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Terahertz electroluminescence in the range ≈1.5 THz was observed in a quantum-cascade GaAs/AlGaAs struc-
ture containing 40 periods of tunnel-coupled wells. The luminescence is caused by the spatially indirect optical
electron transitions between the ground states of neighboring quantum wells. © 2001 MAIK “Nauka/Interpe-
riodica”.

PACS numbers: 78.67.De; 78.60.Fi; 07.57.Hm
The terahertz (or far-IR) band is among the most dif-
ficult to access and, as a result, is the least studied fre-
quency range of the electromagnetic spectrum. In
recent years, progress in band-gap engineering has pro-
vided techniques for designing terahertz sources based
on semiconducting multiperiod size-quantized systems
with carrier injection and intersubband radiative transi-
tions [1]. The ideas pioneered in [1] were implemented
in practice in the mid-IR range [2, 3]. It is expected that
the approach developed in designing mid-IR quantum-
cascade lasers and quantum-cascade structures (QCSs)
will be helpful in the development of devices for the
far-IR range, where compact light sources are presently
lacking. The generation of far-IR emission through the
radiative relaxation of size-quantized electrons in quan-
tum wells (QWs) is hampered by the competing
phonon emission and electron–electron scattering pro-
cesses [4]. Far-IR electroluminescence was recently
observed in parabolic QWs [5] and in QCSs [6, 7]. Nev-
ertheless, the achieved radiative recombination effi-
ciency reported to date is still low. Further use of band
engineering techniques such as the design of QCSs
with optimal tunneling conditions, as well as the use of
asymmetric QWs [8, 9] and QCSs constructed on the
basis of type II heterostructures, will permit the
enhancement of the efficiency of far-IR electrolumines-
cence and, ultimately, produce stimulated radiation.

The structures studied in this work were grown by
molecular beam epitaxy at the MBE EPSRC centre,
University of Sheffield (Great Britain). The structure was
grown on a semi-isolating (100) GaAs substrate and con-
tained 40 periods, each composed of four GaAs QWs
separated by tunneling Al0.15Ga0.85As barriers. The
widths of wells and barriers, and their sequence, were
0021-3640/01/7402- $21.00 © 20100
as follows: 280-Å QW, 25-Å barrier, 180-Å QW,
40-Å barrier, 160-Å QW, 25-Å barrier, 150-Å QW, and
40-Å barrier. Then, the periods were repeated. The
quantum-cascade structure was constructed so as to
produce, as in [6], terahertz radiation as a result of the
intraband optical electron transitions between the low-
est dimensionally quantized subbands. The 280-Å and
180-Å quantum wells separated by a 25-Å-thick tun-
neling barrier formed the active region of the structure.
The next two 160-Å and 150-Å wells separated by the
same barrier served as an injector delivering electrons
to the QW in the next period. Unlike the QCSs studied
in [6], where the tunneling barriers between the neigh-
boring periods of the structure were 60 Å wide, the
width of tunneling barriers between the periods of our
structures was brought down to 40 Å with the aim of
enhancing the efficiency of injection and the depletion
of the ground state. A decrease in the width of the injec-
tion barrier also allowed the observation of the indirect
optical transitions between the lower states in the active
region. To depress the influence of an injection-induced
volume charge, the 160-Å and 150-Å QWs were doped
with silicon to a level of ≈1016 cm–3. A 2-µm n+-GaAs
layer (n ≈ 2 × 1018 cm–3) with a 100-nm GaAs
(undoped) spacer on the substrate side formed a two-
dimensional 2D injecting junction. Similar layers of
n+GaAs and undoped GaAs functioned as the upper 2D
contact.

For measurements, mesa structures ≈400 µm in
diameter were formed on the samples. To extract radia-
tion along the normal to the structure surface (perpen-
dicular to the QW plane), a metallic (Cr/Au) grating
with a period of 20 µm was put on the upper contact
layer to convert the QCS radiation mode into a mode
001 MAIK “Nauka/Interperiodica”
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with the wave vector normal to the structure plane. The
samples were mounted on the copper cold finger of a
helium optical cryostat, using a “warm” window made
from polyethylene. A bias in the form of rectangular
pulses with a frequency of 500 kHz (period-to-pulse
duration ratio 2) modulated by low-frequency rectan-
gular pulses (80 Hz; period-to-pulse duration ratio 2;
modulation factor 1) was applied to the samples. This
bias was used to minimize sample heating during the
course of measurements.

Electroluminescence (EL) was recorded with the
use of a Fourier transform spectrometer constructed on
the basis of a Grubbs–Parsons instrument. The inner
volume of the spectrometer was evacuated to avoid the
influence of water vapor absorption. A liquid-helium-
cooled silicon bolometer (QMW Instruments) with a
bandpass optical filter placed at its input to provide
operation in the spectral range 2–400 cm–1 served as a
detector of far-IR radiation. The detector signal was
measured at the current modulation frequency (80 Hz)
using an SR-530 lock-in amplifier. The moving mirror
of the FT spectrometer was translated by a high-preci-
sion reciprocating feedback Newport system that pro-
vided positioning accuracy no worse than 0.25 µm. The
mirror translation control, the measurement of the
amplifier output, the bias pulse amplitude control, and
the fast Fourier transform of the interferograms were
performed using a computer.

After application of bias to the structure, a terahertz
radiation was detected. The signal increased with
increasing bias on the structure (Fig. 1). At small volt-
ages, the signal was lost in noise. As the voltage
increased to 4−9 V, the signal-to-noise ratio increased
appreciably and reached a value of ten or more (Fig. 1).
A typical signal interferogram is shown in the inset in
Fig. 1. A pronounced maximum is clearly seen in the
interferogram when the moving mirror passes through
the position corresponding to zero path difference
between the interferometer arms.

The spectrum of terahertz radiation at a voltage of
5.5 V on the quantum-cascade structure is shown in
Fig. 2. The spectra were measured with a resolution of
≈10 cm–1. This resolution was chosen to minimize the
spectrum recording time. It is seen that the band with a
maximum at 48.8 cm–1 (605 meV or 1.46 THz) and a
halfwidth of about 30 cm–1 makes the main contribution
to the EL spectrum. This spectrum differs noticably
from the data obtained in [6], where a narrow emission
line with a maximum at 113.6 cm–1 due to the transi-
tions between the second and first size-quantization
subbands in a quantum well of thickness 280 Å (QCS
active region) was observed.

The frequency corresponding to the emission maxi-
mum in our spectrum increases with increasing bias
voltage. This dependence can be approximated by a lin-
ear function (Fig. 3) with a slope of approximately
8.9 cm–1/V. The fact that the maximum position
depends linearly on the applied bias suggests that the
JETP LETTERS      Vol. 74      No. 2      2001
Fig. 1. Terahertz radiation intensity as a function of bias V
on the structure. Inset: signal intensity vs. the position of
interferometer mirror. The pass band of the input filter is 2–
400 cm–1 and T = 7–13 K.

Fig. 2. Terahertz emission spectrum; T = 7 K and V = 5.5 V.

Fig. 3. Position of terahertz emission maximum νmax vs.
applied bias V.
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observed band is caused by the emission accompanying
the indirect (in real space) electron transitions in the
QCS. Electron transitions between the ground state of
the 280-Å well and the ground state of the neighboring
well could be responsible. Our estimates showed that,
considering the voltage drop on the contacts, a bias of
approximately 1.5–2 V should be applied to the struc-
ture to equalize the lowest levels in the neighboring
QWs of the active region of QCS. Note that the EL is
excited starting at biases close to this value (Fig. 1).

The estimates of the integrated intensity of terahertz
radiation with correction for the efficiency of radiation
collection provide a value of about 2 nW at a bias of
5.5 V and an input electric power of 700 mW for the
structures prepared and studied in this work. This gives
a value on the order of 3 × 10–9 for the emitter quantum
efficiency.

In summary, a new terahertz electroluminescence band
has been observed in this work. For the quantum-cascade
structures containing tunnel-coupled GaAs/AlGaAs
quantum wells, the emission maximum in the EL spec-
trum occurs near 48.8 cm–1 (1.46 THz) with a bias of
5.5 V and shifts linearly to higher frequencies with
increasing bias. The observed behavior of the terahertz
electroluminescence suggests that it is caused by the
spatially indirect electron transitions between the
ground state of the wide well and the ground state of the
neighboring “ejecting” well.

This work was supported in part by the INTAS
(grant no. 97-0856), the Russian Foundation for Basic
Research “Scientific School” (project no. 00-15-
96750), and the program “Size-Quantized Nanostruc-
tures.” N.N.Z. is grateful to the EPSRC for the support
of his visit to the UK.
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Systematic measurements of the 63Cu(2) NQR line width were performed in underdoped YBa2Cu3O7 – y sam-
ples over the temperature range 4.2 K < T < 300 K. It was shown that the copper NQR line width monotonically
increases with decreasing temperature in the below-critical region, resembling temperature behavior of the
superconducting gap. The observed dependence is explained by the fact that the energy of a condensate of slid-
ing charge–current states of the charge-density-wave type depends on the phase of order parameter. Calcula-
tions show that this dependence appears only at T < Tc. Quantitative estimates of the line broadening at T < Tc
agree with the measurement results. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.25.Nf; 76.60.Gv; 74.72.Bk; 71.45.Lr 
It is generally believed that the Cu(2) NQR lines in
high-Tc superconductors of the 123 type with oxygen
index close to 7 are strongly broadened due to crystal
defects (oxygen vacancies and interstitials, twinning,
impurity phases, lattice imperfections, etc.). This is
confirmed by the fact that the copper NQR line width in
the 1248 compound with stoichiometric composition is
appreciably smaller than in the 1237 compound [1].
The NQR line widths in YBa2Cu3O7 – y (Y1237) sam-
ples were studied by different scientific groups and
found to vary over a rather wide range: 200–350 kHz at
room temperature. The width hardly changes upon
changing the temperature from room to critical (Tc).
However, starting at Tc (or below Tc at weak doping
[2]), the line width starts to increase rapidly. Although
the reasons for this broadening are as yet unclear, its
quadrupolar origin is evident from the comparison of
the line widths of the 63Cu and 65Cu isotopes. As a rule,
the larger the NQR line width at T > Tc, the larger the
broadening. If one assumes that the line width at T > Tc,
is due to lattice defects, then one should accept that
these defects influence, at least in part, the broadening
of the NQR lines below Tc. There are grounds to believe
that the broadening at T < Tc depends on the doping
level of the sample. For instance, the Cu(2) NQR line
width measured in [3] for an overdoped Y1237 sample
hardly changed in the temperature range 300–10 K,
although the line width (about 290 kHz) was not too
small; i.e., the sample studied in that work was not
defectless.

Therefore, the temperature behavior of the NQR line
width of the in-plane copper in a 123-type supercon-
ductor is nontrivial and calls for a better understanding.
In this work, we report the results of a detailed line-
width study for two Y1237 samples and analyze the
possible reasons of broadening. To interpret the addi-
0021-3640/01/7402- $21.00 © 20103
tional quadrupole broadening below Tc, we suggest tak-
ing into account the retarded motion of charge–current
waves and substantiating this by the mean-field calcu-
lations.

We carried out experiments using the same two par-
affin-packed Y1237 powder samples with crystallite
sizes ~30 µm, as in [4]. The critical temperatures (onset
of transition) were 91.6 K (sample 1) and 91.2 K (sam-
ple 2). The copper NQR spectra were measured on a
broadband coherent pulsed NQR/NMR spectrometer
over the temperature range 300–4.2 K. Examples of the
Cu(2) NQR spectra recorded at temperatures 300 and
4.2 K are given in Fig. 1. In both samples, the 63Cu(2)
NQR line shape is well fitted to the Lorentzian curve
with temperature-dependent FWHH (Fig. 2). One can
see that in both samples the line width varies weakly
with temperature from room temperature to ~120 K.
The line begins to broaden below 120 K and broadens
sharply below Tc. Because of a large error in measuring
the line width in sample 1, one cannot judge confidently
any details of its behavior below Tc. The line width in
sample 2 has a clear maximum at T = 47 K and a mini-
mum at 35 K. These features are due to the spin–spin
relaxation processes, which were discussed in [4].

Before analyzing the NQR line broadening near Tc,
we adduce several arguments in favor of the assumption
that this effect is intrinsic in nature, i.e., that it is inher-
ent in the compound as such and is not associated with
the surface effect of crystallites. It is well known that
the penetration depth of an rf magnetic field exciting a
nuclear spin system decreases upon transition into the
superconducting state, as a result of which the
NMR/NQR signal intensity also decreases, because the
nuclei in the crystallite bulk drop out of the observation.
Therefore, the relative contribution to the NMR/NQR
signal from the nuclei located in the surface layers of
001 MAIK “Nauka/Interperiodica”
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crystallites increases below Tc. Since the crystal lattice
is distorted in the surface layers, the NQR line of the
nuclei from this layer is ordinarily broader than the bulk
line. The thickness of a distorted surface layer is gov-
erned by the crystal properties and is about 0.2 µm at
worst (crystals mechanically dry-ground in a mortar
and having no cleavage planes [5]). Our calculations
have shown that, even if the surface NQR line is
broader than the bulk line by a factor of 10, then, for the
crystallites 30 µm in size and a 2.5-fold decrease in sig-
nal intensity below Tc (as is the case in our experi-
ments), a faintly visible influence of the surface on the
NQR line broadening occurs for a surface layer one
micrometer thick. Since the relative line broadening in
our experiments is equal to several tens of percent, we

Fig. 1. 63,65Cu(2) NQR spectra of YBa2Cu3O7 – y at 300 and
4.2 K.

Fig. 2. Temperature dependence of the 63Cu(2) NQR line
width in YBa2Cu3O7 – y . The solid line is the result of cal-
culation (see text) with the following parameters: Tc = 91 K,
T* = 120 K, ∆(T = 0 K) = 25 meV, D(T = 0 K) = 30 meV,
and S(T)/D(T) = 0.08.
assume that the surface effect on the Cu(2) NQR line
width can be ignored.

We believe that the above-mentioned features of the
temperature behavior of line width shed new light on
the coexistence regime of the pseudogap and supercon-
ducting phases in cuprates. Indeed, the energy of a qua-
siparticle in a superconductor in the presence of a
homogeneous spatial modulation with wave vector Q =
(π, π) is given by the expression

(1)

where the Hamiltonian of the model is chosen as in [6];
∆k is the order parameter in the superconducting phase;
the real part of the parameter Gk = Sk + iDk corresponds
to the spatially modulated charge or, in other words,
charge density waves (CDWs); and the imaginary part
of this parameter corresponds to the orbital currents cir-
culating in the neighboring unit cells in opposite direc-
tions. The imaginary part of Gk has the d-type symme-
try, while its real part is characterized by the s-type
symmetry [6]. In the underdoped samples, the critical
temperature T* of parameter D is higher than the super-
conducting transition temperature Tc. The parameter Uk
describes the inhomogeneous state of the superconduc-
tor. According to [4], its value in the crystals under
study is comparatively small.

The CDWs and orbital currents are decelerated and,
in the limit, pinned by the lattice potential and defects,
because the quasiparticle energy depends on the phase
of order parameter. Let us substitute Gk = |G|eiϕ into
Eq. (1) and trace how Ek depends on the phase ϕ. It is
seen from Eq. (1) that the energy of a condensate of
orbital currents and CDWs is independent of ϕ at Tc <
T < T*. The sliding charge–current states are not decel-
erated (at least in the mean-field approximation) and,
hence, do not contribute to the broadening of the copper

E1k 2k,
2 1

2
--- ek

2
ek Q+

2+( )= Gk
2+

+
1
2
--- ∆k

2 ∆k Q+
2+( ) Uk

2+

± 1
4
--- ek

2
ek Q+

2– ∆k
2 ∆k Q+

2–+[ ] 2





+ Gk
2

ek ek Q++( )2 ∆k
2 ∆k Q+

2+ +[ ]

– ∆k*∆k Q+ Gk
2 ∆k∆k Q+* Gk*( )2

–

+ Uk
2

ek ek Q+–( )2 ∆k
2 ∆k Q+

2+ +[ ]

+ ∆k∆k Q+ Uk*( )2 ∆k*∆k Q+* Uk
2+

+ 2ek Uk*Gk∆k Q+ UkGk*∆k Q+*+[ ]

---+ 2ek Q+ ∆kUk*Gk* ∆k*UkGk+[ ]




1/2

,

JETP LETTERS      Vol. 74      No. 2      2001



TEMPERATURE DEPENDENCE OF THE Cu(2) NQR LINE 105
NQR lines. It is also seen from Eq. (1) that the phase
dependence appears as ∆k becomes nonzero, i.e., at T =
Tc, and this dependence becomes stronger [proportional
to ∆k(T) squared] upon lowering the temperature. Qual-
itatively, this explains a monotonic increase in the
Cu(2) NQR line width at T < Tc. It also becomes clear
that the broadening in overdoped samples is absent [3]
because |G| = 0 in them.

For quantitative estimates, let us consider Fourier
component of the spatially modulated charge on the
copper nuclei:

(2)

where δj is the number of doped holes per unit cell of
the CuO2 bilayer and N is the number of unit cells. The
homogeneous part δ0 of the distribution does not con-
tribute to eQ. By separating the term proportional to ∆k
in the charge modulation Fourier amplitude, one has,
according to [6],

(3)

For simplicity, we restrict ourselves to the case Uk = 0.
Note that eQ is zero if the real component of the
pseudogap (Sk) is absent. For numerical estimates, we
specify the dispersion relation for quasiparticles as

(4)

where t1 = 78 meV, t2 = 0, and t3 = 12 meV [6]. In accor-
dance with the photoemission data [7], we assume that
∆k = ∆(T)(coskx – cosky), Dk = D(T)(coskx – cosky), and
δ0 ≈ 0.3. The difference between |Gk| and |coskx – cosky|
for underdoped Bi2Sr2Ca1 – xDyxCu2O8 + y at T > Tc (see
Fig. 2 in [7]) allows the relative value of the S compo-
nent to be estimated as S(T)/D(T) ≈ 0.05–0.1. For order-
of-magnitude estimates, we ignore the dependence of
Sk on the wave vector; i.e., we assume that Sk depends
only on temperature. The electric field gradient at the
copper nuclei is mainly composed of the lattice and
valence contributions [8]. The valence contribution
from the copper hole  orbital dominates and

equals approximately Vzz(val) ≈ 70 MHz. In the pres-
ence of spatially modulated charge, the copper NQR
line width can be estimated as ∆ν ≈ 2Vzz(val)eQ. The
temperature dependence of line width thus calculated is
shown in Fig. 2 by the solid line. Qualitatively, it agrees
well with the experimental results. Agreement in order
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of magnitude is also observed. It is worth noting that
Eq. (2) holds in the limit of slow CDW motion com-
pared to the period of the probe field and does not
assume that the CDWs are completely pinned.

A complete picture of the CDW effect on the line
width, clearly, should include a contribution from the
component that already exists at T > Tc. At T < T*, it is
given by the expression

(5)

where

(6)

and f(Ek) is the Fermi distribution function.

We did not observe the  component in our exper-
iments; though noticeable in Fig. 2, the line broadening
is very small in the region slightly above Tc. Within the
framework of the picture suggested, this can be
explained by the averaging of  over the relatively fast
CDW motion above Tc. In this respect, an important
role is played by the fact that the critical temperature of
parameter S(T) is smeared due to strong fluctuations
that are inherent in the pseudogap phase. As is well
known, these fluctuations are not taken into account in
the mean-field approximation and, thus, require special
calculations.

The presence of the S component can also be derived
from the photoemission data for Bi2Sr2Ca1 – xDyxCu2O8 + y
at T > Tc [7]. However, its influence on the photoemis-
sion spectra is on the verge of experimental accuracy
and, probably, was not revealed in [7] for this reason. In
our case, the iD component does not contribute to the
quadrupolar width, and, hence, the S component is
more pronounced.

In summary, the measurements of the copper NQR
line width in near-optimum doped YBa2Cu3O7 – y have
shown that it starts to increase monotonically at T < Tc,
resembling, by its temperature dependence, the behav-
ior of the order parameter for a superconducting gap.
We relate the observed dependence to the presence of
the S-type component in the order parameter of the
pseudogap phase. We used the mean-field approxima-
tion to show that the energy of a condensate of charge–
current states depends on the phase of order parameter
only at T < Tc. The quantitative estimates agree with the
experimental results.

This work was supported by the Russian program
“Superconductivity” (project no. 98014-1) and, in part,
by the BRHE (grant no. REC-007).
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A new model is suggested for the relaxation in a system of superparamagnetic particles. The model takes into
account the interparticle interaction and ensuing smearing of energy levels for each individual particle, such
that the relaxation between the particle states with opposite directions of magnetic moment never occurs as a
transition between the states of the same energy. This generalization of the relaxation model accounts for the
diversity of relaxation Mössbauer absorption spectra, allowing all the nonstandard features that were observed
previously in the experimental spectra of systems with small-sized particles to be described on a qualitative
level. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.20.-g, 76.80.+y
A system of superparamagnetic particles is one of
the most suitable objects of investigation in Mössbauer
spectroscopy for the purpose of determining relaxation
characteristics of such systems. Mössbauer spectros-
copy easily perceives relaxation processes on the time
scale 10–11–10–6 s, i.e., the scale that corresponds to the
relaxation times of superparamagnetic particles in the
temperature range from ultralow to room temperatures
and higher [1–7]. Beginning in the 1960s and up to the
present time, the corresponding spectra have been ana-
lyzed using the so-called two-level relaxation model [8,
9], according to which the magnetic moment of an indi-
vidual particle randomly reverses its direction, remain-
ing parallel to the easy magnetic axis. In doing so, the
particle has to overcome a rather high energy barrier
U0, so that the transition rate from one state to another
is usually described by the formula suggested by Néel
as early as the 1940s [10]:

(1)

where p0 is a constant, T is temperature, and k is the
Boltzmann constant. In recent years, many attempts
have been undertaken at refining the preexponential
factor in Eq. (1) and determining its dependence on
temperature and particle size. However, despite the
great interest in this problem, the state of the art in this
field cannot be regarded as being satisfactory. The
experimental spectra do not fit the two-level model and
necessitate introduction of a rather wide distribution
over the particle sizes and, hence, over the magnetic
anisotropy energies U0 and relaxation constants p0.

Strictly speaking, the two-level model is relevant
only to systems with well-defined quantum levels, and
its use for describing the relaxation of superparamag-

p p0 U0– /kT( )exp ,=
0021-3640/01/7402- $21.00 © 20107
netic particles comprising a large number of atoms (on
the order of 103–105) is quite conjectural. The magnetic
moment of the particle is large enough so that even
weak interaction with the environment strongly smears
its energy levels. As a consequence, the relaxation
between the particle states with opposite directions of
magnetic moment never proceeds as a transition
between the levels with the same energy. On the aver-
age, the levels prove to be separated by a certain gap ∆E
which may be rather large and comparable to tempera-
ture. It will be shown below that taking into account this
fact gives rise to variously shaped relaxation Möss-
bauer spectra and allows one to qualitatively account
for all the experimental data that were observed to date
in this field.

Let us first turn to the standard two-level model. In
the case where one may ignore the deviation of the
magnetic moment from the direction of the easy mag-
netic axis, so that the hyperfine field Hhf at the nucleus
can only be reversed during the relaxation, the cross
section for absorption of a gamma-ray quantum is usu-
ally written as [9]

(2)

where  = ω + iΓ0/2; α = (M, m) labels the hyperfine
transitions between the states with nuclear spin projec-
tions m and M onto the direction of the hyperfine field
in the ground and excited states, respectively; the coef-
ficients Cα are the intensities of the respective transi-
tions; σa is the effective thickness of absorber; Γ0 is the
width of the nuclear excited level; 〈W| = (1/2 1/2) is the

ϕ ω( )
σaΓ0

2
----------- Cα

2Im W〈 | ω̃1̂ ω̂α– iP̂+( )
1–

1| 〉 ,
α
∑–=

ω̃
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state population vector;  is the identity matrix; |1〉  is
the unit column;

(3)

is the matrix of hyperfine transitions; and

(4)

is the relaxation matrix. Here, ωα = Mωe – mωg, ωe, g =
ge, gµNHhf, µN is the nuclear magneton, and gg, e is the
nuclear g factor in the ground and excited state of the
nucleus, respectively.

Typical absorption spectra calculated by Eqs. (2)–
(4) within the framework of the two-level model are
shown in Fig 1. In the weak relaxation limit (p < ωα for
all hyperfine transitions), a well-resolved magnetic
hyperfine structure (sextet for the 57Fe nuclei) is
observed, with the lines identically broadened by ∆Γ =
2p and slightly shifted by a value proportional to
(p/ωα)2 to the center of the spectrum. As the relaxation
rate increases and the parameter p reaches the corre-

1̂

ω̂α
ωα 0

0 ωα– 
 
 

=

P̂ p p–

p– p 
 
 

=

Fig. 1. Mössbauer absorption spectra in the standard two-
level relaxation model for different relaxation rates p. Cal-
culations are carried out for the 57Fe nuclei with ω3/2, 1/2 =
75Γ0. 
sponding ωα value, the line pairs due to the hyperfine
transitions with spin projections m and M coinciding in
magnitude but opposite in sign collapse successively. In
the fast relaxation limit, the spectrum collapses into a
single line (or a quadrupole doublet) (see, e.g., [9]).
Examples can be found where the experimental Möss-
bauer spectra are satisfactorily described by this model.

However, lines of an unusual shape in no way fitting
the above-mentioned model are observed in many stud-
ies [3–7]. If the hyperfine structure can still be resolved,
the lines are highly asymmetric with steep outer and
extended inward sides, as depicted in Fig. 2. To explain
such spectra, one usually invokes models in which the
particles are scattered in size. Up to now, no alternative
explanation has been found to explain the lines of such
an exotic shape.

As pointed out above, the possibility of applying the
two-level relaxation model to the superparamagnetic
particles requires a more thorough analysis; one should
first of all take into account the fact that the states with
oppositely directed moments are energetically sepa-
rated due to interaction with the environment, so that
the relaxation process always occurs between the dif-
ferently populated states. We will call this model the
generalized two-level (GTL) model.

To describe the Mössbauer spectra in this case, one
can use the same Eq. (2) but with the relaxation matrix
of a different form:

(5)

where p12(∆E) and p21(∆E) are, respectively, the transi-
tion rates from state 1 to state 2 and vice versa. We will
assume that the interaction of a particle with the envi-
ronment is weak; i.e., ∆E ! U0. Then the energy of state 1
corresponding to positive projection of the particle
magnetic moment onto the direction of a random mag-
netic field produced by the neighboring particles
decreases by a value of ∆E, while, in turn, the energy of
state 2 increases by the same value. In this case, to the
terms proportional to a small parameter ∆E/U0, the
energy of a particle remains maximal in the position
where its magnetic moment is perpendicular to the easy
magnetic axis. (A more accurate calculation of the
energy barriers for single-domain particles with differ-
ent orientations of easy magnetic axes in an arbitrary
external field can be found, e.g., in the classical work of
Stoner and Wohlfarth [11]). The following expression
can then be obtained for the relaxation constants:

(6)

where p is defined by Eq. (1). The populations of these
states can be found from the detailed balance principle:

(7)

P̂ ∆E( ) p12 ∆E( ) p12 ∆E( )–

p21 ∆E( )– p21 ∆E( ) 
 
 

,=

p12 21, ∆E( ) p ∆E/kT+−( ),exp=

w1 2, ∆E( ) ∆E/kT±( )exp
∆E/kT( )exp ∆E/kT–( )exp+

-----------------------------------------------------------------------.=
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Equations (2), (3), and (5)–(7) can be used to calculate
the absorption spectrum for a given ∆E.

The magnetic fields of the neighboring particles are
random variables, and, hence, the corresponding
energy shifts ∆E are scattered over a certain interval.
The simplest distribution function for ∆E can be taken
in the Gaussian form

(8)

The corresponding absorption cross section is deter-
mined by the energy distribution width σ:

(9)

In the fast relaxation limit p @ /Γ0, this expres-
sion takes the form of a continuous distribution of
Lorentzian lines with natural width Γ0:

 (10)

where the stochastically mean hyperfine transition fre-
quencies

(11)

specify the positions of spectral lines corresponding to
the energy shift ∆E and P(∆E, σ) are their intensities.
One can see from Eq. (10) that the line shapes in the
GTL model are asymmetric and fully determined by the
width σ of energy distribution (8) and by temperature.

The absorption spectra calculated using Eq. (9) are
shown in Fig. 2. One can see that the relaxation spectra
in the generalized relaxation model differ drastically
from those calculated with the standard two-level
model (Fig. 1). First and foremost, the inclusion of the
interaction of particles with the environment leads to a
substantial slowing down of the relaxation process, as
is clearly seen from the comparison of the diffuse upper
spectrum in Fig. 1 (p = 30Γ0) with the left spectra in
Fig. 2, where the resolved hyperfine structure is
observed even for σ values small compared to temper-
ature. In a qualitative sense, the appearance of asym-
metrically shaped lines with extended inward wings is
the most salient feature of the GTL spectra. Lines of
this type are frequently observed in the experimental
Mössbauer spectra of superparamagnetic particles (see,
e.g., [3–7] and references therein). As a rule, the line
shapes of this type are explained using the standard
two-level model with size distribution of particles [2].
As to the spectra in Fig. 2, they are calculated for a sys-
tem of superparamagnetic particles of the same size.

P ∆E σ,( ) 1

2πσ
-------------- ∆E( )2

2σ2
--------------– 

  .exp=

ϕ ω( ) ϕ ω ∆E,( )P ∆E σ,( ) ∆E( ).d

∞–

∞

∫=

ωα
2

ϕ ω( )
σaΓ0

2

4
----------- Cα

2

α
∑=

× 1

ω ωα ∆E( )–[ ] 2 Γ0
2/4+

-----------------------------------------------------P ∆E σ,( ) ∆E( ),d

∞–

∞

∫

ωα ∆E( ) ωα ∆E/kT( )tanh=
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The most important feature of the Mössbauer
absorption spectra in the GTL model is that, even in the
fast relaxation limit, the spectra do not collapse into a
single line and exhibit a well-resolved hyperfine struc-
ture if σ is on the order of kT (Fig. 2, right). In such a
situation, the magnetic hyperfine structure collapses
not because of an increase in the relaxation rate but as
a result of the competition between the parameters σ
and kT. At high temperatures, kT @ σ, the spectra col-
lapse into a single line. However, it is seen from Fig. 3

Fig. 2. Absorption spectra of a system of superparamagnetic
particles of the same size in the generalized two-level relax-
ation model for p = 30Γ0 and in the fast relaxation limit and
for different distribution widths σ of energy shift.

Fig. 3. Absorption spectra in the GTL model for small σ val-
ues (solid lines) and in the standard two-level model (dots)
in the fast relaxation limit.
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that the spectra in the above two models differ substan-
tially in shape even at very small values of σ (on the
order of several hundredths of kT).

Up to now, the interaction between superparamag-
netic particles has been investigated in the context of
both magnetic dynamics of such systems and analysis
of their Mössbauer spectra. However, the main efforts
have been focused on refining Eq. (1) and on the influ-
ence of this interaction on the barrier heights. In a num-
ber of studies (see, e.g., [3]), the problem of transition
of a system of superparamagnetic particles into the
ordered superferromagnetic state was analyzed. If this
transition occurs, one should expect that the lines will
undergo an additional shift with changing temperature,
but their shapes will not change appreciably. Therefore,
the Mössbauer spectra of the type shown in Fig. 2 are
theoretically described in this work.

The GTL model suggested in this work does not
deny the distribution of particles over their sizes
because the corresponding scatter always occurs in a
system of paramagnetic particles. However, it is clear
that the analysis with inclusion of both factors will lead
to an essentially different distribution compared to
those reproduced using the standard two-level model.

It is worth noting that the theory of relaxation Möss-
bauer spectra of a system of mutually interacting super-
paramagnetic particles must self-consistently take into
account, along with the relaxation of an individual par-
ticle and the scatter of ∆E over a certain interval, the
variation of ∆E with time. The corresponding analysis
makes the theory much more complicated and is
beyond the scope of this work. However, it is clear that
the main qualitative conclusions of the simplified GTL
model are the same as in more complicated relaxation
models.

REFERENCES

1. J. M. Williams, D. P. Danson, and C. Janot, Phys. Med.
Biol. 23, 835 (1978).

2. N. M. K. Reid, D. P. E. Dickson, and D. H. Jones, Hyper-
fine Interact. 56, 1487 (1990).

3. S. Mørup, Hyperfine Interact. 90, 171 (1994).
4. E. Tronc, P. Prene, J. P. Jolivet, et al., Hyperfine Interact.

95, 129 (1995).
5. J. L. Dormann, F. D’Orazio, F. Lucari, et al., Phys. Rev.

B 53, 14291 (1996).
6. I. P. Suzdalev, A. S. Plachinda, V. N. Buravtsev, et al.,

Chem. Phys. Rep. 17, 1355 (1998).
7. E. Tronc, A. Ezzir, R. Cherkaoui, et al., J. Magn. Magn.

Mater. 221, 63 (2000).
8. A. Abraham, The Theory of Nuclear Magnetism (Oxford

Univ. Press, London, 1961).
9. H. H. Wickman, in Mössbauer Effect Methodology,

Ed. by I. J. Gruverman (Plenum, New York, 1966), Vol. 2.
10. L. Neel, Ann. Geophys. 5, 99 (1949).
11. E. C. Stoner and E. P. Wohlfarth, Philos. Trans. R. Soc.

London, Ser. A 240, 599 (1948).

Translated by V. Sakun
JETP LETTERS      Vol. 74      No. 2      2001



  

JETP Letters, Vol. 74, No. 2, 2001, pp. 111–114. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 74, No. 2, 2001, pp. 116–119.
Original Russian Text Copyright © 2001 by Fomin.

                                                                                                                            
Symmetry of the Order Parameter
in the UGe2 Superconductor

I. A. Fomin
Kapitsa Institute for Physical Problems, Russian Academy of Sciences, Moscow, 117334 Russia

e-mail: fomin@kapitsa.ras.ru
Received June 14, 2001; in final form, June 21, 2001

For the UGe2 ferromagnetic superconductor, the forms of the order parameter are determined with allowance
for the crystal symmetry and with the assumption that a strong spin–orbit interaction is present in the system.
The limiting case corresponding to the immediate vicinity of the simultaneous transition to the superconducting
and ferromagnetic phases is considered. The opposite limit corresponding to a wide separation of the Fermi sur-
faces with opposite spin orientations is considered as well. Possible effects of the ferromagnetic domain struc-
ture on the properties of UGe2 in the superconducting state are discussed. © 2001 MAIK “Nauka/Interperiod-
ica”.

PACS numbers: 74.25.Dw; 75.50.Cc; 74.70.Ad
1. The superconductivity recently observed in a UGe2

band ferromagnet [1, 2] is of interest, because the Curie
temperature Tc of this compound is high compared to
the superconducting transition temperature Ts every-
where except for the pressure Pc ≈ 16 kbar, at which
both temperatures are equal to zero. The condition Tc @
Ts rules out the possibility of a singlet Cooper pairing.
The question about the possible form of the order
parameter in the superconducting phase of UGe2 was
recently discussed in the literature [3]. Physical argu-
ments were presented in favor of the existence of the
superconducting state of UGe2 with the order parame-
ter similar to that of the A1 phase of 3He, i.e., of a system
where the electrons with only one spin direction are
paired, whereas the electrons with the opposite spin
direction have a gapless energy spectrum. However, in
the paper cited, it was noted that the desired order
parameter cannot be constructed using the basis func-
tions of four one-dimensional representations of the
point symmetry group characterizing orthorhombic
crystals such as UGe2 if the conventional strong spin–
orbit interaction scheme is applied. Below, this state-
ment is shown to be invalid: it does not take into
account the fact that, in UGe2, the transition to the
superconducting phase occurs from the ferromagnetic
phase, and, hence, the time reversal is no symmetry ele-
ment of the normal phase. Then, the order parameter of
the A1-phase type can be realized in the presence of a
strong spin–orbit interaction. This paper presents the
list of the types of the superconducting order parame-
ters that are allowed by the UGe2 crystal symmetry. The
consideration follows the standard theory of phase tran-
sitions [4] and the classification scheme [5] developed
0021-3640/01/7402- $21.00 © 20111
for the superconducting order parameters of crystals
(see also [6]).

2. A UGe2 crystal possesses an inversion center.
This allows one to separate the superconducting phases
into even and odd ones (singlet and triplet pairing ana-
logs, respectively). As applied to UGe2, the odd case is
of most interest, and, hence, it is selected for the follow-
ing consideration. In the presence of a strong spin–orbit
interaction, the order parameter for this case can be rep-
resented in the form [5]

(1)

where , , and  are the unit vectors along the binary
axes b, c, and a, respectively. The a axis coincides with
the direction of easy magnetization in the ferromag-
netic phase. All functions fx, y, z(k) are odd, i.e., fx(–k) =
–fx(k), etc. The symmetry of the directions in the para-
magnetic phase of UGe2 corresponds to the group D2h =
D2 × Ci. Since the type of symmetry with respect to an
inversion is fixed, it is sufficient to consider the D2

group, which has four one-dimensional representations
(see table).

d k( ) x̂ f x k( )= ŷ+ f y k( ) ẑ f z k( ),+

x̂ ŷ ẑ

Table

D2, D2(C2) E

A 1 1 1 1

B1 1 –1 –1 1

B2 1 –1 1 –1

B3 1 1 –1 –1

C2
x; RC2

x C2
y; RC2

y C2
z
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The symmetry group of the ferromagnetic phase is

the D2(C2) magnetic group (see [7]); instead of the 

and  elements, it contains the  and  ele-
ments, where R is the time reversal operation. The
D2(C2) group is isomorphic with the initial D2 group,
but the forms of their basis functions are different. By
the A representation of the D2(C2) group, the following
functions are transformed:

(2)

where … are real functions of , , and . Sim-
ilarly, we have

(3)

(4)

(5)

All four order parameters generally correspond to
nonunitary phases, which have a nonzero z projection
of the magnetic moment. This projection is propor-
tional to 〈Ψ × Ψw〉 , where the angular brackets denote
averaging over the directions of k. Functions (2)–(5)
take into account only the symmetry constraints for the
order parameter and, therefore, allow some arbitrari-
ness. This arbitrariness can be reduced by taking into
account the quantitative relations between the physical
quantities in UGe2. Because of the condition Tc @ Ts,
the pairing amplitude for electrons with opposite spin
projections must be zero. In vector notation, this condi-
tion is equivalent to dz = 0, which allows us to drop all
terms proportional to  in functions (2)–(5).

At the point P = Pc, T = 0, the transition to the super-
conducting phase and, simultaneously, to the ferromag-
netic phase occurs directly from the paramagnetic
phase. Away from this critical point, the transition to
the ferromagnetic phase is a first-order phase transition.
The precision of the available data does not allow us to
determine the type of the transition at the very critical
point. If the transition is continuous, then, in the vicin-
ity of this point in the phase diagram, the superconduct-
ing order parameter must be described by a basis func-
tion of one of the representations of the D2 group [4]. It
is easy to verify that expressions (2)–(5) really pass into
the basis functions of the corresponding representations

C2
x

C2
y RC2

x RC2
y

ΨA x̂kx u11
A ikxkyu10

A+( )=

+ ŷky u22
A ikxkyu20

A+( ) ẑkz u33
A ikxkyu30

A+( ),+

u11
A kx

2 ky
2 kz

2

ΨB1
x̂ky u12

B1 ikxkyu10
B1+( )=

+ ŷkx u21
B1 ikxkyu20

B1+( ) ẑkz iu33
B1 kxkyu30

B1+( ),+

ΨB2
x̂kz u13

B2 ikxkyu10
B2+( )=

+ ŷkz u23
B2 kxkyu20

B2+( ) ẑkx u31
B2 ikxkyu30

B2+( ),+

ΨB3
x̂kz iu13

B3 kxkyu10
B3+( )=

+ ŷkz u23
B3 ikxkyu20

B3+( ) ẑky u32
B3 ikxkyu30

B3+( ).+

ẑ

of the D2 group on condition that all terms explicitly

involving the imaginary unit, i.e., the functions ,

, etc., become zero at the critical point. In this case,
all phases become unitary, the vector d(k) becomes real
correct to a factor, and the pairing amplitudes ∆↑↑  ~ –dx +
idy and ∆↓↓  ~ dx + idy become equal in magnitude. How-
ever, this is true only in the vicinity of the critical point.
With distance from Pc, the difference between the two
amplitudes should increase. One of the amplitudes,
e.g., ∆↓↓ , can vanish, which, in terms of the components
of the vector d(k), means dx(k) = –idy(k). For this equal-
ity to be satisfied, it is sufficient to choose the appropri-

ate coefficients , … . Then, the order parameter will

have the form d(k) = f(k)(–  +i ) for all four repre-
sentations. Different representations differ only in the

form of the function f(k): f A(k) = –kx(  + ikxky ),

(k) = –ky(  + ikxky ), (k) = –kz(  +

ikxky ), and (k) = –kz(  + kxky ). Thus, in the
case of a strong spin–orbit interaction, the symmetry
selection rule that excludes the order parameter of the
type d(k) = f(k)(–  +i ) is effective only near the crit-
ical pressure and only when the phase transition at
P = Pc is a second-order transition.

We note that the magnetization itself is transformed
according to the representation B1 of the D2 group (see
table). The coincidence of two transitions at the critical
point can be either accidental or indicative of a com-
mon origin of these two transitions. If we assume that
the second case is realized and a single microscopic
control parameter exists for the two transitions, the
transition at the critical point can be characterized by
one order parameter whose components are represented
by the magnetization M and the vector d(k). By virtue
of the general statement that a change of symmetry
accompanies a phase transition, all components of the
order parameter near the transition should be trans-
formed by one representation of the symmetry group of
the symmetric phase; i.e., near Pc, the quantity d(k) will
have the form given by Eq. (3). This form of d(k) will
be retained along the phase transition line up to the
point of intersection with the line of another phase tran-
sition. Experimentally, no transitions were observed in
the superconducting phase up to the pressure P =
13.5 kbar, at which a qualitative change occurred in the
temperature dependence of the upper critical field.

In the case of an accidental coincidence of the tran-
sitions, d(k) can have the form given by any of expres-
sions (2)–(5).

3. The spin direction of the dominant amplitude is
determined by the magnetization direction. If a UGe2
ferromagnetic sample consists of magnetic domains,
then, away from P = Pc, the spin pairing in every single
domain occurs for spins with only one orientation, this

u10
A

u20
A

u22
A

x̂ ŷ

u11
A u10

A

f
B1 u12

B1 u10
B1 f

B2 u13
B2

u10
B2 f

B3 iu13
B3 u10

B3

x̂ ŷ
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orientation alternating from one domain to another. The
properties of such a layered (in the simplest case) struc-
ture as an electric conductor should differ considerably
from the properties of a domain structure with singlet
pairing (see [8]). In the singlet case, the superconduc-
tivity localized at the domain walls can exist in stronger
magnetic fields than the bulk superconductivity. By
contrast, in UGe2, one should expect a suppression of
the order parameter at the domain walls, which in this
case become weak links. However, this issue needs spe-
cial analysis. A simpler subject from the viewpoint of
both calculation and experiment is the study of the
effect of the superconducting transition on the magne-
tization curve of the ferromagnetic UGe2 (the depen-
dence M(H)).

Let us consider a sample in the form of a plate cut
normally to the easy magnetization axis. We also
assume that the magnetic field is directed normally to
the plate. The equilibrium domains exist in the plate in
magnetic fields below 4πM. For UGe2, this value is
about 2 to 3 kOe. The domain width is determined by
the competition of the domain wall energy with the
energy of the magnetic field produced by the plate. For
a 0.1-cm-thick plate, with realistic assumptions made
for the anisotropy energy, we obtain the estimate for the
domain width within 10–3–10–4 cm, which is much
greater than the correlation length ξ ~ 10–6 cm. This
result allows us to treat each domain as a massive
superconductor. The typical fields inside the domains
are about 1 kOe, which is high compared to the estimate
for the thermodynamic critical field (Hcm ~ 100 Oe).
Therefore, one should expect that each domain is in a
mixed state. In every domain, the field averaged over
the vortex structure is expressed as B = H + 4π(MF + Ms),
where the magnetization is a sum of the spontaneous
magnetization MF and the magnetization due to the
superconducting currents Ms. We assume that the
dependence }s(Hext) is known (for magnetic supercon-
ductors, this dependence was recently discussed in the
literature [9]). The role of the external field Hext is
played by the combination B = H + 4πMF. If the
domain walls are not fixed and the structure is an equi-
librium one, we have H = 0. In this case, the effect of
superconductivity is reduced to a decrease in the satu-
ration magnetization down to the value MF + }s(4πMF)
in every domain. If the field * in which the sample is
placed satisfies the condition * < ** = 4π(MF +
}s(4πMF)), the mean magnetization of the plate will be
〈M〉  = */4π. In higher magnetic fields, no domains are
formed. With allowance for the boundary condition, we
have * = Hext + 4πMs. The induced magnetization Ms

is determined from the equation Ms = }s(* – 4πMs).
At * = **, this equation has the solution Ms =
}s(4πMF), and at * = Hc2, it has the solution Ms = 0.
For fields close to the upper critical one Hc2, the depen-
dence }s(Hext) is linear [10]. In this case, ** =
JETP LETTERS      Vol. 74      No. 2      2001
4πMF + (4πMF – Hc2)/q, where q = (2κ2 – 1)βA, κ is the
Ginzburg–Landau parameter, and βA is a numerical
parameter ~1 depending on the geometry of the vortex
lattice. When * < **, we have 〈M〉  = */4π, as in the
case of a normal ferromagnetic plate. The deviation
from a normal ferromagnet occurs in the interval ** <
* < Hc2. For * close to Hc2, we obtain

(6)

In the presence of a domain wall pinning, the mag-
netization curve exhibits a hysteresis. The shape of the
hysteresis loop depends on the specific properties of the
sample. In the fields close to Hc2, we can determine the
diamagnetic additive to the magnetization, if we
assume that the transition to the superconducting state
does not affect the positions of the domain walls. The
averaging over the domains should be performed by
taking into account that, depending on the orientation
of the magnetization, the field H is either added to
4πMF or subtracted from it. As a result, we obtain

(7)

For the domains to exist in a wide interval of fields,
it is necessary to assume that the parameter κ is large,
i.e., the correction to the magnetization is small. From
Eq. (7), one can see that the correction appears in the
region where the hysteresis is observed, and the sign of
the correction corresponds to the narrowing of the hys-
teresis loop.

Thus, these ferromagnetic and, simultaneously,
superconducting domain structures deserve further
investigation.
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discussions. I appreciate the financial support provided
to me by the Joseph Fourier University during my visit
to Grenoble. I am grateful to V.P. Mineev and A. Huxley
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Temperature dependences of the velocity of longitudinal sound V1 and the internal friction Q–1 are studied for
a La0.8Sr0.2MnO3 single crystal in the temperature range 5–350 K. The latter includes the temperature of the

structural phase transition Ts ≈ 95 K (from the Pnma orthorhombic low-temperature phase to the  rhom-
bohedral high-temperature one) and the Curie point Tc = 308 K. Near the temperatures Ts and Tc, the curves
V1(T) and Q−1(T) exhibit pronounced singularities. Outside the vicinities of Ts and Tc, the velocity of sound
monotonically decreases with increasing temperature. A thermal hysteresis of giant width is observed in the
aforementioned dependences. The hysteresis is attributed to the following mechanism: when the crystal under
study is heated starting at temperatures T < Ts, some regions occupied by the Pnma low-temperature phase are

retained in the  matrix up to the temperature T = 350 K. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 62.65.+k, 64.70.Kb

R3c

R3c
The interest in lanthanum manganites,
La1 − xDxMnO3 (where D is a two-valent ion, such as Ca,
Sr, Ba, or Pb), as well as in other rare-earth manganites,
is caused by the colossal magnetoresistance (CMR)
observed in these materials near the Curie point Tc

[1−4]. The CMR manganites are characterized by a
strong interaction between the electron, spin, and lat-
tice degrees of freedom. The coupling between the con-
duction electrons and the magnetic subsystem is obvi-
ous from the very fact of the observation of the large
magnetoresistance near Tc, and the interaction between
the magnetic and lattice subsystems is evidenced by,
e.g., the large magnetostriction [5] and the considerable
shift of the structural transition temperature Ts under an
external magnetic field H [6, 7]. The characteristic fea-
ture of the CMR manganites is the tendency for a phase
separation. Most studies described in the literature are
concerned with layering into regions that have different
types of conduction or different magnetic orders [1, 8, 9].
Some publications also report on the observation of
inclusions of a low-symmetry phase in a higher sym-
metry matrix [10].

Although the role of the crystal lattice in the forma-
tion of the CMR manganite properties is generally rec-
ognized, the lattice properties of these materials remain
poorly understood. We studied the temperature depen-
dence of the velocity of longitudinal sound V1 and the
temperature dependence of the internal friction Q–1 in a
La0.8Sr0.2MnO3 single crystal in a wide temperature
0021-3640/01/7402- $21.00 © 20115
range, which included both the structural transition
from the Pnma orthorhombic low-temperature phase to

the  rhombohedral high-temperature phase and the
Curie point Tc. We also studied the magnetic properties
of this crystal. The results of our studies offer some
conclusions about the magnetic and crystalline states of
the aforementioned crystal at different temperatures.

The La0.8Sr0.2MnO3 single crystal was grown by the
floating zone method with a radiation heating.
A detailed description of the growth process can be
found in the literature [11]. The magnetization of the
crystal was measured on a ball-shaped sample by a
vibrating-sample magnetometer in the temperature
range 77–380 K. The sound velocity and the internal
friction were studied in the temperature range 5–350 K
by the compound vibrator technique [12] at frequencies
about 80 kHz. The technique is based on the measure-
ment of the resonance frequency and the Q factor of the
mechanical system consisting of the sample under
study and a piezoelectric transducer attached to it. For
these measurements, we used a sample in the form of a
cylinder 28 mm in length and 3.5 mm in diameter. The
transducer was a conventional crystal vibrator produc-
ing longitudinal vibrations. The measurements were
performed in a gaseous helium atmosphere. The
method used for calculating the sound velocity and the
internal friction in the sample was described in the lit-
erature [13]. Both cooling and heating of the sample
occurred at rates not exceeding 0.5 K/min. The manga-

R3c
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nite under study is a typical ferromagnet. At T = 77 K
in the field H = 5 kOe, its magnetization is σ =
92.7 emu/g, which corresponds to the magnetic
moment of a manganese ion 3.8µB. The Curie point
determined by the method of thermodynamic coeffi-
cients is 308 K. These values of the magnetic moment
and the Curie point practically coincide with the data
reported in [14]. In the paramagnetic region, the tem-
perature dependence of the magnetic susceptibility
obeys the Curie–Weiss law with the paramagnetic
Curie temperature θc = 310 K. The close values of
Tc and θc attest to the magnetic homogeneity of the
sample.

The temperature dependence of the magnetization
exhibits a hysteresis near the structural phase transition
(Fig. 1). The transition temperature Ts can be conve-
niently determined as a half-sum of the temperatures
corresponding to the maximal slopes of the curves σ(T)
recorded in the cooling and heating runs at a constant
magnetic field. The structural phase transition tempera-
ture determined in this way is Ts ≈ 95 K. The noticeable
amplitude of the thermal hysteresis loop ∆σ observed
in the region of technical magnetization (the curves cor-
responding to 1 and 3 kOe) is an indication of a change

in the magnetic anisotropy under the Pnma  
transformation. In the true magnetization region, H >
5 kOe, the difference in the magnetization values for

the Pnma and  phases is small and reaches approx-
imately 0.7 emu/g, which is equal to the value of ∆σ
obtained for a La0.8Ba0.2MnO3 single crystal in our ear-
lier study [7]. The width of the thermal hysteresis loop
is independent of the magnetic field and is approxi-
mately equal to 25 K. In the temperature regions T >
105 K and T < 80 K, the curves σ(T) obtained in the
cooling and heating runs coincide.

The temperature dependence of the velocity of lon-
gitudinal sound V1(T) is shown in Fig. 2. Near Ts, at the
transition from the Pnma low-temperature phase to the

R3c

R3c

Fig. 1. Temperature dependence of the magnetization σ in
the region of the structural phase transition. Empty circles
correspond to heating, and full circles correspond to cooling.
 high-temperature phase, the velocity V1 increases
drastically. The transition from the ferromagnetic to
paramagnetic state manifests itself as a characteristic
minimum at T = 304 K. Outside the vicinities of Ts and
Tc, the sound velocity monotonically decreases with
increasing temperature, the dependence of V1 on T
being fairly weak in the paramagnetic state. We note
that, in the La0.85Sr0.15MnO3 manganite whose compo-
sition is close to that of the sample under study, a con-
siderable growth of V1 with temperature was observed
in the region T > Tc [15].

A distinctive feature of the temperature dependence
of the longitudinal sound velocity obtained for the
La0.8Sr0.2MnO3 single crystal is the giant width of the
thermal hysteresis loop. The coincidence of the curves
obtained in the cooling and heating runs is observed for
T < 50 K and T > 350 K. The width of the hysteresis
loop is about 300 K, which is approximately three times
as great as the value of Ts. From Fig. 2, one can see that
the hysteresis loop is asymmetric: its part extending
from Ts to higher temperatures occupies a much greater
temperature interval than the part lying in the region
T < Ts. The value of Q–1 is small at the helium tempera-
ture (Fig. 3). An increase in T leads to an increase in the
internal friction. Near the points Ts and Tc, the curve
Q−1(T) exhibits maxima. Within the interval 120 < T <
280 K, the value of Q–1 depends weakly on tempera-
ture. In the paramagnetic region, the internal friction
increases with increasing T. The thermal hysteresis
occurs in the interval 60 < T < 350 K.

The giant width of the thermal hysteresis loops
observed in the dependences V1(T) and Q–1(T) presum-
ably indicates that, when the La0.8Sr0.2MnO3 single
crystal is heated starting from temperatures that are

lower than the temperature of the Pnma  
transformation, some regions with the Pnma orthor-

hombic structure are retained inside the  rhombo-

R3c

R3c

R3c

Fig. 2. Temperature dependence of the velocity of longitu-
dinal sound V1. The inset shows the sound velocity for the
case of cooling from 350 to 175 K and a subsequent heating.
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hedral matrix up to T = 350 K. One of the factors
responsible for such a coexistence of phases can be a
large scatter that occurs in the values of the structural
phase transformation temperature due to the inhomoge-
neity of the sample. However, if the hysteresis were

caused by the scatter in the Pnma   transition
temperature, the hysteretic behavior would be observed
in any region within the interval 100 < T < 350 K. As
one can see from the inset in Fig. 2, no hysteresis occurs
when the sample is cooled from 350 to 175 K and then
heated. Hence, the aforementioned coexistence of
phases is caused not by the scatter in the structural
phase transition temperature, but by the proximity of
the thermodynamic potentials of the two phases. This
conclusion agrees well with the fact that the latent heat

of the Pnma   transition in lanthanum manga-
nites is small: e.g., for a La0.85Sr0.15MnO3 single crystal
[16], it was found to be q ≈ 0.5 kJ/mol, which amounts
to only 5 meV per formula unit. In the region T > Ts, the
value of Q–1 obtained for the manganate under study on
its heating from liquid helium temperature is greater
than the corresponding value obtained on cooling from
the paramagnetic region. Hence, when the sample is
heated starting from T < Ts, it contains additional scat-
tering centers for the sound waves at temperatures up to
T = 350 K. This conclusion agrees well with the
assumption that, at T > Ts, inclusions of the Pnma phase

are present in the  matrix if the sample is heated
starting from the temperature region T < Ts. When the
sample is cooled starting from 350 K, the inclusions of
the Pnma phase are presumably absent in the rhombo-
hedral matrix down to the vicinity of Ts. Using the data
presented in Fig. 2, we can estimate the relative volume x
of the orthorhombic phase in the rhombohedral matrix

at T > Ts. Assuming that Vl = (1 – x) + x and

the velocity difference between the phases,  –

 = 260 m/s, does not depend on T, we obtain that,
in the temperature interval 120–320 K, the fraction of
the orthorhombic phase is about 6%. Such an inhomo-
geneity is difficult to detect by magnetic measurements,

because the magnetizations of the Pnma and 
phases are fairly close to each other.

Thus, in the temperature dependences of the longi-
tudinal sound velocity and the internal friction in a
La0.8Sr0.2MnO3 single crystal, we observed a thermal
hysteresis of giant width. When the single crystal is
heated starting from temperatures below the point of

the Pnma   transition, some regions occupied
by the Pnma orthorhombic phase are presumably

retained inside the  rhombohedral matrix up to the
temperature T = 350 K, whereas, when the crystal is
cooled down from 350 K, orthorhombic inclusions in
the rhombohedral matrix are absent down to the close
vicinity of Ts.

R3c

R3c

R3c

Vl
rhom Vl

orto

Vl
rhom

Vl
orto

R3c

R3c

R3c
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Changes in the binding energy and oscillator strength of an exciton state due to screening by a quasi-two-dimen-
sional electron gas were calculated self-consistently in a nonlinear approximation. It was shown that the col-
lapse of the bound state proceeds at very small concentrations Ns . 5 × 109 cm–2, which is a consequence of
taking into account the nonlinearity of the system response to the Coulomb perturbation. © 2001 MAIK
“Nauka/Interperiodica”.

PACS numbers: 71.35.Cc; 73.21.Fg
The occurrence of mobile electrons in selectively
doped GaAs/AlGaAs-based quantum wells (QW) leads
to the screening of the Coulomb interaction in two-
dimensional structures and, thus, essentially affects
both the stability of impurity and many-particle Cou-
lomb centers and the character of large-scale fluctua-
tions in QWs. In spite of the fact that the electron spec-
trum in the QWs for which experiments were per-
formed is actually dimensionally quantized and may be
considered as purely two-dimensional, these structures
are quasi-two-dimensional as applied to the problem of
the screening of the Coulomb interaction, because the
width of typical QWs (200–300 Å) is several times
larger than the exciton Bohr radius. Therefore, the
screening of the Coulomb interaction in real QWs is of
mixed character, varying from purely two-dimensional
at large distances (much larger than the QW width) to
virtually three-dimensional at small distances. The
screening effect is revealed most directly in experi-
ments on the screening of exciton states upon increas-
ing the quasi-two-dimensional gas density. It was
shown experimentally in [1] that the threshold concen-
tration at which the collapse of exciton states took place
depended strongly on the structure quality and was
observed at extremely small concentrations Ns = 5 ×
109 cm–2 for most perfect structures. This value corre-
sponds to the dimensionless parameter rs, which describes
the average distance between electrons in the gas in units

of the Bohr radius aB, rs = 1/aB  ≈ 8. This value is
several times higher than the values observed previ-
ously in experiments with structures of lower quality
[2], where the collapse of exciton states was observed
at higher (by an order of magnitude) electron gas con-
centration. The screening of the Coulomb interaction

2πNs
0021-3640/01/7402- $21.00 © 20118
by a two-dimensional electron gas was considered the-
oretically by Bauer [3] within the framework of the the-
ory of dielectric screening and by Kleinman [4] in the
approximation of linear dielectric response for a purely
two-dimensional electron gas. However, both these
approaches give considerably higher threshold concen-
trations than those observed in perfect GaAs/AlGaAs
structures.

In this work, we developed a method for self-consis-
tent calculations of the screening of the Coulomb inter-
action by a two-dimensional electron gas. This method
took into account to some extent the nonlinearity of
screening, as a result of which the threshold values of
concentration were shifted from rs ~ 3 to the region of
values rs ~ 8, which is in qualitative agreement with the
results of recent experiments.

In the subsequent discussion, our interest will be
with the binding energy of an exciton state in the pres-
ence of a quasi-two-dimensional electron gas with the
concentration Ns. It is known that the problem of deter-
mining the binding energy of a large-radius exciton is
reduced to the problem of a Coulomb center with the
particle mass equal to the reduced exciton mass µ =
memh/(me + mh), where me and mh are the planar masses
of an electron and a hole, respectively, in the quantum
well.

Consider a quantum well of width l0 with infinitely
high walls such that the wave function of electrons in
the z direction is strictly restricted by the QW sizes. As
a model of an exciton, consider a positively charged
Coulomb center located at the middle of the QW at
z = 0 and an electron bound with this center with the
mass equal to the reduced exciton mass µ. The Hamil-
001 MAIK “Nauka/Interperiodica”
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tonian of such a center in cylindrical coordinates takes
the following form:

(1)

where

(2)

Here, ρ = , F(z) = 0 at z ≤ |l0/2|, and F(z) = ∞ at
z > |l0/2|.

The ground state energy will be sought by the Ritz
variational method with the trial wave function of the
bound state in the form

(3)

There are two variable parameters in this function: the
effective radius r0 of the Coulomb center (exciton) in
the (x, y) plane and the parameter γ taking into account
the anisotropy due to the finiteness of motion in the
z direction. This wave function correctly describes the
behavior of the system in both narrow QWs when l0 !
r0 (in this case, γ  0, and the function coincides with
the purely two-dimensional one) and wide QWs when
l0 ≥ r0. In the case of wide QWs, γ ~ 1, and the function
is spherically symmetric as in three-dimensional sys-
tems.

For variational calculations, it is convenient to intro-
duce an effective two-dimensional potential Ueff(r) that
can be written in the adiabatic approximation in the fol-
lowing form:

(4)

The Fourier transform of this potential will take the
form

(5)

where J0(x) is a Bessel function of the first kind.
The ground state energy of a quasi-two-dimensional

exciton is found from the minimum of the functional F,

, (6)

with respect to parameters r0 and γ.
The screening of the effective potential Ueff(r) by a

quasi-two-dimensional electron gas will be taken into
account through the dielectric function e(q),

(7)
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Within the random phase approximation, the dielectric
function is determined by the susceptibility χ(q, ω) of
the system,

(8)

In the case of noninteracting electrons, χ(q, ω) is the
Lindhard polarization operator Π0(q, ω) [5],

(9)

where f0 is the Fermi–Dirac distribution function and
L2 is the area of the system. At T = 0 and the Fermi wave

vector kF = , the static dielectric function may
be written as (see, for example, [6])

(10)

where Ueff(q) is determined by Eq. (5).
The ground state energy of an exciton in the effec-

tive screened potential (r) obtained by numerically
solving the integral equation (7) was calculated by
varying the functional in Eq. (6) with respect to param-

eters r0 and γ. Because (r) itself depends on the
wave function parameters r0 and γ, self-consistent val-

ues of r0, γ, and, hence, (r) were obtained by suc-
cessive iterations. It should be noted that this procedure
of self-consistent calculations goes beyond the limita-
tions of the linear response of the electron subsystem
and takes into account to some extent the nonlinear
character of the screening of the Coulomb potential by
the two-dimensional gas.

The results of a numerical calculation of the binding
energy of an exciton are displayed in Fig. 1 as a func-
tion of the dimensionless parameter rs. It is evident that
the binding energy of an exciton decreases in a thresh-
old way with increasing concentration of the two-
dimensional electron gas (TDEG). For a QW with the
width l0 = 300 Å, a sharp decrease (collapse) in the
binding energy occurs in the region rs ≈ 8. With
decreasing well width, the threshold concentration at
which the screening of exciton states arises shifts to the
region of smaller rs, that is, larger concentrations
(curves in Fig. 1). Assuming for definiteness that the
threshold concentration is the concentration at which
the binding energy drops by a factor of e, one may con-

struct the dependence of the critical parameter  on the
width of a GaAs/AlGaAs QW (Fig. 2).

The calculated results indicate that the collapse of
exciton states arises at significantly lower concentra-
tions of the electron gas, rs ≈ 8, than in the previous cal-
culations made by Bauer [3] (rs = 1.8), where the

e
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Fig. 1. Dependence of the binding energy of an exciton state
EB in GaAs/AlGaAs QWs with different width in the
dimensionless parameter rs. The planar masses of an elec-
tron me = 0.067m0 and a hole mh = 0.26m0 and the static
dielectric permittivity e = 12.8 were used in the calculations.

Fig. 2. Dependence of the critical parameter  at which the

collapse of exciton states takes place on the quantum well
width.

rs
c

Fig. 3. Variation of the oscillator strength S of an exciton
transition on the dimensionless parameter rs calculated for
a GaAs/AlGaAs QW of width 200 Å.

E
B
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R
y)
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c

rs
dielectric screening of the Coulomb interaction was
considered, or in the work by Kleinman [4] (rs = 2.8),
in which the calculations were performed for a purely
two-dimensional case within the approximation of lin-
ear screening.

Noteworthy are several points that turned out to be
very important in this problem. First is taking into
account the dependence of the dielectric function on the
parameters of the effective interaction Ueff(r), that is,
the use of a nonlinear approximation for the system
response. If the procedure of self-consistent calcula-
tions used in this work is restricted to the linear
response approximation, the threshold concentration at
which the screening of exciton states is observed shifts
to the region of higher concentrations corresponding to
rs = 3.5, which is close to the results obtained in [4, 7].
Secondly, the singularity at q = 2kF in the dielectric
function given by Eq. (10) leads, as well as in the three-
dimensional case, to oscillations of the TDEG concen-
tration. In contrast to three-dimensional systems, the
effect of these oscillations turns out to be significant,
because the screened potential exhibits a power-law
asymptotic behavior in the two-dimensional case, and
the contribution of the oscillation behavior of the local
concentration in the vicinity of the Coulomb center
turns out to be considerable, leading to a more effective
screening of the potential.

As a rule, information on the variation of the bind-
ing energy of exciton states as a function of the TDEG
density is lacking in experiments on studying the
screening of exciton states by the quasi-two-dimen-
sional electron gas, because this information requires
knowledge of the energy of the noncorrelated electron
and hole, which exhibit no characteristic features in
luminescence and absorption spectra. At the same time,
a threshold change in the oscillator strength of the exci-
ton transition is clearly observed in optical experiments
upon attaining a certain threshold value by the TDEG
density. For convenience of comparison with experi-
mental data, we, in addition to the binding energy, also
calculated the behavior of the oscillator strength S ∝
|pcv|2 |Ψ(r = 0, z = 0)|2 [4] of the exciton transition as
a function of the electron gas concentration in the QW
(Fig. 3). It is evident that the exciton transition intensity
decreases with increasing TDEG density less sharply
than the binding energy of the exciton state. This leads
to the fact that the exciton absorption line may be
observed even at relatively high electron concentra-
tions, when the electron binding energy has already
decreased significantly as a result of screening by the
quasi-two-dimensional electron gas.

The Lindhard susceptibility approximation, which
corresponds to the case of noninteracting electrons in
the gas, was used in the given procedure. To a certain
degree, the interelectron Coulomb interaction at small
distances can be taken into account within the local
field approximation [8, 9] by replacing the polarization

aB
2–
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operator given by Eq. (9) with a more complicated
operator taking into account correlation corrections.
This replacement in the procedure of self-consistent
calculations proposed in this work leads to a certain dis-
placement of the threshold density towards smaller rs.
It should be noted that the local field approximation is
strictly applicable only at rs ≤ 4, so that the results
obtained within this approximation are of a qualitative
character in the region of values rs ~ 8 of our interest.

Thus, the changes in the binding energy and oscilla-
tor strength of an exciton state due to screening by a
quasi-two-dimensional electron gas in a GaAs/AlGaAs
QW of width 50–300 Å have been calculated in this
work. It is shown that taking into account the response
nonlinearity leads to a stronger screening of the Cou-
lomb interaction as compared to the linear approxima-
tion and, as a consequence, shifts the threshold concen-
tration at which the collapse of exciton states occurs
towards smaller TDEG densities and, correspondingly,
larger rs (rs = 8.3 for a well 300 Å in width, which sig-
nificantly exceeds the values calculated within the
framework of the dielectric screening theory or within
the framework of linear screening by a quasi-two-
dimensional electron gas). With decreasing QW width,
the threshold electron concentration at which the tran-
sition takes place shifts towards the region of smaller
parameters rs. It is also interesting to note that the col-
lapse of exciton states is accompanied by a multiple
increase in the effective Bohr radius of the exciton state.
In this case, even in wide QWs with l0 = 300 Å at high
electron gas densities, the Bohr radius of the exciton is
several times larger than the QW width, and the exciton
is virtually two-dimensional. On the other hand, the
Bohr radius of the exciton at low densities is signifi-
JETP LETTERS      Vol. 74      No. 2      2001
cantly smaller than the well width, and the exciton
wave function in the well only slightly differs from a
three-dimensional one. Thus, the screening of an exci-
ton state in wide QWs is additionally accompanied by
the 3D  2D crossover, that is, by the transition of the
exciton state from the three-dimensional to the two-
dimensional case. This fact may serve as an additional
reason explaining the sharpness of the dissociation pro-
cess of the exciton state observed in the exciton state.

This work was supported by the Russian Foundation
for Basic Research and by INTAS, project no. 99-1146.
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The band structure of the new perovskite-like MgCNi3 superconductor is studied by the self-consistent FP-
LMTO method. The superconducting properties of MgCNi3 are associated with the occurrence of an intense
peak in the density of Ni3d states at the Fermi level. The absence of superconductivity for nonstoichiometric
MgC1 – xNi3 compositions is caused by the transition of the system to a magnetic state. The possibilities of
finding superconductivity for ScBNi3, InBNi3, MgCCo3, and MgCCu3 isostructural with MgCNi3 are discussed.
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PACS numbers: 71.20.Lp; 74.70.Dd
The discovery of the superconducting transition
(Tc ≈ 39 K) for the intermetallic MgB2 compound [1]
stimulated a wide search for new superconductors
among related systems, which is now performed along
three main lines. Within the first line, the class of super-
conductors based on MgB2 is extended by its doping or
by creating superstructures [2]. The second line covers
a wider range of systems: the search for superconduct-
ing candidates is performed among binary or multi-
component phases possessing either structural or chem-
ical elements of similarity with MgB2. As a result, crit-
ical transitions were found in ZrB2 (5.5 K [3]), TaB2
(9.5 K [4]), Re3B (4.7 K [5]), and a new beryllium
boride phase (0.72 K, composition BeB2.75, the unit cell
contains 110.5 atoms [6]).

The development of the third line was initiated by
observing [7] superconductivity in the ternary interme-
tallic perovskite-like MgCNi3 compound (Tc ≈ 8 K).
The result obtained in [7] is of special interest due to
several circumstances.

1. The high-symmetry MgCNi3 structure (space
group Pm3m) is a favorable factor for superconductiv-
ity. However, all the superconducting perovskites
known by now contain oxygen atoms at the positions of
type 3c (0; 1/2; 1/2), whose electron–hole states have a
dominant role in the formation of superconductivity
[8]. In the case of MgCNi3, Ni atoms occupy these posi-
tions; that is, the nature of the superconductivity mech-
anism in this compound must be principally different.

2. The majority of the known nonoxide perovskite-
like  phases (so-named anti-perovskites, where
M = Zn, Al, Ga, In, and Sn; M' = Mn and Fe; and X =
C and N) exhibit ferromagnetic, antiferromagnetic, or
more complicated (mixed) types of spin ordering [9].
Hence, in the series of its structural analogues,

MXM3'
0021-3640/01/7402- $21.00 © 20122
MgCNi3 can be considered as a phase boundary
between the classes of perovskite-like superconductors
(oxides) and magnets (oxygen-free perovskites).

3. Superconducting intermetallic boron carbides
(IBC) of general composition LnM2B2C are the closest
chemical analogues of MgCNi3. Nickel-containing
LuNi2B2C (Tc ≈ 16 K) and YNi2B2C (Tc ≈ 15.6 K)
phases also belong to this family. However, in contrast
to MgCNi3, IBC (i) are magnetic superconductors,
(ii) possess a quasi-two-dimensional structure com-
posed of (Lu,Y)C layers and NiB4 tetrahedrons [10],
and (iii) contain much less Ni (magnetic metal) than
MgCNi3 (35.6–48.9 vs. 82.9 at. %).

The first investigations of some properties of
MgCNi3 (critical field Hc2, Hall coefficient, and other
electrophysical characteristics, [11–14]) allowed
MgCNi3 to be assigned to conventional type II super-
conductors with the electron–phonon interaction type.
In this case, the critical temperature can be estimated
from the McMillan formula Tc ≈ 〈ω〉 exp{f(λ)}, where
〈ω〉 is the averaged phonon frequency and λ is the elec-
tron–phonon coupling constant λ ~ N(EF)〈I 2〉 , where
N(EF) is the density of states at the Fermi level. From
here, it follows that information on the band structure is
of paramount importance in interpreting the supercon-
ducting (and some other) properties of MgCNi3 as well
as in searching for possible superconducting analogues.

In this communication, we present the results of
studying the band structure of the new MgCNi3 super-
conductor, discuss the effect of the occurrence of
C vacancies (carbon nonstoichiometry) on its elec-
tronic properties, and analyze the specific features of
electronic and magnetic states in the series of related
perovskite-like alloys (ScBNi3, InBNi3, MgBCo3, and
001 MAIK “Nauka/Interperiodica”
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Total and orbital densities of states at the Fermi level (N(EF) and Nl(EF), 1/eV) for MgCNi3 and related intermetallic com-
pounds

 
phase

Total 
N(EF)

Orbital Nl(EF)

Ms Mp Md Xs Xp

MgCNi3 4.57 0.00 0.12 0.02 0.01 0.23 0.07 0.09 4.04

MghNi3 2.38 0.04 0.04 0.04 0.02 0.00 0.02 0.06 2.16

MgCCo3 2.41 0.01 0.01 0.03 0.00 0.01 0.00 0.01 2.33

MgCCu3 0.38 0.04 0.06 0.03 0.00 0.03 0.02 0.04 0.17

ScBNi3 2.59 0.00 0.11 0.20 0.00 0.11 0.05 0.09 2.03

InBNi3 1.47 0.01 0.06 0.01 0.01 0.08 0.02 0.05 1.24

MXM3'

Ms' Mp' Md'
MgCCu3) as possible superconductors. The self-consis-
tent spin-polarized full-potential linear muffin-tin
orbital method (FP-LMTO) [15] within the local (spin)
density approximation (LDA) was used in calculations
with allowance for the relativistic effects according to
[16] and with the exchange–correlation potential pro-
posed in [17].

In the MgCNi3 structure, atoms occupy the follow-
ing positions: 3Ni (0; 1/2; 1/2), Mg (0; 0; 0), and C (1/2;
1/2; 1/2). Their coordination polyhedrons (CPs) are the
[NiC2Mg4] and [CNi6] octahedrons for Ni and C and
the [MgNi12] cuboctahedron for magnesium. The theo-
JETP LETTERS      Vol. 74      No. 2      2001
retical equilibrium lattice parameter of MgCNi3
(3.721 Å) was determined in a good agreement with the
experiment (3.8066 Å for the MgC0.96Ni3 [18]) by min-
imizing the total energy.

The results of calculations for MgCNi3 are given in
Figs. 1–4 and in the table. The most important feature
of the spectrum of MgCNi3 is the occurrence of an
intense peak in the density of states (DOS) at EF asso-
ciated with the quasi-flat π antibonding Ni3d bands (in
the X–M and the M–Γ directions of the Brillouin zone)—
see Fig. 1. The Fermi level EF is located at the high-
energy slope of this peak. The value of N(EF) comprises
Fig. 1. Energy bands for (1) MgCNi3, (2) InBNi3, (3) ScBNi3, and (4) MgCCu3.
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Fig. 2. (I) Total and (II–IV) atomic partial densities of states for (1) MgCNi3, (2) ScBNi3, and (3) InBNi3. The distributions corre-
spond to (II) C and B; (III) Ni; and (IV) Mg, Sc, and In.
4.57 states/eV, which is in good agreement with the
result of the full-potential FLAPW calculation [19]
4.99 states/eV. The decomposition of N(EF) into orbital
components (Nl(EF)) indicates (see table) that the larg-
est contribution to N(EF) (4.04 states/eV or 88.2%) is
due to the Ni3d states. The contributions to the N(EF)
from the C2s, p and Mg3s, p, d states equal 0.23 (5.08%)
and 0.14 states/eV (3.03%), respectively. The Stoner
parameter S = N(EF)Iex (Iex is the exchange integral) is
≈0.55, and there are no magnetic moments on atoms.
The upper of the two antibonding Ni3d bands, whose
dispersion is more clearly defined, determines the elec-
tronic type of the Fermi surface (Fig. 3) in the form of
spheroids in the vicinity of the Γ point and small sheets
along the Brillouin zone (BZ) boundaries and angles.
The flatter Ni3d band forms lobe-type singularities at
the BZ faces with the center at the point X and cigar-
shaped figures along the Γ–R direction.

For comparison of individual bonds, crystal orbital
overlap populations (COOP) were calculated within the
tight-binding method for MgCNi3 and ScBNi3. The
corresponding values for MgCNi3 were found to be
0.298 (Ni–C), 0.027 (Ni–Ni), and 0.039 e/bond (Ni–Mg).
Thus, the Ni–C bonds form the basis of interatomic
interactions in MgCNi3 (in the [CNi6] CP, Fig. 4). The
C–Mg bonding is negligible (0.002 e/bond). For
ScBNi3, these values were 0.338 (Sc–B), 0.050 (Ni–Ni),
0.033 (Ni–Sc), and 0.005 e/bond (B–Sc). These results
provide an explanation for the data [13] on studying the
temperature dependence of the Debye–Waller factors
(DWF) of atoms in MgCNi3. The minimal (isotropic)
temperature factor of carbon corresponds to its most
strongly bound (and highly symmetric, at the center of
the Ni6 octahedron) state in the crystal, whereas the
DWF for Ni is large and anisotropic: in the NiCP
([NiC2Mg4] octahedra) the COOPs of different-type
(Ni–C and Ni–Mg) bonds differ by an order of magni-
tude. The minimal mean-square displacements
observed for Ni (U11) correspond to the directions of
the strongest Ni–C bonds.

Based on the results presented in Fig. 2, it may be
expected within the rigid-band model that introducing
electron or hole dopants into MgCNi3 will result in a
decrease or increase in N(EF), respectively. In the
former case, one may expect that the superconductivity
of the system will deteriorate. Doping with holes, being
favorable to the growth of N(EF) and to an increase in
Tc, can, however, induce the transition of the system to
a magnetic state accompanied by the loss of supercon-
ductivity. A similar structure of the spectrum (the
occurrence of an intense peak of metallic states at the
Fermi level, which points in the general case to the
instability of the nonmagnetic state of the system) is
accomplished in superconducting IBCs, and this struc-
ture determines the formation of atomic magnetic
moments (MM) in these systems [4].

We carried out calculations for systems modeling
the variants of spectrum modifications indicated above.
The effect of a decrease in the occupation of energy
bands was considered as the result of the occurrence of
vacancies in the C sublattice of MgCNi3 (hypothetical
MghNi3 perovskite with the empty C sublattice was
calculated; from here on, h designates a structural
vacancy) or the substitution of Co for Ni (MgCCo3
JETP LETTERS      Vol. 74      No. 2      2001
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Fig. 3. Fermi surfaces for (1) MgCNi3, (2) InBNi3, (3) ScBNi3, and (4) MgCCu3.
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phase). The growth of the electron concentration was
modeled using the MgCCu3 phase as an example. In
addition, stable boron-containing ScBNi3 and InBNi3
phases with lattice parameters taken according to [20],
which are isostructural and isoelectronic with MgCNi3,
were considered as possible superconductors.

For the nonstoichiometric anti-perovskite, it was
obtained that MghNi3 occurs in a magnetic state, and
the MM of atoms were found to be 0.44µB for the Ni
atoms and –0.05µB for the Mg atoms. A similar result
was also obtained for InhNi3: the MM of atoms were
0.20µB for the Ni atoms and –0.01µB for In atoms. From
here, it follows that the condition of obtaining super-
conducting MgCNi3 as a phase of strictly stoichiomet-
ric composition (at a deficiency of carbon, MgC1 – xNi3
samples (x > 0.1) lose superconductivity) noted in the
experiments [7] is determined primarily by the pecu-
liarities of its electronic structure.

The ground state of the MgCCo3 anti-perovskite is
magnetic: according to calculations, the MM of atoms
equal 0.36 for Co and –0.05µB for Mg. For MgCCu3, it
was found that (a) an increase in the electron concentra-
tion results in the filling of the antibonding bands
(Fig. 1), and (b) N(EF) decreases by more than an order
of magnitude as compared with MgCNi3, in the case of
which delocalized sp states dominate (Fig. 3). The data
obtained offer an explanation for the change in the
superconducting properties of MgCNi3 upon doping
the Ni sublattice with 3d transition metals. It is known
that the critical transition temperature for MgCNi3 – xMx

alloys (M = Mn, Co, and Cu) [13, 14] drops (a) with the
growth of the concentration of dopants and (b) with the
decrease in their atomic number from Co to Mn. Study-
ing the dependence of Tc on the copper concentration
showed that Tc decreases systematically in the range 0 <
x < 0.1. The partial substitution of Co atoms for nickel
leads to the disappearance of superconductivity already
for x = 0.03. The effect of suppressing superconductiv-
ity is enhanced for substitutions of Mn for Ni. Accord-
ing to the calculated data, various dopants principally
differ in the nature of the effect observed. Spin fluctua-
tions are the reason in the case of alloys with substi-
tuted Mn and Co, whereas the growth of the total elec-
tron concentration in the system and a sharp decrease in
N(EF) are the reason in the case of Cu.

The calculated results for boron-containing ScBNi3
and InBNi3 anti-perovskites are presented in Figs. 1–4
and in the table. A comparison of chemical bonding in
MgCNi3 and ScBNi3 (charge density maps, Fig. 4)
reveals that the covalent overlap in the case of Sc–B
bonds is stronger than that for Mg–C bonds, which
fully coincides with the data that we obtained within the
tight-binding model, as shown above.

As one goes from MgCNi3 to ScBNi3 and InBNi3,
the Fermi level shifts towards the high-energy region of
the Ni3d peak, and N(EF) decreases significantly. In this
series of compounds, one of the antibonding bands
decreases in reference to the Fermi level along the M−Γ
direction and shifts upward in the vicinity of the point
X. At the point M, the band shifts upward, and the band
drops below the Fermi level in the Γ–R direction. These
changes in the band structure result in a modification of
the Fermi surface. The spheroidal surfaces of the elec-
tronic type in the vicinity of the point Γ undergo only
slight changes, and the quasi-cylindrical electronic sur-
face along the BZ boundaries increases in the series of
compounds under consideration. The hole-type cigar-
shaped figures along the Γ–R direction are absent for
ScBNi3 and InBNi3, whereas the lobe-type singularities
at the BZ faces with the center at the point X increase
for ScBNi3 and degenerate into spheroids for InBNi3.
Thus, the topology of the Fermi surface for the given
compounds retains the main features of superconduct-
ing MgCNi3. The Fermi surface for MgCCu3 is also
shown in Fig. 3. A rise in the Fermi level for this com-
pound leads to a qualitatively different topology: sur-
faces of both electronic and hole types are absent in the
vicinity of the Γ and X points.

The double substitution of this kind for the given
isoelectronic systems leads to changes in the electronic
structure, for which the appearance of superconducting
properties can be expected upon hole doping. The most
probable method is the introduction of B vacancies
(boron nonstoichiometry, all the more that this possibil-
ity for InBNi3 is known from the experiment [20]) or
the partial replacement of Sc by atoms of group I or II.
Doping the Ni sublattice with magnetic impurities
(Co, Mn) may be more problematic because of mag-
netic instability.

Thus, the band structure of the new perovskite-like
MgCNi3 superconductor was studied in this work. The
superconducting properties of the intermetallic com-
pound are due to the occurrence of an intense peak in
the density of Ni3d states at the Fermi level. The dete-
rioration of the superconducting characteristics of
MgCNi3 upon hole doping of the (nonstoichiometric in
carbon) MgC1 – xNi3 compositions or upon doping the
nickel sublattice with Co or Mn is determined by the
transition of the system to a magnetic state. The deteri-
oration of superconductivity upon electron doping
(MgCNi3 – xCux alloys) is due to the filling of antibond-
ing states and a sharp drop in N(EF). The probability of
discovering superconductivity in the stoichiometric
ScBNi3 and InBNi3 anti-perovskites is indicated.
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An inclusive approach to measuring e+e–  π+π– cross section by the radiative-return method is discussed.
This approach is substantially based on the choice of selection rules that exclude three-pion events and reduce
the radiation background in the final state. Radiative corrections in the process with emission in the initial state
are calculated for the DAPHNE conditions by treating the cross section form and the kinematics of the radiative
process in the quasi-real electron approximation. © 2001 MAIK “Nauka/Interperiodica”.
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1. Recent measurement [1] of the muon anomalous
magnetic moment (g – 2)µ cast some doubt upon cor-
rectness of the SM. V. Hughes, spokesman for the
experiment [2], said, “There are three possibilities of
interpreting this result. First, the manifestation of new
physics beyond the SM such as supersymmetry. Sec-
ond, there is a low statistical probability that the experi-
mental and theoretical values are consistent. Third, the his-
tory of science has taught us that low-probability errors in
both experiments and theories are always possible.”

Before the ultimate conclusion about SM violation
is drawn, the second possibility should be very thor-
oughly analyzed. The dominant uncertainty in the the-
oretical (g – 2)µ value comes from the hadronic vacuum
polarization whose contribution is related to the total
hadronic cross section for electron–positron annihila-
tion by the dispersion integral [3]. For high energies,
this cross section can be analytically calculated by the
QCD rules, which, however, cannot be applied to ener-
gies below several gigaelectronvolts. For this reason,
precision data on the hadronic cross section for low and
intermediate energies are of great importance.

Recent data obtained in Novosibirsk [4] and Beijing
[5] have not yet been included in any analysis, but new
experiments with a percent accuracy should undoubt-
edly be carried out.

In this work, we discuss the possibility of scanning
the total hadronic cross section by the radiative-return
method [6] with the inclusive selection of events (ISE).
The ISE implies precision measurement of the invariant
hadron mass, which makes the detection of a photon
emitted in the initial state unnecessary [7]. Of course,
some extra conditions should be imposed on the selec-
tion of events in this case (see below). This approach,
which requires that the final hadronic state be known,
can be realized at DAPHNE, where the π+π– channel
0021-3640/01/7402- $21.00 © 20065
dominates because of radiative return to the ρ reso-
nance and the momenta of charged pions can be mea-
sured with high accuracy by a drift chamber. In addi-
tion, the expected luminosity of the DAPHNE acceler-
ator is high enough to ensure necessary high statistics
of the corresponding radiative events.

The ISE cross section in the Born approximation
coincides with the cross section for events with identi-
fied photons (if a photon falls into a narrow photon
detector placed in the electron-beam direction), but the
radiative corrections (RCs) are different in these cases
because the emission of two hard photons is possible.
This case is reminiscent of the RCs in deep inelastic
scattering for leptonic (an analogue is events with iden-
tified photons) and hadronic (an analogue is ISE) vari-
ables. In the latter case, the RCs are factorized,
whereas, in the former one, they necessarily include
some integrals with the hadronic cross section, which
should be extracted from the experimental data. This
circumstance makes the ISE approach more attractive.

2. Let us consider the above-mentioned extra event-
selection conditions that are appropriate for DAPHNE
and must primarily ensure selecting only the π+π– + nγ
final states. Moreover, these conditions must reduce the
background caused by the emission in the final state
and simplify the RC calculation. First, to exclude the
π+π–πo states, one should select only events in which
the difference between the lost energy and lost momen-
tum is small in absolute value. This condition has the
form

(1)

where E is the beam energy; E± and p± are, respectively,
the energy and momentum of π±; and PΦ is the initial
total momentum, which appears because the laboratory

2E E+– E–– PΦ p+– p––– ηE, η  ! 1,<
001 MAIK “Nauka/Interperiodica”
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coordinate system at DAPHNE does not coincide with
the center-of-mass system, |PΦ| = 12.5 MeV. It is con-
venient to represent Eq. (1) in terms of the total energy
Ω and absolute value |K| of the total momentum of all
photons in the e+ + e–  π+ + π– + nγ reaction:

(2)

The optimal value η = 0.02 also considerably reduces
the background caused by emission in the final
state [8].

The second condition must select only events for
which an undetected photon is collinear at n = 1:

(3)

where p1 is the electron momentum and θ0 is taken to
be 5°–6°. This restriction considerably increases the
contribution to the cross section from the emission in

the initial state by a factor of ln(E2 /m2), where m is
the electron mass, and provides the possibility of apply-
ing the very useful method of quasi-real electrons [9] to
the calculation of the RCs to the Born cross section.

In the Born approximation, which corresponds to
n = 1, Eq. (2) is always satisfied. Therefore, nontrivial
restrictions caused by Eqs. (2) and (3) arise only at the
RC level when the contribution from the emission of
two hard photons (n = 2) is calculated.

3. Let us consider the case where the angular phase
space of pions is unrestricted. In this case, the Born
cross section can be written as

(4)

where k and ω are, respectively, the 4-momentum and
energy of a photon; q2 is the squared invariant mass of
pions; mπ is the pion mass; Fπ(q2) is the pion electro-
magnetic form factor; and p1 and p2 are the 4-momenta
of an electron and positron, respectively. For collinear
events that are selected by Eq. (3), the leptonic tensor
can be represented as

Ω K– ηE.<

Kp1 K> Ec0, c0 θ0,cos=

θ0
2

dσB σ q2( ) α
4π2
--------Lµν

γ p1 p2 k, ,( )g̃µν
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4mπ
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3/2
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---------------– g̃µν=
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4q2
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t1
2
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 
 

p̃2µ p̃2ν,+
where

and terms on the order of m2/t2 are omitted.

The contraction of tensors on the right-hand side of
Eq. (4) is

(5)

According to the collinearity condition (3), it is con-
venient to work in the coordinate system where the Z
and X axes are directed along p1 and PΦ, respectively.
In this system, we have

(6)

and

(7)

where θ and φ are, respectively, the polar and the azi-
muthal emission angles of a photon emitted in the ini-
tial state.

Integration with respect to the angles on the right-
hand side of Eq. (4) can be preformed by using the for-
mulas

g̃µν gµν=
qµqν

q2
-----------, p̃1 2µ,– p1 2µ,

p1 2, q
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------------qµ,–=
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=  2
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t1 2ω E p1– θcos( ),–=

t2 –2ωE 1 1
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(8)

For integration, one can set

which corresponds to the omission of very small terms

on the order of /E2. With the same accuracy, one
can use the relationship

(9)

which makes it possible to represent the Born cross sec-
tion for the process (n = 1) in the form

(10)

In the limiting case PΦ  0, θ0  0, this formula
transforms into the well-known result corresponding to
the quasi-real electron approximation [9]:

The parameter |PΦ| enters into the cross section through

the ratio | /4E2| (see also the definitions of s and ω0),

which is approximately equal to 1.5 × 10–4 and  ≈ 10–2.
Therefore, the respective contributions can be ignored
in the calculation of the RCs to cross section (10).
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4. In the general case, the photon RCs include the
contributions from the emission of hard and soft real
and virtual photons. The contribution from the virtual-
and soft-photon corrections to the ISE cross section has
the form

(11)

where the first two terms in square brackets include all
logarithmically enhanced contributions (see the first
reference in [6]), whereas the third term determines the
nonlogarithmic contribution:

(12)

where ∆E (∆ ! 1) is the maximal energy of the soft
photon.

It is convenient to divide the contribution from the
emission of an extra hard photon to the ISE cross sec-
tion into three parts. The first part corresponds to events
in which the extra photon of energy ω2 is emitted in the
positron-beam direction. This part is calculated by
introducing an auxiliary angular parameter  ! 1 and
applying the quasi-real electron approximation to
describe the emission of both photons (one with energy
ω1 along the electron-beam direction and the second
along the positron-beam direction). The result is

(13)

where q2 = sxy is taken to be fixed. The maximal energy
ω2 can be obtained from Eq. (2) by taking into account
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that the kinematics for these events in the quasi-real
electron approximation gives

(14)

Because η ! 1, the terms proportional to η in the
expression for the RCs can be neglected. This enables
one to replace x by z (because q2 = sz = sxy) and perform
the elementary integration with respect to y on the
right-hand side of Eq. (13):

(15)

The second part is caused by the emission of two
hard collinear photons (each having energy above ∆E)
by an electron when both photons are emitted within a
narrow cone with angle 2θ0 in the electron-beam direc-
tion. With the same accuracy as the contribution from
the virtual- and soft-photon corrections, the result can
be written as

(16)

Here [10],
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where P2θ(z) is the θ term of the second-order electron
structure function [11] and

(17)

where the logarithmic functions L, L1, and L2 have the
form
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The integral with respect to the variable x on the right-
hand side of Eq. (17) diverges if x  0 and x  1 –
z. However, the structure of the integral is such that
these divergences cancel each other, which can be seen
by taking into account that

(i) the integral with respect to t converges,
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(18)

For this reason, the integral in Eq. (17) can be numeri-
cally estimated (the inner integral with respect to t is
analytically calculated, but the result is unwieldy and is
not presented in this brief paper).

The third part of the contribution from the emission
of two hard photons is related to the events in which one

  
z

 

2

 
1

 
x

 
– ( )

 

4

 
+

 
x

 
1

 
x
 

–
 

z
 
–
 

( )
 

1
 

x
 

–
 
( )

 
2

 ----------------------------------------------- L t x z , ,( ) 
x

 
1

 
z

 
–

 
→

 lim

=  
1

 

z

 

2

 

+
1

 

x

 

–

 

z

 

–

 

( )

 

1

 

z

 

–

 

( )

 

-----------------------------------------

 

t

 

1

 

z

 

–

 

( )

 

1

 

x

 

–

 

z–( )z
---------------------------.ln
JETP LETTERS      Vol. 74      No. 2      2001



AN INCLUSIVE APPROACH TO SCANNING 69

                   
photon of energy ω1 is collinear and the other (of
energy ω2) is emitted within the angle range from π –

 to θ0. To describe the cross-section form and satisfy
conditions (2) and (3) for these events, we set k1 = (1 –
x)p1 according to the approximation used. In this
approach, we start with the differential cross section in
the form

(19)

where θ2 is the polar angle of the noncollinear photon.
To obtain the distribution in the squared invariant mass q2

of pions, it is convenient to use the relationships

(20)

In this case, we can also ignore the electron mass in the

leptonic tensor . The corresponding differential
cross section has the form

(21)

It is instructive to recast the expression in braces in a
form convenient for integration with respect to ω1
and Ω:
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where we omit the terms whose denominator does not
include a small factor Ωz, which is equal to η∆ in order
of magnitude [see Eqs. (24) and (25) for Ωmax and Ωmin,
respectively].

We must now find the domain of integration which
is determined by constraints (2) and (3) on the selection
of events and by the inequalities

(23)

for the possible angles of noncollinear photon and the
energy of collinear one. Condition (2) determines the
maximal Ω value, and Eq. (3) determines the minimal
ω1 value for a fixed Ω value:

(24)

To obtain the minimal value of Ω Ωmin, one should
use the first of Eqs. (20) with ω2 = ∆E and c2 = c0:

(25)

It follows from the condition c2 >  that

(26)

Finally, the inequality c2 < c0 yields

(27)

To obtain the domain of integration, it is necessary
to combine Eqs. (23)–(27) consistently. As a result, we
obtain
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where ωmin is determined by the inequality in Eq. (24).
The necessary integrals over region (28) are the fol-

lowing:

(29)

Using Eq. (22) and these integrals, one can represent
the contribution of the third part from the emission of
two photons in the form

(30)
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5. The total radiative correction to Born cross sec-
tion (10) is represented as a sum

(31)

The auxiliary infrared parameter ∆ enters into the terms
in Eq. (31) through the expression

(32)

Hereafter, we use the decomposition of c0 and .
Expression (32) is equal to zero according to the defini-
tion of large logarithms L0, Ls, and  [see Eqs. (8),
(12), and (13)]. It is easy to check that the auxiliary
angular parameter  is also canceled in Eq. (31),
which can be represented as

(33)

where
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As was mentioned above, the RCs have a factorized
form; the low-energy cross section σ(q2) for the pion
pair production, which is the object of precision mea-
surements capable of deciding the fate of SM, enters
into Eq. (33) as a separate multiplier. Another multi-
plier (expression in braces) is of purely electrodynami-
cal origin and is independent of the strong pion interac-
tion. It is determined by the squared invariant mass q2

of pions as well as by the physical parameters η and θ0,
which appear in the ISE rules.

One more contribution to the RCs comes from the
emission of two hard photons under the condition that
none of them is emitted within a narrow cone in the
electron-beam direction but collinear condition (3) is
satisfied. This contribution cannot be calculated in the
quasi-real electron approximation and should be esti-
mated by other methods. In particular, the leptonic dou-
ble bremsstrahlung current tensor can be taken in the
limit m  0. We intend to calculate it elsewhere, but
we are sure that, because of stringent restriction (2) on
the event selection, this contribution is small and can-
not affect the cross section within a percent accuracy.

The above consideration corresponds to the case
where the final e+e–π+π– state is excluded from the anal-
ysis of the ISE cross section. Otherwise, there would be
an extra contribution from the e+e– pair production in
the initial state [6]. The dominant part of this contribu-
tion is related to the collinear kinematics, when an e+e–

pair is emitted in the electron-beam direction. In the
NLO approximation (in our case, it takes into account
only the logarithmically enhanced terms), this contribu-
tion can be represented as

(34)

where the functions P1(z) and P2(z) can be set off from
the corresponding cross section for low-angle Bhabha
scattering [12]. In this case, one should estimate the
extra background caused by the two-photon mecha-

+ 1 z
3
---– 

  Li2 1 z–( ) 2Li2 ξ–( )+

– 2z Li2 ξz–( ) Li2
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z
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 + J .+

dσe
+
e

–

dq2
--------------

σ q2( )
s

------------- α
2π
------ 

 
2

P1 z( )L0
2 P2 z( )L0+[ ] ,=
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nism of pion pair production. We intend to analyze this
problem elsewhere.

The Born cross section (10) and the corresponding
RCs (33) and (34) considered in this work describe
events with at least one collinear (with respect to the
electron-beam direction) photon or one collinear elec-
tron–positron pair. The DAPHNE conditions allow the
selection of the same events along the positron beam.
For this reason, all contributions should be doubled.

We are grateful to V.A. Khoze and G. Venanzoni for
the discussion of ISE rules at DAPHNE.
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The nonlinear Schrödinger equation

(1)

where ψ is a scalar function in the d-dimensional space
and ∆ is the Laplacian, has weakly collapsing solutions
of the form

(2)

Here, λ = λ(t), ϕ is a real function, and ρ = |r|. Weakly
collapsing solutions were studied by Zakharov et al.
[1–3]. The number of particles and the total energy are
conserved for any solution to Eq. (1). These two conser-
vation laws lead to the following equations for the
parameter ν and functions λ and χ [4, 5]:

(3)

where C and C1 are constants and t0 is the time instant
of collapse. The set of equations for the functions ϕ and

 reduces to one third-order ordinary differential equa-
tion [4, 5]

(4)

i
∂ψ
∂t
------- ∆ψ ψ 2σψ+ + 0,=

ψ r t,( ) λνϕ ρλ( ) iχ ρ t,( )( ).exp=
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λ C

t0 t–
---------------, χ0 t( )
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2
------ t0 t–( ),ln= =
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2Z '
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d 1–( ) d 3–( )
2y2

----------------------------------Z '–

–
1

C2
------ C1Z ' y yZ ' 2/σ d–( )Z+( )

4C2
-------------------------------------------------–

–
yZ ' 2/σ d–( )+ Z( )2

8C4Z '
------------------------------------------------ 2 Z '( )σ 1+

y d 1–( )σ---------------------+ 0.=
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The functions ϕ and  are expressed in terms of the
function Z through the simple relationships

(5)

We examine possible types of asymptotic behavior
of the solutions to Eq. (4). For simplicity, we consider
only the physically most interesting case d = 3 and σ =
1. The parameter C corresponds to the following scale
transformation in Eq. (4):

(6)

In what follows, we will set C = 1.

Equation (4) has only one one-parameter family of
solutions satisfying the physical boundary conditions at
the zero point [4, 5]:

. (7)

To examine the solution in the asymptotic region
y  ∞, we multiply both sides of Eq. (4) by 8Z ' and
differentiate with respect to y. Omitting immaterial
terms, we obtain the linear equation

(8)

In the asymptotic region y  ∞, the general solution

χ̃

ϕ Z '

y d 1–( )/2
-----------------, χ̃ '

yZ ' 2/σ d–( )Z+

4C2Z '
-----------------------------------------.–= =
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of this equation has the form

(9)

involving expansion in 1/y2 powers. Four coefficients B,
B1, d1, and d2 are related to one another by a single rela-
tionship, which can easily be obtained by substituting
Eq. (9) into Eq. (4) (see also [6]):

. (10)

The necessary and sufficient condition for solution (7),
(9) to correspond to zero energy has the form

(11)

The coefficients d1 and d2 are analytical functions of the
parameters A and C1. Therefore, the set of points {A, C1}
at which the energy is equal to zero is discrete (finite or
infinite). One of these points was numerically calcu-
lated in [7]:

(12)

Apart from this point, there are other points corre-
sponding to zero-energy solutions. Some of them are

(13)

Let us now turn to the region of parameters C1 @ 1. In

the region y ! , Eq. (4) reduces to the simpler
equation

(14)

By setting

(15)

we obtain the following second-order equation for the
function φ:

(16)
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In the region 1 ! y ! , the general solution to
Eq. (16) has the form

(17)

where  is the solution of the linear equation

(18)

The general solution of Eq. (18) is

(19)

Therefore, for large C1 values, the domain of y val-

ues exists such that y ! , where the solutions have
the intermediate asymptotic form

(20)

Let us assume that the inequality

(21)

is satisfied. Then the function

(22)

is the solution to Eq. (16) in the region y !  and
satisfies the boundary conditions for the function Z.

Let us show that, in the {A, C1} plane, there are two
close lines along which the amplitudes d1, 2 in Eq. (9)
are exponentially small at large values of parameter C1.
These lines also include those values of parameters A
and C1 for which the energy is zero. Let us multiply
both sides of Eq. (4) by Z ' and differentiate with respect
to y. As a result, the equation for the function Z takes the
form

(23)

The solution to this equation satisfying the boundary
condition at zero can be represented in the form

(24)

where the constant A is determined in Eq. (7) and the
functions Z1, 2, 3, 4 are the solutions of the linear equation

(25)
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The functions Zk are taken in the form

(26)

The functions Dk in Eq. (24) are expressed through
the integrals of the derivatives of function Z:

(27)

Z1 y, Z2 1 An
1( )y2n

n 2=

∞

∑+ ,= =

Z3 y2 1 An
2( )y2n

n 1=
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∞

∑+ .=

Dk
1
12
------ yPk4 4 Z'( )2/y3 6Z'Z''/y2–( ),d

0

y

∫–=

Fig. 1. The functions ϕ/  at zero-energy points

{A, C1} = (solid line) {0.644, 1.09} and (dashed line)

{0.913, 4.41}; x = y/ .

8C1

8C1

Fig. 2. The same as in Fig. 1 but for the functions χ/ .8C1

'

where

(28)

In the region y ! , the functions Z3 and Z4 can be
represented in the form

(29)

After passing through the turning point {y = 2 },
the functions Z3 and Z4 acquire oscillating terms, the
relation between which is determined with exponential
accuracy by Eq. (29). The condition that these terms in
Eq. (24) be zero determines those lines in the {A, C1}
plane on which the amplitude of the oscillating addition
is exponentially small:

(30)

where T = ( /3)Z4 – Z3.
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Taking into account Eqs. (26) and (29), Eq. (30)
reduces to 

(31)

which can be recast in a more convenient form

(32)

The values y ~ 1/  are substantial in Eq. (32).
Let us assume that Eq. (32) has a solution in the region

(33)

In this case, the function Z1 is determined by Eq. (22).
From Eqs. (22) and (32), we obtain

(34)

Because

(35)

Eq. (32) has two close solutions

(36)

which split only if the terms exponentially small in C1
are taken into account. Figures 1 and 2 show, respec-

tively, the functions ϕ/  and χ'/  of parame-

ter x = y/  at zero-energy points {A, C1} = {0.644,
1.09} and {0.913, 4.41}. According to Eq. (22), all
functions are smooth with no visible oscillations.

Let us consider the equation

(37)

It has the following solution Z0 regular at zero:
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In the region t @ 1, the general solution to Eq. (37) has
the form
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We will demonstrate in the forthcoming paper that
the zero-energy solutions to Eq. (4) satisfy the estimate

(40)

uniformly in the solution number and coordinate y.
Equation (36) can be refined; in the next order in C1, it
takes the form

(41)

The zero-energy solutions form at C1  ∞ two
equidistant sets. The parameters A and C1 of zero-
energy solutions satisfy Eq. (41). As the parameter C1
increases, the accuracy of numerical calculation of the
zero-energy points decreases rapidly. In Fig. 3, the
points correspond to zero energy. The solid lines corre-
spond to two split lines on which the amplitude of oscil-
lating terms is exponentially small in parameter C1:

(42)

The derivation of Eq. (42) will be given in the forth-
coming paper.

The zero-energy solutions likely do not stand out in
any respect among other solutions. Because the integral
of the total number of particles diverges, any weakly
collapsing solution should be cut off. At nonzero
energy, there is a region of parameters A, C, and C1
where the function ϕ has a deep minimum at a certain
point y = y* [4, 5]. It is this point which should be taken
as the cutoff point. No such point exists at zero energy.
Since the solution decreases smoothly, the cutoff
should be made at sufficiently large y values. This dras-
tically reduces the probability of formation of the col-
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−+ 3.3C1
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Fig. 3. Zero-energy points in the {6A, C1} plane; the solid
lines are determined by Eqs. (42).
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lapsing state. For the generic points {A, C, C1}, there
exists a set of parameters such that a deep minimum of
ϕ lies at y ~ 1 [4, 5]. It should be expected that these are
precisely the solutions that will be obtained in numeri-
cal calculations or for actual physical objects.
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We have examined the dynamics of a dust grain immersed in a plasma sheath. It is shown that the presence of
stochastic plasma-density variations can sustain large-amplitude dust-grain oscillations once these have been
induced by a slow plasma number density variation. Such dust oscillations have been observed in the sheath
region of a radiofrequency or dc plasma discharge at very low pressures. A physical mechanism for the
excitation and maintenance of large-amplitude grain oscillations is discussed. © 2001 MAIK “Nauka/Interpe-
riodica”.

PACS numbers: 52.27.Lw; 52.40.Hf; 52.35.-g
1 About seven years ago, several groups [1–5]
reported experimental observations of dust crystals in
radiofrequency (rf) and dc plasma discharges. It was
observed that charged dust grains may, in fact, not only
levitate in the sheath of an rf or dc plasma discharge,
but also “crystallize” due to a strong intergrain cou-
pling. In laboratory experiments on the Earth, the neg-
atively charged dust grains of a plasma crystal are sus-
pended/levitated over a negatively biased electrode
owing to a balance between the sheath electric and
gravity forces. Numerous properties [6–8] of these new
plasma states, as well as their phase transitions [9, 10],
were investigated, since the individual grains can be
visualized and followed kinetically. The presence of
gravity restricts the experiments that can be carried out
on the Earth. However, under microgravity conditions
[11], new features appear in the dust grain dynamics
and collective interactions involving heartbeat instabil-
ity and the formation of dust voids and vortices.

The dynamics of a dust particle at high pressure is
dominated by neutral drag, which damps its motion.
The situation changes when the pressure is reduced to a
few millitorr. Several experiments have recently been
carried out and careful observations have been made
under very low gas pressures [12–15]. Under low pres-
sures, the dust crystal is organized in a single layer.
Nunomura et al. [14] reported that in the 1–10 mtorr
range a reduction of the plasma number density induces
large-amplitude vertical grain oscillations. Such oscil-
lations were observed in both one- and two-dimen-
sional dust crystals [12, 13]. It was reported that the
neighboring grains do not necessarily oscillate coher-
ently; some do not oscillate at all, while others, with

1 This article was submitted by the authors in English.
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oscillation amplitude larger than a critical value
(~1 mm), drop onto the negative electrode. The typical
oscillation frequency is in the range 10–14 Hz.

When a dust grain is immersed in an electron–ion
plasma, it needs a finite time to acquire an equilibrium
charge that is defined to be the charge that results from
a zero net current onto the dust grain surface. Assuming
that the electron current is dominant, we can estimate
the charging time of a dust particle when it has reached
an equilibrium potential. Considering a plasma electron
temperature Te = 1 eV, an electron number density n0 ~
1 × 108 cm–3, and a particle radius R = 2.5 µm, we obtain
a charging time τ ~ 6 × 10–4 s [16]. The charge delay of
a dust particle can be important in the dust dynamics
and give rise to many effects that have been studied by
several authors [17, 18]. An index of the importance of
the charge delay for an oscillating dust particle is the
ratio between the characteristic grain charging time and
the grain oscillation time. In our case, this ratio is ND ~
6 × 10–3. As pointed out by Nitter et al. [19], when ND is
small the effect of the charge delay can be neglected.
Accordingly, in the following, we will not consider the
damping of dust oscillations due to the charge delay.

A negatively charged dust grain levitated over an
electrode in a plasma chamber is trapped in a potential
well. In this letter, we show that under low pressure
conditions the potential well is strongly dependent on
the plasma number density n0. Small variations in the
plasma number density (~1% n0) modify the shape of
the potential well as well as the position of its stable
equilibrium point, leading to large amplitude vertical
oscillations of the dust grains. Under appropriate cir-
cumstances, the sensitivity of the potential well to the
plasma number density increases as the plasma number
001 MAIK “Nauka/Interperiodica”
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density decreases. The lower the plasma density, the
greater the importance of small variations that can cre-
ate and sustain oscillations. If the plasma number den-
sity is decreased below a critical value (n0C) that
depends on the grain radius R and the background pres-
sure P, the grain will eventually fall onto the electrode,
its kinetic energy being larger than the potential-well
confinement. This point will be discussed further in
connection with Figs. 1 and 2.

In the following, we have examined the dynamics of
an isolated dust grain, but the results of the investigation
are expected to be applicable to linear chains and sheets.
In a 2D crystal, if we consider an electron Debye radius
.430 µm (equal to the intergrain separation distance)
and an average grain charge |Q/e| ≈ 104 (with Q and e the
grain and elementary charges, respectively), the interac-
tion energy is Uint = (Q2/R)exp(–R/ ) ~ 10–10 erg. As
will become clear, the horizontal interaction energy is
two orders of magnitude smaller than the external ver-
tical interaction energy.

We consider a one-dimensional, source-free,
weakly collisional glow discharge model [20] to
describe the unmagnetized sheath region. As the dust
particles do not contribute significantly to the total
space charge, since |Qnd/en0| ! 1, we assume an
“empty sheath” [19]. In order to focus our attention on
the importance of stochastic plasma number density
fluctuations, we have kept the pressure constant (P = 1–
20 mtorr) and no pressure oscillations are considered.

In the sheath, the electrons are thermalized and their
number density is ne = n0exp(eφs/kBTe), where kB is the
Boltzmann constant, φs is the electrostatic potential,
and Te is the electron temperature. The ions, which are
accelerated in the sheath region, experience a drag

λDe

Fig. 1. Profiles of the potential energy of a dust grain in the
sheath region: (a) curves correspond to P = 20 mtorr, and
(b) curves correspond to P = 1 mtorr. The plasma number
densities are: (a1, b1) 4 × 108 cm–3, (a2, b2) 3 × 108 cm–3,

(a3, b3) 2 × 108 cm–3, and (a4, b4) 1 × 108 cm–3. The grain
radius is R = 2.9 µm.
force Fc = miνinvi due to collisions with neutrals. Con-
sequently, an ion, on average, loses its momentum
while traveling through the sheath. Here, mi is the ion
mass, νin = nnσsv i is the ion-neutral collision frequency,
nn is the neutral gas number density, vi is the ion veloc-
ity, and σs is the momentum-transfer cross section for
collisions between ions and neutrals. Elastic and charge
exchange are the main collision mechanisms in the
sheath, and its cross section is almost constant over the
energy range of interest (1–100 eV). The cross section
for collisions between ions and neutrals, σs, is typically
5 × 10–15 cm2 [21] over the energy range that is appro-
priate for dusty plasma laboratory experiments. The
ions obey the continuity equation ∇ ·(nivi) = 0 and the
steady state equation of motion mi(vi · —vi) = –e—φs –
Fc. Here, ni is the ion number density. Introducing Pois-
son’s equation, we obtain a complete set of differential
equations describing the plasma sheath region. In the
Gaussian unit, they are

(1)

and

(2)

where z is the particle distance from the sheath edge
(z = 0). The electrode is at z = D. The ion velocity v i0 at
the sheath edge, following the Bohm criterion, is the
ion sound velocity. The electrostatic potential and the
ion acceleration are chosen to be zero at the sheath edge
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Fig. 2. Profiles of the potential energy as a function of posi-
tion: (a) curves are calculated at P = 20 mtorr, and (b) curves
at P = 1 mtorr. (a1, b1) R = 2 µm, (a2, b2) R = 2.5 µm, and
(a3, b3) R = 2.9 µm. The parameters are the same as in Fig. 1
except for the plasma number density, which is fixed at n0 =

1 × 108 cm–3.
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[22]. The latter condition leads to dφ/dx|z = 0 =

−minnσs /e.

The sheath model gives the ion and electron number
densities ni and ne, the ion velocity v i, and the electro-
static potential φs. Thus, one can calculate the forces
that act on a dust particle and that are responsible for its
equilibrium. For our parameters, the main forces are the
electrostatic force acting vertically upwards and gravity
and ion drag acting vertically downwards. Since the
damping due to charge delay is negligible, the friction
is due only to neutral drag. We consider a dust particle
of size 2.9 µm and the mass density ρ = 1.3 g/cm3.

As we already pointed out, the charge delay is so
small that the grain is always in the equilibrium poten-
tial relative to its position in the sheath. Since the grain
radius R is much smaller than the Debye radius (≈430 µm)
and the Debye length is much less than the neutral col-
lision mean free path (~10 cm), we can use the orbital
motion limited (OML) theory [23] to obtain the collec-
tion currents. For the ion current, we replace the ther-
mal velocity and energy terms in the OLM expression

by the mean speed v s = . Here,

 = v i – v  is the ion speed relative to a dust grain mov-
ing with velocity v. The ion current thus may be
regarded as a monoenergetic current if the ion velocity
is large compared to the ion thermal velocity and as a
spherically symmetric current in the opposite limit
[24]. The normalized potential y(z) ≡ e(φg – φs)/kBTe can
now be calculated equating the sum of the electron and
ion currents to zero. The electric force, considering a
conducting dust grain, can be expressed as Fe(z, v ) =
Q(z, v)E(z), where Q(z, v) = kBTeRy(z, v )/e.

In the sheath region, there is a continuous flow of
ions towards the electrode driven by the electric field.
The momentum transferred by the ions to the dust grain
consists of two components: the collection and the orbit
forces [24, 25]. It is found that the latter dominates
since the collection radius is much smaller than the
impact radius, (bπ/2). The orbit force is [25]

(3)

where  = (eQ)2/(mi )
2
 and Γ = ln(1 + ).

The maximum and minimum impact parameters, corre-
sponding to maximum and minimum deflection angles,

are bmax =  = (2ne  + ni )/(ne + ni) and bmin = rp,
respectively. Here, the ion and electron Debye radii are

 = [4πe2ni/((1/2)mi  + kBTi)]
–1/2

 and  =

(4πe2ne/kBTe)–1/2, respectively.
In the low-pressure regime, the molecular mean free

path (l ~ 10 cm) is larger than the grain dimension (i.e.,
Kn = l/R @ 1). In such a “free-molecular regime,” taking
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into consideration that the dust mass md is 12 orders of
magnitude larger than the gas molecules, the drag force
for specular reflection is [24, 26]

where  =  is the neutral thermal speed.

The total force Ft that acts on a dust particle is Ft =

Fe + Fg + Fio + Fnd, where Fg = πR3ρg and g represents

gravity. The potential energy obtained for zero grain

speed Ut(z) =  results from the total force

as a function of z, and its shape and equilibrium points
are strongly dependent on the discharge parameters.

The equations of motion for a dust grain, in normal-
ized units, are

(4)

and

(5)

In Eqs. (4) and (5), although the same symbols are used,
they are to be understood as normalized quantities.
Thus, z is normalized to the ion Debye length in the

plasma, the time is normalized to τ0 = , the
total force Ft is normalized to (kBTe/e)2, and the velocity

is normalized to v 0 = v thi = .

Figure 1 shows the potential energy U(z) for differ-
ent plasma densities (n0 = 4 × 108–3 × 108 – 2 × 108–1 ×
108 cm–3) at two different pressures P = 1 mtorr and P =
20 mtorr. The grain radius is R = 2.9 µm. The argon
plasma parameters are Te = 1 eV, Ti = 0.05 eV, and Tn =
0.05 eV. At P = 1 mtorr, the potential energy depends
strongly on the plasma density. As the plasma density
decreases, the potential well becomes wider and the
wall on electrode side becomes lower. When the plasma
density is n0 = 1 × 108 cm–3, the confining potential
almost disappears. Below the critical plasma number
density n0c(P, R) = 0.96 × 108 cm–3, the grain confine-
ment vanishes and the particle falls onto the electrode.
It is important to observe that the energy a particle
would gain from a jump in the plasma number density
from 2 × 108 cm–3 to 1 × 108 cm–3 is 1.2 × 10–8 erg and
is 10 times larger than the energy that the particle would
gain with the same jump but from 4 × 108 cm–3 to 3 ×
108 cm–3. Further, even a small plasma density fluctua-
tion (~0.1%) near 1 × 108 cm–3 is able to offset the neu-
tral damping. As an example, we can consider a grain
velocity of v  = 4 cm/s (conservative hypothesis) at
1 mtorr pressure (with nn = 1.16 × 1013 cm–3). The neu-
tral drag force resulting from these values is Fnd = 4.3 ×
10−11 dyne. If we consider an average 0.1% plasma
number density fluctuation near n0 = 1 × 108 cm–3 the

Fnd
v( ) 8/3( ) 2πrp

2 nnkBTn v /v thn
( ),–=

v thn
Tn/mn

4
3
---

z'Ft z'( )d
0

z∫–
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vertical energy gain would be ~1.2 × 10–11 erg. Consid-
ering an oscillation amplitude of 1 mm, the resulting
force would be ~1.2 × 10–10 dyne, more than enough to
offset the neutral damping and sustain the oscillations.
From Fig. 1 (with P = 1 mtorr), it can be argued that
when a grain gains enough energy, it can fall onto the
electrode. In other words, if the amplitude of the oscil-
lations is larger than a critical value, the grain simply
falls. On the other hand, when the pressure is higher
(viz. P = 20 mtorr), the neutral friction is large and the
energy gain for the same step described above (at P =
1 mtorr) is five times smaller. In the high-pressure
regimes, the stochastic plasma number density fluctua-
tions described in this letter do not influence the grain
dynamics.

In Fig. 2, the potential energy profiles are repre-
sented as a function of position for different grain radii
(R = 2.9 – 2.5 – 2 µm) and for different values of pres-
sures (P = 1 mtorr and P = 20 mtorr). The parameters
are the same as in Fig. 1, except for the plasma number
density, which is now n0 = 1 × 108 cm–3. Different
grains have different equilibrium positions, and the
heavier the grain, the lower the electrode side of the
potential well. Therefore, the influence of plasma num-
ber density variations changes with the grain radius,
with the light particles being more stable.

In a real experiment, plasma density fluctuations are
always present. In our numerical simulation, the ampli-
tude of the fluctuation is random with a maximum value
of 2% n0. The plasma density variations have a random
time frequency with a maximum time step of 0.3 s.
Since the fluctuations are random in amplitude and fre-
quency, they can actually either excite or damp the dust
oscillations. Thus, some grains will gain energy and
will have a large-amplitude oscillation, some will stand
still, and others may actually fall onto the electrode.

Figure 3 shows the position of a dust grain as a func-
tion of time for a particle of radius R = 2.9 µm

Fig. 3. Position of an oscillating dust grain in the sheath as
a function of time. The parameters are the same as in Fig. 1
except for P = 1 mtorr. The plasma number density
decreases from 1.5 × 108 cm–3 to 0.96 × 108 cm–3 over a
time interval of 23 s.
immersed in a plasma sheath at a constant background
pressure P = 1 mtorr. The simulation stops when the
grain falls onto the electrode. The plasma number den-
sity decreases from n0 = 1.5 × 108 cm–3 to n0 = 0.96 ×
108 cm–3. We presume that stochastic density fluctua-
tions are always present in the plasma sheath [8], and in
order to have a plasma number density reduction, we
impose negative fluctuations 55% of the time. This is
done to simulate experimental procedures whereby the
plasma number density is decreased very slowly. At the
beginning of the simulation, the plasma number density
oscillates around a quasi fixed value (at P = 1.5 mtorr).
As the plasma number density is slowly decreased on
average, at some point the grain starts to oscillate with
a high amplitude displaying a threshold behavior.
For the simulation run presented in Fig. 3, the grain
oscillation amplitude suddenly increases after roughly
15 seconds, corresponding to a plasma density of 1.2 ×
108 cm–3.

To summarize, we have presented a novel mecha-
nism that explains the salient features of dust grain
oscillations which are observed in several dusty plasma
experiments performed at low pressures [12–15]. The
grain gains energy from the plasma number density
reduction and stochastic plasma density fluctuations
which are always present, but they are relevant only in
the 1–10 mtorr pressure range when the neutral drag is
weak. Depending on the final value of the plasma num-
ber density, either large amplitude dust grain oscilla-
tions appear, which are subsequently sustained due to
random density fluctuations, or the grains actually fall
onto the electrode. The dust oscillation frequencies that
result from our simulation (9–11 Hz) are comparable with
the frequencies that are observed experimentally [14].
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New Magnetically Ordered CoBO3 Crystal
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Crystals of a new CoBO3 compound were synthesized from a solution in melt. According to the X-ray diffrac-
tion data, CoBO3 crystallizes in the calcite structure with lattice parameters aH = 4.631 ± 0.005, cH = 14.51 ±
0.01 Å. Measurements on SQUID and vibrating-coil magnetometers suggested that CoBO3 is a magnetically
ordered crystal with a saturation magnetization of 50 emu/g in the basal plane at 4.2 K and a Néel temperature
of 53 K. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.50.Ee; 75.60.Ej
In recent years, antiferromagnetic 3D metal oxides
have attracted widespread attention as Mott–Hubbard
insulators with strong electron correlation. Upon dop-
ing, copper oxides become high-temperature supercon-
ductors, while manganese oxides exhibit the colossal
magnetoresistance effect. A series of 3D metal borates
MBO3 (M = Ti, V, Cr, Fe) provide an example of one
more class of isostructural oxides [1] with strong elec-
tron correlation, among which FeBO3 is the most famil-
iar, and its solid solutions V1 – xFexBO3 were found to
undergo concentration transition of the metal–insulator
type [2]. We developed a method for synthesizing a new
member of this crystal family—CoBO3. Up to now, the
possibility of this compound existing has seemed to be

Fig. 1. Field dependences of the magnetization of CoBO3
crystals at T = 4.2 K.
0021-3640/01/7402- $21.00 © 20082
highly conjectural. However, our systematic work on
the preparation of compounds containing Co3+ ions and
stable at relatively high temperatures provided a way of
synthesizing CoBO3 crystals from a solution in melt.
The crystals were synthesized using components of the
Na3[Co(NO2)6] · (1/2)H2O–Na2B4O7 · 10H2O–B2O3–
PbO–PbF2 system and obtained as black plates with a
diameter up to 0.5 mm.

This work reports the results of studying the crystal
structure and magnetic properties of CoBO3.

To identify the compound, a plate-shaped crystal of
size about 0.3 mm was placed in a KM-4 (KUMA-dif-
fraction) X-ray diffractometer. The reflection intensi-
ties and Bragg angles suggested that the parameters of
this compound were similar to those of crystal borates
TiBO3, VBO3, CrBO3 [1], and GaBO3 [3]. One could

Fig. 2. Temperature dependences of the magnetization of
CoBO3 crystals.
001 MAIK “Nauka/Interperiodica”
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thus infer that the sample under study had a CoBO3
composition and crystallized in the calcite structure
with lattice parameters aH = 4.631 ± 0.005 and cH =

14.51 ± 0.01 Å (space group ).

The magnetic measurements were performed on
SQUID and vibrating-coil magnetometers over the
temperature range 4.2–77 K in fields up to 60 kOe for
crystals with a diameter ranging from 0.2 to 0.5 mm.
The field dependences of the magnetization of the
CoBO3 samples at a temperature of 4.2 K are shown in
Fig. 1. The temperature dependence of the magnetiza-
tion is presented in Fig. 2. The squares correspond to
H = 10 kOe, and the triangles are for H = 500 Oe. The
circles are the data for H = 500 Oe.

These data suggest that CoBO3 is an antiferromag-
net with weak ferromagnetism and the magnetic
moment lying in the basal plane. The extrapolation of
magnetization gives TN = 53 K.

For comparison, we present the data on σ for other
weakly ferromagnetic crystals at T = 0 K: 4 emu/g in
FeBO3 [4] and 12 emu/g in CoCO3 [5]. These data give

D3d
6
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evidence for the presence of strong anisotropic interac-
tions in cobalt borate.

We are grateful to A.I. Pankrats for discussion of the
results. This work was supported by the Russian Foun-
dation for Basic Research, project no. 99-02-17405.
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The evolution of surface photoemission spectra was investigated for a Cs/W(110) system with metastable Cs
coatings larger than a monolayer. It is demonstrated that 2D plasmons can be detected by threshold photoemis-
sion spectroscopy. Three photoemission peaks were observed, whose dependence on the Cs adsorption dose
showed a complicated behavior. The peaks may be due to the photoinduced excitation of a plasmon in quasi-
2D Cs clusters, a surface Cs plasmon, or an interface Cs–W plasmon. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.20.Mf; 79.60.Dp
Interest in studying collective electron oscillations
in thin layers of alkali metals is caused by the fact that
these objects serve as an ideal model for the theoretical
description of many-body effects in the solid state.
Nevertheless, the problem of experimental search for
and identification of various quasi-two-dimensional
(2D) collective modes is still far from being solved
[1−6]. Moreover, the studies of metal nanoclusters have
become particularly topical in recent years in connec-
tion with the design of nanostructures and quantum
dots on the superconductor surfaces. That is why the
elucidation of the nature of plasma modes and of the
dependence of their frequencies on the coating thick-
ness and substrate material seems to be important for
the understanding of the processes of formation of
ultrathin metal coatings.

The plasma 2D oscillations in the systems with
cesium coatings were observed only for the Ag [1], Al
[3], GaAs [7, 8], and Si [9] substrates. In [1, 3], three
spectral features (2.0, 2.4, and 2.9 eV) were observed
for the Cs coatings consisting of ~10 monolayers.
These features were assigned to the surface multipolar,
surface Cs, and bulk Cs plasmons, respectively. The
plasmon modes of different frequencies were observed
for the cesium coatings on semiconductor surfaces. For
instance, the features observed upon the deposition of
two Cs monolayers on the Si(100)2x1 surface were
assigned in [9] to an interface Cs–Si plasmon
(~1.0 eV), a surface Cs plasmon (~2.2 eV), and a bulk
Cs plasmon (~3.2 eV). In [7, 8], the peaks observed in
the electron energy loss spectra of a Cs/GaAs system
were assigned to the plasma oscillations in Cs clusters.
Nevertheless, the available experimental data fall short
of being sufficient to elucidate the nature of plasma
oscillations and to determine the role of the substrate
and the regularities in the formation of the 2D plasmon
spectra. Besides, 2D plasmons in the cesium coatings
on the W surface have not been studied so far.
0021-3640/01/7402- $21.00 © 20084
The electron energy loss method is most popular in
studying the collective electronic excitations in metals
[2, 3, 7, 8]. However, the experimental results obtained
by this method are hard to interpret [4]. In two recent
studies [4, 5], ultraviolet photoemission spectroscopy
was used instead. It was demonstrated that this method
offers considerable advantages in the interpretation of
the experimental results and allows the surface plasma
modes to be excited by a p-polarized radiation.

We have suggested a new method for studying
2D plasmons in thin metal coatings with the use of a
p-polarized excitation in the threshold photoemission
region. This method is an elaboration of threshold pho-
toemission spectroscopy, which possesses higher sur-
face sensitivity and energy resolution (<0.02 eV) in
studying surface states, as compared to traditional
ultraviolet photoemission spectroscopy. Threshold
photoemission spectroscopy was used to study the sur-
face states induced by the local interaction of the
Cs adatoms with metal [10, 11] and semiconductor
[12, 13] surfaces.

In this work, the surface photoemission spectra were
studied in detail for the Cs/W(110) system in different
adsorption regimes. The so-called dynamic deposition
regime was used in order to obtain metastable Cs coat-
ings of more than one monolayer. With an increase in
the dose of adsorbed Cs, a band corresponding to the
local interaction of the Cs adatoms with the W(110)
surface disappears from the spectra and three photoe-
mission peaks successively appear at ~2.02, ~2.11, and
~2.40 eV. The spectrum modification indicates that
these peaks are caused by the excitation of plasma
oscillations in quasi-2D Cs clusters and excitation of
the interface Cs–W and surface Cs plasmons.

The experiment was carried out in situ under high
vacuum P < 1 × 10–10 torr at room temperature. Atomi-
cally pure cesium was deposited on the W(110) surface
from the standard source. The Cs flow intensity was
001 MAIK “Nauka/Interperiodica”
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determined by the method used in [12, 13]. This
method allowed the estimation of the cesium dose DCs
deposited on the sample in a given time. The electronic
properties were studied by threshold photoemission
spectroscopy [10–13]. The photoemission was excited
by the s- and p-polarized light incident on the sample at
an angle of 45°. The surface photoemission spectra
were measured as a ratio Ip(hν)/Is(hν), where Ip(hν) and
Is(hν) are the photoemission current spectra excited by
the p- and s-polarized light, respectively. The photoe-
mission currents were measured in the range 10–8–10–13 A.
The error of measuring the Ip/Is spectra did not exceed
10%.

Figure 1 shows the surface photoemission spectra
recorded in the step-by-step regime for Θ = 0.5 ML
(ML = monolayer) and the dynamic regime for differ-
ent Cs doses deposited on the W(110) surface. The cov-
erage Θ = 5.5 × 1014 atom/cm2 is taken as a monolayer
(Θ = 1 ML) for the Cs coatings on metal surfaces [14].
In the commonly accepted step-by-step regime, the
source is switched off after the deposition of a certain
dose, whereupon the spectra are recorded. The Cs-cov-
erage degree at the W surface can be determined only
for Θ < 0.95 ML (the cesium attachment coefficient is
unity in this case). For coverages Θ > 0.95 ML, the
Cs attachment coefficient drops drastically (the corre-
sponding value was not determined), for which reason
the higher coverages necessitate the use of special
adsorption regimes, e.g., low-temperature adsorption
[14]. We have proposed to use a continuous, so-called
dynamic, adsorption regime, for which the Cs vapor
pressure prevents the Cs desorption from the surface in
the course of deposition. In this regime, the spectra for
doses DCs > 5.5 × 1014 atom/cm2 are recorded directly
during the cesium deposition. The recording time pro-
vides an error of ~10% in the dose determination.

In the spectra presented in Fig. 1, three photoemis-
sion maxima A, B, and P1 at energies, respectively,
1.78, 2.02, and 2.35 eV appear with increasing Cs dose.
Peak A (Fig. 1a) is observed only in the step-by-step
regime and corresponds to the photoemission from the
surface Cs band, which was studied previously in [10].
This peak is due to the local interaction of the
Cs adatoms with the tungsten surface. The peak inten-
sity drops sharply with increasing dose, and it eventu-
ally disappears from the spectrum (Figs. 1b, 1c). Simul-
taneously with the modification of peak A, a new broad
(∆E ~ 0.3 eV) peak B appears in the spectrum (Fig. 1b)
and dominates up to DCs ≈ 6.5 × 1014 atom/cm2

(Fig. 1c). The peak energy does not change with dose.
A further increase in the dose results in the disappear-
ance of peak B (Fig. 2b). Such a behavior enables one
to conclude that peak B is due to the excitation of
plasma oscillations in two-dimensional cesium clus-
ters. The fact that peak B appears in the spectrum at
approximately the same coverages at which the inten-
sity of peak A decreases sharply and then disappears
counts in favor of this interpretation. Therefore, the
JETP LETTERS      Vol. 74      No. 2      2001
appearance of peak B may be explained by the forma-
tion of close-packed 2D clusters from the individual Cs
adatoms, which locally interacted with the W(110) sur-
face at lower coverages. The clusters are formed
because at a certain coverage degree the dipole–dipole
repulsion between the polarized Cs adatoms changes to
attraction as a result of the depolarization effects. The
fact that the position of peak B does not change, while
its intensity increases in a certain range of doses, indi-
cates that the area occupied by the Cs clusters increases
and that the density of Cs atoms in the clusters is virtu-
ally constant. For a coverage slightly higher than one
monolayer, the interaction between the clusters
becomes comparable with the interaction between ada-
toms in the cluster, resulting in the destruction of the Cs
clusters and formation of a continuous coating.

To elucidate the origin of peak P1, one should trace
the evolution of the spectra shown in Figs. 1 and 2.
Peak P1 appears at DCs = 6.5 × 1014 atom/cm2 and has a
low intensity up to the critical dose DCs = (9–10) ×

Fig. 1. Surface photoemission spectra Ip/Is for different
Cs doses. (a) Step-by-step adsorption regime: 4.2 ×
1014 atom/cm2 (Θ = 0.8 ML); (b, c) Dynamic adsorption
regime: (b) 5.8 × 1014 and (c) 6.5 × 1014 atom/cm2.

A

A B
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1014 atom/cm2, after which its intensity increases jump-
wise (Fig. 2b) and then remains virtually unchanged
(Figs. 2b, 2c). Note that, contrary to peak B, the posi-
tion of peak P1 is not fixed. As the dose increases, it
shifts to higher energies from 2.35 to 2.44 eV, appar-
ently, because of the increase in electron density in the
Cs coating. The observed values are close to the ener-
gies obtained previously for a surface Cs plasmon on
the Si and Al substrates at Cs coverages higher than
2 ML [1, 3, 9]. Therefore, the energy of a surface
Cs plasmon is influenced by both the nature of substrate
and the adatom concentration. An important feature in
the behavior of the Cs plasmon peak is that its intensity
increases jumpwise at a dose corresponding to the dis-
appearance of the Cs clusters. It is conceivable that this
phenomenon is due to the formation of a continuous
cesium coating. The presence of a surface Cs plasmon at
smaller doses, at which the Cs clusters are as yet not
observed, may be due to the percolation effect.

Peak C is observed in a rather narrow range of doses
DCs = (8–13) × 1014 atom/cm2 (Figs. 2a, 2b). It is seen
that this peak undergoes an energy shift analogous to

Fig. 2. Surface photoemission spectra Ip/Is for different

Cs doses. Dynamic adsorption regime: (a) 8.0 × 1014,
(b) 1.1 × 1015, and (c) 1.3 × 1015 atom/cm2.

B

B

C P1

P1

P1
that of the Cs plasmon peak, indicating that the electron
density increases. One can see a certain correlation
between the parameters and behavior of peak C and
peak P1 of the surface Cs plasmon. We assume that
peak C is due to the electron density node at the inter-
face between the substrate and Cs coating, i.e., to the
interface Cs–W plasmons. Peak C disappears at large
adsorption doses, likely, because the metastable Cs
coating of 2–3 ML screens the plasmon excitation at the
Cs–W interface.

Thus, it has been found that, before the formation of
a continuous Cs coating, the Cs adsorption proceeds
through the step of formation of the Cs clusters of a cer-
tain size. It is established that the electron density pro-
file in the Cs/W system has at least two nodes with large
amplitude that is sufficient for the excitation of a sur-
face Cs plasmon and an interface Cs–W plasmon. One
can conclude on the basis of the data obtained that
threshold photoemission spectroscopy is an effective
tool for studying the 2D plasma modes.

This work was supported by the Russian Foundation
for Basic Research (project no. 01-02-16802) and the
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nologies of the Russian Federation (project no. 1-107).

REFERENCES
1. A. Liebsch, G. Hincelin, and T. Lopez-Rios, Phys. Rev.

B 41, 10463 (1990).
2. K.-D. Tsuei, E. W. Plummer, A. Liebsch, et al., Phys.

Rev. Lett. 64, 44 (1990).
3. K.-D. Tsuei, E. W. Plummer, et al., Surf. Sci. 247, 302

(1991).
4. S. R. Barman, K. Horn, P. Haberle, et al., Phys. Rev. B

57, 6662 (1998).
5. D. Claesson, S.-A. Lindgren, L. Wallden, et al., Phys.

Rev. B 82, 1740 (1999).
6. A. Liebsch, Electronic Excitations at Metal Surfaces

(Plenum, New York, 1997).
7. U. del Pennino, R. Compano, B. Salvarani, et al., Surf.

Sci. 409, 258 (1998).
8. O. E. Tereshchenko, V. L. Al’perovich, A. S. Terekhov,

A. N. Litvinov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 70, 537
(1999) [JETP Lett. 70, 550 (1999)].

9. Y.-C. Chao, L. S. O. Iohasson, and R. I. G. Uhrberg,
Phys. Rev. B 56, 15446 (1997).

10. G. V. Benemanskaya and M. N. Lapushkin, Pis’ma Zh.
Éksp. Teor. Fiz. 45, 423 (1987) [JETP Lett. 45, 540
(1987)].

11. A. Liebsh, G. V. Benemanskaya, and M. N. Lapushkin,
Surf. Sci. 302, 303 (1994).

12. G. V. Benemanskaya, D. V. Dianeka, and G. E. Frank-
Kamenetskaya, Surf. Rev. Lett. 5, 91 (1998).

13. G. V. Benemanskaya, V. P. Evtikhiev, and G. É. Frank-
Kamenetskaya, Fiz. Tverd. Tela (St. Petersburg) 42, 356
(2000) [Phys. Solid State 42, 366 (2000)].

14. A. G. Fedorus and A. G. Naumovets, Surf. Sci. 21, 426
(1970).

Translated by V. Sakun
JETP LETTERS      Vol. 74      No. 2      2001



  

JETP Letters, Vol. 74, No. 2, 2001, pp. 87–90. From Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 74, No. 2, 2001, pp. 92–95.
Original English Text Copyright © 2001 by Ponomarenko, Averin.

                                                                                                                         
Two-Terminal Conductance of a Fractional Quantum Hall Edge1 
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We have found a solution to a model of tunneling between a multichannel Fermi liquid reservoir and an edge
of the principal fractional quantum Hall liquid (FQHL) in the strong-coupling limit. The solution explains how
the chiral edge propagation makes the universal two-terminal conductance of the FQHL fractionally quantized
and different from that of a 1D Tomonaga–Luttinger liquid wire, where a similar model, but preserving the time
reversal symmetry, predicts unsuppressed free-electron conductance. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.10.Pm; 73.43.Jn
1 Low-energy transport through an incompressible
quantum Hall liquid with gapped bulk excitations is
carried by gapless edge modes [1, 2]. For principal frac-
tional quantum Hall liquid (FQHL) of the filling factor
ν = 1/odd, these modes are described as a single branch
of a chiral Luttinger liquid (χLL) [3]. In presence of the
right and left chiral edges, the model of the FQHL
transport [4] appears to be equivalent to that of a metal-
lic phase of a 1D interacting electron gas [5] known as
a Tomonaga–Luttinger liquid (TLL) [6, 7]. To describe
the two-terminal transport experiments, the external
reservoirs have to be added to the model [2, 8], so that
the full transport process includes transformation of the
reservoir electrons into the FQHL/TLL quasiparticles
in the junctions. The transformation process makes the
two-terminal conductance of both the TLL wire [9, 10]
and the narrow FQHL junctions [11, 12] equal to the
free-electron conductance σ0. The standard experimen-
tal observation, however, is that the two-terminal
FQHL conductance is equal to the Hall conductivity
νσ0 (see, e.g., [13]) but not σ0, a fact that implies equil-
ibration between the chemical potentials of the reser-
voirs and the outgoing edges [14]. This problem was
recently studied [12, 15] for the junction modeled as a
sequence of pointlike contacts between the edge and
different channels of a multichannel Fermi liquid reser-
voir under an additional assumption [12, 15] of sup-
pressed quantum interference between electron tunnel-
ing at different contacts. The purpose of this work is to
construct a quantum solution of the model of tunneling
between a multichannel Fermi liquid reservoir and the
χLL edge. Our solution shows how both the standard
fractional quantization of the FQHL conductance and
the free-electron conductance can be obtained not from
the additional assumption of decoherence but from the
appropriate account of different patterns of quantum
interference depending on the junction structure. The

1 This article was submitted by the authors in English.
0021-3640/01/7402- $21.00 © 20087
solution explains (in obvious agreement with experi-
ment) the difference between the universal two-termi-
nal conductance νσ0 of the 1D FQHL edge and conduc-
tance σ0 of the 1D TLL wire.

The model we consider represents n scattering chan-
nels of the spinless FL reservoir as free chiral fermions.
Tunneling from the channels (labeled by j = 1, …, n)
into the edge (labeled by 0) is assumed to be localized
on the scale of magnetic length at the points xj along the
edge, where xj < xi for 1 ≤ i < j ≤ n. It is described by a
tunnel Lagrangian:

(1)

where Uj are chosen real and positive. Bosonization
expresses the operators of free electrons ψj(x, t) =

(2πα)–1/2ξj  in the reservoir channels and the
operator of electrons propagating along the edge ψ0 =

(2πα)–1/2ξ0  through their associate bosonic
fields φl, the Majorana fermions ξl accounting for their
mutual statistics, and a common factor 1/α denoting
momentum cutoff of the edge excitations. Since the
spatial dynamics of the reservoir channels (l > 0) does
not affect the tunneling currents, velocities of these
channels are irrelevant, and we take them equal to the
velocity v  of the edge excitations. Free dynamics of the
bosonic fields is governed then by the Lagrangian +O =

/2, where the differential operator is

(2)

The full Lagrangian + = +O + +ξ + +tunn also includes
an additional kinematic part +ξ = (1/4)ξ∂tξ describing
a pure statistical dynamics of the Majorana fermions

+tunn U jψ0
+ x j t,( )ψ j x j t,( ) h.c.+[ ] ,

j 1=

n

∑=

e
iφj x t,( )

e
iφ0 x t,( )/ ν

φlK̂
1– φl( )

l 0=
n∑

K̂
1– φl x t,( ) 1

2π
------∂x ∂t v ∂x+( )φl x t,( ).=
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(time-ordering). A finite voltage applied to the reservoir
is accounted for by the opposite-sign shift µ of the elec-
trochemical potential of the edge, which can be intro-
duced by an additional nonequilibrium part of the

Lagrangian +V = /2π φ0(x, t)∂xV(x), where V(x)

depends on the modeled physics and in our case can be
chosen as follows. In the absence of tunneling, when
the evolution of the edge is governed by the retarded
Green’s function K(x, t) = πθ(t)  of the

operator  in Eq. (2), the Lagrangian +V shifts φ0
and results in its nonzero average

satisfying

(3)

This equation shows that +V describes two physical
processes. The first is current injection into the edge
due to V(x): ∂tρ0 + ∂x j0 = –ν∂V(x)/2π (chiral anomaly),

where the chiral edge density ρ0 = ∂xφ0/2π is related
to the current as j0 = vρ0. The second is an additional
shift of electrochemical potential of the edge equal to
[V(x) – /2]. By choosing V(x) =

−µ , with yX  ∞, we reduce the whole
effect to the shift of the edge potential relative to the
reservoir by, in general, time-dependent potential µ(t)
without producing any additional edge current at x < yX.
With this choice, in presence of tunneling, the edge cur-
rent caused by +V is just the opposite of the total tun-
neling current.

We start by considering the strong coupling limit of
a one-point contact (n = 1). The tunneling Lagrangian
reduces to

and in the limit U1  ∞ fixes the argument of the cos-

term at one of the cosine maxima, e.g., φ0(x1, t)/  =
φ1(x1, t). Then, introducing the vector φ(x, t) = [φ0, φ1]T,

one can find its two-component average (x, t) ≡
〈φ(x, t)〉  as

(4)

where –2πig/ω is the first column of the (2 × 2) matrix
Green’s function. The two components g0, 1(x) of the
function g do not depend on yX  ∞ for x < yX, and
satisfy the homogeneous differential equation (2) at
x ≠ x1, and therefore can be written as g0, 1 = a0, 1 +
b0, 1exp[–iωx/v]. The coefficients a and b take different

ν xd∫

x v t–( )sgn

K̂
1–

φ0 x t,( ) ν/2π( ) t ' yK x y– t t '–,( )∂yV y( )d∫d∫–=

∂tφ0– v ∂xφ0= ν V x( ) 1
2
---– V ∞±( )

±
∑ .+

ν

V ∞±( )±∑
x yX–( )sgn

+tunn U1/2πα φ0 x1 t,( )/ ν φ1–( ),cos=

ν

φ

φ x t,( ) i
ν

π
------- ωd

ω
-------e iωt– g x ω,( )µ ω( ),∫–=
values ,  for x smaller and larger than x1 (℘
denotes < or >, respectively). They are related among
themselves by four conditions: continuity of g0 and g1;

continuity of the current flow  +  =  +

; and maximum of the tunneling term g0(x1) –

(x1) = 0. The solution g is a linear combination of
the four independent functions

which are constructed to satisfy these conditions. Since
propagation of tunneling electrons are governed by the
free matrix Green’s function which is diagonal and
equal to K × 1, where

(5)

we can find more restrictions on the coefficients:  =

0,  = ,  = 1/2 – / . They uniquely spec-

ify g(x, ω) = [ /2 – f >]/(1 + ν).

The currents follow then from Eq. (4) as

The tunneling conductance is equal to G1 = 2νσ0/(1 + ν)
in agreement with the result of application [12] of the
chirally symmetric solution developed for a point scat-
terer in TLL [5].

To extend this approach to the multichannel contact,
we notice that, although the statistical factors ±ξ0ξj

attributed to annihilation/creation of electrons in the jth
channel can not be ignored for more than one j
involved, they can be replaced [7] by the exponents

exp{±i } of the zero-energy bosonic fields satisfy-

ing [ηi , ηj] = iπ (i – j) with an odd integer γ that
specifies a phase branch of the fermionic statistics.
These fields can be readily constructed from the stan-
dard creation and annihilation operators of n – 1 inde-
pendent zero-energy bosonic modes. Since any nonva-
nishing term of the perturbative expansion in +tunn con-
tains ± exponents in pairs, a proper interchange cancels
all exponents and leaves only the statistical sign, the
same one would get directly from the Majorana fermi-
ons. The substitution of the Majorana fermions by

a0 1,
℘ b0 1,

℘

νb0
< b1

< νb0
>

b1
>

νg1

f c
– ν 1,[ ] T

= , f b
– eiωx/v= f c

–,

f 1
,〈 〉 θ x x1–( )+−( ) eiωx/v 1–( ) 1 ν–,[ ] T

,=

K x y– ω,( ) 2πi
ω

-------- 1
2
--- θ x y–( ) e

iω x y–( )–
v

--------------------------

1– 
 + ,–=

b0 1,
<

a1
< a1

>– a0
℘ a1

℘ ν

ν f c
–

j1 x t,( ) j0– 2ν
1 ν+
------------= = θ x x1–( )σ0µ t x x1–[ ] /v–( ).

γη j

sgn
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bosonic modes transforms +tunn into

(6)

Equation (6) possesses the initial commutation symme-
try between the different parts of the tunneling
Lagrangian, since permutation of +i and +j results in
the appearance of the phase factors exp{±iπ (i –
j)(γ – 1/ν)} equal to 1 for any odd γ. As all Uj in Eq. (6)
tend to ∞, all the cosine arguments are simultaneously
fixed. One can notice, however, that this strong-cou-
pling limit depends on the choice of γ. Indeed, in this
limit, each +j can be approximated as

/(2πα)(φ0(x1, t)/  – φj – ηj)2 with sufficiently

large , the form that clearly puts γ (and not exponent
of γ) in the commutator between +i and +j. Moreover,
if |xi – xj | @ α for all i, j, there is only one choice of γ,
γ = 1/ν, which does not violate the commutativity of
limiting forms of +j. Relevance of the different choices
of γ in the strong-coupling limits can be understood
from their effect on the energy of the system [16]. Here,
however, we chose a more heuristic physical argument.
We prove that only the symmetric strong-coupling limit
can be relevant, since all other choices of γ lead to solu-
tions which do not satisfy the condition of causality.

To show this, we calculate the current flow in the
strong-coupling limit of Eq. (6) keeping γ as a free
parameter. The calculation generalizes the one for the

single-point contact. The average (x, t) in Eq. (4)
becomes the (n + 1)-component vector 〈[φ0, …, φj +

ηj, …]T 〉 , and –2πig/ω is the first column of the cor-
responding (n + 1) × (n + 1) matrix Green’s function.
The coefficients aj, bj,  j = 1 – n take different values

,  for x smaller and larger than xj, where ℘
denotes < and > as before. The edge channel coeffi-
cients a0, b0 take (n + 1) different values, changing at
each tunneling contact x = xj in a way that relates them
to aj, bj by the four matching conditions derived above

for the single-contact case. We denote by  and 
their values for x smaller than xn (℘  = <) and larger than
x1 (℘  = >). A set of 2(n + 1) independent vector functions
satisfying all these conditions may be chosen as

+tunn + j

j 1=

n

∑≡

=  
U j

2πα
----------

φ0 x1 t,( )
ν

-------------------- φj– γη j–
 
 
 

.cos∑

sgn

U j– ν γ
U j

φ

γ

a j
℘ b j

℘

a0
℘ b0

℘

f c
– ν 1 1 1 …, , , ,[ ]=

T
, f b

– eiωx/v f c
–,=

f j eiωx/v e
iωx j/v–( )e j,=
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where a vector el has the only nonzero lth component

equal to 1. Since all coefficients  of the function g are
zero, it can be expanded in this basis as

(7)

with (n + 1) unknown coefficients sl. The nonzero sj

lead to finite jumps in aj and bj at x = xj and, therefore,

to the nonvanishing  = –sj . Then, in accor-
dance with Eq. (4), the reservoir channel currents aris-

ing at xj can be found as jj(ω, x) = 2 µσ0 θ(x –
xj)eiωx/v. Jumps in the coefficients aj and bj are caused by
the charge tunneling at the contact points xj, with fur-
ther propagation of charge governed by the free
retarded Green’s function. This means that this function
determines both the continuous parts of the a, b coeffi-
cients and the relations between their discontinuous
parts and the coefficients sj. The Green’s function is a
(n + 1) × (n + 1) matrix and can be written as K × 1 –
γπiC/ω, where C is an antisymmetric matrix with all
elements above the diagonal, except the first row, equal

to 1. From this form, one can find that  = 0 [a fact
already used in Eq. (7)] and that the coefficients al are

related to sj. In particular,  = 1/2 + /2 ,

 = –sj/2 + γ/2 (j – p)sp. From comparison
of these relations to those obtained by direct substitu-
tion of the f vectors into Eq. (7), we get n equations:

(8)

where p = 1 – (n – 1). Equations (8) allow us to deter-
mine all unknown coefficients sj.

For the two-point contact, these equations reduce to

(9)

f j
> e0/ ν e j–( )θ x x j–( ) e

iω x x j–( )/v
1–( )=

+ el e
iω xl x j–( )/v

1–( )/ν ,
l 1=

j 1–

∑

bl
<

g sc f c
–= s j f j

>

j 1=

n

∑+

b j
> e

iωx j/v–

ν b j
>

bl
<

a0
< spp 1=

n∑ ν

a j
< sgn

p j≠∑

ν
1 ν+
------------ sn+

1 γν–
1 ν+
-------------- si,

1

n 1–

∑–=

sp sn=
2s j

1 γ+( )
----------------- 1 e

iω xp x j–( )/v
–( )/ν γ–[ ] ,

j p 1+=

n

∑+

s1 1 γ–
2
ν
--- 1 e

iω x1 x2–( )/v
–[ ]+ 

  s2

1 γ+
------------,=

s2 –
ν3/2 1 γ+( )

2R
-------------------------,=

R 1 ν 1 γ–( ) ν2

2
----- 1 γ2+( ) 1 νγ–( )e

iω x1 x2–( )/v
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The part of the denominator R proportional to (1 – νγ)
signals the appearance of an interference structure in
the currents. Substituting s1, 2 from Eqs. (9) into

j0(x, t) = , one can see that,

indeed, the time dependence of charge propagation
along the edge exhibits multiple backscattering at x2
and x1. A charge wave started by the tunneling into the
edge propagates from the point x2 to x1 with the velocity
v  and then instantly recoils back to x2 from x1 with a
finite reflection coefficient proportional to (1 – νγ). The
formal possibility of the charge propagation with infi-
nite velocity in the direction opposite to the edge chiral-
ity is a combined effect of x-independent solutions of

the operator  from Eq. (2) and the matching condi-
tions at the tunneling points. However, the instant
“counterpropagation” violates causality of the edge
response to external perturbations and cannot appear in
the final physical results. This makes γ = 1/ν the only
relevant strong-coupling limit for x1 – x2 @ α and clar-
ifies the consequences of breaking the commutational
symmetry of the initial tunneling Lagrangian for other
choices of γ.

When the two tunneling points virtually coincide,
x1 – x2 ≤ α, the Lagrangian symmetry is preserved for
any γ. To make a physical choice of γ in this case, we

look at the tunneling conductance G = σ0

that follows from Eq. (9) at zero frequency. If γ = 1 (cor-
responding to the minimal phase of the fermionic sta-
tistics), then G = G1. In the tunneling model (1) with
n = 2, this value of conductance represents the situation
when the chiral dynamics of the edge does not play any
role, and the two reservoir channels are reduced to one
tunneling mode. The choice of γ can also be confirmed
by consideration of the tunneling energy [16], which
for x1 . x2 is minimized by the smallest γ consistent
with the statistics of the tunneling operators. In partic-
ular, γ = 0 gives the strong tunneling conductance in the
model of an impurity scatterer in TLL of two spin-
degenerate channels with the spin coupling constant
gs = 2 and the charge constant gc = 1/(1/ν + 1/2).

For spatially separated tunneling points, the symme-
try-preserving solution with γ = 1/ν reproduces equili-
bration between the reservoir and the edge. To see this,
we substitute γ = 1/ν into the first of Eqs. (8) and find

that sn = /(1 + ν) for any n. This shows that the tun-
neling into the nth channel is described by the one-point
tunneling conductance G1 for all frequencies ω, since it
cannot be affected by other contacts down the edge.
The zero-frequency solution of the second of Eqs. (8)
is sp – 1 = qsp, p = 2–n, with q = (1 – γ)/(1 + γ) equal to
1 – G1/σ0ν for γ = 1/ν. It means that in the strong-cou-
pling limit the tunneling current ∆j out of the edge
results in the ∆j/σ0ν drop of the edge chemical poten-
tial. The zero-frequency n point tunneling conductance

ωe iωt– j j ω x,( )
1 2,∑d∫–

K̂
1–

4ν
2 ν 1 γ2+[ ]+
--------------------------------

ν–
follows from  = /  = sn(1 + ν)(1 – qn)/2

as σ0ν(1 – qn) and saturates at νσ0, when n  ∞ and
the outgoing edge is equilibrated with the reservoir.

In conclusion, we have found the strong-coupling
solution of the model of tunneling between the multi-
mode Fermi liquid reservoir and an edge of the princi-
pal FQHL. The solution depends on the choice of the
statistical phase branch of different reservoir modes
with the physically relevant choice of the phase pre-
serving the initial commutation symmetry of the tun-
neling Lagrangian. The statistical phase accounts for an
even number of fluxes absorbed/emitted by tunneling
electrons. The results explain the difference between
transport through a 1D FQHL edge and a TLL wire: the
two-terminal universal conductance of the edge is
renormalized by the flux attachment, while direct elec-
tron–electron interaction in the wire does not change its
universal free-electron conductance.

This work was supported by the NSA and ARDA
under ARO contract.
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Symmetry analysis is carried out for the ordered phases of cubic monoxide TiOy with relative oxygen contents
y < 1 and y > 1. It is established that a partially ordered orthorhombic phase (space group Immm)—a derivative
of the orthorhombic M3X2h superstructure (at y < 1.0) or the inverse superstructure M2jX3 (at y > 1)—may
arise in TiOy . The distribution of Ti and O atoms, oxygen vacancies h, and titanium vacancies j in unit cells
of the orthorhombic ordered phases is determined. The phases are formed through the order–disorder transition
channel along two rays of a non-Lifshitz star {k4}, and the ordering proceeds as a first-order phase transition.
The distribution functions of Ti atoms over the sites of metallic and O atoms over the sites of nonmetallic sub-
lattices are calculated for the orthorhombic superstructures of cubic titanium monoxide TiOy . © 2001 MAIK
“Nauka/Interperiodica”.

PACS numbers: 61.50.Ks; 64.70.Kb; 61.66.Fn
The phase diagram of the Ti–O system was found to
contain from 19 to 27 different phases and compounds
[1–3], the real existence of some of them not being
established reliably. Titanium monoxide TiOy with the
basal cubic (type B1) structure is the most interesting
compound in the Ti–O system. TiOy belongs to the
group of strongly nonstoichiometric compounds [4]; it
has a broad homogeneity interval from TiO0.70 to
TiO1.26–1.28 and contains 10–15 at. % structural vacan-
cies simultaneously in each of the titanium and oxygen
sublattices [5–8]. The formulation of titanium monox-
ide as TiOy does not carry information on the concen-
tration of structural vacancies in the metallic and non-
metallic sublattices. For this reason, it would be more
correct to represent the monoxide composition as TixOz ≡
Tixj1 – xOzh1 – z ≡ TiOy (y = z/x; j and h are the struc-
tural vacancies in the titanium and oxygen sublattice,
respectively). Although the existence of TiOy is beyond
question, the data about the structure of its ordered
phases are limited and contradictory in many cases.

The monoclinic [space group C2/m (A12m/1)]
superstructure Ti5jO5h [8–11] is the only one whose
existence was firmly established and repeatedly con-
firmed experimentally. A comprehensive description of
its structure is given in [7]. The structure of the ordered
tetragonal phase corresponding to the monoxide with
nominal composition TiO1.25 is also satisfactorily
described [10]. As for the other ordered phases (orthor-
hombic TiO0.7–0.9, TiO1.19, and Ti2.5O3 and cubic
Ti22.5O22.5), the relevant information amounts to deriv-
ing their symmetry from electron microscopy and dif-
fraction data and to the speculations about their possi-
0021-3640/01/7402- $21.00 © 20091
ble belonging to one of the three or four space groups
[10, 12]. The authors of [10, 12] consider these phases
as transient from the disordered cubic phase of TiOy to
the ordered monoclinic phase Ti5O5.

This study is devoted to the structural analysis of the
orthorhombic ordered phases of titanium monoxide.
According to [12], the orthorhombic phase of nominal
composition TiO1.20 is formed on the basis of a disor-
dered cubic phase of TiOy with structure B1 in the
region TiO1.00–TiO1.50 and belongs to the space group
Immm, Imm2, or I222. The true composition of the
monoxide is unknown, because the data on the concen-
tration of structural vacancies in the titanium and oxy-
gen sublattices are not reported in [12]. Moreover,
TiO1.28, and not TiO1.50, is at the upper boundary of
homogeneity interval of cubic monoxide TiOy . It is
assumed in [12] that, apart from one vacancy, a unit cell
contains six titanium atoms and five oxygen atoms.
However, there is no way to orderly arrange an odd
number of atoms over the sites of the orthorhombic unit
cell, because there are no positions with multiplicity 1
(the lowest site multiplicity is 2). In [8, 10], the orthor-
hombic superstructure with space group Immm or I222
appeared in the region TiO0.7–TiO0.9 (the real composi-
tion of the monoxides was unknown). It was assumed
in [10] that the authors of [8, 10, 12] dealt with the same
orthorhombic phase, in which (depending on the oxy-
gen content in TiOy) the structural vacancies in the tita-
nium sublattice or the structural vacancies in the oxy-
gen sublattice were randomly distributed over the lat-
tice sites, while the structural vacancies of the other
sublattice were partially ordered.
001 MAIK “Nauka/Interperiodica”



 

92

        

GUSEV

                                                                              
Symmetry analysis carried out earlier in [4, 13] has
shown that all the known superstructures of strongly
nonstoichiometric compounds MXy having structure
B1 can be formulated as M2tX2t – 1h (t = 1, 1.5, 2, 3, and
4). According to [14–16], only the M2tX2t – 1h super-
structures with t = 1, 1.5, and 3, i.e., M2Xh (space

groups , , and I41/amd), M3X2h (space
groups Immm, P2, and C2221), and M6X5h (space
groups C2, C2/m, and P31), are thermodynamically sta-
ble in the nonstoichiometric MXy compounds contain-
ing vacancies in the nonmetallic sublattice. All the
above-mentioned superstructures; their inverse super-
structures MjX2, M2jX3, and M5jX6 with the ordered
metallic vacancies; and the superstructures M5jX5h

and M2jX2h with simultaneous vacancy ordering in
both sublattices can, in principle, arise in the strongly
nonstoichiometric compounds containing vacancies in
both sublattices. The type of superstructure in a partic-
ular nonstoichiometric compound depends primarily
on the width of the homogeneity interval of this com-
pound. For example, superstructures of the M2Xh and
MjX2 types cannot form in TiOy , because they lie far
beyond the homogeneity region of the TiOy monoxide.
Superstructures of the M6X5h and M5jX6 types also
cannot arise because, for the atom-to-vacancy ratio of
5/1 in the ordering sublattice, the concentration of
vacancies of another sort in TiOy approaches 10 at. %,
i.e., is large to an extent that the ordering must occur in
both sublattices. The M2jX2h superstructure contains

R3m Fd3m

Fig. 1. Unit cell of the orthorhombic (space group Immm)
Ti3O2h superstructure in the basal lattice of titanium mon-
oxide TixOz (y ≡ z/x < 1) with structure B1: d are the tita-
nium sites randomly (with probability x) occupied by the
Ti atoms; s are the oxygen 4(g) positions fully occupied by
the O atoms; h are the oxygen 2(a) positions vacant with
probability 1n1(s) or (what is the same) occupied by the oxy-

gen atoms with probability n1(s) = z – 2 /3 < 1. The long-

range order parameter can vary within 3(1 – z) ≥  ≥ 0.

The oxygen vacancies are located in every third (110)B1
plane of the basal cubic lattice; the sites of these planes are
randomly occupied by the oxygen vacancies.

η4
s( )

η4
s( )

Ti3O2h
33 at. % of vacancies in each sublattice, so that it also
cannot form in TiOy , because the concentration of
structural vacancies in each sublattice of the equiatomic
TiO monoxide does not exceed 17 at. % [5–7].

The stoichiometric composition of the M3X2 super-
structure (M3X2h) is closest to the lower boundary of the
homogeneity interval of titanium monoxide TiO0.70 ≡
Ti0.97O0.68. The orthorhombic structure of this composi-
tion belongs to the space group Immm. It is formed
through the order–disorder phase-transition channel

along two rays  = (b1 + b2 + 2b3)/3 and  = 
of a non-Lifshitz star {k4} with running parameter µ4 =
1/3 (the wave-vector stars {ks} in the first Brillouin

zone of a fcc crystal and the rays  of these stars are
numbered according to [4, 16]). In the coordinates of
the basal cubic structure, the translation vectors of a
unit cell of orthorhombic (space group Immm) super-
structure are a = {1/2, –1/2, 0}, b = {3/2, 3/2, 0}, and
c = {0, 0, 1}.

Knowing the transition channel, one can determine
the distribution function over the sites of oxygen sublat-
tice for the O atoms in the orthorhombic superstructure
Ti3O2h (t = 1.5) of the TixOz monoxide. The calculated
distribution function has the form

(1)

where  is the long-range order parameter corre-
sponding to the {k4} star. The maximal value of this
parameter depends on the composition of the TixOz

monoxide. For the ordered oxygen sublattice, one has
for 1 > y ≡ z/x > (2t –1)/2t

(2)

Therefore, even at the lower boundary of the homoge-
neity interval of TiOy monoxide (y = 0.70 and z = 0.68),
the maximal value of the long-range order parameter in
the ordered phase cannot exceed 0.96, and it does not
exceed 0.59 for the TiO0.90 ≡ Ti0.895O0.805 monoxide.

The unit cell of the ordered orthorhombic (space
group Immm) phase of a TiOy monoxide with y < 1 is
shown in Fig. 1. At the sites of the oxygen sublattice, the
distribution function in Eq. (1) takes either of two values:

n1(s) = z – 2 /3 at the 2(a) positions and n2(s) = z +

/3 at the 4(g) positions. One can readily verify that,
for 1 > z > (2t – 1)/2t, the n2(s) value is always equal to
unity, while z ≥ n1(s) ≥ 3z – 2 and is always smaller than
unity. This implies that the oxygen atoms in the ordered
orthorhombic phase of the TiOy (y < 1) monoxide
occupy all 4(g) positions, whereas the 2(a) positions are
vacant with probability P = 1 – n1(s) [or, what is the
same, randomly occupied by the O atoms with proba-
bility n1(s)]. In the orthorhombic superstructure Ti3O2h

of the TiOy (y < 1) monoxide, the oxygen vacancies are

k4
1( ) k4

1( ) k– 4
1( )

ks
j( )

ns xI yI zI, ,( ) = z 2η4
s( )/3( ) 4π xI yI+( )/3[ ] },cos{–

η4
s( )

η4
s( )max z( ) 2t 1 z–( )= 3 1 z–( ), t≡ 1.5.=

η4
s( )

η4
s( )
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located in every third (110)B1 plane of the basal cubic
structure and randomly distributed in these planes
(Fig. 1).

One should distinguish between the ordered orthor-
hombic phase Ti3O2h and the hexagonal (space group
P6/mmm) phase of TiO0.5 (or Ti3O2) [17], because the
latter is not an ordered phase of the cubic monoxide
TiOy. Note that the stoichiometric Ti3O2h composition
of the ordered orthorhombic phase does not lie within
the homogeneity interval of the cubic titanium monox-
ide and, therefore, does not exist. Only a partially
ordered orthorhombic phase of the Ti3O2h type is
formed. An interesting case of ordering in the orthor-
hombic phase is provided by the ordering of the Ti3O2h

type in the TiO0.95 (Ti0.877O0.833) monoxide. If the long-
range order parameter in Ti0.877O0.833 equals 0.5, then
the O atoms and the oxygen vacancies h occupy the
2(a) positions with the same probability 0.5, and the
composition of the partially ordered monoxide can be
written as (Ti0.877j0.123)6O5h. Compositionally, this
resembles a superstructure of the M6X5h type, although
it is a particular case of the Ti3O2h superstructure. The
X-ray diffraction patterns of the ordered monoxides
confirm these conclusions.

Figure 2 shows the calculated X-ray patterns of the
Ti0.968O0.678 (TiO0.70) and Ti0.877O0.833 (TiO0.95) monox-
ides with the orthorhombic (space group Immm) order-
ing of the Ti3O2h type; the long-range order parameter
is 0.966 and 0.50, respectively. In the X-ray pattern of
the ordered Ti0.877O0.833 monoxide, whose composition
can be written as (Ti0.877j0.123)6O5h, the superstructure
reflections are observed only for the rhombic phase; the
reflections with 2θ = 18.4°, 20.9°, and other angles cor-
responding to the monoclinic or trigonal superstruc-
tures of the M6X5h type are absent.

Let us now consider the orthorhombic superstruc-
ture M2jX3 with ordered metallic vacancies and ran-
domly distributed nonmetallic vacancies. In TiOy, such
a structure can arise if y > 1. The ordered orthorhombic
phase Ti2jO3 of stoichiometric composition lies
beyond the homogeneity region of the cubic TiOy mon-
oxide, but it is closest to the upper boundary of the
homogeneity interval. The ordered phase Ti2jO3
should be distinguished from the trigonal phase Ti2O3,
because the latter is not an ordered phase of the TiOy

monoxide. The structural order–disorder phase-transi-
tion channel TiOy (y > 1)  Ti2jO3 is the same as in
the case of the TiOy (y < 1)  Ti3O2h transition.

The distribution function of Ti atoms over the sites
of the titanium sublattice in the orthorhombic Ti2jO3
superstructure (Ti2t – 1jO2t with t = 1.5) of the TixOz

monoxide has the form

(3)nTi xI yI zI, ,( ) x 2η4
Ti( )/3( ) 4π xI yI+( )/3[ ]cos{ } .–=
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If the ordering occurs in the metallic sublattice of the
TixOz monoxide with 1 > x > (2t – 1)/2t and y ≡ z/x > 1,
then the maximal value of long-range order parameter
is

(4)

At the upper boundary of the homogeneity region of
TiOy (y ≈ 1.28 and x ≈ 0.77), the maximal value of

parameter  in the ordered phase does not exceed
0.70. On changing composition from TiO1.28 to that of
the equiatomic monoxide TiO (Ti0.833O0.833), the maxi-
mal value of the long-range order parameter decreases
to 0.50.

The unit cell of a partially ordered orthorhombic
(space group Immm) phase Ti2jO3 of TiOy with y > 1 is

η4
Ti( )max x( ) 2t 1 x–( ) 3 1 x–( ), t≡ 1.5.= =

η4
Ti( )

Fig. 2. X-ray diffraction patterns of the Ti0.968O0.678
(TiO0.700) and Ti0.877O0.833 (TiO0.950) monoxides with the
orthorhombic (space group Immm) ordering of the Ti3O2h

type, and X-ray patterns of the Ti0.833O0.898 (TiO1.077),
Ti0.793O0.952 (TiO1.200), and Ti0.768O0.983 (TiO1.280) mon-
oxides with the orthorhombic (space group Immm) ordering
of the Ti2jO3 type. For the Ti0.968O0.678 and Ti0.877O0.833

monoxides, the long-range order parameter  is equal,

respectively, to 0.966 and 0.50, and the period aB1 of the
disordered basal cubic lattice is, respectively, 0.4207 and

0.4184 nm. The long-range order parameter  for the

Ti0.833O0.898, Ti0.793O0.952, and Ti0.768O0.983 monoxides is
equal, respectively, to 0.50, 0.62, and 0.696, and the period
aB1 of the basal lattice is, respectively, 0.41755, 0.41698,
and 0.41675 nm. The translation periods of the rhombic unit

cell are a = aB1/ , b = 3aB1/ , and c = aB1. X-ray pat-
tern of an ideal ordered monoclinic (space group C2/m)
Ti5jO5h phase (aB1 = 0.41804 nm) is shown for compari-
son. CuKα1, 2 radiation, u = v  = 0.1, w = 0.02, and
Uiso = 0.01.

η4
s( )

η4
Ti( )

2 2
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depicted in Fig. 3. This cell is the inverse of the unit cell
of rhombic superstructure Ti3O2h (Fig. 1) and can be
obtained through replacing the sites of the metallic sub-
lattice by the sites of the nonmetallic sublattice.

At all sites of the metallic sublattice, the distribution
function in Eq. (3) takes either of two values: n1(Ti) = x –

2 /3 at positions 2(c) and n2(Ti) = x + /3 at posi-
tions 4(h). One can readily verify that, for the maximal
degree of long-range order and 1 > x > (2t –1)/2t, the
n2(Ti) value is always equal to unity, while x ≥ n1(Ti) ≥
3x – 2 and is always smaller than unity. This implies
that the Ti atoms in the ordered orthorhombic phase of
the TiOy (y > 1) monoxide occupy all 4(h) positions,
whereas the 2(c) positions are vacant with probability
P = 1 – n1(Ti) [or occupied by the titanium atoms with
probability n1(Ti)]. In the Ti2jO3 superstructure under
discussion (y > 1), the metallic vacancies are located in
every third 110B1 plane of the basal cubic structure
(Fig. 3) and randomly distributed over the sites of these
planes.

Figure 2 shows the calculated X-ray patterns of the
Ti0.833O0.898 (TiO1.077), Ti0.793O0.952 (TiO1.20), and
Ti0.768O0.983 (TiO1.28) monoxides with the orthorhombic
(space group Immm) ordering of the Ti2jO3 type; the

long-range order parameter  is 0.50, 0.62, and
0.696, respectively. The superstructural reflections in
the X-ray pattern of the ordered Ti0.833O0.898 monoxide,
whose composition can be written as
Ti5j(O0.898h0.102)6, are only those of the rhombic phase;
the reflections corresponding to the monoclinic or trig-
onal superstructures of the M5jX6 type are absent.

η4
Ti( ) η4

Ti( )

η4
Ti( )

Fig. 3. Unit cell of the orthorhombic (space group Immm)
Ti2jO3 superstructure in the basal lattice of the TiOy ≡
TixOz (y ≡ z/x > 1) monoxide with structure B1: s are the
oxygen sites randomly (with probability z) occupied by the
O atoms; d are the metallic 4(h) positions occupied by the
Ti atoms; j are the metallic 2(c) positions vacant with prob-
ability (1 – n1(Ti)). In the Ti2jO3 superstructure of the TiOy
(y > 1) monoxide, the vacant sites of the metallic sublattice
are located in every third (110)B1 plane of the basal cubic
lattice; the sites of these planes are randomly occupied by
the vacancies.

Ti2jO3
With the indicated vacancy concentrations in the tita-
nium and oxygen sublattices, the ordered TiO1.20 mon-
oxide cannot even formally be represented as Ti5O6 or,
taking into account the presence of two formula units in
the rhombic unit cell, as Ti2.5O3, as was suggested in
[12].

The X-ray pattern of an ideal ordered monoclinic
(space group C2/m)Ti5jO5h compound is given in
Fig. 2 for comparison. One can clearly see that all
superstructure reflections of the orthorhombic
Ti3O2hand Ti2jO3 phases coincide with a part of
superstructure reflections of the monoclinic Ti5jO5h

phase (a small noncoincidence is caused by the fact that
the base lattice periods aB1 are different for the compo-
sitionally different monoxides). The reason for the
coincidence is quite clear. Apart from the rays of the
{k10} and {k1} stars, the TiOy  Ti5jO5h transition
channel involves the rays of the {k4} star with parame-
ter µ4 = 1/3. The rays of the {k4} star, which form the
TiOy (y < 1)  Ti3O2h and TiOy (y > 1)  Ti2jO3
transition channels, have the same value of parameter
µ4 = 1/3 and, hence, the same length. Because of this,
the reflections corresponding to the wave vectors of the
{k4} star coincide in a diffraction experiment with a
polycrystal. When studying the ordering in polycrystal-
line samples, these reflections can be distinguished
only in the presence of displacement. In the diffraction
experiment with a single crystal, the rhombic and mon-
oclinic reflections caused by the {k4} star must be
observed at different positions. Indeed, in the electron
diffraction experiment with titanium monoxide, the
authors of [10] observed reflections corresponding to
both monoclinic and orthorhombic phases simulta-
neously.

The formation of orthorhombic phases in titanium
monoxide is caused by the symmetry distortions along

the non-Lifshitz star {k4}, for which the vector 3
coincides with the structural vector (220)B1. Hence, it
follows that the Landau criterion for the second-order
phase transitions does not hold in our case, so that the
order–disorder transformations TiOy (y < 1) 
Ti3O2h and TiOy (y > 1)  Ti2jO3 are first-order tran-
sitions.

REFERENCES
1. J. L. Murray and H. A. Wriedt, Bull. Alloy Phase Dia-

grams 8, 148 (1987).
2. R. C. De Vries and R. Roy, Am. Ceram. Soc. Bull. 33,

370 (1954).
3. P. G. Wahlbeck and P. W. Gilles, J. Am. Ceram. Soc. 49,

180 (1966).
4. A. I. Gusev and A. A. Rempel’, Nonstoichiometry, Dis-

order and Order in Solid (Ural. Otd. Ross. Akad. Nauk,
Yekaterinburg, 2001).

5. S. Andersson, B. Collen, U. Kuylenstierna, and A. Mag-
neli, Acta Chem. Scand. 11, 1641 (1957).

k4
1( )
JETP LETTERS      Vol. 74      No. 2      2001



ORDERED ORTHORHOMBIC PHASES OF TITANIUM MONOXIDE 95
6. M. D. Banus, T. B. Reed, and A. J. Strauss, Phys. Rev. B
5, 2775 (1972).

7. A. A. Valeeva, A. A. Rempel’, and A. I. Gusev, Neorg.
Mater. 37, 716 (2001).

8. D. Watanabe, J. R. Castles, A. Jostsons, and A. S. Malin,
Nature 210, 934 (1966); Acta Crystallogr. 23, 307
(1967).

9. E. Hilti and F. Laves, Naturwissenschaften 55, 131
(1968).

10. D. Watanabe, O. Terasaki, A. Jostsons, and J. R. Castles,
in The Chemistry of Extended Defects in Non-Metallic
Solids, Ed. by L. Eyring and M. O. Keeffe (North-Hol-
land, Amsterdam, 1970), pp. 238–258.

11. A. A. Valeeva, A. A. Rempel’, and A. I. Gusev, Pis’ma
Zh. Éksp. Teor. Fiz. 71, 675 (2000) [JETP Lett. 71, 460
(2000)].
JETP LETTERS      Vol. 74      No. 2      2001
12. E. Hilti, Naturwissenschaften 55, 130 (1968).

13. A. I. Gusev and A. A. Rempel, Phys. Status Solidi A 135,
15 (1993).

14. A. I. Gusev, Physical Chemistry of Nonstoichiometric
Refractory Compounds (Nauka, Moscow, 1991).

15. A. I. Gusev, Usp. Fiz. Nauk 170, 3 (2000).

16. O. V. Kovalev, Irreducible Representations of the Space
Groups (Naukova Dumka, Kiev, 1961; Gordon and
Breach, New York, 1965).

17. S. Andersson, Acta Chem. Scand. 13, 415 (1959).

Translated by V. Sakun



  

JETP Letters, Vol. 74, No. 2, 2001, pp. 96–99. From Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 74, No. 2, 2001, pp. 101–104.
Original English Text Copyright © 2001 by Fominov, Chtchelkatchev, Golubov.
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Superconductor/ferromagnet bilayers are known to exhibit nontrivial dependence of the critical temperature Tc
on the thickness df of the ferromagnetic layer. We develop a general method for investigation of Tc as a function
of the bilayer parameters. It is shown that interference of quasiparticles makes Tc(df) a nonmonotonic function.
The results are in good agreement with experiment. Our method also applies to multilayered structures. © 2001
MAIK “Nauka/Interperiodica”.

PACS numbers: 74.50.+r; 74.80.Dm; 75.30.Et
1 Recently, much attention has been paid to properties
of hybrid proximity systems containing superconduc-
tors (S) and ferromagnets (F); new physical phenomena
were predicted and observed in these systems [1–4].
One of the most striking effects in SF layered structures
is the highly nonmonotonic dependence of the critical
temperature Tc of the system on the thickness df of the
ferromagnetic layers. Experiments exploring this non-
monotonic behavior have been performed previously
on SF multilayers such as Nb/Gd [5], Nb/Fe [6],
V/V−Fe [7], and Pb/Fe [8], but the results (and, in par-
ticular, comparison between the experiments and theo-
ries) were not conclusive.

To perform reliable experimental measurements of
Tc(df), it is essential to have df large compared to the
interatomic distance; this situation can be achieved
only in the limit of weak ferromagnets. Active experi-
mental investigations of SF bilayers and multilayers
based on Cu–Ni dilute ferromagnetic alloys are being
carried out by the group of Ryazanov2 [9]. In SF bilay-
ers, they observed a highly nonmonotonic dependence
Tc(df). While the reason for this effect in multilayers
can be the 0–π transition [3], in a bilayer system with a
single superconductor this mechanism is irrelevant and
the cause of the effect is quasiparticle interference spe-
cific to SF structures.

In this paper motivated by the ROP experiment [9],
we theoretically study the critical temperature of SF
bilayers. Previous theoretical investigations of Tc in SF
structures were concentrated on systems with thin or
thick S(F) layers [compared to the coherence length of
the superconductor (ferromagnet)], with SF boundaries
having very low or very high transparency; besides, the
exchange energy was often assumed to be much larger

1 This article was submitted by the authors in English.
2 Ryazanov, Oboznov, Prokof’ev, et al.—hereafter referenced as

ROP.
0021-3640/01/7402- $21.00 © 20096
then the critical temperature [3, 7, 8, 10–13]. The
parameters of the ROP experiment do not correspond to
any of these limiting cases. In this paper, we develop an
approach giving an opportunity to investigate not only
the limiting cases of parameters, but also the intermedi-
ate region. Using our method, we find different types of
nonmonotonic behavior of Tc as a function of df such as
the minimum of Tc and even reentrant superconductiv-
ity [14]. Comparison of our theoretical predictions with
the experimental data shows good agreement.

We assume that dirty-limit conditions are fulfilled
and calculate the critical temperature of the bilayer
within the framework of the linearized Usadel equa-
tions for the S and F layers (the domain 0 < x < ds is
occupied by the S metal; –df < x < 0, by the F metal—
see Fig. 1). Near Tc, the normal Green’s function is G =

, and the Usadel equations for the anomalous
function F take the form

(1)

(2)

(3)

where ξs = , ξf = , ωn = πT(2n + 1)
with n = 0, ±1, ±2, … are the Matsubara frequencies,
Eex is the exchange energy, and Tcs is the critical temper-
ature of the S layer. Fs(f ) denotes the function F in the
S(F) region.

ωnsgn

ξ s
2πTcs

d2Fs

dx2
----------- ωn Fs– ∆+ 0, 0 x ds;< <=

ξ f
2πTcs

d2F f

dx2
----------- ωn iEex ωnsgn+( )F f– 0,=

d f– x 0;< <

∆
Tcs

T
-------ln πT

∆
ωn

--------- Fs– 
  ,

ωn

∑=

Ds/2πTcs D f /2πTcs
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Equations (1)–(3) must be supplemented with the
boundary conditions at the outer surfaces of the bilayer,

(4)

as well as at the SF boundary,

(5)

(6)

Here, ρs, f are the normal-state resistivities of the S and
F metals, Rb is the total resistance of the SF boundary,
and ! is its area. The Usadel equation in the F layer is
readily solved:

(7)

with

(8)

and the boundary condition at x = 0 can be written in
closed form with respect to Fs:

(9)

where Bf (ωn) = [kfξf ]–1.

This boundary condition is complex. In order to
rewrite it in real form, we do the usual trick and go over
to the functions F± = F(ωn) ± F(–ωn). The symmetric
properties of F+ and F– are trivial, so we will treat only
positive ωn. The self-consistency equation is expressed

only via the symmetric function ,

(10)

and the problem of determining Tc can be formulated in

closed form with respect to . This is done as follows.

The Usadel equation for  does not contain ∆; hence,

it can be solved analytically. After that, we exclude 
from boundary condition (9) and arrive at the effective

boundary conditions for :

(11)

dFs ds( )
dx

------------------
dF f d f–( )

dx
----------------------- 0,= =

ξ s

dFs 0( )
dx

----------------- γξ f

dF f 0( )
dx

-----------------, γ
ρsξ s

ρ f ξ f

-----------,= =

ξ f γb

dF f 0( )
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----------------- Fs 0( )= F f 0( ), γb–
Rb!
ρ f ξ f

-----------.=

F f C ωn( ) k f x d f+( )( ),cosh=

k f
1
ξ f
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ωn iEex ωnsgn+

πTcs

-----------------------------------------,=

ξ s

dFs 0( )
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γb B f ωn( )+
----------------------------Fs 0( ),=

k f d f( )tanh

Fs
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T
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2∆
ωn
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where

(12)

Self-consistency equation (10) and boundary conditions

(11), (12) together with the Usadel equation for ,

, (13)

will be used below to find the critical temperature of the
bilayer.

The Green’s function (in a mathematical sense) of
problem (11)–(13) can be expressed via solutions v 1, v 2
of Eq. (13) without ∆, satisfying the boundary condi-
tions at x = 0 and x = ds, respectively:

(14)

where a = W(ωn)/ksξs and

(15)

Having found G(x, y; ωn), we can write the solution of
Eqs. (11)–(13) as

(16)

W γ
As γb ReB f+( ) γ+

As γb B f+ 2 γ γb ReB f+( )+
-------------------------------------------------------------------,=

As ksξ s ksds( ), kstanh 1/ξ s ωn/πTcs( ).= =

Fs
+

ξ s
2πTcs

d2Fs
+

dx2
----------- ωnFs

+– 2∆+ 0=

G x y; ωn,( )
ksξ s/ωn

ksds( ) a ksds( )cosh+sinh
-------------------------------------------------------------=

×
v 1 x( )v 2 y( ), x y≤
v 2 x( )v 1 y( ), y x,≤




v 1 x( ) ksx( ) a ksx( ),sinh+cosh=

v 2 x( ) ks x ds–( )( ).cosh=

Fs
+ x; ωn( ) 2 G x y; ωn,( )∆ y( ) y.d

0

ds

∫=

Fig. 1. The SF bilayer. The F and S layers occupy the
regions –df < x < 0 and 0 < x < ds, respectively. The four
types of trajectories contributing (in Feynman path integral
sense) to the anomalous wave function of correlated quasi-
particles are shown in the ferromagnetic region. The solid
lines correspond to electrons, and the dashed lines to holes;
the arrows indicate the direction of the velocity.
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Substituting this into self-consistency equation (10),
we obtain

(17)

This equation can be expressed in symbolic form:

∆ln(Tcs/Tc) = . Then, Tc is determined from the con-
dition

(18)

that Eq. (17) have a nontrivial solution with respect to
∆. Numerically, we put our problem (17), (18) on a spa-

tial grid so that the linear operator  becomes a finite
matrix.

Equations (14)–(18) are our central result; substitut-
ing the concrete parameters of the system, we can eas-
ily find the critical temperature numerically and in cer-
tain cases analytically. (The models considered previ-
ously [3, 7, 8, 10–13] correspond to the limiting cases
of our theory.)

We apply our method to fit ROP experimental data
[9]; the result is presented in Fig. 2. Estimating the
parameters ds = 11 nm, Tcs = 7 K, ρs = 7.5 µΩ cm, ξs =
8.9 nm, ρf = 60 µΩ cm, ξf = 7.6 nm, and γ = 0.15 from
the experiment and fitting only Eex and γb, we find good
agreement between our theoretical predictions and the
experimental data. The fitting procedure was the fol-
lowing: first, we determine Eex ≈ 130 K from the posi-
tion of the minimum of Tc(df); second, we find γb ≈ 0.3
from fitting the vertical position of the curve. The devi-

∆ x( )
Tcs

Tc

-------ln

=  2πTc
∆ x( )
ωn

----------- G x y; ωn,( )∆ y( ) yd

0

ds

∫– .
ωn 0>
∑

L̂∆

det L̂ 1̂–
Tcs

Tc

-------ln 
  0=

L̂

Fig. 2. Theoretical fit to ROP experimental data [9]. In the
experiment, Nb was the superconductor (with ds = 11 nm,
Tcs = 7 K) and Cu0.43Ni0.57 was the weak ferromagnet.
From our fit, we estimate Eex ≈ 130 K and γb ≈ 0.3.
ation of our curve from the experimental points is
small; it is most pronounced in the region of small df

corresponding to the initial decrease of Tc. This is not
unexpected because when df is of the order of a few
nanometers, the thickness of the F film may vary signif-
icantly along the film (which is not taken into account
in our theory) and the thinnest films can even be formed
by an array of islands rather than by continuous mate-
rial. At the same time, we note that the minimum of Tc

occurs at df ≈ 5 nm, when with good accuracy the F
layer has uniform thickness.

The position of the minimum of Tc(df) can be esti-
mated from qualitative arguments based on interference
of quasiparticles in the ferromagnet. Let us consider a
point x inside the F layer. According to Feynman’s
interpretation of quantum mechanics [15], the quasipar-
ticle wave function [we are interested in an anomalous
wave function of correlated quasiparticles, which char-
acterizes the superconductivity; this function is equiva-
lent to the anomalous Green’s function F(x)] may be
represented as a sum of the wave amplitudes over all
classical trajectories; the wave amplitude for a given
trajectory equals exp(iS), where S is the classical action
along this trajectory. To obtain our anomalous wave
function, we must sum over trajectories that (i) start and
end at the point x and (ii) change the type of the quasi-
particle (i.e., convert an electron into a hole or vice
versa). There are four kinds of trajectories which
should be taken into account (see Fig. 1). Two of them
(denoted 1 and 2) start in the direction toward the SF
interface (as an electron and as a hole), experience
Andreev reflection, and return to the point x. The other
two trajectories (denoted 3 and 4) start in the direction
away from the interface, experience normal reflection
at the outer surface of the F layer, move toward the SF
interface, experience Andreev reflection there, and
finally return to the point x. The main contribution is
given by the trajectories normal to the interface. The
corresponding actions are S1 = –S2 = –Qx and S3 = –S4 =
–Q(2df + x) (note that x < 0), where Q is the difference
between the wave numbers of the electron and the hole.
To make our arguments clearer, we assume that the fer-
romagnet is strong and the SF interface is ideal, and
consider the clean limit first: in this case Q = ke – kh =

 –  ≈ 2Eex/v,
where E is the quasiparticle energy, µ is the Fermi
energy, and v  is the Fermi velocity. Thus, the anoma-
lous wave function of the quasiparticles is F(x) ∝

 ∝  cos(Qdf)cos(Q(df + x)). The sup-

pression of Tc by the ferromagnet is determined by the
value of the wave function at the SF interface: F(0) ∝
cos2(Qdf). The minimum of Tc corresponds to the mini-
mal value of F(0), which is achieved at df = π/2Q. In the

2m E Eex µ+ +( ) 2m –E Eex– µ+( )

iSn( )exp
n 1=
4∑
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dirty limit the above expression for Q is replaced by Q =

; hence, the minimum of Tc(df) occurs at

(19)

In the case of ROP bilayer [9], we obtain  ≈ 7 nm,
whereas the experimental value is 5 nm (Fig. 2); thus,
our qualitative estimate appears to be reasonable.

The method developed in this paper applies directly
to multilayered SF structures (in particular, to trilayers)
in the 0-state, where an SF bilayer can be considered as
an elementary cell of the system. A generalization can
be made, which allows one to take into account possible
superconductive and/or magnetic π-states.

In conclusion, we have developed a method for cal-
culating the critical temperature of a SF bilayer as a
function of parameters of the junction. The approach
developed here gives an opportunity to evaluate Tc in a
wide range of parameters. We demonstrate that there is
good agreement between the experimental data and our
theoretical predictions. Qualitative arguments are given
that explain the nonmonotonic behavior of the function
Tc(df). Extensive details of our study will be published
elsewhere [14].
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