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We calculate the angular two-point correlation function of ultrahigh-energy cosmic rays (UHECR) observed in
the AGASA and Yakutsk experiments. In both data sets, there is a strong signal at the highest energies, which
is concentrated in the first bin of size equal to the angular resolution of the experiment. For the uniform distri-
bution of sources, the probability of chance clustering is 4 × 10–6. Correlations are absent or insignificant at
larger angles. This favors the models with compact sources of UHECR. © 2001 MAIK “Nauka/Interperiod-
ica”.

PACS numbers: 98.70.Sa
1. The measurements of the flux of ultrahigh-energy
cosmic rays (UHECR) at energies of order 1020 eV [1]
provide compelling evidence of the absence of the Gre-
isen–Zatsepin–Kuzmin (GZK) cutoff [2]. The resolu-
tion of this puzzle seems to be impossible without
invoking new physics or extreme astrophysics. All
models suggested so far can be classified in three
groups, according to the way the GZK cutoff is
avoided: (i) “nearby source,” (ii) weak interaction with
CMB, and (iii) bump in the injection spectrum.

The possibility (i) assumes that a substantial frac-
tion of the observed UHECR comes from a relatively
nearby source(s) and thus is not subject to the GZK cut-
off. This idea may be realized in different ways, exam-
ples being the models of decaying superheavy dark
matter [3] or models in which UHECR emitted by
nearby source(s) propagate diffusively in the galactic
[4] or extragalactic [5] magnetic fields. Although mod-
els of this type generically predict large-scale anisot-
ropy [5, 6], they might still work.

In the option (ii), the GZK cutoff is eliminated (or
shifted to higher energies) by assuming weak or non-
standard interaction of primary particles with the cos-
mic microwave background. This may happen, for
instance, if primary particles are neutrinos [7], hypo-
thetical light SUSY hadrons [8], or if the Lorentz
invariance is violated at high energies [9]. The possibil-
ity (iii) can be realized in models which involve topo-

1 This article was submitted by the authors in English.
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logical defects [10] or in some models where primary
particles are neutrinos [11].

Existing data hint also at another important feature
of UHECR, namely, the clustering at small angles [12].
The AGASA collaboration has reported three doublets
and one triplet out of 47 events with energies E > 4 ×
1019 eV with chance probability of less than 1% in the
case of the isotropic distribution [13]. The world data
set has also been analyzed; 6 doublets and 2 triplets out
of 92 events with energies E > 4 × 1019 eV were found
[14] with the chance probability less than 1%.

If not a statistical fluctuation, what does the cluster-
ing imply for models of UHECR? There are two possi-
ble situations: either clustering is due to the existence of
pointlike sources, or it is a result of variations in the flux
of UHECR over the sky (the regions of higher flux are
more likely to produce clusters of events [15]). In the
first case, the models which involve the diffuse propa-
gation of UHECR are excluded. This case also implies
that there is no defocusing of UHECR in the magnetic
fields during their propagation. Such defocusing occurs
even in a regular (e.g., galactic) magnetic field, since
different events in a cluster have different energies.
Thus, one can put bounds on the charge of the primary
particles. For the extragalactic rays, knowing that pri-
mary particles are charged would imply direct bounds
on the extragalactic magnetic fields.

In the second case, the regions of higher flux may
reflect higher density of sources, as in the models of
superheavy dark matter, where they would correspond
to dark matter clumps in the halo. Alternatively, they
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may be due to the effects of propagation such as defo-
cusing in magnetic fields or magnetic lensing [16].

In order to determine which of these two cases fits
the present experimental data better, it is not enough to
know the probability to have a certain number of clus-
ters. In this respect, previous analyses [12–14] are not
sufficient. One has to find the angular correlation func-
tion. This is the approach we accept in this paper.

2. The two-point correlation function for a given set
of events is defined as follows. For each event, we
divide the sphere into concentric rings (bins) with fixed
angular size (say, the angular resolution of the experi-
ment). We count the number of events falling into each
bin, sum over all events, and divide by 2 to avoid double
counting, thus obtaining the numbers Ni. We repeat the
same procedure for a large number (typically 105) of
randomly generated sets and calculate the mean

Monte-Carlo value  and the variance  for each
bin in a standard way. The correlation function can be

defined as fi = Ni/  – 1. A deviation of  fi  from zero
indicates the presence of the correlations on the angular
scale corresponding to the ith bin.

The correlation function fi fluctuates. In order to see
whether its deviation from zero is statistically signifi-

cant, we define the ratio ri = (Ni – )/ , which
shows the excess in the correlation function, as com-
pared to the random distribution in the units of vari-
ance. With enough statistics, this quantity becomes a
good measure of the probability of the corresponding
fluctuation.

The Monte-Carlo events are generated in the hori-
zon reference frame with the geometrical acceptance
dn ∝  cosθz sinθzdθz, where θz is the zenith angle. Coor-
dinates of the events are then transformed into the equa-
torial frame assuming random arrival time. We restrict
our analysis to the events with zenith angles θz < 45°,

Ni
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Ni
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Fig. 1. Probability to match or exceed the observed count in
the first bin vs. energy for the random distribution of arrival
directions.
for which the experimental resolution of arrival direc-
tions is the best [14].

If clusters at the highest energies are not a statistical
fluctuation, one should expect that the spectrum con-
sists of two components, the clustered component tak-
ing over the uniform one at a certain energy. The cut at
an energy at which the clustered component starts to
dominate should give the most significant signal. Moti-
vated by these arguments, we calculated the probability
of chance clustering as a function of energy cut. We
present here the results for the AGASA [13] and
Yakutsk [17] data sets (other experiments are discussed
in Section 3). For these simulations, we took the bin
size equal to 2.5° and 4° for AGASA and Yakutsk,
respectively, which is the quoted (see, e.g., [13, 14])
angular resolution of each experiment multiplied by

. The results are summarized in Fig. 1, which shows
the probability to reproduce or exceed the observed
count in the first bin vs. the energy cut. AGASA curve
starts at E = 4 × 1019 eV because the data at smaller
energies are not yet available. Yakutsk has much lower
statistics. Both curves rapidly rise to unity in a similar
way when the statistics becomes poor. They suggest
that the optimum energy cut is higher than can be
imposed at present statistics.

The difference between our results and those of [13]
(cf. Fig. 1 in this paper and Fig. 12 in [13]) is due to two
reasons. First, ten more events with E > 4 × 1019 have
been observed [18] which bring a new doublet. Second,
and more important, we calculate a different probabil-
ity. The difference arises when there is a triplet or
higher multiplets in the data. In our approach, a triplet
is equivalent to three or two doublets, depending on the
relative position of the events (compact or aligned),
while higher multiplicity clusters effectively have
larger “weight.” In [13], the probabilities of doublets
and triplets are calculated separately; the probability of
doublets is defined in such a way that a triplet contrib-
utes as 3/2 of a doublet. The drawback of this method is
that the probabilities of doublets and triplets are not
independent, and it is not clear how to combine them.
Triplets and higher multiplicity clusters are better
accounted for in our method, and the probability of
chance clustering, which we get, is lower than in [13].

Correlation functions calculated with the energy
cuts corresponding to the lowest chance probability is
shown in Fig. 2. Both AGASA and Yakutsk correlation
functions have substantial excess in the first bin. The
peak in AGASA curve corresponds to 6 doublets (of
which 3 actually form a triplet) out of 39 events. The
peak in Yakutsk curve corresponds to 8 doublets (of
which 3 also come from a triplet) out of 26 events.

Since the number of events in the first bin is not
large, its distribution is not well approximated by a
Gaussian one, and the deviation in the units of variance
is not a good measure for the probability of fluctua-
tions. We calculated the probability directly by count-
ing, in the Monte-Carlo simulation, the number of
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occurrences with the same or larger number of events in
the first bin. Probabilities in the minima are small (see
Fig. 1), so we have recalculated them with 106 Monte-
Carlo sets.

As the lowest probabilities were obtained by scan-
ning over the energy, one may argue that they have to
be multiplied by the number of steps in the scan. This
is not, however, correct because the results at different
energy cuts are not independent: the higher energy set
is a subset of the lower energy one. As can be seen from
Fig. 1, the chance probability for AGASA is lower than
10–3 in the whole energy range (4–5) × 1019 eV, regard-
less of the number of steps in the scan. There still may
be a correction factor. To estimate it, we made the fol-
lowing numerical experiment. For 103 randomly gener-
ated sets of events, we have performed exactly the same
procedure as for the real data, i.e., scanned over ener-
gies and obtained 103 different minimum probabilities.
We found that the probability less than 10–2 occurred
27 times, while the probability less than 10–3 occurred
3 times. Thus, we conclude that the correction factor is
of order three. This factor is included in the final results,
which are presented in Table 1.

We now turn to the determination of the angular size
of the sources. To this end, we calculate the dependence
of the probability to have the observed (or larger) num-
ber of events in the first bin on the bin size. This depen-
dence is plotted in Fig. 3. Jumps in the curves occur
when a new doublet enters the first bin. Despite fluctu-
ations, one can see that the minimum probability corre-
sponds roughly to 2.5° and 4° for AGASA and Yakutsk,
respectively. These numbers coincide with the angular
resolutions of the experiments, as is expected for
sources with an angular size smaller than the experi-
mental resolution. Remarkably, there are no doublets in
the AGASA set with separations between 2.5° and 5°,
while for the extended source of the uniform luminosity
one would expect four times more events within 5° than
within 2.5°. Thus, we conclude that the data favor com-
pact sources with angular size less than 2.5°.

If primary particles are charged, actual positions of
sources differ from the measured arrival directions
because of the deflection in the Galactic magnetic field
(GMF). If the clustering is attributed to real sources, it
should not disappear but improve when the correction
for GMF is taken into account. We have simulated the
effect of such a correction making use of the GMF
models summarized in [19]. For the charge Z = 1 and
BSS-A model, the peak in the first bin does not change
significantly; one cannot discriminate between this case
and the case of neutral particles. The peak becomes
small at Z = 2 and disappears at larger Z for all GMF
models of [19].

3. The other two UHECR experiments, Haverah
Park (HP) and Volcano Ranch (VR), do not show sig-
nificant clustering [20]. With the energy cut E > 2.4 ×
1019 eV and a bin size of 4°, the HP data contain 2 dou-
blets for 1.8 expected, while the VR data contain 1 dou-
JETP LETTERS      Vol. 74      No. 1      2001
blet for 0.1 expected with an isotropic distribution. Let
us estimate the combined probability of clustering in all
experiments assuming independent Poisson distribu-
tions. The number of observed doublets in the AGASA
and Yakutsk data are 6 and 8, respectively, while 0.87
and 2.2 are expected (these “effective” expected num-
bers of doublets are calculated from the condition that
probabilities in Table 1 are reproduced, i.e., the “pen-
alty” for the energy scan is included). Thus, 17 doublets
are observed for 4.97 expected, which corresponds to
the Poisson probability 2 × 10–5. If HP data are

Fig. 2. Angular correlation functions of UHECR with bin-
ning angles and cuts in energy quoted in the text.

Fig. 3. Probability to have observed count in the first bin vs.
the bin size. Cuts in energy correspond to minima of Fig. 1.
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excluded, the probability becomes 1 × 10–6, while with
both HP and VR data excluded the probability is 4 × 10–6.

It is extremely unlikely that the clustering observed
by the AGASA and Yakutsk experiments is a result of a
random fluctuation in an isotropic distribution. Rather,
the working hypothesis should be the existence of some
number of compact sources which produce the
observed multiplets. Is this hypothesis consistent with
HP and VR data? For a given experiment, the expected
number of clusters is determined by the total number of
events [21] (see also [22]); at small clustering, it scales

like  [21]. Taking AGASA data as a reference
(6 doublets observed, 5.4 expected from sources, and
0.6 expected from chance clustering) allows one to esti-
mate the expected number of doublets in other experi-
ments by adding the doublets expected from sources
and the doublets expected from the uniform back-
ground (calculated in the Monte-Carlo simulation). The
results are summarized in Table 2 together with corre-
sponding Poisson probabilities.

All experiments are roughly consistent with the
assumption that the number of sources is such that they
produce 5.4 doublets out of 39 events on average. Note
that, if HP data are discarded [20], the agreement
between other experiments can be made better.

N tot
3/2

Fig. 4. Observed clusters in Galactic coordinates. 

Table 1

Experiment Bin size Emin, eV Chance 
probability

AGASA 2.5° 4.8 × 1019 3 × 10–4

Yakutsk 4° 2.4 × 1019 2 × 10–3

Table 2

Ntot Observed Expected Probability

AGASA 39 6 5.0 + 0.6 –

Yakutsk 26 8 2.9 + 1.6 0.09

HP 32 2 4.0 + 1.8 0.07

VR 10 1 0.7 + 0.1 0.55
According to our simulations, the mean numbers of
chance doublets are 0.6 and 1.6 for AGASA and
Yakutsk, respectively. Therefore, most of the clusters in
the AGASA and Yakutsk data are likely due to real
sources. In Fig. 4, we plot these clusters in Galactic
coordinates (small and large circles correspond to the
AGASA and Yakutsk events, respectively). Positions of
triplets are indicated by arrows. The set of AGASA
events with E > 4 × 1019 eV and Yakutsk events with
E > 2.4 × 1019 eV is a suitable choice for the search for
correlations with astrophysical objects.

To summarize, the clustering of UHECR is statisti-
cally significant and favors compact sources. This
places further constraints on models which can resolve
the puzzle of the GZK cutoff. Those models which
involve large extragalactic magnetic fields [5], as well
as models with heavy nuclei as primaries, e.g., [4], are
disfavored because they assume total isotropization of
the original arrival directions of UHECR. If violation of
the Lorentz invariance is the solution of the GZK puz-
zle and primaries are protons, our results place an
extremely strong limit on the extragalactic magnetic
fields. Regarding the models of decaying superheavy
dark matter, it is important to calculate [23] the angular
correlation function predicted by these models and
compare it to Fig. 2 in order to see if the clumping on
subgalactic scales can be responsible for the clustering
of UHECR.
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The renormalization group approach is applied to derive an exact solution to self-consistent Vlasov kinetic
equations for plasma particles in the quasineutral approximation. The solution obtained describes the one-
dimensional adiabatic expansion into vacuum of a plasma bunch with arbitrary initial velocity distributions of
the electrons and ions. The ion acceleration is investigated for both a Maxwellian two-temperature initial elec-
tron distribution and a super-Gaussian initial electron distribution. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 52.25.Dg; 52.38.Kd; 05.10.Cc
After the paper by Gurevich et al. [1] appeared, the
problem of plasma expansion into vacuum has been
actively studied for many years. Interest in this problem
stems primarily from the need to better understand the
physics of ion acceleration in the interaction of laser
light with plasma and, in particular, to give a quantita-
tive description of the ion acceleration. The study of ion
acceleration is among the key problems in various
applications of high-power lasers, such as laser fusion,
injectors of fast particles, and radioactive sources for
apparatuses used in medicine and nuclear physics.
Although the process of ion acceleration in an expand-
ing hot laser plasma was described in considerable
detail by Gitomer et al. [2], recent experiments with
nanosecond laser-produced plasmas [3, 4] revealed that
the ions can be accelerated to energies higher than the
maximum energies predicted in that paper.

Most studies of plasma expansion into vacuum uti-
lized the model of a semibounded plasma with isother-
mal electrons and cold ions [5–9], which implies a
steady source of particles, the possible existence of a
quasisteady corona, and the possible onset of the
regime of isothermal expansion. However, this model
definitely fails to describe the expansion of small
plasma bunches such as clusters [3, 4]. The expansion
of such small plasma objects is essentially unsteady and
is accompanied by the adiabatic cooling of plasma par-
ticles. This expansion regime is investigated using a
phenomenological hydrodynamic theory [10] and by
numerical modeling [11, 12]. An important step in this
direction was taken by Dorozhkina and Semenov [13],
who obtained an exact self-similar solution to the Vla-
sov equation for electrons and ions in the quasineutral
0021-3640/01/7401- $21.00 © 20010
approximation. However, the kinetic solution obtained
in that paper describes the expansion of a plasma bunch
into vacuum in the particular case in which the electro-
static potential is quadratic in the spatial coordinate
and, accordingly, the initial conditions imply the same
dependence of the electron and ion distribution func-
tions on the coordinate and velocity.

Here, we find a more general (in comparison with
[13]) class of solutions to the Cauchy problem for the
Vlasov equation in the quasineutral approximation.
This class of solutions is derived for arbitrary initial
velocity distributions of the electrons and ions by
applying the renormalization group approach [14], in
which the solution to the initial-value problem is found
perturbatively for short time scales (t  0) and is con-
tinued to longer time scales t with the help of the renor-
malization group symmetries (RGS). The solution
obtained by Dorozhkina and Semenov [13] is a partic-
ular case of the resulting solution. In the present paper,
the general renormalization group method is described
for the particular case of plasma expansion in planar
geometry, which can be easily generalized to the three-
dimensional case. We hope that our results will provide
a clearer insight into the nature of the experimentally
discovered cutoff of the ion spectrum at high energies
[3, 4], because the renormalization group method
makes it possible to describe strongly nonequilibrium
electron distribution functions like those that were
observed to form in the experiments of [3, 4] as a result
of the generation of accelerated electrons under the
action of laser radiation.

We describe the dynamics of a plasma bunch by the
following set of two kinetic equations for the electron
001 MAIK “Nauka/Interperiodica”
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and ion distribution functions fα (with α = e for the elec-
trons and α = i for the ions), which are assumed to
depend on the time t, the coordinate x, and the velocity
component v  along the x-axis:

(1)

In the quasineutral approximation used here, we set the
charge and current densities in the plasma equal to zero:

(2)

where Z = –ei/ee is the ion charge number. Accordingly,
the electric potential Φ is expressed in terms of the
moments of the distribution functions:

(3)

We solve Eqs. (1) and (2) with the initial conditions that
correspond to the electron and ion distribution func-
tions specified at t = 0: fe(t = 0) = fe0 and fi(t = 0) = fi0.
This formulation of the problem makes it possible to
model the expansion of a plasma bunch under the
action of a short laser pulse whose duration is much
shorter than the characteristic time scale on which the
bunch evolves. In this case, there is no need to specify
the process of the interaction of laser light with plasma,
because this process is incorporated into our model
through the particular initial particle distribution func-
tions.

We seek the RGS for Eqs. (1) and (2) as a subgroup
of the full group of allowed symmetries. Since we are
dealing with the integrodifferential equations, we can
calculate the renormalization symmetries by applying
the regular approach that was developed by Kovalev
et al. [15]. This approach makes it possible to calculate
the desired symmetries in two steps. First, we calculate
the intermediate symmetry group allowed by Eqs. (1).
Second, we use this symmetry group to analyze the
consequences of the nonlocal relationships (2). An
important difference between the method proposed
here to calculate the intermediate symmetry group and
the corresponding method used in [15] is that, instead
of treating the variable Φ as one of the dependent vari-
ables, we consider it to be an as-yet-unknown function,
which depends on the variables t and x and is calculated
from the particle distribution functions obtained in
advance. As a result, the group of symmetries in ques-
tion is broader than the group calculated in [15]: it is an
eight-parameter group of transformations defined by
two operators of translation along the t and x axes, three
dilatation operators, the operator of Galilean transfor-
mations, the quasineutrality operator, and an additional
operator X = t2∂t + tx∂x + (x – v t)∂v of the group of con-

∂t f α v ∂x f α eα /mα( )– ∂xΦ( )∂v f α+ 0.=

dv Z f i f e–( )∫ 0,= dvv Z f i f e–( )∫ 0,=

e∂xΦ me dvv 2∂x Z f i f e–( )∫–=

× dv f e

Z2me

mi

------------ f i+ 
 ∫ 

 
 

1–

.
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formal transformations. According to the narrowing
procedure [14] for the eight-parameter group, it is nec-
essary to determine whether or not each of the solutions
to the initial problem that are obtained perturbatively
for t  0 will be invariant under the transformations
defined by the operators of the sought-for group of
renormalization symmetries. As a result, the narrowing
procedure yields a set of operators, one of which has the
form

(4)

The distribution functions are invariants of the group of
transformations with the RGS operator (4) and are
expressed in terms of the first two integrals of the first-
order equation conjugate to the operator R. For t = 0 and
for an arbitrary dependence of the electric potential on
the coordinate, the distribution functions are related to
the two energy integrals we, i by

(5)

Here, the dependence of the potential Φ on the x coor-
dinate is to be found from the quasineutrality condition.
The temporal behavior of the particle distribution func-
tions and electric field is described by the finite trans-
formations from the sought-for group that relate the
variables (x ', v ') at the initial time t = 0 to their values
(x, v) at t ≠ 0:

(6)

Hence, identifying the variables x and v  in relationships
(5) with the variables x' and v ' in relationships (6), we
arrive at an explicit time dependence of the distribution
functions.

We illustrate the solution by using the following two
examples for ω = 0.

Example 1. We assume that, at the initial time t = 0,
the ions obey a Maxwellian velocity distribution func-
tion with density ni0 and temperature Ti and the elec-
trons obey a two-temperature Maxwellian distribution
function in which the density and temperature of the hot
component are nh0 and Th and those of the cold compo-
nent are nc0 and Te, where Zni0 = nc0 + nh0 and ρ =
nh0/Zni0. This example may serve as a model for the
expansion of a plasma bunch (e.g., a cluster whose
radius is larger than the Debye radius) that is rapidly

R 1 2ωt Ω2t2+ +( )∂t=

+ Ω2t ω+( )x∂x Ω2 x v t–( ) ωv–[ ]∂ v .+

f α Fα wα( ),=

wα
1
2
---mα v 2 2v xω– Ω2x2+( ) eαΦ.+=

x ' x

1 2ωt Ω2t2+ +
----------------------------------------= ,

v ' x 'ω–( )2 v 2 2ωv x v t–( )–=

+ Ω2 x v t–( )2 x '( )2 Ω2 ω2–( ).–
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and isotropically preheated by a laser field, so that there
is a population of hot electrons. Under the quasi-
neutrality conditions (2), the above initial electron and
ion distribution functions yield the following depen-
dence of the plasma potential on the variables x and t:

eΦ(1 + Ω2t2) = meζ2/2 – TeΨ, where ζ = xΩ/
and the auxiliary function Ψ(ζ) is implicitly defined by
the equation

(7)

For the same velocity dependence of the electron and
ion distribution functions, e.g., for one-temperature
Maxwellian velocity distribution functions without fast
electrons (ρ = 0), the quasineutrality condition implies
that the electrostatic potential Φ is quadratic in the
x coordinate; this quadratic dependence was discussed
by Dorozhkina and Semenov [13].

The corresponding solutions for the particle distri-
bution functions have the form

(8)

where u = xtΩ2/(1 + Ω2t2) is the local plasma flow
velocity.

Example 2. We assume that, at the initial time t = 0,
the ions obey a Maxwellian velocity distribution func-
tion and the electrons obey a super-Gaussian distribu-
tion function

(9)

where a = 23/4/Γ(1/4) . 0.46. This example may serve
as a model for the expansion of a plasma bunch that is
rapidly preheated by a moderate-intensity laser field via
inverse bremsstrahlung absorption, in which case the
electrons may relax to a distribution function that is
proportional to ∝ exp(–v m), where 2 ≤ m ≤ 5 (see [16]
for details). Substituting the electron distribution func-
tion (9) into the quasineutrality conditions (2) yields the

1 Ω2t2+

ζ2 2
mi Zme+
---------------------- Ti ZTe+( )Ψ[=

– Ti 1 ρ– ρe
1 Te– /Th( )Ψ

+( ) ] .ln

f e 1 ρ–( )
Zni0 me

2πTe

---------------------=

× –Ψ
me

2Te

-------- 1 Ω2t2+( ) v u–( )2–exp

+ ρ
Zni0 me

2πTh

--------------------- –Ψ
Te

Th

-----
me

2Th

--------- 1 Ω2t2+( ) v u–( )2– ,exp

f i

ni0 mi

2πTi

---------------- –Ψ
mi

2Ti

-------- 1 Ω2t2+( ) v u–( )2–exp=

× 1 ρ– ρe
1 Te/Th–( )Ψ

+( ),

f e0
aZni0 me

Te

------------------------= 2 we/Te( )2–[ ] ,exp
following dependence of the auxiliary function Ψ on
the self-similar variable:

(10)

in which case the evolution of the electron and ion dis-
tribution functions is described by the formulas

(11)

In both of these examples, the plasma dynamics is
essentially the same. The parameter Ω , which charac-
terizes the plasma cooling time, is equal to the recipro-
cal of the transit time of the rarefaction wave through
the plasma, Ω ~ Cs/L, where L is the initial dimension

of the plasma bunch and Cs = 
is the speed of sound in terms of the initial electron and
ion temperatures. On time scales Ωt @ 1, the plasma
expansion becomes self-similar: the electron and ion
temperatures rapidly decrease as 1/t2, the local plasma
flow velocity approaches the value u= x/t, and the local

plasma density ni(x, t) = ni0N(ζ)/  relaxes to
the dependence ni(x, t) = ni0N(u)/Ωt. Here, N is a uni-
versal function dependent on the initial electron distri-
bution function. In example 1, this function is N =
exp(−Ψ){1 – ρ + ρexp[(1 – Te/Th)Ψ]}, whereas, in

example 2, we have N = a K1/4(Ψ2)exp(–Ψ2). The
results obtained are illustrated by Fig. 1, which shows
the plots of the “universal” ion density N(ζ) as a func-
tion of the self-similarity parameter ζ/Cs for the follow-
ing plasma parameters: Te/Ti = 10, mi/me = 1836, and
Z = 1. In the case of a two-temperature electron distri-
bution function, the plasma density profile has a tail,
which is stretched out over a distance of about

L  from the bunch center. It is precisely the tail
ions that are accelerated to high energies on time scales
Ωt @ 1, so that the number of ions whose energies are
higher than ZTh is about ρ. On the contrary, in the case
of a super-Gaussian electron distribution function, the
number of ions with energies above ZTe is insignifi-

ζ2 2
mi Zme+
----------------------=

× TiΨ
2 ZTeΨ Ti a ΨK1/4 Ψ2( )( )ln–+[ ] ,

f e

aZni0 me

Te

------------------------=

× 2 Ψ
me

2Te

--------+ 1 Ω2t2+( ) v u–( )2
2

–
 
 
 

exp ,

f i

ani0 miΨ
2πTi

-------------------------K1/4 Ψ2( )=

× Ψ2 mi

2Ti

--------– 1 Ω2t2+( ) v u–( )2
–exp .

Ti ZTe+( )/ mi Zme+( )

1 Ω2t2+

Ψ

Th/Te
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cantly smaller than that in the case of a Maxwellian dis-
tribution.

The ion energy distribution is also determined by
the function N, because, for Ωt @ 1, the self-similar
variable ζ corresponds to the ion velocity u. It is the
function N(u) that determines the number density of
ions with energy miu2/2. The ion flux that is usually
measured by detectors positioned at a distance x0 from
the plasma is described by the function J(t) =

u(x0, t)ni0N(ζ[x0, t])/ . The profiles of the rel-
evant signals are shown in Fig. 2 for the same parame-
ters as in Fig. 1 and for the detector position x0 =
10Cs/Ω. On time scales such that Cst < x0 (Ωt < 10), the
front of the current pulse is formed by fast ions, whose

1 Ω2t2+

Fig. 1. Plasma density N = (ni(x, t)/ni0) as a
function of the self-similarity parameter ζ/Cs for the relative
density ρ = 0.1 and different initial electron distribution
functions: (1) a super-Gaussian distribution and a Max-
wellian two-temperature distribution with Th/Te = (2) 10
and (3) 100. The dashed curve corresponds to the initial
Maxwellian electron distribution function.

1 Ω2
t
2

+

Fig. 2. Dependence of the ion current J(t) in units of Csni0
on the time variable Ωt at the distance x0 = 10Cs/Ω from the
bunch center for the profiles of Fig. 1.
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number and energy increase with the number and
energy of the hot electrons.

In conclusion, we note that the renormalization
group approach allowed us to derive an exact solution
to the kinetic equations for the electrons and ions in the
quasineutral collisionless approximation. This solution
describes the one-dimensional nonisothermal expan-
sion of a plasma bunch with arbitrary initial velocity
distributions of the electrons and ions. In particular, the
solution obtained implies that the plasma expansion is
accompanied by the adiabatic cooling of plasma parti-
cles. As a result, the ions are accelerated to a certain
finite energy. The corresponding analysis of the ion
spectrum has been carried out for a two-temperature
Maxwellian initial electron distribution (with hot and
cold electron components) and for a super-Gaussian
initial electron distribution. We have shown that the ion
spectrum is determined by the initial electron distribu-
tion. For this reason, measurements of the ion spectrum
can serve as the basis for diagnosing the electron distri-
butions that form in the interaction of ultrashort laser
pulses with short-lived (nanosecond) plasmas, e.g.,
cluster plasmas. In such plasmas, the particle mean free
paths are, as a rule, much larger than the characteristic
plasma dimensions, so that the collisionless plasma
approximation is well satisfied.

Our analysis shows that the method used to obtain
the solution imposes certain restrictions on the initial
plasma density profile. In particular, the ion accelera-
tion is efficient when there is a tenuous halo around the
central plasma region. In the absence of a halo, the
quasineutral approximation may fail to hold, in which
case the number of ions accelerated to high energies is
expected to be smaller. In a future study, we are going
to extend our theory to include nonquasineutral plas-
mas.

This study was supported in part by the Russian
Foundation for Basic Research, project nos. 99-01-
00232, 00-15-96691, 99-02-17267, and 00-02-16063.
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It is established on the basis of a concept of strong coupling in a single unit cell that the Cooper instability can
occur in a system with hopping between the cations and anions of transition and main-group elements. A phase
diagram is constructed for the ferromagnetic ordering in the coordinates (hd, hp) of the degrees of underfilling
of, respectively, the 4d10 and 2p6 shells of transition and main-group elements. © 2001 MAIK “Nauka/Interpe-
riodica”.

PACS numbers: 74.20.Mn; 74.25.Dw
The oxygen 2p states of the C4+O2 and Pb2+O com-
plexes in AgxPb6OCO9 + β = AgxO1 + βCO2(PbO)6 are
filled, whereas the lead 6p shells and the carbon 2sp
shells are empty [1]. Accordingly, the mean number hd

of holes in the silver 4d10 shell is related to the number
hp of holes in the remaining oxygen 2p6 shells by the
electroneutrality relation

(1)

It is not difficult to consider the case of alternating
atoms (Ag–O–Ag–O–…), where β = 0 and x = 1. How-
ever, one can show that the respective electroneutrality
curve nowhere intersects the Cooper instability region.

Let us consider the case (Ag–O–O–Ag–…), for
which β = 1 and x = 1. It will be shown that the elec-
troneutrality line 2hp + hd = 3 not only intersects the
superconducting region but, under certain conditions,
passes in the region of maximal density of states that
corresponds to the one-dimensional motion along the
chain.

Let us use a simple model that takes into account
only the transitions (tp) between the nearest lying oxy-
gen anions and (tpd) between the silver cations and
oxygen anions in one-dimensional O–Ag–O–O–Ag–
chains. The consideration is carried out within the
framework of the generalized Hubbard–Emery model
with infinite Hubbard energy of both p and d
electrons.

Inasmuch as the system has hexagonal symmetry,
the energetically highest underfilled levels are (3z2 – r2)

1 β+( )hp xhd+ 2 1 β+( ) x,–=

0 x 1, 0 β 1.≤ ≤≤ ≤
0021-3640/01/7401- $21.00 © 20015
in the silver 4d shell and pz in the oxygen 2p shell.
Accordingly, the mean occupation numbers of holes hp

and hd change from zero to two, which corresponds to
the filling of the upper and lower Hubbard hole sub-
bands.

The equations of state relate the energy difference
r = ep – ed and the chemical potential µ = –(ep + ed)/2 to
the mean occupation numbers hp and hd.

It is pointed out in [1] that the AgxPb6OCO9 + β sys-
tem consists of alternating hexagonal layers, with oxy-
gen layers situated on each side of every layer contain-
ing silver cations. Since the separation between the
nearest lying silver cations exceeds the separation
between the nearest lying oxygens, it is sufficient to
take into account for each chain only hopping between
the nearest lying oxygen layers (tp) and between the sil-
ver cations and oxygen anions (tpd).

The energy of elementary excitations are found
from the poles of a one-particle Green’s function that is
defined through the corresponding inverse matrix:

(2)

Here, the so-called end multipliers fp and fd are intro-
duced. In the zero-loop (“Hubbard I”) approximation,

Ĝ iω( ) α( )( ) 1–

=  
iω µ r/2;+ + f dt pd;– f dt pd–

f pt pd;– iω µ r/2;–+ f pt p iα( )exp–

f pt pd;– f pt p iα–( );exp– iω µ r/2–+ 
 
 
 
 

.
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they are linear functions of the mean number of holes:

(3)

It is convenient to normalize all energy quantities to the

multiplier (2 )
1/3

 and introduce the parameter

v  = (2 /fp )
1/3

; then, the three branches  =

 – µ of the elementary excitation spectrum are deter-
mined from the following equation:

(4)

In this equation, ep(α) = eα – r/2 and ed(α) = eα + r/2,
where α is the dimensionless quasimomentum.

Below, the equations of state are written in the self-
consistent form corresponding to the one-loop (Hub-

f k 1
hk

2
----, 0 hk 1;< <–=

f k

hk

2
----, 1 hk 2, k< < p or d .= =

f p
2 f dt pd

2 t p

f dt pd
2 t p

2 ξα
λ( )

eα
λ

ed α( ) ep α( )( )2
ep α( )v ed α( ) 1

v 2
------–– α( ).cos=

Fig. 1. Phase diagram of the AgO2 compound at T = 0. The
superconducting regions are crosshatched. (a) 0 < np < 1,
nd < 1 and (b) 0 < np < 1, 1 < nd < 2.
bard I) approximation [2, 3]. In this case, if the filling
occurs in the lower subband, i.e., if 0 < hp, d < 1, one has

(5a)

If the filling occurs in the upper subband, i.e., if 1 < hd < 2,
then the functions hp, fp, and Kp, d retain their form in the
0 < hp < 1 region. For the remaining quantities, one has

(5b)

In Eq. (5a), the functions  are the normal coor-
dinates defined through the quantities Rp(e, r, v ) =

 – v /2 and Rd(e, r, v) = ( (α))
2
 – 1/v 2

as

(6)

Here, the index λ stands for the three branches of
energy spectrum (4).

In the particular calculations at T = 0, it is conve-
nient to pass to the integration with respect to energy
variable e. Differentiating Eq. (4), one obtains the equa-
tions of state in terms of the new normal coordinates

(7)

In Eq. (7), the integration goes over three energy
regions where the radicand is positive. Making use of

hk

2Kk

1 Kk+
---------------, f k

1
1 Kk+
---------------, k p d ,,= = =

v
2t pd

2 1 K p+( )
t p

2 1 Kd+( )
------------------------------

1/3

= ;

Kk Ak
λ( ) α( )nF eα

λ( ) µ–( ) αd
π

------.

0

π

∫
λ 1=

3

∑=

hd
2

2 Kd–
---------------; f d

1
2 Kd–
---------------;= =

v
2t pd

2 1 K p+( )
t p

2 2 Kd–( )
------------------------------

1/3

= .

Ap d,
λ( ) α( )

ep
λ( ) α( )ed

λ( ) α( ) ep
λ( )

Ap
λ( ) Rp e r v, ,( )

2Rp e r v, ,( ) Rd e r v, ,( )+
--------------------------------------------------------------,=

Ad
λ( ) Rd e r v, ,( )

2Rp e r v, ,( ) Rd e r v, ,( )+
--------------------------------------------------------------.=

Kk E( ) ak e( ) ed
π
-----, k

∞–

E

∫ p d,( ),= =

ak
λ( ) 2Rp e r v, ,( ) Rd e r v, ,( )+( )sgn=

×
Rk e r v, ,( )

1 α e( )( )cos
2

–
----------------------------------------.
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the explicit form of cos(α), one finds the following
boundary values of energy variable:

(8)

(9)

Finally,

(10)

Equations (8)–(10) determine three pairs of boundary
values between the allowed and forbidden bands.

The curves  and EB0 intersect at the point r =

v 2/2  –  1/v, E = v 2/4 + 1/2v. The curves  and

EA0 intersect at the symmetric point r = –v 2/2 + 1/v,
E = −v 2/4 – 1/2v.

Strong correlation of electronic states at Up, d = ∞
gives rise to the d–d and p–p scattering. The supercon-
ducting state arises if a two-particle vertex function,
calculated at zero total momentum and spin, has a sin-
gularity. In the ladder approximation, the condition for
the appearance of this singularity can be formulated as
a condition for the solvability of the corresponding sys-
tem of homogeneous equations.

The two-particle scattering amplitudes (p)
are defined as coefficients of the operator products

 obtained as a result of evaluating the double per-

mutation relations { , [ , ]} for the Hubbard

X operators, where  is the Hamiltonian expressed
through the X operators. The condition for the solvabil-
ity can eventually be represented in the form of the BCS
expression Tc ≈ t*exp(–1/Λρ), where ρ is the density of

EA0
r
2
---

1
v
----,–=

EA
± 1

2v
------- +1 1 v 2r2 2v r 4v 3+ + +±( ),=

EB0
r
2
---

1
v
----,+=

EB
± 1

2v
------- 1– 1 v 2r2 2v r– 4v 3+ +±( ).=

Q e r v, ,( ) 1 α e( )( )cos
2

– e
r
2
---– 

  2 1

v 2
------––= =

× e
1

2v
-------– 

  2 1 v 2 2rv 4v 3+ + +

4v 2
-----------------------------------------------–

× e
1

2v
-------+ 

  2 1 v 2 2rv– 4v 3+ +

4v 2
-----------------------------------------------– .

EB
+

EA
–

Γα β ; λ ν,,
0

X̂λ X̂ν

X̂α X̂β Ĥ

Ĥ
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states at the Fermi surface and Λ is a function of ep, ed,
hp, and hd [4–6]:

(11)

Here,  are normal coordinates (6) entering into
equations of state (5).

Let us pass on to the energy variable and integrate in
Eq. (11), to get

(12)

This expression with the upper sign relates to the region
0 < nd < 1, 0 < np < 1. With the lower sign, it relates to
the region 1 < nd < 2, 0 < np < 1.

To construct the phase diagram in the region 1 < np < 2,
it is sufficient to perform the particle–hole symmetry
transformation np  2 – np, nd  2 – nd.

Setting Λ = 0, one obtains the equation for the
boundary between the superconducting and normal
phases at T = 0. In conjunction with the equations of
state, this condition determines the region of existence
of superconductivity in (hp, hd) coordinates.

For the particular calculations, it is necessary to
specify the ratio tpd/tp of hopping integrals.

Since the wave functions of the oxygen 2p states
drop with distance much more rapidly than the wave
functions of the silver 4d states, it is assumed in the cal-
culations that tpd = 2tp. Therefore, if the filling occurs in
the lower p subband, then

(13)

(14)

One can verify that the electroneutrality line 2hp + hd =
3 corresponding to the O–Ag–O–O–Ag–O… chains
intersects the superconducting region.

Let us first consider the limiting case r  ±∞. In
this limit, the following expansion in powers of 1/r
holds true:

(15)

Λρ( ) λ( ) 2
ep e

λ α( )( ) Ap
λ 2

f p

-----------------------------------
ed e

λ( ) α( )( ) Ad
λ 2

f d

--------------------------------------±
 
 
 

0

π

∫=

× δ eα
λ( ) µ–( ) αd

π
------.

Ap d,
λ

Λρ e E=( )

=  
2
f p

-----ep E( )Rp
2 E r v, ,( ) 1

f d

-----ed E( )Rd
2 E r v, ,( )±

 
 
 

× 1

2Rp E r v, ,( ) Rd E r v, ,( )+ Q E r v, ,( )
-------------------------------------------------------------------------------------------------.

v 2
1 K p+
1 Kd+
---------------- 

 
1/3

  for    ≈ 0 nd 1;< <

v 2
1 K p+
2 Kd–
---------------- 

 
1/3

  for   1 nd 2.< <≈

E α( ) ±( ) r
2
--- 1

v
----

v
2r
----- 1 α( )cos±( ).+±≈
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A similar expansion for the normal coordinates reads

(16)

Thus, at r < 0, the d subbands are empty and the filling
occurs only in the two p subbands. Accordingly, the
equations of state for the p holes has the form

(17)

One can see that at r < –6 the boundary of the supercon-
ducting region passes within the narrow hybridized
gap, where E–(α) < µ < E+(α). For this reason, the
superconductivity arises when the lower subband is
completely filled, while the energetically next subband
is E+(α). It then follows that the superconductivity at
hd = 0 arises when Kp = 1/2. In other words, the super-
conductivity at hd = 0 arises when hp ≥ 2/3.

At large positive values of parameter r, the d sub-
band is filled first as the energy increases. However,
under these conditions, the superconductivity arises at
none of the hd values.

If the energy is high to an extent that the p-hole sub-
bands start to fill, then one again can use the expansion
in powers of 1/r.

Ap
±( ) 1

2
---= 1

v

2r2
------- 1 αcos±( )– ,

Ad
v

2r2
------- 1 αcos±( ).=

hp

2K p

1 K p+
----------------,=

K p
1

2π
------ nF E α( ) λ( ) µ–( ) α .d

0

π

∫
λ ±=

∑=

Fig. 2. Phase diagram of the AgO2 compound at T = 0 and
tpd = 2tp; (a) the electroneutrality line 2np + nd = 3. Inset:
(b) the electroneutrality line np + nd = 1.
At high r > 6, the condition for the occurrence of
superconductivity is met only for the highest p sub-
band. Because of this, all relationships in Eqs. (15) and
(16), which are valid for r values negative and large in
magnitude, prove to be valid for large positive r as well.
At hd = 1, the superconductivity arises when Kp = 1/2.
In other words, the superconductivity at hd = 1 occurs
under the condition that hp ≥ 2/3.

The same result holds in the region 1 < hd < 2, so that
the phase curve passes through three points, each situ-
ated at a “height” hp = 2/3 for three integer values hd =
0, 1, and 2.

The symmetric point r = 0, E = 0 corresponds to the
half-filling Kp = Kd = 1/2. At this point,

(18)

For a qualitative analysis, it is sufficient to assume
that the end multipliers fp, d are of the same order of
magnitude. In other words, it can be assumed that the v
value is fixed, while the fp, d multipliers drop out from
Eq. (14).

Setting, for definiteness, v  = 2 in Eqs. (11)–(14),
one obtains the phase diagram in (E, r) coordinates
(Fig. 1).

An important feature of the phase diagrams is that
they contain four-critical points at the intersections of
the boundary curves of superconducting and semicon-
ductor (normal) phases. To determine the coordinates
of these points, it is sufficient to demand that the right-
hand and left-hand sides of the condition for the appear-
ance of superconductivity Λ = 0 [see Eq. (12)] indepen-
dently turn to zero:

or

(19)

The coordinates of these points coincide with the coor-
dinates of the points where the hybridized gaps EA0,

, and EB0,  collapse.

Thus, one can state that these points are six-critical,
because, when moving around each of them, one suc-
cessively intersects the boundaries between the super-
conducting and normal metallic, normal metallic and
normal semiconductor, and normal semiconductor and
superconducting phases.

Let us consider the behavior of the phase diagram
for integer hp values. In the 0 < hd < 1 region, the situa-
tion is quite simple. At small hp, the superconductivity
is absent, while at hp ≤ 1 it occurs for all 0 < hd < 1.
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The situation is reversed in the region 1 < hd < 2
(Fig. 2). At small hp, the superconductivity occurs for
all 1 < hd < 2, and it is absent at hp ≤ 1 for all 0 < hd < 1.

The final form of the phase diagram is depicted in
Fig. 2. The AgO electroneutrality line nowhere inter-
sects the Cooper instability region (straight line b in the
inset in Fig. 2). The AgO2 electroneutrality line passes
near the edge energy of the upper hybridized subband.
In this region, the density of states has a root singular-
ity, so that the superconducting transition temperature
can be expected to be maximal just in this region. For-
mally, the right-hand side of the BCS expression
becomes infinite at this boundary. In fact, this implies
the crossover to the power-law dependence of the
superconducting transition temperature on the scatter-
ing amplitude at the Fermi surface.

It is also worthy of note that both coefficients Rp and
Rd tend to zero as the four-critical point A2 is
JETP LETTERS      Vol. 74      No. 1      2001
approached, so that the dimensionless BCS constant
remains finite at the very point A2.
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Spin and lattice dynamics of R2CuO4 (R = Pr, Sm, and Eu) crystals were studied over the frequency and tem-
perature ranges 20–250 GHz and 5–350 K, respectively. The absorption coefficients of the R2CuO4 crystals
(R = Pr, Sm, and Eu) were found to change dramatically at temperatures of, respectively, 20, 80, and 150 K over
a broad frequency range above 120 GHz. The absorption jumps were caused by the structural phase transitions.
Broad spin-wave bands were observed in the high-temperature phases of all crystals studied. Absorption lines
due to lattice dynamics were observed near the temperatures of structural phase transition over a broad fre-
quency range, including the frequencies corresponding to the spin-wave bands. © 2001 MAIK “Nauka/Inter-
periodica”.

PACS numbers: 61.50.Ks; 64.60.Ht; 75.30.Ds; 76.50.+g
 R2CuO4 (R = La, Pr, Nd, Sm, Gd, and Eu) crystals
are quasi-2D antiferromagnets with a giant exchange
within the CuO2 layers (exchange constant Jpl . 120–
150 meV [1]). A quasi-2D long-range order caused by
a weak interplanar exchange is characterized by Néel
temperatures TN . 250–300 K.

It is commonly thought that crystals of the R2CuO4
family with rare-earth ions have the T '-type tetragonal
structure at any temperature. However, it is pointed out
in a number of studies that some of these crystals
exhibit structural distortions and structural phase tran-
sitions. For example, the X-ray studies of Eu2CuO4 [2]
have shown that it undergoes structural phase transition
at temperature T ~ 150 K. In the low-temperature
phase, limited-scale rhombic distortions were observed
in the CuO2 layers. At temperatures above 150 K, these
distortions disappeared. The magnetic, low-frequency
dielectric, and microwave studies of Eu2CuO4 [3–5]
showed that the structural and magnetic properties
simultaneously change at the phase transition near T ~
150 K. The results of this work suggest that the struc-
tural phase transitions and the coupling between the
spin-wave and lattice excitations are, likely, typical for
R2CuO4.

This study is devoted to the spin and lattice dynam-
ics of R2CuO4 (R = Pr, Sm, and Eu) crystals. The tem-
perature dependences of the absorption coefficient
were studied for the electromagnetic waves over the
frequency and temperature ranges 20–250 GHz and
5−350 K, respectively. Measurements were made with
a quasi-optical spectrometer. A backward-wave tube
was used as a radiation source, and the signal was
0021-3640/01/7401- $21.00 © 20020
detected by InSb detectors. Samples shaped like plates
with their plane perpendicular to the crystal axis were
arranged perpendicular to the wave propagation direc-
tion and completely partitioned the beam. The alternat-
ing electric and magnetic fields were oriented in the
ab crystal plane (CuO2 layers). The electric field was
aligned with the sample holder axis, about which the
sample can be rotated. The temperature dependences of
the fractional absorption coefficient Γ = 1 – P(T)/P(T =
5 K), where P(T) and P(T = 5 K) are the microwave sig-
nal powers transmitted through the sample at tempera-
tures, respectively, T and T = 5 K, were studied at fixed
frequencies. The Γ(T) dependences at different fre-
quencies were used to construct the frequency depen-
dences for this coefficient at fixed temperatures. Gener-
ally, to determine quantitatively the absorption coeffi-
cient, information about the phase of transmitted wave
and the reflected power is required. However, in a
search for the absorption bands, which was the main
purpose of this study, one could restrict oneself to the
measurement of the coefficient Γ.

One can see from Fig. 1 that the coefficient Γ
increases sharply in the narrow temperature intervals
near temperatures of 20, 80, and 150 K for the R2CuO4
(R = Pr, Sm, and Eu) crystals, respectively. At temper-
atures below the jumps, the crystals are virtually trans-
parent at the frequency chosen. At temperatures above
the jumps, the coefficient Γ increases rapidly and then
virtually does not change upon further rise in tempera-
ture to 300–350 K. It is also seen that the temperature
dependences of the absorption coefficients of the
R2CuO4 (R = Pr, Sm, and Eu) crystals are similar and
qualitatively differ from the same dependence for
001 MAIK “Nauka/Interperiodica”
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La2CuO4. The absorption in the latter increases
smoothly with temperature, probably, due to carriers
that are thermally activated from impurities and
defects. As can be seen, this attenuation (which can be
assumed to be approximately the same for all R2CuO4
crystals) is much weaker than the absorption in the
crystals at temperatures above T0 (see caption to Fig. 1).

A jumpwise change in the absorption with changing
temperature suggests that we deal with the phase tran-
sitions near the temperatures T0. Indeed, as was pointed
out above, Eu2CuO4 undergoes structural phase transi-
tion at T ~ 150 K. The fact that the curves in Fig. 1 are
similar for all crystals suggests that the jumps in Γ(T)
have a common origin, i.e., that the Pr2CuO4 and
Sm2CuO4 crystals also undergo structural phase transi-

Fig. 1. Temperature dependences of the fractional absorp-
tion coefficient Γ for the R2CuO4 (R = La, Pr, Sm, and Eu)
crystals. The frequency equals 169 GHz. The external mag-
netic field is H0 = 0. The curves are recorded in the slow
heating regime. The solid lines are the Boltzmann approxi-

mations Γ =  + Γ2, where Γ1 is the

absorption coefficient at temperature T = –∞, Γ2 is the same
at T = +∞, T0 is the temperature at which Γ = 0.5(Γ1 + Γ2,
and dT is the width of the temperature interval where the
coefficient Γ sharply changes. The values of T0 and dT(K)
for the R2CuO4 (R = Pr, Sm, and Eu) crystals are equal,
respectively, to 19.52 ± 2.13 and 13.03 ± 0.79 for Pr,
86.09 ± 0.24 and 10.49 ± 0.21 for Sm, and 115.82 ± 0.62
and 10.78 ± 0.53 for Eu.

Γ1 Γ2–
1 T T0–( )/dTexp+
------------------------------------------------
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tions at temperatures of 20 and 80 K, respectively. In
the low-temperature phases, the crystals do not show
fundamental absorption bands at the corresponding fre-
quencies, whereas such bands appear in the high-tem-
perature phases. One can conclude from the polariza-
tion properties of absorption bands that they are due to
the spin-wave excitations in the CuO2 plane of crystals.
The absorption coefficient decreased upon turning the
sample through a small angle (several degrees) about
the holder axis. With such a turn, the alternating electric
field remained in the ab crystal plane, while the alter-
nating magnetic field left this plane. The angle of rota-
tion was sufficiently small that the microwave power
could not bypass the sample.

One can see from Fig. 2 that the structural phase
transitions in the Sm2CuO4 and Eu2CuO4 crystals are
first-order transitions. The absorption coefficient of
Eu2CuO4 shows a strong hysteresis: T0 . 150 K on
heating and T0 . 120 K on cooling. Similar hysteresis,
though smaller in amplitude (5–10 K), was also
observed for Sm2CuO4 and Pr2CuO4 near temperatures
of 80 and 20 K, respectively. In the frequency range
where there is no spin-wave absorption, the S-like
instability was observed in the Γ(T) dependence for
Sm2CuO4 near the structural phase transition; the rate

Fig. 2. The same as in Fig. 1, but for the Eu2CuO4 (fre-
quency f = 169 GHz) and Sm2CuO4 (f = 34 GHz) crystals,
recorded in the slow cooling and heating regimes near the
temperatures of 150 and 80 K, respectively. The arrows
indicate the directions of changing temperature. The
absorption line of magnetic origin is seen for Sm2CuO4
near T . 40 K. Inset: the S-like instability and the hysteresis
region for Sm2CuO4.
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of changing temperature of the sample decreased upon
uniform heating and the sample cooled down (see inset
in Fig. 2). Among the crystals studied, the phase transi-
tion in Pr2CuO4 proved to be the most diffuse (most
probably, of the first order close to the second order).

In the Pr2CuO4 and Eu2CuO4 crystals, additional
absorption lines were observed near the temperatures
T0 in the frequency range where the spin-wave bands
were absent (lines 1 and 2 in Fig. 3). These lines can be
naturally associated with the lattice dynamics in the
vicinity of structural phase transitions. Note that the
intensity of the lines of type 1 in Fig. 3 did not change
upon the above-mentioned rotation of the sample about
the holder axis, suggesting their electric nature.

One can see from Fig. 3 that the character of temper-
ature dependence changes sizably for the absorption
coefficients at different frequencies. With Eu2CuO4, the
lines due to lattice dynamics are clearly seen at frequen-
cies of 55 and 78.8 GHz. At frequencies above
120 GHz, the absorption bands due to spin-wave modes
are mostly seen. For Pr2CuO4 and Sm2CuO4, the depen-
dences are similar to those shown in Fig. 3 at the same
frequencies, but the features in these curves are shifted
to temperatures of 20 and 80 K, respectively.

We failed to observe the short-wavelength edge of
spin-wave bands for all crystals (Fig. 4), up to the max-
imum measurement frequency (250 GHz). The
observed bands, which are caused by the oscillations of
the total moment, are energetically close to the band

Fig. 3. The same as in Fig. 1, but for the Eu2CuO4 crystal at
frequencies for which the curves have the most characteris-
tic shapes. Curves 1–5 correspond to (1) 55, (2) 78.8,
(3) 120, (4) 150, and (5) 170 GHz.
observed for the antiferromagnetic vector in inelastic
neutron scattering by Pr2CuO4 [6, 7]. According to
these studies, the band is due to the in-plane spin-wave
mode, for which the gap is determined by the quadratic
anisotropy within the CuO2 layer.

As is seen from Fig. 4, the absorption coefficient
(and the slope of the low-frequency band edge) of the
in-plane spin-wave mode in the R2CuO4 (R = Pr, Sm,
and Eu) crystals depends strongly on the temperature at
temperatures near T0 and does not above 90, 100, and
170 K, respectively. The absorption band edge (i.e., gap
in the spin-wave spectrum) was determined from the
half-height at the low-frequency slope and found to
change with temperature, as was reported for Pr2CuO4
in [6]. In [8], this temperature dependence was
explained by the interaction of spin waves in the pres-
ence of anisotropy violating the total spin conservation.
However, it follows from our results that an alternative
reason associated with the structural phase transitions
is also possible for the temperature dependence of the
gap. Indeed, the ratio of the coexisting low- and high-
temperature phases, whose spin-wave spectra are dif-

Fig. 4. Frequency dependences of the absorption coefficient
for Pr2CuO4 at several temperatures in the range 10–80 K.
Inset: the same for the Eu2CuO4 crystal at T = 170 K and the
Sm2CuO4 crystal at T = 100 K.
JETP LETTERS      Vol. 74      No. 1      2001
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ferent, changes with changing temperature near the
phase transitions.

A comparatively narrow absorption line was also
observed near 30 GHz for the high-temperature phases
of the Eu2CuO4 and Pr2CuO4 crystals (Fig. 4). We
assign this line to the well-defined two-dimensional
homogeneous spin-wave excitations that were previ-
ously assumed to occur in the CuO2 layers and contrib-
ute to the microwave magnetic susceptibility [5, 9].

Note that the intensity of the absorption lines due to
lattice dynamics (lines of types 1 and 2 in Fig. 3)
increases with frequency. They also occur at frequen-
cies of the in-plane spin-wave modes. Consequently,
the absorption bands near the temperatures of structural
phase transitions at frequencies higher than 120 GHz
are likely not only due to the spin waves, but represent
mixed spin and lattice modes. Since the character of
these bands changes only slightly with an increase in
temperature, the mixed character of excitations is,
probably, retained over the entire temperature range of
a high-temperature phase. The large band widths may
be caused by the structural inhomogeneities that are
typical of the high-temperature phases [4, 9]. The
absorption in the band also depends weakly on the
external magnetic field. In such a situation, the observa-
tion of antiferromagnetic resonance by the ordinary
methods (with field sweep) is impracticable. These res-
onances were observed in the low-temperature phases
of our crystals (see Fig. 2) and, earlier, in some other
crystals [10, 11].

In summary, the R2CuO4 (R = Pr, Sm, and Eu) crys-
tals undergo structural phase transitions, respectively,
at temperatures of 20, 80, and 150 K. In the high-tem-
perature phases, the dynamic properties of all crystals
studied were found to be similar. The temperatures of
structural phase transitions and the dynamic properties
of the low-temperature phases of different crystals are
JETP LETTERS      Vol. 74      No. 1      2001
different and, most probably, governed by the type of
rare-earth ion.

This work was supported in part by the Foundation
of the Presidium of Russian Academy of Sciences
“Basic Research” and the Russian Foundation for Basic
Research “Scientific Schools,” project no. 00-15-
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A 57FeBO3 single crystal is studied by the nuclear forward scattering (NFS) method. The NFS time spectra from
57Fe nuclei are recorded at room temperature under high pressures up to 50 GPa in a diamond anvil cell. In the
pressure interval 0 < p < 44 GPa, the magnetic field HFe at the 57Fe nuclei is found to increase nonlinearly, reach-
ing a maximum value of 48.1 T at p = 44 GPa. As the pressure increases further and reaches the point
p = 46 GPa, the field HFe abruptly drops to zero, indicating that a transition from the antiferromagnetic to a non-
magnetic state occurs in the crystal. In the pressure interval 0 < p < 46 GPa, the magnetic moments of the iron
ions lie in the (111) basal plane of the crystal. Several possible mechanisms of magnetic collapse are discussed.
© 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.30.Kz; 61.50.Ks; 75.25.+z
Iron borate FeBO3 has a calcite rhombohedral struc-

ture, belongs to the  space group [1, 2], and
is an antiferromagnet with a weak ferromagnetism and
Néel point TN = 348 K [2]. The magnetic Fe3+ ions are
in an octahedral environment formed by oxygen ions
with (Fe–O) interion distances of 2.028 Å, (Fe–Fe) dis-
tances of 3.601 Å, and (O–Fe–O) bond angles of 91.82°
and 88.18° [3]. Thus, the environment formed by six
oxygen ions around iron is almost cubic. At normal
pressure and room temperature, the magnetic moments
of two iron ion sublattices lie in the (111) basal plane
and are almost antiparallel. The angle ϕ between them
is ~0.9° [4], and the resulting weak ferromagnetic
moment also lies in the basal plane. It was found from
NMR measurements [4] that, in the interval 4.2 K < T <
TN, the magnetic moments of the sublattices and the
weak ferromagnetic moment show identical tempera-
ture dependences. This suggests that the value of angle
ϕ is constant within the above-mentioned temperature
interval.

In this paper, we study a FeBO3 single crystal under
high pressure by the nuclear forward scattering (NFS)

R3c D3d
6( )
0021-3640/01/7401- $21.00 © 20024
method, which is a version of Mössbauer spectroscopy
on the time scale. The measurements were performed at
the ID18/ID22N Nuclear Resonance beamlines [5] of
the European Synchrotron Radiation Facility (ESRF,
Grenoble, France).

High-quality transparent FeBO3 crystals light green
in color were grown from flux by V.N. Seleznev at the
Simferopol’ State University. They contained iron
enriched with the 57Fe isotope to 96%. The crystals had
the form of plates whose large surfaces were parallel to
the (111) basal plane. The thickness of the plates was
10–40 µm, and the maximum area of a plate was
8 × 8 mm2.

To perform the NFS studies at high pressures, a
57FeBO3 crystal with the dimensions 80 × 40 × 10 µm3

was placed into a high-pressure cell with diamond
anvils. The time spectra of the NFS from the 57Fe nuclei
were recorded at room temperature in the pressure
range up to 50 GPa without applying an external mag-
netic field. The (111) basal plane of the crystal was ori-
ented perpendicularly to the synchrotron radiation (SR)
beam, and the polarization vector of gamma rays was
001 MAIK “Nauka/Interperiodica”
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parallel to the sample plane. At each fixed pressure
value, two spectra were recorded; the first spectrum
was obtained for the initial position of the crystal with
the (111) plane arbitrarily oriented about the polariza-
tion direction of the SR beam (we will call it the “zero”
orientation), and the second spectrum was obtained
after the crystal was rotated in the basal plane through
90° from the initial position (the “90-degree” orienta-
tion).

Figure 1 presents the time spectra of NFS for differ-
ent pressure values. The measurements were performed
in the 16-bunch mode of operation. The decay of
nuclear excitation is modulated in time by quantum and
dynamical beats. The quantum beats are caused by the
interference of the scattered radiation components with
different frequencies as a result of the nuclear level
splitting due to the hyperfine interaction. The period of
quantum beats is inversely proportional to the hyperfine
splitting and, in the case under study, to the magnetic
field at the iron nuclei. The dynamical beats are caused
by multiple scattering processes and determined by the
sample thickness. A detailed description of the method
can be found in review [6].

At pressures below 46 GPa the spectra display pro-
nounced quantum beats. Their period is about 8 ns in
the case of the zero azimuthal orientation of the crystal
and about 15 ns in the case of the 90-degree orientation.
The beats with the period 15 ns are 100%-modulated;
i.e., at the nodes of beats, the scattered intensity drops
practically to zero. These data indicate that, over the
whole pressure range from normal to 46 GPa, the orien-
tation of the magnetic field at the iron nuclei remains in
the (111) basal plane, which is perpendicular to the
radiation beam. When the pressure rises above 46 GPa,
the quantum beats disappear, testifying to the disap-
pearance of the hyperfine magnetic field at the 57Fe
nuclei. At normal pressure, the NFS spectrum qualita-
tively coincides with the spectrum obtained for iron
borate in [7]. A small difference between them is
caused by different crystal thicknesses and by the
absence of an external magnetic field in our measure-
ments.

The spectra were processed by the MOTIF program
developed by Yu.V. Shvyd’ko [8]. The large number of
quantum beats in each spectrum (more than 15) allows
one to obtain the value of magnetic field HFe at the 57Fe
nuclei with high accuracy. The field HFe, being the main
parameter of this study, is practically uncorrelated with
other parameters of the spectrum such as the crystal
thickness, the quadrupole splitting, and the azimuthal
orientation of magnetic field in the (111) plane, which
affect only the relative heights of individual peaks of
quantum beats. For example, the measurements of the
field HFe at the zero and 90-degree orientations of the
crystal provide practically the same results.
JETP LETTERS      Vol. 74      No. 1      2001
The pressure dependence of the hyperfine magnetic
field HFe at an iron nucleus is shown in Fig. 2. In the
pressure range 0 < p < 44 GPa, the field increases from
34.1 T at normal pressure to a maximal value of 48.1 T
at p = 44 GPa. With a further increase in pressure, at the
point p = 46 GPa, the magnetic field drops, pointing to
an abrupt transition of the crystal from the antiferro-
magnetic to a nonmagnetic state. With this transition,
the crystal, light green at normal pressure, darkens and
becomes opaque. Presumably, this effect testifies to a
drastic decrease in the optical absorption gap and
implies a transition from the insulating to a metallic
state.

From Fig. 2, one can see that the increase in the
magnetic field with pressure up to 44 GPa is nonlinear
and, presumably, is due to the increase in the exchange
interaction owing to the decrease in the Fe–O–Fe inte-
rion distances. At normal pressure, the intersublattice
exchange interaction between the nearest Fe3+ ions is
dominant [9], and the exchange integral J evaluated in

Fig. 1. Time spectra of resonance nuclear forward scattering
from the 57Fe nuclei in a 57FeBO3 single crystal at room
temperature. The dependence of the scattered radiation
intensity on the time elapsed after the SR shot is represented
on a logarithmic scale. The spectra are recorded for differ-
ent pressures without applying an external magnetic field.
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the approximation of spin-wave theory is equal to
27.3 K [9].

If we formally relate the increase in HFe to the
increase in the Néel temperature TN, we can estimate
the pressure dependence of TN from Fig. 2. For this pur-
pose, we use the data on the temperature dependence of
HFe [9] and assume that an increase in the field is equiv-
alent to an increase in the Néel temperature. Dividing
the curve shown in Fig. 2 into three approximately lin-
ear parts, we obtain dTN/dp = 5.7 K/GPa in the pressure
interval 0 < p < 6 GPa, dTN/dp = 2.3 K/GPa in the inter-
val 6 < p < 15 GPa, and dTN/dp = 1.4 K/GPa in the inter-
val 20 < p < 44 GPa. We note that the value of dTN/dp
estimated for the first interval of low pressures is close
to the value (5.3 ± 0.3) K/GPa obtained from the mag-
netization measurements at hydrostatic pressures up to
0.3 GPa [10].

The most interesting effect is that the magnetic field
at the iron nuclei abruptly disappears under pressures of
about 46 GPa. This effect testifies to the transition of
the 57FeBO3 crystal to a nonmagnetic state. We can pro-
pose several mechanisms for explaining such a mag-
netic collapse:

(1) A structural phase transition resulting in the for-
mation of a new FeBO3 phase with the Néel point

Fig. 2. Pressure dependence of the hyperfine magnetic field
at the 57Fe nuclei in a 57FeBO3 single crystal at room tem-
perature.
below the room temperature. In this case, the magnetic
transition at p = 46 GPa is a Curie–Weiss-type transi-
tion from the antiferromagnetic to paramagnetic state.

(2) An insulator-to-metal transition at which the 3d
electrons of Fe3+ ions are delocalized and pass to the
conduction band. In this case, the magnetic state of the
material is determined by the band mechanism and
depends on the features of the band structure. Then, the
magnetic transition at p = 46 GPa can be a Pauli-type
transition from the antiferromagnetic to paramagnetic
state.

(3) A transition of the iron ions from the high-spin
to the low-spin state, analogous to the phenomenon that
was recently observed in LaFeO3 orthoferrite in the
pressure range 30–45 GPa [11]. In FeBO3 at normal
pressure, the iron ions are trivalent and are in the high-
spin state S = 5/2. The low-spin state S = 1/2 of Fe3+

ions is not a diamagnetic one, but the Néel point of such
a material should be much lower than for materials with
Fe3+ ions in the high-spin state. For example, in the effec-
tive-field approximation, we have kBTN ∝  AJS(S + 1). In
this case, the observed magnetic transition is a transi-
tion from the high-spin antiferromagnetic to the low-
spin paramagnetic state.

In principle, we can also consider a change of the
valence state of a Fe3+ ion to an even state, Fe2+ or Fe4+.
The low-spin states of such ions are diamagnetic. Then,
the observed magnetic transition in FeBO3 can be a
transition from the high-spin antiferromagnetic to the
low-spin diamagnetic state.

In our NFS study, we did not intend to measure the
isomer shifts (IS), which requires a more sophisticated
measuring technique. The IS values can be obtained
from the conventional Mössbauer absorption spectra,
but their measurement in diamond anvils is a rather dif-
ficult problem. However, in order to study in more
detail the possible mechanisms of magnetic transition
and to obtain additional information on the valence and
spin states of the iron ions, we are currently running
such experiments. Their preliminary results point to a
full coincidence of the dependences HFe = f(P) obtained
by both methods in the pressure range 0 < p < 35 GPa.

In closing, we note that our data point to the orien-
tation of the magnetic moments of the iron ions in the
(111) plane of the crystal over the entire pressure range
up to 46 GPa. Thus, the spin-flip transition, which was
detected in an iron borate crystal at 1.7 GPa by
magnetic neutron diffraction [12], did not occur in our
crystal.

We are grateful to Professor R.Z. Levitin for useful
discussions.
JETP LETTERS      Vol. 74      No. 1      2001



TRANSITION FROM THE ANTIFERROMAGNETIC TO A NONMAGNETIC STATE 27
REFERENCES

1. I. Bernal, C. W. Struck, and J. G. White, Acta Crystal-
logr. 16, 849 (1963).

2. R. Wolff, A. J. Kurtzig, and R. C. LeCraw, J. Appl. Phys.
41, 1218 (1970).

3. R. Diehl, Solid State Commun. 17, 743 (1975).

4. M. P. Petrov, G. A. Smolenskiœ, A. P. Pagurt, et al., Fiz.
Tverd. Tela (Leningrad) 14, 109 (1972) [Sov. Phys. Solid
State 14, 87 (1972)].

5. R. Rüffer and A. I. Chumakov, Hyperfine Interact. 97/98,
589 (1996).

6. G. V. Smirnov, Hyperfine Interact. 123/124, 31 (1999).
JETP LETTERS      Vol. 74      No. 1      2001
7. T. Mitsui, S. Kitao, M. Seto, et al., J. Phys. Soc. Jpn. 68,
1049 (1999).

8. Yu. V. Shvyd’ko, Phys. Rev. B 59, 9132 (1999).
9. M. Eibschütz and M. E. Lines, Phys. Rev. B 7, 4907

(1973).
10. D. M. Wilson and S. Broersma, Phys. Rev. B 14, 1977

(1976).
11. G. R. Hearne, M. P. Pasternak, R. D. Taylor, and

P. Lacorre, Phys. Rev. B 51, 11495 (1995).
12. V. P. Glazkov, V. V. Kvardakov, and V. A. Somenkov,

Pis’ma Zh. Éksp. Teor. Fiz. 71, 238 (2000) [JETP Lett.
71, 165 (2000)].

Translated by E. Golyamina



  

JETP Letters, Vol. 74, No. 1, 2001, pp. 28–31. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 74, No. 1, 2001, pp. 30–33.
Original Russian Text Copyright © 2001 by Pomortsev, Korolev, Arkhipov, Dyakina.

                                                                                                              
Percolation Nature of the Metal-to-Insulator Transition
in La0.8Ba0.2MnO3
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For a La0.8Ba0.2MnO3 single crystal, the temperature dependences of its resistivity, magnetization, and differ-
ential magnetic susceptibility are studied in the vicinity of the metal-to-insulator transition and near the ferro-
magnetic–paramagnetic phase transition. The critical temperatures corresponding to these transitions are deter-
mined independently from the experiment. These temperatures are found to coincide within 2–3%. The results
are discussed within the framework of percolation theory. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.30.+h; 64.60.Ak; 75.30.Kz; 75.60.-d; 75.50.Cc
The nature of the metal-to-insulator transitions in
doped lanthanum manganites (La1 – xBxMnO3), in
which La3+ ions are partially replaced by bivalent ions
(B) of some metal (specifically, by Sr2+, Ca2+, or Ba2+),
remains a topical problem despite the recent intensive
studies of these systems [1–3]. By now, it is well known
that, in doped manganites in the concentration interval
0.16 < x < 0.4, a phase transition is observed from the
low-temperature ferromagnetic phase with metallic
conduction to the high-temperature paramagnetic
phase that exhibits dielectric properties with the activa-
tion energy ∆E. Such a behavior of manganites is quite
unusual and can be explained only in general terms.
Specifically, the appearance of the activation energy
can be attributed to the presence of large polaron fluc-
tuations in the paramagnetic phase [4, 5]. In the ferro-
magnetic phase, these fluctuations are strongly
damped. However, the main point is that, in lanthanum
manganites, in the region of the metal-to-insulator tran-
sition, the homogeneous state is unstable with a ten-
dency to the phase layering into regions with metallic
and dielectric properties [6–8]. In view of this fact, a
better understanding of many experimental facts can be
achieved by applying the methods developed for the
theory of disordered media. For example, Gor’kov and
Kresin [9, 10] have put forward an assumption that, in
doped lanthanum manganites, the metal-to-insulator
transitions due to the concentration variation, as well as
to the temperature variation, are of a percolation nature.
However, this hypothesis has not yet been reliably jus-
tified by experimental data. We are aware of only two
publications [11, 12] lending some support to the per-
colation model.

In this paper, we study the temperature dependences
of conductivity, magnetization, and differential mag-
netic susceptibility for the La0.8Ba0.2MnO3 compound
over the temperature range 200–422 K. The Curie point
0021-3640/01/7401- $21.00 © 20028
TC = 253.4 K was determined from the analysis of the
temperature dependence of the differential magnetic
susceptibility, and the percolation transition tempera-
ture Tp was determined by using a newly proposed
independent procedure, which provided the value Tp =
248.2 K. Thus, the resulting values of Tp and TC coin-
cide within 2–3%.

All measurements described in this paper were
made on the samples used in the previous experiments
[13]. The samples were cut from a La0.8Ba0.2MnO3 sin-
gle crystal grown by the floating zone method with
zone heating by the radiation of a xenon lamp. The con-
ductivity was determined by dc four-probe measure-
ments. The magnetic measurements were performed
with an MPMS-5XL SQUID magnetometer at the
Magnetometry Center of the Institute of Metal Physics.
The real χ' and imaginary χ'' components of the
dynamic magnetic susceptibility were measured in a
magnetic field with amplitude H~ = 4 Oe and frequency
f = 80 Hz.

Figure 1 presents the temperature dependence of the
resistivity in the temperature interval 200–422 K. One
can see that the resistivity exhibits a maximum at

 ≈ 267 K. To the left of the maximum, as the tem-
perature grows smaller, the resistivity steeply decreases
and, at T < 100 K, reaches its minimum value ρM =

0.0019 Ω cm. In the temperature region T > , the
resistivity decreases with increasing temperature,
according to the exponential law

(1)

where ∆E = 81.7 eV and ρ0 = 0.00222 Ω cm (curve A).
These values were determined by the linear interpola-
tion of lnρD(T) as a function of T–1 in the temperature
interval 300 ≤ T ≤ 422 K. It should be noted that the

Tmax
ρ

Tmax
ρ

ρD T( ) ρ0 ∆E/kT( ),exp=
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activation energy ∆E = 81.7 meV determined in this
way is much smaller than the typical manganite band-
widths and energy gaps, which, according to different
estimates, are ~1 eV [2]. In other systems, a similar sit-
uation is observed. For example, in La1 – xCaxMnO3
samples of like composition (x = 0.2), the activation
energy in the insulating state reaches 160 meV at high
temperatures.

The simple percolation approach, which is essen-
tially a macroscopic one, involves no specific details of
the conduction mechanisms operating in different
phases. It is sufficient to know the conductivity values
for the metallic and insulating phases, their specific
concentrations p and (1 – p), and the critical concentra-
tion of the metallic phase pk corresponding to the for-
mation of an infinite conducting cluster and to a sharp
drop in resistivity. In our case, we observe a drastic
change in the resistivity with varying temperature
rather than concentration. Therefore, instead of the crit-
ical concentration, it is sufficient to determine the criti-
cal temperature Tp at which such a cluster is formed.
For this purpose, we use the well-known relation from
percolation theory, namely, the relation between the
conductivity of a sample at p = pk and the conductivities
of each phase:

(2)

where u = s/(s + t) and s and t are the critical indices
[14, 15].

Using this equality, one can easily derive the corre-
sponding expression for the resistivity at the critical
point T = Tp:

(3)

Here, we took into account that, in our case, the resis-
tivity of the sample in the insulating state depends on
temperature, while the resistivity in the metallic state is
constant (curves A and B in Fig. 1). Actually, Eq. (3) is
an equation for the determination of the quantity Tp.

To determine Tp, we use the following procedure.
We define an auxiliary function f(T)

(4)

and plot it in Fig. 1 (curve C). The point of intersection
of the curves f(T) and ρ(T) (experimental curve) deter-
mines the desired critical temperature Tp. The plot was
obtained with the following values of the quantities
involved in Eq. (4): ρM = 0.0019 Ω cm, ρ0 = 0.00222 Ω cm,
∆E = 81.7 meV, and the critical indices s = 0.7 and t =
2.1 [14]. With these values of s and t, the critical tem-
perature was found to be Tp = 248.2 K, which was

almost 19 K lower than the temperature .

As was already noted above, the samples studied in
our experiment possess ferromagnetic properties. From
Fig. 2a, one can see that the susceptibility χ' measured
as a function of temperature in zero static field H exhib-

σ p pk=( ) σM[ ] u σD[ ] 1 u– ,=

ρ T p( ) ρM[ ] u ρD T p( )[ ]=
1 u–

.

f T( ) ρM[ ] u ρ0[ ] 1 u– 1 u–( )∆E/kT[ ]exp=

Tmax
ρ

JETP LETTERS      Vol. 74      No. 1      2001
its a pronounced kink point corresponding to a critical
temperature TK. We note that, at all temperatures, the
real part of the dynamic susceptibility χ' is two or more
orders of magnitude greater than the imaginary compo-
nent χ'' (χ' @ χ''). Therefore, in the experiment under
discussion, the susceptibility χ' represents the differen-
tial reversible magnetic susceptibility. If we consider
this experiment in the framework of the well-known
concepts of the ferromagnetic–paramagnetic phase
transition [16], we arrive at an apparent conclusion that
TK < TC. We also note that the numerical value of the
temperature TK varies by several degrees when the mag-
netic field in the sample changes its direction. The anal-
ysis of this situation leads to the conclusion that the
kink method provides the estimate of TC only to a first
approximation. At the same time, some doubts are cast
upon the error in the determination of TC because of the
following important circumstance. In the experiment
under discussion, at the point TK, we have not a second-
order phase transition of the order–disorder type but a
fundamentally different transition, namely, the transi-
tion of a multidomain sample to a single-domain state.
In fact, this is a transition caused by the variation of the
magnetic field H, which occurs in much the same way
as the magnetization of the sample near the kink point
of the isotherm M(H) when it attains saturation. It is this
fact which causes difficulties and ambiguity in the
interpretation and processing of the results of such
experiments. It can easily be shown that similar mea-
surements performed on a sample in a single-domain
state can fully eliminate the ambiguity in the determi-
nation of TC.

To take the sample to the single-domain state, it is
necessary to place it in a sufficiently strong static mag-
netic field H > NHS, where N is the demagnetizing fac-

Fig. 1. Temperature dependence of the resistivity ρ(T) for a
La0.8Ba0.2MnO3 single crystal near the metal-to-insulator
transition. (A) Temperature dependence of the resistivity of
the insulating phase, (B) the resistivity of the sample in the
metallic state at T < 100 K, and (C) the auxiliary curve
determined by Eq. (4).
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tor of the sample and MS is its spontaneous magnetiza-
tion. For a typical ferromagnetic sample, it can be
shown that, in the single-domain state, the temperature
dependence of χ' at H = const will have a single maxi-

mum at T = , where  > TC. This can be seen
from Fig. 2b in which the temperature dependence
χ'(T) obtained for H = const exhibits the above-men-
tioned single maximum. We note that our measure-
ments were successful solely because of the use of a
SQUID magnetometer. To determine the value of TC,
we measured χ'(T) for different values of magnetic field

and plotted the dependence of  on H (Fig. 3). The

Tmax
χ Tmax

χ

Tmax
χ

Fig. 2. Portions of the temperature dependence of the mag-
netic susceptibility χ' for a C single crystal at H = (a) 0 and
(b) 104 Oe.

Fig. 3. Temperature  corresponding to the maximum

of magnetic susceptibility vs. static magnetic field H.

Tmax
χ

resulting (H) curve allows the value of TC to be
determined as a point of intersection of this curve with
the ordinate axis.

By processing our experimental data, we found that
the maximum value of TK was TK = 252.5 K and that

(H = 0) = 254.2 K. Thus, the Curie point TC =
253.4 K can be estimated as the mean of the two above-

mentioned temperatures, TK and (H = 0), with a
reasonable error of ±1 K.

The percolation picture of the behavior of resistance
as a function of temperature would be incomplete with-
out the determination of the critical behavior of resis-
tance as a function of (Tp – T). Evidently, in the case
under study, the critical index can be determined only
in the temperature region below Tp, because at T > Tp

the critical behavior of ρ(T – Tp) is masked by a strong
temperature dependence of the insulating phase. There-
fore, we restrict our consideration to the region T < Tp

and plot the dependence of the resistivity on the
reduced temperature (Tp – T)/Tp (Fig. 4). If the resis-
tance of the insulating phase were infinitely large, the
critical behavior of ρ(Tp – T) would extend to T  Tp.
In our case, the resistivity of the insulating phase is
finite, and, therefore, in the vicinity of Tp (i.e., near zero
in Fig. 4), we have a crossover region [16], the study of
which is beyond the scope of this paper. In the classical
percolation theory, the critical behavior occurs in the
region bounded by the condition εs + th > 1, where ε =
(pk – p)/pk and h = (σD/σM) ! 1. To estimate the bound-
ary of the region where the critical behavior of the resis-
tivity can be observed, we use the following approach.
We assume that (pk – p)/pk ∝  (Tp – T)/Tp. In this case,
one can easily see that the region of the critical behavior
of resistivity is determined by the condition

(5)

which is satisfied for T < 223.6 K. The critical index µ
determined in the temperature interval 201.4 < T <
223.6 K was found to be equal to –0.8 [10]. In other
words, below 223.6 K the behavior of ρ can be repre-
sented in the form

(6)

From Fig. 4 (see the inset), one can see that the temper-
ature dependence of the resistivity obtained for the
La0.8Ba0.2MnO3 samples fits relation (6) with reason-
able accuracy. The critical index µ = –0.8 determined
by us agrees satisfactorily with the value µ = –0.6
obtained by Gor’kov [10] from the analysis of the crit-
ical behavior of both the magnetic hardness coefficient
and the magnetization for the La0.8Ba0.2MnO3 samples.

In closing, we summarize our results. We performed
an independent determination of two different critical
temperatures, namely, the critical temperature corre-
sponding to the metal-to-insulator transition Tp =

Tmax
χ

Tmax
χ

Tmax
χ

1 T /T p–( )s t+ ρD/ρM( ) 1,>

ρ T p T–( ) 0.8–∝ .
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248.2 K and the critical temperature of the magnetic
transition TC = 253.4 K. These temperatures proved to
be close to each other. In our opinion, their coincidence
within 2–3% is not accidental but is a consequence of
the fact that, in the high-temperature region, the
La1 − xBaxMnO3 system with x = 0.2 is a two-phase dis-
ordered system consisting of an insulating matrix con-
taining ferromagnetic metal inclusions. When the tem-
perature decreases, both transitions exhibit a percola-
tion nature, and the data obtained from the experiment
justify the Gor’kov and Kresin [9, 10] hypothesis for
the nature of the metal-to-insulator transitions in doped
lanthanum manganites.

This work was supported by the Russian Foundation
for Basic Research, project no. 99-02-16280.

Fig. 4. Experimental dependence of the resistivity of
La0.8Ba0.2MnO3 on the reduced temperature (Tp – T)/Tp in
the temperature interval 201.4 ≤ T ≤ 248 K. The inset shows
the resistivity vs. (1 – T/Tp)–0.8 in the temperature interval
201.4–223.6 K.
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The magnetic field effect on the spectrum of excitons associated with various minibands in superlattices was
studied by resonance Raman spectroscopy. It was found that the intensity of Raman scattering by acoustic
phonons with the participation of the ground state of an exciton associated with the second miniband is sharply
reduced even in weak magnetic fields if its velocity vector is orthogonal to the external magnetic field. This
phenomenon was explained by the ionization of the exciton in the electric filed arising in the system of coordi-
nate associated with the exciton moving perpendicular to the external magnetic field. © 2001 MAIK
“Nauka/Interperiodica”.

PACS numbers: 71.35.Ji; 75.70.Cn
The quasiparticle spectrum of an exciton changes in
a magnetic field for several reasons. First, there is a
common Zeeman splitting, which was observed in exci-
ton lines in a semiconductor in 1954 [1]. Second, there
is a diamagnetic shift of exciton levels due to the accel-
eration of exciton motion in the magnetic field, which
was found in 1956 [2] and was observed thereafter for
both bulk semiconductors and quantum-size struc-
tures.1 Third, a rearrangement of energy levels of an
exciton may occur as a result of the motion of the qua-
siparticle excited by a photon with a momentum k =
(ω/c)n (n is the refractive index of the crystal) directed
perpendicular to the magnetic field H. In this case, an
electric filed

(1)

where Vex is the velocity of the exciton, will appear in
the system of coordinates associated with the moving
exciton.

A situation arises when the external magnetic field
and the electric field given by Eq. (1) turn out to be
crossed, and the quasiparticle spectrum is rearranged.
A manifestation of the electric field determined by
Eq. (1) was observed experimentally in [4] for excitons
in a cadmium sulfide crystal, in which the center of
inversion is absent.

The effect of an electric field given by Eq. (1) on
luminous hydrogen atoms (canal rays) moving perpen-
dicular to a magnetic field was observed by Wilhelm

1 A diamagnetic shift for atomic orbitals of a giant radius was
observed in 1939 [3].

E
1
c
--- Vex H×[ ] ,=
0021-3640/01/7401- $21.00 © 20032
Wien as early as 1916 [5]; Wien named the correspond-
ing splitting of the Balmer lines electrodynamic split-
ting. Wien’s remarkable experiment has been forgotten.
It is not mentioned in either textbooks or original
papers. At the same time, Wien in the cited work pre-
dicted even the possibility of observing electrodynamic
changes in the energy spectra of spatial objects. Such
calculations are carried out now for neutron stars,
where magnetic fields reach values of 1011–1012 G [6].

In this work, the effect of a magnetic field on the
spectrum of excitons in the GaAs/AlxGa1 – xAs superlat-
tice (SL) was studied by resonance Raman scattering
by acoustic phonons for various orientations of the
magnetic field relative to the direction of SL growth,
that is, relative to the exciton velocity vector. We found
that an exciton associated with the first electron and
hole minibands in a magnetic field exhibits only a dia-
magnetic shift of the ground state energy regardless of
the orientation of its group velocity vector relative to
the magnetic field. An exciton associated with the sec-
ond electron and hole minibands also exhibits a dia-
magnetic shift; however, the character of the magnetic
field effect on the exciton state strongly depends on the
mutual orientation of the magnetic field and the direc-
tion of the exciton motion. The line of Raman scattering
associated with the ground state of an exciton moving
perpendicular to the magnetic field disappears in mag-
netic fields, in contrast to the case when an exciton is
moving along the magnetic field. This effect is
explained by exciton ionization in the electric field
determined by Eq. (1).

The experiments were carried out with undoped
GaAs/Al0.05Ga0.95As SLs. The widths of quantum wells
001 MAIK “Nauka/Interperiodica”
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(QWs) and barriers were fixed at 60 Å each. Photolumi-
nescence and Raman scattering by acoustic phonons
were excited by a tunable titanium–sapphire laser
pumped by an argon ion laser. The pumping density
was 1 W/cm2, which allowed us to avoid heating the
sample. Photoluminescence was measured by a double
grating SPEX 1404 monochromator equipped with a
GaAs photomultiplier with a photon counting system.
The experiments were carried out at a sample tempera-
ture T = 4 K and in magnetic fields B ≤ 14 T in the Voigt
(the magnetic field lies in the plane of SL layers and
perpendicular to the exciting photon wave vector kph) or
Faraday (the magnetic filed is aligned with the direction
of SL growth and the photon wave vector) geometry. In
both cases, the backscattering geometry was used.

The energy spectrum (dispersion in the direction of
SL growth) of the SL under study consists of electron
and hole minibands whose structure is shown schemat-
ically in Fig. 1 as thin lines. Each of those minibands is
associated with exciton states X1 and X2, which appear
in Fig. 1 as heavy lines. Choosing the energy of the
exciting light (vertical arrows in Fig. 1), one can reso-
nantly excite an exciton that belongs to the first or the
second miniband (the transition diagram is shown in
Fig. 1) with a wave vector Kz at a distance of 0.1 from
the edges of the SL Brillouin zone. The edge photolu-
minescence spectrum of the SL under study is formed
from the narrow line of the free exciton (marked with
the symbol X1 in Fig. 2) associated with the first elec-
tron and hole (miniband of heavy holes) minibands. In
a magnetic field, this line shifts toward the high-energy
region both in the Faraday (circles in Fig. 2; the split-
ting of this line into two Zeeman components is negli-
gibly small compared to the shift of their center of grav-
ity and, therefore, is not taken into account subse-
quently) and in the Voigt (triangles in Fig. 2) geometry.
The displacement of this line in a magnetic field is due
to the diamagnetic shift. The weak shoulder  in the
photoluminescence (PhL) spectrum located on the
high-energy side of the X1 line is possibly due to the
recombination of excitons associated with the band of
light holes, because it exhibits a diamagnetic shift com-
parable with the diamagnetic shift of exciton X1. The
magnetic field dependence of this state for the Faraday
(circles) and Voigt (triangles) geometries is also pre-
sented in Fig. 2.

The magnetic field effect on the excited states of an
exciton of the first electron and hole minibands was
studied using magneto-Raman spectra. This technique
was successfully used for studying Landau levels or
Stark localization [7–10] and allowed states to be
detected that were not observed in conventional photo-
luminescence spectra even at very high pumping. For
each excitation energy, the spectrometer was used as a
filter whose passband was shifted by 4 cm–1 toward the
Stokes region. The scattered light intensity was mea-
sured under these conditions as a function of the mag-

X1'
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netic field. Such magneto-Raman spectra are sensitive
to all the electronic states for which the incoming or
outgoing resonance conditions of the Raman process
are fulfilled. The advantage of light scattering by acous-
tic phonons is that resonances are studied at small
Raman shifts. Moreover, the double resonance condi-
tions are almost always obeyed for phonons with ener-
gies lower than the homogeneous broadening, which
leads to a considerable increase in the intensity of scat-
tered light. The fan plot of electron–hole states in a
magnetic field obtained in this way is presented in
Fig. 2 as light circles for the Faraday geometry and as
light triangles for the Voigt geometry. Note that the
ground states X1 and the excited state  were also
observed in the magneto-Raman spectra, and their
dependence on the magnetic field coincided with the
dependence measured from the PhL spectra. The states
of magnetoexcitons observed upon excitation by pho-
tons with the energy "ωph = 1.55–1.62 eV are extrapo-
lated to a state of the exciton continuum of the first elec-
tron and hole minibands at B  0. The difference in
the magnetic field dependence of the electron and hole
states associated with the Landau levels with n = 1, 2 in
the Faraday and Voigt geometries is due to the anisot-
ropy of the cyclotron mass of electrons and holes in the
SL. However, the main contribution is apparently due
to the anisotropy of the heavy hole mass. The states of

X1'

Fig. 1. Dispersion of electron and hole minibands (thin solid
lines) and associated exciton states (heavy lines) in the
direction of SL growth. Vertical arrows designate the optical
excitation of excitons by photons with energy "ωph and
wave vector kph.
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the diamagnetic exciton observed upon light excitation
with the energy "ωph ≥ 1.63 eV are extrapolated to the
ground state energy of an exciton associated with the
second electron and hole minibands. The energy of this
state is close to the energy between the bottom of the
second electron miniband and the top of the second
hole miniband calculated within the Kronig–Penny
model [11] (the calculated energy value is marked in
Fig. 2 with a horizontal arrow denoted by the symbol

). In contrast to the ground state of the diamagnetic
exciton associated with the first miniband, the ground
state of the diamagnetic exciton associated with the
second miniband behaves differently in the Faraday
(circles) and Voigt (triangles) geometries. In the Fara-
day geometry, the diamagnetic shift of the exciton state
X2 is considerably larger than the diamagnetic shift of
the exciton X1 and is observed in the magneto-Raman
spectrum up to high magnetic fields B ~ 14 T. In the
Voigt geometry in fields B ≤ 3, the state of the exciton
X2 exhibits the same diamagnetic shift as in the Faraday
geometry; however, the intensity of the Raman process
with the participation of this exciton decreases sharply
in fields B > 3 T. The decrease in the intensity of the
Raman process with the participation of exciton X2 is

EG2
calc

Fig. 2. Magnetic field dependence of the ground state
energy of excitons of the first X1 and the second X2 mini-
bands in the Faraday (circles) and the Voigt (triangles)
geometry; magnetic field dependence of the Landau levels
for the Faraday (light circles) and the Voigt (light triangles)
geometry. The horizontal arrow indicates the calculated val-
ues of the energy between the bottom of the second electron
miniband and the top of the corresponding valence mini-
band.
evidently due to the decrease in its lifetime. The state of
exciton X2 is intermediate in the process of resonance
Raman scattering by acoustic phonons and, therefore,
determines its probability [12]. We believe that the ion-
ization of exciton X2 is the main reason for the decrease
in its lifetime.

Let us discuss the behavior of the ground states of
the X1 and X2 excitons in the Faraday and Voigt geome-
tries. It is evident that a photoexcited exciton in the res-
onance Raman process acquires (by virtue of the
momentum conservation law) a quasi-momentum
"Kx = "kph (where kph = (ω/c)n is the photon momentum
in a SL with the refractive index n) from the exciting
photon. Correspondingly, the directed exciton velocity
Vx = "KX/M (M is the kinetic exciton mass) is either
aligned with (Faraday geometry) or perpendicular to
(Voigt geometry) the magnetic field. An exciton mov-
ing along the magnetic field direction, VX || B, exhibits
a diamagnetic shift in energy (this shift is due to the
magnetic field effect only on the relative motion of the
electron and the hole in the exciton) and an increase in
the oscillator strength. An exciton moving perpendicu-
lar to the magnetic field, VX ⊥  B, also exhibits a dia-
magnetic shift. However, as was already mentioned
above, an electric field arises in this geometry

It is evident that the exciton interaction energy with this
electric field at sufficiently high exciton velocities and
sufficiently high magnetic fields can exceed its binding
energy, which will be manifested in the ionization of
the exciton. It is with this phenomenon that we associ-
ate the disappearance of the line of resonance Raman
scattering with the participation of exciton X2 in the
Voigt geometry in fields B ~ 4 T. An estimate shows that
a photoexcited exciton has a velocity perpendicular to
the magnetic field VX ~ 106 cm/s (in the calculation of
VX, we used the mass of exciton motion along the SL
M|| = mhh + me = 0.4m0 [13]). An electric field with a
strength EB~ 400 V/cm arises in the system of coordi-
nates moving with this velocity perpendicular to a mag-
netic field B ~ 4 T. It is known that an exciton in bulk
GaAs with the binding energy EX ~ 4 meV is already
ionized in a fairly weak constant external electric field
E ~ 1000 V/cm [13]. It may be expected that the binding
energy of exciton X2 in the second miniband in the SL
is lower than the binding energy of exciton X1 in the
first miniband, which, in turn is found to be close to the
binding energy of an exciton in bulk GaAs. Therefore,
the exciton becomes ionized in lower electric fields.

At first glance, the ionization of exciton X1 associ-
ated with the first miniband in the Voigt geometry
should be observed in a similar way. In fact, the quasi-
momentum of this exciton is only slightly smaller than
that of the X2 exciton (  = 0.95); however, the

E
1
c
--- VX B×[ ] .=

KX1
/KX2
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velocities of the X1 and X2 excitons can differ signifi-
cantly because of the great difference in the effective
masses. This difference in masses is mainly determined
by the heavy hole and is associated with the SL param-
eters. A calculation made in the Kronig–Penny model
indicates that the width of the first hole miniband

 = 2 meV, whereas the second miniband has the

width  = 12 meV and lies entirely in the overbar-
rier region. It is evident that the hole mass in the first
miniband in the direction of SL growth in the tight-

binding approximation mhh ∝  1/  and, thus, can be
notably larger than the mass in the second miniband,
which can be taken equal to the hole mass in bulk
GaAs. The conclusion that the mass of the heavy hole
in the direction of SL growth is notably larger than its
mass in bulk GaAs is confirmed by the fact that the
magnetic field dependence of the Landau levels of the
first miniband in the Voigt geometry is considerably
weaker than this dependence in the Faraday geometry.
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The theory of superconducting pairing due to antiferromagnetic exchange is considered. The strong dependence
of the superconducting transition temperature Tc on the lattice constant a observed recently in mercury super-
conductors is explained within the framework of this theory. Calculations have been performed based on the
two-band p–d Hubbard model in the strong correlation limit. The large excitation energy ∆pd for the antiferro-
magnetic exchange of two particles from different Hubbard subbands results in the suppression of the retarda-
tion effects and in the pairing of all the particles in the conduction subband with the Fermi energy EF ! ∆pd:
Tc . EFexp(–1/λ), where λ ∝  J. The dependence Tc(a) and the isotope effect are explained by the dependence
of the exchange interaction J on a and on zero-point vibrations of oxygen ions. © 2001 MAIK “Nauka/Inter-
periodica”.

PACS numbers: 74.20.-z; 74.72.-h
1. A distinctive feature of high-Tc copper oxide
(cuprate) superconductors is strong antiferromagnetic
(AFM) exchange interaction (see, for example, [1]).
The exchange binding energy of two holes with spin
1/2 in copper Cu(3d9) and oxygen O(2p5) ions has a
value on the order of 1 eV, and the indirect (through
oxygen ions) AFM exchange energy of holes in copper
ions is on the order of 0.13 eV. If cuprates had a three-
dimensional network of bonds for copper spins, the
AFM Néel temperature in these materials could reach a
record value TN . 1500 K. However, because of the
two-dimensional character of the spin lattice in the
CuO2 plane, the Néel temperature turns out to be much
lower, TN . 300–500 K. Note for comparison that the
maximum Néel temperature TN . 1040 K is observed
for vanadium sulfide (VS).

A certain confirmation of the particular importance
of the AFM exchange in superconducting pairing in
cuprates was obtained in recent experiments on study-
ing the dependence of the superconducting transition
temperature Tc on the interatomic copper–oxygen dis-
tance in mercury superconductors (see [2] and refer-
ences therein). It is known that the maximum tempera-
ture reached in mercury HgBa2Can – 1CunO2n + 2 + δ
(Hg-12(n – 1)n) superconductors is Tc . 135 K, which
can be increased up to 150 K by the action of an exter-
nal pressure. These results can be explained by the
structural features of mercury superconductors, in
which the CuO2 plane exhibits the least distortion
(buckling): the Cu–O bond angle is close to 180°,
which provides the maximum value of the indirect
AFM interaction. Under the action of an external pres-
sure, the Cu–O bond lengths are decreased, which leads
0021-3640/01/7401- $21.00 © 20036
to a further increase in the magnitude of the AFM
exchange interaction. The doping of mercury supercon-
ductors by fluorine rather than oxygen gave evidence of
the interrelation between the increase in Tc and the
decrease in the Cu–O bond in the plane. The fluorina-
tion of Hg-1201 superconductors results in a significant
change in the copper–apical oxygen bond length with
unchanged Cu–O distance in the plane and with retain-
ing the maximal Tc . 97 K, whereas the fluorination of
Hg-1223 results in a change in the Cu–O bond length in
the plane (with no significant change in the bond angle)
and increases Tc by 3 K [2]. Comparing the available
data, the authors [2] came to the conclusion that the
superconducting transition temperature at the optimal
doping Tc(δopt) depends linearly on the lattice constant
a (the Cu–O–Cu distance in the plane) with the coeffi-
cient dTc/da . –1.35 × 103 K/Å. Close results were
obtained for epitaxial La1.9Sr0.1CuO4 films: dTc/da . –
1.0 × 103 K/Å [3]. The increase in Tc due to the action
of a hydrostatic pressure is an order of magnitude lower
because of the buckling of the CuO2 plane and a
decrease in the Cu–O bond angle, which always accom-
pany the compression.

In this work, I give an explanation for the experi-
mental results obtained, assuming that the mechanism
of superconducting pairing in cuprates is determined by
indirect antiferromagnetic exchange. The isotope effect
in cuprates upon the substitution of 18O for 16O is
explained within the same approach. It is also noted
that pairing through the AFM exchange possesses a
number of features that lead to d-wave pairing with a
high Tc. The results obtained allow the conclusion that
001 MAIK “Nauka/Interperiodica”
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the AFM exchange is the determining factor in super-
conducting pairing in cuprates.

2. The particular importance of the AFM exchange
interaction in cuprates was noted by Anderson [4], who
proposed the theory of resonant valence bonds within
the framework of the one-band t–J model. However, the
use of the mean field approximation within the frame-
work of the slave boson theory [4], as well as the further
development of the spinon–holon theory, gave no con-
vincing evidence in favor of the AFM exchange as the
mechanism of high-Tc superconductivity (see [5]). Sub-
sequently, superconducting pairing due to the AFM
exchange within the framework of the t–J model was
considered in many studies (see the review [6] and, for
example, [7, 8] and references therein).

Superconductivity within the more general two-
band p–d model was considered in the recent work [9],
where it was shown that the results obtained within the
framework of the t–J model with the instant exchange
interaction remain true even when taking into account
the retardation effects in the two-band model. There-
fore, in order to determine the dTc/da dependence and
to estimate the isotope effect, I can restrict myself to
calculating Tc in the one-band t–J model using, how-
ever, its parameters calculated within the framework of
the two-band p–d model. Therefore, I will briefly out-
line this method of calculations below.

The strong AFM exchange interaction in cuprates is
due to the two factors: the large value of pdσ hybridiza-
tion tpd . 1.5eV for the 3d states of copper and the 2p
states of oxygen and the small splitting energy of their
atomic levels ∆pd . 3 eV. At the same time, strong Cou-
lomb correlations for the 3d states of copper Ud . 8 eV
considerably increase the energy of the two-hole 3d
states. Because of this fact, a dielectric phase arises in
undoped cuprates, and a metallic phase appears upon
doping the singlet p–d hole band lying below the triplet
band [10]. These features of the electronic spectrum of
holes in the CuO2 plane (the main structural element of
cuprates) can be described within the framework of the
simple model p–d Hamiltonian [11]

(1)

Operators  and  describe the creation of one-hole
d and p states at sites i of the square lattice in the CuO2
plane with the energies ed and ep = ed + ∆, respectively.
Because of strong Coulomb correlations at copper sites
(Ud @ ∆), only singly occupied 3d states are taken into

account:  = (1 – ). The Wannier representa-
tion is introduced here for the oxygen orbitals, as a
result of which the parameters of p–d hybridization are

H edd̃iσ
+

d̃iσ epciσ
+ ciσ+{ }

iσ
∑=

+ Vij d̃iσ
+

c jσ h.c.+{ } .
i j σ, ,
∑

d̃iσ
+

ciσ
+

d̃iσ
+

diσ
+ ni σ–,

d
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written as Vij = 2tpdνij, where the Wannier coefficients νij

for the intrasite hybridization and the hybridization
between the first and the second neighboring atoms are
equal to: ν0 = νjj . 0.96, ν1 =  . −0.14, ν2 =

 . –0.02 [12]. Because the one-site hybridiza-
tion is sufficiently large and considerably larger than
the intersite one, the one-site part of the Hamiltonian in
Eq. (1) should first be reduced to the diagonal form, and
then the intersite hybridization should be written using
the operators of the new (renormalized) one-site states.
Taking into account only the two lowest energy levels,
namely, the one-hole d state with the renormalized
energy E1 =  – µ (where µ is the chemical potential)
and the two-hole singlet p–d state with the energy E2 =

2E1 +  (where  . ∆), I come to the two-band effec-
tive Hubbard model [12]

(2)

Here, I introduced the Hubbard operators  =
|in〉〈 im| describing transitions between the states indi-
cated above: n, m = |0〉 , |σ〉; |2〉  = |↑↓〉 ; σ = ±1/2; and

 = –σ. The coefficients  = KαβVij determine the
effective hopping integrals between lattice sites (i ≠ j)
for the one-hole subband of the d type (α = 1) and for
the two-hole subband of the p–d type (α = 2) and their
hybridization. Parameters Kαβ depend on the value of
one-site hybridization tpd/∆. For physically reasonable
parameters ∆ . 2tpd, all the coefficients are of the same
order of magnitude Kαβ ≤ 1 [12]. In view of the small-
ness of the Wannier coefficients νij in the definition of

Vij for distinct sites i ≠ j, the hopping integrals  are
small: for the nearest neighbors, teff . 0.15tpd . 0.2 eV
(see estimates in [12–14]). Therefore, the effective
width of subbands W = 8teff for a two-dimensional lat-
tice turns out to be smaller than their splitting energy,
2W ≤ ∆, and the Hamiltonian in Eq. (2) corresponds to
the limit of strong correlations in the Hubbard model.

In the limit of strong correlations, the interband
hybridization can be excluded in the second order with

respect to parameter , and the Hamiltonian in Eq. (2)
can be reduced to the effective one-band t–J model. In
the case of p-type doping, this model for the singlet
subband can be written using the Hubbard operators in
the form

(3)

ν jj ax/y±

ν jj ax ay±±

ẽd

∆̃ ∆̃

H E1 Xi
σσ

i σ,
∑= E2+ Xi

22

i

∑ tij
11Xi

σ0X j
0σ{

i j σ,≠
∑+

+ tij
22Xi

2σX j
σ2 2σtij

12 Xi
2σX j

0σ h.c.+( ) } .+

Xi
nm

σ tij
αβ

tij
αβ

tij
12

Ht J– tij
22Xi

2σX j
σ2

i j σ,≠
∑= µ Xi
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∑–
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∑
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where the exchange interaction Jij = 4( )
2
/ . In the

case of n-type doping, the Hamiltonian in Eq. (2) is
reduced to the effective one-band t–J model for the one-

hole states described by Hubbard operators 

with the hopping integral . However, the exchange
interaction retains its previous form, as well as in the
Hamiltonian in Eq. (3), which can be written in the
standard Heisenberg form HJ = (1/2)  for

the spin operators  = ,  = (1/2) .
The above expression for the exchange interaction Jij

was obtained in the second order with respect to the

hybridization parameter . A more consistent method
of the reduction of the full p–d model to an effective
one-band t–J model is given in [14], where the impor-
tance of the three-site terms that arise in such a reduc-
tion and can make a significant contribution to the dis-
persion curves of quasiparticles is also discussed. In
this work, such refinements of the model will be
neglected for qualitative estimates.

Using the method of projecting the equations of
motion for the Hubbard operators, the system of
Gor’kov equations can be readily obtained in the MFA
for the normal and anomalous components of the one-
particle Green’s function (see [8]). In this case, the self-
consistent equation for the superconducting gap φσ(q)
in the singlet subband takes the form

(4)

where the quasiparticle energy E(k) = [e(k)2 +
|φσ(k)|2]1/2, and e(k) is the excitation spectrum in the
singlet subband in the normal state. The parameter χ2 =

 = n/2 determines the weight of the singlet
band, depending on the hole concentration n = 1 + δ.

Going beyond the scope of the MFA in [8] taking
into account the self-energy corrections in the Green’s
functions in the second order with respect to the hop-

ping integrals  (in the approximation of noncrossing
diagrams) allowed the damping of the quasi-particle
spectrum in the t–J model and the additional contribu-
tion to pairing due to the exchange of spin fluctuations,
which arise through the kinematical interactions in the
second order with respect to the hopping integrals. It
was also found that the exchange interaction, for which
the effects of retardation (and finite quasiparticle life-
time) are not important, makes the main contribution to
superconducting pairing. Therefore, in order to esti-
mate Tc within the framework of the two-band p–d or
reduced t–J model (Eq. (3)), it is sufficient to examine

tij
12 ∆̃

Xi
σ0 X j

0σ( )

tij
11

JijSiSji j≠∑
Si

± Xi
±+− Si

z Xi
++ Xi

–––( )

tij
12

φσ q( ) 1
Nχ2
---------- J k q–( ) X q–

2σXq
2σ〈 〉

k

∑=

=  
1
N
---- J k q–( )

φσ k( )
2E k( )
--------------- E k( )

2T
------------,tanh

k

∑

Xi
22 Xi

σσ+〈 〉

tij
22
the gap equation (Eq. (4)) with allowance made for only
the exchange interaction.

This conclusion was confirmed recently in the solu-
tion of the system of equations for the Green’s function

of the four-component Hubbard operators  =

( ) for the two-band model (Eq. (2)) in
[9]. In this work, it was shown that the anomalous aver-
ages in the model defined by Eq. (2) are determined by
the correlation functions of the form  =

 = –( /∆)2σ , whose calculation
leads to Eq. (4) with the exchange interaction Jij if the

retardation effects of order ( /∆) are neglected.

3. Taking into account what was outlined above, I will
estimate the temperature of the d-wave superconducting
pairing in Eq. (4), assuming that the gap is described by
the dependence φσ(q) = φd(cosqx – cosqy) = φdη(q).
Multiplying Eq. (4) by η(q) and summing up over q for
the model of the nearest neighbor exchange interaction
J(q) = 2J(cosqx + cosqy) give the equation for Tc

(5)

This approximate equation was obtained after averag-
ing over the angles of the k vector and passing to inte-
gration over the quasi-particle energy in the singlet con-
duction subband with the effective bandwidth W and
the density of states N(e). Calculations show (see, for
example, [12]) that the density of states in the initial
Hubbard model (Eq. (2)) depends on the energy and
concentration of holes in a rather sophisticated way.
However, in contrast to the conventional theory of
boson pairing, in which integration is performed in a
narrow energy layer on the order of the boson energy at
the Fermi energy EF and, therefore, the density of states
at the Fermi surface N(e = 0) determines the coupling
constant, integration in our case is extended over the
entire conduction band. In this case, qualitative esti-
mates can be obtained by carrying out the integration in
Eq. (5) by introducing the averaged density of states Nδ.
In the weak coupling approximation for Tc ! µ = EF ,
the following estimate for the pairing temperature can
be obtained in the logarithmic approximation:

(6)

where µ = EF(δ) determines the dependence of the
Fermi energy on the concentration of holes δ in the sin-
glet band. Because the exchange interaction energy in
cuprates is sufficiently large, J . 0.13 eV, at a moderate
density of states in the narrow correlation band, for
example, Nδ ≥ 2 (eV)–1, one obtains λ . 0.3. The max-

X̂iσ
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Xi
2σXi

σ0Xi
σ2Xi

0σ

ci↓ ci↑ N j〈 〉
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02N j〈 〉 4tij

12 Xi
σ2X j
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tij
22

1
J

2N
------- η k( )( )2 1

e k( )
----------- e k( )

2Tc
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imum value of Tc is reached at optimal doping,
EF(δopt) . W/2. Here, because the preexponential factor
(electronic Fermi energy) is large (for example, EF .
0.35 eV [15]), the pairing temperature is high, Tc .
170 K. For deviations from the optimal doping, EF ≠
W/2, Tc decreases, which corresponds to the Tc(δ)
dependence observed experimentally for all the copper
oxide superconductors. It is evident that the estimate
obtained above is not suitable in the case of light doping
when antiferromagnetic correlations lead to a signifi-
cant rearrangement of the quasiparticle (spin polaron)
spectrum and the Fermi surface (when hole pockets
formed in the vicinity of (±π/2, ±π/2) points of the Bril-
louin zone).

4. Now, the Tc(a) (Eq. (6)) dependence on the lattice
constant a will be estimated based on the assumption
that the exchange interaction for the nearest neighbors
J makes the main contribution to this dependence. In
addition to the explicit dependence on the one-site
hybridization parameter tpd, the above equation for the
exchange interaction Jij in the second order with respect

to  also contains an implicit dependence on this
parameter due to the renormalization of the starting
one-particle and singlet p–d states made when the
Hamiltonian in Eq. (2) was derived. To simplify the
estimations, I will use the simple dependence of the
indirect exchange interaction on the p–d hybridization

as J(a) ∝   already obtained by Ph. Anderson and
used in the original work by Zhang and Rice [10]. Tak-
ing into account that the p–d hybridization parameter
depends on the distance according to the relationship
tpd(a) ∝  1/(a)7/2 [16], one obtains the estimate J(a) ∝
(1/a)14. In this approximation, the dependence of the
transition temperature (Eq. (6)) on the interatomic dis-
tance takes the form

(7)

Using the experimental data for the Hg-1201 com-
pound Tc = 97 K at a = 3.880 Å and the dependence
dTc/da . –1.35 × 103 K/Å [2] gives the value for the
logarithmic derivative dlnTc/dlna . 54, close to our
estimate (Eq. (7)). To obtain more rigorous quantitative
estimates, it is necessary to examine the gap equations
in the initial two-band p–d Hubbard model (Eq. (2)) as
was done in [9]. However, the qualitative conclusion
that the dependence of the transition temperature Tc(a)
is strong because of the significant change in the indi-
rect exchange interaction upon a change in the hybrid-
ization parameter tpd(a) (and in the Cu–O bond angle)
will be certainly retained.

The fact that the dependence of the transition tem-
perature Tc on the lattice constant at the optimal doping
δopt is so strong is difficult to explain within the frame-
work of other pairing mechanisms, because the contri-

tij
12
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d aln
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bution to the change in Tc due to charge transfer is
absent in this case. According to the experimental
results, Tc(δ) ∝  (δ – δopt)2 and dTc/da ∝  dTc/dδ = 0 in the
vicinity of δopt, and the other electronic parameters
(EF, Nδ) vary only slightly in the case of insignificant
compression, ∆a/a . 0.008.

The electron–phonon pairing mechanism is com-
monly justified by the occurrence of the isotope effect
in cuprate superconductors: a small decrease of
0.5−1 K in the Tc temperature is observed on substitut-
ing 18O oxygen for 16O, so that the isotope exponent at
the optimal doping is small, α = –dlnTc/dlnM ≤ 0.1.
Outside the region of optimal doping or on introducing
impurities that lower Tc, α can reach high values, α .
0.6. I will show that this isotope effect can also be
explained in the context of the electronic pairing mech-
anism considered above.

Taking into account the existence of a certain corre-
lation between the dependence of Tc on the pressure and
mass of ions at isotope substitution [17] and the analy-
sis of Tc(a) given above, one may suggest that the iso-
tope effect in cuprates is also associated with the
change in the exchange energy J upon isotope substitu-
tion of oxygen. Actually, the isotope effect at the Néel
temperature was found in [18]: upon substituting 18O
oxygen for 16O, the Néel temperature TN = 310 K in
nondoped La2CuO4 decreased by 1.8 K, which gives
αN = –dlnTN/dlnM . 0.05. Because the Néel tempera-
ture is determined by the exchange interaction, TN ∝  J,
the isotope exponent can be estimated for the supercon-
ducting transition temperature in lanthanum com-
pounds using the relationship

(8)

For the absolute shift of Tc, the relationship ∆Tc .
(1/λ)(Tc/TN)∆TN . 0.7 K is obtained, where it is
assumed that Tc . 40 K and TN = 310 K. When Tc

decreases outside the region of optimal doping, the cou-
pling constant λ decreases, and the isotope exponent
can reach a high value. The estimates obtained in this
work correspond to the results observed experimen-
tally.

5. Thus, the calculation carried out within the frame-
work of the two-band Hubbard model (Eq. (2)) in the
limit of strong correlations indicates that the retardation
effects are not important in the case when two electrons
(holes) are paired through the AFM exchange interac-
tion. Therefore, all the particles in the filled subband
can participate in pairing because of the large energy of

interband splitting ∆ @ . Hence, as in the BCS the-
ory, the superconducting transition temperature can be
estimated using the one-band t–J model with the instant
exchange interaction. This pairing mechanism is princi-
pally distinguished by the suppression of the retarda-
tion effects from the standard mechanisms based on the

α
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exchange of bosons (phonons or spin excitations), in
which pairing due to the retardation effects is restricted
to a narrow region of energies on the order of the boson
energy ω0 at the Fermi surface. Because the boson
energy ω0 ≤ 0.05 eV is low, high Tc can be obtained in
these models only in the case of strong coupling.

The strong dependence of the transition temperature
Tc on zinc impurities as compared to paramagnetic
impurities observed in cuprates [1] may serve as a con-
firmation of the AFM exchange mechanism of pairing.
The fully occupied 3d shell in Zn2+ (3d10) blocks the
AFM exchange, which must lead to an additional
decrease in Tc as compared to the common effects of a
drop in Tc due to the impurity scattering.

Because the AFM exchange interaction is a specific
property of systems with strong electron correlations
and is absent in conventional Fermi systems (see dis-
cussion in [19]), it may be argued that the specific pair-
ing mechanism in cuprates is due to the AFM exchange,
whose energy reaches a record high value in cuprates
because of peculiarities of their electronic structure.
One may expect a manifestation of the AFM exchange
interaction in other systems with strong Coulomb cor-
relations as, for example, in vanadates or in systems
with heavy fermions in which AFM ordering is
observed along with superconductivity.
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Anisotropy of Electronic Wave Functions
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in the Center of a GaAs Quantum Well Studied
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We present an experimental study of electron wave functions in InAs/GaAs self-assembled quantum dots by
magnetotunneling spectroscopy. The electronic wave functions have a biaxial symmetry in the growth plane,
with axes corresponding to the main crystallographic directions in the growth plane. Moreover, we observed
the in-plane anisotropy of the subbands of the quantum well. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.21.La; 73.21.Fg; 73.40.Gk; 73.61.Ey
Quantum dots (QDs) are characterized by a rela-
tively small number of electrons confined within an
island of a nanometer dimension. They can confine the
motion of an electron in all three spatial dimensions [1].
The strong confinement in the QD gives rise to a set of
discrete and narrow electronic energy levels similar to
those in atomic physics. The epitaxial growth of lattice-
mismatched InAs on GaAs or AlAs opens new possibil-
ities for the simple fabrication of semiconductor nano-
structures. InAs QDs are formed in situ during growth
owing to the relaxation of a strained InAs wetting layer
on GaAs or AlAs [2]. The particular interest lies in their
uniformity and small size: lateral dimension 10–20 nm
and height 3–4 nm. Several theoretical approaches were
used to calculate the eigenstates of InAs QDs [3]. The
results of calculation depend strongly on the assumed
shape and composition of the QDs. Experimentally, the
quantized energy levels of a given potential can be
probed using various spectroscopic techniques. The
corresponding wave functions are much more difficult
to measure. Information about the extent of the carrier
wave function for the ground state of a QD was
obtained from tunneling measurements in a magnetic
field [4]. Also, the anisotropy of electronic wave func-
tion in self-aligned InAs QDs was deduced from mag-
netic-field-dependent photoluminescence spectroscopy
[5]. However, until recently there have been no reported

1 This article was submitted by the authors in English.
0021-3640/01/7401- $21.00 © 20041
measurements of the detailed spatial form of the
ground- and excited-state wave functions of the QD.
Recently, it has been demonstrated that magnetotunnel-
ing spectroscopy can be employed as a noninvasive
probe to produce images of the probability density of
the electron confined in a QD [6]. In this work, we use
magnetotunneling spectroscopy to investigate in detail
the spatial form of the wave functions of the electronic
states of a double-barrier resonant tunneling diode with
InAs QDs embedded in the center of a GaAs quantum
well (the ground and excited states of the QDs and con-
fined subbands of the quantum well). We measure the
dependence of the resonant tunneling current through
the QD states as a function of magnetic field, B, applied
perpendicular to the tunneling direction. This allows us
to map out the full spatial form of the probability den-
sity of the ground and excited states of the QDs and
confined subbands of the quantum well. The electronic
wave functions have a biaxial symmetry in the growth
plane, with axes corresponding quite closely (within
measurement error of 15°) to the main crystallographic

directions X  and Y  for (311)B substrate
orientation. For a similar InAs QD structure grown on
a (100) substrate, we also obtained characteristic prob-
ability density maps of ground and exited states. More-
over, we observed the in-plane anisotropy of the sub-
bands of the quantum well.

InAs QDs are embedded in an n–i–n resonant tun-
neling diode. Samples were grown by molecular beam
epitaxy on a GaAs substrate with the orientations (100)
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and (311)B. A layer of InAs QDs, nominally 2.3 mono-
layers thick, was placed in the center of a 9.6-nm-wide
GaAs quantum well (QW) with 8.3-nm Al0.4Ga0.6As
confining barriers, sandwiched between two nominally
undoped 50-nm GaAs spacer layers. The intrinsic
region was surrounded by graded n-type contact layers,
with the doping concentration increasing from 2 ×
1017 cm–3 to 3 × 1018 cm–3. The layers were grown at
600°C, and there was a growth interrupt before the QDs
were grown at 480°C. For comparison, we also studied
two control samples grown with the same sequence of
layers, except that one had only a thin InAs two-dimen-
sional wetting layer (i.e., containing no QDs) and the
other had no InAs layer at all. The samples were pro-
cessed into circular mesa structures of diameters
between 50 and 200 µm, with ohmic contacts to the
doped regions.

Figure 1 shows a schematic energy band diagram for
our device under bias voltage. X and Y define the two
main crystallographic axis in the plane perpendicular to
the growth direction Z (see inset). The layer of InAs
QDs introduces a set of discrete electronic states below
the GaAs conduction band edge. At zero bias voltage,
equilibrium is established by electrons diffusing from
the doped GaAs layers and filling some of the dot
states. The resulting negative charge in the QW pro-
duces depletion layers in the regions beyond the
(AlGa)As barriers. By applying a bias voltage to the
emitter layer, V, the QD energy level is shifted in energy
with respect to both contacts. When a particular dot
state is resonant with an adjacent filled state in the
biased electron emitter layer, electrons tunnel through
the dot into the collector and a current flows as shown

Fig. 1. Schematic conduction band profile under an applied
bias of an n–i–n GaAs/(AlGa)As double barrier resonant
tunneling diode incorporating InAs QDs. Inset: orientation
of the magnetic field, B, and current, I, in the magnetotun-
neling experiment. X and Y define the two main crystallo-

graphic axes  and , respectively, in the
(311)-oriented GaAs substrate. α and β indicate, respec-
tively, the direction of B and of the momentum acquired by
the tunneling electron due to the action of the Lorentz force.

011[ ] 233[ ]
 schematically in Fig. 1. Therefore, as we adjust the
voltage, we can study different energy states of the
QDs. At sufficiently high voltages we are able to
observe two separate resonances in the current related
to confined subbands of the QW states.

Figure 2 shows a typical low-temperature (T =
1.2 K) I(V) curve. The device contains InAs QDs grown
on a (311)B-oriented GaAs substrate. Similar results
were obtained for QDs grown on a (100) substrate. We
observe a series of resonant peaks corresponding to car-
rier tunneling into the dot states. Pronounced current
features appear at biases as low as 55 mV. They are
superimposed on a rising background current and can-
not be resolved for V > 200 mV. These features are not
observed in our control samples which do not contain
QDs, and, therefore, we can ascribe them to the InAs
QD layer. Despite the large number of quantum dots in
our sample (106–107 for a 100-µm-diameter mesa), we
observed only a small number of resonant peaks in the
bias range (~200 mV) close to the threshold for current
flow. This behavior has been reported in earlier studies
[4, 6–12] and, although not fully understood, is proba-
bly related to the limited number of conducting chan-
nels in the emitter that can transmit electrons from the
doping layer to the quantum dots at low bias. There is
no reason to believe that the dots studied are atypical of
the distribution as a whole. On increasing the tempera-
ture to 4.2 K, the main peaks are still prominent, but
much weaker features, which may be related to density-
of-state fluctuation in the emitter [13], are strongly sup-
pressed. A key observation is that many peaks look sim-
ilar, so we cannot tell if the peaks are due to tunneling
through the states of a single dot or several dots. In the
following, we will concentrate on three voltage regions
labeled A, B, and C. We will focus on the magnetic-field
dependence of the QD resonances and on how this pro-
vides detailed information about the form of the wave
function associated with an electron in the QD state.

Fig. 2. Low-temperature (T = 1.2 K) current–voltage char-
acteristics, I(V). Dots are grown on (311)B substrate orien-
tation.
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Figure 3a shows the low-temperature (T = 4.2 K)
I(V) characteristics in the presence of a magnetic
field B.

The direction of B is perpendicular to the current
flow and lies in the (X, Y) plane (see Fig. 1). The axes

 and  define the two main crystallographic
axes in the plane perpendicular to the growth direction
[311]. The amplitude of each resonance exhibits a
strong dependence on B. In particular, with increasing
B, the low-voltage resonances “A” decrease steadily in
amplitude, whereas the others, “B” and “C,” have a
nonmonotonic magnetic-field dependence. Figures 3b
and 3c clearly show two characteristic types of mag-
netic-field dependence: type “A” shows a maximum for
G(B) at B = 0 T followed by a steady decay to zero at
about 8 T; type “B” shows a broad maximum at ~4.5 T
followed by a gradual decay to zero.

Figure 4a shows the I(V) characteristics in an in-
plane magnetic field of 4.5 T. The first curve (circles) is

for B || , and the second curve (triangles) is for

B || . We observe a clearly defined anisotropy in
the dependence of I(V) on B for the two field orienta-
tions. As can clearly be seen in Fig. 4a, peaks “A” and
“B” in the I(V) plot reveal a strong anisotropy of about
ρ ~ 0.5. We have also determined angular dependence
of the peaks. The results are plotted in Fig. 4b for peaks
“A” and “B.” Note that all peaks observed in the bias
range (~200 mV) have maxima in current amplitudes at

field orientation B ||  or B || . The main

011[ ] 233[ ]
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Fig. 3. (a) Low-temperature (T = 4.2 K) I(V) characteristics
in the presence of a magnetic field B. The direction of B is
perpendicular to the current flow. (b, c) Dependence of con-

ductance G on magnetic field for B parallel to  for
different QDs states. B was varied from 0 to 8 T with a step
of 0.5 T.

011[ ]
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effect to be noted from Fig. 4 is the dependence of the
current on the orientation of the in-plane magnetic
field.

Figure 5a shows the I(V) characteristics in an in-
plane magnetic field of 4.5 T in the voltage range cor-
responding to the resonant tunneling through the sec-
ond subband of the quantum well. The first curve (open

circles) is for B || , and the second curve (solid

circles) is for B || . The anisotropy of the
observed resonance is plotted in Fig. 5b. The angular
dependence of the peak current measured with magne-
totunneling spectroscopy is interpreted as a direct rep-
resentation of the in-plane anisotropy of a subband [14–
16]. The anisotropy of the quantum-well subband can
be induced by the orientation of the Al–As bonds at the
neighboring interfaces of the quantum well [15].

We can understand the magnetic-field dependence
of the features in terms of the effect of B on a tunneling
electron. Let α, β, and Z indicate, respectively, the
direction of B, the direction normal to B in the growth
plane (X, Y), and the normal to the tunnel barrier (see
Fig. 1b). When an electron tunnels from the emitter into
the dot, it acquires an additional in-plane momentum
given by [17]

, (1)

where ∆s is the effective tunneling distance along Z.
This effect can be understood semiclassically in terms
of the increased momentum along β, which is acquired

011[ ]
233[ ]
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Fig. 4. (a) I(V) characteristics in an in-plane magnetic field

of 4.5 T. The first curve (circles) is for B || , and the

second curve (triangles) is for B || ; (b) angular depen-
dence of the peak current.
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by the tunneling electron due to the action of the
Lorentz force. In terms of mapping out the spatial form
of an electronic state, we can envisage the effect of this
shift as being analogous to the effect of displacement,
in real space, of the atomic tip in an STM imaging mea-
surement. The applied voltage allows us to tune reso-
nantly to the energy of a particular QD state. Then, by
measuring the variation of the tunnel current with B, we
can determine the value of matrix element that governs
the quantum transition of an electron as it tunnels from

Fig. 5. (a) I(V) characteristics in an in-plane magnetic field
of 4.5 T in the voltage range corresponding to the resonant
tunneling through the second subband of the quantum well.

The first curve (solid circles) is for B || , and the sec-

ond curve (open circles) is for B || ; (b) angular
dependence of the peak current.

011[ ]
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Fig. 6. Distribution of the differential conductance G =
dI/dV in the (kX, kY) plane for two representative states. This

provides a spatial map of |ΦQD(kX, kY)|2, the square of the
Fourier transform ΦQD(kX, kY) of the probability density of
an electron confined in the dot. X and Y define the two main

crystallographic axes  and , respectively, in the
(311)-oriented GaAs plane. 
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a state in the emitter layer into the QD. In our experi-
ment, the tunneling matrix element is most conve-
niently expressed in terms of the Fourier transforms
Φi, k( ) of the conventional real-space wave functions
[17, 18]. Here, the subscripts i and f indicate the initial
(emitter) and final (QD) states of the tunnel transition.
Relative to the strong spatial confinement in the QD,
the initial emitter state has only weak spatial confine-
ment. Hence, in  space it corresponds to a sharply
peaked function with a finite value only close to  = 0.
Since the tunnel current is given by the square of the
matrix element involving Φi( ) and ΦQD( ), the nar-
row spread of  for Φi( ) allows us to determine the
form of ΦQD( ) by varying B and, hence,  according
to Eq. (1). Thus, by plotting G(B) for a particular direc-
tion of B, we can measure the dependence of |ΦQD( )|2

along the  direction perpendicular to B. Then, by
rotating B in the (X, Y) plane and making a series of
measurements of I(B) with B set at regular intervals
(∆θ ~ 5°) of the rotation angle θ, we obtain a full spatial
profile of |ΦQD(kX, kY)|2. This represents the projection
in  space of the probability density of a given elec-
tronic state confined in the QD.

The model provides a simple explanation of the
magnetic-field dependence of the resonant current fea-
tures “A–C.” In particular, the forbidden nature of the
tunneling transition associated with “B” at B = 0 T is
due to the odd parity of the final-state wave function,
which corresponds to the first excited state of a QD.
The applied magnetic field (i.e., the Lorentz force)
effectively breaks the mirror symmetry at B = 0 and
thus makes the transition allowed.

Figure 6 shows the spatial form of G(B) ~
|ΦQD(kX, kY)|2 in the (kX, kY) plane for the two represen-
tative QD states corresponding to the labeled features in
Fig. 3b and 3c. The  values are estimated from
Eq. (1), assuming that ∆s has nominal value of 30 nm,
which we estimated from the capacitance measure-
ments and from the doping profile and composition of
the device. The contour plots reveal clearly the charac-
teristic form of the probability density distribution of a
ground-state orbital and the characteristic lobes of the
higher energy states of the QD. The electron wave func-
tions have a biaxial symmetry in the growth plane, with
axes corresponding quite closely (within measurement
error of 15°) to the main crystallographic directions

X −  and Y –  for (311)B substrate orienta-
tion. For a similar InAs QD structure grown on a (100)
substrate, we also obtained characteristic probability
density maps of ground and exited states.

To summarize, we have observed features in I(V)
corresponding to resonant tunneling through a limited
number of discrete states whose wave functions display
the symmetry of the ground state and excited states of
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quantum dots. With the simple device configuration we
have used, it is impossible to tell whether an excited-
state feature and a ground-state feature correspond to
the same quantum dot. This question could be resolved
by new experiments on structures with electrostatic
gates.

In conclusion, we have shown how magnetotunnel-
ing spectroscopy provides a new means of probing the
spatial form of the wave functions of electrons confined
in quantum dots and quantum well. The study revealed
a biaxial symmetry of QD states in the growth plane.
We observed the elliptical shape of the ground state and
the characteristic lobes of the higher energy states.
Moreover we observed the elliptical shape of the sub-
bands of the quantum well.
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It is shown that the antiferromagnetic transition is preceded by the fermion condensation with rearrangement
of single-particle degrees of freedom and appearance of plateaus in the spectrum of single-particle excitations.
The results obtained are used to explain the gap structure in the spectrum of two-dimensional high-Tc supercon-
ductors at T = 0. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.27.+a; 71.10.-Hf; 74.20.-z
It is well known that the quasiparticle description is
the most fruitful approach in the theory of Fermi sys-
tems. With this approach, the characteristics of differ-
ent systems are calculated using different quasiparticle
schemes. The simplest of them, the Kohn–Sham
scheme, is suitable for calculating energies of the sys-
tems with Coulomb forces. In this scheme, the quasi-
particles and free particles are identical, while the
effective interaction between them is constructed using
the Monte-Carlo computations of electron-gas energy
E(ρ). However, this scheme is ill suited for calculating
the single-particle excitation spectra, because it does
not take into account a change in the effective interac-
tion upon the addition of a particle. More sophisticated
quasiparticles with the dispersion of a single-particle
spectrum in a medium are introduced in the theory of
Fermi liquid. This theory is based on well-known
experimental facts, in particular, on the fact that the
damping of single-particle excitations near the Fermi
surface (FS), as a rule, is weak, allowing the system to
be treated as a gas of interacting undamped quasiparti-
cles with the same momentum distribution nF(p) as in
an ideal Fermi gas. Inasmuch as the relevant Monte-
Carlo computations are lacking, one is forced to use the
available experimental data to parameterize the effec-
tive interaction between quasiparticles. This approach
allows the qualitative description of a broad spectrum
of phenomena, and this was clearly demonstrated by
Migdal in the theory of atomic nucleus [1]. The theory
of Fermi liquid is good not only for atomic nuclei but
also for many other real systems, including liquid 3He
and metals. It is worthy of note that, if their properties
were described using Kohn–Sham quasiparticles,
instead of Landau–Migdal ones, the qualitative picture
would suffer only insignificantly. As to the quantitative
0021-3640/01/7401- $21.00 © 20046
aspect of the problem, the stronger the correlation and
the higher the velocity forces, the greater the number of
parameters characterizing the interaction needed to
describe the experiment.

However, this is unhelpful if one deals with strongly
correlated systems such as electrons in two-dimen-
sional (2D) high-Tc superconductors, where the damp-
ing effects are much stronger than in usual Fermi sys-
tems, so that the applicability of a formalism exploiting
“immortal” quasiparticles becomes doubtful, in spite of
the fact that the Fermi surface is well defined in such
systems. To understand the reasons for this inconsis-
tency, one should bear in mind that the standard Landau
theory applies only in a certain range of coupling con-
stants. At T = 0, this theory is operative until the neces-
sary condition for ground-state stability breaks. This
condition requires that a change in the total energy E0,
considered as a functional of momentum distribution,
be nonnegative for any variation of nF(p),

(1)

In this formula, ξ(p) = ε(p) – µ, where ε(p) is the energy
of Landau quasiparticle and µ is the chemical potential.
In a homogeneous system, this condition is violated,
e.g., every time when the equation

(2)

for determining Fermi momentum pF acquires a new
root. The latter can appear only if the velocity depen-
dence of the effective interaction between particles (in
fact, it is responsible for the single-particle spectrum)
becomes strong. This necessarily occurs [2] as the sys-
tem approaches the point of a second-order phase tran-
sition, where a certain branch of collective excitations

δE0 ξ p( )δnF p( ) 0.≥∑=

ξ p( ) 0=
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collapses, so that the amplitude of oscillations with crit-
ical wave number q = qc starts to grow exponentially.
However, before the density ρ reaches its critical value
ρc, the spectrum ξ(p; ρ) ceases to be a monotonic func-
tion of p, and, hence, the group velocity v g(p) =
dξ(p)/dp changes its sign. This change in sign is a pre-
cursor of the subsequent rearrangement of Fermi filling
and can be analyzed using the Landau–Pitaevski for-
mula [3] written as [4]

(3)

Here,  = p2/2M is the free-particle spectrum; dτ =
d2p/(2π)2 (for definiteness, a 2D system is considered);
F(p1, p2, k = 0, ω = 0) = z2Γk(p1, p2)M*/M, where
Γk(p1, p2) is the Landau static amplitude of zero-angle
scattering; z is the renormalizing multiplier; and M* is
the effective mass.

In the vicinity of the point of second-order phase
transition, the amplitude F(ρ  ρc) is expressed
through the corresponding susceptibility χ(q, ω = 0; ρ),
which is singular at q  qc, ρ  ρc [2]. When
reconstructing F, the symmetry relations requiring a
change in sign of this amplitude upon particle transpo-
sition, i.e., replacement of k by (p1 – p2 + k) and trans-
position of the corresponding spin indices, play an
important role. With allowance made for these rela-
tions, the singular part Fe(p1, p2, k, ω = 0) of the ampli-
tude in Eq. (3) takes the form [2]

(4)

Making use of the phenomenological expression
obtained in [2] for the static susceptibility χ(q) in the
vicinity of a transition point and substituting singular
amplitude component (4) into Eq. (3), one can verify
that, for both the critical density oscillations with O =
1, considered in [5], and the antiferromagnetic fluctua-
tions (AFs) with Oi = σi, analyzed in this work, the ξ(p)
spectrum of a homogeneous system ceases to be a
monotonic function of p well before the density ρ
achieves ρc. In what follows, it is essential that interac-
tion (4) at k = 0 depends only on the difference (p1 – p2),
so that the right-hand side of Eq. (3) can be integrated
analytically to arrive at a closed relationship that can be
used for calculating the single-particle excitation spec-
trum and determining the stability limits for the Landau
ground state.

For the AFs in a 2D crystal with square lattice, the
static spin susceptibility χ(q) displays a sharp peak at
the point corresponding to the momentum transfer q =
Q ≡ (π/a, π/a), where a is the lattice constant. With the

∂ε p( )
∂p

--------------
∂εp

0

∂p
--------=

+
1
2
--- Fαδ; αδ∫ p p1 k, , 0; ω 0==( )

∂n p1( )
∂p1

----------------dτ1.

εp
0

Fαδ; βγ
e p1 p2 k ω, , , 0=( )

∼ OαβOγδχ k( ) OαγOβδχ p1 p2– k+( ).+–
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parameterization used in [6], i.e., χ(q) ~ F(q) = [β2 +
γ2(q – Q)2/Q2]–1, one has from Eq. (3) after simple
mathematics

(5)

Here, the notation  =  – µ is introduced, where 
is the LDA-calculated spectrum. Note that the choice of
a different vertex O would only change the numerical
coefficient [4].

Thus, based on the renormalized Landau–Pitaevski
relation (3), we derived a Hartree–Fock-type relation-
ship between the spectrum ξ(p) and the distribution
n(ξ(p)). It is worth noting that attempts at deducing a
relationship of this type in the standard random phase
approximation encounter a quite difficult problem of
integrating complex expressions with respect to energy.

The main feature of the integral in Eq. (5) is that it
diverges at ρ  ρc, and, hence, the right-hand side of
Eq. (5) inevitably turns to zero at some point beyond
the Fermi surface. Thus, the Landau ground state
ceases to be stable before the density reaches its critical
value, where the frequencies of the collective spectrum
become complex; consequently, the rearrangement of
the single-particle degrees of freedom always precedes
a collapse of the collective degrees of freedom. For
instance, when calculating the spectrum ξ(p) of liquid
3He, one can verify by changing the parameter β char-
acterizing the proximity of antiferromagnetic transition
that the bifurcation in Eq. (2) occurs at a β value half as
large as its value obtained in [2] for 3He at a pressure of
0.28 atm.

To illustrate how the rearrangement proceeds in the
electronic system with strong AFs, we use the fact that
the integrand in Eq. (5) has a peak at the point p1 = p –
Q, so that the function n(ξ(p1)) can be factored outside
the integral at this point, to give the equation

(6)

with the positive effective constant f ~ 1/β. This equa-
tion differs from an analogous equation in [7] in that
ξ(p) in Eq. (6) is expressed though n(p – Q) rather than
through n(p), as in the phenomenological model used
in [7]. Despite the fact that both interactions differ
rather strongly from each other, the results have much
in common, although the model with AFs is more real-
istic

Equation (6) can conveniently be recast as a system
of two equations

(7)

where ξ1 = ξ(p) and ξ2 = ξ(p – Q). In deriving Eqs. (7),
it was taken into account that ξ(p – 2Q) = ξ(p). This
system can be solved graphically (see Fig. 1). Each of

ξ p( ) ξp
0=

3
2
---

nF ξ p1( )( )
β2 γ2 p1 p– Q+( )2/Q2+
---------------------------------------------------------- τ1.d∫+

ξp
0 εp

0 εp
0

ξ p( ) ξp
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ξ1 ξ1
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the right-hand sides in Eqs. (7) has the form of a rect-
angular kink in the (ξ1, ξ2) plane, the kink being “fixed”
to the ξ2 axis in the first case and to the perpendicular

ξ1 axis in the second case. As a rule, the parameters ,

, and f in system (7) are such that both kinks (or
either of them) lie far from the origin of coordinates. In
this case, the lines (dashed in Fig. 1) intersect only at a
single point which determines the only solution to the
system of equations for the spectrum ξ(p). If two ine-
qualities

(8)

are fulfilled simultaneously, the kinks may simulta-
neously pass through the origin, so that the lines may
intersect at three points instead of one, as seen in Fig. 1.
An analysis shows that conditions (8) may be fulfilled
in the vicinity of the van Hove points and only if they
are situated below the Fermi surface.

The solution ξ1 = 0, ξ2 = 0 corresponding to the mid-
dle intersection point always lies at the origin of coor-
dinates and can be obtained from the variational princi-
ple [8]

(9)

where the energy functional is

(10)

By varying this expression with respect to n(p), one
indeed obtains Eq. (6). Inasmuch as the left-hand side
of this equation is nothing but the quasiparticle energy
ε(p), both the direct solution to Eq. (6) and the varia-
tional Eq. (9) give the same result ξ(p) = ε(p) – µ ≡ 0
for a group of states corresponding to the fermion con-
densate (FC) and occupying certain domains in the

ξ1
0

ξ2
0

f– ξp
0 0, f ξp Q–

0 0, p C,∈< <–< <

δE0/δn p( ) µ, p C,∈=

E0 εp
0n p( ) 1

2
--- fn p( )n p Q–( )+ .

p

∑=

Fig. 1. Graphical solution to the system of Eqs. (7) for two
parameter sets. One of them (dashed lines) corresponds to a
single intersection, and the other (solid lines), to three inter-
sections.
Brillouin zone, the boundaries of these domains being
determined from the same Eq. (9).

As an illustration, Fig. 2 shows the Fermi surface
obtained by solving system (7) with a 2D tide-bind-

ing spectrum  = –e0[cos(apx) + cos(apy) –
2t cos(apx)cos(apy)], where the parameter t = 0.45 and
the constant f = 0.5e0. One can see that the Fermi sur-
face consists of the FC patches concentrated near the
van Hove points and connected with each other by arcs.
For the momentum distribution in the domains occu-
pied by the fermion condensate, one has after substitut-
ing ξ(p) = 0 into Eq. (6)

(11)

which has nothing to do with the standard jump on the
FS arc. Note that, for fixed parameters of the spectrum

 and for a fixed constant f, the relative area of the FC
patches in the model considered depends on the zone
filling that is determined by the chemical potential µ.
For a certain optimal filling in the vicinity of half-fill-
ing, this area achieves its maximal value. The parame-
ters used in the calculation are so chosen that the Fermi
surface in Fig. 2 corresponds to the maximal phase vol-
ume of fermion condensate. The coexistence of the FC
domains and usual FS domains is yet another distinc-
tion between the model with AFs and the models used
in [7, 9], where the usual FS arcs are absent, while the
“straits” between the FC domains are also filled with
the fermion condensate.

We now make sure that the rearrangement of the
Landau ground state and the formation of the FC
domains are energetically favorable. By substituting
distribution (11) into Eq. (10) for energy and subtract-
ing the energy calculated with allowance made for the
Fermi filling, one gets after simple algebra for the dif-

ference ∆E = –(f/2) (1 + /f)(1 + /f). Due
to inequality (8), this difference is negative; i.e., the
state with fermion condensate lies energetically lower
than the Landau state.

Let us briefly discuss the role of regular terms,
which are retained after separating singular part (4)
from the amplitude F, e.g., the role of phonon contribu-
tions. First, the latter introduce effective mass and,

hence, transform the LDA spectrum ; and, second,
they modify, for the same reason, the parameters of
antiferromagnetic exchange and, thus, give rise to the
isotopic effect in the FC structure.

In our opinion, the following analogy is noteworthy
in connection with variational condition (9). Recall that
liquid differs from gas in that the functional E(ρ) either
has a minimum or not. It is absent in gas (the gas den-
sity is determined by the boundary conditions),
whereas liquids exist in the states near the minimum of
this functional. By analogy, we can say that by the Lan-
dau theory of Fermi liquid is usually meant the Landau

εp
0

n p( ) ξp Q–
0 / f , p C,∈–=

ξp
0

p C∈∑ ξp
0 ξp Q–

0

ξp
0
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theory of interacting Fermi gas, because the momentum
distribution n(p) is determined not by the minimum of
functional E(n) but by the boundary conditions in the
form of the Pauli principle. In actuality, by the Landau
theory of Fermi liquid should be meant the theory of
fermionic states near the point where variational condi-
tion (9) is fulfilled.

The formulas obtained in this work can be used in
the BCS description of the superfluid states of strongly
correlated systems with fermion condensate. Note that,
since the fermion condensate appears only if the van
Hove points lie below the Fermi surface, the supercon-
ductivity in a system with fermion condensate is of the
hole type. It is also worth noting that the problem of
FC-excitation damping does not arise in the description
of superfluidity, because the main damping channel
(into two holes and a particle) is suppressed at energies
lower than 3|∆|. In the standard gap equation

(12)

with the irreducible four-pole kernel ν(p, p1) and the

single-particle spectrum E(p) = , the
fermion condensation affects ξ(p) and changes dramat-
ically the single-particle excitation spectrum of a super-
fluid system. Following [10], we retain only the AF
contribution to ν. Since this contribution is repulsive at
the Fermi surface, the solution, if it exists, must have
zeros. This becomes evident after factoring
∆(p1)/2E(p1) outside the integral at the point p1 = p –
Q, where the interaction has a peak. The gap equation
in the FC patches then takes the form

(13)

where the constant f, being the integral of the interac-
tion over the FC domain, is determined by the FC phase
volume. It follows from Eq. (13) that E(p)E(p – Q) =
f 2/4 and, hence, E(p) = f/2 in the FC patches situated in
the vicinity of the van Hove points connected by the
vector Q. As it follows from Eq. (13) that the gap
changes sign upon turning through 90° from one FC
patch to another, i.e., that the appearance of the fermion
condensate does not affect this basic property of the

-pairing model [10, 6], the gap in the systems

with fermion condensate also disappears on the diago-
nal of the Brillouin zone. If one neglects a small contri-
bution of pairing to ξ(p – Q), then one can easily verify
that the gap in the E(ϕ) spectrum is small at the Fermi
surface away from the van Hove points, i.e, in the
region where the fermion condensate is absent. A qual-
itative analysis of the solution to Eq. (12) is illustrated
in Fig. 3. It is seen from this figure that the gap in the
single-particle spectrum E(ϕ) does not change within
the FC domain and decreases rapidly upon leaving the
FC patch along the Fermi arc. The following two fea-
tures of pairing in a system with fermion condensate are

∆ p( ) ν p p1,( )
∆ p1( )

2E p1( )
----------------- τ1d∫=
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also noteworthy. First, inasmuch as the gap E(ϕ) = f/2
in the FC domains is determined by the FC phase vol-
ume, it is maximal at the optimum filling that provides
the largest area of FC patches, so that the fillings lower
and higher than the optimum can correspond to the
same gaps. Second, the energy gain ~∆ [8] due to pair-
ing in a system with fermion condensate is appreciably
greater than the usual BCS gain ~∆2/εF in a system
without FC. The solution to Eq. (12) fits the available
experimental data on the gap structure in the spectra of
2D high-Tc superconductors with square lattice [11,
12]. These data were derived from the photoemission
spectra, and their accuracy is as yet low, so that the
question of quantitative comparison between our
results and the experiment remains open.

In summary, we have used the Landau–Pitaevski
relation to separate the singular contribution of AFs
from the interaction amplitude and have shown that the
antiferromagnetic transition is preceded by the rear-
rangement of the single-particle degrees of freedom,
giving rise to plateaus in the single-particle excitation
spectrum. As a result of this rearrangement, the Fermi
surface of the 2D high-Tc superconductors with square
lattice takes the form of FC patches situated near the

Fig. 2. Fermi surface for the ground state in model (10). The
calculation was carried out for the optimum filling that pro-
vides the maximal area of FC domains (shaded).

Fig. 3. Gap E(ϕ) in units of E(ϕ = 0) in the single-particle
excitation spectrum at the Fermi surface.
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van Hove points and connected to each other by arcs.
By retaining only the contribution of AFs in the pairing
interaction, we have studied the manifestation of fer-
mion condensate in the single-particle spectra of such
superconductors at T = 0 and found that the gap shape
E(ϕ) in the spectrum at the Fermi surface agrees quali-
tatively with the available experimental data [11, 12]
but differs from the shape in the  model. The

qualitative check of our results is, likely, a matter of the
immediate future.
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It is shown that, by introducing a resonance phase for two opposite-parity quasistationary states of the same
spin, the observed sign dependence of P-odd effects in neutron-induced reactions can be matched with theoret-
ical predictions. The proposed approach makes it possible to deduce information about the isospin structure of
weak nucleon–nucleon interaction. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 25.40.Fq; 24.80.+y; 21.30.Fe
Parity-violation effects observed in neutron–
nucleus interactions belong to the class of so-called
interference phenomena. Eventually, such effects
depend on the product of reaction amplitudes rather
than on their squares. In view of this, the sign depen-
dence of the effects in question is of paramount impor-
tance, since it opens new possibilities both in interpret-
ing experimental data and in seeking a viable theoreti-
cal description of the phenomenon.

Parity-odd (P-odd) effects arise owing to the weak-
interaction-induced mixing of s- and p-wave reso-
nances—that is, continuum nuclear levels (compound
resonances) occurring above the neutron binding
energy in a nucleus. Since the structure of s- and
p-wave resonances is very intricate (they are of a mul-
tiparticle nature), it is common practice to make use of
statistical approaches, which lead to a random sign of
P-odd effects.

In recent years, however, there appeared some data
suggesting that a regular mechanism is responsible for
the formation of signs of P-odd effects [1–3]. On the
basis of these results, the entire body of currently avail-
able data on the subject was analyzed in [4], where it
was found that the sign of the P-odd effect can be
described by taking into consideration the properties of
a nuclear system that are governed by strong interac-
tion. These include the resonance positions with respect
to the neutron energy, the spin factor, and the parity of
a p-wave resonance. In particular, the sign of the parity-
violating (PV) effect in target nuclei whose ground
states are of positive parity can be described by the sim-
ple formula

(1)

where En is the neutron energy, while Es and Ep are the
energies of, respectively, the s- and the p-wave reso-

PV( )sgn En Es–( ) En Ep–( ) Es Ep–( )[ ] ,sgn=
0021-3640/01/7401- $21.00 © 200051
nances involved. Equation (1) is valid for a more gen-
eral case, that of a thermal point (away from the p-wave
resonance). In the case of resonance measurements,
where the neutron energy coincides with the energy of
the p-wave resonance, the pattern is incomplete.

It could seem that the regular behavior of the signs
of P-odd effects that is observed experimentally is at
odds with the commonly accepted statistical model of
dynamical enhancement [5, 6]. It will be shown below
that the inclusion of a resonance phase makes it possi-
ble to fit theoretical predictions to experimental data [7]
and to deduce, on the basis of experimental data, infor-
mation about the isospin structure of weak nucleon–
nucleon interaction.

Experiments usually study P-odd effects of two
classes. According to the terminology adopted in [8],
the first class includes P-odd effects that arise in the
interference of relevant amplitudes in the reaction final
state. In this case, one observes a P-odd (pseudoscalar)
correlation of the sn · k type, where sn is the neutron
spin and k is the outgoing-particle momentum. For the
sake of simplicity, we will henceforth imply that k is
the momentum kγ of the photon emitted in a (n, γ) reac-
tion. An observation of the P-odd effect then amounts
to determining the coefficient of asymmetry aγ in an
angular distribution of the form W(θ) ~ 1 + aγsn · kγ.
The P-odd circular polarization Pγ, which differs from
aγ by the absence of the spin factor As, belongs to the
same class of observables.

The second class embraces P-odd effects in neutron
optics [5, 6]. In this case, one observes a correlation of
the form sn · kn, where kn is the neutron momentum.
This can be the P-odd effect arising in the total cross
section when longitudinally polarized opposite-helicity
neutrons propagate through a sample or a rotation of the
01 MAIK “Nauka/Interperiodica”
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plane of polarization of transversely polarized neutrons
traversing a sample (Φpv). The P-odd effect in the total
cross section is defined as Ptot = (σ+ – σ–)/(σ+ + σ–),
where σ+ and σ– are the total cross sections for longitu-
dinally polarized neutrons whose spins are, respec-
tively, parallel and antiparallel to the neutron momen-
tum.

The magnitudes of P-odd effects can be expressed
in terms of three basic amplitudes, which are denoted
by f1, f2, and f3 [9]. The amplitude f1 describes the pro-
cess in which neutron capture into the s-wave com-
pound state of nucleus A is followed by its decay lead-
ing to the formation of nucleus A + 1 and to the emis-
sion of a photon whose multipolarity can be, for
example, M1. The amplitude f2 is that for the process
where neutron capture into the p-wave state is accom-
panied by the emission of an E1 photon. The amplitude
f3 describes neutron capture into the s-wave state, the
population of the p-wave state due to weak interaction,
and its subsequent decay accompanied by the emission
of an E1 photon. For the P-odd observables, we can
then obtain the expressions1 

(2)

(3)

For the P-odd observables, the substitution of the
explicit expressions for the amplitudes from [9] into (2)
and (3) leads to formulas that are usually used in com-
paring experimental data with theoretical predictions.
Specifically, we have

(4)

(5)

where Wsp ≡ 〈p|Vsp|s〉  is the matrix element of weak

interaction between the s- and the p-wave state; 

and  are the gamma and neutronic widths of the s-

and the p-wave state, respectively; and x = ,

 being the partial-wave neutron width of the
p-wave resonance with respect to its capture through
the channel where the total angular momentum of the
captured neutron is j = 1/2. In deriving expressions (4)
and (5), the potential phases were disregarded because
they are small for slow neutrons (kR ! 1). As is sug-

1 The amplitude f4 was disregarded because of its smallness in rela-
tion to f3.
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gested by the physics behind the derivation of the
amplitudes and of Wsp, each of these expressions is
characterized by the sign inherent in it.

The following special features of Eqs. (2)–(5) are
worthy of special note. For P-odd effects of the first
class [Eqs. (2), (4)], the input reaction channel is com-
mon (neutron capture into the s-wave state), whereas
the effect arises in the output reaction channel owing
the interference between the amplitudes for the decays
of the s- and the p-wave state. In the second class
[Eqs. (3), (5)], the pattern is inverse: the amplitudes
interfere in the input reaction channel (these are those
for neutron capture into the s- and the p-wave state), the
output reaction channel being common (decay of the
p-wave state).

The most interesting point is that information about
the common reaction channel is canceled in either case.
In view of this, expression (5) can be derived by a dif-
ferent method, that which is based on the elastic reac-
tion channel (as represented by the amplitude f3 in the
presence of neutron emission), along with the use of the
optical theorem, and which was adopted, for example,
in [10]. This was the way in which such effects were
considered originally. However, the question of where
P-odd effects arise—in the elastic or in an inelastic
channel—is of fundamental importance. In [11], it was
shown experimentally that P-odd effects in neutron
optics are due to radiative capture.

Following the derivation of expressions (3) and (5)
and adopting the same line of reasoning as in [9], one
can see that the two types of P-odd effects have a com-
mon origin associated with the capture process: they
have the same weak-interaction amplitude ( ), and
either effect depends on the real part of the product of
the amplitudes. Furthermore, it is not accidental that
neither expression (4) nor expression (5) depends on
the common reaction channel. From the physical point
of view, this seems bizarre. Neutron capture into the
s-wave resonance is the channel common to P-odd
effects belonging to the first class. Obviously, the situ-
ation where the resonance is to the left of the neutron-
energy value must be different from that where the res-
onance is to the right of it. This problem is solved by
introducing a resonance phase for a quasistationary
state [12] (neutron resonances in our case). The inclu-
sion of a resonance phase that has zero asymptotic
value below the resonance and the asymptotic value of
π above the resonance generates the dependence on the
sign of En – Es in expression (4).

There only remains the question of how one can
introduce the dependence on Es – Ep in the theoretical
scheme used. Such a dependence arises in perturba-
tively calculating the matrix element of weak interac-
tion and the mixing coefficient α [13],

(6)

f 3*

α
p Vsp s〈 〉
Es Ep–

----------------------.=
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For the case of a quasistationary state, the denominator
in (6) must be replaced by E – Ep + iΓp/2 [5], where Γp

is the total width of the p-wave resonance. Thus, the
dependence on Es seems to be effectively removed
upon going over to the quasistationary problem, but the
introduction of the resonance phase (φres) for two reso-
nances (an s- and a p-wave one) coupled by weak inter-
action restores such a dependence. From experimental
data, it follows that this phase must be constant
between the resonances and be equal to π if Es < Ep and
to zero if Es > Ep. The resonance phase introduced in
this way renders the theoretical predictions consistent
with the empirical formula (1) for P-odd effects
belonging to the first class.

For P-odd effects from the second class, the situa-
tion is somewhat more intricate. As a rule, they are
studied in the vicinity of a p-wave resonance, where
there are features in the energy dependences: at Ep, Ptot

attains a maximum, while Φpv goes through zero. An

analysis of expression (3) reveals that the amplitude 
involves the phase of a free motion of the p wave. Since
the matrix element of weak interaction is a pure imagi-
nary quantity, it compensates for this phase, which is
equal to π/2 (eiπ/2 = i) with respect to the s wave [5].
Thus, we see that, in relation to (2), expression (3) con-
tains an extra p wave that is associated with the ampli-
tude f2. There arises the additional phase φ(f2) = π/2,
which must be subtracted, according to the experimen-
tal situation, from the resonance phase. As a result, the
total phase vanishes at the energy of the p-wave reso-
nance, so that the sign of Ptot is determined by the
energy denominator in expression (5). Off the reso-
nance, the total phase takes the values of +π/2 and –π/2,
with the result that the effect decreases faster.2 

For the sign of Ptot, we can now formulate a simple
rule. If the s-wave resonance involved occurs to the
right (left) of a given p-wave resonance, the sign of the
effect is positive (negative). On this basis, one can
explain the sign correlation in 232Th [3], which is
widely discussed in the literature. In [3], the quantity
Ptot was studied for a number of resonances in 232Th. It
was surprising that, for ten p-wave resonances where
the P-odd effect was observed, the sign of the effect
was positive. The analysis performed in [4] revealed
that, for these ten p-wave resonances, the contribution
of all s-wave resonances occurring to the right of a
given one is greater than the analogous contribution
from the s-wave resonances occurring to the left. It is
this circumstance that leads to a positive sign of the
effect. In [14], the entire body of information necessary
for the relevant calculation is presented for the p-wave
resonance at Ep = 8.35 eV. However, the result quoted

2 It should be noted that, because of a nonzero total resonance
width, the resonance phase is not equal precisely to zero or π.
This circumstance must be taken into account in the total phase.

f 3*

there is based on the assumption that all s-wave reso-
nances contribute at random.

By introducing a resonance phase, it is possible to
remove the discrepancy between the signs in globally
describing P-even effects at the p-wave resonances in
the 113Cd and 117Sn nuclei [15, 16].

According to [5, 12], the resonance phase can be
expressed in terms of the parameters of the s- and
p-wave resonances as

(7)

Thus, the introduction of a resonance phase in a the-
oretical consideration makes it possible to reconstruct
information about the common reaction channel and, in
conjunction with the energy denominators in Eqs. (4)
and (5), to describe the experimentally observed sign
dependence (1) of P-odd effects.

From the aforesaid, we can draw the following con-
clusion. In studying a weak-interaction-induced pro-
cess (recall that one aims here at observing a P-odd cor-
relation), the sign of the P-odd effect can be described
by allowing only for strong and electromagnetic inter-
action. It follows that the sign associated with weak
interaction is constant in all such cases [17]. This result,
which seems paradoxical at first glance, can be
explained from the viewpoint of weak-interaction phys-
ics.

At low energies, P-odd nuclear forces are described
by a set of six constants that determine the exchanges
of π, ρ, and ω mesons between nucleons [18, 19]. Such
exchanges correspond to weak charged and neutral cur-
rents and are governed by the isospin selection rules

(8)

It is well known [20, 21] that the contribution of
|∆T | = 1 weak neutral currents to P-odd nuclear forces
is strongly suppressed. According to the estimates pre-
sented in [22], isotensor interaction (|∆T | = 2) makes
but a small contribution that vanishes upon summation
over the nucleon core [23]. It follows that it is the iso-
scalar component of weak nucleon–nucleon interaction
[17] that predominantly manifests itself in neutron-
induced reactions. This means that, if the isospin of the
neutron resonances involved is zero, the formation of
the effect is always controlled by the same set of con-
stants, which yields the same sign of weak interaction,
in agreement with experimental data.

The theory of the nucleus has yet to resolve a num-
ber of problems posed by advances in experimental
investigations of P-odd effects. These problems include
those of (i) a complete correlation of the signs of the
amplitudes and Wsp in Eqs. (4) and (5), as well as of the
signs of the amplitudes of P-even and P-odd effects in
fission [24, 25]; (ii) the isospin in intermediate-mass
and heavy nuclei as a good quantum number; and

φres E( )
E Es–( ) E Ep–( ) Γ sΓ p/4+

E Es–( )Γ p/2 E Ep–( )Γ s/2–
-------------------------------------------------------------------- .arccot=
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(iii) construction of an effective single-particle weak-
interaction nuclear potential.

In conclusion, I would like to thank my colleagues
from the Department of Neutron Investigations at the
Petersburg Nuclear Physics Institute (Russian Acad-
emy of Sciences, Gatchina).

This work was supported by the state program Fun-
damental Nuclear Physics (grant no. 134-08).
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The efficiency of the extraction of a beam from an accelerator is radically improved owing to the application of
short crystals of length up to 1.8 mm bent through a small angle of about 1 mrad. This success is due to an
increase in the multiplicity of particle transmission through the crystal used. A record efficiency of the extrac-
tion of 70-GeV protons in excess of 80% is achieved experimentally, this result being in agreement with theo-
retical predictions. It is shown that the crystal can efficiently operate at the injection energy of 1.3 GeV. © 2001
MAIK “Nauka/Interperiodica”.

PACS numbers: 29.27.Ac
A new method for extracting beams from accelera-
tors that is based on the application of bent crystals is
being developed in several laboratories worldwide
[1−5].

This method has a number of appealing features.
Specifically, it admits a simple implementation and is
compatible both with the collider mode and with mode
of internal targets; moreover, the intensity of the result-
ing beam exhibits but small pulsations. The crystal used
has a minimal septum thickness; therefore, it is very
convenient for application in loss-localization systems
as a coherent scatterer as well.

For a long time, however, attempts at achieving a
high efficiency of extraction have been futile, since but
a small number of particles are captured into the chan-
neling regime when the beam from an accelerator
traverses the crystal only once. One possible idea to
increase sharply the efficiency of extraction is based on
the application of a very short crystal [6, 7]. In long
crystals bent through large angles previously in use, the
losses of particles in dechanneling were great. In the
case of a short crystal, the efficiency is improved not
only owing to the reduction of dechanneling-induced
losses of particles but also owing to less intense scatter-
ing over the crystal length. Concurrently, the mecha-
0021-3640/01/7401- $21.00 © 20055
nism associated with an increase in the mean number of
particle transmissions through the crystal comes into
play, contributing to the improvement of the efficiency.
Even the first experimental studies along these lines
[3−5] at the 70-GeV accelerator installed at the Institute
for High Energy Physics (IHEP, Protvino) led to a sig-
nificant improvement of the parameters of extraction in
relation to known world data: the intensity of extraction
of a 70-GeV proton beam was in excess of 1011 protons
per spill at an efficiency of about 40%. In that experi-
ment, use was made of short silicon crystals 6 and
5 mm long that were bent through angles of 1.7 and
1.5 mrad, respectively, according to different technolo-
gies yielding P- and O-shaped constructions, which are
described in [3–5].

These technologies for preparing bent crystals have
been developed further. Through creating new crystals
of shorter length and better polished and bent, the effi-
ciency of extraction was pushed up to 85%.

Presently, a few crystals are arranged at the U-70
accelerator. Their positions are chosen in such a way
that bent crystals appear to be the first step in the slow-
extraction system. The properties of the crystals are
listed in the table. Crystals in the shape of strips
(P type) and O-shaped crystals have orientations of
001 MAIK “Nauka/Interperiodica”
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Si(111) and Si(110), respectively. A specially generated
local distortion of the orbit ensured transportation of
the beam to the working crystal. The arrangement of
equipment and instruments for diagnostics and the fea-
tures of the beam in the accelerator were described in
detail elsewhere [3–5].

All instruments for beam diagnostics (TV system of
observation, monitors of losses, profilometers, equip-
ment for measurement of the intensity) were prelimi-
narily tested in the fast-extraction mode and calibrated
with the aid of a current transformer. According to the
results of the calibration, the absolute error in measure-
ments of the extracted-beam intensity was within 2%
[8]. The background conditions were periodically mea-
sured when the crystal was disoriented and when it was
removed from the accelerator beam. The measured
background level, together with the apparatus noise,
did not exceed 3% of the channeled-beam intensity.
From the measurements of the intensity of the circulat-
ing beam prior to and after the extraction, the beam
fraction delivered to the crystal was determined with a
systematic error of about 1%. With allowance for all

Fig. 1. (a) Intensity of the extracted beam versus the orien-
tation of crystal no. 1; (b) efficiency F of beam extraction
with the aid of crystal no. 1 versus the intensity I of the
beam guided to the crystal (in percent of the intensity of the
beam circulating in the U-70 accelerator).
factors, the total systematic error in measuring the effi-
ciency amounted to about 4%. The efficiency of extrac-
tion (that is, the ratio of the extracted-beam intensity to
the intensity of the beam delivered to the crystal) was
determined in each cycle of accelerator operation. For
each experimental point, we collected statistics over a
few hundred cycles. A feedback monitor based on a
phototube equipped with a scintillator was used to
ensure a uniform transportation of the beam to the
crystal.

The best result was obtained with the shortest crys-
tals nos. 1 and 6, which had a length of 2 and 1.8 mm,
respectively, and which were manufactured in the form
of narrow strips. Figure 1 displays the results of our
investigations with crystal no. 1, which made it possible
to achieve the extraction efficiency of (85 ± 2.8)% at the
beam intensity in the accelerator of 1 × 1012 particles
per spill. Further investigations are expected to estab-
lish the degree to which it is possible to increase the
intensity of the beam extracted with the aid of this
crystal.

Crystal no. 6 was used as a coherent scatterer in the
loss-localization system. It was arranged at a distance
of 20 m upstream of the beam collimator, and (85 ±
2.8)% of particles incident on this crystal were scat-
tered into the collimator body. The results obtained by
measuring the beam profile at the collimator inlet are
shown in Fig. 2 for various modes. As might have been
expected, guiding particles directly to the collimator
edge (Fig. 2a) leads to very small parameters of particle
acceptance, which are concentrated near the edge; as a
result, the efficiency of collimation is reduced. The case
illustrated in Fig. 2b corresponds to a disoriented crys-
tal, while the case in Fig. 2c is that in which the crystal
is oriented and in which the majority of the particles are
thrown into the interior of the collimator. The graph in
Fig. 2d represents the situation where the beam is
thrown into the collimator by a kicker magnet. Delivery
by the kicker magnet was used to calibrate the measure-
Properties of the crystals used

Crystal 
number

Position, number 
of a magnetic 

block
Type Angle, 

mrad
Length × height × 

thickness, mm3 Efficiency Comments

1 106 P 1.0 2.0 × 35 × 0.5 85 Extraction scheme 106-24-26

80 Extraction scheme 106-20-22

2 106 O 0.7 3.5 × 5.0 × 0.7 60

3 19 P 2.0 5.0 × 45 × 0.5 67

4 19 O 2.1 5.0 × 5.0 × 0.7 65

5 19 O 2.3 5.0 × 5.0 × 0.6 45 Particle flux is ~2 × 1020/cm2

6 84 P 0.8 1.8 × 27 × 0.5 85 70 GeV

20 1.3 GeV

7 84 O 1.7 2.5 × 5.0 × 0.5 60

8 86 P 1.4 4.0 × 45 × 0.5 65
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ments of the fraction of the beam deflected by the
crystal.

In applying a crystal, the radiation levels down-
stream of the collimator were reduced considerably.

The generalized experimental results obtained by
measuring the efficiency of beam extraction imple-
mented with the aid of crystals having different length
values (see table) are presented in Fig. 3, along with the
results of a simulation that took into account particle
transport in the crystal (according to the CATCH code
[9]) and many turns of motion in the accelerator. It can

Fig. 2. Beam profiles measured at the collimator end face:
(a) the case where there is no crystal and where the beam is
guided directly to collimator; (b) the case where a disori-
ented crystal is inserted in a beam; (c) the case where an ori-
ented crystal is inserted in a beam; and (d) the case where
there is no crystal and where beam is guided by a kicker
magnet.

Fig. 3. Efficiency of proton-beam extraction with aid of a
crystal according to measurements at 70 GeV: (w) results of
2000, (h) results of 1999 and 2000, (#) results of 1997, and
(s) theoretical prediction (EPAC’2000 [11]) for the effi-
ciency of extraction for a deflector having an ideal bend
through 0.9 mrad.
JETP LETTERS      Vol. 74      No. 1      2001
be seen that the experimental data comply well with the
results of the calculations.

The designed short crystals of length about 1 mm
along the beam can be used not only at high-energy
accelerators but also at particle energies of about
1 GeV. By way of example, we indicate that the first
tests of the deflection of protons of energy 1.3 GeV
(U-70 synchrotron injection energy) were performed at
the U-70 accelerator. The profile of the beam deflected
by crystal no. 6 is shown in Fig. 4 for the conditions
specified above. A feature peculiar to this case is that
the transmitted particles undergo intense Coulomb
scattering within the crystal. The root-mean-square
scattering angle of about 1 mrad is commensurate with
angle of the crystal bend. Even in this case, however,
channeled particles constitute a sizable fraction (about
50%) of the beam delivered to the crystal. According to
estimates, the corresponding efficiency of delivery of
the beam channeled by the crystal is about 20%. In
principle, a further optimization of short crystals by
applying a new technology for their growth [10] will
make it possible to achieve, for low energies (less than
1 GeV), an extraction efficiency as high as that for
70 GeV.

At the IHEP accelerator, the use of a crystal for
extracting a beam and for directing it to a facility
intended for studying rare K-meson decays made it pos-
sible to increase, over two months of operation, the
number of events collected worldwide for these decays
by a factor of 40 [11]. We note that two internal targets
that generated secondaries for other experiments oper-
ated in this mode along with the device that extracted
protons with the aid of a crystal.

In summary, the results of our experiments show
that, over a wide energy range, bent crystals can be suc-

Fig. 4. Profile of a 1.3-GeV proton beam as measured at the
collimator end face for the case where use is made of crystal
no. 6. The thin line represents the simulated profile of parti-
cles channeled and scattered in the crystal, the motion of the
particles in the accelerator ring being taken into account.
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cessfully used to extract and collimate beams at accel-
erators.

This work was supported by the Russian Foundation
for Basic Research (project no. 01-02-16229) and by a
joint grant from INTAS and CERN (no. 132-2000).
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It is shown that  ⊕ /  coset theory is a quantum Hamiltonian reduction of the excep-

tional affine Lie superalgebra (2|1; α). In addition, the W algebra of this theory is the commutant of the
8qD(2|1; α) quantum group. © 2001 MAIK “Nauka/Interperiodica”.
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In this paper, it is found that (i) the well-known

 ⊕ /  coset models and (ii) the

exceptional affine Lie superalgebra (2|1; α), two
structures in two-dimensional conformal field theories,
are related to one another as follows:

Quantum Hamiltonian Reduction 

(1)

(at general parameter values). This result seems nontriv-

ial in view of the popularity of the (2) ⊕ (2)/ (2)

coset models [which are analogous to the (2) ⊕
(2)/ (2) ones]—they have been extensively stud-

ied from various points of view, but the presence of the

(2|1; α) algebra in them has not been revealed so far.

As to the (2|1; α) algebra itself, it appeared in models
of conformal field theory only in [1] (where its partial
Hamiltonian reduction to the N = 4 superconformal
algebra was constructed) and, more recently, in [2] [in
the construction of the vertex-operator extension of

(2)k ⊕ (2)k ']; this algebra, which is exceptional in
the classification of Lie algebras [3], therefore remains
quite an “exceptional” object in models of conformal
field theory. It is even more interesting that, in the
aforementioned coset theories, it is hidden. The reduc-
tion being considered is maximal (all currents that take
values in the nilpotent subalgebra are constrained),
whereas the nilpotent subalgebra corresponds to the
case where all simple roots are chosen to be fermionic.
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The equality in (1) requires describing the relation
between the parameters on the left- and on the right-
hand side. For this, we recall that the definition of a
coset theory is invariant under permutations of the three
levels k1, k2, and k3 = –k1 – k2 – 4 and that the parameter
α is defined modulo a order-six group of discrete trans-
formation; moreover, the level κ on the left-hand side of
(1) can be chosen to be equal to the level of any of the

three (2) subalgebras in D(2|1; α), so that it is conve-
nient to specify these three levels κ1, κ2, and κ3, which
are related by the equation 1/κ1 + 1/κ2 + 1/κ3 = 0,
instead of the parameter α and the level κ. The relations
κ1 = 1/(k1 + 2), κ2 = 1/(k2 + 2), and κ3 = –1/(k1 + k2 + 4)
then hold; modulo the aforementioned arbitrariness, we
also have α = –1 – (k1 + 2)/(k2 + 2).

In addition to (1), we will show that the algebra of
local fields of the coset theory in question coincides
with the W algebra 0D(2|1; α) defined by the root sys-
tem of the D(2|1; α) Lie superalgebra; that is,

(2)

It is in order here to dwell at some length on the defini-
tion of the right-hand side. It is well known that, for a
bosonic Lie algebra g (more precisely, for a root sys-
tem), the W algebra 0g is specified as the commutant
of operators (referred to as screenings in this context)
that realize the nilpotent subalgebra of the 8qg quan-

tum group. The screenings σi =  are constructed

in terms of free fields j by taking the simple-root vec-

tors ai and by replacing them by ai =  (the central

sl̂
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e
ai j⋅

∫°
1
κ
---ai
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60 SEMIKHATOV, FEŒGIN
charge of the resulting W algebra depends on the
parameter κ introduced here). For the Lie superalgebra
g such that all its odd roots are isotropic [in particular,
for D(2|1; α)], we define 0g in a way similar to that in
the bosonic case, the only distinction being that the
operator corresponding to each odd root αi is replaced

by , where ai satisfy the condition ai · ai = 1 and

where the set of all screenings satisfies the nilpotent

subalgebra in 8qg. Operators of the form ,

where ai · ai = 1, will be referred to as fermionic screen-
ings, while all the remaining ones are called bosonic
screenings.

Described below are basic steps leading to (1) and
(2).

1. Reminder: D(2|1; a) superalgebra [3]. The
D(2|1; α) superalgebra of dimension (9|8) has the even
part sl(2) ⊕  sl(2) ⊕  sl(2), whose action on the odd part
is the product of two-dimensional representations. This
algebra admits a set of roots where all three simple
roots are fermionic; the Chevalley generators ψi, i =
1, 2, 3, satisfy the relations [ψ1, ψ1] = 0, [ψ2, ψ2] = 0,
[ψ3, ψ3] = 0 (here, [ , ] stands for a supercommutator),
and [ψ2, [ψ1, ψ2]] + (α + 1)[ψ3, [ψ1, ψ2]] = 0. Therefore,
the nilpotent subalgebra also contains three even ele-
ments

which are upper-triangle generators of three sl(2) sub-
algebras, and, in addition, one odd element ψ0 = [ψ1,
e(1)] = [ψ2, e(2)] = [ψ3, e(3)]. Here, 1/κ1 + 1/κ2 + 1/κ3 = 0,
while the parameter α is then defined as α = –1 –
(κ3/κ2).

2. Hamiltonian reduction of (2|1; a). The
Hamiltonian reduction of superalgebras may require
introducing auxiliary fields used in imposing con-

straints. For the (2|1; α) algebra, there are a few nat-
ural options of such fields and constraints. The scheme
that we consider is asymmetric in three fermionic
roots—namely, we introduce a free fermionic system
generated by η and ξ and characterized by the operator
product η(z)ξ(w) = 1/(z – w) and impose the constraints
ψ1(z) = η(z), ψ2(z) = η(z), and ψ3(z) = ξ(z) and, accord-
ingly, e(1)(z) = –κ1/2, e(2)(z) = –κ2/2, e(3)(z) = 0, and
ψ0(z) = 0. In order to construct the relevant Becchi–
Rouet–Stora–Tyutin (BRST) differential, we introduce
ghosts—that is, first-order bosonic and fermionic sys-
tems featuring the relevant operator products
βi(z)γj(w) = –δij/(z – w) and Bi(z)Cj(w) = δij/(z – w). The

e
ai j⋅

∫°
e

ai j⋅

∫°

e 1( ) κ1

2
----- ψ2 ψ3,[ ] ,= e 2( ) κ2

2
----- ψ1 ψ3,[ ] ,=

e 3( ) κ3

2
----- ψ1 ψ2,[ ] ,=

D̂

D̂

BRST differential is then given by 4 =  + 7(1) +

7(2)), where

(3)

(4)

The cohomology of this BRST operator is the result
of the Hamiltonian reduction in question. More pre-
cisely, the cohomology of 4 inevitably contains the
Heisenberg algebra, since we have introduced the aux-
iliary fields η and ξ—our objective is to find, in a
cohomology with zero ghost number, a W algebra that
commutes with this Heisenberg algebra *0. One can
easily find a current that generates the *0 algebra. The
result is

where h(i) are the Cartan currents of three (2) subal-

gebras in (2|1; α). We further note that the cohomol-
ogy of 4 also contain the family of stress–energy ten-
sors that depends on the parameter j and which has the
form

The only combination that commutes with  and
which is independent of j is given by

(5)

The central charge of this stress–energy tensor can be
represented as

(6)

7( 0( )∫°

7 0( ) ψ1γ1= ψ2γ2 ψ3γ3 e 1( )C1 e 2( )C2+ + + +

+ e 3( )C3 ψ0γ0
2
κ1
-----B1γ2γ3–

2
κ2
-----B2γ3γ1–+

–
2
κ3
-----B3γ1γ2 β0γ1C1– β0γ2C2– β0γ3C3,–

7 1( ) γ1η–= γ2η– γ3ξ ,–

7 2( ) κ1

2
-----C1=

κ2

2
-----C2.+

H̃ 2h 3( )= 2B3C3 β0γ0 β1γ1 β2γ2 β3γ3– ηξ ,+ + + + +
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+ j 1–( )∂β2γ2 1 j–( )β3∂γ3 2 j–( )∂β3γ3+ +

+ j 2–( )η∂ξ j 1–( )∂ηξ ∂ h 1( )+ +

+ ∂h 2( ) 2 j 1–( )∂h 3( ).+

H̃

T̂ T̃ j( )=
1

2 1 2κ3+( )
-------------------------H̃H̃–

4 j 1–( )κ3 2 j 3–+
2 1 2κ3+( )

---------------------------------------------∂H̃ .–

ĉ
3 1 2κ1–( ) 1 2κ2–( )

1 2κ3+
------------------------------------------------.=
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If the parameters are identified as 1/κ1 = k1 + 2, 1/κ2 =
k2 + 2, and 1/κ3 = –k1 – k2 – 4, it coincides with the cen-

tral charge of  ⊕  /  coset theory.

In order to demonstrate that, in addition to the Vira-

soro algebra generated by the operator , the cohomol-
ogy of 4 contain a W algebra that commutes with *0,
we note that the decomposition 4 = 4(0) + 4(1) + 4(2),
which follows from Eqs. (3) and (4), corresponds to
that filtration on the BRST complex with respect to
which 4(i) lowers the index by i, so that we have
(4(0))2 = 0, 4(0)4(1) + 4(1)4(0) = 0, and (4(1))2 + 4(0)4(2) +
4(2) 4(0) = 0. This makes it possible to use the relevant
spectral sequence. The cohomology of 4(0) in zero
ghost number are generated by ηξ  and by three other
currents:

A key observation is that terms appearing in 4(1) act on
the cohomology of 4(0) as vertex operators; that is,

Denoting by Xa, a = 1, 2, 3, the exponents appearing in
these formulas, we find the operator products
X1(z)X2(w) = (1/κ3 + 1) , X1(z)X3(w) = (1/κ2 –
1) , and X2(z)X3(w) = (1/κ1 – 1) .
Defining the scalar product in the space of currents as
the coefficient of the logarithm, we obtain 〈X1, X2〉 +
〈X1, X2〉 + 〈X2, X3〉  = –1. In addition, it can easily be
shown that 〈Xa, Xa〉 = 1 ∀ a = 1, 2, 3.

Thus, we see that, in the three-boson space repre-
senting that part of zero term in the spectral sequence

which is complementary to , three operators ,

, and  determine a W algebra as their com-

mutant. This W algebra contains the Virasoro algebra
generated by the operator in (5) with the central charge
(6). Following [4], we can show that, at general values
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2( )
– 1

κ3
----- 2+ 

 – ĥ
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1( ) 1
κ2
----- ĥ
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of the parameters, it is precisely this W algebra multi-
plied by *0 that is the cohomology of 4 (in particular,
the differential of 4(2) is trivial on the first term of the
spectral sequence). Thereby, the result of the Hamilto-
nian reduction is a W algebra specified as the commu-
tant of three fermionic screenings.

3. 0D(2|1; a), screenings, and quantum groups.
In order to study this commutant, what was obtained
above will now be formulated in a more invariant form.
There have arisen operators that are expressed in terms

of three free fields j = {ϕ1, ϕ2, ϕ3} as σi = ,

where the vectors ai satisfy the conditions ai · ai = 1 and
a1 · a2 + a1 · a3 + a2 · a3 = –1. These three fermionic
screenings generate the nilpotent subalgebra of the
8qD(2|1; α) quantum group. By definition, their com-
mutant is the W algebra 0D(2|1; α). It depends on two
parameters k1 and k2 that can be specified by setting

The central charge of the W algebra is then equal to the
central charge of the coset on the right-hand side of (1).
Along with 0D(2|1; α), we will therefore use the nota-
tion 0D2|1(k1, k2).

Further, each pair of fermionic screenings {σi , σj},
i ≠ j, determines the nilpotent subalgebra in the
8qsl(2|1) quantum group. Thereby, the commutant of
these two screenings in the relevant two-boson sub-
space is the W algebra 0sl(2|1). But this algebra com-
mutes with the third, bosonic, screening, which has the
form of the product of a current and an exponential.
Since the algebra 0D(2|1; α) is the intersection of
three algebras of the form 0sl(2|1) ⊗  (Heisenberg), its
commutant involves three bosonic screening (1 ≤ i < j ≤
3); that is,

where Jij is a linear combination of ai · ∂j and aj · ∂j.
From the conditions imposed on ai it follows that each
two operators from the set ρ12, ρ13, and ρ23 commute
and that each operator ρij commutes with σ1, σ2, and σ3.

The operators ρ12, ρ13, and ρ23 are upper-triangle
generators in the sl(2) quantum groups (a = 1, 2, 3)

with relevant quantum-group parameters qa = ,
where

Thus, the W algebra 0D(2|1; α) commutes with two
mutually commuting quantum groups 8qD(2|1; α) and

sl(2) ⊗  sl(2) ⊗  sl(2). Of these, the second

e
ai j⋅

∫°

a1 a2⋅ k2 1, a1 a3⋅+ k1 1,+= =

a2 a3⋅ –3 k1 k2.––=

ρij Rij, Rij∫° Jije
rij j⋅

, rij

ai a j+
ai a j⋅( ) 1+

---------------------------,= = =

8qa

e
πiκa

κ1
2

k2 2+
--------------, κ2

2
k1 2+
--------------, κ3

2–
k1 k2 2+ +
-------------------------.= = =

8q1
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is used to prove that 0D2|1(k1, k2) is the W algebra of
the relevant coset theory.

4. 0D2|1(k1, k2) is the algebra of a coset theory.
We recall that the conformal theory specified by

(2) ⊕  (2)/ (2) coset [8] can be defined within the
BRST approach [9–11] as the relative semi-infinite
cohomology

of the complex

where the ghosts are given by three systems of free fer-
mions, while the differential is constructed in a stan-

dard way for the diagonally embedded (2) algebra of
level (–4) [5–7]. At general values of k1 and k2, the
cohomology of this complex are concentrated in zero
ghost number, and this gives local fields (descendants
of the vacuum) of the coset theory being considered.

The algebra of the coset vertex operators contains

H∞/2( (2), sl(2); }m ⊗  }n ⊗  }l), where }l are

Weyl modules. This makes it possible to characterize
the coset by the following property: for any i = 1, 2, 3,

the product of the coset and the (2) algebra of level
−ki – 4 dual to ki admits a vertex-operator extension

(v.-o. e.) to the product of the other two  alge-
bras; for example,

(7)

where, by 8, one can mean the vacuum representation.
This vertex-operator extension is constructed by con-

tracting the coset vertex operators and the 
vertex operators with respect to the quantum-group
index, the contraction in question being induced by tak-
ing the monodromy-free elements in each term:

The property in (7) characterizes 0D2|1(k1, k2) as a

coset, since  is then diagonally embedded in

 ⊕  , where k1 + k2 + k3 = –4; hence,

sl̂ sl̂ sl̂
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k2( ) k3( )

⊗~

(k2) (k3)

sl̂ 2( ) k– 1 4–

sl̂ 2( )k2
sl̂ 2( )k3
 is diagonally embedded in the right-hand side
of the vertex-operator extension

In accordance with the definition, the relative semi-infi-
nite cohomology of the right-hand side then reproduce

the coset; on the left-hand side, H∞/2( (2)–4, sl(2)) is

calculated as C on 8  ⊗  8 , whereby

one obtains 0D2|1(k1, k2).

Replacing k1 by k3 = –k1 – k2 – 4, we thus construct
the required vertex-operator extension:

(8)

Let  be an n-dimensional module over the 8qsl(2)
quantum group, where q = eπiκ. The operators

are the highest weight vectors in the representations of
the sl(2) ⊗  sl(2) ⊗  sl(2) quantum group,
the dimensions of these representations being indicated
by the indices [these are singlets with respect to the
8qD(2|1; α)]. We express this as follows:

The operator ϒ113, which is a three-dimensional repre-

sentation of sl(2) at q = , can be con-

tracted with the spin-1 vertex operator Φ1(k1 + k2) for

the  algebra. This vertex operator is a three-

dimensional representation of sl(2). We represent

this fact as Φ1(k1 + k2)(z) = C3(z) ⊗  , where the first
factor C3 is a triplet with respect to the horizontal sl(2)
subalgebra. The contraction in the quantum-group
index is given by taking the quantum-group singlet

w3 ∈   ⊗  . The result is then a local field,
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that is a three-dimensional representation of the sl(2)

subalgebra in . In this representation, we

choose the basis (z), (z), and (z), where (z)
corresponds to the highest weight vector. Suppose that

(z) are currents of the  algebra. The cur-
rents

then satisfy the relevant  algebra. [Here, the

space generated by the currents  is identified with

that representation of  which is generated by
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the currents k2 (z) – k1 (z) in  ⊕ ].
Thus, the extension in (8) has been derived, whence it
follows that there is the homomorphism

which is in fact an isomorphism.

The vertex operators for  ⊕  can be

constructed in a similar way. Let (k)(z) =

C2(z) ⊗   be the spin-1/2 vertex operator for

. Here,  is a two-dimensional represen-
tation of 8qsl(2) with quantum-group parameter q =
e2πi/(k + 2), while the first factor C2 is an sl(2) doublet. By
using the duality of quantum-group representations on

(k1 + k2) and Ψ212, we arrive at

J1
± 0, J2

± 0, sl̂ 2( )k1
sl̂ 2( )k2

0D2 1 k1 k2,( )

H∞/2 sl̂ 2( ) 4– sl 2( ); Vac Vac Vac⊗ ⊗,( ),
k1( ) k2( ) k3( )
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C2/ k 2+( )
2

sl̂ 2( )k C2/ k 2+( )
2

Φ1/2
where w2 is a monodromy-free element and C2(z) ⊗  is the spin-1/2 vertex operator (k2)(z) for . For

, a similar construction is valid, but use is made of Ψ122 in that case.

In conclusion, we schematically summarize basic steps in the proof of the statements in (1) and (2):
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8q3
sl 2( )

=

0 = Coset
We also note that, since a partial Hamiltonian reduction
of the (2|1; α) algebra leads to the (nonlinear) N = 4
superconformal algebra [1], there arises the interesting
question of the relation of this algebra to the coset via a
secondary Hamiltonian reduction [12].
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č

5. B. L. Feigin, Usp. Mat. Nauk 39 (2), 195 (1984).

6. I. Frenkel, H. Garland, and G. J. Zuckerman, Proc. Natl.
Acad. Sci. USA 83, 8446 (1986).

7. S. Hwang, Commun. Math. Phys. 194, 591 (1998).

8. P. Goddard, A. Kent, and D. Olive, Phys. Lett. B 152B,
88 (1985).

9. K. Gaw dzki and A. Kupiainen, Phys. Lett. B 215, 119
(1988); Nucl. Phys. B 320, 625 (1989).

10. D. Karabali and H. Schnitzer, Nucl. Phys. B 329, 649
(1990).

11. S. Hwang and H. Rhedin, Nucl. Phys. B 406, 165 (1993).

12. J. O. Madsen and E. Ragoucy, Commun. Math. Phys.
185, 509 (1997).

Translated by A. Isaakyan

ȩ
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PACS numbers: 41.50.+h
1. The considerable progress achieved in recent
years in X-ray microscopy is associated with the devel-
opment of new X-ray–optical focusing elements such
as Bragg–Fresnel and hollow spherical lenses, Fresnel
zone plates, and kinoform structures, etc. [1–2]. Capil-
lary focusing systems are successfully utilized in X-ray
microdiagnostics.

Recently [4], we have suggested an X-ray micro-
scope that is based on the use of schemes with highly
asymmetrical X-ray diffraction in crystals. Our experi-
ments demonstrated the possibility of obtaining 50- to
100-fold enlarged images of objects with sizes of several
tens of microns. The main reason hampering the exten-
sion of this scheme to the submicron range is that the
image undergoes diffraction spreading on the way from
the object to the reflecting crystal. Indeed, when using a
radiation with the wavelength λ = 1 Å, the diffraction
length for an object of size d = 1 µm is ld = d2/λ = 1 cm,
leading to substantial restrictions in practical use of this
method in X-ray microscopy schemes.

In this work, a new method of focusing X-ray beams
is proposed, which is based on the use of crystals or sin-
gle-domain periodic structures (multilayer X-ray mir-
rors, photonic crystals, etc.) with variable period. Cal-
culations show that the enlargement for an object can
be achieved with submicron resolution. The method is
based on the use of strong spatial dispersion at the
edges of the Bragg reflection region. In crystals with
variable period, the width of this region depends on the
deformation profile. This opens up wide possibilities of
controlling the dispersion properties of such crystals
and allows the fabrication of focusing optical systems.
The use of a spatiotemporal analogy allows this princi-
ple to be naturally extended to the compression of
phase-modulated pulses. Recently, we have demon-
strated that femtosecond laser pulses can be com-
pressed in one-dimensional photonic crystals [5].
0021-3640/01/7401- $21.00 © 20006
2. To calculate the reflectivity of a crystal or multi-
layer structure with weakly varying period (in our case,
∆d/d ≤ 10–2), one can use the well-known system of
equations for the dynamical two-beam diffraction in a
crystal with one-dimensional deformation profile u(z) [6]

(1)

where E0, h are the amplitudes of the incident and the
diffracted waves in the crystal, respectively; γ0, h =
sinθ0, h; θ0, h are the angles between, respectively, the
wave vector of the incident k0 and the diffracted kh =
k0 + Hh wave and the entrance face of the crystal; Hh is
the reciprocal lattice vector; χ0, h are the Fourier compo-
nents of the crystal polarizability; and α(θ0) = (κ2 –

)/κ2 = 4sinθB[sin(θ0 + ψ) – sinθB] is the detuning
parameter determining the deflection of the angle of inci-
dence θ0 from the Bragg diffraction angle θ0B = θB – ψ,
where sinθB = H/2κ and the angle ψ stands for the slope
of reflecting planes with respect to the entrance face of
the crystal.

Let the exponential deformation profile u(z) =
u0exp(–z/l) be formed in a medium. In this case, the
reflectivity amplitude is given by the expression

(2)

dE0

dz
---------

iκ
2γ0
-------- χ0E0 χh+ E f( ),–=

dEh

dz
---------

iκ
2γh

-------- χ0 α– iH
du
dz
------– 

  Eh χhE0+ ,=

κh
2

r θ0( )
γh

γ0
----- Eh

E0
-----=

=  
4χ0

κ l
--------

γ0γh

χhχh

----------- a
ay F1 1 1 a+ 1 b y,+,( )⋅

b F1 1 a b y, ,( )⋅
--------------------------------------------------------+ ,–
001 MAIK “Nauka/Interperiodica”



        

BEAM FOCUSING UPON THE REFLECTION 7

  
where 1F1(a, b, y) is the hypergeometric function of
parameters

(3)

Since the actual crystal boundary coincides with the z =
u0 plane, it is convenient to introduce the coordinate
z' = z – u0. In this case, the displacement vector is deter-
mined by the expression u(z') = u0exp(–z'/l) – u0. Fig-
ure 1a compares the reflectivity amplitude profiles for
the CuKα radiation symmetrically reflected from the
(111) planes of an ideal (curve 1) and strained (curve 2)
germanium crystal with an exponential deformation
profile for l = 17 µm and ∆d/d = 3 × 10–3. Figure 1b
shows the angular profile of an incident Gaussian beam
formed by a 0.5-µm-wide slit placed at a distance of
4 cm from the reflection region. This profile will be
used below in the calculation of focusing efficiency in
the symmetric case. One can see that the angular width
of the incident beam exceeds the angular width of the
reflection region for the ideal crystal and is comparable
with the reflection width for the strained crystal.

a i
κ l
4
----- 1

γ0
----- 1

γh

-----+ 
  χ0

α
γh

----- β–+ ----- 
 –=

– 1
γ0
----- 1

γh

-----+ 
  χ0

α
γh

----- β–+ 
  2 4χhχh

γ0γh

--------------– ,

b 1 i
κ l
2
----- 1

γ0
----- 1

γh

-----+ 
  χ0

α
γh

----- β–+ 
  2 4χhχh

γ0γh

--------------– ,+=

y i2κu0 θB ψcossin iβ.= =

Fig. 1. (a) Angular profiles of reflectivity amplitude for the
(curve 1) ideal and (curve 2) strained crystals and (b) angu-
lar profile of a beam incident on the crystal.
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3. Let us consider the reflection from a semi-infinite
crystal with the deformation profile indicated above.
Let the crystal occupy the z ≤ 0 region. If the spatial
profile of incident beam has the form E0(x, h) in the
z = h plane, the profile of the reflected beam is deter-
mined by the expression

(4)

where

In the quasi-optics approximation, the linear dimension
of the reflected beam in the case of symmetric Bragg
reflection depends on the distance z as

(5)

Eh x z,( ) E0 ν H ψsin+( )r ν H ψsin+( )∫=

× iνx i κ2 ν2z–+[ ] dν ,exp

E0 k( )
1

2π
------ E0 x h,( ) –ikx i κ2 k2– h+( )exp x.d∫=

a z( ) a0
2 1

a0
2

-----+ 
  z

κ θ0sin
---------------- ∂2ϕ

∂k2
---------–

∂2ϕ0

∂k
-----------–

 
 
 

2

,=

Fig. 2. Spatial profiles of (a) incident and (b, c) reflected
beams. Curves 1 are for the z = h plane and curves 2 are for
the z = 0 plane.
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where ϕ is the reflectivity phase {r(k) =
|r(k)|exp[iϕ(k)]} and ϕ0(k) is the phase of the Fourier
transform spectrum of the incident beam at the crystal
surface (z = 0). For example, in the case of a Gaussian
incident beam, E0(x, z = h) = E0exp[–x2/2a2 + ik0x], one
has ∂2ϕ0/∂k2 = h/κ sinθ0. Consequently, if ∂2ϕ/∂k2 > 0,
then the reflected beam will be focused in the z =
z0(∂2ϕ(k0)/∂k2)κsinθ0 – h plane. For the reflection from the

ideal semi-infinite crystal, ∂2ϕ/∂k2 = –2(sinθB/κ )2,
and, hence, beam focusing will not occur. For the
strained crystal, the reflectivity phase oscillates widely.
The oscillation period is inversely proportional to the
thickness of a deformed layer and depends on the form
of u(z). Consequently, by varying parameters of the
deformed layer, one can easily create focusing condi-
tions.

The profiles of the reflected beam, calculated numeri-
cally using Eqs. (1)–(4), are presented in Fig. 2. Figure 2a
shows the spatial profile of the incident beam in the z =
h (curve 1) and z = 0 (curve 2) planes. One can see that,
on the way from the beam-forming slit to the crystal
surface, the incident beam undergoes strong diffraction
spreading. Figures 2b and 2c show the profiles of the
reflected beam in the z = h (curves 1) and z = 0 (curves 2)
planes for the angles of incidence (θ0 – θB)/Re(χ0) equal
to +7 (b) and –1 (c). One can see from these figures that,
whereas for an angle of incidence θ0 = θB + 7Re(χ0)
(indicated by arrow 1 in Fig. 1) the wave is focused in
the z = h plane, the wave reflected from the crystal
undergoes diffraction spreading for θ0 = θB – Re(χ0)
(arrow 2 in Fig. 1). The dynamics of spatial focusing

χhχh

Fig. 3. Spatial profiles of reflected beam in the z = (a, d) h/2,
(b, e) h, and (c, f) 3h/2 planes for the (a, b, c) strained and
(d, e, f) ideal crystals.
and diffraction spreading of the reflected wave is illus-
trated in Fig. 3. The curves in Figs. 3a– 3c demonstrate
the spatial profiles in the z = h/2 (a), h (b), and 3h/2 (c)
planes for a beam reflected from the strained crystal and
the angle of incidence θ0 = θB + 7Re(χ0). The curves in
Figs. 3d–3f show the spatial profiles in the same planes
z = h/2 (d), h (e), and 3h/2 (f) for a beam reflected from
an ideal crystal and the angle of incidence θ0 = θB +
3Re(χ0). One can see that the wave reflected from the
ideal crystal undergoes diffraction broadening as it
moves away from the crystal. The wave reflected from
the strained crystal is focused in the plane z = h, where
the beam-forming slit is situated.

4. The strained crystals exhibit focusing properties
in the asymmetrical reflection geometry as well. The
results of numerical solution of Eqs. (1)–(4) for the
reflection of the CuKα radiation from the (111) planes
of a strained germanium crystal with l = 8.5 µm and
∆d/d = 1.2 × 10–2 are presented in Fig. 4. The angle
between the (111) planes and entrance face of the crys-
tal was ψ = 9°. The incident beam was formed by two

Fig. 4. Spatial profiles of (a) incident and (b–g) reflected
beams. Incident beam in the (1) z = h and (2) z = 0 planes.
Profiles of reflected beam in the z = (b) 0, (c) 0.25h1,
(d) 0.4h1, (e) 0.5h1, (f) 0.6h1, and (g) 0.75h1 planes.
JETP LETTERS      Vol. 74      No. 1      2001
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0.55-µm-wide slits placed 2.7 µm apart at a distance of
2.75 cm from the reflection region. The angle of inci-
dence was θ0 = θB + 15Re(χ0). Figure 4a shows the spa-
tial profiles of the incident beam in the z = h (curve 1)
and z = 0 (curve 2) planes. One can see from this figure
that the profile undergoes qualitative changes due to the
diffraction on the way from the slit to the crystal sur-
face. It is seen from the results of the preceding Section
that in the case of asymmetrical reflection the Gaussian
beam is focused in the z = h1 = hsin(θ0 + ψ)/sin(θ0 – ψ)
plane. However, it follows from Eqs. (4) and (5) that the
focusing length depends on the spatial profile of the
incident beam. The spatial profiles of the reflected
beam at different distances from the crystal, z = 0 (b),
0.25h1 (c), 0.4h1 (d), 0.5h1 (e), 0.6h1 (f), and 0.75h1 (g),
are shown in Fig. 4. One can see from this figure that
the profile of the incident beam is completely restored
at z = 0.4h1. Taking into account the reflection asymme-
try, we have an n-fold enlarged image of an object in
this plane, where n = sin(θ0 + ψ)/sin(θ0 – ψ).

5. The above analysis demonstrates that focusing
optical systems can be fabricated from crystals or mul-
tilayer periodic structures with variable period. The
ease of fabrication of these systems may be beneficial
for their wide use in X-ray and ultraviolet microscopy
JETP LETTERS      Vol. 74      No. 1      2001
and astronomy, as well as in the design of new con-
structions for microprobes and high-power sources.
These systems may also find use in the compression of
femtosecond laser pulses.

This work was supported in part by the Russian
Foundation for Basic Research (project no. 99-02-
16093) and the program “Russian Universities.”
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