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The Painlevé–Gullstrand metric of a black hole allows one to discuss the fermion zero modes inside the hole. The
statistical mechanics of the fermionic microstates can be responsible for the black hole thermodynamics. These
fermion zero modes also lead to quantization of the horizon area. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 04.70.Dy; 05.30.Fk
1. INTRODUCTION

In general relativity, there are different nonequiva-
lent metrics gµν, which describe the same gravitational
object. Although they can be obtained from each other
by coordinate transformations, in the presence of an
event horizon they produce nonequivalent quantum
vacua. Among the other metrics used for description of
a black hole, the Painlevé–Gullstrand metric [1] has
many advantages [2, 3] and now has become more pop-
ularity (see, e.g., [4]; for the extension of the Painlevé–
Gullstrand metric to a rotating black hole see [5]). Also,
such a stationary but not static metric naturally arises in
the condensed matter analogues of gravity [6−10].
Here, using the Painlevé–Gullstrand metric, we con-
sider the structure of low-energy fermionic microstates
in the interior of the black hole and their contribution to
the black hole thermodynamics.

The interval in the Painlevé–Gullstrand space–time is

(1)

In acoustic black and white holes, v s(r) is the radial
velocity of fluid, which produces the effective metric
for acoustic waves—phonons—propagating in liquid
[6–8]. For the gravitational field produced by a point
source of mass M, the function v s(r) has the form

(2)

where rh is the radius of horizon, G is the Newton grav-
itational constant, and c = " = 1. The Painlevé–Gull-
strand metric breaks the time reversal symmetry; the
time reversal operation transforms a black hole to a

ds2 c2 v s
2 r( )–( )dt

2
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1 This article was submitted by the author in English.
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white hole (see also [3]). The minus sign in Eq. (2)
gives the metric for the black hole. In the fluid analogue
of gravity, this corresponds to the liquid flowing
inward. The plus sign characterizes the white hole and,
correspondingly, the flow outward in the fluid analogy.
The time reversal operation reverses the direction of
flow.

The Painlevé–Gullstrand metric describes the
space–time both in exterior and in interior regions. This
space–time, though not static, is stationary. That is why
the energy in the interior region is well determined.
Moreover, in contrast to the Schwarzschild metric, the
particle energy spectrum E(p) (the solution of equation
gµνpµpν + m2 = 0, where p0 = –E) is well defined for any
value of the momentum p. This allows us to determine
the ground state (vacuum) of the Standard Model in the
interior region and the thermal states—the black hole
matter. We consider here only the fermionic vacuum of
the Standard Model, assuming that the Standard Model
is an effective theory and, thus, the bosonic fields are
the collective modes of the fermionic vacuum.

2. FERMI SURFACE FOR STANDARD MODEL 
FERMIONS INSIDE HORIZON

We will see that the main contribution to the thermo-
dynamics of a black hole comes from very short wave-
lengths on order of the Planck length. That is why the
ultraviolet cutoff must be introduced. We introduce the
cutoff using the nonlinear dispersion of a particle spec-
trum in the ultrarelativistic region, which violates the
Lorentz symmetry at short distances. Such nonlinear
dispersion of the particle spectrum is now frequently
used both in black hole physics and in cosmology
[11−12]. We will use the superluminal dispersion, for
which the particle velocity becomes superluminal at
very high momentum. For the simplest superluminal
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dispersion, the energy spectrum of a fermionic particle
in the Painlevé–Gullstrand metric becomes

, (3)

where pr is the radial momentum of particle; p0 plays
the role of the cutoff momentum, which is somewhat
less than the Planck momentum pPlanck; and we
neglected all masses of the Standard Model fermions,
since they are much less than the characteristic energy
scales.

Because of the possibility of superluminal propaga-
tion, the surface r = rh is not the true horizon. This sur-
face marks the boundary of the ergoregion: at r < rh,
particles with positive square root in Eq. (3) can acquire
negative energy. As a result, at r < rh the Fermi surface
appears—the surface in the 3D momentum space,
where the energy of particles is zero, E(p) = 0. For the
spectrum in Eq. (3), the surface is given by the equation
which expresses the radial momentum in terms of the
transverse momentum p⊥ :

(4)

This surface exists at each point r within the horizon

(ergosurface), where  > 1. It exists only in the
restricted range of the transverse momenta, with the
restriction provided by the cutoff parameter p0:

(5)

This means that the Fermi surface is a closed surface in
the 3D momentum space p.

The Fermi surface provides the finite density of fer-
mionic states (DOS) at E = 0

(6)

Here, NF = 16Ng is the number of massless chiral fermi-
onic species in the Standard Model with Ng generations,
and vG is the radial component of the group velocity of
particles at the Fermi surface:

(7)
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Integration over  in Eq. (6) gives for the density of
states

(8)

The main contribution to DOS and, thus, to the thermo-
dynamics comes from the momenta p comparable with
the cutoff momentum p0. That is why all masses of fer-
mions were neglected.

The DOS N(E = 0) determines the thermodynamics
of black hole matter at T ≠ 0. The thermal energy %(T)
and entropy 6(T) carried by the Standard Model fermi-
ons in the interior of the black hole with nonzero tem-
perature is

(9)

where f(x) = 1/(ex + 1) is the Fermi distribution func-
tion.

We considered a large temperature, as compared to
the Hawking temperature TH = "c/4πrh [13]. At lower
energies, the discrete nature of the spectrum of Stan-
dard Model fermions bound to the black hole becomes
important.

At T ~ TH, the entropy becomes of the order of

. (10)

The cutoff momentum p0 can be expressed in terms of
the effective gravitational constant G, which is deter-
mined by the same cutoff according to the Sakharov
induced gravity [14]. The effective action for gravity is
obtained by the integration over vacuum fermions, and
thus all fermionic species must add to produce the

effective Newton constant: G–1 ~ NF . Thus, the ther-
mal entropy in Eq. (10) is scaled as G–1, i.e., 6(T ~ TH) ~

/G. The same occurs with the Bekenstein–Hawking

entropy of a black hole, SBH = π /G. As was first
shown by Jacobson, SBH is renormalized by the same
quantum fluctuations as G–1 and, thus, is proportional to
G–1 [15]. Thus, the thermal entropy of the Standard
Model fermionic microstates within the black hole at
T ~ TH has the same behavior and the same order of
magnitude as the Bekenstein–Hawking entropy of the
black hole.

3. DISCRETE ENERGY LEVELS
INSIDE HORIZON

We now turn to low energy, where quantization is
important and gives discrete energy levels for the Stan-
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dard Model fermions within the horizon. Since the
momenta of particles are large compared to the size of
the horizon, one can use the quasiclassical approxima-
tion for the radial motion and the Bohr–Sommerfeld
quantization rule. We consider here low-energy states
whose energy E is much less than the characteristic
energy scale of a Fermi liquid: E ! p0c. In this limit, the
classical trajectories, which determine the Bohr–Som-
merfeld quantization, can be obtained by perturbation
theory. Let us start with the zero-order trajectories, i.e.,
trajectories with E = 0. After quantization of the azi-
muthal motion, one obtains the following dependence
of the radial momentum pr on r, which determines the
classical trajectories along the radius at a given value of
angular momentum L [compare this with Eq. (4)]:

(11)

Since for the typical bound states one has L @ 1, the dif-

ference between expressions L(L + 1), L + , and L2

is not important.

The trajectories in Eq. (11) are closed; there are two
turning points on each trajectory. A particle moves back
and forth between the zeroes r1 and r2 of the square root
on the right-hand side of Eq. (11):

(12)

At the turning points, the group velocity of the particle
vG in Eq. (7) becomes zero and changes to the opposite
sign. This is very similar to the Andreev reflection [16]:
the velocity changes sign after reflection, while the
momentum pr does not.

For nonzero but small energy, E ! p0c, the trajecto-
ries are obtained by perturbation theory. The first-order
correction gives

(13)

The Bohr–Sommerfeld quantization gives

(14)

where nr is the radial quantum number and γ(L) is a
parameter of order unity, which is not determined
within this quantization scheme. Numerical integration
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of (r, E = 0, L) shows that it is very close to the

following equation:1 

(15)

As a result, one obtains the following equidistant
energy levels for each L:

(16)

(17)

In two limiting cases, the interlevel distance

(18)

Thus, for every spherical harmonic L, Lz, there are
bound states in the black hole interior whose energy as
function of the radial quantum number nr crosses the

zero-energy level at nr ≈ ±(3 /4)(Lmax – L). These are
the branches of the fermion zero modes. The total num-
ber of such branches is

(19)

where A = 4π  is the area of the black hole horizon.
The estimation of the density of states remains the same
as in Eq. (8), which was obtained within the Fermi-sur-
face approach:

(20)

1 I am indebted to V.B. Eltsov for these calculations.
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4. FERMION ZERO MODES:
VORTEX VS. BLACK HOLE

The energy spectrum of the ultrarelativistic fermi-
ons within the black hole in Eq. (16) resembles the
spectrum of fermionic bound state within the core of
vortices in Fermi superfluids and superconductors. The
energy levels are also equidistant there [17]. The energy
spectrum of the fermion zero modes in the vortex core
depends on two quantum numbers that are appropriate
for the states within the linear object: linear and angular
momenta along the vortex axis:

(21)

where parameter γ is either 0 or 1/2 depending on the
type of vortex (see review paper [8]). For vortices with
γ = 0, the energy levels with Lz = 0 have exactly zero
energy. For such a vortex, the entropy is nonzero even
at T = 0. Each of the states with E = 0 can be either free
or occupied by a fermion. This gives the zero-tempera-
ture entropy ln2 per each E = 0 state with given pz.
Thus, the total entropy of the vortex at T = 0 is propor-
tional to the length l of the vortex line:

(22)

Here, p0 = pF is the Fermi momentum of the Fermi
superfluid or superconductor; it plays the role of a cut-
off parameter. It is interesting that, as in the case of the
black hole, the wavelengths of fermions comprising the
fermion zero modes in the vortex core are much shorter
than the core size. This allows us to use the quasiclassi-
cal theory. However, even within the quasiclassical the-
ory, one can, using the symmetry or other arguments,
find the value of phase shift γ in the Bohr–Sommerfeld
quantization scheme [8] and predict for which vortex
the system of the equidistant levels of fermions con-
tains the states with exactly zero energy.

For the fermionic states bound to the black hole, the
parameter γ(L) in Eq. (16) is still unknown. That is why
one cannot say whether the system of equidistant levels
contains a level with zero energy or not. If so, then each
state with zero energy contributes to the entropy ln2;
the total entropy provided by the fermion zero mode at
T = 0 is

(23)

5. DISCUSSION

From Eq. (19), it follows that for the Painlevé–Gull-
strand black hole the area of the black hole horizon is
expressed in terms of the integer valued quantity

(24)

where 1 is the number of fermion zero modes within
the black hole: 1 = Nzm; and σ is of order unity. This
formula with different values of parameter σ was dis-
cussed in many modern theories of black holes (see

E Lz pz,( ) ω0 pz( ) Lz γ+( ),=

6 T 0=( ) Nzm 2, Nzm p0l.∝ln=

6 T 0=( ) Nzm= 2.ln

A pPlanck
2 σ1,=
[18, 19] and references therein). It was interpreted as a
quantization of the horizon area, with 1 being the
quantum number which characterizes the black hole as
an “atom” [18]. If one uses σ = 4ln2 as in [20], one
obtains the Bekenstein–Hawking entropy in Eq. (23).
1 was also interpreted as the number of “constituents”
of the black hole interior—“gravitational atoms” [21].
In our case, both interpretations apply, though with
some reservation.

The quantization of area in Eq. (24) usually suggests
that the spacing between the levels is uniform and on

the order of dM/d1 ∝  /M [18]. This is in agree-
ment with Eq. (18) for the interlevel distance ω0 in the
fermionic spectrum. However, the quantization in terms
of the number of fermion zero modes suggests another
possible interpretation:

The area A of the black hole is a continuous param-
eter. When it changes, the number of fermion zero
modes Nzm(A) as a function of A changes in a stepwise
manner at some critical values of A. This is what hap-
pens, say, in the integer quantum Hall effect, where the
integer topological charge 1 of quantum vacuum as a
function of external parameters has plateaus. If the
external parameter is a magnetic field B, then 1(B) and
the Hall conductivity σxy(B) = (e2/h)1(B) change
abruptly when the critical values of magnetic field B are
crossed. Similar behavior of the topological charge 1
of quantum vacuum occurs in other quasi-2D fermionic
systems as well; e.g., the momentum–space topological
charge 1 of a film of quantum liquid is a stepwise func-
tion of a continuous parameter—thickness of the film
(see [22, Chapter 9]).

1 in Eq. (24) can also be related to the number of
constituents, as suggested in [21]. According to the
Fermi liquid description, the number of thermal fermi-
ons in a Fermi liquid at temperature T is Nthermal ~
N(0)T ~ A/G. According to Eq. (9), each fermion carries
energy of order T. At T ~ TH, their total thermal energy
is on the order of the mass M of the black hole, and they
carry thermal entropy of the order of the Hawking–
Bekenstein entropy SBH. Assuming that the whole mass
M of the black hole comes from thermal fermions
within the horizon, one has M = E + 3pV, where V =

(4π/3)  is the volume within the horizon and p is the
pressure of the fermionic system. Using the equation of
state of thermal fermions forming the Fermi surface,
E = ST/2 = pV, which follows from Eq. (9), one obtains
the correct relation between the mass, Hawking tem-
perature, and Bekenstein entropy of the black hole:

(25)

The Bekenstein–Hawking entropy S = π  and the
Hawking temperature TH = 1/4πrh are reproduced if the
relation between the cutoff p0 and the Newton constant

is G–1 = NF /105π. Thus, the black hole fermionic
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matter at the Hawking temperature can provide the
mass and the entropy of the black hole; those fermions
thermally excited within the horizon can serve as con-
stituents.

These constituents do not actually represent the
gravitational atoms which form the quantum vacuum
and give rise to the phenomenon of gravitation accord-
ing to [23]. These are conventional elementary particles
of the Standard Model (quarks and leptons) that are
excited within the black hole. Their contribution is
essential even at a temperature as low as TH because of
the huge DOS within the black hole.

On the other hand, these constituents have little to
do with the matter absorbed by the black hole during its
formation. The fermions, which form the matter within
the black holes, all are fermions of the Standard Model,
quarks and leptons, which are highly ultrarelativistic.
The black hole metric emerging after collapse perturbs
significantly the spectrum of Standard Model fermions,
so that the Fermi surface appears which provides a huge
DOS at zero energy. A substantial part of these fermi-
ons have momenta on the order of the Planck scale; to
them, the effective gravitational theory probably does
not apply. In this sense, these fermions are close to
gravitational atoms of trans-Planckian physics.

We considered the vacuum of the Standard Model
fermions and their thermal states as viewed in the Pain-
levé–Gullstrand metric. This vacuum is substantially
different from the vacuum state as viewed by a comov-
ing observer. The reconstruction of the vacuum within
the black hole involves the Planck energy scale, and the
results depend on the cutoff procedure. The cutoff pro-
cedure, on the other hand, depends on the coordinate
system used, and it assumes the existence of a preferred
coordinate frame at high energy. That is why the vac-
uum structure depends on the coordinate system.

Since the Planck energy scale is involved, it is not
clear whether the traditional description of a black hole
is applicable. Moreover, the stability of this new vac-
uum is not guaranteed. In most of those condensed mat-
ter systems, where an analogue of the event horizon is
possible, the vacuum becomes unstable in the presence
of a horizon; i.e., the quantum vacuum of the con-
densed matter resists the formation of a horizon [8, 24].
Also, the huge density of states may generate symmetry
breaking in the black hole interior, as happens in the core
of vortices [25] and cosmic strings [26].

Even if the black hole survives under such recon-
struction of the Standard Model vacuum, there is
another problem to be solved. When thermal states of
the fermionic black hole matter are considered, their
energy and pressure must serve as a source of gravita-
tional field according to (maybe somewhat modified)
Einstein equations. This will change the field v s which
enters the black hole metric, and, thus, the energy spec-
trum will be modified, but remain equidistant for
each L.

In conclusion, we considered the statistical mechan-
ics of fermionic microstates—the Standard Model fer-
mions—in the interior of a black hole. Fermion zero
JETP LETTERS      Vol. 73      No. 12      2001
modes give a correct dependence of the entropy of the
Painlevé–Gullstrand black hole on the area of the hole,
on the number of fermionic species, and on the Planck
cutoff parameter. They also lead to quantization of the
horizon area. That is why fermion zero modes can be
the true microstates that are responsible for the black
hole thermodynamics.
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Photon Damping Caused by Electron–Positron Pair Production 
in a Strong Magnetic Field
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Damping of an electromagnetic wave in a strong magnetic field is analyzed in the kinematic region near the
threshold of electron–positron pair production. Damping of the electromagnetic field is shown to be noticeably
nonexponential in this region. The resulting width of the photon γ  e+e– decay is considerably smaller than
previously known results. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 13.40.Hq; 95.30.Cq
The problem of propagation of electromagnetic
fields through an active medium is inherent in a variety
of physical phenomena. The birth and evolution of
supernova and neutron stars, where the matter density
can be on the order of nuclear density ρ ~ 1014–
1015 g/cm3 and the temperature can achieve several tens
of megaelectronvolts, are the largest scale and the most
interesting such phenomena. In addition to dense and
hot matter, a strong magnetic field [1, 2], which can be
several orders of magnitude higher than the so-called

critical, or Schwinger, value Be = /e . 4.41 × 1013 G,
can be generated in the above-mentioned objects.1 This
strong magnetic field can induce new phenomena
which can considerably affect the evolution of these
astrophysical objects. Electromagnetic-field damping
caused by electron–positron pair production in an
external magnetic field is one of these phenomena.
Recall that the γ  e+e– process is kinematically for-
bidden in vacuum. The magnetic field changes the kine-
matics of charged particles, electrons and positrons,
allowing the production of an electron–positron pair in

the kinematic region  =  –  ≥ , where q0 is
the photon energy and q3 is the momentum component
along the magnetic field.2 

In 1954, Klepikov [3] examined the production of
an electron–positron pair by a photon in a magnetic
field and obtained the amplitude and width of the γ 
e+e– decay in the semiclassical approximation. Later,
the authors of [4–9] considered this process in the con-
text of its astrophysical applications. It was pointed out
in [7, 8] that the use of the expression derived in [3] for
the width considerably overestimates the result in the
strong magnetic field limit. In this case, one should use

1 We use the system of units where " = c = 1.
2 Hereafter, we consider the magnetic field directed along the third

axis.

me
2

q||
2 q0

2 q3
2 4me

2
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an exact expression for the width of one-photon pro-
duction of a pair when electrons and positrons occupy
only the ground Landau level. However, it was found
that the expression for the decay width in the limit of a
strong magnetic field has a root singularity at the point

 = . Shabad [9] emphasized that this behavior
indicates that the decay width calculated in perturba-
tion theory cannot be treated as a damping coefficient.
In this case, the damping coefficient is primarily deter-
mined from the time evolution of the photon wave func-
tion in the presence of a magnetic field. Shabad [9] sug-
gested that this dependence be obtained by solving the
dispersion equation with account taken of the vacuum
polarization in a magnetic field with complex values of
photon energy. In our opinion, this method has several
disadvantages. First, it is well known but rarely men-
tioned that the dispersion equations with complex ener-
gies have no solutions in the physical sheet. Solutions
are in the nonphysical Riemannian sheets (analyticity
region of the polarization operator), which are gener-
ally infinite in number. As a result, the dispersion equa-
tion has an infinite number of solutions with both posi-
tive and negative imaginary parts of energy. The physi-
cal status of these solutions requires a separate
investigation.

Shabad [9] used the asymptotic form of the polariza-
tion operator near the pair production threshold and
erroneously treated it as a two-sheet complex function.
This circumstance led to the existence of two complex
conjugate solutions, one of which is physically mean-
ingless because it has a positive imaginary part and,
therefore, provides exponentially increasing amplitude
of electromagnetic wave. Therefore, to obtain a physi-
cally meaningful result, one should artificially discard
the redundant solutions.

q||
2 4me

2
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Second, this approach cannot correctly describe the
substantially nonexponential damping in the near-
threshold region in a strong field.

Thus, damped electromagnetic waves in a magnetic
field cannot be completely described by solving the dis-
persion equation.

In this work, we use a method that is applied in the
field theory at finite temperatures and in plasma physics
(see, e.g., [10]). It consists of the determination of a
retarded solution to the electromagnetic field equation
that includes an external source and takes into account
the vacuum polarization in a magnetic field. Time
damping of the electromagnetic wave is analyzed in a
uniform external magnetic field, whose intensity is the

largest parameter of the problem, Be @ q2, .

To describe the time evolution of electromagnetic
wave !α(x) [xµ = (t, x)], we consider a linear response
of the system (!α(x) and a vacuum polarized in a mag-
netic field) to an external source, which is adiabatically
turned on at t = –∞ and turned off at t = 0. At t > 0, the elec-
tromagnetic wave evolves independently. Thus, the source
is necessary for creating an initial state. For simplicity, we
consider the evolution of a monochromatic wave. In this
case, the source function should be taken in the form

(1)

The time dependence of !α(x) is determined by the
equation

(2)

where 3αβ(x – x ') is the photon polarization operator in
a magnetic field. We note that, for the source on the
right-hand side of Eq. (2) to be conserved, ,
the current jα must have the form jα = (0, j), j · k = 0.
The evolution of !α(x) is described by the retarded
solution

(3)

where (x – x ') is the retarded Green’s function,
which is defined through the commutator of the Heisen-

berg operators  of the electromagnetic field as
(see, e.g., [11]),

(4)

It is instructive to express this function in terms of the
causal Green’s function

(5)

by using the relationship

(6)

me
2

(α x( ) jα= eikxeεtθ t–( ), ε 0+.

gαβ∂µ
2 ∂α∂β–( )!β x( )

+ d4x '3αβ x x '–( )!β x '( )∫ (α x( ),=

∂α(α 0=

!α
R

x( ) d4x 'Gαβ
R x x '–( )(β x '( ),∫=

Gαβ
R

Âα x( )

Gαβ
R x x '–( ) i 0〈 | Âα x( ) Âβ x '( ),[ ] 0| 〉θ t t '–( ).–=

Gαβ
C x x '–( ) i 0〈 |T Âα x( ) Âβ x '( ) 0| 〉 ,–=

Gαβ
R x x '–( ) 2ReGαβ

C x x '–( )θ t t '–( ).=
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In the presence of a magnetic field, it is convenient
to decompose Green’s function (5) in the eigenvectors
of polarization operator [9]:

(7)

(8)

where 3(λ)(q) are the eigenvalues of polarization oper-

ator. The eigenvectors 

(9)

together with the 4-vector qα, form a complete orthog-
onal basis in the Minkowski 4-space. In Eqs. (9), ϕαβ =

Fαβ/B and  = εαβµνϕµν are a dimensionless mag-

netic-field tensor and dual tensor, respectively, (qϕ)α =
qσϕσα, (qϕϕq) = qαϕαβϕβσqσ. Substituting Eqs. (1) and
(6) into Eq. (3) and using Eqs. (7) and (8), we obtain
after simple integration the following result at t > 0:

(10)

where qα = (q0, k). Note that the definition of the inte-
gral in Eq. (10) should be completed because the inte-
grand can include singularities, which are due, on the
one hand, to the zeros of its denominator and, on the
other, to the domain of its definition. To analyze these
singularities, it is necessary to know the explicit form
and analytical properties of the eigenvalues 3(λ)(q) of
the polarization operator, which was examined in detail
in a number of studies. In the limit of a strong magnetic
field, the functions 3(λ)(q), which we are interested in,
can be borrowed, e.g., from [9, 12, 13] and represented
as [with O(1/B) accuracy]

(11)

(12)

(13)

Gαβ
C x( ) d4q

2π( )4
-------------Gαβ

C q( )e iqx– ,∫=

Gαβ
C q( )

bα
λ( )bβ

λ( )

b λ( )( )2
----------------- 1

q2 3 λ( )
q( )–

-----------------------------,
λ 1=

3

∑=

bα
λ

bα
1( ) qϕ( )α= ,

bα
2( ) qϕ̃( )α= ,

bα
3( ) q2 qϕϕ( )α qϕϕ q( )qα ,–=

ϕ̃αβ
1
2
---

!α
R

x( ) Vα
λ( ) x( )

λ 1=

3

∑ 2eikx= =

× Re
q0d

2πi
--------

bα
λ( ) b λ( ) j( )/ b λ( )( )2

e
iq0t–

q0 iε–( ) q0
2 k2– 3 λ( )

q( )–( )
------------------------------------------------------------------,∫

λ 1=

3

∑

3 1( )
q( ) . 

α
3π
------q⊥

2 q2Λ B q2,( ),––

3 3( )
q( ) . q2Λ B q2,( ),–

3 2( )
q( ) . 

2αeB
π

-------------- 1

z 1 z–( )
---------------------- z

1 z–
----------- 1–arctan 

 –

– q2Λ B q2,( ),
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where

and q2π(q2) is the photon polarization operator in the
absence of a magnetic field. Note that the contribution

from the pole  = 0 that results from the normalization

of the basis vectors  and  is nonphysical and,
taking into account explicit form (11)–(13) of the polar-
ization operator, can be removed by gauge transforma-
tion after summation over polarizations. Thus, the con-
tribution to the solution can be made only by the poles
corresponding to the dispersion equation

(14)
Using solution (10), one can demonstrate on the basis
of Eqs. (11)–(13) that only two modes, λ = 1 and 2 with
the polarization vectors

(15)

are physically meaningful for real photons.3 A photon
of the third, λ = 3, mode is nonphysical [9]. Indeed,

3 Modes with the polarizations  and  correspond to so-

called parallel (||) and perpendicular (⊥ ) modes, respectively, in
the Adler notation [14].

Λ B q2,( ) α
3π
------ 1.792 B/Be( )ln–[ ] π q2( ),+=

z q||
2/4me

2, q⊥
2 q1

2 q2
2,+= =

q||
2

bα
2( ) bα

3( )

q2 3 λ( )
q( )– 0.=

εα
1( ) bα

1( )

b 1( )( )2
-------------------

qϕ( )α

q⊥
2

--------------,= =

εα
2( ) bα

2( )

b 2( )( )2
-------------------

qϕ̃( )α

q||
2

--------------,= =

εα
1( ) εα

2( )

Fig. 1. The path of integration C in the complex q0 plane.
The crosses are the poles corresponding to the real solutions
of dispersion Eq. (14). The shaded parts of the real axis are
cuts.

Fig. 2. The path of integration C after the transformation
allowing one to separate the pole Fpole(t) and cut Fcut(t)
contributions.
substitution of the expression for 3(3)(q) into Eq. (14)
gives an equation that has the only solution q2 = 0.
Therefore, the contribution of the third mode to solu-
tion (10) is proportional to the total divergence and can
be eliminated by the corresponding gauge transforma-
tion.

In the limit of a strong magnetic field, only the mode

with the polarization vector  can decay into an elec-
tron–positron pair, because only the eigenvalue of the
polarization operator 3(2)(q) (13) has an imaginary part

at  ≥ . Therefore, to analyze time damping of the
electromagnetic field, it is sufficient to consider only

the term with (x) in Eq. (10).

The further calculations can be simplified by going
over to the reference frame where k = (k1, k2, 0), which
can always be done without disturbing the properties of

the external magnetic field. In this frame,  =  and
the polarization vector of the second mode takes the

form  = (0, 0, 0, –1). As a result, (x) is
expressed as

(16)

where

(17)

The path of integration C in Eq. (17) is determined
by the analytical properties of 3(2)(q) and is shown in
Fig. 1. The function 3(2)(q) is analytical in the complex
plane q0 with cuts along the real axis (see Fig. 1). In the
kinematic region |q0| < 2me, the eigenvalue 3(2)(q) is
real and Eq. (14) has real solutions which govern the
photon dispersion in this region.

For further analysis, it is convenient to transform the
path of integration to the path shown in Fig. 2. In this
case, the integral in Eq. (17) is represented as

(18)

where the first term is determined by the residue at the
point q0 = ω, which is the solution to dispersion
Eq. (14). This term corresponds to the undamped solu-
tion in the region ω < 2me [9]. The second term deter-
mines the time dependence of the electromagnetic field
above the threshold of electron–positron pair produc-
tion and has the form of the Fourier integral

(19)

εµ
2( )

q||
2 4me

2

Vα
2( )

q||
2 q0

2

εα
2( ) Vα

2( )

Vα
2( ) x( ) Vα

2( ) 0 x,( ) ReF t( )
ReF 0( )
------------------,=

F t( )
q0d

2πi
-------- e

iq0t–

q0 iε–( ) q0
2 k2– 3 2( )

q( )–( )
------------------------------------------------------------------,

C

∫=

Vα
2( ) 0 x,( ) 2εα

2( ) j3eikxReF 0( ).=

F t( ) Fpole t( ) Fcut t( ),+=

Fcut t( )
q0d

2π
--------Fcut q0( )e

iq0t–
,

∞–

∞

∫=
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(20)

(21)

(22)

Expressions (19)–(22) together with Eq. (16) determine
the time evolution of the photon wave function above
the pair production threshold in a strong magnetic field.

Strictly speaking, because of the threshold behavior
of the Fourier transform Fcut(q0), time damping of the
function Fcut(t) and, therefore, of the wave function
!µ(t) is nonexponential. However, in some character-
istic time interval (the inverse effective width of the
γ  e+e– decay can naturally be chosen as such an
interval), the time dependence of the wave function can
approximately be represented as exponentially damp-
ing harmonic oscillations:

(23)

Here, ωeff and γeff are, respectively, the effective fre-
quency and width of photon decay, which should be
found by using Eqs. (19)–(22) for each value of
momentum k to determine the effective photon disper-
sion law above the threshold of electron–positron pair
production.

The quantity γeff, which governs the intensity of pho-
ton absorption due to e+e– pair production in a magnetic
field, is important for astrophysical applications. The
absorption coefficient obtained from the γ  e+e–

Fcut q0( )
2θ q0 2me–( )I

q0 q0
2 k2– R–[ ] 2

I2+( )
------------------------------------------------------,=

R Re3 2( )
q0( )≡

=  
α
π
---eB

1

z z 1–( )
---------------------- z z 1–+

z z 1––
---------------------------- 2+ln 

  ,

I Im3 2( )
q0 iε+( )–≡ αeB

z z 1–( )
----------------------, z

q0
2

4me
2

---------.= =

!µ t( ) e
γefft /2–

ωefft φ0+( ).cos∼

Fig. 3. The frequency dependence of the γ  e+e– decay
width in the near-threshold region for the magnetic field B =
200Be. Line 1 is the tree approximation including the root
singularity; line 2 is obtained from the complex solution of
the dispersion equation in the second Riemannian sheet [9];
and line 3 is γeff from approximation (23).
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decay probability and containing a root singularity is
usually employed in astrophysics (see, e.g., [15]). Sha-
bad [9] pointed out that this leads to the overestimation
of the intensity of e+e– pair production. Our analysis
demonstrates that the calculation of the absorption
coefficient (decay width) by using the complex solution
in the second Riemannian sheet [9] also leads to a con-
siderable overestimation in the near-threshold region,
as is seen from Figs. 3 and 4.

Nonexponential damping in the near-threshold
region is known for the processes in vacuum and matter
[16, 17]; however, as far as we know, it has not been
considered in an external field so far. In contrast to vac-
uum or medium, the near-threshold effect in the mag-
netic field is kinematically enhanced due to the singular
behavior of the polarization operator in this field.
Therefore, this phenomenon is not only topical for
astrophysical application but is of conceptual interest.
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A theory describing the second harmonic generation in nonlinear-optical crystals with random domains is
developed. The theory takes into account the fluctuations of both the phase mismatch and the nonlinear cou-
pling coefficient of the interacting waves. It is shown that, in such crystals, the maximal efficiency of funda-
mental-to-second harmonic conversion is low, and the dependence of the average intensity of the second har-
monic on the fundamental intensity differs considerably from a square law. © 2001 MAIK “Nauka/Interperi-
odica”.

PACS numbers: 42.65.Ky; 42.25.Dd; 42.70.Mp
This paper presents the theory of second optical har-
monic generation (SHG) in disordered polydomain struc-
tures and interprets on its basis the behavior of the second
harmonic intensity observed in experiments on some fer-
roelectric crystals with random needlelike domains
(microdomains), such as SrxBa1 − x(NbO3)2 : Nd3+ (x ≅  0.6)
and Ba2NaNb5O15 : Nd3+ [1–3]. In these crystals, the
dependence of the second harmonic intensity on the
intensity of the exciting laser radiation was found to
differ considerably from a quadratic dependence and
approach a linear one [1], while the conversion effi-
ciency was fairly low. The cited publications [1–3] pro-
vided no explanation for this unexpected behavior of
the second harmonic intensity. It should be noted that
earlier experimental studies of the SHG in optically
nonlinear inhomogeneous media (see, e.g., [4]) did not
reveal any deviation of the dependence of the second
harmonic intensity on the fundamental intensity from
the square law that is characteristic of a low conversion
efficiency in homogeneous crystals. The experimental
data were explained in terms of the SHG theory that
was developed in the given-field [4] or given-intensity
[5] approximations.

Below, we develop the theory of the SHG in statisti-
cally inhomogeneous nonlinear media by going beyond
the limits of the aforementioned approximations. We
take into account the fluctuations of the phase differ-
ence and the fluctuations of the coefficient of nonlinear
wave coupling. We establish that there is a region of the
problem parameters for which the dependence of the
second harmonic intensity on the fundamental intensity
is virtually linear. Qualitatively, the essence of the
effect can be explained as follows. In stochastically
0021-3640/01/7312- $21.00 © 20647
inhomogeneous nonlinear media with a low efficiency
of the fundamental-to-second harmonic conversion, the
intensity of the second harmonic is proportional to the
squared intensity of the fundamental radiation, the
length of the medium, and the so-called coherent
length. The latter proves to be dependent on the funda-
mental radiation intensity, and, therefore, the depen-
dence of the second harmonic intensity on the pumping
intensity differs from quadratic.

We describe the SHG process by the following sys-
tem of reduced equations (compare with [4]):

(1)

where A1(z) and A2(z) are the complex amplitudes of the
fundamental wave and the second harmonic, respec-
tively, and β is the absolute value of the coefficient of
nonlinear wave coupling. The function g(z) describes
the modulation of the nonlinear coefficient; we assume
that this function has the form of a random telegraph
process taking the values +1 and –1 with equal proba-
bility (g2(z) ≡ 1). This model corresponds to a crystal
with 180° random domains.

The function Φ(z) takes into account the phase shift
due to the phase mismatch of the interacting waves:

(2)

dA2/dz ig z( )βA1
2 z( ) iΦ z( )–[ ] ,exp–=
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where kj(z) is the wave number at the corresponding
frequency and ∆0 and ∆(z) are the regular and fluctuat-
ing parts of the phase mismatch. We assume that ∆(z) is
a δ-correlated Gaussian process satisfying the condi-
tions

(3)

The system of Eqs. (1) can be represented in the
form

(4)

where I1 and I2 are the intensities of the fundamental
wave and the second harmonic, respectively; Ij = |Aj |2.
In Eqs. (4), we used the notation

Let us average Eqs. (4) over the realizations of the
random processes g(z) and ∆(z), which are assumed to
be uncorrelated. For this purpose, it is necessary to
determine the correlators of the type of 〈g(z) 〉  and

∆ z( )〈 〉 0,=

∆ z( )∆ z'( )〈 〉 B z z',( ) 2Kδ z z'–( ).= =

dI2

dz
------- ig z( )βU–,

dI1

dz
------- ig z( )βU–,–= =

dU–

dz
---------- i

dΦ z( )
dz

---------------U+ z( ) i4βg z( )I1I2 i2βg z( )I1
2,–+=

dU+

dz
---------- i

dΦ z( )
dz

---------------U– z( ),=

U– z( ) A2A1*
2 iΦ z( )[ ]exp complex conjugate,–=

U+ z( ) A2A1*
2 iΦ z( )[ ]exp complex conjugate.+=

U+−

Fig. 1. Relative intensity of the second harmonic (normal-
ized to the fundamental intensity I0 = 10 MW/cm2) versus
the reduced interaction length L = z/Lnl for α' = 0.1 and for
different values of ∆' (the values are indicated in the plot).

'

〈∆(z) 〉 . For the random telegraph process g(z), the
following relation is valid [6]:

(5)

where the quantity ν–1 has the meaning of a “mean
modulation scale,” i.e., a mean domain size.

For the random Gaussian process ∆(z), the Furutsu–
Novikov formula is appropriate [6]:

(6)

Taking into account Eqs. (3), one obtains

(7)

Using Eqs. (4) and (5), one has

(8)

U+−

d
dz
----- g z( )U+− z( )〈 〉

=  –2ν g z( )U+− z( )〈 〉 g z( )
dU+− z( )

dz
------------------ ,+

∆ z( )F z( )〈 〉 B z z',( ) δF z'( )
δ∆ z'( )
--------------- z'.d

0
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∆ z( )F z( )〈 〉 K
δF z( )
δ∆ z( )
-------------- .=

d
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----- g z( )U–〈 〉 2ν g z( )U–〈 〉–=

+ ig z( ) ∆0 ∆ z( )+[ ] U+ i4βI1I2 i2βI1
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d
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----- g z( )U+〈 〉 2ν g z( )U+〈 〉–=

+ ig z( ) ∆0 ∆ z( )+[ ] U–〈 〉 .

Fig. 2. Relative intensity of the second harmonic versus the
fundamental intensity (both are normalized to the intensity
I0 = 10 MW/cm2) for α' = 0.1 and for different values of ∆':

(1) 0, (2) 1 × 10–3, and (3) 0.1.
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According to Eqs. (7) and (8), one has for the corre-
lator 〈∆(z)g(z)U±〉

(9)

Introducing the notation 〈g(z)U–(z)〉  = iψ1, 〈g(z)U+(z)〉  =
ψ2, and 2ν + K = α, one finally obtains the averaged
system of equations in the form (compare with [5])

(10)

It is reasonable to assume that the field statistics for
the second harmonic excited in a disordered nonlinear
medium is Gaussian. Then, taking into account the rela-
tion I1(z) + I2(z) = I10 (I10 is the intensity of the funda-
mental wave at the medium input), one can write

(11)

Substituting Eqs. (11) in Eqs. (10), one obtains a closed
system of equations.

For a numerical solution of Eqs. (10), we change to
dimensionless quantities:

where Lnl = 1/β  is the so-called characteristic non-
linear length. As a result, the system of Eqs. (10) can be
reduced to the form

(12)

Note that the parameter α' characterizes the degree of
disorder of the crystal structure within the nonlinear
length, and the parameter  characterizes the phase
mismatch within this length.

The system of Eqs. (12) was solved numerically for
different values of parameters α' and  and for differ-
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ent fundamental intensities I10. The results of calcula-
tions are presented in Figs. 1–3. From Fig. 1, it follows
that the maximal efficiency of the fundamental-to-sec-
ond harmonic conversion in crystals with a disordered
domain structure is small and saturated within several
nonlinear lengths of the wave interaction. Figure 2
shows the dependences of the second harmonic inten-
sity on the intensity of fundamental radiation. Such
dependences were experimentally studied in [1–3]. The
curves shown in Fig. 2 are plotted for those values of
parameter α' for which the dependence of the mean
intensity of the second harmonic on the pumping inten-
sity is close to linear.

The differential exponent of the nonlinear depen-
dence of  on I10 (η = dlnI2/dlnI0) is represented in
Fig. 3. One can see that, in the region of high pumping
intensities, this dependence is close to quadratic, as in
the case of homogeneous crystals with a low efficiency
of conversion to the second harmonic. At the same time,
there is an interval of fundamental intensities within
which the dependence of the mean intensity of the sec-
ond harmonic on the fundamental intensity is close to lin-
ear. Thus, Fig. 3 allows one to explain the linear depen-
dence of the second harmonic intensity on the fundamen-
tal intensity that was experimentally observed for
crystals with a disordered domain structure [1].

In closing, we note that the main result of this study
is the development of the stochastic theory of the SHG
in statistically inhomogeneous media. In particular, this
study reveals that the dependence of the second har-
monic intensity on the intensity of the laser radiation
differs considerably from a square law in the case of a
low efficiency of the fundamental-to-second harmonic
conversion, which agrees well with the experimental
results [1–3]. The approach described above can be
generalized to the case of a quasiphase-mismatch con-
version of optical frequencies in an active nonlinear
medium or in a superlattice.

I2

Fig. 3. The exponent characterizing the dependence of the
second harmonic intensity on the fundamental intensity as a
function of the fundamental intensity. The curves are calcu-
lated for the intensities normalized to I0 = 100 MW/cm2

with the parameter α' and the values of ∆' corresponding to
the curves shown in Fig. 2.
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The results and the approach described in this paper
can also be of interest in application to such objects as
an inhomogeneous acoustically nonlinear medium or
an inhomogeneous plasma.

We are grateful to G.D. Laptev and A.A. Novikov
for useful discussions. This work was supported in part
by the Russian Foundation for Basic Research and the
programs “Basic Metrology” and “Basic Spectros-
copy” of the Ministry of Industry and Science of the
Russian Federation.
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Generation of High-Energy Secondary
Pulsed Molecular Beams
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A method is suggested for generating high-intensity secondary pulsed molecular beams in which the kinetic
energy of molecules can be controlled by an intense laser IR radiation through the vibrational excitation of mol-
ecules in the source. High-intensity [≥1020 molecule/(sr s)] SF6 molecular beams with a kinetic energy of
≅ 1.0 eV without carrier gas and of ≅ 1.9 and ≅ 2.4 eV with carrier He (SF6/He = 1/10) and H2 (SF6/H2 = 1/10)
gases, respectively, were obtained. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 07.77.Gx; 33.80.-b
1. High-intensity beams [≥1020 molecule/(sr s)] of
accelerated molecules with kinetic energy ranging
approximately from one to several electron-volts are
used in various fields of fundamental and applied stud-
ies (investigation of chemical reactions with energy
barriers, elastic and inelastic collisions, interaction of
molecules with surface, etc.) [1].

The use of skimmers for separating molecules from
gas-dynamically cooled jets formed by pulsed nozzles
is the most widespread method of obtaining high-inten-
sity molecular beams [2]. The main characteristics of
pulsed beams are as follows: intensity, duration, veloc-
ity, and the scatter of molecular velocities in the beam
(degree of gas cooling).

The above-mentioned energy range is difficult to
utilize. No universal methods of generating molecular
(atomic) beams in this range exist at present. Such
beams are formed by different methods [1] (see also
[3, 4] and references cited therein). However, the
majority of these methods are rather complicated (e.g.,
initiation of optical breakdown or rf or arc discharge
inside a nozzle) and apply only to atoms and not to mol-
ecules.

The aerodynamic acceleration [5, 6] of molecules
diluted in a lighter carrier gas (e.g., He or H2) and the
heating of a gas in a nozzle to high temperatures (T0 ≅
3000 K), as well as the combination of these two meth-
ods, are the methods that are most frequently used for
this purpose. The aerodynamic acceleration is not too
efficient if the gas-to-carrier mass ratio is small.

In the case of nozzle heating, the energy of beam
molecules is determined by the gas temperature before
the expansion through the nozzle:

(1)
1
2
---mv 2 γ

γ 1–
-----------k T0 T–( ),=
0021-3640/01/7312- $21.00 © 20651
where v  is the steady-state flow velocity, m is the
molecular mass, γ = cp/cv is the ratio of specific heats,
k is the Boltzmann constant, and T is the steady-state
temperature.

In [7], argon atoms diluted in helium were acceler-
ated to several electron-volts in a continuous beam by
the combination of nozzle heating and aerodynamic
acceleration, and in [8] this method was used to obtain
continuous beams of xenon atoms diluted in hydrogen
(Xe/H2 = 0.23/100) and having kinetic energy as high
as ≅ 30 eV.

Heating of pulsed nozzles to high temperatures is a
challenge because they are made from materials (in
particular, elastomers and plastics) that fail at T ≥
200°C [2]. In [9, 10], to obtain accelerated molecular
beams, it was suggested to use the vibrational excita-
tion of molecules by an IR laser pulse in the gas-
dynamic expansion zone at the nozzle outlet. The accel-
erated beams of the SF6 and CF3I molecules with
kinetic energies of ≅ 0.5 and ≅ 0.74 eV, respectively,
were obtained in [10, 11]. However, this approach can-
not provide high excitation energy densities because of
the optical breakdown at the nozzle outlet. Moreover,
only a small fraction of molecules can be efficiently
accelerated in a beam by this method.

It follows from the aforesaid that the excitation of
molecules by an intense IR laser radiation inside the
source of a pulsed beam, i.e., before the gas outflow
from the nozzle, would be promising for obtaining
high-energy molecular beams. This program was
implemented in this work by the method of formation
of a secondary pulsed molecular beam, as a result of
which the intense beams of accelerated molecules were
obtained.

2. In the method proposed, the pressure shock
(shock wave) was used as a source of the secondary
001 MAIK “Nauka/Interperiodica”
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molecular beam [12–14]. The shock was formed due to
the interaction of a gas-dynamically cooled pulsed
molecular flow with a solid surface [15, 16]. The
essence of the experiment is illustrated in Fig. 1. An

Fig. 1. Scheme of the experiment. Formation of the second-
ary molecular beam using a plate with a hole shaped like a
divergent cone.

Fig. 2. Time evolution of a pulse of molecular beam
(SF6/H2 = 1/6) passing through a hollow convergent trun-
cated cone (inlet diameter 11 mm, outlet diameter 2.8 mm,
and length 32 mm). The distance from the nozzle to the cone
waist is 83 mm and from the nozzle to the detector is
143 mm.

Movable
intense [≥1020 molecule/(sr s)] wide-aperture (with
divergence ω ≅ 0.05 sr) molecular beam (or flow) was
incident on the surface of a solid plate (a polished dur-
alumin 7.5-mm-thick plate was placed at a distance x ≅
60 mm from the nozzle) having a hole in its center. The
hole represented a divergent cone with the inlet diame-
ter din ≅  2 mm and the outlet diameter dout ≅  5 mm. The
hole walls were polished.

As the primary beam was incident on the surface, a
pressure shock was formed ahead of it, where the gas
density, pressure, and temperature were appreciably
higher than in the incident beam [17, 18]. According to
the estimates made in [17], the concentration of SF6

molecules in the shock varied from ≅10 16 to ≅ 5 ×
1017 cm–3, depending on the intensity of the primary
beam. While the pressure shock persisted ahead of the
surface, the gas flew out from the shock through the
hole in the plate into a high-vacuum section of the
chamber to form a new (secondary) pulsed molecular
beam, whose characteristics were, generally, different
from those of the primary beam.

The primary beam was formed by a pulsed nozzle of
the current loop type [19]. The hole diameter was
0.75 mm. The time of opening the nozzle was equal to
≅ 40 µs (FWHM). Gas pressure in the nozzle was varied
from ≅ 0.1 to 7 atm. The nozzle cross section was
shaped like a cone with an angle of 15°. The cone
length was 35 mm. A vacuum chamber where the
molecular beam was formed was evacuated to ≅ 1 ×
10−6 torr by a turbomolecular pump. The number of
molecules flowing out of the nozzle during a pulse
depended on the pressure in the nozzle and was varied
from ≅ 3 × 1015 to ≅ 1.1 × 1017 molecule/pulse.

The intensity of the secondary beam depended on
the intensity of the primary beam and on the hole diam-
eter and cone angle in the plate. It increased apprecia-
bly (by 5–6 times) when, instead of the flat surface, a
hollow truncated cone was used to form the shock (or
when the secondary beam was formed by a convergent–
divergent cone of the Laval nozzle type).

One can see from Fig. 1 that the excitation of mole-
cules in the shock wave presents no special problems.
When the high-energy beams were obtained in the
scheme with a cone, its convergent part was replaced by
a hollow tetrahedral truncated pyramid made from thin
NaCl plates, which are transparent to the radiation of a
CO2 laser. This allowed the molecules to be excited
inside the pyramid immediately before the exit from the
secondary nozzle. The internal (mainly vibrational)
energy of molecules increased due to the multiphoton
absorption in a strong IR field [20]. The energy transfer
from the vibrational to the translational degrees of free-
dom occurred due to the subsequent vibrational–trans-
lational V–T relaxation in the vacuum-expanded gas,
resulting in the acceleration of molecules.

In our experiments, the characteristics of the sec-
ondary molecular beam and the possibility of obtaining
JETP LETTERS      Vol. 73      No. 12      2001
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high-energy molecules were examined. Measurements
were carried out by the time-of-flight method using a
noncooled pyrodetector with time resolution ≅ 3–5 µs
as a molecular beam detector [21, 22]. The time-of-
flight spectra of molecules were measured at different
distances from the sources of the primary and second-
ary beams and used to determine the beam velocities
and the scatter of molecular velocities in the beams.

3. The time evolution of a pulsed molecular beam
(time-of-flight spectrum of molecules) passing through
the hollow cone is shown in Fig. 2 for different gas
pressures (SF6/H2 = 1/6) in the nozzle. The distance
from the nozzle to the cone waist was 83 mm and to the
detector was 143 mm. At a low gas pressure in the noz-
zle (pΣ ≤ 0.2 atm), the intensity of the primary beam is
low and the shock does not form ahead of the surface
[17, 18], so that only the primary beam passes through
the cone (Fig. 2a). As the pressure in the nozzle
increases, the pressure shock is formed in the cone (in
Fig. 1 ahead of the surface) and the primary beam pulse
shortens. Simultaneously, a pulse of the secondary
molecular beam appears and starts to rapidly increase
in amplitude (Figs. 2b, 2c). At a relatively high intensity
of the primary molecular beam [≥1020 molecule/(sr s)],

Fig. 3. Pyroelectric signals induced at the detector by the
unperturbed primary molecular beam (curve 1) and second-
ary molecular beam (curve 2) as functions of the SF6 pres-
sure in the nozzle. The secondary beam was formed using a
convergent–divergent cone of the Laval nozzle type. The
cone parameters and the conditions of the experiment are
given in the text.
JETP LETTERS      Vol. 73      No. 12      2001
the intensity of the secondary beam was comparable to
the intensity of the unperturbed primary beam (in the
absence of the plate).

Figure 3 shows the intensities of the primary
(curve 1) and secondary (curve 2) molecular beams as
functions of the SF6 pressure in the nozzle. The second-
ary beam was formed using a hollow convergent–diver-
gent cone of the Laval nozzle type (din = 14 mm, d0 =
2 mm, dout = 7 mm, overall length 40 mm, and the
length of the convergent part 30 mm). The distance
from the nozzle to the detector was 143 mm and from
the cone waist to the detector was 79 mm. One can see
that, at a SF6 pressure p ≥ 1.0 atm in the nozzle, the
pyroelectric signal induced in the detector by the sec-
ondary molecular beam is stronger than the signal from
the primary beam. For this reason, the intensity of the
secondary beam in Fig. 3 is comparable with the inten-
sity of the primary beam even if one takes into account
an approximately quadratic dependence of the pyro-
electric signal on the distance between the beam source
and the detector.

It was established experimentally that the duration
of the secondary molecular beam, its velocity, and the
scatter of molecular velocities do not differ appreciably

Fig. 4. The velocity of the secondary SF6 beam as a function
of laser fluence. The molecules were excited at a frequency
of 944.2 cm–1 [laser 10P(20) line]. The SF6 pressure in the
nozzle is equal to 6.6 atm.
Acceleration of SF6 in the secondary molecular beam

Gas composition
Pressure in 
the nozzle, 

atm

CO2 laser 
line

Energy
fluence, J/cm2

Mean molecular velocity
in the beam, m/s

Kinetic energy
of molecules, eV

v0 VL

SF6 6.6 10P(26) 3.7 460 1150 0.163 1.0

SF6 + H2 (1 : 10) 3.2 10P(16) 3.5 1020 1765 0.8 2.40

SF6 + He (1 : 10) 4.0 10P(20) 3.7 1050 1580 0.85 1.92

Ekin
0 Ekin

L
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from those in the primary beam. As expected, the dif-
ference in the scatter of velocities is the greatest. It was
20–30% higher in the secondary beam than in the pri-
mary one. For instance, when the secondary beam was
formed using the cone whose parameters are given
above and the SF6 pressure in the nozzle was equal to
6.6 atm, the velocities of molecular beams and the scat-
ter of velocities in the primary and secondary molecular
beams were, respectively, v 1 ≅  480 m/s, ∆v 1 ≅  77  m/s
and v2 ≅ 447 m/s, ∆v2 ≅ 87  m/s. It follows from this
example that the gas in the secondary beam is cooled
rather strongly (the Mach number was M2 ≅ v2/∆v2 ≅ 5 ).

The velocity of the secondary SF6 beam as a func-
tion of the CO2 laser energy fluence is shown in Fig. 4.
The molecules were excited in the source of a second-
ary beam immediately before the exit from the nozzle
[inside a hollow truncated pyramid made from the NaCl
plates and attached to the front of the plate with a conic
hole (Fig. 1)]. The laser was tuned to a frequency of
944.2 cm– 1 [10P(20) line], which is close to the fre-
quency of the SF6 ν3 mode (≅ 948 cm–1 [23]). The mean
molecular velocity in the absence of laser excitation
was v 0 = 460 m/s and achieved vL > 1000 m/s in the
presence of laser excitation.

The results on the acceleration of SF6 in the second-
ary pulsed beam are presented in the table. We obtained

molecular beams of SF6 with kinetic energies  ≅
1 eV (vL ≅  1150 m/s) in the absence of a carrier gas and

 ≅  1.9 and 2.4 eV in the presence of, respectively,
He and H2 as carrier gases. These values are apprecia-
bly higher than those obtained in [4, 10].

Thus, the method suggested in this work allows one
to obtain intense molecular beams in which the kinetic
energy of molecules can be controlled through the
vibrational excitation by a strong IR laser pulse in the
source. Note in conclusion that the dissociation of mol-
ecules by the IR or UV laser radiation in the secondary
source or in the beam can also be used to obtain accel-
erated radicals.

We are grateful to V.N. Lokhman and A.N. Petin for
assistance. This work was supported in part by the Rus-
sian Foundation for Basic Research (project no. 00-03-
33003a) and the American Foundation for Civil
Research and Development of the Independent States
of the Former Soviet Union (grant no. RC1-2206).
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Influence of Angles of Incidence of Laser Radiation
on the Generation of Fast Ions
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It was established experimentally that the number and energy of fast ions in laser plasma increased with increas-
ing angle of focusing laser radiation onto a flat target. Numerical calculations showed that the increase in angle
of focusing brought the mean angle of incidence of laser radiation closer to the optimal angle corresponding to
the maximal efficiency of the resonance absorption mechanism and, as a result, increased the fraction of
absorbed laser energy in the energy of fast electrons and increased the number of fast electrons. In turn, the
increase in the energy and number of fast electrons resulted in an increase in the number of fast electrons
involved in the formation of a self-consistent electric field at the target edge and led to the growth of the field
strength, which, eventually, was the reason for the increase in the number and energy of fast ions. © 2001 MAIK
“Nauka/Interperiodica”.

PACS numbers: 52.38.Kd; 52.50.Jm
1. The studies of fast particle formation in laser
plasma is a topical problem not only in the light of the
development of our knowledge about the fundamental
physical processes occurring in high-temperature
plasma but also for solving a number of important
applied problems such as design of injectors of multi-
ply charged ions for heavy-ion accelerators or laser
fusion, where the fast particles may play both a nega-
tive role (premature heating of a spherical target and
deterioration of its compression) and a positive role
(fast-ion fusion reaction). In the last 30 years, experi-
mental and theoretical investigations have shown that

the product qlas , where qlas and λlas are the laser
radiant flux and laser wavelength, respectively, is the
key parameter for the physics of fast-particle genera-
tion in laser plasma (see, e.g., review [1]). Clearly, this
parameter alone cannot describe a great diversity of
physical processes resulting in the electron and ion
acceleration. Under different experimental conditions,
the efficiency of acceleration processes is different even

at a fixed value of parameter qlas . For instance, it is
evident that the efficiency of acceleration processes can
depend on the duration of laser pulse (especially for
ultrashort pulses) or on the aggregate state of the target
substance (solid state, gas, or clusters). The experimen-

λ las
2

λ las
2

0021-3640/01/7312- $21.00 © 20655
tal studies carried out in this work showed that there is
one more and not quite apparent parameter that deter-
mines the number of generated fast particles. This
parameter proved to be the aperture of a lens used for
focusing the laser pulse, or, more precisely, the ratio of
the beam diameter Dlas to the lens focal length F. Our
experiments showed that, all things being the same, the
number of fast ions increased with increasing parame-
ter Dlas /F. This effect was explained by the theoretical
calculations, and it was shown that it is caused by the
resonance absorption of that part of laser radiation
which is incident on the target not normally to the sur-
face.

2. Experiments were performed at the Troitsk Insti-
tute for Innovation and Thermonuclear Research on a
TIR setup [2]. This setup consisted of a CO2 laser with
an output of up to 100 J and allowed the generation of
pulses with a smooth temporal shape and a duration of
15–80 ns. The pulse duration was varied by changing
the level of pumping active mixture and the operating
mode of a master oscillator and by varying the compo-
sition of cells containing a saturated absorber (SF6 in a
mixture with air). The experiments described in this
work were carried out with pulse durations of 20 and
14 ns at half-widths. The radiation was focused onto a
target using lenses with focal lengths F = 60 and
001 MAIK “Nauka/Interperiodica”
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To the spectrograph
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Heβ MgXI

7.76 λ, Å7.81

Heα1 AlXII Heα2 AlXII

Heα1 FVII Heα2 FVII Heα1 MgXI Heα2 MgXI

16.80 λ, Å16.95 9.17 λ, Å9.23

Fig. 1. Scheme of the experiment and the spectrograms of the He-like FVII, MgXI, and AlXII ions, as observed for laser radiation
focused by lenses with Dlas/F = (up) 0.25 and (down) 0.1.
150 cm, and the beam diameter Dlas was 15 cm. The laser
power density on the target was ~(3–5) × 1012 W/cm2.

Soft X-rays from plasma were recorded by spectro-
graphs with spherically curved mica crystals. The mica
crystals, the target, and a photographic film were
arranged following the FSSR-1D scheme [3–5]. The
spectra were recorded with high spectral (λ/∆λ ≈ 2000–
10000, depending on the spectral range) and spatial
(∆x ≈ 20 µm) resolutions. Flat massive plates made
from Teflon, magnesium, and aluminum were used as
targets. The observation angle was ≈55° to the target
surface (Fig. 1). With such an arrangement of the spec-
trograph, the ions flying from the target had a velocity
component along the observation direction and, hence,
the emitted photons were short-wavelength-shifted
because of the Doppler effect. The appearance of the
fast ions could be judged from the presence of broad
short-wavelength wings in the observed spectral lines,
with the wing shape approximately reproducing the ion
velocity distribution.

The experiments were performed with two apertures
of focusing lenses: (1) Dlas /F = 0.25 and (2) Dlas /F =
0.1. In the first case, broad short-wavelength wings
were clearly observed for all recorded spectral lines,
regardless of the target material; in the second case, the
wing intensities were no higher than the noise level
(Fig. 1). It is worth noting that the laser power density
in the second case was even slightly higher than in the
first one (in the first case, a pulse with τlas = 20 ns and
Elas = 60 J was focused to a spot of diameter 300 µm,
while, in the second case, a higher power pulse with
τlas = 14 ns and Elas = 100 J was focused to a smaller
spot with a diameter of 180 µm).
Figure 2 shows the ion velocity distribution repro-
duced from the shape of the short-wavelength wing of
the MgXI Heα line for both focusing situations. One
can see that, in the first case (high-aperture lens), there
were many plasma ions with a velocity of up to
(1.5−2) × 108 cm/s, whereas in the second case (lower
aperture lens) only ions with appreciably lower veloci-
ties of (5–6) × 107 cm/s were recorded with certainty
(Fig. 2b).

3. The ion velocity as a function of the angle of
focusing laser radiation suggests that the accelerating
field is created by fast electrons produced upon reso-
nance absorption at the critical surface. Indeed, some
photons of the laser radiation focused onto the target
are incident on the surface not along its normal, and the
number of such photons increases with increasing lens
aperture. A half of radiation flow is p-polarized and can
excite resonance at the critical surface. The efficiency
of resonance absorption depends on the parameter τ =
(k0L)1/3sinθ0 [6–8], where k0 = ω/c is the wave number,
ω is the laser frequency, L is the plasma characteristic
inhomogeneity scale at the critical surface, and θ0 is the
angle of incidence on the target. The maximal effi-
ciency of resonance absorption corresponds to τ0 = 0.7.
The absorption efficiency, the fraction of resonance
absorption, and the plasma hydrodynamic parameters
were calculated using the physical model developed in
[7, 8] (the RAPID program). This model is based on the
equations of two-temperature plasma hydrodynamics
and on a combination of the Maxwell equations with
the geometrical optics approximation in describing the
propagation of laser radiation in plasma. Strictly speak-
ing, if a flat target is irradiated by a single beam, the cal-
culation of plasma dynamics in the plasma torch geom-
JETP LETTERS      Vol. 73      No. 12      2001



        

INFLUENCE OF ANGLES 657

  
etry necessitates a two-dimensional description of
plasma expansion. However, it was pointed out in
[9, 10] that the expansion in a transverse direction may
qualitatively be taken into account using spherical
geometry, provided that the initial radius of the target is
equal to the focal spot diameter. (In this case, the laser
power density should be fixed). Note also that, if the
focal point in the case of a spherical target is shifted
from the target center along the beam direction at a dis-
tance equal to the radius of critical surface, then the
angular distribution of incident radiation will exactly
coincide with the angular distribution of the radiation
focused onto the flat target. This model was used to
carry out calculations for aluminum targets with initial
radii 300 and 500 µm (typical size of a focal point).

In compliance with the experimental conditions,
two variants of laser pulse and lens aperture were con-
sidered. In both cases, the time dependence for the flow
was taken in the form of an isosceles triangle and the
lens focal point was positioned behind the target center
in such a way that the distance from it to the center was
equal to the radius of critical surface at the moment of
pulse maximum. The table reports the computational
results for some of the parameters characterizing the
light absorption process (δabs is the total fraction of
absorption due to inverse bremsstrahlung and reso-

nance mechanisms, and  is the fraction of reso-
nance absorption) and for the following main plasma
hydrodynamic parameters at the moment of maximal

pulse power:  is the maximal electron temperature
in corona, L = [1/ρ(∂ρ/∂r)c]–1 is the characteristic scale
of plasma inhomogeneity at the critical point, rc is the
radius of the critical surface, u(ρc) is the plasma veloc-
ity at the point with critical density ρc, and u(ρc/10) is
the plasma velocity at the point with density ρc/10. The
calculated density ρ, velocity u, and electron-tempera-
ture Te and ion-temperature Ti profiles are shown in Fig.
3 for the first variant with high-aperture lens.

It is seen from the table and Fig. 3 that the hydrody-
namic velocities are not high enough to account for the
observed Doppler shift at relatively small (~400–
800 µm) distances from the target. Moreover, because
of a higher flux density, the velocity in the variant with
F = 150 cm is slightly higher than for F = 60 cm.
According to the table, the hydrodynamic parameters
of plasma depend weakly on the lens aperture. How-
ever, the fractions of resonance absorption differ appre-
ciably. In the case of a target with R0 = 300 µm, it is
3.8 times higher for F = 60 cm than for F = 150 cm.
Therefore, one should take into account a mechanism
of additional acceleration of plasma ions by the electric
field created by fast electrons.

4. Let us consider a simple model allowing the esti-
mation of the characteristic energy and density of fast
electrons produced through the resonance absorption of
laser radiation. At the ray turning point, plasma can be

δabs
res

Te
max
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considered as a flat layer with density changing along
its gradient [7, 8] (the x axis is chosen in this direction).
It follows from the Maxwell equations that the longitu-
dinal field at the critical surface is limited by the dissi-
pative processes [6]

(1)

where ν is the effective frequency that is related to the
high-frequency conductivity σ by formula σ = ν/4π,
Hc is the magnetic field at the critical point, and α0 =
sinθ0 (θ0 is the angle of incidence). In the spherical
case, the angle of incidence is determined from the rela-
tion sin2θ0 = e1(rt), where e1(rt) is the real part of the
dielectric constant at the ray turning point [7, 8].

In weak fields, where the electron oscillation energy
is lower than its thermal energy, the field dissipation is
due to the electron–ion collisions, so that ν = νei. In
strong fields, where the electron oscillation amplitude
becomes comparable with the characteristic width of
plasma resonance, the longitudinal field is mainly lim-
ited by the generation of superthermal electrons, so that
ν = νh [in the general case, ν = νei + νh in Eq. (1)]. Dur-
ing the oscillation period, the field can expend work on
an electron flying through the resonance region. The
resulting electron characteristic energy is equal to its
oscillation energy in the resonant field. The superther-

Exc α0 Hc ω/ν ,=

Fig. 2. (a) The short-wavelength wing of the MgXI Heα line
and (b) the ion velocity distribution, as observed for two
variants of focusing laser radiation: F = (1) 60 and
(2) 150 cm.
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mal electrons carry away energy from the resonance
region:

(2)

where nh and v h are, respectively, the density and the

velocity of superthermal electrons and  is the
energy flux density absorbed in the resonance region.
One has for the velocity v h

(3)

The current of fast electrons is fully dissipative,

(4)

where σh = νh/4π. Replacing the density profile in the
vicinity of the critical point by a linear curve with char-
acteristic inhomogeneity scale L, one can obtain [6]

(5)

nh mev h
3/2( ) νh/ν( )qabs

res ,=

qabs
res

v h e Exc /meω.=

enhv h σh Exc ,=

qabs
res σ Ex

2 xd

∆xres

∫ 1
8
---α0

2 Hyc
2ωL.= =

Fig. 3. Density ρ, velocity u, and electron-temperature Te
and ion-temperature Ti profiles at the moment t = 20 ns of
maximal pulse power for the variant with F = 60 cm and
R0 = 500 µm.
From Eqs. (2)–(5) one gets

(6)

The relativistic case can be considered in a similar
manner (the result is presented in [11]). Interestingly,
Eq. (6) for the effective frequency can be derived by
another method through setting the electron oscillation
amplitude in resonant field aos = e|Exc|/meω2 equal to the
resonance characteristic width ∆x = 2Lνh/ω. To esti-
mate the energy of fast electrons, the relationship
between the magnetic field |Hyc| at the critical point and
its vacuum value |H0| (in the incident wave) should be
known. For the plasma with a linear density profile, this
relationship is written as [6]

(7)

where V and V ' are, respectively, the Airy function and
its derivative. The function Φ(τ) has a maximum at τ =
0.7: Φ(0.7) = 1.2; at τ  0, Φ(τ) ≈ 2τ. Estimates show
that the electron oscillation energy in the resonance is
far above the thermal energy, so that the Coulomb fre-
quency νei is determined not by the thermal but by the
oscillation velocity, allowing νei to be neglected com-
pared to νh. One finally obtains for the longitudinal field
in the resonance

The energy of fast electrons is eh = e2|Exc|2/meω2. From
Eqs. (3) and (4), one has for the density of fast electrons
nh = nc(νh/ω), where nc is the critical density (for a CO2

laser, nc = 1019 cm–3).
Let us estimate eh and nh using the plasma parame-

ters obtained from the hydrodynamic calculations. For
F = 60 cm and t = 20 ns, one has L = 4 × 10–2 cm, k0L =
240, α0 = 0.124 (for the rays with the maximal angle of
incidence), |H0| = |E0| = 1.58 × 105 CGS units for qlas =
3 × 1012 W/cm2, and τ = 0.77. With these values, one

νh

ω
-----

νei

ω
------+

eα0 Hyc

πmeω
2L

--------------------
1/2

.=

α0 Hyc

Φ τ( ) H0

2πk0L
----------------------,=

Φ τ( ) 4τV τ2( ) V τ2( )
V ' τ2( )–

------------------,=

Exc H0
1/2 Φ τ( )[ ] 1/2 πk0L/2( )1/4 mecω/e( )1/2.=
Table

R0, µm δabs , keV L, µm rc , µm u(ρc), 107 cm/s u(ρc/10), 107 cm/s

Elas = 60 J, τlas = 20 ns, F = 60 cm

300 0.642 0.106 0.518 362 900 2.73 4.24

500 0.752 0.094 0.462 442 1200 2.57 3.87

Elas = 100 J, τlas = 14 ns, F = 150 cm

300 0.517 0.0279 0.654 369 1040 3.5 4.91

500 0.620 0.0297 0.593 441 1340 3.06 4.62

δabs
res Te

max
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obtains νh/ω = 7.8 × 10–4, |Exc| = 6.15 × 106 CGS units,
eh = 180 keV, and nh = 7.8 × 1015 cm–3. Clearly, the Cou-
lomb collision frequency can be ignored for the elec-
tron energy of 180 keV (νei/ω ~ 10–7). For F = 150 cm
and t = 14 ns one has eh = 160 keV and nh = 7.6 ×
1015 cm–3. Consequently, the maximal energy and den-
sity of fast electrons change only slightly. A consider-
able difference is observed for the fraction of resonance
absorption (by 3–4 times), because it is an integral over
the angles of incidence and, hence, is sensitive to the
distinctions in the angular distributions of incident radi-
ation. The total number of fast electrons is determined
by the fraction of resonance absorption and is equal to
2.21 × 1014 for F = 60 cm (R0 = 300 µm) and to 1.09 ×
1014 for F = 150 cm if the maximal energies of fast elec-
trons are taken as mean values.

5. Thus, the use of a high-aperture focusing lens
enhances the role of resonance absorption and, there-
fore, must increase the number of fast electrons gener-
ated in plasma, which, in turn, must increase the frac-
tion of fast ions. Based on the above-mentioned results
concerning the generation of fast electrons, one can
obtain simple estimates for the energy and fraction of
fast ions produced under the conditions of our experi-
ments. As is well known, the ion acceleration inside a
plasma torch is of little importance at laser power den-
sities below qlas = 1018–1019 W/cm2 because the current
of fast electrons is compensated for by the conduction
current of plasma thermal electrons. In this case, fast
ions can be accelerated efficiently only under the action
of a self-consistent electric field arising at the plasma
boundary with vacuum because of the charge separa-
tion due to the escape of fast electrons from the plasma
at a distance equal to the Debye radius.

The self-consistent field at the plasma boundary
with vacuum can be estimated as

(8)

where Jh is the flow of fast electrons at the plasma
boundary and th is the residence time of a fast electron
beyond the plasma (the inverse of the Debye frequency
of a fast electron).

Assuming that the energy of fast electrons corre-
sponds to the energy of laser radiation absorbed
through the resonance mechanism, the flow of fast elec-
trons at the plasma boundary, with allowance made for
plasma expansion, is

(9)

where β is the fraction of fast electrons flying in the
direction opposite to the beam and ub is the characteris-
tic velocity of the plasma boundary.

ES 4πJheth,=

Jh

δabs
res βqlas

eh

-------------------
Rlas

Rlas ubτ las+
--------------------------- 

 
2

,=
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By solving the equation of motion for a fast electron
in field (8), one gets for the time th

(10)

Substituting Eqs. (9) and (10) into Eq. (8), one finally
obtains for the self-consistent field

(11)

The mean number of accelerated ions is equal to the
mean number of fast electrons beyond the target. These
create a self-consistent field

(12)

During the laser pulse, the ions are accelerated to the
velocity

(13)

Under the conditions of our problem, ubτlas @ Rlas and
one has from Eqs. (12), (13), and (9)–(11) for the mean
number of fast ions and their velocity

(14)

(15)

It is noteworthy that the results obtained for the accel-
eration of fast ions in the self-consistent field of fast
electrons predict an increase both in the ion energy and
in the number of ions with increasing fraction of reso-

nantly absorbed energy; i.e., Vi, ∝ Ni, ∝ ( )1/2.

Substituting the experimental parameters and the
computational results given in the table and assuming
additionally that only half of the fast electrons fly toward
the target boundary with vacuum, one can readily obtain
for the mean energy and the number of fast aluminum
ions that Vi ≈ 4 × 108 cm/s and Ni ≈ 2.5 × 1011 in the exper-
iment with a short-focus lens and Vi ≈ 1.5 × 108 cm/s and
Ni ≈ 1011 in the experiment with a long-focus optics, in
good agreement with the experimental data.

Thus, it has been observed experimentally in this
work that the use of a high-aperture focusing lens
increases the energy and the number of fast ions in laser
plasma. This phenomenon is explained by the fact that
the use of short-focus optics increases the fraction of
resonantly absorbed laser energy and, hence, the num-
ber of fast electrons. In our opinion, the use of this

th 2 1/4– me
1/2

eh
3/2

πδabs
res βqlas

-----------------------
 
 
 

1/2

1
ubτ las

Rlas
------------+ 

  .=

ES 21/4 πδabs
res βqlasme

1/2

eh
1/2

---------------------------------
 
 
  Rlas

Rlas ubτ las+
--------------------------- 

  .=

Ni π Rlas ubτ las+( )2Jhth.≡

Vi
ze
mi

-----ESτ las.≡

Ni 2 3/4– δabs
res βqlasme

1/2

πe2
eh

1/2
-----------------------------

 
 
 

1/2

Rlasubτ las,≈

Vi 21/4ze
mi

-----
πδabs

res βqlasme
1/2

eh
1/2

---------------------------------
 
 
 

1/2
Rlas

ub

--------.≈

δabs
res
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effect in the design of injectors of multiply charged ions
for heavy-ion accelerators holds much promise.
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The internal magnetic structures of a cylinder are computed without prior assumption of axial symmetry.
A three-dimensional magnetostatic solution is presented. A detailed distribution of the magnetization is
obtained through numerical integration of the Landau–Lifshitz equation with the demagnetization field. Various
entry conditions are used. Materials with small uniaxial anisotropy typically demonstrate vortex structures,
while a higher anisotropy leads to the formation of concentric cylindrical magnetic bubbles inside the cylinder
and a monodomain flower state. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.60.Lr; 75.60.Ej; 75.60.Ch
The problem of the shaped body magnetization
under the action of some initial magnetic field refers to
a well-known problem in magnetism [1, 2]; however,
until now it has been insufficiently analyzed. Solution
of this problem is important for the design of high-den-
sity magnetic recording media or magnetic random
access memory. The modern line in the fabrication of
these devices is the usage of patterned magnetic record-
ing media with nanoscale sizes, where each element
stores one bit of data (see, e.g., [3]). This patterning
permits one to enlarge the signal-to-noise ratio. The
elements in arrays are designed so that an element’s
magnetostatic interactions with its neighbors are small
in comparison to its coercivity [4]. Such patterned
media have been proposed for high-density data storage
(above 500 Gbt/in2); see [4] and references therein.

Particles with dimensions of about 100 nm (and
below) are usually too small to show a well-developed
domain structure, but show a variety of nonuniform
magnetization configurations. These remanent states
depend on the properties of the magnetic body and its
geometry, as well as the magnetization prehistory.

The first problem of this kind, which was explored
in detail, refers to the magnetic states of small cubic
particles [1, 2, 5, 6]. An analysis shows that magnetic
states in a small ferromagnetic cube can be classified in
terms of some elementary structures, namely, flower
state (single domain), two domains, and vortex and
twisted vortex states. The phase diagram of these states
at zero magnetic fields was recently calculated in coor-
dinates relative to exchange interaction and uniaxial
anisotropy [6]. These remanent states were identified
experimentally using magnetic force microscopy [7],
Kerr microscopy [8], and other high-resolution mag-

1 This article was submitted by the authors in English.
0021-3640/01/7312- $21.00 © 20661
netic imaging methods [9]. The reason for a variety of
magnetization configurations in a cubic particle is
related to its high symmetry.

Although a high-density (100 Gbt/in2) writing and
reading on perpendicular recording media patterned by
square islands was recently demonstrated [10], many
researchers do not consider the cubic (or thin square)
particles as optimal for magnetic recording. Thus, par-
ticles with lower symmetry are intensively discussed.
Among the shapes experimentally analyzed are ellipti-
cal [11], conical [12], cylindrical [13], and spherical
[14] particles. Analysis of 3D magnetic structures for
these particle shapes is more complex than for cubic
particles (see, e.g., comments in [1]).

Below, we suggest an effective iterative solver for
cylindrical particles. A realistic representation of a fer-
romagnetic cylinder assumes its finite height, z = h, and
radius, r = a; i.e., the 3D case is considered. The param-
eters chosen in numerical calculations correspond to
those commonly used for patterned magnetic media
[15]. The easy axis is the cylinder axis (z).

The magnetic structure is calculated by solving the
Landau–Lifshitz–Gilbert (LLG) equation (see, e.g., in
[1, 2, 16]) for natural movement of magnetization. For
convenience in the calculations, we consider M as a
normalized (to Ms, which is the saturated value) magne-
tization vector. Thus, the normalized LLG equation is
represented by [1]

(1)

where α is the dimensionless damping factor intro-
duced to specify quasi-local dissipative phenomena.
This factor depends nonlinearly on the magnetization
[17], but in the search for the magnetization structures

1 α2+( )dM
dt

--------- H M αM M H×( ),×–×=

M t 0= M0,=
001 MAIK “Nauka/Interperiodica”
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this dependence can be omitted. The “classical” form of
LLG Eq. (1) does not include gradient dissipation terms
[18]. These terms play an important role for the line
broadening in ferromagnetic resonance; however, they
are unimportant for the analysis of magnetization struc-
tures.

The quantity H in Eq. (1) is a local effective mag-
netic field. This field is given by the sum of anisotropy,
exchange and demagnetization fields:

(2)

Here, Q = Ka/2π  and Ka is the anisotropy constant.
The Laplacian in the expression for exchange field
H(ex) = 2∆M is also written in dimensionless form, and

the characteristic exchange length λ = /Ms (A is the
exchange stiffness constant) is used to normalize the
derivations.

The main complexity refers to the demagnetizing
field H(m) created by M. This field can be defined from
the magnetostatic problem [16]:

(3)

with proper jump (the absence of magnetization outside
the particle) and boundary conditions (continuity of the
tangential component of H and normal component of
magnetic induction B). It is convenient to rewrite Max-
well Eqs. (3) using potential U, H(m) = –gradU. This
potential can be represented in the form U = F + V,
where the functions F and V satisfy the Poisson and
Laplace equations:

(4)

The Poisson equation (4) is solved with zero bound-
ary condition on the surface. The boundary condition
for the Laplace equation provides continuity of the
magnetic induction:

(5)

Unit vector n in Eq. (5) characterizes the normal to
the surface. Micromagnetic equations are typically
solved by the finite difference technique using some
equidistant 3D grid in Cartesian coordinates [19]. This
technique is more suitable for parallelepiped particle
shapes, although the problem of the corner singularities
[20, 21] is open with this technique.

We suggest the iterative technique, which permits
one to solve Eqs. (1)–(5) for a cylinder. We used the
analytical solution of Maxwell equations (4), (5) for a
fixed distribution of magnetization M. The solution is
written in cylindrical coordinates, {r, ϕ, z}, where z is
the cylinder axis. Keeping in mind the periodic condi-

H 4πQM⊥–= H ex( ) H m( ).+ +

Ms
2

A

rot H m( ) 0, div H m( ) 4πM+( ) 0= =

∆F 4πdivM, ∆V 0.= =

F S 0,=

V S
1

4π
------

∂F r1( )
∂n

----------------– M r1( )n+
r1d

r r1–
----------------.

S

∫∫=
tions, U(r, ϕ + 2π, z) = U(r, ϕ, z), one can use the Fou-
rier series:

(6)

(7)

Here, we do not assume axial symmetry of the solution
in advance. The relation of the coefficients in Eq. (6) to
the Fourier components of magnetization vector (7) can
be found with the Hankel and Fourier transforms (with
respect to r and z coordinates):

(8)

where Akz and Bkz are the z components of the corre-
sponding vector coefficients in Eq. (7). In a similar way,

U r ϕ z, ,( ) 1
2
--- V0 r z,( ) W0 r z,( )+[ ]=

+ Vk Wk+( ) kϕ Sk Ek+( ) kϕsin+cos[ ] ,
k 1=

∞

∑

M r ϕ z, ,( ) 1
2
---A0 r z,( )=

+ Ak r z,( ) kϕ Bk r z,( ) kϕsin+cos[ ] .
k 1=
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0
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2
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the coefficients Wk and Ek are expressed as

(9)

where Jk, Kk, and Ik are Bessel functions.

To combine this result with the LLG equation, we
use the solution of Eq. (1) with a fixed effective field
and perform iteratively one time step (n, n + 1) at a fixed
grid point {ri , ϕj , zk}:

(10)

Wk r z,( ) 1
π
--- ωd ξd ω ξ z–( )W̃k ω r ξ, ,( ),cos
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0
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π
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0
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where Mn = M(tn). Solution (10) is obtained by writing
Eq. (1) in cylindrical coordinates with the z axes
directed along the vector H.

The magnetic vector field H(tn, t) in Eq. (10) is an
effective magnetic field from the previous step, i.e.,
H(tn). Therefore, the additional time-dependent exter-
nal magnetic field H(ext)(t) can be included as H(tn, t) =
H(tn) + H(ext)(t). Field H(ext)(t) can be used for the sim-
ulation of the magnetic writing process or for the simu-
lation of the influence of neighboring magnetic ele-
ments within the array of patterned media.

We should emphasize that the computer calculation
of a sequence of onefold integrals in Eqs. (7)–(9) is
very fast. For a small cylinder, one needs about 1 sec
with a computer of 1.2 GHz to calculate the field at all
grid points {ri, ϕj, zk} for one iteration step. Naturally,
the computation time depends on the total grid number,
and big particles need a longer time. We used a combi-
nation of calculation with software written in the
FORTRAN and Mathematica languages.

The final magnetization (in zero field at t  ∞)
depends on the magnetization history, i.e., on the initial
distribution M0 and precise external magnetic pulse
shape, H(ext)(t). In this paper, we do not discuss the
dynamic processes and set H(ext)(t) = 0. The following
initial magnetizations are typically considered. (1) A ran-
dom initial state is used for finding the lowest minima
of Gibbs energy. It is also used for modeling the “eras-
ing head” work, e.g., with fast laser heating of a mate-
rial above the Curie temperature [22]. (2) M0 = Mz =
{0, 0, 1} and/or (3) M0 = Mr = {1, 0, 0} are used for
modeling the transverse recording [23, 24]. (4) M0 =
Mx = {cosϕ, –sinϕ, 0} is used for modeling the longi-
tudinal recording [24].

The iterative method of solving the LLG equation
was first proposed for a cubic particle [25]. In this case,
complicated Eqs. (6)–(9) are replaced by simpler for-
mulas for the Fourier expansion in Cartesian coordi-
nates. For small-sized cubic particles, the remanent
state has a flowerlike or vortex magnetization configu-

–
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ration, which is in good agreement with many previous
calculations and experimental results.

In contrast to cubic particles, there are just a few
results for the magnetic states in a small cylinder [1, 2,
26, 27]. Experimental results [12, 13] demonstrate that

Fig. 1. Side faces of the vortex configuration for a cylinder
with a = 5λ, h = 10λ, Q = 10–3. Cross section shows mag-
netization in the {r, z} plane. Random initial state.

Fig. 2. Single-domain state with concentric Bloch wall
along the z direction. This wall is clearly seen in the {r, z}
cross section. Input parameters are: a = 5λ, h = 10λ, Q = 0.2.
Random initial state.

Fig. 3. The {r, z} cross-section images of a two-domain
structure with concentric Bloch domain walls. Parameters:
a = 10λ, h = 20λ, Q = 0.3. Vortex initial state.
for cylindrical particles (with a low-anisotropy mate-
rial) the flowerlike configurations are not favorable. It
can be understood along the line that the magnetization
tends to avoid magnetic charges except for two topo-
logical “singularities” [1, 26, 27].

The typical lattice size in calculations was changed
from 20 × 20 × 20 to 120 × 120 × 120. The parameters
of the material were varied in the range Q ∈  [10–3, 1],
and the cylinder geometry was varied within {a, h} ∈
[λ, 30λ]. The magnetic behavior of the cylinder was
studied as a function of size, aspect ratio a/h, and the
prehistory. Below, we present the main results of calcu-
lations.

1. Low anisotropy, Q ≤ 10–2. With random initial
conditions (and/or with M0 = Mr), the cylinder with a,
h ≤ 30λ has a stable vortex configuration (Fig. 1). The
stability of a single magnetic vortex for a small isotropic
ferromagnetic cylinder was recently discussed in [28].
The vortex in Fig. 1 has a rather spiral structure; i.e.,
Mr ≠ 0. The relative volume of homogeneous state with
Mz ≈ 1 increases with diminishing cylinder radius. As a
result, the flowerlike structure coexists with the vortex
solution for a small cylinder at a, h ≤ 2λ. With M0 = Mx

for sufficiently big cylinders (a > 10λ), one can find the
axially asymmetric solutions with spiral branches, sim-
ilar to those which were discussed in [29]. These solu-
tions become more distinct with increasing anisotropy.

2. Intermediate anisotropy, 10–2 < Q < 0.5. With a,
h ≥ 2λ, magnetization tends to create a magnetic bub-
ble, with the Bloch-type domain wall; see in Fig. 2.
This magnetic bubble develops monotonically from the
vortex state. With increasing radius, a ≥ 8λ, two con-
centric domain walls appear; see Fig. 3. For tall cylin-
der with a/h ! 1 and a ≥ 10λ, the internal magnetic
domains are formed around the points of “singularity”
(r = 0, z = 0, h) and do not grow inside the center of the
cylinder. With longitudinal initial magnetization M0 =
Mx and sufficiently large particles, a ≥ 30λ, the com-
plex magnetization configurations with broken axial
symmetry can develop. The other initial conditions
with nonzero radial component also yield complex
multidomain structures for big particles. The domains
can be formed in the z directions. A vortex structure
with different chirality on the top and the bottom can be
obtained for the initial state M0 = Mz. A change in
chirality occurs through the nonsymmetrical Bloch
domain wall, typical of weak anisotropy materials
[1, 2]. This state seems to be metastable.

3. High anisotropy, Q ≥ 0.5. The “flower” state,
Fig. 4, is favorable for a small cylinder at the M0 = Mz

initial condition. This configuration is stable with
respect to small magnetic perturbations. A single-domain
cylindrical particle has “critical size,” a ≈ 2λ, when it
remains “uniformly” magnetized. It is near the limit of
micromagnetic model validity. Thus, the application of
the micromagnetic model to such sizes is questionable;
JETP LETTERS      Vol. 73      No. 12      2001
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it should be proved additionally by quantum mechanics
calculations.

In conclusion, we state that the energetic consider-
ation, which presents the “phase diagram” of different
states in a particle [1, 2], is sometimes insufficient for
the identification of states in the magnetic recording
problem. For example, authors [26] consider magnetic
bubble improbable for media with uniaxial anisotropy.
Meanwhile, the integration of the LLG equation dem-
onstrates that this state (Fig. 2), on the contrary, is very
probable for a wide class of initial conditions. Metasta-
ble states in magnetization can be separated by suffi-
ciently large energy barriers. These states represent
attractors with some “trapping region” with respect to
the initial conditions. The dynamic theory based on the
solution of Landau–Lifshitz equation has no problem
with the identification of the corresponding states,
while the pure energetic consideration that ignores the
magnetization prehistory may lead to some confusion.

The authors are very grateful to Profs. S.I. Anisimov
and E.I. Katz for useful discussions.
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The hypothesis is put forward on the basis of experimental data that strong inhomogeneous heating of the skin
layer of conducting materials by a femtosecond pulse gives rise to a double electrical layer that is formed of a
“surface” layer of positive ions and a thin (about 1 nm) “subsurface” layer of a superdense (1023–1025 cm–3)
degenerate electron gas. The double layer breaks within one picosecond through the Coulomb explosion.
© 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 79.20.Ds; 78.47.+p
The interaction of ultrashort laser pulses with con-
ductors is traditionally considered using a two-temper-
ature model (TTM) [1], which treats the electron and
phonon subsystems separately on the electron–phonon
interaction time scale (on the order of picoseconds for
most metals). The vast majority of experimental studies
devoted to the characteristic parameters of this model
(electron–electron relaxation time, electron-gas ther-
malization time, and electron–phonon coupling con-
stant [2–4]) and to the energy transport in a conductor
through the ballistic flight of hot electrons and through
electron heat conductivity [2, 5] are carried out at low
fluences F of heating beam, no higher than 10 mJ cm–2,
which corresponds to peak electron temperatures Te on
the order of 104 K, i.e., considerably lower than the typ-
ical Fermi temperature TF ~ 105 K. Meanwhile, the
experimental results obtained in [6, 7] at higher values
F ≥ 0.1 J cm–2 (peak Te ~ TF) indicate that a different
type of lattice–electron interaction may take place
upon the subpicosecond disordering of a metal crystal
lattice (“electron melting”). This calls for further anal-
ysis of the conditions for the validity of the TTM.
Moreover, a sharp pressure gradient ∇ Pe occurring at
peak temperatures Te ~ TF ~ 105 K in the electron gas
within the skin layer of a conductor may induce the
redistribution of electron-gas density in the skin layer
and the formation of a double electrical layer (DEL).
The electric field E = Q∇ Te arising in a DEL with char-
acteristic width α–1 ~ 10–8 m owing to the thermoelec-
tric effect is determined by the differential thermal
emf Q ≈ 10–8T ~ 10–3 V K–1 (at Te ~ 105 K) and is com-
parable with the intraatomic values Eat ~ 1011 V m–1. To
our knowledge, the physics of these phenomena has not
yet been explored, neither experimentally nor theoreti-
0021-3640/01/7312- $21.00 © 20666
cally, under the conditions of ultrafast inhomogeneous
heating of conductors to peak values Te ~ TF.

In this work, the transient optical characteristics and
the dynamics of mass transfer in the skin layers of met-
als (Al and Cu), as well as the dynamics of the laser-
induced metallic layers in melts of semiconductors (Si
and GaAs) heated by 100-fs laser pump pulses, were
studied by ellipsometry (self-reflection of s- and
p-polarized pump pulses), time-resolved optical
microscopy, and stationary interference microscopy.

A standard femtosecond laser setup of the Institute
of Laser and Plasma Physics (University of Essen, Ger-
many) was used, whose components (oscillator and the
regenerative and multipass sapphire amplifiers) are
described in [8]. The parameters of laser radiation that
was led into the pump and probe channels were as fol-
lows: first-harmonic (FH) wavelength ("ω = 1.56 eV)
λ ≈ 800 nm, pulse (Gaussian) duration τ ≈ 100 fs, pulse
energy (TEM00) 1.5 mJ, repetition rate 10 Hz, and rela-
tive amplitude of the pre- and postpulses no higher than
5–7%. In the pump channel, the focused linearly s- or
p-polarized FH beam was directed at an angle of 45°
onto a target that was moved from pulse to pulse. The
energy of the mirror-reflected s- or p-polarized FH beam
was measured by a pyroelectric detector at different
energies of the single incident pulses. Al and Cu films
(30–40 nm thick) on glass and optically “thick” metal-
lic films of the l-Si and l-GaAs melts (~20 nm thick)
prepared at the surfaces of bulk undoped samples of
these materials ([100] orientation) under the action of a
single pump pulse with effective fluence Feff far above

the nonthermal melting threshold (  ≈ 0.25 J cm–2

[9] and 0.15 J cm–2, respectively) were used as targets.
In the probe channel, the FH beam was led through an

Feff
M
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Fig. 1. (Left ordinate axes) self-reflectivities  and  as functions of instantaneous effective (absorbed) fluence Feff(t) of pump

beam for the Cu, Al, Si, and GaAs samples and (right ordinate axes) crater depths (profiles) X (in nm) as functions of integrated Feff
for the Cu, Al, and Si samples. The vertical dashed lines indicate the positions of the melting thresholds during the pump pulse for

Si and GaAs, and the arrows indicate the onset of anomalous optical properties (  and  plateaus) for all samples.
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optical delay line whereupon the frequency doubled,
and the second harmonic (SH, "2ω = 3.12 eV) was used
at normal incidence for probing, through the objective
of an optical microscope, the target area excited by the
FH. The mirror-reflected probe SH images of the target
were photographed by a synchronized CCD camera for
several time delays of the probe pulse relative to the
pump pulse and, after normalization to the image of the
unexcited sample and calibration, represented the two-
dimensional distribution of sample reflectivity R2ω

symmetric about the center of the pump beam spot. The
characteristics of the probe channel allowed the target
reflectivity transients to be studied with a spatial reso-
lution of 2 µm and a time resolution of 100 fs. The mor-
phology and the depth profiles X of the craters formed
at the target surface by the pump beam were studied by
stationary interference microscopy with a depth resolu-
tion up to 2 nm.

The self-reflectivities of all samples were experi-
mentally studied as functions of pump fluence for the
p-polarized beam (and also s-polarized beam for Si and

GaAs). The resulting  functions (  and  for Si
and GaAs) were processed to eliminate their spatial
averaging caused by the inhomogeneous distribution of
pump fluence F over the TEM00 beam spot on the tar-

get. In addition, to eliminate the time averaging of 

and  during the laser pulse, the  and  depen-
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dences on Feff = (1 – )F were processed graphi-
cally as in [9]. Recall that this procedure is based on the

assumption that  and  depend on the instanta-
neous effective fluence Feff(t) during the pulse rather
than on the intensity Ieff(t). This assumption may be
considered to be valid for ultrashort pulses with moder-
ate Feff ≤ 1–10 J cm–2 acting on metals. The resulting

(Feff(t)) and (Feff(t)) functions are presented in
Fig. 1.

The (Feff(t)) curves in Fig. 1 show plateaus at
0.5–0.6 for all types of metal films exposed to the

pulses with characteristic (t) ≈ 0.2 J cm–2 (hereafter

; for l-Si and l-GaAs, counted from the melting
threshold). An analogous effect was earlier observed at
close Feff values for the laser-induced melts of Al and
Ag films and explained, within the framework of TTM,
by the fact that the characteristic time τee of electron–
electron scattering decreased drastically (to 10–16 s)
upon heating the electron subsystem to 105 K [6]. At the
same time, the X(Feff) curves in Fig. 1 show a sharp
drop in the crater depth down to the skin depth near

. This is evidence for a more complicated character
of the processes occurring in the skin layer of such a
strongly heated conductor.
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Fig. 2. Optical constants nω (dark squares), kω (light circles), ωp (dark squares), and τee (light circles) as functions of Feff(t) for the
Si and GaAs samples (the ωp and τee axes for both samples coincide). The vertical dashed lines indicate the melting thresholds dur-

ing the pump pulse for Si and GaAs, and the arrows indicate the onset of anomalous optical properties (nω > kω and a sharp change
in ωp and τee) for these samples.
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The (Feff(t)) and (Feff(t)) dependences
obtained in this work for the conducting l-Si and
l-GaAs films were used to study their optical character-

istics nω and kω near  (Fig. 2). The calculations
were carried out using the Fresnel formulas by choos-
ing pairs of nω and kω values minimizing the discrep-
ancy between the experimental and calculated values of

 and . The fact that nω(Feff(t)) continuously
increases while kω is constant above the melting thresh-
old of the samples studied indicates that the optical
properties of the substances are nonuniform (have
effective character) within the skin layer. At the same

time, the fact that nω > kω at Feff(t) ≥  indicates that
a dielectric phase with positive real part of the dielectric
constant appears within the skin layer. With the aim of
elucidating the nature of the observed anomalies, the
effective values of nω and kω were used to obtain the
corresponding dependences of the effective plasma fre-
quency ωp and τee on Feff(t) (Fig. 2). It is seen from
these curves that ωp increases sharply and τee decreases

at Feff(t) ≥ . Since the measured electron optical
mass is unity for l-Si and l-GaAs, the observed substan-
tial monotonic increase in ωp(Feff(t)) can be associated
with the respective increase in the effective electron
density Ne in the skin layer and, hence, increase in the
effective Fermi energy EF0 (Fig. 3). In the Fermi liquid

theory [10], a decrease in τee(Feff(t)) at Feff(t) ≥  can
be caused by the increase in ωp and Te (Fig. 3). The lat-
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ter, like the corresponding electron–electron scattering
constants Kee (2.5 and 1.5 fs–1 eV–2 for l-Si and l-GaAs,
respectively), were calculated by formulas

(1)

(2)

using the functions ωp(Feff(t)) and EF0(Feff(t)) obtained
in this work (Figs. 2, 3) and the fitting parameter C esti-

mated at Feff(t) ≈  (i.e., at Te ≈ 0).

The dependences of Ne, EF0, and Te on Feff(t) (Fig. 3)
suggest that, despite a substantial rise in Te during the
pump pulse, electron gas in the skin layers of the metal-
lic l-Si and l-GaAs films remains degenerate because of
an increase in its effective density Ne, likely, owing to
the thermoelectric effect [11]. Indeed, an increase in
Te(Feff(t)) gives rise to the temperature gradient ∇ Te and
the gradient of electron-gas pressure ∇ Pe in the skin
layers of the l-Si and l-GaAs films, where

(3)

Inasmuch as the electron gas in the skin layer drifts
along the ∇ Pe gradient, the Ne distribution shifts from
the sample surface so that the “effective surface” of
skin layer, i.e., the surface of maximal energy release,
shifts deeper into the skin layer and ∇ Pe sharpens. As a
result, the effective skin surface shifts deeper into the

τee Kee
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skin layer even more rapidly than the deeper lying lay-
ers of the moving Ne distribution, ∇ Pe sharpens further,
and the actual skin depth decreases further; i.e., elec-
tron gas becomes compressed, and the corresponding
local absorption coefficient increases. Evidently, the
trailing edge of the Ne distribution driven by ∇ Pe into
the bulk propagates faster than its leading edge and,
hence, gradually forms a nonstationary “shock” wave
Pe with compression of electron gas at its leading edge.
The exponential character of the Ne, EF0, and Te func-
tions of instantaneous Feff(t) (Fig. 3), which are repre-
sented as sets of instantaneous values of these parame-
ters during the laser pulse, confirms the nonstationary
interpretation given above for this phenomenon. At the
same time, it is evident that an increase in the degree of
ion screening by electron gas with increasing Ne in the
propagating wave will result in the saturation of absorp-

tion at the effective skin surface with a certain ,
and the further shock-wave evolution under the action
of the laser pulse will be due to an increase in the spatial
width of a compressed electron-gas layers with density

 and, likely, to the formation of a universal
“plasma mirror” that was observed for a wide range of
materials at I ≈ 1015 W cm–2 [12]. Note that electron gas
in the l-Si film was compressed 20-fold in our experi-
ments, without any indications of saturation of the
Ne(Feff(t)) dependence (Fig. 3).

Clearly, as the shock wave Pe propagates, a DEL
formed by a “surface” layer of positively charged ions
and a “subsurface” layer of a superdense and “cold”
degenerate electron gas may arise within the skin layer
(Fig. 3). The thickness of the ion layer with density Ni

and charge state zi and the thickness of the electron
layer can be estimated from the electroneutrality

requirement ziNili ≈ (Ne – )le, where li + le ≈ α–1 and

 ≈ 2 × 1023 cm–3 is the equilibrium density of elec-
tron gas in the l-Si and l-GaAs films. For the average
bulk energy density of about 10 eV atom–1 deposited in

the skin layer at Feff(t) ≈ , which is close to the first
ionization potential of the Si, Ga, As, Al, and Cu atoms
(8.2, 6.0, 9.8, 6.0, and 7.7 eV, respectively [13]), one

has le ≈ α–1 /Ne and li ≈ α–1(1 – /Ne), where Ne/
is the compression ratio for the electron layer. For the
compression ratios of 10–20 that were achieved for
electron gas in this work, le equals ~1 nm and decreases
with increasing Ne, whereas li increases to α–1. For

Feff(t) ≈ , the internal electric field in the DEL,
according to the Poisson equation, is equal to E ≈
eNili/ε0 ≈ 1013 V m–1 immediately after the pump pulse
(the corresponding potential difference ∆ϕ ≈ 105 V),
which qualitatively agrees with the experimental data
[14] on the carbon ions with energies up to 10 keV at
close pump fluences, if it is taken into account that ∆ϕ
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decreases rapidly after the heating pulse because of the
relaxation processes in the DEL.

During the first picosecond after the pump pulse,

R2ω decreases at Feff(t) ≥  for the Cu and Al films
and increases for the l-Si film (Fig. 4), likely, because
of the removal of the heated skin layers of metals and
of the melt from the surface of excited silicon. Specifi-
cally, due to the internal electric field, the DEL breaks
through the “relief” (Coulomb explosion) of the unsta-
ble surface layer of positive ions, while the electron-gas
compression vanishes due to the electron–electron
repulsion and electron heat conductivity. A comparison

Feff
1

Fig. 3. Ne (light rhombi), EF0 (dark squares), and kTe (dark
circles) as functions of Feff(t) for the Si and GaAs samples
(the ordinate axes for both samples coincide). The arrows
indicate the onset of the Ne, EF0, and kTe anomalies during
the pump pulse for the Si and GaAs samples.

Fig. 4. Reflectivity R2ω ("2ω = 3.12 eV; normal incidence)
as a function of effective pump fluence Feff for the (right
axis) Al, Si, and (left axis) Cu samples with time delays of,
respectively, 0.3, 0.5, and 0.5 ps from the beginning of
pump pulse. The arrow indicates the subpicosecond DEL
expansion threshold for the indicated samples.
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of the X values at Feff(t) ≈  (Fig. 1) with the skin
width α–1 (8–12 nm) for the l-Si, Cu, and Al films
shows that the DEL breaking time, which restricts the
duration of energy transfer from the skin layer to the
bulk of the sample, is too short to retain the whole
absorbed laser energy in the DEL plasma.

In summary, it has been assumed on the basis of the
experimental data obtained in this work that the strong
inhomogeneous heating of the skin layer of conducting
materials during the laser pulse gives rise to a shock
electron-pressure wave that creates a thin layer of a
superdense (1023–1025 cm–3) degenerate electron gas in
the region of the skin boundary under the “surface”
layer of positive ions. The resulting surface double
electrical layer breaks within one picosecond through
the Coulomb explosion and electron heat conductivity.

We are grateful to D. von der Linde, K. Sokolowski-
Tinten, and V.V. Temnov for their assistance in the orga-
nization of the experiments and to the German Aca-
demic Exchanges Service for partial support (fellow-
ship for S.I.K. in 2000).
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A direct experimental study of the diffusion of carbon atoms between the (100)Mo surface and the bulk has
been carried out at process temperatures in the range 1400–2000 K, and the total balance of carbon atoms in
the system has been determined. The difference in the activation energies of carbon dissolution and precipita-
tion ∆E = ES1 – E1S has been found under conditions of a dynamic equilibrium between both processes. This
difference determines the temperature dependence of the degree of surface enrichment with carbon in reference
to the bulk. The activation energy of the dissolution of carbon atoms has been determined in special experiments
(ES1 = 3.9 eV), and the activation energy of the precipitation of carbon atoms E1S has been calculated (E1S =
1.9 eV), which turns out to be close to the energy of carbon bulk diffusion in molybdenum. © 2001 MAIK
“Nauka/Interperiodica”.

PACS numbers: 66.10.-x; 68.35.Fx
Numerous studies have been devoted to the diffu-
sion of particles in solids [1–4]. Nevertheless, the regu-
larities of the diffusion of atoms between the surface
and the bulk have not been adequately studied [4, 5],
though these regularities are important in all physical
and chemical processes at the surface of heated bodies.
The goal of this work was to study the regularities of
the diffusion of carbon atoms between the surface and
the bulk in thin molybdenum ribbons. Preliminarily, we
comprehensively studied processes that occur during
the interaction of carbon atoms with molybdenum over
the wide temperature range 300–2000 K and a wide
range of surface and bulk carbon concentrations [6, 7].

Experiments were carried out in an ultrahigh-vac-
uum (UHV, P ~ 1 × 10–10 torr) high-resolution Auger
electron (∆E/E ~ 0.1%) spectrometer with a prism
energy analyzer [8]. The Auger spectra were measured
directly in strongly heated (up to 2000 K) samples,
which was of principal importance in studying equilib-
rium processes at medium and high temperatures. Thin
molybdenum ribbons (1 × 0.02 × 40 mm3), which were
carefully purified from possible impurities by high-
temperature heating in an oxygen atmosphere and
under UHV conditions, were used as samples. The tex-
ture of ribbons was expressed by the (100) face by no
more than 99.5%; the surface was uniform in work
function and possessed eϕ = 4.45 eV. Carbon was
deposited on the surface from the source developed by
the authors. The source created an atomic C flux free
from carbon clusters [9]. The absolute flux density was
determined by the procedure described in [7].

Consider experiments under diffusion equilibrium
conditions, when the carbon atom flux from the surface
0021-3640/01/7312- $21.00 © 20671
to the metal bulk νS1 is equal to the flux from the first
near-surface layer onto the surface ν1S. For this pur-
pose, carbon was deposited onto the ribbon at 300 K
with Ndep = 1.5 × 1016 cm–2, and, next, it was spread over
the entire molybdenum bulk by heating to 2000 K.
Using the known data on the bulk diffusion of carbon in
molybdenum [10, 11], it can be easily shown that, in the
range 1500–2000 K, carbon atoms will pass through
the whole width h = 20 µm of the ribbon rather rapidly.
Actually, in the case of unidirectional diffusion, the
length of the diffusion front λ is related to the diffusion
time by the equation [12]

(1)

where

(2)

with allowance made for the diffusion rate constants of
C atoms in Mo proposed in [10]. Setting λ = h, we find
the rated traveling time of carbon from one side of the
ribbon to the other as a function of temperature (see
table).

It is evident that the uniform filling of the molybde-
num bulk with carbon at T > 1500 K will be attained
rapidly. If now the temperature is decreased stepwise
from 2000 K, and the Auger signal of carbon is
recorded directly at the heated sample rather than at
room temperature, we will obtain curve 1 presented in
Fig. 1. This figure displays the temperature dependence
of the surface carbon concentration normalized to the
carbon concentration in the surface carbide with NSC =
1 × 1015 cm–2, which we take as θ = 1.

λ 2Dt,=

D cm2/s[ ] 34.8 10 2– 1.78 11 600/T×[ ]exp×=
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It turned out that the dependence is reproduced well
at a decrease or increase in temperature. It is evident
that equilibrium conditions in our experiments are
attained when the diffusion fluxes between the surface
and the bulk of the ribbon become equal and the mass
transfer of carbon is terminated. Because carbon is uni-
formly spread over the entire bulk, its concentration can
be estimated in one interstitial layer. Let us assume that
T = 1400 K. Then, the surface carbon concentration on
each side of the ribbon will be equal to NS = 1 ×
1015 cm–2. The amount of carbon that passes into the
ribbon bulk will be equal to

. (3)

Hence, the carbon concentration in 1 cm2 of an intersti-
tial layer will be equal to

(4)

where m = h/2d ~ 1.4 × 105 is the number of interstitial
planes in the ribbon with the allowance made for the
occurrence of two equivalent interstitial planes per one
unit cell, and d is the lattice constant in the [100] direc-
tion, d ≈ 3.04 Å [13]. The huge difference in the carbon
concentrations at the surface (~1015 cm–2) and in the
near-surface layer (~1011 cm–2) can exist at equilibrium
if the precipitation of carbon is a very fast process com-
pared to its dissolution; that is, it should be expected
that E1S ! ES1.

If the amount of carbon dissolved in the bulk is
increased by its sputtering at 300 K followed by heating

Nb Ndep= 2NS–

N1 NS/m 1 1011×  cm 2– ,= =

Rated traveling time of carbon through a sample

T, K 1500 1600 1700 1800 1900 2000

t, s 56 24 11 6 3 1.8

Fig. 1. Equilibrium coverage of carbon on (100)Mo as a
function of the substrate temperature. The number of carbon
atoms per 1 cm2 of the interstitial plane equals: (1) 1.0 ×
1011, (2) 1.5 × 1011, and (3) 3 × 1011. The carbon concen-
tration in the surface carbide, which equals NS = 1 ×
1015 cm–2, is taken as θ = 1.
the ribbon again to 2000 K, we will obtain new equilib-
rium curves 2 and 3 in Fig. 1. An increase in the bulk
concentration of carbon shifts the entire curve toward
the region of higher temperatures because of the growth
of the precipitation flux. It is important to note here that
the direct proportionality of NS to the concentration of
the dissolved carbon is observed in the region of high T
for the case of NS < 5 × 1014 cm–2.

When the bulk carbon concentrations are far from
tolerable ones, which is the case in this work at least at
T > 1500 K, the dissolution νS1 and precipitation ν1S
fluxes with particle exchange can be described by the
following equations [4]:

(5)

(6)

where k is the Boltzmann constant, N1m is the carbon
concentration in the first subsurface layer correspond-
ing to the limiting solubility, and CS1 and C1S are preex-
ponential factors in the equations for the dissolution
and precipitation fluxes.

The mass transfer of particles between the surface
and the bulk of the metal determines the activation
energies of dissolution ES1 and precipitation E1S, which
can differ in the general case from the activation energy
of bulk diffusion E0 = 1.78 eV [14]. If we make a sec-
tion of curves θ = f(t) for NS = const, the following
equation can be obtained from Eqs. (5) and (6):

(7)

The experimental data actually fell on a straight line,
and ∆E was found from its slope. It turned out that ∆E
was constant and equal to (2.0 ± 0.1) eV in the coverage
range 0 < θ < 0.5. At θ > 0.5, ∆E decreased slightly and
reached 1.8 eV at θ = 0.95 (Fig. 2). Given ∆E, the ratio
CS1/C1S = 370 = const was determined from Eq. (7).

Not only the energy difference, but the activation
energy of carbon dissolution ES1 for the case NS < 5 ×
1014 cm–2 was determined by setting up special experi-
ments. For this purpose, a carbon dose (Ndep = 5 ×
1014 cm–2) was sputtered at 300 K onto a sample care-
fully purified from carbon. Then, the ribbon tempera-
ture was raised stepwise, and the surface carbon was
tracked by Auger electron spectroscopy. It was found
that the dissolution of this carbon started only at T >
1350 K. Using the procedure proposed previously [15],
we estimated the activation energy of carbon dissolu-
tion ES1 = 3.9 ± 0.3 eV from the starting portions of the
dependence for 1350 K. This value is in complete cor-
respondence with the temperature of the onset of nota-
ble carbon dissolution. A similar significant excess of
the activation energy of carbon dissolution (ES1 =
5.0 eV) over the activation energy of bulk diffusion
(E0 = 2.6 eV) was observed for the (100)W–C system
in [5] and then for the (100)Ta–C system in [16]. The
effect observed is evidently characteristic for many

νS1 NS 1 N1/N1m–( )CS1 ES1/kT–[ ] ,exp=

ν1S N1C1S E1S/kT–[ ] ,exp=

N1S T( )ln NS1CS1/C1S[ ]ln= ∆E/kT .–
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metal–carbon systems. Given ES1, let us also estimate
E1S in the (100)Mo–C system: E1S = ES1 – ∆E ~ 3.9 – 2.0 =
1.9 eV (for θ < 0.5); that is, E1S is close to the activation
energy of carbon bulk diffusion in molybdenum.

It is interesting to note that the dependence θ – f(T)
reaches a plateau θ = 1 at T < 1400 K, which corre-
sponds to the formation of the surface MoC carbide.
The reached value θ = 1 depends on neither the further
decrease in temperature nor the carbon concentration in
the molybdenum bulk. It may be suggested that the
energy barriers for carbon dissolution and precipitation
at the surface become equal (∆E  0).

We would like to emphasize that obtaining reliable
quantitative data on the processes of dissolution and
precipitation required solving two important problems.
It was necessary to know exactly the concentration of
carbon deposited on the metal and vary it. It was also
necessary to carry out all the measurements directly at
high temperatures. We managed to overcome these dif-
ficulties, first, by using an absolutely calibrated flux of
carbon atoms and, second, by using thin metal ribbons.
Therefore, an equilibrium between the surface carbon
and carbon in the bulk metal was attained rapidly.
Finally, the unique prism Auger spectrometer allowed
Auger spectra to be measured directly for a sample
heated up to 2000 K and higher. This allowed errors
associated with the rapid precipitation of carbon at the
surface upon sample cooling to be avoided. Thus, the
physical picture of processes was properly revealed,
and some important kinetic parameters describing car-

Fig. 2. Dependence ∆E = ES1 – E1S = f(θ) for the
C/(100)Mo adsorption system under conditions of equilib-
rium between the diffusion fluxes from the surface to the
bulk and from the bulk to the surface.
JETP LETTERS      Vol. 73      No. 12      2001
bon transport between the metal bulk and surface were
obtained.

The rate parameters for surface–bulk and bulk–sur-
face diffusion transitions in the solid state were appar-
ently obtained for the first time. The great difference
between the activation energies of bulk diffusion
(~1.8 eV) and dissolution (~3.9 eV) may lead to differ-
ences of many orders of magnitude in the rates of diffu-
sion processes.

This work was supported by the Ministry of Science
of Russian Federation, “Surface Atomic Structures”
program, project no. 4.6.99.
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Results of studying the temperature dependence of the residual polarization of negative muons in crystalline
silicon with germanium (9 × 1019 cm–3) and boron (4.1 × 1018, 1.34 × 1019, and 4.9 × 1019 cm–3) impurities are
presented. It is found that, similarly to n- and p-type silicon samples with impurity concentrations up to
~1017 cm–3, the relaxation rate ν of the magnetic moment of a µAl acceptor in silicon with a high impurity con-
centration of germanium (9 × 1019 cm–3) depends on temperature as ν ~ T q, q ≈ 3 at T = (5–30) K. An increase
in the absolute value of the relaxation rate and a weakening of its temperature dependence are observed in sam-
ples of degenerate silicon in the given temperature range. Based on the experimental data obtained, the conclu-
sion is made that the spin-exchange scattering of free charge carriers makes a significant contribution to the
magnetic moment relaxation of a shallow acceptor center in degenerate silicon at T & 30 K. Estimates are
obtained for the effective cross section of the spin-exchange scattering of holes (σh) and electrons (σe) from an
Al acceptor center in Si: σh ~ 10–13 cm2 and σe ~ 8 × 10–15 cm2 at the acceptor (donor) impurity concentration
na(nd) ~ 4 × 1018 cm–3. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.55.Cn; 76.75.+i
In contrast to shallow donors, shallow acceptor cen-
ters in semiconductors with a diamond-type crystal lat-
tice have not been adequately investigated [1]. The use
of conventional methods (EPR, ENDOR) for studying
shallow acceptors is essentially restricted because of the
high spin–lattice relaxation rate of the magnetic moment
of the acceptor and the broadening of the resonance line
due to random crystal strains [2].

The use of negative muons [3–6] significantly
extends the possibilities of experimental studies of
shallow acceptor centers in silicon.

When a negative muon is implanted in silicon, the
resulting muonic atom models the behavior of an
acceptor aluminum impurity (µAl). The behavior of the
residual polarization of a negative muon that occupies
the 1S level of the muonic atom is determined by the
hyperfine interaction (Ahf is the hyperfine coupling con-
stant) in the muonic atom and by interactions of the
electron shell of the muonic atom with the medium. In
an external magnetic field transverse to the muon spin,
the magnetic moment relaxation rate of the µAl accep-
tor is high (ν @ Ahf). Therefore, the polarization vector
precession frequency is close to the precession fre-
quency of the free muon spin, and the muon spin exhib-
0021-3640/01/7312- $21.00 © 20674
its relaxation (with the relaxation rate λ) and a para-
magnetic shift of the precession frequency (∆ω). The
relation between the parameters of muon spin polariza-
tion observed experimentally (λ, ∆ω) and the parame-
ters (Ahf , ν) characterizing interactions of the paramag-
netic acceptor center within the model of isotropic
hyperfine interaction is determined by the equations [7]

(1)

(2)

where ∆ω = ω(T) – ω0 (ω0 is the angular muon spin pre-
cession frequency in the diamagnetic state of the
muonic atom); " = h/2π (h is Planck’s constant); kB is

the Boltzmann constant; µB and  are the electronic
and muonic Bohr magnetons, respectively; g is the
g factor of the acceptor center; ωe = gµBB/" is the angu-
lar magnetic moment precession frequency of the elec-
tron shell of the acceptor center in the external mag-

λ j j 1+( )
3

-------------------
Ahf

2

ν
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Ahf
2 ν

ν2 ωe
2+
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 
 
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,=

∆ω
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gµB

2µB
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3kBT
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µ
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netic field B; and T is temperature in kelvin. For a shal-
low acceptor center in silicon, j = 3/2 [8] and g =
−1.07 [9].

We found previously [4–6] that the magnetic
moment relaxation of a µAl acceptor in nondegenerate
silicon is due to spin–lattice interaction, and the relax-
ation rate depends on temperature as ν ~ T q, q ≈ 3. An
increase in the absolute value of the relaxation rate and
a weakening of its temperature dependence were
observed [6] in n- and p-type silicon at impurity con-
centrations of higher than ~1018 cm–3. It was suggested
that the increase in the magnetic moment relaxation
rate of an acceptor center in a degenerate semiconduc-
tor at low temperatures is due to the spin-exchange
scattering of free charge carriers. The goal of this work
was to elucidate the mechanisms of magnetic moment
relaxation for an acceptor in a heavily doped semicon-
ductor.

The temperature dependence of parameters of the
residual polarization of negative muons was investi-
gated in samples of silicon with germanium (9 ×
1019 cm–3, ρ = 60 Ω cm) and boron (4.1 × 1018, 1.34 ×
1019, and 4.9 × 1019 cm–3) impurities. Germanium, as
well as silicon, belongs to the IV group of elements of
the Periodic Table; the outer electron shell of these ele-
ments contains four valence electrons. In contrast to
group III and V element impurities, a germanium impu-
rity does not increase the concentration of free charge
carriers in silicon as compared to “pure” samples, in
which the concentration of free charge carriers at low
temperatures is insignificant. Therefore, the contribu-
tions to the magnetic moment relaxation of an acceptor
due to the interactions with free charge carriers and
with the crystal lattice can be separated by comparing
the results of investigations for silicon with a germa-
nium impurity and silicon with concentrations of group
III and V atoms of order nc (nc is the critical concentra-
tion corresponding to the dielectric–metal transition).
When the concentration of group III and V atoms is
equal to or higher than nc, the concentration of free
charge carriers in the semiconductor is approximately
equal to the concentration of impurity atoms. Depend-
ing on the impurity atom, nc for silicon varies from
~3 × 1018 to ~7 × 1018 cm–3 [10].

The measurements were made on a Stuttgart LFQ
spectrometer [11] and GPD [12] spectrometers with
muon beams µE4 and µE1 of the proton accelerator at
the Paul Scherrer Institute, PSI, Switzerland. The sam-
ples to be studied were cut from silicon single crystals
in the shape of disks (~30 mm in diameter and up to
15 mm in height) and were set so that the disk axis
coincided with the muon beam axis. The magnetic field
at the sample transverse to the muon spin was created
by Helmholtz coils and equaled 0.1 T. The long-term
stability of the magnetic field was no worse than 10–4.
The temperature of samples was stabilized with an
accuracy of 0.1 K over the range 4.2–300 K.
JETP LETTERS      Vol. 73      No. 12      2001
The procedure of recovering the polarization func-
tion of a negative muon from the experimental µ–SR
spectra was described in detail in [4]. Recall that (see
[4]) the polarization function of the muon spin in the
paramagnetic state of the acceptor center takes the form
(we consider the case when the sample is in an external
magnetic field transverse to the muon spin)

(3)

where p0 is polarization at the zero instant of time (the
residual polarization of the negative muon at the
1S level of the muonic atom), and λ, ω, and φ are,
respectively, the relaxation rate, frequency, and starting
precession phase of the muon spin.

Experimental data on the temperature dependence
of the precession frequency shift of the muon spin for
the silicon samples studied in this work are shown in
Fig. 1. (The precession frequency of the muon spin at
room temperature was taken as ω0.) It is evident in the
figure that the frequency shift increases with decreasing
temperature for the sample with a germanium impurity.
The hyperfine coupling constant in the acceptor center
formed by the muonic atom was determined by fitting
the data obtained for the sample with a germanium
impurity using Eq. (2). It was found that Ahf /2π equals
23.6 ± 1.5 MHz, which is in agreement with the average
value (26.5 ± 2.3 MHz) of the hyperfine coupling con-
stant obtained for more than ten samples of n- and
p-type silicon with impurity concentrations up to 2 ×
1017 cm–3 studied previously [4–6]. (In averaging the
experimental data [4–6], the error in the Ahf /2π value
was calculated as the weighted average standard devia-
tion of the obtained values relative to their average
value.)

On the average, the precession frequency shift of the
muon spin at T & 30 K for a silicon sample with a boron
impurity (4.1 × 1018 cm–3) is ~3 × 10–3. Within the limits

p t( ) p0e λ t– ωt φ+( )cos ,=

Fig. 1. Temperature dependence of the precession fre-
quency shift of the muon spin for silicon samples with ger-
manium (9 × 1019 cm–3) and boron (4.1 × 1018, 1.34 × 1019,
and 4.9 × 1019 cm–3) impurities; the dashed line corre-
sponds to the dependence ∆ω/ω0 = C/T.
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of experimental errors, it hardly depends on the temper-
ature. The precession frequency shift at a boron con-
centration of more than ~1019 cm–3 is close to zero
within the limits of experimental errors.

The decrease in the absolute value of the precession
frequency shift of the muon spin in silicon with a boron
impurity observed in this work correlates with the
behavior [13, 14] of the static paramagnetic susceptibil-
ity of acceptor (donor) impurities in silicon when their
concentration na(nd) is on the order of higher than nc.

Muon spin relaxation (λ) was observed only for
samples of silicon with a germanium impurity (9 ×
1019 cm–3) and boron (4.1 × 1018 cm–3). The experimen-
tal data λ(T) were approximated by Eq. (1) under the

suggestion that ν depends on temperature as ν = C ,

 = T/1 K. The values of q were found to be equal to
2.87 ± 0.16 and 0.7 ± 0.2 for samples with germanium
and boron impurities, respectively. The index of power
dependence q for the sample of silicon with a germa-
nium impurity, in spite of the very high concentration
of Ge, coincides within the limits of errors with values
q ≈ 3 obtained previously for more than ten samples of
silicon with various (P, B, As, Al, and Ga) impurities
whose concentrations were no more than 2 × 1017 cm–3.
In the case of silicon with a boron impurity (4.1 ×
1018 cm–3), the temperature dependence of ν is signifi-
cantly weaker than a T 3 dependence. A similar weaken-
ing of the temperature dependence of the magnetic
moment relaxation rate was observed previously in
[5, 6] for an acceptor impurity in n- and p-type silicon
with impurity concentrations of ~1018 cm–3.

T̃
q

T̃

Fig. 2. Temperature dependence of the magnetic moment
relaxation rate ν of an acceptor center for samples of silicon
with germanium (9 × 1019 cm–3), boron (4.1 × 1018 cm–3),
and phosphorus (4.5 × 1018 cm–3) impurities; straight lines

describe relationships of the form ν = C ; the solid
straight line is the averaged dependence ν(T) for samples of
n- and p-type silicon with impurity concentrations up to
2 × 1017 cm–3.

T̃
q

The temperature dependence of the magnetic
moment relaxation rate ν of an acceptor center is illus-
trated in Fig. 2 for samples of silicon with germanium
(9 × 1019 cm–3) and boron (4.1 × 1018 cm–3) impurities.
The value of ν was calculated from the experimental
data on the muon spin relaxation rate by Eq. (1) at
Ahf /2π = 26.5 MHz. The values of ν calculated for sili-
con with a phosphorus impurity (4.5 × 1018 cm–3) from
the experimental data reported in [5] are also presented
in Fig. 2. The straight lines in the figure correspond to

relationships of the form ν = C , and the solid line
corresponds to the averaged (by the data from [4–6])
temperature dependence ν(T) for silicon samples with
n- and p-type impurity concentrations of less than 2 ×
1017 cm–3: C ≈ 9 × 106 s–1, q = 2.86 ± 0.26. The weighted
average standard deviation of the results of separate
measurements of q relative to their average value is
given as the error of parameter q.

The analogous (close to T3) temperature dependence
of ν in silicon samples with na (nd) & 1017 cm–3 and in
silicon with a high (~1020 cm–3) concentration of an iso-
electronic impurity and, simultaneously, a significant
deviation of ν from a T3 dependence at na (nd) ~ nc indi-
cate that the magnetic moment relaxation of an accep-
tor center in the first case is due to spin–lattice interac-
tion, whereas the spin-exchange scattering of charge
carriers by an acceptor makes a significant contribution
to relaxation in the second case. The rate of the spin-
exchange scattering of free charge carriers from a para-
magnetic center in a degenerate semiconductor, as well
as in a metal, is proportional to the first degree of tem-
perature

(4)

where σ is the effective cross section of spin-exchange
scattering, n is the impurity concentration, and β is a
numerical coefficient (for silicon, β ≈ 1 [15]).

Correspondingly, the temperature dependence of the
magnetic moment relaxation rate of an acceptor center
for degenerate silicon samples can be represented in the
form

(5)

The values of parameters C1 and C2 obtained when
the experimental data for degenerate silicon samples
shown in Fig. 2 were fitted to Eq. (5) are given in the
table. The effective cross sections of the spin-exchange
scattering of holes (σh) and electrons (σe) from an Al
acceptor center in Si calculated by Eq. (4) using the val-
ues of C1 are given in the same table.

It is evident from the table that the effective cross
section for the spin-exchange scattering of holes from
an acceptor in a boron-doped silicon sample ([B] ~
4.1 × 1018 cm–3) is σh ~ 10−13 cm2 and exceeds by more
than an order of magnitude the cross section for elec-
tron scattering in a sample with approximately the same

T̃
q

ν β"
1– n2/3σkBT ,=

ν T( ) C1T̃= C2T̃
3
, T̃+ T /1 K.=
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Values of C1 and C2 parameters and estimates of the effective cross section of the spin-exchange scattering of holes σh and
electrons σe by a paramagnetic Al acceptor center in Si

Sample C1, 109 s–1 C2, 106 s–1 σh, cm2 σe, cm2

Si : B (4.1 × 1018 cm–3) 42 ± 4 9* ~10–13 –

Si : P (4.5 × 1018 cm–3) 2.4 ± 0.4 4.9 ± 1.2 – ~8 × 10–15

Note: When processing, the parameter C2 was fixed according to its mean value in n- and p-type silicon samples with impurity concentra-

tions less than 2 × 1017 cm–3.
concentration of phosphorus impurity. We know no
experimental work in which the effective cross sections
of the spin-exchange scattering of charge carriers by a
shallow impurity center in silicon would be deter-
mined. For comparison, we cite the value of σ obtained
in [16] for the scattering of conduction electrons by a
paramagnetic Fe center in Si, which is a deep donor:
σe(Fe) ~ 10–14 cm2. The effective σh(Al) and σe(Al)
cross sections obtained in this work are not in contra-
diction with the data reported in [16] for σe(Fe),
because the effective cross section of the spin-exchange
scattering of charge carriers can be larger in the case of
a shallow acceptor center due to a larger size of the hole
localization region.

Thus, in this work, it is shown experimentally that
the magnetic moment relaxation of a shallow acceptor
center in silicon at T & 30 K in the case of a low con-
centration of free charge carriers (nondegenerate semi-
conductor, isoelectronic impurity) is due to spin–lattice
interaction, and the relaxation rate depends on temper-
ature as ν ~ T q, q ≈ 3. The magnetic moment relaxation
of an acceptor in degenerate silicon at T & 30 K is vir-
tually determined by the spin-exchange scattering of
free charge carriers. Estimates are obtained for the
effective cross section of the spin-exchange scattering
of holes (σh) and electrons (σe) by an Al acceptor center
in Si.

The authors are grateful to the administration of the
Paul Scherrer Institute (Switzerland) for the possibility
of performing the measurements reported in this work.
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The explanation is given for the apparent anomalous behavior of the power spectrum of 1/f noise as if it corre-
sponded to the total infinite power of noise sources. Physical mechanisms eliminating the apparent anomalies
are described. With these mechanisms, the finite and integrable 1/f-noise power spectra fitting the known phys-
ical concepts of noise processes are obtained in the low- and high-frequency limits. © 2001 MAIK
“Nauka/Interperiodica”.

PACS numbers: 05.40.Ca
A low-frequency random signal with power spec-
trum F(ω) ~ ω–α (α ~ 1, ω = 2πf ), called 1/f noise, is
observed in a wide diversity of transport phenomena,
not necessarily physical, occurring in many-particle
systems. A remarkable property of the 1/f-noise spec-
trum of the form ω–α is that it displays an anomalous
behavior; namely, it tends to infinity in the vicinity of
zero frequency, and the corresponding integral diverges
at one of the edges or, for α = 1, at both edges of the fre-
quency scale. This property of the 1/f noise implies that
it is nonstationary and that the total power of its sources
is infinite, which is in contradiction with the properties
of real noise signals that are generated and measured
under stationary conditions. To account qualitatively
for this paradoxical situation, it was repeatedly
assumed that the 1/f spectrum is so modified at high
and low frequencies that it becomes finite and integra-
ble [1].

It is the purpose of this work to prove this assump-
tion and establish the mechanism that is responsible for
the deviation of the 1/f spectrum from the standard
form ω–α and to estimate these distinctions on the basis
of the mathematical theory of 1/f noise developed in
[2, 3]. This theory states that the 1/f noise is generated
due to the diffusional relaxation of the fluctuations of a
physical parameter in a shock-type system, in which
this parameter obeys a power-law density distribution
[2, 3], while the fluctuations form a random Poisson
sequence. Accordingly, the 1/f noise is a random signal
formed as a result of measuring the diffusion flows
ji(x – xi , t – ti), where xi and ti are, respectively, the
coordinate and the moment at which the ith fluctuation
occurs; r(x – xi , t – ti) is the current value of the param-
eter at t > ti; and i ∈  (0, K), where K is the number of
fluctuations in the Poisson sequence. The spectrum of
1/f noise has the required ω–α form if the relationships
β = 3/2 – α, β ∈  (0, 1), α ∈  (0.5, 1.5) hold and the ine-
0021-3640/01/7312- $21.00 © 20678
qualities h = (λ1/ω)1/2 ! 1 and δ2 = (v 2/4κω)2 ! 1 are
fulfilled, where λ1 is the lowest eigenvalue of the diffu-
sion equation rt = v rx + κrxx with homogeneous bound-
ary conditions, which describes the fluctuation relax-
ation process; v  is the drift velocity of particles; and
κ is the diffusion coefficient.

Let us first consider the low-frequency region. It is
shown in [2, 3] that the frequency dependence F(ω) is
modified at v  ≠ 0 because of replacing ω by ω' = ω(1 +
δ2)1/2, as a result of which the 1/f spectrum becomes
different from ω–α at low frequencies. However, the
mechanism of forming fluctuations in the general
model [2–4] necessarily presumes a nonzero velocity of
the jump in the physical parameter and, hence, the non-
zero velocity v  of the convective transport of particles
involved in the fluctuation. For this reason, the F(0)
value in this theory is finite; i.e., the low-frequency
anomaly of the 1/f noise vanishes.

The experimentally observed fact that F(ω) is close
to ω–α is qualitatively explained in this theory as fol-
lows. Let us write δ2 as (v /v d)4, where v d = 2(κω)1/2

characterizes the velocity of the diffusion front moving
from the fluctuation after the singularity appears in its
density. Due to this singularity and to the rapidity of its
formation because of the fluctuation front breaking, v d

is larger than v  and, hence, the condition δ2 ! 1 for the
validity of the F(ω) ~ ω–α dependence is fulfilled. For
instance, it follows from [4, 5] that v  in the electric con-
ductors with high charge-carrier density is on the order
of the drift velocity V of conduction electrons, so that
for typical values κ ~ 104 cm2/s, V ~ 10–2 cm/s, and f =
(ω/2π) ~ 1 s–1 the value of δ2 is ~10–19, i.e., negligibly
small. The values δ ~ 1 are achieved only at ω ~ Ω =
v 2/4κ ~ 2.5 × 10–9 Hz. For this reason, to distinguish
between the ω–α spectrum and the 1/f spectrum pre-
001 MAIK “Nauka/Interperiodica”
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dicted by this theory, an experimentally inaccessible
time of Ω–1 ~ 102 years is required.

Let us now consider the high-frequency domain. It
is assumed that the 1/f spectrum decreases in this
domain faster than ω–α because of a smoothing-out
effect of the time correlation between different points
of the particle trajectory in the diffusion flow. This
effect was not taken into account in the basic model.
The inclusion of this effect will lead to the suppression
of the most rapid fluctuations in the diffusion flow and,
as a consequence, to the narrowing of the 1/f spectrum
up to its integrable form.

Let us prove this supposition by calculating the
asymptotic form of F(ω) in the high-frequency limit
with account taken of the time correlation. For this pur-
pose, we generalize the model [2, 3] and assume that κ
is a function of time. The resulting diffusion equation
allows for the correlative distinctions in the fluctuation
decay rates at different instants of time. To establish the
form of κ(t), let us introduce the coordinate ξ = x + v t
and transform the diffusion equation to the canonical
form wt = κ(t)wξξ, where w(ξ, t) = r(ξ – v t, t). We next
use two methods, statistical and phenomenological, to

calculate the variance Dξ =  for the random displace-
ment dξ = ξ(t) – ξ(0) of a particle in the flow and obtain
the desired function κ(t) by equating the results of both
calculations.

In the first method, one should use the relationship

dξ = dt ' between dξ and the random velocity

component u(t) of a particle (〈u 〉  = 0) to find

(1)

where R(|t ' – t ''|) = 〈u(t ')u(t '')〉  is the particle velocity
correlation function.

In the second method, one starts with the definition
of the 〈ξ 2(t)〉  quantity

(2)

Let us neglect the boundary effects (small at h ! 1) in
the object under observation and substitute the solution
of the diffusion equation with κ = κ(t) into Eq. (2):

(3)

where the Green’s function of the diffusion equation is

(4)

dξ
2

u t'( )
0

t∫

Dξ u t'( )u t''( )〈 〉 dt'dt''

0

t

∫ 2 t s–( )R s( ) s,d

0

t

∫= =

ξ2 t( )〈 〉 ξ 2 t( )w ξ t,( ) ξ / w ξ t,( ) ξ .d

∞–

∞

∫d

∞–

∞

∫=

w ξ t,( ) w ξ 0,( )G ξ t; ξ' 0, ,( ) ξ',d

∞–

∞

∫=

G ξ t; ξ' 0, ,( ) πg t( )( ) 1/2– ξ ξ '–( )2/g t( )–[ ] ,exp=

g t( ) 4 κ t'( ) t '.d

0

t

∫=
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This gives the following phenomenological expression
for Dξ(t):

(5)

By setting Eq. (5) equal to its estimate (1), one obtains
the desired quantity

(6)

For the correlation function

[6], one obtains

(7)

At t/τ  0, κ(t)  κ0t/τ and Dξ(t)  κ0t2/τ and at
t/τ  ∞, κ(t)  κ0 and Dξ(t)  2κ0t. One can
show [6] that this limiting behavior of the functions κ(t)
and Dξ(t) does not depend on the form of R(s) and is
quite general.

By reproducing the calculations performed in [2, 3]
and replacing κ = const by κ(t) from Eq. (6), one can
recast F(ω) as a series

(8)

with asymptotic form  ~ (A2/L)  (β = 3/2 –
α) differing from G (0)(ω) in [2, 3] only by the frequency
multiplier |gωn0 |2, for which one now has

(9)

Thus, taking account of time correlations in this
problem amounts to the estimation of gωn0. It is hard to
apply directly the formulas of asymptotic analysis to
this quantity because Eq. (9) involves two large param-

eters ω and n2 that enter in  = (πn/L)2. Nevertheless,
one can show [7] that, at large enough ω, the estimate
of a given accuracy is expressed by the integral over
small vicinity [0, ∆'(ω, n2)], which decreases indefi-

nitely as ω increases, with ∆'(ω, ) < ∆'(ω, ) at n1 <
n2, as follows from Eq. (9). This allows the ω0 and

Dξ t( ) 2 κ t '( ) t '.d

0

t

∫=

κ t( ) R s( ) s.d

0

t

∫=

R s( ) κ0τ
1– s/τ–( )exp=

κ t( ) κ0 1 t/τ–( )exp–[ ] ,=

Dξ 2τκ 0 t/τ 1 t/τ–( )exp–( )–[ ] .=

G 0( ) ω( ) bn
2〈 〉 kn

2 gωn0
2

n 1=

∞

∑=

bn
2〈 〉 kn

2 1 β–( )–

gωn0 κ t( ) –kn
2D t( )/2 iωt+( )exp t.d

0

∞

∫=

kn
2

n2
2 n1

2
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n2-independent ∆ = ∆(ω0) quantities to be chosen in
such a way that the integral estimate of gωno for ω ≥ ω0

(10)

obtained by replacing the upper limit ∞ in Eq. (9) by
∆ = ∆(ω0) and κ(t) and Dξ(t) by their limiting values,
will have the predetermined accuracy.

The asymptotic estimate of integral (10) can be done
by its transformation to the special functions and the
standard power series expansions. Let us introduce the
parameters η = (ωτ/2)1/2, x = nh, λ = (ηx)2, ψ = η/x, γ =
∆/τ, ζ = γλ1/2 – iψ, and Q = π1/2κ0τ/2λ and substitute

κ0  = (nh)2ω and t = τλ–1/2(y – iψ) in the exponent,
whereupon we transform Eq. (10) to

(11)

We now take into account that |ζ| = |ζ(x)| ≥ (ω∆)1/2

and  ∈  (0, –π/2) for any x and assume that
(ω∆)1/2 @ 1. The replacement of erfc(ζ) in Eq. (11) by its
asymptotic estimate π–1/2ζ–1erfc(–ζ2) and i1erfc(−iψ) by
its series expansion [Eq. (7.2.4) in [8, ch. 7]) gives the
following estimate at (ω∆)1/2 @ 1:

(12)

where ak = 2k[k!Γ((3 – k)/2)]–1 at k = 1 and k = 2m (m ≥
0) and ak = 0 at k = 2m + 1 (m > 0) and W = W(x, γ) =
|W |exp( ), where |W | = π–1/2γx2((γx2)2 + 1)–1/2 and

 = γx2)–1.

The resulting general expression for |gωn |2 at
(ω∆)1/2 @ 1 is

(13)

Inserting |gωn |2 into Eq. (8) and passing from summa-
tion to integration in the same manner as in [2, 3], one

gωn κ0 t/τ( ) κ0kn
2t2/2τ– iωt+( )exp t,d

0

∆

∫=

kn
2

gωn Q ψ2–( ) i1erfc iψ–( )[exp=

– π1/2 ζ2–( )exp erfc ζ( ) ] .–

ζarg

gωn Q ψ2–( ) 1/2( ) ak iψ( )k W ζ2–( )exp–
k 0=

∞

∑ ,exp∼

i Warg
Warg (arctan

gωn
2 I0 I1= I2– I3,+=

I1 Q2/4( ) 2 η /x( )2–( )exp=

× aka j 2 δkj–( ) η /x( )k j+ k j–( )π/2( ),cos
j 0=

k

∑
k 0=

∞

∑
I2 Q2 W – γηx( )2 η /x( )2–[ ]exp=

× ak η /x( )k ω∆ Warg kπ/2+ +( ),cos
k 0=

∞

∑
I3 Q

2
W 2 2 γηx( )2–( ).exp=
arrives at the correct (because of the condition h ! 1)
estimate G0(ω) for the spectrum G (0)(ω):

(14)

After the substitution x = η(y/2)–1/2, the integrals in
G1(ω) are reduced to Euler integrals of the first kind [8],
to give

(15)

By the substitution x = (γη)–1(y/2)1/2, the integral in
G3(ω) is approximated by an Euler integral of the first
kind, to give

(16)

The term G2(ω) is transformed as

(17)

The asymptotic estimate of the integral fk using the
Laplace method [7] yields

(18)

Substituting Eq. (18) into Eq. (17), one obtains the esti-
mate for G2(ω) in the form

G0 ω( ) G1 ω( ) G2 ω( )– G3 ω( ),+=

Gi ω( ) A2/πL( ) ω/κ0( )β 1/2+ x2βIi x( ) x.d

0

∞

∫=

G1 ω( ) A2 8L( ) 1– P α( ) κ0τ( )α ωτ( ) 2α– ,=

P α( ) aka j 2 δkj–( )
j 0=

k

∑
k 0=

∞

∑=

× 2 k j+( )/2– Γ k j+( )/2 α+( ) k j–( )π/2( ).cos

G3 ω( ) = A2/2πL( )Γ 2 α–( ) κ0τ( )αγ2 α 1–( ) ωτ( ) 2– .

G2 ω( )

=  A2 κ0τ( )2 ω/κ0( )β 1/2+ W 4Lη4( ) 1–
ak f kη

k,
k 0=

∞

∑

f k x2β k– 4– – γηx( )2 η /x( )2–[ ]exp

0

∞

∫=

× ω∆ Warg kπ/2–+( )dx.cos

f k π/4( )γ1 β– k /2+∼
× ω∆–( ) ω∆ 2k 1–( )π/4–( ).cosexp

G2 ω( ) q ω∆–( )exp∼
× Ss ω∆ π/4+( )sin Sc ω∆ π/4+( )cos+[ ] ,

q Aκ0τ /4( )2γ1 β– 2η5L( ) 1– ω/κ0( )β 1/2+ ,=

Ss ak ω∆/2( )k /2 kπ/2( ),sin
k 0=

∞

∑=

Sc ak ω∆/2( )k /2 kπ/2( )cos .
k 0=

∞

∑=
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The use of identities (6.1.17) and (6.1.18) in [8, ch. 6]
for estimating the sums Ss and Sc gives

For this reason, the term G2(ω) is on the order of
exp(−ω∆/2) and, being exponentially small, should be
omitted from the sum in Eq. (14).

It follows from these formulas that, at (ω∆)1/2 @ 1,
the high-frequency asymptotic expression for the 1/f
spectrum has the form ω–2α for α ≤ 1 or ω–2 for α > 1
and is integrable. Since the limiting forms of κ(t) and
Dξ(t) are independent of the correlation function R(s),
the result obtained is also independent of it and, in this
respect, is general. It is noteworthy that the correlation
times of the particle velocities in the diffusion pro-
cesses are usually short, so that the above high-fre-
quency asymptotic form of the 1/f spectrum is practi-
cally inaccessible to the observation.

In summary, the mathematic theory of 1/f noise sug-
gested in [2, 3] was used to describe the physical mech-
anisms for the regularization of the 1/f spectrum at the
edges of the frequency scale. The corresponding spec-
trum is finite and integrable over the entire frequency
axis and does not show anomalies that are contradictory

Ss 2ω∆/π( )1/2,=

Sc π 1/2– ω∆/2( )m m! m 1/2–( ) 1–( ) )
m 0=

∞

∑=

∼ O ω∆/2( )exp( ).
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to the spectrum of a stationary random process and to
the physical concepts of noises. The reason for the
apparent presence of these anomalies is that the edges
of the 1/f spectrum, where it deviates from the known
anomalous form ω–α, are practically unattainable in the
experiment.
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The Role of Causality in Ensuring the Ultimate Security
of Relativistic Quantum Cryptography
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One of the central points of quantum information theory is the problem of ultimate security of quantum cryp-
tography; i.e., the security that is due only to the fundamental laws of nature rather than to technical restrictions.
It is shown that a relativistic quantum cryptosystem proposed in this paper is ultimately secure against any
eavesdropping attempts. The application of relativistic causality makes it possible to simply prove the security
of the cryptosystem. Moreover, because the scheme does not involve collective measurements and quantum
codes, it can be experimentally implemented even at the current level of optical fiber technologies. © 2001
MAIK “Nauka/Interperiodica”.

PACS numbers: 03.67.Dd
Weisner has come up in [1] with a quantum cryptog-
raphy concept, which became readily available after
publication [2] by Bennett and Brassard. A consider-
able advance was achieved by Ekert [3] and Bennett
et al. [4]. Ekert [3] proposed a cryptosystem based on
the Einstein–Podolsky–Rosen (EPR) effect [5]. Ben-
nett et al. [4] demonstrated that any eavesdropping
attempts can be detected by using any pair of nonor-
thogonal states. Later, a variety of quantum cryptosys-
tems and their implementations were proposed [6]. At
present, there are three variants of proving the ultimate
security. The proof by Mayers and Yao [7], as well as
that by Biham et al. [8], concerns the so-called BB84
protocol [2]. The proof by Hoi-Kwong Lo and Chau [9]
concerns the EPR-effect protocol [3] and, in contrast to
[7], implies that the legal users have a quantum com-
puter. Shor and Preskill [10] attempted to simplify the
above-mentioned proofs by explicitly introducing
quantum codes to a cryptoscheme. Goldenberg and
Vaidman [11] proposed the first relativistic quantum cryp-
toscheme, whose ultimate security was briefly proven in
[12]. As early as 1931, Landau and Peierls [13] first dis-
cussed the restrictions imposed on the measurability of
quantum states in the relativistic region. Further investiga-
tion was carried out by Bohr and Rosenfeld [14].

A protocol is secure if, for any N ≥ 1, ε1 > 0, and ε2 >
0, its parameters (states under use, measurements, etc.)
can be chosen so that

(i) the probability that the rows sA(N) and sB(N) dif-
fer from each other in at least one bit is below ε1; i.e.,

(1)

in other words (in terms of mutual information between

Pr sA N( ) sB N( )≠{ } ε 1;≤
0021-3640/01/7312- $21.00 © 20682
participants A and B), the inequality

(2)

can be satisfied for any  > 0;

(ii) the probability that eavesdropper E knows the
row sA(N) is higher than the probability 2–N of simple
guessing by no more than ε2,

(3)

which means that he has only negligibly small informa-
tion about the rows sA(N) and sB(N), which are taken as
a key of the length N by the legal participants; i.e.,

(4)

If it is necessary to send one bit of classical informa-
tion, participant A attributes the classical bits 0 and 1 to
two quantum states with the density matrices ρ0 and ρ1,
respectively, which are chosen with the a priori proba-
bilities π0 and π1, π0 + π1 = 1. Measurements are
described as decompositions of unity in the space of
states,  = I. As a result of measurements, the
information available for participant B about the bit of
participant A is determined as maximal mutual infor-
mation over all possible measurements:

(5)

I A; B( ) N ε1'–≥

ε1'

Pr sA N( ) sE N( )={ } 2 N– ε2,+≤

I A; E( ) ε2,   I B; E( ) ε2.≤≤

Eii∑

I A; B ρ0; ρ1,( )

=  max π0Tr ρ0Ei{ }
Tr ρ0Ei{ }
Tr ρEi{ }
----------------------- 

 
2log





i

∑

+ π1Tr ρ1Ei{ }
Tr ρ1Ei{ }
Tr ρEi{ }
----------------------- 

 




.2log

{Ei}
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A fundamental upper bound on the available informa-
tion is represented by the following inequality, which
was proven by Holevo [15] (see also [16]):

(6)

where SvN(ρ) is the von Neumann entropy [17] and the
equality is attained if and only if the density matrices ρ0
and ρ1 commute with each other. For pure states, the
latter statement means that the equality in Eq. (4) is
achieved only for orthogonal states, i.e., when ρ0, 1 =
|ψ0, 1〉〈ψ 0, 1| and 〈ψ0|ψ1〉  = 0. In this case, available infor-
mation attains the maximum

(7)

For this reason, we will consider a simple one-
dimensional model, which involves necessary restric-
tions dictated by the relativistic causality [18].

The legal participants check spatially remote
regions ΩA and ΩB of the dimension L. At the beginning
of the protocol, participant A equiprobably prepares
one of the following two orthogonal states correspond-
ing to 0 or 1:

(8)

where (k) is the creation operator for a photon with
momentum (energy) k > 0 and one of the orthogonal
polarization states e0 and e1; ^(k) is the state amplitude
in the k representation; i, j = 0, 1; and k ∈  (0, ∞). In the
coordinate representation, the states have the form

(9)

(10)

I A; B ρ0; ρ1,( ) SvN ρ( ) πiSvN ρi( ),
i 0 1,=

∑–≤

SvN ρ( ) Tr– ρ ρ( )log{ } ,=

Imax A; B ρ0; ρ1,( ) 1,=

E0 30 ψ0| 〉 ψ0〈 | ,= = E1 31 ψ1| 〉 ψ1〈 | .= =

ψ0 1,| 〉 k^ k( )a0 1,
+ k( ) 0| 〉d

0

∞

∫=

= k^ k( ) k e0 1,,| 〉d

0

∞

∫ ^ e0 1,,| 〉 ,=

k e, 0 1,| 〉 a0 1,
+ k( ) 0| 〉 ,=

k ei, k ' e j,〈 | 〉 δ k k '–( )δij,=

a0 1,
+

ψ0 1,| 〉 ^ x t–( ) x t,| 〉 e0 1,| 〉 ,⊗
∞–

∞

∫=

^ x t–( ) k^ k( )e
ik x t–( )

,d

0

∞

∫=

k x t,〈 | 〉 1

2π
----------eik x t–( ), x t ∞– ∞,( ).∈,=
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The normalization condition in the τ representation,
with allowance made for [19], has the form

(11)

(12)

The states are chosen to be almost monochromatic, so

that the amplitude is a “step” ̂ (τ) ≈ const ≈ 1/  with
tails at the ends and

(13)

The falloff at the ends can be chosen as sharp as is
wished so that δ is as small as is wished. The latter is
considered as being the case, and the parameter δ is the
smallest parameter of the problem with any accuracy
(for details, see [20–22]).

It is substantial for the protocol that the length Lch of
the quantum channel should be shorter than the effec-
tive state length, Lch < L.

Later (at moment tB), when the state entirely arrives
at the region ΩB of dimension L, participant B, who
checks this region, carries out measurements that are
described by the decomposition of unity

(14)

(15)

These measurements mean that participant B takes the
projection onto a state whose amplitude is entirely
within the region ΩB. The probabilities of outcomes at
time tB are

(16)

xeik x t–( ) 1
x t– a+
-------------------d

∞–

∞

∫ iπ k( )e ika– ,sgn=

ψ0 1, ψ0 1,〈 | 〉 ^ ^〈 | 〉=

=  xd x 'd ^ x t–( )^∗ x ' t–( ) 1
2
---δ x x '–( )

∞–

∞

∫
∞–

∞

∫

+
i
π
--- 1

x x '–
------------- ^ x t–( ) 2

x.d

∞–

∞

∫=

L

x ^ x t–( ) 2
d

L{ }
∫ 1 δ, δ 0.–=

I x x tB,| 〉 x tB,〈 | I
C2⊗d

∞–

∞

∫=

=  30 tB( ) 31 tB( ) 3⊥ tB( ),++

30 1, tB( ) ^tB
e0 1,,| 〉 ^tB

e0 1,,〈 | ,=

^tB
e0 1,,| 〉 xd ^ x tB–( ) x tB,| 〉 e0 1,| 〉 ,⊗

∞–

∞

∫=

x ΩB, 3⊥ tB( )∈ I 30 tB( ) 31 tB( ).––=

Pr i tB; j,{ } Tr ψi| 〉 ψi〈 |3 j tB( ){ }=

=  δij x ^ x tB–( ) 2
d

L{ }
∫ δij, x ΩB.∈=
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The total probability of error is the sum of two
terms. The first term corresponds to the case when the
eavesdropper’s instrument fails to operate at all. In this
case, the probability of error is equal to 1/2 (this is the
probability of error in simple guessing). The second
term is the error when the eavesdropper’s instrument
comes into action in the region accessible to him.
Because of the local orthogonality, the probability of
this error is zero. Formally, the total probability of error
is represented as

(17)

where ΩE is the region accessible to the eavesdropper

(correspondingly,  is the inaccessible region; i.e., it
complements ΩE to the whole coordinate space) and tE

is the time of measurement in the region ΩE. A com-
plete unity decomposition is

(18)

The minimal probability Pe(ΩE, tE) of error is deter-
mined by minimizing over all possible decompositions
of unity I(ΩE) [16]:

(19)

The quantities E0, 1 are easily obtained and the total
error Pe(ΩE, tE) ≡ 0 of discrimination is

(20)

Therefore, the probability that eavesdropper E correctly
identifies a bit of participant A at fixed size of the acces-
sible region ΩE is

(21)

The information available to the eavesdropper about the
bit of participant A is calculated by Eq. (5) taking into

Pe tE( ) Pe ΩE tE,( ) Pe ΩE tE,( ),+=

ΩE

I I ΩE tE,( ) I ΩE tE,( ),+=

I ΩE tE,( ) x x tE ei, ,| 〉 x tE ei, ,〈 | ,d

ΩE

∫
i 0 1,=

∑=

I ΩE tE,( ) x x tE ei, ,| 〉 x tE ei, ,〈 | .d

ΩB

∫
i 0 1,=

∑=

Pe ΩE tE,( )

=  min
1
2
---Tr ψ0| 〉 ψ0〈 |E1{ } 1

2
---Tr ψ1| 〉 ψ1〈 |E0{ }+

 
 
 

.
E0, E1

E0 1, x x tE; e0 1,,| 〉 x tE; e0 1,,〈 | ,d

ΩE

∫=

Pe ΩE, tE( ) 1
2
---N ΩE tE,( ) 1

2
--- x ^ x tE–( ) 2

.d

ΩE

∫= =

POK tE( ) 1 Pe ΩE, tE( )–= Pe ΩE, tE( )–

=  
1
2
--- 1 x ^ x tE–( ) 2

d

ΩE

∫+
 
 
 

.

account that measurement is described by the decom-
position of unity {Ei} = { , E0, E1}. The available

information is the following sum of those parts of
mutual information which are provided by the out-
comes in the inaccessible and accessible ΩE regions,
respectively:

(22)

Calculation by Eq. (5), with allowance made for {Ei} =
{ , E0, E1} and π0 = π1 = 1/2, yields

(23)

(24)

Let χ be the effective extension of the eavesdropper
region (compared to the communication channel length
accessible to him). The probability of the eavesdrop-
per’s error in distinguishing the states is

(25)

The probability that any state  delayed for time
(distance) χ passes the delay test by legal participant B
when he carries out a measurement described by
Eqs. (14), (15) is given by

(26)

It is sufficient to restrict our consideration to the pure

delayed states . The restriction of the integration lim-

IΩE

I A; E ΩE tE, ,( ) I A; E ρ0 ρ1 ΩE tE, , , ,( )=

+ I A; E ρ0 ρ1 ΩE tE, , , ,( ).

IΩE

I A; E ρ0 ρ1 ΩE tE, , , ,( ) 0,=

Tr ρ0 1, IΩE
{ } 1

2
---Tr ρIΩE

{ } , ρ 1
2
--- ρ0 ρ1+( ),= =

I A; E ρ0 ρ1 ΩE tE, , , ,( ) x ^ x tE–( ) 2
,d

ΩE

∫=

Tr ρ0E0{ } Tr ρ1E1{ } Tr ρE0 1,{ } .= =

PrE χ{ } 1
2
--- 1 x ^ x tE–( ) 2

d

Lch χ+{ }
∫+

 
 
 

=

=  
1
2
--- 1

Lch χ+
L

-----------------+ 
  .

^̃| 〉

PrB χ{ } Tr ^̃| 〉 ^̃〈 | 30 tB( ) 31 tB( )+( ){ }=

=  x^ x tB–( )^̃* x tB–( )d

L χ–{ }
∫

2

≤ x ^ x tB–( ) 2
d

L χ–{ }
∫ 

 
 

x ^̃ x tB–( )
2

d

L χ–{ }
∫ 

 
 

≤ 1 χ
L
---– 

  .

^̃
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its to the region L – χ is caused by the existence of the
limiting propagation speed and, therefore, by the fact
that none of states delayed for time χ can arrive at the
extreme right part of the region L by the measurement
time tB.

Thus, the probability for the eavesdropper to know
the transmitted bit and pass the test by participant B is

(27)

The maximum of probability (27) is attained at the
end of the interval at χ = 0.

We demonstrate now that probability (27) in a chan-
nel with noise cannot exceed the corresponding value in
an ideal channel. A noise-induced change in the state
can be described by an instrument including the relativ-
istic restrictions on it. The instrument has the general
form [24–27]

(28)

(29)

The latter equality in Eq. (29) means that the amplitude
^(x – tA) of the state

(30)

is entirely localized in the region x ∈ Ω A at time tA and
will be entirely localized in the region x ∈ Ω E at a time

Pr bitE bitA= pass test∧ χ,{ } PrE χ{ } PrB χ{ }=

=  
1
2
--- 1

Lch χ+
L

-----------------+ 
  1 χ

L
---– 

  , Pr
1
2
--- 1

Lch

L
-------+ 

  .=

7 …[ ] 6k …[ ] 6k
+
, 6k

k

∑ λ k φk| 〉 ϕ k〈 | ,= =

λ k6k6k
+

1, λ k 0,≥≤
k

∑
Tr 7 ψ0 1,| 〉 ψ0 1,〈 |[ ] I ΩE te,( ){ }

=  Tr ψ0 1,| 〉 ψ0 1,〈 | 6k I ΩE te,( )6k
+( ){ }

k

∑

≤ λ kTr ψ0 1,| 〉 ψ0 1,〈 | ϕ k| 〉 ϕ k〈 |( ){ }
k

∑

≤ λ k ϕk ψ0 1,〈 | 〉 2

k

∑

≤ λ k ϕk ϕk〈 | 〉 ψ 0 1, ψ0 1,〈 | 〉 ψ 0 1, ψ0 1,〈 | 〉≤
k

∑

=  x ^ x tA–( ) 2
d

ΩA

∫ x ^ x tE–( ) 2
.d

ΩE

∫=

ψ0 1,| 〉 x^ x tA–( ) x tA,| 〉 e0 1,| 〉⊗d

ΩA

∫=

=  x^ x tE–( ) x tE,| 〉 e0 1,| 〉⊗d

ΩE

∫
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that is later than or equal to tE = tA + dist(ΩE, ΩA). Thus,
the probability for the eavesdropper to know an individ-
ual transmitted bit and pass the test by legal participant
B is no higher than Pr = 1/2(1 + Lch/L) in an ideal chan-
nel.

• At a priori specified time instants, participant A
prepares and sequentially sends the states |ψ0, 1〉  to the
communication channel, while participant B carries out
measurements described by the decomposition of unity
[Eqs. (14), (15)]. Only those messages remain which
pass the test.

• Participants A and B open part of messages, count
the number of discrepancies, and estimate the probabil-
ity of error perr .

• Participant A specifies the numbers of those mes-
sages in the remaining sequence which carries only 0 or
only 1. These message numbers merge into groups,
each of k pieces. Participant B corrects the errors in
each block by the majority principle [28]. The number k
is taken so as to reduce the effective error in each block

bit  (  =  and  = )

down to ≈  ! perr. After that, the block bits are num-
bered.

• Using block bits, the participants form N + M bits

of parity Bit =  ⊕  . With this aim, participant

A specifies the numbers (in new number system of
block bits) which will be included in each parity bit.

• For N + M bits of parity Bit(j), j = 1, …, N + M, the
procedure including M steps of hashing is carried out.
With this aim, participant A chooses at each step a ran-
dom row sl of length N + M – l (l = 1, …, M) and openly
reports it to participant B. Then, participants A and B
check the parities of the subsets of bits in their rows
(BitA and BitB) by comparing the parities with the row
sl because slBitA = slBitB = (slBitΑ) ⊕  (slBitB) = sl(BitA ⊕
BitB). If the parities of subrows coincide with each
other, the participants discard one bit from the specified
position in the sequences BitA and BitB. And all M steps
are carried out in this way. As a result, the probability
that tests for parity were passed and the remaining rows
of N bits of parities BitA and BitB do not coincide with
each other is [29]

(31)

By choosing appropriate M, the probability that the
N-bit rows are different can be made as small as is
wished.

bĩt i( ) 0̃ 0 0 …0, ,{ }    

k

1̃ 1 1 …1, ,{ }    k

perr
k

i 1=

n

∑ bit˜ i( )

Pr sA N( ) sB N( )≠{ } 2 M– .=
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• Each parity bit can be formed from block bits in
the following number of ways [30]:

(32)

The Hartley information I of the set of block rows is
(within the accuracy of rounding off) the number of
binary symbols necessary for identifying the row parity
and is virtually equal to the total number of binary rows
of length nk:

(33)

i.e., almost all bits in the row must be known. The prob-
ability of knowing each bit and passing the test is less
than in Eq. (27). Therefore, the conditional probability
that the eavesdropper knows N resulting bits, which are
sent by participant A and taken as a key, is [recall that
(1 + Lch/L)/2 < 1)]

(34)

Mutual information acquired by the eavesdropper
about the row of the resulting bits of participant A is

(35)

where I(A) is the information contained in the row of
the resulting bits of length N and I(A|E) is conditional
information acquired by eavesdropper E about the row
of the bits of participant A. Taking into account
Eqs. (34) and (35), we obtain mutual information [31]
between participant A and eavesdropper E in the form

(36)

At given N and Lch, L (Lch < L) [see Eq. (36)] can be made
exponentially small with respect to the parameter nk.

• We demonstrate now that the mutual information
acquired by eavesdropper E about the row of resulting

1
2
--- Cnk

ik

i 0=

n

∑ 2nk

2k
------- lπ

k
----- 

  nlπ( ) 1
2k
------2nk.≈coscos

nk

l 1=

k

∑=

I
2nk

2k
------- lπ

k
----- 

  nlπ( )coscos
nk

l 1=

k

∑ 
 
 

2 ηnk,≈log=

η 1;≈

Pr sA N( ) sE N( )={ }

=  2 N– 1 2 2 ηnk– 1 Lch/L+( )[ ] ηnk×+{ } N

=  2 N– 1 2ζ+( )N ,

ζ 2 ηnk– 1 Lch/L+( )[ ] ηnk.=

I A; E( ) I A( )= I A E( ), I A( )– 2 N–
2 ,log–=

I A E( ) Pr sA N( ) sE N( )={ } ,2log–=

I A; E( ) N N N 1 2ζ+( ) 2Nζ
2ln

----------≈
2

log+–=

=  2N 2 ηnk– 1 Lch/L+( )[ ] ηnk/ 2 ! 1.ln×
bits of participant B is also exponentially small. The
mutual information between participants A and B is

(37)

Using the triangle inequality for the conditional infor-
mations, we finally obtain

(38)

Thus, the second part of the security criterion, Eqs. (3)
and (4), is proved.
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