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Effects caused by an additional massive scalar field interacting with an inflaton field are analyzed. Inflation is
shown to have two stages, the first of which is dominant and characterized by ultraslow dynamics of the inflaton
field. Constraints on the model parameters are obtained. © 2001 MAIK “Nauka/Interperiodica”.
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The occurrence of inflationary era in the evolution
of the universe seems to be inevitable because it allows
the explanation of a great number of observed facts
[1, 2]. Early inflation mechanisms [3, 4] were based on
the consistent equations of scalar and gravitational
fields. Nevertheless, the simplest inflation models
could not explain the totality of observed data. In par-
ticular, the predictions of the chaotic inflation model
[5, 6] about temperature fluctuations in cosmic back-
ground radiation contradict observations except for a
rather unnatural form of the inflaton field potential (see
also [7]).

At the same time, the interaction of a large number
of various fields existing in nature should give rise to
new phenomena in inflation. Further development of
the theory has led to the emergence of inflation models
involving additional fields, among which are the mod-
els of hybrid inflation [8] and inflation on the pseudo
Nambu–Goldstone field [9]. The interaction of the clas-
sical—inflaton—field with other particles produced by
it is one of the basic elements of some inflation models.
This effect provides a basis for the warm inflation sce-
nario [10], which, however, is not free from flaws [11];
the back effect of the produced particles on the dynam-
ics of inflaton field was considered in [12, 13].

The purpose of this work is to study the back reac-
tion of an additional field on the classical motion of the
basic inflaton field. It is assumed that the additional
field is massive enough for it to be at the minimum of
its effective potential during inflation. Nevertheless, it
is shown below that its influence can noticeably decel-
erate the system’s motion.

In what follows, the simplest form of interaction is
considered allowing the analytical results to be
obtained. Namely, we introduce, apart from the inflaton
0021-3640/01/7405- $21.00 © 20247
field ϕ, an additional scalar field χ and write the action
in the form

(1)

where u(ϕ) is a polynomial of degree no higher than
three for the renormalizable theories. In what follows,
u(ϕ) = ϕ2 is taken for definiteness. The first power of the
field χ in the interaction is necessary in order to obtain
compact analytical results valid for an arbitrary cou-
pling constant κ, rather than the expansion in powers of
this constant. The interaction of this type arises in
supersymmetric theories and is considered in hybrid
inflation scenarios [14]. Dolgov and Hansen [12] used
this type of interaction in studying the back effect of
produced particles on the motion of a classical field.

The set of the classical equations for both fields is
written as

(2)

Let us consider the case of heavy χ particles. In the
inflationary era, this means that mχ @ H and the Hubble
constant H(ϕ) is determined by the slowly varying clas-
sical field ϕ. The first of Eqs. (2) can be brought to the
form

(3)

S d4x g–
1
2
---ϕ ,µϕ ,µ V ϕ( )–∫=

+
1
2
---χ ,µχ ,µ 1

2
---mχ

2χ2– κχu ϕ( )– ,

1

g–
----------∂µ g– ∂µχ( ) mχ

2χ κϕ 2+ + 0,=

1

g–
----------∂µ g– ∂µϕ( ) V ' ϕ( ) 2κϕχ+ + 0.=

χ x( ) κ G x x ',( )ϕ2 x '( ) g– x '.d∫–=
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The right-hand side of Eq. (3) can be simplified using
the equation for the Green’s function G(x, x') [15] writ-
ten as

(4)

After two iterations, the field χ takes the explicit form

(5)

which is valid if the derivatives of the inflaton field ϕ
are small. Substituting this expression into the second
of Eqs. (2), one arrives at the following classical equa-
tion for the inflaton field:

(6)

where α = κ/mχ is a dimensionless parameter and
Vren(ϕ) = V(ϕ) – (α2/2)ϕ4 is the inflaton-field potential
renormalized due to interaction with the field χ. The
last term on the left-hand side of Eq. (6) is usually
treated as a back reaction of radiation [12]. Equation (6)
corresponds to the effective action for inflaton field

(7)

Note that the correction δV = –(α2/2)ϕ4 to the poten-
tial follows from the analysis of classical Eqs. (2). At
the same time, the same expression can be obtained by
calculating the first quantum correction to the ϕ-field
potential interacting with the field χ [see Eq. (1)] at zero
4-momenta of external lines corresponding to the
ϕ-field quanta. The internal line corresponds to the
χ-field propagator in the s and t channels.

The last term in Eq. (7) is important for further con-
sideration. Morris [16] showed that a change in the
form of the kinetic term in the scalar–tensor theory
leads to the inflation on a lower than ordinary energy
scale, which is in agreement with the conclusions of
this work. A similar result can be obtained by introduc-
ing a nonminimized interaction between an inflaton and
a gravitational field [17, 18].

In general, the renormalized potential contains the
sum of contributions from the corrections due to inter-
action with all existing fields. In the first model of cha-
otic inflation with the λϕ4 potential, the observed data
led to a value of λ ~ 10–13. This means that the correc-
tions introduced to the expression for λ by all fields,

G x x ',( ) 1

mχ
2 g–

-----------------δ x x '–( )=

–
1

mχ
2 g–

-----------------∂µ g– ∂µG x x ',( ).

χ x( ) . 
κ

mχ
2

------ϕ2 x( )–
κ

mχ
4

------∂µ g– ∂µϕ2 x( ),+

∂µ g– ∂µϕ g– V ren' ϕ( ) 2α2

mχ
2

---------ϕ∂µ g– ∂µϕ2+ + 0,=

Seff d4x g–
1
2
---∂µϕ∂µϕ -----∫=

– V ren ϕ( ) α2

2mχ
2

----------∂µϕ2∂µϕ2+ .
including the correction δV = –(α2/2)ϕ4 considered in
this work, must cancel with a high accuracy. Below, it
is demonstrated that the renormalization of the kinetic
term allows one, in particular, to materially weaken the
conditions imposed by the observations on the parame-
ters of the theory. In weak fields, the contribution from
the last term in Eqs. (6) and (7) is negligible. As to the
inflation stage, it can be substantial at large field mag-
nitudes.

In inflation, the field is assumed to be uniform; i.e.,
ϕ = ϕ(t) and Eq. (6) is greatly simplified. Taking into
account that the scale factor a is expressed in terms of
the Hubble constant H in the ordinary way, a =

exp , Eq. (6) can be rewritten as

(8)

The slow time variation of the field ϕ implies that the terms
proportional to d2ϕ/dt2 and (dϕ/dt)2 are small. Neglecting
them, one obtains the easily integrable equation

(9)

In what follows, the nonrenormalized potential is taken
in the form V(ϕ) = λ0ϕ4, and, therefore, Vren = λϕ4,
where λ = λ0 – α2/2. Taking into account the usual rela-

tion H = /MP between the Hubble con-
stant and the potential, one can easily obtain the field
variable ϕ as an implicit function of time:

(10)

Here, the first term reproduces the result of the standard
inflation model. The second term results from the inter-
action of the inflaton field and the field χ. It follows
from Eq. (9) that the second term dominates at

(11)

Therefore, there are two inflation stages: the ordinary
stage at ϕ ≤ ϕc and the ultraslow stage at ϕ ≥ ϕc. Indeed,
the field motion velocity

obtained from Eq. (9) with allowance made for Eq. (11),
is much smaller than its ordinary value  = /3H. The
first inflation stage is completed when condition (11)
ceases to be true. Then, the ordinary inflation stage

H td∫( )

d2ϕ
dt2
--------- 3H

dϕ
dt
------ V ren' ϕ( )+ +

+
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2
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dt2
--------- ϕ dϕ
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 
2

+ + 0.=
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2
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 
 
 
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t
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MP λ
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mχ
2

--------- ϕ0
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begins and continues as long as the condition  !

3H  is satisfied.
Because the second stage has been much studied, I

will analyze the first stage, for which the second term in
Eqs. (9) and (10) dominates, i.e., for ϕ > ϕc. In this case,
the field depends on time as

(12)

This expression is derived under the “ultraslow roll-
down” condition, which, according to Eq. (8), has the

rather unusual form  ! 12Hϕ2 (α2/ ).

Let us determine the amplitude of quantum fluctua-
tions arising at the first inflation stage for the potential
λϕ4. This can most easily be done by taking into
account that the first term in Eqs. (6) and (7) is much
smaller than the third one and introducing an auxiliary
field , after which the substitution  = (α/mχ)ϕ2

brings action (7) to the form

(13)

corresponding to a free massive field with mass  ≡
mχ . This substitution is valid at the inflation
stage under consideration, when the field value is posi-
tive. The fluctuation amplitude for the massive nonin-

teracting field is known to be ∆  = H2/  [19].
On the scale of modern horizon, the constraint on the
mass of quanta of this field is also known:  ~ 10–6MP ,
as obtained from the comparison with the COBE mea-
surements of the energy-density fluctuations, δρ/ρ ≈
6 × 10–5 [20]. Expressing  in terms of the initial
parameters, one obtains the following relation between
them:

(14)

Let us determine the field ϕU at which a causally
connected area was formed, which generated the visi-
ble part of the universe. The number of e-foldings nec-
essary to explain the observed data is NU . 60. Then,

using the relation NU = , one has

(15)

ϕ̇̇
ϕ̇

ϕ t( ) ϕ0
2 t

λMPmχ
2

α2 6π
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ϕ̇̇ ϕ̇ mχ
2

ϕ̃ ϕ̃
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1
2
---∂µϕ̃∂µϕ̃ 1

2
---m̃

2
ϕ̃2– ,d∫=

m̃

2λ /α

ϕ̃ 3/8π2 m̃

m̃

m̃

mχ
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------- λ
α

------- 10 6– .∼
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ϕU

ϕend

∫

NU
H ϕ( )

ϕ̇
------------- ϕd

ϕU

ϕc

∫=
H ϕ( )

ϕ̇
------------- ϕd

ϕc

ϕend

∫+

=  
2πα2

MP
2 mχ

2
-------------- ϕU

4 ϕc
4–( ) π

MP
2

------- ϕc
2 ϕend

2–( ),+
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where it is taken into account that the time dependences
of the field ϕ at the first and the second inflation stages
are different. The second stage is completed at ϕ = ϕend.
Assuming that the first term containing the initial value
of the field ϕU dominates, one obtains the desired
expression

(16)

Note that the visible part of the universe in this case can
be formed at ϕ < MP , i.e., rather late. This is explained
by the fact that, at the first stage, the field moves
ultraslowly and the universe has had time to expand to
the appropriate size. Expression (16) differs substan-

tially from the standard result ϕU = MP , which
is obtained for the inflaton field with potential λϕ4 with-
out regard for the interaction with the massive fields of
other sorts.

The second term in Eq. (15) determines the number
N2 of e-foldings at the second inflation stage. Assuming

that  @  and substituting the value ϕc from
Eq. (11), one has

(17)

Evidently, over a wide range of parameters α and mχ,
the second stage may be short or absent at all.

The above arguments are valid if the field χ is mas-
sive enough so that it is at the minimum of its effective
potential during inflation. As is known, the field rapidly
rolls down to the minimum if the Hubble constant
becomes smaller than the field mass, i.e., if H < mχ. The
Hubble constant depends on time. For this reason, the
necessary estimates will be made for the instant the vis-
ible universe originated (ϕ = ϕU), that is, when the larg-
est scale fluctuations arise. Simple mathematics gives

(18)

This restriction indicates that one cannot fully avoid the
fine tuning of parameters because λ = λ0 – α2/2 and,
according to constraint (18), α2 ≥ 100λ. Nevertheless,
this fitting is weaker than that requiring the cancellation
of all quantum corrections down to a value of ~10–13 in
the early inflation models with the potential λϕ4.

Using Eqs. (14) and (18), one can easily obtain a
rather weak limitation mχ ≥ 10–5MP on the mass of the
additional field χ.

Thus, a particular example was taken in this work to
demonstrate that massive fields, even being at their
minimum (which depends on the magnitude of the
inflaton field), can materially decelerate the motion of
the main—inflaton—field at the first inflation stage.
Due to the first, ultraslow, stage, the visible universe

ϕU  . 
NU

2π
------- 

 
1/4 MPmχ

α
--------------.

NU/π

ϕc
2 ϕend

2

N2
π
4
---

mχ

α MP

------------ 
 

2

.=

mχ H ϕU( ) λ
α

------- 3
4NU

---------- 0.1.∼<>
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could form at ϕU < MP . The second stage precedes the
completion of inflation and evolves in the ordinary way,
but it is rather short. In particular, for the parameters
mχ = 10−3MP and λ = 10–6 satisfying constraints (14)
and (18), one has the following: the visible universe
formed at ϕU ≈ 5 × 10–2MP; the first and second stages
are separated at ϕc ≈ 5 × 10–4MP; and the second infla-
tion stage is much shorter than the first one.

The inclusion of the interaction between the inflaton
field and more massive fields enables one to materially
weaken the constraints imposed on the potential param-
eters by the smallness of energy-density fluctuations,
although one fails to fully avoid the fine tuning of the
parameters.

The effects considered are associated with the renor-
malization of the kinetic term for the inflaton field inter-
acting with an additional massive field. Because the
similar renormalization takes place for all sorts of addi-
tional fields [21], the inclusion of new fields will
enhance the effect of deceleration of classical motion at
high energies.
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Rotation of the spin of cold neutrons passing through a noncentrosymmetric single crystal is observed. This
effect is caused by the Schwinger interaction of the magnetic moment of a moving neutron with the crystalline
electric field in a noncentrosymmetric single crystal and depends both on the direction of neutron trajectory in
the crystal and on its energy. It is shown that the characteristic magnitude of the effect for α-quartz is
.(1−2) × 10–4 rad/cm over a wide wavelength range (from 2.8 to 5.5 Å) and is determined by the degree of
beam monochromaticity [∆λ/λ = (2–5) × 10–2 in our experiment]. This magnitude corresponds to an electric
field of .(0.5–1) × 105 V/cm acting on a neutron. The measured value agrees well with the theoretical calcula-
tion. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 14.20.Dh; 61.12.Ld
1. Previously, we showed that neutrons passing
through a noncentrosymmetric single crystal can expe-
rience a strong electric crystalline field [1, 2]. The mag-
nitude of this field depends on the direction of neutron
trajectory in the crystal and attains a maximum of
~(108–109) V/cm if the Bragg condition is exactly met
[3, 4].

Forte and Zeyen [5] observed the neutron spin rota-
tion in the Bragg diffraction with a deviation from the
exact Bragg condition of several Bragg widths, which
corresponds to ∆λ/λ ~ 10–5. The measured effect
proved to be several times weaker than was predicted
theoretically, probably, because of low perfection of the
single crystal used.

In this work, the neutron-optical effects are consid-
ered. This implies that the deviation from the Bragg
condition may attain 103–105 Bragg widths. In [6], we
have shown theoretically that the electric field Esum
summed over all planes of a polar PbTiO3 crystal may
attain ≈2 × 106 V/cm at a deviation of 104 Bragg widths
from the Bragg condition [6].

The electric field does not decrease at a considerable
deviation from the Bragg condition because the electric
fields produced by different crystallographic planes
combine, under certain conditions, into a field which is
considerably stronger than the field produced by one
plane.

These phenomena are of interest because they can
be used in the search for the electric dipole moment of
a neutron and in connection with the proposal [7, 8] of
searching for the T-invariance violation in strong inter-
actions (i.e., a “strong” or “nuclear” dipole moment of
a neutron) using a neutron moving with an energy near
0021-3640/01/7405- $21.00 © 20251
the P-wave resonance in a noncentrosymmetric crystal,
because the deviation from the Bragg condition is large
enough for such neutrons.

2. Let a neutron with an energy of E = "2 /2m be
incident on a crystal away from the Bragg condition for
any system of crystallographic planes. Then the neu-
tron wave function can conveniently be written using
the perturbation theory [9] and decomposing in the
reciprocal lattice vectors g:

(1)

where k is the neutron wave vector with allowance
made for the refraction at the crystal boundary; kg =

k + g; Vg = v g  is the gth harmonic of the periodic
potential of interaction between the neutron and crys-

tal; and Ek = "2k2/2m and  = "2 /2m are the neu-
tron energies for the (k) and (k + g) states, respectively.
The difference Ek –  is, in fact, a deviation from the
Bragg condition in energy units. The neutron density
distribution |ψ(r)|2 in the crystal has the form

(2)

It is easy to see that the sign of the deviation Ek – 
from the Bragg condition determines the “concentra-
tion” of the neutron wave at maxima or minima of the
periodic potential of neutron interaction with the crys-

k0
2

ψ r( ) eikr 1
Vg

Ek Ekg
–

------------------eigr

g

∑+
 
 
 

,=

e
iφg

Ekg
kg

2

Ekg

ψ r( ) 2 1
2v g

Ek Ekg
–

------------------ gr φg+( ).cos
g

∑+=

Ekg
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Fig. 1. Experimental scheme: (1) neutron guide–polarizer, (2) coil for spin rotation about the X axis by π/2, (3) 14 × 14 × 3.5-cm
single crystal of α-quartz, (4) ±π/2 coil for rotation about the Y axis, (5) neutron guide–analyzer; HL is the guiding magnetic field
and O is the axis of crystal rotation (O || Z).

Esum

Hsum
tal. This changes the neutron kinetic energy as [9]

(3)

where V0 is the zeroth harmonic or the mean crystal
potential.

Thus, the crystal structure of the scatterer introduces
correction to the mean crystal potential V0 in the second
order of the perturbation theory; i.e., when passing
through the crystal without Bragg reflection, the neu-
tron still “feels” the crystal structure. This correction is
caused by the concentration of neutrons either in the
“nuclear” crystallographic planes (maxima of the
nuclear potential) or between them.

All types of neutron interaction with the crystal con-
tribute to the quantity VgV–g .

Let us consider a nonmagnetic, nonabsorbing crys-
tal. In this case, the quantity Vg can be written as [9]

(4)

where  and  are, respectively, the amplitude and
phase of the gth harmonic of the potential of nuclear

interaction of a neutron and crystal;  and  are,
respectively, the amplitude and phase of the gth har-
monic of the electric crystal potential; µ and v  are the
magnetic moment and the velocity of a neutron, respec-
tively; and c is the speed of light.

Substituting Eq. (4) into Eq. (3) and taking into
account that Vg =  for a nonabsorbing crystal, we
obtain

(5)

where

(6)

means the electric field summed over all reflecting

planes and acting on a neutron, and ∆φg ≡  –  is

Ẽk E V0–=
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N
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Ee
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E
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c

---------------------,+
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N φg

N

v g
E φg

E
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N( )2

Ek Ekg
–
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g

∑– µ
s Esum v×[ ]

c
----------------------------,–
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2v g
N

Ek Ekg
–

------------------v g
E ∆φg( )gsin

g

∑=

φg
N φg

E

the phase shift between the gth harmonics of the
nuclear and electric crystal potentials.

For a centrosymmetric crystal, ∆φg ≡ 0 and, there-
fore, Esum ≡ 0.

In a noncentrosymmetric crystal, because the “elec-
tric” crystal planes are displaced from the “nuclear”
planes, i.e., ∆φg ≠ 0, an electric field arises acting on a
neutron. As a result, the interaction potential between
neutron and crystal becomes spin-dependent, leading to
the neutron spin rotation about the Hsum = [Esum × v]/c
direction through an angle of

(7)

where L is the crystal thickness.
Let us consider an absorbing crystal. This can be

done by introducing the imaginary part in the nuclear
crystal potential; i.e.,

(8)

where  and  are, respectively, the amplitude and
phase of the gth harmonic of the imaginary part of the
nuclear potential.

Then we obtain for 

(9)

where

(10)

(11)

(12)
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Thus, the imaginary part of the interaction potential
between a neutron and a noncentrosymmetric crystal,
i.e., absorption, depends both on the direction and mag-
nitude of neutron velocity and on the spin direction.

Calculations show that the diffraction corrections in
the α-quartz crystal over a wide wavelength range are

and rapidly increase as one of the reflecting planes or a
group of planes is approached.

3. The experimental scheme is shown in Fig. 1.
To study the spin rotation, the polarization vector

was oriented along the neutron velocity (Y axis), and
the X component of this vector was measured after
passing through the crystal. If the effect is absent, this
component must be zero. The spectral dependence was
measured by the time-of-flight method. To exclude the
spurious effect caused by the nonzero X component of
the polarization vector in actual experiment, the differ-

V g〈 〉 iV g〈 〉'+ 10 3– V0 iV0'+( ),≈

ms Esum iEsum'+( ) v×[ ] /c 10 6– V0 iV0'+( )≈

Fig. 2. Crystal orientation.

Fig. 3. The spectral dependence of the rotation angle ∆ϕs of
the polarization vector for β = 90°.
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ential effect was measured for two crystal positions,
differing by the rotation through 180° about the Z axis
(which is equivalent to changing v by –v). In this case,
the effect must reverse its sign [see Eq. (7)].

A 14 × 14 × 3.5-cm α-quartz crystal was used in the
experiment. The direction of neutron propagation in the
laboratory coordinate system (X, Y, Z) and in the crys-
tallographic coordinate system (Z ', X1, X2, X3) is shown
in Fig. 2. The crystallographic axis Z ' was rotated about
the laboratory axis Z through an angle of 18.5°, which
was dictated by the cut of the actual crystal. The angle β
of crystal rotation was measured from the [110] axis (X3).

The spectral dependence of the angle of neutron
spin rotation was measured for the crystal positions
corresponding to β = 90° and 30°. The resulting depen-
dences are shown in Figs. 3 and 4. The solid lines are
calculated by averaging Eq. (7) over the experimental
energy resolution. It is seen that, as the Bragg reflec-
tions with nonzero electric field (indicated by dashed
lines in Figs. 3 and 4) are approached, the effect
increases and its maximum value is determined by the
experimental energy resolution. The theoretical depen-
dences agree well with the experimental data. The right
ordinate axis is for the electric field Esum. The case
shown in Fig. 3 corresponds to the situation where the
positions of the planes contributing to Esum virtually
coincide, slightly increasing the net effect and making its
observation easier. Figure 4 corresponds to the case of a
more or less arbitrary choice of the crystal orientation.
One can see that the effect at the level of ±5 × 10–5 rad/cm
occurs over the entire wavelength range studied.

4. Thus, it is demonstrated experimentally that the
neutron-optical effect of spin rotation due to the
Schwinger interaction between the magnetic moment
of a moving neutron and the crystalline electric field

Fig. 4. The spectral dependence of the rotation angle ∆ϕs of
the polarization vector for β = 30°.

0.5

–0.5
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can occur in a noncentrosymmetric crystal. The charac-
teristic rotation parameter for the α-quartz crystal is
~10−4 rad/cm, which corresponds to the electric field
.0.5 × 105 V/cm acting on a neutron.

It should be noted that the observed effect is evi-
dence for the presence of other diffraction corrections,
i.e., Eqs. (10)–(12), which lead to the orientational and
energy dependences of the neutron–crystal interaction
potential. In particular, the term (11) should give rise to
the dependence of the imaginary part of nuclear inter-
action (absorption) on the direction of motion and
energy of a neutron, whereas the term (12) should lead
to the dependence of the absorption coefficient on the
direction of neutron spin.

We are grateful to A.K. Rad’kov for assistance in
theoretical calculations; and O.I. Sumbaev, V.L. Rumy-
antsev, and V.L. Alekseev for numerous useful discus-
sions. This work was supported by the Russian Founda-
tion for Basic Research (project nos. 00-02-16854, 01-
02-06263), the INTAS (grant no. 00-00043), the sixth
Expert Competition for Young Scientists of the Russian
Academy of Sciences in 1999 (project no. 76), and the
State Program “Integration” (project no. 278 of the field
no. 3.2 in 2001).
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It is shown that the indirect interaction of pseudospins via radiation field in a two-level optical system contains
pseudospin energy components of the Ising exchange-interaction type. The conditions under which this inter-
action can show up in optical spectra are discussed. © 2001 MAIK “Nauka/Interperiodica”.
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The situation in which optical transitions occur
between a certain pair of atomic energy levels (as a rule,
ground level Eg and one of the excited levels Ee), while
the remaining levels are not involved in the physical
processes, is a standard situation in optics. The notion
of a two-level system (TLS) and the pseudospin con-
cept provide a convenient tool for the description of
such situations; the pair of atomic energy levels of
interest is treated as the eigenvalues and eigenstates of
a Hamiltonian

(1)

which has the form of the Zeeman energy operator of a
particle with effective pseudospin Sj = 1/2 [1]. It is cus-
tomarily thought that the interaction between TLSs has

the form  + , because the electric
dipole transition operator in the space of the Eg and Ee

eigenstates has only nondiagonal matrix elements.
However, this is valid only in the dipolar approxima-
tion. Below, it is demonstrated that the inclusion of
electric quadrupole interaction [2]

(2)

in the Pauli Hamiltonian leads to the appearance of

“energy” pseudospin components  for the indirect
interaction [Rαj and rαi are the α components of the
radius-vectors of the nucleus j and the element of elec-
tron density of the optical shell of atom j, respectively,
and Aβ(Rj , t) is the β component of the vector potential
of radiation field in the interaction representation].

HS
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The structure of the Hamiltonian of two subsystems
in the problem of indirect interaction can generally be
represented as

(3)

where HS is the Hamiltonian of a dynamic subsystem
consisting of the noninteracting particles, Hf is the
Hamiltonian of the interaction-mediating field, and Vsf

is the operator of interaction between the particles of
two subsystems.

The method of calculating the indirect interactions
[3, 4] includes two steps and is based on the assumption
that the matrix elements of the operators satisfy the ine-
quality

The first step consists of the transition to the new
representation using unitary transformation U =
exp{−L}, where L is the anti-Hermitian operator satis-
fying the condition

(4)

As a result, the Hamiltonian H takes, in the new repre-
sentation, the form

(5)

i.e., it gets rid of the terms linear in Vsf . The solution of
the operator Eq. (4) is

(6)

H H0= Vsf , H0+ HS H f ,+=

Vsf  ! H0 .

Vsf H0 L,[ ]+ 0.=

H H̃ HS H f+=
1
2
--- Vsf L,[ ] O Vsf

3( ),+ +

L
1
i"
----- eεtVsf t( ) t,d

∞–

0

∫ε 0→
lim=

Vsf t( ) i HS H f+( )t/"{ } Vsfexp=

× i HS H+ f( )t/"–{ } .exp
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Therefore, the generator L of unitary linear transforma-
tion is of the order L ~ |Vsf / |H0|.

The second step consists of averaging Eq. (5) for 
over the states of the interaction-mediating field, so that
the second-order term

(7)

in the perturbative expansion of Eq. (5) ceases to
depend on the variables of the electromagnetic field but
retains the dependence on the pseudospin operators of
particles and, thus, acquires the meaning of the operator
of their indirect interaction.

Let us represent the Pauli Hamiltonian of an atom in
an electromagnetic field as

(8)

Here, H0a is the Hamiltonian of an isolated atom
[instead of H0a, its projection (1) on the subspace of the
TLS states will be used below], H0ph is the Hamiltonian
of the radiation field, and

(9)

where dj = erj is the electric dipole moment of the
Eg  Ee transition of atom j. The operator V2 is given
by Eq. (2). In what follows, the role of operators Hs, Hf,
and Vsf [Eq. (3)] is played by the operators (1), H0ph, and
V2, respectively. In the secondary quantization repre-
sentation, the operators H0ph and V2 have the form

(10)

(11)

where (t) and akµ(t) are the operators of creation
and annihilation of a photon with momentum "k, polar-
ization µ, and polarization vector ekµ [5, 6].

Using operators (1), (10), and (11) in the formalism
described above, one can obtain the following expres-
sion for the operator of indirect interaction:

(12)
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It follows that the coupling of the TLS to the radiation
field via the quadrupole interaction 

 

V

 

2

 

 gives rise to the
exchange interaction of Ising type.

The potential of this interaction
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, is
obtained after the transition from the summation to
integration over the photon wave vectors.

Equation (13) can further be simplified on the basis
of the following considerations. The upper limit of inte-
gration, unfortunately, cannot be extended to infinity,
because the atom cannot be regarded as a point particle
for the wavelengths shorter than atomic size, so that the
form chosen above for the interaction 

 

V

 

sf

 

 becomes
scarcely valid. In our case, it is reasonable to integrate
to 

 
k

 
max

 
 = 2

 
π

 
/

 
r

 
a

 
, where 

 
r

 
a

 
 is the atomic radius. Next, the

condition  k  max  R   > 1 is always fulfilled, signifying that
the interatomic separation is larger than the atomic size.
This enables one to use the approximation

which is valid for large arguments. These simplifica-
tions give

(14)

Therefore, the potential (14) oscillates and drops as

. This drop is caused by the fact that the photon den-
sity at the point 

 

R

 

j

 

 decreases for those photons which
already interacted with the TLS at the point 

 

R

 

i

 

. The
periodic dependence is typical of many indirect interac-
tions, among which the interaction between nuclear
spins via conduction electrons in metals is most famil-
iar [4].

To estimate the parameters 
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(

 

n

 

, 

 

l

 

, 

 

m

 

) triads are indicated] as the 

 

ψ

 

g

 

 and 

 

ψ

 

e

 

 states [1].
With the hydrogen wave functions 

 

ψ

 

2, 1, 1

 

 and 

 

ψ

 

1, 0, 0

 

,

Uij
z e2 ρz ρz–( )2

2π"
---------------------------- k4 1

15
------ j0 kP( )P0 ΘR( )cos





0

∞

∫=

–
1
21
------ j2 kP( )P2 ΘR( )cos( )

–
4
35
------ j4 kP( )P4 ΘR( )cos( )





dk,

Ψe rα
2 Ψe Ψg rα

2 Ψg

jl z( ) 1
z
--- z

π
2
--- l 1+( )– 

  ,cos=

Uij "
1– 2πe ρz ρx–( )

R
-------------------------------

2

=

×
2πR/ra( )cos

2ra
3

------------------------------- ΘR ΘR.sin
2

cos
2

Rij
2–
JETP LETTERS      Vol. 74      No. 5      2001



ISING-TYPE EXCHANGE INTERACTION 257
one has ρx = ρy = 5  and ρz = 11 , where rB is the
Bohr radius. Choosing the values ra ~ 10–8 cm and R ~
10–6 cm for the other parameters, one obtains the fol-
lowing estimate for the Ising exchange integral:
U(Rij) ≈ 1013 rad/s.

For a disordered collective of TLSs in a medium, the
interaction W can induce so-called inhomogeneous
broadening of an optical transition, because it shifts the
resonance frequency ω0 for each atom j by a value of

The root-mean-square value of the random variable ∆ωj

(15)

can serve as a measure of the line broadening, where

 is the temperature mean of the z component of
pseudospin j at the temperature of the experiment (in
general, it can be assumed to not change from point to
point), R0 is the shortest possible distance between the
TLSs, and n is their concentration [7]. For n = 1017 cm–3,
one has ∆ωj ≈ 1012 rad/s.

The natural width of the emission line is given by

the formula γ = 2d2 /3"c3 [8]. For the optical fre-
quencies ω0/2π ~ 3 × 1014 Hz, this gives γ ≈ 2 × 105 Hz,
which is considerably smaller than the value obtained
in this work.

A more intriguing manifestation of the Ising
exchange interaction can be expected for the ordered
system of TLSs in a crystal lattice. As known, the Ising
magnets display additional resonance peaks if the
exchange integral exceeds the natural linewidth [7].
Under these conditions, the ∆ωj quantities are no longer
random variables but take fixed values to produce addi-
tional absorption peaks. The number of peaks depends
on the number of exchange-coupled atoms. For exam-
ple, in a linear Ising chain with nearest-neighbor
exchange, three resonance frequencies occur at ω0 and

ω0 ± .

The integrated intensities of these lines show an
unusual temperature behavior; in particular, as the tem-
perature approaches zero, all lines are frozen out except
for one of them, whose intensity increases. Unfortu-
nately, the separation Ee – Eg between the optical
energy levels is too large, so that one practically always
deals with the zero-temperature limit. Because of this,
a search for the additional peaks should be carried out
under the nonequilibrium conditions.
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The experiments of this type are well-known in
magnetic resonance. Irradiation by a strong narrow-
band microwave field in the region of an inhomoge-
neously broadened EPR line followed by sweeping the
line contour with another weak field gives rise to a
broad contour with a “burned hole” in it [9]. The EPR
line shape undergoes intricate transformation in the
course of re-establishing the equilibrium, and the relax-
ational properties of the object are judged from the
kinetics of this process.

There is one more example. Upon the intense nar-
row-band saturation of a homogeneously broadened
EPR line, its contour transforms in a complicated man-
ner up to the appearance of the portions with negative
absorption. A rather complicated kinetics of this pro-
cess is due to the presence of a reservoir of magnetic
dipole–dipole interactions and is well studied by the
experimental methods [10].

To observe experimentally the Ising exchange inter-
action between the TLSs, a physical system should be
disturbed from equilibrium, e.g., by the π pulse or
intense stationary irradiation followed by sweeping the
spectrum with a weak laser beam. In such a situation,
one can expect that additional peaks will appear with a
complicated kinetics.

We are grateful to K.M. Salikhov and V.N. Lisin for
discussions.
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Filling of a nanoporous body with liquid metal upon pulsed pressure buildup to a level far exceeding the per-
colation-threshold critical pressure was experimentally studied. The onset of the oscillating filling regime was
observed. It disappears on bringing pressure down to a value lower than the percolation-transition critical pres-
sure and on increasing the characteristic time of pressure buildup above threshold. A model is suggested allow-
ing the explanation of the observed effects. © 2001 MAIK “Nauka/Interperiodica”.
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At present, the formation of metal structures in a
porous body with nanometer-sized pores attracts partic-
ular interest both from the standpoint of fundamental
science and because of the possible use of such struc-
tures in nanotechnologies (see, e.g., [1, 2]). One of the
methods of fabricating such structures consists in the
filling of nanopores with a liquid metal at a pressure
higher than the Laplace pressure (PL) [3]. The process
of filling a nanoporous body with a nonwetting liquid
metal can be used for the absorption and accumulation
of mechanical energy [3]. The percolation theory ade-
quately describes this process [4]. In this theory, the fill-
ing process is treated as the growth of fractal clusters of
filled pores. Experimentally, this is confirmed by the
“devil staircase” effect [5] and the formation of “vis-
cous fingers” during the filling of a porous body [4].
The hysteresis and “nonleakage” effects of a nonwet-
ting liquid can also be explained by the theory of perco-
lation with energy threshold [6].

In this work, the filling of a nanoporous body with a
liquid metal upon pulsed pressure buildup to a level far
exceeding the percolation threshold pressure pc was
studied experimentally. In compliance with the well-
known filling theory [4], one could have expected that
the filling speed increased while the filling time
decreased with an increase in (p – pc) at p > pc. How-
ever, we observed the onset of oscillating filling regime,
which disappeared after bringing the pressure down to
the below-threshold value pc1 (pc1 > pc) and increasing
the characteristic time tc1 of pressure buildup to the
above- threshold value (t1c > t1).

Below, a physical model is proposed which explains
the observed effects. Following [6, 7], the filling of a
porous body can be treated as a process of “interaction”
between the fractal clusters of filled and accessible, at a
given pressure (p = PL), pores in the course of fluid
0021-3640/01/7405- $21.00 © 20258
leakage from the body surface through the transitions
from the clusters of filled pores to the adjacent cluster
of accessible pores. As the percolation threshold is
approached, the correlation length and the cluster size
characteristic increase. This must lead to an increase in
the characteristic time (τ) of interaction between clus-
ters and an increase in the relaxation time of the system.
For this reason, if the pressure-buildup characteristic
time (t1) is comparable with the relaxation time, then
the percolation transition in the nonlinear system con-
sidered will be accompanied by the dynamic effects.

In our experiments, a liquid Wood’s alloy (Tm =
72°C) and a Silokhrom SKh-1.5 porous body were
placed in a high-pressure chamber. The mass and size
of the Silokhrom grains were m ≅  1 g and 300 µm,
respectively. The pore diameter in Silokhrom SKh-1.5
ranged from 130 to 260 nm. The pressure in the cham-
ber was produced by mechanical action on a rod that
could enter the chamber through gaskets. A decrease in
volume of the Wood’s alloy–Silokhrom system upon
moving the rod inside the chamber produced excessive
pressure. The change in volume was measured using a
displacement pickup. The pressure was measured by a
strain gauge that was mounted on a support under the
high-pressure chamber. The gauge could detect
strength from 0 to 1000 kg in the frequency range up to
10 kHz with an accuracy of ≈10%. The filling critical
pressure was determined from the V(p) dependence of
the filled pore volume on pressure p for a quasi-static
pressure buildup with a characteristic time of ≈10 s. For
the system under study, this value was found to be
pc = 120 atm. In the experiments with dynamic filling,
the time-dependent pressure in the chamber was mea-
sured for the pulsed mechanical action on the chamber
rod. The measured compressibility of Silokhrom SKh-
1.5 was χ ≅  1.6 × 10–3 atm–1. Since the compressibility
of the chamber with volume Vch ≈ 120 cm3 was χ ≅
001 MAIK “Nauka/Interperiodica”
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1.4 × 10–5 atm–1, a change in the chamber volume filled
with the Wood’s alloy (the compressibility of the
Wood’s alloy is ~10–6 atm–1) was vastly larger than the
change in the Silokhrom volume in the dynamic exper-
iments on the time scale of ≤10 ms with working pres-
sure p ≈ 3 × 102 atm; i.e., ∆Vch @ ∆VS. Because of this,
the characteristics of a pressure pulse in the chamber
were determined in special experiments, in which the
chamber was filled only with the Wood’s alloy. When
studying the filling dynamics of the porous body, the
maximal pressure in the chamber was p0 =
240−600 atm, i.e., much higher than the critical pres-
sure of the system of interest. The characteristic time t1

of reaching the maximal pressure was varied in these
experiments within 4–11 ms, and the characteristic
time of pressure release was 5–10 ms.

The p(t) curves for the pressure in the chamber filled
with the Wood’s alloy and porous body is shown in Fig.
1b. The corresponding p0(t) curves for the chamber
filled only with the Wood’s alloy is shown in Fig. 1a.
For the short p0 pulse (p0 max . 450 atm, upper panel in
Fig. 1a), periodic oscillations with the characteristic
period T ≈ 1 ms and amplitude δp ~ 20 ± 2 atm appear
in the p(t) curve (upper panel in Fig. 1b). It is seen from
the middle panel in Fig. 1b that, at a fixed duration, an
increase in the amplitude of pulse p0 (middle panel in
Fig. 1a) gives rise to the additional harmonics in the p(t)
dependence. As the p0 pressure amplitude decreases
and the pulse duration increases (lower panel in Fig.
1a), the oscillations in the p(t) curve disappear (lower
panel in Fig. 1b). The instants of time t2 (Fig. 1b) cor-
responding to the completion of filling the porous body
with the Wood’s alloy were determined from the
momentum conservation law. One can see that the
oscillations are observed at t < t2. At t > t2, the liquid
leaks away from the porous body. At these times, the
p(t) curves also display oscillations (upper and middle
panels in Fig. 1b). It follows from the data in Fig. 1 and
from the additional experiments that, at a fixed duration
of the p0 pulse, there is a critical pressure p0c ≅  300 atm
below which the filling oscillations are absent. Note
that the increase in the p0 pulse duration from 10 to
20 ms also results in the disappearance of oscillations.

Let us discuss a possible mechanism of the observed
dynamic effects. According to [6, 7], the filling dynam-
ics for a porous body filled with a nonwetting fluid can
be described using the kinetic equation for the distribu-
tion function of the fractal clusters of filled pores. It is
known [6] that, at a given pressure p0, all pores in a
porous body can be divided into accessible (to filling)
and inaccessible ones. Filling of a nanoporous body
with a fluid at a given pressure proceeds through filling
only the accessible pores. Within the framework of this
approach, the filling process in the vicinity of the per-
colation threshold is treated as the interaction between
the fractal clusters of filled and accessible pores.
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For a qualitative description of the experimentally
observed oscillations in dynamic pore filling, a simple
model is proposed below, which allows for the salient
features of cluster interaction within the macroscopic
approach. With this approach, a change dV/dt in the
volume of a porous body filled with fluid is propor-
tional both to the filled volume V(t) and to the volume
Vz of accessible but, as yet, not filled pores. We will
assume that the characteristic time of formation of the
accessible pores is small compared to that of the filled
pores. In this case, the accessible volume depends only
on the external pressure and the total volume of filled
pores. For a given pressure p0, the volume Vz(t) of
unfilled pores at time t is determined by the difference

between the accessible volume at zero time  and the

volume of filled pores at time t; i.e., Vz(t) =  – V(t).
Therefore, for the time variation of the filled volume in
a porous body, one has:

(1)

Here, τ = (Λ )
–1

 is the filling time of an elementary
volume equal to the volume of a cluster with a size on
the order of the correlation length ξ(p0) = R(θ(p0) – θc)–ν

(ν = 0.89 [8]) and consisting of the accessible though
not filled pores; θ(p0) is the fraction of accessible pores
at a pressure of p0; and θc is the critical fraction of
accessible pores, for which the infinite cluster of acces-
sible pores arises. For the 3D systems, θc ≈ 0.16 [8].
The expression for the accessible volume can be written
as

(2)

where V0 is the volume of pores in a porous body. The
difference 1 – θc in the denominator accounts for the
fact that all pores are accessible at θ(p0) = 1.

Using the Poiseuille formula [9], one can obtain the
following estimate for the average filling time of one
pore:

Here, 〈R〉  is the average pore radius in the porous
medium, a is the average pore radius in the region
where two pores are in contact, η is the fluid viscosity,
F(R) is the normalized (to unity) pore-size distribution
function, and R(p0) is the lower limit to the pore radii
satisfying the energetic condition for accessibility [6].
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Fig. 1. Plots of pressure in the chamber vs. time: (a) a column filled with a liquid Wood’s alloy; (b) a column filled with a liquid
Wood’s alloy and a porous body (Silokhrom SKh-1.5, 1 g); and (c) numerical simulation. The panels correspond to different values
of p0 max and τ (see text).

(ms) (ms) (ms)
Note that the ratio (〈R〉/a)4 is equal, by order of magni-
tude, to the inverse squared pore connectivity coeffi-
cient [6]. Therefore, after introducing the new variable

x(t) = V(t)/ , Eq. (1) for the filled volume reduces to

(3)

where

Note that the filling characteristic time τ diverges in the
vicinity of the percolation threshold. For the system
studied, one has the following estimates: η ≅  10–3 Pa s,
〈R〉  ≈ 100 nm, 〈R〉/a ≈ 3, θ(p0) – θc ≈ 10–3θc for ξ(p0) ≈
L [6], and the grain size is L ≈ 300 µm. The correspond-
ing τ value is ≈10–3 s. The characteristic time of our

Vz
0

dx
dt
------

x 1 x–( )
τ

-------------------,=

τ τ nβ
1– , β

θ p0( ) θc–
1 θc–

-----------------------.≅=
measurements is comparable to the filling characteristic
time τ. In this case, differential Eq. (1) should be
replaced by its discrete analogue. One then obtains
from Eq. (3):

(4)

This equation is a familiar Feigenbaum transformation
[10] which leads to the appearance of time oscillations
through the period doubling scenario. However, con-
trary to the well-known results of the Feigenbaum
period-doubling scenario, the parameter β, which is
responsible for the period doubling in Eq. (4), itself
depends on time because of the p0(t) dependence and,
hence, depends on the quantity θ(p0(t)). The results of
the numerical solution of this equation are presented in
Fig. 1c.

yn 1+ 1 γβ+( )yn 1 yn–( ),=

yn
γβ

1 γβ+
---------------xn, γ . 

R4〈 〉
R〈 〉 4

-----------  * 2.≡
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In solving Eqs. (4), the experimentally measured
quasi-static dependence V(p) of the filled volume on
pressure and the time dependence p0(t) of the pressure
pulse (Fig. 1a) were used. One can see from the upper
panel in Fig. 1c that the calculated and experimental
curves are in qualitative agreement with each other. It is
seen from the middle panel in Fig. 1c that the increase
in the p0 pulse amplitude at a fixed pulse duration leads
to a more complicated oscillation pattern, in qualitative
agreement with the experimentally observed depen-
dence p(t) (middle panel in Fig. 1b). It should be noted
that, according to the calculations, the filling oscillation
pattern changes appreciably even upon a small (≤10%)
change in the p0 pulse shape. An increase in the pres-
sure-buildup characteristic time of p0(t) results in the
disappearance of oscillations (lower panel in Fig. 1c)
because of a decrease in the parameter β in Eq. (4) and,
hence, the transition from the discrete filling regime to
the continuous one.

Thus, the oscillations in the model suggested can
appear only if a pressure higher than its percolation-
transition critical value is achieved [i.e., θ(p0) > θc] and
if the pressure-buildup characteristic time becomes
comparable to the pore-filling characteristic time τ
given by Eq. (3).

In summary, the observed dynamic effects accom-
panying the pore filling with a nonwetting liquid have
been qualitatively explained by a simple macroscopic
model which allows for the interaction between the
accessible and filled pores of a porous body following
the pattern of the Feigenbaum-type scenario. The pres-
ence of a percolation threshold and the divergence of
the compressibility [6] of a “nonwetting liquid–porous
body” system allow the filling process to be treated as a
JETP LETTERS      Vol. 74      No. 5      2001
physical phase transition. For this reason, the observed
dynamic effects can be interpreted as processes appear-
ing upon a strong pressure supersaturation on the time
scale of the formation of a cluster of filled pores with
it’s size on the order of the correlation length close to
the grain size in the porous body. On this time scale, the
filling process has an essentially discrete character.

We are grateful to L.A. Maksimov, E.V. Gribanov,
and V.V. Konyukov for their interest and assistance in
this work. This work was supported by the INTAS,
grant no. 99-01744.
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A model of the critical state of a Josephson medium is developed on the basis of the Sonin theory of aver-
aged Josephson medium. The model is used to explain the experimental data on the differential magnetic
susceptibility χd(H) and magnetoresistance R(H) of polycrystalline YBa2Cu3O7 – x samples in fields H <
100 Oe. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.50.+r; 74.80.Bj
At present, there is no clear understanding of the
microscopic pattern of magnetic-field penetration into a
granular high-temperature superconductor (HTSC).
Semicrystalline granular HTSCs with Josephson
(weak) contacts between grains display a series of anom-
alous properties in low magnetic fields H < 10–50 Oe,
e.g., nonlinearity and, simultaneously, the absence of
magnetization hysteresis [1–5]. This fact contradicts
both the Meissner effect (linear magnetization) and the
well-known critical-state model [6–8], for the latter
assumes a hysteretic behavior of superconductor mag-
netization. Other models of the magnetic properties of
polycrystalline HTSCs, e.g., the superconducting glass
model [7, 9] and the model of Josephson loops [1, 3,
10] also inadequately describe the experiment.

In this work, a model of the critical state of an aver-
aged Josephson medium is developed which ade-
quately describes the experimental data obtained earlier
in [11−13] for the differential magnetic susceptibility
and magnetoresistance of polycrystalline YBa2Cu3O7 – x
samples.

1. Theoretical model. To describe the penetration
of a nonstationary magnetic field into a system of weak
contacts in a granular HTSC, the well-known model of
averaged Josephson medium [14, 15] and the concept
of the critical state of a hard type-II superconductor [6]
are used in this work.

According to the model of averaged Josephson
medium, the supercurrent carriers in granular HTSC
are in the coherent state (see, e.g., [9, 14]). The coherent
state is characterized by the order parameter (wave

function) Ψ = , where n is the effective concen-
tration of supercurrent carriers and θ is their phase. Let
us consider a sample of granular HTSC placed in an
external magnetic field H. If H < Hc1J (Hc1J is the lower
critical field of weak contacts), then the static magnetic
field penetrates into the array of weak contacts over a

ne
iθ
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Josephson depth λJ (for HTSC, λJ ~ 0.01–10 mm [7]).
At present, no exact estimates exist for the value of
Hc1J). The values from 0.001 to 100 Oe are reported in
different publications (see, e.g., [7, 9, 14]). Since the
magnetic flux is trapped in HTSC samples due to vortex
pinning, one may assume that Hc1J is equal to the mag-
netization irreversibility field Hirr (Hirr ~ 10–70 Oe
[11, 13]). This leads to the following estimates. The
values of λJ, Hc1J, and jcJ are related to each other by
[16, 17]

(1)

Setting jcJ ~ 0.1–10 A/cm2 [7], one obtains an estimate
λJ ~ 1–103 cm, which is inconsistent with the literature
data (λJ ~ 0.01–10 mm). One has to assume that either
jcJ ~ 103–105 A/cm2 or Hc1J ~ 10–2–10–4 Oe. The latter is
in agreement with the hypervortex model [14, 15]. At
Hc1J ~ 10–4 Oe, the hypervortex diameter of ~0.5 mm is
of a macroscopic size. In what follows, the hypervortex
model will be adopted.

In the critical-state model [6–8], an alternating
external magnetic field penetrates into a sample in the
form of low-mobile hypervortices [14, 15] and, accord-
ing to the Maxwell equations, creates in the system of
weak contacts an electric field E which induces a super-
conducting screening current j:

(2)

In a Josephson medium, the screening supercurrent
density [Eq. (2)] is proportional to the Josephson criti-
cal current IcJ, which is given either by the Ambe-
gaokara–Baratoff formula (S–I–S junction) or by the
formula for the S–N–S junctions [18]. In both cases, the

Hc1J
4
π
---λ J jcJ= λ J jcJ .∼

curlH j
E
E
----.=
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net result is the same. Below, the Ambegaokara–Barat-
off formula is used for convenience [16, 17]:

(3)

where ∆(T) is the superconducting gap at temperature
T, e is the electron charge, k is the Boltzmann constant,
and Rn is the normal-state resistance of the junction
[Rn = ρn(l/S), where ρn is the junction resistivity, l is its
length, and S is its cross-section].

The screening current j in a cylindrical sample is
given by the formula

(4)

Here, the angular brackets 〈…〉  denote the averaging

over all Josephson contacts in the sample, Φ =  is

the magnetic flux entering the sample in the form of vor-
tices (Josephson’s or hypervortices), A is the magnetic-
field vector potential (magnetic field is concentrated
inside the vortex), Φ0 = π"/e = 2.07 × 10–7 Gs cm2 is the
magnetic-flux quantum, Θ is the phase of screening
current, and ϕ is the polar angle in the cylindrical coor-
dinate system. The Josephson critical current density
jcj, according to Eq. (3), is

(5)

where ρn is the normal-state resistivity of a Josephson
medium, and r is the running radius of the cylindrical
sample. Indeed, the resistance of a ring layer of radius
r, width a, and height b is R = ρ(2πr/ab). One has I ~
1/R for the ring current and j = I/ab ~ 1/2πρr for the cur-
rent density. The resulting expression for the screening
supercurrent density is

(6)

In Eq. (6), it is taken into account that 〈|sin(πΦ/Φ0|〉 ∼ 1
and |∂Θ/∂ϕ| = Φ/Φ0 = N (N is the number of vortices
entering the sample). The sign of ∂Θ/∂ϕ depends on the
direction of sweeping the external magnetic field, i.e.,
on ∂H/∂t and on the direction of the magnetic-field vec-
tor H.

It follows from Eq. (6) that j ∝  n∆2/rkTc in the
vicinity of Tc (T < Tc). The Ambegaokara–Baratoff for-
mula (3) for Ic(T) coincides, to a constant factor, with
the Abrikosov–Gor’kov formula for the temperature-
dependent supercurrent carrier concentration n(T)

IcJ
π∆ T( )
2eRn
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2kT
------------ ,tanh=

j jcj
πΦ/Φ0( )sin

πΦ/Φ0
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∂Θ
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-------.=

Adl∫°
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∆ T( )
4eρnr
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2kT
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j
∆

4eρnr
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2kT
--------- 

 tanh πΦ/Φ0( )sin
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-------=
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4πeρnr
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2kT
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[17, 18]. Accordingly, |Ψ|2 ∝  n∆2/(kTc)2 and the shield-
ing current (6) is

(7)

According to Eq. (7), the critical-state equation (2)
for a long cylinder is written as

(8)

This equation is an alternative form of Eq. (6). As was
pointed out above, |∂Θ/∂ϕ| = N (~H) and n ~ 1/N
(~1/H), because the “paramagnetic” hypervortices
“take away” a part of the supercurrent carriers which
are involved in the formation of a macroscopic screen-
ing supercurrent (|Ψ|2|∇ϕ|  ~ j = const). As a result, the
right-hand side of Eq. (8) is independent of H, and one
must put |∂Θ/∂ϕ| = 1 in Eq. (8). Bearing Eqs. (6) and (8)
in mind, let us introduce the notation

In the model suggested, the equations for field penetra-
tion into the array of weak contacts uniformly filling the
volume of a long cylinder (L @ R, where L is the cylin-
der length and R is its radius; the magnetic field is
aligned with the cylinder axis) and the volume of an “infi-
nite” slab (the magnetic field is aligned with the z axis par-
allel to the slab plane) have, respectively, the form

(9)

(10)

where ∂Θ/∂y ≅ ±π /l (l @ b, where l is the slab length
and width, b is its thickness, and ∂Θ/∂y ≅ +π /l for H
aligned with the z axis).

The solution to Eq. (9) with boundary condition
Hz(R) = H (the axially directed external magnetic field
H increases) is

(11)

The magnetic field does not penetrate into the cylinder
region with r < ρ = Rexp(– |H |/Hp). Using Eq. (11), one
obtains for the cylinder magnetization

(12)

With this model, the lack of magnetization hystere-
sis in HTSC at low magnetic fields can be explained in
a natural way. As a magnetic field rises (H > Hc1j), the

j
e"
mi
------ Ψ*∇Ψ Ψ∇Ψ *–( ).=

∂Hz

∂r
---------

e"n
mr
---------∂Θ

∂ϕ
-------.=

H p
e"n
m

---------
∆

4πeρn

--------------- ∆
2kT
--------- 

  .tanh= =

∂Hz

∂r
---------

H p

r
-------= ,

∂Hz

∂x
--------- H p

∂Θ
∂y
-------,=

Hz r( )

H r R>,

H H p
R
r
---, r R≤ln–

0, r ρ.<







=

M H pe
H /H p–

H/H p( ).sinh–=



264 KUZ’MICHEV
number of hypervortices increases and their sizes
diminish, similar to the Josephson vortices in the tun-
neling junction. The pinning of hypervortices prevents
their creep. This process (transformation of the hyper-
vortices into the intergrain Josephson vortices and
intragrain Abrikosov vortices) is accompanied by the
growth of the screening supercurrent which flows in the
hypervortex penetration region of a Josephson medium.
This process is described by Eq. (9), while the magne-
tization is given by Eq. (12). On reaching the field H =
HJ, the hypervortex sizes become comparable to the
average intergrain distance in the polycrystal, so that at
H > HJ the hypervortices are almost completely trans-
formed into the usual Josephson vortices. If a field
decreases from Hmax < HJ, the process is reversed (the
hypervortex size increases and its number decreases).
This process is accompanied by a decrease in the screen-
ing supercurrent and also obeys Eqs. (9) and (12).

In contrast to the classical hard type-II superconduc-
tors, the hysteretic behavior of magnetization upon
reversing the direction of sweeping the magnetic field
in a Josephson medium is energetically unfavorable for
HTSC polycrystals. Indeed, the Abrikosov vortices
with a core of radius ~ξ (coherence length) are sur-
rounded by a vortex current of radius ~λ (London pen-
etration depth) and virtually do not change their size
with magnetic field. This fact is manifested in the mag-
netic properties of superconductors as follows. The pin-
ning of Abrikosov vortices by various imperfections in
a hard type-II superconductor gives rise to the persis-
tent screening supercurrent in the sample (critical state)
[8]. As the field increases to Hmax > Hc1 (lower critical

Fig. 1. Plots of (H) vs. static magnetic field for a ceramic

YBa2Cu3O7 – x sample no. 1 for three values of Hmax (Hmax
is the maximal field of the magnetization cycle). The arrows

indicate the cycling direction. The field  coincides

with Hirr .

ε1'

Hmax
1( )
field), the screening current flows in the vortex penetra-
tion region at a depth of ρ. The free energy of this state
is determined by the energies of vortices, screening cur-
rent, and their interaction. This state is unstable [8]. Its
stability is maintained by the vortex pinning. As the
field decreases from Hmax to H1 > Hc1, a current directed
in opposition to the initial current is induced, according
to Eq. (2), at the periphery of the sample at a depth of
ρ1 < ρ. Because of this, the sample of radius R is divided
into two regions (ρ < r < ρ1 and ρ1 < r < R) with oppo-
sitely directed screening supercurrents. Since the
superconductor magnetization is determined by these
currents, it will display a hysteretic behavior. The
energy of the hysteretic state is higher, because a posi-
tive energy of interaction between the oppositely
directed screening currents is added to the initial
energy, resulting in a lower stability of this state.

Contrary to the Abrikosov vortices, the hypervorti-
ces and the Josephson vortices change their size with
changing magnetic field. That is, a degree of freedom
exists due to which the hypervortices can adjust them-
selves to the external magnetic field and form a stable
critical state of lower energy. Because of this, the mag-
netization hysteresis is absent in the Josephson medium
containing hypervortices. As a result, the screening
supercurrent arising upon field buildup and having
smaller penetration depth, ρ2 < ρ, is the only one that
remains in the sample. Therefore, the hypervortices
increase in size in the course of a field decrease and
leave the sample, thereby reducing the penetration
depth of the initial screening current.

This process is also described by Eqs. (9) and (12),
which do not account for the hysteresis. As the field H
decreases to zero, a trapped magnetic field H ≈ Hc1J ~
10–1–10–4 Oe, which is much lesser than the geomag-
netic field, may remain in the sample. In magnetic fields
H > HJ, some of the Josephson vortices, contrary to the
hypervortices, may creep in the intergrain volume upon
passing current through the polycrystalline sample. If
the field is decreased from Hmax > HJ, then the magne-
tization hysteresis will be observed. This is so because
the formation of hypervortices from the Josephson vor-
tices requires energy for overcoming a potential barrier
analogous to the surface barrier. In this case, a “frozen”
magnetic flux remains in the sample, giving rise to the
magnetization hysteresis. The Josephson vortices may
“transmit” through this barrier to form hypervortices or
leave the sample, leading to the relaxation of the
trapped magnetic flux.

Discussion and comparison with experiment. The
experimental data obtained for the polycrystalline sam-
ple in our works [11, 13] are demonstrated in Fig. 1.
One can see in Fig. 1 that, at small modulation ampli-
tudes (h = 0.005 Oe), the amplitude  of the inphase
part of the first harmonic of the response signal
{  ∝  hχd(H) [19, 20], where χd(H) is the differential
magnetic susceptibility} decreases sharply with increasing

ε1'

ε1'
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static magnetic field H in the range 0 < H < 30 Oe, after
which it smoothly tends toward saturation. The irre-
versible behavior of  is observed only if the maximal
field Hmax of the magnetization cycle exceeds a certain
value Hirr . It follows from Fig. 1 that Hirr ≈ 20 Oe. The
value of Hirr depends on the sample preparation proce-
dure and lies in the range ~10–70 Oe [11, 13]. With the
model described in section 2, one has Hirr = HJ. Taking
into account that Hirr ≈ 20 Oe, the average intergrain
distance can be estimated at d ~ (Φ0/Hirr)1/2 ~ 1 µm.
This value of d agrees well with the grain size.

It was found in [11] that –χd(H) = a +

b/ , where a and b are dimensionless
parameters responsible for the linear (grain response)
and nonlinear portions of χd(H), respectively (a, b < 1
and H0 ~ 10–25 Oe). Because the resulting nonlinear
component of χd(H) fits well with magnetization (12)
over the entire range of H values, except for a vicinity
of H = 0, the parameter H0 can be identified with Hp in
Eq. (12). Using this Hp, let us estimate the effective
concentration nJ

1 of supercurrent carriers in a Joseph-
son medium (effective concentration of tunneling
pairs). The estimate gives nJ ~ 1019–1020 cm–3. The con-
centration of supercurrent carriers in the grains of
YBa2Cu3O7 – x is ~1022 cm–3 [21]. The value obtained
for nJ reflects the structure of the polycrystal. On the
other hand, the effective concentration can be estimated
by the formula nJ ~ m∆/4πe2"ρN [cf. Eqs. (6) and (8)].
For ∆ ~ 30 meV [21] and ρn ~ 1 mΩ cm [22], one gets

1 Unlike the concentration, the effective concentration is estimated
using free-electron mass m.

ε1'

H/H0( )cosh
2

Fig. 2. Magnetic-field dependence of the resistance of a
ceramic sample of YBa2Cu3O7 – x for a dc current of I =
100 mA at T ≈ 77 K. The arrows indicate the direction of
magnetic-field sweep.
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nJ ~ 1019 cm–3. Both estimates satisfactorily agree with
each other.

The results of the experimental studies of the mag-
netoresistance of HTSC ceramics [12] are presented in
Fig. 2. It is seen from this figure that the dc resistance
arises at H ~ 20 Oe and increases with the field, while
the hysteresis appears on the reverse course for H
higher than 20 Oe. As the field approaches zero, a rema-
nent resistance is observed which slowly disappears
with time. A plausible explanation for these results is as
follows. At H < Hirr , the strong pinning of hypervorti-
ces precludes the emergence of magnetoresistance, so
that R = 0. At H > Hirr , the Josephson vortices break
away from the pinning centers and move, resulting in
the appearance of the dc resistance. A decrease from
Hmax > Hirr gives rise to the hysteresis in the R(H)
dependence and to a remanent resistance R(0) (Fig. 2),
which slowly decreases with time. This is caused by the
fact that the trapped Josephson vortices transmit
through the potential barrier to form hypervortices and
leave the sample.

I am grateful to A.I. Golovashkin, V.A. Koshurni-
kov, and G.A. Zharkov for discussion of the results.
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Size distribution of Ge islands formed in the course of Ge heteroepitaxy on Si(111) was studied by scanning
tunneling microscopy in experiments of two types: (i) conventional molecular beam epitaxy (MBE) and
(ii) pulsed (0.5 s) irradiation with Ge ions of energy .200 eV at instants of time corresponding to a filling
degree >0.5 for each monolayer. Experiments were performed at a temperature of 350°C. The pulsed ion-beam
irradiation during heteroepitaxy leads to a decrease in the average size of Ge islands, an increase in their con-
centration, and a decrease in the root-mean-square deviation from the mean, as compared to the analogous val-
ues in conventional MBE experiments. © 2001 MAIK “Nauka/Interperiodica”.
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Self-organization of semiconducting nanostructures
in the course of heteroepitaxy underlies the most prom-
ising method of forming ensembles of quantum dots
[1–6]. At present, it is commonly accepted that the
energy gain caused by the strain relief in 3D islands
through the elastic relaxation in protrusion vertices is
the key factor in the transition from a two-dimensional
layered (2D) to three-dimensional island (3D) hete-
roepitaxial growth of pseudomorphic films. The islands
are ordinarily formed due to the morphological insta-
bility of strained films in systems with a large (more
than 2%) lattice mismatch between a film and a sub-
strate, among which Ge/Si (4%) and InAs/GaAs (7%)
are most familiar.

The self-organization (ordering) effects imply the
appearance of islands with preferred characteristics:
sizes, shapes, spacing between nanoclusters, and their
mutual arrangement. The ordering processes are
accompanied by the minimization of free energy of the
system. At present, particular attention is being given to
the size distribution of islands, because this parameter
of a system of quantum dots is of crucial importance in
practical applications.

Among the possible ways of improving island
homogeneity in sizes, the following are most signifi-
cant: (a) deviation from the singular surface plane of
substrate (see [7] and references therein) and (b) nucle-
ation synchronization [8].

It is generally believed that the nucleation of 3D
islands occurs at the imperfections of the 2D layer (het-
erogeneous nucleation mechanism). Hence, the prelim-
0021-3640/01/7405- $21.00 © 20267
inary creation of the cluster nucleation sites is an effi-
cient way for the island ordering control.

Nucleation synchronization is based on the idea of
affecting the adatom supersaturation through a short-
term increase in the density of molecular beam or short-
term lowering of the substrate temperature. A cyclic
variation of supersaturation in the course of growing
each atomic layer underlies the optimized method of
forming quantum-dimensional structures.

It has recently been found that irradiation with low-
energy Ge ions during Ge heteroepitaxy on silicon
stimulates the nucleation of Ge islands and reduces the
critical thickness at which the 2D  3D transition
occurs in a pseudomorphic Ge film [9].

The purpose of this work was to study the process of
formation of an ensemble of Ge islands and their self-
organization upon short-term irradiation of a pseudo-
morphic Ge film with its own ions during the heteroepi-
taxy on Si(111) from molecular beams. The (111) face
provides the highest stability against the morphological
instability that leads to the formation of 3D islands at
the surface of a pseudomorphic film during the conven-
tional epitaxy. This was precisely the reason why the
surface with (111) orientation was chosen for studying
ion irradiation effects.

Experiments were performed in an ultrahigh-vac-
uum chamber of an MBE setup equipped with an elec-
tron-beam evaporator for Si and an effusion cell (boron
nitride crucible) for Ge. A system for the ionization and
acceleration of germanium ions was designed and fab-
ricated by us and placed over the crucible. The Ge
molecular beam was ionized by the transverse electron
001 MAIK “Nauka/Interperiodica”
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beam. The ionization device allowed the degree of ion-
ization of the Ge molecular beam to be varied from 0.1
to 0.5%. A pulsed accelerating voltage supply unit gen-
erated ion-current pulses with a duration of 0.5–1 s and
an ion energy of 50–200 eV. The angle of incidence of
the molecular and ion beams on the substrate was 54.5°.
The analytical section of the chamber included a reflec-
tion high-energy (20 keV) electron diffractometer. The
high-energy electron diffraction (HEED) pattern was
detected by a digital video camera during the growth of
germanium film, whereupon the data were fed into a
computer and processed using a specially developed
program package.

The growth velocity of the Ge film was ~1 bilayer
(BL) in 10 s (one BL = 1.56 × 1015 at./cm2), and the sub-
strate temperature was varied in the range 200–400°C.
Si(111) wafers with a misorientation angle less than 14′
were used as substrates. Prior to growing the Ge film,
the wafers were subjected to high-temperature anneal-
ing followed by the growth of a buffer Si layer. The

(a)

Fig. 1. (a) STM image of a 1000 × 1000 nm surface area, as
obtained ex situ after Ge heteroepitaxy on Si(111) at a tem-
perature of 350°C (five bilayers are deposited) and (b) size
distribution of Ge islands.
experiments on Ge heteroepitaxy on Si(111) were of
two types: (i) conventional molecular beam epitaxy and
(ii) molecular beam epitaxy with pulsed (0.5 s) irradia-
tion by Ge ions of energy 200 eV at instants of time cor-
responding to a filling degree of ≥0.8 for each bilayer.
The total amount of the deposited Ge was the same in
both types of experiments.

The surface morphology was studied ex situ using
scanning tunneling microscopy (STM), which allowed
the real-space erect image of surface relief to be
obtained with an atomic resolution. Measurements
were carried out at room temperature in the dc tunnel-
ing current regime (bias 2 V, current 0.085–0.7 nA,
feedback 3.76–5.31%). The STM images were pro-
cessed using special programs for determining the size
distribution of islands and their concentration.

The experimental results presented in Figs. 1 and 2
were obtained for a Ge flux density of 2.1 × 1014 at./cm2 s,
an ion-current density of 5.5 × 1011 at./cm2 s, and a sub-
strate temperature of 350°C. The amount of deposited
Ge was equal to 5 BLs.

In the experiments of the first type, the concentra-
tion of Ge islands was found to be 7.3 × 109 cm–2, their
average size was L = 63 ± 9 nm, and the size inhomo-
geneity was 14% (Fig. 1). In the second-type experi-
ments, the island concentration was found to increase
approximately twofold (1.2 × 1010 cm–2), while the
average size and size inhomogeneity diminished (L =
43 ± 4 nm and 9%, respectively; Fig. 2). A decrease in
the full width at half maximum of the size distribution
function is evidence for the size ordering in an ensem-
ble of Ge nanoclusters, the ordering process being the
result of the irradiation of a pseudomorphic Ge film
with low-energy ions.

Of interest was to carry out some estimates charac-
terizing the process of ion-stimulated nucleation and
the growth of Ge islands. It should be noted, first of all,
that the integrated Ge ion flux (total irradiation dose) was
Φ = 0.5 × 5 × 5.5 × 1011 at./cm2 s . 1.4 × 1012 at./cm2.
Every impact of the accelerated Ge ions gives rise to
~10 adatoms as a result of knocking out atoms from
their regular sites in one or two nearest-to-surface
monolayers of the pseudomorphic Ge film. At the sites
of knocked-out atoms, a vacancy cluster (of mono-
atomic thickness) is formed at the surface of the grow-
ing layer [10, 11]. The Φ value exceeds the experimen-
tally obtained concentration of Ge islands by almost
two orders of magnitude. Consequently, under the
experimental conditions chosen, most of the vacancy
formations created at the surface of the Ge layer by ion
irradiation are smoothed out (annealed) due to the inter-
action with adatoms coming from the molecular beam
or generated by the irradiation. Only a small fraction of
vacancy clusters, likely, become the sites of Ge-island
nucleation. It is also not improbable that the Stranski–
Krastanov mechanism of island formation makes a cer-
tain contribution in the second-type experiments with a
chosen amount of deposited Ge.
JETP LETTERS      Vol. 74      No. 5      2001
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The experiments with smaller amounts of deposited
Ge give grounds to assume that the contribution from
the ion-stimulated Ge-island formation dominates in
the second-type experiments. For instance, the Ge
islands are virtually not observed after growing 3.5 BL
under conditions of conventional Ge heteroepitaxy on
Si(111) (the Ge layer thickness is smaller than critical).
The switching on of the pulsed irradiation in the course

(a)

Fig. 2. The same as in Fig. 1 under conditions of pulsed
(0.5 s) irradiation with low-energy (200 eV) Ge+ ions dur-
ing the heteroepitaxy.
JETP LETTERS      Vol. 74      No. 5      2001
of heteroepitaxy (second-type experiments) gives rise
to the islands with a concentration of 4.3 × 10–10 cm–2.

The size ordering of the Ge islands is, most likely,
caused by the following factors: (a) a single-event
(within a pulse duration) nucleation of Ge islands after
completing the growth of each layer followed by the
enlargement of the islands and (b) a decrease in the
growing layer roughness under the pulsed action of the
Ge+ ion beam, with an energy of about 200 eV, just
before the growth oscillation maximum [9], likely
because of an increase in the adatom diffusivity as a
result of the ion-stimulated Ge(111)-surface recon-
struction, namely, the transition from the (7 × 7) to the
(5 × 5) superstructure.

We are grateful to V.A. Kudryavtsev for conducting
experiments on heteroepitaxy and to S.A. Tiœs and
I.G. Kozhemyako for the STM measurements. This
work was supported by the Russian Foundation for
Basic Research (project no. 99-02-17196) and the pro-
gram “Surface Atomic Structures” (project no. 4.2.99).
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The cyclotron spin-wave mode of a two-dimensional electron system have been investigated by inelastic light
scattering. It is observed at small electron filling factors, ν ~ 0.1, when the electron system is spin-depolarized.
As long as the electron system becomes fully spin-polarized (ν > 0.2), the cyclotron spin-wave disappears from
the inelastic light scattering spectra. It reenters at electron filling factors ν > 1. Over the range of electron filling
factors of 1 < ν < 2, the cyclotron spin-wave energy is insensitive to both the experimentally accessible in-plane
momenta and the electron concentration, whereas its inelastic light scattering efficiency is strongly influenced
by the spin polarization of the electron system. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.30.Ds; 73.20.-r
Collective excitations in a two-dimensional electron
system (2DES) under an external static magnetic field
are usually classified as intra- and intersubband modes,
associated with poles in the corresponding parts of
charge- and spin-density response functions, the intra-
and intersubband excitations being taken as noninter-
acting (the long-wave approximation). The intersub-
band part of the excitation spectrum consists of princi-
pal intersubband modes, which are charge- and spin-
density excitations (CDE and SDE) [1], intersubband
Bernstein modes [2, 3], and out-of-phase or optical
charge and spin-density excitations [4, 5]. The intrasub-
band excitations can, in turn, be separated into inter-
and intra-Landau-level collective modes. The latter are
the spin-wave mode and fractional excitations, origi-
nating from the nontrivial self-ordering of the 2DES in
a partially filled Landau level (LL) [6, 7]. As to the
inter-Landau-level (ILL) excitations, they are associ-
ated with electron transitions from LL n to LL n + m
with or without flipping the electron spin. Their ener-
gies are given by

(1)

Here, ωc is the cyclotron frequency, δSz = –1, 0,1, and
m are, respectively, the excitation spin and momentum
projections along the magnetic-field axis [8]. At q 
0, the  term equals zero for ILL excitations with
δSz = 0. It can, however, be significant for ILL excita-
tions with δSz = –1, +1 [9, 10]. Since there generally
exist an infinite number of ILL excitations with differ-

E q( ) m"ωc δSzgµBB EδSz
q( ).+ +=

EδSz
q( )

1 This article was submitted by the authors in English.
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ent m, hereafter, an example of ILL excitations from the
lowest Landau level with m = 1 will be considered. The
theory of such excitations has been developed in [8] for
integer and in [9, 11] for noninteger electron filling fac-
tors (ν).

When the electrons in the 2DES equally occupy the
two spin states of the lowest LL, the ILL excitations can
be classified as singlet and triplet states. The singlet
state is a magnetoplasmon, which gives rise to a pole in
the charge-density response function. The modes that
constitute the triplet state are the two cyclotron spin-flip
modes (SF, δSz = –1, 1) and the cyclotron spin-wave
mode (CSW, δSz = 0), with its spin directed in the 2D
plane. The magnetoplasmon can be described as an in-
phase oscillation of two spin subsystems of the 2DES
involving inter-LL electron transitions, whereas the
spin-wave mode is associated with the out-of-phase
oscillations of two spin subsystems. This classification
is no longer valid if the ground state of the 2DES has a
different occupation for the two spin states. In that case,
both δSz = 0 modes, the magnetoplasmon and the cyclo-
tron spin wave, give rise to poles in the charge-density
response function, whereas only the cyclotron SF
modes give rise to poles in the spin-density response
functions. Despite the mixed charge-spin character, the
cyclotron spin-wave mode is not active in infrared
absorption experiments, because it is a pure spin-den-
sity type excitation in the limit of q  0, whereas it
becomes a pure charge-density excitation only at q  ∞
(the latter statement is not valid for the special case of
odd noninteger filling factors, ν = 3, 5, 7, …, when both
δSz = 0 modes are of charge-density type for all q [12]).
Only recently, the cyclotron spin-wave mode was
001 MAIK “Nauka/Interperiodica”
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observed for the first time using the inelastic light scat-
tering (ILS) technique in the limiting case of small non-
integer filling factors (ν ! 1) [10]. Here, we report the
study of the cyclotron spin-wave at large ν and demon-
strate that, at ν ~ 2, it is the cyclotron spin-density wave
(and not the magnetoplasmon) that dominates inelastic
light scattering in the vicinity of the cyclotron fre-
quency.

Four different asymmetrically doped high-quality
semiconductor heterostructures containing a single Al-
GaAs/GaAs quantum well (QW) with a width of
250−300 Å, electron concentrations in the dark of
1.6−3.5 × 1011 cm–2, and an electron mobility of
~1.5−7 × 106 cm2/Vs were used for this study. The elec-
tron concentration (ns) in the samples was continuously
tuned using the opto-depletion effect, and it was mea-
sured by means of in-situ luminescence [13]. A two-fiber
optical system was utilized in the measurements [3]. One
fiber transmitted the pumping laser beam, and the other
collected the scattered light out of the cryostat. The
angles between the sample surface and pumping and
collecting fibers were chosen to attune the in-plane
momentum transferred to the 2DES via the ILS pro-
cess. The in-plane momentum was 0.4–1.0 × 105 cm–1.
The scattered light was dispersed by a Ramanor
U-1000 double grating monochromator and detected by
a CCD camera. Taking into account the resonant nature
of ILS in a magnetic field, the experimental spectra
were recorded using a series of different photon ener-
gies of the pumping radiation.

Figure 1 shows a typical ILS spectrum taken at
small ν and a fixed magnetic field of 9.4 T. Three lines
are observed in the energy range of the cyclotron reso-
nance (Fig. 1). The lowest and the highest energy lines
correspond to the ∆Sz = +1 and ∆Sz = –1 spin-flip
modes, respectively (the negative g factor of electrons
in GaAs is taken into account), whereas the two central
lines correspond to two possible ∆Sz = 0 modes: the
magnetoplasmon or cyclotron mode with zero spin, and
the cyclotron spin-wave with its spin directed in the
QW plane [10]. The inelastic cross section of the spin-
wave mode decreases when the spin polarization
degree increases. At ν > 0.2, only two modes are left in
the spectra, characteristic of a spin-polarized 2DES: the
∆Sz = –1 spin-flip mode and the magnetoplasmon
(Fig. 1).

The CSW mode reenters in the ILS spectra as soon
as the second electron spin state becomes populated.
Figure 2 shows ILS spectra taken in the vicinity of the
cyclotron frequency at different magnetic fields over
the range of the electron filling factors 1 < ν < 2. Two
ILS lines are observed, which are identified as the
cyclotron spin-wave and magnetoplasmon modes using
the same “symmetry test” as in [10]: if one tilts the
magnetic field, inter- and intrasubband modes possess-
ing the same symmetry should interact near their
energy resonance. Such interactions were indeed
observed in our experiment for the magnetoplasmon
JETP LETTERS      Vol. 74      No. 5      2001
and the intersubband CDE, as well as for the spin-wave
and the intersubband SDE. The latter interaction is
clearly seen in Fig. 2. Due to the coupling of CSW and
SDE, the CSW energy declines from the corresponding
energy calculated in the absense of mixing between
inter- and intrasubband excitations (solid trianglers),
whereas the magnetoplasmon energy intersects the
SDE energy without an observable effect.

Having identified the cyclotron spin-wave mode, we
compared its dispersion properties with those of the
magnetoplasmon (MP). The dispersions of the CSW
and MP modes at 6 T are shown in Fig. 3. In agreement
with the theory of [9, 11], the CSW mode does not pos-
ses any appreciable dispersion for the experimentally
accessible in-plane momenta. In contrast, the disper-
sion of the MP is easily observable. The MP energy
demonstrates the familiar linear growth with increasing
electron concentration. However, the experimentally
observed linear slope of the magnetoplasmon energy is
larger than the predicted one, and, as a consequence,
the magnetoplasmon energy intersects the spin-wave
energy at a finite electron concentration. Thus, at suffi-

Fig. 1. ILS spectra measured for a single 300 Å QW sample
for the in-plane momentum of 0.4 × 105 cm–1, magnetic
field B = 9.4 T, and ν = 0.12 and 0.26. The lines are classi-
fied by the spin projection of their corresponding modes
along the magnetic field axis. The spin-triplet state consists
of the cyclotron spin-wave (|0〉CSW) and two spin-flip
modes (|–1〉SF, |+1〉SF). The spin-singlet state is the magne-
toplasmon (|0〉MP). The energy is measured from the mag-
netoplasmon energy.
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ciently large ν, the MP energy exceeds the CSW
energy, but at small ν the CSW energy exceeds that of
the MP (Fig. 1). This result is in qualitative agreement
with conclusions of [14, 15], where the influence of
impurities on the spectrum of collective modes is con-
sidered. In a way, it resembles a similar experimental
observation called “Collapse of the Hartree Term” for
intersubband counterparts of CSW and MP, intersub-
band SDE and CDE [16]. It must, however, be stressed
that in an ideal translational-invariant 2DES the calcu-
lated CSW and SDE energies are always below those of
MP and CDE, respectively [9, 11].

The ILS cross section of the CSW mode and the
magnetoplasmon strongly depend on the relative popu-
lation of the two spin states in the 2DES ground state.
Figure 4 shows the electron filling factor and the tem-

Fig. 2. ILS spectra measured for a 250 Å QW sample with
ns = 3.5 × 1011 cm–2 at different magnetic fields close to the
response of the CSW and SDE energies. The simulated
energies of the magnetoplasmon and the cyclotron spin
wave at q = 1.0 × 105 cm–1 in the absence of interaction
between inter- and intrasubband excitations are shown by
open and solid triangles. The dotted lines are guides to the
eye.
perature dependence of the CSW and MP ILS cross
sections. When a single spin state is occupied (ν = 1),
only the MP mode is observed. The filling of the second
spin state by increasing either the electron filling factor
or the temperature is accompanied by the enhancement
of the CSW ILS cross section. At ν = 2, the dipole-for-
bidden CSW mode dominates the ILS spectra, which is
in contrast to the infrared absorption spectra, where
only the dipole-allowed MP mode is generally
observed [12]. The ILS from the cyclotron spin-wave
mode can thus be employed to characterize the polar-
ization properties of the 2DES’s.

Fig. 3. ILS spectra measured for a 250 Å QW sample with
ns = 2 × 1011 cm–2 for two in-plane momenta, 0.5 and

0.8 × 105 cm–1, and a magnetic field of 6 T. In the inset, the
MP and SW energies vs. the electron concentration are
shown.
JETP LETTERS      Vol. 74      No. 5      2001
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In conclusion, we studied the cyclotron spin-wave
mode of 2DES in the case where electrons occupy the
lowest LL. Being the out-of-phase oscillation of two
electron spin subsystems of 2DES, the cyclotron spin-

Fig. 4. Left: ILS spectra measured for a 250 Å QW sample
with an electron concentration in the dark of 2 × 1011 cm–2

for a magnetic field of 4.2 T and different ν (ν is pointed at
the left of the spectra). In the inset, the intersubband coun-
terparts of the cyclotron spin wave and the magnetoplas-
mon, spin- and charge-density excitations (SDE and CDE)
for ν = 2 are shown. Right: the temperature dependence of
the relative ILS cross sections for the cyclotron spin wave
and the magnetoplasmon for a magnetic field of 6 T and
ν = 1. The diagram at the bottom demonstrates an addi-
tional degree of freedom that allows the cyclotron spin wave
to exist. At 1 < ν < 2, two modes with δSz = 0 can be con-
structed on the basis of two electronic transitions from two
spin states coupled by the Coulomb interaction, whereas at
ν < 1 only the magnetoplasmon exists.
JETP LETTERS      Vol. 74      No. 5      2001
wave mode has zero oscillator strength at small in-
plane momenta. Despite this fact, it is active in the
inelastic light scattering whenever electrons fill more
than one spin state. The energy of the cyclotron spin
wave lies at the cyclotron frequency and does not
change for the in-plane momenta used in the experi-
ment. The last result is in perfect agreement with the
theoretical predictions using Generalized Single Mode
and Hartree–Fock approximations [8, 9, 11].
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The influence of nonstoichiometry of the new high-temperature superconductor MgB2 on its critical tempera-
ture was studied by the direct magnetooptical observations of the penetration and trapping of magnetic flux. To
preclude the possible influence of accidental factors, a special sample with transition from pure boron to the
MgB2 with an excess of Mg was synthesized. In a narrow region near the unreacted boron, the magnetic-field
trapping and screening disappear at a temperature 1.5 K higher than in the dominant stoichiometric region of
the sample. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.62.Bf; 74.72.-h
Although it has been found in the avalanche of
works, devoted to studying the superconductivity of
MgB2 [1] after its recent discovery, that even high-qual-
ity samples show a noticeable scatter of the transition
temperature from canonical 39 K to 37 K and lower,
this fact was either not discussed at all or attributed to
the influence of impurities. A strong lowering of critical
temperature in aluminum-doped MgB2 [2] provides an
example of such an influence. However, the use of pure
components in the synthesis of MgB2 precludes the
impurity effect. The influence of different contents of
boron isotopes 11B and 10B can also be excluded,
because the replacement of all isotopes of one sort by
the isotopes of another sort shifts Tc by only 1 K [3], and
because one ordinarily uses approximately the same
natural mixture of isotopes. The fact that Tc depends
only on the synthesis temperature suggests that MgB2 is
not strictly stoichiometric and that a homogeneity
region Mg1 – xB2 exists in the Mg–B diagram [4]. The
large values of x correspond to higher Tc, in compliance
with recent band calculations of Mg1 – xB2 [5]. Attempts
to directly study the influence of the nonstoichiometry
of Mg1 – xB2 on Tc have faced the problem of measuring
the contents of light Mg and B elements with a high
accuracy (see [6] and references therein). Moreover, the
removal of a portion of magnesium by vacuum annealing
of samples, or the preparation of a magnesium-deficient
or magnesium-enriched Mg1 – xB2, virtually did not affect
the Tc value [6]. To obviate the uncertainty associated
with controlling the composition of Mg1 – xB2, we have
synthesized samples in which the Mg content changes
0021-3640/01/7405- $21.00 © 20274
monotonically within the maximum possible limits.
Our method of the direct visualization of magnetic field
in superconductors [7–9] allowed not only the spatial
inhomogeneities of magnetic-flux dynamics to be
resolved for these samples but also the temperature
dependences of the local magnetic ac susceptibility to
be measured at selected points [9].

Dense ceramic samples of Mg1 – xB2 with variable
Mg content were prepared using the following workup.
A powder of amorphous boron (99.95% purity) was
pressed into cylinders with a diameter of about 10 mm
at a pressure of 2 × 102 MPa and placed at the bottom
of a molybdenum crucible. Plates of metallic magne-
sium (99.95% purity) were set on a boron pellet, and
the crucible was closed with a cover and placed in a fur-
nace with an electrical heater. The furnace was prelim-
inary evacuated to 10–5 atm and then filled with pure
argon at a pressure of 10–12 atm. After heating to
950°C, the exothermic combination reaction between
boron and magnesium started from the boron surface.
For the details of this method of synthesizing MgB2,
see [4]. The temperature dependences of resistance,
magnetic susceptibility, and microwave losses were
measured for dense ceramic samples that were cut from
the synthesized ceramics [4, 10]. The same samples
were used for pressure studies [11]. According to these
measurements, the superconducting transition temper-
ature was near 38 K. The amount of magnesium and the
synthesis time were chosen so that the unreacted boron
powder remained in the central part of the synthesized
ceramics. Metallic magnesium condensed on the outer
surface of such a hollow MgB2 cylinder upon cooling
001 MAIK “Nauka/Interperiodica”
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in  the furnace. Therefore, the synthesized samples
were characterized by a gradual transition from an
excess of magnesium to its deficiency. Further studies
were carried out with thin plates that were cut along the
cylinder radius (dashed prism in Fig. 1), ground to a
thickness of 260 µm, and polished to mirror luster (see
Fig. 3a).

The weight percentage of Mg in the samples was
determined relative to the pure metallic magnesium
standard using X-ray microanalysis. These measure-
ments confirmed that the Mg content decreased from
the outer edge of the sample at R = 0 to the unreacted
boron core at R = 3 mm (upper curve in Fig. 2).
Although measurements were made for the cleanest
and smoothest areas of the polished surfaces without
noticeable inclusions and pores, the results showed a
sizable scatter. The Mg weight content in the ideal
MgB2 lattice is 53%. One may assume that the compo-
sition of the prepared MgB2 gradually changes from
stoichiometric to approximately Mg0.8B2. A small con-
tribution of pure magnesium detected by X-ray diffrac-
tion was neglected. The enhanced content of Mg at the
edge R = 0 is, apparently, due to the above-mentioned
condensation of Mg on the outer surface of the ceram-
ics. To find out how the phase composition and lattice
parameters change along R, the sample was cross-cut
into several fragments, and the diffraction spectra were
measured separately for each of them. Because the
intensities of the corresponding diffraction peaks were
normalized to the surface areas of these fragments, the
variations of peak intensities from sample to sample
were proportional to the variations of the concentra-
tions of the respective crystal phases. It was established
that the content of pure Mg (lower curve in Fig. 2)
decreased in accordance with the assumed drop of mag-
nesium vapor pressure during Mg deposition at the end
of synthesis. At the same time, the content of MgB2

(middle curve in Fig. 2) virtually does not change along
R except for a region near R = 3 mm, where the reduced
content of MgB2 is likely due to the presence of resid-
ual amorphous boron, which does not reveal itself in
X-ray diffraction. The MgB4 phase was not observed at
all. A small amount of MgO was detected in all frag-
ments, probably, because of the oxidation of their sur-
faces. Measurements of the diffraction peaks (201) and
(102) of MgB2 suggested that the lattice parameter c
increased with increasing R (inset in Fig. 2), in agree-
ment with the data reported in [6]. This counts in favor
of the fact that the concentration gradient produced for
Mg in the course of synthesis leads to the respective Mg
deficiency in the MgB2 lattice.

The magnetic-flux trapping in one of the thin plates
(1 × 3 mm) with a gradient of Mg content across it is
shown in Fig. 3 for different temperatures. The images
were obtained using a ferrimagnetic garnet film with in-
plane anisotropy. The film was placed on the polished
JETP LETTERS      Vol. 74      No. 5      2001
surface of the sample and served as an indicator of mag-
netic-field distribution [9]. Unique possibilities of this
method have already found use in recently initiated stud-
ies of MgB2; these possibilities are aimed at demonstrat-
ing good intergrain supercurrent in ceramics and wires
[12–16] and revealing the specific features of magnetic-

Fig. 1. Scheme of synthesis and preparation of the ceramic
samples of Mg1 – xB2 for study. The Mg arrow indicates the
direction of magnesium diffusion, and B is the residual
unreacted boron at the cylinder center. R corresponds to the
abscissa in Fig. 2.

Fig. 2. Distribution of Mg and MgB2 along the direction
from the outer surface of the synthesized cylinder to the
inner unreacted boron core. The left axis is for the relative
X-ray peak intensity: h for pure Mg and s for MgB2. The
right axis (,) is for the Mg weight percentage, as measured
using X-ray microanalysis. Inset: variation of the lattice
parameter c of MgB2 in the sample.
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field penetration into new films [17–19]. The sample
was preliminarily zero-field cooled to a temperature of
12 K. After each additional rise in temperature, a max-
imal field of 1200 Oe was applied again and then
switched off. At low temperatures, a partial magnetic-

(a)

0 1 2 3
R, mm

(b)

(c)

(d)

(e)

Fig. 3. Magnetic-flux trapping in one of the MgB2 plates
that was cut out as shown in Fig. 1. Maximal field is
1200 Oe. T = (b) 29.0 K (partial penetration of magnetic
field), (c) 36.3 K, (d) 37.8 K, and (e) 38.7 K. (a) Plate sur-
face. (b–e) The residual unreacted boron (at the right) is col-
ored black and does not show up in the magnetooptical
images. The marks n, ,, s, and h indicate the areas for
which the magnetic susceptibility curves (shown in Fig. 4)
were measured.
field penetration was observed (Fig. 3b). The magnetic
flux penetrated and trapped near the sample edges and
cracks shows up as bright light stripes (a higher bright-
ness corresponds to a higher field at the corresponding
area of the superconductor surface [9]). The azimuthal
cracks, which are seen both at the polished plate surface
(Fig. 3a) and due to field penetration, evidently, appear
as a result of the expansion of the material in the course
of synthesis, but they have little effect on the radial dif-
fusion of Mg during the synthesis. One can clearly see
that, even away from Tc, the penetration depths are dif-
ferent in the sample domains separated by cracks. At
the edge, where the Mg content is higher (at the left of
the figure), the magnetic field penetrates easier and the
trapped-flux stripes are wider. At temperatures above
35 K, magnetic field penetrates over the entire depth of
the sample, and the maximal trapped flux is observed at
the centers of the domains separated by cracks
(Fig. 3c). A magnetic flux trapped in the magnesium-
enriched part is considerably smaller than at the oppo-
site Mg-deficient edge, and, hence, the critical current
is weaker at the same temperature. When the supercon-
ductivity at the left edge completely disappears at a
temperature corresponding to the temperature Tc ≈ 38 K
of superconducting transition measured for this ceram-
ics by macroscopic methods [4, 10], the right edge con-
tinues to firmly hold the penetrated magnetic flux
(Fig. 3d). One can see from a comparison of Figs. 3c
and 3d that the fields trapped at the opposite edges of
the sample are comparable if the temperatures differ by
1.5 K. The last traces of superconductivity are observed
at the right edge in the form of a narrow stripe at a tem-
perature that is also approximately 1.5 K higher than
for an analogous pattern at the left edge of the sample
(Fig. 3e). This value corresponds to the maximum
increase in Tc due to the Mg deficiency.

To more accurately estimate Tc and present the data
in a more customary form, we measured the local ac
magnetic susceptibilities, as was done in our previous
work [8]. For this purpose, a small fragment of the
microscopic image (20 µm in diameter) was cut out
using a diaphragm, and its brightness was measured by
a photomultiplier, whose field-synchronized signal was
detected by a lock-in voltmeter. These measurements
are fully analogous to the measurements of local sus-
ceptibility using miniature coils or a Hall microprobe,
but in our case the measurements can be done for any
one point at the sample surface during a single experi-
ment. The curves obtained for the characteristic points
indicated in Fig. 3a are presented in Fig. 4. The local
values of Tc correspond to the onset of diamagnetic
screening upon lowering the temperature. According to
our observations of magnetic-flux trapping, they
change from 37.2 to 39.0 K, with a maximum near the
largest magnesium deficiency.
JETP LETTERS      Vol. 74      No. 5      2001
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The results obtained in this work closely resemble
our observations of the inhomogeneous superconduc-
tivity in single crystals of a high-temperature
YBa2Cu3O7 – δ superconductor with inhomogeneous
oxygen content [8]. The only distinction is that this
effect is more pronounced in YBa2Cu3O7 – δ: from the
maximum transition temperature in the oxygen-satu-
rated corner of a crystal to the absence of superconduc-
tivity in its bulk, to which oxygen does not diffuse. As
for Mg1 – xB2, a change in the transition temperature is
comparable with the transition width so that this change
is not quite obvious.

Thus, the superconducting transition temperature
rises with an increase in the Mg deficiency, confirming
the possible existence of a homogeneity region for
Mg1 − xB2. The crystal lattice of Mg1 – xB2 is very dense
and the B–B bonds are very strong, so that the presence
of boron vacancies and stable interstitial Mg atoms is
energetically unfavorable [5]. Magnesium deficiency is
the only “natural” free parameter. Accordingly, one can
conclude that the maximal “canonical” value Tc = 39 K
[1] occurs in Mg1 – xB2 with a certain magnesium defi-
ciency (x ~ 0.2), which is in equilibrium with the MgB4

phase and is mostly obtained upon high-temperature
annealing. As to the “proper” value of Tc for the stoichi-
ometric MgB2 (x = 0), it is more than 1.5 degrees higher
and is achieved in the synthesis with an excess of mag-
nesium, as, e.g., in our syntheses of composite
Mg−MgB2 targets by the method similar to that
described above and conducted with the same starting
materials [19]. As was pointed out above, the band cal-
culations of nonstoichiometric Mg1 – xB2 have led to the
same conclusion [5], but the real Mg deficiency is much
smaller than that assumed in calculations. It should also

Fig. 4. Local magnetic susceptibility curves. The Mg defi-
ciency increases from left to right. The measurement points
are marked in Fig. 3a by n, ,, s, and h, respectively. The ac
field amplitude is 8 G and the frequency is 17 Hz. 
JETP LETTERS      Vol. 74      No. 5      2001
be pointed out that the effect noticeably increases under
pressure. The rate of pressure-induced Tc degradation
changes systematically from dTc/dp ≈ –1 K/GPa for the
samples with Tc ≈ 39 K to dTc/dp ≈ –2 K/GPa for the
samples with Tc ≈ 37 K [11, 20]. In light of the afore-
said, this is explained by the fact that the Fermi level in
Mg-deficient Mg1 – xB2 (x > 0) lies in a less steep region
of the two-dimensional energy band, so that the pres-
sure-induced band shift has a considerably weaker
effect on Tc [21].
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Within the four-loop ε expansion, we study the critical behavior of certain antiferromagnets with complicated
ordering. We show that an anisotropic stable fixed point governs the phase transitions with new critical expo-

nents. This is supported by the estimate of critical dimensionality  = 1.445(20) obtained from six loops via

the exact relation  =  established for the complex and real hypercubic models. © 2001 MAIK

“Nauka/Interperiodica”.

PACS numbers: 75.40.Cx; 64.60.Fr; 75.50.Gg
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It is known that the critical properties of phase tran-
sitions in certain antiferromagnets involving an
increase of the unit cell in one or more directions at the
critical temperature can be described by a generalized
2N-component (N ≥ 2) Ginzburg-Landau model with
three independent quartic terms

(1)

associated with the isotropic, cubic, and tetragonal
interactions, respectively [1]. Here, ϕi is the real vector

order parameter in D = 4 – ε dimensions and  is pro-
portional to the deviation from the mean-field transition
point. When N = 2, Hamiltonian (1) describes the anti-
ferromagnetic phase transitions in TbAu2 and DyC2 and
the structural phase transition in NbO2 crystal.2

Another physically important case N = 3 is relevant to
the antiferromagnetic phase transitions in such sub-
stances as K2IrCl6, TbD2, MnS2, and Nd. All these
phase transitions are known from experiments to be of

1 This article was submitted by the authors in English.
2 The phase transitions in helical magnets Tb, Dy, and Ho belong to

the same class of universality [2].
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second order3 (see [5] and references therein). How-
ever, the experimental data were insufficiently accurate
to provide reliable values of critical exponents, and the
obtained estimates [6–8] were found to differ signifi-
cantly from the theoretically expected numbers.

For the first time, the magnetic and structural phase
transitions described by model (1) were studied within
the framework of the renormalization group (RG) by
Mukamel and Krinsky to the lowest orders in ε [1, 4].
A three-dimensionally stable fixed point (FP) with
coordinates u* > 0, v* = z* > 0 was predicted.4 That
point was shown to determine a new universality class
with a specific set of critical exponents. However, for
the physically important case N = 2, the critical expo-
nents of this unique stable FP turned out to be exactly
the same as those of the O(4)-symmetric one.

For the years, an alternative analysis of critical
behavior of the model, the RG approach in three dimen-
sions, was carried out within two- and three-loop
approximations [9, 10]. Those investigations gave the
same qualitative predictions: the unique stable FP does
exist on the 3D RG flow diagram. By using different
resummation procedures, the critical exponents com-
puted at this point proved to be close to those of the

3 An interesting type of multisublattice antiferromagnets, such as
MnO, CoO, FeO, and NiO, was studied in [3, 4]. It was shown, to
the leading orders in ε, that the phase transitions in these sub-
stances are of first order.

4 Following Mukamel [1], we call this point “unique.”
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Bose FP (u = 0, v  = z > 0) rather than to the isotropic
[O(N)-symmetric; u > 0, v  = z = 0] one. It was also
shown that the unique and the Bose FPs are very close
to each other, so that they may interchange their stabil-
ity in the next orders of RG approximation [10].

Recently, the critical properties of the model were
analyzed to third order in ε [11,12]. Investigation of the
FP stability and calculation of the critical dimensional-
ity Nc of the order parameter separating two different
regimes of critical behavior5 confirmed that model (1)
has a unique stable FP at N = 2 and N = 3. However, the
twofold degeneracy of the stability matrix eigenvalues
at the one-loop level was observed for this FP [12]. That
degeneracy was shown to cause a substantial decrease
in the accuracy expected within the three-loop approx-

imation and the powers of  to appear in the expan-
sions.6 So, computational difficulties were shown to
grow faster than the amount of essential information
one could extract from high-loop approximations. That
resulted in the conclusion that the ε-expansion method
is not quite effective for the given model.

Another problem associated with model (1) is the
question whether the unique FP is really stable in 3D,
thus leading to a new class of universality, or is its sta-
bility only an effect of insufficient accuracy of the RG
approximations used. Indeed, there are general nonper-
turbative theoretical arguments indicating that the only
stable FP in 3D may be the Bose one and the phase tran-
sitions of interest should be governed by that stable FP
[14]. However, up to now, this assertion found no con-
firmation within the RG approach. In such a situation,
it is highly desirable to extend already known ε expan-
sions for the stability matrix eigenvalues, critical expo-
nents, and the critical dimensionality in order to apply
the more sophisticated resummation technique to
longer expansions.

In this work, we first avoid the problem of the eigen-
values degeneracy in model (1) by analyzing the critical
behavior of an equivalent complex NC-component
order parameter model with the effective Hamiltonian

(2)

comprising the isotropic and cubic interactions.7 Note
that this Hamiltonian also describes the real hypercubic

5 When N > Nc, the unique FP is stable in 3D, while for N < Nc, the
stable FP is the isotropic one.

6 A similar phenomenon was observed earlier in studying the impure
Ising model (see [13]). Half-integer powers in ε arising in that
model have different origin but also lead to the loss of accuracy.

7 The model with the complex vector order parameter was consid-
ered by Dzyaloshinskii [15] in studying the phase transitions in
DyC2, TbAu2 (NC = 2) and TbD2, MnS2, and Nd (NC = 3).
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v 0

4!
------ψiψiψi*ψi*+
model [16] if ψi is thought to be the real NR-component
order parameter. The model (2) comes out exactly from
model (l) at v 0 = z0, and it is free from eigenvalue
degeneracy. Second, we examine the existence of the
anisotropic stable FP in model (2) on the basis of the
higher-order ε expansion. Namely, using dimensional
regularization and the minimal subtraction scheme
[17], we derive the four-loop RG functions as a power
series in ε and analyze the FP stability. For the first
time, we give realistic numerical estimates for the sta-
bility matrix eigenvalues using the Borel transforma-
tion with a conformal mapping [18]. This allows us to
carry out careful analysis of the stability of all the FPs

of the model. We state the exact relation  = 

between the critical (marginal) spin dimensionalities of
the real and complex hypercubic models and obtain the

estimate  = 1.445(20) using six-loop results of [19].
We show that the anisotropic (complex cubic; u ≠ 0,
v  ≠ 0) stable FP of model (2), being the counterpart of
the unique point in model (1), does exist on the 3D RG

flow diagram at NC > . For this stable FP, we give
more accurate critical exponent estimates in comparison
with the previous three-loop results [12] by applying the
summation technique of [20] to the longer series.

The four-loop ε expansion for the β functions of
model (2) were recently obtained by us in [21]. From
the system of equations βu(u*, v*) = 0, βv(u*, v*) = 0,
one can calculate formal series for the four FPs: the
trivial Gaussian one and nontrivial isotropic, Bose, and
complex cubic FPs. Instead of presenting here the FPs
themselves, which have no direct physical meaning, we
present the eigenvalues of the stability matrix

(3)

taken at the most intriguing Bose and complex cubic
FPs. They are

(4)
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at the Bose FP and for NC = 2

(5)

and NC = 3

(6)

at the complex cubic one, where ζ(3), ζ(4), and ζ(5) are
the Riemann ζ functions.

It is known that RG series are at best asymptotic. An
appropriate resummation procedure has to be applied in
order to extract reliable physical information from
them. To obtain the eigenvalue estimates, we have used
an approach based on the Borel transformation modi-
fied with a conformal mapping [18, 20]. If both eigen-
values of matrix (3) are negative, the associated FP is
infrared stable and the critical behavior of the experi-
mental systems undergoing second-order phase transi-
tions is determined only by that stable point. For the
Bose and the complex cubic FPs, our numerical results
are presented in Table 1. It is seen that the complex
cubic FP is absolutely stable in D = 3 (ε = 1), while the
Bose point appears to be of the “saddle” type. However
ω2’s of either points are very small at the four-loop
level, thus implying that these points may swap their
stability in the next order of RG approximation. We can
compare ω2 at the complex cubic FP quoted in Table 1
with the three-loop results of [9] obtained within the
framework of the RG approach directly in 3D. Those
estimates ω2 = –0.010 for NC = 2 and ω2 = –0.011 for
NC = 3 are solidly consistent with ours.
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The four-loop ε expansion for the critical dimen-
sionality of the order parameter of model (2) reads

Instead of processing this expression numerically, we

state the exact relation  = , which is indepen-

dent of the order of approximation used. In fact, the

critical dimensionality  for the complex cubic
model is determined as that value of NC at which the
complex cubic FP coincides with the isotropic one. In

the same way, the critical dimensionality  is defined
for the real cubic model. Both systems exhibit effec-

tively the isotropic critical behavior at NC =  and

NR = . So, because the complex O(2NC)-symmetric
model is equivalent to the real O(NR)-symmetric one,

the relation 2  =  holds true. For NC > , the
complex cubic FP of model (2) should be stable in 3D.

The five-loop ε expansion for  was recently
obtained in [22]. Resummation of that series gave the

estimate  = 2.894(40) (see [23]). Therefore, we con-

clude that  = 1.447(20) from the five loops. Practi-

cally the same estimate  = 1.435(25) follows from

the constrained analysis of , taking into account

 = 2 in two dimensions [19]. From the recent
pseudo-ε-expansion analysis of the real hypercubic

model [24], one can extract  = 1.431(3). However,

the most accurate estimate  = 1.445(20) results from

the value  = 2.89(4), obtained on the basis of the
numerical analysis of the four-loop [23] and the six-
loop [19] 3D RG expansions for the β functions of the
real hypercubic model.
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Table 1.  Eigenvalue exponent estimates for the Bose (BFP)
and the complex cubic (CCFP) FPs at NC = 2 and NC = 3, as
obtained in the four-loop order in ε (ε = 1) using the Borel
transformation with a conformal mapping

Type
of FP

NC = 2 NC = 3

ω1 ω2 ω1 ω2

BFP –0.395(25) 0.004(5) –0.395(25) 0.004(5)

CCFP –0.392(30) –0.029(20) –0.400(30) –0.015(6)
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Table 2.  Critical exponents for the isotropic (IFP), the Bose (BFP), and the complex cubic (CCFP) FPs at NC = 2 and NC = 3,
as calculated in the four-loop order in ε (ε = 1) using the Borel transformation with a conformal mapping

Type of FP
NC = 2 NC = 3

η ν γ η ν γ

IFP 0.0343(20) 0.725(15) 1.429(20) 0.0317(10) 0.775(15) 1.524(25)

BFP 0.0348(10) 0.664(7) 1.309(10) 0.0348(10) 0.664(7) 1.309(10)

CCFP 0.0343(20) 0.715(10) 1.404(25) 0.0345(15) 0.702(10) 1.390(25)
Finally, we have computed the four-loop ε series for
the critical exponents. At the stable complex cubic FP,
they are

(7)

for NC = 2 and

(8)

for NC = 3. Other critical exponents can be found
through the known scaling relations. The numerical
estimates obtained are collected in Table 2. The critical
exponents for the isotropic and the Bose FPs are also
presented for comparison. We can compare our results
with the available experimental data. For example, in
the case of the structural transition in the NbO2 crystal,
the critical exponent of spontaneous polarization was
measured in [7], 0.33 < β < 0.44. Our estimate β =
0.371 obtained using the data of Table 2 and scaling
relations lies in that interval.

In summary, the four-loop ε-expansion analysis of
the Ginzburg–Landau model with cubic anisotropy and
complex vector order parameter relevant to the phase
transitions in certain antiferromagnets with compli-
cated ordering has been carried out. Investigation of the
global structure of RG flows for the physically signifi-
cant cases NC = 2 and NC = 3 leads to the conclusion that
the anisotropic complex cubic FP is absolutely stable in
3D. Therefore, the critical thermodynamics of the
phase transitions in the NbO2 crystal and in the antifer-
romagnets TbAu2, DyC2, K2IrCl6, TbD2, MnS2, and
Nd should be governed by this stable point with a spe-
cific set of critical exponents, within the frame of the

η ε2
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given approximation. The critical dimensionality  =
1.445(20), obtained from six loops, supports this con-
clusion. At the complex cubic FP, the critical exponents
were calculated using the Borel summation technique
in combination with a conformal mapping. For the
structural phase transition in NbO2 and for the antifer-
romagnetic phase transitions in TbAu2 and DyC2, they
were shown to be close to the critical exponents of the
O(4)-symmetric model. In contrast to this, the critical
exponents for the antiferromagnetic phase transitions in
K2IrCl6, TbD2, MnS2, and Nd turned out to be close to
the Bose ones.

Although our calculations show that the complex
cubic FP, rather than the Bose one, is stable at the four-
loop level, the eigenvalues ω2 of both points are very
small. Therefore, the situation is very close to marginal,
and the FPs might change their stability to opposite in
the next order of perturbation theory, so that the Bose
point would become stable. This conjecture is in agree-
ment with the recent six-loop RG study of the three-
coupling-constant model (1) directly in three dimen-
sions [25]. The authors argue in support of the global
stability of the Bose FP, although the numerical esti-
mate ω2 = –0.007(8) of the smallest stability matrix
eigenvalue of the Bose point appears to be very small,
and the apparent accuracy of the analysis does not
exclude the opposite sign for ω2. In this situation, it
would be very desirable to compare the critical expo-
nent values obtained theoretically with values that
could be determined from experiments, in order to con-
firm which of the two FPs is really stable in physical
space. Finally, it would also be useful to investigate cer-
tain universal amplitude ratios of the model, because
they vary much more among different universality
classes than exponents do and might be more effective
as a diagnostic tool.

We are grateful to Prof. M. Henkel for his helpful
remarks and to Dr. E. Vicari for sending us a copy of the
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Russian Foundation for Basic Research (project no. 01-
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The stability of polarization, areas, and the number of self-induced transparency (SIT) solitons at the output of
the LaF3 : Pr3+ crystal is theoretically studied versus the polarization direction and the area of the input linearly
polarized laser pulse. For this purpose, the Vector Area Theorem is rederived and the two-dimensional Vector
Area Theorem map is obtained. The map is governed by the crystal symmetry and takes into account directions
of the dipole matrix element vectors of the different site subgroups of optically excited ions. The Vector Area
Theorem mapping of the time evolution of the laser pulse allows one to highlight soliton polarization properties.
© 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.50.Md; 42.65.Tg
For an isotropic medium, stability properties of self-
induced transparency (SIT) solitons are determined by
the Area Theorem. The Area Theorem is the name given
to a theoretical result that governs the coherent nonlin-
ear transmission of short light pulses through isotropic
materials, effectively two-level media, that have an
absorption resonance very near the frequency of the
incident light. In 1967, McCall and Hahn [1] identified
a new parameter (called “Area” and denoted by θ) of
optical pulses travelling in such media and then pre-
dicted that the Area obeys the simple equation

(1)

where α is the attenuation coefficient for the material.
The two most striking consequences of the Area Theo-
rem are the following: (i) pulses with special values of
Area, namely, all integer multiples of π, are predicted to
maintain the same Area during propagation, and (ii) pulses
with other values of Area must change during propaga-
tion until their Area reaches one of the special values.
This property can be shown to be unstable for the odd
multiples, but the even multiples enjoy the full immu-
nity of the theorem. Equation (1) was derived for the
isotropic material in which the dipole matrix element
vector of any ion is parallel to the electric field vector
of the light pulse. On the contrary, the direction of the
dipole matrix element vector of any Pr3+ ion in LaF3
does not depend on the electric field vector of the light
pulse. Thus, it is necessary to rederive Area Theorem
taking into account directions of the dipole matrix ele-

∂θ
∂z
------

α
2
--- θ,sin–=

1 This article was submitted by the authors in English.
0021-3640/01/7405- $21.00 © 20284
ment vectors of the different subgroups of Pr3+ ions.
Pr3+ ions in a LaF3 unit cell can replace La3+ in six dif-
ferent types of sites (±α, ±β, ±γ). The local environ-
ment of any of these has C2 symmetry. Six local
C2-symmetry axes are located in the plane normal to the
C3 axis and make an angle of 2π/6 in this plane (Fig. 1).
The electric dipole matrix element vector of the Pr3+ ion
(optical transition Γ1  Γ1)

(2)

is directed [2] along the local C2-symmetry axis

(3)

where ej is the unit vector along the C2j axis. Here, the
Z axis is directed along the C3 axis and the X axis along
the α axis. We define the Vector Area of the light pulse
as

(4)

where E(z, t) is the vector amplitude of the light pulse,
p is the electric dipole matrix element, and " is Planck’s
constant. Taking into account Eqs. (2) and (3) and using
arguments presented in [3], we can write the equation
for the Vector Area as:

(5)
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if a light pulse propagates along the C3 axis. Here, α is
the linear attenuation coefficient for LaF3 : Pr3+. As
Q  0, Eq. (5) transforms to

(6)

as expected for a small pulse Area.
Equating the right-hand side of Eq. (5) to zero, we

can find special values of the Vector Area, where
∂Q/∂z = 0. It can be done more obviously and easily
from the graphical representation. We can rewrite
Eq. (5) as

, (7)

and the problem is reduced to the determination of
points in a two-dimensional plane, in which the func-
tion  has extremes. The circles and trian-
gles in Fig. 2 give the contour plot of this function. We
easily find three types of special values of the Vector
Area, namely,

(8)

(9)

(10)

which are predicted to maintain the same Vector Area
during propagation. Here, m and n are arbitrary integers
and

(11)

(12)

(13)

where the unit vectors ej (3) and kj are directed, respec-
tively, along and between the C2 axes:

(14)

These special points (8)–(10) give rise to a two-dimen-
sional lattice in a Q-phase plane with basis vectors Q+
and Q– (11), as is shown in Fig. 2. A unit cell of the lat-
tice is determined by the symmetry of the crystal. It is
a regular hexagon. The hexagon centers are Qc (8) (cen-
ters of the circles in Fig. 2). As measured from the hexa-
gon center, coordinates of the six vertices of the hexa-
gon are uj (13) (centers of the triangles in Fig. 2), and
coordinates of midpoints of the sides of the hexagon are
sj (12). It is obvious from Eqs. (5), (7) and definitions
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(8)–(10) that, in a neighborhood of these special points,
the Vector Area behaves as

(15)∂Q
∂z
-------

α
2
--- Q Qc–( ),–=

Fig. 1. Directions of the local C2-symmetry axes for the dif-

ferent Pr3+ ion sites in the plane normal to the C3 axis of the

LaF3 : Pr3+ crystal.

Fig. 2. Vector Area Theorem map. The Q/2π projections
onto the X and Y axes are plotted on the X and Y axes,
accordingly. The vectors s1 (12) and u1 (13) are shown in
the upper part of the figure. The two basis vectors Q+ and
Q– (11) and the unit vectors along the local C2-symmetry
axes (+α, –β, –γ) are in the lower part of the figure. Vector
coordinates of some of the unit-cell centers are also shown.
Bold lines 0 and 1 are mappings of the time evolution of
laser pulses with mod (Q0) = 4π, and the angles between the
directions of the Vector Area and the crystallographic axis α
are 0° and –1°, respectively. In this case, αL = 20, where L is
the sample length and α is the attenuation coefficient. The
bold line 2 is the mapping of the time evolution of the laser
pulse with mod(2Q0) = 8π; the angle between the directions
of the Vector Area and the crystallographic axis α is +1°,
and αL = 40. The bold line 3 is as 2, but αL = 80.
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(16)

and as

(17)

if Q – Qs is directed along the side of the hexagon, and

(18)

if Q – Qs is directed perpendicularly to the side of the
hexagon. Therefore, for an absorbing (amplifying)
medium with α > 0 (α < 0), the points (8) are of the type
of a stable (unstable) knot, the points (9) are of the type
of an unstable (stable) knot, and the points (10) are of
the type of a saddle in the Q-phase plane. Below, we
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-------

α
4
--- Q Qu–( ),=

∂Q
∂z
------- α

6
---– Q Qs–( ),=

∂Q
∂z
------- +

α
2
--- Q Qs–( ),=

Fig. 3. Time evolution of the amplitude of the laser pulses
at the output of the sample. Values of the input Area, the
angles between the directions of the Vector Area and the
crystallographic axes α, and the parameter L for the curves
0, 1, and 2 are the same as for the curves 0, 1, and 2 in Fig.
2. The value αL for the 0° curve in the lower part of the fig-
ure is the same as for curve 2. The dotted line is input pulse,
and tp is the input pulse duration. The Vector Area Theorem
mapping (curves 1 and 2 in Fig. 2) allows one to easily spot
the polarizations and the areas of the solitons in curves 1
and 2 in this figure.
shall explore the case of the absorbing medium with
α > 0. If the input pulse Vector Area falls inside the unit
cell, then the Vector Area must change during propaga-
tion until it reaches the unit cell center. If the input Vec-
tor Area is not equal to (9) and (10) and falls on a side
of the hexagon, then the Vector Area must change dur-
ing propagation until it reaches the midpoint of the
hexagon side. It is necessary to note that the Vector
Area Theorem map (Fig. 2) allows one to easily predict
only the sum of the pulse vector areas at the output of
the sample. To determine the number of the output SIT
solitons and their polarization and area, one should
solve the system of coupled Maxwell–Bloch equations.

The input pulse with the Vector Area directed
between the crystallographic axes and equal, for exam-
ple, to Q+ excites only four (±α, ±γ) ion subgroups.
This pulse is a 2π-pulse for these ions. It does not excite
±β ions, because Q+ ⊥  e±β. Similarly, the input pulse
with the Vector Area equal to Q– is the 2π-pulse for
(±α, ±β)-ion subgroups and does not excite ±γ ions. If
the input Vector Area is parallel to Q+ (Q–) and falls
inside the unit cell Qc = mQ+ (Qc = mQ–), then the time
evolution of the pulse may be described by the inverse
scattering method. The input pulse is split at the output
into m SIT solitons with Vector Areas equal to Q+ (Q–),
as in the isotropic medium. We refer to these solitons as
Q+ solitons and Q– solitons. If the input Vector Area is
not parallel to Q+ (Q–) but falls inside the unit cell Qc =
mQ+ (Qc = mQ–), then numerical calculations show that
the input pulse is also split into m Q+ (Q–) solitons at the
output.

If the input pulse Vector Area is directed along the
crystallographic axis, for example, and the α axis is
equal to

(19)

then all (±α, ±β, ±γ) ions are excited. The input pulse
is the 2π-pulse for (±β, ±γ)-ion subgroups and the 4π-
pulse for (±α) ions. The time evolution of the pulse is
not described by the inverse scattering method. The
numerical calculations show that, if the input Vector
Area Qin is parallel to Q0 and falls inside the unit cell
Qc = mQ0, then the input pulse is split into m SIT soli-
tons with Vector Areas equal to Q0. We refer to these
solitons as Q0 solitons. Let the input Vector Area be not
parallel to the Q0 and fall inside the unit cell Qc = mQ0.
Then, as one can see in Figs. 2 and 3, a small change in
the input pulse polarization leads to the splitting of each
Q0 soliton into Q+-and Q– solitons. Therefore, the num-
ber of solitons and their polarization strongly depend
on the direction of the vector Qin with respect to the
crystallographic axis. This conclusion is also valid in
the general case when the input Vector Area falls inside
the unit cell Qc = mQ+ + nQ–, where m ≠ n. This is valid
because the unit-cell center coordinates may be rewrit-
ten as Qc = (m – n)Q+ + nQ0 if m > n, or as Qc = (n –
m)Q– + mQ0 if n > m. At first, there are (m – n)Q+ soli-

Q0 Q+= Q–+ ,
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tons for m > n, or (n – m)Q– solitons if n > m at the out-
put. Then, the number of solitons appearing at the out-
put depends on the direction of the vector Qin – (m –
n)Q+ or Qin – (n – m)Q– with respect to the crystallo-
graphic axis. In the stable case, the output solitons are
Q+ solitons and Q– solitons, and their number is (m + n).

For the amplifying medium, Q+ solitons and Q– soli-
tons are unstable, so the polarization of the output soli-
tons must be directed along the crystallographic axis in
the stable case.

It is necessary to note that for circular polarization
of the laser pulse the equation for the Area is of the
form (1), as in the case of isotropic medium.

To summarize, we have shown by the example of the
model system LaF3 : Pr3+ that the Vector Area mapping
JETP LETTERS      Vol. 74      No. 5      2001
of the pulse time evolution during propagation is an
effective method for analyzing the polarization proper-
ties of solitons.

I thank Ildar Ahmadullin for help with the assimila-
tion of Fortran 90 and Ashat Basharov for his useful
notes. This work was supported by the ISTC (grant
no. 737) and the Russian Foundation for Basic
Research (project no. 00-02-16510).
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A new effect—light backscattering from exciton Bose-condensate—is considered. This effect is connected with
the photoinduced coherent recombination of two excitons in the condensate with the production of two photons
with opposite momenta. The effect of two-exciton coherent recombination leads also to the appearance of the sec-
ond-order coherence in exciton luminescence connected with squeezing between photon states with opposite
momenta. The estimations given for Cu2O and GaAs excitons show that the effect of stimulated light backscatter-
ing can be detected experimentally. Moreover, in the system of 2D excitons in coupled quantum wells, the effect
of stimulated anomalous light transmission must also take place. Anologous effects can also take place in systems
of Bose-condensed atoms in excited (but metastable) states. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.35.Lk; 78.45.+h
Great progress has recently been made in the study
of exciton Bose condensation in 3D and 2D exciton
systems (see [1–8] and references therein). The study of
various ways in which exciton condensate should
unambiguously reveal itself by its optical properties is
vital [9, 10].

In this letter, we analyze the coherent coupling of
photons with opposite momenta originating from the
coherent recombination of two excitons from the con-
densate. We reveal that this process leads to a new
effect—stimulated light backscattering from exciton
condensate. This effect can be viewed as the photoin-
duced coherent recombination of two condensate exci-
tons with the production of two photons with opposite
momenta.

1. Let us first consider 3D excitons in Cu2O. The
direct recombination of the electron and hole in Cu2O
is a forbidden process, and an exciton decays mainly
with the production of a photon and an optical phonon.
The interaction Hamiltonian is

(1)

where , , and  are the exciton,
phonon, and photon destruction (creation) operators,
respectively;  is the optical phonon dispersion;
V is volume of the system; L is the effective interaction

V̂ t( )
"Lk q,

V
------------âp

† t( )ĉke
iωkt–

p k q–– 0=
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× b̂qe
iωphn q, t–

b̂ q–
†

e
iωphn q, t

+( ) H.c.,+

â â†( ) b̂ b̂
†( ) ĉ ĉ†( )

ωphn q,

1 This article was submitted by the authors in English.
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constant; ωk = ck is the frequency of photons with wave
vector ±k; and c = c0/n is the speed of light in Cu2O
(n ≈ 3).

In normal phase of the exciton system, the main pro-
cess of exciton recombination is determined by the dia-
gram in Fig. 1a. The spectrum of exciton luminescence
shows a broadened peak at the frequency ≈ωex(0) – ωphn(0)
[9]. The radiative lifetime of an isolated exciton with
wave vector k = 0 can be written as

, (2)

where L is the matrix element in Eq. (1); k0 is the abso-
lute value of the photon wave vector ≈Eg/c"; and Eg is
the energy gap in Cu2O, Eg ≈ 2 eV. The process of two-
exciton recombination (Fig. 1b) has an extra vertex of
exciton–photon interaction and, therefore, is substan-
tially weaker.

In the Bose-condensed phase of the exciton system,
the exciton lines in Fig. 1b can belong to excitons from
the condensate (see Fig. 1c). One-exciton recombina-
tion from the condensate (Fig. 1a) has the only large

factor , where N0 is the number of quanta in the
macroscopically populated lowest quantum exciton
state, while two-exciton recombination has two such
factors. The additional factor can compensate the
weakness of the process, in comparison with the pro-
cess given in Fig. 1a, and thus make the rate of two-
exciton recombination on the order of the one-exciton
recombination rate. In pure samples, due to momentum
and energy conservation laws, two created photons
have the same energy and the opposite momenta. The

1
τCu2O
-----------

L k0 k0,( ) 2k0
2

πc
-------------------------------=

N0
001 MAIK “Nauka/Interperiodica”
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luminescence originating from this recombination pro-
cess has a peak at the chemical potential of the exciton
system, measured from the valence band "µ ("µ ≈ Eg).
Due to the fact that in two-exciton recombination no
energy is transformed to phonons, the frequency of
two-exciton recombination luminescence is higher than
that of one-exciton recombination by a value of ωphn !
Eg/" (Fig. 2).

The rate of two-exciton recombination with the pro-
duction of two photons with wave vectors ±k is

, (3)

where M is the matrix element of the process. The over-
all rate of spontaneous photon emission in the two-
exciton recombination process per unit volume is

obtained by integrating (k) over all photon wave
vectors k and multiplying the result by 2 (at every ele-
mentary event of the process, two photons are created):

(4)

The matrix element M(k) has the form

, (5)

where ρcond is the spatial density of the condensate, and

(6)

is the phonon Green’s function. Combining Eqs. (4),
(5), and (2), one obtains

(7)

In Cu2O, the radiative lifetime of exciton  [see
Eq. (2)] is approximately 10 µs and the energy of the
optical phonon ωphn is 10–2 eV. Taking as an estimation
ρcond = 1019 cm–3, we have the rate of photon creation in
coherent two-exciton recombination process, which is

(8)

while the rate of photon creation in one-exciton recom-

bination from the condensate is ρcond. This result
shows that approximately every hundredth exciton in
the condensate decays due to the process under consid-
eration. Therefore, the spontaneous two-exciton recom-
bination process is still weak, in spite of the extra

bosonic (excitonic) factor  in the matrix element
of the process (Fig. 1c). However, the process can be
induced by external resonant radiation (with frequency
ω = µ) propagating through the Bose-condensed exci-
ton system (Fig. 1d). At every event of such exciton
recombination, not only a photon propagating along the
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2
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inducing radiation direction is created but also a photon
propagating in the opposite direction. Consequently, it
appears that the process effectively acts as a light back-
scattering from the condensate. The rate with which
photons are emitted in the opposite direction is

, (9)

where Nk is the average number of quanta in the quan-
tum state of the inducing photon beam with the wave

W k– Nk 1+( )= Wk
spon

Fig. 1. (a) The diagram of one-exciton recombination in
Cu2O; dashed line represents phonon, straight line repre-
sents exciton, and wavy line represents photon. (b) The dia-
gram of the two-exciton recombination process where the
phonon is virtual. (c) The diagram of recombination of two
excitons from the condensate. Due to momentum conserva-
tion, photons have opposite wave vectors. (d) The process of
two-exciton recombination stimulated by an external beam
with wave vector k; double wavy line represents a classical
laser field.

Fig. 2. The schematic photoluminescence (PL) spectrum of
Cu2O. One-exciton recombination results in the spectrum at
the left of the figure. This portion of the spectrum was stud-
ied, e.g., in [9]. The portion of the spectrum at the right of
the figure corresponds to two-exciton recombination. It has
a higher energy, since no energy is transformed to phonons.

µ – ωphn



290 LOZOVIK, OVCHINNIKOV
vector k; the unity takes into account the spontaneous
two-exciton recombination.

Consequently, the inducing beam at the frequency
ω = µ, which has approximately one hundred quanta
per mode, makes the two-exciton recombination lumi-
nescence in one opposite direction of the same intensity
as the one-exciton recombination luminescence [see
Eq. (8)]. This comment implies that the effect of stimu-
lated backscattering of a laser beam on exciton conden-
sate can be detected experimentally.

In the absence of an inducing beam, two-exciton
recombination luminescence is squeezed between the
photon states with opposite momenta (two-mode
squeezing). Luminescence at a given direction does not
possess statistical coherence. The only statistical corre-
lation which luminescence has is the correlation
between the opposite-direction luminescence intensi-
ties. This correlation can be detected by Hunburry–
Brown–Twiss measurements with two detectors
arranged diagonally with respect to the exciton system.

2. Now we consider a direct-gap semiconductor
with an allowed interband transition such as GaAs.
However, in GaAs 3D excitons do not form Bose con-

Fig. 3. (a) The diagram of two-exciton recombination from
2D exciton condensate in QW or CQW. F is the anomalous
Green’s function; wavy lines represent photons with oppo-
site in-plane wave-vector components. (b) Laser beam
induces two processes of two-exciton recombination, which
are different in the signs of normal wave-vector components
of photons with in-plane components –k||. Light also under-
goes normal reflection from CQW planes. (1) Normally
transmitted laser beam; (2) stimulated emission; (3) stimu-
lated backscattering; (4) stimulated anomalous transmis-
sion; and (5) normal reflection from CQW. (c) Nonresonant
case; i.e., stimulating beam has energy substantially differ-
ent from chemical potential of excitons "µ; photons with in-
plane components –k|| (c, d) have energies "ω2 different
from the energy of incident light ω1. Normal components
are also different. The angles θ1, θ2 obey the relation
sin(θ1)/sin(θ2) = ω2/ω1. 1, 2, 3, 4, 5 denote the same as in
part (b) of the Figure.
densate but, rather, gather into metallic electron–hole
drops. Recently, GaAs excitons and their coherent
properties have been much studied in two dimen-
sions—in coupled quantum wells (CQW). In CQW,
spatially indirect excitons have electric dipoles, and
their interaction has a strongly repulsive character mak-
ing them able to form stable Bose condensate at T = 0
(or a quasi-long, nondiagonal-order, superfluid phase
with local quasi-condensate at temperatures lower than
the temperature of the Kosterlitz–Thouless transition).
CQW is a quasi-2D system, where only 2D in-plane
momentum is conserved. The operator of exciton–pho-
ton interaction in the interaction picture can be given as

, (10)

where  and  are exciton and photon destruc-
tion (creation) operators, respectively; and g(ω) is the
coupling constant; the vectors k|| are two-dimensional;
and L is the width of the system in the direction normal
to CQW.

To the lowest order in exciton–photon interaction,
the spontaneous rate of a process with the production of
two photons with in-plane wave vector components ±k||
(Fig. 3a), is

(11)

where F is the anomalous Green’s function of an exci-
ton subsystem. For estimations, we take the anomalous
Green’s function in the form

where mex is the exciton mass (in GaAs, mex ≈ 0.22m0,
where m0 is the mass of the free electron); ρcond is the
2D density of excitons in the condensate; V0 is the zero
2D Fourier component of exciton–exciton interaction
potential; ωex is the dispersion of elementary excitation
in an exciton subsystem; and η is the rate of decay of
elementary excitation in exciton subsystem; for sim-
plicity, we take this parameter to be frequency indepen-
dent. The energy of elementary excitation in an exciton
system is negligibly small in comparison with the gap
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WGaAs
spon k||( ) = 2π( )δ ωk1

ωk1
2µ–+( ) g ωk1

( )g ωk2
( ) 2∫

× F ω µ– k||,( ) 2dk ⊥ 1, 2π( ) 1– dk ⊥ 2, 2π( ) 1– ,

F ω k||,( ) β ω µ– ωex k||( )– iη+( ) 1––=

× ω µ– ωex k||( ) iη–+( ) 1– ,

ωex k||( ) β"k ||
2mex

1–
"k ||

2mex
1–( )+

2
, "β ρcondV0,= =
JETP LETTERS      Vol. 74      No. 5      2001



STIMULATED LIGHT BACKSCATTERING 291
between valence and conduction bands. Therefore, one
can substitute in Eq. (11)

(12)

This approximation can be viewed as a resonant
approximation. In resonant processes, photons are cre-
ated with frequencies µ ± ωex(k||) ≈ µ. These values dif-
fer from µ negligibly. Therefore, the absolute values of
photon wave vectors with frequencies µ + ωex(k||) and
µ – ωex(k||) differ negligibly as well. Consequently,
since they have the same absolute magnitude of in-
plane wave vector components, the angles of their prop-
agation θ (Fig. 3b) are almost the same.

Substituting Eq. (12) into Eq. (11), one obtains

(13)

The magnitude in the parentheses is more than the

inverse radiative lifetime  of an isolated exciton
with the in-plane wave vector k||. For spatially indirect
exciton in GaAs CQW, the radiative lifetime τGaAs

approximately equals 10–8 s. Letting τGaAs be indepen-
dent of k|| and assuming that the entire radiative zone
(k|| < k0) corresponds to the linear part of the elementary
excitation spectrum in the exciton subsystem, one can

integrate (k||) over the radiative zone, yielding the
total spontaneous rate of the process per unit area of
CQW in the form

(14)

Taking, as an estimation, the exciton density ρcond =
1010 cm–2, "β = 0.5 meV, η = 107–10 s–1, k0 = 3 × 105 cm–1,
we have

This result shows [compare with Eq. (8)] that the effect
of interest can be detected in the system of indirect
excitons in GaAs/AlGaAs CQW.

Since, in two dimensions, the third component of
the photon wave vector is not fixed and is determined
only by the energy conservation law, the rate (11) cor-
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responds to four processes in which the photons with
wave vectors (k||, ±k) and (–k||, ±k⊥ ) are created. There-
fore, stimulating laser light with the in-plane wave-vec-
tor component k|| induces two processes in which the
photons with in-plane components k|| are emitted in two
directions (–k||, ±k⊥ ); i.e., in addition to stimulated
backscattering, stimulated anomalous light transmis-
sion arises, in which only the in-plane wave-vector
component changes its sign (Fig. 3b).

Furthermore, in the process of interest, it is not nec-
essary that the photons be “resonant”; i.e., photons can
have energies ω different from µ ± ωex(k||) [see
Eq. (12)]. However, the rate of this process is low, and
for |ω – µ| @ ωex(k||) it is proportional to (ω – µ)–4. In
such processes, photons with different energies ω1 and
ω2 have different normal wave components as well. The
angles of their propagation obey the relation
sin(θ1)/sin(θ2) = ω2/ω1 (Fig. 3c).

In conclusion, we have predicted and estimated a new
optical effect of stimulated light backscattering from
exciton Bose condensate. Moreover, being detected,
this effect is nothing more than the signature of exciton
Bose condensate, since there are no other possibilities
for the light to undergo backscattering from the exciton
subsystem. Estimations given in this work for Cu2O
excitons and excitons in GaAs/AlGaAs CQW show
that the effect can be observed experimentally.2 The
angular distribution in the backscattering process is
smeared by impurities or interface roughness, due to
which the exciton momentum is not a good quantum
number. The characteristic angle at which the photons
are emitted can be estimated as 1/k0l, where l is the
mean free path of an exciton.

For the described effect to exist, it is essential that
exciton condensate be quasi-equilibrium; i.e., the
Bose-condensed system is not a ground state of the total
system but has excess energy which can be transferred
to photons. For example, there is no such effect in the
case of the Bose condensate of atoms in their ground
state. However, the analogous effect can exist in the
system of metastable Bose-condensed atoms. Studies
of Bose condensation in the systems of metastable
atoms have been recently initiated.

This work was supported by the INTAS, the Russian
Foundation for Basic Research, and the Program “Solid
State Nanostructures.”
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