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Recently [1, 2], I developed a method of summing
divergent perturbation series with arbitrary coupling
constants. With this method, information about all
terms of the series is obtained by the interpolation of
the known first terms exhibiting Lipatov asymptotic
behavior [3]. In this paper, this method will be used to
reconstruct the Gell-Mann–Low function in QED.

Lipatov’s method [3] is based on the saddle-point
calculation of path integrals near instanton configura-
tions and is being questioned because of the possible
renormalon contributions [4]. Formally, the asymptotic
behavior of perturbation theory is determined by the
singularity nearest to the origin in the Borel plane.
Whereas the presence of instanton singularities is
beyond question, the existence of renormalon singular-
ities has never been proved, which is acknowledged by
the most active advocates of this direction [5]. Having
been proved in [6], the absence of renormalon singular-
ities in the ϕ4 theory casts some doubt on the renorma-
lon concept as a whole, although similar proofs are
lacking for other field theories. In such a situation, I
believe that it can be assumed that the renormalon sin-
gularities are absent.

1. The asymptotic form of perturbation theory for
QED was discussed in the late 1970s [7–9]; all funda-
mental problems were solved by Bogomolny and
Fateyev [8, 9], but they did not find specific values for
their calculations. Below, I partially fill this gap.

The vertex with M photon and 2L electron free lines
is determined by the path integral

(1)
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Integration with respect to the fermion fields gives

(2)

where G(x, x') is the Green’s function for the Dirac
operator

(3)

and the ellipsis stands for the terms with other pairings
of ψ(yi) and . Estimations show that the quantity
eAν(x) is large for the saddle-point configuration and
the asymptotic form of the determinant at e  i∞ can
be used, because the growth rate is maximal at imagi-
nary e values [9]:

(4)

This result is not gauge invariant and is only valid for a
specifically chosen gauge; it can be obtained for slowly
varying fields or for configurations with a sufficiently
high symmetry [9]. Taking Eq. (4) into account, a path
integral with effective action

(5)

appears in Eq. (2); the asymptotic form of perturbation
theory for this action can be found by Lipatov’s
method. Its structure is determined by the homogeneity
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properties of the action [10]; when g2 is used as a cou-
pling constant, these properties are the same as in the ϕ4

theory, and the general asymptotic term has the form

c Γ(N + b)g2N, where S0 is the instanton action. In
actuality, the expansion is in arbitrary integer (not only

even) g powers, and the general term is c Γ(N/2 +
b)gN.1 Taking the value of instanton action into account,
one obtains for the Nth-order contribution to the vac-
uum integral (M = 0, L = 0) [8]:

(6)

where r = 11 is the number of zeroth modes including
four translations, a scale transformation, and six four-
dimensional rotations (instanton corresponds in sym-
metry to a rigid body of an irregular shape).

In the general case, the functional form of the result
can be found by structural calculations described in
[10] and reduced to dimensional analysis. It is easy to
show that ec ~ N–1/4 and Ac(x) ~ N1/2 for the saddle-point
configuration. To find the dimension of G(x, x'), con-
sider the Dyson equation

(7)

which follows from Eq. (3). In order to clarify the struc-
ture of the solution, let us consider the scalar analogue
of Eq. (7) and assume that the function Aν(x) is strongly
localized near x = 0; one can then set G(y, x') ≈ G(0, x')
in the integral, after which the equation is easily solved:

(8)

Because eAν(x) ~ N1/4 and Eq. (8) is finite in the limit
e  ∞, one has G(x, x') ~ N0. It is natural to expect
that this result is quite general and is not caused by the
above assumptions. The Nth-order contribution to the
integral in Eq. (1) has the form

(9)

for even M and, with the extra factor eN1/4, for odd
M values.

1 The direct expansion of Eq. (2) in powers of the last term in
Eq. (5) is incorrect, because the functional integration will then
include the configurations for which result (5) is invalid. The cal-
culation should be carried out by the saddle-point method, which
yields a continuous function of N; the fact that it must be taken at
the integer or half-integer points is an external condition.

S0
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N /2–

ZN g–( )N const
33/2

4π3
-------- 

 
N /2

Γ N r+
2

------------- 
  g–( )N ,=

G x x',( ) G0 x x'–( )=

– y4 G0 x y–( )eγν Aν y( )G y x',( )d∫

G x x',( ) G0 x x'–( )=

–
G0 x'–( ) y4 G0 x y–( )eγν Aν y( )d∫

1 y4 G0 y–( )eγν Aν y( )d∫+
-------------------------------------------------------------------------.

const
33/2

4π3
-------- 

 
N /2

Γ N r M+ +
2

------------------------ 
  g–( )N
High-power coefficients in the expansion of the

Gell-Mann–Low function β(g) =  coin-
cide, except for a constant factor, with the coefficients
for the invariant charge [3], which is determined in the
electrodynamics by the quantity gD, where D is the
photon propagator (M = 2, L = 0). The general asymp-
totic term is DN(–g)N + 1 ~ NZN(–g)N + 1 or NZN – 1(–g)N ~
N1/2ZN(–g)N, from whence it follows that

(10)

The same result is obtained if the invariant charge is
determined through the triple vertex (M = 1, L = 1). In
this case, the dominant contribution to the asymptotic
expression comes from the elimination of the photon
line.

2. The following four terms of the β-function expan-
sion in the MOM scheme are known [11]

(11)

The series summation procedure should be somewhat
modified as compared to [1, 2], because Lipatov’s
asymptotic expression has the form caNΓ(N/2 + b)
instead of caNΓ(N + b). The Borel transform B(z) is
defined as

(12)

where b0 is an arbitrary parameter. The conformal map-
ping z = u/(1 – u) of the Borel transform provides a con-
vergent series in u with the coefficients

(13)

whose large-N behavior

(14)

determines the parameters of the asymptotic expression
β(g) = β∞gα at g  ∞.

βN g–( )N

N∑

βN const 4.886 N– Γ N 12+
2

---------------- 
  , N ∞.×=

β g( )
4
3
---g2 4g3 64

3
------ζ 3( ) 202

9
---------– g4+ +=

+ 186
256
3

---------ζ 3( )
1280

3
------------ζ 5( )–+ g5 … .+

β g( ) xe x– x
b0 1–

B ag x( ),d

0

∞

∫=

B z( ) BN z–( )N , BN

N 0=

∞

∑ βN

aNΓ N /2 b0+( )
-----------------------------------,= =

UN BK 1–( )KCN 1–
K 1– N 1≥( ), U0

K 1=

N

∑ B0,= =

UN U∞Nα 1– , U∞
β∞

aαΓ α( )Γ b0 α /2+( )
----------------------------------------------= =
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The interpolation is performed for the reduced coef-
ficient function

(15)

by cutting off the series and choosing the coefficients AK

so that Eq. (15) coincides with the known FN values.

Optimal parametrization is carried out for  = b – 1/2 =

5.5 [2], while the parameter  is used for checking on
the stability of the results and for numerical optimiza-
tion. In contrast to the ϕ4 theory [1, 2], the general coef-
ficient (10) in the asymptotic expression is unknown.
Technically, this is not a problem because the
parameter A0 in Eq. (15) is not considered as known but
is found by interpolation. However, this leads to a much
greater uncertainty in the function FN; its first values (in
units of 103) F2 = 63.1, F3 = –7.02, F4 = 0.34, and F5 =
1.23 exhibit only a weak tendency to become a constant,
and the predicted value A0 =  changes by several

orders of magnitude with changing . At first glance,
no reasonable results can be obtained in such a situa-
tion.

However, the algorithm used for determining the
asymptotic form of β(g) is, in a sense, “superstable”:
the addition of an arbitrary mth-order polynomial
Pm(N) to BN does not change the coefficients UN at N ≥
m + 2 [2]. This property can be generalized for a wide
class of smooth functions: a change in UN caused by the
replacement BN  BN + f(N), where f(N) is an integer
function with rapidly decreasing Taylor-series coeffi-
cients, rapidly decreases with N. Thus, smooth errors
are immaterial even if they are large. In contrast, the
nonsmooth errors lead to a catastrophic effect, which
can be used to optimize interpolation: if the interpola-
tion procedure is unsuccessful, the behavior of UN at
large N cannot be approximated by a power-law depen-
dence [2].

To check this argumentation, a test experiment was
carried out for the ϕ4 theory. The use of complete infor-
mation [i.e., coefficients β2–β5 and parameters A0 and
A1 in Eq. (15)] gave α = 0.96 ± 0.01 and β∞ = 7.4 ± 0.4
[2]; the same procedure without the use of A0 and A1

gave α = 1.02 ± 0.03 and β∞ = 1.7 ± 0.3. Taking into
account that the uncertainty in the coefficient function

(estimated through varying  by ~1 near its optimal
value) amounts to few percent in the first case and more
than an order of magnitude in the second, one can con-
clude that such a stability of the results is quite satisfac-

FN

βN

βN
as

------ A0
A1

N Ñ–
--------------

A2

N Ñ–( )2
--------------------- …,+ + += =

βN
as aN Nb̃Γ N /2 b b̃–+( ),=

b̃

Ñ

FN
N ∞→
lim

Ñ

Ñ
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tory.2 Clearly, the results obtained below should only
be treated as a zero approximation.

Following [2], let us approximate UN by the power-
law dependence for a fixed interval 20 ≤ N ≤ 40 and dif-

ferent b0 and  values. The χ2 dependence on 

2 The difference in the β∞ values is beyond the estimated accuracy,
but this is quite explainable: the procedure proposed in [2] for
estimating errors is only justified in the vicinity of the exact
result, where all deviations can be linearized.

Ñ Ñ

Fig. 1.

Fig. 2.
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(Fig. 1) enables one to select a set of interpolations

(−0.5 &  & 1.0) for which the power-law behavior of
UN is probable. The typical dependences of χ2 and
effective values of U∞ and α on b0 (Fig. 2) indicate that
α ≈ 1.3 Indeed, the quantity U∞ reverses its sign [see
Eq. (14)] at b0 = –α/2 ≈ –0.5. At the same b0 value, χ2

has a minimum, which corresponds to the fact that the
leading contribution U∞Nα – 1 vanishes and the power-
law dependence UN ~ Nα' – 1 prevails, where the index α'
corresponds to the next correction to the asymptotic
expression for β(g) (it is assumed that β(g) = β∞gα +

gα' + gα'' + … at large g). The values of αeff at the

3 For technical reasons, Fig. 2 shows the quantity  = U∞Γ(b0 + 1).

Ñ

Ũ∞

β∞' β∞''

Fig. 3.

Fig. 4.

0.5

1.0

1.0
minima of χ2 at b0 = –α'/2, –α''/2, …, where the respec-
tive corrections to Eq. (14) vanish, are closest to the
exact value α ≈ 1 [2].4 

Figure 3a shows different estimates for the α index

as a function of  [2]: (1) from the value of αeff at the
χ2 minima corresponding to α' and α''; (2) from the
position of the χ2 minimum corresponding to b0 = –α/2;
(3) from a change in sign of U∞ when processing by
taking the logarithm of UN (solid line in Fig. 2b); and
(4) the same but for processing with a fixed index
(dashed line in Fig. 2b). Figure 3b shows different esti-
mates obtained for β∞: (1) from the U∞ value at the χ2

minima corresponding to α' and α'' and (2) and (3) from
the slope of the linear portion of the U∞(b0) dependence
near the root (upper and lower estimates, respectively).
The discrepancy between different estimates gives a

measure of uncertainty of the results. For  ≤ 0.25, the
results for α are consistent with a value slightly smaller

than unity. For  > 0.25, there is a systematic increase
to 1.08, which is beyond the error, but the χ2 minima are
ill-defined and unstable in this case. Similar behavior is
observed for β∞. With the most reliable values in the

middle of the chosen  interval, the following conser-
vative estimate can be given for the accuracy including
systematic changes:

(16)

It follows from above that even this estimate of error is
not reliable.

It is easy to sum up the series for arbitrary g by cal-
culating the UN coefficients in Eq. (13) for N & 30 and
continuing them according to the asymptotic expres-
sion found for U∞Nα – 1. Figure 4 shows the results for

 = 0.2 and b0 = 0. The one-loop law β2g2 matches the
asymptotic dependence β∞gα at g ~ 10. At g < 5, β(g)
differs only slightly from the one-loop result. Within
the accuracy adopted, the asymptotic expression for
β(g) coincides with the upper limit of inequality 0 ≤
β(g) < g, which was derived in [12] from spectral con-
siderations. For α = 1 and β∞ = 1, the fine structure con-
stant in pure electrodynamics increases at small dis-
tances L as L–2.

This work was supported by INTAS (grant no. 99-
1070) and the Russian Foundation for Basic Research
(project no. 00-02-17129).

4 In the test examples, minima of χ2 are usually observed only for
α and α' [2]. The appearance of additional minima is probably
specific to a small amount of information; it was observed in the
above-mentioned test experiment for the ϕ4 theory.

Ñ

Ñ

Ñ

Ñ

α 1.0 0.1, β∞± 1.0 0.3.±= =

Ñ

JETP LETTERS      Vol. 74      No. 4      2001



GELL-MANN–LOW FUNCTION IN QED 195
REFERENCES

1. I. M. Suslov, Pis’ma Zh. Éksp. Teor. Fiz. 71, 315 (2000)
[JETP Lett. 71, 217 (2000)].

2. I. M. Suslov, Zh. Éksp. Teor. Fiz. 120, 5 (2001) [JETP
93, 1 (2001)].

3. L. N. Lipatov, Zh. Éksp. Teor. Fiz. 72, 411 (1977) [Sov.
Phys. JETP 45, 216 (1977)].

4. G. t’Hooft, in The Whys of Subnuclear Physics: Pro-
ceedings of the 1977 International School of Subnuclear
Physics, Erice, 1977, Ed. by A. Zichichi (Plenum, New
York, 1979).

5. M. Beneke, Phys. Rep. 317, 1 (1999), Sect. 2.4.

6. I. M. Suslov, Zh. Éksp. Teor. Fiz. 116, 369 (1999) [JETP
89, 197 (1999)].
JETP LETTERS      Vol. 74      No. 4      2001
7. C. Itzykson, G. Parisi, and J. B. Zuber, Phys. Rev. D 16,
996 (1977); R. Balian, C. Itzykson, G. Parisi, and
J. B. Zuber, Phys. Rev. D 17, 1041 (1978).

8. E. B. Bogomolny and V. A. Fateyev, Phys. Lett. B 76B,
210 (1978).

9. E. B. Bogomolny, V. A. Fateyev, and L. N. Lipatov, Sov.
Sci. Rev., Sect. A 2, 247 (1980).

10. I. M. Suslov, Zh. Éksp. Teor. Fiz. 117, 659 (2000) [JETP
90, 571 (2000)].

11. S. G. Gorishny, A. L. Kataev, S. A. Larin, and L. R. Sur-
guladze, Phys. Lett. B 256, 81 (1991).

12. N. V. Krasnikov, Nucl. Phys. B 192, 497 (1981); H. Yam-
agishi, Phys. Rev. D 25, 464 (1982).

Translated by R. Tyapaev



  

JETP Letters, Vol. 74, No. 4, 2001, pp. 196–199. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 74, No. 4, 2001, pp. 216–219.
Original Russian Text Copyright © 2001 by Kazakov, Choban.

                                                                                                             
Test for the CPT Invariance of Bound States
in QED and Production of Muonium or Antimuonium

in Electron or Positron Scattering by Nuclei
G. A. Kazakov and É. A. Choban*

St. Petersburg State Technical University, ul. Politekhnicheskaya 29, St. Petersburg, 195251 Russia 

* e-mail: choban@part.hop.stu.neva.ru

Received June 18, 2001; in final form, July 20, 2001

The possibility of testing the QED CPT invariance of bound states is analyzed for muonium or antimuonium
produced in electron or positron scattering by nuclei. The number of muonium production events is estimated
for modern accelerators. The method of muonium detection by measuring oscillations appearing in the decay
curve owing to the interference of the muonium ground and excited states is discussed. © 2001 MAIK
“Nauka/Interperiodica”.

PACS numbers: 11.30.Er; 12.20.Ds; 25.30.Rw
Test for CPT invariance of quantum field theory
(QFT), in particular QED, is one of the most important
problems of high energy physics, because locality and
relativistic invariance are the basic postulates of QFT
[1, 2]. As shown in [3], this leads to the C, P, and T
invariance of the QFT Lagrangian. The identity of the
particle and antiparticle masses is the simplest conse-
quence of CPT invariance and is presently fulfilled with
a high accuracy; e.g., one has for µ+ and µ– mesons,

 = 1.000024 ± 0.000078 [4]. At the same time,

the problem of CPT invariance of bound states is much
less clear. Munger et al. [5] suggested that the Lamb
shift of the hydrogen 2S1/2–2P1/2 transition be compared

with that of the antihydrogen atoms  produced in
 collisions. However, the current statistics are about

one-fortieth of those necessary for a reliable conclu-
sion.

In this paper, we consider the production of muo-

nium M0 or antimuonium  in the processes

(1)

where M0( ) is a bound state of µ+, e– (µ–, e+). The
dominant contribution to the amplitude of processes (1)
comes from the diagrams shown in Fig. 1. Before writ-
ing the amplitudes of processes (1) (the e–Z  ZM0µ–

process is taken as an example), we consider the recom-

bination vertex e– + µ+  M0, e+ + µ–  . This
vertex was obtained by solving the Bethe–Salpeter

m
µ+/mµ–

H1
1

pZ

M
0

e– Z Z M0 µ–,+ + +

e+ Z Z M
0 µ+,+ + +

M
0

M
0

0021-3640/01/7404- $21.00 © 20196
equation with one-photon exchange kernel, whose dia-
grammatic representation is shown in Fig. 2 [6]. Let us
introduce the quantity

(2)

where  = 1/(  – me) and (k – p) = 1/(  –  –
mµ) are the electron and muon propagators, respec-

tively, and  is the recombination vertex e– + µ+ 
M0 in the diagrams in Fig. 1. Then, the solution of the

Bethe–Salpeter equation for (p, k – p) can be repre-
sented as [6]

(3)

where me and mµ are the electron and muon masses,
respectively, and the Fourier transform of the wave
function of e– in M0 has the form

Taking the diagrams in Fig. 1 into account and sub-
stituting vertex (3) into the amplitude, we obtain the

X̂ p k p–,( ) Ĝµ+ k p–( )Γ̂0Ĝe
– p( ),=

Ĝe
– p( ) p̂ Ĝµ+ p̂ k̂

Γ̂0

X̂

X̂ p k p–,( )
mµ

2i
---------- 1 γ4–( )γ5=

×
p2/2me Ebound–( )Ψ p( )

p0 – me p2/2me– i0+( ) p0 – k0 mµ+ p2/2mµ – i0+( )
--------------------------------------------------------------------------------------------------------------------------,

Ψ p( )
8 πa0

3

1 p2a0
2+( )2

---------------------------, a0
1

meα
---------- " c 1= =( ),= =

α e2

4π
------

1
137
---------.= =
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following expression for the amplitude of process (1)
with e–:

(4)

where ω2 = (  + k)
2
 is the squared invariant mass of

the (M0, µ–) system, lµ is the nuclear electromagnetic

current, and Ψ(0) = 1/ . The amplitude squared
includes the tensor

(5)

which describes the lower block in the diagrams in
Fig. 1 and involves the nuclear electromagnetic form
factors F1Z and F2Z.

Let us introduce x = , where θ is the angle
between the momentum of M0 in the c.m.s. of the
(M0, µ–) system and the momentum of e– in the c.m.s.
of the (e–, Z) system. Using Eqs. (4) and (5), one can
easily obtain the cross-section distribution over ω2 and
x in the form

(6)

where F1Z(0) = Z and the approximation corresponds to
the Weizsäcker–Williams method. One can see from
this distribution that muonium is produced predomi-
nantly backwards in the (M0, µ–) c.m.s. Integration of

M
4πα( )2

q2
-----------------Ψ 0( )lµ

mµ

me ω2 2qk–( )
2

q2 2qk–( )
-----------------------------------------------------------=

× u p1'( )γ5 2 2qk ω2–( ) q p1' γµ q̂ p1µ'–[ ]{

+ mµ q2 2qk–( ) 2 p1µ' γµq̂–( )[

– ω2 2qk–( ) q̂γµ 2kµ–( ) ] } u p1( ),

p1'

πa0
3

Rµν = 4 f 1Z
2 q2( ) 2 p2µ p2ν p2µqν p2νqµ+( )–

q2

2
-----gµν+





+ F2Z
2 q2( ) 2q2mZ

2 gµν q2 p2µqν p2νqµ+( ) −+

– qµqν
q2

2
----- 2mZ

2+ 
  2q2 p2µ p2ν–





,

θcos

dσ
dω2dx
---------------- 4F1Z

2 0( ) Ψ 0( ) 2πα4mµ

me
2

------ 1
4mµ

2

ω2
----------–=

× S3

mZ
2 ω4

-------------
 
 
 

ln
1

1 x 1 4mµ
2 /ω2–+

--------------------------------------------S ω2–

Sω6
---------------

× 1
8mµ

2 1 4mµ
2 /ω2– 1 x2–( ) 1 4mµ

2 /ω2– 2x+[ ]

ω2 1 x2 1 4mµ
2 /ω2–( )–[ ] 1 x 1 4mµ
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--------------------------------------------------------------------------------------------------------------+
 
 
 

,
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Eq. (6) with respect to x yields the cross-section distri-
bution over ω2

(7)

It follows from Eq. (7) that the distribution maximum
occurs near the (M0, µ–)-production threshold ω2 ~

. As ω2 increases, the quantity dσ/dω2 decreases
noticeably and behaves as dσ/dω2 ~ 1/ω4.

Finally, let us determine the total cross section for

processes (1). Introducing ξ = /ω2 and integrating
Eq. (7) with respect to ξ, one obtains

dσ
dω2
--------- 2Z2α7 me

mµ
------ 

  1
4mµ

2

ω2
----------–

S3

rZ
2 ω4

-----------
 
 
  S ω2–

Sω4
---------------ln=

× 1 12
mµ

2

ω2
------

 
 
 

– 4
mµ

2

ω2
------

 
 
 

2

1 6
mµ

2

ω2
------–

 
 
 

2
mµ

2

ω2
------++





× 1

1 4mµ
2
/ω2–

--------------------------------
1 1 4mµ

2
/ω2–+

1 1 4mµ
2
/ω2––

-----------------------------------------ln




.

4mµ
2

4mµ
2

σ
Z2α7me

16mµ
3

------------------
 
 
 

f ξ( ) ξ ,d

0

1

∫=

Fig. 1. Feynman diagrams making the dominant contribu-
tion to the amplitude of process (1).

Fig. 2. Diagrammatic representation of the Bethe–Salpeter
equation.
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(8)

Let us estimate the cross sections for processes (1)
for Tevatron-DIS (FNAL) [7], LHC [8], and Muon Col-
lider [9] (secondary-lepton beams are implied). Cross
section (8) is proportional to Z2 and, therefore, can be
increased by using a gaseous target with large Z [5],
e.g., radon with spin 1/2. The cross sections, the differ-
ential luminosities, and the number of events expected
in a year are given in the table.

Consider the method for detecting muonium M0 and

antimuonium , which are produced in processes (1)
in the ground and excited states:

(9)

Note that solution (3) of the Bethe–Salpeter equation
was obtained for the production of ground-state muo-
nium. The production of excited muonium through the
mechanisms for which C2 includes additional smallness
will be discussed below. Taking into account the muo-

f ξ( )
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Fig. 3. The muonium decay curve with allowance made for
the excited state.

Data on the cross sections for processes (1) and the number N
of events expected in a year

Accelerator , GeV σ, fb L, cm–2 s–1 N

FNAL
(Tevatron-DIS)

477 17 2.1 × 1032 1.1 × 102

LHC 14 000 28 1033–1034 8.8 × 102–
8.8 × 103

Muon Collider 350 16 1032 50

S

I, arb. units

t, arb. units
nium decay, the muonium wave function can be repre-
sented in the form

(10)

Here, with  ~ 10–6 s being the muonium lifetime,

 =  is the decay width and Ψ1(t) and Ψ2(t) are

determined as

(11)

where E1 and E2 are the muonium energies in the
ground and excited states, respectively.

The wave function of M0 is normalized to the flux
density:

(12)

where I0 is the muonium initial flux density,  is the

muonium velocity, n0 is the muonium concentration M0

at t = 0, and δ is the relative phase of the complex coef-
ficients C1 and C2. Because the I0 measurement can
start at an arbitrary time, one can set δ = 0. The degree
of muonium excitation is defined as

(13)

Expressing C1 and C2 with the help of Eqs. (12) and
(13) and taking into account Eqs. (10) and (11), one can
easily obtain the flux density M0 at arbitrary time t

(14)

It is seen that the decay curve I(t) shown in Fig. 3 dis-
plays oscillations. Let us estimate the spatial period of
oscillations, i.e., the distance corresponding to one
oscillation in the curve in Fig. 3. According to Eq. (14),
ω = (E2 – E1)/" = 2π/T, giving T ≈ 4 × 10–16 s for E2 –
E1 = 10.1 eV. Comparing T with , one sees that the

time period of the oscillations is ten orders of magni-
tude shorter than ; i.e., many oscillations shown in

Fig. 3 fall within the M0 lifetime.
Because the muonium is produced in process (1)

with  @ c2 (e.g.,  ~ 225 GeV for Tevatron-
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DIS), one has Tlab = T / c2 ≈ 10–12 s. In this time,

muonium covers a distance coinciding with the spatial
oscillation period of about 300 µm. Effects at these dis-
tances are quite measurable.

Let us estimate the quantity ε that determines the
contribution of the wave function Ψ2 corresponding to
the production of excited muonium M0* in Eq. (10).
There are two mechanisms of M0* production: creation
in the recombination vertex e– + µ+  M0* in the dia-
grams in Fig. 1 and the interaction in the final state with
inelastic rescattering of M0 by µ– or the nucleus. Con-
sider the first mechanism. Let M0* be produced in the
21S0 state. In this case, Eq. (3) includes Ψ(p) of the
form

(15)

where a0 is defined following Eq. (3) and the corre-

sponding Ψ(0) = 1/ . This gives ε = 1/256; i.e.,
the admixture of the excited Ψ2 state in Eq. (10) is on
the order of 10%. For the production of M0* in one of
the 2P states, the ε value is of the same order of magni-
tude. The second mechanism makes a noticeably
smaller contribution.

Thus, a comparison of the decay curves with several
oscillation periods for muonium and antimuonium will

E
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0 m
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0

Ψ p( )
32 2πa0

3
1 4p2a0

2–( )

1 4p2a0
2

+( )
3

---------------------------------------------------,–=

8πa0
3
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make it possible to establish whether the CPT invari-
ance is obeyed for the bound states in QED.

We are grateful to V.G. Baryshevskiœ for his idea of
detecting muonium and antimuonium and to D. Rosh-
chin for discussion of the solution to the Bethe–Sal-
peter equation.
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The system of ordinary differential equations is derived for the self-consistent potential and pair radial distri-
bution function of a simple classical liquid, for which the pair potential energy of “bare” particles is the sum of
Yukawa potentials accounting for the repulsion at small distances and attraction at large distances. The number
of parameters in the interaction potential is large enough for the interatomic interaction to be approximated in
real fluids. The model suggested accounts for the vapor–liquid phase transition at the condensation curve on the
temperature–concentration coordinates. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 61.20.Ne
The pair correlation function (pair radial distribu-
tion function) is of fundamental importance in the
physics of simple classical liquids consisting of parti-
cles with pair central interaction potential v (r) [1]. The
pair radial distribution function w(r) is defined as a
number of particles dN in elementary volume dV at a
distance r from a given particle in a liquid with mean
particle concentration n0:

(1)

Taking into account that dN/dV = n(r) is the particle
concentration at a distance r from a given particle, one
obtains

(2)

Knowing function w(r), it is easy to express the impor-
tant thermodynamic functions such as pressure p (equa-
tion of state) and internal energy per atom ε as functions
of n0 and temperature T [2]:

(3)

(4)

These thermodynamic functions suffice, e.g., for study-
ing shock waves in liquids.

The pair central potential v(r) of simple liquids is
usually approximated by certain functions allowing for
the repulsion caused by the overlap of atomic orbitals at
small r and the dispersion interaction leading to the
attraction at large r. A hard-sphere potential

(5)

dN n0w r( )dV .=

w r( ) n r( )
n0

----------.=

p n0T
1
6
---n0

2 r
dv r( )

dr
--------------w r( ) r,d∫–=

ε 3
2
---T

1
2
---n0 v r( )w r( ) r.d∫+=

v hs

∞, r d≤
0, r 0>




=
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is widely used. The absence of attraction is its draw-
back, but then the Percus–Yevik integral equation [3]
for the pair correlation function with this potential can
be solved exactly [4, 5]. This solution is used as a basis
in the perturbative treatment of the thermodynamic
properties of fluids [6–8]. The well-known Lennard-
Jones potential

(6)

includes the dipole–dipole attraction at large r in non-
polar liquids, but its repulsion term has a nonphysical
singularity at r  0. The Kratzer potential

(7)

describes well the interaction in polar liquids at r 
∞, but it contains a term that also has a nonphysical sin-
gularity at r  0. Indeed, the interatomic potential
should behave at r  0 as v (r) ~ 1/r. For example, the
interaction energy of two hydrogen atoms at distances
r ! aB (aB is the Bohr radius) can be written as

(8)

where e is the electron charge and EHe = –78.9 eV and
EH = –13.6 eV are, respectively, the energies of helium
and hydrogen atoms in the ground state.

In this work, the pair central potential of interatomic
interaction in liquid is chosen in the form

, (9)

where the parameter α has dimension of reciprocal
length and e is the energy parameter; p, a, and b are
dimensionless numbers, with a > b and p > 1. The inter-

v LD r( ) 4e
σ
r
--- 

 
12 σ

r
--- 

 
6

– 
 =

v K r( ) 2e
1
2
--- σ

r
--- 

 
2 σ

r
---– 

  ,=

v HH r( ) e2/r EHe 2EH– O r( ),+ +=

v r( ) e
pe aα r– e bα r––

αr
--------------------------------=
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action potentials of real atoms can be approximated by
the appropriate choice of parameters in Eq. (9), which
includes the asymptotic Coulomb repulsion at r  0,
the exchange repulsion decreasing exponentially with
an increase in r, and the attraction at large r. By way of
example, let us consider the potential

(10)

Denote

(11)

so that

(12)

It is particularly important that v 1(r) and v 2(r) are the
Green’s functions of equations

(13)

(14)

Let us introduce the functions

(15)

(16)

It is convenient to introduce 1/α as a length unit, α3/4π
as a number density unit, and α as a measurement unit
for the functions ϕ1 and ϕ2. Taking into account that
v 1(r) and v 2(r) obey Eqs. (13) and (14), one obtains for
ϕ1(r) and ϕ2(r)

(17)

(18)

where n(r) is the particle number density at a distance r
from the particle chosen as the origin. For the classical
particles, n(r) obeys the Boltzmann distribution

(19)

where

(20)

is the self-consistent potential energy of a particle situ-
ated at a distance r from the origin. Let us choose e as
the temperature unit and replace the unit of measure-

ment of ϕ1, ϕ2, and ϕ by  = . One finally

has the following units of measurement: 1/α for length;
α3/4π for number density; 4πn0/α2 for ϕ1, ϕ2, and ϕ;

v r( ) e
2e 2α r– e α r––

αr
-----------------------------.=

v 1 r( ) e 2α r– /r, v 2 r( ) e α r– /r,= =

v r( ) e
α
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∆v 1 r( ) 4α2v 1 r( )– 4πδ r( ),–=
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∆ϕ1 r( ) 4ϕ1 r( )– n r( ),–=

∆ϕ2 r( ) ϕ2 r( )– n r( ),–=

n r( ) ξn0e eϕ r( )/αT– ,=
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------------α
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and e for temperature. In these units, the system of ordi-
nary differential equations for ϕ1 and ϕ2 is written as

(21)

(22)

In these equations,

(23)

where ∆ is the radial part of the Laplace operator in

spherical coordinates, ∆ = . The parameter ξ in

Eqs. (21) and (22) is determined from the condition that
the particle concentration at r  ∞ is equal to the par-
ticle mean number density n0; i.e.,

(24)

at r  ∞. The functions ϕ1(r) and ϕ2(r) tend towards
the following limiting values:

(25)

Then,

(26)

One finally arrives at the following system of ordinary
differential equations for ϕ1 and ϕ2:

(27)

(28)

It is of interest to clarify how the functions ϕ1 and ϕ2

behave at large r. Let us write ϕ1 =  +  and ϕ2 =

1 +  and then linearize the system of Eqs. (27) and

(28) at small  and . Introducing new functions

(29)

one obtains the system of equations

(30)

, (31)

or, after expressing  in terms of , the following

linear equation for :

(32)

The roots q of its characteristic equation are

(33)
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The discriminant (ν + 5)2 + 4(2ν – 4) = ν2 + 18ν + 9 > 0

for all ν > 0. However, whereas  = (ν + 5 +

) > 0 for all ν,  = (ν + 5 –

) > 0 only for ν < 2, while, at ν > 2,

 < 0. This signifies that the asymptotic behavior of

 and  at large r can be represented at ν < 2 as a
sum of two decaying exponentials, whereas for ν > 2

one should add the oscillating solution C2sin( ) +

C3cos( ) to the exponentially decaying function
C1exp(–q1r). These solutions can naturally be attrib-
uted to the gaseous phase at ν < 2 and to the condensed
phase at ν > 2; i.e., the liquid state is possible only for
ν > 2. Therefore, one can conclude from the analytic
solution to the system of Eqs. (27) and (28) that at large
r this model allows the phase transition to a liquid con-
densed phase. The equation for the condensation curve
on the temperature–concentration coordinates reads
ν = 2.

To calculate the pair correlation function at an arbi-
trary r, it is necessary to solve the system of differential
Eqs. (27) and (28). These equations should be comple-
mented by the boundary conditions at r  0. The

q1
2 1

2
---

ν 5+( )2 4 2ν 4–( )+ q2
2 1

2
---

ν 5+( )2 4 2ν 4–( )+

q2
2

f 1 f 2

q2
2– r

q2
2– r

Fig. 1. The function u(r) for ν = 6.

Fig. 2. The radial distribution function w(r) = eνu(r)/r

(ν = 6).

1.0
potential v 10 of a particle placed at the origin (r = 0) has
the following form at r  0:

(34)

To this potential must be added the potential  created
at the point r = 0 by the remaining particles. It will be
calculated on the assumption that the concentration
n(r) = 0 at r ≤ d (d < 1) and n(r) = n0 at r > d:

(35)

Similarly, one has at r  0

(36)

(37)

In the concentration units adopted in this work,

(38)

Denote (0) = c. Then (0) ≈ c2/4, so that

(39)

at r  0.
To solve the system of Eqs. (27) and (28), let us pass

to the functions

(40)

The system of equations for f1 and f2 reads

(41)

(42)

At r  0,

(43)

The final system of equations can conveniently be writ-
ten using the function

(44)
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Then, denoting u'(r) = g(r) and (r) = g2(r), one
arrives at the following system of ordinary differential
equations:

(45)

with the boundary conditions at r  0

(46)

The appropriate choice of parameter c provides ϕ1 and
ϕ2 approaching, respectively, ϕ10 and ϕ20 at r  ∞
(this corresponds to the sinusoidal asymptotic behavior
of the function u). As an example, the function u(r) is
shown for ν = 6 in Fig. 1. One can see that the function
u(r) behaves at large r like a sinusoid with a period

equal to 2π/ . The pair correlation function w(r) =
eνu(r)/r is depicted in Fig. 2. Starting, e.g., at the coordi-
nate of the second maximum, w(r) is nicely described
by its asymptotic expression at r  ∞, which can be
written using the asymptotic form of u(r):

(47)
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u' g, g' 4u 3 f 2– r 2 eνu/r+( ),+= =

f 2' g2, g2' f 2 reνu/r–= =
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2
----,–+= =

f 2 r( ) 1 c 1–( )r, g2 r( )+ c 1.–= =

q2
2–

u r( ) u r2( ) q2
2– r r2–( )( ).cos=
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Therefore, instead of the integral equations that are
commonly used for calculating the correlation function
in fluids, we have derived a system of ordinary differ-
ential equations with boundary conditions, which can
be solved numerically by standard methods. Moreover,
we have obtained an analytical expression for the
asymptotic behavior of the pair radial distribution func-
tion for large distances between atoms.

This work was supported by the Russian Foundation
for Basic Research and the program for the Support of
Leading Scientific Schools.
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The generalized Wiener–Hopf method was used to derive, on the basis of the microscopic BCS theory of super-
conductivity, the effective boundary conditions to the Ginzburg–Landau equations at the interface of two
(including uncommon) superconductors with different transition temperatures in the absence of reflection from
the boundary. According to these conditions, the order parameter and its derivative undergo jumps at the inter-
face. © 2001 MAIK “Nauka/Interperiodica”.
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The boundary conditions to the Ginzburg–Landau
(GL) equations for common superconductors were
deduced by de Gennes [1] and Zaœtsev [2] on the basis
of microscopic theory of superconductivity. The condi-
tions at the boundary with vacuum (insulator) were
obtained for anisotropic superconductors (including
uncommon superconductors with an order parameter of
d symmetry) by the author in [3, 4]. In recent years, a
number of works have been published in which the con-
ditions at the boundary of uncommon superconductors
with insulator and metal were considered without tak-
ing account of the electron–electron interaction in the
latter, i.e., with zero transition temperature [5–7]. In
this work, the effective boundary conditions to the GL
equations are derived for an arbitrary ratio between the
superconducting transition temperatures of contacting
metals, but in the absence of a potential barrier, allow-
ing the integral equation of the problem to be exactly
solved by the Wiener–Hopf (WH) method.

The effective boundary conditions to the GL equa-
tions are determined from the linearized equation for
the order parameter ∆*(pf , r) near the superconducting
transition temperature:

(1)

where p is the Fermi momentum defining the anisot-
ropy of the order parameter; the summation over p
implies the integration over the Fermi surface with
inclusion of the local density of states; V is the elec-
tron–electron interaction potential; ω are the Matsubara

∆* p r,( ) V p p"–( )
p ' p",
∑=

× dr '∆ p ' r ',( )πT Φω r p" r ' p ',;,( ),
ω
∑∫
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frequencies; and the functions Φω are defined through
the Green’s functions in the normal state:

(2)

The electron–electron interaction potential can be
decomposed into a set of mutually orthogonal normal-
ized functions at the Fermi surface:

(3)

where positive λ’s correspond to the attraction. In the
weak-binding approximation, one can retain near the
transition temperature only the leading term with max-
imal λ in this decomposition [8]; then the order param-
eter ∆*(p, r) = ∆(r)φλ (p).

Let us assume that the interface is positioned at x =
0; in this case, all quantities in integral Eq. (1) depend
only on the coordinate x, and the equation takes the
form

(4)

where ν is the density of states at the Fermi surface, and

(5)

Φω r p r ' p ',;,( )

=  Gω p ' q '/2+ p q/2+,( )
q q ',
∑

× G ω– p '– q '/2+ p– q/2+,( ) i q 'r ' qr–( ).exp

V p p '–( ) λφλ p( )φλ p '( ),
λ
∑=

∆ x( ) λ x( )ν x( ) K x x ',( )∆ x '( ) x,d

∞–

∞

∫=

K x x ',( ) πT Φω x x ',( ).
ω
∑=
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For a homogeneous superconductor, Φω depends
only on the difference in coordinates,

(6)

where the angular brackets stand for the averaging over
the Fermi surface and v x(p) is the projection of the
Fermi velocity onto the x axis [3, 4].

In particular, for the isotropic Fermi surface one has

(7)

for the three-dimensional superconductor,

(8)

for the two-dimensional superconductor, and

(9)

for the one-dimensional superconductor, where v f is
the Fermi velocity and φ2(θ) = 1, 2cos22θ, and 2sin22θ
for the s,  and dxy pairing, respectively.

Assume that electrons are not reflected from the
interface and that the effective electron–electron cou-
pling constant is λ1 to the right of interface (x > 0) and
λ2 to its left (x < 0), with λ1 > λ2. Then Tc1 > Tc2 and the
left metal is in the normal state at the temperature T =
Tc1 at hand.

Let us introduce the Cooper-pair wave function that
relates to the anomalous Green’s function in the
Gor’kov method as

(10)

Contrary to the usual order parameter, this function can
be nonzero in the normal metal with λ = 0 and account
for the penetration of Cooper pairs from the neighbor-
ing superconductor. Using this function, Eq. (4) can be
written in the form of the generalized WH equation

(11)

Representing the Cooper-pair function as the sum of
two functions f(x) = f +(x) + f –(x) which differ from zero
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to the right and left of the interface, respectively, and
applying the Fourier transform, one obtains

(12)

The functions f ±(q) are analytic, respectively, in the
lower and upper half-plane of the complex plane q and,
simultaneously, analytic in a certain common strip
along the real axis, thereby satisfying the WH condi-
tions.

Let us first consider the simple case of λ2 = 0, for
which Eq. (11) reduces to the usual WH equation. The
effective boundary conditions can be found from the
solution to this equation at Tc1 = T away from the inter-
face. It is related to the coupling constant by the BCS
equation

(13)

The corresponding solution to the WH equation at x >
0 is f+(x) ∝  b + x + terms decreasing exponentially at
distances on the order of ξ0 = v f/2πT. The extrapolation
length b determines the effective boundary conditions;
it is given by the expression

(14)

Here, q = ξ0k is the dimensionless momentum and
R(q) = 1 – λνK(q). This expression was obtained by
Zaœtsev [2] for the particular case of an isotropic three-
dimensional superconductor. It will be derived below
by a simple method. For the above symmetries of the
order parameter, one finds, using Eq. (5):

for the three-dimensional superconductor,

(15)

for the two-dimensional superconductor, and

for the one-dimensional superconductor.
Using Eq. (14), one can determine the extrapolation

lengths for the superconductors of interest (in units of
ξ0): b/ξ0 = 0.916, 0.754, 0.814, 0.696, and 0.620 for the
one-dimensional, two-dimensional (s, , and dxy),

and three-dimensional superconductors, respectively.
An insignificant disparity with the Zaœtsev result [2] for
the three-dimensional superconductors may be
explained by the vigorous development of computer
engineering in the past decades.
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Let us now consider the case λ2 ≠ 0; i.e., the metal
to the left of the interface is a superconductor with tran-
sition temperature Tc2 < T. One can show that the corre-
sponding expression for the extrapolation length given
by the solution to the generalized WH equation (11) is
similar to Eq. (14):

(16)

where R2(q) = 1 – νλ2K(q) = 1 – (1 – R(q))λ2/λ. Equa-
tion (16) then takes the form

(17)

It was taken into account that

(18)

The dependences of the reduced extrapolation
lengths on Tc2/T are shown in Fig. 1 for the supercon-
ductors of different symmetry considered in this work.
On the whole, they are quite similar. A comparison with
the results obtained above for λ2 = 0 shows that the
extrapolation length increases dramatically even at
small Tc2 ! T, indicating that the electron–electron
interaction in the second metal must be taken into
account even at low Tc2. It follows from Eq. (17) that at

b
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Fig. 1. Fractional extrapolation length b/ξ0 as a function of
the ratio of transition temperatures of the contacting super-
conductors. The curves are for (from the top to down) the
one-dimensional, two-dimensional (dxy , s, and ),

and three-dimensional superconductors.

d
x

2
y

2–
Tc2 ! T the extrapolation length is b(Tc2/T) = b(0) +
b1/ln(T/Tc2), where the coefficient b1 is given by

(19)

For the superconductors considered, this coefficient
equals 1.234, 0.785, 0.732, 0.837, and 0.671 for the
one-dimensional, two-dimensional (s, , and dxy),

and three-dimensional superconductors, respectively.
The extrapolation length increases as Tc2  T. The

penetration depth in the second superconductor
increases likewise. If the transition temperature Tc2 of
the second superconductor is close to (but lower than)
the temperature T (0 < T – Tc2 ! T), then, as it follows
from Eq. (17), the extrapolation length for the first
superconductor (x > 0) becomes analogous to the tem-
perature-dependent coherence length entering the GL
equations but defined here by the transition temperature
of the second superconductor,

(20)

where D is the system dimensionality. In the GL
approximation (i.e., at distances |x | @ ξ0), the same
quantity defines the penetration depth in the left super-
conductor at x < 0: f(x) ∝  exp(x/b)+ terms decreasing
exponentially at distances on the order of ξ0.

Let us now consider the case where both metals are
in the superconducting state and the GL equations
apply: 0 < τ1, 2 = ln(T1, 2 /T) ! 1. To solve WH Eq. (12),
it is convenient to represent the kernel K(q) in the form

(21)

One has for λ1, 2 > λ:

(22)

where  ≥ 1 and α1, 2 ! 1. The functions R1, 2(q)
can easily be factorized, giving

(23)
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As a result, one obtains two linearly independent solu-
tions in the momentum representation, from which one
finds, after passing to the coordinate representation,
that, in particular, both solutions for the Cooper-pair
wave function f(x) = ∆(x)/λ(x) are continuous at the
interface (x = 0), with the first solution [“odd,” because
it becomes odd for λ1 = λ2] being f1(0) = 0 and the sec-
ond solution [“even,” f2(x) = ∂f1(x)/∂x] being nonzero at
x = 0. An analogous result was obtained by de Gennes
for “dirty” superconductors [1]. As to the clean super-
conductors considered in this work, the effective
boundary conditions for the GL equations are deter-
mined by the behavior of f(x) and ∆(x) at distances ξ0 !
x ! ξ(T) [1, 2], as is schematically illustrated in Fig. 2.

In the region where the terms corresponding to the

poles at ±i  and decreasing exponentially at dis-
tances on the order of ξ0 vanish, the solutions to the WH
equation have the form

(24)

For simplicity, the coordinate x in Eq. (24) is expressed
in units of coherence length ξ0, so that α1, 2 = ξ0/ξ(τ1, 2) =

, and

(25)

This result was also used in estimating the coefficient of
sine in Eq. (24). The integral in Eq. (25) is equal to
0.030 for the one-dimensional superconductors; 0.056,
0.076, and 0.085 for the two-dimensional , s, and

dxy superconductors, respectively; and 0.126 for the
three-dimensional superconductors.

It follows from the definitions of R1, 2(q) (22) and
τ1, 2 = 1/νλ – 1/νλ1, 2 that
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Then

(27)

Equation (27) is obtained using the second term in
the momentum expansion of K(q), which gives

(28)

where c = 2/5, 3/4, 7/8, 5/8, and 2 for the one-dimen-
sional, two-dimensional (s, , and dxy), and three-

dimensional superconductors, respectively. This gives
C = 31ζ(5)/49ζ2(3)cD2/2. Neglect of this term leads to
the trivial result: the order parameters and their deriva-
tives are equal on both sides of the interface, as if τ1 =
τ2. On the other hand, if the metals on both sides of the
boundary are different, then the unavoidable electron
reflection from the surface leads to the boundary condi-
tions, for which the correction for the difference in the
transition temperatures proves to be negligible in many
cases.

Taking into account that the Cooper-pair wave func-
tion is related to the order parameter by Eq. (10), one
can formulate the desired boundary conditions to the
GL equations as follows:

(29)

In a magnetic field, the second boundary condition can
be obtained in the usual way by substituting ∂/∂x 
n(∇  + 2ieA), where n is the normal to the interface. It
follows from Eq. (29) that, even in the absence of
reflection from the interface, the effective order param-
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Fig. 2. Solid line is the result of microscopic analysis of the
behavior of Cooper-pair wave function f2(x) = ∂f1(x)/∂x
near the interface [|x | ! ξ(T)] between two superconductors
with different transition temperatures. The dashed straight
lines correspond to the asymptotic behavior of the solid line
at |x | @ ξ0; it determines the effective boundary conditions
to the macroscopic GL equations.
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eter and its derivative undergo jumps proportional to
the difference in the transition temperatures:

(30)

The above boundary conditions are also valid for
Tc2 < T < Tc1, provided that the GL equations apply to
the second superconductor (|1 – Tc2/T | ! 1); in this
case, however, τ2 is negative.

The results obtained in this work are consistent with
the continuity condition for a current passing through
the interface. In the general case, the boundary condi-
tions at the interface of two superconductors can be
written as

(31)

If the metals on both sides are identical, except for their
transition temperatures, then the calculation of a cur-
rent passing though the interface shows that, for an
arbitrary transmission coefficient

(32)

to the terms on the order of τ which are negligible in
other problems. At τ1 = τ2, i.e., for the identical transi-
tion temperatures, this result reduces to the well-known
de Gennes result presented in [1a].
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It is demonstrated that localized states of an open quasi-one-dimensional quantum dot can be charged by the
Coulomb blockade mechanism. A new effect—Coulomb oscillations of the ballistic conductance—is observed
because of the high sensitivity of the ballistic current to single-electron variations of the self-consistent potential
of the dot. The model proposed explains experimental results [C.-T. Liang, M. Y. Simmons, C. G. Smith, et al.,
Phys. Rev. Lett. 81, 3507 (1998)]. © 2001 MAIK “Nauka/Interperiodica”.
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It is known that a lateral quantum dot with a gate-
controlled inlet/outlet is the most suitable system for
studying the transition between the Coulomb blockade
[1–3] and quantum ballistic [4–6] regimes. Initially, the
single-electron charging effects were observed in the
low-conductance limit (G < e2/h) [3, 6], that is, in the
case of weak coupling between the dot and the electron
reservoirs, which corresponded to the orthodox Cou-
lomb blockade theory [1, 2]. The possibility of dot
charging in the open regime has been studied theoreti-
cally, and it has been predicted that the effect is weak or
is even absent [7–9]. However, the case when scattering
between one-dimensional subbands is suppressed and
ballistic transport through the quantum dot is one-
dimensional has not been considered in these articles.
In this work, we will show that the charging of localized
states of a quasi-one-dimensional dot is possible even
when the background conductance comprises several
quanta e2/h. In this case, a new effect—Coulomb oscil-
lations of the ballistic conductance—can be observed
instead of sharp peaks of sequential tunneling current.
A simple modification of the Landauer formula and the
Coulomb blockade theory is proposed for the descrip-
tion of the effect. The model proposed is used for inter-
preting experimental results: frequent oscillations of
the quantum dot conductance were observed in the
wide range 0 < G < 6e2/h in a zero magnetic field [10].

A quasi-one-dimensional dot can be considered as a
section of a quantum wire with a two-barrier potential

U(x, y) ≈ V(x) + m*(ω2y2), which allows separation of

variables in the Schrödinger equation. Then, the motion

1
2
---
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of electrons in one-dimensional subbands Ei(x) =

V(x) +  + i "ω is independent, and the quantization

with respect to x is found from the condition that the
potential V(x) in the central region of the dot has the

form m*(Ω2x2). In the case of ballistic transport, the

quasi-levels of this quantization are revealed as broad
resonances of the Fabry–Perot interference [11, 12]. In
addition, there are many localized states of the closed
subbands at the Fermi level of the reservoirs (Fig. 1).
These states are hardly revealed in resonance scatter-
ing, because their lifetime is large. However, these
states can trap an electron and release it back to the res-
ervoirs, changing the dot charge in a discrete way
because of tunneling through the effective barrier of the
residual intersubband mixing. The tunnel resistances of
such barriers are high (R1, 2 > h/e2), and the quantum
charge fluctuations of localized states at G > 2e2/h are
suppressed. Thus, the quasi-one-dimensional nature of
the open dot provides the possibility of charging local-
ized states through the mechanism of Coulomb block-
ade of sequential tunneling [1]. In the case of sup-
pressed mixing of the current-carrying and localized
states, the charging current is small for the Coulomb
oscillations to be observed in it. However, charging
causes single-electron variations of the electrostatic
potential of the dot, and these variations, in accordance
with the Landauer formula, will result in a change in
ballistic conductance. That is, Coulomb oscillations
following the number of electrons in the quantum dot
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will appear against the background of the broad Fabry–
Perot resonances.

Actually, the system of localized states of the quan-
tum dot resides in one of the several states of electro-
static equilibrium between tunneling events. In the first
approximation, the localized states form one structure-
less Coulomb island. Let Pn be the probability that an
island contains n electrons. The stationary distribu-
tions Pn are found from the principle of detailed bal-
ance and the Fermi golden rule for the tunneling rate
through effective barriers [1]. In our case, for the resis-
tance of these barriers, R1 = R2 = R, it is only known that
R > h/e2; however, under this assumption, the Pn distri-
bution is determined almost unambiguously. The
charging current of localized states is proportional to R,
but it is small in comparison with the ballistic current.
The description of the ballistic current requires that
averaging over the charge states be introduced into the
Landauer formula, because the potential of the dot
Un(x, y), which determines its penetrability, changes at
each sequential tunneling event

(1)

where the function F(E) = (1/4kBT)sech2(E/2kBT) takes
into account the thermal spread in the energies E of the
incident particles. Because of the quasi-one-dimen-
sional nature of the system, all the contributions from
higher subbands are expressed through the transmis-
sion coefficient for the zero subband Ti = T0(E – i"ω,
Un). The states over which the averaging in Eq. (1) is
performed are characterized by the difference eVb

between the Fermi levels of the Coulomb island and the
reservoirs

(2)

G
2e2

h
-------- Pn Ti E Un,( )F E EF–( )

i

∑ E,d∫
n

∑=

C1 C2 Cg+ +( )Vb ne CgVg q0,+ +=

Fig. 1. Schematic diagram of a single-particle spectrum of
a quasi-one-dimensional dot. Ex and Ey are the energy com-
ponents along and across the dot. Columns correspond to
one-dimensional subbands. The range of the total energy E
corresponding to ballistic transport is singled out by dashed
lines. The boundary between the localized and delocalized
states is denoted by dots.
where C1, C2, and Cg are the dot capacitance with
respect to the reservoirs and the gate, n is the number of
electrons that belong to the localized states, Vg is the
gate voltage, and q0 is the dot polarization charge,
which determines the phase of Coulomb oscillations. In
the Coulomb blockade theory [1], q0 is considered to be
constant, and it describes the interaction of the closed
dot charge with uncontrolled charges and dipoles of the
surrounding insulator. In the case of an open system,
the Coulomb blockade theory should be modified,
because the charge q0 becomes a variable parameter
and depends on the self-consistent variations of Vb and
the charge belonging to the delocalized states of the dot
(Fabry–Perot resonances). For simplicity, let us define
q0 as the charge of the open one-dimensional subbands
of the dot in the quasi-classical approximation

(3)

where ∆Ei is the position of the ith subband bottom at
the center of the barrier in reference to the Fermi level
of the reservoirs EF . The denominator takes into
account the possibility of a thermally activated electron
transition to a subband when ∆Ei < 0. The distance "Ω
between the quasi-discrete levels of the longitudinal
motion in the dot is considered to be constant (Fig. 1),
and the maximal charge on a quasi-level equals 2e. In
order to calculate q0, we will use the semiempirical
approximation of the dependence ∆Ei(Vb , Vg)

(4)

The first term in this equation reflects the decrease of
eVb/2 in the potential at the center of the barrier under
the action of the voltage Vb. The factor "ω0 corresponds
to the onset of the filling of the zero subband. The
numerator of the fraction takes into account the
assumption that the subbands are opened with an equal
step δVg, starting with Vg0, which is a common assump-
tion for quasi-one-dimensional channels. The denomi-
nator reflects the fact that the distance between the one-
dimensional subbands "ω decreases by one-half in a
certain interval ∆Vg . It is implied that Vg determines the
value of "ω and hardly affects the potential profile
along the dot [11]. Equations (3) and (4), introduced
above, close the description of quantum dot electrostat-
ics and allow one to find Pn.

Several conclusions can be made from the proposed
model. Below the threshold of the zero subband open-
ing, the quantum dot is in the closed state, and its
charge is quantized with a step of e with respect to
CgVg. According to Eq. (2), this gives a saw-toothed

dependence e (CgVg) with the amplitude in the limits
of the charging energy EQ = e2/2CΣ, CΣ = C1 + C2 + Cg .
For states with N open subbands, which are separated

q0
2e
"Ω
--------

∆Ei

1 ∆Ei/kBT–( )exp–
-----------------------------------------------,

i
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∆Ei –
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2
--------- "ω0
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Vg Vg0–( )/∆Vg 1+

----------------------------------------------.+=

Vb
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Fig. 2. Modeling of single-electron charging and Coulomb oscillations of the ballistic conductance in a quasi-one-dimensional
quantum dot. Parameters of the model: C1 = C2 = 150 aF, Cg = 44 aF, Copen = 1000 aF, "ω0 = 0.5 meV, Vg0 = –640 mV, ∆Vg =
2δVg = 170 mV. (a) Longitudinal potential U(x, y = 0) and the first three one-dimensional subbands Ei(x) obtained at some gate
voltages by calculating the three-dimensional electrostatics. (b) Total transmission coefficient as a function of the energy of incident
particles and the contributions from 0–4 subbands for the situation in (a). (c) Saw-toothed dependence of the dot–reservoirs voltage
on the gate voltage. (d) Calculated and measured conductance of the dot. Curves for different temperatures are displaced along the
vertical axis. The dotted lines show the conductance without allowance made for single-electron oscillations of the dot potential
(Vb = 0).
according to the gate voltage, the capacitances of the
open subband states Copen = e2/"Ω are summed up
according to Eq. (3), and q0 = –NVbCopen. Substituting
this equation into Eq. (2) gives a stepwise renormaliza-
tion of the effective charging energy  = e2/2(CΣ +

NCopen). Thus, the oscillation amplitude e  and the
critical temperature kBTc =  (the temperature at

which the charge quantization of the localized states
disappears and the common Fermi level is settled in the
entire system) decrease with increasing N. The oscilla-
tions of eVb in the open regime indicate that the Fermi
levels of the electrons delocalized and localized in the
dot differ from each other. In order to enhance the effect
and to create a ballistic single-electron transistor, the
longitudinal dimension of a quasi-one-dimensional dot
must be decreased, which will lead to an increase in "Ω
and a decrease in the capacitance Copen. Note that the
highest sensitivity of Ti(E) to variations in the potential
relates to the instants of the opening of the subsequent

EQeff

Vb

EQeff
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one-dimensional subbands, when one should expect the
largest Coulomb oscillations of the ballistic conduc-
tance. Because these oscillations are the result of a con-
tinuous transformation of the saw and the smoothed
function (Vg) according to Eq. (1), they will be more
diffuse in shape than the common sharp peaks of the
Coulomb blockade of the sequential tunneling current.
We believe that the charging of quantum dots [3, 6] is
not commonly observed in the open regime because of
the strong intermode mixing of one-dimensional sub-
bands. Because of this mixing, the localized states with
energies higher than the barrier heights transform to the
decaying states. These states are revealed in the trans-
mission coefficient as Fano resonances [11], and they
cannot be already assigned to particular subbands.

Let us use the proposed approach for modeling the
conductance of a new type of quantum dot created by a
two-layer system of metallic gates in an ultraclean
channel of a GaAs/AlGaAs heterojunction [10]. The
split gate lying on the semiconductor surface forms a
one-dimensional channel, and three narrow continuous

Vb
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finger gates separated from the lower gate by a resist
(PMMA) layer and aligned across the channel create
barriers between the quantum dot and the reservoirs.
Continuous periodic oscillations on the gate voltage
were observed in this device upon variations of the
background conductance in the range 0 < G < 6e2/h (the
lower part of Fig. 2). Based on calculating a three-
dimensional electrostatic potential and solving the
problem of two-dimensional scattering [11], we have
found that the main distinction of this device from the
others is its quasi-one-dimensionality, that is, the sup-
pression of mixing of one-dimensional subbands
(Figs. 2a, 2b). By determining the dot capacitance with
respect to the gates and reservoirs with a two-dimen-
sional electron gas, we have confirmed that the period
of oscillations corresponds to one electron added to the
dot. Below, when modeling the conductance, we will
use the values of C1, C2, and Cg capacitances and also
"Ω and "ω quanta calculated in [11] for the quantum
dot discussed here.

Figures 2c and 2d present the dependences of the
average dot–reservoirs voltage (Vg) and the conduc-
tance G(Vg) for various temperatures. It is evident that
the entire working range of split-gate voltages at T =
0.05 K is filled with single-electron oscillations of

(Vg) and G(Vg). The amplitude of (Vg) oscilla-
tions decreases in a stepwise manner with the opening
of new one-dimensional subbands (Fig. 2c). The dis-
tance "ω between one-dimensional subbands in this
device (Fig. 2a) is comparable with the charging energy
"ω ≈ EQ = 0.2 meV. Therefore, the variations of Vb that
accompany the events of electron tunneling through
localized states of the closed subbands must produce
drastic changes in the transmission coefficient (Fig. 2d).
As a result, Coulomb oscillations of the ballistic current
appear, which are especially pronounced in the vicinity
of large-scale singularities of resonance transmission.
In order to simplify calculations by Eq. (1), we used the
approximation Ti(E, Un) ≈ T0(E – ∆Ei) and took the
numerical dependence obtained at a certain characteris-
tic U(x, y) as T0(E) (Fig. 2b). The presence of factors
providing the nonthermal smoothing of saw teeth in

(Vg), narrow resonance singularities in G(Vg, Vb =
0), and Coulomb oscillations of the ballistic conduc-
tance was taken into account by additional uniform
smoothing of the final curves with respect to the running
average. The resulting overall picture is close to that
observed experimentally (the lower part of Fig. 2d).
The calculation reproduces the essential features of the
actual behavior of the background and oscillations upon
variations of the gate voltage Vg and temperature T. It is
necessary to emphasize that, even at G < e2/h, oscilla-
tions are revealed in the ballistic conductance rather
than the sequential tunneling current, which has been
taken into account in the calculations, but small. Note
that a similar effect was already observed in a system of

Vb

Vb Vb

Vb
a quantum dot and a one-dimensional channel arranged
in parallel and coupled by only electrostatic interaction
[13]. The one-dimensional channel at G < e2/h was used
as a detector measuring variations of the electrostatic
potential caused by the single-electron charging pro-
cesses in the quantum dot. In this case, it turned out that
the detector signal continued to demonstrate single-
electron oscillations even when the conventional Cou-
lomb peaks of the sequential tunneling current through
the quantum dot became too small for measurements.

In conclusion, we have shown that Coulomb oscilla-
tions of the ballistic conductance can be observed in a
quasi-one-dimensional quantum dot, which are pre-
dicted by a simple modification of the Coulomb block-
ade theory and the Landauer formula. The reason for
oscillations is the response of the transmission coeffi-
cient of ballistic electrons to variations of the electro-
static potential of the dot caused by the single-electron
charging of localized states. It has been found that the
oscillations of this type can embrace the range from the
threshold to several conductance quanta with a step-
wise decrease in the critical temperature on the opening
of new subbands.
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sion. This work was supported by the program “Physics
of Solid-State Nanostructures” (project no. 98-1102),
the program “Micro- and Nanoelectronics” (project
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sia–Basic Research” (1994).
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Submicron-sized cylindrical structures were obtained at the surface of silicon single crystal exposed to a com-
pression plasma flow. A periodic structure formed by channels oriented normally to the surface was observed
inside the modified surface layer. The period of the structure corresponded to the spacing of the surface forma-
tions. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 52.40.Hf; 79.20.Rf; 52.77.Bn; 68.35.Bs
Introduction. At present, the formation of submi-
cron- and nano-sized structures of various compounds
is being intensively studied, because their use can open
up a qualitatively new stage in the development of
microelectronics [1–4]. The formation of such struc-
tures in silicon is of prime interest because of its wide-
spread use in microelectronics. However, despite the
great diversity of the existing (chemical, laser, and
plasma) methods, the cylindrical structures failed to be
formed in silicon so far [4].

This work reports the results of studying the struc-
tural modification of a silicon surface under the action
of a quasistationary compression plasma flow. Such
flows are obtained using quasistationary plasma accel-
erators of the magnetoplasma compressor (MPC) type
[5]. The advantages of the MPC over the other acceler-
ator types are high stability of the generated compres-
sion flow, the possibility of controlling flow composi-
tion, plasma size and plasma parameters, and a long
discharge time sufficient for practical use [6–9].

Experimental methodology. Compression plasma
flows were obtained using a compact gas-discharge
MPC whose energy storage system consisted of a
capacitor bank with a capacity of 1200 µF at an initial
voltage changing from 3 to 5 kV [7]. The MPC oper-
ated in the residual-gas regime wherein the accelerator
chamber was preliminary pumped out after which it
was filled with nitrogen to a preset pressure (100–
1300 Pa). Under these conditions, a compression
plasma flow 6–10 cm in length and with a diameter of
1 cm in the maximum compression zone was formed at
the output of the MPC discharge device. Plasma flow in
0021-3640/01/7404- $21.00 © 20213
the MPC is compressed due to the interaction between
the longitudinal component of a discharge current flow-
ing out from the discharge device and the self-magnetic
azimuthal field. The presence of a “flow-out” current in
the plasma flow is caused by the magnetic field freezing
in plasma.

The plasma velocity in a compression flow is in the
range of (4–7) × 106 cm/s, depending on the initial
parameters of the MPC. The concentration of charged
particles in the maximum compression zone is as high
as (5–10) × 1017 cm–3, and the temperature is 1–3 eV
[6−8]. The compression flow is stable for about 80 µs,
after which it starts to decay.

Samples of (111)-oriented 280-µm-thick silicon
single crystals with an area of 10 × 10 mm2 were placed
perpendicularly to the compression flow at distances
6−16 cm from the cut of the MPC discharge device and
exposed to the compression plasma flow. The incident
compression flow gives rise to a shock-compressed
plasma layer near the sample surface. Note that the
deceleration of a compression plasma flow with the fro-
zen-in magnetic field is accompanied by the formation
of current loops (vortices) [10, 11].

The plasma density in the zone of interaction with
the sample changed from 1018 cm–3 (in the maximum
compression region) to 1016 cm–3 (in the region of
strong flow divergence). Calorimetric measurements
showed that the energy absorbed by the sample
decreased, accordingly, from 25 to 5 J, which corre-
sponded to a change of (3–0.5) × 105 W/cm2 in the
001 MAIK “Nauka/Interperiodica”
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plasma flow power density under the conditions of our
experiments.

The surface microrelief and the slices of silicon sin-
gle-crystal samples were photographed using high-res-
olution scanning electron microscopy on a Hitachi
S806 microscope.

Results. Under the action of the compression
plasma flow on the sample, silicon melts and its surface
is modified to a depth of 6 µm. A periodic structure

K2

000533 20KV X2.00K 15.0 µm
. . . . . . . . . . .

.

K7

101342 20KV X1.50K 20.0 µm
. . . . . . . . . . .

Fig. 1. Surface morphology of silicon exposed to a com-
pression plasma flow.

Fig. 2. Structure of the near-surface region of silicon.
formed by the cylindrically shaped fragments is clearly
seen in the microphotographs of the surface layer
(Fig. 1). The length of these fragments exceeds 50 µm,
and their diameter is 0.7–1.0 µm. The spacing between
the fragments at the sample surface is in the range of
1−2 µm, and their density is (2–6) × 106 cm–2. The pres-
ence of the offshoots between the cylindrical fragments
of the structure gives evidence for the influence of the
external force factors on the process of structural phase
transformation.

Periodic structures formed by the channels oriented
normally to the surface are observed inside the modi-
fied layer (Fig. 2). The channels are ~6–12 µm in
length, their diameter is ~0.1–0.2 µm, and spacing
(1−2 µm) corresponds to the spacing of the cylindrical
surface formations.

The formation of observed structures is primarily
caused by the energetic action of the compression flow
on the surface, leading to its fast heating, melting of the
surface layer, development of thermoelastic stresses,
and plasma spreading over the surface under the action
of the dynamic pressure (on the order of several atmo-
spheres) of compression flow and the gradient of
plasma parameters in the shock-compressed plasma
layer. The silicon crystallization is characterized by fast
cooling and high temperature gradients. These pro-
cesses occur in the presence of magnetic fields induced
by the “flow-out” currents in the incident plasma flow.

The interaction of the compression plasma flow with
the surface is accompanied by the appearance of ther-
moelastic stresses in the silicon lattice; the correspond-
ing stress gradient field generates dislocations through
well-known mechanisms. At a certain concentration of
dislocations, they form periodic aggregates. As is
known, crystallizing melt inherits structural imperfec-
tions of the substrate and brings them out at the surface.
The moving crystallization front represents a solidify-
ing array of steps which, in turn, may become the nuclei
of cylindrical formations in the presence of developing
instability.

The instability arises due to the plasma flow pres-
sure (on the order of several atmospheres) on the silicon
melt. Under the pressure of the compression flow, light
surface layers are pressed through the heavier melt lay-
ers, giving rise to Rayleigh–Taylor instability. Plasma
pressure may also induce Benard convective instability
in the molten silicon layer. In this case, pressure favors
the convective mixing of layers heated to different tem-
peratures, leading to the self-organization manifesting
itself as structural formations [12]. Kelvin–Helmholtz
instability arises at the interface of two fluids or gases
with different densities upon their sliding relative to
each other. This type of instability is typical for wave
swinging in windy weather [13]. In our case, it arises
due to spreading of the shock-compressed plasma layer
over the silicon surface. In this case, two flows with dif-
ferent velocities run in the same direction. Since the
flows are coulombic systems, the wave disturbance
JETP LETTERS      Vol. 74      No. 4      2001
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scale must diminish. In our case, the character of the
disturbances, whose wavelength corresponds to a fre-
quency on the order of 1014 Hz, correlates with the ion
plasma oscillations in the ionized surface layer.

In addition, the silicon plate undergoes sign-variable
bending under the action (and during the lifetime) of
thermoelastic stress, as a result of which the molten
substance crystallizes at the substrate of a variable
shape. In conjunction with the surface tension effects,
this leads to a complex surface morphology and gives
rise to formations of the offshoot type between the cyl-
inders.

Conclusions. As a result of our studies, the submi-
cron-sized cylindrical structures have been formed at
the silicon surface under the action of a compression
plasma flow. A periodic array of channels oriented nor-
mally to the surface were observed inside the modified
silicon layer, with the period corresponding to the spac-
ing of the cylindrical formations. The structural phase
transformations of the silicon surface state may be
associated with fast crystallization of the molten layer
on the background of various instabilities that develop
in the presence of the induced magnetic field.
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The interface evolution during the evaporation of a liquid from a saturated layer of porous medium (paper) was
experimentally studied using spectral analysis of intensity fluctuations of a laser radiation scattered by the layer.
The data obtained were compared with the results of modeling the irreversible growth in three-dimensional lat-
tices. The dependences of the spectral halfwidth of intensity fluctuations on the drying time demonstrate the
characteristic features of drying front evolution, which proved to be similar to those found in the modeling of
irreversible growth front. A comparison of the maximal halfwidths for two different saturating liquids suggests
that the motion of local interfaces during the liquid evaporation from a layer of porous medium is close to the
“classical” diffusion. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 68.03.Fg; 78.35.+c
The study of transport processes in the disordered
systems is an intensively progressing direction in con-
densed matter physics. Mass transfer in porous media
during the evaporation of a liquid or its propagation in
a pore system under the action of capillary forces is a
typical example of such processes. They are accompa-
nied by an intriguing physical phenomena (e.g., the for-
mation of fractal growth boundaries [1, 2]), which are
universal in nature and have been the subject of theoret-
ical and experimental investigations over the past two
decades. The elaboration of experimental methods for
analyzing mass transfer dynamics in heterogeneous
multiphase systems is an important aspect of these
studies. In this work, the possibility of using dynamic
coherent light scattering in studying the evolution of the
interface between the gaseous and liquid phases during
the evaporation of a liquid from a layer of a porous
medium is considered. In this system, the intensity fluc-
tuations of scattered light at the observation point are
caused by the scattering of probe radiation from mov-
ing local interfaces in the pore system. Figure 1 is the
illustration of a model of multiple scattering in the dry-
ing zone; the scatter of the velocities and motion direc-
tions of local boundaries, which thus form an ensemble
of nonstationary scatterers, gives rise, as a result of the
interference between the partial field components with
different scattering multiplicities, to a speckle pattern,
for which the spectral width of intensity fluctuations is
determined by the average mobility of the local bound-
aries and their bulk concentration in the drying zone.
The propagation of probe radiation in regions 1, 1', and
3, where the system of scatterers is stationary, does not
lead to frequency modulation for the partial compo-
nents. At the same time, the Doppler shifts caused by
the scattering of partial components from the moving
0021-3640/01/7404- $21.00 © 20216
local interfaces in the drying zones (2, 2') give rise, as a
result of multiple scattering, to a nonstationary speckle
pattern in the observation plane. It was found in [3] that
the drying fronts of fluids in porous media can be
treated as fractal growth boundaries with clusters of liq-
uid-filled pores located nearby. The evolution of such
structures during the drying process should influence
the bulk concentration of scattering centers in the dry-
ing zone and, hence, lead to tangible changes in the
spectrum of scattered intensity fluctuations.

Figure 2 presents the scheme of experimental setup
for studying spectral characteristics of the scattered
intensity fluctuations during the course of liquid evapo-
ration from an originally saturated layer of porous
medium. A single-mode He–Ne laser (λ = 632.8 nm,
output 0.5 mW) was used as a radiation source. The
laser beam was focused to a ≈200 µm-diameter spot at
the surface of a layer which was placed in the horizontal
plane. Paper samples differing in the degree of porosity
and in thickness were used as layers of porous medium.
The intensity fluctuations were detected in the trans-
mission geometry using a computer image-locking sys-
tem with a lensless EDC-1000L (Electrim Corp., USA)
CCD chamber. The number of pixels was 484 × 753
with a pixel size of 9.5 × 10 µm2. The distance between
the sample and the CCD chamber was 60 cm; the cham-
ber was placed on the beam axis; the average speckle
size in the image detection plane was ≈500 µm. The
images of dynamic speckles were recorded in the wrap
mode, for which the intensity fluctuations at fixed
points were mapped as brightness distributions over
image columns written in the bit-map format; the frag-
ments of these images are shown in the insets in Fig. 3.
The image writing time varied from 40 to 120 s depend-
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Model of coherent radiation multiple scattering by a layer of porous medium during the evaporation of a liquid. The detected
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ing on the line exposure time TE; the Nyquist frequency
[4] corresponding to the separation between pixels
along a column changed from 2 to 6 Hz. To minimize
the effects (in particular, the frequency overlap or
masking effect [4]) caused by the finite fetch time and
finite TE-controlled digitizing rate of intensity distribu-
tion over columns on the results of spectral analysis of
the narrow-band random process of intensity fluctua-
tions, the line exposure time for each image was cho-
sen, after preliminary experiments, in such a way that
the sampling rate exceeded the halfwidth of the fluctu-
ation spectrum by no less than a factor of ten for the
image fragment having maximal spectral width. Fur-
ther analysis consisted in the calculation of the modulus
of the Fourier-transform |F1(ν)| of the intensity fluctua-
tions by applying the discrete Fourier transform to the
sets of column data for the image areas obtained by
breaking images into partially overlapping fragments
of size W1 × W2 = 100 × 753 pixels. The values of the
modulus of the Fourier transform were averaged over
the columns for each fragment; the halfwidths ν0.5 were
estimated for the average spectra. Checking for the
JETP LETTERS      Vol. 74      No. 4      2001
influence of the recording and image processing
regimes (line exposure time TE and size W1 of the frag-
ment chosen) showed that the estimates of ν0.5 were sta-
ble to the variations of TE and W1 if TE < (10ν0.5)–1 and
W1 = 80–120; in particular, a change in ν0.5 for the
image fragments characterized by the maximal spectral
width of intensity fluctuations did not exceed 8% upon
a decrease in TE from 150 to 100 ms and an increase in
the pixel number from 80 to 120. Typical frequency
dependences obtained for the normalized average spec-
trum |F1(ν)| after processing the experimental dynamic
speckle images are shown in the inset in Fig. 2.

Experiments were performed at room temperature
[(20 ± 1)°C]; ethyl alcohol C2H5OH and acetone C3H6O

were used as saturating liquids. The thickness , the
porosity φ, and the characteristic removal time tr corre-
sponding to the e-fold drop in the weight of the liquid
phase were preliminarily determined for each sample.
The values of φ and tr were found by weighing the orig-
inally saturated samples on an electronic balance with
sampling of the data at 1 s. Typical experimental depen-
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dences of the halfwidth ν0.5  on the drying time tdr are
presented in Fig. 3. The following characteristic fea-
tures of the ν0.5(tdr) curves are noteworthy:

(1) The frequency of scattered intensity fluctuations
drastically increases and achieves a maximum at a cer-
tain stage of the drying process; the relationship
between the time tdr max corresponding to the maximal ν0.5
and the time tr can be approximated by the linear depen-
dence (Fig. 4);

(2) A decrease in the characteristic removal time tr is
accompanied by the decrease in the maximal value of
ν0.5 (Fig. 2; the tr values for C3H6O are 4–6 times
shorter than for C2H5OH, and the corresponding ν0.5
values are shorter by a factor of 1.2 to 2);

(3) The ν0.5(tdr) dependence is pronouncedly asym-
metric for small tr; at the final stage of the drying pro-
cess, ν0.5 decreases jumpwise at some frequencies; the
ν0.5(tdr) curves become more symmetric with increasing
tr , and the jumpwise changes in ν0.5 are greatly sup-
pressed at large tdr times.

The study of the heating effect caused by the absorp-
tion of the laser probe radiation on the drying process
showed that a twofold increase in the spot diameter and
the corresponding decrease in the probe radiation flux
density (by a factor of four) after displacing the samples
from the focal plane of lens 3 along the beam axis and,
hence, beam defocusing (Fig. 2) did not affect the mea-

Fig. 2. Scheme of experimental setup. (1) Single-mode He–
Ne laser; (2) turning prism; (3) focusing lens; (4) sample;
and (5) CCD chamber. Inset: typical frequency depen-
dences of the normalized intensity fluctuation spectra
obtained by averaging over the set of columns for image
fragments of size 100 × 753 pixels; ethyl alcohol is taken as

a saturating liquid; sample parameters:  = 71 ± 3 µm and

φ = 0.68 ± 0.04; (a) tdr = 23 s and  ≈ 0.14 Hz and

(b) tdr = 150 s and  ≈ 0.26 Hz. Digitizing rate 6.7 Hz.

H̃

ν0.5
a

ν0.5
b

|F1(ν)|
|F1(0)|
sured tdr max values to within the experimental accuracy
(±5%). Likewise, a change in the beam power with the
help of attenuators (neutral filters) also did not change
noticeably tdr max. This was so because of the low probe
radiation power (<0.5 mW with allowance made for the
additional losses in optical elements 2 and 3) and the
small absorption coefficient of the layers (the absorp-
tion coefficients of paper in the visible region are typi-
cally 0.005–0.03 mm–1 [5]). Therefore, the heating
effect of the probe radiation on the evaporation of a liq-
uid from the layer can be ignored under the experimen-
tal conditions used in this work.

To interpret the experimental results, we invoke the
approach used in [6] for the description of the time cor-
relation function for the fluctuations of coherent light
undergoing multiple scattering in a nonstationary sys-
tem of statistically independent scatterers. For a fixed
point, this function can be written as

where the summation over i goes over the contributions
from the partial scattered components with different
optical paths to the complex field amplitude at the
observation point; the multiplication index m corre-
sponds to the phase incursion for each partial compo-
nent after it goes through a series of scattering events at
the moving local interfaces;  is a change in the wave
vector of the ith partial component in the mth scattering
event at the boundary whose position is specified by the
radius vector ; and ω is the probe beam frequency.
Averaging is done over the ensemble of possible con-
figurations of the moving scattering centers. Assuming
that the scattering events are statistically independent,
one arrives at the following expression for the time cor-
relation function G2(τ) = 〈{I(t + τ) – 〈I〉}{I(t) – 〈I〉}〉  at
a large number of scattering events:

(1)

where Ξi is the number of scattering events for the ith

partial component and ∆ (τ) is the scatterer displace-
ment variance at time τ.

The fluctuation dynamics of the scattered intensity
depends on the effective value of Ξ, which is deter-
mined by the number of moving local interfaces in the
beam scattering region (Fig. 1). An increase in Ξ results

G1 τ( ) E t( )E* t τ+( )〈 〉 jωτ–( )exp∼=

× iqimrim t( ){ }exp
m

∏
i
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× iqimrim t τ+( ){ }  exp
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∏
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  *
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G2 τ( ) G1 τ( ) 2=
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∑
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Fig. 3. Spectral halfwidths ν0.5 of the scattered intensity fluctuations vs. drying time tdr for the paper samples of thickness  =
88 ± 3 µm and porosity φ = 0.56 ± 0.03; saturating liquid: (d) acetone (C3H6O) and (h) ethyl alcohol (C2H5OH).

H̃

in shortening the correlation time and broadening the
fluctuation spectrum of scattered intensity. Thus, the
development of the drying zone should manifest itself
in the dependence of the width of fluctuation spectrum
on the time of liquid evaporation from the layer. To
write G2(τ) in the analytic form, the Ξi statistics must be
known for the scattering system; in particular, for a
moving scattering layer of thickness Λ illuminated by a
plane wave with wavenumber k, G2(τ) for the forward-
scattered radiation can be written as G2(η) ~ exp(–2η),

where η = (Λ/l*)  and l* is the transport
mean free path of the scattering layer [7, 8]. For the
generalized Brownian dynamics of the scattering cen-

ters [2], one has 〈∆ (τ)〉  = Kτϑ, where 0 ≤ ϑ  ≤ 2 and
K characterizes the scatterer mobility, so that the fluctu-
ation correlation time can be defined as

(2)

Note that the dependence of τc and ν0.5 on the radiation
wavelength λ is due not only to the dependence on k but
also, implicitly, to the dependence on the transport
mean free path l*, because l* = [σ(λ)c{1 – g(λ)}]–1

[7, 8], where c is the bulk concentration of the nonsta-
tionary scatterers (moving local interfaces) in the dry-
ing zone and σ(λ) and g(λ) are, respectively, the wave-
length-dependent effective values of the scattering
cross section and the scatterer anisotropy parameter.

Assuming that the exponent ϑ  does not depend on

the properties of the saturating fluid and setting Λ ~ ,

k2 ∆r2 τ( )〈 〉

r2

τc l*2/4Kk2Λ2( )1/ϑ ν0.5
1– .∼≈

Λ̃
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where  is the width of the drying zone, one finds, with
the scattering model adopted (Fig. 1), that, when prob-
ing at a fixed wavelength, the following relationship
should take place between the maximal ν0.5 values for

Λ̃

Fig. 4. Relationship between the parameters tdr max and tr
for the paper samples; (1)  = 135 ± 3 µm, φ = 0.84 ± 0.04
(filter paper), and acetone (C3H6O) as a saturating liquid;

(2) the same for ethyl alcohol (C2H5OH); (3)  = 71 ±
3 µm, φ = 0.68 ± 0.04, and acetone; (4) the same for ethyl

alcohol; (5)  = 88 ± 3 µm, φ = 0.56 ± 0.03, and acetone;

(6) the same for ethyl alcohol; (7)  = 73 ± 3 µm, φ =

0.52 ± 0.03, and ethyl alcohol; (8)  = 77 ± 3 µm, φ =

0.63 ± 0.03, and ethyl alcohol; and (9)  = 72 ± 3 µm, φ =
0.39 ± 0.02, and ethyl alcohol.

H̃

H̃

H̃

H̃

H̃

H̃
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two different saturating fluids with close refraction
indices (and, hence, with σ1 ≈ σ2, g1 ≈ g2, and /  ≈
c2/c1):

(3)

where  and cmax correspond to the maximal devel-
opment of the drying zone (for tdr = tdr max). It is worth
noting that, if the scattering geometry is changed (in
particular, if the layer is illuminated by a localized
source rather than by the plane wave), the dependence
of the time correlation function on the dimensionless
parameter η will be other than G2(η)exp(–2η). At the
same time, according to the similarity principle, τc ~
(l*2/Kk2Λ2)1/ϑ, and relationship (3) should also hold in
the case.

Of interest was to estimate the exponent ϑ  for the
system of nonstationary scatterers. With the aim of ana-
lyzing the drying zone evolution in a liquid-saturated
layer of a porous medium, the irreversible growth pro-
cess was statistically modeled for three-dimensional
lattices of finite size; the model used was a modification
of the Eden model [9]. The process of escaping from
the occupied sites starting at the surface was considered
for the lattices of size L × L × H (L @ H) with a varied
number Θ of bonds between the neighboring sites and
varied escape probability P. The irreversible growth
was characterized by the number of sites Nf that were
left at each time step. It was assumed that each escape
event was statistically independent and occurred with
the probability P if there was at least one bond with a
vacant site.

l1* l2*

ν0.5( )1 max

ν0.5( )2 max

----------------------
K1Λ̃max 1

2
cmax 1

2

K2Λ̃max 2
2

cmax 2
2

---------------------------------
 
 
 

1/ϑ

,≈

Λ̃max

Fig. 5. Plots of Nf as functions of the irreversible growth
time (number of modeling steps) for a 100 × 100 × 30 lattice
with Θ = 6; the dashed curve is for P = 0.3, and the dotted
line is for P = 0.1 (results of statistical modeling). Inset:
P dependence of the surface concentration 2σh  of occu-
pied sites at the growth front for n = nmax (obtained for the
100 × 100 × 30 lattice with Θ = 6).

γ

Plots of typical dependences of Nf on the dimension-
less time (number n of modeling steps) for the vacant
region growing from the surface of the L × L × H lattice
are shown in Fig. 5. For P ≤ Pc ≈ 0.7, the curves display
maxima corresponding to the maximal number of sites
that are left in the “active” zone of the growth front of

thickness σh(n) =  ~ , where
h(x, y) is the front “height” in the propagation direction.
For P > Pc, the maximal value of Nf occurs at n = 0, and
nmax depends on P as

(4)

where α is close to unity and shows little dependence
on Θ, L, and H. The occurrence of a maximum in a cer-
tain range a is caused by the competition of two pro-
cesses: development of the active growth zone, i.e., an
increase in σh and in the average concentration  of the
occupied sites in the active zone, and a decrease in the
volume of the active zone because of an increasing
number of vacant sites: d{(a – (n))2σh(n) (n)} = 0.

Another feature of the Nf (n) dependence in the irre-
versible growth is that dNf/dn changes near-jumpwise
at the final stages of the process, because the filled
region breaks into separate clusters [see dots 3 and 4 in
Fig. 3]. The changes in the form of the Nf (n) depen-
dences with a decrease in P are qualitatively similar to
those observed experimentally for the ν0.5(tdr) depen-
dences with an increase in tr (Fig. 3): the asymmetry is
smoothed out and a portion corresponding to the clus-
tering stage becomes less pronounced (dotted line in
Fig. 5). The sections of the filled region at the initial
stage of irreversible growth, at the instant of time cor-
responding to the maximal development of the growth
active zone, and at the clustering instant nc are given in
Fig. 5. In the quasi-one-dimensional front-propagation
regime (for the irreversible growth in a layer with
L  ∞), Nf monotonically increases and tends towards
saturation [because of the saturation of σh(n) (n)] at a
level corresponding to clustering. In this case, the rela-
tionship between nmax and P is also given by Eq. (4).
The parameter 2σh(nmax) (nmax) characterizing the
effective surface concentration of occupied sites at the
front at n = nmax is shown as a function of P in the inset
in Fig. 5. It was found by modeling that for the models
with different Θ, L, and H, the relationship between
nmax and nr corresponding to the e-fold drop in the num-
ber of occupied sites can be approximated by the linear

dependence of the form nmax ~  for 0.01 ≤ P ≤
0.5 (Fig. 6); this is consistent with the experimentally
obtained relationship between tdr max and tr (Fig. 4).

The analogy between the experimentally measured
ν0.5(tdr) and tdr max(tr) dependences and the Nf (n) and
nmax(nr) dependences obtained in the irreversible
growth model allows the use of this model in interpret-

h x y,( ) h–{ } 2( )
0.5

Λ̃

nmax P α– ,∼

γ

h γ

γ

γ

nr
1.05 0.10±
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ing the experimental results on the basis of the corre-
spondence between  and c. With this approach, the
following relationship may be considered: σh(n) (n) ~

c(tdr) (tdr). For two saturating liquids with essentially
different times tr (tr1 @ tr2), we assume, based on the
modeling results (inset in Fig. 5), that
Λ1 maxc1 max/Λ2 maxc2 max ≈ 3 for the maximal intensity
fluctuation frequency at tdr = tdr max.

When estimating K1/K2, we assume the relation K ~

 between K and tr , with parameter β depending on ϑ .

In particular, one has K ~  for ϑ  = 2, which can be
interpreted as a directed motion of local interfaces with

root-mean-square velocity 〈 〉 0.5
 = K0.5. One can

readily show that the experimentally observed ratio
(ν0.5)1 max/(ν0.5)2 max > 1 does not hold for the measured
values tr1/tr2 = 4.5–6. In the case of ϑ  = 1, correspond-
ing to the classical Brownian motion of local scatterers,
the parameter K/6 has a meaning of the diffusivity of
scattering centers, and the β value can be obtained by
analyzing the well-known relation between the concen-
tration gradient of diffusing particles and the respective
mass flow J in the form K(gradc)z = –J, where z is the
propagation direction of the diffusion front. For the
irreversible growth model adopted in this work, the use
of the approximate relationship (gradc)z ~ γ/σh in the

growth zone gave K ~  in the course of modeling,

γ
γ

Λ̃

tr
β–

tr
2–

ν2

nr
β–

Fig. 6. Relationship between the parameters nmax and nr for
the irreversible growth in three-dimensional lattices with
different probabilities of escaping from the occupied sites
(modeling results); 0.01 ≤ P ≤ 0.5; (1) L = 100, H = 30, and
Θ = 4; (2) L = 100, H = 50, and Θ = 4; (3) L = 100, H = 30,
and Θ = 8; (4) L = 100, H = 50, and Θ = 8; (5) L = 100, H =
30, and Θ = 14; (6) L = 100, H = 50, and Θ = 14; (7) L =
150, H = 20, and Θ = 14; and (8) L = 400, H = 50, and Θ = 6.

nmax

nr
–1
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with β ≈ 0.70–1.00 (depending on the model parame-
ters). In this case, the estimate of the ratio
(ν0.5)1 max/(ν0.5)2 max using Eq. (3) gives a value of the
order 0.4–0.7 for tr1/tr2 = 4.5–6, which is in satisfactory
agreement with the experiment. On the other hand, the
estimate of parameter ϑ  with the use of the results of
statistical modeling and the experimentally measured
ratios (ν0.5)1 max/(ν0.5)2 max yields values ranging from
0.83 to 1.17 for the six samples studied.

Thus, with the assumptions adopted in this work, the
motion of local interfaces in the drying zone can be
interpreted as a generalized Brownian motion with
parameter ϑ  close to unity, i.e., close to the value inher-
ent in classical Brownian motion. The local boundary
dynamics observed in the experiment on dynamic
coherent radiation scattering can be caused by a consid-
erable scatter of the directions and velocities of bound-
ary motion, as well as by the finite lifetimes of local
boundaries in individual pores.
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Precision X-ray structural studies of the La3Nb0.5Ga5.5O14 and Sr3Ga2Ge4O14 single crystals were carried out.
The space group P321 was confirmed. The anomalous X-ray scattering was taken into account to establish the
absolute structures (chirality) of the crystals; they proved to be of different sign. The structural features respon-
sible for the optical activity of crystals were revealed, and the dependence of the magnitude and sign of specific
rotation on the structural parameters of these compounds were determined. © 2001 MAIK “Nauka/Interperi-
odica”.

PACS numbers: 61.66.Fn; 61.10.Eq; 78.20.Ek
Ca gallogermanate Ca3Ga2Ge4O14 was the parent of
a rich family of trigonal acentric crystals [1, 2]. More
recently, the members of this family were named lan-
gasites, a shorthand for the chemical composition of
La3Ga5SiO14 [3, 4]. One of the latest reviews devoted to
the materials of this family was published in the Pro-
ceedings of Frequency Control Symposium [5]. The
growing interest in langasites is caused by the unique
physical properties of their pure samples and samples
activated with transition ions: piezoelectricity, elastic
properties, luminescence, lasing, and, especially, com-
position-controlled optical properties [6–8]. The pur-
pose of this work was to refine atomic structures of the
La3Nb0.5Ga5.5O14 and Sr3Ga2Ge4O14 single crystals
using X-ray diffraction analysis. Of interest was also to
determine the chirality of the samples; to reveal struc-
tural origins of their optical activity and the substantial
difference in specific rotations, which, according to the
data in [8], are, respectively, 16.8 and 4.42 deg/mm at
λ = 0.55 µm; and to refine the distribution of cations
over the voids of anionic packing. Single crystals of
La3Nb0.5Ga5.5O14 and Sr3Ga2Ge4O14 were grown by the
Czochralski method.

Samples of La3Nb0.5Ga5.5O14 and Sr3Ga2Ge4O14 sin-
gle crystals chosen for X-ray structural analysis were
shaped into a sphere by rolling. Sphere diameters were,
respectively, 0.22(1) and 0.27(1) mm. Integrated inten-
sities of X-ray reflections were measured on an Enraf-
Nonius CAD-4F diffractometer (MoKα radiation,
graphite monochromator, ω/2θ scan mode in the full
range of reflections for sinθ/λ ≤ 0.9 Å–1). A total of
7571 and 7527 reflections, respectively, were mea-
sured. After averaging symmetry-related reflections,
working arrays of 1184 and 1149 unique reflections
0021-3640/01/7404- $21.00 © 20222
with I > 3σ(I) were formed. The discrepancy factors for
the averaging of equivalent structure amplitudes were
1.88 and 1.39%. Bievout pairs of reflections with indi-

ces hkl and  were not averaged, because only their
differences carry information about crystal chirality in
the presence of anomalous scattering. With allowance
made for the anomalous components f ' and f ", the
atomic scattering factors have the form f  = f0 + f ' + if ".
For the MoKα radiation with λ = 0.7107 Å, the real and
imaginary corrections for anomalous X-ray scattering
are f ' = –0.2871 and f " = 2.4523 for the La atom, f ' =
−2.0727 and f " = 0.6215 for Nb, f ' = 0.231 and f " =
1.608 for Ga, f ' = –1.5307 and f " = 3.2498 for Sr, and
f ' = 0.1547 and f " = 1.8001 for Ge; for the O atoms, the
corrections are negligible: f ' = 0.0106 and f " =
0.0060 [9].

Analysis of the full arrays of experimental data did
not reveal any deviations from space group P321.
When converting intensities into moduli of structure
amplitudes, the data were corrected, apart from absorp-
tion, for the kinematic and polarization effects. All cal-
culations were performed using the SDS program pack-
age [10]. Structure parameters were refined by the full-
matrix least-squares method. In the experiments and
calculations, the right-handed coordinate system was
used. Crystal chirality was calculated for the full (not
averaged) arrays of structure amplitudes, allowing the
anisotropic extinction to be taken into account for the
samples. Maximal corrections for the anomalous scat-
tering of X-rays used in this work were observed for the
Sr atoms. For this reason, the chirality of the
Sr3Ga2Ge4O14 sample was determined more reliably
than for the La compound.

hkl
001 MAIK “Nauka/Interperiodica”
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Refinement of the original crystal structure of the Sr
compound converged to the discrepancies (unweighed)
R = 5.65% and (weighed) Rw = 6.51% between the
experimental and model structure amplitudes. The
weighing scheme used in all refinements was w =
1/(σF)2. Refinement of the inverted model converged to
the smaller discrepancy factors: R = 1.75% and Rw =
1.98%. Thus, the absolute structure of the crystal dif-
fers from the original structure [7] in chirality sign, so
that the coordinates of the basis atoms in the right-
handed coordinate system (table) correspond to the
absolute atomic model of this crystal.

Analogous calculations for the La3Nb0.5Ga5.5O14

structure gave R = 2.57% and Rw = 3.27% for the orig-
inal model [11] and R = 3.38% and Rw = 4.23% for the
inverted model. In this case, the absolute structure cor-
responds to the original model.

Crystals of the langasite family have layered struc-
ture. The alternating layers of two types are perpendic-
ular to the threefold axis. The cations at z = 0 are posi-
tioned in the two types of polyhedra: octahedra and the
larger polyhedra shaped like distorted Thomson cubes.
The second layer consists of two types of crystallo-
graphically independent tetrahedra. The z coordinate of
cations in the tetrahedra of one of these types is exactly
equal to 0.5, and it is close to this value in the second
type (Fig. 1). The ionic radii of the largest cations La3+

and Sr2+ are 1.16 and 1.26 Å, respectively, and they
occupy the Thomson cubes. The remaining (smaller)
cations are distributed among the tetrahedra and octa-
hedra in a certain way.
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In the original structure of La3Nb0.5Ga5.5O14, nio-
bium and gallium (ionic radii of Nb5+ and Ga3+ are,
respectively, 0.64 and 0.62 Å) randomly occupy octa-
hedra (next-in-size polyhedra). The remaining gallium
ions are positioned in the two types of tetrahedra. This
model was proved by the least-squares refinement of
the structure. The octahedron occupancy was found to
be (Nb0.50Ga0.50). This was reliably established by the
X-ray method, because the difference in the number of

a
b

c

Fig. 1. Model of atomic structure of langasite. Layers of two
types alternate perpendicularly to the crystal c axis; one is
composed of the separate octahedra and large cations’ and
the other is composed of the crystallographically indepen-
dent tetrahedra of two types.
Coordinates (in the right-handed system), point symmetries (S), site multiplicities (n), and equivalent thermal parameters (B)
of the basis atoms in the La3Nb0.5Ga5.5O14 and Sr3Ga2Ge4O14 structures

Atoms S n x/a y/a z/c B

La3Nb0.5Ga5.5O14

La 2 3 0.42459(2) 0 0 0.678(3)

(Nb0.50Ga0.50) 32 1 0 0 0 0.687(8)

Ga2 3 2 1/3 2/3 0.53124(7) 0.605(6)

Ga3 2 3 0.76176(4) 0 1/2 0.790(7)

O1 3 2 1/3 2/3 0.1784(5) 0.92(4)

O2 1 6 0.4563(3) 0.3088(3) 0.3054(3) 1.14(5)

O3 1 6 0.2188(3) 0.0773(3) 0.0727(3) 1.16(5)

Sr3Ga2Ge4O14

Sr 2 3 0.57683(2) 0 0 0.719(3)

(Ge0.87Ga0.13) 32 1 0 0 0 0.650(4)

Ge 3 2 2/3 1/3 0.47974(4) 0.553(3)

(Ge0.38Ga0.62) 2 3 0.23643 0 1/2 0.634(3)

O1 3 2 2/3 1/3 0.8187(3) 0.86(2)

O2 1 6 0.5408(1) 0.6994(1) 0.6687(2) 1.03(2)

O3 1 6 0.7874(1) 0.9132(1) 0.2301(2) 1.14(2)
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electrons in these atoms Z(Ga) = 31 and Z(Nb) = 41 is
large, while the X-ray scattering intensity is propor-
tional to the square of this number. Next, a possible
positional splitting (small difference in coordinates)
was checked for the Ga and Nb atoms in octahedra, the
only polyhedra in this structure that are randomly occu-
pied by the atoms of two sorts. An analysis of the dif-
ference electron density map did not reveal any traces
of splitting.

The identification of the Ga and Ge atoms in the
Sr3Ga2Ge4O14 structure is hampered because of their
neighborhood in the periodic table: Z(Ga) = 31 and
Z(Ge) = 32. The ionic radii of these elements are

Fig. 2. Structure of Sr3Ga2Ge4O14. Least-squares refine-
ment of occupancy factors for Ga and Ge in tetrahedra and
octahedra with scan step x = 0.1. The minimum of the dis-
crepancy factor R corresponds to the occupancy factor x =
0.87 for Ge in (Ge0.87Ga0.13) octahedron and the occupancy
(Ge0.38Ga0.62) for each of the three tetrahedra.
r0(Ga) = 0.62 Å and r0(Ge) = 0.53 Å in the octahedral
oxygen environment and r1(Ga) = 0.47 Å and r1(Ge) =
0.39 Å in the tetrahedra. The challenge was to distribute
two Ga and two Ge atoms among one octahedron and
three tetrahedra arranged on the twofold axes. The mul-
tiplicity values for Ga and Ge in the tetrahedra and octa-
hedra were determined by least-squares refinement
with a step-by-step scan [12]. The stoichiometric compo-
sition of the Sr3Ga2Ge4O14 crystal with 100% occupan-
cies of all crystallographic sites was taken as a basis for
occupancy refinement. The parameter x was scanned
with step ∆x = 0.1 in the range from 0 to 1.0. At each
fixed x, all remaining structural parameters were
refined by the least-squares method. The residual R as a
function of occupancy factor (x) for Ge in the octahe-
dral site is shown in Fig. 2. The discrepancy between
the experimental and calculated structure amplitudes is
minimal at x = 0.87(9). Therefore, the octahedron occu-
pancy is (Ge0.87Ga0.13), and the occupancies of each of
the three tetrahedra are (Ge0.38Ga0.62). The final refine-
ment of the structural models for the averaged arrays of
experimental data containing, respectively, 1184 and
1149 independent structure amplitudes was performed
by the least-squares method with the anisotropic ther-
mal parameters in harmonic approximation and con-
verged to residual R = 1.32% and Rw = 1.59% for
La3Nb0.5Ga5.5O14 and R = 0.83% and Rw = 0.99% for
Sr3Ga2Ge4O14. The total number of refined parameters
was 37 for each structure. The final fractional atomic
coordinates of the basis atoms, their equivalent isotro-
pic thermal parameters B, and the symmetry and multi-
plicity of atomic positions are given in the table.
a

b

a

b
(a) (b)

Fig. 3. Structure of (a) a layer of the (Nb0.50Ga0.50) octahedra and La polyhedra in the La3Nb0.5Ga5.5O14 structure and (b) a layer
of the (Ge0.87Ga0.13) octahedra and Sr polyhedra in the Sr3Ga2Ge4O14 structure. The triangular octahedron faces perpendicular to
the crystal c axis are turned (a) counterclockwise and (b) clockwise through different angles.
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The space group P321 does not contain screw axes.
The optical activity of langasites is caused by the spe-
cial features of their atomic structure, namely, by the
geometric configurations of octahedra and Thomson
cubes. The structure of a layer composed of the
(Nb0.50Ga0.50) octahedra and La polyhedra (Thomson
cubes) in the La3Nb0.5Ga5.5O14 structure is shown in
Fig. 3a. The analogous layer of the (Ge0.87Ga0.13) octa-
hedra and Si polyhedra in the Sr3Ga2Ge4O14 structure is
shown in Fig. 3b. In a regular centrosymmetric octahe-
dron, the opposing faces (regular triangles) are turned
through 60° relative to each other. One can see from
Figs. 3a and 3b that the upper regular triangular face of
the octahedron in the structure with lanthanum is turned
counterclockwise through 19.3° from its position in a
regular centrosymmetric octahedron. In the
Sr3Ga2Ge4O14 structure, the analogous turn in the layer
is clockwise and equals 12.1°. The absolute values of
specific rotation for the wavelength λ = 0.55 µm are
equal in these crystals to 16.8 and 4.42 deg/mm, respec-
tively [8]. Thus, the specific rotation of the crystals
studied correlates with the degree of deviation from the
centrosymmetric configuration of an octahedron struc-
ture.

We are deeply indebted to B.V. Mill for growing and
kindly providing us with high-quality La3Nb0.5Ga5.5O14

and Sr3Ga2Ge4O14 crystals. We are also grateful to him
for active and fruitful discussion of the results. This
work was supported by the Russian Foundation for
Basic Research (project no. 99-02-17242) and the
Leading Scientific School (project no. 00-15-96633).
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Singularity in High-Frequency Susceptibility
of Thin Magnetic Films with Uniaxial Anisotropy
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A sharp peak of magnetic susceptibility has been observed in the ferromagnetic resonance spectra of uniaxial
magnetic films placed in a planar field directed orthogonal to the easy magnetization axis, along which a pump-
ing high-frequency magnetic field has been oriented. The peak width is considerably narrower than the line
width of the uniform ferromagnetic resonance, and its position in a field equal to the film anisotropy field does
not depend on the pumping frequency. The nature of the peak is associated with a drastic increase in the static
transverse susceptibility of the film in the vicinity of the anisotropy field. It is shown phenomenologically that
the peak can be observed only for quality samples with small angular and amplitude dispersion of the uniaxial
anisotropy. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.70.Ak; 76.50.+g; 75.30.Cr
It is known that one or two resonance peaks,
depending on the pumping frequency, are observed in
the ferromagnetic resonance (FMR) spectrum of mag-
netic films in the single-domain state possessing uniax-
ial magnetic in-plane anisotropy when a planar mag-
netic field is swept perpendicular to the easy magneti-
zation axis (EMA) [1].The magnitude of the resonance
fields for these peaks can be determined from the equa-
tions

(1)

where ω is the circular frequency of the pumping mag-
netic field, γ is the gyromagnetic ratio, Hk is the uniaxial
magnetic anisotropy field, H is the FMR field, and Ms is
the saturation magnetization.

We found another sharp peak in the FMR spectra of
magnetic Co–Ni–P films. Its line width was an order of
magnitude smaller than the line width of the uniform
ferromagnetic resonance. The spectra were measured
from local areas of samples on an automated scanning
FMR spectrometer [2]. The locality of measurements
was determined by the diameter of the measuring hole

ω
γ
---- 

 
2 Hk

2 H2–
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  4πMs Hk+( ), H Hk,≤=

ω
γ
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2

H Hk–( ) 4πMs Hk+( ), H Hk,≥=
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in the microstrip resonator of the detector with an area
of ≈1 mm2.

Magnetic films 0.05–1.0 µm thick were obtained by
chemical deposition from a solution [3] at a tempera-
ture of 96–97°C on substrates 10 × 10 mm2 in size.
Glasses, fused quartz, and single-crystal GaAs wafers
were used as substrate materials, and the structure of
the films was X-ray amorphous, regardless of the sub-
strate material. Microstructural studies of films were
performed on a PRÉM-200 electron transmission
microscope. These studies showed that a film consisted
of microcrystallites 20–60 Å in size. The film composi-
tion was measured in the range Co65–70–Ni32–27P3–5 wt
% and was controlled by X-ray fluorescence analysis
[4]. A planar uniaxial magnetic anisotropy field Hk =
25−30 Oe was induced by a uniform magnetic field H =
3 kOe applied in the substrate plane during film depo-
sition. Measurements of magnetic properties in local
areas of samples [5] showed their high uniformity in the
central part ~6 × 6 mm2 in size. For example, the effec-
tive saturation magnetization for a sample 0.3 µm thick
varied from point to point within the range as small as
Ms = 1100 ± 20. The deviation of the directions of the
easy magnetization axes in local areas of the film did
not exceed ±0.4° , and the deviation of the anisotropy
field from the average Hk = 28 Oe was less than 0.5 Oe.
Ferromagnetic resonance spectra measured for this
sample at three pumping frequencies in its central area
001 MAIK “Nauka/Interperiodica”
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are presented in Fig. 1. The magnetic field in the exper-
iment was oriented strictly perpendicular to the easy
magnetization axis. Regardless of the pumping fre-
quency, an intense sharp peak is observed in all spectra
at the same magnetic field equal to the uniaxial mag-
netic anisotropy field Hk = 28 Oe. Its width is consider-
ably smaller than the line width of the uniform mag-
netic resonance. The dependences of the resonance fre-
quency of the uniform ferromagnetic resonance for the
sample area under study calculated by the formulas in
Eq. (1) are shown in Fig. 2. Points present the results of
measurements. The vertical dashed line connects the
points corresponding to the maximal susceptibility of
the new peak found in the FMR spectrum. It should be

Fig. 1. Ferromagnetic resonance spectra at various pumping
frequencies.
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noted that the amplitude of this peak drops rapidly with
decreasing pumping frequency below 1 GHz because
of its suppression by the uniform ferromagnetic reso-
nance peaks moving closer together. As a result, this
peak is hardly observed at a frequency of 0.2 GHz. With
increasing pumping frequency above 2.6 GHz, the peak
amplitude drops monotonically; this, evidently, can be
explained by the manifestation of the skin effect. It is
also important to note that the peak found in our work
virtually disappears if the easy magnetization axis devi-
ates from the orthogonality to the field H in one or
another direction by only 1° (Fig. 3).

The revealed regularities in the behavior of the peak
found in this work allow the suggestion that its nature
is associated with the static susceptibility of the mag-
netic film. Actually, a kink is observed in the curve of
film magnetization perpendicular to the EMA at a mag-
netic field equal to the anisotropy field of the sample
[1]. This kink demonstrates instability of the magnetic
moment at this point. Therefore, it is reasonable to
expect here an increase in the transverse magnetic sus-
ceptibility.

Consider a model of an infinite magnetic film in the
x–y plane, in which an external magnetic field H is
directed at an angle θH to the x axis, and the easy mag-
netization axis of uniaxial magnetic anisotropy is
directed at an angle θn to x. In this case, the equilibrium
angle θM that characterizes the slope of the magnetiza-
tion vector Ms to the x axis is determined from the equa-
tion

(2)H θH θM–( )sin
1
2
---Hk 2 θn θM–( )sin+ 0.=

Fig. 2. Dependence of the resonance frequencies on the
FMR field.
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Equation (2) is obtained from the minimum condition
for the free energy density of the film

(3)

Here, M is the magnetic moment vector, n is the unit

vector that coincides with the EMA direction, and  is
the tensor of demagnetization coefficients. This tensor
is determined by the shape of the sample, and it has
only one component Nzz = 4π in the case of a magnetic
film.

The static magnetic susceptibility of the film

(4)

F – M H⋅( ) 1
2
--- M N M⋅ ⋅( )

Hk

2M
-------- M n⋅( )2– .+=

↔

N
↔

χ m/h,=

Fig. 3. FMR spectra for various orientation angles of the
easy magnetization axis.
where m is the deviation of the magnetization vector
from an equilibrium under the action of a test magnetic
field h. It can be calculated from the solution of the
equation

(5)

where Heff = dF/dM. This equation is reduced to an
equation of the third degree in the quantity ψ = m/Ms.
In the general case, this equation takes the form

(6)

The dependence of the transverse magnetic suscep-
tibility of the film on the external magnetic field
(curve 1) obtained by numerically solving Eq. (6) is
presented in Fig. 4 for the case θH = π/2 and θn = 0. The
following parameters of the film area, the experimental
results for which are presented in Figs. 1–3, were used
in the calculations: saturation magnetization Ms =
1100 G, anisotropy field Hk = 28 Oe, test field h =
0.1 Oe. It is evident that the calculated curves, as well
as the experimental data, exhibit a pronounced sharp
peak of susceptibility at a magnetic field equal to the
anisotropy field. Moreover, as well as in the experimen-
tal results, the calculation indicates that the peak of sus-
ceptibility almost disappears if the easy axis deviates

M Heff×[ ] 0,=

ψ3 h θH θM–( )cos Hk 2 θn θM–( )sin+

Hk θn θM–( )sin
2

-----------------------------------------------------------------------------------ψ2+

+ 2
H θH θM–( )cos Hk 2 θn θM–( )cos h θH θM–( )sin–+

Hk θn θM–( )sin
2

-------------------------------------------------------------------------------------------------------------------------

× ψ 2
h θH θM–( )cos

Hk θn θM–( )sin
2

---------------------------------------.=

Fig. 4. Field dependences of magnetic susceptibility calcu-
lated numerically: (1) without anisotropy dispersion,
(2) only amplitude dispersion of 1 Oe, and (3) only angular
dispersion of 1°; dashed line designates that both angular
and amplitude dispersions are present; and dots mean that
dispersion is absent, but the EMA deviates by 1° from the
initial direction.
JETP LETTERS      Vol. 74      No. 4      2001



SINGULARITY IN HIGH-FREQUENCY SUSCEPTIBILITY 229
by only one degree (θn = ±1°) from the initial direction
(θn = 0) (see the dotted line in Fig. 4.) Our investiga-
tions also showed that the susceptibility monotonically
grows as the anisotropy field decreases. It follows from
these facts that both the angular and amplitude disper-
sions of uniaxial magnetic anisotropy must affect the
susceptibility peak [6]. These dispersions may be sig-
nificant in real samples because of imperfections in the
technology of their preparation.

In order to estimate the anisotropy dispersion effect
on the peak of magnetic susceptibility, we will use a
Gaussian distribution for both the anisotropy field Hk

and the direction of the easy magnetization angle θn [7].
The dependences of the transverse magnetic suscepti-
bility on the external magnetic field also obtained by
numerical calculations are shown in Fig. 4 for the cases
when only the amplitude anisotropy dispersion ∆k =
1 Oe (curve 2), only the angular anisotropy dispersion
∆θ = 1° (curve 3), and both the angular and amplitude
dispersions of the same values (dashed line) are present
in the film. It is evident that, if even a small angular dis-
persion of the uniaxial magnetic anisotropy occurs in
the sample, the susceptibility peak under study almost
disappears. This proves the fact that the effect found in
this work can be observed only in high-quality samples.
It should also be noted that a dispersion of anisotropy
shifts the film susceptibility maximum toward the
region of higher fields.

Note that, under the condition that |H – Hk | @ h, the
terms of the second order of smallness can be neglected
when Eq. (5) is solved for the case when θH = π/2 and
θn = 0 in the absence of the dispersion of uniaxial mag-
netic anisotropy.

Finally, we obtain

(7)

(8)

It is seen from Eqs. (7) and (8) that the dependence
χ(H) in the region of “weak” fields is stronger than the
same dependence in the region of “high” fields. This
explains the asymmetry of the right and left slopes
observed in the field dependence of the susceptibility
numerically calculated without approximations (see
Fig. 4). It is interesting that the occurrence of an ampli-
tude dispersion in the magnetic anisotropy of the film
decreases the asymmetry of the slopes of the χ(H)
curve.

χ
MsH

Hk
2 H2–

-------------------, H Hk,<≈

χ
Ms

H Hk–
-----------------, H Hk.>≈
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In the case when H = Hk, Eq. (6), under the condition
that θH = π/2 and θn = 0, takes the simple form

(9)

Taking into account that ψ = m/Ms and h/Hk ! 1, we
obtain the equation for the maximal susceptibility

(10)

Approximate Eq. (10) indicates that the maximal mag-
netic susceptibility decreases as (h)–2/3 with increasing
test field, and it decreases as (Hk)–1/3 with increasing
uniaxial magnetic anisotropy field. These regularities
were confirmed sufficiently well by numerical calcula-
tions carried out without approximations.

Thus, a theoretical analysis showed that the narrow
susceptibility peak found in the FMR spectrum is due
to a drastic increase in the static transverse magnetic
susceptibility of the film at the point of the instability of
the magnetic moment observed in the field H = Hk. In
this field, a kink is observed in the magnetization curve
[1], which is leveled off with increasing angular and
amplitude dispersion of anisotropy. The calculation
also showed that the susceptibility peak almost disap-
pears when the angular dispersion of the anisotropy
field ≥1°. Therefore, in spite of the high quality of the
obtained films, the effect is revealed only in the local
areas of samples where the dispersion of anisotropy is
sufficiently small. A signal due to static susceptibility is
also seen in Permalloy films with uniaxial magnetic
anisotropy that were obtained by vacuum sputtering in
a magnetic field. However, its amplitude is almost two
orders of magnitude smaller than the amplitude of the
uniform ferromagnetic resonance signal. This is
explained by the relatively high angular dispersion of
anisotropy in these films.

It is important to note that the effect of an increase
in static susceptibility in the field H = Hk found in this
work can be observed only at relatively high frequen-
cies in the microwave range when the resonance fields
of the uniform ferromagnetic resonance peaks are suf-
ficiently distant from Hk (see Fig. 2). As the pumping
frequency decreases, the uniform ferromagnetic reso-
nance approaches the static susceptibility peak and sup-
presses it.

In our opinion, the static susceptibility peak studied
in this work provides an explanation for the sharp
increase in amplitude of the nuclear magnetic reso-
nance signal observed in anisotropic cobalt films [8, 9].
This effect was also observed in the field equal to the
anisotropy field when a film was magnetized perpen-
dicular to the easy magnetization axis. In this case, the
signal virtually disappeared when the magnetic field
deviated from the orthogonal direction by only 1°.

The authors are grateful to V.A. Ignatchenko for a
fruitful discussion of the results of this work.
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The conductivity of two-dimensional electron systems with low carrier concentration is considered on the basis
of the previously suggested model (Fermi liquid with a soft mode) under the assumption that the equilibrium
in each of the (fermion and boson) subsystems is established faster than the impurity relaxation and the relax-
ation between the subsystems (hydrodynamic approximation). The conductivity of the system depends on three
characteristic times: τ1(τ2) is determined by the fermion (boson) impurity scattering and τ12 is determined by
the friction between the subsystems; the respective temperature dependences are obtained. The conductivity is

related to the relaxation time τ in the usual way, and τ obeys the relationship τ–1 =  + (τ2 + τ12)–1. It follows
from the results obtained that the resistivity of pure samples should increase with temperature and tend towards
saturation. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.27.+a; 71.30.+h

τ1
1–
In recent years, experimental and theoretical studies
have emerged which are devoted to the two-dimen-
sional low-density electron systems undergoing metal–
insulator transition upon lowering the concentration of
charge carriers. Various explanations were offered for
this phenomenon and for the temperature, concentra-
tion, and magnetic-field dependences of conductivity
(see review [1]). In many works, an important role of
Coulomb interaction between carriers is emphasized;
estimates suggest that this interaction may become
stronger than the Fermi energy, and this fact is used, in
one way or another, by many authors (see paper [2],
which is not cited in review [1]).

In such a system, the correlation effects are a forti-
ori strong, and one can assert that, as in a Wigner crys-
tal, there is a short-range order in the carrier arrange-
ment, so that this system can be referred to as a Wigner
liquid. It is natural to expect that this fact should mani-
fest itself in the spectrum of elementary excitations, and
the question is what these manifestations are. In [3], the
idea is proposed that a new elementary excitation
branch, a so-called “soft mode,” may appear in such a
system, so that, in addition to the Fermi-type excita-
tions (fermions) that are inherent in Fermi liquids, low-
energy Bose-type excitations with finite momenta may
appear. The number of new excitations (bosons) and,
hence, their contribution to the resistance depend on
temperature, as was demonstrated in [3] for the sim-
plest model of the system.

To gain more insight into the influence of bosons on
the kinetic and other properties of the system, one
should realize how the problem can be formulated in
more general form than that in [3]. The corresponding
0021-3640/01/7404- $21.00 © 20231
phenomenological model was suggested in [4], where
the temperature dependences of the equilibrium quasi-
particle spectra were calculated. The results obtained in
[4] are used in this work with the object of determining
the temperature dependence of resistance in the metal-
lic state.

Equations of motion. The problem is not only that
there are two subsystems whose properties depend on
temperature but also that the quasiparticle energy
changes when the system moves, as contrasted to an
ideal gas. This occurs in every system where interaction
plays an important role. For example, in the Landau
theory of Fermi liquid, the fermion energy for the mov-
ing system transforms as

(1)

where ξp is the fermion energy in the system at rest, u is
the liquid velocity, m is the mass of bare fermions, and
m* is the fermion effective mass that differs from m due
to the interaction between particles. The energy refers
to the rest (laboratory) frame.

In the soft-mode model, the above relationship is
modified because of the influence of bosons, for which
this effect should also be taken into account. This prob-
lem is solved by introducing the terms allowing for the
motion of different subsystems, which is specified by
the sum of operators H3 and H4 defined in [4], namely,

ξp ξ̃p ξp pu( ) 1 m
m*
-------– 

  ,+=

H3 H4
1
V
--- δn p( ) pq( )

ρ
-----------βq

+βq

p q,
∑+
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(the constant term is omitted). The following notation is
used in Eq. (2): δn(p) is the difference between the fer-
mion distribution function and the equilibrium func-

tion; (βq) is the boson creation (annihilation) opera-
tor; the symbol 〈…〉  denotes averaging over the system
state; n is the carrier concentration; pF is the Fermi
momentum; and V is the volume (area) of the system.
The summation over momenta includes also the sum-
mation over the fermion spin and the valley number (in
the multivalley case), and the multiplier κ in the expres-
sion for n corresponds to the multiplicity of level
degeneracy {κ = 4 for the (100) Si MOSFET surface:
two spin projections and two valleys [1]}. It is assumed
that the fermion distribution function is independent of
spin (the magnetic field is absent) and of valley number
Expressions (2) are in excess of what is inherent in the
ordinary Fermi liquid and leads to Eq. (1).

Using Eq. (2) and the Fermi liquid correction of
type (1), one obtains the following expressions, instead
of the equilibrium fermion ξp and boson ωp energies:

(3)

Here, P is the density (i.e., per unit area) of the total
momentum and P1 is the momentum density in the fer-
mion subsystem. These results depend only on the cited
characteristics and not on the particular form of correc-
tions to the distribution functions.

Let us simplify the problem. One of the possible
ways is to assume that the fermion np and boson Nq dis-
tribution functions are known. We specify them as

(4)

where the fermion energy ξp is measured from the
Fermi energy (a change in the chemical potential is
quadratic in velocity u1 and, hence, can be ignored).
Equations (4) are valid in the hydrodynamic approxi-
mation, which implies that the equilibrium in each of
the subsystems (fermion and boson) is established
faster than the impurity relaxation and the relaxation
between the subsystems. However, the results obtained
for the conductivity prove to be correct in the low- and
high-temperature limits, irrespective of whether this
approximation is valid or not.

+
1
V
--- βq '

+ βq '〈 〉 q 'q( )
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The relationship between the momentum density P2
in a magnon subsystem and the velocity u2 is taken in
the form

(5)

where the quantity ρ2 could be called the boson normal
component if the system was superfluid.

Let us now write the equations of motion. One of
them has the following general form:

(6)

where e is the charge and E is the electric field. The first
term on the right-hand side stands for a change in
momentum due to the quasiparticle collisions with
impurities. Let us first consider this contribution for fer-
mions. For the equilibrium distribution function with

energy  given by Eq. (3), this contribution is zero. In
actuality, the fermion distribution function is different
[see Eq. (4)], so that the desired term is proportional to
the difference in momenta corresponding to these two
distributions. The result can conveniently be written as

(7)

Analogous considerations for bosons give

(8)

In deriving these relationships, the velocity dependence
was written in the explicit form, and the rest of the
expression was written so that the possible temperature
dependences are contained only in the relaxation times τ1
and τ2, which will further enter the expression for con-
ductivity.

After Eq. (6) is specified, we can write the equation
for the boson momentum. In doing so, one should take
into account that bosons are subject only to the friction
forces (due to the interaction with impurities and fermi-
ons) and not to the electric field. The corresponding
equation is

(9)

where the second term on the right-hand side corre-
sponds to the friction with fermions. To determine the
form of this contribution, note that it vanishes at u2 = 0
from the general considerations, as also follows from
the energy conservation law in collisions of fermions
and bosons with energies (3). For this reason, this con-
tribution is proportional to u2, and, similar to Eqs. (7)
and (8), it can be written as

(10)
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Collecting together Eqs. (6)–(10) and passing from
momenta to velocities using Eqs. (3) and (5), one
arrives at the following equations in the homogeneous
case:

(11)

It is straightforward to obtain expressions for the cur-
rent density (j = neu) and the conductivity σ; in the sta-
tionary case,

(12)

An unusual combination of two times (τ2 + τ12) in this
expression is noteworthy. Nevertheless, it must be so,
because if one of these times tends towards infinity,
then the boson characteristics must not affect conduc-
tivity. The fact that this condition is met in Eq. (12)
gives evidence for the validity of the result. If one of
these times tends towards zero, one also obtains the
expected result.

It is seen from Eqs. (11) that the expression for con-
ductivity σ(ν) in an alternating field with frequency ν
can be obtained upon substituting in Eq. (12)

Temperature dependences. Let us start with the
boson relaxation time τ2. This quantity was considered
in [3], where the expression for τm was obtained for the
bare boson spectrum Ωq. In the case at hand, this
expression is also valid, though for the renormalized
spectrum [4], i.e., upon substituting Ωq  ωq. This
gives for τ2

(13)

Here, ni is the impurity concentration and ω0 and q0 are
the parameters of the renormalized boson spectrum,

The expression for τ2 deduced in [3] is valid if the inter-
action with impurities is strong enough (but the impu-
rity concentration is low to provide high mobility); such
a situation likely occurs for two-dimensional electrons
in metal–insulator–semiconductor structures (e.g., Si
MOSFET [1]), but the general case will not be dis-
cussed in this work.
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Let us turn to the fermion relaxation time τ1.
Assume that it is known at zero temperature, τ1(0).
Then the temperature dependence of τ1 appears due to
the effective mass m*, which differs from the zero-tem-
perature effective mass  [4] and enters the expres-
sion for the fermion relaxation time quadratically.
Thus, one has

(14)

The effective mass squared appears for the following
reasons. Equation (7) for the fermion distribution func-
tion (4) can be deduced if the momentum relaxation
caused by impurity scattering obeys the Fermi “golden
rule” (as, e.g., it was assumed for bosons in [3]). The
corresponding expression includes a double sum over
the fermion (initial and final) momenta, so that the
square of effective mass appears after passing to the
integration with respect to energies.

Let us now turn to τ12. To calculate a change in the
boson momentum owing to the interaction with fermi-
ons [Eq. (10)], it is convenient to apply the Fermi
golden rule. The corresponding expression is

(15)

where the multiplier κ allows for the spin and valley
degeneracy [see Eq. (2)]. Since the boson momentum is
larger than 2pF, only the scattering processes are possi-
ble and not the boson emission or absorption. The
matrix element M is

Here, the dependence on the boson energy is written in
the explicit form, while the possible angular depen-
dence of W is of no importance.

Analysis of Eq. (15) yields the following expression
for τ12:

(16)

This expression determines the desired temperature
dependence. The phenomenological parameter τ12(0) is
a certain temperature-independent characteristic of the
substance.
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To obtain the ultimate answer to the question of tem-
perature dependence of relaxation times, one should
supplement Eqs. (13), (14), and (16) with the expres-
sions for the spectra obtained in [4], namely,

(17)

(Ω0 is the gap in the boson spectrum at zero tempera-
ture). The dimensionless constants α and γ are related
by the relationship α ≈ γ2/κ2; the estimate (as in [4], but
taking into account the multivalley character of the
spectra) suggests that, probably, γ ~ 1; ω1 is a certain
constant of energy dimension (it is determined by the
interaction of bosons).

In the high-temperature limit T @ ω0, Eq. (17) gives

It is assumed that both temperature and ω1 are small
compared to the degeneracy temperature. The assumed
smallness of ω1 can be justified by the following spec-
ulation: if this is not so, then the boson–boson interac-
tion is anomalously strong, which would be unreason-
able.

If ω1 is proportional to Ω0, then the temperature

behavior of the equilibrium quantities (ω0/Ω0, m*/ )
is governed by the ratio T/Ω0 and described by a univer-
sal function, which seems to be reasonable. However,
this is scarcely true for the resistance, because it
depends on the other parameters.

The following general conclusions can be drawn
about the resistance. The time τ12(0) in Eq. (16) charac-
terizes the substance and is insensitive to impurities. By
contrast, τ1(0) and τ2(0) depend on the interaction with
impurities. The following inequality should be fulfilled
in a sufficiently pure sample:

(18)

The experimental dependences are usually mea-
sured for the resistivity  = 1/σ. Below, two limiting
cases are considered,  at T = 0 and  at T @ ω0. In

the first case, only τ1 = τ1(0) is finite, while in the sec-
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τ12 0( ) τ1 0( ), τ2 0( ).<

ζρ
ρ0ζρ ρ∞ζρ
ond case only τ12 is retained, because τ1 increases with
temperature, τ2 decreases, whereas τ12 tends towards a
constant value which can be determined by the approx-
imate evaluation of the integrals in Eqs. (16) and (17).
Therefore, the resistivities in the above limiting cases
are

(19)

One can see from Eqs. (18) and (19) that the inequality
 >  is possible, and this is just what is observed in

the experiment. The inequality should strengthen with
an increase in mobility, because the limiting resistivity 

does not depend on the sample purity (it is determined
by the fermion scattering from immobile bosons),
while  is determined by the fermion scattering from

impurities and decreases for more pure samples.

Further conclusions can be drawn only after calcu-
lations with particular values of the phenomenological
parameters involved in the problem; this is beyond the
scope of this work. It should merely be pointed out that
both monotonic and nonmonotonic behaviors of resis-
tivity between limiting values (19) are possible.

Note in conclusion that the temperature depen-
dences were obtained in this work in the hydrodynamic
approximation. One can show, using the general
expression for the corrections to the distribution func-
tion, instead of those following from Eq. (4), that the
results obtained for the high-temperature conductivity
are also valid in the general case (this is evident for the
low-temperature limit, where the contribution from
bosons can be neglected). This issue, as well as a com-
parison with the experiment, will be discussed else-
where in more detail.

I am grateful to A.V. Chaplik and M.V. Éntin for dis-
cussion. This work was supported in part by the Rus-
sian Foundation for Basic Research (project no. 00-15-
96800) and the State Program of the Russian Federa-
tion, “Physics of Solid-State Nanostructures.”

REFERENCES

1. E. Abrahams, S. V. Kravchenko, and M. P. Sarachik, Rev.
Mod. Phys. 73, 251 (2001).

2. B. Spivak, cond-mat/0005328.

3. É. G. Batyev, Pis’ma Zh. Éksp. Teor. Fiz. 72, 727 (2000)
[JETP Lett. 72, 506 (2000)].

4. É. G. Batyev, Pis’ma Zh. Éksp. Teor. Fiz. 73, 635 (2001)
[JETP Lett. 73, 566 (2001)].

Translated by V. Sakun

ρ0
m

ne2
-------- 1

τ1 0( )
------------, ρ∞

m

ne2
-------- 2

γ2
----- 1

τ12 0( )
--------------.= =ζρ ζρ

ρ∞ζρ ρ0ζρ

ρ∞ζρ

ρ0ζρ
JETP LETTERS      Vol. 74      No. 4      2001



  

JETP Letters, Vol. 74, No. 4, 2001, pp. 235–239. From Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 74, No. 4, 2001, pp. 258–262.
Original English Text Copyright © 2001 by Dabaghian, Jensen, Blümel.

                                                                                                                     
One-Dimensional Quantum Chaos:
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We present quantum graphs with remarkably regular spectral characteristics. We call them regular quantum
graphs. Although regular quantum graphs are strongly chaotic in the classical limit, their quantum spectra are
explicitly solvable in terms of periodic orbits. We present analytical solutions for the spectrum of regular quan-
tum graphs in the form of explicit and exact periodic orbit expansions for each individual energy level. © 2001
MAIK “Nauka/Interperiodica”.

PACS numbers: 05.45.Mt; 03.65.Sq
Consider a point particle moving along a network of
bonds and vertices. Schematically, the network is rep-
resented by a graph Γ (see Fig. 1 for an example),
which consists of NB bonds and NV vertices. The verti-
ces are denoted by Vi; a bond connecting vertices i and
j is denoted by Bij. The set of bonds and vertices of Γ
defines its geometry. We define a set of the bond poten-
tials, Uij(k, x), where x and k are, correspondingly, the
coordinate and the momentum of the particle on the
bond Bij. The vertices of Γ may be equipped with δ
sources among others. The geometry of Γ does not
uniquely define the dynamics of a particle on Γ. In fact,
since for any given geometry the graph may be
“dressed” with arbitrary bond and vertex potentials,
there exist infinitely many “dynamical realizations” of
Γ. We call the set of bond and vertex potentials the
“dynamical dressing” of the graph. Previously [1–5],
mainly the “bare-bond” graphs were studied, where the
particle moves freely on the bonds.

In this paper, we focus on cases that have no turning
points on the bonds; i.e., the energy of the particle is
larger than all of the bond potentials, E > Uij(x, k), x ∈
Bij. A simple way to implement this condition is to
require that the system is scaling [6–10]. This implies
Uij(x, k) = λij(x)k2, where the functions λij(x) are
bounded for all x. In this paper, we consider only simple
cases where the functions λij(x) are x independent con-
stants,

(1)Uij x k,( ) λ ijk
2.=

1 This article was submitted by the authors in English.
0021-3640/01/7404- $21.00 © 20235
This is very similar to moving on a free graph except for
substituting the bond lengths with the action lengths

(2)

where Lij is the length of the bond Bij, and βij = .
Scaling assumption (1) is not an oversimplification of
the problem. Plenty of room is left for very interesting
phenomena. Moreover, scaling quantum systems of this
kind are the analogues of certain electromagnetic ray-
splitting systems which have already been investigated
experimentally in the laboratory [7–9].

For all but the most trivial graphs, i.e., linear or cir-
cular graphs with vanishing bond and vertex potentials,
the classical motion on a graph, independently of any
particular dressing, is fully chaotic with positive topo-
logical entropy [11]. This means that the number of
possible periodic orbits traced by the particle increases
exponentially with their lengths. If no dynamical turn-
ing points are present, the topological entropy is inde-
pendent of the dynamical dressing and depends only on
the geometry of the graph. Since at any vertex different
from a “dead-end” vertex the classical particle has to
choose randomly between several possibilities (reflec-
tion, transmission, branching), the particle’s dynamical
evolution resembles a stochastic Markovian process.

Given their classical chaoticity, it is surprising that
the density of states of quantum graphs can be obtained
exactly in terms of periodic orbit expansion series
[1, 3–5]. Furthermore, quantum graphs are consider-
ably “more integrable” than all the previously known
exactly solvable quantum systems. For example, we
will show below that for a certain class of quantum
graphs—we call them regular quantum graphs—there
exists an explicit and exact periodic orbit expansion for
every quantum energy level. In other words, although

Sij
0 βijLij,=

1 λ ij–
001 MAIK “Nauka/Interperiodica”
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the classical limit of regular quantum graphs is chaotic,
each individual level of their spectra can be obtained
exactly and explicitly via an analytical formula contain-
ing an explicit sum over the periodic orbits of the graph.

Fig. 1. A generic (quantum) graph with six vertices and ten
bonds.

Fig. 2. (a) Simple step potential, a basic problem in one-
dimensional quantum mechanics. Also shown are examples
of Newtonian N and non-Newtonian (NN) periodic orbits
used in the periodic orbit expansion of its energy eigenval-
ues (see text). (b) Three-vertex hydra graph corresponding
to the step potential above.

(a)

(b)
To the authors’ knowledge, this is the first time that the
spectrum of a quantum chaotic system is obtained both
exactly and explicitly.

The formal definition of regular quantum graphs is
based on the properties of the spectral equation [3–5]

(3)

where S(k) is the scattering matrix of the graph [3]. The
modulus of complex function (3) is a trigonometric
polynomial of the form

(4)

where

(5)

and

(6)

is the total reduced action length of the graph Γ, and the
constant frequencies Si < S0 naturally emerge as combi-
nations of reduced classical actions (2). Under the scal-
ing assumption, the coefficients ai, γ0, and γi are con-
stants.

We now define regular quantum graphs. They sat-
isfy

(7)

The motivation for this definition is the following: it
allows us to solve Eq. (4) formally for the momentum
eigenvalues kn,

(8)

where µ is a fixed integer chosen such that k1 is the first
non-negative solution of Eq. (4). Because of Eq. (7), the
second term in Eq. (8) assumes only values between u
and π/S0 – u, where 0 < u = /S0 < π/2S0. Thus,
for regular graphs, the points

(9)

are guaranteed not to be roots of Eq. (3) and serve as
separators between root numbers n and n + 1. Obvi-
ously, function (9) reflects the average behavior of the
levels of the momentum. It is simply the inverted aver-

age staircase,  = . Geometrically, points (9)
are the intersection points between the staircase func-
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tion N(k) ≡  and the average staircase

, resulting in the crossing condition

(10)

Crossing condition (10) is illustrated in Fig. 3.

The existence of separating points (9) implies that
roots (8) are confined to the “root zones,” or “root inter-

vals” In = [ , ], n = 1, 2, … . If α ≤ C < 1 holds
(C constant), Eq. (8) implies the existence of finite-

width root-free “forbidden zones” Rn = (  – u,  + u)

surrounding every separating point , where no roots
of Eq. (3) can be found. The roots of Eq. (3) can only

be found in the “allowed zones” Zn = [  + u,  –
u], which are subsets of the root intervals In =

[ , ]. For C  1, the width of the forbidden
regions shrinks, u  0, and the allowed zones occupy
the whole interval, Zn  In.

Since S0 is the largest action in Eqs. (4) and (5), it
can be shown [12] that kn is the only root in Zn. There-
fore, there is exactly one root kn inside of Zn ⊂  In, and
this root is bounded away from the separating points

 and  by a finite interval of length 2u.

The existence of separating points (9) and the root-
free zones Rn are the key for obtaining an explicit and
exact periodic orbit expansion for every root of Eq. (3).
The starting point for obtaining the explicit expressions
is the exact periodic orbit expansion for the density of

states, ρ(k) ≡ . As shown in [1, 3–5], it

can be written explicitly as

(11)

Here,  is the average density of states, ν is the rep-

etition index, and  and Ap are, correspondingly, the
reduced action and the weight factor of the prime peri-

odic orbit labeled by p. In the scaling case,  and Ap

are k-independent constants [12]. Multiplying the den-

sity of states by k and integrating from  to 
yields the value of the root contained between these
separating points,

(12)
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Performing the same procedure using series expansion
representation (11) and crossing condition (10), we
obtain

(13)

where ωp = /S0 and the Ap’s are assumed to be real
(no vertex potentials).

Since all of the quantities on the right-hand side of
Eq. (13) are known, this formula provides an explicit
representation of the roots kn of spectral Eq. (3) in terms
of the geometric and dynamical characteristics of the
graph. To our knowledge, this is the first time that the
energy levels of a chaotic system are expressed explic-
itly in terms of a periodic orbit expansion. Previously,
explicit formulas for individual energy levels were
known only for integrable systems. In the context of
periodic orbit theory, the energy levels of integrable
systems are given by the Einstein–Brillouin–Keller
(EBK) formula [11]. However, apart from a few excep-
tional cases [13], EBK quantization is only of semiclas-
sical accuracy.

The difference between formulas (11) and (13) is
profound. Density of states (11) allows the computation
of spectral points only indirectly as the singularities of
Eq. (11). Formula (13), on the other hand, allows the
computation of every quantum level individually,
explicitly, and exactly in terms of classical parameters.

In order to demonstrate that the class of regular
quantum graphs is not empty, we present an explicit
example: the one-dimensional scaled step potential
with V0 = λE. A sketch of this potential is shown in
Fig. 3. Physically, this potential is realized, e.g., by a

kn
π
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2
π
--- 1

Sp
0

-----
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∑ Ap
ν

ν2
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2
---νωp 

  πνωpn( ),sinsin
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∞

∑

Sp
0

Fig. 3. The staircase function NN and the average staircase
. For the regular graphs, the average staircase inter-

sects every “stair” of the N(k) graph, with separation (9)

showing as the intersection points  = .

N k( )

N kn( ) N kn( )
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rectangular microwave cavity partially loaded with a
dielectric substance [7–9]. The scaling step potential is
equivalent to the scaling three-vertex linear graph
shown in Fig. 2b. It has two bonds L1 = b and L2 =
β(1 − b); the single scaling constant β [see Eq. (2)] is

given by β = . The spectral equation is given by

(14)

where L = L1 + L2 and r = (1 – β)/(1 + β) is the reflection
coefficient at the vertex V2 between the two bonds. It
defines the eigenvalues kn only implicitly and is usually
solved by graphical or numerical methods. Application
of Eq. (13), however, solves Eq. (14) explicitly in terms
of periodic orbits such as the ones shown in Fig. 2. In
order to apply Eq. (14), we need the coefficients Ap.
They are given by [10, 12]

(15)

where r is the reflection coefficient at the middle vertex
and σ(p) and τ(p) are, correspondingly, the number of
the reflections and the transmissions through it. Since
the reflection coefficient may be positive or negative,
depending on whether the particle scatters from the
right or from the left, the factor (–1)χ(p) is needed to
keep track of how many times it appears with a minus
sign, including the sign changes due to the wall (x = 0
and x = 1) reflections.

In order to illustrate the convergence of series (13),
we computed k1, k10, and k100 of the scaling step poten-
tial including periodic orbits of increasing binary
length q. For the parameters of the potential, we chose
b = 0.3 (see Fig. 2) and λ = 1/2. Figure 4 shows the rel-

ative error  = /  for n = 1, 10, and
100 and q ranging from 1 to 150. We see that even for
small q the relative error is very small, decreasing fur-
ther for large q as a power-law in q. The power of con-

1 λ–

det 1 S k( )–[ ]  = Lk( )sin r L1 L2–( )k[ ]sin–  = 0,

Ap 1–( )χ p( )rσ p( ) 1 r2–( )τ p( )/2
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en
q( ) kn

q( ) kn
exact– kn
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Fig. 4. Relative error  = /  of (13)

(see text) by including periodic orbits up to length q. The
three curves shown correspond to k1, k10, and k100, as indi-
cated in the figure.

en
q( )

kn
q( )

kn
exact

– kn
exact

e

vergence appears to be the same for all three k and is
close to –2. The convergence with q is an important
result. It indicates that, although series (13) is only con-
ditionally convergent, it (i) converges to the correct
result and (ii) is not just asymptotically convergent but
keeps converging when more and more periodic orbits
are included.

Additional examples of regular quantum graphs are
provided by all linear and circular quantum graphs with
at most two bonds per vertex, independently of the
number of vertices. In other words, for any simply con-
nected quantum graph and any dynamical dressing
there always exists a set of scaling constants λij of finite
measure such that regularity condition (7) is fulfilled.
Well-known particular cases of these simply connected
quantum graphs are the “Manhattan potentials,” which
are obvious generalizations of the simple step potential,
shown in Fig. 2a, to arbitrarily many steps inside of the
well and linear chain graphs with scaling δ function
potentials at the vertices.

It should be emphasized that “inverse staircase
expansion” (13) is not just a curious finding, valid for
some simple 1D systems such as quantum graphs. Sim-
ilar explicit series may be obtained for more compli-
cated higher dimensional systems when the following
two key ingredients are available. The first ingredient is
the exact series expansion of density of states (11),
which has already been established for other classically
chaotic systems such as, e.g., quantum billiards [14].
The second ingredient is a (piercing) average staircase
function  or the inverted staircase function 

which intersects every stair of the staircase,  =

N( ) = n, n = 1, 2, … . The intersection points kn then
serve as the separators for the possible root locations,
and the procedure outlined in the text can be used to
find the periodic orbit expansions for individual roots of
the system at hand. In most cases, of course, it is highly
nontrivial to obtain these two necessary ingredients.
The quantum graphs themselves are an excellent illus-
tration of this point. While expansion (11) is valid for
all quantum graphs, it is crossing condition (10) that is
violated when inequality (7) breaks down. The regular
graphs are precisely those for which the line  =
S0k/π + γ satisfies Eq. (10) and allows the application of
the analytical procedure that resulted in explicit for-
mula (13) for the representation and computation of
individual eigenvalues kn.
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The method of ultrahigh-spatial-resolution field-emission projection imaging of nonconducting tips is imple-
mented experimentally. An image of a glass microcapillary tip was obtained for the first time by the nonscan-
ning method with spatial resolution no worse than 20 nm. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 68.37.Vj; 79.70.+q
The methods of field-emission and field-ion micros-
copy make possible the imaging of metallic and semi-
conducting tips with an ultrahigh spatial resolution
(a few nanometers for field-emission version and ang-
stroms, “routine single-atomic resolution,” for field-ion
version), thus providing unique opportunities for
research in surface physics, nanotechnology, etc. (see,
e.g., [1]). These methods are based on the fact that a
radial electric field occurring in the vicinity of tips
directs (projects) emitted electrons or ions onto a detec-
tor. Accordingly, the microscope magnification M is
determined by the ratio of the tip-to-detector distance L
to the radius of curvature r of the tip,

(1)

it can be as high as several millions for submicron tips
(χ is a numerical factor caused by the deviation of the
microscope geometry from an ideal spherical capacitor;
for real instruments, it ranges from 1.5 to 2 [1]).

It was long recognized that high conductivity of tips
is not crucial for the physical implementation of the
projection imaging principle. The equilibrium distribu-
tion of surface charges in insulating tips coincides with
or, at least, is close to the distribution typical of conduc-
tors. In this case, the radial projecting electric field can
also arise, and, hence, field-emission imaging with high
spatial resolution is possible if the ultrahigh sensitivity
allowing the operation with exceedingly weak field-
emission currents is achieved and if the emitted charge
is replenished within a reasonably short time. Neverthe-
less, inspite of the theoretical premises and the possibil-
ity of observing (thermal) field emission from semicon-
ductors with very low conductivity and insulators (see,
e.g., [2–4]), data on the observation of field-emission
images of insulating tips with high spatial resolution
are lacking in the literature, so the question of obtaining
such images remains open. This letter reports the obser-
vation of field-emission images of insulating tips with a
high spatial resolution no worse than 20 nm.

M L/χr,=
0021-3640/01/7404- $21.00 © 20240
Standard World Precision Instruments (Germany)
microcapillaries (quartz glass with resistivity ρ =
1016−1018 Ω cm [5]) with 2-µm- and 100-nm-diameter
holes for fluid ejection and analogous 2-µm-diameter
microcapillaries made from Pyrex-type glass (ρ ≅  2 ×
1014 Ω cm [5]) at the Institute of Cell Biophysics, Rus-
sian Academy of Sciences (Pushchino), were used as
samples for investigation. Such a choice was dictated
not only by the interest in imaging the structure of these
samples but also by the fact that these microcapillaries
are used as active elements (probes) in rapidly pro-
gressing scanning near-field optical microscopy (see,
e.g., [6]), where they are considered as the most suit-
able probes for the implementation of the recently sug-
gested method of near-field optical microscopy based
on the resonance dipole–dipole fluorescence excitation
or quenching in the sample (see our works [7, 8]). The
microcapillaries were glued with silver paste to an elec-
trode, to which voltage U was applied, and placed into
the chamber of a laser projection field-emission micro-
scope, which was described in detail in [9]. The micro-
capillaries were oriented perpendicular to the detector
surface (microchannel plate + phosphorus screen,
working zone 28 mm in diameter; made in Russia); the
image at the detector output was photographed by a
high-sensitivity TV camera and processed on a special-
ized Argus-50 processor (Hamamatsu Photonics C.C.,
Japan). A distance L from the tip to detector was
reduced, as compared to our previous works, from
10−12 to 6 cm, in order to diminish the microscope
magnification and observe the entire image of the
microcapillary tip at the detector.

A series of images successively obtained at a volt-
age U = –4 kV for the tip of a microcapillary with a
2-µm-diameter hole is shown in Fig. 1 (immediately
prior to recording images, the sample was held at a volt-
age of +5 kV for approximately 1 h). One can see that,
first, the hole is clearly seen in all images and, second,
the magnification factor of the microscope increases
with a large time constant t ≅  500–1500 s. The dynam-
001 MAIK “Nauka/Interperiodica”
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t = 0 t = 10 min

t = 25 min t = 35 min

t = 45 min t = 55 min

Fig. 1. Field-emission images of the tip of a quartz glass microcapillary with a 2-µm-diameter channel. The images were obtained
within indicated time intervals after switching the potential. The typical time of recording one image was 5 min. Image size as a
function of time is shown in the graph on the logarithmic scale. In some images, a bright field-emission area is seen in the hole
center. These areas were observed occasionally (especially often immediately after establishing the working potential) and are likely
due to the sporadic ejection of electrons and other charged particles from the capillaries.

20.1

7.4
ics of this increase is illustrated by the graph in Fig. 1.
Note that the last (“quasistationary”) image is close to
that which would be expected for the standard (for con-
ducting tips) magnification of a field-emission micro-
scope [see Eq. (1)] and the screen size.

This dynamics can be interpreted as follows. After
prolonged holding at a positive voltage, charge distribu-
tion in the system becomes close to the electrostatically
equilibrium one. A change in the potential disturbs this
equilibrium, after which the system starts to evolve to a
new equilibrium. During this process, a weak electric
current flows through the system, and the external elec-
tron emission also occurs and produces an image of the
microcapillary tip at the detector. The features of this
image (primarily the magnification factor) are deter-
mined by the transient (nonstationary) potential distri-
bution, and, as the equilibrium is approached, one ulti-
JETP LETTERS      Vol. 74      No. 4      2001
mately obtains the image that is close to the standard
“metallic” image with ultrahigh spatial resolution.

The majority of insulating samples have a small
“residual” bulk resistivity ρ ≤ 1015 Ω cm, which is, nev-
ertheless, sufficient for establishing charge distribution
within a reasonably short time and provides the
required bias on the tip, as we have demonstrated ear-
lier in studying the laser projection photoelectron and
photoion images of LiF- and glass-made tips [9, 10].
The resistance of a cone-shaped sample with angle ϑ
and radius of curvature r of the tip apex is given by the
formula

(2)

while the equilibration time can be estimated using the
Maxwellian relaxation time tM ≅  ρee0. For ρ = 1015 Ω cm
one has tM ≈ 500 s; note that a good agreement between
the experimentally measured time of establishing sur-

R ρ/πr ϑ ,tan=
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face potential (1.5 min) and the Maxwellian time
(1.7 min) was observed precisely for the Pyrex-type
glass [11]. Although a considerable portion ∆U of a
bias of several kilovolts U applied to the tip can be
expended on maintaining the current through the sam-
ple, the bias on the tip U – ∆U is still sufficient to induce
a field emission and create a radial projecting field. For
the typical ∆U = 1 kV and a current of ~300 electrons
per second (which is more than sufficient to produce
images), one has ~3 × 1019 Ω for the maximum possible
resistance, in accordance with the above-mentioned
estimate ρ ≤ 1015 Ω cm for r = 1 µm and  ~ 0.1 [9].ϑtan

(a)

(b)

Fig. 2. (a) Field-emission image obtained at a voltage U =
−4 kV for the tip of a quartz glass microcapillary with a
100-nm-radius hole. (b) Field-emission image of the same
tip coated with a gold layer of thickness 5 nm by ion sput-
tering.
The magnification factor M of the microscope
depends on the voltage drop on the sample (i.e., on the
ratio of ∆U to U – ∆U). This fact (i.e., that the magnifi-
cation factor M for the nonideally conducting samples
is lower than for the metallic tips and that it depends on
the potential distribution over the sample) was already
observed in the practice of field-emission microscopy
(see, e.g., the discussion of the influence of the sample
voltage and field penetration depth on the size of field-
emission images of semiconducting tips [12]). In [13],
a new method of calculating electric fields was sug-
gested for the systems with nonzero voltage drop on the
sample, and it was demonstrated by direct calculation
that the factor M rapidly increases as ∆U decreases, i.e.,
as the charge distribution approaches the form typical
of metals. This allows the qualitative explanation of the
dynamics of field-emission images shown in Fig. 1: the
magnification factor increases as the system
approaches charge equilibrium.

The possibility of observing photoelectron images
of even better insulators, for which the bulk conductiv-
ity cannot provide observable charge-equilibration
times and explain the presence of a rather large bias on
the tip (e.g., for quartz glass), is due, in our opinion, to
the surface conduction processes. It is known that the
surface conductivity of very good insulators is, as a
rule, higher than the bulk conductivity (see, e.g., [11,
14–16]), and the dynamics of establishing surface
potential is much more complex (and, as a rule, much
faster) than follows from the simple models of bulk
conductivity (see, e.g., [11, 14, 17] and references
therein). For example, these times differ by more than
an order of magnitude for PMMA: 15 min and 2.6 h,
respectively [11]. As for quartz and glass, it was shown
in early atomic-force microscopy studies of the charge-
dissipation dynamics at the insulator surfaces that the
redistribution time for a localized charge at the quartz
surface is as short as a few minutes and even seconds,
despite the very low conductivity [18]. Note also that
the processes of surface conduction are particularly
important for the sharpest samples, because the net
resistance of such samples weakly (logarithmically)
depends on the radius of curvature of the tip apex:

(3)

Here, ρs is the surface resistivity (in ohms) and R0 is the
radius of the sample at the site of its fastening to the
metallic electrode. It follows from the above estimates
that the surface resistance of ~2 × 1018 Ω , typical of
many insulators [11, 14–16], is sufficient to observe
field-emission images.

The interaction of the tip surfaces with atoms (ions)
of residual gas and the modification of conductivity in
strong electric fields may also play a certain role. We
are currently performing additional experiments to elu-
cidate these issues.

R
ρs

2π ϑtan
------------------- R0/r.ln=
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In summary, the method of field-emission imaging
of nonconducting tips with ultrahigh spatial resolution
is experimentally implemented. The method is based
on successive registration and analyzing of the field-
emission images recorded as the system approaches
charge equilibrium. The spatial resolution of the
method is determined by the same factors as in the con-
ventional field-emission studies of conducting samples
(the broad energy distribution of emitted electrons) [1]
and is approximately the same.

The efficiency of the method is best illustrated in
Fig. 2a, where the field-emission image of the tip of a
quartz glass microcapillary with a 100-nm-diameter
hole is shown. Such objects can be analyzed neither
with the standard optical microscope nor (without
metal deposition, which makes the capillary unsuitable
for the method of near-field optical microscopy devel-
oped in [7, 8] and for some other applications) with the
electron microscope. For comparison, a field-emission
image of the same tip, though coated with a 5-nm-thick
gold layer by ion sputtering, is also shown in Fig. 2b.
One can see that the quality and magnification of both
images are comparable.
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