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It is shown that the temperature derivatives of the anomalous and normal (quark massive term) contributions to
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1 1. The low-energy theorems, playing an important
role in the understanding of the vacuum state properties
in quantum field theory, were discovered almost at the
same time as quantum field methods were being
applied to particle physics (see, for example, Low the-
orems [1]). In QCD, they were obtained in the early
eighties [2]. The QCD low-energy theorems, being
derived from the very general symmetry considerations
and independent of the details of the confinement
mechanism, sometimes give information which is not
easy to obtain in other ways. Also, they can be used as
“physically sensible” restrictions in the constructing of
effective theories. Recently, they were generalized to
the finite temperature and chemical potential case [3,
4]. These theorems were used for the investigation of a
QCD vacuum phase structure in a magnetic field [5] at
finite temperature [6].

The investigation of the vacuum state behavior
under the influence of various external factors is known
to be one of the central problems of quantum field the-
ory. In the realm of strong interactions (QCD), the main
factors are the temperature and the baryon density. At
low temperatures, T < Tc (Tc is the temperature of the
“hadron-quark–gluon” phase transition), the dynamics
of QCD is essentially nonperturbative and is character-
ized by confinement and spontaneous breaking of
chiral symmetry (SBCS). In the hadronic phase, the
partition function of the system is dominated by the
contribution of the lightest particles in the physical
spectrum. It is well known that, due to the smallness of
pion mass as compared to the typical scale of strong
interactions, the pion plays a special role among other
strongly interacting particles. Therefore, for many
problems of QCD at zero temperature, the chiral limit,
Mπ  0, is an appropriate one. On the other hand, a

1 This article was submitted by the author in English.
0021-3640/01/7407- $21.00 © 20353
new mass scale emerges in the physics of QCD phase
transitions, namely, the critical transition temperature
Tc. Numerically, the critical transition temperature turns
out to be close to the pion mass, Tc ≈ Mπ.2 However,
hadron states heavier than those of pions have masses
several times larger than Tc and, therefore, their contri-
bution to the thermodynamic quantities is damped by
the Boltzmann factor ~exp{–Mhadr/T}. Thus, the ther-
modynamics of the low-temperature hadronic phase,
T & Mπ, is described basically in terms of the thermal
excitations of relativistic massive pions.

In this paper, the low temperature relation for the
trace of the energy–momentum tensor in QCD with two
light quarks is obtained based on the general dimen-
sional and renormalization-group properties of the
QCD partition function and on the dominating role of
the pion thermal excitations in the hadronic phase. The
physical consequences of this relation, as well as the
possibilities to use it in the lattice studies of the QCD at
finite temperature are discussed.

2. For nonzero quark mass (mq ≠ 0), the scale invari-
ance is broken already at the classical level. Therefore,
the pion thermal excitations would change, even in the
ideal gas approximation, the value of the gluon conden-
sate with increasing temperature.3 To determine this
dependence, use will be made of the general renormal-
ization and scale properties of the QCD partition func-
tion.

2 The deconfining phase-transition temperature is the one obtained
in lattice calculations; Tc(Nf = 2) . 173 MeV and Tc(Nf = 3) .
154 MeV [7].

3 At zero quark mass, the gas of massless noninteracting pions is
obviously scale-invariant and, therefore, does not contribute to
the trace of the energy–momentum tensor and, correspondingly,

to the gluon condensate .Gµν
a( )
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The QCD Euclidean partition function with two
quark flavors has the following form (β = 1/T)

(1)

Here, the QCD Lagrangian is

(2)

where the gauge-fixing and ghost terms are omitted.
The free-energy density is given by the relation βVF (T,
m0u, m0d) = –lnZ. Equation (1) yields the following

expression for the gluon condensate (〈G2〉  ≡ ):

(3)

The system described by the partition function (1) is
characterized by the set of dimensionful parameters M,

T, m0q(M), the and dimensionless charge (M), where
M is the ultraviolet cutoff. On the other hand, one can
consider the renormalized free energy FR and, by using
the dimensional and renormalization-group properties
of FR, recast Eq. (3) in the form containing derivatives
with respect to the physical parameter T and renormal-
ized masses mq.

The phenomenon of dimensional transmutation
results in the appearance of a nonperturbative dimen-
sionful parameter

(4)

where αs = /4π, and β(αs) = dαs(M)/dlnM is the
Gell-Mann–Low function. Furthermore, as it is well
known, the quark mass has an anomalous dimension
and depends on the scale M. The renormalization-group
equation for m0(M), the running mass, is d lnm0/dlnM =

–γm, and we use the  scheme, for which β and γm are
independent of the quark mass [4, 8]. Upon integration,
the renormalization-group invariant mass is given by

(5)

where the indefinite integral is evaluated at αs(M). Next
we note that, since free energy is a renormalization-
group invariant quantity, its anomalous dimension is
zero. Thus, FR has only a normal (canonical) dimension
equal to four. Making use of the renorm-invariance of
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Λ, one can write in the most general form

(6)

where f is some function. From Eqs. (4), (5), and (6)
one gets

(7)

(8)

With account taken of Eq. (3), the gluon condensate is
given by

(9)

It is convenient to choose so large a scale so that one
can take the lowest order expressions, β(αs) 

−b /2π, where b = (11Nc – 2Nf)/3 and 1 + γm  1.
Thus, we have the following equations for condensates

(10)

(11)

3. In the hadronic phase, the effective pressure, from
which one can extract the condensates (T) and
〈G2〉(T) using the general relations (10) and (11), has
the form

(12)

where εvac = 〈θµµ〉  is the nonperturbative vacuum

energy density at T = 0 and

(13)

is the trace of the energy–momentum tensor. In Eq. (12),
Ph(T) is the pressure of thermal hadrons. The quark and
gluon condensates are given by the equations
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where the operator  is defined by the relation (10)

(16)

Consider the T = 0 case. One can use the low-energy
theorem for the derivative of the gluon condensate with
respect to the quark mass [2],

(17)

where O(mq) stands for the terms linear in light-quark
masses. Then one arrives at the following relation

(18)

Note that three fourths of the quark condensate stem
from the gluon part of the nonperturbative vacuum
energy density. Along the same lines, one arrives at the
expression for the gluon condensate

(19)

In order to get the dependence of the quark and
gluon condensates upon T, use is made of the Gell-
Mann–Oakes–Renner (GMOR) relation (Σ =  =

)

(20)

Then we can find the following relations

(21)

(22)

(23)

Within the framework described above, one can
derive the thermodynamic relation for the quantum
anomaly in the energy–momentum tensor of QCD. At
low temperature, the main contribution to the pressure
comes from the thermal excitations of massive pions.
The general expression for the pressure reads

(24)

D̂

D̂
32π2

b
----------- 4 T

∂
∂T
------– mq

∂
∂mq

---------
q

∑–
 
 
 

.=

∂
∂mq

--------- G2〈 〉 d4x G2 0( )qq x( )〈 〉∫=

=  
96π2

b
----------- qq〈 〉 O mq( ),+–

∂εvac

∂mq

-----------
b

128π2
-------------- ∂

∂mq

--------- G2〈 〉–=
1
4
--- qq〈 〉+

=  
3
4
--- qq〈 〉 1

4
--- qq〈 〉+ qq〈 〉 .=

D̂εvac– G2〈 〉 .=

uu〈 〉
dd〈 〉

Fπ
2 Mπ

2 1
2
--- mu md+( ) uu dd+〈 〉– mu md+( )Σ.= =

∂
∂mq

---------
Σ
Fπ

2
------ ∂

∂Mπ
2

----------,=

mq
∂

∂mq

---------
q

∑ mu md+( ) Σ
Fπ

2
------ ∂

∂Mπ
2

---------- Mπ
2 ∂
∂Mπ

2
----------,= =

D̂
32π2

b
----------- 4 T

∂
∂T
------– Mπ

2 ∂
∂Mπ

2
----------– 

  .=

Pπ T4ϕ Mπ/T( ),=
JETP LETTERS      Vol. 74      No. 7      2001
where ϕ is a function of the ratio Mπ/T. Then the follow-
ing relation is valid

(25)

With account taken of Eqs. (14), (15), (18), (22), and
(25), one gets

(26)

where ∆  =  –  and ∆〈G2〉  = 〈G2〉T –
〈G2〉 . In view of Eq. (22), one can recast Eq. (26) in the
form

(27)

Let us divide both sides of Eq. (27) by ∆T and take the
limit ∆T  0. This yields

(28)

This can be rewritten as

(29)

where

are, correspondingly, the quark and gluon contributions
to the trace of the energy–momentum tensor. Note that
in deriving this result use was made of the low-energy
GMOR relation, and, therefore, the thermodynamic
relations (28) and (29) are valid in the light quark the-
ory. Thus, in the low-temperature region, where the
excitations of massive hadrons and interactions of
pions can be neglected, Eq. (29) becomes a rigorous
QCD theorem.

As was mentioned above, the pion plays an excep-
tional role in the thermodynamics of QCD due to the
fact that its mass is numerically close to the phase-tran-
sition temperature, while the masses of heavier hadrons
are several times larger than Tc. This was the reason
why the role of massive states in the low-temperature
phase was not considered in this paper. This question
was discussed in detail in [9]. It was shown there that,
at low temperatures, the contribution to  gener-
ated by the massive states is very small and less than
5% if T is below 100 MeV. At T = 150 MeV, this con-
tribution is on the order of 10%. The influence of ther-
mal excitations of massive hadrons on the properties of
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the gluon and quark condensates was also studied in
detail in [10], within the framework of the conformal
nonlinear σ model.

4. It was shown that the temperature derivatives of
the anomalous and normal (quark massive term) contri-
butions to the trace of the energy–momentum tensor in
QCD with light quarks are equal to each other in the
low-temperature region.

Let us consider some physical consequences and
possible applications of this relation. To this end, we
introduce the function

(30)

As was stated above, the function δθ(T) at low temper-
atures is close to zero with good accuracy. In the vicin-
ity of and at the phase-transition point, i.e., in the region
of nonperturbative vacuum reconstruction, this func-
tion changes drastically. To see it, let us first consider
pure gluodynamics. It was shown in [11], using the
effective dilaton Lagrangian, that gluon condensate
decreases very weakly with an increase in temperature
up to the phase-transition point. This result is physi-
cally transparent and is the consequence of Boltzmann
suppression of thermal glueball excitations in the con-
fining phase.

Further, in works [12] the dynamical picture of
deconfinement was suggested on the basis of the recon-
struction of the nonperturbative gluonic vacuum.
Namely, confining and deconfining phases, according
to [12], differ, first of all, in the vacuum fields, i.e., in
the value of the gluon condensate and in the gluonic
field correlators. It was argued in [12] that color-mag-
netic (CM) correlators and their contribution to the con-
densate are kept intact across the temperature phase
transition, while the confining color-electric (CE) part
abruptly disappears above Tc. Furthermore, there exist
numerical lattice measurements of field correlators near
the critical transition temperature Tc, made by the Pisa
group [13], where both CE and CM correlators are
found with good accuracy. These data clearly demon-
strate the strong suppression of the CE component
above Tc and the persistence of CM components. Thus,

the function δθ(T)GD = ∂ /∂T can be presented as a
δ function smeared around the critical point Tc with the
width ~∆T, which defines the fluctuation region of
phase transition.

A similar but more complicated and interesting sit-
uation takes place in the theory with quarks. The func-

δθ T( ) ∂
∂T
------ θµµ

g θµµ
q–〈 〉 .=

θµµ
g〈 〉
tion δθ(T) contains the quark term proportional to the
chiral phase-transition order parameter (T). So, it
is interesting to check the relation (29) and to study the
behavior of the function δθ(T) in the lattice QCD at
finite temperature. It will allow one to test both the non-
perturbative QCD vacuum at low temperatures in the
confining phase and to extract additional information
on the thermal phase transitions in QCD.

I am grateful to A.B. Kaidalov, V.A. Novikov,
Yu.A. Simonov, and A.V. Smilga for useful discussions
and comments. This work was supported by the Rus-
sian Foundation for Basic Research (project no. 00-02-
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Shedding and Interaction of Solitons in Imperfect Medium1 
M. Chertkov1, I. Gabitov1, I. Kolokolov1, 2, and V. Lebedev1, 3, 4

1 Theoretical Division, LANL, Los Alamos, NM 87545, USA
2 Budker Institute of Nuclear Physics, Siberian Division, Russian Academy of Sciences,

pr. akademika Lavrent’eva 11, Novosibirsk, 630090 Russia 
3 Landau Institute for Theoretical Physics, Russian Academy of Sciences, Moscow, 117334 Russia

4 Physics Department, Weizmann Institute of Science, Rehovot 76100, Israel
Received September 6, 2001

The propagation of a soliton pattern through one-dimensional medium with weakly disordered dispersion is
considered. Solitons, perturbed by this disorder, radiate. The emergence of a long-range interaction between the
solitons, mediated by the radiation, is reported. Basic soliton patterns are analyzed. The interaction is triple and
is extremely sensitive to the phase mismatch and relative spatial separations within the pattern. This phenome-
non is a generic feature of any problem explaining adiabatic evolution of solitons through a medium with frozen
disorder. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.65.Tg; 42.81.Dp
1 We consider long-range soliton interaction medi-
ated by radiation in nonlinear 1d system with frozen
disorder. The problem is of a great importance for non-
linear fiber optics of the next generation (see, e.g., [1,
2]), and it is also of general relevance for any of the tra-
ditional fields, like plasma physics, where propagation
of solitary waves is possible. Our aim here is to answer
the following sets of fundamental questions:

What statistics describe the radiation emitted due to
disorder by a single soliton or a pattern of solitons?
How far do the radiation wings extend from the peak of
the soliton(s)? What is the structure of the wings?

How strong is the radiation mediating interaction
between the solitons? How is the interaction modified
if we vary the soliton positions and phases within a pat-
tern of solitons?

We focus on the dynamics of wave packets. The uni-
versal coarse-grained description of a wave packet
envelope is given by the nonlinear Schrödinger equa-
tion (NLS) [3–5]. We consider the 1d problem moti-
vated mainly by applications to fiber optics [6]

(1)

The medium (fiber) is imperfect; i.e., various macro-
scopic characteristics of the fiber fluctuate in space.
Fluctuations of the dispersion coefficient, d, are
believed to be one of the major sources of disorder
present in real fibers [7]. This disorder is frozen; i.e., d
is a random function of z. We assume that d fluctuates
on short spatial scales and that the fiber is homogeneous
on larger scales. The averaged value of d is a constant,
which can be rescaled to unity by changing the units

1 This article was submitted by the authors in English.

i∂zψ d z( )∂t
2ψ 2 ψ 2ψ+ + 0.=
0021-3640/01/7407- $21.00 © 20357
of t. One obtains d = 1 + ξ(z), where 〈ξ〉  = 0. According
to the Central Limit Theorem [8], ξ at scales larger than
the correlation length can be treated as a homogeneous
Gaussian random process with zero mean and

described by the quantity D = , which is

the noise intensity. The pair correlation function of ξ is

(2)

We assume that the disorder is weak; i.e., D ! 1.

At z = 0, a sequence of well-separated solitons is
launched. In an ideal medium (ξ = 0), each of the soli-
tons is preserved dynamically gaining, according to the
exact single-soliton solution of Eq. (1), only a multipli-
cative phase factor. Because the medium is imperfect,
the solitons, perturbed by impurities, shed radiation.
The first problem is to describe the radiation. The soli-
ton looses energy shedding radiation. Another problem
is to describe the degradation of a single soliton. The
tails of different solitons interfere with each other,
forming a collective background. This fluctuating back-
ground affects all solitons. It results in the emergence of
a long-range effective intersoliton interaction, which is
the final (but not the least) problem to be addressed.
The long-range interaction dominates the direct inter-
action due to overlapping of soliton tails, as this direct
interaction decays exponentially with separation [9,
10]. The emergence of the long-range interaction
between the imperfect solitons in the pure (ξ = 0) NLS,
mediated by the emitted radiation, was noted in [11].
The description of the calculation details, only briefly
explained here, will be published elsewhere.

To examine the effects, one should separate the
degrees of freedom explaining solitons themselves and

z ξ z( )ξ z '( )〈 〉d∫

ξ z1( )ξ z2( )〈 〉 Dδ z1 z2–( ).=
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their continuous spectrum (radiation). For a single soli-
ton, this can be done as follows

(3)

where the four variables η(z), α(z), y(z), β(z) are the
amplitude, phase, position, and the phase velocity of
the soliton, respectively, and v(t; z) stands for the con-
tinuous spectrum. The function v  can be expanded in a
complete set of delocalized eigenfunctions of the
unperturbed (ξ = 0) NLS Eq. (1) linearized on the back-
ground of the perfect soliton [12, 13]. The continuous
spectrum is separated by a gap in frequency from the
four zero modes, associated with variations of η, α, y,
β. The zero modes are localized in t. If D is finite but
small, the four parameters vary slowly with z, in con-
trast to the fast fluctuations of v, which are also small in
amplitude. The separation of the slow and fast variables
is the heart of the adiabatic approximation [12–16],
which we explore here.

For a single soliton, the parameters y and β, which
are assumed to be zero initially, cannot change due to
the t  –t symmetry of Eq. (1). Thus, only two out of
four soliton variables, η and α, evolve. The phase α is
influenced by the noise ξ directly, ∂zα = –ξ, whereas η
is affected by the noise indirectly, through the radiation
shed by the soliton. Substituting Eq. (3) into Eq. (1) and
keeping terms only linear in v  and ξ, one arrives at an
inhomogeneous equation for v  with a source term pro-
portional to ξ. The source is localized on the soliton.
Solving the equation and averaging the result over the
statistics of ξ, one deduces the expression

(4)

valid for zη @ t @ 1. Eq. (4) describes the extended
radiation tails shed by the soliton due to medium imper-
fectness. One observes a very slow decay of the radia-
tion intensity in t. Equation (4) applies at any large z
(the soliton is always well distinguishable from the
radiation). To disclose the z dependence of η, one can

use the conservation of the integral , 2η +

 = 2. It shows that variations of η emerge in

the second order in v. At z @ 1, the quantity  is

self-averaged. Therefore, |v |2 in the integral relation
can be replaced by its average value, which is a function
of η, according to Eq. (4). The result is a closed equa-
tion for η, and, finally, the solution

(5)

One concludes that the shedding soliton amplitude, η,
remains unchanged until zη reaches the scale zη = 1/D.

ψ η i η2 zd

0

z

∫ 
 
  iα iβ t y–( )+[ ]exp

η t y–( )[ ]cosh
----------------------------------------------- v+

 
 
 

,exp=

v 2〈 〉 π
16
------Dη4 zη

t
------ln≈

t ψ 2d∫
tη2 v 2d∫

t v 2d∫

η z( ) 1 8Dz/3+( ) 1/5– .=
Let us proceed to the multisoliton case. A qualita-
tively new effect, associated with interaction of the
shedding solitons through their radiation, emerges here
(the effect can be compared with the van der Waals
interaction, although the later is mediated by virtual
photons whereas the intersoliton interaction is due to
real radiation). The soliton positions are the first among
other soliton parameters to be affected by the interac-
tion. An essential change in the positions takes place at
scales much shorter than zη, where the soliton ampli-
tudes are unchanged (still z @ 1). This enables us to
seek a solution of Eq. (1) in the form

(6)

where each term in the sum corresponds to a soliton,
and v  describes the continuous spectrum. One can
derive equations for the soliton parameters, αm, βm, ym,
making use of the adiabatic approximation. The contin-
uous spectrum is to be studied by substituting Eq. (6)
into Eq. (1), and its subsequent linearization with
respect to v  and ξ. Equations for the soliton parameters
are derived from Eq. (1) in the second order in v. Fur-

thermore, as in the single-soliton case,  is self-

averaged, and therefore can be replaced by its noise
average, which is a function of the soliton parameters.
The resulting equations describing the slow dynamics
of βm and ym are

(7)

(8)

where the j = n = m contribution has to be excluded
from the sum. It is assumed in Eq. (8) that all the triple
combinations, |yj + yn – 2ym|, are large. The phase veloc-
ities, βm, which are zero initially, remain small, ~Dz ! 1,
and their effects on the continuous spectrum can be
neglected. In spite of this smallness, the β terms in the
equation for y give the major, O(Dz), contribution
(dominating the one proportional to |v |2 ~ O(D), omit-
ted in Eq. (7) for β). The direct contributions from the
noise to the absolute phase, which is O(ξ), cancel out
from the phase differences in Eq. (8). Other changes in
the phases are not essential for z ! 1/D.

The two-soliton version of Eqs. (7), (8) reads

(9)

where α = α1 – α2 is the phase mismatch between the
solitons and x = y2 – y1 stands for their relative separa-
tion. Eq. (9) describes the long-range interaction
between the solitons. The α dependence in Eq. (9) orig-
inates from the interference of the radiated waves with
the same wavelengths, moving in opposite directions

ψ iz( )
iαm iβm t ym–( )+[ ]exp

t ym–[ ]cosh
--------------------------------------------------------
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(in other words, joint radiation of the system of two
solitons is not just a sum of the two single-soliton con-
tributions). Notice that similar interference leads to the
Anderson localization in 1d random media [17]. The
sign of the interaction is controlled by the phase mis-
match α: solitons repel each other if 0 < |α| < αc ≈
1.823, while αc < |α| < π corresponds to the solitons’
attraction. The picture is opposite here to the one
explaining the direct interaction of solitons, where the
attraction at α = 0 changes to repulsion at α = π [9, 10].
The solution to Eq. (9) with the condition ∂zx(0) = 0 is
given by

(10)

where Erfi is the imaginary error function. One finds
that x changes on the order of its initial value at z ~ zint =

x/ . Therefore, the scale separation, zint ! zη,
assumed in the derivation of Eqs. (7)–(10), is justified.

The intersoliton interaction, described by Eqs. (7),
(8), is triple. One may expect that a new physics,
missed in the consideration of a soliton pair, would
show itself in the more complex three-soliton case. A
special, extremely long-range, resonant interaction is
indeed emerging here if the triple combination, y ≡ y1 +
y3 – 2y2, is O(1), in spite of the fact that all the pair sep-
arations, xjm = ym – yj, in the triad are large, |xjm| @ 1. The
resonant contribution to the intersoliton force (8), act-
ing on the soliton positioned at y2, is given by

(11)

where the ordering, y1 < y2 < y3, is assumed. At x13 @
y ~ 1, the resonant term, which is O(1), dominates the
nonresonant one, which is O(1/x). The dependence of
the resonant force on y for different values of the phase
mismatch α = α1 – α3 is shown in the figure. One
observes that the middle soliton (positioned at y2) is sta-
ble [F'(y) is negative at the node position y0, given by
F(y0) = 0] if |α| < π/2, and unstable otherwise. The sta-
bility implies dynamical oscillations of the middle soli-
ton around the stable node y0, with a period in z esti-

mated by zosc ~ 1/ . The period of the oscillations is

still much shorter than zint ~ x13/ , where the size of
the triad (x13) changes on the order of its initial value.
At z ~ zint, the triad extends (or contracts, depending on
the phases) as a whole under the action of the ~1/x13
interaction, still keeping the relative positions of the
solitons within the triad intact. The unstable case,
which takes place if π/2 < |α| < π, corresponds to the
uncertainty of the relative positions of solitons within
the triad at z ~ zint. The figure also shows that the posi-
tion of the node y0 depends on the phase mismatch α.

In the multisoliton case, the dynamics of the pattern
is controlled by Eqs. (7) and (8), provided all denomi-

x 0( )Erfi x/x 0( )[ ]ln{ } z 1 4 α( )cos+( )D/9,=
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F
π2D
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qq 1 q2+( )2
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nators are large. However, resonant configurations are
possible here as well. Each of the configurations corre-
sponds to a set of three solitons positioned according to
y1 + y3 – 2y2 = O(1). The other solitons displayed inside
the resonant pattern (in between y1 and y3) do affect the
resonant interaction; i.e., it changes the force acting on
the soliton positioned at y2. If the difference between
the number of solitons in between y1, y2, and y2, y3,
respectively, is n, the expression (11) is modified via the
multiplier, [(q + i)/(q – i)]2n, inserted into the integrand.

Let us summarize the fundamental features of the
interaction between the solitons through their radiation
induced by disorder. First of all, the weakness of disor-
der, D ! 1, allows us to reduce the original field prob-
lem, given by Eq. (1), to the N-body one, described by
Eqs. (7) and (8). Also, in spite of the stochastic nature
of the original problem, the N-body problem is deter-
ministic. This is a consequence of the self-averaging
nature of the radiation intensity, |v |2. Second, the inter-
action between the solitons through their radiation is
not pairwise. It is seen, in particular, through the triple
character of the force Fm driving the βm change in
Eq. (7) [each term in Eq. (8) corresponds to a contribu-
tion from a triad of solitons]. Third, the interaction in
Eq. (8) for x @ 1 is generically algebraic, i.e., long-
range. Fourth, not all the triple configurations contrib-
ute O(D/x) into Fm; contribution from a resonant triad
with y ≡ yj + yk – 2ym ~ 1 is O(D). Finally, the interaction
is very sensitive to the soliton phases.

From the point of view of fiber optics applications,
the effect of the mutual interactions of the shedding
solitons mediated by their radiation is really strong and
potentially destructive (the major requirement here is to
preserve relative separations between solitons, which
are bits of information, and not to allow the solitons to
leave their allocated time slots). However, there exists
another side of the analysis which may actually help to

Three-soliton resonant force F(y) measured in the units of D.
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cure the problem. The dynamics is very sensitive to the
values of the relative phases and positions in the soliton
sequence, and there is certainly a great potential for
reducing the intersoliton forces by calibrating the posi-
tions (within the allocated slots) and phases of the soli-
tons.

Another, radical (pattern-independent) way to
improve characteristics of propagation through noisy
lines, called the pinning method, was suggested
recently in [18]. The idea is to pin the integral disper-

sion, , to zero by inserting periodically short

spans of fiber with carefully controlled dispersion. Let
us now briefly explain how the pinning affects the phe-
nomenon introduced in this paper. The pinning is effec-
tive if the pinning period, l, is shorter than all other
scales; i.e., if l ! 1. Then, on the larger scales, the effec-
tive noise, ξpin, is described by

(12)

Pinning of the noise leads to modification of the soliton
degradation law (5), ηpin = (1 + 64Dl2z/315)–1/9. The
interaction of solitons is reduced by pinning. It is dis-
played through renormalization of D, D  Dl2η4/3 in
Eq. (4), and D  Dl2/3 in Eqs. (7) and (10).

Let us emphasize that the phenomenon described in
this paper is generic. Regardless of whether it is addi-
tive or multiplicative frozen (t-independent), noise
stimulates the shedding of radiation by solitons, which,
in turn, mediates a long-ranged interaction between
solitons. This long-ranged triple, and nonrandom char-
acter of the interaction, along with the sensitivity of the
phenomenon to phases are generic features of any prob-
lem explaining the adiabatic evolution of solitons in the
presence of induced radiation. However, if spatiotem-
poral (short-correlated both in t and z) noise is consid-
ered, the radiation effect, equivalent to the one consid-
ered in the letter, is masked by a jitter in relative soliton

positions, δy2 ~ z3 [19–21], where  measures the
intensity of the noise. Different solitons jitter indepen-
dently; i.e., fluctuations of intersoliton separations are
described by the same δy. This spatiotemporal jitter is

effective at the scales, ~ , where the long-range
interaction of solitons mediated by radiation (a phe-
nomenon equivalent to the one considered in this paper)
is still not essential.

The algebraic, ~1/x, character of the interaction is
closely related to the reflectiveless feature of the contin-
uous radiation scattering on the soliton. However, the
scattering becomes reflective in some nonintegrable
generalizations of Eq. (1) that are of physical impor-
tance. The reflectivity leads to essential changes in the
properties of the radiation and of the intersoliton inter-
action. The reported stochastic phenomena (along with
others of the kind caused by random birefreingence of

zξd∫

ξpin z1( )ξpin z2( )〈 〉 Dl2

3
--------δ'' z1 z2–( ).–=

D̃ D̃

D̃
1/3–
the fiber [22] and multichannel interaction)2 plays an
important role in fiber communications.

We conclude this paper by brief discussion of real
world parameters which would lead to the practical
observation and system impact of the predicted effects
in fiber optics communication. It was reported in [7]
that fluctuations of the dispersion coefficient in a sam-
ple of the “dispersion shifted” fiber are on the order of
its average value, i.e., ~1 ps/nm km, while the typical
scale of the variations in dispersion is estimated from
above by 1 km (the actual correlation scale is, probably,
defined by linear dimensions of the devices used in the
fiber production; i.e., it is somehow shorter, ~100 m).
Therefore, for the pulse width of ~7 ps (that corre-
sponds to a 28 Gb/s single-channel transmission rate)
and the pulse period of ~50 km, D is estimated by 10−3–
10–2. Then, the soliton interaction is seen at zint ~ (2000–
5000) km if solitons are separated by five soliton width.
Notice, however, that a decrease in the pulse width by a
factor of q (correspondent to the factor q increase of the
transmission rate) leads to the q2 decrease in zint.
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An evolutionary theoretical model is developed that describes dust ion-acoustic shock waves in dusty plasma
consisting of ions (treated in the hydrodynamic approximation), Boltzmann electrons, and variable-charge dust
grains. Account is taken not only of ionization, absorption, momentum loss by electrons and ions in collisions
with dust grains, and gas-kinetic pressure effects but also of the processes peculiar to laboratory plasmas. It is
shown that the model is capable of describing all the main experimental results on dust ion-acoustic shock
waves [Q.-Z. Luo et al., Phys. Plasmas 6, 3455 (1999); Y. Nakamura et al., Phys. Rev. Lett., 83, 1602 (1999)].
© 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 52.27.Lw; 52.35.Tc
The problem of shock waves occupies an important
place in present-day physics of dusty plasmas. Shock
waves in a dusty plasma have specific features that dis-
tinguish them from ordinary collisional and collision-
less shock waves and are attributed, in particular, to the
anomalous dissipation originating from dust grain
charging. In dusty plasma, anomalous dissipation sug-
gests the possibility of existence of a new kind of shock
waves, which are collisionless in the sense that they are
insignificantly affected by electron–ion collisions.
However, in contrast to classical collisionless shock
waves, the anomalous dissipation due to dust charging
involves interaction of the electrons and ions with dust
grains in the form of microscopic electron and ion cur-
rents to the grain surfaces. That dust ion-acoustic shock
waves associated with anomalous dissipation can actu-
ally exist was proved analytically in [1]. The dust ion-
acoustic mode in a dusty plasma is analogous to the
ion-acoustic mode in a conventional two-component
electron–ion plasma. The difference in their dispersion
proprieties is explained as being due to the effects pecu-
liar to dusty plasmas (processes at the grain surfaces,
fluctuations of the grain charge, recombination of elec-
trons and ions, etc.). Dust ion-acoustic shock waves
were observed for the first time in laboratory experi-
ments at the University of Iowa (USA) [2] and at the
Institute of Space and Astronautical Science (Japan)
[3]. Experiments on shock waves in dusty plasmas are
being conducted in a number of major research labora-
tories throughout the world. There are also plans to
carry out such experiments during the mission of the
International Space Station. In this context, one of the
most urgent tasks is to develop theoretical models that
will adequately describe the relevant experiments.
Here, we construct a theoretical model for describing
0021-3640/01/7407- $21.00 © 20362
dust ion-acoustic shock waves and compare theoretical
conclusions with the experimental data.

Let us briefly formulate the main experimental
results. The experiments carried out by Luo et al. [2]
with the Q-machine showed that:

(i) Dust ion-acoustic shock waves are generated at
sufficiently high dust densities (under the experimental
conditions of [2], at dust densities such that eZd0 ≡
nd0Zd0/ni0 ≥ 0.75, where qd = –Zde is the grain charge, −e
is the electron charge, nd is the dust density, ni is the ion
density, and the subscript 0 stands for the unperturbed
plasma parameters). In [2], the conclusion about the
formation of a shock wave was drawn from the fact that
the perturbation front steepens as time elapses. At suf-
ficiently low dust densities, the perturbation front does
not steepen but instead widens.

(ii) When the shock wave structure has formed, the
shock front width ∆ξ is described by the following the-
oretical estimate, which is based on the model devel-
oped in [1]:

(1)

where Mcs is the speed of the shock-wave structure, M

is the Mach number, cs =  is the ion acoustic

speed, νq = a(1 + z0 + Ti/Te)/  is the grain

charging rate, ωpi =  is the ion plasma fre-
quency, mi is the mass of an ion, a is the grain radius,
z = Zde2/aTe, Te(i) is the electron (ion) temperature, and

vTi =  is the ion thermal velocity.

(iii) The velocity of the dust ion-acoustic waves
increases considerably with increasing eZd0.

∆ξ Mcs/νq,∼

Te/mi

ωpi
2 2πv Ti

4πni0e2/mi

Ti/mi
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(iv) In experiments with a double plasma device,
Nakamura et al. [3] revealed that the most important
feature of ion acoustic waves in a dusty plasma is the
following. In the absence of dust, the effect of the elec-
tron and ion charge separation gives rise to oscillations
in the shock wave profile in the vicinity of the shock
front, while the presence of dust suppresses these oscil-
lations.

Hence, in order for a theoretical model to ade-
quately describe shock-wave structures in dusty plas-
mas, it should be capable of explaining the above main
properties of shock waves under the conditions of the
relevant experiments. For this purpose, we modify the
so-called ionization source model [4, 5] in the follow-
ing way. In [4, 5], the ionization source term was cho-
sen to correspond to conventional electron impact ion-
ization of neutrals (as is traditionally done in describing
dusty plasmas) and, accordingly, was proportional to
the electron density. However, in the laboratory experi-
ments of [2], a hot (~2000–2500 K) plate installed in
the end region of the machine was irradiated with a
beam of cesium atoms, so that cesium ions in the
plasma were produced through ionization of cesium
atoms at the plate surface. In the experiments of [3], the
electron mean free paths were so long that the neutrals
were ionized presumably in collisions with the wall.
Thus, under the experimental conditions of [3] [the par-
tial pressure of a neutral gas (argon) is (3–6) × 10–4 torr
and the electron temperature is Te = 0.1 eV], the elec-
tron mean free path with respect to electron–neutral
collisions is on the order of 104 cm, which is much
larger than the length of the device (90 cm) and its
diameter (40 cm) [6]. Consequently, under the experi-
mental conditions of [2, 3], the ionization source term
in the evolutionary equation for the ion density should
be independent of the electron density. Additionally, in
contrast to the model of [4, 5], we take into account the
effect of the gas-kinetic ion pressure on the evolution of
the dusty plasma.

Hence, in planar geometry, the evolution of a pertur-
bation and its transformation to a nonlinear wave struc-
ture are described by a set of nonlinear equations that
differs somewhat from the set presented in [4, 5] and
consists of the following equations:

(a) The evolutionary equations for the ions,

(2)

(3)

and a Boltzmann distribution for the electrons,

(4)

∂tni ∂x niv i( )+ νchni–= Si,+

∂t niv i( ) ∂x niv i
2( )+

=  
eni

mi

-------∂xϕ–
Ti

mi

-----∂xni– ν̃n0iv i,–

ne ne0
eϕ
Te

------ 
  .exp=
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Here, v i is the ion velocity, ne is the electron density,
Si is the ionization source intensity (its value is chosen
so that it exactly cancels the term describing the
absorption of ions by dust grains in an unperturbed
dusty plasma), ϕ is the electrostatic potential, the rate
νch at which the ions are absorbed by the dust grains is
equal to

(5)

d = nd0/ne0, the rate  at which the ions lose their
momentum as a result of their absorption on the grain
surfaces and their Coulomb collisions with the grains
has the form

(6)

Λ = ln(λDi/max{a, b}) is the Coulomb logarithm, λDi is
the ion Debye radius, and b = Zd0e2/Ti. Expressions (5)
and (6) are valid in the range v i/cs < 1;

(b) Poisson’s equation for the electrostatic potential,

(7)

(c) The evolutionary equation for the dust grain
charge,

(8)

Here, the electron and ion microscopic currents to the
grain surface, Ie(qd) and Ii(qd), are represented as

(9)

(10)

where me is the mass of an electron and erf(x) is the
error function.

Below, the agreement of the conclusions of the the-
ory developed here with the main experimental results
(i)–(iv) will be tested by comparing the theoretical pre-
dictions from Eqs. (2)–(10) with the experimental data
of [2, 3]. Note that Nakamura et al. [3] attempted to
describe their experimental results on the basis of the
Korteweg–de Vries–Burgers (KdVB) equation with the
dissipative viscosity coefficient proportional to the ion–
grain collision rate (see also [3, 7]). However, in a clas-
sical approach to describing dusty plasmas (see, e.g.,
[8]) by Eq. (8) for dust grain charging, it is impossible
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to derive the general hydrodynamic equation that
describes the evolution of the ion momentum and con-
tains the viscosity term in conventional hydrodynamic
form (the KdVB equation used in [3, 7] was derived
precisely from this general equation).

Now, we test our theoretical model against the
experimental results (i)–(iii), which were obtained in
[2]. To do this, we use Eqs. (2)–(10) to trace the evolu-
tion of a rectangular initial perturbation in the ion den-
sity profile under the conditions of those experiments.

Fig. 1. Time evolutions of the ion density (heavy curves) at
different distances from the grid for εZd0 = (a) 0 and
(b) 0.75. The remaining parameters of the plasma and of the
perturbation are as follows: Te = Ti = 0.2 eV, ni0 = 1.024 ×
107 cm–3, a = 0.1 µm, ∆x = 25 cm, and ∆ni/ni0 = 2. The light
curves show the widening of the wave front (at εZd0 = 0)
and its steepening (at εZd0 = 0.75), which agrees with the
experimental data of [2].
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In [2], the experiments were carried on a Q-machine
modified so that the dust component of the plasma
would be easier to produce. The parameters of the dusty
plasma were as follows: Te ≈ Ti ≈ 0.2 eV, ni0 ~ 106–
107 cm–3, and a ~ 0.1–1 µm. The parameter εZd0 =
nd0Zd0/ni0 ranged between 0 and 0.95. A study was made
of the evolution of a rectangular perturbation in the ini-
tial ion density profile. The perturbation was initiated
by a grid held at an electrostatic potential of about –6 V
with respect to the potential of the hot plate. The width
of the initial perturbation was about 25 cm.1 

We have already mentioned that, in the experiments
of [2], a cesium vapor plasma (containing Cs+ ions) was
created through surface ionization. In other words, a
cesium atom striking the hot plate becomes ionized.
The newly produced cesium ion flies away from the
plate at a certain directed velocity. Hence, we can
expect the ion flux to be generated in the immediate
vicinity of the plate. The intensity of the ion flux and its
density are strongly sensitive to the plate temperature.
In calculations, this dependence was modeled by
imposing the corresponding boundary condition at the
surface of the hot plate (analogous to the related bound-
ary condition in the surface evaporation problem [9])
under the following assumptions:

(a) at the plate surface, not only are the atoms ion-
ized, but also the inverse process takes place—surface
recombination of the ions that strike the plate;

(b) all the ions striking the plate recombine;
(c) at the initial instant (just before the perturbation

starts evolving), the ionization and recombination pro-
cesses are in dynamic equilibrium; i.e., the ion gas tem-
perature is equal to the plate temperature and the inten-
sity of the flux of the ions that strike the plate and
recombine is the same as the intensity of the flux of the
ions that fly away from the plate surface; and

(d) the ions flying away from the plate obey a Max-
wellian distribution function with a temperature Ti

equal to the plate temperature, the directed ion velocity
is zero, and the ion density is always equal to the initial
density of the ion gas.

During the evolution of the initial perturbation, the
ions in the vicinity of the plate acquire a directed veloc-
ity v i, so that the ion density ni changes. The directed
ion velocity and ion density are calculated from the
conservation conditions for the ion flux from the plate
surface and ion momentum flux. As at the initial instant,
the ions are assumed to obey a Maxwellian distribution
function, which now corresponds to a nonzero directed
ion velocity and an ion density different from the initial
ion density near the plate surface.

Our calculations were based on the computational
method developed in [5] in order to investigate the evo-
lution of the initial perturbation in a dusty plasma with
variable-charge dust grains. We used the following val-

1 R.L. Merlino, private communication (2001).
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ues of the plasma parameters: the electron and ion tem-
peratures were equal to one another, Te = Ti = 0.2 eV;
the background ion density ni0 = 1.024 × 107 cm–3 was
the same for all series of simulations; the grain radius
was a = 0.1 µm; the width of the rectangular initial per-
turbation was ∆x = 25 cm; and the excess initial per-
turbed ion density above the background ion density in
the remaining unperturbed plasma was ∆ni/ni0 = 2 (see
Fig. 2 in [2]). The calculations were carried out for dif-
ferent values of the parameter εZd0.

In Fig. 1 (which is analogous to Fig. 2 from [2]), we
illustrate the time evolution of the ion density at differ-
ent distances from the grid. The time evolutions (heavy
curves) were calculated for εZd0 = (a) 0 and (b) 0.75.
The light curves show the widening of the wave front
(at εZd0 = 0) and its steepening (at εZd0 = 0.75). This
agrees with the experimental data from [2]. Note that it
is the above boundary condition that allowed us to
numerically capture the effect of the widening of the
wave front in the absence of dust.

The extent to which the shock front widens was cal-
culated to be ∆ξ/Mcs ~ 0.3 ms (see Fig. 1b), which cor-
responds to that observed experimentally (see Fig. 2b in
[2]) and also to estimate (1), obtained using the theoret-
ical model of [1].

The initial perturbation evolves in such a way that its
front velocity Vp becomes nearly constant about 1 ms
after it starts propagating through the background
plasma. Figure 2 shows the dependence of the perturba-
tion front velocity (normalized to its value in the
absence of dust, ε = 0) on the parameter εZd0. For com-
parison, we also plot the experimental points (crosses)
taken from Fig. 5 in [2]. The calculated results are rep-

Fig. 2. Dependence of the perturbation front velocity (nor-
malized to its value in the absence of dust) on εZd0. The
crosses refer to the experimental points obtained in [2] and
the calculated results are represented by the closed circles.
JETP LETTERS      Vol. 74      No. 7      2001
resented by closed circles. The agreement between the-
ory and experiment is quite good.

Now, we test our theoretical model against the
experimental result (iv), which was obtained in [3]. The
experiments described in that paper were carried out
with a double plasma device, which was modified so
that the dust component was present in the plasma. The
parameters of the dusty plasma were as follows: Te ≈ 1–
1.5 eV, Ti < 0.1 eV, ne0 ~ 108–109 cm–3, and a ≈ 4.4 µm.
The unperturbed dust density nd0 was varied from 0 to
about ~105 cm–3. Dust ion-acoustic shock waves were
excited by applying a triangular voltage pulse with a

Fig. 3. Time evolutions of the ion density at different dis-
tances from the grid for nd0 = (a) 0 and (b) 1.46 × 104 cm–3.
The remaining plasma parameters are as follows: Te = Ti =

1.5 eV, ni0 = 2.3 × 108 cm–3, and a = 4.4 µm. Like in the
experiments of [3], the oscillations in the shock wave profile
that are caused by the electron and ion charge separation are
suppressed by the dust.
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peak amplitude of 2.0 V and a rise time of about 10 µs
to the driver anode.

The calculations were carried out for different dust
densities and for the following parameter values: Te =
Ti = 1.5 eV, ni0 = 2.3 × 108 cm–3 (the ion background
density was the same for all series of simulations), and
a = 4.4 µm. The width of the perturbation (∆x ≈ 20 cm)
and its shape were determined self-consistently, in
accordance with the method for exciting a shock wave.
It should be noted that Nakamura and Bailung [6] com-
pared the theoretical and experimental potential differ-
ences between the grains and the plasma under essen-
tially the same conditions as those prevailing in the
experiments of [3]. They found that, although the ion
temperature in those experiments was significantly
lower than the electron temperature (Ti ! Te), the exper-
imental results were best fitted by the curve calculated
for Ti = Te. They attributed this circumstance to the pos-
sible ion acceleration to energies comparable to the
electron energy. That is why, in our calculations, the
values of the electron (Te) and ion (Ti) temperatures
were taken to be the same.

In Fig. 3 (which is analogous to Fig. 3 from [3]), we
illustrate the time evolution of the ion density at differ-
ent distances from the grid. The time evolutions were
calculated for (a) nd0 = 0 (the electron density being
ne0 = 2.3 × 108 cm–3) and (b) nd0 = 1.46 × 104 cm–3 (the
electron density being ne0 = 4.6 × 108 cm–3). We can see
that the electron and ion charge separation gives rise to
oscillations in the shock wave profile and that the dust
suppresses these oscillations, as is the case in the exper-
iments of [3]. The theoretically calculated rise time of
the shock front is about 5 µs, which corresponds to the
experimental data.

Hence, the theoretical model developed here makes
it possible to describe all the main experimental results
on dust ion-acoustic shock waves. A further develop-
ment of the model and refinement of the results involve
an account of the effects of dust density nonuniformity
in experimental devices. Also, we plan to compare the-
oretical predictions from our model with the data from
laboratory experiments on ion acoustic solitons in a
dusty plasma that were carried out at the Institute of
Space and Astronautical Science (Japan) [10].

We are grateful to R.L. Merlino and Y. Nakamura
for fruitful discussions of this study. This work was
supported by INTAS (grant no. 97-2149) and INTAS–
RFBR (grant no. IR-97-775). S.I. Popel is grateful to
the Alexander von Humboldt Foundation for support.
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The appearance of a singularity in the velocity-field vorticity w at an isolated point irrespective of the symmetry
of initial distribution is demonstrated numerically. The behavior of maximal vorticity |w | near the collapse point
is well approximated by the dependence (t0 – t)–1, where t0 is the collapse time. This is consistent with the inter-
pretation of collapse as the breaking of vortex lines. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 47.15.Ki; 47.32.Cc
1. The problem of collapse in hydrodynamics, i.e.,
of a process of formation of a singularity in finite time
is the key problem for the understanding of the physical
origin of developed turbulence. In spite of a certain
progress in developing the statistical theory of Kolmog-
orov spectra in the diagrammatic or functional
approaches (see [1] and references therein), the ques-
tion of whether the Kolmogorov spectrum [2] is a solu-
tion to the statistical equations is still open. There is
another unsolved important problem of intermittency,
which is statistically treated as the existence of a
strongly non-Gaussian distribution of turbulent veloc-
ity leading to the deviation of the indices of higher cor-
relation functions from the Kolmogorov value [3]. The
deviation from the Gaussian distribution gives rise to
the nonzero odd correlation functions, which testifies to
the strong correlations suggesting the presence of
coherent structures in turbulence. Numerical and exper-
imental data indicate (see [3] and references therein)
that vorticity in the regime of developed turbulence
shows a strongly nonuniform distribution in space and
concentrates in quite small areas. What is the origin of
the high vorticity concentration? Can it be attributed to
collapse, i.e., to the appearance of singularities in vor-
ticity? If so, how can the Kolmogorov spectrum be
obtained from this fact? The latter question is not rhe-
torical, because it is well known that each singularity
gives rise to power tails in the spectrum. Therefore, the
problem of collapse is a fundamental one in hydrody-
namics.

The most popular object for studying collapse in
hydrodynamics is a system of two antiparallel vortex
tubes with continuously distributed vorticity [4] or, in a
more general formulation, flows with high symmetry
[5]. As is known, two antiparallel vortex filaments are
subject to so-called Crow instability that leads to the
stretching of vortex filaments in the direction normal to
0021-3640/01/7407- $21.00 © 0367
the plane of the initial distribution of vortices and to a
decrease in the distances between them. Numerical
experiments [4] indicate that, at the nonlinear stage of
developing this instability, pointlike vorticity singulari-
ties are formed in the core of each vortex tube as |w |
increases near the collapse point following the (t0 – t)–1

law, where t0 is the time of singularity formation (see
also [6]).

2. In this paper, the results of numerical experiment
are presented which can be interpreted as the appear-
ance of a singularity in the w(r) field at single point in
three-dimensional ideal hydrodynamics with the initial
data having no definite symmetry. Our approach is
based on the representation of the equation for vorticity
w(r, t) in terms of vortex lines introduced in [7]

(1)

Here,

(2)

is the mapping onto the curvilinear coordinate system
associated with to the vortex lines so that b = (w0(a) ·
∇ a)R(a, t) is the vector tangent to the vortex line and
J = det ||∂R/∂a || is the Jacobian of mapping (2). The
dynamics of the vector R(a, t) is governed by the
equation

(3)

where v(r, t) is the fluid velocity at the point r = R and

 is the transverse projector to a given vortex line at
this point:

Equations (1)–(3) are closed by the relations

(4)

w r t,( ) w0 a( ) ∇ a⋅( )R a t,( )/J .=

r R a t,( )=

∂tR Π̂v R t,( ),=

Π̂

Πα β, δαβ= ξαξβ, ξ– b/ b .=

w r t,( ) curlv r t,( ), divv 0.= =
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The set of Eqs. (1)–(4) results from the partial inte-
gration of the forceless Euler equation

(5)

The vector field w0(a) (divaw(a) = 0) entering Eq. (1) is
a Cauchy invariant characterizing the property of freez-
ing-in vortex lines into the fluid; in particular,

(6)

As was mentioned in [7, 8], the Jacobian J can take
arbitrary values, because this is a mixed Lagrange–
Euler description. In particular, J can be zero at a cer-
tain point, which means, according to Eq. (1), the
appearance of a vorticity singularity. The possibility of
such a singularity to appear was demonstrated in [8]
for  the three-dimensional integrable hydrodynamic
equation that relates to the same type of equations as
the Euler Eq. (5) but differs from it in the way of match-
ing the (generalized) vorticity and velocity: v =
curl(δ*/δw), * = .

The appearance of a singularity in vorticity at J = 0
implies that one vortex line touches another at a certain
point (collapse point). This process is nothing more
than the breaking of vortex lines. It is completely char-
acterized by mapping (2), and it is similar to the break-
ing of dust gas (in the absence of pressure).

3. We assume that collapse in the Euler hydrody-
namics arises due to the breaking of vortex lines. Let t =

(a) > 0 be a solution to the equation J(a, t) = 0 and t0 =
mina (a). In this case, the Jacobian J near the minimum
point t = t0 and a = a0 can be expanded at the generic
point as (cf. [8])

(7)

where α > 0, γ is a positively definite matrix, and ∆a =
a – a0. Expansion (7) is valid if J is an analytic function,
which is natural to assume until the singularity arises.
In this case, the numerator (vector b) in Eq. (1) should
be nonzero because the condition J = 0 for the generic
point means that three vectors ∂R/∂ai (i = 1, 2, 3) are
coplanar but no one of them is zero (otherwise there
would be degeneration). At the same time, the equality
J = 0 in the nondegenerate case implies that one (λ1) of
the eigenvalues of the Jacobi matrix is zero, whereas
two other eigenvalues (λ2, 3) are nonzero. Therefore,
three directions arise in this problem: one soft direction
corresponding to λ1 and two hard directions corre-
sponding to λ2, 3. As is seen from Eq. (7), the self-simi-

larity ∆a ~  [where τ = α(t0 – t) in the auxiliary a
space is identical in all directions. However, as was
shown in [8], in the physical space (where the behavior
of w near the breaking point is the same for the integra-
ble hydrodynamics and the Euler equation), contraction
X1 ~ τ3/2 arises along the soft direction, while X⊥  ~ τ1/2

along the two other (hard) directions. As a result, ω near

∂tw curl v w×[ ] , divv 0.= =

w0 a( ) w r 0,( ) for R a 0,( ) a.= =

w rd∫

t̃

t̃

J α t0 t–( )= γij∆ai∆a j …,+ +

τ

the singularity concentrates in a strongly flattened pan-
cake-shaped region

(8)

In this case, the vector w lies in the pancake plane.

The above analysis is, in essence, based on the
behavior of the mapping near a fold and, in this regard,
completely fits in the catastrophe theory [9]. In this
case, the use of vortex-line representation (1) allows the
description of the incompressible vector field w(r, t)
near the singular point.

4. According to the existing classification of col-
lapses [10], the breaking of vortex lines should be
assigned to superweak collapses rather than to weak
ones, because the contribution coming from the singu-

larity to enstrophy I =  and characterizing the

viscosity-induced dissipation rate is small (∼τ 1/2). In
this case, the contribution to the energy is proportional

to τ3/2. At the same time, the integral 

diverges at t  t0. Therefore, in the presence of break-
ing, the solution v = v(r, t) at t ≥ t0 cannot be continued
in the Sobolev space H2(53) with norm

. According to the theorem

proved in [11], this is sufficient for the integral

 = ∞ to diverge. This criterion, being nec-

essary and sufficient for the collapse, is satisfied for Eq.
(8). Another restriction follows from the theorem [12]
on the vorticity sense. According to this theorem, the
collapse is absent for all t ∈ [0, t0] if

(9)

where supremum is taken over a certain region A near
the maximum w value. The presence of collapse
implies that integral (9) diverges at τ  0. Accord-
ingly, the quantity |∇ξ|  should behave at least as τ–1/2.
Evidently, since ∂ξ/∂Xw = 0, the derivative ∂ξ/∂Xw in
the pancake plane should either be nonsingular in the
direction of vector w at distances on the order of τ1/2

and larger or have a singularity weaker than τ–1/2. How-
ever, this does not exclude the presence of large gradi-
ents of the vector ξ outside the pancake region in the
soft direction, e.g., with the behavior sup|∂ξ/∂X1| ~ τ–α,
where 1/2 ≤ α < 3/2. Such a behavior seems to be natu-
ral, because the region near the breaking point contracts
appreciably when passing from the a space to the phys-
ical space. Therefore, one can conclude that at least
three scales—l1 ∼ τ 3/2, l⊥  ∼ τ 1/2, and lin ~ τα with 1/2 <
α < 3/2—must exist in the presence of breaking. The
latter scale must ensure the applicability of the theorem
[12].

w τ 1– g ζ1 ζ⊥,( ), ζ1 X1τ
3/2– , ζ⊥ X ⊥ τ 1/2– .= = =

w 2 rd∫

∇ w( )2 rd∫

∇ q f( )2
rd∫q 2≤∑( )

1/2

supr w td
0

t0∫

sup ∇ξ 2 td

0

t0

∫ ∞,<
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5. To verify the above hypothesis, a numerical
experiment was carried out on a 1283 grid for the set of
Eqs. (1)–(4). Two indicative features of this set are
noteworthy.

First, in contrast to the Euler equation, which has an
infinite number of the integrals of motion (Cauchy
invariants), the set of Eqs. (1)–(4), being a partially
integrated Euler equation, involves the Cauchy invari-
ants in an explicit form. Therefore, this set can be
numerically integrated without taking care of their con-
servation, whereas the numerical integration of the
Euler equation itself requires control of the degree of
conservation of these invariants, particularly for the
collapse problem.

Second, this set allows one to separate the integra-
tion of Eq. (3) with respect to time from the integration

Fig. 1. Minimum (in space) of the |w |–1 vs. time t as the col-
lapse time is approached.

Fig. 2. The quantity |w | vs. the coordinates R1 and R3 at the
a2 = const surface passing through the point of J minimum
as the collapse is approached (t = 0.08055).
JETP LETTERS      Vol. 74      No. 7      2001
of Eq. (4) with respect to spatial variables (inversion of
the curl operator). The set of Eqs. (1)–(4) was analyzed
with periodic boundary conditions, and the curl opera-
tor was inverted by the standard fast Fourier transform
method. The most difficult stage in the numerical inte-

Fig. 3. Contour maps of the function Ri(aj, ak), i ≠ j ≠ k,
specifying the surface mapping (2) the plane ai = const and
passing through the point of J minimum; i = (a) 1, (b) 2,
(c) 3. [Collapse occurs at the point R(a, t0) with a = (7π/32;
41π/32; 13π/8).]
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gration of Eqs. (1)–(4) was associated with the transi-
tion (direct and inverse) from the R to a variables. This
difficulty was bypassed by using two independent grids
for the R variables: one of them moves according to
Eq. (3) and the other is a stationary regular grid geo-
metrically identical with the grid of a variables. The
computation algorithm includes the following steps:
(i) new positions of the moving R grid points are deter-
mined by integrating Eq. (3) with respect to time;
(ii) the w values on the moving R grid are calculated
from Eq. (1) by the finite-difference technique; (iii) the
w values on the regular R grid are calculated by linear
interpolation from the nearest neighbors (for each point
of this grid, the corresponding tetrahedron with vertices
at the nearest points of the moving R grid is preliminar-
ily found); (iv) the velocity v on the regular R grid is
determined from Eq. (4); (v) the velocity v on the mov-
ing R grid is determined by linear interpolation (to do
this, it is convenient to treat an elementary cube of the
regular R grid as a combination of tetrahedrons with
vertices at vertices, face centers, and the center of the
elementary cube).

The initial vorticity distribution was taken in the
form of a solenoidal field with random Fourier harmon-
ics and an exponentially decaying spectrum cut off at a
wavenumber eight, with w0 ≠ 0 over the entire period-
icity cube. The vorticity field thus specified initially had
no symmetry. The computation was carried out control-
ling the energy conservation; it was constant to 1% over
the entire integration interval. For these initial condi-
tions, the appearance of an |w | peak at a single point
was observed. At this point, the Jacobian J was minimal
(in space) and decreased linearly with high accuracy as
a function of time (Fig. 1). During the computation
time, the |w | maximum increased almost by a factor of
20 and the peak width was equal to three grid-point
spacings (strong |w | localization at the collapse point is
seen in Fig. 2).

To verify that this process can be treated as the
breaking of vortex lines, we calculated the time-depen-
dent second-derivative tensor ∂2J/∂aα∂aβ = 2γαβ for the
Jacobian at the J minimum. We did not find sizable
changes in this quantity when the J minimum as a func-
tion of time approached its linear asymptotic behavior;
this qualitatively agrees with Eq. (7). The final dis-
placement of vortex lines in the vicinity of the collapse
point is illustrated in Fig. 3. The spatial distribution of
|w(r, t)| near the maximum shows certain anisotropy.
However, we cannot state that two substantially differ-
ent scales arise because of the lack of spatial resolution.

Thus, the results of this work can be interpreted as
the first numerical observation of the breaking of vortex
lines. The collapse is numerically found in the absence
of any symmetry in the initial distribution and arises at
a single point.

6. The work of E.A.K. was supported by the Russian
Foundation for Basic Research (project no. 00-01-
00929), the Leading Russian Scientific Schools (project
no. 00-15-96007), and the INTAS (grant no. 00-00292).

REFERENCES
1. A. S. Monin and A. M. Yaglom, Statistical Fluid

Mechanics: Mechanics of Turbulence (Gidrometeoizdat,
St. Petersburg, 1996, 2nd ed.; MIT Press, Cambridge,
1975), Vol. 2; V. S. L’vov, Phys. Rep. 257, 1 (1991).

2. A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 9
(1941).

3. U. Frisch, Turbulence. The Legacy of A. N. Kolmogorov
(Cambridge Univ. Press, Cambridge, 1995).

4. R. M. Kerr, Phys. Fluids A 4, 2845 (1993).
5. R. B. Pelz, Phys. Rev. E 55, 1617 (1997); O. N. Boratav

and R. B. Pelz, Phys. Fluids 6, 2757 (1994).
6. R. Grauer, C. Marliani, and K. Germaschewski, Phys.

Rev. Lett. 80, 4177 (1998).
7. E. A. Kuznetsov and V. P. Ruban, Pis’ma Zh. Éksp. Teor.

Fiz. 67, 1015 (1998) [JETP Lett. 67, 1076 (1998)].
8. E. A. Kuznetsov and V. P. Ruban, Zh. Éksp. Teor. Fiz.

118, 853 (2000) [JETP 91, 775 (2000)].
9. V. I. Arnold, Catastrophe Theory (Znanie, Moscow,

1981; Springer-Verlag, Berlin, 1986).
10. V. E. Zakharov and E. A. Kuznetsov, Zh. Éksp. Teor. Fiz.

91, 1310 (1986) [Sov. Phys. JETP 64, 773 (1986)].
11. J. T. Beals, T. Kato, and A. J. Majda, Commun. Math.

Phys. 94, 61 (1984).
12. P. Constantin, Ch. Feferman, and A. J. Majda, Commun.

Partial Diff. Eqns. 21, 559 (1996).

Translated by R. Tyapaev
JETP LETTERS      Vol. 74      No. 7      2001



  

JETP Letters, Vol. 74, No. 7, 2001, pp. 371–374. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 74, No. 7, 2001, pp. 407–411.
Original Russian Text Copyright © 2001 by Khachatryan.

                                                                                                                         
Trapping, Compression, and Acceleration of an Electron Beam
by the Laser Wake Wave

A. G. Khachatryan
Yerevan Physics Institute, Yerevan, 375036 Armenia
Received June 13, 2001; in final form, August 27, 2001

The scheme of laser wake-field acceleration in plasma is proposed and considered for the case where a relatively
rare nonrelativistic or weakly relativistic electron beam is initially situated ahead of the intense laser pulse. It
is shown that an electron beam is trapped in the region of the first accelerating wake maximum; then it is
strongly compressed and accelerated to ultrarelativistic energies. © 2001 MAIK “Nauka/Interperiodica”.
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1. Plasma wake waves (WWs) excited by intense
laser pulses or relativistic electron bunches may pro-
duce extraordinarily strong accelerating and focusing
fields. The theoretical and experimental studies have
shown that the acceleration rate in a WW may be as
high as tens of GeV/m, i.e., three orders of magnitude
higher than the rates achieved in conventional acceler-
ators (see review [1] and the bibliography presented
therein). At present, plasma methods of acceleration are
being intensively developed.

The problem of injection of an accelerated bunch
into the accelerating WW phase is among the key prob-
lems of laser wake-field acceleration (LWFA) (see, e.g.,
[2] and references cited therein). The previous injection
methods were aimed at producing short (of a length
much shorter than the plasma wavelength λp) and dense
bunches of relativistic electrons and injecting them into
the accelerating phase with femtosecond synchroniza-
tion [2–4]. Both the bunch generation and the femtosec-
ond synchronization encounter serious technological
problems.

Diffraction broadening of intense laser pulses limits
the interaction length with plasma to a value on the
order of Rayleigh length ZR = π /λL (r0 is the focal
spot radius and λL is the laser wavelength), which is
ordinarily equal to several millimeters. To prevent or
suppress the diffraction spreading of a laser pulse, the
plasma channel with a density minimum on its axis is
ordinarily used [1, 5]. The amplitude of the accelerating
field excited in the plasma channel decreases in wake
with distance from the laser pulse [6]. In addition, a
radial change in the plasma wavelength λp ~ [np(r)]–1/2

[where np(r) is the plasma electron density] in the chan-
nel leads to phase front curving in WW and field oscil-
lations in the transverse direction, which is highly
undesirable from the viewpoint of charged-bunch
acceleration. These effects become even stronger with
increasing distance from the laser pulse [6]. In the case

r0
2
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of nonlinear WWs, these phenomena also strengthen
because of a nonlinear increase in the wavelength with
amplitude, the latter being maximal on the axis [7].
Therefore, the first accelerating maximum behind the
laser pulse is most preferable for the acceleration of
charged particles. Based on this premise and on the
above-mentioned injection problems, I propose and
consider in this work the LWFA scheme where the non-
relativistic or weakly relativistic electron beam, being
initially situated ahead of an intense laser pulse, is
trapped, compressed, and accelerated in the region of
the first accelerating wake-field maximum. The elec-
tron beam length may be much larger, while the density
much lower than that required in other injection meth-
ods. The proposed LWFA scheme offers the following
advantages: (i) there is no need for the injection of a rel-
atively dense short (on the order of several microme-
ters) relativistic electron bunch into the WW; (ii) there
is no need for the femtosecond synchronization of the
injected bunch and WW; (iii) efficient compression;
and (iiii) energetic separation of the initial electron
beam.

2. In this work, I will restrict myself to the one-
dimensional theory and a uniform plasma; i.e., the
transverse changes in the laser pulse amplitude and
plasma density will be ignored. The one-dimensional
nonlinear WW excited by a linearly polarized laser
pulse is described by the equation (see, e.g., [1])

(1)

where Φ = 1 + eψ/mec2 is the dimensionless potential,
a = eE0/mecωL, E0 is the electric field amplitude in the
laser pulse, ωL is the laser frequency, ξ = kp(z – v gt),
kp = wp/v g, ωp = (4πnpe2/me)1/2 is the plasma frequency,
v g is the pulse group velocity (which is equal to the

WW phase velocity), βg = v g/c, and γg = (1 – )–1/2 is

d2Φ
dξ2
---------- βgγg

2 1 βg
Φ/ 1 a2/2+( )1/2

Φ2/ 1 a2/2+( ) γg
2––[ ] 1/2

--------------------------------------------------------–
 
 
 

+ 0,=

βg
2
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the relativistic factor which is approximately equal to
ωL/ωp at γg @ 1. The WW electric field normalized to
the nonrelativistic wake-breaking field EWB = mev gωp/e
can be found from the equation Ez = –(1/βg)2dΦ/dξ. The
equation of motion for a test electron in the laser pulse
field and the WW excited by it can be written in the
form

(2)

where the first term on the right-hand side is the relativ-
istic ponderomotive force averaged over the fast laser
oscillations; β = v /c and p = P/mec are the dimension-
less electron velocity and momentum, respectively; γ =
(1 + p2 + a2/2)1/2 = [(1 + a2/2)/(1 – β2)]1/2 is the electron
relativistic factor; and τ = ωpt. Multiplying Eq. (2) by β,
one obtains after simple mathematics the following
integral of motion (see also [8, 9]):

(3)

Let us consider an electron which is initially situated
ahead of the pulse at a certain point ξ0, where Φ = 1 and
a = 0. If the electron velocity is lower than v g, it will fall
with time within the pulse and WW fields and, thus, can
be trapped. At the trapping point (or, what is the same,
at the reflection point), the electron velocity becomes
equal to v g, and Eq. (3) gives

(4)

In Eq. (4), ar and Φr are the pulse amplitude and the
potential at the reflection point ξr, respectively, and p is
the momentum of the test electron ahead of the pulse at
the point ξ0. From Eq. (4) one has

(5)

dp
dτ
------

1
4βgγ
------------da2

dξ
-------- βgEz,––=

γ βg p– Φ– const.=

S 1 ar
2/2+( )1/2

/γg≡ Φr 1–( )– 1 p2+( )1/2 βg p.–=

p1 2, γg βgγgS γg
2S2 1–( )1/2±[ ] .=

Fig. 1. One-dimensional wake wave excited by a laser pulse
with dimensionless peak amplitude a0 = 2. Here (and in all
further figures), σ = 2 and γg = 10. Curve 1 is the electric
field Ez(ξ), curve 2 is the wake-field potential Φ(ξ), and
curve 3 is the laser pulse amplitude a(ξ).
The minus sign in Eq. (5) corresponds to the initial
momentum p0 (at the point ξ0) of the electron trapped at
the point ξr, and the plus sign corresponds to the final
momentum of the electron which was initially situated
at the point ξr. The equation of motion (2) can be recast
as

(6)

where ξ is the coordinate of the test electron in the coor-
dinate system comoving with the laser pulse. The
dimensionless electron velocity is found from the equa-
tion β = βg(1 + dξ/dτ).

3. Equations (1) and (6) were solved numerically for
the Gaussian pulse profile:

(7)

The σ value was taken to be two, and γg = 10. A laser
pulse with a0 = 2 and the nonlinear WW excited by it
are shown in Fig. 1. Figure 2 presents the initial elec-
tron momentum p0 as a function of the trapping point
near the first accelerating WW maximum. The minimal
value pmin corresponds to the trapping point, where the
potential achieves its minimum and Ez = 0. Curves 1
and 2 in Fig. 2 has minima at different points because
of a nonlinear increase in the WW length with increas-
ing amplitude (the dependence of the wavelength on the
amplitude can be found in [10]). The pmin value and the
WW amplitude as functions of a0 are shown in Fig. 3.
One can see that the laser pulse with a0 ~ 1 (which cor-
responds to the pulse peak intensity Imax ~ 1018 W/cm2

at the laser wavelength λL = 1 µm or Imax ~ 1016 W/cm2

at λL = 10 µm) provides trapping of the initially nonrel-
ativistic or weakly relativistic electrons by the WW. For
instance, pmin ≈0.4 for the WW presented in Fig. 1.

d2ξ
dτ2
--------

1 βgβ–( )
4βg

2γ2
----------------------+

da2

dξ
-------- 1 β2–( )

γ
-------------------Ez+ 0,=

a a0 ξ2/σ2–( ).exp=

Fig. 2. Initial electron momentum p0 as a function of the
trapping point near the first accelerating maximum; a0 =
(1) 2 and (2) 3.
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Therefore, the particles with p < pmin are not trapped by
the wave and can be found behind the WW. This fact
may be used for the experimental determination of the
WW amplitude from the pmin(Ez, max) dependence
(Fig. 3). The numerical results show that electrons with
v 0 < v g cannot be trapped in the region of laser pulse
because of the decelerating wake field. Only the elec-
trons with initial velocity v 0 ≈ v g can be trapped by the

Fig. 3. (1) Minimal momentum pmin of electrons trapped by
the wake wave and (2) amplitude Ez, max of its electric field
as functions of the peak amplitude a0 of laser pulse.

Fig. 4. Trapping and acceleration of the initially monochro-
matic electron beam by the wake wave shown in Fig. 1.
Electron momentum p0 = 0.5 and ξ0 = 1, 2, 3, 4, 5, and 6.
Time variation of the (a) coordinate and (b) relativistic fac-
tor.
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leading edge of the pulse, where Ez ≈ 0. Figure 4 illus-
trates the behavior of electrons of an extended mono-
chromatic electron beam (with p0 = 0.5) in a wake field
shown in Fig. 1. The initial bunch length L0 = 5 corre-
sponds, approximately, to the length λp of a linear
plasma wave. For τ = 50, L ≈ 0.027 and for τ = 100,
L ≈ 0.04, which is much shorter than both λp and λL

(recall that, in our case, γg = 10 ≈ λp/λL). Although the
energy spread for the accelerated electrons ∆γ slightly
grows with τ, the relative energy spread ε = ∆γ/γ drops;
at τ = 50, ε ≈ 0.26, and at τ = 100, ε ≈ 0.14. Thus, one
has a substantial (by approximately two orders of mag-
nitude) compression and strong acceleration (with a
rate equal to approximately 2 MeV over a length of λp)
of the initially nonrelativistic (γ0 ≈ 1.12) electron beam.
The energy spread in the trapped bunch depends both
on the initial energy spread and on the initial electron
beam length; the particles at the trailing part of the
bunch are trapped first and, hence, are more energetic at
a given τ. At τ ! τa (τa is the acceleration time, i.e., the
time it takes for the trapped electrons to leave the accel-
erating phase of the wave), for the energy spread of the
initially monochromatic beam, one can write: ∆γ ~
Ez∆τ ≈ EzL0(1 – v 0/v g)–1 (∆τ is the beam duration) and
ε ~ L0(1 – v 0/v g)–1(τ – τtr) (τtr is the time it takes for the
electrons to be trapped by the wave), which is con-

Fig. 5. Behavior of the electrons with ξ0 = 0 and initial
momenta p0 = 0.6, 0.8, 1, and 1.2 in the wake field shown in
Fig. 1. Electrons with smaller initial momentum are trapped
first; electron (a) coordinate and (b) relativistic factor.
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firmed by the numerical results. For the density of a
trapped bunch, one has nb(τ) ≈ nb0L0/L(τ), where nb0 is
the initial density of the electron beam. Figure 5 illus-
trates the behavior of the electrons of a beam with ini-
tial momentum spread 0.6 ≤ p0 ≤ 1.2 in the WW shown
in Fig. 1. The length of the captured bunch is shorter
than λp by approximately a factor of 27, which is by an
order of magnitude greater than for the monochromatic
beam presented in Fig. 4. For τ = 100, the relative
energy spread in the accelerated beam is lower than 0.1,
i.e., it is an order of magnitude lower than the spread in
the initial electron beam.

The trapped bunch also excites WW. Since the
accelerating bunch is short (L ! λp), one has the follow-
ing for the corresponding WW amplitude normalized to
EWB [11]: Eb, max = kp(Nb/np), where Nb is the number of
bunch electrons per unit area. Note that this expression
is valid for both linear and nonlinear waves [11]. Since
Nb ~ nb0L0/kp, one has Eb, max ~ L0(nb0/np). For the WW
excited by an intense laser pulse, the plasma density
equals ~1016–1018 cm–3. Such a density is caused by the
length of intense laser pulses, which, in turn, should be
equal to approximately λp/2. In our case, to prevent
strong energy spread in the accelerated bunch, L0
should not be too large; it should be shorter than ~10.
Then, for nb0 < 1014 cm–3, the bunch wake field can be
ignored compared to the laser WW.

The resulting short relativistic and dense electron
bunch may be used for further acceleration in a multi-
stage laser wake-field accelerator [12]. Note also that
the suggested scheme of electron trapping and acceler-
ation by the laser WW allows the particles of the initial
bunch to be energetically separated, because both slow
(with p0 < pmin) and fast (with p0 ≥ βgγg) electrons can-
not be trapped.

4. In summary, the results presented in this work
demonstrate that an initially nonrelativistic or weakly
relativistic electron beam can be efficiently compressed
and accelerated due to the interaction with the laser
WW. The above scheme removes stringent require-
ments that are imposed by the other injection methods
upon the bunch injected into the wave. In this scheme,
the use of an initially nonrelativistic electron beam
(with γ0 ~ 1–1.5) allows it to be compressed in a much
shorter time and more (by an order of magnitude) effi-
ciently than for a short (L0 ! λp) relativistic (γ0 = 100)
bunch compressed in the WW due to the longitudinal
gradient of the accelerating field [13].

I have considered the one-dimensional case. For a
laser pulse with the finite transverse size, one should
include the transverse force acting on electrons. The
numerical results obtained for the nonlinear wake
waves excited by the cylindrically symmetric pulses
suggest that the radial force maintains focusing all the
way from the pulse leading edge to the first accelerating
maximum in the wake [7]. The preliminary results
obtained for a three-dimensional WW excited in
plasma channel have shown that the trapped bunch is
efficiently compressed in both longitudinal and trans-
verse directions; these results will be published else-
where.

I am grateful to B. Hafizi, R. Hubbard, and P. Spran-
gle (Naval Research Laboratory, Washington, DC) for
discussions.
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Line emission spectrum of a laser plasma produced in an argon cluster jet target was measured on the n1P1–
11S0 (n = 5–9) transitions of the helium-like Ar XVII ion for a pulse duration varying from 45 fs to 1.1 ps and
a constant fluence of ~105 J/cm2. The independent modeling of the relative intensities of the transitions from
the n = 5, …, 10 levels, as well as of the 21P1–12S0 and 23P1–12S0 lines and dielectronic satellites indicates that
the electron temperature is anomalously low and that the electron density in emitting plasma increases with
shortening the laser pulse. The excitation from the ground state by a small fraction of hot electrons is expected
to be the main channel of populating the Ar XVII levels. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 52.25.Os; 52.50.Jm; 32.30.Rj; 41.50.+h
1. At present, much importance is attached to study-
ing the interaction of high-intensity ultrashort laser
pulses with clusters [1–9]. A cluster target combines the
main laser mechanisms of plasma formation in gas and
solid targets (optical ionization and resonance absorp-
tion). It has been found experimentally that the interac-
tion of ultrashort laser pulses with cluster targets is
characterized by highly efficient absorption. This prop-
erty is particularly important in the fabrication of high-
intensity X-ray sources for microlithography and med-
ical and biomolecular studies. Unfortunately, the exper-
imental results obtained to date are not systematic
because they depend on a wide range of parameters that
characterize the laser pulse and the targets. This
strongly hampers the analysis of diversified physical
processes occurring in plasma and the possibility of
detailed verification of the theoretical models [10, 11]
describing the specific features of plasma formation by
ultrashort pulses, e.g., the important role of a prepulse
was examined in [7, 9].

In the experimental studies of the femtosecond laser
cluster-target plasma, X-ray spectroscopy is one of a
few methods that can be used to gain information about
the plasma parameters and the processes occurring in it.
Recently [12], the intensity of X-ray emission from Ar
and Kr cluster plasma was studied as a function of the
laser pulse duration at a fixed energy. The results of
0021-3640/01/7407- $21.00 © 20375
these measurements revealed two laser absorption
regimes for different pulse durations and target sizes:
bulk and surface absorption.

This work reports the results of measuring the X-ray
emission spectra of plasma produced by laser pulses
with a duration from 45 fs to 1.1 ps, a fluence of
105 J/cm2 in the focal plane, and a high contrast of ~105

in an Ar gas-jet target with a high cluster content. The
use of a high-resolution curved-crystal spectrograph
[13] made it possible to detect the resonant series of the
He- like argon ion, including the transitions from its
n1P1 (n ≥ 5) levels and to obtain the detailed structure
for the dielectronic satellites of the 21P1–11S0 line. The
experimental results on the widths and relative intensi-
ties of these lines as functions of pulse duration were
modeled with allowance for the main line-broadening
mechanisms and the steady-state impact-radiation
kinetics. The computations show that, as the pulse dura-
tion shortens, the main contribution to the time-inte-
grated intensity of the plasma line emission comes from
the more and more dense (supercritical) plasma region.
The temperature of the main fraction of electrons
changes only weakly and is anomalously low, as com-
pared to the usual temperature observed for nanosecond
plasma.
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Fig. 1. (a) Scheme for measuring the X-ray emission spectra of laser plasma in the argon jet target. (b) Argon plasma spectrogram
for a laser pulse duration of 1.1 ps.
2. Experiments were performed on the laser system
of the University of Bordeaux with the four-stage
amplification of a chirped pulse by Ti–sapphire rods.
The characteristics of the laser system are described in
more detail in [14]. In our experiments (Fig. 1a), the
pulse energy at the output was 15 mJ with a contrast of
~105 relative to the energy of the prepulses produced by
a regenerative amplifier that is incorporated into the
system. The laser beam was focused by an off-axis par-
abolic mirror. The focal spot radius in vacuum was
6 µm at the 1/e2 level, which corresponded to a maxi-
mal fluence of 105 J/cm2 in the spot. The variation of the
pulse duration from 45 fs to 1.1 ps corresponded to a
change in the maximum intensity from 3 × 1015 to
1017 W/cm2, which was sufficient for the tunnel ioniza-
tion of the F-like and P-like argon ion, respectively
[15].

A pulsed gas jet of Ar atoms expanded into a vac-
uum chamber from a cylindrical supersonic nozzle with
a diameter of 2.5 mm and Mach number M = 2.5 served
as the target. The maximal gas pressure in the valve was
60 atm, and the jet divergence angle was 22°. Under
these conditions, van der Waals forces led to the forma-
tion of atomic clusters in the jet [8, 16], with the maxi-
mum electron density much greater than its critical
value Ne, cr ≈ 1.7 × 1021 cm–3 (for λlas = 0.8 µm). The
cluster formation was confirmed indirectly by the lack
of X-ray emission at a low contrast, i.e., when the clus-
ters were destroyed by the prepulse.

The X-ray spectra were measured using focusing
spherical (R = 150 mm) crystal (mica) spectrographs
[17] (Fig. 1a) in the frequency range 0.305–0.425 nm
(fourth- and fifth-order reflections) with the resolution
λ/∆λ ≈ 3000–5000. The spectrographs were set at a
right angle to the laser beam axis and provided the spa-
tial resolution either along this axis or perpendicular to
it. The spectra were recorded by a CCD chamber, ahead
of which a 2-µm-thick polypropylene layer filter coated
on both sides with 0.4-µm aluminum layers was placed.
JETP LETTERS      Vol. 74      No. 7      2001
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The plasma spectrogram for the pulse with a duration of
1.1 ps is shown in Fig. 1b.

3. The observed intensities of the Ar XVII 21.3P1–
11S0 lines and the dielectronic Li- and Be-like satellites
are shown in Fig. 2 for pulse durations of 1.1 ps, 700 fs,
and 45 fs. The results of calculations by the formula

(1)

are presented in the same figure for two sets of plasma
parameters. It was assumed that these lines had a Dop-
pler contour (including the instrumental width). The
temperatures and the electron densities giving the best
agreement with the observed relative line intensities are
presented in the table. The level populations and the
charge composition were calculated using the steady-
state impact-radiation kinetic model. The inelastic tran-
sition rates for the electron–ion collisions were calcu-
lated using the distribution function F(E) = FM(E, Te) +
fδ(E – Ehot), where the contribution from hot electrons
with energies Ehot = 5 keV was included as a small addi-
tion to the Maxwellian distribution FM. The values of
the weight multiplier f are given in the table. Previous
calculations with this model [18] have shown that even
a small amount of hot electrons with these parameters
makes a sizable contribution not only to the satellites
but also to the resonance lines of the He-like ions with
atomic numbers Zn = 10–20. Since Ehot is on the order
of ionization potential of these ions, these electrons are
expected to efficiently excite the Rydberg states n1P1
with n ≥ 4 as well.

Figure 3 shows the measured plasma emission spec-
tra for various pulse durations in the range of the n1P1–
11S0 (n ≥ 5) transitions of the He-like argon ion. The
observed spectra were approximated by the sum of two
terms in Eq. (1) with the same Ne and Te values and the
same fraction of hot electrons as is given in the table.
The method of calculating I(λ, Ne, Te) for a He-like ion
with high n was described in more detail in [14]. The
line contours of Ar XVII were determined with inclu-
sion of the Stark shift in an ionic microfield, the impact
broadening due to elastic electron–ion collisions, and
the Doppler broadening [19]. The latter was taken into
account in combination with the spectral resolution,
which corresponded to the effective ion temperature
Ti = 2 keV. The distribution function for the ionic
microfield was taken with regard to the ion correlations
and the Debye screening [20, 21]. The coefficients C1
and C2 were derived from the widths and relative inten-
sities of the observed lines. The fraction of hot electrons
substantially affects the relative populations of Ryd-
berg levels.

One can see from Figs. 2 and 3 that the results of
independent calculations with the chosen plasma
parameters reproduce well the experimental data. The
calculations of the resonance line contours for n ≥ 5
indicate that the shortening of the pulse duration brings
about an increase in the plasma electron density which

I λ( ) C1I λ Ne1 Te1, ,( )= C2I λ Ne2 Te2, ,( )+
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makes the main contribution to the observed spectrum.
Moreover, the relative contribution of the subcritical
electron density (gas phase) decreases with pulse short-
ening. It follows from the well-known Inglis–Teller
limit (see, e.g., [19]) that the transition lines with high
n disappear with increasing plasma density. In our case,

Fig. 2. Comparison of the measured spectra of Ar plasma
with the results of model calculations (plasma parameters
are given in the table) for the Heα1 and Heα2 (21.3P1–11S0)
lines of the He-like Ar XVII ion and for the dielectronic Li-
and Be-like satellites at different pulse durations: (a) 1.1 ps,
(b) 700 fs, and (c) 45 fs. The tin solid line is for the experi-
ment, the thick solid line is for the calculation, the dashed
line is for the high-density contribution, and the dash-dotted
line is for the low-density contribution.

Table

τlas (fs) Ne (cm–3) Te (eV) f

1100 3 × 1019 130 10–8

3 × 1021 200 3 × 10–4

700 3 × 1019 130 3 × 10–7

4 × 1021 215 3 × 10–4

45 3 × 1019 130 10–7

1022 200 7 × 10–5
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this may be due to the fact that the clusters do not fully
decompose during the decay of plasma emission on the
He-like transitions. For pulse durations of ~1 ps, the
laser absorption proceeds in parallel with the cluster

Fig. 3. The same as in Fig. 2, but for the n1P1–11S0 (n ≥ 5)
lines.

Fig. 4. Emission intensities of the He-like Ar XVII lines vs.
pulse duration at a fixed energy. The symbols correspond to
the following lines: (h) Heα1, (j) Heα2, (n) Heβ, and

(s) 51P1–11S0.
decomposition, which is seen from a decrease in the
dominant electron density of emitting plasma. For all
durations, the electron temperature is too low to ionize
and efficiently excite the He-like argon ion, so the
observed line emission may be due only to the popula-
tion of Rydberg levels through the excitation by a small
fraction of hot electrons that are generated in the spa-
tially inhomogeneous intense laser field. Because the
common electron temperature is established rather
slowly (especially for gas densities), the influence of
hot electrons on the plasma relaxation kinetics can
manifest itself for a longer time than the laser pulse
duration.

The ratio of emission intensities for different pulse
durations is in agreement with the results obtained in
[12]. The observed intensities of different lines are
shown in Fig. 4 as functions of the pulse duration. In
particular, in the range studied, from 45 fs to 1 ps the
absolute X-ray yield shows a nonmonotonic behavior
with a maximum near 700 fs. This may be due to a
decrease in the efficiency of laser absorption at the
shorter and longer durations.

4. In summary, it has been shown that the model
suggested in our previous works [7, 9] for cluster heat-
ing by ultrashort laser pulses adequately describes not
only the intensities of resonance lines and their satel-
lites but also the contours of the He-like Ar XVII Ryd-
berg lines (n = 5, …, 10), the latter being recorded with
a high resolution for the first time. The results of mea-
surements and calculations suggest that the shortening
of the laser pulse leads to an increase in the plasma
electron density. The main contribution to the X-ray
yield comes from the plasma with supercritical electron
density. The observed emission lines are due to the
excitation of the upper levels of the Ar ion by a small
fraction of hot electrons that are generated in the laser
field. For the pulse durations shorter than 700 fs, the
intensity of plasma X-ray emission decreases. This may
be crucial for the design of X-ray sources based on the
femtosecond laser plasma.
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Spin dynamics of conduction electrons in a quantum well with a zinc blende structure is considered theoreti-
cally for the case where spin splitting exceeds the collisional broadening of energy levels. It is shown that, under
certain conditions, the spin density component normal to the quantum well plane may oscillate with time even
in the absence of an external magnetic field. These oscillations can be excited and detected using nonlinear
two-pulse spectroscopy. Contrary to the case of small spin splitting, the external transverse magnetic field
strongly affects spin dynamics in this regime. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 76.20.+q; 78.20.Ls; 73.21.Fg; 78.47.+p
In recent years, considerable interest has been
shown in the properties of coherent spin states in semi-
conductors and hybrid ferromagnet–semiconductor
systems [1–3]. These states have finite lifetimes,
because thermal fluctuations break coherence with a
rate strongly depending on the properties of a particular
system. The revelation of the factors influencing the
rate of spin coherence breakdown is one of the topical
problems of the new direction in solid-state physics—
spintronics.

Nonlinear optical two-pulse spectroscopy is an effi-
cient method for investigating spin dynamics. In this
method, the first light pulse is circularly polarized and
creates an electron-excited spin density (spin orienta-
tion) S0, whose degree is characterized by the optical
rotation θ of the second linearly polarized light pulse.

The use of the methods of nonlinear pulsed spec-
troscopy allowed for the measurements of not only the
averaged quantities but also their time evolution. For
example, the dependence of the angle of rotation of
polarization plane θ on the delay time td between the
pulses characterizes the time evolution of spin orienta-
tion S(t). The character of this evolution depends on the
magnitude and direction of an external magnetic field
B. Spin coherence manifests itself as oscillations of the
Faraday rotation as a function of delay time td in a trans-
verse (to the light direction) magnetic field. These
oscillations are associated with the quantum beats
between the electronic Zeeman sublevels, and their
damping characterizes the spin coherence breakdown
with time [4].

In this work, new potentials for studying the spin
dynamics in semiconducting heterostructures are sug-
gested on the basis of an analysis of the time depen-
dence S(t). In particular, the oscillations of Sz(t) in a
quantum well (the z axis is aligned with the normal to
0021-3640/01/7407- $21.00 © 20380
the quantum well) will be analyzed, and it will be
shown that spin splitting in a conduction band can give
rise to such oscillations even in the absence of an exter-
nal magnetic field.

It should be noted at this point that spin relaxation
processes in semiconductors were extensively studied
previously in the context of a widely used optical orien-
tation method [5]. The understanding attained in these
works as to the mechanisms of these processes serves
as a basis for the current study. However, previous the-
oretical calculations of the optical effect caused by spin
relaxation started from the assumption that the light
sources used for optical pumping were continuous. The
corresponding measured quantities, e.g., the degree of
luminescence polarization, were averaged over the
electron lifetime in the conduction band. With this aver-
aging, one inevitably loses part of the information
about the spin relaxation mechanisms. Because of this,
the elaboration of new experimental methods and, in
particular, the method of nonlinear pulsed spectroscopy
necessitates, in some cases, additional theoretical anal-
ysis of the spin dynamics of photoexcited electrons.

Let us consider the time evolution of spin density for
optically oriented electrons in the conduction band of a
quantum well with the zinc blende structure in an exter-
nal magnetic field B parallel to the plane of the quan-
tum well. If one neglects all relaxation processes except
the spin relaxation, the time-dependent average elec-
tron spin S is usually calculated from the equation [5]

(1)

where ΩL = gµBB/" and τS(B) is the spin relaxation
time, which depends, apart from the purely micro-
scopic factors, on the magnitude of B and its orientation

dS
dt
------ ΩL S×=

S
τS B( )
--------------,–
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about S(0). In the Voigt geometry B || x and S(0) || z,
Eq. (1) gives

(2)

In this case, τS is the spin coherence decay time. Since
the Faraday rotation θ(td) ~ Sz(td), one can determine τS

by measuring the damping of the θ(td) oscillations (for
more detail, see [4]). This method was used in the study
of spin coherence in bulk semiconductors [6], quantum
wells [1, 7], and quantum dots [8].

However, relation (2) and underlying Eq. (1) apply
only under certain conditions that depend on the mech-
anism of electron spin relaxation. The experimental
determination of the dominant spin relaxation mecha-
nism is a challenge for each particular sample, because
the variation of the sample parameters, such as dopant
concentration and temperature, changes appreciably
the relative role of different mechanisms [5, 9]. In the
samples with high mobility and at high temperatures,
the D’yakonov–Perel’ (DP) relaxation mechanism
based on the spin–orbit (spin) splitting of the conduc-
tion band prevails [10]. This splitting is described by
the following term in the electron Hamiltonian:

(3)

where k is the electron wave vector, s = {σx , σy , σz} are
the Pauli matrices, and Ωs(k) can be regarded as a
k-dependent effective magnetic field. In quantum
wells, the two-dimensional vector Ωs(k) depends lin-
early on kx and ky at small k, and, in the general case, it
contains two contributions, one of which (bulk) is
caused by the absence of an inversion center in the zinc
blende structure [11] and the other (surface) occurs
only in the asymmetrical quantum wells [12]. The rela-
tive magnitude of these contributions may be different;
however, an important point is that, at a given electron
energy, the electron spin splitting in a sufficiently nar-
row quantum well is larger than in the bulk material
[13], and, as a consequence, the role of the DP spin-
relaxation mechanism in quantum wells increases. This
mechanism becomes more efficient with increasing
parameter Ωsτ, where τ is the momentum relaxation
time. At Ωsτ * 1, the spin relaxation time τS ~ τ. The
experimental measurements of the spin splitting in
quantum wells [14, 15] give "Ωs . 1 meV for k .
10−6 cm–1. At τ . 1 ps, Ωsτ ~ 1, and the spin–orbit inter-
action (3) cannot be regarded as a small perturbation.

Under these conditions, simple Eq. (1) for the
damped electron spin precession in a magnetic field is
no longer valid, because the interaction (3) induces spin
precession by itself, i.e., even in the absence of a mag-
netic field. A consistent analysis of this issue requires
the nonperturbative approach to the spin splitting [10,
13].

To calculate the average spin S(t), it is necessary to
find the electron spin density matrix ρss '(k), where

Sz t( ) Sz 0( ) ΩLt( ) t/τS–( ).expcos=

Vs
"
2
---Ωs k( )s,=
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s, s' = ±1/2, and k is the two-dimensional wave vector
in the plane of quantum well. The spin S(t) is related to
ρss '(k) by the formula

(4)

The density matrix (k, t) can be conveniently written
as

(5)

The vector S(k, t) determines the spin density and sat-
isfies the following equation [10, 16]:

(6)

where W(k, k') is the scattering probability and Ω(k) =
ΩL + Ωs(k). Assume that the scattering is elastic, i.e.,
that W(k, k') depends only on the angle between k and
k'. On the right-hand side of Eq. (6), the term account-
ing for the electron generation is omitted, because, for
a sufficiently short pump pulse with τp ≈ 100 fs, the
electron generation can be taken into account by writ-

ing the initial condition as (0) = S0. To simplify the
calculation, we assume that the effective magnetic field
Ωs(k) in Eq. (3) is the sum of contributions from either
of two mechanisms: surface with Ωs(k) ~ {ky , – kx} or
bulk with Ωs(k) ~ {kx , – ky} (the orientation of the quan-
tum well is assumed to be [001]). In either of these
cases, Ωs(k) = |Ωs(k)| is independent of the k and
Ωs(k)directions and can be represented in the form

(7)

where the angle φ specifies the direction of vector k in
the plane of a quantum well, and the two-dimensional
complex vector a satisfies the condition a2 = 0 and
depends linearly on k.

Following [16], let us expand S(k) and W(k, k') in
the Fourier series,

After substitution of these expansions into Eq. (6), one
obtains the infinite set of linear differential equations
for the coefficients Sn(t). This set of equations should

be used to find the z component of the total spin (t)
that is responsible for the Faraday rotation. The method
of solving this set depends on the value of parameter

S t( ) Trs kd

2π( )2
-------------ρ̂ k t,( ).∫=

ρ̂

ρss ' k t,( ) 1
2
--- n k t,( )δss ' sss ' S k t,( )⋅+[ ] .=

S k( )
dt

----------- Ω k( ) S k( )×=

+
k 'd

2π( )2
-------------W k k ',( ) S k '( ) S k( )–( )∫ ,

Sz
0

Ωs k( ) aeiφ= a*e iφ– ,+

S k( ) Sneinφ,
n

∑=

W φ φ'–( ) Wnein φ φ'–( ).
n

∑=

Sz
0
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κ = Ωsτ, where τ is the momentum relaxation time. If

κ ! 1, then  ~ κ  and, as long as we are inter-

ested in the relaxation of , all terms Sn with |n| ≥ 2
can be ignored in the resulting set of equations. In this
case, S0 and S±1 satisfy the following set of equations:

(8)

(9)

(10)

where

is the momentum relaxation rate.
The spin dynamics is determined by the eigenfre-

quencies of the set of Eqs. (8)–(10). A remarkable fea-
ture of this set is that at ΩL = 0, i.e., in the absence of an
external magnetic field, it provides an exact and closed

equation for , which is valid for any value of param-
eter κ. The corresponding eigenfrequency is given by
the expression

(11)

At κ ! 1, the eigenvalue –iω⊥  = 1/τ⊥  = κΩs is equal to
the relaxation rate of the spin z component in a quantum
well dominated by the DP mechanism [13]. In the
opposite limit κ @ 1, one obtains from Eq. (11)

(12)

Therefore, at large spin splitting and high mobility,
the spin z component oscillates with frequency Ωs even
in the absence of an external magnetic field, with the
damping time of these oscillations being τS = 2τ. Note
that the eigenfrequency corresponding to the spin x and
y components is obtained from Eq. (11) by replacing

Ωs  Ωs/ . The resulting relaxation rate for these
spin components is half as large at κ ! 1 [13], and the

precessional frequency is lower by a factor of  at
κ @ 1.

Let us now consider the influence of a transverse
magnetic field on the eigenfrequency (11). At B ≠ 0, the
spin components, normal and parallel to the plane of
the quantum well, are coupled to each other, so that one
fails to obtain an analytical solution to the kinetic
Eq. (6). The eigenfrequencies of the set of Eqs. (8)–
(10) were calculated numerically for κ ! 1. Of interest
were those eigenfrequencies which corresponded at
zero magnetic field to the relaxation rates 1/τ⊥  = κΩs

and 1/τ|| = κΩs/2 for the perpendicular and parallel
spin-density components, respectively. The numerical
analysis showed that, as the magnetic field increases,

Sz
n 1+ Sz

n

Sz
0

dS0/dt a S× 1–= a*+ S+1× ΩL S0,×+

dS+1/dt a S× 0= ΩL+ S+1× S+1/τ ,–

dS 1– /dt a* S× 0= ΩL+ S 1–× S 1– /τ ,–

τ 1– φd
2π
------W φ( ) 1 φ( )cos–[ ]∫=

Sz
0

ω⊥
i

2τ
----- 1 1 4κ2––( ).=

ω⊥ i/2= Ωs.+

2

2

the relaxation modes transform to the oscillation ones
with frequency ΩL, while the relaxation times corre-
sponding to these modes approach a constant value τ|| at
ΩL @ 1/τ. The fact that τS shows little dependence on B
can be explained by the mutual compensation of two
factors acting in opposite directions. As B increases, the
precession axis Ωs + ΩL becomes more and more closer
to ΩL, leading to a decrease in the DP spin relaxation
rate [17]. On the other hand, the growing velocity of
spin precession in the magnetic field brings about an
increase in the spin relaxation rate. Since only the first
of these factors is operative in the longitudinal mag-
netic field, the spin relaxation time in the longitudinal
field increases with increasing B [17].

Let us now consider the influence of a transverse
magnetic field on the electron spin dynamics in the
limit κ @ 1. On the qualitative level, this influence can
be understood if one ignores the collision integral in
kinetic Eq. (6). In this case, the velocity and sense of
spin precession for an electron with momentum k are
given by the vector Ω(k) = Ωs(k) + ΩL. Hence, the pre-
cessional frequency in our model becomes dependent at
B ≠ 0 on the direction of k. To simplify calculations, let
us ignore the fact that the initial photoelectron energy
distribution has a finite width due to the finite pump
pulse duration. Then, one has for the resulting spin z
component

(13)

If Ωs(k) ~ ΩL, then the terms with different k’s in
Eq. (13) interfere with each other, resulting in a fast

decay of Sz(t) even at t ~  ! τ. In actuality, this
decrease in Sz(t) is not a damping, i.e., not an irrevers-
ible process, but it is merely the initial stage of a certain
quasiperiodic process with a broad distribution of pre-
cessional frequencies. However, due to the presence of
a weak but, nevertheless, real damping, the initial decay
of Sz(t) will not differ in appearance from the irrevers-
ible damping. Such a behavior becomes most pro-
nounced if the spin and Zeeman splittings are identical.
In this case, one obtains from Eq. (13)

(14)

where J0(z) is the zero-order Bessel function, whose
first zero is situated at z ≈ 2.4.

It is worth noting that the assumption about the
dominance of any one spin-splitting mechanism (sur-
face or bulk) automatically implies that the spin split-
ting is independent of the k direction (in the linear
approximation in k). The breaking of this condition
does not change qualitatively the conclusions drawn for
κ ! 1, but it is crucial for κ @ 1. In this case, the inter-
ference of oscillations of the electrons with different
k’s in Eq. (13) becomes destructive even in the absence
of the magnetic field, so that Sz(t) may decrease to zero
in a time that is appreciably shorter than τ. As the mag-

Sz t( ) Sz 0( ) φd
2π
------e iΩ k( )t– .∫=

Ωs
1–

Sz t( ) Sz 0( )J0 2ΩLt( ),=
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netic field increases to a level at which ΩL @ Ωs, the
regime is restored with the relaxation time τS ~ τ. Note
that, due to a small value of Ωs(k) in a bulk material, the
spin dynamics in it will have a relaxational character, so
that the strong anisotropy of Ωs(k) will not lead to the
above-mentioned features in the time dependence S(t).

We note in conclusion that, in spite of the model
character of the results obtained in this work, they indi-
cate new potentials of nonlinear two-pulse spectros-
copy for studying spin dynamics in semiconducting
heterostructures. This method can be used in the search
for and study of heterostructures with large spin split-
ting, where the electron spin dynamics displays a num-
ber of indicative features. When performing experi-
mental studies of the effects considered in this work,
one should take into account that, if the photoelectron
thermalization is too fast and proceeds in a time com-
parable to the oscillation period, then the oscillations of
the total electron spin become hard to observe. This
problem is typical for all experimental studies of spin
coherence. To minimize the destructive effect of ther-
malization, it is necessary that the photoelectron energy
is not too high. In particular, it must be lower than the
energy of optical phonons. If this condition is met, then
the oscillations with a period of ~1 ns can be observed
[6]. However, a decrease in the photoelectron energy in
the undoped samples leads to a substantial decrease in
the photoelectron momentum and, as a result, to a
decrease in the spin splitting. It is thus reasonable to use
doped samples for the experimental observation of the
oscillations in the Faraday rotation caused by the spin
splitting of the conduction band.

This work was supported by the Russian Foundation
for Basic Research and the programs “Fundamental
Spectroscopy” and “Laser Optics.”
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Direct fermionic path-integral Monte Carlo simulations of strongly coupled hydrogen are presented. Our results
show evidence for the hypothetical plasma phase transition. Its most remarkable manifestation is the appear-
ance of metallic droplets, which are predicted to be crucial for the electrical conductivity and allow one to
explain the rapid increase found in recent shock compression measurements. © 2001 MAIK “Nauka/Interpe-
riodica”.

PACS numbers: 52.25.Kn; 52.65.Pp
1 Hydrogen at high pressures remains the subject of
many investigations (see, e.g., [1, 2] for an overview).
Many interesting phenomena, such as the metal–insula-
tor transition (MIT), the Mott effect and the plasma
phase transition (PPT) have been predicted. They occur
in situations where both quantum and Coulomb effects
are important, making a theoretical analysis difficult.
Among the most promising theoretical approaches to
such systems is the path-integral quantum Monte Carlo
(PIMC) method [3, 4], which has seen remarkable
progress recently (e.g., [4, 5]). However, for Fermi sys-
tems, these simulations are substantially hampered by
the so-called fermion sign problem. Additional
assumptions, such as fixed node and restricted path
concepts, have been introduced to overcome this diffi-
culty [4]. It can be shown, however, that such assump-
tions do not reproduce the correct ideal Fermi gas
limit [6].

Recently, we presented a new path-integral repre-
sentation which avoids additional approximations,
(direct path-integral Monte Carlo, DPIMC) which has
successfully been applied to strongly coupled hydrogen
[7–9] (see below). In this work, we apply the DPIMC
method to the analysis of dense liquid hydrogen in the
region of the hypothetic plasma phase transition [1, 10,
11, 12]. Computing the equation of state and the inter-
nal energy, we find clear indications for the existence of
the PPT—its first confirmation by a first-principle
method. It is shown that the PPT manifests itself by the
formation of large metallic droplets, which are crucial
for plasma transport properties.

It is well known that the thermodynamic properties
of a quantum system are fully determined by the parti-
tion function Z. For a binary mixture of Ne electrons and

1 This article was submitted by the authors in English.
0021-3640/01/7407- $21.00 © 20384
Ni protons, Z can be written as

(1)

Here, q ≡ {q1, q2, …, } are the coordinates of the

protons; σ = {σ1, …, } and r ≡ {r1, …, } are the
electron spins and coordinates, respectively; and β =
1/kBT. The density matrix ρ in Eq. (1) is represented in
the common way by a path integral [13]:

(2)

where ∆β ≡ β/(n + 1) and  = 2π"2∆β/me. Further,
rn + 1 ≡ rn, σ' = σ; i.e., electrons are represented by fer-
mionic loops with the coordinates (beads) [r] ≡ [r, r(1), …,
r(n), r]. The electron spin gives rise to the spin part of the
density matrix 6, whereas exchange effects are

accounted for by the permutation operator  and the
sum over the permutations with parity κP.

Following [3], we use a modified representation (3)
of the high-temperature density matrices on the right-
hand side of Eq. (2), which is suitable for the efficient
direct fermionic PIMC simulation of plasmas. With the
error of the order e ~ (βRy)2χ/(n + 1), which vanishes

Z Ne Ni V β, , ,( ) Q Ne Ni β, ,( )/Ne!Ni!,=

Q Ne Ni β, ,( ) qd rρ q r σ; β, ,( ).d

V

∫
σ
∑=

qNi

σNe
rNe

ρ q r σ; β, ,( ) 1

λ i
3Niλ∆

3Ne
------------------- 1±( )

κP

P

∑=

× r 1( )… r n( )ρ q r r 1( ); ∆β, ,( )…dd

V

∫
…ρ q r n( ) P̂r n 1+( ); ∆β, ,( )6 σ P̂σ',( ),

λ∆
2

P̂
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with a growing number of beads, we obtain the approx-
imation

(3)

where χ is the degeneracy parameter and Ui, , and

 denote the sum of the binary Kelbg potentials Φab

[14, 15] between protons, electrons at vertex “l,” and
electrons (vertex “l”) and protons, respectively.

In Eq. (3),  ≡  arises from the
kinetic-energy part of the density matrix of the electron
with index p, and we introduced dimensionless dis-
tances between the neighboring vertices on the loop,
ξ(1), …, ξ(n). Finally, the exchange matrix is given by

where the subscript s denotes the number of electrons
having the same spin projection. From the above
Eqs. (1)–(3), one readily computes the internal energy
and the equation of state:

(4)

(5)

In our simulations, we used Ne = Ni = 50 and n = 20.
To test the MC procedure, we considered a mixture of
ideal degenerate electrons and classical protons, for
which the thermodynamic quantities are known analyt-
ically. The agreement, up to the degeneracy parameter
χ as large as 10, was very good and improved with
increasing number of particles [7]. Further, the method
was successfully tested in applications to electrons in a
harmonic trap [16]. For the case of interacting electrons
and protons in dense hydrogen, we previously per-
formed a series of calculations over a wide range of the
classical coupling parameter Γ and degeneracy χ for
temperatures T ≥ 10000 K. The analysis of the results
clearly showed a number of interesting phenomena,

ρ q r σ; β, ,( )
σ
∑ 1

λ i
3Niλ∆

3Ne
------------------- ρs q r[ ] β, ,( ),

s 0=

Ne

∑=

ρs q r[ ] β, ,( )

=  
CNe

s

2
Ne

--------e βU q r[ ] β, ,( )– φpp
l det ψab

n 1,
s,

p 1=

Ne

∏
l 1=

n

∏

U q r[ ] β, ,( ) Ui q( )=
Ul

e r[ ] β,( ) Ul
ei q r[ ] β, ,( )+

n 1+
---------------------------------------------------------------,

l 0=

n

∑+

Ul
e

Ul
ei

φpp
l π ξp

l( ) 2
–[ ]exp

ψab
n 1,

s
π
λ∆

2
----- ra rb–( ) ya

n+
2

–
 
 
 

exp≡
s

,

with ya
n λ∆ ξa

k( ),
k 1=

n

∑=

βE
3
2
--- Ne Ni+( )= β∂ Qln

∂β
-------------,–

βp
∂ Qln
∂V

-------------
α

3V
-------∂ Qln

∂α
-------------

α 1=

.= =
JETP LETTERS      Vol. 74      No. 7      2001
such as formation and decay of hydrogen bound states
[8, 9, 15], including hydrogen atoms, molecules,
molecular ions, clusters and, further, at high densities,
pairing of electrons and ordering of protons into a
Wigner crystal [9].

In this work, we present new results which concen-
trate on the hypothetical plasma phase transition [10].
For this purpose, we analyze the plasma properties and
compute the equation of state (5) and internal energy
(4) of dense hydrogen along two isotherms, T = 104 K
and 5 × 104 K. Figure 1 shows pressure and energy vs.
density at T = 5 × 104 K. For comparison, we also
include the results for an ideal plasma. As expected, due
to Coulomb interaction and bound-state formation, the
nonideal plasma results are below the ideal ones. We
mention that our results are in good agreement with the
restricted path-integral calculations of Militzer and
Ceperley (Fig. 1a contains available data points for a

Fig. 1. (a) Pressure and (b) internal energy for hydrogen
plasma at T = 5 × 104 K vs. density. (1) Direct PIMC simu-
lation of this work, (2) ideal plasma, and (3) restricted
PIMC computations at T = 6.25 × 104 K [17].
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slightly higher temperature of 6.25 × 104 K [17]). For
higher temperatures, agreement is very good [15].
More importantly, at this temperature, pressure
increases monotonically with density, and, at high den-
sities, a continuous increase in the degree of ionization
(Mott effect) is found.

However, at T = 104 K, the properties of the hydro-
gen plasma change qualitatively (cf. Figs. 2, 3). While
the overall trend of the pressure (Fig. 2a) is still a mono-
tonic increase, in the density region of 0.1…1.5 g/cm3

the plasma exhibits unusual behavior. Inside this
region, the Monte Carlo simulations do not converge to
an equilibrium state; the pressure strongly fluctuated

Fig. 2. (a) (1–5) Pressure and (6, 7) electrical conductivity
and (b) internal energy for hydrogen at T = 104 K vs. den-
sity. (1) Direct PIMC simulation of this work, (2) ideal
plasma, (3) direct PIMC simulation of a mixture consisting
of 25% helium and 75% hydrogen, (4) density functional
theory [20], (5) restricted PIMC computations [17], (6, 7)
electrical conductivity of hydrogen (right axis), (6) [18],
and (7) [19].
and reached even negative values. Such behavior is typ-
ical for Monte Carlo simulations of metastable systems.

Note that no such peculiarities appear for densities
below and above this interval, as well as for the iso-
therm T = 5 × 104 K and for higher temperatures.

These facts suggest that our simulations encoun-
tered the plasma phase transition predicted by many
chemical models of partially ionized hydrogen, e.g., in
[1, 10, 11, 12]. According to these models, this is a first-
order transition with two coexisting phases of different
degrees of ionization. While canonical Monte Carlo
simulations do not yield the coexisting phases and the
coexistence pressure directly, they allow one to analyze
in detail the actual microscopic particle configurations.
A typical particle arrangement inside the instability
region, T = 104 K and ρ = 0.3346 g/cm3, is shown in
Fig. 3. Obviously, the protons arrange themselves into
large clusters (droplets), with the electrons (the piece-
wise linear lines show their closed fermionic path)
being fairly delocalized over the cluster. This is a clear
precursor of the metal-like state, which is found in the
simulations for densities above the instability region.

As mentioned above, the plasma phase transition
appears in many chemical models in the same density–
temperature range. However, these simple approaches
become questionable in the region of pressure ioniza-
tion and dissociation, where the consistent treatment of
all possible pair interactions, including charge–charge,
neutral–neutral, and charge–neutral, is crucial. Further-
more, these approaches neglect larger bound aggre-
gates such as clusters, which our simulations reveal to
be crucial in the metastable region. We mention that
indirect indications for a phase transition have been
found in recent density-functional studies [20]. In this
work, the thermodynamic properties of hydrogen in the
metallic phase were computed (see data points in
Fig. 2), and enhanced long-wavelength ion density
fluctuations were observed as the density was reduced
to ρ = 0.799 g/cm3 (the lowest density explored). This
led to unusual behavior of the ion–ion structure factor
and the effective potential, which the authors of [20]
interpreted as a possible precursor to an incipient
metal-to-insulator transition.

Our simulations suggest that the existence of the
PPT should have a noticable influence on the transport
properties. In fact, when the density changes from
0.1…1.5 g/cm3, hydrogen transforms from a neutral
into a metallic fluid. Accordingly, electrical conductiv-
ity should increase rapidly. Indeed, shock compression
experiments have revealed a dramatic increase in the
electrical conductivity by 4–5 orders of magnitude in a
very narrow density range of 0.3–0.5 g/cm3 [18, 19]. So
far, theoretical models cannot reproduce this behavior
correctly, predicting either a too early (hopping con-
ductivity in the molecular fluid) or too late (free elec-
tron conductivity) increase [21]. But, seeing as the
experimental data (black circles and crosses in Fig. 2a)
are located right inside the PPT region, one has to take
JETP LETTERS      Vol. 74      No. 7      2001
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into account a third conductivity mechanism—charge
transport via electron hopping between individual
metal-like droplets. Obviously, this mechanism will be
effective in between the regions where the two other
effects dominate and thus should allow for a much bet-
ter agreement with the experiments.

Finally, we mention that our simulations predict a
PPT for pure hydrogen plasma only. In contrast, no PPT
was found for a binary mixture of 25% of helium and
75% of hydrogen atoms (cf. Fig. 2).

In summary, we have presented direct path-integral
Monte Carlo simulations of dense fluid hydrogen in the
region of the MIT. Our results give evidence for the
plasma phase transition, which, to the best of our
knowledge, is its first prediction by a first principle the-
ory. Most importantly, we found clear evidence for the
formation of large metallic droplets which are predicted
to play a crucial role in transport and optics in the
region of the MIT at low temperatures. In further inves-
tigations, we will focus on a more precise analysis of
the MIT and the plasma phase transition, including
determination of its critical point and the transport and
optical properties of the droplets.

This paper is dedicated to Werner Ebeling on the
occasion of his 65th birthday. We are grateful to
W. Ebeling, D. Kremp, W.D. Kraeft, and S. Trigger for
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Fig. 3. Snapshot of a Monte Carlo cell at T = 104 K and ρ =
0.3346 g/cm3. Black circles are protons, and dark and light
broken lines are representations of electrons as fermionic
loops with different spin projections.
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stimulating discussions. We also wish to thank
D. Ceperley and B. Militzer for useful critical remarks.
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Complex Ce4+–Nd3+ centers were formed in silica gel-glasses. These centers were characterized by weak cross-
relaxation quenching of luminescence; an increased luminescence branching ratio in the 4F3/2  4I11/2, 4I13/2
transitions; strong structuring of the analogous spectral bands; and effective intracenter sensitization of lumi-
nescence. On reducing the Ce4+ ions to the triply charged state, the structure of the luminescence bands of Nd3+

ions became weaker and the ratio of their intensities approached the value typical of an Nd-containing silica
gel-glass. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 78.67.-n; 78.55.-m
Nanostructuring may impart new spectral lumines-
cence properties to Ln-containing glasses untypical of
disordered materials, which may considerably raise the
competitiveness of the corresponding glass lasers and
light transformers. Among the problems that can be
solved by nanostructuring are obtaining Nd-containing
glasses with an increased fraction of quanta emitted in
the 4F3/2  4I13/2 transition (λ ~ 1.34 µm) and glasses
characterized by efficient UV excitation of IR lumines-
cence. These problems have remained topical for years
for a number of practical applications. They are also of
great interest from the viewpoint of materials science.

This work is devoted to an attempt to obtain such
glasses using the possibility of forming complex Ce4+–
Ln3+ centers in silica gel-glasses, which was discovered
recently [1–4], where Ln = Ce, Sm, and Eu. These cen-
ters are characterized by increased symmetry of Ln(III)
oxo complexes and by efficient sensitization of their
luminescence by photoreduced metastable ions (Ce4+)–,
which absorb in the UV spectral region.

Test samples were prepared by direct sol–gel–glass
transition using the known method [2]. Activation was
performed by impregnating porous xerogels with solu-
tions of neodymium and cerium compounds. The xero-
gels were sintered in oxygen to a transparent glassy
state. The Ce4+ ions were reduced to Ce3+ by annealing
the glasses in hydrogen. The concentration of activators
N was determined in layers using a Spectroscan spec-
trometer with a limiting error of measurements of
±15% and was averaged over the volume. All the
reagents were of high-purity grade. The phase compo-
sition of the glasses was monitored using a DRON-2.0
X-ray diffractometer and an S-806 scanning electron
microscope.
0021-3640/01/7407- $21.00 © 20388
Light attenuation spectra were recorded on a Cary-
500 spectrophotometer and were represented as the
dependence of the natural light attenuation coefficient k
on the wavelength λ. The luminescence and lumines-
cence excitation spectra were recorded on an SDL-2
spectrofluorimeter, corrected [5], reduced to unity at a
maximum, and represented as the dependence of the
number of quanta per unit interval of wavelengths
dn/dλ on λ. In order to diminish the luminescence
quenching of the coactivated samples, frontal excita-
tion was used and their thickness was decreased to
0.3 mm. The luminescence quantum yield η of Nd3+

ions was determined by the comparison method [5]. A
certified GLS-22 glass was used as the reference stan-
dard. All the spectral measurements were carried out at
T = 298 K.

The light attenuation spectra of the glasses studied
in this work are shown in Fig. 1. It is evident that a sig-
nificant excess of the intensity of the “supersensitive”
4I9/2  4G5/2, 2G7/2 band (λmax ≈ 580 nm) of Nd3+ ions
over the intensity of the other bands (curve 1) is charac-
teristic of the monoactivated glass with NNd = 2 ×
1019 ion/cm3. A considerable attenuation of both the
relative intensity of the supersensitive band indicated
above and the integral intensity of f–f bands reduced to
one Nd3+ ion is observed for the coactivated glass with
NNd = 0.5NCe = 1.5 × 1020 ion/cm3 (curve 2). At the same
time, the structure of the IR bands of Nd3+ ions
becomes enhanced, and an intense UV band appears
with an adjacent structureless weak band stretching
over the entire visible region. The annealing of this
glass in hydrogen leads to a strong weakening and nar-
rowing of the UV band and to the disappearance of dif-
fuse absorption in the visible region but only weakly
affects the relative intensities and the structure of bands
001 MAIK “Nauka/Interperiodica”



        

SPECTRAL LUMINESCENCE PROPERTIES 389

                                                                                                 
associated with Nd3+ ions (curve 3). Note that an
increase in NNd up to 4 × 1020 ion/cm3 in the monoacti-
vated glass is also accompanied by a decrease in the rel-
ative intensity of the supersensitive band and in the spe-
cific absorption of Nd3+ ions; however, it hardly affects
the structure of their spectral bands.

The IR luminescence spectra of the glasses under
study are shown in Fig. 2. It can be seen that the spec-
trum of the monoactivated glass on excitation by non-
selective radiation in the range 300–750 nm (a DKSSh-
100 xenon lamp and an SZS25 light filter) is repre-
sented by three weakly structured bands (curve 1), the
most intense of which corresponds to the 4F3/2  4I9/2

transition of Nd3+ ions (λmax ≈ 905 nm). The fourth
band at 1900 nm is more than two orders of magnitude
weaker and is not shown in the figure. The character of
this spectrum is retained on selective excitation in the
above region with the half-width of the exciting radia-
tion band equal to 2 nm. This spectroscopic behavior of
the monoactivated glass is also observed at high NNd.
The spectrum of the coactivated glass on nonselective
excitation is distinguished by the presence of new nar-
row components and by redistribution of the integral
intensities of spectral bands. These changes are most
pronounced on excitation by radiation with the wave-
length λexc ≤ 400 nm (curve 2). It is remarkable that the
position of new narrow components for the coactivated
glass only slightly varies on scanning λexc. After anneal-
ing this glass in hydrogen, the structure of spectral
bands becomes weaker (curve 3), and the distribution
of their relative intensities approaches a distribution
characteristic of monoactivated glasses.

The IR luminescence excitation spectra of the
glasses under study are presented in Fig. 3. It can be

Fig. 1. Light attenuation spectra of (1) Nd- and (2, 3) Ce–
Nd-containing glasses (2) before and (3) after annealing in
hydrogen; NNd, 1019 ions/cm3: (1) 2 and (2, 3) 15; NCe

(2, 3) = 3 × 1020 ion/cm3.
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seen that the spectrum of the monoactivated glass
(curve 1) at the recording wavelength λrec correspond-
ing to the 4F3/2  4I11/2 band of Nd3+ ions (λmax ≈
1085 nm) differs from the corresponding absorption
spectrum both in the ratio between the intensities of
spectral bands of the activator (the relative intensity of
the supersensitive band increases) and in their shape.
The partial intensities of the main spectral bands of
Nd3+ ions in the spectrum of the coactivated glass at
λrec = 1340 nm (curve 2) come close together, and an
intense and broad UV band appears. The annealing of
this glass in hydrogen leads to a change in the position

Fig. 2. Normalized and corrected IR luminescence spectra
of (1) Nd- and (2, 3) Ce–Nd-containing glasses (2) before
and (3) after annealing in hydrogen; NNd, 1019 ions/cm3:

(1) 2 and (2, 3) 15; NCe (2, 3) = 3 × 1020ions/cm3; λexc, nm:
(1) 300–750 and (2, 3) 370.

Fig. 3. Normalized and corrected IR luminescence excita-
tion spectra of (1) Nd- and (2, 3) Ce–Nd-containing glasses
(2) before and (3) after annealing in hydrogen; NNd,

1019 ions/cm3: (1) 2 and (2, 3) 15; NCe(2, 3) = 3 ×
1020 ions/cm3; λrec, nm: (1) 1075 and (2, 3) 1340.
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and shape of the UV band and produces noticeable
changes in the contours of f–f bands (curve 3).

The results presented above must be supplemented
with the statement that no crystalline phase was found
in all the samples studied. For the monoactivated glass
excited in the 4I9/2  4F3/2 band, the value of η com-
prises ≈5% at NNd = 2 × 1019 ion/cm3 and decreases
down to 0.5% at NNd = 4 × 1020 ion/cm3. For the mono-
activated glass sintered in oxygen, this value is close to
15% under similar excitation conditions. When this
glass is excited in the UV band (λexc = 355 nm), the
value of η decreases down to 5% and approaches 15%
again after annealing in hydrogen. Also note that the
concentration of hydroxyl ions determined by the
known method [2] comprises ≈0.8 wt % for the glasses
under study.

The radical differences of the spectra of the coacti-
vated glass sintered in oxygen from the corresponding
spectra of the monoactivated glass caused by Nd3+ ions
(compare curves 1 and 2 in Figs. 1–3) should be asso-
ciated with the formation of complex Ce4+–Nd3+ cen-
ters. The appearance of these centers is due to the rela-
tively small ionic radius of the quadruply charged
cerium (~0.8 Å [6]). According to the geometrical cri-
terion [7], this allows cerium to form seven- and, possi-
bly, six-coordinate polyhedra with oxygen. In this case,
according to the consequence [8] from Pauling’s elec-
trostatic valence rule, the Ce4+ ions can serve as buffer
elements, favoring the entry of higher coordinate lan-
thanide ions into a rigid silicon–oxygen framework
and, thus, the formation of such complex centers. The
results that we obtained recently1 in studying the
vibronic interaction of 4f electrons of Eu3+ ions with the
environment in Ce4+–Eu3+ centers of a silica gel-glass
point to the displacement of Si–O structural units out-
side these centers. This fact, with regard to the absence
of evidence of crystallization in the glasses under study,
suggests that such complex centers represent oxide
nanoparticles in which Ln3+ ions are surrounded by
Ce(IV) oxo complexes. The attenuation of the super-
sensitive band and the specific absorption of Nd3+ ions
observed in this case (compare curves 1 and 2 in Fig. 1)
indicate that the symmetry of Nd(III) oxo complexes in
these nanoparticles is increased. In our opinion, this
increase is due to the fact that the covalent character of
the Ce4+–O2– chemical bond is relatively low and,
according to [9], comprises ≈33%. It counts in favor of
this interpretation that no increase in the symmetry of
Nd(III) is observed in silica gel-glasses when six-coor-
dinate Al3+ ions are used as a buffer [10]. The degree of
covalent character of these ions in compounds with
oxygen is close to 41%. The occurrence of the nanopar-
ticles indicated above explains why the luminescence
spectra exhibit no continuous variation in going from
one complex center to another one within their ensem-

1 These results will be published in a separate work.
ble. It also explains the fact that the value of η for the
coactivated glasses is considerably greater than that for
the Nd-containing ones, for which the formation of
Nd–Nd centers, with luminescence quenched because
of cross-relaxation interactions, is typical [10].

The presence of an intense UV band in the IR lumi-
nescence excitation spectrum of Ce4+–Nd3+ centers (see
curve 2 in Fig. 3) points to the efficient intracenter
transfer of excitations to Nd3+ ions. It is known that
Ce4+ ions do not luminesce [2]; therefore, this transfer
can proceed only from labile photoreduced ions (Ce4+)–,
whose absorption spectrum is close to the analogous
spectrum of Ce3+ ions [11]. The absence of the ability
of Nd3+ ions to decrease their charge state in glasses
suggests a superexchange mechanism of this transfer
with simultaneous electron return from the ground state
(Ce4+)– to a ligand. The overlap between electron orbit-
als of the donor and acceptor necessary for the given
mechanism can be accomplished through the bonding
of Ce4+ and Nd3+ ions by a bridging oxygen atom with
the formation of a configuration close to collinear [12].
A weak change in the relative intensity of the UV exci-
tation band due to annealing of the coactivated glass in
hydrogen (compare curves 2 and 3 in Fig. 3) can be rea-
sonably explained by the closeness of the excited states
of (Ce4+)– and Ce3+ ions in energy, the good resonance
of these states with the close-lying states of Nd3+ ions,
and the insignificant change of the distance between the
coactivators on reducing Ce4+ to Ce3+. In this case, the
considerable decrease in the splitting of the lumines-
cence bands of Nd3+ ions after the annealing of the
coactivated glass in hydrogen (compare curves 2 and 3
in Fig. 2) is, in the main, the consequence of a decrease
in the field strength of their environment. As for the
modification of the spectral bands at λ ~ 430 and
620 nm (compare curves 1 and 3 in Fig. 3) that is untyp-
ical for such an activator as Nd3+ ions, additional inves-
tigations are necessary for its interpretation.

From the practical point of view, the relatively high
luminescence branching ratio (≈15%) [13] in the
4F3/2  4I13/2 transition is the most attractive property
of the Ce4+–Nd3+ centers formed in this work. This
property is important in creating lasers and amplifiers
for optical transmission lines at a wavelength corre-
sponding to the minimum material dispersion of silica
glass. It is also reasonable to believe that a decrease in
the concentration of Ce4+–O–Ce3+ and Ce4+–O–Fe3+

groups, which absorb in the UV, visible, and, partially,
in the near IR spectral regions [14], as well as the use
of special dehydration methods, must significantly
increase the value of η for glasses with the Ce4+–Nd3+

centers considered above.

This work was partially supported by the Belarus-
sian Republican Foundation for Basic Research,
project no. F00-186.
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Effect of Coulomb Interaction on the Electron Spectral Density 
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Interaction of electrons with strongly anisotropic plasma oscillations leads to an incoherent contribution to the
electron spectral density that does not vanish even for energies distant from the Fermi surface. In the supercon-
ducting state, this gives a peak–dip–hump structure analogous to that observed in layered high-Tc superconduc-
tors. The incoherent part of the spectral density and electron transitions with the participation of plasmons are
responsible for two mechanisms of the occurrence of a finite conductivity in the transverse direction at high
voltages or frequencies. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.21.-b; 73.63.-b; 71.45.Gm
Layered metals can be considered as strongly aniso-
tropic crystals with a small transfer integral between
layers, which determines the electron band width in the
transverse direction. In pure crystals, electron transi-
tions between layers must be coherent as distinct from
artificial rough tunnel junctions, in which the parallel
momentum component is not conserved in transitions
between layers. It is known that an electron oscillates in
an electric field applied to a perfect periodic crystal,
and the dissipative current does not arise. A finite resis-
tance (and the real part of conductivity) in the direction
perpendicular to layers arises because of electron scat-
tering. At frequencies higher than the inverse momen-
tum scattering time 1/τ, the scattering efficiency
decreases; therefore, the real part of conductivity must
drop with increasing frequency. Similarly, if the voltage
drop across one layer V > "/eτ, the period of electron
oscillations in the electric field becomes smaller than τ
and the conductivity must also drop as the voltage fur-
ther increases. However, in one of the most extensively
studied types of layered metals, namely, in high-Tc

superconductors, a finite conductivity is observed even
at voltages that exceed the value of the superconducting
gap [1–4], which, in its turn, exceeds "/τ. The real, dis-
sipative part of the conductivity does not drop even at
high frequencies [5]. A similar behavior was also
observed in the layered metal 2H-TaSe2 [6].

In addition, a peak–dip–hump structure extending
up to energies distant from the Fermi surface was
observed in the electron spectral density of a high-Tc

superconductor measured by angle-resolved photoe-
mission spectroscopy [7]. A similar structure was
observed earlier using tunnel spectroscopy [8]. The
occurrence of an extended incoherent part of the spec-
tral density can explain the finite value of the dissipa-
tive current at high frequencies [9]. In works by Nor-
0021-3640/01/7407- $21.00 © 20392
man et al. [10], it was shown that the features of the
spectral density could be due to the interaction of elec-
trons with a dispersionless boson mode presumably of
an electron origin.

We propose a mechanism of the occurrence of the
features under discussion not associated with the spe-
cific properties of high-Tc superconductors, that is,
common to layered metals. This mechanism is based on
the Coulomb interaction and the interaction of elec-
trons with strongly anisotropic plasma oscillations.
Such oscillations must be inherent in strongly anisotro-
pic layered metals, because the frequency of plasma
oscillations with the wave vector perpendicular to the
conducting layers is proportional to the small transfer
integral squared and, correspondingly, to the conductiv-
ity in this direction. Such plasma oscillations in the
superconducting state are manifested in the Josephson
plasma mode in the high-Tc superconductor [11, 12]. It
is evident that an analogous, weakly damped mode
must also exist in the normal state at frequencies higher
than the collision frequency and at wavelengths shorter
than the mean free path, that is, in the limit when the
material behaves as an ideal metal, whose response to
an electric field is in many respects similar to the
response of a superconductor.

Consider a layered metal with the period s in the
direction perpendicular to the metallic layers coupled
with a small transfer integral t⊥ . The Hamiltonian of the
system takes the form

(1)

*
p2

2m
-------apnσ

+ apnσ t⊥ a( p n 1+ σ, ,
+ apnσ+

p n σ, ,
∑=

-----+ ap n 1– σ, ,
+ apnσ

 *C *BCS,+ +
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where  is the creation operator of an electron with
the momentum component p along the layer and the
spin σ in the conducting layer n, *C describes the Cou-
lomb interaction, and *BCS is the BCS part of the
Hamiltonian, which lead to singlet pairing. For simplic-
ity, we will use a discrete potential of the Coulomb
interaction of the electrons occurring in the n and n' lay-
ers and separated by the distance r|| in the plane of lay-

ers VC(r||, n) = e2/ . The Fourier trans-
form of the potential takes the form

(2)

where q|| is the wave vector in the plane of layers, and
 = (2/s)sin(q⊥ s/2), |q⊥ | < π/s is the wave vector

obtained by a discrete Fourier transform over the layer
numbers.

We will neglect electron scattering by impurities
and phonons, because the considerable energies that
will be required in calculations are high as compared
with "/τ. We also omit the renormalization of the effec-
tive mass and the broadening of the quasiparticle peak
in the electron spectral density due to electron–electron
scattering. Instead, we will focus on the effects associ-
ated with the plasma mode and its interaction with elec-
trons.

First, we will calculate the polarization operator
within the random phase approximation and find the
renormalized Coulomb interaction 9C at zero tempera-
ture. In the normal state and in the dynamic limit ω @
q||vF, we will obtain

(3)

where  = 2e2vFpF/s = 4πe2n/m is the plasma fre-
quency for the orientation of the wave vector parallel to
the layers, and ωp = (4t⊥ s/"vF)Ωp ! Ωp is that for the
orientation of the wave vector perpendicular to the lay-
ers. The poles of the potential given by Eq. (3) deter-
mine the spectrum of the plasma mode. Large values of
q⊥  ~ s–1 make the greatest contribution to integrals in
the subsequent calculations. At such q⊥ , the frequency
of the mode grows almost linearly with q|| in the wide
range between ωp and Ωp, and the characteristic veloc-
ity of plasmons in the plane of layers is determined by

the value ωq ≈ q||Ωp/ , where κ2 = /2 , and 1/κ
is the Thomas–Fermi screening length, which, for sim-
plicity, we consider small compared to the period s,
κs @ 1. This relation is true for high-Tc superconductors,
where an estimate gives κ ~ 10 nm–1 and s ~ 1.5 nm.
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Note that  ~ (κs)vF, and this fact allows us to use the
dynamic limit in Eq. (3).

Note a certain analogy between the interaction of
electrons with photons in quantum electrodynamics
and the interaction of electrons with plasmons in our
problem. However, the interaction in the first case is
characterized by the small parameter e2/"c = 1/137,
whereas the corresponding parameter in our case
e2/"  ~ (e2/s)/"Ωp can be large or small, depending on
the value of the plasma frequency, that is, on the density
of charge carriers. First, we consider the case of a rela-
tively good metal with a high plasma frequency when
this parameter is small. Next, we will consider the situ-
ation when the carrier density decreases.

The renormalized potential in the superconducting

state at ω, qvF ! ∆ takes the form 9C = 4πe2/(  +  +
κ2); that is, it describes static screening, and the poles
determining the plasma mode are absent. These poles
appear only at ω, qvF @ ∆, when superconductivity is
of little importance. Note that the Josephson plasma
mode at small frequencies with the spectrum given by
Eq. (3) is, nevertheless, present and is revealed in the
poles of the Green function, which describes fluctua-
tions of the superconducting momentum. These fluctu-
ations also make a contribution to the effects studied
here; however, this contribution is small compared with
the Coulomb effects by the parameter (κs)2.

Consider the effect of the Coulomb interaction on
the electronic structure by the perturbation theory, cal-
culating the mass operator Σ. The poles of the potential
9C, which acquires the properties of a boson Green
function, make the main contribution to Σ. The calcu-
lated mass operator does not decrease up to very high
energies of order Ωp, and it gives the following electron
Green function in the normal state at energies much less
than Ωp:

(4)

where ξp = p2/2 – εF, and F is a slowly varying function
equal to 1 at ε ! ξκs and to 1/2 at ε @ ξκs. Formally,
the integral for g0 diverges logarithmically at large q||
but becomes finite if it is considered that the integration
over q|| is restricted by the Brillouin zone or if the exact
form of the dependence ωq at q|| ~ κ is taken into
account. As a result, we obtain g0 ~ glnsqF or g0 ~
glnκs, respectively. The exact expression for g0 is
determined by the particular energy structure of the
metal at large distances from the Fermi surface.

The spectral function of electrons A = ImG/π con-
sists of a quasiparticle peak, whose value decreases
with decreasing density of charge carriers, and of an
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extended incoherent part. At ε ! Ωp, with an accuracy
to the terms linear in g,

(5)

Equation (5) is applicable to the superconducting
state at ε @ ∆(κs). At lower energies, the second term in
the spectral function becomes small, because it is deter-
mined by the plasmon poles of the potential and these
poles are absent at energies lower than ∆. As a result, a
dip appears in the spectral density at energies ε < ∆(κs).
This leads to the appearance of a peak–dip–hump struc-
ture in the superconducting state. This structure is sim-
ilar to that observed in layered high-Tc superconductors
in the direction (0, π), corresponding to a maximum in
the superconducting gap. However, our analysis, based
on a simple model isotropic in the plane of layers, can-
not pretend to be a quantitative description of the spec-
tral density in a high-Tc superconductor.

Note that, though Eqs. (4) and (5) are formally
applicable only at T = 0, a calculation at finite temper-
atures indicates that these equations can be used at a
temperature much lower than the energies of plasmons,
which give the main contribution to the integral in
Eq. (4), that is, at kT ! "vF/s, εF, Ωp.

Let us discuss now how the results will change on
increasing the parameter g, determining the magnitude
of interaction. In the general case, the Dyson equation
must be solved for the renormalized Green function
with regard to the vertex part. The diagrams entering
into the vertex part, as well as the mass operator, con-
tain large contributions associated with the plasmon
poles of the renormalized interaction potential. How-
ever, an analysis shows that taking into account the ver-
tex corrections does not change the results qualitatively.
Therefore, expressions given by Eq. (4) can be used
with an accuracy to constant factors if it is considered
that the nonrenormalized plasma frequency enters into
the formulas for g and g0, whereas the plasmon spec-
trum and frequency are renormalized, Ωp  Ωp0/(1 +
g), ωq  ωq0/(1 + g), where the subscript 0 relates to
the nonrenormalized frequencies.

To calculate the current at high voltages, we will use
the Keldysh nonequilibrium diagram technique. The
current density between the layers n and n + 1 can be

A
δ ε ξp–( )

1 g0+
----------------------=

gF
πΩp

----------.+

Fig. 1. Diagrams for the Green function nondiagonal with
respect to the layer number that make the main contribution
to the current in the transverse direction with respect to lay-
ers.
expressed through Green functions nondiagonal with
respect to the layer number

(6)

where the superscripts relate to the time contour and the
subscripts describe the layer number.

The diagrams for  corresponding to the two
basic mechanisms of the occurrence of a linear conduc-
tivity are presented in Fig. 1. The solid and wavy lines
designate, correspondingly, the renormalized Green
functions and the Coulomb potential, whereas a cross
corresponds to t⊥ . These diagrams give strict results in
the second order by the interaction and describe the cur-
rent qualitatively at large g. The diagrams with a greater
number of Coulomb lines either give small corrections
by the parameter V/Ωp or correspond to the renormal-
ization of the vertex part, which does not result in a
qualitative change of the results.

In the case of coherent tunneling, the process
described by the diagram in Fig. 1a makes a contribu-
tion to the current in the normal state at the voltage drop
across one layer eV @ "/τ (and in the superconducting
state at V @ ∆) only as a result of renormalization,
because renormalization gives the incoherent part of
the spectral density. Assuming that eV @ "ωp (but eV @
"Ωp), we obtain the linear volt–ampere characteristic
with the conductivity

(7)

where Sp is the area of the two-dimensional Brillouin
zone of a metal layer. Comparing Eq. (7) with the stan-

dard equation for conductivity σ = /4π, we see that
the role of the effective scattering time in σ1 is played

by π"[1 + Sp/(2π )]/8εF. The diagram in Fig. 1a also
makes a contribution to the conductivity of a supercon-
ductor with d pairing at V < ∆ due to processes of the
passage of quasiparticles through the superconducting
gap [13], and π"/16∆, where ∆ is the maximum gap,
serves as the effective scattering time.

The diagram in Fig. 1b describes the contribution to
the conductivity due to electron transitions with the
emission or absorption of a plasmon. Its contribution to
the current have an evident physical meaning

(8)

where np and Nq are the Fermi and Planck distributions
of electrons and plasmons, respectively. Calculating

jn n 1+,
2et⊥

"
---------- Gn n 1+,

12 Gn 1+ n,
21–( )

ε p||dd

2π3
--------------,∫=

Gn n 1+,
12

σ1

e2mst⊥
2

π"
4Ωp

---------------- g

1 g0+( )3
--------------------- 1

Sp

2πpF
2

-------------+ ,=

ωp
2τ

pF
2

j k pd p'eiks4e3t⊥
2 ωq

π3q̂⊥
2 V2

-------------------dd∫=

× np 1 np'–( ) 1 Nq+( ) 1 np–( )np'Nq–[ ]
× δ ξp ξ p'– V ωq+ +( ) δ ξp ξ p'– V– ωq+( )–[ ] ,
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integrals at eV @ "ωp, ∆, we obtain the linear conduc-
tivity

(9)

Under our assumptions, the first contribution to the
conductivity is greater than the second one, σ1/σ2 ~ κs.

The expressions given by Eqs. (7) and (9) are also
obtained for the real part of the conductivity at frequen-
cies ω @ "ωp, ∆, because the linear response is
described by the same diagrams in which the voltage V
is replaced by the frequency ω.

Let us discuss now the relation of the calculated
results to experimental data, the most part of which
were obtained with high-Tc superconductors. Our
approach, based on taking into account the Coulomb
effects and containing no assumptions on some special
boson modes, describes qualitatively the appearance of
a peak–dip–hump structure in the electron spectral den-
sity in such materials and suggests mechanisms of con-
ductivity in the directions perpendicular to layers at
high voltages or frequencies. However, the specific fea-
tures of the electronic structure of high-Tc superconduc-
tors (such as the occurrence of almost flat regions of the
Fermi surface in the (0, π) directions, the van Hove sin-
gularities at the Fermi surface, and the angular depen-
dence of t⊥  and ∆) are not taken into account in our sim-
ple model. Therefore, a quantitative description cannot
be obtained without regard to the details of the elec-
tronic structure of particular layered metals.

The results calculated for the conductivity within
the framework of our simple model do not contradict
experimental data. The conductivity of Bi2Sr2CaCu2Ox

measured at V > ∆ is several times higher than the con-
ductivity at small voltages V < ∆ [1, 3, 4]. The conduc-
tivity calculated at high voltages contains the Fermi
energy as the effective scattering frequency, and that
calculated at low voltages contains the superconducting
gap ∆ as the effective scattering frequency. In the case
of an isotropic transfer integral between layers t⊥ , this
would mean that the conductivity at high voltages is
lower than that at low voltages. However, if t⊥  is aniso-
tropic and is determined by transitions through vertex
oxygen atoms (see the review [14]), the ratio between
the conductivities may become opposite, because the
conductivity at low voltages is determined by quasipar-
ticles near the sites of the superconducting gap. In this

σ2

e2 pFt⊥
2

3π2
"

4Ωp
2

--------------------- g

1 g0+( )3
---------------------.=
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case, the transfer integral is small, quasiparticles with
arbitrary momentum directions make a contribution to
the transitions between layers at V > ∆, and the conduc-
tivity is determined by large values of t⊥ . Thus, the
anisotropy of the electronic spectrum of the material
must be taken into account in detail for a quantitative
description.

The authors are grateful to K.É. Nagaev and
A.G. Kobel’kov for useful discussions. This work was
supported by the Russian Foundation for Basic
Research, project no. 01-02-17527, and by the Russian
State Program on Superconductivity, project no. 96053.
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A theory of high-temperature superconductivity based on the combination of the fermion-condensation quan-
tum phase transition and the conventional theory of superconductivity is presented. This theory describes max-
imum values of the superconducting gap, which can be as big as ∆1 ~ 0.1εF, with εF being the Fermi level. We
show that the critical temperature 2Tc . ∆1. If the pseudogap exists above Tc, then 2T* . ∆1 and T* is the tem-
perature at which the pseudogap vanishes. A discontinuity in the specific heat at Tc is calculated. The transition
from conventional superconductors to high-Tc ones as a function of the doping level is investigated. The single-
particle excitations and their lineshape are also considered © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.20.Fg; 71.27.+a; 74.25.Jb
1 The explanation of the large values of critical tem-
perature Tc, of the maximum value of the superconduct-
ing gap ∆1, and of the relation between ∆1 and the tem-
perature T* at which the pseudogap vanishes are, as
years before, among the main problems in the physics
of high-temperature superconductivity. To solve them,
one needs to know the single-particle spectra of corre-
sponding metals. Recent studies of photoemission
spectra discovered an energy scale in the spectrum of
low-energy electrons in copper oxides, which manifests
itself as a kink in the single-particle spectra [1–4]. As a
result, the spectra in the energy range (–200–0) meV
can be described by two straight lines intersecting at the
binding energy E0 ~ (50–70) meV [2, 3]. The existence
of the energy scale E0 could be attributed to the interac-
tion between electrons and the collective excitations,
for instance, phonons [4]. On the other hand, the anal-
ysis of the experimental data on the single-particle elec-
tron spectra demonstrates that the perturbation of the
spectra by phonons or other collective states is, in fact,
very small; therefore, the corresponding state of elec-
trons has to be described as a strongly collectivized
quantum state and is named “quantum protectorate” [5,
6]. Thus, the interpretation of the above-mentioned
kink as a consequence of electron–phonon interaction
may very likely be in contradiction with the quantum
protectorate concept. To describe the single-particle
spectra and the kink, the assumption may be used that
the electron system of a high-Tc superconductor has
undergone the fermion-condensation quantum phase
transition (FCQPT). This transition serves as a bound-

1 This article was submitted by the authors in English.
0021-3640/01/7407- $21.00 © 20396
ary separating the normal Fermi liquid from the
strongly correlated liquid of a new type [7, 8] and ful-
fills the quantum protectorate requirements [9]. The
FCQPT appears in many-electron systems at relatively
low density, where the effective interaction constant
becomes sufficiently large. In ordinary electron liquid,
this constant is directly proportional to the dimension-
less parameter rs ~ 1/pFaB, where aB is the Bohr radius
and pF is the Fermi momentum. The FCQPT appears at
a certain value rs, rs = rFC, and precedes formation of
charge-density waves or stripes [10], which are
observed in underdoped samples of copper oxides [11].
This is why the formation of the FCQPT in copper
oxides may be considered as a quite determinate pro-
cess stemming from general properties of a low-density
electron liquid [9].

In this paper, we address the above-mentioned prob-
lems in the physics of high-temperature superconduc-
tivity and demonstrate that these problems can be
resolved in a theory based on the combination of the
FCQPT and the conventional theory of superconductiv-
ity. We show that the FCQPT manifests itself in large
values of ∆1, Tc, and T*. We also trace the transition
from conventional superconductors to high-Tc ones as a
function of the parameter rs, or as a function of the dop-
ing level.

At T = 0, the ground-state energy Egs[κ(p), n(p)] of
a two-dimensional electron liquid is a functional of the
order parameter of the superconducting state κ(p) and
of the occupation numbers n(p) and is determined by
001 MAIK “Nauka/Interperiodica”
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the known equation of the weak-coupling theory of
superconductivity

(1)

Here, E[n(p)] is the ground-state energy of a normal
Fermi liquid, n(p) = v 2(p), and κ(p) =

v(p) . It is assumed that the pairing interac-
tion λ0V(p1, p2) is weak. Minimizing Egs with respect to
κ(p), we obtain the equation connecting the single-par-
ticle energy ε(p) to ∆(p),

(2)

The single-particle energy ε(p) is determined by the
Landau equation, ε(p) = δE[n(p)]/δn(p) [12], and µ is
the chemical potential. The equation for the supercon-
ducting gap ∆(p) takes the form

(3)

If λ0  0, then the gap ∆(p)  0, and Eq. (2)
reduces to the equation proposed in [7]

(4)

At T = 0, Eq. (4) defines a particular state of Fermi liq-
uid with the fermion condensate (FC), for which the
modulus of the order parameter |κ(p)| has finite values
in the LFC range of momenta pi ≤ p ≤ pf, and ∆1  0
in the LFC. Such a state can be considered as supercon-
ducting with an infinitely small value of ∆1, so that the
entropy of this state is equal to zero. It is obvious that
this state, being driven by the quantum phase transition,
disappears at T > 0 [9]. When pi  pF  pf, Eq. (4)
determines the point rFC at which the FCQPT takes
place. It follows from Eq. (4) that the system breaks
into two quasiparticle subsystems: the first subsystem
in the LFC range is occupied by the quasiparticles with

the effective mass   ∞, while the second one is

occupied by quasiparticles with finite mass  and
momenta p < pi. If λ0 ≠ 0, ∆1 becomes finite, leading to

a finite value of the effective mass  in LFC, which
can be obtained from Eq. (2) [9]

(5)

Egs = E n p( )[ ] λ 0∫+ V p1 p2,( )κ p1( )κ* p2( )
dp1dp2

2π( )4
------------------.

1 v 2 p( )–

ε p( ) µ– ∆ p( )1 2v 2 p( )–
2κ p( )

---------------------------.=

∆ p( ) λ0V p p1,( )κ p1( )
p1d

4π2
--------∫–=

=  
1
2
--- λ0V p p1,( )

∆ p1( )

ε p1( ) µ–( )2 ∆2 p1( )+
--------------------------------------------------------

p1d

4π2
--------.∫–

ε p( ) µ– 0, if 0 n p( ) 1; pi p p f .≤ ≤< <=

MFC*

ML*

MFC*

MFC*  . pF

p f pi–
2∆1

----------------.
JETP LETTERS      Vol. 74      No. 7      2001
As to the energy scale, it is determined by the parameter
E0:

(6)

Thus, a system with FC has a single-particle spectrum
of the universal form and possesses quantum protector-
ate features at T ! Tf, with Tf being a temperature at
which the effect of the FCQPT disappears.

We assume that the range LFC is small, (pf – pF)/pF ! 1,
and 2∆1 ! Tf, so that the order parameter κ(p) is gov-
erned mainly by the FC [9]. To solve Eq. (2) analyti-
cally, we take the Bardeen–Cooper–Schrieffer (BCS)
approximation for the interaction [13]: λ0V(p, p1) = –λ0
if |ε(p) – µ| ≤ ωD, and the interaction is zero outside this
region, with ωD being the characteristic phonon energy.
As a result, the gap becomes dependent only on the
temperature, ∆(p) = ∆1(T), being independent of the
momentum, and Eq. (2) takes the form

(7)

Here, we set ξ = ε(p) – µ and introduce the density of
states NFC in the LFC or E0 range. As follows from
Eq. (5), NFC = (pf – pF)pF/2π∆1(0). The density of states
NL in the range (ωD – E0/2) has the standard form NL =

/2π. If the energy scale E0  0, Eq. (7) is reduced
to the BCS equation. On the other hand, assuming that
E0 ≤ 2ωD and omitting the second integral in the right-
hand side of Eq. (7), we obtain

(8)

where the Fermi energy εF = /2 , and dimension-

less coupling constant β = λ0 /2π. Taking the usual
values of the dimensionless coupling constant β . 0.3,
and (pf – pF)/pF . 0.2, we get from Eq. (7) the large
value of ∆1(0) ~ 0.1εF, while for normal metals one has
∆1(0) ~ 10–3εF. Taking into account the omitted integral,
we obtain

(9)

It is seen from Eq. (9) that the correction due to the sec-
ond integral is small, provided E0 . 2ωD. Below, we
show that 2Tc . ∆1(0), which leads to the conclusion

E0 ε p f( )= ε pi( ) . 2
p f pF–( )pF

MFC*
-----------------------------  . 2∆1.–
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that there is no isotope effect, since ∆1 is independent of
ωD. But this effect is restored as E0  0. Assuming
E0 ~ ωD and E0 > ωD, we see that Eq. (7) has no standard
solutions ∆(p) = ∆1(0) because ωD < ε(p . pf) – µ and
the interaction vanishes at these momenta. The only
way to obtain solutions is to restore the condition E0 <
ωD. For instance, we can define the momentum pD < pf

such that

(10)

while the other part in the LFC range can be occupied by
a gap ∆2 of the different sign, ∆1(0)/∆2 < 0. It follows
from Eq. (10) that the isotope effect is presented. A
more detailed analysis will be published elsewhere.

At T  Tc, Eqs. (5) and (6) are replaced by the
equation, which is valid also at Tc ≤ T ! Tf [9]

(11)

Equation (7) is replaced by its conventional finite-tem-
perature generalization

(12)

Putting ∆1(T  Tc)  0, we obtain from Eq. (12)

(13)

with ∆1(0) being given by Eq. (9). By comparing Eqs.

(5), (11), and (13), we see that  and E0 are almost
temperature-independent at T ≤ Tc. Now a few remarks
are in order. One can define Tc as the temperature where
∆1(Tc) ≡ 0. At T ≥ Tc, Eq. (12) has only the trivial solu-
tion ∆1 ≡ 0. On the other hand, Tc can be defined as a
temperature at which the superconductivity vanishes.
Thus, we deal with two different definitions, which can
lead to different temperatures. It was shown [14, 15]
that in the case of the d-wave superconductivity, taking
place in the presence of the FC, there exist nontrivial
solutions of Eq. (12) at Tc ≤ T ≤ T* corresponding to the
pseudogap state. It happens when the gap occupies only
that part of the Fermi surface which shrinks as the tem-
perature increases. Here, T* defines the temperature at
which ∆1(T*) ≡ 0 and the pseudogap state vanishes. The
superconductivity is destroyed at Tc, and the ratio
2∆1/Tc can vary in a wide range and strongly depends
upon the material properties, as follows from the con-

∆1 0( ) 2βεF

pD pF–
pF
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MFC*  . pF

p f pi–
4Tc

----------------, E0 . 4Tc;
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4T
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1 NFCλ0
ξd

ξ2 ∆1 T( )2+
--------------------------------

ξ2 ∆1 T( )2+
2T

--------------------------------tanh

0

E0/2
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+ NLλ0
ξd

ξ2 ∆1 T( )2+
--------------------------------

ξ2 ∆1 T( )2+
2T

--------------------------------tanh .

E0/2

ωD

∫

2Tc . ∆1 0( ),

MFC*
sideration given in [14, 15]. Therefore, provided the
pseudogap exists above Tc, then Tc is to be replaced by
T*, and Eq. (13) takes the form

(14)

The ratio 2∆1/Tc can reach very high values. For
instance, in the case of Bi2Sr2CaCu2Q6 + δ, where the
superconductivity and the pseudogap are considered to
be of common origin, 2∆1/Tc . 4 is about 28, while the
ratio ∆1/T* . 4, which is also valid for various cuprates
[16]. Thus, Eq. (14) gives a good description of the
experimental data. We remark that Eq. (7) also gives a
good description of the maximum gap ∆1 in the case of
the d-wave superconductivity [14, 15], because the dif-
ferent regions with the maximum absolute value of ∆1
and the maximal density of states can be considered as
disconnected [17]. Therefore, the gap in this region is
formed by attractive phonon interaction, which is
approximately independent of the momenta. According
to the model proposed in [9], the doping level x is
related to the parameter rs in the following way: (xFC –
x) ~ (rs – rFC) ~ (pf – pi)/pF. The value xFC matches rFC

when defining the point at which the FCQPT takes
place. We assume that the dopant concentration xFC cor-
responds to the highly overdoped regime at which
slight deviations from the normal Fermi liquid are
observed [18]. Then, from Eqs. (8) and (9) it follows
that ∆1 is directly proportional to (xFC – x). From
Eq. (14) one finds that the function T*(x) represents a
straight line crossing the abscissa at the point xFC . x,
while, in the vicinity of this point, T* merges with Tc

and both of them tends to zero.

Now we turn to the calculations of the gap and the
specific heat at the temperatures T  Tc. It is worth
noting that this consideration is valid, provided T* = Tc,
otherwise the discontinuity considered below is
smoothed out over the temperature range T* – Tc. For
the sake of simplicity, we calculate the main contribu-
tion to the gap and the specific heat coming from the
FC. The function ∆1(T  Tc) is found from Eq. (12)
upon expanding the right-hand side of the first integral
in powers of ∆1 and omitting the contribution from the
second integral on the right-hand side of Eq. (12). This
procedure leads to the following equation:

(15)

Thus, the gap in the spectrum of the single-particle
excitations has quite usual behavior. To calculate the
specific heat, the conventional expression for the
entropy S [13] can be used

(16)

2T* . ∆1 0( ).

∆1 T( ) . 3.4Tc 1 T /Tc– .

S 2 f[ p( ) f p( )ln∫=

+ 1 f p( )–( ) 1 f p( )–( ) ]ln
pd

2π( )2
-------------,
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(17)

The specific heat C is determined by

(18)

When deriving Eq. (18), we again use the variable NFC

and the densities of states NFC, NL, just as before in con-
nection to Eq. (7), as well as the notation E =

. Equation (18) predicts the conventional
discontinuity δC in the specific heat C at Tc because of
the last term in the square brackets of Eq. (18). Upon
using Eq. (15) to calculate this term and omitting the
second integral on the right-hand side of Eq. (18), we
obtain

(19)

In contrast to the conventional result when the discon-
tinuity is a linear function of Tc, δC is independent of
the critical temperature Tc because the density of state
varies inversely with Tc, as follows from Eq. (11). Note
that, deriving Eq. (19), we take into account the main
contribution coming from the FC. This contribution
vanishes as soon as E0  0, and the second integral in
Eq. (18) gives the conventional result.

Consider the lineshape L(q, ω) of the single-particle
spectrum which is a function of two variables. Mea-
surements carried out at a fixed binding energy ω = ω0,
where ω0 is the energy of a single-particle excitation,
determine the lineshape L(q, ω = ω0) as a function of

the momentum q. We have shown above that  is
finite and constant at T ≤ Tc. Therefore, at excitation
energies ω ≤ E0 the system behaves like an ordinary
superconducting Fermi liquid with the effective mass
given by Eq. (5) [9]. At Tc ≤ T, the low-energy effective

mass  is finite and is given by Eq. (11). Once
again, at the energies ω ≤ E0, the system behaves as a
Fermi liquid, the single-particle spectrum is well
defined, while the width of single-particle excitations is
on the order of T [9, 19]. This behavior was observed in
experiments on measuring the lineshape at a fixed
energy [1]. It is pertinent to note that recent measure-
ments of the lineshape suggest that quasiparticle exci-
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tation even in the (π, 0) region of the Brillouin zone of
Bi2Sr2CaCu2Q8 + δ (Bi2212) are much better defined than
was previously believed from earlier Bi2212 data [20].
The lineshape can also be determined as a function
L(q = q0, ω) at a fixed q = q0. At small ω, the lineshape
resembles the one considered above, and L(q = q0, ω)
has a characteristic maximum and width. At energies
ω ≥ E0, quasiparticles with the mass  come into
play, leading to a growth of the function L(q = q0, ω).
As a result, the function L(q = q0, ω) possesses the
known peak-dip-hump structure [21] directly defined
by the existence of the two effective masses  and

 [9]. To have a more quantitative and analytical
insight into the problem, we use the Kramers–Krönig
relation to construct the imaginary part ImΣ(p, ε) of the
self-energy Σ(p, ε), starting with the real one ReΣ(p, ε)
which defines the effective mass [22]

(20)

Here, M is the bare mass, while the relevant momenta p
and energies ε are subjected to the following condi-
tions: |p – pF|/pF ! 1, and ε/εF ! 1. We take ReΣ(p, ε)
in the simplest form which accounts for the change of
the effective mass at the energy scale E0:

(21)

Here, θ(ε) is the step function. Note that, in order to
ensure a smooth transition from the single-particle
spectrum characterized by  to the spectrum

defined by , the step function is to be substituted by
some smooth function. Upon inserting Eq. (21) into
Eq. (20), we can check that inside the interval (–E0/2,

E0/2) the effective mass M* . , and outside the

interval M* . . By applying the Kramers–Krönig
relation to ReΣ(p, ε), we obtain the imaginary part of
the self-energy,

(22)

We can see from Eq. (22) that, at ε/E0 ! 1, the imagi-
nary part is proportional to ε2; at 2ε/E0 . 1, ImΣ ~ ε; at
E0/ε ! 1, the main contribution to the imaginary part is
approximately constant. This is the behavior that gives
rise to the known peak-dip-hump structure. Then, it is
seen from Eq. (22) that, when E0  0, the second
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term on the right-hand side tends toward zero, the sin-
gle-particle excitations become better defined, resem-
bling that of a normal Fermi liquid, and the peak-dip-
hump structure eventually vanishes. On the other hand,
the quasiparticle amplitude a(p) is given by [22]

(23)

It follows from Eq. (20) that the quasiparticle amplitude
a(p) rises as the effective mass  decreases. Since

 ~ (pf – pi) ~ (xFC – x) [9], we are led to the conclu-
sion that the amplitude a(p) rises as the doping level
rises, and the single-particle excitations become better
defined in highly overdoped samples. It is worth noting
that such behavior was observed experimentally
Bi2212 so highly overdoped that the gap size was about
10 meV [18]. Such a small size of the gap indicates that
the region occupied by the FC is small, since E0/2 . ∆1.

In conclusion, we have shown that the theory of
high-temperature superconductivity based on the fer-
mion-condensation quantum phase transition and on
the conventional theory of superconductivity permits
one to describe high values of Tc, T*, and the maximum
value of the gap, which may be as large as ∆1 ~ 0.1εF.
We have also traced the transition from conventional
superconductors to high-Tc ones and demonstrated that,
in highly overdoped cuprates, single-particle excita-
tions become much better defined, resembling those of
a normal Fermi liquid.

This work was supported in part by the Russian
Foundation for Basic Research, project no. 01-02-
17189.
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A complex oxide of the Y2Mn2/3Re4/3O7 composition with pyrochlore-like structure and parameters of hexag-
onal unit cell a = 14.91(1) Å, c = 17.53(1) Å was synthesized. The magnetic susceptibility and magnetization
measurements showed that below 190 K this oxide possesses spontaneous magnetic moment. In the parameg-
netic region, the magnetic susceptibility obeys the Curie–Weiss law χ = C/(T – Θ), with C = 2.07 cm3 K mol–1

and Θ = –160 K, and the effective magnetic moment corresponding to the cationic combination Mn2+–Re5+.
The data obtained allow one to assume that the compound has a noncollinear antiferromagnetic structure. ©
2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.20.Hr; 75.30.Cr; 75.50.-y
Magnetic properties of complex oxides with a pyro-
chlore structure have attracted serious attention after
the discovery of ferromagnetism in rare-earth hypovan-
adates Ln2V2O7 (Ln = Lu, Yb, and Tm; TC = 73.5 K) [1,
2]. A search for pyrochlore-like oxides have culmi-
nated, in particular, in the synthesis of thallium manga-
nate Tl2Mn2O7 (TC = 121 K) [3], which was found to
display colossal magnetoresistance [4]. Recently [5],
“unprecedented” magnetoresistance (higher than for
the stoichiometric Tl2Mn2O7) was observed in a
Tl2 − xCdxMn2O7 solid solution. These oxides have a
face-centered cubic lattice belonging to the space group
Fd3m and they are isostructural with the pyrochlore
mineral NaCaTa2O6(OH; F) [6].

In a number of works [7, 8 and references therein],
oxides of a more complex composition ( )
were synthesized, in which the B' and B" sites are occu-
pied by two different d elements. Contrary to the “sim-
ple” pyrochlores, the structure of more complex oxides
is not cubic and belongs to the rhombohedral or mono-
clinic [9] crystal system. A detailed analysis of the crys-
tal structures of these compounds has not been carried
out so far. In [9], the X-ray diffraction patterns of the
compositionally close Ho2Mn0.6Nb1.4O7.1 oxide were
indexed on the basis of the zirconolite structure
CaZrTi2O7 [10]. In the structural model adopted for this
oxide, three types of cationic positions occur for the Nb
and Mn atoms.

The magnetic properties of these complex oxides
also remain to be studied. Those compounds in which
both B' and B" sites are occupied by the cations whose
d orbitals are only partly filled are of greatest interest.
In [7, 8], the presence of ferrimagnetic properties of the

Ln2B2/3' B4/3'' O7
0021-3640/01/7407- $21.00 © 20401
Y2Mn2/3Mo4/3O7 and Y2Fe2/3Mo4/3O7 compounds at low
temperatures was suggested on the basis of magnetic
susceptibility measurements carried out at T ≥ 77 K.

This paper reports on the synthesis of a new com-
plex oxide Y2Mn2/3Re4/3O7, whose crystal structure is
similar to the structure of previously synthesized

 oxides. The compound was prepared in
vacuum from Mn2O3, ReO2, and Y3ReO8 oxides and
metallic Re. The double oxide Y3ReO8 was obtained in
air from yttrium oxide Y2O3 and ammonium perrhenate
NH4ReO4 at 900°C. A mixture of the indicated compo-
nents was carefully ground in the ratio 1 : 1 : 2 : 1 and
pressed and placed into a quartz tube, which was then
evacuated and sealed. Synthesis was carried out at a
temperature of 1273 K with one-fold intermediate
grinding, repeated pressing, and sealing in a quartz
tube. The course of chemical reactions was monitored
by X-ray diffraction.

The X-ray diffraction pattern of the prepared
Y2Mn2/3Re4/3O7 sample is shown in Fig. 1 (DRON-2
diffractometer, CuKα radiation, Ni filter). The array of
reflections was indexed in the hexagonal (or rhombohe-
dral) symmetry. The lattice parameters of
Y2Mn2/3Re4/3O7 in the hexagonal basis are as follows:
a = 14.91(1) Å, c = 17.53(1) Å, and V = 3375 Å3. These
values, especially the c parameter, are quite different
from those previously found for the Y2Mn2/3Mo4/3O7

oxide: a = 14.80(1) Å, c = 17.24(1) Å, and V = 3270 Å3.
Since the ion radii of Mo5+ and Re5+ are close and
equal, respectively, to 0.61 and 0.58 Å [9], this result
calls for further analysis. The X-ray diffraction data did
not reveal any impurities in the sample.

Ln2B2/3' B4/3'' O7
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The magnetic properties of the prepared compound
were studied on an MPMS SQUID magnetometer over
the temperature range 2–400 K. Measurements were
made in magnetic fields of 0.5 and 5 kOe upon cooling
in zero and nonzero fields. The magnetization was mea-
sured in magnetic fields below 50 kOe at 2, 20, 130,
200, and 298 K after zero-field cooling. The sample
was ceramics sintered under the above-mentioned con-
ditions. The results of measurements are presented in
Figs. 2–4.

It is seen from Fig. 2 that the temperature depen-
dence of the susceptibility χ of Y2Mn2/3Re4/3O7 has
well-defined anomalies in the range 2–300 K. Below
190 K, χ increases dramatically and displays different
behavior below 125 K, depending on whether it was
zero-field- or field-cooled. The χ = f(T) curve also has
inflection at 7 K. At 2, 20, and 130 K, spontaneous mag-
netization was observed with the following magnetic
moments: 0.03µB at 130 K and 0.2µB at 20 K. At 2 K,
magnetic saturation was not achieved. The magnetic
hysteresis curve at 2 K is shown in Fig. 3.

Fig. 1. X-ray diffraction pattern of Y2Mn2/3Re4/3O7

Fig. 3. Magnetic hysteresis curve (magnetization σ as a
function of magnetic field H) of Y2Mn2/3Re4/3O7 at 2 K.
The temperature dependence of the inverse mag-
netic susceptibility 1/χ is shown in Fig. 4. One can see
that χ obeys the Curie–Weiss law in the temperature
range 300–400 K: χ = C/(T – Θ). The Curie constant C
and the Weiss constant Θ of this law are equal to
2.07 (cm2 K)/mol and –160 K, respectively. The effec-
tive magnetic moment (4.07µB) per one averaged para-
magnetic center of the formula Y2Mn1/3Re2/3O3.5 is
close to that calculated for the cationic combination
Mn2+–Re5+ (4.13µB). This fact counts in favor of the
presence of the Mn2+ (outer electronic configuration d5)
and Re5+ (d2) cations in the compound.

The negative value of Θ is evidence of the antiferro-
magnetic interaction between the Mn and Re cations at
low temperatures. It is notable that the absolute value of
Θ (160 K) is close to the magnetic transition tempera-
ture (190 K). The experimental results, in particular, the
small spontaneous magnetic moments, in conjunction
with the negative value of Θ, allow one to assume that
the magnetic structure of this oxide is noncollinear.

Fig. 2. Temperature dependences of magnetic susceptibility
χ of Y2Mn2/3Re4/3O7 after (fc) field cooling (fc) and (zfc)
zero-field cooling.

Fig. 4. Temperature dependence of inverse magnetic suscep-
tibility 1/χ of Y2Mn2/3Re4/3O7 in a magnetic field of 500 Oe.
JETP LETTERS      Vol. 74      No. 7      2001
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More detailed insight into the nature of exchange mag-
netic interaction in Y2Mn2/3Re4/3O7 and its magnetic
structure calls for further, especially neutron diffrac-
tion, studies.

We are grateful to Prof. G.V. Subba Rao, India, for
discussions.
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