of an
oscillator as a sum of the third and fourth powers of dis-
placement from equilibrium position:

(2)

If the anharmonicity constants K3 and K4 are large
enough, the potential becomes double-well. At low
temperature, the oscillator occurs in the lower mini-
mum and is harmonic. As the temperature increases, the
oscillator interacts with phonons and undergoes transi-
tion to higher energies where the role of anharmonic
term K4x4 is appreciable and the frequency depends on
the oscillation amplitude. The form of this dependence
is unknown for the Ni+Se4Zn12 cluster modes, but it
must satisfy the condition for the formation of the
anharmonic resonant mode, much as the anharmonic
resonant modes are formed in a linear monatomic chain
with “soft” anharmonicity [7]. Because of this, only
those phonons can scatter by such an oscillator whose
energies fit the amplitude-dependent oscillator fre-
quency. However, only part of these phonons have
quasimomenta corresponding to the umklapp pro-
cesses. If the phonons corresponding to the maximum
of phonon distribution meet these two conditions at a
given temperature T, the dissipation of heat flow will be
maximal. At low temperature T, the maximum in the
frequency distribution of acoustic phonons occurs at
the frequency hν ≈ 1.6 kT. In our case, the phonon flow
is minimal at a temperature of 15 K, which corresponds
to the frequency of acoustic phonons ν ≈ 0.5 THz.

Thus, a strong resonancelike change in the phonon
heat conductivity has been observed experimentally for
the ZnSe:Ni crystal. To explain this finding, we assume
that the mechanism of phonon scattering from the
anharmonic modes of the Ni+Se4Zn12 cluster (A pro-
cess) includes the umklapp processes accompanying
the phonon scattering from the impurity anharmonic
modes. As a result, the efficiency of A processes at a
temperature of 15 K is comparable with the efficiency
of phonon scattering via the U processes at tempera-
tures of 100–1200 K. The fact that the efficiencies of
the A and U processes are almost the same throws more
light on the role of high anharmonicity of the vibra-
tional modes of the Ni+Se4Zn12 cluster than do the

U x( ) U0= K2x2 K3x3 K4x4.+ + +
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results of field exciton–vibrational spectroscopic stud-
ies [2, 3]. The interpretation suggested for the observed
anomalously strong phonon scattering from the impu-
rity anharmonic mode is tentative. The new phonon
scattering mechanism calls for further experimental
study and comprehensive theoretical analysis.

We are grateful to N.B. Gruzdev for assistance in
preparing samples and to V.V. Fedorenko for measuring
the concentration of Ni impurities in the ZnSe:Ni sam-
ples on an X-ray microanalyzer. This work was sup-
ported in part by the Russian Foundation for Basic
Research, project no. 00-02-16299.
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Spin-Reorientation Transition at Isoelectronic
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The transport, magnetic, and thermal properties of single crystal double-layer manganites of the Ruddlesden–
Popper series (La1 – zPrz)1.2Sr1.8Mn2O7 (z = 0.1 or 0.4) were studied. The compounds exhibit the colossal neg-
ative magnetoresistance effect in the region of a transition into a ferromagnetic state. Upon the isoelectronic
substitution of Pr3+ for La3+, the Curie temperature decreases, while the easy magnetization axis rotates from
the ab plane to the c axis. The observed effect is related to a change in the occupancy of  and 

orbitals as a result of stretching of the MnO6 octahedra. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.30.Vn; 75.40.Cx
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In the Ruddlesden–Popper series of metal oxide
compounds [1] with the general formula
[(RE,AE)MnO3]n(RE,AE)O (where RE stands for rare-
earth ions and AE, for alkaline-earth ions), the effect
of colossal negative magnetoresistance was studied
for the most part in three-dimensional perovskites
of the (RE,AE)MnO3 type (n = ∞) [2, 3]. The discov-
ery of the colossal negative magnetoresistance in
[LaxSr1 − xMnO3]2(LaxSr1 – xO) with x = 0.4 [4] has
drawn the attention of researchers to the Ruddlesden–
Popper compounds with n = 2.

In the crystal structure of these compounds, the dou-
ble perovskite layers [(La,Sr)MnO3]2 in the ab plane
are separated by the (La,Sr)O layers in the c direction.
The ratio of the rare-earth (La3+) and alkaline-earth
(Sr2+) ions determines the content of trivalent (Mn3+)
and tetravalent (Mn4+) manganese ions. With decreas-
ing temperature, [LaxSr1 – xMnO3]2(LaxSr1 – xO) com-
pounds exhibit magnetic ordering the type of which
depends on the x value [5]. In the same layer of MnO6
octahedra, the interaction is always ferromagnetic, but
the ordering of layers within one bilayer may vary
including antiferromagnetic, canted antiferromagnetic,
and ferromagnetic types.

The compound La1.2Sr1.8Mn2O7 (corresponding to
x = 0.4) exhibits the transition into a ferromagnetic
state of the easy plane type at TC ~ 120 K [6]. The low
(in comparison with the three-dimensional perovskites)
value of the Curie temperature in the two-layer manga-
nites is due to a lower dimensionality of the magnetic
0021-3640/01/7311- $21.00 © 0630
subsystem. The colossal negative magnetoresistance
observed in the vicinity of TC is characterized by a con-
siderable anisotropy: the electron transport is effective
in the ab plane and is hindered along the c axis.

At a fixed ratio of the La3+ and Sr2+ ions, a signifi-
cant effect on the transport and magnetic properties of
layered manganites is produced by isoelectronic substi-
tutions at the positions of both RE and AE ions. This is
explained by a difference in atomic radii of the corre-
sponding ions that leads to a change in the (La,Sr)O
layer thickness and to distortion of the manganese–
oxygen octahedra. For example, the compound
La1.2(Sr1 – yCay)1.8Mn2O7 exhibits a change in the order-
ing type from ferromagnetic to antiferromagnetic when
Ca2+ ions (with an atomic radius of 1.06 Å) are substi-
tuted for Sr2+ (1.27 Å), so that the y value increases [7].

The aim of our experiments was to study the effect
of isoelectron substitution at the rare-earth ion position
on the properties of (La1 – zPrz)1.2Sr1.8Mn2O7. For this
purpose, the La3+ ions (with an atomic radius of 1.22 Å)
were replaced by Pr3+ (1.06 Å). It was established that
this substitution significantly affects the transport, mag-
netic, and thermal properties of (La1 – zPrz)1.2Sr1.8Mn2O7
single crystals. The single crystals with z = 0.1 and 0.4
were grown by the floating zone technique. These crys-
tals possess a body-centered tetragonal structure
belonging to the space symmetry group I4/mmm. The
electric resistance was measured by a standard four-
point-probe method, and the magnetic properties were
studied using a SQUID magnetometer, and the specific
2001 MAIK “Nauka/Interperiodica”
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heat was measured with a quasiadiabatic microcalorim-
eter. All these physical characteristics were measured in
the temperature range from 4 to 300 K.

Figure 1 shows the temperature dependence of the
resistance ρ of a (La0.9Pr0.1)1.2Sr1.8Mn2O7 single crystal
(z = 0.1) measured in the a direction without an applied
magnetic field and in a field of 5 T. In the absence of the
magnetic field, the initial semiconductor-like variation
of the resistance changes for a decrease at TC = 107 K.
Some increase in the sample resistance at low tempera-
tures (T < 25 K) can be related to the scattering on mag-
netic impurities. When the magnetic field is applied, a

Fig. 1. The temperature dependence of the electric resis-
tance ρ of a (La1 – zPrz)1.2Sr1.8Mn2O7 single crystal with
z = 0.1 measured in the ab plane with and without an
applied magnetic field H. The inset shows the temperature
variation of the negative magnetoresistance (ρ0 – ρH)/ρ0.

Fig. 2. The temperature dependence of the magnetization M
of the (La1 – zPrz)1.2Sr1.8Mn2O7 single crystals with z = 0.1
and 0.4 measured with the magnetic field (H = 0.5 T)
applied in the ab plane and along the c axis.
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maximum in the temperature dependence of the sample
resistance shifts toward higher temperatures, the nega-
tive magnetoresistance (ρ0 – ρH)/ρ0 in the phase transi-
tion region reaching almost 100%.

Figure 2 shows the temperature dependence of the
magnetization M of the (La0.9Pr0.1)1.2Sr1.8Mn2O7 (z =
0.1) and (La0.6Pr0.4)1.2Sr1.8Mn2O7 (z = 0.4) single crys-
tals measured for a magnetic field of 0.5 T applied in
the ab plane and along the c axis. A sharp increase in
the magnetization, typical of the transition into a ferro-
magnetic state, is observed on decreasing the tempera-
ture to T ~ 107 K (z = 0.1) and T ~ 65 K (z = 0.4). Note
that, in the sample with z = 0.1, the magnetization along
the a axis exceeds that in the c direction, whereas a
reverse situation is observed in the sample with z = 0.4.

The experimental curves of M(T) are consistent with
the field dependence of magnetization measured at T =
5 K (Fig. 3). As is seen, the sample with z = 0.1 occurs
in a ferromagnetic state of the easy plane type, while
the sample with z = 0.4 exhibits the easy axis state. The
saturation of magnetization in both cases is attained at
a field strength of about 1 T, whereby the magnetization
reaches a level of ~3.6µB.

Figure 4 shows the plots of the specific heat versus
temperature for the (La0.9Pr0.1)1.2Sr1.8Mn2O7 and
(La0.6Pr0.4)1.2Sr1.8Mn2O7 single crystals, which confirm
the presence of a phase transition at TC = 107 K (z = 0.1)
and TC = 65 K (z = 0.4). At low temperatures, the spe-
cific heat of the samples studied contains linear and
cubic components with respect to the temperature: C =
γT + βT3. A linear contribution to the specific heat can
be related both to the conduction electrons and the fer-
romagnetic magnons in the two-dimensional magnetic

Fig. 3. The field dependence of the magnetization M of the
(La1 – zPrz)1.2Sr1.8Mn2O7 single crystals with z = 0.1 and
0.4 measured at T = 5 K with the magnetic field (H = 0.5 T)
applied in the ab plane and along the c axis.



632 VASIL’EV et al.
Characteristics of (La1 – zPrz)1.2Sr1.8Mn2O7 manganites with z = 0.1 and 0.4

TC, K γ, mJ/(mol K2) β, mJ/(mol K2) Θ, K ∆Smagn, mJ/(mol K2)

(La0.9Pr0.1)1.2Sr1.8Mn2O7 107 50 0.344 409 1

(La0.6Pr0.4)1.2Sr1.8Mn2O7 65 56 0.449 385 0.9
subsystem of (La1 – zPrz)1.2Sr1.8Mn2O7 [8], while the
cubic term is due to phonons. The γ and β coefficients
for the samples with z = 0.1 and 0.4 are given in the
table. The table also presents the values of the Debye
temperature ΘD determined using the relationship β =

12π4Rν/5 , where R is the universal gas constant and
ν = 12 is the number of atoms per formula unit. In a
broad range of temperature, except the phase transition
region, the phonon contribution to the heat capacity is
described by three Einstein modes. This circumstance
allows a part of the entropy ∆Smagn related to the mag-
netic system ordering to be separated. The correspond-
ing values are also indicated in the table.

The experimental data presented above indicate that
an increase in the Pr content is accompanied by a
decrease in the temperature of ferromagnetic ordering,
while the magnetization vector exhibits reorientation
from the ab plane to the c axis. This behavior is related
to the fact that the isoelectronic substitution of Pr3+ for
La3+ decreases the (La–Pr,Sr)O layer thickness and
increases the distance from Mn3+/Mn4+ ions to the api-
cal O2– ions. Stretching of the MnO6 octahedra in the c
direction leads to a change in the order of the partly
filled eg orbitals. In La1.2Sr1.8Mn2O7, the 3  orbital

ΘD
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Fig. 4. The temperature dependence of the specific heat of
the (La1 – zPrz)1.2Sr1.8Mn2O7 single crystals with z = 0.1
and 0.4. Thin solid curves show the three Einstein modes
approximating the phonon contribution.
lies below the 3  orbital [5]; apparently, the same

situation takes place in (La0.9Pr0.1)1.2Sr1.8Mn2O7. Pre-
dominant filling of the 3  orbital favors the elec-

tron transport in the ab plane and accounts for a rather
high temperature of the ferromagnetic ordering due to
the exchange involving the conduction electrons. For
z = 0.4, the stretching of the MnO6 octahedra in the
c direction favors predominant filling of the 3

orbital. In this case, the electron transport in the ab
plane is hindered. This, together with the absence of
electron transport along the c axis, leads to a decrease
in contribution of the conduction electrons to the
exchange and, hence, to the corresponding decrease in
the temperature of ferromagnetic ordering.

The authors are grateful to D.I. Khomskiœ for fruitful
discussions. This study was supported by the Russian
Foundation for Basic Research (project no. 99-02-
17828), INTAS (grant no. 99-0155), and NWO (grant
no. 047-008-012).
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Thermal Conductivity and Specific Heat
of SrCu2(BO3)2: A Quasi-Two-Dimensional
Metal Oxide Compound with a Spin Gap
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The thermal conductivity and specific heat of SrCu2(BO3)2, a quasi-two-dimensional metal oxide compound
with a spin gap, were studied at low temperatures. In the temperature interval 0.4 < T < 3.2 K, the thermal con-
ductivity of a single crystal sample in the ab plane varies according to the power law κ ∝  T 2.73. As the temper-
ature increases further, a deep minimum is observed in the region of Tmin ≈ 9.8 K. This behavior is explained
by the scattering of phonons—the major heat carriers—on the fluctuations of the spin subsystem. © 2001 MAIK
“Nauka/Interperiodica”.

PACS numbers: 66.70.+f; 65.80.+n; 75.40.Cx
In the past decade, a number of low-dimensional
quantum-mechanical systems were discovered which,
when cooled down to low temperatures, exhibit the
appearance of a spin gap separating the nonmagnetic
ground state from the spectrum of spin excitations. The
formation of a spin gap in such concentrated magnetic
systems is manifested by their unusual low-temperature
magnetic properties, whereby the samples behave as
nonmagnetic substances rather than exhibiting ferro- or
antiferromagnetic ordering. The ground state of these
compounds is a spin singlet representing an isolated
configuration of spins in which the projection of their
total magnetic moment onto any direction is zero.
Whether a given system reaches a ground state with or
without the spin gap depends on the mutual arrange-
ment and magnitude of the spin magnetic moments, as
well as on the magnitudes and hierarchy of the
exchange interaction constants.

Recently, the group of substances with a spin gap,
containing compounds such as spin-Peierls CuGeO3

[1], spin ladder SrCu2O3 [2], plaquette-type system
CaV4O9 [3], and charge-ordered system NaV2O5 [4],
expanded to include a low-dimensional magnetic com-
pound SrCu2(BO3)2 [5]. The new member is close to
high-temperature superconductors of the cuprate
group: SrCu2(BO3)2 possesses a layer structure, exhib-
its a pseudo-spin-gap behavior, and shows the ability to
0021-3640/01/7311- $21.00 © 20633
antiferromagnetic ordering upon a small change in the
parameters.

SrCu2(BO3)2 has a tetragonal unit cell with the
room-temperature lattice constants a = b = 8.995 Å,
c = 6.649 Å. The structure of this compound comprises
slightly corrugated ab planes formed by CuBO3, which
are separated by layers of nonmagnetic Sr2+ ions along
the c axis. As is seen in Fig. 1, the ab plane contains
rectangular planar CuO4 complexes linked by triangu-
lar BO3 groups. All Cu2+ ions possess the spin 1/2 and
occupy crystallographically equivalent positions. The
nearest-neighbor Cu2+ ions form magnetic dimers,
while triangular BO3 complexes link these dimers so as
to form an orthogonal network.

At present, SrCu2(BO3)2 is the only known sub-
stance to which the quantum-mechanical Shastry–
Sutherland model [6] can be applied. This theory
allows the ground state of an orthogonal dimer network
to be exactly calculated. Depending on the ratio of
exchange integrals in (J) and between (J ') dimers, a
system occurs either in the antiferromagnetic ground
state (for J '/J > 0.70) or in the state with localized mag-
netic dimers (for J '/J < 0.70). At J '/J = 0.70, the ground
state of an orthogonal dimer network is the spin fluid.
According to [7], the exchange integrals in
SrCu2(BO3)2 are J ' = 68 K and J = 100 K, which corre-
001 MAIK “Nauka/Interperiodica”
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sponds to the case of localized dimers in the ground
state at an exchange integral ratio J '/J = 0.68 close to
the critical value. The spin gap width "ω0/kB in
SrCu2(BO3)2 amounts to 34 K [5, 7–9].

A sample of SrCu2(BO3)2 studied in our experi-
ments was cut to size 6 × 1.6 × 0.4 mm from a single
crystal ingot grown by the floating zone technique [10].
The thermal conductivity κ(T) of the single crystal sam-
ple was studied in a broad range of temperatures from
0.4 to 300 K by the method of stationary thermal flux in
the [100] direction (in the ab plane). The specific heat

Fig. 1. Schematic diagrams showing the (a) crystal and
(b) magnetic structures of SrCu2(BO3)2 in the ab plane:

(d) Cu2+ ions; (s) B3+ ions; (s) O2– ions.

Fig. 2. The temperature dependence of specific heat in
SrCu2(BO3)2. The bottom inset shows the temperature
dependence of the longitudinal sound velocity in the [100]
direction (data from [13]).
C(T) of pressed powder samples was studied in the
range from 1.6 to 300 K with the aid of a quasi-adia-
batic microcalorimeter. The errors of determination of
the κ and C values at low temperatures were about 10%.

Figure 2 shows the temperature dependence of the
specific heat of SrCu2(BO3)2. Against a monotonic
buildup of the specific heat with increasing tempera-
ture, the curve exhibits a clearly pronounced maximum
at T ≈ 8.3 K related to the formation of a spin excitation
spectrum [11, 12]. The inset in Fig. 2 shows a tempera-
ture dependence of the longitudinal sound velocity v  in
the [100] direction (reproduced from [13]). As is seen,
there is a minimum at T ≈ 13.3 K on the background of
v(T) decreasing with the increase in the sample temper-
ature.

Figure 3 shows the temperature variation of the ther-
mal conductivity of SrCu2(BO3)2. At the lowest temper-
atures, the curve obeys the power law κ(T) ∝  T 2.73; as
the temperature grows, the κ value passes through a
maximum at T ≈ 3.7 K, then drops to show a minimum
at T ≈ 9.8 K, and increases again with a maximum at T ≈
47 K. A maximum value of the thermal conductivity of
SrCu2(BO3)2 at T ≈ 3.7 K amounts to κ = 28 W/(m K).
A difference in the temperatures at which the features
were observed in the curves of κ(T), C(T), and v(T) can
be related to the fact that the ground state in
SrCu2(BO3)2 is attained without a clearly pronounced
phase transition at a certain temperature.

The involved temperature variation of the thermal
conductivity exhibiting the alternation of maxima and
minima is probably a general characteristic of the sys-
tems with spin gaps. The κ(T) curves with two peaks
were previously reported for many low-dimensional
compounds, although different interpretations were
given in various particular cases. In CuGeO3, the high-
temperature peak in the thermal conductivity was
explained by the magnon mechanism, and the low-tem-
perature peak, by the phonon mechanism of the heat
transfer [14]. The double peak observed in the thermal
conductivity of Sr14 – xCaxCu24O41 was interpreted in
terms of the magnon propagation over spin chains and
ladders [15]. In NaV2O5, both peaks in κ(T) were
attributed to the phonon heat transfer [16].

In our opinion, a more justified interpretation of the
κ(T) behavior in the case of SrCu2(BO3)2 is based on
the phonon heat transfer mechanism. According to the
neutron scattering data [9], the spin excitations hardly
spread over the lattice and, hence, cannot participate in
the heat transfer. The minimum of κ(T) at Tmin ≈ 9.8 K
is probably indicative of a strong phonon coupling to
the spin subsystem.

We have analyzed the temperature variation of the
thermal conductivity within the framework of a simple
JETP LETTERS      Vol. 73      No. 11      2001
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Debye lattice thermal conductivity model [17], in
which

Here, x = "ω/kBT, ω is the phonon frequency, τ–1 =

 is the total phonon relaxation rate in various

scattering processes, TD ≈ 450 K is the Debye tempera-
ture [13], and v s is the polarization-averaged sound
velocity (v s ≈ 4.5 × 105 cm/s [13]).

A satisfactory description of the low-temperature
thermal conductivity is obtained with an allowance for

the phonon scattering at the sample boundaries (  =

v s/lC), dislocations (  = Adω), and point defects

(  = Apdω4) in the three-phonon processes (  =
A3phω2T 3) and on the spin subsystem fluctuations

(  = Afluω4T 2Cs) [18, 19]. The Casimir length lC =
1.12S1/2 (S is the sample cross section area) determined
from the sample geometry was 0.84 mm. In the above
relaxation terms, Ai are the fitting parameters and Cs is
the heat capacity of the spin subsystem determined by
subtracting the phonon contribution from the experi-
mental profile (see the inset in Fig. 3).

The parameters of scattering on dislocations and
point defects were determined from a power-law
approximation of the low-temperature (0.4 < T < 3.2 K)
branch of the thermal conductivity, where κ ∝  T 2.73.
Deviation of the κ(T) value from the cubic law expected
in the boundary scattering regime can be related to a
significant phonon scattering on dislocations. Since the
thermal conductivity at high temperatures is deter-
mined by the phonon scattering on the spin density
fluctuations, which hinders reliable estimation of the
parameters of the three-phonon scattering process, our
selection for A3ph is rather arbitrary.

The solid curve in Fig. 3 shows the approximation of
the temperature dependence of the thermal conductiv-
ity in SrCu2(BO3)2 calculated with an allowance of all
the aforementioned scattering processes. The dashed
curve represents the κ(T) variation determined with
neglect of the phonon scattering on the spin subsystem
fluctuations. As is seen, the phonon scattering on the
spin density fluctuations decreases the thermal conduc-
tivity by almost two orders of magnitude at a tempera-
ture in the region of the minimum in the κ(T) curve.
Such a large depression of the phonon thermal conduc-
tivity probably indicates that the entire spectrum of
thermal phonons is involved in interaction with the spin
subsystem. This conclusion is confirmed by the results
of ultrasonic measurements showing that the low-fre-
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quency acoustic phonons actually participate in the
interaction [13].

Recently, the minimum observed in the temperature
dependence of the thermal conductivity in SrCu2(BO3)2
was given an alternative interpretation based on the res-
onance scattering of phonons in a two-level system of
magnetic excitations [12]. In our opinion, this explana-
tion should be taken with care since the resonance scat-
tering can be effective only within a certain narrow part
of the phonon spectrum.

The authors are grateful to S. Zherlitsin for kindly
providing the results of ultrasonic measurements. This
study was supported by the Russian Foundation for
Basic Research (project nos. 02-99-17828 and 00-02-
16255), INTAS (grant no. 99-0155), and NWO (grant
no. 047-008-012).
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